From d0a662f068842561557b1298f10e1e65681ce62c Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 17:54:17 -0700 Subject: [PATCH 01/33] initial commit --- README.md | 99 +- _action_files/settings.ini | 2 +- _config.yml | 4 +- _fastpages_docs/_setup_pr_template.md | 10 +- notebooks/kdd_intro_to_EconML.ipynb | 6936 ++++++++++++------------- 5 files changed, 3507 insertions(+), 3544 deletions(-) diff --git a/README.md b/README.md index 4af745a..7eb7a77 100755 --- a/README.md +++ b/README.md @@ -1,32 +1,31 @@ [//]: # (This template replaces README.md when someone creates a new repo with the fastpages template.) -![](https://github.com/causal-machine-learning/kdd2021-tutorial/workflows/CI/badge.svg) -![](https://github.com/causal-machine-learning/kdd2021-tutorial/workflows/GH-Pages%20Status/badge.svg) +![](https://github.com/causal-machine-learning/kdd2023-workshop/workflows/CI/badge.svg) +![](https://github.com/causal-machine-learning/kdd2023-workshop/workflows/GH-Pages%20Status/badge.svg) [![](https://img.shields.io/static/v1?label=fastai&message=fastpages&color=57aeac&labelColor=black&style=flat&logo=)](https://github.com/fastai/fastpages) -# **Causal Inference and Machine Learning in Practice with EconML and CausalML**: Industrial Use Cases at Microsoft, TripAdvisor, Uber +# **Causal Inference and Machine Learning in Practice**: Use cases for Product, Brand, Policy and Beyond ## **Schedule** -### Time - -* 4:00 AM - 7:00 AM August 15, 2021 [SGT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) -* 4:00 PM - 7:00 PM August 14, 2021 [EDT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) -* 1:00 PM - 4:00 PM August 14, 2021 [PDT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) - -### Live Zoom Link - -To be shared within the KDD 21 Virtual Platform during the conference. +* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) +* 9:00 AM - 1:00 PM August 7, 2023 [PDT] ## **Abstract** In recent years, both academic research and industry applications see an increased effort in using machine learning methods to measure granular causal effects and design optimal policies based on these causal estimates. Open source packages such as [CausalML](https://github.com/uber/causalml) and [EconML](https://github.com/microsoft/econml) provide a unified interface for applied researchers and industry practitioners with a variety of machine learning methods for causal inference. The tutorial will cover the topics including conditional treatment effect estimators by meta-learners and tree-based algorithms, model validations and sensitivity analysis, optimization algorithms including policy leaner and cost optimization. In addition, the tutorial will demonstrate the production of these algorithms in industry use cases. -## **Target Audience and Prerequisites for the Tutorial** +## **Target Audience for the Workshop** Anyone who is interested in causal inference and machine learning, especially economists/statisticians/data scientists who want to learn how to combine causal inference and machine learning with real industry use cases incorporated in large scaled machine learning systems at companies such as Microsoft, TripAdvisor and Uber. The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming language. +## **Important Dates** + +* May 23, 2023 [AoE]: Workshop paper submission deadline +* June 23, 2023: Paper decision notifications +* August 7, 2023: Workshop + ## **Outline** | **Title** | **Duration** | Slides | Code | @@ -41,80 +40,44 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni | Case Study #3: Customer Segmentation at TripAdvisor with Recommendation A/B Tests | 30 minutes | [Slides](https://drive.google.com/file/d/1yyIu_3epIVXbwzJj658Iv4vxHGjtPh8n/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1nUhkLVpanv-gm_oA7FbValhpDpEs02wR#scrollTo=qk4_f4tx5gZz) | | Case Study #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxies | 30 minutes | [Slides](https://drive.google.com/file/d/1FEKXFHHATntHjsEymXnEw6GAiUGMm8sG/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1Ow7ArXRn1NJq47OLvchi26RRTdm94yv8?usp=sharing) | -## **Presentation Abstracts** +## **Keynote Speakers** -### Introduction to Causal Inference +### Yoda We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. -### Introduction to CasualML +### Darth Vader We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). -### Case #1: Causal Impact Analysis with Observational Data at Uber +### Luke Skywalker As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We show the use of different causal estimation methodologies through propensity score matching and meta learners to estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. -### Case #2: Targeting Optimization: Bidder at Uber +### Princess Leia We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. -### Introduction to EconML - -We will provide an overview of recent methodologies that combine machine learning with causal inference and the significant statistical power that machine learning brings to causal inference estimation methods. We will outline the structure and capabilities of the EconML package and describe some of the key causal machine learning methodologies that are implemented (e.g. double machine learning, causal forests, deepiv, doubly robust learning, dynamic double machine learning). We will also outline approaches to confidence interval construction (e.g. bootstrap, bootstrap-of-little-bags, debiased lasso), interpretability (shap values, tree interpreters) and policy learning (doubly robust policy learning). - -### Case #3: Customer Segmentation at TripAdvisor with Recommendation A/B Tests +## **Accepted Papers** -We examine the scenario in which we wish to learn heterogeneous treatment effects (CATE), but observational data is biased and direct experimental data (e.g. A/B test) is plagued by imperfect compliance. In this setup, TripAdvisor would like to know whether joining a membership program compels users to spend more time engaging with the website and purchasing more products. The usual approach, a direct A/B test, is infeasible: the website cannot force users to comply and become members, hence the imperfect compliance that can bias calculations. The solution is to use an alternative A/B test that was originally designed to measure whether an easier sign-up process would promote user membership. This A/B test plays the role of an instrument that nudges users to sign up for membership. We introduce EconML’s IntentToTreatDRIV estimator which can leverage this repurposed A/B test to both learn the effect of membership on user engagement and understand how these effects vary with customer features. We show how this novel methodology led to extracting key business insights and helped TripAdvisor understand and differentiate how customers engage with their platform. +## **Organizers** -### Case #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxies +* Chu Wang, Amazon +* Yingfei Wang, University of Washington +* Xinwei Ma, UC San Diego +* [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact -In this case study, we talk about using observational data to measure the long term Return-on-Investment of some types of dollar value investments Microsoft gives to the enterprise customers. There are many challenges for this setting, for instance, we don't have enough period of data to identify a long term ROI, we should control the effect coming from the future investment and we are in a high dimensional data space. We then propose a surrogate based approach assuming the long-term effect is channeled through some short-term proxies and employ a dynamic adjustment to the surrogate model in order to get rid of the effect from future investment, finally apply double machine learning (DML) techniques to estimate the ROI. We apply this methodology to answer the questions like what is the average long-run ROI on each type of the investment? What types of customers have a higher ROI to a specific investment? And how different incentives impact the different solution areas. Finally we will showcase how you could use EconML to solve similar problems by only a few lines of code. +### CausalML Team - -## **Tutors** - -### Presenters - -* Jing Pan, Uber, CausalML +* Jing Pan, Snap, CausalML * Yifeng Wu, Uber, CausalML -* Huigang Chen, Facebook, CausalML -* Totte Harinen, Toyota Research Institute, CausalML -* Paul Lo, Uber, CausalML -* Greg Lewis, Microsoft Research, EconML -* Vasilis Syrgkanis, Microsoft Research, EconML -* Miruna Oprescu, Microsoft Research, EconML -* Maggie Hei, Microsoft Research, EconML +* Huigang Chen, Meta, CausalML +* Totte Harinen, AirBnB, CausalML +* Paul Lo, Snap, CausalML +* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact +* Zhenyu Zhao, Tencent, CausalML -### Contributors +### EconML Team -* Jeong-Yoon Lee, Netflix Research, CausalML -* Zhenyu Zhao, Tencent, CausalML * Keith Battocchi, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML - - -## **References** - -1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165. ([paper](https://www.pnas.org/content/pnas/116/10/4156.full.pdf)) -2. Chernozhukov, Victor, et al. "Double/debiased/neyman machine learning of treatment effects." American Economic Review 107.5 (2017): 261-65. ([paper](https://arxiv.org/pdf/1701.08687)) -3. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017) ([paper](https://arxiv.org/pdf/1712.04912)) -4. Tso, Fung Po, et al. "DragonNet: a robust mobile internet service system for long-distance trains." IEEE transactions on mobile computing 12.11 (2013): 2206-2218. ([paper](https://eprints.gla.ac.uk/56409/1/56409.pdf)) -5. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017) ([paper](https://arxiv.org/pdf/1705.08821)) -6. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242. ([paper](https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1319839)) -7. Oprescu, Miruna, et al. "EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects." ([repo](https://github.com/microsoft/EconML)) -8. Chen, Huigang, et al. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020) ([repo](https://github.com/uber/causalml)) -9. Yao, Liuyi, et al. "A survey on causal inference." arXiv preprint arXiv:2002.02770 (2020). ([paper](https://arxiv.org/pdf/2002.02770.pdf)) -10. Goldenberg, Dmitri, et al. "Personalization in Practice: Methods and Applications." Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021 ([paper](https://drive.google.com/drive/folders/1c_khoTDRbkoRY5OiaxEfUxRQkyNv3FeK)) -11. Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. ([paper](https://www.cambridge.org/core/journals/political-analysis/article/selection-bias-approach-to-sensitivity-analysis-for-causal-effects/788C169FAF5482452566811136D4F9B4)) -12. Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896 (2017). ([paper](https://arxiv.org/pdf/1702.02896.pdf)) -13. Sharma, Amit, and Emre Kiciman. "Causal Inference and Counterfactual Reasoning." Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 2020. 369-370. ([paper](https://dl.acm.org/doi/abs/10.1145/3371158.3371231)) -14. Li, Ang, and Judea Pearl. "Unit selection based on counterfactual logic." Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. 2019 ([paper](https://par.nsf.gov/biblio/10180278)) -15. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020) ([paper](https://arxiv.org/pdf/2004.14497.pdf)) -16. Gruber, Susan, and Mark J. Van Der Laan. "Targeted maximum likelihood estimation: A gentle introduction." (2009) ([paper](https://biostats.bepress.com/cgi/viewcontent.cgi?article=1255&context=ucbbiostat)) -17. D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 ([paper](https://arxiv.org/pdf/1901.09036.pdf)) -18. V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 ([paper](https://arxiv.org/pdf/1905.10176.pdf)) -19. M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019 ([paper](http://proceedings.mlr.press/v97/oprescu19a/oprescu19a.pdf)) -20. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017 ([paper](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf)) -21. Battocchi, K., Dillon, E., Hei, M., Lewis, G., Oprescu, M., & Syrgkanis, V. (2021). Estimating the Long-Term Effects of Novel Treatments. arXiv preprint arXiv:2103.08390. ([paper](https://arxiv.org/pdf/2103.08390.pdf)) -22. Lewis, G., & Syrgkanis, V. (2020). Double/Debiased Machine Learning for Dynamic Treatment Effects. arXiv preprint arXiv:2002.07285. ([paper](https://arxiv.org/pdf/2002.07285.pdf)) diff --git a/_action_files/settings.ini b/_action_files/settings.ini index d803172..8becb3a 100644 --- a/_action_files/settings.ini +++ b/_action_files/settings.ini @@ -7,7 +7,7 @@ description = Writing a library entirely in notebooks keywords = jupyter notebook author = Sylvain Gugger and Jeremy Howard author_email = info@fast.ai -baseurl = /kdd2021-tutorial +baseurl = /kdd2023-workshop title = nbdev copyright = fast.ai license = apache2 diff --git a/_config.yml b/_config.yml index 6995623..19a39b6 100644 --- a/_config.yml +++ b/_config.yml @@ -10,7 +10,7 @@ title: EconML/CausalML KDD 2021 Tutorial description: EconML/CausalML KDD 2021 Tutorial github_username: causal-machine-learning # you can comment the below line out if your repo name is not different than your baseurl -github_repo: "kdd2021-tutorial" +github_repo: "kdd2023-workshop" # OPTIONAL: override baseurl and url if using a custom domain # Note: leave out the trailing / from this value. @@ -34,7 +34,7 @@ url: "https://causal-machine-learning.github.io" # the base hostname & protocol # # 3. You must replace the parameter `baseurl` in _action_files/settings.ini with the same value as you set here but WITHOUT QUOTES. # -baseurl: "/kdd2021-tutorial" # the subpath of your site, e.g. "/blog". +baseurl: "/kdd2023-workshop" # the subpath of your site, e.g. "/blog". # Github and twitter are optional: minima: diff --git a/_fastpages_docs/_setup_pr_template.md b/_fastpages_docs/_setup_pr_template.md index 894e80a..2bb5d67 100644 --- a/_fastpages_docs/_setup_pr_template.md +++ b/_fastpages_docs/_setup_pr_template.md @@ -4,22 +4,22 @@ Hello :wave: @causal-machine-learning! Thank you for using fastpages! 1. Create an ssh key-pair. Open this utility. Select: `RSA` and `4096` and leave `Passphrase` blank. Click the blue button `Generate-SSH-Keys`. -2. Navigate to this link and click `New repository secret`. Copy and paste the **Private Key** into the `Value` field. This includes the "---BEGIN RSA PRIVATE KEY---" and "--END RSA PRIVATE KEY---" portions. **In the `Name` field, name the secret `SSH_DEPLOY_KEY`.** +2. Navigate to this link and click `New repository secret`. Copy and paste the **Private Key** into the `Value` field. This includes the "---BEGIN RSA PRIVATE KEY---" and "--END RSA PRIVATE KEY---" portions. **In the `Name` field, name the secret `SSH_DEPLOY_KEY`.** -3. Navigate to this link and click the `Add deploy key` button. Paste your **Public Key** from step 1 into the `Key` box. In the `Title`, name the key anything you want, for example `fastpages-key`. Finally, **make sure you click the checkbox next to `Allow write access`** (pictured below), and click `Add key` to save the key. +3. Navigate to this link and click the `Add deploy key` button. Paste your **Public Key** from step 1 into the `Key` box. In the `Title`, name the key anything you want, for example `fastpages-key`. Finally, **make sure you click the checkbox next to `Allow write access`** (pictured below), and click `Add key` to save the key. ![](https://raw.githubusercontent.com/fastai/fastpages/master/_fastpages_docs/_checkbox.png) ### What to Expect After Merging This PR -- GitHub Actions will build your site, which will take 2-3 minutes to complete. **This will happen anytime you push changes to the master branch of your repository.** You can monitor the logs of this if you like on the [Actions tab of your repo](https://github.com/causal-machine-learning/kdd2021-tutorial/actions). +- GitHub Actions will build your site, which will take 2-3 minutes to complete. **This will happen anytime you push changes to the master branch of your repository.** You can monitor the logs of this if you like on the [Actions tab of your repo](https://github.com/causal-machine-learning/kdd2023-workshop/actions). - Your GH-Pages Status badge on your README will eventually appear and be green, indicating your first successful build. -- You can monitor the status of your site in the GitHub Pages section of your [repository settings](https://github.com/causal-machine-learning/kdd2021-tutorial/settings). +- You can monitor the status of your site in the GitHub Pages section of your [repository settings](https://github.com/causal-machine-learning/kdd2023-workshop/settings). If you are not using a custom domain, your website will appear at: -#### https://causal-machine-learning.github.io/kdd2021-tutorial +#### https://causal-machine-learning.github.io/kdd2023-workshop ## Optional: Using a Custom Domain diff --git a/notebooks/kdd_intro_to_EconML.ipynb b/notebooks/kdd_intro_to_EconML.ipynb index 91746dd..defca44 100644 --- a/notebooks/kdd_intro_to_EconML.ipynb +++ b/notebooks/kdd_intro_to_EconML.ipynb @@ -1,3473 +1,3473 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "colab": { - "name": "kdd_intro_to_EconML.ipynb", - "provenance": [], - "collapsed_sections": [], - "include_colab_link": true - } - }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d_YD-YF59idL" - }, - "source": [ - "![EconML-Logo-MSFT-color.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jYAHRpIF-BRW" - }, - "source": [ - "# **KDD2021 Tutorial:** [Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber](https://causal-machine-learning.github.io/kdd2021-tutorial/)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AYlHqLQf-PjP" - }, - "source": [ - "# Introduction to [EconML](https://github.com/microsoft/EconML)\n", - "\n", - "A python library for estimation of heterogeneous treatment effects with Machine Learning.\n", - "\n", - "**Presentation:** [Introduction to EconML](https://drive.google.com/file/d/1gt4KNznrYbwdryi9jGcC0-hDCNg7mBNE/view?usp=sharing)\n", - "\n", - "**Github:** https://github.com/microsoft/EconML\n", - "\n", - "**Documentation:** https://econml.azurewebsites.net/\n", - "\n", - "By the Microsoft Research project [ALICE (Automated Learning and Intelligence for Causation and Economics)](https://www.microsoft.com/en-us/research/project/alice/)" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cEqRBSJV9dTX" - }, - "source": [ - "#!pip install econml" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "yPw9zWWm3H9e" - }, - "source": [ - "!pip install git+https://github.com/microsoft/EconML.git@mehei/driv#egg=econml" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "PKxsq0Mv9cGD" - }, - "source": [ - "import numpy as np\n", - "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", - "from sklearn.linear_model import LassoCV, Lasso\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "from sklearn.model_selection import train_test_split\n", - "import matplotlib.pyplot as plt\n", - "import scipy\n", - "import warnings\n", - "warnings.simplefilter('ignore')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "WNvGZiKF9cGG" - }, - "source": [ - "def gen_data(n, discrete=False):\n", - " X = np.random.normal(0, 1, size=(n, 2))\n", - " W = np.random.normal(0, 1, size=(n, 2))\n", - " if discrete:\n", - " T = np.random.binomial(1, scipy.special.expit(W[:, 0]))\n", - " else:\n", - " T = W[:, 0] + np.random.normal(0, 1, size=(n,))\n", - " y = (X[:, 0] + 1) * T + W[:, 0] + np.random.normal(0, 1, size=(n,))\n", - " return y, T, X, W\n", - "\n", - "def gen_data_iv(n):\n", - " X = np.random.normal(0, 1, size=(n, 2))\n", - " W = np.random.normal(0, 1, size=(n, 2))\n", - " U = np.random.normal(0, 1, size=(n,))\n", - " Z = np.random.normal(0, 1, size=(n,))\n", - " T = Z + W[:, 0] + U\n", - " y = (X[:, 0] + 1) * T + W[:, 0] + U\n", - " return y, T, Z, X, W" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7xzAqDMb9cGH" - }, - "source": [ - "# 1. Estimation under Exogeneity" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "TuRauvKA9cGH" - }, - "source": [ - "y, T, X, W = gen_data(1000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nHhjI8Kb9cGI", - "outputId": "059fd233-bd8e-4de3-fa61-1a042b381aba" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "\n", - "est = NonParamDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", - " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", - " discrete_treatment=False, # categorical or continuous treatment\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability\n", - "\n", - "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 6 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Gc4fpcMr9cGJ" - }, - "source": [ - "#### Personalized effect estimates on test samples" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9rqqLxnt9cGJ", - "outputId": "cd71c483-e9e1-48f8-fab7-e8534777a008" - }, - "source": [ - "# personalized effect for each sample from going from treatment 0 to treatment level 1\n", - "est.effect(X[:5], T0=0, T1=1)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([ 1.54592291, 0.87946172, -0.47128723, 0.81285758, 3.1442986 ])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 7 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qC23J2R09cGJ" - }, - "source": [ - "#### ML model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "yE2v-YzX9cGK", - "outputId": "6d074083-9a40-4222-d7bb-f2d158fc2df0" - }, - "source": [ - "# fitted nuisance models for each cross-fitting fold and out-of-sample scores\n", - "est.models_y, est.nuisance_scores_y" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.5409335662361056, 0.48599679070328405]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 8 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JXOd9Rfa9cGK", - "outputId": "dfbebf0a-19e9-4f15-9182-e22318015360" - }, - "source": [ - "est.models_t, est.nuisance_scores_t" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.4282760371961908, 0.3782367983417111]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 9 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CLbqvUvr9cGK" - }, - "source": [ - "#### CATE model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IdiMMpsQ9cGL", - "outputId": "6b6277ca-32b3-4d29-f5f4-37b765551e39" - }, - "source": [ - "# in-sample goodness-of-fit score for the final cate model\n", - "print(est.score_)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "1.4717907756757855\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "968ktBK_9cGL" - }, - "source": [ - "#### Nuisance quantity diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "KDwBlm-i9cGL" - }, - "source": [ - "# calculated residuals for each training sample\n", - "yres, Tres, X_cache, W_cache = est.residuals_" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Jkc1WSi19cGL" - }, - "source": [ - "# 2. Estimation with Instruments" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "8pjyjlRQ9cGM" - }, - "source": [ - "y, T, Z, X, W = gen_data_iv(2000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "l5gr5sGS9cGM" - }, - "source": [ - "from econml.iv.dml import OrthoIV\n", - "\n", - "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_t_xw=RandomForestRegressor(), # ML model for E[T|X,W]\n", - " model_z_xw=RandomForestRegressor(), # ML model for E[Z|X,W]\n", - " discrete_treatment=False, # categorical/continuous treatment\n", - " discrete_instrument=False, # categorical/continuous instrument\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "b_k1NpEp9cGM", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "8b057fc5-bd87-43fa-ea75-33ee736a2a88" - }, - "source": [ - "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 14 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a0zr3m3r9cGM" - }, - "source": [ - "#### Personalized effect estimates on test samples" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "2wAnhhq99cGN", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "2061468c-6969-4b1a-86fa-ba16a8f6b49c" - }, - "source": [ - "est.effect(X, T0=0, T1=1)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([-0.32390668, 2.23728003, 0.70346148, ..., 0.85984079,\n", - " 0.17539819, 1.07325619])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 15 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "D9ESfbo29cGN" - }, - "source": [ - "#### ML model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9JlbW4an9cGN", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "f77e36a8-295f-4dff-e11d-21057357e4c8" - }, - "source": [ - "est.models_y_xw, est.nuisance_scores_y_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.3493220983540998, 0.2621905464991312]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 16 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "e1YCQWZK9cGO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "71292840-3f77-4985-fdf3-855ad7d4f07a" - }, - "source": [ - "est.models_t_xw, est.nuisance_scores_t_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.24243204274642238, 0.22952337252664082]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 17 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cN5Ga_YH9cGO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fca11455-0e2c-4881-96a9-0e07a67d4461" - }, - "source": [ - "est.models_z_xw, est.nuisance_scores_z_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[-0.10057707531258632, -0.08476759034439452]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 18 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oNkC5W9i9cGP" - }, - "source": [ - "#### CATE model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "zENiyXuV9cGP", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "621aba3d-e433-4c89-e0dc-1879afd565f6" - }, - "source": [ - "print(est.score_)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "5.018208071305707e-16\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "slJuNhWU9cGP" - }, - "source": [ - "#### Nuisance quantity diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1o5aP05y9cGP" - }, - "source": [ - "yres, Tres, Zres, Xc, Wc, Zc = est.residuals_" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WrsMl9pm9cGQ" - }, - "source": [ - "# 3. Inference" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "oeTIUL6_9cGQ" - }, - "source": [ - "y, T, X, W = gen_data(1000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K0kinaK__Djv" - }, - "source": [ - "### Generic Bootstrap Inference" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "rSGauZ1k9cGQ" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "from econml.sklearn_extensions.linear_model import WeightedLasso\n", - "\n", - "est = NonParamDML(model_y=Lasso(alpha=.1), # Any ML model for E[Y|X,W]\n", - " model_t=Lasso(alpha=.1), # Any ML model for E[T|X,W]\n", - " model_final=WeightedLasso(alpha=.1), # Any ML model for CATE that accepts `sample_weight` at fit\n", - " discrete_treatment=False, # categorical or continuous treatment\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "lckeXBSV9cGR", - "outputId": "d1cecd80-0022-4e16-c4a9-dc1081f474f3" - }, - "source": [ - "est.fit(y, T, X=X, W=W, inference='bootstrap') # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 23 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "p-RP37i-9cGR", - "outputId": "2126735a-91d6-4908-eb8a-b36bcae1cbc8" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2700.03932.6200.01.2101.334
11.7070.05133.6340.01.6311.787
22.4170.07930.4280.02.3042.559
31.3740.04133.7000.01.3121.445
4-0.3020.070-4.3380.0-0.449-0.216
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.270 0.039 32.620 0.0 1.210 1.334\n", - "1 1.707 0.051 33.634 0.0 1.631 1.787\n", - "2 2.417 0.079 30.428 0.0 2.304 2.559\n", - "3 1.374 0.041 33.700 0.0 1.312 1.445\n", - "4 -0.302 0.070 -4.338 0.0 -0.449 -0.216" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 24 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 251 - }, - "id": "9tGAONKF9cGS", - "outputId": "cce9a4d0-d2a9-4991-87aa-90504695a8a9" - }, - "source": [ - "est.ate_inference(X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.989 0.061 16.1 0.0 0.888 1.09
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.041 -0.704 2.734
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.042 -0.698 2.737


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 25 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ab22GTTm9cGS", - "outputId": "b26f4c08-1938-43fb-c81b-36ca177254f8" - }, - "source": [ - "from econml.inference import BootstrapInference\n", - "est.fit(y, T, X=X, W=W,\n", - " inference=BootstrapInference(n_bootstrap_samples=100,\n", - " bootstrap_type='normal'))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 26 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "MK02FTmf9cGS", - "outputId": "3d1bb9f4-cbcf-45ac-930b-f6d837b407b0" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2670.04627.5910.01.1921.343
11.7040.05530.9780.01.6131.794
22.4140.07930.6230.02.2842.543
31.3720.04828.8790.01.2941.450
4-0.3030.073-4.1250.0-0.424-0.182
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.267 0.046 27.591 0.0 1.192 1.343\n", - "1 1.704 0.055 30.978 0.0 1.613 1.794\n", - "2 2.414 0.079 30.623 0.0 2.284 2.543\n", - "3 1.372 0.048 28.879 0.0 1.294 1.450\n", - "4 -0.303 0.073 -4.125 0.0 -0.424 -0.182" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 27 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 251 - }, - "id": "qIKkO36S9cGT", - "outputId": "574a2f94-2cca-463f-adf6-b2193d1d0e6c" - }, - "source": [ - "est.ate_inference(X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.986 0.065 15.226 0.0 0.88 1.093
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.039 -0.704 2.73
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.041 -0.703 2.735


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 28 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LH0Uo_yJ--G_" - }, - "source": [ - "### Tailored Valid Inference" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZfUSZoW-4TJQ" - }, - "source": [ - "#### Heteroskedasticity-robust OLS inference for linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "uPiPxMU19cGT" - }, - "source": [ - "from econml.dml import LinearDML\n", - "\n", - "est = LinearDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", - " featurizer=PolynomialFeatures(degree=2, include_bias=False)) # any featurizer for " - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qAQKnPA59cGU", - "outputId": "77583b37-6895-4c2e-c636-d948a6de8798" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 30 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 353 - }, - "id": "Cy73CEcm9cGU", - "outputId": "749cefb2-54d6-475a-d630-4a8d9beba4f6" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 1.001 0.034 29.398 0.0 0.945 1.057
X1 0.042 0.032 1.302 0.193 -0.011 0.094
X0^2 0.011 0.025 0.447 0.655 -0.029 0.052
X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076
X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "===========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "-----------------------------------------------------------\n", - "X0 1.001 0.034 29.398 0.0 0.945 1.057\n", - "X1 0.042 0.032 1.302 0.193 -0.011 0.094\n", - "X0^2 0.011 0.025 0.447 0.655 -0.029 0.052\n", - "X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076\n", - "X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 38 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "og2hubAj9cGV", - "outputId": "5f0c835f-dcff-4f9c-d1be-dc6741da2a10" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2610.04726.7320.01.1841.339
11.7850.06826.2740.01.6731.897
22.4160.08329.0690.02.2802.553
31.4180.04829.8280.01.3401.497
4-0.2720.064-4.2660.0-0.378-0.167
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.261 0.047 26.732 0.0 1.184 1.339\n", - "1 1.785 0.068 26.274 0.0 1.673 1.897\n", - "2 2.416 0.083 29.069 0.0 2.280 2.553\n", - "3 1.418 0.048 29.828 0.0 1.340 1.497\n", - "4 -0.272 0.064 -4.266 0.0 -0.378 -0.167" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 32 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aMqhTNEb4Zt4" - }, - "source": [ - "#### Debiased Lasso Inference for high-dimensional linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dtjN8aC99cGY" - }, - "source": [ - "from econml.dml import SparseLinearDML\n", - "\n", - "est = SparseLinearDML(featurizer=PolynomialFeatures(degree=3, include_bias=False))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W3xElnFJ9cGY", - "outputId": "89e6d659-d695-49c0-927c-66e3128c3e13" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 40 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 437 - }, - "id": "6XHdjW9I9cGY", - "outputId": "b8ad3ad6-7006-47ac-c431-d90c109cf0e3" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.065 15.182 0.0 0.882 1.097
X1 0.012 0.07 0.179 0.858 -0.102 0.127
X0^2 0.071 0.022 3.168 0.002 0.034 0.107
X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045
X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026
X0^3 0.004 0.013 0.328 0.743 -0.017 0.026
X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067
X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065
X1^3 0.001 0.016 0.054 0.957 -0.026 0.027
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "=============================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "-------------------------------------------------------------\n", - "X0 0.99 0.065 15.182 0.0 0.882 1.097\n", - "X1 0.012 0.07 0.179 0.858 -0.102 0.127\n", - "X0^2 0.071 0.022 3.168 0.002 0.034 0.107\n", - "X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045\n", - "X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026\n", - "X0^3 0.004 0.013 0.328 0.743 -0.017 0.026\n", - "X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067\n", - "X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065\n", - "X1^3 0.001 0.016 0.054 0.957 -0.026 0.027\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 41 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "nYXaiMBX9cGZ", - "outputId": "34e12072-ae19-40c5-d75f-72d96ff4682c" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2440.06120.4580.0001.1441.344
11.7430.10217.1200.0001.5751.910
22.5280.09227.5530.0002.3772.679
31.3660.06122.5210.0001.2661.466
4-0.2360.085-2.7780.005-0.376-0.096
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.244 0.061 20.458 0.000 1.144 1.344\n", - "1 1.743 0.102 17.120 0.000 1.575 1.910\n", - "2 2.528 0.092 27.553 0.000 2.377 2.679\n", - "3 1.366 0.061 22.521 0.000 1.266 1.466\n", - "4 -0.236 0.085 -2.778 0.005 -0.376 -0.096" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 42 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9kI_3o004cnQ" - }, - "source": [ - "#### Bootstrap-of-Little-Bags inference for forests CATE models $\\theta(x)$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "JVKLLU5H9cGZ" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "TzNqV3HW9cGZ", - "outputId": "e829ef4f-3016-431a-91d3-4864c9cca580" - }, - "source": [ - "from econml.dml import CausalForestDML\n", - "\n", - "est = CausalForestDML(discrete_treatment=True,\n", - " criterion='mse', n_estimators=1000)\n", - "est.tune(y, T, X=X, W=W)\n", - "est.fit(y, T, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 44 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 451 - }, - "id": "PhogESjH9cGa", - "outputId": "97fea945-cc4e-4641-cb7b-e20f8e61064d" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Population summary of CATE predictions on Training Data\n" - ], - "name": "stdout" - }, - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
1.099 0.205 5.362 0.0 0.762 1.436
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.086 -0.862 2.947
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.105 -0.862 2.965
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATE on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATE 1.095 0.056 19.388 0.0 1.002 1.187
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATT(T=0) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.075 0.078 13.719 0.0 0.947 1.204
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATT(T=1) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.116 0.081 13.721 0.0 0.982 1.25


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Uncertainty of Mean Point Estimate \n", - "===============================================================\n", - "mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper\n", - "---------------------------------------------------------------\n", - " 1.099 0.205 5.362 0.0 0.762 1.436\n", - " Distribution of Point Estimate \n", - "=========================================\n", - "std_point pct_point_lower pct_point_upper\n", - "-----------------------------------------\n", - " 1.086 -0.862 2.947\n", - " Total Variance of Point Estimate \n", - "==========================================\n", - "stderr_point ci_point_lower ci_point_upper\n", - "------------------------------------------\n", - " 1.105 -0.862 2.965\n", - " Doubly Robust ATE on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATE 1.095 0.056 19.388 0.0 1.002 1.187\n", - " Doubly Robust ATT(T=0) on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATT 1.075 0.078 13.719 0.0 0.947 1.204\n", - " Doubly Robust ATT(T=1) on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATT 1.116 0.081 13.721 0.0 0.982 1.25\n", - "---------------------------------------------------------\n", - "\n", - "Note: The stderr_mean is a conservative upper bound.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 45 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "bZzv-0bo9cGa", - "outputId": "26e8e29b-691e-4fa4-d469-7b00ee463ac4" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.9090.2308.2930.0001.5312.288
10.3080.1132.7350.0060.1230.493
2-0.1130.204-0.5530.580-0.4490.223
31.2770.1926.6650.0000.9621.593
42.3950.22510.6390.0002.0242.765
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.909 0.230 8.293 0.000 1.531 2.288\n", - "1 0.308 0.113 2.735 0.006 0.123 0.493\n", - "2 -0.113 0.204 -0.553 0.580 -0.449 0.223\n", - "3 1.277 0.192 6.665 0.000 0.962 1.593\n", - "4 2.395 0.225 10.639 0.000 2.024 2.765" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 46 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qqO9by3p9cGa" - }, - "source": [ - "# 4. Causal Scoring" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9HwG--DU9cGa" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Rr5El3LR9cGa" - }, - "source": [ - "#### Multitude of approaches for CATE estimation to select from" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "je0AkjG99cGb" - }, - "source": [ - "from econml.dml import DML, LinearDML, SparseLinearDML, NonParamDML\n", - "from econml.metalearners import XLearner, TLearner, SLearner, DomainAdaptationLearner\n", - "from econml.dr import DRLearner\n", - "\n", - "reg = lambda: RandomForestRegressor(min_samples_leaf=10)\n", - "clf = lambda: RandomForestClassifier(min_samples_leaf=10)\n", - "# A multitude of possible approaches for CATE estimation under conditional exogeneity\n", - "models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", - " linear_first_stages=False, cv=3)),\n", - " ('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", - " featurizer=PolynomialFeatures(degree=2, include_bias=False),\n", - " linear_first_stages=False, cv=3)),\n", - " ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),\n", - " ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(),\n", - " propensity_model=clf())),\n", - " ('slearner', SLearner(overall_model=reg())),\n", - " ('tlearner', TLearner(models=reg())),\n", - " ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),\n", - " model_final=reg(), cv=3)),\n", - " ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),\n", - " discrete_treatment=True, cv=3)),\n", - " ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=LassoCV(),\n", - " discrete_treatment=True,\n", - " featurizer=PolynomialFeatures(degree=3),\n", - " linear_first_stages=False, cv=3))\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "it8Mb8219cGb" - }, - "source": [ - "#### Split the data in train and validation" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dsqFr4Cz9cGb" - }, - "source": [ - "XW = np.hstack([X, W])\n", - "XW_train, XW_val, T_train, T_val, Y_train, Y_val = train_test_split(XW, T, y, test_size=.4)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9_X0_AQS9cGc" - }, - "source": [ - "#### Fit all CATE models on train data" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "fNWePOEi9cGc", - "outputId": "1e887546-43fe-4b1f-f238-06ec0d15ab2b" - }, - "source": [ - "from joblib import Parallel, delayed\n", - "\n", - "def fit_model(name, model):\n", - " return name, model.fit(Y_train, T_train, X=XW_train)\n", - "\n", - "models = Parallel(n_jobs=-1, verbose=1)(delayed(fit_model)(name, mdl) for name, mdl in models)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 17.7s finished\n" - ], - "name": "stderr" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5HrON5yV9cGc" - }, - "source": [ - "#### Train the scorer on the validation data" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "B4r0CXBP9cGc", - "outputId": "aae0216f-9ed1-4846-d0d4-eaff59d12e77" - }, - "source": [ - "from econml.score import RScorer\n", - "\n", - "# Causal score actually needs fitting on the test set!\n", - "scorer = RScorer(model_y=reg(), model_t=clf(),\n", - " discrete_treatment=True, cv=3,\n", - " mc_iters=3, mc_agg='median')\n", - "scorer.fit(Y_val, T_val, X=XW_val)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 51 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VaApR6459cGd" - }, - "source": [ - "#### Evaluate each of the trained CATE models on the validation data" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "WX92N2EP9cGd" - }, - "source": [ - "# Then we can evaluate every trained CATE model\n", - "rscore = [scorer.score(mdl) for _, mdl in models]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E2ZWa1Mu9cGd" - }, - "source": [ - "#### Calculate ideal score of each model, since we know ground truth" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1e2SvCV89cGd" - }, - "source": [ - "expected_te_val = 1 + XW_val[:, 0]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "yPF1_UOM9cGe" - }, - "source": [ - "rootpehe = [np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))\n", - " for _, mdl in models]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a4RafR039cGe" - }, - "source": [ - "#### Qualitatively different performance of each method" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 948 - }, - "id": "fkIgNP999cGe", - "outputId": "3aaa0a23-a756-4857-9daa-0f94c68b7280" - }, - "source": [ - "plt.figure(figsize=(16, 16))\n", - "rows = int(np.ceil(len(models) / 3))\n", - "for it, (name, mdl) in enumerate(models):\n", - " plt.subplot(rows, 3, it + 1)\n", - " plt.title('{}. RScore: {:.3f}, Root-PEHE: {:.3f}'.format(name, rscore[it], rootpehe[it]))\n", - " plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='{}'.format(name))\n", - " plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", - " plt.ylabel('Treatment Effect')\n", - " plt.xlabel('x')\n", - " plt.legend()\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAOjCAYAAABpyFP0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhV1dW435XkQhIIhHkIoxNDGGUQirWAQxwRcfopDtRPqbXaOqFgseJXrXzFz1LtV61Wq1ZUcIoDihPgADgAAREBKYpAmMIQICFASPbvj33u5dybOyY3uRnW+zz3ufeevc85+0zrrLX3WmuLMQZFURRFURRFURRFqUskJboBiqIoiqIoiqIoihIraswqiqIoiqIoiqIodQ41ZhVFURRFURRFUZQ6hxqziqIoiqIoiqIoSp1DjVlFURRFURRFURSlzqHGrKIoiqIoiqIoilLnaHDGrIhsFJEzQpSNFJEtldxuNxExIpJStRYqiqLEFxGZJiIvhCkPKRej2PZCEbm+8q1TFEWJHpU5iqK4aXDGbG3AZfgWOZ+NIjI5oM6pIrJYRPaJyB4RWSQiQxLV5mCI5X9EZLfz+R8RkRB1O4jIWyKy1Tn2bgHlq13no0hEjorI267yJ0VknYiUi8iEGNu5UURKnO1uF5FnRaRpJQ45cLvPisgDEepME5FSZ9+FzjUd7pRNEJGygOMuEpGOrnafEbC9CSLyeYhj837+FsMx3Oack/0i8oyINA5Rr5GIvOrsz4jIyCDb+cHZzlYR+Yu7Y0dEBojIZ879vEVE7o22jUr9wVFCDzn36S4ReV1EOrjKM537cLuIHBCR7wNlY21ARE4XkbUiclBEFohI1zB1/ygiqxyZNi2g7J6AZ7fEkXGtnfI/i8hm57n6SUTuiaGNIWVPVZAoOn0lwjvOKSsOOPa7XO2u0PHirHNCkGPzfgpjOIYBIrLMuX7LRGRAmLoviMg25xp8Ly4jSkR6i8hSEdnrfD4Skd6u8lHO/bFPRDZG2z6l/uM8R+XOvXtArH7zy4A6F4rICufe2yUi80Wke6LaHAwRaezI7P2O3L49TN0+IvK+cywmSHmgLlQmIo+5yqOWuwHbjahzVxaJoiM43HtPrB55JOC4Vwa0OyVgez7dM8ixeT+XR9n+WK7ftY683C9Wj/uz+Ot53UTkXUcWbheRv3nLRaS1WDtmt9j30RIRGRFNG6NBjdnEkmmMaQpcAtwrImcCiEgz4B3gMaAlkAXcDxyO585FJLmKm5gIjAX6A/2AC4BfhahbDswDLg5WaIzJNsY0dc5HBrAZeMVVZSVwE7C8km29wNn2AGAgMKWS26kMs519twE+B14X8Rn9S7zH7fpsjXH7FwSsf3M0K4lIDjAZOB3oChyHvc9C8TlwFbA9SNlbwMnGmGZAH+w98VtX+YvAp9j7+RfATSIyJpp2KvWOm53n4QSgKfCwq+wvzrJeQHNgDPCfeO48UDGoxPqtgdeBe7H381JgdphV/gPcBcwNLDDG/Mn97AL/Ayw0xuxyqjwN9HSeq58B40VkXAzN9cqe1sAC/GVqTeB9x10B/EFEznaV9Q+QW3+OcduzA9bPjGYlEWkEvAm8ALQAngPedJYH4yGgm3MNxgAPiMggp2wr9v3dEnuO3wJedq1bDDwDTIrt0JREUFXZELAtEZFIOvZW5/loBtwGPCUiPZz1TwCeB+7AysLuwP8BZTXcxkhMA07E6hCjgLsCnnM3pcAc4L+CFQbIwvZACY7MqoTcDUZQnbuG8L73TgIyse86L38OkGX9K7H9zIBtRHtuphH99UsHbsXKulOwuuOdrvK/AzuBDlhd+xdYvR2gCLgOqwe3wL7r3o7XM9egjVkRSXN6OPaKyHfAkIDyjSIySUS+EduL/LSItBOR95yetI9EpEVV22GMWQqsxl58sDc7xpiXjDFlxpgSY8wHxphvXG27QUTWOO34TkROdpb3cnqBCsWOdo5xrfOsiDzu9JwUA6NEpKOIvCYiBSLyo4i4DZBIXAv8rzFmizEmH/hfYEKIY9xhjPk78HUU2z0N+7C85lr//4wxHwOHYmhfsHZsB97n2LlGRMY456rQOXe9XGVBz6eITATGYx/8InGNIofZdylWcWoPtKrKccSJa4GnjTGrjTF7gT8S+vodMcbMNMZ8TpCXqTFmgzHGOzIi2M6LE1xVugGznPt5A9Ywzo7bkSgAiMjdIpIvx3r6Tw9R72qxI327ReT3AWXTROQVsSNSB8SOKp4kIlNEZKfYkcKzqtpW537JxfUsYmXwi8aYvcaYcmPMWmPMq662ZYvIh2K9VXaIM1Lp9C7PFOsVsNX53dgpG+n0It8tItuBf4lIkohMFpENzjmYIyIto2z6OGC1MeYVY8whrDLQX0R6hjjO54wx7wEHwm3U6eC6BisjvOuuM8YUu6oFPldRYYw5CswCskSkjbO/jmK9ZfaIyH9E5AZXW4KeTxFpArwHdJQAT5II+1+Cfcf1ibXt1cBIIAWYaYw5bIx5FCuzRger7MhHb0eycT7HO2WFxpiNxhjjbKMM1/UxxnxljPk38EN1HUx9RESOd+5Lr17T0dFRRoaof52jD+0VO/LX1VX2Vznm3bBMRH7uKpsm1uPoBRHZD0xw3vd/FDuKdEBEPhDHU8JZZ5hYL4dCEVnpbpOz7oMisgg4iO0gjoixvAvswQ4MgJWLPxpjPnbKDxhjXjPGbHL2lSzWs2OD085lItLZKfuZiHwt1iPgaxH5Wbg2ikhPl1xdJyKXRdNuh2uBPzoyew3wFKH1iHXGmKexsiASF2MNo8+c/zHJ3XAE6tzO+2Cq807cKSLPi0hzb30JoSOKyL+BLlijzOddEmHfe7C6bW2QhRDb9XvcGPOZow/mY98p7tHV7sAcY8whR9eeh6PnOcvWGWPKOSYrW2A7JqpMgzZmgfuwL6XjgRzsRQ3kYuBMrIF5AfZFfg+2dyEJ/9GnSiEiw7A3tncE4nugTESeE5FzJMBgFpFLsQ/yNdgevTHAbhHxAG8DHwBtgVuAWeL09DlcCTyIHf1c7NRfiR39PR24VeyIHWJdncO5bmU763pZSXwMlGuB1wKUuLggIp2Ac3DOtYicBLyE7W1qA7yLFUyNwp1PY8yT2AfZ26N2QRT7bowVEptdIy/Vhoh0cYRvlxBVgl2/diJSKUNbRK50FIJd2JHZf7iKZwLXiIjHuR+HAx9VZj9KcJzzejMwxBiTgZVpG4PU6w08DlwNdMR2rHQKqHYB8G/syyYP2wGUhJUT/43/ta1se1thFRT3yOsXwIMi8ksROTGgfgb2npnntPsE4GOn+PfAMKxy0h8YCkx1rd4e+9LsivUouQXrVfILZ1t7saMe3n19IyJXhmi633PjyKkNVF32/RwrZ15zL3SM7iJgC9AE6+UQE2JHHa8BdmOPFewI4hbs8V8C/ElEvAZd0PPpHOs5OCNK0XiSiGUE9vzkxdr2yiAi70hoN8Js4BvHAPXyDWGun4j8XUQOAmuBbdj3hLu8ENvR+hjwp6q0XbGdo8DdwAsikg78C3jOGLMwsK6IXIjVycZh3+GfYd/pXr7G3sctsc/OKyKS6iq/EHgVO1o2y1l2JfBL7PPYCGf0SUSysB4WDzjbuxN4TZwOIoersTImA/gpmuN1jKkx2E58rzxcDvQUG7IzSiqGRt2O9Xg4F6sHXgccFNspNxd4FCvbHwHmBrzX3W0sAD50zk1b4P8Bf3feE973+jcEwdFNO1B9euDzruc0bnI3iM49wfmMwnZANAX+5tQNqSMaY64GNnHMOy6id4nTMXIxNScLq/P6nYZ/x8RM4P+JSLrzrJyDfV+79/kNVla+BfzTGLMzyn2FxxjToD5Y5e4M5/cPwNmusonAloC6413/XwMed/2/Bch1fnfD9timRNEGb91CrBuFwbraiatOL+BZrLJx1Lnw7Zyy94HfBdnuz7EuoEmuZS8B05zfz2KFg7fsFGBTwDamAP+K8lyWYV3gvP9PdI5FwqyT4tTpFqI8HdgPjAxR/jkwoRLXvAg7MmKwCnCmU3YvtifJWzcJyMf23kdzPh+IsO9pwBHnWu8E5gODnLIJzrUtdH02BGm3u/wg8HmEOjdEeV424H//e8JdG1e9LaGuj+s++CPQ3rXsZ9gXx1FnH/fH+uzqJ+L1PMG5x84APEHuwxec338AXnaVNXHu0TNcdT90lV/g3GPJzv8M5xp6n6GFwPVRtnGhcw/vc7axAujiKk/DKqbLsC5p/wHOccquAPJCbHcDcK7rfw6w0fk90jm+VFf5GuB01/8Ozv6ikd9PA9MDli0iglzCurVOi7DdZ0OUCTY84n4gI8pzPY1jsqcMa8iOdMo6O8syXPUf8u4/ivO5JcK+u3HsHbfXOd+/dZUbrJx3y62cIO12fwxwQpg6C6I8L/fiuv+dZbPCXRunTjJwKraTxBOkvAnWpe68IGVneM+ffqL/YPWeVdjOhsau5QtxZA52gOG/XGVJWBnTNcQ292Jd3L330acB5QuxHTfe/zcB85zfdwP/Dqj/PnCta93/jvLYRmI9LQqxIWRlwK0BdYZh3XILsAbAs0BTp2wdcGGQ7V4NfBWwbAmOfApsI3A58FlA/X8A90VxDJ2d59ItW8+MdK9j31UmTHlX53x0dy2rlNx16nUjjM6N1QlvctXvgfM+IIyO6PzfiPPuDLP/hc49WeisOwto45Q961xbtyx7Lki73Z8jOLpnmDq9quv6OfWuw+qCrV3LemHf3V4971mC2ANAKvZ9fm00z0o0n4Y+MtsRG5vpJVgv2g7X75Ig/6uSSKi1s/4dWMHm8RYYY9YYYyYYYzphe5A6Yns9wN6AG4JsryN21K/ctewn7GiKF/fxdsW6ixV6P1hFsl2U7S/C9gh6aQYUGedurSTjsK42n1RhG8EYa+xo1UigJ/bcgz1nvuvunLvN2HMWzfn0ISLj5Zjr3XuuojnGmExjTFtjzGhjzDJX2RdOmfdzfJB2+8o5Fn8Qso4x5qmIZ8MS7PpBBHfISBhj1mN76/4O4PQUz8OO6KVi798cEQl2LEolMcb8B9t7PA3YKSIvS3AXUD+5Z2wP9+6AOoFybpcxpsz1Hyov+35rjGmOdadrgWtU2NiQij8ZYwZhRxXmYEdSWhJa7kHAc+z8dh97gbGuaV66Am+45N4arPIUjewLfG5w/lf6uXFGny7F5WLsxljysOc+XFx7IHMcudEO+Bbwxnp2BPYYY9xtdsu2SOczsP3uxCNuT5DWxpgWxphexrrzujk5QG69H9juANkX9Nhcn1Ehz4I/lbp+xoZIfI69X38dpLwYeAJ4XkTaRtkWJTxPYfWfx8wxV+9AugJ/dT3Le7CdP1kAInKnWBfkfU55c469/8FfJ/LizgtxkGOyritwaYDOdCq2Myzc9kKx1bm3m2FHUv1c3Y0xXxhjLjPGtMF2rp+G9ZqA8HpgoC4bSQ88JeCYxmO9WSJR5HwH6hFV0iGwBvnnxpgfA/ZVVbkbSucOJu9SsHIznI5YARF5wiUL3Qn7fuvIqSxjzHhjTIGr7OEAWXZtYLsDZGEw75zWAdtYE+FcQCWvn4iMxXZ+nmMcL0OxsdfzsHHNTbDn2hsb64exLscvAZNFpDLxwRVo6MbsNqxA8BLKHbPacF6Qj2B7ZoIq98aYtdgeDq+P/WacmJ0AtgKdxT+gvwu2J8i3OdfvzdiYDPcDkGGMOTfK5q/GuqB56U90sRDhuBZ/15K4Yoz5BHsuvUlntmKFOeCLW+uMPWeRzqdfG40xs8wx17tzqqP9cSbY9dthjAk0bCpDCsfu0eOAMmPM88aYo8aYLVgXx2jvMyVKjDEvGmNOxd7ThiAvEgLknmNI1XgMtzFmFdZd7/+c5y6wfD/WZbMJNhZnM6Fj0PyeY+xz6nZ/DZQnm7EvYrfsSzU2DigSfs+N2DjS46ma7LsIq4QvjFDP/VxFjaNwTASmic2iuRVo6bhue3HLtnDns4JsNv6JRzbF2r4aZjXQL+Ce60f01y/cNUjCehcFVXSV6HHcamdiR+SmSeiY9s3ArwKe5TRjzGKx8bF3AZcBLRxDYB/W2PUSi66xGTsy695XE2PM9Epuz65gDfW7gb6OoRCsztdYQyEaPbBrwLJIeuAnAcfU1BhTocMmSJv2Yt8n8dYD/XIHOMRF7obQuYPJu6PYTt1wOiJU1ANvdMnCWh1yUJnrJzY51FNY1+pVrqKW2PP2N2NzEezGhgeE0/M8RBlXHomGbszOAaaISAsnlvKWBLZlOjaZUKrYYPw7nDYhNqj/Cmw8GcA/gTtFZJATj3SC2IQHX2J7Ee9yYhNHYl0EX66wN8tXwAGxiVHSxCYU6CPRTwH0PHC7iGQ5I0B3YA3FoDhxKt6pXxoHxK1441lHEWR0QmwMayr2JeRxzlOSUzZSgqR5D8NM4EynR2gOcJ7YlO8e5xgOY+OJI53PHcTpQUwQzwP/JXZ6iUys+9yzoSqLTQDjvWaNnGsgTtn13tEIJ9ZmCsfiGb+3i+VKsbFB7bGuTUHjOJTKISI9RGS02NjsQ9hRvPIgVV8FzhcbE98IO2KeqHfBc9jeb29itXtFZIjref8d1mVqHTbDewcRudW5FzNE5BRnOy8BU0WkjdiYpD9g3XpD8QQ2Nrers982YmPvouENoI+IXOy08Q/YGMy1wSo7siMVe45TnOcmMJN8hU4851n5lfN+EhEZCvyGY8+VN0nhhGgabYxZh3WJvMsYsxkr4x5y2tMPm2HUe87Cnc8dQCtxJUipYyzEjsL/1rmPvNnf5wdWFJG2IvL/RKSp837Mwb6LP3bKzxSRgU5ZM2x8otet2nsNU7FKmzjnOlTWZMWfvwJLjTHXY2NAnwhR7wmsHpcNICLNxeYVARsScRTrppsiIn+g4uheLLwAXCAiOc41T3X0j8CcAzFjjDmCTaL5B/DlLLnB9V7tiZWTbj3wjyJyoiMf+omNi30XOMl536aInaKlN1Z+BuMdp/7VjqzyODK4V4j6gTyPlRUtnDbeQAg9wmlnKjYOGef8NQ6o8zNsZ1Bg5vWwcldsMq+FUbYZXDo3Vt7dJiLdxXai/AmbLf0o4XVEqB96YLTXbzTWRfpiY8xX7jKnw/RH4NfOfZeJfa9946w7zKtziLU37sa++7+My1GYOPkr15UP/jGz6c6FLAS+w6bPD4yZPcP13y/mCbge+Mj4+62nOP+fAJ4I0Qa/us4ywfaG3IJ9kOdge36Kne9/AM1c9W/EKnhFWPexgc7ybKyL7j7nmC5yrfMsATGeWBeKl7BuNXuxgtJ7fn6OdRsOdS4F+DN2RGGP89sd91sE/Nz13wR+ArY3hYDYDVfZwiDrj3TKrgYWRXPNXcsexyaZAjsq8p1zzj4Bsl31wp3PE7Exf4U4sdNB9j0NJ1YxSNkErFJVFPAZEqbdE6gYM1sSsP4bTlkX53+XMOfmdqww3o/tRXPHJa3GP2Z8Y5Br0M0p+5eznWKn3gz84zBGYxNx7HPutaeA9ETLg/r0wY4ufYV1EdqDVVI6BrsPsS+ZTVj34t/jLxcD6/rF+3Es7r2T838hx+LXIskMX13XsruxSivYDpVvnfvRO1L5M1fdPlhDYq9zH012lqdi3fS2OZ9HvfcfQWI8sYbl7VgZegDrrvenUPd+kOM4A5sMqMRpYzdXmZ/sx8rdwOdmgqs8C6twnxCkjfOc81CE7RS6h2NxXo2ctvcM0Ua/6+gsOwX7jLbFusu+42x/A3Cjq17I8+mUP+PcO4U491jAfroRJoeEU1aMv9yaGardrnXcMbOlVJSdbZ3y94B7wly/gdjYrhJsop2BrrJ7gPec322w8r8Qe0+uwpWTAOsavtbZdwHW6OrnKh8Z5NovTLSsqO0fbFKmfKCl878pNn5+vPN/IS45gtUBVjnXaDPwjLM82blX9zv38V2EkXUhtj0B/3fuKc49scd1zbuEWDfkfUhwuZSOTaB4AVbWvY19rxY57f4fnHht59imYg2IA9j3q1cmn+rc3/uc71NDHZ+zrIdzHAXY53o+MMApG4/NIhzqWjV2neMdwO2uMj8dhGNywf3ZGLC9fxAQl+wqCyd3nwYeDLGed7+hdO4krHG82TkHL2BH8r11w+mIF2LfpYXAnSH2X+Gcu8qexcbAuuXYrlDtdq0TGDMbKAtvr4brtwD7rnLv5z1X/QHOse7F3sdzOJbr5xfY5FJe/eQT4LR4yQzvS1FR6iwi8k/gFeMfc6UoilJvEZFTgd8YY65IdFsURVESiYiswCb1i0eYlFLHUGNWURRFURRFURRFqXM09JhZRVEURVEURVEUpQ6ixqyiKIqiKIqiKIpS51BjVlEURVEURVEURalzqDGrKIqiKIqiKIqi1DlSEt2AWGjdurXp1q1bopuhKEotY9myZbuMMW0S3Y54obJOUZRgqKxTFKUhEIusq1PGbLdu3Vi6dGmim6EoSi1DRH5KdBvCISIbsfOrlQFHjTGDw9VXWacoSjBqu6yLFZV1iqIEIxZZV6eMWUVRlDrMKGPMrkQ3QlEURVEUpb6gMbOKoiiKoiiKoihKnUONWUVRlOrHAB+IyDIRmZjoxiiKoiiKotQH6rybcWlpKVu2bOHQoUOJbkq9JDU1lU6dOuHxeBLdFEWpy5xqjMkXkbbAhyKy1hjzqbuCY+ROBOjSpUuFDaisq15U1ilKfBCRZGApkG+MOT/W9VXWVS8q65T6Rp03Zrds2UJGRgbdunVDRBLdnHqFMYbdu3ezZcsWunfvnujmKEqdxRiT73zvFJE3gKHApwF1ngSeBBg8eLAJ3IbKuupDZZ2ixJXfAWuAZpVZWWVd9aGyTqmP1Hk340OHDtGqVSsVeNWAiNCqVSvtHVWUKiAiTUQkw/sbOAv4NtbtqKyrPlTWKUp8EJFOwHnAPyu7DZV11YfKOqU+UudHZgEVeNWInltFqTLtgDecZykFeNEYM68yG9LnsfrQc6socWEmcBeQUZWN6PNYfei5VeobdX5kNtHs3r2bAQMGMGDAANq3b09WVpbv/5EjR6p132vXrmXAgAEMHDiQDRs28Oijj9KrVy/Gjx8f87ZmzpzJwYMHq6GVihI9uXn5jJg+n+6T5zJi+nxy8/IT3aQqY4z5wRjT3/lkG2MeTHSbKoPKOqUuUh9lSm1FRM4HdhpjlkWoN1FElorI0oKCghpqXfSorFOUuoUYUyE0q2YbEEOigMGDB5vAybXXrFlDr169qrGF0TNt2jSaNm3KnXfe6Vt29OhRUlKqZwB8+vTpHD16lKlTpwLQs2dPPvroIzp16hTztrwTl7du3bpCWW06x0r9JTcvnymvr6KktMy3LM2TzEPj+jJ2YFbYdUVkmTFmcHW3saZQWeePyjqlMlRFptRWarOsE5GHgKuBo0AqNmb2dWPMVaHWUVnnj8o6RbHEIutqg5txlRIF1EYmTJhAamoqeXl5jBgxgmbNmvkJwz59+vDOO+/QrVs3XnjhBR599FGOHDnCKaecwt///neSk5P9trds2TJuv/12ioqKaN26Nc8++yx5eXnMnDmT5ORkPv74Y3r06MEPP/zAOeecw3XXXcfEiRO55ZZb+PbbbyktLWXatGlceOGFlJWVcffddzNv3jySkpK44YYbMMawdetWRo0aRevWrVmwYEEiTpvSwJnx/jo/pROgpLSMGe+vq7OKZ31HZZ1Sm1GZUrMYY6YAUwBEZCRwZzhDti6hsk5RKsc338DLL8ODD0J1ebgn1Jh1JQp4ELg9kW2JN1u2bGHx4sUkJyczbdq0oHXWrFnD7NmzWbRoER6Ph5tuuolZs2ZxzTXX+OqUlpZyyy238Oabb9KmTRtmz57N73//e5555hluvPFGP2E6b948FixYQOvWrbnnnnsYPXo0zzzzDIWFhQwdOpQzzjiD559/no0bN7JixQpSUlLYs2cPLVu25JFHHvGtqyiJYGthSUzLldqByjqltqIyRYknKusUJTY++QTGjYO0NPjd76Bdu+rZT6JHZuOSKMDNyJEVl112Gdx0Exw8COeeW7F8wgT72bULLrnEv2zhwsq149JLL63QExfIxx9/zLJlyxgyZAgAJSUltG3b1q/OunXr+PbbbznzzDMBKCsro0OHDhH3/8EHH/DWW2/x8MMPAzY74KZNm/joo4+48cYbfS4yLVu2jPnYFKU66JiZRn4QJbNjZloCWlP7UVlnUVmnhEJlSuIwxiwEFsZjWyrrLCrrlLrE3/4Gt9xif2/YUH2GLCTQmHUnCnDcUULVmwhMBOjSpUsNta7qNGnSxPc7JSWF8vJy339vSnRjDNdeey0PPfRQyO0YY8jOzmbJkiUx7d8Yw2uvvUaPHj1ibLmiJIZJOT2CxrdNytF7uDajsk6prahMUeKJyjpFiY4ZM+Cuu+zvTz+F446r3v0lcmR2BDBGRM7FSRQgIi8ExlcYY54EngSbKCDSRsP1uKWnhy9v3bryPXbh6NatG++88w4Ay5cv58cffwTg9NNP58ILL+S2226jbdu27NmzhwMHDtC1a1ffuj169KCgoIAlS5YwfPhwSktL+f7778nOzg67z5ycHB577DEee+wxRIS8vDwGDhzImWeeyT/+8Q9GjRrl546SkZHBgQMH1B1FSRjeGLYZ769ja2EJHTPTmJTTQ2PbQqCyzqKyTgmFypT6gco6i8o6pS6wcOExQ/bLL2Ho0OrfZ8Km5jHGTDHGdDLGdAP+HzC/viQKCOTiiy9mz549ZGdn87e//Y2TTjoJgN69e/PAAw9w1lln0a9fP84880y2bdvmt26jRo149dVXufvuu+nfvz8DBgxg8eLFEfd57733UlpaSr9+/cjOzubee+8F4Prrr6dLly7069eP/v378+KLLwIwceJEzj77bEaNGhXno1eU6Fn8UhaLp4zm7avOY9Hk0ap01jFU1im1jbEDs1g0eTQ/TleZosQPlXWKUpElS6zbf+/esGVLzRiyUAum5gG/rHd1emqe+oqeY6UmeP11uPhi+3v3bogl7Kc2T1dRGVTWJQY9x0ptR2WdEg/0HCvx5r33bHz68OHw4osQECoeM7HIuoSNzLoxxiyMZMgqilJ/eeYZuPRSyM6GH36IzZBVFEVRFEVREsPEiedj6oQAACAASURBVHZEtmdPmD276oZsrCQ6m7GiKA2cRx+1KdtHjIB586Bp00S3SFEURVEURYnEFVfYeWQBPv4YMjNrvg1qzCqKkhCMgauusu4o48bBrFmQmproVimKolQ/uXn5mphKUZQ6zT33HDNkN29OjCELaswqihJnolHSysvBO13foEHWLSVFpZGiKA2A3Lx8vymD8gtLmPL6KgA1aBVFqRM89xxMn25/b9sG7dsnri21ImZWUZT6gVdJyy8swXBMScvNy/fVKSs7ZsiCTd2uhqyiKA2FGe+v85v7FqCktIwZ769LUIsURVGi51//grvvhjPOgOLixBqyoMasoihxJJSSdsecleTm5XPkiI2vAGjc2H+EVlEUpSGwtbAkpuWKoii1hb/+Fa67Dk49Fd56y871nGjUmI0DTUNkrJkwYQKvvvpq1NvZuHEjffr0iVezFKXGCaWMlRnD3bNX06PvEV55BR5+GA4dApEabqASd0aOHEng1BoAzz77LDfffHNM2+rWrRu7du2KV9MUpVbSMTMtpuVK4lH9TFGga1e49VYYPbp25TlRY1ZRlLgRShkrP5zCT7MGs/H7Rvz5z3DHHTXcMEVRlFrCpJwepHn8XVLSPMlMyumRoBYpNYUxhvLy8ipt4+jRo3FqjaJET6tWsGmT/f3229a7rrbQ4IzZ3Lx8RkyfT/fJcxkxfb5fLF9VMcZw880306NHD8444wx27tzpK+vWrRtTpkxhwIABDB48mOXLl5OTk8Pxxx/PE088Ebc2KEoiCaakHdnVlM0zczi8pSVtxixn0qQENa6BUR2yrri4mPPOO4/+/fvTp08fZs+e7Vf+r3/9i5NOOomhQ4eyaNEi3/IJEybw61//mmHDhnHcccexcOFCrrvuOnr16sWECROq3C5FCUZ1vu+rwtiBWTw0ri9ZmWkIkJWZxkPj+mryp0oS7+v89ddf069fPw4dOkRxcTHZ2dkUFRX5ysvKypg0aRJDhgyhX79+/OMf/wCgqKiI008/nZNPPpm+ffvy5ptvAnZUt0ePHlxzzTX06dOHzz77jF69enHDDTeQnZ3NWWedRUmJ9WrasGEDZ599NoMGDeLnP/85a9euBawMvfHGGznllFO46667qnR8ihIr06bBnj32d0lJ7XAtdtOg0q5UdwbBN954g3Xr1vHdd9+xY8cOevfuzXXXXecr79KlCytWrOC2225jwoQJLFq0iEOHDtGnTx9uvPHGKu9fURKJN4uxO2b28NZMtv97BAAZQ37gxOGFiWpeg6K6ZN28efPo2LEjc+fOBWDfvn08/vjjAGzbto377ruPZcuW0bx5c0aNGsXAgQN96+7du5clS5bw1ltvMWbMGBYtWsQ///lPhgwZwooVKxgwYECl26UogVTlGaiJaXPGDsxS4zUOVIesGzJkCGPGjGHq1KmUlJRw1VVX+YWTPf300zRv3pyvv/6aw4cPM2LECM466yw6d+7MG2+8QbNmzdi1axfDhg1jzJgxAKxfv57nnnuOYcOGsXHjRtavX89LL73EU089xWWXXcZrr73GVVddxcSJE3niiSc48cQT+fLLL7npppuYP38+AFu2bGHx4sUka6IJpYYwBh58EO6/Hy67DP79b2jUKNGtqkiDMmbDZRCMx0vl008/5YorriA5OZmOHTsyevRov3KvUOvbty9FRUVkZGSQkZFB48aNKSxUJV+pu0zNXcWsLzZhXMtK96b7DNnM09bS/rSNTMrpm5gGNjCqS9b17duXO+64g7vvvpvzzz+fn//8576yL7/8kpEjR9KmTRsALr/8cr7//ntf+QUXXICI0LdvX9q1a0ffvvZeyM7OZuPGjWrMKnGlss9ALMaRzhWbeKpL1v3hD39gyJAhpKam8uijj7J582Zf2QcffMA333zjy4myb98+1q9fT6dOnbjnnnv49NNPSUpKIj8/nx07dgDQtWtXhg0b5ttG9+7dfTJv0KBBbNy4kaKiIhYvXsyll17qq3f48GHf70svvVQNWaXGMAbuugueeQZuuQVmzoSkWurP26CM2URnEGzsOJgnJSX5fnv/awyEUpsJp7Tl5uVXMGQPb2vOztcGk5R2mLZjl3NcvxIm5agbXU1RXbLupJNOYvny5bz77rtMnTqV008/Pep1Vf4p8SBaA7Kyz0C0xpHOFVs7qC5Zt3v3boqKiigtLeXQoUN+ZcYYHnvsMXJycvyWP/vssxQUFLBs2TI8Hg/dunXzrdukSRO/um4ZmJycTElJCeXl5WRmZrJixYqgbQrchqJUF+XlkJUF27fDb35Tuw1ZaGAxs9WdQfC0005j9uzZlJWVsW3bNhYsWBCX7SpKIgk2d+yts1cw4P4PfIqlnyG7NZPts4ZTXpxK+yu/YNuLw1k0ebQqeDVIdcm6rVu3kp6ezlVXXcWkSZNYvny5r+yUU07hk08+Yffu3ZSWlvLKK69UaV+KEkg081h7qewzEK1xpHPF1g6qS9b96le/4o9//CPjx4/n7rvv9ivLycnh8ccfp7S0FIDvv/+e4uJi9u3bR9u2bfF4PCxYsICffvoppn02a9aM7t27+2SnMYaVK1dW6TgUJVbKyuyUidu3Q7du8NhjtduQhQZmzFZ3BsGLLrqIE088kd69e3PNNdcwfPjwuGxXURJJMKUNoLCk1KdYetm35Hi2/3sEKRmHyLpxPt1OqLieUv1Ul6xbtWoVQ4cOZcCAAdx///1MnTrVV9ahQwemTZvG8OHDGTFiBL169arSvhQlkFgMyMo+A9EaR4n29FIs1SHrnn/+eTweD1deeSWTJ0/m66+/9sWtAlx//fX07t2bk08+mT59+vCrX/2Ko0ePMn78eJYuXUrfvn15/vnn6dmzZ8z7njVrFk8//TT9+/cnOzvbl0RKUWqCsjJIcfns/vBD3ZhCUYwxkWvVEgYPHmwC5zNcs2ZNTEqTxrjETqznWKlfdJ88l3BSIlmEMmPY9W4/ild1BiDrNx/haXqYv1w+oEaeLxFZZowZXO07qiFU1iUGlXW1m1CySIAfp59XYXllnoFA92GwxlFgtuER0+f7deR5ycpMY9Hk0RWWxwuVdRVRWRc7KuuUQI4ehV/+El54ATIyYN++xBqysci6BhUzC5pBUFFipWNmWlClzUuZMRz4rJfPkO04cQGepocZP6yLPmsJRGWdUt8IJYtCjaZW5hnw1o9kHE3K6RHU6NW5YmselXWKUjVKS22Sp9mz4YEH4Pe/T3SLYqPBGbOKosTGqJ5tKiR4cpO05gT2LD4OgE6/+YgunZKYlFMzI7J1CRFJBpYC+caY8xPdHkWpa9SUARmNcRSt0asoilKbOXwYrrgC3ngDHn8c6uJMoWrMKooSkty8fF5blh/UkDUGihf3YPfnJ3DBBTBnDsxb04sZ76/jttkrmPH+OlXu/PkdsAZoluiGKEpdpLYZkDoiqChKXWbfPsjMtL9nzqybhizUE2PWGIPUhQjlOkhdiqlWoifaGKNQyZ+MgcKFPdn/1fG06FXANVOPMG8NOlVFCESkE3Ae8CBwe2W3o7Ku+lBZVzeoKQNS4zATi8q66kNlXd0k3jJpzx5o1cr+7t8ffve7ODU0AdR5YzY1NZXdu3fTqlUrFXxxxhjD7t27SU1NTXRTlDgSy/yIwTJzmjJh08PnAtB04EYyzlzNvW8n0zglqVomr68nzATuAjIquwGVddWHyjrFjc4hm1hU1lUfKuvqJvGWScXF0KWL/T1iBHz+edyamhDqvDHbqVMntmzZQkFBQaKbUi9JTU2lU6dOiW6GEkfCTW8RKBQDE66Ulyax+ZFzfP9bnrkaEbt+sBFc0KkqROR8YKcxZpmIjAxTbyIwEaCL9y3jQmVd9aKyTvESi4xU4o/KuupFZV3dI54yqaQEzjnHfl976z7Wt1tG98l12wOlzhuzHo+H7t27J7oZilJnCJWZ2Gt0ul1ZMtM9eJKE0nJDeWkSBa/bLOlJqUfo/LsPo9pfVSevrweMAMaIyLlAKtBMRF4wxlzlrmSMeRJ4Eux0FYEbUVmnKDWDziGbWFTWKYo/ofS2wOWRXJH37YNzz4WtW+G2B/cwt/grSgrrvgdKnTdmFUWJnty8fASCJnTqmJlWwZVl78FSkpOE8sMp7Hj5FI5sb07LM78l4+SfKqzfIt3DodJynaoiAGPMFGAKgDMye2egIasoSuLxKoKhIgpDdczFGsu2aRNMmQKPPALt2sWh4Yqi1GuSRSgLEuucJHbO662FJTRP81BYUuoryy8s4fbZKwBrnG7YAH36QFmZnYLn4XUrIo721pXcAWrMKkoDIpSiJthpL4K5shwpTmHnK0M5sj2TVuevoGl2foX10zzJ3HdBtm8ftV3wKYqiuAnsyAskVMdcrLFsCxfCqFH292WXwYUXxqf9iqLUX4IZsgDl5tjorNuQ9ZUDU17/hp5pWfTqZZe1uXAZ/71qN3sPVqwP/l56dSV3gBqzitKACOUmZ4BbnR48N4e3NWf786ciKWW0ufhr0k/Y6StLEitIswKM1tom5GoTxpiFwMIEN0NRlABCZW6HijIu0nqhYtkeffRYxtB7762fhqyIpAKfAo2xOuarxpj7EtsqRanbZAXkL4mF/QWNfYZsxpAfSO+5nb0HQ9f3eqDUpdwBaswqSgMiMKFTOEo2tmLn7GEAtB6z3M+QFeCHh86rjiYqiqLUOKE6+gRYNHl0zOsFLv/1r+GJJ+zv3Nz6acg6HAZGG2OKRMQDfC4i7xljvkh0wxSlLpKbl0/hwSOVWvfogcbsfGUoAM2HryfztO8jrlN48Ai5efl1KneAGrOK0oCYlNOD22avCBkT5uVIQVOfIdvyzG9JP3GnX7kmdVIUpTqp6VitUB19kWRdNOvt3XvMkP3uO3yjJPURYycxLXL+epyPTmyqKDEyNXcVs77YVOmH5+j+VApyT6asKJV2Vy4mtfPeqNYrPlLGpFdXVojB9ZIkQm5efq0anU1KdAMURal+cvPyGTF9flSG7OFtzdnx4nDAjsgGS/bU0JM6KYpSfXhjtfILSzAci9XKzasYrx/NtkZMn0/3yXMZMX1+yG1MyulBmifZb1k0CezCrVdSAjNmQHo65OXZqTDqsyHrRUSSRWQFsBP40BjzZaLbpCi1gWjl0finlvBCVQzZfWnseHE4ZQfSaHfFkqgNWS+lZQYRKsg2sPG7lZXH1UXCRmY1rkJRaoZIiU3cHNrUkh0vDSe52UE6XrMIT4uKgRVpnqRa1SOnKEr9Il6xWrEkMPH+jzQaHGzE+KFxfSss69c8i/R0u84JJ8BFF8V0Cuo0xpgyYICIZAJviEgfY8y33vJIc2orSn0kGnmUm5fP/W+vDpmcKRpKfmjNzldOAQztr1lE4/b7K7WdwoOl/OXyAdwxZ2WFBFSxyOOa8LJJpJuxxlUoSpwIJizAKmbRxsgWr23P7rkD8LQ6QJuLl5Le6iCl5f51PEnCQ+P6xbv5iqIoPuIVqxWrUTx2YFZYJSuUMvrQuL5+cbUffgjHn2x/n3VWwzJk3RhjCkVkAXA28K1redg5tRWlvuDWzZKCTK9TUlrG/W+vZuzALHLz8pn06kpKyyr/SBxc346C1wcD0Or8FTTusK/S2+qYmcbYgVncFiQ5KEQnj2sqI3LC3IyNReMqFKWKBHPJm/TqSia9sjJqQ3bna4PY9eYgJLmcdlcuwdPCGrIjjm9Jsghg5zm7fGhnHZVVFKVaCRWnGmusfrwTmIQzjr088og1YAEefBDef79Su6qziEgbZ0QWEUkDzgTWJrZVilLz5Obl+/QwQ+jpdfYeLGXgf3/ArbNXVMmQPVLQ1GfIth6znKbZWyu9LU+y+AZFqiKPo5GZ8SChMbMaV6EoVSeYsCgtM5SWRycUtz3/M0r+0x6ADtd9SnL6MfeWRRv2+ARwmTG8tiy/VsVJKIpS/6hs/Gog8TKKvUQyjnfsgDvusMvefRfuuadSu6nrdAAWiMg3wNdY3e6dBLdJUWqcaW+tjloPq4pbMcCRnRnseGkYSWlHaHvJVzTpta1K27t8SGcARkyfT35hCRJQHq08rqmMyAk1Zo0xZcaYAUAnYKiI9AmsIyITRWSpiCwtKCio+UYqSi2nKkJh35fHcWRbCwA6/fYDUpodClu/OnrUFEVR3IwdmMVD4/qSlZmGYOdYfGhc35i9QuJlFHsJZQR3aJ7G3LnQti28+irs2gXnnFOpXdR5jDHfGGMGGmP6GWP6GGP+O9FtUpSaJjcvP2gm4Org8PZmFOQOIrnJYdpftYi046tuK72zcpvP4w+s26zXoE0W8emCkQY34t2hGIpaMTVPqLgKp0xjKxQlDLHMHevFGNjzYR+K8rqS3nMrrc9fgSRH93jVxjnGFEWpX0SKX3UTKsFItEmdomVSTo8KyfQalTdiyT2jOR+YOxcuvrhSm1YUpZ7gDf2qCYq+zWLPh9kkpZXS7vKlpDSPj34WzBD3GrReb71o4l+DycyqdCiGIpHZjNsApY4h642r+J9EtUdR6irBhEVyklAWwr3FGNj7UbY1ZE/aRusL8pAYfDR0jllFUWoLkRKMxGIURyLQOG5xtCV5/2unMWvevOGOxiqKYsnNyw+a/bc62PfF8RR+0hOA9v/1aUTPungQeFSRshrHu0MxFIkcme0APCciyVh35zkaV6EosRNMWBQfPhq8Z+1oEpv+12pczYZuIHPkWiQwGCIM1dGjpiiKUlniNY1PtHiN47lz4fzz7bIxY+DNN+O+K0VR6hDejrXqMGSzMtMY1bMNL321mbJyQ+GiE9j3udXF/vzvnTyx+jBVyB1VJSJ568WzQzEUCTNmjTHfAAMTtX9FqU94hYXX3S6YIVt+OIXNM3MA8LQ64GfIZgVM5+M1ikf1bMOCtQXV2qOmKIpSWWJNMBLtnIfh6j317nYmnm+T5nU9Zz2/nJYOqFxUlIZMsI61eHDVsC48MLYvAIO7tuT3jxXwk2PIPvLyDm67vB3/NzmyJZscZGqgeFAbvPVqRcysoiixE6hsjerZhteW5QcVpuVHkn2GbErLIjpe/6lfuXuORDVWFUWpK4TKGRBMwYp2zsNw9bZuSubRr1fQfMRxpJ+0HdoeYMrryRW2oShKwyLW3CWhEKw7b7IIV5zS2WfITs1dxTNzitn+2iAatdnPTTO2cNvlvYHIhmqaJ5mLB2WF1BErS23x1lNjVlHqEF4D1psq3Su68gtLeOGLTUHXKSvxsPOVISDlNBvyIy1G+U/51yLdU72NVhRFqQLhRkljSTAy7a3VUbkkBxthOXikjIsGdQQjtBvfjMxT14fdhqIoSmVI9SRXyN4+NXcVT/77MAW5Q0ntspvWY/J4Y00pTXLLeGBs37CGbJZLZg7u2pJpb62u4L3nSRaaNEqJKQNzVi3y1lNjVlHqCIGjBdE4i5QVNWbb8yMoO5BGm4uWkn7Sjgp1aiBPgaIoSqWIJsETRE4wEm6qjPzCErpPnutbN9BFufxQCpv/muP737hDYYVtaJZ3RVHiQbDOsZlTWlG8tiONOuylzYXLSUo9CsCLX25iwdrQU/FkZaZV8Lxzh6S5ZSZQoWPQkyxg8JsvNy2IsZ1o1JhVlDpCrPEYh7dmsuvtAZQf8tD20q9IOy64wNtXQ3OhKYqixEo0CZ7cRq1XSbtt9go/wzbS/NiGY4Zy8zSPz/At3dWUrU//AoDk1FKG/uEztu6r2ANYG+LGFEVJDJHmW40Vdwfb4bk/o3htRwDaXfaVz5AFKDeh3ZvDuQCHS8oUzMit7mzEVUWNWUWpI8TS83/w+3YUvDEYgPZXLaJxVsWRBC+qhCmKUluJJcFT2FjXKOVnSWkZqZ4k0jzJHNjVyGfIZvTexvMvlAM1M2+ioih1h0idZZXBAGs+aM/ez1MB6HTzh36GbDhapHu474LsmI3OUEZubTNeA4lhdklFURJJtEZn8dr2PkO21fl5YQ1ZVcIURanNhJJ7SSIVRkPCjeLG0mm392ApF/TuTOeOSaSftJ0TL1/N8y+U+xS9h8b1JSszDcG68dU2lztFUWqWeCV/cnNgRWf2LuhNUuNSTrrjY5KbHIl63UOl5XFvT21GjVlFqSNMyulBmic5bJ1DW1qw+93+ALS95CuaZm+tUCczzaNKmKIodYJQcq/MGKa8vorcvHxy8/IZMX1+SIVya2FJVPLTy445Q3j46l5c1bcXxeva8/3L/iMcYwdmMSmnBx0z09haWMKM99fF3c1QUZS6wdTcVXHf5v5lXdm35ATSjttJp5s/4nDKIb9yAdI8oU04bydeQ0HdjBWlFhMYpH/xoCxe+nJz0Mx1XtfilJZFtLv8S1KaHapQxz1fmaIoSm3Ha0TeMWdlBblXUlrGPa9/g0HC5hPomJnG2IFZLP1pD7O+2BQyeZ4ph00zzvP9f+LL1fxmbLsK9aKd4kdRlPpNbl5+yJkkKsveBT3Z/9XxpJ20nTYXLkeSKkqslGTh4kGdwk6105CS0unIrKLUUrwKU35hiS85yeyvghuyxWvbU/DmySQ3PUT7K5cENWTTPElqyCqKUucYOzCL8hBp1w+Wloc1ZN2hFAvWFoQ0ZMtKPH6GbOfb3+OAKWFq7ipGTJ9P98lzGTF9vq+DMZQ7s6IoDYd4P/Ob/nIW+786Hk/bfbQZE9yQBSgtMyxYW8BD4/qSLBK0TkPKh6Ijs4pSSwmmMLnTo3vZ/sJwDue3pHGnPbS95GuSGldMEOBJEh4a16/a2qooilIVws0lC1YxizUuLXAexFAjFWXFjdjytzMBSG5yiKzffIxXP3SP5HpHYHUkRFGU3Lz8uMXKGgOb/nwu1oEYek78igOlJuwUjFsLS3yyraEnpVNjVlFqKdEoRlv+PpqyA7b3re2lX5HUqKKSlSzC5UM7B52uQlEUpapEMkSjWT+S2+6knB7cOntF1NsMnF8R8Jtyx4sxYMqF5GYHSTt+J63OWu1fHrDdktIykkWCesg0pJEQRWnIeGVWPDAGCj/tgdeQfeXLfC4ZajvXwuUC8MqbaOfars+oMasotZT0RskUHwk+AmAMFC7s6TNkO982L6ghC9AoRZj99WZKy6zypfFdiqLEi3jEj0Y7l+z9b69m78HI82J7koXiw0d98zR6FbtAb7x9S47n4Pp2tLvsK7J+tTCkS18gZcaQ5klu0CMhitIQ8XbcxXNEdt+iE9n/xQk07f8TLc/6lkuGHgt3mJTTg0mvrKzgledJFj95E27e2IaAxswqSi1k/FNLwhqyez7MtgkCTthBlzvfJalRGZ4k4aphXUgPyHBXUlruM2SPLdP4rppERFJF5CsRWSkiq0Xk/kS3SVHiQTziRyPNJevNVrz3YCnBo8OO0SLdAwYKS0p9uQZunb2C7D/M8zOEtz03gsJPe3JkWwvKS5OjNmThWCZ4nZ5HURoOU3NXcdvsFXE1ZPd+lM3+L4+n2bD/0DLnWzq19PfuGDswixmX9iczzeNb1iLdw4xL+qu8caEjs4pSS8jNy4848mDKhd3v9aX4285kDPqRFqd/5xttaJqawuCuLZkVZWY9je+qUQ4Do40xRSLiAT4XkfeMMV8kumGKUhUiGaLRECoetmNmWoWR31AmpydZaNIoJaT89HYOmnJh04xzfcuzbvqIlIzDUbfVOwLb0EdCFKUhkZuXHzYTeqy45VDGkB/IPG0dSUJQ7w6VNZFRY1ZREkxuXj7T3lpdIZYrkPLDyWz/9whKd2fQfMT3NB+x3s9tbu/BUma8vy5qYavxXTWHMcYARc5fj/OJ13tRURJGOEM0FIExtqN6tqkwxYTXaAw28gt2dCK9UQpbC0vITPdQdOhoZBlamsTmR87x/e9yx3skpZTzs+NbsmjDnojHGphQSlGUhkEsulUkTJmw6WFryEqjUlqMWoOIVQhUtlQOdTNWlATiHXWIpISVFTdi88yzfYZs5qnrK8R/AVG7v2h8V80jIskisgLYCXxojPkyoHyiiCwVkaUFBQWJaaSixMiknB6keZL9loWTL8GmHHttWT4XD8oK6rYbaoS38GApiyaP5sfp55HeKCVopvdAju5pCoCn1QG63DUXSSnHALNuGG7dk8MgwKLJo1XZVJQGSNxci8uPGbJg6HzrBz5dLksHGCqNjswqSgIJNergpvxQim/aiMadd5N56vqQdYXQw30t0j0UHixtkJnuagPGmDJggIhkAm+ISB9jzLeu8ieBJwEGDx6so7ZKnSDWTJqhYmwXrC2okH0YIo/8RjM9RsmPrTm4rj0tz/qWTjd/SHKTI74yrwJZGCGxlHqyKErDJVQG82gRoLxM2PX2AAAatS+kw7WLfOXeDsCqZoZvqKgxqygJJJISVlbciB1zhgKQ3jufNheEn5rCUNGgFWD8sC48MLZvldqqxAdjTKGILADOBr6NVF9RajuxxHTFGmM7KadHyDkUc/PymfTKyrD72/NRbw4s6w5A8+EbSGl+bD/uEeRw89gKMKpnm7D7URSl/lIZQ7ZJo2QevKgvM95fx5Zdh9k9ry8lG9vQYtR3NBv6o69ei3QPxsCts1f46W8680T0qJuxoiSQ5GC+wg5H96eS/49RHN3TlLaXfhnRkPViwM9d7y+XD1BDNsGISBtnRBYRSQPOBNYmtlWKUvOEGuFMEqH75LmMmD6f3Lx83/KxA7O4eFCWT1aKgGC4bfYK7phTccoKNzue+YXPkG1/9ed+hmyLdI9fBuJg7tJeDPDasny/dimK0nCojAtwZnojxg7MYsuOUna+Poji1Z1oMXKNz5AVYOblAzhUWu4LNQs2r7XOPBEZHZlVlAQSqrevdE8Tdrx8ChihzbilpHXfFfU2szLTgrrrKQmlA/CciCRjOxHnGGPeSXCbFKXGCTbSCsdkoXcqnfvfXs19F2QD1pD0lhsDB0vL/dYJxJTDphnH5mp85oNt/HPZEbYWEtJ1z+0uHWyENnDeW0VRGg6Tcnpw6+zoXvzoNQAAIABJREFUBhS85BeW0OV3H7D50RwAWuZ8Q8aAzb7y5mmeqELNdOaJyKgxqyjVRLjYB29ZMIpWZbH73QGQVE6HaxbRqN3+qPepiZ1qJ8aYb4CBiW6HoiSaSEajl70HS7lt9opKZRA9tLmV73eXO9/l0SUp3HdBdkRD1Osu3X3y3KD7VaVSURomYwdmxWzMlhU38st34jZkAYqPRM7ADhqvHw1qzCpKNRA4N6J7tOG8fh14IcRcsPu/6s7eBb0BaDtuaURD1pMkNE1N0cROiqLUGbwy6o45K8PGosVqyB7dl0bJhrZknPwT7a/5nMYd9gHWML519gpunb0iqul1KjPdkKIo9Zs0TxIljldIJMoPp7D9xeF2veN30PaSpRXqlJaZiImldIAiOtSYVZRqIJTryN6DpSEN2ZIfW/sM2XbjF5PaaW/Yfeich4qi1CW8Hin5hSVhM69XhqJvOrH7vf4ApJ243WfIBhJNUpVwSacURWl45Oblx2TI7nx9MEcL02l9QR5Nem8NWbfMGNI8yX6yxisbVceLHjVmFaUaiNUdrWh1R3a/1w9Pm/20vXipX6ISNyrcFEWpiwR6q8TTkN09rw9FK7sC0Or8PFIyDoetHyn+NdbphhRFqd/c//bqqOqVlXjYOWcoZQcb0WbsctJP3BFxnVRPEo1TkthXoh52lUWNWUWJM7l5+STFMCdZ0apO7H63Pyktimh35RKSU49WcwsVRVFqlmgSnURDZpqH0rJyio+UYQxsfeoXHN3bFIAOEz6LOsdApA7HWKYbUhSl7hIsvwn4d2btjTAPNcCRXU3Z9vQvILmMthctI+34Ar9yT7JQWlZRL9x7sJQ0TzJ/uXyAypxKosasosQR7+hDtIbsjjlDOPRjW1K7FtBm3DKSGoVX9nTeMUVR6iKxeqsEuiGneZJ9U+mMmD6f4iMllPynnc+Q7XTLBySnR1Y4vTRP8zBi+nwdeY0zItIZeB5oh72ETxpj/prYVinKMdzGa2a6h6JDR31TfOUXlti5qwWf4RkuUZ2XIzsz2Pav0wBolbOqgiGb7kniT+P6abb0akKNWUWJI9PeWh3V6IMxsOnhc6DcTvXc9pKlSEp08Rgq9BRFqa2EyuIeKqlSMLyJVrzJUQLDKzbvOMKR7a1IO2EHrc5bQZPe+UhS9G30JIlfJlHtJIwrR4E7jDHLRSQDWCYiHxpjvkt0w5SGR6A8GtWzDa8ty/fpacFGXMPNXR2Mowca+wzZ5j/7nqZ9K85H7TWMF00erdnSq4EYxH98EZHOIrJARL4TkdUi8rtEtUVR4kFuXn5UadaNgfwnRvkM2S53vBe1IetFhZ6iKLWNqbmruG32CvILSzAcMxJz8/JjSp5U4ppH1pt4yWtkLl4Mm2eezY6Xh1Fe4qFpn8iGbGaah6zMNASbd6BpakoFdz9vJ6FSNYwx24wxy53fB4A1gPYQKDWO11POLY9mfbEpLuEOXo7uT2WHk7U48xdryfz5+qD1SsuNT76Eyoqu2dIrT8KMWY713vUGhgG/EZHeCWyPolSa3Lx87pizMmI9Uw575vWlbH860qiULpPmxmzIggo9RVFqF7l5+cz6YlOFEYeqGonu9Z98EkaMsMubD18fk1vxpJwe/Dj9PBZNHk1hiPg37SSMLyLSDTu/9peJbYnSEAkWpx/PxHOlhWnsevNkykoa0f7qRTQftiFsfa98mZTTgzRPsl+ZZkuvGglzMzbGbAO2Ob8PiIi3905dUZQ6gXuaiWgwZcLOV4dwaGMbmv/se5qfuh6R4HVPbNuE9TuLQ25LhZ6iKPEklHtwtPVmvL8upKKYX1gSVWdfKLYWljBhAjz3nP1/0pWrONw5+BRnwSgsKfVzI9Z5ZKsfEWkKvAbcaozZH1A2EZgI0KVLlwS0TmkIVGfnVOnuJuyYfQqmNJkOVy3G07ooZIInL175otnS40+tiJnV3julrhE4zUQkyg8nU/DmydaQHfE9macGd0Xx8kPBQbJCKFyZaR4VeoqixI1AeRYqhjRcvUiKY7RJ8YKyMYvnZtufK1fCD2UtmfJ6fkzugu5cAzqPbPUiIh6sITvLGPN6YLkx5kngSYDBgwfHc7BMUXzEEqcfCwe/b0fBG4MB6PDLT/G0LgLg8iGdWbC2IOg82oHyRbOlx5eEG7Pheu+ccu3BU2oF7hEJxMa+RsPR/ankP346AC3P/oaM/psjrlNmTEiFa9qY7Eq1X1EUJRj3v10xcV1JaRm3zl7BjPfX+Y2+Bqs34/111aI4mjLh6IFUmnQpYNIkmDwZWraEfk4I5q2zV8S0Pa/BrSMj1YeICPA0sMYY80ii26PUf0J5iwTToapK8ZoO7HrrZABaj1lOo7YHfGXvrNzGivvOCtsmpXqIaMyKyKXGmFciLasMkXrvQHvwlNpBhZHYKO/E0l1N2fr0LwBI77EtKkMWIFlEFa4apjplnaLUVnLz8sPOoRjN6OvWwhL+cvmAmI3LcHg7AaVxKZ1+PZ8//8W/fOzArJj353YjbsgjI9Us60YAVwOrRMR7ge4xxrwbh20rih/ReJV4daiqGhBHdjTzGbJtxi0l/cQdfuXuBKANWb4kgmhGZqcAgQIu2LKY0N47pS4RbEQiEkf3p7L95VMAyBj0Iy3PiD4c/IpTOgMqEGuYapF1ilKbiSY5U6TR146ZaZUyLkNxaFNLdrxkM4SmHbeTpMZH6T55boUOvVChGBB8nlp1I/ZRbbLOGPM59vQrSrUTylvkttkrWPrTHhasLfANBhQfPhrVjBPBOFKQwY6XTyE5o4S2Fy+lUbsKjqRKAglpzIrIOcC5QJaIPOoqaobNRFxVtPdOqTPE6j53pKApO+fY5ADtrlhCapc9Ua+bnCQM7toy1iYqlaQGZJ2i1CrcLnDRjlbkF5aQmeapsNxrJObm5VcwICvD/mXd2PuRDaVoNnw9LU77HpztBo66hArFeGhcX0C9WgJRWafUN0J5ixjghS+OJYmrSgjE4fxMdr4+mJQWB2k9ZjmeTM16XtsINzK7FVgKjAGWuZYfAG6r6o61906pC+Tm5XP/26tjWudIQQY7Zg+lvDiV9td+RuP2sfXglTnzkTV0xasGqVZZpyi1iViT17kJHNVoke7hvgus4XnHnJVVNmRLNrTxGbJtLlpK+kk7KtZxJXKKFIqhMrQCKuuUekV1JXnysu/L4yhc2IuUFsW0GbuMlGaHqm1fSuUJacwaY1YCK0XkDaDYGFMGICLJQOMaap+iJIzxTy1h0YboR1QB9i/txt6Ps0lueogO//UJjZwsd7Gi8x3WHCrrlIZEZUImQpHeyKoQU15fVaVsxcaAOZJMSstiGnfZRcszV4eVnfmFJeTm5fsMWjVao0NlnVLfmJTTI66x+m4KPz2JfUtOBKDdFUtIyTgctn5yqLkWlWonKYo6HwDuydfSgI+qpzmKUjuYmrsqZkN276c92Pv/2bv3+KirO//jrzOTCZlwC4FwCwTwUmgRAYmK0lrBVmzxQqnX2m7b7a6/ttutt0axdSvur7tSWVe33f66i223N2u9NtViRS2uWhUUDIgIeEG5DLdACLeEXM/vj8lMJpO5fOeWueT9fDx8MJOZ+c4B5eP5fM85n89f/KsKo659JelEFtTvMEsU66TgpfNGma+xOWIl5ER0trrZcfcC9v1+Nu5BJxh9zZpg7Iw1Nbzt8Y3U1vmS/t5+TrFOCsLCmZUMK+19/CFVh9ecFExkx3z1xbiJLHTXOpG+5ySZLbHWBmflXY9LMzckkex7cI2zqsMBxzeP4cirpwAw5isvpXSmQoVKskaxTgpetBtlBiKeiY0nViXkeNoavey89yL/9xd1Yoo6g6+5jeHa2VV4Pe6Inw1sN5akKNZJ3qqt8zFn6SomLV7BnKWr+NiYwWm9ftN7I2l8wT8HG/u1F3q034nEbQxfnF3FDxZOS+s4xDkn1YyPG2POsNa+AWCMmQVoD6QUnGSKogAc2zSWgyumg7uDsV97Ec+wpqS+34AKlWSXYp0UvJr5k7nxofW9YpwFjPHfTEtnX8Zomj8Ywf6H/dXeSyYcYNTVa3q83mEtD67ZGXP7sq+xmTlLV6nIU+IU6yQvRWrFk84zs03vjeTgn0+neNQRRl75Gm5v9Jt1gWJzijnZ5ySZvQF4xBizG/98ezRwVUZHJdLHaut81DyygbbOxM59HX1jAg3PnkbJhANUfG4trgHJTQIry7y8vHheUp+VtFGsk4IXq4VOY1Mb186uiptEpurErmHBRHbox7dSNue9iO+LNwZDd5XSSP0lJSrFOslL6TzzH+745jEceHIGJRMOUnHZG7hKYhf4Di1GJ9kVN5m11r5ujJkCBPY9brXWJr+vSCQHLXliU8KJ7KEXJnNk9SmUTNpPxcI3cBUnF2C1rTg3KNZJfxGtP2tZqYfH1vkymshaC7bDBe4OKj73BqUn70/qOpHaAGly6YxineSrTBXH3PfwmZz4YCQDxh6iYuE6xwsTKtaZG+KemTXGlAK3Atdba98CJhpjLs74yET6UCKNtK2F7T9cwJHVp+A9eR8jP7/WcSJbWebli7OrqCzzYrqea5tKblCsk/6iZv7kXmdRvR431pKxVQ9r/RPGgyumU1J1kKqbVvZIZN3GBGNiLIH3REu3NbmMT7FO8lUmimPufeAcTnwwEoCKzye2w25oEnUGJP2cbDP+H/z9yM7peu4DHgH+lKlBifSlRCpi2k7YsWxB8HnFonUYl/NVDG0lzmmKddIvROvPmqkWF50tbnbe5y/0VDTsGHQajLtn3OywlvuumgEQdRxuY3j/rs8CMGfpqoiry6oE74hineSlmvmTkzoSFs2RdRNp2VUOwLhvPxPzjGwk6saTG5wksydba68yxlwDYK1tMkb/+qQwBM7KOmE7DAeemh58XnXLCgWywpKRWGeMGQ/8GhiFf2fkcmvtf6R6XZFUhPZnDRS/y4S2hlJ23z/X/8TVydi/fyFq3Kx5ZEPMfjyhrS9q5k/uUQgGdGQjAZrXSd7qjP8WR46+MYFDz02leOwhRl35Gq4Bsc/IRtKYQjV3SR8nyWyrMcZL1/EUY8zJQPyGSyI5rrbOF7GqZySdbS72/342LbuHUfbJzQydvS3j45M+l6lY1w7cbK19wxgzGFhnjHnWWvt2Gq4tAvSsxh5e2Tfwmq+xGbcxdFhLZdd7gF5JYbq0NQxk9/3nA+A9xX8kI+b7Y6y2hLe+iLa6rCMbjmheJ3npzic30ZGGVdmGZ6fStHU0pR/1MWLBhl47RZzSTpDc4CSZvQN4GhhvjHkAmAN8JZODEsm0QHl3R4lsSxH7H6v2J7Lnb2bo2cklsplo7C1plZFYZ63dA+zpenzUGLMZqASUzEpa3F67kQdW7wjGs9DKvtAzWQ0Ud/I1Nju+mZesEzuGA6QUN8G/WBuph2Po6rIkRPM6yUup9LUO2P5D/1GxovJjKSWygHaC5IioyawxZo619mXgRWARMBv//1Out9Ye6KPxiaRdbZ2Pmx/e4KhiZ4uvjL2/nQPAiEvqGPix3Ul9p8dtuOOSqUl9VjKrL2OdMWYiMBNYE/udIs7U1vl6JLIBgcq+gceRZCqRPbzmJIzLMuTMDyj9yB7cpalNQId6Peonmwaa10l/Zi3suLu75snYr76UUiJb6nEpDuWIWCuzPwJmAa9aa88AVvTNkEQyJ3wFI5am90ZS/9iZAAw+c1vCiWyZ18Ph5jZNvnJfn8Q6Y8wg4DHgBmvtkQivXwdcB1BVVZWJIUgBWrZya8zKvplceQ0XOll0DzrB4FkfJJTIelwGDLR12B4/O97aHqw4r36yKdG8TvKaxwVtSRyaDU9kq27+M6YotdO3xUXu+G+SPhErmW0zxiwHxhljfhT+orX225kblkj6RVvBiKT5w+HBRHbA+IOUz9uc0Hfdd9UMTbTyR8ZjnTHGgz+RfcBa+3ik91hrlwPLAaqrq/syB5EcEevcazS50oqms6WInffNDz4f+/f/i4nb/K9bmdfDkkv9u1dC/wyaWtt7bS1UP9mkaV4nea0jif8zWgu+n3Z3kqj6zlMprcgGHE6gpaNkVqxk9mLgU8B8/CXcRfJObZ2PO5/clNA5i+NbRnPgj7MAGFy9jfILEktkvzi7SpOs/JLRWNdVJfTnwGZr7b+n+/pSGALn+ANbggNnWm94aH2wWFOkuDK2zBuxRQ1kbhtxuI7jxez6z08DYIrbGH/DM3ErvYcXogr9vYU+nrQ48uJhriTxeUbzOslridZ+shYO//VUOo56cZW2MO5bz6WtC4WKP+WOWMlsjbX2VmNMlbX2V302IpEERVvNuL12I79dvSOha7XsGRpMZEdc+gYDP7on7mfcxtBprbYT569Mx7o5wJeAjcaYQAPN71prn8rAd0meWrZya6+zrZEKOoXHl0gtavra0XUTASidvJuKhXVx3z+s1EPd9y90dO1oybomkknRvE7yUjLtw2ynYccyf1/qsvO2MGT2+2lLZD1uo+JPOSRWMvtZY8xi4Grg7j4aj0hCIq1m3Pb4RtZub+CBBBPZY2+Oo+EvH8M9pIkRCzZQUtXg6HP3XDldCWx+y2iss9b+lZjdM0XirzRG21obeH7DQ+sjfSyjmj8YAdYwdM67lH50D8UVRx19LpGdMuonm1aa10leCG0n5jKJr8h2trnY+e+fAcB42tOayAIMLC7SvC+HxEpmnwYOAYOMMaHFSgxgrbVDMjoyEQcirWY0t3Xw4JqdCW2x2/XTuXQcKQVg9N+9QNFgZy33XAbWbm9Qr8P8plgnWRdru3BAtIR34czK4MSvr+z93Wxadg6nqOw4Y6/7X8eJbDTRdtion2xaKdZJzgtfpEg4kW11s/Pei4LPq25amc7hATovm2uiJrPW2hqgxhjzR2vtZX04JhHHok3unLTdCdjx7/Oxbf6/CqOufcVxIgv+IBu6lVmVNvOPYp3kAifbhWNtrU1lu3Gpx0WTwxKhthN2LOuuCjrq6jUJr3iUeXv23I62wwa6e8kqnqZOsU7yQaRFCqc621w9EtkJt2amYLeOOeSWqLUGjTFTAKy1lxljBoS9NjvTAxNxIlpAcTucXe351ZxgIjv2ay9QMu5QymMK7e8ouU+xTnLBwpmV3LVoGpVdMS08gsXbWhv6+URyy8oyL4tmjXP03s4Wd49EdvxNf6ZoaGKrwR6XCVYtDoi2w0ZxNL0U6yQfJFvczXYY9j96VvB5phJZQMccckyswvm/C3n8athr/y8DYxFJWM38yXg9PXt9eT1urjl7fNwJ3a7/mkvr3jIAxn37GTwjjqVtXKq0mVcU6yQnLJxZycuL5/Hh0gXce9WMYGJaWeblrkXTIq5O1tb5mLN0FZMWr2DZyq3UzJ/MB0sXBJPieHyNzY4L5TW+5J/AuQaeoOqWFbg8ifVpdBvDVWeN7/X7iBYvFUfTTrFOcl4yq56dJ4rY/1g17Q2lDJu3KaOJrEE773JNrDOzJsrjSM9FsiLaeSog6gTNWv+krOOw/4zs+BufxlWc3kqg2oKSVxTrJOc42Voba3tuzfzJ1DyygbZED5xF0HpgEMZYhp77LiUTD1B6yv6krtNhLY+t81E9obzH700Vi/uMYp3kvJr5k7np4fWOz8q2HynB99MLACi/6E0GT9+ZwdH1XcszcS5WMmujPI70XKRPRSoWAv6kNlZVT9th2PFv/lLtg6bvoPzCjZhY+xPo2Q9x7pQKHlvni3meQ5U2845ineSlWNtzX148L+Ee25Ec+t/JHFlzCsVjDjH6S68knciGjy80mVXF4j6jWCc5J3w+V1rscpzIth0qZffyuQAMGNeQ8UQWnB9jk74TK5kdZ4z5Ef67dYHHdD3X+rpkRW2djyVPbKIxpJKcr7HZUVuKzhY3O+/rLgxQPn9j3MIlht6td6onlPcIvHOnVPD8lnpV2sxfinWSl6Jtw/U1NjNn6aqUE9k9vz6X1j3DACj/9Ka0tbYIH7cqFvcZxTrJimjVyiPtLnGq7eBAdv/s/ODz0deG75yHgcVujremd+fdNWePT+v1JHWxktmakMdrw14Lfy6SceFBLxGdLUXsvG9+8HnVLSscTcws9FpFUGXNgqNYJ3kp2vZcQ2KTwnC207Bj2WeDzyu/+VxCVd7jibR9WHG1TyjWSZ+7vXYjD6zeEVz6Dz0OkWzl4o4TRd2JrKuTCTV/jvi+TgtfnF3luC5ALG5juObs8fxg4bSUryXpFas1z6/6ciAi0YQ2z05G6HkK18ATjP/WXxL6vIqQFDbFOslXc6dU9JgkBqS6X7ThmdOCj6tu/jOmKLFCT7Fo+3D2KNZJX6ut80WMUc1tHdz88IaE2igGdDR7qK89A4BBp+9g+Gc2Rn1vc1sHz2+pxxh/vZRoDP64OazUw7ET7T1qDXg97qgF+CQ3xFqZFcm6VFZjwR/0dv/8PABKJtYz6qrXEr6GipCISK6prfPx2DpfWg86dhwbAEUdDJ71IUXDjjPkrG1p2Voc2sf2RHsHNzy0Plh5OXSCGG0rouQPY8wvgIuB/dba0+K9XwpXbZ2Pmx/eEDVGJZPIttYPYs8vPomrtIWRV67BO+lA3M/sbmyOGyfvvWpGMNbcXruRB9fspMNa3Mbw+VnaNZLrsprMKuhJPKk0zz6xcxj7Hz0T2+Fi+MXrGTTVl/A1tIogIrkoldgYyaEXJnNk9Sl4T9nHyM+vpbjiaNqu3dzWvbIbmL+GbjWMdnYu9HXJG78E/hP4dZbHIVkUvrU4HZrfrwj2kS37xFZHiSxEP44REHq/LnCTMJBoR6vALrklTh1XMMbMcfKzJP0SuCjem6T/SnaL77G3Ktn3u3OxrR5Gfn6to0TW1RXRApXqYvV2lMKT4VgnklbpPP7gu/+THFl9CgClk/c4/pzTRdtoE9pAZWOIXZlZ0iuTsc5a+yLQkI5rSX6qrfPx2zQnsk1bRwcTWe9H9jJ4RuSqxeExyetxM3dKRcxrB2qjgOJQvnKyMvtj4AwHP0uYtfZFY8zEVK8jhSveHbVIjm8ew8EVMwAonbLb8d07a+HDpQsSHqMUjIzFOpF0qq3z4epqGZaq7T/sjnkVC9dROnmv48+mY7IaSMqjJeeqWZARinWSMUue2JTW653YOYz62lkAeE/dy8jPrYv63tCYVNl1VMFJIqo4lN+iJrPGmHOAc4EKY8xNIS8NAdyZHpgIwMThiSWzRzeMp+Hp0wEYctb7DJu7xfFndTa2f1Ksk3xSW+ej5pHkCqeEC01kx173PJ5hTSlfM1GBuBvtxqXicvrkSqwzxlwHXAdQVVXVV18rfSS0dWKq2hq97PvduQAMPG0nIxa86ehzBoJn7m900LpRcSi/xdpmXAwMwp/wDg755whweeaH5meMuc4Ys9YYs7a+vr6vvlZyQG2dj1fed75bqem9kcFEduTlryWUyHpcRmdj+6+ciHUiTix5YlOPSpvJ6Gx1YzsNg073t6sYf9Of057IGvyVQWNNMkJrEtTMn4zX4476uqRFTsQ6a+1ya221tba6oiL2FlDpv1rrB1H/h1m4Bzcz6urVjhNZ6Ll1OF4iGkh8QXEoX8VqzfMC8IIx5pfW2u19OKbwcSwHlgNUV1encwu+5Lg7n9zkeBtb87YKDvzRv0Nq1BdeoWT8IcffU+b1sOTSqTob20/lSqwTiae2zpfyqkfTu6Oof7yawbM+YPhnNsZsa5GsyjIvLy+ex5ylqzjUFHm8lWHVigO/qppx5ijWSV8odhtaO1Kbrh9dP56Glf7FibFfewHPiGMJXyOwNbhm/mRqHt1AW5QxWVAcynNOzswOMMYsByaGvt9aOy9Tg5L+K5mestvv/ixYg2f4UUZdsxr3wFbHn9UZWQmhWCdZF609TW2djxscbJeLpeEvH+Xo2pMA8JQfT8dw8XrcPQqmhK5iRIvjBnh5ce+/VgtnqgVGH8lYrDPGPAicD4wwxuwC7rDW/jzV60r+SHXnSKCyOsCIy9YllchC94psIKbc9PB6Ig2tMmzlVnEo/zhJZh8B/gv4GZC+PgAo6ElPyfSUDT3zNfLK1xJKZOecXJ7Q+KTgZSzWicQSehPP0F3EJLQ9Tc0jqSWyu/7fPDqO+idtQ856n8FnpL4wZ4DPz6rk+S31EZPv0N9LKJ0/y7qMxTpr7TXpvJ7kj0AcS+U4f8NzH+PoukkADJv7NgOnOC9IFy68ivGQEk+vnS3aQlwYnCSz7dban2biyxX0JFSifRN3/b/um8iVX19F0ZATCX3fFdUqPCE9ZCzWiYSLlsCGzwOb2zr47uNvEtKqNWE7f/RpOpuLAai4/HVKT97v6HOBcZV5e08CA2N9fkt9xFXWZSu3RkxkQ8+nSdYo1klaJbMYEe74ltHBRLb8wo0MnrkjpTE9v6U+5tiGlXq44xIdMSsEcfvMAk8aY75pjBljjCkP/JPxkUnBqq3zMWfpKiYtXsGcpauorfP3gHVa+txa/4psYJVh3PUrKRqaeNl09Q2TMIp10icCk6vANtx4CxlNSWaygRUS2+7/X33l11c5TmQD46os87L+jgujvifRVhah59MkaxTrJK0SXYwI17pvCAe7CniOuubVlBNZ8Meg2jofNz+8IeLYSouLFIsKhJOV2S93/VoT8jMLnJT+4Uihu712Iw+ENNMObKNbu73BUd9Ea+HQXz4WfF71nacw7uT2tKhvmIRRrJM+kerEz4m2hoHsvv98yi96k/E3rgRrMK7EY2UgTlYm2LIiWouL8PNpkhWKdZJWqcynDr96Mo0vTmHAuAZGXFKX8C67WGLVGdAcsHDETWattZP6YiBS+GrrfD0S2YDmtg5+uzr+XbjONhc7//0zAAye9QHD5r2NcbK3IAqd25JQinXSVzI9iTq+ZTQH/jgLgI5jAzAGMMnd9AvEyZr5k3tt1Yt13izR90vfUayTdIt28yqePb8+l9Y9wwAYcdkbFA1qSduY4kX5gWGlAAAgAElEQVQ8zQELR9xUwBhTaoy5vavyHcaYU40xF2d+aFJoop2hcqKjyRNMZIvHHGLYBaklsppUSTjFOklFtOMTkWRyEnVw5WnBRNYz4ghlc95L+lqhcXLhzEruWjSNyjIvBv8K612LpkXdppfo+6XvKNZJutXMn4zHZRL6jO/+TwYT2TFffTFtiazbxB+H5oCFxck24/8B1gHndj334a+E96dMDUoKRzKtdsJ1HC9m139+Ovh8zN+8ktR13MbQaa36hkk0inWSlPACI6FViCPFmUirlvGKLTmx7+EzOfHBSACGnvMuZee94/izBrj3qhkx+ysm2rJCLS5ylmKdpF0iJ/v3PzaL9oZBAIy69hWKRx5N+fs9LsOyK6ZzY5wWZm5jdGOtwDhJZk+21l5ljLkGwFrbZIyD2x7S79XW+ah5ZENKPcfaD3vx/Vd3pcwJt65I6jpej1vBS+LJWKwzxvwCuBjYb609LR3XlNwR6Qxsc1sHy1ZujRhzAj+Lljie+t0VSVUvDiSyI69cg3fSgYQ+O7bMq+Sz/9C8TtJq2cqtdDic6x3fOprm90YDMPrLLzFg9JGUv78yJIbGWkDRXLAwOUlmW40xXrq2nxtjTgbSt6ldCtaSJzallMh2HC8OJrKlH/VRcWlyfRYrtRIrzmQy1v0S+E/g12m6nuSQaGdgfV3VNAOxJ7BTJVJP1mUrt3LjQ+spK/UklMh2trrZ/+iZlJ23lXHX+ws9ub2Jrex63EZb7voXzeskrZzuvjv+9hgOvTgFz4ijjLzitV7FntzGUFxkaE4gCH64dEGP55F2voBa8RQyJ8nsHcDTwHhjzAPAHOArmRyUFIZkt8oBtB0qZf+jZwL+Yk/ln3o7qetUlnkj9kAUiSBjsc5a+6IxZmI6riW5J1bxk8B248Dj8K3Ia7c38NDrO2nr8N/4O9TkPG621g9izy8+CUDzeyMpGXco7mcM4PW4gu1+NMHrlzSvk7RyO+hGsfeBc2jZVc6AygZGXvkaruKexyw+6EpKJy1ObgdeQLydL1J4nFQzftYY8wYwG/9/b9dbaxPbvyT9SmCVIVlHXp/EoVX+9jujrn3F0QQtGpVeF6cU6yRZ0VYCoHu7ceBx+Gu/W7ODZDawHHurkoMrZgSfDzvfWcy1wLCBA3hbN/n6LcU6SZfaOh9LntgUN5Hd/sPu1dOKRet6JLLQsyheIpWRo+2N15GJ/sXJyixAJeDuev95xhistY9nbliSr8ILoSTq0KqPcuR1f6u7IWe/n1IiCyq9LgnLWqwzxlwHXAdQVVXVF18pEUTbChxL4PVoPQ1j3VRLJpE99PwUjrx2MgDFYw8x5kuJFcWLd5MvmT8DyTua10lKnNZFCU1kK7/5HO7S1h6vh1cWnjjceTJ77Wz9v1IcJLNdhUtOBzbRXazMAgp60kukQijhSkO2uIU68tqkYCJbdv5mhp69LaWxqPS6JCLbsc5auxxYDlBdXZ38YXNJWqJVicNF22o3tszL8Zb2lI5eBFhLMJEtO28LQ895P+FrBG7yRUpaIfJ2aHD2ZyC5L9uxTgrDspVb4yayu392XvDxuH98NpjIlnpcNLd19rpZVlvn45X3G+J+t8GfyP5g4bTkfwNSMJyszM621n4s4yORguBkW2+kRPbgM1M5VjcRgFFfeIWS8cmtyEYLkCIOKNb1c4lWJQ4IJMGRElmvx83cKRU89PrOlMZmLRx59RQGnraL0V9+CePupLjiWMLXCYxn5j8/0+N8biBpLfG4kvozkLyiWCcpi7d6emTdBNoODgZg/PUrcZW0B19rbuskUhp855ObIv483NgyrxJZCXKSzL5qjPmYtTa5CjzSryRy1iGgaevoYCI75qsvJtVvzG0M15w9XsFNUpGxWGeMeRA4HxhhjNkF3GGt/Xm6v0dSE+1mXLybdLF2pDS3dfDgmp1xz5TF0tlSxM775gcfD5u7JelrfX5WJY+t80U93xvt96H6AwVF8zpJSW2dL+bre383m9Z9Qxl0+g7KL3wL4+4Z/wLPQnd+gPMCeInOM6WwOUlmf40/8O3FX7rdANZae3pGRyZ5qWb+ZG56aL3j5tk77rsQ2+JhwNhDVFzxGu6QO3dOlHk9rL/jwsQHKtJbxmKdtfaaVK8hmRftZly8s/fxEr1UEtnWfUPY88tPBJ+XfTL54noAz2+pT6qmgeoPFBTN6yQlS57YFPHn1sKOu/1nZE1RB+XzN2Jcsa/V3NbBkic2MXCA0zI+fqFtz6R/c/Jfzs+BLwEbwXGOIv3U2u0Njv8jCS0KMPKqNb2q28VjgCWXTk3oMyIxKNb1c5GqEsc7e19b58PloC1FMo5tHMfBp6YHn0+4NbWWFcNKPXET7zKvh5b2zoT+DCTvKNaJY+Fn60uLXRHP/4cmsgDjb1gZN5ENaGxuS7imgI4+SICTZLbeWvtExkciBeHBNfHPhYUHvHH/+GxSiey1s6sUyCSdFOv6uUT7E8Y6K5sq20kwkS2ZcIBRV69J6Xoet+GOS6aybOXWqFv0vB538AahqhkXNMU6cSRSUbxIwud1VTVPYVyZrWOoow8S4CSZrTPG/A54Ev92FACVcJegwF07J2cYet25u/Fpx4lsoFJopSZXkhmKdZJQf0In1duT0fx+BQPGN1B+4Ubcg09Qesr+pK5j8J9NC4+ZkdqnlXk9LLl0avA9iq8FTbFOIgpfhT3e0h43xlkLe397bvB5Vc0KxyuyqRjq9WT+SyQvOElmvfiDXejBRJVwF6Crz9ijG2jriH8HznbCnl99PPjcScBzGfj3K2doYiV9QbFOEpLulYHQm31Dz32Hsk+86/izZV4PF08fw/Nb6mOuqAae3/nkpmCxlfBEVgqeYp304nQVNpS1cGjVR2mrH0zJxHpGXvkaxmR6pH599T2S+5wksz+z1r4c+gNjzJwMjUfyzJ1PbnKUyHa2uqn/4xm07R9KyaT9jLzi9biByOM2LLt8uiZY0lcU6yQhQ72etPSOBeho9rDrR925xZDZzvrH3ndVcjf7ToS0SGtsblMv2f5FsU56SXSniW13seOezwBQ9snNDDl7W58mmE4rH0vhc7IR4McOfyb9RG2djzlLVzFp8QpHwaT9SAk7772IE9tGUnb+ZkZdGT+RHVbqUSIrfU2xThyrrfNxvDWx6uvRtOwe2iORrbplBS5P5uryxOqnK/2CYp30kshOk84WdzCRNZ52hs6OnMhmMrd1a2lWukRdmTXGnAOcC1QYY24KeWkI4M70wCQ3hW9DiaftUCm7l88NPh969ra4n/ni7Cr1i5U+o1gnyVi2cqujXSnx2HYXe3/Tffwi0YrFyVT0TLafruQ3xToJF3pG1mlV9o4TRez6j/nB51U3rYz4Po/LcNVZ44NHHzxuQ2uEmDmgyEVLe+I37zJReE/yU6yV2WJgEP6Ed3DIP0eAyzM/NMlFiWxDaTswqEci62SS5jJQPaE86fGJJEGxThKWjsSv9cAgcHfiPXUvQ+e8EzFGDiuNXeQkmXFE6xmrXrIFT7FOggKLE77GZizOksPOVnePRDbWvK6t0/L8lnpq5k/mg6ULqBhcEvF9Xo8bryfxeykG/+9BJOrKrLX2BeAFY8wvrbXb+3BMksOcTpzaDgxi988/CcDgMz6k/NORG2yH67Rw88MbAJ3dkr6hWCfRhFf2nDulgue31DsqjBJPoM/2sAs2MXLRuojvGVjs5tiJ2FuZk0lAk+mnK/lPsU5CJXxGtsNw4ImZALiHNDHuG8/H/YyvsTl4Hj/a/PFwcxv3XjXDcVeM4HhQr1nxc1IAqskYswyYCgRvq1hr52VsVJJTEt2G0naolH2PnAnA0DnvUPZx5xU5wX93UMVIJAsU6yQoUmXP367ekfJ1bSfsWNbdnmzg1OgrCx63i+Ot0SebsRLQ8EQ8tLJxov10peAo1klCuzo6morZ8yt/jbDyi95k8PSdjj8bOI8/tswbMVkdW+YNtkSLdJTN63FHTbp1NELAWQGoB4AtwCTgTuBD4PUMjklySKLbUA69OJndy+di24oY/eWXEk5kA1SMRLJAsU6CMtFDtqOpuEciO+76lbi90YvoHY5RKbmyzMvnZ1WybOVWJi1ewZylq4Jb7sLjdmB1JHRL3sKZlby8eB4fLF3Ay4vnKZHtXxTrxPGujraGUnb9+NN0HCll6DnvJ5TIBuxubKZm/uRe24nDb8gtnFnJXYumUVnmxeCPc4HnqfwepLA5WZkdbq39uTHm+pAtKgp6/UBtnY+bHl5PZ4T81eDf4hHqwJMzOP62f0JUsXAdA0YfSen7dcdN+phinQSlO/50thSx68efDj6vumVFzKruZV4PAwcURVzJKPN6em0VDt3OF6tasZJWQbGu3wrdsVFW6sHjMrRFmuR1aa0fxJ5f+I+MDahsYPCM5HanBFZfIf6OkMAqbTgdjZBonCSzgVvDe4wxC4DdgCr0FLjbazfG3FIXHvoaX/xIMJEd/pkNlFQ1pDwG3XGTPqZYJ0HRtsQlo7OlCNcA/9nX4tGNjPnyy3E+ARdPH0P1hHJqHtnQa7J5vLWdO5/cFDVhVbViiUOxrh+qrfNR8+iGYBX2eK0V2w6VBhNZU9TB6C++mtT3GggmndES1Xh0NEJicZLM/sAYMxS4GX8fsiHAjen4cmPMRcB/4C8J/zNr7dJ0XFdSU1vn44EEzoYdeOp0jm8cD8DIy1/De3K948+6DHzh7CoeW+fTHTfJtozFOsk/NfMnR0wkE7X3wdm07BhOxcJ1CbXdeWydj+oJ5QwqKeo16WzrsFEnooGJXrSzaSJkONZpbpeb7nxyk+N2Yh1NnmA3CvfAE4z71l+S/t5rZ1elJelMNhGWwhc3mbXW/qnr4WFgbqz3JsIY4wZ+Anwa2AW8box5wlr7drq+Q+KLVCRk2cqtvVZeozm2aWwwkR3798/jKW9K6PuthR8snEb1hHLdcZOsylSsk/wSGhNjbQN2IlCxGMAz6nDU90U6ttHc1sHND29IuJdiIH5qS55Ek8lYp7ld7oq3EhvQcbyY+q6qxUPPeZey895J6vvKvB6WXDpVcznJuLjJrDHmI8BPgVHW2tOMMacDl1prf5Did58FvGet3db1Pb8HLgMU8PpIpGqd4ROgWBqencrRNyZQPKaRis+tpWhwS9T3Dix2R6zKGVgp0B03ybYMxjrJE+ExMcE8Msh2GnYs+2zw+ZivvoinrOdKaSCBrYyxnbnD2oiJLvgnii3tnRETVm3Jk1gyHOs0t8tjLXuHsPdXnwBjGXXtK5SMO5TwNSoVb6SPOdlmfD9QA/w3gLX2TWPM74BUg14lEFoSbRdwdorXlAREKxLiRHDFwdXJqGtexeXpjPreOSeXc0V1lVYKJNdlKtZJjgusxqbjjGxnSxE775sffD7+hpXB87IB4ZO9OUtXRf1uS++VW6/HzZJLpwLRE1bdIJQYMhnrNLfLQaGVzKM5vmU0B/44C4Bh529OKpGFnsXoFIOkLzhJZkutta+ZnvutYndxTyNjzHXAdQBVVVV99bX9QjLFQKyFHXd3b50b/+1nYyayAA/8/TnBx1opkByW1Vgn2RGpr2GyrAXj7o6HkSoWV5Z5eXlxz3aekbYF97hu1+di9YwVSYDmdf2E0xt1x96q5OCKGQCUTt7DkLM+SOl7VT1d+pKTZPaAMeZkum4MG2MuB/ak4bt9wPiQ5+O6ftaDtXY5sByguro6tUoc0kOi1Tpth2HHv3Vvnav6zlMYd+x/JaWe7lbGWimQHJepWCc5bMkTvasCJ+PwK6fQ+NJkxnzlJapqnsK4IsfGuVMqev0sEBejnZGNlACLpCCTsS7u3E7zur7h9EZd8wcjgonswNN2MmLBm3GvXeb1MHXsYF5+P3rnClVPl77iJJn9B/xBZ4oxxgd8AFybhu9+HTjVGDMJf6C7GvhCGq4rUYQXe5o7paJXFeFoeiWycXokBgwIa5AtksMyFeskR9XW+WhsdlYUJZY9v55D654ywH9eNloiC/DQazupnlAe8cbe4JKiXuPRcQzJgEzGOs3tckSko2Th2g6Vsv9h/y7woXPeoezj7zq6tjHdu+6iHZNQ9XTpKzGT2a6qdN+01n7KGDMQcFlrj6bji6217caYbwEr8Zdv/4W1dlM6ri29RSr2FOgja0zsQiedbS4O/PEM/xN3BxO+87Tj7210WD1PJJsyGeskN0Sr3J6q0IrFwy+uY8CY6FWLAdo6ba/td9FWUIaVerjjkvjVQCP93rQLRiLJdKzT3C53xFsZbf5gBA3PnoZn+FFGXFpH8Ujn/xmEzu1UPV2yLWoya4wp6gpKHwew1h5P95dba58Cnkr3daW3WHfoYiWybQcHsvtn5wNQfuFGBs903n8WdGdOcl9fxDrJrkg381LtIdurYvHXXqB4xDFHnw2fZEaLz6XFRY4S2UhV6UHnaaWnvop1mtvlhlhHyRpf/AiHXz3V/76vvYDHYewKvXaAqqdLtsVamX0NOAOoM8Y8ATwCBAOftfbxDI9N0iiZswstvjL2/nYOAO7BzQknsrozJ3lCsa7ARUoWU0lkATqODQg+Hn/j07iKnZ+7Db/JFy0+O4nb0arSq/iKRKBY14/UzJ8c8abdwWemcqxuIgAjL38t4UTW4zK95naqiSLZ5OTMbAlwEJhHzy4BCnp5JNFiTy17h3QnsgNPMO6bqxL+zrsWTVNwk3yiWFeg0lmIpPmDERx5fRIjFmyg8uurcA9pdlQ/ICDSRDBafHaysyWVRFj6LcW6fmDt9obeiezT0zi2wV9Bunz+m3hPrk/omgZYdsV0ze0kp8RKZkcaY24C3qI72AWo+lyeqZk/mRsfWu/oX1zz+xXsf/QsAAZXb6P8gs1JfaeCneSJjMc6Y8xFwH/gP0P2M2vt0nRcV5xJ9GZeNIdemMyR1acA0HZgMCUTDib0+TKvhyWX9j4Dm8qZs1QSYel3NK8rYKFn58tKPRwKq1nSvG1EMJEdfnEdg6buTuj6Xo9bixSSk2Ils25gED2DXYCCXp5ZOLOStdsbeGD1jpj/8loPDAomssM+9RZDZm1P6vsqNZGS/JHRWNdVcOUnwKeBXcDrxpgnrLVvp3ptiS58YudxmZS2Fu/+2Xm0HRwMwKCZHzpOZN3GcM+VsVcyUjlzpuIrkgDN6wpU+Nn58ES2xVfGwaemAzD6Sy8zYGxj1Gt9cXYVz2+px9fYjNsYOqylUudgJYfFSmb3WGv/uc9GIhkTOqkb6vVEbUVxeM1JNL4wBfegE1QsWhu3Kmc0BjSRknyS6Vh3FvCetXYbgDHm98BlgJLZDKmt81Hz6AbaOvzz80NNbbhdhjKvh8PNbQz1ejja0k6Hw+Q2tGLxiMvWMXDKXkefS2QlI9kzZyq+IgnQvK5AxSryeeh/J3NkzSkMqGxg9Ff+StGglqjXGVbq4QcLp2VqmCIZESuZTeAUkOSq8Lt10RLZfb8/mxPbRwAw6guv4hnWFPfaZV4Px1vbgxNG8P9Hc+3sKk2kJJ9kOtZVAjtDnu8Czs7wd/Zrdz65qUdcAujotBgDHyz1J6Yz7nzGUY/Z1vrBwcdj//55POWxY2M2VjJUfEUc0ryuQEU7I+9b/knaDw0CYMTCN2Imsl6PmzsumZqR8YlkUqxk9oI+G4VkjJOm2fsfqw4mshWfW+sokfV63Cy5dGrwO7QiIHksJ2KdMeY64DqAqqqqLI8mv4VvsQv9+dTvP43H7YqbyLYfHcCxDVUMPec9RixcR+kp+zDu6Cu5w0o91H3/wpTGLZJhORHrJP0inZ3f+eNP0dnkr7o+5isvRUxkh5V6aGxq0/xN8lrUZNZa29CXA5HMiFf0ZP/js2h+bxQAo659hZJxhxxdN9D64eXF8xT8JK/1QazzAeNDno/r+ln4OJYDywGqq6t1fi1Djrd2ALFv8DW9N5L6x84EYMC4BgZOjr+tOFa/bpFcoHld4aqZP5kbHloffL7/D7OCiezoL79E8agjET93qKmNYaUeJbKS15y05pE8VVvnC9bbj+TgytNofnc0AJXf+AtFQ04kdH21fhBx5HXgVGPMJPxJ7NXAF7I7pMJWFqM2QDwNqz7K0ddPAqBoaBPeic4KPR1O8vtERFJRW+fjzic3BZ8ff3ssze/453ZjvvYCxXH6yB5qaqPm0Q2AulBIflIyW4ACBZ9ircoeXnMSx9ZPAGDct5/B7U18IqbWDyLxWWvbjTHfAlbiryb6C2vtpjgfkxQsuXQqNY9sSLh6cej5siFnbmPYPOdtyRQPRaSvhddFObJuAkdeO4mSCQcYcekbuEudze3aOixLntikZFbykpLZAnN77caY7XeshR13+wuglE7ZzYiL18c8BxaNWj+IOGetfQp4Ktvj6C8CEzKnvbUBTuwaFkxkKz7/OqWn7Hf8fYqHIpINoXVRdv3nBXQcL8E9tImRl7+OKepM6FqNzW3U1vmU0EreUTJbQGrrfLET2Q7Djn/7bPB5Iomsx2UYVFKkQgEiklWhrcbixaIit+lV1Tic7YSmd0ZTOnkvg2Zsp+zj7+Ae2Bp3HOq/KCJ9LTz+BXbghbYPG/uVlxJOZAOWrdyqWCZ5R8lsHgsPasdb2qMnsu0udtzzmeDzqpoVGFfv97ldplfvxTKvhyWXTlWAE5GsCt9S52ts5rbHNwK9z3otW7k1biLb1lDK7vvnAv6WZMPnvxV3DIn0jhURSZdI8c8AH4YksuP+8RlcJe1Jf4dqoUg+ipDOSD4IBDVfYzMWf1CLVvCks6WoO5F1d1B1S+REdmCxu1ciCzBwQJEmbiKSdZFajQUqq4eLNyk7vmV0MJEFKBkfv9DrgCIXA4pc3PjQeuYsXUVtXa+i1CIiGREp/u3+5ceDj8dfv9LxGdlodPZf8pGS2TzlpH8sQGerm/2PVQP+ypwTvvM0JkLb9MoyL02tka+nO3UikguixaJIP481KTv4zGkc+OMsADzDjzLh1hWOvr+lvZPG5rbgDcQbH1rP7bUbHX1WRCQV4XHuyNqJtO4bCsC07z2X0oosgMdtdPZf8pK2GecpJwlmy94h7P3VJ8B0Mvyz6xk0LfoqQvj5i1C6UyciuSBWjAqt4u4yEK2QcdP7IzlW56/kPuSc9xh2Xu9VXacs8MDqHVRPKNfuFRFJq/CjZEO7Wo5ZC7t+/Gk6m4sZXL2NSZ99j9bO5M7IBgwr9XDHJTpOJvlJK7N5Kl6C2bxthD+RBco/9XbMRDZwvZr5k/F63D1+riqdIpIrosWouVMqgscuIHIiay201g/Ge9J+XAPaGP2ll1NKZIPXhYjbnEVEkhXpKNnx1naKjGHH3QvobC4GYOSntnC0tc3RTr1IPG7DfVfNoO77FyqRlbylldk8VTN/co9CAKFO7Cxn/yNnA1A8upHBZ2yPeS2Py/Soxum0UqiISLrFqlYcLUbFO3bR2epm570XATD6yy9RdcMzXasc6RlztJ0yiVReFhEJiBTTWtssO5Z1F3s6/fvP0NQOncnlsVqNlYKhZDaHhW6bC28DAf5iJIFgZ/CvEDS9O4r6x/1nZEun7KbisjqM8a9KRBJeqXjhzEoFNhHJikSqFQMcb2nnzic3cagpetGT1gOD2PPzTwafl407xl2fnwEk1oc2lkg7ZRL9vYiIBITfILOd9EhkOzrgjP9L3Irt0Xy4dEH8N4nkCSWzOSp8ItTRlY36Gpu54aH1vd5v8Z+RDSSywxesZ9Bp/q3F1vq34oXe5VN7CRHJNbGqFS+cWcnttRt79NKOVsE94NimSg7+aUbwubVQW3d68CZhOgR2toSL93vRqq2IRBNaH8B2EpzbAUxf8gxPbJgaN/5F445UBVQkj+nMbI5yWq04oPnD4ex7cDYYy4jL1gUTWfBXKr5r0TQqy7yYkOeaOIlIptTW+ZizdBWTFq9w3MYmVrXi2jpfj0Q2nqZ3RwYT2eIxjcy485ke59DSJsq8MN7vJfw83G2Pb1SrHxEBCN4gs+0uGlZOo2V3GYNnfUDVLStobG7jzic3JX3tjmhb9UTylFZmc1Qi7XB2/+w82g4OBqDyG3+haMiJ4GuBUuvaPiwifSXZLbaBap2Rfr5s5VbHiWzHiaJg39hhF2xiSPWHHGoi4q6WVLV12OBqa6hYlZfvfHJTzFVbEZHOliJ23jcfgLLzNzP07G3B12IdrYinUh0qpMBoZTZHOW2Hs/3fLgomsqOufaVHIusysOzy6ZociUifirXFNpZou99a2zscraZaC9t/uIBd/zGfjhMeJty6giHVHzoddtIi3XyMVXk52kRUPb1FpLbOxy0PbAkmsi5vS49EtszrSfra6lAhhUjJbI6KNBEKt/eBc6DD/54xX32RknGHerz+hbOrlMiKSJ+LtcU2lsYoSV5TW/weip0tRey4u7uoiXtgS9zPpEukm48LZ1ZGPN7x/Jb6hK4jIv3Lvzy2jXfvuSD4fPy3nws+9rgMF08fk9R13cboiJkUJG0zzlGBYLPkiU0Rt93t/NGng33Gxv3js7hLW3u9J9akSUQkU2JtsU3mc/G07hvCnl9+Ivi8quYpjMv5uTCP2/SoCupxGTA9K4UGKsYHfg2ItdIR6XjHjTG2OmvFRKR/a26Gtf/SHcsm3Lqix+sDBxSx4s09CV9XRT+lkGllNse1tPdckbAWGv96ajCRHX/D0xETWdCWNRHJjmhbbOMla052pIQ7saO8RyI74dYVCSWyAGdNHNZjBXXZFdNZdvn0Hj+796oZfLh0AfdeNSOlYnrREvoyr0cTTZF+7PhxuPpq/+MBlQ29ElnwV3BP9LysVmSl0GllNoeFnzuznYYdyz4LwMBpOxl+0caYkzZtWRORbAhMmhJtPRN4/eaHNziquGktmOJ2AEpO2s+oK15ParyvvN/AvVfN6DW+SONNtZhezfzJPYpjgT/RX3Lp1KSvKSL5bfduqKyEkSNhxCV1DPzY7rRcVyuy0h9kJaQWYrsAACAASURBVJk1xlwBLAE+CpxlrV2bjXHkutCV1c42Fzv//TPB58M/82bUYinQXcVYRCQbkk36Fs6sjLkVN8B3/ycx7k5GX/sqVTUrMCnsM7LQZ5WEk030RaQwbdwIp5/uf3zLLfB42yF8jalft1KxRfqJbK3MvgUsAv47S9+fFwLnxzpb3Oy876Lgz6tuWdEjkR1W6vFvP+46Wzus1MMdl0xVABORnFVb54ua0MU6O2stPQo92U6DKw0HZvryWIZapYkIwOuvw1ln+R97Rh7m8bZ1zJ1SwWPrfL0qwjuhBFb6o6wks9bazQAm1tKiUDN/MjW/2cp7980L/iz8DIXX41biKiJ5JV4f2rlTKnhg9Y5efWU7mj3s+tGFwefj/vFZ3N7k+y2G0rEMkdRkctddrJtf+Wrz5u5E1j24mbFf/Su+RnhsnY/Pz6rk+S31jgviGYh4VEKkP9CZ2Rx2/qRK3rvXH5gGjDvI6GtX93hdK7Aiko/i9aF9bJ2vVyLbdqiU3cvnBp+Hby0O3BodW+alqbU9apEUr8fFibZOxxWJRcSxjOy6i3fzK5Hr9GVCHOv79u2Dj33M/z5PxRHG/u1Lwc81t3Xwpw17WH/HhUxc3LsIVCTXzlYrRum/MpbMGmOeA0ZHeOl71to/JnCd64DrAKqqqtI0utxRW+fr0X4nkKB+ZEAlF13aBi43Q895j7KPvxvx8wpeIpJvYvWhjZToApzYPjz4OFKVT4APli4IxtRIPC7DXYv8h9MKbZVHJNsytesu1s2vWH9vQ5PJslIPx06009bpv42VbEIcS+j3DfV6ON7aHmzvFfp9Z42q5OqrYehQKDrnTQZN39nrWo3Nbcy48xlKPa6Yfba1qCGSwWTWWvupNF1nObAcoLq6OrF+Czmuts5HzSMbgsEV4FBTG9fduY/6P1YCHkZesQbvSQcifj7R8uwiIrkgVh/a8ET38OqTaWsYyIiL3qRu+elc87tVEYujjC3zcnvtxojbk8Hf+mbJpd2TPk3+RPJDrJtf0YSv5kaaLzlJiJ0K/77AAkX4993+031sut//faP/5q8MGHM46jUbm9tw0bu3NfhvzC27YrrimAjqM5tVy1Zu7ZHIAhzdMJ76P54BgPeUfVETWRGRfBWrD23o2dXtP1xA4wtTOL5xPBWeoVRVRf9stHO24C+Ksv6OCzXxE0mRMeY5Y8xbEf65LIFrXGeMWWuMWVtfXx/3/dHOs48t81Jb52PO0lVMWryCOUtXUVvnAyKv5kYSmhBHu5YTTr7v2MZxbLrfP78bNm9TzEQ2oBMo8bgYVuoJ/qzM61EiKxIiW615Pgf8GKgAVhhj1ltr52djLNkQ2IoSvjJx7K1KGp72b4EbPOsDyj/1dszrlHk9MV8XEclF8drTLH50I1v/tbuC+4S/fYXvXT4p5meXrdwaMZGFvq1UHEshFrGR/iUdu+4S3XEXrTfz3CkVUc/SOv07H0iU453Ljfd3N16hpqNvTKDh2dMAGHT6Doac+aGj8QE0t3Wy+f9+Jv4bRfqpbFUz/gPwh2x8d7aFB8yAoxvGBxPZikVrKT11X8zreFyGJZdOzdg4RSR1hd5TO5XkLFp7mnknV7L1X7t/fuY/vch3P3dyj/dG+mys3rS5UKk4XUVsRPqbWDewop2ljdXeKyC08Fu8onThf3dvfGg9a7c38IOF0wBwG0OHjZyXN28bEUxkB1dvo/yCzYn89kUkDlUz7mMRA+aHw2l41p+YjvrCq5SMb4j42UCwVB8xkbxRsD21052c3V67kQfX7KT+2Y8C/lXYjg5wuc5z9Plok1cDOVGpONkiNiL5IpO77hK5gbW7sZl7r5rBjQ+tj7pbI3welWhROgs8sHoHAH/asCdqItvW6OXAE/6txcM/u4FB03ZFGVF0oVuMRaQ3JbN9LHyytfNHn6azuRhPxRFGXfka7kEtvT7j9bi5a9E0TXhE8kwh99ROZ3J2e+1Gfv74EVp2T6D8U28zYFwDA6fs5ftPVAVXPuKJtBXRkDstK5IpYiOST/p6112sQnILZ1ZyQ5Rk1wAvL57n+FrR/o5a4LddCW0kx98ey4EV0ymuOMqIS+rwDD8e/TcTwx2XaBeeSCwqANXH3CGT2u0/XEBnczEAo65eEzGRdRujRFZEck46k7N7bhjD3t/M4dBfptLR7GHglL0APLimd8uKaBbOrOSuRdOoLPNi8K+83HvVDMfJcKbFKmIjIomLVUgO/DEgkkh/55wWpXPq4MrTOPDkTOh0MeLSNxwlsm5Xz5ueBvhijtyME8llWpntY4GtKL7/Pj/4s7HXPY+7tBWPy/SobqwVWZHc1197asdayUiE//7eCADKL3oTt7e7pUW0rXvRRDuHmwuFl6IVscmFLdAi+SheIblE/s7Fu1asLcvh6p+YQdNm/+dGXrUaT3mTo8/dc8X0rMcpkXykZLYP1db5cGH48J752Hb/HcBx33oW98BWAAaVFFFaXKRAJpJH+mtP7WSSs9CkcswQL69+r3ur35ivvETxqCMRP5NKHMyVwkvxJssikrhoN7ACr4Hzv3PRrrVwZiVrtzf0av0Vqf/rwWemBhPZEZfUccqMJuZOqeL5LfXsbmyOmhC7jYn5exGR6JTM9pHAhKq9zQQT2aqb/4wp6gy+p7GpjbrvX5itIYqIOJboRPH22o09JoPrf9F9Duzm327i0Y29E9nA9VOZ4OVS4SVNVkX6Vrr+zv1g4TSqJ5T3iHdzp1Tw0Gs7gzvqmj8czrG6iQAsvucgd900s9d1Ji5eEfH6ie5CEZFuSmb7yA9XvMPhXQMpHnWEcdevxDWgnfCaMDo7JVJYCr2nttOJYm2dL5jIdhwvpnX/ECoWrePgiumc/sWt/Nu183h08YcRP5tqgSQVXhKRdIgU76onlLPkiU3s2TyEg38+HdeAdv7tlw3cePXIHu8L7EqJJtr5XhGJT8lsBoSfz/rH86aw+p/mAlD5jb9QNOREr8/o7JRI4enPPbVDLVu5FQscfuUUGl/yx7nxN6xkxCXr2XPYHzOj9WlM9SZfus72ioiEWzizkud+XslPHoLZs+HJJ2HEiN6JbPiRjFCa/4mkRtWM0ywQtHxdZyN27GnnmjljAXANPBExka0s86rQk4gUpNo6H77GZvb8+txgIjto+nZcA9oBKCv1cNvjGyMmsumY5MWreCoikqyvfhV+8hP/4wcfhBEjer8n0lGHAM3/RFKnldk0Cw1a7UdK8P30AgC8Yw8z4W9fpbm7UGewB2KutI4QEUmnwM297T9cEPzZ8IvXM2iqD+gqoGKJONFLV1syFV4SkUy46ip4+GH/4w8/hAkTIr8v2pGGSP1uRSRxSmbTLDRoBRLZ0o/sYeTn3uDzs6p6FECxwGPrfFRPKNfESkQKzrKVW/nwN9XB52P+9gWKK44B3TfzHli9I+JnO61NW1xU4SURSacHH+xOZHftgsoY4UVHHUQyS9uM0yw0OI269hWGznmHis+9wdgyL89vqe9Vlj1QVVNEpJA0N8OH21wMX7AeU9TB+BufDiayAPdeNYMfLJwWdUKniZ6I5KL2dhg1CubNg717YyeyoKMOIpmmZDbNPjX4dLb/cAHtxwZQMu4QZR9/Nxi0VFVTRPqDDRugtBT2/uZcXCVtVN38NK7i7q3EgZ6KoImeiOSPG2+Ec86BM86A557zJ7XxLJxZyV2LplFZ5sWgc7Ii6aZtxmn0+9/DP3/Lf/p/aPNwmgbt7nE+a9nKrdpqIiIF7aGH4Oqr/Y8HTd+By9PZ6z2hxZ50plVE8sGUKbB1K7hcUFJCr/aKseiog0jmKJlNkx//GL79bf/jmrsP8nLHIZoae76nZv7kXuXZtQIhIoXiO9+Be+7xP16+HJZue4eO3kWKcYfNAjXRE5FcVlkJu3f7Hx8+7E9mRSQ3KJlNg3/9V/je9/yP7/yveh7ctS6YsPoam7nt8Y2AViBEpHA99FB3InvX/9Tzy72R2+0AUX8uIpJrJkzoTmSPH/cfoRCR3KFkNg0GDPD/unYtfPvZ3o2xA0WeAqsPSl5FJF/U1vli3oDr6ICjR+Gss2DhQrjkG3tY9tKGqH0VwX9mTEQk1736KuzoKrh+4kT3fE9EcocKQKXgt7+F1la4+WZoaYFZs6IXc1KRJxHJN4E+sb7GZizdO01q6/x9YuvroagI5s/3b8P7wx/g529sjpnI6miFiOQ6a+HRR/036Z580l/BWImsSG7SymySJn2kjQ/f9XDdnXuZ+bW3g6sV6icmIvkk1srrspVbo+40Gd9ZSXVXC9mTToLiYv/jWDfuKnW0QkRynLX+Ik8Av/kNfPGL2R2PiMSmldkkDBzcyYfvegAYvmBDj9UKtZkQkXwRb+U1WmL6zl/Lg4ns178ODz7Y/Vq0G3eVZV5eXjxPiayI5KzOzu5EFuDaa7M3FhFxRslsAqz1l2JvOub/Yxt/059xl7QDPc/Fqp+YiOSDWCuvEDkxbd5WwYEVMwD4n/+Bn/605+u6oSci+ai9HdwhoauzM7H2OyKSHdpm3CVekRPortQJUFXzFMbVsyJnYBVDRZ5EJB/EO+Mf3k7MdvrPjQ0p6+C5Z9yceWbk2HnXomk5U7XdSWwXkf6towPmzOl+rkRWJH8omaV7q120djodHf67dTfd5A9wtR2r2H24d2sJnYsVkXwS74x/IOn74Yp3WHdfNWVVx/jvn3Wy8NdujIkeO+9aNI2XF8+L+/2ZTjTjxXYREWv9c7uxY+FLX4Jf/UqJrEg+0TZjYm+1O3TIX63z61/3n6O45Ra45SJtoxOR/OdkS/DsMZWs/qe5tB0czGllY7hsRmVwohdvm3Is8c7rpkMq4xORwtfUBBde6E9gH30Ufv1rJbIi+UbJLNG32u3Y2Ul5uf/xW291/1znYkWkEMSLZWvWwJgx/vdOmwarVvUsjpJKK7K+SDTVKk1Eojl6FAYOhOee87cZc7vjf0ZEco+2GRN5q11bQym7758LwGc+A0891fMzOhcrIoUgWixbuxZmz/Y/vv56uO++3p9NpRVZXySaapUmIpE0NsKwYf7HU6bAbbdldzwikjytzNJ7q137kZJgIvt3f9c7kRURyVe1dT7mLF3FpMUrmLN0VdRtvevW+X994IHIiSykVrk4WkKZzkRTlZVFJNzRo92J7KxZsHlzdscjIqnJSjJrjFlmjNlijHnTGPMHY0xZNsYR0Gur3Uj/gvXtt8P992dzZCIi6RPvnKq18O1vw733wv/5P3DkCHzhC9Gvl8qRi75INHUkRETC3Xyz/9fzzvPvQBGR/JatbcbPArdZa9uNMT8EbgNuzdJYghreHkHT8VaKzjzCdx/fyKqt9fx2sdo5iEhhiHVO9aKPVuLtWhSdPh1uuAEGD45/zWSPXAQ+k+m2OToSIiLgvzn3wQdw551w0UWwaFG2RyQi6ZCVZNZa+0zI09XA5dkYR0BtnY+vf6+RfX8+HYCSk57igTU7gq+rnYOIFIKoxe522GAiC/7Vir6o6KlEU0T6wvbtMHGif3vx9u1KZEUKSS6cmf1b4M/ZHMC3b21h35+nAjDyijUYd+8esmrnICL5LtJ51LZDpez66QUAnHWWf6txkUoDikiCcu0IWcB77/kTWYBvfMPZjhMRyR8ZS2aNMc8ZY96K8M9lIe/5HtAOPBDjOtcZY9YaY9bW19enfZzf+hbsfPYkAEZ/6a94TzoQ9b1q5yAi+SzSOdUTb00A4NZb/a14RESS9CxwmrX2dOAd/EfIsurtt+HUU/2P/+Ef4F/+JbvjEZH0y9j9d2vtp2K9boz5CnAxcIG1tvdSaPd1lgPLAaqrq6O+LxnNzfCTn/gfj/27/8Uz/HjM96udg4gkwhizDLgEaAXeB75qrW3M1nhCz6m+83I5FRVwz30DmFEOJ5+crVGJSCHItSNke/fCVP+mO2pq4O67szkaEcmUbFUzvgi4BbjUWtuUjTEcOwZeL7z5Jvx85R6GjD4R8/1q5yAiSci5lYrLZlTyzj3zOPCnGZSsn8Gi6kolsiKSblk/QrZ9u/+M7D33KJEVKWTZOhn1n8AA4FnjrzKy2lr79b768tGjYd8+2L0bpk2DadPGUF7R2aOq5twpFTy/pT6jVTZFpLDl2kpFczOUlnY//8tf+qbQk4gUBmPMc8DoCC99z1r7x673xDxCZoy5DrgOoKqqKu1j3LwZvvtdf2vFXbt6xjwRKTzZqmZ8Sna+F1wha9GBptmgqpoiknF/CzwU7cVkJni1dT7HrW327oUxY7qft7eD2x3xrSIiEaXjCFkmj4+tWgUX+OvZcfvtMGtWOq8uIrkoF6oZ94nHXvf1SGQfXuOjpCR74xGRwpCuYnfW2uXW2mprbXVFRUXc762t83Hb4xvxNTZj6W4hVlvni/j+22/3/3r++f4be0pkRSSdsn2E7OmnuxPZ//5vJbIi/UW/aMBQW+fj8rO6VyuqblnB95904/Gob6yIpCZdxe4StWzlVprbOnr8LNBCLDSurV4N5eX+M2Nf/jJ84hPpGoGISA9ZO0L2xBNwWdftw1/9Cv7mb/riW0UkF/SLZHbZyq2UX9jA4dUnU/n15zEm8qRPRCSdQlYqPpnulYporcJCf37llfDIIzB3rn/7XSCRTWR7soiIE9k6QtbY2J3IPvSQP+6JSP9R0Mnsvn2wcCHsPreFwTN3MHjmjh6vq2+siGRYxlYqxpZ58UWIYWPLvPzhDR9XnDuKjhZ/iL/8+r0EarYEticHVnUD25NBO1VEJL+89x5MnOjfVnzeeTBlSrZHJCJ9rWDPzG7b5q9avHo1DNgVuZiK+saKSCZZa0+x1o631s7o+idtW+5q5k/G6+l58NXrcTNn4kgWzaoMJrLjb1jJj9euD56ljbU9WUQkX/zXf8Gpp8LixXDddUpkRfqrgk1mA30T/+Zv4O7FZREnfeobKyL5auHMSu5aNI3KMi8GqCzzcteiafziru7iUVW3rMA1oL1Hsupke7KISC679174xjf8j7/5zeyORUSyqyC3GdfW+fjYV+upb+jgvY8eBiZz16JpOiMmIgUltKXYtm3+Qk8Dql9geOVeBp2+q8d7A8lqrO3JIiK57q67/H1kAV5+GU46KbvjEZHsKrhkNngebGQHpSPB1wi3Pb6RuxZN4+XF87I9PBGRtLv7brj1Vn/hk4kzO/BV7Or1nkCyWjN/co8zs6CdKiKSH1as6E5k165V+x0RKcBtxjoPJiL9yW23+RNZgO98J/pZ2kCyGm17snaqiEiue/RR/68bNiiRFRG/gluZ1XkwEelPWlv9v77zjr8Yypn4k9JYxypCtyeLiOSL5cvhnnv8RypERKAAk1mdBxOR/uSee/z/hFKyKiKFyONRIisiPRXcNuN4W+xEREREREQk/xXcymxgNUKVi0VERERERApXwSWzoC12IiIiIiIiha7gthmLiIiIiIhI4VMyKyIiIiIiInlHyayIiIiIiIjkHSWzIiIiIiIikneUzIqIiIiIiEjeUTIrIiIiIiIieUfJrIiIiIiIiOQdY63N9hgcM8bUA9szdPkRwIEMXTtVuTo2jStxuTq2XB0XOBvbBGttRV8Mpi8o1uWcXB0X5O7YNK7EKdalX67++9a4EperY9O4EpfWWJdXyWwmGWPWWmursz2OSHJ1bBpX4nJ1bLk6LsjtseWjXP7zzNWx5eq4IHfHpnElLpfHlq9y9c9U40pcro5N40pcusembcYiIiIiIiKSd5TMioiIiIiISN5RMtttebYHEEOujk3jSlyuji1XxwW5PbZ8lMt/nrk6tlwdF+Tu2DSuxOXy2PJVrv6ZalyJy9WxaVyJS+vYdGZWRERERERE8o5WZkVERERERCTvKJkNYYz5v8aYN40x640xzxhjxmZ7TADGmGXGmC1dY/uDMaYs22MKMMZcYYzZZIzpNMZkvWqaMeYiY8xWY8x7xpjF2R5PgDHmF8aY/caYt7I9llDGmPHGmOeNMW93/Xu8PttjAjDGlBhjXjPGbOga153ZHlMhydVYB7kb7xTrnFGsS4xiXWb9f/bOPD7K6vr/75MwkLAZVoWwqgWUNcpm0Qq4YF0QpRT9oZVatdZq6xZFi220WK1axa3WWi36FRUVjeKGG1SLoiwBBQGVikBQCcQggQBZ7u+P+0zyZPLMmklmJjnv12temTz3Wc6zfeaee889V7UuelTrIkO1LjoaUus0zNiFiLQ3xvzgfP8dcKQx5tIEm4WInAy8a4ypEJG/Ahhjrk+wWQCIyBFAFfAwcK0xZnkCbUkHPgdOArYCy4BzjTGfJcomPyLyE6AUeMIYMyjR9vgRkW5AN2PMShFpB6wAJiX6momIAG2MMaUi4gP+C/zeGLM0kXY1FZJV6yB59U61LjJU66K2S7WuAVGtix7VushQrYvargbTOu2ZdeEXPIc2QFJ4+saYN40xFc6/S4EeibTHjTFmnTFmQ6LtcBgJfGmM+Z8x5gDwDHBmgm0CwBjzHlCcaDsCMcZ8Y4xZ6XzfDawDshNrFRhLqfOvz/kkxfvYFEhWrYPk1TvVushQrYsO1bqGRbUuelTrIkO1LjoaUuvUmQ1ARG4VkS3ANOCPibbHgwuB1xNtRJKSDWxx/b+VJHiBUwUR6QPkAB8l1hKLiKSLyCpgO/CWMSYp7GoqpIDWgepdMFTr6oFqXfNCtS6lUa2rB81F65qdMysib4vIGo/PmQDGmD8YY3oCc4HLk8UuZ50/ABWObY1GJLYpqY2ItAXmA1cGtGQnDGNMpTFmGLa1eqSIJE0YTyqQrFoXiW3OOo2ud6p1TR/VuqaHal3D2KWkNs1J61rEYyephDHmxAhXnQu8BvypAc2pJpxdIjIdOB04wTTyQOcorlmiKQR6uv7v4SxTQuCMXZgPzDXGvJBoewIxxpSIyCLgFCCpEi0kM8mqdZC8eqda17RRrWuaqNZFj2pd06a5aV2z65kNhYj8yPXvmcD6RNniRkROAa4DJhpj9ibaniRmGfAjEekrIi2Bc4CXE2xTUuMMyH8UWGeMuTvR9vgRkS7iZHYUkUxs8oekeB+bAsmqdaB6FyGqdVGiWtc8Ua1LeVTroqQ5ap1mM3YhIvOB/tgsbl8DlxpjEt4CJCJfAq2Anc6ipUmUje8s4H6gC1ACrDLGTEigPacCs4F04DFjzK2JssWNiDwNjAU6A98BfzLGPJpQowARORZ4H/gU+9wD3GiMeS1xVoGIDAEex97HNOBZY8wtibSpKZGsWgfJq3eqdZGhWhcdqnUNi2pd9KjWRYZqXXQ0pNapM6soiqIoiqIoiqKkHBpmrCiKoiiKoiiKoqQc6swqiqIoiqIoiqIoKYc6s4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKyqHOrJJSiMgIEflERDJEpI2IrBWRQYm2S1EUJZ6o1imK0hxQrVPqixhjEm2DokSFiMwCMoBMYKsx5rYEm6QoihJ3VOsURWkOqNYp9UGdWSXlEJGWwDJgH/BjY0xlgk1SFEWJO6p1iqI0B1TrlPqgYcZKKtIJaAu0w7bkKYqiNEVU6xRFaQ6o1ikxoz2zSsohIi8DzwB9gW7GmMsTbJKiKErcUa1TFKU5oFqn1IcWiTZAUaJBRH4BlBtjnhKRdOADERlvjHk30bYpiqLEC9U6RVGaA6p1Sn3RnllFURRFURRFURQl5dAxs4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKytEknFkRmSMisyJcd7GIXNTQNimKojQmIpInIk8m2g5FUZSGQkT6iIgREZ1aUlEUoIk4s80NERkrIlUiUioiu0Vkg4j8MmCdM0VklYj8ICI7RORdEembKJu9EJFWIvKYY+O3InJ1iHUHichC51zqzCflNFLsc65JqYhsCCjvIiJPicguEfleROZGaKP/h9O/300iMiP6s/Xc9yYROTHMOu7z2iEiL4hIN6dsjogccNlWKiKrA+xuEbC/6oYfj3Pzf6ZGaH809+8c5zndJSLbReRxEWnvKu8jIq859+ZbEXnAbbuI/NPZvkpEpkdin5KaOM/kHudZLBSRu525B/3lA0XkTREpFpESEVkhIqcm0mYvROQq51n+wXlPWgVZr6WIPO/ogRGRsQHleSJSHvCOHuoqj/ndcI5Z5uzzW0cf2sZyvgH7DdvAHHBeJSLygYgc45RNF5FKD23q7rL7xID9TReR/wY5N//ngSjOIaL7F7DNH517eKJrmZdOpztlR4rIckf3vheRt0XkyEhtbA543eumQMBzUSwib4nIAFd5SxH5m4hslZq6x+xE2uyFiAxzNHiv83dYiHUvd573/SIyJ8R6Xu9Rtoi85FyrrSJyaRQ2BtWa+iC2Lr41zDoh65ABv3f+z3Uuu+s0UDvbHO5xbv5PSRTnEM39C1rPFpFxIvKpc313isiLIpLtKl8bYGOFiCyI1M5wqDMbJySOrYRiCXdvthlj2gLtgauAR0Skv7P94cATwDXAQUBf4EGgspFtDEce8COgNzAOuE5ETgmybjnwLPCrEPu73BjT1vn0Dyh7AfgW6AV0Be6K0tYs53r/DLhJRE6Kcvv6cLlz7H5AFnCPq+wO1zm3NcYMjWH/WQH7mBfhdnlEfv+WAGOMMQcBhwItAHdl9+/AdqAbMAw4HrjMVb7a+X9lhLYpcSKe2hbF/oY6z/zxwFTgQlfZAuAt4BDsu/w74IcE2Bhq+wnADOAE7PtxKHBziE3+C5yH1Sgv5gW8o/9zldX33TjDudbDgBzghhj3EwvznGN3wV6DF0REnLIPA865rTFmW5T7PyNg+8sj2SiG+4eIHAZMAb7xKA7Uaf9v8Tbsb0pHoDPwMvBMJDYq8SVBOneH8/xnA4XA2HkkPQAAIABJREFUo66yG4DhwEigHTCWOP/+xUHnWgIvAU8CHYDHgZec5V5sw/7uPxZin8HeoyeBr4CDgdOAv4jIuCjM9WtNZ2AR8FwU28YDfx3yXOCPAXWloQH6cEeU+w78fciKZKMY7h8Er2d/Bkxwjt0d+AJ4yF9ojBno3w77PG8hjvcgJZ1ZEckRkZVieyXnARmusg4i8oqIFDktna+ISI8Q+7pQRNY56y4Ukd6usntFZIvYltkVInKcqyxPbGv6kyLyAzDdabX4s4gscWx7U0Q6u7YZ7bQIlYjIanG1wDvb3ioiS4C92B/PsBjLa0AxMMRZPAz4yhjzjlO+2xgz3xiz2TlWuojcKCIbHTtXiEhPp+zHIrJMbA/aMhH5cSgbRWSA2BbFYrG9Az+PxG6HC4A/G2O+N8asAx4Bpgc5zw3GmEeBtVHs32/3yUBPINcYs8sYU26MKYh2P44dyx0bhjn7ThORmSLytdgexydE5CDXsSc6LVIlzvU7wln+f1jHeoG4WuLCHLsYmA8MisX2BiCa+7fFGLPDtagSONz1f1/gWWPMPmPMt8AbwEDX9g8aY94B9sX5HFIOEblebI+lPyrjhCDrhdKbXzq6t1tE/iciv3aVjRXb8n29iHwL/NvRu2ed53u380wPd23TXUTmO7r7lYj8zlVWRysjPVdjzJfYhhD/+9YZ+6w8Yow54HyWGGPcPXLuqJSN/kqDY+PLjlZ9KSIXh7JRRA4SkUdF5Bvnes8SVw9xGC4AHjXGrDXGfA/8Odh5O+cw2zmHqBsc4/VuOO/dQpxrDcH1yyk7wllW4qwz0Vl+CTAN27hVKhG0vhtjyrEVqUOATvU5jzgR8f1z8SBwPXAg0oMYY0qMMZuMMQYQ6upisyaS38lQ76mIHCY2Km2n2MimuSKS5dp2k6NznwB7RORwsb1eF4jIZmebP7jWTxORGY6u7HQ0saNT5u+B+5WIbAbejfQ8jTFl2MZ6d6/YCOBFY8w2px63yRjzhMuWnmIjtYocWx5w2ehZJwlmo4SoB4dhLLZherYxZr8x5j7sczw+yHm+YIzJB3aG2Ged90hstMhY4Fan/rYaeJ7ajZwRYYypAOYC2SLSxdl/qN+GViIyW0S2OZ/ZzrI2wOtAdwmIHAlz/A+xdchkqMeNJYr7FwpjzHcBjY2htOwn2EaF+dEeJxgp58yKbTHIB/4P25r5HDDZtUoa8G9sa2ovoAzwDC0SkTOBG4GzsS3D7wNPu1ZZhhWXjsBTwHMikuEqPxP7QmVhXw6A/wf8Ettj0BK41jlWNvAqtlWqo7N8vv9lcjgfuATbavF1BJfDL1wTsQ/Gl87ilcAAEblHbNd/YNjY1djWoVOxPbsXAnsdUX4VuA9bobgbeFVE3JULt41F2B6Sp5zzPQf4uzhhUiLy/5wfCS+7O2B74Va7Fq/G5cDEwG3Oj88SqR2qNxrYADzuiP4yETk+lgOIyGisCPmv9XTnMw7bANEW53kTkX7Y5+lK7PP1GvZHuaUx5nxgMzU9B2Fb4sRW5CcDMTni0RLv+ycix4rILmA39jzcIVOzgXNEpLXzrvwU69AqLsRGX1wOjDDGtAMmAJs81gunN9uB07Hv/y+Be0TkKNcuDnG264193wEmYnuNsrA9SNWVJ2xv6WpsD8MJwJVie7f8eGllJOc7ADiOmvdtp/P9SRGZJCIHB6w/EhuVkusc6yfUXJ9ngK3YVuOfYVv23T/agTbOASqwP8g5wMnARc5xejlOXK8gpg+k7rtxcICWRsMZTkVrrYj8JsZ9hERso+9Pca51KP0SER/2nr+J1f4rgLki0t8Y80/s9fP3Rp4RwbFbYXU0sNGrQYj3/RORKcB+p2HZi8uc+7dCRCYHFooNC9wH3A/8JeITaeJE+Ds5hyDvKbZifhv2nT8C26idF7D9udievixnPwDHAv2xWvZHqWnEuQKYhI0Y6Q58j3W+3BzvHGsCEeI4RudSo3MAS4GrReQyERksUh2xgFhn/RVsPbEPVnf9PfrTCVIn8bIxXD1YbIdQsKFVA4FPnMYYP58QYz0uxHskAX/936N2CB0f4hfY35LvncWhfhv+gK1DDgOGYnvKZxpj9mD1clukkSNiGYO9Po1Vj4v3/QtWz67WVazfdS0QrF57ATDfuYbxwRiTUh9s5WQbIK5lHwCzgqw/DPje9f9i4CLn++vAr1xladgex95B9vU9NhwArCC+F1C+GPuQ+/+/DHjD+X498H8B6y8ELnBte0uE12AsUAWUAPuxLSBXBqwzGtvSV4T9kZwDtHXKNgBneuz3fODjgGUfAtO9bMSG/70fsP7DwJ8iOIeegAEyXMtOAjaF2e5w+9jWWT4K62C3wr4ou4HDnLJ/Osf6FeDDOt0lQOcI7OzjbOt/QQ02RFmc8neAy1zr98eGRLcAbsL2Nrqfr0JgrPP/JuDEMMdf7DyTJc62c4EuTtkc596WuD6Pe9jt/hzAeVdCrHNEQ90/Z71s7PvTz7XsCGAFtjJhnHMTj23/638em+PHef63AycCvoCyPOBJ53tIvfHYbz7we+f7WOc5yQjY99uu/48Eypzvo4DNAfu7Afi3a9v3wp2ba1uDDRve43x/GmjlKu+BrZxtxOrge8CPnLKHgXuCPK+VQDvXstuAOV42YkPZ9gOZrmXnAosiPIeNwCmu/33OufQJs91WHH0IuNbdgXTgx9jwu3M9to363cBqUClWLw1Wz7KcsqD6hW1g+BZIc5U/DeQ53+cQ5Dc54Jk6gNWc7dheoqOdsulYLXDr0kYPu93le4H/hlnn4njfP+zvzhf+MgJ0HTgK2zjcAtuAvBs75CJwP22wdYbTormHTf3jcT37OPeiRbTvKdYRLQjY94Ue++7hWvYxcI7zfR1wgqusGzW/9/5tD43wvOZQ8/tdhQ2hHeIqTwd+i41M2Y+t917glB2Drdu18NhvqDpJHRuJsh4ccKybgGcCls3F0YEQ283C0V7XsnDv0X+xjT0ZzjtVDGyI8FrnUaM1lVhHdqxTFu63YSNwqqtsAk49B6uFW8Mc23/NS7A+xDrgd65y/++dW6cmeNjt/hjg8BDreD7/9b1/hKhnB6zXEVsHGe1R1to537GR2BjpJ+V6ZrE/6oXGuSoO1b2YTs/Ow06IxQ/Yik6WeIeH9QbudVpoS7Avh2Ar24jItU7oxS6n/CBsD6ifLR77dI952ottFfMfa4r/WM7+jsWKYaj9BWObsbHp7bE9qbXCAowxS40xPzfGdMFWPH6CbWEC+/Ju9Nhnd+r2CH+Ncz08bOwNjAo4p2nYXp1wlDp/27uWtce+HFFjjPnI2HDq/caYx7E/AP6kMGVY8XnU2BCVZ5zzGBPFITpj7+U1WAHzOcsDr9nX1PzI1iozxlQ5x3Vfz2pE5B+ucJUbXUW/M8ZkGWOyjTHTjDFFrrK7nDL/54JAu93l2F70OucWsI91Ya4F1OP+GWMKsb2uz0B1z94b2HHNbbDXugPw1wjsaFYYG3Z7JfYHbLuIPBMktCmk3ojIT0VkqdNbVIJ9V9zaVmSMCQxbDdS2DLFjrnpjQ63cx7oR+w74iUbbwFZW2mIbzEZhnwv/NdhqjLncGHOYc+w92N5YCK1txcYY9/MZTtt8wDeuc3oY2wsZCaXUfTcgBn0zxnxmbKhhpTHmA+BebO9BvJhkbC//WGAANc9BKP3qju1FrXLtJ/B6ViMi01za9rqr6FlHc7oaY8YbY1a4ypYG6NJhHna7te0y6jIpYB+PhL0almjuXx624WiT146MMSuNMTuNMRXG9jjNxfaCBa63B/gH8ISIRPqcNXdCvqcicrCjkYVOffBJauscRF+Pe9F1rHVYRyhWrbvLeXb7YOsp1WMQnff9QWPMGGyv8a3AY04vcU/ga2NDZgMJVSfxsjFkPTgMge8JxF6PyyPEe4StW/bF2v4Q9l6GTL4UwLPOtT4YWAMc7SwP99vgdT2DhhNL7SRH7siPzsaYDsaYI4wN53VzVIBOLQy0O0DrPM/N9Yl0LHFU9y9MPdu9XjE1428Dx2WfjX3G/hOhjRGRis7sN9hYd3e4gfuBuQYrCKOMMe2xThzUDk/wswX4dcBDkGmM+UDs+NjrgJ8DHZwHaFfAfozHPoOxBfuiuo/Vxhhze4z7sxsYsx/bAjJYRCYFWWcZ1lHwh2RsAQIrBmBb/noHLOuFbY33snEL8J+Ac2prjAkbBmfsOKRvsGEbfoYSw5jYYIeg5l59Qt1rG8u1rjTG3I1tTfVXnAKvWS9sj8J3gWXOM9uTmutZywZjzKWmJlwlqUPN4nD/WlDzDHbEXrcHHJHciR0qkHQZapMBY8xTxphjsc+WwdvpD6o3TkjnfGyEwcGOtr1G/bTtq4BjtTPGuO9fLO+bMcY8i40O+WOQdbZgw/wi0baOItLOtSyctu2ndkNPe2NMpOFza6n7bnznPNv1xa1tccMY8x9sb5E/OV4o/doG9JTaSQDd1zNQ2+a6tO2n8ba9AYjm/p0A/E5s5uNvsdfoWRG5Psi+Q92/NGzPRSSORHMhlHaEe0//4mw/2KkPnkfdax+t1v00QOsyjG2gjWV/dgObz+T3WKcy06O8zBjzILZn70jHjl4ejgKErpN42Ri0HhyB6WuBIQH18SHEVo8L+R4ZY742xpxujOlijBmFbZT4ONqDGDuM4RIgT+zMEOF+G7yupz+cuM69NrUTMW2O1r5Gpr73L5SWtcA2KgU6yxcATxhjon5PQpGKzuyH2BfzdyLiE5GzsTHsftphW7hKxI4B/VOIff0DuEFEBkJ1IoEprv1U4IRyiMgfqXtTouFJ7LinCWITMGWITbQSNDlVpBhjDgB/w6nwiR2beLG/dVfsuLOJ2DEYAP8C/iwiP3Ji+IeIHQv0GtBP7FjJFmKnaDkSOzbDi1ec9c937oVPREaIK0lIGJ4AZopN2jUAuBhbmaqDY2cGdhwyzvVr5XzPcq5rhmP3NGwjhn/M5YtAB7FJHdJF5GfYUMUlzvZ5IrI4QpsBbscmN8nAhtZdJSJ9xY5N/gs2s1wFNsz7NBE5QewYs2uwP7z+H4nviDDRV5ISzf2b5m+lFJtc4lZsOJT/x+Ur4DfO/cvCCt4nru1bOtdbAJ9zr1NRv+qFiPQXkfHOs78Pq3VVHquG0puW2DChIqBCRH6KHWcWKx8Du8UmUsl0jjdIREbUY59ubgcuFpFDnGftZrGJWtLEjiO/kBptexT4pfPOpYmdzmGA4/R+gB3vkyEiQ7DDDjzn5TXGfIMdD/o3EWnv7OswiXys/RPAr8ROvZIFzCTIuwHVSUb8+RhaOjaKU3amc94idkzw77AZKP3bBn03nHseTaVhNnCSiAwltH59hO2xus7R/bHAGdSM22sK2hbp/TsB25gyzPlsA36NM5ZSRH4mIm2dZ+hkrEP1slN2ktiElulipyq7m5pQRMUS9FmK4D1th+192iU2j0BuPW35B3Cr8xuG2Cn/zqznPgEwxryFfXYucfZ9pfP+Zjq/ixdgz6cAq7nfALeLSBvnnfdHmoWqkwQ7p2D14HAsxvZM/87RMH+2cM/kV855ZGBDqP2/S36HPNx7dISItHP07jzsb9bdrn1vkginJjPGbMAOu7kugt+Gp7H1nC7O780fXWXfAZ3ElfQzxVhMhPdPwtSzReRsp36SJjY3x93YkP5i1z56YMdyPx73MzFxjFlurA82XXkBtit8nvPxjwPs7tygUuBz7MtgcMYW4Boz6/x/PvApNoZ7C/CYszwdmz78B6xoXIcrhh/X+DTXvgL3PZ3aY3hGYbvWi7EVyVeBXkG2fR24Mcj5jyUgTh/bmrsDW6EYhE3O8Z1zHTZhe298rnObiXUgdmMTXfVwyo7Fjl3c5fw9Ntj5Ocv6O+dRhB2H8C4wzCmbBqwNcR9bua7xd8DVrrJeju3+69PHuY/uzyanrItzDrux4wWWAicFHOs45z6XAsuB41xlj2Kz5HnZ6D9uC9cywbZcXYFtEPqj8+wU4aQ4d617FjZl+S7n3g90lZ2JTW5RAlwb5Ph1rrmrbA52rESp67MjmN2ubQLHzJYGfK5ugPt3KzYkaI/z959AJ9f6w5xz/R77HD+L7TV0X4fA+z820VrU2B9sq+nHzrNejG1Q6u6U5eHSJELrzW+de1aCTab3jOu5GEtdfQncd63nC6u7T2PD877HvoOeWokNQX49xDlWjwdyLXsd22DXBvtDuMl5vr51jpsd8M594lyjL6kZf9TDuV7F2FDkS4Odn7PsIGw421bs+1tAzdi5Ws93kPO42rnGP2AjDdzjftcC01z/b/J4vvs4ZU9jtbUUWI9rvFW4dwP7+7YkhI2bCBi375zzfNe1DKZfA51lu5x1znKV/QhY5Txf+UGOXeeau8qmYytZgdo0IoTd06k7ZrYsYPsXG+L+hbqm2IQ6u5z9rPY/Q07ZFOeellLzjg4JZlNz/BDwO0ld7Qn1ng7E1mNKnefxGlza5nGvau3b9X7586ykOc/FBqy+bAT+4rVtuGcMj3Hl2GEVhdjf1kuoqYuVYHX/dNe6vbC5DnZifzPvc9noWSfxOj9nuWc92CkLWhd1ynMcO8uwyUdzXGW1tB77zgdqVV6E79GVzvnswY6fHe4qa+ncjwFB9pVHXX0f5eyrK6F/GzKwQ/m+cT73UTufxGPOPSjB+S0OOI7nNXeVG8cOt07NDma3axv3mNly6mpl13jeP8LUs7H14a+cc/kWW6foHXCsGwjIsxOvjz+JjaI0W0RkFTapQzxCABVFUZICEfkX8JypPQZLURSlySAixwK/Ncacm2hblMSgzqyiKIqiKIqiKIqScjS7MWeKoiiKoiiKoihK6qPOrKIoiqIoiqIoipJyqDOrKIqiKIqiKIqipBzqzCqKoiiKoiiKoigph9eEy0lL586dTZ8+fRJthqIoScaKFSt2GGO6JNqOeKFapyiKF6p1iqI0B6LRupRyZvv06cPy5csTbYaiKEmGiHydaBviiWqdoiheqNYpitIciEbrNMxYURRFURRFURRFSTnUmVUURVEURVEURVFSDnVmFUVRFEVRFEVRlJQj4WNmRSQdWA4UGmNOj3b78vJytm7dyr59++JvnEJGRgY9evTA5/Ml2hRFSWlU65Ib1TpFSQ5U6xoW1TqlqZFwZxb4PbAOaB/Lxlu3bqVdu3b06dMHEYmvZc0cYww7d+5k69at9O3bN9HmKEqqo1qXpKjWKUryoFrXcKjWKU2RhIYZi0gP4DTgX7HuY9++fXTq1EkFrwEQETp16qSto4pST1TrkhvVOkVJHlTrGg7VOqUpkugxs7OB64Cq+uxEBa/h0GurKHFBtS7J0WurKMmDvo8Nh15bpamRMGdWRE4HthtjVoRZ7xIRWS4iy4uKihrJusjZuXMnw4YNY9iwYRxyyCFkZ2dX/3/gwIEGPfb69esZNmwYOTk5bNy4kfvuu48jjjiCadOmRb2v2bNns3fv3gawUlGaN6p19Ue1TlGUxkK1TklG8gsKGXP7u/Sd8Spjbn+X/ILCRJuUNIgxJjEHFrkNOB+oADKw48heMMacF2yb4cOHm8DJtdetW8cRRxzRkKZGTF5eHm3btuXaa6+tXlZRUUGLFg0zNPn222+noqKCmTNnAjBgwADefvttevToEfW+/BOXd+7cuU5ZMl1jRfFCRFYYY4Yn2g4vVOvqj2qdoliSWetiQbWuNqp1ihf5BYXc8MKnlJVXVi/L9KVz29mDmZSTnUDLGo5otC5hCaCMMTcANwCIyFjg2lCVu1Ri+vTpZGRkUFBQwJgxY2jfvn0tMRw0aBCvvPIKffr04cknn+S+++7jwIEDjBo1ir///e+kp6fX2t+KFSu4+uqrKS0tpXPnzsyZM4eCggJmz55Neno677zzDv379+d///sfP/3pT7nwwgu55JJLuOKKK1izZg3l5eXk5eVx5plnUllZyfXXX88bb7xBWloaF198McYYtm3bxrhx4+jcuTOLFi1KxGVTFJ5+Gn74AX7960RbEj9U61TrFCWQt9+GpUvB8VmUJEe1Tkkkdy7cUMuRBSgrr+TOhRuarDMbDcmQzbhJsnXrVj744APS09PJy8vzXGfdunXMmzePJUuW4PP5uOyyy5g7dy6/+MUvqtcpLy/niiuu4KWXXqJLly7MmzePP/zhDzz22GNceumltcT0jTfeYNGiRXTu3Jkbb7yR8ePH89hjj1FSUsLIkSM58cQTeeKJJ9i0aROrVq2iRYsWFBcX07FjR+6+++7qbRUlEdx7L1x9NfzkJ3DRRRDw268kKap1ihIdTz8Nv/wl9OsHV10Fbdok2iIlElTrlESxraQsquXNjaRwZo0xi4HF8djX2LF1l/3853DZZbB3L5x6at3y6dPtZ8cO+NnPapctjtGqKVOm1GmJC+Sdd95hxYoVjBgxAoCysjK6du1aa50NGzawZs0aTjrpJAAqKyvp1q1b2OO/+eabvPzyy9x1112AzQ64efNm3n77bS699NLqEJmOHTtGfW6KEm9Gj4aPPoLu3eHVV5uuI6tap1qnNG8uuggefdR+X7RIHdlIUK2zqNY1X7pnZVLo4bh2z8pMgDXJR1I4s02RNq5fqBYtWlBVVZPE1J8S3RjDBRdcwG233RZ0P8YYBg4cyIcffhjV8Y0xzJ8/n/79+0dpuaI0LoMGwdq19vvatdC6dWLtUaJDtU5RIuPcc+GZZ+z3r76CTp0Sa48SHap1SqLIndDfc8xs7gR9FqAJOrOhWtxatw5d3rlz7C12oejTpw+vvPIKACtXruSrr74C4IQTTuDMM8/kqquuomvXrhQXF7N792569+5dvW3//v0pKiriww8/5JhjjqG8vJzPP/+cgQMHhjzmhAkTuP/++7n//vsREQoKCsjJyeGkk07i4YcfZty4cbXCUdq1a8fu3bs1HEVpVO65p8aR3bUL2rdPrD2phGqdRbVOSQWefrrGkd2yBWLI59NsUa2zqNY1X/zjYu9cuIFtJWV0z8okd0J/HS/rkOh5ZpsFkydPpri4mIEDB/LAAw/Qr18/AI488khmzZrFySefzJAhQzjppJP45ptvam3bsmVLnn/+ea6//nqGDh3KsGHD+OCDD8Ie86abbqK8vJwhQ4YwcOBAbrrpJgAuuugievXqxZAhQxg6dChPPfUUAJdccgmnnHIK48aNi/PZK4o3Dz5ox8hOngz79qkj2xRQrVOUusyfD+edB8cfbxvt1JFNfVTrlMZmUk42S2aM56vbT2PJjPHqyLpI2NQ8sZDsKdybKnqNlXhzyy1w221wwQXwwANQ31kOdLoKJR7oNVbizSOPwOWXw6RJ8O9/138YhWqdEg/0GseP/IJC7TFtAFJiah5FUZofxkCHDrZ34oILbO9sU032pChK82bECFi+HH76U3j8ccjISLRFiqLEk8D5XwtLyrhq3iqeW76ZTTvL1MFtJNSZVZQmSDK2FBoDaa6BDY89Vvt/RVGUpkLv3rB5s/3+4ovQqlVi7VEUJf54zf9qgCUbi6v/Lywp44YXPgVIeD2sqaJVSUVpYvhbCgtLyjDUCGl+QWHCbPL3yPqpqFBHVlGUpsmJJ9Y4snv2qCOrKE2VSOd5LSuv5M6FGxrYmuaLVicVpYnh1VKYSCGtqrLzAe7aBVlZUFmpocWKojRNbrkF3nnHfi8r06nGFKUpE808r5E6vkr0qDOrKE2MYIKZCCGtrITf/x6eegpmzIDiYu2RVRSl6WGMdWTvvdfmA6io0DGyitLUyZ3QH4lw3WgcXyU6tFqpKE2MYIKZJkLfGa8y5vZ3GyXkeP9+Ox3FAw9YR/YvfwGJVPUVRVFSBGPgyivhT3+CadNsPgCNPlGUps+knGymje4V1qEVrOOrNAzqzMaZvLw87rrrrpjLFSUY+QWFjLn93bAOae6E/mT66takKo2pNYZ2Zv6nEe0vFsrKbK/EM8/An/8MN9ygjmxTZezYsQROraEozYWqKhttct99cPHFMHu2Rp+kOiUlJfz9738HYNOmTQwaNCjBFinJzKxJg7ln6jCynY6EwKqOANNG99LkTw2IZjNOUSoqKmhRz8k5KysrSdfm45TAK/17sOx4/v/92YzTRKgMmE+6rLySuUs3418az2x7paXQrp39fvDBMHNmvXanNBPqq2nx0EQl8SRjJvZgVFbWniP7H/9QR7Yp4HdmL7vssrjt0xiDMYa0ejwgqnHJy6Sc7GqdSiUNayo0O9mNtHcrGm699Vb69evHsccey4YNNsnOI488wogRIxg6dCiTJ09m7969dbbbuHEjp5xyCkcffTTHHXcc69evB2DBggWMGjWKnJwcTjzxRL777jvA9uqef/75jBkzhvPPP5+8vDwuvPBCxo4dy6GHHsp9991Xve8nn3ySkSNHMmzYMH79619TWWmdoLZt23LNNdcwdOhQPvzww3qfu9I4RJvUaVJONktmjOer20+jKsCR9RO4NB5JovbtgxNOsN8PPxy+/bZeu1PqQUNo3Z49ezjttNMYOnQogwYNYt68ebXK33zzTY455hiOOuoopkyZQmlpKQC33HILI0aMYNCgQVxyySUY55kcO3YsV155JcOHD+fee+9l7NixXH/99YwcOZJ+/frx/vvvA7bhLTc3lxEjRjBkyBAefvhhABYvXsxxxx3HxIkTOfLII+t9fkpiScZM7MGorLQhxX78PbRK4xNvrZsxYwYbN25k2LBh5ObmVi8PpkOlpaWccMIJHHXUUQwePJiXXnoJsL26/fv35xe/+AWDBg3i/fff54gjjuDiiy9m4MCBnHzyyZSV2VwWweqD06dP59JLL2XUqFFcd9119TovpXFw17+WzBivjmwj0KyktyF+KFesWMEzzzzDqlWreO2111i2bBkAZ599NsuWLWP16tUcccQRPProo3W2veSSS7j//vtZsWIFd911V3Ur4LHHHsvSpUspKCjgnHPO4Y477qgiR/yjAAAgAElEQVTe5rPPPuPtt9/m6aefBmD9+vUsXLiQjz/+mJtvvpny8nLWrVvHvHnzWLJkCatWrSI9PZ25c+cCtjI6atQoVq9ezbHHHhvzeSuNS32SOjVWtr2yMjjnHPj4Y7jnHvjii5h3pdSThnIK3njjDbp3787q1atZs2YNp5xySnXZjh07mDVrFm+//TYrV65k+PDh3H333QBcfvnlLFu2jDVr1lBWVsYrr7xSvd2BAwdYvnw511xzDWB7Hz7++GNmz57NzTffDMCjjz7KQQcdxLJly1i2bBmPPPIIX331FQArV67k3nvv5fPPP6/XuSmJJ9kysQejogJ+8xuYNw+uu846sjqMIjE0hNbdfvvtHHbYYaxatYo777yzenkwHcrIyODFF19k5cqVLFq0iGuuuaa6we6LL77gsssuY+3atfTu3ZsvvviC3/72t6xdu5asrCzmz58PBK8PAmzdupUPPvigWk8VRalNs4pXCPVDGWvLyfvvv89ZZ51Fayf//sSJEwFYs2YNM2fOpKSkhNLSUiZMmFBru9LSUj744AOmTJlSvWz//v2AFa6pU6fyzTffcODAAfr27Vu9zsSJE8nMrHFOTjvtNFq1akWrVq3o2rUr3333He+88w4rVqxgxIgR9hzLyujatSsA6enpTJ48OaZzVRJH96xMCj0czUgc1dwJ/WuFKIMdw+HVXxtrtr09e+CMM+Dzz+Hf/4bp02PajRInGkLrAAYPHsw111zD9ddfz+mnn85xxx1XXbZ06VI+++wzxowZA1gn9ZhjjgFg0aJF3HHHHezdu5fi4mIGDhzIGWecAcDUqVNrHePss88G4Oijj2bTpk2A7fH95JNPeP755wHYtWsXX3zxBS1btmTkyJG1NFJJXZIpE3swysttYrvFi+GOO8DVcac4iEg6sBwoNMac3pDHaiit8yKYDvXo0YMbb7yR9957j7S0NAoLC6sj6nr37s3o0aOr99G3b1+GDRsG1GhcqPogwJQpU3RImKKEoFk5s435Qzl9+nTy8/MZOnQoc+bMYfHixbXKq6qqyMrKYtWqVXW2veKKK7j66quZOHEiixcvJi8vr7qsTZs2tdZt5ZqNPT09nYqKCowxXHDBBdx222119p2RkaGimIJ4OaSZvvSIsuMFjqHtnpXJuAFdmL+iMKb9BbJtG2Rn2xC7xx+3FT0lsTSU1vXr14+VK1fy2muvMXPmTE7wx5Rjx4SddNJJ1VEjfvbt28dll13G8uXL6dmzJ3l5eezbt6+6PJim+fXMv+/777+/TqPg4sWL62yvpC71abRrDNz5AO68E669NrH2JDG/B9YB7Rv6QI1ZrwumQ3PmzKGoqIgVK1bg8/no06dPtcaFq7OVlZWFrA967UNRlNo0qzDjYD+I9fmh/MlPfkJ+fj5lZWXs3r2bBQsWALB79266detGeXl5dYivm/bt29O3b1+ee+45wIrk6tWrAdval51tHZDHH388aptOOOEEnn/+ebZv3w5AcXExX3/9dUznpyQHk3Kyue3swWRnZSJAdlYmt509OOKW58AxHLMmDa7X/vxs3mwdWbBT76gjmxw0hNYBbNu2jdatW3PeeeeRm5vLypUrq8tGjx7NkiVL+PLLLwE7pOHzzz+vrtR17tyZ0tLS6l6NaJgwYQIPPfQQ5eXlAHz++efs2bOnXueiJB9emdhjbWSLN7t21Tiy06apIxsMEekBnAb8qzGO1xBa165dO3bv3l1neTAd2rVrF127dsXn87Fo0aKo61uh6oOKEoyGyIuRqjSrntn69G4F46ijjmLq1KkMHTqUrl27Vof2/vnPf2bUqFF06dKFUaNGeQrj3Llz+c1vfsOsWbMoLy/nnHPOYejQoeTl5TFlyhQ6dOjA+PHjq8eGRcqRRx7JrFmzOPnkk6mqqsLn8/Hggw/Su3fvmM9TaTgizXznzpYXD+q7v+Ji8D9Sv/gFXH99nAxT6k1DaB3Ap59+Sm5uLmlpafh8Ph566CGudWr1Xbp0Yc6cOZx77rnVIXKzZs2iX79+XHzxxQwaNIhDDjmkWiOj4aKLLmLTpk0cddRRGGPo0qUL+fn59ToXJfnwiiJJVCZQty4f3KYNH/1xLAA5OfDkk41uTioxG7gOaNcYB2sIrevUqRNjxoxh0KBBHHHEEdXLg+nQtGnTOOOMMxg8eDDDhw9nwIABUR8zWH1QUbyIZoaL5oCYIJlOk5Hhw4ebwPkM161bV0tswqEps6Mn2musRE6gIIH9IY6ll7Qx2bEDTjoJVq2CSy+Fhx5KrD0issIYMzyxVsQP1brEoFrXdKjP8+/W5aoD6WyfP5z9mzszaPh+Pl3WKvwOGpBk1joROR041RhzmYiMBa71GjMrIpcAlwD06tXr6MCeTNW6hke1LrUZc/u7nkMysrMyWTJjfAIsij/RaF2z6pmF+PduKUp9aMzkFfHiu+9sOPH69fDGGxAwfEhJElTrlOZKfXst/LpctT+dna8NZf/WjnQ6fRXtxxQDTaOi2ECMASaKyKlABtBeRJ40xtQagGKM+SfwT7ANd/U9qGqd0txIhWR5jUmzGjOrKMmGV8saxC5IDT2GorAQxo6FDz+E//xHHVlFUZKP+k7xs62kjKp9Ldj+7Cj2fnEwXc9eTtuBhc22ohgpxpgbjDE9jDF9gHOAdwMdWUVR6k9D5cVoCJYvt1OXNeTIoGbXM6soycLM/E+DloUTpMCwqnEDuvDK6m8oKSuvXsfdGwH1H4f24Yfw4x/b7++9ByNHRrW5oihKo1DfXouOlR1Zea+dVqrLWcvJPKwISM6KoqIojUMyhbM3VF6MeLN2LfjTZKQ1YPdpk3BmjTGIzljeIKTSmOpUYmb+pzy5dLNnmUBIQfIKoQu2r7LySm5esJZ95VX1ShSweDGMG2e/3303uKYXVRoR1bqGQ7Uu9fFXNoPdyUic0fXrYeVd1pFtO+xrWvez84UmY0UxmTHGLAYW12N71boGQrUuesINXWhsRzeZkuUFY9EiOOssmwX+wQdh4sSGO1bKO7MZGRns3LmTTp06qfDFGWMMO3fuJCMjI9GmNCnyCwqZG8T5BDCEdjK9QuhC8f3e8jrLAsflhhLiL7+scWQfesgmfFIaH9W6hkO1LvXxSqbnJhJn9LvvwJ8TZ+J5u9kxcCPbSkjKimJTRrWu4VCti41wQxcSkVk4mceKz50L06dDv37w+uvQq1fDHi/lndkePXqwdetWioqKEm1KkyQjI4MePXok2owmRaieA7DZ6EIRr3Fb/v2EanH8dms6vz+vA2mZwoD/t5ZDRnUFklM8mzqqdQ2Lal1qE6qRLzsCZ7SoyOYDaN0a5syBKVPaocmeEoNqXcOiWhc9oYYupGIiz4bCGDjlFHjzTdsJ8sILkJXV8MdNeWfW5/PRt2/fRJuhKBETyhkNF2IMtpcgWOKoQHzpQkWl8XSe/SF3wYR4xqOb2PjkUUjL/Rz8swL2dC4l97lvuHnBWkr2lmtvRSOjWqc0ReIVnhdMVwXCTlWxZYtNZldVZTO0H3dcco2Pa26o1inJRrB6V/esTM0s7LBvH2Q6fTHdulktbdmycY6t2YwVpZEJNW7rx4d1DFthyp3Qn0xfetjjtGmZDgZPR9YdcucluKVru7PhwTGYSqHLpJW07FIKQHmV4fu95RhqenDjnTFZUZTmgT8qpLCkrN6aEmt2z8WLbQhcYaHtkfU7svGyS1GU1Mer3uWvR6VSZuGGorS0xpEF2Lq18RxZUGdWURqd3An9CTYKaNPOmtDfnFvepM+MV+kz41WG3fwm+QWF1b0FZeWVpLl2kulLo0NrH4INqTtvdC/2lVdRXuUd0FxWXsk1z66mz4xXSQsYk7R7VU92vpIDwMHnfoiv056g5xLNdBeKoihuIp1CJ9yUY/kFhXy/Z3+d/YcbJ7twYU0+gLffhmOOic4uRVGaB5Nysrnt7MFkZ2VW17NuO3swk3KyQzq6zYFvv4Xjj7ffjznGhho3ZOZiLxIWZiwiGcB7QCvHjueNMX9KlD2K0lhMysnmynmrPMu2lZSRX1BI7vOrKa+scURLysq5et4q0tOlernbTy0rrwKEe6YOA2wygsowGQv95e71StdkU7xwCABdz1mKr+PesOdT6Bp7q2F53qjeKUpdIgnPiySLaKBe+pl8dPAEKe+9Z8d2Afz73zXTR0Rql6IozYtgCZdSIbNwQ7FundXRnTvh1Vfh1FMTY0cix8zuB8YbY0pFxAf8V0ReN8YsTaBNitLg5BcUIniH/2a19nHNs6s9HdEqoMqjwubH3XMQTbZjP/u2dqB44WAADp72ARk9vo9ou3SRsBVORfVOUQIJNQ7NT7Be0psXrOXOhRtC5g9YtN47gdCaNTBliv3+zDMwdWr0dimKovhJ5szCDcVLL9mMxa1a2eEaw4cnzpaEObPGTnRV6vzrcz46+ZXS5AmVzbh0X0XYHtVQxNpzsG9LB3YsyCG9fRkHn7OUFu3qhuwFo9KYoBXOa55dDUTu0DbV3l3VO0WpS+6E/uQ+t7rWcAhfmtQKzwumad/vLfecdsxNYUkZfWa8SofWPv50xkAm5WSzejWccw6kp9tehQEDatb3609hSVmdBsfmFDaoKIoSikmTrDML8NVX0KdPQs1JbDZjEUkHVgCHAw8aYz5KpD2K0hiEcjiDjXGNlDQRWrUQ9pZXRbxN2VedKXphOC27/kCXs1aQ3jZyRxbs2JFg51RpTMQ9tE29d1f1TlE8CEwgEPB/NNnbg/H93nJyn1/Nxs983HpFVw45BN5/Hw47rGadQP0xjimGyKb2URRFaeoYAz172oR5ABs3Jt6RhQQngDLGVBpjhgE9gJEiMihwHRG5RESWi8hynXNMaQo0ZKhapTFRObLFbw1k+7OjaJG1ly6Tl9Oi7f46iQx8aUJ6mnfKKl+6hMzmB5EnTmnqSVfC6Z1qndLcuHPhhjpjXcsrTa13PtLs7eHY+VFvrj2vKz6fHdvldmQB8l5eW0d//I7skhnj1ZFVFKVZU1EBv/1tjSO7axccemhibfKTFPPMGmNKRGQRcAqwJqDsn8A/AYYPH65heUrKkzuhf60egFgRp9sg1pdix6tD2LOmJwBdJi8jvfUBpo3uxfDeHeuE+gLcvGBtrbA+d+geEPKcIgl/bi5JV4LpnWqd0lRwh+umi1BpjGfvZiTvvDu5Sqw9tLuWHkbJf2w88UsvQeAUpvkFhZSUeYcse9nYVIdDKIqieLFnjx2e8corcN11cNttjZ+xOBSJzGbcBSh3KnaZwEnAXxNlj6I0FpNysln+dTFzl26u36DJemy8Z123akc2+9J3aZW1j3NH9WLWpMHVNkLdSpvbeXXjXxYseVUkvdFNOemK6p3SXAgM1/XrgdewgcZ45/dt7ljtyA6+bBmjR4+os06o6I80J8GdWxOb8nAIRVEah1RpFPvuOzjjDFixAh54wPbOJhuJ9Ku7AYtE5BNgGfCWMeaVBNqjKI3GovVF9c7+0z0rM6ZK357PurFjQQ4tOpaSfdnbZHbcx99+PrTakfXjr7QVlpRhqKm0Bc7x6GdSTjZ/+/nQmOdba+JztaneKc0Cr+ECfgKHDeRO6I8vYAhDYAKo/IJCcp9bHVOvbNmmTmx/biTp7ffS7Zfv8UO77Z7z1IaK/vCP+/dv09SHQyiKEjvh5sR2rxdN/SpRvPwyHHIILFsGL76YnI4sJNCZNcZ8YozJMcYMMcYMMsbckihbFKWx8AtdfROa+Meq5k7oXyd/SihKP+3B94uOJKNPEd0u+C8t2u2vM0bNT7BK25XzVgUV6VATi4ejPtsmO6p3SnMh3LCAwPLAEf6B/+e9vDZoYrx0EcYc1pEOrX11yvZu7MrOV4fS8uBddLtgCS277gZspTH3udW19Ctco6DbWW0uwyEURYmOaBzUUDNAJItD+9e/wpln2u8PPQQTJybWnlAkxZhZRWkOBIanxUqrFmn8dfKQaicv0pDl4rcGsntlHzL6FNHlrBWk+Wqqjf6KmDvsJdT+AkPrvMJlwAr2VfNWcefCDRGF0DTHudoUpSkRLvuwO2z35gVrqQxwVCurDDcvWFutA8HGsoLtNV2ysbjWMl+6UPphP4r+cyhtupWSfc5K9rc4UGud8ipD3ss1x4gkj4FfI5vycAhFUWInVNRGYL0mHjNANCTPPQczZtjvb70FJ56YMFMiIomG7ypK0yZU+F007K+o3Xcxa9Jg7pk6jHQJ3kdb+Mjx7F7ZB4Cuk5fXcmQBslr76rQqhsMv0l6tkbnPr64ODUzmEBpFUeJLuOzD7rDdYPPEhps/NhTb5g/j20WHQ1UaW9e0Z38L76nG3E6yOyokGH5ntYkPh1AUJUaiidqIxwwQXkQa5hwMY+Duu2HqVPjxj2Hz5uR3ZEGdWUVpNOIZhuYldF6JlwC2/mMcFcVtAeh51RtIi7pT95Tuq+DmBXWnpgjHtpIyTye9vNLUCQ3UcWWK0vSJxDGMRAuG3fwm+QWFniHEwdj+4tHs3dAdgK1bISsr4k2ZlJPNkhnjmT11WEhn1Ws4xOSjs7lz4YaYK5CKoqQ+wRxUr+XhGv1iqS/WZxxufkEhP/7Luxw04iuuuQZGjy/j7bftnLKpgIYZK0ojES78LhoKS8oYc/u7bCsp46BMH3sOVHiut+vDw6jc1RqAnle/XqdH1k95lYmpN6R7VmZUoqvjyhSl6eMeLtBnxque62wrKcOXBsGmxS4pKyf3udVMHdmTecu21JmPNpDST3tQ9vkhAAy/8X2ys48D7BRiXtoWzEl2TwUULMuo+/w0u7GiKADjBnThyaWbPZcH4p/Vwmt9sJNVjLn93agyHEcT5uwmv6CQ655czxd3nwBAu+H/o3j05yxcnzo5S9SZVZRGIndCf66ctyou+xKodoy9xpQZA7tX9KHkvQG0ObKQTqetRtLiO3Wpv7cimvkfdVyZojQf8gsKcabDrkOaSNDETn7KqwyL1hdx58+GVuuM1/72fNaNnW8MtvkAzl7OnjSYmf8pi9YXeTqyvnThT2cMDHrcaMbu16cCmQrTciiKEp78gkKe/miLZ9mi9UWe689fEbrHNNqGsWjCnN36c2BnW7b9yzqyGb2L6HjCOvZVEFbDkgl1ZhUlBQlVBTQGSt7vzw8fHk7WyP/R/vh1iDOgINOXTqsWaSGTqkRCpi+tVqbhwOQpvnQBQ63Kqo4rU5TmxZ0LNwTVqmDDIgLZVlJWpyfU7QTuX92Xrxf0pc3ArXQ65VOkRRV7y6nT4+F3grPj7DjGkt1Ye3MVpengf5+DaZqXFkSaQyWShjE/kSanc+tPeXFrtv3reADaDNxK59NXh7Q7WVFnVlEaiXiMF830pVEWLC4P68huvuM0AA4eWcjf/96Kv72VWSfLcH2zKnds06paXIOF5Xkt04qaojRdAh3NeAyrOCizdjiw37HNLyhk6rhOHNiVQeaPvq12ZINhgCxnX9FkWA9HLNmNY+3NVRQl+QjnmGZ5DGmIdXhWfkEhNy9YWx1x0tqXhoGg9UKvTgS/vfsLs9g+fzjSqpwOY9fRbljtnuXuWZkpE0GizqyiNBLxaOXaV15FuohnC6DbkQU7L9hZR2Vz9tHewhNNeHAggecSLCwvGUVPUZT449XbGA9276+onsrHfazJx3Slar+tJHY5cyWSHr6nt6SsvDoqJZLpxSLRL69pfcJFoehctYrSdAj33np12EbT2OdvGMsvKOTqZ1fhHp2xN0TnRrAolG0lZez9/GCKXs6hRbt9dJ3yMb6Oe+tsP25Al5SJIFFnVlEaiMDKUVaQRCTRYPAOzzMGvnnsJ9X/v7CikLOOCi42fuczWHKWcOjYV0Vp2kTr3MVr6rFAAuedNQYuvjC92pHtdc3rETmyXrizKsdaaYskYVQgOletoiQ30ehfOMd0l8ewrnEDujB36eZawzB8aQJCrWR3/vwoY25/l+I9+wmTZqCa7KxMlswY71lWkj+Kkg2dadnte7r+bDnprQ/UWadDax+L1helTASJOrOKEgHRVuy8eil8aUJ6mlAZqRpFiKmCna8PoXxHOwaP2MfqjzIQaTih0bGvitK0iWVMZ0P2KvobAY2BmTNhx6pD8HXeTbfp78fsyPoJNr1YuEpbfcLvYunNVRSlcYhW/3In9Cf3udVBE9oFhhn7kz+51xZg6sieDO/dsVbUnH+daCNdCkvK6kS0VFSAzwfQGYCDz13qOcNFpi+dP50xkKuCJCxNxggSdWYVJQyhhA28W+Q9516tMnbMaxyd2e7tWvPpvMMp39yVc379A0891B6RGrvDVbayMn1Bk0F5ZQ3t0NpXnQXUPzVQMo+jUBQlemJx7uI59ZgXxsCMGfD00zYfQKuxq6q1zovWvjQ6tGlVrVF7D1R4RsaEml4s2PL6JnCKpTdXUZSGIbCutPdARfQ9kiG0KDCYLu/ltXX2b7BJ6xatLyJ3Qv9a42Jj5cp5q1j+dTGzJg2mrAxat64pe+6jQu551+pjVmsfxtge5MB6bKpEkKgzqyhhCFaxy3t5LfsrqjwrNMEqQaGSN0VLVXkaLd8aR+mn8Ne/wnXXtaoui7SylTdxYJ0xGGDDXaaO7Mmi9UV1KluxOPeKoqQOsYzpzJ3Qn6vmrQqZaT1WDmrlY8oUmD8ffv97OP4XcN3zoaf2KSuv4jNXmF2gbvnp08lWzLwqbWki9J3xah0ti0cCp2im/0klRCQDeA9oha1jPm+M+VNirVIUb6IZ6x9M/+5cuCHkPNjuDoP8gsKQs0n461PxGrLx5NLN9GvfmYdv6gbAkUfCmjXwkqvTtXXLFp51Na8IEl+asPdAhacuJhJ1ZhUlDMEEzEuQ/BWahu6lqNqfzpbZp7AFuOUWuO662uWRVrb8392tgFmZPvImDgwqUMH2ffOCtewr93buk0HsFEWJjGjHdPp7NhrCkTVVwie3nMwnwLRpcM89IJLNLa+E7rkItHVSTjYPLvqCL7bvqbV8ycZixhzWkeI9B+romj8/QaCWaQKnkOwHxhtjSkXEB/xXRF43xixNtGGKEkg0Y/2D6V+4ul66E0KSX1AYNHTXTTxzD5R/35pf//wgTCk8+yxMmRJ5Z0dgBMlBmT72uCJckqmOp86sooQgv6CQtCDZg4OxraSMaaN71ZnnMF5U7W/BltkTAOjXD266qe46wcS1sKSsTotatD0EwSpsXhXLZE0WoChKcIKN6Rw3oEud4QVQ/6m+gmGqhM13nlr9///9H9WhxSUhHFmv8af5BYV1HFk/S//3PeeO6lknIYsbt5ZpAqfgGGMMUOr863M+DdHOoSj1JtIGKL+mBIYkjxvQJey2lcbEnGyzPuzd2JWdrw2BKuE/b8Oxx9rlXmHOwepq7vrhmNvfrdOJkyx1PHVmFSUIM/M/DVq5yfSlk+FL83Tgslr7mPfxFo+t6k9VeRpFLx4NwNFHw/LlddfJLygMuQ9D/VrUou111t4KRUktvMZ0jhvQhfkrCuu05mf40urtyHqNzzdVwo5Xh9pygcpK+zdcL3C6CLedPbiOroWa57vSGJ7+aEtYj8uvZZrAKTQikg6sAA4HHjTGfJRgkxTFk0jqMwJMdqY4DOzRnNtAnRah8KVLyLBmgJ2vD6b0k14A5Fy9lGOPHQ2EDnMOV1dL5oiUtEQboCjJSH5BYVBHVoRqRzZwzH+mLx1jCDmWKxTpIrT2eb+WVQfS2bEgh31fd+Kwyes8HVmwrW6R4J6WIhpyJ/Qn05dea1mmL52szLoTg4P2VihKKjIpJ5slM8bz1e2nsWTG+KDTNNQ3SQnAtNG9av1vKoXihYPY+1k2WT9ZT1VVjSN7wwufBq18+tKFv/18qGcDXbgKVyTRN34tm5STzW1nDyY7KxPBToPh5UA3V4wxlcaYYUAPYKSIDHKXi8glIrJcRJYXFRUlxkhFwbs+E4gBFq0v8gxJbuyQg3QR7vzZ0JDrfPPEj6sd2R6/ep8/ntezuixUnS9NJGRnSLC6XDLU8bRnVlE8CNXyb4xrqgjX8nQRJh+dHXN4sX9eMK9wlKr9Ldj+/AjKd7Sl+9mruOsPXYPuJ1RygUBiaVELlokT6oYbam+FojQNGrL13d27YSrSKHo5h32bOtPx5E9pl7OZnFs2Y0x4bWvTskUth9IdEhjtcJFAArWsqSZwiifGmBIRWQScAqxxLf8n8E+A4cOHawiykjAC6zPBHsaG1L9WLdLo3LZV2B7iTF96daOZV6ZhY6DkPwM48E0HAHpc8RbprQ9w5bxV3LlwA7kT+oc8j0pjwk5BlKx1PHVmFcWDWISr0hjmryj0DJmL5pjpAZWuil2ZFP7DZuXs9/8+5a/Xdo1bJSrWFrVQFTnNZqwoTY+GTGrnV7uqfS3Ycq/NB9DhxDW0y7FObqS9vyVl5dVzKwYmOYnFkfVrebZqWcSISBeg3HFkM4GTgL8m2CxFqUPg+Nd7pg4LOx1NJBoo2GiTReuLIlp/f0UVfTplhnSmAzUo0LE0FWnseHUoe9d3p23OJjqeuBZxBfn5h4VktfaF1FP/TB1eWpfMU4qpM6s0OyKZfzXWilt9xo75xdJd6Sr/vjXb/jkOgPajvmTD3MEh92ETVlFnqh0vBCJKXhAN2luhKE0Tr1b5eFJZ5mPrfScDkHnodtof/XVM+8l9bjXLvy7m6Y+2hHRg/ZXDYJXXdAkesqyEpBvwuDNuNg141hjzSoJtUpRaBMvoO/no7Fq5AaB272M4DXTPBhFsOjAvlmwsprUvjb0e0zf6o/bcuB3LLd9UsGvBCPZ+1YGssetoP/J/nnNwl5VX0qpFWtgxt+5GwUCStY6nzqzSrIg0JblXxU3ASXYSv7li3fv2O5YdnJazyr0tqx3Zdkdt4tBT/0d+QWZQR9x/bl6OrC9dGNmnAx9sLK5u+TPA/BWFDO/dMSnFSVGU5MGvEVdGMLWEm/Q0oarKhIxWqTqQXu3Ituq5kxMJapYAACAASURBVK5TlsVqJuVVJuxQj8DKoVfonI6BjQ1jzCdATqLtUJRQBJticNH6Im47e3Cd5Hfu6WmCJf8EaNOqZqiD2+GMpHOkrKKKTF96UEfaqyPm1tHjGWeriXQ9s4DMAdtCHmNXWTkHZfrCDtlIhgzF0aDOrNKsiHb+1UjGhQYSS5ix27HcX15JZWkrvntmFAAHHfMFWT/5nH3laeQ+v7q6Ra2wpIzc51dX2xtsvjR/wgCvccDJklZdUZT64VXRgfiFhPn3Hy1hHdn9Ldj+3AgA2g7aSqfTVkccXRIr7mEk4ULnIonkURQltQiVmdfd+xjYAVJSVh4yYVRhSRljbn+XwpKy6iFj2VmZEWmaMTZrsj+qxJ+HxauXt7CkjN/M/J5vX7N2dh77eVhHFmwEYCTD6JIhQ3E0qDOrNCuiSS3uFU6RX1AYciqKTF86R/U6iCUbi6O2ray8kivnraJidyt2vHQUlWUtOficpWT03umU1+0RLq803LzAjm8Idm5VxjApJzvoZN2pJlqKotTGq6KT+9xqEGo1fsU6HVc04XKBhHRk97Wg6OUcyne2pfOZK2gz4Ft8aUKLdAkZAePvOY22l9hPYK6AYKFzkUbyKIqSOtjhWN4J4bpnZYZNHBeuM8PfC+vfLpoha/NXFFZv58/DMrx3xzqdFWUbu7D9NZskvP+0T9nXI3ziUX8vbyQ9xfHMUNwYDYI6NY/SrDioHtPH+Cs27vASX5rQobWv1vQMm3bG7hweKGrLd08dw4GidnT92bJqRzYUfnvCpU1P5rTqiqLEjldURnmVqTMuKtbpuG5esDZoBS7da3BWBFTsyuS7Z0az7+vOdD59FW0GfAtYu0M5su5pcNJiOHQ02TdDRfIoipJ6+OtxXo6s3xG9at4qCp1kTNEkjos1+aebYHrj7nTYvaon2+cPp+XBu+hx6bvsD+HI+vXZ3csbbjqieGYodk+nZqhpEAw1BVAsaM+s0qRxtwhltfbxw7664wR8aULuhP5hW4+CVRhbt2xBwR9Prl4WrAc0HGVf/3/23j0+qvrO/39+ZjIJE24JEC4OBPFSUERAUFTaWqmVKl4oXqjWbne3W7/tdreLWlq6Xx8r7tdfZUsvW3vZXbftdru1Fq9ZFBXbglqpoGCCSBXvBAbknnDJkEySz++PyZnMTM45c87MOXNJ3s/Hw4dzJmfO+UzIvOf9+rxvI9n/28Rg67G3bKBqXKur12drm17KbdUFQcgdN9kVbjMxGhqjlvVhCvjejdNZ+vBWV7O1Ow4OYe/PLwFg9PUvEz7d2azRzFpXp7c060rsJFrgJpNHEITSx25jTmf83w2ZUyi8xLBRu4/EaPnjZI6+dAaDTttP3bWvMmF0JWDesFSBaZQ3s7RieDiEUtDSFvc8cuq0tC9fRMwK/ZbMFDErh2zIoMTHIFs6mVPHJpdOyLF369j/yAUAjJj/GlWRlrSf1/RElM2K9o2fZav9KuW26oIg5I4bm5MtEyNT5LV1dGa/losIacf+oez9r48DMOyCdy2FrF0jFIOIxfuurQ5RXVlhaeecpg9b/V4lm0UQyg+7jbl88UvIQsLe/N1Hp3Dzx04BYMj0nYy4fDvVVQHLXi5mUeJYvIs7HtrKbauaCub/FWpDUMSs0G+xaoiUSUtb3NHukVPHxs0Ii6BSnDxYnRSyIxc0MeSc9PSLcCjI8mumJq6dEQEJBVTyZ5C9bXqptlUXBCF3zGxOKKDSamYheyaGmcjLdt+Va3fYjnlIpfNYFXt/NReA4Re/Rc3H3jY9r7Y6xF1XTzXtKJrqiFllm9x19VRLO9fQGOWOh7aa1sFlRgskm0UQ+g/5lAd4kUKcC+FQkC9MO5ubPzYWgKpRJxgx/3WUgqqKRKWoWaDCynan1vF+67FtbN55mPVvHvAtwFGoDUGpmRX6LU53fuy6u6U+b1Vn0NbR2Sf/3zAy2Wg/HCbW8DGCg9sZ91cvJIWsEehIrQ9bODPCyhumE6kJJ2t0V94gcxAFYaCzcGaEexdNS7MNiy+YwODK3v3q2upQ1nEzTjcAIZERYtd4LpOu41XsXzUHFexmzE0vWQrZgCIpRjcsm8f7KxawdP5kHt0S7VN3BfR533bv0a5eDvp+Z5j9XmVkjyCUJ7lGA8OhIDXV5v1W/CRSE+b2i2bwf65KCNlBp+1n7BefS86QbYnFk/WnRi2s4c866WUQi3fx643NvtazmvnNfmwISmRW6Lc4Sb3L1t0tdffIcGCWr96elu57pC2edKwg++geg459w9i3ag4Vw45zxTff43Cokz0t2O6OSWRVEAQz7MZJAJzMMh+7oTHqOFVZkXCk5q5Y52hmYWdrmNAz8wioE4y58eU+ZRQG1aEA3150bp+UYLtI6oZl82xtYrbOpKmYRQvE5gpC/8DKJ6wOBdAo0zRdo84+114ouaKAH8+fxycv7yJQFafm4zsYet7OPuelNqRLtfm5pj1b1bPm2pG4UOVtImaFfotp6l1QMbiygtZY30J3J+lkxjzXTOct1aA4EbLHGus5/Ow0gkNjjLr2VbadaOOWC+u5Z+E0V+9RZiAKgpCJ26YbdzZs44GN2Uc7GBhuUrQlRiioCAWUZQMoox9AYFAHoxe/StXYozbX7Y0mNDRGufuJ7bY1btnEd6aot3PwJH1YEPo3VmUD316U8LuyNQB12wslHwLRscy+sBNVFWfM516msu645bl7WmKWWTVBpejWOutGXub1Usl3RFkhNgSLJmaVUhOAXwFjSHw33q+1/mGx1iP0P9zsCLk5N9+C9qOvTOLIurMBGHPTRkK1bQD8ZlOzKzErMxDLA7F1QqFxY6MaGqM8sLE553qweJdONlzKdPba3hrDgcdnA1B33WZbIQvWUQYrVM/6reyd07TpoFKSPiwI/ZDMDf/rZkUsa0QzM0LmrliXVrP/6JZoTrO23XLw8VmceGssodGtjL7+FSqGttueb1cq1601769YQENj1PFcbiNDxfjdmYl4PzoS50MxI7OdwB1a61eVUkOBLUqp32mt/1zENQn9DDc7QpmC1nCqUlP37n5iu6XT58QZbHt7TFLIjr1lQ1LIgvWYCavoa6Fangt5I7ZOKChumm6sXLsj78YmLW1x7rp6Knc8vJWuHkPW/uGwpJAddc2rDBp/xNG1ojZRhkw02No7JxuM4VBQhKwg9EPMNvwf3RLN+nm3ep0hhP2K0GoNzd9ZkDwee/NLBKqyb+g5KZVbODPSp0TODCNDxaxUJZNSGlFWtAZQWuu9WutXex4fA94A5NtEKBp2w50bGqMsfWRrXm3dT+4cycEnZgAw9gt/tKwbc7ommYFYHoitEwqNm6YbXtiLU2rC3P3E9qSQ7dg3jP0PzQGgbtFmBp+11/G1FNnTh1OxW79Vx8ygUrYNnYyozKRla5i7Yp1lQxSn5wmCUHjsNvzNMD7PS1Y1mb5u/ZsH2LBsHhEfRnPpLpUmZCfc/nRWIQu9G3qXTqnLavOXXzPVtImpQWqTQCcbiqU0oqwkamaVUqcCM4FNJj+7FbgVoL6+vqDrEvonbiOdy1dv59jJzrzmiMXeG8Xh351DxfA2xnx2E8HBHX3OCYf67i3ZGWOZgVh+iK0T/CTVttVUh6iqCJj2B0gll7nYqYRDQS6dUseve2pu2/cO59BT01EVXZxy6/q07BMnaBJi06m9tbN3ZjVyCrhpzoRkSUe2dEKr8g0p8xCE0sDKp3NbbpEtEmnYSa8DBt3tFRx4fBYAVbUxzlv6Enta7Rv2Za4rNXJsVSpnPDZrqAdQXVmRPMfJeyylHgNFF7NKqSHAo8ASrXWfghqt9f3A/QCzZ88uxpgnoR9h54BYfXizpWVko+2tMRxYPZPK0UcZfePLBAd1mp4Xi3czd8W6NANkZ4x/sHiGzEAsI8TWCX6SaduOtMUJh4L8YPEMW3HlZi62GVUVgaSQPblrBPsfmU1wcAdjP78ha62XFV1aEw4Fs67JzN5lOrbn1Q/nT+8eTqZSa+DRLVFmTxwB0Of7wKx+OLV8o5zqyAShXLESqJnP220+udnwX756u+Ma/Xw3AFPpPDqI/Q+fT/zQEMZd/Ro/vXsk4N4mp0aO7Vg4M2LZmTnV38z2Ho3RbKVCUcWsUipEwrl7QGv9WDHXIvRfso1myBbpzIeDT07nxPbxBAefZPQNr1gKWYNoS4ylD28FEkbHak3Dw6Fk1NaIYkRsoi9CcRFbJ/hNthp6K+cws1eAm66X0LvZ1/rS6bS8MAWAMV98IWchC73jMDLXm7pOs8iD2Wblnp4SjVTsus9bvfM9LbGyqyMThHLEKuiweefhPsL11yZd2GPxLu54aCs3zZnQp2mT1QaYk6CFkdK7dP5kx82U7Ii9W8ehZ6bR3VHBmBteoXLSQZav/hClSPPtlErU02Yj1fbc2bCNBzftoktrgkqlZaM4Efl2m5zhUJDl10zN4R37RzG7GSvg58AbWuvvF2sdQv/G6WgGq0hnPhx4/Dza3hoHwNi/2EAwnG4sB1cGOdHR917xbs3y1duTQ7D7jBcKKE50dCaNrxHFsNq5FIFbXMTWCYXAaiMu2iPClj68NTk+J9oSY8mqJpav3s7ya6amidpTl61xfe+WFz5C60tnAol+ABXDTgK9sxrdkGrL7DrPm2Em6O3EqRtOqQmXXR2ZIJQjVhtzhjhzQpfWjlJvIRGVdcqelhgLZ0byFrNHnpvC0U2nAzDur16gcvQxID0T0PDtrpsVcdRJ2bA9dzZsSxP5XVonj+9ZOM1yRFGqyE/d5Iy2xEo+aJJVzCqlbtBaP5ztuRyYC3we2KaUMv4q/lFr/VSe1xWEJHc/kT11BBJGIDNCAe4dMYPj2yNJIRv529/3iVKEgopQMACYr80waGYjg9o6Ovs0orIaaSF1XM4RWyeUM3Z1pt967DXTObAtsXiafWhojLoWoLH3RiWFbKpThsvrAGmOUi6bcm4EquH4mW0CZP4ODEfPKj0v87xSx0dbJwh5Y/U5dtu3xEnqrdOorEFNdYi5K9a5Wkcm+x+bReztsUBiqkWqzczEeA/3LppmWesK6bbnwU27TM95cNMu7lk4zdSvNLOvhZgP6xVOIrPfAjINnNlzrtBavwgpE9IFwWMaGqOOug+nGoF8IxQAJ/58CoeenE5V/SHqrt1CsLrvGlZePz2rY2SQaVAmWazLanC21HE5RmydUJY0NEZtHb1Y3LqZiJGSB87H9Jw5ejDv7D9B2wcj2f/Y7MQ8xEVbqBiee4qtgqTTmWtzJav0OStxCn3n2RqRELNojlWtLFCyEQsLfLF1guAFVp9jN43hDLJtcFl1NjYjFFQcP9k3mOAUraF1w5lJIRv5yh+SWSx2GNFgO58xtSu71e8o9flyEqpOsBSzSqkrgCuBiFLqvpQfDSMxN1EQShonqSN2kYBcONZUz5HnplA9+UNGLmgiEOrrREZ6osB2jlFtdcjyHnb1DjKuxz1i64RyxhB++dCltasSi7f3n6DtrTEcemo6gyYcZtQ1jX3KKNySanNz3ZSzSp/LlmroNAJsdf1ymVMrtk4oB6zqNasqFG1xd2I2my+XzTcaXBmkraOLmupQXqMZdZfi0NppnNg2gcHn7GLkp7ehgtpRJozxHqx8v0hKZiHYi/7MJqP9BbvI7B5gM3ANsCXl+WPAbX4uShC8IFvqSKQmnIwE3NmwLa2LZS6NoD58cA7tzaMIn76PUVc1oSr6ClkFXDqlDkgY7NQ6NoNgQHHX1dbF9Xb1DtkGZwumiK0TyhYndZxOcHONg2vO5cTrE6g85Qh1175KIEtju2wo0sc85Lop5zR9LvM1Th27XK5fYoitE0oe4/N09xPb0wRkW7ybgILMigkrQZhpV8zI2rW3upL/7zOTk405c6G7vYIDDedx8oM6hl/8NsM/+hZKJXzQzG7MmaRmkVw6pa5Pt/VQUHGivZNJy9Yk7dFNcyaYNsaC/lt6ZilmtdZbga1KqceBE1rrLgClVBCoKtD6BME3oi0xJi1bQ0UAbLLwHLH7x5+k68QgAOo+swUVNN8VSx0LYRiS5au3J4V3bXWIu66emtX5AmuHSsb1uENsnVDOFDrrYt9D53Py/dEAjLlxE4Gq/IX05y6sT7N5+czQ9jt9rpzT88TWCeWCkb2WGQ3t1omxMIOrKpL+j5UY1dgLtobGKCfas0+YuP2hpj4COhuGwG7fO5wPf/VRAEZ8+jWGTt+V/LkRTJk9cUTSnxseDqEUtLSlzwdvaIyy6uVdfUR7V5dO+o+GUL130TTeP3CcDe8eNl2bXZZLuTYQdVIz+yxwGXC85zjc89zFfi1KELyg1kFaiCZ/IRv9z0uSQnbC7U9bClmDVEOSq2OUrdNnORqjEkBsnVB25Jv+5oYDq2ckhez4v/td3kLWavPOSbdNIS/E1gklg5WAstqoa43Fabrr8uTx3BXrLNNv7e7ptLTCrZCFhG954o1xHFx9HgBDZ7+XFLKQvjHnxA9cvnq7aRO/TPc1tRmoHWa/21x7FZQCTsTsIK21YfDQWh9XSlX7uCZB8IS7rp7K0ke2Eu/KtSexPVpD64tn0nl4CAD1dzxtmlpshp/RlHKOHBQZsXVCWdHQGOX4ycKUOh5rrKftjYRdGf+1Z3OukVXADxbPyCv7RMgbsXVCSWAnoJxmaOSy+eVVeYYVsZ0jk0J25BVbGXLubsdrM8NNx2Un/qVZlks5NxB1ImZPKKXO01q/CqCUmgVINxmh5Fk4M8LmnYctawfyQWs4+tIZHH3lNAZP28XIT7+GCjh//fCwdYMnoWiIrRPKipVrd5ju1nvNsaYJHHl+CuHT91G38FXHm3ZmhEPODKVsyvmK2DqhJLASUMYMbCci1fD1jDm0QaW4bpa9/bATfAoI5NA52eD49giHnjqX0Khj1F33CqGa3nsFlfK9YZzd2DGwFtPl3EDUiZhdAjyslNpD4t94LLDY11UJggc0NEZ5dEvU8+tqDUfWncWxzacx7IJ3qfnEmyiXg1fcni8UBLF1QllRCCejddNptDx3FoPP2Z3YtMtSRpGNtng3t/eMmBCxWjTE1gklgZUNMyKR9y6a1idDAxKpxcZzRhMlQ3x2ac2qV3bx5Na9tMbi1FSHEpl0sd46VLvOwBuWzbMcgWiH1nB04+m0vDCFqgmHGL1oc5/meN1aZ7V7ZmnXTsrmwH7sGNj3ZcmnV0GxySpmtdavKKWmAIaM36G1LkyBjiDkwd1PbPc8jUR3Q/PKBQAMnfV+TkIWKFiNm+AcsXVCuZGtE2e+NH9/PjpeQfXkPZ4IWYNu4FuPvSZitkj4aeuUUhOAXwFjSJQO3q+1/qEX1xb6H3Y2bOXaHWxYNi/NTpilJWd2+AWIpzRGSvW3oi0xlqxqIhwKEAqqPmVo0ZYYc1esY3g45Cq1V3cGaP7eFQAMPjvKyCteM81gySYMrdKur5sVYdUru9LWGwoqFp8/wZOxY1DevQqyitmeOorbgYla6y8ppc5USk3WWj/p//IEwR3GjpYfDp7uVjSvvDJ5XPvJP+ccYQ1KaLbkEFsnlBtW8xjzRWto/s6C5PGoq7Z6JmQNYvl23vOBcu3k6RafbV0ncIfW+lWl1FBgi1Lqd1rrP3twbaGf4MRXM4vamqUl52KZYvFurAoeoi0xQkFFKKD6lHFUhwIsmjU+TUB3Ha9i908uA0BVdDHyqiZL39AYzWiFWRAmFu9i/ZsHWHn9dN/GjhnnQ3n2KnCSZvxfJOaRXdRzHAUeBsTBE0oKN93p3KK7Yf9DFySP67+xJq9U4VxrMQRfEVsnlBV+9AXQGg4/e07yuP7rT3kuZEuRcu7kmQO+2Tqt9V5gb8/jY0qpN4AIIGJWAJz7amZRTC9LK+y20+JdmtrqENWVFabCzrC5qUK2cmwL476wwfaemaMZU2lojFpm7e1piRWkj0C59ipwImZP11ovVkrdBKC1blNKwkpC6eBnNBYSQvbQU9M5uXMUQ8/7gBGf2p73Ne1axgtFQ2ydUFY0NEZZ9cqu7Cc6RGtoeX4Kx5smUv2RvYy69lVXje3cECixT1Y5d/LMgYLYOqXUqcBMYJPX1xbKk4bGKHc8tDXrhn4oqEzTW/0urUjlSFuc6kpzmRRUipMHBrPv4fNRoU5qLtnBsFkfZL1mLN7FHQ9tBfpuktmN1CmHutVi4kTMdiilwvRE8pVSpwPtvq5KEBziZzQWoDseYN+DF9F1opKaS95g+IXv5X3NcqlBGICIrRPKhobGKLc/1JTTDEQzdDfsf+R84geGMfT896i99A1fG9XdPKfe9PlipfqWcyfPHPDd1imlhgCPAku01kczfnYrcCtAfb3534HQ/zD8NUeZaRan+FVaYYUhnKMtMZY+spXNOw+z/s0DnGiu5cCjsyHYzZibNlI1rtXxNbu0Ns36sLM14jPa40TM3gU8A0xQSj0AzAX+0s9FCYJT/JwV1tUWYvePEoO5h390hydCNlJGNQgDELF1QlnQ0Bhl6SNbvROyXYrm7yb6AVRP2ZMUsmYNUrwgFIB7Fk7r83wxU33LuZNnDvhq65RSIRJC9gGt9WOZP9da3w/cDzB79uz+n8MuAO78tXi3TsuKSN3kqqkOUVURoDUWtxyhUxMOMbiqwjaKG1C4sqHxLs2vNzZz4IkZtP05QsWI44y+4eW00TtOMcv6sLJBNeGQ+IxZsEwgUkrN7Xn4ArCIhKF7EJittX7O95UJggP82jXvPF6VFLKBqjg1c9/J+5oK+nTmE4qP2Dqh3Fi+ertnIrM7HkgKWYBR1zQmI7J+CFmAIYP6ztk20g+tUn39Zun8yYRDwbTn+lsWTSFsXU+68s+BN7TW3/fimkL/wK2/tqclRkNjlBl3P8uSVU1EW2JoEum/7Z3d/GDxDL5343TTz+3ya6ayYdk8y5KugMJ15yitYdd9n6Ltzwkfbuwtf8pJyBpk/j6sbNDya6bmfI+Bgl01zH09/39Ja31Ia71Ga/2k1vpgIRYmCE6oqe7rFOVLV1sl0Z6CfoAJS5715Lr9dIe/PyC2TigbGhqjrkZG2KE7A+z6/hXJ44nfzK+xnVNaMpqcZEs/LESq78KZEe5dNI1ITRhFIovm3kXT+tvmYyFs3Vzg88A8pVRTz39XZnuR0P9x66/VVIf41mPbTO1damTT7nNrZTu6tX0DqEx0N0R/8km6Y5UATFiylmC477r+dfGMtLXccmG95fSKTJ9wgNggX7BLM44rpe4Hxiul7sv8odb6a/4tSxCy09AY5fjJzuwnuqC7I8juH30qeTzxm+4HZ5sRQGoeShixdULZ4FWUUnep5FxEgFOXraFQTdYznbhs6YeF2ggs106eLvDd1mmtXySRiCQIaVjZl3AoAKg+8021xtYuGELV7nPrRcOo7o4gB5+YSdeJQQSHnCTylT+YNsaL1ISTazHSoh/Y2ExNdYjjJzvTxvwozMf0DAAb5At2YvYq4DJgPokW7oJQUqxcu6PPDLB86G6v4OCT0wEYfM5uRi3Y6sl1FXDzhfVioEoXsXVC0bFrfJT6My8snu4McKhn/E7VhEOMvXljwYRsKNC3S6ld5LW/pfoWGbF1QtFotcgoORlPpAyn1sRqTdYMlIBSnLpsDcGeulmzniT5NozqOlHJ/kfOp+PD4Yz41OsMPW+n5bmnjgwzd8U6oi0xUrOYj7TF+3Rv19iP6RHcYSdml2qtv6mUqtda/3fBViQINtzZsI0HN+3yfE5rZ2uY6L/PA2D09S8TPv2AZ9cWo1XyiK0Tiopd4yPA0+6d3Scr2PXD+QCMvKqJIVOjnlzXKUMGVfSxg1bRk6BSkmbnLWLrhKJh12QtNaLp1N4ZfqDx/8yGccYmYK62M/b+KA49M43utirqFm2m+sz9tudvePdw8nGmh2oWd+nHo78Kjl3N7JU9hfyfLdRiBMGOOxu28euNzVmFrNv8pvZoTVLIDj3/PU+FrEGhmpgIOSG2TigqdjNOvezY3nl0UFLIDjr1QMGFLPStlwXrxiffu3G6OHreIrZOKBpOmqzla+8Mu2mI4lxTjFs3nsb+h+bQdbSaMTe/lFXI5ko/Hf1VcOwis88AR4AhSqnUGWEK0FrrYb6uTBiQZLZf1zqRmnJKTdjxh95NzPZk8wj2PXgRAKGRxxgx740cVu0MMVoli9g6oahY2YZ8a71SiR+pZs/9lyaPxyx+2bNru8Gs/tUQrMWYLzvAEFsnFA0nn3Mv/KRoS4w7HtqacwbfoWencrzxVABGL3Y3Q9Yt0hjUGyzFrNZ6KbBUKfW/WutrC7gmYYByZ8M2HtjYnFZnYOClU2fQsW9YUshWjm1h3Bc2eH6PVMRolSZi64RiU1MdSrN3XmHUbXUeHZQmZL1qbOf0/gZ29a/S+MR/xNYJxSbb59yLhk1ATkJWazj2yqSkkD3lS88RGnEi77VAolcAKn3cmfQD8A67ObNTALTW1yqlqjJ+dqHfCxMGFg2N0TQh6zedx6rY+98fBaD67KjvQlaMVukitk4oJn50ZTfQJBrbffhAz6bdmNaCCVkwupQmqK0OSf1rkRFbJ5Q6ZqnIhWiNrbvhyB/O5sj6s6mevJcJtz+dt5A11h2pCbPyhumsvH66jN3xCbs0498A5/U8finlMcBPM44FIS9Wrt1RMCHb/uEwDj01nYphMUZeuZVB9YezvygPaqtD3HX1VDFapYvYOqFoeN2VPZX4kWoOPjEDtGLUwi0MnvyhL/exoi3eO8nxZNzNVEfBJ8TWCSWNWSqyH5l5qXS3Bzn41Axib41l6Oz3qJ33Rs7ztmvCoWRpnFmphPiB/mAnZpXFY7NjQciZhsao78bK4Phr4zn0dGL8zti/eNHXWgiD6sq+3TuFkkJsnVA0/KqlT+0HMPqGlwmf5n1jOzdI586SQGydUHKYjSXbsGxe8ufGuBuvCSpF7MBg9v78EgBqP7mdYbM/yOua7Z2JMUNi5wqLXTdjfPzmEAAAIABJREFUbfHY7FgQcqKhMcrSR7yZ55qNo6+cmhSyIz79WkGELEjjpzJAbJ1QNPyopY+9W5cUssPmvFt0IWsgtrDoiK0TSorUrsOa3vE6DY29ndb9KtE6v+KspJAdPHV33kIWZHJFsbCLzI5XSt1HYrfOeEzPsWw5CJ6wfPX2tIJ4t1SHAmmpbFa0bjqNlufOAhLO3dDpu3K+p1uk8VPJI7ZOKBpL50/m9lVNeJWE2/bOaA48ej4AVfUHqf3Emx5d2TmZjZ8MxBYWHbF1QklhN5bMiG4unBlhyaomT+97clctq34zCYDaedsZdv4Hnl1bNu0Kj52YXZryeHPGzzKPBcE1DY1RWmL5dfB0ImTb9w5PCtnhH91Bzdx38rqnG6TxU1kgtk4oKJkjyLwSsp2t4aSQDZ/5IaMXbfHoyu7QJGxfqpMqtrAkEFsnlBRWwi/zeaeBCyccfHI6J7aPR1V2Mu4vXiQ00puOxQayaVd47Ebz/HchFyIMPAqRitFxYCgHGhI9Leque4XqM/wZfG2FdKsrfcTWCYXESKszhJ5XI3niLWEOPD4LgNrLXmfYrJ2eXDcXasIhll8zVebGlhhi64RSw6rBU6ogbGiM5pXBl0r0Pz5BZ8tgAMZ9foPnQlY27YqDXWTWd5RSvwCuAvZrrc8p5lqEwuN3KsaxVydy+HfnUDmmlTGfXU+ots3X+2USVEqcNwEQWyf0YpZWly+xd+vY/8gFVNSeYNxf/pHKMUc9vb5blJK5sYIgJDBr8GTYhqXzJ6dt7kFfQehFx3fdpWj+7pXJ4/Ffe5Zg2NvZ3sYmnti9wlNUMQv8Evgx8Ksir0MoAn62XD/w+Hm0vTUOgFHXvFpwIQu5De0W+i2/RGydgPebeK1/OoOWPyYcv5FXvFZ0IQvQ4lG0WRAEf7ATmF7fJ1WsGg2eIH3Dy1hLdWWQto4ulqxq8qxOtutkBbt/OD95XP/1p1BB7/yziGSeFB27bsYAKKXmOnkuF7TWLwD+DvkUSpKGxign2jt9ufa+VRckhezoGzYRGlF4IQuJXTqhfBBbJxQCL+upjjw/OSlka+f9mUETSuNPTGrGShs/bZ1Q+jjpIOwVdg2eDBbOjLBh2Tw+d2E9Jzq6PG2r3dUWYvd9lyeP67+xxlMhC7Bh2TwRskUmq5gFfuTwOUFwhGFI823+ZMaR9VM4+UEdAKOvf5nwaQc9v4dTTnR0+vLlIPiG2DrBd5bOn0w4FMz7OsdfG8/RjWcAUHvpnxl2/vt5X9MrLp1SV+wlCPaIrRuANDRGmbtiHUtWNWUVmF7htMETwIObvJ0yEXt/FLt/dDloRe287Uz85hqUx9OUwyEnMkrwG8s0Y6XURcDFQJ1S6vaUHw0D8v8mdohS6lbgVoD6+vpC3VbwET9qxgBi79Vx9OXTARi9eCPhUw95fg83xLt0Wnt5oTQRWycUEsMe3PHQ1pxLEdr3Du+dmX35NobObPZsfV6w/s3SmGsrpFMqtk4oPJnpvmb40cdkeDhkGrgYbpK55mVp1tEtEzny+0R7ihHzX2PoDH/GMQ7yYGNSyB+7mtlKYEjPOUNTnj8KXO/nolLRWt8P3A8we/ZsKULsB/hhME+8OZaW56dQObaFuoWvUjHc/zlfoYAChW2XPZk3VhaIrRMKSrL5ycNbXTc2ie0cyeFnzyE08hijrn2VyrrjfiwxL/zqhSDkTUnYOqHwOAki1FSHmLtinad1tPEu83E6SvXW7UZbYgQ9DJnu/skn6To+CPB/ioX0BygN7EbzPA88r5T6pda6eD3+hX6H142f9v12Did3jkJVxhn3l38kUOV91DcTo+AfSBpjM6R2rPQRWyfkg5tGKqnnDg+H6HQpZA//birHXj0VgPFf/T3BIe35Lt8XvHRMBe8QWzdwybaxHgoqjp/sTI4Ky2zUlAsNjVFOdJj7Y0fa4mkNnryKyu78lwXJx+P++gUq6455cl0rxMcrDZx0M65SSt0PnJp6vtZ6Xr43V0o9CHwCGKWU2g3cpbX+eb7XFUobs1bsuZJquE754gu+C9lwKNhnduzCmRHTFB6ZN1Z2iK0TXJGtU6fduW57Buz91cV07K0FYOwX/lgUIVtbHXI0F1c6uZc8vtk6oTSxCyJEasKcaO/sY5OMOlqnYjZzY8+vJp9maA37HrgoeRz58rqCZOhJf4DSwImYfRj4d+BngKdKQWt9k5fXE8qD1Fbs+URo04Tsl9ZTMexkztcKhwLE4ubpMKnnZApZg8z28n62uhd8Q2yd4Aq7Tp3GZz81lS5Xov95CZ2HhwCJfgBVYws/fqcmHKLxny6noTHK0ke22pZXRCRaUer4ZuuE0sRqnqvh00xatsb0dU5Lpcw29gpFd3sFu/41MXonOPgkka+s87xjsRXSH6A0cCJmO7XW/+b7SoQBR1tH7rt2Bx4/L/nYix24k1mELEB7Z7etOE2dmSaUJWLrBFdk69TppOlKNlr+eGZSyI753J8YNP5IztfKh9aeqM3KtTtshaxkpJQFYusGGNk23K0it07TaP1q7JmN+JFq9tx/KQDVH9nLqIWvet6x2A7pi1IaOBGzTyil/hZ4HEjmNWmtS2OgnVAWZNaKtcbiOc8SO779lOQc2fFfe5ZgOL8C/OpQgPZOnTU1zmV5m1B+iK0TXJHNAczXwYu9P4rWP52ZuOat6wnVFmdmNvS+JzvnLSIZKeWC2LoBiN2Gu1Xk1m5jKtWvK4Z7dPz1CIfWzAAgfOaH1H3m1YKvQWpmSwMnYvYLPf9fmvKcBk7zfjlCfyTfWrFUjLqxwefsYuT811EV2SOq2WhzEJUVBgRi6wRHpKYOK0hz5FIdwHxS7Q6snkHbGxHCZ37IqAVbCVQVrv7MDOM9WQn4SE2YDcuk5LJMEFsnpOG2VMpp1onTOnu3HHrmHI5vnQjA8I/toObidzy/RzYkC6V0yCpmtdaTCrEQof/iVfpJao3syE9vK1hNhIEMx+7fiK0TnJDpxGlICtrULudzV6zL+R6ptm7UgqaCdGgH+ghzg9rqUO84oRwiOEJp4aetU0r9ArgK2K+1Psev+wje46ZUyolfp8AXIdv6pzOSQrbmYzsY7rOQVfTOyw0qRZfWkoVSYmQVs0qpauB2oF5rfatS6kxgstb6Sd9XJ/QLcolO/OviGTy8uZkN7yaynlKduwm3P11wIRsA7l10bkHvKRQWsXWCkzE7Zk6cIWQ3LJuXd51sqq0b//e/K5iQjdSEuXRKHY9uifYRqnddPTV5LM3uyh+fbd0vgR8Dv/LgWllxMxpL8A4ntaJ+eGmH/3AWxzYnEgjGfv5Fqk5p9eEuvRgbfIOrKlh+zVT52ypRnKQZ/xewBbi45zhKohOeOHhCErsvFGMnyw0r1+5gw7J5TPzmGpq/ky5kAyH/04Jrq0NUV1bIF+TAQmzdAMQqZdhqzE62pk/LV2/PXch+54rk48jf/p5gdUdO13FLaorw7IkjsooDaXZX9vhm67TWLyilTs33Ok5wMxqrFClnIW436scPdDc0r0z4goFBHUS+so5Apb8bfU6+D4TSwImYPV1rvVgpdROA1rpNKZmILvSS7Qsll5mD0ZYYF9+7jsPPTEs+V3/H057UyGbDiESIwRpwiK0bYJilDKdiNmfRyokLKMWdDdty7gnQuuk00IlShvF//zvPhayxqWhW43vplDrmrlhXlk61kBP9wtY5GY1VqpS7EDcrN/CLrliI3fddnjwe/9U/OPIFAyr3xp1mQZhy+dsaiDgRsx1KqTA9339KqdNJ6X4nCFZfKEtWNXH3E9tzagCgNWxvmEjb22MS7davfRXlQ8mqkVq3/s0D4sgJYutKgEJGK5zUfUVbYmlCzywVF6BLa369sTmndbRuOo1jmydRNeEQo69/xZeIw7v3Xgn0/f1mvp9yc6qFnCiqrVNK3QrcClBfX5/zdbJlSZQypSDE87G1xnl3PLQ1p4CFUzr2DWPvLz8GgKqMM2HJs45H7wyqCFAVCrr2P0NBZTl+rBz+tgYiTsTsXcAzwASl1APAXOAv/VyUUF7YfbhzKf7X3YrmlQnHa9icd6m55E1f5oYFlRLhKqTSb2xduaavFTpa4dQxMSKx0ZYYq17exeILJvDgpl2eOHFGjWz12VFGXbnV134AdzZsS647qFRyI6/YTrVQcIpq67TW9wP3A8yePTvnP/h8Z6MWk2ILcTNbu/SRrSxfvZ3WWNzR94bxM78itCd317LvgYuTx/W3Pevq9W3xbr696NzkOhsao9z9xPbsfqm27sJcDn9bA5GssS6t9e+ARSQM3YPAbK31c/4uSygn3H64AzbCVHcGkkIW8E3IQiKS8q3HttHQGPXnBkJZ0V9sneGkRHtm/xmCsBz+zu2iFX6Qi2MS79Y8umU33XkKWa0zuhb7KGSrKgLc2bCNX29sTgpwI5JsVfcmEYj+S3+xdUvnTyYcCqY9Vy6dta1sT6HEkpmtjXdpWmJxV98bC2dGuHfRNCI1YRSJbLdqDyY/tO+pYd+DFwJQPXkPE7+5JqfrpH53bN55mBYHAZZ4t0ZryvZvayDi9C8uAgSBSuDjSqlF/i1JKDfMvlDssKph6I4HaP5ebwOU+m+s8VTIml3KT0dZKEvK3tYVWhB6SaGjFWa2y7ATERunMhbvzqtTp9akNbarv8PfDu3tnd38ZpO7FGiJQPR7fLF1SqkHgZeAyUqp3UqpL3pxXTPMhNS9i6aVRUZBsYW4E5ua7XujoTHKzH9+liWrmoi2xBgeDrF0/mSqXPiDZhz+w1l8+D9zoTvAuL9+nrqFjTlfyygTubNhGw9sbHZst1tj8bL92xqIOBnN8wvgXGA7YFRca+AxH9cllBFe1E7oLsWu7/cK2Vx34WzvYfG8RCAE6D+2rtjpa/lQ6LTBbGNmTl3mgx3KFLJLn0IF/B81ZtcIJbNGTCIQ/Rs/bZ3W+qZ8r+GGcu2sXewRV067Ead+b6SWr9RUh2iNxdPsSkssztKHtxLPtesS8OH/XEz7nloAxv7Fi1TWHc/5WgbRlpgrIQuJ30/mv5Eh7Mvx762/46Rm9kKt9dm+r0Qoa4wP95JVTa5fq7sUh55OzHANDOpgwj/8zvS8mp6h1V4jEQihh35h68q5jsysQ6bfwsrOGc6leZ0dWkPLc1OSx/VL1/jS2M41PTViLW3OauWEsqdf2Lpyp5hC3Gk3YuN7I7PG1sou5ipkU0fvQGI0WcVQ73qSuV1VW0cnpy5bI+N5ygQnX6MvKaXE6AlZWTgzQm11yNVrutsr2PWv84m9X8eIT71uKWQjNWGa7rqcWy6sN00XdkJtdUhqIAQ7+oWtK3b6Wj6UWtrgXVdPdXxuKKioCYdQJDbeMnsD6G5F9KfzOLa1nuFz30qUUZSCkCXhgFZXVvD+igVsWDZPHLX+T7+wdULuZNra2uoQoQyjlfq94aTze650dwTThOyE25/2VMjmgiHWrca1CaWFk8jsr0gYvg9JtG5XgNZan+vryoSyo6Exipss485jVUR/ehkAQ2fuZOh5O03PSzWo9yycxuyJI5x1pMvAcEzLscurUBD6ha0rdvpavpRS2uDCmREe3tzMhncPZz033qUZXFVB012XM+PuZ9PS77rjgWQZxaCJBxk+923fGtvZccuF9Zbjg8ohDV3wjH5h64T8yLS1dl3w/bIP3e0V7Pn5x5PHXvdK8QOxlaWHEzH7c+DzwDZ6ayuEAYjZfEJjPms4FKAt7vzPo7M1TPTf5yUOVDe1894A+g6qDirFdbPSDa5hgBsao9z2UJNjAW1co1QcZaHk6De2rpQEYbnzwSHnjsuelhgNjdG0cojujiC7fvDp5PGYz27ydH1OidSEuWfhNNa/eaBs09AFz+g3tk5whpNxbXbfG05rbN3QHq3hw1/PBaDmE28wfM57nl7fL8RWlh5OxOwBrfVq31cilDRmM8lSd/hdCdnjVb1CFpj4jaeTj7u0TqtRMMZH/HpjM7XVIe66emqasa1QiriPA7uFAYXYOpeU6zxbOzLfkxsHTpPeNyBTyPrR2M4JqdktVrVyJ9o7aWiMlv2/n+AIsXUuKWdb58X87kun1LluomTH8e0RDj05A4Caj+0oCSGrgOrKICc6rNOpy6VkZ6DhRMw2KqV+AzxBIh0FAK11WXX4FPLDq3qJ7vYKoj+5LHls5txZGcsjbXGWPrIVSBjglWt3OG424MHYM6H/I7bOBV44SMXGLNvk0S3RtPeUurnmBt0ZYNd9n0oeF0vIQmLOrIHxb5NZqtESi5fdv5+QM2LrXFDuts5uXJvd+g37mI8dNGPvLz9Kx77hAIy8qpEhU/d4dOW+1FaHOH6yM6uvGFSK7904HaDPZp/x3iNltokxkHAiZsMkjN3lKc+V3bgKIT+8qBHoOlnBwSdmoiq6GHbhO9TMfcf1NeJdOmmA3axpyCB3jamEAYnYOhfk6iAVA7OoCtDHQTWLPGjo48iFgoquLm2Zn9kdD3Do6XNRCoac9wEjPrXd43fkjkyhamwGZvYdKNV/P8FzxNa5oJxsnRl249qsIs6ZAt4rIbvzX3obPY29ZQNVkZa8rxlQ5qPHgkrR0hYnHArYitlwKNin0WC5RuEHKk7E7M+01htSn1BKzfVpPUKJMjzPsTgdB4ew9+eXADB68UbCpx7K+VqGYXaTAtji4XgNod8its4F5TLP1iqqUlUR6OOgWrk7xq684dycaO+0tIddx6vY3ZN9MurqRgaf7V/UwQ2Zzne5/PsJviC2zgXl/lmx8pVqqkN9bOPSh7fm1GAzG1rDwZ60YoBxX3yeylH5z5BVWM/QNvqv2JXBmUVbpedE+eEk+fJHDp8T+ikNjVFOdHTm/PrYzpFJITv0/PfyErLQW3xvNoLEqgmeFOwLDhBb5wKrz1SpfdasoipuNudqq0NsWDYvObqm1eK18cPVSSE76NQDJSNkDVKd73L59xN8QWydC8r9s2I1rk1r+tjGeLf2XMh2xwM0f2cBbX+OEBxykgm3PZOzkK0IqDQ/z8icyQUFMoqsn2AZmVVKXQRcDNQppW5P+dEwIGj+KqE/cvcT24l35ZZkEnu3jv2PXABA5bgjjOjpWpwrwYBKpgiajSDJrHkDKdgX7BFblxtmjYRK8bPmRfTkSFucU5etSe7im0U6Og4MYe8vLkkej1n8ct73tSOgoKoimPb7DwUUQwZVWDqjNSlzwMvl30/wDrF1uVHunxWrcW23pTSr84vUEYyVY1sY+xcb8hq902kShjUrBXGCk82Icm78NZCwSzOuBIb0nDM05fmjwPV+LkooDRoaoyxfvT3n9OL2vcOTQnbQxAOM+ay5cxfJGPNjiNLfbGzuU5OmMzoXm6WDzJ44QoyP4AaxdTlQLvNsrVLsaqtDnIx393FQQROzSEuLtsRYsqqJcChAKKiSm3ydRwclhayq6KL+jme8fyMZdGu4d9E009//jLufNbXbqeazXP79BE8RW5cD/eGzYjZTNpAxCtFr2t4ew4HHZgNQFTnM2Fte8u1eqaUgTt5XKCUwYkW5N/4aSFiKWa3188DzSqlfaq13FnBNQgmQ+SF2S+fxKg48NguA4Re/Rc3H3rY899IpddyzcFrac3NXrDNtrtKtydp0QeodBDeIrcudcvisWUVV7rp6KkCyW2dQKcf2LhbvJhRQVIcCHD8eYP+jCYet+qwoddf4H+2AhONm9fu3SoPOfL4c/v0E7xBblzv96bNi+Hd+CtmWFz5C60tnAonyssysvMqgoiPHjD8zgkpZNq8yxUF0uNwbfw0knDSAalNKrQSmAoOMJ7XW86xfIpQjqekUkHv3utgHIznQMIuKISep+8yLVJ3Sanv+g5t29RGzdo2dyqXpglB2iK3rhziJquSycRfv1nQdGkr0VxcSCHcw+oaXGTe1haum17Pmtb2e152lki3F0SoaXS41foLviK0bwHg1atGKY1sn9ArZWe+blpd5KWQh0ewpM2p6x0NbLQV76mQMK8q98ddAwomYfQBYBVwFfBn4AnDAz0UJhSffSKzB0ZcncWT92QCMumkjlWOOZn2N291BccgEnxBbV+LkWr9kF1XJ1bFre3c0Bx45H4BR17xKeNJBjp6EX29sdn0tNziZdVjuNX6C74itG8D4KcaOrJ/C0c2TABhz00sMqj/s270ySY2aLpwZyVoTnO33IJuC5YMTMTtSa/1zpdQ/pKSovOL3woTC4sVOXcuGM2h9MeEsjbyq0ZGQNWhojDpO2xCHTPAJsXUe4nXjDL/ql3Jx7E68OZaD/5sooxh20TuEJx0ErEdE5EJmQxOzWYhW9IcaP8FXxNYNUPyqldUadv1gPjqekBUT/mEtgUG5T8HIlcyO7XZZftlEqWwKlg9ORvMYuVJ7lVILlFIzgRE+rkkoAvnu1B19eVJSyNZ8bAdDprobSbFkVRNzV6yjoTEKJOofzAgoKbwXfENsnUcYwjPaEkPTKzyNz3cu2NUv5UM2h6a2OkQgxRzF3qtLCtnqj+yl9uP53d8MBfxg8QwiNWEUiWisUyFrsHBmJG2ckNhNIQWxdQMQv2pluzuCNH9nQa+QXfJMUYQspNtzs5FEBk5E6cKZEe5dNC0vOywUBieR2XuUUsOBO0jMIRsG3ObFzZVSnwZ+SKIl/M+01iu8uK7gnuHhUO5diz8clkwtrp23nWHnf5DTdVIjLTfNmWCarnfznPqcri0IDhBb5xF+NM7It37JLFIMcKLd3ulKrX2NH6lm/8OJDu2Dz9nFqAWvObq3GUGb6MgpNs2dBMEDfLN1Quly9xPbPa+VjR+pZs/9lyaP67+xJqfROwGVGL2Y6xhI6CtQUzNUjCZ/XVo7KtVIvYbY4dInq5jVWj/Z87AVuNTuXDcopYLAT4BPAbuBV5RSq7XWf/bqHoJzcp371b5nOAfXzAA0oxdvInzqobzWYTi8G5Yl+lA8uGkXXVoTVIqb5kzo0yhKELxioNi6QszN81p4XjqlzjI1LqAUk5at6fNe7mzYlrQfmRgjdtwQPzyYg6tnAjByQRNDzsk9ygzw7r1XmvYqkDQ2wW/8snVC6dLQGPW8KV3H/qHs/a+PJ48nfnNNzte6eU49syeO4O4ntue0TgVcN6uv8BQxOjDIKmaVUh8B/g0Yo7U+Ryl1LnCN1vqePO99AfCO1vq9nvv8FrgWEDFbBFpyMB6tm06j5bmzCI06SuQr66gYdtKTtRgO7z0Lp4l4FQrGQLB1hZqb56RxhpWoNlujXVMlQ6xGW2IsfXgr//fxbZzo8Db6YNTIBgaf5JS/eY7QyBOeXFdqW4Vi4KOtE0oMw87a1Y7mQvuHw5JZKoMm7WfMjbmXXN9yYX3S10vdjHxgY7PjqRoaWP+m9DAbqDhJM/5PYCnwHwBa69eUUr8B8jV6EWBXyvFuYE6e1xRyJFuhfCYfPjiH9uZRAIy6uskzIWusRRCKQL+3dYWam5etcYaZYL1tVRNLVjXZpt9mI96tiXssZI88N4Wjm04HYOQV2zwRsuFQb7sKp5GDQkTUhQGDX7ZOKBEaGqM5Rzmzkdrsc+wX/kjVWOfNPjOJ1IRNgxb3LJzG7IkjkjZveDiEUonAi9W3g4zMGbg4EbPVWuuXVXoeasEqu5VStwK3AtTXS72kXyydP9lx2t3e/55Lx4c1AIy+4WUqRx/zbB2SYicUkX5v6wo1Ny9bxNFMVBsOitfNSfLh0LNTOd54KgC1n9xO9en7PbnuIIumJFYUKqIuDBiKausE//BTxALsf2wWsbfHAonRO/kI2Wz+ntVG39wV62RkjpCGEzF7UCl1Oj2+hlLqemCvB/eOAhNSjsf3PJeG1vp+4H6A2bNnl46X0w9I3ekfHg45es3h35+dFLJezhBTINEGodj0e1tnlYFRU+3s8+8Gu4ijF+JZqcQ4CL84umViUsiOmP8aQ2fssn+BC9yWdRQqoi4MGPyydYJH5JKJYVaD7xVaQ/N3FiSPT/k/6wjVOLfjNeEQV00fx/o3D+SdXWKW+aNIbPLNXbFO/MgBiBMx+1USDtYUpVQUeB/4nAf3fgU4Uyk1iYRj91ngZg+uKzgg0+g56WTc9u5ojm1JDMMee8sGqiItnq3nB4tniPERik2/t3VL509m6SNb+3SMPH6y09Ws51wxHDQvNKifQrZ9z3CO/P4cAEZdu4XBUz709PpuIwiFiqgLAwa/bN2ApFRmapttenmB7gzQ/L0rkscTlqwlUOUukN/e2c3siSM86YOS2aU4dSa3ZK0MTGzFbE8Xzr/VWl+mlBoMBLTWnuSUaq07lVJ/B6wlMa7iF1rr7V5cW8iOW6N39OVJtL58GoMmHmTUwi0EPZ4hJhEGoZgMFFu3cGaE5au399m8indrTz+DVmNw/IoaeMnxbRFaXphM5bgj1C181dN+AAaXTqlzdb6ThlqC4AQ/bd1AxI8SALeZGHad280IKOh2uBnY3RFk3297WzzUf/0pVND9TqLXmSRG5o9ZyrFkrQw8LMWsUqqixwn7KIDW2pv2jSlorZ8CnvL6ugMRtzuDbnb0d/3oMrrbqgCo+9LzrnfknCARBqFYDDRb12qRheHVZ9DKuauqCJS8kN332ws4uTMhNMd9YQPBIe2+3Mdt181sDbUEwQmFsHUDDa9LABoao5bNOM1s9J0N22y7vZsxbFCIYyc7s4rfjgND2fuLxOid4R/dQc3cd1zdJ5N8ZoK7LVkRn3JgYReZfRk4D2hUSq0GHgaShk9r/ZjPaxMc4nRnMNVAWM1szGTnv/TWSIz/6u99EbIgEQahqAwoW+d3lM/KubMSsopEza5fDUucEr3/EjqPDAFg3F8/75uQBfeOlozwETyiILZOKfVp4IckMlF+prVe4cV1SxEvxZThy1lhZqMf3OS+lr8lFqc2i81te3s0Bx47H4Ch532Qt5AFZ98xbiPdkrUigLOa2UHAIWAeibR0Iz29Xzl45YyTncFMA+FWyEYCqYoNAAAgAElEQVS+8oecnbuanpbqdoZTIgxCCTAgbJ3fUT63TtwpNeGi76JH//1SOlurgUQ/gMq64zlfK9Lzfk6pCXPkRDtt8e4+5+TiaDkd4SMIDvDN1vWkMf8E+BSJMWSvKKVWa60LPle7EHgppuzKv6xsdC7d3xX2/tj+R2YTe3cMACM+9TpDz9vp+h6ZOP2OcRvplqwVAezF7Gil1O3A6/QaOwPpKlxCONkZdFsje+iZ3iL98V/9fU5CNhRQrLxhetIAWbVTrwmHxEkTismAsnVuo3xuSxisnLva6hAn492mTofRyCMfggFFl9NCsBSObj41KWTH/eUfqRyT38zEDcvmJY/NuouKoyUUkULYuguAd7TW7wEopX4LXAv0SzHrpZiy29S7d9E0U7uby1xuu7NTy8pG37iJ8KSDrq5tRlApy/Vn4jbSLVkrAtiL2SAwhHRjZ9DvHLxypaExapkynLoz6CbycWzrBI6/njAEE5Y8Q6Aqtzq3VCEL1kZ/+TVTc7q+IHjEgLN1TqN8uTQ3sfqc33V14nNu5XTk2xwqAFSFAqaRUCva3h5Dyx8/AiSyT/Jp9qTom2EijpZQYhTC1kWA1NzX3cAci3N9xesuw2Z4+Rm32giM9Phyc1es63OPm+ZMcF0za4bW0PLclKSQ9XJixU1zJjj+feQS6ZasFcFOzO7VWv9zwVYiuMZwNM2EbObOoNOatF0//iTdJwYxZHozIz71um3XOrsdQaX6Orvi2Aklitg6C3JpbpL5OR/eU2Zw26omy8+8mW24dEpdciZhTXUIrRPNq06pCXOivdO0I7ObwOy+387h5M5RhM/8kFFXNRGo7H2f1aEAGuVKXIdDAW5b1cTKtTvS3qM4WkIJURK2Til1K3ArQH19vS/38KPLsBVefcatNgIvnVJn+V6MUTduuhlnorsUzd+9EoDgkBinfPEFAi4mVqSOxjHDTcM7SRsWcsFOzJrt3PVbvNzBK8RuIFinDpuldGSzcZkDsUdc/joqYP0iBXzvxuls3nnYdFfwc3PMv6DEsRNKkAFl69yQa3MT43PuxqF0YxsmLVtj+rxTZy61H8CoqxsJhHqjuaGg4tuLzgV6xXVNdYiWtrilwxZQJCPCMudQKGEKYeuiwISU4/E9zyXRWt9PYs4ts2fP9iX7xesuw/ng1Ce02vDP9l7uWTiNexZOo6Exym2rmlyF2LtiIXbfdzkAgXAHkb9dh3L4V6IUvH/vguT7c9OF2QoJegi5YCdmP1mwVRQZL3fwCrkbaGUgurXucy+rcRzQV8jWf/0pWyELiV24VOfT2BUMKsVNcyZ4MhhbEArEgLF1bsm3uYlfDqXVupzUj6V1aP/as2lCtrY6xF1XT02LqhqOml1mS2ZEWOYcCiVKIWzdK8CZSqlJJETsZ4GbC3DfNEplZItbn9BsU++2VU2m1858LwtnRiwDDGac3DWCfb+5CICK2uNEbn3e0esMtE4X6lb2120zLAl6CG6xFLNa68OFXEgx8dLh8st5MxuKnc1wOBnFYypkHQzEjqQYJ2NXUBDKkYFk69ySb8qX1U59vs2erNZ13awIj26JWqYHN39/fvLx+L9/lmC4V6DWVodo/KfL0843a+DklGJ3aBaETAph63rm2P4dsJZEje4vtNbb/b5vJqUyssULn9DNe7ln4TSe3Lq3TxlGJke3nMqR3yf6GAyeuptRV211tJZUjNIKw2N0UvImCH7gZDRPv8fLHbxs18olBdlqKLZVBOJEeyd3NmxLc+qshOzh3/U2X6pfmj0iayDGSRD6P/mmfFltuAVt8tic2Ei7dc2eOCL5PKq3xKJ142noeOIrb8KStX1mZreYRF7ddoFPReYcCgMVrfVTwFPFXEOp1F468S+z2Ty378UuEw+g7Z3RSSFbfVY0JyELELNothdUim6tJUVYKBgiZvF2B8/uWrmmIGcbih1Q6WluLbE4D2xsNq2bMAr1dTccXDOD9t21DD3vA2ov2+64TmLu6SPEOAnCACGflC+rDTer572osU193qitPfyHs2h7a2zCcbvyNVRFXycsoBQNjdG0azrZ0AwFFCiId/W+J4lGCEJxKZXay2z+pRObZ/VewLzDsdU9AY48P5mjr0wCYPT1LxM+3XlzJqd0aU1EhKxQQALFXkApsHT+ZMKhYNpzuTojdteySzexI1sNmFkHT6tXaEB3BmheuYC2P0eoPnOfrZCtDgWSUZSgUtxyYT0PfOki2/UIgiBAejmCk+dztZFWjBseZue/LODY5tMIjTzOqKubTIUsJOzsklVNzPznZ2loTPSrsdrQDCqF6nkfK2+YzsrrpxOpCSefczpTURAE/1g4M8KGZfN4f8UCNiybV5TPZDb/0srmLVnVxNwV65K2KPO9QGKcWbQlhiYhgm9b1cSpy9awt9WivOM/PsHRjWdAV5Dxf/87X4Rs8l49otxYvyD4iURm8XYHz+5aVkX80SwpyLkMxbaiOx5g1/evSB7XfvLPthHZtni37LAJgpATbtPjvCz56O6Gl/5xXvJ49PWbUaq3ttZqlMWRtngyMmK1fjOxKvZREIRMsvmXdrbNLjPFTAQb1iwzwJE6egcSje9S+wX4hTTCEwqFiNkevOyeZnUtq9QPBX1qXFONmFdDsTOF7MRvmo+3yERGTQiCkAtuNwq9Kvno7oZgSjDkonvWs/dYeg3XAzY21XDCjAhIsVMVBUEoXzJ9wobGaDI92Ko5p4GVIHS6wdd5vIroTy5LHjtt8ukV0ghPKAQiZgvI0vmTTWeAacwHXmc6VG6HYgcUDBsUoiUWR3epnIRs5lrEiRMEwQ1uNgq9aNqSKWS7uiAQuDR5bDiS2Syp4YTJmAhBGBjk0qDT7Wsya2Sd+HTRlhhzV6xLS0124gnGW8Ls+Y/e7BS3fp8XSCM8oRCImC0gC2dGWGKRamxl0AyHKnP8zaRla7Ias24Ng6sqOHKsi0NPnwtA5ZhWxv3li+4XT/7jNARBEOzIt+SjqwuWLk08HjoUWltJK6NwM2pHnDBBGDjk0qAzl9fk2iE92hJj6SNbQUPcrFFKBh37h3Lg8VkAVI0/zNjPveT6nm4xGowaSCM8oVCImM2RXHbwINEcxEwUuh02bdetLpVdezvZdd8VEOxi5IImhpwjxfiCIJQuuUZC29th0KDE45Ur4Y476NMPwKkjKU6YIAwscpkHm8tr8km7Te2YbsfRLRM58vtzABjzuT8xaPyRnO/pBk3Cx5WSDKHQDBgxm0sqiNX5uY7YAes0uutmRdJqZo3nrRwqs+tkkppiMvisPSJkBUHoQ64bc6XE0aMwfHji8bRp8PWvm59n50iKEyYIA5dcms/l8hqrQERtdYjqygqiLbG8mn4eenoax1+rB6Duulc8F7JGJ3qz9xCpCSfL4gShkPRLMZvpnF06pc6yuZKZw5JNrOayG2dgl0Y3e+IIx06l8fzy1dtpMRmQHT80mD0/+0TyeNSC12zX5YSg00G0giAUhHyFaD4bc6XC4cMwcmTv8Ws2ps7KkRQnTBAGNrk0n8vlNVYBjbuunppmc+euWOe6tGvnvyxIPh73189TWXfc8WtvubC+T0Alk9QAS+Z7CAUVJ9o7mbRsjWwICgWn382ZNZyz1NlbD2xsdjW7MNusw1zHRxiNR4wRPT9YPCNt9pnbmWgLZ0YYXNV3P6Lz6KA0IetV0f9NcyZ4ch1BEPLHzNa5nevn9VzXQtPami5kjWCGYWsnLVuTNqvx0il1ZG7JKXobrMhMREEYmGSbB+vVaxbOjHDvomlZ51KbXTsUVIQCfYMKujtdyEa++ntXQjZSE+aehdP6rOuWC+tN15n5HmqrQ6BJNBtFZswKhaffRWbtZm9l4laUGs/nshvnVwQkc61dsRDRf/skABXD24h8eb3ra0Z6otlG9+SgUtw0Z0JaAypBEIpLPhkiBl7OdS00sRjMmtV7nCpkzWzt5p2HeXRL1LSbfOp5UD5RaUEQvCGX5nO5Nqxz0hfA6trGc0Y6cmdccezJ85Ovm3D70wRC3cljoymTVeqyguR13fQrSD137op1HGlLzxCUCRhCIel3YtaNE+a2uZJxfi7jI7xwPLOttfNYFQefmEmgup0Rn/wzg8/e4/p6oYBKGmMRr4JQunghRL2a61pIGhqjfPvxd3n9wcnE99by13e08fPv1iR/bmVrnczqzmaT+0N9sSAI5uTSfC6f0V3Z7InVtY3n3n0Xzjgj8dzwi95mxMffpjtju84QsheeVsuGdw/3udbFp4/I24aV86ao0D/od2nGVk5YZmJGtuZKdqkjTtNEUvHrw26s9WTzCKI/vYz2XSMZdU1jTkIWYMigCnHOBKEMsNuMc0ouaXLFpKExyu3/+R6v/L+PE3tnDDWXvc6fwhvT0tnytalWr/cirVsQhNywKh0oV/K1J+vX9wrZ6il7qPn4W32ErEGX1vzJRMgCfHAof8HpxXeRIORDvxOzVs7Z5yxy/81wIlbd1rf69WFfODPCopHns+/Bi4DE7lx44qGcr9eSkSoiCEJp4oUQzWVjrpgs/+Vu3v+3jwFQ/ZG9DD5rb58a33xtqtXry72+WBDKlf64kZSPPbn1VpjX069u+Md2UHdtY9bXuC23c0O5bYoK/Y9+l2acaw2D2XW8dOhySU12wqpV8O3bEh1Qwqftp+bjb+V1PdlJE4TyoFRtnV9s3gxb75sDgKqMU/eZV5M/S3XIls6fzNKHtxLvdj/aws4mSyqdIBQHv8q0ikmu9uSii2DjxsTjUde8yuCz9ua1Di98Pq++iwQhV/qdmIXSdM78+LC//jp89rOJxzfeCDvObiJfv+rSKXX5XUAQhIJRirbOD/btg/N7epwEh8YY/7fr0n7exyFzMEXMaHS3/s0DjmxyOdYXC0J/oL9tJDU0RglYNGQysydGbe0bz47lyMazARh9w8uETzvg6r5GMygDL6OnA+W7SChN+qWYLVW8/LA3N8NnPpN4/NOfwle+AjP/2fzcgAKnQYr1b7ozjoIgCH6yfz9ce23i8dWfO87bk14kdbR2pkO2cu0O4l3WBi8cCuaUSu1Xdo0gCPZ4tZFUCg3cjJRpMyFrZk8aGqMse2QbO+69HHSA4NAY477wIsHBHa7uGw4FuW5WxPHmnSCUEyJmy5DVqxPO3dSp0NgIM2Yknreqd+3WCUNmNwzboFx3OgVBKE3ycSC3bIHZs+G00+APf4B584bQ0DjNdFzF3BXr2NNTU2dFJA8HTlLpBKE4eLGR5Nd4RLeYpUxDouOw2SbbitXvsOPbn04eR768HhVwV0KRi90rBeEvCE4RMVtk3BqM5cvh7rsTj3/9614hC9a7l7XVIbTGkZiVlDlBELwiHwfyoYdg8eLE4x/9qLfhSWaGS+Y9rIjUhNmwbF6O78T83oIg+I8XG0mlUndrFTDo1rrPOpqaYNPyS4BEn4AJS55FOSihSCUXu1cqwl8QnCJitoi4NRhLl8J3v5t4/D//ky5kwXz3EugzzNqKUFBJypwgCJ6RqwP5y1/CX/1V4vHXvw5XXunuHplIOrAglDf5biQVou7WSXDCacr0gw/CzTcnHg+aeJAxn93kej25+HQNjVHueGhrnzTocm+4JfRvijKaRyl1g1Jqu1KqWyk1uxhrKAXctGb/8Y97hex998Ett/S9XuqYDXDUAyWNwZUyY1YQvGSg2zorRzHaEuszVsOYIznmxpeTQvaLX4SVK/uekzpr0s4ZLYdxQ4Ig+I/fs1Cdjg9yMsbmT39KEbITDuckZAdXBll5/fQ+ds9uXq9dPS9IGZpQuhQrMvs6sAj4jyLdvyRwulO4cSP8/d8nHv/sZwkHzwpj93LuinWmu392tMacRXAFQXDMgLZ1VlEIIC0LxXCijn44iP0PXwBA7QUfcNVXQ0DCGbPKZBkeDtFiYru8SCsWBKF/4HcDN6dZKNlSpu+6C1asSJz7kZtep71+p6P7BxRojW0KdrZswGxZLlKGJpQqRRGzWus3AJTb5P9+hpN0kxdfTAzInjgxMVN2zhxn185lB00MlSB4y0C3dValD5Du6K1cu4PWPWEOPjmD4OCTjLzyNcKnHWDl2nCa82fmLA4KBfo0uJO0YkEQUvG7gZubNGarlOmLL4aXXko8jkZh7n3OhCwkGn3+6+IZtu8nm+C28xvFpgqljNTMFpFsO4Xf+EYixa4iHGfc36zn9vUVLK2cnIxk2Bllu4hIKKhAQzxlXo8YKkEQvMawSUtWNZn+3HCedjw3ikNrzwUg8uV1VAyPpf0883EqLW1xfrB4hnTeFAShD4XqymvlcwWUYtKyNbb37uqCihRvPBqFU06x9+PMyFbTmk1wW93PqtOyIJQKvolZpdTvgbEmP/q/Wuv/dXGdW4FbAerr6z1aXWlgt1M4c2aikx1A3WdfIlAdJ9oS57ZVTTy8uZlXm1ttG0dZRURqq0PcdfVUy/sKguAOsXX2GJFXqyyUL3+ZpJAdff3LSSFr/Dz1sZWzCEhKsSAIaRSyK6+Vz2XUn1rd+8gRGDGi9/y2NgiHE2s/0d7pag3ZMvKyZQNaBVhEyAqljm9iVmt9mUfXuR+4H2D27NnuhmuVAWbpJqedBu+/n3g85qaXqBx9LPkzDWx493Cf62TWZjhJqRHjJAj5I7YuO1ZOUvD5C/mPZxLHYxdso+r0A2k/T80WsXMWZWyEIBQfpdQNwHLgLOACrfXmYq6nkON4Mn2ugFJZOwLv3w9jxvT+vKsLAgHn48YyyVYqli0bUGZpC+WKpBmXGF/9aq+QHfv5DVSd0uL4tZm7cjITURAEv3GSxmfmJJ11+Dx+/kw1AL/5DYSnjGDl2gNZN99kbIQglCwl1fCuEON4Ukn1uSYtW2N77x8+tI9//NpgYAjVY4/zwFOtBALW/QEyUSSCGwZOSsUWzoyweedhHty0iy6tCSrFdbMifeys2FGh3CiKmFVKfQb4EVAHrFFKNWmt5xdjLaXEmjXw058mHu/YAVf8VytdLuIz0sBJEEqL/m7r3KTxpTpJmzbBhRcmnn/xRZg7FyC7E7VwZoTbstTfCoJQHEqt4Z3Tma5e09AYNY3MGvde8v8O88N/SoRkRy/eSPjUQ3zrscS4nmyNmAw0iY7tbiKodzZs44GNzUkR3KU1j26JMnviCBGwQllTlDmzWuvHtdbjtdZVWusx/cm5y5UvfQmuuw6uvhpaW+EjH8Fy1pcZ0sBJEEqP/m7r3MzKNrj77oR4veQS2LvXELLO8XtepCAI/QMnM129xm5WazgUZPQb5/PDf0oUyY68qpHwqYeAhN1cvno7c1esw4nnZ4wee3/FAjYsm5dVjDY0RtOErEE2ey0I5YCkGfdQqI53ZqRuYv7mNzBkSOJxxGEnu4jUNQiCUATcpvGdeSa8807i8cMPQ12d+3v6PS9SEARrvGh4V6hmd8WoAbVKEQ4qxZv3fJo3e47NyshaYnHTmdlmuLV3K9fusBTJktUilDsiZilsx7vUe65cu4M/fau3A+fBg71CFuxnNBoYu3OCIAiFxk0a34gRic6dAG+/nZuQhV6bvHz19qTjNyhUlCQjQRhweNHwrpDN7gpdA2omDLWG9/7lyuTxKX/zHKGRJ3K+R211yPV7shOsktUilDviAZBbqlw+3NmwjdtWNaUJ2TOWrOOPzdG08xbOjHDvomlEegxNZhVKKKBo6+hk0rI1zF2xjobGKIIgCIXCaRrfmWf2CtmmJjjjjMTjhsYoc1esy8mGtXd2Jx8faYvzrce2iQ0UBKGoZApD3aU4tGZ68njCP6zNS8iGQ8HkeMV81mWgcB/lFYRSQ8Qshe14Z9QtHH6u13iM/9qzxKtiLFnV1MehWzgzwoZl8/hgxQJ+sHgGkZowCqgJh0AlnDhNbzRZnDlBEApF6oabIpEpkjmT8Gc/600tfuMNmN7j1xkZMdGWmGsbVugNSEEQsqOU+oxSajdwEYmGd2uLvaZCk7rB13msiubvXsmJ7eNZ+BfH6OqCCWNDpq8LWPTMqq0O2drXXNZloIDP/f/s3Xd8FGX+wPHPlxBIKAoIKAQleKeIdEHQQzzEghVQ7JXzTuwVUezo6cFZUX96NhQVTkFRRDnEAniCgBCaIGBDJIEDBCMlAVKe3x/PbDLZbE12M7ub7/v14sVmZ3bmu7M7332eecocc4gOUVNJT7sZE/sZ70KNv31s5lp+X9SOncvakt58JwddPpc66eUtDJHOBtpnzKxKYyv09hRKqZoWqhvfhAlwzz1w8MGwaFHFeypW5x6QNX3LDaVUeMaY94H3vY7DS77cdf8rG/nm+aMBOPKovbz/emMg+Jj/IT2ymJKTV+n5B87qGFWZLlj5U+8hq1KZVmaJ7YQiocbfDuqWxVd3nwBGaNR1Pc1OWYXUqTxcJJICnRbmlFKJ7OijYfFiGDwYJk6EBg0qLq9ODvPqlhtKKRVOzntZfPO8Lb/ddhs88UT9smWhKpU92zarVmUz3Pwveg9Zlaq0MktsZ7wL1trw6MdrOfuoLHwjX5udshIJ0ck7XIFOC3NKqUTVoQOscabtfOONyhVZqF4O0xmNlVKJ6NJL7cU7gKefhptuqrxOsEplsOfD3W3j3qnf8NbCDQFvB6Q99lRtoJVZR6yuWAWbyW7+3eWTPbW/eyZ7gk9QDIQv0GlhTimViNq0gTxn2OuOHdC4ceD1qpPDtMucUirRvP56eUX2rbfgwgurv81wra33Tv2GCQt+CbkN7bGnUp1WZmMsUGvDthldyh6XlMC05Z3KCmFNGqSza08xRaXlV9QiKdBpYU4plWj+8Y/yiuzu3YFbZH2qm8O0y5xSqiYFayE1Blq2tLdXbNsWvvjC/h/Ja8MJN7fAWws3hN2G9thTqU4rszHmbm0wBigVGrXZwbF/3M0nUxoiUrkQFizJhUt+WphTSiUCY6CoyHYvHjLEtk7Urx/+dZrDlFLJIFgLaUkxzHw5i19/tet99x3UqxfZa6HyRJ/+ws0tEKhrsZv22FO1gVZmY8yXmP75n+9Y8n/dadx8Hy++VsSQng1DvsY/oVUn+SmlVE0xBgYOhJ07YcYMOPtsryNSSqnYCtRCuuu3ulxwfEtK9sDdd8Pf/w51AsyFUp2Z28PNLZAmErRCm6U99lQtofeZjYPTjsxiwb0nsO9/TRjUqyXn9IgukUxdmsfwycv1PopKqYRmjC28ffSR7VYcSWusUkolG/8W0n1bGpP73EmU7Eln9Gh45JHAFdlArw33vFug+8O6W1sv6n1wBNErldq0MhtjBQWQkWEf77cfjBsHEuRm2IH4WmSDXWnTgfxKqURQWlqx8LZwYfDCnFJKJTP3uNN9vzZi86TeABx0TC4jR0b+2kiedxvcPYvR53Qmq0kmgm1tHX1O57LW1ocHd+bSYw4hLUBB09ejb+rSvLD7USqZadEjhvbuhYZOb+KsLPj99+i3Eag7ipsO5FdKea20FNLSKv6tFVmlVKrytZD+Pv8PbBp3PIgh+69f8a/nw7dWhGtdDWdw9yzmjezPujFnMG9k/0rdhh8e3JkfR59OVoDyofboU7WBFj9i6MUX7f9HHgm5uVXbRqiWVx3Ir5RKBO+/X/64tDS63idKKZVsBnfP4vQGvcj/7xGA0O36JTx1fduIxqOGa12Nlep0Z1YqmekEUDFQUADTp8P119uK7EknVX1bwQb7p4nEJfkppVSkioth0iS4+GKYORNOPlkrskqp1GYMjBgBTz7RjD594M03oV27P1VaL9QdKGpi5vZwk0Uplaq0MltNmzfDQQfZx6tXV68iCxVv7eOTmZ6mFVmllKcKCioOozjlFG/jUUqpeNu7t3welJNOspPdBZroLhHuQBGs/Kg9+lSq027G1ZCXV16RPfdcOOKI6m+zprqjKKVUpHbuLK/IHnYY9OvnaThKKRV3u3dD377lf3/8cfAZ20PdfqemaPlR1VbaMltFP/8M7drZx+edB5Mnx27bNdEdRSmlIpGfD02b2sft28OaNd7Go5RS8fbtt3DZZbBsGTz8MNxzT+j1E2W8qpYfVW2kldkq2L69vCI7dCi89pqn4SilVFwUFJT3PunRAxYv9jYepZSKt7VroWNH+3jaNDjrrPCvCTZedf/M9BhHp5Typ92Mo2SM/derF/zrX1qRVUqlJt+tro87Dh58UCuySqnUN3cu/OlPkJ4OL7wQWUUW7HjV9DqVZ8Pbva9Y7/OqVJxpZTYK33wD3bvDqlUwfz5cc43XESmlVOzl5UHPnnaM2CefwP33ex2RUkrF1/nn2zGyjRvb4RRXXx35awd3z6JRRuXOjkUlRu/zqlScaTfjCC1aZFtjAUpKoI5eBlBKpaD16yE72z4uKtJcp5RKbcbAyJHwzjv2788+g0MPjX47+QVFAZ/X+7wqFV9aTInAvHnlFdnRo+GEE7yNRyml4uGHH8orskOHwgUXeBmNUkrFV0kJ3HwzPPqoveXYb7/BH/9YtW0Fu5+r3udVqfjSymwY8+fbMWMAY8faq3dKKZVq1q2zt90BuO46nQ9AKZXaCgqgbl149lm47Tb45Rdo0qTq2xsxoD2Z6WkVntP7vCoVf9rNOITSUhg2zD5+8cXyx0oplWquv97+f/vt8Nhj3sailFLxtHVr+eRORx4JTzxR/W36bonz2My1bMwvpHWTTEYMaK+3ylEqzrQyG8TatdCwoW2dSE+Hrl29jkgppWIvLw927IBnnoHcXOjXz+uIlFIqfmbMgNNPh4wMeO89OPvs2G1b7/OqVM3TymwAb78NF10Exx8Pc+aAVJ5tXSmlkt68eXYYxWGHwbffVn2smFJKJYOPPipvkZ0wIbYVWaWUNzwZMysij4nIGhFZISLvi0g1RinE1vjxtiIL8M9/akVWKVV1iZzrZs0qnw/gwQft2DGllEpV770H551nH8+YAUOGeBuPUio2vJoA6lOgkzGmC/AdcJdHcVTwwgvwl7/YxyID3+AAACAASURBVB9/DMcc4208Sqmkl5C5bsYMOPFE+/jFF8sv4CmlVFUl8sW7I4+0lddu3WDLFjj1VK8jUkrFiieVWWPMJ8aYYufPBUAbL+JwW7AArr3WPp49GwYM8DYepVTyS8Rct2aNHS8G8MYbOrGdUipmEu7iXWmpnal49Wr79+efQ4sW3saklIqtRLg1z5XADK+D+O47aNrUjiHTCVCUUnGQELnu55+hWTPb5e6yy7yORimVKhLt4t1vv8F++8FTT9l7yRYXQ4MGXkaklIqHuI2SEpHPgIMCLLrHGPOBs849QDEwMcR2hgHDAA455JCYxzl1KkyaBK+/Duefb2e3U0qpSCVLrvvvf+Hxx2HiRDuDseY6pVQcXQlM8mrn69bBoYfaxzfdBGPHehWJUire4laZNcacFGq5iAwFzgRONMaYENt5CXgJoGfPnkHXq4rhw+HJJ+3jZ5+F5s1juXWlVG2QDLnuhRfKh1H8+iu0axfLrSulaotYXLyL94W7H38sHyp2wQXw9NMx34VSKoF4Mn+liJwK3AH82RhT4EUM115rC3hgx1JoRVYpFWuJkOueesqOGQM7H4BWZJVSVRWLi3fxvHD33HNwww12KMXcudCnTyy3rpRKRF7djOH/gPrAp2LvfbPAGHNNTe38L3+xt+AB+OEH+MMfamrPSqlaxtNcN2YM3OVMwfLVV3DssTW1Z6VUbeP1xbtp02xFFmD+fDj88JqOQCnlBU8qs8aYP3qxX4BFi8orsuvXQxx6uCilFOBtrvv55/KK7OLF0KOHV5EopWoJzy7e3XOPvXh39NHw73/DHz3LvEqpmuZVy6wnVq60BbpHH4VrroHGjb2OSCmlYm/lSujY0c4FcN55cOCBXkeklEp1Xly8Ky6G9HT7uFMnO5SiYcOajkIp5aVEuDVPjTjlFOjc2c5cPGKEVmSVUqnp+uttrnviCdvlTiuySqlUtGcPDB5c/ndOjlZklaqNakVl9qij4NNP7WN34lNKqVRyxRXw/PP28ZVXehuLUkrFyw8/QN++MH063HcflJZCvXpeR6WU8kLKdzM+/HD4/nv7OD8fMjO9jUcppeLh3HNhyhT7eP16O5unUkqlmnXr4LDD7OO337a331FK1V4p3TJ75ZXlFdmdO2H//b2NRyml4uGJJ8orsnl5OrGdUio1ff01HHMMNGgATz6pFVmlVAq3zO7dC998Y1sncnO1RVYplZqMgVmzIC0NNm6Eli29jkgppWLvpZfg6qvtnCeLF0OHDl5HpJRKBClbma1fHz77zE4GUDdl36VSqrYTgXfftY/1op1SKlXt22f///JLrcgqpcqldDfj/ffXiqxSKvVlZmpFVimV2m64wfZE6drV60iUUokkpSuzSimllFJKKaVSk1ZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWaWUUkoppZRSSUcrs0oppZRSSimlko5WZpVSSimllFJKJR0xxngdQ8REZCuwPk6bbw78GqdtV1eixqZxRS9RY0vUuCCy2NoaY1rURDA1QXNdwknUuCBxY9O4oqe5LvYS9fPWuKKXqLFpXNGLaa5LqspsPInIYmNMT6/jCCRRY9O4opeosSVqXJDYsSWjRD6eiRpbosYFiRubxhW9RI4tWSXqMdW4opeosWlc0Yt1bNrNWCmllFJKKaVU0tHKrFJKKaWUUkqppKOV2XIveR1ACIkam8YVvUSNLVHjgsSOLRkl8vFM1NgSNS5I3Ng0ruglcmzJKlGPqcYVvUSNTeOKXkxj0zGzSimllFJKKaWSjrbMKqWUUkoppZRKOlqZdRGRv4vIChFZJiKfiEhrr2MCEJHHRGSNE9v7ItLE65h8ROQ8EVklIqUi4vmsaSJyqoisFZEfRGSk1/H4iMirIrJFRFZ6HYubiBwsIrNF5Fvnc7zZ65gARCRDRL4WkeVOXA96HVMqSdRcB4mb7zTXRUZzXXQ018WX5rroaa6LjOa66MQz12k3YxcR2c8Ys8N5fBNwpDHmGo/DQkROAWYZY4pF5J8Axpg7PQ4LABHpAJQCLwK3G2MWexhLGvAdcDKQCywCLjLGfOtVTD4icjywC3jDGNPJ63h8RKQV0MoYs0REGgM5wGCvj5mICNDQGLNLRNKBucDNxpgFXsaVKhI110Hi5jvNdZHRXBd1XJrr4khzXfQ010VGc13UccUt12nLrIsv4TkaAglR0zfGfGKMKXb+XAC08TIeN2PMamPMWq/jcPQCfjDG/GSM2Qe8DQzyOCYAjDH/BbZ7HYc/Y8wmY8wS5/FOYDWQ5W1UYKxdzp/pzr+EOB9TQaLmOkjcfKe5LjKa66KjuS6+NNdFT3NdZDTXRSeeuU4rs35E5BER2QBcAtzvdTwBXAnM8DqIBJUFbHD9nUsCnMDJQkSyge7AQm8jsUQkTUSWAVuAT40xCRFXqkiCXAea74LRXFcNmutqF811SU1zXTXUllxX6yqzIvKZiKwM8G8QgDHmHmPMwcBE4IZEictZ5x6g2ImtxkQSm0puItIImALc4ncl2zPGmBJjTDfs1epeIpIw3XiSQaLmukhic9ap8XynuS71aa5LPZrr4hOXSm61KdfVjcVGkokx5qQIV50I/Ad4II7hlAkXl4gMBc4ETjQ1PNA5imPmtTzgYNffbZznVAjO2IUpwERjzHtex+PPGJMvIrOBU4GEmmghkSVqroPEzXea61Kb5rrUpLkueprrUltty3W1rmU2FBE5zPXnIGCNV7G4icipwB3AQGNMgdfxJLBFwGEi0k5E6gEXAtM8jimhOQPyxwGrjTFPeh2Pj4i0EGdmRxHJxE7+kBDnYypI1FwHmu8ipLkuSprraifNdUlPc12UamOu09mMXURkCtAeO4vbeuAaY4znV4BE5AegPrDNeWpBAs3GdzbwLNACyAeWGWMGeBjP6cBYIA141RjziFexuInIW0A/oDmwGXjAGDPO06AAETkO+BL4Bvu9B7jbGPMf76ICEekCvI79HOsAk40xD3kZUypJ1FwHiZvvNNdFRnNddDTXxZfmuuhprouM5rroxDPXaWVWKaWUUkoppVTS0W7GSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWZVURORoEVkhIhki0lBEVolIJ6/jUkqpWNJcp5SqDTTXqeoSY4zXMSgVFRF5GMgAMoFcY8xoj0NSSqmY01ynlKoNNNep6tDKrEo6IlIPWATsAf5kjCnxOCSllIo5zXVKqdpAc52qDu1mrJLRAUAjoDH2Sp5SSqUizXVKqdpAc52qMm2ZVUlHRKYBbwPtgFbGmBs8DkkppWJOc51SqjbQXKeqo67XASgVDRG5HCgyxvxbRNKAr0SkvzFmltexKaVUrGiuU0rVBprrVHVpy6xSSimllFJKqaSjY2aVUkoppZRSSiUdrcwqpZRSSimllEo6WplVSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSZnKrIiMF5GHQyzvJyK5NRmTUkrVBBH5WURO8joOpZSKVrjyW5jXjhKRCVV8bYVyoeZRpZJTylRmawsRmSMie0Rkl4j8KiLviUgr1/ImIvKqiPxPRHaKyHciMtLLmAMRkRNFZI2IFIjIbBFpG2Ldv4vINyJSLCKj/JadISJzRSTfec+viEhj1/JHRWSDiOwQkfUicncUMY4SkSLnWOeLyFcicmyV3nDF7Ya9sCIi2SJinH3vcn5kR7qWGxHZ7Vq+S0TucMVd6cfdec0fA7w337/8KN5DNxHJcT6/HBHpFmJd93d2l4isdS0TEblHRH5xPqO3RWQ/1/JVfjEWi8iHkcapkoeIDBWREudz3iEiy0XkTL91/urkjZ0isllE/uM+3xOBiDQTkfed83O9iFwcYt0TnPz3u4j8HGD5bBHZ6joeg1zLQp47YWIMmV+qQyKoEEiI3zGxFZt9fuf9cr+46/ptr6wyFOC9+f5dEGH89cX+hu4Q+5tyW4h13d9Z379+ruWhPr9WIjJNRDY68WZHEp8KTkSai8g8Edkm9jd7voj08Tqu6vI7J7aLyKcicoRreT0ReUJEcl3n81gvYw5Eois33CAii0Vkr4iM91t2id85V+CcQz2c5SIi/3S+B9ucxxJhjFruCx5fRJ+fk0PHif392ykiy0TkNNfycJ/fDL/l+0Tkm1Cx1YrKrPj98CXytiPc3g3GmEbAH4FGwOOuZU85z3UA9gcGAj94EGOo1zcH3gPuA5oBi4FJIV7yA3AHMD3Asv2Bh4HW2PecBTzmWj4OOMIYsx/wJ+ASETkninAnOce6OTAbeCeK18ZCE2f/FwH3i8iprmVdjTGNXP8ejXLbk/xe3ySSF4lIPeADYALQFHgd+MB5PpgbXPtp73r+cuAyoA/2M8wEnvUtNMZ09L0OaAxsoOY/g4QVz9zmbD8thtuKJNb5zmfdBHgeeFtEmjiv/zPwD+AiY0xj7PkeKm/EK8ZwngP2AQcClwD/EpGOQdbdDbwKjAiy/GaglZO/hgETpPziZchzJ0K+/HIucJ+InBzl66vD9zt2OPbzfsq17FG/3NS1Cttv4reNSL8ro4DDgLbACcAdfnnX33y//cxxLQv1+ZUCHwNDonhPKrRdwJVAC+xv0z+BD+OdJ2vIo875kgXkYcs2PncBPYFe2N/JfsCSWO48BuW+aMsNG7Flu1f9FxhjJrrPOeA64CfK3/MwYDDQFegCnAVcHUW4Wu7zE+XnVxdbVvsztox+LzDZd8Eu3OdnjDnNb/lXhPkMkrYyKyLdRWSJU+ufBGS4lvVzrlDdKSL/A14L8PrWIjJF7FXTdSJyk2tZL7FX9PJFZJOI/J/7A3OuIFwvIt8D37v2N1xEtjiv+Ytr/foi8rjYK+ibReQFEcmMNNZgjDH5wFTAfXXkaODfxpjfjDGlxpg1xph3XbF0FHtVb7sTy92uGMeKvUq80XlcP1iMIlJHREaKyI9ir3xNFpFmEYZ+DrDKGPOOMWYPtvDQVVxXGv3e5+vGmBnAzgDL/m2M+dgYU2CM+Q14GVu48y1fa4zZ7XpJKfYiQFSMMcXARCBLRFpA2XdomnMsfxCRq3zrBzueItIQmAG0dl11ah3B/ucDq4BO0cYeB/2wyWqsMWavMeYZQID+VdjWWcA4Y8wGY8wubOHjAhFpEGDd47E/LlOqFnZqEHu19k4RWQHs9i9khDs3ReQdsS1Ov4vIf90VLbEtAP8S2+K5GzjB2d/tIrLCec0kEXHn2zPFXnn1XcXuEmmswRhjSoE3gYbYigXY3DbfGLPUWWe7kxt2OvvKFNs6sd6Jc64rzw4U28qfL7ZVsEOoGEXkGOe95IttUesX4WfTEFs5uc8Ys8sYMxeYhq10BnqfXxtj3sT+kAdavsLJPQAGSAcOdv6O5twJyRizGJtfujnvo46I3Oscyy0i8oaI7O96nwGPp4i8CRyCrUCUtRqE2fd27DmdCLkN4Arg785v6Grsb8rQqmwo1OdnjNlsjHkeWFT9kJOLRFZ+u0PKy1ODReR0sT3NtkuQHlbGmD3Ob34p9jepBFvwbuZsO9PJcb+JyLfYnBIsxqDlQLGecuLbIbbnWCdn2eki8q3z3vJE5HbXNq9yygrbxZYdwv72B3iPhcBkKpf73jfGbDTWz8aYN1z7PVhs74etzm/C/znPBz3PpbyV8K8i8gswy3n+ShFZ7RzDmRKiV52ffkRRbjDGvGeMmQpsi2DbVwBvGGOM6+8njDG5xpg84AmqcA5rua+CfkT4+RljdhtjRjnfw1JjzEfAOqBHkG37f35lxFaA+wJv+C9zS8rKrJNQpmILO82wNXb/q5sHOcvaYq/SuF9fB/gQWI69ynUicIuIDHBWKQFuxRacj3WWX+e3/cFAb+BI1/72d7b3V+A5EWnqLBuDvfrcDVuRygLujyTWUETkAGzF0N3yugB4RET+IiKH+a3fGPgMezW4tRPL587ie4BjnBi7Yq/w3RsixhudY/BnZ1u/YVskfPtaIcG713XEHnvAfvGBH53nq+t47MlfRmzBfheQiy0c/zvajTrfucuxifU35+m3nW22xrZs/ENEfCd2wOPpvNfTgI2uK08bw+xbxHaV6ggsjTb2qhCRjyR4t8OOwAq/xLOC0J/faLHdCecFqBiI3+P6lFdg3K4ApvhdnKitLgLOwF7BLfZbFvLcxP6oHga0xF4Jnej3+ouBR7BX+Oc6z50PnAq0w17pHgq2UIq9cn41cADwIjBNnAthEcQakNgW4b8ARcB65+mFwAAReVBE+vjtA2wPlR7YHhjNsL05SkXkcOAt4BZsi81/sJUt9xXlshixLarTsa0CzYDbgSmuwsxIEfkoSOiHA8XGmO9czy2nGrnNORf3YN//HGxPlrLFfo+DnTvh9nEMtsDk+y0Z6vw7ATgU29vHVwAOejyNMZcBvwBnRdpqILanzhBqLrddLPbCRaBlTYFWuH6fCP/5dXdy23cicp9UvrgU6vOrdaIov2VQXlZ6GbgUe373xfYiaBdiHyuAPdgLSa8YY7Y4ix4A/uD8G4D9TQkmVDnwFGxZ43Bsue98yitd44Crnd4jnSivBPYHRjvrtsLmtbdD7D/Ye2uIzVf+5b7bROQ6EeksUt6l1smlHzn7y8YeU99+hxLkPHf5M7YXzACx3eTvxpY7WwBfYnOBb1+xLjeE5VSmj6diZadCGZMq5mAt91VQ5c9PRA7EniurAiwL9Pm5XQ58aYz5OeROjDFJ98954xsBcT33FfCw87gftptXhmt5PyDXedwb+MVvm3cBrwXZ3y3Yq16+vw3Q32/bhUBd13NbsF9qwXYl+4Nr2bHAumCxhnnvc4AC4HcnjmXAIa7lmdhkk4MtCP4AnOYsuwhYGmS7PwKnu/4eAPwc4niuBk50/d3K2V/dCN7DOGCM33PzgKFhXjcBGBVi+cnYhHN4gGUCdAceBBpHeKxHOe87H/vDtg3o5yw72HmusWv90cD4CI9nbph9Zzufb77znlYDN/l9B3c4y33/BgSI2/3PAH8Msc7sCI/LfcDbfs9NDPbZYM+3xtiC9hXYFvY/OMv+BnznvN/9sYUPAxzrt40GzvvtF0mMqfwP+Bm4MsBzJzmPIz43sZU3A+zv/D0ee4XUf9uXuv5+FHjBefwvbCuWe/21wJ+DxRrifQ0Fip3vYhE2p57vt85p2AuR+dguhU8CadgLs4XYLliBvq+TXX/XwXbT6xcoRuBO4E2/bcwErojgPfQF/uf33FXAnDCvOwknPwRZnu6899tcz0V07gTZXjbl+aXQefw4zm8q9iLnda712/u+QxEez5PC7H8O9ncs33ntRKCF6zu4h4q56fUAcbv/7aP89z/YOh0iOC4HO691/9adHOyzwVYA2jnHoDPwLXBXJJ+fa1ldZ5/ZkZwnyf6PyMpvhUCa83dj5/j0dq2fAwx2Ho8CJgTYTwa2zHOF67mfgFNdfw/D9Vsc6ruLqxyIbY36DlvGq+O33i/Yi3v7+T0/DttV2Pd3I+ecCvu5+50TpdhWri6u5WnA9dhy1F7n+F7hLDsW2Erg/B/qPPedR4e6ls8A/ur6uw72PG4bwXuIqtzgWudhnHJViO3O8XuuBDu8zPf3Yc57kQjiHIWW+2L5+aVjG9FejPTz81v+A2HqBsaY5GyZxV4RyTPOO3Ws91tnq7FdWANpi23uz/f9w1YADwR75dm5QvE/EdmBHafV3G8bG/z+3mYqtjoUYJNVC2xBPMe1r4+d5yOJNZCbjDH7Y1tImgJtfAuMMYXGmH8YY3pgW0omA++I7WZ4MPZkC6Q1FY/heue5YDG2Bd53vafV2JP8wAji3wX4T1SyHwG6EUfKaVn4N3CuqdgqAoCxlmJ/JB+MYtOTjR1TcCCwkvJuEq2B7cbp4uhYj73q6Vse6nj6x+8e7H6Ia1FzY0xTY0wHY7t1uB1ljGni+jfTP273v2DvzfXvhKBHoaKoPj9jzEJjzE5ju6a8jv3BPd1Z/Cr2yu4c7FW72c7z/hMlnANsB76IMMZU559/3IKemyKSJiJjxHZB3oEtvEHF/BZo2/9zPfblNt++hvvl0oOp+F0PFau/Bc53tSm2ctbXvdAYM8MYcxa2RWcQtgL8Nyf+DALntwrnorFdEDdQfq76x9gWOM/vPR2HvSgQTsxzG4AxpsjYoRaniMhA5+lIz51QmmM/y+HYwla683yg/FUXmwcjOZ5lxA6r8eU2d/fQm5y8k2WMucQYs9W17HG/3HSFf9x+uS1Qb5vmfttYHeZYgP38oOJnGCq3/WSMWWdsV7pvgIewrTX+6wX6/GqrSMpv24wxJc7jQuf/za7lhZTnoICM7XL8FjBSRHxjrltT8Vz332+ZUOVAY8wsbAvmc8AWEXlJyidfG4L9fVsvIl9I+eRB/ufNLmxFKeB5E8Djznc9G/v+y+aeMMaUGGOeM8b0wV6gfAR4VWz3/4OB9SZwr5hQ57mPf2582pUXt2MbCiJ5D3HJjdiWu9fD7Gs/YJffdy4ULfdVFvXnJ7YX7JvYCvQNQVYL9Pn5Xn8ctpfGu4GWuyVrZXYTtg+7u4vVIX7rhPrSbsC2jLo/0MbGGF8B+1/AGuAwYyduuJuK3bnCbd/tV2zi6eja1/7GDmqOdlsVA7A/ng9juzRXmqnNGONLwA2xV483YK8kB7IRm6h8DnGeCxbjBmyLr/sYZhg7PiGcVdguGEBZt5k/EKALQiScro7TsK0rn4dZva6zr6gYY37FXsUdJXYCj41AM6k4k+oh2FYGCH08K33epuKA/F+ija+GrQK6+H3nuhD552dwzienEPiAMSbbGNPG2UYe5cfR5wqCjKmopcLlt2Dn5sXYSuBJ2Na8bOc17s8ymmO8AXjEb18NnEJkVbZnX2ALetcClznnt//yUudcn4XtyvcrtuUi0Lld4Vx0vrcHU/E75o5xA7Zl1v2eGhpjxkQQ+ndAXak4xKMrVcxtAZTlryjOnZCcgvCT2OPn60YZKH8VYysU4Y5nhc/bGHONK7f9I5rYapqx8y5swvX7RHSfX1luC6JKvz8pJpLyWyylU17u2UT5mPNw+w1ZDjTGPGNso8GR2C6UI5znFxljBmGHcUzFNihA5fOmIbbBIdrz9RfsxGJPizMngN/yQmPMc9iWvSOx+ewQ/+7vgWKi4nletknX4w3YLtTu3JhpjPkqgtCrW26oxOmG25rKlZ0KZUyqmIO13FdBVJ+fs9447AWBIcaYogDrBPv8fK4A3nPKAyEla2V2PvaEu0lE0sXOTtsritd/DewUO+lHptNa0UlEfJMBNMY25e8SOynRtVUN1Nir1i8DT4lISwARyZLy8bnV9Tr2yzLQ2fZ9InK02KnaM7BJLx/b9e8joJWI3CJ2UHpjEentbOct4F4RaSF2DNP92G69wbyAHZvb1tlvC3HddiCM94FOIjLEifF+bF/8NYFWdj7jDOz3ta6IZIgzy6rYSRc+Bm40xnzo97o6InK1iDS1ww+kF7YrzueudX4WkaGRBG2MWYvtbniHMWYDtmvUaCeeLtix0r5jFup4bgYOENeEKklmDral7ybne+S74jbLf0Wxt4oa4ByjuiJyCbab2cfO8mYi8gfn8zkS2230Iee88W2jDXZMT8Crd6qSUOdmY2w3tG3YHiPVrVy8DFwjIr2dz7Ch2NtlVft2OcZODPQKzvwCIjJIRC70O5//jG3NLcW2VD4pdoKONBE5Vuy42snAGWJvB5aObYXciz1/A5kAnOV8b9Oc724/53sYLubd2JnaH3KORR/sxYM3A63v5KgMbIFbnH35Jpk5QkROc36j0kXkUuy584WzPOS5I/Y2DHPCxewyBjtzbwY2f90qIu1EpBH2ezLJad0Jdzw3E/yiaTJ4A5u7mzq//1dhu3lW4nw+vh5dR2C7zH3g+zvU5+esk4EdfgFQX1wTq6Ww6pbfghI7cdtxTvknU0TuxJaPFjqrTAbucj7bNtj5BYIJWg50yli9ne//buyFoFJnv5eIyP5O4X0Htlsw2HPqL2Jvb1Ife04tNOHGAgZgjPkUW0ka5sRzi5OjMp3f2Suc+Jdiy7ubgDFOTsqQ8tsVhTrPA3kBe/w6OvvdX0TOizDsOURYbnC2Xdc5H9IAXx72r5BfgZ1Hw7918A3sGOIssRMtDcd1DouW+6piDlF8ftiLQR2w8ycUBlkn2OeH2As15xMk91ZiIugrnYj/sNOQL8U2cU9y/rnHXOT6rV/hOezVgLew3ed+ww6g9405Ox57RW4XdoD7Q8Bc12vL+qCH2N/Pru1lYJPET9jkVtYPPkBcfbHdIYK97znA3/yeuxNY7Dy+F9stYge2C8gc4E+udTthK3O/Oe99pCvGZ7BJb5PzOCPE+6sD3IatJO/Edu/7h2v5KuCSEO/jJOcYFzoxZruWvYAzJs/5e7xzzN3/hjrLXsP+WOxy/VvlivFj5zjswraa3E35uLB6TuxHBIlxFH5jcbDjP3djr7q2wV4g2O68/2tc6wU9ns7yV7EVinygdYB9ZzvvM+AYZGfZbr/3PTZY3P7fW2edIr/X7wJaOstnAHeH+Py6Y8ctFWInEeruWnY3MMN53AI7W+dO570uAE52rXu48x0qwHbJCTSm7C7sBACe551E+EeAcV1UzDdBz01s17wPnOfXY7v4uL8X43HyaLD9+X+/sBNDLXI+303YCV0aB3lt0LyA7TI81++5NtiKUhdsXv4c2wq7E3s+3+FaNxMYi71K/jvwXyDTWXY2djzj79jKRMcwx7O3s9527Hiz6ThzE7i/30HeRzNsi8xu7Pi5i13LKuR3bG71z21znGUdsIVw37mzCDg70nMH9QmprgAAIABJREFUe1X8kSAxZuOXX7CtTquwBfw62ILYBuf9TwCautYNdTwHOe87H7g9yP7n4Pc75lo2HtstzZ2Xfg0Wt//31rWOf267zVl+Cc5vRJD918fm5x3YAqh7nPIhzrZ834XHnXV2Y3/fHwLSI/n8nHX8P3vjdX6piX9EUX4jwJhi7MR0lzqPR+HkI+zFreXOdn3DUo53va4BtqKT73x/RxBkzCwhyoHYyaBW+L6b2LGDjbBlio+x5asdzmd+nGv712Dz8XZs2aFNoO9VkHPCPy9fgM119bGV2hzs+ZiPrcCe6fe99c0M/CvwjPN80POc4OfaZcA3zvvbALzqWhaTcoPrc/U/P0a5lmc47/XEAPsR7NwO251/j6LlPt86NVHua+vsd4/ffi7xO1YBPz9n+UXY37Ww45yNMWUfrlK1jtj++NcbYy7yOhallIolEVmGLShEcmsLpZRKeVruS01amVVKKaWUUkoplXSSdcysUkoppZRSSqlaTCuzSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOoFuopywmjdvbrKzs70OQymVYHJycn41xrTwOo5Y0VynlApEc51SqjaIJtclVWU2OzubxYsXex2GUirBiMh6r2OIJc11SqlANNcppWqDaHKddjNWSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSaoxs4EUFRWRm5vLnj17vA4lJWVkZNCmTRvS09O9DkWppCYiacBiIM8Yc2a0r9dcF1+a65RKDJrrapbmPpXskr4ym5ubS+PGjcnOzkZEvA4npRhj2LZtG7m5ubRr187rcJRKdjcDq4H9qvJizXXxo7lOqcShua7maO5TqSDpuxnv2bOHAw44QBNeHIgIBxxwgF4dVaqaRKQNcAbwSlW3obkufjTXKZU4NNfVHM19KhUkfWUW0IQXR3pslYqJscAdQGl1NqLnY/zosVUqcej5WHP0WKtklxKVWS9t27aNbt260a1bNw466CCysrLK/t63b19c971mzRq6detG9+7d+fHHH3nmmWfo0KEDl1xySdTbGjt2LAUFBXGIUiWSqUvz6DNmFu1GTqf7Q5/Q7cFPaDdyOn3GzGLq0jyvw0tJInImsMUYkxNmvWEislhEFm/durWGoouc5jqlVG2guU4lI3f5rraV6cQY43UMEevZs6fxv7n26tWr6dChg0cRVTRq1CgaNWrE7bffXvZccXExdevGZ2jymDFjKC4u5t577wXgiCOO4LPPPqNNmzZRb8t34/LmzZtXWpZIx1hV3dSledz13jcUFpUEXJ6ZnsboczozuHtWDUdWfSKSY4zp6XUcgYjIaOAyoBjIwI6Zfc8Yc2mw12iuq0hznVJWIue6qtBcV1FN5Tp/iXTMVfQCle+SuUwH0eW6pJ8AKhENHTqUjIwMli5dSp8+fdhvv/0qJMNOnTrx0UcfkZ2dzYQJE3jmmWfYt28fvXv35vnnnyctLa3C9nJycrjtttvYtWsXzZs3Z/z48SxdupSxY8eSlpbG559/Tvv27fnpp5847bTTuPLKKxk2bBg33ngjK1eupKioiFGjRjFo0CBKSkq48847+fjjj6lTpw5XXXUVxhg2btzICSecQPPmzZk9e7YXh03F2WMz1watyAIUFpXw2My1SZv4EpUx5i7gLgAR6QfcHqoim0w01ylVNTNmwFdfwUMPgfbyTHya61QiC1S+q01lupSrzPbrV/m588+H666DggI4/fTKy4cOtf9+/RXOPbfisjlzqhZHbm4uX331FWlpaYwaNSrgOqtXr2bSpEnMmzeP9PR0rrvuOiZOnMjll19etk5RURE33ngjH3zwAS1atGDSpEncc889vPrqq1xzzTUVkunHH3/M7Nmzad68OXfffTf9+/fn1VdfJT8/n169enHSSSfxxhtv8PPPP7Ns2TLq1q3L9u3badasGU8++WTZa1Vq2phfWO11pi7N47GZa9mYX0jrJpmMGNC+ViTKRKS5TnOdSk6vvgrXXgsdO8LIkdCwodcRJTbNdZrrVGjBym6RlPtSQcpVZhPFeeedV+lKnL/PP/+cnJwcjj76aAAKCwtp2bJlhXXWrl3LypUrOfnkkwEoKSmhVatWYff/ySefMG3aNB5//HHAzg74yy+/8Nlnn3HNNdeUdZFp1qxZ1O9NJafWTTLJC5PYWjfJDLrs3qnfMHHBL/gGJuTlF3LXe98AaIU2QsaYOcAcj8OIKc11SkXu4ovhrbfs488/14psMtFcpxJVsPJdqDJdKkm5ymyoK24NGoRe3rx51a/Y+Wvo+oWqW7cupaXlk5j6pkA3xnDFFVcwevTooNsxxtCxY0fmz58f1f6NMUyZMoX27dtHGblKVSMGtA87ZnbEgMDfl6lL8ypUZH1qUzeWRKO5rvx1mutUMhg0CKZNs483bICmTb2NJ1lorit/neY6FUig8l2oMl2q0dmMa0B2djZLliwBYMmSJaxbtw6AE088kXfffZctW7YAsH37dtavX1/hte3bt2fr1q1lSa+oqIhVq1aF3eeAAQN49tln8U3wtXTpUgBOPvlkXnzxRYqLi8v2CdC4cWN27txZ3beqEtjg7lmMPqczWU0yEaBpg3SaZKYjQFaTzJATBTw2c22liqxPbenGosLTXKdUYK+/Xl6R3bQJqjCfj0ogmutUIvEv34Ur06WalGuZTURDhgzhjTfeoGPHjvTu3ZvDDz8cgCOPPJKHH36YU045hdLSUtLT03nuuedo27Zt2Wvr1avHu+++y0033cTvv/9OcXExt9xyCx07dgy5z/vuu49bbrmFLl26UFpaSrt27fjoo4/429/+xnfffUeXLl1IT0/nqquu4oYbbmDYsGGceuqptG7dWicKSGGDu2dVKbmFqrDWlm4sKjzNdSrZ1MQ8AJMmwV/+AiedBFOnatfiVKC5TiWaqpbvUoHemkeFpcdY9RkzK+B4DAGeuqCb5wlUb1ehYkGPce1SE7ezeO45uPVWO2HRK69ARkb1tqe5TsWDHnOVaPTWPErVMsFaFyJpdYhknUDjMQS45JhDPK/IKqVUVcT7dhYdOsCaNTBwIIwbB/XrV3uTSiml/GhlVqkEFWn3N//WBd8sw4vXb2dKTl6l56F89uFgr3Wv436st+VRStW0eHUFjuftLJo2hfx8+/idd6BevWpvUimlVACeV2ZFJA1YDOQZY870Oh6lEkGklUwI3rowYcEvlbbr3+oQTctEbR6PoZSKn1CV1WhyYbTicTsLY6Bv3/KKbGGhVmSVUiqeEmE245uB1V4HoVQiCVXJ9BdtK4J7/dp+o22llLd8ldW8/EIM5ZXVqUvzgOhyYbRGDGhPZnrF+4ZW53YWxsC998K8eVC3LuzdW/0xskoppULztDIrIm2AM4BXvIxDqUQTTSUz2lYE9/rBXqszFCulakK4ymosLrhNXZpHnzGzaDdyOn3GzCqrKMfydhbGwH33wYsvwlVX2YqstsgqpVT8ed3NeCxwB9DY4ziUSijBur/VEWHq0rwKha1AkzMF49/qUNtvtK2UioxX41ar2xU4XDflWAyfKC2Fa6+Fl16C4cPh0UehTiL0e1NKqVrAs3QrImcCW4wxOWHWGyYii0Vk8datW2souqobNWoUjz/+eMTPKxVIoO5vACXGVOiCB5VbF9JEAm4zTaRSq0Ntv9G2qp7s7Gx+/fVXr8NQcRauK3B1hOsdEqwr8AlHtAjY2uovnt2UAUpKIC3NVmSvvx4ee0wrsqko2jJco0aNAFi/fj1HHXUU3bp1o2PHjrzwwgsB1x8/fjw33HBDlfalVG3nZctsH2CgiJwOZAD7icgEY8yl7pWMMS8BL4G9H1nNh1l9xcXFMd1W3brV+9hKSkpIS6tcUVLe8m/5GNIji7cWbqDE717QgSZocrcuRHvvxESa2MkYyMmBHj0gSJ1cJQhjDKWlpTHZVnVzUizyogounrewCdc7JNBM6icc0SLsTO0+8ZwXoKioYlfiZ5/VvKUqatWqFfPnz6d+/frs2rWLTp06MXDgQFq3bu11aEqlDM+uHxpj7jLGtDHGZAMXArP8K7LxEGzsTHU88sgjHH744Rx33HGsXWuv9vbr149bbrmFnj178vTTT1dY/8cff+TUU0+lR48e9O3blzVr1gDw4Ycf0rt3b7p3785JJ53E5s2bAXuV7rLLLqNPnz5cdtlljBo1iiuvvJJ+/fpx6KGH8swzz5Rte8KECfTq1Ytu3bpx9dVXU1Jif+wbNWrE8OHD6dq1K/Pnz6/2e1axFajlY0pOXqWKrE9efmHQ72+ytrbu2WNbNI4+GhYs8Dqa5BePXPfzzz/Tvn17Lr/8cjp16sSGDRvKlgXLPddeey09e/akY8eOPPDAA2XrZ2dnc+edd3LUUUfxzjvvkJ2dzQMPPMBRRx1F586dy/Li7t27ufLKK+nVqxfdu3fngw8+AGxLxsCBA+nfvz8nnnhitd+bCi6eFcJI8tXg7lnMG9mfdWPOYN7I/sxeszXi1tZ4zQtQXAwXXVT+d2mpVmS9Eo9cB8HLdrfeeis9e/akQ4cOLFq0iHPOOYfDDjuMe++9t9I26tWrR33nBsN79+6tcAHwtdde4/DDD6dXr17MmzcvYAwvv/wyRx99NF27dmXIkCEUFBQA8M4779CpUye6du3K8ccfD8CqVavKcnCXLl34/vvvAXjyySfp1KkTnTp1YuzYsTE5NkolklrVGSYeXaVycnJ4++23WbZsGf/5z39YtGhR2bJ9+/axePFihg8fXuE1w4YN49lnnyUnJ4fHH3+c6667DoDjjjuOBQsWsHTpUi688EIeffTRstd8++23fPbZZ7z11lsArFmzhpkzZ/L111/z4IMPUlRUxOrVq5k0aRLz5s1j2bJlpKWlMXHiRMAWCHv37s3y5cs57rjjqvx+VXwEa/kI1mUYQn9//Qt/iV6R3bEDznTdmKtXL+9iSQXx7Bb6/fffc91117Fq1Sratm0LEDL3PPLIIyxevJgVK1bwxRdfsGLFirJtHXDAASxZsoQLL7wQgObNm7NkyRKuvfbasm52jzzyCP379+frr79m9uzZjBgxgt27dwOwZMkS3n33Xb744otqvy8VXLwnios2X0VTuY71jMVgW2SvugqmTIEHHrA9SrQi64145bpQZbt69eqxePFirrnmGgYNGsRzzz3HypUrGT9+PNu2bau0rQ0bNtClSxcOPvhg7rzzTlq3bs2mTZt44IEHmDdvHnPnzuXbb78NGMc555zDokWLWL58OR06dGDcuHEAPPTQQ8ycOZPly5czbdo0AF544QVuvvlmli1bxuLFi2nTpg05OTm89tprLFy4kAULFvDyyy+zdOnSah0bpRJNQvTLMsbMAebEez/x6Cr15ZdfcvbZZ9OgQQMABg4cWLbsggsuqLT+rl27+OqrrzjvvPPKntu7dy8Aubm5XHDBBWzatIl9+/bRrl27snUGDhxIZmZ5weGMM86gfv361K9fn5YtW7J582Y+//xzcnJyOProo+17KyykZcuWAKSlpTFkyJAqvUcVf8EKZyXGkJmeFnRyp1h19fNSbi7ccQfMmQMvvABXX+11RMkvnt1C27ZtyzHHHFPhuVC5Z/Lkybz00ksUFxezadMmvv32W7p06QJUzpHnnHMOAD169OC9994D4JNPPmHatGlllds9e/bwyy/2Hsonn3wyzZo1q9b7UeHV5ERxkUw0Fc2kUIG6KVdn8qp9++DCC2HuXBg7Fm6+uUqbUTESr1wXqmzne9y5c2c6duxIq1atADj00EPZsGEDBxxwQIVtHXzwwaxYsYKNGzcyePBgzj33XBYuXEi/fv1o0aIFYHPhd999VymOlStXcu+995Kfn8+uXbsYMGAAAH369GHo0KGcf/75ZXnz2GOP5ZFHHiE3N7estXju3LmcffbZNGzYELA59ssvv6R79+5VPjbKG/GahC8VJERltqbU9D01fcnDrbS0lCZNmrBs2bJKy2688UZuu+02Bg4cyJw5cxg1alTQbfm6rYCtqBYXF2OM4YorrmD06NGVtp2RkaHjZBNYsMJZlpOwHpu5NuBySO57wi5fDmecAVlZMGsWOL2lVDXFM9cFymvBcs+6det4/PHHWbRoEU2bNmXo0KHs2bMn6LZ8ec2X03zbnjJlCu3bV6w4LVy4MGAsKnruQlKTBukYA78XFlUqMMW7IBVu5mGfEQPaM+Kd5RSVVhyG8dvuvXR/6BPyCyrGHqt5AX7/HZo0sY+feQYOPi6PPmO0cOklL+6V7stTderUqVAWq1OnTsg5Ulq3bk2nTp348ssvIx7jP3ToUKZOnUrXrl0ZP348c+bMAWwr7MKFC5k+fTo9evQgJyeHiy++mN69ezN9+nROP/10Xnzxxaq/SZVQIs2NtVWt6mYcj65Sxx9/PFOnTqWwsJCdO3fy4Ycfhlx/v/32o127drzzzjuALagtX74cgN9//52sLPulfP3116OO5cQTT+Tdd99ly5YtAGzfvp3169dHvR1V80J1hfN1wctKsXvC3nordOsGBQXwyitakY2lmr5/cLDcs2PHDho2bMj+++/P5s2bmTFjRtTbHjBgAM8++yzGGT+uXeRiy7+b5m8FReQXFlXqslkTQxeimnk4QLfegqJSfiuoHLtbVcdXbt9eXpG98kpbka1O99Z4jfOsbeKV66It2wWTm5tLYaGtWP/222/MnTuX9u3b07t3b7744gu2bdtGUVFRWZnQ386dO2nVqhVFRUVlQzfAzr3Su3dvHnroIVq0aMGGDRv46aefOPTQQ7npppsYNGgQK1asoG/fvkydOpWCggJ2797N+++/T9++fav0XpR34j0re7KrVZXZeIydOeqoo7jgggvo2rUrp512Wlk3u1AmTpzIuHHj6Nq1Kx07diyb0GTUqFGcd9559OjRg+bNm0cdy5FHHsnDDz/MKaecQpcuXTj55JPZtGlT1NtRNS+SSVDi8f31Sq9etosewKefQufO3saTamr6uxIs93Tt2pXu3btzxBFHcPHFF9OnT5+ot33fffdRVFREly5d6NixI/fdd18c3kHtFaiQ5FaTBaZwrWy+CuAtk5ZRVBL+5gb+sUc6vnLq0jy6PfgJ2SOnkz1yOl3u/Rxfz9G+feGsG/IYPnl5lQuX8RzTXtvEK9dVpWwXyOrVq+nduzddu3blz3/+M7fffjudO3emVatWjBo1imOPPZY+ffrQoUOHgK//+9//Tu/evenTpw9HHHFE2fMjRoygc+fOdOrUiT/96U907dqVyZMn06lTJ7p168bKlSu5/PLLOeqooxg6dCi9evWid+/e/O1vf9MuxknIix4IyURMkNlSE1HPnj3N4sWLKzy3evXqoEkgEO1zHr1oj7Gy4vFdS/bvb2kpDB9eXpHNy4NY3KFARHKMMT2rv6XEoLnOG7Ux17UbOZ1wpQAB1o05I+6x9BkzK+RwC/9xu5Fq6nSdzi8sCrg8q0km80b2B+x54+7CXLo3jS3vHs3e3APo2beQe57eHjKOSI5VqPfpiyMYzXWVaa6rvtqY+5JJdXJGsoom19WqMbOQWPfUVKmrOuMbQv0wJ/P3d88euPtuW5EdNAjefhsyMryOKnUl83dF1Zxg4/X914m1QHkuWIW1YF8xo6atqlJFFmzX6VDcrRuPzVzrqsjW5dePurF3UxOaD1xCvWPzeWwmIeOI5FhpK0tsaa5Tqa4mJ+FLRrWuMqtUdUR6BbiqMyzGa5C/O+79M9MRodIkKfG0bZutwAI8/TTceKPeykKpRBCuxTMeBaZAee7WScswQJPMdARDQVH5/TjDVUarq3WTzLIc6avYlxSks+WdXuzbsh8tz11EZrtf2ZgfejuRHqtoZmNWSqmamoQvWWllVqkIRVPRrOqV92CV4OGTlwfcT1Xidne1q4kZ8WbOhFNPhXr14M034fzz47IbpVQV+BeSQs1mHCuB8pyvq3N+YVGguZ0i0sS5UBdN5TczPY0TjmhRIUcWbWvIxlf6AdBiiK3IAuyfmU7D+nUDVkTTRCrNcxCMtrIopaKlPRCCS4kJoJJp3G+y0WNbLprZ5Ko6w2Ko+81WdYIQLyd4eeopW5EFGDdOK7LVpedj/NTmYzu4exYjBrSndZNM8guKaFi/Lk9d0C1usxaHu6gX7SeRJoIADevX5YGzOgad+d2fb6K92Wu2luXIfVsal1VkGx/9Ew3+uKVsfZHgEw49cX7XiI9VJBP+1Xa1+XysaXqsVbJL+spsRkYG27Zt05MxDowxbNu2jQwd2AhE19pa1RkWQ1V2q1rpjGQcVl5+Ycxn0pwwAW67zT6ePh0uvTSmm691NNfFT23PdTU9u26su9OWGFMW962TlpF9QGal/OuWmZ7GWFdl3Zcji3fWZ9Nr9h5h+x37Pc36r67wuvyCophVRGviVkfJSnNdzantuU+lhqTvZtymTRtyc3PZunWr16GkpIyMDNq0aeN1GAkhmnFO0YxvcI9nzUwPfX0pXMU00JjeSCZ4AWLW3dgYeP55Oy62Th1YtQpcdxRQVaS5Lr5qc66r6hj/qqrOzMThGOCrH7dzyTGHMHvN1oi6Tu+fmc62X4XNbx2L1Cum+VlLK7TI+vhyvXb3iy/NdTWrNuc+lRqSvjKbnp5Ou3btvA5D1QLRjnOKpMDjP57VPelJIKFaNAKN6b1l0jIapNchvY6UzdAZTCwKr8XFcNNNsH49XHwxvPwyZOqcJjGhuU7FS3Vn14321ii+ZaOmrQp6uxw3IbquxwaYvWZrRLesmLo0j/wt6fzvrV4ghgPPX0j9rMAzPemY1pqhuU6p1FETt85K+m7GStWUeIxzCjee1V+owlSwbRUUlYL4Zgkl5OQqefmF9BkzK2j3wqlL8+gzZhbtRk6vtN5rn24iPR3+9S9Yvns95w7P04qsUkmgqmP8oepdlAd3z2JfcfjcJ8AlxxwS8ThYn7z8woB5yt/dz25l/fMnUFqYTvMzlwWtyDZtkM7g7lkhc6BSSnklEXNTTQ1hSfqWWaVqUqy7l0VzX0FfYaoq2yoqMTSsX5dlD5xCu5HTQ+4n2AzHoWZz/vHbdG6/tBUA+/X6kbrHrOGu99IqbUMpVTOiuRpendl1q3MbsnA9UaBiK2u7kdOjbqENmc+e2saaN7sBcOCFC6l34I6A28lMT+OBszrG7dZpSilVHfHOTVVtXa2pISzaMquUhyKdCCU9TXjgrI5lfwe6AhfpTMmR7DPQZFPBktL9r2zk9ktbAtD4qJ9pesKaoNuorUQkQ0S+FpHlIrJKRB70OiaVuqK9Gl6dXifVuQ1ZpHytrHWqeHNq/1w0dWkeNz2Rx5o3uwDQfOCSoBVZ97GIZkZ7pZSqKfHMTdVpXa3uEJZIacusUtUQ7dUq//VPOKIFExb8En5HruaIYFfghvTIYkpOXtBuy75KbKT79HU59r2nQMmn8OcD+OV927JxwGnLadQlt8LyWCesJLYX6G+M2SUi6cBcEZlhjFngdWAq9VTlanhVe51EMzGeW7S5wWBnLfaXniYUlYRvr3Xvb9T4PPLe6wpAi7MX0+DwzRXWzUxPY0iPrLIJpHwFwpoqmCmlVDTimZuq07pa1d+HaGllVqkIBaqIuiuP4bp1BKqETlq0IaJ9F5Uahk9eDgRPLLPXbGX0OZ158MNV/FZQcVIVd5fB2WsinyHS/Z78k9KuFW0o+P4gMpvupcPQr/mVymPNYp2wkpWx95jY5fyZ7vzT+06ouKjJSldVuyhHOst6IGkilBpDkwbp7NpTHNFrfLkoJwdWTTgSqVtK66tmk96soMJ6WUFy+y2TllFH7GztwbatLBFJAxYDecaYM72OR6lkFE1jSTwrjdX5PanOEJZoaDdjpYJwd+Xt9uAnjHh3eYVuFhMX/BJVt45AldBIWhR8Sowp6+oRyMb8QgZ3z2Lp/acw9oJuQbsMRlugLSwqYdS0VRTss4VGY2Dr1KPYNqMraWmG8R/8zr0XZFfpvrq1iYikicgyYAvwqTFmodcxqdQUrABTRyTmE29UtYtydXJDqTGsG3MGDerVDTtLO9hJpEYMaM+CBXDiiVAvHQ66ZH6limzTBukATAiQ2+1+K29b81xANwOrw66llAoo2q69Iwa0j1sZrDoTBMZj4tRAtGVWqQD8W1ED3T4iWBEqnq0ihUUlpIkE7G7nTiyhugwGu4IXbLtQ/v5L96axYeypADRqt43X3ijh3F7l+4n39OvJzBhTAnQTkSbA+yLSyRiz0rdcRIYBwwAOOeQQj6JUqSDYfVx9F8QgthMWVaWL8uDuWdwyaVmV9ufLdZHm1D/9oRlrP8ni7JFw4IHw2Ku7eHL+PtxpPT1N2LWnuFKvlkB8LcOa5yoTkTbAGcAjwG0eh6NUUoq2a6/vuWjLYJG0/la3dbUm7sutlVmlAoj2ljluoa5iVbVbnVuJMWSmp1U5sQRLTKPP6cxjM9cGjbF4Z33ynj8JAKlbQuerlnNur/L7ONZEwkoFxph8EZkNnAqsdD3/EvASQM+ePbULsqoy33k4fPLySheofD0tEuHC02EtG/L9lt1Rvcad6yLNqf99+yD+Pcs+vv2JLYxf8W2FC4NZTTLZvbc4onveQnnLsApoLHAH0NjrQJRKVlVpFIm2DBbpDMhVrSjXJO1mrFQAkV7x959bM1SlMlA3kKrwddOIpNtGoFmPQ3X7CBZjUX4mm98+xr7HQ7dwyPCP2fS7TnoSKRFp4bTIIiKZwMnAGm+jUqlscPcsSkP0tIj3ff8iUbAv/K150tOk7B7ZWU0yGdLDzircbuR0CvYVhy3EFK5rTu6sdgA8+fZmxq1ZUlYB9l0YHDGgPb9HWJEFHSMbjIicCWwxxuSEWW+YiCwWkcVbt0Y+h4NStUV1uvZGKpoZkAd3z2LeyP6sG3MG80b2T6iKLGjLrFIBRXLF33/Gy3BXq9xXt6qvzH37AAAgAElEQVTTQrt7rx27Om9k/5DrhbvqFmlXla0/NWDL7GxKC+px4EXzyThkO6AFuii1Al53JkapA0w2xnzkcUwqxUXachmP+/5FIlRsApVyqn9OC9cluPCn5mx5rycZBxSw5MsG/O2DVUELb5EeKx0jG1IfYKCInA5kAPuJyARjzKXulbQXilKh1cTESTU1UeB330F2NtSrF9PNVqCVWaUIPFPxpK83BJ1cJKuK3Sx8lcg+Y2ZVuUKbX1gUdtzb1KV5QbsYhiu0uiu6b70FQx8sJa1lPgddMZf0JjZmLdBFxxizAujudRyqdgk2djYQL24vIwSee0AgYDfeaIZ/FHx3INs/7USDNvm8MH4vHTo0YOPrwQtvT13QLWDhMZoLlrWdMeYu4C4AEekH3O5fkVVKhVcTXXvjfduckhI4/HD46Sd48EG4//6YbDYgrcyqWi9QC+aUnDx7/8IAldmsJplhW0UD7cOdlKo7drawqIRbJy3jwQ9XkV9QVCHR+d5PsMmcIi20HnoorFsHbdvWYdS4vby8CDbmV24t8RftvXeVUvERqEBUsC/wJEde9LQI1iQX7eR6/n77oj07Fh5KvYN+54DBi7nv42Lu+3hp0PVbN8lMinFhSqnaI9wY2OqWteLZ+jt3LvTtW/73sGHV3mRIWplVtV6wcQPB5OUXlo099RcouQCVKsuxYCjvZufuQhyu9SJcobWoqGJ3kJaXfcmDn+6gdZPM/2fv3eOjqq+9//d3JpNkkkASINyGqzeoiIJQi9LWYltR8UKhlZ5qe87p6eNpn/Y5ldqcYuvviD09j1ROj7Y9t8ce+7Q9Wh+8plKsqIVqRVHBBBAFWy9cJlwCJFySSTKZ+f7+mOzJzGTvPXvPNZf1fr36avbMvnwnMitrfddan8W9K+akNa5OBAUEQSgMqQ5R6ncU7B0Yw6YF20JJgkn5DvQSbayxBif1qEcfm0/o3XEAjFvxGp4y+zm0UmWSH7TWfwD+UORlCMKQJBe+Vj428LSGG2+Exx6LHV96KWzZAipVYCbHFC2YVUqVAy8CZb3reExrfWex1iMMH3KRJTWMBvQZgpoKH2c6e+LZXMO4lPs8GSsju8EoIbbLXqRz3Nrb4bOf7TuecftGjoZjzqATY+lWTl4QhNzgdJfejQOT6jAZ1R6ZblKlrtGORBvrtFT6yCMfpvP9sQBM+sZzaQPZgElFi2zECYIw0MmVr5XrKRT//u99gezzz8fmeheCYmZmu4ArtNZnlFI+4CWl1O+01luLuCZhiGPmsFj1bVWWeolq8yytMd6iqydqK0YSCkeyCmQVUO330d7dQziSPi+RLkBfPs/acB0+DN/+Njz7LKxdC0/2bCLYluwMpjOWhRIUEAShD7eBmFMHxq7Kw43jdEfDLn796n4SuzbSbSImqmparSFxNvbppsl9gezfPYvXby8OpUgW0ZONOEEQBgsDzddatw62b4fvfS+Wnf3a18Cb/fAOxxRtNI+Ocab30Nf7P1G1E/KKmcNi9Y+uuyfK8nnWTkxbKJzXjKu3ty6jsqyEFR+eHD+2w8iyWJ25eY/5GIS334YFC2KN+k8/HQtqMzGWhZCTFwQhGTcjFtyQzjFy4jjd0bCLB7cmB7Junm/1DAX86MaLUMCZXQFOPHdB79iw36UNZCFm9+fc9Wx8JNFAcw4FQRCsKISvZTbaMZXm5lgJ8ec/D+vXxwLYb3yjsIEsFHnOrFLKq5RqAo4Cz2mtXy3meoShjxvHJBzVbN7TQiBL41Dj92U0XzaidXwO5INb91Pu8+DzWAe0Rgnx0rkBywA92BZi2qoNTFu1gbnfjzlyq1fD+efDyZPwk5/A4sWxczMxlmZzat30pDkxnoIgJJOvQCydY+TEcXr41QMZP9+jlKUtM0Sbzj5yMcefnkPlrCB1n9mOKkk/u9agLRSm/tEdNDQGZSNOEIRBQ7a+VjqMah+7eeR33w2BhHzP669DVVVOHu+aogazWuuI1noOMAm4RCl1Qeo5MlxbyCVuHZNgW8jUaDjF7/Oy+vpZ3L1sdkbXJ9LeHSEc1VT4PChiQXJthQ9FrPfr7mWz4+VwTgLw1o4wX1heyl13xY6ffhrmz+97PxNjuXRugLuXzSZQ4zddlx1OjKcgCP3JdSBmbCrZlQI7dZysVNWdYHWt3+dl0cw6Ssp7+P0vJlA5s5nRi3e5CmQNwlHN2o178+4cCoIg5IpsfC0n2FX7dHfD178O3/1u7PUf/jBWWlysQBYGiJqx1rpNKbUZuAp4M+U9Ga4t5AwrKfLOcMQ0A+BVKkkwJV2fl8+rqCwt4WSo/7icxP4uMypLvdRUlKZ9Rkc4yn1pVIUXzazjwa37Ld/XGtpemEHo/TogVl48fXp/gZZMZixmKiggPWuCkBmZjFiwEowyUztOxY2acTq755ZAjZ9PzKjjnz7Tt0E4+romlCfzZzS3hWQ0jyAIg4pcizclYlXV88F7isvv2cwbj11MxXgv//qr0/z1pyfkZQ1uKKaacR0Q7g1k/cCngR8Waz3C8MDMYbEL/AwnzDAa01ZtsLx3bYWPO6+b1c+4NDQGqX9sR1qHrr07Qnu3s7LA1U/t7jduI/EztbZ3WV6rI4q2F2dw6rWzKZt0nHGfe53p06+ynLeby90+O6RnTRAyw20gZicYlW60l1cp2znbqbborLoK/nS0PdOPloQCXvrOFdRdeDT+2pRvPx0PZDMNnI0Mdj6dQ0EQhIFCOvX7VCFRHVEE//MKImfK6bxqJ+NufhmPL8o9L3qpHRMtut0sZmZ2AvBLpZSXWLnzI1rr3xZxPcIwIdVhWbhmk+W5qeW6ds5SZ9i8xO2u9bsdKRG7oS3UJ3Bi5phaEe0soaVhHloraj6+h5EL3mVSbewzFjszaqXCLD1rgpAeN4GY3Xc93eaRXbDoxhbZUeP3Jdk4gwnVfurr4fibYymd0Mr4m19JyshGtea+FXNMs9TL5wVY9/qBfrbY51FSSiwIwrDBzE6vXNfEreua4lU3idU+oQ9Gc3Tdgvj1FecexuOL+bsDpXquaMGs1nonMLdYzxcEAzvnLdXJsXPkrL7UZiN7ckm6TIpB58Fajjx0GXiijL5qJ1Wzg/i8fY6c1e8h2BZi4ZpNeS+9y6RUUhAEdzQ0Bi2DzGxmb4NzW2RHjd/H6utn9bMF5SVeRu+6hEdegvGXHqD0YztJFXg3RKGMtaTarPlTR3HX+t1xm2w8KxN75nSuryAIQjGwslF2Uz2MKp27l83mf39mNn99o5+T744CoHz6UcZ+7vV+dncgVM8NiJ5ZQSgmVs5bbYWvn3MSSOPopX6p8yVeVFvhs3ymGaebJnNi44UAjF68i6rZwX5l0Va/B0VfhiXd/MpskJ41Qcgvxo68FcZ3Ll3PrBWZBsEGhmBeqi2YMKKCzqcv5bcvl/Ptb8Nlf+Hhu096k9Zo2KmFazZRv3iGaSl0rsqI3c71FQRBsMLNxpjTc+1sVDqf0UjMXNl1BSffjb22ZQvUv/gmwbb+5w+E6jkJZoVhj1VG8M7rZjk6NxHjS20YnGydOzN8XpW0tnSZlPa3J8QD2TE3bKdq5mHeX7Ok33lmn03Rfw5vPstKpGdNEPKHXeY0cbQXwLceaTKdDWunlJ6N2JNXKdP+fB1RvHLHIgC+/GW45x5QKoBSfaJ8iXaqEIFlsVsyBEEYGrjZGHNzrp2NqrZo4zBof2sib58uZ91/w+jRMPHSIPXP9be1MHCq54o6mkcQikHqLFPAscS5IYeemBk1ML7UiSNmck2gxs/az16UtDa70UGnmyZzbH2smn/CX/2RypmHLXfRUqXeayt8tvNqZWSOIAwu7Hbkl8+LlZ9NW7XBMpBNbEswI9NA1u/z8qMb++yaYUMPHu9k3z9f03uW5tqvB+MlbkvnBtiy6goCNX7LDbd8IWJ1giDkArugM5tz7drGrALZnpN+9v1wCcfWzyX854mMHw+HJ+3itkeb4v6sJpbkgNyPA8oGycwKwwqrna27l822Veg0rk0s71hy4QTTsTUL12zKum/MDCsVUcOQ3PZIn2Ky1tC2+UOET1TiP+cIY65twlMaW1N7Vw8NjUHLYD1xPIcd6bIf0lMmCAMLu5aKx7cH43bLLJAFKPEo2++7WSVHOjwqFkgn3nftxr10dEY5tn4OAKo0zJSVz/LPz/r5zMXJz89VYOnGXolYnSAIucCN/XJzrlvtg9YXZ3DqlXPixw88eobf7jrDQ1v397Ppmlggm85nLiSSmRWGFW52thJJzLZq+sbW1C+ewftrlrBl1RVxxydfu/OlJSqeTU7Nii6dGyDaG8hGQj4O3LeYU6+fRUltO3Wf2R4PZCGmhHz7E7tsM6tOhFxC4Qi3rmsyXY/Z7yvdMwVByC9mVRx+nxetcbQBF7JQbIeYzcgkLxvV8ODW/cy569m4fQge6+L4MxfSsXcitYveYsrKZwFrp80MN4GlW3tl9XscCOV2giDkj9TKvmx9Gjf2y8m5xvqMkuB0RMMeWn4zNx7ITr9+L0++EeTGBQFbmz7QqlAkmBWGFZnu4lsFwSsfaWLu959NMmy53p33qNgXNRSOmjpahvHSQPexKg7+5Ep0dwkj5r9H7RVvU+Lpb9LSBfBuDJWZ45fppoEgCPkjtZXAKBM7adM/lYqVA5etc2Nssj2yNUjrU/Pp2DueUVftZOQl78fPqTFp78hFYOnWXln9HqXyRBCGLvnYpHdjv9Kde0fDLlauMy8JNqPnpB8iHrqaa/CNPsMvNx3ivd/McJSYGWhVKFJmLAwrMi0Ps/pSa903escwbMvnBZJK9tJRWeqlvdv6XI21CBMQL5vuPjKSQ7/4WOyesw4y6pNvA9Z9bOkMlZsSlVTxE+kpE4TiYVcymyqy1tAYxONCuMlKdCSbkT4GZ055WHFp7J6jFu9kxEUHkt43W2IuVNAzsVeJv0fj971yXZO0VAjCECUfwm9L5wbYtu8ED796gIjWeJXq13aReK6xjlRb19AYtCwJ9irFSH9J3FeNhj0E/88iou3l1C1/nYlf/iOjaxVfWnRl0rV2Ey4GWhWKBLPCsCLTWaZOHbVQOMLmPS3cvWw2q5/abasYBzGj8JmLAzy4db/lOVY+ZrAtxK3rmgDoPFBLyxPzAai9YjcjP/xB2rUmKi+nzl689qIJpobRjkTHT3rKBKE4ZKKO6Va4ycyBq188I26PMiHSXsrBf/00AP7zDjNizoF+51hlkLNVQc/GXsmYHkEYHuRjk76hMcjj24NxGxzRmse3B5k/dZStrolxrbGJ5lHK0l+LaM2Zzh58XsXJPXW0PPHh2BueKGWTTuAp66Gto/91VhMublowZcDZNikzFoYVbsvD3PYfQMywLZ0boOnOK01VjxPRwEM2gawT2t+awKmt5+Cp6GbiLZsdBbKJysv1j+2IB7IQK/db99oBLjt7lKt1eFRfT++imXXSUyYIRSBbdUynpDpwS+cG0to7K6JdJX2B7FlHGfuZ7abn5WszLJtSZWmpEIThQS7681PJlY5Lug3J7ojm4AMfjQeyFTOamVr/O7zlPbETFExbtYFpqzYw9/vPxkVCU/3le1fM4QdLZ2f6cfOGZGaFYUEmyrqpO+5Ocxc1FT4WrtlEc1uIar8Pn1cRjlhfndkwi1jG9sSzF3CmaSr+cw8z4Usv4SlL75h6lYoby47uHtO1haOaD4672200jKkhjrV8XsBU7VkQhPxhN5LBcFByMQfbzIG787pZtnO4zYh2lnDkkUsAqJq7j9FXvml6Xj43w7IpVZaWCkEYHmRa2WdHLnVc7Gj9/fl0HhkJwIS//COl408lvZ8YC7d2hLl1XROrn9rN6utnDSjVYiskmBWGPJmWgWWatTjT2RPPdKYrM86UaNjDgX+5GoCyScepu74RVRJTGrUaj1Fb4aMzHE36PdjR3BYiYFF+V+P3UVlWQnNbyLTfzii3HgxGUBCGEnYtEd9a18T3ntxl26PvBDsHrqzE49huRkI+jv3mYnraKqlbto2Kc4+Ynlfj97H6+ll53QzLtFRZWioEYXiQi/78VHKt45KI1tD+ZmxtVRceoGpcByPnHqCzx5l9NkT5YOC3TEgwKwx5rMo4bntkR1ywY9HMun5ZxEx31sNWQxqxDjRTscvmJvaWAYz7i62o3oaBQO9nWff6gaTrfV7lePyGgfF7MNuJTHQsp6/aYHq9ZCYEoXA4ybZGIetANmDhwBktC3ZVKImET1TQ0jCP8IlKxi7fhn/6MctzK8tKXDtThZpznY9sjSAIA5Ns+/NTybWOi7c3uRA+UUnzzz4BQPm0FiovCKLGnqazx936shW4KhQSzApDHqugKrEsNlGAycjc1lT4knpJDZwGpGY4uc5O3bjnVDlHH431PJRObGXCF18GYsbv7mWxPoa71u/u71Bqd1lin0fFjWm5ry/TYpYhkcyEIBSX1OqTfOHzKsug0NTuWJCovD72xldtA1lwvzFWSFGmfGRrBEEYHmRqP6yC4LuXzWbzLwL85Gex11RpmLGfex3lVPTFhMGQmJBgVhjyZDIyIhSO0BMxdwzPGVvJn46252JpplgFst1HR9D2xxn0nPInOYBGNtZOPTkc1fEdu1Rq/D6UIknNePX1swD6Gcuunmi/6yUzIQjFJRshJzeEI5rvPbnL1PEy2/gzo+tQNYd/9VEAqhe+kzaQBfcbY/kYoWFHrrM1giAMHzKxH2ZB8Dc+NpP7Vk7khRdi54y+ZgdVsw9mvb7BkJiQYFYY8pgFW04I94/bAPIayFplfTv+PJZj6+dSOv4kE760Bd/o2BoCFqXAZkS0xu/z2pYMJ7JwzSZHDqFkJgShuBRy57y9O0J7d+x5iRlPJ/ScKufwg5cBUHP521QveC/tNZlsjIkokyAIxSTTNofEdhEjAWH4edDfzzJ0SZqbIRKBr++E8lEd1H3pj3jKXNYUmzBYEhMSzApDHsOAOJn7WmzMAtlDv1xI9+EavNUdjLm2kZIRXUCfkXGalamt8CX1zdZW+LjzulgG1lBfTjS6bhxCyUwIQvHIpPokVxgbXDV+n6197TlVzpF1H6GkNMqYz75CWaAt/p6xiRew0C9wa1uk9UEQhEKSGLxW+320J0yKCLaFuHVdE3et382d1/VPHiQGsIkJjcRWuPrHdoDu02QxNhJDHYqVyydy4gRs2QI/fqKZ/++Zxqw/j4JBlZiQYFYY8jQ0Brlr/cAPZFPRUdi/dkn8ePzNL+Or6oo7fYaRWbmuKe29fF7Fmc6eJHGqznCUbftO8Pj2oGlvmTiEgjA4qF88g5Xrmmx78msrfCy5cAK/3XEo57awuS3EvSvmcKuFLQq3VnDk4QV4SnsI3PQaN107ks17uvJWySGtD4IgFIrUHn0r+9ra0V8d2OkISDM9gmM7x/KFH0wEwFvdwfJf5yYbG6jxD7pJFBLMCkOaOxp28dDW/RkLNhUL3eOh5TcXx4+n3PY7VEk0HsgmGpp0WZkavw/ob2BD4QgPv3rAdKzO2o17M3IIC6UgKghCH0vnBnh02362vHvC8pzO3r6JyrKSnAezE2v8bNtn/uyOd8bR8uR8PP4uxny2ET3mNJv3dObVWZLWB0EQCoUbzYLUVq1M9A50FIL/eQWR07HEQuXsA4y5Zqe7RRPb4EzVOhism34SzApDlobGYJJK8UDB7/MQsmrIJTZ7sXXT+YT+PI7qS/9E9cfeSVKiSy3zteqZNcqIl84NWI7PMROEMp7h1iEspILoYEIpNRn4FTCO2Mbr/VrrHxd3VcJQoqExyBv7T9qeEwpH8mYPp43285DJvdvfnsCxp2KbcmM/u43SsaeBwvSuSuuDIAiFwK09a24L0dAYzLj17fiGOfFAdsKXX6C07ozrexhJkaGSgJBgVhiyrH5qd7GXYIpdIBtureDoox/GW9lN3We2UXHekX7npJb5Ogk6080ks3qGG4ew0Aqig4ge4Dat9RtKqRHAdqXUc1rrt4q9MGFoUCg1Yyu2vtfar/qlq7k6HsjWLXudsol9PbLFalUYKo6bIAgDB7eaBTUVPuof3ZHU9pUOreHMzsmUVHVSeeEByqceo3L2wYxG7iRmX4fKpp8Es8KQZbD1yJ56fTqtm87HUxZm9DU7mXDeGTrD/dWHDSPkxjGzKhlePi+Q1DOb+gw3iIKoOVrrQ8Ch3p9PK6XeBgKABLNCTij2dyx1Q6zrUDVHH70EgLGfew3/WS3x9zKxL7kIQqVyRBCEfGDmX/k8Cp9X0ZGSvPD7vHSGI7aBbOpUi+6WKg79/HIAKmY2U3dD5gJPiRV7QwkJZgVhANDy1Bw63o4Zl7rl26idfoo7r5sNJGdcF82sY+3Gvdy6rinJ4KVzzOyyt/OnjspJtkIEo9KjlJoGzAVeNXnvFuAWgClTphR0XcLgpphqxql0BWs4/syFqLIeAn/1EiXVyesq93lc3S9XQahUjgiCkA/s/KvUjbhFM+vStnvcu2JOXN342NMX0r5rMgDekR2MuT6zQDYwxCtRJJgVhiyVpV7au4tXeucEreHklnPjgezEr/yBaWdHqV88O250nKrepTpmZtkMM9GVXJWZiIKoPUqpKuBx4Fat9anU97XW9wP3A8yfP3+waZYJRcSJmnEhCH0wmpYn5+Ot6mTCF7fgrewGkjMNZoqeduQqCJXKEUEQ8oWVH5X6+sI1m2zvE6jxs3RugG/+6k2af/kJelorARhzw3YqZx7OaG0KBp06sVskmBWGJA2NQbp7rHtTi41HwcjSUj54bjonXzmHKeeEaXrNR23tJ/qdmziDLB2GY1aMkjpRELVGKeUjFsg+pLV+otjrEYYWS+cGLMfiFIq2F8/j5CvnAjDnb5v43ufOZ+ncAAvXbOpnu9wEo7kKQqVyRBCEbHDa7mB3np3d8nkVi2bWcckdfyR80k/kdDnekR1M/JsX8ZRmnpgZDjZOgllhSLJ2415XzfWFpqfLy74n5/KRqWOY/134x3/04TGpvksNStNhGK1ildQNFTGBXKKUUsADwNta638p9nqEoUmgiKXGJzZ9iNOvnwXAhL9+kdKRPaxc12S7Ced0rbkKQqVyRBCETHGaIEh3npU98yi44fyp/PBLZxPp8jLhr14i8NVN8eqWTBkuNi5t84pS6nNOXnOLUmqyUmqzUuotpdRupdQ3s72nIBjY7X5lIP6WU7oOj+TAvVfR9s5oPvMZ+Kd/wjSQBXcqpYlGS0rq3JMvWwcsBL4IXKGUaur93zU5uK8gxHHrsOTKDnb8eWw8kJ34lT9QNvY0wbYQmvQBa0NjMO396xfPwO/zJr2WiYO2dG6Au5fNJlDjRxEL/u9eNntYbr7l0dYJwpDEKkFw2yM7mLZqA2ff/jTTVm3gtkd2WCYSwNqeXVN6GT+6eRY9p8sprTuNt7Ir60DWq9SwsXFOMrO3A486eM0tMq5CyBtWu18Bhw34+aL9rQkcWx8bVzFm8Zv88IP9/Pca63KVdMGn0YuW2twvJXUZkRdbp7V+ieLvoQhCnFS1zEwJvVdHy5PzKB3fRt3ybZRUdbm6r5NKkVy2L0jlSJx8+XWCMCSx8sUMJffU/7e73pPgDeioYu8PP8WecCwcGzH/PUZ98u1cLJmo1sPG3lkGs0qpq4FrgIBS6icJb40kFohmhYyrEPKJVUnZopl1bNh5qChr6nhnXDyQHX31DiovPBjPXlj1s9qplNqp00lJnXPybesEIVfY9WIZO/9OMHO3ait8dIajjitB2t+ewPFnZuOfdowx1zfiKXP/VXFaKSJBaG4QWycIzki1tTUVPlo7Mh/3WFPh446GXUmJFK3h6GPz0b2BbOBvN1NS05H12g2GU/LCLjPbDGwDrge2J7x+GliZy0XIuAoh15jt5k8b7eehrfuLovh5ZleA489cCMC4m16mfFJr0vtW/axWQWm60hERY3JFwWydIGRKul6sbFsIWjvC3LdiDquf2p12RndLw1w69k6kbNJxxlz/Bp6yzMRJhpOzNUAQWycIaTCztT6PwutRRDLUYmntCMcDWa3hTNMUSsefpGr2QSrPb6ZyVhCVYf1WZamX7p5okk7McEteWAazWusdwA6l1JNAu9Y6AqCU8gJluVqAjKsQ8oWxm9/QGOR7T+5iSxH6RbWGk388j+6WkZRPOU7d0jcsMxhmzmg2QalkM5xRKFsnCNlgJ+oG4FHKssTNCYYf1XTnlbYK6ocfupSug6MAGPu51zNW2fR5lCtnyywrDbJh5waxdYKQHjNbmytB0a7DIzn8y48BUDVnH6MXv5nV/RSw+/tXOVZaHqo46Zl9FvgUcKb32N/72mXZPlzGVQj5pqExSP1jOwhHCr8PEu3ycugXH6OnrZKquR8w6tO7bXferLIUEpQWjLzZOkHIFqvMq5GhzSaQhVjpsVEdYtib1HE/R5+YFw9kJ/3ds1mNi1j7uYsc2zWzTEn9YztA9zmZhRg/NoQQWycImG+S5Usos6XhYjr2TgDAN/Yko67MLpCFPr9xuPuJToLZcq21YfDQWp9RSlVk+2AZVyHkm4bGILc9siNrJy8Twm1+mv9PbEi1k0AW3KuRgvO5Z4Ij8mLrBCEXWPXPe5Vy3OeajkQn7rtP7Ex679S2aYT+NB6AybduzKhHNhEjo+zEXplmSkw2KAsxfmyIILZOGPZYtW5U+31pWy3cEOksIfhvn0L3xFSM65a/TsU5R7O+ryIzv3EoknY0D9CulLrYOFBKzQNysW0h4yqEvGFkZIsRyHYfHREPZP1nH2H0lekDWaVg5bomFq7Z5GhcBfQZ4sQxGLc/scvx9UI/8mXrBME1DY1BFq7ZxPRVG1i4ZhOLZtb1G+ng82RXWpyKscvf0BikIxyNv35q+1TaXjoP/3mHmfLtp/GVZx88u7FXbjIlMn7MEWLrhGGPVeuGUvSztXYunN170c4Sug9Xo3s8eEeEmHLb73ISyEKsmkY27mI4yTYRqDgAACAASURBVMzeCjyqlGom9t9sPLAi2wfLuAohn9y1fndRSou7mqs5+viHAaj+2F5qLvuzo+sMf9RNqZxdD50YuIzIi60ThHQk9qh6e3tfE8fnBNtCPL49yPJ5ATbvaaG5LUS138fprtwJ0CYKhiQqI7e9fA4n/ziDytkHGL14F8qr+dGNc1i5rilrMT2n9spO1d3sXCEtYuuEYYudJgDQT7W4xu/j2osm8Pj2oGkVjJkdjHT4OPzfC9E9Xib89YsEvraJkpGdGa3Xa6GHEBBbFydtMKu1fl0pNRMwctl7tda5y78LQh7IRkI9UzreGcfppil4fBHGf+UP+Ea3Z3QfJw5eQ2PQ0hAH20IsXLNJSo9dIrZOyDdWIkaJpW6G05LquoTCETbvaWHLqity2kKhoJ+daG4LoTXsv2cJABXnBxl91S6UR8erSHK1VZiYSbVqmzBTdfd5VVLPLAw/Bc9MEVsnDFdSS4udcKozzPypo5g/dZRtEBw/f/tUWp+/AICK8w6hfBG8FZl9vfw+L8vnBfoF0mLrkkkbzPb2UXwLmKq1/h9KqXOVUjO01r/N//IEwT3FKLNtfXEGp145G/+5Rxj/ly/h9WfnF9iVyhnG2AoFcWMroijOEVsn5BOr/qyyEo9jx6q5LRS/T67Ki83uMqHazyvfvSJ+POaaHShPb5Cd44KXxNJmu9FD0F+52Ow1sXPpyaetU0pNBn4FjCP2z+t+rfWPs72vIOQCs4q2dEQ1rHykiXtvnMOWVVcwfdUGU7upezzs/9HV8ePqS/9EzcffyXitXqVYPi/AD5bOjgfSYuvMcVJm/H+JzSO7tPc4CDwKiIMnDDjSBXq5RkcU+/851updNrGVMdc14vFF01yVHrtSOTtjnFiaaCClx44RWyfkDau2ADeO1cQaf0bOWDoSA8cb5gSofO0j8fem1G9AOVHXcIDPoywzqenaJqzUOsWuZUQ+bV0PcJvW+g2l1Ahgu1LqOa31Wzm4tyBkRaY99VrHKmi27TuBUv039XQUjjy8IH4c+NrvMy4rNohozePbg8yfOmrYqxWnw8mfqLO11vcAYQCtdQfS6yoMUPLh6FkR6fDFA1mAcV94JSeBbLryETtjbJU0EVEUR4itE/JGtt9Bwy7k67scCkf41rod1FzyHs83VHLB5a1c+k+b8HhiGYJcUFVeQqDGjyLW73X3stlJpc1miO3KC3mzdVrrQ1rrN3p/Pg28DYgXLgwI/D7zsMfJP/5QOMKDW/eTOHJWazi1fRo9p/xUnN/MmOsamfqdDa4DWavnJ84SF6xxEsx2K6X89PrJSqmzga68rkoQMqRQjk+kvZQj62LZi5JRZ5j6nQ0ob/b1d6kOnhlWWdtAjd9SEEBEURwhtk7IG1bfwdoKXz/lTAPDwTHsAoAnR4FlKjqqaH7oI7S/PZGRC/7MqY+8TEe4h3tXzCGao9piOy0Dq9+P2K68UBBbp5SaBswFXs31vQXBLXc07EpSaU8kEwvXebCW/fcsofX5WZzZOZmR8z6g8vxm1/cJ1Pi5d8Ucy4BWNvTS46TM+E7gGWCyUuohYiN1/iqfixKGLpnMRXVzjRvVy0wJH6ui9YUZ9LRWUrfsdSrOzY3MulPMxFASs7l27wm2iK0T8obV9/bO62YB9FMzDqTYuobGIPWP5mfcWDTs4cC/xHq9Ki84SM3H96IUtIXC3P7ELmoqfDkT1bPq509n14Sckndbp5SqAh4HbtVan0p57xbgFoApU6bk8rGCYMnDrx7IyX20hqOPXELnB3UAlE05Rs3HMuuN/WDNkvjPVuJSsqGXHstgVim1UGu9BXgRWAYsILZR/E2t9bECrU8YQjgR+MjmmobGIO05HFVhRmjfaFqenEfpuFOMv+kVSsedSn+RC5z8TqzEUBLPF6EA54itEwqB2fd20cy6pOP7Vsyx/K6ufmp3Ur9proh2ezlw71Xx4zFLdiS9HwpHKCvJUdNsCqk9sSC2K58UytYppXzEAtmHtNZPpL6vtb4fuB9g/vz5hZ+hJwxLcrERGOnwcfCnV8aPx67Yin/a8YzulVpJJxt6maO0xX9cpdR2rfU8pdQbWuuLTU8qMPPnz9fbtm0r9jKEDFm4ZpPprlOgxs+WVVeYXGF9jXGd4exkIrfuliOPfJjO98fiHdnB+C9spaQ6fxlgu9+J0J9eezU/i2vF1gkFxcxm+X1e0zaDhsYgt65ryvkaEjOyAFO/syHnz0iHAt5PyE4I9gx0W6eUUsAvgRNa61vTnS+2TsgniZV92Yay0W4vHe+M5/iGOXhHhAj87eaM28vsbL1s6MVwY+vsyozDSqn7gUlKqZ+kvqm1/rtMFygMTzIR+LB7LzGLmU/hJ61h/z9fDdFYdsJNIGs17Dod0iNRUMTWCQVn9VO7bdV7DfKl0K57kgPZmXc8Q6gIk0alhK6gFMLWLQS+COxSShk7MN/VWj+dg3sLgmNyleSInCnj8MMLUEoz/i9fomzSCXw1zn00v89DKBy1bCFJRFSLM8MumL0W+BSwmJiEuyBkhVU/q50zk64H1nD+8hX8Rbu9Mbn13kB28spn8JQ6N4xlJYpwFMIRiwoIzIUHxMErKGLrhIJg7Lrb2bRUW5aPjbpo2MOJjTFBKf/ZR/j1oz1s2xfg168mK3UWAimhKyh5t3Va65cQFXhhAJAL23ly61m0vfAhAKrm7EMpXAWyAG//49XpTxKywi6Yrddaf0cpNUVr/cuCrUgYsmTSD2B2TSr5EnzqOVVO8D8+CUDl7AOMvnonboVEDeW8ylIvHd0Raip8aA0nQ+F4z9zj24PSI1FcxNYJecdpliB1I8tuo87rUURcRp+JPV9jrn+Dyg8d4vYnPIDqF8jW+H205TFdW1vhkyxEYRFbJwwb7Gxnhc9jqWwM/bUEaj6+h+pL33W9hpsXmAucSTlxbrELZq9RSq0CPg/cU6D1CEOYRIEPQ7UzcYaWVclF4jWFovNgLUceugyA8ulHGXPNzqzu19Ed4V4LcZf5U0eJUSsuYuuEvOM0S5C6kWVXnaKj2rK6w4xwawXN9y8CwH/uYSo/dAiAkIVTV1lWwunOnrwoKCcqOQsFQ2ydMGyws522gWzYw+H/Xhg/Dnz9eUqqnE2uUirWmuZVir/4yGR+sHR2v3MyEUMV7LELZp8BWoEqpVSiZKsCtNZ6ZF5XJgxJjC9q6hd55bombl3XZNpLYPQQFELkCSDyxzkceTn2/HEff5fyS/dkfU8N/XrhDKRHouiIrRPyhpPSYrtrO7qtFdqt3bE+jAxE97EqDj1wefz1scvSV5k2t4W4acEUHty638lybalNqUqRTbuiILZOGDbUL57hSjhPR+H0G9OonBWk4rzD+Ba+Q+XMw66e+f7d6cXszDY2zfQSBOdYBrNa63qgXin1G631DQVckzDEMfsiG/v+djtUhcjSHt94AWeaYs/5yt+38VbtPoJtubl3sC1EQ2Own7iLZGWLi9g6IV9ksgFnODR3NOzioa37s1LgrPH7WH39LI4EvXz1uvGxFz1Rptb/ztH1Gti8p4WFZ49i63utRLSOZxweef0A3RZaAKkYWVixbcVFbJ0wnFg6N8Bd63c7mpEd+mA0R9ctiB1oldHc2MQ2NDvfLhMxVMEey+FxSqmZAFrrG5RSZSnvLcj3woShS7ovbGLpcSpL5wbYsuqKfvO5ckHbS+dypmkqABNWvMYfvC/nPGi+/YldNDQGgT5HN9grGW8E8sb7QmEQWyfki0wESJp7N72yDWQB2kJh/tcv3+TrX6gGoGzKMceBrEGwLcQb+0/yoxsv4r4VcxhfXc6DW/c7DmTB3qYLhUNsnTDUaWgMsnDNJqav2sDCNZs4f8II2/O1hkO/uiweyFacd4gR89/P6NlGN0Y6385K4FOEPzPHbhL6rxN+fiXlvX/Pw1qEYYKTL2ywLcS0VRuYtmoDc+56NinAa2gM0trurH/BCTqq2PfDJZzcch6e8m4mfeM5Sqe1EM6DrGeiU2dXaiIUFLF1Ql7IZKd9Yo2ftRv3Zh3IAoSPV3L0/y0Aj6Zu+euM/4tXM7pPKBzhrvW74w5aJhiVKUJREVsnDFnuaNjFynVNSUHklndPWJ4faS9l/z1L6D5UC8C4m16m7jNvuBb6TCWdb1e/eAZ+nzfpfRH+zA67nlll8bPZsSA4xolCcSJtoTD1j+7ou/7RHTkLNCMhHwd/cmX8eNI3ns94CLZTDAdXSk0GDGLrhLyQbrSYGW0d3bR3Z68LEHqvjqOPXgLA2BtfxT/9WFb3c1Kqlw4ROSk6YuuEnDMQ2qUaGoOuevvDrRV0vBNrvSipbWfiV/6AskvvOaDG7wPS+3aJLXPSYpYb7IJZbfGz2bEgOGbp3ADb9p3g4VcPOFbJDEd1fFcrV4Fs5/5RHHn4UgC8IzsIfHVz1jtyTvAoRUNjMKO5u0JeEFsn5AW3G3dATgLZjnfG0fLkfACqF76TdSCbK0TkpOiIrRNySjGUec2C59VP7XZ0bXfLCA79/OMATPzbTVScexjfqI6s1+TzKFZfH1Nnd+LbifBnbrELZicppX5CbLfO+JneY/kvIGRMQ2OQx7cHXY97yGXGsuPPY2l5/MMAlE9tYdznX8vZvdMR0Zrbn9jF8nkBmTE7MBBbJ+SFYowWa98znmO/mQfExu/UfPRPBXmuU6TypKiIrRNySqGVec2CZ6eKxYcfvJSu4Kj4sbeyC4/PiSa8PalTOMw2McW3yy92wWx9ws/bUt5LPRYEx2QiigK52zZODGQrzg9Sd51z6fZcEQpH2LynhbuXzZZSk+Ijtk7IG8YO/LRVG/L+rHBrRTyQrZx1kDHX7khzReGRypOiIrZOyCmFapfKZsRZajtZLm2jArasuiLpNSkjLjx2o3l+WciFCMOHYu7MH31iHqE/xfokxq7Yin/a8aKtpbktJKUmAwCxdYIbEkvcqv0+lIK2jvSzU71Kua5GcUP4RAUtDbFAdtRVOxlx0YG8PStTJDtRXMTWCbmmEO1SmYw4M4h0+Dj0i4/FjwNf+z0lIztd38fKflt9TvHtCkuW7c6C4J5i7MxrDfvvuzIeyAb+5/NFDWRBMhTDCaXUz5VSR5VSbxZ7LULmpI5caAuFae0I247WMkZF5DOQ7dg7nuafLUJHPEz48osDLpBVxErx7l42Wxw8QRhCmCnzAnR09+RMvTyTaj7d4+HAv36SntZK/GcfZczS7Uz9zgbXgewHa5bwwZol/OjGi0SBeAAjwaxQcKyMX76IdnnZf88SdFdMaW7yymcoGZG70T6ZIEZw2PEL4KpiL0LIjnROVeporcTgN1+0vjAjnpEdffVOSutO5+1ZmXLvijlsWXWFBLKCMMRYOjfA3ctmx5V8DVo7wqabe5ngtprv1GvT2f+jq4m2l3Ns/VxGL36TyhmHXT+3tqLvMxmfM1Djl825AYhdzywASqmFWust6V4TBDtS1ecunlLNy++dII/JCgB6TpcR/PdPxY+n/P2GrBWLFVBT4ct4VIUCls+TEpSBRj5tndb6RaXUtGzvIxQXJ05V4jmZ6gM45cTz53N6+3QARl25i/JJrXl7VjaIgvHAQvw6IZcsnRtg7ca9tIWSfaJcCUE5HXGmo7B/7ZL4sSoLE/jq5oyfe+d1s5KOpXR44JI2mAV+Clzs4DXXKKV+DlwLHNVaX5Dt/YSBiZn6XCGUPbtbqjj088vjx1O/Yy/AooiJTKXrbdNA4z/ExAQaGoOOlfQSr9+8p8XVNUJByJutE4YGTpyqar+PhWs20dxbipwvTr8xNSmQHTHX+YzFQiMKxgMOsXVCTslWCMpuVq2TEWepiYu65a9Tcc5RF58gmZsXTJHAdRBhGcwqpS4FLgPqlFLfSnhrJJCrGtFfAP8K/CpH9xOKhJ0hynV2wgg67TizK8Dxp+cAMPKSd6ldtKffOTUp4i2LZtaxeU9LWmfVqxTTV21gYo2f9q6ejD6DOHcDhwLZOifruAW4BWDKlCmFeqzggnROlc+jaO/u6ZehyDWdB2s58Vxs/3f0kiaqLsislM+jIEdju20RfYCBwUCxdcLQIxshqHSzapfODbBt3wkefvWAaaKh51Q5p16fHj+eUr8BlUUTpc+rmD91VPoThQGDXWa2FKjqPWdEwuungM/m4uFSejc0SGeICh24nfj9hzi97SwAxn/xJcomnjQ9ry0UprbCx70rYkGvU7U8w5hmk10W525AkXdb5wSt9f3A/QDz588vQIghuCV15EK130d3T4SOcGxWYURrotmPLbQl9G4dJ56fha/uFHVL38A3qt3V9Qq47OxRvPZBK+GIs39m2QS9og8woBgQtk4YemQzW/Wu9btNZ9Xeuq7JtvKtq7maw//9USAm6jni4n34ajsy/AR9hCNaWiMGGXajeV4AXlBK/UJrva+AaxIGGemGZjvtd3CKnU8V/Nnl9JyoAmD8X/6RsvGnbO/V2hGm/rEdVJWV5LW3LRFx7gYWYusENxiZgobGIKuf2h0PZCH/Wc5jv72I9t2TAJj0jefwVna7ut6rFD+68SK++8ROx4EsxD5XJgFtQOYrDijE1gn5ItPZqg2NwYz0RxJ9PeXrwVvRjfI6N1CVpV58Xo9lFY1Uzw0unPTMliml7gemJZ6vtb7C8oocIqV3A590vRKLZtbx4Nb89nOlNv4Hvv48JVXOFIvDEZ2xmJNbxLkb0OTN1imlHgY+AYxRSh0E7tRaP5DtfYXC09AY5HtP7qK9uzCbXwaJztuEL7/gOpCFvqqSxADcKW4C2doKX1xXQBiQFNWvE4YmmQgkJaq/O6HnVDnB//hk/HjExR8w6tO7Xd0DYvZs9fWzWLtxb97n5Ar5x0kw+yjwn8B/AYX9642U3g0G7HolGhqDPPxqfmceRrtKOHDf4vjx5JXP4Ckt+D9VWyp8Ht76x6uLvQzBnrzZOq31X+TyfkJxaGgMUv/YDldZzVxw8N8+SeRMOQDjbnqZ0rozGd1HESvpyzf5VqkXsqaofp0wvGloDHLX+t2ukwg9J/00P/Dx+HEm1SkGRvVgNuXRwsDBSTDbo7X+j7yvRBi0WImiBNtCrpV+3RI+UUnzzz4BgMffzaT/9VzWo3dyjd/n5X8vm13sZQjpEVsn2LJ2496CB7KtL8yIB7JOWifs0FCQKpSTeRbAErJGbJ1QFDLZEIx2e2n+2ScY94VX8J91lIoPHcpobmwqzW2hjMujhYGFk2B2vVLqfwJPAvG6Ta31iWwfLqV3gwsrxeJEY1CIkTsGoffHcPSRjwAw6qqdjLjIOgN87thKPjjeURBHNFUlWQzjoCFvtk4YGhS6jyr0bh2ntp4NQOBrv6dkZGdBn58pUqI34BFbJxQFtxuCbS+dy8kt5wFw4rlZjLvx9ZytxbBTMj928OMkmP3L3v+vT3hNA2dl+3ApvRs8OJFOXzo3wNm3P207ozVXnHptOq2bzwegdtFbtoEswJ+PtnPZ2aN469DppMyEUrkrifP7vNy9bLYYxcFL3mydMDTIRszO51GEXTSeHn18HqE/j6fivEOMvmYHnrLBUQ0qJXqDArF1QsEwxPLcjCzTEcX+f74mfuwbfTqngSwgdmoIkTaY1VpPT3eOMPRJp1hsUIhAdt/aqyEaGyI29rOv4T+7Je01Gnj53RPcu2JO0nqnr9qQ9XoUxOfUrt24l5XrmiQjOwgRWyeko37xjIx6Zm9eMIX5U0dx2yM7HNnIfT/sE7MbvWTHgNMAsMKrlGzoDQLE1gmFoqExSP2jO1xt5PWc9BP8zz4tsrGf34p/6vGcrqvG7xM7NYRIG8wqpSqAbwFTtNa3KKXOBWZorX+b99UJA4Z0isWFQOuYEIoRyI6/eQtlgTbn1xMTP0ksla72+1ztFqZS4/dRWVZCsC3EQ1v3x8cGpWauhYGP2DohHcZ32Y14SalX8fCrB3hw6348CjyAnZZwYiA76e+eLUggW1vhozMczXo8WVRrsXeDALF1QrZYtZ2lsnbjXseBrNYQDZXS+kJfxnTK32/IuQ6Kz6NYff2s3N5UKCoeB+f8X6AbuKz3OAj8IG8rEgYkVj1QxusNjUEWrtmUt+frHg9H132EaHtMCCXw9eddBbIGrR1hgm0hNLGAs727B58nM0vpUdDe3RMvO0w110bmWhg0iK0T0rJ0boDGf7gSr0MPqzui49nYqHYRyP6v5/D6cy+klLpqBZw/YQTlPifugD3SKztoEFsnZIzRdpboS93+xC4aGoP9znWa8OjcP4r99yzh4E8/Te0n9hD46iamfif7QNbnUVSWeuPHNX4faz93kWy6DTGc9MyerbVeoZT6CwCtdYdSA00vVsg3dvLlqf20uSbSXsrBf/00ABXnHWLMDY0oT27KmcMRTW2Fj4rSEprbQlT7fZzu6iGSspOoev+X6IhGNUTTlBvK4O1Bhdg6wTG5bqk4+fI58Z8nf3MjnvKenN7fQBOzZTrheMu7udH9kR60QYPYOiFjnLadNTQG8SiV1lYe+OmniHaUAeCtCuEd0ZmTbGxA2r2GDU6C2W6llJ/ev31KqbNJUL8Thgd28uUL12zKWyDbdXgkh3/5MQBKx7dR95k3cv6Mto4wjf9wZfy4oTHId5/YSUc4FroqBeUlHkJhu5yKOZKpGFSIrRNMy+egv+0LZCEGlUrby+dw5o2plE8/ythl21El7m2NU7wOnMtMMSpRxHkc8IitEzLGSduZkeSwszWJoxUBqi/9EzUffyfr9YkY5/DDSTB7J/AMMFkp9RCwEPirfC5KGJhYyZfnK/vY+uJ5nHrlXABGzHufUZ96Ky/PMQs4dUIxntZkFMiKquegQ2zdMMdMtT11VrZRUrd8XoDHtwez2sjTGvbfEystrrzgIKOv3pmzqhMz/D5v1huPdv21ohUwaBBbJ2RMTYXPVDMg0Zda/dRuW1vTfayKQw9cHj+e9M2NeDOoRqnx+7j2ogls3tMic2KHMU7UjJ9TSr0BLCBWnfRNrfWxvK9MKDqJGYpqm9mpVoYtG1r/MINTr8bK7mo+8TbVH3kvp/c3UPQvjTMroXFzP42UtwxGxNYJTr/7oXCEzXtaWD4vkCT85obEQBZg9FX5DWQNm+R0HrhZ0Or3ebnzuphwitV9zMoNhYGF2DohUxoag5zp7B90+rwq7ks1NAYthTWjXSUc+tVCxn1+K+XTj1J10QEqZxzOeD2VZSX8YOnsjK8XhgZOMrMAAcDbe/7HlVJorZ/I37KEYpOaoUg0TEa24vYndrJ83iRTw2aGR8X6TNNx8tWz4oHsmOvfoPJDh9x/AIeYiZ64zTRLADukEFs3jHHz3W9uC7F5T0tmgWwU9q/tC2Sn1D+d10C2xu9jy6q+URfpNA58HpUUtJplPJbODTB91QbTzy9aAYMCsXWCY4zkhtVGWGVpLJxYuGaT5Tknfv8hTm+LjTI+tfWcnMyNzVWrhzC4cTKa5+fAhcBu+vRvNCBGbwjjJEMRCkd5cOt+x/dMF8gmZSpUlMBXN1MystPx/TMhFI7Gy+Ig9rmtlllb4eNUqKdfD4gRyCY6i8LgQ2ydMNFFH2y135dR0KZ1aiC7AZW9kLAtJxM2I41gNLV8OpGq8pKkoNUKq9+XaAUMbMTWCW5wIvLZFgpbnhMNezjwL1fHj8umHGPUp3fnZG2qd32SRBjeOMnMLtBan5/3lQgDikLvrEe7vBy476r48eSVG/H48ieCkkgoHGH1U7vp6rGes2iU1620cACDbSEWrtkkmdnBjdi6YU794hmsXNfkKNuqlPsWC62h9fd9/8SMGYqJ6sL5IDW4XDo3YJtlaXP4mexU7oUBjdg6wTFOkhtepUzPCbdW0Hz/ovjx+Ju3ZDRW0Qrduz7xu4Y3ToLZV5RS52ut86O+IwxI3GQosiVRsViVhpl867O2suz5cPys+jsguXzYzgEU8ZNBj9g6gXKfM+VytzoBOqI48NNPg4aaj+9h5IJ343Yun4EsQHtXT3wGZKIOghVOM6t2KvfCgEZs3TDHTLXd6nvrJLnRr2JNg+4u4fgzff2sxuZdrpG2BsFJMPsrYobvMDHpdgVorfWFeV2ZUFTMdtzd4LQ/NrRvNEf/3wIASie0MuFLL6e9Jt+OXyIKksqH0/1eRPxkUCO2bhjTV0qX+4qQxMqT8rOOUn3puzl/hh1toTD1j+4AFZutbbzmIXl2NrjPrFqp3AsDGrF1wxgz1Xa7jXi3yY2Od8fS8tiHY9feshnljeakZcwqkSFtDYKTYPYB4IvALvr/3ROGKIk77plkaC89axQvv3cCu3GGoffqOProJQCUT2th3IrXMlprtvh9Xsp9nrRS8+Ds9yK7hIMWsXXDmGxUzO2IdJZw8MeL48fjPpe96EkmhE12F6PExKEqy0okszq8EFs3jDGzdXYb8W6SG/t+2KcH4BtzipKajqyysV6liGrNxBo/i2bW9RuHJm0NAjgLZlu01k/lfSXCgMPYcbdTp7Niy7snbN8/tuEi2t+cBEDdsm1UnHsk43VCrBQ4k6DbKCGG/gqfVkYy3e9FdgkHLWLrhikNjcG09iOT9oZoV3IgO/U7G2zPd1rRkktOhsI03XllYR8qFBuxdcMYqw335raQafkxQFmJx35u7JGRHPrFx+LHuRqpGNWa99f0Bcjzp46StgahH06C2Ual1K+B9cTKUQBEwn0YkW3JcSrB/1xEz8kKAAJf+33W5SfG2Ak3QXeqY5pJ75eInww5xNYNQ4ySu3QYquUd3T2O+mWjYQ8HftwXJKYGsmbBcaEDWZDNt2GK2LphjFXZcLXf16/8uP6xHaDNKzsMug5Vc/hXH40fT175DJ7S3PiLZtVxErwKqTgJZv3EjF3i1q1IuA8w3DTzu2Xp3ADb9p1wNYbHDN3jYf+P+uTZJ31zI95yZzNq7TBKWOoXz6D+sR3xnrBEFp49ig+Ohwi2hZKcyNReETe/MxE/GXKIrRuGuCkvkT66UwAAIABJREFUdrpZFu32cvzpi1AlEUZc/AG1n9gbf+/mBVP4wdLZSTbbo1Q/AZVc4/OopJ5ZcLf5ls+/MULBEVs3jFk0s46Htu5P2kzz+7woRT9baOZPGURCPo4++mHqlr5B2aQTjJj3PpUzD2e0JgWU+7ySHBAywkkw+19a6y2JLyilFuZpPUIGuG3mz4TNe1qyuj7SUcrBn346fjyl/mmUx955c1rW19oRZuGaTTS3haip8NEVjtDRK+JS4/dx7UUT2Lynpddp7J/9yEa0SXYJhxRi64Yhue5x7zlVTvA/PgnAmBu293PuDFuaaDumr7IvP84Er0cxoqyEk6FwUrlgJgFpIf7GCAVFbN0wpaExyOPbg0m+lQKWzwvwkIuExbENF9L+5mQAOt4Zz/ibXslqXTctmCIlxELGOAlmfwpc7OA1oUi4bebPhGwcvvDxSpr/6xPx49Ryuxq/j/bunqQdQDf9aYq+jElrRxi/z8vNC6aweU8LwbZQ0g6kVfJDRJsExNYNOxoagznNina3VHHo55cD4D/3sGmWwszW5GMUWiSqqSwr6dcPm8nfhEL8jREKiti6YYZRWWFmZzTw2x2HqPb7bMcUQkwH4MB9fToAFecHGTn/g6zWZlSrGBgB7dqNsYoWsTFCOiyDWaXUpcBlQJ1S6lsJb40EvPlemOAcu2b+XOHEyJnRvnc8xxrmAVB14X5GX53cm1bj97H6+llAcsYg095XiDlZSQGsg/tI39jwRWzd4CIX5a4NjUFWP7U7I5tmRdK87JIIY5dtNz9RxZ6fuGazsr+E09HEVD3Ngm470ahc/Q0oxN8YIf+IrRuepFZWmNEWCpNOdLj7WBWHHrg8fjzhr1+kdOzprNYWqPHHA1mpABEyxS4zWwpU9Z4zIuH1U8Bn87kowR1WwV+uArSGxiDt3e57W9teOpeTW84DYNxNL1M+qbX/OaEwtz+xi7uXzY7Pc21oDHLbIzscZUusznCbZ5G+jGGN2LpBQi6cHSeOnVvCbf54IOut6mTS139vea7WJAlO2QXVgYRgfZpFKbLW1mruufobkO+/MULBEFs3DHGqC2DpT+mY5smx3/Qm7j1Rptb/Lut1pfbESgWIkCmWwazW+gXgBaXUL7TW+wq4JsEl+VbVXbtxr60IgBmHH1pA18HRgHUga5BorAxHM99iKInU+H1iKIcxYusGD7lwdnI9TzbaWULLE/MBqLpoP6OvSq+MHApHuGv9bjrDUcu1GCrtEAvArVovjOy02d+ARTPr4noC2fSgiXL70EBs3fAkmwqK9j3jOfabeaiSCOO/uAVvRTfeqq70F6YhYGKPpAJEyBQnPbMdSqm1wCyg3HhRa31F3lYluCLfqrpuDInWsP+evplgga9uoqQ6/fXGM3LtaDrh2osmFPR5woBFbN0AJxfOTi4do67DIzny0GV4R4YYu2Ir/mnHHV+bbrxPYrZ27ca9llmTE+1d3LquCegrOQ7U+Fk0s47HtwdzUrInyu1DjrzaOqXUVcCPiZUu/5fWek0u7iu4J1NdgFRfrnR8G7660/HpEdkQqPHHN+oSkQoQIVOcBLMPAeuAa4GvAn8JZCdtK+ScfKnqNjQGHZ8b7fZy4N6r4sduRu8YxiobR1MR6+093dVDxMXAxmyVmoUhg9i6AU4unJ1ciS0ZGQuA0Ve+SflU54GsW+zsYqhXuR1igazPq6hfPCPnJXui3D6kyJutU0p5gX8DPg0cBF5XSj2ltX4rF/cXnJNppVvnwVqOPHRZ/HjU4l2MmON+NKPf50myTwaLZtaZni8VIEKmeBycM1pr/QAQ1lq/oLX+MiCZimFAQ2OQ2x7d4aj/tOekP3n0zt9vcDVDtqO7h4bGYMY7cIEaP++vWUJlWYmrQBakhEWII7ZugFO/eAZ+X7JOjVtnp37xjNjM1Sw482YgHshWf2yv60DW7/NS4/fZnlNb0fe+G7sYjuh4BtUMsXcC+bV1lwB/1lq/p7XuBv4fcEOO7i244K71u11XunUeGJUUyE657XcZBbKBGj+jKstM37NKICydG+DuZbMJ1PhRvfe4e9ls2UQT0uIkM2vUOh1SSi0BmoFRuXi4lKIMTOwk3M1I3MWr/eTujGTaWztiQlDL5wWSSuMAfB5FVXmJZVmeok/AKRNHTUpYhF7yZuuE3JCzctcsYtmOP43j+IY5AFRecICay/7s6vraCh93XhdTcLcTolpyYV/7g1nGwg47VXixdwL5tXUB4EDC8UHgIzm6t+CQhsZg2laGRCJnyji+8QJqLt9L6YRWRs7/gMrzmzN+fv3iGazsbX9Ixc5PkwoQIROcBLM/UEpVA7cRm0M2EliZ7YOlFGVg4lbp83TTZE5svBCA6sveyWreWCgcYfOeFu5eNtvUWZ2+aoNplljT5+S6LSGUEhYhgbzYOpCNu1ySrbOTiaCdQfh4ZVzsacS89xn1Ked/rip8Hv73sgv7rd1KuX3DzkPxkRVmQbydnbMThRJ7J5BHW+cEpdQtwC0AU6ZMKdRjhxV3rd/t+NyjT8wj9KfxAFRddIDxX3w5q97Y2oqYqKZVUkQ21IRckzaY1Vr/tvfHk8CiHD47XooCoJQySlEkmC0ibgSYDv7bFUTOxIzSmBu2UznzcNbPb24LWTqrVg5cIMEw1i+eERdDSYeZmp4wfMmXrZONu4FFpmW23ceqOLZ+DngjjFmyg8oPHXJ1vVnv2NK5AcvsRWtHOGkebapdnPv9Zy0zL4l2TUSbhFTy6NcBBIHJCceTel9LfP79wP0A8+fPL9zogmHCHQ27HGVlIyEfB39yZfx4xIffo+Kco1k92+tR8coT2VATCkXanlml1HlKqd8rpd7sPb5QKXVHDp5tVooif2WLjFNHr/mBj8cD2XGf35qTQBbsd+yc9MstnRugwuekFVwQksmjrZMesgFEJlmBM7sDHHrgcqLtZUz8mxddB7IQqyBZu3Gvq/WYnW9w53WzMGv9vXnBlKQAeMuqK3h/zRK2rLpCAlkByKutA3gdOFcpNV0pVQp8HngqR/cW0nDTz17hwa3pe1y7DlUnBbITv/IHRl3xtuPn3LdiDpWl3n6vJ3pfRg9soj5AufhnQh5w8q/qZ8Dt9PZYaK13EjNOBUEpdYtSaptSaltLy/AVFm1oDLJwzSamr9rAwjWbXKkMuyGdo6ejiqNPzCN8LDZvfeLfbsqZiqciWeUu9TMD/cQBls+LlbIY59zRsItOkwyIGcaoinz9LoVBR75snWzcDSDMNsXsOP7sBRz/baxH9sKb9uKr7cj42WabhVbKnlbnJ+JNiWZ9XsX8qdLmLaQlb36d1roH+AawEXgbeERr7bzmVciYOxp2seXdE7bn6Ghs8oTRLuGt7GTqdzbgG93u+DmBGj9L5waoqSjt9144qvttwnX19Plkhj6K+F1CLnHSM1uhtX5NJRfQO5eptSZtKQpIOQr072M1mxdoiDZlW062aGad5a5epLOEgz9eDEDZlGOMu/E1lDd3/0k08Pj2YNwZM/vMdy+bHZ9PZvZ7cbIjmUg2oyqEIUe+bJ0jpI+sMBjf9ZXrmtIqtR/77UW0754EwNnL3uYfvjqGu9YfcSWskki1iYKx3WiwdFnb1N5fQ8lY7JmQhrzaOq3108DTubqfYE9DY5DVT+1Omk1txpk3AxzfMIeyyccZc8Mb+Ea1463odvUsJ4Kbia/nekSYIJjhJJg9ppQ6m1isgVLqs4D7Gqv+xEtRiAWxnwe+kIP7DjnSGQMnwa4ViUFwTYWPM53mf8+6W6o49PPLAfBWdzDu86/mZHh2KsbnMn42ey+xF8yt7LwZMqpC6CVftk427gYQhs1L9ws++epZ8UB2wg07+PwXPdQ/tiNj8SjA1Gba2R+73jIZvSNkQb5snZAH7JIVTkQ7tYb99yyJH3vKw5RPas1oLU4ENxM34cROCYXASTD7dWIO1kylVBB4H7gp2wdrrXuUUkYpihf4uZSimJPOGGS685VqBK2yDadem07r5vMBqJx1kDHX7nD9GdzQ3BaydDQTDadbYxiQURWCPXmxdcjG3YDBqVp758Fa2v7wIQDGfvY1amYe58GtztoX7DCzsVYOYY3fZ2u/ZfSOkAX5snWCA9xU0tklKwBWPtKEiRh6nNAHozm6bkH8ePS1jVTNynzkTqrgZjqBJ7FTQiGwDWZ7VTj/p9b6U0qpSsCjtT6dq4dLKYoz0hmDTHe+nGQ2T75yNm0vzgSgeuE71Hz0T06WnBUTa/wcPtlpOq7Cm5DacDuGp6O7B59HEY723VeU9QTIr62TjbuBgxObd7pxCie3nEtZ4ARjlr5BSVUXGVYV98OsmMXKIVx9/Szbe4lSqJAJ+fbrBHvcVtJZJStWP7Wb9u4e+0D2vTqOPnpJ/HjKt5/OqjXMTHDTWKNVYC52SigElsGsUqqk1wn7KIDW2nl3uJBT0hmDTHe+0gWCp7ZPiweyoxbvZMScA7bn5wLjc1mN10kMcM1+Lz6vIhLVRE3sdWtHGJ9XUeP3cTIUllEVAlAYWycbdwODdBt8h361kO5DNQBM+PIfXfeTpUMD01dtSLI9mY7QkdE7glvErys+bivprGyWXX9sz6lyTr5yDpXnBykd38aI+R9QNSszwSWPipUpW9mXdHO/xU4JhcAuM/sacDHQqJR6CngUiBs+rfUTeV6b0Es6Y7BoZh0Pbd2fVJprtvNllLYE20KmGQIDreHgj68k2hUTK5l4y+asFDydkjj31WrYdmKJi9XvxXjN7PpwRFNZVkLTnVf2e08YtoitGybYVXMc+OmniHaUxc77H3/IeSBroOmfjUnnEFqR6XXCsEVsXZFxW0lX7felFXZK5PCvF9B1YDQAI+bsZ/yXtqTVNykr8fC5+ZN4fHuwX9Lk7mWzs7YxYqeEfOOkZ7YcOA5cQezvsOr9fzF6BcTKGDQ0Bnl8ezApkFXA8nnJ56eWtlgVmkTDHg78y9Xx48krn8FTmr3IUjpuXjCFHyydHT+2UlVOHWNh9XtZOjfA9FUbTD+nCA8IFoitGyJY9aTVL55B/aM7kloNAA785NNEQ7ExExP+6o/4RuU/YSWKnkIREVtXJNxW0jkV2oycKePgv30qflxz+R5Kx51ydG1XTzSeEPEqRUTrpOSCIAx07ILZsUqpbwFv0mfsDERpc4BgVrKi6T/uwUmvWPhYFc0PXB4/nvL3G/KiWGxG6nqtxlXYjbFIRYQHBIeIrRtCmPWkrVzXxK3rmuKOWiInXz2rL5D9mxcoHXOmYGuVjTWhwIitKzJue0idjAFLFXkKfHUTJdXubIvxHz+idXw9EsgKgwW7YNYLVGGuWSFGb4DgtGQlndPUFazh8IMLAfCNPs3Er7yYmwU6xOl63Th/IjwgOERs3RDCaoMP6BfItu8Zz8mXzwVg0tefx1vVVYglxpGNNaHAiK0rMkvnBti27wQPv3qAiNZ4lepXSWfQ0BiMp8zN0FFFtNtLy5PzAfCNOc3Ev8ned0sckehGdVn6YoViYRfMHtJaf79gKxEywmn20a5XLHFXzzf2JBP/+qXcL5RYIFlW4jHt/3C6XjfOnwgPCA4RWzeEcLrhdei/L6O7uZaK8w4x+tomPL7sR++4QTbWhCIgtq7IGK1hxsZaRGse3x5k/tRRQJ+/UlPho60jbBnInt4xmRPPXMiIee9Td/0blE5sw+vPkew6fX39TlSX3So0C0KusQtmC1RgKrghdfdr0cw606b9VCfJqlfsxPPnc3r7dADGXNdI5fmZzx9L5eYFU9i8p6WfOJOTbGk2WVXZIRRcIrZukODku+1kZNe+Hy6J/5zPQLa2wseZzp5+dre2wsed180SuyQUGrF1RcZu1E5XTzT+nlV5sY7C/rV99kuHvfjPdt5+5QanqstuFZoFIdfYBbOfLNgqBEeY7X49vj3I8nmBfkGjqQFJ+TOWOIYikx4LOypLvUmCTqmkc0gzzarKDqGQAWLrBgF2vbCBFJGn1I2wRBID2cnf3Ji3QFYBjf9wpWyuCQMJsXVFJpNROwYdfxpHyxPz48d1y7ZRce6RnK3NCWbrz0VbmCBkg2Uwq7U+UciFCOmx2v3avKeFLauusL129VO7CUdi2QEdVexfe038PTe9Yj6PorTEQ3u3vZhUe3eEhsagpdKwE2cuEzl32SEU3CK2bnBg1wtrtml11/rd/bIb/QLZ8p68rbemwsfCNZviQey9K+aIDRKKiti64uOkcsSMjr3jaWmYFz+eUr8B5cluLQq4d8Uc6h/bEfcP02HW6iVim0KxyfKrIBQSq12uYFuI6as2sHDNJhoa+w/GbmgMxnf9op0lSYHslNt+5ziQVcCKSyaz+/tXcd+KOUkzX80wBAQKiewQCsLQJN13OFG0BKAz3Jdx1RraXj4nfjx55TN5DWR9XsWZzh6CbaGkubJm9lkQhOFD/eIZ+H3epNf8Pi+1FT7T88OtFbS9dC46qvDVnWL0kiamfif7QBZiG25rN+51HMhatXpZfSbRBBAKhZM5s8IAwW5HL9FhguSSWsPBC7dW0Hz/ovjrbkfvaOChV/czf+qoeNZ0zl3PWpbHFCOAlB1CQRiaOMloGDYnMYurNZzYeAGh9+uovOAAo6/ahfLmXrjVqxRRrZlY46e9q6efXZQKEUEQrFqo4P9v797jo6ruvY9/FslAJoCE+2UEipeiIkoqWhWtrXqE4oV4O7S17bG1RY/t461SoVqF2haUp2Jb2yrPYy/Pq6hoVY4WPQJCj4pSRQMCgnduATECwQJBclnPHzuTTCazZ2bPdc/k+369eDlJZvZexvLr+u31W78FNy5Y3a7h0/Y/nklD7WEAhK5dyuArX8xIEhu272BjwqN/IuOa2xYJNduUfFMyW0AS7QWD2BOm7XX11H/Qn48fOwWA8pE76F/1RkpjsBam/m0N4ASweMlwPhJIHccjUpymjh/ZYbIXLRxzwkmttbDlbqe0OHjUTvpOfDMrZ2cHAyXMumR0a9wdMW1RzPepQkSk+CXaJ++2heqGBasBaNwbpOb+tq1jfca/SWnPjhV08Y7tSUZDs4159nZYdFyLJ5VtYSKZojLjAlJVGWLWJaMJVQTjtiTsMGFa9/nWRHbg11amnMiGNTTZ1tXeujhP9fKRQEb/jkIVwaSDsYj4V1VlKO7ELfKh1ZCKoNP18+62PbL9L16VciIbqghSHoj9f5ddDB1ijNuDPFWIiBS3cKO6VLYYhCqC7H9rcLtENvSDpfQcszXme+dOHkNFMHZ5crKarO1QIgxQEQxo7iQFQyuzBSby6de42csSltReeilsWnQ0AAMuf5Wy4bsyMo5wwuxW+lcRDOQtCOoJoUhxCrnEmxJj2k28bjp3JJed3BYDvG6piGSAFdPOZszMxRxo6Nj5+LCyjrFOFSIinc/C6hp+9OiaDiudyWwxaGqCk/oN4eW/OzGi29BdDPrGSsB5YBZ5ulc4loTnOuGV4FQaS4U7watEWAqZktkCFm/CZC10iVhIGPK9fxDouz9j9w4nzG5jmHHRqIzdS0QE3ONNZCLb1ETGElloi3V7XXoDxPq+9pCJdC7hFVm3kt14WwweeACuuQaOvBj6XVhN8IhaunRra1DXbGktBw7FKVuu/NnihHtgI0UnxSKFSslsAXObMH31uFC7RNbL0TvJCJSY1hUGTdpEJJPi7TeLjDc1dfWUGNOui/EFo0NUfWsf0IOSHvWErl2WViJrgK8c0x9wOn/Gmii6lQ5rgijSecQ6OixSrDjxt1druPyLbTGidkcpvc/aEfPz4XLgePOrOy4c5XrMTjBQwqUnhVi+sVZzNSk6SmYLhNsEL3rCdMOfNnDZGf2AbgAMu/mZjHfunHzy0KSaGYiIeBFe3QhPCqM7tEeW0xloXQWpqavnlgXrufgLIaAHvc9dz2EnbUp7PBZ4/HVnr9u+gx2P8ol8sCcinVe8lddYWwxu/MVu7r2tbd40YPJKgp+Lvw0sUblyrId9bqu5IsVEyWwBSDTBC/vePe/y4I+OBaDizLfpdfp7WRnP8o21WbmuiHRusVY3IldeI+Ng5CO6poOlvPPr8wDoOqguI4ls5P0f/ufWmOWD3buWaoIoInGPDouMYVWVIebPh3tv69P6cy9bIRJ1RNfignRGSmYLQLwJXjhoPfwwPPgjp9FTz5M+zFoiCzpeQkSywy22bK+rdy3ja9rflW33/Vvr18de8yqZDlFu++Dc9tGGJTqiQ0SKw1eO6c9fV25x/XlNXT0/+N17XLVtN4eVlBHoO4hep79H9+O2e7qPOqKLdKRktgDEm+ABnHQSvNFy2k7fiWvoMXpbVsdTUZ5eK3gRkVjcVjeGVARjxsGm+kC7RHb4LYviJrLdu5aw/5D7vjY3bmcxxptYJltRIyKFL1HF2rbfnUPTvjIAut/w3wwe9Q4mweGY0efIqiO6SGw6Z7YAxDuz8Mwz2xLZQZe/lvVEFsBlkUJEJC1Tx4/scOZheAIXHQebD5Ww4y9ntHxlGX7LooTXTyWRDQZK+PoXh7qOy02ikmkRKR5uiw4Nu7qz+a7zWxPZfhdW06VbU8JENlBiuOLUYYQqghicI3R07qtIbFqZLQCxjqMoKy3h02crWfeS8/WYG1Zy3HGWFe/Hvkb0E750JCqtExFJRaLu6OE42LS/K58sOhHbUEKf8WvpOca9vC8dvcsD3HHhKKoqQ4wd3sdTyXCiihoRKR6xqko+fW0Ee5Yd1/r14dctpiSYeP4UGXeyRVsgpJgomS0A0RO8geXd+ecdXwYgMGAvg775MnsCzbyxpYRxR/Zh5Qd7aLKWEmP4+heH8vOq0R26gKaT2GrPhohki1sDk/D3ZvxlG2vu+yIA/atep3zkR1kbS3lEgyevjVXilUyLSHGZOn4kNyxYDTjVaw21PVsT2eDRHzHgktcTXmPT7POzOsYwbYGQYqNktkCEJ1Lvvw9HHeV8z3RtZPCVL7V2watvaGLTrnrenzXR9fMLq2uY+fT6uAdr9y4PcP4Jg1n05o4O79OeDRHJl8ObQqz5tTPZ6n78tqwmspDeKmqsihrFT5HiVFUZYubT69n8Yog9S0cx8Gsr6TPhTbofu50uXZsSLiIYnCQzF8mk2xaIGU+tVzIrBUl7ZgvIgw+2JbLBI3cy7MbnOrRzjzf5Cj+Ni5fIAnxa75ynWH37edw7eYz2bIhI3q1YASef7Lwu6VlPv/PXZP2e6ayiVlWGmHXJaMVPkU7g4EFYfcd57Fk6CoBDHx9GzxO30r073Dt5DHNb5lJuLORsP73bPLGuvoGF1TU5GYNIJuVlZdYYczkwAzgWOMVauyqT1y/GvQC//S1cd53z+uab4eW+66mp6/i+eJMvt6MtojVZy19XbuHJN2o4cKiJIRVB5k4eU/C/QxEpTNu3wxktvZ4C/T5lyFUvxnyfgdaYv2rz7rhHZSSSiVVUnfkoUvwWL4bx49u+Pv6aVezrtbPD/DP8z89Ni92szkslSDrz3Hhn4kYe+ShSKPJVZrwOuAR4INMXLsa9AA880JbI3n03TJ0KC6u9l7B5LZkLd/4sht+hiBSmHTtg0iTn9a23wvIeq2I+yAtVBFkx7WzA+f+BBa9tjXvdeGV/JcZoFVVE2omVQC55spzf39kbgMOO2MOfHzvAxV8YG/dzFcEAdTEaaSZbCZLuPDdyf280NaiTQpSXZNZauwHARNfIZkC84xAKcWJyxBHw4YfO67Vr4fjjndeJun7GEu9pXCKF/DsUkcIROfHrsXcg6+4fy5FHwgsvwJlnxn6QB3DgUGNridyPHl0T81zYsIpggBkXjeLGBatjJrTN1irWiUir6ARy87Zmfjh3M/veHky3Yc30Pmsj3YbU8ZMnSzCmbY4WK/EMlBgCXQwNzW3Rx0slSLrz3PD+3lhbztSgTgqR7xtAGWOmAFMAhg0blvD9fj8OIdnSkEOHoFu3tq/37oVl79dw9ez2nw2vRCRzv4ryQIcA6qWzsV9+hyJSnCInfvvWHs6mZ04E4Js3fcKZZ/YDIroaP7W+3erGngMNTH1sDRjiJrLg7G0DWju8R9OETkQiRSaQtU+N4cCGECW9DjDkqv+hV2lzu0ackUllrMSzocnSuzxAedfSlMqEMzHPvePCUWpQJ0Uja8msMWYpMCjGj2611v5Xstex1s4D5gGMHTs2Yd7l5+MQki0N2bQJRoxo+1xDA/x9bcfP3rhgNTcsWE2oJRBC+5XarxzTn8dfr2n9zJ4DDQRKDBXBAHvrGzzvLasoD2Ti1yAieZSrngKp3Cc88fvXG8PZvcQpQ+l1+rss+XQrM2h7cFdVGWLOc293KNWLfFDnJrIJizoOi0gyttfV07g3SM39bXFo4OWv0iXQHPO9sV5HqjvQQPXt56U0lkzMc1Op7hPxq6wls9bac7N17XhSnZzkYoKXTGnI6tVQWen8bNAgZ7+Y22fD07aaunqm/m0N2LbJXE1dPfNXbumw6trQZOnerbR1ZQKcoPbE69s40NAxKLe7XzqH04p0Qn5rdperngKp3md7XT0H3h3Ymsj2HPsBFWe+Q00djJi2qN2/YyqVIl0M7P+ssd21Zl0yWhM6EYkr8OHn2PToqJavLENv+u+YiSy0TyqzscCSqYdwalAnxaLojuZJ5TiE8MSrpq4eS9vEK9MtyhOVhixfHjuRjffZsIYm22FVwi33jHWt+gSJLMDeGA0LRCSucLO7FzJ94VTiVrwHapmU6n16HexH7RNO85Rep71Ln3M2tP4s+t/R62SwPNCFEmOoq29ovdaNC1bz2KrUOx6LSPFYWF3DuNnLGDFtEeNmL2NhdQ3WwrJl8G5LItvnvLUMv+UZugSaCXQxBEra936JTiqnjh9JMFAS9z1e6dgvkfbydTTPxcBvgf7AImPMamvt+AQfS5rXp025ahoV7wnd7bfDnXc6X99/P1x9dXKfTXUcyY4t0edExJ3fmt3lqqdAKvf6JZTGAAAaFUlEQVSproa6RV+gtGc9fS9YTdmw3THfF/53jLU6EUswUNK6+hod4yyw4v22+6hzu0jnFKua5Lp7apj6Rn+eWdiVe++FQSdv5zcv1LK9ru0IMIhfqputcl6tqoq0yVc34yeBJ/Nx71hyNcFzKw2pf/p07nzZ+frdd+Goo5L7bDKiGzy5PRFMdH3tIxPxl1TiVqZL3tzKnL3eZ+5cuOkmgADzFu3iz2/Wxzx+J2x7XX27SWK8B3GzLhkNkPTDQHVuFykeyW7FiHw42NzQha1zJ4A1mC7N7NoF118PMITJpw/p8NlEsUKJp0h2FV2ZcSrcJliZXomMLg0ZcliQjT+fQPXLZYDT+ClWIhv9WXCS1EjhVu+RgoESrjh1WFKlKNFj610eoCIYUAmLSALGmKXGmHUx/kzyeJ0pxphVxphVtbW1Cd+fStzKZMlbvDLnWPcBZ79qdBn0N74RTmTh+efh+xMHuX4+LPzvWFUZYsW0s9s1dYrUuzzAqs27udHlTEU36twuUvi8bMUI/50/8O4Att7zVbDOfGrIlH9w6qk5HLSIeOb7o3lyIZcdLcNP6Pbtg549276/bx90757cZyH200bwVsoS6xqJjvoRkfYy1ezOa+f2VOJWJkve4pU5h+NI9FmGdfUN7cp4L7oInn7a+dlDD8HZZ7tfO96/49TxI5n6tzU0NLX/te050JBUp/Zo2lIhUvi8bMUY3CvIxmUD2LPUaT5Xfsx2+k+qdn1QJiL+oWSW3Lco37IFhg9v+7qpCbp4XCN3K1tJdsy56moqItmRatzKVMlbojLn8PE5kckstE0m33s+1JrILlwIkyZ1vEYs4SqR6IdxpV1Mh2Q2FdpSIVIckt2KsXUrTD5qFD/9azPdhu6i99lv0W3Qp4oFIgVCyWyLXO1p2LwZXn3VeX3OObB0adZvGXMFdubT63PS9EqkM/Nbs7tMSmZfrNtk8oN1ZUyd77x+7TUYOza5a4cqgq2JbPTDuFSEWs7jXr6xVkfziBSZXsFAh7OooS1GWQsXXADPPAMnnTSQ//N/a/j1P9awY29uYkGuzvwWKXZKZnPowQfhuuucY3f274fy8uzfM9akL1Y5Xpj2iolkjt+a3WVSMmXOsZLSPf84hk//eSTnnAMPPwz9+zvfj5zYlQU6lqpEXjteGXIyDDB38hhNHEWK1MLqGvYfauzw/UAXw9TxI3nnHRgZsei6YAEceWSIyaflJiaoOk4kc5TM5sjVV8O8ec7rp5/OXiIb/aRv/2eNHSZ98UrxtFdMRJKRTJlzdMK79Tfn0lzfDYD/uG07VQ9uZHtdPRXlAfYdbGw9Kzv63GsDXHpS2yp0Og/dDHDFqcM0YRQpYnOeezvmXKfRWq6aWsfu552//xUVsHMndO2a+/GpOk4kM5TM5sBxx8GGDc7r6mrnay+SLUXJROmd9oeIFL5cla8lKnOOTHhfnt7WXO6Bv3/EL59/szVWRe+rjWaB5RvbOjy7lSH3Lg9Q3rWUmrr6DseSAVQEA8y4aJQmiyJFzu2B174Ng9j9/CgABl/4Jr+f2ZeuXXMfD3J1JKRIZ6Bk1kUmJoPNzXDzzW2J7M6dMGCA93EkW4qSbuldRTCgSZ5IgfNb+VpVZYhrz2+775Dv/YO7XjpAk/XWrKmmrp4R0xYxpGWf6+Ov13Qocb7jwrZEVfvRRHLLGDMHuBA4BLwPfMdaG+fE6OyJfuBVv7kve1/6PP0urKbirA0cNnYTprSZOc99knZcSCXWZPrMb79R/JVc0jmzMXg5m8xNfT2sWQOPPAJTpsBnn3lPZCF+KUq0ZJ/ouZ1JO+OiUd4HKCK+4iVm5MIf/gA7djivh1y9jEDf/Z4T2bBwPH789RouPSnU7lzsbqVduHHBasbNXsbC6prWM2g/nH0+K6adrYmUSPYtAY631p4AvANMz9dAwmdVNx8qYfNd5/PxI6fSsKs7zQcD9Dr1A0yps5Uh3ZXQVOeLmTzz228yMYcW8ULJbAzpTgZ/9+ROBnz+U7543qeErnyJCVfXtNuPsbC6hnGzlzFi2qLWiZfb972UosR7oldinOQ1VBFkzmUnMufyE1sngqGKYOtxFyJS2PxUvvbHP8Idd0BZ3wMcft1iAhWZGUN9QxPLN9ayYtrZzJ08hoMNzdTVN2jiJJJH1trF1tpw16WVwOH5GktVZYiJ5aewde6E1u8N/u6LdB3wr3bvS3clNNX5YlVliFmXjC7KeZjfHqhK8VOZcQzpTAZ/cu8uZt04EID+F6+itnkvP3lyLcbgeqTE9CfWsmrz7nZlc+HvlwW6dGiGArEDcKzuomFN1rY+9QsHy2IImiLSntfytWyVgx17LGzcCJddBq8O/5/WlRA3gRJD966l7K1voFcwgDFQd6Chw77XsHA8ViMVEV/6LrAgHzduboZ77oF7ftIHgO9/Hyb+Zw3Tn2gk8qSeTKyEpjNfzOfRatnkpweq0jkomY0h1b0Mv/gFzLqtLwC9z1lP+ed3Au0nVm4Tr4f/ubVD6Z3b/tdwa/lokc1WYo1fEzyR4pfMkTlh2dpf229gE7s+dkroNn7+ebo0NxOrsrjEGJqtjZtEj5u9LG481sRJJHeMMUuBQTF+dKu19r9a3nMr0AjMd7nGFGAKwLBhw5K6b7IP3T780Dk/9qmnYNw45xQJp+lm4u7rqdy/2Pe+pkK/E8k1JbMxeJkMhj30ENx2m/N6wOSVBD+3q93PwxMrtwmWlz1kPcpKXQNw+EnfiGmLYq5oaIInUtySOTInLBurmuU9mqnf7ySyQ296ln81xV6RDQZKkiqrSxSPNXESyR1r7bnxfm6MuRK4ADjH2tgTG2vtPGAewNixYxNOfpJ56GYtnHUWvPgiTJwIixZBjx5gItqDpLoSGu/+qcwXi51+J5JrSmZj8DIZtBY2b4arroKjj4YeF73C7tLdHd4Xnli5TbxKjEk6oa1LcIzFwuoaurhcTxM8keKX7KQt06uaM2ZA/X6nFcOwHz3rWlpcYkzS+8MSxWNNnET8wRgzAfgxcJa19kCmrpvoodvatXDCCW0/+/3voWfPTN09/v1XTDu79T3q3OvwMocWyQQlsy6SmQweOgTXXgsffwyLF8Mpp8Czbw1j+hN7XSdWbhOvS08KdThqItY5iRA/IQ0/QYyVyGqCJyKRMrWqaa3TsX3sWOg+aht9v/ompsT94VyztZ4mNvHicaKJk46IEMmZ+4BuwBLjLImutNZek+5F4z10u/12uPNO5+thw+D996E0wzPbRA/9inXvazr0O5FcUjKbom3bYOhQ5/Vtt8EZZ9Da5AncJ1bxfj52eJ9233c7SzFeQup21qyXlRAR6RwysappLXzlK9DYCEuWwInffIeauvhVJpmuEHGbOPntzF2RYmatPSob13V76Nbl7SO5c6Hz+tFH4fLLs3F3bWUQ8Tslsyl45RU4/XTn9RlntD0VDEv0RMrt57G+H53gJlpVcHuC6HUlRESKX7rlYM3NUNJyVOJpp0FZWfyu6pDbChF1OhYpfNExpf7Dfux//Qjuva+Rj0+Gm2+m3fGH2b4/qNJNxE+UzHpUXd2WyE6dCnff3fE9mSxr81qqoSeIIuJFquVgjY0QCLR9vWJF7OqUyGN2cl3m6/ZwL1aMFBF/CseLWQvf59WffQmAgaFGvnxUKUdNiPfJzN5f2xVE/EnJrAc1NfAlJ47y17/CFVd0fE+yZW3Z2selJ4gikm1NTe0T2ebmzHQNzTS3h3sGJwb7YYwiklhVZYjn5oV4teXr9WtK6ds3t/dXvBDxJyWzSZo3z9kne/fdMGkSDBkS+33JlLVlcx+XniCKSCbFevDW9IETT3r2hL172yeyyXw+V/Fo6viR3LhgdYdGehZUaixSYG67DS69FM6NeziQiHQ2SmYTaGpq64z31a86B3HH65SXzFEXM59en9V9XHqCKCKZEP3gbduug/zn7bv5/UxYvjzEl7/s7fO5bsBUVRnihgWrY/5MZ26LFJZQyPkjIhKpS74H4Gd1de0T10SJLLjvTQ1/f2F1DXtczomtqatnYXVNSmMVEcm0yEqT5s9K2PK/J/LR30fz0/t3Jkxkoz8fFn5wlyuhBDFZREREClenSWYXVtcwbvYyRkxbxLjZyxImjZ98Ar17O6/79XP2hCVzdtnU8SMJBkrafS9yz2qiSdz0J9YqoRURXwivXjYfLGXrvU6nlcCAvezvs8PT56PV1NUnFYczIVFMFhERkcLVKcqMvZa6ffRRW6Onyy6Dxx5L/l6J9qwmKm2Ltb9W+19FJB+GVATZsqORbb85D4Cug+oY/B8rkl7VdGvABB3jcLxYl04cVB8BERGR4pWXZNYYMwe4EDgEvA98x1pbl637eTlr8OWXnUZP48bBn/7k/NOreHtW403uwsIJb6IkXImuiGTT//rSMXz9zEEAdBu2i0FfX+lpVTPRmbPhOLxq827mr9zS2qgpMtYBae+7VR8BERGR4pSvldklwHRrbaMx5i5gOnBLtm6WTFMmcI7aeeghOP545zzZZMqKvUo0uQPoFXTOvEi03yyfjVVEpLg1N0PVF4ZQeepBdvfaijnhnbRWReOt0EYmsmH1DU3MfHo95V1Ls9owT0RERApXXpJZa+3iiC9XApdl835uq6HhUjlrYeBAqK11vr98eXYSWUhucrf/UCMLq2viJuFeVptFRLzYtAnOPx9++lN4/aUyjDkaODqla4VXRcfNXhYz5pUYQ5ONTmUdew40uDbMUzdiERER8cOe2e8CC7J5g1iroeFSuYYG6Nq17b179kBFReJrpruHK/zeyp8t7jBZa2iyzHnu7bhJeLKrzSIi0eLFr/feg6Nb8taysvhnyHrhFofjVamAe7Iba9+utl6IiIh0LlnrZmyMWWqMWRfjz6SI99wKNALz41xnijFmlTFmVW146dSjqsoQsy4ZTagiiME5qmHWJaM59+gQVVVt72tsTD6Rnf7EWmrq6rG0lfim0pmzLs6qQ7wunImOABIRiSVe/HrrrbZE9gc/oF18jHe9ZDrFu8Vht6NzwpqsTaobcSbjsoiIiBSGrK3MWmvPjfdzY8yVwAXAOda61Jg515kHzAMYO3as6/sSiW4Asn27sy922zb4wx/gmmuSv1YmS3zjrb4m6sLpttosIuLGLX79bP4Wqn/lxJapU+HuuxNfy2uneLdGTPH6CIRa4l6iFVdtvRAREel88tXNeALwY+Asa+2BXN//scfg2muhTx9Ys8YppfMikyW+8UqgwX3yp+MmRCQVbnFq4xNHAnD77TBzZnLXykQCGX7fzKfXd9hyEY6FyXQj1tYLERGRzidfe2bvA7oBS4yzIWultdbD2mjqfvxjmDPHeb1kifdEFhI3lHITbz9XKkmpjpsQEa+i41fjp2U0fxbg2Mvf4zcXDfB0HFmmEshwLEtnz2uqcVlEREQKV766GR+Vj/uecQasWOG8fuUVGDMmteskWk2NJVE5npJSEcmFyPh1cHNfdj5yKoHe+/ntc3WMO9nbtdJNIGMlryumne1tEC1SicsiIiJS2LLWAMpPrIVbb21LZLduhVNPTf16bo1M4iWkic6MFZHiY4yZY4zZaIx50xjzpDEmiRZz2RWOX+U7Q+x8xAmEN0w/yKUne3+gFq9JXSKZbtiUSlwWERGRwuaHo3my6rPP4O23nSZPkyfDn/4EwQxUnXldTdV+LpFOaQkw3VrbaIy5C5gO3JLnMcHmEBv+7MSvv/wFvv3tvildJp1tEtlo2KQqFxERkc6lqJPZLVvgW9+Cgwdh1SoYMSJzZyZ6pf1cIp2PtXZxxJcrgcvyNZawdevg4oud1wsWwL//e3rXSzWB1AM+ERERSVfRlhk//zwMHw4vvADXXw9HHJG/RBbSK8cTkaLwXeDZfA/io49g8GBYtCj9RDYdOitbRERE0lW0yez55zv//PnP4RvfyO9YQPu5RIqVMWapMWZdjD+TIt5zK9AIzI9znSnGmFXGmFW1tbUZH+eSJTB+PJx8MmzaBBMnZvwWnugBn4iIiKSraMuM16yBkhI4Ki99k2PzWo6XzjEVIpIb1tpz4/3cGHMlcAFwjrXWxrnOPGAewNixY13fl4q5c+Gmm5zXe/dCr16ZvHpqdFa2iIiIpKtok9mRBf5wP9FRPiLif8aYCcCPgbOstQfyMYZf/tLp5g7w8sswbFg+RhGbGjaJiIhIOoq2zLjQ6SgfkaJwH9ATWGKMWW2MuT+XN58xoy2RXbUKTjstl3cXERERya6iXZktdOr0KVL4rLV52+iwaRPMnOm8XrMGTjghXyMRERERyQ6tzPqUOn2KSKpWr3bKiR94AGprlciKiIhIcVIy61Pq9CkiqfjOd6CyEn71K5gyBfr1y/eIRERERLJDZcY+pU6fIuLVZZfB4487r6dMye9YRERERLJNyWwLPx2DEz2WuZPHKIkVkbgmTIDnnnNe19T44/gdEZFs8tPcTUTyQ8ks/joGx09jEZHCMHt2WyK7cycMGJDf8YiIZJvmSyIC2jML+OsYHD+NRUT8z1p45RU47DDYtUuJrIh0DpoviQhoZRbw1zE4fhqLiPifMfDoo05SW1aW79GIiOSG5ksiAlqZBfx1DI6fxiIihaFbNyWyItK5aL4kIqBkFvDXMTh+GouIiIiIH2m+JCKgMmPAX8fg+GksIiIiIn6k+ZKIgJLZVlWVId8EQD+NRURERMSPNF8SEZUZi4iIiIiISMFRMisiIiIiIiIFR8msiIiIiIiIFBwlsyIiIiIiIlJwlMyKiIiIiIhIwVEyKyIiIiIiIgVHyayIiIiIiIgUHGOtzfcYkmaMqQU2Z+ny/YBPsnTtdPl1bBqXd34dm1/HBcmNbbi1tn8uBpMLinW+49dxgX/HpnF5p1iXeX79761xeefXsWlc3mU01hVUMptNxphV1tqx+R5HLH4dm8blnV/H5tdxgb/HVoj8/Pv069j8Oi7w79g0Lu/8PLZC5dffqcblnV/HpnF5l+mxqcxYRERERERECo6SWRERERERESk4SmbbzMv3AOLw69g0Lu/8Oja/jgv8PbZC5Offp1/H5tdxgX/HpnF55+exFSq//k41Lu/8OjaNy7uMjk17ZkVERERERKTgaGVWRERERERECo6S2QjGmDuNMW8aY1YbYxYbY4bke0wAxpg5xpiNLWN70hhTke8xhRljLjfGrDfGNBtj8t41zRgzwRjztjHmPWPMtHyPJ8wY80djzMfGmHX5HkskY8xQY8xyY8xbLf8dr8/3mACMMWXGmFeNMWtaxjUz32MqJn6NdeDfeKdYlxzFOm8U67JLsc47xbrkKNZ5k81YpzLjCMaYw6y1n7a8vg44zlp7TZ6HhTHmPGCZtbbRGHMXgLX2ljwPCwBjzLFAM/AAcLO1dlUex1ICvAP8G7ANeA34urX2rXyNKcwY8yVgH/D/rLXH53s8YcaYwcBga+0bxpiewOtAVb5/Z8YYA3S31u4zxgSAl4DrrbUr8zmuYuHXWAf+jXeKdclRrPM8LsW6LFKs806xLjmKdZ7HlbVYp5XZCOGA16I74ItM31q72Frb2PLlSuDwfI4nkrV2g7X27XyPo8UpwHvW2g+stYeAR4BJeR4TANbaF4Dd+R5HNGvtDmvtGy2v/wVsAEL5HRVYx76WLwMtf3zx97EY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdktkoxphfGGO2AlcAt+d7PDF8F3g234PwqRCwNeLrbfjgL3ChMMZ8DqgE/pnfkTiMMSXGmNXAx8ASa60vxlUsCiDWgeKdG8W6NCjWdS6KdQVNsS4NnSXWdbpk1hiz1BizLsafSQDW2luttUOB+cAP/TKulvfcCjS2jC1nkhmbFDZjTA/gceCGqCfZeWOtbbLWjsF5Wn2KMcY3ZTyFwK+xLpmxtbwn5/FOsa74KdYVH8W67IxLCltninWlmbhIIbHWnpvkW+cDzwB3ZHE4rRKNyxhzJXABcI7N8UZnD7+zfKsBhkZ8fXjL9ySOlr0LjwPzrbVP5Hs80ay1dcaY5cAEwFeNFvzMr7EO/BvvFOuKm2JdcVKs806xrrh1tljX6VZm4zHGHB3x5SRgY77GEskYMwH4MXCRtfZAvsfjY68BRxtjRhhjugJfA57K85h8rWVD/oPABmvtPfkeT5gxpr9p6exojAniNH/wxd/HYuDXWAeKd0lSrPNIsa5zUqwreIp1HnXGWKduxhGMMY8DI3G6uG0GrrHW5v0JkDHmPaAbsKvlWyt91I3vYuC3QH+gDlhtrR2fx/FMBO4FSoA/Wmt/ka+xRDLGPAx8GegH7ATusNY+mNdBAcaYM4AXgbU4/7sH+Im19pn8jQqMMScAf8H579gFeNRa+7N8jqmY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdklkREREREREpOCozFhERERERkYKjZFZEREREREQKjpJZERERERERKThKZkVERERERKTgKJkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmpaAYY042xrxpjCkzxnQ3xqw3xhyf73GJiGSSYp2IdAaKdZIuY63N9xhEPDHG/BwoA4LANmvtrDwPSUQk4xTrRKQzUKyTdCiZlYJjjOkKvAYcBE631jbleUgiIhmnWCcinYFinaRDZcZSiPoCPYCeOE/yRESKkWKdiHQGinWSMq3MSsExxjwFPAKMAAZba3+Y5yGJiGScYp2IdAaKdZKO0nwPQMQLY8y3gQZr7UPGmBLgZWPM2dbaZfkem4hIpijWiUhnoFgn6dLKrIiIiIiIiBQc7ZkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmRUREREREpOAomRUREREREZGCo2RWRERERERECo6SWRERERERESk4SmZFRERERESk4Px/zcYazdP9jTUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hFddbtTU9cGf" - }, - "source": [ - "#### RScore correlates well with ideal score\n", - "\n", - "Higher `Rscore` implies smaller `PEHE`" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "i2w9dPuI9cGf", - "outputId": "3adc25ea-2f29-46e2-be2e-4a5162994be3" - }, - "source": [ - "plt.scatter(rootpehe, rscore)\n", - "plt.xlabel('rpehe')\n", - "plt.ylabel('rscore')\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT8klEQVR4nO3dfWxd933f8ffHktxxswMFtZJF9IPczFGjzZnV0G67JMYatJbTDbLg2oGdbKvXrl7Weh2wRai1dhvm/mG32kP/iAtYGYYs6DzXCVTBRR6YLg/O2i2baMuxIntcFcUPogpEycoFiZlYkr/7g1f2lfSTeEnz8lDU+wUQuud3Hu5XP5D88Hd+55ybqkKSpNNd1HUBkqTlyYCQJDUZEJKkJgNCktRkQEiSmlZ3XcBiueyyy2rDhg1dlyFJ55UnnnjiW1W1rrVuxQTEhg0bmJiY6LoMSTqvJHn+bOs8xSRJajIgJElNBoQkqcmAkCQ1GRCSpKYVcxWTNF979k2xc3ySI9MzrF87wvYtG9m2ebTrsqRlw4DQBWnPvil27N7PzLETAExNz7Bj934AQ0Lq8RSTLkg7xydfDYeTZo6dYOf4ZEcVScuPAaEL0pHpmXm1SxciA0IXpPVrR+bVLl2IDAhdkLZv2cjImlWntI2sWcX2LRs7qkhafpyk1gXp5ES0VzFJZ2dA6IK1bfOogSCdg6eYJElNF/wIwpulJKntgg4Ib5aSpLO7oAPiXDdLGRDD4YhNOn8MdQ4iyc1JJpMcTHJvY/2NSZ5McjzJbX3tP5Xkqb6v7yfZttj1ebPU0jo5YpuanqF4bcS2Z99U16VJahhaQCRZBTwIvA/YBNyZZNNpm70A3AU83N9YVV+squuq6jrgvcBLwOcWu0ZvllpaPt5COr8McwRxA3Cwqg5V1cvAI8At/RtU1XNV9TTwyjmOcxvwmap6abEL9GappXW2kdnU9AxX3/sp3vXAFxxNSMvIMANiFHixb/lwr22+7gD+y6JUdJptm0e5/9ZrGV07QoDRtSPcf+u1nhMfknONzDzlJC0/y3qSOslbgGuB8bOsvxu4G+DKK69c0Ht4s9TS2b5l4ylXjbV4kYC0fAxzBDEFXNG3fHmvbT7eD/xBVR1rrayqXVU1VlVj69atW2CZWiqnj9jOxosEpOVhmCOIvcA1Sa5mNhjuAD4wz2PcCexY7MLUnf4R27se+AJTjTDwIgFpeRjaCKKqjgP3MHt66Fng0ao6kOS+JFsBklyf5DBwO/BQkgMn90+ygdkRyOPDqlHd8iIBaXlLVXVdw6IYGxuriYmJrsvQPHnjnNStJE9U1Vhr3bKepNbK50UC0vLl01wlSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmoYaEEluTjKZ5GCSexvrb0zyZJLjSW47bd2VST6X5NkkzyTZMMxaJUmnGlpAJFkFPAi8D9gE3Jlk02mbvQDcBTzcOMTHgZ1V9XbgBuCbw6pVknSm1UM89g3Awao6BJDkEeAW4JmTG1TVc711r/Tv2AuS1VX1R73tvjvEOiVJDcM8xTQKvNi3fLjXNoi3AdNJdifZl2Rnb0RyiiR3J5lIMnH06NFFKFmSdNJynaReDbwH+DBwPfAjzJ6KOkVV7aqqsaoaW7du3dJWKEkr3DADYgq4om/58l7bIA4DT1XVoao6DuwBfmyR65MkncMwA2IvcE2Sq5NcDNwBPDaPfdcmOTkseC99cxeSpOEbWkD0/vK/BxgHngUeraoDSe5LshUgyfVJDgO3Aw8lOdDb9wSzp5c+n2Q/EOCjw6pVknSmVFXXNSyKsbGxmpiY6LoMSTqvJHmiqsZa65brJLUkqWMGhCSpyYCQJDUZEJKkJgNCktRkQEiSmob5sD5JA9izb4qd45McmZ5h/doRtm/ZyLbNgz62TBoeA0Lq0J59U+zYvZ+ZYycAmJqeYcfu/QCGhDrnKSapQzvHJ18Nh5Nmjp1g5/hkRxVJrzEgpA4dmZ6ZV7u0lAwIqUPr147Mq11aSgaE1KHtWzYysubUz8IaWbOK7Vs2dlSR9BonqaUOnZyI9iomLUcGhNSxbZtHDQQtS55ikiQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpNPc5W0YHv2Tfmo8hVs4BFEkquS/HTv9UiSS4dXlqTlbs++KXbs3s/U9AwFTE3PsGP3fvbsm+q6NC2SgQIiyS8BnwQe6jVdDuwZVlGSlr+d45PMHDtxStvMsRPsHJ/sqCIttkFHEL8CvAv4DkBV/SnwpmEVJWn5OzI9M692nX8GDYgfVNXLJxeSrAZqrp2S3JxkMsnBJPc21t+Y5Mkkx5Pcdtq6E0me6n09NmCdkpbI+rUj82rX+WfQgHg8yT8HRpL8DPAJ4A/PtUOSVcCDwPuATcCdSTadttkLwF3Aw41DzFTVdb2vrQPWKWmJbN+ykZE1q05pG1mziu1bNnZUkRbboAHxa8BRYD/wD4FPA78xxz43AAer6lBv9PEIcEv/BlX1XFU9Dbwyr6oldW7b5lHuv/VaRteOEGB07Qj333qtVzGtIHNe5tobCRyoqh8FPjqPY48CL/YtHwZ+fB77/4UkE8Bx4IGqOmNSPMndwN0AV1555TwOLWkxbNs8aiCsYHOOIKrqBDCZZKl/A19VVWPAB4DfSfLWRm27qmqsqsbWrVu3xOVJ0so26I1ybwQOJPlfwPdONs4xNzAFXNG3fHmvbSBVNdX791CSLwGbga8Pur8k6fUZNCD+xQKOvRe4JsnVzAbDHcyOBuaU5I3AS1X1gySXMXuJ7W8voAZJWrAL/U7xgSapq+px4H8Dl/a+nu21nWuf48A9wDjwLPBoVR1Icl+SrQBJrk9yGLgdeCjJgd7ubwcmknwV+CKzcxDPzP+/J0kL453ikKo5b2cgyfuBncCXgADvAbZX1SeHWt08jI2N1cTERNdlSFoh3vXAF5hq3PQ3unaEP7n3vR1UNBxJnujN955h0FNMvw5cX1Xf7B1wHfBfmX38hiStON4pPvh9EBedDIeeb89jX0k673in+OC/5D+bZDzJXUnuAj4FfGZ4ZUlSt7xTfMBTTFW1PcmtwLt7Tbuq6g+GV5Ykdevk1UoX8lVMg05SXw38WVV9v7c8Ary5qp4bbnmDc5JakubvXJPUg55i+gSnPi/pRK9NkrRCDRoQq/sf9917ffFwSpIkLQeDBsTRkze3ASS5BfjWcEqSJC0Hg94H8SHgPyf5CLM3yr0I/L2hVSVJ6tygVzF9HfiJJJf0lr871KokSZ0b6BRTkn+S5A3MPsn1d3ofE3rTcEuTJHVp0DmIX6iq7wA3AT8M/F3ggaFVJUnq3KABkd6/Pwt8vKoO9LVJklagOQMiSYBvJRlnNiDGk1yKnyMtSSvanJPUVVVJ/jLwQeAbVfVSkh8G/v7Qq5MkdWbQy1z3Mnuz3DRAVX2b2Se6SpJWqEED4seBDyZ5ntkrmcLs4OIdQ6tMktSpQQNiy1CrkCQtO4PeKPf8sAuRJC0vfiqcJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktQ01IBIcnOSySQHk9zbWH9jkieTHE9yW2P9G5IcTvKRYdYpSTrT0AIiySrgQeB9wCbgziSbTtvsBeAu4OGzHOY3gS8Pq0ZJ0tkNcwRxA3Cwqg5V1cvAI8At/RtU1XNV9TSNz7dO8k7gzcDnhlijJOkshhkQo8CLfcuHe21zSnIR8G+BD8+x3d1JJpJMHD16dMGFSpLONOgnyi21XwY+XVWHk5x1o6raBewCGBsbqyWqTdIKtWffFDvHJzkyPcP6tSNs37KRbZsH+rt2RRpmQEwBV/QtX95rG8RPAu9J8svAJcDFSb5bVWdMdEvSYtizb4odu/czc+wEAFPTM+zYvR/ggg2JYZ5i2gtck+TqJBcDdwCPDbJjVX2wqq6sqg3Mnmb6uOEgaZh2jk++Gg4nzRw7wc7xyY4q6t7QAqKqjgP3AOPAs8CjVXUgyX1JtgIkuT7JYeB24KEkB4ZVjySdy5HpmXm1XwiGOgdRVZ8GPn1a27/se72X2VNP5zrGx4CPDaE8SXrV+rUjTDXCYP3akQ6qWR68k1qSgO1bNjKyZtUpbSNrVrF9y8aOKurecr2KSZKW1MmJaK9ieo0BIUk92zaPXtCBcDpPMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNQw2IJDcnmUxyMMm9jfU3JnkyyfEkt/W1X9VrfyrJgSQfGmadkqQzrR7WgZOsAh4EfgY4DOxN8lhVPdO32QvAXcCHT9v9z4CfrKofJLkE+Fpv3yPDqleSdKqhBQRwA3Cwqg4BJHkEuAV4NSCq6rneulf6d6yql/sWfwhPhUnSkhvmL95R4MW+5cO9toEkuSLJ071j/FZr9JDk7iQTSSaOHj36uguWJL1m2f5lXlUvVtU7gL8C/HySNze22VVVY1U1tm7duqUvUpJWsGEGxBRwRd/y5b22eemNHL4GvGeR6pIkDWCYAbEXuCbJ1UkuBu4AHhtkxySXJxnpvX4j8G5gcmiVSpLOMLSAqKrjwD3AOPAs8GhVHUhyX5KtAEmuT3IYuB14KMmB3u5vB/5nkq8CjwP/pqr2D6tWSdKZUlVd17AoxsbGamJiousyJOm8kuSJqhprrVu2k9SSpG4ZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNa3uugBJ0sLs2TfFzvFJjkzPsH7tCNu3bGTb5tFFO74BIUnnoT37ptixez8zx04AMDU9w47d+wEWLSQ8xSRJ56Gd45OvhsNJM8dOsHN8ctHew4CQpPPQkemZebUvhAEhSeeh9WtH5tW+EAaEJJ2Htm/ZyMiaVae0jaxZxfYtGxftPZyklqTz0MmJaK9ikiSdYdvm0UUNhNN5ikmS1GRASJKaDAhJUpMBIUlqMiAkSU2pqq5rWBRJjgLPd13HkF0GfKvrIpYB+2GW/TDLfnjNQvriqqpa11qxYgLiQpBkoqrGuq6ja/bDLPthlv3wmsXuC08xSZKaDAhJUpMBcX7Z1XUBy4T9MMt+mGU/vGZR+8I5CElSkyMISVKTASFJajIglpkkNyeZTHIwyb2N9f80yTNJnk7y+SRXdVHnUhigLz6UZH+Sp5L8cZJNXdQ5bHP1Q992P5ekkqzISz4H+H64K8nR3vfDU0n+QRd1Dtsg3w9J3t/7PXEgycMLfrOq8muZfAGrgK8DPwJcDHwV2HTaNj8F/MXe638E/H7XdXfYF2/oe70V+GzXdXfRD73tLgW+DHwFGOu67o6+H+4CPtJ1rcugH64B9gFv7C2/aaHv5whiebkBOFhVh6rqZeAR4Jb+Darqi1X1Um/xK8DlS1zjUhmkL77Tt/iXgJV4xcWc/dDzm8BvAd9fyuKW0KD9sNIN0g+/BDxYVX8OUFXfXOibGRDLyyjwYt/y4V7b2fwi8JmhVtSdgfoiya8k+Trw28CvLlFtS2nOfkjyY8AVVfWppSxsiQ36s/FzvdOvn0xyxdKUtqQG6Ye3AW9L8idJvpLk5oW+mQFxnkryd4AxYGfXtXSpqh6sqrcCvwb8Rtf1LLUkFwH/DvhnXdeyDPwhsKGq3gH8EfCfOq6nK6uZPc30N4E7gY8mWbuQAxkQy8sU0P9Xz+W9tlMk+Wng14GtVfWDJaptqQ3UF30eAbYNtaJuzNUPlwJ/DfhSkueAnwAeW4ET1XN+P1TVt/t+Hv4D8M4lqm0pDfJzcRh4rKqOVdU3gP/DbGDMmwGxvOwFrklydZKLgTuAx/o3SLIZeIjZcFjwucXzwCB90f9N/7eAP13C+pbKOfuhqv5fVV1WVRuqagOz81Jbq2qim3KHZpDvh7f0LW4Fnl3C+pbKnP0A7GF29ECSy5g95XRoIW+2euF1arFV1fEk9wDjzF6t8B+r6kCS+4CJqnqM2VNKlwCfSALwQlVt7azoIRmwL+7pjaaOAX8O/Hx3FQ/HgP2w4g3YD7+aZCtwHPi/zF7VtKIM2A/jwE1JngFOANur6tsLeT8ftSFJavIUkySpyYCQJDUZEJKkJgNCktRkQEiSmgwIaQkl+ViS27quQxqEASEtUGb5M6QVy29uaR6SbOg9i//jwNeAE0n+fe+5+59Psq633VuTfDbJE0n+W5If7TvMjUn+e5JD/aOJJNuT7O09bO5fL/F/TTqDASHN3zXA71bVX+0tT/RePw78q17bLuAfV9U7gQ8Dv9u3/1uAdwN/G3gAIMlNvePeAFwHvDPJjcP+j0jn4qM2pPl7vqq+0nv9CvD7vde/B+xOcgnwN3jtcSgAP9S3/56qegV4Jsmbe2039b729ZYvYTYwvjyc/4I0NwNCmr/vnWNdMTsyn66q686yTf8TeNP37/1V9dAi1CctCk8xSa/PRcDJeYQPAH/c+6S7byS5HV6dzP7rcxxnHPiF3uiDJKNJ3jSsoqVBGBDS6/M94IYkXwPeC9zXa/8g8ItJvgocYI6Px6yqzwEPA/8jyX7gk8x+1oPUGZ/mKr0OSb5bVZd0XYc0DI4gJElNjiAkSU2OICRJTQaEJKnJgJAkNRkQkqQmA0KS1PT/AXiZS0Wzh+rUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "r8eRryFl9cGf" - }, - "source": [ - "#### Choose CATE model with larger Rscore" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "wTaPVNH39cGf", - "outputId": "bb85de97-45cd-4a07-d659-38bc56183bfb" - }, - "source": [ - "mdl, score = scorer.best_model([mdl for _, mdl in models])\n", - "mdl" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 57 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cULnL_mZ9cGg" - }, - "source": [ - "rootpehe_best = np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 295 - }, - "id": "kLwPBbku9cGg", - "outputId": "125c9a16-1d42-4800-8ee5-c77c24d330f1" - }, - "source": [ - "plt.figure()\n", - "plt.title('RScore: {:.3f}, Root-PEHE: {:.3f}'.format(score, rootpehe_best))\n", - "plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='best')\n", - "plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", - "plt.ylabel('Treatment Effect')\n", - "plt.xlabel('x')\n", - "plt.legend()\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZhU1dHwfzU9zSxswzIIDKsmArJH3IJGMSIaoxI1asQY45vwmeR1TYgaTcRsYkyicXsTv+invqLBdVwwirK4oKjAgIAsUZFl2Jdhm4HZ6vvjdjc9Pb3c3qa7Z+r3PP3Y99x7zz23B6vOqapTJaqKYRiG0fbIy/QADMMwjMxgCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCqAVICJfikiNiOwXkS0i8piIdAg630dEnheRHSKyR0SWi8iVGRxyWETkMhFZJyIHRKRcRLpGufZhEVktIo2h7yIif/f9Fv7PIRHZF3T+SRHZLCJ7RWSNiPwojjE+JiK1vn53icibIjI4oRdu2u+VIvJejGtO873vfhHZ53v/H/rODRARDXnv/SJySdC4fx/Sn/+e/DDv5v8sjeMdvikiq0SkWkTmikj/KNfOFZHtvr/BUhE5P+jcOBFZJiJVIrJTRF4UkbKg8xeLyPu+58xzOz6jOaYAWg/nqmoHYBQwGrgl6Nz/AhuA/kA34PvA1lQ+3C9Ekrh/KPAPnLEdAVQDD0W5ZSnwU2Bx6AlVvVpVO/g/wNPAs0GX3AkMUNVOwHnA70Xk2DiG+ydfv2VAJfBIHPcmyybfszsBNwH/V0SOCTpfEvzuqjojzv7/FHL/SDc3iUh34AXg10BXYCEQ7dnXAb18f4PJwJMi0st37lNggqqWAL2B/wD/E3TvLuBeYFoc72WEwRRAK0NVtwBv4CgCP8cBj6nqAVWtV9UKVf23/6SInOybUVWJyAb/jFpEOovIE76Z2joRuU1E8nznrhSR+SJyj4jsBKaKSIGI/FlE1ovIVt9MvMjl0CcBr6jqO6q6H0eQXCAiHSO854OqOhs4GK1TEWkPXAg8HnTvClU95D/0fY5yOc7gMdQAzxD0W4vIEBGZ5/stV4jIeUHnwv6eIjIE+Dtwkm/WXeXi2aqq5cBu4JhY17cAFwArVPVZVT0ITAVGRlodqeonqlrvPwS8QF/fua2quino8gbgK0H3vqWqzwDB1xgJYAqglSEifYCzgc+CmhcAD4rIpSLSL+T6/sC/gfuBUhxhtsR3+n6gM3AkcCpwBfDDoNtPAL7AmbH/AWdGdrSvj6/gzJB/E/SsKhE5OcLQh+LM6gFQ1c+BWl9/yXAhsB14J7hRRB4SkWpgFbAZeC3ejn3K5Xv4fmsR8QKvALOAHsA1wHQRGeS7JezvqaorgauBD3yz7hIXz84Tke8AJcCyeMeeCCLyiYhcFuF06N/vAPC5rz1Sf6+KyEHgQ2AezqrBf66fTxHWAL8A/pT0CxjNUVX75PgH+BLYD+zDmU3NxjEF+M93wRHOK3BmU0uA43znbgFeDNOnB0cAHxPU9n+Aeb7vVwLrg84JcAA4KqjtJGCty3eYDVwd0lYJnBbjvveAK2P0OzXCOQ9wMnAb4HU5zsdwVh1VQCOwFhjhO3cKsAXIC7r+aZzZsJvf870Yzz7N98wqHDPIEuBS37kBvr99VchnSJhx+z97fffkR7nmcZe/yyPAtJC2+dH+Nr5rvDgTlhsjnO+KY+o6Mcy5H/l/P/sk9rEVQOthoqp2xBESg4Hu/hOqultVb1bVoTiz9SVAuYgIzrL78zD9dcf5n3NdUNs6nFm9nw1B30uBYmCRb6ZfBbzua3fDfhy7djCdcJRaQvhWO6cBT4Q7r6oNqvoe0Af4SRxd/1mdWfoAnBmqf4bfG9igqo1B1/p/Mze/Z5OxBztjg05tUtUSVe2qqqNU9V8ht3b3nfd/VoaO2/8BRkR6t6DPD6L/FAES+vupap065sgzg81lQed34ZjvXkrWz2Q0xxRAK0NV38aZyf05wvkdvnO9cWZXGwhv/94B1OE4jv30w5mVB7oLub4GGBokPDqr47B0wwog4HAUkSOBAmCNy/vD8X1gvqp+EeO6fBLzAazHcWb+zefr2AT09ftJfPh/s1i/Z5O0vKq6Xps6srOd0L9fe5zfdIXL+6P9DfJxTGqhCsZIElMArZN7gfEiMhJARO4SkWEiku9zqv4E+ExVdwLTgTN8oXX5ItJNREapagOOg/MPItLR5yu4EXgy3AN9s97/C9wjIj18zy0TkQkuxzwdOFdETvEJj98CL6hq2BmkiLQTkUIc05NXRApDBC84NvbHQu7r4fOFdBARj29838MxFfmvURE5zc2gVfVNHME/GceWXQ38UkS8vj7OBf7l4vfcCvQRkXZunpuFvAgME5ELfX+X3wCfqOqq0AtFZLCInC0iRb7f6XLgG8DbvvMXiMggn5+jFPgrUOFbDeD7uxXiKIY839/e20Lv2brItA3KPsl/cHwAZ4S0/Q/wvO/7/TihdPtxHKKv4rMN+86fgiO89uKsCH7ga++CI6C2+9p/g8++TRibNVAI/BHHMbwXWAlcG3R+P3BKlPe4DFiP40t4CegadO7fwK+CjudxOILH/zkt6PxJvn46hjyjFEfQ+G3gy4AfB53v62vvFmGMjwG/D2m7BGcmX4Dj9Hwb2IMTzvidoOui/Z7tgJk4tv0dEZ59GrAxwrkBvt9gf8jnxijj9t8T7AOoDbl/R9D1K4BJUf5+Z+A41Wt8f58BQef+Dvzd932I79/bPt/f4eOQ3+kaHN/KARyfyr+A/kHnrwzzt38s0/8f5uJHfD+oYRiAbzY6VFVviXmxYeQ4pgAMwzDaKOYDMAzDaKOYAjAMw2ijmAIwDMNoo+TUxoru3bvrgAEDMj0MwzCMnGLRokU7VLXZpsyMKgAR+RInFKwBqFfVMdGuHzBgAAsXLox2iWEYhhGCiKwL154NK4Bx6uxONQzDMFoQ8wEYhmG0UTKtABSYJSKLRGRyuAtEZLKILBSRhdu3b2/h4RmGYbReMm0COllVK325Y94UkVWq2iRvu6o+DDwMMGbMmGa71urq6ti4cSMHD0atC2IkSGFhIX369MHrtVQrhtHayKgCUNVK33+3iciLwPGEFO6IxcaNG+nYsSMDBgzAyW5spApVZefOnWzcuJGBAwdmejiGYaSYjJmARKS9v9yfL/vjmcDyePs5ePAg3bp1M+GfBkSEbt262erKyFnKKyoZO20OA2+eydhpcyivqIx9UxsikyuAI4AXfYI7H3hKVV9PpCMT/unDflsjVymvqOSWF5ZRU9cAQGVVDbe84FTPnDg6bB2eNkfGFIA6RTpGxrzQMAwjAe5+Y3VA+PupqWvg7jdWmwLwkekooJxn586djBo1ilGjRtGzZ0/KysoCx7W1tWl99qpVqxg1ahSjR4/m888/57777mPIkCFMmjQp7r7uvfdeqqur0zBKw8gMm6pq4mpvi2Q6Cijn6datG0uWLAFg6tSpdOjQgV/84heB8/X19eTnp+dnLi8v56KLLuK2224D4KGHHuKtt96iT58+cfd17733cvnll1NcXJzqYRpGRuhdUkRlGGHfu6QoA6PJTkwBpIErr7ySwsJCKioqGDt2LJ06dWqiGIYNG8arr77KgAEDePLJJ7nvvvuora3lhBNO4KGHHsLj8TTpb9GiRdx4443s37+f7t2789hjj1FRUcG9996Lx+Nh9uzZDBo0iC+++IKzzz6bq666ismTJ3PNNdewfPly6urqmDp1Kueffz4NDQ3cdNNNvP766+Tl5fHjH/8YVWXTpk2MGzeO7t27M3fu3Ez8bIaRUqZMGNTEBwBQ5PUwZcKgDI4qu2h1CuC005q3XXwx/PSnUF0N3/pW8/NXXul8duyAiy5qem7evMTGsXHjRt5//308Hg9Tp04Ne83KlSuZMWMG8+fPx+v18tOf/pTp06dzxRVXBK6pq6vjmmuu4aWXXqK0tJQZM2Zw66238uijj3L11Vc3USyvv/46c+fOpXv37vzqV7/i9NNP59FHH6Wqqorjjz+eM844gyeeeIIvv/ySJUuWkJ+fz65du+jatSt//etfA/caRmvAb+e/+43VbKqqoXdJEVMmDDL7fxCtTgFkC9/97nebzeRDmT17NosWLeK4444DoKamhh49ejS5ZvXq1Sxfvpzx48cD0NDQQK9evWI+f9asWbz88sv8+c9/Bpxw2fXr1/PWW29x9dVXB8xSXbt2jfvdDCNXmDi6zAR+FFqdAog2Yy8ujn6+e/fEZ/yhtG/fPvA9Pz+fxsbGwLE/rl5V+cEPfsCdd94ZsR9VZejQoXzwwQdxPV9Vef755xk0yJa7hmGEx6KAWoABAwawePFiABYvXszatWsB+OY3v8lzzz3Htm3bANi1axfr1jXN2jpo0CC2b98eUAB1dXWsWLEi5jMnTJjA/fffj7/mc0VFBQDjx4/nH//4B/X19YFnAnTs2JF9+/Yl+6qGYeQQpgBagAsvvJBdu3YxdOhQHnjgAY4++mgAjjnmGH7/+99z5plnMmLECMaPH8/mzZub3NuuXTuee+45brrpJkaOHMmoUaN4//33Yz7z17/+NXV1dYwYMYKhQ4fy61//GoAf/ehH9OvXjxEjRjBy5EieeuopACZPnsxZZ53FuHHjUvz2hmEkQzp3M4t/hpgLjBkzRkMLwqxcuZIhQ4ZkaERtA/uNDSMzhO5mBieS6c4Lhsfl2xCRReEKbtkKwDAMI0uJtps5FZgCMAzDyFLSvZvZFIBhGEaWEmnXcqp2M5sCMAyj1ZLr6aCnTBhEkbfpfqJU7mZudfsADMMwIDXpoMsrKjO6kzjdu5lNARiG0SpJNh10MgoklYojnbuZzQSUAr788kuGDRuWVB/z5s1zFd9vGG2NRM04yTpQE43A8SuOyqoalMOKIxvNT6YAsgRTAIbRnGSEabIO1EQVSLpDN1NJm1MA6XIK1dfXM2nSJIYMGcJFF11EdXU1ixYt4tRTT+XYY49lwoQJgV2+9913H8cccwwjRozg0ksv5csvv+Tvf/8799xzD6NGjeLdd99NyZgMI9dJRpgm60BNVIHkUiGaNuUDSGeN0NWrV/PII48wduxYrrrqKh588EFefPHFsGmcp02bxtq1aykoKKCqqoqSkpJmqZ0Nw0hOmCbrQE20nkAuFaLJuAIQEQ+wEKhU1W+n81nprBHat29fxo4dC8Dll1/OH//4x4hpnEeMGMGkSZOYOHEiEydOTOq5htGaSVaYJuNATVSB5FIhmmwwAV0HrGyJB6VzaSYiTY47duzI0KFDWbJkCUuWLGHZsmXMmjULgJkzZ/Kzn/2MxYsXc9xxxwUycxqG0ZR0x8HHYuLoMubffDr3XDIKgBtmLIlpOp44uow7LxhOWUkRApSVFMWdu6elyKgCEJE+wDnAP1vieencVbd+/fpAyuannnqKE088MWwa58bGRjZs2MC4ceO466672LNnD/v377d0zIYRhmwQpok4ov2KY+20c5h/8+lZKfwh8yuAe4FfAo2RLhCRySKyUEQWbt++PamHpXM2MWjQIB588EGGDBnC7t27ueaaa8KmcW5oaODyyy9n+PDhjB49mmuvvZaSkhLOPfdcXnzxRXMCG0YImRamuRTVEy8Z8wGIyLeBbaq6SEROi3Sdqj4MPAxOOuhknpmuXXUDBgxg1apVzdpHjRrFO++806z9vffea9Z29NFH88knnyQ1DsMwUk+mo3oaG51Khaefnvq+M+kEHgucJyLfAgqBTiLypKpens6HWo1QwzBiEbyTN0+EhjB1U9yYjpPdEfzRR3DCCc73N96AM890fasrMmYCUtVbVLWPqg4ALgXmpFv4G4ZhxCLU5h9O+LsxHSezie3jj+Gyyw4L/7FjUy/8IfM+gJSQS1XNcg37bY22RjibP4BHJC5HdCK+g+pq+O1v4fjj4emn4eabYc8eCGM1TgkZ3wcAoKrzgHmJ3FtYWMjOnTvp1q1bs1BMIzlUlZ07d1JYWJjpoRitnExn3Qwmkm2/UZW1085Jup9w7Q0NcN558NprzvF3vwu/+IWjCNJJViiAZOjTpw8bN24k2QghIzyFhYX06dMn08MwWjHp3KGfiGJJ1U5et/0sWAAnnXT4ePbs9Dh8w5HzCsDr9TJw4MBMD8MwjARJ1w79RBVLIjt5wymaWP18+CH87ncwc6Zz7tRT4a23IL8FpXKr8AEYhpG7pCvMMtH4/Xg3n0Vy9gJh+xl/dBm33w4nnugI/1tvhX37nFDPlhT+0ApWAIZh5DbpSp6WbCI5t6uPaIomeONaQwOcfTZ8503nmksvhdtug6FDXT0mLdgKwDCMjJKuHfrpLqjux42ief99Z3b/pk/4//vfTpRPJoU/mAIwDCPDJJPvJ1p9j5ZKJBdN0Xz8MZx8shPHDzB+PNTXw1lnpXQICWMmIMMwMk4iO/RjOXnTXVDdTzhnb4G2o/dnYzj+Fuf4N7+BX/4S2rdP6aOTxhSAYRg5iZvooVSlfokWThqsaCp3HWT3cyexd20X1gCTJjkbu448MukhpAVTAIZh5CTJOHnj2R/gJpx04ugyVixqx223lAbuu/kvO7nzxm5xvVNLYwrAMIysw42ATjR66LbyZUxfsB5/kpNY+wNirTQWL4bzLqyj8stSJL+Bwv47KL1gIeW7PZxQkZ2FYPyYE9gwjKzCbRK1RJy85RWVTYS/n5q6Bn7+zNKwzuRIK4qNW+u45RYnXUPll146n7yaPtfOosdFC5G83KgZYCsAwzCyCrc7gxNx8t79xupmwt+PP+tn6IogdKWhDcLWp07i0KYuTAOuuALmtJ+Np9PBZn22VM2ARDEFYBhGVhGPbT/UyesPC42kENwK5GCFExzlc3B9V7Y+fThxz7/+BZdcAmOnCZVVzftJ9Z6DVGMmIMMwsopIQjNPJGoufTemo3gEcmVVDWOnzQHgJyNHU3n/eLY+fRLejoc4+cxqGhoc4Q+ZL16fKKYADMPIKsIJU3BMNKECPXgj2M+fWRoz90+kviOxfnM9//WzQ/z8sh7UV7fjt7+FPVsLePeNYvKCpKd/M1tJkTfQVujNfvFqJiDDMLIKv8nm588sbVaNq6augetnLOH6GUvoUuxl/8F66hqda8JV7oKmZp+Jo8tYuG5XWEdwMNogbPnfsdRu7QxAh+Eb+Nuf87nqzF5Rx36ovjHwfXd1XcrSWqcLUwCGYbQobkI8J44u44YZS6L2s7u6ztXzQs0+c1dtDyv8RUAVar7sxrYZJwbau59bQftjNnH3ux66ljoCPtz405XWOp2YAjAMIyzpqNIVT47+SHH+8RDODh+pz9od7dn0z9MA8HSupmjgdrqeuRx/ocGaugamvryCQ/WNYcefrrTW6ST7jVSGYbQ4yRQ0j0Y8OfrjtdeH4hHhwmObRwmFFo6t31/ArjlD2PToNwDoPHYNZT96m24TDgt/P1U1dRHH31LZR1NJxlYAIlIIvAMU+MbxnKrenqnxGIZxmHSZM9zMkoNXHiXFXg7WNUS110eiQZUnF6znhUUbKfB6qPKZjPx9aX0em58YS932TgB0/dpGik9ahafDobiftamqhnsuGRV3JbFMk8kVwCHgdFUdCYwCzhKRE2PcYxhGC5Auc0asWXLoymN3dR35HsGbFzpvd/B6hOIY0TbVdY3srq5DOSz8a9Z2Z/1fzg4I/27fruCRfwodutQn8lr0LilKKq11psjYCkBVFdjvO/T6PokoesMwUkyyVboi+Q9i1ckNt/Koa1C6FHspbpdPZVUNHhEaVCkrKWLc4FKeX+TeLFW387CdP7/kAO2HbKLzKWvo06WIiaNHA3DDM0uIEFAUluDxpyr7aEuRUSewiHiARcBXgAdV9cMw10wGJgP069evZQdoGG2URAqj+3Hj6I3kXI60wqiqrqPiN2c2abutfBlPLljv6n3qqorYt3Ag+yr6A9DpxM8oGfsfJL8x8L7+8d3xygpXEUYCaasx0FJkVAGoagMwSkRKgBdFZJiqLg+55mHgYYAxY8bYCsEwWoBkiqnE8h9EmyW7XXm4Ff6NdXlsfuwU6nd1AKDDqHWUnLwGT/vawDVdir1NxlPlQvh7RPjLxSNzVvD7yYowUFWtEpG5wFnA8ljXG4aRfhI1Z0TzH8QKLZ0yYRBTnltKXcPhuZ7XI4wbXNokx48bX0TN56Vsf3k0Wuvszu327Qo6DN3U5Joir4fbz21amNdN+Kl/VzJk7yYvN2TMCSwipb6ZPyJSBIwHVmVqPIZhpIZIfgIRuH7GkiahpdfPWMLo385qGl4ass5vaFBmfLyhyX1Rd/Hu6si6u85h23PH42lfS5dxn9LvlzObCf9ITlq34ae5kO45FplcAfQCHvf5AfKAZ1T11QyOxzCMFBDOfwDQGEFq766uY8qzSyPa3huBxobY1t+6Xe3Z++GR7F/WB4COX/uSLqd/iniUgvy8QJqGkiIvU88bGnHmHs78FWlFkM2bvNyQySigT4DRmXq+YRipJdi807nIS57AgdqG2DcCdY3qOrVDKI11eWx65FQa9hQD0GH0l46dv/hwf8E5eqpqYufoCTV/jZ02J6moqGzFdgIbhpE0ofH7VTV1VLsU/omiCtWf9WDTw6cFhH/38xbT7cwVTYR/OOI13+RquudYZIUT2DCM3CZc5E+qQva8eQJCE8dw7fYObH70VADyu+6n61mf0GHEhmapG6IRj/kmmaiobMYUgGEYSZMuW3iZT9AC/OqFT9izuZiq946mek1PANoP20C3s5YhnvjVTe+SorgS3uXaJi83xFQAIvJdVX02VpthGK2baMIyFZk7gynyeppE6Mx4fxNr7h1Hw/5CADoeu5bOY/+Dpygxv0GR18O4waWuM5O2Vtz4AG5x2WYYRiukvKKSIb/+d7MQzuDsoFMmDIqYrycSocLHf3dweKYqvPQS/ODcLgHhXzpxEV3P+NS18PeIMPaors1y9Mxdtd11ZtLWSsQVgIicDXwLKBOR+4JOdQISy5hkGEZaSXUO//KKSqY8uzRQdSsYf3Wuu99YzbjBpTTLsxyDxpBjxRHO828+HYBPPoGRI51z3m71dD9vMe2HbI77HRpUWbx+T7OY/0gFZ3I9tDMeopmANgELgfNw8vX42QfckM5BGYYRP/EUWwm+J5rCuPuN1WGFfzCVVTWuc/LEorKqhuXL4frrYe5cp+2734UNIxeyeV91wv2GS2WdbMK71kBEE5CqLlXVx4HhwJOq+rjv+CWcVM6GYWQRd7yyIqxJ4+fPLGXgzTMZO21Os4LqsYq+tORsWOvz2HD/GQwfDrNnw7XXwq5d8MwzcNO3jk6qOAw0f5fWGtoZD258ALOAYJVYBLyVnuEYhpEI5RWVETdSNaiGFfBuqnO1xGxYFarXHMGmR75BY3UB4Nj977kHunRxrgnOtZ8ooe+Si/n7U42bMNBCVfXn7UdV94tIcRrHZBhGFMKZbdw6LoNNIW6KvkyZMIjrYxRnT4barZ3Y/NgpAHi776X0wo95+Nbe3PXGaq57v6lZyv+JtCs3GpFm9q0xtDMe3CiAAyLyNVVdDCAixwJtx0tiGFlEJDt/6Ew+GpVVNRx1y2sRN2q1xKy/dmsndv57BLVbOyH5DRQduY3u51fQoTCPW17YGdWPES7XkNcjtG+Xz56aOnr7CsXMXbW9VW3aSgduFMD1wLMisgnHz98TuCStozIMIyyRzDb+KlluiXStf6bsX2WkMrYfHDv/xodOp7HGMfV0PO4LSr7+H/IK6/F6BK8nj6qapqYsvx8Dms7YW9uu3EwQUwGo6sciMhjwr59Wq2piuy8Mw0iKSGabBlWKvJ64VgKheES48FhHiMa7qoiFKlSv7snueUMCwr/HRR9RdNT2wLPvvmhkxNDM0Pz7bd10kyrc7AQuBm4E+qvqj0XkqyIyyFI3G0bLEyl0UYALjy1j7qrtCc/aG1R5flElMz/ZnFLhf2hLJ7Y87rPzl+6l28UfUjRwR+B88K7faKuOYAe1zf5Tg2iMZaOIzMDZB3CFqg7zKYT3VXVUSwwwmDFjxujChQtb+rGGkTWUV1Ryw4wlYe33/k1UoX4CcBRES9dTPbSlE9ufH0PD/kLyimop7L+T7udWIEGxhx4RTjyyCwu+2E2DKuLkfYtYOwBottIJTRthNEdEFqnqmNB2N2GgR6nqn4A6AFWtJu49f4ZhpIKJo8siCnK/eWji6DIuPLYMjy81pkeEr/Ro30IjdPLzb7j/DLY8fgoN+4voOGYtZf9nHqXnNxX+4Kw65n++K+CTUHWEfyQB4xFp8+kbUokbJ3Ctr2SjAojIUdhGMMPIGGUxdrCWV1Qy46MNAaHaoMp/th1I+7hUoXplb3a/PSgQz98jxNwTD+Fm+pFMU20pfUMqcbMCuB14HegrItOB2cAv0zoqwzAiEmsH69SXV8RM35BqDm3qzPo/n82OV0bjKarjiO99QP+bZkYV/tHMCAphN2lF2gjWltI3pJJoyeDGqup84B3gAuBEnL/ZdaqamEo3DCNpIoVBglO6MDSMMp0c2lTClidPAs0jr/1Bio/aRtcJy5qZesIRTUV5RCJG+oT6N9pa+oZUEs0EdB9wLPCBqn4NmJnKB4tIX+AJ4AicfwsPq+rfUvkMw8hm3GTuDK2zKwJV1XXNrg/n+E0njXV5TinG/c7Mu8OodXQ5bSV5Bal5/vdO6Bu23fYApJaIUUAisgD4BJgI/Cv0vKpem9SDRXoBvVR1sYh0xIk0mqiqn0a6x6KAjNbCbeXLmL5gfZNZcGg0Syyh7o/s6VLspaqmjjj2gSWMNsKB5X2oeu9oGvY5wv+ISxdQ2H9nSvr3iPC9E/ry+4nDU9Kf4RApCijaCuDbwBnABJqmg04JqroZ2Oz7vk9EVgJlQEQFYBitgfKKymbCH5rm6SmvqOTnzyyNurvXfyZSErhUc6iyhG0vHkvjgULaHbGH7udWUNh3d8r6Dw5jHTttjs3wW4BoCmCKqt4kIv18aaDThogMAEYDH4Y5NxmYDNCvX790DsMwYpKKgit3v7E6ov27sqqG0b+d1WJC3Q0HN3Zh6/SvA+DpcIVjRGMAACAASURBVJCOY76gy+kr4yrAHky4Iu/BKSjaepnGliSaCWgZMAJY5PMBpGcAIh2At4E/qOoL0a41E5CRScKZZEKTkLlRCANvntnim7ISobHWw+b/dwr1Vc4egvZDN9L1zOXktUvczl9S5GXqeUOB8Hb8SJk+gyuFGfGTiAnodWA30EFE9gb3BaiqdkrBoLzA88D0WMLfMDJNuERsdQ0aiLpxO1tNdQH1VKONsH9Jf/Z88JVAHd4jLns/LnNPmYuMnOF+Izcpqo3UEVEBqOoUYIqIvKSq56f6wSIiwCPASlX9a6r7N4xU40YIhSs9GEq4dMbZwsGNXdj52gjqd3egXa/ddD9/MYV94rfzJzpbtzKNLUu0fQCDVXWVqp4vIgWqeijo3ImquiDJZ48Fvg8sExF/CsBfqeprSfZrGGnB7cw9lqLwK4d0FlqJl4Pru7L16ZMA8HSoofPX19D55P8kbOePRjQ/SjjlaHH+6SPado2ngr5/EHLuoWQfrKrvqaqo6ghVHeX7mPA3spZwO3DD4Wa2OnF0WVLlDYMpKymiyOtmU39zGg952PTINwLCv+grW+n947cpOSVx4V9S5I14LlYdYivT2LJE8wFIhO/hjg2j1RO6Camk2Mv+g/VN0i64ma0GF1sJzdLpzZO40zgcOFRPXpzSWhuFvR8NZN/CgTQccOz8PS+fT0FZVVz9hJIHASdvOKLVIfb/vpbrv+WIpgA0wvdwx4bRJggVTvGGhYZGEimHN3SVBdX3jcdJHG/qh4MburLrzaHUbe9Eu167Kb1gEQW9kxP8fjye6IrInLzZRTQF0EdE7sP59+n/ju/Y1LNhEP9sNdwM2C/8gx2nkXL+J0PNl93YNuNEADwda+gy7lM6Hrc2YVOPCM12H9c1aFQnuDl5s4uoG8GCvocG31swvmEkQLQZcPBqIpXCv/FQPltnHE/t5i4AFPTbSY+LPiLP25hwn2UlRQnN5s3Jm11ECwNN6+5fw2iLRIskSnVUkDYKVe8dzf6lfQP5+Xt+/z0Keu9Juu/KqpqYdQnCYcncsgs3BWEMw0gB5RWVVNfWhz2XanPPwfVd2TX7GOq2daZdzyq6XvQxBb2SF/zBjBtcyoyPNjRxWnvzJOZsPlQJ+Kt5mRJoeWLWBM4mLBWEkatEyuyZ6lq9+yr6sWuWk0nT06mazid9RoeRG1zb+fMkej3eYLx5QiPQEHSDJ0/oWBA9NUa438Lq+qaXhGsCi8hYN22GYUQmnPMXUif86/cWsu6ucwLCv12v3fT+0dt0HJUe4Q9Q16hNhD84yqCqpi5sjL+faKGgRsvixgR0PxCaDC5cm2EYYbitfFnacv9ofR7r75kAjYfncqUXfUzxUdvi7qtRndoCqcxEGi41hoWCZg/RUkGcBHwdKBWRG4NOdQJib4c0DIPbypfx5IL1aek7OKwToOuET+g4akPC/XlE0lJUJlSwWyho9hBtBdAO6OC7pmNQ+17gonQOyjBynfKKSqa+vCIt9Xn3fjyQ3XOOCRwXfXULpd9ZlHTengZV9kQZb5HX08R049ZkFCrYLRQ0e4gWBvo28LaIPKaq61pwTIaR05RXVHLjjCUkHmUfnrqqIjb94/BmMW/pXnpdMR/JT92TSiKYgIJ3KfvrE+85GFu5hRPsFgqaPbjxARSIyMPAgODrVdWqMxhtgtB0D7Hy3N/ywicpFf5an8f6v5zdpK3HxR9SNHBHCp/isP9gPV6PhK3W5d/17I/iiWYuEogq2C3fT3YQMwxURJYCf8epCxxYs6lqyusEx8LCQI2WIFjgh0v4Fo4uxV5uP9dJgpbKDV01a7uz7ZkTAsfdvrWEDsMro9wRnSKvh0JvXlRHb0mRl/YF+REVXKSqXX6self2kUhFMD/1qvo/aRiTYWQdoTHqbiNidlfXpVTw7/nwSKrmDQFAvPUUH72FbucsTcjO7xGhUTUgzIGoBWn21NSx5PYzI/YXLVrHbPm5hRsF8IqI/BR4EQgUhVHVXWkblWFkiEjx+i1F3e5iNj08LnDs7baPXle+l5Sdv1GVtdPOadb+82eW0hDGAhArGidSFI9HxDZz5RhuFMAPfP8NTg6nwJGpH45hpI54UzVD5mLRG+vy2PDXpnb+Iy5dQGH/nUn3HU6g+3+HRKJxIkXxmPDPPWIqAFUd2BIDMYxUEmrKydaC7apQ80UPtj93XKCt+7kVtD9mU9x9hQvLjCbQE43GsSie1oMbJ3AxcCPQT1Uni8hXgUGq+mpLDDAYcwIbbonkqIzloAyXp8brEdq3O5zfZtzgUl5dujnpGP+q+V9hz3uOcPZ0rKHoqG10PXN5QnZ+/3slsuoxWj/JOIH/H04E0Nd9x5XAs0DSCkBEHgW+DWxT1WHJ9mcYfiKZcip9effDJSgLjvwpyM9rIvDnrtpOVU0dW/Yc5MkF6+lSHLnubSzqdrZn0z9PCxznd91P76veQTyJbcMVCMzyLbzSiAc3CuAoVb1ERL4HoKrVIsnuOQzwGPAA8ESK+jMMILopJ9QUFC7yp8jr4Z5LRgEw5bmlgbh4v9M0kXw5jbUeNtxzVpO2Iya9T2Gf3a77CM0eKsCkE/uZ0DcSwo0CqBWRInz/7kTkKIKigZJBVd8RkQGp6MtoHaTKhBHOUeknNEFZtOyU1bX1TTZFJYIq1KzpyfbyYwNt3c9fRPvBW+Luq3OMGH3DiAc3CuB24HWgr4hMB8YCV6ZzUMGIyGRgMkC/fv1a6rFGBkjUcRuOiaPLWLhuV8REbMEmokgrhVQ4g3e/czR7P/gq4Jh6ir+6lZJTVyWctyc4Rt+vLG+YsSRq7n3zCRiRcBMF9KaILAZOxFlxXqeqqd+DHvn5DwMPg+MEbqnnGi1PtJl4vEKrvKKS5xdF3jHrD40sr6hMeVEWgNodHdj8yKmB4/ySA0nZ+f30LimivKKSO15Z0cQMFU5ZplKhGq0TtyUhy3BSQOcD3xARVPWF9A3LaIukMk98rA1dBw7VB2bHqS3A7mHDvU3t/D2/P5+C3lVJ913k9TBucGlKTFumAAxwoQB8kTojgBUQyHGlgCkAI6Ukmyc+2NwRS6hX1dRFTYcQL6pwYEUZO2eOCrSVfmchxUdvTUn/AHdeMDymYgtWllZ4xYiFmxXAiap6TOzL4kdEngZOA7qLyEbgdlV9JB3PMrKfZPLER6q5G41UCf/dc4aw92NnY7y32z7aD6uk84mfp6RvP2UlRUwcXcYNMfINBStLK7xixMKNAvhARI5R1U9T/XBV/V6q+zRyl2R2mGYih0/t9o5sfvQbgWNPxxp6/fDdpO38oQQrwWjhraHK0gqvGLFwowCewFECW3DCPwVQVR2R1pEZbZJENzK1pFmj8VA+G+6d0KSt5w/epaDn3qT7LvJ6uPDYsoj1BiKFtwpw4bFNfztL2WDEwo0CeAT4PrAMUl7kyDBSQkvk8FGF/Uv6sWvW4U3rpRd+TPFX4ivA7hGhQZUyF8VlQvGfC40CUuD5RZWM6d+1mRIwgW9Ewo0C2K6qL6d9JIaRBOMGl6at+DrArreOYd8iJy9iftf9dDpuLR1Hxfc8r0e4+6KRSQvkiaPLuPuN1c12I1uEjxEvbhRAhYg8BbxC03oAFgVkZA1zV21PS7+1Wzux+bFTAsd5xYfo/cN3E8rPX9egKRPQFuFjpAI3CqAIR/AHlwiyMFCjRQi3kxVokrhNlaQzc4bSeDCfDX9raufv9cN3aNdjX5M2/4ZeCZOKORypEtAW4WOkAjcK4J+qOj+4QUTGpmk8hhEg3E7WKc8tBSVQozeRpGzRUIW9Hx7J3g+PCrT1uOgjio4Kv8IIJIx7dimNMVKrQ2wB7TZ1g0X4GKnAjQK4H/iaizbDSCnhQjuTTcwWjZ2vD2f/UifflKdTNd3HL6f9MZuj3jNxdBljp82JWTQeDu/kHTttTlgBH0/qBovwMVJBRAUgIifh1AAoFZEbg051wkkLYRhppaXs2Yc2d2bLEycHjqVdHWWT57mO5482zrKSooCAHje4lOcXVUYU8PGmbrAIHyNZoq0A2gEdfNd0DGrfC1yUzkEZBqQ/tDNcPH+v/3qbdt33u7q/yJsHRB6nv1CLX0iPnTYnqoA3x67R0kRUAKr6NvC2iDymqutacExGGya0Mpc3T1yZV+JBFareGcSB5X0CbT0uWUDRgPgKsNfUNTLqjll8e2Qvpi9Y3yz/kEKT2XssAW+OXaOlceMDqBaRu4GhQKG/UVUjF1Y1jAQIV5nL65GUpmve8doIDizrC4AU1LnayNWl2EttfSMHapunmqiqqeP5RZURxxcs9GMJeHPsGi1NnotrpgOrgIHAHcCXwMdpHJPRRonk9E2F8D9UWcK6u84JCH/yGul7zZthhb8/tLOspIh7LxlFxW/OpDqM8PdTU9eAJ0KFl+DZ+5QJgyjyNnWfBQv4iaPLuPOC4ZSVFCG+5995wXCz8xtpw80KoJuqPiIi1wWZhUwBGCnDb/ZJh70/XH7+3j+ei7drdbNrBSJG08TyRzSoUuT1RJ29u4ncMceu0ZK4UQD+QOvNInIOsAnomr4hGW2FcJWtwtG+nSes+SUa2gi73hhOzRelgbYjvvcBhf12hb3eI8JfLo6cpiFajWFwZutTJgyKGZZpAt7IJtwogN+LSGfg5zjx/52AG9I6KqPVE0/+/niF/46ZI+N28DaoRi2X6K8xPP3D9YTu9/LP9OMR7lar18gG3NQEftX3dQ8wLr3DMVobkQRdOvL3H9zYha3Tvx7UovSb8m8kz50XIVrMvb/GcKjw71Ls5fZzh8YlvK1Wr5EtuCkJeTTwP8ARqjpMREYA56nq79M+OiOniSToFq7blVJ7f2Othw33NLXzl/1kNvmdDsbdV6RQzUgKq7hdftxC22r1GtmCGxPQ/wWmAP8AUNVPfNlBTQEYUYkk6KanKG2zNgrby79G7aaSQFs0O78bIsXcp3KTlm34MrIFNwqgWFU/kqZhbvVpGo/Riogk0FIR1rlj5ggOLO8bOD5i0vt0O3Jv3P6CYKLF3Kdyk5Zt+DKyBTf7AHaIyFH4/r8VkYuA6BmyXCIiZ4nIahH5TERuTkWfRmYor6hk7LQ5DLx5JmOnzaG8ojItAu3g+q5OPH+Q8O83ZSaFfXbHJfz90xl//H6smPtYMfzxkMq+DCMZ3KwAfgY8DAwWkUpgLTAp2QeLiAd4EBgPbAQ+FpGX01F83kgv5RWVTHluaSBTpz9t8yXH9W2S/AxIeFevE88/gcOiG/r895t42tfG3VdJkZep58XnuE1l9k3L5GlkC6JRcpj7hPRdqvoLEWkP5Knqvog3xPNgJ9voVFWd4Du+BUBV74x0z5gxY3ThwoWpeLyRQkb/dlbYWH5/hIx/k5e/Fm48aH0eW585ntqtndBaLxB/3h6/0ikzQWu0UURkkaqOCW2Plg46X1XrReRkAFU9kOIxlQEbgo43AieEGcdkYDJAv379UjwEIxVE2si1u7qO62csIc83aY9X+Afn7QHo+f35FPSucnVvl2IvVdV1Nrs2jChEMwF9hFP0pUJEXgaeBQJKoKVqAqvqwzgmKMaMGZO+aiBG2og3mWfNF93Z9mzTuUC/X84kQrqdsBS3y6fiN2fGvtAw2jBufACFwE7gdJyVtH9FnawCqAT6Bh338bUZOUZJkTclNXkbD+Wz4f4zoMHnIPU00Odns/EUxd+3hVQaRmyiKYAevkpgyzks+P2kYib+MfBVERmII/gvBS5LQb9GCzP1vKFMeXZpwnn7tT6PLU9+ndqtnQNtPS7+kKKBOxIek4VUGkZsoikAD05FsHAL76QVgM+/8N/AG75nPaqqK5Lt10gN8eSq8bdPfXlF3CuBna8PY//S/oHjnle8R0GvPYkPHAupNAy3RFMAm1X1t+l8uKq+BryWzmcY8ZNIrhp/fh+3CqB6zRFsfzEoKEGUflNec2Xn9+YJHQrzA07ecYNLmbtqu4VUGkacRFMAcbjcjNZEorlq3NjdGw/ls/Gh0wMhndKunrKfzMZT6G5zeft2Hr7ztTLmrtrO7uo6tuw5yJML1lNWUsQ9l4wywW8YcRBNAXyzxUZhZBWxctUEm4c6F3mpawhfLjGYxro8Nj/6Deqr2gfaErHzV9c1NNlc5g8ttYyahhE/0YrCJ55Ry8hpouWqCTUPuTH57HpzKPsWDwgc9/zBuxT03JvQ2FSJmEbaMmoaRny4CQM1WgluHbvRipPHk8d///Iyds4cFTiW/Ab63vh6XPH88RLLDGWFWAzjMG6SwRmtAP/MvbKqBuWwyaS8ovnWC39x8i7F3qBW5Y5XVrjK499wMJ+ND3wzIPzzimq56N6PaKzz8LdLR1GWxhDNaOGfbn+DcIntDKM1YiuAHCHZmatbx25wgXZpcm0jNXWNUZ/RWOuh8h/jaKwuCLT1uvRDrrqkmDH9yxg7bU5g/Oli3ODSiOfc/AZWrctoS5gCyAFSIZTcFCEpr6hssqErns0eu946hn2LBgaOe135LkcMrKG4XT5PLtjBk0FFYFJZDSyUuau2Rzzn5je445UVVq3LaDOYAsgBUlFCsHOEdA2diw6beX71widx7+bdu2gAu98aGjiWgjr6XjcLEdhdHTlRXLqI5gOIVYilvKIy4ngttYTRGjEFkAOkooRgJMfr3oN1DLx5JiXFXqpjmHiCaajxsuV/x1K/2wnr9LQ/SO8fzyOvILWF3uMlmnkpmnMbHEWbSL+GkauYAsgBUlFCsCrCzNY/4Xc7U288lO8rzHKYIy77gMK+8UcN54kT1hluzVFS5OVQfaPriCOInQIiViGWaArVUksYrRFTADlArJmrGyIpkXgIjefvddU7tCtNvD5Qo4LXI6A0MT0VeT1MPc8xKwUL69CUD4mkgJg4uiziNZF+o5Iir9n/jVaJKYAcIBUlBMMpEbfsWXAkVW8PCRx7Ohyk7KezUxLPX9egdCn2UtwuP+y7taTgjaRo/crIMFobpgByhGgz12AihYuGKpE8F+UZG6q9bHv2eGq3lADg6VRN7/96h7x2zZVIMjUBqqrrsqJ4i9XqNdoapgBaEbHCRYMVwW3ly5i+YH1Y+3vjwXw2/M1v53euiJa+oemGsfjJJgerW0VrGK0B2wnciogWLhpMeUUlzy+qbCb8VWHn68ODhD/0uupd+t80M6Lw93qE288dGtHJDM7qoMjrCXvOcvcbRuawFUArwm24aDhFUTX/K+x577Agbte1mp4/mhvRzi8QcMTe/cbqiJvGBJo4dCuravD4zE9lZmIxjIxiCqAV4TZcNFghNFS3Y8fLozm4rjsAhd2qeezlKi75em/GTgvfn19w3/HKiiY7fEMRYNKJ/TLi0DUMIzamAFoRbsNFe5cUsX5zPRvv8zlepRHx1jPyZwupuOdEoDhqf+MGl8aMKMql2b1lCDXaKqYAsoBUCSA3USyqUPD+CWx85XBhlp5XzKek7wFuv2C4q/5ipYQWYP7Np8c9/kxgyd+MtoxojFDAtDxU5LvAVGAIcLyqLnRz35gxY3ThQleX5gyhAgicWfadFwxPmQC6rXwZT3+4gZ3zj2LPu4dXA0U99nPED9+OW+kMvHlm1ERxZSVFOaMAxk6bE9HMlSvvYBixEJFFqjomtD1TK4DlwAXAPzL0/KwhFYneonFb+TIen72FnbO+Rs2angB4u+/jxgfXMe3iYcA5cfcZbVdxrkX1pCLPkmHkKhkJA1XVlaoaOfNWGyKdAmj7dvjDd4az8YHx1Kw5gvySA/SePJfe//UOz1SsS7jfKRMGhQ3rLCnypnTl0hJE2oOQTXsTDCNdZL0PQEQmA5MB+vXrl+HRpJ5UJHoLRRUmTYKnnz7c1vPy9ykoqwocN6pjfkqXrwFyw7maijxLhpGrpM0HICJvAT3DnLpVVV/yXTMP+IX5ABLzAQRX7/LH1mvFYNbPOipwTbuee+j1g/fC3p9OO3dL+DZSRS4oKsNIhhb3AajqGenquzWRaP6ZUAF7aE8Bu+cNpnqlc9+Rg2v5dEk7fvfv9Ty5IHwf6bRzp9u3kUos/YPRVsl6E1BbIBEB5Bew9fsLqHzwsK4t6L2b7udV0LM/FBSczpj+XSNu1kqnnducq4aR/WREAYjId4D7gVJgpogsUdUJMW4zOGyu2Li7hh3lX6N6Ta/AuSMue5/CvrsB2FR1eJUQjnTbudPh2zAMI7VkRAGo6ovAi5l4di7jF+hb3utP1bzD+fkL+u6k52VN7Ty9S4oibtjyiKTdFm/OVcPIfswElEP84dm1bHh5GAdW9AGgXa/d9Jz0AeJp6sj3C9obZiwJ20+jatpt3pZb3zCyH1MAOcDOnTBwIOzbdzJ4Gig6aitdz1xOfqeDza4NzsHjjxAKpaXMMOZcNYzsxhRAFqMK//oXXHbZ4bbeP3obb0lzoS7A2mlNd/WaGcYwjGiYAshS7r8frr3W+T56NFx+OTyxb1bEsovhZvVmhjEMIxqmANJMvJuMNmyAW26B6dOd45/ctpslRRXcv60magK2SLN6M8MYhhEJUwBpJJ5Uw9u3Q48ezveCAvj+9+G0yzdz97tLqdkbOfUyODl4TMgbhhEvVhM4jbip0dvYCE8+eVj4A6xaBU88AY8sXhk17z44Nn1/yUXDMIx4sBVAArg168TaDXvPPXDjjU7bmDHws5/BlVfGvh8O1+Q1m75hGIliCiBO4jHrRNoN240SLrvscLbOBx6An/wE8kLWY5Huz4ViJZZgzTCyHzMBxYkbs46f0Lz5DQfase6uc1h011hefBH++79hyxZn5v/y0krGTpvDwJtnMnbaHMorKsPm3c+FME6/kqyschzXfiVZXlGZ6aEZhhGEKYA4iSfJ2cTRZdx5wXB6dyriwLIyNj4wPnBu9Won1POIIyILTIA7LxhOWUkRgjPzd5smOlSZtCTxKEnDMDKHmYDiJN4kZ2veLOODWx2BffzxcNNNcMEFTa+JJjDn33x6XKaTbChybplADSM3sBVAnLg1y6xdCxdf7Ah8gD/9CT74oLnwh9QKzGyYfVuZRcPIDUwBxCDUnALRzTJbt4IIHHkkvPoq3HwzbNsGU6Y0d/L6SaXAzIbZd676LgyjrWEmoChEMqfcecHwZlE4DQ3w+ONw3XWH29asgT59Yj8nlTl7siEPv6WgMIzcwBRAFNyWNbzzTvjVr5zvJ50Ed9wB48fjmlQKzGxJAGcpKAwj+zEFEIVY5pQvvnBMOy+84LTffrvzEYn/WakSmDb7NgzDLaYAohDJnNI9v1NAyLdvD7/7Hfz0p9C1awsPMAI2+zYMww2Zqgl8N3AuUAt8DvxQVasyMZZohJpTtBFqV/RnzfuHyzGuWQO9e2dqhIZhGImTqSigN4FhqjoCWAPckqFxRMW/kauspIg9C45i/d3nsOW1YYwY5uG995yCLSb8DcPIVTJVFH5W0OEC4KJMjMMNQzuUUbqgjKq3neObbnKcvonY+Q3DMLKJbPABXAXMSFfniSYl27ULunVzvnfoAH/8I1xzjfPdMAyjNZA2BSAibwE9w5y6VVVf8l1zK1APTI/Sz2RgMkC/fv3iGkMiaRHq6+Gf/4Rf//pw2+rVZuoxDKP1kTYfgKqeoarDwnz8wv9K4NvAJFWNWO1QVR9W1TGqOqa0tDSuMcSbFuHuu8HrdVIzH3MMfPyxY+f/aGtmk6sZhmGkg0xFAZ0F/BI4VVWr0/WcWHH8fvPQl5/nUTN/KLtXOgrmhhvgL39x7PzZkFzNMAwjHWTKB/AAUAC8KY43dYGqXp3qh0RLi1BeUckvp6/kP385AwBpV0fp6at54A8duPjEw4Ld7W5gwzCMXCMjYaCq+hVV7auqo3yflAt/iJyU7Ppxg7hx6n4+f+gbgfbe//UOxcd9xt/mNTUPZUNyNcMwjHSQDVFAaSNcWoTBO77GxSeWAFDQbwddv/kp7XrsC9wTKtizIbmaYRhGOmjVCgAOp0X45BO45RZ49DWnvdfXN+A9+ZNm8fyhgj1bkqsZhmGkmjZRD+B//xdGjoS334Y//xkOHoSHHsijuF3snPXBu4HjKctoGIaR7bT6FQDAoEFw7LHw7LMwcKDTFk/WTEuuZhhGa0SihOBnHWPGjNGFCxdmehiGYRg5hYgsUtUxoe1twgRkGIZhNMcUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhslpzaCich2YF0GHt0d2JGB56YSe4fsINffIdfHD23zHfqrarOKWjmlADKFiCwMt4sul7B3yA5y/R1yffxg7xCMmYAMwzDaKKYADMMw2iimANzxcKYHkALsHbKDXH+HXB8/2DsEMB+AYRhGG8VWAIZhGG0UUwCGYRhtFFMALhGR34nIJyKyRERmiUjvTI8pHkTkbhFZ5XuHF0WkJNNjihcR+a6IrBCRRhHJqTA+ETlLRFaLyGcicnOmxxMvIvKoiGwTkeWZHkuiiEhfEZkrIp/6/h1dl+kxxYuIFIrIRyKy1PcOdyTVn/kA3CEinVR1r+/7tcAxqnp1hoflGhE5E5ijqvUicheAqt6U4WHFhYgMARqBfwC/UNWcKA8nIh5gDTAe2Ah8DHxPVT/N6MDiQES+AewHnlDVYZkeTyKISC+gl6ouFpGOwCJgYo79HQRor6r7RcQLvAdcp6oLEunPVgAu8Qt/H+2BnNKcqjpLVet9hwuAPpkcTyKo6kpVXZ3pcSTA8cBnqvqFqtYC/wLOz/CY4kJV3wF2ZXocyaCqm1V1se/7PmAlkFPFvtVhv+/Q6/skLItMAcSBiPxBRDYAk4DfZHo8SXAV8O9MD6INUQZsCDreSI4JntaGiAwARgMfZnYk8SMiHhFZAmwD3lTVhN/BFEAQIvKWiCwP8zkfQFVvVdW+wHTgvzM72ubEGr/vmluBepx3yDrcvINhJIOIdACeB64PWdnnBKraoKqjcFbxx4tIwia5/NQNBVfCzwAAAgRJREFUK/dR1TNcXjodeA24PY3DiZtY4xeRK4FvA9/ULHX+xPE3yCUqgb5Bx318bUYL47ObPw9MV9UXMj2eZFDVKhGZC5wFJOSctxWAS0Tkq0GH5wOrMjWWRBCRs4BfAuepanWmx9PG+Bj4qogMFJF2wKXAyxkeU5vD50B9BFipqn/N9HgSQURK/RF8IlKEE1iQsCyyKCCXiMjzwCCcKJR1wNWqmjOzOBH5DCgAdvqaFuRSFBOAiHwHuB8oBaqAJao6IbOjcoeIfAu4F/AAj6rqHzI8pLgQkaeB03DSEG8FblfVRzI6qDgRkZOBd4FlOP8fA/xKVV/L3KjiQ0RGAI/j/DvKA55R1d8m3J8pAMMwjLaJmYAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADCMJROQ4X42FQhFp78vRnpPpko22h20EM4wkEZHfA4VAEbBRVe/M8JAMwxWmAAwjSXz5fT4GDgJfV9WGDA/JMFxhJiDDSJ5uQAegI85KwDByAlsBGEaSiMjLOFW+BuKUHMy6WhGGEQ6rB2AYSSAiVwB1qvqUr/bv+yJyuqrOyfTYDCMWtgIwDMNoo5gPwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo43y/wEIBoSo5RCemAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AWpMuY_49cGg" - }, - "source": [ - "# 4. Interpretation" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "PkjmyQgj9cGg" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "S53DNzMd9cGg" - }, - "source": [ - "#### Fit any CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XoHzf8Lo9cGg", - "outputId": "e5b36880-2294-4fbb-d4f7-b4e2535f1d9b" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "\n", - "est = NonParamDML(model_y=RandomForestRegressor(min_samples_leaf=10), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestClassifier(min_samples_leaf=10), # Any ML model for E[T|X,W]\n", - " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", - " discrete_treatment=True, # categorical or continuous treatment\n", - " cv=5, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability\n", - "\n", - "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 61 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2N5UElbB9cGh" - }, - "source": [ - "#### Interpret its behavior with a single Tree" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "YnMz_1Hr9cGh", - "outputId": "cbca0155-0c49-424b-9366-c0496df4e3b5" - }, - "source": [ - "from econml.cate_interpreter import SingleTreeCateInterpreter\n", - "\n", - "intrp = SingleTreeCateInterpreter(max_depth=1)\n", - "intrp.interpret(est, X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 62 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "JVQosW2K9cGh" - }, - "source": [ - "intrp.export_graphviz(out_file='cate_tree.dot')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 248 - }, - "id": "Rvq9jg649cGh", - "outputId": "b43e7d52-09d1-45cd-b21f-08d2f51cfa55" - }, - "source": [ - "intrp.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1RURxvA4d8ufelVelFsqGBBxYbGrlFJ1MRu1MRYYotJTKxRY43GRGOJ+tl7772h2LtiwQpSRIogSF/Y/f5AV1eqbRGd5xzOkXvn3p3B5WV27sw7EqVSiSAIgqAZ0qKugCAIwqdEBF1BEAQNEkFXEARBg7SLugLC25FIJDLABdAr6roI710mEKFUKuOLuiLCm5OIB2nFk0QicTE0NpybkZ7RyNjMJENXT1f8R37kMuWZJMQ90dPT17uSlJg0RKlUnirqOgmvTwTdYkgikdjpGehfatujvVXrrl9omZiZFHWVBA1JS03jxP4A5o6flZKelt5QqVSeKeo6Ca9HDC8UQ9o6Ov3qt2xg3mVAd62irougWfoG+jTya4I8Qy5bOuN/k4GGRV0n4fWIB2nFkJ6+bpdGfk11i7oeQtGp17w+aalpdSQSiUFR10V4PSLoFkPyDLmNg6tDUVdDKEKGxoYYyAzkgHVR10V4PSLoFkNKpVJLW1uMDH3qpFpaSsQQYbEj/sM+Eb92H0pGupy/1sxEKn3xt3bT4vWs/HcZs7cuwMHFgb9HTOPQtgMAdOrflS4/dFeVvXr2CoumzSf07gNKOJSgU79u1P/8M9X5o7uPMO2XyQB4VKnAnyv/1lDrCu/pk0TmT57LmSOn0dLSwrdFfXr98j36Bvp5XiPPkLN85hJuXr7BvRt3MDE3Zdnh1WplsrKy2Lx4A2f9TxN6PxQtLS3KeZWn50/f4VTSWVXuduAtdq3ZzrULgTyJjcfGvgTN2regddcv0NISQ/SfAtHT/UT0HTmAezfvsH/jHtWx2KhY1s5bRdse7XFweTFc4VqmJNNXz6RZuxaqY+HBYYzrNwrX0m6M+28iPo3q8NdvU7ly+pKqTJXa1Zi+eibevjU006g3MHnoBG4H3uKnKcPoP2Ygpw6dZO74Wflek56WzoHN+zA0NsTdo3SuZTLSMti0eANlvcoz7M/hDJnwEylJyfza/SfiY+JU5Y7vO0pUxCM6fN+J3+dNoJFfE1bMWsrq2cvfaTuFD5fo6X4i3MqW5PNObVg+cwl1mtbD2MyERdPmY2xmwtd9OquVlRkaUM6rvNqxzUs2Yutkx+AJPyGVSvGsWZnQuw9YN381Xj5VADAxM8HEzARTc1NSnia/VX0z5ZnEx8ZhbWfzVvd52Y2L17l65jIz1v5LmUplAdDW1mbyj3/QZUB3SjjY5nqdkYkRa05uRCKRsGrOcvZv2pujjK6+Lv/buxQjU2PVsYrVPenZuCuHth+k/bdfA9Du2w6YmpuqynjW8EIul7Np0Xq6DuqBRCJ5Z+0VPkyip/sJ6TrgG6RaUpb9s5grpy8RsOcovX/ri55+wYvZLp44R+0mddWGJuo28+X6xWukpaa9szpGhISzePpCejTqzP7NOYPb27hw/Bw29iVUARegRgMfdHR1uHTiQr7XFhQMtbS01AIugMxQhq2jLVERj1THXg64z5UsV4q01DSePH5SmGYIxZzo6X5CDI0N6Tn0O2aOnsGFgHN4+9agVqM6BV6XlpJK7KNYHN2c1I47ujmRlZnFo7BIXMu4vXG9MtIzOLH/GPs27eXauavYOdnTussXNG3bXFVGqVSiyFLkfyMJ+Y6LRoSE52iDto42to52hIeEv3H985KUmER4cBj1P89/Km3QlZsYmhhhYi4WuXwKRND9xDT0a8LqeSuJCn/EhMV/FuqapGdDBUbGRmrHjUyyv09KfPpGdQm5Hcy+jbs5suMw8owMajWuw6TFf1KphleOnuWhrQf4Z9T0fO9nY1+CxQdW5Hk+KfEpxrms3jMyMSIpMemN2pCfpX8vQltHh0Z+TfIsExn6kB0rt+LX7UvxIO0TIYLuJ+bKmctEhT9CIpFw/UKg2gM0TXo+S6KUhzvdBn1D/c8bqoJ4bmp85sPf62bne08dXZ13Xc03dmTHQfZt2M3Pf/6W65ACQGpyKpN//AN7Fwc69O2i4RoKRUUE3U9IpjyT/ybOpkYDH6ztbFj+z2LqNKmHobFhvtcZPTufnKT+cCz5eQ/YxDjHNQWRGRsilUpJSUoh+Wkyaalp+QZdY1NjDI3yrycFPIMyMjHO9QFf0tOkfF/7dV09e4WZo/+mY78u1G/5Wa5lsjKzmPrzRBLiE/hrzSx09cQCw0+FCLqfkK3LNhEdEcXYuRMwMjEiYO9RVs5eRp/h/fO9Tl9mgJWtFeHBYWrHw4ND0dLWwtbJ7rXr0md4f9r2aM/+zXvZs24nK2cvo2odb5q2bU6NBj5o66i/Nd/F8IKDqyP+Ow+pHcuUZxIV/ghHV8fXbkNuQu4EM3HwOOq1qK82x/lVc8bP4vr5QKYun4FVCat38tpC8SCC7ici9lEMa/9bRbteX6uCZPdBPZg3cTbN2rUo8EFY1TrVOXngBJ36dVWNt57YH0CFqhXzXViQH2s7G7r80J1O/bpy4fh59m3czdSfJ2JkYkSDVo1o3dlPVdd3MbxQrW511s1fzd3rt3GvUAaAc8fOIM+QU6VOtTdqw8tiH8Uwtu9ISpV3Z9C4H/Mst3ruCg5t28+Y2eMpWb7UW7+uULyIoPuJ+N+f8zG1MKX9dx1Ux5q2b8GeDbuYP2kuk5dOy/f6tj3bM7h9f2aO+ouGfk24fOoiZ/3P8MfCyW9dN6lUSnXfGlT3rUFczGMObtnP/s17kRnJVL3F53OA34ZH1Qp41qzM9F+n0GPod8gz5CycMo8GrRqqzdEd0WsYAJNeetB4PuAsaSlphN0LJSMtneP7jgFQplJZbOxLkJ6Wzth+o0hPTaddr6+5d/Ou6lqZoQxndxcAjuw8xOo5K2j+9ecYmhgRdOWmqpxzKWdkBQ2hCMWeCLqfgMunL3F83zFGzvpdbU6uVCql78gBDOv6I0d3H8lz/BGyp4f9PvcPFk1bwO99RmBtZ8NPU35VLYx4VyysLfn6+0581bsjifEJ7/TeAMNnjOK/SXP467c/kWpJ8W3RgG9/+V6tjEKRc2ra3PH/Ev0wSvX9lKETABgy4Wcaf9mUJ4/jCbkdDMDvfUaoXVuxuidTlmYPjVw+eRGAvet3sXf9LrVyk5ZMw7OG11u2UPjQiSTmxZCunm7KCv+1Bq9Oxn8X/h4xjcjQh0xeOh2JVKK2GKIgz+fSzhz9F4/CIj/I3Asfky71vk5KiHvipVQq7xd1XYTCEyvShBxuXLqOn1cL1sxb+VrXHdvjj59XCw5vP/ieaiYIxZ8YXhDUdP6hG606+wFgYWP5WtdWq+OtethlYChyawtCbkTQFdSUcLDNM/FLQYxMjSn9HoY8BOFjIoYXBEEQNEj0dAWN6tWkG5+1aki3wT2Luir5SklKZvOSjZwPOEtESAQGMn0q1fCi50+9cyxmiH4YzbwJ/3L17GVkhoY0bdeczj90U8uloFAoWDNvJfs27CY5KZmK1SrRf8ygHJ8qCkoULxR/oqcrCLmIjoxm/+a9VPetyciZY/h+eH8e3AlhZK9haqks5RlyxvQZTmJ8AiP+HkPXgd+wfcUW1s5bpXa/dfNXs2XJRjr378aIf34nOSmF0b2HI8/IUJUpTKJ4ofgTPV1ByIWtgy0L9yxVm9dcplI5vm3ajXNHz1CveX0Aju8/xqPQSP63f7mqB5ySlMyq2ctp9+3X6Bvok56WzuYlG+nUvyvNv/4cgJJlS9KzSTeO7TmqykJWmETxQvEngu5H5H7QPRZNW8Dd67dRZCko4WjLV707qhY9HNiyj70bdhN+PxQtbW3Kepajz/D+arkTfuvxM1YlrKhYrRLrFqwhKeEpdZr5MuD3wdwOvMX8yXOICA6nrFd5hk4ehuWzGQ5Xz15hRM9fmLhoKhsXrePGxeuYW1vwzZBeqgCVl4C9R1m/YA3hwWGYmJvSskMrvv6+k2q5cUHteh/0ZTlnX9jY22BkYkRU+Iuk5BePn6dcFQ+1IYe6zXxZNG0BNy5eo2odb25evkFqcgp1m/mqyphbW+BRtQIXj59XBd2LJ87RpG3zHIniZ47+i7TUtDdebi18WETQ/YhMGDgWl9Ku/DJtONra2oTcDlZlAgOIiYymWbvmlHCwJS0ljV1rdzCs+1AW7F6i9gt97fxVHkc9pt+oAcRERrNw6nx0dHW4cfEaX33XET0DPRZMmsu8P2Yx6t9xanX4Z+R0mrZrwRfd23F4x0GmDZuMnbN9nnuLHdlxkL9HTKd1Fz96/vQdD+6EsPLfZejLDPDr9mWh2pWbrMysAn9eUi3pa22PEx4cxtOEp9g52790LJxSHu5q5aztbNA30CciJJyqdbyJCA5DV083x/itk5sTQVezlwG/70TxwodDBN2PRELcE6IfRjFmznjVL2flWlXVynTu303176ysLLxqVaFLva+4EHCOOk3rqc5lpGUwZs541VzbwHNX2bNuJ9NXz1TtnRYX/Zj5k+eSlZmFlvaLB0a1m9SlU/+uAFSrV52we6FsWrSeX/8amaPOSqWSZf8spsXXn9P7t34AVK3jTaY8kw0L19CqcxuSEp4W2K7c+Hm1KLDM6yy7VSqVLJwyjxKOttRo4KM6npT4NEdydwBDEyOSEpKelUnKNafCy8nT31eieOHDI4LuR8LYzARrW2vmjp9Fm25f4lmzco4EMSG3g1n2z2JuXQ1Sy2vw8EGEWrmyXuXVFjfYOdujb6CvtlmlnbM9iiwF8bFxWNlaq47XbFhb7V41G9bi8LMt3V8VERJO7KNY6jStp9Yz9azpxbJ/FvM4KhYrW+sC25WbgjKSATi4FT6d47r5q7ly+jITFk/9oJKlC8WPCLofCalUyvgFk1n2zyJmDP+TzMxMvGpWod+oAdi7OJCSlMyY74dj42BL35E/YG1rjbaODmO+H07GS0/QgRxJzbV1tDF8Jcm3tk524MlIV7/WzMJM7XtTczPiY+NzrXNifCLwIqvXq2IiY7CxL5Fvu/JSslzBKROlWoWbvOO/8zCrZi9n0B9DqVitkto5IxPjHMndAZITkzAyNXpWxoiUXMokPU1W9WTfR6J44cMkgu5HxKmUM6P+HYc8I4PLpy+zaNp8pv86hRlr/yXoyk3iYuKYvnomNvYlgOwE3gWNjb6uJ3FPcMZF9X1C/BPMrcxzLWv8bPXaj5N+wbmUS47zz3ui+bUrL+9qeOHK6Uv8M+ovvv6+E02+bJbjvKObI+H31ZO7xz6KIS01DYdnidEd3JzISM8g+mGU6mcP2WPEjq7ZY7jvI1G88GESQfcjpKOrS3XfGkQEh7Fq9nIA0tPSAdR2ZAjYdzTXNIZv48zhk2qB7MzhU5SuWDbXsg5ujljYWBL7KCbfzRufy61deXkXwwvBt+5n7wLR3Jdug3rkWqZqXW9mjvyLuJjHWFhnz+Q4sT8AA5kBHlUrAuBRpQIGhjKO7w+gbY/2AMTHxnP9wjUGjhvy4l7vIVG88OERQfcjEXzrPounL8S3ZQNKONjy5HE8u9bswLNmZQDKeZZHz0CPf3//B79uXxJ2P4wtSzciM5K903qcPHAcIxNjyniW4/D2A4TcDmZgHrsoSKVSev3Um39G/UVSYhKVfaqARMLDB+FcOXOZUbPGFtiuvJSuWOat2hEfG8/YfqMwMTel2Vct1ZKNm5qbqmYw1G3qy7r5q5k4eDyd+3fjcVQMK2cv54tv2qkCpa6eLm17tmfNnBXIDGXY2NuwZu5KbOxt8G3RQHXf95koXvhwiKD7kTCzNMfE3IS181YSFxOHsakx3r416DH0OyB7XuiwP0ewZMZCxv8wBtcybvz610gmDRn/TusxeOLPrF+whg3/W4u5tQU/Tf013wDYoFVDDAwNWL9wLbvX7kBbRxt7ZwfqtWxQqHa9L2H3Q3kcFQvAb91/UjvXyK8JP076BcjeImj8/EnM/eNfJg0eh4GhAW26+NGxn/ruvh36dEaRpWDV7OWkJCVToVolfpr6q9pDOU0liheKlkhiXgy9zyTmb+r54ogFu5fk+4BLeHdEEvPiSeReEARB0CARdAVBEDRIjOkK74RnDS92Xt9f1NUQhA+e6OkKgiBokOjpCnk6uvsIe9bt5H7QPeQZcmwd7ajdpC5fftOOVx/izZswm11rttN35ABadW4DZO8sfCiPJcDPderflS4/dKdVhaa5nvfyqcLERVPfTYME4QMggq6Qq/mT5rBr7Q6atW9Ju15fo2egT3DQPXau3k5aSqoqQQ1kJ885sT8AgIC9/qqg27FvF1p0aKUqN3vsTKxsrejY98V0qpdTIn7VuyM1P6ulVg/DXBLFCEJxJoKukMPpwyfZsWobP076RW2lmGcNL1p0aMWNS9fVygeeu8qTx/F41qxM4NkrxEbFYlXCCjtne7U0iDJDA0zNTdUS57zM1tEuz3OC8LEQY7pCDtuWb6F0hTK5Ls3V1dPNXjn2kmO7/TEyMWbA74MBOL73qEbqCdCqQlN2rdnO/Mlz6VCrLV3qfcX2lVsA2LthN72adKNDrbbMHvsP8gy52rX3bt5ldO/faO/dhg4+X/L3iGlquShio2L5e8Q0ejXpRrtqrenX+ju2r9zCy3Pbr569QqsKTbl+4Rrj+o+mnXdr+nzei5MHj2vmByAUOyLoCmoy5ZkEXblB1TrVCl3+1MHj1G5SB3sXB8p6lSfgDYOuUqEgKzNL7aswuSE2/G8tmfJMfvtrJL4tGrBg8jwWT1/IsT3+9Bs1gO6DenBw6wF2r92huiY8OIzfuv+ElrY2v0wbTv/Rgwg8d5W/R05TlUmMS8DcyoI+w/vz+7wJNP+qJStmLWP7ii056jBrzAwqVfdk1KyxOJV0Ytovk4mPiXujn4PwcRPDC4Kap08SkWfIsbazKVT5S6cu8jThqSqHQL3m9Vk4ZR5REY9y7JRQkNnjZjJ73Ey1Yx2+71TgzsFOJV34YcwgIPvB2/F9ARzcso/FB1aott0JPHeVU4dO4Ne9LQBr5q2khKMto2ePU+3aW8LRlp87DybkdjCuZdwoWb4UJctnp4hUKpVUqFqRlKQU9m/eq7rPc42/aErbnl8B4O5Rmi6+X3P++LlcM5MJnzYRdIW3cmyPP2aWZlR6llmsbjNf/jf1PwL2HKX9dx1e614d+nTG55Uk6BbP9mDLT5XaL3aSkEqllHC0xdjUWG2fMztne+7duKv6/uqZKzT/uiUoX2ztU7pCGfQN9Ll34w6uZdxQKBRsXrKRA5v3EhURRaY8e3gityTmL+9mYWxmgpmFmSp3gyC8TARdQY2xmQk6ujrEPIopsGxGegZnDp+kdpN6pCanAqCnr0eZSmUJ2Pv6QdfGvsQbZQczNH41wbp2ronYX07WnvgkgTVzV7Jm7soc93ve9i1LN7Jy1lI69OlMucrlMTQ24uTB42z837pc6vDq6+kgfyXBuyCACLrCK7R1tCnn5cGlkxfyzCH73PmAs6QkpXBwyz4ObtmX43xESLgqkfeHxtjUmHotGtCwdeMc5573rk8dOkmDVg1Ve74BnDlySmN1FD5OIugKOfh1/5IJA8dyZOchPmvVSO2cPCODGxev4+VThYA9R7GwtuDnP4e/UkbOHz+M4dgefzr168qHyLNGZcLuPci3Z52emqaW9D17PvIxTVRP+IiJoCvk4NOwNq27+PHPyOkEXbqBd/2a6Onr8eBOMDtXb8e7XnXKepbj7NHTNG/fMtctb6rUqUbA3qOvFXQfhUeqJQuH7PHTUuXd87jizXX+oRs/dhjIhEFjadimMUbGRsRERnPu2Fm6DeqBg6sjnjUrs2/DbtwrlMGyhBW71+7IMe1MEF6XCLpCrvqM+IFyXh7sXreDwzsOIc+QY+9sj2+LBnzxTTvO+J8mPTWd+p83zPX6Bp83ZNqwyYTcCca1tFuhXnPDwrVsWLhW7ZiNfQkWH1jx1u15laObE9NX/8OKmUuYOeovMuWZWNtZU7VOdcwss/d06/JDNxLinrDkr4Vo62jTyK8p1evXZO74We+8PsKnQyQxL4Y+xCTmguaJJObFk1gcIQiCoEEi6AqCIGiQCLqCIAgaJIKuIAiCBomgKwiCoEFiypigMXeu3Wb7qq0EXbpBZNjDQiWzAYh+GM28Cf9y9exlZIaGNG3XnM4/dFMlqgFYM3clV89e4fa1INJT09l2ZQ9a2lpq9+nVpBvRD6Ny3F9bR4etl3e9fQMFoRBE0BU05sal69y6chOPqhVIfJJQqGvkGXLG9BmOoZEhI/4eQ2xULP+b+h9SqZQuA7qryu3btBt7F0c8qlTk0skLud5r5KzfcyxumDRkPKUrvH6+B0F4UyLoChrTuosfft2+BLJ7nYVxfP8xHoVG8r/9y1Vb+6QkJbNq9nLaffs1+gb6ACw+sBKpVMrBLfvzDLqvrmx7cDeEuOjH1Pup/ps2SRBemxjTFTRGKn39t9vF4+cpV8VDbS+1us18SUtN48bFa29174A9R9HT18uxL5sgvE8i6AoftPDgcBzdnNSOWdvZoG+gT0RI+FvdO2DvUarVq46BoUHBhQXhHRFBV/igJSU+xeiVfLkAhiZGJCUkvfF979+8R0RIuGrHC0HQFBF0hU/Ssb3+6Bvo4+1bo6irInxiRNAVPmhGJsYkJyXnOJ6cmISRac4ecGGd2BdAjQY+qgdxgqApIugKHzRHN0fC74epHYt9FENaatob70px59ptIsMeUq+FmLUgaJ4IusIHrWpdb25euk5czGPVsRP7AzCQGeBRteIb3TNgrz8yIxne9aq/q2oKQqGJebqCxiTEPSHw3FUA0tPSCAsO4/i+7O1v6jbzBaCNZ3M69e2q2pesblNf1s1fzcTB4+ncvxuPo2JYOXs5X3zTTm1oIPDcVRLinnDn+m0ATh48jkQiwbmUC87uLqpySqWSgL3HqNmwNjq6uhpptyC8TARdQWMe3H3AlKETVN+fPHCckweOA7Dz+n4AFFkKFEqFqoyOrg7j509i7h//MmnwOAwMDWjTxY+O/bqo3XvVnOVcexbQAab+NBGATv270sX9xcq1oCs3iYmMxre5GFoQiobYOaIYEjtHCCB2jiiuxJiuIAiCBomgKwiCoEEi6AqCIGiQCLqCIAgaJGYvCG/t6O4j7Fm3k/tB95BnyLF1tKN2k7p8+U07Xn3YN2/CbHat2U7fkQNo1bkNAH+PmMahbQfyfY1O/bvS5YfutKrQNNfzXj5VmLho6hvVPyriEQe37qdNly8wNjPJt+zDBxF837Ink5ZMw7OG1xu9nvBpE0FXeCvzJ81h19odNGvfkna9vkbPQJ/goHvsXL2dtJRUev/WT1U2KyuLE/sDgOwFCs+Dbse+XWjRoZWq3OyxM7GytaJj3xfTwl5O7fhV74450jEaGhm+cRuiIqJYM3cln7VqVGDQFYS3JYKu8MZOHz7JjlXb+HHSLzTya6I67lnDixYdWnHj0nW18oHnrvLkcTyeNSsTePYKsVGxWJWwws7ZHjtne1U5maEBpuamlPMqn+vr2jra5XlOED50IugKb2zb8i2UrlBGLeA+p6unS2WfKmrHju32x8jEmAG/D6bP5704vvcoX3zTTiN13b12B9tWbCH6YRQyIxkly7kzZOLPRISEM6LnLwB83zJ7v7aK1T2ZsnQ6kD10smLWUuJj4vCoWpGvvuugkfoKHy8RdIU3kinPJOjKDdr2aF/o8qcOHqd2kzrYuzhQ1qs8AW8YdJUKBVmZWWrHJFJJnrtHXD1zmfmT59J1wDeUq+xBUuJTrp69QlpKKu4e7vQbNYB5E2bz24xRWNlaIzOUAXA78BZ//ToV35YN+KxVI24FBvH3iGmvXV9BeJkIusIbefokEXmGHGs7m0KVv3TqIk8TnqqShtdrXp+FU+YRFfGIEg62r/Xas8fNZPa4mWrH8ttZ+M7127iWceOr3h1Vx2o1qqP6t1Op7NwMJcuVwt7FQXV80+L1uJZx4+epvwFQrV51EuMT2bl622vVVxBeJqaMCRpxbI8/ZpZmVHr2xL9uM18kEgkBe46+9r069OnM3+tmq3217NQmz/Klyrtz/+Y9Fk79j+sXruXoJeflduAtajZUf2BXu3GdPEoLQuGInq7wRozNTNDR1SHmUUyBZTPSMzhz+CS1m9QjNTkVAD19PcpUKkvA3qO0f81xUhv7EpSuWPht0yvXqsqgP4aybfkWti3fjJGJMc2/akm3QT3Q0tbK87onj+MxszBTO2ZqaZZHaUEoHBF0hTeiraNNOS8PLp28QLdBPfItez7gLClJKRzcso+DW/blOB8REv7GCckLq8mXzWjyZTPiYh7jv+sIS2f8Dxt7G1p2bJ3nNWaW5jyJe6J2LOHxkzxKC0LhiOEF4Y35df+S24G3OLLzUI5z8owMrpy+BGRvdW5hbcGkJdPUvsbNn4S2tjbH9vhrrM4W1pa07dEe51KuhN4LBUBHJ7vvIZfL1cqWrliGM4dPqR07efCEZioqfLRET1d4Yz4Na9O6ix//jJxO0KUbeNeviZ6+Hg/uBLNz9Xa861WnrGc5zh49TfP2LXNdwVWlTjUC9h6lU7+uhX7dR+GRBF25qXZMR1eHUuXdcy2/as5ykhOTqehdCWMzE65fCCT0bgidnyVKt3dxQCqVsn/jHnxbfoahsSGObk606/UVP3cewvRfp/BZ68bcunqTM4dPvsZPSBByEkFXeCt9RvxAOS8Pdq/bweEdh5BnyLF3tse3RQO++KYdZ/xPk56aTv3PG+Z6fYPPGzJt2GRC7gTjWtqtUK+5YeFaNixcq3bMxr4Eiw+syLV86Qpl2LpsE/47D5GWmoatkx39Rw+kdpO6AJhamPHdr33YsmQjO1Ztw6NaRaYsnU5Zz/L8NOVXVsxawskDxylfpQJDJv7MyG9/fY2fkCCoE0nMiyGRxFwAkcS8uBJjuoIgCBokgq4gCIIGiaArCIKgQSLoCoIgaJAIuoIgCBokpowJGhN86z7/TZzNnWu3MbUw44tv2uHX7csCr7sQcI7V81YSeoCMr8UAACAASURBVCcEfZkBnjW96Dn0O6xsrQGQZ8iZ/usU7l6/TXxsPDIjQzyqVuCbH7/F4aUENq/WZfBX/TG3smDZ4dXvtJ2CkB/R0xU0IvFJIqN7/4aBoYwxc8bTuosfi6cv4EAuy4JfdufabcYPGIO9iwMjZo7hu1/7cDvwFuP6j0ahUACgUCjQ0tKiQ5/OjJ03gT4j+hMZ+pBR3/5KSlJyrvddMHkeJmam77ydglAQ0dMVNGLPup0olUp+mzEKfQN9KteqSkxkNGv/W0WTL5vled2J/QFYWFvy48SfVflyTcxMGN17OBHB4TiVckZPX49h00eoXVeyvDt9Wvbk+oVrVK9fU+3c8X3HiI6MovGXTTmyI+cSZkF4n0RPV9CIC8fP412vBvoG+qpjdZr5EhX+iIiQ8Dyvy8zMxEBmoJagXPZsPzSFUpHndSbPFo5kZmaqHU9PS2fRtAX0HPodOro6b9QWQXgbIugKGhEREoajm5PaMadn34cHh+V5XYPPP+Nh6EN2rNpKUmISj8IiWTFrCRW9K+Hi7qpWVvFsR4mYyGgWTJmHnZM9VWpXUyuzcdE6bOxtqNvM9900TBBekxheEDQiKTEJQxMjtWNGJsaqc3lxr1CG0bPHMWXoBOZPmgtk51IYv2BSjrKr/l3GugVrALB1smP8/ElqPevoh9FsWbKRKcumv3V7BOFNiZ6u8EELuR3MX79OoUGrhkxcNJXhf49GLpczYdDYHDtAtOzUhhlr/2XEP2MwszTn9z4jSXySqDq/ePoC6jSth3uFwidAF4R3TfR0BY0wMjEi5an6TIKkp0mqc3lZ+e9SXMuW5Icxg1TH3CuU5tum3Tlz5JQqUxiApY0lljaWlKlUlsq1q9KrcTf2rt/F19934ublG5z1P80/6+eoetbydDlKpZKkxCT09HXR0dV9l00WhFyJoCtohIOrU46x2/D72d+/Otb7soiQCKrVq652rISDLUYmxkSGPczzOpmhDDsnOx6FR2bfJzicjPQM+vv1zlG2Y6229P61L37d2xa6PYLwpkTQFTSiWl1vdqzaSnpaOnr6ekD2dDBbJ7t8t+qxtrPh3o27ascehUWSlPgUG/sSeV6X+CSR8JBwfBrVVr3+pCXq26cf2rqfc8fO8tuMUdg7279p0wThtYigK2hEiw6t2LFqK1OGTsCve1uCg+6xe+0Ofhg7WK1cG8/mdOrblU7PdnVo/nVLJg0ez6wxf1O3WT2SEpNYO28V1nY2eNerAcDRXUe4dPICVepUw9zKgpjIaLYu24Sung5N2zYHwNzaAnNrC7XXCjx3BR1dnVx3tBCE90UEXUEjTMxM+GPhFOZNmM24fqMwszCj50/f5VgYochSqM2/rd24Lr/8OZzNSzcQsMcffZkB5at40OPHbzEwNADAwc2RwzsOsnDKPJKfJmNhY4lnDS869x+fI9AKQlETO0cUQ2LnCAHEzhHFlZgyVkyJP5YCiPdAcSSCbjGkpa2d8jThaVFXQyhCSqWStJQ0HSCxwMLCB0UE3WJIKpUGXDp5QXRzPmG3A4OQamnFAo+Lui7C6xFBtxhKSUqet3ruytToh1FFXRWhCKSlpDJ/0tyUrMzM+UoxzlTsiAdpxZSunu4QqVQ62adRbWWFapUM9PTEaqqPnVyeScid4Iyju45kZmbIt6ampHZTKvNJtSZ8kETQLcYkEomjRCppbyCTVZVqSQ3f9D5ZmZl1JRLpA4VCUVFLS3pJIpFEKxQKZ4lEkiSRSmPfZZ0/BUql0lCpUNhLpdIQpRK9rKzM+lpaWueysrJqaGtr70QiebP7KhTpaalpt7IyszYB10Uvt3gSQfcTJ5FIJEAMcBM4CYQDw4DrwBClUhlUhNUrliQSiQUwA2gN/AfcA8YA+kANpVIZWoTVE4qYGNMVnAAjwBboDjQC2iqVyuYi4L4ZpVIZp1QqewDegCUwHYglO+hWy+dS4RMggq7QGtADrgHNlErlF0ql8lwR1+mjoFQqg5VKZV/Ak+xPEcZA16KtlVDUxPDCJ04ikRgDpZVK5cWirsvHTiKRuJD9OxdS1HURio4IuoIgCBqk0YQ3EonEWUtLq5OZmVlrpVJpKnnDp7hCsaFQKpXRcXFx64BNSqUyvqgr9DokEokt8LWOoV47CZgD4g1bfMkVCsWtzFT5KmCvUqnMLPCK90RjPV2JRNLAwMBgZ8eOHbXatGmjb2lpiQi6H7esrCwiIiJYs2ZN8pEjR5KTk5NrFpeP1hKJpIqWrpa/XWVnbftqLjI9Y32QivdrcaXMVJAYEa8M9r+VnBqfciYzTd5SqVRmFEVdNBJ0JRKJTE9PL3rPnj2Gn3322Xt/PeHDM2PGjKxx48bdTEhIqFTUdSmIRCKRaulqRVX7tp6lg7eriLQfEUWmgpMzD6Q+vh01LUue9XtR1EFTsxdaVqtWLUsE3E/XoEGDtBQKhbtEInEr6roUQh19U5meCLgfH6m2FI8vqhhItbV6FVkdNPEiurq6NVu2bGmiidcSPkza2trUrl07g+IxT7W6TUUHvaKuhPB+mJe0JkueaSuRSN54Fefb0FTQNTEyynvHV+HTYGpqKgWK5I3+mmQ6BjpiV5WPlEQiQaqtlQnIiuL1NbY4org+NHN1dWXUqFFFXY1CmTt3Ls2bN8fMzAyJRMLdu3dzlDl//jzdu3fH3d0diUSSa9sePXpEmzZtcHR0RE9PD0dHR3r16kVkZKRauR49eiCRSHJ8hYeH51q/YvUeKFaVfWHfsA3c2Fw8plzLUzK4suo0e3/ZwPZ+Kzn0+zYenMj5nlVkKgjacYV9v25kW5/l7Bu2gaAdV9TKbPl2aY6v49P35fnaRfmfK/6af0RWrFiBlpYWjRo1YvPmzbmWOXHiBKdPn6Zu3brExuaeyyYlJQUrKysmT56Mk5MToaGhjB07ltatW3PmzBm0tLRUZT09PZk/f77a9TY2Nu+uUcJH68KiAOKCY6nQtioySyMir4RxcfFxtPW0cfB2VZU7/79jxN2NpmzryhiVMCYlNom0hNQc9yvTshJ2lZ1U32sbfJiZ90TQ/YicOHECqVSKv79/nkF34MCBDB6cvQOvq6trrmVKlizJ4sWL1Y7Z2dnRtGlTgoKCqFChguq4sbExPj4+76YBwicjMz2TyCvhVOleC5e6pQGwLm9HfHAsEedDVEH30ZUwHl4MpdG4NhjbmeV7T0NrYyxKffh/8Is098KVK1do3LgxZmZmGBsb4+npydq1a1XnlyxZQq1atTAzM8Pa2prWrVtz/776HnwNGjSga9euLFiwABcXF4yNjenVqxdyuZwTJ05QrVo1jIyMaNy4MQ8fPlRd5+/vj0Qi4fDhwzRt2hSZTEapUqVYv359gfVev349lStXRl9fH0dHRyZOnKi2Z1lB7XpfpNKC/zsLUyY3lpaWAMjl8je6/mOQEBbH8en72DlgFTv6Z38cDj/z4v344Pgd/CfuYueAVewavIZTsw6SHKO+rVLAn3s4v/AYwUdvsfeXDezov5ILi4+jyFTw+E4UR8bvYHv/lRyfvo/U+BTVdTFBkWz5dikxNyM58dd+tvdbwf7fNhF+LrjAeoefC+bw2G1s67OcPT+v59bOK2rv14La9T4oFQpQKtF5pTeqY6CDUvGibg9O3MW6vG2BAbc4KdKerp+fHxUrVmTNmjXo6OgQGBjIkydPVOdDQ0P57rvvcHNzIykpiblz51KvXj3u3LmDTPZiDPzo0aNEREQwZ84cQkND+fHHH9HT0+P48eMMHz4cmUzGoEGD6N+/P1u3blWrQ48ePfjuu+8YOnQoK1asoHPnzri7u1O1atVc67xy5Uq++eYbBg0axJ9//sm1a9cYNWoURkZGqh5kQe3KTWZmwQtktLS0NDrUqFAoyMrKIiQkhN9++43atWvj5eWlVubSpUsYGxsjl8upWbMmU6ZMoVatWhqroyad/vcQxg7mePepj1RLSmJ4PPLUF/PrUx4n4+pbGkMrYzLT5dw/EsSxKXtoMqkt2novftVibz0iNT4Fr64+pD5OJnDdWbR0tHh8J4oyLT3R0tXi6pqzXFl5Cp+BjdTqcGHxcVzrlca9qQehp+5zfsExjGxMMHOxzLXOoafucWHRcUo1Lk+F9t4kRjzh5taLaOnp4N7Eo1Dtyo0iq+Dc6RKpJM/3q46BLvbVXLi9JxBje1MMLAyJuhpOzM1Iag1qrCoXHxyLXWUnLq88TdjJuygBOy8nvLr4oGukPsHk+qYLXF5xCh1Z9r0rtvdGR/bhDTEUWdCNiYnhwYMH7Nixg0qVsufLN27cWK3M77+/mLuclZVF48aNsba2Zs+ePbRr1051LjU1lR07dvB8hoS/vz///fcfp06dUn30ffjwIYMGDSIzMxNt7RfNbteuHWPGjAGgefPm3Lhxg6lTp7Ju3bocdVYqlQwfPpy+ffvy999/A9C0aVMyMjKYNGkSAwYMIC4ursB25UZHR6fAMkeOHKFBgwYFlntXunfvzqpVqwCoWrUqe/fuVfslqlq1Kj4+PpQvX56YmBimT59Ow4YNOXPmDJ6enhqrpyakP00j5XEyPoMaY+poDoCNh71amfJ+lVX/VioUWJe3Z/eQtUQFhquNUWbJs6g1qBHa+tn/57G3HhHsf4v6I1qqPh6nPUnl6pozKLIUSLVefDqxr+ZCuTbZr1OikiNPHz7h9p5AavRtkKPOSqWSG5su4NagLJ4da2RfU9EBRVYWt3dfpVSjcmQkZxTYrtxs+355gWXq/tIM63J2eZ737l2Ps/8d5dCYbUB2kK7yTW1sKrx4/fTEVEJP3MXU2YIa/RqQnpTOtfXnOL8ogNqDX/xeOddxx9bLCT0jPeJDHnNr5xUSI57g+1uLD+6ZaJEFXUtLS5ycnOjXrx+DBw+mYcOGqo+wzwUGBjJ8+HDOnDmj9tDnzp07auV8fHx4eUqau7s7hoaGamON7u7uZGVl8ejRIxwdHVXH/fz81O7l5+fHsmXLcq3z7du3CQ8Pp3379mo9088++4zhw4cTHh6Ok5NTge3KzblzBWdTLFu2bIFl3qU//viDQYMGcffuXSZOnEirVq0ICAhAVze79zBo0CC18i1btsTDw4M///yTlStXarSu75uuoR4GFoZcXnEK98YeWJW3Rc9IX61MQng81zddIP5+DBlJ6arjSdHqG/aal7RWBVwAQxtjtPS01cYjDW2MUSqUpCekYmDxYpbdyw+KAOyqOBF68l6udU6KSiQ1PgUHbxe1nql1OTtubLpIalwKBhaGBbYrNw1GtyqwjFEJ03zPX119lsSwOKp9Ww8DCxnRNyK5vOIUesb62Hplt1OpVKIEag5oqKqXtp42Z+Yc4WnkE9WwQ7VedVX3tSpri7GdKadmHiTmZmSh/ohoUpEFXalUyr59+xg+fDjdu3dHLpfTqFEj5syZg7u7O4mJiTRr1gxXV1dmz56Nk5MTurq6NGvWjLS0NLV7mZmpj/fo6urmegzIce2rT9qtra159OhRrnV+HvgbNmyY6/mwsDBcXFzybVdeKleunOe5516eNaAJbm5uuLm5UaNGDerWrYurqysbN26kc+fOuZaXyWQ0b96cY8eOabSemiCRSqj9YxNubLrA+UUBKLMUWJe3w6uLD0YlTJCnZnByxn5kVkZ4dfHBwMIQqbaUEzMOoJBnqd1L95WPvFJtaY6PwVLt7N5t1ivX6pkYqH9vrJ/rk3yAjKfZ7/Xj03KfOpUSn4zMyijfduXF1Mkiz3PPSfLJVfEk9DEhx25T79cWWJUpAWT/MUh7ksL1zRdVQVdHpoehtbHaHwKrcrYAJD5MyHOst0RFB7R0tXjy4LEIui8rX748W7duJT09nUOHDvHTTz/RpUsXzpw5w+nTp4mMjOTUqVO4uLgA2Q9xChobfV3R0dF4eHiovo+JicHW1jbXshYW2W+0ZcuWqV3z3POeaH7tysuHOLzwMmdnZywtLXM8yMzNh/Zx7l0xsTfDZ2AjsuRZxNyMJHD9Oc4vPEaDUa2IuxdDWkIq9Ud8jswq+1OXIlOBPOXd5lRJT0wF+xeBJv1pGvqmBrmW1THMHvOs9m1djO1zBqfnPdH82pWXtx1eSIrK7v2/GrzNnC2IOBei+t7YzhRFpvofnucK9Tb7AN+LH8SUMT09PVq2bMmtW7dU46spKdlPbp/3UCF71oBC8W43P922bZtaINu2bRvVq1fPtWzZsmWxt7cnLCyM7t27F3jv3NqVlw9xeOFlt2/fJjY2Fje3vFMnJCcns2fPHnx9fTVYM83T0tHC1tORpEcJ3Nx6CYCsjOzhpuc9VICI88HwjhNKRV4OUwtkkZfCMHe1yrWssa0p+mYyUuOSca6d96es53JrV17ednhB9mzIJCH0MVZlX3Ry4h88Rmb5YjjFtpIjQTuukP40DT3j7N5uzM3sT6Imz8agc/MoMJysjCzMnAvukWtakQXdq1ev8ssvv9CxY0fc3NyIiopizpw5qo/uPj4+yGQyevfuzZAhQwgKCmL69OmYmLzbFA6bNm3C3NycmjVrsnz5cq5evcrChQtzLSuVSpk2bRo9e/YkPj6exo0bI5FIuH37NocPH2bLli0Ftisv3t7eb92W8+fPExISwvXr1wHYu3cvtra2uLq6qu4fExPD0aNHgew/bEFBQWzcuBGA9u3bA/DXX3/x4MEDfH19sbKy4tatW0ydOpUyZcrQtm1bABISEmjVqhVdu3bF3d2dmJgYZsyYQUxMDMOGDXvrtnxoEsLiuLbhPI413JBZGZGemMb9I0FYlc8OgBalrNHS1ebispO4N/HgaWQCd/ddQ9ug4E8wr+PhhQfoynQxL2lN6Ml7JITHU6VH7VzLSqQSKn7lzcUlx8lIzsDGww4kEpKiEom5GYnPgIYFtisveQX6wjJztcLMxZLz/wugvF9lDCwMib7+kLBT9/DsVFNVzrVBGe4dvsnp2Ycp07ISGUnpXN94HseabhjZZMeC4KO3eBLyGGsPO/SM9IkPieXWrqtYli6BdQHtKApFFnRLlCiBlZUV48ePJzIyEgsLC1q2bMnUqVMBsLW1Zc2aNQwbNozWrVvj6enJ+vXrVb/078qSJUuYNGkSkydPxs7OjlWrVuUbADt37oyxsTGTJk1i7ty56OrqUrp0aTp27Fiodr1Ps2fPVnsIOHDgQAC++eYbli5dCsD169f56quvVGU2bdrEpk2bAFRzNz09Pdm5cyerV68mOTkZZ2dnvvjiC0aOHImBQfZHWT09PaysrJgwYQLR0dHo6+tTp04djh07ppq18THRMzFA10ifoB1XSHuSgq6hHiU8HanQPjt/j76pjOp9fLm24TynZh3C1NGc6n0bcGbukXdaj6o963B7VyC3dgeib2pA9d718g2ATj4l0dbX4dauqwT7ByHVkmJYwgTHGm6Fatf7ItWS4jOwETc2X+Dm1ktkJGdgaG2EV+eauDUopyqnK9Oj7s/NuLrqDOf+80eqo42DtwuVOrz4NGpobUzoyXtEnA8hM12OvqkMl7ql8fiiygc51KWRfLrGxsbzJ06c+P2rT7uLkr+/P5999hl37tzJ9wGX8O506NAhaf369QOUSmXu00M+EBKJZFSZzz3HV2hb9YP5jY0JiuT4tH00mdQ23wdcQuHs6L8yLTM901mpVMZo+rXFbsCCIAgaJIKuIAiCBn0QsxeKQoMGDRA7IQvFhXU5O75c1KOoqyG8A6KnKwiCoEEfXU937dq1zJs3j8uXL5Oenk7JkiVp164dQ4cOxdxcfV7fgAEDmDNnDrNnz+aHH34AshPg5LUM+Lnff/+dsWPH5vlktFGjRhw8ePDdNEj4aISfuc99/1skhMWhkGdhaG2MfTUX3JtWQNdQPXnLlVWnuX84CK8uNSnZsDyQnX82ryW/z5Vr40V5vyps+XZpruety9tR9+dm76Q9wpv5qILuoEGDmDt3Lr1792bYsGEYGhpy+fJlZs+eTVJSkipJDWQn0Hk+P3XdunWqoDt69Gj69u2rKtenTx8cHR0ZPXq06tjLuRuGDx9OmzZt1Ophapr/mnPh03Nl9RmCjwTh6luGMs0roqWnTUJYHPcPB5GZnqlKSAPZyXIizocAEH42RBV0y7b2wq3BiwUyl5afwsDckHKtXyQXMjB/sbDg1aTe8OEm9v6UfDRBd9u2bfz7778sW7ZMbbVYgwYN6Nu3LydOnFAr7+/vT1RUFA0bNuTIkSNERETg4OBAqVKlKFWqlKqcsbEx1tbWeSbqLlmypEjiLeTr4aVQ7h+6SbVv66qtDLMuZ4dbg7I8vhOtVj4m6BHpiWlYl7Mj5lYkqfHJGJgbZi8GsHkxXUxbXwc9Y708E3cXl6Ten5qPZkz3n3/+wdvbO9flufr6+jRqpJ6XdO3atZibm6u2milM8vJ3RSKRMHfuXAYPHoy5uTk2NjbMmjULgIULF+Lq6oq5uTl9+vQhI0N97f6lS5do2rQpRkZGmJmZ0aNHDxISElTnIyIi6NGjB66urshkMjw8PJg1a5baQ8PnCdyPHz9O69atMTQ0pGzZsmzZskUzP4BPzL0DNzBztcx1Ka6WjnaOhCzhZ4PRkelSuXt2XuKXcxG8b1u+Xcr9w0FcXX2GnQNXs2vIWu4dvAFA8NHb7Bu2gZ0DV3Np+ckcORGePHicnWC9/0p2DljFhUUBarknUuOTubAogH3DNrC93woOjtrCvYM31N6bz5O1x96J4tSsg2zvt5IDIzbz8OIDzfwANOCjCLpyuZxTp07RrFnhxqrkcjmbN2+mbdu2uLu74+Pjk2v+3MJQKBRkZmaqfRUmP8TkyZPJyMhg/fr1dOzYkcGDBzNs2DDWrl3LnDlzmDhxIkuXLmXu3Lmqa27duoWvry86OjqsWbOGefPm4e/vT48ePVRlnifsmTVrFrt37+b7779n1KhRzJw5M0cdvv32W+rXr8/WrVspX748nTp1yjPDmvBmFJkK4u5FU6KCQ6HLP7wYin01F4xKmGBR0rpQu0PkRqlUoshSqH29vCtDXm7vvooiS0GNvg1wrOHG1TVnubbhPBFng/Hq4oPHl1UJPXGX+0eCVNc8fZRAwNQ9SLSkVP++Pl7dahF76xEXFh9XlUl/moaeqQGenWtSa3BjXOuX4caWS6qg/rJLS05gVcYWnwENMbYz5dz8o6QlpOQoVxx9FMMLjx8/Jj09HWdn50KVP3DgAHFxcaqlux06dGDIkCGEhITkuW9YXvr06UOfPn3Ujo0cOZIJEybke52Hhwfz5s0Dsh+8bdiwgcWLF/PgwQMMDbPH5fz9/dmyZQtDhgwBYPz48bi5ubF9+3ZVmkc3Nzdq1apFYGAglSpVonLlyqo0kUqlkrp165KYmMiiRYtU93muZ8+e/PzzzwBUq1YNGxsb9uzZQ8+ePV/rZyDkLSM5DUWmAgPLwu08H33jIfLkdNUyXYfqbgSuPUty7FMMrYxf67UvLz/F5eWn1I6V/dwTj7a574rynLG9GZW7ZfeyrcvbEXE+hAfH79Dsz/Zo671IvP7wYijuTbL3ywvafgWZtTG1BjVE8mxLKEMrI45O2k1CeDymjuaYOVti5pydW1qpVGJZugSZqXIeBNxR3ec557rulG5eEQAzF0t2/7iWqMAI1X5qxdlHEXRf19q1a7GxseGzzz4D4KuvvuLHH39k3bp1/Prrr691r1GjRuVIhG5vX3D+ziZNmqj+LZVKcXNzw8LCQhVwITvx+sWLL7bTPnz4MH369EGpVKqSqHt7e2NoaMjFixepVKkSCoWC6dOns2jRIkJCQlTDE3p66k/HQX1HCwsLC2xsbIiIiChky4X3IfxsMHom+lg/yxnr4O1K4LqzRJwNoUzL18tpUbaVJ3ZV1Dsi+qayPEq/8PJwh0QqwdDKCB1DPVXAhewk609CH6u+jwmKxK1+GZRKUD5LmG7maoWWnjZPHjzG1NEcpULJnX3XeBBwh5THSSgys8u9nJkttzroGumhZ6yvtmdccfZRBF1LS0v09PQICwsrsGxaWhrbtm2jXbt2PH2avWmgTCajRo0abxR0XVxc3ihDWGETr7+cdD02NpZx48Yxbty4HPd73va//vqLUaNGMWrUKNWmnps3b2bKlCmFqsOrSd6Ft6NrqI9UW0pqXHKBZbPkmUReDsW+qgvytOwNQLX0tDB3syL8XPBrB12ZpdEbZQPLLaF6bonXX06wnpGURtD2KwRtv5Ljfs/bfmf/dW5suUS5Vp5YlLJBR6bLw4sPuL07MGcdDHK+3qvJ4IurjyLo6ujoUKtWLfbv388ff/yRb9k9e/aQmJjIkiVLWLJkSY7zt2/fpkyZMu+rqm/FwsKCjh070q1btxznnveut2zZQpcuXdTy927fvl1jdRTUSbWlWJSyIfr6Qzy+zP9jfVRgBJmpckJP3CX0xN0c558+SsDY9sOcjqhrqIdjdTecapfKce557zry4gOcfEqq9ngDiLwcqrE6fig+iqALMGTIEL744gtWrVpFly5d1M6lp6dz4sQJGjZsyNq1a7Gzs2P16tU5yrRu3Zp169apzcn9kDRs2JAbN27k27NOSUlRS/yelZXFhg0bNFE9IQ+lmnhwZvZhwk7fw8lHPShlybOIuxuNdXk7ws8Go29qgPf36kngFZkKTs06RMS5EMq1Vt+N+UNhXc6OxMgn+fasszIy1YYSXp6P/Cn5aIKun58fAwcOpEePHpw8eZLPP/8cmUxGYGAgs2fPpmXLltSsWZOdO3fy/fff57rtTdOmTV876N6/f5/Tp0+rHdPT06NKlSpv26Qcxo4dS/Xq1fnyyy/p3r07ZmZmhIaGsmvXLiZMmECZMmVo2LAhCxYswNvbGwcHB+bOnUt6enrBNxfeG/sqzpRsVJ4Li4/z+G4Mtp6OaOlqkRjxhPuHblLC0xHzklY8uhKOa/0yuW5xY1PBnvCzwa8VdJNjnhJ3T30OsFRbK8/t2t9Gg0T4YwAAHAxJREFUOb/K+P+xk9OzD+NcuxQ6Ml1SHicTdTWc8l9WwdjWFKtydoQcu42ZixUG5jLuHwlSjet+Sj6aoAswa9YsatWqxbx581ixYgXp6em4u7vTsWNHhg4dyo4dO0hJSclzY8UuXbrQuXNnrl27RsWKFQv1mpMnT2by5Mlqx1xcXAgJCXnb5uRQtmxZTp06xciRI+nZsycZGRk4OzvTvHlzSpTI3txv7NixREdH88svv6Crq0uPHj1o1aoV/fr1e+f1EQrPq3NNLEpZE3zkFmGn7qHIzMLQJjuZuHvTCjy6HEZWRiZONUvmer2TT0nOLzhGYnh8vtvUvOz27sAc46UyS0Oa/flVHle8OWNbU+qPaMmNzRe5uPg4iiwFBhaGlKjogP6zzTTL+1Um42ka1zecQ6KthUsdd+y8HLm84nQBd/+4fLJJzAXNE0nMhQ+FSGIuCILwiRBBVxAEQYNE0BUEQdAgEXQFQRA0SARdQRAEDfqopoy9D1evXmXAgAGcO3cOGxsbhg4dyuDBgwt9fWpqKuXKlSM0NFRtu/eHDx8yY8YM9u/fz/3797GysuLzzz9nwoQJajtcnD9/nlmzZnHy5Enu3btXqGQ6wqchPiSWewdvEncvmuTop4VKZpPf7hO+w1ti6Z6dfzclNomra84QfTMSqZYU+2ouVOpQXW15bpY8i1u7rhJ++j5pCSkYWBji6lsG96YV8txVRRBBN1+PHz+mSZMmeHt7s2PHDi5fvszPP/+MiYlJoTNxTZ06NdfFCRcvXmTbtm307t2b6tWrExYWxujRo7l27RpHjhxB+ixT04kTJzh9+jR169YlNjb2nbZPKN4e34km7n4Mlu42ZDwtXM6MV3efALi16ypx92Iwd8teTabIUnDinwNoaUvx7u1LZqqcaxvPk5aQSu3BL5IkXd94ngcBd/BoVw0TBzMe34nm+sYLAJRuVrh57p8iEXTz8d9//6FUKtmwYQMymYzGjRsTGhrKH3/8UaigGxoayowZM5g6dSr9+/dXO1e3bl1u3ryJtvaL/wI3Nzd8fX05f/48NWpkb98ycOBAVc/6ddNOCh+3Uo3K497EA4B9wwq31PvV3SeUCgXxwbHYV3VBqpX9hz7iXAjJ0Yk0ndQOmZURALqGupyadYi4+zH/b+/Oo5q88gaOfwOEsIVVEBANiwguVVBcEHXauo60ta+WY6eLo+NY9dWx1dbWarU6ntaO49HKuIzT9q22toOKtkytothC6wrYioKyVAHBDdn3hGzvHynByCLaMYrczzk5x9znPk+eaPLzyX3u/f1w9XcHDBnRAsb0IWC0oZyQe7AX1dcruZqaL4JuG8SYbhvi4+OZOHEidnZN6fCioqLIy8sjJyfnjvu/8cYbTJs2jd69ezfb5uzsbBJwAWMe3Ly8pqTVjVe8gnA7icVv/wlfkl2EqkpJt8G+xrbKwjIcPByNARfAvY8XSKAo/YqxTafVY3Vb9jGprRRzLLjqyMQ3ug3Z2dkEBwebtDU+z87ObnPfpKQkjhw50mIaxtacPGlION047isI99uVVNP8vWAYq709x63EwgKJREL19abSUIqInuR9n0lZbjEapZqijKsUJufi97jpd0YwJYYX2lBeXt4s52zjTa7y8vJW99Nqtbz66qssX74cN7f2JRdRqVS8+eabREREMGjQoHs/aUFoJ51Wx7WfLtNtsJ+x2gOAg4ecy0d/QV3XYMytW1lQhl6nR13bVPOsX1QY2gYNP7z3rbGt96QQfEd2/OoO95MIuvfBtm3bqK+vZ/78+e3eZ/78+eTn55OcnHwfz0wQmhRnXqehRoXPLUMLAD5D/bnw1RnOfHaCx6YORqNUk7bzpGE445YL4JyD6Vw9nU/Iy8OQezlTlltM1n/SkDnaNrtZJzQRQbcNLi4uJpV2ASoqKozbWlJTU8Py5cvZsGEDtbW1xjaA6upqamtrTUrygCFT2fbt2zlw4ABBQeLDKpjH1dR8bJztcAvsatIuk9sw6M8jObP9OPFv7AEJ+I7sBXqMGcNU1Uoy49IYOD2CHr8mLu8S5Im2Qcv52NP4jur1XxlzfhSJoNuGoKAgsrKyTNoan7cWHEtKSigrK+OPf/xjs20DBw5k0qRJfP3118a2nTt3smzZMj766COTummCcD8Zqg5fpsfwgBaDo3doDzwf86HmRiXWckONsm9fjTEWhqwtrkav1eHUw9VkP2eFK+p6NQ21KmRyG7O8l45GBN02TJgwgejoaOrr67G1NfwPHxsbi7+/f6slfTw9PUlMTDRpS0tLY+HChezcuZMBA5qSUB85coQ//elPLFu2jJkzZ96/NyIIt7l5/irquga6DfZrtY+FlYUxd2/ByUvotDrjLAe7X6sbNxadbFSRX4qlzAprh+aFUAUDEXTbMGfOHKKjo43Vgs+ePcuWLVvYtm2bST8rKytWrFjBihUrsLGxabEqBcDQoUONMxMyMzOZMmUKoaGhREZGmlSf8PHxwcfHB4Di4mJ++OEHwFCKJysri9jYWACee+65//ZbFjoQVbWSkuwbAGgatFTfqDSWv+kW5gvA17N2EPz0AJO6ZABXUvOxdbXHNcC9xWOn706lS6+uWFhZUppTRE58BgNeGGK8erVxssMzpDvpu1LRqtTGMd2c+Az8nwgWK9LaIIJuG9zc3EhISGDevHlERkbi4eHB2rVrmy2M0Gq16HR3V3YkOTmZqqoqUlJSCA8PN9n27rvvsnLlSgDOnz9PVFRTpv+9e/eyd+9eADEfspOrulpOytYk4/NrP13m2k+XAfifT6YDoNfpm31OtGot19MKDOOurQTHuuIafj5xCU19A3IvZ8JmjsDntqoWYTNHkhl3hl8OnUdZWY+dqz1Bkf0JnCAWRrRFVI4QzEZUjhAeFqJyhCAIQichgq4gCIIZiaArCIJgRiLoCoIgmFGnnL0QExPD1q1bSUtLQ6VS4e/vz5QpU1i0aFGzlWbz589n8+bNbNq0iXnz5gEwffp0duxo+15Q4wyE1u4Ojx49miNHjtzT+efn57N9+3YWLFiAq6trm30vXrxIYGAgiYmJrU5lEx4eV5JzyU3KprKwDJ1ai727HO9BCnqO64u1venc17NfnCL3+ywGvDgU/ycNmezaSlLeKPiZAfSeFMpXM7e3uN29txcj3hh/T+dfW1JNwfGLBIzuc8e5ujVFVSQs3ceIxeNxD/a6p9friDpd0F2wYAFbtmxh1qxZvPnmm9jb25OWlsamTZuoqalhw4YNxr5ardY4J3bXrl3GoLt8+XLmzJlj7Dd79mx8fHxYvny5sa1xni3A22+/zTPPPGNyHk5OTvf8HvLz81m1ahUvvfTSHYOu0HGc/TKZvMQsfEf1oteEfljKrKgsLCP3+yw0Kg39nx9i7KvX6Yxzcq+k5BuD7u1Jys98dhJbF3uCn+5vbLN1aVqG3mviY3iFdDc5Dytb03SNd6OupIas/5yl+7AAsUCiFZ0q6MbFxfGPf/yDHTt2MG3aNGP7448/zpw5czh+/LhJ/6SkJIqKinjyySdJTEzk6tWrdOvWjYCAAAICAoz95HI57u7uDBs2rMXX9ff3b3WbIABcO1NA7neZDJo5gh7Dm1J7ugd74fd4EKW/3DTpX5x1A1WVEvdgL4qzr1NfXouti32zJOVWNlJkchmuAR4tvq69u7zVbcL90anGdD/88EPCwsJMAm4jGxsbRo8ebdIWExODi4uLcQXa7t27zXKeAFu3biUoKAgbGxs8PDwYP348165dIykpiSeeeAKAwMBAJBKJybBBTEwMAQEB2NnZMX78eAoLC812zsK9u5RwAWdfN5OA28hSaoVHH2+TtispeUjtrAmZZlhYczU13xynCUBuYhYJS/cRN/szvn0thuPrD1NfXkdx1nWO/f0QAAlL9/HVzO0cXXuw6ZyTczm8ZC//mfv5r/vUmu2cHyadJuiq1WpOnjzJ+PHtG6tSq9Xs27ePyZMn07NnT4YNG8auXbvu6bV1Oh0ajcbk0dYKtsTERBYsWMCMGTM4dOgQ//rXvwgODqampoaBAweyefNmAPbs2cPJkyfZsmULAKmpqbz44ouEh4ezb98+hg8f3mLiHeHhotPoKLt0k659u7W7/7WfC/AepMChqyOu/u5cSc27844t0Ov16LQ6k4de1/qCqeKs65z7dzI9RvQkYtE4QqeFI/d0QqNS46xwY8CLhl90Q+Y+zu+WTmTAS4b/FMrzSkj96CiuAe4M/d8ncA3w4KdPjt3TOXd0nWZ4obS0FJVKRY8ePdrVPyEhgbKyMp5//nkApk6dymuvvUZ+fv5d1yqbPXs2s2fPNmlrq6rv6dOn6d+/P0uWLDG2Pfvss8Y/9+ljqIsVEhJiUmVi7dq19O/fn507dwKGhD0lJSVs2rTprs5XMK+GWiU6jQ5bN/s7dwZuXriGulaFzxBDsppug/1Ij0mhtqQa+y7yu3rttM9OkvbZSZO2tqoKl+eX4uTjStDEpjFi74EK45/l3oZ7FU7dXXHo2jTMkXMwHScfF8JmjQKg62M+NNQoyf3eNItfZ9BprnTvVkxMDB4eHsaf8lFRUUgkknu62n3nnXdITU01edxeqPJWoaGhnDlzhkWLFnHs2DE0Gk27XiclJYVJkyaZtE2ePPmuz1d4uF1JMS2x0y3MFyRwNSX/ro8V9FR/Hl/+lMnD74nWy+0493CloqCUczEplPxShE7bvpwj5XkleIWa3rDzHqRopfejrdMEXTc3N2QyWbvGOJVKJXFxcURGRlJdXU1FRQV2dnYMGTLknoKuQqEgLCzM5OHt7d1q/zFjxvDJJ5/w3XffMXLkSDw8PFiyZMkdg29RUREeHqY3RW5/Ljx8rO1tsLCyoL7szmOcWrWG62kFdH3MB7VSTUOdCkuZJS5+Xe5piMHOzQEX3y4mD1sXu1b7e/TxZuD0CIozr3P0g4MceC2GjNjTdwy+qqp6ZHJbk7bOmm+30wwvSKVSwsPDOXz4MKtXr26z78GDB6mqquLTTz/l008/bbY9Jyen1Xy6/y0zZsxgxowZXL9+nS+//JK33noLhULB3LlzW92na9eu3Lxpepf79ufCw8fCygLXAA9unr9Gn/9p+Wd9o6L0q2jq1RQcv0jB8YvNtlffqETuee/TEdtDMSIQxYhAlBV1FCbncj72J+zcHPBv4wpZ5miLqrrepE1Vrbyv5/mw6jRXugCvvfYaKSkpfPHFF822qVQqvv/+e8AwtODl5UViYqLJIz4+HqlUes831O6Fl5cXr7/+On379uXChQsAWFtbG8/5VoMHDyYuLs6kbd++feY5UeE3CRjbh/K8EgpPNV/YoFVrKc68DhiGFmycbBmxeLzJY/jCsUgsLcw6i8HG2Y7A8f2QeztTfc1QxsrCyhIAnUZr0tfFrwvXz5j+ymxMQ9nZdJorXYBJkybxl7/8henTp3PixAkiIyOxs7MjPT2dTZs2MXHiRIYOHcr+/ft55ZVXWlzBNW7cOHbt2mWyEOJOcnNzTZKUA8hkMkJDQ1vsv3LlSioqKhg1ahRubm4cPXqUjIwM3n33XcAwVczCwoKPP/6YP/zhDzg5OREUFMTixYsJDw/npZde4uWXX+bUqVPNgrDwcPIO7YH/6N789H/HKL1YjGd/HyytLam6WkHud5l07e+Di38Xbpy9gu/verW4gsujrzdXUvIIfnpAC6/Qstriasoumf4asrCyxFnRchXrzLgzqOsacOvlicxBRklOEVVXK4xJ0h26OoJEQv7RX/AZ4ofUzhq5pxOBE/rxw/vfcvqjH+keHkDZpWKup3XO6YydKugCREdHEx4eztatW/n8889RqVT07NmT559/nkWLFvHNN99QV1fHCy+80OL+L774Ii+88AIZGRn069e+ZM1r1qxhzZo1Jm0KhYL8/PwW+4eFhbF+/Xp27txJbW0tAQEBbN261XhTzN3dnQ0bNrBu3Tqio6MZOXIkSUlJDB061Fhzbe/evURERLB9+/Zm84+Fh9OAF4biGuBOXmI2hScvodNosfdwxGeIHz3H9eVGWiHaBg3db0sm3qj7MH9O/+tHqq6UG8vs3EnOgXRyDqSbtNm52TN+bVSL/Z19u3Dx8HkKT+WiUWmwd5cT8vIwuv16U0wmt6H/84P55dB5Lh3JpEsvD0a++Xtc/d0J+/MoLnz1M1d/uoxbTw8G/WkEx9Yduou/oUeDSGIumI1IYi48LEQSc0EQhE5CBF1BEAQzEkFXEATBjETQFQRBMCMRdAVBEMxIBN07OHfuHKNGjcLW1haFQsHGjRvvuE9SUhISiaTZ4/YENzqdjpUrV+Lt7Y29vT2///3vm00j0+l0rFq1Ch8fH2xtbQkPD28251fonCoLy/jxg4PEzfmc+MV7uJhw4a721zZoiF+8h69mbqemqMrYrtNoSd6SyKG3Yomb8zkHFsaQvCXRpA8YMpRdTDhPwrJ9/Gfu5xx6K5bz+35Gq25frpDOqtPN070bpaWljB07lrCwML755hvS0tJ44403cHR0ZMaMGXfcf8+ePSYVJLp3N0348d5777Fu3TrWr1+PQqFg1apVjBs3jvT0dGQyQ9b9999/nw8++ID333+f3r17s3nzZsaNG0daWhr+/i3P1xQefaoaJcfXH8ZZ0YXwBaOpLCgjY08qUlspihGB7TpGzsH0ZivHAPQ6PRaWFgQ91R97dzmqaiU5357j2LpDjP7rJKS/Vpa4dOQCGbtP0/vZUFwD3Km6Us75fT+jqW8wpngUmhNBtw3//Oc/0ev17NmzBzs7O8aMGUNBQQGrV69uV9C9PfXirerr6/n73//Ou+++yyuvvALAgAEDUCgU7Nq1i2nTpqFSqfjb3/7GO++8w8KFCwF48skn8ff3Z926dcY8ukLnk5+UjV5vyFtrJTMkOa8rqyXrm7PtCrp1pTVcPHyBvs8N4uxO019OltZWDJ79O5M25x5uJCzdR2lOEZ4DDBcPV1Ly8BniR1CkIc2je7AXyioll4/miKDbBjG80Ib4+HgmTpyInV1T1qWoqCjy8vLIycn5Tcc+ceIE1dXVREU1rfzx9PRkxIgRxMfHA4blwzU1NYwdO9bYx9rampEjR3LgwIHf9PpCx1aUcRXPx7phJWu6buoW5ktdSQ3VNyrvuH/G7tP0GB6A3Kt9yXEai2Lemk1Mr9U3q6cmtZW2mQRdEEG3TdnZ2QQHm2ZOanyenZ19x/0jIiKwtLQ0XpneuvovOzsbGxubZgnRg4ODjceurzdkZWpMcNNIJpNRUFBg3C50PtU3qnC4LWA2BtCaG1Ut7WJUnHWdmxeuETwppM1+ep2hqkRdWS3n/p2MvYccj1uqW/SI6MmV5FxuXriGRqmm7NJNcr/PajMfryCGF9pUXl6Os7OzSVtjifby8vJW93NycmLJkiWMGjUKqVTK/v37eeuttygvL+e9994z7t9SRWAXFxfjsQMCApBIJKSmphIS0vQFOX36NHq9nvLycmxtbZsdQ3j0qetUWNvddpX563N1naqlXQBDFeFz/04h+OkByBzazmeb+fUZsr89BxgKWA5fONbkyjpgdG809Q0cX38Yfr2eUIwIpM+zLSdyEgxE0L0PQkNDTTKIjRkzBmtra9avX8/bb7+Ng4NDu47j5OTE1KlTWbVqFX369CEoKIiNGzeSlWUocWJhIX6oCHcnLykHrVprLNneFr8ngvEK7UFdWS0XD2Vw4sMEfrcs0hisC05cIudgBn2fC8PVrwtV1yq48NUZZI429J0y6H6/lQ5LfGvb4OLiQmWl6fhYRUWFcdvdmDx5Mkql0pgTt6VjNx7/1mN/+OGH+Pr6MmLECNzd3dm7dy8LFixAKpXi5tZy+j3h0Se1k6GuU5u0qesajNtaolGqufD1GYKf6o+mwVB1QqPSGLdpVKbHs3Wxw8WvC90GKRi+cBwNNSryfzDcy9Dr9JyLSSFwQj96TehHlyBP/J8I5rGpg/klPgNVlRj6ao240m1DUFCQ8aqyUePzoKCgezqmRCIx7q9UKrl8+TIKRVOtqKysLJNjd+3alWPHjnH58mXq6uoICgri1VdfJSQkBKlUek/nIHR8ck/HZjfMGp87eDq2tAuqGiXqWlWLVXgT//oNXiHdGfaXltOASm2l2HvIqS2uBqDh12M5dXc16efcwxW9Tk9daS0yRzH01RIRdNswYcIEoqOjqa+vN46dxsbG4u/vf9flemJjY7GxsTFW8o2IiEAulxMbG8vrr78OGGqcHT16lI8++qjZ/o2BuaysjN27d7Ny5crf8M6Ejq5rv25c+i4TbYMGS2vD1/ja6Xzs3eWtlutprDhxq8rCMtJjUgmbNRInH9cW9wNDwK65UYV3qKGatrWDDZbWllRcLsUrpGn+ecXlUsCQk1domQi6bZgzZw7R0dFERUWxcOFCzp49y5YtW9i2bZtJPysrK1asWMGKFSsAmDt3Lu7u7gwePBhra2v279/Pli1bWLp0Kfb2hg+jjY0NixcvZuXKlTg6OhoXRygUCmPZd4AdO3ag0+nw8/MjNzeXNWvW0KtXL2bNmmW+vwjhoeP7eBCXvsskeWsSPcf2obKwnNzEbEKnhZv0+3rWDoKfHkDwMyFYSq1arDgB4OLnbiyZXpicy83z1+ja1xuZky31ZbVcPHweC6klipGGOcASCwm+I3vxS3y6ocabvztV1yrI/PoM3gMV4iq3DSLotsHNzY2EhATmzZtHZGQkHh4erF27ttnCCK1Wi07XNH8xODiYjz/+mPXr16NWqwkMDGTjxo3MmzfPZL9ly5ah0WhYsWIFlZWVjBo1ip07d5pMEdNqtXzwwQcUFBTg6urK1KlTWb16NVZW4p+uM5M52BCxaBxnvzjFyY1HkDna0i9qULOFEXqdnrstVCD3dKLw5CXOxaSgrmvAxtkO92Avhi0Iwcapac5636hBSO1lXD5+kez9Z5E52tIjoie97zAVrbMTlSMEsxGVI4SHRaeoHGGO4C483DrUZ6BDnaxwtx7kP65Zgq5SqSwvLy8XH+JOrqSkRAdUP+jzaIfqhprb5k8JjwydVodOrZUCNQ/i9c0SdDUazY9xcXEd4csm3CdKpZJTp07JgBMP+lza4diNc4VqcbH7aCrNKcLKRpqr1+sfyGRicw0vHMnOztZ8+eWX4lPcCen1epYuXdpgbW2dqtfrbzzo82mHn9X16pJLRzKb5z0UOjR1fQPpu1LrNEr1A0vRZ5YbaQASiaSfra3tj2FhYVZTpkyRu7m5iWWsjzitVkthYaHuiy++qC0oKLheU1MzXK/Xlz7o82oPiUTia2ltdVLu7WznM8RXLnO0lTQubBE6Hp1GS2VhWUPhyVyNVqPdpVVp/qzX63V33vO/z2xBF0AikTgAkXK5fLxUKnVDLEN+1GmVSuXVurq6OCBRr9d3qHFSiURiA4y3lFk9ZWFl4SFBIj6vHZRer1dqVJosvVa3G8jQP8CxI7MGXUEQhM5O/M8tCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRv8PTM7cwIYvyIIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WCtJ48zI9cGi" - }, - "source": [ - "#### Make tree-based policy recommendations from CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SZL7vB1_9cGi", - "outputId": "b085ab61-7631-4959-b5e8-ed458e8e80d1" - }, - "source": [ - "from econml.cate_interpreter import SingleTreePolicyInterpreter\n", - "\n", - "intrp = SingleTreePolicyInterpreter(max_depth=1)\n", - "intrp.interpret(est, X, sample_treatment_costs=0.2)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 65 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "-tWTr9ha9cGi" - }, - "source": [ - "intrp.export_graphviz(out_file='policy_tree.dot')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "J90REc4o9cGi", - "outputId": "44988977-d39f-4fec-cca2-fe02014c6bc9" - }, - "source": [ - "intrp.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAEGCAYAAABvmUxSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wURf/A8c/c5dJ7IwmQAAmEXhQFFUWxV1CxNwT1sStieexYscNjxYIdRMWCHfSHiII0EaXXkARII5X05G5+f+zmuEsuDQIhyff9euWVu73Z3Znduf3uzO7tKK01QgghhGj/LK2dASGEEEIcGhL0hRBCiA5Cgr4QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOiLDkcp9b5S6knz9fFKqU2tnacah1t+hBDtiwT9DkQptVApla+U8mntvBwutNa/a62TWzsfNQ63/BxOXE/WDtLyT1RK7TxYy2/C+hcqpa5r5jyDlVJ/KaVKzf+DG0jbRym1QClVqJTaqpQ6/8BzLdoaCfodhFKqG3A8oIHzDsLyvVp6maJtae060NrrP9SUUt7AXOBjIAz4AJhrTq+d1stM+x0QDtwAfKyU6nXociwOC1pr+esAf8AjwGLgJeA7c5oPUAD0d0kXBZQB0eb7c4DVZrolwECXtDuA+4B/gQrAC/gvsA3YC6wHzndJbwVeBPYAKcCtGCchXubnIcAMIAPYBTwJWOspz2RgDvCpua5VwCCXz/sAC818rwPOc/nsfeBJ8/WJwE6Xz7oCXwI5QC7wKuAN5AEDXNJFA6VAlIe8NVbOa4ENZr63A/9xmbd2fnYAd5vbuNAsr6/5WSTGQbzAzN/vgKWe7XUssMJcxgrgWHP6JcDKWmknAt+41JEXgDQgC5gO+Lnm1awDmcBHHtY7DvjDXEa+uT3OdPk8DvjGzP9W4Pp68n8DUAVUAsXAtw3UweEYdbUA+Ac40WU5Hrc9EIBR7x3m8ovNvE0GPscIrHuBNUAv4H4gG0gHTnNZfr11uKFtATwF2IFyc92vNuE7fZq5DuUyLQ04w0Pa/uZyXdPOB55o7WOT/B3av1bPgPwdoh1tHFBvBo40D56dzOnvAk+5pLsF+Ml8PcQ8sA3DCGTXmAdZH/PzHRgnBF1dAsFF5sHSghFQSoBY87MbMU4EumC0TH7BPRh+BbxpHoCjgeW4BMRa5ZlslmMsYMMIjCnma5tZ3gcwAvYo84CdbM77Ph6CvlnGf4CpZh58gRHmZ68Dz7qs/w7MwOMhb42V82wgEVDASIyThyNq58dlGy83t2k4RsC60fxsCkYQrinz8a4HdZdlhGMEmaswguJl5vsIwN/cNj1d0q8ALjVfT8UIyuFAEPAtMMUlr9XAsxgnB34e1j3O3E/Xm9v3JmB3TT6BRea29QUGY5xsjapnuzr3W63t46yDQGeMk7WzMOrgqeb7qOZue5d6Vg6cbm67DzHq2YPmNr8eSHFJX28dbsK2WAhcV2v93wH/rWd7TAR+9JB+koe0noL+z8BXrX1skr9D+9fqGZC/Q7CTYYR5sIk0328EJpqvTwG2uaRdDFxtvn6DWi0BYBMw0ny9AxjfyLpXA6PN1wtwb9WeghkMgU4YLTU/l88vA36tZ7mTgaUu7y0Yravjzb9MXFq9wCfAZPP1+3gO+sdgBB0vD+sbhtGKqjlArwQuridv9ZaznvRfA3fUzo/LNr7S5f1zwHTz9eMYXbZJjeyDq4Dltab9CYwzX38MPGK+7olxEuCPERhLgESX+Y7BDHJmXisxex7qWfc4YKvLe39zW8RgBGo7EOTy+RTg/XqW5dxvtbbPeJf391GrxwGYB1zT3G3vUs9+dnl/LkbwrGm9B5nlCaWROtzQtjDfL6RW0G9kvz4MzK41bSZmPa813YbRs3Gv+fo0c9/Na+r65K99/Mk1/Y7hGmC+1nqP+X6WOQ3gV8BfKTXMvO4/GKO1ApAATFJKFdT8YRyo41yWne66IqXU1Uqp1S7p+2N0Q2POl17PvAkYB6MMl3nfxGgt1cc5v9bagdHVHFezHnNajVSMVmBDugKpWuvq2h9orZdhtApPVEr1BpIwWsCeNFROlFJnKqWWKqXyzHKexb5t5Emmy+tSINB8/TxGj8Z8pdR2pdR/G8hPaq1prttjFkZwArgc+FprXYpxqccf+Mtln/xkTq+Ro7UubyDvbvk3l4tZhjggT2u9t558NVXtenRRrTo7AoiF/dr2YFzWqFEG7NFa213e15SnKXW4vm2xP4qB4FrTgjFO2txorauAMRg9HZnAJOAzjO+M6EA61I0vHZFSyg+4GLAqpWoOOD5AqFJqkNb6H6XUZxgH/SyM6/01B410jK7/pxpYhXZZVwLwNnAy8KfW2q6UWo3RYgSjJd7FZd6uLq/TMVpJkZ6Cbj2c8yulLOayd9d8ppSyuAT+eGBzI8tLB+KVUl715OED4EqMg+acBoJdveU0fznxBXA1MFdrXaWU+pp926jJzP00CePErD+wQCm1Qmv9f7WS7sYISK7iMQI4GN28Uead35dhdBuDcU9CGdBPa72rvmw0N9+18hWulApyqXPxGNepm7Mu1+npGC3962snasK2P5Cy1Ky7uXXYVXPXvw5j3yutdc28A4HXPC5c638xLmkAoJRaglGnRQciLf32bwxGF2pfjFb8YIyb3H7HOPiB0dK7BLjCfF3jbeBGsxdAKaUClFJnK6WC6llXAMaBKwdAKXUtRku/xmfAHUqpzkqpUIyuWAC01hkYNxa9qJQKVkpZlFKJSqmR1O9IpdQF5p3Jd2IccJcCNa3ye5VSNqXUiRjdsrMbWBYY118zgGfMsvoqpY5z+fxj4HyMwP9hA8upt5wY9xj4YGyjaqXUmRhdrc2mlDpHKZWklFIYN+jZMW5Eq+0HoJdS6nKllJdS6hKM+vAdOFuBn2P0HIRjnATU9J68DUxVSkWb6+yslDp9f/Jbm9Y6HeOGuynmth4ITMDYzp5kAT0aWezHwLlKqdOVUlZzuScqpbrQ+LbPAiKUUiH7WZ79qcOumlI+Vwsx9vntSikfpdSt5vQFnhIrpQaa28NfKXU3Ru/H+81Yn2gHJOi3f9cA72mt07TWmTV/GHelX2G2apdhXLuNA36smVFrvRLjpqNXMW782opxXdIjrfV6jLvW/8Q4gA3AuEegxtsYB8V/gb8xglE1xoELjJMQb4yb4PIx7s6PbaBsczFOVmpuUrtAa12lta7ECPJnYrRWX8e4T2FjA8vC7LI9F6PrPg2j6/MSl8/TMX4loDFOmupTbznNFu3tGCcG+Rjd6fVdJmhMT4ybBIsxtvnrWutfPZQrF+NXGJMwbmq7FzjH5XIPGCd7pwCf12ql3oex35cqpYrM9bXkcwQuA7phtPq/Ah7VWv9ST9oZQF+z6/xrTwnMfTQa4ybOHIzW9z0Y93c0uO3N+vEJsN1cRxzN19w67Op/wFhlPEvjZQCl1I9KqQc8JTbr+RhznQXAeGCMOR2l1ANKqR9dZrkK46Q2G6M37lStdUUzyyfauJqbkoQ45MyW1nStde2u56bMOxnjBrYrWzxjDa/3XWC31vqhZsyz3+UUQoiWJC19ccgopfyUUmeZXcydgUfZd9PgYc+80fECjBZnQ+nadDmFEO2XBH1xKCngMYxuz78xfnP+SKvmqImUUk8Aa4HntdYpjSWnjZZTCNG+Sfe+EEII0UFIS18IIYToICToN5OSYVmFOCwol1HplFJXKKXmN2GeB5RS77RwPpRS6j3zrvvlLbnslqT2YxQ/sY9SaodSqkwp9VFr56U2ZYyeWK6U+qOxtE0O+kqGZa1DH2bDoB5u+WlrVAsP3drYQVYp1U0ppdVBHB2uNQ/06hAOVau1nqm1bvR5B1rrp7XWLb09RmA847+L1vroFl52qzgU+84MoqcczHU0sO5xTQmQHpyrtb7KZTndlFK/KmNo440Nlcd8lsK7SqkipVSmUuquWp9frJTaoJTaq5Rar5Qa4/LZpUqpTcoYFjlbKfWBUsr5NEat9SiMMT8a1aSgr2RYVnGQSR3wTLZLm5AA7NBalzR3xra8f9ty3lvQJxg360ZgDMI0RykVVU/ayRjP1kgATsJ4eNgZYDz0CuPBUndhPEr5HmBWzUOxMJ53cpzWOgTjAU5eGCM4Nl9THtCPDMsqw7K2wrCsZrrrXcq7nn0jojW2j14DvjfnW4Y5aAzGnfVTMR5QUoQxVGp/6h+6taE6OY4DGCrV3C6afUO5HmMuc7GZx1yMetzQdgwz92OOmYfvMFqc9ebBXOfNwBazXE9gjDy3xNwmnwHeLvls7Htcp45Rz1C1HrbB+2Z5fjbz8huQ0FjdMz9biDlATc2+cPmsn7nMPHObPeDy3f/YJV1Dw/COw/iO7TX37RUe8j/B3L52s4yPudTbreb6v3Etu7n9bzG3f0o99b7ZwwO7fD7a3F9FGHX3DJft9QRG/dqL8QCpSA/rbmiY4TkYwakIuI6GhxJOxHg6YC7G8WwmEGp+9pG5/DJz+fdiPKRJm+VLx6jPNwJHYdSvAmp9jzAeSLTBTDsP97qjzfm3mPO+hvH971NrnxU0MQ7uAE5xed8LI3a5Dhj1O+YomB7m3437MMxPYA6YhDGgV3at9DnAMR6WE4jxRNAfak0fh8t3oN5yNLGwMiyrDMvaGsOyXoRxIDnKLG8S+wY1aWwf5QJHm3meyb4v1+nAXxijotUcAGJr79taeaivTo6jmUOl1lp2N9d967LMauA2M+9+jWzHCOBCc18EYTxO92uX5dXJg7nOuRgtin4YB67/w2hBhGDUv2ua8T2ur46dSK1R6zxsg/fNfXeCWQ/+h3ngooG6V7tsuBzwzO2QgfEEQl/z/TCX7/7H5ut6h+HF+A4Xsa9OxWKMQeCpDM51m+9HYQS5I8wyvQIsqrX9fzbL56neH8jwwEdjnCCdas7bGejtsr22YQQrP/P9M/WUqc6+Y99xc4y5bD8aHko4ycyHj7lNFwHTah2fXINoN3PbTDf322kYwflrc9mdMeriSDP9aIzjQB+M+vEQsKTWdv4O47sejxFEz/C0z8xplwP/NlBXa+f3fGBDrTSvAq94mDfMzE8nl2ljgTUu8eM3jJ50q7mNdwIBLulHmPtWYxyHTqu1jjpl8liORhPIsKwgw7K21rCs82rKVmt6U/bROy6fnQVsNF+Pwhh4Zzi1ejbwEPQbqZPjOIChUqk/6Ke5vG9wO3pY5mAg3+V9nTyY6zzO5f1fwH0u71/EPDjTtO9xfXXMrT7Wk9/3cRkeFqMVY8doDDRW95xlwz3oXwb8Xc/6JrMv6Nc7DC9GECvAOKGqE5hrzeNct/l+BvBcrTJVAd1ctv+oBpZ3IMMDvwlMrSfdQuAhl/c3YzbSPKSts+/Mbed68tLc4+4Y1/1C/UG/s8u0XOASl/dfAHear38EJrh8ZsE4AUpw2c4jXD7/DPivp33WlD8P+b0KlzhiTnsKD0NDm/VZ43K8wzgh2uHyfgJGz0O1WY6z68lHZ3Nf9GqoHtb315Rr+tcgw7LKsKzuDtWwrF0xWiae8tTYPvJYbq31Aoyz8deAbKXUW643xNTWSJ10W48+8KFSa7ju8wa3ozIGT3lTKZWqjGfjL8IYQdHayDpqDxdb+31NGZryPa6vjjWV63exGKNLvOa72FDdq0999aa2BOoZhlcb1+cvweh5y1BKfW9+d5vCLd9mmXJr5Tu99kxNyRc0egxorOwttq9o5LirlOqklJqtlNpl1s2PaXwYY2he3fyfy7rzME6SGz0OtJAmD21spq35vE5a8wbA5zBOtrwxenDeUcbIl260MeLlTzQ+gJhHDQZ9tW9Y1pHm3YaZGNdsByljWFY7xtnTZeafp2FZQ13+/LXWn7jm32VdCRgDldyK0X0XivEEtOYOy1qzrmCtdb8GilffsKy7MYdldUnb0HCfrnmIb+DmlpphWa/iwIdlfQGjmygUYzCX/RqWVWs9SWvdA6NL6S6l1MkektY3LGvN9qg9LGvNKH2uw7LW7JMQrbXrl07TsHSMbkxPedqffWSsVOuXtdZHYow01wvjppk6+WlCnWx0Vfv5uev0xrbjJIwBcIZprYMxuslxyWNjeWhMU77H9Wnqul3reCBGt3fNd7GhutdQnpsyWl3NMLyuZQvQWj8DoLWep7U+FSPYbsSoC03hlm+lVADGZRjXfDe0berNVxOOAfV9Z5qrKXWzsePu02b6AWbdvBL3705L1M3/1NpOflrrJU2Y90DXDca9RD2U+6ijg8zp7ivTOh/j2D6onrSDMXpRVmqtHVrrFRj3ItX3awAv9nM/N9bSl2FZZVjW1hyW9R3gbqXUkWYdSjID8f7uI5RSR5l10obRbV7uUu7aQ5s2Vicb09hQqTnmuutN04TtGIRxUlCglArHeM5/c/LQmOZ+j2uvuylD1Z6llBqhlPLGuLlpqTZGy2uw7jXgOyBWKXWnMn4mFaSUGuYhXb3D8Jqt1NFmwK7AaKl5+n548glwrVJqsBmknwaWaa13NHH+AxkeeIa57pPN42DnZvRQuGp03zXhuBuEsd0KlXF3+j21FnGgdXM6cL9Sqh+AUipEKXVRE+fNArqYdW6/aK03Y1zue9TcR+cDAzFOyjz5EHhIKRVm7pPr2Te08Qrg+JqWvVJqCMZlzH/N91copeLN1wkYlxH+b3/y3VjQvwYZllWGZW2lYVm11p9jVO5ZGN1gXwPh+7uPTMEY2zgfows2F+OEBWoN3dqEOtmYOkOl1ipfqVm+xeY6h9eznIa24zSMG6r2YJy0/tScPDSmud/jWvM2dajaWRgnK3kYNwtfac7flLrnab17Ma6XnovRvbsF4ydStdPVOwyv+XcXRqs9D6O79aYmlvsX4GGMg38GRovs0qbM21i+GjsGaK2XY9z9PhXjZP436vaWNCUPTd13DR13H8O4mbEQ45c0X9aadwpGECxQSt29H3n8CuNG4Nnm92ItxjGhKRZgtLIzlVJ7wBlY67TSG3EpMBSj7M8AY7XWNY2E2st7FOPSSyrGfnlea/2TWZbfMH8doZTai1F3ntZa1zxwqi+wRClVgnEM2oTxvWy2NvvsfSXDsgrR5iml3se4YazJ3wkhWoMynnYaC3yltb6msfSHklLqZ4ybk5drrT1dpnVqMw9XUMb9BSdhtII70caGK1X7hmUd0ki6Nl1OIYRoj/Rh/LRT896TJmlLz95vs8OVKhmWVQghxGGgzXbvCyGEEKJ52lJLXwghhBAHQIK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXQgghOog2M8qeEAeTUsobY3TDbsj3oj1xYIxp/4vWuri1MyNEa5MBd0SHp6xeVyqL9U2/mKTqgK59vZTNW3rA2gltr3aUZ26vLk7910dZrM/YK0ont3aehGhNEvRFh6aUOsXqHzK3/31f+vt36d3a2REHSWV+JmufGVNaWZB1t6Oq4o3Wzo8QrUVaNKJDs/oFT0wY+6AE/HbOOyyGxPFT/S02n7tbOy9CtCYJ+qJDc1RXnhA6cFRrZ0McAsE9j8ZRVdlFKRXW2nkRorVI0Bcdmq6u9LMFhrd2NsQhoCxWrD7+VUBIa+dFiNYidykLoVSLLKZ8Tzp/3zccAJ+ILhzx3LImz5v25bPs+v5lAOIvvJ/OZ93aInkStbTQvhairZKgL0QjtMPBuucvwuLlTZ+7ZqHMwOGormLtU+fgE5VA8s1vOdP3vuNDArsPdltG0ZYV7Ph0MqXpG7AFRxB78gTizrjR+Xnns24l5uRrWfPEWYemUAeoIj+DlJkPUbh+EcrqTcSRZ9Ht0slYfQPqnadqby6pc56mYO1C7KUFBCQMottljxGYMMAtXVlWCmlfTKFww2IcVeX4depOj2ueJ6jHEBzVVaR//TwFaxZQnpOK1cefoKSjib/wv/jFJB7sYgvR5kn3vhCNUBYLSeOnUrx9FZkL3ndO3/nNi1QWZtPj6mfc0nsFhGILinC+r9izkw1TLycwYSADH/2J+PPvI+2r58hc+KEzjdU3AO+QaJTFekB5dVRXUlmYfUDLaIx22Nn4v6upLs6j371fkHzL2xRu+J1t79d/j5zWmk2vjqds92aSb3mHgY/Owy8uifUvXEJlQZYzXcWenaydMhqf8Dj6TvqEwU/8SsJFD+MVYPTIOyrLKNnxD53PupWBD/9Inztn4qgsY/0Ll2Avk5/hC9EYCfpCNIFvVDwJlzxK2pynKMvcxt5tf7H7pzdIHPcCjd0TkLnwQ2xBkXS/8mn843oRdexYYk6+lt0/TW+x/O3d9hfbP7qfv+4aQu7yb1psuZ4UrFtEafp6kq57mcBuAwnpfSzdL3+S3BXfUJG7y+M85dkp7N26ku5XPEVQjyH4xSTR48pnUFYvt5OftC+fIbTvCXS7dDKB3QbiGxVPaP+R+HXqAYCXfzB97/6UyGFj8ItNIiChP0kTplGZn8He7asOarmFaA+ke1+IJup0wuXkr57Hlndux15aSPSISwkbeHKj8+3dupKQfsc7LwsAhPU/kYx506kszMY7JHq/8lOxZyc5f84h588vqMjdRdigU0i89iVCB+z7NcL2D+8jZ+mXDS6nz50fE9xrWJPXu3fbSnw79cA3sqtzWki/kaAs7N26Ep+IznXmcVRVAGCx+TinKYsFi5c3ezcb9z5oh4P8f34m7syb2TDtKopTVuMT0ZlOJ11Dp+Mvqzc/1WV7AbD6+DW5DEJ0VBL0hWiG7lc9w6p7h+EdEk3CJY82aZ6qomyCex/jNs1mBvqqguYFfXt5CbkrviXnzzkUbVlOUNJRxJ1xExFDz8HLP7hO+q5j7iH29Bs9LGkf77CYJq8foKowB1twlNs0i5cNr4BQKguzPM7jF5OEd3hn0r56jsRxL2D1DSBj/ttU5mdg8TaCddXePdjLi9n1/ct0GX038Rfcx96tK0n5+EGUshA94pI6y9UOBzs+eYSgpKEEJg5tVjmE6Igk6AvRDDl/zMbi5U1VUQ5lmdvq3IR2sOWu/I5t70/CNyaRAQ993+j6bcGR2IIj93t9y27u6Xwd3HMYfSZ+vF/LsXjZSL7lHba9P4mVd/QHi5WQvscTOmAUFXvSjETm00HDBp5C5zNuAiAgvj+lGVvI/L936wR97XCw7YN7KMvYQr/7vnTrSRFCeCZBX4gmKk5dw85v/0fPG14ld9WPbH3nDgY+8qNbl7UntuBoqopy3KbVvLeFNq9rP3zI6djLHiPnzzmsfepcQgecRNTwCwgbfCoWm2+d9AfavT/w0fnO1xZvY/m2kCiKNv3pls5RXUV1SQHeIZ3qXU9gt4EMmvwz1aVFaHsVtqAI1jxp/PoBwCswHGX1wi+ul9t8/nG9yF32tds07bCz9d2J7N2ynH73zMEnPK7BMgohDBL0hWgCR1UFW9+5g4ijziVi6DkE9z6Ofx45mfSvXyDhogcbnDcoaSi5K79zm1awdiE+UQnNvp7vFRBK7KnXEXvqdZTu3kzO4s/Z8elktn1wL+FHnkXU8PMJTj4WZTHu0T3Q7n2/Tt3rlidxKLu+nUbFnp34RHYBoHD9ItAOgpIa72KvuQxRlrWd4h3/0OOa5wCjNyCw+2DKMre5pS/L3IaPy/0D2l7NlrdvpTjlHyPgm3kQQjRO7t4XognSvnwGe1kR3a94EgBbYBiJ455n9/w32bt1ZYPzxpx4NVVFOWz/+AFKd28hZ+mXZPzfe26/098f/nG9SLjoQY54bgW9bnoTXV3JxleuJfPX951pbMGR+HXq3uCf1bt5N8CF9jsB/6592fLO7RTv+JeiTUtJmfUwEUed57yJryI/g78fPIHcVT8658td+T2FGxdTnpNK3t/z2PDiZQQlDSX62IucaeLOvIW8v74n89cPKM/eQc6Sz8leNJOYUdcCRsDf9MZ/KNq8jF43voGyeVNZmE1lYTb2yrID2JpCdAzS0heiEUWblpLxywz63PkxXv77nuAaNvBkoo+7hK3v3snAR3+ud36fyC70mTiTHbMn8+9jp2ELiqDrmLuJOfHqFsmfslgI7XcCof1OwF5RSnVJfosst/71Wel9+wekzHyIdc9egPKqeTjPY8402l5NeeY27KVFzmlVRTns+HSyeSNgBBFHnUfX0XejrPsOQ+GDTyPx2pfY+d3/2DH7MXyj4ul26WPO6/kV+Rnk//0TAGuePNstX4nXvuTxZj8hxD4ytK7o0JTFWj1s+jarxcv7gJdV8xje/g98Q1Dikfu1jFX3DqPTiVfJY3gPkhV3DCipLs7rr7Xe0dp5EaI1SPe+EC1s/QsXs/rhk5o1z85vp7Ls5p5U5Hl+uI0QQrQE6d4XooX4hMUy+Ok/ALBYbc2at9NJ44g4egwAtiAZ9U8IcXBI0BeihSirl8e73ZvCFhiGLVCGeRdCHFzSvS+EEEJ0EBL0hWhjts64k/VTr2jtbAgh2iDp3hdCtLisRbPIWTKH0l2bQNvx79ybLudOJLT/SPd0v81k10+vU5m3G7+YROLHPkjYgH03QWqt2fX9y2Qt/JCqvfkExPej++VPENh9sDONo7qStDlPkbP0KxwVJQT1HEb3K57a70stQrRn0tIXQrS4wo2LiRh6Nn0nfcKAh74nKOkoNr58NcUpq51pcld+z/aP7yfutBsY+Oh8QgeezKZXx1OSvt6ZJmP+m+z64VUSLn6EgY/8iF9sEutfupzKwmxnmtRPH2fPsrkkTfgf/R/4BmWxsuGly+VhPUJ4IC19ITwo2rSU1DlPUbprI8pixTe6Oz2ufobAboPQDjvbP7yPwo1LqCzIwju0E1HDL6DzOXdg8TLu2k+f+yJ7ls+ly7kTSf/qOaqKcggdMIqkCdPI+3se6XNfoLpoD6GDTiHxmuex+vgDsO65sfhGd8fqF0jO4s/QDjuRwy+g26WTqe9ZAlprMua/RdbCD6nIy8A3qisxp0xwe/hP1sKP2D3/LSpyd2H19Scgvj/Jt77rXG9L63XDa27vEy56kPx/fibv75+crfTd894g6pgLiTnpGiPNhfdTuP53Mn6ZQdK1L6K1Zve8t4g7/ScdzxsAACAASURBVCYijx4NQOK4FyhY8yvZi2bS5dyJVJftJWvRTHpc/ayzh6Dn9a+w8q4h5K38nqhjxx6U8gnRVknQF6IWba9m46vjiR5xKUnXvQzaQUnaWueT47TDgS0kmp43vIotOIrStHVs/+g+LDYfOp99m3M5lfkZ5C6fS/Jt71JdnM/m169n02vXYfHyJvmWd5zTMua/SZdzJzrny13xDZHDxtDvv19Tnp3CtvcmYfULIuHC+z3mN33uC+xZ9jXdL52MX1wyJan/su2D+7B4+RA94hKKd/zD9pkPkjRhGsFJR1NdVkTR5qXOUe082TD1Soq2LGtwOw1+YqHzsbuNblOHA3tFCRbzJMNRXUlJ6hpiT7nOLV1o/xOd4xRU7EmjqjCL0H4nOD9X5uh8Reajj0t2/IOuriS0377LBl4BoQR2H8zerSsk6AtRiwR9IWqpLtuLvbSQsMGnOq8L+8UkOj+3eNmIP/9e53vfyK6UZaeQs2SOW9DX1VUkjp/q/Cle+NCzyfnjM4ZOXY1XQKhzWuGGxW5B3ysogu5XTkFZLPjH9aRy9CRSP3+SrqPvdvYk1LBXlJExbzq9b/+AkD4jjPxExVOWsYXMBe8RPeISo3Xv40/4oNOw+gXiAwR07dvgNugx7nkcleUNpvEOrX9Evdp2//ga9vJSokdcCkD13jy0vbrOsL/eIdFUmV33Nf9tIVFuaWwh0ZTu3ABAZWEOKFVnObbgKLdLAEIIgwR9IWqxBYYRddzFbHjpCkL6HEdI7+MIH3o2vi4jvWX9NpOs32dRsScdR2UZ2m6vE5C9w+PcfnvvHRyNd3icM+DXTNu7ebnbfIE9hjhHyQMI6nkUjsoyKvakuZ18AJTt3oSjspyNL48Dl/Hktd2OxWZcDgjtewI+EV1Y9d/hhPQbSWjfEwg/4kznaHee+ITFNmFLNU32H5+y87v/kXzbu80eVVAI0bIk6AvhQdL4qcSeej0F634jf80C0r56jl43vkH4kNPJXfEtKbMeImHsAwT1HIbVL5Dc5XPZ+d0rbstwHUjGmKA8TtPasd/5rJk3+ZYZ+ETFuy/aPHGw+gUy8JGfKNqyjML1v7N73nTSvphC/we/dTuRcdVS3ftZCz9ix6ePkXzLO4T23ddN7xUUjrJ6UVW0xy19ZVEONvPEoOZ/VWEOvlEJzjRVRTnYzF4G75Ao0Jqqoj1uPQ9VRXvwj+vZYN6E6Igk6AtRj4CufQno2pfOZ9zExlcnkP3HbMKHnE7R5mUEdhtI7KnXO9OW56S32HqLU1ajHQ5n0N67dSUWb198IuPrpPWPS0Z5+VCRm17n53CulNWLkN5Gr0WX8ybx191HkrfqR+JOu8Fj+pbo3s/4ZQZpXzxN8i3v1smbxcubgIQBFKxbROSwMc7pBWsXEpR0FAA+kfHYQjpRsP53gpKGAsa9AYXr/yDmpKsACOg2COXlTeH6RUSZQ/RWlxZSnPI3nU64vMH8CdERSdAXopbynDSyFn5E2ODT8AmLpTw3nZLUNc7g5BuTSPYfs8lbPR+/2J7kr55P/up5Lbb+qsIcUmY9ROzJ4ynL2k763BeJGTW+zuUDAKtvAHFn3kTq508BENz7WByV5ZSkrqGqOI/OZ9xE3ur5VOSkEtRrOLaAMIq2LsdeWohfbP0t4QPt3t/903TSvpxC4vip+Hft47y+brH5Oi8rxJ1+I1veuoXAHoMJST6WnCWfU5q+nsRrngdAKUXc6TeQPvcl/GOT8OuczO55b+KoKif6BOPhRF5+QXQ64QpS5zyNLTgKW0g0aV8+g3doDOFDz/acOSE6MAn6QtRi8fajPDuFzdNvpLo4D1tQBOFHnkXX0XcB0GnklZTu2sDWGRPBUU3Y4NPocu5EUuc83SLrjzx6NMrqxZqnzwOHnchhY+g65u5608ePuQfv4CgyfnmXlFkPY/Xxxy8umdhTJgDG3ewZ899i57fTsFeW4xvZhW6XPe72EJyWlrngPbS9mq1v3+Y2PerYi0iaMA2AiKHnUF1SwK4fX2fHJ4/iF5NI8q0z3G4yjD3tPzgqy0mZPZnqYuPhPH3vmuV2b0DCJY+grFa2vH0b9opSgnseTZ+7ZmL19jto5ROirVK6gZ/tCNHeKYu1etj0bdb6fgN/qK17bix+MYn0uPrZ1s5Ku7TijgEl1cV5/bXWO1o7L0K0BnkinxBCCNFBSNAXQgghOgi5pi/EYaTfvXNaOwtCiHZMWvpCCCFEByFBXwghhOggJOgLIYQQHYRc0xeijaram8uu718m759fqMzLwCsgFP/OyXQ66WrCh5yBMp/FX7D2NzZMu5KwgSfT+/b3Adg6405ylnze4PKHPLuUnMWfsfObl+p8ZvHxZ9jrW1q8TEKIg0uCvhBtUEXuLtZOGY3F25f4MfcSEN8PgMJNS0j97AlCeh+Ll38IAFmLZhJ3+n/IXPAelQVZeId2ottljxM/9gHn8lbdO5yEsQ8QcfR5zmm2oAgAfKO70e+/X7mtXynpJBSiLZKgL0QbtP3j+9EOOwMe/hEvvyDndL/YJKKGX4jF5gMYA8/k//t/DJnyB2WZ28he/Cldzr7dfBSu+yh7Vr8gz6PgWawyOp4Q7YScrgvRxlQV51OwZgExo8a5BfwaVt8A52h+2Us+J7jnUfiExRJ1zIVk/z4beQqnEB2XtPSFaGPKs3eA1vjF9Wo0bfaiWXQ55w4AwgadyrYP7qVowx+E9D2+6evL2s6ym90H5wnuOYw+Ez9uVr6FEK1Pgr4QbU7TWupFm5ZSWZBJ+JFnAWCx+RBx1DlkLZrVrKDvExlPn4kz3aZZvH2bnl0hxGFDgr4QbYxvdHdQirLdm+GIM+tNl7VoJo6KUpbf2nvfRK1RVhtVxXnYAsObtD5l9cKvU/cDzbYQ4jAgQV+INsYWGEZo/5PIXPA+sSdPwOoX6Pa5vbwER1U5uX/9QOK1LxHYbZDb5xtfm8CeP78g9tTrD2W2hRCHAQn6QrRB3a98mrVTxvDvE2fQdcw95k/2FEWblrLrx9eIPu4irN6+RB1zofOmvhoRQ88ha9EnTQ/6DjuVhdl1JtuCo5zPAhBCtA0S9IVog3wjuzLwkZ/Y9f0rpH35LJX5NQ/n6U23Sx4l/evnCRt8ep2AD0bQ3/3Dq+zdupKgpKGNrqs8ewd/3TWkzvSh09ZgC2raJQIhxOFByc93REemLNbqYdO3WS1e3q2dFXEIrLhjQEl1cV5/rfWO1s6LEK1BfqcvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchP9kToo3J+m0mu356ncq83fjFJBI/9kHCBpxUb/qC9YvYOfdFSnduRFm9COg+mIQL7ycgvj8AlQVZ7PjscUpS11CelULUMReSNGGa2zLWPTeWok1/1lm2X1wvBj/xa8sWUAhx0EjQF6INyV35Pds/vp/ulz9BcPKx5Pw5h02vjmfAQ98T0LVvnfTlOWls/N84YkZdQ+L4qeiqStK/eZH1L17GkS+swGLzxVFdiS0wnM5n3kLWwo88rrfXzW+j7VXO97qqkn8ePZmIoecetLIKIVqedO8L0YbsnvcGUcdcSMxJ1+Af15OEC+/Hv0sfMn6Z4TF9Seq/aHsl8Rfej1+nHvh36U2X8+6iujiP8uxUwHjQT/fLnyB6xCVYA0I8LscWGIZ3SLTzr2jrcuyVZUQff8lBK6sQouVJ0BeijXBUV1KSuobQfiPdpof2P5G9W1d4nCew22CU1ZvsRbPQ9mrsFWVk//4Jvp164HsAg+hkL5pFaP8T8QnvvN/LEEIcetK9L0QbUb03D22vxhYc6TbdOySaKg/PxgfwiexC37tns3n6TaR88ghoB34xifSdNJv9fQphWeY2ijb9SfKt7+7X/EKI1iMtfSHascrCbLa9N4nIo89j4EM/0O+eOdiCo9g8/Ua0w75fy8xaNAtbSCfCBp7cwrkVQhxsEvSFaCO8gsJRVi+qiva4Ta8sysEWEu1xnswF76O8vOl2yaMEJPQnOHk4Sde9TPH2VRRtXtrsPDiqK8lZ8jnRIy72OJiPEOLwJkFfiDbC4uVNQMIACtYtcptesHYhQUlHeZzHUVmGsrh/zZXFarzYj8G28v7+ieriPKKPv6zZ8wohWp8EfSHakLjTb2TP0i/IXPghZRlbSftiCqXp64k9ZQIAqV9MYd3zFzvThw08mdKdG0j/+gXKsrZTnLqGre/dhXdYDIHdBjvTlaStpSRtLY7yYqpLCihJW0vp7s111p/920xC+ozANyrh4BdWCNHipH9OiDYkYug5VJcUsOvH19nxyaP4xSSSfOsM52/0qwqyqMhJdaYP6TOCnte/xu55b7B7/ptYbL4EJR5BnztnYvULdKb797HT3daT/8/P+ER04YjnljmnleekUrhxMT3/8/pBLqUQ4mBRej+6+IRoL5TFWj1s+jbr/t7JLtqWFXcMKKkuzuuvtd7R2nkRojVI974QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOgLIYQQHYQEfSGEEKKDkKAvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXHZqyWOy6qrK1syEOEW2vUoDscNFhSdAXHZrFxz+tOPXf1s6GOAQq8jNwGCd4Oa2dFyFaiwR90aE5Kkrf3/3T9HLtcLR2VsRBljH/7WqLzftbrXVVa+dFiNaitNatnQchWo1SKsDqG/hrQMKAfjGjxvn7xfVCWW2tnS3RUhx2ynNSyVn8eXn+mv/LcVSUDtNaZ7R2toRoLRL0RYenlPIHrvQKCL1aO+zd0NrrYK1Kax2mlKoEig/SOtoMDX6gAxQqDzg4XS1KOZTFmlldWjQT7fhAa73noKxHiDZCgr4Qh4hS6llgMHCW1tre2vk5HCilXgPigAu0HIyEOOjkmr4Qh4BSajRwKXCFBHw3d2EE/UmtnREhOgJp6QtxkCmlEoE/gXO11staOz+HG6VUArAMuFhrvai18yNEeyYtfSFamFJqpFJqmvnaD/gCeFwCvmda61RgHPCJUioGQCl1m1JqQqtmTIh2SIK+EC3vJKDEfP0qsAF4rfWyc/jTWv8EvAPMVkp5AXuBk1s3V0K0PxL0hWh5RwCrlFLjgWOA6+UmtSZ5HKgAngRWYWxHIUQLkqAvRMsbApQBzwIXAjal1E1KKd/WzdbhSRluAGKBK4DLgUQgXikV2KqZE6KdkaAvRAtSSkUDQcArwAPAVcBW4ChAWvv1SwD+BZ4C7gTeBLYAg1ozU0K0NxL0hWhZR2B8r4owWvphwJFa6/Fa64pWzdlhShseBHphPBf/bSAF6A4Ma828CdHeSNAXomVdBgQAi4ABWuubtNY7WjdLbYPWeo/W+iGMrv1vAR+M7SmEaCHyO30hWpBSKhawaa3TWjsvbZ1SKgyI0Fpvbe28CNFeSNAXQgghOoiDNbCIAMzfG58X7Gu92qJUL0CGbxOtQmuNUqq8stqxpLTK8b7W+s+az5RSVuBcq1/QVcpi7YPUU3EImHWyyF5e8r22V30oPTqHhrT0DxKllC3Q2/JlXIjPieOHxQb27uSPt1W1drZEB6WBsio7S3cU2WcszawoqbQ/XFHteEkpZbX4BnzmExZ7WszJ4wMDuvZFeXm3dnZFR6A11SUF5P/zS0X2H7OrHZVl52itF7Z2tto7CfoHiVLqP4PiAl76cnx/f1+b3C8pDh87CyoY9drqspJKxxDgGP/4fq/2v39ugNXbr7WzJjqowvW/s+Hla4p0VUWE1rq6tfPTnkk0OkhCfK0TbjuhswR8cdjpEurDhYOiLDarutTqHzKh85m3SMAXrSqk7/H4RnYFGNnaeWnvJCIdJJV23WtQnDxMTByehnYN8gnwth6p7dW9A7sPbu3sCEFQz6NtQJ/Wzkd7J0H/IHFobZNWvjhc+dosKIUf2uFtscnTgUXrs3j7eWE8m0EcRBKVxCF351dbueKj9a2dDSHYOuNO1k+9orWzIcQhIz/ZE8KDnzflM+23dHbklVNe5aBLqC+XHRHNjcfFOdPM+iuLOf/ksCm7FLsDenfyZ+LILoxMCnWmsTs0037byRf/5JC1t5LwABtn943gvpO74meztkbRRBtTumsT6XNfoCR1LRV70uhy3l10HT2pTrrKwhzSvphC/r+/YC8rxieiMwkXP0z44NMAWHXvMCpyd9aZL3TAKPrc+REAu354ldxVP1KeuQ1lsRKQMJD4C+5DLgG1HxL0hfAgxNfKjcd1pleUH342C8vT9vLfb7fjbVWMHx4LwOKUQs7uG8HkM7oR4G1l9qpsrp65kbnX9WdwZ+N+jtf/2M2MpRlMPT+JfjEBbN1Txl1fb6Xarnny7O6tWUTRRjgqy/CJ6ErEkWeTOudpj2mqy/ay7pkxBPY4gt63vYctJJqKPel4+QU70wx4+Ae0w+58X1WQzb9PnEHEUec6pxVuWEynkVcS2G0QyurF7h9fY/2LlzJo8i/4RHY5eIUUh4wE/XZq6Y4invo5lY3ZpViVonuEL8+c04NBnQOxOzT3fbudJSmFZO2tpFOQNxcMjOKOkZ2xWY0rPi/+ms7ctXuYOLILzy1IJ6e4ilE9Q5l2fhLzNubxwq/p7Cmp5pReoTx/XiL+3kardex76+ge7kugj5XPVudgd2guGBjJ5DO64e3l+WqS1pq3/szgwxVZZBRV0DXUlwnDY7j6qBhnmo9WZPHWn7vZVViBv7eV/jEBvHtZsnO9Le3ohGC39/Fhvvy0IY+lqUXOoP/a2F5uaR48LYGfN+fz04Y8Z9BfkV7EqJ5hnN47HDDunB/dP5JlqUUHJd+Ho6JNS0md8xSluzaiLFZ8o7vT4+pnCOw2CO2ws/3D+yjcuITKgiy8QzsRNfwCOp9zBxYv4xlB6XNfZM/yuXQ5dyLpXz1HVVEOoQNGkTRhGnl/zyN97gtUF+0hdNApJF7zPFYffwDWPTcW3+juWP0CyVn8GdphJ3L4BXS7dDKWep5FoLUmY/5bZC38kIq8DHyjuhJzygRiTrzamSZr4Ufsnv8WFbm7sPr6ExDfn+Rb33Wut6UFdh/sbGmnf/OSxzS7f3wNW3AkPa9/xTnNvBveyRYU4fY++/dPsPoGuQX9vpM+cUuTeO1L5K3qS8G63+g0Ui6DtAcS9Nuhartm/CcbufSIaF6+IAmHhrWZJXiZDwdyaE10oI1Xx/YkKsDGusxS7vt2Oz5eFm47obNzORlFlcxdm8u7lyWTX1rN9Z9u5rrZm/D2svDOpfumvbkkg4kn7msFfLMulzEDIvl6Qj9ScsuZNHcbQT5W7j81wWN+X/g1na/X7GHyGd1Jjvbj390l3PftNny8LFwyJJp/dhXz4A/bmXZ+EkfHB1NUXs3SHUU09IiJKz/awLK0hgPrwlsG0zm08fuGtNb8u7uEFWl73cpZm8OhKam04++97+Tm6Phg3lueyabsUpKj/dmRV86CLQWc1z+i3uW0J9pezcZXxxM94lKSrnsZtIOStLUoq3Ho0Q4HtpBoet7wKrbgKErT1rH9o/uw2HzofPZtzuVU5meQu3wuybe9S3VxPptfv55Nr12Hxcub5FvecU7LmP8mXc6d6Jwvd8U3RA4bQ7//fk15dgrb3puE1S+IhAvv95jf9LkvsGfZ13S/dDJ+ccmUpP7Ltg/uw+LlQ/SISyje8Q/bZz5I0oRpBCcdTXVZEUWbl9JQZdww9UqKtixrcDsNfmIhPhGdG0zTkLy/5xHa/0Q2v3kzhRv+wBYcRdTw84k74yaUpe6Jsdaa7N9nE3nMBTT0c01HRRkOezWWg3RCIw49Cfrt0N6KagrL7ZyaHEb3COMLnRi574tts1q49+R45/uuYb6k5JYx558ct6BfZddMHZNImL/R4jq7bzifrc5h9T1DCfXzck5bnFLoFgwj/L2YcnZ3LBZFzyh/JhVV8uT8VO4e1dXZk1CjrNLO9CUZfHB5b0b0CAGMVvWWnDLeW5bJJUOijda9zcppyeEE+lgBH/rGBDS4DZ4f3YPyKkeDaToFNf7kuZ5PLaPKrrE7NHed2JVxR8fUm/a1P3ZTWmnn0iHRzmm3jIijrMrOKa//g0Upqh2aa47qxKSTuta7nPakumwv9tJCwgafil8n43KGX0yi83OLl4348+91vveN7EpZdgo5S+a4BX1dXUXi+KnYAsMACB96Njl/fMbQqavxCgh1TivcsNgt6HsFRdD9yikoiwX/uJ5Ujp5E6udP0nX03c6ehBr2ijIy5k2n9+0fENJnhJGfqHjKMraQueA9okdcYrTuffwJH3QaVr9AfICArn0b3AY9xj2Po7K8wTTeoZ0a/Lwx5dmpZC74gNhTxtN34ixKMzaTMvNhHJXldB1zd530hesWUbEnjU4nXN7gcnd8/jjeoZ0IP+KMA8qfOHxI0G+HwvxtXDw4iis+2sBx3UM4rnsIZ/cNp2vYvp9mzVyZxaxVWaQXVFBW5cDu0HUCclywtzPgA0QHehMX7O0M+DXTlqftdZtvSJdALJZ9jxw+Kj6IsioHafkVbicfAJtyyiivcjBu1kaUy1OK7Q6Nt5mfExJD6RLqw/BpqxiZGMIJiaGc2SecYN/6q29scMv88mf+jQMpr3awMq2YKb+k0jXMh7GDouqk+/TvbP63aCfvXpZMtMvJxDdrc5n9dw6vXNiT5Gg/1mWW8sgPKfSK9m/wBKK9sAWGEXXcxWx46QpC+hxHSO/jCB96tlvXc9ZvM8n6fRYVe9JxVJah7fY6Adk7PM4Z8AG8g6PxDo9zBvyaaXs3L3ebL7DHEJRlX70O6nkUjsoyKvakuZ18AJTt3oSjspyNL4/DtTJqux2LzdinoX1PwCeiC6v+O5yQfiMJ7XsC4UeciZe/++UgVz5hsU3YUgdK49+1LwkXPQRAQEJ/qgqy2fn9Kx6DftaimQR0H0xA1371LjF97kvkrfyevvd83mBvgGhbJOi3U1PPT+L6Y2L5bWsBC7bk89yCNN64qBen9w7n23W5PPRDCg+cmsCwhCACfazMXZPLK7+739nrVWusAKU8T3McwKOca+adcWky8WHugdpiHngDfaz89J+BLEsr4vdthUxfvJspv6Tx7XX93U5kXLVU935NT0mfTgHkllbx/IL0OkH/oxVZPDZvB+9cmswJiaFunz0xP5Xrh8cyZkCkczk7Cyp4/Y9dHSLoAySNn0rsqddTsO438tcsIO2r5+h14xuEDzmd3BXfkjLrIRLGPkBQz2FY/QLJXT6Xnd+94raMmssB+yYoj9O0brh3pyE18ybfMgOfqHi3z2pOHKx+gQx85CeKtiyjcP3v7J43nbQvptD/wW/rXEOvcSi6971DovGP7ek2za9zL+ylBdjLirH67XtQWFXRHvJXz6f7FU/Vu7y0L58ha+FH9J30aaM9GaJtkaDfjvWNCaBvTAA3jejMhE82MntVNqf3DmfZjiIGxgVy/TH7WiDpBQ13PzbH6l3FOBza2dpfmbYXX5ulTlAHSI7yx8dLkV5Q4fZTt9q8rMrZazHppC4c+eJf/LghjxuOjfOYvqW6911pramodl/mjKUZPP1LGu9emuwx/2VVDqwW9xMlq1J0tBEvArr2JaBrXzqfcRMbX51A9h+zCR9yOkWblxHYbSCxp17vTFuek95i6y1OWY12OJxBe+/WlVi8ffGJjK+T1j8uGeXlQ0VuOqH9638arLJ6EdLb6LXoct4k/rr7SPJW/UjcaTd4TH8ouveDko6iLHOb27TyzG14BYS6BXyA7MWfoby8iRw2xuOydnz6GDlLPqfv3Z8SEN//gPIlDj8S9NuhtPxyPlqRxWm9w4gN9iG9oJw1GSXO1mZipC+z/85m/qY8ekb6MX9TPvM25rfY+nOKq3johxTGD4tle14ZLy5MZ/zRMXUuHwAE+Fi56bg4nvo5FYBjuwdTXuVgTUYJeSVV3DSiM/M35ZGaV8HwhCDC/G0sTyuisMxOz6j6uxwPtHv/9T920TcmgG7hvtgdmmWpRUxfksFVQ/cdnGt6HKaen0ifTv5k760EjKfd1Vx6ODU5jDcW7yIh3Ic+0f6szSzhrT93c765L9q78pw0shZ+RNjg0/AJi6U8N52S1DXOgOMbk0j2H7PJWz0fv9ie5K+eT/7qeS22/qrCHFJmPUTsyeMpy9pO+twXiRk1vs7lAwCrbwBxZ95E6udGCzi497E4KsspSV1DVXEenc+4ibzV86nISSWo13BsAWEUbV2OvbQQv1qtbFcH2r3vqK6kbPdmAHR1JVWF2ZSkrcXiE+C8TyL29P+w9qlzSf9mKpHDxlCWsYWd371MzMnj3ZZl3MA3i8ijR2P1rXtfzPaZD5Kz+HOSb34bW0g0lYXZxrbxCfCYXrQ9EvTbIT+bhZS8cm78bDN5pdVEBNg4q284d51odD9eObQTG7JKmfjVVqodcFpyGBNHduHpX1JbZP2j+0fiZVWc984a7BrGDIjk7lH137h2z6h4ogK9eXdZBg//kIK/t5XkaD8mmD+NC/X14q2NGUz7bSflVXa6hPry+JndOKlnWL3LPFAV1Q4e/iGF3UWVeFsVCWG+3H9KPFe7BP33lmdS7dDc9oX7MOAXDY5i2vlJADx5VneeW5DGQ9+nkFtSRXSQN5cdEd3grwDaE4u3H+XZKWyefiPVxXnYgiIIP/Isuo6+C4BOI6+kdNcGts6YCI5qwgafRpdzJ9b7e/Tmijx6NMrqxZqnzwOHnchhYzxe464RP+YevIOjyPjlXVJmPYzVxx+/uGRiT5kAgFdAKBnz32Lnt9OwV5bjG9mFbpc9TtiAk1okv55UFmTx72OnO99n/fYxWb99THDyMfS7dw4AgQkD6H37+6R9MYVd37+Cd3gssaddT+czbnZbVtGmJZRnpZB0W9cchAAAIABJREFUnfvlE+eyF7wPwIap7jf41fdAINH2yNC6B4mvzVKyctKR/uH+dVsU7dnY99aRGOnHs+f2aO2siAZ8vz6X+77d/kthte3oIVMWBx9o9/LhaN1zY/GLSaTH1c+2dlZEE6R88khV5i8z7tdav9jaeWnP5Nn7QgghRAchQV8IIYToIOSavmhRc66t/3e/QhxKNde7hRD7SEtfCCGE6CAk6AshhBAdhHTvi0Mqt6SKlxft4pfNeWQUVRLq50VytD9XH9WJM3qHo8yn8P22tYArP97Ayb3CeP/y3gDc+dVWPl+d0+Dyl945hM9W5/DSwrrjhvt7W9jy4LCWL5RoF6r25rLr+5fJ++cXKvMy8AoIxb9zMp1OuprwIWc462bB2t/YMO1KwgaeTO/b3wdg64w7yVnyeYPLH/LsUnIWf8ZODyPlWXz8Gfb6lhYvkxC1SdAXh8yuggpGz1iLr83CvaPi6WcOmrNkRyFPzEvl2G4hhJjP9Z/5Vxb/OTaO95ZnOof/ffzMbjxwyr4nqQ2ftooHTklwG7EuIsD4iWS3cF++Gu9+f4FFuT8ZT4gaFbm7WDtlNBZvX+LH3EtAvFF3CjctIfWzJwjpfSxe/saAUFmLZhJ3+n/IXPCeczjgbpc9TvzYB5zLW3XvcBLGPkDE0ec5p9UMbesb3Y1+//3Kbf1KSaerODQk6ItD5v7vt2N3aH68YQBBLoPlJEX5ceHAKHy8jAPfnuIq/m9zPn/cMYRte8r49O9sbj+hC8G+XgTXetR+kK/VbYCbGlYLHqcL4cn2j+9HO+wMePhHvPyCnNP9YpOIGn4hFpvxhMeqoj3k//t/DJnyB2WZ28he/Cldzr7dHHDHfdAdq18Q3iHR1GGxep4uxCEgp5fikMgvrWLBlgLGHR3jFvBrBPhYnYP5fL46m6Pig4kN9uHCQVHMXpWNPERKHCxVxfkUrFlAzKhxbgG/htU3wDm4T/aSzwnueRQ+YbFEHXMh2b/Plrop2hRp6YtDYkdeOVpDr+jGh+ictSqbO0Yaj6k9NTmMe7/Zxh8pRRzfI6TJ69ueW07Pp9xHNhsWH8zHV/VpXsZFu1eevQO0xi+uV6NpsxfNoss5dwAQNuhUtn1wL0Ub/iCk7/FNX1/Wdpbd7P6s/uCew+gz8eNm5VuI/SFBXxwSTW0LLd1RRObeSs7qEw6Aj5eFc/pFMOuvrGYF/fhQH2bWCvC+NunYEp40rXYWbVpKZUEm4UeeBYDF5kPEUeeQtWhWs4K+T2Q8fSbOdJtm8fY8RLQQLU2Cvjgkuof7ohRszi7jzAYa2zP/yqK00kHvKcud07QGm1WRV1pFU8cy8LIqukc03qsghG90d1DKGMnuiDPrTZe1aCaOilL+v737Do+qSh84/p0+SSaTMqmkkZBQQg1VWEAB2wIiCiIoKiyra8OCICCCbQH5CYgVXXXVRcRCEakqSpEqSKQlGNIb6X2SSWYy9/fHJBMmCRBKEiHn8zw+Zs7cuffcOOa999xz3ve3JzvXNUoSMoUKc1kBKp1nk44nUyjt1fEEoaWJoC+0CA9nFcPC3fnstyym3eCPTqNweN9YWY3JYmVrTD7Lx3agZzvHGuDTvjrNumN5PDzwysqUCkJ9Kp0H7t2GkfXLZ/iPmNag/ny1yYjVbCL/9610mLocXfueDu+ffm8aeQfW4X/Lwy3ZbUG4LCLoCy1m0ahQxn5ykts/PM6s4UF09XNBhm1I/729GdzTywetSsG4Ht72SX21RkcaWHM0u8lBv9qKvb79ubx1Kvt6a0GoFTp5EScXj+X4a7cTNHZWzZI9GSV/HiRj23v4/O0eFGot3gPH2Sf11TL0HU32njVND/rWanud+nOp9N7iuyk0OxH0hRYT5KFl+6M9eGdPBkt2pNqT83T2deal29vzxi9p3NbZo0HABxjd1cC7ezM5klZK36CGM6zrSy4wEbX09wbtJ57vi6dL2yp3LFyc1iuIHgu2k7HlHVLXL6GqsDY5T2fa3/sSad+9gUev2xoEfLAF/cyt71IafwTX8L4XPZYpJ5nfZ0Q1aO+74gQq16Y9IhCEyyUTy02ah1YlNx55ro9zU59BC0JL2hKTz+xNiTuKLar+UYv36dXuvq3dJaGNS1qzwJy145O5kiQta+2+XM/EdGZBEARBaCNE0BcEQRCENkIEfUEQBEFoI0TQFwRBEIQ2QgR9QRAEQWgjxJI9ocUcTi3h5e3JxGaXY3BRMW2AP4/+rd0FPzPgzaOkF1U6tE3q7cPSOzvYX5eYLLy0LZkfThdgsUrcFO7OwlGheOscq+xtPJHH+/syic8tR6uS0zdIz+f3d0Zou0r+PEjmDx9QlnICc1EWHaYux2fwvRf8THlmHEmr51GacBSlkyveg+4heNwcZHJbwqn4T54hd/+3DT4nVzsxYGW8/bXVYiZjyzvkHlhrWyKo88T3xskEjXn26p6kIJxDBH2hRaQXVXLfqljG9/TmzbHhHD9r5PnvE3BWy3mwn98FP/vU0ACm9q/bxqleDv3p6+JJKqjgs/s6o1LImLcliWlf/cnGad3syU4++y2Lt3anM+/WEHoH6jBXS5zOLr/6JypcU6orjTgHdsZ70D2c+ejJi29fUUbMskm4hvWm+7xNVOank/DfZ0EmI2T8CwC0n/QqwTU/1zq5eCz6jgMc2uI/ehJTXhphkxeh9euApawAS1nh1Ts5QWiECPpCi/jf4Sy8XFQsGhWKTCajo48zsVlGPtiXedGg76JW4OOqbvS9+NwKdsQVsnZqJP1DbPXM37wrnOHvHeO31FIGhOgprrCw8KcUPpnYiaEd3O2f7eTjfPVOULgmefQYgUePEQCc+Wj6RbfPPbSe6ooSwv/5FgqNMy5BkVSNnUXK2oUEjnkWhdoJpbMe0Ns/U3LmMJW5Kfj+8y17W9GpPRSd2k3U4v11CXm8gq7quQlCY8QzfaFFHEkrZUiYm0Oa0ZsiPEgprGw0Xe65Pj54lq6vH+bm94+x5OdUKqqqHfarVcoYEFz3R7aTjzP+ejWHU0sB2JNYTLVVIs9oZti7f9B76REeXB1LXI640xcujS3rXj8UmroLRvduN2GtLKc8LabRz+TsWY1Tu064hveztxVEb0fXvidnf/oPv8/sy9HZA0n4/HksxqJmPwehbRNBX2gROWVmvHWO2Ql9al7nlJnP+7mp/f14d1wEa6dG8sggf76OzuHxtWfO2W8Vni4q5HLH1L0+OpX9YiKlwIRVguW70nnx1hD+O6kzTioFd396igLj+Y8tCPWZi3NR6b0c2lRuPgCN5tO3lJeQf2QTvkPvc2g35aZQcuYwZSkn6PjYh3R46P8oSzzKn+/9s/k6LwiI4X2hGRxKKWHyF7H219OHBFz2vs6d6NfF1wV/vYaJn8dwJrecCO+mDc9LEpirJV65vT0jOnoA8NZd4fRd/jsbTuQx7QZRuU9oHnkH1yNZJbwGjnN8Q5IAiY7/eh+lsxsAHaYu48RrIzGmxeASFNnynRXaBBH0hauuRzsXfny0h/21u5OSXfFF5Na7o6997aNren2CPoG2sqeJ+SYivJ3x0akpKLdgtUoOd/u5RrN9HoCPq23/Hb2d7O9rVXLae2gbrAwQhAtRuXljLslzaDOX5AKgrrnjP1f2ntUY+oxEpfNwaFe7+aB287EHfACndh0BqMxPF0FfaDZieF+46pxUCkINTvZ/PJxV9A1yZW9iscN2u+KLCPHQnHeSXmNOnjUCdRcKfYNcMZmt/Fbz/B4gLqeczOIq+gXbqvHV/jsh32TfpspiJbXIRJC75vJOUmiTXMP7Uhp/mOrKCntb0YmdyDXOONcL1KWJ0ZSnxeBTb2jftp9+VBXnYqmo+96ashIA0IgJfUIzEkFfaBEP9vMj12jmhc2JnMktZ/3xXD49dNZh+H5bbD5D34nmbInt7vtIWikf7s/k5FkjqYUmtsXm8/SGePoE6egVYLvjD/d24uaOHszZnMjh1BL+yCjj2e9s2/SvCfZhBidGRnry8vZkDiaXEJ9bwfObEpEkGNvdq2FnhTaj2mTEmHoSY+pJQKKyIBNj6kkq8zMASFm3mFNvTLBv7z3gbhRaV+I/eQpjeiyFx3aQtnEpfsOnolA7Oew7Z89qtL6huHUe1OC4XjfchUrvRfwnz1CefprSxGgSPn8efaeBuAR2adZzFto2MbwvtIhAdw2rJ3fh5e3J3LryOAYXFTOHBTks1ysxVZOQZ8JSbSv3rFHI2Hwqn7d2p2OyWGnnpmF0pIHpQwMcVgG8My6cBduSeXD1aXtyntqlgbVWjA3n1R9T+OfXf1JtlegVoOPbKV3xdBGlj9uysuRjxLxxj/11+salpG9civegewiftgJzUTaVuSn29xVOOiJnfkXS6nmc+PdolE46fAZPJPiu5x32W11RRt5vGwm8o/FEOwqNM5EzvyZ5zQJOLByNwskV927DCJnwYvOcqCDUkEmS1Np9uC5pVXLjkef6OHs6i6Ai/PVsicln9qbEHcUWVf+oxfv0anff1u6S0MYlrVlgztrxyVxJkpa1dl+uZ2J4XxAEQRDaCBH0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2gixZO8atGxnGhtP5rFnelRrd+W6sj+pmHs+sxVNGdhez9qpXVu5R5fPUi0R8upBADRKGYnzb2jxPqRtXEbebxuJWrinxY99PSs+vd++zFDfaSBdn1/byj1qmqKYPcQumwSAW7ebiHx2dSv3qG0SQV/4y7t/VQzeOjUr7gpvkePteLwHfk3IEhiXU868rUkcTSvFVavknp7ezLk5GEW94j/nGv/pKQ4klzi0DQ5z4+uH6rK5VVmsLPwplQ0ncjFWWRkQ7MrCUaGEGhyTv+xJKGL5rnROnjWilMuI9HNm1f1dcNEoUCpkRM/sw/cn81m0IwWh+cW8eT9qvTfh01a0yPF6vLIDtXtdnovyjD9J27gUY8pJKvNSCRwzg6A7n7vofioLz5K0+kWKY/YgU6gx9BlJ+4kvo9C6ALaLt/Tvlzf62b5vHnMoQHT25/+SvfN/mHJTUDi5YugzkrAHXgdA3/EG+iyPJnnNAodMhELLEkFfEOoxOKvwuEh+hbLKaib9L4bega5serg76cWVPLshAZkMXrgl5IKfHd/Tm3m3BNtfq5WOT9le/SGFzTH5vHVXOD6ual7fkcp9q2L55YmeOKkUAPz4ZwHPbohn5rAglo7pADKIyTIiP2dXPq5qXLWKSzx74VqhcjU45PS3VlWgMQRh6DOKlLWLmrQPyVrN6bceRKHV0fX5dVSbykj4dAYJn82k46MrAWh326P43vSAw+fOfPi4rQ/nBPyUb/9NQfR2gsfPwyUokmpTGZW5afb35Uo1ajcf5CotiKDfakTQb0FfHMnm9Z9TiZ7ZB5Wi7q/z3M2JxOWUs+4f3SgsNzN/azIHU0ooLDcT4K5hSj8//nGBSnDPbIgnt6yK1Q/U3S2++2sGq45kc+jZ3va2tcdyWbk3g6QCE/56NeN7+jB9SABKxfnvTJtq7bFcPtiXSWJ+BTqNgv7Bej6e2AmAEpOFV7Yns/10IRXmanoF6FhwW3t7Kl1ztZXXfkhhS0w+BeUWPF1UjOziyWsjQ3lmQzy74m05+7/9w1bY5NspkQwKdWu8Iy1k/fFcSiqreevucJzVCiL9XJg1rIqFO1J49qZAe3BujFYlP2+9gVKThdW/Z7NkTBjDImx/0N8ZF0HUG0fYElPA+J7eVFslXtySxAs3h3B/37qkOuFeTo3u81Jl7/6C1PWv02dZNHJl3cVP4qq5lGfG0W32OsxlhSR/OZ+SuIOYywrRGALwGz4F/xH/OO9+4z95hqqSXIdh3Yyt75K9axW9/++QvS13/1oytq/ElJ2E2tMfn0HjCRg5HZniyv9c5e5fS+YPH1CRlYjCSYc+oj+dnvgYsJXBTf76FQqjt1NdWYEutBft712ALrQXAFaLmZRvXiP/9y1YygpQuXri2Xskofe9Rvwnz1B8clfNMb4FIHLWt42m4G0uutBe9r6mnefOvL6iU3soT4shaslBtDU5/0Pv+zen336IynteRGMIQKF1sd/1A1QWZFASd4jwf75tb6vISuDsTx/R4+UdOLeLsLe7BF27j8iuVyLot6A7uhpYsC2JnWeKuLWzJ2ALeJtO5TN3hO3Oz2Sx0sXXmX8N8sfNSclvqaXM3pSIp4vqivLEf3U0h0U7Unjt76FEBepIzDcxe1Mi1VaJmcOvrMDHqsPZLNiWxPPDg7ilsycms5Wf4wrt78/4LoHYbCMfTuiIt07FO3syuO9/Mex9OgpPZxWfHMxia2wB746PINhdS1ZpFbHZ5QC8+vf2ZBRXYnBW8erf2wO2qn2NWX88l9mbEi/Y1+lDAnhqaOAVnS/Y6gL0C3LFWV0X3G+KcGfe1iRissrpE+R63s9uiclnS0w+BmcVg8P0zBwWZB9ZOJZppKpa4sYO7vbt3Z2U9ArQcTi1lPE9vTlx1khGcRUalZzbPzjO2ZIqIrydmD0iiH7B+is+N0O/O0j6cgFFJ3fi2etWwBbw8o9sIvjuubbXZhPOgV3wv+1fKJ3dKD3zG4mrZqPSeeI1YOxlHzvn169IWbeI0EmvoQuLwpSdSOL/ZiNVVxM0duYVnVf2rlUkrVlA0F3P49nrFqyVJgpP/Gx/P+HTGRjTY+n42Ieo9N5kbHmHmOX3EbV4LyqdJ1k/f0LB0a1EPPIuWq9gqoqyKE+3lZBuP+lVKgsyULkaaD/pVQCULu6N9iP34HoS/zf7gn0NGDWdwFFPXdH5NkVpwhG0vmH2gA/g1vVGkMkpjT+CxtCwLHbOr1+hdHHD0Gekva3gjx/ReAVTfGo3p9+ZgmSuxDW8HyETXkTjefmltYWrTwT9FuTmpGREhAfrjufZg/7OM0WUV1UzuqsBAH+9hifOqT8f7KHlaFopG47nXVHQX74rjRduDuHOmn0Ee2iZNTyIl7YlX3HQX7EnnakD/HhscF2/u/nb7gwS8yvYFlvAmge7MDjMdne+fGwHblhxlFWHs3n6xkAyiisJM2i5IUSPTCYjwF1jD5p6rRK1QnbBu+Nat3byJKpm9OB8znfBcKlyy8x41ysJXFv5L6es6ryfG9vdiwA3Nf56DQn5FSz5OZWj6WVs+md3lAoZuWVVyGTgVa8mgLdORU6pbb8pBbZqga/vSGXBbSGEemr5OjqXCZ/F8NPjPa/4jl/p7IZHjxHkHVhnD/pFJ3dSbSrH0G80ABoPfwJGPmH/jNY7mNLEo+Qd2nBFQT/t++WEjHsBrwF32vcbNHYWyV+9dMVBP33zCvyGTyXg9sfsbS4h3QCoyE6k4Og2ujy3BrcugwHo8I/lHH3+BrJ3rSJw9NNU5meg9Q1D3/EGZDIZGkMArh36AKB01iNTqpGrtI2W2D2XZ89b0b104Um457tguNrMxbmo9N4ObXKlCqWLO1XF2Q22l6zV5Oz9Cu+B45Cr6ipUVuYkU5mfQe7B9XR46A3kShWp65cQs3QiPV/Z4bCt0LpE0G9h43p688TaOEpMFvRaJeuP5zGiowduNcHIapV4f18mG0/mcbakikqLFXO1dEV/yPONZjKKq5i3NYn525Ls7VarhMkiUVRhaTQYDnv3D9KLbRXvAt007HyyV4Nt8srMZJVU2QN6ffG5Fchk0P+cO1C1Uk6vAB1ncm3lSSf08mbSqlgGvx3N0A7uDItwZ0SExwUnxDVGp1Gg01ydIe5aGUWV3PTeH/bXd/fwZskdYZe9v8nnDMd39nUm0teZwW//wZ7EIoZHeFzgk3Vqq2U8OSSAMd1sF3Hd2+k4kFzMF0eyefn29pfdv1reA8cR958nsJSXoHTWk3dwPR49R9jrv0tWK5nb3yfvt41UFZ7Faq5Esphx8r/8yZbm0nyqCjJI+nIeSWvm29slqxXJbMJiLGo0GP4xfxiV+ekAaAyB9HptZ8N9l+RRVZiFW+TgRo9dcTYeZDL0Ef3tbXKlGl1oLyoyz9h+J3+bQOzySUS/MBj3yKG4dx+GR48RyOSXNm9C4aTDyenCF6d/VUUndlJVkInP0Psd2iUkJEsl4dNW4NyuIwAdH/2AIzOiKDq1237xKLQ+EfRb2PAId7QqBVtO5TO6q4Gf4gp5f3zdM7AP92fy3t4MXr69PV39XHBRy1m5L5ODKSXn3adcBvXrJpmr6xqsNW8uHBnKgJCGw86umsb/aK2a3AVztRXAYQ7C1da9nY6Dz/Rmd0IR+xKLmbUxkTCDlm+ndL2k+QbNMbzv66rmx0d72F+7amz/y3jrVOSVmR22za157aO7+Mz/WqEGJzydlSTmmRgeAd46NZIEeUYzvueMbOQZzUR4O9fs3zYK0NHb8QInwtuZjKLKJh/7Qtx7DEeh1pL/+xYMfUdTeOwnIh553/5+5o8fkrH1PdpPfBmXoK7ItS5k/rCSkj8Pnn+nMnmDL6pUXfc7lKy271rofQtx7TigwccVTo0/Muny9CqsNfuRK5qvwJUupDu9Xz9I0andFJ/eR+Lns9D6htF11reXNN/grzS8r3LzpuTPAw5tVosZi7EItVvDIkzZe1bjGt7XHthrqd18QSbDya/uok+l90Ll6mm/IBP+GkTQb2FqpZw7uhpYdzwPuVyGVilneETd3cvBlFJGRHhwb1TdEGFSzXDu+Xi5qDieaXRoi8mqe+2tU+OnV5NUYGJi7wsPPZ4r0P3iQ3JeOhV+ejV7E4sbvVON8HZCkmzPwGtHA6osVv7IKGNK/7rlRjqNglGRBkZFGri/ry+3rjzO6Zxyuvm7oFLIqbZevBpkcwzvKxWyBkvlAPoGufLajylUVFXjVPNcf2d8Ec5qOZF+zk3ef0ZxJYUVFnxcbcGqZzsX1AoZexKKuaeXbdi1uMJCdHoZ9/Wx/RHu0U6HVikjIc/kMKExIb+CwVdpgqNcqcbQ7w7yDqxDJpMjV2lx7z7c/n5p3EE8eozAZ/C99jZTdlJju7JT6b0wphx3aDOmxth/Vrt5o/bww5SThM+QiU3uq8br4hdxKr0Xag8/imP24nHOedRy8o8ASaI0/oh9eN9qqaIs6Q/8Rkyxb6dw0mHoOwpD31H43ng/x1++lfL007iEdEOuUCFZqy/al7/S8L5rh75kbFpBZV66/fdYHLMHJCuu4X0dtq0qzKLw+M90eOiNhvsJ7weShCkn0R74zWUFmEsL0BiufA6NcPWIoN8KxvX04q7/nqKowsKYbgaHu+gOXlo2HM/jQHIxPjo130TncCLTaA8KjRkc5sZ7ezNZfSSbQaF6fvqzkH1Jxbhq6/7zzhoWxAtbEnHXKrilkydWSSI2u5yY7HLm3hx83n03xbM3BjJ/axI+OjU3d/KgymLllzNFPDkkgFCDEyO7eDJncyJL7gjDy8U2kc9kttqHuj/cn4mPTkVXPxfUSjnrj+XipJIT4Ga70w1217AnsZjkAhN6jQJXraLRkYfmGN4/n7t7eLNidzpPbYhnxk2BZBRXsXRnGlP7+9ln7kenl/L0hnjeuiucqEBXkgtMrD+Wy/COHni5qEjIq2DhTykEu2u4pZPtgslVq+T+Pr4s+ikFb50KH52K139OxU+vZlSkp/08H+rvx4rdabRzUxNq0PL10RwS8ipYeU/H8/b5UnndMI5TS+7CYizC0G+Mw0x+rW8H8g5toPjPA6jdfMjZ9w3GlBOoLvA82y1yMJnb3iN792r0nQdReOwnik/vQ3nOHXzQnbNI/OIFFC7uePa8BUmyUp4WS3l6DMHj5l7R+QTe8SxJX85H7eaDR6+bsZqrKDrxCwEjn8TJNxTP3iNJXDWHsAeXoHL1ImPLO1jNJnxvnAxA5g8fonLzwSW4K3KlmtwD65GrnVDXTHbTeAVTHLMHU04yCic9CidXh99ZreYa3rdaqqjIjANAslRhLs7BmHoSucYFJ99QAM7+/ClZv3xqT5jk3nUozkGRnPn4KdpPfBlrZTlJX87H0G9Mg0l8OXu/QqFxxtBvTINju3UZjEtoLxI+nUn7Sa8iUyhJXbsIrW8o7l1vvOrnKlw+EfRbQb9gPcHuGmKzy1k82vH58DM32gLIlC//RCmXcXcPLx7q78e22Pzz7m9oB3fbeu2daZT/aGVMVwPTbvDnm5olbgATe/vgolGwcm8GS3emoVbKCTNomRh15XXUJ/f1RaWQ8cG+TJb8nIqrVsENIXXP8JeN7cAr25N55Os4+5K9Lx+MxLNmxrpOreCD/WdJyrc94+/i68Ln93e2z2h/eKA/p7KM3LLyGOVV1r/Ekj2dRsFXD0Yyb2sSo/9zAp1GycQoH54fXncBVWG2kpBnosJc+4hExv7kEv77WxbGymr89GqGhLnx3LAghyV+C24LQSGXMX3dGcqrqukfomf1A10ctnnh5hBUCjmzvk+gtLKaSF8X1jwYedWW7QHoI/qh8QqmPD2WsAcWO7wXeMczVBVk8OfbU5AplHjdcDd+wx4i/+i28+7PPXIoQWNnkrZxKdZvyjH0G4P/zdPI3feNfRufIRNRaF3I2L6StO+WIleq0fqF4Tu46Xf+5+N742RkChWZP3xA6oYlKJxc0Xesy1TYYeoykr9+hbj3H7Ev2Yuc8SUqne1iS6HVcfaHD6ioGdFwCepC56c/t6+V97/1YYxppzj28i1YK8tbfMleVVE2x1+5zf46e/cXZO/+wiFrn6WsAFNWgn0bmVxB56c+J2n1i5xacjcyZW1ynlcc9i1JEjl7v8JrwF0oGrmwlsnldJ7+GclfvUTM0gnIFEr0HQcSOWONmMT3FyOT6j8MFq4KrUpuPPJcH2fPiyR5Ef46atPwRs/sc9GVAteKr6NzmLs5sUEa3i0x+czelLij2KLqH7V4n17tfuUXf0LLqE3D22d59EVXCvwVNZavASBpzQJz1o5P5kqStKyVutYmiII7glDPoLeimbwqtrW7cUWqrRJUMODqAAAPHElEQVQRCw8xd/OFJzYK167oOYOIfXNya3ejyYpP7+fQ4xHkHdrQ2l1p08TwviDUiArUsfcp27JEreravh5WyGX2VQdy2ZVnXBT+OnRhUfRatBcAuVrbyr1pOl1YFD1e+hEAhabpk12Fq0sEfUGo4aRSNDpT/1p1PZ2LUEehdrJPzLuWXKv9vt5c27czgiAIgiA0mbjTF4TLVDvxD2Bgez1rpza9uMj0dWdYfzwPgPfHR9jTIwvC1VA72Q9wmL3fFGc+mk7ewfUARDzyvj0lsnB9EEH/OhPw0oELvn+pwelShL12kMWjwxwSC7W2oe9Ec2c3L54b1vT6AucG8/OZcVMgA9vbliXueLwHfvVm+/9wuoAlP6eSlG8iwF3D00MD7cl2ABaOCmX+rSFELf39Es7m2nZg2oULr1xqcLoUB/8VRtgDix2SCbW26HlD8ep/Z5Nq3tc6N5ifT+CYGeg7DQSgxys7ULvXJcEqz/iTtI1LMaacpDIvlcAxMxocP/T+hYRMmM/vMy6cQEi4Nomgf52JntnH/vMPpwuZsznRoU1VL61tlcXaoJ57W9c3yNXhd7bwp1SSCir4+N5O9jYXtYJjmWUAGJxV9pwCAEfTS3n46z95ZmggY7p5sTO+iBnfxePlorSXy9VrleivnTlYV0Wf5dH2nwujfyBx1RyHNlm9FLpWSxVy5fWxdPJqcQ3v6/A7S127kIrsJHt5YACFxoWy5GMAqFwN9jwCANaqCjSGIAx9RpGydlGjx1A664Err9Yo/DWJoH+dOXd9uV6rcGhLKzQRtTSad8aF83V0LkdSS5g5LIjHBgfwy5lClu1M43R2OQYXFbd38WTOiGB76didZwp599cMTueUY5VsVfQW3BpC93a2zGID3jxKpUVixncJzPjOlvwj45WB9nXin93XmZe2JZNaaKJvsJ53x4UTm13Oqz+kkFJoYkCwnhV3heN1TuW6tcdyWbk3g6QCE/56NeN7+jB9SIA9H/+AN49yby9vcsrMfHciDxe1nAf7+fH0jba0n+M/PUVCnonlu9JZvsuW//vgM1EEeVw42qqVjhX9tCo5asXFq/zV+ujAWfoH65lRM7oQ7u3E4dQSVu7LtAf9tujcNeUKJ71DmykvjegZUYQ//A65e7+mJP4IQWNnEnD7YxSe+IW0jcsoTz+NytWAZ+/bCb57jn0GeOGJnWRsfZfy9NMgWXEJ6UbIhAXoQroDcPT5AUiWShI+nUHCpzMAGPhJBjl7vyZx1Vw6P/0ZyWtewpSbij68L+EPv0t5eiwp37yKKTcFfcQAwqetQKWvewSTu38tGdtXYspOQu3pj8+g8QSMnG7PwX/0+QF4/+1ezCU55B36DrnGBb9hDxI4+mkATv3feExZCaR/v5z075cDONS0Px+5Uu3we5SrtA3aLkQX2gtdqG2FSlrNcYW2RQT9NmjxjlRevDWEN8aEoZDL2JNQxL++ieOl29ozOMyNnFJbRb65m5N4625bHu1ys5UpA/yJ9HXGYpX4YF8m938Ry96notBrlWx9pDv9lv/OCzeHMKabweF45mqJt/dksHxsB+QyGY99G8ej38Qhk8nsfXj0mzgW70hh2Vjb8b46msOiHSm89vdQogJ1JOabmL0pkWqr5FAK+OODZ3nmxkC2/as7exNLmLM5kd5BrgwJc+Ojezsy+qOT3NbZg0cHtQPAUFOydsCbRxnY3nahcbUdSSvlwb5+Dm3Dwt15cVsyVquE/BKrB7YlqesWE3LPi4Q99AYyhYKimD3ErfwX7e99Cbcug6kqziFp9TySvphL+LS3ALBWluM/fArOQZFI1RYyf/iA2DfvJ2rRXpTOerrP38rvM/sRMv4FDP0dU8hK1WYyNr9Nh6nLkcnlxH3wGHEfPIpMJrP1Qa4g7oNHSVm3mPCptpwxOb9+Rcq6RYROeg1dWBSm7EQS/zcbqbraofzv2R0fE3jHM3Sfv42S2L0krpqDa1hv3CKH0PHxjzi5cDQevW6j3e2PAra7crBdMOg7DSR82oqW+JULbYwY122DpvTz485uXgR7aAlw0/DW7nQeGejP5L6+tPfU0j9Ez79HhrL2WC6lJgsAoyIN3NHVQAcvJzr5OLP0zg5UWiR+TSwG6oKpq1aBj6va4a7YKsG/R4YSFehKzwAdk3r7cjCllIWjbG092tna9ibVVRJcviuNF24O4c7utn7eFO7OrOFBfPpblsO5/C3UjUcGtSPU4MQD/Xzp7OPE3oQiADycVSjktqH42j7VlusN8dDgq2uebIm5ZWa86+3b21WNyWylpPLiBVnaMr9hU/Dqfyda72A0ngGkb3oL/1sfwffGyWh92qOP6E/off8md/9aLBWlALYCOP3uwMmvA84BnegwZSmSuZLimF+BumCqcHJF7ebjeFcsWQm979+4hkWha98T3yGTKI07SOj9C2vaeuA7ZBIlsXvtH0n7fjkh417Aa4Ctn+7dbiJo7CyyfvnU4VzcOv+Ndrc+gpNvKL43PYBTQGeKavaj0nmAXIFC62LvU22JXo13CCqRIVFoJuJOvw3qUa8S3bFMI9EZZfznwFl7W2125pTCSrr5K0ktNPHGL2kcTS8lz2jBKklUmK2kN6GUq1IucygD6+OqarQtz2grj5pvNJNRbBttmL+trnKb1SphskgUVVjs1fIi/VwcjuXrqibX6FjytjHfTGmeyYzCldG17+Hw2ph8jLLEaM7++J+6xpovZ2VOCsqQbphyU0n77g1KE49iKclDkqxYqyqaVNJVplDidE6ZWJWbT6Nt5lLbSgtzaT5VBRkkfTmPpDXz67pktSKZTViMRfYKeS7BkQ7HUrv7Yi7O5WK6zvrmotsIwuUSQb8Ncq6XbU6SJKYPCWRsd0ODbdu52YplPLT6NAYXFYtGheGvV6NSyBjz8UnM1Rev3aCQ02BIWyEHWb1McbV1IKw1/144MpQBIQ1rqLtq6grP1J+YKJPZRhZak7dORW6Z44VHXpkZrUqO/py+Cw3J62VqkySJwNHTMfQf22Bbjaftkc3ptx9C5Wog7P5FqD39kSlUnFw0Bqn64hd/yBTI5PKGbfW/mzVfKslqK54Uet9CXDsOaLA7xTkVA+tPTEQmA8l68T4JQjMSQV+gezsd8XnlhJ6n7nVBuZm43ArW/L09QzvY7mLSiyopKLc4bKdSyLFehYjrrVPjp1eTVGBiYu8rW/6nVsipbuGrgL5BruxJLGL60Lolajvji+gTqBPP8y+RLqQ75WfjCTxPJjdzWQEVmXG0n7EG965DAajMS8dSVuCwnVypQroKAVft5o3aww9TThI+Q66s8p9cqUayisc9QssSz/QFZtwUyKZT+Sz6KYXYbCMJeRX8eLrAXqzFXavE4KLkiyPZJORVcDi1lCfXnWmQnz7IXcP+5BKySqooaMIQ+4XMGhbERwcyWbk3g/jcCuJyytl4Io/FO1IvaT9B7hoOp5WSUVRJgdFsvyiZ8NkpFv+UckV9PJ+HB/pzKKWEN3elE59bwccHzrItNp9H/9auWY53PQscM4P8w5tIWbsIY3osFVkJFPzxI4mr5gKgdHZH6Woge/cXVGQlUBp/mDMfPdkgJ73GK4iS0/upKszCXFrQ2KGaLOjOWWT++BEZ21dScTae8sw48g5tJHXd4ot/uF6fSuMPU5mfgbm0wD6KcOqNCaRc4r6aymqpwph6EmPqSSRLFebiHIypJ+3lgoXrn7jTFxjawZ3VD0SyYlca/z2UhVwGwR5aRne1DffL5TI+nNCR+VuTuWXlMYLctcy5OYiXtzsGzQW3hbBgWzIDVxylqloi45WBl92nib19cNEoWLk3g6U701Ar5YQZtEyMurQJTs8NC2LW9wkMfScak0WyL9lLKay0P7q42noHuvKfCZ1Y8nMqb+9Jp52bhmV3hjO8DS/Xu1zuXYcS+exq0jatIOvn/4JMjtY7GEPf0YCtjnvHxz4k+cv5HHvpFrTeQQTdPYeUr1522E/IhAUkr1nA0TkDkSxVDPwk47L75DNkIgqtCxnbV5L23VLkSjVavzB8B1/anX/QmOdI+HwW0fOGIplN9iV7lbkp9kcXV1tVUTbHX7nN/jp79xdk7/6iWRMjCX8tstrnqMLVpVXJjUee6+Ps6dw8M8SF1lebuS96Zp8mr+GvL+ClA62ShndLTD6zNyXuKLao+kct3qdXi9ni15XazH19lkc3eQ1/fQemBbRoGt6kNQvMWTs+mStJ0rIWOWAbJYb3BeEKDXormsmrYi/pMzM3JhCx8FAz9UgQbKLnDCL2zcmX9JmEz2Zy6PGIZuqR0NrE8L4gXKaoQB17n7JlN6s/v+FiZo8I4onBtiFcH51INStcXbqwKHotsuUEqD+/4WKC7ppNu78/AXDZowTCX5cI+oJwmZxUisuuWe+tU+Otu/h2gnA5rqR2vdrNG9y8L76hcE0Sw/uCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoN+cpNbugCA0TpKo/X5KtheC0Mok8UVsCSLoNxO5TFZVYba2djcEoVHl5mqskmSUyRVV1VUVrd0dQaC60lgNiC9jMxNBv5moFbJjB1NKWrsbgtCofYnFFaWV1b8iV0SXxh1q7e4IAsWx+yxAdGv343ongn4zKTZVf/jmrnRjUYWltbsiCA5OZRnZHFOAVeLb6vLi/6RvXmE0lxW0dreENiz34AbJUppvBMQVaDOTiccozUMmk8mcVPL3nFTyh+6N8lF183dRqRWy1u6W0EZJQHmVlb2JRRWbYwqotFgftFqltTKZTCZXOy2Xq7SPeA+eoNKF9FDJlOrW7q7QFkgSFmMhBUe3lZXEHbRYq0xDJEk62drdut6JoN+MZDKZDOitUcrudVYpuiJD09p9EtooCSQoKzFZ9lolvpEkKfXct2UyWZRMpblXoXbqjkwmvqdCi5Cs1fnV5SVbgY2SJBW1dn/aAhH0BUEQBKGNEM/0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2ggR9AVBEAShjRBBXxAEQRDaCBH0BUEQBKGNEEFfEARBENqI/wdnnlfdbaOeugAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YMzp0si39cGj" - }, - "source": [ - "#### Interpret CATE model with SHAP" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "FS1Uy2V-9cGj" - }, - "source": [ - "shap_values = est.shap_values(X)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 194 - }, - "id": "cXdMGuBY9cGj", - "outputId": "f980abf2-c1ed-4305-f76c-48fae99331d8" - }, - "source": [ - "import shap\n", - "\n", - "# effect heterogeneity feature importances with summary plot\n", - "shap.summary_plot(shap_values['Y0']['T0_1'])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAACxCAYAAAAVms4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwcdfnA8c8zu5uz9wktLaXlhgKWARSQ2wtBRDxAuQQRlFMQUEFFUBBBVEBE+IHcwg8BtRyiUOAnN8NVCpRC6UnviyZpmuzuPL8/vrPJJk02u2mSnbbPm9eW2dnZ7z4zu5lnvsfMiKpijDHGmPLyyh2AMcYYYywhG2OMMbFgCdkYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxmx0RGS2iOzcbl4gIgeIyKUi8o0iyrhERK7uvSjbSvbVBxljjDFxoKo/K3cMHbEasjHGmE2KiNwmImdE0wNF5AERmS4iT4rIHe1qxaNF5NHo9UdEpKa34rIasjHGmI3V30Rkbd7zbTtY5mfASlXdXkSGAK8CD+S97gN7AB8DjwPfAm7ujWA3hoRs1/40G7TJkycDcPjhh5c5EmN6hPROqV8pvK/XBzv63K+q6rSWIkSCDpY5EDgTQFVXiMjf273+uKquit7/EjChlLBLsTEkZGOMMRu9svWw5tews0B1b32Q9SEbY4zZAHhdPLrtaeB4ABEZBByxPoWtD0vIxhhjNgDSxaPbLgVGiMh04CEgwPUX9zlrsjbGGLMBKK3+qKrjOpjnR5NP581uAI5R1bUiMgB4FrgpWv6Sdu9v87ynWUI2xhizAei1Bt3BwGMikgCqgHtU9Yne+rBCLCEbY4yJPe0iIXe30VpVlwC7d/PtPcoSsjHGmA1A75xNFSeWkI0xxsReb9WQ48QSsjHGmNjrKiFvDCwhG2OMiT3dKOrAhVlCNsYYE3tWQzbGGGNiQEmUO4ReZwnZGGNM7FmTtTHGGBMD1mRtjDHGxIAlZGOMMSYGrMnaGGOMiQGrIRtjjDExEFpCNsYYY8rPmqyNMcaYGLAma2OMMSYGLCEbY4wxMRBuAk3WG/8hhzHGmA2e4hV8lJuIfEZEbhGRydFzX0QOKqWM8q+FMZuAbEaZ/149j//ufZ6/Yw6qWu6QjNmgKFLwUU4icibwJ+B9YL9odiPwy1LKsSZrY3rZmro0lx/3NrWr6hBxO46pkxdx2v17lTkyYzYcMT/t6RzgYFWdLSIXRvOmA9uVUoglZGN62VXfm04mHbYkY4BVS5vLGJExG55y14K70B+YF03nmr9SQEl/6LE+5DBmY9CwOosXhpDNkkinSaTTSDZb7rCM2aCEeAUfZfZ/wI/azTsLeKqUQqyGbEwvS2hINpUklcngRcfOYXlDMmaDE4eBWwWcCUwWkVOA/iLyHlAHHFZKIZaQjellKoKXzbYkYyDejW/GxFCcT3tS1YUisgewJzAW13z9sqqWdOxtCdmYXpbr+1LaJuKmhgyVtfYnaEwxYl5DRt2pEy9Fj26xvYExBagqf71rKcuXZznx5BH0758ovZBoMFdWpGWXEgLLP6hn1K6DeizW7lhw90ze+85zkFXGXjSRoZ8eSe3uw0gNrCxrXMa0F+casojMo3UwVxuqOrbYciwhG1PA90+dxZqGEEQIXpnFrXeMJ5Eo7Ug9ISEewpraGqrXNkU1ZWXwljXdimnVzNW89MupVPZPst1XxzF8j2Ekq0v/U142ZQHvHvt/LQcJ8y95jYXRPmWXV7/MgEnDuxVfX2v49RSa73+bxMETkIffhoYmKq8+nIqv7Vru0EwPinkN+dh2zzcHzgbuLaUQS8jGdGLGnCbqGiGdSgHghSH/enQlXzx8aGkFpRUJQ8KER32/GrxsSE1jI9WDKkqOacnU5fzzyKcRIJEJ+ejBuXhJ+PSf92GLz40uqaz3Lni1ZVoIW/71UN75wr/45OLjSo6vr62YdC2Z15cAQua1BVSSxiNN+uv/QwbBO2ESlb84HNmyxO/MxE42xglZVZ9pP09Engb+Bfyh2HLiu4YmFpauCdnzzgx7351h9drW8QnprLL3nc14v2pCLl2LXNLI3jevpa5p47kC1UXXLKMulWBNwiMtQuh5zJ3fVHI5QkgqmyEZhqSyWZKZDHTzSl2PHPcsAiSzIZVZV2fQDDx31osll9U4YzUhQhZFcX3dIR5ZhOzy0teztzU8OYeGKXMIG9M0v72UcE2a9OuLyUXuYg8RFHdYIWRvD8iMu4Dw7Y/KHb5ZTyFS8BFDTcBWpbzBasimoBE3tCbhgdeHZM4VEp5wymMZXpir0UglgYTwwvwsFzzezJ++tHH0P9Y3hEjC9RlnBbxMyNChnf/JvP5yHbdf+xHZJmXcNhWcd/kEAMSTNrsLTxX1uncsnK3P4AGJsDWhCxA2dT6YU1VpnFNPxfBqknmDyLyaBJm6NIJHGF0RWKISw9IGh/a62Tv/hea3lwNKigwCSG2KSiAZnUSWu4Ci4kVJOZeYE+gJN0NwSbnCNz0gzk3WInJpu1k1wKHAY6WUE981NGWXTmfWmff9J9zO7753FZICKYkO6xQE/jm95y54MX9FhpunrOGFGeW5qlWbY25xu/tUZcd/MksXN3PTVfPJrnXH6rNnNHHTlXMByGa1dbSHgpcNSWS7l/BUXJrJeq3RKcrwPYby8hkvMvtvs9osn17dzMOD7uHJif/ksZH3MvOP77a8Vjm8Cq9lPSWqW7pIwzBeNY7mt5cjhCTJRIk3RBuaCUm65AwkCHHD5lxdOUEWj6xL0x8uLvMamPUV8xrymHaPKuAa4IRSCrEasulUR62qU+a6mWtzeXdtNm9soZDNe1MYKiMuq2d5g5JMwC8OSfHhCuXLO6U4bMdUwc/e7kfLWLkmt6NVTt63isu+3n+916lYL01biyhIGFKTdX/uqkrYSSJdtSJDUrXl8pgiwlsvrwbcUa+Kq7MhECYTaDbLqnlrqChw2tPSdz5mxqPzGbBFLTt9bUu8RJR6VMkkPDTMUpVRPIVlzy5lRTZk7v/OYsWry5l0hc+iJxbw0tFP4WW1ZaT3Oxe8yoTTdwAguzr/gEtJkcVrab7uWuN7K0kOqyI1tLqIpYuXXlDPyhun4vWvYMDXtqFi3EBy12lqeysBF2sz7reUhDbLQOtBla7to4O69+bDIZe46ad/CRM2g+nzYfgAGDqgb2LYSMXgalydUtVv90Q5XSZk3/crgJeBJ4MgOC9v/tnAucCuuOt1Xg98JXr5AeCMIAgaeyJIUx5hB7lndD+XmBAgo2333KFSlfeLOvgml4wRyGThosfToMotr6R55cxa/DEd//yu/FcD89dAk7im3gEKtz3XVHRCnjariZ/esppB/T1u/MFgKitK+0NetirLxX9aSUJgYCbv2FuEJUs7bgEYt3XVOucZq3isbcySFWlJiBA1pGaz3PYV1x/cf1KC1OCQBx95ma0+PYwXfj+DMKNIOoMXHeA8e/lbeKGCF71fIRHScrERAdQTyCof3vo+2313O1745jN4za3JGJE2R1m1uw1m7dx6PCDpGnZbyipUf697YSHT9/573tnVUcPw0Cp2mHY0FZvVdvretdNX0Dy3jv6HjEXyavlNsz6medZqJOUxZ7/7W8pdcsH/kRxZjaCEJNZJttpyCAFpKkiQjua3fhdCFq+x3a7oqbfhsddh4hh48CVIJuGm78LgfgXWvAjbn9U6vfX3IelBJtqaX/sU/O/561d+sRrWQjATRg6E7bfom8/sZTGoBbdR7K0VVXVK0WUWcxs43/d3wiXlw4MgmOL7/kTgReDQIAie8X3/ZmAn4Ejc38LfgTeDIPhesYGsh26NjsmGys1TlUUNyskTPcYMWP8v+62lISc/HpLy4O4veowbGN8jumI0NWWouq7tvIPHwrw6mLEsdHvttXkJSpUDxypvL4ElDbRm9Fx/p0b/KOyxBTRlPAZUCj86sIIX5obsvkWCCUM89v3dSurSrUkspcowDVlwrTsNJxsqh16yjI9WKBUJ2G/HCvbaroL7n65n7hIloYqoksDtlA/avYqfnzyIw85bRH0j1FbDw1dvRjKRlyRV+coPF7GyHlIJSGehMswyqDnTWssCEuk0d921NZ4nhKHy8IMreGdqPTU1Cd4LVoPn4YWhSwiqXHn7dlzyrWlUNqdJhCGiLhnXrmnEC0MkVNC8y+ZnQxLR5vLSacglrVBdQo7WDREIlQH1zS1JWVVJRs3jXlIgrXjN2ZZkLYDXFDJ4mwGkBleSaUxTH6xwn0VIteava8iww7dk4GdGs/mZEwFY/rcPmXvJyzS/vZK2Z2PnevdcIKnR1WQWNyJJj8ptBzHmxgOoe2wuS2+eRrhoTcu7BIWUx4DDxlH/0ExyKVZa/qQ1alIPo+ZoiZqt0y0HAx4hFTS3JOFKmhCUBM0k3PA0Kqlz5e48Bt66Ev76HHzzupbPgGzLZ/PLo2H8SPj63pAo4pzz+kb442PuNz5zMdzyROHlbz8LHn0V7nvOPT9wZ5jSvvuxE6ow8Rx4fyFMGg9nHgrvzodv7AM7b9m63OJVsNlJrc+/OAkevrhw2Wub4Zxb4JHXYM+t4b4fQrIb59w7vZI5p8q1Bff1u+hZfZqxRWRW10uhqjq+6DKLvS9rVCM+D3dpsH8DjwVBcKHv+9XACuCwIAiejJY9GJgMDAmCYG2xwXRTtxLyD5/O8tvAvXVsf5h+UoLq1Pp9nzW/z9AYtQIOrYJlZ2zYPQIfLM2wze2dvJgOXR9yc+hqymFUW+6oWh0qZKOG0NzvrZMqWCoB4do0WfFa/qwTobK5hsyLEvKhv1jGrKXuNB1QEgpJ1ZbmnmSUjHOJToBB/WBVfevnjBgsPHDFZi3Pv3fFUt6d3dqE6wkkM1kGpDMkWwYLQUVzmkm7VHPaD0Zz502LeOWFete0DZDJkAIqwmzLKn79e6N5+PrZkKGlhjpw9Woqcv3zqpCNGuOi172oVu5lM62129z8MGxT265ek6YiHbrXw9Y4vdAdEEhW3eLRe7zmkIrGqK4RamvCByrCNKmWAVJhS9Idd90+JAZWMPP4p9o0GefX+VsPPTuox0RB5d+1tm1rgqvn5qZby25tpBSyJKKCkmRaEnIla1sGdbnXmlsODmpYFiVv9z5FEb0H9vgJBB/mRZK/C8m658cf4JJnVw79JTz2WtfLFXLvufCNfbtebp+fwPPT150/oAbe+QOMjk7tGvltWPJx22Xeux62HdV52afeADflHUzsPh6Cq7uOqWO9khjfkOsL7ut30zPiVYXuhlKqcNcC7wJTcbuXn0bzt8N1YL+at+xrQDWwbQ/EWFBdXV23pp/9qPW7nVsH7y5qWK8ymzNhSzIGWLG2+7HFZfrdhV30OKTDaGernR8WaV4Szi1ToD00He0PSQgkPEh4ZBMeVYnW2OYvzyVjAEElbw+QS8YQDcRy8pMxwLJV7pVcmR/MbzuALVRIekoqzOJFid0DNJHgnamN3PHnRUx7o6FtoZ5HKmxtMfCA2e+vRsKoX1bd+ciSN0IaEfAEzW9WLrRbadmWSjLtTljKeq7pWvKaxnNJLT8ZA2ii88KzUQ9sSNsbvi+//0PqnltE60VAc2OYc8ms9dHxpYrWndVRFJL3aP9cSUQjwfMTvkQpOz+ptr7qasiyznxGDiwQXLTcP18p6m9En32ngzUp0bPvFvVZ4bQ5Hb9/9Rp4a07r8ks/XmeRemn9XXZY/ksz2yyv0+YVXr7AdG+J+aCuHlF0Qg6CQIGngeHAnUEQ5EZJ5Dr28n8FueleH8XQv3//bk0fNr511XceBjuPqi36vR1NVyQ9tsjrftpxaPdji8t0Tf8Cg3VEXP9Y0oOqBG1qvzmqUe253Xvb/epylTRPYEgN6/S5poB6T1pi26FN37O6Gqrkz2kXBjBySNt540e5tJ0rc48d2l6kY+gASCOsrqhom9Ciybmzm9hm+7bbJ6FtE1IIfOrg4WRVaK5ItTyaKiraJNa2wUcHN6qE+dszr2VBMlkqm7IkswqeR9jutKo2K67aegCg6gZ4tVkmV25IRXTphfZlDThgFIO+MLalSEeiWq6ukxLXkVw3Ou1gqj1pN+0R0jbpuwSdJEOKDIm8M6oraGxTgkb/AXDDyTCiP+4bCvNiUFp+rJ/arqi/ETlsj07jL9qhuxf1Wd7R+3T8/s0Ggb916/LjR7Z9PSH022ZM4fJP+2ybt8jEsYWXLzDdW1w7SuePchKRASJyjYi8KiJzRGRu7lFKOUW3qUb9xhcDVwI/933/gSAI5uJuMQUwEFiVNw2wupRg+tLFn/LYZTgsaoCvbydUFKg5FOv9kz1+9rxSnYSffWrD7j8G2GnwuvO+uBX0r4B739aW1r2Wqlio1KTAHyX8d46i7Xf+QK6+s9dY2HZYkq2HJTjmE0meeD/LbqMS7DbKY9wlq1jS1Jqo+oUhA/J2w/edP4Tjf7+CN2ZlGFgNp3+hlgN3qeQ716xg4XLI5PqPowQ5oFq4+ccjOPPqZcxbkmX08AS3Xtz2spCXnzGUUy9fwvtzswwZKKi6C2Y0J2BtGFIVumbhVDTKeo9P9efzRwzhPw+vZPHCZiorhOf/vYLGZIqKMERUyagybrtasnl9kaHnsbaygtrGRtcXHMVJrik6avJXAU/yfkPiTknyVFtq7Dm5Edy55moEkoNSZFY2IwqJjILkuhSUfrsOYsRhY5j7u7fJ1mcQVSrI5DUPu7RUveMgBhwwii1+vjviCTs9+2U+OHEKzR+sxtWWpYN0qgw6bluaPviYzOJGqncawhZ/+DSr/zWXJVe+SnqO211IlQdppXKHwQw9fRcWnf40mtfk7nqxyTtAaNtMrhD1H6db5nlRf3CCDB4ZslQAaYguf+LljvzGDoNFN8HqRhh+EqQzrsSEBxd/HSpTrn+2GHecBYdOgmwImw2Ez/+y6/ckJOrCAb73OfjCpOI+68/fh6H94aGX4aSDYY+tXR/y4T4My6v7vHsd9PsmNGfcBvvghq7LPu1zMLw/XPl32GkM3Pz94mLqQzGvBd8AbAFcCtyFu5Tm+bgBzkUrdlBXJfAKMDkIgot83/8LMA44GKjE9SF/MQiCKdHyBwEPE+M+ZNO1txdn2PnOtvPO/ARcc2CC1JXptlu+KQtZJeVB86XuGs0PvNXEV+/KO90k+q31q1A+uLA/I/t3fNBy76trOP6ONQwQIaFK/1AZM9TjqUuKu/xhU1r5x38bmDEvw+hhST63VxWjhhXfn//enDSnXr6MhLYed3uq9GtuZrsRynEnbMYOO7e9DvWKZWku+v7MNhf88DIZfn/3dvz0a2+1JmVVBq6uoyKToTrTTCIp1OzWTO1WISOz40kmhXf/sYBMcxb9uKklA1UOSjFodBUrguV4oZII85p2syGVza27K/Hg8LeP5I3zXmHhQ7NJZlrzcdaDI+rcZXefGfO/pOc3oAhJsqTyvtAQZT89ZZ1tk23M8NZO95KeVQciDPzSWKjPsObVpaQ2r2LUZXsx+KitC25fzTs9LF/TjJXM++ZjrH11cWsiFqVq4hCapy6LzituezDSn9Ukcc2x7qAkTQJ1CTg6YkySISX1yNQrYecxbT80DOGKv0NlAs77UtvWiu5IfbV1VHUq4QZt/ftNl4R3nwD9q+HGU2HrAv25PaV960vf6ZUPfVH+XHBf/0k9tWwZW0SWADuo6nIRWaWqg0RkNDBZVYs84iq+hnwF7tSmS6LnZ+H6ks8NguBq3/fvAi71fX9a9PqlwB19kIxNL9qyg1aowZVC0uvgdx/Nqsk7vfioiZXcfJTw66ebyWSVfilh4uYJrjuiimH9Om9BOHr3Gn7zVBML5mbop26/9rsTi+/9qEwJXz+o+6evjBmZYPNhCRYtzbTUyrIiiCq77dV/nWQMMGRYqqVGnuOhvPdGPYmwdQBa9domV9sV4aznPwPA5MmTAdj/8B0B2Occd56wqjLz8QUkUh5bHbw5ALds8wCIkPVcU30idCPKQon6kVXZ/bd7Ujmkkr3+si+Tn/iITH0mSsjqasuRqq360zTfjRNIk8gbLNW5RHWS3T5sfx390nSUjAEqtx3M1sE3SS9qYM0LC0gOraZ6r83wKpO8n7wazbbf0yvpaBcmKBlSpMhGvc0JkjTi4Wq/esgubpR1e54HF31l3fnd1Xgf/PA2V9v+zfHFjdTuLeVJxr0m5jVkj9au2noRGQgsBAofnbZTzHnIBwPfBXYPgiANEARBne/7xwGP+77/OHAOcB0wI3rbA8APSgnExE91ZWsDYs7RO7g/iv5VUJcb8xVGfcVAbburZn5nzwq+s2fpN1F47YeuvXxFfUhtpVC5niPgS1FT5XH9BUM5+ryFEJ0LLUBVqNRWdx7H9jtUMn16MyqCF4akwpCRW1QRoiTDkNqGBpK5UeiqrJy7hsFjO7/jk4iw9efb3jAiDCERtUC3NF2LMHT/kez+412oGVVD1YjWvu0vzvoaj466j7Axi5dR9nzggJbXmj5ak1eykEaoiL7vjhqj+0pqs1oGHrlN25keJKJTunK/ylxTdprcj05basUVNJIk3fr+2St6P3Bwpwr9/uS++axNTJwvDAK8CewPPAn8F9eEXU9rTixKlwk5OpVpnepGEATPAvlXADgpepiNRCKRIEGG3PjMhMD2Q9xu8KEjExxyX9Yl4rxzkS/ct2dP9RpSoCbdm4YOTLSMrAbcICvPo2FN55cGPevS8dz1h3m88WIdtbXw5ZPGMGJ0pTt/NpNpTcaRWc8vZfDYLUsLzBOyCqn0urunIbut26TvJT0OW3IMYTrES7V9R/OStg1YuUtnCiEdNYKU0/BrD2H59x5Hor5lSQmDL92P9I8fzp3QhEeWZhLU0IzQ7nuqj9/NMkxpYl5DPoXWBpyzgcuBQcDxpRSyYZ8oa3pdwzkeZz8ZkgZuPMRraW48eFyCV08Qvj05w4ylwsAk/HjfBGftXXptOK68/CY/EZpEujxKP/bsMRx7dtt5irv8ZzbqE3cztVs9bYnaJNmGLOlUAslkkdDVlIfs2MEIvPx1Sa0bt6bbHiC0DpqSDkdGl9Og03aj/zHbk56xgtSEwSSGuFaAZT+eTCIv+bqzxrOkqYxOe4rS9ZVfL1fopofEPCHPUdUsgKouAb7TnUIsIZuCKpMeN36u4yQ0aTOPN0/ZeBJwe0MGeqz4uDVpKcouO3d+WcjOiCpNqRRNqRSVzc142SypTJamxtKbhQ+6xuc/p70EuJHQFaokaxLs9pOJJZfVb+Ig6qIrdQmaN6hLkFQZ+z47kRhYRWKPtoOhwqpKZG1TNDJcqP3zEXjPz0KX1dH84UKS2SYSVxyF95XdyxO06TExT8iLROR+4B5Vfba7hVhCNqYTvzhzKGf/cikhkAhDRg702HGHzvt8CxIhkc2SDFt7P1NVpSe9cQeN4htTPsvqOQ0MGldL86pmBm0/KLrxRGkmPXIIz45/kLAhg5BFaL3gysjTdii5vHIYtvIiVvg3kl1QR+1Vn6P25N3hu58sd1imF8S8D/mzwDHAPSKSBe7FJee3SinEErIxndhmywr+8adRzJnXTMqDLbfs3n2eswl3feuaqCYHgOexzf7DulXegC1qGbBFVFMfXXqNPadyRDUHfXwMzcubqBhWxYcXvsyKB2cz7OgJbPUrv9vl9iWvKsWwaWeWOwzTB7JxG9iQR1VfB14HLhCR/XHJeYqILFTVXYotxxKyMQWkksLWW3UvEbdQdw/k9ruThiVNDNy8Z29dWCpJeFRGo7InXLUXE67aq6zxGNOZsAcu3tRHpuMuMz0X2KaLZduIdRuAMRuDZCZLVTrtbgwB0eUsQ4Zv23f3dzZmQxempOCjnERkkIicLCJPAh8CB+CuajmilHKshmxML1NPkDB0t2XMu1xmqjp+A6eMiatMifc172MLgOeBe4CjVHVVF8t3yBKyMb1MPY9MKumucZ2bV9aIjNnwxLzJeoKqLlzfQiwhG9PLBgxOsma5kkm3XhzEi/EAFWPiKBvjhNwTyRisD9mYXveDG3dEEtBYVUVDZSUkhK/+esdyh2XMBiX0pOBjY2A1ZGN6WXVNgp8/sBvzZzQwfEwVtQNSXb/JGNNGnGvIPcUSsjF9IJnyGLeTjao2prs2llpwIdZkbYwxJvaynhR8lJM4p4jIFBGZGs3bT0RKuoi6JWRjjDGxF+eEDFwKnAzcBIyN5s0HLiylEGuyNsYYE3sxb7I+EfiEqi4TkT9F82YB40spxBKyMcaY2It5Qk4A9dF07jID/fLmFcWarI0xxsRemPAKPsrsMeAaEakE16cMXAZMLqWQsq+FMcYY0xVNeAUfZfYDYDPgY2Agrma8JdaHbMyG439Of42p88cAwju3v8CFf/tUuUMyJpZiUAvukIgkgK8C3wQG4BLxPFVdVGpZlpCNKaO3PkqQuwHjknRNWWMxJs7CRDxvxqKqWRG5RlVvBdYCS7pbVjwPOYzZRFSFrbeZSKoS3PZ6GaMxJr7Uk4KPMpssIoevbyFWQzamjKrWrmVtVZWbbm6mvq7sOxZjYimuTdaRKuBvIvICMI+8G7qp6vHFFmIJ2ZgyqqlbQ2VzGkSoXLOWxlRJ9zM3ZpMRerFOyNOix3qxhGxMGSXWZtjrzVl4ofLqtltQaXdKNqZDcU7IqvqLnijHErIxZfTJabNZNrAWFWH39+YxZ+mQcodkTCzFOSGLyEGdvaaqU4otxxKyMWW0ZFA/Mkk3enTxoP4suHMW/HTPMkdlTPzEvA/5lnbPhwMVuOtZF335TEvIxpRRcypB/3QjyTDLqlQt04cMKHdIxsRSnGvIqrpV/vPo3OSLgbpSyrGEbEwZaWUj+y6chgBvDR3F8NXxPNfSmHLLxvQ85I5E5yb/CldDvqbY98X3kMOYTcA2Hy8kd6LTxOULGNyULms8xsRV6EnBRwx9BghLeYPVkI0poyfGTeBbR32DpkSSnz7zJP1WWkI2piPZGDdZi0ibc4+BGty5yaeXUo4lZGPK6Ld778+yfu6SmWccegTnP/ZEmSMyJp5CiW9CBo5t97wBmKGqq0spxBKyMWWUf9Sf8TzqvVQZozEmvuI8qAvYQ1Wvbj9TRM5V1aL7kNtabcoAABLoSURBVLtMyL7vVwAvA08GQXBe3vyzgXOBXYHjgW8BE4EFQRBsXWwAxmzKdvu4jucqUoQi7Ll0FYlUrHc6xpRNNp79xDk/A9ZJyLiR1j2XkIMgaPZ9/1vAy77vPxIEwRTf9ycClwOHBkGwyvf9BcBvgO2Bbxf74cZsKva9J8NzC9z0hIEw82M3XbvtSJIoe855n8ueepDR8z8CjihbnMbEVRxryHkXBEmIyIFA/lHDeHrjtKcgCN72ff8nwG2+7+8J3A1cHwTBM9HrfwPwff/EUj7cmE3BzJWtyRhakzFAQ2UlAAurNueRLfbh8rk3wZszYNdt+zhKY+ItpjXk3AVBqoBb8+YrsAg4s5TCSjnkuBZ4F5gKZICflvJBvaWurs6mbTrW00sb6VI65XHw89H9zN9dUPaYbdqmuzvdW7LiFXyUg6puFV0U5O7cdPQYr6p7q+o/SylPVIu/mL3v+z/GNVWfGwTB7zp4/UTg4j7uQ7ar8ZvYG3xdhlVNbjohkI1+tYlsSHVzmt/f+Sj++wvZiadJ6oPlC9SY9dcrVdmzvvZuwX39tffvEMsqdCmKHmUd9RtfDFwJ/Nz3/QeCIJjba5EZsxFZeWaSlz7KMKwGJgxO8sTsDGEII7a9gYowxIt2NdeP+gLnlDdUY2Ippk3WAIjIAOASYH9gGHkHJao6tthyiqrn+75fies3/n0QBD8CHgJu930/fr3sxsTUXqOTTBjsjoEPGZfks+OTiNCSjNOeh/Sz056M6Ugcm6zz3ABMAi4FhuD6jucC67QkF1JsDfkKoBl3BABwFq4v+Vzgat/3k1FZKUB8368CCIJgbSnBGLOpeWaXHZgwfzGJMGTm6BGsyNifjDEdycS4hgx8FthBVZeLSFZV/yEiATCZEpJyl4cVvu8fDHwX+FYQBGmAIAjqgOOAX+Q1ZTcCN+GGejdGD2NMAdssnkuzetR7VWy5dBFrU3atHmM6kvWk4KPMPCB3/kS9iAwEFgIljacq5jzkJ4F+Hcx/FqiNnr5Fa+3ZGFOkRCMsGDqQNZVJtloCNQ0lXWnPmE1GDJqlC3kT13/8JPBfXBN2PTCjlELscNyYMpoycRxXHbo/oefxmakzOOypl8odkjGxFPMm61NoHch1Nu5spEG4q1gWzRKyMWX04J47tlyB6D+7bMtuwdtljsiYeIpzDVlVP8ybXgJ8pzvlxHcNjdkEjFm1omV6SEM9XspGWRvTkYwnBR/lJM4pIjJFRKZG8/YTka+XUo7VkI0po3GLl3Ds6lWsqq5h1LLljP7kwHKHZEwspSXWTdaXAp8Bfg/cGM2bjxth/b/FFmIJ2Zgy+r9R29AkUBFmeX6bLTly20XlDsmYWCp3LbgLJwKfUNVlIvKnaN4s3FlHRbOEbEwZrUhVsaK2puV5KttUxmiMia90jPuQgQRuVDW0Xs65X968osR6DY3Z2O26cHHL9E6Ll9CcqChjNMbE11pPCj7K7FHgGhGpBNenDFyGuzBI0ayGbEwZnfT6u+y2aBHNiQT7f7iAgbtsU+6QjImldAzvh5znXOB23MVBUria8b+x056M2XD8x/8E/ZsaSYYhDxywFX85cUS5QzImlppiOKhLRDZT1UWquho4UkRGAFsC81S15AEhsT7kMGZj9/k3XmV5v/4sGjSIg994g+pBtV2/yZhN0FqRgo8yaX8lrhtV9ZXuJGOwGrIxZXXM9KOp/ts/0Yxw5O1HljscY2JrTfn7iTvSPqgD1qcwS8jGlFmiUqCy3FEYE28fx7DJmtYR1T3CErIxxpjYi2lCTorIgbTWlNs/R1WnFF1YDwdnjDHG9Lx4NlkvAW7Ne7683XOlhIuDWEI2xhgTfzGsIavquJ4szxKyMcaY+IthQu5plpCNMcbE3yZwkq4lZGOMMfFnNWRjjDEmBiwhG2OMMTFgCdkYY4yJgXie9tSjLCEbY4yJv40/H1tCNsYYswGwJmtjjDEmBiwhG2OMMTGw8edjS8jGGGM2ADaoyxhjjImBjT8fW0I2xhizAbA+ZGOMMSYGNv58bAnZGGPMBsD6kI0xxpgY2Pjz8aZwQytjjDEbPJHCj3UWl9kisnMZIu02qyEbY4yJP6shG2OMMTEgXTyKKULkeBF5S0SmishDIjIimv+CiOwRTd8gIm9H00kRWSYitT2+Ph2whGyMMSb+SmyyXvftsjPwa+CzqroLMA24Lnr5SeDgaHpfoFFENgf2AN5V1YYeX58ObPBN1iLyODCs3HEUkkwmh2UymWXljiNObJu0ZdtjXbZN2tqAtse/VPXzPV2onp9c30brA4FHVXVh9PzPwJvR9JPARSJyN7AceAaXoLcCpqzn5xZtg0/IvfHF9zTf94MgCPxyxxEntk3asu2xLtsmbdn26FXPA5OAL+KS8zPASbiE/LO+CsKarI0xxmwKngIOFZHNouenAP8BUNUm4DXgR8ATwIvAPsAu0XSf2OBryMYYY0wnnhCRTN7zHwP/EREFPgROzXvtSVyf8SuqmhWRD4BZqtrcV8FaQu4bN5U7gBiybdKWbY912TZpy7ZHCVR1XCcv3d7J8lcAV+Q9P7QXwipIVLWvP9MYY4wx7VgfsjHGGBMD1mTdR3zf/yNuGH0TUA+cHQRBUN6oysv3/WOBC4AdgXOCILi+zCH1Od/3t8U1oQ3FnW5xfBAE75c3qvLxff9q4ChgHDAxCIJp5Y2ovHzfHwrcCUwAmoH3gVODIFha1sBMr7Aact95DLeD2RXXT3FfmeOJgzeAo4F7yh1IGd0I/DEIgm2BP+LOjdyU/R3YD5hT7kBiQoHfBEGwXRAEE4GZuItbmI2QJeQ+EgTBw0EQpKOnLwBb+L6/SW//IAimBUHwDhCWO5Zy8H1/BO7cx79Gs/4KTPJ9f3j5oiqvIAieDYJgXrnjiIsgCFYEQfB03qwXgS3LFI7pZZt0QiijM4BHgiDYJBORaTEG+CgIgixA9P8F0Xxj2ogO4L8H/LPcsZjeYX3IPcT3/deAsZ28PDK30/V9/2jgm7hmuY1asdvEGFOU63DjTza5sRabCkvIPSQIgkldLeP7/pHAr4CDgyBY3PtRlVcx22QTNw8Y7ft+IgiCrO/7CWBUNN+YFtFgt22Aw61lbeNlTdZ9xPf9w4BrgM8FQTC7zOGYGAiCYAluYNsx0axjgNdtBK3J5/v+5cDuwJeDIGgqdzym99iFQfqI7/tLcact5O9sDw6CYHmZQio73/ePAa4CBuO2TQPw2Wig1ybB9/3tcac9DQZW4k57eq+8UZWP7/vXAl8BNgOWAcuDINipvFGVj+/7O+FuEzgDaIxmzwqC4MjyRWV6iyVkY4wxJgasydoYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxpgYsIRsykJExomIisgWvfw5p4nInXnPHxORC3rzM03HROQDETmxyGX75PfRF0SkMlr37csdi4k3S8gxJyLjReR+EVkkIvUiMk9EHhKRiuj1E0Xkgw7e19n8b0U7up938NrTItIUfc7HIvK6iBzVO2vW+0SkFrgUuCQ3T1W/oKq/KVtQXYi+m33LHcemoDe2tYgcICKZ/Hmq2oQ73/6qnvwss/GxhBx/jwILge2A/sCngMcB6WZ5pwIrgJNFJNHB65epaj/c/Xn/CtwnItt287PK7VjgLVWdWe5AzCbvr8BBIrJ1uQMx8WUJOcZEZCguEd+oqh+rM19Vb4yOukstbwfg08AJwObAFzpbVlUzwA1AApjYQVmni8gb7eZtJSJZERkXPf9LVKOvE5F3ROSbBWK7RESeaDfvaRG5OO/5ziLyuIgsFZG5InKFiKQKrPKXgf90VmZes+gJUXwNIvKoiAwWkV+LyJKoZeL0vPefGDU/XigiC6NlfpsfR1frLSK7iMi/ovVYkVtvEXkzWuTfUSvF/3SyrWpE5A/RZywTkb+LyNi815+OYnogimGmiBzR2UbKW6cfiMj86D1Xi8jQqIzVIjI9vzYpIkkR+ZmIfCgiK0XkSRHZOe/1lIhck7cNL+zgcz8tIs9G22CmiJwnIkUfaIrIUSLyZtSa86aIHJn32jotRCJyW26bdratRWR2tF7PRvMDEdmjozLy5s0WkWNFZBTuvueJ6L31InICgKquBl4BvlTs+plNjyXkGFPV5cDbwP+IyPEismMpO6wOfBeYqqoP42rep3a2oLgm8dOBNPBmB4vcA2wvIrvlzTsReFpVZ0fPnwV2Awbhmo5vE5EduxO4iIwAngEeBEbjWgo+A/y4wNsmAcVchvMoYF/cnanGAS/hbgQ/Cvg28Pv8hIe7H+1YYHwUx+HA+Xmvd7reIrJ5tB7PRJ+1GdEN51V11+j9n1XVfqr6nU7i/R3wyeixJe4Sk5OlbYvHCcBvgYG4uwPdLiI1BbbBllG846NtcSYuueQubfog8Je85c8HjgcOjdbhv8B/RGRA9PqPgMOAvYGtonVtuY9vtD0ejcofDnwRd1vS4wrE2EJE9gbujj5nKPAT4K8islcx7+9iW58GnA0MAf4GPJq3XoXKXIA7yM1GZfZT1dvzFnkL95s0pkOWkOPvAOBp4BzcjQgWi8hP2yXmrURkVf4DV7ttISJVuB1obqd6C/AFWXfQzEXR++cDRwBHqeo6fdGquhL4By5hEcVzAnBr3jK3qOpyVc2q6r3A1Gh9uuN44E1V/bOqNqvqR8AV0fzODAZWF1H2Zaq6IjoAehhIq+rNqppR1cdw15j+RN7yIXC+qjZGzeG/wR2MAF2u93HAB6p6hao2ROvSpmWgEBHxcNv5YlX9SFUbcL+NHYA98xa9T1WfV9UQuAmXmLcpUHQj8IsonjdxB2GvqOqLqpoF7gK2FpGB0fLfBq5U1elRa82lQBaXWMF9L1eq6geq2gj8EMi/Tu/3gftV9R/RdpqOO3Ao9H3mOxF4QFUfi76nR4CHgJOKfH8ht6jqq6raDFyJ2zaH9UC5q3FJ3pgOWUKOOVVdpqo/UdVJuBrMBcDPiBJhZJaqDsp/4HZ4+b4G9MPtWMHVTpYC7Wthv4rKGKGqe6vq5ALh/QX4ZtRce1AU34PgEoeIXCoi70VNiquAXXG1oe7YCtin3UHHrbjaWWdWAl3WbHB99Dlr2j3Pzeuf93yJqq7Jez4b2AKKWu9xuBsFdNdwoBKYlZuhqvXAEmBM3nIL815viCbz16G9JVHyzmm/HXLrmytjTLsYQtx2yMWwRfQ8P4YleeVtBRzT7vv8Oa4rpRhtPj8yk7bboLtm5ybUXex/LtH3u54G4MZvGNMhS8gbEFVdo6q34Wpcu3WxeHvfxfUHTxORRbga8GA6H9xVjP8ATbgm2xOBe6PaELhbCX4H1xw8ODpIeJPOB6PVAbXt5o3Km54DPNHuwGNgNACtM68D3Woi78KIds2/43DbE7pe79kUrql2dbeXpbhtPi43Q0T6ASPo2/soz2sXgxc9z8XwUbvXa2l7MDYHuLXd9zlAVYu9s1Obz4+Mz/v8rn5P0Pm2zo9bcN0Tue+3TbkiksRt+5xC9yreGfebNKZDlpBjTNzgoivEDWZKRQNpjsL9Yf+3hHJ2xPULHolL5LnHnrga5qHdiS9qyrwDOAt3y7xb814eAGRwCcQTkZNwNcXOvApMEpHdo/U8A1eLyrkD8EXkJBGpimqi40Xk8wXK/DtwSOlr1iUPuFJEqkVkPK45NtdX2NV63wVsJ25QWI2IVIhIfoyLKJCwo5roHcBlIjIqOjD4LTAdeLmH1q8YtwEXiMi20XiDi4Ak8Ej0+p3A+SIyQUSqcc36+fubG4CjReTwvN/2jiKyf5GffztwlIh8TkQSIvIF3G8w1yXzBu7A6bDot3IksF+7Mjrb1ieJyKSo5ed8oCZvvV4FDhY3gLES+BWQP7BwEW5QV/5vFxHpj/t7+2eR62c2QZaQ460Zd/T9IK6paylwMXCWqt5fQjmnAq+p6mRVXZT3mArcT4HBXUX4C7A/rtk8PyHcjhsc9QGutrQjBQ4iVPVp4BrgX7im0pHAc3mvLwIOxI2cno1rjn4IVyvqzJ3ArlHS7ElzcDWmWbh1/Bcu4UAX6x0N/DkANyBtPm4Hnj8g7CLgUnEjl//cyef/AAhwo3bn4pp5vxQdIPWVq3Cn8vwbWIzrsvhsNJoYXP/+48CLuO00F7fdAFDVabh+2XNw3/cSXJIvqktDVZ/D9aVfjfst/AY4VlVfjF6fiRuYdRPub+fzwAPtiulsW98EXBuV+w3gi6r6cfTa3bik+hquiXwu7nvOxTUD+BPwctQUnxukdgzwlKq+X8z6mU2T3Q/ZbNRE5DRgH1UtavRuEeWdiBtQZeeTboREZDbu+72rq2VLKLMSmIY7aHq3p8o1G59kuQMwpjep6o3AjeWOw2y6olHohcYNGANYk7UxxhgTC9ZkbYwxxsSA1ZCNMcaYGLCEbIwxxsSAJWRjjDEmBiwhG2OMMTFgCdkYY4yJAUvIxhhjTAz8P0lQ4GVHRfA4AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 193 - }, - "id": "rowyWQ_l9cGj", - "outputId": "0dc74436-6ca5-417b-e45c-b260c20b6e19" - }, - "source": [ - "shap.initjs()\n", - "# explain the heterogeneity of the effect of any single sample\n", - "shap.force_plot(shap_values['Y0']['T0_1'][0])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/html": [ - "
" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - " Visualization omitted, Javascript library not loaded!
\n", - " Have you run `initjs()` in this notebook? If this notebook was from another\n", - " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", - " this notebook on github the Javascript has been stripped for security. If you are using\n", - " JupyterLab this error is because a JupyterLab extension has not yet been written.\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 70 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dA1nRbFK9cGk" - }, - "source": [ - "# 5. Validation and Sensitivity" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Nds7Fwyg9cGl" - }, - "source": [ - "y, T, Z, X, W = gen_data_iv(2000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-zHcWkF19cGl" - }, - "source": [ - "#### Instantiate any CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "0nMA97Jh9cGl" - }, - "source": [ - "from econml.iv.dml import OrthoIV\n", - "\n", - "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_t_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_z_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " discrete_treatment=False, # categorical/continuous treatment\n", - " discrete_instrument=False, # categorical/continuous instrument\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z91lWEiQ9cGl" - }, - "source": [ - "#### Enable dowhy capabilities" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "QEe9XMai9cGm" - }, - "source": [ - "import dowhy\n", - "est = est.dowhy" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BIWgh7Ce9cGm" - }, - "source": [ - "#### Then fit" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "roPf-t439cGm", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4d24cac9-58fa-44fa-87e9-f8e57ec68176" - }, - "source": [ - "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 74 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5tlyZMcP9cGn" - }, - "source": [ - "#### Use it as a normal EconML cate estimator" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "lHr9Ooaa9cGn", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 290 - }, - "outputId": "e86a4da8-cbac-4271-ae99-8d312fd1949c" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.035 27.933 0.0 0.932 1.049
X1 -0.012 0.027 -0.441 0.659 -0.057 0.033
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------\n", - "X0 0.99 0.035 27.933 0.0 0.932 1.049\n", - "X1 -0.012 0.027 -0.441 0.659 -0.057 0.033\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 75 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "o1z0z-E79cGo", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "outputId": "5cf7bc63-16c6-4eb4-9cd7-3ecd7a7128fd" - }, - "source": [ - "est.effect_inference(X[:5]).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
00.2860.0456.3620.00.2120.360
12.7300.07138.6180.02.6132.846
20.6780.03022.8660.00.6300.727
30.7600.03819.9510.00.6970.823
42.5390.08629.6050.02.3982.680
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 0.286 0.045 6.362 0.0 0.212 0.360\n", - "1 2.730 0.071 38.618 0.0 2.613 2.846\n", - "2 0.678 0.030 22.866 0.0 0.630 0.727\n", - "3 0.760 0.038 19.951 0.0 0.697 0.823\n", - "4 2.539 0.086 29.605 0.0 2.398 2.680" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 76 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cAPR5eMZ9cGo" - }, - "source": [ - "#### But now we also have DoWhy capabilities: Sensitivity Analysis" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9aUCWN489cGo" - }, - "source": [ - "ref_res = est.refute_estimate(method_name=\"add_unobserved_common_cause\",\n", - " effect_strenght_on_treatment=0.05,\n", - " effect_strength_on_outcome=0.5)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "7bTLzM_H9cGp", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "7b5fdb67-e26d-46f0-b46d-572001977533" - }, - "source": [ - "print(ref_res)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Refute: Add an Unobserved Common Cause\n", - "Estimated effect:1.0314669223854354\n", - "New effect:0.9983858330683743\n", - "\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MuaLIl6X9cGp" - }, - "source": [ - "# 6. Policy Learning" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Z5NSUCzK9cGp" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_oGYT0HP9cGp" - }, - "source": [ - "#### Fit a Doubly Robust policy tree" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "PLk_-21M9cGp" - }, - "source": [ - "from econml.policy import DRPolicyTree\n", - "\n", - "est = DRPolicyTree(max_depth=2, min_impurity_decrease=0.01, honest=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DVBwu-oh9cGq", - "outputId": "8972c75a-1793-4611-959c-708e85ea5796" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 81 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WNpPMq0Z9cGq" - }, - "source": [ - "#### Visualize treatment policy" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "4YnPJkJW9cGq", - "outputId": "5b9b02ea-01dd-4c3a-d598-4fb61b8e02ce" - }, - "source": [ - "est.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAEGCAYAAADFbPcfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1frA8e+7yaaSQgqpEKp0FRBBVETALipcEMUC9vvzXnvBgt2r14p6vfbeBRXEjlesFEEEUZrSE0oqCellc35/zCRsyiYbSLIJvJ/nyZPdmTMz78zOzrx75swcMcaglFJKKdVaHL4OQCmllFIHF00+lFJKKdWqNPlQSimlVKvS5EMppZRSrUqTD6WUUkq1Kk0+lFJKKdWqNPlQygsi8pqI3G+/PlZE1vs6piptLR6llGqMJh+qQSLynYjsFpFAX8fSVhhjfjTG9PZ1HFXaWjxtiXvS2ELzHyUiaS01fy+W/52IXNrEaV4QkfUiUiki0xope7aILBKRIhH5roFyF4qIaWos6uClyYfySES6AscCBjijBebv39zzVO2Lr/cBXy/fR34DrgR+9aJsDvAE8G9PBUSkI3AbsLpZolMHBU0+VEMuBJYArwFTAUQkUERyRWRAVSERiRWRYhHpZL8/XURW2uUWicihbmW3iMh0EVkFFIqIv4jcIiIbRSRfRNaIyHi38n4i8piIZInIZhH5p/0Ly98eHyEiL4vIThHZLiL3i4hffSsjIneLyAci8r69rF9F5DC38X3tX5K5IrJaROpNuGr/2hWRziLykYhkiki2iDwtIgEikiMiA93KdbJ/QcbWM8/G1vMiEVlrx71JRK5oIJ4tInKjiKwSkTx7fYPscTEi8qm9jjki8qOI1HscEJERIrLMnscyERlhD58sIr/UKnudiMyzXweKyKMisk1E0kXkOREJdo/V3gd2Aa/Ws9xpIvKTPY/d9vY4xW18oojMs+PfICKXeYj/cuA84GYRKRCRT9y2T+19cLi9r+aKyG8iMsptPvVuexEJBb4AEu35F9ix3S0is0XkLXua30XkEBG5VUQyRCRVRE50m7/HfbihbSEi/8L6cfC0veyn69sOtRlj/muM+QYo8aLs/4wxs4AdDRR7EHgKyPJm+UoBYIzRP/2r9w/YgPULaQhQDsTZw18B/uVW7h/Al/brQUAGMAzww0patgCB9vgtwEqgMxBsD5sEJGIlw5OBQiDBHvd3YA2QDHQE/odVE+Nvj58DPA+EAp2ApcAVHtbnbns9JgJO4EZgs/3aaa/vbUAAMBrIB3rb074G3G+/HgWk2a/9sH5JzrRjCAKOscc9AzzktvxrgE88xNbYep4G9AAEOA4oAgbXjsdtGy+1t2kUsBb4uz3uQeA5t3U+FpB64okCdgMXAP7Aufb7aCDE3ja93MovA86xX88E5tnzCAM+AR50i7UCeAgIrNoHai17mv05XWZv3//DOvmJPf4He9sGAYcDmcBoD9u1+nOrtX2q90EgCcgGTsXaB0+w38c2ddu77WclwEn2tnsDaz+73d7mlwGb3cp73Ie92BbfAZfWWv6nwC1efL9/AqZ5eSy4FPiunuFHAr/Y261OLPqnf57+fB6A/rXNP+AY+6AXY79fB1xnvx4LbHQruxC40H79LHBfrXmtB46zX28BLm5k2SuBM+3XC3BLJuxlG/ugHgeUup/AsE6S33qY793AErf3DmAn1gn4WGAX4HAb/y5wt/36NepPPo7COvn517O8YcA2txPFL8DZHmLzuJ4eys8Frqkdj9s2Pt/t/cPAc/bre4GPgZ6NfAYXAEtrDVtcdbIC3gLutF/3wkpGQrBO0IVAD7fpjsI+2dqxlgFBDSx7GrDB7X2IvS3isRIGFxDmNv5B4DUP86r+3Gptn4vd3k8H3qxV5itgalO3vdt+9rXb+3FAAeBnvw+z1yeSRvbhhraF/f479vGEz34mH1jJ0C/A8P2NRf8Ovj+97KI8mQrMN8ZUVaW+Yw8D+BYIEZFhYrULORzr1xtACnCDXX2dKyK5WCeMRLd5p7ovSKzGaivdyg8AYuzRibXKu79OwfoludNt2uexfj16Uj29MaYSSLOXkQik2sOqbMX6VdyQzsBWY0xF7RHGmJ+xfiWPEpE+QE+sGoH6NLSeiMgpIrLEvtSQi/UrPQbPdrm9LgI62K8fwarhmW9fQrilgXi21hrmvj3ewTpJAkwB5hpjioBYrBPkcrfP5Et7eJVMY0xjVf7V8dvzxV6HRCDHGJPvIS5v1d6PJtXaZ48BEmCftj1AutvrYiDLGONye1+1Pt7sw562ha9dCawyxizxdSCq/TkYG1upRtjX588G/Ozr8mBVkUeKyGHGmN9EZBbWyScd+NTtZJCKdUnmXw0sororZRFJAV4ExgCLjTEuEVmJ9QsarJqJZLdpO7u9TsX61RhT38nfg+rp7bYOyey9nt1ZRBxuCUgX4M9G5pcKdBERfw8xvA6cj3UC+aCBk67H9RTrTqMPsdrgfGyMKReRuezdRl6zP6cbsBLEAcACEVlmrDYA7nZgnRjddcFKJAC+BmJF5HCs/eA6e3gW1sm1vzFmu6cwmhp3rbiiRCTMbZ/rAjR1We7DU7FqPuq0HfFi2+9vt+D7sg+782W35GOA40TkVPt9FDBIRA43xvzTh3GpdkBrPlR9zsKq2u6HVatxONAX+BHrIAzWL9/JWA363nGb9kXg73atiIhIqIicJiJhHpYVinUAzQSrcR9WzUeVWcA1IpIkIpFYVeQAGGN2AvOBx0QkXEQcItJDRI5rYN2GiMgEsRpyXot14F8CVNVS3CwiTrvB4TjgvQbmBdb1+Z3Av+11DRKRo93GvwWMx0pA3mhgPh7XE6sNSiDWNqqwGxyeWM88GiVWY+CeIiJAHtbnXFlP0c+BQ0Rkit0gczLW/vApgDGmHJiNVZMShZWMVNUmvQjMlL0NkJNE5KR9ibc2Y0wqsAh40N7WhwKXYG3n+qQD3RuZ7VvAOBE5SayGv0FiNYxNpvFtnw5Ei0jEPq7PvuzD7rxZvxrEagwdhJVAOe319dTo2M8u6w847LJOe/Q0rONC1THiF+AerLYtSjVIkw9Vn6nAq8aYbcaYXVV/wNPAefav/J+xru0nYrX4B8AY8wtW47insRoobsA6SNXLGLMGeAyrPUE6MBCrDUmVF7EOzquAFVgnxQqskyZYyVAAVmPN3cAH2NXlHnyMlTRVNaacYIwpN8aUYSUbp2D9en8Gqx3LugbmhV2VPg7rkso2rMs4k93Gp2Ld0miwkjdPPK6n/Qv/aqwEZTfWZQ5Pl28a0wurMWsB1jZ/xhjzbT3rlQ2cjlVLkg3cDJzudhkOrKRzLDC71q/26Vif+xIR2WMvrzmfQ3Iu0BWrFmQOcJcx5n8eyr4M9LMvacytr4D9GZ2J1dg4E6s24ias9j8Nbnt7/3gX2GQvI5Gma+o+7O5JYKJ9J8xTACLyhYjc1sA087Fqp0YAL9ivR9rTnici7rfMXmCPfxarXVQx1r6KMSa31vGhDNhjjMnzMnZ1EKtqCKdUu2D/8nzOGFP7koA3096N1dDy/GYPrOHlvgLsMMbMaMI0+7yeSinV1mnNh2rTRCRYRE61q/6TgLvY27i1zbMb5E7A+gXeULl2vZ5KKdUUmnyotk6wriPvxrocsRa406cReUlE7gP+AB4xxmxurDjtdD2VUqqp9LKLUkoppVqV1nwopZRSqlVp8tFEol2rK9UmiFuPrvZdGvO9mOY2EXmpmeMQEXnVvuNkaXPOuznJPvSAq/YSq0+gYhF509extFUiskBESkTkp8bKep18iHatXodpY12Zt7V42htp5u7XGzvYi0hXces8riX48oQjrdjdvDHmbWNMo88+McY8YIxp7u1xDFZ/MMnGmCObed4+0RqfnX0yH9uSy2hg2dO8OUHWY5wx5gK3+dwnVseBFfbddA0t83gR+Vasjhq3NFDuOPu44PWxSKzOHF8RkT0isktErm+k/HV2uT32dIFu474Vq5PMPWJ1snimh3m8YsfZs2qYMWY0Vj9VjfIq+RDtWl21MN0H6qfbpV1IAbYYYwqbOmF7/nzbc+zNaAPWM3A+86JsIVannDd5KmA/wO1JrIceNsXdWM/wSQGOx3pY4skelnEScAvWE2pTsB5Sd49bkWuwOvYMBy4H3hKRhFrzOAars8V9500HMFit7hcCj2M9Shusp/7lAgPcysViPYSmk/3+dKxOwnKxnkp4qFvZLVgPI1qF9ZRJf3uDbMTqpGoNMN6tvB/Ww6iysHqI/Cc1e/2MwLqdcSfWo5bvx+7IqZ71uRvrQT7v28v6FTjMbXxfrE6ScoHVwBlu416jng7G7PedgY+wHlSUjfWgrQAgBxjoVq4T1tM0Y+uJrbH1vAjrToh8YBM1OyOrHc8WrJ5bV2E9zfJ97A69sPqm+NRexxysB2A5PGyvEVi9lubZ/0fYwycDv9Qqex0wz20feRTr4VvpWL2pBrvHau8Du6jVsZfb/C5zW9817O1NtLHP6L9YB4R8rC9yD3ucYPW6mgHsAX7HeqLq5Vgd6ZVhPYDrE7t8Q/vkNKzOuR7FuktlM3CKPe5fWA9CK7Hn93Q967bN/mwL7L+j7HkutGPMxtqPG9qOHe3PMdOO4VOsX+AeY7CXeSXwl71e92EdSBbZ22QWEOAWZ2Pf4zr7GNaTa4uxnp5atX6J9WyD1+z1+dqO5XsgpbF9zx73HXZHZlWfhdu4/vY8c+xtdpvbd/8tt3LD7XXKxeqdeFStz3eTHddm4Lx64r/E3r4uex3vcdtvN9jLn+e+7vb2/4e9/Td72O8bisvjMcAef6b9ee3B2ndPdtte92HtX/lYDxuLqWfZ9X527D1uvmXP+1IaOO5i7VMLsPbjLOBtINIe96Y9/2J7/jdjPTjO2OuXirU//x0YirV/5VLrewRcbG+L3VidAabU2s5/t7dzLtYxQbCOHe6fWa6X58EtwFgP497C7oTSi/mMxUpW6xt3C1ZHkK9Rq0PERua5AzjR7f19wHseyr4DPOD2fgywy0PZI+1tdaTbMH+sO/IOtbdxz1rTTMPtu+gxZi9XTLtW167VfdG1+iSsA9pQe317srcjrsY+o2ysL44/1kHvPXvcScByrB5Fqw5ECbU/21oxeNonp9HE7s5rzbur+2frNs8K4Co79uBGtmM08Df7swjDeuT5XLf51YnBXubHQDjWSboU+AbrF1AE1v43tQnfY0/72Chq9fhazzZ4zf7sRtr7wZPYBy4a2PdqrxtuBzx7O+zEejprkP1+mNt3/y37dRLWfnKq/fmeYL+PxfoO72HvPpWA1V9NfetQvWz7/Wisk+1ge53+A/xQa/t/ba9fffu9x7i8OAYciZWonWBPmwT0cdteG4FDsPar74B/e1inOp8de4+bZ9nzDqaB4y7W9/UEexvEAj8AT9Q6Po11e9/V3jbP2Z/biVgnvrn2vJOw9sXj7PJnYh0H+mLtHzOARbW286dY3/UuWAn6yfV9ZvawKVgd5fkk+cA6tv2J1Wnga3iZfGCdJwz2edkeNhH43UP534DJbu9j7Omj3YZ9am97g9Wfk3tv3zcBT7pt45ZJPtCu1UG7VvdV1+pfVa1breHefEYvuY07FVhnvx6N9QUfTq2aHrz4wtfaJ6exH92d4zn52Ob2vsHtWM88Dwd2u72vE4O9zKPd3i8Hpru9fwz7JIF332NP+1iN/dFDvK/h9gsN68DrwvpR0ti+V71u1Ew+zgVWeFje3exNPqZTq8bN3uemYp1Mc7ESuzoJQq1pqpdtv38ZeLjWOpUDXd22/+gG5ucxLg/l3Y8BzwMzPZT7Dpjh9v5K7B+L9ZSt89nZ2849iWrqcfcs988Fz8lHktuwbGqeKD8ErrVffwFc4jbOgZWIpbht52Pcxs8CbqnvM/Pmr3a8tcY1R/LxcdW60rTko7O9rkFuw06obxn2uOraMPu9056+a61yTqzuJq6vtawNQITbNt6n5MObNh9T0a7VtWv1mlqra/XOWF+U+mJq7DOqd72NMQuwLof9F8gQkRdEJNxTAI3skzWWY5qvu3P3z7zB7SgiISLyvIhsFasflR+weh/2a2QZtbt8r/2+ah28+R572se85f5dLMC6VFH1XWxo3/PE035TWwowqda6HYNVs1WIVdP1d6zjymf2d9cbNeK21ym7VtyptSfyJi5o9BjQ2Lo322dFI8ddEYkTkfdEZLu9b75Fw8eqKk3ZN590W3YOVrLe6HGgrRGRcUCYMeb9fZi8wP7vfhwLx/oh6Kl87bLULm+sPq++AE4Ukaq2nk8A95pm6L+nweRD9natfpzdMnYX1jX9w8TqWt2FlU2ea//V17V6pNtfiDHmXff1c1tWClaHRf/Eqv6JxHo6ZFO7Vq9aVrgxpn8Dq+epa/Ud2F2ru5VtqMtu9xi6NNAIq6pr9QvY/67VH8WqYovE6oBsn7pWN8bcYIzpjtWI+HoRGVNPUU9dq1dtj9pdq1f1cOvetXrVZxJhjHH/8hsalkr9jZr29TOyFmrMU8aYIVi9tB7C3gZgNeLxYp9sdFH7ON59eGPb8QasTtuGGauB2Miq8L2MoTHefI898XbZ7vt4B6zLEVXfxYb2vYZi9qan11SsGgb3dQs1xvwbwBjzlTHmBKyT/jrsDtW8UCNuEQnFujzmHndD28ZjXF4cAzx9Z5rKm32zsePuA3b5gfa+eT41vzvNsW9eUWs7BRtjFnkx7f4uu7mNAY5wO89OBq4VkY8bm9AYsxvrvHGY2+DDsNrC1Wd1PWXTjdWZZH382btPjQEecYsTYLGITGksztoaq/nQrtW1a3Vfdq3+EnCjiAyx96GedkKwr58RIjLU3iedWJczStzWu3b35I3tk41prLvzTHvZHst4sR3DsJKTXBGJwuoTpikxNKap3+Pay/amu/lTReQYEQnAaii3xFg9zTa47zXgUyBBRK4V6xbEMBEZVk+5t4BxInKS2F3Hi3WLabL9q/1MO3Eoxfq1WN/3oz7vAheJyOF2svAA8LMxZouX03uMi8aPAS/byx5jHweTxPsaG3eNfnZeHHfDsLZbnlj9FdW+y2N/983ngFtFpD+AiESIyCQvp00Hku19bp/Zx58grHOpv/1Z1VvraG+fIKzaIrHLVi3/DqwfQlXn2XlY372LvAzlDWCGiHS0P+/LsC7deCp7iYj0s88xM6rKikgfsWrWgu11Ox/rB8339rSHYCUrVXGCdextcj9UjSUfU9Gu1bVrdR91rW6MmY11x8Y7WFWCc4Goff2MbOFY23g3VtV4NlbiBLW6X/din2xMne7Oa61fkb1+C+1lDvcwn4a24xNYDf+ysJLnL5sSQ2Oa+j2uNa233c2/g5U05WA1aj/fnt6bfa++5eZjXfMeh1Xt/hfW7Ye1y6ViNVq8Detknop1gnTYf9dj1WLkYDXs/D8v1/t/WCeTD7F+kPQAzvFm2sbiauwYYIxZinXCmon1o+J76tYeeRODt59dQ8fde7Aa3eZh3Xn2Ua1pH8Q6YeaKyI37EOMcrAbr79nfiz+wjgneWIBVA7BLRLKg+kF1nmoLPHkRK/k/F7jdfn2BPb9jRaTArexIe/znWDV4xVjH+qqaaPdzbDFQaIzJ8TKOu7Aut23F+swfMcZ8acfRRUQKRKSLvawvsdpmfYt1rtrK3h8tgtW2JwNr37sGqx3Kr/a0GbXiBMgyxhR7GWe1dtu3i2jX6kq1eyLyGlbDRq+/E0r5glhPj04A5hhjpjZW/mAkIl9jNeZfaoyp7zJ+tXbzkBix2p8cj5UpxtHOuhyXvV2rD2qkXLteT6WUOhAZfXp0o+w2Ul5pT327tNsux0W7VldKKaWqtdvLLkoppZRqn9pTzYdSSimlDgCafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVv68DUKqtEZEAYKxfUIdzxM/ZGyHQ1zGpdsZQbipd21zFe94HPjPGFPo6JKXaEjHG+DoGpdoMEUlwBIYsDopN6Rh79NlhwQm9xOHU3EM1jakopzQ7lczFH+4p3LLKVVleMtIY84ev41KqrdDkQymbiPg7AkP+Sjzp70mdz7zB6et41IEh6+c5ZuOrN+6pLC85xBiT4et4lGoLtM2HUnsdHxiVFK2Jh2pOMcPGS+ShY/xBJvo6FqXaCk0+lLI5AkMnxx49KdTXcagDT+zwCaH+oREX+joOpdoKTT6UsjmcAT2D43rod0I1u6D4HphKV2dfx6FUW6EHWqWqSaBo41LVAhzOQIypDPB1HEq1FZp8KKWUUqpV6XM+lGoBm968lfTv36TfTbOJ6H1UjXFFO/5k1T0nETlgFH2uerV6uKu0iNQ5D5O1dB4VhbkEJ/Qk6ZR/EDPszNYOv8UYVwXbP/8PGT+9T1luBoExycSPvoj40dMQEa+m3/Xdm2T8+A4lGVtxBAQRktSbxJOvpOPA4z1OV56fw8rbj6WiMJfuUx8hbuSUmuMLctj+2X/Y/dvXlObsxBkWRVivI0k+/VpCEnvt93orpWrSmg+lWkCXibcREBnPptdvwlVWXD3cVFay8dUbcDiD6H7+g3uHG8P6/17KrgWvETN8PN2m3IczLIq/XriSzEWzfbEKLWLTm7eSOvdRIvqNpNt59xOa3Jct78wg7ZMnvJ5+yzszCE48hK5n30HSyVdSnpfBuifOJ/uXzzxOt/WDf1FZUVbvuMqKMlY/NJH0796k42En0G3KfcQeNZHc37/jj3+dTklW6j6tq1LKM00+lGoB/sFhdL/gQUrSN5P28WPVw3f+7yUKNv1KyqQZBHSMrx6+e+V88lZ/T8rku+h69h3EHXcefa97hw49hrB19v1Ulpc2W2yFqaubbV5NWu62P8j48R0STryCHlMfJm7kFA75v+eJHjqO7Z/9h7Lc9AanryjOJ2Ph+0QNPpVDLv8vcaMuIPHkv9N/+hzEz0nGwvfrnS5/wzIyF84i+bSr6x2ft+ZHinesp8vE2+g6+S7iRk6hy4Tp9LxkJq6SAnIaSGqUUvtGkw+lWkjHw04g+sgz2TH/BQq2rKIkcyupcx4mvM8I4o47r0bZrGXzcAQEETfy3Oph4nAQP3oa5XuyyFu3cL9iKctNZ/sXz7DyjuNZ/ZBvHjeRvewTABLGXlJjePyYSzAVpeSs+LLB6SvLiqHShTOyU43h/qGROJyB+AUE15nGVLrY9NZtxB41gQ49htQ7X1dxAQABETXnW/XeERDUYFxKqabTNh9KtaBuU+4jb80PbHztBvxDOwKGHlMfqVOucMtvhCT3w+GseaLr0G2QPX4VHQeObtKyK8utE3rmog/IXf09GENEnxEk1aoBqCwvxVXiXdcjfkGh7Ovj5gu2rMIZ0YnA6KQawzt0OwzEQeHW3xucPiCiE8GJh5D50/uEdTuc8N4jcJUUsOPLZzGmkoSTrqgzza5vXqU0K5W+171N8c4N9c43rNcRiH8g2+Y8jF9IOMEJvSjNSmPr+/cQ2KkrMcPH79P6KqU80+RDqRbkDIum6+S72fDyNQCkTLqDoE5d65Qry00nJKlvneEBkfH2+F1eLzN/069kLpxF1tJ5uIryCE48hC7jbyZm+AQCoxLrlM/6eS4bX73eq3n3uOhxOh0z2etY3JXlphMQGVdnuMM/AP8OHSnb3fg6HvJ/L7DhxX+y4eVrq4c5I+Lod+P7hHUfXGd5qR8/SvK46wiI6OQx+QiMSqLXFf9l81u3s/axvTVPHboPZsAtc/EPifB2FZVSXtLkQ6kW5h8WVf060sMdGZVlJYiz7mMgqmoZKstKGl3Ozm9eIf3b1yneuQH/DlHEDp9A7IiJdOh2eIPTRQ4YRd8b3m10/gAhib29KlefyvIS/II71DvO4QyksrzxdfQL7kBIch/Ceg4lvM8IXMX57FrwKmtnXkDf694irPug6rJbZt1LQGQ88WMubnS+zrAYOnQ9lA7dDiekcz9KMraw44tnWDtzCv1ueB+n22eolNp/mnwo1YJcJYVseuMWAmNTKN+TxaY3b6X/9A/r3FbqCAjClNe9G6Oqoak37Q52fvU8pdlpdOg+iJ6XPEFwfE+vYgyIjKu3RmJfuMqKcRXn1xjmDItGHH44nEEYT3eclJfWueRUZ94lhfzxwJnEDB9Pyt9urR4ePfQMfrtjFJveuJnD7v4agLx1C8n+eS79bngPh3/DXfUUbPmNNY9Mos/VrxE5YFT18Ih+x7LqnpNI+/QJup17b4PzUEo1jSYfSrWgrR8+QNnuHfS7aTZF21az5b27yPj+LeJGXVCjXEBkXL2XVqqGeZMc9Lj4cTJ+eJecFV+wcsYownoOJfaoiUQPHYd/SLjH6epLGDzxCw6rt2Fnleyl8+pcwhn00BKCYjoTEBlH0fZ1daaprCijomA3zkbWMXv5Z5TlbCdq0Mk1YwoMJnLg8aR/9yYVRXvwDwlny7t3Ed77KAI7da2+VbY8LxOAioLdlGSlEhAZj8Pfya4FryF+/kT0P67GfEOT+xIc140965c0GJdSquk0+VCqhez5axnp375O3MjziOh9FOG9hpG1dC5bP3iAjoedUONW29CUQ9m98isqy0tq1AAUbF5RPb4xEX2OJqLP0VQU55O9dB6Zi2ax6Y2b2fzunUQdNpbYEROJHHA84lfza19fwuBJY20+6ruEExARa61D10PJW/MDpdnbazQ6Ldj8G5hKOqQMbHDZ5VW34la66owzLpf9vwKA0uztFKWtZcX04XXKbvvwAbZ9+ACH3fMNIcl97Ft8DRgDtWqkjKsCxK/BuJRSTafJh1ItoLK8lE2v30hAZBxdJs0ArFtne0x9lFX3nszmd2bQ+x8vVZePGXoG2Us/Jv2Hd0kYcxFgPZBs14LX8O8QRUTfo71etn9wGHHHnUfccedRvGsjmQtnkbn4Q7J/+RRneAyxIyaRYscEzdvmo6FLOKw/bMAAACAASURBVDFHjGPH50+z838v03XyndXDd33zMuIfUKNGw1VaTFnOdvw7RFW3twhKsC4jZS75iLCeR1SXrSjMZfeq/xEYnVxdttdl/6lORKoUbV9H6txHiBs9jci+xxIYnQxAcHxP8lZ/T87yz4geOq66fP6GZZRkbiX2KN/cmqzUgUyTD6VaQNonT1C8cwO9r3oV/+Cw6uEhyX1IPOVKtn/6JNnLPyd6yKkAdBx0EhF9j2Hr+/dQlrOdoE7dyP7lEwo2LqfHRY832h7Ck+D4HnT52610Hj+dvDU/krFoFpmLP6qRfDRnm4+GhKYMIPaYc9j59Qu4Sgvo0G0Qeau/J3vZJySfcX2NmqCCzStY88gkks+4ns5n3gBAx0PHEtK5P+nfvk55XgYRfY/BVVJA+vdvU56XQc9Ln6qevuNhY+ss38++9BTauT9Rg/cmOgljLyZz0Wz+eulq9vz5MyHJfSjJ2Mqub1/HERBC4in/aKlNotRBS5MPpZpZYeoadnz5LNFHnE7U4SfWGZ98+jXkLP+MzW/PIKLvMfiHhCMi9P7nK2yb8xCZiz+kojCP4IQe9LzsaWKb4TkT4nAQOeA4Igcc5/UzPVpC9wv+TWBUEpkL3ydz4WwCo5Ppeu69Xt2R4vB3MmD6R+z46jmyl39uPbsEIbTLALqee0+929obQZ26cuhdX5H2yUx2/76A9B/exi8olMj+x9H5zBu0bxelWoAYY3wdg1JtgjMsenHPS58a3lAHZUrti5LMbfx299gsV3FBrK9jUaot0MerK6WUUqpVafKhlFJKqValyYdSSimlWpUmH0oppZRqVZp8KKWUUqpVafKhlFJKqValyYdSB4ENL1/LrzcP83UYSikF6EPGlFLtSP6mFWQumk3B5pUUpa3FVJRx+AM/ERzXrd7yJZnb2DrrPvLW/oSpdBHWYzApE2cQmjKgTtnCbX+wdfa/yN+4HHH4EdH3aFLOvoOg2JQ6ZfPW/kTq3Eco3PYHjoAQOh42lpRJM3CGRTf7Oit1INKaD6VUu5H7+wIyfngb46ogKK57g2XL92Sx+qHx5G9YRtJpV9FlwnRKs9P446EJFO34s0bZ4p0bWP3Q3yjN2kaXCdNJOu0q8jcu548Hx1Nm94ZbJW/9YtbOPI/K8lJSzr6T+NEXkbP8c1Y/PAlXWXGzr7NSByKt+VBKtRtxoy4k8ZQr8QsIJvXjx0jbvs5j2e2f/4ey3AwOvetLQjv3ByB66DhW3j6SbR8+SJ+rXq0uu/XDBwHof/OH1X3MdBw4mt/uOZHtn/2HblPurS675d27cEbE0X/6R/gFhgDQofvhrHviAtK/e5PEEy9v9vVW6kCjyYdSXnCVFpE2bybZyz+jbPcuHAHBBMd1I+Gky4kZegYApVlp7PjqOfLWLaQ0Ow2A0C4DSDrtKjoOHF1jfqsfnkhJxmb6T/+Ize/cwZ71S/ALDKbTyPPofNZNVBTuZsu7d7F71QKorCBqyKl0O/8B/AKC68yj342z2PzOHeRvWIbDGUT00HGkTJpRfWJsSN76xWz/9CkKNq+gsqKckOQ+JJ92NVGDTqouYypd7PjiGTIWzaYsZzviF0BgTDJxI88jfvS0Zti63guI8P7p5FlLPyG89/DqxMOavhPRR4wjc9FsKorz8Q8Ow1VSSO7vC4gZNr5G53YhyX2I6DOC7GUfVycfxbs2UpS6muQzb6yxfTsOHE1Qp65kL52nyYdSXtDLLkp5YfNbt7Lz6xfpeOhYup13P8mnX01wQg8KNi6vLlOwZSV5a38k6vAT6Tr5LpLHXYerOJ91T15I3pof68yzsqyENY+dS2BUIimTbickuR/bP32SHV88w9rHzgVj6DLhZiIHjiZz4SzS5s2sMw9XaQlrHjsHZ1g0KRNvJ3LAKNK/fZ0/n72i0XXK/uUz1jw6mcqyYpLHXUfKxNsQcbD+6YvJXDKnulzavJls++jfhPUYQtdz7qHzWTcS1n0we/78udFluEqLKc/P8eqvsqK80fl5q2z3Lsrz0unQfXCdcR26D8K4yilKWwtAUdoaTEUZYd0H1S3bbRDle7IozdkBQMGWVQD1l+0+mMLUNZhKV7Oth1IHKq35UMoLOSu/ptPIKTWq32uLHDiG6CNOrzEsYezFrLrnJLZ/+SwR/Y6tMa6iMJfkcdeRcMKlAHQ6dgq/3jyMbR89SMIJl9F18l0AxB8/lVWZW0n//m1SJt5WYx6uolziRk4hZdLtVtnR03CGx7Bz/gvs/n1BnRqX6ulKi9n05nSiDj+R3v94qXp4/Ohp/PHAmWydfT8xR56JOBzkrJxP5MDR9Ly4bvLTmB1fPkPavMe9KtvvptlE9BnR5GXUpywvHYCAyLg646qGle3eaf3Ptco6Gyqbu4vAqETKGylrKkopz89pUg2NUgcjTT6U8oJ/SDgFm1ZQmr2dwOikesv4Be69JFJZXoKrtAgMhPc+iqyln9SdQBzEjTq/+q3D30mHboeze+VXxI26oEbRsJ5HULjlNyoKc/EPjawxrip5qZJ44hVW8rHya4/JR96aH6go2E3sURMpz8+pMS7y0DGkffwoxTv/IiSpN/4h4RTv+JOiHX81uXv52BETCes11KuyoZ37NWneDaksKwHA4R9QZ5zDGVijzN6ygfWUDapZtrzY43ylar7lJfsVu1IHA00+lPJCytl3suGlq/l1+jBCkvoQ0f84Yo48gw5dD6suU1lRRtqnT5K16IPqNh/VROrM0xkeU31yq+IfEg5AYFRSreERAHWSD7+gDnV+3Qd0jMcvqAOlWake16d410YA1v/3Eo9lyvOzgN50Hj+d9U9fxG93jCIorjsR/Y4l+ojTiOhztMdpqwTFptR7q2pLcwTYSUNFWZ1xleWlNcrsLVtaT9mSmmWdwR7na6rmW+szVUrVpcmHUl6IHnIq4b2OJOe3r8lb8yOZP73HzvnPk3zGDXQ+4zrAugsi/fs3iRt1IeG9jrSSBIeDzJ9mkfXznDrzFIfnJlfi8Kt3uDGmeVbInk+3Cx4kqFPXeouEJFs1EeG9hjLowUXsXvUNeWt+JGfFV6R/+zqxx5xDz4sea3AxrpJCXKWFXoXkHxpZb43CvgiIqLpckl5nXNWwgMh4+79VtrzBslYZp3vZ5L51yop/AM6wqOZYBaUOaJp8KOUlZ3gMcceeS9yx5+IqK2bdExeQ9slMEk/+O34BwWQt/ZjYoybS/fwHakyX8eN7LRaTq6SAstz0GrUfZbt34SopIDCms8fpqhIO/5AIIvuNbHQ5/iHhxA4fT+zw8RhXBRteuY7Mn94j6ZQrCY7v4XG6HV8955M2HwEd43FGdKJg0691xhVsWoH4+RNiJw8hSX0RPyf5m1bUudxVsHkFzvAYAjomAtCh60DAethZ5IBRteb7KyGd+3lMHJVSe2nyoVQjTKULV0lh9SURAL+AYILje7Bn/WJcxQX4BQTbNRk1ayaKd20gZ8VXLRrfzq9fqm5wCrBj/vMAdDxsrMdpIvsfh39oJNs/+w8dDzuxRnsVsB7Q5QyPsV4X5ODssPfXvPj5E5LUG4CKorwGY/NVmw+wnumx65tXKUxdUz3vsrwMsn/5lMgBo6o/T7/gDkQOHE3O8s8omzC9OpErSltH3rpFxI+6ELEvmwXH9ySkcz8yfnyXxJOuqL7ddvfvCyjJ2ELK2Xc06zoodaDS5EOpRrhKClh+wxCiBp9CSOd++IdGUrjtD9J/fJfwPkdX39kQNehkMn56H0dACKFdBlCStY30b98gJKEnhdv+aJHY/EIiyVo6l7K8dMK6DyZ/43KylnxERP/j6HjoGM/TBXeg+9RH+Ov5/+O3O0YRO2ISAVGJlOWmU7DpV4p3bWTwvxcBsHLGKMJ7HUmHrofhDI+leNdGdi14laD4HoR2GdhgfM3d5qM0K43MxR8AsOfPJQCkf/t6dTuY5HHXVpdNOvUqspd9ytqZ55Fw4uU4nIHs+uYVTGUFXSbcWmO+Xf52C7/ffzqrH5pA/JiLqawoY+f8F3GGRZN02lU1ynY9527WPHYuqx/6G51Gnkv5nmx2zn+e4IRexI2a2mzrqtSBTJMPpRrhCAgmfvRF5K39kd2rvqGyvJTAqESSTvkHSaf8o7pc13PuweEMIvvXL8hYOIvg+B50v/DfFO/c0HLJR2AQ/W54j83v3MHWD/6Fwz+AuFEXkDKp8V/g0UNOJeCWuWz//Gl2ffsarpJCnOExhHbuR5fx06vLJZ5wGTm/fc2O+c/jKikiIDKOTsecQ9Lp1+Dwd7bIenlSkrWN1LmP1Bi28+sXq1+7Jx8BEbEMuHUOW2fdx/ZPn7T6duk+mF6XP0NIcp8a8whJPIT+0z9k2wf/YttH/0YcfoT3OZqUSTPqNOiN6HM0fa97i9Q5j7DlvXvwCwgiatBJdJk4o04NklKqftJsDdiUauecYdGLe1761PCOA4/3dSheqXrC6ZBHlzdeWPlUSeY2frt7bJaruEAfAKIU+oRTpZRSSrUyTT6UUkop1ao0+VBKKaVUq9IGp0q1U/1v/sDXISil1D7Rmg+llFJKtSpNPpRSSinVqjT5UKqNSv34MRZfUn8Puu3R6ocnsviSJBZfksQfD57l63C8krvmh+qYF1+SRPoP7/g6JKUOCNrmQynVaoITepJ02tU4w2JqDM/943uyf/mEgs0rKdrxJ1S6GP7CVsTPu0OUq6SQHV8+S8GW3yjYvJKKghySTruaLhOm1ylbtOMv0uY9TuHWVZTlZSDiIDA2hU7HTCZu1AU1OrcLSepDz0ufonjnX2z/7D/7t/JKqWpa86GUajXO8Fhij/obkQOOqzE86+c5ZC7+CEdAUIMd4nlSXpBD2iczKUpbS2iXAQ2WLcvZQUVhLtFHnknXs++ky99uJSTxELa8dxd/Pvv3GmUDIjoRe9TfiPCi8z2llPe05kMp5XNdJtxC96kP4/APYMPL15KZsaVJ0wdEdGLIo8sJ6BhPSVYqK6YP91g2csBxdZKf+NHT8AuNIH3BaxTv2kBwfM99WQ2llJe05kOp/ZSz4isWX5JE9rJP6owrydzG4kuS2PbhgwBUVpSR+vFj/H7/6Sy7uj9LrujOyhmj2Pn1i3jT1cGvNw9jw8vX1hnuqX1IYeoa1v/30r3LunMM6T++uw9r2bICOsbXuNzRVA5nIAEd4/crhqBoq8alomjPfs1HKdU4rflQaj9FDjwev5BIMn+eS/TQcTXGZf08B4CY4RMAcBUXsOvb14keOo6Yo6xheau/Z8t7d1NemEuXs25qtrjyNyxjzWPnEhibQuLJV+IXFMru3/7HptdupGJPVp3eWmurLC/FVVLo1bL8gkJxOAObI+xW4yotprKsmMrSIgo2r2D7l8/gjIgjJLmvr0NT6oCnyYdS+8nhH0D0EaeRuegDKory8A+JqB6X9fPHhHTuR0hSbwD8QyMY8siyGifqhDEXs+GV69g5/0WST79mv2oAqhhj2Pj6zYQk9aH/LXOqe5+NHz2N9c9cRtqnTxA36oLqrujrk/XzXDa+er1Xy+tx0eN0OmbyfsfdmnZ8+Qxp8x6vfh/a9TB6TH0YvwDtmVaplqbJh1LNIGbYWWT88DbZyz8n7thzAeuSR/GO9XSZNKO6nDj8EIcfAMZVgaukAFNZSUTfY8hcOIvinRsI7dxvv+MpSltD8Y4/6XruvbiK83G5jet46Fhyln9O/oZf6HjYWI/ziBwwir43eHeJJiSx935G3PpiR0wkrNdQKgp2k7duIUVp6/SSi1KtRJMPpZpB+CHDCeiYQNaSOdXJR9bPc0GEmCPPrFE2c/GH7PjqeYq2r4NKV41xrmY6+RXv2gjAlnfvZMu7d9Zbpjw/u8F5BETGERAZ1yzxtEVBsSkExaYAEHPkmeyY/wJrH5/CoXd/TUhiLx9Hp9SBTZMPpZqBOBxEH3kmO+e/QFluOs6ITmQv/ZjwQ4YTGJVYXS5r2Tw2vHQ1kQNHkzDmYpwRsYi/k8Ktf7Dtg39hTGUjC5J6B5taSQx249XkM64nrNfQeqcJSTikwUW5yopxFec3HI/NLzis3V+uiBk2nq3v30PWkg/pMuEWX4ej1AFNkw+lmknssPHs/Oo5spZ+TIdugyjNTiPptKtrlMn6+WMCY7rQ5+rXEcfem81KM7Z6tQz/kAgqivLqDC/N3FbjfVCnbgA4nEFE7uMzKrKXzjug23zUZspLAagorLt9lVLNS5MPpZpJaMoAghN6kfXzXEoytyJ2Q1R3exOOvbfVusqK2fnNK14tIyiuG3nrFuEqK66uaSjJSiVnxZc1Y+kygKD4Huz830t0OvYcnGHRNcaX78nCGV7zKaO1tdU2H2W56biK8wmMTaluSNsUntZ91/dvAtCh2+H7HaNSqmGafCjVjGKGnUXq3Eco2bWRyIGj69xNEjXoZHKWf87aJy8ketDJVBTmkrFwFn5BoV7NP27UhWQv+4S1j51DzLDxlOfnkP7d6wQn9KJw66rqcuJw0POix1nz+LmsnDGKTseeS1BsCuUF2RRtW03OyvkMf35zg8tqzTYfhalr2L1yPgBFaWsBSPvsP4gIfiERJIy5qLrstg8fJHPRbAY9tIQgt6eh7vzmVVxFedWNRvM3LCPtkycA6Hj4idUNeTe+MZ2Kgt2E9zmKwI6JVBTvIW/19+St+ZGwnkdU3xatlGo5mnwo1Yxiho8nde4juEoKiB1Wt/O02KP+RkVRHru+eYXN795FQGQnYo+eTFjPIax97NxG5x/RZwTdzn+AHV8+y5b37yGoUze6Tbmfoh1/1kg+AMJ6HsGhd3xB2qdPkrloNhUFu/EPiyYkoSddJ9/VbOvcHAq3/k7q3EdqDEv7+FEAAqOTayQfnuz86jlKs9Oq3+9Zv5g96xcDENAxoTr5iDnyDDIXzibjx/eoyM9G/AMIju9Bl4m3kzD24n2qTVFKNY1481RFpQ4GzrDoxT0vfWp4x4HH+zqUA9LqhydiXOX0/ueriJ8//iHhvg6pUZUV5biK88nfsIz1T19M96mPEDdySpPnU5K5jd/uHpvlKi6IbYEwlWp3tOZDKdVq8jf8wi/XDiSs51AG3DrX1+E0as+fi72qkVJKNY0mH0pVM4bGbnVV+yzl7DupKMoFqPEU2LYstMvAGo1uG7s92RP7VmitZlbKpsmHUlWMyakoyPF1FAesDl0P9XUITebs0HGfb1V2V1G4G3H46+NTlbJpr7ZK2SoKcz/PWTnfu57UlGqC3N8XuExF+Ve+jkOptkKTD6X2+ih31QK/qkeTK9UcrNuh3yypLCt6y9exKNVWaPKhlM0Ys8u4Kv75xwNnFGcv+wRXaZGvQ1LtWGVFObt//5Y/HhhX5CopfAZY4uuYlGor9FZbpWoRkTP8QiJuqSwrHuIMiyp1OIPaRStUY4xgTCgi5SJS6ut4mosxxokxwYgUiEi7+CwqK8qlIj87UJyBG1zF+U9iKl8yerBVqpomH0p5ICKRQCIQ6OtYvHQnEAIciL2iXQkcZv93NVK2LSgHdhljsnwdiFJtkSYfSh0AROQiYDow1BjjXVe07YiI+AFfAUuNMbf5Oh6l1P7R5EOpdk5EDge+BkYZY1b7Op6WIiKdgOXAlcaYT3wdj1Jq32mDU6XaMfvS0AfANQdy4gFgjMkAJgMvi0h3X8ejlNp3WvOhVDslIgJ8BOwwxvzD1/G0FhG5FrgAONoYU+LreJRSTafJh1LtlIjcBEwERhpjDpi7WxpjJ13vA7nGmMt9HY9Squk0+VCqHRKRkcAsYJgxZquv42ltIhIOLAMeMMa87ut4lFJNo8mHUu2MiCQAvwCXGGO+9HU8viIiA4BvgTHGmFW+jkcp5T1tcKpUOyIi/sB7wIsHc+IBYIz5A7gW+FBE2kc3uUopQGs+lGpXROQh4HDgVGNMe3jYVosTkWeAOGCiPkVUqfZBaz6UaidE5CzgHOA8TTxquA7oDFzv60CUUt7Rmg+l2gER6QksAsYZY372dTxtjYikAEuxaj9+9HU8SqmGac2HUm2ciARjPUjsXk086mff8TMNeFdE4n0cjlKqEVrzoVQbJyKvAMHAFG3T0DARuRc4FjjBGFPh63iUUvXTmg+l2jARuQQYDlymiYdX7sHqUfY+XweilPJMaz6UaqNEZBAwH+sJpmt9HU97ISKxWB3Q/dMYM8/X8Sil6tKaD6XaILcO467SxKNpjDGZwNnASyLSw9fxKKXq0poPpdoYEXEAc4BtxpirfB1PeyUiVwEXAyOMMcW+jkcptZcmH0q1MSIyHRiPdbmlzNfxtFd2B3TvAIXGmEt9HY9Sai9NPpRqQ0RkFNbj04caY1J9HE67JyIdsDqge9gY86qv41FKWTT5UKqNEJFErA7jphpjvvZ1PAcKEekHfI91++1KX8ejlNIGp0q1CSLiBN4HntPEo3kZY9YAVwMf2A15lVI+pjUfSrUBIvIo0B84zRhT6et4DkQi8jSQBEzQZ6Yo5Vta86GUj4nIBGAicL4mHi3qBiARuNHXgSh1sNOaD6V8SER6YXUYd5oxZqmv4znQiUgXrA7ozjbG/ODreJQ6WGnNh1I+IiIhwIfAXZp4tA5jzDbgQqwO6BJ8HY9SByut+VDKB+xnULwKOLEut+gXsRWJyF3AaGCMdkCnVOvTmg+lWoGIXGonHFUuBYYCl2vi4RP3AcXAv9wHishIEQn0TUhKHTy05kOpFiYiHYFtQIQxplJEBgNfAccaY9b5NrqDl4jEYHVAd7Ux5mN72HxgpjHmC58Gp9QBTms+lGp5g4CVduLREavDuH9o4uFbxpgsYBLwooj0tAevBAb7LiqlDg6afCjV8gYDv9odxr0BzDPGzPJxTAqwG/reg/UAsmDgVzT5UKrF6WUXpVqYiLyDdZklERgHjDLGlNmP/d5jjEnzaYAHIRHxB+KNMWl2W5y3gRLg38BXxphuPg1QqQOc1nwo1fIGY93VcjVwNnCoiMwBFgCH+DKwg1gisFxEPgAOBy4HhgMjgRgRifJlcEod6LTmQ6kWZPeqmgHkYf2qPhkYCDwMvGSMKfJheAc1EQnFSjpuBFYAbwJPA6nATcaYb3wYnlIHNK35UKplDQb8sW7rvAaYA/QwxjyliYdvGWMKjTEzgR7AZ1gJ4U6gLzDCl7EpdaDT5EOpljUKK/G4B+htjHnBGFPq25CUO2NMiTHmWaAXMBOr7ccE30al1IFNL7sopZQbEfEDQo0xe3wdi1IHKk0+2hG7Vb4+fVH5SqUxpszXQSil2j9/XwegGiYi4Q7hsg6Bfpc4hEMEQBqbSqnmZwzi9HNUhAY4FuWVuF4E3jPGVAKISD/xD7jAERA00bgqojDGz8fhqoOEOPxKcPitcRXlvQp8ZIwp9HVMqnFa89GGiUhkhwDHwqO6RXSfdmR80PCUcIKc2kxH+YYxhrwSF9/8uZv//LC9cMee0tmFZZWXIDLRERDyatzIKc6oIac5AzsmIH76u0a1PIOhsrSIgs0rSf/hnYLCrb+nVZYWjjDG7PZ1bKphmny0YeFB/nPOGBB9ykPjugfW7JNMKd8qKHVx1st/FK1NL3rML6jDDf1vmRMS2rmfr8NSBzFjDFveu6ssc+GsZRVFe47xdTyqYfozuo0SkdDSispTbhnTRRMP1eZ0CPTjxuM7hwQEBl4RP/aSQE08lK+JCCmTZgQYl2uIiCT5Oh7VME0+2q4Rh3QKKYkKdfo6DqXqNapnJC7x7xQ95FRt36HaBId/AB0PHe0CTvN1LKphmny0XTGJ4QH6+ag2K8jpoLKijMDoZF+HolS1oLjuIUC8r+NQDdOTW9vl5+/Q6y21XTtnA8Nm/urrMFQVYxD/AF9H0SZsePlafr15mK/DOOiJf4BgdRyo2jD9gJTygRVp+cxemcnK7QWsTS+izGX46erD6RYdXG/5BX/t5r8/bmd9ZjEVLkOXjoFMGRzHBUPj8HPszVGvnbOB2Ssz653HsusHkxihj4lRjdv9+wK2f/5finesx7gqCIzpQtzIKcSNugBx7L3KlvvH92T/8gkFm1dStONPqHQx/IWt9d7ttOHla8lcNLve5Q1+ZBmBUYkttj6q7dHkQykfWPBXLm8vz6B3p2C6RwexLqPYY9mPVmVy1YcbGJzcgeuPS8bhEOavy+H2zzezMbuY+06t2/v7E+N74qhVb9YxWL/uqnGZSz5iw4tX0aH7YJLPuB4RBzkr57P57dsp3rWRblPuqy6b9fMcspbOI7RLPwJjOlOasaXR+fe85AmQmpXu/qEdm3s1VBunRyOlfODCoXFceUwiwU4/Hvs2lXUZaR7LvrxkJ/FhTj64qD+B/tZBe+rQOE594XfeW5FRb/IxfmAM/n561U413c7/vYwzMp7+N3+Aw2nVlMUdP5Xf7zuVjJ/eq5F8dJlwC92nPozDP8Cq2fAi+YgZNl6fA6M0+TjYFJW5mPldGp+tyWZXfhnBTgfdooK5fEQCZwyIASAtt5TnFu5g4eY80vKsPtAGxIdy1cgkRveq+Qtl4qur2ZxTwkcX9eeOLzazZMsegp1+nDekEzeN7szu4gru+mILC/7aTUUlnNo3igdO70aw06/OPGZN7ccdn29mWWo+Qf4OxvWPZsaJKYQENH4zxeIteTz1w3ZWpBVQ7qqkT1wIV49M5qQ+UdVlXJWGZ37awezfMtieV0aAn5AcGch5g+OYNqx126fFdvC+nUR+qYuIYP/qxAOs2wpjQp1sz6u/jzqDIb/ERWiAH47aVSBtlKu0iLR5M8le/hllu3fhCAgmOK4bCSddTszQMwAozUpjx1fPkbduIaXZVsIW2mUASaddRceBo2vMb/XDEynJ2Ez/6R+x+Z072LN+CX6BwXQaeR6dz7qJisLdbHn3LnavWgCVFUQNOZVu5z+AX0BwnXn0u3EWm9+5g/wNy3A4g4geOo6USTPwCwxpdL3y1i9m+6dPUbB5BZUV5YQk9yH5RHPQwwAAIABJREFUtKuJGnRSdRlT6WLHF8+QsWg2ZTnbEb8AAmOSiRt5HvGjpzXD1vWeqzgf/5CI6sQDrP3NGR5Dac72GmUDOjb9e2OMwVWcj19gKOLQZocHK00+DjK3frqZj//I4sIj4ugTF0J+qYs1u4pYnlpQnXys3F7Aj5vyOLlvFJ0jA9lTUsFHq7K48O11vHthP47tHlFjniXllZz7xhpG9ojk9hNS+HJdDk/+sJ3QAD/mrc6mV0wwN4/uwpKte5i1MpPYDk5uOyGl1jxcnPPGGoanhHP7CSksT83n9WXppOaW8ub5fRtcp8/WZPN/s/9kcHIY141Kxt8hzP09i4vfXc/Tf+vJ+ENjAZj5XRozv0/j7MNjufyoMEorKvkzs5ift+1pNPkoLnNRXF7p1TYOC/LD6dd8B9Wju0XwxrJ0HvzfNiYPisXfIXyxNofvN+Zy90ld651mwEO/UFDqIsjpYHTPSG4/MYWuUUHNFlNL2PzWrWT9/DFxoy4kJLkPruJ8itLWULBxeXXyUbBlJXlrfyRq0MkExnSmomgPWUs+Yt2TF9Lv+neJ6HdsjXlWlpWw5rFziew/kpRJt5Pz65ds//RJ/AJDyV42j+CEXnSZcDN71i8hc+EsnOGxpEy8rcY8XKUlrHnsHMIPGU7KxNvJ37ic9G9fpzQrlb7XvtngOmX/8hl/Pv9/hHUfTPK46xA/f7J+nsv6py+m52VPEzt8PABp82aS9slMYo8+m7ATL6eyvJTiHX+y58+fG00+XKXFVJZ5vmznzi84DId/w7fvR/Q5mvTv3mDbhw8Se8xkxOFPzq9fkLv6e7qec7dXy2nIL9cMwFVSgCMgiMgBo0mZdDtBnbru93xV+6LJx0Hm6/U5TBnciXvrqaqvMqZXJKf3j64x7OJhCZz03Cqe/Wl7neQjt7iC645L5tKjEgCYMqQTw2b+yoPfbOOy4QncdXJXAKYeGc/WnFW8vTy9TvKRW+xiyuA4bj/RGj7tyHhiQp28sHgnC/7aXafGpUpxmYvpn2zixN5RvHRO7+rh046M58yX/uD++Vs5c0CM1U5ifQ6je0Uyc3xP7zaWm2cW7uDx7zxfGnE3e1o/RnSLaLygl24b24XswnKe+Wk7T/9o/fIM8BP+fXp3pgyJq1G2UwcnV4xI4NDEDjj9hF9T83l16S6WbN3DF1ccSnJk221wmrPyazqNnEK3Kfd6LBM5cAzRR5xeY1jC2ItZdc9JbP/y2TrJR0VhLsnjriPhhEsB6HTsFH69eRjbPnqQhBMuo+vku+D/27vv8Kiq9IHj3+klyaTNpFdqCL2EqoCgiOJSFBVcRRFd2651LftbxcVesa5dERuooIAFgRUUNEgLPXRISE8mk57pM78/JpkwTCqGhHI+z8PzMHfOvfdkMpn7zrnveQ8QddGN7CrJpujXz/2Dj9pyIkdfR+LV//a0HXcTCp2egtXvUbZ7rd+Ii3c/q5mjnz5M2IAJ9LzrA+/2qHE3seeZKWR//RT6oVOQSD05FSF9x9Ht5lda+Wo1yP/pLXJXzG9V29QHvyY4ZWSzbRKm/x/2qlLyVr5F3o9vAiCRK+lyw3NEjr6uzf2rpwiOIHrCbQQm9UMiU1B1NIPCnxdQefAP+j22EpVeTNk+n4jg4zyjU8vZnldNXrmV2CYuRJoTbnNY7C5q7U5ww4gkHd/tNfq1l0rg+iENF0GFTMqA2EBW7S/jhjTfi+OQhCB25tdQbnYQclICZH3wUu+2kTG8t7GANQeaDj7WH62grNbB9P4GTDV2n+fG9wjhpXW5HDKa6RmhRaeWc7DEzKGSWrobWh4uP9H0/gbSEoJa1TY1KqBNx26JUi4lOVzDFb3DuaRnKHKphB8zTTz83VGcLnxe45ODukmp4YzpFsLMT/bx0rocXj2FwKujyLU6qo9ux1qahyq88QKVMlXDLRGX3YLTWgtu0PUcgXHzd/47SKREjr3e+1AqVxCYPICyHauIHHuDT9OgbkOoydqJo6YceUCIz3P1wUu9mAm3eYKPHWuaDD4qMtfjqC7DMGI69iqTz3Mh/caTu/wlzAWH0Mb2RK7VYc4/SG3+IbQx3Rs9XlMMI6cT1D2tVW1bU4lWKleiiUwmfMgVhA64BIlMjmnbjxz95GFwOf1et9Y6OagLHzKJkN5j2Dd/JjnLX/IkogrnDRF8nGfmXprI3d8cZtirGaREaBnTNZjJffT0jw30trE5XLy2PpclO43klvvmFDRWeUQfoPBb8E6n9ry1Yk+a2hlct/3k4CNQJSMyyDcPIkqnJFAlI6es8bwGgCNGz3DznMUHmmxjrLHTE3h4fDyzFx1g7Js76RKu5sIuwUzqHc6oVoxSJIapSeyk2xZ3LTlEcbWN5XP6UF9qf3IfPbd9dZD//HSMS1NCiQhqOodkdNcQ+kYHsP5IeUd1+ZQkXjOXwx/cTcbDw9DGphDcewz6oZMJTOrvbeNy2Mj9/jWM6Uu8OR9ejbw5FTo9UoXv702u1QGgCos9abvnfXBy8CFTB6IM8Q2ilaFRyNSBWI05Tf485sIjABz475wm29irjEBP4qc9zIE3Z7PzsbGoI7sQnHoh4UMmEZwyqsl966kNiagNiS22a61D792FraKYPv9a7n2/6dMmc/Dt2zi2+D+EDrwUZXBEu5wrpPdoAhL7Ur53fbscTzh7iODjPHN5ajhDE3SsOWBiw9EKFm8v4d2NBTwwNo77xsYD8PhPWXy6tYhZQyIZmqgjRCNHKoGvtpfw7e5GRj6aSWiUNVEnrb0WNKw/zLNXJDeZ05Aa6RnlSEvQkX7PQH4+WMaGoxWs2m9i4ZYiZgw08PLU5kcEaqxOamzOVvUpRCNHKW+fnI/ccisr95n49yUJnLzGz+WpYXy/t5TtedU+ibWNiQtRsb+4tl36dLqED74cXfehmHauoSJzAyW/LaZg9bvETX6A+Mn3AZC16HGKfv2UyLGz0HUf6gkSpFJKfvsK46Zv/Y7ZXELjifUqTtRui23WHSf5hmebzGnQxnlGInTd0xj4bDplu36mInMDpu2rKFq3EMMFM+g2++VmT+O01OC0tm4VeXlACNJmisJZjbmYMlaSMP3ffu+3sMGXU7r1e6qPbvdJlv2zVOFx1Obub7fjCWcHEXych/SBCmYOjmTm4EjMdic3fLafV37N5fZRnqmfy3cbmd7fwDNXdPHZb3FG8WnrU7XVSVGVzWf0o7DSRrXVSXxo03kKSeGegCNYI2d015Am29XTqeVM62dgWj8DDqeb+5YdZvH2Eu68IJau+sYLfAG8k945OR+FVTYAnI3kujpdnoub3dnyxTLLZCH8LFgnSKHTE3nhTCIvnInTZmb/qzeQ+90rxEy8HZlSg3HzcgwjptPl+md89ivesPi09clpqcZWXuQz+mErK8RpqUalj29yv/qAQ64NJiR1dIvnkWt1GIZPwzB8Gm6ng8Mf3UfJb4uJvexONFFdm9wvf9U77ZbzYSsv9PzH5R9ou+u2uZ12v+f+DEtxFgpdeMsNhXOKCD7OI06Xmxqb03tLBECjkNFVr2FjViXVVicahWdq5slf/g4bzazab+J0+mBjgTfhFODd9HwALu7RdAGiMV1DCNHIeWN9HhN6hPrkqwAYq+3oAz0XXVOtnTBtwwVYLpPQM8IzKlJhcTTbt87K+egSpkYqgRV7jdwxKsandsfSnSVIJNAvxnM+i92F3ekiSO37Z/393lL2FdXy18HtM1R+OrhdTpyWGu8tEQCZUoMmqiuVBzbiNFcjU2rqRjJ835zmwsOYtq86rf0rWPOBN+EUIH/1uwCE9r+4yX1Ceo9BHhBC3g9vENp/gk++CoC90ohC55lhZq82oQhsGL2SyORoYz0J1I7aimb71p45H+rILiCRYtyygpiJd/jU4yjZuBQkEgIS+7XqXCdy2S24HHbkGt+/odKt31Obu4+IMX9t8zGFs5sIPs4j1VYng1/exmW9wkiN1BKikbOnsIZFGUWMStZ5a09MTAnjy+3FaJVS+kQFcLzMwidbi+hm0LKnoHXDu20VopGxbI+Romobg+KC2JZTxTe7jIzpGsz4ZoKPQJWMFyd34Y6vDzH2vzu5ur+BmGAlRVU2MnKrOWI0k37vIADGvrmDoQk6+scEYghUcMRoZsHmQrrq1fSNbj5gaO+cj9xyK0t2esqg/5FdCcDCLUXePJh7x3gy/8MCFMxKi+TjzUVMen83V/bTe6fabsyqZOagCBJCPf0qqbZxydu7mNwnnK56DWq5lIzcar7ZVUJMsJIHLmr6W3pnc1qq2fbAYMIGXYY2PhV5QAg1x/dQtGERupRRKIM906XDBk6k+LcvkSq1BCT0wWI8TtG6T9BGd6Pm+J7T0jeZNgTj5mXYKooI6jKIqiPbMP7xDcG9xxDab3zT+2kC6XLjixx69w52PjYWw8irUYbFYCsvovpoBubCIwx6Lh2AHY+ORdd9KIFJ/VHoDJgLj1C4dgHqqK4EJPRttn/tmfOhCAoj8qJZFK39mN1PTUI//EpPwmnGSioPbCTiwpmoDQne9jU5mZTtWA1Abe4+AHJ/eAOJRIJMG0z0+NkA2CpK2PWfSwhPm4wmqitSpZrqoxmUbPwGZVgM8ZMfaJf+C2cPEXycRzQKKbOHRrHhaAU/HyzD6nARE6zirgtiueuChuS7eROTUMulrNxXylfbi+mq1/DcX7pwuMR82oIPtULG4lmeImNPr8lGKZNyw5BIHpvQ8ofq5anhLJuj5M0NeXy8pZAaqxN9oILUyAAeHt/wQXnr8BjWHDTx7sZ8am1OIoOUzBgYwT1jYtu1LkdrHC+z8OJa32TF9zcWeP9fH3wAPHlZMv1iAvl0SxGvr8/DbHeSFKbmsQmJ3HrCDCGdWs6lKWH8kV3Jst1GbE43MTolNw2N4p7Rcd4RoDORVKkhatxsKvZtoGzXz7jsVlRhMcRedhexl93lbZc0Yx5ShZrSjJUU//4VmqiudJn1HOaCw6cv+FCpSX1gMce+eIzsJU8jlSuJHHsDiVc/1uK+4YMvR/nIMvJ+fJPCdR/jtNSg0OkJiE8lYdrD3nYxl9yKaeca8le/i9NSizIkkogLZhB7xT0t1uVob8kznyQwsR9Fv3xK3g+v47SaUUckkXjNY0RfcqtP25rs3eQse9FnW+7ylwBPLkd98CHX6ggbeCmVB//AuGkZbocNZVgMUeNuIu6Ke7wjQML5Q9JuyVVCu5JIJNdf3ivs7fdn9AxsufXZrb7C6bYHBnd2V4Q2intiC2lv7GtVpc+zUX2F08EvbevsrgitlLPiFXJXvPyk2+Wa29l9EZomatsKgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSiScCp1uyezend0FQWhU74eWdHYXBOGcJEY+BEEQBEHoUCL4EARBEAShQ4nbLoIgnFNylr9M7or5jPgwr7O70i72vjCdygMbAQjqlkaffy3r5B61r+PfPE/eD697Hw945jc0kcmd2COhI4jgQ2i1l9flMP+XXPLmjejsrrSL6Qv2sjHLU100LSGIZXP6dHKPOsYX24p4cMVR7+NFs3q1al0cofNoorsRO+luFEG+xbjK9/xK6dbvqD62g9r8g+ByMvy9bJ+y6G1Rse83Ml+6Fmg8CHBaa8n59gWMm1fgqCn39Ouyu9APm+LTrjRjJaZtP1J1NANbWSHKYANBXYcQN+UBv2OGp12BJrobpoyVmDJWnlK/hbOPCD6E81o3vYa7R8eib8Oia6YaO0+tyWbNgTJq7S56R2n550XxbbqAf7y5kAWbCskptxARqOTagQb+fmHjlVYLK23M/yWHnw+VY6qxExagYFBsIPOndvVZxyWvwsr8dTn8fqySkmobEUFKLuwSzD1j4ogNblicb2RyMK9f2Y1N2ZV8vu30LRYotB+FzoBhxFV+242bvsW4eQUBCamo9PFYi7NO+Rwuh51jn/8bqUqLy+q/ArLb7ebAf2+hcn86URfPQRPZhdKt33HovTtxO20YRl7tbXt04YPIA8MIH3IF6ogkbKV5FK77GNP2n+jzyDICEhsC/YD43gTE98ZSnCWCj/OICD6E85ohUMFV/Q2tbm+xu7hmYSY55VZuGxFNeICCxduLueGz/XwxqxejWrGa7Wu/5vLC2hwmpYZx28hodubX8PIvueSUW5k/tZtP28MlZq5asJdAlZTrB0cSrVNirLGz5XgVZruLoLrlZky1dq54bzd2l5tZQyKJC1FxsMTMp1uL+PlQOb/c1d8bqCSFqUkKU+NwuUXwcZZLuPIRutz4AlK5ksMf3kvJnwg+Cla9g6OmnMjR11Gw5gO/58t2rKZi768kXfeUt2x6xIUz2fPcVLK/forwtMlIFZ4gt8ft7xDc6wKf/cOHTmHXvAnkrHiZlH8sOOV+CucGEXwIQht8trWIfUW1fHxdCpf09Cx4d80AA+Pe2snjK7P43539m92/pNrG6+tzuTw1jPeu9axaet1g0KlkvPV7PrOHRtE3xlNR3+128/elh4jWKVk6uzcBKlmTx12xp5TiajsLruvJhJ4Nq6PGh6iYuzKLX49UcEXvM2vZctP2VRx482Z63P4O4Wl/8XnOUnKc7Y+MIPbyv5Nw1b9wOWzk/fAG5bvXYSk+5llvxJBA5Ji/EnXxLUgkkibO4pHx0DB0PUfQbc6rPtubyg+pyckkd8V8z4q6VjPqyGSiL7mFyAtnts8P306UoVHtchxraR65379G8l+fxlqa22gb45YVSJVqIkc3vAYSqZSocTdx+P1/ULH/d0L7jgPwCzwAtDHd0cb29NweEs57YrbLOWjVfhOxj2/ku72lfs8dL7MQ+/hGnv3fcQBsDhcvr8vhivd20/u5LXR58g/GvrmD9zcW0Jp1f4a9ksG93x722/7yuhxiH9/otz2zsIZbFh/wnmv8f3ewaFvRKfyUnWPFXiMJoSpv4AGgUcqYMTCCfUW1HCrxH64+0ar9ZVgcbuYMi/bZPnuY5yKyYk/D7+y3Y5XsLqjhgYviCVDJMNud2J2uRo9bbXUCEFm3MnG9iCDPY43izPtTD+l7ETJtCCWb/BMojZu+BUA//EoAnOZqCtctJCC5P3FTHiDxmkdRRySStfg/5NQtZNZeqg5vYc8zkzEXHSNm4p0kXTsXVWg0Rz/+J3k/vNHi/i67FXuVqVX/XHZru/b9VB1bNBdtXAqGUdc02aYmayfauFSkCt/VnQOTB9Y9v6vZc7jdbmwVJSgCw5ptJ5wfxMjHOeiibiGeJep3lfCXk77tfrvLCMCV/TyJa9VWJwu3FPKX3uHebb8eqeA/P2VRbrbz4LgE2suW41XM/CSTxFAVd46KIUAl438HyvjniqMYaxz8Y3Rss/tbHS5q6i6yLQlQyVDJ2/eC63K52VtQw6Up/h+eA+M8oxW78mvobmh6kbVd+dVIJDAg1ne9wJhgFVE6JbtOWDX418PlAASqpEz5YA9bc6qQSmBYoo4nL0+iV2SAt+2oZB0Aj/54jLmXJhEXouRQiZnnfz7OoLhAxpyBCaVSuZLwIZMoSV+Co7YCubbhlpVx03K08aloYz2jQ/KAYAa/uMU7rA8QPf5mDn90HwWr3yfuinuQypV+52grt9vNkYUPoY1Nofcj33pXlI0adxMH3rqV3O9fJXLsDcgDmn49jZuWcWTB/a06X9fZ84m44No/3e8/o2zn/yjbsZq+j37f7AiSrbwIbWwvv+3KkKi65wubPU/Jb19iLy8k9vK7mm0nnB9E8HEOUsqlTEoNZ8nOEirMDoI1Db/m5XuMpEZp6RnhuUAGa+RsuX+wz4X65uHR3PftYd7fWMA9o+NQtsNF3O1289CKI6REaPl2Tm9vYuVNQ6O49csDvLo+lxvSIgnRNP2WXLbbyP3LjrTqfPOnduXagRF/ut8nKjc7sDjcRAb5X+Si6rYVVtqaPUZhlY1gtRx1IyMRUUEKn/2PlpoB+NuXBxmWqOOda3pQVGnjlV9zmb5gL2vu6E9MXSLpwLggnpmUzAtrjzP1w4al5S/pGcpb07sjlzV/W6Kz6IdNpXj955Ru+9F7S6MmJxNz/gESrn7U204ilSGRem47uZ0OnJZq3C4Xwb0uoOT3rzAXHCYgPvVP96c2NxNz/kGSZj6B01zFiaFuaL+LPTM4Dm8ltP/FTR4jpM9Yej2wqFXn08b0/JM9/nNcdgvHFs0l4oIZBCY1f8vQZbMgUfi/9+sDQpfN0uS+Ndl7OPbFowR2GUjU2Fl/rtPCOUEEH+eoqX31fL6tmB8zS5k5OBLw3PI4UGzm0UsaRjNkUgkyqefC5HC6qbY5cbncXNAlmK92lHDYaCY1KqDRc7RFZlEtB0vMPHFZElUWJ5zwsX5xj1B+zDSxNaeKi3uENnmMsd1CWDTL/5tXY+qDq/ZkdnhueTQWjNUHbxZH47dF6lnsLlTyxgMBlVyKscbhfVxj8xwrNSqAD2Y0XKT6xgRw5Ud7eTe9gHmXJXm3RwcrGRQXxIVdgkkKU5NZVMs7v+cze9EBFl6X0mjA09l0PYajDI3G+Me33uDDuGkZSCToh/pO3yzZuJT8Ve9Sm7cfXL4jYM7aynbpj7nQE9xmLZpL1qLGV2S3V/nfzjyRMiQSZUhku/TndMv74U0cNRUkXPWvFttKlWrcdv/guv7WkVSp9nsOwFx0jH2v3YBCZ6DnXR+e8jRg4dwi3gXnqOGJOqJ1Sr7dbfQGH8t2G5FIYEpf31oBS3eW8G56PvuLazk5paDS0rrbHC05YvR8i5+7Mou5K7MabVNaY2/2GJFBykZHHdpbpcWBxd7wQsikEsIDFGjqAgxbIwGGtW6buoVRIrVCitXReC6N1eHy2b/+/1f19/19DUvUEReiYlN2wwV31X4Tf/vyIKvv6OcNvCakhNE3OoBZn+/n061F3DrCN8/kTCCRSgkfOoWC1e9hKy9CERxB6ebl6HoMRxUW421n3LKCwx/cTUjfcUSPvxlFsAGJXEFN9h6OL3kat7v5oI8mbie4TwpiqMtzipt8P0Hd0xrdRxvdo9lTOW1mnOaq5vtTR6YJQqbUtKpte7OVF5G38i2iJ9yK01qD0+q55eeorah7vhCpQokqzHM7VBkS2eitlfptjQVc1tI89r08A5CQ+sCisyYoE04/EXyco6RSCVP6hPPexgKKqmxEBCpYvqeU4Yk671A9wIo9Ru7+5jDjuodw87BoDIEKFDIJewpqeHrNcVwtJJ02NZjvdPnuV//o/rFxpCUENbpPj2ZyJQDMdmfdqEnLgtQyNIqmZ4c0Z+7KLL7eUeJ9HBeiYtN9gwjRyFHLJRRV+X/7K6zbFqlrPjiKClJSYXFgtjv9+ldYZadreMO3x8ggT76BoZEaJIZAhU+w9v7GApLD1X4jPuO6h6BRSPkjq+KMDD4ADMOmUbDqHYyblxOYPBBraS6xk+72aWPctByVPoGUuxcikTYEaNbi7FadQ64N9l5UT2QtOe7zWB3hKYAlVagJSR3d1h8FgNLNK86KnA97ZQluh5X8H98k/8c3/Z7PfGE68sBQ0l7z3MYLSOxH2Y5VuOwWn6TT6mPbvc+fyFZeROZL1+C01tD7oaWoI5JO3w8jnHVE8HEOm9bPwDvpBSzfbWRgXCC55VbuvtA3qXP5bs/sjYXXpSCVNoQS2abWZeEHa+RUmB1+24+X+e6fHOb5sFLLpadcTXPFntIOyfm4c1SMN/kWGmaKSKUSUqMC2J5X7bfP9lzPtn7Rzd+i6hsdiNtdzM68GoYn6bzb8yusFFbamHbCqNSA2EA+31ZMQSN5JAWVNqJPGAVqLCACcLk9+TZ2V8szlzpLQGIfNNHdMW5ahqUkG0ldIuqJGgKOhp/DaTNT8PNHrTqHOjKZiv3pOG1m70iDxZiDaftPvn1J6IM6qisF//uAiAtnoAjyTdi2VxpR6HxHok52puZ82MqLcJqrUBkSkcoVqPQJ9LzrQ792xs3LKd2yguQbnkUVHufdrk+bTOnm5RStX+St8+F2uShc+zHywDCCe43ytrVXmch86VrsVaWk/vMrb+KwINQTwcc5rE90AN0NGpbtNpJdZkEpkzDppNkv9QHHiZcms93JR5sKWnWO5DA16VkVPt/kc8os/LTf5NuXqAC66tV88EcBMwZFEH7St3ljtR19YPNVRjsq56NHhJYeTew/uY+e//yUxZoDZd7ptmabk8Xbi0mJ0PjsZ6qxY6p1EBusRKP0vDaXpoTy+E8SPtxU4BN8LNjkGbo+cXbSpSlhPLYyiy8yirl2YIQ3N2fNgTIKK23MGNhQHK2bXsOag2Vk5FYxKK5hZOn7vaVYHG76x/jOrjnT6IdNJWfZi1gKjxDSd5zfbJKwgRMxbfuRfa/NInzgRBw15RT//hUydevykSLHzqJ0y3fse3kG+mHTsFeZKPplIZro7tRkN0wRlUildJs9n8z5M9nx6FgiLpyJ2pCIvbqU2uN7Me1YzfB3jzV7ro7M+ajJyaRsx2oAanP3AZD7wxtIJBJk2mBvkABwfOmzlKR/zcDn/0Ctj0eu1RE2aGIjx9wLQHCvC31KoYcOvJTgXheQ/eU8bKY81BHJntLuR7bRdfZ8n9GQffNnYi44ROTYGzAXHMJccMjnHI1VaxXOLyL4OMdN7avnxbU5HCm1MK57iN9skokpYfyYaWLW5/uYmBJOudnBVzuKCVC27pbFrLRIvttbyoyF+5jWT4+pxs7CLUV0N2jYld8wbVQqlTB/ajdmfpLJ2Dd3MHNQBImhakpr7ewtrGX1fhPH5g5v9lwdlfPRnOuHRLAoo4i/Lz3EbSOi0QcqWJxRTF6Flc+u9w2MFmwuZP4vuXx9Uyoj6yqfRgQp+ceFcby0LofbvjrI2K7B7Miv4fNtRVw9wED/E6bghgcoePCieJ5cnc3VH+/lL73DKay08eGmQhJCVdw6oiEn4s4LYll3uJyZn+zjxrRIEkLV7Cuq4fNtxUQGKbgxrX1n8KZTAAAWFUlEQVSKUZ0u+uHTyFn2Ik5LNYZhU/2eN4y4CkdtBYU/f8SxRY+jDInAMOpagroNZt/LLRf+Ck4ZSfL1z5D/09tkfTkPdUQyydc9RW3+QZ/gAyCo2xD6PbaS3O9foyT9axzVZciDwtFGdyPp2sfb7WduDzXZu8lZ9qLPtty6uieq8Dif4OPPkkgk9Pz7Rxz/9nlKNi7FUVOBJror3W59E8Pwab79Ou65VVP0y6cU/fKp37FE8CGI4OMcN60u+Ki2Opnaz7+M+FX9DVSYHXy0uZDHfzrmXWdkcHwQMz/Z1+LxRyYH88ykZN7+PZ95P2WRHK7mqUnJHCyu9Qk+AIbEB7Hyb/14bX0uX+8ooczsIFwrp5tBy+MTk9rrRz6tNAoZX93Ym6fWZPPhpkIsdiepUQF8+tfWL85275hYQjQyPtpUyOr9JgyBCu4bE8fdjdQ5uX1UDKFaOe9vLODJ1dkEKGVc0Tucf12c4BNIpiUE8ePf+vLKr7ks222kuNpOqEbOlD56HhoX3+KoUmdTGxJbXIU2evzNRI+/2W/7yfvFT3mA+CkP+LWLuuhGoi660WdbeF37k2miu9H91pYLinUUt9OOvcqERCZHrm0YMYu44NpW54x0m/OqX4XXxjT1+gHI1AEkz3yC5JlPNHuMtqwo7LSacdk8/4Tzh6Q1VSyFjieRSK6/vFfY2+/P6Hlmj5efxaYv2Ivd6WbBzJ7IZRJ06vMjFq8v1rZ8j5FHf8z6U6vaxj2xhbQ39iFTtf/UZsFj7wvTqTzgqRYc1C2NPv/yrwh7Njv+zfPk/fC693Fjq+m2Rc6KV8hd8fKTbper8bnSwhnh/Pi0FYQmbM2pou8LW0lLCGLZnD4t73AOWLqzhAdXHO3sbgitlHjNXBy1nmq3J1aBPVdEXHAtupQR3sfttV6NcGYTwYdw3pp7aSLldTN1gs+TUQ+Acd1DfRJ3+7YwQ0foXIFJ/VpudBZTRySJabjnofPnE1cQTtLvDJ8BcrpE6ZREtVCPRBAE4XQ68+otC4IgCIJwThPBhyAIgiAIHUoEH4IgCIIgdCiR83GWiX18Y6vaXT3AwKvTup3m3niU1dr5aFMhI5J03mJaZ4PFGcVUWZ2dtubJl9uLuX/ZEaQS+N+d/f2qsr68Lof5v+Ty290DSA7vnMXHTtXGOf41SxpjGHl1q2pPtAd7dRmFP3+ErucIglNGdsg520PxhsU4LVVEX3Jrh57XYsxh+8PNF/6rFzf5fm9tkJrje8j++mmqjmxDIpUR3GsUidc8htqQ2OY+5P7wOtVHd1CdtRN7eSH64VeeUfVXhFMngo+zzOtX+gYUK/eZWLnPxGMTEjGcUEgqMazx5a1Ph3Kzg/m/5HL/2LizK/jY7lk3pbMXXHO54aW1Obw/49xZ/6LbLa/7PDZlrMSUsZLEax5DoWsodncqF6RT5agpJ3fFfOIm3392BR+/LcZWVtDhwYciKNzv91j06+dUHdrkCRglDQPn2jjP7ClzwWH2Pn8VCp2ehCsfxmW3UrDmffY8O41+j69CGexf6LA5Od88j0KnJzB5AGWNrKgrnL1E8HGWuaq/7x9vlsnCyn0mLk0JbfbbsdPlxuFyo2phyXeh4/WNDmDlfhO786vpe47MwDm5fLalOAtTxkpCB1zabAEpt8uJ2+lAqlA12UboGDKV1u/3WJG5gapDm9APm4ZE5n/5yF76LAC9H1rqrdcR2nccO+dNIO+HN0i+rvnKqCcb+NxG1IYEoPWjacLZQQQf56D0YxVc/XEmL/ylC1VWJ59sKSS3wsriWZ41RmptTl5bn8d3e4zkV9oI1ciZkBLGI+PjCdU2jJ6s3m9i8fZiduXXUFpjJ1gjZ0zXEP51cYJ3qmb9uQDm/5LL/F9ygYbbPvW3Fj67PoWtOVUs3l5ChdnB0IQgXpzcldgQFR9vKuT9PwooqLTSM0LL83/p4jcNtrV9nr5gL8dMFpbd3JtHf8xiY1YFCpmEK3rrmTcxCXXdCrXDXskgt9yz8u6Jt7Ly5o2go90xKoYHVxzhxXU5fPLXlhfOO1xi5vmfj5OeVYHF7qKbQcutI6KZflJgOuyVDKJ1Sp6elMzjK7PYnldNkErGzEERPHhRvM8qxgAbsyp4fX0e23OrsTtdpERquXt0HJemhLXrz1uvYn86mS9eTZdZL+A0V1H4yydYS3NJfWAxwSkjcVpryfv+NYxbvsNmykceGErYgAnEX/kIisBQ73FMO1ZTvGExNdm7sFeVItcGE9JnDAlX/st7Aaw/F0DuivnkrpgPNNz2Kf7tS44suJ+Uez+j6shWSn5bjKOmgqDuQ+l644uowmMpXPsxBWvex2oqQBvbky6znverwdHaPu99YTqW4mP0fmQZWV88SsX+jUhkCvRpV5A0c553kbaMh4ZhLfX8TZ148W1L+fKO4rTUUL57Lfph03wKhWnjUghOGUnpluVtDj7qAw/h3COCj3PYh5sKsDvd/HVwJGqFlIggJVaHi2sWZnKwuJaZgyLpbtBwtNTMws2FbMup4vtb+3ov0Iu3F+N2w41pUYRp5Rw2mvkio5iM3CrW3NEftUJKd4OGxyYk8uTqbC7rFcZlvTwXqpNv+zz3cw4quYQ7R8VQVGXj3fQCZi/az7S+epbsLGFWWiRmu4u3fstjzuIDpN8zEIXM04+29BnAYncx45NMRiQF8+iERDJyq/lsaxHhWjkPjfd8mM2bmMTTa7IpNzv4TyvXlbE7XVRZnK1qq1FIvSvZtiRUK2fO8GheX5/HtpwqBscHNdn2WKmZyR/sxg3cNDSKcK2C5XuM3PPNYYzVdm4fFePTvrjKxvWf7mNyHz2T+4Sz7lA5r6/PIyFExczBDSuv/pBZyh1fH2RQXBD3jY1DLpWwbLeRmxcd4M2rujGtkXWB2kvB/z7E7bQTOfqvSJVqlCERuOxWMl+6htq8g0SOnokmujvmwqMUrltI1ZFt9H30e+8FunjDYsBN1EU3Ig8Mw1x4mOL1X1B1JIP+89YgVajRRHcn8ZrHyP7qScIGXUbYoMsA/9s+Od88h0ShImbindjKiyhY/S7735iNfvg0StKXEDl2Fi6bmbyVb3Hgv3MY+Gw6Urkn+G1LnwFcNguZL88guOcIEq95lOojGRT9+hnyoHASpj0EQNKMeWQveRpHTTlJM/7TqtfT5bDjNFe1qq1UqUGmap98otrcTNwOG0FdBvo9F5g8kIrMDVhN+ajCYhrZWzjfiODjHGassbPhHwMJPmEBsrd+y2NPQQ3L5/TxWUF1RFIwN32xn692FDOrbgXU/17V3e8COiEllOkLMvlpv4mpffUYApVcmhLKk6uz6RWp9bstVE8mgW9m90Eu83zbdrrcvJNeQIWliHV39Udbd54QtZx//3iMdYfKmVD3jfvDPwpa3Wfw5KDcOybOm8sxKw0qLQ4+21bkDT4m9grjnfR8bE53k30+2ZbjVd5RnpbcPzaOBy6Kb1VbgNtHxrBwcyEvrM3hyxtTm2z33M85VFqd/HBrX+9rMSstkis/2suLa49zzQADYQENI0HZZVY+nNGTiXVB4ay0KC55eyefbSvyBh9mm5OHvzvKhJ5hfHBC3slNQ6OY8sEenlqdzZQ+er+RkvZirzIy8JkNPqXD81a+RU32Hvr833ICk/p7twenjGD/6zdR/PtXRI2dBUD3v/3X7wIaOmACmS9Mx5TxE/phU1EGGwgdcCnZXz2JNq5X06uqSmX0efgb7y0Ft8tJwap3KKqtoP+T67xr2MgDQjj2+b8p37OOsAETAE8Q1do+gycHJe4v9zbkcoydhaO2kqJfP/MGH2GDJpK/6h3cDlurV4KtOrzFO8rTkhMTRf8sW3kRAIqQSL/nlHXbbOWFIvgQABF8nNOm9tX7BB4Ay3Yb6RcTQHyIClON3bt9cFwgWqWU345WeC/k9YGH2+2m2urE7nTT06AlWC1jR141U/vqW92X6wZHegMPgLQEHe+kFzCtr94beAAMSfB8688yWU6pzwBSCVw/JMLn/MMTdazaX0a11UmgqnUjEidLjQrwKUvenMTQtiX8Bmvk/G1kDC+uzWFjVgUjkvwTd50uN2sPlTEqOdgnCFPKpdwyIpq7lhzi1yPlPqMUkUEKb+BRb0SijqW7jN7H649WUFbrYHp/g8/rCzC+RwgvrcvlkNHsNxunveiHTfVbs8S4aRkBSf1QhcdjrzJ5twd2GYxUpaUi8zfvhbw+8HC73Tgt1bgddrQxPZFpg6k+tgP9sKmt7kvk6Ot8chl03dIoWPUO+uHTfBbPC+o2BPDkspxKnwGQSIkYc73P+XU9h1O2YxVOczUyzanl/wTEp9LrgUWtatueCb8um+dvVir3z9epH/GpbyMIIvg4hyU1cgE8UmrBYnfR94Wtje5TesLF54jRzLP/O876I+XU2Fw+7Sotjjb1JS7E9wNJp/YEALHBvtuD67bXr7nS1j4D6AMUaBS+AUZ9EFZudpxy8BGikZ/y6q+tccvwaD78o4AX1+bwzc3+wUdpjZ1am4vuev9h8u4Gz7bjZVaf7Se/vuB5LXxeX6NnKfM5iw802TdjjZ3TNRensXU9LEVHcNksbL23b6P72KtKvf83Fx7h+NJnKd+7Hpe1xqedo7ayTX1Rhcf5PJbVLV+vCos9abvn9+OoKT+lPgModHpkSt/fpfyE455q8CEPCCEkdfQp7ftnSJV1AYbD6vecy27xaSMIIvg4h52YB+HldjM4PpB/NnFLoH6BtSqLg6sW7EUhk3D/2HiSw9Vo6o5355JDuNxt60tTI/ayJibf+By+lX32nquZ2wNudxs7fgKbw+Vz0W5OgFJGQBuDnECVjDtHxfDUmuP8cri85R1aQdaKWyX1L8mzVyST1MQU7dTI0zPqAfjkQZzYp8Cug4mf+s9G9/FepM1V7H3+KiRyBfGT70cdmYxUqQEJHHr3TnC7Gt2/6c408YaUNvG7POH91No+15M0dS7Azam/T10Om09Q1ByZKgCZun0WFqy/tWKvu/1yovpbMspGbskI5ycRfJxnksLUVJidLX6DT8+qpKTaztc3pfrU7jDbnVScdAGWSE5PLkC91va5rdra6605py/no95Nw6J4b2MBL63N4aLuvj9veIACrVLKobqRihMdLvFsSwht+xTVpHDPxT/4NI/stIU6IglnbUWL3+Ar96djrywh9cGvfWp3OG1mHDUVPm1P9/u0tX1uszb2u+rw1k7J+dDG9kIiU1B1dDuRY2/wea762HYUOj3KUJHvIXiI4OM8M6Wvnud/zmHJzhK/qZlOl5tKi4NQrQJp3Qfeyd+/3v4t32/UI0Dp+QZ3clDS0X1uqwCljEqLA7fb3aoL0+nM+ainUcj4+4WxzF2ZheOkF1omlTCueyg/ZJb61ASxO1188EcBKrmEMacQPIzpGkKIRs4b6/OY0CPUL8nYWG1HH9j21/fP0A+bQs43z1OSvgTDyOk+z7ldThy1lSgCQ08YPfB9rfJXvu036iFVeb7hnxyUdHSf20qmCsBRW9nq92ln5XzINIGE9B2HadsP2K582DvKUZu7n4r96USNnXXaA0Dh7CGCj/PM30bE8PPBcu799jBrD5YxJD4IN5BtsvDDPhMPjYvn2oERpCUEER4g555vDjN7aBQBKhm/H6tgZ141oVrft40hUElssJLle0rpEq4hVCsnPlTFoLimp4yejj63Vf/YANYdLufxlVkMjAtEKpEwpZkk2tOd81Hv+iGRvJOez+6CGr/nHh4fz4Yj5Vy7MNMz1TbAM9U2I7eaxyYk+sx0aa1AlYwXJ3fhjq8PMfa/O7m6v4GYYCVFVTYycqs5YjSTfu+g9vjRWi1mwt8o3/Uzhz+6l7Ldaz0Jnm43luJsTBk/ED/1ISIuuJagbmnIg8I5/ME9RI2bjUwdQMX+36k+thP5SRd6ZbABZVgspVuWo4nqgjwgFJUhnqAu7fOztbbPbRWQ3J/yPevIWvQ4gV0GIpFI0Q+b0mT7zsr5AEi46hF2P3UFe5+/kqjxN+Ny2ChY/T6KoHBiJ/2jzccrSV/irXMCUJu3n9zvPOX4dT2Go+vZuvLvwplHBB/nGbVCypc3pvJuej7L9xj5ab8JlVxKbLCKaX31XFB3iyVEI+fz63vxxOpsXt+Qh0wCI5ODWTK7d6O3Hl6/sjvzVmXxxOosrA43Vw8wtFvw0do+t9XtI2PIMllYuquEjzYX4nbTbPDRUVRyKfeMjuPh7476PdclXMPyW/rw/M85fLy5EIvDRTe9hlendePqAadei+Py1HCWzVHy5oY8Pt5SSI3ViT5QQWpkAA+P7/hCT1KFmtR/fkn+qncxblqOKeMnpAoVqvBY9MOmEdzrAsBzoe113+dkf/UEeT+8DlIZwSkj6f3QkkZvPXS/5XWyvpxH1pdP4HZYMYy8ut2Cj9b2ua1iLr0dS3EWJRuXUrj2I3C7mw0+OpM2pge9H17K8SVPc/yb55BIZehSRpF49aOnlO9R/NtiKg80FAGszcmkNsfz+RM3+X4RfJzFJH8mAU84fSQSyfWX9wp7+/0ZPc+NetvCOSnuiS2kvbHPZxqqIHSmnBWvkLvi5SfdLtfczu6L0DSx0IcgCIIgCB1K3HYRBEEQOoy9ugy3095sG3lACFK5soN6JHQGEXycuew2Z1uraQhCR5Pgdp6eWU7CuengW7f65HE05uSp023hdjrcuN2tW4RJ6DQi+DhzFR0vs4rgQzhjVVudSOQK7JXFyOsqgQpCSxKvmYujtvkiaAHxTa9v1BKbKc8ClLbYUOhUIvg4c6Vnl1nkBZVWonVtLxwlCKfbmgMm5BJ3sWnHGn3sxG4if0xolcCkfqft2G6XE9OOVQCrT9tJhHYhPjDOUG6326aUSb985LtjZruzjSWiBeE0K6qy8cya47U2i/nt/J/etljLCjq7S4JA4dqPXbhcx91u98HO7ovQPDHV9gwmkUhUgUrZTwmhqiGz0qICRyTr0Klkba22LAjtwunyLDC35kCZc8HmAmuN1fWC2e6cJ1WqH5VrQx6Jn3xfQOjAiSh0elHJUugwbpeT6mM7KEn/2l6SvqTcZTMPd7vd/kVyhDOKCD7OcBKJRAFM1qllN7ncpDmcbm2bFyURhHYgAZdcKql0ut0ra22uT9xu9+/e5ySSSTKN7naX3Xyx2+lUSqQykfAndAC3xO10ymTqwFyXw/qJ22F72+1253V2r4SWieBDEIR2JZFI1EDblvQVhFNncYvZLWcdEXwIgiAIgtChRMKpIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKH+n+UCd7yu8A2OAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JjBym5Iw9cGr", - "outputId": "2fdf00f7-9f6f-494e-be9a-84b85ad7d30c" - }, - "source": [ - "est.feature_importances_" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1., 0.])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 83 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "L7q7UxZG9cGr" - }, - "source": [ - "#### Produce recommended treatments" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "sZ_E-Tjk9cGr", - "outputId": "4773b57f-bc7e-4f70-f65c-50ad9471041e" - }, - "source": [ - "est.predict(X[:100])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", - " 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 84 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Zb3MFbCq9cGs" - }, - "source": [ - "#### Fit a Doubly Robust policy forest" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "N4CAMtPQ9cGs" - }, - "source": [ - "from econml.policy import DRPolicyForest\n", - "\n", - "est = DRPolicyForest(n_estimators=100, max_depth=2,\n", - " min_impurity_decrease=0.01, honest=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "jK5vBCCm9cGs", - "outputId": "1b97cc54-6324-42c0-e403-fba3dc3dee14" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 86 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lhiGgCKD9cGt" - }, - "source": [ - "#### Produce recommended treatments" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "lAGuJ1wB9cGt", - "outputId": "b1590aad-d1d1-4657-8e65-012ae7abec58" - }, - "source": [ - "est.predict(X[:100])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 87 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3xWXtC8k9cGt" - }, - "source": [ - "#### Plot one of the trees" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "Xen6bm7Y9cGt", - "outputId": "25f978fc-a5d0-4395-9bb2-a0b089ff2828" - }, - "source": [ - "est.plot(0)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAEGCAYAAAC3o5WpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gVVfrA8e970xNSSCUkEKp0BRRBVERUdFVsCyrYsG7Vn7271rXtuqyu61rX3kARERusBRGkCCICAtJ7egLpyb3n98eZXG7KTS4QuIm8n+fJk3tnzsycKXfmnTNnzhFjDEoppZRSweIKdgaUUkopdWjTYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKNUEEXlFRB5yPh8vIquDnadarS0/Sim1rzQYUY0Ska9FpFBEIoKdl9bCGDPHGNMr2Pmo1dry05r4BpEHaP4jRWTrgZp/AMv/WkSu2stpnheR1SLiEZGJzaSNEJH/isguEdkpIjfWG3++iPwsIrtFZKWInOMzTkTkIRHZJiLFTl777dUKqkOOBiOqARHpAhwPGOCsAzD/0Jaep2pbgn0MBHv5QfIj8EdgSQBp7wN6AlnAicCtInIagIhkAG8ANwJxwC3AWyKS6kw7DrgCew5JBL4DXm+xtVC/ShqMqMZcCswHXgEuA++dUpGI9K9NJCIpIlJeexISkTNFZKmTbp6IHO6TdqOI3CYiy4BSEQkVkdtFZJ3P3dW5PulDROQJEckTkQ0i8mcRMbUXERGJF5GXRGSHcwf2kIiENLYyInKfiLwnIu86y1oiIkf4jO/j3L0VicgKEWk0AKt/NywinURkqojkiki+iDwtIuEiUiAiA3zSpYpImYikNDLP5tbzcp870PUi8rsm8rNRRG4WkWXOHem7IhLpjEsWkRnOOhaIyBwRafT3LyLDRWSRM49FIjLcGX6BiHxfL+0NIjLd+RwhIn8Xkc0iki0iz4pIlG9enWNgJ/ByI8udKCLfOvModLbHb3zGdxSR6U7+14rI1X7yfw1wEfYCWiIiH/lsn/rH4DDnWC0SkR9FZKTPfBrd9iISA3wKdHTmX+Lk7T4RmSIibzjT/CQih4nIHSKSIyJbRGS0z/z9HsNNbQsR+Sv2Qv+0s+ynG9sO9Rlj/m2M+QKoCCD5ZcCDxphCY8zPwAvARGdcJlBkjPnUWB8DpUB3Z3xX4FtjzHpjjBsbuPQNJI/qEGaM0T/9q/MHrMXeQR0JVANpzvD/An/1Sfcn4DPn8yAgBxgKhGBPZhuBCGf8RmAp0AmIcoaNAzpig+ILsCe0dGfc74GV2BNfe+B/2JKaUGf8B8BzQAyQCiwEfudnfe5z1mMsEAbcDGxwPoc563snEA6MAnYDvZxpXwEecj6PBLY6n0Owd5qTnDxEAsc5454BHvNZ/v8BH/nJW3PreQb2JC/ACUAZMLh+fny28UJnmyYCPwO/d8Y9Ajzrs87HA9JIfhKBQuASIBQY73xPAqKdbdPTJ/0i4ELn8yRgujOPWOAj4BGfvNYAjwERtcdAvWVPdPbT1c72/QOwvTafwDfOto0EBgK5wCg/29W73+ptH+8xCGQA+cDp2GPwFOd7yt5ue5/jrAI41dl2r2GPs7ucbX41sMEnvd9jOIBt8TVwVb3lzwBuD+D3/S0wsYnx7bHHYJrPsLHATz7H/mxsqWkIcA6wFYhxxmcBi4HDnPV+HJgW7POa/rXuv6BnQP9a1x9wnHMSTHa+rwJucD6fDKzzSTsXuNT5/B/snZTvvFYDJzifNwJXNLPspcDZzucv8QkunGUb5ySfBlTic0HDXjS/8jPf+4D5Pt9dwA7sBfl4YCfg8hn/NnCf8/kVGg9GjsFeDEMbWd5QYLPPheN74Hw/efO7nn7STwP+r35+fLbxxT7fHweedT4/AHwI9GhmH1wCLKw37Lvaixf2Lvcvzuee2OAkGnvBLgW6+0x3DM7F18lrFRDZxLInAmt9vkc726IDNoBwA7E+4x8BXvEzL+9+q7d9rvD5fhvwer00nwOX7e229znOZvl8HwOUACHO91hnfRJo5hhuals437+mXjAS6B/NByOdnGVF+gw7Bdjo8/1KZ91qsEHaGT7jwoEnnXnUYAOyrvuSV/07dP70MY2q7zJgpjEmz/n+ljMM4CsgWkSGiq1XMhB7dwf2bugmp7i7SESKsCe1jj7z3uK7IBG5VPY81ikC+gPJzuiO9dL7fs7C3nHt8Jn2OezdpT/e6Y0xHuydXMfa5TjDam3C3jU3pROwyRhTU3+EMWYB9gQ9UkR6Az2wJQaNaWo9EZHfiMh859FEEfYuPhn/dvp8LgPaOZ//hi0Bmuk8cri9ifxsqjfMd3u8hb1oAkzA3vGWASnYC+Zin33ymTO8Vq4xprlHBN78O/PFWYeOQIExZreffAWq/nE0rt4xexyQDvu07QGyfT6XA3nGPqqo/V67PoEcw/62xYFW4vyP8xkWhw08EZGTsYHuSGzgcQLwoogMdNL+BRiC/Y1EAvcDX4pI9AHPuWqzDsVKXMoP5/n++UCI81wfbJF6gogcYYz5UUQmYy9G2cAMn4vDFuwjnL82sQhvF9EikoV9Dn0S8J0xxi0iS7F32GBLLjJ9pu3k83kL9q4yubFgwA/v9E5diUxssTdAJxFx+QQknYE1zcxvC9BZREL95OFV4GLsBeW9Ji7CftdT7JtM72Pr8HxojKkWkWns2UYBc/bTTdiAsT/24rDI2DoEvrZjL5S+OmMDC4BZQIpz4RkP3OAMz8NebPsZY7b5y8be5rtevhJFJNbnmOsM7O2yfIdvwZaMNKh7EsC23591qV323h7DvvZ3+f5nbEyhiOwAjsDub5zPK5zPA4FvjDG19YcWicgCbKneUmf8u8aY2vpMr4jIP7H1RurUOVKqlpaMKF/nYIvC+2JPKAOBPsAc7EkZ7J3xBdgKgm/5TPsC8Hun1EREJEZEzhCRWD/LisGeUHPBVhbElozUmgz8n4hkiEgCtkgdAGPMDmAm8ISIxImIS0S6i8gJTazbkSJyntiKoddjLwTzgdpSjFtFJMypwDgGeKeJeYF9vr8DeNRZ10gROdZn/BvAudiA5LUm5uN3PbF3nRHYbVTjVGAc3cg8miW2cnEPERGgGLufPY0k/QQ4TEQmOBU8L8AeDzMAjDHVwBRsSUsizsXKCeReACbJngrNGSJy6r7ktz5jzBZgHvCIs60Pxz4qeMPPJNlAt2Zm+wYwRkROFVuROFJsRdtMmt/22UCSiMTv4/rsyzHsK5D1q0Ns5epIbEAV5qyvv2vAa8DdItLeKd27GvvoC2w9oeNrS0JEZBD2cecyn/HjRCTNWa9L2FM3S6lGaTCifF0GvGyM2WyM2Vn7BzwNXOSUAizA1g3oiH2jAADnLulqJ20h9sQz0d+CjDErgSew9RGygQHYOii1XsCerJcBP2AvkjXYiyjY4CgcW/mzEHgPp3jdjw+xQVRt5czzjDHVxpgqbPDxG+zd/TPYejCrmpgXTtH7GOwjmM3Yxz4X+Izfgn2F0mCDOX/8rqdTAnAdNmApxD4W8fe4pzk9sZVjS7Db/BljzFeNrFc+cCa2FCUfuBU40+exHdgg9GRgSr27+tuw+32+iOxylteS7aCMB7pgS0k+AO41xvzPT9qXgL7OI5BpjSVw9tHZ2MrLudjSiluw9Yea3PbO8fE2sN5ZRkf23t4ew76eBMY6b9o8BSAin4rInU1MMxNbejUceN75PMKZ9iIRWeGT9l5gHfZR2Gzgb8aYzwCMMbOx9WPeE5Hd2BKkh40xM51pH8NW7l4KFGFLz35rjCkKcN3UIai2gp1SrZpzZ/qsMab+I4RApr0PW3Hz4hbPWNPL/S+w3Rhz915Ms8/rqZRSbZWWjKhWSUSiROR051FBBvZO7YPmpmstxFbwPQ97h95Uuja9nkop1RI0GFGtlWBr4RdiH1/8jK2l3+qJyIPAcmzR9obmktNG11MppVqKPqZRSimlVFBpyYhSSimlgkqDkb0k2qW8Uq2C+PRc67wNMjOAae4UkRdbOB8iIi87b7YsbMl5tyTZh55+1R5i+zYqFxHt9C9AYvseqxIRf6/gewUcjIh2Kd+AaWVduLe2/LQ10sLdzjd38heRLuLTKd6BEMwLkNTryO9AMsa8aYxptg0WY8zDxpiW3h7HYZtLzzTGHN3C8w6Kg7HvnIv7yQdyGU0se6KIfLsPk44xxlziM58HxXaIWOO8tdfUMkVEHhPbqWa+81l8xo8S24nnLrGtJF9Tb/prxXaYuEtEvheR45pYVoSI/NdJu1NEbmwmbzc46XY50zW4zovICc75qtFzpIh8Uf98ZozpDjzc1LJrBRSMiHYprw4wPQYap9ulTcjC9ttSurcTtuX925bz3oLWYtvi+TiAtNdgG5Y8Ajgc205RbU/QYezpODEe22bRP8TpXVxEhgKPYjssjMe+pfeB+OmpHNsOTE/ssXkitlHH0xpLKLZhwtuxrWFnYRvTu79emjBs2zYL/MzjImzDdvsukA5ssLX75wL/wDYBDrZ1wiKgv0+6FGxDOqnO9zPZ0/DNPOBwn7QbsY0kLcO2hhnqbJB12D4QVgLn+qQPwTaSlYfteOnP1O3dtHYH7cA2Ef0QTgdVjazPfdgGht51lrUEOMJnfB9sR1RF2CaQz/IZ9wqNdJzmfO8ETMU2oJSPbQAsHCgABvikS8W2+pnSSN6aW8/LsW9c7AbWU7eTtfr52YjtoXYZttXNd3E6v8L2sTHDWccCbMNcLj/bazi2VcVi5/9wZ/gFwPf10t4ATPc5Rv6ObRQsG9trbJRvXp1jYCf1Oizzmd/VPuu7kj29pja3j/6NPUHsxv6AujvjBNu7bA6wC/gJ2/LrNdgOAquwDYN95KRv6piciO107O/Yt2E2AL9xxv0V20BbhTO/pxtZt83Ovi1x/o5x5jnXyWM+9jhuaju2d/ZjrpOHGdg7dL95cJb5R+AXZ70exPZOO8/ZJpOBcJ98Nvc7bnCMYVvYLce28lq7fh0b2QavOOszy8nLbCCruWPPGfc1TmdxtfvCZ1w/Z54Fzja70+e3/4ZPumHOOhVhG+oaWW//rnfytQG4qJH8X+lsX7ezjvf7HLdrneVP9113Z/v/ydn+G/wc903ly+85wBl/trO/dmGP3dN8tteD2ONrN7YRtORGlt3ovmPPefMNZ95X0cR5F3tMfYk9jvOAN4EEZ9zrzvzLnfnfim3QzjjrtwV7PP8e28/NMmdbPF0vr1c426IQ28lhVr3t/HtnOxdhzwmCPXf47rOiAK+DG4GT/Yx7A6dzzSamnwdcU+/Yme98TnPyG+0zfhEw3udcu9BnXG0L1ul+lrUdGO3z/UHgHT9p38I2Wlf7/SRgZ700t2P7I3qFhh1QxmO7zxhGI518Uu8353f7BLgTtEt57VI+GF3Kj8Oe4IY469uDPR2MNbeP8oGjnTy/ifNDxHbvvhjbc2rtiSm9/r6tlwd/x+RE9rKb93rz7kK9H68zzxrgWifvUc1sxyTgt86+iMU21T7NZ34N8uAs80Ns52f9sDcDX2DviOKxx99le/E79neMjaRez7aNbINXnH03wjkOnsQJKmji2Ku/bvgEI8522IFtRTbS+T60/okR28lePrYDPBf2UUs+9qYqBnvBrT2m0rH97jS2Dt5lO99HYS++g511+he2Lxff7T/LWb/Gjnu/+QrgHHA0NnA7xZk2A+jts73WAYdhj6uvgUf9rFODfcee8+Y5zryjaOK8i/29nuJsgxTgG+Cf9c5PJ/t87+Jsm2ed/TYaGzRMc+adgT0WT3DSn409D/TBHh93A/PqbecZ2N96Z2zAflpj+8wZNgFY1sSxWie/9cYFEowU4xyHzvejgN0+39/CXkNDsDcmOUAnZ1wc9rxV+zu8FtsUQGPn7PbOuqf5DBsL/OQnXz8CF/h8T3amr/2dZWGDjXY0fo78N/YmtHb/HZhgBO1SHrRL+WB1Kf957brVGx7IPnrRZ9zpwCrn8yj2RPGuevP17tsAj8mJ7Ec37/gPRjb7fG9yOzYyz4FAoc/3Bnlwlnmsz/fFwG0+35/AuWgQ2O/Y3zFW53j0k99X8Lljw57w3NiblOaOPe+6UTcYGQ/84Gd597EnGLmNeiVyzjF3GfbiWoQN9BoEDPWm8S7b+f4S8Hi9daoGuvhs/1FNzM9vvvyk9z0HPAdM8pPua+Bun+9/xLl5bCRtg33nbDvfoGpvz7vn+O4X/AcjGT7D8ql7oXwfuN75/Clwpc84FzYwy/LZzsf5jJ8M3N7YPgvkr35+640LJBhx4wSGzveeTh5rrwtjsKV4Nc7f1T5pBXvzVe2MywOG+FlOJ2e+kT7DTsE+Smwsvbf0zPke5kxfe7x+WLsPqHeOxAZUS7HX4dr9t0/BSCB1Ri5Du5TXLuXrOlhdynfC/lAay1Nz+6jR9TbGfIl9fPZvIEdEnhcR367S62jmmKyzHNNy3bz77vMmt6OIRIvIcyKySWx/MN9ge1n29yy5Vv2u7ut/r12HQH7H/o6xQPn+FkuwjzZqf4tNHXv++Dtu6svCdujmu27HYUu+SrElYb/Hnlc+dn67gaiTb2ed8uvle0v9iQLJFzR7Dmhu3VtsX9HMeVdsR3nviMg259h8g6bPVbX25th80mfZBdiLdrPngSApwZZw1IoDSowxxjm23mFPf0X9sPU8znDSXol9fNXPGX8xMEMa7xOpxGf+vsva3Uhaf/kC2C0iY4BYY8y79ScS28niM9hAeF96nq6jyWBE9nQpf4JT03YntjjmCLFdyrux0eZ456+xLuUTfP6ijTFv+yzC+CwrC9tp2J+xxUMJ2FYs97ZL+dplxRlj+jWxev66lN+O06W8T9qmuir3zUPnJip11XYpfwn736X837FFcAnYjtX2qUt5Y8xNxphu2ErJN4rISY0k9delfO32qN+lfG1Pvr5dytfuk3hjjO/JwNC0Ldji6MbytC/7yC7UmKeMMUdie6M9DNs5WoP8BHBMNruofRzvO7y57XgTtjO6ocaYOJyOz3zy2FwemhPI79ifQJfte4y3wz6+qP0tNnXsNZXnQHq03YItgfBdtxhjzKMAxpjPjTGnYIOAVdhjIRB18i0iMdjHab75bmrb+M1XAOcAf7+ZvRXIsdncefdhJ/0A59i8mLq/nZY4Nn9XbztFGWPmBTDt/i57X6zAVl6tdYQzDOxNzhrnmPMYY1Zj67z9xhk/EHt9XeOM/wx7rRhefyHGmEJnnL9lBZKvbGM7zTwJOMrn+n8BcL2I1D7mPQp41xm3yJl+q4gc39zGqK+5khHtUl67lA9ml/IvAjeLyJHOMdTDCRD2dR8hIkOcYzIM+/ijwme963fL3twx2ZzmunnPdZbtN00A2zEWG6wUiUgitm+bvclDc/b2d1x/2UkiEt9MutNF5DgRCcdWtJtvbI+6TR57TZgBpIvI9WJfcYwV+zZCfW8AY0TkVBEJcX6zI0Uk07mrP9sJJCqxd4+N/T4a8zZwuYgMdIKHh4EFxpiNAU7vN180fw54yVn2Sc55MEMCL9Hx1ey+C+C8G4vdbsVi+126pd4s9vfYfBa4Q0T6AYhIvIiMC3DabCDTOeb2mXP+icReS0OdfeWvVPI17E1fhtgSjZuwjz3A1v/oKfb1XhGR7tiK48uc8YuAM0SkmzP+FOyN1PImlnW3iLR39v/VPstqLO2VItLXuebc7ZP2Hmc5tdf/6dhzwuXY60ZHn3GnO9MciZ+3bprSXDByGdqlvHYpH6Qu5Y0xU7BvhLyFLWKcBiTu6z5yxGG3cSG2KD0fG0hBvW7nAzgmm9Ogm/d661fmrN9cZ5nD/Mynqe34T2xFwjxsMP3Z3uShOXv7O6437SrshXm9s36NFSmD3b/3YovZj8QG7IEee40tdzf2GfkYbDH9L9jXG+un24KtBHkn9uK+BXvBdDl/N2JLOQqwFUX/EOB6/w97En8fe4PSHbgwkGmby1dz5wBjzELshWIS9mIxm4alS4HkIdB919R5935sJd5i7F3+1HrTPoK9YBaJyM37kMcPsBXg33F+F8vZU5LQnC+xJQI7RSQPvA3n+Ss98OcF7M3AeOAu5/MlzvyOF5ESn7TPYSuf/+Tk9WNnGMaYddg3g57CVpyejT1+ahvoew17s/W1M/4pbKmQv3PevdjHdZucef3NKU1BRDqLSImIdHaW/Rm2rtdX2GvXJmf62hJ032t/OVBqjCkwlu+4XGfZ2c45eq+02b5pRLuUV6rNE5FXsBUlA/5NKBUMYlu3Tgc+MMZc1lx65d1mGcBkY8wVTaVtM43WiK2/ciK21CCNNtbVuuzpUn5QM+na9HoqpdSvkdHWrffa3myzttQ3TZvtal20S3mllFLKrzb7mEYppZRSvw5tqWREKaWUUr9CGowopZRSKqg0GFFKKaVUUGkwopRSSqmg0mBEKaWUUkGlwYhSSimlgkqDEaWUUkoFlQYjSimllAoqDUaUUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKKWUUiqoNBhRSimlVFBpMKKUUkqpoAoNdgaUagtEJAE4OyQ6fqyIKx3R347yq8Z4PDvdZcXvA9OMMYXBzpBSrZ0YY4KdB6VaNRE5TsIiPos7bJhJPvrsduHt05EQjUVU44ynhqrCneQv+qikeNVcl6muPMMY83Ww86VUa6bBiFJNEJHDXOGRS3r96b8xCf1PCHZ2VBtTvGoeq568tMxTVT7EGLMy2PlRqrXSOiNKNUFCI65MO+GScA1E1L6I7z2c9JOvDHeFRV4d7Lwo1ZppMKJUE1xh4eOTjj47LNj5UG1X0pAxoRISekGw86FUa6bBiFJN8FRVpEZ16BbsbKg2LLJDd9xV5SnBzodSrZkGI0o1wRhPiCssItjZUG2YKywSPG6t8axUEzQYUUoppVRQabSu1EG2/vU7yJ79On1vmUJ8r2PqjCvbvoZl959KQv+R9L72Ze9wd2UZWz54nLyF06kpLSIqvQcZv/kTyUPPPtjZP2CMu4Ztn/yLnG/fpaooh4jkTDqMupwOoyYiIgFNv/Pr18mZ8xYVOZtwhUcSndGLjqf9kfYDTvSmy/n2Xda9fKPf+cT3PZ6+N73TIuuklAqMBiNKHWSdx95J4Y+zWP/qLRx+3yxCwqMAMB4P616+CVdYJN0ufsSb3hjD6n9fxa5V8+hw8pVEpXUj//uP+OX5P2LcVaQMHxesVWlR61+/g5w5b5E64iLadR1I8YrZbHzrbmpKi+h01g0BT5809Bw6jLwUd0UpOd++zap/Xsxhf3iepKPOACCu1zB6XPVUg+mLVswm77v3Seh/YoNxSqkDS4MRpQ6y0KhYul3yCKuemsjWD58ga9zdAOz434uUrF9Ct0sfJ7x9B2/6wqUzKV4xmy4THiL9pMsBSD1+PMsfPYdNUx4iachZtFS9ltItK4jp1K9F5rVXy928nJw5b5E++nd0ueAvAKSNmMCaZ3/Pto//RdqICYQnpPmdvqZ8Nzlz3yVx8Okcds2/vcNTjj2fxTcNJmfuu95gJDIli8iUrAbzyJ07GQkJJeWY37bw2imlmqN1RpQKgvZHnELS0WezfebzlGxcRkXuJrZ88DhxvYeTdsJFddLmLZqOKzyStBHjvcPE5aLDqIlU78qjeNXc/cpLVVE22z59hqX3nMiKx8bu17z2Vf6ijwBIP/nKOsM7nHQlpqaSgh8+a3J6T1U5eNyEJaTWGR4ak4ArLMJb+uRPZcE2ilfNI6H/SMLikvdhDZRS+0NLRpQKkq4THqR45Tese+UmQmPaA4bul/2tQbrSjT8SndnXvpXho13XQc74ZbQfMGqvlu2pthf43HnvUbRiNhhDfO/hZJxxXYN07orSgOYZEhmzzyU0JRuXERafSkRSRp3h7boeAeKidNNPTU4fHp9KVMfDyP32XWK7DiSu13DcFSVs/+w/GOMh/dTfNTl97nfvg/GQMvz8fcq/Umr/aDCiVJCExSbR5YL7WPvS/wGQNe4eIlO7NEhXVZRNdEafBsPDEzo443cGvMzd65eQO3cyeQun4y4rJqrjYXQ+91aSh51HRGLHBunzFkxrsrKnr+6X/4PU4/atba+qouxGH8O4QsMJbdeeqsLm1/GwPzzP2hf+zNqXrvcOC4tPo+/N7xLbbXCT0+bOnUJoTALtB56y95lXSu03DUaUCqLQ2ETv54QBjVec9FRVIGHhDYbXlkJ4qiqaXc6OL/5L9levUr5jLaHtEkkZdh4pw8fSruvAJqdL6D+SPje93ez8AaI79gooXWM81RWERLVrdJwrLAJPdfPrGBLVjujM3sT2GEJc7+G4y3ez88uX+XnSJfS54Q1iuw1qdLrd6xZTkb2etFETcYU23M5KqQNPgxGlgsRdUcr6124nIiWL6l15rH/9Dvrd9n6D11hd4ZGY6qoG03uqK73jm7Pj8+eozN9Ku26D6HHlP4nq0COgPIYnpDVZcXRvuKvKcZfvrjMsLDYJcYXgCovE1DRcR7DrWf8RVYN5V5Sy/OGzSR52Llm/vcM7PGnIWfx4z0jWv3YrR9w3q9Fpc+e9B0Dqr+StJKXaIg1GlAqSTe8/TFXhdvreMoWyzSvY+M695Mx+g7SRl9RJF56Q1uijmNphgQQL3a/4BznfvE3BD5+y9O6RxPYYQsoxY0kaMobQ6Di/0zUWQPgTEhXbZEXR/IXTGzzyGfTYfCKTOxGekEbZtlUNpvHUVFFTUkhYM+uYv/hjqgq2kTjotLp5iogiYcCJZH/9OjVluxqsq6e6kryF04nqeFizpURKqQNHgxGlgmDXL4vI/upV0kZcRHyvY4jrOZS8hdPY9N7DtD/ilDqv9sZkHU7h0s/xVFfUKSEo2fCDd3xz4nsfS3zvY6kp303+wunkzpvM+tduZcPbfyHxiJNJGT6WhP4nIiF1TwmNBRD+NFdnpLFHPuHxtsuWmC6HU7zyGyrzt9WpxFqy4UcwHtplDWhy2dVF2faDx91gnHG7nf81DcYV/jgLd1kRKaf/qcn5K6UOLA1GlKpmtAwAACAASURBVDrIPNWVrH/1ZsIT0ujstDEiLhfdL/s7yx44jQ1v3U2vP73oTZ885CzyF35I9jdve9sZMR4PO798hdB2icT3OTbgZYdGxZJ2wkWknXAR5TvXkTt3MrnfvU/+9zMIi0smZfg4b7sn0LJ1Rpp65JN81Bi2f/I0O/73kredEYCdX7yEhIbXKfFwV5ZTVbCN0HaJhDl1biLT7WOn3PlTie1xlDdtTWkRhcv+R0RSpjetr9x5U8AVom2LKBVkGowodZBt/eiflO9YS69rXyY0KtY7PDqzNx1/80e2zXiS/MWfkHTk6QC0H3Qq8X2OY9O791NVsI3I1K7kf/8RJesW0/3yfzRbn8KfqA7d6fzbO+h07m0Ur5xDzrzJ5H43tU4w0pJ1RpoSk9WflOMuZMes53FXltCu6yCKV8wmf9FHZJ51Y52SopINP7Dyb+PIPOtGOp19EwDtDz+Z6E79yP7qVaqLc4jvcxzuihKyZ79JdXFOoy2uVu/Ko2j51yT0HXFQ1lEp5Z8GI0odRKVbVrL9s/+QdNSZJA4c3WB85pn/R8Hij9nw5t3E9zmO0Og4RIRef/4vmz94jNzv3qemtJio9O70uPppUoadu995EpeLhP4nkND/hIDbFDkQul3yKBGJGeTOfZfcuVOISMqky/gH6HDSFc1O6woNo/9tU9n++bPkL/7Etp2CENO5P13G39/ots6dPxXjriHlWK24qlSwiTEm2HlQqtWSkNDqoc+sCd3X0geljDHMvyoTY0zzvf0pdYjS5uCVUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpQ5xa1+6niW3Dg12NpRShzBt9Ewp9auw5cMn2Dr9H42O63f7B8T1PLrOsIrczWya/CDFP3+L8biJ7T6YrLF3E5PVv8H0pZuXs2nKX9m9bjHiCiG+z7FknX8PkSlZB2RdlDrUaDCilPpVyTr/HsLiUuoMi+rQvc736l15rHjsXIzbTcYZ1+IKi2Dnly+z/LHzGHD3DKI7HuZNW75jLSse+y1hccl0Pu82PNWV7Jj1AssfOZfD7/3c29mfUmrfaTCilPpVaT/wVKLSujaZZtsn/6KqKIfD7/2MmE79AEgaMoald41g8/uP0Pval71pN73/CAD9bn3f20dO+wGj+PH+0Wz7+F90nfDAAVoTpQ4dGowotZ/clWVsnT6J/MUfU1W4E1d4FFFpXUk/9RqSh5wFQGXeVrZ//izFq+ZSmb8VgJjO/ck441raDxhVZ34rHh9LRc4G+t02lQ1v3cOu1fMJiYgidcRFdDrnFmpKC9n49r0ULvsSPDUkHnk6XS9+mJDwqAbz6HvzZDa8dQ+71y7CFRZJ0pAxZI27m5CI6GbXq3j1d2yb8RQlG37AU1NNdGZvMs+4jsRBp3rTGI+b7Z8+Q868KVQVbENCwolIziRtxEV0GDWxBbbuvqkp301IRDTiCml0fN7Cj4jrNcwbiACEx6eSdNQYcudNoaZ8N6FRsbgrSin66UuSh55bp7O+6MzexPceTv6iDzUYUaoFaDCi1H7a8MYd5C34kLSRlxKd2Rt3+W7Ktq6kZN1ibzBSsnEpxT/PIXHQaUQkd6KmbBd586ey6slL6Xvj28T3Pb7OPD1VFax8YjwJ/UaQNe4uCpZ8xrYZTxISEUP+oulEpfek83m3smv1fHLnTiYsLoWssXfWmYe7soKVT1xI3GHDyBp7F7vXLSb7q1epzNtCn+tfb3Kd8r//mDXP/YHYboPJHHMDEhJK3oJprH76ijod9G2dPomtH00i5djziR19DZ7qSsq3r2HXmgXNBiPuynI8VeUBbeOQqFhcoWEBpf3pgdNwV5QgIWHE9TqGzmPvpF3WAO/4qsKdVBdnN9pBXrtug8iZ8xZlW38mrufRlG1diampIrbboIZpuw6ieOUcKgu2E5HYMaC8KaUap8GIUvupYOksUkdMaPIOOWHASSQddWadYeknX8Gy+09l22f/aRCM1JQWkTnmBtJPuQqA1OMnsOTWoWye+gjpp1xNlwvuBaDDiZexLHcT2bPfbBiMlBWRNmICWePusmlHTSQsLpkdM5+n8KcvG5TIeKerLGf967eROHA0vf70ond4h1ETWf7w2Wya8hDJR5+NuFwULJ1JwoBR9LhiUoBba4/tnz3jt8JpfX1vmUJ87+FNpgmNjiNt5CXEdj+KkMh2lG5ZyY5Zz7Pi0XPod9tU2nU5AoCq4mwAwhPSGsyjdlhV4Q77v8imDWsqbdFODUaU2k8ajCi1n0Kj4yhZ/wOV+duISMpoNE1IxJ5HKJ7qCtyVZWAgrtcx5C38qOEE4iJt5MXer67QMNp1HUjh0s9JG3lJnaSxPY6idOOP1JQWERqTUGdcbTBTq+Po39lgZOksv8FI8cpvqCkpJOWYsVTvLqgzLuHwk9j64d8p3/EL0Rm9CI2Oo3z7Gsq2/0J0x56Nzs+flOFjie05JKC0MZ36Npsm/ZSr63xPHHwaSUedwbIHTmPT5Afpd+t7gC11AnCFhjeYhyssok6aPWkjGkkbWSeNUmrfaTCi1H7KOv8vrH3xOpbcNpTojN7E9zuB5KPP8t6JA3hqqtg640ny5r3nrTPiJQ17lg+LS/Ze7GqFRscBEJGYUW94PECDYCQksl2Du//w9h0IiWxHZd4Wv+tTvnMdAKv/faXfNNW784BedDr3NlY/fTk/3jOSyLRuxPc9nqSjziC+97F+p60VmZJ1wF+Njc7oRfvDT6Zg6ee4q8oJCY/CFe4EETVVDdJ7qisBvGn2pK1sJG1FnTRKqX2nwYhS+ynpyNOJ63k0BT/OonjlHHK/fYcdM58j86yb6HTWDQBsfPtesme/TtrIS4nrebQNGlwucr+dTN6CDxrMU1z+2yP0VynTGNMyK+TMp+sljxCZ2qXRJNGZtqQirucQBj0yj8JlX1C8cg4FP3xO9levknLchfS4/IkmF+OuKMVdWRpQlkJjEhotyQhERFIGeNy4S4sJCY8iPL728Up2g7S1w8ITOjj/bdrqJtM2fISjlNo7Gowo1QLC4pJJO348acePx11Vzqp/XsLWjybR8bTfExIeRd7CD0k5ZizdLn64znQ5c945YHlyV5RQVZRd52JZVbgTd0UJEcmd/E5XG4CERseT0HdEs8sJjY4jZdi5pAw7F+OuYe1/byD323fI+M0fG7Tv4Wv758+2aJ0RfypyNiIhoYS2s6VG4e07EBafSsn6JQ3Slqz/AQkJJTqzDwDRGX2QkDB2r/+hweOxkg0/EBaXTHh7rS+i1P7SYESp/WA8btwVpd5HKAAh4VFEdejOrtXf4S4vISQ8yinpqFtyUb5zLQU/fH5A87dj1oveCqwA22c+B0D7I072O01CvxMIjUlg28f/ov0Ro+vUdwHbYFhYXLL9XFJAWLtE7zgJCSU6oxcANWXFTeatpeuM+Oar1u51iyn86Uvi+xxX57FX0pAx7PziZUq3rPTOu6o4h/zvZ5DQf6R3f4ZEtSNhwCgKFn9M1Xm3eQO7sq2rKF41jw4jL0UaecymlNo7GowotR/cFSUsvulIEgf/huhOfQmNSaB083Ky57xNXO9jva1zJg46jZxv38UVHk1M5/5U5G0m+6vXiE7vQenm5QckbyHRCeQtnEZVcTax3Qaze91i8uZPJb7fCbQ//CT/00W1o9tlf+OX5/7Aj/eMJGX4OMITO1JVlE3J+iWU71zH4EfnAbD07pHE9Tyadl2OICwuhfKd69j55ctEduhOTOcBfpcBLV9nZPEtR5N01BlEZ/YhNCqW0q0/kzPnHUIiYrxvH9XKOP1a8hfN4OdJF5E++hrbAusX/8V4auh83h110nb+7e389NCZrHjsPDqcdAWemip2zHyBsNgkMs64tsXyr9ShTIMRpfaDKzyKDqMup/jnORQu+wJPdSURiR3J+M2fyPjNn7zpulx4P66wSPKXfErO3MlEdehOt0sfpXzH2gMXjERE0vemd9jw1j1seu+vuELDSRt5CVnj7ml22qQjTyf89mls++Rpdn71Cu6KUsLikonp1JfO597mTdfxlKsp+HEW22c+h7uijPCENFKPu5CMM/8v4HZBWkrK8LG2JOTH/+GpKicsLpnkoWeTOeb6BkFPeHwK/e/4gE2TH2TbjCdt3zTdBtPzmmeIzuxdJ210x8Pod9v7bH7vr2ye+ijiCiGu97Fkjbtb64so1UKkxSq9KfUrJCGh1UOfWRNa/82W1q62BdYj/7442Fk55BljmH9VJsYYfZ6jlB/+q+wrpZRSSh0EGowopZRSKqg0GFFKKaVUUGkFVqV+hWqbPldKqbZAS0aUUkopFVQajCillFIqqPQxjVKtyJYPn2Dr9H9wzEvbgp2VFrHi8bHsWv0dALE9htD/jmlBzlHL2jz1MbZ9/JT3+8CHvyUqrWsQc6RU26TBiFLqgIpK70HGGdcRFlu3qfai5bPJ//4jSjYspWz7GvC4Gfb8JiQk8NOScdew7ZN/kfPtu1QV5RCRnEmHUZfTYdTEJptpz5nzDuteuQmgwTKX3Dq0Yc/KPvrdPo04pxn7pCFnEpXeg4Iln1Kw5NOA862UqkuDEaXUARUWl0LKMb9tMDxvwQfkLZxOTOe+RCR3ojJn417Pe/3rd5Az5y1SR1xEu64DKV4xm41v3U1NaZG3x+T6qksKbYu0EdF4KssajO9y4f2N9ia8/vU7cIWF067rEd5hMZ36EdOpHxU5GzUYUWo/aDCilAqKzufdTrfLHscVGs7al64ndy+DkdLNy8mZ8xbpo39Hlwv+AkDaiAmsefb3bPv4X6SNmNBoc+2bpz5CWFwKMZ37kTd/aoPxiYNPazBs1y8L8VSWknrcBbhCw/cqn0qp5mkFVqX2QcEPn/PdlRnkL/qowbiK3M18d2UGm99/BABPTRVbPnyCnx46k0XX9WP+77qx9O6R7Jj1AoF0x7Dk1qGsfen6BsO3fPgE312Z0WB46ZaVrP73VXuW9ZeTyJ7z9j6s5YEV3r7Dfl3Ya7d9+slX1hne4aQrMTWVFPzwWYNpdq//gZxv3qbrhAcQV0jAy8qdOwWAlOHj9jm/Sin/tGREqX2QMOBEQqITyF0wjaQhY+qMy1vwAQDJw84DwF1ews6vXiVpyBiSj7HDilfMZuM791FdWkTnc25psXztXruIlU+MJyIli46n/ZGQyBgKf/wf61+5mZpdec32MuuprsRd0fARRWNCImNwhUW0RLb3ScnGZYTFpxKRVDcga9f1CBAXpZt+qjPceDxseONOko48nfg+x5E7L7C2WNxV5eR//xFRGb1p1+XwFsu/UmoPDUaU2geu0HCSjjqD3HnvUVNWTGh0vHdc3oIPie7Ul+iMXgCExsRz5N8W1blwp590BWv/ewM7Zr5A5pn/1yJF/8YY1r16K9EZvel3+wfeXnM7jJrI6meuZuuMf5I28hJCYxL8ziNvwTTWvXxjQMvrfvk/SD3ugv3O976qKspu9DGMKzSc0HbtqSrcWWd49tevUb7jF3r9+cW9Wk7hD5/jLt9NqpaKKHXAaDCi1D5KHnoOOd+8Sf7iT0g7fjxgH5GUb19N53F3e9OJK8T7SMC4a3BXlGA8Hnt3Pncy5TvWEtOp737np2zrSsq3r6HL+Adwl+/G7TOu/eEnU7D4E3av/Z72R5zsdx4J/UfS56bAHulEd+y1nzneP57qCkKi2jU6zhUWgae6wvu9elcemz94nIwzriUiseGjrabkzJsCrhBvqZZSquVpMKLUPoo7bBjh7dPJm/+BNxjJWzANREg++uw6aXO/e5/tnz9H2bZV4HHXGecu29Ui+SnfuQ6AjW//hY1v/6XRNNW785ucR3hCWqOlDa2RKywSU1PV6DhPdSWusEjv901THiS0XXs6nvr7vVpGVVE2xSvnkNDvBMLjU/crv0op/zQYUWofictF0tFns2Pm81QVZRMWn0r+wg+JO2wYEYkdvenyFk1n7YvXkTBgFOknXUFYfAoSGkbppuVsfu+vGONpZkGNt5dh6gU1OJVhM8+6kVinHYz6otMPa3JR7qpy3OW7m86PIyQqlpDwqIDSHgjhCWk2uKvHU1NFTUkhYU5QVbLpJ3LnvUfXi/5KVXGON13t67uV+VtxhUc1GoTlzp8KHjepx55/gNZCKQUajCi1X1KGnsuOz58lb+GHtOs6iMr8rWSccV2dNHkLPiQiuTO9r3sVce15ga0yZ1NAywiNjqemrLjB8MrczXW+R6balj9dYZEk9B2xt6sCQP7C6W2mzkhMl8MpXvkNlfnb6lRiLdnwIxgP7bIGAFCVb1uz3fDmXfDmXQ3m88MdxxKTdTiH/6VhOyG5c6cQEp1A+4GjD9BaKKVAgxGl9ktMVn+i0nuSt2AaFbmbEKdiq689Acie13jdVeXs+OK/AS0jMq0rxavm4a4q95ZEVORtafDqakzn/kR26M6O/71I6vEXEhabVGd89a48wuLqtoJaX2utM1JVlI27fDcRKVneirnJR41h+ydPs+N/L3nbGQHY+cVLSGg4iYNseyHtug2i159eajDPHV+8xK5V8zjsjy8Q2q59g/ElG5dRvn01aSMvDepbQ0odCjQYUWo/JQ89hy3T/kbFznUkDBjV4G2VxEGnUbD4E35+8lKSBp1GTWkROXMnExIZE9D800ZeSv6ij/j5iQtJHnou1bsLyP76VaLSe1K6aZk3nbhc9Lj8H6z8x3iW3j2S1OPHE5mSRXVJPmWbV1CwdCbDntvQ5LIOZp2R0i0rKVw6E4CyrT8DsPXjfyEihETHk37S5d60m99/hNx5Uxj02HwikzsBNhBMOe5Cdsx6HndlCe26DqJ4xWzyF31E5lk3Et6+g3edGmvIrDaYSxw4utEm6HPnOW2LHKtv0Sh1oGkwotR+Sh52Llum/Q13RQkpQ89pMD7lmN9SU1bMzi/+y4a37yU8IZWUYy8gtseR/PzE+GbnH997OF0vfpjtn/2Hje/eT2RqV7pOeIiy7WvqBCMAsT2O4vB7PmXrjCfJnTeFmpJCQmOTiE7vQZcL7m2xdW4JpZt+Ysu0v9UZtvXDvwMQkZRZJxjxp9sljxKRmEHu3HfJnTuFiKRMuox/gA4nXbFfefPUVJO3YBpR6T2I7TZ4v+allGqeBNICpFKHKgkJrR76zJpQ3zczVOBWPD4W466m159fRkJCCY2OC3aWWpS7shxPVTnbP3uG7Z/9p9Fee40xzL8qE2OM/577lDrEacmIUuqA2r32e76/fgCxPYbQ/45pwc5Oi9r28VNs+/ipYGdDqTZPgxGlmmE8Wnq4r7LO/ws1ZUUAdVqp/bVIPe4C4nof4/1eW0+lDvsKth5ESjVBgxGlmuAKDSurKSmIC4nYu1Y7lfVr78slMrULkaldmkxTXVKIhEaUH5wcKdU2aa+9SjVBQsK/LVr+dbCzodqwouVf4QqPnBfsfCjVmmkwolQT3OW7Xt4+87lSd2VZsLOi2iB3ZTk7Pn+u1F1WHFijMkodojQYUappU6sKd05f8fhvy4pXzWvYBLtSjTAeD7vWLGDl388vq8jb8ikwOdh5Uqo101d7lWqGiLjEFXqjKyL698ZdkxEam1jlCglttT8cY4xgTDtEKkWk8Z7k2iBjTDjGRCBSIiKtdvt73DVSU1IQLq6QHZ6qiueMu/rvxhiNYpVqggYjSu0FEekApNC6K38/DhQDfw12Rg6A24A0ILAOdILDDeQaY3YEOyNKtRUajCj1KyIiNwAXA8caYyqCnZ+WJiIRwDfA+8aYx4OdH6VUy9BgRKlfCRE5FpgKDDPGNN0JTRsmIp2BhcAFxpjZwc6PUmr/aQVWpX4FRCQVeAe44tcciAAYYzYDlwFviUh6sPOjlNp/WjKiVBsnIiHATGC+MeauYOfnYBGR+4ATgZOMMTVBzo5Saj9oyYhSbd8Dzv+/BDUXB9+DQAXwcLAzopTaP635jQClVDNE5EzgUuDIQ+31UWOMW0QuAhaLyDxjzK+rFz6lDiH6mEapNkpEugLzgfOMMXODnZ9gEZGhwEfAcGPM2mDnRym19/QxjVJtkIhEAu8BjxzKgQiAMWYBcD/wnohEBTs/Sqm9pyUjSrVBIvIc0B77eush/yMWEQHeBCqMMVcEOz9Kqb2jJSNKtTEichkwErhKAxHL2Q7XAMNE5Mpg50cptXe0ZESpNkREDge+AE40xiwPdn5aGxHpg22hdbQx5odg50cpFRgtGVGqjRCReOB94AYNRBpnjPkZ+DO2/khCsPOjlAqMlowo1QY4dSLeA3KMMX8Idn5aOxF5CsgCzjXGeIKdH6VU07RkRKm24UagM3B9sDPSRtwMpAK3BDsjSqnmacmIUq2ciByPLRUZaozZGOTstBki0glYBIw3xnwV7PwopfzTkhGlWjER6QC8DVyugcjeMcZsAS4B3hSRjsHOj1LKPy0ZUaqVEpFQYBbwrTHmnmDnp60SkXuA0cAoY0x1sPOjlGpIgxGlWikReQQ4CjjtUOt3piWJiAuYAaw0xtwc7PwopRrSjvKUaoVE5CzgIg7BDvBamjHGIyKXsKdDvanBzpNSqi4tGVGqlRGRbtgO8M42xnwX7Pz8WojIEOBj4FhjzC/Bzo9Sag+twKpUK+J09PY+8JAGIi3LGLMIuBd4X0Sig50fpdQeWjKiVCsiIi8CscCF2u9My3Maj3sdqMG+oaTbWKlWQEtGlGolRORy4Fi0A7wDxtmuv8NWDL4qyNlRSjm0ZESpVkBEBmJf4x1pjFkR7Pz82olIL2AO9k2lJcHOj1KHOi0ZUSrInA7d3gP+TwORg8MYsxr4I7ZDvfbBzo9ShzotGVEqiJw6DFOB7caYPwU7P4caEZkE9MC+uaQd6ikVJFoyotRBItbV9QbfDHTEdoSnDr5bgUTgNt+BInKi0wKuUuog0JIRpQ4SEekCzDPGdHS+jwAmYzvA2xTErB3SRCQD26HeRbUd6onIQuxjM329WqmDQEtGlDp4BgOLAUQkHdsB3kQNRILLGLONPR3qZTiDl2L3l1LqINBgRKmDZzCwxCn+fwd4wRjzWZDzpABjzBfAv4F3RSQMWIIGI0odNBqMKHXwDMZe5P4KVAAPAojIESKSFsyMHapEJNwppQJ4BCgCHkODEaUOKg1GlDp4BgPJwIXYTvCGicin2P5SugQxX4ey7sBPIvIG0Bu4FDgX+4ZNbxGJCGbmlDpUaAVWpQ4C5+57OeAG7gPGAVnAo8CrxpjK4OXu0CYi8dg2R67HNoQ2FfgnUAhMMMYsDmL2lDokaMmIUgfHMGyfMyXAdcDLQC9jzPMaiASXMabYGPMI0A2YC/wN2Al0wu43pdQBpsGIUgfHKGA3cDvQzxjzmjGmOsh5Uj6MMaXGmEnYRzf/ATzYEiyl1AGmj2mUUqoRzltPEcaY0mDnRalfOw1G2iCnCXGtWKeCxWOMqQp2JpRSvx7a3HEbISJJIS5+FxMeMtEldBcwSLBzpQ5FHoMrPNRVFRXm+npXhfsFYKpx7mpEZKArLPJSCQs/27hr2mOMPgpWB4W4QspxuX50l+16BZhmjKkIdp5U4LRkpA0QkdSYcNf8kw5r3/Hio9IihnSKJTxUz/EqOIwxFJbVMGtNIZO+3lqaX1r9Qlm150ZxhV7pioh6Mm3kpeGJg04NDU/ogLhCgp1ddQgwGDyVpexeu5jsr18vKd/xy2p3RclIY0xJsPOmAqPBSBsQHxU6+5Kj0o6585SssGDnRSlfBWXVnPH8T6WbCyv/FhqTcGv/uz6KjkrrFuxsqUOY8XhY9/INFQU/zPyipqz4zGDnRwVGb69bORFJrqzxDL3hhEwNRFSrkxgdxvUnZMaER0b9PuPM/4vSQEQFm7hcdJ3w10hPdeXJIpIQ7PyowGgw0vqdOKRzXGVUuBZ3q9ZpdK/21LhNh8TBv9FaTKpVCIlqR2yPoyqB0cHOiwqMBiOtX3JGfLiWiqhWKy4yFE91JRGJGc0nVuogiUzrGg50CHY+VGA0GGn9QsJconecAbj+g7UMnbQk2Nk45HiMARHEpacTgLUvXc+SW4cGOxuHPFdouAt9Y7TN0B2lVCuTce93TY7//qbBpMftaWbms58LePrbbfycXUZ4iDAsK467TsmiR0rUgc6qOoT88uJ15H33PrE9htD/jmne4e7KcnK/m0Lh0lmUbV1JTWkREUmdaD9wNBmn/5nQ6Lg68ylaPpv87z+iZMNSyravAY+bYc9vQkL0cnQo072vVCvz1Hk9Ggwrr/Zw+4z19E6NrhOIvL04m5unr2dQRjvuOKkz5dUeXlm0k7NfWs4n1wwgKzHyYGZd/UrtWj2fvAXTcIU3PJ4qczex4Y07ie05lLQTLyMsNpnSTcvYMfM5CpZ8yuH3fEpIVDtv+rwFH5C3cDoxnfsSkdyJypyNB3FNVGulwYhSrcxvj0hpMOz9H3MxBsYN3DOu2u3hoVmb6ZMWzbQr+xMaYp/mnXdEMiOfXsqjX2zmP+MOO2j5Vr9Oxl3D+jfuJO348RQt/7rB+LD4VA6/dyYxnfr6DJ1Auy4DWffKTWTPeYuOo6/xjul83u10u+xxXKHhrH3penI1GFFoMKJ8lFW5mfT1Vj5emc/O3VVEhbnomhjFNcPTOat/MgBbiyp5du525m4oZmux7Wy2f4cYrh2Rwaie7evMb+zLK9hQUMHUy/txz6cbmL9xF1FhIVx0ZCq3jOpEYXkN9366kS9/KaTGA6f3SeThM7sSFRbSYB6TL+vLPZ9sYNGW3USGuhjTL4m7R2cRHcBbRt9tLOapb7bxw9YSqt0eeqdFc92ITE7tnehN4/YYnvl2O1N+zGFbcRXhIUJmQgQXDU5j4tDg14GbsjSXUJdw3uHJ3mGrc8opKq/hmmPSvYEIQEZ8BMOy4pi5qoCyKndA26g1cVeWsXX6JPIXf0xV4U5c4VFEpXUl/dRrSB5yfvqjdwAAIABJREFUFgCVeVvZ/vmzFK+aS2X+VgBiOvcn44xraT9gVJ35rXh8LBU5G+h321Q2vHUPu1bPJyQiitQRF9HpnFuoKS1k49v3UrjsS/DUkHjk6XS9+GFCwqMazKPvzZPZ8NY97F67CFdYJElDxpA17m5CIqKbXa/i1d+xbcZTlGz4AU9NNdGZvck84zoSB53qTWM8brZ/+gw586ZQVbANCQknIjmTtBEX0WHUxBbYuntvx6wXqS7OptN5tzUejMQmEhab2GB40lFnsu6VmyjfvqbO8PD2wf89qdZHgxHldceMDXy4PI9Lj0qjd1o0uyvdrNxZxuItJd5gZOm2EuasL+a0Pol0SohgV0UNU5flcembq3j70r4c3y2+zjwrqj2Mf20lI7oncNcpWXy2qoAnv9lGTHgI01fk0zM5iltHdWb+pl1MXppLSrsw7jwlq9483Fz42kpvXYjFW3bz6qJsthRV8vrFfZpcp49X5vOHKWsYnBnLDSMzCXUJ037K44q3V/P0b3tw7uG2pGHS11uZNHsr5w9M4ZpjYqms8bAmt5wFm3c1G4yUV7kpr/YEtI1jI0MIC9m7ip7biyuZu6GYUT3bk9Iu3Du8ssYuMyqs4fyiw0OoqDGsyiljcGbsXi0v2Da8cQd5Cz4kbeSlRGf2xl2+m7KtKylZt9gbjJRsXErxz3NIHHQaEcmdqCnbRd78qax68lL63vg28X2PrzNPT1UFK58YT0K/EWSNu4uCJZ+xbcaThETEkL9oOlHpPel83q3sWj2f3LmTCYtLIWvsnXXm4a6sYOUTFxJ32DCyxt7F7nWLyf7qVSrzttDn+tebXKf87z9mzXN/ILbbYDLH3ICEhJK3YBqrn76CHlc/TcqwcwHYOn0SWz+aRMqx5xM7+ho81ZWUb1/DrjULmg1G3JXleKrKA9rGIVGxuEKbf0mvsnAHW6b/g6yxdxLWrmHA0ZSq4p0AhMYm7dV06tCkwYjymrW6gAmDU3ng9K5+05zUM4Ez+9U9uVwxNJ1Tn13Gf77d1iAYKSqv4YYTMrnqmHQAJhyZytBJS3jki81cPSyde0/rAsBlR3dgU8Ey3lyc3SAYKSp3M2FwGneNtsMnHt2B5Jgwnv9uB1/+UtigRKZWeZWb2z5az+heibx4YS/v8IlHd+DsF5fz0MxNnN0/GZdLmLm6gFE9E5h0bsP6Gs15Zu52/vH11oDSTpnYl+Fd45tP6OP9H/Pw1HtEA9A1KRKXwPxNu7hmeEfv8MoaD4u37AZg5662159dwdJZpI6YQNcJD/hNkzDgJJKOqtu4ZvrJV7Ds/lPZ9tl/GgQjNaVFZI65gfRTrgIg9fgJLLl1KJunPkL6KVfT5YJ7Aehw4mUsy91E9uw3GwYjZUWkjZhA1ri7bNpREwmLS2bHzOcp/OnLBiUy3ukqy1n/+m0kDhxNrz+96B3eYdRElj98NpumPETy0WcjLhcFS2eSMGAUPa6YFODW+v/27jQwqups4Ph/1sySZLLMZF8hgbDvSxAFxSJWZRMVrKKItta2rq3Yt6611gWlitZia1WsVUREQJGtgIAGEdkhBEggIXsymeyZyazvh0mGDNkmmDAs5/eJuXPuvWcWcp859znnOaNo/dsUrFnkU9v+f/gMXdq4TtvlfvIMqogkIifO7XJ/Cr5aDBIJ+tHTuryvcPkRwYjgEaySs6+wjsKqRmJD2i4K3HLxNYvNSYPNAS5ITwrmyyPGVu2lErhjZKTnsUImZWhsIBuyKrlzVKRX25EJQRwoqqfKbCdE7f3VbA5mmv1qXAz/3FnMpmPtByPbT1ZT2WBn1hADpnqb13OT+oTw6tYCThjN9I3QEKySc7zczInyBlINnQ+5tzRriIFRCb6NPvSP0nbp2AArDpQTopYzua/36wzTKJg+SM/Kg0Ze3nyaWUMMmG1O/vZNPsam1+vriM2FRK4Jpu7kPhorCgkIb3vtElnAmVsoTpsFR2MDuCC4bzrGH75svYNESuTEOzwPpXIFgclDqdy/gciJd3o1DUoZSX3uAez1Vci13gt4NgczzWIm/8odjOzf1G4wUp25HXtdJYb0WdhqTV7PhQyeRMHqVzEXn0AT2xe5Jhhz0XEaik6giUlt83jtMYybRVDqKJ/aeud3tK3q8DZMe79mwIKVXZ62XbrtI4w7Pyd68i99OpcgiGBE8Hj6ukQeXJnNmNf3khahYUJvHVMH6hkSeyYT3mp38sb2AlYcMFJQ1ei1f1uroei1ClRn3UYIVrm/drE674BH17T97GAkMEBGZJDSq21UsJLAABn5ld59aCnH6B6ynr/sWLttjPU2+gILJsUz75NjTHzrAL3CVVzZS8cNA8K5wodRjMQwVY/NWtlXUEu20cxdoyLbLI740o29cDhdvLmjkMXbCwEYFhfIr6+IYfH2QgIDLq58EYDEW58m+90H2btgDJrYNHQDJqAfPZXApCGeNk67lYKv3sCYscKTM+LRxhdREaxHqvD+jJqnnJ69WJtc4/7Mzw5GZKpAlCHeAbQyNAqZKpBGY367r8dckgPAsb/Pb7eNrdYI9CV+xgKOvTWPA09NRBXZC13/KwkfeQO6tCva3beZypCIypDYaTtfOG2NnPr4T+jHzCA4dXSX9jXtXc/Jj/6P0CHXkjjrT93SH+HSJ4IRwePn/cMZnRDMpmMmdpysZtm+ct7ZWcxjE+N4ZGI8AM+sz+U/P5Yyd2QkoxODCVHLkUpg+b5yvjjUxsiItP312mTtrOXWXcUbmw/z4o3JJLUTLPSPdI+CjEoIJuOhYWw+XsmOk9VsyDKxdHcps4cZeG16x7du6hsd1FsdPvUpRC3vUsXlz/aXA3DrsIg2n9cGyHj7lj48O8XKKZOFULWcPhEa/ropD4Be4Rff1N7wET8nOHU0pgObqM7cQfm3yyje+A5xUx8jfuojgPv2Qem2/xA5cS7BqaPdQYNUSvm3yzHu+qLVMTv6Zd9eZeFuKyLadJzkO19EFZHUZhNNnHv0IDh1FMNezKDy4GaqM3dg2reB0q1LMYyfTcq81zo8jcNSj6Ox3qcuybUhSOXKdp8v2bqUxopCUu55HUuLQMvltOO0W7EY85Grg1qNHFUd3sbxdx4gOHU0qfcvEWuHCD4T3xTBiz5QwZwRkcwZEYnZ5uDOj7L427YC7r8iBrVCxupDRmYNMfDXG70Loi3bW9ZjfaprdFBaa/UaHSmpsVLX6CA+tO3bSQBJTRdinVrOVb07r5cVrJIzY7CBGYMN2B0uHlmVzbJ95TwwPpbe+vYXEFuS0TM5I1a7k9WHK+hjUDO0xehUWyKClES0eH+25VQTq1OS0kG/L2SKYD2RV84h8so5OKxmsl6/k4Iv/0bMlPuRKdUYf1iNIX0Wve74q9d+ZTuW9VifHJY6rFWlXqMj1soSHJY6AvTx7e7XHIDINTpC+l/V6XnkmmAMY2dgGDsDl8NO9nuPUP7tMmKvfwB1VO929yvasKTbckYaKwpw2a0cfrF1voe1soR9C8YSPflXJN32tGd79bGdHPv7PWji+5H2uw+8ZiMJQmdEMCIA7qmt9VaH5xYKgFoho7dezc7cGuoaHagVMqRSCWf/YMw2mtmQZaInvbuz2JPACvBORhEA1/ZpO18EYELvEELUct7cXsjkPqGcXWzQWGdDH+ieUWBqsBGmOTO7QC6T0DfCPWpSbbF32LeeyhnZdLySKrOd34yP6bxxC8v3l3G4uJ7nr09CcpFVEnA5HTgs9V6rdsqUatRRvak5thOHuQ6ZUt000uH9RTSXZGPat6FH+1e86V1PAitA0cZ3AAgdcm27+4QMmIBcG0Lh2jcJHTLZK98FwFZjRBHsnq1mqzN5zVqRyORoYt3J1/aG6g771p05IxFXzkHXt3WwkvPh4ygCw0iY+QSqyDOJ7rUn95L1xl2oIpLp9/BHXoucCYIvRDAiAO7RhxGv7eH6fmH0j9QQopZzuKSeT/aWckVysGdK6ZS0MD7dV4ZGKWVglJbTlRY+/LGUFIOGw8W+DRF3VYhaxqrDRkrrrAyPC2JPfi0rDxqZ0FvHpA6CkcAAGQun9uLXn51g4t8PcMsQAzE6JaW1VvYW1JFjNJPx8HAAJr61n9EJwQyJCcQQqCDHaOb9H0rorVcxKLrjAKKnckY+21+OTAozB7deBK3ZPzOK2FNQx4i4QLRKGd/n1bDqkJEpaaHcPfriW8/BYaljz2MjCBt+PZr4/si1IdSfPkzpjk8ITrsCpc79XoQNm0LZt58iVWrQJgzEYjxN6dYP0USnUH/6cI/0TaYJwfjDKqzVpQT1Gk5tzh6M369EN2ACoYMntb+fOpBedy3kxDu/5sBTEzGMuwVlWAzWqlLqTu7FXJLD8JcyANj/5ESCU0cTmDQERbABc0kOJVveRxXVG23CoA771505I9q4fmjjWk+bz132DHJtCGHDp3i2NRoLOPq3O3HZGzGMm0XVoS1e+yiCDYQMODMiVJ+fSeX+jQA0FBwFoGDtm0gkEmQaHdGT5nXLaxAuLiIYEQD3WhXzRkex42Q1m49X0mh3EqML4DfjY/nN+DMJfs9NSUIll7LuaAXL95XRW6/mpZt6kV1u7rFgRKWQsWyue9GzFzbloZRJuXNkJE9N7vwP78/7h7NqvpK3dhTywe4S6hsd6AMV9I/UsmBSgqfdfWNj2HTcxDs7i2iwOogMUjJ7WAQPTYjt8rog3aGi3sbWE1Vc1SuEqOD27+2nRWpYm2ni9W0FNNqdJIereXZKEnePjuowX+dCJVWqibpmHtVHd1B5cHNTNeAYYq//DbHX/8bTLmn2c0gVKir2rqPsu+Woo3rTa+5LmIuzey4YCVDR/7FlnPr4KfJWvIBUriRy4p0k3vJUp/uGj/g5yidWUfj1W5Rs/QCHpR5FsB5tfH8SZizwtIv52X2YDmyiaOM7OCwNKEMiiRg/m9gbH/JpXRB/sBhP42ioAiBv+fOtng/um+4djOQdIn/VQq82BatfBSAgPE4EI5cpSbclaQk9QiKR/PaOERELX57a++LLROwGzSuw7nlshL+7IrTD5nCS9Pxu0t9tf0bJxa55BdYRr+7xd1cEH536+Clryeb3/uhyuXxLpBH8StT8FgRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxIJrMIFbcW8Af7ugiAw4PEV/u6CIFzSxMiIIAiCIAh+JYIRQRAEQRD8SgQjgiBcVvJXv8bO+W1XA74YHXllFjvnx7JzfiyHX5zu7+74pCpzu6fPO+fHUrr9Y393SfAzkTMidNlrW/NZ9E0Bhc+l+7sr3WLW+0fYmVsDwKiEIFbNH+jnHp0fpyrMjF+83/P4wativRaCEy4e6ugUYm94EEWQ3mt71eFtVPz4JXWn9tNQdBycDsb+M8/nAnYNRScoWLOI+ryDWKvLkEikBBgSiRh/G5ET7/Qqtuew1FO0/h/U5R6g7tR+7HUmYm94kISZC1odVxObRsq9izEXn6Bw7Zs/7cULlwQRjAgCkKJX8+BVsei1vq9yaaq38ZdNeWw6VkmDzcmAKA2/vzrep6J8ZbVWXth0mgNFdZTUWLE7XcSHBDB1YDj3pccQGOBdRyf2mZ1tHmd8Lx2f3nWmzkhzoNie24dHsHCau9haRKCSxTNTMDXYeXZ9rg+vWLhQKYINGNJvbrXduOsLjD+sQZvQnwB9PI1luV06rtVUhL2+ivDR0wgIjcbldFCb/SO5y56h+uh3pP3uPU9bW52Jgi//hjI0Gm3CQKozt7d7XKUuAkP6zVRnZYhgRABEMCIIABgCFdw8pP0aMGez2JzcujST/KpGfpUeTbhWwbJ9Zdz5URYfz+3HFZ1U5q0028mvsjC5bygxugBkEgmHiutYvL2QTccqWXPvIOQy7+XcR8YHMXdUpNe2lpV6Aa7vF0ZSG3VyvjhoZGt2FVenngmUtAEybh5iIL/SIoKRS1TCzCfoddcrSOVKsv/9MOVdDEZCBk4gZOAEr21R19yNTKujdMsHmEuyUUelAO4AY8Sre1CGRmEx5rNvwdjuehnCZUAEI4JwDj76sZSjpQ18cHsaP+vrLtZ361AD17x9gGfW5fK/B4Z0uH/fCA0r7zn7dlAkvcLVPL8xj29PVTMxxXuEJSE0oNOAqX+Uts3KwIu+KSBUI++wyvGFxrRvA8feuoc+9y8hfNRNXs9Zyk+z74l0Yn/+WxJu/iNOu5XCtW9SdWgrlrJTOBrNqAwJRE74BVHX3ttp9eK9j48huG86KfNf99qev/o1CtYsIv3fhV7b6/MzKVizyF1JuNGMKjKZ6J/dS+SVc7rnxXcTZWjPFEtUhccDYG+o8WyTKgJ67HzCpU8EI5ewDVkm7vnkGEtu7cNNA8K9njtdaSH99X389spY/nhtAla7kzd3FLL1RBWnTBbMNgcJoSp+MSKSe8dGdfrHfMzf9pKeFMzrM1K8treXX5JZUs+ibwrYmVuD2eYgOUzFvWOjmTPC+5f/hWrNESMJoQGeQARArZQxe1gEr2zJ50R5A6kGTZePGxcSAEC1xd7m81a7E7vThUYpa/P5tuw+XUOuycK80VEo5RdPznrIoKuRaUIo37WqVTBi3PUFAPqxMwFwmOso2bqU8FE3oU93b6s+so3cZc9iq68iYfofuq1ftdm7yXxtDgGGRGKmPIBMpaXywP84+cHvsdcYib3hdx3u77Q14rD4VlRSptIiVQR0R7d/EkejGafVjLOxgbpT+yhc/zYKXSSaNir7CsK5EMHIJezqlBBC1DJWHSxvFYx8cdAIwMzB7oS3ukYHS3eXcNOAcM+2bTnVPLs+lyqzjT9c032JjbtP1zLnw0wSQwN44IoYtAEy/neskt+vOYmx3s7vrup4pkOj3Ul9o8Onc2kDZAR08wXY6XRxpLie69LCWj03LC4QgINF9T4FI82vxWJ3crS0gZc2n0alkDImIbhV23VHTaw6ZMTpgqhgJXeMiOB3V8a1up1zts/2lwNw6zDfb0NdCKRyJeEjb6A8YwX2hmrkmjO3voy7VqOJ748mti8Acq2OEQt3e124oyfdQ/Z7j1C88V/E3fiQV7LluXK5XOQsfRxNbBoDnvjCU0k36pq7Ofb2fRR89TqRE+9Erm0/b8i4axU57z/q0/l6z1tExPjbfnK/f6qi9W9TsOZMvTlt0hB63/UKMqXaj70SLiUiGLmEKeVSbugfzooD5VSb7ejUZz7u1YeN9I/S0DfCfcHUqeXsfnSE14X7nrHRPPJFNv/aWcxDV8V1y69ql8vF42tySIvQ8MX8AShk7mPePTqK+z49xuvbC7hzVCQh6va/mqsOGXl0VY5P51s0vTe3DYv4yf1uqcpsx2J3ERnU+uIW1bStpMbq07HOfi299Sren9OXqGDvYw+LC+SmAeEkh6kwNdhZfdjIq1sLOFrawD9v69vu8S02J18eqSAtQs3gmECf+nQh0Y+ZTtn2/1Kx52vPLZD6/EzMRcdIuOVJTzuJVIZE6h4tcjnsOCx1uJxOdP3GU/7dcszF2Wjj+7d5jq5oKMjEXHScpDl/xmGupWVIHDr4Wkx7vqY2+0dCh1zb7jFCBk6k32Of+HQ+TUz7n+35ZBg3i6DUUdjrKqnO+o6GgiyvWzSC8FOJYOQSN32Qnv/uKePrzArPLZDMknqOlZl58mdnRjtkUgkyqfsXtt3hos7qwOl0Mb6XjuX7y8k2mtvMReiqzNIGjpeb+fP1SdRaHNDiz/m1fUL5OtPEj/m1HeY2TEwJ4ZO5vg0PNwdb3clsdwK0GZw1B3OWpjadaX4tdY0O9uTXkpFbQ42l9ajPV/cN8no8e3gEv/v8BCsPGsk4Vc24dhJmN2SZqLE4eOiq7g3IzpfgPmNRhkZj/P4LTzBi3LUKJBL0o6d5tS3f+TlFG96hoTALnN7voaObLpzmEnfgmPvJ0+R+8nSbbWy1FR0eQxkSiTLk4rgd2UxlSERlSARAP3oaRRv/ydFFtzP42U1oYlL93DvhUiCCkUvc2MRgooOVfHHI6AlGVh0yIpHAtEHeaxJ8fqCcdzKKyCprwHHWtbStC+S5yDGaAXh6XS5Pr8tts01Fva3DY0QGKdsclehuNRY7FtuZN0ImlRCuVaBuCjisbQQcjU3bVD6OIrV8LT/vH866oxXcu+w4n8zt1+kU4QfGx7DyoJFtOe0HIysOlCOTnrkdd7GRSKWEj55G8cZ/Yq0qRaGLoOKH1QT3GUtAWIynnXH3GrLffZCQQdcQPekeFDoDErmC+rzDnF7xAi5XJ8FhOzlRrrOCGlwuAOKmPkpQ6qg299FE9+nwVA6rGYe5tuP+NJGpgy7IWyH6MTPI+/Q5jN9/TsLMJ/zdHeESIIKRS5xUKmHawHD+ubOY0lorEYEKVh+uYGxiMDG6M/fX1xw28uDKbK5JDeGeMdEYAhUoZBIOF9fzwqbTOJv+CLenvawFh9N7v+ZHj06MY1RCUJv79Okk18JsczSNqnQuSCVDrfA92bOlp9flevItwJ1cuuuR4YSo5ajkEkprW9+KKWnaFhl8bsHSdX3DUCukLN9X3mkwEtf0+VU2tB28ldVa2ZZTxYTeIa2mAF9MDGNmULxhCcYfVhOYPIzGigJib3jQq41x12oC9AmkPbgUifRMINhYlufTOeQaHfaG6lbbG8tPez1WRSQDIFWoCOl/VVdfCgAVP6y56HJGzuayNQJgr2/9ngnCuRDByGVgxmADSzKKWX3IyLC4QAqqGnnwSu8k0dWH3LNDlt6ehlR6JrTIMzX6dA6dWk61ufUMkNOV3vsnN62BoZJLfVocrC1rDlecl5yRB66I8RpRUCvcFzmpVEL/KC37Cuta7bOvwL1tcPS53dJyuFzYna52Z9O0lGuyABDezkJtKw8acTjhlqEXV+Lq2bSJA1FHp2LctQpLeR6SpsTWls4EIGeCX4fVTPHm9/CFKjKZ6qwMHFazZyTCYszHtG+9d18SBqKK6k3x/94l4srZKIK8E8NtNUYUwR2PQl2oOSPWqlIc5loCDImexNz2Xk/Jtv8AEJg89Lz1T7i0iWDkMjAwWkuqQc2qQ0byKi0oZRJuOGt2TXMA0nIcw2xz8N6uYp/OkRymIiO3GrPN4RmJyK+0sD7L5N2XKC299Sre/b6Y2cMjWl1IjXU29IEdr4J6vnJG+kRo6NPO/lMH6nl2fS6bjlV6pvearQ6W7SsjLULttZ+p3oapwU6sTom6aUpue69z2d5ybA4XQ2PPJJtW1NtavU8Op8uz0uqkdvJrPttfRoha1uasn4uNfsx08lctxFKSQ8iga1rNVgkbNgXTnq85+sZcwodNwV5fRdl3y5GpfAsKIyfOpWL3lxx9bTb6MTOw1Zoo/WYp6uhU6vMOetpJpFJS5i0ic9Ec9j85kYgr56AyJGKrq6Dh9BFM+zcy9p1THZ7rfOaM1OdnUrl/IwANBUcBKFj7JhKJBJlGR/SkeZ62pz9/kfKMzxj28veo9O51RHI+XIC9rpLgtHQCQmOwm2uoPrKN6swdBKWM9Eytbla8+X0cDdWe5Nba7N0UfOleuyV06ORuSSIWLk0iGLlMTB+kZ+GWfHIqLFyTGtJqtsqUtDC+zjQx979HmZIWTpXZzvL9ZWh9XM9i7qhIvjxSweylR5kxWI+p3sbS3aWkGtQcLDqzpoJUKmHR9BTmfJjJxLf2M2d4BImhKioabBwpaWBjlolTT3e8cuP5yhnpyB0jI/hkbym//fwEv0qPRh+oYNneMgqrG/noDu9A6f0fSlj0TQGf3d3fk9uxeEcB3+fWcHVKCPGhKhqsDnafrmVdlole4Srmj4327P/BDyWszazgZ33DiNMFUGOx81VmBQeL6rl9eAQj41vf7jpUVEdWmZk7R0Z2+9Rmf9CPnUH+qoU4LHUYxrQuBmdIvxl7QzUlm9/j1CfPoAyJwHDFbQSljODoa50vRKZLG0fyHX+laP0/yP30OVQRySTf/hcaio57BSMAQSkjGfzUOgq+eoPyjM+w11UiDwpHE51C0m3PdNtr7g71eYfIX7XQa1vB6lcBCAiP8wpG2qIfPZXy7z6jbMcy7LUVSORK1FG9SZj1J6KvvcczgtKseMMSGivOlCOoObaTmmPuUgbK0GgRjAjtEsHIZWJGUzBS1+hg+uDWw/Y3DzFQbbbz3g8lPLP+FBGBSm4bZmBEfBBzPjza6fHHJev46w3J/OO7Ip5bn0tyuIq/3JDM8bIGr2AE3Muar/vlYN7YXsBn+8upNNsJ18hJMWh4ZkpSd73kHqVWyFh+1wD+simPf+8qwWJz0D9Ky39+0XniKbhnDhVWNbLykJGKehsSiYSk0AB+Oz6WB8bHEKw6819zVEIQ+wrqWLG/DFODHYVMQp8IDQun9mLO8LZvQV2sa4u0R2VIbLUK6tmiJ91D9KR7Wm0/e7/4aY8RP+2xVu2irr6LqKvv8toW3tT+bOroFFLvu3BqqrgcNmy1JiQyOXLNmTVqIsbf5nPOScr811utQKsfPa3VrKWODH9ll0/tnHabe2q0j4m8wqVP4uokMVHwL4lE8ts7RkQsfHlq79YFR4RuMev9I9gcLt6f0xe5TOIVCFzKnE4XVWY7RTVWrlty8Jyr9tocTpKe3036u/k90EuhM0demeUZfQhKGcXAP67yc486V5W53WvEqtddC4m86vZuPcepj5+ylmx+748ul2tR560Ff7s8/uoKQid+zK9l0Cs/MiohiFXzz64Zc2nKq7QwfvF+f3dD+IkSb30ae0MVgNcqtRcybcIgryTezqZDC5c+EYwIl72nr0ukqmkmkO4yGRUB95LyLROBE0LF4NvFKDBpsL+70GWKwNBznhotXJoun7+8gtCOi3GZ9O6gVsjOeXq1IAhCd7r40+wFQRAEQbioiWBEEARBEAS/EsGIIAiCIAh+JXJGLlKxz+z0qd0tQw28PiOlh3vjVtlg471dJaQnBbdbuO1CtGxvGbWNDu5Lj+4+Asv3AAAS1ElEQVS8cQ/4dF8Zj67KQSqB/z0wpNWqsa9tzWfRNwV8++BQksMvvKJpHdk5P7bzRoBh3C2t1rjoKba6Sko2v0dw33R0aePOyzm7Q9mOZTgstUT/7L7zel6LMZ99CzpeiLBZ3NRHPeuy1J8+TN5nL1CbsweJVIau3xUk3vqUp/pvVxSsXUzdyf3U5R7AVlWCfuzMC2qdF+GnE8HIRWrxTO8AY91RE+uOmnhqciKGFsuMJ4advxkSVWY7i74p4NGJcRdXMLKvjOIaq9+CkWZOF7y6JZ9/zT5/9Uh6Wsq9i70em/auw7R3HYm3PoUi+MyCbOdygTpX9voqCtYsIm7qoxdXMPLtMqyVxec9GFEEhbf6HEu3/ZfaE7vcAaTkzAC7Js49O8tcnM2Rl29GEawnYeYCnLZGijf9i8MvzmDwMxtQ6rq2GF/+ypdRBOsJTB5KZVXJT39RwgVHBCMXqZuHeP9nzjVZWHfUxHVpoR3+enY43YXYLoUlwi81g6K1rMsycaiojkGXyAwfQ/rNXo8tZbmY9q4jdOh1qCOT293P5XTgctiRKgLabSOcH7IATavPsTpzB7UndqEfMwOJrPVlJO/zFwEY8PjnKEOjAAgddA0HnptM4do3Sb79z13qw7CXdqIyuBfk83W0Tbi4iGDkEpZxqppbPsjklZt6Udvo4MPdJRRUN7JsrrtGSoPVwRvbC/nysJGiGiuhajmT08J4YlI8oZozoysbs0ws21fGwaJ6Kupt6NRyJvQO4Y/XJhAVrPQ6F8Cibwo8RdyabxM134r46I40fsyvZdm+cqrNdkYnBLFwam9iQwL4YFcJ//q+mOKaRvpGaHj5pl6tpt362udZ7x/hlMnCqnsG8OTXuezMrUYhk3DjAD3PTUlC1VSBd8zf9lJQ5a4s3PLWV+Fz6T3wiXTs11fE8Ic1OSzcms+Hv+i8EGB2uZmXN58mI7cai81JikHDfenRzDorUB3zt71EByt54YZknlmXy77COoICZMwZHsEfro73qtIMsDO3msXbC9lXUIfN4SQtUsODV8X1WMG96qwMMhfeQq+5r+Aw11LyzYc0VhTQ/7Fl6NLG4WhsoPCrNzDu/hKrqQh5YChhQycTP/MJFIFnigSa9m+kbMcy6vMOYqutQK7RETJwAgkz/+i5IDafC6BgzSIK1rgX52y+TVT27afkvP8oaQ9/RG3Oj5R/uwx7fTVBqaPpfddCAsJjKdnyAcWb/kWjqRhNbF96zX251Vofvvb5yCuzsJSdYsATq8j9+Emqs3YikSnQj7qRpDnPIVW4Rzb3Pj7GU/Ol5cW4syXy/cFhqafq0Bb0Y2Z43ncATVwaurRxVOxe3eVgpDkQES5dIhi5DPx7VzE2h4tfjIhEpZASEaSk0e7k1qWZHC9rYM7wSFINak5WmFn6Qwl78mv56r5Bngv2sn1luFxw16gowjRyso1mPt5bxt6CWjb9eggqhZRUg5qnJify/MY8ru8XxvX93Beus28TvbQ5nwC5hAeuiKG01so7GcXM+ySLGYP0rDhQztxRkZhtTt7+tpD5y46R8dAwFDJ3P7rSZwCLzcnsDzNJT9Lx5ORE9hbU8dGPpYRr5DzetOz5c1OSeGFTHlVmO8/6WBfH5nBSa3H41FatkHoq9XYmVCNn/thoFm8vZE9+LSPaKIDX7FSFmanvHsIF3D06inCNgtWHjTy0MhtjnY37r4jxal9Wa+WO/xxl6kA9UweGs/VEFYu3F5IQEsCcEWcqyK7NrODXnx1neFwQj0yMQy6VsOqQkXs+OcZbN6cwo426Rt2l+H//xuWwEXnVL5AqVShDInDaGsl89VYaCo8TedUc1NGpmEtOUrJ1KbU5exj05FeeC3bZjmWAi6ir70IeGIa5JJuy7R9Tm7OXIc9tQqpQoY5OJfHWp8hb/jxhw68nbPj1QOvbRPkrX0KiCCBmygNYq0op3vgOWW/OQz92BuUZK4icOBen1Uzhurc59vf5DHsxw1M0rit9BnBaLWS+Nhtd33QSb32Supy9lG77CHlQOAkzHgcgafZz5K14AXt9FUmzn/Xp/Wyu/+ILqVKNLKB78pEaCjJx2a0E9RrW6rnA5GFUZ+6g0VREQFhMG3sLlysRjFwGjPU2dvxuGLoWlXrf/raQw8X1rJ4/kCEtytWnJ+m4++Mslu8vY+4o96+av9+c2uqCOjktlFnvZ7I+y8T0QXoMgUquSwvl+Y159IvUtLqN1EwmgZXzBiKXuX+NO5wulmQUU20pZetvhqBpOk+ISs6fvj7F1hNVTG76Rf7v74t97jO4c1genhDnyQWZOwpqLHY+2lPqCUam9AtjSUYRVoer3T6fbffpWs8oUGcenRjHY1fH+9QW4P5xMSz9oYRXtuTz6V3tVzh9aXM+NY0O1t43yPNezB0Vycz3jrBwy2luHWogTHtmpCivspF/z+7LlKYgce6oKH72jwN8tKfUE4yYrQ4WfHmSyX3DeLdF3srdo6OY9u5h/rIxj2kD9a1GUrqLrdbIsL/u8FrSvHDd29TnHWbg/60mMGmIZ7suLZ2sxXdT9t1yoibOBSD1l39vdUENHTqZzFdmYdq7Hv2Y6Sh1BkKHXkfe8ufRxPVrdfvBQypj4IKVnlsQLqeD4g1LKG2oZsjzW5EFuJOM5doQTv33T1Qd3krY0MmAO6jytc/gzmGJu+nhM7kgE+dib6ihdNtHnmAkbPgUijYswWW3tt/ns9Rm7/aMAnWmZeLpT2WtKgVAERLZ6jll0zZrVYkIRgQvIhi5DEwfpPcKRABWHTIyOEZLfEgApnqbZ/uIuEA0Sinfnqz2XNibAxGXy0VdowObw0VfgwadSsb+wjqmD9L73JfbR0R6AhGAUQnBLMkoZsYgvScQARiZ4B4VyDVZzqnPAFIJ3DHSu6rt2MRgNmRVUtfoIDDAtxGLs/WP0noto96RxC4usa5Ty/nluBgWbslnZ2416UmtE4EdThdbTlRyRbLOKyhTyqXcmx7Nb1acYFtOldcoRmSQwhOINEtPDObzg0bP4+0nq6lssDNriMHr/QWY1CeEV7cWcMJobjXbp7vox0xvVVvFuGsV2qTBBITHY6s1ebYH9hqBNEBDdea3ngt7cyDicrlwWOpw2W1oYvoi0+ioO7Uf/ZjpPvcl8qrbvXIhglNGUbxhCfqxMzyBCEBQykjAnQtzLn0GQCIlYsIdXucP7juWyv0bcJjrkKnPLX9IG9/fq/5LR7ozgdhpdf+flcpb5/s0jwg1txGEZiIYuQwktXFBzKmwYLE5GfTKj23uU9HiYpRjNPPi/06zPaeKeqvTq12Nxd6lvsSFeP+BCla5A4JYnfd2XdP25poxXe0zgF6rQK3wDjiag7Iqs/2cg5EQtbxHl1G/d2w0//6+mIVb8ll5T+tgpKLeRoPVSaq+9bB6qsG97XRlo9f2s99fcL8XXu+v0QzA/GXH2u2bsd5GT831UUUktdpmKc3BabXw48OD2tzHVlvh+be5JIfTn79I1ZHtOBvrvdrZG2q61JeA8DivxzJNsHt7WOxZ292fj72+6pz6DKAI1iNTen+W8hbHPddgRK4N8Uv9F6myKeCwN7Z6zmmzeLURhGYiGLkMtMyj8HC5GBEfyO/buYXQXDCu1mLn5vePoJBJeHRiPMnhKtRNx3tgxQmcrq71pb0Rflk7k3u8Du9jnz3n6uB2gsvVxY63YLU7vS7iHdEqZWi7GPQEBsh44IoY/rLpNN9kV3W+gw9kPtxaaX5LXrwxmaR2poT3j+yZURHAK4+iZZ8Ce48gfvrv29zHc9E213Lk5ZuRyBXET30UVWQyUqUaJHDinQfA5Wxz//Y7084XUtrOZ9ni++Rrn5tJ2jsX4OLcv6dOu9UrSOqILECLTKU953O11HwrxtZ0u6al5ls4yjZu4QiXNxGMXKaSwlRUmx2d/sLPyK2hvM7GZ3f391o7xGxzUH3WBVki6Zlcgma+9rmrutrrH/N7Lmek2d1jovjnzmJe3ZLP1anerzdcq0CjlHKiaSSjpexy97aE0K5PiU0KdwcDuh4e+ekKVUQSjobqTn/h12RlYKspp/8fPvNaO8RhNWOvr/Zq29PfU1/73GVd7Hdt9o9+yRnRxPZDIlNQe3IfkRPv9Hqu7tQ+FMF6lKEiX0TwJoKRy9S0QXpe3pzPigPlraaCOpwuaix2QjUKpE1/AM/+ffaPb4tajYpole5feGcHKee7z12lVcqosdhxuVw+Xah6MmekmVoh47dXxvL0ulzsZ73RMqmEa1JDWZtZ4bUmic3h5N3viwmQS5hwDsHEhN4hhKjlvLm9kMl9QlslLRvrbOgDu/7+/hT6MdPIX/ky5RkrMIyb5fWcy+nA3lCDIjC0xeiC93tVtO4frUZFpAHuEYCzg5Tz3eeukgVosTfU+Pw99VfOiEwdSMigazDtWYt15gLPKEhDQRbVWRlETZzb4wGhcPERwchl6pfpMWw+XsXDX2Sz5XglI+ODcAF5Jgtrj5p4/Jp4bhsWwaiEIMK1ch5amc280VFoA2R8d6qaA4V1hGq8vz6GQCWxOiWrD1fQK1xNqEZOfGgAw+Pan6LaE33uqiGxWrZmV/HMulyGxQUilUiY1kFSbk/njDS7Y2QkSzKKOFRc3+q5BZPi2ZFTxW1LM91Te7Xuqb17C+p4anKi10waXwUGyFg4tRe//uwEE/9+gFuGGIjRKSmttbK3oI4co5mMh4d3x0vzWczkX1J1cDPZ7z1M5aEt7oRRlwtLWR6mvWuJn/44EeNvIyhlFPKgcLLffYioa+YhU2mpzvqOulMHkJ914VfqDCjDYqnYvRp1VC/k2lACDPEE9eqe1+Zrn7tKmzyEqsNbyf3kGQJ7DUMikaIfM63d9v7KGQFIuPkJDv3lRo68PJOoSffgtFsp3vgvFEHhxN7wuy4frzxjhWedFYCGwiwKvnSXDwjuM5bgvr4tVy9cuEQwcplSKaR8eld/3skoYvVhI+uzTATIpcTqApgxSM/4plsyIWo5/72jH3/emMfiHYXIJDAuWceKeQPavFWxeGYqz23I5c8bc2m0u7hlqKHbghFf+9xV94+LIddk4fOD5bz3QwkuFx0GI+dLgFzKQ1fFseDLk62e6xWuZvW9A3l5cz4f/FCCxe4kRa/m9Rkp3DL03NcC+Xn/cFbNV/LWjkI+2F1CfaMDfaCC/pFaFkw6/wtPSRUq+v/+U4o2vINx12pMe9cjVQQQEB6LfswMdP3GA+4Lb79H/kve8j9TuHYxSGXo0sYx4PEVbd6qSL13MbmfPkfup3/GZW/EMO6WbgtGfO1zV8Vcdz+WslzKd35OyZb3wOXqMBjxJ01MHwYs+JzTK17g9MqXkEhlBKddQeItT55TvkjZt8uoOXZmUcKG/Ewa8t1/f+KmPiqCkUuA5Kck8gk9TyKR/PaOERELX57aW6SfCxckm8NJ0vO7SX83399dEQSPUx8/ZS3Z/N4fXS7XIn/3ReicKFAiCIIgCIJfids0giAIwnlnq6vE5bB12EauDUEqV56nHgn+JIKRC5+t0SHupQkXLgmAy+XzLA9BADj+9n1eeSBtOXuqdle4HHYX4FsRKcHvRDBy4SvNNVlsQPdUsRKEblbRYEciV2CrMaLU9VwhPeHSknjr09gbOl6UTRvffn2mzjSaCq1ARacNhQuCCEYufJsPFNYFVJvtrerLCMKFYN1Rk0uuUJRVHtgUGXnV7f7ujnCRCEwa3GPHdtos1Bz9Tgn8r8dOInQrkcB6gXO5XLUqhXT9n74+ZXF2de11Qehh+ZUWXtuab7aZ65cUfvVGfcvCcILgL4Vfv22XyBUHXC5Xib/7IvhGTO29CEgkEq1WKf0m1aDpN3dUpHZUQhCBSllXV4cWhG5hd7ooq7WxIcvk+OCHkkazzfmE1eF6S6pUL1QEhd8fN/VRbejQnyHXhoocEuG8cTns1ObsoWzHJ40Ve9YanY0No10uV5G/+yX4RgQjFwmJRKICputUsnkOJ0PtTpe6y0VVBKEbSMCpkEqqbE7XGrPN+R+Xy7UbQOKOPGbKNMH3ORsbrna5XDKJRNrFCnWCcC5cEpfTIZWpAvOcVvMHLod9icvlKvN3rwTfiWBEEIQe0RRAd61ksSCcO7PL1dXyzMKFQgQjgiAIgiD4lUhgFQRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxLBiCAIgiAIfiWCEUEQBEEQ/EoEI4IgCIIg+JUIRgRBEARB8CsRjAiCIAiC4FciGBEEQRAEwa9EMCIIgiAIgl+JYEQQBEEQBL8SwYggCIIgCH4lghFBEARBEPxKBCOCIAiCIPiVCEYEQRAEQfArEYwIgiAIguBXIhgRBEEQBMGvRDAiCIIgCIJfiWBEEARBEAS/EsGIIAiCIAh+JYIRQRAEQRD8SgQjgiAIgiD4lQhGBEEQBEHwKxGMCIIgCILgV/8PeqXm1WcBU08AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HInWzLf-84ta" - }, - "source": [ - "#### Plot decisions as function of covariates" - ] - }, - { - "cell_type": "code", - "metadata": { + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + }, "colab": { - "base_uri": "https://localhost:8080/", - "height": 265 - }, - "id": "0EdmyR-39cGt", - "outputId": "992dd9e8-abed-4f2b-a3cd-2d12e507ed05" - }, - "source": [ - "plt.scatter(X[:, 0], est.predict(X))\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQt0lEQVR4nO3df6zddX3H8eeLy2UWfxXXayZtXYlDsk5U9AYxJBvxxyjoKOrcYLrNzcg/YlwkNTAMbjijrpnORBaHzjgdypgiaxRT3WQxIeC4WH4IWFOZSi9uXIWyGaqU8t4f56Cnt/fec27vac/tp89HQnrP9/v5fs+7hT5z7jnfyzdVhSTp8HfUqAeQJA2HQZekRhh0SWqEQZekRhh0SWrE0aN64lWrVtW6detG9fSSdFi69dZbf1RVE3PtG1nQ161bx9TU1KieXpIOS0m+P98+33KRpEYYdElqhEGXpEYYdElqhEGXpEb0vcolySeAVwMPVNXz5tgf4MPA2cAjwJuq6pvDHlTL07qLvzTqEXQEefIxY7z3NSdz7imredd1d/KZb/yAx2vf/eNjR/Hw7j08fcU4Cex6ZA/Hr1zBpjNP4txTVnPdtmk2b93O/bt2s/LYcapYcP1ces/Rb+0wjhtU+v3fFpP8JvAT4FPzBP1s4G10gv4S4MNV9ZJ+Tzw5OVletnh4M+YahbGjwmknHMeN331wUcetGB/jdS9ezedvnWb3nr0DrX/fa0/eL7jXbZvmkmvv3Occ860dxnGzJbm1qibn2tf3LZeq+jqw0J/cRjqxr6q6GViZ5FkDTydJi7D38Vp0zAF279nLZ79x30Axf2L95q3b99u+eev2/c4x39phHLcYw3gPfTVwX8/jnd1t+0lyQZKpJFMzMzNDeGpJGtzeRd7/4f5duwfattD2pR63GIf0Q9GqurKqJqtqcmJizp9claSDZixZ1PrjV64YaNtC25d63GIMI+jTwNqex2u62yRp6MaOCqc/5xmLPm7F+Bjnv2QtK8bHBl6/6cyT9tu+6cyT9jvHfGuHcdxiDCPoW4A/SsdpwMNV9cMhnFfL3Pfe/6pRj6AjzJOPGeNvXv8CrnrLS3njac/mqOy/f+WKcQKsXDHOccd2vl69cgXve+3J/NW5J/O+157M6pUrCHDcseMLrp/rw8pzT1m9zzkWWjuM4xZjkKtcPgucAawC/gd4NzAOUFUf7V62+BFgA53LFv+kqvpevuJVLpK0eAtd5dL3OvSqOr/P/gLeeoCzSZKGxJ8UlaRGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGDBT0JBuSbE+yI8nFc+x/dpIbkmxLckeSs4c/qiRpIX2DnmQMuAI4C1gPnJ9k/axl7wKuqapTgPOAvxv2oJKkhQ3yCv1UYEdV3VtVjwJXAxtnrSngad2vnw7cP7wRJUmDGCToq4H7eh7v7G7r9RfAG5PsBK4H3jbXiZJckGQqydTMzMwBjCtJms+wPhQ9H/hkVa0BzgY+nWS/c1fVlVU1WVWTExMTQ3pqSRIMFvRpYG3P4zXdbb3eDFwDUFU3AU8CVg1jQEnSYAYJ+i3AiUlOSHIMnQ89t8xa8wPg5QBJfp1O0H1PRZIOob5Br6rHgAuBrcA9dK5muSvJ5UnO6S67CHhLktuBzwJvqqo6WENLkvZ39CCLqup6Oh929m67rOfru4HThzuaJGkx/ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRgwU9CQbkmxPsiPJxfOs+b0kdye5K8lnhjumJKmfo/stSDIGXAG8EtgJ3JJkS1Xd3bPmROAS4PSqeijJMw/WwJKkuQ3yCv1UYEdV3VtVjwJXAxtnrXkLcEVVPQRQVQ8Md0xJUj+DBH01cF/P453dbb2eCzw3yY1Jbk6yYa4TJbkgyVSSqZmZmQObWJI0p2F9KHo0cCJwBnA+8LEkK2cvqqorq2qyqiYnJiaG9NSSJBgs6NPA2p7Ha7rbeu0EtlTVnqr6L+A7dAIvSTpEBgn6LcCJSU5IcgxwHrBl1prr6Lw6J8kqOm/B3DvEOSVJffQNelU9BlwIbAXuAa6pqruSXJ7knO6yrcCPk9wN3ABsqqofH6yhJUn7S1WN5IknJydrampqJM8tSYerJLdW1eRc+/xJUUlqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqxEBBT7IhyfYkO5JcvMC61yWpJJPDG1GSNIi+QU8yBlwBnAWsB85Psn6OdU8F3g58Y9hDSpL6G+QV+qnAjqq6t6oeBa4GNs6x7j3AB4CfDnE+SdKABgn6auC+nsc7u9t+LsmLgLVV9aWFTpTkgiRTSaZmZmYWPawkaX5L/lA0yVHAB4GL+q2tqiurarKqJicmJpb61JKkHoMEfRpY2/N4TXfbE54KPA/4jyTfA04DtvjBqCQdWoME/RbgxCQnJDkGOA/Y8sTOqnq4qlZV1bqqWgfcDJxTVVMHZWJJ0pz6Br2qHgMuBLYC9wDXVNVdSS5Pcs7BHlCSNJijB1lUVdcD18/adtk8a89Y+liSpMXyJ0UlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaMVDQk2xIsj3JjiQXz7H/HUnuTnJHkn9P8qvDH1WStJC+QU8yBlwBnAWsB85Psn7Wsm3AZFU9H/gc8NfDHlSStLBBXqGfCuyoqnur6lHgamBj74KquqGqHuk+vBlYM9wxJUn9DBL01cB9PY93drfN583Al+fakeSCJFNJpmZmZgafUpLU11A/FE3yRmAS2DzX/qq6sqomq2pyYmJimE8tSUe8owdYMw2s7Xm8prttH0leAVwK/FZV/Ww440mSBjXIK/RbgBOTnJDkGOA8YEvvgiSnAH8PnFNVDwx/TElSP32DXlWPARcCW4F7gGuq6q4klyc5p7tsM/AU4F+S3JZkyzynkyQdJIO85UJVXQ9cP2vbZT1fv2LIc0mSFsmfFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhw9yKIkG4APA2PAx6vq/bP2/xLwKeDFwI+B36+q7w13VLhu2zSbt27n/l27WXnsOFXw8O49HL9yBZvOPIlzT1m96PMs5tgnjpvetZuxhL1VP/81QHXXHXfsOO/+nd/Y75zXbZvmkmvvYPeexxf5Oz88nP6cZ3DVW1466jGkI1bfV+hJxoArgLOA9cD5SdbPWvZm4KGq+jXgQ8AHhj1oJ4Z3Mr1rNwU89Mgedu3eQwHTu3ZzybV3ct226UWfZ9Bje48D2Fu1z6/Vs/ahR/aw6XO373PO67ZN845/vq3ZmAPc+N0HecPHbhr1GNIRa5C3XE4FdlTVvVX1KHA1sHHWmo3AP3a//hzw8iQZ3piweet2du/ZO+/+3Xv2snnr9gM6zyDH9nv+2fbsrX3OuXnrdtpN+S/c+N0HRz2CdMQaJOirgft6Hu/sbptzTVU9BjwM/PLsEyW5IMlUkqmZmZlFDXp/95XxwVrT79hBzr3QMQdyvCQtxiH9ULSqrqyqyaqanJiYWNSxx69ccVDX9Dt2kHMvdMyBHC9JizFI0KeBtT2P13S3zbkmydHA0+l8ODo0m848iRXjY/PuXzE+xqYzTzqg8wxybL/nn218LPucc9OZJx0RlxSd/pxnjHoE6Yg1yFUutwAnJjmBTrjPA/5g1potwB8DNwG/C3ytqooheuKKkaVe5TL7PIMe23vcgVzl8sTXXuUi6WDJIN1Ncjbwt3QuW/xEVb03yeXAVFVtSfIk4NPAKcCDwHlVde9C55ycnKypqakl/wYk6UiS5Naqmpxr30DXoVfV9cD1s7Zd1vP1T4HXL2VISdLSHAlv60rSEcGgS1IjDLokNcKgS1IjBrrK5aA8cTIDfH+e3auAHx3CcRZjOc8GzrdUzrc0znfgBp3tV6tqzp/MHFnQF5Jkar7LckZtOc8GzrdUzrc0znfghjGbb7lIUiMMuiQ1YrkG/cpRD7CA5TwbON9SOd/SON+BW/Jsy/I9dEnS4i3XV+iSpEUy6JLUiGUd9CQXJakkq0Y9S68k70lyR5LbknwlyfGjnqlXks1Jvt2d8QtJVo56pl5JXp/kriSPJ1k2l5Al2ZBke5IdSS4e9Ty9knwiyQNJvjXqWWZLsjbJDUnu7v57ffuoZ+qV5ElJ/jPJ7d35/nLUM80lyViSbUm+eKDnWLZBT7IW+G3gB6OeZQ6bq+r5VfVC4IvAZf0OOMS+Cjyvqp4PfAe4ZMTzzPYt4LXA10c9yBMGvBn6KH0S2DDqIebxGHBRVa0HTgPeusz+7H4GvKyqXgC8ENiQ5LQRzzSXtwP3LOUEyzbowIeAd/KL+0YsG1X1vz0Pn8wym7GqvtK9tyvAzXTuMrVsVNU9VdX/jt6H1iA3Qx+Zqvo6nXsNLDtV9cOq+mb36/+jE6X+d5s5RKrjJ92H491/ltXf2SRrgFcBH1/KeZZl0JNsBKar6vZRzzKfJO9Nch/wBpbfK/Refwp8edRDHAYGuRm6+kiyjs6Nbr4x2kn21X074zbgAeCrVbWs5qNzA6F3Aku6ndlAN7g4GJL8G/Arc+y6FPhzOm+3jMxC81XVv1bVpcClSS4BLgTevZzm6665lM63w1cdytm6z913PrUlyVOAzwN/Nuu72JGrqr3AC7ufJ30hyfOqall8HpHk1cADVXVrkjOWcq6RBb2qXjHX9iQnAycAtyeBztsF30xyalX996jnm8NVdO7mdEiD3m++JG8CXg28fNj3dx3EIv78lotBboaueSQZpxPzq6rq2lHPM5+q2pXkBjqfRyyLoAOnA+d0b/X5JOBpSf6pqt642BMtu7dcqurOqnpmVa2rqnV0vvV90aGMeT9JTux5uBH49qhmmUuSDXS+fTunqh4Z9TyHiZ/fDD3JMXRuhr5lxDMdFtJ55fUPwD1V9cFRzzNbkoknrvRKsgJ4Jcvo72xVXVJVa7q9Ow/42oHEHJZh0A8T70/yrSR30HlraFldpgV8BHgq8NXupZUfHfVAvZK8JslO4KXAl5JsHfVM3Q+RLwS20vlQ75qqumu0U/1Cks8CNwEnJdmZ5M2jnqnH6cAfAi/r/vd2W/fV5nLxLOCG7t/XW+i8h37AlwYuZ/7ovyQ1wlfoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktSI/wcFDUSp/D5FigAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } + "name": "kdd_intro_to_EconML.ipynb", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true } - ] }, - { - "cell_type": "code", - "metadata": { - "id": "c90e1Sei80dv" - }, - "source": [ - "" - ], - "execution_count": null, - "outputs": [] - } - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d_YD-YF59idL" + }, + "source": [ + "![EconML-Logo-MSFT-color.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jYAHRpIF-BRW" + }, + "source": [ + "# **KDD2021 Tutorial:** [Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber](https://causal-machine-learning.github.io/kdd2023-workshop/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AYlHqLQf-PjP" + }, + "source": [ + "# Introduction to [EconML](https://github.com/microsoft/EconML)\n", + "\n", + "A python library for estimation of heterogeneous treatment effects with Machine Learning.\n", + "\n", + "**Presentation:** [Introduction to EconML](https://drive.google.com/file/d/1gt4KNznrYbwdryi9jGcC0-hDCNg7mBNE/view?usp=sharing)\n", + "\n", + "**Github:** https://github.com/microsoft/EconML\n", + "\n", + "**Documentation:** https://econml.azurewebsites.net/\n", + "\n", + "By the Microsoft Research project [ALICE (Automated Learning and Intelligence for Causation and Economics)](https://www.microsoft.com/en-us/research/project/alice/)" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cEqRBSJV9dTX" + }, + "source": [ + "#!pip install econml" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "yPw9zWWm3H9e" + }, + "source": [ + "!pip install git+https://github.com/microsoft/EconML.git@mehei/driv#egg=econml" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "PKxsq0Mv9cGD" + }, + "source": [ + "import numpy as np\n", + "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", + "from sklearn.linear_model import LassoCV, Lasso\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt\n", + "import scipy\n", + "import warnings\n", + "warnings.simplefilter('ignore')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "WNvGZiKF9cGG" + }, + "source": [ + "def gen_data(n, discrete=False):\n", + " X = np.random.normal(0, 1, size=(n, 2))\n", + " W = np.random.normal(0, 1, size=(n, 2))\n", + " if discrete:\n", + " T = np.random.binomial(1, scipy.special.expit(W[:, 0]))\n", + " else:\n", + " T = W[:, 0] + np.random.normal(0, 1, size=(n,))\n", + " y = (X[:, 0] + 1) * T + W[:, 0] + np.random.normal(0, 1, size=(n,))\n", + " return y, T, X, W\n", + "\n", + "def gen_data_iv(n):\n", + " X = np.random.normal(0, 1, size=(n, 2))\n", + " W = np.random.normal(0, 1, size=(n, 2))\n", + " U = np.random.normal(0, 1, size=(n,))\n", + " Z = np.random.normal(0, 1, size=(n,))\n", + " T = Z + W[:, 0] + U\n", + " y = (X[:, 0] + 1) * T + W[:, 0] + U\n", + " return y, T, Z, X, W" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7xzAqDMb9cGH" + }, + "source": [ + "# 1. Estimation under Exogeneity" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "TuRauvKA9cGH" + }, + "source": [ + "y, T, X, W = gen_data(1000)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nHhjI8Kb9cGI", + "outputId": "059fd233-bd8e-4de3-fa61-1a042b381aba" + }, + "source": [ + "from econml.dml import NonParamDML\n", + "\n", + "est = NonParamDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", + " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", + " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", + " discrete_treatment=False, # categorical or continuous treatment\n", + " cv=2, # number of crossfit folds\n", + " mc_iters=1) # repetitions of cross-fitting for stability\n", + "\n", + "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gc4fpcMr9cGJ" + }, + "source": [ + "#### Personalized effect estimates on test samples" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9rqqLxnt9cGJ", + "outputId": "cd71c483-e9e1-48f8-fab7-e8534777a008" + }, + "source": [ + "# personalized effect for each sample from going from treatment 0 to treatment level 1\n", + "est.effect(X[:5], T0=0, T1=1)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1.54592291, 0.87946172, -0.47128723, 0.81285758, 3.1442986 ])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 7 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qC23J2R09cGJ" + }, + "source": [ + "#### ML model diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yE2v-YzX9cGK", + "outputId": "6d074083-9a40-4222-d7bb-f2d158fc2df0" + }, + "source": [ + "# fitted nuisance models for each cross-fitting fold and out-of-sample scores\n", + "est.models_y, est.nuisance_scores_y" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False),\n", + " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False)]],\n", + " [[0.5409335662361056, 0.48599679070328405]])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JXOd9Rfa9cGK", + "outputId": "dfbebf0a-19e9-4f15-9182-e22318015360" + }, + "source": [ + "est.models_t, est.nuisance_scores_t" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False),\n", + " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False)]],\n", + " [[0.4282760371961908, 0.3782367983417111]])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 9 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CLbqvUvr9cGK" + }, + "source": [ + "#### CATE model diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IdiMMpsQ9cGL", + "outputId": "6b6277ca-32b3-4d29-f5f4-37b765551e39" + }, + "source": [ + "# in-sample goodness-of-fit score for the final cate model\n", + "print(est.score_)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "1.4717907756757855\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "968ktBK_9cGL" + }, + "source": [ + "#### Nuisance quantity diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "KDwBlm-i9cGL" + }, + "source": [ + "# calculated residuals for each training sample\n", + "yres, Tres, X_cache, W_cache = est.residuals_" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jkc1WSi19cGL" + }, + "source": [ + "# 2. Estimation with Instruments" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "8pjyjlRQ9cGM" + }, + "source": [ + "y, T, Z, X, W = gen_data_iv(2000)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "l5gr5sGS9cGM" + }, + "source": [ + "from econml.iv.dml import OrthoIV\n", + "\n", + "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", + " model_t_xw=RandomForestRegressor(), # ML model for E[T|X,W]\n", + " model_z_xw=RandomForestRegressor(), # ML model for E[Z|X,W]\n", + " discrete_treatment=False, # categorical/continuous treatment\n", + " discrete_instrument=False, # categorical/continuous instrument\n", + " cv=2, # number of crossfit folds\n", + " mc_iters=1) # repetitions of cross-fitting for stability" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "b_k1NpEp9cGM", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8b057fc5-bd87-43fa-ea75-33ee736a2a88" + }, + "source": [ + "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 14 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a0zr3m3r9cGM" + }, + "source": [ + "#### Personalized effect estimates on test samples" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "2wAnhhq99cGN", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2061468c-6969-4b1a-86fa-ba16a8f6b49c" + }, + "source": [ + "est.effect(X, T0=0, T1=1)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([-0.32390668, 2.23728003, 0.70346148, ..., 0.85984079,\n", + " 0.17539819, 1.07325619])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D9ESfbo29cGN" + }, + "source": [ + "#### ML model diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9JlbW4an9cGN", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "f77e36a8-295f-4dff-e11d-21057357e4c8" + }, + "source": [ + "est.models_y_xw, est.nuisance_scores_y_xw" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False),\n", + " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False)]],\n", + " [[0.3493220983540998, 0.2621905464991312]])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "e1YCQWZK9cGO", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "71292840-3f77-4985-fdf3-855ad7d4f07a" + }, + "source": [ + "est.models_t_xw, est.nuisance_scores_t_xw" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False),\n", + " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False)]],\n", + " [[0.24243204274642238, 0.22952337252664082]])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cN5Ga_YH9cGO", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "fca11455-0e2c-4881-96a9-0e07a67d4461" + }, + "source": [ + "est.models_z_xw, est.nuisance_scores_z_xw" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False),\n", + " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", + " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", + " max_samples=None, min_impurity_decrease=0.0,\n", + " min_impurity_split=None, min_samples_leaf=1,\n", + " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", + " n_estimators=100, n_jobs=None, oob_score=False,\n", + " random_state=None, verbose=0, warm_start=False)]],\n", + " [[-0.10057707531258632, -0.08476759034439452]])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 18 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oNkC5W9i9cGP" + }, + "source": [ + "#### CATE model diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zENiyXuV9cGP", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "621aba3d-e433-4c89-e0dc-1879afd565f6" + }, + "source": [ + "print(est.score_)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "5.018208071305707e-16\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "slJuNhWU9cGP" + }, + "source": [ + "#### Nuisance quantity diagnostics" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "1o5aP05y9cGP" + }, + "source": [ + "yres, Tres, Zres, Xc, Wc, Zc = est.residuals_" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WrsMl9pm9cGQ" + }, + "source": [ + "# 3. Inference" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "oeTIUL6_9cGQ" + }, + "source": [ + "y, T, X, W = gen_data(1000)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K0kinaK__Djv" + }, + "source": [ + "### Generic Bootstrap Inference" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "rSGauZ1k9cGQ" + }, + "source": [ + "from econml.dml import NonParamDML\n", + "from econml.sklearn_extensions.linear_model import WeightedLasso\n", + "\n", + "est = NonParamDML(model_y=Lasso(alpha=.1), # Any ML model for E[Y|X,W]\n", + " model_t=Lasso(alpha=.1), # Any ML model for E[T|X,W]\n", + " model_final=WeightedLasso(alpha=.1), # Any ML model for CATE that accepts `sample_weight` at fit\n", + " discrete_treatment=False, # categorical or continuous treatment\n", + " cv=2, # number of crossfit folds\n", + " mc_iters=1) # repetitions of cross-fitting for stability" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lckeXBSV9cGR", + "outputId": "d1cecd80-0022-4e16-c4a9-dc1081f474f3" + }, + "source": [ + "est.fit(y, T, X=X, W=W, inference='bootstrap') # fit the CATE model" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "id": "p-RP37i-9cGR", + "outputId": "2126735a-91d6-4908-eb8a-b36bcae1cbc8" + }, + "source": [ + "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2700.03932.6200.01.2101.334
11.7070.05133.6340.01.6311.787
22.4170.07930.4280.02.3042.559
31.3740.04133.7000.01.3121.445
4-0.3020.070-4.3380.0-0.449-0.216
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 1.270 0.039 32.620 0.0 1.210 1.334\n", + "1 1.707 0.051 33.634 0.0 1.631 1.787\n", + "2 2.417 0.079 30.428 0.0 2.304 2.559\n", + "3 1.374 0.041 33.700 0.0 1.312 1.445\n", + "4 -0.302 0.070 -4.338 0.0 -0.449 -0.216" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 251 + }, + "id": "9tGAONKF9cGS", + "outputId": "cce9a4d0-d2a9-4991-87aa-90504695a8a9" + }, + "source": [ + "est.ate_inference(X)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.989 0.061 16.1 0.0 0.888 1.09
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.041 -0.704 2.734
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.042 -0.698 2.737


Note: The stderr_mean is a conservative upper bound." + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ab22GTTm9cGS", + "outputId": "b26f4c08-1938-43fb-c81b-36ca177254f8" + }, + "source": [ + "from econml.inference import BootstrapInference\n", + "est.fit(y, T, X=X, W=W,\n", + " inference=BootstrapInference(n_bootstrap_samples=100,\n", + " bootstrap_type='normal'))" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "id": "MK02FTmf9cGS", + "outputId": "3d1bb9f4-cbcf-45ac-930b-f6d837b407b0" + }, + "source": [ + "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2670.04627.5910.01.1921.343
11.7040.05530.9780.01.6131.794
22.4140.07930.6230.02.2842.543
31.3720.04828.8790.01.2941.450
4-0.3030.073-4.1250.0-0.424-0.182
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 1.267 0.046 27.591 0.0 1.192 1.343\n", + "1 1.704 0.055 30.978 0.0 1.613 1.794\n", + "2 2.414 0.079 30.623 0.0 2.284 2.543\n", + "3 1.372 0.048 28.879 0.0 1.294 1.450\n", + "4 -0.303 0.073 -4.125 0.0 -0.424 -0.182" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 251 + }, + "id": "qIKkO36S9cGT", + "outputId": "574a2f94-2cca-463f-adf6-b2193d1d0e6c" + }, + "source": [ + "est.ate_inference(X)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.986 0.065 15.226 0.0 0.88 1.093
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.039 -0.704 2.73
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.041 -0.703 2.735


Note: The stderr_mean is a conservative upper bound." + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LH0Uo_yJ--G_" + }, + "source": [ + "### Tailored Valid Inference" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZfUSZoW-4TJQ" + }, + "source": [ + "#### Heteroskedasticity-robust OLS inference for linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uPiPxMU19cGT" + }, + "source": [ + "from econml.dml import LinearDML\n", + "\n", + "est = LinearDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", + " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", + " featurizer=PolynomialFeatures(degree=2, include_bias=False)) # any featurizer for " + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "qAQKnPA59cGU", + "outputId": "77583b37-6895-4c2e-c636-d948a6de8798" + }, + "source": [ + "est.fit(y, T, X=X, W=W)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 353 + }, + "id": "Cy73CEcm9cGU", + "outputId": "749cefb2-54d6-475a-d630-4a8d9beba4f6" + }, + "source": [ + "est.summary()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 1.001 0.034 29.398 0.0 0.945 1.057
X1 0.042 0.032 1.302 0.193 -0.011 0.094
X0^2 0.011 0.025 0.447 0.655 -0.029 0.052
X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076
X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Coefficient Results \n", + "===========================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "-----------------------------------------------------------\n", + "X0 1.001 0.034 29.398 0.0 0.945 1.057\n", + "X1 0.042 0.032 1.302 0.193 -0.011 0.094\n", + "X0^2 0.011 0.025 0.447 0.655 -0.029 0.052\n", + "X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076\n", + "X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007\n", + " CATE Intercept Results \n", + "====================================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "--------------------------------------------------------------------\n", + "cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066\n", + "--------------------------------------------------------------------\n", + "\n", + "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", + "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", + "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", + "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", + "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", + "\"\"\"" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "id": "og2hubAj9cGV", + "outputId": "5f0c835f-dcff-4f9c-d1be-dc6741da2a10" + }, + "source": [ + "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2610.04726.7320.01.1841.339
11.7850.06826.2740.01.6731.897
22.4160.08329.0690.02.2802.553
31.4180.04829.8280.01.3401.497
4-0.2720.064-4.2660.0-0.378-0.167
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 1.261 0.047 26.732 0.0 1.184 1.339\n", + "1 1.785 0.068 26.274 0.0 1.673 1.897\n", + "2 2.416 0.083 29.069 0.0 2.280 2.553\n", + "3 1.418 0.048 29.828 0.0 1.340 1.497\n", + "4 -0.272 0.064 -4.266 0.0 -0.378 -0.167" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 32 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aMqhTNEb4Zt4" + }, + "source": [ + "#### Debiased Lasso Inference for high-dimensional linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dtjN8aC99cGY" + }, + "source": [ + "from econml.dml import SparseLinearDML\n", + "\n", + "est = SparseLinearDML(featurizer=PolynomialFeatures(degree=3, include_bias=False))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W3xElnFJ9cGY", + "outputId": "89e6d659-d695-49c0-927c-66e3128c3e13" + }, + "source": [ + "est.fit(y, T, X=X, W=W)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "6XHdjW9I9cGY", + "outputId": "b8ad3ad6-7006-47ac-c431-d90c109cf0e3" + }, + "source": [ + "est.summary()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.065 15.182 0.0 0.882 1.097
X1 0.012 0.07 0.179 0.858 -0.102 0.127
X0^2 0.071 0.022 3.168 0.002 0.034 0.107
X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045
X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026
X0^3 0.004 0.013 0.328 0.743 -0.017 0.026
X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067
X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065
X1^3 0.001 0.016 0.054 0.957 -0.026 0.027
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Coefficient Results \n", + "=============================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "-------------------------------------------------------------\n", + "X0 0.99 0.065 15.182 0.0 0.882 1.097\n", + "X1 0.012 0.07 0.179 0.858 -0.102 0.127\n", + "X0^2 0.071 0.022 3.168 0.002 0.034 0.107\n", + "X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045\n", + "X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026\n", + "X0^3 0.004 0.013 0.328 0.743 -0.017 0.026\n", + "X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067\n", + "X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065\n", + "X1^3 0.001 0.016 0.054 0.957 -0.026 0.027\n", + " CATE Intercept Results \n", + "====================================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "--------------------------------------------------------------------\n", + "cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029\n", + "--------------------------------------------------------------------\n", + "\n", + "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", + "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", + "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", + "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", + "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", + "\"\"\"" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "id": "nYXaiMBX9cGZ", + "outputId": "34e12072-ae19-40c5-d75f-72d96ff4682c" + }, + "source": [ + "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2440.06120.4580.0001.1441.344
11.7430.10217.1200.0001.5751.910
22.5280.09227.5530.0002.3772.679
31.3660.06122.5210.0001.2661.466
4-0.2360.085-2.7780.005-0.376-0.096
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 1.244 0.061 20.458 0.000 1.144 1.344\n", + "1 1.743 0.102 17.120 0.000 1.575 1.910\n", + "2 2.528 0.092 27.553 0.000 2.377 2.679\n", + "3 1.366 0.061 22.521 0.000 1.266 1.466\n", + "4 -0.236 0.085 -2.778 0.005 -0.376 -0.096" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 42 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9kI_3o004cnQ" + }, + "source": [ + "#### Bootstrap-of-Little-Bags inference for forests CATE models $\\theta(x)$" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JVKLLU5H9cGZ" + }, + "source": [ + "y, T, X, W = gen_data(2000, discrete=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TzNqV3HW9cGZ", + "outputId": "e829ef4f-3016-431a-91d3-4864c9cca580" + }, + "source": [ + "from econml.dml import CausalForestDML\n", + "\n", + "est = CausalForestDML(discrete_treatment=True,\n", + " criterion='mse', n_estimators=1000)\n", + "est.tune(y, T, X=X, W=W)\n", + "est.fit(y, T, X=X, W=W, cache_values=True)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 451 + }, + "id": "PhogESjH9cGa", + "outputId": "97fea945-cc4e-4641-cb7b-e20f8e61064d" + }, + "source": [ + "est.summary()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Population summary of CATE predictions on Training Data\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
1.099 0.205 5.362 0.0 0.762 1.436
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.086 -0.862 2.947
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.105 -0.862 2.965
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Doubly Robust ATE on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATE 1.095 0.056 19.388 0.0 1.002 1.187
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Doubly Robust ATT(T=0) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.075 0.078 13.719 0.0 0.947 1.204
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Doubly Robust ATT(T=1) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.116 0.081 13.721 0.0 0.982 1.25


Note: The stderr_mean is a conservative upper bound." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Uncertainty of Mean Point Estimate \n", + "===============================================================\n", + "mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper\n", + "---------------------------------------------------------------\n", + " 1.099 0.205 5.362 0.0 0.762 1.436\n", + " Distribution of Point Estimate \n", + "=========================================\n", + "std_point pct_point_lower pct_point_upper\n", + "-----------------------------------------\n", + " 1.086 -0.862 2.947\n", + " Total Variance of Point Estimate \n", + "==========================================\n", + "stderr_point ci_point_lower ci_point_upper\n", + "------------------------------------------\n", + " 1.105 -0.862 2.965\n", + " Doubly Robust ATE on Training Data Results \n", + "=========================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "---------------------------------------------------------\n", + "ATE 1.095 0.056 19.388 0.0 1.002 1.187\n", + " Doubly Robust ATT(T=0) on Training Data Results \n", + "=========================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "---------------------------------------------------------\n", + "ATT 1.075 0.078 13.719 0.0 0.947 1.204\n", + " Doubly Robust ATT(T=1) on Training Data Results \n", + "=========================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "---------------------------------------------------------\n", + "ATT 1.116 0.081 13.721 0.0 0.982 1.25\n", + "---------------------------------------------------------\n", + "\n", + "Note: The stderr_mean is a conservative upper bound.\n", + "\"\"\"" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "id": "bZzv-0bo9cGa", + "outputId": "26e8e29b-691e-4fa4-d469-7b00ee463ac4" + }, + "source": [ + "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.9090.2308.2930.0001.5312.288
10.3080.1132.7350.0060.1230.493
2-0.1130.204-0.5530.580-0.4490.223
31.2770.1926.6650.0000.9621.593
42.3950.22510.6390.0002.0242.765
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 1.909 0.230 8.293 0.000 1.531 2.288\n", + "1 0.308 0.113 2.735 0.006 0.123 0.493\n", + "2 -0.113 0.204 -0.553 0.580 -0.449 0.223\n", + "3 1.277 0.192 6.665 0.000 0.962 1.593\n", + "4 2.395 0.225 10.639 0.000 2.024 2.765" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 46 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qqO9by3p9cGa" + }, + "source": [ + "# 4. Causal Scoring" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9HwG--DU9cGa" + }, + "source": [ + "y, T, X, W = gen_data(2000, discrete=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rr5El3LR9cGa" + }, + "source": [ + "#### Multitude of approaches for CATE estimation to select from" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "je0AkjG99cGb" + }, + "source": [ + "from econml.dml import DML, LinearDML, SparseLinearDML, NonParamDML\n", + "from econml.metalearners import XLearner, TLearner, SLearner, DomainAdaptationLearner\n", + "from econml.dr import DRLearner\n", + "\n", + "reg = lambda: RandomForestRegressor(min_samples_leaf=10)\n", + "clf = lambda: RandomForestClassifier(min_samples_leaf=10)\n", + "# A multitude of possible approaches for CATE estimation under conditional exogeneity\n", + "models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", + " linear_first_stages=False, cv=3)),\n", + " ('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", + " featurizer=PolynomialFeatures(degree=2, include_bias=False),\n", + " linear_first_stages=False, cv=3)),\n", + " ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),\n", + " ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(),\n", + " propensity_model=clf())),\n", + " ('slearner', SLearner(overall_model=reg())),\n", + " ('tlearner', TLearner(models=reg())),\n", + " ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),\n", + " model_final=reg(), cv=3)),\n", + " ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),\n", + " discrete_treatment=True, cv=3)),\n", + " ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=LassoCV(),\n", + " discrete_treatment=True,\n", + " featurizer=PolynomialFeatures(degree=3),\n", + " linear_first_stages=False, cv=3))\n", + "]" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "it8Mb8219cGb" + }, + "source": [ + "#### Split the data in train and validation" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dsqFr4Cz9cGb" + }, + "source": [ + "XW = np.hstack([X, W])\n", + "XW_train, XW_val, T_train, T_val, Y_train, Y_val = train_test_split(XW, T, y, test_size=.4)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9_X0_AQS9cGc" + }, + "source": [ + "#### Fit all CATE models on train data" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fNWePOEi9cGc", + "outputId": "1e887546-43fe-4b1f-f238-06ec0d15ab2b" + }, + "source": [ + "from joblib import Parallel, delayed\n", + "\n", + "def fit_model(name, model):\n", + " return name, model.fit(Y_train, T_train, X=XW_train)\n", + "\n", + "models = Parallel(n_jobs=-1, verbose=1)(delayed(fit_model)(name, mdl) for name, mdl in models)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n", + "[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 17.7s finished\n" + ], + "name": "stderr" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5HrON5yV9cGc" + }, + "source": [ + "#### Train the scorer on the validation data" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "B4r0CXBP9cGc", + "outputId": "aae0216f-9ed1-4846-d0d4-eaff59d12e77" + }, + "source": [ + "from econml.score import RScorer\n", + "\n", + "# Causal score actually needs fitting on the test set!\n", + "scorer = RScorer(model_y=reg(), model_t=clf(),\n", + " discrete_treatment=True, cv=3,\n", + " mc_iters=3, mc_agg='median')\n", + "scorer.fit(Y_val, T_val, X=XW_val)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 51 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VaApR6459cGd" + }, + "source": [ + "#### Evaluate each of the trained CATE models on the validation data" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WX92N2EP9cGd" + }, + "source": [ + "# Then we can evaluate every trained CATE model\n", + "rscore = [scorer.score(mdl) for _, mdl in models]" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E2ZWa1Mu9cGd" + }, + "source": [ + "#### Calculate ideal score of each model, since we know ground truth" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "1e2SvCV89cGd" + }, + "source": [ + "expected_te_val = 1 + XW_val[:, 0]" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "yPF1_UOM9cGe" + }, + "source": [ + "rootpehe = [np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))\n", + " for _, mdl in models]" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a4RafR039cGe" + }, + "source": [ + "#### Qualitatively different performance of each method" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 948 + }, + "id": "fkIgNP999cGe", + "outputId": "3aaa0a23-a756-4857-9daa-0f94c68b7280" + }, + "source": [ + "plt.figure(figsize=(16, 16))\n", + "rows = int(np.ceil(len(models) / 3))\n", + "for it, (name, mdl) in enumerate(models):\n", + " plt.subplot(rows, 3, it + 1)\n", + " plt.title('{}. RScore: {:.3f}, Root-PEHE: {:.3f}'.format(name, rscore[it], rootpehe[it]))\n", + " plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='{}'.format(name))\n", + " plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", + " plt.ylabel('Treatment Effect')\n", + " plt.xlabel('x')\n", + " plt.legend()\n", + "plt.show()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAOjCAYAAABpyFP0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhV1dW435XkQhIIhHkIoxNDGGUQirWAQxwRcfopDtRPqbXaOqFgseJXrXzFz1LtV61Wq1ZUcIoDihPgADgAAREBKYpAmMIQICFASPbvj33u5dybOyY3uRnW+zz3ufeevc85+0zrrLX3WmuLMQZFURRFURRFURRFqUskJboBiqIoiqIoiqIoihIraswqiqIoiqIoiqIodQ41ZhVFURRFURRFUZQ6hxqziqIoiqIoiqIoSp1DjVlFURRFURRFURSlzqHGrKIoiqIoiqIoilLnaHDGrIhsFJEzQpSNFJEtldxuNxExIpJStRYqiqLEFxGZJiIvhCkPKRej2PZCEbm+8q1TFEWJHpU5iqK4aXDGbG3AZfgWOZ+NIjI5oM6pIrJYRPaJyB4RWSQiQxLV5mCI5X9EZLfz+R8RkRB1O4jIWyKy1Tn2bgHlq13no0hEjorI267yJ0VknYiUi8iEGNu5UURKnO1uF5FnRaRpJQ45cLvPisgDEepME5FSZ9+FzjUd7pRNEJGygOMuEpGOrnafEbC9CSLyeYhj837+FsMx3Oack/0i8oyINA5Rr5GIvOrsz4jIyCDb+cHZzlYR+Yu7Y0dEBojIZ879vEVE7o22jUr9wVFCDzn36S4ReV1EOrjKM537cLuIHBCR7wNlY21ARE4XkbUiclBEFohI1zB1/ygiqxyZNi2g7J6AZ7fEkXGtnfI/i8hm57n6SUTuiaGNIWVPVZAoOn0lwjvOKSsOOPa7XO2u0PHirHNCkGPzfgpjOIYBIrLMuX7LRGRAmLoviMg25xp8Ly4jSkR6i8hSEdnrfD4Skd6u8lHO/bFPRDZG2z6l/uM8R+XOvXtArH7zy4A6F4rICufe2yUi80Wke6LaHAwRaezI7P2O3L49TN0+IvK+cywmSHmgLlQmIo+5yqOWuwHbjahzVxaJoiM43HtPrB55JOC4Vwa0OyVgez7dM8ixeT+XR9n+WK7ftY683C9Wj/uz+Ot53UTkXUcWbheRv3nLRaS1WDtmt9j30RIRGRFNG6NBjdnEkmmMaQpcAtwrImcCiEgz4B3gMaAlkAXcDxyO585FJLmKm5gIjAX6A/2AC4BfhahbDswDLg5WaIzJNsY0dc5HBrAZeMVVZSVwE7C8km29wNn2AGAgMKWS26kMs519twE+B14X8Rn9S7zH7fpsjXH7FwSsf3M0K4lIDjAZOB3oChyHvc9C8TlwFbA9SNlbwMnGmGZAH+w98VtX+YvAp9j7+RfATSIyJpp2KvWOm53n4QSgKfCwq+wvzrJeQHNgDPCfeO48UDGoxPqtgdeBe7H381JgdphV/gPcBcwNLDDG/Mn97AL/Ayw0xuxyqjwN9HSeq58B40VkXAzN9cqe1sAC/GVqTeB9x10B/EFEznaV9Q+QW3+OcduzA9bPjGYlEWkEvAm8ALQAngPedJYH4yGgm3MNxgAPiMggp2wr9v3dEnuO3wJedq1bDDwDTIrt0JREUFXZELAtEZFIOvZW5/loBtwGPCUiPZz1TwCeB+7AysLuwP8BZTXcxkhMA07E6hCjgLsCnnM3pcAc4L+CFQbIwvZACY7MqoTcDUZQnbuG8L73TgIyse86L38OkGX9K7H9zIBtRHtuphH99UsHbsXKulOwuuOdrvK/AzuBDlhd+xdYvR2gCLgOqwe3wL7r3o7XM9egjVkRSXN6OPaKyHfAkIDyjSIySUS+EduL/LSItBOR95yetI9EpEVV22GMWQqsxl58sDc7xpiXjDFlxpgSY8wHxphvXG27QUTWOO34TkROdpb3cnqBCsWOdo5xrfOsiDzu9JwUA6NEpKOIvCYiBSLyo4i4DZBIXAv8rzFmizEmH/hfYEKIY9xhjPk78HUU2z0N+7C85lr//4wxHwOHYmhfsHZsB97n2LlGRMY456rQOXe9XGVBz6eITATGYx/8InGNIofZdylWcWoPtKrKccSJa4GnjTGrjTF7gT8S+vodMcbMNMZ8TpCXqTFmgzHGOzIi2M6LE1xVugGznPt5A9Ywzo7bkSgAiMjdIpIvx3r6Tw9R72qxI327ReT3AWXTROQVsSNSB8SOKp4kIlNEZKfYkcKzqtpW537JxfUsYmXwi8aYvcaYcmPMWmPMq662ZYvIh2K9VXaIM1Lp9C7PFOsVsNX53dgpG+n0It8tItuBf4lIkohMFpENzjmYIyIto2z6OGC1MeYVY8whrDLQX0R6hjjO54wx7wEHwm3U6eC6BisjvOuuM8YUu6oFPldRYYw5CswCskSkjbO/jmK9ZfaIyH9E5AZXW4KeTxFpArwHdJQAT5II+1+Cfcf1ibXt1cBIIAWYaYw5bIx5FCuzRger7MhHb0eycT7HO2WFxpiNxhjjbKMM1/UxxnxljPk38EN1HUx9RESOd+5Lr17T0dFRRoaof52jD+0VO/LX1VX2Vznm3bBMRH7uKpsm1uPoBRHZD0xw3vd/FDuKdEBEPhDHU8JZZ5hYL4dCEVnpbpOz7oMisgg4iO0gjoixvAvswQ4MgJWLPxpjPnbKDxhjXjPGbHL2lSzWs2OD085lItLZKfuZiHwt1iPgaxH5Wbg2ikhPl1xdJyKXRdNuh2uBPzoyew3wFKH1iHXGmKexsiASF2MNo8+c/zHJ3XAE6tzO+2Cq807cKSLPi0hzb30JoSOKyL+BLlijzOddEmHfe7C6bW2QhRDb9XvcGPOZow/mY98p7tHV7sAcY8whR9eeh6PnOcvWGWPKOSYrW2A7JqpMgzZmgfuwL6XjgRzsRQ3kYuBMrIF5AfZFfg+2dyEJ/9GnSiEiw7A3tncE4nugTESeE5FzJMBgFpFLsQ/yNdgevTHAbhHxAG8DHwBtgVuAWeL09DlcCTyIHf1c7NRfiR39PR24VeyIHWJdncO5bmU763pZSXwMlGuB1wKUuLggIp2Ac3DOtYicBLyE7W1qA7yLFUyNwp1PY8yT2AfZ26N2QRT7bowVEptdIy/Vhoh0cYRvlxBVgl2/diJSKUNbRK50FIJd2JHZf7iKZwLXiIjHuR+HAx9VZj9KcJzzejMwxBiTgZVpG4PU6w08DlwNdMR2rHQKqHYB8G/syyYP2wGUhJUT/43/ta1se1thFRT3yOsXwIMi8ksROTGgfgb2npnntPsE4GOn+PfAMKxy0h8YCkx1rd4e+9LsivUouQXrVfILZ1t7saMe3n19IyJXhmi633PjyKkNVF32/RwrZ15zL3SM7iJgC9AE6+UQE2JHHa8BdmOPFewI4hbs8V8C/ElEvAZd0PPpHOs5OCNK0XiSiGUE9vzkxdr2yiAi70hoN8Js4BvHAPXyDWGun4j8XUQOAmuBbdj3hLu8ENvR+hjwp6q0XbGdo8DdwAsikg78C3jOGLMwsK6IXIjVycZh3+GfYd/pXr7G3sctsc/OKyKS6iq/EHgVO1o2y1l2JfBL7PPYCGf0SUSysB4WDzjbuxN4TZwOIoersTImA/gpmuN1jKkx2E58rzxcDvQUG7IzSiqGRt2O9Xg4F6sHXgccFNspNxd4FCvbHwHmBrzX3W0sAD50zk1b4P8Bf3feE973+jcEwdFNO1B9euDzruc0bnI3iM49wfmMwnZANAX+5tQNqSMaY64GNnHMOy6id4nTMXIxNScLq/P6nYZ/x8RM4P+JSLrzrJyDfV+79/kNVla+BfzTGLMzyn2FxxjToD5Y5e4M5/cPwNmusonAloC6413/XwMed/2/Bch1fnfD9timRNEGb91CrBuFwbraiatOL+BZrLJx1Lnw7Zyy94HfBdnuz7EuoEmuZS8B05zfz2KFg7fsFGBTwDamAP+K8lyWYV3gvP9PdI5FwqyT4tTpFqI8HdgPjAxR/jkwoRLXvAg7MmKwCnCmU3YvtifJWzcJyMf23kdzPh+IsO9pwBHnWu8E5gODnLIJzrUtdH02BGm3u/wg8HmEOjdEeV424H//e8JdG1e9LaGuj+s++CPQ3rXsZ9gXx1FnH/fH+uzqJ+L1PMG5x84APEHuwxec338AXnaVNXHu0TNcdT90lV/g3GPJzv8M5xp6n6GFwPVRtnGhcw/vc7axAujiKk/DKqbLsC5p/wHOccquAPJCbHcDcK7rfw6w0fk90jm+VFf5GuB01/8Ozv6ikd9PA9MDli0iglzCurVOi7DdZ0OUCTY84n4gI8pzPY1jsqcMa8iOdMo6O8syXPUf8u4/ivO5JcK+u3HsHbfXOd+/dZUbrJx3y62cIO12fwxwQpg6C6I8L/fiuv+dZbPCXRunTjJwKraTxBOkvAnWpe68IGVneM+ffqL/YPWeVdjOhsau5QtxZA52gOG/XGVJWBnTNcQ292Jd3L330acB5QuxHTfe/zcB85zfdwP/Dqj/PnCta93/jvLYRmI9LQqxIWRlwK0BdYZh3XILsAbAs0BTp2wdcGGQ7V4NfBWwbAmOfApsI3A58FlA/X8A90VxDJ2d59ItW8+MdK9j31UmTHlX53x0dy2rlNx16nUjjM6N1QlvctXvgfM+IIyO6PzfiPPuDLP/hc49WeisOwto45Q961xbtyx7Lki73Z8jOLpnmDq9quv6OfWuw+qCrV3LemHf3V4971mC2ANAKvZ9fm00z0o0n4Y+MtsRG5vpJVgv2g7X75Ig/6uSSKi1s/4dWMHm8RYYY9YYYyYYYzphe5A6Yns9wN6AG4JsryN21K/ctewn7GiKF/fxdsW6ixV6P1hFsl2U7S/C9gh6aQYUGedurSTjsK42n1RhG8EYa+xo1UigJ/bcgz1nvuvunLvN2HMWzfn0ISLj5Zjr3XuuojnGmExjTFtjzGhjzDJX2RdOmfdzfJB2+8o5Fn8Qso4x5qmIZ8MS7PpBBHfISBhj1mN76/4O4PQUz8OO6KVi798cEQl2LEolMcb8B9t7PA3YKSIvS3AXUD+5Z2wP9+6AOoFybpcxpsz1Hyov+35rjGmOdadrgWtU2NiQij8ZYwZhRxXmYEdSWhJa7kHAc+z8dh97gbGuaV66Am+45N4arPIUjewLfG5w/lf6uXFGny7F5WLsxljysOc+XFx7IHMcudEO+Bbwxnp2BPYYY9xtdsu2SOczsP3uxCNuT5DWxpgWxphexrrzujk5QG69H9juANkX9Nhcn1Ehz4I/lbp+xoZIfI69X38dpLwYeAJ4XkTaRtkWJTxPYfWfx8wxV+9AugJ/dT3Le7CdP1kAInKnWBfkfU55c469/8FfJ/LizgtxkGOyritwaYDOdCq2Myzc9kKx1bm3m2FHUv1c3Y0xXxhjLjPGtMF2rp+G9ZqA8HpgoC4bSQ88JeCYxmO9WSJR5HwH6hFV0iGwBvnnxpgfA/ZVVbkbSucOJu9SsHIznI5YARF5wiUL3Qn7fuvIqSxjzHhjTIGr7OEAWXZtYLsDZGEw75zWAdtYE+FcQCWvn4iMxXZ+nmMcL0OxsdfzsHHNTbDn2hsb64exLscvAZNFpDLxwRVo6MbsNqxA8BLKHbPacF6Qj2B7ZoIq98aYtdgeDq+P/WacmJ0AtgKdxT+gvwu2J8i3OdfvzdiYDPcDkGGMOTfK5q/GuqB56U90sRDhuBZ/15K4Yoz5BHsuvUlntmKFOeCLW+uMPWeRzqdfG40xs8wx17tzqqP9cSbY9dthjAk0bCpDCsfu0eOAMmPM88aYo8aYLVgXx2jvMyVKjDEvGmNOxd7ThiAvEgLknmNI1XgMtzFmFdZd7/+c5y6wfD/WZbMJNhZnM6Fj0PyeY+xz6nZ/DZQnm7EvYrfsSzU2DigSfs+N2DjS46ma7LsIq4QvjFDP/VxFjaNwTASmic2iuRVo6bhue3HLtnDns4JsNv6JRzbF2r4aZjXQL+Ce60f01y/cNUjCehcFVXSV6HHcamdiR+SmSeiY9s3ArwKe5TRjzGKx8bF3AZcBLRxDYB/W2PUSi66xGTsy695XE2PM9Epuz65gDfW7gb6OoRCsztdYQyEaPbBrwLJIeuAnAcfU1BhTocMmSJv2Yt8n8dYD/XIHOMRF7obQuYPJu6PYTt1wOiJU1ANvdMnCWh1yUJnrJzY51FNY1+pVrqKW2PP2N2NzEezGhgeE0/M8RBlXHomGbszOAaaISAsnlvKWBLZlOjaZUKrYYPw7nDYhNqj/Cmw8GcA/gTtFZJATj3SC2IQHX2J7Ee9yYhNHYl0EX66wN8tXwAGxiVHSxCYU6CPRTwH0PHC7iGQ5I0B3YA3FoDhxKt6pXxoHxK1441lHEWR0QmwMayr2JeRxzlOSUzZSgqR5D8NM4EynR2gOcJ7YlO8e5xgOY+OJI53PHcTpQUwQzwP/JXZ6iUys+9yzoSqLTQDjvWaNnGsgTtn13tEIJ9ZmCsfiGb+3i+VKsbFB7bGuTUHjOJTKISI9RGS02NjsQ9hRvPIgVV8FzhcbE98IO2KeqHfBc9jeb29itXtFZIjref8d1mVqHTbDewcRudW5FzNE5BRnOy8BU0WkjdiYpD9g3XpD8QQ2Nrers982YmPvouENoI+IXOy08Q/YGMy1wSo7siMVe45TnOcmMJN8hU4851n5lfN+EhEZCvyGY8+VN0nhhGgabYxZh3WJvMsYsxkr4x5y2tMPm2HUe87Cnc8dQCtxJUipYyzEjsL/1rmPvNnf5wdWFJG2IvL/RKSp837Mwb6LP3bKzxSRgU5ZM2x8otet2nsNU7FKmzjnOlTWZMWfvwJLjTHXY2NAnwhR7wmsHpcNICLNxeYVARsScRTrppsiIn+g4uheLLwAXCAiOc41T3X0j8CcAzFjjDmCTaL5B/DlLLnB9V7tiZWTbj3wjyJyoiMf+omNi30XOMl536aInaKlN1Z+BuMdp/7VjqzyODK4V4j6gTyPlRUtnDbeQAg9wmlnKjYOGef8NQ6o8zNsZ1Bg5vWwcldsMq+FUbYZXDo3Vt7dJiLdxXai/AmbLf0o4XVEqB96YLTXbzTWRfpiY8xX7jKnw/RH4NfOfZeJfa9946w7zKtziLU37sa++7+My1GYOPkr15UP/jGz6c6FLAS+w6bPD4yZPcP13y/mCbge+Mj4+62nOP+fAJ4I0Qa/us4ywfaG3IJ9kOdge36Kne9/AM1c9W/EKnhFWPexgc7ybKyL7j7nmC5yrfMsATGeWBeKl7BuNXuxgtJ7fn6OdRsOdS4F+DN2RGGP89sd91sE/Nz13wR+ArY3hYDYDVfZwiDrj3TKrgYWRXPNXcsexyaZAjsq8p1zzj4Bsl31wp3PE7Exf4U4sdNB9j0NJ1YxSNkErFJVFPAZEqbdE6gYM1sSsP4bTlkX53+XMOfmdqww3o/tRXPHJa3GP2Z8Y5Br0M0p+5eznWKn3gz84zBGYxNx7HPutaeA9ETLg/r0wY4ufYV1EdqDVVI6BrsPsS+ZTVj34t/jLxcD6/rF+3Es7r2T838hx+LXIskMX13XsruxSivYDpVvnfvRO1L5M1fdPlhDYq9zH012lqdi3fS2OZ9HvfcfQWI8sYbl7VgZegDrrvenUPd+kOM4A5sMqMRpYzdXmZ/sx8rdwOdmgqs8C6twnxCkjfOc81CE7RS6h2NxXo2ctvcM0Ua/6+gsOwX7jLbFusu+42x/A3Cjq17I8+mUP+PcO4U491jAfroRJoeEU1aMv9yaGardrnXcMbOlVJSdbZ3y94B7wly/gdjYrhJsop2BrrJ7gPec322w8r8Qe0+uwpWTAOsavtbZdwHW6OrnKh8Z5NovTLSsqO0fbFKmfKCl878pNn5+vPN/IS45gtUBVjnXaDPwjLM82blX9zv38V2EkXUhtj0B/3fuKc49scd1zbuEWDfkfUhwuZSOTaB4AVbWvY19rxY57f4fnHht59imYg2IA9j3q1cmn+rc3/uc71NDHZ+zrIdzHAXY53o+MMApG4/NIhzqWjV2neMdwO2uMj8dhGNywf3ZGLC9fxAQl+wqCyd3nwYeDLGed7+hdO4krHG82TkHL2BH8r11w+mIF2LfpYXAnSH2X+Gcu8qexcbAuuXYrlDtdq0TGDMbKAtvr4brtwD7rnLv5z1X/QHOse7F3sdzOJbr5xfY5FJe/eQT4LR4yQzvS1FR6iwi8k/gFeMfc6UoilJvEZFTgd8YY65IdFsURVESiYiswCb1i0eYlFLHUGNWURRFURRFURRFqXM09JhZRVEURVEURVEUpQ6ixqyiKIqiKIqiKIpS51BjVlEURVEURVEURalzqDGrKIqiKIqiKIqi1DlSEt2AWGjdurXp1q1bopuhKEotY9myZbuMMW0S3Y54obJOUZRgqKxTFKUhEIusq1PGbLdu3Vi6dGmim6EoSi1DRH5KdBvCISIbsfOrlQFHjTGDw9VXWacoSjBqu6yLFZV1iqIEIxZZV6eMWUVRlDrMKGPMrkQ3QlEURVEUpb6gMbOKoiiKoiiKoihKnUONWUVRlOrHAB+IyDIRmZjoxiiKoiiKotQH6rybcWlpKVu2bOHQoUOJbkq9JDU1lU6dOuHxeBLdFEWpy5xqjMkXkbbAhyKy1hjzqbuCY+ROBOjSpUuFDaisq15U1ilKfBCRZGApkG+MOT/W9VXWVS8q65T6Rp03Zrds2UJGRgbdunVDRBLdnHqFMYbdu3ezZcsWunfvnujmKEqdxRiT73zvFJE3gKHApwF1ngSeBBg8eLAJ3IbKuupDZZ2ixJXfAWuAZpVZWWVd9aGyTqmP1Hk340OHDtGqVSsVeNWAiNCqVSvtHVWUKiAiTUQkw/sbOAv4NtbtqKyrPlTWKUp8EJFOwHnAPyu7DZV11YfKOqU+UudHZgEVeNWInltFqTLtgDecZykFeNEYM68yG9LnsfrQc6socWEmcBeQUZWN6PNYfei5VeobdX5kNtHs3r2bAQMGMGDAANq3b09WVpbv/5EjR6p132vXrmXAgAEMHDiQDRs28Oijj9KrVy/Gjx8f87ZmzpzJwYMHq6GVihI9uXn5jJg+n+6T5zJi+nxy8/IT3aQqY4z5wRjT3/lkG2MeTHSbKoPKOqUuUh9lSm1FRM4HdhpjlkWoN1FElorI0oKCghpqXfSorFOUuoUYUyE0q2YbEEOigMGDB5vAybXXrFlDr169qrGF0TNt2jSaNm3KnXfe6Vt29OhRUlKqZwB8+vTpHD16lKlTpwLQs2dPPvroIzp16hTztrwTl7du3bpCWW06x0r9JTcvnymvr6KktMy3LM2TzEPj+jJ2YFbYdUVkmTFmcHW3saZQWeePyjqlMlRFptRWarOsE5GHgKuBo0AqNmb2dWPMVaHWUVnnj8o6RbHEIutqg5txlRIF1EYmTJhAamoqeXl5jBgxgmbNmvkJwz59+vDOO+/QrVs3XnjhBR599FGOHDnCKaecwt///neSk5P9trds2TJuv/12ioqKaN26Nc8++yx5eXnMnDmT5ORkPv74Y3r06MEPP/zAOeecw3XXXcfEiRO55ZZb+PbbbyktLWXatGlceOGFlJWVcffddzNv3jySkpK44YYbMMawdetWRo0aRevWrVmwYEEiTpvSwJnx/jo/pROgpLSMGe+vq7OKZ31HZZ1Sm1GZUrMYY6YAUwBEZCRwZzhDti6hsk5RKsc338DLL8ODD0J1ebgn1Jh1JQp4ELg9kW2JN1u2bGHx4sUkJyczbdq0oHXWrFnD7NmzWbRoER6Ph5tuuolZs2ZxzTXX+OqUlpZyyy238Oabb9KmTRtmz57N73//e5555hluvPFGP2E6b948FixYQOvWrbnnnnsYPXo0zzzzDIWFhQwdOpQzzjiD559/no0bN7JixQpSUlLYs2cPLVu25JFHHvGtqyiJYGthSUzLldqByjqltqIyRYknKusUJTY++QTGjYO0NPjd76Bdu+rZT6JHZuOSKMDNyJEVl112Gdx0Exw8COeeW7F8wgT72bULLrnEv2zhwsq149JLL63QExfIxx9/zLJlyxgyZAgAJSUltG3b1q/OunXr+PbbbznzzDMBKCsro0OHDhH3/8EHH/DWW2/x8MMPAzY74KZNm/joo4+48cYbfS4yLVu2jPnYFKU66JiZRn4QJbNjZloCWlP7UVlnUVmnhEJlSuIwxiwEFsZjWyrrLCrrlLrE3/4Gt9xif2/YUH2GLCTQmHUnCnDcUULVmwhMBOjSpUsNta7qNGnSxPc7JSWF8vJy339vSnRjDNdeey0PPfRQyO0YY8jOzmbJkiUx7d8Yw2uvvUaPHj1ibLmiJIZJOT2CxrdNytF7uDajsk6prahMUeKJyjpFiY4ZM+Cuu+zvTz+F446r3v0lcmR2BDBGRM7FSRQgIi8ExlcYY54EngSbKCDSRsP1uKWnhy9v3bryPXbh6NatG++88w4Ay5cv58cffwTg9NNP58ILL+S2226jbdu27NmzhwMHDtC1a1ffuj169KCgoIAlS5YwfPhwSktL+f7778nOzg67z5ycHB577DEee+wxRIS8vDwGDhzImWeeyT/+8Q9GjRrl546SkZHBgQMH1B1FSRjeGLYZ769ja2EJHTPTmJTTQ2PbQqCyzqKyTgmFypT6gco6i8o6pS6wcOExQ/bLL2Ho0OrfZ8Km5jHGTDHGdDLGdAP+HzC/viQKCOTiiy9mz549ZGdn87e//Y2TTjoJgN69e/PAAw9w1lln0a9fP84880y2bdvmt26jRo149dVXufvuu+nfvz8DBgxg8eLFEfd57733UlpaSr9+/cjOzubee+8F4Prrr6dLly7069eP/v378+KLLwIwceJEzj77bEaNGhXno1eU6Fn8UhaLp4zm7avOY9Hk0ap01jFU1im1jbEDs1g0eTQ/TleZosQPlXWKUpElS6zbf+/esGVLzRiyUAum5gG/rHd1emqe+oqeY6UmeP11uPhi+3v3bogl7Kc2T1dRGVTWJQY9x0ptR2WdEg/0HCvx5r33bHz68OHw4osQECoeM7HIuoSNzLoxxiyMZMgqilJ/eeYZuPRSyM6GH36IzZBVFEVRFEVREsPEiedj6oQAACAASURBVHZEtmdPmD276oZsrCQ6m7GiKA2cRx+1KdtHjIB586Bp00S3SFEURVEURYnEFVfYeWQBPv4YMjNrvg1qzCqKkhCMgauusu4o48bBrFmQmproVimKolQ/uXn5mphKUZQ6zT33HDNkN29OjCELaswqihJnolHSysvBO13foEHWLSVFpZGiKA2A3Lx8vymD8gtLmPL6KgA1aBVFqRM89xxMn25/b9sG7dsnri21ImZWUZT6gVdJyy8swXBMScvNy/fVKSs7ZsiCTd2uhqyiKA2FGe+v85v7FqCktIwZ769LUIsURVGi51//grvvhjPOgOLixBqyoMasoihxJJSSdsecleTm5XPkiI2vAGjc2H+EVlEUpSGwtbAkpuWKoii1hb/+Fa67Dk49Fd56y871nGjUmI0DTUNkrJkwYQKvvvpq1NvZuHEjffr0iVezFKXGCaWMlRnD3bNX06PvEV55BR5+GA4dApEabqASd0aOHEng1BoAzz77LDfffHNM2+rWrRu7du2KV9MUpVbSMTMtpuVK4lH9TFGga1e49VYYPbp25TlRY1ZRlLgRShkrP5zCT7MGs/H7Rvz5z3DHHTXcMEVRlFrCpJwepHn8XVLSPMlMyumRoBYpNYUxhvLy8ipt4+jRo3FqjaJET6tWsGmT/f3229a7rrbQ4IzZ3Lx8RkyfT/fJcxkxfb5fLF9VMcZw880306NHD8444wx27tzpK+vWrRtTpkxhwIABDB48mOXLl5OTk8Pxxx/PE088Ebc2KEoiCaakHdnVlM0zczi8pSVtxixn0qQENa6BUR2yrri4mPPOO4/+/fvTp08fZs+e7Vf+r3/9i5NOOomhQ4eyaNEi3/IJEybw61//mmHDhnHcccexcOFCrrvuOnr16sWECROq3C5FCUZ1vu+rwtiBWTw0ri9ZmWkIkJWZxkPj+mryp0oS7+v89ddf069fPw4dOkRxcTHZ2dkUFRX5ysvKypg0aRJDhgyhX79+/OMf/wCgqKiI008/nZNPPpm+ffvy5ptvAnZUt0ePHlxzzTX06dOHzz77jF69enHDDTeQnZ3NWWedRUmJ9WrasGEDZ599NoMGDeLnP/85a9euBawMvfHGGznllFO46667qnR8ihIr06bBnj32d0lJ7XAtdtOg0q5UdwbBN954g3Xr1vHdd9+xY8cOevfuzXXXXecr79KlCytWrOC2225jwoQJLFq0iEOHDtGnTx9uvPHGKu9fURKJN4uxO2b28NZMtv97BAAZQ37gxOGFiWpeg6K6ZN28efPo2LEjc+fOBWDfvn08/vjjAGzbto377ruPZcuW0bx5c0aNGsXAgQN96+7du5clS5bw1ltvMWbMGBYtWsQ///lPhgwZwooVKxgwYECl26UogVTlGaiJaXPGDsxS4zUOVIesGzJkCGPGjGHq1KmUlJRw1VVX+YWTPf300zRv3pyvv/6aw4cPM2LECM466yw6d+7MG2+8QbNmzdi1axfDhg1jzJgxAKxfv57nnnuOYcOGsXHjRtavX89LL73EU089xWWXXcZrr73GVVddxcSJE3niiSc48cQT+fLLL7npppuYP38+AFu2bGHx4sUka6IJpYYwBh58EO6/Hy67DP79b2jUKNGtqkiDMmbDZRCMx0vl008/5YorriA5OZmOHTsyevRov3KvUOvbty9FRUVkZGSQkZFB48aNKSxUJV+pu0zNXcWsLzZhXMtK96b7DNnM09bS/rSNTMrpm5gGNjCqS9b17duXO+64g7vvvpvzzz+fn//8576yL7/8kpEjR9KmTRsALr/8cr7//ntf+QUXXICI0LdvX9q1a0ffvvZeyM7OZuPGjWrMKnGlss9ALMaRzhWbeKpL1v3hD39gyJAhpKam8uijj7J582Zf2QcffMA333zjy4myb98+1q9fT6dOnbjnnnv49NNPSUpKIj8/nx07dgDQtWtXhg0b5ttG9+7dfTJv0KBBbNy4kaKiIhYvXsyll17qq3f48GHf70svvVQNWaXGMAbuugueeQZuuQVmzoSkWurP26CM2URnEGzsOJgnJSX5fnv/awyEUpsJp7Tl5uVXMGQPb2vOztcGk5R2mLZjl3NcvxIm5agbXU1RXbLupJNOYvny5bz77rtMnTqV008/Pep1Vf4p8SBaA7Kyz0C0xpHOFVs7qC5Zt3v3boqKiigtLeXQoUN+ZcYYHnvsMXJycvyWP/vssxQUFLBs2TI8Hg/dunXzrdukSRO/um4ZmJycTElJCeXl5WRmZrJixYqgbQrchqJUF+XlkJUF27fDb35Tuw1ZaGAxs9WdQfC0005j9uzZlJWVsW3bNhYsWBCX7SpKIgk2d+yts1cw4P4PfIqlnyG7NZPts4ZTXpxK+yu/YNuLw1k0ebQqeDVIdcm6rVu3kp6ezlVXXcWkSZNYvny5r+yUU07hk08+Yffu3ZSWlvLKK69UaV+KEkg081h7qewzEK1xpHPF1g6qS9b96le/4o9//CPjx4/n7rvv9ivLycnh8ccfp7S0FIDvv/+e4uJi9u3bR9u2bfF4PCxYsICffvoppn02a9aM7t27+2SnMYaVK1dW6TgUJVbKyuyUidu3Q7du8NhjtduQhQZmzFZ3BsGLLrqIE088kd69e3PNNdcwfPjwuGxXURJJMKUNoLCk1KdYetm35Hi2/3sEKRmHyLpxPt1OqLieUv1Ul6xbtWoVQ4cOZcCAAdx///1MnTrVV9ahQwemTZvG8OHDGTFiBL169arSvhQlkFgMyMo+A9EaR4n29FIs1SHrnn/+eTweD1deeSWTJ0/m66+/9sWtAlx//fX07t2bk08+mT59+vCrX/2Ko0ePMn78eJYuXUrfvn15/vnn6dmzZ8z7njVrFk8//TT9+/cnOzvbl0RKUWqCsjJIcfns/vBD3ZhCUYwxkWvVEgYPHmwC5zNcs2ZNTEqTxrjETqznWKlfdJ88l3BSIlmEMmPY9W4/ild1BiDrNx/haXqYv1w+oEaeLxFZZowZXO07qiFU1iUGlXW1m1CySIAfp59XYXllnoFA92GwxlFgtuER0+f7deR5ycpMY9Hk0RWWxwuVdRVRWRc7KuuUQI4ehV/+El54ATIyYN++xBqysci6BhUzC5pBUFFipWNmWlClzUuZMRz4rJfPkO04cQGepocZP6yLPmsJRGWdUt8IJYtCjaZW5hnw1o9kHE3K6RHU6NW5YmselXWKUjVKS22Sp9mz4YEH4Pe/T3SLYqPBGbOKosTGqJ5tKiR4cpO05gT2LD4OgE6/+YgunZKYlFMzI7J1CRFJBpYC+caY8xPdHkWpa9SUARmNcRSt0asoilKbOXwYrrgC3ngDHn8c6uJMoWrMKooSkty8fF5blh/UkDUGihf3YPfnJ3DBBTBnDsxb04sZ76/jttkrmPH+OlXu/PkdsAZoluiGKEpdpLYZkDoiqChKXWbfPsjMtL9nzqybhizUE2PWGIPUhQjlOkhdiqlWoifaGKNQyZ+MgcKFPdn/1fG06FXANVOPMG8NOlVFCESkE3Ae8CBwe2W3o7Ku+lBZVzeoKQNS4zATi8q66kNlXd0k3jJpzx5o1cr+7t8ffve7ODU0AdR5YzY1NZXdu3fTqlUrFXxxxhjD7t27SU1NTXRTlDgSy/yIwTJzmjJh08PnAtB04EYyzlzNvW8n0zglqVomr68nzATuAjIquwGVddWHyjrFjc4hm1hU1lUfKuvqJvGWScXF0KWL/T1iBHz+edyamhDqvDHbqVMntmzZQkFBQaKbUi9JTU2lU6dOiW6GEkfCTW8RKBQDE66Ulyax+ZFzfP9bnrkaEbt+sBFc0KkqROR8YKcxZpmIjAxTbyIwEaCL9y3jQmVd9aKyTvESi4xU4o/KuupFZV3dI54yqaQEzjnHfl976z7Wt1tG98l12wOlzhuzHo+H7t27J7oZilJnCJWZ2Gt0ul1ZMtM9eJKE0nJDeWkSBa/bLOlJqUfo/LsPo9pfVSevrweMAMaIyLlAKtBMRF4wxlzlrmSMeRJ4Eux0FYEbUVmnKDWDziGbWFTWKYo/ofS2wOWRXJH37YNzz4WtW+G2B/cwt/grSgrrvgdKnTdmFUWJnty8fASCJnTqmJlWwZVl78FSkpOE8sMp7Hj5FI5sb07LM78l4+SfKqzfIt3DodJynaoiAGPMFGAKgDMye2egIasoSuLxKoKhIgpDdczFGsu2aRNMmQKPPALt2sWh4Yqi1GuSRSgLEuucJHbO662FJTRP81BYUuoryy8s4fbZKwBrnG7YAH36QFmZnYLn4XUrIo721pXcAWrMKkoDIpSiJthpL4K5shwpTmHnK0M5sj2TVuevoGl2foX10zzJ3HdBtm8ftV3wKYqiuAnsyAskVMdcrLFsCxfCqFH292WXwYUXxqf9iqLUX4IZsgDl5tjorNuQ9ZUDU17/hp5pWfTqZZe1uXAZ/71qN3sPVqwP/l56dSV3gBqzitKACOUmZ4BbnR48N4e3NWf786ciKWW0ufhr0k/Y6StLEitIswKM1tom5GoTxpiFwMIEN0NRlABCZW6HijIu0nqhYtkeffRYxtB7762fhqyIpAKfAo2xOuarxpj7EtsqRanbZAXkL4mF/QWNfYZsxpAfSO+5nb0HQ9f3eqDUpdwBaswqSgMiMKFTOEo2tmLn7GEAtB6z3M+QFeCHh86rjiYqiqLUOKE6+gRYNHl0zOsFLv/1r+GJJ+zv3Nz6acg6HAZGG2OKRMQDfC4i7xljvkh0wxSlLpKbl0/hwSOVWvfogcbsfGUoAM2HryfztO8jrlN48Ai5efl1KneAGrOK0oCYlNOD22avCBkT5uVIQVOfIdvyzG9JP3GnX7kmdVIUpTqp6VitUB19kWRdNOvt3XvMkP3uO3yjJPURYycxLXL+epyPTmyqKDEyNXcVs77YVOmH5+j+VApyT6asKJV2Vy4mtfPeqNYrPlLGpFdXVojB9ZIkQm5efq0anU1KdAMURal+cvPyGTF9flSG7OFtzdnx4nDAjsgGS/bU0JM6KYpSfXhjtfILSzAci9XKzasYrx/NtkZMn0/3yXMZMX1+yG1MyulBmifZb1k0CezCrVdSAjNmQHo65OXZqTDqsyHrRUSSRWQFsBP40BjzZaLbpCi1gWjl0finlvBCVQzZfWnseHE4ZQfSaHfFkqgNWS+lZQYRKsg2sPG7lZXH1UXCRmY1rkJRaoZIiU3cHNrUkh0vDSe52UE6XrMIT4uKgRVpnqRa1SOnKEr9Il6xWrEkMPH+jzQaHGzE+KFxfSss69c8i/R0u84JJ8BFF8V0Cuo0xpgyYICIZAJviEgfY8y33vJIc2orSn0kGnmUm5fP/W+vDpmcKRpKfmjNzldOAQztr1lE4/b7K7WdwoOl/OXyAdwxZ2WFBFSxyOOa8LJJpJuxxlUoSpwIJizAKmbRxsgWr23P7rkD8LQ6QJuLl5Le6iCl5f51PEnCQ+P6xbv5iqIoPuIVqxWrUTx2YFZYJSuUMvrQuL5+cbUffgjHn2x/n3VWwzJk3RhjCkVkAXA28K1redg5tRWlvuDWzZKCTK9TUlrG/W+vZuzALHLz8pn06kpKyyr/SBxc346C1wcD0Or8FTTusK/S2+qYmcbYgVncFiQ5KEQnj2sqI3LC3IyNReMqFKWKBHPJm/TqSia9sjJqQ3bna4PY9eYgJLmcdlcuwdPCGrIjjm9Jsghg5zm7fGhnHZVVFKVaCRWnGmusfrwTmIQzjr088og1YAEefBDef79Su6qziEgbZ0QWEUkDzgTWJrZVilLz5Obl+/QwQ+jpdfYeLGXgf3/ArbNXVMmQPVLQ1GfIth6znKbZWyu9LU+y+AZFqiKPo5GZ8SChMbMaV6EoVSeYsCgtM5SWRycUtz3/M0r+0x6ADtd9SnL6MfeWRRv2+ARwmTG8tiy/VsVJKIpS/6hs/Gog8TKKvUQyjnfsgDvusMvefRfuuadSu6nrdAAWiMg3wNdY3e6dBLdJUWqcaW+tjloPq4pbMcCRnRnseGkYSWlHaHvJVzTpta1K27t8SGcARkyfT35hCRJQHq08rqmMyAk1Zo0xZcaYAUAnYKiI9AmsIyITRWSpiCwtKCio+UYqSi2nKkJh35fHcWRbCwA6/fYDUpodClu/OnrUFEVR3IwdmMVD4/qSlZmGYOdYfGhc35i9QuJlFHsJZQR3aJ7G3LnQti28+irs2gXnnFOpXdR5jDHfGGMGGmP6GWP6GGP+O9FtUpSaJjcvP2gm4Org8PZmFOQOIrnJYdpftYi046tuK72zcpvP4w+s26zXoE0W8emCkQY34t2hGIpaMTVPqLgKp0xjKxQlDLHMHevFGNjzYR+K8rqS3nMrrc9fgSRH93jVxjnGFEWpX0SKX3UTKsFItEmdomVSTo8KyfQalTdiyT2jOR+YOxcuvrhSm1YUpZ7gDf2qCYq+zWLPh9kkpZXS7vKlpDSPj34WzBD3GrReb71o4l+DycyqdCiGIpHZjNsApY4h642r+J9EtUdR6irBhEVyklAWwr3FGNj7UbY1ZE/aRusL8pAYfDR0jllFUWoLkRKMxGIURyLQOG5xtCV5/2unMWvevOGOxiqKYsnNyw+a/bc62PfF8RR+0hOA9v/1aUTPungQeFSRshrHu0MxFIkcme0APCciyVh35zkaV6EosRNMWBQfPhq8Z+1oEpv+12pczYZuIHPkWiQwGCIM1dGjpiiKUlniNY1PtHiN47lz4fzz7bIxY+DNN+O+K0VR6hDejrXqMGSzMtMY1bMNL321mbJyQ+GiE9j3udXF/vzvnTyx+jBVyB1VJSJ568WzQzEUCTNmjTHfAAMTtX9FqU94hYXX3S6YIVt+OIXNM3MA8LQ64GfIZgVM5+M1ikf1bMOCtQXV2qOmKIpSWWJNMBLtnIfh6j317nYmnm+T5nU9Zz2/nJYOqFxUlIZMsI61eHDVsC48MLYvAIO7tuT3jxXwk2PIPvLyDm67vB3/NzmyJZscZGqgeFAbvPVqRcysoiixE6hsjerZhteW5QcVpuVHkn2GbErLIjpe/6lfuXuORDVWFUWpK4TKGRBMwYp2zsNw9bZuSubRr1fQfMRxpJ+0HdoeYMrryRW2oShKwyLW3CWhEKw7b7IIV5zS2WfITs1dxTNzitn+2iAatdnPTTO2cNvlvYHIhmqaJ5mLB2WF1BErS23x1lNjVlHqEF4D1psq3Su68gtLeOGLTUHXKSvxsPOVISDlNBvyIy1G+U/51yLdU72NVhRFqQLhRkljSTAy7a3VUbkkBxthOXikjIsGdQQjtBvfjMxT14fdhqIoSmVI9SRXyN4+NXcVT/77MAW5Q0ntspvWY/J4Y00pTXLLeGBs37CGbJZLZg7u2pJpb62u4L3nSRaaNEqJKQNzVi3y1lNjVlHqCIGjBdE4i5QVNWbb8yMoO5BGm4uWkn7Sjgp1aiBPgaIoSqWIJsETRE4wEm6qjPzCErpPnutbN9BFufxQCpv/muP737hDYYVtaJZ3RVHiQbDOsZlTWlG8tiONOuylzYXLSUo9CsCLX25iwdrQU/FkZaZV8Lxzh6S5ZSZQoWPQkyxg8JsvNy2IsZ1o1JhVlDpCrPEYh7dmsuvtAZQf8tD20q9IOy64wNtXQ3OhKYqixEo0CZ7cRq1XSbtt9go/wzbS/NiGY4Zy8zSPz/At3dWUrU//AoDk1FKG/uEztu6r2ANYG+LGFEVJDJHmW40Vdwfb4bk/o3htRwDaXfaVz5AFKDeh3ZvDuQCHS8oUzMit7mzEVUWNWUWpI8TS83/w+3YUvDEYgPZXLaJxVsWRBC+qhCmKUluJJcFT2FjXKOVnSWkZqZ4k0jzJHNjVyGfIZvTexvMvlAM1M2+ioih1h0idZZXBAGs+aM/ez1MB6HTzh36GbDhapHu474LsmI3OUEZubTNeA4lhdklFURJJtEZn8dr2PkO21fl5YQ1ZVcIURanNhJJ7SSIVRkPCjeLG0mm392ApF/TuTOeOSaSftJ0TL1/N8y+U+xS9h8b1JSszDcG68dU2lztFUWqWeCV/cnNgRWf2LuhNUuNSTrrjY5KbHIl63UOl5XFvT21GjVlFqSNMyulBmic5bJ1DW1qw+93+ALS95CuaZm+tUCczzaNKmKIodYJQcq/MGKa8vorcvHxy8/IZMX1+SIVya2FJVPLTy445Q3j46l5c1bcXxeva8/3L/iMcYwdmMSmnBx0z09haWMKM99fF3c1QUZS6wdTcVXHf5v5lXdm35ATSjttJp5s/4nDKIb9yAdI8oU04bydeQ0HdjBWlFhMYpH/xoCxe+nJz0Mx1XtfilJZFtLv8S1KaHapQxz1fmaIoSm3Ha0TeMWdlBblXUlrGPa9/g0HC5hPomJnG2IFZLP1pD7O+2BQyeZ4ph00zzvP9f+LL1fxmbLsK9aKd4kdRlPpNbl5+yJkkKsveBT3Z/9XxpJ20nTYXLkeSKkqslGTh4kGdwk6105CS0unIrKLUUrwKU35hiS85yeyvghuyxWvbU/DmySQ3PUT7K5cENWTTPElqyCqKUucYOzCL8hBp1w+Wloc1ZN2hFAvWFoQ0ZMtKPH6GbOfb3+OAKWFq7ipGTJ9P98lzGTF9vq+DMZQ7s6IoDYd4P/Ob/nIW+786Hk/bfbQZE9yQBSgtMyxYW8BD4/qSLBK0TkPKh6Ijs4pSSwmmMLnTo3vZ/sJwDue3pHGnPbS95GuSGldMEOBJEh4a16/a2qooilIVws0lC1YxizUuLXAexFAjFWXFjdjytzMBSG5yiKzffIxXP3SP5HpHYHUkRFGU3Lz8uMXKGgOb/nwu1oEYek78igOlJuwUjFsLS3yyraEnpVNjVlFqKdEoRlv+PpqyA7b3re2lX5HUqKKSlSzC5UM7B52uQlEUpapEMkSjWT+S2+6knB7cOntF1NsMnF8R8Jtyx4sxYMqF5GYHSTt+J63OWu1fHrDdktIykkWCesg0pJEQRWnIeGVWPDAGCj/tgdeQfeXLfC4ZajvXwuUC8MqbaOfars+oMasotZT0RskUHwk+AmAMFC7s6TNkO982L6ghC9AoRZj99WZKy6zypfFdiqLEi3jEj0Y7l+z9b69m78HI82J7koXiw0d98zR6FbtAb7x9S47n4Pp2tLvsK7J+tTCkS18gZcaQ5klu0CMhitIQ8XbcxXNEdt+iE9n/xQk07f8TLc/6lkuGHgt3mJTTg0mvrKzgledJFj95E27e2IaAxswqSi1k/FNLwhqyez7MtgkCTthBlzvfJalRGZ4k4aphXUgPyHBXUlruM2SPLdP4rppERFJF5CsRWSkiq0Xk/kS3SVHiQTziRyPNJevNVrz3YCnBo8OO0SLdAwYKS0p9uQZunb2C7D/M8zOEtz03gsJPe3JkWwvKS5OjNmThWCZ4nZ5HURoOU3NXcdvsFXE1ZPd+lM3+L4+n2bD/0DLnWzq19PfuGDswixmX9iczzeNb1iLdw4xL+qu8caEjs4pSS8jNy4848mDKhd3v9aX4285kDPqRFqd/5xttaJqawuCuLZkVZWY9je+qUQ4Do40xRSLiAT4XkfeMMV8kumGKUhUiGaLRECoetmNmWoWR31AmpydZaNIoJaT89HYOmnJh04xzfcuzbvqIlIzDUbfVOwLb0EdCFKUhkZuXHzYTeqy45VDGkB/IPG0dSUJQ7w6VNZFRY1ZREkxuXj7T3lpdIZYrkPLDyWz/9whKd2fQfMT3NB+x3s9tbu/BUma8vy5qYavxXTWHMcYARc5fj/OJ13tRURJGOEM0FIExtqN6tqkwxYTXaAw28gt2dCK9UQpbC0vITPdQdOhoZBlamsTmR87x/e9yx3skpZTzs+NbsmjDnojHGphQSlGUhkEsulUkTJmw6WFryEqjUlqMWoOIVQhUtlQOdTNWlATiHXWIpISVFTdi88yzfYZs5qnrK8R/AVG7v2h8V80jIskisgLYCXxojPkyoHyiiCwVkaUFBQWJaaSixMiknB6keZL9loWTL8GmHHttWT4XD8oK6rYbaoS38GApiyaP5sfp55HeKCVopvdAju5pCoCn1QG63DUXSSnHALNuGG7dk8MgwKLJo1XZVJQGSNxci8uPGbJg6HzrBz5dLksHGCqNjswqSgIJNergpvxQim/aiMadd5N56vqQdYXQw30t0j0UHixtkJnuagPGmDJggIhkAm+ISB9jzLeu8ieBJwEGDx6so7ZKnSDWTJqhYmwXrC2okH0YIo/8RjM9RsmPrTm4rj0tz/qWTjd/SHKTI74yrwJZGCGxlHqyKErDJVQG82gRoLxM2PX2AAAatS+kw7WLfOXeDsCqZoZvqKgxqygJJJISVlbciB1zhgKQ3jufNheEn5rCUNGgFWD8sC48MLZvldqqxAdjTKGILADOBr6NVF9RajuxxHTFGmM7KadHyDkUc/PymfTKyrD72/NRbw4s6w5A8+EbSGl+bD/uEeRw89gKMKpnm7D7URSl/lIZQ7ZJo2QevKgvM95fx5Zdh9k9ry8lG9vQYtR3NBv6o69ei3QPxsCts1f46W8680T0qJuxoiSQ5GC+wg5H96eS/49RHN3TlLaXfhnRkPViwM9d7y+XD1BDNsGISBtnRBYRSQPOBNYmtlWKUvOEGuFMEqH75LmMmD6f3Lx83/KxA7O4eFCWT1aKgGC4bfYK7phTccoKNzue+YXPkG1/9ed+hmyLdI9fBuJg7tJeDPDasny/dimK0nCojAtwZnojxg7MYsuOUna+Poji1Z1oMXKNz5AVYOblAzhUWu4LNQs2r7XOPBEZHZlVlAQSqrevdE8Tdrx8ChihzbilpHXfFfU2szLTgrrrKQmlA/CciCRjOxHnGGPeSXCbFKXGCTbSCsdkoXcqnfvfXs19F2QD1pD0lhsDB0vL/dYJxJTDphnH5mp85oNt/HPZEbYWEtJ1z+0uHWyENnDeW0VRGg6Tcnpw6+zoXvzoNQAAIABJREFUBhS85BeW0OV3H7D50RwAWuZ8Q8aAzb7y5mmeqELNdOaJyKgxqyjVRLjYB29ZMIpWZbH73QGQVE6HaxbRqN3+qPepiZ1qJ8aYb4CBiW6HoiSaSEajl70HS7lt9opKZRA9tLmV73eXO9/l0SUp3HdBdkRD1Osu3X3y3KD7VaVSURomYwdmxWzMlhU38st34jZkAYqPRM7ADhqvHw1qzCpKNRA4N6J7tOG8fh14IcRcsPu/6s7eBb0BaDtuaURD1pMkNE1N0cROiqLUGbwy6o45K8PGosVqyB7dl0bJhrZknPwT7a/5nMYd9gHWML519gpunb0iqul1KjPdkKIo9Zs0TxIljldIJMoPp7D9xeF2veN30PaSpRXqlJaZiImldIAiOtSYVZRqIJTryN6DpSEN2ZIfW/sM2XbjF5PaaW/Yfeich4qi1CW8Hin5hSVhM69XhqJvOrH7vf4ApJ243WfIBhJNUpVwSacURWl45Oblx2TI7nx9MEcL02l9QR5Nem8NWbfMGNI8yX6yxisbVceLHjVmFaUaiNUdrWh1R3a/1w9Pm/20vXipX6ISNyrcFEWpiwR6q8TTkN09rw9FK7sC0Or8PFIyDoetHyn+NdbphhRFqd/c//bqqOqVlXjYOWcoZQcb0WbsctJP3BFxnVRPEo1TkthXoh52lUWNWUWJM7l5+STFMCdZ0apO7H63Pyktimh35RKSU49WcwsVRVFqlmgSnURDZpqH0rJyio+UYQxsfeoXHN3bFIAOEz6LOsdApA7HWKYbUhSl7hIsvwn4d2btjTAPNcCRXU3Z9vQvILmMthctI+34Ar9yT7JQWlZRL9x7sJQ0TzJ/uXyAypxKosasosQR7+hDtIbsjjlDOPRjW1K7FtBm3DKSGoVX9nTeMUVR6iKxeqsEuiGneZJ9U+mMmD6f4iMllPynnc+Q7XTLBySnR1Y4vTRP8zBi+nwdeY0zItIZeB5oh72ETxpj/prYVinKMdzGa2a6h6JDR31TfOUXlti5qwWf4RkuUZ2XIzsz2Pav0wBolbOqgiGb7kniT+P6abb0akKNWUWJI9PeWh3V6IMxsOnhc6DcTvXc9pKlSEp08Rgq9BRFqa2EyuIeKqlSMLyJVrzJUQLDKzbvOMKR7a1IO2EHrc5bQZPe+UhS9G30JIlfJlHtJIwrR4E7jDHLRSQDWCYiHxpjvkt0w5SGR6A8GtWzDa8ty/fpacFGXMPNXR2Mowca+wzZ5j/7nqZ9K85H7TWMF00erdnSq4EYxH98EZHOIrJARL4TkdUi8rtEtUVR4kFuXn5UadaNgfwnRvkM2S53vBe1IetFhZ6iKLWNqbmruG32CvILSzAcMxJz8/JjSp5U4ppH1pt4yWtkLl4Mm2eezY6Xh1Fe4qFpn8iGbGaah6zMNASbd6BpakoFdz9vJ6FSNYwx24wxy53fB4A1gPYQKDWO11POLY9mfbEpLuEOXo7uT2WHk7U48xdryfz5+qD1SsuNT76Eyoqu2dIrT8KMWY713vUGhgG/EZHeCWyPolSa3Lx87pizMmI9Uw575vWlbH860qiULpPmxmzIggo9RVFqF7l5+cz6YlOFEYeqGonu9Z98EkaMsMubD18fk1vxpJwe/Dj9PBZNHk1hiPg37SSMLyLSDTu/9peJbYnSEAkWpx/PxHOlhWnsevNkykoa0f7qRTQftiFsfa98mZTTgzRPsl+ZZkuvGglzMzbGbAO2Ob8PiIi3905dUZQ6gXuaiWgwZcLOV4dwaGMbmv/se5qfuh6R4HVPbNuE9TuLQ25LhZ6iKPEklHtwtPVmvL8upKKYX1gSVWdfKLYWljBhAjz3nP1/0pWrONw5+BRnwSgsKfVzI9Z5ZKsfEWkKvAbcaozZH1A2EZgI0KVLlwS0TmkIVGfnVOnuJuyYfQqmNJkOVy3G07ooZIInL175otnS40+tiJnV3julrhE4zUQkyg8nU/DmydaQHfE9macGd0Xx8kPBQbJCKFyZaR4VeoqixI1AeRYqhjRcvUiKY7RJ8YKyMYvnZtufK1fCD2UtmfJ6fkzugu5cAzqPbPUiIh6sITvLGPN6YLkx5kngSYDBgwfHc7BMUXzEEqcfCwe/b0fBG4MB6PDLT/G0LgLg8iGdWbC2IOg82oHyRbOlx5eEG7Pheu+ccu3BU2oF7hEJxMa+RsPR/ankP346AC3P/oaM/psjrlNmTEiFa9qY7Eq1X1EUJRj3v10xcV1JaRm3zl7BjPfX+Y2+Bqs34/111aI4mjLh6IFUmnQpYNIkmDwZWraEfk4I5q2zV8S0Pa/BrSMj1YeICPA0sMYY80ii26PUf0J5iwTToapK8ZoO7HrrZABaj1lOo7YHfGXvrNzGivvOCtsmpXqIaMyKyKXGmFciLasMkXrvQHvwlNpBhZHYKO/E0l1N2fr0LwBI77EtKkMWIFlEFa4apjplnaLUVnLz8sPOoRjN6OvWwhL+cvmAmI3LcHg7AaVxKZ1+PZ8//8W/fOzArJj353YjbsgjI9Us60YAVwOrRMR7ge4xxrwbh20rih/ReJV4daiqGhBHdjTzGbJtxi0l/cQdfuXuBKANWb4kgmhGZqcAgQIu2LKY0N47pS4RbEQiEkf3p7L95VMAyBj0Iy3PiD4c/IpTOgMqEGuYapF1ilKbiSY5U6TR146ZaZUyLkNxaFNLdrxkM4SmHbeTpMZH6T55boUOvVChGBB8nlp1I/ZRbbLOGPM59vQrSrUTylvkttkrWPrTHhasLfANBhQfPhrVjBPBOFKQwY6XTyE5o4S2Fy+lUbsKjqRKAglpzIrIOcC5QJaIPOoqaobNRFxVtPdOqTPE6j53pKApO+fY5ADtrlhCapc9Ua+bnCQM7toy1iYqlaQGZJ2i1CrcLnDRjlbkF5aQmeapsNxrJObm5VcwICvD/mXd2PuRDaVoNnw9LU77HpztBo66hArFeGhcX0C9WgJRWafUN0J5ixjghS+OJYmrSgjE4fxMdr4+mJQWB2k9ZjmeTM16XtsINzK7FVgKjAGWuZYfAG6r6o61906pC+Tm5XP/26tjWudIQQY7Zg+lvDiV9td+RuP2sfXglTnzkTV0xasGqVZZpyi1iViT17kJHNVoke7hvgus4XnHnJVVNmRLNrTxGbJtLlpK+kk7KtZxJXKKFIqhMrQCKuuUekV1JXnysu/L4yhc2IuUFsW0GbuMlGaHqm1fSuUJacwaY1YCK0XkDaDYGFMGICLJQOMaap+iJIzxTy1h0YboR1QB9i/txt6Ps0lueogO//UJjZwsd7Gi8x3WHCrrlIZEZUImQpHeyKoQU15fVaVsxcaAOZJMSstiGnfZRcszV4eVnfmFJeTm5fsMWjVao0NlnVLfmJTTI66x+m4KPz2JfUtOBKDdFUtIyTgctn5yqLkWlWonKYo6HwDuydfSgI+qpzmKUjuYmrsqZkN276c92Pv/2bv3+KirO//jrzOTCZlwC4FwCwTwUmgRAYmK0lrBVmzxQqnX2m7b7a6/ttutt0axdSvur7tSWVe33f66i223N2u9NtViRS2uWhUUDIgIeEG5DLdACLeEXM/vj8lMJpO5fOeWueT9fDx8MJOZ+c4B5eP5fM85n89f/KsKo659JelEFtTvMEsU66TgpfNGma+xOWIl5ER0trrZcfcC9v1+Nu5BJxh9zZpg7Iw1Nbzt8Y3U1vmS/t5+TrFOCsLCmZUMK+19/CFVh9ecFExkx3z1xbiJLHTXOpG+5ySZLbHWBmflXY9LMzckkex7cI2zqsMBxzeP4cirpwAw5isvpXSmQoVKskaxTgpetBtlBiKeiY0nViXkeNoavey89yL/9xd1Yoo6g6+5jeHa2VV4Pe6Inw1sN5akKNZJ3qqt8zFn6SomLV7BnKWr+NiYwWm9ftN7I2l8wT8HG/u1F3q034nEbQxfnF3FDxZOS+s4xDkn1YyPG2POsNa+AWCMmQVoD6QUnGSKogAc2zSWgyumg7uDsV97Ec+wpqS+34AKlWSXYp0UvJr5k7nxofW9YpwFjPHfTEtnX8Zomj8Ywf6H/dXeSyYcYNTVa3q83mEtD67ZGXP7sq+xmTlLV6nIU+IU6yQvRWrFk84zs03vjeTgn0+neNQRRl75Gm5v9Jt1gWJzijnZ5ySZvQF4xBizG/98ezRwVUZHJdLHaut81DyygbbOxM59HX1jAg3PnkbJhANUfG4trgHJTQIry7y8vHheUp+VtFGsk4IXq4VOY1Mb186uiptEpurErmHBRHbox7dSNue9iO+LNwZDd5XSSP0lJSrFOslL6TzzH+745jEceHIGJRMOUnHZG7hKYhf4Di1GJ9kVN5m11r5ujJkCBPY9brXWJr+vSCQHLXliU8KJ7KEXJnNk9SmUTNpPxcI3cBUnF2C1rTg3KNZJfxGtP2tZqYfH1vkymshaC7bDBe4OKj73BqUn70/qOpHaAGly6YxineSrTBXH3PfwmZz4YCQDxh6iYuE6xwsTKtaZG+KemTXGlAK3Atdba98CJhpjLs74yET6UCKNtK2F7T9cwJHVp+A9eR8jP7/WcSJbWebli7OrqCzzYrqea5tKblCsk/6iZv7kXmdRvR431pKxVQ9r/RPGgyumU1J1kKqbVvZIZN3GBGNiLIH3REu3NbmMT7FO8lUmimPufeAcTnwwEoCKzye2w25oEnUGJP2cbDP+H/z9yM7peu4DHgH+lKlBifSlRCpi2k7YsWxB8HnFonUYl/NVDG0lzmmKddIvROvPmqkWF50tbnbe5y/0VDTsGHQajLtn3OywlvuumgEQdRxuY3j/rs8CMGfpqoiry6oE74hineSlmvmTkzoSFs2RdRNp2VUOwLhvPxPzjGwk6saTG5wksydba68yxlwDYK1tMkb/+qQwBM7KOmE7DAeemh58XnXLCgWywpKRWGeMGQ/8GhiFf2fkcmvtf6R6XZFUhPZnDRS/y4S2hlJ23z/X/8TVydi/fyFq3Kx5ZEPMfjyhrS9q5k/uUQgGdGQjAZrXSd7qjP8WR46+MYFDz02leOwhRl35Gq4Bsc/IRtKYQjV3SR8nyWyrMcZL1/EUY8zJQPyGSyI5rrbOF7GqZySdbS72/342LbuHUfbJzQydvS3j45M+l6lY1w7cbK19wxgzGFhnjHnWWvt2Gq4tAvSsxh5e2Tfwmq+xGbcxdFhLZdd7gF5JYbq0NQxk9/3nA+A9xX8kI+b7Y6y2hLe+iLa6rCMbjmheJ3npzic30ZGGVdmGZ6fStHU0pR/1MWLBhl47RZzSTpDc4CSZvQN4GhhvjHkAmAN8JZODEsm0QHl3R4lsSxH7H6v2J7Lnb2bo2cklsplo7C1plZFYZ63dA+zpenzUGLMZqASUzEpa3F67kQdW7wjGs9DKvtAzWQ0Ud/I1Nju+mZesEzuGA6QUN8G/WBuph2Po6rIkRPM6yUup9LUO2P5D/1GxovJjKSWygHaC5IioyawxZo619mXgRWARMBv//1Out9Ye6KPxiaRdbZ2Pmx/e4KhiZ4uvjL2/nQPAiEvqGPix3Ul9p8dtuOOSqUl9VjKrL2OdMWYiMBNYE/udIs7U1vl6JLIBgcq+gceRZCqRPbzmJIzLMuTMDyj9yB7cpalNQId6Peonmwaa10l/Zi3suLu75snYr76UUiJb6nEpDuWIWCuzPwJmAa9aa88AVvTNkEQyJ3wFI5am90ZS/9iZAAw+c1vCiWyZ18Ph5jZNvnJfn8Q6Y8wg4DHgBmvtkQivXwdcB1BVVZWJIUgBWrZya8zKvplceQ0XOll0DzrB4FkfJJTIelwGDLR12B4/O97aHqw4r36yKdG8TvKaxwVtSRyaDU9kq27+M6YotdO3xUXu+G+SPhErmW0zxiwHxhljfhT+orX225kblkj6RVvBiKT5w+HBRHbA+IOUz9uc0Hfdd9UMTbTyR8ZjnTHGgz+RfcBa+3ik91hrlwPLAaqrq/syB5EcEevcazS50oqms6WInffNDz4f+/f/i4nb/K9bmdfDkkv9u1dC/wyaWtt7bS1UP9mkaV4nea0jif8zWgu+n3Z3kqj6zlMprcgGHE6gpaNkVqxk9mLgU8B8/CXcRfJObZ2PO5/clNA5i+NbRnPgj7MAGFy9jfILEktkvzi7SpOs/JLRWNdVJfTnwGZr7b+n+/pSGALn+ANbggNnWm94aH2wWFOkuDK2zBuxRQ1kbhtxuI7jxez6z08DYIrbGH/DM3ErvYcXogr9vYU+nrQ48uJhriTxeUbzOslridZ+shYO//VUOo56cZW2MO5bz6WtC4WKP+WOWMlsjbX2VmNMlbX2V302IpEERVvNuL12I79dvSOha7XsGRpMZEdc+gYDP7on7mfcxtBprbYT569Mx7o5wJeAjcaYQAPN71prn8rAd0meWrZya6+zrZEKOoXHl0gtavra0XUTASidvJuKhXVx3z+s1EPd9y90dO1oybomkknRvE7yUjLtw2ynYccyf1/qsvO2MGT2+2lLZD1uo+JPOSRWMvtZY8xi4Grg7j4aj0hCIq1m3Pb4RtZub+CBBBPZY2+Oo+EvH8M9pIkRCzZQUtXg6HP3XDldCWx+y2iss9b+lZjdM0XirzRG21obeH7DQ+sjfSyjmj8YAdYwdM67lH50D8UVRx19LpGdMuonm1aa10leCG0n5jKJr8h2trnY+e+fAcB42tOayAIMLC7SvC+HxEpmnwYOAYOMMaHFSgxgrbVDMjoyEQcirWY0t3Xw4JqdCW2x2/XTuXQcKQVg9N+9QNFgZy33XAbWbm9Qr8P8plgnWRdru3BAtIR34czK4MSvr+z93Wxadg6nqOw4Y6/7X8eJbDTRdtion2xaKdZJzgtfpEg4kW11s/Pei4LPq25amc7hATovm2uiJrPW2hqgxhjzR2vtZX04JhHHok3unLTdCdjx7/Oxbf6/CqOufcVxIgv+IBu6lVmVNvOPYp3kAifbhWNtrU1lu3Gpx0WTwxKhthN2LOuuCjrq6jUJr3iUeXv23I62wwa6e8kqnqZOsU7yQaRFCqc621w9EtkJt2amYLeOOeSWqLUGjTFTAKy1lxljBoS9NjvTAxNxIlpAcTucXe351ZxgIjv2ay9QMu5QymMK7e8ouU+xTnLBwpmV3LVoGpVdMS08gsXbWhv6+URyy8oyL4tmjXP03s4Wd49EdvxNf6ZoaGKrwR6XCVYtDoi2w0ZxNL0U6yQfJFvczXYY9j96VvB5phJZQMccckyswvm/C3n8athr/y8DYxFJWM38yXg9PXt9eT1urjl7fNwJ3a7/mkvr3jIAxn37GTwjjqVtXKq0mVcU6yQnLJxZycuL5/Hh0gXce9WMYGJaWeblrkXTIq5O1tb5mLN0FZMWr2DZyq3UzJ/MB0sXBJPieHyNzY4L5TW+5J/AuQaeoOqWFbg8ifVpdBvDVWeN7/X7iBYvFUfTTrFOcl4yq56dJ4rY/1g17Q2lDJu3KaOJrEE773JNrDOzJsrjSM9FsiLaeSog6gTNWv+krOOw/4zs+BufxlWc3kqg2oKSVxTrJOc42Voba3tuzfzJ1DyygbZED5xF0HpgEMZYhp77LiUTD1B6yv6krtNhLY+t81E9obzH700Vi/uMYp3kvJr5k7np4fWOz8q2HynB99MLACi/6E0GT9+ZwdH1XcszcS5WMmujPI70XKRPRSoWAv6kNlZVT9th2PFv/lLtg6bvoPzCjZhY+xPo2Q9x7pQKHlvni3meQ5U2845ineSlWNtzX148L+Ee25Ec+t/JHFlzCsVjDjH6S68knciGjy80mVXF4j6jWCc5J3w+V1rscpzIth0qZffyuQAMGNeQ8UQWnB9jk74TK5kdZ4z5Ef67dYHHdD3X+rpkRW2djyVPbKIxpJKcr7HZUVuKzhY3O+/rLgxQPn9j3MIlht6td6onlPcIvHOnVPD8lnpV2sxfinWSl6Jtw/U1NjNn6aqUE9k9vz6X1j3DACj/9Ka0tbYIH7cqFvcZxTrJimjVyiPtLnGq7eBAdv/s/ODz0deG75yHgcVujremd+fdNWePT+v1JHWxktmakMdrw14Lfy6SceFBLxGdLUXsvG9+8HnVLSscTcws9FpFUGXNgqNYJ3kp2vZcQ2KTwnC207Bj2WeDzyu/+VxCVd7jibR9WHG1TyjWSZ+7vXYjD6zeEVz6Dz0OkWzl4o4TRd2JrKuTCTV/jvi+TgtfnF3luC5ALG5juObs8fxg4bSUryXpFas1z6/6ciAi0YQ2z05G6HkK18ATjP/WXxL6vIqQFDbFOslXc6dU9JgkBqS6X7ThmdOCj6tu/jOmKLFCT7Fo+3D2KNZJX6ut80WMUc1tHdz88IaE2igGdDR7qK89A4BBp+9g+Gc2Rn1vc1sHz2+pxxh/vZRoDP64OazUw7ET7T1qDXg97qgF+CQ3xFqZFcm6VFZjwR/0dv/8PABKJtYz6qrXEr6GipCISK6prfPx2DpfWg86dhwbAEUdDJ71IUXDjjPkrG1p2Voc2sf2RHsHNzy0Plh5OXSCGG0rouQPY8wvgIuB/dba0+K9XwpXbZ2Pmx/eEDVGJZPIttYPYs8vPomrtIWRV67BO+lA3M/sbmyOGyfvvWpGMNbcXruRB9fspMNa3Mbw+VnaNZLrsprMKuhJPKk0zz6xcxj7Hz0T2+Fi+MXrGTTVl/A1tIogIrkoldgYyaEXJnNk9Sl4T9nHyM+vpbjiaNqu3dzWvbIbmL+GbjWMdnYu9HXJG78E/hP4dZbHIVkUvrU4HZrfrwj2kS37xFZHiSxEP44REHq/LnCTMJBoR6vALrklTh1XMMbMcfKzJP0SuCjem6T/SnaL77G3Ktn3u3OxrR5Gfn6to0TW1RXRApXqYvV2lMKT4VgnklbpPP7gu/+THFl9CgClk/c4/pzTRdtoE9pAZWOIXZlZ0iuTsc5a+yLQkI5rSX6qrfPx2zQnsk1bRwcTWe9H9jJ4RuSqxeExyetxM3dKRcxrB2qjgOJQvnKyMvtj4AwHP0uYtfZFY8zEVK8jhSveHbVIjm8ew8EVMwAonbLb8d07a+HDpQsSHqMUjIzFOpF0qq3z4epqGZaq7T/sjnkVC9dROnmv48+mY7IaSMqjJeeqWZARinWSMUue2JTW653YOYz62lkAeE/dy8jPrYv63tCYVNl1VMFJIqo4lN+iJrPGmHOAc4EKY8xNIS8NAdyZHpgIwMThiSWzRzeMp+Hp0wEYctb7DJu7xfFndTa2f1Ksk3xSW+ej5pHkCqeEC01kx173PJ5hTSlfM1GBuBvtxqXicvrkSqwzxlwHXAdQVVXVV18rfSS0dWKq2hq97PvduQAMPG0nIxa86ehzBoJn7m900LpRcSi/xdpmXAwMwp/wDg755whweeaH5meMuc4Ys9YYs7a+vr6vvlZyQG2dj1fed75bqem9kcFEduTlryWUyHpcRmdj+6+ciHUiTix5YlOPSpvJ6Gx1YzsNg073t6sYf9Of057IGvyVQWNNMkJrEtTMn4zX4476uqRFTsQ6a+1ya221tba6oiL2FlDpv1rrB1H/h1m4Bzcz6urVjhNZ6Ll1OF4iGkh8QXEoX8VqzfMC8IIx5pfW2u19OKbwcSwHlgNUV1encwu+5Lg7n9zkeBtb87YKDvzRv0Nq1BdeoWT8IcffU+b1sOTSqTob20/lSqwTiae2zpfyqkfTu6Oof7yawbM+YPhnNsZsa5GsyjIvLy+ex5ylqzjUFHm8lWHVigO/qppx5ijWSV8odhtaO1Kbrh9dP56Glf7FibFfewHPiGMJXyOwNbhm/mRqHt1AW5QxWVAcynNOzswOMMYsByaGvt9aOy9Tg5L+K5mestvv/ixYg2f4UUZdsxr3wFbHn9UZWQmhWCdZF609TW2djxscbJeLpeEvH+Xo2pMA8JQfT8dw8XrcPQqmhK5iRIvjBnh5ce+/VgtnqgVGH8lYrDPGPAicD4wwxuwC7rDW/jzV60r+SHXnSKCyOsCIy9YllchC94psIKbc9PB6Ig2tMmzlVnEo/zhJZh8B/gv4GZC+PgAo6ElPyfSUDT3zNfLK1xJKZOecXJ7Q+KTgZSzWicQSehPP0F3EJLQ9Tc0jqSWyu/7fPDqO+idtQ856n8FnpL4wZ4DPz6rk+S31EZPv0N9LKJ0/y7qMxTpr7TXpvJ7kj0AcS+U4f8NzH+PoukkADJv7NgOnOC9IFy68ivGQEk+vnS3aQlwYnCSz7dban2biyxX0JFSifRN3/b/um8iVX19F0ZATCX3fFdUqPCE9ZCzWiYSLlsCGzwOb2zr47uNvEtKqNWE7f/RpOpuLAai4/HVKT97v6HOBcZV5e08CA2N9fkt9xFXWZSu3RkxkQ8+nSdYo1klaJbMYEe74ltHBRLb8wo0MnrkjpTE9v6U+5tiGlXq44xIdMSsEcfvMAk8aY75pjBljjCkP/JPxkUnBqq3zMWfpKiYtXsGcpauorfP3gHVa+txa/4psYJVh3PUrKRqaeNl09Q2TMIp10icCk6vANtx4CxlNSWaygRUS2+7/X33l11c5TmQD46os87L+jgujvifRVhah59MkaxTrJK0SXYwI17pvCAe7CniOuubVlBNZ8Meg2jofNz+8IeLYSouLFIsKhJOV2S93/VoT8jMLnJT+4Uihu712Iw+ENNMObKNbu73BUd9Ea+HQXz4WfF71nacw7uT2tKhvmIRRrJM+kerEz4m2hoHsvv98yi96k/E3rgRrMK7EY2UgTlYm2LIiWouL8PNpkhWKdZJWqcynDr96Mo0vTmHAuAZGXFKX8C67WGLVGdAcsHDETWattZP6YiBS+GrrfD0S2YDmtg5+uzr+XbjONhc7//0zAAye9QHD5r2NcbK3IAqd25JQinXSVzI9iTq+ZTQH/jgLgI5jAzAGMMnd9AvEyZr5k3tt1Yt13izR90vfUayTdIt28yqePb8+l9Y9wwAYcdkbFA1qSduY4kX5gWGlAAAgAElEQVQ8zQELR9xUwBhTaoy5vavyHcaYU40xF2d+aFJoop2hcqKjyRNMZIvHHGLYBaklsppUSTjFOklFtOMTkWRyEnVw5WnBRNYz4ghlc95L+lqhcXLhzEruWjSNyjIvBv8K612LpkXdppfo+6XvKNZJutXMn4zHZRL6jO/+TwYT2TFffTFtiazbxB+H5oCFxck24/8B1gHndj334a+E96dMDUoKRzKtdsJ1HC9m139+Ovh8zN+8ktR13MbQaa36hkk0inWSlPACI6FViCPFmUirlvGKLTmx7+EzOfHBSACGnvMuZee94/izBrj3qhkx+ysm2rJCLS5ylmKdpF0iJ/v3PzaL9oZBAIy69hWKRx5N+fs9LsOyK6ZzY5wWZm5jdGOtwDhJZk+21l5ljLkGwFrbZIyD2x7S79XW+ah5ZENKPcfaD3vx/Vd3pcwJt65I6jpej1vBS+LJWKwzxvwCuBjYb609LR3XlNwR6Qxsc1sHy1ZujRhzAj+Lljie+t0VSVUvDiSyI69cg3fSgYQ+O7bMq+Sz/9C8TtJq2cqtdDic6x3fOprm90YDMPrLLzFg9JGUv78yJIbGWkDRXLAwOUlmW40xXrq2nxtjTgbSt6ldCtaSJzallMh2HC8OJrKlH/VRcWlyfRYrtRIrzmQy1v0S+E/g12m6nuSQaGdgfV3VNAOxJ7BTJVJP1mUrt3LjQ+spK/UklMh2trrZ/+iZlJ23lXHX+ws9ub2Jrex63EZb7voXzeskrZzuvjv+9hgOvTgFz4ijjLzitV7FntzGUFxkaE4gCH64dEGP55F2voBa8RQyJ8nsHcDTwHhjzAPAHOArmRyUFIZkt8oBtB0qZf+jZwL+Yk/ln3o7qetUlnkj9kAUiSBjsc5a+6IxZmI6riW5J1bxk8B248Dj8K3Ia7c38NDrO2nr8N/4O9TkPG621g9izy8+CUDzeyMpGXco7mcM4PW4gu1+NMHrlzSvk7RyO+hGsfeBc2jZVc6AygZGXvkaruKexyw+6EpKJy1ObgdeQLydL1J4nFQzftYY8wYwG/9/b9dbaxPbvyT9SmCVIVlHXp/EoVX+9jujrn3F0QQtGpVeF6cU6yRZ0VYCoHu7ceBx+Gu/W7ODZDawHHurkoMrZgSfDzvfWcy1wLCBA3hbN/n6LcU6SZfaOh9LntgUN5Hd/sPu1dOKRet6JLLQsyheIpWRo+2N15GJ/sXJyixAJeDuev95xhistY9nbliSr8ILoSTq0KqPcuR1f6u7IWe/n1IiCyq9LgnLWqwzxlwHXAdQVVXVF18pEUTbChxL4PVoPQ1j3VRLJpE99PwUjrx2MgDFYw8x5kuJFcWLd5MvmT8DyTua10lKnNZFCU1kK7/5HO7S1h6vh1cWnjjceTJ77Wz9v1IcJLNdhUtOBzbRXazMAgp60kukQijhSkO2uIU68tqkYCJbdv5mhp69LaWxqPS6JCLbsc5auxxYDlBdXZ38YXNJWqJVicNF22o3tszL8Zb2lI5eBFhLMJEtO28LQ895P+FrBG7yRUpaIfJ2aHD2ZyC5L9uxTgrDspVb4yayu392XvDxuH98NpjIlnpcNLd19rpZVlvn45X3G+J+t8GfyP5g4bTkfwNSMJyszM621n4s4yORguBkW2+kRPbgM1M5VjcRgFFfeIWS8cmtyEYLkCIOKNb1c4lWJQ4IJMGRElmvx83cKRU89PrOlMZmLRx59RQGnraL0V9+CePupLjiWMLXCYxn5j8/0+N8biBpLfG4kvozkLyiWCcpi7d6emTdBNoODgZg/PUrcZW0B19rbuskUhp855ObIv483NgyrxJZCXKSzL5qjPmYtTa5CjzSryRy1iGgaevoYCI75qsvJtVvzG0M15w9XsFNUpGxWGeMeRA4HxhhjNkF3GGt/Xm6v0dSE+1mXLybdLF2pDS3dfDgmp1xz5TF0tlSxM775gcfD5u7JelrfX5WJY+t80U93xvt96H6AwVF8zpJSW2dL+bre383m9Z9Qxl0+g7KL3wL4+4Z/wLPQnd+gPMCeInOM6WwOUlmf40/8O3FX7rdANZae3pGRyZ5qWb+ZG56aL3j5tk77rsQ2+JhwNhDVFzxGu6QO3dOlHk9rL/jwsQHKtJbxmKdtfaaVK8hmRftZly8s/fxEr1UEtnWfUPY88tPBJ+XfTL54noAz2+pT6qmgeoPFBTN6yQlS57YFPHn1sKOu/1nZE1RB+XzN2Jcsa/V3NbBkic2MXCA0zI+fqFtz6R/c/Jfzs+BLwEbwXGOIv3U2u0Njv8jCS0KMPKqNb2q28VjgCWXTk3oMyIxKNb1c5GqEsc7e19b58PloC1FMo5tHMfBp6YHn0+4NbWWFcNKPXET7zKvh5b2zoT+DCTvKNaJY+Fn60uLXRHP/4cmsgDjb1gZN5ENaGxuS7imgI4+SICTZLbeWvtExkciBeHBNfHPhYUHvHH/+GxSiey1s6sUyCSdFOv6uUT7E8Y6K5sq20kwkS2ZcIBRV69J6Xoet+GOS6aybOXWqFv0vB538AahqhkXNMU6cSRSUbxIwud1VTVPYVyZrWOoow8S4CSZrTPG/A54Ev92FACVcJegwF07J2cYet25u/Fpx4lsoFJopSZXkhmKdZJQf0In1duT0fx+BQPGN1B+4Ubcg09Qesr+pK5j8J9NC4+ZkdqnlXk9LLl0avA9iq8FTbFOIgpfhT3e0h43xlkLe397bvB5Vc0KxyuyqRjq9WT+SyQvOElmvfiDXejBRJVwF6Crz9ijG2jriH8HznbCnl99PPjcScBzGfj3K2doYiV9QbFOEpLulYHQm31Dz32Hsk+86/izZV4PF08fw/Nb6mOuqAae3/nkpmCxlfBEVgqeYp304nQVNpS1cGjVR2mrH0zJxHpGXvkaxmR6pH599T2S+5wksz+z1r4c+gNjzJwMjUfyzJ1PbnKUyHa2uqn/4xm07R9KyaT9jLzi9biByOM2LLt8uiZY0lcU6yQhQ72etPSOBeho9rDrR925xZDZzvrH3ndVcjf7ToS0SGtsblMv2f5FsU56SXSniW13seOezwBQ9snNDDl7W58mmE4rH0vhc7IR4McOfyb9RG2djzlLVzFp8QpHwaT9SAk7772IE9tGUnb+ZkZdGT+RHVbqUSIrfU2xThyrrfNxvDWx6uvRtOwe2iORrbplBS5P5uryxOqnK/2CYp30kshOk84WdzCRNZ52hs6OnMhmMrd1a2lWukRdmTXGnAOcC1QYY24KeWkI4M70wCQ3hW9DiaftUCm7l88NPh969ra4n/ni7Cr1i5U+o1gnyVi2cqujXSnx2HYXe3/Tffwi0YrFyVT0TLafruQ3xToJF3pG1mlV9o4TRez6j/nB51U3rYz4Po/LcNVZ44NHHzxuQ2uEmDmgyEVLe+I37zJReE/yU6yV2WJgEP6Ed3DIP0eAyzM/NMlFiWxDaTswqEci62SS5jJQPaE86fGJJEGxThKWjsSv9cAgcHfiPXUvQ+e8EzFGDiuNXeQkmXFE6xmrXrIFT7FOggKLE77GZizOksPOVnePRDbWvK6t0/L8lnpq5k/mg6ULqBhcEvF9Xo8bryfxeykG/+9BJOrKrLX2BeAFY8wvrbXb+3BMksOcTpzaDgxi988/CcDgMz6k/NORG2yH67Rw88MbAJ3dkr6hWCfRhFf2nDulgue31DsqjBJPoM/2sAs2MXLRuojvGVjs5tiJ2FuZk0lAk+mnK/lPsU5CJXxGtsNw4ImZALiHNDHuG8/H/YyvsTl4Hj/a/PFwcxv3XjXDcVeM4HhQr1nxc1IAqskYswyYCgRvq1hr52VsVJJTEt2G0naolH2PnAnA0DnvUPZx5xU5wX93UMVIJAsU6yQoUmXP367ekfJ1bSfsWNbdnmzg1OgrCx63i+Ot0SebsRLQ8EQ8tLJxov10peAo1klCuzo6morZ8yt/jbDyi95k8PSdjj8bOI8/tswbMVkdW+YNtkSLdJTN63FHTbp1NELAWQGoB4AtwCTgTuBD4PUMjklySKLbUA69OJndy+di24oY/eWXEk5kA1SMRLJAsU6CMtFDtqOpuEciO+76lbi90YvoHY5RKbmyzMvnZ1WybOVWJi1ewZylq4Jb7sLjdmB1JHRL3sKZlby8eB4fLF3Ay4vnKZHtXxTrxPGujraGUnb9+NN0HCll6DnvJ5TIBuxubKZm/uRe24nDb8gtnFnJXYumUVnmxeCPc4HnqfwepLA5WZkdbq39uTHm+pAtKgp6/UBtnY+bHl5PZ4T81eDf4hHqwJMzOP62f0JUsXAdA0YfSen7dcdN+phinQSlO/50thSx68efDj6vumVFzKruZV4PAwcURVzJKPN6em0VDt3OF6tasZJWQbGu3wrdsVFW6sHjMrRFmuR1aa0fxJ5f+I+MDahsYPCM5HanBFZfIf6OkMAqbTgdjZBonCSzgVvDe4wxC4DdgCr0FLjbazfG3FIXHvoaX/xIMJEd/pkNlFQ1pDwG3XGTPqZYJ0HRtsQlo7OlCNcA/9nX4tGNjPnyy3E+ARdPH0P1hHJqHtnQa7J5vLWdO5/cFDVhVbViiUOxrh+qrfNR8+iGYBX2eK0V2w6VBhNZU9TB6C++mtT3GggmndES1Xh0NEJicZLM/sAYMxS4GX8fsiHAjen4cmPMRcB/4C8J/zNr7dJ0XFdSU1vn44EEzoYdeOp0jm8cD8DIy1/De3K948+6DHzh7CoeW+fTHTfJtozFOsk/NfMnR0wkE7X3wdm07BhOxcJ1CbXdeWydj+oJ5QwqKeo16WzrsFEnooGJXrSzaSJkONZpbpeb7nxyk+N2Yh1NnmA3CvfAE4z71l+S/t5rZ1elJelMNhGWwhc3mbXW/qnr4WFgbqz3JsIY4wZ+Anwa2AW8box5wlr7drq+Q+KLVCRk2cqtvVZeozm2aWwwkR3798/jKW9K6PuthR8snEb1hHLdcZOsylSsk/wSGhNjbQN2IlCxGMAz6nDU90U6ttHc1sHND29IuJdiIH5qS55Ek8lYp7ld7oq3EhvQcbyY+q6qxUPPeZey895J6vvKvB6WXDpVcznJuLjJrDHmI8BPgVHW2tOMMacDl1prf5Did58FvGet3db1Pb8HLgMU8PpIpGqd4ROgWBqencrRNyZQPKaRis+tpWhwS9T3Dix2R6zKGVgp0B03ybYMxjrJE+ExMcE8Msh2GnYs+2zw+ZivvoinrOdKaSCBrYyxnbnD2oiJLvgnii3tnRETVm3Jk1gyHOs0t8tjLXuHsPdXnwBjGXXtK5SMO5TwNSoVb6SPOdlmfD9QA/w3gLX2TWPM74BUg14lEFoSbRdwdorXlAREKxLiRHDFwdXJqGtexeXpjPreOSeXc0V1lVYKJNdlKtZJjgusxqbjjGxnSxE775sffD7+hpXB87IB4ZO9OUtXRf1uS++VW6/HzZJLpwLRE1bdIJQYMhnrNLfLQaGVzKM5vmU0B/44C4Bh529OKpGFnsXoFIOkLzhJZkutta+ZnvutYndxTyNjzHXAdQBVVVV99bX9QjLFQKyFHXd3b50b/+1nYyayAA/8/TnBx1opkByW1Vgn2RGpr2GyrAXj7o6HkSoWV5Z5eXlxz3aekbYF97hu1+di9YwVSYDmdf2E0xt1x96q5OCKGQCUTt7DkLM+SOl7VT1d+pKTZPaAMeZkum4MG2MuB/ak4bt9wPiQ5+O6ftaDtXY5sByguro6tUoc0kOi1Tpth2HHv3Vvnav6zlMYd+x/JaWe7lbGWimQHJepWCc5bMkTvasCJ+PwK6fQ+NJkxnzlJapqnsK4IsfGuVMqev0sEBejnZGNlACLpCCTsS7u3E7zur7h9EZd8wcjgonswNN2MmLBm3GvXeb1MHXsYF5+P3rnClVPl77iJJn9B/xBZ4oxxgd8AFybhu9+HTjVGDMJf6C7GvhCGq4rUYQXe5o7paJXFeFoeiWycXokBgwIa5AtksMyFeskR9XW+WhsdlYUJZY9v55D654ywH9eNloiC/DQazupnlAe8cbe4JKiXuPRcQzJgEzGOs3tckSko2Th2g6Vsv9h/y7woXPeoezj7zq6tjHdu+6iHZNQ9XTpKzGT2a6qdN+01n7KGDMQcFlrj6bji6217caYbwEr8Zdv/4W1dlM6ri29RSr2FOgja0zsQiedbS4O/PEM/xN3BxO+87Tj7210WD1PJJsyGeskN0Sr3J6q0IrFwy+uY8CY6FWLAdo6ba/td9FWUIaVerjjkvjVQCP93rQLRiLJdKzT3C53xFsZbf5gBA3PnoZn+FFGXFpH8Ujn/xmEzu1UPV2yLWoya4wp6gpKHwew1h5P95dba58Cnkr3daW3WHfoYiWybQcHsvtn5wNQfuFGBs903n8WdGdOcl9fxDrJrkg381LtIdurYvHXXqB4xDFHnw2fZEaLz6XFRY4S2UhV6UHnaaWnvop1mtvlhlhHyRpf/AiHXz3V/76vvYDHYewKvXaAqqdLtsVamX0NOAOoM8Y8ATwCBAOftfbxDI9N0iiZswstvjL2/nYOAO7BzQknsrozJ3lCsa7ARUoWU0lkATqODQg+Hn/j07iKnZ+7Db/JFy0+O4nb0arSq/iKRKBY14/UzJ8c8abdwWemcqxuIgAjL38t4UTW4zK95naqiSLZ5OTMbAlwEJhHzy4BCnp5JNFiTy17h3QnsgNPMO6bqxL+zrsWTVNwk3yiWFeg0lmIpPmDERx5fRIjFmyg8uurcA9pdlQ/ICDSRDBafHaysyWVRFj6LcW6fmDt9obeiezT0zi2wV9Bunz+m3hPrk/omgZYdsV0ze0kp8RKZkcaY24C3qI72AWo+lyeqZk/mRsfWu/oX1zz+xXsf/QsAAZXb6P8gs1JfaeCneSJjMc6Y8xFwH/gP0P2M2vt0nRcV5xJ9GZeNIdemMyR1acA0HZgMCUTDib0+TKvhyWX9j4Dm8qZs1QSYel3NK8rYKFn58tKPRwKq1nSvG1EMJEdfnEdg6buTuj6Xo9bixSSk2Ils25gED2DXYCCXp5ZOLOStdsbeGD1jpj/8loPDAomssM+9RZDZm1P6vsqNZGS/JHRWNdVcOUnwKeBXcDrxpgnrLVvp3ptiS58YudxmZS2Fu/+2Xm0HRwMwKCZHzpOZN3GcM+VsVcyUjlzpuIrkgDN6wpU+Nn58ES2xVfGwaemAzD6Sy8zYGxj1Gt9cXYVz2+px9fYjNsYOqylUudgJYfFSmb3WGv/uc9GIhkTOqkb6vVEbUVxeM1JNL4wBfegE1QsWhu3Kmc0BjSRknyS6Vh3FvCetXYbgDHm98BlgJLZDKmt81Hz6AbaOvzz80NNbbhdhjKvh8PNbQz1ejja0k6Hw+Q2tGLxiMvWMXDKXkefS2QlI9kzZyq+IgnQvK5AxSryeeh/J3NkzSkMqGxg9Ff+StGglqjXGVbq4QcLp2VqmCIZESuZTeAUkOSq8Lt10RLZfb8/mxPbRwAw6guv4hnWFPfaZV4Px1vbgxNG8P9Hc+3sKk2kJJ9kOtZVAjtDnu8Czs7wd/Zrdz65qUdcAujotBgDHyz1J6Yz7nzGUY/Z1vrBwcdj//55POWxY2M2VjJUfEUc0ryuQEU7I+9b/knaDw0CYMTCN2Imsl6PmzsumZqR8YlkUqxk9oI+G4VkjJOm2fsfqw4mshWfW+sokfV63Cy5dGrwO7QiIHksJ2KdMeY64DqAqqqqLI8mv4VvsQv9+dTvP43H7YqbyLYfHcCxDVUMPec9RixcR+kp+zDu6Cu5w0o91H3/wpTGLZJhORHrJP0inZ3f+eNP0dnkr7o+5isvRUxkh5V6aGxq0/xN8lrUZNZa29CXA5HMiFf0ZP/js2h+bxQAo659hZJxhxxdN9D64eXF8xT8JK/1QazzAeNDno/r+ln4OJYDywGqq6t1fi1Djrd2ALFv8DW9N5L6x84EYMC4BgZOjr+tOFa/bpFcoHld4aqZP5kbHloffL7/D7OCiezoL79E8agjET93qKmNYaUeJbKS15y05pE8VVvnC9bbj+TgytNofnc0AJXf+AtFQ04kdH21fhBx5HXgVGPMJPxJ7NXAF7I7pMJWFqM2QDwNqz7K0ddPAqBoaBPeic4KPR1O8vtERFJRW+fjzic3BZ8ff3ssze/453ZjvvYCxXH6yB5qaqPm0Q2AulBIflIyW4ACBZ9ircoeXnMSx9ZPAGDct5/B7U18IqbWDyLxWWvbjTHfAlbiryb6C2vtpjgfkxQsuXQqNY9sSLh6cej5siFnbmPYPOdtyRQPRaSvhddFObJuAkdeO4mSCQcYcekbuEudze3aOixLntikZFbykpLZAnN77caY7XeshR13+wuglE7ZzYiL18c8BxaNWj+IOGetfQp4Ktvj6C8CEzKnvbUBTuwaFkxkKz7/OqWn7Hf8fYqHIpINoXVRdv3nBXQcL8E9tImRl7+OKepM6FqNzW3U1vmU0EreUTJbQGrrfLET2Q7Djn/7bPB5Iomsx2UYVFKkQgEiklWhrcbixaIit+lV1Tic7YSmd0ZTOnkvg2Zsp+zj7+Ae2Bp3HOq/KCJ9LTz+BXbghbYPG/uVlxJOZAOWrdyqWCZ5R8lsHgsPasdb2qMnsu0udtzzmeDzqpoVGFfv97ldplfvxTKvhyWXTlWAE5GsCt9S52ts5rbHNwK9z3otW7k1biLb1lDK7vvnAv6WZMPnvxV3DIn0jhURSZdI8c8AH4YksuP+8RlcJe1Jf4dqoUg+ipDOSD4IBDVfYzMWf1CLVvCks6WoO5F1d1B1S+REdmCxu1ciCzBwQJEmbiKSdZFajQUqq4eLNyk7vmV0MJEFKBkfv9DrgCIXA4pc3PjQeuYsXUVtXa+i1CIiGREp/u3+5ceDj8dfv9LxGdlodPZf8pGS2TzlpH8sQGerm/2PVQP+ypwTvvM0JkLb9MoyL02tka+nO3UikguixaJIP481KTv4zGkc+OMsADzDjzLh1hWOvr+lvZPG5rbgDcQbH1rP7bUbHX1WRCQV4XHuyNqJtO4bCsC07z2X0oosgMdtdPZf8pK2GecpJwlmy94h7P3VJ8B0Mvyz6xk0LfoqQvj5i1C6UyciuSBWjAqt4u4yEK2QcdP7IzlW56/kPuSc9xh2Xu9VXacs8MDqHVRPKNfuFRFJq/CjZEO7Wo5ZC7t+/Gk6m4sZXL2NSZ99j9bO5M7IBgwr9XDHJTpOJvlJK7N5Kl6C2bxthD+RBco/9XbMRDZwvZr5k/F63D1+riqdIpIrosWouVMqgscuIHIiay201g/Ge9J+XAPaGP2ll1NKZIPXhYjbnEVEkhXpKNnx1naKjGHH3QvobC4GYOSntnC0tc3RTr1IPG7DfVfNoO77FyqRlbylldk8VTN/co9CAKFO7Cxn/yNnA1A8upHBZ2yPeS2Py/Soxum0UqiISLrFqlYcLUbFO3bR2epm570XATD6yy9RdcMzXasc6RlztJ0yiVReFhEJiBTTWtssO5Z1F3s6/fvP0NQOncnlsVqNlYKhZDaHhW6bC28DAf5iJIFgZ/CvEDS9O4r6x/1nZEun7KbisjqM8a9KRBJeqXjhzEoFNhHJikSqFQMcb2nnzic3cagpetGT1gOD2PPzTwafl407xl2fnwEk1oc2lkg7ZRL9vYiIBITfILOd9EhkOzrgjP9L3Irt0Xy4dEH8N4nkCSWzOSp8ItTRlY36Gpu54aH1vd5v8Z+RDSSywxesZ9Bp/q3F1vq34oXe5VN7CRHJNbGqFS+cWcnttRt79NKOVsE94NimSg7+aUbwubVQW3d68CZhOgR2toSL93vRqq2IRBNaH8B2EpzbAUxf8gxPbJgaN/5F445UBVQkj+nMbI5yWq04oPnD4ex7cDYYy4jL1gUTWfBXKr5r0TQqy7yYkOeaOIlIptTW+ZizdBWTFq9w3MYmVrXi2jpfj0Q2nqZ3RwYT2eIxjcy485ke59DSJsq8MN7vJfw83G2Pb1SrHxEBCN4gs+0uGlZOo2V3GYNnfUDVLStobG7jzic3JX3tjmhb9UTylFZmc1Qi7XB2/+w82g4OBqDyG3+haMiJ4GuBUuvaPiwifSXZLbaBap2Rfr5s5VbHiWzHiaJg39hhF2xiSPWHHGoi4q6WVLV12OBqa6hYlZfvfHJTzFVbEZHOliJ23jcfgLLzNzP07G3B12IdrYinUh0qpMBoZTZHOW2Hs/3fLgomsqOufaVHIusysOzy6ZociUifirXFNpZou99a2zscraZaC9t/uIBd/zGfjhMeJty6giHVHzoddtIi3XyMVXk52kRUPb1FpLbOxy0PbAkmsi5vS49EtszrSfra6lAhhUjJbI6KNBEKt/eBc6DD/54xX32RknGHerz+hbOrlMiKSJ+LtcU2lsYoSV5TW/weip0tRey4u7uoiXtgS9zPpEukm48LZ1ZGPN7x/Jb6hK4jIv3Lvzy2jXfvuSD4fPy3nws+9rgMF08fk9R13cboiJkUJG0zzlGBYLPkiU0Rt93t/NGng33Gxv3js7hLW3u9J9akSUQkU2JtsU3mc/G07hvCnl9+Ivi8quYpjMv5uTCP2/SoCupxGTA9K4UGKsYHfg2ItdIR6XjHjTG2OmvFRKR/a26Gtf/SHcsm3Lqix+sDBxSx4s09CV9XRT+lkGllNse1tPdckbAWGv96ajCRHX/D0xETWdCWNRHJjmhbbOMla052pIQ7saO8RyI74dYVCSWyAGdNHNZjBXXZFdNZdvn0Hj+796oZfLh0AfdeNSOlYnrREvoyr0cTTZF+7PhxuPpq/+MBlQ29ElnwV3BP9LysVmSl0GllNoeFnzuznYYdyz4LwMBpOxl+0caYkzZtWRORbAhMmhJtPRN4/eaHNziquGktmOJ2AEpO2s+oK15ParyvvN/AvVfN6DW+SONNtZhezfzJPYpjgT/RX3Lp1KSvKSL5bfduqKyEkSNhxCV1DPzY7rRcVyuy0h9kJaQWYrsAACAASURBVJk1xlwBLAE+CpxlrV2bjXHkutCV1c42Fzv//TPB58M/82bUYinQXcVYRCQbkk36Fs6sjLkVN8B3/ycx7k5GX/sqVTUrMCnsM7LQZ5WEk030RaQwbdwIp5/uf3zLLfB42yF8jalft1KxRfqJbK3MvgUsAv47S9+fFwLnxzpb3Oy876Lgz6tuWdEjkR1W6vFvP+46Wzus1MMdl0xVABORnFVb54ua0MU6O2stPQo92U6DKw0HZvryWIZapYkIwOuvw1ln+R97Rh7m8bZ1zJ1SwWPrfL0qwjuhBFb6o6wks9bazQAm1tKiUDN/MjW/2cp7980L/iz8DIXX41biKiJ5JV4f2rlTKnhg9Y5efWU7mj3s+tGFwefj/vFZ3N7k+y2G0rEMkdRkctddrJtf+Wrz5u5E1j24mbFf/Su+RnhsnY/Pz6rk+S31jgviGYh4VEKkP9CZ2Rx2/qRK3rvXH5gGjDvI6GtX93hdK7Aiko/i9aF9bJ2vVyLbdqiU3cvnBp+Hby0O3BodW+alqbU9apEUr8fFibZOxxWJRcSxjOy6i3fzK5Hr9GVCHOv79u2Dj33M/z5PxRHG/u1Lwc81t3Xwpw17WH/HhUxc3LsIVCTXzlYrRum/MpbMGmOeA0ZHeOl71to/JnCd64DrAKqqqtI0utxRW+fr0X4nkKB+ZEAlF13aBi43Q895j7KPvxvx8wpeIpJvYvWhjZToApzYPjz4OFKVT4APli4IxtRIPC7DXYv8h9MKbZVHJNsytesu1s2vWH9vQ5PJslIPx06009bpv42VbEIcS+j3DfV6ON7aHmzvFfp9Z42q5OqrYehQKDrnTQZN39nrWo3Nbcy48xlKPa6Yfba1qCGSwWTWWvupNF1nObAcoLq6OrF+Czmuts5HzSMbgsEV4FBTG9fduY/6P1YCHkZesQbvSQcifj7R8uwiIrkgVh/a8ET38OqTaWsYyIiL3qRu+elc87tVEYujjC3zcnvtxojbk8Hf+mbJpd2TPk3+RPJDrJtf0YSv5kaaLzlJiJ0K/77AAkX4993+031sut//faP/5q8MGHM46jUbm9tw0bu3NfhvzC27YrrimAjqM5tVy1Zu7ZHIAhzdMJ76P54BgPeUfVETWRGRfBWrD23o2dXtP1xA4wtTOL5xPBWeoVRVRf9stHO24C+Ksv6OCzXxE0mRMeY5Y8xbEf65LIFrXGeMWWuMWVtfXx/3/dHOs48t81Jb52PO0lVMWryCOUtXUVvnAyKv5kYSmhBHu5YTTr7v2MZxbLrfP78bNm9TzEQ2oBMo8bgYVuoJ/qzM61EiKxIiW615Pgf8GKgAVhhj1ltr52djLNkQ2IoSvjJx7K1KGp72b4EbPOsDyj/1dszrlHk9MV8XEclF8drTLH50I1v/tbuC+4S/fYXvXT4p5meXrdwaMZGFvq1UHEshFrGR/iUdu+4S3XEXrTfz3CkVUc/SOv07H0iU453Ljfd3N16hpqNvTKDh2dMAGHT6Doac+aGj8QE0t3Wy+f9+Jv4bRfqpbFUz/gPwh2x8d7aFB8yAoxvGBxPZikVrKT11X8zreFyGJZdOzdg4RSR1hd5TO5XkLFp7mnknV7L1X7t/fuY/vch3P3dyj/dG+mys3rS5UKk4XUVsRPqbWDewop2ljdXeKyC08Fu8onThf3dvfGg9a7c38IOF0wBwG0OHjZyXN28bEUxkB1dvo/yCzYn89kUkDlUz7mMRA+aHw2l41p+YjvrCq5SMb4j42UCwVB8xkbxRsD21052c3V67kQfX7KT+2Y8C/lXYjg5wuc5z9Plok1cDOVGpONkiNiL5IpO77hK5gbW7sZl7r5rBjQ+tj7pbI3welWhROgs8sHoHAH/asCdqItvW6OXAE/6txcM/u4FB03ZFGVF0oVuMRaQ3JbN9LHyytfNHn6azuRhPxRFGXfka7kEtvT7j9bi5a9E0TXhE8kwh99ROZ3J2e+1Gfv74EVp2T6D8U28zYFwDA6fs5ftPVAVXPuKJtBXRkDstK5IpYiOST/p6112sQnILZ1ZyQ5Rk1wAvL57n+FrR/o5a4LddCW0kx98ey4EV0ymuOMqIS+rwDD8e/TcTwx2XaBeeSCwqANXH3CGT2u0/XEBnczEAo65eEzGRdRujRFZEck46k7N7bhjD3t/M4dBfptLR7GHglL0APLimd8uKaBbOrOSuRdOoLPNi8K+83HvVDMfJcKbFKmIjIomLVUgO/DEgkkh/55wWpXPq4MrTOPDkTOh0MeLSNxwlsm5Xz5ueBvhijtyME8llWpntY4GtKL7/Pj/4s7HXPY+7tBWPy/SobqwVWZHc1197asdayUiE//7eCADKL3oTt7e7pUW0rXvRRDuHmwuFl6IVscmFLdAi+SheIblE/s7Fu1asLcvh6p+YQdNm/+dGXrUaT3mTo8/dc8X0rMcpkXykZLYP1db5cGH48J752Hb/HcBx33oW98BWAAaVFFFaXKRAJpJH+mtP7WSSs9CkcswQL69+r3ur35ivvETxqCMRP5NKHMyVwkvxJssikrhoN7ACr4Hzv3PRrrVwZiVrtzf0av0Vqf/rwWemBhPZEZfUccqMJuZOqeL5LfXsbmyOmhC7jYn5exGR6JTM9pHAhKq9zQQT2aqb/4wp6gy+p7GpjbrvX5itIYqIOJboRPH22o09JoPrf9F9Duzm327i0Y29E9nA9VOZ4OVS4SVNVkX6Vrr+zv1g4TSqJ5T3iHdzp1Tw0Gs7gzvqmj8czrG6iQAsvucgd900s9d1Ji5eEfH6ie5CEZFuSmb7yA9XvMPhXQMpHnWEcdevxDWgnfCaMDo7JVJYCr2nttOJYm2dL5jIdhwvpnX/ECoWrePgiumc/sWt/Nu183h08YcRP5tqgSQVXhKRdIgU76onlLPkiU3s2TyEg38+HdeAdv7tlw3cePXIHu8L7EqJJtr5XhGJT8lsBoSfz/rH86aw+p/mAlD5jb9QNOREr8/o7JRI4enPPbVDLVu5FQscfuUUGl/yx7nxN6xkxCXr2XPYHzOj9WlM9SZfus72ioiEWzizkud+XslPHoLZs+HJJ2HEiN6JbPiRjFCa/4mkRtWM0ywQtHxdZyN27GnnmjljAXANPBExka0s86rQk4gUpNo6H77GZvb8+txgIjto+nZcA9oBKCv1cNvjGyMmsumY5MWreCoikqyvfhV+8hP/4wcfhBEjer8n0lGHAM3/RFKnldk0Cw1a7UdK8P30AgC8Yw8z4W9fpbm7UGewB2KutI4QEUmnwM297T9cEPzZ8IvXM2iqD+gqoGKJONFLV1syFV4SkUy46ip4+GH/4w8/hAkTIr8v2pGGSP1uRSRxSmbTLDRoBRLZ0o/sYeTn3uDzs6p6FECxwGPrfFRPKNfESkQKzrKVW/nwN9XB52P+9gWKK44B3TfzHli9I+JnO61NW1xU4SURSacHH+xOZHftgsoY4UVHHUQyS9uM0yw0OI269hWGznmHis+9wdgyL89vqe9Vlj1QVVNEpJA0N8OH21wMX7AeU9TB+BufDiayAPdeNYMfLJwWdUKniZ6I5KL2dhg1CubNg717YyeyoKMOIpmmZDbNPjX4dLb/cAHtxwZQMu4QZR9/Nxi0VFVTRPqDDRugtBT2/uZcXCVtVN38NK7i7q3EgZ6KoImeiOSPG2+Ec86BM86A557zJ7XxLJxZyV2LplFZ5sWgc7Ii6aZtxmn0+9/DP3/Lf/p/aPNwmgbt7nE+a9nKrdpqIiIF7aGH4Oqr/Y8HTd+By9PZ6z2hxZ50plVE8sGUKbB1K7hcUFJCr/aKseiog0jmKJlNkx//GL79bf/jmrsP8nLHIZoae76nZv7kXuXZtQIhIoXiO9+Be+7xP16+HJZue4eO3kWKcYfNAjXRE5FcVlkJu3f7Hx8+7E9mRSQ3KJlNg3/9V/je9/yP7/yveh7ctS6YsPoam7nt8Y2AViBEpHA99FB3InvX/9Tzy72R2+0AUX8uIpJrJkzoTmSPH/cfoRCR3KFkNg0GDPD/unYtfPvZ3o2xA0WeAqsPSl5FJF/U1vli3oDr6ICjR+Gss2DhQrjkG3tY9tKGqH0VwX9mTEQk1736KuzoKrh+4kT3fE9EcocKQKXgt7+F1la4+WZoaYFZs6IXc1KRJxHJN4E+sb7GZizdO01q6/x9YuvroagI5s/3b8P7wx/g529sjpnI6miFiOQ6a+HRR/036Z580l/BWImsSG7SymySJn2kjQ/f9XDdnXuZ+bW3g6sV6icmIvkk1srrspVbo+40Gd9ZSXVXC9mTToLiYv/jWDfuKnW0QkRynLX+Ik8Av/kNfPGL2R2PiMSmldkkDBzcyYfvegAYvmBDj9UKtZkQkXwRb+U1WmL6zl/Lg4ns178ODz7Y/Vq0G3eVZV5eXjxPiayI5KzOzu5EFuDaa7M3FhFxRslsAqz1l2JvOub/Yxt/059xl7QDPc/Fqp+YiOSDWCuvEDkxbd5WwYEVMwD4n/+Bn/605+u6oSci+ai9HdwhoauzM7H2OyKSHdpm3CVekRPortQJUFXzFMbVsyJnYBVDRZ5EJB/EO+Mf3k7MdvrPjQ0p6+C5Z9yceWbk2HnXomk5U7XdSWwXkf6towPmzOl+rkRWJH8omaV7q120djodHf67dTfd5A9wtR2r2H24d2sJnYsVkXwS74x/IOn74Yp3WHdfNWVVx/jvn3Wy8NdujIkeO+9aNI2XF8+L+/2ZTjTjxXYREWv9c7uxY+FLX4Jf/UqJrEg+0TZjYm+1O3TIX63z61/3n6O45Ra45SJtoxOR/OdkS/DsMZWs/qe5tB0czGllY7hsRmVwohdvm3Is8c7rpkMq4xORwtfUBBde6E9gH30Ufv1rJbIi+UbJLNG32u3Y2Ul5uf/xW291/1znYkWkEMSLZWvWwJgx/vdOmwarVvUsjpJKK7K+SDTVKk1Eojl6FAYOhOee87cZc7vjf0ZEco+2GRN5q11bQym7758LwGc+A0891fMzOhcrIoUgWixbuxZmz/Y/vv56uO++3p9NpRVZXySaapUmIpE0NsKwYf7HU6bAbbdldzwikjytzNJ7q137kZJgIvt3f9c7kRURyVe1dT7mLF3FpMUrmLN0VdRtvevW+X994IHIiSykVrk4WkKZzkRTlZVFJNzRo92J7KxZsHlzdscjIqnJSjJrjFlmjNlijHnTGPMHY0xZNsYR0Gur3Uj/gvXtt8P992dzZCIi6RPvnKq18O1vw733wv/5P3DkCHzhC9Gvl8qRi75INHUkRETC3Xyz/9fzzvPvQBGR/JatbcbPArdZa9uNMT8EbgNuzdJYghreHkHT8VaKzjzCdx/fyKqt9fx2sdo5iEhhiHVO9aKPVuLtWhSdPh1uuAEGD45/zWSPXAQ+k+m2OToSIiLgvzn3wQdw551w0UWwaFG2RyQi6ZCVZNZa+0zI09XA5dkYR0BtnY+vf6+RfX8+HYCSk57igTU7gq+rnYOIFIKoxe522GAiC/7Vir6o6KlEU0T6wvbtMHGif3vx9u1KZEUKSS6cmf1b4M/ZHMC3b21h35+nAjDyijUYd+8esmrnICL5LtJ51LZDpez66QUAnHWWf6txkUoDikiCcu0IWcB77/kTWYBvfMPZjhMRyR8ZS2aNMc8ZY96K8M9lIe/5HtAOPBDjOtcZY9YaY9bW19enfZzf+hbsfPYkAEZ/6a94TzoQ9b1q5yAi+SzSOdUTb00A4NZb/a14RESS9CxwmrX2dOAd/EfIsurtt+HUU/2P/+Ef4F/+JbvjEZH0y9j9d2vtp2K9boz5CnAxcIG1tvdSaPd1lgPLAaqrq6O+LxnNzfCTn/gfj/27/8Uz/HjM96udg4gkwhizDLgEaAXeB75qrW3M1nhCz6m+83I5FRVwz30DmFEOJ5+crVGJSCHItSNke/fCVP+mO2pq4O67szkaEcmUbFUzvgi4BbjUWtuUjTEcOwZeL7z5Jvx85R6GjD4R8/1q5yAiSci5lYrLZlTyzj3zOPCnGZSsn8Gi6kolsiKSblk/QrZ9u/+M7D33KJEVKWTZOhn1n8AA4FnjrzKy2lr79b768tGjYd8+2L0bpk2DadPGUF7R2aOq5twpFTy/pT6jVTZFpLDl2kpFczOUlnY//8tf+qbQk4gUBmPMc8DoCC99z1r7x673xDxCZoy5DrgOoKqqKu1j3LwZvvtdf2vFXbt6xjwRKTzZqmZ8Sna+F1wha9GBptmgqpoiknF/CzwU7cVkJni1dT7HrW327oUxY7qft7eD2x3xrSIiEaXjCFkmj4+tWgUX+OvZcfvtMGtWOq8uIrkoF6oZ94nHXvf1SGQfXuOjpCR74xGRwpCuYnfW2uXW2mprbXVFRUXc762t83Hb4xvxNTZj6W4hVlvni/j+22/3/3r++f4be0pkRSSdsn2E7OmnuxPZ//5vJbIi/UW/aMBQW+fj8rO6VyuqblnB95904/Gob6yIpCZdxe4StWzlVprbOnr8LNBCLDSurV4N5eX+M2Nf/jJ84hPpGoGISA9ZO0L2xBNwWdftw1/9Cv7mb/riW0UkF/SLZHbZyq2UX9jA4dUnU/n15zEm8qRPRCSdQlYqPpnulYporcJCf37llfDIIzB3rn/7XSCRTWR7soiIE9k6QtbY2J3IPvSQP+6JSP9R0Mnsvn2wcCHsPreFwTN3MHjmjh6vq2+siGRYxlYqxpZ58UWIYWPLvPzhDR9XnDuKjhZ/iL/8+r0EarYEticHVnUD25NBO1VEJL+89x5MnOjfVnzeeTBlSrZHJCJ9rWDPzG7b5q9avHo1DNgVuZiK+saKSCZZa0+x1o631s7o+idtW+5q5k/G6+l58NXrcTNn4kgWzaoMJrLjb1jJj9euD56ljbU9WUQkX/zXf8Gpp8LixXDddUpkRfqrgk1mA30T/+Zv4O7FZREnfeobKyL5auHMSu5aNI3KMi8GqCzzcteiafziru7iUVW3rMA1oL1Hsupke7KISC679174xjf8j7/5zeyORUSyqyC3GdfW+fjYV+upb+jgvY8eBiZz16JpOiMmIgUltKXYtm3+Qk8Dql9geOVeBp2+q8d7A8lqrO3JIiK57q67/H1kAV5+GU46KbvjEZHsKrhkNngebGQHpSPB1wi3Pb6RuxZN4+XF87I9PBGRtLv7brj1Vn/hk4kzO/BV7Or1nkCyWjN/co8zs6CdKiKSH1as6E5k165V+x0RKcBtxjoPJiL9yW23+RNZgO98J/pZ2kCyGm17snaqiEiue/RR/68bNiiRFRG/gluZ1XkwEelPWlv9v77zjr8Yypn4k9JYxypCtyeLiOSL5cvhnnv8RypERKAAk1mdBxOR/uSee/z/hFKyKiKFyONRIisiPRXcNuN4W+xEREREREQk/xXcymxgNUKVi0VERERERApXwSWzoC12IiIiIiIiha7gthmLiIiIiIhI4VMyKyIiIiIiInlHyayIiIiIiIjkHSWzIiIiIiIikneUzIqIiIiIiEjeUTIrIiIiIiIieUfJrIiIiIiIiOQdY63N9hgcM8bUA9szdPkRwIEMXTtVuTo2jStxuTq2XB0XOBvbBGttRV8Mpi8o1uWcXB0X5O7YNK7EKdalX67++9a4EperY9O4EpfWWJdXyWwmGWPWWmursz2OSHJ1bBpX4nJ1bLk6LsjtseWjXP7zzNWx5eq4IHfHpnElLpfHlq9y9c9U40pcro5N40pcusembcYiIiIiIiKSd5TMioiIiIiISN5RMtttebYHEEOujk3jSlyuji1XxwW5PbZ8lMt/nrk6tlwdF+Tu2DSuxOXy2PJVrv6ZalyJy9WxaVyJS+vYdGZWRERERERE8o5WZkVERERERCTvKJkNYYz5v8aYN40x640xzxhjxmZ7TADGmGXGmC1dY/uDMaYs22MKMMZcYYzZZIzpNMZkvWqaMeYiY8xWY8x7xpjF2R5PgDHmF8aY/caYt7I9llDGmPHGmOeNMW93/Xu8PttjAjDGlBhjXjPGbOga153ZHlMhydVYB7kb7xTrnFGsS4xiXWb9f/bOPD7K6vr/75MwkLAZVoWwqgWUNcpm0Qq4YF0QpRT9oZVatdZq6xZFi220WK1axa3WWi36FRUVjeKGG1SLoiwBBQGVikBQCcQggQBZ7u+P+0zyZPLMmklmJjnv12temTz3Wc6zfeaee889V7UuelTrIkO1LjoaUus0zNiFiLQ3xvzgfP8dcKQx5tIEm4WInAy8a4ypEJG/Ahhjrk+wWQCIyBFAFfAwcK0xZnkCbUkHPgdOArYCy4BzjTGfJcomPyLyE6AUeMIYMyjR9vgRkW5AN2PMShFpB6wAJiX6momIAG2MMaUi4gP+C/zeGLM0kXY1FZJV6yB59U61LjJU66K2S7WuAVGtix7VushQrYvargbTOu2ZdeEXPIc2QFJ4+saYN40xFc6/S4EeibTHjTFmnTFmQ6LtcBgJfGmM+Z8x5gDwDHBmgm0CwBjzHlCcaDsCMcZ8Y4xZ6XzfDawDshNrFRhLqfOvz/kkxfvYFEhWrYPk1TvVushQrYsO1bqGRbUuelTrIkO1LjoaUuvUmQ1ARG4VkS3ANOCPibbHgwuB1xNtRJKSDWxx/b+VJHiBUwUR6QPkAB8l1hKLiKSLyCpgO/CWMSYp7GoqpIDWgepdMFTr6oFqXfNCtS6lUa2rB81F65qdMysib4vIGo/PmQDGmD8YY3oCc4HLk8UuZ50/ABWObY1GJLYpqY2ItAXmA1cGtGQnDGNMpTFmGLa1eqSIJE0YTyqQrFoXiW3OOo2ud6p1TR/VuqaHal3D2KWkNs1J61rEYyephDHmxAhXnQu8BvypAc2pJpxdIjIdOB04wTTyQOcorlmiKQR6uv7v4SxTQuCMXZgPzDXGvJBoewIxxpSIyCLgFCCpEi0kM8mqdZC8eqda17RRrWuaqNZFj2pd06a5aV2z65kNhYj8yPXvmcD6RNniRkROAa4DJhpj9ibaniRmGfAjEekrIi2Bc4CXE2xTUuMMyH8UWGeMuTvR9vgRkS7iZHYUkUxs8oekeB+bAsmqdaB6FyGqdVGiWtc8Ua1LeVTroqQ5ap1mM3YhIvOB/tgsbl8DlxpjEt4CJCJfAq2Anc6ipUmUje8s4H6gC1ACrDLGTEigPacCs4F04DFjzK2JssWNiDwNjAU6A98BfzLGPJpQowARORZ4H/gU+9wD3GiMeS1xVoGIDAEex97HNOBZY8wtibSpKZGsWgfJq3eqdZGhWhcdqnUNi2pd9KjWRYZqXXQ0pNapM6soiqIoiqIoiqKkHBpmrCiKoiiKoiiKoqQc6swqiqIoiqIoiqIoKYc6s4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKyqHOrJJSiMgIEflERDJEpI2IrBWRQYm2S1EUJZ6o1imK0hxQrVPqixhjEm2DokSFiMwCMoBMYKsx5rYEm6QoihJ3VOsURWkOqNYp9UGdWSXlEJGWwDJgH/BjY0xlgk1SFEWJO6p1iqI0B1TrlPqgYcZKKtIJaAu0w7bkKYqiNEVU6xRFaQ6o1ikxoz2zSsohIi8DzwB9gW7GmMsTbJKiKErcUa1TFKU5oFqn1IcWiTZAUaJBRH4BlBtjnhKRdOADERlvjHk30bYpiqLEC9U6RVGaA6p1Sn3RnllFURRFURRFURQl5dAxs4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKytEknFkRmSMisyJcd7GIXNTQNimKojQmIpInIk8m2g5FUZSGQkT6iIgREZ1aUlEUoIk4s80NERkrIlUiUioiu0Vkg4j8MmCdM0VklYj8ICI7RORdEembKJu9EJFWIvKYY+O3InJ1iHUHichC51zqzCflNFLsc65JqYhsCCjvIiJPicguEfleROZGaKP/h9O/300iMiP6s/Xc9yYROTHMOu7z2iEiL4hIN6dsjogccNlWKiKrA+xuEbC/6oYfj3Pzf6ZGaH809+8c5zndJSLbReRxEWnvKu8jIq859+ZbEXnAbbuI/NPZvkpEpkdin5KaOM/kHudZLBSRu525B/3lA0XkTREpFpESEVkhIqcm0mYvROQq51n+wXlPWgVZr6WIPO/ogRGRsQHleSJSHvCOHuoqj/ndcI5Z5uzzW0cf2sZyvgH7DdvAHHBeJSLygYgc45RNF5FKD23q7rL7xID9TReR/wY5N//ngSjOIaL7F7DNH517eKJrmZdOpztlR4rIckf3vheRt0XkyEhtbA543eumQMBzUSwib4nIAFd5SxH5m4hslZq6x+xE2uyFiAxzNHiv83dYiHUvd573/SIyJ8R6Xu9Rtoi85FyrrSJyaRQ2BtWa+iC2Lr41zDoh65ABv3f+z3Uuu+s0UDvbHO5xbv5PSRTnEM39C1rPFpFxIvKpc313isiLIpLtKl8bYGOFiCyI1M5wqDMbJySOrYRiCXdvthlj2gLtgauAR0Skv7P94cATwDXAQUBf4EGgspFtDEce8COgNzAOuE5ETgmybjnwLPCrEPu73BjT1vn0Dyh7AfgW6AV0Be6K0tYs53r/DLhJRE6Kcvv6cLlz7H5AFnCPq+wO1zm3NcYMjWH/WQH7mBfhdnlEfv+WAGOMMQcBhwItAHdl9+/AdqAbMAw4HrjMVb7a+X9lhLYpcSKe2hbF/oY6z/zxwFTgQlfZAuAt4BDsu/w74IcE2Bhq+wnADOAE7PtxKHBziE3+C5yH1Sgv5gW8o/9zldX33TjDudbDgBzghhj3EwvznGN3wV6DF0REnLIPA865rTFmW5T7PyNg+8sj2SiG+4eIHAZMAb7xKA7Uaf9v8Tbsb0pHoDPwMvBMJDYq8SVBOneH8/xnA4XA2HkkPQAAIABJREFUo66yG4DhwEigHTCWOP/+xUHnWgIvAU8CHYDHgZec5V5sw/7uPxZin8HeoyeBr4CDgdOAv4jIuCjM9WtNZ2AR8FwU28YDfx3yXOCPAXWloQH6cEeU+w78fciKZKMY7h8Er2d/Bkxwjt0d+AJ4yF9ojBno3w77PG8hjvcgJZ1ZEckRkZVieyXnARmusg4i8oqIFDktna+ISI8Q+7pQRNY56y4Ukd6usntFZIvYltkVInKcqyxPbGv6kyLyAzDdabX4s4gscWx7U0Q6u7YZ7bQIlYjIanG1wDvb3ioiS4C92B/PsBjLa0AxMMRZPAz4yhjzjlO+2xgz3xiz2TlWuojcKCIbHTtXiEhPp+zHIrJMbA/aMhH5cSgbRWSA2BbFYrG9Az+PxG6HC4A/G2O+N8asAx4Bpgc5zw3GmEeBtVHs32/3yUBPINcYs8sYU26MKYh2P44dyx0bhjn7ThORmSLytdgexydE5CDXsSc6LVIlzvU7wln+f1jHeoG4WuLCHLsYmA8MisX2BiCa+7fFGLPDtagSONz1f1/gWWPMPmPMt8AbwEDX9g8aY94B9sX5HFIOEblebI+lPyrjhCDrhdKbXzq6t1tE/iciv3aVjRXb8n29iHwL/NvRu2ed53u380wPd23TXUTmO7r7lYj8zlVWRysjPVdjzJfYhhD/+9YZ+6w8Yow54HyWGGPcPXLuqJSN/kqDY+PLjlZ9KSIXh7JRRA4SkUdF5Bvnes8SVw9xGC4AHjXGrDXGfA/8Odh5O+cw2zmHqBsc4/VuOO/dQpxrDcH1yyk7wllW4qwz0Vl+CTAN27hVKhG0vhtjyrEVqUOATvU5jzgR8f1z8SBwPXAg0oMYY0qMMZuMMQYQ6upisyaS38lQ76mIHCY2Km2n2MimuSKS5dp2k6NznwB7RORwsb1eF4jIZmebP7jWTxORGY6u7HQ0saNT5u+B+5WIbAbejfQ8jTFl2MZ6d6/YCOBFY8w2px63yRjzhMuWnmIjtYocWx5w2ehZJwlmo4SoB4dhLLZherYxZr8x5j7sczw+yHm+YIzJB3aG2Ged90hstMhY4Fan/rYaeJ7ajZwRYYypAOYC2SLSxdl/qN+GViIyW0S2OZ/ZzrI2wOtAdwmIHAlz/A+xdchkqMeNJYr7FwpjzHcBjY2htOwn2EaF+dEeJxgp58yKbTHIB/4P25r5HDDZtUoa8G9sa2ovoAzwDC0SkTOBG4GzsS3D7wNPu1ZZhhWXjsBTwHMikuEqPxP7QmVhXw6A/wf8Ettj0BK41jlWNvAqtlWqo7N8vv9lcjgfuATbavF1BJfDL1wTsQ/Gl87ilcAAEblHbNd/YNjY1djWoVOxPbsXAnsdUX4VuA9bobgbeFVE3JULt41F2B6Sp5zzPQf4uzhhUiLy/5wfCS+7O2B74Va7Fq/G5cDEwG3Oj88SqR2qNxrYADzuiP4yETk+lgOIyGisCPmv9XTnMw7bANEW53kTkX7Y5+lK7PP1GvZHuaUx5nxgMzU9B2Fb4sRW5CcDMTni0RLv+ycix4rILmA39jzcIVOzgXNEpLXzrvwU69AqLsRGX1wOjDDGtAMmAJs81gunN9uB07Hv/y+Be0TkKNcuDnG264193wEmYnuNsrA9SNWVJ2xv6WpsD8MJwJVie7f8eGllJOc7ADiOmvdtp/P9SRGZJCIHB6w/EhuVkusc6yfUXJ9ngK3YVuOfYVv23T/agTbOASqwP8g5wMnARc5xejlOXK8gpg+k7rtxcICWRsMZTkVrrYj8JsZ9hERso+9Pca51KP0SER/2nr+J1f4rgLki0t8Y80/s9fP3Rp4RwbFbYXU0sNGrQYj3/RORKcB+p2HZi8uc+7dCRCYHFooNC9wH3A/8JeITaeJE+Ds5hyDvKbZifhv2nT8C26idF7D9udievixnPwDHAv2xWvZHqWnEuQKYhI0Y6Q58j3W+3BzvHGsCEeI4RudSo3MAS4GrReQyERksUh2xgFhn/RVsPbEPVnf9PfrTCVIn8bIxXD1YbIdQsKFVA4FPnMYYP58QYz0uxHskAX/936N2CB0f4hfY35LvncWhfhv+gK1DDgOGYnvKZxpj9mD1clukkSNiGYO9Po1Vj4v3/QtWz67WVazfdS0QrF57ATDfuYbxwRiTUh9s5WQbIK5lHwCzgqw/DPje9f9i4CLn++vAr1xladgex95B9vU9NhwArCC+F1C+GPuQ+/+/DHjD+X498H8B6y8ELnBte0uE12AsUAWUAPuxLSBXBqwzGtvSV4T9kZwDtHXKNgBneuz3fODjgGUfAtO9bMSG/70fsP7DwJ8iOIeegAEyXMtOAjaF2e5w+9jWWT4K62C3wr4ou4HDnLJ/Osf6FeDDOt0lQOcI7OzjbOt/QQ02RFmc8neAy1zr98eGRLcAbsL2Nrqfr0JgrPP/JuDEMMdf7DyTJc62c4EuTtkc596WuD6Pe9jt/hzAeVdCrHNEQ90/Z71s7PvTz7XsCGAFtjJhnHMTj23/638em+PHef63AycCvoCyPOBJ53tIvfHYbz7we+f7WOc5yQjY99uu/48Eypzvo4DNAfu7Afi3a9v3wp2ba1uDDRve43x/GmjlKu+BrZxtxOrge8CPnLKHgXuCPK+VQDvXstuAOV42YkPZ9gOZrmXnAosiPIeNwCmu/33OufQJs91WHH0IuNbdgXTgx9jwu3M9to363cBqUClWLw1Wz7KcsqD6hW1g+BZIc5U/DeQ53+cQ5Dc54Jk6gNWc7dheoqOdsulYLXDr0kYPu93le4H/hlnn4njfP+zvzhf+MgJ0HTgK2zjcAtuAvBs75CJwP22wdYbTormHTf3jcT37OPeiRbTvKdYRLQjY94Ue++7hWvYxcI7zfR1wgqusGzW/9/5tD43wvOZQ8/tdhQ2hHeIqTwd+i41M2Y+t917glB2Drdu18NhvqDpJHRuJsh4ccKybgGcCls3F0YEQ283C0V7XsnDv0X+xjT0ZzjtVDGyI8FrnUaM1lVhHdqxTFu63YSNwqqtsAk49B6uFW8Mc23/NS7A+xDrgd65y/++dW6cmeNjt/hjg8BDreD7/9b1/hKhnB6zXEVsHGe1R1to537GR2BjpJ+V6ZrE/6oXGuSoO1b2YTs/Ow06IxQ/Yik6WeIeH9QbudVpoS7Avh2Ar24jItU7oxS6n/CBsD6ifLR77dI952ottFfMfa4r/WM7+jsWKYaj9BWObsbHp7bE9qbXCAowxS40xPzfGdMFWPH6CbWEC+/Ju9Nhnd+r2CH+Ncz08bOwNjAo4p2nYXp1wlDp/27uWtce+HFFjjPnI2HDq/caYx7E/AP6kMGVY8XnU2BCVZ5zzGBPFITpj7+U1WAHzOcsDr9nX1PzI1iozxlQ5x3Vfz2pE5B+ucJUbXUW/M8ZkGWOyjTHTjDFFrrK7nDL/54JAu93l2F70OucWsI91Ya4F1OP+GWMKsb2uz0B1z94b2HHNbbDXugPw1wjsaFYYG3Z7JfYHbLuIPBMktCmk3ojIT0VkqdNbVIJ9V9zaVmSMCQxbDdS2DLFjrnpjQ63cx7oR+w74iUbbwFZW2mIbzEZhnwv/NdhqjLncGHOYc+w92N5YCK1txcYY9/MZTtt8wDeuc3oY2wsZCaXUfTcgBn0zxnxmbKhhpTHmA+BebO9BvJhkbC//WGAANc9BKP3qju1FrXLtJ/B6ViMi01za9rqr6FlHc7oaY8YbY1a4ypYG6NJhHna7te0y6jIpYB+PhL0almjuXx624WiT146MMSuNMTuNMRXG9jjNxfaCBa63B/gH8ISIRPqcNXdCvqcicrCjkYVOffBJauscRF+Pe9F1rHVYRyhWrbvLeXb7YOsp1WMQnff9QWPMGGyv8a3AY04vcU/ga2NDZgMJVSfxsjFkPTgMge8JxF6PyyPEe4StW/bF2v4Q9l6GTL4UwLPOtT4YWAMc7SwP99vgdT2DhhNL7SRH7siPzsaYDsaYI4wN53VzVIBOLQy0O0DrPM/N9Yl0LHFU9y9MPdu9XjE1428Dx2WfjX3G/hOhjRGRis7sN9hYd3e4gfuBuQYrCKOMMe2xThzUDk/wswX4dcBDkGmM+UDs+NjrgJ8DHZwHaFfAfozHPoOxBfuiuo/Vxhhze4z7sxsYsx/bAjJYRCYFWWcZ1lHwh2RsAQIrBmBb/noHLOuFbY33snEL8J+Ac2prjAkbBmfsOKRvsGEbfoYSw5jYYIeg5l59Qt1rG8u1rjTG3I1tTfVXnAKvWS9sj8J3gWXOM9uTmutZywZjzKWmJlwlqUPN4nD/WlDzDHbEXrcHHJHciR0qkHQZapMBY8xTxphjsc+WwdvpD6o3TkjnfGyEwcGOtr1G/bTtq4BjtTPGuO9fLO+bMcY8i40O+WOQdbZgw/wi0baOItLOtSyctu2ndkNPe2NMpOFza6n7bnznPNv1xa1tccMY8x9sb5E/OV4o/doG9JTaSQDd1zNQ2+a6tO2n8ba9AYjm/p0A/E5s5uNvsdfoWRG5Psi+Q92/NGzPRSSORHMhlHaEe0//4mw/2KkPnkfdax+t1v00QOsyjG2gjWV/dgObz+T3WKcy06O8zBjzILZn70jHjl4ejgKErpN42Ri0HhyB6WuBIQH18SHEVo8L+R4ZY742xpxujOlijBmFbZT4ONqDGDuM4RIgT+zMEOF+G7yupz+cuM69NrUTMW2O1r5Gpr73L5SWtcA2KgU6yxcATxhjon5PQpGKzuyH2BfzdyLiE5GzsTHsftphW7hKxI4B/VOIff0DuEFEBkJ1IoEprv1U4IRyiMgfqXtTouFJ7LinCWITMGWITbQSNDlVpBhjDgB/w6nwiR2beLG/dVfsuLOJ2DEYAP8C/iwiP3Ji+IeIHQv0GtBP7FjJFmKnaDkSOzbDi1ec9c937oVPREaIK0lIGJ4AZopN2jUAuBhbmaqDY2cGdhwyzvVr5XzPcq5rhmP3NGwjhn/M5YtAB7FJHdJF5GfYUMUlzvZ5IrI4QpsBbscmN8nAhtZdJSJ9xY5N/gs2s1wFNsz7NBE5QewYs2uwP7z+H4nviDDRV5ISzf2b5m+lFJtc4lZsOJT/x+Ur4DfO/cvCCt4nru1bOtdbAJ9zr1NRv+qFiPQXkfHOs78Pq3VVHquG0puW2DChIqBCRH6KHWcWKx8Du8UmUsl0jjdIREbUY59ubgcuFpFDnGftZrGJWtLEjiO/kBptexT4pfPOpYmdzmGA4/R+gB3vkyEiQ7DDDjzn5TXGfIMdD/o3EWnv7OswiXys/RPAr8ROvZIFzCTIuwHVSUb8+RhaOjaKU3amc94idkzw77AZKP3bBn03nHseTaVhNnCSiAwltH59hO2xus7R/bHAGdSM22sK2hbp/TsB25gyzPlsA36NM5ZSRH4mIm2dZ+hkrEP1slN2ktiElulipyq7m5pQRMUS9FmK4D1th+192iU2j0BuPW35B3Cr8xuG2Cn/zqznPgEwxryFfXYucfZ9pfP+Zjq/ixdgz6cAq7nfALeLSBvnnfdHmoWqkwQ7p2D14HAsxvZM/87RMH+2cM/kV855ZGBDqP2/S36HPNx7dISItHP07jzsb9bdrn1vkginJjPGbMAOu7kugt+Gp7H1nC7O780fXWXfAZ3ElfQzxVhMhPdPwtSzReRsp36SJjY3x93YkP5i1z56YMdyPx73MzFxjFlurA82XXkBtit8nvPxjwPs7tygUuBz7MtgcMYW4Boz6/x/PvApNoZ7C/CYszwdmz78B6xoXIcrhh/X+DTXvgL3PZ3aY3hGYbvWi7EVyVeBXkG2fR24Mcj5jyUgTh/bmrsDW6EYhE3O8Z1zHTZhe298rnObiXUgdmMTXfVwyo7Fjl3c5fw9Ntj5Ocv6O+dRhB2H8C4wzCmbBqwNcR9bua7xd8DVrrJeju3+69PHuY/uzyanrItzDrux4wWWAicFHOs45z6XAsuB41xlj2Kz5HnZ6D9uC9cywbZcXYFtEPqj8+wU4aQ4d617FjZl+S7n3g90lZ2JTW5RAlwb5Ph1rrmrbA52rESp67MjmN2ubQLHzJYGfK5ugPt3KzYkaI/z959AJ9f6w5xz/R77HD+L7TV0X4fA+z820VrU2B9sq+nHzrNejG1Q6u6U5eHSJELrzW+de1aCTab3jOu5GEtdfQncd63nC6u7T2PD877HvoOeWokNQX49xDlWjwdyLXsd22DXBvtDuMl5vr51jpsd8M594lyjL6kZf9TDuV7F2FDkS4Odn7PsIGw421bs+1tAzdi5Ws93kPO42rnGP2AjDdzjftcC01z/b/J4vvs4ZU9jtbUUWI9rvFW4dwP7+7YkhI2bCBi375zzfNe1DKZfA51lu5x1znKV/QhY5Txf+UGOXeeau8qmYytZgdo0IoTd06k7ZrYsYPsXG+L+hbqm2IQ6u5z9rPY/Q07ZFOeellLzjg4JZlNz/BDwO0ld7Qn1ng7E1mNKnefxGlza5nGvau3b9X7586ykOc/FBqy+bAT+4rVtuGcMj3Hl2GEVhdjf1kuoqYuVYHX/dNe6vbC5DnZifzPvc9noWSfxOj9nuWc92CkLWhd1ynMcO8uwyUdzXGW1tB77zgdqVV6E79GVzvnswY6fHe4qa+ncjwFB9pVHXX0f5eyrK6F/GzKwQ/m+cT73UTufxGPOPSjB+S0OOI7nNXeVG8cOt07NDma3axv3mNly6mpl13jeP8LUs7H14a+cc/kWW6foHXCsGwjIsxOvjz+JjaI0W0RkFTapQzxCABVFUZICEfkX8JypPQZLURSlySAixwK/Ncacm2hblMSgzqyiKIqiKIqiKIqScjS7MWeKoiiKoiiKoihK6qPOrKIoiqIoiqIoipJyqDOrKIqiKIqiKIqipBzqzCqKoiiKoiiKoigph9eEy0lL586dTZ8+fRJthqIoScaKFSt2GGO6JNqOeKFapyiKF6p1iqI0B6LRupRyZvv06cPy5csTbYaiKEmGiHydaBviiWqdoiheqNYpitIciEbrNMxYURRFURRFURRFSTnUmVUURVEURVEURVFSDnVmFUVRFEVRFEVRlJQj4WNmRSQdWA4UGmNOj3b78vJytm7dyr59++JvnEJGRgY9evTA5/Ml2hRFSWlU65Ib1TpFSQ5U6xoW1TqlqZFwZxb4PbAOaB/Lxlu3bqVdu3b06dMHEYmvZc0cYww7d+5k69at9O3bN9HmKEqqo1qXpKjWKUryoFrXcKjWKU2RhIYZi0gP4DTgX7HuY9++fXTq1EkFrwEQETp16qSto4pST1TrkhvVOkVJHlTrGg7VOqUpkugxs7OB64Cq+uxEBa/h0GurKHFBtS7J0WurKMmDvo8Nh15bpamRMGdWRE4HthtjVoRZ7xIRWS4iy4uKihrJusjZuXMnw4YNY9iwYRxyyCFkZ2dX/3/gwIEGPfb69esZNmwYOTk5bNy4kfvuu48jjjiCadOmRb2v2bNns3fv3gawUlGaN6p19Ue1TlGUxkK1TklG8gsKGXP7u/Sd8Spjbn+X/ILCRJuUNIgxJjEHFrkNOB+oADKw48heMMacF2yb4cOHm8DJtdetW8cRRxzRkKZGTF5eHm3btuXaa6+tXlZRUUGLFg0zNPn222+noqKCmTNnAjBgwADefvttevToEfW+/BOXd+7cuU5ZMl1jRfFCRFYYY4Yn2g4vVOvqj2qdoliSWetiQbWuNqp1ihf5BYXc8MKnlJVXVi/L9KVz29mDmZSTnUDLGo5otC5hCaCMMTcANwCIyFjg2lCVu1Ri+vTpZGRkUFBQwJgxY2jfvn0tMRw0aBCvvPIKffr04cknn+S+++7jwIEDjBo1ir///e+kp6fX2t+KFSu4+uqrKS0tpXPnzsyZM4eCggJmz55Neno677zzDv379+d///sfP/3pT7nwwgu55JJLuOKKK1izZg3l5eXk5eVx5plnUllZyfXXX88bb7xBWloaF198McYYtm3bxrhx4+jcuTOLFi1KxGVTFJ5+Gn74AX7960RbEj9U61TrFCWQt9+GpUvB8VmUJEe1Tkkkdy7cUMuRBSgrr+TOhRuarDMbDcmQzbhJsnXrVj744APS09PJy8vzXGfdunXMmzePJUuW4PP5uOyyy5g7dy6/+MUvqtcpLy/niiuu4KWXXqJLly7MmzePP/zhDzz22GNceumltcT0jTfeYNGiRXTu3Jkbb7yR8ePH89hjj1FSUsLIkSM58cQTeeKJJ9i0aROrVq2iRYsWFBcX07FjR+6+++7qbRUlEdx7L1x9NfzkJ3DRRRDw268kKap1ihIdTz8Nv/wl9OsHV10Fbdok2iIlElTrlESxraQsquXNjaRwZo0xi4HF8djX2LF1l/3853DZZbB3L5x6at3y6dPtZ8cO+NnPapctjtGqKVOm1GmJC+Sdd95hxYoVjBgxAoCysjK6du1aa50NGzawZs0aTjrpJAAqKyvp1q1b2OO/+eabvPzyy9x1112AzQ64efNm3n77bS699NLqEJmOHTtGfW6KEm9Gj4aPPoLu3eHVV5uuI6tap1qnNG8uuggefdR+X7RIHdlIUK2zqNY1X7pnZVLo4bh2z8pMgDXJR1I4s02RNq5fqBYtWlBVVZPE1J8S3RjDBRdcwG233RZ0P8YYBg4cyIcffhjV8Y0xzJ8/n/79+0dpuaI0LoMGwdq19vvatdC6dWLtUaJDtU5RIuPcc+GZZ+z3r76CTp0Sa48SHap1SqLIndDfc8xs7gR9FqAJOrOhWtxatw5d3rlz7C12oejTpw+vvPIKACtXruSrr74C4IQTTuDMM8/kqquuomvXrhQXF7N792569+5dvW3//v0pKiriww8/5JhjjqG8vJzPP/+cgQMHhjzmhAkTuP/++7n//vsREQoKCsjJyeGkk07i4YcfZty4cbXCUdq1a8fu3bs1HEVpVO65p8aR3bUL2rdPrD2phGqdRbVOSQWefrrGkd2yBWLI59NsUa2zqNY1X/zjYu9cuIFtJWV0z8okd0J/HS/rkOh5ZpsFkydPpri4mIEDB/LAAw/Qr18/AI488khmzZrFySefzJAhQzjppJP45ptvam3bsmVLnn/+ea6//nqGDh3KsGHD+OCDD8Ie86abbqK8vJwhQ4YwcOBAbrrpJgAuuugievXqxZAhQxg6dChPPfUUAJdccgmnnHIK48aNi/PZK4o3Dz5ox8hOngz79qkj2xRQrVOUusyfD+edB8cfbxvt1JFNfVTrlMZmUk42S2aM56vbT2PJjPHqyLpI2NQ8sZDsKdybKnqNlXhzyy1w221wwQXwwANQ31kOdLoKJR7oNVbizSOPwOWXw6RJ8O9/138YhWqdEg/0GseP/IJC7TFtAFJiah5FUZofxkCHDrZ34oILbO9sU032pChK82bECFi+HH76U3j8ccjISLRFiqLEk8D5XwtLyrhq3iqeW76ZTTvL1MFtJNSZVZQmSDK2FBoDaa6BDY89Vvt/RVGUpkLv3rB5s/3+4ovQqlVi7VEUJf54zf9qgCUbi6v/Lywp44YXPgVIeD2sqaJVSUVpYvhbCgtLyjDUCGl+QWHCbPL3yPqpqFBHVlGUpsmJJ9Y4snv2qCOrKE2VSOd5LSuv5M6FGxrYmuaLVicVpYnh1VKYSCGtqrLzAe7aBVlZUFmpocWKojRNbrkF3nnHfi8r06nGFKUpE808r5E6vkr0qDOrKE2MYIKZCCGtrITf/x6eegpmzIDiYu2RVRSl6WGMdWTvvdfmA6io0DGyitLUyZ3QH4lw3WgcXyU6tFqpKE2MYIKZJkLfGa8y5vZ3GyXkeP9+Ox3FAw9YR/YvfwGJVPUVRVFSBGPgyivhT3+CadNsPgCNPlGUps+knGymje4V1qEVrOOrNAzqzMaZvLw87rrrrpjLFSUY+QWFjLn93bAOae6E/mT66takKo2pNYZ2Zv6nEe0vFsrKbK/EM8/An/8MN9ygjmxTZezYsQROraEozYWqKhttct99cPHFMHu2Rp+kOiUlJfz9738HYNOmTQwaNCjBFinJzKxJg7ln6jCynY6EwKqOANNG99LkTw2IZjNOUSoqKmhRz8k5KysrSdfm45TAK/17sOx4/v/92YzTRKgMmE+6rLySuUs3418az2x7paXQrp39fvDBMHNmvXanNBPqq2nx0EQl8SRjJvZgVFbWniP7H/9QR7Yp4HdmL7vssrjt0xiDMYa0ejwgqnHJy6Sc7GqdSiUNayo0O9mNtHcrGm699Vb69evHsccey4YNNsnOI488wogRIxg6dCiTJ09m7969dbbbuHEjp5xyCkcffTTHHXcc69evB2DBggWMGjWKnJwcTjzxRL777jvA9uqef/75jBkzhvPPP5+8vDwuvPBCxo4dy6GHHsp9991Xve8nn3ySkSNHMmzYMH79619TWWmdoLZt23LNNdcwdOhQPvzww3qfu9I4RJvUaVJONktmjOer20+jKsCR9RO4NB5JovbtgxNOsN8PPxy+/bZeu1PqQUNo3Z49ezjttNMYOnQogwYNYt68ebXK33zzTY455hiOOuoopkyZQmlpKQC33HILI0aMYNCgQVxyySUY55kcO3YsV155JcOHD+fee+9l7NixXH/99YwcOZJ+/frx/vvvA7bhLTc3lxEjRjBkyBAefvhhABYvXsxxxx3HxIkTOfLII+t9fkpiScZM7MGorLQhxX78PbRK4xNvrZsxYwYbN25k2LBh5ObmVi8PpkOlpaWccMIJHHXUUQwePJiXXnoJsL26/fv35xe/+AWDBg3i/fff54gjjuDiiy9m4MCBnHzyyZSV2VwWweqD06dP59JLL2XUqFFcd9119TovpXFw17+WzBivjmwj0KyktyF+KFesWMEzzzzDqlWreO2111i2bBkAZ599NsuWLWP16tUcccQRPProo3W2veSSS7j//vtZsWIFd911V3Ur4LHHHsvSpUspKCjgnHPO4Y477qgiR/yjAAAgAElEQVTe5rPPPuPtt9/m6aefBmD9+vUsXLiQjz/+mJtvvpny8nLWrVvHvHnzWLJkCatWrSI9PZ25c+cCtjI6atQoVq9ezbHHHhvzeSuNS32SOjVWtr2yMjjnHPj4Y7jnHvjii5h3pdSThnIK3njjDbp3787q1atZs2YNp5xySnXZjh07mDVrFm+//TYrV65k+PDh3H333QBcfvnlLFu2jDVr1lBWVsYrr7xSvd2BAwdYvnw511xzDWB7Hz7++GNmz57NzTffDMCjjz7KQQcdxLJly1i2bBmPPPIIX331FQArV67k3nvv5fPPP6/XuSmJJ9kysQejogJ+8xuYNw+uu846sjqMIjE0hNbdfvvtHHbYYaxatYo777yzenkwHcrIyODFF19k5cqVLFq0iGuuuaa6we6LL77gsssuY+3atfTu3ZsvvviC3/72t6xdu5asrCzmz58PBK8PAmzdupUPPvigWk8VRalNs4pXCPVDGWvLyfvvv89ZZ51Fayf//sSJEwFYs2YNM2fOpKSkhNLSUiZMmFBru9LSUj744AOmTJlSvWz//v2AFa6pU6fyzTffcODAAfr27Vu9zsSJE8nMrHFOTjvtNFq1akWrVq3o2rUr3333He+88w4rVqxgxIgR9hzLyujatSsA6enpTJ48OaZzVRJH96xMCj0czUgc1dwJ/WuFKIMdw+HVXxtrtr09e+CMM+Dzz+Hf/4bp02PajRInGkLrAAYPHsw111zD9ddfz+mnn85xxx1XXbZ06VI+++wzxowZA1gn9ZhjjgFg0aJF3HHHHezdu5fi4mIGDhzIGWecAcDUqVNrHePss88G4Oijj2bTpk2A7fH95JNPeP755wHYtWsXX3zxBS1btmTkyJG1NFJJXZIpE3swysttYrvFi+GOO8DVcac4iEg6sBwoNMac3pDHaiit8yKYDvXo0YMbb7yR9957j7S0NAoLC6sj6nr37s3o0aOr99G3b1+GDRsG1GhcqPogwJQpU3RImKKEoFk5s435Qzl9+nTy8/MZOnQoc+bMYfHixbXKq6qqyMrKYtWqVXW2veKKK7j66quZOHEiixcvJi8vr7qsTZs2tdZt5ZqNPT09nYqKCowxXHDBBdx222119p2RkaGimIJ4OaSZvvSIsuMFjqHtnpXJuAFdmL+iMKb9BbJtG2Rn2xC7xx+3FT0lsTSU1vXr14+VK1fy2muvMXPmTE7wx5Rjx4SddNJJ1VEjfvbt28dll13G8uXL6dmzJ3l5eezbt6+6PJim+fXMv+/777+/TqPg4sWL62yvpC71abRrDNz5AO68E669NrH2JDG/B9YB7Rv6QI1ZrwumQ3PmzKGoqIgVK1bg8/no06dPtcaFq7OVlZWFrA967UNRlNo0qzDjYD+I9fmh/MlPfkJ+fj5lZWXs3r2bBQsWALB79266detGeXl5dYivm/bt29O3b1+ee+45wIrk6tWrAdval51tHZDHH388aptOOOEEnn/+ebZv3w5AcXExX3/9dUznpyQHk3Kyue3swWRnZSJAdlYmt509OOKW58AxHLMmDa7X/vxs3mwdWbBT76gjmxw0hNYBbNu2jdatW3PeeeeRm5vLypUrq8tGjx7NkiVL+PLLLwE7pOHzzz+vrtR17tyZ0tLS6l6NaJgwYQIPPfQQ5eXlAHz++efs2bOnXueiJB9emdhjbWSLN7t21Tiy06apIxsMEekBnAb8qzGO1xBa165dO3bv3l1neTAd2rVrF127dsXn87Fo0aKo61uh6oOKEoyGyIuRqjSrntn69G4F46ijjmLq1KkMHTqUrl27Vof2/vnPf2bUqFF06dKFUaNGeQrj3Llz+c1vfsOsWbMoLy/nnHPOYejQoeTl5TFlyhQ6dOjA+PHjq8eGRcqRRx7JrFmzOPnkk6mqqsLn8/Hggw/Su3fvmM9TaTgizXznzpYXD+q7v+Ji8D9Sv/gFXH99nAxT6k1DaB3Ap59+Sm5uLmlpafh8Ph566CGudWr1Xbp0Yc6cOZx77rnVIXKzZs2iX79+XHzxxQwaNIhDDjmkWiOj4aKLLmLTpk0cddRRGGPo0qUL+fn59ToXJfnwiiJJVCZQty4f3KYNH/1xLAA5OfDkk41uTioxG7gOaNcYB2sIrevUqRNjxoxh0KBBHHHEEdXLg+nQtGnTOOOMMxg8eDDDhw9nwIABUR8zWH1QUbyIZoaL5oCYIJlOk5Hhw4ebwPkM161bV0tswqEps6Mn2musRE6gIIH9IY6ll7Qx2bEDTjoJVq2CSy+Fhx5KrD0issIYMzyxVsQP1brEoFrXdKjP8+/W5aoD6WyfP5z9mzszaPh+Pl3WKvwOGpBk1joROR041RhzmYiMBa71GjMrIpcAlwD06tXr6MCeTNW6hke1LrUZc/u7nkMysrMyWTJjfAIsij/RaF2z6pmF+PduKUp9aMzkFfHiu+9sOPH69fDGGxAwfEhJElTrlOZKfXst/LpctT+dna8NZf/WjnQ6fRXtxxQDTaOi2ECMASaKyKlABtBeRJ40xtQagGKM+SfwT7ANd/U9qGqd0txIhWR5jUmzGjOrKMmGV8saxC5IDT2GorAQxo6FDz+E//xHHVlFUZKP+k7xs62kjKp9Ldj+7Cj2fnEwXc9eTtuBhc22ohgpxpgbjDE9jDF9gHOAdwMdWUVR6k9D5cVoCJYvt1OXNeTIoGbXM6soycLM/E+DloUTpMCwqnEDuvDK6m8oKSuvXsfdGwH1H4f24Yfw4x/b7++9ByNHRrW5oihKo1DfXouOlR1Zea+dVqrLWcvJPKwISM6KoqIojUMyhbM3VF6MeLN2LfjTZKQ1YPdpk3BmjTGIzljeIKTSmOpUYmb+pzy5dLNnmUBIQfIKoQu2r7LySm5esJZ95VX1ShSweDGMG2e/3303uKYXVRoR1bqGQ7Uu9fFXNoPdyUic0fXrYeVd1pFtO+xrWvez84UmY0UxmTHGLAYW12N71boGQrUuesINXWhsRzeZkuUFY9EiOOssmwX+wQdh4sSGO1bKO7MZGRns3LmTTp06qfDFGWMMO3fuJCMjI9GmNCnyCwqZG8T5BDCEdjK9QuhC8f3e8jrLAsflhhLiL7+scWQfesgmfFIaH9W6hkO1LvXxSqbnJhJn9LvvwJ8TZ+J5u9kxcCPbSkjKimJTRrWu4VCti41wQxcSkVk4mceKz50L06dDv37w+uvQq1fDHi/lndkePXqwdetWioqKEm1KkyQjI4MePXok2owmRaieA7DZ6EIRr3Fb/v2EanH8dms6vz+vA2mZwoD/t5ZDRnUFklM8mzqqdQ2Lal1qE6qRLzsCZ7SoyOYDaN0a5syBKVPaocmeEoNqXcOiWhc9oYYupGIiz4bCGDjlFHjzTdsJ8sILkJXV8MdNeWfW5/PRt2/fRJuhKBETyhkNF2IMtpcgWOKoQHzpQkWl8XSe/SF3wYR4xqOb2PjkUUjL/Rz8swL2dC4l97lvuHnBWkr2lmtvRSOjWqc0ReIVnhdMVwXCTlWxZYtNZldVZTO0H3dcco2Pa26o1inJRrB6V/esTM0s7LBvH2Q6fTHdulktbdmycY6t2YwVpZEJNW7rx4d1DFthyp3Qn0xfetjjtGmZDgZPR9YdcucluKVru7PhwTGYSqHLpJW07FIKQHmV4fu95RhqenDjnTFZUZTmgT8qpLCkrN6aEmt2z8WLbQhcYaHtkfU7svGyS1GU1Mer3uWvR6VSZuGGorS0xpEF2Lq18RxZUGdWURqd3An9CTYKaNPOmtDfnFvepM+MV+kz41WG3fwm+QWF1b0FZeWVpLl2kulLo0NrH4INqTtvdC/2lVdRXuUd0FxWXsk1z66mz4xXSQsYk7R7VU92vpIDwMHnfoiv056g5xLNdBeKoihuIp1CJ9yUY/kFhXy/Z3+d/YcbJ7twYU0+gLffhmOOic4uRVGaB5Nysrnt7MFkZ2VW17NuO3swk3KyQzq6zYFvv4Xjj7ffjznGhho3ZOZiLxIWZiwiGcB7QCvHjueNMX9KlD2K0lhMysnmynmrPMu2lZSRX1BI7vOrKa+scURLysq5et4q0tOlernbTy0rrwKEe6YOA2wygsowGQv95e71StdkU7xwCABdz1mKr+PesOdT6Bp7q2F53qjeKUpdIgnPiySLaKBe+pl8dPAEKe+9Z8d2Afz73zXTR0Rql6IozYtgCZdSIbNwQ7FundXRnTvh1Vfh1FMTY0cix8zuB8YbY0pFxAf8V0ReN8YsTaBNitLg5BcUIniH/2a19nHNs6s9HdEqoMqjwubH3XMQTbZjP/u2dqB44WAADp72ARk9vo9ou3SRsBVORfVOUQIJNQ7NT7Be0psXrOXOhRtC5g9YtN47gdCaNTBliv3+zDMwdWr0dimKovhJ5szCDcVLL9mMxa1a2eEaw4cnzpaEObPGTnRV6vzrcz46+ZXS5AmVzbh0X0XYHtVQxNpzsG9LB3YsyCG9fRkHn7OUFu3qhuwFo9KYoBXOa55dDUTu0DbV3l3VO0WpS+6E/uQ+t7rWcAhfmtQKzwumad/vLfecdsxNYUkZfWa8SofWPv50xkAm5WSzejWccw6kp9tehQEDatb3609hSVmdBsfmFDaoKIoSikmTrDML8NVX0KdPQs1JbDZjEUkHVgCHAw8aYz5KpD2K0hiEcjiDjXGNlDQRWrUQ9pZXRbxN2VedKXphOC27/kCXs1aQ3jZyRxbs2JFg51RpTMQ9tE29d1f1TlE8CEwgEPB/NNnbg/H93nJyn1/Nxs983HpFVw45BN5/Hw47rGadQP0xjimGyKb2URRFaeoYAz172oR5ABs3Jt6RhQQngDLGVBpjhgE9gJEiMihwHRG5RESWi8hynXNMaQo0ZKhapTFRObLFbw1k+7OjaJG1ly6Tl9Oi7f46iQx8aUJ6mnfKKl+6hMzmB5EnTmnqSVfC6Z1qndLcuHPhhjpjXcsrTa13PtLs7eHY+VFvrj2vKz6fHdvldmQB8l5eW0d//I7skhnj1ZFVFKVZU1EBv/1tjSO7axccemhibfKTFPPMGmNKRGQRcAqwJqDsn8A/AYYPH65heUrKkzuhf60egFgRp9sg1pdix6tD2LOmJwBdJi8jvfUBpo3uxfDeHeuE+gLcvGBtrbA+d+geEPKcIgl/bi5JV4LpnWqd0lRwh+umi1BpjGfvZiTvvDu5Sqw9tLuWHkbJf2w88UsvQeAUpvkFhZSUeYcse9nYVIdDKIqieLFnjx2e8corcN11cNttjZ+xOBSJzGbcBSh3KnaZwEnAXxNlj6I0FpNysln+dTFzl26u36DJemy8Z123akc2+9J3aZW1j3NH9WLWpMHVNkLdSpvbeXXjXxYseVUkvdFNOemK6p3SXAgM1/XrgdewgcZ45/dt7ljtyA6+bBmjR4+os06o6I80J8GdWxOb8nAIRVEah1RpFPvuOzjjDFixAh54wPbOJhuJ9Ku7AYtE5BNgGfCWMeaVBNqjKI3GovVF9c7+0z0rM6ZK357PurFjQQ4tOpaSfdnbZHbcx99+PrTakfXjr7QVlpRhqKm0Bc7x6GdSTjZ/+/nQmOdba+JztaneKc0Cr+ECfgKHDeRO6I8vYAhDYAKo/IJCcp9bHVOvbNmmTmx/biTp7ffS7Zfv8UO77Z7z1IaK/vCP+/dv09SHQyiKEjvh5sR2rxdN/SpRvPwyHHIILFsGL76YnI4sJNCZNcZ8YozJMcYMMcYMMsbckihbFKWx8AtdfROa+Meq5k7oXyd/SihKP+3B94uOJKNPEd0u+C8t2u2vM0bNT7BK25XzVgUV6VATi4ejPtsmO6p3SnMh3LCAwPLAEf6B/+e9vDZoYrx0EcYc1pEOrX11yvZu7MrOV4fS8uBddLtgCS277gZspTH3udW19Ctco6DbWW0uwyEURYmOaBzUUDNAJItD+9e/wpln2u8PPQQTJybWnlAkxZhZRWkOBIanxUqrFmn8dfKQaicv0pDl4rcGsntlHzL6FNHlrBWk+Wqqjf6KmDvsJdT+AkPrvMJlwAr2VfNWcefCDRGF0DTHudoUpSkRLvuwO2z35gVrqQxwVCurDDcvWFutA8HGsoLtNV2ysbjWMl+6UPphP4r+cyhtupWSfc5K9rc4UGud8ipD3ss1x4gkj4FfI5vycAhFUWInVNRGYL0mHjNANCTPPQczZtjvb70FJ56YMFMiIomG7ypK0yZU+F007K+o3Xcxa9Jg7pk6jHQJ3kdb+Mjx7F7ZB4Cuk5fXcmQBslr76rQqhsMv0l6tkbnPr64ODUzmEBpFUeJLuOzD7rDdYPPEhps/NhTb5g/j20WHQ1UaW9e0Z38L76nG3E6yOyokGH5ntYkPh1AUJUaiidqIxwwQXkQa5hwMY+Duu2HqVPjxj2Hz5uR3ZEGdWUVpNOIZhuYldF6JlwC2/mMcFcVtAeh51RtIi7pT95Tuq+DmBXWnpgjHtpIyTye9vNLUCQ3UcWWK0vSJxDGMRAuG3fwm+QWFniHEwdj+4tHs3dAdgK1bISsr4k2ZlJPNkhnjmT11WEhn1Ws4xOSjs7lz4YaYK5CKoqQ+wRxUr+XhGv1iqS/WZxxufkEhP/7Luxw04iuuuQZGjy/j7bftnLKpgIYZK0ojES78LhoKS8oYc/u7bCsp46BMH3sOVHiut+vDw6jc1RqAnle/XqdH1k95lYmpN6R7VmZUoqvjyhSl6eMeLtBnxque62wrKcOXBsGmxS4pKyf3udVMHdmTecu21JmPNpDST3tQ9vkhAAy/8X2ys48D7BRiXtoWzEl2TwUULMuo+/w0u7GiKADjBnThyaWbPZcH4p/Vwmt9sJNVjLn93agyHEcT5uwmv6CQ655czxd3nwBAu+H/o3j05yxcnzo5S9SZVZRGIndCf66ctyou+xKodoy9xpQZA7tX9KHkvQG0ObKQTqetRtLiO3Wpv7cimvkfdVyZojQf8gsKcabDrkOaSNDETn7KqwyL1hdx58+GVuuM1/72fNaNnW8MtvkAzl7OnjSYmf8pi9YXeTqyvnThT2cMDHrcaMbu16cCmQrTciiKEp78gkKe/miLZ9mi9UWe689fEbrHNNqGsWjCnN36c2BnW7b9yzqyGb2L6HjCOvZVEFbDkgl1ZhUlBQlVBTQGSt7vzw8fHk7WyP/R/vh1iDOgINOXTqsWaSGTqkRCpi+tVqbhwOQpvnQBQ63Kqo4rU5TmxZ0LNwTVqmDDIgLZVlJWpyfU7QTuX92Xrxf0pc3ArXQ65VOkRRV7y6nT4+F3grPj7DjGkt1Ye3MVpengf5+DaZqXFkSaQyWShjE/kSanc+tPeXFrtv3reADaDNxK59NXh7Q7WVFnVlEaiXiMF830pVEWLC4P68huvuM0AA4eWcjf/96Kv72VWSfLcH2zKnds06paXIOF5Xkt04qaojRdAh3NeAyrOCizdjiw37HNLyhk6rhOHNiVQeaPvq12ZINhgCxnX9FkWA9HLNmNY+3NVRQl+QjnmGZ5DGmIdXhWfkEhNy9YWx1x0tqXhoGg9UKvTgS/vfsLs9g+fzjSqpwOY9fRbljtnuXuWZkpE0GizqyiNBLxaOXaV15FuohnC6DbkQU7L9hZR2Vz9tHewhNNeHAggecSLCwvGUVPUZT449XbGA9276+onsrHfazJx3Slar+tJHY5cyWSHr6nt6SsvDoqJZLpxSLRL69pfcJFoehctYrSdAj33np12EbT2OdvGMsvKOTqZ1fhHp2xN0TnRrAolG0lZez9/GCKXs6hRbt9dJ3yMb6Oe+tsP25Al5SJIFFnVlEaiMDKUVaQRCTRYPAOzzMGvnnsJ9X/v7CikLOOCi42fuczWHKWcOjYV0Vp2kTr3MVr6rFAAuedNQYuvjC92pHtdc3rETmyXrizKsdaaYskYVQgOletoiQ30ehfOMd0l8ewrnEDujB36eZawzB8aQJCrWR3/vwoY25/l+I9+wmTZqCa7KxMlswY71lWkj+Kkg2dadnte7r+bDnprQ/UWadDax+L1helTASJOrOKEgHRVuy8eil8aUJ6mlAZqRpFiKmCna8PoXxHOwaP2MfqjzIQaTih0bGvitK0iWVMZ0P2KvobAY2BmTNhx6pD8HXeTbfp78fsyPoJNr1YuEpbfcLvYunNVRSlcYhW/3In9Cf3udVBE9oFhhn7kz+51xZg6sieDO/dsVbUnH+daCNdCkvK6kS0VFSAzwfQGYCDz13qOcNFpi+dP50xkKuCJCxNxggSdWYVJQyhhA28W+Q9516tMnbMaxyd2e7tWvPpvMMp39yVc379A0891B6RGrvDVbayMn1Bk0F5ZQ3t0NpXnQXUPzVQMo+jUBQlemJx7uI59ZgXxsCMGfD00zYfQKuxq6q1zovWvjQ6tGlVrVF7D1R4RsaEml4s2PL6JnCKpTdXUZSGIbCutPdARfQ9kiG0KDCYLu/ltXX2b7BJ6xatLyJ3Qv9a42Jj5cp5q1j+dTGzJg2mrAxat64pe+6jQu551+pjVmsfxtge5MB6bKpEkKgzqyhhCFaxy3t5LfsrqjwrNMEqQaGSN0VLVXkaLd8aR+mn8Ne/wnXXtaoui7SylTdxYJ0xGGDDXaaO7Mmi9UV1KluxOPeKoqQOsYzpzJ3Qn6vmrQqZaT1WDmrlY8oUmD8ffv97OP4XcN3zoaf2KSuv4jNXmF2gbvnp08lWzLwqbWki9J3xah0ti0cCp2im/0klRCQDeA9oha1jPm+M+VNirVIUb6IZ6x9M/+5cuCHkPNjuDoP8gsKQs0n461PxGrLx5NLN9GvfmYdv6gbAkUfCmjXwkqvTtXXLFp51Na8IEl+asPdAhacuJhJ1ZhUlDMEEzEuQ/BWahu6lqNqfzpbZp7AFuOUWuO662uWRVrb8392tgFmZPvImDgwqUMH2ffOCtewr93buk0HsFEWJjGjHdPp7NhrCkTVVwie3nMwnwLRpcM89IJLNLa+E7rkItHVSTjYPLvqCL7bvqbV8ycZixhzWkeI9B+romj8/QaCWaQKnkOwHxhtjSkXEB/xXRF43xixNtGGKEkg0Y/2D6V+4ul66E0KSX1AYNHTXTTxzD5R/35pf//wgTCk8+yxMmRJ5Z0dgBMlBmT72uCJckqmOp86sooQgv6CQtCDZg4OxraSMaaN71ZnnMF5U7W/BltkTAOjXD266qe46wcS1sKSsTotatD0EwSpsXhXLZE0WoChKcIKN6Rw3oEud4QVQ/6m+gmGqhM13nlr9///9H9WhxSUhHFmv8af5BYV1HFk/S//3PeeO6lknIYsbt5ZpAqfgGGMMUOr863M+DdHOoSj1JtIGKL+mBIYkjxvQJey2lcbEnGyzPuzd2JWdrw2BKuE/b8Oxx9rlXmHOwepq7vrhmNvfrdOJkyx1PHVmFSUIM/M/DVq5yfSlk+FL83Tgslr7mPfxFo+t6k9VeRpFLx4NwNFHw/LlddfJLygMuQ9D/VrUou111t4KRUktvMZ0jhvQhfkrCuu05mf40urtyHqNzzdVwo5Xh9pygcpK+zdcL3C6CLedPbiOroWa57vSGJ7+aEtYj8uvZZrAKTQikg6sAA4HHjTGfJRgkxTFk0jqMwJMdqY4DOzRnNtAnRah8KVLyLBmgJ2vD6b0k14A5Fy9lGOPHQ2EDnMOV1dL5oiUtEQboCjJSH5BYVBHVoRqRzZwzH+mLx1jCDmWKxTpIrT2eb+WVQfS2bEgh31fd+Kwyes8HVmwrW6R4J6WIhpyJ/Qn05dea1mmL52szLoTg4P2VihKKjIpJ5slM8bz1e2nsWTG+KDTNNQ3SQnAtNG9av1vKoXihYPY+1k2WT9ZT1VVjSN7wwufBq18+tKFv/18qGcDXbgKVyTRN34tm5STzW1nDyY7KxPBToPh5UA3V4wxlcaYYUAPYKSIDHKXi8glIrJcRJYXFRUlxkhFwbs+E4gBFq0v8gxJbuyQg3QR7vzZ0JDrfPPEj6sd2R6/ep8/ntezuixUnS9NJGRnSLC6XDLU8bRnVlE8CNXyb4xrqgjX8nQRJh+dHXN4sX9eMK9wlKr9Ldj+/AjKd7Sl+9mruOsPXYPuJ1RygUBiaVELlokT6oYbam+FojQNGrL13d27YSrSKHo5h32bOtPx5E9pl7OZnFs2Y0x4bWvTskUth9IdEhjtcJFAArWsqSZwiifGmBIRWQScAqxxLf8n8E+A4cOHawiykjAC6zPBHsaG1L9WLdLo3LZV2B7iTF96daOZV6ZhY6DkPwM48E0HAHpc8RbprQ9w5bxV3LlwA7kT+oc8j0pjwk5BlKx1PHVmFcWDWISr0hjmryj0DJmL5pjpAZWuil2ZFP7DZuXs9/8+5a/Xdo1bJSrWFrVQFTnNZqwoTY+GTGrnV7uqfS3Ycq/NB9DhxDW0y7FObqS9vyVl5dVzKwYmOYnFkfVrebZqWcSISBeg3HFkM4GTgL8m2CxFqUPg+Nd7pg4LOx1NJBoo2GiTReuLIlp/f0UVfTplhnSmAzUo0LE0FWnseHUoe9d3p23OJjqeuBZxBfn5h4VktfaF1FP/TB1eWpfMU4qpM6s0OyKZfzXWilt9xo75xdJd6Sr/vjXb/jkOgPajvmTD3MEh92ETVlFnqh0vBCJKXhAN2luhKE0Tr1b5eFJZ5mPrfScDkHnodtof/XVM+8l9bjXLvy7m6Y+2hHRg/ZXDYJXXdAkesqyEpBvwuDNuNg141hjzSoJtUpRaBMvoO/no7Fq5AaB272M4DXTPBhFsOjAvlmwsprUvjb0e0zf6o/bcuB3LLd9UsGvBCPZ+1YGssetoP/J/nnNwl5VX0qpFWtgxt+5GwUCStY6nzqzSrIg0JblXxU3ASXYSv7li3fv2O5YdnJazyr0tqx3Zdkdt4tBT/0d+QWZQR9x/bl6OrC9dGNmnAx9sLK5u+TPA/BWFDO/dMSnFSVGU5MGvEVdGMLWEm/Q0oarKhIxWqTqQXu3Ituq5kxMJapYAACAASURBVK5TlsVqJuVVJuxQj8DKoVfonI6BjQ1jzCdATqLtUJRQBJticNH6Im47e3Cd5Hfu6WmCJf8EaNOqZqiD2+GMpHOkrKKKTF96UEfaqyPm1tHjGWeriXQ9s4DMAdtCHmNXWTkHZfrCDtlIhgzF0aDOrNKsiHb+1UjGhQYSS5ix27HcX15JZWkrvntmFAAHHfMFWT/5nH3laeQ+v7q6Ra2wpIzc51dX2xtsvjR/wgCvccDJklZdUZT64VXRgfiFhPn3Hy1hHdn9Ldj+3AgA2g7aSqfTVkccXRIr7mEk4ULnIonkURQltQiVmdfd+xjYAVJSVh4yYVRhSRljbn+XwpKy6iFj2VmZEWmaMTZrsj+qxJ+HxauXt7CkjN/M/J5vX7N2dh77eVhHFmwEYCTD6JIhQ3E0qDOrNCuiSS3uFU6RX1AYciqKTF86R/U6iCUbi6O2ray8kivnraJidyt2vHQUlWUtOficpWT03umU1+0RLq803LzAjm8Idm5VxjApJzvoZN2pJlqKotTGq6KT+9xqEGo1fsU6HVc04XKBhHRk97Wg6OUcyne2pfOZK2gz4Ft8aUKLdAkZAePvOY22l9hPYK6AYKFzkUbyKIqSOtjhWN4J4bpnZYZNHBeuM8PfC+vfLpoha/NXFFZv58/DMrx3xzqdFWUbu7D9NZskvP+0T9nXI3ziUX8vbyQ9xfHMUNwYDYI6NY/SrDioHtPH+Cs27vASX5rQobWv1vQMm3bG7hweKGrLd08dw4GidnT92bJqRzYUfnvCpU1P5rTqiqLEjldURnmVqTMuKtbpuG5esDZoBS7da3BWBFTsyuS7Z0az7+vOdD59FW0GfAtYu0M5su5pcNJiOHQ02TdDRfIoipJ6+OtxXo6s3xG9at4qCp1kTNEkjos1+aebYHrj7nTYvaon2+cPp+XBu+hx6bvsD+HI+vXZ3csbbjqieGYodk+nZqhpEAw1BVAsaM+s0qRxtwhltfbxw7664wR8aULuhP5hW4+CVRhbt2xBwR9Prl4WrAc0HGVf/3/23j0+qvrO/39+ZjIJE24JEC4OBPFSUERAUFTaWqmVKl4oXqjWbne3W7/tdreLWlq6Xx8r7tdfZUsvW3vZXbftdru1Fq9ZFBXbglqpoGCCSBXvBAbknnDJkEySz++PyZnMTM45c87MOXNJ3s/Hw4dzJmfO+UzIvOf9+rxvI9n/28Rg67G3bKBqXKur12drm17KbdUFQcgdN9kVbjMxGhqjlvVhCvjejdNZ+vBWV7O1Ow4OYe/PLwFg9PUvEz7d2azRzFpXp7c060rsJFrgJpNHEITSx25jTmf83w2ZUyi8xLBRu4/EaPnjZI6+dAaDTttP3bWvMmF0JWDesFSBaZQ3s7RieDiEUtDSFvc8cuq0tC9fRMwK/ZbMFDErh2zIoMTHIFs6mVPHJpdOyLF369j/yAUAjJj/GlWRlrSf1/RElM2K9o2fZav9KuW26oIg5I4bm5MtEyNT5LV1dGa/losIacf+oez9r48DMOyCdy2FrF0jFIOIxfuurQ5RXVlhaeecpg9b/V4lm0UQyg+7jbl88UvIQsLe/N1Hp3Dzx04BYMj0nYy4fDvVVQHLXi5mUeJYvIs7HtrKbauaCub/FWpDUMSs0G+xaoiUSUtb3NHukVPHxs0Ii6BSnDxYnRSyIxc0MeSc9PSLcCjI8mumJq6dEQEJBVTyZ5C9bXqptlUXBCF3zGxOKKDSamYheyaGmcjLdt+Va3fYjnlIpfNYFXt/NReA4Re/Rc3H3jY9r7Y6xF1XTzXtKJrqiFllm9x19VRLO9fQGOWOh7aa1sFlRgskm0UQ+g/5lAd4kUKcC+FQkC9MO5ubPzYWgKpRJxgx/3WUgqqKRKWoWaDCynan1vF+67FtbN55mPVvHvAtwFGoDUGpmRX6LU53fuy6u6U+b1Vn0NbR2Sf/3zAy2Wg/HCbW8DGCg9sZ91cvJIWsEehIrQ9bODPCyhumE6kJJ2t0V94gcxAFYaCzcGaEexdNS7MNiy+YwODK3v3q2upQ1nEzTjcAIZERYtd4LpOu41XsXzUHFexmzE0vWQrZgCIpRjcsm8f7KxawdP5kHt0S7VN3BfR533bv0a5eDvp+Z5j9XmVkjyCUJ7lGA8OhIDXV5v1W/CRSE+b2i2bwf65KCNlBp+1n7BefS86QbYnFk/WnRi2s4c866WUQi3fx643NvtazmvnNfmwISmRW6Lc4Sb3L1t0tdffIcGCWr96elu57pC2edKwg++geg459w9i3ag4Vw45zxTff43Cokz0t2O6OSWRVEAQz7MZJAJzMMh+7oTHqOFVZkXCk5q5Y52hmYWdrmNAz8wioE4y58eU+ZRQG1aEA3150bp+UYLtI6oZl82xtYrbOpKmYRQvE5gpC/8DKJ6wOBdAo0zRdo84+114ouaKAH8+fxycv7yJQFafm4zsYet7OPuelNqRLtfm5pj1b1bPm2pG4UOVtImaFfotp6l1QMbiygtZY30J3J+lkxjzXTOct1aA4EbLHGus5/Ow0gkNjjLr2VbadaOOWC+u5Z+E0V+9RZiAKgpCJ26YbdzZs44GN2Uc7GBhuUrQlRiioCAWUZQMoox9AYFAHoxe/StXYozbX7Y0mNDRGufuJ7bY1btnEd6aot3PwJH1YEPo3VmUD316U8LuyNQB12wslHwLRscy+sBNVFWfM516msu645bl7WmKWWTVBpejWOutGXub1Usl3RFkhNgSLJmaVUhOAXwFjSHw33q+1/mGx1iP0P9zsCLk5N9+C9qOvTOLIurMBGHPTRkK1bQD8ZlOzKzErMxDLA7F1QqFxY6MaGqM8sLE553qweJdONlzKdPba3hrDgcdnA1B33WZbIQvWUQYrVM/6reyd07TpoFKSPiwI/ZDMDf/rZkUsa0QzM0LmrliXVrP/6JZoTrO23XLw8VmceGssodGtjL7+FSqGttueb1cq1601769YQENj1PFcbiNDxfjdmYl4PzoS50MxI7OdwB1a61eVUkOBLUqp32mt/1zENQn9DDc7QpmC1nCqUlP37n5iu6XT58QZbHt7TFLIjr1lQ1LIgvWYCavoa6Fangt5I7ZOKChumm6sXLsj78YmLW1x7rp6Knc8vJWuHkPW/uGwpJAddc2rDBp/xNG1ojZRhkw02No7JxuM4VBQhKwg9EPMNvwf3RLN+nm3ep0hhP2K0GoNzd9ZkDwee/NLBKqyb+g5KZVbODPSp0TODCNDxaxUJZNSGlFWtAZQWuu9WutXex4fA94A5NtEKBp2w50bGqMsfWRrXm3dT+4cycEnZgAw9gt/tKwbc7ommYFYHoitEwqNm6YbXtiLU2rC3P3E9qSQ7dg3jP0PzQGgbtFmBp+11/G1FNnTh1OxW79Vx8ygUrYNnYyozKRla5i7Yp1lQxSn5wmCUHjsNvzNMD7PS1Y1mb5u/ZsH2LBsHhEfRnPpLpUmZCfc/nRWIQu9G3qXTqnLavOXXzPVtImpQWqTQCcbiqU0oqwkamaVUqcCM4FNJj+7FbgVoL6+vqDrEvonbiOdy1dv59jJzrzmiMXeG8Xh351DxfA2xnx2E8HBHX3OCYf67i3ZGWOZgVh+iK0T/CTVttVUh6iqCJj2B0gll7nYqYRDQS6dUseve2pu2/cO59BT01EVXZxy6/q07BMnaBJi06m9tbN3ZjVyCrhpzoRkSUe2dEKr8g0p8xCE0sDKp3NbbpEtEmnYSa8DBt3tFRx4fBYAVbUxzlv6Enta7Rv2Za4rNXJsVSpnPDZrqAdQXVmRPMfJeyylHgNFF7NKqSHAo8ASrXWfghqt9f3A/QCzZ88uxpgnoR9h54BYfXizpWVko+2tMRxYPZPK0UcZfePLBAd1mp4Xi3czd8W6NANkZ4x/sHiGzEAsI8TWCX6SaduOtMUJh4L8YPEMW3HlZi62GVUVgaSQPblrBPsfmU1wcAdjP78ha62XFV1aEw4Fs67JzN5lOrbn1Q/nT+8eTqZSa+DRLVFmTxwB0Of7wKx+OLV8o5zqyAShXLESqJnP220+udnwX756u+Ma/Xw3AFPpPDqI/Q+fT/zQEMZd/Ro/vXsk4N4mp0aO7Vg4M2LZmTnV38z2Ho3RbKVCUcWsUipEwrl7QGv9WDHXIvRfso1myBbpzIeDT07nxPbxBAefZPQNr1gKWYNoS4ylD28FEkbHak3Dw6Fk1NaIYkRsoi9CcRFbJ/hNthp6K+cws1eAm66X0LvZ1/rS6bS8MAWAMV98IWchC73jMDLXm7pOs8iD2Wblnp4SjVTsus9bvfM9LbGyqyMThHLEKuiweefhPsL11yZd2GPxLu54aCs3zZnQp2mT1QaYk6CFkdK7dP5kx82U7Ii9W8ehZ6bR3VHBmBteoXLSQZav/hClSPPtlErU02Yj1fbc2bCNBzftoktrgkqlZaM4Efl2m5zhUJDl10zN4R37RzG7GSvg58AbWuvvF2sdQv/G6WgGq0hnPhx4/Dza3hoHwNi/2EAwnG4sB1cGOdHR917xbs3y1duTQ7D7jBcKKE50dCaNrxHFsNq5FIFbXMTWCYXAaiMu2iPClj68NTk+J9oSY8mqJpav3s7ya6amidpTl61xfe+WFz5C60tnAol+ABXDTgK9sxrdkGrL7DrPm2Em6O3EqRtOqQmXXR2ZIJQjVhtzhjhzQpfWjlJvIRGVdcqelhgLZ0byFrNHnpvC0U2nAzDur16gcvQxID0T0PDtrpsVcdRJ2bA9dzZsSxP5XVonj+9ZOM1yRFGqyE/d5Iy2xEo+aJJVzCqlbtBaP5ztuRyYC3we2KaUMv4q/lFr/VSe1xWEJHc/kT11BBJGIDNCAe4dMYPj2yNJIRv529/3iVKEgopQMACYr80waGYjg9o6Ovs0orIaaSF1XM4RWyeUM3Z1pt967DXTObAtsXiafWhojLoWoLH3RiWFbKpThsvrAGmOUi6bcm4EquH4mW0CZP4ODEfPKj0v87xSx0dbJwh5Y/U5dtu3xEnqrdOorEFNdYi5K9a5Wkcm+x+bReztsUBiqkWqzczEeA/3LppmWesK6bbnwU27TM95cNMu7lk4zdSvNLOvhZgP6xVOIrPfAjINnNlzrtBavwgpE9IFwWMaGqOOug+nGoF8IxQAJ/58CoeenE5V/SHqrt1CsLrvGlZePz2rY2SQaVAmWazLanC21HE5RmydUJY0NEZtHb1Y3LqZiJGSB87H9Jw5ejDv7D9B2wcj2f/Y7MQ8xEVbqBiee4qtgqTTmWtzJav0OStxCn3n2RqRELNojlWtLFCyEQsLfLF1guAFVp9jN43hDLJtcFl1NjYjFFQcP9k3mOAUraF1w5lJIRv5yh+SWSx2GNFgO58xtSu71e8o9flyEqpOsBSzSqkrgCuBiFLqvpQfDSMxN1EQShonqSN2kYBcONZUz5HnplA9+UNGLmgiEOrrREZ6osB2jlFtdcjyHnb1DjKuxz1i64RyxhB++dCltasSi7f3n6DtrTEcemo6gyYcZtQ1jX3KKNySanNz3ZSzSp/LlmroNAJsdf1ymVMrtk4oB6zqNasqFG1xd2I2my+XzTcaXBmkraOLmupQXqMZdZfi0NppnNg2gcHn7GLkp7ehgtpRJozxHqx8v0hKZiHYi/7MJqP9BbvI7B5gM3ANsCXl+WPAbX4uShC8IFvqSKQmnIwE3NmwLa2LZS6NoD58cA7tzaMIn76PUVc1oSr6ClkFXDqlDkgY7NQ6NoNgQHHX1dbF9Xb1DtkGZwumiK0TyhYndZxOcHONg2vO5cTrE6g85Qh1175KIEtju2wo0sc85Lop5zR9LvM1Th27XK5fYoitE0oe4/N09xPb0wRkW7ybgILMigkrQZhpV8zI2rW3upL/7zOTk405c6G7vYIDDedx8oM6hl/8NsM/+hZKJXzQzG7MmaRmkVw6pa5Pt/VQUHGivZNJy9Yk7dFNcyaYNsaC/lt6ZilmtdZbga1KqceBE1rrLgClVBCoKtD6BME3oi0xJi1bQ0UAbLLwHLH7x5+k68QgAOo+swUVNN8VSx0LYRiS5au3J4V3bXWIu66emtX5AmuHSsb1uENsnVDOFDrrYt9D53Py/dEAjLlxE4Gq/IX05y6sT7N5+czQ9jt9rpzT88TWCeWCkb2WGQ3t1omxMIOrKpL+j5UY1dgLtobGKCfas0+YuP2hpj4COhuGwG7fO5wPf/VRAEZ8+jWGTt+V/LkRTJk9cUTSnxseDqEUtLSlzwdvaIyy6uVdfUR7V5dO+o+GUL130TTeP3CcDe8eNl2bXZZLuTYQdVIz+yxwGXC85zjc89zFfi1KELyg1kFaiCZ/IRv9z0uSQnbC7U9bClmDVEOSq2OUrdNnORqjEkBsnVB25Jv+5oYDq2ckhez4v/td3kLWavPOSbdNIS/E1gklg5WAstqoa43Fabrr8uTx3BXrLNNv7e7ptLTCrZCFhG954o1xHFx9HgBDZ7+XFLKQvjHnxA9cvnq7aRO/TPc1tRmoHWa/21x7FZQCTsTsIK21YfDQWh9XSlX7uCZB8IS7rp7K0ke2Eu/KtSexPVpD64tn0nl4CAD1dzxtmlpshp/RlHKOHBQZsXVCWdHQGOX4ycKUOh5rrKftjYRdGf+1Z3OukVXADxbPyCv7RMgbsXVCSWAnoJxmaOSy+eVVeYYVsZ0jk0J25BVbGXLubsdrM8NNx2Un/qVZlks5NxB1ImZPKKXO01q/CqCUmgVINxmh5Fk4M8LmnYctawfyQWs4+tIZHH3lNAZP28XIT7+GCjh//fCwdYMnoWiIrRPKipVrd5ju1nvNsaYJHHl+CuHT91G38FXHm3ZmhEPODKVsyvmK2DqhJLASUMYMbCci1fD1jDm0QaW4bpa9/bATfAoI5NA52eD49giHnjqX0Khj1F33CqGa3nsFlfK9YZzd2DGwFtPl3EDUiZhdAjyslNpD4t94LLDY11UJggc0NEZ5dEvU8+tqDUfWncWxzacx7IJ3qfnEmyiXg1fcni8UBLF1QllRCCejddNptDx3FoPP2Z3YtMtSRpGNtng3t/eMmBCxWjTE1gklgZUNMyKR9y6a1idDAxKpxcZzRhMlQ3x2ac2qV3bx5Na9tMbi1FSHEpl0sd46VLvOwBuWzbMcgWiH1nB04+m0vDCFqgmHGL1oc5/meN1aZ7V7ZmnXTsrmwH7sGNj3ZcmnV0GxySpmtdavKKWmAIaM36G1LkyBjiDkwd1PbPc8jUR3Q/PKBQAMnfV+TkIWKFiNm+AcsXVCuZGtE2e+NH9/PjpeQfXkPZ4IWYNu4FuPvSZitkj4aeuUUhOAXwFjSJQO3q+1/qEX1xb6H3Y2bOXaHWxYNi/NTpilJWd2+AWIpzRGSvW3oi0xlqxqIhwKEAqqPmVo0ZYYc1esY3g45Cq1V3cGaP7eFQAMPjvKyCteM81gySYMrdKur5sVYdUru9LWGwoqFp8/wZOxY1DevQqyitmeOorbgYla6y8ppc5USk3WWj/p//IEwR3GjpYfDp7uVjSvvDJ5XPvJP+ccYQ1KaLbkEFsnlBtW8xjzRWto/s6C5PGoq7Z6JmQNYvl23vOBcu3k6RafbV0ncIfW+lWl1FBgi1Lqd1rrP3twbaGf4MRXM4vamqUl52KZYvFurAoeoi0xQkFFKKD6lHFUhwIsmjU+TUB3Ha9i908uA0BVdDHyqiZL39AYzWiFWRAmFu9i/ZsHWHn9dN/GjhnnQ3n2KnCSZvxfJOaRXdRzHAUeBsTBE0oKN93p3KK7Yf9DFySP67+xJq9U4VxrMQRfEVsnlBV+9AXQGg4/e07yuP7rT3kuZEuRcu7kmQO+2Tqt9V5gb8/jY0qpN4AIIGJWAJz7amZRTC9LK+y20+JdmtrqENWVFabCzrC5qUK2cmwL476wwfaemaMZU2lojFpm7e1piRWkj0C59ipwImZP11ovVkrdBKC1blNKwkpC6eBnNBYSQvbQU9M5uXMUQ8/7gBGf2p73Ne1axgtFQ2ydUFY0NEZZ9cqu7Cc6RGtoeX4Kx5smUv2RvYy69lVXje3cECixT1Y5d/LMgYLYOqXUqcBMYJPX1xbKk4bGKHc8tDXrhn4oqEzTW/0urUjlSFuc6kpzmRRUipMHBrPv4fNRoU5qLtnBsFkfZL1mLN7FHQ9tBfpuktmN1CmHutVi4kTMdiilwvRE8pVSpwPtvq5KEBziZzQWoDseYN+DF9F1opKaS95g+IXv5X3NcqlBGICIrRPKhobGKLc/1JTTDEQzdDfsf+R84geGMfT896i99A1fG9XdPKfe9PlipfqWcyfPHPDd1imlhgCPAku01kczfnYrcCtAfb3534HQ/zD8NUeZaRan+FVaYYUhnKMtMZY+spXNOw+z/s0DnGiu5cCjsyHYzZibNlI1rtXxNbu0Ns36sLM14jPa40TM3gU8A0xQSj0AzAX+0s9FCYJT/JwV1tUWYvePEoO5h390hydCNlJGNQgDELF1QlnQ0Bhl6SNbvROyXYrm7yb6AVRP2ZMUsmYNUrwgFIB7Fk7r83wxU33LuZNnDvhq65RSIRJC9gGt9WOZP9da3w/cDzB79uz+n8MuAO78tXi3TsuKSN3kqqkOUVURoDUWtxyhUxMOMbiqwjaKG1C4sqHxLs2vNzZz4IkZtP05QsWI44y+4eW00TtOMcv6sLJBNeGQ+IxZsEwgUkrN7Xn4ArCIhKF7EJittX7O95UJggP82jXvPF6VFLKBqjg1c9/J+5oK+nTmE4qP2Dqh3Fi+ertnIrM7HkgKWYBR1zQmI7J+CFmAIYP6ztk20g+tUn39Zun8yYRDwbTn+lsWTSFsXU+68s+BN7TW3/fimkL/wK2/tqclRkNjlBl3P8uSVU1EW2JoEum/7Z3d/GDxDL5343TTz+3ya6ayYdk8y5KugMJ15yitYdd9n6Ltzwkfbuwtf8pJyBpk/j6sbNDya6bmfI+Bgl01zH09/39Ja31Ia71Ga/2k1vpgIRYmCE6oqe7rFOVLV1sl0Z6CfoAJS5715Lr9dIe/PyC2TigbGhqjrkZG2KE7A+z6/hXJ44nfzK+xnVNaMpqcZEs/LESq78KZEe5dNI1ITRhFIovm3kXT+tvmYyFs3Vzg88A8pVRTz39XZnuR0P9x66/VVIf41mPbTO1damTT7nNrZTu6tX0DqEx0N0R/8km6Y5UATFiylmC477r+dfGMtLXccmG95fSKTJ9wgNggX7BLM44rpe4Hxiul7sv8odb6a/4tSxCy09AY5fjJzuwnuqC7I8juH30qeTzxm+4HZ5sRQGoeShixdULZ4FWUUnep5FxEgFOXraFQTdYznbhs6YeF2ggs106eLvDd1mmtXySRiCQIaVjZl3AoAKg+8021xtYuGELV7nPrRcOo7o4gB5+YSdeJQQSHnCTylT+YNsaL1ISTazHSoh/Y2ExNdYjjJzvTxvwozMf0DAAb5At2YvYq4DJgPokW7oJQUqxcu6PPDLB86G6v4OCT0wEYfM5uRi3Y6sl1FXDzhfVioEoXsXVC0bFrfJT6My8snu4McKhn/E7VhEOMvXljwYRsKNC3S6ld5LW/pfoWGbF1QtFotcgoORlPpAyn1sRqTdYMlIBSnLpsDcGeulmzniT5NozqOlHJ/kfOp+PD4Yz41OsMPW+n5bmnjgwzd8U6oi0xUrOYj7TF+3Rv19iP6RHcYSdml2qtv6mUqtda/3fBViQINtzZsI0HN+3yfE5rZ2uY6L/PA2D09S8TPv2AZ9cWo1XyiK0Tiopd4yPA0+6d3Scr2PXD+QCMvKqJIVOjnlzXKUMGVfSxg1bRk6BSkmbnLWLrhKJh12QtNaLp1N4ZfqDx/8yGccYmYK62M/b+KA49M43utirqFm2m+sz9tudvePdw8nGmh2oWd+nHo78Kjl3N7JU9hfyfLdRiBMGOOxu28euNzVmFrNv8pvZoTVLIDj3/PU+FrEGhmpgIOSG2TigqdjNOvezY3nl0UFLIDjr1QMGFLPStlwXrxiffu3G6OHreIrZOKBpOmqzla+8Mu2mI4lxTjFs3nsb+h+bQdbSaMTe/lFXI5ko/Hf1VcOwis88AR4AhSqnUGWEK0FrrYb6uTBiQZLZf1zqRmnJKTdjxh95NzPZk8wj2PXgRAKGRxxgx740cVu0MMVoli9g6oahY2YZ8a71SiR+pZs/9lyaPxyx+2bNru8Gs/tUQrMWYLzvAEFsnFA0nn3Mv/KRoS4w7HtqacwbfoWencrzxVABGL3Y3Q9Yt0hjUGyzFrNZ6KbBUKfW/WutrC7gmYYByZ8M2HtjYnFZnYOClU2fQsW9YUshWjm1h3Bc2eH6PVMRolSZi64RiU1MdSrN3XmHUbXUeHZQmZL1qbOf0/gZ29a/S+MR/xNYJxSbb59yLhk1ATkJWazj2yqSkkD3lS88RGnEi77VAolcAKn3cmfQD8A67ObNTALTW1yqlqjJ+dqHfCxMGFg2N0TQh6zedx6rY+98fBaD67KjvQlaMVukitk4oJn50ZTfQJBrbffhAz6bdmNaCCVkwupQmqK0OSf1rkRFbJ5Q6ZqnIhWiNrbvhyB/O5sj6s6mevJcJtz+dt5A11h2pCbPyhumsvH66jN3xCbs0498A5/U8finlMcBPM44FIS9Wrt1RMCHb/uEwDj01nYphMUZeuZVB9YezvygPaqtD3HX1VDFapYvYOqFoeN2VPZX4kWoOPjEDtGLUwi0MnvyhL/exoi3eO8nxZNzNVEfBJ8TWCSWNWSqyH5l5qXS3Bzn41Axib41l6Oz3qJ33Rs7ztmvCoWRpnFmphPiB/mAnZpXFY7NjQciZhsao78bK4Phr4zn0dGL8zti/eNHXWgiD6sq+3TuFkkJsnVA0/KqlT+0HMPqGlwmf5n1jOzdI586SQGydUHKYjSXbsGxe8ufGuBuvCSpF7MBg9v78EgBqP7mdYbM/yOua7Z2JMUNi5wqLXTdjfPzmEAAAIABJREFUbfHY7FgQcqKhMcrSR7yZ55qNo6+cmhSyIz79WkGELEjjpzJAbJ1QNPyopY+9W5cUssPmvFt0IWsgtrDoiK0TSorUrsOa3vE6DY29ndb9KtE6v+KspJAdPHV33kIWZHJFsbCLzI5XSt1HYrfOeEzPsWw5CJ6wfPX2tIJ4t1SHAmmpbFa0bjqNlufOAhLO3dDpu3K+p1uk8VPJI7ZOKBpL50/m9lVNeJWE2/bOaA48ej4AVfUHqf3Emx5d2TmZjZ8MxBYWHbF1QklhN5bMiG4unBlhyaomT+97clctq34zCYDaedsZdv4Hnl1bNu0Kj52YXZryeHPGzzKPBcE1DY1RWmL5dfB0ImTb9w5PCtnhH91Bzdx38rqnG6TxU1kgtk4oKJkjyLwSsp2t4aSQDZ/5IaMXbfHoyu7QJGxfqpMqtrAkEFsnlBRWwi/zeaeBCyccfHI6J7aPR1V2Mu4vXiQ00puOxQayaVd47Ebz/HchFyIMPAqRitFxYCgHGhI9Leque4XqM/wZfG2FdKsrfcTWCYXESKszhJ5XI3niLWEOPD4LgNrLXmfYrJ2eXDcXasIhll8zVebGlhhi64RSw6rBU6ogbGiM5pXBl0r0Pz5BZ8tgAMZ9foPnQlY27YqDXWTWd5RSvwCuAvZrrc8p5lqEwuN3KsaxVydy+HfnUDmmlTGfXU+ots3X+2USVEqcNwEQWyf0YpZWly+xd+vY/8gFVNSeYNxf/pHKMUc9vb5blJK5sYIgJDBr8GTYhqXzJ6dt7kFfQehFx3fdpWj+7pXJ4/Ffe5Zg2NvZ3sYmnti9wlNUMQv8Evgx8Ksir0MoAn62XD/w+Hm0vTUOgFHXvFpwIQu5De0W+i2/RGydgPebeK1/OoOWPyYcv5FXvFZ0IQvQ4lG0WRAEf7ATmF7fJ1WsGg2eIH3Dy1hLdWWQto4ulqxq8qxOtutkBbt/OD95XP/1p1BB7/yziGSeFB27bsYAKKXmOnkuF7TWLwD+DvkUSpKGxign2jt9ufa+VRckhezoGzYRGlF4IQuJXTqhfBBbJxQCL+upjjw/OSlka+f9mUETSuNPTGrGShs/bZ1Q+jjpIOwVdg2eDBbOjLBh2Tw+d2E9Jzq6PG2r3dUWYvd9lyeP67+xxlMhC7Bh2TwRskUmq5gFfuTwOUFwhGFI823+ZMaR9VM4+UEdAKOvf5nwaQc9v4dTTnR0+vLlIPiG2DrBd5bOn0w4FMz7OsdfG8/RjWcAUHvpnxl2/vt5X9MrLp1SV+wlCPaIrRuANDRGmbtiHUtWNWUVmF7htMETwIObvJ0yEXt/FLt/dDloRe287Uz85hqUx9OUwyEnMkrwG8s0Y6XURcDFQJ1S6vaUHw0D8v8mdohS6lbgVoD6+vpC3VbwET9qxgBi79Vx9OXTARi9eCPhUw95fg83xLt0Wnt5oTQRWycUEsMe3PHQ1pxLEdr3Du+dmX35NobObPZsfV6w/s3SmGsrpFMqtk4oPJnpvmb40cdkeDhkGrgYbpK55mVp1tEtEzny+0R7ihHzX2PoDH/GMQ7yYGNSyB+7mtlKYEjPOUNTnj8KXO/nolLRWt8P3A8we/ZsKULsB/hhME+8OZaW56dQObaFuoWvUjHc/zlfoYAChW2XPZk3VhaIrRMKSrL5ycNbXTc2ie0cyeFnzyE08hijrn2VyrrjfiwxL/zqhSDkTUnYOqHwOAki1FSHmLtinad1tPEu83E6SvXW7UZbYgQ9DJnu/skn6To+CPB/ioX0BygN7EbzPA88r5T6pda6eD3+hX6H142f9v12Did3jkJVxhn3l38kUOV91DcTo+AfSBpjM6R2rPQRWyfkg5tGKqnnDg+H6HQpZA//birHXj0VgPFf/T3BIe35Lt8XvHRMBe8QWzdwybaxHgoqjp/sTI4Ky2zUlAsNjVFOdJj7Y0fa4mkNnryKyu78lwXJx+P++gUq6455cl0rxMcrDZx0M65SSt0PnJp6vtZ6Xr43V0o9CHwCGKWU2g3cpbX+eb7XFUobs1bsuZJquE754gu+C9lwKNhnduzCmRHTFB6ZN1Z2iK0TXJGtU6fduW57Buz91cV07K0FYOwX/lgUIVtbHXI0F1c6uZc8vtk6oTSxCyJEasKcaO/sY5OMOlqnYjZzY8+vJp9maA37HrgoeRz58rqCZOhJf4DSwImYfRj4d+BngKdKQWt9k5fXE8qD1Fbs+URo04Tsl9ZTMexkztcKhwLE4ubpMKnnZApZg8z28n62uhd8Q2yd4Aq7Tp3GZz81lS5Xov95CZ2HhwCJfgBVYws/fqcmHKLxny6noTHK0ke22pZXRCRaUer4ZuuE0sRqnqvh00xatsb0dU5Lpcw29gpFd3sFu/41MXonOPgkka+s87xjsRXSH6A0cCJmO7XW/+b7SoQBR1tH7rt2Bx4/L/nYix24k1mELEB7Z7etOE2dmSaUJWLrBFdk69TppOlKNlr+eGZSyI753J8YNP5IztfKh9aeqM3KtTtshaxkpJQFYusGGNk23K0it07TaP1q7JmN+JFq9tx/KQDVH9nLqIWvet6x2A7pi1IaOBGzTyil/hZ4HEjmNWmtS2OgnVAWZNaKtcbiOc8SO779lOQc2fFfe5ZgOL8C/OpQgPZOnTU1zmV5m1B+iK0TXJHNAczXwYu9P4rWP52ZuOat6wnVFmdmNvS+JzvnLSIZKeWC2LoBiN2Gu1Xk1m5jKtWvK4Z7dPz1CIfWzAAgfOaH1H3m1YKvQWpmSwMnYvYLPf9fmvKcBk7zfjlCfyTfWrFUjLqxwefsYuT811EV2SOq2WhzEJUVBgRi6wRHpKYOK0hz5FIdwHxS7Q6snkHbGxHCZ37IqAVbCVQVrv7MDOM9WQn4SE2YDcuk5LJMEFsnpOG2VMpp1onTOnu3HHrmHI5vnQjA8I/toObidzy/RzYkC6V0yCpmtdaTCrEQof/iVfpJao3syE9vK1hNhIEMx+7fiK0TnJDpxGlICtrULudzV6zL+R6ptm7UgqaCdGgH+ghzg9rqUO84oRwiOEJp4aetU0r9ArgK2K+1Psev+wje46ZUyolfp8AXIdv6pzOSQrbmYzsY7rOQVfTOyw0qRZfWkoVSYmQVs0qpauB2oF5rfatS6kxgstb6Sd9XJ/QLcolO/OviGTy8uZkN7yaynlKduwm3P11wIRsA7l10bkHvKRQWsXWCkzE7Zk6cIWQ3LJuXd51sqq0b//e/K5iQjdSEuXRKHY9uifYRqnddPTV5LM3uyh+fbd0vgR8Dv/LgWllxMxpL8A4ntaJ+eGmH/3AWxzYnEgjGfv5Fqk5p9eEuvRgbfIOrKlh+zVT52ypRnKQZ/xewBbi45zhKohOeOHhCErsvFGMnyw0r1+5gw7J5TPzmGpq/ky5kAyH/04Jrq0NUV1bIF+TAQmzdAMQqZdhqzE62pk/LV2/PXch+54rk48jf/p5gdUdO13FLaorw7IkjsooDaXZX9vhm67TWLyilTs33Ok5wMxqrFClnIW436scPdDc0r0z4goFBHUS+so5Apb8bfU6+D4TSwImYPV1rvVgpdROA1rpNKZmILvSS7Qsll5mD0ZYYF9+7jsPPTEs+V3/H057UyGbDiESIwRpwiK0bYJilDKdiNmfRyokLKMWdDdty7gnQuuk00IlShvF//zvPhayxqWhW43vplDrmrlhXlk61kBP9wtY5GY1VqpS7EDcrN/CLrliI3fddnjwe/9U/OPIFAyr3xp1mQZhy+dsaiDgRsx1KqTA9339KqdNJ6X4nCFZfKEtWNXH3E9tzagCgNWxvmEjb22MS7davfRXlQ8mqkVq3/s0D4sgJYutKgEJGK5zUfUVbYmlCzywVF6BLa369sTmndbRuOo1jmydRNeEQo69/xZeIw7v3Xgn0/f1mvp9yc6qFnCiqrVNK3QrcClBfX5/zdbJlSZQypSDE87G1xnl3PLQ1p4CFUzr2DWPvLz8GgKqMM2HJs45H7wyqCFAVCrr2P0NBZTl+rBz+tgYiTsTsXcAzwASl1APAXOAv/VyUUF7YfbhzKf7X3YrmlQnHa9icd6m55E1f5oYFlRLhKqTSb2xduaavFTpa4dQxMSKx0ZYYq17exeILJvDgpl2eOHFGjWz12VFGXbnV134AdzZsS647qFRyI6/YTrVQcIpq67TW9wP3A8yePTvnP/h8Z6MWk2ILcTNbu/SRrSxfvZ3WWNzR94bxM78itCd317LvgYuTx/W3Pevq9W3xbr696NzkOhsao9z9xPbsfqm27sJcDn9bA5GssS6t9e+ARSQM3YPAbK31c/4uSygn3H64AzbCVHcGkkIW8E3IQiKS8q3HttHQGPXnBkJZ0V9sneGkRHtm/xmCsBz+zu2iFX6Qi2MS79Y8umU33XkKWa0zuhb7KGSrKgLc2bCNX29sTgpwI5JsVfcmEYj+S3+xdUvnTyYcCqY9Vy6dta1sT6HEkpmtjXdpWmJxV98bC2dGuHfRNCI1YRSJbLdqDyY/tO+pYd+DFwJQPXkPE7+5JqfrpH53bN55mBYHAZZ4t0ZryvZvayDi9C8uAgSBSuDjSqlF/i1JKDfMvlDssKph6I4HaP5ebwOU+m+s8VTIml3KT0dZKEvK3tYVWhB6SaGjFWa2y7ATERunMhbvzqtTp9akNbarv8PfDu3tnd38ZpO7FGiJQPR7fLF1SqkHgZeAyUqp3UqpL3pxXTPMhNS9i6aVRUZBsYW4E5ua7XujoTHKzH9+liWrmoi2xBgeDrF0/mSqXPiDZhz+w1l8+D9zoTvAuL9+nrqFjTlfyygTubNhGw9sbHZst1tj8bL92xqIOBnN8wvgXGA7YFRca+AxH9cllBFe1E7oLsWu7/cK2Vx34WzvYfG8RCAE6D+2rtjpa/lQ6LTBbGNmTl3mgx3KFLJLn0IF/B81ZtcIJbNGTCIQ/Rs/bZ3W+qZ8r+GGcu2sXewRV067Ead+b6SWr9RUh2iNxdPsSkssztKHtxLPtesS8OH/XEz7nloAxv7Fi1TWHc/5WgbRlpgrIQuJ30/mv5Eh7Mvx762/46Rm9kKt9dm+r0Qoa4wP95JVTa5fq7sUh55OzHANDOpgwj/8zvS8mp6h1V4jEQihh35h68q5jsysQ6bfwsrOGc6leZ0dWkPLc1OSx/VL1/jS2M41PTViLW3OauWEsqdf2Lpyp5hC3Gk3YuN7I7PG1sou5ipkU0fvQGI0WcVQ73qSuV1VW0cnpy5bI+N5ygQnX6MvKaXE6AlZWTgzQm11yNVrutsr2PWv84m9X8eIT71uKWQjNWGa7rqcWy6sN00XdkJtdUhqIAQ7+oWtK3b6Wj6UWtrgXVdPdXxuKKioCYdQJDbeMnsD6G5F9KfzOLa1nuFz30qUUZSCkCXhgFZXVvD+igVsWDZPHLX+T7+wdULuZNra2uoQoQyjlfq94aTze650dwTThOyE25/2VMjmgiHWrca1CaWFk8jsr0gYvg9JtG5XgNZan+vryoSyo6Exipss485jVUR/ehkAQ2fuZOh5O03PSzWo9yycxuyJI5x1pMvAcEzLscurUBD6ha0rdvpavpRS2uDCmREe3tzMhncPZz033qUZXFVB012XM+PuZ9PS77rjgWQZxaCJBxk+923fGtvZccuF9Zbjg8ohDV3wjH5h64T8yLS1dl3w/bIP3e0V7Pn5x5PHXvdK8QOxlaWHEzH7c+DzwDZ6ayuEAYjZfEJjPms4FKAt7vzPo7M1TPTf5yUOVDe1894A+g6qDirFdbPSDa5hgBsao9z2UJNjAW1co1QcZaHk6De2rpQEYbnzwSHnjsuelhgNjdG0cojujiC7fvDp5PGYz27ydH1OidSEuWfhNNa/eaBs09AFz+g3tk5whpNxbXbfG05rbN3QHq3hw1/PBaDmE28wfM57nl7fL8RWlh5OxOwBrfVq31cilDRmM8lSd/hdCdnjVb1CFpj4jaeTj7u0TqtRMMZH/HpjM7XVIe66emqasa1QiriPA7uFAYXYOpeU6zxbOzLfkxsHTpPeNyBTyPrR2M4JqdktVrVyJ9o7aWiMlv2/n+AIsXUuKWdb58X87kun1LluomTH8e0RDj05A4Caj+0oCSGrgOrKICc6rNOpy6VkZ6DhRMw2KqV+AzxBIh0FAK11WXX4FPLDq3qJ7vYKoj+5LHls5txZGcsjbXGWPrIVSBjglWt3OG424MHYM6H/I7bOBV44SMXGLNvk0S3RtPeUurnmBt0ZYNd9n0oeF0vIQmLOrIHxb5NZqtESi5fdv5+QM2LrXFDuts5uXJvd+g37mI8dNGPvLz9Kx77hAIy8qpEhU/d4dOW+1FaHOH6yM6uvGFSK7904HaDPZp/x3iNltokxkHAiZsMkjN3lKc+V3bgKIT+8qBHoOlnBwSdmoiq6GHbhO9TMfcf1NeJdOmmA3axpyCB3jamEAYnYOhfk6iAVA7OoCtDHQTWLPGjo48iFgoquLm2Zn9kdD3Do6XNRCoac9wEjPrXd43fkjkyhamwGZvYdKNV/P8FzxNa5oJxsnRl249qsIs6ZAt4rIbvzX3obPY29ZQNVkZa8rxlQ5qPHgkrR0hYnHArYitlwKNin0WC5RuEHKk7E7M+01htSn1BKzfVpPUKJMjzPsTgdB4ew9+eXADB68UbCpx7K+VqGYXaTAtji4XgNod8its4F5TLP1iqqUlUR6OOgWrk7xq684dycaO+0tIddx6vY3ZN9MurqRgaf7V/UwQ2Zzne5/PsJviC2zgXl/lmx8pVqqkN9bOPSh7fm1GAzG1rDwZ60YoBxX3yeylH5z5BVWM/QNvqv2JXBmUVbpedE+eEk+fJHDp8T+ikNjVFOdHTm/PrYzpFJITv0/PfyErLQW3xvNoLEqgmeFOwLDhBb5wKrz1SpfdasoipuNudqq0NsWDYvObqm1eK18cPVSSE76NQDJSNkDVKd73L59xN8QWydC8r9s2I1rk1r+tjGeLf2XMh2xwM0f2cBbX+OEBxykgm3PZOzkK0IqDQ/z8icyQUFMoqsn2AZmVVKXQRcDNQppW5P+dEwIGj+KqE/cvcT24l35ZZkEnu3jv2PXABA5bgjjOjpWpwrwYBKpgiajSDJrHkDKdgX7BFblxtmjYRK8bPmRfTkSFucU5etSe7im0U6Og4MYe8vLkkej1n8ct73tSOgoKoimPb7DwUUQwZVWDqjNSlzwMvl30/wDrF1uVHunxWrcW23pTSr84vUEYyVY1sY+xcb8hq902kShjUrBXGCk82Icm78NZCwSzOuBIb0nDM05fmjwPV+LkooDRoaoyxfvT3n9OL2vcOTQnbQxAOM+ay5cxfJGPNjiNLfbGzuU5OmMzoXm6WDzJ44QoyP4AaxdTlQLvNsrVLsaqtDnIx393FQQROzSEuLtsRYsqqJcChAKKiSm3ydRwclhayq6KL+jme8fyMZdGu4d9E009//jLufNbXbqeazXP79BE8RW5cD/eGzYjZTNpAxCtFr2t4ew4HHZgNQFTnM2Fte8u1eqaUgTt5XKCUwYkW5N/4aSFiKWa3188DzSqlfaq13FnBNQgmQ+SF2S+fxKg48NguA4Re/Rc3H3rY899IpddyzcFrac3NXrDNtrtKtydp0QeodBDeIrcudcvisWUVV7rp6KkCyW2dQKcf2LhbvJhRQVIcCHD8eYP+jCYet+qwoddf4H+2AhONm9fu3SoPOfL4c/v0E7xBblzv96bNi+Hd+CtmWFz5C60tnAonyssysvMqgoiPHjD8zgkpZNq8yxUF0uNwbfw0knDSAalNKrQSmAoOMJ7XW86xfIpQjqekUkHv3utgHIznQMIuKISep+8yLVJ3Sanv+g5t29RGzdo2dyqXpglB2iK3rhziJquSycRfv1nQdGkr0VxcSCHcw+oaXGTe1haum17Pmtb2e152lki3F0SoaXS41foLviK0bwHg1atGKY1sn9ArZWe+blpd5KWQh0ewpM2p6x0NbLQV76mQMK8q98ddAwomYfQBYBVwFfBn4AnDAz0UJhSffSKzB0ZcncWT92QCMumkjlWOOZn2N291BccgEnxBbV+LkWr9kF1XJ1bFre3c0Bx45H4BR17xKeNJBjp6EX29sdn0tNziZdVjuNX6C74itG8D4KcaOrJ/C0c2TABhz00sMqj/s270ySY2aLpwZyVoTnO33IJuC5YMTMTtSa/1zpdQ/pKSovOL3woTC4sVOXcuGM2h9MeEsjbyq0ZGQNWhojDpO2xCHTPAJsXUe4nXjDL/ql3Jx7E68OZaD/5sooxh20TuEJx0ErEdE5EJmQxOzWYhW9IcaP8FXxNYNUPyqldUadv1gPjqekBUT/mEtgUG5T8HIlcyO7XZZftlEqWwKlg9ORvMYuVJ7lVILlFIzgRE+rkkoAvnu1B19eVJSyNZ8bAdDprobSbFkVRNzV6yjoTEKJOofzAgoKbwXfENsnUcYwjPaEkPTKzyNz3cu2NUv5UM2h6a2OkQgxRzF3qtLCtnqj+yl9uP53d8MBfxg8QwiNWEUiWisUyFrsHBmJG2ckNhNIQWxdQMQv2pluzuCNH9nQa+QXfJMUYQspNtzs5FEBk5E6cKZEe5dNC0vOywUBieR2XuUUsOBO0jMIRsG3ObFzZVSnwZ+SKIl/M+01iu8uK7gnuHhUO5diz8clkwtrp23nWHnf5DTdVIjLTfNmWCarnfznPqcri0IDhBb5xF+NM7It37JLFIMcKLd3ulKrX2NH6lm/8OJDu2Dz9nFqAWvObq3GUGb6MgpNs2dBMEDfLN1Quly9xPbPa+VjR+pZs/9lyaP67+xJqfROwGVGL2Y6xhI6CtQUzNUjCZ/XVo7KtVIvYbY4dInq5jVWj/Z87AVuNTuXDcopYLAT4BPAbuBV5RSq7XWf/bqHoJzcp371b5nOAfXzAA0oxdvInzqobzWYTi8G5Yl+lA8uGkXXVoTVIqb5kzo0yhKELxioNi6QszN81p4XjqlzjI1LqAUk5at6fNe7mzYlrQfmRgjdtwQPzyYg6tnAjByQRNDzsk9ygzw7r1XmvYqkDQ2wW/8snVC6dLQGPW8KV3H/qHs/a+PJ48nfnNNzte6eU49syeO4O4ntue0TgVcN6uv8BQxOjDIKmaVUh8B/g0Yo7U+Ryl1LnCN1vqePO99AfCO1vq9nvv8FrgWEDFbBFpyMB6tm06j5bmzCI06SuQr66gYdtKTtRgO7z0Lp4l4FQrGQLB1hZqb56RxhpWoNlujXVMlQ6xGW2IsfXgr//fxbZzo8Db6YNTIBgaf5JS/eY7QyBOeXFdqW4Vi4KOtE0oMw87a1Y7mQvuHw5JZKoMm7WfMjbmXXN9yYX3S10vdjHxgY7PjqRoaWP+m9DAbqDhJM/5PYCnwHwBa69eUUr8B8jV6EWBXyvFuYE6e1xRyJFuhfCYfPjiH9uZRAIy6uskzIWusRRCKQL+3dYWam5etcYaZYL1tVRNLVjXZpt9mI96tiXssZI88N4Wjm04HYOQV2zwRsuFQb7sKp5GDQkTUhQGDX7ZOKBEaGqM5Rzmzkdrsc+wX/kjVWOfNPjOJ1IRNgxb3LJzG7IkjkjZveDiEUonAi9W3g4zMGbg4EbPVWuuXVXoeasEqu5VStwK3AtTXS72kXyydP9lx2t3e/55Lx4c1AIy+4WUqRx/zbB2SYicUkX5v6wo1Ny9bxNFMVBsOitfNSfLh0LNTOd54KgC1n9xO9en7PbnuIIumJFYUKqIuDBiKausE//BTxALsf2wWsbfHAonRO/kI2Wz+ntVG39wV62RkjpCGEzF7UCl1Oj2+hlLqemCvB/eOAhNSjsf3PJeG1vp+4H6A2bNnl46X0w9I3ekfHg45es3h35+dFLJezhBTINEGodj0e1tnlYFRU+3s8+8Gu4ijF+JZqcQ4CL84umViUsiOmP8aQ2fssn+BC9yWdRQqoi4MGPyydYJH5JKJYVaD7xVaQ/N3FiSPT/k/6wjVOLfjNeEQV00fx/o3D+SdXWKW+aNIbPLNXbFO/MgBiBMx+1USDtYUpVQUeB/4nAf3fgU4Uyk1iYRj91ngZg+uKzgg0+g56WTc9u5ojm1JDMMee8sGqiItnq3nB4tniPERik2/t3VL509m6SNb+3SMPH6y09Ws51wxHDQvNKifQrZ9z3CO/P4cAEZdu4XBUz709PpuIwiFiqgLAwa/bN2ApFRmapttenmB7gzQ/L0rkscTlqwlUOUukN/e2c3siSM86YOS2aU4dSa3ZK0MTGzFbE8Xzr/VWl+mlBoMBLTWnuSUaq07lVJ/B6wlMa7iF1rr7V5cW8iOW6N39OVJtL58GoMmHmTUwi0EPZ4hJhEGoZgMFFu3cGaE5au399m8indrTz+DVmNw/IoaeMnxbRFaXphM5bgj1C181dN+AAaXTqlzdb6ThlqC4AQ/bd1AxI8SALeZGHad280IKOh2uBnY3RFk3297WzzUf/0pVND9TqLXmSRG5o9ZyrFkrQw8LMWsUqqixwn7KIDW2pv2jSlorZ8CnvL6ugMRtzuDbnb0d/3oMrrbqgCo+9LzrnfknCARBqFYDDRb12qRheHVZ9DKuauqCJS8kN332ws4uTMhNMd9YQPBIe2+3Mdt181sDbUEwQmFsHUDDa9LABoao5bNOM1s9J0N22y7vZsxbFCIYyc7s4rfjgND2fuLxOid4R/dQc3cd1zdJ5N8ZoK7LVkRn3JgYReZfRk4D2hUSq0GHgaShk9r/ZjPaxMc4nRnMNVAWM1szGTnv/TWSIz/6u99EbIgEQahqAwoW+d3lM/KubMSsopEza5fDUucEr3/EjqPDAFg3F8/75uQBfeOlozwETyiILZOKfVp4IckMlF+prVe4cV1SxEvxZThy1lhZqMf3OS+lr8lFqc2i81te3s0Bx47H4Ch532Qt5AFZ98xbiPdkrUigLOa2UHAIWAeibR0Iz29Xzl45YyTncFMA+FWyEYCqYoNAAAgAElEQVS+8oecnbuanpbqdoZTIgxCCTAgbJ3fUT63TtwpNeGi76JH//1SOlurgUQ/gMq64zlfK9Lzfk6pCXPkRDtt8e4+5+TiaDkd4SMIDvDN1vWkMf8E+BSJMWSvKKVWa60LPle7EHgppuzKv6xsdC7d3xX2/tj+R2YTe3cMACM+9TpDz9vp+h6ZOP2OcRvplqwVAezF7Gil1O3A6/QaOwPpKlxCONkZdFsje+iZ3iL98V/9fU5CNhRQrLxhetIAWbVTrwmHxEkTismAsnVuo3xuSxisnLva6hAn492mTofRyCMfggFFl9NCsBSObj41KWTH/eUfqRyT38zEDcvmJY/NuouKoyUUkULYuguAd7TW7wEopX4LXAv0SzHrpZiy29S7d9E0U7uby1xuu7NTy8pG37iJ8KSDrq5tRlApy/Vn4jbSLVkrAtiL2SAwhHRjZ9DvHLxypaExapkynLoz6CbycWzrBI6/njAEE5Y8Q6Aqtzq3VCEL1kZ/+TVTc7q+IHjEgLN1TqN8uTQ3sfqc33V14nNu5XTk2xwqAFSFAqaRUCva3h5Dyx8/AiSyT/Jp9qTom2EijpZQYhTC1kWA1NzX3cAci3N9xesuw2Z4+Rm32giM9Phyc1es63OPm+ZMcF0za4bW0PLclKSQ9XJixU1zJjj+feQS6ZasFcFOzO7VWv9zwVYiuMZwNM2EbObOoNOatF0//iTdJwYxZHozIz71um3XOrsdQaX6Orvi2Aklitg6C3JpbpL5OR/eU2Zw26omy8+8mW24dEpdciZhTXUIrRPNq06pCXOivdO0I7ObwOy+387h5M5RhM/8kFFXNRGo7H2f1aEAGuVKXIdDAW5b1cTKtTvS3qM4WkIJURK2Til1K3ArQH19vS/38KPLsBVefcatNgIvnVJn+V6MUTduuhlnorsUzd+9EoDgkBinfPEFAi4mVqSOxjHDTcM7SRsWcsFOzJrt3PVbvNzBK8RuIFinDpuldGSzcZkDsUdc/joqYP0iBXzvxuls3nnYdFfwc3PMv6DEsRNKkAFl69yQa3MT43PuxqF0YxsmLVtj+rxTZy61H8CoqxsJhHqjuaGg4tuLzgV6xXVNdYiWtrilwxZQJCPCMudQKGEKYeuiwISU4/E9zyXRWt9PYs4ts2fP9iX7xesuw/ng1Ce02vDP9l7uWTiNexZOo6Exym2rmlyF2LtiIXbfdzkAgXAHkb9dh3L4V6IUvH/vguT7c9OF2QoJegi5YCdmP1mwVRQZL3fwCrkbaGUgurXucy+rcRzQV8jWf/0pWyELiV24VOfT2BUMKsVNcyZ4MhhbEArEgLF1bsm3uYlfDqXVupzUj6V1aP/as2lCtrY6xF1XT02LqhqOml1mS2ZEWOYcCiVKIWzdK8CZSqlJJETsZ4GbC3DfNEplZItbn9BsU++2VU2m1858LwtnRiwDDGac3DWCfb+5CICK2uNEbn3e0esMtE4X6lb2120zLAl6CG6xFLNa68OFXEgx8dLh8st5MxuKnc1wOBnFYypkHQzEjqQYJ2NXUBDKkYFk69ySb8qX1U59vs2erNZ13awIj26JWqYHN39/fvLx+L9/lmC4V6DWVodo/KfL0843a+DklGJ3aBaETAph63rm2P4dsJZEje4vtNbb/b5vJqUyssULn9DNe7ln4TSe3Lq3TxlGJke3nMqR3yf6GAyeuptRV211tJZUjNIKw2N0UvImCH7gZDRPv8fLHbxs18olBdlqKLZVBOJEeyd3NmxLc+qshOzh3/U2X6pfmj0iayDGSRD6P/mmfFltuAVt8tic2Ei7dc2eOCL5PKq3xKJ142noeOIrb8KStX1mZreYRF7ddoFPReYcCgMVrfVTwFPFXEOp1F468S+z2Ty378UuEw+g7Z3RSSFbfVY0JyELELNothdUim6tJUVYKBgiZvF2B8/uWrmmIGcbih1Q6WluLbE4D2xsNq2bMAr1dTccXDOD9t21DD3vA2ov2+64TmLu6SPEOAnCACGflC+rDTer572osU193qitPfyHs2h7a2zCcbvyNVRFXycsoBQNjdG0azrZ0AwFFCiId/W+J4lGCEJxKZXay2z+pRObZ/VewLzDsdU9AY48P5mjr0wCYPT1LxM+3XlzJqd0aU1EhKxQQALFXkApsHT+ZMKhYNpzuTojdteySzexI1sNmFkHT6tXaEB3BmheuYC2P0eoPnOfrZCtDgWSUZSgUtxyYT0PfOki2/UIgiBAejmCk+dztZFWjBseZue/LODY5tMIjTzOqKubTIUsJOzsklVNzPznZ2loTPSrsdrQDCqF6nkfK2+YzsrrpxOpCSefczpTURAE/1g4M8KGZfN4f8UCNiybV5TPZDb/0srmLVnVxNwV65K2KPO9QGKcWbQlhiYhgm9b1cSpy9awt9WivOM/PsHRjWdAV5Dxf/87X4Rs8l49otxYvyD4iURm8XYHz+5aVkX80SwpyLkMxbaiOx5g1/evSB7XfvLPthHZtni37LAJgpATbtPjvCz56O6Gl/5xXvJ49PWbUaq3ttZqlMWRtngyMmK1fjOxKvZREIRMsvmXdrbNLjPFTAQb1iwzwJE6egcSje9S+wX4hTTCEwqFiNkevOyeZnUtq9QPBX1qXFONmFdDsTOF7MRvmo+3yERGTQiCkAtuNwq9Kvno7oZgSjDkonvWs/dYeg3XAzY21XDCjAhIsVMVBUEoXzJ9wobGaDI92Ko5p4GVIHS6wdd5vIroTy5LHjtt8ukV0ghPKAQiZgvI0vmTTWeAacwHXmc6VG6HYgcUDBsUoiUWR3epnIRs5lrEiRMEwQ1uNgq9aNqSKWS7uiAQuDR5bDiS2Syp4YTJmAhBGBjk0qDT7Wsya2Sd+HTRlhhzV6xLS0124gnGW8Ls+Y/e7BS3fp8XSCM8oRCImC0gC2dGWGKRamxl0AyHKnP8zaRla7Ias24Ng6sqOHKsi0NPnwtA5ZhWxv3li+4XT/7jNARBEOzIt+SjqwuWLk08HjoUWltJK6NwM2pHnDBBGDjk0qAzl9fk2iE92hJj6SNbQUPcrFFKBh37h3Lg8VkAVI0/zNjPveT6nm4xGowaSCM8oVCImM2RXHbwINEcxEwUuh02bdetLpVdezvZdd8VEOxi5IImhpwjxfiCIJQuuUZC29th0KDE45Ur4Y476NMPwKkjKU6YIAwscpkHm8tr8km7Te2YbsfRLRM58vtzABjzuT8xaPyRnO/pBk3Cx5WSDKHQDBgxm0sqiNX5uY7YAes0uutmRdJqZo3nrRwqs+tkkppiMvisPSJkBUHoQ64bc6XE0aMwfHji8bRp8PWvm59n50iKEyYIA5dcms/l8hqrQERtdYjqygqiLbG8mn4eenoax1+rB6Duulc8F7JGJ3qz9xCpCSfL4gShkPRLMZvpnF06pc6yuZKZw5JNrOayG2dgl0Y3e+IIx06l8fzy1dtpMRmQHT80mD0/+0TyeNSC12zX5YSg00G0giAUhHyFaD4bc6XC4cMwcmTv8Ws2ps7KkRQnTBAGNrk0n8vlNVYBjbuunppmc+euWOe6tGvnvyxIPh73189TWXfc8WtvubC+T0Alk9QAS+Z7CAUVJ9o7mbRsjWwICgWn382ZNZyz1NlbD2xsdjW7MNusw1zHRxiNR4wRPT9YPCNt9pnbmWgLZ0YYXNV3P6Lz6KA0IetV0f9NcyZ4ch1BEPLHzNa5nevn9VzXQtPami5kjWCGYWsnLVuTNqvx0il1ZG7JKXobrMhMREEYmGSbB+vVaxbOjHDvomlZ51KbXTsUVIQCfYMKujtdyEa++ntXQjZSE+aehdP6rOuWC+tN15n5HmqrQ6BJNBtFZswKhaffRWbtZm9l4laUGs/nshvnVwQkc61dsRDRf/skABXD24h8eb3ra0Z6otlG9+SgUtw0Z0JaAypBEIpLPhkiBl7OdS00sRjMmtV7nCpkzWzt5p2HeXRL1LSbfOp5UD5RaUEQvCGX5nO5Nqxz0hfA6trGc0Y6cmdccezJ85Ovm3D70wRC3cljoymTVeqyguR13fQrSD137op1HGlLzxCUCRhCIel3YtaNE+a2uZJxfi7jI7xwPLOttfNYFQefmEmgup0Rn/wzg8/e4/p6oYBKGmMRr4JQunghRL2a61pIGhqjfPvxd3n9wcnE99by13e08fPv1iR/bmVrnczqzmaT+0N9sSAI5uTSfC6f0V3Z7InVtY3n3n0Xzjgj8dzwi95mxMffpjtju84QsheeVsuGdw/3udbFp4/I24aV86ao0D/od2nGVk5YZmJGtuZKdqkjTtNEUvHrw26s9WTzCKI/vYz2XSMZdU1jTkIWYMigCnHOBKEMsNuMc0ouaXLFpKExyu3/+R6v/L+PE3tnDDWXvc6fwhvT0tnytalWr/cirVsQhNywKh0oV/K1J+vX9wrZ6il7qPn4W32ErEGX1vzJRMgCfHAof8HpxXeRIORDvxOzVs7Z5yxy/81wIlbd1rf69WFfODPCopHns+/Bi4DE7lx44qGcr9eSkSoiCEJp4oUQzWVjrpgs/+Vu3v+3jwFQ/ZG9DD5rb58a33xtqtXry72+WBDKlf64kZSPPbn1VpjX069u+Md2UHdtY9bXuC23c0O5bYoK/Y9+l2acaw2D2XW8dOhySU12wqpV8O3bEh1Qwqftp+bjb+V1PdlJE4TyoFRtnV9s3gxb75sDgKqMU/eZV5M/S3XIls6fzNKHtxLvdj/aws4mSyqdIBQHv8q0ikmu9uSii2DjxsTjUde8yuCz9ua1Di98Pq++iwQhV/qdmIXSdM78+LC//jp89rOJxzfeCDvObiJfv+rSKXX5XUAQhIJRirbOD/btg/N7epwEh8YY/7fr0n7exyFzMEXMaHS3/s0DjmxyOdYXC0J/oL9tJDU0RglYNGQysydGbe0bz47lyMazARh9w8uETzvg6r5GMygDL6OnA+W7SChN+qWYLVW8/LA3N8NnPpN4/NOfwle+AjP/2fzcgAKnQYr1b7ozjoIgCH6yfz9ce23i8dWfO87bk14kdbR2pkO2cu0O4l3WBi8cCuaUSu1Xdo0gCPZ4tZFUCg3cjJRpMyFrZk8aGqMse2QbO+69HHSA4NAY477wIsHBHa7uGw4FuW5WxPHmnSCUEyJmy5DVqxPO3dSp0NgIM2Yknreqd+3WCUNmNwzboFx3OgVBKE3ycSC3bIHZs+G00+APf4B584bQ0DjNdFzF3BXr2NNTU2dFJA8HTlLpBKE4eLGR5Nd4RLeYpUxDouOw2SbbitXvsOPbn04eR768HhVwV0KRi90rBeEvCE4RMVtk3BqM5cvh7rsTj3/9614hC9a7l7XVIbTGkZiVlDlBELwiHwfyoYdg8eLE4x/9qLfhSWaGS+Y9rIjUhNmwbF6O78T83oIg+I8XG0mlUndrFTDo1rrPOpqaYNPyS4BEn4AJS55FOSihSCUXu1cqwl8QnCJitoi4NRhLl8J3v5t4/D//ky5kwXz3EugzzNqKUFBJypwgCJ6RqwP5y1/CX/1V4vHXvw5XXunuHplIOrAglDf5biQVou7WSXDCacr0gw/CzTcnHg+aeJAxn93kej25+HQNjVHueGhrnzTocm+4JfRvijKaRyl1g1Jqu1KqWyk1uxhrKAXctGb/8Y97hex998Ett/S9XuqYDXDUAyWNwZUyY1YQvGSg2zorRzHaEuszVsOYIznmxpeTQvaLX4SVK/uekzpr0s4ZLYdxQ4Ig+I/fs1Cdjg9yMsbmT39KEbITDuckZAdXBll5/fQ+ds9uXq9dPS9IGZpQuhQrMvs6sAj4jyLdvyRwulO4cSP8/d8nHv/sZwkHzwpj93LuinWmu392tMacRXAFQXDMgLZ1VlEIIC0LxXCijn44iP0PXwBA7QUfcNVXQ0DCGbPKZBkeDtFiYru8SCsWBKF/4HcDN6dZKNlSpu+6C1asSJz7kZtep71+p6P7BxRojW0KdrZswGxZLlKGJpQqRRGzWus3AJTb5P9+hpN0kxdfTAzInjgxMVN2zhxn185lB00MlSB4y0C3dValD5Du6K1cu4PWPWEOPjmD4OCTjLzyNcKnHWDl2nCa82fmLA4KBfo0uJO0YkEQUvG7gZubNGarlOmLL4aXXko8jkZh7n3OhCwkGn3+6+IZtu8nm+C28xvFpgqljNTMFpFsO4Xf+EYixa4iHGfc36zn9vUVLK2cnIxk2Bllu4hIKKhAQzxlXo8YKkEQvMawSUtWNZn+3HCedjw3ikNrzwUg8uV1VAyPpf0883EqLW1xfrB4hnTeFAShD4XqymvlcwWUYtKyNbb37uqCihRvPBqFU06x9+PMyFbTmk1wW93PqtOyIJQKvolZpdTvgbEmP/q/Wuv/dXGdW4FbAerr6z1aXWlgt1M4c2aikx1A3WdfIlAdJ9oS57ZVTTy8uZlXm1ttG0dZRURqq0PcdfVUy/sKguAOsXX2GJFXqyyUL3+ZpJAdff3LSSFr/Dz1sZWzCEhKsSAIaRSyK6+Vz2XUn1rd+8gRGDGi9/y2NgiHE2s/0d7pag3ZMvKyZQNaBVhEyAqljm9iVmt9mUfXuR+4H2D27NnuhmuVAWbpJqedBu+/n3g85qaXqBx9LPkzDWx493Cf62TWZjhJqRHjJAj5I7YuO1ZOUvD5C/mPZxLHYxdso+r0A2k/T80WsXMWZWyEIBQfpdQNwHLgLOACrfXmYq6nkON4Mn2ugFJZOwLv3w9jxvT+vKsLAgHn48YyyVYqli0bUGZpC+WKpBmXGF/9aq+QHfv5DVSd0uL4tZm7cjITURAEv3GSxmfmJJ11+Dx+/kw1AL/5DYSnjGDl2gNZN99kbIQglCwl1fCuEON4Ukn1uSYtW2N77x8+tI9//NpgYAjVY4/zwFOtBALW/QEyUSSCGwZOSsUWzoyweedhHty0iy6tCSrFdbMifeys2FGh3CiKmFVKfQb4EVAHrFFKNWmt5xdjLaXEmjXw058mHu/YAVf8VytdLuIz0sBJEEqL/m7r3KTxpTpJmzbBhRcmnn/xRZg7FyC7E7VwZoTbstTfCoJQHEqt4Z3Tma5e09AYNY3MGvde8v8O88N/SoRkRy/eSPjUQ3zrscS4nmyNmAw0iY7tbiKodzZs44GNzUkR3KU1j26JMnviCBGwQllTlDmzWuvHtdbjtdZVWusx/cm5y5UvfQmuuw6uvhpaW+EjH8Fy1pcZ0sBJEEqP/m7r3MzKNrj77oR4veQS2LvXELLO8XtepCAI/QMnM129xm5WazgUZPQb5/PDf0oUyY68qpHwqYeAhN1cvno7c1esw4nnZ4wee3/FAjYsm5dVjDY0RtOErEE2ey0I5YCkGfdQqI53ZqRuYv7mNzBkSOJxxGEnu4jUNQiCUATcpvGdeSa8807i8cMPQ12d+3v6PS9SEARrvGh4V6hmd8WoAbVKEQ4qxZv3fJo3e47NyshaYnHTmdlmuLV3K9fusBTJktUilDsiZilsx7vUe65cu4M/fau3A+fBg71CFuxnNBoYu3OCIAiFxk0a34gRic6dAG+/nZuQhV6bvHz19qTjNyhUlCQjQRhweNHwrpDN7gpdA2omDLWG9/7lyuTxKX/zHKGRJ3K+R211yPV7shOsktUilDviAZBbqlw+3NmwjdtWNaUJ2TOWrOOPzdG08xbOjHDvomlEegxNZhVKKKBo6+hk0rI1zF2xjobGKIIgCIXCaRrfmWf2CtmmJjjjjMTjhsYoc1esy8mGtXd2Jx8faYvzrce2iQ0UBKGoZApD3aU4tGZ68njCP6zNS8iGQ8HkeMV81mWgcB/lFYRSQ8Qshe14Z9QtHH6u13iM/9qzxKtiLFnV1MehWzgzwoZl8/hgxQJ+sHgGkZowCqgJh0AlnDhNbzRZnDlBEApF6oabIpEpkjmT8Gc/600tfuMNmN7j1xkZMdGWmGsbVugNSEEQsqOU+oxSajdwEYmGd2uLvaZCk7rB13msiubvXsmJ7eNZ+BfH6OqCCWNDpq8LWPTMqq0O2drXXNZloIDP/f/s3Xd8FGX+wPHPlxBIKAoIKAQleKeIdEHQQzzEghVQ7JXzTuwVUezo6cFZUX96NhQVTkFRRDnEAniCgBCaIGBDJIEDBCMlAVKe3x/PbDLZbE12M7ub7/v14sVmZ3bmu7M7332eecocc4gOUVNJT7sZE/sZ70KNv31s5lp+X9SOncvakt58JwddPpc66eUtDJHOBtpnzKxKYyv09hRKqZoWqhvfhAlwzz1w8MGwaFHFeypW5x6QNX3LDaVUeMaY94H3vY7DS77cdf8rG/nm+aMBOPKovbz/emMg+Jj/IT2ymJKTV+n5B87qGFWZLlj5U+8hq1KZVmaJ7YQiocbfDuqWxVd3nwBGaNR1Pc1OWYXUqTxcJJICnRbmlFKJ7OijYfFiGDwYJk6EBg0qLq9ODvPqlhtKKRVOzntZfPO8Lb/ddhs88UT9smWhKpU92zarVmUz3Pwveg9Zlaq0MktsZ7wL1trw6MdrOfuoLHwjX5udshIJ0ck7XIFOC3NKqUTVoQOscabtfOONyhVZqF4O0xmNlVKJ6NJL7cU7gKefhptuqrxOsEplsOfD3W3j3qnf8NbCDQFvB6Q99lRtoJVZR6yuWAWbyW7+3eWTPbW/eyZ7gk9QDIQv0GlhTimViNq0gTxn2OuOHdC4ceD1qpPDtMucUirRvP56eUX2rbfgwgurv81wra33Tv2GCQt+CbkN7bGnUp1WZmMsUGvDthldyh6XlMC05Z3KCmFNGqSza08xRaXlV9QiKdBpYU4plWj+8Y/yiuzu3YFbZH2qm8O0y5xSqiYFayE1Blq2tLdXbNsWvvjC/h/Ja8MJN7fAWws3hN2G9thTqU4rszHmbm0wBigVGrXZwbF/3M0nUxoiUrkQFizJhUt+WphTSiUCY6CoyHYvHjLEtk7Urx/+dZrDlFLJIFgLaUkxzHw5i19/tet99x3UqxfZa6HyRJ/+ws0tEKhrsZv22FO1gVZmY8yXmP75n+9Y8n/dadx8Hy++VsSQng1DvsY/oVUn+SmlVE0xBgYOhJ07YcYMOPtsryNSSqnYCtRCuuu3ulxwfEtK9sDdd8Pf/w51AsyFUp2Z28PNLZAmErRCm6U99lQtofeZjYPTjsxiwb0nsO9/TRjUqyXn9IgukUxdmsfwycv1PopKqYRmjC28ffSR7VYcSWusUkolG/8W0n1bGpP73EmU7Eln9Gh45JHAFdlArw33vFug+8O6W1sv6n1wBNErldq0MhtjBQWQkWEf77cfjBsHEuRm2IH4WmSDXWnTgfxKqURQWlqx8LZwYfDCnFJKJTP3uNN9vzZi86TeABx0TC4jR0b+2kiedxvcPYvR53Qmq0kmgm1tHX1O57LW1ocHd+bSYw4hLUBB09ejb+rSvLD7USqZadEjhvbuhYZOb+KsLPj99+i3Eag7ipsO5FdKea20FNLSKv6tFVmlVKrytZD+Pv8PbBp3PIgh+69f8a/nw7dWhGtdDWdw9yzmjezPujFnMG9k/0rdhh8e3JkfR59OVoDyofboU7WBFj9i6MUX7f9HHgm5uVXbRqiWVx3Ir5RKBO+/X/64tDS63idKKZVsBnfP4vQGvcj/7xGA0O36JTx1fduIxqOGa12Nlep0Z1YqmekEUDFQUADTp8P119uK7EknVX1bwQb7p4nEJfkppVSkioth0iS4+GKYORNOPlkrskqp1GYMjBgBTz7RjD594M03oV27P1VaL9QdKGpi5vZwk0Uplaq0MltNmzfDQQfZx6tXV68iCxVv7eOTmZ6mFVmllKcKCioOozjlFG/jUUqpeNu7t3welJNOspPdBZroLhHuQBGs/Kg9+lSq027G1ZCXV16RPfdcOOKI6m+zprqjKKVUpHbuLK/IHnYY9OvnaThKKRV3u3dD377lf3/8cfAZ20PdfqemaPlR1VbaMltFP/8M7drZx+edB5Mnx27bNdEdRSmlIpGfD02b2sft28OaNd7Go5RS8fbtt3DZZbBsGTz8MNxzT+j1E2W8qpYfVW2kldkq2L69vCI7dCi89pqn4SilVFwUFJT3PunRAxYv9jYepZSKt7VroWNH+3jaNDjrrPCvCTZedf/M9BhHp5Typ92Mo2SM/derF/zrX1qRVUqlJt+tro87Dh58UCuySqnUN3cu/OlPkJ4OL7wQWUUW7HjV9DqVZ8Pbva9Y7/OqVJxpZTYK33wD3bvDqlUwfz5cc43XESmlVOzl5UHPnnaM2CefwP33ex2RUkrF1/nn2zGyjRvb4RRXXx35awd3z6JRRuXOjkUlRu/zqlScaTfjCC1aZFtjAUpKoI5eBlBKpaD16yE72z4uKtJcp5RKbcbAyJHwzjv2788+g0MPjX47+QVFAZ/X+7wqFV9aTInAvHnlFdnRo+GEE7yNRyml4uGHH8orskOHwgUXeBmNUkrFV0kJ3HwzPPqoveXYb7/BH/9YtW0Fu5+r3udVqfjSymwY8+fbMWMAY8faq3dKKZVq1q2zt90BuO46nQ9AKZXaCgqgbl149lm47Tb45Rdo0qTq2xsxoD2Z6WkVntP7vCoVf9rNOITSUhg2zD5+8cXyx0oplWquv97+f/vt8Nhj3sailFLxtHVr+eRORx4JTzxR/W36bonz2My1bMwvpHWTTEYMaK+3ylEqzrQyG8TatdCwoW2dSE+Hrl29jkgppWIvLw927IBnnoHcXOjXz+uIlFIqfmbMgNNPh4wMeO89OPvs2G1b7/OqVM3TymwAb78NF10Exx8Pc+aAVJ5tXSmlkt68eXYYxWGHwbffVn2smFJKJYOPPipvkZ0wIbYVWaWUNzwZMysij4nIGhFZISLvi0g1RinE1vjxtiIL8M9/akVWKVV1iZzrZs0qnw/gwQft2DGllEpV770H551nH8+YAUOGeBuPUio2vJoA6lOgkzGmC/AdcJdHcVTwwgvwl7/YxyID3+AAACAASURBVB9/DMcc4208Sqmkl5C5bsYMOPFE+/jFF8sv4CmlVFUl8sW7I4+0lddu3WDLFjj1VK8jUkrFiieVWWPMJ8aYYufPBUAbL+JwW7AArr3WPp49GwYM8DYepVTyS8Rct2aNHS8G8MYbOrGdUipmEu7iXWmpnal49Wr79+efQ4sW3saklIqtRLg1z5XADK+D+O47aNrUjiHTCVCUUnGQELnu55+hWTPb5e6yy7yORimVKhLt4t1vv8F++8FTT9l7yRYXQ4MGXkaklIqHuI2SEpHPgIMCLLrHGPOBs849QDEwMcR2hgHDAA455JCYxzl1KkyaBK+/Duefb2e3U0qpSCVLrvvvf+Hxx2HiRDuDseY6pVQcXQlM8mrn69bBoYfaxzfdBGPHehWJUire4laZNcacFGq5iAwFzgRONMaYENt5CXgJoGfPnkHXq4rhw+HJJ+3jZ5+F5s1juXWlVG2QDLnuhRfKh1H8+iu0axfLrSulaotYXLyL94W7H38sHyp2wQXw9NMx34VSKoF4Mn+liJwK3AH82RhT4EUM115rC3hgx1JoRVYpFWuJkOueesqOGQM7H4BWZJVSVRWLi3fxvHD33HNwww12KMXcudCnTyy3rpRKRF7djOH/gPrAp2LvfbPAGHNNTe38L3+xt+AB+OEH+MMfamrPSqlaxtNcN2YM3OVMwfLVV3DssTW1Z6VUbeP1xbtp02xFFmD+fDj88JqOQCnlBU8qs8aYP3qxX4BFi8orsuvXQxx6uCilFOBtrvv55/KK7OLF0KOHV5EopWoJzy7e3XOPvXh39NHw73/DHz3LvEqpmuZVy6wnVq60BbpHH4VrroHGjb2OSCmlYm/lSujY0c4FcN55cOCBXkeklEp1Xly8Ky6G9HT7uFMnO5SiYcOajkIp5aVEuDVPjTjlFOjc2c5cPGKEVmSVUqnp+uttrnviCdvlTiuySqlUtGcPDB5c/ndOjlZklaqNakVl9qij4NNP7WN34lNKqVRyxRXw/PP28ZVXehuLUkrFyw8/QN++MH063HcflJZCvXpeR6WU8kLKdzM+/HD4/nv7OD8fMjO9jUcppeLh3HNhyhT7eP16O5unUkqlmnXr4LDD7OO337a331FK1V4p3TJ75ZXlFdmdO2H//b2NRyml4uGJJ8orsnl5OrGdUio1ff01HHMMNGgATz6pFVmlVAq3zO7dC998Y1sncnO1RVYplZqMgVmzIC0NNm6Eli29jkgppWLvpZfg6qvtnCeLF0OHDl5HpJRKBClbma1fHz77zE4GUDdl36VSqrYTgXfftY/1op1SKlXt22f///JLrcgqpcqldDfj/ffXiqxSKvVlZmpFVimV2m64wfZE6drV60iUUokkpSuzSimllFJKKaVSk1ZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWaWUUkoppZRSSUcrs0oppZRSSimlko5WZpVSSimllFJKJR0xxngdQ8REZCuwPk6bbw78GqdtV1eixqZxRS9RY0vUuCCy2NoaY1rURDA1QXNdwknUuCBxY9O4oqe5LvYS9fPWuKKXqLFpXNGLaa5LqspsPInIYmNMT6/jCCRRY9O4opeosSVqXJDYsSWjRD6eiRpbosYFiRubxhW9RI4tWSXqMdW4opeosWlc0Yt1bNrNWCmllFJKKaVU0tHKrFJKKaWUUkqppKOV2XIveR1ACIkam8YVvUSNLVHjgsSOLRkl8vFM1NgSNS5I3Ng0ruglcmzJKlGPqcYVvUSNTeOKXkxj0zGzSimllFJKKaWSjrbMKqWUUkoppZRKOlqZdRGRv4vIChFZJiKfiEhrr2MCEJHHRGSNE9v7ItLE65h8ROQ8EVklIqUi4vmsaSJyqoisFZEfRGSk1/H4iMirIrJFRFZ6HYubiBwsIrNF5Fvnc7zZ65gARCRDRL4WkeVOXA96HVMqSdRcB4mb7zTXRUZzXXQ018WX5rroaa6LjOa66MQz12k3YxcR2c8Ys8N5fBNwpDHmGo/DQkROAWYZY4pF5J8Axpg7PQ4LABHpAJQCLwK3G2MWexhLGvAdcDKQCywCLjLGfOtVTD4icjywC3jDGNPJ63h8RKQV0MoYs0REGgM5wGCvj5mICNDQGLNLRNKBucDNxpgFXsaVKhI110Hi5jvNdZHRXBd1XJrr4khzXfQ010VGc13UccUt12nLrIsv4TkaAglR0zfGfGKMKXb+XAC08TIeN2PMamPMWq/jcPQCfjDG/GSM2Qe8DQzyOCYAjDH/BbZ7HYc/Y8wmY8wS5/FOYDWQ5W1UYKxdzp/pzr+EOB9TQaLmOkjcfKe5LjKa66KjuS6+NNdFT3NdZDTXRSeeuU4rs35E5BER2QBcAtzvdTwBXAnM8DqIBJUFbHD9nUsCnMDJQkSyge7AQm8jsUQkTUSWAVuAT40xCRFXqkiCXAea74LRXFcNmutqF811SU1zXTXUllxX6yqzIvKZiKwM8G8QgDHmHmPMwcBE4IZEictZ5x6g2ImtxkQSm0puItIImALc4ncl2zPGmBJjTDfs1epeIpIw3XiSQaLmukhic9ap8XynuS71aa5LPZrr4hOXSm61KdfVjcVGkokx5qQIV50I/Ad4II7hlAkXl4gMBc4ETjQ1PNA5imPmtTzgYNffbZznVAjO2IUpwERjzHtex+PPGJMvIrOBU4GEmmghkSVqroPEzXea61Kb5rrUpLkueprrUltty3W1rmU2FBE5zPXnIGCNV7G4icipwB3AQGNMgdfxJLBFwGEi0k5E6gEXAtM8jimhOQPyxwGrjTFPeh2Pj4i0EGdmRxHJxE7+kBDnYypI1FwHmu8ipLkuSprraifNdUlPc12UamOu09mMXURkCtAeO4vbeuAaY4znV4BE5AegPrDNeWpBAs3GdzbwLNACyAeWGWMGeBjP6cBYIA141RjziFexuInIW0A/oDmwGXjAGDPO06AAETkO+BL4Bvu9B7jbGPMf76ICEekCvI79HOsAk40xD3kZUypJ1FwHiZvvNNdFRnNddDTXxZfmuuhprouM5rroxDPXaWVWKaWUUkoppVTS0W7GSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWZVURORoEVkhIhki0lBEVolIJ6/jUkqpWNJcp5SqDTTXqeoSY4zXMSgVFRF5GMgAMoFcY8xoj0NSSqmY01ynlKoNNNep6tDKrEo6IlIPWATsAf5kjCnxOCSllIo5zXVKqdpAc52qDu1mrJLRAUAjoDH2Sp5SSqUizXVKqdpAc52qMm2ZVUlHRKYBbwPtgFbGmBs8DkkppWJOc51SqjbQXKeqo67XASgVDRG5HCgyxvxbRNKAr0SkvzFmltexKaVUrGiuU0rVBprrVHVpy6xSSimllFJKqaSjY2aVUkoppZRSSiUdrcwqpZRSSimllEo6WplVSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSZnKrIiMF5GHQyzvJyK5NRmTUkrVBBH5WURO8joOpZSKVrjyW5jXjhKRCVV8bYVyoeZRpZJTylRmawsRmSMie0Rkl4j8KiLviUgr1/ImIvKqiPxPRHaKyHciMtLLmAMRkRNFZI2IFIjIbBFpG2Ldv4vINyJSLCKj/JadISJzRSTfec+viEhj1/JHRWSDiOwQkfUicncUMY4SkSLnWOeLyFcicmyV3nDF7Ya9sCIi2SJinH3vcn5kR7qWGxHZ7Vq+S0TucMVd6cfdec0fA7w337/8KN5DNxHJcT6/HBHpFmJd93d2l4isdS0TEblHRH5xPqO3RWQ/1/JVfjEWi8iHkcapkoeIDBWREudz3iEiy0XkTL91/urkjZ0isllE/uM+3xOBiDQTkfed83O9iFwcYt0TnPz3u4j8HGD5bBHZ6joeg1zLQp47YWIMmV+qQyKoEEiI3zGxFZt9fuf9cr+46/ptr6wyFOC9+f5dEGH89cX+hu4Q+5tyW4h13d9Z379+ruWhPr9WIjJNRDY68WZHEp8KTkSai8g8Edkm9jd7voj08Tqu6vI7J7aLyKcicoRreT0ReUJEcl3n81gvYw5Eois33CAii0Vkr4iM91t2id85V+CcQz2c5SIi/3S+B9ucxxJhjFruCx5fRJ+fk0PHif392ykiy0TkNNfycJ/fDL/l+0Tkm1Cx1YrKrPj98CXytiPc3g3GmEbAH4FGwOOuZU85z3UA9gcGAj94EGOo1zcH3gPuA5oBi4FJIV7yA3AHMD3Asv2Bh4HW2PecBTzmWj4OOMIYsx/wJ+ASETkninAnOce6OTAbeCeK18ZCE2f/FwH3i8iprmVdjTGNXP8ejXLbk/xe3ySSF4lIPeADYALQFHgd+MB5PpgbXPtp73r+cuAyoA/2M8wEnvUtNMZ09L0OaAxsoOY/g4QVz9zmbD8thtuKJNb5zmfdBHgeeFtEmjiv/zPwD+AiY0xj7PkeKm/EK8ZwngP2AQcClwD/EpGOQdbdDbwKjAiy/GaglZO/hgETpPziZchzJ0K+/HIucJ+InBzl66vD9zt2OPbzfsq17FG/3NS1Cttv4reNSL8ro4DDgLbACcAdfnnX33y//cxxLQv1+ZUCHwNDonhPKrRdwJVAC+xv0z+BD+OdJ2vIo875kgXkYcs2PncBPYFe2N/JfsCSWO48BuW+aMsNG7Flu1f9FxhjJrrPOeA64CfK3/MwYDDQFegCnAVcHUW4Wu7zE+XnVxdbVvsztox+LzDZd8Eu3OdnjDnNb/lXhPkMkrYyKyLdRWSJU+ufBGS4lvVzrlDdKSL/A14L8PrWIjJF7FXTdSJyk2tZL7FX9PJFZJOI/J/7A3OuIFwvIt8D37v2N1xEtjiv+Ytr/foi8rjYK+ibReQFEcmMNNZgjDH5wFTAfXXkaODfxpjfjDGlxpg1xph3XbF0FHtVb7sTy92uGMeKvUq80XlcP1iMIlJHREaKyI9ir3xNFpFmEYZ+DrDKGPOOMWYPtvDQVVxXGv3e5+vGmBnAzgDL/m2M+dgYU2CM+Q14GVu48y1fa4zZ7XpJKfYiQFSMMcXARCBLRFpA2XdomnMsfxCRq3zrBzueItIQmAG0dl11ah3B/ucDq4BO0cYeB/2wyWqsMWavMeYZQID+VdjWWcA4Y8wGY8wubOHjAhFpEGDd47E/LlOqFnZqEHu19k4RWQHs9i9khDs3ReQdsS1Ov4vIf90VLbEtAP8S2+K5GzjB2d/tIrLCec0kEXHn2zPFXnn1XcXuEmmswRhjSoE3gYbYigXY3DbfGLPUWWe7kxt2OvvKFNs6sd6Jc64rzw4U28qfL7ZVsEOoGEXkGOe95IttUesX4WfTEFs5uc8Ys8sYMxeYhq10BnqfXxtj3sT+kAdavsLJPQAGSAcOdv6O5twJyRizGJtfujnvo46I3Oscyy0i8oaI7O96nwGPp4i8CRyCrUCUtRqE2fd27DmdCLkN4Arg785v6Grsb8rQqmwo1OdnjNlsjHkeWFT9kJOLRFZ+u0PKy1ODReR0sT3NtkuQHlbGmD3Ob34p9jepBFvwbuZsO9PJcb+JyLfYnBIsxqDlQLGecuLbIbbnWCdn2eki8q3z3vJE5HbXNq9yygrbxZYdwv72B3iPhcBkKpf73jfGbDTWz8aYN1z7PVhs74etzm/C/znPBz3PpbyV8K8i8gswy3n+ShFZ7RzDmRKiV52ffkRRbjDGvGeMmQpsi2DbVwBvGGOM6+8njDG5xpg84AmqcA5rua+CfkT4+RljdhtjRjnfw1JjzEfAOqBHkG37f35lxFaA+wJv+C9zS8rKrJNQpmILO82wNXb/q5sHOcvaYq/SuF9fB/gQWI69ynUicIuIDHBWKQFuxRacj3WWX+e3/cFAb+BI1/72d7b3V+A5EWnqLBuDvfrcDVuRygLujyTWUETkAGzF0N3yugB4RET+IiKH+a3fGPgMezW4tRPL587ie4BjnBi7Yq/w3RsixhudY/BnZ1u/YVskfPtaIcG713XEHnvAfvGBH53nq+t47MlfRmzBfheQiy0c/zvajTrfucuxifU35+m3nW22xrZs/ENEfCd2wOPpvNfTgI2uK08bw+xbxHaV6ggsjTb2qhCRjyR4t8OOwAq/xLOC0J/faLHdCecFqBiI3+P6lFdg3K4ApvhdnKitLgLOwF7BLfZbFvLcxP6oHga0xF4Jnej3+ouBR7BX+Oc6z50PnAq0w17pHgq2UIq9cn41cADwIjBNnAthEcQakNgW4b8ARcB65+mFwAAReVBE+vjtA2wPlR7YHhjNsL05SkXkcOAt4BZsi81/sJUt9xXlshixLarTsa0CzYDbgSmuwsxIEfkoSOiHA8XGmO9czy2nGrnNORf3YN//HGxPlrLFfo+DnTvh9nEMtsDk+y0Z6vw7ATgU29vHVwAOejyNMZcBvwBnRdpqILanzhBqLrddLPbCRaBlTYFWuH6fCP/5dXdy23cicp9UvrgU6vOrdaIov2VQXlZ6GbgUe373xfYiaBdiHyuAPdgLSa8YY7Y4ix4A/uD8G4D9TQkmVDnwFGxZ43Bsue98yitd44Crnd4jnSivBPYHRjvrtsLmtbdD7D/Ye2uIzVf+5b7bROQ6EeksUt6l1smlHzn7y8YeU99+hxLkPHf5M7YXzACx3eTvxpY7WwBfYnOBb1+xLjeE5VSmj6diZadCGZMq5mAt91VQ5c9PRA7EniurAiwL9Pm5XQ58aYz5OeROjDFJ98954xsBcT33FfCw87gftptXhmt5PyDXedwb+MVvm3cBrwXZ3y3Yq16+vw3Q32/bhUBd13NbsF9qwXYl+4Nr2bHAumCxhnnvc4AC4HcnjmXAIa7lmdhkk4MtCP4AnOYsuwhYGmS7PwKnu/4eAPwc4niuBk50/d3K2V/dCN7DOGCM33PzgKFhXjcBGBVi+cnYhHN4gGUCdAceBBpHeKxHOe87H/vDtg3o5yw72HmusWv90cD4CI9nbph9Zzufb77znlYDN/l9B3c4y33/BgSI2/3PAH8Msc7sCI/LfcDbfs9NDPbZYM+3xtiC9hXYFvY/OMv+BnznvN/9sYUPAxzrt40GzvvtF0mMqfwP+Bm4MsBzJzmPIz43sZU3A+zv/D0ee4XUf9uXuv5+FHjBefwvbCuWe/21wJ+DxRrifQ0Fip3vYhE2p57vt85p2AuR+dguhU8CadgLs4XYLliBvq+TXX/XwXbT6xcoRuBO4E2/bcwErojgPfQF/uf33FXAnDCvOwknPwRZnu6899tcz0V07gTZXjbl+aXQefw4zm8q9iLnda712/u+QxEez5PC7H8O9ncs33ntRKCF6zu4h4q56fUAcbv/7aP89z/YOh0iOC4HO691/9adHOyzwVYA2jnHoDPwLXBXJJ+fa1ldZ5/ZkZwnyf6PyMpvhUCa83dj5/j0dq2fAwx2Ho8CJgTYTwa2zHOF67mfgFNdfw/D9Vsc6ruLqxyIbY36DlvGq+O33i/Yi3v7+T0/DttV2Pd3I+ecCvu5+50TpdhWri6u5WnA9dhy1F7n+F7hLDsW2Erg/B/qPPedR4e6ls8A/ur6uw72PG4bwXuIqtzgWudhnHJViO3O8XuuBDu8zPf3Yc57kQjiHIWW+2L5+aVjG9FejPTz81v+A2HqBsaY5GyZxV4RyTPOO3Ws91tnq7FdWANpi23uz/f9w1YADwR75dm5QvE/EdmBHafV3G8bG/z+3mYqtjoUYJNVC2xBPMe1r4+d5yOJNZCbjDH7Y1tImgJtfAuMMYXGmH8YY3pgW0omA++I7WZ4MPZkC6Q1FY/heue5YDG2Bd53vafV2JP8wAji3wX4T1SyHwG6EUfKaVn4N3CuqdgqAoCxlmJ/JB+MYtOTjR1TcCCwkvJuEq2B7cbp4uhYj73q6Vse6nj6x+8e7H6Ia1FzY0xTY0wHY7t1uB1ljGni+jfTP273v2DvzfXvhKBHoaKoPj9jzEJjzE5ju6a8jv3BPd1Z/Cr2yu4c7FW72c7z/hMlnANsB76IMMZU559/3IKemyKSJiJjxHZB3oEtvEHF/BZo2/9zPfblNt++hvvl0oOp+F0PFau/Bc53tSm2ctbXvdAYM8MYcxa2RWcQtgL8Nyf+DALntwrnorFdEDdQfq76x9gWOM/vPR2HvSgQTsxzG4AxpsjYoRaniMhA5+lIz51QmmM/y+HYwla683yg/FUXmwcjOZ5lxA6r8eU2d/fQm5y8k2WMucQYs9W17HG/3HSFf9x+uS1Qb5vmfttYHeZYgP38oOJnGCq3/WSMWWdsV7pvgIewrTX+6wX6/GqrSMpv24wxJc7jQuf/za7lhZTnoICM7XL8FjBSRHxjrltT8Vz332+ZUOVAY8wsbAvmc8AWEXlJyidfG4L9fVsvIl9I+eRB/ufNLmxFKeB5E8Djznc9G/v+y+aeMMaUGGOeM8b0wV6gfAR4VWz3/4OB9SZwr5hQ57mPf2582pUXt2MbCiJ5D3HJjdiWu9fD7Gs/YJffdy4ULfdVFvXnJ7YX7JvYCvQNQVYL9Pn5Xn8ctpfGu4GWuyVrZXYTtg+7u4vVIX7rhPrSbsC2jLo/0MbGGF8B+1/AGuAwYyduuJuK3bnCbd/tV2zi6eja1/7GDmqOdlsVA7A/ng9juzRXmqnNGONLwA2xV483YK8kB7IRm6h8DnGeCxbjBmyLr/sYZhg7PiGcVdguGEBZt5k/EKALQiScro7TsK0rn4dZva6zr6gYY37FXsUdJXYCj41AM6k4k+oh2FYGCH08K33epuKA/F+ija+GrQK6+H3nuhD552dwzienEPiAMSbbGNPG2UYe5cfR5wqCjKmopcLlt2Dn5sXYSuBJ2Na8bOc17s8ymmO8AXjEb18NnEJkVbZnX2ALetcClznnt//yUudcn4XtyvcrtuUi0Lld4Vx0vrcHU/E75o5xA7Zl1v2eGhpjxkQQ+ndAXak4xKMrVcxtAZTlryjOnZCcgvCT2OPn60YZKH8VYysU4Y5nhc/bGHONK7f9I5rYapqx8y5swvX7RHSfX1luC6JKvz8pJpLyWyylU17u2UT5mPNw+w1ZDjTGPGNso8GR2C6UI5znFxljBmGHcUzFNihA5fOmIbbBIdrz9RfsxGJPizMngN/yQmPMc9iWvSOx+ewQ/+7vgWKi4nletknX4w3YLtTu3JhpjPkqgtCrW26oxOmG25rKlZ0KZUyqmIO13FdBVJ+fs9447AWBIcaYogDrBPv8fK4A3nPKAyEla2V2PvaEu0lE0sXOTtsritd/DewUO+lHptNa0UlEfJMBNMY25e8SOynRtVUN1Nir1i8DT4lISwARyZLy8bnV9Tr2yzLQ2fZ9InK02KnaM7BJLx/b9e8joJWI3CJ2UHpjEentbOct4F4RaSF2DNP92G69wbyAHZvb1tlvC3HddiCM94FOIjLEifF+bF/8NYFWdj7jDOz3ta6IZIgzy6rYSRc+Bm40xnzo97o6InK1iDS1ww+kF7YrzueudX4WkaGRBG2MWYvtbniHMWYDtmvUaCeeLtix0r5jFup4bgYOENeEKklmDral7ybne+S74jbLf0Wxt4oa4ByjuiJyCbab2cfO8mYi8gfn8zkS2230Iee88W2jDXZMT8Crd6qSUOdmY2w3tG3YHiPVrVy8DFwjIr2dz7Ch2NtlVft2OcZODPQKzvwCIjJIRC70O5//jG3NLcW2VD4pdoKONBE5Vuy42snAGWJvB5aObYXciz1/A5kAnOV8b9Oc724/53sYLubd2JnaH3KORR/sxYM3A63v5KgMbIFbnH35Jpk5QkROc36j0kXkUuy584WzPOS5I/Y2DHPCxewyBjtzbwY2f90qIu1EpBH2ezLJad0Jdzw3E/yiaTJ4A5u7mzq//1dhu3lW4nw+vh5dR2C7zH3g+zvU5+esk4EdfgFQX1wTq6Ww6pbfghI7cdtxTvknU0TuxJaPFjqrTAbucj7bNtj5BYIJWg50yli9ne//buyFoFJnv5eIyP5O4X0Htlsw2HPqL2Jvb1Ife04tNOHGAgZgjPkUW0ka5sRzi5OjMp3f2Suc+Jdiy7ubgDFOTsqQ8tsVhTrPA3kBe/w6OvvdX0TOizDsOURYbnC2Xdc5H9IAXx72r5BfgZ1Hw7918A3sGOIssRMtDcd1DouW+6piDlF8ftiLQR2w8ycUBlkn2OeH2As15xMk91ZiIugrnYj/sNOQL8U2cU9y/rnHXOT6rV/hOezVgLew3ed+ww6g9405Ox57RW4XdoD7Q8Bc12vL+qCH2N/Pru1lYJPET9jkVtYPPkBcfbHdIYK97znA3/yeuxNY7Dy+F9stYge2C8gc4E+udTthK3O/Oe99pCvGZ7BJb5PzOCPE+6sD3IatJO/Edu/7h2v5KuCSEO/jJOcYFzoxZruWvYAzJs/5e7xzzN3/hjrLXsP+WOxy/VvlivFj5zjswraa3E35uLB6TuxHBIlxFH5jcbDjP3djr7q2wV4g2O68/2tc6wU9ns7yV7EVinygdYB9ZzvvM+AYZGfZbr/3PTZY3P7fW2edIr/X7wJaOstnAHeH+Py6Y8ctFWInEeruWnY3MMN53AI7W+dO570uAE52rXu48x0qwHbJCTSm7C7sBACe551E+EeAcV1UzDdBz01s17wPnOfXY7v4uL8X43HyaLD9+X+/sBNDLXI+303YCV0aB3lt0LyA7TI81++5NtiKUhdsXv4c2wq7E3s+3+FaNxMYi71K/jvwXyDTWXY2djzj79jKRMcwx7O3s9527Hiz6ThzE7i/30HeRzNsi8xu7Pi5i13LKuR3bG71z21znGUdsIVw37mzCDg70nMH9QmprgAAIABJREFUe1X8kSAxZuOXX7CtTquwBfw62ILYBuf9TwCautYNdTwHOe87H7g9yP7n4Pc75lo2HtstzZ2Xfg0Wt//31rWOf267zVl+Cc5vRJD918fm5x3YAqh7nPIhzrZ834XHnXV2Y3/fHwLSI/n8nHX8P3vjdX6piX9EUX4jwJhi7MR0lzqPR+HkI+zFreXOdn3DUo53va4BtqKT73x/RxBkzCwhyoHYyaBW+L6b2LGDjbBlio+x5asdzmd+nGv712Dz8XZs2aFNoO9VkHPCPy9fgM119bGV2hzs+ZiPrcCe6fe99c0M/CvwjPN80POc4OfaZcA3zvvbALzqWhaTcoPrc/U/P0a5lmc47/XEAPsR7NwO251/j6LlPt86NVHua+vsd4/ffi7xO1YBPz9n+UXY37Ww45yNMWUfrlK1jtj++NcbYy7yOhallIolEVmGLShEcmsLpZRKeVruS01amVVKKaWUUkoplXSSdcysUkoppZRSSqlaTCuzSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOoFuopywmjdvbrKzs70OQymVYHJycn41xrTwOo5Y0VynlApEc51SqjaIJtclVWU2OzubxYsXex2GUirBiMh6r2OIJc11SqlANNcppWqDaHKddjNWSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSaoxs4EUFRWRm5vLnj17vA4lJWVkZNCmTRvS09O9DkWppCYiacBiIM8Yc2a0r9dcF1+a65RKDJrrapbmPpXskr4ym5ubS+PGjcnOzkZEvA4npRhj2LZtG7m5ubRr187rcJRKdjcDq4H9qvJizXXxo7lOqcShua7maO5TqSDpuxnv2bOHAw44QBNeHIgIBxxwgF4dVaqaRKQNcAbwSlW3obkufjTXKZU4NNfVHM19KhUkfWUW0IQXR3pslYqJscAdQGl1NqLnY/zosVUqcej5WHP0WKtklxKVWS9t27aNbt260a1bNw466CCysrLK/t63b19c971mzRq6detG9+7d+fHHH3nmmWfo0KEDl1xySdTbGjt2LAUFBXGIUiWSqUvz6DNmFu1GTqf7Q5/Q7cFPaDdyOn3GzGLq0jyvw0tJInImsMUYkxNmvWEislhEFm/durWGoouc5jqlVG2guU4lI3f5rraV6cQY43UMEevZs6fxv7n26tWr6dChg0cRVTRq1CgaNWrE7bffXvZccXExdevGZ2jymDFjKC4u5t577wXgiCOO4LPPPqNNmzZRb8t34/LmzZtXWpZIx1hV3dSledz13jcUFpUEXJ6ZnsboczozuHtWDUdWfSKSY4zp6XUcgYjIaOAyoBjIwI6Zfc8Yc2mw12iuq0hznVJWIue6qtBcV1FN5Tp/iXTMVfQCle+SuUwH0eW6pJ8AKhENHTqUjIwMli5dSp8+fdhvv/0qJMNOnTrx0UcfkZ2dzYQJE3jmmWfYt28fvXv35vnnnyctLa3C9nJycrjtttvYtWsXzZs3Z/z48SxdupSxY8eSlpbG559/Tvv27fnpp5847bTTuPLKKxk2bBg33ngjK1eupKioiFGjRjFo0CBKSkq48847+fjjj6lTpw5XXXUVxhg2btzICSecQPPmzZk9e7YXh03F2WMz1watyAIUFpXw2My1SZv4EpUx5i7gLgAR6QfcHqoim0w01ylVNTNmwFdfwUMPgfbyTHya61QiC1S+q01lupSrzPbrV/m588+H666DggI4/fTKy4cOtf9+/RXOPbfisjlzqhZHbm4uX331FWlpaYwaNSrgOqtXr2bSpEnMmzeP9PR0rrvuOiZOnMjll19etk5RURE33ngjH3zwAS1atGDSpEncc889vPrqq1xzzTUVkunHH3/M7Nmzad68OXfffTf9+/fn1VdfJT8/n169enHSSSfxxhtv8PPPP7Ns2TLq1q3L9u3badasGU8++WTZa1Vq2phfWO11pi7N47GZa9mYX0jrJpmMGNC+ViTKRKS5TnOdSk6vvgrXXgsdO8LIkdCwodcRJTbNdZrrVGjBym6RlPtSQcpVZhPFeeedV+lKnL/PP/+cnJwcjj76aAAKCwtp2bJlhXXWrl3LypUrOfnkkwEoKSmhVatWYff/ySefMG3aNB5//HHAzg74yy+/8Nlnn3HNNdeUdZFp1qxZ1O9NJafWTTLJC5PYWjfJDLrs3qnfMHHBL/gGJuTlF3LXe98AaIU2QsaYOcAcj8OIKc11SkXu4ovhrbfs488/14psMtFcpxJVsPJdqDJdKkm5ymyoK24NGoRe3rx51a/Y+Wvo+oWqW7cupaXlk5j6pkA3xnDFFVcwevTooNsxxtCxY0fmz58f1f6NMUyZMoX27dtHGblKVSMGtA87ZnbEgMDfl6lL8ypUZH1qUzeWRKO5rvx1mutUMhg0CKZNs483bICmTb2NJ1lorit/neY6FUig8l2oMl2q0dmMa0B2djZLliwBYMmSJaxbtw6AE088kXfffZctW7YAsH37dtavX1/hte3bt2fr1q1lSa+oqIhVq1aF3eeAAQN49tln8U3wtXTpUgBOPvlkXnzxRYqLi8v2CdC4cWN27txZ3beqEtjg7lmMPqczWU0yEaBpg3SaZKYjQFaTzJATBTw2c22liqxPbenGosLTXKdUYK+/Xl6R3bQJqjCfj0ogmutUIvEv34Ur06WalGuZTURDhgzhjTfeoGPHjvTu3ZvDDz8cgCOPPJKHH36YU045hdLSUtLT03nuuedo27Zt2Wvr1avHu+++y0033cTvv/9OcXExt9xyCx07dgy5z/vuu49bbrmFLl26UFpaSrt27fjoo4/429/+xnfffUeXLl1IT0/nqquu4oYbbmDYsGGceuqptG7dWicKSGGDu2dVKbmFqrDWlm4sKjzNdSrZ1MQ8AJMmwV/+AiedBFOnatfiVKC5TiWaqpbvUoHemkeFpcdY9RkzK+B4DAGeuqCb5wlUb1ehYkGPce1SE7ezeO45uPVWO2HRK69ARkb1tqe5TsWDHnOVaPTWPErVMsFaFyJpdYhknUDjMQS45JhDPK/IKqVUVcT7dhYdOsCaNTBwIIwbB/XrV3uTSiml/GhlVqkEFWn3N//WBd8sw4vXb2dKTl6l56F89uFgr3Wv436st+VRStW0eHUFjuftLJo2hfx8+/idd6BevWpvUimlVACeV2ZFJA1YDOQZY870Oh6lEkGklUwI3rowYcEvlbbr3+oQTctEbR6PoZSKn1CV1WhyYbTicTsLY6Bv3/KKbGGhVmSVUiqeEmE245uB1V4HoVQiCVXJ9BdtK4J7/dp+o22llLd8ldW8/EIM5ZXVqUvzgOhyYbRGDGhPZnrF+4ZW53YWxsC998K8eVC3LuzdW/0xskoppULztDIrIm2AM4BXvIxDqUQTTSUz2lYE9/rBXqszFCulakK4ymosLrhNXZpHnzGzaDdyOn3GzCqrKMfydhbGwH33wYsvwlVX2YqstsgqpVT8ed3NeCxwB9DY4ziUSijBur/VEWHq0rwKha1AkzMF49/qUNtvtK2UioxX41ar2xU4XDflWAyfKC2Fa6+Fl16C4cPh0UehTiL0e1NKqVrAs3QrImcCW4wxOWHWGyYii0Vk8datW2souqobNWoUjz/+eMTPKxVIoO5vACXGVOiCB5VbF9JEAm4zTaRSq0Ntv9G2qp7s7Gx+/fVXr8NQcRauK3B1hOsdEqwr8AlHtAjY2uovnt2UAUpKIC3NVmSvvx4ee0wrsqko2jJco0aNAFi/fj1HHXUU3bp1o2PHjrzwwgsB1x8/fjw33HBDlfalVG3nZctsH2CgiJwOZAD7icgEY8yl7pWMMS8BL4G9H1nNh1l9xcXFMd1W3brV+9hKSkpIS6tcUVLe8m/5GNIji7cWbqDE717QgSZocrcuRHvvxESa2MkYyMmBHj0gSJ1cJQhjDKWlpTHZVnVzUizyogounrewCdc7JNBM6icc0SLsTO0+8ZwXoKioYlfiZ5/VvKUqatWqFfPnz6d+/frs2rWLTp06MXDgQFq3bu11aEqlDM+uHxpj7jLGtDHGZAMXArP8K7LxEGzsTHU88sgjHH744Rx33HGsXWuv9vbr149bbrmFnj178vTTT1dY/8cff+TUU0+lR48e9O3blzVr1gDw4Ycf0rt3b7p3785JJ53E5s2bAXuV7rLLLqNPnz5cdtlljBo1iiuvvJJ+/fpx6KGH8swzz5Rte8KECfTq1Ytu3bpx9dVXU1Jif+wbNWrE8OHD6dq1K/Pnz6/2e1axFajlY0pOXqWKrE9efmHQ72+ytrbu2WNbNI4+GhYs8Dqa5BePXPfzzz/Tvn17Lr/8cjp16sSGDRvKlgXLPddeey09e/akY8eOPPDAA2XrZ2dnc+edd3LUUUfxzjvvkJ2dzQMPPMBRRx1F586dy/Li7t27ufLKK+nVqxfdu3fngw8+AGxLxsCBA+nfvz8nnnhitd+bCi6eFcJI8tXg7lnMG9mfdWPOYN7I/sxeszXi1tZ4zQtQXAwXXVT+d2mpVmS9Eo9cB8HLdrfeeis9e/akQ4cOLFq0iHPOOYfDDjuMe++9t9I26tWrR33nBsN79+6tcAHwtdde4/DDD6dXr17MmzcvYAwvv/wyRx99NF27dmXIkCEUFBQA8M4779CpUye6du3K8ccfD8CqVavKcnCXLl34/vvvAXjyySfp1KkTnTp1YuzYsTE5NkolklrVGSYeXaVycnJ4++23WbZsGf/5z39YtGhR2bJ9+/axePFihg8fXuE1w4YN49lnnyUnJ4fHH3+c6667DoDjjjuOBQsWsHTpUi688EIeffTRstd8++23fPbZZ7z11lsArFmzhpkzZ/L111/z4IMPUlRUxOrVq5k0aRLz5s1j2bJlpKWlMXHiRMAWCHv37s3y5cs57rjjqvx+VXwEa/kI1mUYQn9//Qt/iV6R3bEDznTdmKtXL+9iSQXx7Bb6/fffc91117Fq1Sratm0LEDL3PPLIIyxevJgVK1bwxRdfsGLFirJtHXDAASxZsoQLL7wQgObNm7NkyRKuvfbasm52jzzyCP379+frr79m9uzZjBgxgt27dwOwZMkS3n33Xb744otqvy8VXLwnios2X0VTuY71jMVgW2SvugqmTIEHHrA9SrQi64145bpQZbt69eqxePFirrnmGgYNGsRzzz3HypUrGT9+PNu2bau0rQ0bNtClSxcOPvhg7rzzTlq3bs2mTZt44IEHmDdvHnPnzuXbb78NGMc555zDokWLWL58OR06dGDcuHEAPPTQQ8ycOZPly5czbdo0AF544QVuvvlmli1bxuLFi2nTpg05OTm89tprLFy4kAULFvDyyy+zdOnSah0bpRJNQvTLMsbMAebEez/x6Cr15ZdfcvbZZ9OgQQMABg4cWLbsggsuqLT+rl27+OqrrzjvvPPKntu7dy8Aubm5XHDBBWzatIl9+/bRrl27snUGDhxIZmZ5weGMM86gfv361K9fn5YtW7J582Y+//xzcnJyOProo+17KyykZcuWAKSlpTFkyJAqvUcVf8EKZyXGkJmeFnRyp1h19fNSbi7ccQfMmQMvvABXX+11RMkvnt1C27ZtyzHHHFPhuVC5Z/Lkybz00ksUFxezadMmvv32W7p06QJUzpHnnHMOAD169OC9994D4JNPPmHatGlllds9e/bwyy/2Hsonn3wyzZo1q9b7UeHV5ERxkUw0Fc2kUIG6KVdn8qp9++DCC2HuXBg7Fm6+uUqbUTESr1wXqmzne9y5c2c6duxIq1atADj00EPZsGEDBxxwQIVtHXzwwaxYsYKNGzcyePBgzj33XBYuXEi/fv1o0aIFYHPhd999VymOlStXcu+995Kfn8+uXbsYMGAAAH369GHo0KGcf/75ZXnz2GOP5ZFHHiE3N7estXju3LmcffbZNGzYELA59ssvv6R79+5VPjbKG/GahC8VJERltqbU9D01fcnDrbS0lCZNmrBs2bJKy2688UZuu+02Bg4cyJw5cxg1alTQbfm6rYCtqBYXF2OM4YorrmD06NGVtp2RkaHjZBNYsMJZlpOwHpu5NuBySO57wi5fDmecAVlZMGsWOL2lVDXFM9cFymvBcs+6det4/PHHWbRoEU2bNmXo0KHs2bMn6LZ8ec2X03zbnjJlCu3bV6w4LVy4MGAsKnruQlKTBukYA78XFlUqMMW7IBVu5mGfEQPaM+Kd5RSVVhyG8dvuvXR/6BPyCyrGHqt5AX7/HZo0sY+feQYOPi6PPmO0cOklL+6V7stTderUqVAWq1OnTsg5Ulq3bk2nTp348ssvIx7jP3ToUKZOnUrXrl0ZP348c+bMAWwr7MKFC5k+fTo9evQgJyeHiy++mN69ezN9+nROP/10Xnzxxaq/SZVQIs2NtVWt6mYcj65Sxx9/PFOnTqWwsJCdO3fy4Ycfhlx/v/32o127drzzzjuALagtX74cgN9//52sLPulfP3116OO5cQTT+Tdd99ly5YtAGzfvp3169dHvR1V80J1hfN1wctKsXvC3nordOsGBQXwyitakY2lmr5/cLDcs2PHDho2bMj+++/P5s2bmTFjRtTbHjBgAM8++yzGGT+uXeRiy7+b5m8FReQXFlXqslkTQxeimnk4QLfegqJSfiuoHLtbVcdXbt9eXpG98kpbka1O99Z4jfOsbeKV66It2wWTm5tLYaGtWP/222/MnTuX9u3b07t3b7744gu2bdtGUVFRWZnQ386dO2nVqhVFRUVlQzfAzr3Su3dvHnroIVq0aMGGDRv46aefOPTQQ7npppsYNGgQK1asoG/fvkydOpWCggJ2797N+++/T9++fav0XpR34j0re7KrVZXZeIydOeqoo7jgggvo2rUrp512Wlk3u1AmTpzIuHHj6Nq1Kx07diyb0GTUqFGcd9559OjRg+bNm0cdy5FHHsnDDz/MKaecQpcuXTj55JPZtGlT1NtRNS+SSVDi8f31Sq9etosewKefQufO3saTamr6uxIs93Tt2pXu3btzxBFHcPHFF9OnT5+ot33fffdRVFREly5d6NixI/fdd18c3kHtFaiQ5FaTBaZwrWy+CuAtk5ZRVBL+5gb+sUc6vnLq0jy6PfgJ2SOnkz1yOl3u/Rxfz9G+feGsG/IYPnl5lQuX8RzTXtvEK9dVpWwXyOrVq+nduzddu3blz3/+M7fffjudO3emVatWjBo1imOPPZY+ffrQoUOHgK//+9//Tu/evenTpw9HHHFE2fMjRoygc+fOdOrUiT/96U907dqVyZMn06lTJ7p168bKlSu5/PLLOeqooxg6dCi9evWid+/e/O1vf9MuxknIix4IyURMkNlSE1HPnj3N4sWLKzy3evXqoEkgEO1zHr1oj7Gy4vFdS/bvb2kpDB9eXpHNy4NY3KFARHKMMT2rv6XEoLnOG7Ux17UbOZ1wpQAB1o05I+6x9BkzK+RwC/9xu5Fq6nSdzi8sCrg8q0km80b2B+x54+7CXLo3jS3vHs3e3APo2beQe57eHjKOSI5VqPfpiyMYzXWVaa6rvtqY+5JJdXJGsoom19WqMbOQWPfUVKmrOuMbQv0wJ/P3d88euPtuW5EdNAjefhsyMryOKnUl83dF1Zxg4/X914m1QHkuWIW1YF8xo6atqlJFFmzX6VDcrRuPzVzrqsjW5dePurF3UxOaD1xCvWPzeWwmIeOI5FhpK0tsaa5Tqa4mJ+FLRrWuMqtUdUR6BbiqMyzGa5C/O+79M9MRodIkKfG0bZutwAI8/TTceKPeykKpRBCuxTMeBaZAee7WScswQJPMdARDQVH5/TjDVUarq3WTzLIc6avYlxSks+WdXuzbsh8tz11EZrtf2ZgfejuRHqtoZmNWSqmamoQvWWllVqkIRVPRrOqV92CV4OGTlwfcT1Xidne1q4kZ8WbOhFNPhXr14M034fzz47IbpVQV+BeSQs1mHCuB8pyvq3N+YVGguZ0i0sS5UBdN5TczPY0TjmhRIUcWbWvIxlf6AdBiiK3IAuyfmU7D+nUDVkTTRCrNcxCMtrIopaKlPRCCS4kJoJJp3G+y0WNbLprZ5Ko6w2Ko+81WdYIQLyd4eeopW5EFGDdOK7LVpedj/NTmYzu4exYjBrSndZNM8guKaFi/Lk9d0C1usxaHu6gX7SeRJoIADevX5YGzOgad+d2fb6K92Wu2luXIfVsal1VkGx/9Ew3+uKVsfZHgEw49cX7XiI9VJBP+1Xa1+XysaXqsVbJL+spsRkYG27Zt05MxDowxbNu2jQwd2AhE19pa1RkWQ1V2q1rpjGQcVl5+Ycxn0pwwAW67zT6ePh0uvTSmm691NNfFT23PdTU9u26su9OWGFMW962TlpF9QGal/OuWmZ7GWFdl3Zcji3fWZ9Nr9h5h+x37Pc36r67wuvyCophVRGviVkfJSnNdzantuU+lhqTvZtymTRtyc3PZunWr16GkpIyMDNq0aeN1GAkhmnFO0YxvcI9nzUwPfX0pXMU00JjeSCZ4AWLW3dgYeP55Oy62Th1YtQpcdxRQVaS5Lr5qc66r6hj/qqrOzMThGOCrH7dzyTGHMHvN1oi6Tu+fmc62X4XNbx2L1Cum+VlLK7TI+vhyvXb3iy/NdTWrNuc+lRqSvjKbnp5Ou3btvA5D1QLRjnOKpMDjP57VPelJIKFaNAKN6b1l0jIapNchvY6UzdAZTCwKr8XFcNNNsH49XHwxvPwyZOqcJjGhuU7FS3Vn14321ii+ZaOmrQp6uxw3IbquxwaYvWZrRLesmLo0j/wt6fzvrV4ghgPPX0j9rMAzPemY1pqhuU6p1FETt85K+m7GStWUeIxzCjee1V+owlSwbRUUlYL4Zgkl5OQqefmF9BkzK2j3wqlL8+gzZhbtRk6vtN5rn24iPR3+9S9Yvns95w7P04qsUkmgqmP8oepdlAd3z2JfcfjcJ8AlxxwS8ThYn7z8woB5yt/dz25l/fMnUFqYTvMzlwWtyDZtkM7g7lkhc6BSSnklEXNTTQ1hSfqWWaVqUqy7l0VzX0FfYaoq2yoqMTSsX5dlD5xCu5HTQ+4n2AzHoWZz/vHbdG6/tBUA+/X6kbrHrOGu99IqbUMpVTOiuRpendl1q3MbsnA9UaBiK2u7kdOjbqENmc+e2saaN7sBcOCFC6l34I6A28lMT+OBszrG7dZpSilVHfHOTVVtXa2pISzaMquUhyKdCCU9TXjgrI5lfwe6AhfpTMmR7DPQZFPBktL9r2zk9ktbAtD4qJ9pesKaoNuorUQkQ0S+FpHlIrJKRB70OiaVuqK9Gl6dXifVuQ1ZpHytrHWqeHNq/1w0dWkeNz2Rx5o3uwDQfOCSoBVZ97GIZkZ7pZSqKfHMTdVpXa3uEJZIacusUtUQ7dUq//VPOKIFExb8En5HruaIYFfghvTIYkpOXtBuy75KbKT79HU59r2nQMmn8OcD+OV927JxwGnLadQlt8LyWCesJLYX6G+M2SUi6cBcEZlhjFngdWAq9VTlanhVe51EMzGeW7S5wWBnLfaXniYUlYRvr3Xvb9T4PPLe6wpAi7MX0+DwzRXWzUxPY0iPrLIJpHwFwpoqmCmlVDTimZuq07pa1d+HaGllVqkIBaqIuiuP4bp1BKqETlq0IaJ9F5Uahk9eDgRPLLPXbGX0OZ158MNV/FZQcVIVd5fB2WsinyHS/Z78k9KuFW0o+P4gMpvupcPQr/mVymPNYp2wkpWx95jY5fyZ7vzT+06ouKjJSldVuyhHOst6IGkilBpDkwbp7NpTHNFrfLkoJwdWTTgSqVtK66tmk96soMJ6WUFy+y2TllFH7GztwbatLBFJAxYDecaYM72OR6lkFE1jSTwrjdX5PanOEJZoaDdjpYJwd+Xt9uAnjHh3eYVuFhMX/BJVt45AldBIWhR8Sowp6+oRyMb8QgZ3z2Lp/acw9oJuQbsMRlugLSwqYdS0VRTss4VGY2Dr1KPYNqMraWmG8R/8zr0XZFfpvrq1iYikicgyYAvwqTFmodcxqdQUrABTRyTmE29UtYtydXJDqTGsG3MGDerVDTtLO9hJpEYMaM+CBXDiiVAvHQ66ZH6limzTBukATAiQ2+1+K29b81xANwOrw66llAoo2q69Iwa0j1sZrDoTBMZj4tRAtGVWqQD8W1ED3T4iWBEqnq0ihUUlpIkE7G7nTiyhugwGu4IXbLtQ/v5L96axYeypADRqt43X3ijh3F7l+4n39OvJzBhTAnQTkSbA+yLSyRiz0rdcRIYBwwAOOeQQj6JUqSDYfVx9F8QgthMWVaWL8uDuWdwyaVmV9ufLdZHm1D/9oRlrP8ni7JFw4IHw2Ku7eHL+PtxpPT1N2LWnuFKvlkB8LcOa5yoTkTbAGcAjwG0eh6NUUoq2a6/vuWjLYJG0/la3dbUm7sutlVmlAoj2ljluoa5iVbVbnVuJMWSmp1U5sQRLTKPP6cxjM9cGjbF4Z33ynj8JAKlbQuerlnNur/L7ONZEwkoFxph8EZkNnAqsdD3/EvASQM+ePbULsqoy33k4fPLySheofD0tEuHC02EtG/L9lt1Rvcad6yLNqf99+yD+Pcs+vv2JLYxf8W2FC4NZTTLZvbc4onveQnnLsApoLHAH0NjrQJRKVlVpFIm2DBbpDMhVrSjXJO1mrFQAkV7x959bM1SlMlA3kKrwddOIpNtGoFmPQ3X7CBZjUX4mm98+xr7HQ7dwyPCP2fS7TnoSKRFp4bTIIiKZwMnAGm+jUqlscPcsSkP0tIj3ff8iUbAv/K150tOk7B7ZWU0yGdLDzircbuR0CvYVhy3EFK5rTu6sdgA8+fZmxq1ZUlYB9l0YHDGgPb9HWJEFHSMbjIicCWwxxuSEWW+YiCwWkcVbt0Y+h4NStUV1uvZGKpoZkAd3z2LeyP6sG3MG80b2T6iKLGjLrFIBRXLF33/Gy3BXq9xXt6qvzH37AAAgAElEQVTTQrt7rx27Om9k/5DrhbvqFmlXla0/NWDL7GxKC+px4EXzyThkO6AFuii1Al53JkapA0w2xnzkcUwqxUXachmP+/5FIlRsApVyqn9OC9cluPCn5mx5rycZBxSw5MsG/O2DVUELb5EeKx0jG1IfYKCInA5kAPuJyARjzKXulbQXilKh1cTESTU1UeB330F2NtSrF9PNVqCVWaUIPFPxpK83BJ1cJKuK3Sx8lcg+Y2ZVuUKbX1gUdtzb1KV5QbsYhiu0uiu6b70FQx8sJa1lPgddMZf0JjZmLdBFxxizAujudRyqdgk2djYQL24vIwSee0AgYDfeaIZ/FHx3INs/7USDNvm8MH4vHTo0YOPrwQtvT13QLWDhMZoLlrWdMeYu4C4AEekH3O5fkVVKhVcTXXvjfduckhI4/HD46Sd48EG4//6YbDYgrcyqWi9QC+aUnDx7/8IAldmsJplhW0UD7cOdlKo7drawqIRbJy3jwQ9XkV9QVCHR+d5PsMmcIi20HnoorFsHbdvWYdS4vby8CDbmV24t8RftvXeVUvERqEBUsC/wJEde9LQI1iQX7eR6/n77oj07Fh5KvYN+54DBi7nv42Lu+3hp0PVbN8lMinFhSqnaI9wY2OqWteLZ+jt3LvTtW/73sGHV3mRIWplVtV6wcQPB5OUXlo099RcouQCVKsuxYCjvZufuQhyu9SJcobWoqGJ3kJaXfcmDn+6gdZPM/2fv3eOjqq+9//d3JpNkkkASINyGqzeoiIJQi9LWYltR8UKhlZ5qe87p6eNpn/Y5ldqcYuvviD09j1ROj7Y9t8ce+7Q9Wh+8plKsqIVqRVHBBBAFWy9cJlwCJFySSTKZ+f7+mOzJzGTvPXvPNZf1fr36avbMvnwnMitrfddan8W9K+akNa5OBAUEQSgMqQ5R6ncU7B0Yw6YF20JJgkn5DvQSbayxBif1qEcfm0/o3XEAjFvxGp4y+zm0UmWSH7TWfwD+UORlCMKQJBe+Vj428LSGG2+Exx6LHV96KWzZAipVYCbHFC2YVUqVAy8CZb3reExrfWex1iMMH3KRJTWMBvQZgpoKH2c6e+LZXMO4lPs8GSsju8EoIbbLXqRz3Nrb4bOf7TuecftGjoZjzqATY+lWTl4QhNzgdJfejQOT6jAZ1R6ZblKlrtGORBvrtFT6yCMfpvP9sQBM+sZzaQPZgElFi2zECYIw0MmVr5XrKRT//u99gezzz8fmeheCYmZmu4ArtNZnlFI+4CWl1O+01luLuCZhiGPmsFj1bVWWeolq8yytMd6iqydqK0YSCkeyCmQVUO330d7dQziSPi+RLkBfPs/acB0+DN/+Njz7LKxdC0/2bCLYluwMpjOWhRIUEAShD7eBmFMHxq7Kw43jdEfDLn796n4SuzbSbSImqmparSFxNvbppsl9gezfPYvXby8OpUgW0ZONOEEQBgsDzddatw62b4fvfS+Wnf3a18Cb/fAOxxRtNI+Ocab30Nf7P1G1E/KKmcNi9Y+uuyfK8nnWTkxbKJzXjKu3ty6jsqyEFR+eHD+2w8iyWJ25eY/5GIS334YFC2KN+k8/HQtqMzGWhZCTFwQhGTcjFtyQzjFy4jjd0bCLB7cmB7Junm/1DAX86MaLUMCZXQFOPHdB79iw36UNZCFm9+fc9Wx8JNFAcw4FQRCsKISvZTbaMZXm5lgJ8ec/D+vXxwLYb3yjsIEsFHnOrFLKq5RqAo4Cz2mtXy3meoShjxvHJBzVbN7TQiBL41Dj92U0XzaidXwO5INb91Pu8+DzWAe0Rgnx0rkBywA92BZi2qoNTFu1gbnfjzlyq1fD+efDyZPwk5/A4sWxczMxlmZzat30pDkxnoIgJJOvQCydY+TEcXr41QMZP9+jlKUtM0Sbzj5yMcefnkPlrCB1n9mOKkk/u9agLRSm/tEdNDQGZSNOEIRBQ7a+VjqMah+7eeR33w2BhHzP669DVVVOHu+aogazWuuI1noOMAm4RCl1Qeo5MlxbyCVuHZNgW8jUaDjF7/Oy+vpZ3L1sdkbXJ9LeHSEc1VT4PChiQXJthQ9FrPfr7mWz4+VwTgLw1o4wX1heyl13xY6ffhrmz+97PxNjuXRugLuXzSZQ4zddlx1OjKcgCP3JdSBmbCrZlQI7dZysVNWdYHWt3+dl0cw6Ssp7+P0vJlA5s5nRi3e5CmQNwlHN2o178+4cCoIg5IpsfC0n2FX7dHfD178O3/1u7PUf/jBWWlysQBYGiJqx1rpNKbUZuAp4M+U9Ga4t5AwrKfLOcMQ0A+BVKkkwJV2fl8+rqCwt4WSo/7icxP4uMypLvdRUlKZ9Rkc4yn1pVIUXzazjwa37Ld/XGtpemEHo/TogVl48fXp/gZZMZixmKiggPWuCkBmZjFiwEowyUztOxY2acTq755ZAjZ9PzKjjnz7Tt0E4+romlCfzZzS3hWQ0jyAIg4pcizclYlXV88F7isvv2cwbj11MxXgv//qr0/z1pyfkZQ1uKKaacR0Q7g1k/cCngR8Waz3C8MDMYbEL/AwnzDAa01ZtsLx3bYWPO6+b1c+4NDQGqX9sR1qHrr07Qnu3s7LA1U/t7jduI/EztbZ3WV6rI4q2F2dw6rWzKZt0nHGfe53p06+ynLeby90+O6RnTRAyw20gZicYlW60l1cp2znbqbborLoK/nS0PdOPloQCXvrOFdRdeDT+2pRvPx0PZDMNnI0Mdj6dQ0EQhIFCOvX7VCFRHVEE//MKImfK6bxqJ+NufhmPL8o9L3qpHRMtut0sZmZ2AvBLpZSXWLnzI1rr3xZxPcIwIdVhWbhmk+W5qeW6ds5SZ9i8xO2u9bsdKRG7oS3UJ3Bi5phaEe0soaVhHloraj6+h5EL3mVSbewzFjszaqXCLD1rgpAeN4GY3Xc93eaRXbDoxhbZUeP3Jdk4gwnVfurr4fibYymd0Mr4m19JyshGtea+FXNMs9TL5wVY9/qBfrbY51FSSiwIwrDBzE6vXNfEreua4lU3idU+oQ9Gc3Tdgvj1FecexuOL+bsDpXquaMGs1nonMLdYzxcEAzvnLdXJsXPkrL7UZiN7ckm6TIpB58Fajjx0GXiijL5qJ1Wzg/i8fY6c1e8h2BZi4ZpNeS+9y6RUUhAEdzQ0Bi2DzGxmb4NzW2RHjd/H6utn9bMF5SVeRu+6hEdegvGXHqD0YztJFXg3RKGMtaTarPlTR3HX+t1xm2w8KxN75nSuryAIQjGwslF2Uz2MKp27l83mf39mNn99o5+T744CoHz6UcZ+7vV+dncgVM8NiJ5ZQSgmVs5bbYWvn3MSSOPopX6p8yVeVFvhs3ymGaebJnNi44UAjF68i6rZwX5l0Va/B0VfhiXd/MpskJ41Qcgvxo68FcZ3Ll3PrBWZBsEGhmBeqi2YMKKCzqcv5bcvl/Ptb8Nlf+Hhu096k9Zo2KmFazZRv3iGaSl0rsqI3c71FQRBsMLNxpjTc+1sVDqf0UjMXNl1BSffjb22ZQvUv/gmwbb+5w+E6jkJZoVhj1VG8M7rZjk6NxHjS20YnGydOzN8XpW0tnSZlPa3J8QD2TE3bKdq5mHeX7Ok33lmn03Rfw5vPstKpGdNEPKHXeY0cbQXwLceaTKdDWunlJ6N2JNXKdP+fB1RvHLHIgC+/GW45x5QKoBSfaJ8iXaqEIFlsVsyBEEYGrjZGHNzrp2NqrZo4zBof2sib58uZ91/w+jRMPHSIPXP9be1MHCq54o6mkcQikHqLFPAscS5IYeemBk1ML7UiSNmck2gxs/az16UtDa70UGnmyZzbH2smn/CX/2RypmHLXfRUqXeayt8tvNqZWSOIAwu7Hbkl8+LlZ9NW7XBMpBNbEswI9NA1u/z8qMb++yaYUMPHu9k3z9f03uW5tqvB+MlbkvnBtiy6goCNX7LDbd8IWJ1giDkArugM5tz7drGrALZnpN+9v1wCcfWzyX854mMHw+HJ+3itkeb4v6sJpbkgNyPA8oGycwKwwqrna27l822Veg0rk0s71hy4QTTsTUL12zKum/MDCsVUcOQ3PZIn2Ky1tC2+UOET1TiP+cIY65twlMaW1N7Vw8NjUHLYD1xPIcd6bIf0lMmCAMLu5aKx7cH43bLLJAFKPEo2++7WSVHOjwqFkgn3nftxr10dEY5tn4OAKo0zJSVz/LPz/r5zMXJz89VYOnGXolYnSAIucCN/XJzrlvtg9YXZ3DqlXPixw88eobf7jrDQ1v397Ppmlggm85nLiSSmRWGFW52thJJzLZq+sbW1C+ewftrlrBl1RVxxydfu/OlJSqeTU7Nii6dGyDaG8hGQj4O3LeYU6+fRUltO3Wf2R4PZCGmhHz7E7tsM6tOhFxC4Qi3rmsyXY/Z7yvdMwVByC9mVRx+nxetcbQBF7JQbIeYzcgkLxvV8ODW/cy569m4fQge6+L4MxfSsXcitYveYsrKZwFrp80MN4GlW3tl9XscCOV2giDkj9TKvmx9Gjf2y8m5xvqMkuB0RMMeWn4zNx7ITr9+L0++EeTGBQFbmz7QqlAkmBWGFZnu4lsFwSsfaWLu959NMmy53p33qNgXNRSOmjpahvHSQPexKg7+5Ep0dwkj5r9H7RVvU+Lpb9LSBfBuDJWZ45fppoEgCPkjtZXAKBM7adM/lYqVA5etc2Nssj2yNUjrU/Pp2DueUVftZOQl78fPqTFp78hFYOnWXln9HqXyRBCGLvnYpHdjv9Kde0fDLlauMy8JNqPnpB8iHrqaa/CNPsMvNx3ivd/McJSYGWhVKFJmLAwrMi0Ps/pSa903escwbMvnBZJK9tJRWeqlvdv6XI21CBMQL5vuPjKSQ7/4WOyesw4y6pNvA9Z9bOkMlZsSlVTxE+kpE4TiYVcymyqy1tAYxONCuMlKdCSbkT4GZ055WHFp7J6jFu9kxEUHkt43W2IuVNAzsVeJv0fj971yXZO0VAjCECUfwm9L5wbYtu8ED796gIjWeJXq13aReK6xjlRb19AYtCwJ9irFSH9J3FeNhj0E/88iou3l1C1/nYlf/iOjaxVfWnRl0rV2Ey4GWhWKBLPCsCLTWaZOHbVQOMLmPS3cvWw2q5/abasYBzGj8JmLAzy4db/lOVY+ZrAtxK3rmgDoPFBLyxPzAai9YjcjP/xB2rUmKi+nzl689qIJpobRjkTHT3rKBKE4ZKKO6Va4ycyBq188I26PMiHSXsrBf/00AP7zDjNizoF+51hlkLNVQc/GXsmYHkEYHuRjk76hMcjj24NxGxzRmse3B5k/dZStrolxrbGJ5lHK0l+LaM2Zzh58XsXJPXW0PPHh2BueKGWTTuAp66Gto/91VhMublowZcDZNikzFoYVbsvD3PYfQMywLZ0boOnOK01VjxPRwEM2gawT2t+awKmt5+Cp6GbiLZsdBbKJysv1j+2IB7IQK/db99oBLjt7lKt1eFRfT++imXXSUyYIRSBbdUynpDpwS+cG0to7K6JdJX2B7FlHGfuZ7abn5WszLJtSZWmpEIThQS7681PJlY5Lug3J7ojm4AMfjQeyFTOamVr/O7zlPbETFExbtYFpqzYw9/vPxkVCU/3le1fM4QdLZ2f6cfOGZGaFYUEmyrqpO+5Ocxc1FT4WrtlEc1uIar8Pn1cRjlhfndkwi1jG9sSzF3CmaSr+cw8z4Usv4SlL75h6lYoby47uHtO1haOaD4672200jKkhjrV8XsBU7VkQhPxhN5LBcFByMQfbzIG787pZtnO4zYh2lnDkkUsAqJq7j9FXvml6Xj43w7IpVZaWCkEYHmRa2WdHLnVc7Gj9/fl0HhkJwIS//COl408lvZ8YC7d2hLl1XROrn9rN6utnDSjVYiskmBWGPJmWgWWatTjT2RPPdKYrM86UaNjDgX+5GoCyScepu74RVRJTGrUaj1Fb4aMzHE36PdjR3BYiYFF+V+P3UVlWQnNbyLTfzii3HgxGUBCGEnYtEd9a18T3ntxl26PvBDsHrqzE49huRkI+jv3mYnraKqlbto2Kc4+Ynlfj97H6+ll53QzLtFRZWioEYXiQi/78VHKt45KI1tD+ZmxtVRceoGpcByPnHqCzx5l9NkT5YOC3TEgwKwx5rMo4bntkR1ywY9HMun5ZxEx31sNWQxqxDjRTscvmJvaWAYz7i62o3oaBQO9nWff6gaTrfV7lePyGgfF7MNuJTHQsp6/aYHq9ZCYEoXA4ybZGIetANmDhwBktC3ZVKImET1TQ0jCP8IlKxi7fhn/6MctzK8tKXDtThZpznY9sjSAIA5Ns+/NTybWOi7c3uRA+UUnzzz4BQPm0FiovCKLGnqazx936shW4KhQSzApDHqugKrEsNlGAycjc1lT4knpJDZwGpGY4uc5O3bjnVDlHH431PJRObGXCF18GYsbv7mWxPoa71u/u71Bqd1lin0fFjWm5ry/TYpYhkcyEIBSX1OqTfOHzKsug0NTuWJCovD72xldtA1lwvzFWSFGmfGRrBEEYHmRqP6yC4LuXzWbzLwL85Gex11RpmLGfex3lVPTFhMGQmJBgVhjyZDIyIhSO0BMxdwzPGVvJn46252JpplgFst1HR9D2xxn0nPInOYBGNtZOPTkc1fEdu1Rq/D6UIknNePX1swD6Gcuunmi/6yUzIQjFJRshJzeEI5rvPbnL1PEy2/gzo+tQNYd/9VEAqhe+kzaQBfcbY/kYoWFHrrM1giAMHzKxH2ZB8Dc+NpP7Vk7khRdi54y+ZgdVsw9mvb7BkJiQYFYY8pgFW04I94/bAPIayFplfTv+PJZj6+dSOv4kE760Bd/o2BoCFqXAZkS0xu/z2pYMJ7JwzSZHDqFkJgShuBRy57y9O0J7d+x5iRlPJ/ScKufwg5cBUHP521QveC/tNZlsjIkokyAIxSTTNofEdhEjAWH4edDfzzJ0SZqbIRKBr++E8lEd1H3pj3jKXNYUmzBYEhMSzApDHsOAOJn7WmzMAtlDv1xI9+EavNUdjLm2kZIRXUCfkXGalamt8CX1zdZW+LjzulgG1lBfTjS6bhxCyUwIQvHIpPokVxgbXDV+n6197TlVzpF1H6GkNMqYz75CWaAt/p6xiRew0C9wa1uk9UEQhEKSGLxW+320J0yKCLaFuHVdE3et382d1/VPHiQGsIkJjcRWuPrHdoDu02QxNhJDHYqVyydy4gRs2QI/fqKZ/++Zxqw/j4JBlZiQYFYY8jQ0Brlr/cAPZFPRUdi/dkn8ePzNL+Or6oo7fYaRWbmuKe29fF7Fmc6eJHGqznCUbftO8Pj2oGlvmTiEgjA4qF88g5Xrmmx78msrfCy5cAK/3XEo57awuS3EvSvmcKuFLQq3VnDk4QV4SnsI3PQaN107ks17uvJWySGtD4IgFIrUHn0r+9ra0V8d2OkISDM9gmM7x/KFH0wEwFvdwfJf5yYbG6jxD7pJFBLMCkOaOxp28dDW/RkLNhUL3eOh5TcXx4+n3PY7VEk0HsgmGpp0WZkavw/ob2BD4QgPv3rAdKzO2o17M3IIC6UgKghCH0vnBnh02362vHvC8pzO3r6JyrKSnAezE2v8bNtn/uyOd8bR8uR8PP4uxny2ET3mNJv3dObVWZLWB0EQCoUbzYLUVq1M9A50FIL/eQWR07HEQuXsA4y5Zqe7RRPb4EzVOhism34SzApDlobGYJJK8UDB7/MQsmrIJTZ7sXXT+YT+PI7qS/9E9cfeSVKiSy3zteqZNcqIl84NWI7PMROEMp7h1iEspILoYEIpNRn4FTCO2Mbr/VrrHxd3VcJQoqExyBv7T9qeEwpH8mYPp43285DJvdvfnsCxp2KbcmM/u43SsaeBwvSuSuuDIAiFwK09a24L0dAYzLj17fiGOfFAdsKXX6C07ozrexhJkaGSgJBgVhiyrH5qd7GXYIpdIBtureDoox/GW9lN3We2UXHekX7npJb5Ogk6080ks3qGG4ew0Aqig4ge4Dat9RtKqRHAdqXUc1rrt4q9MGFoUCg1Yyu2vtfar/qlq7k6HsjWLXudsol9PbLFalUYKo6bIAgDB7eaBTUVPuof3ZHU9pUOreHMzsmUVHVSeeEByqceo3L2wYxG7iRmX4fKpp8Es8KQZbD1yJ56fTqtm87HUxZm9DU7mXDeGTrD/dWHDSPkxjGzKhlePi+Q1DOb+gw3iIKoOVrrQ8Ch3p9PK6XeBgKABLNCTij2dyx1Q6zrUDVHH70EgLGfew3/WS3x9zKxL7kIQqVyRBCEfGDmX/k8Cp9X0ZGSvPD7vHSGI7aBbOpUi+6WKg79/HIAKmY2U3dD5gJPiRV7QwkJZgVhANDy1Bw63o4Zl7rl26idfoo7r5sNJGdcF82sY+3Gvdy6rinJ4KVzzOyyt/OnjspJtkIEo9KjlJoGzAVeNXnvFuAWgClTphR0XcLgpphqxql0BWs4/syFqLIeAn/1EiXVyesq93lc3S9XQahUjgiCkA/s/KvUjbhFM+vStnvcu2JOXN342NMX0r5rMgDekR2MuT6zQDYwxCtRJJgVhiyVpV7au4tXeucEreHklnPjgezEr/yBaWdHqV88O250nKrepTpmZtkMM9GVXJWZiIKoPUqpKuBx4Fat9anU97XW9wP3A8yfP3+waZYJRcSJmnEhCH0wmpYn5+Ot6mTCF7fgrewGkjMNZoqeduQqCJXKEUEQ8oWVH5X6+sI1m2zvE6jxs3RugG/+6k2af/kJelorARhzw3YqZx7OaG0KBp06sVskmBWGJA2NQbp7rHtTi41HwcjSUj54bjonXzmHKeeEaXrNR23tJ/qdmziDLB2GY1aMkjpRELVGKeUjFsg+pLV+otjrEYYWS+cGLMfiFIq2F8/j5CvnAjDnb5v43ufOZ+ncAAvXbOpnu9wEo7kKQqVyRBCEbHDa7mB3np3d8nkVi2bWcckdfyR80k/kdDnekR1M/JsX8ZRmnpgZDjZOgllhSLJ2415XzfWFpqfLy74n5/KRqWOY/134x3/04TGpvksNStNhGK1ildQNFTGBXKKUUsADwNta638p9nqEoUmgiKXGJzZ9iNOvnwXAhL9+kdKRPaxc12S7Ced0rbkKQqVyRBCETHGaIEh3npU98yi44fyp/PBLZxPp8jLhr14i8NVN8eqWTBkuNi5t84pS6nNOXnOLUmqyUmqzUuotpdRupdQ3s72nIBjY7X5lIP6WU7oOj+TAvVfR9s5oPvMZ+Kd/wjSQBXcqpYlGS0rq3JMvWwcsBL4IXKGUaur93zU5uK8gxHHrsOTKDnb8eWw8kJ34lT9QNvY0wbYQmvQBa0NjMO396xfPwO/zJr2WiYO2dG6Au5fNJlDjRxEL/u9eNntYbr7l0dYJwpDEKkFw2yM7mLZqA2ff/jTTVm3gtkd2WCYSwNqeXVN6GT+6eRY9p8sprTuNt7Ir60DWq9SwsXFOMrO3A486eM0tMq5CyBtWu18Bhw34+aL9rQkcWx8bVzFm8Zv88IP9/Pca63KVdMGn0YuW2twvJXUZkRdbp7V+ieLvoQhCnFS1zEwJvVdHy5PzKB3fRt3ybZRUdbm6r5NKkVy2L0jlSJx8+XWCMCSx8sUMJffU/7e73pPgDeioYu8PP8WecCwcGzH/PUZ98u1cLJmo1sPG3lkGs0qpq4FrgIBS6icJb40kFohmhYyrEPKJVUnZopl1bNh5qChr6nhnXDyQHX31DiovPBjPXlj1s9qplNqp00lJnXPybesEIVfY9WIZO/9OMHO3ait8dIajjitB2t+ewPFnZuOfdowx1zfiKXP/VXFaKSJBaG4QWycIzki1tTUVPlo7Mh/3WFPh446GXUmJFK3h6GPz0b2BbOBvN1NS05H12g2GU/LCLjPbDGwDrge2J7x+GliZy0XIuAoh15jt5k8b7eehrfuLovh5ZleA489cCMC4m16mfFJr0vtW/axWQWm60hERY3JFwWydIGRKul6sbFsIWjvC3LdiDquf2p12RndLw1w69k6kbNJxxlz/Bp6yzMRJhpOzNUAQWycIaTCztT6PwutRRDLUYmntCMcDWa3hTNMUSsefpGr2QSrPb6ZyVhCVYf1WZamX7p5okk7McEteWAazWusdwA6l1JNAu9Y6AqCU8gJluVqAjKsQ8oWxm9/QGOR7T+5iSxH6RbWGk388j+6WkZRPOU7d0jcsMxhmzmg2QalkM5xRKFsnCNlgJ+oG4FHKssTNCYYf1XTnlbYK6ocfupSug6MAGPu51zNW2fR5lCtnyywrDbJh5waxdYKQHjNbmytB0a7DIzn8y48BUDVnH6MXv5nV/RSw+/tXOVZaHqo46Zl9FvgUcKb32N/72mXZPlzGVQj5pqExSP1jOwhHCr8PEu3ycugXH6OnrZKquR8w6tO7bXferLIUEpQWjLzZOkHIFqvMq5GhzSaQhVjpsVEdYtib1HE/R5+YFw9kJ/3ds1mNi1j7uYsc2zWzTEn9YztA9zmZhRg/NoQQWycImG+S5Usos6XhYjr2TgDAN/Yko67MLpCFPr9xuPuJToLZcq21YfDQWp9RSlVk+2AZVyHkm4bGILc9siNrJy8Twm1+mv9PbEi1k0AW3KuRgvO5Z4Ij8mLrBCEXWPXPe5Vy3OeajkQn7rtP7Ex679S2aYT+NB6AybduzKhHNhEjo+zEXplmSkw2KAsxfmyIILZOGPZYtW5U+31pWy3cEOksIfhvn0L3xFSM65a/TsU5R7O+ryIzv3EoknY0D9CulLrYOFBKzQNysW0h4yqEvGFkZIsRyHYfHREPZP1nH2H0lekDWaVg5bomFq7Z5GhcBfQZ4sQxGLc/scvx9UI/8mXrBME1DY1BFq7ZxPRVG1i4ZhOLZtb1G+ng82RXWpyKscvf0BikIxyNv35q+1TaXjoP/3mHmfLtp/GVZx88u7FXbjIlMn7MEWLrhGGPVeuGUvSztXYunN170c4Sug9Xo3s8eEeEmHLb73ISyEKsmkY27mI4yTYRqDgAACAASURBVMzeCjyqlGom9t9sPLAi2wfLuAohn9y1fndRSou7mqs5+viHAaj+2F5qLvuzo+sMf9RNqZxdD50YuIzIi60ThHQk9qh6e3tfE8fnBNtCPL49yPJ5ATbvaaG5LUS138fprtwJ0CYKhiQqI7e9fA4n/ziDytkHGL14F8qr+dGNc1i5rilrMT2n9spO1d3sXCEtYuuEYYudJgDQT7W4xu/j2osm8Pj2oGkVjJkdjHT4OPzfC9E9Xib89YsEvraJkpGdGa3Xa6GHEBBbFydtMKu1fl0pNRMwctl7tda5y78LQh7IRkI9UzreGcfppil4fBHGf+UP+Ea3Z3QfJw5eQ2PQ0hAH20IsXLNJSo9dIrZOyDdWIkaJpW6G05LquoTCETbvaWHLqity2kKhoJ+daG4LoTXsv2cJABXnBxl91S6UR8erSHK1VZiYSbVqmzBTdfd5VVLPLAw/Bc9MEVsnDFdSS4udcKozzPypo5g/dZRtEBw/f/tUWp+/AICK8w6hfBG8FZl9vfw+L8vnBfoF0mLrkkkbzPb2UXwLmKq1/h9KqXOVUjO01r/N//IEwT3FKLNtfXEGp145G/+5Rxj/ly/h9WfnF9iVyhnG2AoFcWMroijOEVsn5BOr/qyyEo9jx6q5LRS/T67Ki83uMqHazyvfvSJ+POaaHShPb5Cd44KXxNJmu9FD0F+52Ow1sXPpyaetU0pNBn4FjCP2z+t+rfWPs72vIOQCs4q2dEQ1rHykiXtvnMOWVVcwfdUGU7upezzs/9HV8ePqS/9EzcffyXitXqVYPi/AD5bOjgfSYuvMcVJm/H+JzSO7tPc4CDwKiIMnDDjSBXq5RkcU+/851updNrGVMdc14vFF01yVHrtSOTtjnFiaaCClx44RWyfkDau2ADeO1cQaf0bOWDoSA8cb5gSofO0j8fem1G9AOVHXcIDPoywzqenaJqzUOsWuZUQ+bV0PcJvW+g2l1Ahgu1LqOa31Wzm4tyBkRaY99VrHKmi27TuBUv039XQUjjy8IH4c+NrvMy4rNohozePbg8yfOmrYqxWnw8mfqLO11vcAYQCtdQfS6yoMUPLh6FkR6fDFA1mAcV94JSeBbLryETtjbJU0EVEUR4itE/JGtt9Bwy7k67scCkf41rod1FzyHs83VHLB5a1c+k+b8HhiGYJcUFVeQqDGjyLW73X3stlJpc1miO3KC3mzdVrrQ1rrN3p/Pg28DYgXLgwI/D7zsMfJP/5QOMKDW/eTOHJWazi1fRo9p/xUnN/MmOsamfqdDa4DWavnJ84SF6xxEsx2K6X89PrJSqmzga68rkoQMqRQjk+kvZQj62LZi5JRZ5j6nQ0ob/b1d6kOnhlWWdtAjd9SEEBEURwhtk7IG1bfwdoKXz/lTAPDwTHsAoAnR4FlKjqqaH7oI7S/PZGRC/7MqY+8TEe4h3tXzCGao9piOy0Dq9+P2K68UBBbp5SaBswFXs31vQXBLXc07EpSaU8kEwvXebCW/fcsofX5WZzZOZmR8z6g8vxm1/cJ1Pi5d8Ucy4BWNvTS46TM+E7gGWCyUuohYiN1/iqfixKGLpnMRXVzjRvVy0wJH6ui9YUZ9LRWUrfsdSrOzY3MulPMxFASs7l27wm2iK0T8obV9/bO62YB9FMzDqTYuobGIPWP5mfcWDTs4cC/xHq9Ki84SM3H96IUtIXC3P7ELmoqfDkT1bPq509n14Sckndbp5SqAh4HbtVan0p57xbgFoApU6bk8rGCYMnDrx7IyX20hqOPXELnB3UAlE05Rs3HMuuN/WDNkvjPVuJSsqGXHstgVim1UGu9BXgRWAYsILZR/E2t9bECrU8YQjgR+MjmmobGIO05HFVhRmjfaFqenEfpuFOMv+kVSsedSn+RC5z8TqzEUBLPF6EA54itEwqB2fd20cy6pOP7Vsyx/K6ufmp3Ur9proh2ezlw71Xx4zFLdiS9HwpHKCvJUdNsCqk9sSC2K58UytYppXzEAtmHtNZPpL6vtb4fuB9g/vz5hZ+hJwxLcrERGOnwcfCnV8aPx67Yin/a8YzulVpJJxt6maO0xX9cpdR2rfU8pdQbWuuLTU8qMPPnz9fbtm0r9jKEDFm4ZpPprlOgxs+WVVeYXGF9jXGd4exkIrfuliOPfJjO98fiHdnB+C9spaQ6fxlgu9+J0J9eezU/i2vF1gkFxcxm+X1e0zaDhsYgt65ryvkaEjOyAFO/syHnz0iHAt5PyE4I9gx0W6eUUsAvgRNa61vTnS+2TsgniZV92Yay0W4vHe+M5/iGOXhHhAj87eaM28vsbL1s6MVwY+vsyozDSqn7gUlKqZ+kvqm1/rtMFygMTzIR+LB7LzGLmU/hJ61h/z9fDdFYdsJNIGs17Dod0iNRUMTWCQVn9VO7bdV7DfKl0K57kgPZmXc8Q6gIk0alhK6gFMLWLQS+COxSShk7MN/VWj+dg3sLgmNyleSInCnj8MMLUEoz/i9fomzSCXw1zn00v89DKBy1bCFJRFSLM8MumL0W+BSwmJiEuyBkhVU/q50zk64H1nD+8hX8Rbu9Mbn13kB28spn8JQ6N4xlJYpwFMIRiwoIzIUHxMErKGLrhIJg7Lrb2bRUW5aPjbpo2MOJjTFBKf/ZR/j1oz1s2xfg168mK3UWAimhKyh5t3Va65cQFXhhAJAL23ly61m0vfAhAKrm7EMpXAWyAG//49XpTxKywi6Yrddaf0cpNUVr/cuCrUgYsmTSD2B2TSr5EnzqOVVO8D8+CUDl7AOMvnonboVEDeW8ylIvHd0Raip8aA0nQ+F4z9zj24PSI1FcxNYJecdpliB1I8tuo87rUURcRp+JPV9jrn+Dyg8d4vYnPIDqF8jW+H205TFdW1vhkyxEYRFbJwwb7Gxnhc9jqWwM/bUEaj6+h+pL33W9hpsXmAucSTlxbrELZq9RSq0CPg/cU6D1CEOYRIEPQ7UzcYaWVclF4jWFovNgLUceugyA8ulHGXPNzqzu19Ed4V4LcZf5U0eJUSsuYuuEvOM0S5C6kWVXnaKj2rK6w4xwawXN9y8CwH/uYSo/dAiAkIVTV1lWwunOnrwoKCcqOQsFQ2ydMGyws522gWzYw+H/Xhg/Dnz9eUqqnE2uUirWmuZVir/4yGR+sHR2v3MyEUMV7LELZp8BWoEqpVSiZKsCtNZ6ZF5XJgxJjC9q6hd55bombl3XZNpLYPQQFELkCSDyxzkceTn2/HEff5fyS/dkfU8N/XrhDKRHouiIrRPyhpPSYrtrO7qtFdqt3bE+jAxE97EqDj1wefz1scvSV5k2t4W4acEUHty638lybalNqUqRTbuiILZOGDbUL57hSjhPR+H0G9OonBWk4rzD+Ba+Q+XMw66e+f7d6cXszDY2zfQSBOdYBrNa63qgXin1G631DQVckzDEMfsiG/v+djtUhcjSHt94AWeaYs/5yt+38VbtPoJtubl3sC1EQ2Own7iLZGWLi9g6IV9ksgFnODR3NOzioa37s1LgrPH7WH39LI4EvXz1uvGxFz1Rptb/ztH1Gti8p4WFZ49i63utRLSOZxweef0A3RZaAKkYWVixbcVFbJ0wnFg6N8Bd63c7mpEd+mA0R9ctiB1oldHc2MQ2NDvfLhMxVMEey+FxSqmZAFrrG5RSZSnvLcj3woShS7ovbGLpcSpL5wbYsuqKfvO5ckHbS+dypmkqABNWvMYfvC/nPGi+/YldNDQGgT5HN9grGW8E8sb7QmEQWyfki0wESJp7N72yDWQB2kJh/tcv3+TrX6gGoGzKMceBrEGwLcQb+0/yoxsv4r4VcxhfXc6DW/c7DmTB3qYLhUNsnTDUaWgMsnDNJqav2sDCNZs4f8II2/O1hkO/uiweyFacd4gR89/P6NlGN0Y6385K4FOEPzPHbhL6rxN+fiXlvX/Pw1qEYYKTL2ywLcS0VRuYtmoDc+56NinAa2gM0trurH/BCTqq2PfDJZzcch6e8m4mfeM5Sqe1EM6DrGeiU2dXaiIUFLF1Ql7IZKd9Yo2ftRv3Zh3IAoSPV3L0/y0Aj6Zu+euM/4tXM7pPKBzhrvW74w5aJhiVKUJREVsnDFnuaNjFynVNSUHklndPWJ4faS9l/z1L6D5UC8C4m16m7jNvuBb6TCWdb1e/eAZ+nzfpfRH+zA67nlll8bPZsSA4xolCcSJtoTD1j+7ou/7RHTkLNCMhHwd/cmX8eNI3ns94CLZTDAdXSk0GDGLrhLyQbrSYGW0d3bR3Z68LEHqvjqOPXgLA2BtfxT/9WFb3c1Kqlw4ROSk6YuuEnDMQ2qUaGoOuevvDrRV0vBNrvSipbWfiV/6AskvvOaDG7wPS+3aJLXPSYpYb7IJZbfGz2bEgOGbp3ADb9p3g4VcPOFbJDEd1fFcrV4Fs5/5RHHn4UgC8IzsIfHVz1jtyTvAoRUNjMKO5u0JeEFsn5AW3G3dATgLZjnfG0fLkfACqF76TdSCbK0TkpOiIrRNySjGUec2C59VP7XZ0bXfLCA79/OMATPzbTVScexjfqI6s1+TzKFZfH1Nnd+LbifBnbrELZicppX5CbLfO+JneY/kvIGRMQ2OQx7cHXY97yGXGsuPPY2l5/MMAlE9tYdznX8vZvdMR0Zrbn9jF8nkBmTE7MBBbJ+SFYowWa98znmO/mQfExu/UfPRPBXmuU6TypKiIrRNySqGVec2CZ6eKxYcfvJSu4Kj4sbeyC4/PiSa8PalTOMw2McW3yy92wWx9ws/bUt5LPRYEx2QiigK52zZODGQrzg9Sd51z6fZcEQpH2LynhbuXzZZSk+Ijtk7IG8YO/LRVG/L+rHBrRTyQrZx1kDHX7khzReGRypOiIrZOyCmFapfKZsRZajtZLm2jArasuiLpNSkjLjx2o3l+WciFCMOHYu7MH31iHqE/xfokxq7Yin/a8aKtpbktJKUmAwCxdYIbEkvcqv0+lIK2jvSzU71Kua5GcUP4RAUtDbFAdtRVOxlx0YG8PStTJDtRXMTWCbmmEO1SmYw4M4h0+Dj0i4/FjwNf+z0lIztd38fKflt9TvHtCkuW7c6C4J5i7MxrDfvvuzIeyAb+5/NFDWRBMhTDCaXUz5VSR5VSbxZ7LULmpI5caAuFae0I247WMkZF5DOQ7dg7nuafLUJHPEz48osDLpBVxErx7l42Wxw8QRhCmCnzAnR09+RMvTyTaj7d4+HAv36SntZK/GcfZczS7Uz9zgbXgewHa5bwwZol/OjGi0SBeAAjwaxQcKyMX76IdnnZf88SdFdMaW7yymcoGZG70T6ZIEZw2PEL4KpiL0LIjnROVeporcTgN1+0vjAjnpEdffVOSutO5+1ZmXLvijlsWXWFBLKCMMRYOjfA3ctmx5V8DVo7wqabe5ngtprv1GvT2f+jq4m2l3Ns/VxGL36TyhmHXT+3tqLvMxmfM1Djl825AYhdzywASqmFWust6V4TBDtS1ecunlLNy++dII/JCgB6TpcR/PdPxY+n/P2GrBWLFVBT4ct4VIUCls+TEpSBRj5tndb6RaXUtGzvIxQXJ05V4jmZ6gM45cTz53N6+3QARl25i/JJrXl7VjaIgvHAQvw6IZcsnRtg7ca9tIWSfaJcCUE5HXGmo7B/7ZL4sSoLE/jq5oyfe+d1s5KOpXR44JI2mAV+Clzs4DXXKKV+DlwLHNVaX5Dt/YSBiZn6XCGUPbtbqjj088vjx1O/Yy/AooiJTKXrbdNA4z/ExAQaGoOOlfQSr9+8p8XVNUJByJutE4YGTpyqar+PhWs20dxbipwvTr8xNSmQHTHX+YzFQiMKxgMOsXVCTslWCMpuVq2TEWepiYu65a9Tcc5RF58gmZsXTJHAdRBhGcwqpS4FLgPqlFLfSnhrJJCrGtFfAP8K/CpH9xOKhJ0hynV2wgg67TizK8Dxp+cAMPKSd6ldtKffOTUp4i2LZtaxeU9LWmfVqxTTV21gYo2f9q6ejD6DOHcDhwLZOifruAW4BWDKlCmFeqzggnROlc+jaO/u6ZehyDWdB2s58Vxs/3f0kiaqLsislM+jIEdju20RfYCBwUCxdcLQIxshqHSzapfODbBt3wkefvWAaaKh51Q5p16fHj+eUr8BlUUTpc+rmD91VPoThQGDXWa2FKjqPWdEwuungM/m4uFSejc0SGeICh24nfj9hzi97SwAxn/xJcomnjQ9ry0UprbCx70rYkGvU7U8w5hmk10W525AkXdb5wSt9f3A/QDz588vQIghuCV15EK130d3T4SOcGxWYURrotmPLbQl9G4dJ56fha/uFHVL38A3qt3V9Qq47OxRvPZBK+GIs39m2QS9og8woBgQtk4YemQzW/Wu9btNZ9Xeuq7JtvKtq7maw//9USAm6jni4n34ajsy/AR9hCNaWiMGGXajeV4AXlBK/UJrva+AaxIGGemGZjvtd3CKnU8V/Nnl9JyoAmD8X/6RsvGnbO/V2hGm/rEdVJWV5LW3LRFx7gYWYusENxiZgobGIKuf2h0PZCH/Wc5jv72I9t2TAJj0jefwVna7ut6rFD+68SK++8ROx4EsxD5XJgFtQOYrDijE1gn5ItPZqg2NwYz0RxJ9PeXrwVvRjfI6N1CVpV58Xo9lFY1Uzw0unPTMliml7gemJZ6vtb7C8oocIqV3A590vRKLZtbx4Nb89nOlNv4Hvv48JVXOFIvDEZ2xmJNbxLkb0OTN1imlHgY+AYxRSh0E7tRaP5DtfYXC09AY5HtP7qK9uzCbXwaJztuEL7/gOpCFvqqSxADcKW4C2doKX1xXQBiQFNWvE4YmmQgkJaq/O6HnVDnB//hk/HjExR8w6tO7Xd0DYvZs9fWzWLtxb97n5Ar5x0kw+yjwn8B/AYX9642U3g0G7HolGhqDPPxqfmceRrtKOHDf4vjx5JXP4Ckt+D9VWyp8Ht76x6uLvQzBnrzZOq31X+TyfkJxaGgMUv/YDldZzVxw8N8+SeRMOQDjbnqZ0rozGd1HESvpyzf5VqkXsqaofp0wvGloDHLX+t2ukwg9J/00P/Dx+HEm1SkGRvVgNuXRwsDBSTDbo7X+j7yvRBi0WImiBNtCrpV+3RI+UUnzzz4BgMffzaT/9VzWo3dyjd/n5X8vm13sZQjpEVsn2LJ2496CB7KtL8yIB7JOWifs0FCQKpSTeRbAErJGbJ1QFDLZEIx2e2n+2ScY94VX8J91lIoPHcpobmwqzW2hjMujhYGFk2B2vVLqfwJPAvG6Ta31iWwfLqV3gwsrxeJEY1CIkTsGoffHcPSRjwAw6qqdjLjIOgN87thKPjjeURBHNFUlWQzjoCFvtk4YGhS6jyr0bh2ntp4NQOBrv6dkZGdBn58pUqI34BFbJxQFtxuCbS+dy8kt5wFw4rlZjLvx9ZytxbBTMj928OMkmP3L3v+vT3hNA2dl+3ApvRs8OJFOXzo3wNm3P207ozVXnHptOq2bzwegdtFbtoEswJ+PtnPZ2aN469DppMyEUrkrifP7vNy9bLYYxcFL3mydMDTIRszO51GEXTSeHn18HqE/j6fivEOMvmYHnrLBUQ0qJXqDArF1QsEwxPLcjCzTEcX+f74mfuwbfTqngSwgdmoIkTaY1VpPT3eOMPRJp1hsUIhAdt/aqyEaGyI29rOv4T+7Je01Gnj53RPcu2JO0nqnr9qQ9XoUxOfUrt24l5XrmiQjOwgRWyeko37xjIx6Zm9eMIX5U0dx2yM7HNnIfT/sE7MbvWTHgNMAsMKrlGzoDQLE1gmFoqExSP2jO1xt5PWc9BP8zz4tsrGf34p/6vGcrqvG7xM7NYRIG8wqpSqAbwFTtNa3KKXOBWZorX+b99UJA4Z0isWFQOuYEIoRyI6/eQtlgTbn1xMTP0ksla72+1ztFqZS4/dRWVZCsC3EQ1v3x8cGpWauhYGP2DohHcZ32Y14SalX8fCrB3hw6348CjyAnZZwYiA76e+eLUggW1vhozMczXo8WVRrsXeDALF1QrZYtZ2lsnbjXseBrNYQDZXS+kJfxnTK32/IuQ6Kz6NYff2s3N5UKCoeB+f8X6AbuKz3OAj8IG8rEgYkVj1QxusNjUEWrtmUt+frHg9H132EaHtMCCXw9eddBbIGrR1hgm0hNLGAs727B58nM0vpUdDe3RMvO0w110bmWhg0iK0T0rJ0boDGf7gSr0MPqzui49nYqHYRyP6v5/D6cy+klLpqBZw/YQTlPifugD3SKztoEFsnZIzRdpboS93+xC4aGoP9znWa8OjcP4r99yzh4E8/Te0n9hD46iamfif7QNbnUVSWeuPHNX4faz93kWy6DTGc9MyerbVeoZT6CwCtdYdSA00vVsg3dvLlqf20uSbSXsrBf/00ABXnHWLMDY0oT27KmcMRTW2Fj4rSEprbQlT7fZzu6iGSspOoev+X6IhGNUTTlBvK4O1Bhdg6wTG5bqk4+fI58Z8nf3MjnvKenN7fQBOzZTrheMu7udH9kR60QYPYOiFjnLadNTQG8SiV1lYe+OmniHaUAeCtCuEd0ZmTbGxA2r2GDU6C2W6llJ/ev31KqbNJUL8Thgd28uUL12zKWyDbdXgkh3/5MQBKx7dR95k3cv6Mto4wjf9wZfy4oTHId5/YSUc4FroqBeUlHkJhu5yKOZKpGFSIrRNMy+egv+0LZCEGlUrby+dw5o2plE8/ythl21El7m2NU7wOnMtMMSpRxHkc8IitEzLGSduZkeSwszWJoxUBqi/9EzUffyfr9YkY5/DDSTB7J/AMMFkp9RCwEPirfC5KGJhYyZfnK/vY+uJ5nHrlXABGzHufUZ96Ky/PMQs4dUIxntZkFMiKquegQ2zdMMdMtT11VrZRUrd8XoDHtwez2sjTGvbfEystrrzgIKOv3pmzqhMz/D5v1huPdv21ohUwaBBbJ2RMTYXPVDMg0Zda/dRuW1vTfayKQw9cHj+e9M2NeDOoRqnx+7j2ogls3tMic2KHMU7UjJ9TSr0BLCBWnfRNrfWxvK9MKDqJGYpqm9mpVoYtG1r/MINTr8bK7mo+8TbVH3kvp/c3UPQvjTMroXFzP42UtwxGxNYJTr/7oXCEzXtaWD4vkCT85obEQBZg9FX5DWQNm+R0HrhZ0Or3ebnzuphwitV9zMoNhYGF2DohUxoag5zp7B90+rwq7ks1NAYthTWjXSUc+tVCxn1+K+XTj1J10QEqZxzOeD2VZSX8YOnsjK8XhgZOMrMAAcDbe/7HlVJorZ/I37KEYpOaoUg0TEa24vYndrJ83iRTw2aGR8X6TNNx8tWz4oHsmOvfoPJDh9x/AIeYiZ64zTRLADukEFs3jHHz3W9uC7F5T0tmgWwU9q/tC2Sn1D+d10C2xu9jy6q+URfpNA58HpUUtJplPJbODTB91QbTzy9aAYMCsXWCY4zkhtVGWGVpLJxYuGaT5Tknfv8hTm+LjTI+tfWcnMyNzVWrhzC4cTKa5+fAhcBu+vRvNCBGbwjjJEMRCkd5cOt+x/dMF8gmZSpUlMBXN1MystPx/TMhFI7Gy+Ig9rmtlllb4eNUqKdfD4gRyCY6i8LgQ2ydMNFFH2y135dR0KZ1aiC7AZW9kLAtJxM2I41gNLV8OpGq8pKkoNUKq9+XaAUMbMTWCW5wIvLZFgpbnhMNezjwL1fHj8umHGPUp3fnZG2qd32SRBjeOMnMLtBan5/3lQgDikLvrEe7vBy476r48eSVG/H48ieCkkgoHGH1U7vp6rGes2iU1620cACDbSEWrtkkmdnBjdi6YU794hmsXNfkKNuqlPsWC62h9fd9/8SMGYqJ6sL5IDW4XDo3YJtlaXP4mexU7oUBjdg6wTFOkhtepUzPCbdW0Hz/ovjx+Ju3ZDRW0Qrduz7xu4Y3ToLZV5RS52ut86O+IwxI3GQosiVRsViVhpl867O2suz5cPys+jsguXzYzgEU8ZNBj9g6gXKfM+VytzoBOqI48NNPg4aaj+9h5IJ343Yun4EsQHtXT3wGZKIOghVOM6t2KvfCgEZs3TDHTLXd6nvrJLnRr2JNg+4u4fgzff2sxuZdrpG2BsFJMPsrYobvMDHpdgVorfWFeV2ZUFTMdtzd4LQ/NrRvNEf/3wIASie0MuFLL6e9Jt+OXyIKksqH0/1eRPxkUCO2bhjTV0qX+4qQxMqT8rOOUn3puzl/hh1toTD1j+4AFZutbbzmIXl2NrjPrFqp3AsDGrF1wxgz1Xa7jXi3yY2Od8fS8tiHY9feshnljeakZcwqkSFtDYKTYPYB4IvALvr/3ROGKIk77plkaC89axQvv3cCu3GGoffqOProJQCUT2th3IrXMlprtvh9Xsp9nrRS8+Ds9yK7hIMWsXXDmGxUzO2IdJZw8MeL48fjPpe96EkmhE12F6PExKEqy0okszq8EFs3jDGzdXYb8W6SG/t+2KcH4BtzipKajqyysV6liGrNxBo/i2bW9RuHJm0NAjgLZlu01k/lfSXCgMPYcbdTp7Niy7snbN8/tuEi2t+cBEDdsm1UnHsk43VCrBQ4k6DbKCGG/gqfVkYy3e9FdgkHLWLrhikNjcG09iOT9oZoV3IgO/U7G2zPd1rRkktOhsI03XllYR8qFBuxdcMYqw335raQafkxQFmJx35u7JGRHPrFx+LHuRqpGNWa99f0Bcjzp46StgahH06C2Ual1K+B9cTKUQBEwn0YkW3JcSrB/1xEz8kKAAJf+33W5SfG2Ak3QXeqY5pJ75eInww5xNYNQ4ySu3QYquUd3T2O+mWjYQ8HftwXJKYGsmbBcaEDWZDNt2GK2LphjFXZcLXf16/8uP6xHaDNKzsMug5Vc/hXH40fT175DJ7S3PiLZtVxErwKqTgJZv3EjF3i1q1IuA8w3DTzu2Xp3ADb9p1wNYbHDN3jYf+P+uTZJ31zI95yZzNq7TBKWOoXz6D+sR3xnrBEFp49ig+Ohwi2hZKcyNReETe/MxE/GXKIrRuGuCkvkT66UwAAIABJREFUdrpZFu32cvzpi1AlEUZc/AG1n9gbf+/mBVP4wdLZSTbbo1Q/AZVc4/OopJ5ZcLf5ls+/MULBEVs3jFk0s46Htu5P2kzz+7woRT9baOZPGURCPo4++mHqlr5B2aQTjJj3PpUzD2e0JgWU+7ySHBAywkkw+19a6y2JLyilFuZpPUIGuG3mz4TNe1qyuj7SUcrBn346fjyl/mmUx955c1rW19oRZuGaTTS3haip8NEVjtDRK+JS4/dx7UUT2Lynpddp7J/9yEa0SXYJhxRi64Yhue5x7zlVTvA/PgnAmBu293PuDFuaaDumr7IvP84Er0cxoqyEk6FwUrlgJgFpIf7GCAVFbN0wpaExyOPbg0m+lQKWzwvwkIuExbENF9L+5mQAOt4Zz/ibXslqXTctmCIlxELGOAlmfwpc7OA1oUi4bebPhGwcvvDxSpr/6xPx49Ryuxq/j/bunqQdQDf9aYq+jElrRxi/z8vNC6aweU8LwbZQ0g6kVfJDRJsExNYNOxoagznNina3VHHo55cD4D/3sGmWwszW5GMUWiSqqSwr6dcPm8nfhEL8jREKiti6YYZRWWFmZzTw2x2HqPb7bMcUQkwH4MB9fToAFecHGTn/g6zWZlSrGBgB7dqNsYoWsTFCOiyDWaXUpcBlQJ1S6lsJb40EvPlemOAcu2b+XOHEyJnRvnc8xxrmAVB14X5GX53cm1bj97H6+llAcsYg095XiDlZSQGsg/tI39jwRWzd4CIX5a4NjUFWP7U7I5tmRdK87JIIY5dtNz9RxZ6fuGazsr+E09HEVD3Ngm470ahc/Q0oxN8YIf+IrRuepFZWmNEWCpNOdLj7WBWHHrg8fjzhr1+kdOzprNYWqPHHA1mpABEyxS4zWwpU9Z4zIuH1U8Bn87kowR1WwV+uArSGxiDt3e57W9teOpeTW84DYNxNL1M+qbX/OaEwtz+xi7uXzY7Pc21oDHLbIzscZUusznCbZ5G+jGGN2LpBQi6cHSeOnVvCbf54IOut6mTS139vea7WJAlO2QXVgYRgfZpFKbLW1mruufobkO+/MULBEFs3DHGqC2DpT+mY5smx3/Qm7j1Rptb/Lut1pfbESgWIkCmWwazW+gXgBaXUL7TW+wq4JsEl+VbVXbtxr60IgBmHH1pA18HRgHUga5BorAxHM99iKInU+H1iKIcxYusGD7lwdnI9TzbaWULLE/MBqLpoP6OvSq+MHApHuGv9bjrDUcu1GCrtEAvArVovjOy02d+ARTPr4noC2fSgiXL70EBs3fAkmwqK9j3jOfabeaiSCOO/uAVvRTfeqq70F6YhYGKPpAJEyBQnPbMdSqm1wCyg3HhRa31F3lYluCLfqrpuDInWsP+evplgga9uoqQ6/fXGM3LtaDrh2osmFPR5woBFbN0AJxfOTi4do67DIzny0GV4R4YYu2Ir/mnHHV+bbrxPYrZ27ca9llmTE+1d3LquCegrOQ7U+Fk0s47HtwdzUrInyu1DjrzaOqXUVcCPiZUu/5fWek0u7iu4J1NdgFRfrnR8G7660/HpEdkQqPHHN+oSkQoQIVOcBLMPAeuAa4GvAn8JZCdtK+ScfKnqNjQGHZ8b7fZy4N6r4sduRu8YxiobR1MR6+093dVDxMXAxmyVmoUhg9i6AU4unJ1ciS0ZGQuA0Ve+SflU54GsW+zsYqhXuR1igazPq6hfPCPnJXui3D6kyJutU0p5gX8DPg0cBF5XSj2ltX4rF/cXnJNppVvnwVqOPHRZ/HjU4l2MmON+NKPf50myTwaLZtaZni8VIEKmeBycM1pr/QAQ1lq/oLX+MiCZimFAQ2OQ2x7d4aj/tOekP3n0zt9vcDVDtqO7h4bGYMY7cIEaP++vWUJlWYmrQBakhEWII7ZugFO/eAZ+X7JOjVtnp37xjNjM1Sw482YgHshWf2yv60DW7/NS4/fZnlNb0fe+G7sYjuh4BtUMsXcC+bV1lwB/1lq/p7XuBv4fcEOO7i244K71u11XunUeGJUUyE657XcZBbKBGj+jKstM37NKICydG+DuZbMJ1PhRvfe4e9ls2UQT0uIkM2vUOh1SSi0BmoFRuXi4lKIMTOwk3M1I3MWr/eTujGTaWztiQlDL5wWSSuMAfB5FVXmJZVmeok/AKRNHTUpYhF7yZuuE3JCzctcsYtmOP43j+IY5AFRecICay/7s6vraCh93XhdTcLcTolpyYV/7g1nGwg47VXixdwL5tXUB4EDC8UHgIzm6t+CQhsZg2laGRCJnyji+8QJqLt9L6YRWRs7/gMrzmzN+fv3iGazsbX9Ixc5PkwoQIROcBLM/UEpVA7cRm0M2EliZ7YOlFGVg4lbp83TTZE5svBCA6sveyWreWCgcYfOeFu5eNtvUWZ2+aoNplljT5+S6LSGUEhYhgbzYOpCNu1ySrbOTiaCdQfh4ZVzsacS89xn1Ked/rip8Hv73sgv7rd1KuX3DzkPxkRVmQbydnbMThRJ7J5BHW+cEpdQtwC0AU6ZMKdRjhxV3rd/t+NyjT8wj9KfxAFRddIDxX3w5q97Y2oqYqKZVUkQ21IRckzaY1Vr/tvfHk8CiHD47XooCoJQySlEkmC0ibgSYDv7bFUTOxIzSmBu2UznzcNbPb24LWTqrVg5cIMEw1i+eERdDSYeZmp4wfMmXrZONu4FFpmW23ceqOLZ+DngjjFmyg8oPHXJ1vVnv2NK5AcvsRWtHOGkebapdnPv9Zy0zL4l2TUSbhFTy6NcBBIHJCceTel9LfP79wP0A8+fPL9zogmHCHQ27HGVlIyEfB39yZfx4xIffo+Kco1k92+tR8coT2VATCkXanlml1HlKqd8rpd7sPb5QKXVHDp5tVooif2WLjFNHr/mBj8cD2XGf35qTQBbsd+yc9MstnRugwuekFVwQksmjrZMesgFEJlmBM7sDHHrgcqLtZUz8mxddB7IQqyBZu3Gvq/WYnW9w53WzMGv9vXnBlKQAeMuqK3h/zRK2rLpCAlkByKutA3gdOFcpNV0pVQp8HngqR/cW0nDTz17hwa3pe1y7DlUnBbITv/IHRl3xtuPn3LdiDpWl3n6vJ3pfRg9soj5AufhnQh5w8q/qZ8Dt9PZYaK13EjNOBUEpdYtSaptSaltLy/AVFm1oDLJwzSamr9rAwjWbXKkMuyGdo6ejiqNPzCN8LDZvfeLfbsqZiqciWeUu9TMD/cQBls+LlbIY59zRsItOkwyIGcaoinz9LoVBR75snWzcDSDMNsXsOP7sBRz/baxH9sKb9uKr7cj42WabhVbKnlbnJ+JNiWZ9XsX8qdLmLaQlb36d1roH+AawEXgbeERr7bzmVciYOxp2seXdE7bn6Ghs8oTRLuGt7GTqdzbgG93u+DmBGj9L5waoqSjt9144qvttwnX19Plkhj6K+F1CLnHSM1uhtX5NJRfQO5eptSZtKQpIOQr072M1mxdoiDZlW062aGad5a5epLOEgz9eDEDZlGOMu/E1lDd3/0k08Pj2YNwZM/vMdy+bHZ9PZvZ7cbIjmUg2oyqEIUe+bJ0jpI+sMBjf9ZXrmtIqtR/77UW0754EwNnL3uYfvjqGu9YfcSWskki1iYKx3WiwdFnb1N5fQ8lY7JmQhrzaOq3108DTubqfYE9DY5DVT+1Omk1txpk3AxzfMIeyyccZc8Mb+Ea1463odvUsJ4Kbia/nekSYIJjhJJg9ppQ6m1isgVLqs4D7Gqv+xEtRiAWxnwe+kIP7DjnSGQMnwa4ViUFwTYWPM53mf8+6W6o49PPLAfBWdzDu86/mZHh2KsbnMn42ey+xF8yt7LwZMqpC6CVftk427gYQhs1L9ws++epZ8UB2wg07+PwXPdQ/tiNj8SjA1Gba2R+73jIZvSNkQb5snZAH7JIVTkQ7tYb99yyJH3vKw5RPas1oLU4ENxM34cROCYXASTD7dWIO1kylVBB4H7gp2wdrrXuUUkYpihf4uZSimJPOGGS685VqBK2yDadem07r5vMBqJx1kDHX7nD9GdzQ3BaydDQTDadbYxiQURWCPXmxdcjG3YDBqVp758Fa2v7wIQDGfvY1amYe58GtztoX7DCzsVYOYY3fZ2u/ZfSOkAX5snWCA9xU0tklKwBWPtKEiRh6nNAHozm6bkH8ePS1jVTNynzkTqrgZjqBJ7FTQiGwDWZ7VTj/p9b6U0qpSsCjtT6dq4dLKYoz0hmDTHe+nGQ2T75yNm0vzgSgeuE71Hz0T06WnBUTa/wcPtlpOq7Cm5DacDuGp6O7B59HEY723VeU9QTIr62TjbuBgxObd7pxCie3nEtZ4ARjlr5BSVUXGVYV98OsmMXKIVx9/Szbe4lSqJAJ+fbrBHvcVtJZJStWP7Wb9u4e+0D2vTqOPnpJ/HjKt5/OqjXMTHDTWKNVYC52SigElsGsUqqk1wn7KIDW2nl3uJBT0hmDTHe+0gWCp7ZPiweyoxbvZMScA7bn5wLjc1mN10kMcM1+Lz6vIhLVRE3sdWtHGJ9XUeP3cTIUllEVAlAYWycbdwODdBt8h361kO5DNQBM+PIfXfeTpUMD01dtSLI9mY7QkdE7glvErys+bivprGyWXX9sz6lyTr5yDpXnBykd38aI+R9QNSszwSWPipUpW9mXdHO/xU4JhcAuM/sacDHQqJR6CngUiBs+rfUTeV6b0Es6Y7BoZh0Pbd2fVJprtvNllLYE20KmGQIDreHgj68k2hUTK5l4y+asFDydkjj31WrYdmKJi9XvxXjN7PpwRFNZVkLTnVf2e08YtoitGybYVXMc+OmniHaUxc77H3/IeSBroOmfjUnnEFqR6XXCsEVsXZFxW0lX7felFXZK5PCvF9B1YDQAI+bsZ/yXtqTVNykr8fC5+ZN4fHuwX9Lk7mWzs7YxYqeEfOOkZ7YcOA5cQezvsOr9fzF6BcTKGDQ0Bnl8ezApkFXA8nnJ56eWtlgVmkTDHg78y9Xx48krn8FTmr3IUjpuXjCFHyydHT+2UlVOHWNh9XtZOjfA9FUbTD+nCA8IFoitGyJY9aTVL55B/aM7kloNAA785NNEQ7ExExP+6o/4RuU/YSWKnkIREVtXJNxW0jkV2oycKePgv30qflxz+R5Kx51ydG1XTzSeEPEqRUTrpOSCIAx07ILZsUqpbwFv0mfsDERpc4BgVrKi6T/uwUmvWPhYFc0PXB4/nvL3G/KiWGxG6nqtxlXYjbFIRYQHBIeIrRtCmPWkrVzXxK3rmuKOWiInXz2rL5D9mxcoHXOmYGuVjTWhwIitKzJue0idjAFLFXkKfHUTJdXubIvxHz+idXw9EsgKgwW7YNYLVGGuWSFGb4DgtGQlndPUFazh8IMLAfCNPs3Er7yYmwU6xOl63Th/IjwgOERs3RDCaoMP6BfItu8Zz8mXzwVg0tefx1vVVYglxpGNNaHAiK0rMkvnBti27wQPv3qAiNZ4lepXSWfQ0BiMp8zN0FFFtNtLy5PzAfCNOc3Ev8ned0sckehGdVn6YoViYRfMHtJaf79gKxEywmn20a5XLHFXzzf2JBP/+qXcL5RYIFlW4jHt/3C6XjfOnwgPCA4RWzeEcLrhdei/L6O7uZaK8w4x+tomPL7sR++4QTbWhCIgtq7IGK1hxsZaRGse3x5k/tRRQJ+/UlPho60jbBnInt4xmRPPXMiIee9Td/0blE5sw+vPkew6fX39TlSX3So0C0KusQtmC1RgKrghdfdr0cw606b9VCfJqlfsxPPnc3r7dADGXNdI5fmZzx9L5eYFU9i8p6WfOJOTbGk2WVXZIRRcIrZukODku+1kZNe+Hy6J/5zPQLa2wseZzp5+dre2wsed180SuyQUGrF1RcZu1E5XTzT+nlV5sY7C/rV99kuHvfjPdt5+5QanqstuFZoFIdfYBbOfLNgqBEeY7X49vj3I8nmBfkGjqQFJ+TOWOIYikx4LOypLvUmCTqmkc0gzzarKDqGQAWLrBgF2vbCBFJGn1I2wRBID2cnf3Ji3QFYBjf9wpWyuCQMJsXVFJpNROwYdfxpHyxPz48d1y7ZRce6RnK3NCWbrz0VbmCBkg2Uwq7U+UciFCOmx2v3avKeFLauusL129VO7CUdi2QEdVexfe038PTe9Yj6PorTEQ3u3vZhUe3eEhsagpdKwE2cuEzl32SEU3CK2bnBg1wtrtml11/rd/bIb/QLZ8p68rbemwsfCNZviQey9K+aIDRKKiti64uOkcsSMjr3jaWmYFz+eUr8B5cluLQq4d8Uc6h/bEfcP02HW6iVim0KxyfKrIBQSq12uYFuI6as2sHDNJhoa+w/GbmgMxnf9op0lSYHslNt+5ziQVcCKSyaz+/tXcd+KOUkzX80wBAQKiewQCsLQJN13OFG0BKAz3Jdx1RraXj4nfjx55TN5DWR9XsWZzh6CbaGkubJm9lkQhOFD/eIZ+H3epNf8Pi+1FT7T88OtFbS9dC46qvDVnWL0kiamfif7QBZiG25rN+51HMhatXpZfSbRBBAKhZM5s8IAwW5HL9FhguSSWsPBC7dW0Hz/ovjrbkfvaOChV/czf+qoeNZ0zl3PWpbHFCOAlB1CQRiaOMloGDYnMYurNZzYeAGh9+uovOAAo6/ahfLmXrjVqxRRrZlY46e9q6efXZQKEUEQrFqo4P9v797jo6ruvY9/FslAJoCE+2UEipeiIkoqWhWtrXqE4oV4O7S17bG1RY/t461SoVqF2haUp2Jb2yrPYy/Pq6hoVY4WPQJCj4pSRQMCgnduATECwQJBclnPHzuTTCazZ2bPdc/k+369eDlJZvZexvLr+u31W78FNy5Y3a7h0/Y/nklD7WEAhK5dyuArX8xIEhu272BjwqN/IuOa2xYJNduUfFMyW0AS7QWD2BOm7XX11H/Qn48fOwWA8pE76F/1RkpjsBam/m0N4ASweMlwPhJIHccjUpymjh/ZYbIXLRxzwkmttbDlbqe0OHjUTvpOfDMrZ2cHAyXMumR0a9wdMW1RzPepQkSk+CXaJ++2heqGBasBaNwbpOb+tq1jfca/SWnPjhV08Y7tSUZDs4159nZYdFyLJ5VtYSKZojLjAlJVGWLWJaMJVQTjtiTsMGFa9/nWRHbg11amnMiGNTTZ1tXeujhP9fKRQEb/jkIVwaSDsYj4V1VlKO7ELfKh1ZCKoNP18+62PbL9L16VciIbqghSHoj9f5ddDB1ijNuDPFWIiBS3cKO6VLYYhCqC7H9rcLtENvSDpfQcszXme+dOHkNFMHZ5crKarO1QIgxQEQxo7iQFQyuzBSby6de42csSltReeilsWnQ0AAMuf5Wy4bsyMo5wwuxW+lcRDOQtCOoJoUhxCrnEmxJj2k28bjp3JJed3BYDvG6piGSAFdPOZszMxRxo6Nj5+LCyjrFOFSIinc/C6hp+9OiaDiudyWwxaGqCk/oN4eW/OzGi29BdDPrGSsB5YBZ5ulc4loTnOuGV4FQaS4U7watEWAqZktkCFm/CZC10iVhIGPK9fxDouz9j9w4nzG5jmHHRqIzdS0QE3ONNZCLb1ETGElloi3V7XXoDxPq+9pCJdC7hFVm3kt14WwweeACuuQaOvBj6XVhN8IhaunRra1DXbGktBw7FKVuu/NnihHtgI0UnxSKFSslsAXObMH31uFC7RNbL0TvJCJSY1hUGTdpEJJPi7TeLjDc1dfWUGNOui/EFo0NUfWsf0IOSHvWErl2WViJrgK8c0x9wOn/Gmii6lQ5rgijSecQ6OixSrDjxt1druPyLbTGidkcpvc/aEfPz4XLgePOrOy4c5XrMTjBQwqUnhVi+sVZzNSk6SmYLhNsEL3rCdMOfNnDZGf2AbgAMu/mZjHfunHzy0KSaGYiIeBFe3QhPCqM7tEeW0xloXQWpqavnlgXrufgLIaAHvc9dz2EnbUp7PBZ4/HVnr9u+gx2P8ol8sCcinVe8lddYWwxu/MVu7r2tbd40YPJKgp+Lvw0sUblyrId9bqu5IsVEyWwBSDTBC/vePe/y4I+OBaDizLfpdfp7WRnP8o21WbmuiHRusVY3IldeI+Ng5CO6poOlvPPr8wDoOqguI4ls5P0f/ufWmOWD3buWaoIoInGPDouMYVWVIebPh3tv69P6cy9bIRJ1RNfignRGSmYLQLwJXjhoPfwwPPgjp9FTz5M+zFoiCzpeQkSywy22bK+rdy3ja9rflW33/Vvr18de8yqZDlFu++Dc9tGGJTqiQ0SKw1eO6c9fV25x/XlNXT0/+N17XLVtN4eVlBHoO4hep79H9+O2e7qPOqKLdKRktgDEm+ABnHQSvNFy2k7fiWvoMXpbVsdTUZ5eK3gRkVjcVjeGVARjxsGm+kC7RHb4LYviJrLdu5aw/5D7vjY3bmcxxptYJltRIyKFL1HF2rbfnUPTvjIAut/w3wwe9Q4mweGY0efIqiO6SGw6Z7YAxDuz8Mwz2xLZQZe/lvVEFsBlkUJEJC1Tx4/scOZheAIXHQebD5Ww4y9ntHxlGX7LooTXTyWRDQZK+PoXh7qOy02ikmkRKR5uiw4Nu7qz+a7zWxPZfhdW06VbU8JENlBiuOLUYYQqghicI3R07qtIbFqZLQCxjqMoKy3h02crWfeS8/WYG1Zy3HGWFe/Hvkb0E750JCqtExFJRaLu6OE42LS/K58sOhHbUEKf8WvpOca9vC8dvcsD3HHhKKoqQ4wd3sdTyXCiihoRKR6xqko+fW0Ee5Yd1/r14dctpiSYeP4UGXeyRVsgpJgomS0A0RO8geXd+ecdXwYgMGAvg775MnsCzbyxpYRxR/Zh5Qd7aLKWEmP4+heH8vOq0R26gKaT2GrPhohki1sDk/D3ZvxlG2vu+yIA/atep3zkR1kbS3lEgyevjVXilUyLSHGZOn4kNyxYDTjVaw21PVsT2eDRHzHgktcTXmPT7POzOsYwbYGQYqNktkCEJ1Lvvw9HHeV8z3RtZPCVL7V2watvaGLTrnrenzXR9fMLq2uY+fT6uAdr9y4PcP4Jg1n05o4O79OeDRHJl8ObQqz5tTPZ6n78tqwmspDeKmqsihrFT5HiVFUZYubT69n8Yog9S0cx8Gsr6TPhTbofu50uXZsSLiIYnCQzF8mk2xaIGU+tVzIrBUl7ZgvIgw+2JbLBI3cy7MbnOrRzjzf5Cj+Ni5fIAnxa75ynWH37edw7eYz2bIhI3q1YASef7Lwu6VlPv/PXZP2e6ayiVlWGmHXJaMVPkU7g4EFYfcd57Fk6CoBDHx9GzxO30r073Dt5DHNb5lJuLORsP73bPLGuvoGF1TU5GYNIJuVlZdYYczkwAzgWOMVauyqT1y/GvQC//S1cd53z+uab4eW+66mp6/i+eJMvt6MtojVZy19XbuHJN2o4cKiJIRVB5k4eU/C/QxEpTNu3wxktvZ4C/T5lyFUvxnyfgdaYv2rz7rhHZSSSiVVUnfkoUvwWL4bx49u+Pv6aVezrtbPD/DP8z89Ni92szkslSDrz3Hhn4kYe+ShSKPJVZrwOuAR4INMXLsa9AA880JbI3n03TJ0KC6u9l7B5LZkLd/4sht+hiBSmHTtg0iTn9a23wvIeq2I+yAtVBFkx7WzA+f+BBa9tjXvdeGV/JcZoFVVE2omVQC55spzf39kbgMOO2MOfHzvAxV8YG/dzFcEAdTEaaSZbCZLuPDdyf280NaiTQpSXZNZauwHARNfIZkC84xAKcWJyxBHw4YfO67Vr4fjjndeJun7GEu9pXCKF/DsUkcIROfHrsXcg6+4fy5FHwgsvwJlnxn6QB3DgUGNridyPHl0T81zYsIpggBkXjeLGBatjJrTN1irWiUir6ARy87Zmfjh3M/veHky3Yc30Pmsj3YbU8ZMnSzCmbY4WK/EMlBgCXQwNzW3Rx0slSLrz3PD+3lhbztSgTgqR7xtAGWOmAFMAhg0blvD9fj8OIdnSkEOHoFu3tq/37oVl79dw9ez2nw2vRCRzv4ryQIcA6qWzsV9+hyJSnCInfvvWHs6mZ04E4Js3fcKZZ/YDIroaP7W+3erGngMNTH1sDRjiJrLg7G0DWju8R9OETkQiRSaQtU+N4cCGECW9DjDkqv+hV2lzu0ackUllrMSzocnSuzxAedfSlMqEMzHPvePCUWpQJ0Uja8msMWYpMCjGj2611v5Xstex1s4D5gGMHTs2Yd7l5+MQki0N2bQJRoxo+1xDA/x9bcfP3rhgNTcsWE2oJRBC+5XarxzTn8dfr2n9zJ4DDQRKDBXBAHvrGzzvLasoD2Ti1yAieZSrngKp3Cc88fvXG8PZvcQpQ+l1+rss+XQrM2h7cFdVGWLOc293KNWLfFDnJrIJizoOi0gyttfV07g3SM39bXFo4OWv0iXQHPO9sV5HqjvQQPXt56U0lkzMc1Op7hPxq6wls9bac7N17XhSnZzkYoKXTGnI6tVQWen8bNAgZ7+Y22fD07aaunqm/m0N2LbJXE1dPfNXbumw6trQZOnerbR1ZQKcoPbE69s40NAxKLe7XzqH04p0Qn5rdperngKp3md7XT0H3h3Ymsj2HPsBFWe+Q00djJi2qN2/YyqVIl0M7P+ssd21Zl0yWhM6EYkr8OHn2PToqJavLENv+u+YiSy0TyqzscCSqYdwalAnxaLojuZJ5TiE8MSrpq4eS9vEK9MtyhOVhixfHjuRjffZsIYm22FVwi33jHWt+gSJLMDeGA0LRCSucLO7FzJ94VTiVrwHapmU6n16HexH7RNO85Rep71Ln3M2tP4s+t/R62SwPNCFEmOoq29ovdaNC1bz2KrUOx6LSPFYWF3DuNnLGDFtEeNmL2NhdQ3WwrJl8G5LItvnvLUMv+UZugSaCXQxBEra936JTiqnjh9JMFAS9z1e6dgvkfbydTTPxcBvgf7AImPMamvt+AQfS5rXp025ahoV7wnd7bfDnXc6X99/P1x9dXKfTXUcyY4t0edExJ3fmt3lqqdAKvf6JZTGAAAaFUlEQVSproa6RV+gtGc9fS9YTdmw3THfF/53jLU6EUswUNK6+hod4yyw4v22+6hzu0jnFKua5Lp7apj6Rn+eWdiVe++FQSdv5zcv1LK9ru0IMIhfqputcl6tqoq0yVc34yeBJ/Nx71hyNcFzKw2pf/p07nzZ+frdd+Goo5L7bDKiGzy5PRFMdH3tIxPxl1TiVqZL3tzKnL3eZ+5cuOkmgADzFu3iz2/Wxzx+J2x7XX27SWK8B3GzLhkNkPTDQHVuFykeyW7FiHw42NzQha1zJ4A1mC7N7NoF118PMITJpw/p8NlEsUKJp0h2FV2ZcSrcJliZXomMLg0ZcliQjT+fQPXLZYDT+ClWIhv9WXCS1EjhVu+RgoESrjh1WFKlKNFj610eoCIYUAmLSALGmKXGmHUx/kzyeJ0pxphVxphVtbW1Cd+fStzKZMlbvDLnWPcBZ79qdBn0N74RTmTh+efh+xMHuX4+LPzvWFUZYsW0s9s1dYrUuzzAqs27udHlTEU36twuUvi8bMUI/50/8O4Att7zVbDOfGrIlH9w6qk5HLSIeOb7o3lyIZcdLcNP6Pbtg549276/bx90757cZyH200bwVsoS6xqJjvoRkfYy1ezOa+f2VOJWJkve4pU5h+NI9FmGdfUN7cp4L7oInn7a+dlDD8HZZ7tfO96/49TxI5n6tzU0NLX/te050JBUp/Zo2lIhUvi8bMUY3CvIxmUD2LPUaT5Xfsx2+k+qdn1QJiL+oWSW3Lco37IFhg9v+7qpCbp4XCN3K1tJdsy56moqItmRatzKVMlbojLn8PE5kckstE0m33s+1JrILlwIkyZ1vEYs4SqR6IdxpV1Mh2Q2FdpSIVIckt2KsXUrTD5qFD/9azPdhu6i99lv0W3Qp4oFIgVCyWyLXO1p2LwZXn3VeX3OObB0adZvGXMFdubT63PS9EqkM/Nbs7tMSmZfrNtk8oN1ZUyd77x+7TUYOza5a4cqgq2JbPTDuFSEWs7jXr6xVkfziBSZXsFAh7OooS1GWQsXXADPPAMnnTSQ//N/a/j1P9awY29uYkGuzvwWKXZKZnPowQfhuuucY3f274fy8uzfM9akL1Y5Xpj2iolkjt+a3WVSMmXOsZLSPf84hk//eSTnnAMPPwz9+zvfj5zYlQU6lqpEXjteGXIyDDB38hhNHEWK1MLqGvYfauzw/UAXw9TxI3nnHRgZsei6YAEceWSIyaflJiaoOk4kc5TM5sjVV8O8ec7rp5/OXiIb/aRv/2eNHSZ98UrxtFdMRJKRTJlzdMK79Tfn0lzfDYD/uG07VQ9uZHtdPRXlAfYdbGw9Kzv63GsDXHpS2yp0Og/dDHDFqcM0YRQpYnOeezvmXKfRWq6aWsfu552//xUVsHMndO2a+/GpOk4kM5TM5sBxx8GGDc7r6mrnay+SLUXJROmd9oeIFL5cla8lKnOOTHhfnt7WXO6Bv3/EL59/szVWRe+rjWaB5RvbOjy7lSH3Lg9Q3rWUmrr6DseSAVQEA8y4aJQmiyJFzu2B174Ng9j9/CgABl/4Jr+f2ZeuXXMfD3J1JKRIZ6Bk1kUmJoPNzXDzzW2J7M6dMGCA93EkW4qSbuldRTCgSZ5IgfNb+VpVZYhrz2+775Dv/YO7XjpAk/XWrKmmrp4R0xYxpGWf6+Ov13Qocb7jwrZEVfvRRHLLGDMHuBA4BLwPfMdaG+fE6OyJfuBVv7kve1/6PP0urKbirA0cNnYTprSZOc99knZcSCXWZPrMb79R/JVc0jmzMXg5m8xNfT2sWQOPPAJTpsBnn3lPZCF+KUq0ZJ/ouZ1JO+OiUd4HKCK+4iVm5MIf/gA7djivh1y9jEDf/Z4T2bBwPH789RouPSnU7lzsbqVduHHBasbNXsbC6prWM2g/nH0+K6adrYmUSPYtAY631p4AvANMz9dAwmdVNx8qYfNd5/PxI6fSsKs7zQcD9Dr1A0yps5Uh3ZXQVOeLmTzz228yMYcW8ULJbAzpTgZ/9+ROBnz+U7543qeErnyJCVfXtNuPsbC6hnGzlzFi2qLWiZfb972UosR7oldinOQ1VBFkzmUnMufyE1sngqGKYOtxFyJS2PxUvvbHP8Idd0BZ3wMcft1iAhWZGUN9QxPLN9ayYtrZzJ08hoMNzdTVN2jiJJJH1trF1tpw16WVwOH5GktVZYiJ5aewde6E1u8N/u6LdB3wr3bvS3clNNX5YlVliFmXjC7KeZjfHqhK8VOZcQzpTAZ/cu8uZt04EID+F6+itnkvP3lyLcbgeqTE9CfWsmrz7nZlc+HvlwW6dGiGArEDcKzuomFN1rY+9QsHy2IImiLSntfytWyVgx17LGzcCJddBq8O/5/WlRA3gRJD966l7K1voFcwgDFQd6Chw77XsHA8ViMVEV/6LrAgHzduboZ77oF7ftIHgO9/Hyb+Zw3Tn2gk8qSeTKyEpjNfzOfRatnkpweq0jkomY0h1b0Mv/gFzLqtLwC9z1lP+ed3Au0nVm4Tr4f/ubVD6Z3b/tdwa/lokc1WYo1fEzyR4pfMkTlh2dpf229gE7s+dkroNn7+ebo0NxOrsrjEGJqtjZtEj5u9LG481sRJJHeMMUuBQTF+dKu19r9a3nMr0AjMd7nGFGAKwLBhw5K6b7IP3T780Dk/9qmnYNw45xQJp+lm4u7rqdy/2Pe+pkK/E8k1JbMxeJkMhj30ENx2m/N6wOSVBD+3q93PwxMrtwmWlz1kPcpKXQNw+EnfiGmLYq5oaIInUtySOTInLBurmuU9mqnf7ySyQ296ln81xV6RDQZKkiqrSxSPNXESyR1r7bnxfm6MuRK4ADjH2tgTG2vtPGAewNixYxNOfpJ56GYtnHUWvPgiTJwIixZBjx5gItqDpLoSGu/+qcwXi51+J5JrSmZj8DIZtBY2b4arroKjj4YeF73C7tLdHd4Xnli5TbxKjEk6oa1LcIzFwuoaurhcTxM8keKX7KQt06uaM2ZA/X6nFcOwHz3rWlpcYkzS+8MSxWNNnET8wRgzAfgxcJa19kCmrpvoodvatXDCCW0/+/3voWfPTN09/v1XTDu79T3q3OvwMocWyQQlsy6SmQweOgTXXgsffwyLF8Mpp8Czbw1j+hN7XSdWbhOvS08KdThqItY5iRA/IQ0/QYyVyGqCJyKRMrWqaa3TsX3sWOg+aht9v/ompsT94VyztZ4mNvHicaKJk46IEMmZ+4BuwBLjLImutNZek+5F4z10u/12uPNO5+thw+D996E0wzPbRA/9inXvazr0O5FcUjKbom3bYOhQ5/Vtt8EZZ9Da5AncJ1bxfj52eJ9233c7SzFeQup21qyXlRAR6RwysappLXzlK9DYCEuWwInffIeauvhVJpmuEHGbOPntzF2RYmatPSob13V76Nbl7SO5c6Hz+tFH4fLLs3F3bWUQ8Tslsyl45RU4/XTn9RlntD0VDEv0RMrt57G+H53gJlpVcHuC6HUlRESKX7rlYM3NUNJyVOJpp0FZWfyu6pDbChF1OhYpfNExpf7Dfux//Qjuva+Rj0+Gm2+m3fGH2b4/qNJNxE+UzHpUXd2WyE6dCnff3fE9mSxr81qqoSeIIuJFquVgjY0QCLR9vWJF7OqUyGN2cl3m6/ZwL1aMFBF/CseLWQvf59WffQmAgaFGvnxUKUdNiPfJzN5f2xVE/EnJrAc1NfAlJ47y17/CFVd0fE+yZW3Z2selJ4gikm1NTe0T2ebmzHQNzTS3h3sGJwb7YYwiklhVZYjn5oV4teXr9WtK6ds3t/dXvBDxJyWzSZo3z9kne/fdMGkSDBkS+33JlLVlcx+XniCKSCbFevDW9IETT3r2hL172yeyyXw+V/Fo6viR3LhgdYdGehZUaixSYG67DS69FM6NeziQiHQ2SmYTaGpq64z31a86B3HH65SXzFEXM59en9V9XHqCKCKZEP3gbduug/zn7bv5/UxYvjzEl7/s7fO5bsBUVRnihgWrY/5MZ26LFJZQyPkjIhKpS74H4Gd1de0T10SJLLjvTQ1/f2F1DXtczomtqatnYXVNSmMVEcm0yEqT5s9K2PK/J/LR30fz0/t3Jkxkoz8fFn5wlyuhBDFZREREClenSWYXVtcwbvYyRkxbxLjZyxImjZ98Ar17O6/79XP2hCVzdtnU8SMJBkrafS9yz2qiSdz0J9YqoRURXwivXjYfLGXrvU6nlcCAvezvs8PT56PV1NUnFYczIVFMFhERkcLVKcqMvZa6ffRRW6Onyy6Dxx5L/l6J9qwmKm2Ltb9W+19FJB+GVATZsqORbb85D4Cug+oY/B8rkl7VdGvABB3jcLxYl04cVB8BERGR4pWXZNYYMwe4EDgEvA98x1pbl637eTlr8OWXnUZP48bBn/7k/NOreHtW403uwsIJb6IkXImuiGTT//rSMXz9zEEAdBu2i0FfX+lpVTPRmbPhOLxq827mr9zS2qgpMtYBae+7VR8BERGR4pSvldklwHRrbaMx5i5gOnBLtm6WTFMmcI7aeeghOP545zzZZMqKvUo0uQPoFXTOvEi03yyfjVVEpLg1N0PVF4ZQeepBdvfaijnhnbRWReOt0EYmsmH1DU3MfHo95V1Ls9owT0RERApXXpJZa+3iiC9XApdl835uq6HhUjlrYeBAqK11vr98eXYSWUhucrf/UCMLq2viJuFeVptFRLzYtAnOPx9++lN4/aUyjDkaODqla4VXRcfNXhYz5pUYQ5ONTmUdew40uDbMUzdiERER8cOe2e8CC7J5g1iroeFSuYYG6Nq17b179kBFReJrpruHK/zeyp8t7jBZa2iyzHnu7bhJeLKrzSIi0eLFr/feg6Nb8taysvhnyHrhFofjVamAe7Iba9+utl6IiIh0LlnrZmyMWWqMWRfjz6SI99wKNALz41xnijFmlTFmVW146dSjqsoQsy4ZTagiiME5qmHWJaM59+gQVVVt72tsTD6Rnf7EWmrq6rG0lfim0pmzLs6qQ7wunImOABIRiSVe/HrrrbZE9gc/oF18jHe9ZDrFu8Vht6NzwpqsTaobcSbjsoiIiBSGrK3MWmvPjfdzY8yVwAXAOda61Jg515kHzAMYO3as6/sSiW4Asn27sy922zb4wx/gmmuSv1YmS3zjrb4m6sLpttosIuLGLX79bP4Wqn/lxJapU+HuuxNfy2uneLdGTPH6CIRa4l6iFVdtvRAREel88tXNeALwY+Asa+2BXN//scfg2muhTx9Ys8YppfMikyW+8UqgwX3yp+MmRCQVbnFq4xNHAnD77TBzZnLXykQCGX7fzKfXd9hyEY6FyXQj1tYLERGRzidfe2bvA7oBS4yzIWultdbD2mjqfvxjmDPHeb1kifdEFhI3lHITbz9XKkmpjpsQEa+i41fjp2U0fxbg2Mvf4zcXDfB0HFmmEshwLEtnz2uqcVlEREQKV766GR+Vj/uecQasWOG8fuUVGDMmteskWk2NJVE5npJSEcmFyPh1cHNfdj5yKoHe+/ntc3WMO9nbtdJNIGMlryumne1tEC1SicsiIiJS2LLWAMpPrIVbb21LZLduhVNPTf16bo1M4iWkic6MFZHiY4yZY4zZaIx50xjzpDEmiRZz2RWOX+U7Q+x8xAmEN0w/yKUne3+gFq9JXSKZbtiUSlwWERGRwuaHo3my6rPP4O23nSZPkyfDn/4EwQxUnXldTdV+LpFOaQkw3VrbaIy5C5gO3JLnMcHmEBv+7MSvv/wFvv3tvildJp1tEtlo2KQqFxERkc6lqJPZLVvgW9+Cgwdh1SoYMSJzZyZ6pf1cIp2PtXZxxJcrgcvyNZawdevg4oud1wsWwL//e3rXSzWB1AM+ERERSVfRlhk//zwMHw4vvADXXw9HHJG/RBbSK8cTkaLwXeDZfA/io49g8GBYtCj9RDYdOitbRERE0lW0yez55zv//PnP4RvfyO9YQPu5RIqVMWapMWZdjD+TIt5zK9AIzI9znSnGmFXGmFW1tbUZH+eSJTB+PJx8MmzaBBMnZvwWnugBn4iIiKSraMuM16yBkhI4Ki99k2PzWo6XzjEVIpIb1tpz4/3cGHMlcAFwjrXWxrnOPGAewNixY13fl4q5c+Gmm5zXe/dCr16ZvHpqdFa2iIiIpKtok9mRBf5wP9FRPiLif8aYCcCPgbOstQfyMYZf/tLp5g7w8sswbFg+RhGbGjaJiIhIOoq2zLjQ6SgfkaJwH9ATWGKMWW2MuT+XN58xoy2RXbUKTjstl3cXERERya6iXZktdOr0KVL4rLV52+iwaRPMnOm8XrMGTjghXyMRERERyQ6tzPqUOn2KSKpWr3bKiR94AGprlciKiIhIcVIy61Pq9CkiqfjOd6CyEn71K5gyBfr1y/eIRERERLJDZcY+pU6fIuLVZZfB4487r6dMye9YRERERLJNyWwLPx2DEz2WuZPHKIkVkbgmTIDnnnNe19T44/gdEZFs8tPcTUTyQ8ks/joGx09jEZHCMHt2WyK7cycMGJDf8YiIZJvmSyIC2jML+OsYHD+NRUT8z1p45RU47DDYtUuJrIh0DpoviQhoZRbw1zE4fhqLiPifMfDoo05SW1aW79GIiOSG5ksiAlqZBfx1DI6fxiIihaFbNyWyItK5aL4kIqBkFvDXMTh+GouIiIiIH2m+JCKgMmPAX8fg+GksIiIiIn6k+ZKIgJLZVlWVId8EQD+NRURERMSPNF8SEZUZi4iIiIiISMFRMisiIiIiIiIFR8msiIiIiIiIFBwlsyIiIiIiIlJwlMyKiIiIiIhIwVEyKyIiIiIiIgVHyayIiIiIiIgUHGOtzfcYkmaMqQU2Z+ny/YBPsnTtdPl1bBqXd34dm1/HBcmNbbi1tn8uBpMLinW+49dxgX/HpnF5p1iXeX79761xeefXsWlc3mU01hVUMptNxphV1tqx+R5HLH4dm8blnV/H5tdxgb/HVoj8/Pv069j8Oi7w79g0Lu/8PLZC5dffqcblnV/HpnF5l+mxqcxYRERERERECo6SWRERERERESk4SmbbzMv3AOLw69g0Lu/8Oja/jgv8PbZC5Offp1/H5tdxgX/HpnF55+exFSq//k41Lu/8OjaNy7uMjk17ZkVERERERKTgaGVWRERERERECo6S2QjGmDuNMW8aY1YbYxYbY4bke0wAxpg5xpiNLWN70hhTke8xhRljLjfGrDfGNBtj8t41zRgzwRjztjHmPWPMtHyPJ8wY80djzMfGmHX5HkskY8xQY8xyY8xbLf8dr8/3mACMMWXGmFeNMWtaxjUz32MqJn6NdeDfeKdYlxzFOm8U67JLsc47xbrkKNZ5k81YpzLjCMaYw6y1n7a8vg44zlp7TZ6HhTHmPGCZtbbRGHMXgLX2ljwPCwBjzLFAM/AAcLO1dlUex1ICvAP8G7ANeA34urX2rXyNKcwY8yVgH/D/rLXH53s8YcaYwcBga+0bxpiewOtAVb5/Z8YYA3S31u4zxgSAl4DrrbUr8zmuYuHXWAf+jXeKdclRrPM8LsW6LFKs806xLjmKdZ7HlbVYp5XZCOGA16I74ItM31q72Frb2PLlSuDwfI4nkrV2g7X27XyPo8UpwHvW2g+stYeAR4BJeR4TANbaF4Dd+R5HNGvtDmvtGy2v/wVsAEL5HRVYx76WLwMtf3zx97EY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdktkoxphfGGO2AlcAt+d7PDF8F3g234PwqRCwNeLrbfjgL3ChMMZ8DqgE/pnfkTiMMSXGmNXAx8ASa60vxlUsCiDWgeKdG8W6NCjWdS6KdQVNsS4NnSXWdbpk1hiz1BizLsafSQDW2luttUOB+cAP/TKulvfcCjS2jC1nkhmbFDZjTA/gceCGqCfZeWOtbbLWjsF5Wn2KMcY3ZTyFwK+xLpmxtbwn5/FOsa74KdYVH8W67IxLCltninWlmbhIIbHWnpvkW+cDzwB3ZHE4rRKNyxhzJXABcI7N8UZnD7+zfKsBhkZ8fXjL9ySOlr0LjwPzrbVP5Hs80ay1dcaY5cAEwFeNFvzMr7EO/BvvFOuKm2JdcVKs806xrrh1tljX6VZm4zHGHB3x5SRgY77GEskYMwH4MXCRtfZAvsfjY68BRxtjRhhjugJfA57K85h8rWVD/oPABmvtPfkeT5gxpr9p6exojAniNH/wxd/HYuDXWAeKd0lSrPNIsa5zUqwreIp1HnXGWKduxhGMMY8DI3G6uG0GrrHW5v0JkDHmPaAbsKvlWyt91I3vYuC3QH+gDlhtrR2fx/FMBO4FSoA/Wmt/ka+xRDLGPAx8GegH7ATusNY+mNdBAcaYM4AXgbU4/7sH+Im19pn8jQqMMScAf8H579gFeNRa+7N8jqmY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdklkREREREREpOCozFhERERERkYKjZFZEREREREQKjpJZERERERERKThKZkVERERERKTgKJkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmpaAYY042xrxpjCkzxnQ3xqw3xhyf73GJiGSSYp2IdAaKdZIuY63N9xhEPDHG/BwoA4LANmvtrDwPSUQk4xTrRKQzUKyTdCiZlYJjjOkKvAYcBE631jbleUgiIhmnWCcinYFinaRDZcZSiPoCPYCeOE/yRESKkWKdiHQGinWSMq3MSsExxjwFPAKMAAZba3+Y5yGJiGScYp2IdAaKdZKO0nwPQMQLY8y3gQZr7UPGmBLgZWPM2dbaZfkem4hIpijWiUhnoFgn6dLKrIiIiIiIiBQc7ZkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmRUREREREpOAomRUREREREZGCo2RWRERERERECo6SWRERERERESk4SmZFRERERESk4Px/zcYazdP9jTUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hFddbtTU9cGf" + }, + "source": [ + "#### RScore correlates well with ideal score\n", + "\n", + "Higher `Rscore` implies smaller `PEHE`" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "i2w9dPuI9cGf", + "outputId": "3adc25ea-2f29-46e2-be2e-4a5162994be3" + }, + "source": [ + "plt.scatter(rootpehe, rscore)\n", + "plt.xlabel('rpehe')\n", + "plt.ylabel('rscore')\n", + "plt.show()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT8klEQVR4nO3dfWxd933f8ffHktxxswMFtZJF9IPczFGjzZnV0G67JMYatJbTDbLg2oGdbKvXrl7Weh2wRai1dhvm/mG32kP/iAtYGYYs6DzXCVTBRR6YLg/O2i2baMuxIntcFcUPogpEycoFiZlYkr/7g1f2lfSTeEnz8lDU+wUQuud3Hu5XP5D88Hd+55ybqkKSpNNd1HUBkqTlyYCQJDUZEJKkJgNCktRkQEiSmlZ3XcBiueyyy2rDhg1dlyFJ55UnnnjiW1W1rrVuxQTEhg0bmJiY6LoMSTqvJHn+bOs8xSRJajIgJElNBoQkqcmAkCQ1GRCSpKYVcxWTNF979k2xc3ySI9MzrF87wvYtG9m2ebTrsqRlw4DQBWnPvil27N7PzLETAExNz7Bj934AQ0Lq8RSTLkg7xydfDYeTZo6dYOf4ZEcVScuPAaEL0pHpmXm1SxciA0IXpPVrR+bVLl2IDAhdkLZv2cjImlWntI2sWcX2LRs7qkhafpyk1gXp5ES0VzFJZ2dA6IK1bfOogSCdg6eYJElNF/wIwpulJKntgg4Ib5aSpLO7oAPiXDdLGRDD4YhNOn8MdQ4iyc1JJpMcTHJvY/2NSZ5McjzJbX3tP5Xkqb6v7yfZttj1ebPU0jo5YpuanqF4bcS2Z99U16VJahhaQCRZBTwIvA/YBNyZZNNpm70A3AU83N9YVV+squuq6jrgvcBLwOcWu0ZvllpaPt5COr8McwRxA3Cwqg5V1cvAI8At/RtU1XNV9TTwyjmOcxvwmap6abEL9GappXW2kdnU9AxX3/sp3vXAFxxNSMvIMANiFHixb/lwr22+7gD+y6JUdJptm0e5/9ZrGV07QoDRtSPcf+u1nhMfknONzDzlJC0/y3qSOslbgGuB8bOsvxu4G+DKK69c0Ht4s9TS2b5l4ylXjbV4kYC0fAxzBDEFXNG3fHmvbT7eD/xBVR1rrayqXVU1VlVj69atW2CZWiqnj9jOxosEpOVhmCOIvcA1Sa5mNhjuAD4wz2PcCexY7MLUnf4R27se+AJTjTDwIgFpeRjaCKKqjgP3MHt66Fng0ao6kOS+JFsBklyf5DBwO/BQkgMn90+ygdkRyOPDqlHd8iIBaXlLVXVdw6IYGxuriYmJrsvQPHnjnNStJE9U1Vhr3bKepNbK50UC0vLl01wlSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmoYaEEluTjKZ5GCSexvrb0zyZJLjSW47bd2VST6X5NkkzyTZMMxaJUmnGlpAJFkFPAi8D9gE3Jlk02mbvQDcBTzcOMTHgZ1V9XbgBuCbw6pVknSm1UM89g3Awao6BJDkEeAW4JmTG1TVc711r/Tv2AuS1VX1R73tvjvEOiVJDcM8xTQKvNi3fLjXNoi3AdNJdifZl2Rnb0RyiiR3J5lIMnH06NFFKFmSdNJynaReDbwH+DBwPfAjzJ6KOkVV7aqqsaoaW7du3dJWKEkr3DADYgq4om/58l7bIA4DT1XVoao6DuwBfmyR65MkncMwA2IvcE2Sq5NcDNwBPDaPfdcmOTkseC99cxeSpOEbWkD0/vK/BxgHngUeraoDSe5LshUgyfVJDgO3Aw8lOdDb9wSzp5c+n2Q/EOCjw6pVknSmVFXXNSyKsbGxmpiY6LoMSTqvJHmiqsZa65brJLUkqWMGhCSpyYCQJDUZEJKkJgNCktRkQEiSmob5sD5JA9izb4qd45McmZ5h/doRtm/ZyLbNgz62TBoeA0Lq0J59U+zYvZ+ZYycAmJqeYcfu/QCGhDrnKSapQzvHJ18Nh5Nmjp1g5/hkRxVJrzEgpA4dmZ6ZV7u0lAwIqUPr147Mq11aSgaE1KHtWzYysubUz8IaWbOK7Vs2dlSR9BonqaUOnZyI9iomLUcGhNSxbZtHDQQtS55ikiQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpNPc5W0YHv2Tfmo8hVs4BFEkquS/HTv9UiSS4dXlqTlbs++KXbs3s/U9AwFTE3PsGP3fvbsm+q6NC2SgQIiyS8BnwQe6jVdDuwZVlGSlr+d45PMHDtxStvMsRPsHJ/sqCIttkFHEL8CvAv4DkBV/SnwpmEVJWn5OzI9M692nX8GDYgfVNXLJxeSrAZqrp2S3JxkMsnBJPc21t+Y5Mkkx5Pcdtq6E0me6n09NmCdkpbI+rUj82rX+WfQgHg8yT8HRpL8DPAJ4A/PtUOSVcCDwPuATcCdSTadttkLwF3Aw41DzFTVdb2vrQPWKWmJbN+ykZE1q05pG1mziu1bNnZUkRbboAHxa8BRYD/wD4FPA78xxz43AAer6lBv9PEIcEv/BlX1XFU9Dbwyr6oldW7b5lHuv/VaRteOEGB07Qj333qtVzGtIHNe5tobCRyoqh8FPjqPY48CL/YtHwZ+fB77/4UkE8Bx4IGqOmNSPMndwN0AV1555TwOLWkxbNs8aiCsYHOOIKrqBDCZZKl/A19VVWPAB4DfSfLWRm27qmqsqsbWrVu3xOVJ0so26I1ybwQOJPlfwPdONs4xNzAFXNG3fHmvbSBVNdX791CSLwGbga8Pur8k6fUZNCD+xQKOvRe4JsnVzAbDHcyOBuaU5I3AS1X1gySXMXuJ7W8voAZJWrAL/U7xgSapq+px4H8Dl/a+nu21nWuf48A9wDjwLPBoVR1Icl+SrQBJrk9yGLgdeCjJgd7ubwcmknwV+CKzcxDPzP+/J0kL453ikKo5b2cgyfuBncCXgADvAbZX1SeHWt08jI2N1cTERNdlSFoh3vXAF5hq3PQ3unaEP7n3vR1UNBxJnujN955h0FNMvw5cX1Xf7B1wHfBfmX38hiStON4pPvh9EBedDIeeb89jX0k673in+OC/5D+bZDzJXUnuAj4FfGZ4ZUlSt7xTfMBTTFW1PcmtwLt7Tbuq6g+GV5Ykdevk1UoX8lVMg05SXw38WVV9v7c8Ary5qp4bbnmDc5JakubvXJPUg55i+gSnPi/pRK9NkrRCDRoQq/sf9917ffFwSpIkLQeDBsTRkze3ASS5BfjWcEqSJC0Hg94H8SHgPyf5CLM3yr0I/L2hVSVJ6tygVzF9HfiJJJf0lr871KokSZ0b6BRTkn+S5A3MPsn1d3ofE3rTcEuTJHVp0DmIX6iq7wA3AT8M/F3ggaFVJUnq3KABkd6/Pwt8vKoO9LVJklagOQMiSYBvJRlnNiDGk1yKnyMtSSvanJPUVVVJ/jLwQeAbVfVSkh8G/v7Qq5MkdWbQy1z3Mnuz3DRAVX2b2Se6SpJWqEED4seBDyZ5ntkrmcLs4OIdQ6tMktSpQQNiy1CrkCQtO4PeKPf8sAuRJC0vfiqcJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktQ01IBIcnOSySQHk9zbWH9jkieTHE9yW2P9G5IcTvKRYdYpSTrT0AIiySrgQeB9wCbgziSbTtvsBeAu4OGzHOY3gS8Pq0ZJ0tkNcwRxA3Cwqg5V1cvAI8At/RtU1XNV9TSNz7dO8k7gzcDnhlijJOkshhkQo8CLfcuHe21zSnIR8G+BD8+x3d1JJpJMHD16dMGFSpLONOgnyi21XwY+XVWHk5x1o6raBewCGBsbqyWqTdIKtWffFDvHJzkyPcP6tSNs37KRbZsH+rt2RRpmQEwBV/QtX95rG8RPAu9J8svAJcDFSb5bVWdMdEvSYtizb4odu/czc+wEAFPTM+zYvR/ggg2JYZ5i2gtck+TqJBcDdwCPDbJjVX2wqq6sqg3Mnmb6uOEgaZh2jk++Gg4nzRw7wc7xyY4q6t7QAqKqjgP3AOPAs8CjVXUgyX1JtgIkuT7JYeB24KEkB4ZVjySdy5HpmXm1XwiGOgdRVZ8GPn1a27/se72X2VNP5zrGx4CPDaE8SXrV+rUjTDXCYP3akQ6qWR68k1qSgO1bNjKyZtUpbSNrVrF9y8aOKurecr2KSZKW1MmJaK9ieo0BIUk92zaPXtCBcDpPMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNQw2IJDcnmUxyMMm9jfU3JnkyyfEkt/W1X9VrfyrJgSQfGmadkqQzrR7WgZOsAh4EfgY4DOxN8lhVPdO32QvAXcCHT9v9z4CfrKofJLkE+Fpv3yPDqleSdKqhBQRwA3Cwqg4BJHkEuAV4NSCq6rneulf6d6yql/sWfwhPhUnSkhvmL95R4MW+5cO9toEkuSLJ071j/FZr9JDk7iQTSSaOHj36uguWJL1m2f5lXlUvVtU7gL8C/HySNze22VVVY1U1tm7duqUvUpJWsGEGxBRwRd/y5b22eemNHL4GvGeR6pIkDWCYAbEXuCbJ1UkuBu4AHhtkxySXJxnpvX4j8G5gcmiVSpLOMLSAqKrjwD3AOPAs8GhVHUhyX5KtAEmuT3IYuB14KMmB3u5vB/5nkq8CjwP/pqr2D6tWSdKZUlVd17AoxsbGamJiousyJOm8kuSJqhprrVu2k9SSpG4ZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNa3uugBJ0sLs2TfFzvFJjkzPsH7tCNu3bGTb5tFFO74BIUnnoT37ptixez8zx04AMDU9w47d+wEWLSQ8xSRJ56Gd45OvhsNJM8dOsHN8ctHew4CQpPPQkemZebUvhAEhSeeh9WtH5tW+EAaEJJ2Htm/ZyMiaVae0jaxZxfYtGxftPZyklqTz0MmJaK9ikiSdYdvm0UUNhNN5ikmS1GRASJKaDAhJUpMBIUlqMiAkSU2pqq5rWBRJjgLPd13HkF0GfKvrIpYB+2GW/TDLfnjNQvriqqpa11qxYgLiQpBkoqrGuq6ja/bDLPthlv3wmsXuC08xSZKaDAhJUpMBcX7Z1XUBy4T9MMt+mGU/vGZR+8I5CElSkyMISVKTASFJajIglpkkNyeZTHIwyb2N9f80yTNJnk7y+SRXdVHnUhigLz6UZH+Sp5L8cZJNXdQ5bHP1Q992P5ekkqzISz4H+H64K8nR3vfDU0n+QRd1Dtsg3w9J3t/7PXEgycMLfrOq8muZfAGrgK8DPwJcDHwV2HTaNj8F/MXe638E/H7XdXfYF2/oe70V+GzXdXfRD73tLgW+DHwFGOu67o6+H+4CPtJ1rcugH64B9gFv7C2/aaHv5whiebkBOFhVh6rqZeAR4Jb+Darqi1X1Um/xK8DlS1zjUhmkL77Tt/iXgJV4xcWc/dDzm8BvAd9fyuKW0KD9sNIN0g+/BDxYVX8OUFXfXOibGRDLyyjwYt/y4V7b2fwi8JmhVtSdgfoiya8k+Trw28CvLlFtS2nOfkjyY8AVVfWppSxsiQ36s/FzvdOvn0xyxdKUtqQG6Ye3AW9L8idJvpLk5oW+mQFxnkryd4AxYGfXtXSpqh6sqrcCvwb8Rtf1LLUkFwH/DvhnXdeyDPwhsKGq3gH8EfCfOq6nK6uZPc30N4E7gY8mWbuQAxkQy8sU0P9Xz+W9tlMk+Wng14GtVfWDJaptqQ3UF30eAbYNtaJuzNUPlwJ/DfhSkueAnwAeW4ET1XN+P1TVt/t+Hv4D8M4lqm0pDfJzcRh4rKqOVdU3gP/DbGDMmwGxvOwFrklydZKLgTuAx/o3SLIZeIjZcFjwucXzwCB90f9N/7eAP13C+pbKOfuhqv5fVV1WVRuqagOz81Jbq2qim3KHZpDvh7f0LW4Fnl3C+pbKnP0A7GF29ECSy5g95XRoIW+2euF1arFV1fEk9wDjzF6t8B+r6kCS+4CJqnqM2VNKlwCfSALwQlVt7azoIRmwL+7pjaaOAX8O/Hx3FQ/HgP2w4g3YD7+aZCtwHPi/zF7VtKIM2A/jwE1JngFOANur6tsLeT8ftSFJavIUkySpyYCQJDUZEJKkJgNCktRkQEiSmgwIaQkl+ViS27quQxqEASEtUGb5M6QVy29uaR6SbOg9i//jwNeAE0n+fe+5+59Psq633VuTfDbJE0n+W5If7TvMjUn+e5JD/aOJJNuT7O09bO5fL/F/TTqDASHN3zXA71bVX+0tT/RePw78q17bLuAfV9U7gQ8Dv9u3/1uAdwN/G3gAIMlNvePeAFwHvDPJjcP+j0jn4qM2pPl7vqq+0nv9CvD7vde/B+xOcgnwN3jtcSgAP9S3/56qegV4Jsmbe2039b729ZYvYTYwvjyc/4I0NwNCmr/vnWNdMTsyn66q686yTf8TeNP37/1V9dAi1CctCk8xSa/PRcDJeYQPAH/c+6S7byS5HV6dzP7rcxxnHPiF3uiDJKNJ3jSsoqVBGBDS6/M94IYkXwPeC9zXa/8g8ItJvgocYI6Px6yqzwEPA/8jyX7gk8x+1oPUGZ/mKr0OSb5bVZd0XYc0DI4gJElNjiAkSU2OICRJTQaEJKnJgJAkNRkQkqQmA0KS1PT/AXiZS0Wzh+rUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r8eRryFl9cGf" + }, + "source": [ + "#### Choose CATE model with larger Rscore" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wTaPVNH39cGf", + "outputId": "bb85de97-45cd-4a07-d659-38bc56183bfb" + }, + "source": [ + "mdl, score = scorer.best_model([mdl for _, mdl in models])\n", + "mdl" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 57 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cULnL_mZ9cGg" + }, + "source": [ + "rootpehe_best = np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 295 + }, + "id": "kLwPBbku9cGg", + "outputId": "125c9a16-1d42-4800-8ee5-c77c24d330f1" + }, + "source": [ + "plt.figure()\n", + "plt.title('RScore: {:.3f}, Root-PEHE: {:.3f}'.format(score, rootpehe_best))\n", + "plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='best')\n", + "plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", + "plt.ylabel('Treatment Effect')\n", + "plt.xlabel('x')\n", + "plt.legend()\n", + "plt.show()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZhU1dHwfzU9zSxswzIIDKsmArJH3IJGMSIaoxI1asQY45vwmeR1TYgaTcRsYkyicXsTv+invqLBdVwwirK4oKjAgIAsUZFl2Jdhm4HZ6vvjdjc9Pb3c3qa7Z+r3PP3Y99x7zz23B6vOqapTJaqKYRiG0fbIy/QADMMwjMxgCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCqAVICJfikiNiOwXkS0i8piIdAg630dEnheRHSKyR0SWi8iVGRxyWETkMhFZJyIHRKRcRLpGufZhEVktIo2h7yIif/f9Fv7PIRHZF3T+SRHZLCJ7RWSNiPwojjE+JiK1vn53icibIjI4oRdu2u+VIvJejGtO873vfhHZ53v/H/rODRARDXnv/SJySdC4fx/Sn/+e/DDv5v8sjeMdvikiq0SkWkTmikj/KNfOFZHtvr/BUhE5P+jcOBFZJiJVIrJTRF4UkbKg8xeLyPu+58xzOz6jOaYAWg/nqmoHYBQwGrgl6Nz/AhuA/kA34PvA1lQ+3C9Ekrh/KPAPnLEdAVQDD0W5ZSnwU2Bx6AlVvVpVO/g/wNPAs0GX3AkMUNVOwHnA70Xk2DiG+ydfv2VAJfBIHPcmyybfszsBNwH/V0SOCTpfEvzuqjojzv7/FHL/SDc3iUh34AXg10BXYCEQ7dnXAb18f4PJwJMi0st37lNggqqWAL2B/wD/E3TvLuBeYFoc72WEwRRAK0NVtwBv4CgCP8cBj6nqAVWtV9UKVf23/6SInOybUVWJyAb/jFpEOovIE76Z2joRuU1E8nznrhSR+SJyj4jsBKaKSIGI/FlE1ovIVt9MvMjl0CcBr6jqO6q6H0eQXCAiHSO854OqOhs4GK1TEWkPXAg8HnTvClU95D/0fY5yOc7gMdQAzxD0W4vIEBGZ5/stV4jIeUHnwv6eIjIE+Dtwkm/WXeXi2aqq5cBu4JhY17cAFwArVPVZVT0ITAVGRlodqeonqlrvPwS8QF/fua2quino8gbgK0H3vqWqzwDB1xgJYAqglSEifYCzgc+CmhcAD4rIpSLSL+T6/sC/gfuBUhxhtsR3+n6gM3AkcCpwBfDDoNtPAL7AmbH/AWdGdrSvj6/gzJB/E/SsKhE5OcLQh+LM6gFQ1c+BWl9/yXAhsB14J7hRRB4SkWpgFbAZeC3ejn3K5Xv4fmsR8QKvALOAHsA1wHQRGeS7JezvqaorgauBD3yz7hIXz84Tke8AJcCyeMeeCCLyiYhcFuF06N/vAPC5rz1Sf6+KyEHgQ2AezqrBf66fTxHWAL8A/pT0CxjNUVX75PgH+BLYD+zDmU3NxjEF+M93wRHOK3BmU0uA43znbgFeDNOnB0cAHxPU9n+Aeb7vVwLrg84JcAA4KqjtJGCty3eYDVwd0lYJnBbjvveAK2P0OzXCOQ9wMnAb4HU5zsdwVh1VQCOwFhjhO3cKsAXIC7r+aZzZsJvf870Yzz7N98wqHDPIEuBS37kBvr99VchnSJhx+z97fffkR7nmcZe/yyPAtJC2+dH+Nr5rvDgTlhsjnO+KY+o6Mcy5H/l/P/sk9rEVQOthoqp2xBESg4Hu/hOqultVb1bVoTiz9SVAuYgIzrL78zD9dcf5n3NdUNs6nFm9nw1B30uBYmCRb6ZfBbzua3fDfhy7djCdcJRaQvhWO6cBT4Q7r6oNqvoe0Af4SRxd/1mdWfoAnBmqf4bfG9igqo1B1/p/Mze/Z5OxBztjg05tUtUSVe2qqqNU9V8ht3b3nfd/VoaO2/8BRkR6t6DPD6L/FAES+vupap065sgzg81lQed34ZjvXkrWz2Q0xxRAK0NV38aZyf05wvkdvnO9cWZXGwhv/94B1OE4jv30w5mVB7oLub4GGBokPDqr47B0wwog4HAUkSOBAmCNy/vD8X1gvqp+EeO6fBLzAazHcWb+zefr2AT09ftJfPh/s1i/Z5O0vKq6Xps6srOd0L9fe5zfdIXL+6P9DfJxTGqhCsZIElMArZN7gfEiMhJARO4SkWEiku9zqv4E+ExVdwLTgTN8oXX5ItJNREapagOOg/MPItLR5yu4EXgy3AN9s97/C9wjIj18zy0TkQkuxzwdOFdETvEJj98CL6hq2BmkiLQTkUIc05NXRApDBC84NvbHQu7r4fOFdBARj29838MxFfmvURE5zc2gVfVNHME/GceWXQ38UkS8vj7OBf7l4vfcCvQRkXZunpuFvAgME5ELfX+X3wCfqOqq0AtFZLCInC0iRb7f6XLgG8DbvvMXiMggn5+jFPgrUOFbDeD7uxXiKIY839/e20Lv2brItA3KPsl/cHwAZ4S0/Q/wvO/7/TihdPtxHKKv4rMN+86fgiO89uKsCH7ga++CI6C2+9p/g8++TRibNVAI/BHHMbwXWAlcG3R+P3BKlPe4DFiP40t4CegadO7fwK+CjudxOILH/zkt6PxJvn46hjyjFEfQ+G3gy4AfB53v62vvFmGMjwG/D2m7BGcmX4Dj9Hwb2IMTzvidoOui/Z7tgJk4tv0dEZ59GrAxwrkBvt9gf8jnxijj9t8T7AOoDbl/R9D1K4BJUf5+Z+A41Wt8f58BQef+Dvzd932I79/bPt/f4eOQ3+kaHN/KARyfyr+A/kHnrwzzt38s0/8f5uJHfD+oYRiAbzY6VFVviXmxYeQ4pgAMwzDaKOYDMAzDaKOYAjAMw2ijmAIwDMNoo+TUxoru3bvrgAEDMj0MwzCMnGLRokU7VLXZpsyMKgAR+RInFKwBqFfVMdGuHzBgAAsXLox2iWEYhhGCiKwL154NK4Bx6uxONQzDMFoQ8wEYhmG0UTKtABSYJSKLRGRyuAtEZLKILBSRhdu3b2/h4RmGYbReMm0COllVK325Y94UkVWq2iRvu6o+DDwMMGbMmGa71urq6ti4cSMHD0atC2IkSGFhIX369MHrtVQrhtHayKgCUNVK33+3iciLwPGEFO6IxcaNG+nYsSMDBgzAyW5spApVZefOnWzcuJGBAwdmejiGYaSYjJmARKS9v9yfL/vjmcDyePs5ePAg3bp1M+GfBkSEbt262erKyFnKKyoZO20OA2+eydhpcyivqIx9UxsikyuAI4AXfYI7H3hKVV9PpCMT/unDflsjVymvqOSWF5ZRU9cAQGVVDbe84FTPnDg6bB2eNkfGFIA6RTpGxrzQMAwjAe5+Y3VA+PupqWvg7jdWmwLwkekooJxn586djBo1ilGjRtGzZ0/KysoCx7W1tWl99qpVqxg1ahSjR4/m888/57777mPIkCFMmjQp7r7uvfdeqqur0zBKw8gMm6pq4mpvi2Q6Cijn6datG0uWLAFg6tSpdOjQgV/84heB8/X19eTnp+dnLi8v56KLLuK2224D4KGHHuKtt96iT58+cfd17733cvnll1NcXJzqYRpGRuhdUkRlGGHfu6QoA6PJTkwBpIErr7ySwsJCKioqGDt2LJ06dWqiGIYNG8arr77KgAEDePLJJ7nvvvuora3lhBNO4KGHHsLj8TTpb9GiRdx4443s37+f7t2789hjj1FRUcG9996Lx+Nh9uzZDBo0iC+++IKzzz6bq666ismTJ3PNNdewfPly6urqmDp1Kueffz4NDQ3cdNNNvP766+Tl5fHjH/8YVWXTpk2MGzeO7t27M3fu3Ez8bIaRUqZMGNTEBwBQ5PUwZcKgDI4qu2h1CuC005q3XXwx/PSnUF0N3/pW8/NXXul8duyAiy5qem7evMTGsXHjRt5//308Hg9Tp04Ne83KlSuZMWMG8+fPx+v18tOf/pTp06dzxRVXBK6pq6vjmmuu4aWXXqK0tJQZM2Zw66238uijj3L11Vc3USyvv/46c+fOpXv37vzqV7/i9NNP59FHH6Wqqorjjz+eM844gyeeeIIvv/ySJUuWkJ+fz65du+jatSt//etfA/caRmvAb+e/+43VbKqqoXdJEVMmDDL7fxCtTgFkC9/97nebzeRDmT17NosWLeK4444DoKamhh49ejS5ZvXq1Sxfvpzx48cD0NDQQK9evWI+f9asWbz88sv8+c9/Bpxw2fXr1/PWW29x9dVXB8xSXbt2jfvdDCNXmDi6zAR+FFqdAog2Yy8ujn6+e/fEZ/yhtG/fPvA9Pz+fxsbGwLE/rl5V+cEPfsCdd94ZsR9VZejQoXzwwQdxPV9Vef755xk0yJa7hmGEx6KAWoABAwawePFiABYvXszatWsB+OY3v8lzzz3Htm3bANi1axfr1jXN2jpo0CC2b98eUAB1dXWsWLEi5jMnTJjA/fffj7/mc0VFBQDjx4/nH//4B/X19YFnAnTs2JF9+/Yl+6qGYeQQpgBagAsvvJBdu3YxdOhQHnjgAY4++mgAjjnmGH7/+99z5plnMmLECMaPH8/mzZub3NuuXTuee+45brrpJkaOHMmoUaN4//33Yz7z17/+NXV1dYwYMYKhQ4fy61//GoAf/ehH9OvXjxEjRjBy5EieeuopACZPnsxZZ53FuHHjUvz2hmEkQzp3M4t/hpgLjBkzRkMLwqxcuZIhQ4ZkaERtA/uNDSMzhO5mBieS6c4Lhsfl2xCRReEKbtkKwDAMI0uJtps5FZgCMAzDyFLSvZvZFIBhGEaWEmnXcqp2M5sCMAyj1ZLr6aCnTBhEkbfpfqJU7mZudfsADMMwIDXpoMsrKjO6kzjdu5lNARiG0SpJNh10MgoklYojnbuZzQSUAr788kuGDRuWVB/z5s1zFd9vGG2NRM04yTpQE43A8SuOyqoalMOKIxvNT6YAsgRTAIbRnGSEabIO1EQVSLpDN1NJm1MA6XIK1dfXM2nSJIYMGcJFF11EdXU1ixYt4tRTT+XYY49lwoQJgV2+9913H8cccwwjRozg0ksv5csvv+Tvf/8799xzD6NGjeLdd99NyZgMI9dJRpgm60BNVIHkUiGaNuUDSGeN0NWrV/PII48wduxYrrrqKh588EFefPHFsGmcp02bxtq1aykoKKCqqoqSkpJmqZ0Nw0hOmCbrQE20nkAuFaLJuAIQEQ+wEKhU1W+n81nprBHat29fxo4dC8Dll1/OH//4x4hpnEeMGMGkSZOYOHEiEydOTOq5htGaSVaYJuNATVSB5FIhmmwwAV0HrGyJB6VzaSYiTY47duzI0KFDWbJkCUuWLGHZsmXMmjULgJkzZ/Kzn/2MxYsXc9xxxwUycxqG0ZR0x8HHYuLoMubffDr3XDIKgBtmLIlpOp44uow7LxhOWUkRApSVFMWdu6elyKgCEJE+wDnAP1vieencVbd+/fpAyuannnqKE088MWwa58bGRjZs2MC4ceO466672LNnD/v377d0zIYRhmwQpok4ov2KY+20c5h/8+lZKfwh8yuAe4FfAo2RLhCRySKyUEQWbt++PamHpXM2MWjQIB588EGGDBnC7t27ueaaa8KmcW5oaODyyy9n+PDhjB49mmuvvZaSkhLOPfdcXnzxRXMCG0YImRamuRTVEy8Z8wGIyLeBbaq6SEROi3Sdqj4MPAxOOuhknpmuXXUDBgxg1apVzdpHjRrFO++806z9vffea9Z29NFH88knnyQ1DsMwUk+mo3oaG51Khaefnvq+M+kEHgucJyLfAgqBTiLypKpens6HWo1QwzBiEbyTN0+EhjB1U9yYjpPdEfzRR3DCCc73N96AM890fasrMmYCUtVbVLWPqg4ALgXmpFv4G4ZhxCLU5h9O+LsxHSezie3jj+Gyyw4L/7FjUy/8IfM+gJSQS1XNcg37bY22RjibP4BHJC5HdCK+g+pq+O1v4fjj4emn4eabYc8eCGM1TgkZ3wcAoKrzgHmJ3FtYWMjOnTvp1q1bs1BMIzlUlZ07d1JYWJjpoRitnExn3Qwmkm2/UZW1085Jup9w7Q0NcN558NprzvF3vwu/+IWjCNJJViiAZOjTpw8bN24k2QghIzyFhYX06dMn08MwWjHp3KGfiGJJ1U5et/0sWAAnnXT4ePbs9Dh8w5HzCsDr9TJw4MBMD8MwjARJ1w79RBVLIjt5wymaWP18+CH87ncwc6Zz7tRT4a23IL8FpXKr8AEYhpG7pCvMMtH4/Xg3n0Vy9gJh+xl/dBm33w4nnugI/1tvhX37nFDPlhT+0ApWAIZh5DbpSp6WbCI5t6uPaIomeONaQwOcfTZ8503nmksvhdtug6FDXT0mLdgKwDCMjJKuHfrpLqjux42ief99Z3b/pk/4//vfTpRPJoU/mAIwDCPDJJPvJ1p9j5ZKJBdN0Xz8MZx8shPHDzB+PNTXw1lnpXQICWMmIMMwMk4iO/RjOXnTXVDdTzhnb4G2o/dnYzj+Fuf4N7+BX/4S2rdP6aOTxhSAYRg5iZvooVSlfokWThqsaCp3HWT3cyexd20X1gCTJjkbu448MukhpAVTAIZh5CTJOHnj2R/gJpx04ugyVixqx223lAbuu/kvO7nzxm5xvVNLYwrAMIysw42ATjR66LbyZUxfsB5/kpNY+wNirTQWL4bzLqyj8stSJL+Bwv47KL1gIeW7PZxQkZ2FYPyYE9gwjKzCbRK1RJy85RWVTYS/n5q6Bn7+zNKwzuRIK4qNW+u45RYnXUPll146n7yaPtfOosdFC5G83KgZYCsAwzCyCrc7gxNx8t79xupmwt+PP+tn6IogdKWhDcLWp07i0KYuTAOuuALmtJ+Np9PBZn22VM2ARDEFYBhGVhGPbT/UyesPC42kENwK5GCFExzlc3B9V7Y+fThxz7/+BZdcAmOnCZVVzftJ9Z6DVGMmIMMwsopIQjNPJGoufTemo3gEcmVVDWOnzQHgJyNHU3n/eLY+fRLejoc4+cxqGhoc4Q+ZL16fKKYADMPIKsIJU3BMNKECPXgj2M+fWRoz90+kviOxfnM9//WzQ/z8sh7UV7fjt7+FPVsLePeNYvKCpKd/M1tJkTfQVujNfvFqJiDDMLIKv8nm588sbVaNq6augetnLOH6GUvoUuxl/8F66hqda8JV7oKmZp+Jo8tYuG5XWEdwMNogbPnfsdRu7QxAh+Eb+Nuf87nqzF5Rx36ovjHwfXd1XcrSWqcLUwCGYbQobkI8J44u44YZS6L2s7u6ztXzQs0+c1dtDyv8RUAVar7sxrYZJwbau59bQftjNnH3ux66ljoCPtz405XWOp2YAjAMIyzpqNIVT47+SHH+8RDODh+pz9od7dn0z9MA8HSupmjgdrqeuRx/ocGaugamvryCQ/WNYcefrrTW6ST7jVSGYbQ4yRQ0j0Y8OfrjtdeH4hHhwmObRwmFFo6t31/ArjlD2PToNwDoPHYNZT96m24TDgt/P1U1dRHH31LZR1NJxlYAIlIIvAMU+MbxnKrenqnxGIZxmHSZM9zMkoNXHiXFXg7WNUS110eiQZUnF6znhUUbKfB6qPKZjPx9aX0em58YS932TgB0/dpGik9ahafDobiftamqhnsuGRV3JbFMk8kVwCHgdFUdCYwCzhKRE2PcYxhGC5Auc0asWXLoymN3dR35HsGbFzpvd/B6hOIY0TbVdY3srq5DOSz8a9Z2Z/1fzg4I/27fruCRfwodutQn8lr0LilKKq11psjYCkBVFdjvO/T6PokoesMwUkyyVboi+Q9i1ckNt/Koa1C6FHspbpdPZVUNHhEaVCkrKWLc4FKeX+TeLFW387CdP7/kAO2HbKLzKWvo06WIiaNHA3DDM0uIEFAUluDxpyr7aEuRUSewiHiARcBXgAdV9cMw10wGJgP069evZQdoGG2URAqj+3Hj6I3kXI60wqiqrqPiN2c2abutfBlPLljv6n3qqorYt3Ag+yr6A9DpxM8oGfsfJL8x8L7+8d3xygpXEUYCaasx0FJkVAGoagMwSkRKgBdFZJiqLg+55mHgYYAxY8bYCsEwWoBkiqnE8h9EmyW7XXm4Ff6NdXlsfuwU6nd1AKDDqHWUnLwGT/vawDVdir1NxlPlQvh7RPjLxSNzVvD7yYowUFWtEpG5wFnA8ljXG4aRfhI1Z0TzH8QKLZ0yYRBTnltKXcPhuZ7XI4wbXNokx48bX0TN56Vsf3k0Wuvszu327Qo6DN3U5Joir4fbz21amNdN+Kl/VzJk7yYvN2TMCSwipb6ZPyJSBIwHVmVqPIZhpIZIfgIRuH7GkiahpdfPWMLo385qGl4ass5vaFBmfLyhyX1Rd/Hu6si6u85h23PH42lfS5dxn9LvlzObCf9ITlq34ae5kO45FplcAfQCHvf5AfKAZ1T11QyOxzCMFBDOfwDQGEFq766uY8qzSyPa3huBxobY1t+6Xe3Z++GR7F/WB4COX/uSLqd/iniUgvy8QJqGkiIvU88bGnHmHs78FWlFkM2bvNyQySigT4DRmXq+YRipJdi807nIS57AgdqG2DcCdY3qOrVDKI11eWx65FQa9hQD0GH0l46dv/hwf8E5eqpqYufoCTV/jZ02J6moqGzFdgIbhpE0ofH7VTV1VLsU/omiCtWf9WDTw6cFhH/38xbT7cwVTYR/OOI13+RquudYZIUT2DCM3CZc5E+qQva8eQJCE8dw7fYObH70VADyu+6n61mf0GHEhmapG6IRj/kmmaiobMYUgGEYSZMuW3iZT9AC/OqFT9izuZiq946mek1PANoP20C3s5YhnvjVTe+SorgS3uXaJi83xFQAIvJdVX02VpthGK2baMIyFZk7gynyeppE6Mx4fxNr7h1Hw/5CADoeu5bOY/+Dpygxv0GR18O4waWuM5O2Vtz4AG5x2WYYRiukvKKSIb/+d7MQzuDsoFMmDIqYrycSocLHf3dweKYqvPQS/ODcLgHhXzpxEV3P+NS18PeIMPaors1y9Mxdtd11ZtLWSsQVgIicDXwLKBOR+4JOdQISy5hkGEZaSXUO//KKSqY8uzRQdSsYf3Wuu99YzbjBpTTLsxyDxpBjxRHO828+HYBPPoGRI51z3m71dD9vMe2HbI77HRpUWbx+T7OY/0gFZ3I9tDMeopmANgELgfNw8vX42QfckM5BGYYRP/EUWwm+J5rCuPuN1WGFfzCVVTWuc/LEorKqhuXL4frrYe5cp+2734UNIxeyeV91wv2GS2WdbMK71kBEE5CqLlXVx4HhwJOq+rjv+CWcVM6GYWQRd7yyIqxJ4+fPLGXgzTMZO21Os4LqsYq+tORsWOvz2HD/GQwfDrNnw7XXwq5d8MwzcNO3jk6qOAw0f5fWGtoZD258ALOAYJVYBLyVnuEYhpEI5RWVETdSNaiGFfBuqnO1xGxYFarXHMGmR75BY3UB4Nj977kHunRxrgnOtZ8ooe+Si/n7U42bMNBCVfXn7UdV94tIcRrHZBhGFMKZbdw6LoNNIW6KvkyZMIjrYxRnT4barZ3Y/NgpAHi776X0wo95+Nbe3PXGaq57v6lZyv+JtCs3GpFm9q0xtDMe3CiAAyLyNVVdDCAixwJtx0tiGFlEJDt/6Ew+GpVVNRx1y2sRN2q1xKy/dmsndv57BLVbOyH5DRQduY3u51fQoTCPW17YGdWPES7XkNcjtG+Xz56aOnr7CsXMXbW9VW3aSgduFMD1wLMisgnHz98TuCStozIMIyyRzDb+KlluiXStf6bsX2WkMrYfHDv/xodOp7HGMfV0PO4LSr7+H/IK6/F6BK8nj6qapqYsvx8Dms7YW9uu3EwQUwGo6sciMhjwr59Wq2piuy8Mw0iKSGabBlWKvJ64VgKheES48FhHiMa7qoiFKlSv7snueUMCwr/HRR9RdNT2wLPvvmhkxNDM0Pz7bd10kyrc7AQuBm4E+qvqj0XkqyIyyFI3G0bLEyl0UYALjy1j7qrtCc/aG1R5flElMz/ZnFLhf2hLJ7Y87rPzl+6l28UfUjRwR+B88K7faKuOYAe1zf5Tg2iMZaOIzMDZB3CFqg7zKYT3VXVUSwwwmDFjxujChQtb+rGGkTWUV1Ryw4wlYe33/k1UoX4CcBRES9dTPbSlE9ufH0PD/kLyimop7L+T7udWIEGxhx4RTjyyCwu+2E2DKuLkfYtYOwBottIJTRthNEdEFqnqmNB2N2GgR6nqn4A6AFWtJu49f4ZhpIKJo8siCnK/eWji6DIuPLYMjy81pkeEr/Ro30IjdPLzb7j/DLY8fgoN+4voOGYtZf9nHqXnNxX+4Kw65n++K+CTUHWEfyQB4xFp8+kbUokbJ3Ctr2SjAojIUdhGMMPIGGUxdrCWV1Qy46MNAaHaoMp/th1I+7hUoXplb3a/PSgQz98jxNwTD+Fm+pFMU20pfUMqcbMCuB14HegrItOB2cAv0zoqwzAiEmsH69SXV8RM35BqDm3qzPo/n82OV0bjKarjiO99QP+bZkYV/tHMCAphN2lF2gjWltI3pJJoyeDGqup84B3gAuBEnL/ZdaqamEo3DCNpIoVBglO6MDSMMp0c2lTClidPAs0jr/1Bio/aRtcJy5qZesIRTUV5RCJG+oT6N9pa+oZUEs0EdB9wLPCBqn4NmJnKB4tIX+AJ4AicfwsPq+rfUvkMw8hm3GTuDK2zKwJV1XXNrg/n+E0njXV5TinG/c7Mu8OodXQ5bSV5Bal5/vdO6Bu23fYApJaIUUAisgD4BJgI/Cv0vKpem9SDRXoBvVR1sYh0xIk0mqiqn0a6x6KAjNbCbeXLmL5gfZNZcGg0Syyh7o/s6VLspaqmjjj2gSWMNsKB5X2oeu9oGvY5wv+ISxdQ2H9nSvr3iPC9E/ry+4nDU9Kf4RApCijaCuDbwBnABJqmg04JqroZ2Oz7vk9EVgJlQEQFYBitgfKKymbCH5rm6SmvqOTnzyyNurvXfyZSErhUc6iyhG0vHkvjgULaHbGH7udWUNh3d8r6Dw5jHTttjs3wW4BoCmCKqt4kIv18aaDThogMAEYDH4Y5NxmYDNCvX790DsMwYpKKgit3v7E6ov27sqqG0b+d1WJC3Q0HN3Zh6/SvA+DpcIVjRGMAACAASURBVJCOY76gy+kr4yrAHky4Iu/BKSjaepnGliSaCWgZMAJY5PMBpGcAIh2At4E/qOoL0a41E5CRScKZZEKTkLlRCANvntnim7ISobHWw+b/dwr1Vc4egvZDN9L1zOXktUvczl9S5GXqeUOB8Hb8SJk+gyuFGfGTiAnodWA30EFE9gb3BaiqdkrBoLzA88D0WMLfMDJNuERsdQ0aiLpxO1tNdQH1VKONsH9Jf/Z88JVAHd4jLns/LnNPmYuMnOF+Izcpqo3UEVEBqOoUYIqIvKSq56f6wSIiwCPASlX9a6r7N4xU40YIhSs9GEq4dMbZwsGNXdj52gjqd3egXa/ddD9/MYV94rfzJzpbtzKNLUu0fQCDVXWVqp4vIgWqeijo3ImquiDJZ48Fvg8sExF/CsBfqeprSfZrGGnB7cw9lqLwK4d0FlqJl4Pru7L16ZMA8HSoofPX19D55P8kbOePRjQ/SjjlaHH+6SPado2ngr5/EHLuoWQfrKrvqaqo6ghVHeX7mPA3spZwO3DD4Wa2OnF0WVLlDYMpKymiyOtmU39zGg952PTINwLCv+grW+n947cpOSVx4V9S5I14LlYdYivT2LJE8wFIhO/hjg2j1RO6Camk2Mv+g/VN0i64ma0GF1sJzdLpzZO40zgcOFRPXpzSWhuFvR8NZN/CgTQccOz8PS+fT0FZVVz9hJIHASdvOKLVIfb/vpbrv+WIpgA0wvdwx4bRJggVTvGGhYZGEimHN3SVBdX3jcdJHG/qh4MburLrzaHUbe9Eu167Kb1gEQW9kxP8fjye6IrInLzZRTQF0EdE7sP59+n/ju/Y1LNhEP9sNdwM2C/8gx2nkXL+J0PNl93YNuNEADwda+gy7lM6Hrc2YVOPCM12H9c1aFQnuDl5s4uoG8GCvocG31swvmEkQLQZcPBqIpXCv/FQPltnHE/t5i4AFPTbSY+LPiLP25hwn2UlRQnN5s3Jm11ECwNN6+5fw2iLRIskSnVUkDYKVe8dzf6lfQP5+Xt+/z0Keu9Juu/KqpqYdQnCYcncsgs3BWEMw0gB5RWVVNfWhz2XanPPwfVd2TX7GOq2daZdzyq6XvQxBb2SF/zBjBtcyoyPNjRxWnvzJOZsPlQJ+Kt5mRJoeWLWBM4mLBWEkatEyuyZ6lq9+yr6sWuWk0nT06mazid9RoeRG1zb+fMkej3eYLx5QiPQEHSDJ0/oWBA9NUa438Lq+qaXhGsCi8hYN22GYUQmnPMXUif86/cWsu6ucwLCv12v3fT+0dt0HJUe4Q9Q16hNhD84yqCqpi5sjL+faKGgRsvixgR0PxCaDC5cm2EYYbitfFnacv9ofR7r75kAjYfncqUXfUzxUdvi7qtRndoCqcxEGi41hoWCZg/RUkGcBHwdKBWRG4NOdQJib4c0DIPbypfx5IL1aek7OKwToOuET+g4akPC/XlE0lJUJlSwWyho9hBtBdAO6OC7pmNQ+17gonQOyjBynfKKSqa+vCIt9Xn3fjyQ3XOOCRwXfXULpd9ZlHTengZV9kQZb5HX08R049ZkFCrYLRQ0e4gWBvo28LaIPKaq61pwTIaR05RXVHLjjCUkHmUfnrqqIjb94/BmMW/pXnpdMR/JT92TSiKYgIJ3KfvrE+85GFu5hRPsFgqaPbjxARSIyMPAgODrVdWqMxhtgtB0D7Hy3N/ywicpFf5an8f6v5zdpK3HxR9SNHBHCp/isP9gPV6PhK3W5d/17I/iiWYuEogq2C3fT3YQMwxURJYCf8epCxxYs6lqyusEx8LCQI2WIFjgh0v4Fo4uxV5uP9dJgpbKDV01a7uz7ZkTAsfdvrWEDsMro9wRnSKvh0JvXlRHb0mRl/YF+REVXKSqXX6self2kUhFMD/1qvo/aRiTYWQdoTHqbiNidlfXpVTw7/nwSKrmDQFAvPUUH72FbucsTcjO7xGhUTUgzIGoBWn21NSx5PYzI/YXLVrHbPm5hRsF8IqI/BR4EQgUhVHVXWkblWFkiEjx+i1F3e5iNj08LnDs7baPXle+l5Sdv1GVtdPOadb+82eW0hDGAhArGidSFI9HxDZz5RhuFMAPfP8NTg6nwJGpH45hpI54UzVD5mLRG+vy2PDXpnb+Iy5dQGH/nUn3HU6g+3+HRKJxIkXxmPDPPWIqAFUd2BIDMYxUEmrKydaC7apQ80UPtj93XKCt+7kVtD9mU9x9hQvLjCbQE43GsSie1oMbJ3AxcCPQT1Uni8hXgUGq+mpLDDAYcwIbbonkqIzloAyXp8brEdq3O5zfZtzgUl5dujnpGP+q+V9hz3uOcPZ0rKHoqG10PXN5QnZ+/3slsuoxWj/JOIH/H04E0Nd9x5XAs0DSCkBEHgW+DWxT1WHJ9mcYfiKZcip9effDJSgLjvwpyM9rIvDnrtpOVU0dW/Yc5MkF6+lSHLnubSzqdrZn0z9PCxznd91P76veQTyJbcMVCMzyLbzSiAc3CuAoVb1ERL4HoKrVIsnuOQzwGPAA8ESK+jMMILopJ9QUFC7yp8jr4Z5LRgEw5bmlgbh4v9M0kXw5jbUeNtxzVpO2Iya9T2Gf3a77CM0eKsCkE/uZ0DcSwo0CqBWRInz/7kTkKIKigZJBVd8RkQGp6MtoHaTKhBHOUeknNEFZtOyU1bX1TTZFJYIq1KzpyfbyYwNt3c9fRPvBW+Luq3OMGH3DiAc3CuB24HWgr4hMB8YCV6ZzUMGIyGRgMkC/fv1a6rFGBkjUcRuOiaPLWLhuV8REbMEmokgrhVQ4g3e/czR7P/gq4Jh6ir+6lZJTVyWctyc4Rt+vLG+YsSRq7n3zCRiRcBMF9KaILAZOxFlxXqeqqd+DHvn5DwMPg+MEbqnnGi1PtJl4vEKrvKKS5xdF3jHrD40sr6hMeVEWgNodHdj8yKmB4/ySA0nZ+f30LimivKKSO15Z0cQMFU5ZplKhGq0TtyUhy3BSQOcD3xARVPWF9A3LaIukMk98rA1dBw7VB2bHqS3A7mHDvU3t/D2/P5+C3lVJ913k9TBucGlKTFumAAxwoQB8kTojgBUQyHGlgCkAI6Ukmyc+2NwRS6hX1dRFTYcQL6pwYEUZO2eOCrSVfmchxUdvTUn/AHdeMDymYgtWllZ4xYiFmxXAiap6TOzL4kdEngZOA7qLyEbgdlV9JB3PMrKfZPLER6q5G41UCf/dc4aw92NnY7y32z7aD6uk84mfp6RvP2UlRUwcXcYNMfINBStLK7xixMKNAvhARI5R1U9T/XBV/V6q+zRyl2R2mGYih0/t9o5sfvQbgWNPxxp6/fDdpO38oQQrwWjhraHK0gqvGLFwowCewFECW3DCPwVQVR2R1pEZbZJENzK1pFmj8VA+G+6d0KSt5w/epaDn3qT7LvJ6uPDYsoj1BiKFtwpw4bFNfztL2WDEwo0CeAT4PrAMUl7kyDBSQkvk8FGF/Uv6sWvW4U3rpRd+TPFX4ivA7hGhQZUyF8VlQvGfC40CUuD5RZWM6d+1mRIwgW9Ewo0C2K6qL6d9JIaRBOMGl6at+DrArreOYd8iJy9iftf9dDpuLR1Hxfc8r0e4+6KRSQvkiaPLuPuN1c12I1uEjxEvbhRAhYg8BbxC03oAFgVkZA1zV21PS7+1Wzux+bFTAsd5xYfo/cN3E8rPX9egKRPQFuFjpAI3CqAIR/AHlwiyMFCjRQi3kxVokrhNlaQzc4bSeDCfDX9raufv9cN3aNdjX5M2/4ZeCZOKORypEtAW4WOkAjcK4J+qOj+4QUTGpmk8hhEg3E7WKc8tBSVQozeRpGzRUIW9Hx7J3g+PCrT1uOgjio4Kv8IIJIx7dimNMVKrQ2wB7TZ1g0X4GKnAjQK4H/iaizbDSCnhQjuTTcwWjZ2vD2f/UifflKdTNd3HL6f9MZuj3jNxdBljp82JWTQeDu/kHTttTlgBH0/qBovwMVJBRAUgIifh1AAoFZEbg051wkkLYRhppaXs2Yc2d2bLEycHjqVdHWWT57mO5482zrKSooCAHje4lOcXVUYU8PGmbrAIHyNZoq0A2gEdfNd0DGrfC1yUzkEZBqQ/tDNcPH+v/3qbdt33u7q/yJsHRB6nv1CLX0iPnTYnqoA3x67R0kRUAKr6NvC2iDymqutacExGGya0Mpc3T1yZV+JBFareGcSB5X0CbT0uWUDRgPgKsNfUNTLqjll8e2Qvpi9Y3yz/kEKT2XssAW+OXaOlceMDqBaRu4GhQKG/UVUjF1Y1jAQIV5nL65GUpmve8doIDizrC4AU1LnayNWl2EttfSMHapunmqiqqeP5RZURxxcs9GMJeHPsGi1NnotrpgOrgIHAHcCXwMdpHJPRRonk9E2F8D9UWcK6u84JCH/yGul7zZthhb8/tLOspIh7LxlFxW/OpDqM8PdTU9eAJ0KFl+DZ+5QJgyjyNnWfBQv4iaPLuPOC4ZSVFCG+5995wXCz8xtpw80KoJuqPiIi1wWZhUwBGCnDb/ZJh70/XH7+3j+ei7drdbNrBSJG08TyRzSoUuT1RJ29u4ncMceu0ZK4UQD+QOvNInIOsAnomr4hGW2FcJWtwtG+nSes+SUa2gi73hhOzRelgbYjvvcBhf12hb3eI8JfLo6cpiFajWFwZutTJgyKGZZpAt7IJtwogN+LSGfg5zjx/52AG9I6KqPVE0/+/niF/46ZI+N28DaoRi2X6K8xPP3D9YTu9/LP9OMR7lar18gG3NQEftX3dQ8wLr3DMVobkQRdOvL3H9zYha3Tvx7UovSb8m8kz50XIVrMvb/GcKjw71Ls5fZzh8YlvK1Wr5EtuCkJeTTwP8ARqjpMREYA56nq79M+OiOniSToFq7blVJ7f2Othw33NLXzl/1kNvmdDsbdV6RQzUgKq7hdftxC22r1GtmCGxPQ/wWmAP8AUNVPfNlBTQEYUYkk6KanKG2zNgrby79G7aaSQFs0O78bIsXcp3KTlm34MrIFNwqgWFU/kqZhbvVpGo/Riogk0FIR1rlj5ggOLO8bOD5i0vt0O3Jv3P6CYKLF3Kdyk5Zt+DKyBTf7AHaIyFH4/r8VkYuA6BmyXCIiZ4nIahH5TERuTkWfRmYor6hk7LQ5DLx5JmOnzaG8ojItAu3g+q5OPH+Q8O83ZSaFfXbHJfz90xl//H6smPtYMfzxkMq+DCMZ3KwAfgY8DAwWkUpgLTAp2QeLiAd4EBgPbAQ+FpGX01F83kgv5RWVTHluaSBTpz9t8yXH9W2S/AxIeFevE88/gcOiG/r895t42tfG3VdJkZep58XnuE1l9k3L5GlkC6JRcpj7hPRdqvoLEWkP5Knqvog3xPNgJ9voVFWd4Du+BUBV74x0z5gxY3ThwoWpeLyRQkb/dlbYWH5/hIx/k5e/Fm48aH0eW585ntqtndBaLxB/3h6/0ikzQWu0UURkkaqOCW2Plg46X1XrReRkAFU9kOIxlQEbgo43AieEGcdkYDJAv379UjwEIxVE2si1u7qO62csIc83aY9X+Afn7QHo+f35FPSucnVvl2IvVdV1Nrs2jChEMwF9hFP0pUJEXgaeBQJKoKVqAqvqwzgmKMaMGZO+aiBG2og3mWfNF93Z9mzTuUC/X84kQrqdsBS3y6fiN2fGvtAw2jBufACFwE7gdJyVtH9FnawCqAT6Bh338bUZOUZJkTclNXkbD+Wz4f4zoMHnIPU00Odns/EUxd+3hVQaRmyiKYAevkpgyzks+P2kYib+MfBVERmII/gvBS5LQb9GCzP1vKFMeXZpwnn7tT6PLU9+ndqtnQNtPS7+kKKBOxIek4VUGkZsoikAD05FsHAL76QVgM+/8N/AG75nPaqqK5Lt10gN8eSq8bdPfXlF3CuBna8PY//S/oHjnle8R0GvPYkPHAupNAy3RFMAm1X1t+l8uKq+BryWzmcY8ZNIrhp/fh+3CqB6zRFsfzEoKEGUflNec2Xn9+YJHQrzA07ecYNLmbtqu4VUGkacRFMAcbjcjNZEorlq3NjdGw/ls/Gh0wMhndKunrKfzMZT6G5zeft2Hr7ztTLmrtrO7uo6tuw5yJML1lNWUsQ9l4wywW8YcRBNAXyzxUZhZBWxctUEm4c6F3mpawhfLjGYxro8Nj/6Deqr2gfaErHzV9c1NNlc5g8ttYyahhE/0YrCJ55Ry8hpouWqCTUPuTH57HpzKPsWDwgc9/zBuxT03JvQ2FSJmEbaMmoaRny4CQM1WgluHbvRipPHk8d///Iyds4cFTiW/Ab63vh6XPH88RLLDGWFWAzjMG6SwRmtAP/MvbKqBuWwyaS8ovnWC39x8i7F3qBW5Y5XVrjK499wMJ+ND3wzIPzzimq56N6PaKzz8LdLR1GWxhDNaOGfbn+DcIntDKM1YiuAHCHZmatbx25wgXZpcm0jNXWNUZ/RWOuh8h/jaKwuCLT1uvRDrrqkmDH9yxg7bU5g/Oli3ODSiOfc/AZWrctoS5gCyAFSIZTcFCEpr6hssqErns0eu946hn2LBgaOe135LkcMrKG4XT5PLtjBk0FFYFJZDSyUuau2Rzzn5je445UVVq3LaDOYAsgBUlFCsHOEdA2diw6beX71widx7+bdu2gAu98aGjiWgjr6XjcLEdhdHTlRXLqI5gOIVYilvKIy4ngttYTRGjEFkAOkooRgJMfr3oN1DLx5JiXFXqpjmHiCaajxsuV/x1K/2wnr9LQ/SO8fzyOvILWF3uMlmnkpmnMbHEWbSL+GkauYAsgBUlFCsCrCzNY/4Xc7U288lO8rzHKYIy77gMK+8UcN54kT1hluzVFS5OVQfaPriCOInQIiViGWaArVUksYrRFTADlArJmrGyIpkXgIjefvddU7tCtNvD5Qo4LXI6A0MT0VeT1MPc8xKwUL69CUD4mkgJg4uiziNZF+o5Iir9n/jVaJKYAcIBUlBMMpEbfsWXAkVW8PCRx7Ohyk7KezUxLPX9egdCn2UtwuP+y7taTgjaRo/crIMFobpgByhGgz12AihYuGKpE8F+UZG6q9bHv2eGq3lADg6VRN7/96h7x2zZVIMjUBqqrrsqJ4i9XqNdoapgBaEbHCRYMVwW3ly5i+YH1Y+3vjwXw2/M1v53euiJa+oemGsfjJJgerW0VrGK0B2wnciogWLhpMeUUlzy+qbCb8VWHn68ODhD/0uupd+t80M6Lw93qE288dGtHJDM7qoMjrCXvOcvcbRuawFUArwm24aDhFUTX/K+x577Agbte1mp4/mhvRzi8QcMTe/cbqiJvGBJo4dCuravD4zE9lZmIxjIxiCqAV4TZcNFghNFS3Y8fLozm4rjsAhd2qeezlKi75em/GTgvfn19w3/HKiiY7fEMRYNKJ/TLi0DUMIzamAFoRbsNFe5cUsX5zPRvv8zlepRHx1jPyZwupuOdEoDhqf+MGl8aMKMql2b1lCDXaKqYAsoBUCSA3USyqUPD+CWx85XBhlp5XzKek7wFuv2C4q/5ipYQWYP7Np8c9/kxgyd+MtoxojFDAtDxU5LvAVGAIcLyqLnRz35gxY3ThQleX5gyhAgicWfadFwxPmQC6rXwZT3+4gZ3zj2LPu4dXA0U99nPED9+OW+kMvHlm1ERxZSVFOaMAxk6bE9HMlSvvYBixEJFFqjomtD1TK4DlwAXAPzL0/KwhFYneonFb+TIen72FnbO+Rs2angB4u+/jxgfXMe3iYcA5cfcZbVdxrkX1pCLPkmHkKhkJA1XVlaoaOfNWGyKdAmj7dvjDd4az8YHx1Kw5gvySA/SePJfe//UOz1SsS7jfKRMGhQ3rLCnypnTl0hJE2oOQTXsTDCNdZL0PQEQmA5MB+vXrl+HRpJ5UJHoLRRUmTYKnnz7c1vPy9ykoqwocN6pjfkqXrwFyw7maijxLhpGrpM0HICJvAT3DnLpVVV/yXTMP+IX5ABLzAQRX7/LH1mvFYNbPOipwTbuee+j1g/fC3p9OO3dL+DZSRS4oKsNIhhb3AajqGenquzWRaP6ZUAF7aE8Bu+cNpnqlc9+Rg2v5dEk7fvfv9Ty5IHwf6bRzp9u3kUos/YPRVsl6E1BbIBEB5Bew9fsLqHzwsK4t6L2b7udV0LM/FBSczpj+XSNu1kqnnducq4aR/WREAYjId4D7gVJgpogsUdUJMW4zOGyu2Li7hh3lX6N6Ta/AuSMue5/CvrsB2FR1eJUQjnTbudPh2zAMI7VkRAGo6ovAi5l4di7jF+hb3utP1bzD+fkL+u6k52VN7Ty9S4oibtjyiKTdFm/OVcPIfswElEP84dm1bHh5GAdW9AGgXa/d9Jz0AeJp6sj3C9obZiwJ20+jatpt3pZb3zCyH1MAOcDOnTBwIOzbdzJ4Gig6aitdz1xOfqeDza4NzsHjjxAKpaXMMOZcNYzsxhRAFqMK//oXXHbZ4bbeP3obb0lzoS7A2mlNd/WaGcYwjGiYAshS7r8frr3W+T56NFx+OTyxb1bEsovhZvVmhjEMIxqmANJMvJuMNmyAW26B6dOd45/ctpslRRXcv60magK2SLN6M8MYhhEJUwBpJJ5Uw9u3Q48ezveCAvj+9+G0yzdz97tLqdkbOfUyODl4TMgbhhEvVhM4jbip0dvYCE8+eVj4A6xaBU88AY8sXhk17z44Nn1/yUXDMIx4sBVAArg168TaDXvPPXDjjU7bmDHws5/BlVfGvh8O1+Q1m75hGIliCiBO4jHrRNoN240SLrvscLbOBx6An/wE8kLWY5Huz4ViJZZgzTCyHzMBxYkbs46f0Lz5DQfase6uc1h011hefBH++79hyxZn5v/y0krGTpvDwJtnMnbaHMorKsPm3c+FME6/kqyschzXfiVZXlGZ6aEZhhGEKYA4iSfJ2cTRZdx5wXB6dyriwLIyNj4wPnBu9Won1POIIyILTIA7LxhOWUkRgjPzd5smOlSZtCTxKEnDMDKHmYDiJN4kZ2veLOODWx2BffzxcNNNcMEFTa+JJjDn33x6XKaTbChybplADSM3sBVAnLg1y6xdCxdf7Ah8gD/9CT74oLnwh9QKzGyYfVuZRcPIDUwBxCDUnALRzTJbt4IIHHkkvPoq3HwzbNsGU6Y0d/L6SaXAzIbZd676LgyjrWEmoChEMqfcecHwZlE4DQ3w+ONw3XWH29asgT59Yj8nlTl7siEPv6WgMIzcwBRAFNyWNbzzTvjVr5zvJ50Ed9wB48fjmlQKzGxJAGcpKAwj+zEFEIVY5pQvvnBMOy+84LTffrvzEYn/WakSmDb7NgzDLaYAohDJnNI9v1NAyLdvD7/7Hfz0p9C1awsPMAI2+zYMww2Zqgl8N3AuUAt8DvxQVasyMZZohJpTtBFqV/RnzfuHyzGuWQO9e2dqhIZhGImTqSigN4FhqjoCWAPckqFxRMW/kauspIg9C45i/d3nsOW1YYwY5uG995yCLSb8DcPIVTJVFH5W0OEC4KJMjMMNQzuUUbqgjKq3neObbnKcvonY+Q3DMLKJbPABXAXMSFfniSYl27ULunVzvnfoAH/8I1xzjfPdMAyjNZA2BSAibwE9w5y6VVVf8l1zK1APTI/Sz2RgMkC/fv3iGkMiaRHq6+Gf/4Rf//pw2+rVZuoxDKP1kTYfgKqeoarDwnz8wv9K4NvAJFWNWO1QVR9W1TGqOqa0tDSuMcSbFuHuu8HrdVIzH3MMfPyxY+f/aGtmk6sZhmGkg0xFAZ0F/BI4VVWr0/WcWHH8fvPQl5/nUTN/KLtXOgrmhhvgL39x7PzZkFzNMAwjHWTKB/AAUAC8KY43dYGqXp3qh0RLi1BeUckvp6/kP385AwBpV0fp6at54A8duPjEw4Ld7W5gwzCMXCMjYaCq+hVV7auqo3yflAt/iJyU7Ppxg7hx6n4+f+gbgfbe//UOxcd9xt/mNTUPZUNyNcMwjHSQDVFAaSNcWoTBO77GxSeWAFDQbwddv/kp7XrsC9wTKtizIbmaYRhGOmjVCgAOp0X45BO45RZ49DWnvdfXN+A9+ZNm8fyhgj1bkqsZhmGkmjZRD+B//xdGjoS334Y//xkOHoSHHsijuF3snPXBu4HjKctoGIaR7bT6FQDAoEFw7LHw7LMwcKDTFk/WTEuuZhhGa0SihOBnHWPGjNGFCxdmehiGYRg5hYgsUtUxoe1twgRkGIZhNMcUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhslpzaCich2YF0GHt0d2JGB56YSe4fsINffIdfHD23zHfqrarOKWjmlADKFiCwMt4sul7B3yA5y/R1yffxg7xCMmYAMwzDaKKYADMMw2iimANzxcKYHkALsHbKDXH+HXB8/2DsEMB+AYRhGG8VWAIZhGG0UUwCGYRhtFFMALhGR34nIJyKyRERmiUjvTI8pHkTkbhFZ5XuHF0WkJNNjihcR+a6IrBCRRhHJqTA+ETlLRFaLyGcicnOmxxMvIvKoiGwTkeWZHkuiiEhfEZkrIp/6/h1dl+kxxYuIFIrIRyKy1PcOdyTVn/kA3CEinVR1r+/7tcAxqnp1hoflGhE5E5ijqvUicheAqt6U4WHFhYgMARqBfwC/UNWcKA8nIh5gDTAe2Ah8DHxPVT/N6MDiQES+AewHnlDVYZkeTyKISC+gl6ouFpGOwCJgYo79HQRor6r7RcQLvAdcp6oLEunPVgAu8Qt/H+2BnNKcqjpLVet9hwuAPpkcTyKo6kpVXZ3pcSTA8cBnqvqFqtYC/wLOz/CY4kJV3wF2ZXocyaCqm1V1se/7PmAlkFPFvtVhv+/Q6/skLItMAcSBiPxBRDYAk4DfZHo8SXAV8O9MD6INUQZsCDreSI4JntaGiAwARgMfZnYk8SMiHhFZAmwD3lTVhN/BFEAQIvKWiCwP8zkfQFVvVdW+wHTgvzM72ubEGr/vmluBepx3yDrcvINhJIOIdACeB64PWdnnBKraoKqjcFbxx4tIwia5/NQNBVfCzwAAAgRJREFUK/dR1TNcXjodeA24PY3DiZtY4xeRK4FvA9/ULHX+xPE3yCUqgb5Bx318bUYL47ObPw9MV9UXMj2eZFDVKhGZC5wFJOSctxWAS0Tkq0GH5wOrMjWWRBCRs4BfAuepanWmx9PG+Bj4qogMFJF2wKXAyxkeU5vD50B9BFipqn/N9HgSQURK/RF8IlKEE1iQsCyyKCCXiMjzwCCcKJR1wNWqmjOzOBH5DCgAdvqaFuRSFBOAiHwHuB8oBaqAJao6IbOjcoeIfAu4F/AAj6rqHzI8pLgQkaeB03DSEG8FblfVRzI6qDgRkZOBd4FlOP8fA/xKVV/L3KjiQ0RGAI/j/DvKA55R1d8m3J8pAMMwjLaJmYAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADCMJROQ4X42FQhFp78vRnpPpko22h20EM4wkEZHfA4VAEbBRVe/M8JAMwxWmAAwjSXz5fT4GDgJfV9WGDA/JMFxhJiDDSJ5uQAegI85KwDByAlsBGEaSiMjLOFW+BuKUHMy6WhGGEQ6rB2AYSSAiVwB1qvqUr/bv+yJyuqrOyfTYDCMWtgIwDMNoo5gPwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo43y/wEIBoSo5RCemAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AWpMuY_49cGg" + }, + "source": [ + "# 4. Interpretation" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PkjmyQgj9cGg" + }, + "source": [ + "y, T, X, W = gen_data(2000, discrete=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S53DNzMd9cGg" + }, + "source": [ + "#### Fit any CATE model" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XoHzf8Lo9cGg", + "outputId": "e5b36880-2294-4fbb-d4f7-b4e2535f1d9b" + }, + "source": [ + "from econml.dml import NonParamDML\n", + "\n", + "est = NonParamDML(model_y=RandomForestRegressor(min_samples_leaf=10), # Any ML model for E[Y|X,W]\n", + " model_t=RandomForestClassifier(min_samples_leaf=10), # Any ML model for E[T|X,W]\n", + " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", + " discrete_treatment=True, # categorical or continuous treatment\n", + " cv=5, # number of crossfit folds\n", + " mc_iters=1) # repetitions of cross-fitting for stability\n", + "\n", + "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 61 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2N5UElbB9cGh" + }, + "source": [ + "#### Interpret its behavior with a single Tree" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YnMz_1Hr9cGh", + "outputId": "cbca0155-0c49-424b-9366-c0496df4e3b5" + }, + "source": [ + "from econml.cate_interpreter import SingleTreeCateInterpreter\n", + "\n", + "intrp = SingleTreeCateInterpreter(max_depth=1)\n", + "intrp.interpret(est, X)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 62 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JVQosW2K9cGh" + }, + "source": [ + "intrp.export_graphviz(out_file='cate_tree.dot')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "Rvq9jg649cGh", + "outputId": "b43e7d52-09d1-45cd-b21f-08d2f51cfa55" + }, + "source": [ + "intrp.plot()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1RURxvA4d8ufelVelFsqGBBxYbGrlFJ1MRu1MRYYotJTKxRY43GRGOJ+tl7772h2LtiwQpSRIogSF/Y/f5AV1eqbRGd5xzOkXvn3p3B5WV27sw7EqVSiSAIgqAZ0qKugCAIwqdEBF1BEAQNEkFXEARBg7SLugLC25FIJDLABdAr6roI710mEKFUKuOLuiLCm5OIB2nFk0QicTE0NpybkZ7RyNjMJENXT1f8R37kMuWZJMQ90dPT17uSlJg0RKlUnirqOgmvTwTdYkgikdjpGehfatujvVXrrl9omZiZFHWVBA1JS03jxP4A5o6flZKelt5QqVSeKeo6Ca9HDC8UQ9o6Ov3qt2xg3mVAd62irougWfoG+jTya4I8Qy5bOuN/k4GGRV0n4fWIB2nFkJ6+bpdGfk11i7oeQtGp17w+aalpdSQSiUFR10V4PSLoFkPyDLmNg6tDUVdDKEKGxoYYyAzkgHVR10V4PSLoFkNKpVJLW1uMDH3qpFpaSsQQYbEj/sM+Eb92H0pGupy/1sxEKn3xt3bT4vWs/HcZs7cuwMHFgb9HTOPQtgMAdOrflS4/dFeVvXr2CoumzSf07gNKOJSgU79u1P/8M9X5o7uPMO2XyQB4VKnAnyv/1lDrCu/pk0TmT57LmSOn0dLSwrdFfXr98j36Bvp5XiPPkLN85hJuXr7BvRt3MDE3Zdnh1WplsrKy2Lx4A2f9TxN6PxQtLS3KeZWn50/f4VTSWVXuduAtdq3ZzrULgTyJjcfGvgTN2regddcv0NISQ/SfAtHT/UT0HTmAezfvsH/jHtWx2KhY1s5bRdse7XFweTFc4VqmJNNXz6RZuxaqY+HBYYzrNwrX0m6M+28iPo3q8NdvU7ly+pKqTJXa1Zi+eibevjU006g3MHnoBG4H3uKnKcPoP2Ygpw6dZO74Wflek56WzoHN+zA0NsTdo3SuZTLSMti0eANlvcoz7M/hDJnwEylJyfza/SfiY+JU5Y7vO0pUxCM6fN+J3+dNoJFfE1bMWsrq2cvfaTuFD5fo6X4i3MqW5PNObVg+cwl1mtbD2MyERdPmY2xmwtd9OquVlRkaUM6rvNqxzUs2Yutkx+AJPyGVSvGsWZnQuw9YN381Xj5VADAxM8HEzARTc1NSnia/VX0z5ZnEx8ZhbWfzVvd52Y2L17l65jIz1v5LmUplAdDW1mbyj3/QZUB3SjjY5nqdkYkRa05uRCKRsGrOcvZv2pujjK6+Lv/buxQjU2PVsYrVPenZuCuHth+k/bdfA9Du2w6YmpuqynjW8EIul7Np0Xq6DuqBRCJ5Z+0VPkyip/sJ6TrgG6RaUpb9s5grpy8RsOcovX/ri55+wYvZLp44R+0mddWGJuo28+X6xWukpaa9szpGhISzePpCejTqzP7NOYPb27hw/Bw29iVUARegRgMfdHR1uHTiQr7XFhQMtbS01AIugMxQhq2jLVERj1THXg64z5UsV4q01DSePH5SmGYIxZzo6X5CDI0N6Tn0O2aOnsGFgHN4+9agVqM6BV6XlpJK7KNYHN2c1I47ujmRlZnFo7BIXMu4vXG9MtIzOLH/GPs27eXauavYOdnTussXNG3bXFVGqVSiyFLkfyMJ+Y6LRoSE52iDto42to52hIeEv3H985KUmER4cBj1P89/Km3QlZsYmhhhYi4WuXwKRND9xDT0a8LqeSuJCn/EhMV/FuqapGdDBUbGRmrHjUyyv09KfPpGdQm5Hcy+jbs5suMw8owMajWuw6TFf1KphleOnuWhrQf4Z9T0fO9nY1+CxQdW5Hk+KfEpxrms3jMyMSIpMemN2pCfpX8vQltHh0Z+TfIsExn6kB0rt+LX7UvxIO0TIYLuJ+bKmctEhT9CIpFw/UKg2gM0TXo+S6KUhzvdBn1D/c8bqoJ4bmp85sPf62bne08dXZ13Xc03dmTHQfZt2M3Pf/6W65ACQGpyKpN//AN7Fwc69O2i4RoKRUUE3U9IpjyT/ybOpkYDH6ztbFj+z2LqNKmHobFhvtcZPTufnKT+cCz5eQ/YxDjHNQWRGRsilUpJSUoh+Wkyaalp+QZdY1NjDI3yrycFPIMyMjHO9QFf0tOkfF/7dV09e4WZo/+mY78u1G/5Wa5lsjKzmPrzRBLiE/hrzSx09cQCw0+FCLqfkK3LNhEdEcXYuRMwMjEiYO9RVs5eRp/h/fO9Tl9mgJWtFeHBYWrHw4ND0dLWwtbJ7rXr0md4f9r2aM/+zXvZs24nK2cvo2odb5q2bU6NBj5o66i/Nd/F8IKDqyP+Ow+pHcuUZxIV/ghHV8fXbkNuQu4EM3HwOOq1qK82x/lVc8bP4vr5QKYun4FVCat38tpC8SCC7ici9lEMa/9bRbteX6uCZPdBPZg3cTbN2rUo8EFY1TrVOXngBJ36dVWNt57YH0CFqhXzXViQH2s7G7r80J1O/bpy4fh59m3czdSfJ2JkYkSDVo1o3dlPVdd3MbxQrW511s1fzd3rt3GvUAaAc8fOIM+QU6VOtTdqw8tiH8Uwtu9ISpV3Z9C4H/Mst3ruCg5t28+Y2eMpWb7UW7+uULyIoPuJ+N+f8zG1MKX9dx1Ux5q2b8GeDbuYP2kuk5dOy/f6tj3bM7h9f2aO+ouGfk24fOoiZ/3P8MfCyW9dN6lUSnXfGlT3rUFczGMObtnP/s17kRnJVL3F53OA34ZH1Qp41qzM9F+n0GPod8gz5CycMo8GrRqqzdEd0WsYAJNeetB4PuAsaSlphN0LJSMtneP7jgFQplJZbOxLkJ6Wzth+o0hPTaddr6+5d/Ou6lqZoQxndxcAjuw8xOo5K2j+9ecYmhgRdOWmqpxzKWdkBQ2hCMWeCLqfgMunL3F83zFGzvpdbU6uVCql78gBDOv6I0d3H8lz/BGyp4f9PvcPFk1bwO99RmBtZ8NPU35VLYx4VyysLfn6+0581bsjifEJ7/TeAMNnjOK/SXP467c/kWpJ8W3RgG9/+V6tjEKRc2ra3PH/Ev0wSvX9lKETABgy4Wcaf9mUJ4/jCbkdDMDvfUaoXVuxuidTlmYPjVw+eRGAvet3sXf9LrVyk5ZMw7OG11u2UPjQiSTmxZCunm7KCv+1Bq9Oxn8X/h4xjcjQh0xeOh2JVKK2GKIgz+fSzhz9F4/CIj/I3Asfky71vk5KiHvipVQq7xd1XYTCEyvShBxuXLqOn1cL1sxb+VrXHdvjj59XCw5vP/ieaiYIxZ8YXhDUdP6hG606+wFgYWP5WtdWq+OtethlYChyawtCbkTQFdSUcLDNM/FLQYxMjSn9HoY8BOFjIoYXBEEQNEj0dAWN6tWkG5+1aki3wT2Luir5SklKZvOSjZwPOEtESAQGMn0q1fCi50+9cyxmiH4YzbwJ/3L17GVkhoY0bdeczj90U8uloFAoWDNvJfs27CY5KZmK1SrRf8ygHJ8qCkoULxR/oqcrCLmIjoxm/+a9VPetyciZY/h+eH8e3AlhZK9haqks5RlyxvQZTmJ8AiP+HkPXgd+wfcUW1s5bpXa/dfNXs2XJRjr378aIf34nOSmF0b2HI8/IUJUpTKJ4ofgTPV1ByIWtgy0L9yxVm9dcplI5vm3ajXNHz1CveX0Aju8/xqPQSP63f7mqB5ySlMyq2ctp9+3X6Bvok56WzuYlG+nUvyvNv/4cgJJlS9KzSTeO7TmqykJWmETxQvEngu5H5H7QPRZNW8Dd67dRZCko4WjLV707qhY9HNiyj70bdhN+PxQtbW3Kepajz/D+arkTfuvxM1YlrKhYrRLrFqwhKeEpdZr5MuD3wdwOvMX8yXOICA6nrFd5hk4ehuWzGQ5Xz15hRM9fmLhoKhsXrePGxeuYW1vwzZBeqgCVl4C9R1m/YA3hwWGYmJvSskMrvv6+k2q5cUHteh/0ZTlnX9jY22BkYkRU+Iuk5BePn6dcFQ+1IYe6zXxZNG0BNy5eo2odb25evkFqcgp1m/mqyphbW+BRtQIXj59XBd2LJ87RpG3zHIniZ47+i7TUtDdebi18WETQ/YhMGDgWl9Ku/DJtONra2oTcDlZlAgOIiYymWbvmlHCwJS0ljV1rdzCs+1AW7F6i9gt97fxVHkc9pt+oAcRERrNw6nx0dHW4cfEaX33XET0DPRZMmsu8P2Yx6t9xanX4Z+R0mrZrwRfd23F4x0GmDZuMnbN9nnuLHdlxkL9HTKd1Fz96/vQdD+6EsPLfZejLDPDr9mWh2pWbrMysAn9eUi3pa22PEx4cxtOEp9g52790LJxSHu5q5aztbNA30CciJJyqdbyJCA5DV083x/itk5sTQVezlwG/70TxwodDBN2PRELcE6IfRjFmznjVL2flWlXVynTu303176ysLLxqVaFLva+4EHCOOk3rqc5lpGUwZs541VzbwHNX2bNuJ9NXz1TtnRYX/Zj5k+eSlZmFlvaLB0a1m9SlU/+uAFSrV52we6FsWrSeX/8amaPOSqWSZf8spsXXn9P7t34AVK3jTaY8kw0L19CqcxuSEp4W2K7c+Hm1KLDM6yy7VSqVLJwyjxKOttRo4KM6npT4NEdydwBDEyOSEpKelUnKNafCy8nT31eieOHDI4LuR8LYzARrW2vmjp9Fm25f4lmzco4EMSG3g1n2z2JuXQ1Sy2vw8EGEWrmyXuXVFjfYOdujb6CvtlmlnbM9iiwF8bFxWNlaq47XbFhb7V41G9bi8LMt3V8VERJO7KNY6jStp9Yz9azpxbJ/FvM4KhYrW+sC25WbgjKSATi4FT6d47r5q7ly+jITFk/9oJKlC8WPCLofCalUyvgFk1n2zyJmDP+TzMxMvGpWod+oAdi7OJCSlMyY74dj42BL35E/YG1rjbaODmO+H07GS0/QgRxJzbV1tDF8Jcm3tk524MlIV7/WzMJM7XtTczPiY+NzrXNifCLwIqvXq2IiY7CxL5Fvu/JSslzBKROlWoWbvOO/8zCrZi9n0B9DqVitkto5IxPjHMndAZITkzAyNXpWxoiUXMokPU1W9WTfR6J44cMkgu5HxKmUM6P+HYc8I4PLpy+zaNp8pv86hRlr/yXoyk3iYuKYvnomNvYlgOwE3gWNjb6uJ3FPcMZF9X1C/BPMrcxzLWv8bPXaj5N+wbmUS47zz3ui+bUrL+9qeOHK6Uv8M+ovvv6+E02+bJbjvKObI+H31ZO7xz6KIS01DYdnidEd3JzISM8g+mGU6mcP2WPEjq7ZY7jvI1G88GESQfcjpKOrS3XfGkQEh7Fq9nIA0tPSAdR2ZAjYdzTXNIZv48zhk2qB7MzhU5SuWDbXsg5ujljYWBL7KCbfzRufy61deXkXwwvBt+5n7wLR3Jdug3rkWqZqXW9mjvyLuJjHWFhnz+Q4sT8AA5kBHlUrAuBRpQIGhjKO7w+gbY/2AMTHxnP9wjUGjhvy4l7vIVG88OERQfcjEXzrPounL8S3ZQNKONjy5HE8u9bswLNmZQDKeZZHz0CPf3//B79uXxJ2P4wtSzciM5K903qcPHAcIxNjyniW4/D2A4TcDmZgHrsoSKVSev3Um39G/UVSYhKVfaqARMLDB+FcOXOZUbPGFtiuvJSuWOat2hEfG8/YfqMwMTel2Vct1ZKNm5qbqmYw1G3qy7r5q5k4eDyd+3fjcVQMK2cv54tv2qkCpa6eLm17tmfNnBXIDGXY2NuwZu5KbOxt8G3RQHXf95koXvhwiKD7kTCzNMfE3IS181YSFxOHsakx3r416DH0OyB7XuiwP0ewZMZCxv8wBtcybvz610gmDRn/TusxeOLPrF+whg3/W4u5tQU/Tf013wDYoFVDDAwNWL9wLbvX7kBbRxt7ZwfqtWxQqHa9L2H3Q3kcFQvAb91/UjvXyK8JP076BcjeImj8/EnM/eNfJg0eh4GhAW26+NGxn/ruvh36dEaRpWDV7OWkJCVToVolfpr6q9pDOU0liheKlkhiXgy9zyTmb+r54ogFu5fk+4BLeHdEEvPiSeReEARB0CARdAVBEDRIjOkK74RnDS92Xt9f1NUQhA+e6OkKgiBokOjpCnk6uvsIe9bt5H7QPeQZcmwd7ajdpC5fftOOVx/izZswm11rttN35ABadW4DZO8sfCiPJcDPderflS4/dKdVhaa5nvfyqcLERVPfTYME4QMggq6Qq/mT5rBr7Q6atW9Ju15fo2egT3DQPXau3k5aSqoqQQ1kJ885sT8AgIC9/qqg27FvF1p0aKUqN3vsTKxsrejY98V0qpdTIn7VuyM1P6ulVg/DXBLFCEJxJoKukMPpwyfZsWobP076RW2lmGcNL1p0aMWNS9fVygeeu8qTx/F41qxM4NkrxEbFYlXCCjtne7U0iDJDA0zNTdUS57zM1tEuz3OC8LEQY7pCDtuWb6F0hTK5Ls3V1dPNXjn2kmO7/TEyMWbA74MBOL73qEbqCdCqQlN2rdnO/Mlz6VCrLV3qfcX2lVsA2LthN72adKNDrbbMHvsP8gy52rX3bt5ldO/faO/dhg4+X/L3iGlquShio2L5e8Q0ejXpRrtqrenX+ju2r9zCy3Pbr569QqsKTbl+4Rrj+o+mnXdr+nzei5MHj2vmByAUOyLoCmoy5ZkEXblB1TrVCl3+1MHj1G5SB3sXB8p6lSfgDYOuUqEgKzNL7aswuSE2/G8tmfJMfvtrJL4tGrBg8jwWT1/IsT3+9Bs1gO6DenBw6wF2r92huiY8OIzfuv+ElrY2v0wbTv/Rgwg8d5W/R05TlUmMS8DcyoI+w/vz+7wJNP+qJStmLWP7ii056jBrzAwqVfdk1KyxOJV0Ytovk4mPiXujn4PwcRPDC4Kap08SkWfIsbazKVT5S6cu8jThqSqHQL3m9Vk4ZR5REY9y7JRQkNnjZjJ73Ey1Yx2+71TgzsFOJV34YcwgIPvB2/F9ARzcso/FB1aott0JPHeVU4dO4Ne9LQBr5q2khKMto2ePU+3aW8LRlp87DybkdjCuZdwoWb4UJctnp4hUKpVUqFqRlKQU9m/eq7rPc42/aErbnl8B4O5Rmi6+X3P++LlcM5MJnzYRdIW3cmyPP2aWZlR6llmsbjNf/jf1PwL2HKX9dx1e614d+nTG55Uk6BbP9mDLT5XaL3aSkEqllHC0xdjUWG2fMztne+7duKv6/uqZKzT/uiUoX2ztU7pCGfQN9Ll34w6uZdxQKBRsXrKRA5v3EhURRaY8e3gityTmL+9mYWxmgpmFmSp3gyC8TARdQY2xmQk6ujrEPIopsGxGegZnDp+kdpN6pCanAqCnr0eZSmUJ2Pv6QdfGvsQbZQczNH41wbp2ronYX07WnvgkgTVzV7Jm7soc93ve9i1LN7Jy1lI69OlMucrlMTQ24uTB42z837pc6vDq6+kgfyXBuyCACLrCK7R1tCnn5cGlkxfyzCH73PmAs6QkpXBwyz4ObtmX43xESLgqkfeHxtjUmHotGtCwdeMc5573rk8dOkmDVg1Ve74BnDlySmN1FD5OIugKOfh1/5IJA8dyZOchPmvVSO2cPCODGxev4+VThYA9R7GwtuDnP4e/UkbOHz+M4dgefzr168qHyLNGZcLuPci3Z52emqaW9D17PvIxTVRP+IiJoCvk4NOwNq27+PHPyOkEXbqBd/2a6Onr8eBOMDtXb8e7XnXKepbj7NHTNG/fMtctb6rUqUbA3qOvFXQfhUeqJQuH7PHTUuXd87jizXX+oRs/dhjIhEFjadimMUbGRsRERnPu2Fm6DeqBg6sjnjUrs2/DbtwrlMGyhBW71+7IMe1MEF6XCLpCrvqM+IFyXh7sXreDwzsOIc+QY+9sj2+LBnzxTTvO+J8mPTWd+p83zPX6Bp83ZNqwyYTcCca1tFuhXnPDwrVsWLhW7ZiNfQkWH1jx1u15laObE9NX/8OKmUuYOeovMuWZWNtZU7VOdcwss/d06/JDNxLinrDkr4Vo62jTyK8p1evXZO74We+8PsKnQyQxL4Y+xCTmguaJJObFk1gcIQiCoEEi6AqCIGiQCLqCIAgaJIKuIAiCBomgKwiCoEFiypigMXeu3Wb7qq0EXbpBZNjDQiWzAYh+GM28Cf9y9exlZIaGNG3XnM4/dFMlqgFYM3clV89e4fa1INJT09l2ZQ9a2lpq9+nVpBvRD6Ny3F9bR4etl3e9fQMFoRBE0BU05sal69y6chOPqhVIfJJQqGvkGXLG9BmOoZEhI/4eQ2xULP+b+h9SqZQuA7qryu3btBt7F0c8qlTk0skLud5r5KzfcyxumDRkPKUrvH6+B0F4UyLoChrTuosfft2+BLJ7nYVxfP8xHoVG8r/9y1Vb+6QkJbNq9nLaffs1+gb6ACw+sBKpVMrBLfvzDLqvrmx7cDeEuOjH1Pup/ps2SRBemxjTFTRGKn39t9vF4+cpV8VDbS+1us18SUtN48bFa29174A9R9HT18uxL5sgvE8i6AoftPDgcBzdnNSOWdvZoG+gT0RI+FvdO2DvUarVq46BoUHBhQXhHRFBV/igJSU+xeiVfLkAhiZGJCUkvfF979+8R0RIuGrHC0HQFBF0hU/Ssb3+6Bvo4+1bo6irInxiRNAVPmhGJsYkJyXnOJ6cmISRac4ecGGd2BdAjQY+qgdxgqApIugKHzRHN0fC74epHYt9FENaatob70px59ptIsMeUq+FmLUgaJ4IusIHrWpdb25euk5czGPVsRP7AzCQGeBRteIb3TNgrz8yIxne9aq/q2oKQqGJebqCxiTEPSHw3FUA0tPSCAsO4/i+7O1v6jbzBaCNZ3M69e2q2pesblNf1s1fzcTB4+ncvxuPo2JYOXs5X3zTTm1oIPDcVRLinnDn+m0ATh48jkQiwbmUC87uLqpySqWSgL3HqNmwNjq6uhpptyC8TARdQWMe3H3AlKETVN+fPHCckweOA7Dz+n4AFFkKFEqFqoyOrg7j509i7h//MmnwOAwMDWjTxY+O/bqo3XvVnOVcexbQAab+NBGATv270sX9xcq1oCs3iYmMxre5GFoQiobYOaIYEjtHCCB2jiiuxJiuIAiCBomgKwiCoEEi6AqCIGiQCLqCIAgaJGYvCG/t6O4j7Fm3k/tB95BnyLF1tKN2k7p8+U07Xn3YN2/CbHat2U7fkQNo1bkNAH+PmMahbQfyfY1O/bvS5YfutKrQNNfzXj5VmLho6hvVPyriEQe37qdNly8wNjPJt+zDBxF837Ink5ZMw7OG1xu9nvBpE0FXeCvzJ81h19odNGvfkna9vkbPQJ/goHvsXL2dtJRUev/WT1U2KyuLE/sDgOwFCs+Dbse+XWjRoZWq3OyxM7GytaJj3xfTwl5O7fhV74450jEaGhm+cRuiIqJYM3cln7VqVGDQFYS3JYKu8MZOHz7JjlXb+HHSLzTya6I67lnDixYdWnHj0nW18oHnrvLkcTyeNSsTePYKsVGxWJWwws7ZHjtne1U5maEBpuamlPMqn+vr2jra5XlOED50IugKb2zb8i2UrlBGLeA+p6unS2WfKmrHju32x8jEmAG/D6bP5704vvcoX3zTTiN13b12B9tWbCH6YRQyIxkly7kzZOLPRISEM6LnLwB83zJ7v7aK1T2ZsnQ6kD10smLWUuJj4vCoWpGvvuugkfoKHy8RdIU3kinPJOjKDdr2aF/o8qcOHqd2kzrYuzhQ1qs8AW8YdJUKBVmZWWrHJFJJnrtHXD1zmfmT59J1wDeUq+xBUuJTrp69QlpKKu4e7vQbNYB5E2bz24xRWNlaIzOUAXA78BZ//ToV35YN+KxVI24FBvH3iGmvXV9BeJkIusIbefokEXmGHGs7m0KVv3TqIk8TnqqShtdrXp+FU+YRFfGIEg62r/Xas8fNZPa4mWrH8ttZ+M7127iWceOr3h1Vx2o1qqP6t1Op7NwMJcuVwt7FQXV80+L1uJZx4+epvwFQrV51EuMT2bl622vVVxBeJqaMCRpxbI8/ZpZmVHr2xL9uM18kEgkBe46+9r069OnM3+tmq3217NQmz/Klyrtz/+Y9Fk79j+sXruXoJeflduAtajZUf2BXu3GdPEoLQuGInq7wRozNTNDR1SHmUUyBZTPSMzhz+CS1m9QjNTkVAD19PcpUKkvA3qO0f81xUhv7EpSuWPht0yvXqsqgP4aybfkWti3fjJGJMc2/akm3QT3Q0tbK87onj+MxszBTO2ZqaZZHaUEoHBF0hTeiraNNOS8PLp28QLdBPfItez7gLClJKRzcso+DW/blOB8REv7GCckLq8mXzWjyZTPiYh7jv+sIS2f8Dxt7G1p2bJ3nNWaW5jyJe6J2LOHxkzxKC0LhiOEF4Y35df+S24G3OLLzUI5z8owMrpy+BGRvdW5hbcGkJdPUvsbNn4S2tjbH9vhrrM4W1pa07dEe51KuhN4LBUBHJ7vvIZfL1cqWrliGM4dPqR07efCEZioqfLRET1d4Yz4Na9O6ix//jJxO0KUbeNeviZ6+Hg/uBLNz9Xa861WnrGc5zh49TfP2LXNdwVWlTjUC9h6lU7+uhX7dR+GRBF25qXZMR1eHUuXdcy2/as5ykhOTqehdCWMzE65fCCT0bgidnyVKt3dxQCqVsn/jHnxbfoahsSGObk606/UVP3cewvRfp/BZ68bcunqTM4dPvsZPSBByEkFXeCt9RvxAOS8Pdq/bweEdh5BnyLF3tse3RQO++KYdZ/xPk56aTv3PG+Z6fYPPGzJt2GRC7gTjWtqtUK+5YeFaNixcq3bMxr4Eiw+syLV86Qpl2LpsE/47D5GWmoatkx39Rw+kdpO6AJhamPHdr33YsmQjO1Ztw6NaRaYsnU5Zz/L8NOVXVsxawskDxylfpQJDJv7MyG9/fY2fkCCoE0nMiyGRxFwAkcS8uBJjuoIgCBokgq4gCIIGiaArCIKgQSLoCoIgaJAIuoIgCBokpowJGhN86z7/TZzNnWu3MbUw44tv2uHX7csCr7sQcI7V81YSeoCMr8UAACAASURBVCcEfZkBnjW96Dn0O6xsrQGQZ8iZ/usU7l6/TXxsPDIjQzyqVuCbH7/F4aUENq/WZfBX/TG3smDZ4dXvtJ2CkB/R0xU0IvFJIqN7/4aBoYwxc8bTuosfi6cv4EAuy4JfdufabcYPGIO9iwMjZo7hu1/7cDvwFuP6j0ahUACgUCjQ0tKiQ5/OjJ03gT4j+hMZ+pBR3/5KSlJyrvddMHkeJmam77ydglAQ0dMVNGLPup0olUp+mzEKfQN9KteqSkxkNGv/W0WTL5vled2J/QFYWFvy48SfVflyTcxMGN17OBHB4TiVckZPX49h00eoXVeyvDt9Wvbk+oVrVK9fU+3c8X3HiI6MovGXTTmyI+cSZkF4n0RPV9CIC8fP412vBvoG+qpjdZr5EhX+iIiQ8Dyvy8zMxEBmoJagXPZsPzSFUpHndSbPFo5kZmaqHU9PS2fRtAX0HPodOro6b9QWQXgbIugKGhEREoajm5PaMadn34cHh+V5XYPPP+Nh6EN2rNpKUmISj8IiWTFrCRW9K+Hi7qpWVvFsR4mYyGgWTJmHnZM9VWpXUyuzcdE6bOxtqNvM9900TBBekxheEDQiKTEJQxMjtWNGJsaqc3lxr1CG0bPHMWXoBOZPmgtk51IYv2BSjrKr/l3GugVrALB1smP8/ElqPevoh9FsWbKRKcumv3V7BOFNiZ6u8EELuR3MX79OoUGrhkxcNJXhf49GLpczYdDYHDtAtOzUhhlr/2XEP2MwszTn9z4jSXySqDq/ePoC6jSth3uFwidAF4R3TfR0BY0wMjEi5an6TIKkp0mqc3lZ+e9SXMuW5Icxg1TH3CuU5tum3Tlz5JQqUxiApY0lljaWlKlUlsq1q9KrcTf2rt/F19934ublG5z1P80/6+eoetbydDlKpZKkxCT09HXR0dV9l00WhFyJoCtohIOrU46x2/D72d+/Otb7soiQCKrVq652rISDLUYmxkSGPczzOpmhDDsnOx6FR2bfJzicjPQM+vv1zlG2Y6229P61L37d2xa6PYLwpkTQFTSiWl1vdqzaSnpaOnr6ekD2dDBbJ7t8t+qxtrPh3o27ascehUWSlPgUG/sSeV6X+CSR8JBwfBrVVr3+pCXq26cf2rqfc8fO8tuMUdg7279p0wThtYigK2hEiw6t2LFqK1OGTsCve1uCg+6xe+0Ofhg7WK1cG8/mdOrblU7PdnVo/nVLJg0ez6wxf1O3WT2SEpNYO28V1nY2eNerAcDRXUe4dPICVepUw9zKgpjIaLYu24Sung5N2zYHwNzaAnNrC7XXCjx3BR1dnVx3tBCE90UEXUEjTMxM+GPhFOZNmM24fqMwszCj50/f5VgYochSqM2/rd24Lr/8OZzNSzcQsMcffZkB5at40OPHbzEwNADAwc2RwzsOsnDKPJKfJmNhY4lnDS869x+fI9AKQlETO0cUQ2LnCAHEzhHFlZgyVkyJP5YCiPdAcSSCbjGkpa2d8jThaVFXQyhCSqWStJQ0HSCxwMLCB0UE3WJIKpUGXDp5QXRzPmG3A4OQamnFAo+Lui7C6xFBtxhKSUqet3ruytToh1FFXRWhCKSlpDJ/0tyUrMzM+UoxzlTsiAdpxZSunu4QqVQ62adRbWWFapUM9PTEaqqPnVyeScid4Iyju45kZmbIt6ampHZTKvNJtSZ8kETQLcYkEomjRCppbyCTVZVqSQ3f9D5ZmZl1JRLpA4VCUVFLS3pJIpFEKxQKZ4lEkiSRSmPfZZ0/BUql0lCpUNhLpdIQpRK9rKzM+lpaWueysrJqaGtr70QiebP7KhTpaalpt7IyszYB10Uvt3gSQfcTJ5FIJEAMcBM4CYQDw4DrwBClUhlUhNUrliQSiQUwA2gN/AfcA8YA+kANpVIZWoTVE4qYGNMVnAAjwBboDjQC2iqVyuYi4L4ZpVIZp1QqewDegCUwHYglO+hWy+dS4RMggq7QGtADrgHNlErlF0ql8lwR1+mjoFQqg5VKZV/Ak+xPEcZA16KtlVDUxPDCJ04ikRgDpZVK5cWirsvHTiKRuJD9OxdS1HURio4IuoIgCBqk0YQ3EonEWUtLq5OZmVlrpVJpKnnDp7hCsaFQKpXRcXFx64BNSqUyvqgr9DokEokt8LWOoV47CZgD4g1bfMkVCsWtzFT5KmCvUqnMLPCK90RjPV2JRNLAwMBgZ8eOHbXatGmjb2lpiQi6H7esrCwiIiJYs2ZN8pEjR5KTk5NrFpeP1hKJpIqWrpa/XWVnbftqLjI9Y32QivdrcaXMVJAYEa8M9r+VnBqfciYzTd5SqVRmFEVdNBJ0JRKJTE9PL3rPnj2Gn3322Xt/PeHDM2PGjKxx48bdTEhIqFTUdSmIRCKRaulqRVX7tp6lg7eriLQfEUWmgpMzD6Q+vh01LUue9XtR1EFTsxdaVqtWLUsE3E/XoEGDtBQKhbtEInEr6roUQh19U5meCLgfH6m2FI8vqhhItbV6FVkdNPEiurq6NVu2bGmiidcSPkza2trUrl07g+IxT7W6TUUHvaKuhPB+mJe0JkueaSuRSN54Fefb0FTQNTEyynvHV+HTYGpqKgWK5I3+mmQ6BjpiV5WPlEQiQaqtlQnIiuL1NbY4org+NHN1dWXUqFFFXY1CmTt3Ls2bN8fMzAyJRMLdu3dzlDl//jzdu3fH3d0diUSSa9sePXpEmzZtcHR0RE9PD0dHR3r16kVkZKRauR49eiCRSHJ8hYeH51q/YvUeKFaVfWHfsA3c2Fw8plzLUzK4suo0e3/ZwPZ+Kzn0+zYenMj5nlVkKgjacYV9v25kW5/l7Bu2gaAdV9TKbPl2aY6v49P35fnaRfmfK/6af0RWrFiBlpYWjRo1YvPmzbmWOXHiBKdPn6Zu3brExuaeyyYlJQUrKysmT56Mk5MToaGhjB07ltatW3PmzBm0tLRUZT09PZk/f77a9TY2Nu+uUcJH68KiAOKCY6nQtioySyMir4RxcfFxtPW0cfB2VZU7/79jxN2NpmzryhiVMCYlNom0hNQc9yvTshJ2lZ1U32sbfJiZ90TQ/YicOHECqVSKv79/nkF34MCBDB6cvQOvq6trrmVKlizJ4sWL1Y7Z2dnRtGlTgoKCqFChguq4sbExPj4+76YBwicjMz2TyCvhVOleC5e6pQGwLm9HfHAsEedDVEH30ZUwHl4MpdG4NhjbmeV7T0NrYyxKffh/8Is098KVK1do3LgxZmZmGBsb4+npydq1a1XnlyxZQq1atTAzM8Pa2prWrVtz/776HnwNGjSga9euLFiwABcXF4yNjenVqxdyuZwTJ05QrVo1jIyMaNy4MQ8fPlRd5+/vj0Qi4fDhwzRt2hSZTEapUqVYv359gfVev349lStXRl9fH0dHRyZOnKi2Z1lB7XpfpNKC/zsLUyY3lpaWAMjl8je6/mOQEBbH8en72DlgFTv6Z38cDj/z4v344Pgd/CfuYueAVewavIZTsw6SHKO+rVLAn3s4v/AYwUdvsfeXDezov5ILi4+jyFTw+E4UR8bvYHv/lRyfvo/U+BTVdTFBkWz5dikxNyM58dd+tvdbwf7fNhF+LrjAeoefC+bw2G1s67OcPT+v59bOK2rv14La9T4oFQpQKtF5pTeqY6CDUvGibg9O3MW6vG2BAbc4KdKerp+fHxUrVmTNmjXo6OgQGBjIkydPVOdDQ0P57rvvcHNzIykpiblz51KvXj3u3LmDTPZiDPzo0aNEREQwZ84cQkND+fHHH9HT0+P48eMMHz4cmUzGoEGD6N+/P1u3blWrQ48ePfjuu+8YOnQoK1asoHPnzri7u1O1atVc67xy5Uq++eYbBg0axJ9//sm1a9cYNWoURkZGqh5kQe3KTWZmwQtktLS0NDrUqFAoyMrKIiQkhN9++43atWvj5eWlVubSpUsYGxsjl8upWbMmU6ZMoVatWhqroyad/vcQxg7mePepj1RLSmJ4PPLUF/PrUx4n4+pbGkMrYzLT5dw/EsSxKXtoMqkt2novftVibz0iNT4Fr64+pD5OJnDdWbR0tHh8J4oyLT3R0tXi6pqzXFl5Cp+BjdTqcGHxcVzrlca9qQehp+5zfsExjGxMMHOxzLXOoafucWHRcUo1Lk+F9t4kRjzh5taLaOnp4N7Eo1Dtyo0iq+Dc6RKpJM/3q46BLvbVXLi9JxBje1MMLAyJuhpOzM1Iag1qrCoXHxyLXWUnLq88TdjJuygBOy8nvLr4oGukPsHk+qYLXF5xCh1Z9r0rtvdGR/bhDTEUWdCNiYnhwYMH7Nixg0qVsufLN27cWK3M77+/mLuclZVF48aNsba2Zs+ePbRr1051LjU1lR07dvB8hoS/vz///fcfp06dUn30ffjwIYMGDSIzMxNt7RfNbteuHWPGjAGgefPm3Lhxg6lTp7Ju3bocdVYqlQwfPpy+ffvy999/A9C0aVMyMjKYNGkSAwYMIC4ursB25UZHR6fAMkeOHKFBgwYFlntXunfvzqpVqwCoWrUqe/fuVfslqlq1Kj4+PpQvX56YmBimT59Ow4YNOXPmDJ6enhqrpyakP00j5XEyPoMaY+poDoCNh71amfJ+lVX/VioUWJe3Z/eQtUQFhquNUWbJs6g1qBHa+tn/57G3HhHsf4v6I1qqPh6nPUnl6pozKLIUSLVefDqxr+ZCuTbZr1OikiNPHz7h9p5AavRtkKPOSqWSG5su4NagLJ4da2RfU9EBRVYWt3dfpVSjcmQkZxTYrtxs+355gWXq/tIM63J2eZ737l2Ps/8d5dCYbUB2kK7yTW1sKrx4/fTEVEJP3MXU2YIa/RqQnpTOtfXnOL8ogNqDX/xeOddxx9bLCT0jPeJDHnNr5xUSI57g+1uLD+6ZaJEFXUtLS5ycnOjXrx+DBw+mYcOGqo+wzwUGBjJ8+HDOnDmj9tDnzp07auV8fHx4eUqau7s7hoaGamON7u7uZGVl8ejRIxwdHVXH/fz81O7l5+fHsmXLcq3z7du3CQ8Pp3379mo9088++4zhw4cTHh6Ok5NTge3KzblzBWdTLFu2bIFl3qU//viDQYMGcffuXSZOnEirVq0ICAhAVze79zBo0CC18i1btsTDw4M///yTlStXarSu75uuoR4GFoZcXnEK98YeWJW3Rc9IX61MQng81zddIP5+DBlJ6arjSdHqG/aal7RWBVwAQxtjtPS01cYjDW2MUSqUpCekYmDxYpbdyw+KAOyqOBF68l6udU6KSiQ1PgUHbxe1nql1OTtubLpIalwKBhaGBbYrNw1GtyqwjFEJ03zPX119lsSwOKp9Ww8DCxnRNyK5vOIUesb62Hplt1OpVKIEag5oqKqXtp42Z+Yc4WnkE9WwQ7VedVX3tSpri7GdKadmHiTmZmSh/ohoUpEFXalUyr59+xg+fDjdu3dHLpfTqFEj5syZg7u7O4mJiTRr1gxXV1dmz56Nk5MTurq6NGvWjLS0NLV7mZmpj/fo6urmegzIce2rT9qtra159OhRrnV+HvgbNmyY6/mwsDBcXFzybVdeKleunOe5516eNaAJbm5uuLm5UaNGDerWrYurqysbN26kc+fOuZaXyWQ0b96cY8eOabSemiCRSqj9YxNubLrA+UUBKLMUWJe3w6uLD0YlTJCnZnByxn5kVkZ4dfHBwMIQqbaUEzMOoJBnqd1L95WPvFJtaY6PwVLt7N5t1ivX6pkYqH9vrJ/rk3yAjKfZ7/Xj03KfOpUSn4zMyijfduXF1Mkiz3PPSfLJVfEk9DEhx25T79cWWJUpAWT/MUh7ksL1zRdVQVdHpoehtbHaHwKrcrYAJD5MyHOst0RFB7R0tXjy4LEIui8rX748W7duJT09nUOHDvHTTz/RpUsXzpw5w+nTp4mMjOTUqVO4uLgA2Q9xChobfV3R0dF4eHiovo+JicHW1jbXshYW2W+0ZcuWqV3z3POeaH7tysuHOLzwMmdnZywtLXM8yMzNh/Zx7l0xsTfDZ2AjsuRZxNyMJHD9Oc4vPEaDUa2IuxdDWkIq9Ud8jswq+1OXIlOBPOXd5lRJT0wF+xeBJv1pGvqmBrmW1THMHvOs9m1djO1zBqfnPdH82pWXtx1eSIrK7v2/GrzNnC2IOBei+t7YzhRFpvofnucK9Tb7AN+LH8SUMT09PVq2bMmtW7dU46spKdlPbp/3UCF71oBC8W43P922bZtaINu2bRvVq1fPtWzZsmWxt7cnLCyM7t27F3jv3NqVlw9xeOFlt2/fJjY2Fje3vFMnJCcns2fPHnx9fTVYM83T0tHC1tORpEcJ3Nx6CYCsjOzhpuc9VICI88HwjhNKRV4OUwtkkZfCMHe1yrWssa0p+mYyUuOSca6d96es53JrV17ednhB9mzIJCH0MVZlX3Ry4h88Rmb5YjjFtpIjQTuukP40DT3j7N5uzM3sT6Imz8agc/MoMJysjCzMnAvukWtakQXdq1ev8ssvv9CxY0fc3NyIiopizpw5qo/uPj4+yGQyevfuzZAhQwgKCmL69OmYmLzbFA6bNm3C3NycmjVrsnz5cq5evcrChQtzLSuVSpk2bRo9e/YkPj6exo0bI5FIuH37NocPH2bLli0Ftisv3t7eb92W8+fPExISwvXr1wHYu3cvtra2uLq6qu4fExPD0aNHgew/bEFBQWzcuBGA9u3bA/DXX3/x4MEDfH19sbKy4tatW0ydOpUyZcrQtm1bABISEmjVqhVdu3bF3d2dmJgYZsyYQUxMDMOGDXvrtnxoEsLiuLbhPI413JBZGZGemMb9I0FYlc8OgBalrNHS1ebispO4N/HgaWQCd/ddQ9ug4E8wr+PhhQfoynQxL2lN6Ml7JITHU6VH7VzLSqQSKn7lzcUlx8lIzsDGww4kEpKiEom5GYnPgIYFtisveQX6wjJztcLMxZLz/wugvF9lDCwMib7+kLBT9/DsVFNVzrVBGe4dvsnp2Ycp07ISGUnpXN94HseabhjZZMeC4KO3eBLyGGsPO/SM9IkPieXWrqtYli6BdQHtKApFFnRLlCiBlZUV48ePJzIyEgsLC1q2bMnUqVMBsLW1Zc2aNQwbNozWrVvj6enJ+vXrVb/078qSJUuYNGkSkydPxs7OjlWrVuUbADt37oyxsTGTJk1i7ty56OrqUrp0aTp27Fiodr1Ps2fPVnsIOHDgQAC++eYbli5dCsD169f56quvVGU2bdrEpk2bAFRzNz09Pdm5cyerV68mOTkZZ2dnvvjiC0aOHImBQfZHWT09PaysrJgwYQLR0dHo6+tTp04djh07ppq18THRMzFA10ifoB1XSHuSgq6hHiU8HanQPjt/j76pjOp9fLm24TynZh3C1NGc6n0bcGbukXdaj6o963B7VyC3dgeib2pA9d718g2ATj4l0dbX4dauqwT7ByHVkmJYwgTHGm6Fatf7ItWS4jOwETc2X+Dm1ktkJGdgaG2EV+eauDUopyqnK9Oj7s/NuLrqDOf+80eqo42DtwuVOrz4NGpobUzoyXtEnA8hM12OvqkMl7ql8fiiygc51KWRfLrGxsbzJ06c+P2rT7uLkr+/P5999hl37tzJ9wGX8O506NAhaf369QOUSmXu00M+EBKJZFSZzz3HV2hb9YP5jY0JiuT4tH00mdQ23wdcQuHs6L8yLTM901mpVMZo+rXFbsCCIAgaJIKuIAiCBn0QsxeKQoMGDRA7IQvFhXU5O75c1KOoqyG8A6KnKwiCoEEfXU937dq1zJs3j8uXL5Oenk7JkiVp164dQ4cOxdxcfV7fgAEDmDNnDrNnz+aHH34AshPg5LUM+Lnff/+dsWPH5vlktFGjRhw8ePDdNEj4aISfuc99/1skhMWhkGdhaG2MfTUX3JtWQNdQPXnLlVWnuX84CK8uNSnZsDyQnX82ryW/z5Vr40V5vyps+XZpruety9tR9+dm76Q9wpv5qILuoEGDmDt3Lr1792bYsGEYGhpy+fJlZs+eTVJSkipJDWQn0Hk+P3XdunWqoDt69Gj69u2rKtenTx8cHR0ZPXq06tjLuRuGDx9OmzZt1Ophapr/mnPh03Nl9RmCjwTh6luGMs0roqWnTUJYHPcPB5GZnqlKSAPZyXIizocAEH42RBV0y7b2wq3BiwUyl5afwsDckHKtXyQXMjB/sbDg1aTe8OEm9v6UfDRBd9u2bfz7778sW7ZMbbVYgwYN6Nu3LydOnFAr7+/vT1RUFA0bNuTIkSNERETg4OBAqVKlKFWqlKqcsbEx1tbWeSbqLlmypEjiLeTr4aVQ7h+6SbVv66qtDLMuZ4dbg7I8vhOtVj4m6BHpiWlYl7Mj5lYkqfHJGJgbZi8GsHkxXUxbXwc9Y708E3cXl6Ten5qPZkz3n3/+wdvbO9flufr6+jRqpJ6XdO3atZibm6u2milM8vJ3RSKRMHfuXAYPHoy5uTk2NjbMmjULgIULF+Lq6oq5uTl9+vQhI0N97f6lS5do2rQpRkZGmJmZ0aNHDxISElTnIyIi6NGjB66urshkMjw8PJg1a5baQ8PnCdyPHz9O69atMTQ0pGzZsmzZskUzP4BPzL0DNzBztcx1Ka6WjnaOhCzhZ4PRkelSuXt2XuKXcxG8b1u+Xcr9w0FcXX2GnQNXs2vIWu4dvAFA8NHb7Bu2gZ0DV3Np+ckcORGePHicnWC9/0p2DljFhUUBarknUuOTubAogH3DNrC93woOjtrCvYM31N6bz5O1x96J4tSsg2zvt5IDIzbz8OIDzfwANOCjCLpyuZxTp07RrFnhxqrkcjmbN2+mbdu2uLu74+Pjk2v+3MJQKBRkZmaqfRUmP8TkyZPJyMhg/fr1dOzYkcGDBzNs2DDWrl3LnDlzmDhxIkuXLmXu3Lmqa27duoWvry86OjqsWbOGefPm4e/vT48ePVRlnifsmTVrFrt37+b7779n1KhRzJw5M0cdvv32W+rXr8/WrVspX748nTp1yjPDmvBmFJkK4u5FU6KCQ6HLP7wYin01F4xKmGBR0rpQu0PkRqlUoshSqH29vCtDXm7vvooiS0GNvg1wrOHG1TVnubbhPBFng/Hq4oPHl1UJPXGX+0eCVNc8fZRAwNQ9SLSkVP++Pl7dahF76xEXFh9XlUl/moaeqQGenWtSa3BjXOuX4caWS6qg/rJLS05gVcYWnwENMbYz5dz8o6QlpOQoVxx9FMMLjx8/Jj09HWdn50KVP3DgAHFxcaqlux06dGDIkCGEhITkuW9YXvr06UOfPn3Ujo0cOZIJEybke52Hhwfz5s0Dsh+8bdiwgcWLF/PgwQMMDbPH5fz9/dmyZQtDhgwBYPz48bi5ubF9+3ZVmkc3Nzdq1apFYGAglSpVonLlyqo0kUqlkrp165KYmMiiRYtU93muZ8+e/PzzzwBUq1YNGxsb9uzZQ8+ePV/rZyDkLSM5DUWmAgPLwu08H33jIfLkdNUyXYfqbgSuPUty7FMMrYxf67UvLz/F5eWn1I6V/dwTj7a574rynLG9GZW7ZfeyrcvbEXE+hAfH79Dsz/Zo671IvP7wYijuTbL3ywvafgWZtTG1BjVE8mxLKEMrI45O2k1CeDymjuaYOVti5pydW1qpVGJZugSZqXIeBNxR3ec557rulG5eEQAzF0t2/7iWqMAI1X5qxdlHEXRf19q1a7GxseGzzz4D4KuvvuLHH39k3bp1/Prrr691r1GjRuVIhG5vX3D+ziZNmqj+LZVKcXNzw8LCQhVwITvx+sWLL7bTPnz4MH369EGpVKqSqHt7e2NoaMjFixepVKkSCoWC6dOns2jRIkJCQlTDE3p66k/HQX1HCwsLC2xsbIiIiChky4X3IfxsMHom+lg/yxnr4O1K4LqzRJwNoUzL18tpUbaVJ3ZV1Dsi+qayPEq/8PJwh0QqwdDKCB1DPVXAhewk609CH6u+jwmKxK1+GZRKUD5LmG7maoWWnjZPHjzG1NEcpULJnX3XeBBwh5THSSgys8u9nJkttzroGumhZ6yvtmdccfZRBF1LS0v09PQICwsrsGxaWhrbtm2jXbt2PH2avWmgTCajRo0abxR0XVxc3ihDWGETr7+cdD02NpZx48Yxbty4HPd73va//vqLUaNGMWrUKNWmnps3b2bKlCmFqsOrSd6Ft6NrqI9UW0pqXHKBZbPkmUReDsW+qgvytOwNQLX0tDB3syL8XPBrB12ZpdEbZQPLLaF6bonXX06wnpGURtD2KwRtv5Ljfs/bfmf/dW5suUS5Vp5YlLJBR6bLw4sPuL07MGcdDHK+3qvJ4IurjyLo6ujoUKtWLfbv388ff/yRb9k9e/aQmJjIkiVLWLJkSY7zt2/fpkyZMu+rqm/FwsKCjh070q1btxznnveut2zZQpcuXdTy927fvl1jdRTUSbWlWJSyIfr6Qzy+zP9jfVRgBJmpckJP3CX0xN0c558+SsDY9sOcjqhrqIdjdTecapfKce557zry4gOcfEqq9ngDiLwcqrE6fig+iqALMGTIEL744gtWrVpFly5d1M6lp6dz4sQJGjZsyNq1a7Gzs2P16tU5yrRu3Zp169apzcn9kDRs2JAbN27k27NOSUlRS/yelZXFhg0bNFE9IQ+lmnhwZvZhwk7fw8lHPShlybOIuxuNdXk7ws8Go29qgPf36kngFZkKTs06RMS5EMq1Vt+N+UNhXc6OxMgn+fasszIy1YYSXp6P/Cn5aIKun58fAwcOpEePHpw8eZLPP/8cmUxGYGAgs2fPpmXLltSsWZOdO3fy/fff57rtTdOmTV876N6/f5/Tp0+rHdPT06NKlSpv26Qcxo4dS/Xq1fnyyy/p3r07ZmZmhIaGsmvXLiZMmECZMmVo2LAhCxYswNvbGwcHB+bOnUt6enrBNxfeG/sqzpRsVJ4Li4/z+G4Mtp6OaOlqkRjxhPuHblLC0xHzklY8uhKOa/0yuW5xY1PBnvCzwa8VdJNjnhJ3T30OsFRbK8/t2t9Gg0T4YwAAHAxJREFUOb/K+P+xk9OzD+NcuxQ6Ml1SHicTdTWc8l9WwdjWFKtydoQcu42ZixUG5jLuHwlSjet+Sj6aoAswa9YsatWqxbx581ixYgXp6em4u7vTsWNHhg4dyo4dO0hJSclzY8UuXbrQuXNnrl27RsWKFQv1mpMnT2by5Mlqx1xcXAgJCXnb5uRQtmxZTp06xciRI+nZsycZGRk4OzvTvHlzSpTI3txv7NixREdH88svv6Crq0uPHj1o1aoV/fr1e+f1EQrPq3NNLEpZE3zkFmGn7qHIzMLQJjuZuHvTCjy6HEZWRiZONUvmer2TT0nOLzhGYnh8vtvUvOz27sAc46UyS0Oa/flVHle8OWNbU+qPaMmNzRe5uPg4iiwFBhaGlKjogP6zzTTL+1Um42ka1zecQ6KthUsdd+y8HLm84nQBd/+4fLJJzAXNE0nMhQ+FSGIuCILwiRBBVxAEQYNE0BUEQdAgEXQFQRA0SARdQRAEDfqopoy9D1evXmXAgAGcO3cOGxsbhg4dyuDBgwt9fWpqKuXKlSM0NFRtu/eHDx8yY8YM9u/fz/3797GysuLzzz9nwoQJajtcnD9/nlmzZnHy5Enu3btXqGQ6wqchPiSWewdvEncvmuTop4VKZpPf7hO+w1ti6Z6dfzclNomra84QfTMSqZYU+2ouVOpQXW15bpY8i1u7rhJ++j5pCSkYWBji6lsG96YV8txVRRBBN1+PHz+mSZMmeHt7s2PHDi5fvszPP/+MiYlJoTNxTZ06NdfFCRcvXmTbtm307t2b6tWrExYWxujRo7l27RpHjhxB+ixT04kTJzh9+jR169YlNjb2nbZPKN4e34km7n4Mlu42ZDwtXM6MV3efALi16ypx92Iwd8teTabIUnDinwNoaUvx7u1LZqqcaxvPk5aQSu3BL5IkXd94ngcBd/BoVw0TBzMe34nm+sYLAJRuVrh57p8iEXTz8d9//6FUKtmwYQMymYzGjRsTGhrKH3/8UaigGxoayowZM5g6dSr9+/dXO1e3bl1u3ryJtvaL/wI3Nzd8fX05f/48NWpkb98ycOBAVc/6ddNOCh+3Uo3K497EA4B9wwq31PvV3SeUCgXxwbHYV3VBqpX9hz7iXAjJ0Yk0ndQOmZURALqGupyadYi4+zH/b+/Oo5q88gaOfwOEsIVVEBANiwguVVBcEHXauo60ta+WY6eLo+NY9dWx1dbWarU6ntaO49HKuIzT9q22toOKtkytothC6wrYioKyVAHBDdn3hGzvHynByCLaMYrczzk5x9znPk+eaPLzyX3u/f1w9XcHDBnRAsb0IWC0oZyQe7AX1dcruZqaL4JuG8SYbhvi4+OZOHEidnZN6fCioqLIy8sjJyfnjvu/8cYbTJs2jd69ezfb5uzsbBJwAWMe3Ly8pqTVjVe8gnA7icVv/wlfkl2EqkpJt8G+xrbKwjIcPByNARfAvY8XSKAo/YqxTafVY3Vb9jGprRRzLLjqyMQ3ug3Z2dkEBwebtDU+z87ObnPfpKQkjhw50mIaxtacPGlION047isI99uVVNP8vWAYq709x63EwgKJREL19abSUIqInuR9n0lZbjEapZqijKsUJufi97jpd0YwJYYX2lBeXt4s52zjTa7y8vJW99Nqtbz66qssX74cN7f2JRdRqVS8+eabREREMGjQoHs/aUFoJ51Wx7WfLtNtsJ+x2gOAg4ecy0d/QV3XYMytW1lQhl6nR13bVPOsX1QY2gYNP7z3rbGt96QQfEd2/OoO95MIuvfBtm3bqK+vZ/78+e3eZ/78+eTn55OcnHwfz0wQmhRnXqehRoXPLUMLAD5D/bnw1RnOfHaCx6YORqNUk7bzpGE445YL4JyD6Vw9nU/Iy8OQezlTlltM1n/SkDnaNrtZJzQRQbcNLi4uJpV2ASoqKozbWlJTU8Py5cvZsGEDtbW1xjaA6upqamtrTUrygCFT2fbt2zlw4ABBQeLDKpjH1dR8bJztcAvsatIuk9sw6M8jObP9OPFv7AEJ+I7sBXqMGcNU1Uoy49IYOD2CHr8mLu8S5Im2Qcv52NP4jur1XxlzfhSJoNuGoKAgsrKyTNoan7cWHEtKSigrK+OPf/xjs20DBw5k0qRJfP3118a2nTt3smzZMj766COTummCcD8Zqg5fpsfwgBaDo3doDzwf86HmRiXWckONsm9fjTEWhqwtrkav1eHUw9VkP2eFK+p6NQ21KmRyG7O8l45GBN02TJgwgejoaOrr67G1NfwPHxsbi7+/f6slfTw9PUlMTDRpS0tLY+HChezcuZMBA5qSUB85coQ//elPLFu2jJkzZ96/NyIIt7l5/irquga6DfZrtY+FlYUxd2/ByUvotDrjLAe7X6sbNxadbFSRX4qlzAprh+aFUAUDEXTbMGfOHKKjo43Vgs+ePcuWLVvYtm2bST8rKytWrFjBihUrsLGxabEqBcDQoUONMxMyMzOZMmUKoaGhREZGmlSf8PHxwcfHB4Di4mJ++OEHwFCKJysri9jYWACee+65//ZbFjoQVbWSkuwbAGgatFTfqDSWv+kW5gvA17N2EPz0AJO6ZABXUvOxdbXHNcC9xWOn706lS6+uWFhZUppTRE58BgNeGGK8erVxssMzpDvpu1LRqtTGMd2c+Az8nwgWK9LaIIJuG9zc3EhISGDevHlERkbi4eHB2rVrmy2M0Gq16HR3V3YkOTmZqqoqUlJSCA8PN9n27rvvsnLlSgDOnz9PVFRTpv+9e/eyd+9eADEfspOrulpOytYk4/NrP13m2k+XAfifT6YDoNfpm31OtGot19MKDOOurQTHuuIafj5xCU19A3IvZ8JmjsDntqoWYTNHkhl3hl8OnUdZWY+dqz1Bkf0JnCAWRrRFVI4QzEZUjhAeFqJyhCAIQichgq4gCIIZiaArCIJgRiLoCoIgmFGnnL0QExPD1q1bSUtLQ6VS4e/vz5QpU1i0aFGzlWbz589n8+bNbNq0iXnz5gEwffp0duxo+15Q4wyE1u4Ojx49miNHjtzT+efn57N9+3YWLFiAq6trm30vXrxIYGAgiYmJrU5lEx4eV5JzyU3KprKwDJ1ai727HO9BCnqO64u1venc17NfnCL3+ywGvDgU/ycNmezaSlLeKPiZAfSeFMpXM7e3uN29txcj3hh/T+dfW1JNwfGLBIzuc8e5ujVFVSQs3ceIxeNxD/a6p9friDpd0F2wYAFbtmxh1qxZvPnmm9jb25OWlsamTZuoqalhw4YNxr5ardY4J3bXrl3GoLt8+XLmzJlj7Dd79mx8fHxYvny5sa1xni3A22+/zTPPPGNyHk5OTvf8HvLz81m1ahUvvfTSHYOu0HGc/TKZvMQsfEf1oteEfljKrKgsLCP3+yw0Kg39nx9i7KvX6Yxzcq+k5BuD7u1Jys98dhJbF3uCn+5vbLN1aVqG3mviY3iFdDc5Dytb03SNd6OupIas/5yl+7AAsUCiFZ0q6MbFxfGPf/yDHTt2MG3aNGP7448/zpw5czh+/LhJ/6SkJIqKinjyySdJTEzk6tWrdOvWjYCAAAICAoz95HI57u7uDBs2rMXX9ff3b3WbIABcO1NA7neZDJo5gh7Dm1J7ugd74fd4EKW/3DTpX5x1A1WVEvdgL4qzr1NfXouti32zJOVWNlJkchmuAR4tvq69u7zVbcL90anGdD/88EPCwsJMAm4jGxsbRo8ebdIWExODi4uLcQXa7t27zXKeAFu3biUoKAgbGxs8PDwYP348165dIykpiSeeeAKAwMBAJBKJybBBTEwMAQEB2NnZMX78eAoLC812zsK9u5RwAWdfN5OA28hSaoVHH2+TtispeUjtrAmZZlhYczU13xynCUBuYhYJS/cRN/szvn0thuPrD1NfXkdx1nWO/f0QAAlL9/HVzO0cXXuw6ZyTczm8ZC//mfv5r/vUmu2cHyadJuiq1WpOnjzJ+PHtG6tSq9Xs27ePyZMn07NnT4YNG8auXbvu6bV1Oh0ajcbk0dYKtsTERBYsWMCMGTM4dOgQ//rXvwgODqampoaBAweyefNmAPbs2cPJkyfZsmULAKmpqbz44ouEh4ezb98+hg8f3mLiHeHhotPoKLt0k659u7W7/7WfC/AepMChqyOu/u5cSc27844t0Ov16LQ6k4de1/qCqeKs65z7dzI9RvQkYtE4QqeFI/d0QqNS46xwY8CLhl90Q+Y+zu+WTmTAS4b/FMrzSkj96CiuAe4M/d8ncA3w4KdPjt3TOXd0nWZ4obS0FJVKRY8ePdrVPyEhgbKyMp5//nkApk6dymuvvUZ+fv5d1yqbPXs2s2fPNmlrq6rv6dOn6d+/P0uWLDG2Pfvss8Y/9+ljqIsVEhJiUmVi7dq19O/fn507dwKGhD0lJSVs2rTprs5XMK+GWiU6jQ5bN/s7dwZuXriGulaFzxBDsppug/1Ij0mhtqQa+y7yu3rttM9OkvbZSZO2tqoKl+eX4uTjStDEpjFi74EK45/l3oZ7FU7dXXHo2jTMkXMwHScfF8JmjQKg62M+NNQoyf3eNItfZ9BprnTvVkxMDB4eHsaf8lFRUUgkknu62n3nnXdITU01edxeqPJWoaGhnDlzhkWLFnHs2DE0Gk27XiclJYVJkyaZtE2ePPmuz1d4uF1JMS2x0y3MFyRwNSX/ro8V9FR/Hl/+lMnD74nWy+0493CloqCUczEplPxShE7bvpwj5XkleIWa3rDzHqRopfejrdMEXTc3N2QyWbvGOJVKJXFxcURGRlJdXU1FRQV2dnYMGTLknoKuQqEgLCzM5OHt7d1q/zFjxvDJJ5/w3XffMXLkSDw8PFiyZMkdg29RUREeHqY3RW5/Ljx8rO1tsLCyoL7szmOcWrWG62kFdH3MB7VSTUOdCkuZJS5+Xe5piMHOzQEX3y4mD1sXu1b7e/TxZuD0CIozr3P0g4MceC2GjNjTdwy+qqp6ZHJbk7bOmm+30wwvSKVSwsPDOXz4MKtXr26z78GDB6mqquLTTz/l008/bbY9Jyen1Xy6/y0zZsxgxowZXL9+nS+//JK33noLhULB3LlzW92na9eu3Lxpepf79ufCw8fCygLXAA9unr9Gn/9p+Wd9o6L0q2jq1RQcv0jB8YvNtlffqETuee/TEdtDMSIQxYhAlBV1FCbncj72J+zcHPBv4wpZ5miLqrrepE1Vrbyv5/mw6jRXugCvvfYaKSkpfPHFF822qVQqvv/+e8AwtODl5UViYqLJIz4+HqlUes831O6Fl5cXr7/+On379uXChQsAWFtbG8/5VoMHDyYuLs6kbd++feY5UeE3CRjbh/K8EgpPNV/YoFVrKc68DhiGFmycbBmxeLzJY/jCsUgsLcw6i8HG2Y7A8f2QeztTfc1QxsrCyhIAnUZr0tfFrwvXz5j+ymxMQ9nZdJorXYBJkybxl7/8henTp3PixAkiIyOxs7MjPT2dTZs2MXHiRIYOHcr+/ft55ZVXWlzBNW7cOHbt2mWyEOJOcnNzTZKUA8hkMkJDQ1vsv3LlSioqKhg1ahRubm4cPXqUjIwM3n33XcAwVczCwoKPP/6YP/zhDzg5OREUFMTixYsJDw/npZde4uWXX+bUqVPNgrDwcPIO7YH/6N789H/HKL1YjGd/HyytLam6WkHud5l07e+Di38Xbpy9gu/verW4gsujrzdXUvIIfnpAC6/Qstriasoumf4asrCyxFnRchXrzLgzqOsacOvlicxBRklOEVVXK4xJ0h26OoJEQv7RX/AZ4ofUzhq5pxOBE/rxw/vfcvqjH+keHkDZpWKup3XO6YydKugCREdHEx4eztatW/n8889RqVT07NmT559/nkWLFvHNN99QV1fHCy+80OL+L774Ii+88AIZGRn069e+ZM1r1qxhzZo1Jm0KhYL8/PwW+4eFhbF+/Xp27txJbW0tAQEBbN261XhTzN3dnQ0bNrBu3Tqio6MZOXIkSUlJDB061Fhzbe/evURERLB9+/Zm84+Fh9OAF4biGuBOXmI2hScvodNosfdwxGeIHz3H9eVGWiHaBg3db0sm3qj7MH9O/+tHqq6UG8vs3EnOgXRyDqSbtNm52TN+bVSL/Z19u3Dx8HkKT+WiUWmwd5cT8vIwuv16U0wmt6H/84P55dB5Lh3JpEsvD0a++Xtc/d0J+/MoLnz1M1d/uoxbTw8G/WkEx9Yduou/oUeDSGIumI1IYi48LEQSc0EQhE5CBF1BEAQzEkFXEATBjETQFQRBMCMRdAVBEMxIBN07OHfuHKNGjcLW1haFQsHGjRvvuE9SUhISiaTZ4/YENzqdjpUrV+Lt7Y29vT2///3vm00j0+l0rFq1Ch8fH2xtbQkPD28251fonCoLy/jxg4PEzfmc+MV7uJhw4a721zZoiF+8h69mbqemqMrYrtNoSd6SyKG3Yomb8zkHFsaQvCXRpA8YMpRdTDhPwrJ9/Gfu5xx6K5bz+35Gq25frpDOqtPN070bpaWljB07lrCwML755hvS0tJ44403cHR0ZMaMGXfcf8+ePSYVJLp3N0348d5777Fu3TrWr1+PQqFg1apVjBs3jvT0dGQyQ9b9999/nw8++ID333+f3r17s3nzZsaNG0daWhr+/i3P1xQefaoaJcfXH8ZZ0YXwBaOpLCgjY08qUlspihGB7TpGzsH0ZivHAPQ6PRaWFgQ91R97dzmqaiU5357j2LpDjP7rJKS/Vpa4dOQCGbtP0/vZUFwD3Km6Us75fT+jqW8wpngUmhNBtw3//Oc/0ev17NmzBzs7O8aMGUNBQQGrV69uV9C9PfXirerr6/n73//Ou+++yyuvvALAgAEDUCgU7Nq1i2nTpqFSqfjb3/7GO++8w8KFCwF48skn8ff3Z926dcY8ukLnk5+UjV5vyFtrJTMkOa8rqyXrm7PtCrp1pTVcPHyBvs8N4uxO019OltZWDJ79O5M25x5uJCzdR2lOEZ4DDBcPV1Ly8BniR1CkIc2je7AXyioll4/miKDbBjG80Ib4+HgmTpyInV1T1qWoqCjy8vLIycn5Tcc+ceIE1dXVREU1rfzx9PRkxIgRxMfHA4blwzU1NYwdO9bYx9rampEjR3LgwIHf9PpCx1aUcRXPx7phJWu6buoW5ktdSQ3VNyrvuH/G7tP0GB6A3Kt9yXEai2Lemk1Mr9U3q6cmtZW2mQRdEEG3TdnZ2QQHm2ZOanyenZ19x/0jIiKwtLQ0XpneuvovOzsbGxubZgnRg4ODjceurzdkZWpMcNNIJpNRUFBg3C50PtU3qnC4LWA2BtCaG1Ut7WJUnHWdmxeuETwppM1+ep2hqkRdWS3n/p2MvYccj1uqW/SI6MmV5FxuXriGRqmm7NJNcr/PajMfryCGF9pUXl6Os7OzSVtjifby8vJW93NycmLJkiWMGjUKqVTK/v37eeuttygvL+e9994z7t9SRWAXFxfjsQMCApBIJKSmphIS0vQFOX36NHq9nvLycmxtbZsdQ3j0qetUWNvddpX563N1naqlXQBDFeFz/04h+OkByBzazmeb+fUZsr89BxgKWA5fONbkyjpgdG809Q0cX38Yfr2eUIwIpM+zLSdyEgxE0L0PQkNDTTKIjRkzBmtra9avX8/bb7+Ng4NDu47j5OTE1KlTWbVqFX369CEoKIiNGzeSlWUocWJhIX6oCHcnLykHrVprLNneFr8ngvEK7UFdWS0XD2Vw4sMEfrcs0hisC05cIudgBn2fC8PVrwtV1yq48NUZZI429J0y6H6/lQ5LfGvb4OLiQmWl6fhYRUWFcdvdmDx5Mkql0pgTt6VjNx7/1mN/+OGH+Pr6MmLECNzd3dm7dy8LFixAKpXi5tZy+j3h0Se1k6GuU5u0qesajNtaolGqufD1GYKf6o+mwVB1QqPSGLdpVKbHs3Wxw8WvC90GKRi+cBwNNSryfzDcy9Dr9JyLSSFwQj96TehHlyBP/J8I5rGpg/klPgNVlRj6ao240m1DUFCQ8aqyUePzoKCgezqmRCIx7q9UKrl8+TIKRVOtqKysLJNjd+3alWPHjnH58mXq6uoICgri1VdfJSQkBKlUek/nIHR8ck/HZjfMGp87eDq2tAuqGiXqWlWLVXgT//oNXiHdGfaXltOASm2l2HvIqS2uBqDh12M5dXc16efcwxW9Tk9daS0yRzH01RIRdNswYcIEoqOjqa+vN46dxsbG4u/vf9flemJjY7GxsTFW8o2IiEAulxMbG8vrr78OGGqcHT16lI8++qjZ/o2BuaysjN27d7Ny5crf8M6Ejq5rv25c+i4TbYMGS2vD1/ja6Xzs3eWtlutprDhxq8rCMtJjUgmbNRInH9cW9wNDwK65UYV3qKGatrWDDZbWllRcLsUrpGn+ecXlUsCQk1domQi6bZgzZw7R0dFERUWxcOFCzp49y5YtW9i2bZtJPysrK1asWMGKFSsAmDt3Lu7u7gwePBhra2v279/Pli1bWLp0Kfb2hg+jjY0NixcvZuXKlTg6OhoXRygUCmPZd4AdO3ag0+nw8/MjNzeXNWvW0KtXL2bNmmW+vwjhoeP7eBCXvsskeWsSPcf2obKwnNzEbEKnhZv0+3rWDoKfHkDwMyFYSq1arDgB4OLnbiyZXpicy83z1+ja1xuZky31ZbVcPHweC6klipGGOcASCwm+I3vxS3y6ocabvztV1yrI/PoM3gMV4iq3DSLotsHNzY2EhATmzZtHZGQkHh4erF27ttnCCK1Wi07XNH8xODiYjz/+mPXr16NWqwkMDGTjxo3MmzfPZL9ly5ah0WhYsWIFlZWVjBo1ip07d5pMEdNqtXzwwQcUFBTg6urK1KlTWb16NVZW4p+uM5M52BCxaBxnvzjFyY1HkDna0i9qULOFEXqdnrstVCD3dKLw5CXOxaSgrmvAxtkO92Avhi0Iwcapac5636hBSO1lXD5+kez9Z5E52tIjoie97zAVrbMTlSMEsxGVI4SHRaeoHGGO4C483DrUZ6BDnaxwtx7kP65Zgq5SqSwvLy8XH+JOrqSkRAdUP+jzaIfqhprb5k8JjwydVodOrZUCNQ/i9c0SdDUazY9xcXEd4csm3CdKpZJTp07JgBMP+lza4diNc4VqcbH7aCrNKcLKRpqr1+sfyGRicw0vHMnOztZ8+eWX4lPcCen1epYuXdpgbW2dqtfrbzzo82mHn9X16pJLRzKb5z0UOjR1fQPpu1LrNEr1A0vRZ5YbaQASiaSfra3tj2FhYVZTpkyRu7m5iWWsjzitVkthYaHuiy++qC0oKLheU1MzXK/Xlz7o82oPiUTia2ltdVLu7WznM8RXLnO0lTQubBE6Hp1GS2VhWUPhyVyNVqPdpVVp/qzX63V33vO/z2xBF0AikTgAkXK5fLxUKnVDLEN+1GmVSuXVurq6OCBRr9d3qHFSiURiA4y3lFk9ZWFl4SFBIj6vHZRer1dqVJosvVa3G8jQP8CxI7MGXUEQhM5O/M8tCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRv8PTM7cwIYvyIIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WCtJ48zI9cGi" + }, + "source": [ + "#### Make tree-based policy recommendations from CATE model" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SZL7vB1_9cGi", + "outputId": "b085ab61-7631-4959-b5e8-ed458e8e80d1" + }, + "source": [ + "from econml.cate_interpreter import SingleTreePolicyInterpreter\n", + "\n", + "intrp = SingleTreePolicyInterpreter(max_depth=1)\n", + "intrp.interpret(est, X, sample_treatment_costs=0.2)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 65 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-tWTr9ha9cGi" + }, + "source": [ + "intrp.export_graphviz(out_file='policy_tree.dot')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "J90REc4o9cGi", + "outputId": "44988977-d39f-4fec-cca2-fe02014c6bc9" + }, + "source": [ + "intrp.plot()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAEGCAYAAABvmUxSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wURf/A8c/c5dJ7IwmQAAmEXhQFFUWxV1CxNwT1sStieexYscNjxYIdRMWCHfSHiII0EaXXkARII5X05G5+f+zmuEsuDQIhyff9euWVu73Z3Znduf3uzO7tKK01QgghhGj/LK2dASGEEEIcGhL0hRBCiA5Cgr4QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOiLDkcp9b5S6knz9fFKqU2tnacah1t+hBDtiwT9DkQptVApla+U8mntvBwutNa/a62TWzsfNQ63/BxOXE/WDtLyT1RK7TxYy2/C+hcqpa5r5jyDlVJ/KaVKzf+DG0jbRym1QClVqJTaqpQ6/8BzLdoaCfodhFKqG3A8oIHzDsLyvVp6maJtae060NrrP9SUUt7AXOBjIAz4AJhrTq+d1stM+x0QDtwAfKyU6nXociwOC1pr+esAf8AjwGLgJeA7c5oPUAD0d0kXBZQB0eb7c4DVZrolwECXtDuA+4B/gQrAC/gvsA3YC6wHzndJbwVeBPYAKcCtGCchXubnIcAMIAPYBTwJWOspz2RgDvCpua5VwCCXz/sAC818rwPOc/nsfeBJ8/WJwE6Xz7oCXwI5QC7wKuAN5AEDXNJFA6VAlIe8NVbOa4ENZr63A/9xmbd2fnYAd5vbuNAsr6/5WSTGQbzAzN/vgKWe7XUssMJcxgrgWHP6JcDKWmknAt+41JEXgDQgC5gO+Lnm1awDmcBHHtY7DvjDXEa+uT3OdPk8DvjGzP9W4Pp68n8DUAVUAsXAtw3UweEYdbUA+Ac40WU5Hrc9EIBR7x3m8ovNvE0GPscIrHuBNUAv4H4gG0gHTnNZfr11uKFtATwF2IFyc92vNuE7fZq5DuUyLQ04w0Pa/uZyXdPOB55o7WOT/B3av1bPgPwdoh1tHFBvBo40D56dzOnvAk+5pLsF+Ml8PcQ8sA3DCGTXmAdZH/PzHRgnBF1dAsFF5sHSghFQSoBY87MbMU4EumC0TH7BPRh+BbxpHoCjgeW4BMRa5ZlslmMsYMMIjCnma5tZ3gcwAvYo84CdbM77Ph6CvlnGf4CpZh58gRHmZ68Dz7qs/w7MwOMhb42V82wgEVDASIyThyNq58dlGy83t2k4RsC60fxsCkYQrinz8a4HdZdlhGMEmaswguJl5vsIwN/cNj1d0q8ALjVfT8UIyuFAEPAtMMUlr9XAsxgnB34e1j3O3E/Xm9v3JmB3TT6BRea29QUGY5xsjapnuzr3W63t46yDQGeMk7WzMOrgqeb7qOZue5d6Vg6cbm67DzHq2YPmNr8eSHFJX28dbsK2WAhcV2v93wH/rWd7TAR+9JB+koe0noL+z8BXrX1skr9D+9fqGZC/Q7CTYYR5sIk0328EJpqvTwG2uaRdDFxtvn6DWi0BYBMw0ny9AxjfyLpXA6PN1wtwb9WeghkMgU4YLTU/l88vA36tZ7mTgaUu7y0Yravjzb9MXFq9wCfAZPP1+3gO+sdgBB0vD+sbhtGKqjlArwQuridv9ZaznvRfA3fUzo/LNr7S5f1zwHTz9eMYXbZJjeyDq4Dltab9CYwzX38MPGK+7olxEuCPERhLgESX+Y7BDHJmXisxex7qWfc4YKvLe39zW8RgBGo7EOTy+RTg/XqW5dxvtbbPeJf391GrxwGYB1zT3G3vUs9+dnl/LkbwrGm9B5nlCaWROtzQtjDfL6RW0G9kvz4MzK41bSZmPa813YbRs3Gv+fo0c9/Na+r65K99/Mk1/Y7hGmC+1nqP+X6WOQ3gV8BfKTXMvO4/GKO1ApAATFJKFdT8YRyo41yWne66IqXU1Uqp1S7p+2N0Q2POl17PvAkYB6MMl3nfxGgt1cc5v9bagdHVHFezHnNajVSMVmBDugKpWuvq2h9orZdhtApPVEr1BpIwWsCeNFROlFJnKqWWKqXyzHKexb5t5Emmy+tSINB8/TxGj8Z8pdR2pdR/G8hPaq1prttjFkZwArgc+FprXYpxqccf+Mtln/xkTq+Ro7UubyDvbvk3l4tZhjggT2u9t558NVXtenRRrTo7AoiF/dr2YFzWqFEG7NFa213e15SnKXW4vm2xP4qB4FrTgjFO2txorauAMRg9HZnAJOAzjO+M6EA61I0vHZFSyg+4GLAqpWoOOD5AqFJqkNb6H6XUZxgH/SyM6/01B410jK7/pxpYhXZZVwLwNnAy8KfW2q6UWo3RYgSjJd7FZd6uLq/TMVpJkZ6Cbj2c8yulLOayd9d8ppSyuAT+eGBzI8tLB+KVUl715OED4EqMg+acBoJdveU0fznxBXA1MFdrXaWU+pp926jJzP00CePErD+wQCm1Qmv9f7WS7sYISK7iMQI4GN28Uead35dhdBuDcU9CGdBPa72rvmw0N9+18hWulApyqXPxGNepm7Mu1+npGC3962snasK2P5Cy1Ky7uXXYVXPXvw5j3yutdc28A4HXPC5c638xLmkAoJRaglGnRQciLf32bwxGF2pfjFb8YIyb3H7HOPiB0dK7BLjCfF3jbeBGsxdAKaUClFJnK6WC6llXAMaBKwdAKXUtRku/xmfAHUqpzkqpUIyuWAC01hkYNxa9qJQKVkpZlFKJSqmR1O9IpdQF5p3Jd2IccJcCNa3ye5VSNqXUiRjdsrMbWBYY118zgGfMsvoqpY5z+fxj4HyMwP9hA8upt5wY9xj4YGyjaqXUmRhdrc2mlDpHKZWklFIYN+jZMW5Eq+0HoJdS6nKllJdS6hKM+vAdOFuBn2P0HIRjnATU9J68DUxVSkWb6+yslDp9f/Jbm9Y6HeOGuynmth4ITMDYzp5kAT0aWezHwLlKqdOVUlZzuScqpbrQ+LbPAiKUUiH7WZ79qcOumlI+Vwsx9vntSikfpdSt5vQFnhIrpQaa28NfKXU3Ru/H+81Yn2gHJOi3f9cA72mt07TWmTV/GHelX2G2apdhXLuNA36smVFrvRLjpqNXMW782opxXdIjrfV6jLvW/8Q4gA3AuEegxtsYB8V/gb8xglE1xoELjJMQb4yb4PIx7s6PbaBsczFOVmpuUrtAa12lta7ECPJnYrRWX8e4T2FjA8vC7LI9F6PrPg2j6/MSl8/TMX4loDFOmupTbznNFu3tGCcG+Rjd6fVdJmhMT4ybBIsxtvnrWutfPZQrF+NXGJMwbmq7FzjH5XIPGCd7pwCf12ql3oex35cqpYrM9bXkcwQuA7phtPq/Ah7VWv9ST9oZQF+z6/xrTwnMfTQa4ybOHIzW9z0Y93c0uO3N+vEJsN1cRxzN19w67Op/wFhlPEvjZQCl1I9KqQc8JTbr+RhznQXAeGCMOR2l1ANKqR9dZrkK46Q2G6M37lStdUUzyyfauJqbkoQ45MyW1nStde2u56bMOxnjBrYrWzxjDa/3XWC31vqhZsyz3+UUQoiWJC19ccgopfyUUmeZXcydgUfZd9PgYc+80fECjBZnQ+nadDmFEO2XBH1xKCngMYxuz78xfnP+SKvmqImUUk8Aa4HntdYpjSWnjZZTCNG+Sfe+EEII0UFIS18IIYToICToN5OSYVmFOCwol1HplFJXKKXmN2GeB5RS77RwPpRS6j3zrvvlLbnslqT2YxQ/sY9SaodSqkwp9VFr56U2ZYyeWK6U+qOxtE0O+kqGZa1DH2bDoB5u+WlrVAsP3drYQVYp1U0ppdVBHB2uNQ/06hAOVau1nqm1bvR5B1rrp7XWLb09RmA847+L1vroFl52qzgU+84MoqcczHU0sO5xTQmQHpyrtb7KZTndlFK/KmNo440Nlcd8lsK7SqkipVSmUuquWp9frJTaoJTaq5Rar5Qa4/LZpUqpTcoYFjlbKfWBUsr5NEat9SiMMT8a1aSgr2RYVnGQSR3wTLZLm5AA7NBalzR3xra8f9ty3lvQJxg360ZgDMI0RykVVU/ayRjP1kgATsJ4eNgZYDz0CuPBUndhPEr5HmBWzUOxMJ53cpzWOgTjAU5eGCM4Nl9THtCPDMsqw7K2wrCsZrrrXcq7nn0jojW2j14DvjfnW4Y5aAzGnfVTMR5QUoQxVGp/6h+6taE6OY4DGCrV3C6afUO5HmMuc7GZx1yMetzQdgwz92OOmYfvMFqc9ebBXOfNwBazXE9gjDy3xNwmnwHeLvls7Htcp45Rz1C1HrbB+2Z5fjbz8huQ0FjdMz9biDlATc2+cPmsn7nMPHObPeDy3f/YJV1Dw/COw/iO7TX37RUe8j/B3L52s4yPudTbreb6v3Etu7n9bzG3f0o99b7ZwwO7fD7a3F9FGHX3DJft9QRG/dqL8QCpSA/rbmiY4TkYwakIuI6GhxJOxHg6YC7G8WwmEGp+9pG5/DJz+fdiPKRJm+VLx6jPNwJHYdSvAmp9jzAeSLTBTDsP97qjzfm3mPO+hvH971NrnxU0MQ7uAE5xed8LI3a5Dhj1O+YomB7m3437MMxPYA6YhDGgV3at9DnAMR6WE4jxRNAfak0fh8t3oN5yNLGwMiyrDMvaGsOyXoRxIDnKLG8S+wY1aWwf5QJHm3meyb4v1+nAXxijotUcAGJr79taeaivTo6jmUOl1lp2N9d967LMauA2M+9+jWzHCOBCc18EYTxO92uX5dXJg7nOuRgtin4YB67/w2hBhGDUv2ua8T2ur46dSK1R6zxsg/fNfXeCWQ/+h3ngooG6V7tsuBzwzO2QgfEEQl/z/TCX7/7H5ut6h+HF+A4Xsa9OxWKMQeCpDM51m+9HYQS5I8wyvQIsqrX9fzbL56neH8jwwEdjnCCdas7bGejtsr22YQQrP/P9M/WUqc6+Y99xc4y5bD8aHko4ycyHj7lNFwHTah2fXINoN3PbTDf322kYwflrc9mdMeriSDP9aIzjQB+M+vEQsKTWdv4O47sejxFEz/C0z8xplwP/NlBXa+f3fGBDrTSvAq94mDfMzE8nl2ljgTUu8eM3jJ50q7mNdwIBLulHmPtWYxyHTqu1jjpl8liORhPIsKwgw7K21rCs82rKVmt6U/bROy6fnQVsNF+Pwhh4Zzi1ejbwEPQbqZPjOIChUqk/6Ke5vG9wO3pY5mAg3+V9nTyY6zzO5f1fwH0u71/EPDjTtO9xfXXMrT7Wk9/3cRkeFqMVY8doDDRW95xlwz3oXwb8Xc/6JrMv6Nc7DC9GECvAOKGqE5hrzeNct/l+BvBcrTJVAd1ctv+oBpZ3IMMDvwlMrSfdQuAhl/c3YzbSPKSts+/Mbed68tLc4+4Y1/1C/UG/s8u0XOASl/dfAHear38EJrh8ZsE4AUpw2c4jXD7/DPivp33WlD8P+b0KlzhiTnsKD0NDm/VZ43K8wzgh2uHyfgJGz0O1WY6z68lHZ3Nf9GqoHtb315Rr+tcgw7LKsKzuDtWwrF0xWiae8tTYPvJYbq31Aoyz8deAbKXUW643xNTWSJ10W48+8KFSa7ju8wa3ozIGT3lTKZWqjGfjL8IYQdHayDpqDxdb+31NGZryPa6vjjWV63exGKNLvOa72FDdq0999aa2BOoZhlcb1+cvweh5y1BKfW9+d5vCLd9mmXJr5Tu99kxNyRc0egxorOwttq9o5LirlOqklJqtlNpl1s2PaXwYY2he3fyfy7rzME6SGz0OtJAmD21spq35vE5a8wbA5zBOtrwxenDeUcbIl260MeLlTzQ+gJhHDQZ9tW9Y1pHm3YaZGNdsByljWFY7xtnTZeafp2FZQ13+/LXWn7jm32VdCRgDldyK0X0XivEEtOYOy1qzrmCtdb8GilffsKy7MYdldUnb0HCfrnmIb+DmlpphWa/iwIdlfQGjmygUYzCX/RqWVWs9SWvdA6NL6S6l1MkektY3LGvN9qg9LGvNKH2uw7LW7JMQrbXrl07TsHSMbkxPedqffWSsVOuXtdZHYow01wvjppk6+WlCnWx0Vfv5uev0xrbjJIwBcIZprYMxuslxyWNjeWhMU77H9Wnqul3reCBGt3fNd7GhutdQnpsyWl3NMLyuZQvQWj8DoLWep7U+FSPYbsSoC03hlm+lVADGZRjXfDe0berNVxOOAfV9Z5qrKXWzsePu02b6AWbdvBL3705L1M3/1NpOflrrJU2Y90DXDca9RD2U+6ijg8zp7ivTOh/j2D6onrSDMXpRVmqtHVrrFRj3ItX3awAv9nM/N9bSl2FZZVjW1hyW9R3gbqXUkWYdSjID8f7uI5RSR5l10obRbV7uUu7aQ5s2Vicb09hQqTnmuutN04TtGIRxUlCglArHeM5/c/LQmOZ+j2uvuylD1Z6llBqhlPLGuLlpqTZGy2uw7jXgOyBWKXWnMn4mFaSUGuYhXb3D8Jqt1NFmwK7AaKl5+n548glwrVJqsBmknwaWaa13NHH+AxkeeIa57pPN42DnZvRQuGp03zXhuBuEsd0KlXF3+j21FnGgdXM6cL9Sqh+AUipEKXVRE+fNArqYdW6/aK03Y1zue9TcR+cDAzFOyjz5EHhIKRVm7pPr2Te08Qrg+JqWvVJqCMZlzH/N91copeLN1wkYlxH+b3/y3VjQvwYZllWGZW2lYVm11p9jVO5ZGN1gXwPh+7uPTMEY2zgfows2F+OEBWoN3dqEOtmYOkOl1ipfqVm+xeY6h9eznIa24zSMG6r2YJy0/tScPDSmud/jWvM2dajaWRgnK3kYNwtfac7flLrnab17Ma6XnovRvbsF4ydStdPVOwyv+XcXRqs9D6O79aYmlvsX4GGMg38GRovs0qbM21i+GjsGaK2XY9z9PhXjZP436vaWNCUPTd13DR13H8O4mbEQ45c0X9aadwpGECxQSt29H3n8CuNG4Nnm92ItxjGhKRZgtLIzlVJ7wBlY67TSG3EpMBSj7M8AY7XWNY2E2st7FOPSSyrGfnlea/2TWZbfMH8doZTai1F3ntZa1zxwqi+wRClVgnEM2oTxvWy2NvvsfSXDsgrR5iml3se4YazJ3wkhWoMynnYaC3yltb6msfSHklLqZ4ybk5drrT1dpnVqMw9XUMb9BSdhtII70caGK1X7hmUd0ki6Nl1OIYRoj/Rh/LRT896TJmlLz95vs8OVKhmWVQghxGGgzXbvCyGEEKJ52lJLXwghhBAHQIK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXQgghOog2M8qeEAeTUsobY3TDbsj3oj1xYIxp/4vWuri1MyNEa5MBd0SHp6xeVyqL9U2/mKTqgK59vZTNW3rA2gltr3aUZ26vLk7910dZrM/YK0ont3aehGhNEvRFh6aUOsXqHzK3/31f+vt36d3a2REHSWV+JmufGVNaWZB1t6Oq4o3Wzo8QrUVaNKJDs/oFT0wY+6AE/HbOOyyGxPFT/S02n7tbOy9CtCYJ+qJDc1RXnhA6cFRrZ0McAsE9j8ZRVdlFKRXW2nkRorVI0Bcdmq6u9LMFhrd2NsQhoCxWrD7+VUBIa+dFiNYidykLoVSLLKZ8Tzp/3zccAJ+ILhzx3LImz5v25bPs+v5lAOIvvJ/OZ93aInkStbTQvhairZKgL0QjtMPBuucvwuLlTZ+7ZqHMwOGormLtU+fgE5VA8s1vOdP3vuNDArsPdltG0ZYV7Ph0MqXpG7AFRxB78gTizrjR+Xnns24l5uRrWfPEWYemUAeoIj+DlJkPUbh+EcrqTcSRZ9Ht0slYfQPqnadqby6pc56mYO1C7KUFBCQMottljxGYMMAtXVlWCmlfTKFww2IcVeX4depOj2ueJ6jHEBzVVaR//TwFaxZQnpOK1cefoKSjib/wv/jFJB7sYgvR5kn3vhCNUBYLSeOnUrx9FZkL3ndO3/nNi1QWZtPj6mfc0nsFhGILinC+r9izkw1TLycwYSADH/2J+PPvI+2r58hc+KEzjdU3AO+QaJTFekB5dVRXUlmYfUDLaIx22Nn4v6upLs6j371fkHzL2xRu+J1t79d/j5zWmk2vjqds92aSb3mHgY/Owy8uifUvXEJlQZYzXcWenaydMhqf8Dj6TvqEwU/8SsJFD+MVYPTIOyrLKNnxD53PupWBD/9Inztn4qgsY/0Ll2Avk5/hC9EYCfpCNIFvVDwJlzxK2pynKMvcxt5tf7H7pzdIHPcCjd0TkLnwQ2xBkXS/8mn843oRdexYYk6+lt0/TW+x/O3d9hfbP7qfv+4aQu7yb1psuZ4UrFtEafp6kq57mcBuAwnpfSzdL3+S3BXfUJG7y+M85dkp7N26ku5XPEVQjyH4xSTR48pnUFYvt5OftC+fIbTvCXS7dDKB3QbiGxVPaP+R+HXqAYCXfzB97/6UyGFj8ItNIiChP0kTplGZn8He7asOarmFaA+ke1+IJup0wuXkr57Hlndux15aSPSISwkbeHKj8+3dupKQfsc7LwsAhPU/kYx506kszMY7JHq/8lOxZyc5f84h588vqMjdRdigU0i89iVCB+z7NcL2D+8jZ+mXDS6nz50fE9xrWJPXu3fbSnw79cA3sqtzWki/kaAs7N26Ep+IznXmcVRVAGCx+TinKYsFi5c3ezcb9z5oh4P8f34m7syb2TDtKopTVuMT0ZlOJ11Dp+Mvqzc/1WV7AbD6+DW5DEJ0VBL0hWiG7lc9w6p7h+EdEk3CJY82aZ6qomyCex/jNs1mBvqqguYFfXt5CbkrviXnzzkUbVlOUNJRxJ1xExFDz8HLP7hO+q5j7iH29Bs9LGkf77CYJq8foKowB1twlNs0i5cNr4BQKguzPM7jF5OEd3hn0r56jsRxL2D1DSBj/ttU5mdg8TaCddXePdjLi9n1/ct0GX038Rfcx96tK0n5+EGUshA94pI6y9UOBzs+eYSgpKEEJg5tVjmE6Igk6AvRDDl/zMbi5U1VUQ5lmdvq3IR2sOWu/I5t70/CNyaRAQ993+j6bcGR2IIj93t9y27u6Xwd3HMYfSZ+vF/LsXjZSL7lHba9P4mVd/QHi5WQvscTOmAUFXvSjETm00HDBp5C5zNuAiAgvj+lGVvI/L936wR97XCw7YN7KMvYQr/7vnTrSRFCeCZBX4gmKk5dw85v/0fPG14ld9WPbH3nDgY+8qNbl7UntuBoqopy3KbVvLeFNq9rP3zI6djLHiPnzzmsfepcQgecRNTwCwgbfCoWm2+d9AfavT/w0fnO1xZvY/m2kCiKNv3pls5RXUV1SQHeIZ3qXU9gt4EMmvwz1aVFaHsVtqAI1jxp/PoBwCswHGX1wi+ul9t8/nG9yF32tds07bCz9d2J7N2ynH73zMEnPK7BMgohDBL0hWgCR1UFW9+5g4ijziVi6DkE9z6Ofx45mfSvXyDhogcbnDcoaSi5K79zm1awdiE+UQnNvp7vFRBK7KnXEXvqdZTu3kzO4s/Z8elktn1wL+FHnkXU8PMJTj4WZTHu0T3Q7n2/Tt3rlidxKLu+nUbFnp34RHYBoHD9ItAOgpIa72KvuQxRlrWd4h3/0OOa5wCjNyCw+2DKMre5pS/L3IaPy/0D2l7NlrdvpTjlHyPgm3kQQjRO7t4XognSvnwGe1kR3a94EgBbYBiJ455n9/w32bt1ZYPzxpx4NVVFOWz/+AFKd28hZ+mXZPzfe26/098f/nG9SLjoQY54bgW9bnoTXV3JxleuJfPX951pbMGR+HXq3uCf1bt5N8CF9jsB/6592fLO7RTv+JeiTUtJmfUwEUed57yJryI/g78fPIHcVT8658td+T2FGxdTnpNK3t/z2PDiZQQlDSX62IucaeLOvIW8v74n89cPKM/eQc6Sz8leNJOYUdcCRsDf9MZ/KNq8jF43voGyeVNZmE1lYTb2yrID2JpCdAzS0heiEUWblpLxywz63PkxXv77nuAaNvBkoo+7hK3v3snAR3+ud36fyC70mTiTHbMn8+9jp2ELiqDrmLuJOfHqFsmfslgI7XcCof1OwF5RSnVJfosst/71Wel9+wekzHyIdc9egPKqeTjPY8402l5NeeY27KVFzmlVRTns+HSyeSNgBBFHnUfX0XejrPsOQ+GDTyPx2pfY+d3/2DH7MXyj4ul26WPO6/kV+Rnk//0TAGuePNstX4nXvuTxZj8hxD4ytK7o0JTFWj1s+jarxcv7gJdV8xje/g98Q1Dikfu1jFX3DqPTiVfJY3gPkhV3DCipLs7rr7Xe0dp5EaI1SPe+EC1s/QsXs/rhk5o1z85vp7Ls5p5U5Hl+uI0QQrQE6d4XooX4hMUy+Ok/ALBYbc2at9NJ44g4egwAtiAZ9U8IcXBI0BeihSirl8e73ZvCFhiGLVCGeRdCHFzSvS+EEEJ0EBL0hWhjts64k/VTr2jtbAgh2iDp3hdCtLisRbPIWTKH0l2bQNvx79ybLudOJLT/SPd0v81k10+vU5m3G7+YROLHPkjYgH03QWqt2fX9y2Qt/JCqvfkExPej++VPENh9sDONo7qStDlPkbP0KxwVJQT1HEb3K57a70stQrRn0tIXQrS4wo2LiRh6Nn0nfcKAh74nKOkoNr58NcUpq51pcld+z/aP7yfutBsY+Oh8QgeezKZXx1OSvt6ZJmP+m+z64VUSLn6EgY/8iF9sEutfupzKwmxnmtRPH2fPsrkkTfgf/R/4BmWxsuGly+VhPUJ4IC19ITwo2rSU1DlPUbprI8pixTe6Oz2ufobAboPQDjvbP7yPwo1LqCzIwju0E1HDL6DzOXdg8TLu2k+f+yJ7ls+ly7kTSf/qOaqKcggdMIqkCdPI+3se6XNfoLpoD6GDTiHxmuex+vgDsO65sfhGd8fqF0jO4s/QDjuRwy+g26WTqe9ZAlprMua/RdbCD6nIy8A3qisxp0xwe/hP1sKP2D3/LSpyd2H19Scgvj/Jt77rXG9L63XDa27vEy56kPx/fibv75+crfTd894g6pgLiTnpGiPNhfdTuP53Mn6ZQdK1L6K1Zve8t4g7/ScdzxsAACAASURBVCYijx4NQOK4FyhY8yvZi2bS5dyJVJftJWvRTHpc/ayzh6Dn9a+w8q4h5K38nqhjxx6U8gnRVknQF6IWba9m46vjiR5xKUnXvQzaQUnaWueT47TDgS0kmp43vIotOIrStHVs/+g+LDYfOp99m3M5lfkZ5C6fS/Jt71JdnM/m169n02vXYfHyJvmWd5zTMua/SZdzJzrny13xDZHDxtDvv19Tnp3CtvcmYfULIuHC+z3mN33uC+xZ9jXdL52MX1wyJan/su2D+7B4+RA94hKKd/zD9pkPkjRhGsFJR1NdVkTR5qXOUe082TD1Soq2LGtwOw1+YqHzsbuNblOHA3tFCRbzJMNRXUlJ6hpiT7nOLV1o/xOd4xRU7EmjqjCL0H4nOD9X5uh8Reajj0t2/IOuriS0377LBl4BoQR2H8zerSsk6AtRiwR9IWqpLtuLvbSQsMGnOq8L+8UkOj+3eNmIP/9e53vfyK6UZaeQs2SOW9DX1VUkjp/q/Cle+NCzyfnjM4ZOXY1XQKhzWuGGxW5B3ysogu5XTkFZLPjH9aRy9CRSP3+SrqPvdvYk1LBXlJExbzq9b/+AkD4jjPxExVOWsYXMBe8RPeISo3Xv40/4oNOw+gXiAwR07dvgNugx7nkcleUNpvEOrX9Evdp2//ga9vJSokdcCkD13jy0vbrOsL/eIdFUmV33Nf9tIVFuaWwh0ZTu3ABAZWEOKFVnObbgKLdLAEIIgwR9IWqxBYYRddzFbHjpCkL6HEdI7+MIH3o2vi4jvWX9NpOs32dRsScdR2UZ2m6vE5C9w+PcfnvvHRyNd3icM+DXTNu7ebnbfIE9hjhHyQMI6nkUjsoyKvakuZ18AJTt3oSjspyNL48Dl/Hktd2OxWZcDgjtewI+EV1Y9d/hhPQbSWjfEwg/4kznaHee+ITFNmFLNU32H5+y87v/kXzbu80eVVAI0bIk6AvhQdL4qcSeej0F634jf80C0r56jl43vkH4kNPJXfEtKbMeImHsAwT1HIbVL5Dc5XPZ+d0rbstwHUjGmKA8TtPasd/5rJk3+ZYZ+ETFuy/aPHGw+gUy8JGfKNqyjML1v7N73nTSvphC/we/dTuRcdVS3ftZCz9ix6ePkXzLO4T23ddN7xUUjrJ6UVW0xy19ZVEONvPEoOZ/VWEOvlEJzjRVRTnYzF4G75Ao0Jqqoj1uPQ9VRXvwj+vZYN6E6Igk6AtRj4CufQno2pfOZ9zExlcnkP3HbMKHnE7R5mUEdhtI7KnXO9OW56S32HqLU1ajHQ5n0N67dSUWb198IuPrpPWPS0Z5+VCRm17n53CulNWLkN5Gr0WX8ybx191HkrfqR+JOu8Fj+pbo3s/4ZQZpXzxN8i3v1smbxcubgIQBFKxbROSwMc7pBWsXEpR0FAA+kfHYQjpRsP53gpKGAsa9AYXr/yDmpKsACOg2COXlTeH6RUSZQ/RWlxZSnPI3nU64vMH8CdERSdAXopbynDSyFn5E2ODT8AmLpTw3nZLUNc7g5BuTSPYfs8lbPR+/2J7kr55P/up5Lbb+qsIcUmY9ROzJ4ynL2k763BeJGTW+zuUDAKtvAHFn3kTq508BENz7WByV5ZSkrqGqOI/OZ9xE3ur5VOSkEtRrOLaAMIq2LsdeWohfbP0t4QPt3t/903TSvpxC4vip+Hft47y+brH5Oi8rxJ1+I1veuoXAHoMJST6WnCWfU5q+nsRrngdAKUXc6TeQPvcl/GOT8OuczO55b+KoKif6BOPhRF5+QXQ64QpS5zyNLTgKW0g0aV8+g3doDOFDz/acOSE6MAn6QtRi8fajPDuFzdNvpLo4D1tQBOFHnkXX0XcB0GnklZTu2sDWGRPBUU3Y4NPocu5EUuc83SLrjzx6NMrqxZqnzwOHnchhY+g65u5608ePuQfv4CgyfnmXlFkPY/Xxxy8umdhTJgDG3ewZ899i57fTsFeW4xvZhW6XPe72EJyWlrngPbS9mq1v3+Y2PerYi0iaMA2AiKHnUF1SwK4fX2fHJ4/iF5NI8q0z3G4yjD3tPzgqy0mZPZnqYuPhPH3vmuV2b0DCJY+grFa2vH0b9opSgnseTZ+7ZmL19jto5ROirVK6gZ/tCNHeKYu1etj0bdb6fgN/qK17bix+MYn0uPrZ1s5Ku7TijgEl1cV5/bXWO1o7L0K0BnkinxBCCNFBSNAXQgghOgi5pi/EYaTfvXNaOwtCiHZMWvpCCCFEByFBXwghhOggJOgLIYQQHYRc0xeijaram8uu718m759fqMzLwCsgFP/OyXQ66WrCh5yBMp/FX7D2NzZMu5KwgSfT+/b3Adg6405ylnze4PKHPLuUnMWfsfObl+p8ZvHxZ9jrW1q8TEKIg0uCvhBtUEXuLtZOGY3F25f4MfcSEN8PgMJNS0j97AlCeh+Ll38IAFmLZhJ3+n/IXPAelQVZeId2ottljxM/9gHn8lbdO5yEsQ8QcfR5zmm2oAgAfKO70e+/X7mtXynpJBSiLZKgL0QbtP3j+9EOOwMe/hEvvyDndL/YJKKGX4jF5gMYA8/k//t/DJnyB2WZ28he/Cldzr7dfBSu+yh7Vr8gz6PgWawyOp4Q7YScrgvRxlQV51OwZgExo8a5BfwaVt8A52h+2Us+J7jnUfiExRJ1zIVk/z4beQqnEB2XtPSFaGPKs3eA1vjF9Wo0bfaiWXQ55w4AwgadyrYP7qVowx+E9D2+6evL2s6ym90H5wnuOYw+Ez9uVr6FEK1Pgr4QbU7TWupFm5ZSWZBJ+JFnAWCx+RBx1DlkLZrVrKDvExlPn4kz3aZZvH2bnl0hxGFDgr4QbYxvdHdQirLdm+GIM+tNl7VoJo6KUpbf2nvfRK1RVhtVxXnYAsObtD5l9cKvU/cDzbYQ4jAgQV+INsYWGEZo/5PIXPA+sSdPwOoX6Pa5vbwER1U5uX/9QOK1LxHYbZDb5xtfm8CeP78g9tTrD2W2hRCHAQn6QrRB3a98mrVTxvDvE2fQdcw95k/2FEWblrLrx9eIPu4irN6+RB1zofOmvhoRQ88ha9EnTQ/6DjuVhdl1JtuCo5zPAhBCtA0S9IVog3wjuzLwkZ/Y9f0rpH35LJX5NQ/n6U23Sx4l/evnCRt8ep2AD0bQ3/3Dq+zdupKgpKGNrqs8ewd/3TWkzvSh09ZgC2raJQIhxOFByc93REemLNbqYdO3WS1e3q2dFXEIrLhjQEl1cV5/rfWO1s6LEK1BfqcvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchP9kToo3J+m0mu356ncq83fjFJBI/9kHCBpxUb/qC9YvYOfdFSnduRFm9COg+mIQL7ycgvj8AlQVZ7PjscUpS11CelULUMReSNGGa2zLWPTeWok1/1lm2X1wvBj/xa8sWUAhx0EjQF6INyV35Pds/vp/ulz9BcPKx5Pw5h02vjmfAQ98T0LVvnfTlOWls/N84YkZdQ+L4qeiqStK/eZH1L17GkS+swGLzxVFdiS0wnM5n3kLWwo88rrfXzW+j7VXO97qqkn8ePZmIoecetLIKIVqedO8L0YbsnvcGUcdcSMxJ1+Af15OEC+/Hv0sfMn6Z4TF9Seq/aHsl8Rfej1+nHvh36U2X8+6iujiP8uxUwHjQT/fLnyB6xCVYA0I8LscWGIZ3SLTzr2jrcuyVZUQff8lBK6sQouVJ0BeijXBUV1KSuobQfiPdpof2P5G9W1d4nCew22CU1ZvsRbPQ9mrsFWVk//4Jvp164HsAg+hkL5pFaP8T8QnvvN/LEEIcetK9L0QbUb03D22vxhYc6TbdOySaKg/PxgfwiexC37tns3n6TaR88ghoB34xifSdNJv9fQphWeY2ijb9SfKt7+7X/EKI1iMtfSHascrCbLa9N4nIo89j4EM/0O+eOdiCo9g8/Ua0w75fy8xaNAtbSCfCBp7cwrkVQhxsEvSFaCO8gsJRVi+qiva4Ta8sysEWEu1xnswF76O8vOl2yaMEJPQnOHk4Sde9TPH2VRRtXtrsPDiqK8lZ8jnRIy72OJiPEOLwJkFfiDbC4uVNQMIACtYtcptesHYhQUlHeZzHUVmGsrh/zZXFarzYj8G28v7+ieriPKKPv6zZ8wohWp8EfSHakLjTb2TP0i/IXPghZRlbSftiCqXp64k9ZQIAqV9MYd3zFzvThw08mdKdG0j/+gXKsrZTnLqGre/dhXdYDIHdBjvTlaStpSRtLY7yYqpLCihJW0vp7s111p/920xC+ozANyrh4BdWCNHipH9OiDYkYug5VJcUsOvH19nxyaP4xSSSfOsM52/0qwqyqMhJdaYP6TOCnte/xu55b7B7/ptYbL4EJR5BnztnYvULdKb797HT3daT/8/P+ER04YjnljmnleekUrhxMT3/8/pBLqUQ4mBRej+6+IRoL5TFWj1s+jbr/t7JLtqWFXcMKKkuzuuvtd7R2nkRojVI974QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOgLIYQQHYQEfSGEEKKDkKAvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXHZqyWOy6qrK1syEOEW2vUoDscNFhSdAXHZrFxz+tOPXf1s6GOAQq8jNwGCd4Oa2dFyFaiwR90aE5Kkrf3/3T9HLtcLR2VsRBljH/7WqLzftbrXVVa+dFiNaitNatnQchWo1SKsDqG/hrQMKAfjGjxvn7xfVCWW2tnS3RUhx2ynNSyVn8eXn+mv/LcVSUDtNaZ7R2toRoLRL0RYenlPIHrvQKCL1aO+zd0NrrYK1Kax2mlKoEig/SOtoMDX6gAxQqDzg4XS1KOZTFmlldWjQT7fhAa73noKxHiDZCgr4Qh4hS6llgMHCW1tre2vk5HCilXgPigAu0HIyEOOjkmr4Qh4BSajRwKXCFBHw3d2EE/UmtnREhOgJp6QtxkCmlEoE/gXO11staOz+HG6VUArAMuFhrvai18yNEeyYtfSFamFJqpFJqmvnaD/gCeFwCvmda61RgHPCJUioGQCl1m1JqQqtmTIh2SIK+EC3vJKDEfP0qsAF4rfWyc/jTWv8EvAPMVkp5AXuBk1s3V0K0PxL0hWh5RwCrlFLjgWOA6+UmtSZ5HKgAngRWYWxHIUQLkqAvRMsbApQBzwIXAjal1E1KKd/WzdbhSRluAGKBK4DLgUQgXikV2KqZE6KdkaAvRAtSSkUDQcArwAPAVcBW4ChAWvv1SwD+BZ4C7gTeBLYAg1ozU0K0NxL0hWhZR2B8r4owWvphwJFa6/Fa64pWzdlhShseBHphPBf/bSAF6A4Ma828CdHeSNAXomVdBgQAi4ABWuubtNY7WjdLbYPWeo/W+iGMrv1vAR+M7SmEaCHyO30hWpBSKhawaa3TWjsvbZ1SKgyI0Fpvbe28CNFeSNAXQgghOoiDNbCIAMzfG58X7Gu92qJUL0CGbxOtQmuNUqq8stqxpLTK8b7W+s+az5RSVuBcq1/QVcpi7YPUU3EImHWyyF5e8r22V30oPTqHhrT0DxKllC3Q2/JlXIjPieOHxQb27uSPt1W1drZEB6WBsio7S3cU2WcszawoqbQ/XFHteEkpZbX4BnzmExZ7WszJ4wMDuvZFeXm3dnZFR6A11SUF5P/zS0X2H7OrHZVl52itF7Z2tto7CfoHiVLqP4PiAl76cnx/f1+b3C8pDh87CyoY9drqspJKxxDgGP/4fq/2v39ugNXbr7WzJjqowvW/s+Hla4p0VUWE1rq6tfPTnkk0OkhCfK0TbjuhswR8cdjpEurDhYOiLDarutTqHzKh85m3SMAXrSqk7/H4RnYFGNnaeWnvJCIdJJV23WtQnDxMTByehnYN8gnwth6p7dW9A7sPbu3sCEFQz6NtQJ/Wzkd7J0H/IHFobZNWvjhc+dosKIUf2uFtscnTgUXrs3j7eWE8m0EcRBKVxCF351dbueKj9a2dDSHYOuNO1k+9orWzIcQhIz/ZE8KDnzflM+23dHbklVNe5aBLqC+XHRHNjcfFOdPM+iuLOf/ksCm7FLsDenfyZ+LILoxMCnWmsTs0037byRf/5JC1t5LwABtn943gvpO74meztkbRRBtTumsT6XNfoCR1LRV70uhy3l10HT2pTrrKwhzSvphC/r+/YC8rxieiMwkXP0z44NMAWHXvMCpyd9aZL3TAKPrc+REAu354ldxVP1KeuQ1lsRKQMJD4C+5DLgG1HxL0hfAgxNfKjcd1pleUH342C8vT9vLfb7fjbVWMHx4LwOKUQs7uG8HkM7oR4G1l9qpsrp65kbnX9WdwZ+N+jtf/2M2MpRlMPT+JfjEBbN1Txl1fb6Xarnny7O6tWUTRRjgqy/CJ6ErEkWeTOudpj2mqy/ay7pkxBPY4gt63vYctJJqKPel4+QU70wx4+Ae0w+58X1WQzb9PnEHEUec6pxVuWEynkVcS2G0QyurF7h9fY/2LlzJo8i/4RHY5eIUUh4wE/XZq6Y4invo5lY3ZpViVonuEL8+c04NBnQOxOzT3fbudJSmFZO2tpFOQNxcMjOKOkZ2xWY0rPi/+ms7ctXuYOLILzy1IJ6e4ilE9Q5l2fhLzNubxwq/p7Cmp5pReoTx/XiL+3kardex76+ge7kugj5XPVudgd2guGBjJ5DO64e3l+WqS1pq3/szgwxVZZBRV0DXUlwnDY7j6qBhnmo9WZPHWn7vZVViBv7eV/jEBvHtZsnO9Le3ohGC39/Fhvvy0IY+lqUXOoP/a2F5uaR48LYGfN+fz04Y8Z9BfkV7EqJ5hnN47HDDunB/dP5JlqUUHJd+Ho6JNS0md8xSluzaiLFZ8o7vT4+pnCOw2CO2ws/3D+yjcuITKgiy8QzsRNfwCOp9zBxYv4xlB6XNfZM/yuXQ5dyLpXz1HVVEOoQNGkTRhGnl/zyN97gtUF+0hdNApJF7zPFYffwDWPTcW3+juWP0CyVn8GdphJ3L4BXS7dDKWep5FoLUmY/5bZC38kIq8DHyjuhJzygRiTrzamSZr4Ufsnv8WFbm7sPr6ExDfn+Rb33Wut6UFdh/sbGmnf/OSxzS7f3wNW3AkPa9/xTnNvBveyRYU4fY++/dPsPoGuQX9vpM+cUuTeO1L5K3qS8G63+g0Ui6DtAcS9Nuhartm/CcbufSIaF6+IAmHhrWZJXiZDwdyaE10oI1Xx/YkKsDGusxS7vt2Oz5eFm47obNzORlFlcxdm8u7lyWTX1rN9Z9u5rrZm/D2svDOpfumvbkkg4kn7msFfLMulzEDIvl6Qj9ScsuZNHcbQT5W7j81wWN+X/g1na/X7GHyGd1Jjvbj390l3PftNny8LFwyJJp/dhXz4A/bmXZ+EkfHB1NUXs3SHUU09IiJKz/awLK0hgPrwlsG0zm08fuGtNb8u7uEFWl73cpZm8OhKam04++97+Tm6Phg3lueyabsUpKj/dmRV86CLQWc1z+i3uW0J9pezcZXxxM94lKSrnsZtIOStLUoq3Ho0Q4HtpBoet7wKrbgKErT1rH9o/uw2HzofPZtzuVU5meQu3wuybe9S3VxPptfv55Nr12Hxcub5FvecU7LmP8mXc6d6Jwvd8U3RA4bQ7//fk15dgrb3puE1S+IhAvv95jf9LkvsGfZ13S/dDJ+ccmUpP7Ltg/uw+LlQ/SISyje8Q/bZz5I0oRpBCcdTXVZEUWbl9JQZdww9UqKtixrcDsNfmIhPhGdG0zTkLy/5xHa/0Q2v3kzhRv+wBYcRdTw84k74yaUpe6Jsdaa7N9nE3nMBTT0c01HRRkOezWWg3RCIw49Cfrt0N6KagrL7ZyaHEb3COMLnRi574tts1q49+R45/uuYb6k5JYx558ct6BfZddMHZNImL/R4jq7bzifrc5h9T1DCfXzck5bnFLoFgwj/L2YcnZ3LBZFzyh/JhVV8uT8VO4e1dXZk1CjrNLO9CUZfHB5b0b0CAGMVvWWnDLeW5bJJUOijda9zcppyeEE+lgBH/rGBDS4DZ4f3YPyKkeDaToFNf7kuZ5PLaPKrrE7NHed2JVxR8fUm/a1P3ZTWmnn0iHRzmm3jIijrMrOKa//g0Upqh2aa47qxKSTuta7nPakumwv9tJCwgafil8n43KGX0yi83OLl4348+91vveN7EpZdgo5S+a4BX1dXUXi+KnYAsMACB96Njl/fMbQqavxCgh1TivcsNgt6HsFRdD9yikoiwX/uJ5Ujp5E6udP0nX03c6ehBr2ijIy5k2n9+0fENJnhJGfqHjKMraQueA9okdcYrTuffwJH3QaVr9AfICArn0b3AY9xj2Po7K8wTTeoZ0a/Lwx5dmpZC74gNhTxtN34ixKMzaTMvNhHJXldB1zd530hesWUbEnjU4nXN7gcnd8/jjeoZ0IP+KMA8qfOHxI0G+HwvxtXDw4iis+2sBx3UM4rnsIZ/cNp2vYvp9mzVyZxaxVWaQXVFBW5cDu0HUCclywtzPgA0QHehMX7O0M+DXTlqftdZtvSJdALJZ9jxw+Kj6IsioHafkVbicfAJtyyiivcjBu1kaUy1OK7Q6Nt5mfExJD6RLqw/BpqxiZGMIJiaGc2SecYN/6q29scMv88mf+jQMpr3awMq2YKb+k0jXMh7GDouqk+/TvbP63aCfvXpZMtMvJxDdrc5n9dw6vXNiT5Gg/1mWW8sgPKfSK9m/wBKK9sAWGEXXcxWx46QpC+hxHSO/jCB96tlvXc9ZvM8n6fRYVe9JxVJah7fY6Adk7PM4Z8AG8g6PxDo9zBvyaaXs3L3ebL7DHEJRlX70O6nkUjsoyKvakuZ18AJTt3oSjspyNL4/DtTJqux2LzdinoX1PwCeiC6v+O5yQfiMJ7XsC4UeciZe/++UgVz5hsU3YUgdK49+1LwkXPQRAQEJ/qgqy2fn9Kx6DftaimQR0H0xA1371LjF97kvkrfyevvd83mBvgGhbJOi3U1PPT+L6Y2L5bWsBC7bk89yCNN64qBen9w7n23W5PPRDCg+cmsCwhCACfazMXZPLK7+739nrVWusAKU8T3McwKOca+adcWky8WHugdpiHngDfaz89J+BLEsr4vdthUxfvJspv6Tx7XX93U5kXLVU935NT0mfTgHkllbx/IL0OkH/oxVZPDZvB+9cmswJiaFunz0xP5Xrh8cyZkCkczk7Cyp4/Y9dHSLoAySNn0rsqddTsO438tcsIO2r5+h14xuEDzmd3BXfkjLrIRLGPkBQz2FY/QLJXT6Xnd+94raMmssB+yYoj9O0brh3pyE18ybfMgOfqHi3z2pOHKx+gQx85CeKtiyjcP3v7J43nbQvptD/wW/rXEOvcSi6971DovGP7ek2za9zL+ylBdjLirH67XtQWFXRHvJXz6f7FU/Vu7y0L58ha+FH9J30aaM9GaJtkaDfjvWNCaBvTAA3jejMhE82MntVNqf3DmfZjiIGxgVy/TH7WiDpBQ13PzbH6l3FOBza2dpfmbYXX5ulTlAHSI7yx8dLkV5Q4fZTt9q8rMrZazHppC4c+eJf/LghjxuOjfOYvqW6911pramodl/mjKUZPP1LGu9emuwx/2VVDqwW9xMlq1J0tBEvArr2JaBrXzqfcRMbX51A9h+zCR9yOkWblxHYbSCxp17vTFuek95i6y1OWY12OJxBe+/WlVi8ffGJjK+T1j8uGeXlQ0VuOqH9638arLJ6EdLb6LXoct4k/rr7SPJW/UjcaTd4TH8ouveDko6iLHOb27TyzG14BYS6BXyA7MWfoby8iRw2xuOydnz6GDlLPqfv3Z8SEN//gPIlDj8S9NuhtPxyPlqRxWm9w4gN9iG9oJw1GSXO1mZipC+z/85m/qY8ekb6MX9TPvM25rfY+nOKq3johxTGD4tle14ZLy5MZ/zRMXUuHwAE+Fi56bg4nvo5FYBjuwdTXuVgTUYJeSVV3DSiM/M35ZGaV8HwhCDC/G0sTyuisMxOz6j6uxwPtHv/9T920TcmgG7hvtgdmmWpRUxfksFVQ/cdnGt6HKaen0ifTv5k760EjKfd1Vx6ODU5jDcW7yIh3Ic+0f6szSzhrT93c765L9q78pw0shZ+RNjg0/AJi6U8N52S1DXOgOMbk0j2H7PJWz0fv9ie5K+eT/7qeS22/qrCHFJmPUTsyeMpy9pO+twXiRk1vs7lAwCrbwBxZ95E6udGCzi497E4KsspSV1DVXEenc+4ibzV86nISSWo13BsAWEUbV2OvbQQv1qtbFcH2r3vqK6kbPdmAHR1JVWF2ZSkrcXiE+C8TyL29P+w9qlzSf9mKpHDxlCWsYWd371MzMnj3ZZl3MA3i8ijR2P1rXtfzPaZD5Kz+HOSb34bW0g0lYXZxrbxCfCYXrQ9EvTbIT+bhZS8cm78bDN5pdVEBNg4q284d51odD9eObQTG7JKmfjVVqodcFpyGBNHduHpX1JbZP2j+0fiZVWc984a7BrGDIjk7lH137h2z6h4ogK9eXdZBg//kIK/t5XkaD8mmD+NC/X14q2NGUz7bSflVXa6hPry+JndOKlnWL3LPFAV1Q4e/iGF3UWVeFsVCWG+3H9KPFe7BP33lmdS7dDc9oX7MOAXDY5i2vlJADx5VneeW5DGQ9+nkFtSRXSQN5cdEd3grwDaE4u3H+XZKWyefiPVxXnYgiIIP/Isuo6+C4BOI6+kdNcGts6YCI5qwgafRpdzJ9b7e/Tmijx6NMrqxZqnzwOHnchhYzxe464RP+YevIOjyPjlXVJmPYzVxx+/uGRiT5kAgFdAKBnz32Lnt9OwV5bjG9mFbpc9TtiAk1okv55UFmTx72OnO99n/fYxWb99THDyMfS7dw4AgQkD6H37+6R9MYVd37+Cd3gssaddT+czbnZbVtGmJZRnpZB0W9cchAAAIABJREFUnfvlE+eyF7wPwIap7jf41fdAINH2yNC6B4mvzVKyctKR/uH+dVsU7dnY99aRGOnHs+f2aO2siAZ8vz6X+77d/kthte3oIVMWBx9o9/LhaN1zY/GLSaTH1c+2dlZEE6R88khV5i8z7tdav9jaeWnP5Nn7QgghRAchQV8IIYToIOSavmhRc66t/3e/QhxKNde7hRD7SEtfCCGE6CAk6AshhBAdhHTvi0Mqt6SKlxft4pfNeWQUVRLq50VytD9XH9WJM3qHo8yn8P22tYArP97Ayb3CeP/y3gDc+dVWPl+d0+Dyl945hM9W5/DSwrrjhvt7W9jy4LCWL5RoF6r25rLr+5fJ++cXKvMy8AoIxb9zMp1OuprwIWc462bB2t/YMO1KwgaeTO/b3wdg64w7yVnyeYPLH/LsUnIWf8ZODyPlWXz8Gfb6lhYvkxC1SdAXh8yuggpGz1iLr83CvaPi6WcOmrNkRyFPzEvl2G4hhJjP9Z/5Vxb/OTaO95ZnOof/ffzMbjxwyr4nqQ2ftooHTklwG7EuIsD4iWS3cF++Gu9+f4FFuT8ZT4gaFbm7WDtlNBZvX+LH3EtAvFF3CjctIfWzJwjpfSxe/saAUFmLZhJ3+n/IXPCeczjgbpc9TvzYB5zLW3XvcBLGPkDE0ec5p9UMbesb3Y1+//3Kbf1KSaerODQk6ItD5v7vt2N3aH68YQBBLoPlJEX5ceHAKHy8jAPfnuIq/m9zPn/cMYRte8r49O9sbj+hC8G+XgTXetR+kK/VbYCbGlYLHqcL4cn2j+9HO+wMePhHvPyCnNP9YpOIGn4hFpvxhMeqoj3k//t/DJnyB2WZ28he/Cldzr7dHHDHfdAdq18Q3iHR1GGxep4uxCEgp5fikMgvrWLBlgLGHR3jFvBrBPhYnYP5fL46m6Pig4kN9uHCQVHMXpWNPERKHCxVxfkUrFlAzKhxbgG/htU3wDm4T/aSzwnueRQ+YbFEHXMh2b/Plrop2hRp6YtDYkdeOVpDr+jGh+ictSqbO0Yaj6k9NTmMe7/Zxh8pRRzfI6TJ69ueW07Pp9xHNhsWH8zHV/VpXsZFu1eevQO0xi+uV6NpsxfNoss5dwAQNuhUtn1wL0Ub/iCk7/FNX1/Wdpbd7P6s/uCew+gz8eNm5VuI/SFBXxwSTW0LLd1RRObeSs7qEw6Aj5eFc/pFMOuvrGYF/fhQH2bWCvC+NunYEp40rXYWbVpKZUEm4UeeBYDF5kPEUeeQtWhWs4K+T2Q8fSbOdJtm8fY8RLQQLU2Cvjgkuof7ohRszi7jzAYa2zP/yqK00kHvKcud07QGm1WRV1pFU8cy8LIqukc03qsghG90d1DKGMnuiDPrTZe1aCaOilL+v737Do+qSh84/p0+SSaTMqmkkZBQQg1VWEAB2wIiCiIoKiyra8OCICCCbQH5CYgVXXXVRcRCEakqSpEqSKQlGNIb6X2SSWYy9/fHJBMmCRBKEiHn8zw+Zs7cuffcOOa999xz3ve3JzvXNUoSMoUKc1kBKp1nk44nUyjt1fEEoaWJoC+0CA9nFcPC3fnstyym3eCPTqNweN9YWY3JYmVrTD7Lx3agZzvHGuDTvjrNumN5PDzwysqUCkJ9Kp0H7t2GkfXLZ/iPmNag/ny1yYjVbCL/9610mLocXfueDu+ffm8aeQfW4X/Lwy3ZbUG4LCLoCy1m0ahQxn5ykts/PM6s4UF09XNBhm1I/729GdzTywetSsG4Ht72SX21RkcaWHM0u8lBv9qKvb79ubx1Kvt6a0GoFTp5EScXj+X4a7cTNHZWzZI9GSV/HiRj23v4/O0eFGot3gPH2Sf11TL0HU32njVND/rWanud+nOp9N7iuyk0OxH0hRYT5KFl+6M9eGdPBkt2pNqT83T2deal29vzxi9p3NbZo0HABxjd1cC7ezM5klZK36CGM6zrSy4wEbX09wbtJ57vi6dL2yp3LFyc1iuIHgu2k7HlHVLXL6GqsDY5T2fa3/sSad+9gUev2xoEfLAF/cyt71IafwTX8L4XPZYpJ5nfZ0Q1aO+74gQq16Y9IhCEyyUTy02ah1YlNx55ro9zU59BC0JL2hKTz+xNiTuKLar+UYv36dXuvq3dJaGNS1qzwJy145O5kiQta+2+XM/EdGZBEARBaCNE0BcEQRCENkIEfUEQBEFoI0TQFwRBEIQ2QgR9QRAEQWgjxJI9ocUcTi3h5e3JxGaXY3BRMW2AP4/+rd0FPzPgzaOkF1U6tE3q7cPSOzvYX5eYLLy0LZkfThdgsUrcFO7OwlGheOscq+xtPJHH+/syic8tR6uS0zdIz+f3d0Zou0r+PEjmDx9QlnICc1EWHaYux2fwvRf8THlmHEmr51GacBSlkyveg+4heNwcZHJbwqn4T54hd/+3DT4nVzsxYGW8/bXVYiZjyzvkHlhrWyKo88T3xskEjXn26p6kIJxDBH2hRaQXVXLfqljG9/TmzbHhHD9r5PnvE3BWy3mwn98FP/vU0ACm9q/bxqleDv3p6+JJKqjgs/s6o1LImLcliWlf/cnGad3syU4++y2Lt3anM+/WEHoH6jBXS5zOLr/6JypcU6orjTgHdsZ70D2c+ejJi29fUUbMskm4hvWm+7xNVOank/DfZ0EmI2T8CwC0n/QqwTU/1zq5eCz6jgMc2uI/ehJTXhphkxeh9euApawAS1nh1Ts5QWiECPpCi/jf4Sy8XFQsGhWKTCajo48zsVlGPtiXedGg76JW4OOqbvS9+NwKdsQVsnZqJP1DbPXM37wrnOHvHeO31FIGhOgprrCw8KcUPpnYiaEd3O2f7eTjfPVOULgmefQYgUePEQCc+Wj6RbfPPbSe6ooSwv/5FgqNMy5BkVSNnUXK2oUEjnkWhdoJpbMe0Ns/U3LmMJW5Kfj+8y17W9GpPRSd2k3U4v11CXm8gq7quQlCY8QzfaFFHEkrZUiYm0Oa0ZsiPEgprGw0Xe65Pj54lq6vH+bm94+x5OdUKqqqHfarVcoYEFz3R7aTjzP+ejWHU0sB2JNYTLVVIs9oZti7f9B76REeXB1LXI640xcujS3rXj8UmroLRvduN2GtLKc8LabRz+TsWY1Tu064hveztxVEb0fXvidnf/oPv8/sy9HZA0n4/HksxqJmPwehbRNBX2gROWVmvHWO2Ql9al7nlJnP+7mp/f14d1wEa6dG8sggf76OzuHxtWfO2W8Vni4q5HLH1L0+OpX9YiKlwIRVguW70nnx1hD+O6kzTioFd396igLj+Y8tCPWZi3NR6b0c2lRuPgCN5tO3lJeQf2QTvkPvc2g35aZQcuYwZSkn6PjYh3R46P8oSzzKn+/9s/k6LwiI4X2hGRxKKWHyF7H219OHBFz2vs6d6NfF1wV/vYaJn8dwJrecCO+mDc9LEpirJV65vT0jOnoA8NZd4fRd/jsbTuQx7QZRuU9oHnkH1yNZJbwGjnN8Q5IAiY7/eh+lsxsAHaYu48RrIzGmxeASFNnynRXaBBH0hauuRzsXfny0h/21u5OSXfFF5Na7o6997aNren2CPoG2sqeJ+SYivJ3x0akpKLdgtUoOd/u5RrN9HoCPq23/Hb2d7O9rVXLae2gbrAwQhAtRuXljLslzaDOX5AKgrrnjP1f2ntUY+oxEpfNwaFe7+aB287EHfACndh0BqMxPF0FfaDZieF+46pxUCkINTvZ/PJxV9A1yZW9iscN2u+KLCPHQnHeSXmNOnjUCdRcKfYNcMZmt/Fbz/B4gLqeczOIq+gXbqvHV/jsh32TfpspiJbXIRJC75vJOUmiTXMP7Uhp/mOrKCntb0YmdyDXOONcL1KWJ0ZSnxeBTb2jftp9+VBXnYqmo+96ashIA0IgJfUIzEkFfaBEP9vMj12jmhc2JnMktZ/3xXD49dNZh+H5bbD5D34nmbInt7vtIWikf7s/k5FkjqYUmtsXm8/SGePoE6egVYLvjD/d24uaOHszZnMjh1BL+yCjj2e9s2/SvCfZhBidGRnry8vZkDiaXEJ9bwfObEpEkGNvdq2FnhTaj2mTEmHoSY+pJQKKyIBNj6kkq8zMASFm3mFNvTLBv7z3gbhRaV+I/eQpjeiyFx3aQtnEpfsOnolA7Oew7Z89qtL6huHUe1OC4XjfchUrvRfwnz1CefprSxGgSPn8efaeBuAR2adZzFto2MbwvtIhAdw2rJ3fh5e3J3LryOAYXFTOHBTks1ysxVZOQZ8JSbSv3rFHI2Hwqn7d2p2OyWGnnpmF0pIHpQwMcVgG8My6cBduSeXD1aXtyntqlgbVWjA3n1R9T+OfXf1JtlegVoOPbKV3xdBGlj9uysuRjxLxxj/11+salpG9civegewiftgJzUTaVuSn29xVOOiJnfkXS6nmc+PdolE46fAZPJPiu5x32W11RRt5vGwm8o/FEOwqNM5EzvyZ5zQJOLByNwskV927DCJnwYvOcqCDUkEmS1Np9uC5pVXLjkef6OHs6i6Ai/PVsicln9qbEHcUWVf+oxfv0anff1u6S0MYlrVlgztrxyVxJkpa1dl+uZ2J4XxAEQRDaCBH0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2gixZO8atGxnGhtP5rFnelRrd+W6sj+pmHs+sxVNGdhez9qpXVu5R5fPUi0R8upBADRKGYnzb2jxPqRtXEbebxuJWrinxY99PSs+vd++zFDfaSBdn1/byj1qmqKYPcQumwSAW7ebiHx2dSv3qG0SQV/4y7t/VQzeOjUr7gpvkePteLwHfk3IEhiXU868rUkcTSvFVavknp7ezLk5GEW94j/nGv/pKQ4klzi0DQ5z4+uH6rK5VVmsLPwplQ0ncjFWWRkQ7MrCUaGEGhyTv+xJKGL5rnROnjWilMuI9HNm1f1dcNEoUCpkRM/sw/cn81m0IwWh+cW8eT9qvTfh01a0yPF6vLIDtXtdnovyjD9J27gUY8pJKvNSCRwzg6A7n7vofioLz5K0+kWKY/YgU6gx9BlJ+4kvo9C6ALaLt/Tvlzf62b5vHnMoQHT25/+SvfN/mHJTUDi5YugzkrAHXgdA3/EG+iyPJnnNAodMhELLEkFfEOoxOKvwuEh+hbLKaib9L4bega5serg76cWVPLshAZkMXrgl5IKfHd/Tm3m3BNtfq5WOT9le/SGFzTH5vHVXOD6ual7fkcp9q2L55YmeOKkUAPz4ZwHPbohn5rAglo7pADKIyTIiP2dXPq5qXLWKSzx74VqhcjU45PS3VlWgMQRh6DOKlLWLmrQPyVrN6bceRKHV0fX5dVSbykj4dAYJn82k46MrAWh326P43vSAw+fOfPi4rQ/nBPyUb/9NQfR2gsfPwyUokmpTGZW5afb35Uo1ajcf5CotiKDfakTQb0FfHMnm9Z9TiZ7ZB5Wi7q/z3M2JxOWUs+4f3SgsNzN/azIHU0ooLDcT4K5hSj8//nGBSnDPbIgnt6yK1Q/U3S2++2sGq45kc+jZ3va2tcdyWbk3g6QCE/56NeN7+jB9SABKxfnvTJtq7bFcPtiXSWJ+BTqNgv7Bej6e2AmAEpOFV7Yns/10IRXmanoF6FhwW3t7Kl1ztZXXfkhhS0w+BeUWPF1UjOziyWsjQ3lmQzy74m05+7/9w1bY5NspkQwKdWu8Iy1k/fFcSiqreevucJzVCiL9XJg1rIqFO1J49qZAe3BujFYlP2+9gVKThdW/Z7NkTBjDImx/0N8ZF0HUG0fYElPA+J7eVFslXtySxAs3h3B/37qkOuFeTo3u81Jl7/6C1PWv02dZNHJl3cVP4qq5lGfG0W32OsxlhSR/OZ+SuIOYywrRGALwGz4F/xH/OO9+4z95hqqSXIdh3Yyt75K9axW9/++QvS13/1oytq/ElJ2E2tMfn0HjCRg5HZniyv9c5e5fS+YPH1CRlYjCSYc+oj+dnvgYsJXBTf76FQqjt1NdWYEutBft712ALrQXAFaLmZRvXiP/9y1YygpQuXri2Xskofe9Rvwnz1B8clfNMb4FIHLWt42m4G0uutBe9r6mnefOvL6iU3soT4shaslBtDU5/0Pv+zen336IynteRGMIQKF1sd/1A1QWZFASd4jwf75tb6vISuDsTx/R4+UdOLeLsLe7BF27j8iuVyLot6A7uhpYsC2JnWeKuLWzJ2ALeJtO5TN3hO3Oz2Sx0sXXmX8N8sfNSclvqaXM3pSIp4vqivLEf3U0h0U7Unjt76FEBepIzDcxe1Mi1VaJmcOvrMDHqsPZLNiWxPPDg7ilsycms5Wf4wrt78/4LoHYbCMfTuiIt07FO3syuO9/Mex9OgpPZxWfHMxia2wB746PINhdS1ZpFbHZ5QC8+vf2ZBRXYnBW8erf2wO2qn2NWX88l9mbEi/Y1+lDAnhqaOAVnS/Y6gL0C3LFWV0X3G+KcGfe1iRissrpE+R63s9uiclnS0w+BmcVg8P0zBwWZB9ZOJZppKpa4sYO7vbt3Z2U9ArQcTi1lPE9vTlx1khGcRUalZzbPzjO2ZIqIrydmD0iiH7B+is+N0O/O0j6cgFFJ3fi2etWwBbw8o9sIvjuubbXZhPOgV3wv+1fKJ3dKD3zG4mrZqPSeeI1YOxlHzvn169IWbeI0EmvoQuLwpSdSOL/ZiNVVxM0duYVnVf2rlUkrVlA0F3P49nrFqyVJgpP/Gx/P+HTGRjTY+n42Ieo9N5kbHmHmOX3EbV4LyqdJ1k/f0LB0a1EPPIuWq9gqoqyKE+3lZBuP+lVKgsyULkaaD/pVQCULu6N9iP34HoS/zf7gn0NGDWdwFFPXdH5NkVpwhG0vmH2gA/g1vVGkMkpjT+CxtCwLHbOr1+hdHHD0Gekva3gjx/ReAVTfGo3p9+ZgmSuxDW8HyETXkTjefmltYWrTwT9FuTmpGREhAfrjufZg/7OM0WUV1UzuqsBAH+9hifOqT8f7KHlaFopG47nXVHQX74rjRduDuHOmn0Ee2iZNTyIl7YlX3HQX7EnnakD/HhscF2/u/nb7gwS8yvYFlvAmge7MDjMdne+fGwHblhxlFWHs3n6xkAyiisJM2i5IUSPTCYjwF1jD5p6rRK1QnbBu+Nat3byJKpm9OB8znfBcKlyy8x41ysJXFv5L6es6ryfG9vdiwA3Nf56DQn5FSz5OZWj6WVs+md3lAoZuWVVyGTgVa8mgLdORU6pbb8pBbZqga/vSGXBbSGEemr5OjqXCZ/F8NPjPa/4jl/p7IZHjxHkHVhnD/pFJ3dSbSrH0G80ABoPfwJGPmH/jNY7mNLEo+Qd2nBFQT/t++WEjHsBrwF32vcbNHYWyV+9dMVBP33zCvyGTyXg9sfsbS4h3QCoyE6k4Og2ujy3BrcugwHo8I/lHH3+BrJ3rSJw9NNU5meg9Q1D3/EGZDIZGkMArh36AKB01iNTqpGrtI2W2D2XZ89b0b104Um457tguNrMxbmo9N4ObXKlCqWLO1XF2Q22l6zV5Oz9Cu+B45Cr6ipUVuYkU5mfQe7B9XR46A3kShWp65cQs3QiPV/Z4bCt0LpE0G9h43p688TaOEpMFvRaJeuP5zGiowduNcHIapV4f18mG0/mcbakikqLFXO1dEV/yPONZjKKq5i3NYn525Ls7VarhMkiUVRhaTQYDnv3D9KLbRXvAt007HyyV4Nt8srMZJVU2QN6ffG5Fchk0P+cO1C1Uk6vAB1ncm3lSSf08mbSqlgGvx3N0A7uDItwZ0SExwUnxDVGp1Gg01ydIe5aGUWV3PTeH/bXd/fwZskdYZe9v8nnDMd39nUm0teZwW//wZ7EIoZHeFzgk3Vqq2U8OSSAMd1sF3Hd2+k4kFzMF0eyefn29pfdv1reA8cR958nsJSXoHTWk3dwPR49R9jrv0tWK5nb3yfvt41UFZ7Faq5Esphx8r/8yZbm0nyqCjJI+nIeSWvm29slqxXJbMJiLGo0GP4xfxiV+ekAaAyB9HptZ8N9l+RRVZiFW+TgRo9dcTYeZDL0Ef3tbXKlGl1oLyoyz9h+J3+bQOzySUS/MBj3yKG4dx+GR48RyOSXNm9C4aTDyenCF6d/VUUndlJVkInP0Psd2iUkJEsl4dNW4NyuIwAdH/2AIzOiKDq1237xKLQ+EfRb2PAId7QqBVtO5TO6q4Gf4gp5f3zdM7AP92fy3t4MXr69PV39XHBRy1m5L5ODKSXn3adcBvXrJpmr6xqsNW8uHBnKgJCGw86umsb/aK2a3AVztRXAYQ7C1da9nY6Dz/Rmd0IR+xKLmbUxkTCDlm+ndL2k+QbNMbzv66rmx0d72F+7amz/y3jrVOSVmR22za157aO7+Mz/WqEGJzydlSTmmRgeAd46NZIEeUYzvueMbOQZzUR4O9fs3zYK0NHb8QInwtuZjKLKJh/7Qtx7DEeh1pL/+xYMfUdTeOwnIh553/5+5o8fkrH1PdpPfBmXoK7ItS5k/rCSkj8Pnn+nMnmDL6pUXfc7lKy271rofQtx7TigwccVTo0/Muny9CqsNfuRK5qvwJUupDu9Xz9I0andFJ/eR+Lns9D6htF11reXNN/grzS8r3LzpuTPAw5tVosZi7EItVvDIkzZe1bjGt7XHthrqd18QSbDya/uok+l90Ll6mm/IBP+GkTQb2FqpZw7uhpYdzwPuVyGVilneETd3cvBlFJGRHhwb1TdEGFSzXDu+Xi5qDieaXRoi8mqe+2tU+OnV5NUYGJi7wsPPZ4r0P3iQ3JeOhV+ejV7E4sbvVON8HZCkmzPwGtHA6osVv7IKGNK/7rlRjqNglGRBkZFGri/ry+3rjzO6Zxyuvm7oFLIqbZevBpkcwzvKxWyBkvlAPoGufLajylUVFXjVPNcf2d8Ec5qOZF+zk3ef0ZxJYUVFnxcbcGqZzsX1AoZexKKuaeXbdi1uMJCdHoZ9/Wx/RHu0U6HVikjIc/kMKExIb+CwVdpgqNcqcbQ7w7yDqxDJpMjV2lx7z7c/n5p3EE8eozAZ/C99jZTdlJju7JT6b0wphx3aDOmxth/Vrt5o/bww5SThM+QiU3uq8br4hdxKr0Xag8/imP24nHOedRy8o8ASaI0/oh9eN9qqaIs6Q/8Rkyxb6dw0mHoOwpD31H43ng/x1++lfL007iEdEOuUCFZqy/al7/S8L5rh75kbFpBZV66/fdYHLMHJCuu4X0dtq0qzKLw+M90eOiNhvsJ7weShCkn0R74zWUFmEsL0BiufA6NcPWIoN8KxvX04q7/nqKowsKYbgaHu+gOXlo2HM/jQHIxPjo130TncCLTaA8KjRkc5sZ7ezNZfSSbQaF6fvqzkH1Jxbhq6/7zzhoWxAtbEnHXKrilkydWSSI2u5yY7HLm3hx83n03xbM3BjJ/axI+OjU3d/KgymLllzNFPDkkgFCDEyO7eDJncyJL7gjDy8U2kc9kttqHuj/cn4mPTkVXPxfUSjnrj+XipJIT4Ga70w1217AnsZjkAhN6jQJXraLRkYfmGN4/n7t7eLNidzpPbYhnxk2BZBRXsXRnGlP7+9ln7kenl/L0hnjeuiucqEBXkgtMrD+Wy/COHni5qEjIq2DhTykEu2u4pZPtgslVq+T+Pr4s+ikFb50KH52K139OxU+vZlSkp/08H+rvx4rdabRzUxNq0PL10RwS8ipYeU/H8/b5UnndMI5TS+7CYizC0G+Mw0x+rW8H8g5toPjPA6jdfMjZ9w3GlBOoLvA82y1yMJnb3iN792r0nQdReOwnik/vQ3nOHXzQnbNI/OIFFC7uePa8BUmyUp4WS3l6DMHj5l7R+QTe8SxJX85H7eaDR6+bsZqrKDrxCwEjn8TJNxTP3iNJXDWHsAeXoHL1ImPLO1jNJnxvnAxA5g8fonLzwSW4K3KlmtwD65GrnVDXTHbTeAVTHLMHU04yCic9CidXh99ZreYa3rdaqqjIjANAslRhLs7BmHoSucYFJ99QAM7+/ClZv3xqT5jk3nUozkGRnPn4KdpPfBlrZTlJX87H0G9Mg0l8OXu/QqFxxtBvTINju3UZjEtoLxI+nUn7Sa8iUyhJXbsIrW8o7l1vvOrnKlw+EfRbQb9gPcHuGmKzy1k82vH58DM32gLIlC//RCmXcXcPLx7q78e22Pzz7m9oB3fbeu2daZT/aGVMVwPTbvDnm5olbgATe/vgolGwcm8GS3emoVbKCTNomRh15XXUJ/f1RaWQ8cG+TJb8nIqrVsENIXXP8JeN7cAr25N55Os4+5K9Lx+MxLNmxrpOreCD/WdJyrc94+/i68Ln93e2z2h/eKA/p7KM3LLyGOVV1r/Ekj2dRsFXD0Yyb2sSo/9zAp1GycQoH54fXncBVWG2kpBnosJc+4hExv7kEv77WxbGymr89GqGhLnx3LAghyV+C24LQSGXMX3dGcqrqukfomf1A10ctnnh5hBUCjmzvk+gtLKaSF8X1jwYedWW7QHoI/qh8QqmPD2WsAcWO7wXeMczVBVk8OfbU5AplHjdcDd+wx4i/+i28+7PPXIoQWNnkrZxKdZvyjH0G4P/zdPI3feNfRufIRNRaF3I2L6StO+WIleq0fqF4Tu46Xf+5+N742RkChWZP3xA6oYlKJxc0Xesy1TYYeoykr9+hbj3H7Ev2Yuc8SUqne1iS6HVcfaHD6ioGdFwCepC56c/t6+V97/1YYxppzj28i1YK8tbfMleVVE2x1+5zf46e/cXZO/+wiFrn6WsAFNWgn0bmVxB56c+J2n1i5xacjcyZW1ynlcc9i1JEjl7v8JrwF0oGrmwlsnldJ7+GclfvUTM0gnIFEr0HQcSOWONmMT3FyOT6j8MFq4KrUpuPPJcH2fPiyR5Ef46atPwRs/sc9GVAteKr6NzmLs5sUEa3i0x+czelLij2KLqH7V4n17tfuUXf0LLqE3D22d59EVXCvwVNZavASBpzQJz1o5P5kqStKyVutYmiII7glDPoLeimbwqtrW7cUWqrRJUMODqAAAPHElEQVQRCw8xd/OFJzYK167oOYOIfXNya3ejyYpP7+fQ4xHkHdrQ2l1p08TwviDUiArUsfcp27JEreravh5WyGX2VQdy2ZVnXBT+OnRhUfRatBcAuVrbyr1pOl1YFD1e+hEAhabpk12Fq0sEfUGo4aRSNDpT/1p1PZ2LUEehdrJPzLuWXKv9vt5c27czgiAIgiA0mbjTF4TLVDvxD2Bgez1rpza9uMj0dWdYfzwPgPfHR9jTIwvC1VA72Q9wmL3fFGc+mk7ewfUARDzyvj0lsnB9EEH/OhPw0oELvn+pwelShL12kMWjwxwSC7W2oe9Ec2c3L54b1vT6AucG8/OZcVMgA9vbliXueLwHfvVm+/9wuoAlP6eSlG8iwF3D00MD7cl2ABaOCmX+rSFELf39Es7m2nZg2oULr1xqcLoUB/8VRtgDix2SCbW26HlD8ep/Z5Nq3tc6N5ifT+CYGeg7DQSgxys7ULvXJcEqz/iTtI1LMaacpDIvlcAxMxocP/T+hYRMmM/vMy6cQEi4Nomgf52JntnH/vMPpwuZsznRoU1VL61tlcXaoJ57W9c3yNXhd7bwp1SSCir4+N5O9jYXtYJjmWUAGJxV9pwCAEfTS3n46z95ZmggY7p5sTO+iBnfxePlorSXy9VrleivnTlYV0Wf5dH2nwujfyBx1RyHNlm9FLpWSxVy5fWxdPJqcQ3v6/A7S127kIrsJHt5YACFxoWy5GMAqFwN9jwCANaqCjSGIAx9RpGydlGjx1A664Err9Yo/DWJoH+dOXd9uV6rcGhLKzQRtTSad8aF83V0LkdSS5g5LIjHBgfwy5lClu1M43R2OQYXFbd38WTOiGB76didZwp599cMTueUY5VsVfQW3BpC93a2zGID3jxKpUVixncJzPjOlvwj45WB9nXin93XmZe2JZNaaKJvsJ53x4UTm13Oqz+kkFJoYkCwnhV3heN1TuW6tcdyWbk3g6QCE/56NeN7+jB9SIA9H/+AN49yby9vcsrMfHciDxe1nAf7+fH0jba0n+M/PUVCnonlu9JZvsuW//vgM1EEeVw42qqVjhX9tCo5asXFq/zV+ujAWfoH65lRM7oQ7u3E4dQSVu7LtAf9tujcNeUKJ71DmykvjegZUYQ//A65e7+mJP4IQWNnEnD7YxSe+IW0jcsoTz+NytWAZ+/bCb57jn0GeOGJnWRsfZfy9NMgWXEJ6UbIhAXoQroDcPT5AUiWShI+nUHCpzMAGPhJBjl7vyZx1Vw6P/0ZyWtewpSbij68L+EPv0t5eiwp37yKKTcFfcQAwqetQKWvewSTu38tGdtXYspOQu3pj8+g8QSMnG7PwX/0+QF4/+1ezCU55B36DrnGBb9hDxI4+mkATv3feExZCaR/v5z075cDONS0Px+5Uu3we5SrtA3aLkQX2gtdqG2FSlrNcYW2RQT9NmjxjlRevDWEN8aEoZDL2JNQxL++ieOl29ozOMyNnFJbRb65m5N4625bHu1ys5UpA/yJ9HXGYpX4YF8m938Ry96notBrlWx9pDv9lv/OCzeHMKabweF45mqJt/dksHxsB+QyGY99G8ej38Qhk8nsfXj0mzgW70hh2Vjb8b46msOiHSm89vdQogJ1JOabmL0pkWqr5FAK+OODZ3nmxkC2/as7exNLmLM5kd5BrgwJc+Ojezsy+qOT3NbZg0cHtQPAUFOydsCbRxnY3nahcbUdSSvlwb5+Dm3Dwt15cVsyVquE/BKrB7YlqesWE3LPi4Q99AYyhYKimD3ErfwX7e99Cbcug6kqziFp9TySvphL+LS3ALBWluM/fArOQZFI1RYyf/iA2DfvJ2rRXpTOerrP38rvM/sRMv4FDP0dU8hK1WYyNr9Nh6nLkcnlxH3wGHEfPIpMJrP1Qa4g7oNHSVm3mPCptpwxOb9+Rcq6RYROeg1dWBSm7EQS/zcbqbraofzv2R0fE3jHM3Sfv42S2L0krpqDa1hv3CKH0PHxjzi5cDQevW6j3e2PAra7crBdMOg7DSR82oqW+JULbYwY122DpvTz485uXgR7aAlw0/DW7nQeGejP5L6+tPfU0j9Ez79HhrL2WC6lJgsAoyIN3NHVQAcvJzr5OLP0zg5UWiR+TSwG6oKpq1aBj6va4a7YKsG/R4YSFehKzwAdk3r7cjCllIWjbG092tna9ibVVRJcviuNF24O4c7utn7eFO7OrOFBfPpblsO5/C3UjUcGtSPU4MQD/Xzp7OPE3oQiADycVSjktqH42j7VlusN8dDgq2uebIm5ZWa86+3b21WNyWylpPLiBVnaMr9hU/Dqfyda72A0ngGkb3oL/1sfwffGyWh92qOP6E/off8md/9aLBWlALYCOP3uwMmvA84BnegwZSmSuZLimF+BumCqcHJF7ebjeFcsWQm979+4hkWha98T3yGTKI07SOj9C2vaeuA7ZBIlsXvtH0n7fjkh417Aa4Ctn+7dbiJo7CyyfvnU4VzcOv+Ndrc+gpNvKL43PYBTQGeKavaj0nmAXIFC62LvU22JXo13CCqRIVFoJuJOvw3qUa8S3bFMI9EZZfznwFl7W2125pTCSrr5K0ktNPHGL2kcTS8lz2jBKklUmK2kN6GUq1IucygD6+OqarQtz2grj5pvNJNRbBttmL+trnKb1SphskgUVVjs1fIi/VwcjuXrqibX6FjytjHfTGmeyYzCldG17+Hw2ph8jLLEaM7++J+6xpovZ2VOCsqQbphyU0n77g1KE49iKclDkqxYqyqaVNJVplDidE6ZWJWbT6Nt5lLbSgtzaT5VBRkkfTmPpDXz67pktSKZTViMRfYKeS7BkQ7HUrv7Yi7O5WK6zvrmotsIwuUSQb8Ncq6XbU6SJKYPCWRsd0ODbdu52YplPLT6NAYXFYtGheGvV6NSyBjz8UnM1Rev3aCQ02BIWyEHWb1McbV1IKw1/144MpQBIQ1rqLtq6grP1J+YKJPZRhZak7dORW6Z44VHXpkZrUqO/py+Cw3J62VqkySJwNHTMfQf22Bbjaftkc3ptx9C5Wog7P5FqD39kSlUnFw0Bqn64hd/yBTI5PKGbfW/mzVfKslqK54Uet9CXDsOaLA7xTkVA+tPTEQmA8l68T4JQjMSQV+gezsd8XnlhJ6n7nVBuZm43ArW/L09QzvY7mLSiyopKLc4bKdSyLFehYjrrVPjp1eTVGBiYu8rW/6nVsipbuGrgL5BruxJLGL60Lolajvji+gTqBPP8y+RLqQ75WfjCTxPJjdzWQEVmXG0n7EG965DAajMS8dSVuCwnVypQroKAVft5o3aww9TThI+Q66s8p9cqUayisc9QssSz/QFZtwUyKZT+Sz6KYXYbCMJeRX8eLrAXqzFXavE4KLkiyPZJORVcDi1lCfXnWmQnz7IXcP+5BKySqooaMIQ+4XMGhbERwcyWbk3g/jcCuJyytl4Io/FO1IvaT9B7hoOp5WSUVRJgdFsvyiZ8NkpFv+UckV9PJ+HB/pzKKWEN3elE59bwccHzrItNp9H/9auWY53PQscM4P8w5tIWbsIY3osFVkJFPzxI4mr5gKgdHZH6Woge/cXVGQlUBp/mDMfPdkgJ73GK4iS0/upKszCXFrQ2KGaLOjOWWT++BEZ21dScTae8sw48g5tJHXd4ot/uF6fSuMPU5mfgbm0wD6KcOqNCaRc4r6aymqpwph6EmPqSSRLFebiHIypJ+3lgoXrn7jTFxjawZ3VD0SyYlca/z2UhVwGwR5aRne1DffL5TI+nNCR+VuTuWXlMYLctcy5OYiXtzsGzQW3hbBgWzIDVxylqloi45WBl92nib19cNEoWLk3g6U701Ar5YQZtEyMurQJTs8NC2LW9wkMfScak0WyL9lLKay0P7q42noHuvKfCZ1Y8nMqb+9Jp52bhmV3hjO8DS/Xu1zuXYcS+exq0jatIOvn/4JMjtY7GEPf0YCtjnvHxz4k+cv5HHvpFrTeQQTdPYeUr1522E/IhAUkr1nA0TkDkSxVDPwk47L75DNkIgqtCxnbV5L23VLkSjVavzB8B1/anX/QmOdI+HwW0fOGIplN9iV7lbkp9kcXV1tVUTbHX7nN/jp79xdk7/6iWRMjCX8tstrnqMLVpVXJjUee6+Ps6dw8M8SF1lebuS96Zp8mr+GvL+ClA62ShndLTD6zNyXuKLao+kct3qdXi9ni15XazH19lkc3eQ1/fQemBbRoGt6kNQvMWTs+mStJ0rIWOWAbJYb3BeEKDXormsmrYi/pMzM3JhCx8FAz9UgQbKLnDCL2zcmX9JmEz2Zy6PGIZuqR0NrE8L4gXKaoQB17n7JlN6s/v+FiZo8I4onBtiFcH51INStcXbqwKHotsuUEqD+/4WKC7ppNu78/AXDZowTCX5cI+oJwmZxUisuuWe+tU+Otu/h2gnA5rqR2vdrNG9y8L76hcE0Sw/uCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoN+cpNbugCA0TpKo/X5KtheC0Mok8UVsCSLoNxO5TFZVYba2djcEoVHl5mqskmSUyRVV1VUVrd0dQaC60lgNiC9jMxNBv5moFbJjB1NKWrsbgtCofYnFFaWV1b8iV0SXxh1q7e4IAsWx+yxAdGv343ongn4zKTZVf/jmrnRjUYWltbsiCA5OZRnZHFOAVeLb6vLi/6RvXmE0lxW0dreENiz34AbJUppvBMQVaDOTiccozUMmk8mcVPL3nFTyh+6N8lF183dRqRWy1u6W0EZJQHmVlb2JRRWbYwqotFgftFqltTKZTCZXOy2Xq7SPeA+eoNKF9FDJlOrW7q7QFkgSFmMhBUe3lZXEHbRYq0xDJEk62drdut6JoN+MZDKZDOitUcrudVYpuiJD09p9EtooCSQoKzFZ9lolvpEkKfXct2UyWZRMpblXoXbqjkwmvqdCi5Cs1fnV5SVbgY2SJBW1dn/aAhH0BUEQBKGNEM/0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2ggR9AVBEAShjRBBXxAEQRDaCBH0BUEQBKGNEEFfEARBENqI/wdnnlfdbaOeugAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YMzp0si39cGj" + }, + "source": [ + "#### Interpret CATE model with SHAP" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "FS1Uy2V-9cGj" + }, + "source": [ + "shap_values = est.shap_values(X)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 194 + }, + "id": "cXdMGuBY9cGj", + "outputId": "f980abf2-c1ed-4305-f76c-48fae99331d8" + }, + "source": [ + "import shap\n", + "\n", + "# effect heterogeneity feature importances with summary plot\n", + "shap.summary_plot(shap_values['Y0']['T0_1'])" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAACxCAYAAAAVms4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwcdfnA8c8zu5uz9wktLaXlhgKWARSQ2wtBRDxAuQQRlFMQUEFFUBBBVEBE+IHcwg8BtRyiUOAnN8NVCpRC6UnviyZpmuzuPL8/vrPJJk02u2mSnbbPm9eW2dnZ7z4zu5lnvsfMiKpijDHGmPLyyh2AMcYYYywhG2OMMbFgCdkYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxmx0RGS2iOzcbl4gIgeIyKUi8o0iyrhERK7uvSjbSvbVBxljjDFxoKo/K3cMHbEasjHGmE2KiNwmImdE0wNF5AERmS4iT4rIHe1qxaNF5NHo9UdEpKa34rIasjHGmI3V30Rkbd7zbTtY5mfASlXdXkSGAK8CD+S97gN7AB8DjwPfAm7ujWA3hoRs1/40G7TJkycDcPjhh5c5EmN6hPROqV8pvK/XBzv63K+q6rSWIkSCDpY5EDgTQFVXiMjf273+uKquit7/EjChlLBLsTEkZGOMMRu9svWw5tews0B1b32Q9SEbY4zZAHhdPLrtaeB4ABEZBByxPoWtD0vIxhhjNgDSxaPbLgVGiMh04CEgwPUX9zlrsjbGGLMBKK3+qKrjOpjnR5NP581uAI5R1bUiMgB4FrgpWv6Sdu9v87ynWUI2xhizAei1Bt3BwGMikgCqgHtU9Yne+rBCLCEbY4yJPe0iIXe30VpVlwC7d/PtPcoSsjHGmA1A75xNFSeWkI0xxsReb9WQ48QSsjHGmNjrKiFvDCwhG2OMiT3dKOrAhVlCNsYYE3tWQzbGGGNiQEmUO4ReZwnZGGNM7FmTtTHGGBMD1mRtjDHGxIAlZGOMMSYGrMnaGGOMiQGrIRtjjDExEFpCNsYYY8rPmqyNMcaYGLAma2OMMSYGLCEbY4wxMRBuAk3WG/8hhzHGmA2e4hV8lJuIfEZEbhGRydFzX0QOKqWM8q+FMZuAbEaZ/149j//ufZ6/Yw6qWu6QjNmgKFLwUU4icibwJ+B9YL9odiPwy1LKsSZrY3rZmro0lx/3NrWr6hBxO46pkxdx2v17lTkyYzYcMT/t6RzgYFWdLSIXRvOmA9uVUoglZGN62VXfm04mHbYkY4BVS5vLGJExG55y14K70B+YF03nmr9SQEl/6LE+5DBmY9CwOosXhpDNkkinSaTTSDZb7rCM2aCEeAUfZfZ/wI/azTsLeKqUQqyGbEwvS2hINpUklcngRcfOYXlDMmaDE4eBWwWcCUwWkVOA/iLyHlAHHFZKIZaQjellKoKXzbYkYyDejW/GxFCcT3tS1YUisgewJzAW13z9sqqWdOxtCdmYXpbr+1LaJuKmhgyVtfYnaEwxYl5DRt2pEy9Fj26xvYExBagqf71rKcuXZznx5BH0758ovZBoMFdWpGWXEgLLP6hn1K6DeizW7lhw90ze+85zkFXGXjSRoZ8eSe3uw0gNrCxrXMa0F+casojMo3UwVxuqOrbYciwhG1PA90+dxZqGEEQIXpnFrXeMJ5Eo7Ug9ISEewpraGqrXNkU1ZWXwljXdimnVzNW89MupVPZPst1XxzF8j2Ekq0v/U142ZQHvHvt/LQcJ8y95jYXRPmWXV7/MgEnDuxVfX2v49RSa73+bxMETkIffhoYmKq8+nIqv7Vru0EwPinkN+dh2zzcHzgbuLaUQS8jGdGLGnCbqGiGdSgHghSH/enQlXzx8aGkFpRUJQ8KER32/GrxsSE1jI9WDKkqOacnU5fzzyKcRIJEJ+ejBuXhJ+PSf92GLz40uqaz3Lni1ZVoIW/71UN75wr/45OLjSo6vr62YdC2Z15cAQua1BVSSxiNN+uv/QwbBO2ESlb84HNmyxO/MxE42xglZVZ9pP09Engb+Bfyh2HLiu4YmFpauCdnzzgx7351h9drW8QnprLL3nc14v2pCLl2LXNLI3jevpa5p47kC1UXXLKMulWBNwiMtQuh5zJ3fVHI5QkgqmyEZhqSyWZKZDHTzSl2PHPcsAiSzIZVZV2fQDDx31osll9U4YzUhQhZFcX3dIR5ZhOzy0teztzU8OYeGKXMIG9M0v72UcE2a9OuLyUXuYg8RFHdYIWRvD8iMu4Dw7Y/KHb5ZTyFS8BFDTcBWpbzBasimoBE3tCbhgdeHZM4VEp5wymMZXpir0UglgYTwwvwsFzzezJ++tHH0P9Y3hEjC9RlnBbxMyNChnf/JvP5yHbdf+xHZJmXcNhWcd/kEAMSTNrsLTxX1uncsnK3P4AGJsDWhCxA2dT6YU1VpnFNPxfBqknmDyLyaBJm6NIJHGF0RWKISw9IGh/a62Tv/hea3lwNKigwCSG2KSiAZnUSWu4Ci4kVJOZeYE+gJN0NwSbnCNz0gzk3WInJpu1k1wKHAY6WUE981NGWXTmfWmff9J9zO7753FZICKYkO6xQE/jm95y54MX9FhpunrOGFGeW5qlWbY25xu/tUZcd/MksXN3PTVfPJrnXH6rNnNHHTlXMByGa1dbSHgpcNSWS7l/BUXJrJeq3RKcrwPYby8hkvMvtvs9osn17dzMOD7uHJif/ksZH3MvOP77a8Vjm8Cq9lPSWqW7pIwzBeNY7mt5cjhCTJRIk3RBuaCUm65AwkCHHD5lxdOUEWj6xL0x8uLvMamPUV8xrymHaPKuAa4IRSCrEasulUR62qU+a6mWtzeXdtNm9soZDNe1MYKiMuq2d5g5JMwC8OSfHhCuXLO6U4bMdUwc/e7kfLWLkmt6NVTt63isu+3n+916lYL01biyhIGFKTdX/uqkrYSSJdtSJDUrXl8pgiwlsvrwbcUa+Kq7MhECYTaDbLqnlrqChw2tPSdz5mxqPzGbBFLTt9bUu8RJR6VMkkPDTMUpVRPIVlzy5lRTZk7v/OYsWry5l0hc+iJxbw0tFP4WW1ZaT3Oxe8yoTTdwAguzr/gEtJkcVrab7uWuN7K0kOqyI1tLqIpYuXXlDPyhun4vWvYMDXtqFi3EBy12lqeysBF2sz7reUhDbLQOtBla7to4O69+bDIZe46ad/CRM2g+nzYfgAGDqgb2LYSMXgalydUtVv90Q5XSZk3/crgJeBJ4MgOC9v/tnAucCuuOt1Xg98JXr5AeCMIAgaeyJIUx5hB7lndD+XmBAgo2333KFSlfeLOvgml4wRyGThosfToMotr6R55cxa/DEd//yu/FcD89dAk7im3gEKtz3XVHRCnjariZ/esppB/T1u/MFgKitK+0NetirLxX9aSUJgYCbv2FuEJUs7bgEYt3XVOucZq3isbcySFWlJiBA1pGaz3PYV1x/cf1KC1OCQBx95ma0+PYwXfj+DMKNIOoMXHeA8e/lbeKGCF71fIRHScrERAdQTyCof3vo+2313O1745jN4za3JGJE2R1m1uw1m7dx6PCDpGnZbyipUf697YSHT9/573tnVUcPw0Cp2mHY0FZvVdvretdNX0Dy3jv6HjEXyavlNsz6medZqJOUxZ7/7W8pdcsH/kRxZjaCEJNZJttpyCAFpKkiQjua3fhdCFq+x3a7oqbfhsddh4hh48CVIJuGm78LgfgXWvAjbn9U6vfX3IelBJtqaX/sU/O/561d+sRrWQjATRg6E7bfom8/sZTGoBbdR7K0VVXVK0WUWcxs43/d3wiXlw4MgmOL7/kTgReDQIAie8X3/ZmAn4Ejc38LfgTeDIPhesYGsh26NjsmGys1TlUUNyskTPcYMWP8v+62lISc/HpLy4O4veowbGN8jumI0NWWouq7tvIPHwrw6mLEsdHvttXkJSpUDxypvL4ElDbRm9Fx/p0b/KOyxBTRlPAZUCj86sIIX5obsvkWCCUM89v3dSurSrUkspcowDVlwrTsNJxsqh16yjI9WKBUJ2G/HCvbaroL7n65n7hIloYqoksDtlA/avYqfnzyIw85bRH0j1FbDw1dvRjKRlyRV+coPF7GyHlIJSGehMswyqDnTWssCEuk0d921NZ4nhKHy8IMreGdqPTU1Cd4LVoPn4YWhSwiqXHn7dlzyrWlUNqdJhCGiLhnXrmnEC0MkVNC8y+ZnQxLR5vLSacglrVBdQo7WDREIlQH1zS1JWVVJRs3jXlIgrXjN2ZZkLYDXFDJ4mwGkBleSaUxTH6xwn0VIteava8iww7dk4GdGs/mZEwFY/rcPmXvJyzS/vZK2Z2PnevdcIKnR1WQWNyJJj8ptBzHmxgOoe2wuS2+eRrhoTcu7BIWUx4DDxlH/0ExyKVZa/qQ1alIPo+ZoiZqt0y0HAx4hFTS3JOFKmhCUBM0k3PA0Kqlz5e48Bt66Ev76HHzzupbPgGzLZ/PLo2H8SPj63pAo4pzz+kb442PuNz5zMdzyROHlbz8LHn0V7nvOPT9wZ5jSvvuxE6ow8Rx4fyFMGg9nHgrvzodv7AM7b9m63OJVsNlJrc+/OAkevrhw2Wub4Zxb4JHXYM+t4b4fQrIb59w7vZI5p8q1Bff1u+hZfZqxRWRW10uhqjq+6DKLvS9rVCM+D3dpsH8DjwVBcKHv+9XACuCwIAiejJY9GJgMDAmCYG2xwXRTtxLyD5/O8tvAvXVsf5h+UoLq1Pp9nzW/z9AYtQIOrYJlZ2zYPQIfLM2wze2dvJgOXR9yc+hqymFUW+6oWh0qZKOG0NzvrZMqWCoB4do0WfFa/qwTobK5hsyLEvKhv1jGrKXuNB1QEgpJ1ZbmnmSUjHOJToBB/WBVfevnjBgsPHDFZi3Pv3fFUt6d3dqE6wkkM1kGpDMkWwYLQUVzmkm7VHPaD0Zz502LeOWFete0DZDJkAIqwmzLKn79e6N5+PrZkKGlhjpw9Woqcv3zqpCNGuOi172oVu5lM62129z8MGxT265ek6YiHbrXw9Y4vdAdEEhW3eLRe7zmkIrGqK4RamvCByrCNKmWAVJhS9Idd90+JAZWMPP4p9o0GefX+VsPPTuox0RB5d+1tm1rgqvn5qZby25tpBSyJKKCkmRaEnIla1sGdbnXmlsODmpYFiVv9z5FEb0H9vgJBB/mRZK/C8m658cf4JJnVw79JTz2WtfLFXLvufCNfbtebp+fwPPT150/oAbe+QOMjk7tGvltWPJx22Xeux62HdV52afeADflHUzsPh6Cq7uOqWO9khjfkOsL7ut30zPiVYXuhlKqcNcC7wJTcbuXn0bzt8N1YL+at+xrQDWwbQ/EWFBdXV23pp/9qPW7nVsH7y5qWK8ymzNhSzIGWLG2+7HFZfrdhV30OKTDaGernR8WaV4Szi1ToD00He0PSQgkPEh4ZBMeVYnW2OYvzyVjAEElbw+QS8YQDcRy8pMxwLJV7pVcmR/MbzuALVRIekoqzOJFid0DNJHgnamN3PHnRUx7o6FtoZ5HKmxtMfCA2e+vRsKoX1bd+ciSN0IaEfAEzW9WLrRbadmWSjLtTljKeq7pWvKaxnNJLT8ZA2ii88KzUQ9sSNsbvi+//0PqnltE60VAc2OYc8ms9dHxpYrWndVRFJL3aP9cSUQjwfMTvkQpOz+ptr7qasiyznxGDiwQXLTcP18p6m9En32ngzUp0bPvFvVZ4bQ5Hb9/9Rp4a07r8ks/XmeRemn9XXZY/ksz2yyv0+YVXr7AdG+J+aCuHlF0Qg6CQIGngeHAnUEQ5EZJ5Dr28n8FueleH8XQv3//bk0fNr511XceBjuPqi36vR1NVyQ9tsjrftpxaPdji8t0Tf8Cg3VEXP9Y0oOqBG1qvzmqUe253Xvb/epylTRPYEgN6/S5poB6T1pi26FN37O6Gqrkz2kXBjBySNt540e5tJ0rc48d2l6kY+gASCOsrqhom9Ciybmzm9hm+7bbJ6FtE1IIfOrg4WRVaK5ItTyaKiraJNa2wUcHN6qE+dszr2VBMlkqm7IkswqeR9jutKo2K67aegCg6gZ4tVkmV25IRXTphfZlDThgFIO+MLalSEeiWq6ukxLXkVw3Ou1gqj1pN+0R0jbpuwSdJEOKDIm8M6oraGxTgkb/AXDDyTCiP+4bCvNiUFp+rJ/arqi/ETlsj07jL9qhuxf1Wd7R+3T8/s0Ggb916/LjR7Z9PSH022ZM4fJP+2ybt8jEsYWXLzDdW1w7SuePchKRASJyjYi8KiJzRGRu7lFKOUW3qUb9xhcDVwI/933/gSAI5uJuMQUwEFiVNw2wupRg+tLFn/LYZTgsaoCvbydUFKg5FOv9kz1+9rxSnYSffWrD7j8G2GnwuvO+uBX0r4B739aW1r2Wqlio1KTAHyX8d46i7Xf+QK6+s9dY2HZYkq2HJTjmE0meeD/LbqMS7DbKY9wlq1jS1Jqo+oUhA/J2w/edP4Tjf7+CN2ZlGFgNp3+hlgN3qeQ716xg4XLI5PqPowQ5oFq4+ccjOPPqZcxbkmX08AS3Xtz2spCXnzGUUy9fwvtzswwZKKi6C2Y0J2BtGFIVumbhVDTKeo9P9efzRwzhPw+vZPHCZiorhOf/vYLGZIqKMERUyagybrtasnl9kaHnsbaygtrGRtcXHMVJrik6avJXAU/yfkPiTknyVFtq7Dm5Edy55moEkoNSZFY2IwqJjILkuhSUfrsOYsRhY5j7u7fJ1mcQVSrI5DUPu7RUveMgBhwwii1+vjviCTs9+2U+OHEKzR+sxtWWpYN0qgw6bluaPviYzOJGqncawhZ/+DSr/zWXJVe+SnqO211IlQdppXKHwQw9fRcWnf40mtfk7nqxyTtAaNtMrhD1H6db5nlRf3CCDB4ZslQAaYguf+LljvzGDoNFN8HqRhh+EqQzrsSEBxd/HSpTrn+2GHecBYdOgmwImw2Ez/+y6/ckJOrCAb73OfjCpOI+68/fh6H94aGX4aSDYY+tXR/y4T4My6v7vHsd9PsmNGfcBvvghq7LPu1zMLw/XPl32GkM3Pz94mLqQzGvBd8AbAFcCtyFu5Tm+bgBzkUrdlBXJfAKMDkIgot83/8LMA44GKjE9SF/MQiCKdHyBwEPE+M+ZNO1txdn2PnOtvPO/ARcc2CC1JXptlu+KQtZJeVB86XuGs0PvNXEV+/KO90k+q31q1A+uLA/I/t3fNBy76trOP6ONQwQIaFK/1AZM9TjqUuKu/xhU1r5x38bmDEvw+hhST63VxWjhhXfn//enDSnXr6MhLYed3uq9GtuZrsRynEnbMYOO7e9DvWKZWku+v7MNhf88DIZfn/3dvz0a2+1JmVVBq6uoyKToTrTTCIp1OzWTO1WISOz40kmhXf/sYBMcxb9uKklA1UOSjFodBUrguV4oZII85p2syGVza27K/Hg8LeP5I3zXmHhQ7NJZlrzcdaDI+rcZXefGfO/pOc3oAhJsqTyvtAQZT89ZZ1tk23M8NZO95KeVQciDPzSWKjPsObVpaQ2r2LUZXsx+KitC25fzTs9LF/TjJXM++ZjrH11cWsiFqVq4hCapy6LzituezDSn9Ukcc2x7qAkTQJ1CTg6YkySISX1yNQrYecxbT80DOGKv0NlAs77UtvWiu5IfbV1VHUq4QZt/ftNl4R3nwD9q+HGU2HrAv25PaV960vf6ZUPfVH+XHBf/0k9tWwZW0SWADuo6nIRWaWqg0RkNDBZVYs84iq+hnwF7tSmS6LnZ+H6ks8NguBq3/fvAi71fX9a9PqlwB19kIxNL9qyg1aowZVC0uvgdx/Nqsk7vfioiZXcfJTw66ebyWSVfilh4uYJrjuiimH9Om9BOHr3Gn7zVBML5mbop26/9rsTi+/9qEwJXz+o+6evjBmZYPNhCRYtzbTUyrIiiCq77dV/nWQMMGRYqqVGnuOhvPdGPYmwdQBa9domV9sV4aznPwPA5MmTAdj/8B0B2Occd56wqjLz8QUkUh5bHbw5ALds8wCIkPVcU30idCPKQon6kVXZ/bd7Ujmkkr3+si+Tn/iITH0mSsjqasuRqq360zTfjRNIk8gbLNW5RHWS3T5sfx390nSUjAEqtx3M1sE3SS9qYM0LC0gOraZ6r83wKpO8n7wazbbf0yvpaBcmKBlSpMhGvc0JkjTi4Wq/esgubpR1e54HF31l3fnd1Xgf/PA2V9v+zfHFjdTuLeVJxr0m5jVkj9au2noRGQgsBAofnbZTzHnIBwPfBXYPgiANEARBne/7xwGP+77/OHAOcB0wI3rbA8APSgnExE91ZWsDYs7RO7g/iv5VUJcb8xVGfcVAbburZn5nzwq+s2fpN1F47YeuvXxFfUhtpVC5niPgS1FT5XH9BUM5+ryFEJ0LLUBVqNRWdx7H9jtUMn16MyqCF4akwpCRW1QRoiTDkNqGBpK5UeiqrJy7hsFjO7/jk4iw9efb3jAiDCERtUC3NF2LMHT/kez+412oGVVD1YjWvu0vzvoaj466j7Axi5dR9nzggJbXmj5ak1eykEaoiL7vjhqj+0pqs1oGHrlN25keJKJTunK/ylxTdprcj05basUVNJIk3fr+2St6P3Bwpwr9/uS++axNTJwvDAK8CewPPAn8F9eEXU9rTixKlwk5OpVpnepGEATPAvlXADgpepiNRCKRIEGG3PjMhMD2Q9xu8KEjExxyX9Yl4rxzkS/ct2dP9RpSoCbdm4YOTLSMrAbcICvPo2FN55cGPevS8dz1h3m88WIdtbXw5ZPGMGJ0pTt/NpNpTcaRWc8vZfDYLUsLzBOyCqn0urunIbut26TvJT0OW3IMYTrES7V9R/OStg1YuUtnCiEdNYKU0/BrD2H59x5Hor5lSQmDL92P9I8fzp3QhEeWZhLU0IzQ7nuqj9/NMkxpYl5DPoXWBpyzgcuBQcDxpRSyYZ8oa3pdwzkeZz8ZkgZuPMRraW48eFyCV08Qvj05w4ylwsAk/HjfBGftXXptOK68/CY/EZpEujxKP/bsMRx7dtt5irv8ZzbqE3cztVs9bYnaJNmGLOlUAslkkdDVlIfs2MEIvPx1Sa0bt6bbHiC0DpqSDkdGl9Og03aj/zHbk56xgtSEwSSGuFaAZT+eTCIv+bqzxrOkqYxOe4rS9ZVfL1fopofEPCHPUdUsgKouAb7TnUIsIZuCKpMeN36u4yQ0aTOPN0/ZeBJwe0MGeqz4uDVpKcouO3d+WcjOiCpNqRRNqRSVzc142SypTJamxtKbhQ+6xuc/p70EuJHQFaokaxLs9pOJJZfVb+Ig6qIrdQmaN6hLkFQZ+z47kRhYRWKPtoOhwqpKZG1TNDJcqP3zEXjPz0KX1dH84UKS2SYSVxyF95XdyxO06TExT8iLROR+4B5Vfba7hVhCNqYTvzhzKGf/cikhkAhDRg702HGHzvt8CxIhkc2SDFt7P1NVpSe9cQeN4htTPsvqOQ0MGldL86pmBm0/KLrxRGkmPXIIz45/kLAhg5BFaL3gysjTdii5vHIYtvIiVvg3kl1QR+1Vn6P25N3hu58sd1imF8S8D/mzwDHAPSKSBe7FJee3SinEErIxndhmywr+8adRzJnXTMqDLbfs3n2eswl3feuaqCYHgOexzf7DulXegC1qGbBFVFMfXXqNPadyRDUHfXwMzcubqBhWxYcXvsyKB2cz7OgJbPUrv9vl9iWvKsWwaWeWOwzTB7JxG9iQR1VfB14HLhCR/XHJeYqILFTVXYotxxKyMQWkksLWW3UvEbdQdw/k9ruThiVNDNy8Z29dWCpJeFRGo7InXLUXE67aq6zxGNOZsAcu3tRHpuMuMz0X2KaLZduIdRuAMRuDZCZLVTrtbgwB0eUsQ4Zv23f3dzZmQxempOCjnERkkIicLCJPAh8CB+CuajmilHKshmxML1NPkDB0t2XMu1xmqjp+A6eMiatMifc172MLgOeBe4CjVHVVF8t3yBKyMb1MPY9MKumucZ2bV9aIjNnwxLzJeoKqLlzfQiwhG9PLBgxOsma5kkm3XhzEi/EAFWPiKBvjhNwTyRisD9mYXveDG3dEEtBYVUVDZSUkhK/+esdyh2XMBiX0pOBjY2A1ZGN6WXVNgp8/sBvzZzQwfEwVtQNSXb/JGNNGnGvIPcUSsjF9IJnyGLeTjao2prs2llpwIdZkbYwxJvaynhR8lJM4p4jIFBGZGs3bT0RKuoi6JWRjjDGxF+eEDFwKnAzcBIyN5s0HLiylEGuyNsYYE3sxb7I+EfiEqi4TkT9F82YB40spxBKyMcaY2It5Qk4A9dF07jID/fLmFcWarI0xxsRemPAKPsrsMeAaEakE16cMXAZMLqWQsq+FMcYY0xVNeAUfZfYDYDPgY2Agrma8JdaHbMyG439Of42p88cAwju3v8CFf/tUuUMyJpZiUAvukIgkgK8C3wQG4BLxPFVdVGpZlpCNKaO3PkqQuwHjknRNWWMxJs7CRDxvxqKqWRG5RlVvBdYCS7pbVjwPOYzZRFSFrbeZSKoS3PZ6GaMxJr7Uk4KPMpssIoevbyFWQzamjKrWrmVtVZWbbm6mvq7sOxZjYimuTdaRKuBvIvICMI+8G7qp6vHFFmIJ2ZgyqqlbQ2VzGkSoXLOWxlRJ9zM3ZpMRerFOyNOix3qxhGxMGSXWZtjrzVl4ofLqtltQaXdKNqZDcU7IqvqLnijHErIxZfTJabNZNrAWFWH39+YxZ+mQcodkTCzFOSGLyEGdvaaqU4otxxKyMWW0ZFA/Mkk3enTxoP4suHMW/HTPMkdlTPzEvA/5lnbPhwMVuOtZF335TEvIxpRRcypB/3QjyTDLqlQt04cMKHdIxsRSnGvIqrpV/vPo3OSLgbpSyrGEbEwZaWUj+y6chgBvDR3F8NXxPNfSmHLLxvQ85I5E5yb/CldDvqbY98X3kMOYTcA2Hy8kd6LTxOULGNyULms8xsRV6EnBRwx9BghLeYPVkI0poyfGTeBbR32DpkSSnz7zJP1WWkI2piPZGDdZi0ibc4+BGty5yaeXUo4lZGPK6Ld778+yfu6SmWccegTnP/ZEmSMyJp5CiW9CBo5t97wBmKGqq0spxBKyMWWUf9Sf8TzqvVQZozEmvuI8qAvYQ1Wvbj9TRM5V1aL7kNtabcoAABLoSURBVLtMyL7vVwAvA08GQXBe3vyzgXOBXYHjgW8BE4EFQRBsXWwAxmzKdvu4jucqUoQi7Ll0FYlUrHc6xpRNNp79xDk/A9ZJyLiR1j2XkIMgaPZ9/1vAy77vPxIEwRTf9ycClwOHBkGwyvf9BcBvgO2Bbxf74cZsKva9J8NzC9z0hIEw82M3XbvtSJIoe855n8ueepDR8z8CjihbnMbEVRxryHkXBEmIyIFA/lHDeHrjtKcgCN72ff8nwG2+7+8J3A1cHwTBM9HrfwPwff/EUj7cmE3BzJWtyRhakzFAQ2UlAAurNueRLfbh8rk3wZszYNdt+zhKY+ItpjXk3AVBqoBb8+YrsAg4s5TCSjnkuBZ4F5gKZICflvJBvaWurs6mbTrW00sb6VI65XHw89H9zN9dUPaYbdqmuzvdW7LiFXyUg6puFV0U5O7cdPQYr6p7q+o/SylPVIu/mL3v+z/GNVWfGwTB7zp4/UTg4j7uQ7ar8ZvYG3xdhlVNbjohkI1+tYlsSHVzmt/f+Sj++wvZiadJ6oPlC9SY9dcrVdmzvvZuwX39tffvEMsqdCmKHmUd9RtfDFwJ/Nz3/QeCIJjba5EZsxFZeWaSlz7KMKwGJgxO8sTsDGEII7a9gYowxIt2NdeP+gLnlDdUY2Ippk3WAIjIAOASYH9gGHkHJao6tthyiqrn+75fies3/n0QBD8CHgJu930/fr3sxsTUXqOTTBjsjoEPGZfks+OTiNCSjNOeh/Sz056M6Ugcm6zz3ABMAi4FhuD6jucC67QkF1JsDfkKoBl3BABwFq4v+Vzgat/3k1FZKUB8368CCIJgbSnBGLOpeWaXHZgwfzGJMGTm6BGsyNifjDEdycS4hgx8FthBVZeLSFZV/yEiATCZEpJyl4cVvu8fDHwX+FYQBGmAIAjqgOOAX+Q1ZTcCN+GGejdGD2NMAdssnkuzetR7VWy5dBFrU3atHmM6kvWk4KPMPCB3/kS9iAwEFgIljacq5jzkJ4F+Hcx/FqiNnr5Fa+3ZGFOkRCMsGDqQNZVJtloCNQ0lXWnPmE1GDJqlC3kT13/8JPBfXBN2PTCjlELscNyYMpoycRxXHbo/oefxmakzOOypl8odkjGxFPMm61NoHch1Nu5spEG4q1gWzRKyMWX04J47tlyB6D+7bMtuwdtljsiYeIpzDVlVP8ybXgJ8pzvlxHcNjdkEjFm1omV6SEM9XspGWRvTkYwnBR/lJM4pIjJFRKZG8/YTka+XUo7VkI0po3GLl3Ds6lWsqq5h1LLljP7kwHKHZEwspSXWTdaXAp8Bfg/cGM2bjxth/b/FFmIJ2Zgy+r9R29AkUBFmeX6bLTly20XlDsmYWCp3LbgLJwKfUNVlIvKnaN4s3FlHRbOEbEwZrUhVsaK2puV5KttUxmiMia90jPuQgQRuVDW0Xs65X968osR6DY3Z2O26cHHL9E6Ll9CcqChjNMbE11pPCj7K7FHgGhGpBNenDFyGuzBI0ayGbEwZnfT6u+y2aBHNiQT7f7iAgbtsU+6QjImldAzvh5znXOB23MVBUria8b+x056M2XD8x/8E/ZsaSYYhDxywFX85cUS5QzImlppiOKhLRDZT1UWquho4UkRGAFsC81S15AEhsT7kMGZj9/k3XmV5v/4sGjSIg994g+pBtV2/yZhN0FqRgo8yaX8lrhtV9ZXuJGOwGrIxZXXM9KOp/ts/0Yxw5O1HljscY2JrTfn7iTvSPqgD1qcwS8jGlFmiUqCy3FEYE28fx7DJmtYR1T3CErIxxpjYi2lCTorIgbTWlNs/R1WnFF1YDwdnjDHG9Lx4NlkvAW7Ne7683XOlhIuDWEI2xhgTfzGsIavquJ4szxKyMcaY+IthQu5plpCNMcbE3yZwkq4lZGOMMfFnNWRjjDEmBiwhG2OMMTFgCdkYY4yJgXie9tSjLCEbY4yJv40/H1tCNsYYswGwJmtjjDEmBiwhG2OMMTGw8edjS8jGGGM2ADaoyxhjjImBjT8fW0I2xhizAbA+ZGOMMSYGNv58bAnZGGPMBsD6kI0xxpgY2Pjz8aZwQytjjDEbPJHCj3UWl9kisnMZIu02qyEbY4yJP6shG2OMMTEgXTyKKULkeBF5S0SmishDIjIimv+CiOwRTd8gIm9H00kRWSYitT2+Ph2whGyMMSb+SmyyXvftsjPwa+CzqroLMA24Lnr5SeDgaHpfoFFENgf2AN5V1YYeX58ObPBN1iLyODCs3HEUkkwmh2UymWXljiNObJu0ZdtjXbZN2tqAtse/VPXzPV2onp9c30brA4FHVXVh9PzPwJvR9JPARSJyN7AceAaXoLcCpqzn5xZtg0/IvfHF9zTf94MgCPxyxxEntk3asu2xLtsmbdn26FXPA5OAL+KS8zPASbiE/LO+CsKarI0xxmwKngIOFZHNouenAP8BUNUm4DXgR8ATwIvAPsAu0XSf2OBryMYYY0wnnhCRTN7zHwP/EREFPgROzXvtSVyf8SuqmhWRD4BZqtrcV8FaQu4bN5U7gBiybdKWbY912TZpy7ZHCVR1XCcv3d7J8lcAV+Q9P7QXwipIVLWvP9MYY4wx7VgfsjHGGBMD1mTdR3zf/yNuGH0TUA+cHQRBUN6oysv3/WOBC4AdgXOCILi+zCH1Od/3t8U1oQ3FnW5xfBAE75c3qvLxff9q4ChgHDAxCIJp5Y2ovHzfHwrcCUwAmoH3gVODIFha1sBMr7Aact95DLeD2RXXT3FfmeOJgzeAo4F7yh1IGd0I/DEIgm2BP+LOjdyU/R3YD5hT7kBiQoHfBEGwXRAEE4GZuItbmI2QJeQ+EgTBw0EQpKOnLwBb+L6/SW//IAimBUHwDhCWO5Zy8H1/BO7cx79Gs/4KTPJ9f3j5oiqvIAieDYJgXrnjiIsgCFYEQfB03qwXgS3LFI7pZZt0QiijM4BHgiDYJBORaTEG+CgIgixA9P8F0Xxj2ogO4L8H/LPcsZjeYX3IPcT3/deAsZ28PDK30/V9/2jgm7hmuY1asdvEGFOU63DjTza5sRabCkvIPSQIgkldLeP7/pHAr4CDgyBY3PtRlVcx22QTNw8Y7ft+IgiCrO/7CWBUNN+YFtFgt22Aw61lbeNlTdZ9xPf9w4BrgM8FQTC7zOGYGAiCYAluYNsx0axjgNdtBK3J5/v+5cDuwJeDIGgqdzym99iFQfqI7/tLcact5O9sDw6CYHmZQio73/ePAa4CBuO2TQPw2Wig1ybB9/3tcac9DQZW4k57eq+8UZWP7/vXAl8BNgOWAcuDINipvFGVj+/7O+FuEzgDaIxmzwqC4MjyRWV6iyVkY4wxJgasydoYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxpgYsIRsykJExomIisgWvfw5p4nInXnPHxORC3rzM03HROQDETmxyGX75PfRF0SkMlr37csdi4k3S8gxJyLjReR+EVkkIvUiMk9EHhKRiuj1E0Xkgw7e19n8b0U7up938NrTItIUfc7HIvK6iBzVO2vW+0SkFrgUuCQ3T1W/oKq/KVtQXYi+m33LHcemoDe2tYgcICKZ/Hmq2oQ73/6qnvwss/GxhBx/jwILge2A/sCngMcB6WZ5pwIrgJNFJNHB65epaj/c/Xn/CtwnItt287PK7VjgLVWdWe5AzCbvr8BBIrJ1uQMx8WUJOcZEZCguEd+oqh+rM19Vb4yOukstbwfg08AJwObAFzpbVlUzwA1AApjYQVmni8gb7eZtJSJZERkXPf9LVKOvE5F3ROSbBWK7RESeaDfvaRG5OO/5ziLyuIgsFZG5InKFiKQKrPKXgf90VmZes+gJUXwNIvKoiAwWkV+LyJKoZeL0vPefGDU/XigiC6NlfpsfR1frLSK7iMi/ovVYkVtvEXkzWuTfUSvF/3SyrWpE5A/RZywTkb+LyNi815+OYnogimGmiBzR2UbKW6cfiMj86D1Xi8jQqIzVIjI9vzYpIkkR+ZmIfCgiK0XkSRHZOe/1lIhck7cNL+zgcz8tIs9G22CmiJwnIkUfaIrIUSLyZtSa86aIHJn32jotRCJyW26bdratRWR2tF7PRvMDEdmjozLy5s0WkWNFZBTuvueJ6L31InICgKquBl4BvlTs+plNjyXkGFPV5cDbwP+IyPEismMpO6wOfBeYqqoP42rep3a2oLgm8dOBNPBmB4vcA2wvIrvlzTsReFpVZ0fPnwV2Awbhmo5vE5EduxO4iIwAngEeBEbjWgo+A/y4wNsmAcVchvMoYF/cnanGAS/hbgQ/Cvg28Pv8hIe7H+1YYHwUx+HA+Xmvd7reIrJ5tB7PRJ+1GdEN51V11+j9n1XVfqr6nU7i/R3wyeixJe4Sk5OlbYvHCcBvgYG4uwPdLiI1BbbBllG846NtcSYuueQubfog8Je85c8HjgcOjdbhv8B/RGRA9PqPgMOAvYGtonVtuY9vtD0ejcofDnwRd1vS4wrE2EJE9gbujj5nKPAT4K8islcx7+9iW58GnA0MAf4GPJq3XoXKXIA7yM1GZfZT1dvzFnkL95s0pkOWkOPvAOBp4BzcjQgWi8hP2yXmrURkVf4DV7ttISJVuB1obqd6C/AFWXfQzEXR++cDRwBHqeo6fdGquhL4By5hEcVzAnBr3jK3qOpyVc2q6r3A1Gh9uuN44E1V/bOqNqvqR8AV0fzODAZWF1H2Zaq6IjoAehhIq+rNqppR1cdw15j+RN7yIXC+qjZGzeG/wR2MAF2u93HAB6p6hao2ROvSpmWgEBHxcNv5YlX9SFUbcL+NHYA98xa9T1WfV9UQuAmXmLcpUHQj8IsonjdxB2GvqOqLqpoF7gK2FpGB0fLfBq5U1elRa82lQBaXWMF9L1eq6geq2gj8EMi/Tu/3gftV9R/RdpqOO3Ao9H3mOxF4QFUfi76nR4CHgJOKfH8ht6jqq6raDFyJ2zaH9UC5q3FJ3pgOWUKOOVVdpqo/UdVJuBrMBcDPiBJhZJaqDsp/4HZ4+b4G9MPtWMHVTpYC7Wthv4rKGKGqe6vq5ALh/QX4ZtRce1AU34PgEoeIXCoi70VNiquAXXG1oe7YCtin3UHHrbjaWWdWAl3WbHB99Dlr2j3Pzeuf93yJqq7Jez4b2AKKWu9xuBsFdNdwoBKYlZuhqvXAEmBM3nIL815viCbz16G9JVHyzmm/HXLrmytjTLsYQtx2yMWwRfQ8P4YleeVtBRzT7vv8Oa4rpRhtPj8yk7bboLtm5ybUXex/LtH3u54G4MZvGNMhS8gbEFVdo6q34Wpcu3WxeHvfxfUHTxORRbga8GA6H9xVjP8ATbgm2xOBe6PaELhbCX4H1xw8ODpIeJPOB6PVAbXt5o3Km54DPNHuwGNgNACtM68D3Woi78KIds2/43DbE7pe79kUrql2dbeXpbhtPi43Q0T6ASPo2/soz2sXgxc9z8XwUbvXa2l7MDYHuLXd9zlAVYu9s1Obz4+Mz/v8rn5P0Pm2zo9bcN0Tue+3TbkiksRt+5xC9yreGfebNKZDlpBjTNzgoivEDWZKRQNpjsL9Yf+3hHJ2xPULHolL5LnHnrga5qHdiS9qyrwDOAt3y7xb814eAGRwCcQTkZNwNcXOvApMEpHdo/U8A1eLyrkD8EXkJBGpimqi40Xk8wXK/DtwSOlr1iUPuFJEqkVkPK45NtdX2NV63wVsJ25QWI2IVIhIfoyLKJCwo5roHcBlIjIqOjD4LTAdeLmH1q8YtwEXiMi20XiDi4Ak8Ej0+p3A+SIyQUSqcc36+fubG4CjReTwvN/2jiKyf5GffztwlIh8TkQSIvIF3G8w1yXzBu7A6bDot3IksF+7Mjrb1ieJyKSo5ed8oCZvvV4FDhY3gLES+BWQP7BwEW5QV/5vFxHpj/t7+2eR62c2QZaQ460Zd/T9IK6paylwMXCWqt5fQjmnAq+p6mRVXZT3mArcT4HBXUX4C7A/rtk8PyHcjhsc9QGutrQjBQ4iVPVp4BrgX7im0pHAc3mvLwIOxI2cno1rjn4IVyvqzJ3ArlHS7ElzcDWmWbh1/Bcu4UAX6x0N/DkANyBtPm4Hnj8g7CLgUnEjl//cyef/AAhwo3bn4pp5vxQdIPWVq3Cn8vwbWIzrsvhsNJoYXP/+48CLuO00F7fdAFDVabh+2XNw3/cSXJIvqktDVZ/D9aVfjfst/AY4VlVfjF6fiRuYdRPub+fzwAPtiulsW98EXBuV+w3gi6r6cfTa3bik+hquiXwu7nvOxTUD+BPwctQUnxukdgzwlKq+X8z6mU2T3Q/ZbNRE5DRgH1UtavRuEeWdiBtQZeeTboREZDbu+72rq2VLKLMSmIY7aHq3p8o1G59kuQMwpjep6o3AjeWOw2y6olHohcYNGANYk7UxxhgTC9ZkbYwxxsSA1ZCNMcaYGLCEbIwxxsSAJWRjjDEmBiwhG2OMMTFgCdkYY4yJAUvIxhhjTAz8P0lQ4GVHRfA4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 193 + }, + "id": "rowyWQ_l9cGj", + "outputId": "0dc74436-6ca5-417b-e45c-b260c20b6e19" + }, + "source": [ + "shap.initjs()\n", + "# explain the heterogeneity of the effect of any single sample\n", + "shap.force_plot(shap_values['Y0']['T0_1'][0])" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + " Visualization omitted, Javascript library not loaded!
\n", + " Have you run `initjs()` in this notebook? If this notebook was from another\n", + " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", + " this notebook on github the Javascript has been stripped for security. If you are using\n", + " JupyterLab this error is because a JupyterLab extension has not yet been written.\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 70 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dA1nRbFK9cGk" + }, + "source": [ + "# 5. Validation and Sensitivity" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Nds7Fwyg9cGl" + }, + "source": [ + "y, T, Z, X, W = gen_data_iv(2000)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-zHcWkF19cGl" + }, + "source": [ + "#### Instantiate any CATE model" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0nMA97Jh9cGl" + }, + "source": [ + "from econml.iv.dml import OrthoIV\n", + "\n", + "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", + " model_t_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", + " model_z_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", + " discrete_treatment=False, # categorical/continuous treatment\n", + " discrete_instrument=False, # categorical/continuous instrument\n", + " cv=2, # number of crossfit folds\n", + " mc_iters=1) # repetitions of cross-fitting for stability" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z91lWEiQ9cGl" + }, + "source": [ + "#### Enable dowhy capabilities" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "QEe9XMai9cGm" + }, + "source": [ + "import dowhy\n", + "est = est.dowhy" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BIWgh7Ce9cGm" + }, + "source": [ + "#### Then fit" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "roPf-t439cGm", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4d24cac9-58fa-44fa-87e9-f8e57ec68176" + }, + "source": [ + "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 74 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5tlyZMcP9cGn" + }, + "source": [ + "#### Use it as a normal EconML cate estimator" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "lHr9Ooaa9cGn", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 290 + }, + "outputId": "e86a4da8-cbac-4271-ae99-8d312fd1949c" + }, + "source": [ + "est.summary()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.035 27.933 0.0 0.932 1.049
X1 -0.012 0.027 -0.441 0.659 -0.057 0.033
\n", + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " Coefficient Results \n", + "========================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "--------------------------------------------------------\n", + "X0 0.99 0.035 27.933 0.0 0.932 1.049\n", + "X1 -0.012 0.027 -0.441 0.659 -0.057 0.033\n", + " CATE Intercept Results \n", + "====================================================================\n", + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "--------------------------------------------------------------------\n", + "cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061\n", + "--------------------------------------------------------------------\n", + "\n", + "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", + "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", + "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", + "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", + "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", + "\"\"\"" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 75 + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o1z0z-E79cGo", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 235 + }, + "outputId": "5cf7bc63-16c6-4eb4-9cd7-3ecd7a7128fd" + }, + "source": [ + "est.effect_inference(X[:5]).summary_frame()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
point_estimatestderrzstatpvalueci_lowerci_upper
X
00.2860.0456.3620.00.2120.360
12.7300.07138.6180.02.6132.846
20.6780.03022.8660.00.6300.727
30.7600.03819.9510.00.6970.823
42.5390.08629.6050.02.3982.680
\n", + "
" + ], + "text/plain": [ + " point_estimate stderr zstat pvalue ci_lower ci_upper\n", + "X \n", + "0 0.286 0.045 6.362 0.0 0.212 0.360\n", + "1 2.730 0.071 38.618 0.0 2.613 2.846\n", + "2 0.678 0.030 22.866 0.0 0.630 0.727\n", + "3 0.760 0.038 19.951 0.0 0.697 0.823\n", + "4 2.539 0.086 29.605 0.0 2.398 2.680" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 76 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cAPR5eMZ9cGo" + }, + "source": [ + "#### But now we also have DoWhy capabilities: Sensitivity Analysis" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9aUCWN489cGo" + }, + "source": [ + "ref_res = est.refute_estimate(method_name=\"add_unobserved_common_cause\",\n", + " effect_strenght_on_treatment=0.05,\n", + " effect_strength_on_outcome=0.5)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "7bTLzM_H9cGp", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "7b5fdb67-e26d-46f0-b46d-572001977533" + }, + "source": [ + "print(ref_res)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Refute: Add an Unobserved Common Cause\n", + "Estimated effect:1.0314669223854354\n", + "New effect:0.9983858330683743\n", + "\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MuaLIl6X9cGp" + }, + "source": [ + "# 6. Policy Learning" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Z5NSUCzK9cGp" + }, + "source": [ + "y, T, X, W = gen_data(2000, discrete=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_oGYT0HP9cGp" + }, + "source": [ + "#### Fit a Doubly Robust policy tree" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "PLk_-21M9cGp" + }, + "source": [ + "from econml.policy import DRPolicyTree\n", + "\n", + "est = DRPolicyTree(max_depth=2, min_impurity_decrease=0.01, honest=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DVBwu-oh9cGq", + "outputId": "8972c75a-1793-4611-959c-708e85ea5796" + }, + "source": [ + "est.fit(y, T, X=X, W=W)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 81 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WNpPMq0Z9cGq" + }, + "source": [ + "#### Visualize treatment policy" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "4YnPJkJW9cGq", + "outputId": "5b9b02ea-01dd-4c3a-d598-4fb61b8e02ce" + }, + "source": [ + "est.plot()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAEGCAYAAADFbPcfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1frA8e+7yaaSQgqpEKp0FRBBVETALipcEMUC9vvzXnvBgt2r14p6vfbeBRXEjlesFEEEUZrSE0oqCellc35/zCRsyiYbSLIJvJ/nyZPdmTMz78zOzrx75swcMcaglFJKKdVaHL4OQCmllFIHF00+lFJKKdWqNPlQSimlVKvS5EMppZRSrUqTD6WUUkq1Kk0+lFJKKdWqNPlQygsi8pqI3G+/PlZE1vs6piptLR6llGqMJh+qQSLynYjsFpFAX8fSVhhjfjTG9PZ1HFXaWjxtiXvS2ELzHyUiaS01fy+W/52IXNrEaV4QkfUiUiki0xope7aILBKRIhH5roFyF4qIaWos6uClyYfySES6AscCBjijBebv39zzVO2Lr/cBXy/fR34DrgR+9aJsDvAE8G9PBUSkI3AbsLpZolMHBU0+VEMuBJYArwFTAUQkUERyRWRAVSERiRWRYhHpZL8/XURW2uUWicihbmW3iMh0EVkFFIqIv4jcIiIbRSRfRNaIyHi38n4i8piIZInIZhH5p/0Ly98eHyEiL4vIThHZLiL3i4hffSsjIneLyAci8r69rF9F5DC38X3tX5K5IrJaROpNuGr/2hWRziLykYhkiki2iDwtIgEikiMiA93KdbJ/QcbWM8/G1vMiEVlrx71JRK5oIJ4tInKjiKwSkTx7fYPscTEi8qm9jjki8qOI1HscEJERIrLMnscyERlhD58sIr/UKnudiMyzXweKyKMisk1E0kXkOREJdo/V3gd2Aa/Ws9xpIvKTPY/d9vY4xW18oojMs+PfICKXeYj/cuA84GYRKRCRT9y2T+19cLi9r+aKyG8iMsptPvVuexEJBb4AEu35F9ix3S0is0XkLXua30XkEBG5VUQyRCRVRE50m7/HfbihbSEi/8L6cfC0veyn69sOtRlj/muM+QYo8aLs/4wxs4AdDRR7EHgKyPJm+UoBYIzRP/2r9w/YgPULaQhQDsTZw18B/uVW7h/Al/brQUAGMAzww0patgCB9vgtwEqgMxBsD5sEJGIlw5OBQiDBHvd3YA2QDHQE/odVE+Nvj58DPA+EAp2ApcAVHtbnbns9JgJO4EZgs/3aaa/vbUAAMBrIB3rb074G3G+/HgWk2a/9sH5JzrRjCAKOscc9AzzktvxrgE88xNbYep4G9AAEOA4oAgbXjsdtGy+1t2kUsBb4uz3uQeA5t3U+FpB64okCdgMXAP7Aufb7aCDE3ja93MovA86xX88E5tnzCAM+AR50i7UCeAgIrNoHai17mv05XWZv3//DOvmJPf4He9sGAYcDmcBoD9u1+nOrtX2q90EgCcgGTsXaB0+w38c2ddu77WclwEn2tnsDaz+73d7mlwGb3cp73Ie92BbfAZfWWv6nwC1efL9/AqZ5eSy4FPiunuFHAr/Y261OLPqnf57+fB6A/rXNP+AY+6AXY79fB1xnvx4LbHQruxC40H79LHBfrXmtB46zX28BLm5k2SuBM+3XC3BLJuxlG/ugHgeUup/AsE6S33qY793AErf3DmAn1gn4WGAX4HAb/y5wt/36NepPPo7COvn517O8YcA2txPFL8DZHmLzuJ4eys8Frqkdj9s2Pt/t/cPAc/bre4GPgZ6NfAYXAEtrDVtcdbIC3gLutF/3wkpGQrBO0IVAD7fpjsI+2dqxlgFBDSx7GrDB7X2IvS3isRIGFxDmNv5B4DUP86r+3Gptn4vd3k8H3qxV5itgalO3vdt+9rXb+3FAAeBnvw+z1yeSRvbhhraF/f479vGEz34mH1jJ0C/A8P2NRf8Ovj+97KI8mQrMN8ZUVaW+Yw8D+BYIEZFhYrULORzr1xtACnCDXX2dKyK5WCeMRLd5p7ovSKzGaivdyg8AYuzRibXKu79OwfoludNt2uexfj16Uj29MaYSSLOXkQik2sOqbMX6VdyQzsBWY0xF7RHGmJ+xfiWPEpE+QE+sGoH6NLSeiMgpIrLEvtSQi/UrPQbPdrm9LgI62K8fwarhmW9fQrilgXi21hrmvj3ewTpJAkwB5hpjioBYrBPkcrfP5Et7eJVMY0xjVf7V8dvzxV6HRCDHGJPvIS5v1d6PJtXaZ48BEmCftj1AutvrYiDLGONye1+1Pt7sw562ha9dCawyxizxdSCq/TkYG1upRtjX588G/Ozr8mBVkUeKyGHGmN9EZBbWyScd+NTtZJCKdUnmXw0sororZRFJAV4ExgCLjTEuEVmJ9QsarJqJZLdpO7u9TsX61RhT38nfg+rp7bYOyey9nt1ZRBxuCUgX4M9G5pcKdBERfw8xvA6cj3UC+aCBk67H9RTrTqMPsdrgfGyMKReRuezdRl6zP6cbsBLEAcACEVlmrDYA7nZgnRjddcFKJAC+BmJF5HCs/eA6e3gW1sm1vzFmu6cwmhp3rbiiRCTMbZ/rAjR1We7DU7FqPuq0HfFi2+9vt+D7sg+782W35GOA40TkVPt9FDBIRA43xvzTh3GpdkBrPlR9zsKq2u6HVatxONAX+BHrIAzWL9/JWA363nGb9kXg73atiIhIqIicJiJhHpYVinUAzQSrcR9WzUeVWcA1IpIkIpFYVeQAGGN2AvOBx0QkXEQcItJDRI5rYN2GiMgEsRpyXot14F8CVNVS3CwiTrvB4TjgvQbmBdb1+Z3Av+11DRKRo93GvwWMx0pA3mhgPh7XE6sNSiDWNqqwGxyeWM88GiVWY+CeIiJAHtbnXFlP0c+BQ0Rkit0gczLW/vApgDGmHJiNVZMShZWMVNUmvQjMlL0NkJNE5KR9ibc2Y0wqsAh40N7WhwKXYG3n+qQD3RuZ7VvAOBE5SayGv0FiNYxNpvFtnw5Ei0jEPq7PvuzD7rxZvxrEagwdhJVAOe319dTo2M8u6w847LJOe/Q0rONC1THiF+AerLYtSjVIkw9Vn6nAq8aYbcaYXVV/wNPAefav/J+xru0nYrX4B8AY8wtW47insRoobsA6SNXLGLMGeAyrPUE6MBCrDUmVF7EOzquAFVgnxQqskyZYyVAAVmPN3cAH2NXlHnyMlTRVNaacYIwpN8aUYSUbp2D9en8Gqx3LugbmhV2VPg7rkso2rMs4k93Gp2Ld0miwkjdPPK6n/Qv/aqwEZTfWZQ5Pl28a0wurMWsB1jZ/xhjzbT3rlQ2cjlVLkg3cDJzudhkOrKRzLDC71q/26Vif+xIR2WMvrzmfQ3Iu0BWrFmQOcJcx5n8eyr4M9LMvacytr4D9GZ2J1dg4E6s24ias9j8Nbnt7/3gX2GQvI5Gma+o+7O5JYKJ9J8xTACLyhYjc1sA087Fqp0YAL9ivR9rTnici7rfMXmCPfxarXVQx1r6KMSa31vGhDNhjjMnzMnZ1EKtqCKdUu2D/8nzOGFP7koA3096N1dDy/GYPrOHlvgLsMMbMaMI0+7yeSinV1mnNh2rTRCRYRE61q/6TgLvY27i1zbMb5E7A+gXeULl2vZ5KKdUUmnyotk6wriPvxrocsRa406cReUlE7gP+AB4xxmxurDjtdD2VUqqp9LKLUkoppVqV1nwopZRSqlVp8tFEol2rK9UmiFuPrvZdGvO9mOY2EXmpmeMQEXnVvuNkaXPOuznJPvSAq/YSq0+gYhF509extFUiskBESkTkp8bKep18iHatXodpY12Zt7V42htp5u7XGzvYi0hXces8riX48oQjrdjdvDHmbWNMo88+McY8YIxp7u1xDFZ/MMnGmCObed4+0RqfnX0yH9uSy2hg2dO8OUHWY5wx5gK3+dwnVseBFfbddA0t83gR+Vasjhq3NFDuOPu44PWxSKzOHF8RkT0isktErm+k/HV2uT32dIFu474Vq5PMPWJ1snimh3m8YsfZs2qYMWY0Vj9VjfIq+RDtWl21MN0H6qfbpV1IAbYYYwqbOmF7/nzbc+zNaAPWM3A+86JsIVannDd5KmA/wO1JrIceNsXdWM/wSQGOx3pY4skelnEScAvWE2pTsB5Sd49bkWuwOvYMBy4H3hKRhFrzOAars8V9500HMFit7hcCj2M9Shusp/7lAgPcysViPYSmk/3+dKxOwnKxnkp4qFvZLVgPI1qF9ZRJf3uDbMTqpGoNMN6tvB/Ww6iysHqI/Cc1e/2MwLqdcSfWo5bvx+7IqZ71uRvrQT7v28v6FTjMbXxfrE6ScoHVwBlu416jng7G7PedgY+wHlSUjfWgrQAgBxjoVq4T1tM0Y+uJrbH1vAjrToh8YBM1OyOrHc8WrJ5bV2E9zfJ97A69sPqm+NRexxysB2A5PGyvEVi9lubZ/0fYwycDv9Qqex0wz20feRTr4VvpWL2pBrvHau8Du6jVsZfb/C5zW9817O1NtLHP6L9YB4R8rC9yD3ucYPW6mgHsAX7HeqLq5Vgd6ZVhPYDrE7t8Q/vkNKzOuR7FuktlM3CKPe5fWA9CK7Hn93Q967bN/mwL7L+j7HkutGPMxtqPG9qOHe3PMdOO4VOsX+AeY7CXeSXwl71e92EdSBbZ22QWEOAWZ2Pf4zr7GNaTa4uxnp5atX6J9WyD1+z1+dqO5XsgpbF9zx73HXZHZlWfhdu4/vY8c+xtdpvbd/8tt3LD7XXKxeqdeFStz3eTHddm4Lx64r/E3r4uex3vcdtvN9jLn+e+7vb2/4e9/Td72O8bisvjMcAef6b9ee3B2ndPdtte92HtX/lYDxuLqWfZ9X527D1uvmXP+1IaOO5i7VMLsPbjLOBtINIe96Y9/2J7/jdjPTjO2OuXirU//x0YirV/5VLrewRcbG+L3VidAabU2s5/t7dzLtYxQbCOHe6fWa6X58EtwFgP497C7oTSi/mMxUpW6xt3C1ZHkK9Rq0PERua5AzjR7f19wHseyr4DPOD2fgywy0PZI+1tdaTbMH+sO/IOtbdxz1rTTMPtu+gxZi9XTLtW167VfdG1+iSsA9pQe317srcjrsY+o2ysL44/1kHvPXvcScByrB5Fqw5ECbU/21oxeNonp9HE7s5rzbur+2frNs8K4Co79uBGtmM08Df7swjDeuT5XLf51YnBXubHQDjWSboU+AbrF1AE1v43tQnfY0/72Chq9fhazzZ4zf7sRtr7wZPYBy4a2PdqrxtuBzx7O+zEejprkP1+mNt3/y37dRLWfnKq/fmeYL+PxfoO72HvPpWA1V9NfetQvWz7/Wisk+1ge53+A/xQa/t/ba9fffu9x7i8OAYciZWonWBPmwT0cdteG4FDsPar74B/e1inOp8de4+bZ9nzDqaB4y7W9/UEexvEAj8AT9Q6Po11e9/V3jbP2Z/biVgnvrn2vJOw9sXj7PJnYh0H+mLtHzOARbW286dY3/UuWAn6yfV9ZvawKVgd5fkk+cA6tv2J1Wnga3iZfGCdJwz2edkeNhH43UP534DJbu9j7Omj3YZ9am97g9Wfk3tv3zcBT7pt45ZJPtCu1UG7VvdV1+pfVa1breHefEYvuY07FVhnvx6N9QUfTq2aHrz4wtfaJ6exH92d4zn52Ob2vsHtWM88Dwd2u72vE4O9zKPd3i8Hpru9fwz7JIF332NP+1iN/dFDvK/h9gsN68DrwvpR0ti+V71u1Ew+zgVWeFje3exNPqZTq8bN3uemYp1Mc7ESuzoJQq1pqpdtv38ZeLjWOpUDXd22/+gG5ucxLg/l3Y8BzwMzPZT7Dpjh9v5K7B+L9ZSt89nZ2849iWrqcfcs988Fz8lHktuwbGqeKD8ErrVffwFc4jbOgZWIpbht52Pcxs8CbqnvM/Pmr3a8tcY1R/LxcdW60rTko7O9rkFuw06obxn2uOraMPu9056+a61yTqzuJq6vtawNQITbNt6n5MObNh9T0a7VtWv1mlqra/XOWF+U+mJq7DOqd72NMQuwLof9F8gQkRdEJNxTAI3skzWWY5qvu3P3z7zB7SgiISLyvIhsFasflR+weh/2a2QZtbt8r/2+ah28+R572se85f5dLMC6VFH1XWxo3/PE035TWwowqda6HYNVs1WIVdP1d6zjymf2d9cbNeK21ym7VtyptSfyJi5o9BjQ2Lo322dFI8ddEYkTkfdEZLu9b75Fw8eqKk3ZN590W3YOVrLe6HGgrRGRcUCYMeb9fZi8wP7vfhwLx/oh6Kl87bLULm+sPq++AE4Ukaq2nk8A95pm6L+nweRD9natfpzdMnYX1jX9w8TqWt2FlU2ea//V17V6pNtfiDHmXff1c1tWClaHRf/Eqv6JxHo6ZFO7Vq9aVrgxpn8Dq+epa/Ud2F2ru5VtqMtu9xi6NNAIq6pr9QvY/67VH8WqYovE6oBsn7pWN8bcYIzpjtWI+HoRGVNPUU9dq1dtj9pdq1f1cOvetXrVZxJhjHH/8hsalkr9jZr29TOyFmrMU8aYIVi9tB7C3gZgNeLxYp9sdFH7ON59eGPb8QasTtuGGauB2Miq8L2MoTHefI898XbZ7vt4B6zLEVXfxYb2vYZi9qan11SsGgb3dQs1xvwbwBjzlTHmBKyT/jrsDtW8UCNuEQnFujzmHndD28ZjXF4cAzx9Z5rKm32zsePuA3b5gfa+eT41vzvNsW9eUWs7BRtjFnkx7f4uu7mNAY5wO89OBq4VkY8bm9AYsxvrvHGY2+DDsNrC1Wd1PWXTjdWZZH382btPjQEecYsTYLGITGksztoaq/nQrtW1a3Vfdq3+EnCjiAyx96GedkKwr58RIjLU3iedWJczStzWu3b35I3tk41prLvzTHvZHst4sR3DsJKTXBGJwuoTpikxNKap3+Pay/amu/lTReQYEQnAaii3xFg9zTa47zXgUyBBRK4V6xbEMBEZVk+5t4BxInKS2F3Hi3WLabL9q/1MO3Eoxfq1WN/3oz7vAheJyOF2svAA8LMxZouX03uMi8aPAS/byx5jHweTxPsaG3eNfnZeHHfDsLZbnlj9FdW+y2N/983ngFtFpD+AiESIyCQvp00Hku19bp/Zx58grHOpv/1Z1VvraG+fIKzaIrHLVi3/DqwfQlXn2XlY372LvAzlDWCGiHS0P+/LsC7deCp7iYj0s88xM6rKikgfsWrWgu11Ox/rB8339rSHYCUrVXGCdextcj9UjSUfU9Gu1bVrdR91rW6MmY11x8Y7WFWCc4Goff2MbOFY23g3VtV4NlbiBLW6X/din2xMne7Oa61fkb1+C+1lDvcwn4a24xNYDf+ysJLnL5sSQ2Oa+j2uNa233c2/g5U05WA1aj/fnt6bfa++5eZjXfMeh1Xt/hfW7Ye1y6ViNVq8Detknop1gnTYf9dj1WLkYDXs/D8v1/t/WCeTD7F+kPQAzvFm2sbiauwYYIxZinXCmon1o+J76tYeeRODt59dQ8fde7Aa3eZh3Xn2Ua1pH8Q6YeaKyI37EOMcrAbr79nfiz+wjgneWIBVA7BLRLKg+kF1nmoLPHkRK/k/F7jdfn2BPb9jRaTArexIe/znWDV4xVjH+qqaaPdzbDFQaIzJ8TKOu7Aut23F+swfMcZ8acfRRUQKRKSLvawvsdpmfYt1rtrK3h8tgtW2JwNr37sGqx3Kr/a0GbXiBMgyxhR7GWe1dtu3i2jX6kq1eyLyGlbDRq+/E0r5glhPj04A5hhjpjZW/mAkIl9jNeZfaoyp7zJ+tXbzkBix2p8cj5UpxtHOuhyXvV2rD2qkXLteT6WUOhAZfXp0o+w2Ul5pT327tNsux0W7VldKKaWqtdvLLkoppZRqn9pTzYdSSimlDgCafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVv68DUKqtEZEAYKxfUIdzxM/ZGyHQ1zGpdsZQbipd21zFe94HPjPGFPo6JKXaEjHG+DoGpdoMEUlwBIYsDopN6Rh79NlhwQm9xOHU3EM1jakopzQ7lczFH+4p3LLKVVleMtIY84ev41KqrdDkQymbiPg7AkP+Sjzp70mdz7zB6et41IEh6+c5ZuOrN+6pLC85xBiT4et4lGoLtM2HUnsdHxiVFK2Jh2pOMcPGS+ShY/xBJvo6FqXaCk0+lLI5AkMnxx49KdTXcagDT+zwCaH+oREX+joOpdoKTT6UsjmcAT2D43rod0I1u6D4HphKV2dfx6FUW6EHWqWqSaBo41LVAhzOQIypDPB1HEq1FZp8KKWUUqpV6XM+lGoBm968lfTv36TfTbOJ6H1UjXFFO/5k1T0nETlgFH2uerV6uKu0iNQ5D5O1dB4VhbkEJ/Qk6ZR/EDPszNYOv8UYVwXbP/8PGT+9T1luBoExycSPvoj40dMQEa+m3/Xdm2T8+A4lGVtxBAQRktSbxJOvpOPA4z1OV56fw8rbj6WiMJfuUx8hbuSUmuMLctj+2X/Y/dvXlObsxBkWRVivI0k+/VpCEnvt93orpWrSmg+lWkCXibcREBnPptdvwlVWXD3cVFay8dUbcDiD6H7+g3uHG8P6/17KrgWvETN8PN2m3IczLIq/XriSzEWzfbEKLWLTm7eSOvdRIvqNpNt59xOa3Jct78wg7ZMnvJ5+yzszCE48hK5n30HSyVdSnpfBuifOJ/uXzzxOt/WDf1FZUVbvuMqKMlY/NJH0796k42En0G3KfcQeNZHc37/jj3+dTklW6j6tq1LKM00+lGoB/sFhdL/gQUrSN5P28WPVw3f+7yUKNv1KyqQZBHSMrx6+e+V88lZ/T8rku+h69h3EHXcefa97hw49hrB19v1Ulpc2W2yFqaubbV5NWu62P8j48R0STryCHlMfJm7kFA75v+eJHjqO7Z/9h7Lc9AanryjOJ2Ph+0QNPpVDLv8vcaMuIPHkv9N/+hzEz0nGwvfrnS5/wzIyF84i+bSr6x2ft+ZHinesp8vE2+g6+S7iRk6hy4Tp9LxkJq6SAnIaSGqUUvtGkw+lWkjHw04g+sgz2TH/BQq2rKIkcyupcx4mvM8I4o47r0bZrGXzcAQEETfy3Oph4nAQP3oa5XuyyFu3cL9iKctNZ/sXz7DyjuNZ/ZBvHjeRvewTABLGXlJjePyYSzAVpeSs+LLB6SvLiqHShTOyU43h/qGROJyB+AUE15nGVLrY9NZtxB41gQ49htQ7X1dxAQABETXnW/XeERDUYFxKqabTNh9KtaBuU+4jb80PbHztBvxDOwKGHlMfqVOucMtvhCT3w+GseaLr0G2QPX4VHQeObtKyK8utE3rmog/IXf09GENEnxEk1aoBqCwvxVXiXdcjfkGh7Ovj5gu2rMIZ0YnA6KQawzt0OwzEQeHW3xucPiCiE8GJh5D50/uEdTuc8N4jcJUUsOPLZzGmkoSTrqgzza5vXqU0K5W+171N8c4N9c43rNcRiH8g2+Y8jF9IOMEJvSjNSmPr+/cQ2KkrMcPH79P6KqU80+RDqRbkDIum6+S72fDyNQCkTLqDoE5d65Qry00nJKlvneEBkfH2+F1eLzN/069kLpxF1tJ5uIryCE48hC7jbyZm+AQCoxLrlM/6eS4bX73eq3n3uOhxOh0z2etY3JXlphMQGVdnuMM/AP8OHSnb3fg6HvJ/L7DhxX+y4eVrq4c5I+Lod+P7hHUfXGd5qR8/SvK46wiI6OQx+QiMSqLXFf9l81u3s/axvTVPHboPZsAtc/EPifB2FZVSXtLkQ6kW5h8WVf060sMdGZVlJYiz7mMgqmoZKstKGl3Ozm9eIf3b1yneuQH/DlHEDp9A7IiJdOh2eIPTRQ4YRd8b3m10/gAhib29KlefyvIS/II71DvO4QyksrzxdfQL7kBIch/Ceg4lvM8IXMX57FrwKmtnXkDf694irPug6rJbZt1LQGQ88WMubnS+zrAYOnQ9lA7dDiekcz9KMraw44tnWDtzCv1ueB+n22eolNp/mnwo1YJcJYVseuMWAmNTKN+TxaY3b6X/9A/r3FbqCAjClNe9G6Oqoak37Q52fvU8pdlpdOg+iJ6XPEFwfE+vYgyIjKu3RmJfuMqKcRXn1xjmDItGHH44nEEYT3eclJfWueRUZ94lhfzxwJnEDB9Pyt9urR4ePfQMfrtjFJveuJnD7v4agLx1C8n+eS79bngPh3/DXfUUbPmNNY9Mos/VrxE5YFT18Ih+x7LqnpNI+/QJup17b4PzUEo1jSYfSrWgrR8+QNnuHfS7aTZF21az5b27yPj+LeJGXVCjXEBkXL2XVqqGeZMc9Lj4cTJ+eJecFV+wcsYownoOJfaoiUQPHYd/SLjH6epLGDzxCw6rt2Fnleyl8+pcwhn00BKCYjoTEBlH0fZ1daaprCijomA3zkbWMXv5Z5TlbCdq0Mk1YwoMJnLg8aR/9yYVRXvwDwlny7t3Ed77KAI7da2+VbY8LxOAioLdlGSlEhAZj8Pfya4FryF+/kT0P67GfEOT+xIc140965c0GJdSquk0+VCqhez5axnp375O3MjziOh9FOG9hpG1dC5bP3iAjoedUONW29CUQ9m98isqy0tq1AAUbF5RPb4xEX2OJqLP0VQU55O9dB6Zi2ax6Y2b2fzunUQdNpbYEROJHHA84lfza19fwuBJY20+6ruEExARa61D10PJW/MDpdnbazQ6Ldj8G5hKOqQMbHDZ5VW34la66owzLpf9vwKA0uztFKWtZcX04XXKbvvwAbZ9+ACH3fMNIcl97Ft8DRgDtWqkjKsCxK/BuJRSTafJh1ItoLK8lE2v30hAZBxdJs0ArFtne0x9lFX3nszmd2bQ+x8vVZePGXoG2Us/Jv2Hd0kYcxFgPZBs14LX8O8QRUTfo71etn9wGHHHnUfccedRvGsjmQtnkbn4Q7J/+RRneAyxIyaRYscEzdvmo6FLOKw/bMAAACAASURBVDFHjGPH50+z838v03XyndXDd33zMuIfUKNGw1VaTFnOdvw7RFW3twhKsC4jZS75iLCeR1SXrSjMZfeq/xEYnVxdttdl/6lORKoUbV9H6txHiBs9jci+xxIYnQxAcHxP8lZ/T87yz4geOq66fP6GZZRkbiX2KN/cmqzUgUyTD6VaQNonT1C8cwO9r3oV/+Cw6uEhyX1IPOVKtn/6JNnLPyd6yKkAdBx0EhF9j2Hr+/dQlrOdoE7dyP7lEwo2LqfHRY832h7Ck+D4HnT52610Hj+dvDU/krFoFpmLP6qRfDRnm4+GhKYMIPaYc9j59Qu4Sgvo0G0Qeau/J3vZJySfcX2NmqCCzStY88gkks+4ns5n3gBAx0PHEtK5P+nfvk55XgYRfY/BVVJA+vdvU56XQc9Ln6qevuNhY+ss38++9BTauT9Rg/cmOgljLyZz0Wz+eulq9vz5MyHJfSjJ2Mqub1/HERBC4in/aKlNotRBS5MPpZpZYeoadnz5LNFHnE7U4SfWGZ98+jXkLP+MzW/PIKLvMfiHhCMi9P7nK2yb8xCZiz+kojCP4IQe9LzsaWKb4TkT4nAQOeA4Igcc5/UzPVpC9wv+TWBUEpkL3ydz4WwCo5Ppeu69Xt2R4vB3MmD6R+z46jmyl39uPbsEIbTLALqee0+929obQZ26cuhdX5H2yUx2/76A9B/exi8olMj+x9H5zBu0bxelWoAYY3wdg1JtgjMsenHPS58a3lAHZUrti5LMbfx299gsV3FBrK9jUaot0MerK6WUUqpVafKhlFJKqValyYdSSimlWpUmH0oppZRqVZp8KKWUUqpVafKhlFJKqValyYdSB4ENL1/LrzcP83UYSikF6EPGlFLtSP6mFWQumk3B5pUUpa3FVJRx+AM/ERzXrd7yJZnb2DrrPvLW/oSpdBHWYzApE2cQmjKgTtnCbX+wdfa/yN+4HHH4EdH3aFLOvoOg2JQ6ZfPW/kTq3Eco3PYHjoAQOh42lpRJM3CGRTf7Oit1INKaD6VUu5H7+wIyfngb46ogKK57g2XL92Sx+qHx5G9YRtJpV9FlwnRKs9P446EJFO34s0bZ4p0bWP3Q3yjN2kaXCdNJOu0q8jcu548Hx1Nm94ZbJW/9YtbOPI/K8lJSzr6T+NEXkbP8c1Y/PAlXWXGzr7NSByKt+VBKtRtxoy4k8ZQr8QsIJvXjx0jbvs5j2e2f/4ey3AwOvetLQjv3ByB66DhW3j6SbR8+SJ+rXq0uu/XDBwHof/OH1X3MdBw4mt/uOZHtn/2HblPurS675d27cEbE0X/6R/gFhgDQofvhrHviAtK/e5PEEy9v9vVW6kCjyYdSXnCVFpE2bybZyz+jbPcuHAHBBMd1I+Gky4kZegYApVlp7PjqOfLWLaQ0Ow2A0C4DSDrtKjoOHF1jfqsfnkhJxmb6T/+Ize/cwZ71S/ALDKbTyPPofNZNVBTuZsu7d7F71QKorCBqyKl0O/8B/AKC68yj342z2PzOHeRvWIbDGUT00HGkTJpRfWJsSN76xWz/9CkKNq+gsqKckOQ+JJ92NVGDTqouYypd7PjiGTIWzaYsZzviF0BgTDJxI88jfvS0Zti63guI8P7p5FlLPyG89/DqxMOavhPRR4wjc9FsKorz8Q8Ow1VSSO7vC4gZNr5G53YhyX2I6DOC7GUfVycfxbs2UpS6muQzb6yxfTsOHE1Qp65kL52nyYdSXtDLLkp5YfNbt7Lz6xfpeOhYup13P8mnX01wQg8KNi6vLlOwZSV5a38k6vAT6Tr5LpLHXYerOJ91T15I3pof68yzsqyENY+dS2BUIimTbickuR/bP32SHV88w9rHzgVj6DLhZiIHjiZz4SzS5s2sMw9XaQlrHjsHZ1g0KRNvJ3LAKNK/fZ0/n72i0XXK/uUz1jw6mcqyYpLHXUfKxNsQcbD+6YvJXDKnulzavJls++jfhPUYQtdz7qHzWTcS1n0we/78udFluEqLKc/P8eqvsqK80fl5q2z3Lsrz0unQfXCdcR26D8K4yilKWwtAUdoaTEUZYd0H1S3bbRDle7IozdkBQMGWVQD1l+0+mMLUNZhKV7Oth1IHKq35UMoLOSu/ptPIKTWq32uLHDiG6CNOrzEsYezFrLrnJLZ/+SwR/Y6tMa6iMJfkcdeRcMKlAHQ6dgq/3jyMbR89SMIJl9F18l0AxB8/lVWZW0n//m1SJt5WYx6uolziRk4hZdLtVtnR03CGx7Bz/gvs/n1BnRqX6ulKi9n05nSiDj+R3v94qXp4/Ohp/PHAmWydfT8xR56JOBzkrJxP5MDR9Ly4bvLTmB1fPkPavMe9KtvvptlE9BnR5GXUpywvHYCAyLg646qGle3eaf3Ptco6Gyqbu4vAqETKGylrKkopz89pUg2NUgcjTT6U8oJ/SDgFm1ZQmr2dwOikesv4Be69JFJZXoKrtAgMhPc+iqyln9SdQBzEjTq/+q3D30mHboeze+VXxI26oEbRsJ5HULjlNyoKc/EPjawxrip5qZJ44hVW8rHya4/JR96aH6go2E3sURMpz8+pMS7y0DGkffwoxTv/IiSpN/4h4RTv+JOiHX81uXv52BETCes11KuyoZ37NWneDaksKwHA4R9QZ5zDGVijzN6ygfWUDapZtrzY43ylar7lJfsVu1IHA00+lPJCytl3suGlq/l1+jBCkvoQ0f84Yo48gw5dD6suU1lRRtqnT5K16IPqNh/VROrM0xkeU31yq+IfEg5AYFRSreERAHWSD7+gDnV+3Qd0jMcvqAOlWake16d410YA1v/3Eo9lyvOzgN50Hj+d9U9fxG93jCIorjsR/Y4l+ojTiOhztMdpqwTFptR7q2pLcwTYSUNFWZ1xleWlNcrsLVtaT9mSmmWdwR7na6rmW+szVUrVpcmHUl6IHnIq4b2OJOe3r8lb8yOZP73HzvnPk3zGDXQ+4zrAugsi/fs3iRt1IeG9jrSSBIeDzJ9mkfXznDrzFIfnJlfi8Kt3uDGmeVbInk+3Cx4kqFPXeouEJFs1EeG9hjLowUXsXvUNeWt+JGfFV6R/+zqxx5xDz4sea3AxrpJCXKWFXoXkHxpZb43CvgiIqLpckl5nXNWwgMh4+79VtrzBslYZp3vZ5L51yop/AM6wqOZYBaUOaJp8KOUlZ3gMcceeS9yx5+IqK2bdExeQ9slMEk/+O34BwWQt/ZjYoybS/fwHakyX8eN7LRaTq6SAstz0GrUfZbt34SopIDCms8fpqhIO/5AIIvuNbHQ5/iHhxA4fT+zw8RhXBRteuY7Mn94j6ZQrCY7v4XG6HV8955M2HwEd43FGdKJg0691xhVsWoH4+RNiJw8hSX0RPyf5m1bUudxVsHkFzvAYAjomAtCh60DAethZ5IBRteb7KyGd+3lMHJVSe2nyoVQjTKULV0lh9SURAL+AYILje7Bn/WJcxQX4BQTbNRk1ayaKd20gZ8VXLRrfzq9fqm5wCrBj/vMAdDxsrMdpIvsfh39oJNs/+w8dDzuxRnsVsB7Q5QyPsV4X5ODssPfXvPj5E5LUG4CKorwGY/NVmw+wnumx65tXKUxdUz3vsrwMsn/5lMgBo6o/T7/gDkQOHE3O8s8omzC9OpErSltH3rpFxI+6ELEvmwXH9ySkcz8yfnyXxJOuqL7ddvfvCyjJ2ELK2Xc06zoodaDS5EOpRrhKClh+wxCiBp9CSOd++IdGUrjtD9J/fJfwPkdX39kQNehkMn56H0dACKFdBlCStY30b98gJKEnhdv+aJHY/EIiyVo6l7K8dMK6DyZ/43KylnxERP/j6HjoGM/TBXeg+9RH+Ov5/+O3O0YRO2ISAVGJlOWmU7DpV4p3bWTwvxcBsHLGKMJ7HUmHrofhDI+leNdGdi14laD4HoR2GdhgfM3d5qM0K43MxR8AsOfPJQCkf/t6dTuY5HHXVpdNOvUqspd9ytqZ55Fw4uU4nIHs+uYVTGUFXSbcWmO+Xf52C7/ffzqrH5pA/JiLqawoY+f8F3GGRZN02lU1ynY9527WPHYuqx/6G51Gnkv5nmx2zn+e4IRexI2a2mzrqtSBTJMPpRrhCAgmfvRF5K39kd2rvqGyvJTAqESSTvkHSaf8o7pc13PuweEMIvvXL8hYOIvg+B50v/DfFO/c0HLJR2AQ/W54j83v3MHWD/6Fwz+AuFEXkDKp8V/g0UNOJeCWuWz//Gl2ffsarpJCnOExhHbuR5fx06vLJZ5wGTm/fc2O+c/jKikiIDKOTsecQ9Lp1+Dwd7bIenlSkrWN1LmP1Bi28+sXq1+7Jx8BEbEMuHUOW2fdx/ZPn7T6duk+mF6XP0NIcp8a8whJPIT+0z9k2wf/YttH/0YcfoT3OZqUSTPqNOiN6HM0fa97i9Q5j7DlvXvwCwgiatBJdJk4o04NklKqftJsDdiUauecYdGLe1761PCOA4/3dSheqXrC6ZBHlzdeWPlUSeY2frt7bJaruEAfAKIU+oRTpZRSSrUyTT6UUkop1ao0+VBKKaVUq9IGp0q1U/1v/sDXISil1D7Rmg+llFJKtSpNPpRSSinVqjT5UKqNSv34MRZfUn8Puu3R6ocnsviSJBZfksQfD57l63C8krvmh+qYF1+SRPoP7/g6JKUOCNrmQynVaoITepJ02tU4w2JqDM/943uyf/mEgs0rKdrxJ1S6GP7CVsTPu0OUq6SQHV8+S8GW3yjYvJKKghySTruaLhOm1ylbtOMv0uY9TuHWVZTlZSDiIDA2hU7HTCZu1AU1OrcLSepDz0ufonjnX2z/7D/7t/JKqWpa86GUajXO8Fhij/obkQOOqzE86+c5ZC7+CEdAUIMd4nlSXpBD2iczKUpbS2iXAQ2WLcvZQUVhLtFHnknXs++ky99uJSTxELa8dxd/Pvv3GmUDIjoRe9TfiPCi8z2llPe05kMp5XNdJtxC96kP4/APYMPL15KZsaVJ0wdEdGLIo8sJ6BhPSVYqK6YP91g2csBxdZKf+NHT8AuNIH3BaxTv2kBwfM99WQ2llJe05kOp/ZSz4isWX5JE9rJP6owrydzG4kuS2PbhgwBUVpSR+vFj/H7/6Sy7uj9LrujOyhmj2Pn1i3jT1cGvNw9jw8vX1hnuqX1IYeoa1v/30r3LunMM6T++uw9r2bICOsbXuNzRVA5nIAEd4/crhqBoq8alomjPfs1HKdU4rflQaj9FDjwev5BIMn+eS/TQcTXGZf08B4CY4RMAcBUXsOvb14keOo6Yo6xheau/Z8t7d1NemEuXs25qtrjyNyxjzWPnEhibQuLJV+IXFMru3/7HptdupGJPVp3eWmurLC/FVVLo1bL8gkJxOAObI+xW4yotprKsmMrSIgo2r2D7l8/gjIgjJLmvr0NT6oCnyYdS+8nhH0D0EaeRuegDKory8A+JqB6X9fPHhHTuR0hSbwD8QyMY8siyGifqhDEXs+GV69g5/0WST79mv2oAqhhj2Pj6zYQk9aH/LXOqe5+NHz2N9c9cRtqnTxA36oLqrujrk/XzXDa+er1Xy+tx0eN0OmbyfsfdmnZ8+Qxp8x6vfh/a9TB6TH0YvwDtmVaplqbJh1LNIGbYWWT88DbZyz8n7thzAeuSR/GO9XSZNKO6nDj8EIcfAMZVgaukAFNZSUTfY8hcOIvinRsI7dxvv+MpSltD8Y4/6XruvbiK83G5jet46Fhyln9O/oZf6HjYWI/ziBwwir43eHeJJiSx935G3PpiR0wkrNdQKgp2k7duIUVp6/SSi1KtRJMPpZpB+CHDCeiYQNaSOdXJR9bPc0GEmCPPrFE2c/GH7PjqeYq2r4NKV41xrmY6+RXv2gjAlnfvZMu7d9Zbpjw/u8F5BETGERAZ1yzxtEVBsSkExaYAEHPkmeyY/wJrH5/CoXd/TUhiLx9Hp9SBTZMPpZqBOBxEH3kmO+e/QFluOs6ITmQv/ZjwQ4YTGJVYXS5r2Tw2vHQ1kQNHkzDmYpwRsYi/k8Ktf7Dtg39hTGUjC5J6B5taSQx249XkM64nrNfQeqcJSTikwUW5yopxFec3HI/NLzis3V+uiBk2nq3v30PWkg/pMuEWX4ej1AFNkw+lmknssPHs/Oo5spZ+TIdugyjNTiPptKtrlMn6+WMCY7rQ5+rXEcfem81KM7Z6tQz/kAgqivLqDC/N3FbjfVCnbgA4nEFE7uMzKrKXzjug23zUZspLAagorLt9lVLNS5MPpZpJaMoAghN6kfXzXEoytyJ2Q1R3exOOvbfVusqK2fnNK14tIyiuG3nrFuEqK66uaSjJSiVnxZc1Y+kygKD4Huz830t0OvYcnGHRNcaX78nCGV7zKaO1tdU2H2W56biK8wmMTaluSNsUntZ91/dvAtCh2+H7HaNSqmGafCjVjGKGnUXq3Eco2bWRyIGj69xNEjXoZHKWf87aJy8ketDJVBTmkrFwFn5BoV7NP27UhWQv+4S1j51DzLDxlOfnkP7d6wQn9KJw66rqcuJw0POix1nz+LmsnDGKTseeS1BsCuUF2RRtW03OyvkMf35zg8tqzTYfhalr2L1yPgBFaWsBSPvsP4gIfiERJIy5qLrstg8fJHPRbAY9tIQgt6eh7vzmVVxFedWNRvM3LCPtkycA6Hj4idUNeTe+MZ2Kgt2E9zmKwI6JVBTvIW/19+St+ZGwnkdU3xatlGo5mnwo1Yxiho8nde4juEoKiB1Wt/O02KP+RkVRHru+eYXN795FQGQnYo+eTFjPIax97NxG5x/RZwTdzn+AHV8+y5b37yGoUze6Tbmfoh1/1kg+AMJ6HsGhd3xB2qdPkrloNhUFu/EPiyYkoSddJ9/VbOvcHAq3/k7q3EdqDEv7+FEAAqOTayQfnuz86jlKs9Oq3+9Zv5g96xcDENAxoTr5iDnyDDIXzibjx/eoyM9G/AMIju9Bl4m3kzD24n2qTVFKNY1481RFpQ4GzrDoxT0vfWp4x4HH+zqUA9LqhydiXOX0/ueriJ8//iHhvg6pUZUV5biK88nfsIz1T19M96mPEDdySpPnU5K5jd/uHpvlKi6IbYEwlWp3tOZDKdVq8jf8wi/XDiSs51AG3DrX1+E0as+fi72qkVJKNY0mH0pVM4bGbnVV+yzl7DupKMoFqPEU2LYstMvAGo1uG7s92RP7VmitZlbKpsmHUlWMyakoyPF1FAesDl0P9XUITebs0HGfb1V2V1G4G3H46+NTlbJpr7ZK2SoKcz/PWTnfu57UlGqC3N8XuExF+Ve+jkOptkKTD6X2+ih31QK/qkeTK9UcrNuh3yypLCt6y9exKNVWaPKhlM0Ys8u4Kv75xwNnFGcv+wRXaZGvQ1LtWGVFObt//5Y/HhhX5CopfAZY4uuYlGor9FZbpWoRkTP8QiJuqSwrHuIMiyp1OIPaRStUY4xgTCgi5SJS6ut4mosxxokxwYgUiEi7+CwqK8qlIj87UJyBG1zF+U9iKl8yerBVqpomH0p5ICKRQCIQ6OtYvHQnEAIciL2iXQkcZv93NVK2LSgHdhljsnwdiFJtkSYfSh0AROQiYDow1BjjXVe07YiI+AFfAUuNMbf5Oh6l1P7R5EOpdk5EDge+BkYZY1b7Op6WIiKdgOXAlcaYT3wdj1Jq32mDU6XaMfvS0AfANQdy4gFgjMkAJgMvi0h3X8ejlNp3WvOhVDslIgJ8BOwwxvzD1/G0FhG5FrgAONoYU+LreJRSTafJh1LtlIjcBEwERhpjDpi7WxpjJ13vA7nGmMt9HY9Squk0+VCqHRKRkcAsYJgxZquv42ltIhIOLAMeMMa87ut4lFJNo8mHUu2MiCQAvwCXGGO+9HU8viIiA4BvgTHGmFW+jkcp5T1tcKpUOyIi/sB7wIsHc+IBYIz5A7gW+FBE2kc3uUopQGs+lGpXROQh4HDgVGNMe3jYVosTkWeAOGCiPkVUqfZBaz6UaidE5CzgHOA8TTxquA7oDFzv60CUUt7Rmg+l2gER6QksAsYZY372dTxtjYikAEuxaj9+9HU8SqmGac2HUm2ciARjPUjsXk086mff8TMNeFdE4n0cjlKqEVrzoVQbJyKvAMHAFG3T0DARuRc4FjjBGFPh63iUUvXTmg+l2jARuQQYDlymiYdX7sHqUfY+XweilPJMaz6UaqNEZBAwH+sJpmt9HU97ISKxWB3Q/dMYM8/X8Sil6tKaD6XaILcO467SxKNpjDGZwNnASyLSw9fxKKXq0poPpdoYEXEAc4BtxpirfB1PeyUiVwEXAyOMMcW+jkcptZcmH0q1MSIyHRiPdbmlzNfxtFd2B3TvAIXGmEt9HY9Sai9NPpRqQ0RkFNbj04caY1J9HE67JyIdsDqge9gY86qv41FKWTT5UKqNEJFErA7jphpjvvZ1PAcKEekHfI91++1KX8ejlNIGp0q1CSLiBN4HntPEo3kZY9YAVwMf2A15lVI+pjUfSrUBIvIo0B84zRhT6et4DkQi8jSQBEzQZ6Yo5Vta86GUj4nIBGAicL4mHi3qBiARuNHXgSh1sNOaD6V8SER6YXUYd5oxZqmv4znQiUgXrA7ozjbG/ODreJQ6WGnNh1I+IiIhwIfAXZp4tA5jzDbgQqwO6BJ8HY9SByut+VDKB+xnULwKOLEut+gXsRWJyF3AaGCMdkCnVOvTmg+lWoGIXGonHFUuBYYCl2vi4RP3AcXAv9wHishIEQn0TUhKHTy05kOpFiYiHYFtQIQxplJEBgNfAccaY9b5NrqDl4jEYHVAd7Ux5mN72HxgpjHmC58Gp9QBTms+lGp5g4CVduLREavDuH9o4uFbxpgsYBLwooj0tAevBAb7LiqlDg6afCjV8gYDv9odxr0BzDPGzPJxTAqwG/reg/UAsmDgVzT5UKrF6WUXpVqYiLyDdZklERgHjDLGlNmP/d5jjEnzaYAHIRHxB+KNMWl2W5y3gRLg38BXxphuPg1QqQOc1nwo1fIGY93VcjVwNnCoiMwBFgCH+DKwg1gisFxEPgAOBy4HhgMjgRgRifJlcEod6LTmQ6kWZPeqmgHkYf2qPhkYCDwMvGSMKfJheAc1EQnFSjpuBFYAbwJPA6nATcaYb3wYnlIHNK35UKplDQb8sW7rvAaYA/QwxjyliYdvGWMKjTEzgR7AZ1gJ4U6gLzDCl7EpdaDT5EOpljUKK/G4B+htjHnBGFPq25CUO2NMiTHmWaAXMBOr7ccE30al1IFNL7sopZQbEfEDQo0xe3wdi1IHKk0+2hG7Vb4+fVH5SqUxpszXQSil2j9/XwegGiYi4Q7hsg6Bfpc4hEMEQBqbSqnmZwzi9HNUhAY4FuWVuF4E3jPGVAKISD/xD7jAERA00bgqojDGz8fhqoOEOPxKcPitcRXlvQp8ZIwp9HVMqnFa89GGiUhkhwDHwqO6RXSfdmR80PCUcIKc2kxH+YYxhrwSF9/8uZv//LC9cMee0tmFZZWXIDLRERDyatzIKc6oIac5AzsmIH76u0a1PIOhsrSIgs0rSf/hnYLCrb+nVZYWjjDG7PZ1bKphmny0YeFB/nPOGBB9ykPjugfW7JNMKd8qKHVx1st/FK1NL3rML6jDDf1vmRMS2rmfr8NSBzFjDFveu6ssc+GsZRVFe47xdTyqYfozuo0SkdDSispTbhnTRRMP1eZ0CPTjxuM7hwQEBl4RP/aSQE08lK+JCCmTZgQYl2uIiCT5Oh7VME0+2q4Rh3QKKYkKdfo6DqXqNapnJC7x7xQ95FRt36HaBId/AB0PHe0CTvN1LKphmny0XTGJ4QH6+ag2K8jpoLKijMDoZF+HolS1oLjuIUC8r+NQDdOTW9vl5+/Q6y21XTtnA8Nm/urrMFQVYxD/AF9H0SZsePlafr15mK/DOOiJf4BgdRyo2jD9gJTygRVp+cxemcnK7QWsTS+izGX46erD6RYdXG/5BX/t5r8/bmd9ZjEVLkOXjoFMGRzHBUPj8HPszVGvnbOB2Ssz653HsusHkxihj4lRjdv9+wK2f/5finesx7gqCIzpQtzIKcSNugBx7L3KlvvH92T/8gkFm1dStONPqHQx/IWt9d7ttOHla8lcNLve5Q1+ZBmBUYkttj6q7dHkQykfWPBXLm8vz6B3p2C6RwexLqPYY9mPVmVy1YcbGJzcgeuPS8bhEOavy+H2zzezMbuY+06t2/v7E+N74qhVb9YxWL/uqnGZSz5iw4tX0aH7YJLPuB4RBzkr57P57dsp3rWRblPuqy6b9fMcspbOI7RLPwJjOlOasaXR+fe85AmQmpXu/qEdm3s1VBunRyOlfODCoXFceUwiwU4/Hvs2lXUZaR7LvrxkJ/FhTj64qD+B/tZBe+rQOE594XfeW5FRb/IxfmAM/n561U413c7/vYwzMp7+N3+Aw2nVlMUdP5Xf7zuVjJ/eq5F8dJlwC92nPozDP8Cq2fAi+YgZNl6fA6M0+TjYFJW5mPldGp+tyWZXfhnBTgfdooK5fEQCZwyIASAtt5TnFu5g4eY80vKsPtAGxIdy1cgkRveq+Qtl4qur2ZxTwkcX9eeOLzazZMsegp1+nDekEzeN7szu4gru+mILC/7aTUUlnNo3igdO70aw06/OPGZN7ccdn29mWWo+Qf4OxvWPZsaJKYQENH4zxeIteTz1w3ZWpBVQ7qqkT1wIV49M5qQ+UdVlXJWGZ37awezfMtieV0aAn5AcGch5g+OYNqx126fFdvC+nUR+qYuIYP/qxAOs2wpjQp1sz6u/jzqDIb/ERWiAH47aVSBtlKu0iLR5M8le/hllu3fhCAgmOK4bCSddTszQMwAozUpjx1fPkbduIaXZVsIW2mUASaddRceBo2vMb/XDEynJ2Ez/6R+x+Z072LN+CX6BwXQaeR6dz7qJisLdbHn3LnavWgCVFUQNOZVu5z+AX0BwnXn0u3EWm9+5g/wNy3A4g4geOo6USTPwCwxpdL3y1i9m+6dPUbB5BZUV5YQk9yH5RHPQwwAAIABJREFUtKuJGnRSdRlT6WLHF8+QsWg2ZTnbEb8AAmOSiRt5HvGjpzXD1vWeqzgf/5CI6sQDrP3NGR5Dac72GmUDOjb9e2OMwVWcj19gKOLQZocHK00+DjK3frqZj//I4sIj4ugTF0J+qYs1u4pYnlpQnXys3F7Aj5vyOLlvFJ0jA9lTUsFHq7K48O11vHthP47tHlFjniXllZz7xhpG9ojk9hNS+HJdDk/+sJ3QAD/mrc6mV0wwN4/uwpKte5i1MpPYDk5uOyGl1jxcnPPGGoanhHP7CSksT83n9WXppOaW8ub5fRtcp8/WZPN/s/9kcHIY141Kxt8hzP09i4vfXc/Tf+vJ+ENjAZj5XRozv0/j7MNjufyoMEorKvkzs5ift+1pNPkoLnNRXF7p1TYOC/LD6dd8B9Wju0XwxrJ0HvzfNiYPisXfIXyxNofvN+Zy90ld651mwEO/UFDqIsjpYHTPSG4/MYWuUUHNFlNL2PzWrWT9/DFxoy4kJLkPruJ8itLWULBxeXXyUbBlJXlrfyRq0MkExnSmomgPWUs+Yt2TF9Lv+neJ6HdsjXlWlpWw5rFziew/kpRJt5Pz65ds//RJ/AJDyV42j+CEXnSZcDN71i8hc+EsnOGxpEy8rcY8XKUlrHnsHMIPGU7KxNvJ37ic9G9fpzQrlb7XvtngOmX/8hl/Pv9/hHUfTPK46xA/f7J+nsv6py+m52VPEzt8PABp82aS9slMYo8+m7ATL6eyvJTiHX+y58+fG00+XKXFVJZ5vmznzi84DId/w7fvR/Q5mvTv3mDbhw8Se8xkxOFPzq9fkLv6e7qec7dXy2nIL9cMwFVSgCMgiMgBo0mZdDtBnbru93xV+6LJx0Hm6/U5TBnciXvrqaqvMqZXJKf3j64x7OJhCZz03Cqe/Wl7neQjt7iC645L5tKjEgCYMqQTw2b+yoPfbOOy4QncdXJXAKYeGc/WnFW8vTy9TvKRW+xiyuA4bj/RGj7tyHhiQp28sHgnC/7aXafGpUpxmYvpn2zixN5RvHRO7+rh046M58yX/uD++Vs5c0CM1U5ifQ6je0Uyc3xP7zaWm2cW7uDx7zxfGnE3e1o/RnSLaLygl24b24XswnKe+Wk7T/9o/fIM8BP+fXp3pgyJq1G2UwcnV4xI4NDEDjj9hF9T83l16S6WbN3DF1ccSnJk221wmrPyazqNnEK3Kfd6LBM5cAzRR5xeY1jC2ItZdc9JbP/y2TrJR0VhLsnjriPhhEsB6HTsFH69eRjbPnqQhBMuo+vku+D/27vv8Kiq9IHj3+klyaTNpFdqCL2EqoCgiOJSFBVcRRFd2651LftbxcVesa5dERuooIAFgRUUNEgLPXRISE8mk57pM78/JpkwTCqGhHI+z8PzMHfOvfdkMpn7zrnveQ8QddGN7CrJpujXz/2Dj9pyIkdfR+LV//a0HXcTCp2egtXvUbZ7rd+Ii3c/q5mjnz5M2IAJ9LzrA+/2qHE3seeZKWR//RT6oVOQSD05FSF9x9Ht5lda+Wo1yP/pLXJXzG9V29QHvyY4ZWSzbRKm/x/2qlLyVr5F3o9vAiCRK+lyw3NEjr6uzf2rpwiOIHrCbQQm9UMiU1B1NIPCnxdQefAP+j22EpVeTNk+n4jg4zyjU8vZnldNXrmV2CYuRJoTbnNY7C5q7U5ww4gkHd/tNfq1l0rg+iENF0GFTMqA2EBW7S/jhjTfi+OQhCB25tdQbnYQclICZH3wUu+2kTG8t7GANQeaDj7WH62grNbB9P4GTDV2n+fG9wjhpXW5HDKa6RmhRaeWc7DEzKGSWrobWh4uP9H0/gbSEoJa1TY1KqBNx26JUi4lOVzDFb3DuaRnKHKphB8zTTz83VGcLnxe45ODukmp4YzpFsLMT/bx0rocXj2FwKujyLU6qo9ux1qahyq88QKVMlXDLRGX3YLTWgtu0PUcgXHzd/47SKREjr3e+1AqVxCYPICyHauIHHuDT9OgbkOoydqJo6YceUCIz3P1wUu9mAm3eYKPHWuaDD4qMtfjqC7DMGI69iqTz3Mh/caTu/wlzAWH0Mb2RK7VYc4/SG3+IbQx3Rs9XlMMI6cT1D2tVW1bU4lWKleiiUwmfMgVhA64BIlMjmnbjxz95GFwOf1et9Y6OagLHzKJkN5j2Dd/JjnLX/IkogrnDRF8nGfmXprI3d8cZtirGaREaBnTNZjJffT0jw30trE5XLy2PpclO43klvvmFDRWeUQfoPBb8E6n9ry1Yk+a2hlct/3k4CNQJSMyyDcPIkqnJFAlI6es8bwGgCNGz3DznMUHmmxjrLHTE3h4fDyzFx1g7Js76RKu5sIuwUzqHc6oVoxSJIapSeyk2xZ3LTlEcbWN5XP6UF9qf3IfPbd9dZD//HSMS1NCiQhqOodkdNcQ+kYHsP5IeUd1+ZQkXjOXwx/cTcbDw9DGphDcewz6oZMJTOrvbeNy2Mj9/jWM6Uu8OR9ejbw5FTo9UoXv702u1QGgCos9abvnfXBy8CFTB6IM8Q2ilaFRyNSBWI05Tf485sIjABz475wm29irjEBP4qc9zIE3Z7PzsbGoI7sQnHoh4UMmEZwyqsl966kNiagNiS22a61D792FraKYPv9a7n2/6dMmc/Dt2zi2+D+EDrwUZXBEu5wrpPdoAhL7Ur53fbscTzh7iODjPHN5ajhDE3SsOWBiw9EKFm8v4d2NBTwwNo77xsYD8PhPWXy6tYhZQyIZmqgjRCNHKoGvtpfw7e5GRj6aSWiUNVEnrb0WNKw/zLNXJDeZ05Aa6RnlSEvQkX7PQH4+WMaGoxWs2m9i4ZYiZgw08PLU5kcEaqxOamzOVvUpRCNHKW+fnI/ccisr95n49yUJnLzGz+WpYXy/t5TtedU+ibWNiQtRsb+4tl36dLqED74cXfehmHauoSJzAyW/LaZg9bvETX6A+Mn3AZC16HGKfv2UyLGz0HUf6gkSpFJKfvsK46Zv/Y7ZXELjifUqTtRui23WHSf5hmebzGnQxnlGInTd0xj4bDplu36mInMDpu2rKFq3EMMFM+g2++VmT+O01OC0tm4VeXlACNJmisJZjbmYMlaSMP3ffu+3sMGXU7r1e6qPbvdJlv2zVOFx1Obub7fjCWcHEXych/SBCmYOjmTm4EjMdic3fLafV37N5fZRnqmfy3cbmd7fwDNXdPHZb3FG8WnrU7XVSVGVzWf0o7DSRrXVSXxo03kKSeGegCNYI2d015Am29XTqeVM62dgWj8DDqeb+5YdZvH2Eu68IJau+sYLfAG8k945OR+FVTYAnI3kujpdnoub3dnyxTLLZCH8LFgnSKHTE3nhTCIvnInTZmb/qzeQ+90rxEy8HZlSg3HzcgwjptPl+md89ivesPi09clpqcZWXuQz+mErK8RpqUalj29yv/qAQ64NJiR1dIvnkWt1GIZPwzB8Gm6ng8Mf3UfJb4uJvexONFFdm9wvf9U77ZbzYSsv9PzH5R9ou+u2uZ12v+f+DEtxFgpdeMsNhXOKCD7OI06Xmxqb03tLBECjkNFVr2FjViXVVicahWdq5slf/g4bzazab+J0+mBjgTfhFODd9HwALu7RdAGiMV1DCNHIeWN9HhN6hPrkqwAYq+3oAz0XXVOtnTBtwwVYLpPQM8IzKlJhcTTbt87K+egSpkYqgRV7jdwxKsandsfSnSVIJNAvxnM+i92F3ekiSO37Z/393lL2FdXy18HtM1R+OrhdTpyWGu8tEQCZUoMmqiuVBzbiNFcjU2rqRjJ835zmwsOYtq86rf0rWPOBN+EUIH/1uwCE9r+4yX1Ceo9BHhBC3g9vENp/gk++CoC90ohC55lhZq82oQhsGL2SyORoYz0J1I7aimb71p45H+rILiCRYtyygpiJd/jU4yjZuBQkEgIS+7XqXCdy2S24HHbkGt+/odKt31Obu4+IMX9t8zGFs5sIPs4j1VYng1/exmW9wkiN1BKikbOnsIZFGUWMStZ5a09MTAnjy+3FaJVS+kQFcLzMwidbi+hm0LKnoHXDu20VopGxbI+Romobg+KC2JZTxTe7jIzpGsz4ZoKPQJWMFyd34Y6vDzH2vzu5ur+BmGAlRVU2MnKrOWI0k37vIADGvrmDoQk6+scEYghUcMRoZsHmQrrq1fSNbj5gaO+cj9xyK0t2esqg/5FdCcDCLUXePJh7x3gy/8MCFMxKi+TjzUVMen83V/bTe6fabsyqZOagCBJCPf0qqbZxydu7mNwnnK56DWq5lIzcar7ZVUJMsJIHLmr6W3pnc1qq2fbAYMIGXYY2PhV5QAg1x/dQtGERupRRKIM906XDBk6k+LcvkSq1BCT0wWI8TtG6T9BGd6Pm+J7T0jeZNgTj5mXYKooI6jKIqiPbMP7xDcG9xxDab3zT+2kC6XLjixx69w52PjYWw8irUYbFYCsvovpoBubCIwx6Lh2AHY+ORdd9KIFJ/VHoDJgLj1C4dgHqqK4EJPRttn/tmfOhCAoj8qJZFK39mN1PTUI//EpPwmnGSioPbCTiwpmoDQne9jU5mZTtWA1Abe4+AHJ/eAOJRIJMG0z0+NkA2CpK2PWfSwhPm4wmqitSpZrqoxmUbPwGZVgM8ZMfaJf+C2cPEXycRzQKKbOHRrHhaAU/HyzD6nARE6zirgtiueuChuS7eROTUMulrNxXylfbi+mq1/DcX7pwuMR82oIPtULG4lmeImNPr8lGKZNyw5BIHpvQ8ofq5anhLJuj5M0NeXy8pZAaqxN9oILUyAAeHt/wQXnr8BjWHDTx7sZ8am1OIoOUzBgYwT1jYtu1LkdrHC+z8OJa32TF9zcWeP9fH3wAPHlZMv1iAvl0SxGvr8/DbHeSFKbmsQmJ3HrCDCGdWs6lKWH8kV3Jst1GbE43MTolNw2N4p7Rcd4RoDORVKkhatxsKvZtoGzXz7jsVlRhMcRedhexl93lbZc0Yx5ShZrSjJUU//4VmqiudJn1HOaCw6cv+FCpSX1gMce+eIzsJU8jlSuJHHsDiVc/1uK+4YMvR/nIMvJ+fJPCdR/jtNSg0OkJiE8lYdrD3nYxl9yKaeca8le/i9NSizIkkogLZhB7xT0t1uVob8kznyQwsR9Fv3xK3g+v47SaUUckkXjNY0RfcqtP25rs3eQse9FnW+7ylwBPLkd98CHX6ggbeCmVB//AuGkZbocNZVgMUeNuIu6Ke7wjQML5Q9JuyVVCu5JIJNdf3ivs7fdn9AxsufXZrb7C6bYHBnd2V4Q2intiC2lv7GtVpc+zUX2F08EvbevsrgitlLPiFXJXvPyk2+Wa29l9EZomatsKgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSiScCp1uyezend0FQWhU74eWdHYXBOGcJEY+BEEQBEHoUCL4EARBEAShQ4nbLoIgnFNylr9M7or5jPgwr7O70i72vjCdygMbAQjqlkaffy3r5B61r+PfPE/eD697Hw945jc0kcmd2COhI4jgQ2i1l9flMP+XXPLmjejsrrSL6Qv2sjHLU100LSGIZXP6dHKPOsYX24p4cMVR7+NFs3q1al0cofNoorsRO+luFEG+xbjK9/xK6dbvqD62g9r8g+ByMvy9bJ+y6G1Rse83Ml+6Fmg8CHBaa8n59gWMm1fgqCn39Ouyu9APm+LTrjRjJaZtP1J1NANbWSHKYANBXYcQN+UBv2OGp12BJrobpoyVmDJWnlK/hbOPCD6E81o3vYa7R8eib8Oia6YaO0+tyWbNgTJq7S56R2n550XxbbqAf7y5kAWbCskptxARqOTagQb+fmHjlVYLK23M/yWHnw+VY6qxExagYFBsIPOndvVZxyWvwsr8dTn8fqySkmobEUFKLuwSzD1j4ogNblicb2RyMK9f2Y1N2ZV8vu30LRYotB+FzoBhxFV+242bvsW4eQUBCamo9PFYi7NO+Rwuh51jn/8bqUqLy+q/ArLb7ebAf2+hcn86URfPQRPZhdKt33HovTtxO20YRl7tbXt04YPIA8MIH3IF6ogkbKV5FK77GNP2n+jzyDICEhsC/YD43gTE98ZSnCWCj/OICD6E85ohUMFV/Q2tbm+xu7hmYSY55VZuGxFNeICCxduLueGz/XwxqxejWrGa7Wu/5vLC2hwmpYZx28hodubX8PIvueSUW5k/tZtP28MlZq5asJdAlZTrB0cSrVNirLGz5XgVZruLoLrlZky1dq54bzd2l5tZQyKJC1FxsMTMp1uL+PlQOb/c1d8bqCSFqUkKU+NwuUXwcZZLuPIRutz4AlK5ksMf3kvJnwg+Cla9g6OmnMjR11Gw5gO/58t2rKZi768kXfeUt2x6xIUz2fPcVLK/forwtMlIFZ4gt8ft7xDc6wKf/cOHTmHXvAnkrHiZlH8sOOV+CucGEXwIQht8trWIfUW1fHxdCpf09Cx4d80AA+Pe2snjK7P43539m92/pNrG6+tzuTw1jPeu9axaet1g0KlkvPV7PrOHRtE3xlNR3+128/elh4jWKVk6uzcBKlmTx12xp5TiajsLruvJhJ4Nq6PGh6iYuzKLX49UcEXvM2vZctP2VRx482Z63P4O4Wl/8XnOUnKc7Y+MIPbyv5Nw1b9wOWzk/fAG5bvXYSk+5llvxJBA5Ji/EnXxLUgkkibO4pHx0DB0PUfQbc6rPtubyg+pyckkd8V8z4q6VjPqyGSiL7mFyAtnts8P306UoVHtchxraR65379G8l+fxlqa22gb45YVSJVqIkc3vAYSqZSocTdx+P1/ULH/d0L7jgPwCzwAtDHd0cb29NweEs57YrbLOWjVfhOxj2/ku72lfs8dL7MQ+/hGnv3fcQBsDhcvr8vhivd20/u5LXR58g/GvrmD9zcW0Jp1f4a9ksG93x722/7yuhxiH9/otz2zsIZbFh/wnmv8f3ewaFvRKfyUnWPFXiMJoSpv4AGgUcqYMTCCfUW1HCrxH64+0ar9ZVgcbuYMi/bZPnuY5yKyYk/D7+y3Y5XsLqjhgYviCVDJMNud2J2uRo9bbXUCEFm3MnG9iCDPY43izPtTD+l7ETJtCCWb/BMojZu+BUA//EoAnOZqCtctJCC5P3FTHiDxmkdRRySStfg/5NQtZNZeqg5vYc8zkzEXHSNm4p0kXTsXVWg0Rz/+J3k/vNHi/i67FXuVqVX/XHZru/b9VB1bNBdtXAqGUdc02aYmayfauFSkCt/VnQOTB9Y9v6vZc7jdbmwVJSgCw5ptJ5wfxMjHOeiibiGeJep3lfCXk77tfrvLCMCV/TyJa9VWJwu3FPKX3uHebb8eqeA/P2VRbrbz4LgE2suW41XM/CSTxFAVd46KIUAl438HyvjniqMYaxz8Y3Rss/tbHS5q6i6yLQlQyVDJ2/eC63K52VtQw6Up/h+eA+M8oxW78mvobmh6kbVd+dVIJDAg1ne9wJhgFVE6JbtOWDX418PlAASqpEz5YA9bc6qQSmBYoo4nL0+iV2SAt+2oZB0Aj/54jLmXJhEXouRQiZnnfz7OoLhAxpyBCaVSuZLwIZMoSV+Co7YCubbhlpVx03K08aloYz2jQ/KAYAa/uMU7rA8QPf5mDn90HwWr3yfuinuQypV+52grt9vNkYUPoY1Nofcj33pXlI0adxMH3rqV3O9fJXLsDcgDmn49jZuWcWTB/a06X9fZ84m44No/3e8/o2zn/yjbsZq+j37f7AiSrbwIbWwvv+3KkKi65wubPU/Jb19iLy8k9vK7mm0nnB9E8HEOUsqlTEoNZ8nOEirMDoI1Db/m5XuMpEZp6RnhuUAGa+RsuX+wz4X65uHR3PftYd7fWMA9o+NQtsNF3O1289CKI6REaPl2Tm9vYuVNQ6O49csDvLo+lxvSIgnRNP2WXLbbyP3LjrTqfPOnduXagRF/ut8nKjc7sDjcRAb5X+Si6rYVVtqaPUZhlY1gtRx1IyMRUUEKn/2PlpoB+NuXBxmWqOOda3pQVGnjlV9zmb5gL2vu6E9MXSLpwLggnpmUzAtrjzP1w4al5S/pGcpb07sjlzV/W6Kz6IdNpXj955Ru+9F7S6MmJxNz/gESrn7U204ilSGRem47uZ0OnJZq3C4Xwb0uoOT3rzAXHCYgPvVP96c2NxNz/kGSZj6B01zFiaFuaL+LPTM4Dm8ltP/FTR4jpM9Yej2wqFXn08b0/JM9/nNcdgvHFs0l4oIZBCY1f8vQZbMgUfi/9+sDQpfN0uS+Ndl7OPbFowR2GUjU2Fl/rtPCOUEEH+eoqX31fL6tmB8zS5k5OBLw3PI4UGzm0UsaRjNkUgkyqefC5HC6qbY5cbncXNAlmK92lHDYaCY1KqDRc7RFZlEtB0vMPHFZElUWJ5zwsX5xj1B+zDSxNaeKi3uENnmMsd1CWDTL/5tXY+qDq/ZkdnhueTQWjNUHbxZH47dF6lnsLlTyxgMBlVyKscbhfVxj8xwrNSqAD2Y0XKT6xgRw5Ud7eTe9gHmXJXm3RwcrGRQXxIVdgkkKU5NZVMs7v+cze9EBFl6X0mjA09l0PYajDI3G+Me33uDDuGkZSCToh/pO3yzZuJT8Ve9Sm7cfXL4jYM7aynbpj7nQE9xmLZpL1qLGV2S3V/nfzjyRMiQSZUhku/TndMv74U0cNRUkXPWvFttKlWrcdv/guv7WkVSp9nsOwFx0jH2v3YBCZ6DnXR+e8jRg4dwi3gXnqOGJOqJ1Sr7dbfQGH8t2G5FIYEpf31oBS3eW8G56PvuLazk5paDS0rrbHC05YvR8i5+7Mou5K7MabVNaY2/2GJFBykZHHdpbpcWBxd7wQsikEsIDFGjqAgxbIwGGtW6buoVRIrVCitXReC6N1eHy2b/+/1f19/19DUvUEReiYlN2wwV31X4Tf/vyIKvv6OcNvCakhNE3OoBZn+/n061F3DrCN8/kTCCRSgkfOoWC1e9hKy9CERxB6ebl6HoMRxUW421n3LKCwx/cTUjfcUSPvxlFsAGJXEFN9h6OL3kat7v5oI8mbie4TwpiqMtzipt8P0Hd0xrdRxvdo9lTOW1mnOaq5vtTR6YJQqbUtKpte7OVF5G38i2iJ9yK01qD0+q55eeorah7vhCpQokqzHM7VBkS2eitlfptjQVc1tI89r08A5CQ+sCisyYoE04/EXyco6RSCVP6hPPexgKKqmxEBCpYvqeU4Yk671A9wIo9Ru7+5jDjuodw87BoDIEKFDIJewpqeHrNcVwtJJ02NZjvdPnuV//o/rFxpCUENbpPj2ZyJQDMdmfdqEnLgtQyNIqmZ4c0Z+7KLL7eUeJ9HBeiYtN9gwjRyFHLJRRV+X/7K6zbFqlrPjiKClJSYXFgtjv9+ldYZadreMO3x8ggT76BoZEaJIZAhU+w9v7GApLD1X4jPuO6h6BRSPkjq+KMDD4ADMOmUbDqHYyblxOYPBBraS6xk+72aWPctByVPoGUuxcikTYEaNbi7FadQ64N9l5UT2QtOe7zWB3hKYAlVagJSR3d1h8FgNLNK86KnA97ZQluh5X8H98k/8c3/Z7PfGE68sBQ0l7z3MYLSOxH2Y5VuOwWn6TT6mPbvc+fyFZeROZL1+C01tD7oaWoI5JO3w8jnHVE8HEOm9bPwDvpBSzfbWRgXCC55VbuvtA3qXP5bs/sjYXXpSCVNoQS2abWZeEHa+RUmB1+24+X+e6fHOb5sFLLpadcTXPFntIOyfm4c1SMN/kWGmaKSKUSUqMC2J5X7bfP9lzPtn7Rzd+i6hsdiNtdzM68GoYn6bzb8yusFFbamHbCqNSA2EA+31ZMQSN5JAWVNqJPGAVqLCACcLk9+TZ2V8szlzpLQGIfNNHdMW5ahqUkG0ldIuqJGgKOhp/DaTNT8PNHrTqHOjKZiv3pOG1m70iDxZiDaftPvn1J6IM6qisF//uAiAtnoAjyTdi2VxpR6HxHok52puZ82MqLcJqrUBkSkcoVqPQJ9LzrQ792xs3LKd2yguQbnkUVHufdrk+bTOnm5RStX+St8+F2uShc+zHywDCCe43ytrVXmch86VrsVaWk/vMrb+KwINQTwcc5rE90AN0NGpbtNpJdZkEpkzDppNkv9QHHiZcms93JR5sKWnWO5DA16VkVPt/kc8os/LTf5NuXqAC66tV88EcBMwZFEH7St3ljtR19YPNVRjsq56NHhJYeTew/uY+e//yUxZoDZd7ptmabk8Xbi0mJ0PjsZ6qxY6p1EBusRKP0vDaXpoTy+E8SPtxU4BN8LNjkGbo+cXbSpSlhPLYyiy8yirl2YIQ3N2fNgTIKK23MGNhQHK2bXsOag2Vk5FYxKK5hZOn7vaVYHG76x/jOrjnT6IdNJWfZi1gKjxDSd5zfbJKwgRMxbfuRfa/NInzgRBw15RT//hUydevykSLHzqJ0y3fse3kG+mHTsFeZKPplIZro7tRkN0wRlUildJs9n8z5M9nx6FgiLpyJ2pCIvbqU2uN7Me1YzfB3jzV7ro7M+ajJyaRsx2oAanP3AZD7wxtIJBJk2mBvkABwfOmzlKR/zcDn/0Ctj0eu1RE2aGIjx9wLQHCvC31KoYcOvJTgXheQ/eU8bKY81BHJntLuR7bRdfZ8n9GQffNnYi44ROTYGzAXHMJccMjnHI1VaxXOLyL4OMdN7avnxbU5HCm1MK57iN9skokpYfyYaWLW5/uYmBJOudnBVzuKCVC27pbFrLRIvttbyoyF+5jWT4+pxs7CLUV0N2jYld8wbVQqlTB/ajdmfpLJ2Dd3MHNQBImhakpr7ewtrGX1fhPH5g5v9lwdlfPRnOuHRLAoo4i/Lz3EbSOi0QcqWJxRTF6Flc+u9w2MFmwuZP4vuXx9Uyoj6yqfRgQp+ceFcby0LofbvjrI2K7B7Miv4fNtRVw9wED/E6bghgcoePCieJ5cnc3VH+/lL73DKay08eGmQhJCVdw6oiEn4s4LYll3uJyZn+zjxrRIEkLV7Cuq4fNtxUQGKbgxrX1n8KZTAAAWFUlEQVSKUZ0u+uHTyFn2Ik5LNYZhU/2eN4y4CkdtBYU/f8SxRY+jDInAMOpagroNZt/LLRf+Ck4ZSfL1z5D/09tkfTkPdUQyydc9RW3+QZ/gAyCo2xD6PbaS3O9foyT9axzVZciDwtFGdyPp2sfb7WduDzXZu8lZ9qLPtty6uieq8Dif4OPPkkgk9Pz7Rxz/9nlKNi7FUVOBJror3W59E8Pwab79Ou65VVP0y6cU/fKp37FE8CGI4OMcN60u+Ki2Opnaz7+M+FX9DVSYHXy0uZDHfzrmXWdkcHwQMz/Z1+LxRyYH88ykZN7+PZ95P2WRHK7mqUnJHCyu9Qk+AIbEB7Hyb/14bX0uX+8ooczsIFwrp5tBy+MTk9rrRz6tNAoZX93Ym6fWZPPhpkIsdiepUQF8+tfWL85275hYQjQyPtpUyOr9JgyBCu4bE8fdjdQ5uX1UDKFaOe9vLODJ1dkEKGVc0Tucf12c4BNIpiUE8ePf+vLKr7ks222kuNpOqEbOlD56HhoX3+KoUmdTGxJbXIU2evzNRI+/2W/7yfvFT3mA+CkP+LWLuuhGoi660WdbeF37k2miu9H91pYLinUUt9OOvcqERCZHrm0YMYu44NpW54x0m/OqX4XXxjT1+gHI1AEkz3yC5JlPNHuMtqwo7LSacdk8/4Tzh6Q1VSyFjieRSK6/vFfY2+/P6Hlmj5efxaYv2Ivd6WbBzJ7IZRJ06vMjFq8v1rZ8j5FHf8z6U6vaxj2xhbQ39iFTtf/UZsFj7wvTqTzgqRYc1C2NPv/yrwh7Njv+zfPk/fC693Fjq+m2Rc6KV8hd8fKTbper8bnSwhnh/Pi0FYQmbM2pou8LW0lLCGLZnD4t73AOWLqzhAdXHO3sbgitlHjNXBy1nmq3J1aBPVdEXHAtupQR3sfttV6NcGYTwYdw3pp7aSLldTN1gs+TUQ+Acd1DfRJ3+7YwQ0foXIFJ/VpudBZTRySJabjnofPnE1cQTtLvDJ8BcrpE6ZREtVCPRBAE4XQ68+otC4IgCIJwThPBhyAIgiAIHUoEH4IgCIIgdCiR83GWiX18Y6vaXT3AwKvTup3m3niU1dr5aFMhI5J03mJaZ4PFGcVUWZ2dtubJl9uLuX/ZEaQS+N+d/f2qsr68Lof5v+Ty290DSA7vnMXHTtXGOf41SxpjGHl1q2pPtAd7dRmFP3+ErucIglNGdsg520PxhsU4LVVEX3Jrh57XYsxh+8PNF/6rFzf5fm9tkJrje8j++mmqjmxDIpUR3GsUidc8htqQ2OY+5P7wOtVHd1CdtRN7eSH64VeeUfVXhFMngo+zzOtX+gYUK/eZWLnPxGMTEjGcUEgqMazx5a1Ph3Kzg/m/5HL/2LizK/jY7lk3pbMXXHO54aW1Obw/49xZ/6LbLa/7PDZlrMSUsZLEax5DoWsodncqF6RT5agpJ3fFfOIm3392BR+/LcZWVtDhwYciKNzv91j06+dUHdrkCRglDQPn2jjP7ClzwWH2Pn8VCp2ehCsfxmW3UrDmffY8O41+j69CGexf6LA5Od88j0KnJzB5AGWNrKgrnL1E8HGWuaq/7x9vlsnCyn0mLk0JbfbbsdPlxuFyo2phyXeh4/WNDmDlfhO786vpe47MwDm5fLalOAtTxkpCB1zabAEpt8uJ2+lAqlA12UboGDKV1u/3WJG5gapDm9APm4ZE5n/5yF76LAC9H1rqrdcR2nccO+dNIO+HN0i+rvnKqCcb+NxG1IYEoPWjacLZQQQf56D0YxVc/XEmL/ylC1VWJ59sKSS3wsriWZ41RmptTl5bn8d3e4zkV9oI1ciZkBLGI+PjCdU2jJ6s3m9i8fZiduXXUFpjJ1gjZ0zXEP51cYJ3qmb9uQDm/5LL/F9ygYbbPvW3Fj67PoWtOVUs3l5ChdnB0IQgXpzcldgQFR9vKuT9PwooqLTSM0LL83/p4jcNtrV9nr5gL8dMFpbd3JtHf8xiY1YFCpmEK3rrmTcxCXXdCrXDXskgt9yz8u6Jt7Ly5o2go90xKoYHVxzhxXU5fPLXlhfOO1xi5vmfj5OeVYHF7qKbQcutI6KZflJgOuyVDKJ1Sp6elMzjK7PYnldNkErGzEERPHhRvM8qxgAbsyp4fX0e23OrsTtdpERquXt0HJemhLXrz1uvYn86mS9eTZdZL+A0V1H4yydYS3NJfWAxwSkjcVpryfv+NYxbvsNmykceGErYgAnEX/kIisBQ73FMO1ZTvGExNdm7sFeVItcGE9JnDAlX/st7Aaw/F0DuivnkrpgPNNz2Kf7tS44suJ+Uez+j6shWSn5bjKOmgqDuQ+l644uowmMpXPsxBWvex2oqQBvbky6znverwdHaPu99YTqW4mP0fmQZWV88SsX+jUhkCvRpV5A0c553kbaMh4ZhLfX8TZ148W1L+fKO4rTUUL57Lfph03wKhWnjUghOGUnpluVtDj7qAw/h3COCj3PYh5sKsDvd/HVwJGqFlIggJVaHi2sWZnKwuJaZgyLpbtBwtNTMws2FbMup4vtb+3ov0Iu3F+N2w41pUYRp5Rw2mvkio5iM3CrW3NEftUJKd4OGxyYk8uTqbC7rFcZlvTwXqpNv+zz3cw4quYQ7R8VQVGXj3fQCZi/az7S+epbsLGFWWiRmu4u3fstjzuIDpN8zEIXM04+29BnAYncx45NMRiQF8+iERDJyq/lsaxHhWjkPjfd8mM2bmMTTa7IpNzv4TyvXlbE7XVRZnK1qq1FIvSvZtiRUK2fO8GheX5/HtpwqBscHNdn2WKmZyR/sxg3cNDSKcK2C5XuM3PPNYYzVdm4fFePTvrjKxvWf7mNyHz2T+4Sz7lA5r6/PIyFExczBDSuv/pBZyh1fH2RQXBD3jY1DLpWwbLeRmxcd4M2rujGtkXWB2kvB/z7E7bQTOfqvSJVqlCERuOxWMl+6htq8g0SOnokmujvmwqMUrltI1ZFt9H30e+8FunjDYsBN1EU3Ig8Mw1x4mOL1X1B1JIP+89YgVajRRHcn8ZrHyP7qScIGXUbYoMsA/9s+Od88h0ShImbindjKiyhY/S7735iNfvg0StKXEDl2Fi6bmbyVb3Hgv3MY+Gw6Urkn+G1LnwFcNguZL88guOcIEq95lOojGRT9+hnyoHASpj0EQNKMeWQveRpHTTlJM/7TqtfT5bDjNFe1qq1UqUGmap98otrcTNwOG0FdBvo9F5g8kIrMDVhN+ajCYhrZWzjfiODjHGassbPhHwMJPmEBsrd+y2NPQQ3L5/TxWUF1RFIwN32xn692FDOrbgXU/17V3e8COiEllOkLMvlpv4mpffUYApVcmhLKk6uz6RWp9bstVE8mgW9m90Eu83zbdrrcvJNeQIWliHV39Udbd54QtZx//3iMdYfKmVD3jfvDPwpa3Wfw5KDcOybOm8sxKw0qLQ4+21bkDT4m9grjnfR8bE53k30+2ZbjVd5RnpbcPzaOBy6Kb1VbgNtHxrBwcyEvrM3hyxtTm2z33M85VFqd/HBrX+9rMSstkis/2suLa49zzQADYQENI0HZZVY+nNGTiXVB4ay0KC55eyefbSvyBh9mm5OHvzvKhJ5hfHBC3slNQ6OY8sEenlqdzZQ+er+RkvZirzIy8JkNPqXD81a+RU32Hvr833ICk/p7twenjGD/6zdR/PtXRI2dBUD3v/3X7wIaOmACmS9Mx5TxE/phU1EGGwgdcCnZXz2JNq5X06uqSmX0efgb7y0Ft8tJwap3KKqtoP+T67xr2MgDQjj2+b8p37OOsAETAE8Q1do+gycHJe4v9zbkcoydhaO2kqJfP/MGH2GDJpK/6h3cDlurV4KtOrzFO8rTkhMTRf8sW3kRAIqQSL/nlHXbbOWFIvgQABF8nNOm9tX7BB4Ay3Yb6RcTQHyIClON3bt9cFwgWqWU345WeC/k9YGH2+2m2urE7nTT06AlWC1jR141U/vqW92X6wZHegMPgLQEHe+kFzCtr94beAAMSfB8688yWU6pzwBSCVw/JMLn/MMTdazaX0a11UmgqnUjEidLjQrwKUvenMTQtiX8Bmvk/G1kDC+uzWFjVgUjkvwTd50uN2sPlTEqOdgnCFPKpdwyIpq7lhzi1yPlPqMUkUEKb+BRb0SijqW7jN7H649WUFbrYHp/g8/rCzC+RwgvrcvlkNHsNxunveiHTfVbs8S4aRkBSf1QhcdjrzJ5twd2GYxUpaUi8zfvhbw+8HC73Tgt1bgddrQxPZFpg6k+tgP9sKmt7kvk6Ot8chl03dIoWPUO+uHTfBbPC+o2BPDkspxKnwGQSIkYc73P+XU9h1O2YxVOczUyzanl/wTEp9LrgUWtatueCb8um+dvVir3z9epH/GpbyMIIvg4hyU1cgE8UmrBYnfR94Wtje5TesLF54jRzLP/O876I+XU2Fw+7Sotjjb1JS7E9wNJp/YEALHBvtuD67bXr7nS1j4D6AMUaBS+AUZ9EFZudpxy8BGikZ/y6q+tccvwaD78o4AX1+bwzc3+wUdpjZ1am4vuev9h8u4Gz7bjZVaf7Se/vuB5LXxeX6NnKfM5iw802TdjjZ3TNRensXU9LEVHcNksbL23b6P72KtKvf83Fx7h+NJnKd+7Hpe1xqedo7ayTX1Rhcf5PJbVLV+vCos9abvn9+OoKT+lPgModHpkSt/fpfyE455q8CEPCCEkdfQp7ftnSJV1AYbD6vecy27xaSMIIvg4h52YB+HldjM4PpB/NnFLoH6BtSqLg6sW7EUhk3D/2HiSw9Vo6o5355JDuNxt60tTI/ayJibf+By+lX32nquZ2wNudxs7fgKbw+Vz0W5OgFJGQBuDnECVjDtHxfDUmuP8cri85R1aQdaKWyX1L8mzVyST1MQU7dTI0zPqAfjkQZzYp8Cug4mf+s9G9/FepM1V7H3+KiRyBfGT70cdmYxUqQEJHHr3TnC7Gt2/6c408YaUNvG7POH91No+15M0dS7Azam/T10Om09Q1ByZKgCZun0WFqy/tWKvu/1yovpbMspGbskI5ycRfJxnksLUVJidLX6DT8+qpKTaztc3pfrU7jDbnVScdAGWSE5PLkC91va5rdra6605py/no95Nw6J4b2MBL63N4aLuvj9veIACrVLKobqRihMdLvFsSwht+xTVpHDPxT/4NI/stIU6IglnbUWL3+Ar96djrywh9cGvfWp3OG1mHDUVPm1P9/u0tX1uszb2u+rw1k7J+dDG9kIiU1B1dDuRY2/wea762HYUOj3KUJHvIXiI4OM8M6Wvnud/zmHJzhK/qZlOl5tKi4NQrQJp3Qfeyd+/3v4t32/UI0Dp+QZ3clDS0X1uqwCljEqLA7fb3aoL0+nM+ainUcj4+4WxzF2ZheOkF1omlTCueyg/ZJb61ASxO1188EcBKrmEMacQPIzpGkKIRs4b6/OY0CPUL8nYWG1HH9j21/fP0A+bQs43z1OSvgTDyOk+z7ldThy1lSgCQ08YPfB9rfJXvu036iFVeb7hnxyUdHSf20qmCsBRW9nq92ln5XzINIGE9B2HadsP2K582DvKUZu7n4r96USNnXXaA0Dh7CGCj/PM30bE8PPBcu799jBrD5YxJD4IN5BtsvDDPhMPjYvn2oERpCUEER4g555vDjN7aBQBKhm/H6tgZ141oVrft40hUElssJLle0rpEq4hVCsnPlTFoLimp4yejj63Vf/YANYdLufxlVkMjAtEKpEwpZkk2tOd81Hv+iGRvJOez+6CGr/nHh4fz4Yj5Vy7MNMz1TbAM9U2I7eaxyYk+sx0aa1AlYwXJ3fhjq8PMfa/O7m6v4GYYCVFVTYycqs5YjSTfu+g9vjRWi1mwt8o3/Uzhz+6l7Ldaz0Jnm43luJsTBk/ED/1ISIuuJagbmnIg8I5/ME9RI2bjUwdQMX+36k+thP5SRd6ZbABZVgspVuWo4nqgjwgFJUhnqAu7fOztbbPbRWQ3J/yPevIWvQ4gV0GIpFI0Q+b0mT7zsr5AEi46hF2P3UFe5+/kqjxN+Ny2ChY/T6KoHBiJ/2jzccrSV/irXMCUJu3n9zvPOX4dT2Go+vZuvLvwplHBB/nGbVCypc3pvJuej7L9xj5ab8JlVxKbLCKaX31XFB3iyVEI+fz63vxxOpsXt+Qh0wCI5ODWTK7d6O3Hl6/sjvzVmXxxOosrA43Vw8wtFvw0do+t9XtI2PIMllYuquEjzYX4nbTbPDRUVRyKfeMjuPh7476PdclXMPyW/rw/M85fLy5EIvDRTe9hlendePqAadei+Py1HCWzVHy5oY8Pt5SSI3ViT5QQWpkAA+P7/hCT1KFmtR/fkn+qncxblqOKeMnpAoVqvBY9MOmEdzrAsBzoe113+dkf/UEeT+8DlIZwSkj6f3QkkZvPXS/5XWyvpxH1pdP4HZYMYy8ut2Cj9b2ua1iLr0dS3EWJRuXUrj2I3C7mw0+OpM2pge9H17K8SVPc/yb55BIZehSRpF49aOnlO9R/NtiKg80FAGszcmkNsfz+RM3+X4RfJzFJH8mAU84fSQSyfWX9wp7+/0ZPc+NetvCOSnuiS2kvbHPZxqqIHSmnBWvkLvi5SfdLtfczu6L0DSx0IcgCIIgCB1K3HYRBEEQOoy9ugy3095sG3lACFK5soN6JHQGEXycuew2Z1uraQhCR5Pgdp6eWU7CuengW7f65HE05uSp023hdjrcuN2tW4RJ6DQi+DhzFR0vs4rgQzhjVVudSOQK7JXFyOsqgQpCSxKvmYujtvkiaAHxTa9v1BKbKc8ClLbYUOhUIvg4c6Vnl1nkBZVWonVtLxwlCKfbmgMm5BJ3sWnHGn3sxG4if0xolcCkfqft2G6XE9OOVQCrT9tJhHYhPjDOUG6326aUSb985LtjZruzjSWiBeE0K6qy8cya47U2i/nt/J/etljLCjq7S4JA4dqPXbhcx91u98HO7ovQPDHV9gwmkUhUgUrZTwmhqiGz0qICRyTr0Klkba22LAjtwunyLDC35kCZc8HmAmuN1fWC2e6cJ1WqH5VrQx6Jn3xfQOjAiSh0elHJUugwbpeT6mM7KEn/2l6SvqTcZTMPd7vd/kVyhDOKCD7OcBKJRAFM1qllN7ncpDmcbm2bFyURhHYgAZdcKql0ut0ra22uT9xu9+/e5ySSSTKN7naX3Xyx2+lUSqQykfAndAC3xO10ymTqwFyXw/qJ22F72+1253V2r4SWieBDEIR2JZFI1EDblvQVhFNncYvZLWcdEXwIgiAIgtChRMKpIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKH+n+UCd7yu8A2OAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JjBym5Iw9cGr", + "outputId": "2fdf00f7-9f6f-494e-be9a-84b85ad7d30c" + }, + "source": [ + "est.feature_importances_" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 0.])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 83 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L7q7UxZG9cGr" + }, + "source": [ + "#### Produce recommended treatments" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "sZ_E-Tjk9cGr", + "outputId": "4773b57f-bc7e-4f70-f65c-50ad9471041e" + }, + "source": [ + "est.predict(X[:100])" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", + " 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", + " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 84 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zb3MFbCq9cGs" + }, + "source": [ + "#### Fit a Doubly Robust policy forest" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "N4CAMtPQ9cGs" + }, + "source": [ + "from econml.policy import DRPolicyForest\n", + "\n", + "est = DRPolicyForest(n_estimators=100, max_depth=2,\n", + " min_impurity_decrease=0.01, honest=True)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jK5vBCCm9cGs", + "outputId": "1b97cc54-6324-42c0-e403-fba3dc3dee14" + }, + "source": [ + "est.fit(y, T, X=X, W=W)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 86 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lhiGgCKD9cGt" + }, + "source": [ + "#### Produce recommended treatments" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lAGuJ1wB9cGt", + "outputId": "b1590aad-d1d1-4657-8e65-012ae7abec58" + }, + "source": [ + "est.predict(X[:100])" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", + " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n", + " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 87 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3xWXtC8k9cGt" + }, + "source": [ + "#### Plot one of the trees" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 279 + }, + "id": "Xen6bm7Y9cGt", + "outputId": "25f978fc-a5d0-4395-9bb2-a0b089ff2828" + }, + "source": [ + "est.plot(0)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAEGCAYAAAC3o5WpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gVVfrA8e970xNSSCUkEKp0BRRBVERUdFVsCyrYsG7Vn7271rXtuqyu61rX3kARERusBRGkCCICAtJ7egLpyb3n98eZXG7KTS4QuIm8n+fJk3tnzsycKXfmnTNnzhFjDEoppZRSweIKdgaUUkopdWjTYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKNUEEXlFRB5yPh8vIquDnadarS0/Sim1rzQYUY0Ska9FpFBEIoKdl9bCGDPHGNMr2Pmo1dry05r4BpEHaP4jRWTrgZp/AMv/WkSu2stpnheR1SLiEZGJzaSNEJH/isguEdkpIjfWG3++iPwsIrtFZKWInOMzTkTkIRHZJiLFTl777dUKqkOOBiOqARHpAhwPGOCsAzD/0Jaep2pbgn0MBHv5QfIj8EdgSQBp7wN6AlnAicCtInIagIhkAG8ANwJxwC3AWyKS6kw7DrgCew5JBL4DXm+xtVC/ShqMqMZcCswHXgEuA++dUpGI9K9NJCIpIlJeexISkTNFZKmTbp6IHO6TdqOI3CYiy4BSEQkVkdtFZJ3P3dW5PulDROQJEckTkQ0i8mcRMbUXERGJF5GXRGSHcwf2kIiENLYyInKfiLwnIu86y1oiIkf4jO/j3L0VicgKEWk0AKt/NywinURkqojkiki+iDwtIuEiUiAiA3zSpYpImYikNDLP5tbzcp870PUi8rsm8rNRRG4WkWXOHem7IhLpjEsWkRnOOhaIyBwRafT3LyLDRWSRM49FIjLcGX6BiHxfL+0NIjLd+RwhIn8Xkc0iki0iz4pIlG9enWNgJ/ByI8udKCLfOvModLbHb3zGdxSR6U7+14rI1X7yfw1wEfYCWiIiH/lsn/rH4DDnWC0SkR9FZKTPfBrd9iISA3wKdHTmX+Lk7T4RmSIibzjT/CQih4nIHSKSIyJbRGS0z/z9HsNNbQsR+Sv2Qv+0s+ynG9sO9Rlj/m2M+QKoCCD5ZcCDxphCY8zPwAvARGdcJlBkjPnUWB8DpUB3Z3xX4FtjzHpjjBsbuPQNJI/qEGaM0T/9q/MHrMXeQR0JVANpzvD/An/1Sfcn4DPn8yAgBxgKhGBPZhuBCGf8RmAp0AmIcoaNAzpig+ILsCe0dGfc74GV2BNfe+B/2JKaUGf8B8BzQAyQCiwEfudnfe5z1mMsEAbcDGxwPoc563snEA6MAnYDvZxpXwEecj6PBLY6n0Owd5qTnDxEAsc5454BHvNZ/v8BH/nJW3PreQb2JC/ACUAZMLh+fny28UJnmyYCPwO/d8Y9Ajzrs87HA9JIfhKBQuASIBQY73xPAqKdbdPTJ/0i4ELn8yRgujOPWOAj4BGfvNYAjwERtcdAvWVPdPbT1c72/QOwvTafwDfOto0EBgK5wCg/29W73+ptH+8xCGQA+cDp2GPwFOd7yt5ue5/jrAI41dl2r2GPs7ucbX41sMEnvd9jOIBt8TVwVb3lzwBuD+D3/S0wsYnx7bHHYJrPsLHATz7H/mxsqWkIcA6wFYhxxmcBi4HDnPV+HJgW7POa/rXuv6BnQP9a1x9wnHMSTHa+rwJucD6fDKzzSTsXuNT5/B/snZTvvFYDJzifNwJXNLPspcDZzucv8QkunGUb5ySfBlTic0HDXjS/8jPf+4D5Pt9dwA7sBfl4YCfg8hn/NnCf8/kVGg9GjsFeDEMbWd5QYLPPheN74Hw/efO7nn7STwP+r35+fLbxxT7fHweedT4/AHwI9GhmH1wCLKw37Lvaixf2Lvcvzuee2OAkGnvBLgW6+0x3DM7F18lrFRDZxLInAmt9vkc726IDNoBwA7E+4x8BXvEzL+9+q7d9rvD5fhvwer00nwOX7e229znOZvl8HwOUACHO91hnfRJo5hhuals437+mXjAS6B/NByOdnGVF+gw7Bdjo8/1KZ91qsEHaGT7jwoEnnXnUYAOyrvuSV/07dP70MY2q7zJgpjEmz/n+ljMM4CsgWkSGiq1XMhB7dwf2bugmp7i7SESKsCe1jj7z3uK7IBG5VPY81ikC+gPJzuiO9dL7fs7C3nHt8Jn2OezdpT/e6Y0xHuydXMfa5TjDam3C3jU3pROwyRhTU3+EMWYB9gQ9UkR6Az2wJQaNaWo9EZHfiMh859FEEfYuPhn/dvp8LgPaOZ//hi0Bmuk8cri9ifxsqjfMd3u8hb1oAkzA3vGWASnYC+Zin33ymTO8Vq4xprlHBN78O/PFWYeOQIExZreffAWq/nE0rt4xexyQDvu07QGyfT6XA3nGPqqo/V67PoEcw/62xYFW4vyP8xkWhw08EZGTsYHuSGzgcQLwoogMdNL+BRiC/Y1EAvcDX4pI9AHPuWqzDsVKXMoP5/n++UCI81wfbJF6gogcYYz5UUQmYy9G2cAMn4vDFuwjnL82sQhvF9EikoV9Dn0S8J0xxi0iS7F32GBLLjJ9pu3k83kL9q4yubFgwA/v9E5diUxssTdAJxFx+QQknYE1zcxvC9BZREL95OFV4GLsBeW9Ji7CftdT7JtM72Pr8HxojKkWkWns2UYBc/bTTdiAsT/24rDI2DoEvrZjL5S+OmMDC4BZQIpz4RkP3OAMz8NebPsZY7b5y8be5rtevhJFJNbnmOsM7O2yfIdvwZaMNKh7EsC23591qV323h7DvvZ3+f5nbEyhiOwAjsDub5zPK5zPA4FvjDG19YcWicgCbKneUmf8u8aY2vpMr4jIP7H1RurUOVKqlpaMKF/nYIvC+2JPKAOBPsAc7EkZ7J3xBdgKgm/5TPsC8Hun1EREJEZEzhCRWD/LisGeUHPBVhbElozUmgz8n4hkiEgCtkgdAGPMDmAm8ISIxImIS0S6i8gJTazbkSJyntiKoddjLwTzgdpSjFtFJMypwDgGeKeJeYF9vr8DeNRZ10gROdZn/BvAudiA5LUm5uN3PbF3nRHYbVTjVGAc3cg8miW2cnEPERGgGLufPY0k/QQ4TEQmOBU8L8AeDzMAjDHVwBRsSUsizsXKCeReACbJngrNGSJy6r7ktz5jzBZgHvCIs60Pxz4qeMPPJNlAt2Zm+wYwRkROFVuROFJsRdtMmt/22UCSiMTv4/rsyzHsK5D1q0Ns5epIbEAV5qyvv2vAa8DdItLeKd27GvvoC2w9oeNrS0JEZBD2cecyn/HjRCTNWa9L2FM3S6lGaTCifF0GvGyM2WyM2Vn7BzwNXOSUAizA1g3oiH2jAADnLulqJ20h9sQz0d+CjDErgSew9RGygQHYOii1XsCerJcBP2AvkjXYiyjY4CgcW/mzEHgPp3jdjw+xQVRt5czzjDHVxpgqbPDxG+zd/TPYejCrmpgXTtH7GOwjmM3Yxz4X+Izfgn2F0mCDOX/8rqdTAnAdNmApxD4W8fe4pzk9sZVjS7Db/BljzFeNrFc+cCa2FCUfuBU40+exHdgg9GRgSr27+tuw+32+iOxylteS7aCMB7pgS0k+AO41xvzPT9qXgL7OI5BpjSVw9tHZ2MrLudjSiluw9Yea3PbO8fE2sN5ZRkf23t4ew76eBMY6b9o8BSAin4rInU1MMxNbejUceN75PMKZ9iIRWeGT9l5gHfZR2Gzgb8aYzwCMMbOx9WPeE5Hd2BKkh40xM51pH8NW7l4KFGFLz35rjCkKcN3UIai2gp1SrZpzZ/qsMab+I4RApr0PW3Hz4hbPWNPL/S+w3Rhz915Ms8/rqZRSbZWWjKhWSUSiROR051FBBvZO7YPmpmstxFbwPQ97h95Uuja9nkop1RI0GFGtlWBr4RdiH1/8jK2l3+qJyIPAcmzR9obmktNG11MppVqKPqZRSimlVFBpyYhSSimlgkqDkb0k2qW8Uq2C+PRc67wNMjOAae4UkRdbOB8iIi87b7YsbMl5tyTZh55+1R5i+zYqFxHt9C9AYvseqxIRf6/gewUcjIh2Kd+AaWVduLe2/LQ10sLdzjd38heRLuLTKd6BEMwLkNTryO9AMsa8aYxptg0WY8zDxpiW3h7HYZtLzzTGHN3C8w6Kg7HvnIv7yQdyGU0se6KIfLsPk44xxlziM58HxXaIWOO8tdfUMkVEHhPbqWa+81l8xo8S24nnLrGtJF9Tb/prxXaYuEtEvheR45pYVoSI/NdJu1NEbmwmbzc46XY50zW4zovICc75qtFzpIh8Uf98ZozpDjzc1LJrBRSMiHYprw4wPQYap9ulTcjC9ttSurcTtuX925bz3oLWYtvi+TiAtNdgG5Y8Ajgc205RbU/QYezpODEe22bRP8TpXVxEhgKPYjssjMe+pfeB+OmpHNsOTE/ssXkitlHH0xpLKLZhwtuxrWFnYRvTu79emjBs2zYL/MzjImzDdvsukA5ssLX75wL/wDYBDrZ1wiKgv0+6FGxDOqnO9zPZ0/DNPOBwn7QbsY0kLcO2hhnqbJB12D4QVgLn+qQPwTaSlYfteOnP1O3dtHYH7cA2Ef0QTgdVjazPfdgGht51lrUEOMJnfB9sR1RF2CaQz/IZ9wqNdJzmfO8ETMU2oJSPbQAsHCgABvikS8W2+pnSSN6aW8/LsW9c7AbWU7eTtfr52YjtoXYZttXNd3E6v8L2sTHDWccCbMNcLj/bazi2VcVi5/9wZ/gFwPf10t4ATPc5Rv6ObRQsG9trbJRvXp1jYCf1Oizzmd/VPuu7kj29pja3j/6NPUHsxv6AujvjBNu7bA6wC/gJ2/LrNdgOAquwDYN95KRv6piciO107O/Yt2E2AL9xxv0V20BbhTO/pxtZt83Ovi1x/o5x5jnXyWM+9jhuaju2d/ZjrpOHGdg7dL95cJb5R+AXZ70exPZOO8/ZJpOBcJ98Nvc7bnCMYVvYLce28lq7fh0b2QavOOszy8nLbCCruWPPGfc1TmdxtfvCZ1w/Z54Fzja70+e3/4ZPumHOOhVhG+oaWW//rnfytQG4qJH8X+lsX7ezjvf7HLdrneVP9113Z/v/ydn+G/wc903ly+85wBl/trO/dmGP3dN8tteD2ONrN7YRtORGlt3ovmPPefMNZ95X0cR5F3tMfYk9jvOAN4EEZ9zrzvzLnfnfim3QzjjrtwV7PP8e28/NMmdbPF0vr1c426IQ28lhVr3t/HtnOxdhzwmCPXf47rOiAK+DG4GT/Yx7A6dzzSamnwdcU+/Yme98TnPyG+0zfhEw3udcu9BnXG0L1ul+lrUdGO3z/UHgHT9p38I2Wlf7/SRgZ700t2P7I3qFhh1QxmO7zxhGI518Uu8353f7BLgTtEt57VI+GF3Kj8Oe4IY469uDPR2MNbeP8oGjnTy/ifNDxHbvvhjbc2rtiSm9/r6tlwd/x+RE9rKb93rz7kK9H68zzxrgWifvUc1sxyTgt86+iMU21T7NZ34N8uAs80Ns52f9sDcDX2DviOKxx99le/E79neMjaRez7aNbINXnH03wjkOnsQJKmji2Ku/bvgEI8522IFtRTbS+T60/okR28lePrYDPBf2UUs+9qYqBnvBrT2m0rH97jS2Dt5lO99HYS++g511+he2Lxff7T/LWb/Gjnu/+QrgHHA0NnA7xZk2A+jts73WAYdhj6uvgUf9rFODfcee8+Y5zryjaOK8i/29nuJsgxTgG+Cf9c5PJ/t87+Jsm2ed/TYaGzRMc+adgT0WT3DSn409D/TBHh93A/PqbecZ2N96Z2zAflpj+8wZNgFY1sSxWie/9cYFEowU4xyHzvejgN0+39/CXkNDsDcmOUAnZ1wc9rxV+zu8FtsUQGPn7PbOuqf5DBsL/OQnXz8CF/h8T3amr/2dZWGDjXY0fo78N/YmtHb/HZhgBO1SHrRL+WB1Kf957brVGx7IPnrRZ9zpwCrn8yj2RPGuevP17tsAj8mJ7Ec37/gPRjb7fG9yOzYyz4FAoc/3Bnlwlnmsz/fFwG0+35/AuWgQ2O/Y3zFW53j0k99X8Lljw57w3NiblOaOPe+6UTcYGQ/84Gd597EnGLmNeiVyzjF3GfbiWoQN9BoEDPWm8S7b+f4S8Hi9daoGuvhs/1FNzM9vvvyk9z0HPAdM8pPua+Bun+9/xLl5bCRtg33nbDvfoGpvz7vn+O4X/AcjGT7D8ql7oXwfuN75/Clwpc84FzYwy/LZzsf5jJ8M3N7YPgvkr35+640LJBhx4wSGzveeTh5rrwtjsKV4Nc7f1T5pBXvzVe2MywOG+FlOJ2e+kT7DTsE+Smwsvbf0zPke5kxfe7x+WLsPqHeOxAZUS7HX4dr9t0/BSCB1Ri5Du5TXLuXrOlhdynfC/lAay1Nz+6jR9TbGfIl9fPZvIEdEnhcR367S62jmmKyzHNNy3bz77vMmt6OIRIvIcyKySWx/MN9ge1n29yy5Vv2u7ut/r12HQH7H/o6xQPn+FkuwjzZqf4tNHXv++Dtu6svCdujmu27HYUu+SrElYb/Hnlc+dn67gaiTb2ed8uvle0v9iQLJFzR7Dmhu3VtsX9HMeVdsR3nviMg259h8g6bPVbX25th80mfZBdiLdrPngSApwZZw1IoDSowxxjm23mFPf0X9sPU8znDSXol9fNXPGX8xMEMa7xOpxGf+vsva3Uhaf/kC2C0iY4BYY8y79ScS28niM9hAeF96nq6jyWBE9nQpf4JT03YntjjmCLFdyrux0eZ456+xLuUTfP6ijTFv+yzC+CwrC9tp2J+xxUMJ2FYs97ZL+dplxRlj+jWxev66lN+O06W8T9qmuir3zUPnJip11XYpfwn736X837FFcAnYjtX2qUt5Y8xNxphu2ErJN4rISY0k9delfO32qN+lfG1Pvr5dytfuk3hjjO/JwNC0Ldji6MbytC/7yC7UmKeMMUdie6M9DNs5WoP8BHBMNruofRzvO7y57XgTtjO6ocaYOJyOz3zy2FwemhPI79ifQJfte4y3wz6+qP0tNnXsNZXnQHq03YItgfBdtxhjzKMAxpjPjTGnYIOAVdhjIRB18i0iMdjHab75bmrb+M1XAOcAf7+ZvRXIsdncefdhJ/0A59i8mLq/nZY4Nn9XbztFGWPmBTDt/i57X6zAVl6tdYQzDOxNzhrnmPMYY1Zj67z9xhk/EHt9XeOM/wx7rRhefyHGmEJnnL9lBZKvbGM7zTwJOMrn+n8BcL2I1D7mPQp41xm3yJl+q4gc39zGqK+5khHtUl67lA9ml/IvAjeLyJHOMdTDCRD2dR8hIkOcYzIM+/ijwme963fL3twx2ZzmunnPdZbtN00A2zEWG6wUiUgitm+bvclDc/b2d1x/2UkiEt9MutNF5DgRCcdWtJtvbI+6TR57TZgBpIvI9WJfcYwV+zZCfW8AY0TkVBEJcX6zI0Uk07mrP9sJJCqxd4+N/T4a8zZwuYgMdIKHh4EFxpiNAU7vN180fw54yVn2Sc55MEMCL9Hx1ey+C+C8G4vdbsVi+126pd4s9vfYfBa4Q0T6AYhIvIiMC3DabCDTOeb2mXP+icReS0OdfeWvVPI17E1fhtgSjZuwjz3A1v/oKfb1XhGR7tiK48uc8YuAM0SkmzP+FOyN1PImlnW3iLR39v/VPstqLO2VItLXuebc7ZP2Hmc5tdf/6dhzwuXY60ZHn3GnO9MciZ+3bprSXDByGdqlvHYpH6Qu5Y0xU7BvhLyFLWKcBiTu6z5yxGG3cSG2KD0fG0hBvW7nAzgmm9Ogm/d661fmrN9cZ5nD/Mynqe34T2xFwjxsMP3Z3uShOXv7O6437SrshXm9s36NFSmD3b/3YovZj8QG7IEee40tdzf2GfkYbDH9L9jXG+un24KtBHkn9uK+BXvBdDl/N2JLOQqwFUX/EOB6/w97En8fe4PSHbgwkGmby1dz5wBjzELshWIS9mIxm4alS4HkIdB919R5935sJd5i7F3+1HrTPoK9YBaJyM37kMcPsBXg33F+F8vZU5LQnC+xJQI7RSQPvA3n+Ss98OcF7M3AeOAu5/MlzvyOF5ESn7TPYSuf/+Tk9WNnGMaYddg3g57CVpyejT1+ahvoew17s/W1M/4pbKmQv3PevdjHdZucef3NKU1BRDqLSImIdHaW/Rm2rtdX2GvXJmf62hJ032t/OVBqjCkwlu+4XGfZ2c45eq+02b5pRLuUV6rNE5FXsBUlA/5NKBUMYlu3Tgc+MMZc1lx65d1mGcBkY8wVTaVtM43WiK2/ciK21CCNNtbVuuzpUn5QM+na9HoqpdSvkdHWrffa3myzttQ3TZvtal20S3mllFLKrzb7mEYppZRSvw5tqWREKaWUUr9CGowopZRSKqg0GFFKKaVUUGkwopRSSqmg0mBEKaWUUkGlwYhSSimlgkqDEaWUUkoFlQYjSimllAoqDUaUUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKKWUUiqoNBhRSimlVFBpMKKUUkqpoAoNdgaUagtEJAE4OyQ6fqyIKx3R347yq8Z4PDvdZcXvA9OMMYXBzpBSrZ0YY4KdB6VaNRE5TsIiPos7bJhJPvrsduHt05EQjUVU44ynhqrCneQv+qikeNVcl6muPMMY83Ww86VUa6bBiFJNEJHDXOGRS3r96b8xCf1PCHZ2VBtTvGoeq568tMxTVT7EGLMy2PlRqrXSOiNKNUFCI65MO+GScA1E1L6I7z2c9JOvDHeFRV4d7Lwo1ZppMKJUE1xh4eOTjj47LNj5UG1X0pAxoRISekGw86FUa6bBiFJN8FRVpEZ16BbsbKg2LLJDd9xV5SnBzodSrZkGI0o1wRhPiCssItjZUG2YKywSPG6t8axUEzQYUUoppVRQabSu1EG2/vU7yJ79On1vmUJ8r2PqjCvbvoZl959KQv+R9L72Ze9wd2UZWz54nLyF06kpLSIqvQcZv/kTyUPPPtjZP2CMu4Ztn/yLnG/fpaooh4jkTDqMupwOoyYiIgFNv/Pr18mZ8xYVOZtwhUcSndGLjqf9kfYDTvSmy/n2Xda9fKPf+cT3PZ6+N73TIuuklAqMBiNKHWSdx95J4Y+zWP/qLRx+3yxCwqMAMB4P616+CVdYJN0ufsSb3hjD6n9fxa5V8+hw8pVEpXUj//uP+OX5P2LcVaQMHxesVWlR61+/g5w5b5E64iLadR1I8YrZbHzrbmpKi+h01g0BT5809Bw6jLwUd0UpOd++zap/Xsxhf3iepKPOACCu1zB6XPVUg+mLVswm77v3Seh/YoNxSqkDS4MRpQ6y0KhYul3yCKuemsjWD58ga9zdAOz434uUrF9Ct0sfJ7x9B2/6wqUzKV4xmy4THiL9pMsBSD1+PMsfPYdNUx4iachZtFS9ltItK4jp1K9F5rVXy928nJw5b5E++nd0ueAvAKSNmMCaZ3/Pto//RdqICYQnpPmdvqZ8Nzlz3yVx8Okcds2/vcNTjj2fxTcNJmfuu95gJDIli8iUrAbzyJ07GQkJJeWY37bw2imlmqN1RpQKgvZHnELS0WezfebzlGxcRkXuJrZ88DhxvYeTdsJFddLmLZqOKzyStBHjvcPE5aLDqIlU78qjeNXc/cpLVVE22z59hqX3nMiKx8bu17z2Vf6ijwBIP/nKOsM7nHQlpqaSgh8+a3J6T1U5eNyEJaTWGR4ak4ArLMJb+uRPZcE2ilfNI6H/SMLikvdhDZRS+0NLRpQKkq4THqR45Tese+UmQmPaA4bul/2tQbrSjT8SndnXvpXho13XQc74ZbQfMGqvlu2pthf43HnvUbRiNhhDfO/hZJxxXYN07orSgOYZEhmzzyU0JRuXERafSkRSRp3h7boeAeKidNNPTU4fHp9KVMfDyP32XWK7DiSu13DcFSVs/+w/GOMh/dTfNTl97nfvg/GQMvz8fcq/Umr/aDCiVJCExSbR5YL7WPvS/wGQNe4eIlO7NEhXVZRNdEafBsPDEzo443cGvMzd65eQO3cyeQun4y4rJqrjYXQ+91aSh51HRGLHBunzFkxrsrKnr+6X/4PU4/atba+qouxGH8O4QsMJbdeeqsLm1/GwPzzP2hf+zNqXrvcOC4tPo+/N7xLbbXCT0+bOnUJoTALtB56y95lXSu03DUaUCqLQ2ETv54QBjVec9FRVIGHhDYbXlkJ4qiqaXc6OL/5L9levUr5jLaHtEkkZdh4pw8fSruvAJqdL6D+SPje93ez8AaI79gooXWM81RWERLVrdJwrLAJPdfPrGBLVjujM3sT2GEJc7+G4y3ez88uX+XnSJfS54Q1iuw1qdLrd6xZTkb2etFETcYU23M5KqQNPgxGlgsRdUcr6124nIiWL6l15rH/9Dvrd9n6D11hd4ZGY6qoG03uqK73jm7Pj8+eozN9Ku26D6HHlP4nq0COgPIYnpDVZcXRvuKvKcZfvrjMsLDYJcYXgCovE1DRcR7DrWf8RVYN5V5Sy/OGzSR52Llm/vcM7PGnIWfx4z0jWv3YrR9w3q9Fpc+e9B0Dqr+StJKXaIg1GlAqSTe8/TFXhdvreMoWyzSvY+M695Mx+g7SRl9RJF56Q1uijmNphgQQL3a/4BznfvE3BD5+y9O6RxPYYQsoxY0kaMobQ6Di/0zUWQPgTEhXbZEXR/IXTGzzyGfTYfCKTOxGekEbZtlUNpvHUVFFTUkhYM+uYv/hjqgq2kTjotLp5iogiYcCJZH/9OjVluxqsq6e6kryF04nqeFizpURKqQNHgxGlgmDXL4vI/upV0kZcRHyvY4jrOZS8hdPY9N7DtD/ilDqv9sZkHU7h0s/xVFfUKSEo2fCDd3xz4nsfS3zvY6kp303+wunkzpvM+tduZcPbfyHxiJNJGT6WhP4nIiF1TwmNBRD+NFdnpLFHPuHxtsuWmC6HU7zyGyrzt9WpxFqy4UcwHtplDWhy2dVF2faDx91gnHG7nf81DcYV/jgLd1kRKaf/qcn5K6UOLA1GlKpmtAwAACAASURBVDrIPNWVrH/1ZsIT0ujstDEiLhfdL/s7yx44jQ1v3U2vP73oTZ885CzyF35I9jdve9sZMR4PO798hdB2icT3OTbgZYdGxZJ2wkWknXAR5TvXkTt3MrnfvU/+9zMIi0smZfg4b7sn0LJ1Rpp65JN81Bi2f/I0O/73kredEYCdX7yEhIbXKfFwV5ZTVbCN0HaJhDl1biLT7WOn3PlTie1xlDdtTWkRhcv+R0RSpjetr9x5U8AVom2LKBVkGowodZBt/eiflO9YS69rXyY0KtY7PDqzNx1/80e2zXiS/MWfkHTk6QC0H3Qq8X2OY9O791NVsI3I1K7kf/8RJesW0/3yfzRbn8KfqA7d6fzbO+h07m0Ur5xDzrzJ5H43tU4w0pJ1RpoSk9WflOMuZMes53FXltCu6yCKV8wmf9FHZJ51Y52SopINP7Dyb+PIPOtGOp19EwDtDz+Z6E79yP7qVaqLc4jvcxzuihKyZ79JdXFOoy2uVu/Ko2j51yT0HXFQ1lEp5Z8GI0odRKVbVrL9s/+QdNSZJA4c3WB85pn/R8Hij9nw5t3E9zmO0Og4RIRef/4vmz94jNzv3qemtJio9O70uPppUoadu995EpeLhP4nkND/hIDbFDkQul3yKBGJGeTOfZfcuVOISMqky/gH6HDSFc1O6woNo/9tU9n++bPkL/7Etp2CENO5P13G39/ots6dPxXjriHlWK24qlSwiTEm2HlQqtWSkNDqoc+sCd3X0geljDHMvyoTY0zzvf0pdYjS5uCVUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpQ5xa1+6niW3Dg12NpRShzBt9Ewp9auw5cMn2Dr9H42O63f7B8T1PLrOsIrczWya/CDFP3+L8biJ7T6YrLF3E5PVv8H0pZuXs2nKX9m9bjHiCiG+z7FknX8PkSlZB2RdlDrUaDCilPpVyTr/HsLiUuoMi+rQvc736l15rHjsXIzbTcYZ1+IKi2Dnly+z/LHzGHD3DKI7HuZNW75jLSse+y1hccl0Pu82PNWV7Jj1AssfOZfD7/3c29mfUmrfaTCilPpVaT/wVKLSujaZZtsn/6KqKIfD7/2MmE79AEgaMoald41g8/uP0Pval71pN73/CAD9bn3f20dO+wGj+PH+0Wz7+F90nfDAAVoTpQ4dGowotZ/clWVsnT6J/MUfU1W4E1d4FFFpXUk/9RqSh5wFQGXeVrZ//izFq+ZSmb8VgJjO/ck441raDxhVZ34rHh9LRc4G+t02lQ1v3cOu1fMJiYgidcRFdDrnFmpKC9n49r0ULvsSPDUkHnk6XS9+mJDwqAbz6HvzZDa8dQ+71y7CFRZJ0pAxZI27m5CI6GbXq3j1d2yb8RQlG37AU1NNdGZvMs+4jsRBp3rTGI+b7Z8+Q868KVQVbENCwolIziRtxEV0GDWxBbbuvqkp301IRDTiCml0fN7Cj4jrNcwbiACEx6eSdNQYcudNoaZ8N6FRsbgrSin66UuSh55bp7O+6MzexPceTv6iDzUYUaoFaDCi1H7a8MYd5C34kLSRlxKd2Rt3+W7Ktq6kZN1ibzBSsnEpxT/PIXHQaUQkd6KmbBd586ey6slL6Xvj28T3Pb7OPD1VFax8YjwJ/UaQNe4uCpZ8xrYZTxISEUP+oulEpfek83m3smv1fHLnTiYsLoWssXfWmYe7soKVT1xI3GHDyBp7F7vXLSb7q1epzNtCn+tfb3Kd8r//mDXP/YHYboPJHHMDEhJK3oJprH76ijod9G2dPomtH00i5djziR19DZ7qSsq3r2HXmgXNBiPuynI8VeUBbeOQqFhcoWEBpf3pgdNwV5QgIWHE9TqGzmPvpF3WAO/4qsKdVBdnN9pBXrtug8iZ8xZlW38mrufRlG1diampIrbboIZpuw6ieOUcKgu2E5HYMaC8KaUap8GIUvupYOksUkdMaPIOOWHASSQddWadYeknX8Gy+09l22f/aRCM1JQWkTnmBtJPuQqA1OMnsOTWoWye+gjpp1xNlwvuBaDDiZexLHcT2bPfbBiMlBWRNmICWePusmlHTSQsLpkdM5+n8KcvG5TIeKerLGf967eROHA0vf70ond4h1ETWf7w2Wya8hDJR5+NuFwULJ1JwoBR9LhiUoBba4/tnz3jt8JpfX1vmUJ87+FNpgmNjiNt5CXEdj+KkMh2lG5ZyY5Zz7Pi0XPod9tU2nU5AoCq4mwAwhPSGsyjdlhV4Q77v8imDWsqbdFODUaU2k8ajCi1n0Kj4yhZ/wOV+duISMpoNE1IxJ5HKJ7qCtyVZWAgrtcx5C38qOEE4iJt5MXer67QMNp1HUjh0s9JG3lJnaSxPY6idOOP1JQWERqTUGdcbTBTq+Po39lgZOksv8FI8cpvqCkpJOWYsVTvLqgzLuHwk9j64d8p3/EL0Rm9CI2Oo3z7Gsq2/0J0x56Nzs+flOFjie05JKC0MZ36Npsm/ZSr63xPHHwaSUedwbIHTmPT5Afpd+t7gC11AnCFhjeYhyssok6aPWkjGkkbWSeNUmrfaTCi1H7KOv8vrH3xOpbcNpTojN7E9zuB5KPP8t6JA3hqqtg640ny5r3nrTPiJQ17lg+LS/Ze7GqFRscBEJGYUW94PECDYCQksl2Du//w9h0IiWxHZd4Wv+tTvnMdAKv/faXfNNW784BedDr3NlY/fTk/3jOSyLRuxPc9nqSjziC+97F+p60VmZJ1wF+Njc7oRfvDT6Zg6ee4q8oJCY/CFe4EETVVDdJ7qisBvGn2pK1sJG1FnTRKqX2nwYhS+ynpyNOJ63k0BT/OonjlHHK/fYcdM58j86yb6HTWDQBsfPtesme/TtrIS4nrebQNGlwucr+dTN6CDxrMU1z+2yP0VynTGNMyK+TMp+sljxCZ2qXRJNGZtqQirucQBj0yj8JlX1C8cg4FP3xO9levknLchfS4/IkmF+OuKMVdWRpQlkJjEhotyQhERFIGeNy4S4sJCY8iPL728Up2g7S1w8ITOjj/bdrqJtM2fISjlNo7Gowo1QLC4pJJO348acePx11Vzqp/XsLWjybR8bTfExIeRd7CD0k5ZizdLn64znQ5c945YHlyV5RQVZRd52JZVbgTd0UJEcmd/E5XG4CERseT0HdEs8sJjY4jZdi5pAw7F+OuYe1/byD323fI+M0fG7Tv4Wv758+2aJ0RfypyNiIhoYS2s6VG4e07EBafSsn6JQ3Slqz/AQkJJTqzDwDRGX2QkDB2r/+hweOxkg0/EBaXTHh7rS+i1P7SYESp/WA8btwVpd5HKAAh4VFEdejOrtXf4S4vISQ8yinpqFtyUb5zLQU/fH5A87dj1oveCqwA22c+B0D7I072O01CvxMIjUlg28f/ov0Ro+vUdwHbYFhYXLL9XFJAWLtE7zgJCSU6oxcANWXFTeatpeuM+Oar1u51iyn86Uvi+xxX57FX0pAx7PziZUq3rPTOu6o4h/zvZ5DQf6R3f4ZEtSNhwCgKFn9M1Xm3eQO7sq2rKF41jw4jL0UaecymlNo7GowotR/cFSUsvulIEgf/huhOfQmNSaB083Ky57xNXO9jva1zJg46jZxv38UVHk1M5/5U5G0m+6vXiE7vQenm5QckbyHRCeQtnEZVcTax3Qaze91i8uZPJb7fCbQ//CT/00W1o9tlf+OX5/7Aj/eMJGX4OMITO1JVlE3J+iWU71zH4EfnAbD07pHE9Tyadl2OICwuhfKd69j55ctEduhOTOcBfpcBLV9nZPEtR5N01BlEZ/YhNCqW0q0/kzPnHUIiYrxvH9XKOP1a8hfN4OdJF5E++hrbAusX/8V4auh83h110nb+7e389NCZrHjsPDqcdAWemip2zHyBsNgkMs64tsXyr9ShTIMRpfaDKzyKDqMup/jnORQu+wJPdSURiR3J+M2fyPjNn7zpulx4P66wSPKXfErO3MlEdehOt0sfpXzH2gMXjERE0vemd9jw1j1seu+vuELDSRt5CVnj7ml22qQjTyf89mls++Rpdn71Cu6KUsLikonp1JfO597mTdfxlKsp+HEW22c+h7uijPCENFKPu5CMM/8v4HZBWkrK8LG2JOTH/+GpKicsLpnkoWeTOeb6BkFPeHwK/e/4gE2TH2TbjCdt3zTdBtPzmmeIzuxdJ210x8Pod9v7bH7vr2ye+ijiCiGu97Fkjbtb64so1UKkxSq9KfUrJCGh1UOfWRNa/82W1q62BdYj/7442Fk55BljmH9VJsYYfZ6jlB/+q+wrpZRSSh0EGowopZRSKqg0GFFKKaVUUGkFVqV+hWqbPldKqbZAS0aUUkopFVQajCillFIqqPQxjVKtyJYPn2Dr9H9wzEvbgp2VFrHi8bHsWv0dALE9htD/jmlBzlHL2jz1MbZ9/JT3+8CHvyUqrWsQc6RU26TBiFLqgIpK70HGGdcRFlu3qfai5bPJ//4jSjYspWz7GvC4Gfb8JiQk8NOScdew7ZN/kfPtu1QV5RCRnEmHUZfTYdTEJptpz5nzDuteuQmgwTKX3Dq0Yc/KPvrdPo04pxn7pCFnEpXeg4Iln1Kw5NOA862UqkuDEaXUARUWl0LKMb9tMDxvwQfkLZxOTOe+RCR3ojJn417Pe/3rd5Az5y1SR1xEu64DKV4xm41v3U1NaZG3x+T6qksKbYu0EdF4KssajO9y4f2N9ia8/vU7cIWF067rEd5hMZ36EdOpHxU5GzUYUWo/aDCilAqKzufdTrfLHscVGs7al64ndy+DkdLNy8mZ8xbpo39Hlwv+AkDaiAmsefb3bPv4X6SNmNBoc+2bpz5CWFwKMZ37kTd/aoPxiYNPazBs1y8L8VSWknrcBbhCw/cqn0qp5mkFVqX2QcEPn/PdlRnkL/qowbiK3M18d2UGm99/BABPTRVbPnyCnx46k0XX9WP+77qx9O6R7Jj1AoF0x7Dk1qGsfen6BsO3fPgE312Z0WB46ZaVrP73VXuW9ZeTyJ7z9j6s5YEV3r7Dfl3Ya7d9+slX1hne4aQrMTWVFPzwWYNpdq//gZxv3qbrhAcQV0jAy8qdOwWAlOHj9jm/Sin/tGREqX2QMOBEQqITyF0wjaQhY+qMy1vwAQDJw84DwF1ews6vXiVpyBiSj7HDilfMZuM791FdWkTnc25psXztXruIlU+MJyIli46n/ZGQyBgKf/wf61+5mZpdec32MuuprsRd0fARRWNCImNwhUW0RLb3ScnGZYTFpxKRVDcga9f1CBAXpZt+qjPceDxseONOko48nfg+x5E7L7C2WNxV5eR//xFRGb1p1+XwFsu/UmoPDUaU2geu0HCSjjqD3HnvUVNWTGh0vHdc3oIPie7Ul+iMXgCExsRz5N8W1blwp590BWv/ewM7Zr5A5pn/1yJF/8YY1r16K9EZvel3+wfeXnM7jJrI6meuZuuMf5I28hJCYxL8ziNvwTTWvXxjQMvrfvk/SD3ugv3O976qKspu9DGMKzSc0HbtqSrcWWd49tevUb7jF3r9+cW9Wk7hD5/jLt9NqpaKKHXAaDCi1D5KHnoOOd+8Sf7iT0g7fjxgH5GUb19N53F3e9OJK8T7SMC4a3BXlGA8Hnt3Pncy5TvWEtOp737np2zrSsq3r6HL+Adwl+/G7TOu/eEnU7D4E3av/Z72R5zsdx4J/UfS56bAHulEd+y1nzneP57qCkKi2jU6zhUWgae6wvu9elcemz94nIwzriUiseGjrabkzJsCrhBvqZZSquVpMKLUPoo7bBjh7dPJm/+BNxjJWzANREg++uw6aXO/e5/tnz9H2bZV4HHXGecu29Ui+SnfuQ6AjW//hY1v/6XRNNW785ucR3hCWqOlDa2RKywSU1PV6DhPdSWusEjv901THiS0XXs6nvr7vVpGVVE2xSvnkNDvBMLjU/crv0op/zQYUWofictF0tFns2Pm81QVZRMWn0r+wg+JO2wYEYkdvenyFk1n7YvXkTBgFOknXUFYfAoSGkbppuVsfu+vGONpZkGNt5dh6gU1OJVhM8+6kVinHYz6otMPa3JR7qpy3OW7m86PIyQqlpDwqIDSHgjhCWk2uKvHU1NFTUkhYU5QVbLpJ3LnvUfXi/5KVXGON13t67uV+VtxhUc1GoTlzp8KHjepx55/gNZCKQUajCi1X1KGnsuOz58lb+GHtOs6iMr8rWSccV2dNHkLPiQiuTO9r3sVce15ga0yZ1NAywiNjqemrLjB8MrczXW+R6balj9dYZEk9B2xt6sCQP7C6W2mzkhMl8MpXvkNlfnb6lRiLdnwIxgP7bIGAFCVb1uz3fDmXfDmXQ3m88MdxxKTdTiH/6VhOyG5c6cQEp1A+4GjD9BaKKVAgxGl9ktMVn+i0nuSt2AaFbmbEKdiq689Acie13jdVeXs+OK/AS0jMq0rxavm4a4q95ZEVORtafDqakzn/kR26M6O/71I6vEXEhabVGd89a48wuLqtoJaX2utM1JVlI27fDcRKVneirnJR41h+ydPs+N/L3nbGQHY+cVLSGg4iYNseyHtug2i159eajDPHV+8xK5V8zjsjy8Q2q59g/ElG5dRvn01aSMvDepbQ0odCjQYUWo/JQ89hy3T/kbFznUkDBjV4G2VxEGnUbD4E35+8lKSBp1GTWkROXMnExIZE9D800ZeSv6ij/j5iQtJHnou1bsLyP76VaLSe1K6aZk3nbhc9Lj8H6z8x3iW3j2S1OPHE5mSRXVJPmWbV1CwdCbDntvQ5LIOZp2R0i0rKVw6E4CyrT8DsPXjfyEihETHk37S5d60m99/hNx5Uxj02HwikzsBNhBMOe5Cdsx6HndlCe26DqJ4xWzyF31E5lk3Et6+g3edGmvIrDaYSxw4utEm6HPnOW2LHKtv0Sh1oGkwotR+Sh52Llum/Q13RQkpQ89pMD7lmN9SU1bMzi/+y4a37yU8IZWUYy8gtseR/PzE+GbnH997OF0vfpjtn/2Hje/eT2RqV7pOeIiy7WvqBCMAsT2O4vB7PmXrjCfJnTeFmpJCQmOTiE7vQZcL7m2xdW4JpZt+Ysu0v9UZtvXDvwMQkZRZJxjxp9sljxKRmEHu3HfJnTuFiKRMuox/gA4nXbFfefPUVJO3YBpR6T2I7TZ4v+allGqeBNICpFKHKgkJrR76zJpQ3zczVOBWPD4W466m159fRkJCCY2OC3aWWpS7shxPVTnbP3uG7Z/9p9Fee40xzL8qE2OM/577lDrEacmIUuqA2r32e76/fgCxPYbQ/45pwc5Oi9r28VNs+/ipYGdDqTZPgxGlmmE8Wnq4r7LO/ws1ZUUAdVqp/bVIPe4C4nof4/1eW0+lDvsKth5ESjVBgxGlmuAKDSurKSmIC4nYu1Y7lfVr78slMrULkaldmkxTXVKIhEaUH5wcKdU2aa+9SjVBQsK/LVr+dbCzodqwouVf4QqPnBfsfCjVmmkwolQT3OW7Xt4+87lSd2VZsLOi2iB3ZTk7Pn+u1F1WHFijMkodojQYUappU6sKd05f8fhvy4pXzWvYBLtSjTAeD7vWLGDl388vq8jb8ikwOdh5Uqo101d7lWqGiLjEFXqjKyL698ZdkxEam1jlCglttT8cY4xgTDtEKkWk8Z7k2iBjTDjGRCBSIiKtdvt73DVSU1IQLq6QHZ6qiueMu/rvxhiNYpVqggYjSu0FEekApNC6K38/DhQDfw12Rg6A24A0ILAOdILDDeQaY3YEOyNKtRUajCj1KyIiNwAXA8caYyqCnZ+WJiIRwDfA+8aYx4OdH6VUy9BgRKlfCRE5FpgKDDPGNN0JTRsmIp2BhcAFxpjZwc6PUmr/aQVWpX4FRCQVeAe44tcciAAYYzYDlwFviUh6sPOjlNp/WjKiVBsnIiHATGC+MeauYOfnYBGR+4ATgZOMMTVBzo5Saj9oyYhSbd8Dzv+/BDUXB9+DQAXwcLAzopTaP635jQClVDNE5EzgUuDIQ+31UWOMW0QuAhaLyDxjzK+rFz6lDiH6mEapNkpEugLzgfOMMXODnZ9gEZGhwEfAcGPM2mDnRym19/QxjVJtkIhEAu8BjxzKgQiAMWYBcD/wnohEBTs/Sqm9pyUjSrVBIvIc0B77eush/yMWEQHeBCqMMVcEOz9Kqb2jJSNKtTEichkwErhKAxHL2Q7XAMNE5Mpg50cptXe0ZESpNkREDge+AE40xiwPdn5aGxHpg22hdbQx5odg50cpFRgtGVGqjRCReOB94AYNRBpnjPkZ+DO2/khCsPOjlAqMlowo1QY4dSLeA3KMMX8Idn5aOxF5CsgCzjXGeIKdH6VU07RkRKm24UagM3B9sDPSRtwMpAK3BDsjSqnmacmIUq2ciByPLRUZaozZGOTstBki0glYBIw3xnwV7PwopfzTkhGlWjER6QC8DVyugcjeMcZsAS4B3hSRjsHOj1LKPy0ZUaqVEpFQYBbwrTHmnmDnp60SkXuA0cAoY0x1sPOjlGpIgxGlWikReQQ4CjjtUOt3piWJiAuYAaw0xtwc7PwopRrSjvKUaoVE5CzgIg7BDvBamjHGIyKXsKdDvanBzpNSqi4tGVGqlRGRbtgO8M42xnwX7Pz8WojIEOBj4FhjzC/Bzo9Sag+twKpUK+J09PY+8JAGIi3LGLMIuBd4X0Sig50fpdQeWjKiVCsiIi8CscCF2u9My3Maj3sdqMG+oaTbWKlWQEtGlGolRORy4Fi0A7wDxtmuv8NWDL4qyNlRSjm0ZESpVkBEBmJf4x1pjFkR7Pz82olIL2AO9k2lJcHOj1KHOi0ZUSrInA7d3gP+TwORg8MYsxr4I7ZDvfbBzo9ShzotGVEqiJw6DFOB7caYPwU7P4caEZkE9MC+uaQd6ikVJFoyotRBItbV9QbfDHTEdoSnDr5bgUTgNt+BInKi0wKuUuog0JIRpQ4SEekCzDPGdHS+jwAmYzvA2xTErB3SRCQD26HeRbUd6onIQuxjM329WqmDQEtGlDp4BgOLAUQkHdsB3kQNRILLGLONPR3qZTiDl2L3l1LqINBgRKmDZzCwxCn+fwd4wRjzWZDzpABjzBfAv4F3RSQMWIIGI0odNBqMKHXwDMZe5P4KVAAPAojIESKSFsyMHapEJNwppQJ4BCgCHkODEaUOKg1GlDp4BgPJwIXYTvCGicin2P5SugQxX4ey7sBPIvIG0Bu4FDgX+4ZNbxGJCGbmlDpUaAVWpQ4C5+57OeAG7gPGAVnAo8CrxpjK4OXu0CYi8dg2R67HNoQ2FfgnUAhMMMYsDmL2lDokaMmIUgfHMGyfMyXAdcDLQC9jzPMaiASXMabYGPMI0A2YC/wN2Al0wu43pdQBpsGIUgfHKGA3cDvQzxjzmjGmOsh5Uj6MMaXGmEnYRzf/ATzYEiyl1AGmj2mUUqoRzltPEcaY0mDnRalfOw1G2iCnCXGtWKeCxWOMqQp2JpRSvx7a3HEbISJJIS5+FxMeMtEldBcwSLBzpQ5FHoMrPNRVFRXm+npXhfsFYKpx7mpEZKArLPJSCQs/27hr2mOMPgpWB4W4QspxuX50l+16BZhmjKkIdp5U4LRkpA0QkdSYcNf8kw5r3/Hio9IihnSKJTxUz/EqOIwxFJbVMGtNIZO+3lqaX1r9Qlm150ZxhV7pioh6Mm3kpeGJg04NDU/ogLhCgp1ddQgwGDyVpexeu5jsr18vKd/xy2p3RclIY0xJsPOmAqPBSBsQHxU6+5Kj0o6585SssGDnRSlfBWXVnPH8T6WbCyv/FhqTcGv/uz6KjkrrFuxsqUOY8XhY9/INFQU/zPyipqz4zGDnRwVGb69bORFJrqzxDL3hhEwNRFSrkxgdxvUnZMaER0b9PuPM/4vSQEQFm7hcdJ3w10hPdeXJIpIQ7PyowGgw0vqdOKRzXGVUuBZ3q9ZpdK/21LhNh8TBv9FaTKpVCIlqR2yPoyqB0cHOiwqMBiOtX3JGfLiWiqhWKy4yFE91JRGJGc0nVuogiUzrGg50CHY+VGA0GGn9QsJconecAbj+g7UMnbQk2Nk45HiMARHEpacTgLUvXc+SW4cGOxuHPFdouAt9Y7TN0B2lVCuTce93TY7//qbBpMftaWbms58LePrbbfycXUZ4iDAsK467TsmiR0rUgc6qOoT88uJ15H33PrE9htD/jmne4e7KcnK/m0Lh0lmUbV1JTWkREUmdaD9wNBmn/5nQ6Lg68ylaPpv87z+iZMNSyravAY+bYc9vQkL0cnQo072vVCvz1Hk9Ggwrr/Zw+4z19E6NrhOIvL04m5unr2dQRjvuOKkz5dUeXlm0k7NfWs4n1wwgKzHyYGZd/UrtWj2fvAXTcIU3PJ4qczex4Y07ie05lLQTLyMsNpnSTcvYMfM5CpZ8yuH3fEpIVDtv+rwFH5C3cDoxnfsSkdyJypyNB3FNVGulwYhSrcxvj0hpMOz9H3MxBsYN3DOu2u3hoVmb6ZMWzbQr+xMaYp/mnXdEMiOfXsqjX2zmP+MOO2j5Vr9Oxl3D+jfuJO348RQt/7rB+LD4VA6/dyYxnfr6DJ1Auy4DWffKTWTPeYuOo6/xjul83u10u+xxXKHhrH3penI1GFFoMKJ8lFW5mfT1Vj5emc/O3VVEhbnomhjFNcPTOat/MgBbiyp5du525m4oZmux7Wy2f4cYrh2Rwaie7evMb+zLK9hQUMHUy/txz6cbmL9xF1FhIVx0ZCq3jOpEYXkN9366kS9/KaTGA6f3SeThM7sSFRbSYB6TL+vLPZ9sYNGW3USGuhjTL4m7R2cRHcBbRt9tLOapb7bxw9YSqt0eeqdFc92ITE7tnehN4/YYnvl2O1N+zGFbcRXhIUJmQgQXDU5j4tDg14GbsjSXUJdw3uHJ3mGrc8opKq/hmmPSvYEIQEZ8BMOy4pi5qoCyKndA26g1cVeWsXX6JPIXf0xV4U5c4VFEpXUl/dRrSB5yfvqjdwAAIABJREFUFgCVeVvZ/vmzFK+aS2X+VgBiOvcn44xraT9gVJ35rXh8LBU5G+h321Q2vHUPu1bPJyQiitQRF9HpnFuoKS1k49v3UrjsS/DUkHjk6XS9+GFCwqMazKPvzZPZ8NY97F67CFdYJElDxpA17m5CIqKbXa/i1d+xbcZTlGz4AU9NNdGZvck84zoSB53qTWM8brZ/+gw586ZQVbANCQknIjmTtBEX0WHUxBbYuntvx6wXqS7OptN5tzUejMQmEhab2GB40lFnsu6VmyjfvqbO8PD2wf89qdZHgxHldceMDXy4PI9Lj0qjd1o0uyvdrNxZxuItJd5gZOm2EuasL+a0Pol0SohgV0UNU5flcembq3j70r4c3y2+zjwrqj2Mf20lI7oncNcpWXy2qoAnv9lGTHgI01fk0zM5iltHdWb+pl1MXppLSrsw7jwlq9483Fz42kpvXYjFW3bz6qJsthRV8vrFfZpcp49X5vOHKWsYnBnLDSMzCXUJ037K44q3V/P0b3tw7uG2pGHS11uZNHsr5w9M4ZpjYqms8bAmt5wFm3c1G4yUV7kpr/YEtI1jI0MIC9m7ip7biyuZu6GYUT3bk9Iu3Du8ssYuMyqs4fyiw0OoqDGsyiljcGbsXi0v2Da8cQd5Cz4kbeSlRGf2xl2+m7KtKylZt9gbjJRsXErxz3NIHHQaEcmdqCnbRd78qax68lL63vg28X2PrzNPT1UFK58YT0K/EWSNu4uCJZ+xbcaThETEkL9oOlHpPel83q3sWj2f3LmTCYtLIWvsnXXm4a6sYOUTFxJ32DCyxt7F7nWLyf7qVSrzttDn+tebXKf87z9mzXN/ILbbYDLH3ICEhJK3YBqrn76CHlc/TcqwcwHYOn0SWz+aRMqx5xM7+ho81ZWUb1/DrjULmg1G3JXleKrKA9rGIVGxuEKbf0mvsnAHW6b/g6yxdxLWrmHA0ZSq4p0AhMYm7dV06tCkwYjymrW6gAmDU3ng9K5+05zUM4Ez+9U9uVwxNJ1Tn13Gf77d1iAYKSqv4YYTMrnqmHQAJhyZytBJS3jki81cPSyde0/rAsBlR3dgU8Ey3lyc3SAYKSp3M2FwGneNtsMnHt2B5Jgwnv9uB1/+UtigRKZWeZWb2z5az+heibx4YS/v8IlHd+DsF5fz0MxNnN0/GZdLmLm6gFE9E5h0bsP6Gs15Zu52/vH11oDSTpnYl+Fd45tP6OP9H/Pw1HtEA9A1KRKXwPxNu7hmeEfv8MoaD4u37AZg5662159dwdJZpI6YQNcJD/hNkzDgJJKOqtu4ZvrJV7Ds/lPZ9tl/GgQjNaVFZI65gfRTrgIg9fgJLLl1KJunPkL6KVfT5YJ7Aehw4mUsy91E9uw3GwYjZUWkjZhA1ri7bNpREwmLS2bHzOcp/OnLBiUy3ukqy1n/+m0kDhxNrz+96B3eYdRElj98NpumPETy0WcjLhcFS2eSMGAUPa6YFODW+v/27jQwqups4Ph/1sySZLLMZF8hgbDvSxAFxSJWZRMVrKKItta2rq3Yt6611gWlitZia1WsVUREQJGtgIAGEdkhBEggIXsymeyZyazvh0mGDNkmmDAs5/eJuXPuvWcWcp859znnOaNo/dsUrFnkU9v+f/gMXdq4TtvlfvIMqogkIifO7XJ/Cr5aDBIJ+tHTuryvcPkRwYjgEaySs6+wjsKqRmJD2i4K3HLxNYvNSYPNAS5ITwrmyyPGVu2lErhjZKTnsUImZWhsIBuyKrlzVKRX25EJQRwoqqfKbCdE7f3VbA5mmv1qXAz/3FnMpmPtByPbT1ZT2WBn1hADpnqb13OT+oTw6tYCThjN9I3QEKySc7zczInyBlINnQ+5tzRriIFRCb6NPvSP0nbp2AArDpQTopYzua/36wzTKJg+SM/Kg0Ze3nyaWUMMmG1O/vZNPsam1+vriM2FRK4Jpu7kPhorCgkIb3vtElnAmVsoTpsFR2MDuCC4bzrGH75svYNESuTEOzwPpXIFgclDqdy/gciJd3o1DUoZSX3uAez1Vci13gt4NgczzWIm/8odjOzf1G4wUp25HXtdJYb0WdhqTV7PhQyeRMHqVzEXn0AT2xe5Jhhz0XEaik6giUlt83jtMYybRVDqKJ/aeud3tK3q8DZMe79mwIKVXZ62XbrtI4w7Pyd68i99OpcgiGBE8Hj6ukQeXJnNmNf3khahYUJvHVMH6hkSeyYT3mp38sb2AlYcMFJQ1ei1f1uroei1ClRn3UYIVrm/drE674BH17T97GAkMEBGZJDSq21UsJLAABn5ld59aCnH6B6ynr/sWLttjPU2+gILJsUz75NjTHzrAL3CVVzZS8cNA8K5wodRjMQwVY/NWtlXUEu20cxdoyLbLI740o29cDhdvLmjkMXbCwEYFhfIr6+IYfH2QgIDLq58EYDEW58m+90H2btgDJrYNHQDJqAfPZXApCGeNk67lYKv3sCYscKTM+LRxhdREaxHqvD+jJqnnJ69WJtc4/7Mzw5GZKpAlCHeAbQyNAqZKpBGY367r8dckgPAsb/Pb7eNrdYI9CV+xgKOvTWPA09NRBXZC13/KwkfeQO6tCva3beZypCIypDYaTtfOG2NnPr4T+jHzCA4dXSX9jXtXc/Jj/6P0CHXkjjrT93SH+HSJ4IRwePn/cMZnRDMpmMmdpysZtm+ct7ZWcxjE+N4ZGI8AM+sz+U/P5Yyd2QkoxODCVHLkUpg+b5yvjjUxsiItP312mTtrOXWXcUbmw/z4o3JJLUTLPSPdI+CjEoIJuOhYWw+XsmOk9VsyDKxdHcps4cZeG16x7du6hsd1FsdPvUpRC3vUsXlz/aXA3DrsIg2n9cGyHj7lj48O8XKKZOFULWcPhEa/ropD4Be4Rff1N7wET8nOHU0pgObqM7cQfm3yyje+A5xUx8jfuojgPv2Qem2/xA5cS7BqaPdQYNUSvm3yzHu+qLVMTv6Zd9eZeFuKyLadJzkO19EFZHUZhNNnHv0IDh1FMNezKDy4GaqM3dg2reB0q1LMYyfTcq81zo8jcNSj6Ox3qcuybUhSOXKdp8v2bqUxopCUu55HUuLQMvltOO0W7EY85Grg1qNHFUd3sbxdx4gOHU0qfcvEWuHCD4T3xTBiz5QwZwRkcwZEYnZ5uDOj7L427YC7r8iBrVCxupDRmYNMfDXG70Loi3bW9ZjfaprdFBaa/UaHSmpsVLX6CA+tO3bSQBJTRdinVrOVb07r5cVrJIzY7CBGYMN2B0uHlmVzbJ95TwwPpbe+vYXEFuS0TM5I1a7k9WHK+hjUDO0xehUWyKClES0eH+25VQTq1OS0kG/L2SKYD2RV84h8so5OKxmsl6/k4Iv/0bMlPuRKdUYf1iNIX0Wve74q9d+ZTuW9VifHJY6rFWlXqMj1soSHJY6AvTx7e7XHIDINTpC+l/V6XnkmmAMY2dgGDsDl8NO9nuPUP7tMmKvfwB1VO929yvasKTbckYaKwpw2a0cfrF1voe1soR9C8YSPflXJN32tGd79bGdHPv7PWji+5H2uw+8ZiMJQmdEMCIA7qmt9VaH5xYKgFoho7dezc7cGuoaHagVMqRSCWf/YMw2mtmQZaInvbuz2JPACvBORhEA1/ZpO18EYELvEELUct7cXsjkPqGcXWzQWGdDH+ieUWBqsBGmOTO7QC6T0DfCPWpSbbF32LeeyhnZdLySKrOd34yP6bxxC8v3l3G4uJ7nr09CcpFVEnA5HTgs9V6rdsqUatRRvak5thOHuQ6ZUt000uH9RTSXZGPat6FH+1e86V1PAitA0cZ3AAgdcm27+4QMmIBcG0Lh2jcJHTLZK98FwFZjRBHsnq1mqzN5zVqRyORoYt3J1/aG6g771p05IxFXzkHXt3WwkvPh4ygCw0iY+QSqyDOJ7rUn95L1xl2oIpLp9/BHXoucCYIvRDAiAO7RhxGv7eH6fmH0j9QQopZzuKSeT/aWckVysGdK6ZS0MD7dV4ZGKWVglJbTlRY+/LGUFIOGw8W+DRF3VYhaxqrDRkrrrAyPC2JPfi0rDxqZ0FvHpA6CkcAAGQun9uLXn51g4t8PcMsQAzE6JaW1VvYW1JFjNJPx8HAAJr61n9EJwQyJCcQQqCDHaOb9H0rorVcxKLrjAKKnckY+21+OTAozB7deBK3ZPzOK2FNQx4i4QLRKGd/n1bDqkJEpaaHcPfriW8/BYaljz2MjCBt+PZr4/si1IdSfPkzpjk8ITrsCpc79XoQNm0LZt58iVWrQJgzEYjxN6dYP0USnUH/6cI/0TaYJwfjDKqzVpQT1Gk5tzh6M369EN2ACoYMntb+fOpBedy3kxDu/5sBTEzGMuwVlWAzWqlLqTu7FXJLD8JcyANj/5ESCU0cTmDQERbABc0kOJVveRxXVG23CoA771505I9q4fmjjWk+bz132DHJtCGHDp3i2NRoLOPq3O3HZGzGMm0XVoS1e+yiCDYQMODMiVJ+fSeX+jQA0FBwFoGDtm0gkEmQaHdGT5nXLaxAuLiIYEQD3WhXzRkex42Q1m49X0mh3EqML4DfjY/nN+DMJfs9NSUIll7LuaAXL95XRW6/mpZt6kV1u7rFgRKWQsWyue9GzFzbloZRJuXNkJE9N7vwP78/7h7NqvpK3dhTywe4S6hsd6AMV9I/UsmBSgqfdfWNj2HTcxDs7i2iwOogMUjJ7WAQPTYjt8rog3aGi3sbWE1Vc1SuEqOD27+2nRWpYm2ni9W0FNNqdJIereXZKEnePjuowX+dCJVWqibpmHtVHd1B5cHNTNeAYYq//DbHX/8bTLmn2c0gVKir2rqPsu+Woo3rTa+5LmIuzey4YCVDR/7FlnPr4KfJWvIBUriRy4p0k3vJUp/uGj/g5yidWUfj1W5Rs/QCHpR5FsB5tfH8SZizwtIv52X2YDmyiaOM7OCwNKEMiiRg/m9gbH/JpXRB/sBhP42ioAiBv+fOtng/um+4djOQdIn/VQq82BatfBSAgPE4EI5cpSbclaQk9QiKR/PaOERELX57a++LLROwGzSuw7nlshL+7IrTD5nCS9Pxu0t9tf0bJxa55BdYRr+7xd1cEH536+Clryeb3/uhyuXxLpBH8StT8FgRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxIJrMIFbcW8Af7ugiAw4PEV/u6CIFzSxMiIIAiCIAh+JYIRQRAEQRD8SgQjgiBcVvJXv8bO+W1XA74YHXllFjvnx7JzfiyHX5zu7+74pCpzu6fPO+fHUrr9Y393SfAzkTMidNlrW/NZ9E0Bhc+l+7sr3WLW+0fYmVsDwKiEIFbNH+jnHp0fpyrMjF+83/P4wativRaCEy4e6ugUYm94EEWQ3mt71eFtVPz4JXWn9tNQdBycDsb+M8/nAnYNRScoWLOI+ryDWKvLkEikBBgSiRh/G5ET7/Qqtuew1FO0/h/U5R6g7tR+7HUmYm94kISZC1odVxObRsq9izEXn6Bw7Zs/7cULlwQRjAgCkKJX8+BVsei1vq9yaaq38ZdNeWw6VkmDzcmAKA2/vzrep6J8ZbVWXth0mgNFdZTUWLE7XcSHBDB1YDj3pccQGOBdRyf2mZ1tHmd8Lx2f3nWmzkhzoNie24dHsHCau9haRKCSxTNTMDXYeXZ9rg+vWLhQKYINGNJvbrXduOsLjD+sQZvQnwB9PI1luV06rtVUhL2+ivDR0wgIjcbldFCb/SO5y56h+uh3pP3uPU9bW52Jgi//hjI0Gm3CQKozt7d7XKUuAkP6zVRnZYhgRABEMCIIABgCFdw8pP0aMGez2JzcujST/KpGfpUeTbhWwbJ9Zdz5URYfz+3HFZ1U5q0028mvsjC5bygxugBkEgmHiutYvL2QTccqWXPvIOQy7+XcR8YHMXdUpNe2lpV6Aa7vF0ZSG3VyvjhoZGt2FVenngmUtAEybh5iIL/SIoKRS1TCzCfoddcrSOVKsv/9MOVdDEZCBk4gZOAEr21R19yNTKujdMsHmEuyUUelAO4AY8Sre1CGRmEx5rNvwdjuehnCZUAEI4JwDj76sZSjpQ18cHsaP+vrLtZ361AD17x9gGfW5fK/B4Z0uH/fCA0r7zn7dlAkvcLVPL8xj29PVTMxxXuEJSE0oNOAqX+Uts3KwIu+KSBUI++wyvGFxrRvA8feuoc+9y8hfNRNXs9Zyk+z74l0Yn/+WxJu/iNOu5XCtW9SdWgrlrJTOBrNqAwJRE74BVHX3ttp9eK9j48huG86KfNf99qev/o1CtYsIv3fhV7b6/MzKVizyF1JuNGMKjKZ6J/dS+SVc7rnxXcTZWjPFEtUhccDYG+o8WyTKgJ67HzCpU8EI5ewDVkm7vnkGEtu7cNNA8K9njtdaSH99X389spY/nhtAla7kzd3FLL1RBWnTBbMNgcJoSp+MSKSe8dGdfrHfMzf9pKeFMzrM1K8treXX5JZUs+ibwrYmVuD2eYgOUzFvWOjmTPC+5f/hWrNESMJoQGeQARArZQxe1gEr2zJ50R5A6kGTZePGxcSAEC1xd7m81a7E7vThUYpa/P5tuw+XUOuycK80VEo5RdPznrIoKuRaUIo37WqVTBi3PUFAPqxMwFwmOso2bqU8FE3oU93b6s+so3cZc9iq68iYfofuq1ftdm7yXxtDgGGRGKmPIBMpaXywP84+cHvsdcYib3hdx3u77Q14rD4VlRSptIiVQR0R7d/EkejGafVjLOxgbpT+yhc/zYKXSSaNir7CsK5EMHIJezqlBBC1DJWHSxvFYx8cdAIwMzB7oS3ukYHS3eXcNOAcM+2bTnVPLs+lyqzjT9c032JjbtP1zLnw0wSQwN44IoYtAEy/neskt+vOYmx3s7vrup4pkOj3Ul9o8Onc2kDZAR08wXY6XRxpLie69LCWj03LC4QgINF9T4FI82vxWJ3crS0gZc2n0alkDImIbhV23VHTaw6ZMTpgqhgJXeMiOB3V8a1up1zts/2lwNw6zDfb0NdCKRyJeEjb6A8YwX2hmrkmjO3voy7VqOJ748mti8Acq2OEQt3e124oyfdQ/Z7j1C88V/E3fiQV7LluXK5XOQsfRxNbBoDnvjCU0k36pq7Ofb2fRR89TqRE+9Erm0/b8i4axU57z/q0/l6z1tExPjbfnK/f6qi9W9TsOZMvTlt0hB63/UKMqXaj70SLiUiGLmEKeVSbugfzooD5VSb7ejUZz7u1YeN9I/S0DfCfcHUqeXsfnSE14X7nrHRPPJFNv/aWcxDV8V1y69ql8vF42tySIvQ8MX8AShk7mPePTqK+z49xuvbC7hzVCQh6va/mqsOGXl0VY5P51s0vTe3DYv4yf1uqcpsx2J3ERnU+uIW1bStpMbq07HOfi299Sren9OXqGDvYw+LC+SmAeEkh6kwNdhZfdjIq1sLOFrawD9v69vu8S02J18eqSAtQs3gmECf+nQh0Y+ZTtn2/1Kx52vPLZD6/EzMRcdIuOVJTzuJVIZE6h4tcjnsOCx1uJxOdP3GU/7dcszF2Wjj+7d5jq5oKMjEXHScpDl/xmGupWVIHDr4Wkx7vqY2+0dCh1zb7jFCBk6k32Of+HQ+TUz7n+35ZBg3i6DUUdjrKqnO+o6GgiyvWzSC8FOJYOQSN32Qnv/uKePrzArPLZDMknqOlZl58mdnRjtkUgkyqfsXtt3hos7qwOl0Mb6XjuX7y8k2mtvMReiqzNIGjpeb+fP1SdRaHNDiz/m1fUL5OtPEj/m1HeY2TEwJ4ZO5vg0PNwdb3clsdwK0GZw1B3OWpjadaX4tdY0O9uTXkpFbQ42l9ajPV/cN8no8e3gEv/v8BCsPGsk4Vc24dhJmN2SZqLE4eOiq7g3IzpfgPmNRhkZj/P4LTzBi3LUKJBL0o6d5tS3f+TlFG96hoTALnN7voaObLpzmEnfgmPvJ0+R+8nSbbWy1FR0eQxkSiTLk4rgd2UxlSERlSARAP3oaRRv/ydFFtzP42U1oYlL93DvhUiCCkUvc2MRgooOVfHHI6AlGVh0yIpHAtEHeaxJ8fqCcdzKKyCprwHHWtbStC+S5yDGaAXh6XS5Pr8tts01Fva3DY0QGKdsclehuNRY7FtuZN0ImlRCuVaBuCjisbQQcjU3bVD6OIrV8LT/vH866oxXcu+w4n8zt1+kU4QfGx7DyoJFtOe0HIysOlCOTnrkdd7GRSKWEj55G8cZ/Yq0qRaGLoOKH1QT3GUtAWIynnXH3GrLffZCQQdcQPekeFDoDErmC+rzDnF7xAi5XJ8FhOzlRrrOCGlwuAOKmPkpQ6qg299FE9+nwVA6rGYe5tuP+NJGpgy7IWyH6MTPI+/Q5jN9/TsLMJ/zdHeESIIKRS5xUKmHawHD+ubOY0lorEYEKVh+uYGxiMDG6M/fX1xw28uDKbK5JDeGeMdEYAhUoZBIOF9fzwqbTOJv+CLenvawFh9N7v+ZHj06MY1RCUJv79Okk18JsczSNqnQuSCVDrfA92bOlp9flevItwJ1cuuuR4YSo5ajkEkprW9+KKWnaFhl8bsHSdX3DUCukLN9X3mkwEtf0+VU2tB28ldVa2ZZTxYTeIa2mAF9MDGNmULxhCcYfVhOYPIzGigJib3jQq41x12oC9AmkPbgUifRMINhYlufTOeQaHfaG6lbbG8tPez1WRSQDIFWoCOl/VVdfCgAVP6y56HJGzuayNQJgr2/9ngnCuRDByGVgxmADSzKKWX3IyLC4QAqqGnnwSu8k0dWH3LNDlt6ehlR6JrTIMzX6dA6dWk61ufUMkNOV3vsnN62BoZJLfVocrC1rDlecl5yRB66I8RpRUCvcFzmpVEL/KC37Cuta7bOvwL1tcPS53dJyuFzYna52Z9O0lGuyABDezkJtKw8acTjhlqEXV+Lq2bSJA1FHp2LctQpLeR6SpsTWls4EIGeCX4fVTPHm9/CFKjKZ6qwMHFazZyTCYszHtG+9d18SBqKK6k3x/94l4srZKIK8E8NtNUYUwR2PQl2oOSPWqlIc5loCDImexNz2Xk/Jtv8AEJg89Lz1T7i0iWDkMjAwWkuqQc2qQ0byKi0oZRJuOGt2TXMA0nIcw2xz8N6uYp/OkRymIiO3GrPN4RmJyK+0sD7L5N2XKC299Sre/b6Y2cMjWl1IjXU29IEdr4J6vnJG+kRo6NPO/lMH6nl2fS6bjlV6pvearQ6W7SsjLULttZ+p3oapwU6sTom6aUpue69z2d5ybA4XQ2PPJJtW1NtavU8Op8uz0uqkdvJrPttfRoha1uasn4uNfsx08lctxFKSQ8iga1rNVgkbNgXTnq85+sZcwodNwV5fRdl3y5GpfAsKIyfOpWL3lxx9bTb6MTOw1Zoo/WYp6uhU6vMOetpJpFJS5i0ic9Ec9j85kYgr56AyJGKrq6Dh9BFM+zcy9p1THZ7rfOaM1OdnUrl/IwANBUcBKFj7JhKJBJlGR/SkeZ62pz9/kfKMzxj28veo9O51RHI+XIC9rpLgtHQCQmOwm2uoPrKN6swdBKWM9Eytbla8+X0cDdWe5Nba7N0UfOleuyV06ORuSSIWLk0iGLlMTB+kZ+GWfHIqLFyTGtJqtsqUtDC+zjQx979HmZIWTpXZzvL9ZWh9XM9i7qhIvjxSweylR5kxWI+p3sbS3aWkGtQcLDqzpoJUKmHR9BTmfJjJxLf2M2d4BImhKioabBwpaWBjlolTT3e8cuP5yhnpyB0jI/hkbym//fwEv0qPRh+oYNneMgqrG/noDu9A6f0fSlj0TQGf3d3fk9uxeEcB3+fWcHVKCPGhKhqsDnafrmVdlole4Srmj4327P/BDyWszazgZ33DiNMFUGOx81VmBQeL6rl9eAQj41vf7jpUVEdWmZk7R0Z2+9Rmf9CPnUH+qoU4LHUYxrQuBmdIvxl7QzUlm9/j1CfPoAyJwHDFbQSljODoa50vRKZLG0fyHX+laP0/yP30OVQRySTf/hcaio57BSMAQSkjGfzUOgq+eoPyjM+w11UiDwpHE51C0m3PdNtr7g71eYfIX7XQa1vB6lcBCAiP8wpG2qIfPZXy7z6jbMcy7LUVSORK1FG9SZj1J6KvvcczgtKseMMSGivOlCOoObaTmmPuUgbK0GgRjAjtEsHIZWJGUzBS1+hg+uDWw/Y3DzFQbbbz3g8lPLP+FBGBSm4bZmBEfBBzPjza6fHHJev46w3J/OO7Ip5bn0tyuIq/3JDM8bIGr2AE3Muar/vlYN7YXsBn+8upNNsJ18hJMWh4ZkpSd73kHqVWyFh+1wD+simPf+8qwWJz0D9Ky39+0XniKbhnDhVWNbLykJGKehsSiYSk0AB+Oz6WB8bHEKw6819zVEIQ+wrqWLG/DFODHYVMQp8IDQun9mLO8LZvQV2sa4u0R2VIbLUK6tmiJ91D9KR7Wm0/e7/4aY8RP+2xVu2irr6LqKvv8toW3tT+bOroFFLvu3BqqrgcNmy1JiQyOXLNmTVqIsbf5nPOScr811utQKsfPa3VrKWODH9ll0/tnHabe2q0j4m8wqVP4uokMVHwL4lE8ts7RkQsfHlq79YFR4RuMev9I9gcLt6f0xe5TOIVCFzKnE4XVWY7RTVWrlty8Jyr9tocTpKe3036u/k90EuhM0demeUZfQhKGcXAP67yc486V5W53WvEqtddC4m86vZuPcepj5+ylmx+748ul2tR560Ff7s8/uoKQid+zK9l0Cs/MiohiFXzz64Zc2nKq7QwfvF+f3dD+IkSb30ae0MVgNcqtRcybcIgryTezqZDC5c+EYwIl72nr0ukqmkmkO4yGRUB95LyLROBE0LF4NvFKDBpsL+70GWKwNBznhotXJoun7+8gtCOi3GZ9O6gVsjOeXq1IAhCd7r40+wFQRAEQbioiWBEEARBEAS/EsGIIAiCIAh+JXJGLlKxz+z0qd0tQw28PiOlh3vjVtlg471dJaQnBbdbuO1CtGxvGbWNDu5Lj+4+Asv3AAAS1ElEQVS8cQ/4dF8Zj67KQSqB/z0wpNWqsa9tzWfRNwV8++BQksMvvKJpHdk5P7bzRoBh3C2t1rjoKba6Sko2v0dw33R0aePOyzm7Q9mOZTgstUT/7L7zel6LMZ99CzpeiLBZ3NRHPeuy1J8+TN5nL1CbsweJVIau3xUk3vqUp/pvVxSsXUzdyf3U5R7AVlWCfuzMC2qdF+GnE8HIRWrxTO8AY91RE+uOmnhqciKGFsuMJ4advxkSVWY7i74p4NGJcRdXMLKvjOIaq9+CkWZOF7y6JZ9/zT5/9Uh6Wsq9i70em/auw7R3HYm3PoUi+MyCbOdygTpX9voqCtYsIm7qoxdXMPLtMqyVxec9GFEEhbf6HEu3/ZfaE7vcAaTkzAC7Js49O8tcnM2Rl29GEawnYeYCnLZGijf9i8MvzmDwMxtQ6rq2GF/+ypdRBOsJTB5KZVXJT39RwgVHBCMXqZuHeP9nzjVZWHfUxHVpoR3+enY43YXYLoUlwi81g6K1rMsycaiojkGXyAwfQ/rNXo8tZbmY9q4jdOh1qCOT293P5XTgctiRKgLabSOcH7IATavPsTpzB7UndqEfMwOJrPVlJO/zFwEY8PjnKEOjAAgddA0HnptM4do3Sb79z13qw7CXdqIyuBfk83W0Tbi4iGDkEpZxqppbPsjklZt6Udvo4MPdJRRUN7JsrrtGSoPVwRvbC/nysJGiGiuhajmT08J4YlI8oZozoysbs0ws21fGwaJ6Kupt6NRyJvQO4Y/XJhAVrPQ6F8Cibwo8RdyabxM134r46I40fsyvZdm+cqrNdkYnBLFwam9iQwL4YFcJ//q+mOKaRvpGaHj5pl6tpt362udZ7x/hlMnCqnsG8OTXuezMrUYhk3DjAD3PTUlC1VSBd8zf9lJQ5a4s3PLWV+Fz6T3wiXTs11fE8Ic1OSzcms+Hv+i8EGB2uZmXN58mI7cai81JikHDfenRzDorUB3zt71EByt54YZknlmXy77COoICZMwZHsEfro73qtIMsDO3msXbC9lXUIfN4SQtUsODV8X1WMG96qwMMhfeQq+5r+Aw11LyzYc0VhTQ/7Fl6NLG4WhsoPCrNzDu/hKrqQh5YChhQycTP/MJFIFnigSa9m+kbMcy6vMOYqutQK7RETJwAgkz/+i5IDafC6BgzSIK1rgX52y+TVT27afkvP8oaQ9/RG3Oj5R/uwx7fTVBqaPpfddCAsJjKdnyAcWb/kWjqRhNbF96zX251Vofvvb5yCuzsJSdYsATq8j9+Emqs3YikSnQj7qRpDnPIVW4Rzb3Pj7GU/Ol5cW4syXy/cFhqafq0Bb0Y2Z43ncATVwaurRxVOxe3eVgpDkQES5dIhi5DPx7VzE2h4tfjIhEpZASEaSk0e7k1qWZHC9rYM7wSFINak5WmFn6Qwl78mv56r5Bngv2sn1luFxw16gowjRyso1mPt5bxt6CWjb9eggqhZRUg5qnJify/MY8ru8XxvX93Beus28TvbQ5nwC5hAeuiKG01so7GcXM+ySLGYP0rDhQztxRkZhtTt7+tpD5y46R8dAwFDJ3P7rSZwCLzcnsDzNJT9Lx5ORE9hbU8dGPpYRr5DzetOz5c1OSeGFTHlVmO8/6WBfH5nBSa3H41FatkHoq9XYmVCNn/thoFm8vZE9+LSPaKIDX7FSFmanvHsIF3D06inCNgtWHjTy0MhtjnY37r4jxal9Wa+WO/xxl6kA9UweGs/VEFYu3F5IQEsCcEWcqyK7NrODXnx1neFwQj0yMQy6VsOqQkXs+OcZbN6cwo426Rt2l+H//xuWwEXnVL5AqVShDInDaGsl89VYaCo8TedUc1NGpmEtOUrJ1KbU5exj05FeeC3bZjmWAi6ir70IeGIa5JJuy7R9Tm7OXIc9tQqpQoY5OJfHWp8hb/jxhw68nbPj1QOvbRPkrX0KiCCBmygNYq0op3vgOWW/OQz92BuUZK4icOBen1Uzhurc59vf5DHsxw1M0rit9BnBaLWS+Nhtd33QSb32Supy9lG77CHlQOAkzHgcgafZz5K14AXt9FUmzn/Xp/Wyu/+ILqVKNLKB78pEaCjJx2a0E9RrW6rnA5GFUZ+6g0VREQFhMG3sLlysRjFwGjPU2dvxuGLoWlXrf/raQw8X1rJ4/kCEtytWnJ+m4++Mslu8vY+4o96+av9+c2uqCOjktlFnvZ7I+y8T0QXoMgUquSwvl+Y159IvUtLqN1EwmgZXzBiKXuX+NO5wulmQUU20pZetvhqBpOk+ISs6fvj7F1hNVTG76Rf7v74t97jO4c1genhDnyQWZOwpqLHY+2lPqCUam9AtjSUYRVoer3T6fbffpWs8oUGcenRjHY1fH+9QW4P5xMSz9oYRXtuTz6V3tVzh9aXM+NY0O1t43yPNezB0Vycz3jrBwy2luHWogTHtmpCivspF/z+7LlKYgce6oKH72jwN8tKfUE4yYrQ4WfHmSyX3DeLdF3srdo6OY9u5h/rIxj2kD9a1GUrqLrdbIsL/u8FrSvHDd29TnHWbg/60mMGmIZ7suLZ2sxXdT9t1yoibOBSD1l39vdUENHTqZzFdmYdq7Hv2Y6Sh1BkKHXkfe8ufRxPVrdfvBQypj4IKVnlsQLqeD4g1LKG2oZsjzW5EFuJOM5doQTv33T1Qd3krY0MmAO6jytc/gzmGJu+nhM7kgE+dib6ihdNtHnmAkbPgUijYswWW3tt/ns9Rm7/aMAnWmZeLpT2WtKgVAERLZ6jll0zZrVYkIRgQvIhi5DEwfpPcKRABWHTIyOEZLfEgApnqbZ/uIuEA0Sinfnqz2XNibAxGXy0VdowObw0VfgwadSsb+wjqmD9L73JfbR0R6AhGAUQnBLMkoZsYgvScQARiZ4B4VyDVZzqnPAFIJ3DHSu6rt2MRgNmRVUtfoIDDAtxGLs/WP0noto96RxC4usa5Ty/nluBgWbslnZ2416UmtE4EdThdbTlRyRbLOKyhTyqXcmx7Nb1acYFtOldcoRmSQwhOINEtPDObzg0bP4+0nq6lssDNriMHr/QWY1CeEV7cWcMJobjXbp7vox0xvVVvFuGsV2qTBBITHY6s1ebYH9hqBNEBDdea3ngt7cyDicrlwWOpw2W1oYvoi0+ioO7Uf/ZjpPvcl8qrbvXIhglNGUbxhCfqxMzyBCEBQykjAnQtzLn0GQCIlYsIdXucP7juWyv0bcJjrkKnPLX9IG9/fq/5LR7ozgdhpdf+flcpb5/s0jwg1txGEZiIYuQwktXFBzKmwYLE5GfTKj23uU9HiYpRjNPPi/06zPaeKeqvTq12Nxd6lvsSFeP+BCla5A4JYnfd2XdP25poxXe0zgF6rQK3wDjiag7Iqs/2cg5EQtbxHl1G/d2w0//6+mIVb8ll5T+tgpKLeRoPVSaq+9bB6qsG97XRlo9f2s99fcL8XXu+v0QzA/GXH2u2bsd5GT831UUUktdpmKc3BabXw48OD2tzHVlvh+be5JIfTn79I1ZHtOBvrvdrZG2q61JeA8DivxzJNsHt7WOxZ292fj72+6pz6DKAI1iNTen+W8hbHPddgRK4N8Uv9F6myKeCwN7Z6zmmzeLURhGYiGLkMtMyj8HC5GBEfyO/buYXQXDCu1mLn5vePoJBJeHRiPMnhKtRNx3tgxQmcrq71pb0Rflk7k3u8Du9jnz3n6uB2gsvVxY63YLU7vS7iHdEqZWi7GPQEBsh44IoY/rLpNN9kV3W+gw9kPtxaaX5LXrwxmaR2poT3j+yZURHAK4+iZZ8Ce48gfvrv29zHc9E213Lk5ZuRyBXET30UVWQyUqUaJHDinQfA5Wxz//Y7084XUtrOZ9ni++Rrn5tJ2jsX4OLcv6dOu9UrSOqILECLTKU953O11HwrxtZ0u6al5ls4yjZu4QiXNxGMXKaSwlRUmx2d/sLPyK2hvM7GZ3f391o7xGxzUH3WBVki6Zlcgma+9rmrutrrH/N7Lmek2d1jovjnzmJe3ZLP1anerzdcq0CjlHKiaSSjpexy97aE0K5PiU0KdwcDuh4e+ekKVUQSjobqTn/h12RlYKspp/8fPvNaO8RhNWOvr/Zq29PfU1/73GVd7Hdt9o9+yRnRxPZDIlNQe3IfkRPv9Hqu7tQ+FMF6lKEiX0TwJoKRy9S0QXpe3pzPigPlraaCOpwuaix2QjUKpE1/AM/+ffaPb4tajYpole5feGcHKee7z12lVcqosdhxuVw+Xah6MmekmVoh47dXxvL0ulzsZ73RMqmEa1JDWZtZ4bUmic3h5N3viwmQS5hwDsHEhN4hhKjlvLm9kMl9QlslLRvrbOgDu/7+/hT6MdPIX/ky5RkrMIyb5fWcy+nA3lCDIjC0xeiC93tVtO4frUZFpAHuEYCzg5Tz3eeukgVosTfU+Pw99VfOiEwdSMigazDtWYt15gLPKEhDQRbVWRlETZzb4wGhcPERwchl6pfpMWw+XsXDX2Sz5XglI+ODcAF5Jgtrj5p4/Jp4bhsWwaiEIMK1ch5amc280VFoA2R8d6qaA4V1hGq8vz6GQCWxOiWrD1fQK1xNqEZOfGgAw+Pan6LaE33uqiGxWrZmV/HMulyGxQUilUiY1kFSbk/njDS7Y2QkSzKKOFRc3+q5BZPi2ZFTxW1LM91Te7Xuqb17C+p4anKi10waXwUGyFg4tRe//uwEE/9+gFuGGIjRKSmttbK3oI4co5mMh4d3x0vzWczkX1J1cDPZ7z1M5aEt7oRRlwtLWR6mvWuJn/44EeNvIyhlFPKgcLLffYioa+YhU2mpzvqOulMHkJ914VfqDCjDYqnYvRp1VC/k2lACDPEE9eqe1+Zrn7tKmzyEqsNbyf3kGQJ7DUMikaIfM63d9v7KGQFIuPkJDv3lRo68PJOoSffgtFsp3vgvFEHhxN7wuy4frzxjhWedFYCGwiwKvnSXDwjuM5bgvr4tVy9cuEQwcplSKaR8eld/3skoYvVhI+uzTATIpcTqApgxSM/4plsyIWo5/72jH3/emMfiHYXIJDAuWceKeQPavFWxeGYqz23I5c8bc2m0u7hlqKHbghFf+9xV94+LIddk4fOD5bz3QwkuFx0GI+dLgFzKQ1fFseDLk62e6xWuZvW9A3l5cz4f/FCCxe4kRa/m9Rkp3DL03NcC+Xn/cFbNV/LWjkI+2F1CfaMDfaCC/pFaFkw6/wtPSRUq+v/+U4o2vINx12pMe9cjVQQQEB6LfswMdP3GA+4Lb79H/kve8j9TuHYxSGXo0sYx4PEVbd6qSL13MbmfPkfup3/GZW/EMO6WbgtGfO1zV8Vcdz+WslzKd35OyZb3wOXqMBjxJ01MHwYs+JzTK17g9MqXkEhlBKddQeItT55TvkjZt8uoOXZmUcKG/Ewa8t1/f+KmPiqCkUuA5Kck8gk9TyKR/PaOERELX57aW6SfCxckm8NJ0vO7SX83399dEQSPUx8/ZS3Z/N4fXS7XIn/3ReicKFAiCIIgCIJfids0giAIwnlnq6vE5bB12EauDUEqV56nHgn+JIKRC5+t0SHupQkXLgmAy+XzLA9BADj+9n1eeSBtOXuqdle4HHYX4FsRKcHvRDBy4SvNNVlsQPdUsRKEblbRYEciV2CrMaLU9VwhPeHSknjr09gbOl6UTRvffn2mzjSaCq1ARacNhQuCCEYufJsPFNYFVJvtrerLCMKFYN1Rk0uuUJRVHtgUGXnV7f7ujnCRCEwa3GPHdtos1Bz9Tgn8r8dOInQrkcB6gXO5XLUqhXT9n74+ZXF2de11Qehh+ZUWXtuab7aZ65cUfvVGfcvCcILgL4Vfv22XyBUHXC5Xib/7IvhGTO29CEgkEq1WKf0m1aDpN3dUpHZUQhCBSllXV4cWhG5hd7ooq7WxIcvk+OCHkkazzfmE1eF6S6pUL1QEhd8fN/VRbejQnyHXhoocEuG8cTns1ObsoWzHJ40Ve9YanY0No10uV5G/+yX4RgQjFwmJRKICputUsnkOJ0PtTpe6y0VVBKEbSMCpkEqqbE7XGrPN+R+Xy7UbQOKOPGbKNMH3ORsbrna5XDKJRNrFCnWCcC5cEpfTIZWpAvOcVvMHLod9icvlKvN3rwTfiWBEEIQe0RRAd61ksSCcO7PL1dXyzMKFQgQjgiAIgiD4lUhgFQRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxLBiCAIgiAIfiWCEUEQBEEQ/EoEI4IgCIIg+JUIRgRBEARB8CsRjAiCIAiC4FciGBEEQRAEwa9EMCIIgiAIgl+JYEQQBEEQBL8SwYggCIIgCH4lghFBEARBEPxKBCOCIAiCIPiVCEYEQRAEQfArEYwIgiAIguBXIhgRBEEQBMGvRDAiCIIgCIJfiWBEEARBEAS/EsGIIAiCIAh+JYIRQRAEQRD8SgQjgiAIgiD4lQhGBEEQBEHwKxGMCIIgCILgV/8PeqXm1WcBU08AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HInWzLf-84ta" + }, + "source": [ + "#### Plot decisions as function of covariates" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 265 + }, + "id": "0EdmyR-39cGt", + "outputId": "992dd9e8-abed-4f2b-a3cd-2d12e507ed05" + }, + "source": [ + "plt.scatter(X[:, 0], est.predict(X))\n", + "plt.show()" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQt0lEQVR4nO3df6zddX3H8eeLy2UWfxXXayZtXYlDsk5U9AYxJBvxxyjoKOrcYLrNzcg/YlwkNTAMbjijrpnORBaHzjgdypgiaxRT3WQxIeC4WH4IWFOZSi9uXIWyGaqU8t4f56Cnt/fec27vac/tp89HQnrP9/v5fs+7hT5z7jnfyzdVhSTp8HfUqAeQJA2HQZekRhh0SWqEQZekRhh0SWrE0aN64lWrVtW6detG9fSSdFi69dZbf1RVE3PtG1nQ161bx9TU1KieXpIOS0m+P98+33KRpEYYdElqhEGXpEYYdElqhEGXpEb0vcolySeAVwMPVNXz5tgf4MPA2cAjwJuq6pvDHlTL07qLvzTqEXQEefIxY7z3NSdz7imredd1d/KZb/yAx2vf/eNjR/Hw7j08fcU4Cex6ZA/Hr1zBpjNP4txTVnPdtmk2b93O/bt2s/LYcapYcP1ces/Rb+0wjhtU+v3fFpP8JvAT4FPzBP1s4G10gv4S4MNV9ZJ+Tzw5OVletnh4M+YahbGjwmknHMeN331wUcetGB/jdS9ezedvnWb3nr0DrX/fa0/eL7jXbZvmkmvv3Occ860dxnGzJbm1qibn2tf3LZeq+jqw0J/cRjqxr6q6GViZ5FkDTydJi7D38Vp0zAF279nLZ79x30Axf2L95q3b99u+eev2/c4x39phHLcYw3gPfTVwX8/jnd1t+0lyQZKpJFMzMzNDeGpJGtzeRd7/4f5duwfattD2pR63GIf0Q9GqurKqJqtqcmJizp9claSDZixZ1PrjV64YaNtC25d63GIMI+jTwNqex2u62yRp6MaOCqc/5xmLPm7F+Bjnv2QtK8bHBl6/6cyT9tu+6cyT9jvHfGuHcdxiDCPoW4A/SsdpwMNV9cMhnFfL3Pfe/6pRj6AjzJOPGeNvXv8CrnrLS3njac/mqOy/f+WKcQKsXDHOccd2vl69cgXve+3J/NW5J/O+157M6pUrCHDcseMLrp/rw8pzT1m9zzkWWjuM4xZjkKtcPgucAawC/gd4NzAOUFUf7V62+BFgA53LFv+kqvpevuJVLpK0eAtd5dL3OvSqOr/P/gLeeoCzSZKGxJ8UlaRGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGDBT0JBuSbE+yI8nFc+x/dpIbkmxLckeSs4c/qiRpIX2DnmQMuAI4C1gPnJ9k/axl7wKuqapTgPOAvxv2oJKkhQ3yCv1UYEdV3VtVjwJXAxtnrSngad2vnw7cP7wRJUmDGCToq4H7eh7v7G7r9RfAG5PsBK4H3jbXiZJckGQqydTMzMwBjCtJms+wPhQ9H/hkVa0BzgY+nWS/c1fVlVU1WVWTExMTQ3pqSRIMFvRpYG3P4zXdbb3eDFwDUFU3AU8CVg1jQEnSYAYJ+i3AiUlOSHIMnQ89t8xa8wPg5QBJfp1O0H1PRZIOob5Br6rHgAuBrcA9dK5muSvJ5UnO6S67CHhLktuBzwJvqqo6WENLkvZ39CCLqup6Oh929m67rOfru4HThzuaJGkx/ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRgwU9CQbkmxPsiPJxfOs+b0kdye5K8lnhjumJKmfo/stSDIGXAG8EtgJ3JJkS1Xd3bPmROAS4PSqeijJMw/WwJKkuQ3yCv1UYEdV3VtVjwJXAxtnrXkLcEVVPQRQVQ8Md0xJUj+DBH01cF/P453dbb2eCzw3yY1Jbk6yYa4TJbkgyVSSqZmZmQObWJI0p2F9KHo0cCJwBnA+8LEkK2cvqqorq2qyqiYnJiaG9NSSJBgs6NPA2p7Ha7rbeu0EtlTVnqr6L+A7dAIvSTpEBgn6LcCJSU5IcgxwHrBl1prr6Lw6J8kqOm/B3DvEOSVJffQNelU9BlwIbAXuAa6pqruSXJ7knO6yrcCPk9wN3ABsqqofH6yhJUn7S1WN5IknJydrampqJM8tSYerJLdW1eRc+/xJUUlqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqxEBBT7IhyfYkO5JcvMC61yWpJJPDG1GSNIi+QU8yBlwBnAWsB85Psn6OdU8F3g58Y9hDSpL6G+QV+qnAjqq6t6oeBa4GNs6x7j3AB4CfDnE+SdKABgn6auC+nsc7u9t+LsmLgLVV9aWFTpTkgiRTSaZmZmYWPawkaX5L/lA0yVHAB4GL+q2tqiurarKqJicmJpb61JKkHoMEfRpY2/N4TXfbE54KPA/4jyTfA04DtvjBqCQdWoME/RbgxCQnJDkGOA/Y8sTOqnq4qlZV1bqqWgfcDJxTVVMHZWJJ0pz6Br2qHgMuBLYC9wDXVNVdSS5Pcs7BHlCSNJijB1lUVdcD18/adtk8a89Y+liSpMXyJ0UlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaMVDQk2xIsj3JjiQXz7H/HUnuTnJHkn9P8qvDH1WStJC+QU8yBlwBnAWsB85Psn7Wsm3AZFU9H/gc8NfDHlSStLBBXqGfCuyoqnur6lHgamBj74KquqGqHuk+vBlYM9wxJUn9DBL01cB9PY93drfN583Al+fakeSCJFNJpmZmZgafUpLU11A/FE3yRmAS2DzX/qq6sqomq2pyYmJimE8tSUe8owdYMw2s7Xm8prttH0leAVwK/FZV/Ww440mSBjXIK/RbgBOTnJDkGOA8YEvvgiSnAH8PnFNVDwx/TElSP32DXlWPARcCW4F7gGuq6q4klyc5p7tsM/AU4F+S3JZkyzynkyQdJIO85UJVXQ9cP2vbZT1fv2LIc0mSFsmfFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhw9yKIkG4APA2PAx6vq/bP2/xLwKeDFwI+B36+q7w13VLhu2zSbt27n/l27WXnsOFXw8O49HL9yBZvOPIlzT1m96PMs5tgnjpvetZuxhL1VP/81QHXXHXfsOO/+nd/Y75zXbZvmkmvvYPeexxf5Oz88nP6cZ3DVW1466jGkI1bfV+hJxoArgLOA9cD5SdbPWvZm4KGq+jXgQ8AHhj1oJ4Z3Mr1rNwU89Mgedu3eQwHTu3ZzybV3ct226UWfZ9Bje48D2Fu1z6/Vs/ahR/aw6XO373PO67ZN845/vq3ZmAPc+N0HecPHbhr1GNIRa5C3XE4FdlTVvVX1KHA1sHHWmo3AP3a//hzw8iQZ3piweet2du/ZO+/+3Xv2snnr9gM6zyDH9nv+2fbsrX3OuXnrdtpN+S/c+N0HRz2CdMQaJOirgft6Hu/sbptzTVU9BjwM/PLsEyW5IMlUkqmZmZlFDXp/95XxwVrT79hBzr3QMQdyvCQtxiH9ULSqrqyqyaqanJiYWNSxx69ccVDX9Dt2kHMvdMyBHC9JizFI0KeBtT2P13S3zbkmydHA0+l8ODo0m848iRXjY/PuXzE+xqYzTzqg8wxybL/nn218LPucc9OZJx0RlxSd/pxnjHoE6Yg1yFUutwAnJjmBTrjPA/5g1potwB8DNwG/C3ytqooheuKKkaVe5TL7PIMe23vcgVzl8sTXXuUi6WDJIN1Ncjbwt3QuW/xEVb03yeXAVFVtSfIk4NPAKcCDwHlVde9C55ycnKypqakl/wYk6UiS5Naqmpxr30DXoVfV9cD1s7Zd1vP1T4HXL2VISdLSHAlv60rSEcGgS1IjDLokNcKgS1IjBrrK5aA8cTIDfH+e3auAHx3CcRZjOc8GzrdUzrc0znfgBp3tV6tqzp/MHFnQF5Jkar7LckZtOc8GzrdUzrc0znfghjGbb7lIUiMMuiQ1YrkG/cpRD7CA5TwbON9SOd/SON+BW/Jsy/I9dEnS4i3XV+iSpEUy6JLUiGUd9CQXJakkq0Y9S68k70lyR5LbknwlyfGjnqlXks1Jvt2d8QtJVo56pl5JXp/kriSPJ1k2l5Al2ZBke5IdSS4e9Ty9knwiyQNJvjXqWWZLsjbJDUnu7v57ffuoZ+qV5ElJ/jPJ7d35/nLUM80lyViSbUm+eKDnWLZBT7IW+G3gB6OeZQ6bq+r5VfVC4IvAZf0OOMS+Cjyvqp4PfAe4ZMTzzPYt4LXA10c9yBMGvBn6KH0S2DDqIebxGHBRVa0HTgPeusz+7H4GvKyqXgC8ENiQ5LQRzzSXtwP3LOUEyzbowIeAd/KL+0YsG1X1vz0Pn8wym7GqvtK9tyvAzXTuMrVsVNU9VdX/jt6H1iA3Qx+Zqvo6nXsNLDtV9cOq+mb36/+jE6X+d5s5RKrjJ92H491/ltXf2SRrgFcBH1/KeZZl0JNsBKar6vZRzzKfJO9Nch/wBpbfK/Refwp8edRDHAYGuRm6+kiyjs6Nbr4x2kn21X074zbgAeCrVbWs5qNzA6F3Aku6ndlAN7g4GJL8G/Arc+y6FPhzOm+3jMxC81XVv1bVpcClSS4BLgTevZzm6665lM63w1cdytm6z913PrUlyVOAzwN/Nuu72JGrqr3AC7ufJ30hyfOqall8HpHk1cADVXVrkjOWcq6RBb2qXjHX9iQnAycAtyeBztsF30xyalX996jnm8NVdO7mdEiD3m++JG8CXg28fNj3dx3EIv78lotBboaueSQZpxPzq6rq2lHPM5+q2pXkBjqfRyyLoAOnA+d0b/X5JOBpSf6pqt642BMtu7dcqurOqnpmVa2rqnV0vvV90aGMeT9JTux5uBH49qhmmUuSDXS+fTunqh4Z9TyHiZ/fDD3JMXRuhr5lxDMdFtJ55fUPwD1V9cFRzzNbkoknrvRKsgJ4Jcvo72xVXVJVa7q9Ow/42oHEHJZh0A8T70/yrSR30HlraFldpgV8BHgq8NXupZUfHfVAvZK8JslO4KXAl5JsHfVM3Q+RLwS20vlQ75qqumu0U/1Cks8CNwEnJdmZ5M2jnqnH6cAfAi/r/vd2W/fV5nLxLOCG7t/XW+i8h37AlwYuZ/7ovyQ1wlfoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktSI/wcFDUSp/D5FigAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "c90e1Sei80dv" + }, + "source": [ + "" + ], + "execution_count": null, + "outputs": [] + } + ] } \ No newline at end of file From cde95d675472c68a80deccbee5a628832738c651 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 18:05:55 -0700 Subject: [PATCH 02/33] update schedule --- README.md | 46 +++++++++++++++++++++++++++------------------- 1 file changed, 27 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index 7eb7a77..c47c04e 100755 --- a/README.md +++ b/README.md @@ -28,38 +28,45 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni ## **Outline** -| **Title** | **Duration** | Slides | Code | -|-----------|--------------|--------|------| -| **Introduction to Causal Inference** | 20 minutes | [Slides](https://drive.google.com/file/d/1O1oVU3nX7ThzCrUxlFK-OJsxF3Bz8Khl/view?usp=sharing) | | -| **Case Studies Part 1 by CausalML** | | | | -| Introduction to CausalML| 15 minutes | [Slides](https://docs.google.com/presentation/d/1D-cqqwKyWseVoNQEH-d0TS9wqK55l3bSn3PaLFxNEWI/edit?usp=sharing) | | -| Case Study #1: Causal Impact Analysis with Observational Data: CeViChE at Uber | 30 minutes | [Slides](https://docs.google.com/presentation/d/1FvRtis2fm4c2R7XmRKWMTtZaZjUObW1fGxpNmapmjKI/edit?usp=sharing)| [Notebook](https://colab.research.google.com/drive/1ySwg9BIYWS5oLQ5haorMyiIbyiCJ431J?usp=sharing) | -| Case Study #2: Targeting Optimization: Bidder at Uber | 30 minutes |[Slides](https://drive.google.com/file/d/1QJJUCo4LH5kGQP3kaJlG1RdhjhaJWp-5/view?usp=sharing) |[Notebook](https://colab.research.google.com/drive/1fnZEHIAcNxrvSxFrlO1hRTHO7sazXbo0?usp=sharing) | -| **Case Studies Part 2 by EconML** | | | | -| Introduction to EconML| 15 minutes | [Slides](https://drive.google.com/file/d/1gt4KNznrYbwdryi9jGcC0-hDCNg7mBNE/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1m2Ob7dc1JalEb6FIzSG1tx0qW491-YNc?usp=sharing) | -| Case Study #3: Customer Segmentation at TripAdvisor with Recommendation A/B Tests | 30 minutes | [Slides](https://drive.google.com/file/d/1yyIu_3epIVXbwzJj658Iv4vxHGjtPh8n/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1nUhkLVpanv-gm_oA7FbValhpDpEs02wR#scrollTo=qk4_f4tx5gZz) | -| Case Study #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxies | 30 minutes | [Slides](https://drive.google.com/file/d/1FEKXFHHATntHjsEymXnEw6GAiUGMm8sG/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1Ow7ArXRn1NJq47OLvchi26RRTdm94yv8?usp=sharing) | - -## **Keynote Speakers** - -### Yoda +| **Title** | **Duration** | Link | +|-----------|--------------|--------| +| Introduction | 10 minutes | | +| Invited Talk #1 by Yoda | 20 minutes | | +| Invited Talk #2 by Darth Vader | 20 minutes | | +| Paper #1 | 15 minutes | | +| Paper #2 | 15 minutes | | +| Paper #3 | 15 minutes | | +| Paper #4 | 15 minutes | | +| Break & Poster Session | 30 minutes | | +| Invited Talk #3 by Luke Skywalker | 20 minutes | | +| Invited Talk #4 by Princess Leia | 20 minutes | | +| Paper #1 | 15 minutes | | +| Paper #2 | 15 minutes | | +| Paper #3 | 15 minutes | | +| Paper #4 | 15 minutes | | + +## **Invited Speakers** + +### Yoda, Amazon We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. -### Darth Vader +### Darth Vader, University of Darth Star We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). -### Luke Skywalker +### Luke Skywalker, Stanford University As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We show the use of different causal estimation methodologies through propensity score matching and meta learners to estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. -### Princess Leia +### Princess Leia, Microsoft Research We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. ## **Accepted Papers** +To be updated + ## **Organizers** * Chu Wang, Amazon @@ -79,5 +86,6 @@ We will introduce the audience selection method with uplift modeling in online R ### EconML Team -* Keith Battocchi, Microsoft Research, EconML +* Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML +* Keith Battocchi, Microsoft Research, EconML From 04a772a122bfa5e73b447174caca24f232ff3d49 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 18:12:29 -0700 Subject: [PATCH 03/33] fix CI --- _config.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/_config.yml b/_config.yml index 19a39b6..1bf87f0 100644 --- a/_config.yml +++ b/_config.yml @@ -6,8 +6,8 @@ # https://learn-the-web.algonquindesign.ca/topics/markdown-yaml-cheat-sheet/#yaml # https://learnxinyminutes.com/docs/yaml/ -title: EconML/CausalML KDD 2021 Tutorial -description: EconML/CausalML KDD 2021 Tutorial +title: KDD 2023 Workshop - Causal Inference and Machine Learning in Practice +description: KDD 2023 Workshop - Causal Inference and Machine Learning in Practice github_username: causal-machine-learning # you can comment the below line out if your repo name is not different than your baseurl github_repo: "kdd2023-workshop" @@ -39,8 +39,8 @@ baseurl: "/kdd2023-workshop" # the subpath of your site, e.g. "/blog". # Github and twitter are optional: minima: social_links: - twitter: CausalMachine - github: causal-machine-learning + - { platform: github, user_url: "https://github.com/causal-machine-learning/" } + - { platform: twitter, user_url: "https://twitter.com/CausalMachine" } # Set this to true to get LaTeX math equation support use_math: true From c60cfa25cc9ddf1c0a610973c3c6d8b0c11cb0b8 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 18:39:57 -0700 Subject: [PATCH 04/33] revert jekyll version --- _config.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/_config.yml b/_config.yml index 1bf87f0..da2a486 100644 --- a/_config.yml +++ b/_config.yml @@ -100,7 +100,7 @@ plugins: paginate: 15 paginate_path: /page:num/ -remote_theme: jekyll/minima +remote_theme: jekyll/minima@6513ea8b9c1c4909b6aa79926d52a1f7d865c5e7 titles_from_headings: enabled: true From ea8b0e3c50ac1c20a9fe61d69749de2797ac7ba3 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 18:51:04 -0700 Subject: [PATCH 05/33] remove index.html --- index.html | 120 ----------------------------------------------------- 1 file changed, 120 deletions(-) delete mode 100644 index.html diff --git a/index.html b/index.html deleted file mode 100644 index f2a19d7..0000000 --- a/index.html +++ /dev/null @@ -1,120 +0,0 @@ ---- -layout: home -search_exclude: true -image: images/logo.png ---- - -# **Causal Inference and Machine Learning in Practice with EconML and CausalML**: Industrial Use Cases at Microsoft, TripAdvisor, Uber - -## **Schedule** - -### Time - -* 4:00 AM - 7:00 AM August 15, 2021 [SGT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) -* 4:00 PM - 7:00 PM August 14, 2021 [EDT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) -* 1:00 PM - 4:00 PM August 14, 2021 [PDT](https://www.timeanddate.com/worldclock/converter.html?iso=20210814T200000&p1=236&p2=tz_pt&p3=tz_et) - -### Live Zoom Link - -To be shared within the KDD 21 Virtual Platform during the conference. - -## **Abstract** - -In recent years, both academic research and industry applications see an increased effort in using machine learning methods to measure granular causal effects and design optimal policies based on these causal estimates. Open source packages such as [CausalML](https://github.com/uber/causalml) and [EconML](https://github.com/microsoft/econml) provide a unified interface for applied researchers and industry practitioners with a variety of machine learning methods for causal inference. The tutorial will cover the topics including conditional treatment effect estimators by meta-learners and tree-based algorithms, model validations and sensitivity analysis, optimization algorithms including policy leaner and cost optimization. In addition, the tutorial will demonstrate the production of these algorithms in industry use cases. - -## **Target Audience and Prerequisites for the Tutorial** - -Anyone who is interested in causal inference and machine learning, especially economists/statisticians/data scientists who want to learn how to combine causal inference and machine learning with real industry use cases incorporated in large scaled machine learning systems at companies such as Microsoft, TripAdvisor and Uber. -The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming language. - -## **Outline** - -| **Title** | **Duration** | Slides | Code | -|-----------|--------------|--------|------| -| **Introduction to Causal Inference** | 20 minutes | [Slides](https://drive.google.com/file/d/1O1oVU3nX7ThzCrUxlFK-OJsxF3Bz8Khl/view?usp=sharing) | | -| **Case Studies Part 1 by CausalML** | | | | -| Introduction to CausalML| 15 minutes | [Slides](https://drive.google.com/file/d/1ukFsX0QU0kdlQHv_VG_F8QJZtqZ86cwy/view) | | -| Case Study #1: Causal Impact Analysis with Observational Data: CeViChE at Uber | 30 minutes | [Slides](https://docs.google.com/presentation/d/1FvRtis2fm4c2R7XmRKWMTtZaZjUObW1fGxpNmapmjKI/edit?usp=sharing)| [Notebook](https://colab.research.google.com/drive/1ySwg9BIYWS5oLQ5haorMyiIbyiCJ431J?usp=sharing) | -| Case Study #2: Targeting Optimization: Bidder at Uber | 30 minutes |[Slides](https://drive.google.com/file/d/1QJJUCo4LH5kGQP3kaJlG1RdhjhaJWp-5/view?usp=sharing) |[Notebook](https://colab.research.google.com/drive/1fnZEHIAcNxrvSxFrlO1hRTHO7sazXbo0?usp=sharing) | -| **Case Studies Part 2 by EconML** | | | | -| Introduction to EconML| 15 minutes | [Slides](https://drive.google.com/file/d/1gt4KNznrYbwdryi9jGcC0-hDCNg7mBNE/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1m2Ob7dc1JalEb6FIzSG1tx0qW491-YNc?usp=sharing) | -| Case Study #3: Customer Segmentation at TripAdvisor with Recommendation A/B Tests | 30 minutes | [Slides](https://drive.google.com/file/d/1yyIu_3epIVXbwzJj658Iv4vxHGjtPh8n/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1nUhkLVpanv-gm_oA7FbValhpDpEs02wR#scrollTo=qk4_f4tx5gZz) | -| Case Study #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxies | 30 minutes | [Slides](https://drive.google.com/file/d/1FEKXFHHATntHjsEymXnEw6GAiUGMm8sG/view?usp=sharing) | [Notebook](https://colab.research.google.com/drive/1Ow7ArXRn1NJq47OLvchi26RRTdm94yv8?usp=sharing) | - -## **Presentation Abstracts** - -### Introduction to Causal Inference - -We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. - -### Introduction to CasualML - -We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). - -### Case #1: Causal Impact Analysis with Observational Data at Uber - -As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We show the use of different causal estimation methodologies through propensity score matching and meta learners to estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. - -### Case #2: Targeting Optimization: Bidder at Uber - -We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. - -### Introduction to EconML - -We will provide an overview of recent methodologies that combine machine learning with causal inference and the significant statistical power that machine learning brings to causal inference estimation methods. We will outline the structure and capabilities of the EconML package and describe some of the key causal machine learning methodologies that are implemented (e.g. double machine learning, causal forests, deepiv, doubly robust learning, dynamic double machine learning). We will also outline approaches to confidence interval construction (e.g. bootstrap, bootstrap-of-little-bags, debiased lasso), interpretability (shap values, tree interpreters) and policy learning (doubly robust policy learning). - -### Case #3: Customer Segmentation at TripAdvisor with Recommendation A/B Tests - -We examine the scenario in which we wish to learn heterogeneous treatment effects (CATE), but observational data is biased and direct experimental data (e.g. A/B test) is plagued by imperfect compliance. In this setup, TripAdvisor would like to know whether joining a membership program compels users to spend more time engaging with the website and purchasing more products. The usual approach, a direct A/B test, is infeasible: the website cannot force users to comply and become members, hence the imperfect compliance that can bias calculations. The solution is to use an alternative A/B test that was originally designed to measure whether an easier sign-up process would promote user membership. This A/B test plays the role of an instrument that nudges users to sign up for membership. We introduce EconML’s IntentToTreatDRIV estimator which can leverage this repurposed A/B test to both learn the effect of membership on user engagement and understand how these effects vary with customer features. We show how this novel methodology led to extracting key business insights and helped TripAdvisor understand and differentiate how customers engage with their platform. - -### Case #4: Long-Term Return-on-Investment at Microsoft via Short-Term Proxies - -In this case study, we talk about using observational data to measure the long term Return-on-Investment of some types of dollar value investments Microsoft gives to the enterprise customers. There are many challenges for this setting, for instance, we don't have enough period of data to identify a long term ROI, we should control the effect coming from the future investment and we are in a high dimensional data space. We then propose a surrogate based approach assuming the long-term effect is channeled through some short-term proxies and employ a dynamic adjustment to the surrogate model in order to get rid of the effect from future investment, finally apply double machine learning (DML) techniques to estimate the ROI. We apply this methodology to answer the questions like what is the average long-run ROI on each type of the investment? What types of customers have a higher ROI to a specific investment? And how different incentives impact the different solution areas. Finally we will showcase how you could use EconML to solve similar problems by only a few lines of code. - - -## **Tutors** - -### Presenters - -* Jing Pan, Uber, CausalML -* Yifeng Wu, Uber, CausalML -* Huigang Chen, Facebook, CausalML -* Totte Harinen, Toyota Research Institute, CausalML -* Paul Lo, Uber, CausalML -* Greg Lewis, Microsoft Research, EconML -* Vasilis Syrgkanis, Microsoft Research, EconML -* Miruna Oprescu, Microsoft Research, EconML -* Maggie Hei, Microsoft Research, EconML - -### Contributors - -* Jeong-Yoon Lee, Netflix Research, CausalML -* Zhenyu Zhao, Tencent, CausalML -* Keith Battocchi, Microsoft Research, EconML -* Eleanor Dillon, Microsoft Research, EconML - - -## **References** - -1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165. ([paper](https://www.pnas.org/content/pnas/116/10/4156.full.pdf)) -2. Chernozhukov, Victor, et al. "Double/debiased/neyman machine learning of treatment effects." American Economic Review 107.5 (2017): 261-65. ([paper](https://arxiv.org/pdf/1701.08687)) -3. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017) ([paper](https://arxiv.org/pdf/1712.04912)) -4. Tso, Fung Po, et al. "DragonNet: a robust mobile internet service system for long-distance trains." IEEE transactions on mobile computing 12.11 (2013): 2206-2218. ([paper](https://eprints.gla.ac.uk/56409/1/56409.pdf)) -5. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017) ([paper](https://arxiv.org/pdf/1705.08821)) -6. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242. ([paper](https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1319839)) -7. Oprescu, Miruna, et al. "EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects." ([repo](https://github.com/microsoft/EconML)) -8. Chen, Huigang, et al. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020) ([repo](https://github.com/uber/causalml)) -9. Yao, Liuyi, et al. "A survey on causal inference." arXiv preprint arXiv:2002.02770 (2020). ([paper](https://arxiv.org/pdf/2002.02770.pdf)) -10. Goldenberg, Dmitri, et al. "Personalization in Practice: Methods and Applications." Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021 ([paper](https://drive.google.com/drive/folders/1c_khoTDRbkoRY5OiaxEfUxRQkyNv3FeK)) -11. Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. ([paper](https://www.cambridge.org/core/journals/political-analysis/article/selection-bias-approach-to-sensitivity-analysis-for-causal-effects/788C169FAF5482452566811136D4F9B4)) -12. Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896 (2017). ([paper](https://arxiv.org/pdf/1702.02896.pdf)) -13. Sharma, Amit, and Emre Kiciman. "Causal Inference and Counterfactual Reasoning." Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 2020. 369-370. ([paper](https://dl.acm.org/doi/abs/10.1145/3371158.3371231)) -14. Li, Ang, and Judea Pearl. "Unit selection based on counterfactual logic." Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. 2019 ([paper](https://par.nsf.gov/biblio/10180278)) -15. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020) ([paper](https://arxiv.org/pdf/2004.14497.pdf)) -16. Gruber, Susan, and Mark J. Van Der Laan. "Targeted maximum likelihood estimation: A gentle introduction." (2009) ([paper](https://biostats.bepress.com/cgi/viewcontent.cgi?article=1255&context=ucbbiostat)) -17. D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 ([paper](https://arxiv.org/pdf/1901.09036.pdf)) -18. V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 ([paper](https://arxiv.org/pdf/1905.10176.pdf)) -19. M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019 ([paper](http://proceedings.mlr.press/v97/oprescu19a/oprescu19a.pdf)) -20. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017 ([paper](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf)) -21. Battocchi, K., Dillon, E., Hei, M., Lewis, G., Oprescu, M., & Syrgkanis, V. (2021). Estimating the Long-Term Effects of Novel Treatments. arXiv preprint arXiv:2103.08390. ([paper](https://arxiv.org/pdf/2103.08390.pdf)) -22. Lewis, G., & Syrgkanis, V. (2020). Double/Debiased Machine Learning for Dynamic Treatment Effects. arXiv preprint arXiv:2002.07285. ([paper](https://arxiv.org/pdf/2002.07285.pdf)) From 027f286fab7bdcb593d1182847c56aed65390bca Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 29 Mar 2023 18:59:42 -0700 Subject: [PATCH 06/33] add index.html back --- index.html | 117 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 117 insertions(+) create mode 100644 index.html diff --git a/index.html b/index.html new file mode 100644 index 0000000..223db4b --- /dev/null +++ b/index.html @@ -0,0 +1,117 @@ +--- +layout: home +search_exclude: true +image: images/logo.png +--- + +# **Causal Inference and Machine Learning in Practice**: Use cases for Product, Brand, Policy and Beyond + +## **Schedule** + +* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google +Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) +* 9:00 AM - 1:00 PM August 7, 2023 [PDT] + +## **Abstract** + +In recent years, both academic research and industry applications see an increased effort in using machine learning +methods to measure granular causal effects and design optimal policies based on these causal estimates. Open source +packages such as [CausalML](https://github.com/uber/causalml) and [EconML](https://github.com/microsoft/econml) provide +a unified interface for applied researchers and industry practitioners with a variety of machine learning methods for +causal inference. The tutorial will cover the topics including conditional treatment effect estimators by meta-learners +and tree-based algorithms, model validations and sensitivity analysis, optimization algorithms including policy leaner +and cost optimization. In addition, the tutorial will demonstrate the production of these algorithms in industry use +cases. + +## **Target Audience for the Workshop** + +Anyone who is interested in causal inference and machine learning, especially economists/statisticians/data scientists +who want to learn how to combine causal inference and machine learning with real industry use cases incorporated in +large scaled machine learning systems at companies such as Microsoft, TripAdvisor and Uber. +The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming +language. + +## **Important Dates** + +* May 23, 2023 [AoE]: Workshop paper submission deadline +* June 23, 2023: Paper decision notifications +* August 7, 2023: Workshop + +## **Outline** + +| **Title** | **Duration** | Link | +|-----------|--------------|--------| +| Introduction | 10 minutes | | +| Invited Talk #1 by Yoda | 20 minutes | | +| Invited Talk #2 by Darth Vader | 20 minutes | | +| Paper #1 | 15 minutes | | +| Paper #2 | 15 minutes | | +| Paper #3 | 15 minutes | | +| Paper #4 | 15 minutes | | +| Break & Poster Session | 30 minutes | | +| Invited Talk #3 by Luke Skywalker | 20 minutes | | +| Invited Talk #4 by Princess Leia | 20 minutes | | +| Paper #1 | 15 minutes | | +| Paper #2 | 15 minutes | | +| Paper #3 | 15 minutes | | +| Paper #4 | 15 minutes | | + +## **Invited Speakers** + +### Yoda, Amazon + +We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of +causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via +randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. + +### Darth Vader, University of Darth Star + +We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and +causal inference methods using machine learning algorithms based on recent research. We will introduce the main +components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, +dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, +interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). + +### Luke Skywalker, Stanford University + +As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact +from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make +cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We +show the use of different causal estimation methodologies through propensity score matching and meta learners to +estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. + +### Princess Leia, Microsoft Research + +We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous +treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most +incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time +bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an +explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum +Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. + +## **Accepted Papers** + +To be updated + +## **Organizers** + +* Chu Wang, Amazon +* Yingfei Wang, University of Washington +* Xinwei Ma, UC San Diego +* [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact + +### CausalML Team + +* Jing Pan, Snap, CausalML +* Yifeng Wu, Uber, CausalML +* Huigang Chen, Meta, CausalML +* Totte Harinen, AirBnB, CausalML +* Paul Lo, Snap, CausalML +* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact +* Zhenyu Zhao, Tencent, CausalML + +### EconML Team + +* Fabio Vera, Microsoft Research, EconML +* Eleanor Dillon, Microsoft Research, EconML +* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file From 6e2731b5a8772d40fb390b7a04ec9b9791d4f28a Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 7 Apr 2023 18:16:49 -0700 Subject: [PATCH 07/33] Updated invited speakers --- index.html | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/index.html b/index.html index 223db4b..0cf0096 100644 --- a/index.html +++ b/index.html @@ -42,8 +42,8 @@ | **Title** | **Duration** | Link | |-----------|--------------|--------| | Introduction | 10 minutes | | -| Invited Talk #1 by Yoda | 20 minutes | | -| Invited Talk #2 by Darth Vader | 20 minutes | | +| Invited Talk #1 by Raif Rustamov | 20 minutes | | +| Invited Talk #2 by Ruomeng Cui | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -58,13 +58,11 @@ ## **Invited Speakers** -### Yoda, Amazon +### Raif Rustamov, Amazon -We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of -causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via -randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. +Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for brand advertising at Amazon. -### Darth Vader, University of Darth Star +### Ruomeng Cui, Emory University We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main @@ -114,4 +112,4 @@ * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML -* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file +* Keith Battocchi, Microsoft Research, EconML From 824bc5475daa9cf4e6963a8dc8ce5c1d34910ce1 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 7 Apr 2023 18:18:08 -0700 Subject: [PATCH 08/33] Update README.md --- README.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index c47c04e..ed0b994 100755 --- a/README.md +++ b/README.md @@ -31,8 +31,8 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni | **Title** | **Duration** | Link | |-----------|--------------|--------| | Introduction | 10 minutes | | -| Invited Talk #1 by Yoda | 20 minutes | | -| Invited Talk #2 by Darth Vader | 20 minutes | | +| Invited Talk #1 by Raif Rustamov | 20 minutes | | +| Invited Talk #2 by Ruomeng Cui | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -47,11 +47,11 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni ## **Invited Speakers** -### Yoda, Amazon +### Raif Rustamov, Amazon -We will give an overview of basic concepts in causal inference. A quick refresher on the main tools and terminology of causal inference: correlation vs causation, average, conditional, and individual treatment effects, causal inference via randomization, Causal inference using instrumental variables, Causal inference via unconfoundedness. +Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for brand advertising at Amazon. -### Darth Vader, University of Darth Star +### Ruomeng Cui, Emory University We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). From 3422b6473304867dd6c49058fc425246aea7a64c Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Tue, 11 Apr 2023 16:15:32 -0700 Subject: [PATCH 09/33] add Ang Li to invited speakers --- README.md | 32 +- index.html | 39 +- notebooks/kdd_intro_to_EconML.ipynb | 3473 --------------------------- 3 files changed, 41 insertions(+), 3503 deletions(-) delete mode 100644 notebooks/kdd_intro_to_EconML.ipynb diff --git a/README.md b/README.md index ed0b994..77b6824 100755 --- a/README.md +++ b/README.md @@ -38,8 +38,8 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni | Paper #3 | 15 minutes | | | Paper #4 | 15 minutes | | | Break & Poster Session | 30 minutes | | -| Invited Talk #3 by Luke Skywalker | 20 minutes | | -| Invited Talk #4 by Princess Leia | 20 minutes | | +| Invited Talk #3 by Ang Li | 20 minutes | | +| Invited Talk #4 by TBD | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -53,15 +53,25 @@ Video creatives have a substantial impact on consumer experiences and brand perc ### Ruomeng Cui, Emory University -We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research. We will introduce the main components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). - -### Luke Skywalker, Stanford University - -As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We show the use of different causal estimation methodologies through propensity score matching and meta learners to estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. - -### Princess Leia, Microsoft Research - -We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. +We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and +causal inference methods using machine learning algorithms based on recent research. We will introduce the main +components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, +dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, +interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). + +### Ang Li, University of California, Los Angeles + +The unit selection problem aims to identify a set of individuals who are most likely to +exhibit a desired mode of behavior, which is defined in counterfactual terms. A typical +example is that of selecting individuals who would respond one way if encouraged and a +different way if not encouraged. Unlike previous works on this problem, which rely on ad-hoc +heuristics, we approach this problem formally, using counterfactual logic, to properly capture +the nature of the desired behavior. This formalism enables us to derive an informative +selection criterion which integrates experimental and observational data. We show that a +more accurate selection criterion can be achieved when structural information is available +in the form of a causal diagram. We further discuss data availability issue regarding the +derivation of the selection criterion without the observational or experimental data. We +demonstrate the superiority of this criterion over A/B-test-based approaches. ## **Accepted Papers** diff --git a/index.html b/index.html index 0cf0096..2610784 100644 --- a/index.html +++ b/index.html @@ -49,8 +49,8 @@ | Paper #3 | 15 minutes | | | Paper #4 | 15 minutes | | | Break & Poster Session | 30 minutes | | -| Invited Talk #3 by Luke Skywalker | 20 minutes | | -| Invited Talk #4 by Princess Leia | 20 minutes | | +| Invited Talk #3 by Ang Li | 20 minutes | | +| Invited Talk #4 by TBD | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -60,7 +60,11 @@ ### Raif Rustamov, Amazon -Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for brand advertising at Amazon. +Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on +shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel +metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video +creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for +brand advertising at Amazon. ### Ruomeng Cui, Emory University @@ -70,22 +74,19 @@ dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). -### Luke Skywalker, Stanford University +### Ang Li, University of California, Los Angeles -As an introductory case study for using causal inference, we will cover the use case of understanding the causal impact -from observational data in the context of cross sell at Uber. We emphasize that simple comparisons of users who make -cross purchase or not will produce biased estimates and that can be demonstrated in the causal inference framework. We -show the use of different causal estimation methodologies through propensity score matching and meta learners to -estimate the causal impact. In addition, we will use sensitivity analysis to show the robustness of the estimates. - -### Princess Leia, Microsoft Research - -We will introduce the audience selection method with uplift modeling in online RTB, which aims to estimate heterogeneous -treatment effects for advertising. It has been studied to provide a superior return on investment by selecting the most -incremental users for a specific campaign. To examine the effectiveness of uplift modeling in the context of real-time -bidding, we conducted the comparative analysis of four different meta-learners on real campaign data. We adapted an -explore-exploit set up for offline training and online evaluation. We will also introduce how we use Targeted Maximum -Likelihood Estimation (TMLE) based Average Treatment Effect (ATE) as ground truth for evaluation. +The unit selection problem aims to identify a set of individuals who are most likely to +exhibit a desired mode of behavior, which is defined in counterfactual terms. A typical +example is that of selecting individuals who would respond one way if encouraged and a +different way if not encouraged. Unlike previous works on this problem, which rely on ad-hoc +heuristics, we approach this problem formally, using counterfactual logic, to properly capture +the nature of the desired behavior. This formalism enables us to derive an informative +selection criterion which integrates experimental and observational data. We show that a +more accurate selection criterion can be achieved when structural information is available +in the form of a causal diagram. We further discuss data availability issue regarding the +derivation of the selection criterion without the observational or experimental data. We +demonstrate the superiority of this criterion over A/B-test-based approaches. ## **Accepted Papers** @@ -112,4 +113,4 @@ * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML -* Keith Battocchi, Microsoft Research, EconML +* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file diff --git a/notebooks/kdd_intro_to_EconML.ipynb b/notebooks/kdd_intro_to_EconML.ipynb deleted file mode 100644 index defca44..0000000 --- a/notebooks/kdd_intro_to_EconML.ipynb +++ /dev/null @@ -1,3473 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "colab": { - "name": "kdd_intro_to_EconML.ipynb", - "provenance": [], - "collapsed_sections": [], - "include_colab_link": true - } - }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d_YD-YF59idL" - }, - "source": [ - "![EconML-Logo-MSFT-color.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jYAHRpIF-BRW" - }, - "source": [ - "# **KDD2021 Tutorial:** [Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber](https://causal-machine-learning.github.io/kdd2023-workshop/)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AYlHqLQf-PjP" - }, - "source": [ - "# Introduction to [EconML](https://github.com/microsoft/EconML)\n", - "\n", - "A python library for estimation of heterogeneous treatment effects with Machine Learning.\n", - "\n", - "**Presentation:** [Introduction to EconML](https://drive.google.com/file/d/1gt4KNznrYbwdryi9jGcC0-hDCNg7mBNE/view?usp=sharing)\n", - "\n", - "**Github:** https://github.com/microsoft/EconML\n", - "\n", - "**Documentation:** https://econml.azurewebsites.net/\n", - "\n", - "By the Microsoft Research project [ALICE (Automated Learning and Intelligence for Causation and Economics)](https://www.microsoft.com/en-us/research/project/alice/)" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cEqRBSJV9dTX" - }, - "source": [ - "#!pip install econml" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "yPw9zWWm3H9e" - }, - "source": [ - "!pip install git+https://github.com/microsoft/EconML.git@mehei/driv#egg=econml" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "PKxsq0Mv9cGD" - }, - "source": [ - "import numpy as np\n", - "from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier\n", - "from sklearn.linear_model import LassoCV, Lasso\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "from sklearn.model_selection import train_test_split\n", - "import matplotlib.pyplot as plt\n", - "import scipy\n", - "import warnings\n", - "warnings.simplefilter('ignore')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "WNvGZiKF9cGG" - }, - "source": [ - "def gen_data(n, discrete=False):\n", - " X = np.random.normal(0, 1, size=(n, 2))\n", - " W = np.random.normal(0, 1, size=(n, 2))\n", - " if discrete:\n", - " T = np.random.binomial(1, scipy.special.expit(W[:, 0]))\n", - " else:\n", - " T = W[:, 0] + np.random.normal(0, 1, size=(n,))\n", - " y = (X[:, 0] + 1) * T + W[:, 0] + np.random.normal(0, 1, size=(n,))\n", - " return y, T, X, W\n", - "\n", - "def gen_data_iv(n):\n", - " X = np.random.normal(0, 1, size=(n, 2))\n", - " W = np.random.normal(0, 1, size=(n, 2))\n", - " U = np.random.normal(0, 1, size=(n,))\n", - " Z = np.random.normal(0, 1, size=(n,))\n", - " T = Z + W[:, 0] + U\n", - " y = (X[:, 0] + 1) * T + W[:, 0] + U\n", - " return y, T, Z, X, W" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7xzAqDMb9cGH" - }, - "source": [ - "# 1. Estimation under Exogeneity" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "TuRauvKA9cGH" - }, - "source": [ - "y, T, X, W = gen_data(1000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nHhjI8Kb9cGI", - "outputId": "059fd233-bd8e-4de3-fa61-1a042b381aba" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "\n", - "est = NonParamDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", - " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", - " discrete_treatment=False, # categorical or continuous treatment\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability\n", - "\n", - "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 6 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Gc4fpcMr9cGJ" - }, - "source": [ - "#### Personalized effect estimates on test samples" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9rqqLxnt9cGJ", - "outputId": "cd71c483-e9e1-48f8-fab7-e8534777a008" - }, - "source": [ - "# personalized effect for each sample from going from treatment 0 to treatment level 1\n", - "est.effect(X[:5], T0=0, T1=1)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([ 1.54592291, 0.87946172, -0.47128723, 0.81285758, 3.1442986 ])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 7 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qC23J2R09cGJ" - }, - "source": [ - "#### ML model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "yE2v-YzX9cGK", - "outputId": "6d074083-9a40-4222-d7bb-f2d158fc2df0" - }, - "source": [ - "# fitted nuisance models for each cross-fitting fold and out-of-sample scores\n", - "est.models_y, est.nuisance_scores_y" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.5409335662361056, 0.48599679070328405]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 8 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JXOd9Rfa9cGK", - "outputId": "dfbebf0a-19e9-4f15-9182-e22318015360" - }, - "source": [ - "est.models_t, est.nuisance_scores_t" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.4282760371961908, 0.3782367983417111]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 9 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CLbqvUvr9cGK" - }, - "source": [ - "#### CATE model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IdiMMpsQ9cGL", - "outputId": "6b6277ca-32b3-4d29-f5f4-37b765551e39" - }, - "source": [ - "# in-sample goodness-of-fit score for the final cate model\n", - "print(est.score_)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "1.4717907756757855\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "968ktBK_9cGL" - }, - "source": [ - "#### Nuisance quantity diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "KDwBlm-i9cGL" - }, - "source": [ - "# calculated residuals for each training sample\n", - "yres, Tres, X_cache, W_cache = est.residuals_" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Jkc1WSi19cGL" - }, - "source": [ - "# 2. Estimation with Instruments" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "8pjyjlRQ9cGM" - }, - "source": [ - "y, T, Z, X, W = gen_data_iv(2000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "l5gr5sGS9cGM" - }, - "source": [ - "from econml.iv.dml import OrthoIV\n", - "\n", - "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_t_xw=RandomForestRegressor(), # ML model for E[T|X,W]\n", - " model_z_xw=RandomForestRegressor(), # ML model for E[Z|X,W]\n", - " discrete_treatment=False, # categorical/continuous treatment\n", - " discrete_instrument=False, # categorical/continuous instrument\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "b_k1NpEp9cGM", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "8b057fc5-bd87-43fa-ea75-33ee736a2a88" - }, - "source": [ - "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 14 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a0zr3m3r9cGM" - }, - "source": [ - "#### Personalized effect estimates on test samples" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "2wAnhhq99cGN", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "2061468c-6969-4b1a-86fa-ba16a8f6b49c" - }, - "source": [ - "est.effect(X, T0=0, T1=1)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([-0.32390668, 2.23728003, 0.70346148, ..., 0.85984079,\n", - " 0.17539819, 1.07325619])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 15 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "D9ESfbo29cGN" - }, - "source": [ - "#### ML model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9JlbW4an9cGN", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "f77e36a8-295f-4dff-e11d-21057357e4c8" - }, - "source": [ - "est.models_y_xw, est.nuisance_scores_y_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.3493220983540998, 0.2621905464991312]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 16 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "e1YCQWZK9cGO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "71292840-3f77-4985-fdf3-855ad7d4f07a" - }, - "source": [ - "est.models_t_xw, est.nuisance_scores_t_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[0.24243204274642238, 0.22952337252664082]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 17 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cN5Ga_YH9cGO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fca11455-0e2c-4881-96a9-0e07a67d4461" - }, - "source": [ - "est.models_z_xw, est.nuisance_scores_z_xw" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "([[RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False),\n", - " RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " max_samples=None, min_impurity_decrease=0.0,\n", - " min_impurity_split=None, min_samples_leaf=1,\n", - " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", - " n_estimators=100, n_jobs=None, oob_score=False,\n", - " random_state=None, verbose=0, warm_start=False)]],\n", - " [[-0.10057707531258632, -0.08476759034439452]])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 18 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oNkC5W9i9cGP" - }, - "source": [ - "#### CATE model diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "zENiyXuV9cGP", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "621aba3d-e433-4c89-e0dc-1879afd565f6" - }, - "source": [ - "print(est.score_)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "5.018208071305707e-16\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "slJuNhWU9cGP" - }, - "source": [ - "#### Nuisance quantity diagnostics" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1o5aP05y9cGP" - }, - "source": [ - "yres, Tres, Zres, Xc, Wc, Zc = est.residuals_" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WrsMl9pm9cGQ" - }, - "source": [ - "# 3. Inference" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "oeTIUL6_9cGQ" - }, - "source": [ - "y, T, X, W = gen_data(1000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K0kinaK__Djv" - }, - "source": [ - "### Generic Bootstrap Inference" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "rSGauZ1k9cGQ" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "from econml.sklearn_extensions.linear_model import WeightedLasso\n", - "\n", - "est = NonParamDML(model_y=Lasso(alpha=.1), # Any ML model for E[Y|X,W]\n", - " model_t=Lasso(alpha=.1), # Any ML model for E[T|X,W]\n", - " model_final=WeightedLasso(alpha=.1), # Any ML model for CATE that accepts `sample_weight` at fit\n", - " discrete_treatment=False, # categorical or continuous treatment\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "lckeXBSV9cGR", - "outputId": "d1cecd80-0022-4e16-c4a9-dc1081f474f3" - }, - "source": [ - "est.fit(y, T, X=X, W=W, inference='bootstrap') # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 23 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "p-RP37i-9cGR", - "outputId": "2126735a-91d6-4908-eb8a-b36bcae1cbc8" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2700.03932.6200.01.2101.334
11.7070.05133.6340.01.6311.787
22.4170.07930.4280.02.3042.559
31.3740.04133.7000.01.3121.445
4-0.3020.070-4.3380.0-0.449-0.216
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.270 0.039 32.620 0.0 1.210 1.334\n", - "1 1.707 0.051 33.634 0.0 1.631 1.787\n", - "2 2.417 0.079 30.428 0.0 2.304 2.559\n", - "3 1.374 0.041 33.700 0.0 1.312 1.445\n", - "4 -0.302 0.070 -4.338 0.0 -0.449 -0.216" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 24 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 251 - }, - "id": "9tGAONKF9cGS", - "outputId": "cce9a4d0-d2a9-4991-87aa-90504695a8a9" - }, - "source": [ - "est.ate_inference(X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.989 0.061 16.1 0.0 0.888 1.09
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.041 -0.704 2.734
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.042 -0.698 2.737


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 25 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ab22GTTm9cGS", - "outputId": "b26f4c08-1938-43fb-c81b-36ca177254f8" - }, - "source": [ - "from econml.inference import BootstrapInference\n", - "est.fit(y, T, X=X, W=W,\n", - " inference=BootstrapInference(n_bootstrap_samples=100,\n", - " bootstrap_type='normal'))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 26 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "MK02FTmf9cGS", - "outputId": "3d1bb9f4-cbcf-45ac-930b-f6d837b407b0" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2670.04627.5910.01.1921.343
11.7040.05530.9780.01.6131.794
22.4140.07930.6230.02.2842.543
31.3720.04828.8790.01.2941.450
4-0.3030.073-4.1250.0-0.424-0.182
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.267 0.046 27.591 0.0 1.192 1.343\n", - "1 1.704 0.055 30.978 0.0 1.613 1.794\n", - "2 2.414 0.079 30.623 0.0 2.284 2.543\n", - "3 1.372 0.048 28.879 0.0 1.294 1.450\n", - "4 -0.303 0.073 -4.125 0.0 -0.424 -0.182" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 27 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 251 - }, - "id": "qIKkO36S9cGT", - "outputId": "574a2f94-2cca-463f-adf6-b2193d1d0e6c" - }, - "source": [ - "est.ate_inference(X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
0.986 0.065 15.226 0.0 0.88 1.093
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.039 -0.704 2.73
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.041 -0.703 2.735


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 28 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LH0Uo_yJ--G_" - }, - "source": [ - "### Tailored Valid Inference" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZfUSZoW-4TJQ" - }, - "source": [ - "#### Heteroskedasticity-robust OLS inference for linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "uPiPxMU19cGT" - }, - "source": [ - "from econml.dml import LinearDML\n", - "\n", - "est = LinearDML(model_y=RandomForestRegressor(), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestRegressor(), # Any ML model for E[T|X,W]\n", - " featurizer=PolynomialFeatures(degree=2, include_bias=False)) # any featurizer for " - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "qAQKnPA59cGU", - "outputId": "77583b37-6895-4c2e-c636-d948a6de8798" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 30 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 353 - }, - "id": "Cy73CEcm9cGU", - "outputId": "749cefb2-54d6-475a-d630-4a8d9beba4f6" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 1.001 0.034 29.398 0.0 0.945 1.057
X1 0.042 0.032 1.302 0.193 -0.011 0.094
X0^2 0.011 0.025 0.447 0.655 -0.029 0.052
X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076
X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "===========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "-----------------------------------------------------------\n", - "X0 1.001 0.034 29.398 0.0 0.945 1.057\n", - "X1 0.042 0.032 1.302 0.193 -0.011 0.094\n", - "X0^2 0.011 0.025 0.447 0.655 -0.029 0.052\n", - "X0 X1 0.032 0.027 1.203 0.229 -0.012 0.076\n", - "X1^2 -0.024 0.019 -1.269 0.204 -0.056 0.007\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 0.99 0.046 21.503 0.0 0.914 1.066\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 38 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "og2hubAj9cGV", - "outputId": "5f0c835f-dcff-4f9c-d1be-dc6741da2a10" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2610.04726.7320.01.1841.339
11.7850.06826.2740.01.6731.897
22.4160.08329.0690.02.2802.553
31.4180.04829.8280.01.3401.497
4-0.2720.064-4.2660.0-0.378-0.167
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.261 0.047 26.732 0.0 1.184 1.339\n", - "1 1.785 0.068 26.274 0.0 1.673 1.897\n", - "2 2.416 0.083 29.069 0.0 2.280 2.553\n", - "3 1.418 0.048 29.828 0.0 1.340 1.497\n", - "4 -0.272 0.064 -4.266 0.0 -0.378 -0.167" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 32 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aMqhTNEb4Zt4" - }, - "source": [ - "#### Debiased Lasso Inference for high-dimensional linear CATE models $\\theta(x)=\\langle\\theta, \\phi(x)\\rangle$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dtjN8aC99cGY" - }, - "source": [ - "from econml.dml import SparseLinearDML\n", - "\n", - "est = SparseLinearDML(featurizer=PolynomialFeatures(degree=3, include_bias=False))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W3xElnFJ9cGY", - "outputId": "89e6d659-d695-49c0-927c-66e3128c3e13" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 40 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 437 - }, - "id": "6XHdjW9I9cGY", - "outputId": "b8ad3ad6-7006-47ac-c431-d90c109cf0e3" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.065 15.182 0.0 0.882 1.097
X1 0.012 0.07 0.179 0.858 -0.102 0.127
X0^2 0.071 0.022 3.168 0.002 0.034 0.107
X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045
X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026
X0^3 0.004 0.013 0.328 0.743 -0.017 0.026
X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067
X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065
X1^3 0.001 0.016 0.054 0.957 -0.026 0.027
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "=============================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "-------------------------------------------------------------\n", - "X0 0.99 0.065 15.182 0.0 0.882 1.097\n", - "X1 0.012 0.07 0.179 0.858 -0.102 0.127\n", - "X0^2 0.071 0.022 3.168 0.002 0.034 0.107\n", - "X0 X1 -0.012 0.034 -0.337 0.736 -0.068 0.045\n", - "X1^2 -0.019 0.027 -0.686 0.493 -0.063 0.026\n", - "X0^3 0.004 0.013 0.328 0.743 -0.017 0.026\n", - "X0^2 X1 0.026 0.025 1.025 0.305 -0.016 0.067\n", - "X0 X1^2 0.021 0.026 0.806 0.42 -0.022 0.065\n", - "X1^3 0.001 0.016 0.054 0.957 -0.026 0.027\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 0.945 0.051 18.628 0.0 0.862 1.029\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 41 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "nYXaiMBX9cGZ", - "outputId": "34e12072-ae19-40c5-d75f-72d96ff4682c" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.2440.06120.4580.0001.1441.344
11.7430.10217.1200.0001.5751.910
22.5280.09227.5530.0002.3772.679
31.3660.06122.5210.0001.2661.466
4-0.2360.085-2.7780.005-0.376-0.096
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.244 0.061 20.458 0.000 1.144 1.344\n", - "1 1.743 0.102 17.120 0.000 1.575 1.910\n", - "2 2.528 0.092 27.553 0.000 2.377 2.679\n", - "3 1.366 0.061 22.521 0.000 1.266 1.466\n", - "4 -0.236 0.085 -2.778 0.005 -0.376 -0.096" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 42 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9kI_3o004cnQ" - }, - "source": [ - "#### Bootstrap-of-Little-Bags inference for forests CATE models $\\theta(x)$" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "JVKLLU5H9cGZ" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "TzNqV3HW9cGZ", - "outputId": "e829ef4f-3016-431a-91d3-4864c9cca580" - }, - "source": [ - "from econml.dml import CausalForestDML\n", - "\n", - "est = CausalForestDML(discrete_treatment=True,\n", - " criterion='mse', n_estimators=1000)\n", - "est.tune(y, T, X=X, W=W)\n", - "est.fit(y, T, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 44 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 451 - }, - "id": "PhogESjH9cGa", - "outputId": "97fea945-cc4e-4641-cb7b-e20f8e61064d" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Population summary of CATE predictions on Training Data\n" - ], - "name": "stdout" - }, - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Uncertainty of Mean Point Estimate
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
1.099 0.205 5.362 0.0 0.762 1.436
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Distribution of Point Estimate
std_point pct_point_lower pct_point_upper
1.086 -0.862 2.947
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Total Variance of Point Estimate
stderr_point ci_point_lower ci_point_upper
1.105 -0.862 2.965
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATE on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATE 1.095 0.056 19.388 0.0 1.002 1.187
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATT(T=0) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.075 0.078 13.719 0.0 0.947 1.204
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Doubly Robust ATT(T=1) on Training Data Results
point_estimate stderr zstat pvalue ci_lower ci_upper
ATT 1.116 0.081 13.721 0.0 0.982 1.25


Note: The stderr_mean is a conservative upper bound." - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Uncertainty of Mean Point Estimate \n", - "===============================================================\n", - "mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper\n", - "---------------------------------------------------------------\n", - " 1.099 0.205 5.362 0.0 0.762 1.436\n", - " Distribution of Point Estimate \n", - "=========================================\n", - "std_point pct_point_lower pct_point_upper\n", - "-----------------------------------------\n", - " 1.086 -0.862 2.947\n", - " Total Variance of Point Estimate \n", - "==========================================\n", - "stderr_point ci_point_lower ci_point_upper\n", - "------------------------------------------\n", - " 1.105 -0.862 2.965\n", - " Doubly Robust ATE on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATE 1.095 0.056 19.388 0.0 1.002 1.187\n", - " Doubly Robust ATT(T=0) on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATT 1.075 0.078 13.719 0.0 0.947 1.204\n", - " Doubly Robust ATT(T=1) on Training Data Results \n", - "=========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "---------------------------------------------------------\n", - "ATT 1.116 0.081 13.721 0.0 0.982 1.25\n", - "---------------------------------------------------------\n", - "\n", - "Note: The stderr_mean is a conservative upper bound.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 45 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "id": "bZzv-0bo9cGa", - "outputId": "26e8e29b-691e-4fa4-d469-7b00ee463ac4" - }, - "source": [ - "est.effect_inference(X[:5], T0=0, T1=1).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
01.9090.2308.2930.0001.5312.288
10.3080.1132.7350.0060.1230.493
2-0.1130.204-0.5530.580-0.4490.223
31.2770.1926.6650.0000.9621.593
42.3950.22510.6390.0002.0242.765
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 1.909 0.230 8.293 0.000 1.531 2.288\n", - "1 0.308 0.113 2.735 0.006 0.123 0.493\n", - "2 -0.113 0.204 -0.553 0.580 -0.449 0.223\n", - "3 1.277 0.192 6.665 0.000 0.962 1.593\n", - "4 2.395 0.225 10.639 0.000 2.024 2.765" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 46 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qqO9by3p9cGa" - }, - "source": [ - "# 4. Causal Scoring" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9HwG--DU9cGa" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Rr5El3LR9cGa" - }, - "source": [ - "#### Multitude of approaches for CATE estimation to select from" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "je0AkjG99cGb" - }, - "source": [ - "from econml.dml import DML, LinearDML, SparseLinearDML, NonParamDML\n", - "from econml.metalearners import XLearner, TLearner, SLearner, DomainAdaptationLearner\n", - "from econml.dr import DRLearner\n", - "\n", - "reg = lambda: RandomForestRegressor(min_samples_leaf=10)\n", - "clf = lambda: RandomForestClassifier(min_samples_leaf=10)\n", - "# A multitude of possible approaches for CATE estimation under conditional exogeneity\n", - "models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", - " linear_first_stages=False, cv=3)),\n", - " ('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,\n", - " featurizer=PolynomialFeatures(degree=2, include_bias=False),\n", - " linear_first_stages=False, cv=3)),\n", - " ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),\n", - " ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(),\n", - " propensity_model=clf())),\n", - " ('slearner', SLearner(overall_model=reg())),\n", - " ('tlearner', TLearner(models=reg())),\n", - " ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),\n", - " model_final=reg(), cv=3)),\n", - " ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),\n", - " discrete_treatment=True, cv=3)),\n", - " ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=LassoCV(),\n", - " discrete_treatment=True,\n", - " featurizer=PolynomialFeatures(degree=3),\n", - " linear_first_stages=False, cv=3))\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "it8Mb8219cGb" - }, - "source": [ - "#### Split the data in train and validation" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dsqFr4Cz9cGb" - }, - "source": [ - "XW = np.hstack([X, W])\n", - "XW_train, XW_val, T_train, T_val, Y_train, Y_val = train_test_split(XW, T, y, test_size=.4)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "9_X0_AQS9cGc" - }, - "source": [ - "#### Fit all CATE models on train data" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "fNWePOEi9cGc", - "outputId": "1e887546-43fe-4b1f-f238-06ec0d15ab2b" - }, - "source": [ - "from joblib import Parallel, delayed\n", - "\n", - "def fit_model(name, model):\n", - " return name, model.fit(Y_train, T_train, X=XW_train)\n", - "\n", - "models = Parallel(n_jobs=-1, verbose=1)(delayed(fit_model)(name, mdl) for name, mdl in models)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 9 out of 9 | elapsed: 17.7s finished\n" - ], - "name": "stderr" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5HrON5yV9cGc" - }, - "source": [ - "#### Train the scorer on the validation data" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "B4r0CXBP9cGc", - "outputId": "aae0216f-9ed1-4846-d0d4-eaff59d12e77" - }, - "source": [ - "from econml.score import RScorer\n", - "\n", - "# Causal score actually needs fitting on the test set!\n", - "scorer = RScorer(model_y=reg(), model_t=clf(),\n", - " discrete_treatment=True, cv=3,\n", - " mc_iters=3, mc_agg='median')\n", - "scorer.fit(Y_val, T_val, X=XW_val)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 51 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VaApR6459cGd" - }, - "source": [ - "#### Evaluate each of the trained CATE models on the validation data" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "WX92N2EP9cGd" - }, - "source": [ - "# Then we can evaluate every trained CATE model\n", - "rscore = [scorer.score(mdl) for _, mdl in models]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E2ZWa1Mu9cGd" - }, - "source": [ - "#### Calculate ideal score of each model, since we know ground truth" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1e2SvCV89cGd" - }, - "source": [ - "expected_te_val = 1 + XW_val[:, 0]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "yPF1_UOM9cGe" - }, - "source": [ - "rootpehe = [np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))\n", - " for _, mdl in models]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a4RafR039cGe" - }, - "source": [ - "#### Qualitatively different performance of each method" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 948 - }, - "id": "fkIgNP999cGe", - "outputId": "3aaa0a23-a756-4857-9daa-0f94c68b7280" - }, - "source": [ - "plt.figure(figsize=(16, 16))\n", - "rows = int(np.ceil(len(models) / 3))\n", - "for it, (name, mdl) in enumerate(models):\n", - " plt.subplot(rows, 3, it + 1)\n", - " plt.title('{}. RScore: {:.3f}, Root-PEHE: {:.3f}'.format(name, rscore[it], rootpehe[it]))\n", - " plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='{}'.format(name))\n", - " plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", - " plt.ylabel('Treatment Effect')\n", - " plt.xlabel('x')\n", - " plt.legend()\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAOjCAYAAABpyFP0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhV1dW435XkQhIIhHkIoxNDGGUQirWAQxwRcfopDtRPqbXaOqFgseJXrXzFz1LtV61Wq1ZUcIoDihPgADgAAREBKYpAmMIQICFASPbvj33u5dybOyY3uRnW+zz3ufeevc85+0zrrLX3WmuLMQZFURRFURRFURRFqUskJboBiqIoiqIoiqIoihIraswqiqIoiqIoiqIodQ41ZhVFURRFURRFUZQ6hxqziqIoiqIoiqIoSp1DjVlFURRFURRFURSlzqHGrKIoiqIoiqIoilLnaHDGrIhsFJEzQpSNFJEtldxuNxExIpJStRYqiqLEFxGZJiIvhCkPKRej2PZCEbm+8q1TFEWJHpU5iqK4aXDGbG3AZfgWOZ+NIjI5oM6pIrJYRPaJyB4RWSQiQxLV5mCI5X9EZLfz+R8RkRB1O4jIWyKy1Tn2bgHlq13no0hEjorI267yJ0VknYiUi8iEGNu5UURKnO1uF5FnRaRpJQ45cLvPisgDEepME5FSZ9+FzjUd7pRNEJGygOMuEpGOrnafEbC9CSLyeYhj837+FsMx3Oack/0i8oyINA5Rr5GIvOrsz4jIyCDb+cHZzlYR+Yu7Y0dEBojIZ879vEVE7o22jUr9wVFCDzn36S4ReV1EOrjKM537cLuIHBCR7wNlY21ARE4XkbUiclBEFohI1zB1/ygiqxyZNi2g7J6AZ7fEkXGtnfI/i8hm57n6SUTuiaGNIWVPVZAoOn0lwjvOKSsOOPa7XO2u0PHirHNCkGPzfgpjOIYBIrLMuX7LRGRAmLoviMg25xp8Ly4jSkR6i8hSEdnrfD4Skd6u8lHO/bFPRDZG2z6l/uM8R+XOvXtArH7zy4A6F4rICufe2yUi80Wke6LaHAwRaezI7P2O3L49TN0+IvK+cywmSHmgLlQmIo+5yqOWuwHbjahzVxaJoiM43HtPrB55JOC4Vwa0OyVgez7dM8ixeT+XR9n+WK7ftY683C9Wj/uz+Ot53UTkXUcWbheRv3nLRaS1WDtmt9j30RIRGRFNG6NBjdnEkmmMaQpcAtwrImcCiEgz4B3gMaAlkAXcDxyO585FJLmKm5gIjAX6A/2AC4BfhahbDswDLg5WaIzJNsY0dc5HBrAZeMVVZSVwE7C8km29wNn2AGAgMKWS26kMs519twE+B14X8Rn9S7zH7fpsjXH7FwSsf3M0K4lIDjAZOB3oChyHvc9C8TlwFbA9SNlbwMnGmGZAH+w98VtX+YvAp9j7+RfATSIyJpp2KvWOm53n4QSgKfCwq+wvzrJeQHNgDPCfeO48UDGoxPqtgdeBe7H381JgdphV/gPcBcwNLDDG/Mn97AL/Ayw0xuxyqjwN9HSeq58B40VkXAzN9cqe1sAC/GVqTeB9x10B/EFEznaV9Q+QW3+OcduzA9bPjGYlEWkEvAm8ALQAngPedJYH4yGgm3MNxgAPiMggp2wr9v3dEnuO3wJedq1bDDwDTIrt0JREUFXZELAtEZFIOvZW5/loBtwGPCUiPZz1TwCeB+7AysLuwP8BZTXcxkhMA07E6hCjgLsCnnM3pcAc4L+CFQbIwvZACY7MqoTcDUZQnbuG8L73TgIyse86L38OkGX9K7H9zIBtRHtuphH99UsHbsXKulOwuuOdrvK/AzuBDlhd+xdYvR2gCLgOqwe3wL7r3o7XM9egjVkRSXN6OPaKyHfAkIDyjSIySUS+EduL/LSItBOR95yetI9EpEVV22GMWQqsxl58sDc7xpiXjDFlxpgSY8wHxphvXG27QUTWOO34TkROdpb3cnqBCsWOdo5xrfOsiDzu9JwUA6NEpKOIvCYiBSLyo4i4DZBIXAv8rzFmizEmH/hfYEKIY9xhjPk78HUU2z0N+7C85lr//4wxHwOHYmhfsHZsB97n2LlGRMY456rQOXe9XGVBz6eITATGYx/8InGNIofZdylWcWoPtKrKccSJa4GnjTGrjTF7gT8S+vodMcbMNMZ8TpCXqTFmgzHGOzIi2M6LE1xVugGznPt5A9Ywzo7bkSgAiMjdIpIvx3r6Tw9R72qxI327ReT3AWXTROQVsSNSB8SOKp4kIlNEZKfYkcKzqtpW537JxfUsYmXwi8aYvcaYcmPMWmPMq662ZYvIh2K9VXaIM1Lp9C7PFOsVsNX53dgpG+n0It8tItuBf4lIkohMFpENzjmYIyIto2z6OGC1MeYVY8whrDLQX0R6hjjO54wx7wEHwm3U6eC6BisjvOuuM8YUu6oFPldRYYw5CswCskSkjbO/jmK9ZfaIyH9E5AZXW4KeTxFpArwHdJQAT5II+1+Cfcf1ibXt1cBIIAWYaYw5bIx5FCuzRger7MhHb0eycT7HO2WFxpiNxhjjbKMM1/UxxnxljPk38EN1HUx9RESOd+5Lr17T0dFRRoaof52jD+0VO/LX1VX2Vznm3bBMRH7uKpsm1uPoBRHZD0xw3vd/FDuKdEBEPhDHU8JZZ5hYL4dCEVnpbpOz7oMisgg4iO0gjoixvAvswQ4MgJWLPxpjPnbKDxhjXjPGbHL2lSzWs2OD085lItLZKfuZiHwt1iPgaxH5Wbg2ikhPl1xdJyKXRdNuh2uBPzoyew3wFKH1iHXGmKexsiASF2MNo8+c/zHJ3XAE6tzO+2Cq807cKSLPi0hzb30JoSOKyL+BLlijzOddEmHfe7C6bW2QhRDb9XvcGPOZow/mY98p7tHV7sAcY8whR9eeh6PnOcvWGWPKOSYrW2A7JqpMgzZmgfuwL6XjgRzsRQ3kYuBMrIF5AfZFfg+2dyEJ/9GnSiEiw7A3tncE4nugTESeE5FzJMBgFpFLsQ/yNdgevTHAbhHxAG8DHwBtgVuAWeL09DlcCTyIHf1c7NRfiR39PR24VeyIHWJdncO5bmU763pZSXwMlGuB1wKUuLggIp2Ac3DOtYicBLyE7W1qA7yLFUyNwp1PY8yT2AfZ26N2QRT7bowVEptdIy/Vhoh0cYRvlxBVgl2/diJSKUNbRK50FIJd2JHZf7iKZwLXiIjHuR+HAx9VZj9KcJzzejMwxBiTgZVpG4PU6w08DlwNdMR2rHQKqHYB8G/syyYP2wGUhJUT/43/ta1se1thFRT3yOsXwIMi8ksROTGgfgb2npnntPsE4GOn+PfAMKxy0h8YCkx1rd4e+9LsivUouQXrVfILZ1t7saMe3n19IyJXhmi633PjyKkNVF32/RwrZ15zL3SM7iJgC9AE6+UQE2JHHa8BdmOPFewI4hbs8V8C/ElEvAZd0PPpHOs5OCNK0XiSiGUE9vzkxdr2yiAi70hoN8Js4BvHAPXyDWGun4j8XUQOAmuBbdj3hLu8ENvR+hjwp6q0XbGdo8DdwAsikg78C3jOGLMwsK6IXIjVycZh3+GfYd/pXr7G3sctsc/OKyKS6iq/EHgVO1o2y1l2JfBL7PPYCGf0SUSysB4WDzjbuxN4TZwOIoersTImA/gpmuN1jKkx2E58rzxcDvQUG7IzSiqGRt2O9Xg4F6sHXgccFNspNxd4FCvbHwHmBrzX3W0sAD50zk1b4P8Bf3feE973+jcEwdFNO1B9euDzruc0bnI3iM49wfmMwnZANAX+5tQNqSMaY64GNnHMOy6id4nTMXIxNScLq/P6nYZ/x8RM4P+JSLrzrJyDfV+79/kNVla+BfzTGLMzyn2FxxjToD5Y5e4M5/cPwNmusonAloC6413/XwMed/2/Bch1fnfD9timRNEGb91CrBuFwbraiatOL+BZrLJx1Lnw7Zyy94HfBdnuz7EuoEmuZS8B05zfz2KFg7fsFGBTwDamAP+K8lyWYV3gvP9PdI5FwqyT4tTpFqI8HdgPjAxR/jkwoRLXvAg7MmKwCnCmU3YvtifJWzcJyMf23kdzPh+IsO9pwBHnWu8E5gODnLIJzrUtdH02BGm3u/wg8HmEOjdEeV424H//e8JdG1e9LaGuj+s++CPQ3rXsZ9gXx1FnH/fH+uzqJ+L1PMG5x84APEHuwxec338AXnaVNXHu0TNcdT90lV/g3GPJzv8M5xp6n6GFwPVRtnGhcw/vc7axAujiKk/DKqbLsC5p/wHOccquAPJCbHcDcK7rfw6w0fk90jm+VFf5GuB01/8Ozv6ikd9PA9MDli0iglzCurVOi7DdZ0OUCTY84n4gI8pzPY1jsqcMa8iOdMo6O8syXPUf8u4/ivO5JcK+u3HsHbfXOd+/dZUbrJx3y62cIO12fwxwQpg6C6I8L/fiuv+dZbPCXRunTjJwKraTxBOkvAnWpe68IGVneM+ffqL/YPWeVdjOhsau5QtxZA52gOG/XGVJWBnTNcQ292Jd3L330acB5QuxHTfe/zcB85zfdwP/Dqj/PnCta93/jvLYRmI9LQqxIWRlwK0BdYZh3XILsAbAs0BTp2wdcGGQ7V4NfBWwbAmOfApsI3A58FlA/X8A90VxDJ2d59ItW8+MdK9j31UmTHlX53x0dy2rlNx16nUjjM6N1QlvctXvgfM+IIyO6PzfiPPuDLP/hc49WeisOwto45Q961xbtyx7Lki73Z8jOLpnmDq9quv6OfWuw+qCrV3LemHf3V4971mC2ANAKvZ9fm00z0o0n4Y+MtsRG5vpJVgv2g7X75Ig/6uSSKi1s/4dWMHm8RYYY9YYYyYYYzphe5A6Yns9wN6AG4JsryN21K/ctewn7GiKF/fxdsW6ixV6P1hFsl2U7S/C9gh6aQYUGedurSTjsK42n1RhG8EYa+xo1UigJ/bcgz1nvuvunLvN2HMWzfn0ISLj5Zjr3XuuojnGmExjTFtjzGhjzDJX2RdOmfdzfJB2+8o5Fn8Qso4x5qmIZ8MS7PpBBHfISBhj1mN76/4O4PQUz8OO6KVi798cEQl2LEolMcb8B9t7PA3YKSIvS3AXUD+5Z2wP9+6AOoFybpcxpsz1Hyov+35rjGmOdadrgWtU2NiQij8ZYwZhRxXmYEdSWhJa7kHAc+z8dh97gbGuaV66Am+45N4arPIUjewLfG5w/lf6uXFGny7F5WLsxljysOc+XFx7IHMcudEO+Bbwxnp2BPYYY9xtdsu2SOczsP3uxCNuT5DWxpgWxphexrrzujk5QG69H9juANkX9Nhcn1Ehz4I/lbp+xoZIfI69X38dpLwYeAJ4XkTaRtkWJTxPYfWfx8wxV+9AugJ/dT3Le7CdP1kAInKnWBfkfU55c469/8FfJ/LizgtxkGOyritwaYDOdCq2Myzc9kKx1bm3m2FHUv1c3Y0xXxhjLjPGtMF2rp+G9ZqA8HpgoC4bSQ88JeCYxmO9WSJR5HwH6hFV0iGwBvnnxpgfA/ZVVbkbSucOJu9SsHIznI5YARF5wiUL3Qn7fuvIqSxjzHhjTIGr7OEAWXZtYLsDZGEw75zWAdtYE+FcQCWvn4iMxXZ+nmMcL0OxsdfzsHHNTbDn2hsb64exLscvAZNFpDLxwRVo6MbsNqxA8BLKHbPacF6Qj2B7ZoIq98aYtdgeDq+P/WacmJ0AtgKdxT+gvwu2J8i3OdfvzdiYDPcDkGGMOTfK5q/GuqB56U90sRDhuBZ/15K4Yoz5BHsuvUlntmKFOeCLW+uMPWeRzqdfG40xs8wx17tzqqP9cSbY9dthjAk0bCpDCsfu0eOAMmPM88aYo8aYLVgXx2jvMyVKjDEvGmNOxd7ThiAvEgLknmNI1XgMtzFmFdZd7/+c5y6wfD/WZbMJNhZnM6Fj0PyeY+xz6nZ/DZQnm7EvYrfsSzU2DigSfs+N2DjS46ma7LsIq4QvjFDP/VxFjaNwTASmic2iuRVo6bhue3HLtnDns4JsNv6JRzbF2r4aZjXQL+Ce60f01y/cNUjCehcFVXSV6HHcamdiR+SmSeiY9s3ArwKe5TRjzGKx8bF3AZcBLRxDYB/W2PUSi66xGTsy695XE2PM9Epuz65gDfW7gb6OoRCsztdYQyEaPbBrwLJIeuAnAcfU1BhTocMmSJv2Yt8n8dYD/XIHOMRF7obQuYPJu6PYTt1wOiJU1ANvdMnCWh1yUJnrJzY51FNY1+pVrqKW2PP2N2NzEezGhgeE0/M8RBlXHomGbszOAaaISAsnlvKWBLZlOjaZUKrYYPw7nDYhNqj/Cmw8GcA/gTtFZJATj3SC2IQHX2J7Ee9yYhNHYl0EX66wN8tXwAGxiVHSxCYU6CPRTwH0PHC7iGQ5I0B3YA3FoDhxKt6pXxoHxK1441lHEWR0QmwMayr2JeRxzlOSUzZSgqR5D8NM4EynR2gOcJ7YlO8e5xgOY+OJI53PHcTpQUwQzwP/JXZ6iUys+9yzoSqLTQDjvWaNnGsgTtn13tEIJ9ZmCsfiGb+3i+VKsbFB7bGuTUHjOJTKISI9RGS02NjsQ9hRvPIgVV8FzhcbE98IO2KeqHfBc9jeb29itXtFZIjref8d1mVqHTbDewcRudW5FzNE5BRnOy8BU0WkjdiYpD9g3XpD8QQ2Nrers982YmPvouENoI+IXOy08Q/YGMy1wSo7siMVe45TnOcmMJN8hU4851n5lfN+EhEZCvyGY8+VN0nhhGgabYxZh3WJvMsYsxkr4x5y2tMPm2HUe87Cnc8dQCtxJUipYyzEjsL/1rmPvNnf5wdWFJG2IvL/RKSp837Mwb6LP3bKzxSRgU5ZM2x8otet2nsNU7FKmzjnOlTWZMWfvwJLjTHXY2NAnwhR7wmsHpcNICLNxeYVARsScRTrppsiIn+g4uheLLwAXCAiOc41T3X0j8CcAzFjjDmCTaL5B/DlLLnB9V7tiZWTbj3wjyJyoiMf+omNi30XOMl536aInaKlN1Z+BuMdp/7VjqzyODK4V4j6gTyPlRUtnDbeQAg9wmlnKjYOGef8NQ6o8zNsZ1Bg5vWwcldsMq+FUbYZXDo3Vt7dJiLdxXai/AmbLf0o4XVEqB96YLTXbzTWRfpiY8xX7jKnw/RH4NfOfZeJfa9946w7zKtziLU37sa++7+My1GYOPkr15UP/jGz6c6FLAS+w6bPD4yZPcP13y/mCbge+Mj4+62nOP+fAJ4I0Qa/us4ywfaG3IJ9kOdge36Kne9/AM1c9W/EKnhFWPexgc7ybKyL7j7nmC5yrfMsATGeWBeKl7BuNXuxgtJ7fn6OdRsOdS4F+DN2RGGP89sd91sE/Nz13wR+ArY3hYDYDVfZwiDrj3TKrgYWRXPNXcsexyaZAjsq8p1zzj4Bsl31wp3PE7Exf4U4sdNB9j0NJ1YxSNkErFJVFPAZEqbdE6gYM1sSsP4bTlkX53+XMOfmdqww3o/tRXPHJa3GP2Z8Y5Br0M0p+5eznWKn3gz84zBGYxNx7HPutaeA9ETLg/r0wY4ufYV1EdqDVVI6BrsPsS+ZTVj34t/jLxcD6/rF+3Es7r2T838hx+LXIskMX13XsruxSivYDpVvnfvRO1L5M1fdPlhDYq9zH012lqdi3fS2OZ9HvfcfQWI8sYbl7VgZegDrrvenUPd+kOM4A5sMqMRpYzdXmZ/sx8rdwOdmgqs8C6twnxCkjfOc81CE7RS6h2NxXo2ctvcM0Ua/6+gsOwX7jLbFusu+42x/A3Cjq17I8+mUP+PcO4U491jAfroRJoeEU1aMv9yaGardrnXcMbOlVJSdbZ3y94B7wly/gdjYrhJsop2BrrJ7gPec322w8r8Qe0+uwpWTAOsavtbZdwHW6OrnKh8Z5NovTLSsqO0fbFKmfKCl878pNn5+vPN/IS45gtUBVjnXaDPwjLM82blX9zv38V2EkXUhtj0B/3fuKc49scd1zbuEWDfkfUhwuZSOTaB4AVbWvY19rxY57f4fnHht59imYg2IA9j3q1cmn+rc3/uc71NDHZ+zrIdzHAXY53o+MMApG4/NIhzqWjV2neMdwO2uMj8dhGNywf3ZGLC9fxAQl+wqCyd3nwYeDLGed7+hdO4krHG82TkHL2BH8r11w+mIF2LfpYXAnSH2X+Gcu8qexcbAuuXYrlDtdq0TGDMbKAtvr4brtwD7rnLv5z1X/QHOse7F3sdzOJbr5xfY5FJe/eQT4LR4yQzvS1FR6iwi8k/gFeMfc6UoilJvEZFTgd8YY65IdFsURVESiYiswCb1i0eYlFLHUGNWURRFURRFURRFqXM09JhZRVEURVEURVEUpQ6ixqyiKIqiKIqiKIpS51BjVlEURVEURVEURalzqDGrKIqiKIqiKIqi1DlSEt2AWGjdurXp1q1bopuhKEotY9myZbuMMW0S3Y54obJOUZRgqKxTFKUhEIusq1PGbLdu3Vi6dGmim6EoSi1DRH5KdBvCISIbsfOrlQFHjTGDw9VXWacoSjBqu6yLFZV1iqIEIxZZV6eMWUVRlDrMKGPMrkQ3QlEURVEUpb6gMbOKoiiKoiiKoihKnUONWUVRlOrHAB+IyDIRmZjoxiiKoiiKotQH6rybcWlpKVu2bOHQoUOJbkq9JDU1lU6dOuHxeBLdFEWpy5xqjMkXkbbAhyKy1hjzqbuCY+ROBOjSpUuFDaisq15U1ilKfBCRZGApkG+MOT/W9VXWVS8q65T6Rp03Zrds2UJGRgbdunVDRBLdnHqFMYbdu3ezZcsWunfvnujmKEqdxRiT73zvFJE3gKHApwF1ngSeBBg8eLAJ3IbKuupDZZ2ixJXfAWuAZpVZWWVd9aGyTqmP1Hk340OHDtGqVSsVeNWAiNCqVSvtHVWUKiAiTUQkw/sbOAv4NtbtqKyrPlTWKUp8EJFOwHnAPyu7DZV11YfKOqU+UudHZgEVeNWInltFqTLtgDecZykFeNEYM68yG9LnsfrQc6socWEmcBeQUZWN6PNYfei5VeobdX5kNtHs3r2bAQMGMGDAANq3b09WVpbv/5EjR6p132vXrmXAgAEMHDiQDRs28Oijj9KrVy/Gjx8f87ZmzpzJwYMHq6GVihI9uXn5jJg+n+6T5zJi+nxy8/IT3aQqY4z5wRjT3/lkG2MeTHSbKoPKOqUuUh9lSm1FRM4HdhpjlkWoN1FElorI0oKCghpqXfSorFOUuoUYUyE0q2YbEEOigMGDB5vAybXXrFlDr169qrGF0TNt2jSaNm3KnXfe6Vt29OhRUlKqZwB8+vTpHD16lKlTpwLQs2dPPvroIzp16hTztrwTl7du3bpCWW06x0r9JTcvnymvr6KktMy3LM2TzEPj+jJ2YFbYdUVkmTFmcHW3saZQWeePyjqlMlRFptRWarOsE5GHgKuBo0AqNmb2dWPMVaHWUVnnj8o6RbHEIutqg5txlRIF1EYmTJhAamoqeXl5jBgxgmbNmvkJwz59+vDOO+/QrVs3XnjhBR599FGOHDnCKaecwt///neSk5P9trds2TJuv/12ioqKaN26Nc8++yx5eXnMnDmT5ORkPv74Y3r06MEPP/zAOeecw3XXXcfEiRO55ZZb+PbbbyktLWXatGlceOGFlJWVcffddzNv3jySkpK44YYbMMawdetWRo0aRevWrVmwYEEiTpvSwJnx/jo/pROgpLSMGe+vq7OKZ31HZZ1Sm1GZUrMYY6YAUwBEZCRwZzhDti6hsk5RKsc338DLL8ODD0J1ebgn1Jh1JQp4ELg9kW2JN1u2bGHx4sUkJyczbdq0oHXWrFnD7NmzWbRoER6Ph5tuuolZs2ZxzTXX+OqUlpZyyy238Oabb9KmTRtmz57N73//e5555hluvPFGP2E6b948FixYQOvWrbnnnnsYPXo0zzzzDIWFhQwdOpQzzjiD559/no0bN7JixQpSUlLYs2cPLVu25JFHHvGtqyiJYGthSUzLldqByjqltqIyRYknKusUJTY++QTGjYO0NPjd76Bdu+rZT6JHZuOSKMDNyJEVl112Gdx0Exw8COeeW7F8wgT72bULLrnEv2zhwsq149JLL63QExfIxx9/zLJlyxgyZAgAJSUltG3b1q/OunXr+PbbbznzzDMBKCsro0OHDhH3/8EHH/DWW2/x8MMPAzY74KZNm/joo4+48cYbfS4yLVu2jPnYFKU66JiZRn4QJbNjZloCWlP7UVlnUVmnhEJlSuIwxiwEFsZjWyrrLCrrlLrE3/4Gt9xif2/YUH2GLCTQmHUnCnDcUULVmwhMBOjSpUsNta7qNGnSxPc7JSWF8vJy339vSnRjDNdeey0PPfRQyO0YY8jOzmbJkiUx7d8Yw2uvvUaPHj1ibLmiJIZJOT2CxrdNytF7uDajsk6prahMUeKJyjpFiY4ZM+Cuu+zvTz+F446r3v0lcmR2BDBGRM7FSRQgIi8ExlcYY54EngSbKCDSRsP1uKWnhy9v3bryPXbh6NatG++88w4Ay5cv58cffwTg9NNP58ILL+S2226jbdu27NmzhwMHDtC1a1ffuj169KCgoIAlS5YwfPhwSktL+f7778nOzg67z5ycHB577DEee+wxRIS8vDwGDhzImWeeyT/+8Q9GjRrl546SkZHBgQMH1B1FSRjeGLYZ769ja2EJHTPTmJTTQ2PbQqCyzqKyTgmFypT6gco6i8o6pS6wcOExQ/bLL2Ho0OrfZ8Km5jHGTDHGdDLGdAP+HzC/viQKCOTiiy9mz549ZGdn87e//Y2TTjoJgN69e/PAAw9w1lln0a9fP84880y2bdvmt26jRo149dVXufvuu+nfvz8DBgxg8eLFEfd57733UlpaSr9+/cjOzubee+8F4Prrr6dLly7069eP/v378+KLLwIwceJEzj77bEaNGhXno1eU6Fn8UhaLp4zm7avOY9Hk0ap01jFU1im1jbEDs1g0eTQ/TleZosQPlXWKUpElS6zbf+/esGVLzRiyUAum5gG/rHd1emqe+oqeY6UmeP11uPhi+3v3bogl7Kc2T1dRGVTWJQY9x0ptR2WdEg/0HCvx5r33bHz68OHw4osQECoeM7HIuoSNzLoxxiyMZMgqilJ/eeYZuPRSyM6GH36IzZBVFEVRFEVREsPEiedj6oQAACAASURBVHZEtmdPmD276oZsrCQ6m7GiKA2cRx+1KdtHjIB586Bp00S3SFEURVEURYnEFVfYeWQBPv4YMjNrvg1qzCqKkhCMgauusu4o48bBrFmQmproVimKolQ/uXn5mphKUZQ6zT33HDNkN29OjCELaswqihJnolHSysvBO13foEHWLSVFpZGiKA2A3Lx8vymD8gtLmPL6KgA1aBVFqRM89xxMn25/b9sG7dsnri21ImZWUZT6gVdJyy8swXBMScvNy/fVKSs7ZsiCTd2uhqyiKA2FGe+v85v7FqCktIwZ769LUIsURVGi51//grvvhjPOgOLixBqyoMasoihxJJSSdsecleTm5XPkiI2vAGjc2H+EVlEUpSGwtbAkpuWKoii1hb/+Fa67Dk49Fd56y871nGjUmI0DTUNkrJkwYQKvvvpq1NvZuHEjffr0iVezFKXGCaWMlRnD3bNX06PvEV55BR5+GA4dApEabqASd0aOHEng1BoAzz77LDfffHNM2+rWrRu7du2KV9MUpVbSMTMtpuVK4lH9TFGga1e49VYYPbp25TlRY1ZRlLgRShkrP5zCT7MGs/H7Rvz5z3DHHTXcMEVRlFrCpJwepHn8XVLSPMlMyumRoBYpNYUxhvLy8ipt4+jRo3FqjaJET6tWsGmT/f3229a7rrbQ4IzZ3Lx8RkyfT/fJcxkxfb5fLF9VMcZw880306NHD8444wx27tzpK+vWrRtTpkxhwIABDB48mOXLl5OTk8Pxxx/PE088Ebc2KEoiCaakHdnVlM0zczi8pSVtxixn0qQENa6BUR2yrri4mPPOO4/+/fvTp08fZs+e7Vf+r3/9i5NOOomhQ4eyaNEi3/IJEybw61//mmHDhnHcccexcOFCrrvuOnr16sWECROq3C5FCUZ1vu+rwtiBWTw0ri9ZmWkIkJWZxkPj+mryp0oS7+v89ddf069fPw4dOkRxcTHZ2dkUFRX5ysvKypg0aRJDhgyhX79+/OMf/wCgqKiI008/nZNPPpm+ffvy5ptvAnZUt0ePHlxzzTX06dOHzz77jF69enHDDTeQnZ3NWWedRUmJ9WrasGEDZ599NoMGDeLnP/85a9euBawMvfHGGznllFO46667qnR8ihIr06bBnj32d0lJ7XAtdtOg0q5UdwbBN954g3Xr1vHdd9+xY8cOevfuzXXXXecr79KlCytWrOC2225jwoQJLFq0iEOHDtGnTx9uvPHGKu9fURKJN4uxO2b28NZMtv97BAAZQ37gxOGFiWpeg6K6ZN28efPo2LEjc+fOBWDfvn08/vjjAGzbto377ruPZcuW0bx5c0aNGsXAgQN96+7du5clS5bw1ltvMWbMGBYtWsQ///lPhgwZwooVKxgwYECl26UogVTlGaiJaXPGDsxS4zUOVIesGzJkCGPGjGHq1KmUlJRw1VVX+YWTPf300zRv3pyvv/6aw4cPM2LECM466yw6d+7MG2+8QbNmzdi1axfDhg1jzJgxAKxfv57nnnuOYcOGsXHjRtavX89LL73EU089xWWXXcZrr73GVVddxcSJE3niiSc48cQT+fLLL7npppuYP38+AFu2bGHx4sUka6IJpYYwBh58EO6/Hy67DP79b2jUKNGtqkiDMmbDZRCMx0vl008/5YorriA5OZmOHTsyevRov3KvUOvbty9FRUVkZGSQkZFB48aNKSxUJV+pu0zNXcWsLzZhXMtK96b7DNnM09bS/rSNTMrpm5gGNjCqS9b17duXO+64g7vvvpvzzz+fn//8576yL7/8kpEjR9KmTRsALr/8cr7//ntf+QUXXICI0LdvX9q1a0ffvvZeyM7OZuPGjWrMKnGlss9ALMaRzhWbeKpL1v3hD39gyJAhpKam8uijj7J582Zf2QcffMA333zjy4myb98+1q9fT6dOnbjnnnv49NNPSUpKIj8/nx07dgDQtWtXhg0b5ttG9+7dfTJv0KBBbNy4kaKiIhYvXsyll17qq3f48GHf70svvVQNWaXGMAbuugueeQZuuQVmzoSkWurP26CM2URnEGzsOJgnJSX5fnv/awyEUpsJp7Tl5uVXMGQPb2vOztcGk5R2mLZjl3NcvxIm5agbXU1RXbLupJNOYvny5bz77rtMnTqV008/Pep1Vf4p8SBaA7Kyz0C0xpHOFVs7qC5Zt3v3boqKiigtLeXQoUN+ZcYYHnvsMXJycvyWP/vssxQUFLBs2TI8Hg/dunXzrdukSRO/um4ZmJycTElJCeXl5WRmZrJixYqgbQrchqJUF+XlkJUF27fDb35Tuw1ZaGAxs9WdQfC0005j9uzZlJWVsW3bNhYsWBCX7SpKIgk2d+yts1cw4P4PfIqlnyG7NZPts4ZTXpxK+yu/YNuLw1k0ebQqeDVIdcm6rVu3kp6ezlVXXcWkSZNYvny5r+yUU07hk08+Yffu3ZSWlvLKK69UaV+KEkg081h7qewzEK1xpHPF1g6qS9b96le/4o9//CPjx4/n7rvv9ivLycnh8ccfp7S0FIDvv/+e4uJi9u3bR9u2bfF4PCxYsICffvoppn02a9aM7t27+2SnMYaVK1dW6TgUJVbKyuyUidu3Q7du8NhjtduQhQZmzFZ3BsGLLrqIE088kd69e3PNNdcwfPjwuGxXURJJMKUNoLCk1KdYetm35Hi2/3sEKRmHyLpxPt1OqLieUv1Ul6xbtWoVQ4cOZcCAAdx///1MnTrVV9ahQwemTZvG8OHDGTFiBL169arSvhQlkFgMyMo+A9EaR4n29FIs1SHrnn/+eTweD1deeSWTJ0/m66+/9sWtAlx//fX07t2bk08+mT59+vCrX/2Ko0ePMn78eJYuXUrfvn15/vnn6dmzZ8z7njVrFk8//TT9+/cnOzvbl0RKUWqCsjJIcfns/vBD3ZhCUYwxkWvVEgYPHmwC5zNcs2ZNTEqTxrjETqznWKlfdJ88l3BSIlmEMmPY9W4/ild1BiDrNx/haXqYv1w+oEaeLxFZZowZXO07qiFU1iUGlXW1m1CySIAfp59XYXllnoFA92GwxlFgtuER0+f7deR5ycpMY9Hk0RWWxwuVdRVRWRc7KuuUQI4ehV/+El54ATIyYN++xBqysci6BhUzC5pBUFFipWNmWlClzUuZMRz4rJfPkO04cQGepocZP6yLPmsJRGWdUt8IJYtCjaZW5hnw1o9kHE3K6RHU6NW5YmselXWKUjVKS22Sp9mz4YEH4Pe/T3SLYqPBGbOKosTGqJ5tKiR4cpO05gT2LD4OgE6/+YgunZKYlFMzI7J1CRFJBpYC+caY8xPdHkWpa9SUARmNcRSt0asoilKbOXwYrrgC3ngDHn8c6uJMoWrMKooSkty8fF5blh/UkDUGihf3YPfnJ3DBBTBnDsxb04sZ76/jttkrmPH+OlXu/PkdsAZoluiGKEpdpLYZkDoiqChKXWbfPsjMtL9nzqybhizUE2PWGIPUhQjlOkhdiqlWoifaGKNQyZ+MgcKFPdn/1fG06FXANVOPMG8NOlVFCESkE3Ae8CBwe2W3o7Ku+lBZVzeoKQNS4zATi8q66kNlXd0k3jJpzx5o1cr+7t8ffve7ODU0AdR5YzY1NZXdu3fTqlUrFXxxxhjD7t27SU1NTXRTlDgSy/yIwTJzmjJh08PnAtB04EYyzlzNvW8n0zglqVomr68nzATuAjIquwGVddWHyjrFjc4hm1hU1lUfKuvqJvGWScXF0KWL/T1iBHz+edyamhDqvDHbqVMntmzZQkFBQaKbUi9JTU2lU6dOiW6GEkfCTW8RKBQDE66Ulyax+ZFzfP9bnrkaEbt+sBFc0KkqROR8YKcxZpmIjAxTbyIwEaCL9y3jQmVd9aKyTvESi4xU4o/KuupFZV3dI54yqaQEzjnHfl976z7Wt1tG98l12wOlzhuzHo+H7t27J7oZilJnCJWZ2Gt0ul1ZMtM9eJKE0nJDeWkSBa/bLOlJqUfo/LsPo9pfVSevrweMAMaIyLlAKtBMRF4wxlzlrmSMeRJ4Eux0FYEbUVmnKDWDziGbWFTWKYo/ofS2wOWRXJH37YNzz4WtW+G2B/cwt/grSgrrvgdKnTdmFUWJnty8fASCJnTqmJlWwZVl78FSkpOE8sMp7Hj5FI5sb07LM78l4+SfKqzfIt3DodJynaoiAGPMFGAKgDMye2egIasoSuLxKoKhIgpDdczFGsu2aRNMmQKPPALt2sWh4Yqi1GuSRSgLEuucJHbO662FJTRP81BYUuoryy8s4fbZKwBrnG7YAH36QFmZnYLn4XUrIo721pXcAWrMKkoDIpSiJthpL4K5shwpTmHnK0M5sj2TVuevoGl2foX10zzJ3HdBtm8ftV3wKYqiuAnsyAskVMdcrLFsCxfCqFH292WXwYUXxqf9iqLUX4IZsgDl5tjorNuQ9ZUDU17/hp5pWfTqZZe1uXAZ/71qN3sPVqwP/l56dSV3gBqzitKACOUmZ4BbnR48N4e3NWf786ciKWW0ufhr0k/Y6StLEitIswKM1tom5GoTxpiFwMIEN0NRlABCZW6HijIu0nqhYtkeffRYxtB7762fhqyIpAKfAo2xOuarxpj7EtsqRanbZAXkL4mF/QWNfYZsxpAfSO+5nb0HQ9f3eqDUpdwBaswqSgMiMKFTOEo2tmLn7GEAtB6z3M+QFeCHh86rjiYqiqLUOKE6+gRYNHl0zOsFLv/1r+GJJ+zv3Nz6acg6HAZGG2OKRMQDfC4i7xljvkh0wxSlLpKbl0/hwSOVWvfogcbsfGUoAM2HryfztO8jrlN48Ai5efl1KneAGrOK0oCYlNOD22avCBkT5uVIQVOfIdvyzG9JP3GnX7kmdVIUpTqp6VitUB19kWRdNOvt3XvMkP3uO3yjJPURYycxLXL+epyPTmyqKDEyNXcVs77YVOmH5+j+VApyT6asKJV2Vy4mtfPeqNYrPlLGpFdXVojB9ZIkQm5efq0anU1KdAMURal+cvPyGTF9flSG7OFtzdnx4nDAjsgGS/bU0JM6KYpSfXhjtfILSzAci9XKzasYrx/NtkZMn0/3yXMZMX1+yG1MyulBmifZb1k0CezCrVdSAjNmQHo65OXZqTDqsyHrRUSSRWQFsBP40BjzZaLbpCi1gWjl0finlvBCVQzZfWnseHE4ZQfSaHfFkqgNWS+lZQYRKsg2sPG7lZXH1UXCRmY1rkJRaoZIiU3cHNrUkh0vDSe52UE6XrMIT4uKgRVpnqRa1SOnKEr9Il6xWrEkMPH+jzQaHGzE+KFxfSss69c8i/R0u84JJ8BFF8V0Cuo0xpgyYICIZAJviEgfY8y33vJIc2orSn0kGnmUm5fP/W+vDpmcKRpKfmjNzldOAQztr1lE4/b7K7WdwoOl/OXyAdwxZ2WFBFSxyOOa8LJJpJuxxlUoSpwIJizAKmbRxsgWr23P7rkD8LQ6QJuLl5Le6iCl5f51PEnCQ+P6xbv5iqIoPuIVqxWrUTx2YFZYJSuUMvrQuL5+cbUffgjHn2x/n3VWwzJk3RhjCkVkAXA28K1redg5tRWlvuDWzZKCTK9TUlrG/W+vZuzALHLz8pn06kpKyyr/SBxc346C1wcD0Or8FTTusK/S2+qYmcbYgVncFiQ5KEQnj2sqI3LC3IyNReMqFKWKBHPJm/TqSia9sjJqQ3bna4PY9eYgJLmcdlcuwdPCGrIjjm9Jsghg5zm7fGhnHZVVFKVaCRWnGmusfrwTmIQzjr088og1YAEefBDef79Su6qziEgbZ0QWEUkDzgTWJrZVilLz5Obl+/QwQ+jpdfYeLGXgf3/ArbNXVMmQPVLQ1GfIth6znKbZWyu9LU+y+AZFqiKPo5GZ8SChMbMaV6EoVSeYsCgtM5SWRycUtz3/M0r+0x6ADtd9SnL6MfeWRRv2+ARwmTG8tiy/VsVJKIpS/6hs/Gog8TKKvUQyjnfsgDvusMvefRfuuadSu6nrdAAWiMg3wNdY3e6dBLdJUWqcaW+tjloPq4pbMcCRnRnseGkYSWlHaHvJVzTpta1K27t8SGcARkyfT35hCRJQHq08rqmMyAk1Zo0xZcaYAUAnYKiI9AmsIyITRWSpiCwtKCio+UYqSi2nKkJh35fHcWRbCwA6/fYDUpodClu/OnrUFEVR3IwdmMVD4/qSlZmGYOdYfGhc35i9QuJlFHsJZQR3aJ7G3LnQti28+irs2gXnnFOpXdR5jDHfGGMGGmP6GWP6GGP+O9FtUpSaJjcvP2gm4Org8PZmFOQOIrnJYdpftYi046tuK72zcpvP4w+s26zXoE0W8emCkQY34t2hGIpaMTVPqLgKp0xjKxQlDLHMHevFGNjzYR+K8rqS3nMrrc9fgSRH93jVxjnGFEWpX0SKX3UTKsFItEmdomVSTo8KyfQalTdiyT2jOR+YOxcuvrhSm1YUpZ7gDf2qCYq+zWLPh9kkpZXS7vKlpDSPj34WzBD3GrReb71o4l+DycyqdCiGIpHZjNsApY4h642r+J9EtUdR6irBhEVyklAWwr3FGNj7UbY1ZE/aRusL8pAYfDR0jllFUWoLkRKMxGIURyLQOG5xtCV5/2unMWvevOGOxiqKYsnNyw+a/bc62PfF8RR+0hOA9v/1aUTPungQeFSRshrHu0MxFIkcme0APCciyVh35zkaV6EosRNMWBQfPhq8Z+1oEpv+12pczYZuIHPkWiQwGCIM1dGjpiiKUlniNY1PtHiN47lz4fzz7bIxY+DNN+O+K0VR6hDejrXqMGSzMtMY1bMNL321mbJyQ+GiE9j3udXF/vzvnTyx+jBVyB1VJSJ568WzQzEUCTNmjTHfAAMTtX9FqU94hYXX3S6YIVt+OIXNM3MA8LQ64GfIZgVM5+M1ikf1bMOCtQXV2qOmKIpSWWJNMBLtnIfh6j317nYmnm+T5nU9Zz2/nJYOqFxUlIZMsI61eHDVsC48MLYvAIO7tuT3jxXwk2PIPvLyDm67vB3/NzmyJZscZGqgeFAbvPVqRcysoiixE6hsjerZhteW5QcVpuVHkn2GbErLIjpe/6lfuXuORDVWFUWpK4TKGRBMwYp2zsNw9bZuSubRr1fQfMRxpJ+0HdoeYMrryRW2oShKwyLW3CWhEKw7b7IIV5zS2WfITs1dxTNzitn+2iAatdnPTTO2cNvlvYHIhmqaJ5mLB2WF1BErS23x1lNjVlHqEF4D1psq3Su68gtLeOGLTUHXKSvxsPOVISDlNBvyIy1G+U/51yLdU72NVhRFqQLhRkljSTAy7a3VUbkkBxthOXikjIsGdQQjtBvfjMxT14fdhqIoSmVI9SRXyN4+NXcVT/77MAW5Q0ntspvWY/J4Y00pTXLLeGBs37CGbJZLZg7u2pJpb62u4L3nSRaaNEqJKQNzVi3y1lNjVlHqCIGjBdE4i5QVNWbb8yMoO5BGm4uWkn7Sjgp1aiBPgaIoSqWIJsETRE4wEm6qjPzCErpPnutbN9BFufxQCpv/muP737hDYYVtaJZ3RVHiQbDOsZlTWlG8tiONOuylzYXLSUo9CsCLX25iwdrQU/FkZaZV8Lxzh6S5ZSZQoWPQkyxg8JsvNy2IsZ1o1JhVlDpCrPEYh7dmsuvtAZQf8tD20q9IOy64wNtXQ3OhKYqixEo0CZ7cRq1XSbtt9go/wzbS/NiGY4Zy8zSPz/At3dWUrU//AoDk1FKG/uEztu6r2ANYG+LGFEVJDJHmW40Vdwfb4bk/o3htRwDaXfaVz5AFKDeh3ZvDuQCHS8oUzMit7mzEVUWNWUWpI8TS83/w+3YUvDEYgPZXLaJxVsWRBC+qhCmKUluJJcFT2FjXKOVnSWkZqZ4k0jzJHNjVyGfIZvTexvMvlAM1M2+ioih1h0idZZXBAGs+aM/ez1MB6HTzh36GbDhapHu474LsmI3OUEZubTNeA4lhdklFURJJtEZn8dr2PkO21fl5YQ1ZVcIURanNhJJ7SSIVRkPCjeLG0mm392ApF/TuTOeOSaSftJ0TL1/N8y+U+xS9h8b1JSszDcG68dU2lztFUWqWeCV/cnNgRWf2LuhNUuNSTrrjY5KbHIl63UOl5XFvT21GjVlFqSNMyulBmic5bJ1DW1qw+93+ALS95CuaZm+tUCczzaNKmKIodYJQcq/MGKa8vorcvHxy8/IZMX1+SIVya2FJVPLTy445Q3j46l5c1bcXxeva8/3L/iMcYwdmMSmnBx0z09haWMKM99fF3c1QUZS6wdTcVXHf5v5lXdm35ATSjttJp5s/4nDKIb9yAdI8oU04bydeQ0HdjBWlFhMYpH/xoCxe+nJz0Mx1XtfilJZFtLv8S1KaHapQxz1fmaIoSm3Ha0TeMWdlBblXUlrGPa9/g0HC5hPomJnG2IFZLP1pD7O+2BQyeZ4ph00zzvP9f+LL1fxmbLsK9aKd4kdRlPpNbl5+yJkkKsveBT3Z/9XxpJ20nTYXLkeSKkqslGTh4kGdwk6105CS0unIrKLUUrwKU35hiS85yeyvghuyxWvbU/DmySQ3PUT7K5cENWTTPElqyCqKUucYOzCL8hBp1w+Wloc1ZN2hFAvWFoQ0ZMtKPH6GbOfb3+OAKWFq7ipGTJ9P98lzGTF9vq+DMZQ7s6IoDYd4P/Ob/nIW+786Hk/bfbQZE9yQBSgtMyxYW8BD4/qSLBK0TkPKh6Ijs4pSSwmmMLnTo3vZ/sJwDue3pHGnPbS95GuSGldMEOBJEh4a16/a2qooilIVws0lC1YxizUuLXAexFAjFWXFjdjytzMBSG5yiKzffIxXP3SP5HpHYHUkRFGU3Lz8uMXKGgOb/nwu1oEYek78igOlJuwUjFsLS3yyraEnpVNjVlFqKdEoRlv+PpqyA7b3re2lX5HUqKKSlSzC5UM7B52uQlEUpapEMkSjWT+S2+6knB7cOntF1NsMnF8R8Jtyx4sxYMqF5GYHSTt+J63OWu1fHrDdktIykkWCesg0pJEQRWnIeGVWPDAGCj/tgdeQfeXLfC4ZajvXwuUC8MqbaOfars+oMasotZT0RskUHwk+AmAMFC7s6TNkO982L6ghC9AoRZj99WZKy6zypfFdiqLEi3jEj0Y7l+z9b69m78HI82J7koXiw0d98zR6FbtAb7x9S47n4Pp2tLvsK7J+tTCkS18gZcaQ5klu0CMhitIQ8XbcxXNEdt+iE9n/xQk07f8TLc/6lkuGHgt3mJTTg0mvrKzgledJFj95E27e2IaAxswqSi1k/FNLwhqyez7MtgkCTthBlzvfJalRGZ4k4aphXUgPyHBXUlruM2SPLdP4rppERFJF5CsRWSkiq0Xk/kS3SVHiQTziRyPNJevNVrz3YCnBo8OO0SLdAwYKS0p9uQZunb2C7D/M8zOEtz03gsJPe3JkWwvKS5OjNmThWCZ4nZ5HURoOU3NXcdvsFXE1ZPd+lM3+L4+n2bD/0DLnWzq19PfuGDswixmX9iczzeNb1iLdw4xL+qu8caEjs4pSS8jNy4848mDKhd3v9aX4285kDPqRFqd/5xttaJqawuCuLZkVZWY9je+qUQ4Do40xRSLiAT4XkfeMMV8kumGKUhUiGaLRECoetmNmWoWR31AmpydZaNIoJaT89HYOmnJh04xzfcuzbvqIlIzDUbfVOwLb0EdCFKUhkZuXHzYTeqy45VDGkB/IPG0dSUJQ7w6VNZFRY1ZREkxuXj7T3lpdIZYrkPLDyWz/9whKd2fQfMT3NB+x3s9tbu/BUma8vy5qYavxXTWHMcYARc5fj/OJ13tRURJGOEM0FIExtqN6tqkwxYTXaAw28gt2dCK9UQpbC0vITPdQdOhoZBlamsTmR87x/e9yx3skpZTzs+NbsmjDnojHGphQSlGUhkEsulUkTJmw6WFryEqjUlqMWoOIVQhUtlQOdTNWlATiHXWIpISVFTdi88yzfYZs5qnrK8R/AVG7v2h8V80jIskisgLYCXxojPkyoHyiiCwVkaUFBQWJaaSixMiknB6keZL9loWTL8GmHHttWT4XD8oK6rYbaoS38GApiyaP5sfp55HeKCVopvdAju5pCoCn1QG63DUXSSnHALNuGG7dk8MgwKLJo1XZVJQGSNxci8uPGbJg6HzrBz5dLksHGCqNjswqSgIJNergpvxQim/aiMadd5N56vqQdYXQw30t0j0UHixtkJnuagPGmDJggIhkAm+ISB9jzLeu8ieBJwEGDx6so7ZKnSDWTJqhYmwXrC2okH0YIo/8RjM9RsmPrTm4rj0tz/qWTjd/SHKTI74yrwJZGCGxlHqyKErDJVQG82gRoLxM2PX2AAAatS+kw7WLfOXeDsCqZoZvqKgxqygJJJISVlbciB1zhgKQ3jufNheEn5rCUNGgFWD8sC48MLZvldqqxAdjTKGILADOBr6NVF9RajuxxHTFGmM7KadHyDkUc/PymfTKyrD72/NRbw4s6w5A8+EbSGl+bD/uEeRw89gKMKpnm7D7URSl/lIZQ7ZJo2QevKgvM95fx5Zdh9k9ry8lG9vQYtR3NBv6o69ei3QPxsCts1f46W8680T0qJuxoiSQ5GC+wg5H96eS/49RHN3TlLaXfhnRkPViwM9d7y+XD1BDNsGISBtnRBYRSQPOBNYmtlWKUvOEGuFMEqH75LmMmD6f3Lx83/KxA7O4eFCWT1aKgGC4bfYK7phTccoKNzue+YXPkG1/9ed+hmyLdI9fBuJg7tJeDPDasny/dimK0nCojAtwZnojxg7MYsuOUna+Poji1Z1oMXKNz5AVYOblAzhUWu4LNQs2r7XOPBEZHZlVlAQSqrevdE8Tdrx8ChihzbilpHXfFfU2szLTgrrrKQmlA/CciCRjOxHnGGPeSXCbFKXGCTbSCsdkoXcqnfvfXs19F2QD1pD0lhsDB0vL/dYJxJTDphnH5mp85oNt/HPZEbYWEtJ1z+0uHWyENnDeW0VRGg6Tcnpw6+zoXvzoNQAAIABJREFUBhS85BeW0OV3H7D50RwAWuZ8Q8aAzb7y5mmeqELNdOaJyKgxqyjVRLjYB29ZMIpWZbH73QGQVE6HaxbRqN3+qPepiZ1qJ8aYb4CBiW6HoiSaSEajl70HS7lt9opKZRA9tLmV73eXO9/l0SUp3HdBdkRD1Osu3X3y3KD7VaVSURomYwdmxWzMlhU38st34jZkAYqPRM7ADhqvHw1qzCpKNRA4N6J7tOG8fh14IcRcsPu/6s7eBb0BaDtuaURD1pMkNE1N0cROiqLUGbwy6o45K8PGosVqyB7dl0bJhrZknPwT7a/5nMYd9gHWML519gpunb0iqul1KjPdkKIo9Zs0TxIljldIJMoPp7D9xeF2veN30PaSpRXqlJaZiImldIAiOtSYVZRqIJTryN6DpSEN2ZIfW/sM2XbjF5PaaW/Yfeich4qi1CW8Hin5hSVhM69XhqJvOrH7vf4ApJ243WfIBhJNUpVwSacURWl45Oblx2TI7nx9MEcL02l9QR5Nem8NWbfMGNI8yX6yxisbVceLHjVmFaUaiNUdrWh1R3a/1w9Pm/20vXipX6ISNyrcFEWpiwR6q8TTkN09rw9FK7sC0Or8PFIyDoetHyn+NdbphhRFqd/c//bqqOqVlXjYOWcoZQcb0WbsctJP3BFxnVRPEo1TkthXoh52lUWNWUWJM7l5+STFMCdZ0apO7H63Pyktimh35RKSU49WcwsVRVFqlmgSnURDZpqH0rJyio+UYQxsfeoXHN3bFIAOEz6LOsdApA7HWKYbUhSl7hIsvwn4d2btjTAPNcCRXU3Z9vQvILmMthctI+34Ar9yT7JQWlZRL9x7sJQ0TzJ/uXyAypxKosasosQR7+hDtIbsjjlDOPRjW1K7FtBm3DKSGoVX9nTeMUVR6iKxeqsEuiGneZJ9U+mMmD6f4iMllPynnc+Q7XTLBySnR1Y4vTRP8zBi+nwdeY0zItIZeB5oh72ETxpj/prYVinKMdzGa2a6h6JDR31TfOUXlti5qwWf4RkuUZ2XIzsz2Pav0wBolbOqgiGb7kniT+P6abb0akKNWUWJI9PeWh3V6IMxsOnhc6DcTvXc9pKlSEp08Rgq9BRFqa2EyuIeKqlSMLyJVrzJUQLDKzbvOMKR7a1IO2EHrc5bQZPe+UhS9G30JIlfJlHtJIwrR4E7jDHLRSQDWCYiHxpjvkt0w5SGR6A8GtWzDa8ty/fpacFGXMPNXR2Mowca+wzZ5j/7nqZ9K85H7TWMF00erdnSq4EYxH98EZHOIrJARL4TkdUi8rtEtUVR4kFuXn5UadaNgfwnRvkM2S53vBe1IetFhZ6iKLWNqbmruG32CvILSzAcMxJz8/JjSp5U4ppH1pt4yWtkLl4Mm2eezY6Xh1Fe4qFpn8iGbGaah6zMNASbd6BpakoFdz9vJ6FSNYwx24wxy53fB4A1gPYQKDWO11POLY9mfbEpLuEOXo7uT2WHk7U48xdryfz5+qD1SsuNT76Eyoqu2dIrT8KMWY713vUGhgG/EZHeCWyPolSa3Lx87pizMmI9Uw575vWlbH860qiULpPmxmzIggo9RVFqF7l5+cz6YlOFEYeqGonu9Z98EkaMsMubD18fk1vxpJwe/Dj9PBZNHk1hiPg37SSMLyLSDTu/9peJbYnSEAkWpx/PxHOlhWnsevNkykoa0f7qRTQftiFsfa98mZTTgzRPsl+ZZkuvGglzMzbGbAO2Ob8PiIi3905dUZQ6gXuaiWgwZcLOV4dwaGMbmv/se5qfuh6R4HVPbNuE9TuLQ25LhZ6iKPEklHtwtPVmvL8upKKYX1gSVWdfKLYWljBhAjz3nP1/0pWrONw5+BRnwSgsKfVzI9Z5ZKsfEWkKvAbcaozZH1A2EZgI0KVLlwS0TmkIVGfnVOnuJuyYfQqmNJkOVy3G07ooZIInL175otnS40+tiJnV3julrhE4zUQkyg8nU/DmydaQHfE9macGd0Xx8kPBQbJCKFyZaR4VeoqixI1AeRYqhjRcvUiKY7RJ8YKyMYvnZtufK1fCD2UtmfJ6fkzugu5cAzqPbPUiIh6sITvLGPN6YLkx5kngSYDBgwfHc7BMUXzEEqcfCwe/b0fBG4MB6PDLT/G0LgLg8iGdWbC2IOg82oHyRbOlx5eEG7Pheu+ccu3BU2oF7hEJxMa+RsPR/ankP346AC3P/oaM/psjrlNmTEiFa9qY7Eq1X1EUJRj3v10xcV1JaRm3zl7BjPfX+Y2+Bqs34/111aI4mjLh6IFUmnQpYNIkmDwZWraEfk4I5q2zV8S0Pa/BrSMj1YeICPA0sMYY80ii26PUf0J5iwTToapK8ZoO7HrrZABaj1lOo7YHfGXvrNzGivvOCtsmpXqIaMyKyKXGmFciLasMkXrvQHvwlNpBhZHYKO/E0l1N2fr0LwBI77EtKkMWIFlEFa4apjplnaLUVnLz8sPOoRjN6OvWwhL+cvmAmI3LcHg7AaVxKZ1+PZ8//8W/fOzArJj353YjbsgjI9Us60YAVwOrRMR7ge4xxrwbh20rih/ReJV4daiqGhBHdjTzGbJtxi0l/cQdfuXuBKANWb4kgmhGZqcAgQIu2LKY0N47pS4RbEQiEkf3p7L95VMAyBj0Iy3PiD4c/IpTOgMqEGuYapF1ilKbiSY5U6TR146ZaZUyLkNxaFNLdrxkM4SmHbeTpMZH6T55boUOvVChGBB8nlp1I/ZRbbLOGPM59vQrSrUTylvkttkrWPrTHhasLfANBhQfPhrVjBPBOFKQwY6XTyE5o4S2Fy+lUbsKjqRKAglpzIrIOcC5QJaIPOoqaobNRFxVtPdOqTPE6j53pKApO+fY5ADtrlhCapc9Ua+bnCQM7toy1iYqlaQGZJ2i1CrcLnDRjlbkF5aQmeapsNxrJObm5VcwICvD/mXd2PuRDaVoNnw9LU77HpztBo66hArFeGhcX0C9WgJRWafUN0J5ixjghS+OJYmrSgjE4fxMdr4+mJQWB2k9ZjmeTM16XtsINzK7FVgKjAGWuZYfAG6r6o61906pC+Tm5XP/26tjWudIQQY7Zg+lvDiV9td+RuP2sfXglTnzkTV0xasGqVZZpyi1iViT17kJHNVoke7hvgus4XnHnJVVNmRLNrTxGbJtLlpK+kk7KtZxJXKKFIqhMrQCKuuUekV1JXnysu/L4yhc2IuUFsW0GbuMlGaHqm1fSuUJacwaY1YCK0XkDaDYGFMGICLJQOMaap+iJIzxTy1h0YboR1QB9i/txt6Ps0lueogO//UJjZwsd7Gi8x3WHCrrlIZEZUImQpHeyKoQU15fVaVsxcaAOZJMSstiGnfZRcszV4eVnfmFJeTm5fsMWjVao0NlnVLfmJTTI66x+m4KPz2JfUtOBKDdFUtIyTgctn5yqLkWlWonKYo6HwDuydfSgI+qpzmKUjuYmrsqZkN276c92Pv/2bv3+KirO//jrzOTCZlwC4FwCwTwUmgRAYmK0lrBVmzxQqnX2m7b7a6/ttutt0axdSvur7tSWVe33f66i223N2u9NtViRS2uWhUUDIgIeEG5DLdACLeEXM/vj8lMJpO5fOeWueT9fDx8MJOZ+c4B5eP5fM85n89f/KsKo659JelEFtTvMEsU66TgpfNGma+xOWIl5ER0trrZcfcC9v1+Nu5BJxh9zZpg7Iw1Nbzt8Y3U1vmS/t5+TrFOCsLCmZUMK+19/CFVh9ecFExkx3z1xbiJLHTXOpG+5ySZLbHWBmflXY9LMzckkex7cI2zqsMBxzeP4cirpwAw5isvpXSmQoVKskaxTgpetBtlBiKeiY0nViXkeNoavey89yL/9xd1Yoo6g6+5jeHa2VV4Pe6Inw1sN5akKNZJ3qqt8zFn6SomLV7BnKWr+NiYwWm9ftN7I2l8wT8HG/u1F3q034nEbQxfnF3FDxZOS+s4xDkn1YyPG2POsNa+AWCMmQVoD6QUnGSKogAc2zSWgyumg7uDsV97Ec+wpqS+34AKlWSXYp0UvJr5k7nxofW9YpwFjPHfTEtnX8Zomj8Ywf6H/dXeSyYcYNTVa3q83mEtD67ZGXP7sq+xmTlLV6nIU+IU6yQvRWrFk84zs03vjeTgn0+neNQRRl75Gm5v9Jt1gWJzijnZ5ySZvQF4xBizG/98ezRwVUZHJdLHaut81DyygbbOxM59HX1jAg3PnkbJhANUfG4trgHJTQIry7y8vHheUp+VtFGsk4IXq4VOY1Mb186uiptEpurErmHBRHbox7dSNue9iO+LNwZDd5XSSP0lJSrFOslL6TzzH+745jEceHIGJRMOUnHZG7hKYhf4Di1GJ9kVN5m11r5ujJkCBPY9brXWJr+vSCQHLXliU8KJ7KEXJnNk9SmUTNpPxcI3cBUnF2C1rTg3KNZJfxGtP2tZqYfH1vkymshaC7bDBe4OKj73BqUn70/qOpHaAGly6YxineSrTBXH3PfwmZz4YCQDxh6iYuE6xwsTKtaZG+KemTXGlAK3Atdba98CJhpjLs74yET6UCKNtK2F7T9cwJHVp+A9eR8jP7/WcSJbWebli7OrqCzzYrqea5tKblCsk/6iZv7kXmdRvR431pKxVQ9r/RPGgyumU1J1kKqbVvZIZN3GBGNiLIH3REu3NbmMT7FO8lUmimPufeAcTnwwEoCKzye2w25oEnUGJP2cbDP+H/z9yM7peu4DHgH+lKlBifSlRCpi2k7YsWxB8HnFonUYl/NVDG0lzmmKddIvROvPmqkWF50tbnbe5y/0VDTsGHQajLtn3OywlvuumgEQdRxuY3j/rs8CMGfpqoiry6oE74hineSlmvmTkzoSFs2RdRNp2VUOwLhvPxPzjGwk6saTG5wksydba68yxlwDYK1tMkb/+qQwBM7KOmE7DAeemh58XnXLCgWywpKRWGeMGQ/8GhiFf2fkcmvtf6R6XZFUhPZnDRS/y4S2hlJ23z/X/8TVydi/fyFq3Kx5ZEPMfjyhrS9q5k/uUQgGdGQjAZrXSd7qjP8WR46+MYFDz02leOwhRl35Gq4Bsc/IRtKYQjV3SR8nyWyrMcZL1/EUY8zJQPyGSyI5rrbOF7GqZySdbS72/342LbuHUfbJzQydvS3j45M+l6lY1w7cbK19wxgzGFhnjHnWWvt2Gq4tAvSsxh5e2Tfwmq+xGbcxdFhLZdd7gF5JYbq0NQxk9/3nA+A9xX8kI+b7Y6y2hLe+iLa6rCMbjmheJ3npzic30ZGGVdmGZ6fStHU0pR/1MWLBhl47RZzSTpDc4CSZvQN4GhhvjHkAmAN8JZODEsm0QHl3R4lsSxH7H6v2J7Lnb2bo2cklsplo7C1plZFYZ63dA+zpenzUGLMZqASUzEpa3F67kQdW7wjGs9DKvtAzWQ0Ud/I1Nju+mZesEzuGA6QUN8G/WBuph2Po6rIkRPM6yUup9LUO2P5D/1GxovJjKSWygHaC5IioyawxZo619mXgRWARMBv//1Out9Ye6KPxiaRdbZ2Pmx/e4KhiZ4uvjL2/nQPAiEvqGPix3Ul9p8dtuOOSqUl9VjKrL2OdMWYiMBNYE/udIs7U1vl6JLIBgcq+gceRZCqRPbzmJIzLMuTMDyj9yB7cpalNQId6Peonmwaa10l/Zi3suLu75snYr76UUiJb6nEpDuWIWCuzPwJmAa9aa88AVvTNkEQyJ3wFI5am90ZS/9iZAAw+c1vCiWyZ18Ph5jZNvnJfn8Q6Y8wg4DHgBmvtkQivXwdcB1BVVZWJIUgBWrZya8zKvplceQ0XOll0DzrB4FkfJJTIelwGDLR12B4/O97aHqw4r36yKdG8TvKaxwVtSRyaDU9kq27+M6YotdO3xUXu+G+SPhErmW0zxiwHxhljfhT+orX225kblkj6RVvBiKT5w+HBRHbA+IOUz9uc0Hfdd9UMTbTyR8ZjnTHGgz+RfcBa+3ik91hrlwPLAaqrq/syB5EcEevcazS50oqms6WInffNDz4f+/f/i4nb/K9bmdfDkkv9u1dC/wyaWtt7bS1UP9mkaV4nea0jif8zWgu+n3Z3kqj6zlMprcgGHE6gpaNkVqxk9mLgU8B8/CXcRfJObZ2PO5/clNA5i+NbRnPgj7MAGFy9jfILEktkvzi7SpOs/JLRWNdVJfTnwGZr7b+n+/pSGALn+ANbggNnWm94aH2wWFOkuDK2zBuxRQ1kbhtxuI7jxez6z08DYIrbGH/DM3ErvYcXogr9vYU+nrQ48uJhriTxeUbzOslridZ+shYO//VUOo56cZW2MO5bz6WtC4WKP+WOWMlsjbX2VmNMlbX2V302IpEERVvNuL12I79dvSOha7XsGRpMZEdc+gYDP7on7mfcxtBprbYT569Mx7o5wJeAjcaYQAPN71prn8rAd0meWrZya6+zrZEKOoXHl0gtavra0XUTASidvJuKhXVx3z+s1EPd9y90dO1oybomkknRvE7yUjLtw2ynYccyf1/qsvO2MGT2+2lLZD1uo+JPOSRWMvtZY8xi4Grg7j4aj0hCIq1m3Pb4RtZub+CBBBPZY2+Oo+EvH8M9pIkRCzZQUtXg6HP3XDldCWx+y2iss9b+lZjdM0XirzRG21obeH7DQ+sjfSyjmj8YAdYwdM67lH50D8UVRx19LpGdMuonm1aa10leCG0n5jKJr8h2trnY+e+fAcB42tOayAIMLC7SvC+HxEpmnwYOAYOMMaHFSgxgrbVDMjoyEQcirWY0t3Xw4JqdCW2x2/XTuXQcKQVg9N+9QNFgZy33XAbWbm9Qr8P8plgnWRdru3BAtIR34czK4MSvr+z93Wxadg6nqOw4Y6/7X8eJbDTRdtion2xaKdZJzgtfpEg4kW11s/Pei4LPq25amc7hATovm2uiJrPW2hqgxhjzR2vtZX04JhHHok3unLTdCdjx7/Oxbf6/CqOufcVxIgv+IBu6lVmVNvOPYp3kAifbhWNtrU1lu3Gpx0WTwxKhthN2LOuuCjrq6jUJr3iUeXv23I62wwa6e8kqnqZOsU7yQaRFCqc621w9EtkJt2amYLeOOeSWqLUGjTFTAKy1lxljBoS9NjvTAxNxIlpAcTucXe351ZxgIjv2ay9QMu5QymMK7e8ouU+xTnLBwpmV3LVoGpVdMS08gsXbWhv6+URyy8oyL4tmjXP03s4Wd49EdvxNf6ZoaGKrwR6XCVYtDoi2w0ZxNL0U6yQfJFvczXYY9j96VvB5phJZQMccckyswvm/C3n8athr/y8DYxFJWM38yXg9PXt9eT1urjl7fNwJ3a7/mkvr3jIAxn37GTwjjqVtXKq0mVcU6yQnLJxZycuL5/Hh0gXce9WMYGJaWeblrkXTIq5O1tb5mLN0FZMWr2DZyq3UzJ/MB0sXBJPieHyNzY4L5TW+5J/AuQaeoOqWFbg8ifVpdBvDVWeN7/X7iBYvFUfTTrFOcl4yq56dJ4rY/1g17Q2lDJu3KaOJrEE773JNrDOzJsrjSM9FsiLaeSog6gTNWv+krOOw/4zs+BufxlWc3kqg2oKSVxTrJOc42Voba3tuzfzJ1DyygbZED5xF0HpgEMZYhp77LiUTD1B6yv6krtNhLY+t81E9obzH700Vi/uMYp3kvJr5k7np4fWOz8q2HynB99MLACi/6E0GT9+ZwdH1XcszcS5WMmujPI70XKRPRSoWAv6kNlZVT9th2PFv/lLtg6bvoPzCjZhY+xPo2Q9x7pQKHlvni3meQ5U2845ineSlWNtzX148L+Ee25Ec+t/JHFlzCsVjDjH6S68knciGjy80mVXF4j6jWCc5J3w+V1rscpzIth0qZffyuQAMGNeQ8UQWnB9jk74TK5kdZ4z5Ef67dYHHdD3X+rpkRW2djyVPbKIxpJKcr7HZUVuKzhY3O+/rLgxQPn9j3MIlht6td6onlPcIvHOnVPD8lnpV2sxfinWSl6Jtw/U1NjNn6aqUE9k9vz6X1j3DACj/9Ka0tbYIH7cqFvcZxTrJimjVyiPtLnGq7eBAdv/s/ODz0deG75yHgcVujremd+fdNWePT+v1JHWxktmakMdrw14Lfy6SceFBLxGdLUXsvG9+8HnVLSscTcws9FpFUGXNgqNYJ3kp2vZcQ2KTwnC207Bj2WeDzyu/+VxCVd7jibR9WHG1TyjWSZ+7vXYjD6zeEVz6Dz0OkWzl4o4TRd2JrKuTCTV/jvi+TgtfnF3luC5ALG5juObs8fxg4bSUryXpFas1z6/6ciAi0YQ2z05G6HkK18ATjP/WXxL6vIqQFDbFOslXc6dU9JgkBqS6X7ThmdOCj6tu/jOmKLFCT7Fo+3D2KNZJX6ut80WMUc1tHdz88IaE2igGdDR7qK89A4BBp+9g+Gc2Rn1vc1sHz2+pxxh/vZRoDP64OazUw7ET7T1qDXg97qgF+CQ3xFqZFcm6VFZjwR/0dv/8PABKJtYz6qrXEr6GipCISK6prfPx2DpfWg86dhwbAEUdDJ71IUXDjjPkrG1p2Voc2sf2RHsHNzy0Plh5OXSCGG0rouQPY8wvgIuB/dba0+K9XwpXbZ2Pmx/eEDVGJZPIttYPYs8vPomrtIWRV67BO+lA3M/sbmyOGyfvvWpGMNbcXruRB9fspMNa3Mbw+VnaNZLrsprMKuhJPKk0zz6xcxj7Hz0T2+Fi+MXrGTTVl/A1tIogIrkoldgYyaEXJnNk9Sl4T9nHyM+vpbjiaNqu3dzWvbIbmL+GbjWMdnYu9HXJG78E/hP4dZbHIVkUvrU4HZrfrwj2kS37xFZHiSxEP44REHq/LnCTMJBoR6vALrklTh1XMMbMcfKzJP0SuCjem6T/SnaL77G3Ktn3u3OxrR5Gfn6to0TW1RXRApXqYvV2lMKT4VgnklbpPP7gu/+THFl9CgClk/c4/pzTRdtoE9pAZWOIXZlZ0iuTsc5a+yLQkI5rSX6qrfPx2zQnsk1bRwcTWe9H9jJ4RuSqxeExyetxM3dKRcxrB2qjgOJQvnKyMvtj4AwHP0uYtfZFY8zEVK8jhSveHbVIjm8ew8EVMwAonbLb8d07a+HDpQsSHqMUjIzFOpF0qq3z4epqGZaq7T/sjnkVC9dROnmv48+mY7IaSMqjJeeqWZARinWSMUue2JTW653YOYz62lkAeE/dy8jPrYv63tCYVNl1VMFJIqo4lN+iJrPGmHOAc4EKY8xNIS8NAdyZHpgIwMThiSWzRzeMp+Hp0wEYctb7DJu7xfFndTa2f1Ksk3xSW+ej5pHkCqeEC01kx173PJ5hTSlfM1GBuBvtxqXicvrkSqwzxlwHXAdQVVXVV18rfSS0dWKq2hq97PvduQAMPG0nIxa86ehzBoJn7m900LpRcSi/xdpmXAwMwp/wDg755whweeaH5meMuc4Ys9YYs7a+vr6vvlZyQG2dj1fed75bqem9kcFEduTlryWUyHpcRmdj+6+ciHUiTix5YlOPSpvJ6Gx1YzsNg073t6sYf9Of057IGvyVQWNNMkJrEtTMn4zX4476uqRFTsQ6a+1ya221tba6oiL2FlDpv1rrB1H/h1m4Bzcz6urVjhNZ6Ll1OF4iGkh8QXEoX8VqzfMC8IIx5pfW2u19OKbwcSwHlgNUV1encwu+5Lg7n9zkeBtb87YKDvzRv0Nq1BdeoWT8IcffU+b1sOTSqTob20/lSqwTiae2zpfyqkfTu6Oof7yawbM+YPhnNsZsa5GsyjIvLy+ex5ylqzjUFHm8lWHVigO/qppx5ijWSV8odhtaO1Kbrh9dP56Glf7FibFfewHPiGMJXyOwNbhm/mRqHt1AW5QxWVAcynNOzswOMMYsByaGvt9aOy9Tg5L+K5mestvv/ixYg2f4UUZdsxr3wFbHn9UZWQmhWCdZF609TW2djxscbJeLpeEvH+Xo2pMA8JQfT8dw8XrcPQqmhK5iRIvjBnh5ce+/VgtnqgVGH8lYrDPGPAicD4wwxuwC7rDW/jzV60r+SHXnSKCyOsCIy9YllchC94psIKbc9PB6Ig2tMmzlVnEo/zhJZh8B/gv4GZC+PgAo6ElPyfSUDT3zNfLK1xJKZOecXJ7Q+KTgZSzWicQSehPP0F3EJLQ9Tc0jqSWyu/7fPDqO+idtQ856n8FnpL4wZ4DPz6rk+S31EZPv0N9LKJ0/y7qMxTpr7TXpvJ7kj0AcS+U4f8NzH+PoukkADJv7NgOnOC9IFy68ivGQEk+vnS3aQlwYnCSz7dban2biyxX0JFSifRN3/b/um8iVX19F0ZATCX3fFdUqPCE9ZCzWiYSLlsCGzwOb2zr47uNvEtKqNWE7f/RpOpuLAai4/HVKT97v6HOBcZV5e08CA2N9fkt9xFXWZSu3RkxkQ8+nSdYo1klaJbMYEe74ltHBRLb8wo0MnrkjpTE9v6U+5tiGlXq44xIdMSsEcfvMAk8aY75pjBljjCkP/JPxkUnBqq3zMWfpKiYtXsGcpauorfP3gHVa+txa/4psYJVh3PUrKRqaeNl09Q2TMIp10icCk6vANtx4CxlNSWaygRUS2+7/X33l11c5TmQD46os87L+jgujvifRVhah59MkaxTrJK0SXYwI17pvCAe7CniOuubVlBNZ8Meg2jofNz+8IeLYSouLFIsKhJOV2S93/VoT8jMLnJT+4Uihu712Iw+ENNMObKNbu73BUd9Ea+HQXz4WfF71nacw7uT2tKhvmIRRrJM+kerEz4m2hoHsvv98yi96k/E3rgRrMK7EY2UgTlYm2LIiWouL8PNpkhWKdZJWqcynDr96Mo0vTmHAuAZGXFKX8C67WGLVGdAcsHDETWattZP6YiBS+GrrfD0S2YDmtg5+uzr+XbjONhc7//0zAAye9QHD5r2NcbK3IAqd25JQinXSVzI9iTq+ZTQH/jgLgI5jAzAGMMnd9AvEyZr5k3tt1Yt13izR90vfUayTdIt28yqePb8+l9Y9wwAYcdkbFA1qSduY4kX5gWGlAAAgAElEQVQ8zQELR9xUwBhTaoy5vavyHcaYU40xF2d+aFJoop2hcqKjyRNMZIvHHGLYBaklsppUSTjFOklFtOMTkWRyEnVw5WnBRNYz4ghlc95L+lqhcXLhzEruWjSNyjIvBv8K612LpkXdppfo+6XvKNZJutXMn4zHZRL6jO/+TwYT2TFffTFtiazbxB+H5oCFxck24/8B1gHndj334a+E96dMDUoKRzKtdsJ1HC9m139+Ovh8zN+8ktR13MbQaa36hkk0inWSlPACI6FViCPFmUirlvGKLTmx7+EzOfHBSACGnvMuZee94/izBrj3qhkx+ysm2rJCLS5ylmKdpF0iJ/v3PzaL9oZBAIy69hWKRx5N+fs9LsOyK6ZzY5wWZm5jdGOtwDhJZk+21l5ljLkGwFrbZIyD2x7S79XW+ah5ZENKPcfaD3vx/Vd3pcwJt65I6jpej1vBS+LJWKwzxvwCuBjYb609LR3XlNwR6Qxsc1sHy1ZujRhzAj+Lljie+t0VSVUvDiSyI69cg3fSgYQ+O7bMq+Sz/9C8TtJq2cqtdDic6x3fOprm90YDMPrLLzFg9JGUv78yJIbGWkDRXLAwOUlmW40xXrq2nxtjTgbSt6ldCtaSJzallMh2HC8OJrKlH/VRcWlyfRYrtRIrzmQy1v0S+E/g12m6nuSQaGdgfV3VNAOxJ7BTJVJP1mUrt3LjQ+spK/UklMh2trrZ/+iZlJ23lXHX+ws9ub2Jrex63EZb7voXzeskrZzuvjv+9hgOvTgFz4ijjLzitV7FntzGUFxkaE4gCH64dEGP55F2voBa8RQyJ8nsHcDTwHhjzAPAHOArmRyUFIZkt8oBtB0qZf+jZwL+Yk/ln3o7qetUlnkj9kAUiSBjsc5a+6IxZmI6riW5J1bxk8B248Dj8K3Ia7c38NDrO2nr8N/4O9TkPG621g9izy8+CUDzeyMpGXco7mcM4PW4gu1+NMHrlzSvk7RyO+hGsfeBc2jZVc6AygZGXvkaruKexyw+6EpKJy1ObgdeQLydL1J4nFQzftYY8wYwG/9/b9dbaxPbvyT9SmCVIVlHXp/EoVX+9jujrn3F0QQtGpVeF6cU6yRZ0VYCoHu7ceBx+Gu/W7ODZDawHHurkoMrZgSfDzvfWcy1wLCBA3hbN/n6LcU6SZfaOh9LntgUN5Hd/sPu1dOKRet6JLLQsyheIpWRo+2N15GJ/sXJyixAJeDuev95xhistY9nbliSr8ILoSTq0KqPcuR1f6u7IWe/n1IiCyq9LgnLWqwzxlwHXAdQVVXVF18pEUTbChxL4PVoPQ1j3VRLJpE99PwUjrx2MgDFYw8x5kuJFcWLd5MvmT8DyTua10lKnNZFCU1kK7/5HO7S1h6vh1cWnjjceTJ77Wz9v1IcJLNdhUtOBzbRXazMAgp60kukQijhSkO2uIU68tqkYCJbdv5mhp69LaWxqPS6JCLbsc5auxxYDlBdXZ38YXNJWqJVicNF22o3tszL8Zb2lI5eBFhLMJEtO28LQ895P+FrBG7yRUpaIfJ2aHD2ZyC5L9uxTgrDspVb4yayu392XvDxuH98NpjIlnpcNLd19rpZVlvn45X3G+J+t8GfyP5g4bTkfwNSMJyszM621n4s4yORguBkW2+kRPbgM1M5VjcRgFFfeIWS8cmtyEYLkCIOKNb1c4lWJQ4IJMGRElmvx83cKRU89PrOlMZmLRx59RQGnraL0V9+CePupLjiWMLXCYxn5j8/0+N8biBpLfG4kvozkLyiWCcpi7d6emTdBNoODgZg/PUrcZW0B19rbuskUhp855ObIv483NgyrxJZCXKSzL5qjPmYtTa5CjzSryRy1iGgaevoYCI75qsvJtVvzG0M15w9XsFNUpGxWGeMeRA4HxhhjNkF3GGt/Xm6v0dSE+1mXLybdLF2pDS3dfDgmp1xz5TF0tlSxM775gcfD5u7JelrfX5WJY+t80U93xvt96H6AwVF8zpJSW2dL+bre383m9Z9Qxl0+g7KL3wL4+4Z/wLPQnd+gPMCeInOM6WwOUlmf40/8O3FX7rdANZae3pGRyZ5qWb+ZG56aL3j5tk77rsQ2+JhwNhDVFzxGu6QO3dOlHk9rL/jwsQHKtJbxmKdtfaaVK8hmRftZly8s/fxEr1UEtnWfUPY88tPBJ+XfTL54noAz2+pT6qmgeoPFBTN6yQlS57YFPHn1sKOu/1nZE1RB+XzN2Jcsa/V3NbBkic2MXCA0zI+fqFtz6R/c/Jfzs+BLwEbwXGOIv3U2u0Njv8jCS0KMPKqNb2q28VjgCWXTk3oMyIxKNb1c5GqEsc7e19b58PloC1FMo5tHMfBp6YHn0+4NbWWFcNKPXET7zKvh5b2zoT+DCTvKNaJY+Fn60uLXRHP/4cmsgDjb1gZN5ENaGxuS7imgI4+SICTZLbeWvtExkciBeHBNfHPhYUHvHH/+GxSiey1s6sUyCSdFOv6uUT7E8Y6K5sq20kwkS2ZcIBRV69J6Xoet+GOS6aybOXWqFv0vB538AahqhkXNMU6cSRSUbxIwud1VTVPYVyZrWOoow8S4CSZrTPG/A54Ev92FACVcJegwF07J2cYet25u/Fpx4lsoFJopSZXkhmKdZJQf0In1duT0fx+BQPGN1B+4Ubcg09Qesr+pK5j8J9NC4+ZkdqnlXk9LLl0avA9iq8FTbFOIgpfhT3e0h43xlkLe397bvB5Vc0KxyuyqRjq9WT+SyQvOElmvfiDXejBRJVwF6Crz9ijG2jriH8HznbCnl99PPjcScBzGfj3K2doYiV9QbFOEpLulYHQm31Dz32Hsk+86/izZV4PF08fw/Nb6mOuqAae3/nkpmCxlfBEVgqeYp304nQVNpS1cGjVR2mrH0zJxHpGXvkaxmR6pH599T2S+5wksz+z1r4c+gNjzJwMjUfyzJ1PbnKUyHa2uqn/4xm07R9KyaT9jLzi9biByOM2LLt8uiZY0lcU6yQhQ72etPSOBeho9rDrR925xZDZzvrH3ndVcjf7ToS0SGtsblMv2f5FsU56SXSniW13seOezwBQ9snNDDl7W58mmE4rH0vhc7IR4McOfyb9RG2djzlLVzFp8QpHwaT9SAk7772IE9tGUnb+ZkZdGT+RHVbqUSIrfU2xThyrrfNxvDWx6uvRtOwe2iORrbplBS5P5uryxOqnK/2CYp30kshOk84WdzCRNZ52hs6OnMhmMrd1a2lWukRdmTXGnAOcC1QYY24KeWkI4M70wCQ3hW9DiaftUCm7l88NPh969ra4n/ni7Cr1i5U+o1gnyVi2cqujXSnx2HYXe3/Tffwi0YrFyVT0TLafruQ3xToJF3pG1mlV9o4TRez6j/nB51U3rYz4Po/LcNVZ44NHHzxuQ2uEmDmgyEVLe+I37zJReE/yU6yV2WJgEP6Ed3DIP0eAyzM/NMlFiWxDaTswqEci62SS5jJQPaE86fGJJEGxThKWjsSv9cAgcHfiPXUvQ+e8EzFGDiuNXeQkmXFE6xmrXrIFT7FOggKLE77GZizOksPOVnePRDbWvK6t0/L8lnpq5k/mg6ULqBhcEvF9Xo8bryfxeykG/+9BJOrKrLX2BeAFY8wvrbXb+3BMksOcTpzaDgxi988/CcDgMz6k/NORG2yH67Rw88MbAJ3dkr6hWCfRhFf2nDulgue31DsqjBJPoM/2sAs2MXLRuojvGVjs5tiJ2FuZk0lAk+mnK/lPsU5CJXxGtsNw4ImZALiHNDHuG8/H/YyvsTl4Hj/a/PFwcxv3XjXDcVeM4HhQr1nxc1IAqskYswyYCgRvq1hr52VsVJJTEt2G0naolH2PnAnA0DnvUPZx5xU5wX93UMVIJAsU6yQoUmXP367ekfJ1bSfsWNbdnmzg1OgrCx63i+Ot0SebsRLQ8EQ8tLJxov10peAo1klCuzo6morZ8yt/jbDyi95k8PSdjj8bOI8/tswbMVkdW+YNtkSLdJTN63FHTbp1NELAWQGoB4AtwCTgTuBD4PUMjklySKLbUA69OJndy+di24oY/eWXEk5kA1SMRLJAsU6CMtFDtqOpuEciO+76lbi90YvoHY5RKbmyzMvnZ1WybOVWJi1ewZylq4Jb7sLjdmB1JHRL3sKZlby8eB4fLF3Ay4vnKZHtXxTrxPGujraGUnb9+NN0HCll6DnvJ5TIBuxubKZm/uRe24nDb8gtnFnJXYumUVnmxeCPc4HnqfwepLA5WZkdbq39uTHm+pAtKgp6/UBtnY+bHl5PZ4T81eDf4hHqwJMzOP62f0JUsXAdA0YfSen7dcdN+phinQSlO/50thSx68efDj6vumVFzKruZV4PAwcURVzJKPN6em0VDt3OF6tasZJWQbGu3wrdsVFW6sHjMrRFmuR1aa0fxJ5f+I+MDahsYPCM5HanBFZfIf6OkMAqbTgdjZBonCSzgVvDe4wxC4DdgCr0FLjbazfG3FIXHvoaX/xIMJEd/pkNlFQ1pDwG3XGTPqZYJ0HRtsQlo7OlCNcA/9nX4tGNjPnyy3E+ARdPH0P1hHJqHtnQa7J5vLWdO5/cFDVhVbViiUOxrh+qrfNR8+iGYBX2eK0V2w6VBhNZU9TB6C++mtT3GggmndES1Xh0NEJicZLM/sAYMxS4GX8fsiHAjen4cmPMRcB/4C8J/zNr7dJ0XFdSU1vn44EEzoYdeOp0jm8cD8DIy1/De3K948+6DHzh7CoeW+fTHTfJtozFOsk/NfMnR0wkE7X3wdm07BhOxcJ1CbXdeWydj+oJ5QwqKeo16WzrsFEnooGJXrSzaSJkONZpbpeb7nxyk+N2Yh1NnmA3CvfAE4z71l+S/t5rZ1elJelMNhGWwhc3mbXW/qnr4WFgbqz3JsIY4wZ+Anwa2AW8box5wlr7drq+Q+KLVCRk2cqtvVZeozm2aWwwkR3798/jKW9K6PuthR8snEb1hHLdcZOsylSsk/wSGhNjbQN2IlCxGMAz6nDU90U6ttHc1sHND29IuJdiIH5qS55Ek8lYp7ld7oq3EhvQcbyY+q6qxUPPeZey895J6vvKvB6WXDpVcznJuLjJrDHmI8BPgVHW2tOMMacDl1prf5Did58FvGet3db1Pb8HLgMU8PpIpGqd4ROgWBqencrRNyZQPKaRis+tpWhwS9T3Dix2R6zKGVgp0B03ybYMxjrJE+ExMcE8Msh2GnYs+2zw+ZivvoinrOdKaSCBrYyxnbnD2oiJLvgnii3tnRETVm3Jk1gyHOs0t8tjLXuHsPdXnwBjGXXtK5SMO5TwNSoVb6SPOdlmfD9QA/w3gLX2TWPM74BUg14lEFoSbRdwdorXlAREKxLiRHDFwdXJqGtexeXpjPreOSeXc0V1lVYKJNdlKtZJjgusxqbjjGxnSxE775sffD7+hpXB87IB4ZO9OUtXRf1uS++VW6/HzZJLpwLRE1bdIJQYMhnrNLfLQaGVzKM5vmU0B/44C4Bh529OKpGFnsXoFIOkLzhJZkutta+ZnvutYndxTyNjzHXAdQBVVVV99bX9QjLFQKyFHXd3b50b/+1nYyayAA/8/TnBx1opkByW1Vgn2RGpr2GyrAXj7o6HkSoWV5Z5eXlxz3aekbYF97hu1+di9YwVSYDmdf2E0xt1x96q5OCKGQCUTt7DkLM+SOl7VT1d+pKTZPaAMeZkum4MG2MuB/ak4bt9wPiQ5+O6ftaDtXY5sByguro6tUoc0kOi1Tpth2HHv3Vvnav6zlMYd+x/JaWe7lbGWimQHJepWCc5bMkTvasCJ+PwK6fQ+NJkxnzlJapqnsK4IsfGuVMqev0sEBejnZGNlACLpCCTsS7u3E7zur7h9EZd8wcjgonswNN2MmLBm3GvXeb1MHXsYF5+P3rnClVPl77iJJn9B/xBZ4oxxgd8AFybhu9+HTjVGDMJf6C7GvhCGq4rUYQXe5o7paJXFeFoeiWycXokBgwIa5AtksMyFeskR9XW+WhsdlYUJZY9v55D654ywH9eNloiC/DQazupnlAe8cbe4JKiXuPRcQzJgEzGOs3tckSko2Th2g6Vsv9h/y7woXPeoezj7zq6tjHdu+6iHZNQ9XTpKzGT2a6qdN+01n7KGDMQcFlrj6bji6217caYbwEr8Zdv/4W1dlM6ri29RSr2FOgja0zsQiedbS4O/PEM/xN3BxO+87Tj7210WD1PJJsyGeskN0Sr3J6q0IrFwy+uY8CY6FWLAdo6ba/td9FWUIaVerjjkvjVQCP93rQLRiLJdKzT3C53xFsZbf5gBA3PnoZn+FFGXFpH8Ujn/xmEzu1UPV2yLWoya4wp6gpKHwew1h5P95dba58Cnkr3daW3WHfoYiWybQcHsvtn5wNQfuFGBs903n8WdGdOcl9fxDrJrkg381LtIdurYvHXXqB4xDFHnw2fZEaLz6XFRY4S2UhV6UHnaaWnvop1mtvlhlhHyRpf/AiHXz3V/76vvYDHYewKvXaAqqdLtsVamX0NOAOoM8Y8ATwCBAOftfbxDI9N0iiZswstvjL2/nYOAO7BzQknsrozJ3lCsa7ARUoWU0lkATqODQg+Hn/j07iKnZ+7Db/JFy0+O4nb0arSq/iKRKBY14/UzJ8c8abdwWemcqxuIgAjL38t4UTW4zK95naqiSLZ5OTMbAlwEJhHzy4BCnp5JNFiTy17h3QnsgNPMO6bqxL+zrsWTVNwk3yiWFeg0lmIpPmDERx5fRIjFmyg8uurcA9pdlQ/ICDSRDBafHaysyWVRFj6LcW6fmDt9obeiezT0zi2wV9Bunz+m3hPrk/omgZYdsV0ze0kp8RKZkcaY24C3qI72AWo+lyeqZk/mRsfWu/oX1zz+xXsf/QsAAZXb6P8gs1JfaeCneSJjMc6Y8xFwH/gP0P2M2vt0nRcV5xJ9GZeNIdemMyR1acA0HZgMCUTDib0+TKvhyWX9j4Dm8qZs1QSYel3NK8rYKFn58tKPRwKq1nSvG1EMJEdfnEdg6buTuj6Xo9bixSSk2Ils25gED2DXYCCXp5ZOLOStdsbeGD1jpj/8loPDAomssM+9RZDZm1P6vsqNZGS/JHRWNdVcOUnwKeBXcDrxpgnrLVvp3ptiS58YudxmZS2Fu/+2Xm0HRwMwKCZHzpOZN3GcM+VsVcyUjlzpuIrkgDN6wpU+Nn58ES2xVfGwaemAzD6Sy8zYGxj1Gt9cXYVz2+px9fYjNsYOqylUudgJYfFSmb3WGv/uc9GIhkTOqkb6vVEbUVxeM1JNL4wBfegE1QsWhu3Kmc0BjSRknyS6Vh3FvCetXYbgDHm98BlgJLZDKmt81Hz6AbaOvzz80NNbbhdhjKvh8PNbQz1ejja0k6Hw+Q2tGLxiMvWMXDKXkefS2QlI9kzZyq+IgnQvK5AxSryeeh/J3NkzSkMqGxg9Ff+StGglqjXGVbq4QcLp2VqmCIZESuZTeAUkOSq8Lt10RLZfb8/mxPbRwAw6guv4hnWFPfaZV4Px1vbgxNG8P9Hc+3sKk2kJJ9kOtZVAjtDnu8Czs7wd/Zrdz65qUdcAujotBgDHyz1J6Yz7nzGUY/Z1vrBwcdj//55POWxY2M2VjJUfEUc0ryuQEU7I+9b/knaDw0CYMTCN2Imsl6PmzsumZqR8YlkUqxk9oI+G4VkjJOm2fsfqw4mshWfW+sokfV63Cy5dGrwO7QiIHksJ2KdMeY64DqAqqqqLI8mv4VvsQv9+dTvP43H7YqbyLYfHcCxDVUMPec9RixcR+kp+zDu6Cu5w0o91H3/wpTGLZJhORHrJP0inZ3f+eNP0dnkr7o+5isvRUxkh5V6aGxq0/xN8lrUZNZa29CXA5HMiFf0ZP/js2h+bxQAo659hZJxhxxdN9D64eXF8xT8JK/1QazzAeNDno/r+ln4OJYDywGqq6t1fi1Djrd2ALFv8DW9N5L6x84EYMC4BgZOjr+tOFa/bpFcoHld4aqZP5kbHloffL7/D7OCiezoL79E8agjET93qKmNYaUeJbKS15y05pE8VVvnC9bbj+TgytNofnc0AJXf+AtFQ04kdH21fhBx5HXgVGPMJPxJ7NXAF7I7pMJWFqM2QDwNqz7K0ddPAqBoaBPeic4KPR1O8vtERFJRW+fjzic3BZ8ff3ssze/453ZjvvYCxXH6yB5qaqPm0Q2AulBIflIyW4ACBZ9ircoeXnMSx9ZPAGDct5/B7U18IqbWDyLxWWvbjTHfAlbiryb6C2vtpjgfkxQsuXQqNY9sSLh6cej5siFnbmPYPOdtyRQPRaSvhddFObJuAkdeO4mSCQcYcekbuEudze3aOixLntikZFbykpLZAnN77caY7XeshR13+wuglE7ZzYiL18c8BxaNWj+IOGetfQp4Ktvj6C8CEzKnvbUBTuwaFkxkKz7/OqWn7Hf8fYqHIpINoXVRdv3nBXQcL8E9tImRl7+OKepM6FqNzW3U1vmU0EreUTJbQGrrfLET2Q7Djn/7bPB5Iomsx2UYVFKkQgEiklWhrcbixaIit+lV1Tic7YSmd0ZTOnkvg2Zsp+zj7+Ae2Bp3HOq/KCJ9LTz+BXbghbYPG/uVlxJOZAOWrdyqWCZ5R8lsHgsPasdb2qMnsu0udtzzmeDzqpoVGFfv97ldplfvxTKvhyWXTlWAE5GsCt9S52ts5rbHNwK9z3otW7k1biLb1lDK7vvnAv6WZMPnvxV3DIn0jhURSZdI8c8AH4YksuP+8RlcJe1Jf4dqoUg+ipDOSD4IBDVfYzMWf1CLVvCks6WoO5F1d1B1S+REdmCxu1ciCzBwQJEmbiKSdZFajQUqq4eLNyk7vmV0MJEFKBkfv9DrgCIXA4pc3PjQeuYsXUVtXa+i1CIiGREp/u3+5ceDj8dfv9LxGdlodPZf8pGS2TzlpH8sQGerm/2PVQP+ypwTvvM0JkLb9MoyL02tka+nO3UikguixaJIP481KTv4zGkc+OMsADzDjzLh1hWOvr+lvZPG5rbgDcQbH1rP7bUbHX1WRCQV4XHuyNqJtO4bCsC07z2X0oosgMdtdPZf8pK2GecpJwlmy94h7P3VJ8B0Mvyz6xk0LfoqQvj5i1C6UyciuSBWjAqt4u4yEK2QcdP7IzlW56/kPuSc9xh2Xu9VXacs8MDqHVRPKNfuFRFJq/CjZEO7Wo5ZC7t+/Gk6m4sZXL2NSZ99j9bO5M7IBgwr9XDHJTpOJvlJK7N5Kl6C2bxthD+RBco/9XbMRDZwvZr5k/F63D1+riqdIpIrosWouVMqgscuIHIiay201g/Ge9J+XAPaGP2ll1NKZIPXhYjbnEVEkhXpKNnx1naKjGHH3QvobC4GYOSntnC0tc3RTr1IPG7DfVfNoO77FyqRlbylldk8VTN/co9CAKFO7Cxn/yNnA1A8upHBZ2yPeS2Py/Soxum0UqiISLrFqlYcLUbFO3bR2epm570XATD6yy9RdcMzXasc6RlztJ0yiVReFhEJiBTTWtssO5Z1F3s6/fvP0NQOncnlsVqNlYKhZDaHhW6bC28DAf5iJIFgZ/CvEDS9O4r6x/1nZEun7KbisjqM8a9KRBJeqXjhzEoFNhHJikSqFQMcb2nnzic3cagpetGT1gOD2PPzTwafl407xl2fnwEk1oc2lkg7ZRL9vYiIBITfILOd9EhkOzrgjP9L3Irt0Xy4dEH8N4nkCSWzOSp8ItTRlY36Gpu54aH1vd5v8Z+RDSSywxesZ9Bp/q3F1vq34oXe5VN7CRHJNbGqFS+cWcnttRt79NKOVsE94NimSg7+aUbwubVQW3d68CZhOgR2toSL93vRqq2IRBNaH8B2EpzbAUxf8gxPbJgaN/5F445UBVQkj+nMbI5yWq04oPnD4ex7cDYYy4jL1gUTWfBXKr5r0TQqy7yYkOeaOIlIptTW+ZizdBWTFq9w3MYmVrXi2jpfj0Q2nqZ3RwYT2eIxjcy485ke59DSJsq8MN7vJfw83G2Pb1SrHxEBCN4gs+0uGlZOo2V3GYNnfUDVLStobG7jzic3JX3tjmhb9UTylFZmc1Qi7XB2/+w82g4OBqDyG3+haMiJ4GuBUuvaPiwifSXZLbaBap2Rfr5s5VbHiWzHiaJg39hhF2xiSPWHHGoi4q6WVLV12OBqa6hYlZfvfHJTzFVbEZHOliJ23jcfgLLzNzP07G3B12IdrYinUh0qpMBoZTZHOW2Hs/3fLgomsqOufaVHIusysOzy6ZociUifirXFNpZou99a2zscraZaC9t/uIBd/zGfjhMeJty6giHVHzoddtIi3XyMVXk52kRUPb1FpLbOxy0PbAkmsi5vS49EtszrSfra6lAhhUjJbI6KNBEKt/eBc6DD/54xX32RknGHerz+hbOrlMiKSJ+LtcU2lsYoSV5TW/weip0tRey4u7uoiXtgS9zPpEukm48LZ1ZGPN7x/Jb6hK4jIv3Lvzy2jXfvuSD4fPy3nws+9rgMF08fk9R13cboiJkUJG0zzlGBYLPkiU0Rt93t/NGng33Gxv3js7hLW3u9J9akSUQkU2JtsU3mc/G07hvCnl9+Ivi8quYpjMv5uTCP2/SoCupxGTA9K4UGKsYHfg2ItdIR6XjHjTG2OmvFRKR/a26Gtf/SHcsm3Lqix+sDBxSx4s09CV9XRT+lkGllNse1tPdckbAWGv96ajCRHX/D0xETWdCWNRHJjmhbbOMla052pIQ7saO8RyI74dYVCSWyAGdNHNZjBXXZFdNZdvn0Hj+796oZfLh0AfdeNSOlYnrREvoyr0cTTZF+7PhxuPpq/+MBlQ29ElnwV3BP9LysVmSl0GllNoeFnzuznYYdyz4LwMBpOxl+0caYkzZtWRORbAhMmhJtPRN4/eaHNziquGktmOJ2AEpO2s+oK15ParyvvN/AvVfN6DW+SONNtZhezfzJPYpjgT/RX3Lp1KSvKSL5bfduqKyEkSNhxCV1DPzY7rRcVyuy0h9kJaQWYrsAACAASURBVJk1xlwBLAE+CpxlrV2bjXHkutCV1c42Fzv//TPB58M/82bUYinQXcVYRCQbkk36Fs6sjLkVN8B3/ycx7k5GX/sqVTUrMCnsM7LQZ5WEk030RaQwbdwIp5/uf3zLLfB42yF8jalft1KxRfqJbK3MvgUsAv47S9+fFwLnxzpb3Oy876Lgz6tuWdEjkR1W6vFvP+46Wzus1MMdl0xVABORnFVb54ua0MU6O2stPQo92U6DKw0HZvryWIZapYkIwOuvw1ln+R97Rh7m8bZ1zJ1SwWPrfL0qwjuhBFb6o6wks9bazQAm1tKiUDN/MjW/2cp7980L/iz8DIXX41biKiJ5JV4f2rlTKnhg9Y5efWU7mj3s+tGFwefj/vFZ3N7k+y2G0rEMkdRkctddrJtf+Wrz5u5E1j24mbFf/Su+RnhsnY/Pz6rk+S31jgviGYh4VEKkP9CZ2Rx2/qRK3rvXH5gGjDvI6GtX93hdK7Aiko/i9aF9bJ2vVyLbdqiU3cvnBp+Hby0O3BodW+alqbU9apEUr8fFibZOxxWJRcSxjOy6i3fzK5Hr9GVCHOv79u2Dj33M/z5PxRHG/u1Lwc81t3Xwpw17WH/HhUxc3LsIVCTXzlYrRum/MpbMGmOeA0ZHeOl71to/JnCd64DrAKqqqtI0utxRW+fr0X4nkKB+ZEAlF13aBi43Q895j7KPvxvx8wpeIpJvYvWhjZToApzYPjz4OFKVT4APli4IxtRIPC7DXYv8h9MKbZVHJNsytesu1s2vWH9vQ5PJslIPx06009bpv42VbEIcS+j3DfV6ON7aHmzvFfp9Z42q5OqrYehQKDrnTQZN39nrWo3Nbcy48xlKPa6Yfba1qCGSwWTWWvupNF1nObAcoLq6OrF+Czmuts5HzSMbgsEV4FBTG9fduY/6P1YCHkZesQbvSQcifj7R8uwiIrkgVh/a8ET38OqTaWsYyIiL3qRu+elc87tVEYujjC3zcnvtxojbk8Hf+mbJpd2TPk3+RPJDrJtf0YSv5kaaLzlJiJ0K/77AAkX4993+031sut//faP/5q8MGHM46jUbm9tw0bu3NfhvzC27YrrimAjqM5tVy1Zu7ZHIAhzdMJ76P54BgPeUfVETWRGRfBWrD23o2dXtP1xA4wtTOL5xPBWeoVRVRf9stHO24C+Ksv6OCzXxE0mRMeY5Y8xbEf65LIFrXGeMWWuMWVtfXx/3/dHOs48t81Jb52PO0lVMWryCOUtXUVvnAyKv5kYSmhBHu5YTTr7v2MZxbLrfP78bNm9TzEQ2oBMo8bgYVuoJ/qzM61EiKxIiW615Pgf8GKgAVhhj1ltr52djLNkQ2IoSvjJx7K1KGp72b4EbPOsDyj/1dszrlHk9MV8XEclF8drTLH50I1v/tbuC+4S/fYXvXT4p5meXrdwaMZGFvq1UHEshFrGR/iUdu+4S3XEXrTfz3CkVUc/SOv07H0iU453Ljfd3N16hpqNvTKDh2dMAGHT6Doac+aGj8QE0t3Wy+f9+Jv4bRfqpbFUz/gPwh2x8d7aFB8yAoxvGBxPZikVrKT11X8zreFyGJZdOzdg4RSR1hd5TO5XkLFp7mnknV7L1X7t/fuY/vch3P3dyj/dG+mys3rS5UKk4XUVsRPqbWDewop2ljdXeKyC08Fu8onThf3dvfGg9a7c38IOF0wBwG0OHjZyXN28bEUxkB1dvo/yCzYn89kUkDlUz7mMRA+aHw2l41p+YjvrCq5SMb4j42UCwVB8xkbxRsD21052c3V67kQfX7KT+2Y8C/lXYjg5wuc5z9Plok1cDOVGpONkiNiL5IpO77hK5gbW7sZl7r5rBjQ+tj7pbI3welWhROgs8sHoHAH/asCdqItvW6OXAE/6txcM/u4FB03ZFGVF0oVuMRaQ3JbN9LHyytfNHn6azuRhPxRFGXfka7kEtvT7j9bi5a9E0TXhE8kwh99ROZ3J2e+1Gfv74EVp2T6D8U28zYFwDA6fs5ftPVAVXPuKJtBXRkDstK5IpYiOST/p6112sQnILZ1ZyQ5Rk1wAvL57n+FrR/o5a4LddCW0kx98ey4EV0ymuOMqIS+rwDD8e/TcTwx2XaBeeSCwqANXH3CGT2u0/XEBnczEAo65eEzGRdRujRFZEck46k7N7bhjD3t/M4dBfptLR7GHglL0APLimd8uKaBbOrOSuRdOoLPNi8K+83HvVDMfJcKbFKmIjIomLVUgO/DEgkkh/55wWpXPq4MrTOPDkTOh0MeLSNxwlsm5Xz5ueBvhijtyME8llWpntY4GtKL7/Pj/4s7HXPY+7tBWPy/SobqwVWZHc1197asdayUiE//7eCADKL3oTt7e7pUW0rXvRRDuHmwuFl6IVscmFLdAi+SheIblE/s7Fu1asLcvh6p+YQdNm/+dGXrUaT3mTo8/dc8X0rMcpkXykZLYP1db5cGH48J752Hb/HcBx33oW98BWAAaVFFFaXKRAJpJH+mtP7WSSs9CkcswQL69+r3ur35ivvETxqCMRP5NKHMyVwkvxJssikrhoN7ACr4Hzv3PRrrVwZiVrtzf0av0Vqf/rwWemBhPZEZfUccqMJuZOqeL5LfXsbmyOmhC7jYn5exGR6JTM9pHAhKq9zQQT2aqb/4wp6gy+p7GpjbrvX5itIYqIOJboRPH22o09JoPrf9F9Duzm327i0Y29E9nA9VOZ4OVS4SVNVkX6Vrr+zv1g4TSqJ5T3iHdzp1Tw0Gs7gzvqmj8czrG6iQAsvucgd900s9d1Ji5eEfH6ie5CEZFuSmb7yA9XvMPhXQMpHnWEcdevxDWgnfCaMDo7JVJYCr2nttOJYm2dL5jIdhwvpnX/ECoWrePgiumc/sWt/Nu183h08YcRP5tqgSQVXhKRdIgU76onlLPkiU3s2TyEg38+HdeAdv7tlw3cePXIHu8L7EqJJtr5XhGJT8lsBoSfz/rH86aw+p/mAlD5jb9QNOREr8/o7JRI4enPPbVDLVu5FQscfuUUGl/yx7nxN6xkxCXr2XPYHzOj9WlM9SZfus72ioiEWzizkud+XslPHoLZs+HJJ2HEiN6JbPiRjFCa/4mkRtWM0ywQtHxdZyN27GnnmjljAXANPBExka0s86rQk4gUpNo6H77GZvb8+txgIjto+nZcA9oBKCv1cNvjGyMmsumY5MWreCoikqyvfhV+8hP/4wcfhBEjer8n0lGHAM3/RFKnldk0Cw1a7UdK8P30AgC8Yw8z4W9fpbm7UGewB2KutI4QEUmnwM297T9cEPzZ8IvXM2iqD+gqoGKJONFLV1syFV4SkUy46ip4+GH/4w8/hAkTIr8v2pGGSP1uRSRxSmbTLDRoBRLZ0o/sYeTn3uDzs6p6FECxwGPrfFRPKNfESkQKzrKVW/nwN9XB52P+9gWKK44B3TfzHli9I+JnO61NW1xU4SURSacHH+xOZHftgsoY4UVHHUQyS9uM0yw0OI269hWGznmHis+9wdgyL89vqe9Vlj1QVVNEpJA0N8OH21wMX7AeU9TB+BufDiayAPdeNYMfLJwWdUKniZ6I5KL2dhg1CubNg717YyeyoKMOIpmmZDbNPjX4dLb/cAHtxwZQMu4QZR9/Nxi0VFVTRPqDDRugtBT2/uZcXCVtVN38NK7i7q3EgZ6KoImeiOSPG2+Ec86BM86A557zJ7XxLJxZyV2LplFZ5sWgc7Ii6aZtxmn0+9/DP3/Lf/p/aPNwmgbt7nE+a9nKrdpqIiIF7aGH4Oqr/Y8HTd+By9PZ6z2hxZ50plVE8sGUKbB1K7hcUFJCr/aKseiog0jmKJlNkx//GL79bf/jmrsP8nLHIZoae76nZv7kXuXZtQIhIoXiO9+Be+7xP16+HJZue4eO3kWKcYfNAjXRE5FcVlkJu3f7Hx8+7E9mRSQ3KJlNg3/9V/je9/yP7/yveh7ctS6YsPoam7nt8Y2AViBEpHA99FB3InvX/9Tzy72R2+0AUX8uIpJrJkzoTmSPH/cfoRCR3KFkNg0GDPD/unYtfPvZ3o2xA0WeAqsPSl5FJF/U1vli3oDr6ICjR+Gss2DhQrjkG3tY9tKGqH0VwX9mTEQk1736KuzoKrh+4kT3fE9EcocKQKXgt7+F1la4+WZoaYFZs6IXc1KRJxHJN4E+sb7GZizdO01q6/x9YuvroagI5s/3b8P7wx/g529sjpnI6miFiOQ6a+HRR/036Z580l/BWImsSG7SymySJn2kjQ/f9XDdnXuZ+bW3g6sV6icmIvkk1srrspVbo+40Gd9ZSXVXC9mTToLiYv/jWDfuKnW0QkRynLX+Ik8Av/kNfPGL2R2PiMSmldkkDBzcyYfvegAYvmBDj9UKtZkQkXwRb+U1WmL6zl/Lg4ns178ODz7Y/Vq0G3eVZV5eXjxPiayI5KzOzu5EFuDaa7M3FhFxRslsAqz1l2JvOub/Yxt/059xl7QDPc/Fqp+YiOSDWCuvEDkxbd5WwYEVMwD4n/+Bn/605+u6oSci+ai9HdwhoauzM7H2OyKSHdpm3CVekRPortQJUFXzFMbVsyJnYBVDRZ5EJB/EO+Mf3k7MdvrPjQ0p6+C5Z9yceWbk2HnXomk5U7XdSWwXkf6towPmzOl+rkRWJH8omaV7q120djodHf67dTfd5A9wtR2r2H24d2sJnYsVkXwS74x/IOn74Yp3WHdfNWVVx/jvn3Wy8NdujIkeO+9aNI2XF8+L+/2ZTjTjxXYREWv9c7uxY+FLX4Jf/UqJrEg+0TZjYm+1O3TIX63z61/3n6O45Ra45SJtoxOR/OdkS/DsMZWs/qe5tB0czGllY7hsRmVwohdvm3Is8c7rpkMq4xORwtfUBBde6E9gH30Ufv1rJbIi+UbJLNG32u3Y2Ul5uf/xW291/1znYkWkEMSLZWvWwJgx/vdOmwarVvUsjpJKK7K+SDTVKk1Eojl6FAYOhOee87cZc7vjf0ZEco+2GRN5q11bQym7758LwGc+A0891fMzOhcrIoUgWixbuxZmz/Y/vv56uO++3p9NpRVZXySaapUmIpE0NsKwYf7HU6bAbbdldzwikjytzNJ7q137kZJgIvt3f9c7kRURyVe1dT7mLF3FpMUrmLN0VdRtvevW+X994IHIiSykVrk4WkKZzkRTlZVFJNzRo92J7KxZsHlzdscjIqnJSjJrjFlmjNlijHnTGPMHY0xZNsYR0Gur3Uj/gvXtt8P992dzZCIi6RPvnKq18O1vw733wv/5P3DkCHzhC9Gvl8qRi75INHUkRETC3Xyz/9fzzvPvQBGR/JatbcbPArdZa9uNMT8EbgNuzdJYghreHkHT8VaKzjzCdx/fyKqt9fx2sdo5iEhhiHVO9aKPVuLtWhSdPh1uuAEGD45/zWSPXAQ+k+m2OToSIiLgvzn3wQdw551w0UWwaFG2RyQi6ZCVZNZa+0zI09XA5dkYR0BtnY+vf6+RfX8+HYCSk57igTU7gq+rnYOIFIKoxe522GAiC/7Vir6o6KlEU0T6wvbtMHGif3vx9u1KZEUKSS6cmf1b4M/ZHMC3b21h35+nAjDyijUYd+8esmrnICL5LtJ51LZDpez66QUAnHWWf6txkUoDikiCcu0IWcB77/kTWYBvfMPZjhMRyR8ZS2aNMc8ZY96K8M9lIe/5HtAOPBDjOtcZY9YaY9bW19enfZzf+hbsfPYkAEZ/6a94TzoQ9b1q5yAi+SzSOdUTb00A4NZb/a14RESS9CxwmrX2dOAd/EfIsurtt+HUU/2P/+Ef4F/+JbvjEZH0y9j9d2vtp2K9boz5CnAxcIG1tvdSaPd1lgPLAaqrq6O+LxnNzfCTn/gfj/27/8Uz/HjM96udg4gkwhizDLgEaAXeB75qrW3M1nhCz6m+83I5FRVwz30DmFEOJ5+crVGJSCHItSNke/fCVP+mO2pq4O67szkaEcmUbFUzvgi4BbjUWtuUjTEcOwZeL7z5Jvx85R6GjD4R8/1q5yAiSci5lYrLZlTyzj3zOPCnGZSsn8Gi6kolsiKSblk/QrZ9u/+M7D33KJEVKWTZOhn1n8AA4FnjrzKy2lr79b768tGjYd8+2L0bpk2DadPGUF7R2aOq5twpFTy/pT6jVTZFpLDl2kpFczOUlnY//8tf+qbQk4gUBmPMc8DoCC99z1r7x673xDxCZoy5DrgOoKqqKu1j3LwZvvtdf2vFXbt6xjwRKTzZqmZ8Sna+F1wha9GBptmgqpoiknF/CzwU7cVkJni1dT7HrW327oUxY7qft7eD2x3xrSIiEaXjCFkmj4+tWgUX+OvZcfvtMGtWOq8uIrkoF6oZ94nHXvf1SGQfXuOjpCR74xGRwpCuYnfW2uXW2mprbXVFRUXc762t83Hb4xvxNTZj6W4hVlvni/j+22/3/3r++f4be0pkRSSdsn2E7OmnuxPZ//5vJbIi/UW/aMBQW+fj8rO6VyuqblnB95904/Gob6yIpCZdxe4StWzlVprbOnr8LNBCLDSurV4N5eX+M2Nf/jJ84hPpGoGISA9ZO0L2xBNwWdftw1/9Cv7mb/riW0UkF/SLZHbZyq2UX9jA4dUnU/n15zEm8qRPRCSdQlYqPpnulYporcJCf37llfDIIzB3rn/7XSCRTWR7soiIE9k6QtbY2J3IPvSQP+6JSP9R0Mnsvn2wcCHsPreFwTN3MHjmjh6vq2+siGRYxlYqxpZ58UWIYWPLvPzhDR9XnDuKjhZ/iL/8+r0EarYEticHVnUD25NBO1VEJL+89x5MnOjfVnzeeTBlSrZHJCJ9rWDPzG7b5q9avHo1DNgVuZiK+saKSCZZa0+x1o631s7o+idtW+5q5k/G6+l58NXrcTNn4kgWzaoMJrLjb1jJj9euD56ljbU9WUQkX/zXf8Gpp8LixXDddUpkRfqrgk1mA30T/+Zv4O7FZREnfeobKyL5auHMSu5aNI3KMi8GqCzzcteiafziru7iUVW3rMA1oL1Hsupke7KISC679174xjf8j7/5zeyORUSyqyC3GdfW+fjYV+upb+jgvY8eBiZz16JpOiMmIgUltKXYtm3+Qk8Dql9geOVeBp2+q8d7A8lqrO3JIiK57q67/H1kAV5+GU46KbvjEZHsKrhkNngebGQHpSPB1wi3Pb6RuxZN4+XF87I9PBGRtLv7brj1Vn/hk4kzO/BV7Or1nkCyWjN/co8zs6CdKiKSH1as6E5k165V+x0RKcBtxjoPJiL9yW23+RNZgO98J/pZ2kCyGm17snaqiEiue/RR/68bNiiRFRG/gluZ1XkwEelPWlv9v77zjr8Yypn4k9JYxypCtyeLiOSL5cvhnnv8RypERKAAk1mdBxOR/uSee/z/hFKyKiKFyONRIisiPRXcNuN4W+xEREREREQk/xXcymxgNUKVi0VERERERApXwSWzoC12IiIiIiIiha7gthmLiIiIiIhI4VMyKyIiIiIiInlHyayIiIiIiIjkHSWzIiIiIiIikneUzIqIiIiIiEjeUTIrIiIiIiIieUfJrIiIiIiIiOQdY63N9hgcM8bUA9szdPkRwIEMXTtVuTo2jStxuTq2XB0XOBvbBGttRV8Mpi8o1uWcXB0X5O7YNK7EKdalX67++9a4EperY9O4EpfWWJdXyWwmGWPWWmursz2OSHJ1bBpX4nJ1bLk6LsjtseWjXP7zzNWx5eq4IHfHpnElLpfHlq9y9c9U40pcro5N40pcusembcYiIiIiIiKSd5TMioiIiIiISN5RMtttebYHEEOujk3jSlyuji1XxwW5PbZ8lMt/nrk6tlwdF+Tu2DSuxOXy2PJVrv6ZalyJy9WxaVyJS+vYdGZWRERERERE8o5WZkVERERERCTvKJkNYYz5v8aYN40x640xzxhjxmZ7TADGmGXGmC1dY/uDMaYs22MKMMZcYYzZZIzpNMZkvWqaMeYiY8xWY8x7xpjF2R5PgDHmF8aY/caYt7I9llDGmPHGmOeNMW93/Xu8PttjAjDGlBhjXjPGbOga153ZHlMhydVYB7kb7xTrnFGsS4xiXWb9f/bOPD7K6vr/75MwkLAZVoWwqgWUNcpm0Qq4YF0QpRT9oZVatdZq6xZFi220WK1axa3WWi36FRUVjeKGG1SLoiwBBQGVikBQCcQggQBZ7u+P+0zyZPLMmklmJjnv12temTz3Wc6zfeaee889V7UuelTrIkO1LjoaUus0zNiFiLQ3xvzgfP8dcKQx5tIEm4WInAy8a4ypEJG/Ahhjrk+wWQCIyBFAFfAwcK0xZnkCbUkHPgdOArYCy4BzjTGfJcomPyLyE6AUeMIYMyjR9vgRkW5AN2PMShFpB6wAJiX6momIAG2MMaUi4gP+C/zeGLM0kXY1FZJV6yB59U61LjJU66K2S7WuAVGtix7VushQrYvargbTOu2ZdeEXPIc2QFJ4+saYN40xFc6/S4EeibTHjTFmnTFmQ6LtcBgJfGmM+Z8x5gDwDHBmgm0CwBjzHlCcaDsCMcZ8Y4xZ6XzfDawDshNrFRhLqfOvz/kkxfvYFEhWrYPk1TvVushQrYsO1bqGRbUuelTrIkO1LjoaUuvUmQ1ARG4VkS3ANOCPibbHgwuB1xNtRJKSDWxx/b+VJHiBUwUR6QPkAB8l1hKLiKSLyCpgO/CWMSYp7GoqpIDWgepdMFTr6oFqXfNCtS6lUa2rB81F65qdMysib4vIGo/PmQDGmD8YY3oCc4HLk8UuZ50/ABWObY1GJLYpqY2ItAXmA1cGtGQnDGNMpTFmGLa1eqSIJE0YTyqQrFoXiW3OOo2ud6p1TR/VuqaHal3D2KWkNs1J61rEYyephDHmxAhXnQu8BvypAc2pJpxdIjIdOB04wTTyQOcorlmiKQR6uv7v4SxTQuCMXZgPzDXGvJBoewIxxpSIyCLgFCCpEi0kM8mqdZC8eqda17RRrWuaqNZFj2pd06a5aV2z65kNhYj8yPXvmcD6RNniRkROAa4DJhpj9ibaniRmGfAjEekrIi2Bc4CXE2xTUuMMyH8UWGeMuTvR9vgRkS7iZHYUkUxs8oekeB+bAsmqdaB6FyGqdVGiWtc8Ua1LeVTroqQ5ap1mM3YhIvOB/tgsbl8DlxpjEt4CJCJfAq2Anc6ipUmUje8s4H6gC1ACrDLGTEigPacCs4F04DFjzK2JssWNiDwNjAU6A98BfzLGPJpQowARORZ4H/gU+9wD3GiMeS1xVoGIDAEex97HNOBZY8wtibSpKZGsWgfJq3eqdZGhWhcdqnUNi2pd9KjWRYZqXXQ0pNapM6soiqIoiqIoiqKkHBpmrCiKoiiKoiiKoqQc6swqiqIoiqIoiqIoKYc6s4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKyqHOrJJSiMgIEflERDJEpI2IrBWRQYm2S1EUJZ6o1imK0hxQrVPqixhjEm2DokSFiMwCMoBMYKsx5rYEm6QoihJ3VOsURWkOqNYp9UGdWSXlEJGWwDJgH/BjY0xlgk1SFEWJO6p1iqI0B1TrlPqgYcZKKtIJaAu0w7bkKYqiNEVU6xRFaQ6o1ikxoz2zSsohIi8DzwB9gW7GmMsTbJKiKErcUa1TFKU5oFqn1IcWiTZAUaJBRH4BlBtjnhKRdOADERlvjHk30bYpiqLEC9U6RVGaA6p1Sn3RnllFURRFURRFURQl5dAxs4qiKIqiKIqiKErKoc6soiiKoiiKoiiKknKoM6soiqIoiqIoiqKkHOrMKoqiKIqiKIqiKCmHOrOKoiiKoiiKoihKytEknFkRmSMisyJcd7GIXNTQNimKojQmIpInIk8m2g5FUZSGQkT6iIgREZ1aUlEUoIk4s80NERkrIlUiUioiu0Vkg4j8MmCdM0VklYj8ICI7RORdEembKJu9EJFWIvKYY+O3InJ1iHUHichC51zqzCflNFLsc65JqYhsCCjvIiJPicguEfleROZGaKP/h9O/300iMiP6s/Xc9yYROTHMOu7z2iEiL4hIN6dsjogccNlWKiKrA+xuEbC/6oYfj3Pzf6ZGaH809+8c5zndJSLbReRxEWnvKu8jIq859+ZbEXnAbbuI/NPZvkpEpkdin5KaOM/kHudZLBSRu525B/3lA0XkTREpFpESEVkhIqcm0mYvROQq51n+wXlPWgVZr6WIPO/ogRGRsQHleSJSHvCOHuoqj/ndcI5Z5uzzW0cf2sZyvgH7DdvAHHBeJSLygYgc45RNF5FKD23q7rL7xID9TReR/wY5N//ngSjOIaL7F7DNH517eKJrmZdOpztlR4rIckf3vheRt0XkyEhtbA543eumQMBzUSwib4nIAFd5SxH5m4hslZq6x+xE2uyFiAxzNHiv83dYiHUvd573/SIyJ8R6Xu9Rtoi85FyrrSJyaRQ2BtWa+iC2Lr41zDoh65ABv3f+z3Uuu+s0UDvbHO5xbv5PSRTnEM39C1rPFpFxIvKpc313isiLIpLtKl8bYGOFiCyI1M5wqDMbJySOrYRiCXdvthlj2gLtgauAR0Skv7P94cATwDXAQUBf4EGgspFtDEce8COgNzAOuE5ETgmybjnwLPCrEPu73BjT1vn0Dyh7AfgW6AV0Be6K0tYs53r/DLhJRE6Kcvv6cLlz7H5AFnCPq+wO1zm3NcYMjWH/WQH7mBfhdnlEfv+WAGOMMQcBhwItAHdl9+/AdqAbMAw4HrjMVb7a+X9lhLYpcSKe2hbF/oY6z/zxwFTgQlfZAuAt4BDsu/w74IcE2Bhq+wnADOAE7PtxKHBziE3+C5yH1Sgv5gW8o/9zldX33TjDudbDgBzghhj3EwvznGN3wV6DF0REnLIPA865rTFmW5T7PyNg+8sj2SiG+4eIHAZMAb7xKA7Uaf9v8Tbsb0pHoDPwMvBMJDYq8SVBOneH8/xnA4XA2HkkPQAAIABJREFUo66yG4DhwEigHTCWOP/+xUHnWgIvAU8CHYDHgZec5V5sw/7uPxZin8HeoyeBr4CDgdOAv4jIuCjM9WtNZ2AR8FwU28YDfx3yXOCPAXWloQH6cEeU+w78fciKZKMY7h8Er2d/Bkxwjt0d+AJ4yF9ojBno3w77PG8hjvcgJZ1ZEckRkZVieyXnARmusg4i8oqIFDktna+ISI8Q+7pQRNY56y4Ukd6usntFZIvYltkVInKcqyxPbGv6kyLyAzDdabX4s4gscWx7U0Q6u7YZ7bQIlYjIanG1wDvb3ioiS4C92B/PsBjLa0AxMMRZPAz4yhjzjlO+2xgz3xiz2TlWuojcKCIbHTtXiEhPp+zHIrJMbA/aMhH5cSgbRWSA2BbFYrG9Az+PxG6HC4A/G2O+N8asAx4Bpgc5zw3GmEeBtVHs32/3yUBPINcYs8sYU26MKYh2P44dyx0bhjn7ThORmSLytdgexydE5CDXsSc6LVIlzvU7wln+f1jHeoG4WuLCHLsYmA8MisX2BiCa+7fFGLPDtagSONz1f1/gWWPMPmPMt8AbwEDX9g8aY94B9sX5HFIOEblebI+lPyrjhCDrhdKbXzq6t1tE/iciv3aVjRXb8n29iHwL/NvRu2ed53u380wPd23TXUTmO7r7lYj8zlVWRysjPVdjzJfYhhD/+9YZ+6w8Yow54HyWGGPcPXLuqJSN/kqDY+PLjlZ9KSIXh7JRRA4SkUdF5Bvnes8SVw9xGC4AHjXGrDXGfA/8Odh5O+cw2zmHqBsc4/VuOO/dQpxrDcH1yyk7wllW4qwz0Vl+CTAN27hVKhG0vhtjyrEVqUOATvU5jzgR8f1z8SBwPXAg0oMYY0qMMZuMMQYQ6upisyaS38lQ76mIHCY2Km2n2MimuSKS5dp2k6NznwB7RORwsb1eF4jIZmebP7jWTxORGY6u7HQ0saNT5u+B+5WIbAbejfQ8jTFl2MZ6d6/YCOBFY8w2px63yRjzhMuWnmIjtYocWx5w2ehZJwlmo4SoB4dhLLZherYxZr8x5j7sczw+yHm+YIzJB3aG2Ged90hstMhY4Fan/rYaeJ7ajZwRYYypAOYC2SLSxdl/qN+GViIyW0S2OZ/ZzrI2wOtAdwmIHAlz/A+xdchkqMeNJYr7FwpjzHcBjY2htOwn2EaF+dEeJxgp58yKbTHIB/4P25r5HDDZtUoa8G9sa2ovoAzwDC0SkTOBG4GzsS3D7wNPu1ZZhhWXjsBTwHMikuEqPxP7QmVhXw6A/wf8Ettj0BK41jlWNvAqtlWqo7N8vv9lcjgfuATbavF1BJfDL1wTsQ/Gl87ilcAAEblHbNd/YNjY1djWoVOxPbsXAnsdUX4VuA9bobgbeFVE3JULt41F2B6Sp5zzPQf4uzhhUiLy/5wfCS+7O2B74Va7Fq/G5cDEwG3Oj88SqR2qNxrYADzuiP4yETk+lgOIyGisCPmv9XTnMw7bANEW53kTkX7Y5+lK7PP1GvZHuaUx5nxgMzU9B2Fb4sRW5CcDMTni0RLv+ycix4rILmA39jzcIVOzgXNEpLXzrvwU69AqLsRGX1wOjDDGtAMmAJs81gunN9uB07Hv/y+Be0TkKNcuDnG264193wEmYnuNsrA9SNWVJ2xv6WpsD8MJwJVie7f8eGllJOc7ADiOmvdtp/P9SRGZJCIHB6w/EhuVkusc6yfUXJ9ngK3YVuOfYVv23T/agTbOASqwP8g5wMnARc5xejlOXK8gpg+k7rtxcICWRsMZTkVrrYj8JsZ9hERso+9Pca51KP0SER/2nr+J1f4rgLki0t8Y80/s9fP3Rp4RwbFbYXU0sNGrQYj3/RORKcB+p2HZi8uc+7dCRCYHFooNC9wH3A/8JeITaeJE+Ds5hyDvKbZifhv2nT8C26idF7D9udievixnPwDHAv2xWvZHqWnEuQKYhI0Y6Q58j3W+3BzvHGsCEeI4RudSo3MAS4GrReQyERksUh2xgFhn/RVsPbEPVnf9PfrTCVIn8bIxXD1YbIdQsKFVA4FPnMYYP58QYz0uxHskAX/936N2CB0f4hfY35LvncWhfhv+gK1DDgOGYnvKZxpj9mD1clukkSNiGYO9Po1Vj4v3/QtWz67WVazfdS0QrF57ATDfuYbxwRiTUh9s5WQbIK5lHwCzgqw/DPje9f9i4CLn++vAr1xladgex95B9vU9NhwArCC+F1C+GPuQ+/+/DHjD+X498H8B6y8ELnBte0uE12AsUAWUAPuxLSBXBqwzGtvSV4T9kZwDtHXKNgBneuz3fODjgGUfAtO9bMSG/70fsP7DwJ8iOIeegAEyXMtOAjaF2e5w+9jWWT4K62C3wr4ou4HDnLJ/Osf6FeDDOt0lQOcI7OzjbOt/QQ02RFmc8neAy1zr98eGRLcAbsL2Nrqfr0JgrPP/JuDEMMdf7DyTJc62c4EuTtkc596WuD6Pe9jt/hzAeVdCrHNEQ90/Z71s7PvTz7XsCGAFtjJhnHMTj23/638em+PHef63AycCvoCyPOBJ53tIvfHYbz7we+f7WOc5yQjY99uu/48Eypzvo4DNAfu7Afi3a9v3wp2ba1uDDRve43x/GmjlKu+BrZxtxOrge8CPnLKHgXuCPK+VQDvXstuAOV42YkPZ9gOZrmXnAosiPIeNwCmu/33OufQJs91WHH0IuNbdgXTgx9jwu3M9to363cBqUClWLw1Wz7KcsqD6hW1g+BZIc5U/DeQ53+cQ5Dc54Jk6gNWc7dheoqOdsulYLXDr0kYPu93le4H/hlnn4njfP+zvzhf+MgJ0HTgK2zjcAtuAvBs75CJwP22wdYbTormHTf3jcT37OPeiRbTvKdYRLQjY94Ue++7hWvYxcI7zfR1wgqusGzW/9/5tD43wvOZQ8/tdhQ2hHeIqTwd+i41M2Y+t917glB2Drdu18NhvqDpJHRuJsh4ccKybgGcCls3F0YEQ283C0V7XsnDv0X+xjT0ZzjtVDGyI8FrnUaM1lVhHdqxTFu63YSNwqqtsAk49B6uFW8Mc23/NS7A+xDrgd65y/++dW6cmeNjt/hjg8BDreD7/9b1/hKhnB6zXEVsHGe1R1to537GR2BjpJ+V6ZrE/6oXGuSoO1b2YTs/Ow06IxQ/Yik6WeIeH9QbudVpoS7Avh2Ar24jItU7oxS6n/CBsD6ifLR77dI952ottFfMfa4r/WM7+jsWKYaj9BWObsbHp7bE9qbXCAowxS40xPzfGdMFWPH6CbWEC+/Ju9Nhnd+r2CH+Ncz08bOwNjAo4p2nYXp1wlDp/27uWtce+HFFjjPnI2HDq/caYx7E/AP6kMGVY8XnU2BCVZ5zzGBPFITpj7+U1WAHzOcsDr9nX1PzI1iozxlQ5x3Vfz2pE5B+ucJUbXUW/M8ZkGWOyjTHTjDFFrrK7nDL/54JAu93l2F70OucWsI91Ya4F1OP+GWMKsb2uz0B1z94b2HHNbbDXugPw1wjsaFYYG3Z7JfYHbLuIPBMktCmk3ojIT0VkqdNbVIJ9V9zaVmSMCQxbDdS2DLFjrnpjQ63cx7oR+w74iUbbwFZW2mIbzEZhnwv/NdhqjLncGHOYc+w92N5YCK1txcYY9/MZTtt8wDeuc3oY2wsZCaXUfTcgBn0zxnxmbKhhpTHmA+BebO9BvJhkbC//WGAANc9BKP3qju1FrXLtJ/B6ViMi01za9rqr6FlHc7oaY8YbY1a4ypYG6NJhHna7te0y6jIpYB+PhL0almjuXx624WiT146MMSuNMTuNMRXG9jjNxfaCBa63B/gH8ISIRPqcNXdCvqcicrCjkYVOffBJauscRF+Pe9F1rHVYRyhWrbvLeXb7YOsp1WMQnff9QWPMGGyv8a3AY04vcU/ga2NDZgMJVSfxsjFkPTgMge8JxF6PyyPEe4StW/bF2v4Q9l6GTL4UwLPOtT4YWAMc7SwP99vgdT2DhhNL7SRH7siPzsaYDsaYI4wN53VzVIBOLQy0O0DrPM/N9Yl0LHFU9y9MPdu9XjE1428Dx2WfjX3G/hOhjRGRis7sN9hYd3e4gfuBuQYrCKOMMe2xThzUDk/wswX4dcBDkGmM+UDs+NjrgJ8DHZwHaFfAfozHPoOxBfuiuo/Vxhhze4z7sxsYsx/bAjJYRCYFWWcZ1lHwh2RsAQIrBmBb/noHLOuFbY33snEL8J+Ac2prjAkbBmfsOKRvsGEbfoYSw5jYYIeg5l59Qt1rG8u1rjTG3I1tTfVXnAKvWS9sj8J3gWXOM9uTmutZywZjzKWmJlwlqUPN4nD/WlDzDHbEXrcHHJHciR0qkHQZapMBY8xTxphjsc+WwdvpD6o3TkjnfGyEwcGOtr1G/bTtq4BjtTPGuO9fLO+bMcY8i40O+WOQdbZgw/wi0baOItLOtSyctu2ndkNPe2NMpOFza6n7bnznPNv1xa1tccMY8x9sb5E/OV4o/doG9JTaSQDd1zNQ2+a6tO2n8ba9AYjm/p0A/E5s5uNvsdfoWRG5Psi+Q92/NGzPRSSORHMhlHaEe0//4mw/2KkPnkfdax+t1v00QOsyjG2gjWV/dgObz+T3WKcy06O8zBjzILZn70jHjl4ejgKErpN42Ri0HhyB6WuBIQH18SHEVo8L+R4ZY742xpxujOlijBmFbZT4ONqDGDuM4RIgT+zMEOF+G7yupz+cuM69NrUTMW2O1r5Gpr73L5SWtcA2KgU6yxcATxhjon5PQpGKzuyH2BfzdyLiE5GzsTHsftphW7hKxI4B/VOIff0DuEFEBkJ1IoEprv1U4IRyiMgfqXtTouFJ7LinCWITMGWITbQSNDlVpBhjDgB/w6nwiR2beLG/dVfsuLOJ2DEYAP8C/iwiP3Ji+IeIHQv0GtBP7FjJFmKnaDkSOzbDi1ec9c937oVPREaIK0lIGJ4AZopN2jUAuBhbmaqDY2cGdhwyzvVr5XzPcq5rhmP3NGwjhn/M5YtAB7FJHdJF5GfYUMUlzvZ5IrI4QpsBbscmN8nAhtZdJSJ9xY5N/gs2s1wFNsz7NBE5QewYs2uwP7z+H4nviDDRV5ISzf2b5m+lFJtc4lZsOJT/x+Ur4DfO/cvCCt4nru1bOtdbAJ9zr1NRv+qFiPQXkfHOs78Pq3VVHquG0puW2DChIqBCRH6KHWcWKx8Du8UmUsl0jjdIREbUY59ubgcuFpFDnGftZrGJWtLEjiO/kBptexT4pfPOpYmdzmGA4/R+gB3vkyEiQ7DDDjzn5TXGfIMdD/o3EWnv7OswiXys/RPAr8ROvZIFzCTIuwHVSUb8+RhaOjaKU3amc94idkzw77AZKP3bBn03nHseTaVhNnCSiAwltH59hO2xus7R/bHAGdSM22sK2hbp/TsB25gyzPlsA36NM5ZSRH4mIm2dZ+hkrEP1slN2ktiElulipyq7m5pQRMUS9FmK4D1th+192iU2j0BuPW35B3Cr8xuG2Cn/zqznPgEwxryFfXYucfZ9pfP+Zjq/ixdgz6cAq7nfALeLSBvnnfdHmoWqkwQ7p2D14HAsxvZM/87RMH+2cM/kV855ZGBDqP2/S36HPNx7dISItHP07jzsb9bdrn1vkginJjPGbMAOu7kugt+Gp7H1nC7O780fXWXfAZ3ElfQzxVhMhPdPwtSzReRsp36SJjY3x93YkP5i1z56YMdyPx73MzFxjFlurA82XXkBtit8nvPxjwPs7tygUuBz7MtgcMYW4Boz6/x/PvApNoZ7C/CYszwdmz78B6xoXIcrhh/X+DTXvgL3PZ3aY3hGYbvWi7EVyVeBXkG2fR24Mcj5jyUgTh/bmrsDW6EYhE3O8Z1zHTZhe298rnObiXUgdmMTXfVwyo7Fjl3c5fw9Ntj5Ocv6O+dRhB2H8C4wzCmbBqwNcR9bua7xd8DVrrJeju3+69PHuY/uzyanrItzDrux4wWWAicFHOs45z6XAsuB41xlj2Kz5HnZ6D9uC9cywbZcXYFtEPqj8+wU4aQ4d617FjZl+S7n3g90lZ2JTW5RAlwb5Ph1rrmrbA52rESp67MjmN2ubQLHzJYGfK5ugPt3KzYkaI/z959AJ9f6w5xz/R77HD+L7TV0X4fA+z820VrU2B9sq+nHzrNejG1Q6u6U5eHSJELrzW+de1aCTab3jOu5GEtdfQncd63nC6u7T2PD877HvoOeWokNQX49xDlWjwdyLXsd22DXBvtDuMl5vr51jpsd8M594lyjL6kZf9TDuV7F2FDkS4Odn7PsIGw421bs+1tAzdi5Ws93kPO42rnGP2AjDdzjftcC01z/b/J4vvs4ZU9jtbUUWI9rvFW4dwP7+7YkhI2bCBi375zzfNe1DKZfA51lu5x1znKV/QhY5Txf+UGOXeeau8qmYytZgdo0IoTd06k7ZrYsYPsXG+L+hbqm2IQ6u5z9rPY/Q07ZFOeellLzjg4JZlNz/BDwO0ld7Qn1ng7E1mNKnefxGlza5nGvau3b9X7586ykOc/FBqy+bAT+4rVtuGcMj3Hl2GEVhdjf1kuoqYuVYHX/dNe6vbC5DnZifzPvc9noWSfxOj9nuWc92CkLWhd1ynMcO8uwyUdzXGW1tB77zgdqVV6E79GVzvnswY6fHe4qa+ncjwFB9pVHXX0f5eyrK6F/GzKwQ/m+cT73UTufxGPOPSjB+S0OOI7nNXeVG8cOt07NDma3axv3mNly6mpl13jeP8LUs7H14a+cc/kWW6foHXCsGwjIsxOvjz+JjaI0W0RkFTapQzxCABVFUZICEfkX8JypPQZLURSlySAixwK/Ncacm2hblMSgzqyiKIqiKIqiKIqScjS7MWeKoiiKoiiKoihK6qPOrKIoiqIoiqIoipJyqDOrKIqiKIqiKIqipBzqzCqKoiiKoiiKoigph9eEy0lL586dTZ8+fRJthqIoScaKFSt2GGO6JNqOeKFapyiKF6p1iqI0B6LRupRyZvv06cPy5csTbYaiKEmGiHydaBviiWqdoiheqNYpitIciEbrNMxYURRFURRFURRFSTnUmVUURVEURVEURVFSDnVmFUVRFEVRFEVRlJQj4WNmRSQdWA4UGmNOj3b78vJytm7dyr59++JvnEJGRgY9evTA5/Ml2hRFSWlU65Ib1TpFSQ5U6xoW1TqlqZFwZxb4PbAOaB/Lxlu3bqVdu3b06dMHEYmvZc0cYww7d+5k69at9O3bN9HmKEqqo1qXpKjWKUryoFrXcKjWKU2RhIYZi0gP4DTgX7HuY9++fXTq1EkFrwEQETp16qSto4pST1TrkhvVOkVJHlTrGg7VOqUpkugxs7OB64Cq+uxEBa/h0GurKHFBtS7J0WurKMmDvo8Nh15bpamRMGdWRE4HthtjVoRZ7xIRWS4iy4uKihrJusjZuXMnw4YNY9iwYRxyyCFkZ2dX/3/gwIEGPfb69esZNmwYOTk5bNy4kfvuu48jjjiCadOmRb2v2bNns3fv3gawUlGaN6p19Ue1TlGUxkK1TklG8gsKGXP7u/Sd8Spjbn+X/ILCRJuUNIgxJjEHFrkNOB+oADKw48heMMacF2yb4cOHm8DJtdetW8cRRxzRkKZGTF5eHm3btuXaa6+tXlZRUUGLFg0zNPn222+noqKCmTNnAjBgwADefvttevToEfW+/BOXd+7cuU5ZMl1jRfFCRFYYY4Yn2g4vVOvqj2qdoliSWetiQbWuNqp1ihf5BYXc8MKnlJVXVi/L9KVz29mDmZSTnUDLGo5otC5hCaCMMTcANwCIyFjg2lCVu1Ri+vTpZGRkUFBQwJgxY2jfvn0tMRw0aBCvvPIKffr04cknn+S+++7jwIEDjBo1ir///e+kp6fX2t+KFSu4+uqrKS0tpXPnzsyZM4eCggJmz55Neno677zzDv379+d///sfP/3pT7nwwgu55JJLuOKKK1izZg3l5eXk5eVx5plnUllZyfXXX88bb7xBWloaF198McYYtm3bxrhx4+jcuTOLFi1KxGVTFJ5+Gn74AX7960RbEj9U61TrFCWQt9+GpUvB8VmUJEe1Tkkkdy7cUMuRBSgrr+TOhRuarDMbDcmQzbhJsnXrVj744APS09PJy8vzXGfdunXMmzePJUuW4PP5uOyyy5g7dy6/+MUvqtcpLy/niiuu4KWXXqJLly7MmzePP/zhDzz22GNceumltcT0jTfeYNGiRXTu3Jkbb7yR8ePH89hjj1FSUsLIkSM58cQTeeKJJ9i0aROrVq2iRYsWFBcX07FjR+6+++7qbRUlEdx7L1x9NfzkJ3DRRRDw268kKap1ihIdTz8Nv/wl9OsHV10Fbdok2iIlElTrlESxraQsquXNjaRwZo0xi4HF8djX2LF1l/3853DZZbB3L5x6at3y6dPtZ8cO+NnPapctjtGqKVOm1GmJC+Sdd95hxYoVjBgxAoCysjK6du1aa50NGzawZs0aTjrpJAAqKyvp1q1b2OO/+eabvPzyy9x1112AzQ64efNm3n77bS699NLqEJmOHTtGfW6KEm9Gj4aPPoLu3eHVV5uuI6tap1qnNG8uuggefdR+X7RIHdlIUK2zqNY1X7pnZVLo4bh2z8pMgDXJR1I4s02RNq5fqBYtWlBVVZPE1J8S3RjDBRdcwG233RZ0P8YYBg4cyIcffhjV8Y0xzJ8/n/79+0dpuaI0LoMGwdq19vvatdC6dWLtUaJDtU5RIuPcc+GZZ+z3r76CTp0Sa48SHap1SqLIndDfc8xs7gR9FqAJOrOhWtxatw5d3rlz7C12oejTpw+vvPIKACtXruSrr74C4IQTTuDMM8/kqquuomvXrhQXF7N792569+5dvW3//v0pKiriww8/5JhjjqG8vJzPP/+cgQMHhjzmhAkTuP/++7n//vsREQoKCsjJyeGkk07i4YcfZty4cbXCUdq1a8fu3bs1HEVpVO65p8aR3bUL2rdPrD2phGqdRbVOSQWefrrGkd2yBWLI59NsUa2zqNY1X/zjYu9cuIFtJWV0z8okd0J/HS/rkOh5ZpsFkydPpri4mIEDB/LAAw/Qr18/AI488khmzZrFySefzJAhQzjppJP45ptvam3bsmVLnn/+ea6//nqGDh3KsGHD+OCDD8Ie86abbqK8vJwhQ4YwcOBAbrrpJgAuuugievXqxZAhQxg6dChPPfUUAJdccgmnnHIK48aNi/PZK4o3Dz5ox8hOngz79qkj2xRQrVOUusyfD+edB8cfbxvt1JFNfVTrlMZmUk42S2aM56vbT2PJjPHqyLpI2NQ8sZDsKdybKnqNlXhzyy1w221wwQXwwANQ31kOdLoKJR7oNVbizSOPwOWXw6RJ8O9/138YhWqdEg/0GseP/IJC7TFtAFJiah5FUZofxkCHDrZ34oILbO9sU032pChK82bECFi+HH76U3j8ccjISLRFiqLEk8D5XwtLyrhq3iqeW76ZTTvL1MFtJNSZVZQmSDK2FBoDaa6BDY89Vvt/RVGUpkLv3rB5s/3+4ovQqlVi7VEUJf54zf9qgCUbi6v/Lywp44YXPgVIeD2sqaJVSUVpYvhbCgtLyjDUCGl+QWHCbPL3yPqpqFBHVlGUpsmJJ9Y4snv2qCOrKE2VSOd5LSuv5M6FGxrYmuaLVicVpYnh1VKYSCGtqrLzAe7aBVlZUFmpocWKojRNbrkF3nnHfi8r06nGFKUpE808r5E6vkr0qDOrKE2MYIKZCCGtrITf/x6eegpmzIDiYu2RVRSl6WGMdWTvvdfmA6io0DGyitLUyZ3QH4lw3WgcXyU6tFqpKE2MYIKZJkLfGa8y5vZ3GyXkeP9+Ox3FAw9YR/YvfwGJVPUVRVFSBGPgyivhT3+CadNsPgCNPlGUps+knGymje4V1qEVrOOrNAzqzMaZvLw87rrrrpjLFSUY+QWFjLn93bAOae6E/mT66takKo2pNYZ2Zv6nEe0vFsrKbK/EM8/An/8MN9ygjmxTZezYsQROraEozYWqKhttct99cPHFMHu2Rp+kOiUlJfz9738HYNOmTQwaNCjBFinJzKxJg7ln6jCynY6EwKqOANNG99LkTw2IZjNOUSoqKmhRz8k5KysrSdfm45TAK/17sOx4/v/92YzTRKgMmE+6rLySuUs3418az2x7paXQrp39fvDBMHNmvXanNBPqq2nx0EQl8SRjJvZgVFbWniP7H/9QR7Yp4HdmL7vssrjt0xiDMYa0ejwgqnHJy6Sc7GqdSiUNayo0O9mNtHcrGm699Vb69evHsccey4YNNsnOI488wogRIxg6dCiTJ09m7969dbbbuHEjp5xyCkcffTTHHXcc69evB2DBggWMGjWKnJwcTjzxRL777jvA9uqef/75jBkzhvPPP5+8vDwuvPBCxo4dy6GHHsp9991Xve8nn3ySkSNHMmzYMH79619TWWmdoLZt23LNNdcwdOhQPvzww3qfu9I4RJvUaVJONktmjOer20+jKsCR9RO4NB5JovbtgxNOsN8PPxy+/bZeu1PqQUNo3Z49ezjttNMYOnQogwYNYt68ebXK33zzTY455hiOOuoopkyZQmlpKQC33HILI0aMYNCgQVxyySUY55kcO3YsV155JcOHD+fee+9l7NixXH/99YwcOZJ+/frx/vvvA7bhLTc3lxEjRjBkyBAefvhhABYvXsxxxx3HxIkTOfLII+t9fkpiScZM7MGorLQhxX78PbRK4xNvrZsxYwYbN25k2LBh5ObmVi8PpkOlpaWccMIJHHXUUQwePJiXXnoJsL26/fv35xe/+AWDBg3i/fff54gjjuDiiy9m4MCBnHzyyZSV2VwWweqD06dP59JLL2XUqFFcd9119TovpXFw17+WzBivjmwj0KyktyF+KFesWMEzzzzDqlWreO2111i2bBkAZ599NsuWLWP16tUcccQRPProo3W2veSSS7j//vtZsWIFd911V3Ur4LHHHsvSpUspKCjgnHPO4Y477qgiR/yjAAAgAElEQVTe5rPPPuPtt9/m6aefBmD9+vUsXLiQjz/+mJtvvpny8nLWrVvHvHnzWLJkCatWrSI9PZ25c+cCtjI6atQoVq9ezbHHHhvzeSuNS32SOjVWtr2yMjjnHPj4Y7jnHvjii5h3pdSThnIK3njjDbp3787q1atZs2YNp5xySnXZjh07mDVrFm+//TYrV65k+PDh3H333QBcfvnlLFu2jDVr1lBWVsYrr7xSvd2BAwdYvnw511xzDWB7Hz7++GNmz57NzTffDMCjjz7KQQcdxLJly1i2bBmPPPIIX331FQArV67k3nvv5fPPP6/XuSmJJ9kysQejogJ+8xuYNw+uu846sjqMIjE0hNbdfvvtHHbYYaxatYo777yzenkwHcrIyODFF19k5cqVLFq0iGuuuaa6we6LL77gsssuY+3atfTu3ZsvvviC3/72t6xdu5asrCzmz58PBK8PAmzdupUPPvigWk8VRalNs4pXCPVDGWvLyfvvv89ZZ51Fayf//sSJEwFYs2YNM2fOpKSkhNLSUiZMmFBru9LSUj744AOmTJlSvWz//v2AFa6pU6fyzTffcODAAfr27Vu9zsSJE8nMrHFOTjvtNFq1akWrVq3o2rUr3333He+88w4rVqxgxIgR9hzLyujatSsA6enpTJ48OaZzVRJH96xMCj0czUgc1dwJ/WuFKIMdw+HVXxtrtr09e+CMM+Dzz+Hf/4bp02PajRInGkLrAAYPHsw111zD9ddfz+mnn85xxx1XXbZ06VI+++wzxowZA1gn9ZhjjgFg0aJF3HHHHezdu5fi4mIGDhzIGWecAcDUqVNrHePss88G4Oijj2bTpk2A7fH95JNPeP755wHYtWsXX3zxBS1btmTkyJG1NFJJXZIpE3swysttYrvFi+GOO8DVcac4iEg6sBwoNMac3pDHaiit8yKYDvXo0YMbb7yR9957j7S0NAoLC6sj6nr37s3o0aOr99G3b1+GDRsG1GhcqPogwJQpU3RImKKEoFk5s435Qzl9+nTy8/MZOnQoc+bMYfHixbXKq6qqyMrKYtWqVXW2veKKK7j66quZOHEiixcvJi8vr7qsTZs2tdZt5ZqNPT09nYqKCowxXHDBBdx222119p2RkaGimIJ4OaSZvvSIsuMFjqHtnpXJuAFdmL+iMKb9BbJtG2Rn2xC7xx+3FT0lsTSU1vXr14+VK1fy2muvMXPmTE7wx5Rjx4SddNJJ1VEjfvbt28dll13G8uXL6dmzJ3l5eezbt6+6PJim+fXMv+/777+/TqPg4sWL62yvpC71abRrDNz5AO68E669NrH2JDG/B9YB7Rv6QI1ZrwumQ3PmzKGoqIgVK1bg8/no06dPtcaFq7OVlZWFrA967UNRlNo0qzDjYD+I9fmh/MlPfkJ+fj5lZWXs3r2bBQsWALB79266detGeXl5dYivm/bt29O3b1+ee+45wIrk6tWrAdval51tHZDHH388aptOOOEEnn/+ebZv3w5AcXExX3/9dUznpyQHk3Kyue3swWRnZSJAdlYmt509OOKW58AxHLMmDa7X/vxs3mwdWbBT76gjmxw0hNYBbNu2jdatW3PeeeeRm5vLypUrq8tGjx7NkiVL+PLLLwE7pOHzzz+vrtR17tyZ0tLS6l6NaJgwYQIPPfQQ5eXlAHz++efs2bOnXueiJB9emdhjbWSLN7t21Tiy06apIxsMEekBnAb8qzGO1xBa165dO3bv3l1neTAd2rVrF127dsXn87Fo0aKo61uh6oOKEoyGyIuRqjSrntn69G4F46ijjmLq1KkMHTqUrl27Vof2/vnPf2bUqFF06dKFUaNGeQrj3Llz+c1vfsOsWbMoLy/nnHPOYejQoeTl5TFlyhQ6dOjA+PHjq8eGRcqRRx7JrFmzOPnkk6mqqsLn8/Hggw/Su3fvmM9TaTgizXznzpYXD+q7v+Ji8D9Sv/gFXH99nAxT6k1DaB3Ap59+Sm5uLmlpafh8Ph566CGudWr1Xbp0Yc6cOZx77rnVIXKzZs2iX79+XHzxxQwaNIhDDjmkWiOj4aKLLmLTpk0cddRRGGPo0qUL+fn59ToXJfnwiiJJVCZQty4f3KYNH/1xLAA5OfDkk41uTioxG7gOaNcYB2sIrevUqRNjxoxh0KBBHHHEEdXLg+nQtGnTOOOMMxg8eDDDhw9nwIABUR8zWH1QUbyIZoaL5oCYIJlOk5Hhw4ebwPkM161bV0tswqEps6Mn2musRE6gIIH9IY6ll7Qx2bEDTjoJVq2CSy+Fhx5KrD0issIYMzyxVsQP1brEoFrXdKjP8+/W5aoD6WyfP5z9mzszaPh+Pl3WKvwOGpBk1joROR041RhzmYiMBa71GjMrIpcAlwD06tXr6MCeTNW6hke1LrUZc/u7nkMysrMyWTJjfAIsij/RaF2z6pmF+PduKUp9aMzkFfHiu+9sOPH69fDGGxAwfEhJElTrlOZKfXst/LpctT+dna8NZf/WjnQ6fRXtxxQDTaOi2ECMASaKyKlABtBeRJ40xtQagGKM+SfwT7ANd/U9qGqd0txIhWR5jUmzGjOrKMmGV8saxC5IDT2GorAQxo6FDz+E//xHHVlFUZKP+k7xs62kjKp9Ldj+7Cj2fnEwXc9eTtuBhc22ohgpxpgbjDE9jDF9gHOAdwMdWUVR6k9D5cVoCJYvt1OXNeTIoGbXM6soycLM/E+DloUTpMCwqnEDuvDK6m8oKSuvXsfdGwH1H4f24Yfw4x/b7++9ByNHRrW5oihKo1DfXouOlR1Zea+dVqrLWcvJPKwISM6KoqIojUMyhbM3VF6MeLN2LfjTZKQ1YPdpk3BmjTGIzljeIKTSmOpUYmb+pzy5dLNnmUBIQfIKoQu2r7LySm5esJZ95VX1ShSweDGMG2e/3303uKYXVRoR1bqGQ7Uu9fFXNoPdyUic0fXrYeVd1pFtO+xrWvez84UmY0UxmTHGLAYW12N71boGQrUuesINXWhsRzeZkuUFY9EiOOssmwX+wQdh4sSGO1bKO7MZGRns3LmTTp06qfDFGWMMO3fuJCMjI9GmNCnyCwqZG8T5BDCEdjK9QuhC8f3e8jrLAsflhhLiL7+scWQfesgmfFIaH9W6hkO1LvXxSqbnJhJn9LvvwJ8TZ+J5u9kxcCPbSkjKimJTRrWu4VCti41wQxcSkVk4mceKz50L06dDv37w+uvQq1fDHi/lndkePXqwdetWioqKEm1KkyQjI4MePXok2owmRaieA7DZ6EIRr3Fb/v2EanH8dms6vz+vA2mZwoD/t5ZDRnUFklM8mzqqdQ2Lal1qE6qRLzsCZ7SoyOYDaN0a5syBKVPaocmeEoNqXcOiWhc9oYYupGIiz4bCGDjlFHjzTdsJ8sILkJXV8MdNeWfW5/PRt2/fRJuhKBETyhkNF2IMtpcgWOKoQHzpQkWl8XSe/SF3wYR4xqOb2PjkUUjL/Rz8swL2dC4l97lvuHnBWkr2lmtvRSOjWqc0ReIVnhdMVwXCTlWxZYtNZldVZTO0H3dcco2Pa26o1inJRrB6V/esTM0s7LBvH2Q6fTHdulktbdmycY6t2YwVpZEJNW7rx4d1DFthyp3Qn0xfetjjtGmZDgZPR9YdcucluKVru7PhwTGYSqHLpJW07FIKQHmV4fu95RhqenDjnTFZUZTmgT8qpLCkrN6aEmt2z8WLbQhcYaHtkfU7svGyS1GU1Mer3uWvR6VSZuGGorS0xpEF2Lq18RxZUGdWURqd3An9CTYKaNPOmtDfnFvepM+MV+kz41WG3fwm+QWF1b0FZeWVpLl2kulLo0NrH4INqTtvdC/2lVdRXuUd0FxWXsk1z66mz4xXSQsYk7R7VU92vpIDwMHnfoiv056g5xLNdBeKoihuIp1CJ9yUY/kFhXy/Z3+d/YcbJ7twYU0+gLffhmOOic4uRVGaB5Nysrnt7MFkZ2VW17NuO3swk3KyQzq6zYFvv4Xjj7ffjznGhho3ZOZiLxIWZiwiGcB7QCvHjueNMX9KlD2K0lhMysnmynmrPMu2lZSRX1BI7vOrKa+scURLysq5et4q0tOlernbTy0rrwKEe6YOA2wygsowGQv95e71StdkU7xwCABdz1mKr+PesOdT6Bp7q2F53qjeKUpdIgnPiySLaKBe+pl8dPAEKe+9Z8d2Afz73zXTR0Rql6IozYtgCZdSIbNwQ7FundXRnTvh1Vfh1FMTY0cix8zuB8YbY0pFxAf8V0ReN8YsTaBNitLg5BcUIniH/2a19nHNs6s9HdEqoMqjwubH3XMQTbZjP/u2dqB44WAADp72ARk9vo9ou3SRsBVORfVOUQIJNQ7NT7Be0psXrOXOhRtC5g9YtN47gdCaNTBliv3+zDMwdWr0dimKovhJ5szCDcVLL9mMxa1a2eEaw4cnzpaEObPGTnRV6vzrcz46+ZXS5AmVzbh0X0XYHtVQxNpzsG9LB3YsyCG9fRkHn7OUFu3qhuwFo9KYoBXOa55dDUTu0DbV3l3VO0WpS+6E/uQ+t7rWcAhfmtQKzwumad/vLfecdsxNYUkZfWa8SofWPv50xkAm5WSzejWccw6kp9tehQEDatb3609hSVmdBsfmFDaoKIoSikmTrDML8NVX0KdPQs1JbDZjEUkHVgCHAw8aYz5KpD2K0hiEcjiDjXGNlDQRWrUQ9pZXRbxN2VedKXphOC27/kCXs1aQ3jZyRxbs2JFg51RpTMQ9tE29d1f1TlE8CEwgEPB/NNnbg/H93nJyn1/Nxs983HpFVw45BN5/Hw47rGadQP0xjimGyKb2URRFaeoYAz172oR5ABs3Jt6RhQQngDLGVBpjhgE9gJEiMihwHRG5RESWi8hynXNMaQo0ZKhapTFRObLFbw1k+7OjaJG1ly6Tl9Oi7f46iQx8aUJ6mnfKKl+6hMzmB5EnTmnqSVfC6Z1qndLcuHPhhjpjXcsrTa13PtLs7eHY+VFvrj2vKz6fHdvldmQB8l5eW0d//I7skhnj1ZFVFKVZU1EBv/1tjSO7axccemhibfKTFPPMGmNKRGQRcAqwJqDsn8A/AYYPH65heUrKkzuhf60egFgRp9sg1pdix6tD2LOmJwBdJi8jvfUBpo3uxfDeHeuE+gLcvGBtrbA+d+geEPKcIgl/bi5JV4LpnWqd0lRwh+umi1BpjGfvZiTvvDu5Sqw9tLuWHkbJf2w88UsvQeAUpvkFhZSUeYcse9nYVIdDKIqieLFnjx2e8corcN11cNttjZ+xOBSJzGbcBSh3KnaZwEnAXxNlj6I0FpNysln+dTFzl26u36DJemy8Z123akc2+9J3aZW1j3NH9WLWpMHVNkLdSpvbeXXjXxYseVUkvdFNOemK6p3SXAgM1/XrgdewgcZ45/dt7ljtyA6+bBmjR4+os06o6I80J8GdWxOb8nAIRVEah1RpFPvuOzjjDFixAh54wPbOJhuJ9Ku7AYtE5BNgGfCWMeaVBNqjKI3GovVF9c7+0z0rM6ZK357PurFjQQ4tOpaSfdnbZHbcx99+PrTakfXjr7QVlpRhqKm0Bc7x6GdSTjZ/+/nQmOdba+JztaneKc0Cr+ECfgKHDeRO6I8vYAhDYAKo/IJCcp9bHVOvbNmmTmx/biTp7ffS7Zfv8UO77Z7z1IaK/vCP+/dv09SHQyiKEjvh5sR2rxdN/SpRvPwyHHIILFsGL76YnI4sJNCZNcZ8YozJMcYMMcYMMsbckihbFKWx8AtdfROa+Meq5k7oXyd/SihKP+3B94uOJKNPEd0u+C8t2u2vM0bNT7BK25XzVgUV6VATi4ejPtsmO6p3SnMh3LCAwPLAEf6B/+e9vDZoYrx0EcYc1pEOrX11yvZu7MrOV4fS8uBddLtgCS277gZspTH3udW19Ctco6DbWW0uwyEURYmOaBzUUDNAJItD+9e/wpln2u8PPQQTJybWnlAkxZhZRWkOBIanxUqrFmn8dfKQaicv0pDl4rcGsntlHzL6FNHlrBWk+Wqqjf6KmDvsJdT+AkPrvMJlwAr2VfNWcefCDRGF0DTHudoUpSkRLvuwO2z35gVrqQxwVCurDDcvWFutA8HGsoLtNV2ysbjWMl+6UPphP4r+cyhtupWSfc5K9rc4UGud8ipD3ss1x4gkj4FfI5vycAhFUWInVNRGYL0mHjNANCTPPQczZtjvb70FJ56YMFMiIomG7ypK0yZU+F007K+o3Xcxa9Jg7pk6jHQJ3kdb+Mjx7F7ZB4Cuk5fXcmQBslr76rQqhsMv0l6tkbnPr64ODUzmEBpFUeJLuOzD7rDdYPPEhps/NhTb5g/j20WHQ1UaW9e0Z38L76nG3E6yOyokGH5ntYkPh1AUJUaiidqIxwwQXkQa5hwMY+Duu2HqVPjxj2Hz5uR3ZEGdWUVpNOIZhuYldF6JlwC2/mMcFcVtAeh51RtIi7pT95Tuq+DmBXWnpgjHtpIyTye9vNLUCQ3UcWWK0vSJxDGMRAuG3fwm+QWFniHEwdj+4tHs3dAdgK1bISsr4k2ZlJPNkhnjmT11WEhn1Ws4xOSjs7lz4YaYK5CKoqQ+wRxUr+XhGv1iqS/WZxxufkEhP/7Luxw04iuuuQZGjy/j7bftnLKpgIYZK0ojES78LhoKS8oYc/u7bCsp46BMH3sOVHiut+vDw6jc1RqAnle/XqdH1k95lYmpN6R7VmZUoqvjyhSl6eMeLtBnxque62wrKcOXBsGmxS4pKyf3udVMHdmTecu21JmPNpDST3tQ9vkhAAy/8X2ys48D7BRiXtoWzEl2TwUULMuo+/w0u7GiKADjBnThyaWbPZcH4p/Vwmt9sJNVjLn93agyHEcT5uwmv6CQ655czxd3nwBAu+H/o3j05yxcnzo5S9SZVZRGIndCf66ctyou+xKodoy9xpQZA7tX9KHkvQG0ObKQTqetRtLiO3Wpv7cimvkfdVyZojQf8gsKcabDrkOaSNDETn7KqwyL1hdx58+GVuuM1/72fNaNnW8MtvkAzl7OnjSYmf8pi9YXeTqyvnThT2cMDHrcaMbu16cCmQrTciiKEp78gkKe/miLZ9mi9UWe689fEbrHNNqGsWjCnN36c2BnW7b9yzqyGb2L6HjCOvZVEFbDkgl1ZhUlBQlVBTQGSt7vzw8fHk7WyP/R/vh1iDOgINOXTqsWaSGTqkRCpi+tVqbhwOQpvnQBQ63Kqo4rU5TmxZ0LNwTVqmDDIgLZVlJWpyfU7QTuX92Xrxf0pc3ArXQ65VOkRRV7y6nT4+F3grPj7DjGkt1Ye3MVpengf5+DaZqXFkSaQyWShjE/kSanc+tPeXFrtv3reADaDNxK59NXh7Q7WVFnVlEaiXiMF830pVEWLC4P68huvuM0AA4eWcjf/96Kv72VWSfLcH2zKnds06paXIOF5Xkt04qaojRdAh3NeAyrOCizdjiw37HNLyhk6rhOHNiVQeaPvq12ZINhgCxnX9FkWA9HLNmNY+3NVRQl+QjnmGZ5DGmIdXhWfkEhNy9YWx1x0tqXhoGg9UKvTgS/vfsLs9g+fzjSqpwOY9fRbljtnuXuWZkpE0GizqyiNBLxaOXaV15FuohnC6DbkQU7L9hZR2Vz9tHewhNNeHAggecSLCwvGUVPUZT449XbGA9276+onsrHfazJx3Slar+tJHY5cyWSHr6nt6SsvDoqJZLpxSLRL69pfcJFoehctYrSdAj33np12EbT2OdvGMsvKOTqZ1fhHp2xN0TnRrAolG0lZez9/GCKXs6hRbt9dJ3yMb6Oe+tsP25Al5SJIFFnVlEaiMDKUVaQRCTRYPAOzzMGvnnsJ9X/v7CikLOOCi42fuczWHKWcOjYV0Vp2kTr3MVr6rFAAuedNQYuvjC92pHtdc3rETmyXrizKsdaaYskYVQgOletoiQ30ehfOMd0l8ewrnEDujB36eZawzB8aQJCrWR3/vwoY25/l+I9+wmTZqCa7KxMlswY71lWkj+Kkg2dadnte7r+bDnprQ/UWadDax+L1helTASJOrOKEgHRVuy8eil8aUJ6mlAZqRpFiKmCna8PoXxHOwaP2MfqjzIQaTih0bGvitK0iWVMZ0P2KvobAY2BmTNhx6pD8HXeTbfp78fsyPoJNr1YuEpbfcLvYunNVRSlcYhW/3In9Cf3udVBE9oFhhn7kz+51xZg6sieDO/dsVbUnH+daCNdCkvK6kS0VFSAzwfQGYCDz13qOcNFpi+dP50xkKuCJCxNxggSdWYVJQyhhA28W+Q9516tMnbMaxyd2e7tWvPpvMMp39yVc379A0891B6RGrvDVbayMn1Bk0F5ZQ3t0NpXnQXUPzVQMo+jUBQlemJx7uI59ZgXxsCMGfD00zYfQKuxq6q1zovWvjQ6tGlVrVF7D1R4RsaEml4s2PL6JnCKpTdXUZSGIbCutPdARfQ9kiG0KDCYLu/ltXX2b7BJ6xatLyJ3Qv9a42Jj5cp5q1j+dTGzJg2mrAxat64pe+6jQu551+pjVmsfxtge5MB6bKpEkKgzqyhhCFaxy3t5LfsrqjwrNMEqQaGSN0VLVXkaLd8aR+mn8Ne/wnXXtaoui7SylTdxYJ0xGGDDXaaO7Mmi9UV1KluxOPeKoqQOsYzpzJ3Qn6vmrQqZaT1WDmrlY8oUmD8ffv97OP4XcN3zoaf2KSuv4jNXmF2gbvnp08lWzLwqbWki9J3xah0ti0cCp2im/0klRCQDeA9oha1jPm+M+VNirVIUb6IZ6x9M/+5cuCHkPNjuDoP8gsKQs0n461PxGrLx5NLN9GvfmYdv6gbAkUfCmjXwkqvTtXXLFp51Na8IEl+asPdAhacuJhJ1ZhUlDMEEzEuQ/BWahu6lqNqfzpbZp7AFuOUWuO662uWRVrb8392tgFmZPvImDgwqUMH2ffOCtewr93buk0HsFEWJjGjHdPp7NhrCkTVVwie3nMwnwLRpcM89IJLNLa+E7rkItHVSTjYPLvqCL7bvqbV8ycZixhzWkeI9B+romj8/QaCWaQKnkOwHxhtjSkXEB/xXRF43xixNtGGKEkg0Y/2D6V+4ul66E0KSX1AYNHTXTTxzD5R/35pf//wgTCk8+yxMmRJ5Z0dgBMlBmT72uCJckqmOp86sooQgv6CQtCDZg4OxraSMaaN71ZnnMF5U7W/BltkTAOjXD266qe46wcS1sKSsTotatD0EwSpsXhXLZE0WoChKcIKN6Rw3oEud4QVQ/6m+gmGqhM13nlr9///9H9WhxSUhHFmv8af5BYV1HFk/S//3PeeO6lknIYsbt5ZpAqfgGGMMUOr863M+DdHOoSj1JtIGKL+mBIYkjxvQJey2lcbEnGyzPuzd2JWdrw2BKuE/b8Oxx9rlXmHOwepq7vrhmNvfrdOJkyx1PHVmFSUIM/M/DVq5yfSlk+FL83Tgslr7mPfxFo+t6k9VeRpFLx4NwNFHw/LlddfJLygMuQ9D/VrUou111t4KRUktvMZ0jhvQhfkrCuu05mf40urtyHqNzzdVwo5Xh9pygcpK+zdcL3C6CLedPbiOroWa57vSGJ7+aEtYj8uvZZrAKTQikg6sAA4HHjTGfJRgkxTFk0jqMwJMdqY4DOzRnNtAnRah8KVLyLBmgJ2vD6b0k14A5Fy9lGOPHQ2EDnMOV1dL5oiUtEQboCjJSH5BYVBHVoRqRzZwzH+mLx1jCDmWKxTpIrT2eb+WVQfS2bEgh31fd+Kwyes8HVmwrW6R4J6WIhpyJ/Qn05dea1mmL52szLoTg4P2VihKKjIpJ5slM8bz1e2nsWTG+KDTNNQ3SQnAtNG9av1vKoXihYPY+1k2WT9ZT1VVjSN7wwufBq18+tKFv/18qGcDXbgKVyTRN34tm5STzW1nDyY7KxPBToPh5UA3V4wxlcaYYUAPYKSIDHKXi8glIrJcRJYXFRUlxkhFwbs+E4gBFq0v8gxJbuyQg3QR7vzZ0JDrfPPEj6sd2R6/ep8/ntezuixUnS9NJGRnSLC6XDLU8bRnVlE8CNXyb4xrqgjX8nQRJh+dHXN4sX9eMK9wlKr9Ldj+/AjKd7Sl+9mruOsPXYPuJ1RygUBiaVELlokT6oYbam+FojQNGrL13d27YSrSKHo5h32bOtPx5E9pl7OZnFs2Y0x4bWvTskUth9IdEhjtcJFAArWsqSZwiifGmBIRWQScAqxxLf8n8E+A4cOHawiykjAC6zPBHsaG1L9WLdLo3LZV2B7iTF96daOZV6ZhY6DkPwM48E0HAHpc8RbprQ9w5bxV3LlwA7kT+oc8j0pjwk5BlKx1PHVmFcWDWISr0hjmryj0DJmL5pjpAZWuil2ZFP7DZuXs9/8+5a/Xdo1bJSrWFrVQFTnNZqwoTY+GTGrnV7uqfS3Ycq/NB9DhxDW0y7FObqS9vyVl5dVzKwYmOYnFkfVrebZqWcSISBeg3HFkM4GTgL8m2CxFqUPg+Nd7pg4LOx1NJBoo2GiTReuLIlp/f0UVfTplhnSmAzUo0LE0FWnseHUoe9d3p23OJjqeuBZxBfn5h4VktfaF1FP/TB1eWpfMU4qpM6s0OyKZfzXWilt9xo75xdJd6Sr/vjXb/jkOgPajvmTD3MEh92ETVlFnqh0vBCJKXhAN2luhKE0Tr1b5eFJZ5mPrfScDkHnodtof/XVM+8l9bjXLvy7m6Y+2hHRg/ZXDYJXXdAkesqyEpBvwuDNuNg141hjzSoJtUpRaBMvoO/no7Fq5AaB272M4DXTPBhFsOjAvlmwsprUvjb0e0zf6o/bcuB3LLd9UsGvBCPZ+1YGssetoP/J/nnNwl5VX0qpFWtgxt+5GwUCStY6nzqzSrIg0JblXxU3ASXYSv7li3fv2O5YdnJazyr0tqx3Zdkdt4tBT/0d+QWZQR9x/bl6OrC9dGNmnAx9sLK5u+TPA/BWFDO/dMSnFSVGU5MGvEVdGMLWEm/Q0oarKhIxWqTqQXu3Ituq5kxMJapYAACAASURBVK5TlsVqJuVVJuxQj8DKoVfonI6BjQ1jzCdATqLtUJRQBJticNH6Im47e3Cd5Hfu6WmCJf8EaNOqZqiD2+GMpHOkrKKKTF96UEfaqyPm1tHjGWeriXQ9s4DMAdtCHmNXWTkHZfrCDtlIhgzF0aDOrNKsiHb+1UjGhQYSS5ix27HcX15JZWkrvntmFAAHHfMFWT/5nH3laeQ+v7q6Ra2wpIzc51dX2xtsvjR/wgCvccDJklZdUZT64VXRgfiFhPn3Hy1hHdn9Ldj+3AgA2g7aSqfTVkccXRIr7mEk4ULnIonkURQltQiVmdfd+xjYAVJSVh4yYVRhSRljbn+XwpKy6iFj2VmZEWmaMTZrsj+qxJ+HxauXt7CkjN/M/J5vX7N2dh77eVhHFmwEYCTD6JIhQ3E0qDOrNCuiSS3uFU6RX1AYciqKTF86R/U6iCUbi6O2ray8kivnraJidyt2vHQUlWUtOficpWT03umU1+0RLq803LzAjm8Idm5VxjApJzvoZN2pJlqKotTGq6KT+9xqEGo1fsU6HVc04XKBhHRk97Wg6OUcyne2pfOZK2gz4Ft8aUKLdAkZAePvOY22l9hPYK6AYKFzkUbyKIqSOtjhWN4J4bpnZYZNHBeuM8PfC+vfLpoha/NXFFZv58/DMrx3xzqdFWUbu7D9NZskvP+0T9nXI3ziUX8vbyQ9xfHMUNwYDYI6NY/SrDioHtPH+Cs27vASX5rQobWv1vQMm3bG7hweKGrLd08dw4GidnT92bJqRzYUfnvCpU1P5rTqiqLEjldURnmVqTMuKtbpuG5esDZoBS7da3BWBFTsyuS7Z0az7+vOdD59FW0GfAtYu0M5su5pcNJiOHQ02TdDRfIoipJ6+OtxXo6s3xG9at4qCp1kTNEkjos1+aebYHrj7nTYvaon2+cPp+XBu+hx6bvsD+HI+vXZ3csbbjqieGYodk+nZqhpEAw1BVAsaM+s0qRxtwhltfbxw7664wR8aULuhP5hW4+CVRhbt2xBwR9Prl4WrAc0HGVf/3/23j0+qvrO/39+ZjIJE24JEC4OBPFSUERAUFTaWqmVKl4oXqjWbne3W7/tdreLWlq6Xx8r7tdfZUsvW3vZXbftdru1Fq9ZFBXbglqpoGCCSBXvBAbknnDJkEySz++PyZnMTM45c87MOXNJ3s/Hw4dzJmfO+UzIvOf9+rxvI9n/28Rg67G3bKBqXKur12drm17KbdUFQcgdN9kVbjMxGhqjlvVhCvjejdNZ+vBWV7O1Ow4OYe/PLwFg9PUvEz7d2azRzFpXp7c060rsJFrgJpNHEITSx25jTmf83w2ZUyi8xLBRu4/EaPnjZI6+dAaDTttP3bWvMmF0JWDesFSBaZQ3s7RieDiEUtDSFvc8cuq0tC9fRMwK/ZbMFDErh2zIoMTHIFs6mVPHJpdOyLF369j/yAUAjJj/GlWRlrSf1/RElM2K9o2fZav9KuW26oIg5I4bm5MtEyNT5LV1dGa/losIacf+oez9r48DMOyCdy2FrF0jFIOIxfuurQ5RXVlhaeecpg9b/V4lm0UQyg+7jbl88UvIQsLe/N1Hp3Dzx04BYMj0nYy4fDvVVQHLXi5mUeJYvIs7HtrKbauaCub/FWpDUMSs0G+xaoiUSUtb3NHukVPHxs0Ii6BSnDxYnRSyIxc0MeSc9PSLcCjI8mumJq6dEQEJBVTyZ5C9bXqptlUXBCF3zGxOKKDSamYheyaGmcjLdt+Va3fYjnlIpfNYFXt/NReA4Re/Rc3H3jY9r7Y6xF1XTzXtKJrqiFllm9x19VRLO9fQGOWOh7aa1sFlRgskm0UQ+g/5lAd4kUKcC+FQkC9MO5ubPzYWgKpRJxgx/3WUgqqKRKWoWaDCynan1vF+67FtbN55mPVvHvAtwFGoDUGpmRX6LU53fuy6u6U+b1Vn0NbR2Sf/3zAy2Wg/HCbW8DGCg9sZ91cvJIWsEehIrQ9bODPCyhumE6kJJ2t0V94gcxAFYaCzcGaEexdNS7MNiy+YwODK3v3q2upQ1nEzTjcAIZERYtd4LpOu41XsXzUHFexmzE0vWQrZgCIpRjcsm8f7KxawdP5kHt0S7VN3BfR533bv0a5eDvp+Z5j9XmVkjyCUJ7lGA8OhIDXV5v1W/CRSE+b2i2bwf65KCNlBp+1n7BefS86QbYnFk/WnRi2s4c866WUQi3fx643NvtazmvnNfmwISmRW6Lc4Sb3L1t0tdffIcGCWr96elu57pC2edKwg++geg459w9i3ag4Vw45zxTff43Cokz0t2O6OSWRVEAQz7MZJAJzMMh+7oTHqOFVZkXCk5q5Y52hmYWdrmNAz8wioE4y58eU+ZRQG1aEA3150bp+UYLtI6oZl82xtYrbOpKmYRQvE5gpC/8DKJ6wOBdAo0zRdo84+114ouaKAH8+fxycv7yJQFafm4zsYet7OPuelNqRLtfm5pj1b1bPm2pG4UOVtImaFfotp6l1QMbiygtZY30J3J+lkxjzXTOct1aA4EbLHGus5/Ow0gkNjjLr2VbadaOOWC+u5Z+E0V+9RZiAKgpCJ26YbdzZs44GN2Uc7GBhuUrQlRiioCAWUZQMoox9AYFAHoxe/StXYozbX7Y0mNDRGufuJ7bY1btnEd6aot3PwJH1YEPo3VmUD316U8LuyNQB12wslHwLRscy+sBNVFWfM516msu645bl7WmKWWTVBpejWOutGXub1Usl3RFkhNgSLJmaVUhOAXwFjSHw33q+1/mGx1iP0P9zsCLk5N9+C9qOvTOLIurMBGHPTRkK1bQD8ZlOzKzErMxDLA7F1QqFxY6MaGqM8sLE553qweJdONlzKdPba3hrDgcdnA1B33WZbIQvWUQYrVM/6reyd07TpoFKSPiwI/ZDMDf/rZkUsa0QzM0LmrliXVrP/6JZoTrO23XLw8VmceGssodGtjL7+FSqGttueb1cq1601769YQENj1PFcbiNDxfjdmYl4PzoS50MxI7OdwB1a61eVUkOBLUqp32mt/1zENQn9DDc7QpmC1nCqUlP37n5iu6XT58QZbHt7TFLIjr1lQ1LIgvWYCavoa6Fangt5I7ZOKChumm6sXLsj78YmLW1x7rp6Knc8vJWuHkPW/uGwpJAddc2rDBp/xNG1ojZRhkw02No7JxuM4VBQhKwg9EPMNvwf3RLN+nm3ep0hhP2K0GoNzd9ZkDwee/NLBKqyb+g5KZVbODPSp0TODCNDxaxUJZNSGlFWtAZQWuu9WutXex4fA94A5NtEKBp2w50bGqMsfWRrXm3dT+4cycEnZgAw9gt/tKwbc7ommYFYHoitEwqNm6YbXtiLU2rC3P3E9qSQ7dg3jP0PzQGgbtFmBp+11/G1FNnTh1OxW79Vx8ygUrYNnYyozKRla5i7Yp1lQxSn5wmCUHjsNvzNMD7PS1Y1mb5u/ZsH2LBsHhEfRnPpLpUmZCfc/nRWIQu9G3qXTqnLavOXXzPVtImpQWqTQCcbiqU0oqwkamaVUqcCM4FNJj+7FbgVoL6+vqDrEvonbiOdy1dv59jJzrzmiMXeG8Xh351DxfA2xnx2E8HBHX3OCYf67i3ZGWOZgVh+iK0T/CTVttVUh6iqCJj2B0gll7nYqYRDQS6dUseve2pu2/cO59BT01EVXZxy6/q07BMnaBJi06m9tbN3ZjVyCrhpzoRkSUe2dEKr8g0p8xCE0sDKp3NbbpEtEmnYSa8DBt3tFRx4fBYAVbUxzlv6Enta7Rv2Za4rNXJsVSpnPDZrqAdQXVmRPMfJeyylHgNFF7NKqSHAo8ASrXWfghqt9f3A/QCzZ88uxpgnoR9h54BYfXizpWVko+2tMRxYPZPK0UcZfePLBAd1mp4Xi3czd8W6NANkZ4x/sHiGzEAsI8TWCX6SaduOtMUJh4L8YPEMW3HlZi62GVUVgaSQPblrBPsfmU1wcAdjP78ha62XFV1aEw4Fs67JzN5lOrbn1Q/nT+8eTqZSa+DRLVFmTxwB0Of7wKx+OLV8o5zqyAShXLESqJnP220+udnwX756u+Ma/Xw3AFPpPDqI/Q+fT/zQEMZd/Ro/vXsk4N4mp0aO7Vg4M2LZmTnV38z2Ho3RbKVCUcWsUipEwrl7QGv9WDHXIvRfso1myBbpzIeDT07nxPbxBAefZPQNr1gKWYNoS4ylD28FEkbHak3Dw6Fk1NaIYkRsoi9CcRFbJ/hNthp6K+cws1eAm66X0LvZ1/rS6bS8MAWAMV98IWchC73jMDLXm7pOs8iD2Wblnp4SjVTsus9bvfM9LbGyqyMThHLEKuiweefhPsL11yZd2GPxLu54aCs3zZnQp2mT1QaYk6CFkdK7dP5kx82U7Ii9W8ehZ6bR3VHBmBteoXLSQZav/hClSPPtlErU02Yj1fbc2bCNBzftoktrgkqlZaM4Efl2m5zhUJDl10zN4R37RzG7GSvg58AbWuvvF2sdQv/G6WgGq0hnPhx4/Dza3hoHwNi/2EAwnG4sB1cGOdHR917xbs3y1duTQ7D7jBcKKE50dCaNrxHFsNq5FIFbXMTWCYXAaiMu2iPClj68NTk+J9oSY8mqJpav3s7ya6amidpTl61xfe+WFz5C60tnAol+ABXDTgK9sxrdkGrL7DrPm2Em6O3EqRtOqQmXXR2ZIJQjVhtzhjhzQpfWjlJvIRGVdcqelhgLZ0byFrNHnpvC0U2nAzDur16gcvQxID0T0PDtrpsVcdRJ2bA9dzZsSxP5XVonj+9ZOM1yRFGqyE/d5Iy2xEo+aJJVzCqlbtBaP5ztuRyYC3we2KaUMv4q/lFr/VSe1xWEJHc/kT11BBJGIDNCAe4dMYPj2yNJIRv529/3iVKEgopQMACYr80waGYjg9o6Ovs0orIaaSF1XM4RWyeUM3Z1pt967DXTObAtsXiafWhojLoWoLH3RiWFbKpThsvrAGmOUi6bcm4EquH4mW0CZP4ODEfPKj0v87xSx0dbJwh5Y/U5dtu3xEnqrdOorEFNdYi5K9a5Wkcm+x+bReztsUBiqkWqzczEeA/3LppmWesK6bbnwU27TM95cNMu7lk4zdSvNLOvhZgP6xVOIrPfAjINnNlzrtBavwgpE9IFwWMaGqOOug+nGoF8IxQAJ/58CoeenE5V/SHqrt1CsLrvGlZePz2rY2SQaVAmWazLanC21HE5RmydUJY0NEZtHb1Y3LqZiJGSB87H9Jw5ejDv7D9B2wcj2f/Y7MQ8xEVbqBiee4qtgqTTmWtzJav0OStxCn3n2RqRELNojlWtLFCyEQsLfLF1guAFVp9jN43hDLJtcFl1NjYjFFQcP9k3mOAUraF1w5lJIRv5yh+SWSx2GNFgO58xtSu71e8o9flyEqpOsBSzSqkrgCuBiFLqvpQfDSMxN1EQShonqSN2kYBcONZUz5HnplA9+UNGLmgiEOrrREZ6osB2jlFtdcjyHnb1DjKuxz1i64RyxhB++dCltasSi7f3n6DtrTEcemo6gyYcZtQ1jX3KKNySanNz3ZSzSp/LlmroNAJsdf1ymVMrtk4oB6zqNasqFG1xd2I2my+XzTcaXBmkraOLmupQXqMZdZfi0NppnNg2gcHn7GLkp7ehgtpRJozxHqx8v0hKZiHYi/7MJqP9BbvI7B5gM3ANsCXl+WPAbX4uShC8IFvqSKQmnIwE3NmwLa2LZS6NoD58cA7tzaMIn76PUVc1oSr6ClkFXDqlDkgY7NQ6NoNgQHHX1dbF9Xb1DtkGZwumiK0TyhYndZxOcHONg2vO5cTrE6g85Qh1175KIEtju2wo0sc85Lop5zR9LvM1Th27XK5fYoitE0oe4/N09xPb0wRkW7ybgILMigkrQZhpV8zI2rW3upL/7zOTk405c6G7vYIDDedx8oM6hl/8NsM/+hZKJXzQzG7MmaRmkVw6pa5Pt/VQUHGivZNJy9Yk7dFNcyaYNsaC/lt6ZilmtdZbga1KqceBE1rrLgClVBCoKtD6BME3oi0xJi1bQ0UAbLLwHLH7x5+k68QgAOo+swUVNN8VSx0LYRiS5au3J4V3bXWIu66emtX5AmuHSsb1uENsnVDOFDrrYt9D53Py/dEAjLlxE4Gq/IX05y6sT7N5+czQ9jt9rpzT88TWCeWCkb2WGQ3t1omxMIOrKpL+j5UY1dgLtobGKCfas0+YuP2hpj4COhuGwG7fO5wPf/VRAEZ8+jWGTt+V/LkRTJk9cUTSnxseDqEUtLSlzwdvaIyy6uVdfUR7V5dO+o+GUL130TTeP3CcDe8eNl2bXZZLuTYQdVIz+yxwGXC85zjc89zFfi1KELyg1kFaiCZ/IRv9z0uSQnbC7U9bClmDVEOSq2OUrdNnORqjEkBsnVB25Jv+5oYDq2ckhez4v/td3kLWavPOSbdNIS/E1gklg5WAstqoa43Fabrr8uTx3BXrLNNv7e7ptLTCrZCFhG954o1xHFx9HgBDZ7+XFLKQvjHnxA9cvnq7aRO/TPc1tRmoHWa/21x7FZQCTsTsIK21YfDQWh9XSlX7uCZB8IS7rp7K0ke2Eu/KtSexPVpD64tn0nl4CAD1dzxtmlpshp/RlHKOHBQZsXVCWdHQGOX4ycKUOh5rrKftjYRdGf+1Z3OukVXADxbPyCv7RMgbsXVCSWAnoJxmaOSy+eVVeYYVsZ0jk0J25BVbGXLubsdrM8NNx2Un/qVZlks5NxB1ImZPKKXO01q/CqCUmgVINxmh5Fk4M8LmnYctawfyQWs4+tIZHH3lNAZP28XIT7+GCjh//fCwdYMnoWiIrRPKipVrd5ju1nvNsaYJHHl+CuHT91G38FXHm3ZmhEPODKVsyvmK2DqhJLASUMYMbCci1fD1jDm0QaW4bpa9/bATfAoI5NA52eD49giHnjqX0Khj1F33CqGa3nsFlfK9YZzd2DGwFtPl3EDUiZhdAjyslNpD4t94LLDY11UJggc0NEZ5dEvU8+tqDUfWncWxzacx7IJ3qfnEmyiXg1fcni8UBLF1QllRCCejddNptDx3FoPP2Z3YtMtSRpGNtng3t/eMmBCxWjTE1gklgZUNMyKR9y6a1idDAxKpxcZzRhMlQ3x2ac2qV3bx5Na9tMbi1FSHEpl0sd46VLvOwBuWzbMcgWiH1nB04+m0vDCFqgmHGL1oc5/meN1aZ7V7ZmnXTsrmwH7sGNj3ZcmnV0GxySpmtdavKKWmAIaM36G1LkyBjiDkwd1PbPc8jUR3Q/PKBQAMnfV+TkIWKFiNm+AcsXVCuZGtE2e+NH9/PjpeQfXkPZ4IWYNu4FuPvSZitkj4aeuUUhOAXwFjSJQO3q+1/qEX1xb6H3Y2bOXaHWxYNi/NTpilJWd2+AWIpzRGSvW3oi0xlqxqIhwKEAqqPmVo0ZYYc1esY3g45Cq1V3cGaP7eFQAMPjvKyCteM81gySYMrdKur5sVYdUru9LWGwoqFp8/wZOxY1DevQqyitmeOorbgYla6y8ppc5USk3WWj/p//IEwR3GjpYfDp7uVjSvvDJ5XPvJP+ccYQ1KaLbkEFsnlBtW8xjzRWto/s6C5PGoq7Z6JmQNYvl23vOBcu3k6RafbV0ncIfW+lWl1FBgi1Lqd1rrP3twbaGf4MRXM4vamqUl52KZYvFurAoeoi0xQkFFKKD6lHFUhwIsmjU+TUB3Ha9i908uA0BVdDHyqiZL39AYzWiFWRAmFu9i/ZsHWHn9dN/GjhnnQ3n2KnCSZvxfJOaRXdRzHAUeBsTBE0oKN93p3KK7Yf9DFySP67+xJq9U4VxrMQRfEVsnlBV+9AXQGg4/e07yuP7rT3kuZEuRcu7kmQO+2Tqt9V5gb8/jY0qpN4AIIGJWAJz7amZRTC9LK+y20+JdmtrqENWVFabCzrC5qUK2cmwL476wwfaemaMZU2lojFpm7e1piRWkj0C59ipwImZP11ovVkrdBKC1blNKwkpC6eBnNBYSQvbQU9M5uXMUQ8/7gBGf2p73Ne1axgtFQ2ydUFY0NEZZ9cqu7Cc6RGtoeX4Kx5smUv2RvYy69lVXje3cECixT1Y5d/LMgYLYOqXUqcBMYJPX1xbKk4bGKHc8tDXrhn4oqEzTW/0urUjlSFuc6kpzmRRUipMHBrPv4fNRoU5qLtnBsFkfZL1mLN7FHQ9tBfpuktmN1CmHutVi4kTMdiilwvRE8pVSpwPtvq5KEBziZzQWoDseYN+DF9F1opKaS95g+IXv5X3NcqlBGICIrRPKhobGKLc/1JTTDEQzdDfsf+R84geGMfT896i99A1fG9XdPKfe9PlipfqWcyfPHPDd1imlhgCPAku01kczfnYrcCtAfb3534HQ/zD8NUeZaRan+FVaYYUhnKMtMZY+spXNOw+z/s0DnGiu5cCjsyHYzZibNlI1rtXxNbu0Ns36sLM14jPa40TM3gU8A0xQSj0AzAX+0s9FCYJT/JwV1tUWYvePEoO5h390hydCNlJGNQgDELF1QlnQ0Bhl6SNbvROyXYrm7yb6AVRP2ZMUsmYNUrwgFIB7Fk7r83wxU33LuZNnDvhq65RSIRJC9gGt9WOZP9da3w/cDzB79uz+n8MuAO78tXi3TsuKSN3kqqkOUVURoDUWtxyhUxMOMbiqwjaKG1C4sqHxLs2vNzZz4IkZtP05QsWI44y+4eW00TtOMcv6sLJBNeGQ+IxZsEwgUkrN7Xn4ArCIhKF7EJittX7O95UJggP82jXvPF6VFLKBqjg1c9/J+5oK+nTmE4qP2Dqh3Fi+ertnIrM7HkgKWYBR1zQmI7J+CFmAIYP6ztk20g+tUn39Zun8yYRDwbTn+lsWTSFsXU+68s+BN7TW3/fimkL/wK2/tqclRkNjlBl3P8uSVU1EW2JoEum/7Z3d/GDxDL5343TTz+3ya6ayYdk8y5KugMJ15yitYdd9n6Ltzwkfbuwtf8pJyBpk/j6sbNDya6bmfI+Bgl01zH09/39Ja31Ia71Ga/2k1vpgIRYmCE6oqe7rFOVLV1sl0Z6CfoAJS5715Lr9dIe/PyC2TigbGhqjrkZG2KE7A+z6/hXJ44nfzK+xnVNaMpqcZEs/LESq78KZEe5dNI1ITRhFIovm3kXT+tvmYyFs3Vzg88A8pVRTz39XZnuR0P9x66/VVIf41mPbTO1damTT7nNrZTu6tX0DqEx0N0R/8km6Y5UATFiylmC477r+dfGMtLXccmG95fSKTJ9wgNggX7BLM44rpe4Hxiul7sv8odb6a/4tSxCy09AY5fjJzuwnuqC7I8juH30qeTzxm+4HZ5sRQGoeShixdULZ4FWUUnep5FxEgFOXraFQTdYznbhs6YeF2ggs106eLvDd1mmtXySRiCQIaVjZl3AoAKg+8021xtYuGELV7nPrRcOo7o4gB5+YSdeJQQSHnCTylT+YNsaL1ISTazHSoh/Y2ExNdYjjJzvTxvwozMf0DAAb5At2YvYq4DJgPokW7oJQUqxcu6PPDLB86G6v4OCT0wEYfM5uRi3Y6sl1FXDzhfVioEoXsXVC0bFrfJT6My8snu4McKhn/E7VhEOMvXljwYRsKNC3S6ld5LW/pfoWGbF1QtFotcgoORlPpAyn1sRqTdYMlIBSnLpsDcGeulmzniT5NozqOlHJ/kfOp+PD4Yz41OsMPW+n5bmnjgwzd8U6oi0xUrOYj7TF+3Rv19iP6RHcYSdml2qtv6mUqtda/3fBViQINtzZsI0HN+3yfE5rZ2uY6L/PA2D09S8TPv2AZ9cWo1XyiK0Tiopd4yPA0+6d3Scr2PXD+QCMvKqJIVOjnlzXKUMGVfSxg1bRk6BSkmbnLWLrhKJh12QtNaLp1N4ZfqDx/8yGccYmYK62M/b+KA49M43utirqFm2m+sz9tudvePdw8nGmh2oWd+nHo78Kjl3N7JU9hfyfLdRiBMGOOxu28euNzVmFrNv8pvZoTVLIDj3/PU+FrEGhmpgIOSG2TigqdjNOvezY3nl0UFLIDjr1QMGFLPStlwXrxiffu3G6OHreIrZOKBpOmqzla+8Mu2mI4lxTjFs3nsb+h+bQdbSaMTe/lFXI5ko/Hf1VcOwis88AR4AhSqnUGWEK0FrrYb6uTBiQZLZf1zqRmnJKTdjxh95NzPZk8wj2PXgRAKGRxxgx740cVu0MMVoli9g6oahY2YZ8a71SiR+pZs/9lyaPxyx+2bNru8Gs/tUQrMWYLzvAEFsnFA0nn3Mv/KRoS4w7HtqacwbfoWencrzxVABGL3Y3Q9Yt0hjUGyzFrNZ6KbBUKfW/WutrC7gmYYByZ8M2HtjYnFZnYOClU2fQsW9YUshWjm1h3Bc2eH6PVMRolSZi64RiU1MdSrN3XmHUbXUeHZQmZL1qbOf0/gZ29a/S+MR/xNYJxSbb59yLhk1ATkJWazj2yqSkkD3lS88RGnEi77VAolcAKn3cmfQD8A67ObNTALTW1yqlqjJ+dqHfCxMGFg2N0TQh6zedx6rY+98fBaD67KjvQlaMVukitk4oJn50ZTfQJBrbffhAz6bdmNaCCVkwupQmqK0OSf1rkRFbJ5Q6ZqnIhWiNrbvhyB/O5sj6s6mevJcJtz+dt5A11h2pCbPyhumsvH66jN3xCbs0498A5/U8finlMcBPM44FIS9Wrt1RMCHb/uEwDj01nYphMUZeuZVB9YezvygPaqtD3HX1VDFapYvYOqFoeN2VPZX4kWoOPjEDtGLUwi0MnvyhL/exoi3eO8nxZNzNVEfBJ8TWCSWNWSqyH5l5qXS3Bzn41Axib41l6Oz3qJ33Rs7ztmvCoWRpnFmphPiB/mAnZpXFY7NjQciZhsao78bK4Phr4zn0dGL8zti/eNHXWgiD6sq+3TuFkkJsnVA0/KqlT+0HMPqGlwmf5n1jOzdI586SQGydUHKYjSXbsGxe8ufGuBuvCSpF7MBg9v78EgBqP7mdYbM/yOua7Z2JMUNi5wqLXTdjfPzmEAAAIABJREFUbfHY7FgQcqKhMcrSR7yZ55qNo6+cmhSyIz79WkGELEjjpzJAbJ1QNPyopY+9W5cUssPmvFt0IWsgtrDoiK0TSorUrsOa3vE6DY29ndb9KtE6v+KspJAdPHV33kIWZHJFsbCLzI5XSt1HYrfOeEzPsWw5CJ6wfPX2tIJ4t1SHAmmpbFa0bjqNlufOAhLO3dDpu3K+p1uk8VPJI7ZOKBpL50/m9lVNeJWE2/bOaA48ej4AVfUHqf3Emx5d2TmZjZ8MxBYWHbF1QklhN5bMiG4unBlhyaomT+97clctq34zCYDaedsZdv4Hnl1bNu0Kj52YXZryeHPGzzKPBcE1DY1RWmL5dfB0ImTb9w5PCtnhH91Bzdx38rqnG6TxU1kgtk4oKJkjyLwSsp2t4aSQDZ/5IaMXbfHoyu7QJGxfqpMqtrAkEFsnlBRWwi/zeaeBCyccfHI6J7aPR1V2Mu4vXiQ00puOxQayaVd47Ebz/HchFyIMPAqRitFxYCgHGhI9Leque4XqM/wZfG2FdKsrfcTWCYXESKszhJ5XI3niLWEOPD4LgNrLXmfYrJ2eXDcXasIhll8zVebGlhhi64RSw6rBU6ogbGiM5pXBl0r0Pz5BZ8tgAMZ9foPnQlY27YqDXWTWd5RSvwCuAvZrrc8p5lqEwuN3KsaxVydy+HfnUDmmlTGfXU+ots3X+2USVEqcNwEQWyf0YpZWly+xd+vY/8gFVNSeYNxf/pHKMUc9vb5blJK5sYIgJDBr8GTYhqXzJ6dt7kFfQehFx3fdpWj+7pXJ4/Ffe5Zg2NvZ3sYmnti9wlNUMQv8Evgx8Ksir0MoAn62XD/w+Hm0vTUOgFHXvFpwIQu5De0W+i2/RGydgPebeK1/OoOWPyYcv5FXvFZ0IQvQ4lG0WRAEf7ATmF7fJ1WsGg2eIH3Dy1hLdWWQto4ulqxq8qxOtutkBbt/OD95XP/1p1BB7/yziGSeFB27bsYAKKXmOnkuF7TWLwD+DvkUSpKGxign2jt9ufa+VRckhezoGzYRGlF4IQuJXTqhfBBbJxQCL+upjjw/OSlka+f9mUETSuNPTGrGShs/bZ1Q+jjpIOwVdg2eDBbOjLBh2Tw+d2E9Jzq6PG2r3dUWYvd9lyeP67+xxlMhC7Bh2TwRskUmq5gFfuTwOUFwhGFI823+ZMaR9VM4+UEdAKOvf5nwaQc9v4dTTnR0+vLlIPiG2DrBd5bOn0w4FMz7OsdfG8/RjWcAUHvpnxl2/vt5X9MrLp1SV+wlCPaIrRuANDRGmbtiHUtWNWUVmF7htMETwIObvJ0yEXt/FLt/dDloRe287Uz85hqUx9OUwyEnMkrwG8s0Y6XURcDFQJ1S6vaUHw0D8v8mdohS6lbgVoD6+vpC3VbwET9qxgBi79Vx9OXTARi9eCPhUw95fg83xLt0Wnt5oTQRWycUEsMe3PHQ1pxLEdr3Du+dmX35NobObPZsfV6w/s3SmGsrpFMqtk4oPJnpvmb40cdkeDhkGrgYbpK55mVp1tEtEzny+0R7ihHzX2PoDH/GMQ7yYGNSyB+7mtlKYEjPOUNTnj8KXO/nolLRWt8P3A8we/ZsKULsB/hhME+8OZaW56dQObaFuoWvUjHc/zlfoYAChW2XPZk3VhaIrRMKSrL5ycNbXTc2ie0cyeFnzyE08hijrn2VyrrjfiwxL/zqhSDkTUnYOqHwOAki1FSHmLtinad1tPEu83E6SvXW7UZbYgQ9DJnu/skn6To+CPB/ioX0BygN7EbzPA88r5T6pda6eD3+hX6H142f9v12Did3jkJVxhn3l38kUOV91DcTo+AfSBpjM6R2rPQRWyfkg5tGKqnnDg+H6HQpZA//birHXj0VgPFf/T3BIe35Lt8XvHRMBe8QWzdwybaxHgoqjp/sTI4Ky2zUlAsNjVFOdJj7Y0fa4mkNnryKyu78lwXJx+P++gUq6455cl0rxMcrDZx0M65SSt0PnJp6vtZ6Xr43V0o9CHwCGKWU2g3cpbX+eb7XFUobs1bsuZJquE754gu+C9lwKNhnduzCmRHTFB6ZN1Z2iK0TXJGtU6fduW57Buz91cV07K0FYOwX/lgUIVtbHXI0F1c6uZc8vtk6oTSxCyJEasKcaO/sY5OMOlqnYjZzY8+vJp9maA37HrgoeRz58rqCZOhJf4DSwImYfRj4d+BngKdKQWt9k5fXE8qD1Fbs+URo04Tsl9ZTMexkztcKhwLE4ubpMKnnZApZg8z28n62uhd8Q2yd4Aq7Tp3GZz81lS5Xov95CZ2HhwCJfgBVYws/fqcmHKLxny6noTHK0ke22pZXRCRaUer4ZuuE0sRqnqvh00xatsb0dU5Lpcw29gpFd3sFu/41MXonOPgkka+s87xjsRXSH6A0cCJmO7XW/+b7SoQBR1tH7rt2Bx4/L/nYix24k1mELEB7Z7etOE2dmSaUJWLrBFdk69TppOlKNlr+eGZSyI753J8YNP5IztfKh9aeqM3KtTtshaxkpJQFYusGGNk23K0it07TaP1q7JmN+JFq9tx/KQDVH9nLqIWvet6x2A7pi1IaOBGzTyil/hZ4HEjmNWmtS2OgnVAWZNaKtcbiOc8SO779lOQc2fFfe5ZgOL8C/OpQgPZOnTU1zmV5m1B+iK0TXJHNAczXwYu9P4rWP52ZuOat6wnVFmdmNvS+JzvnLSIZKeWC2LoBiN2Gu1Xk1m5jKtWvK4Z7dPz1CIfWzAAgfOaH1H3m1YKvQWpmSwMnYvYLPf9fmvKcBk7zfjlCfyTfWrFUjLqxwefsYuT811EV2SOq2WhzEJUVBgRi6wRHpKYOK0hz5FIdwHxS7Q6snkHbGxHCZ37IqAVbCVQVrv7MDOM9WQn4SE2YDcuk5LJMEFsnpOG2VMpp1onTOnu3HHrmHI5vnQjA8I/toObidzy/RzYkC6V0yCpmtdaTCrEQof/iVfpJao3syE9vK1hNhIEMx+7fiK0TnJDpxGlICtrULudzV6zL+R6ptm7UgqaCdGgH+ghzg9rqUO84oRwiOEJp4aetU0r9ArgK2K+1Psev+wje46ZUyolfp8AXIdv6pzOSQrbmYzsY7rOQVfTOyw0qRZfWkoVSYmQVs0qpauB2oF5rfatS6kxgstb6Sd9XJ/QLcolO/OviGTy8uZkN7yaynlKduwm3P11wIRsA7l10bkHvKRQWsXWCkzE7Zk6cIWQ3LJuXd51sqq0b//e/K5iQjdSEuXRKHY9uifYRqnddPTV5LM3uyh+fbd0vgR8Dv/LgWllxMxpL8A4ntaJ+eGmH/3AWxzYnEgjGfv5Fqk5p9eEuvRgbfIOrKlh+zVT52ypRnKQZ/xewBbi45zhKohOeOHhCErsvFGMnyw0r1+5gw7J5TPzmGpq/ky5kAyH/04Jrq0NUV1bIF+TAQmzdAMQqZdhqzE62pk/LV2/PXch+54rk48jf/p5gdUdO13FLaorw7IkjsooDaXZX9vhm67TWLyilTs33Ok5wMxqrFClnIW436scPdDc0r0z4goFBHUS+so5Apb8bfU6+D4TSwImYPV1rvVgpdROA1rpNKZmILvSS7Qsll5mD0ZYYF9+7jsPPTEs+V3/H057UyGbDiESIwRpwiK0bYJilDKdiNmfRyokLKMWdDdty7gnQuuk00IlShvF//zvPhayxqWhW43vplDrmrlhXlk61kBP9wtY5GY1VqpS7EDcrN/CLrliI3fddnjwe/9U/OPIFAyr3xp1mQZhy+dsaiDgRsx1KqTA9339KqdNJ6X4nCFZfKEtWNXH3E9tzagCgNWxvmEjb22MS7davfRXlQ8mqkVq3/s0D4sgJYutKgEJGK5zUfUVbYmlCzywVF6BLa369sTmndbRuOo1jmydRNeEQo69/xZeIw7v3Xgn0/f1mvp9yc6qFnCiqrVNK3QrcClBfX5/zdbJlSZQypSDE87G1xnl3PLQ1p4CFUzr2DWPvLz8GgKqMM2HJs45H7wyqCFAVCrr2P0NBZTl+rBz+tgYiTsTsXcAzwASl1APAXOAv/VyUUF7YfbhzKf7X3YrmlQnHa9icd6m55E1f5oYFlRLhKqTSb2xduaavFTpa4dQxMSKx0ZYYq17exeILJvDgpl2eOHFGjWz12VFGXbnV134AdzZsS647qFRyI6/YTrVQcIpq67TW9wP3A8yePTvnP/h8Z6MWk2ILcTNbu/SRrSxfvZ3WWNzR94bxM78itCd317LvgYuTx/W3Pevq9W3xbr696NzkOhsao9z9xPbsfqm27sJcDn9bA5GssS6t9e+ARSQM3YPAbK31c/4uSygn3H64AzbCVHcGkkIW8E3IQiKS8q3HttHQGPXnBkJZ0V9sneGkRHtm/xmCsBz+zu2iFX6Qi2MS79Y8umU33XkKWa0zuhb7KGSrKgLc2bCNX29sTgpwI5JsVfcmEYj+S3+xdUvnTyYcCqY9Vy6dta1sT6HEkpmtjXdpWmJxV98bC2dGuHfRNCI1YRSJbLdqDyY/tO+pYd+DFwJQPXkPE7+5JqfrpH53bN55mBYHAZZ4t0ZryvZvayDi9C8uAgSBSuDjSqlF/i1JKDfMvlDssKph6I4HaP5ebwOU+m+s8VTIml3KT0dZKEvK3tYVWhB6SaGjFWa2y7ATERunMhbvzqtTp9akNbarv8PfDu3tnd38ZpO7FGiJQPR7fLF1SqkHgZeAyUqp3UqpL3pxXTPMhNS9i6aVRUZBsYW4E5ua7XujoTHKzH9+liWrmoi2xBgeDrF0/mSqXPiDZhz+w1l8+D9zoTvAuL9+nrqFjTlfyygTubNhGw9sbHZst1tj8bL92xqIOBnN8wvgXGA7YFRca+AxH9cllBFe1E7oLsWu7/cK2Vx34WzvYfG8RCAE6D+2rtjpa/lQ6LTBbGNmTl3mgx3KFLJLn0IF/B81ZtcIJbNGTCIQ/Rs/bZ3W+qZ8r+GGcu2sXewRV067Ead+b6SWr9RUh2iNxdPsSkssztKHtxLPtesS8OH/XEz7nloAxv7Fi1TWHc/5WgbRlpgrIQuJ30/mv5Eh7Mvx762/46Rm9kKt9dm+r0Qoa4wP95JVTa5fq7sUh55OzHANDOpgwj/8zvS8mp6h1V4jEQihh35h68q5jsysQ6bfwsrOGc6leZ0dWkPLc1OSx/VL1/jS2M41PTViLW3OauWEsqdf2Lpyp5hC3Gk3YuN7I7PG1sou5ipkU0fvQGI0WcVQ73qSuV1VW0cnpy5bI+N5ygQnX6MvKaXE6AlZWTgzQm11yNVrutsr2PWv84m9X8eIT71uKWQjNWGa7rqcWy6sN00XdkJtdUhqIAQ7+oWtK3b6Wj6UWtrgXVdPdXxuKKioCYdQJDbeMnsD6G5F9KfzOLa1nuFz30qUUZSCkCXhgFZXVvD+igVsWDZPHLX+T7+wdULuZNra2uoQoQyjlfq94aTze650dwTThOyE25/2VMjmgiHWrca1CaWFk8jsr0gYvg9JtG5XgNZan+vryoSyo6Exipss485jVUR/ehkAQ2fuZOh5O03PSzWo9yycxuyJI5x1pMvAcEzLscurUBD6ha0rdvpavpRS2uDCmREe3tzMhncPZz033qUZXFVB012XM+PuZ9PS77rjgWQZxaCJBxk+923fGtvZccuF9Zbjg8ohDV3wjH5h64T8yLS1dl3w/bIP3e0V7Pn5x5PHXvdK8QOxlaWHEzH7c+DzwDZ6ayuEAYjZfEJjPms4FKAt7vzPo7M1TPTf5yUOVDe1894A+g6qDirFdbPSDa5hgBsao9z2UJNjAW1co1QcZaHk6De2rpQEYbnzwSHnjsuelhgNjdG0cojujiC7fvDp5PGYz27ydH1OidSEuWfhNNa/eaBs09AFz+g3tk5whpNxbXbfG05rbN3QHq3hw1/PBaDmE28wfM57nl7fL8RWlh5OxOwBrfVq31cilDRmM8lSd/hdCdnjVb1CFpj4jaeTj7u0TqtRMMZH/HpjM7XVIe66emqasa1QiriPA7uFAYXYOpeU6zxbOzLfkxsHTpPeNyBTyPrR2M4JqdktVrVyJ9o7aWiMlv2/n+AIsXUuKWdb58X87kun1LluomTH8e0RDj05A4Caj+0oCSGrgOrKICc6rNOpy6VkZ6DhRMw2KqV+AzxBIh0FAK11WXX4FPLDq3qJ7vYKoj+5LHls5txZGcsjbXGWPrIVSBjglWt3OG424MHYM6H/I7bOBV44SMXGLNvk0S3RtPeUurnmBt0ZYNd9n0oeF0vIQmLOrIHxb5NZqtESi5fdv5+QM2LrXFDuts5uXJvd+g37mI8dNGPvLz9Kx77hAIy8qpEhU/d4dOW+1FaHOH6yM6uvGFSK7904HaDPZp/x3iNltokxkHAiZsMkjN3lKc+V3bgKIT+8qBHoOlnBwSdmoiq6GHbhO9TMfcf1NeJdOmmA3axpyCB3jamEAYnYOhfk6iAVA7OoCtDHQTWLPGjo48iFgoquLm2Zn9kdD3Do6XNRCoac9wEjPrXd43fkjkyhamwGZvYdKNV/P8FzxNa5oJxsnRl249qsIs6ZAt4rIbvzX3obPY29ZQNVkZa8rxlQ5qPHgkrR0hYnHArYitlwKNin0WC5RuEHKk7E7M+01htSn1BKzfVpPUKJMjzPsTgdB4ew9+eXADB68UbCpx7K+VqGYXaTAtji4XgNod8its4F5TLP1iqqUlUR6OOgWrk7xq684dycaO+0tIddx6vY3ZN9MurqRgaf7V/UwQ2Zzne5/PsJviC2zgXl/lmx8pVqqkN9bOPSh7fm1GAzG1rDwZ60YoBxX3yeylH5z5BVWM/QNvqv2JXBmUVbpedE+eEk+fJHDp8T+ikNjVFOdHTm/PrYzpFJITv0/PfyErLQW3xvNoLEqgmeFOwLDhBb5wKrz1SpfdasoipuNudqq0NsWDYvObqm1eK18cPVSSE76NQDJSNkDVKd73L59xN8QWydC8r9s2I1rk1r+tjGeLf2XMh2xwM0f2cBbX+OEBxykgm3PZOzkK0IqDQ/z8icyQUFMoqsn2AZmVVKXQRcDNQppW5P+dEwIGj+KqE/cvcT24l35ZZkEnu3jv2PXABA5bgjjOjpWpwrwYBKpgiajSDJrHkDKdgX7BFblxtmjYRK8bPmRfTkSFucU5etSe7im0U6Og4MYe8vLkkej1n8ct73tSOgoKoimPb7DwUUQwZVWDqjNSlzwMvl30/wDrF1uVHunxWrcW23pTSr84vUEYyVY1sY+xcb8hq902kShjUrBXGCk82Icm78NZCwSzOuBIb0nDM05fmjwPV+LkooDRoaoyxfvT3n9OL2vcOTQnbQxAOM+ay5cxfJGPNjiNLfbGzuU5OmMzoXm6WDzJ44QoyP4AaxdTlQLvNsrVLsaqtDnIx393FQQROzSEuLtsRYsqqJcChAKKiSm3ydRwclhayq6KL+jme8fyMZdGu4d9E009//jLufNbXbqeazXP79BE8RW5cD/eGzYjZTNpAxCtFr2t4ew4HHZgNQFTnM2Fte8u1eqaUgTt5XKCUwYkW5N/4aSFiKWa3188DzSqlfaq13FnBNQgmQ+SF2S+fxKg48NguA4Re/Rc3H3rY899IpddyzcFrac3NXrDNtrtKtydp0QeodBDeIrcudcvisWUVV7rp6KkCyW2dQKcf2LhbvJhRQVIcCHD8eYP+jCYet+qwoddf4H+2AhONm9fu3SoPOfL4c/v0E7xBblzv96bNi+Hd+CtmWFz5C60tnAonyssysvMqgoiPHjD8zgkpZNq8yxUF0uNwbfw0knDSAalNKrQSmAoOMJ7XW86xfIpQjqekUkHv3utgHIznQMIuKISep+8yLVJ3Sanv+g5t29RGzdo2dyqXpglB2iK3rhziJquSycRfv1nQdGkr0VxcSCHcw+oaXGTe1haum17Pmtb2e152lki3F0SoaXS41foLviK0bwHg1atGKY1sn9ArZWe+blpd5KWQh0ewpM2p6x0NbLQV76mQMK8q98ddAwomYfQBYBVwFfBn4AnDAz0UJhSffSKzB0ZcncWT92QCMumkjlWOOZn2N291BccgEnxBbV+LkWr9kF1XJ1bFre3c0Bx45H4BR17xKeNJBjp6EX29sdn0tNziZdVjuNX6C74itG8D4KcaOrJ/C0c2TABhz00sMqj/s270ySY2aLpwZyVoTnO33IJuC5YMTMTtSa/1zpdQ/pKSovOL3woTC4sVOXcuGM2h9MeEsjbyq0ZGQNWhojDpO2xCHTPAJsXUe4nXjDL/ql3Jx7E68OZaD/5sooxh20TuEJx0ErEdE5EJmQxOzWYhW9IcaP8FXxNYNUPyqldUadv1gPjqekBUT/mEtgUG5T8HIlcyO7XZZftlEqWwKlg9ORvMYuVJ7lVILlFIzgRE+rkkoAvnu1B19eVJSyNZ8bAdDprobSbFkVRNzV6yjoTEKJOofzAgoKbwXfENsnUcYwjPaEkPTKzyNz3cu2NUv5UM2h6a2OkQgxRzF3qtLCtnqj+yl9uP53d8MBfxg8QwiNWEUiWisUyFrsHBmJG2ckNhNIQWxdQMQv2pluzuCNH9nQa+QXfJMUYQspNtzs5FEBk5E6cKZEe5dNC0vOywUBieR2XuUUsOBO0jMIRsG3ObFzZVSnwZ+SKIl/M+01iu8uK7gnuHhUO5diz8clkwtrp23nWHnf5DTdVIjLTfNmWCarnfznPqcri0IDhBb5xF+NM7It37JLFIMcKLd3ulKrX2NH6lm/8OJDu2Dz9nFqAWvObq3GUGb6MgpNs2dBMEDfLN1Quly9xPbPa+VjR+pZs/9lyaP67+xJqfROwGVGL2Y6xhI6CtQUzNUjCZ/XVo7KtVIvYbY4dInq5jVWj/Z87AVuNTuXDcopYLAT4BPAbuBV5RSq7XWf/bqHoJzcp371b5nOAfXzAA0oxdvInzqobzWYTi8G5Yl+lA8uGkXXVoTVIqb5kzo0yhKELxioNi6QszN81p4XjqlzjI1LqAUk5at6fNe7mzYlrQfmRgjdtwQPzyYg6tnAjByQRNDzsk9ygzw7r1XmvYqkDQ2wW/8snVC6dLQGPW8KV3H/qHs/a+PJ48nfnNNzte6eU49syeO4O4ntue0TgVcN6uv8BQxOjDIKmaVUh8B/g0Yo7U+Ryl1LnCN1vqePO99AfCO1vq9nvv8FrgWEDFbBFpyMB6tm06j5bmzCI06SuQr66gYdtKTtRgO7z0Lp4l4FQrGQLB1hZqb56RxhpWoNlujXVMlQ6xGW2IsfXgr//fxbZzo8Db6YNTIBgaf5JS/eY7QyBOeXFdqW4Vi4KOtE0oMw87a1Y7mQvuHw5JZKoMm7WfMjbmXXN9yYX3S10vdjHxgY7PjqRoaWP+m9DAbqDhJM/5PYCnwHwBa69eUUr8B8jV6EWBXyvFuYE6e1xRyJFuhfCYfPjiH9uZRAIy6uskzIWusRRCKQL+3dYWam5etcYaZYL1tVRNLVjXZpt9mI96tiXssZI88N4Wjm04HYOQV2zwRsuFQb7sKp5GDQkTUhQGDX7ZOKBEaGqM5Rzmzkdrsc+wX/kjVWOfNPjOJ1IRNgxb3LJzG7IkjkjZveDiEUonAi9W3g4zMGbg4EbPVWuuXVXoeasEqu5VStwK3AtTXS72kXyydP9lx2t3e/55Lx4c1AIy+4WUqRx/zbB2SYicUkX5v6wo1Ny9bxNFMVBsOitfNSfLh0LNTOd54KgC1n9xO9en7PbnuIIumJFYUKqIuDBiKausE//BTxALsf2wWsbfHAonRO/kI2Wz+ntVG39wV62RkjpCGEzF7UCl1Oj2+hlLqemCvB/eOAhNSjsf3PJeG1vp+4H6A2bNnl46X0w9I3ekfHg45es3h35+dFLJezhBTINEGodj0e1tnlYFRU+3s8+8Gu4ijF+JZqcQ4CL84umViUsiOmP8aQ2fssn+BC9yWdRQqoi4MGPyydYJH5JKJYVaD7xVaQ/N3FiSPT/k/6wjVOLfjNeEQV00fx/o3D+SdXWKW+aNIbPLNXbFO/MgBiBMx+1USDtYUpVQUeB/4nAf3fgU4Uyk1iYRj91ngZg+uKzgg0+g56WTc9u5ojm1JDMMee8sGqiItnq3nB4tniPERik2/t3VL509m6SNb+3SMPH6y09Ws51wxHDQvNKifQrZ9z3CO/P4cAEZdu4XBUz709PpuIwiFiqgLAwa/bN2ApFRmapttenmB7gzQ/L0rkscTlqwlUOUukN/e2c3siSM86YOS2aU4dSa3ZK0MTGzFbE8Xzr/VWl+mlBoMBLTWnuSUaq07lVJ/B6wlMa7iF1rr7V5cW8iOW6N39OVJtL58GoMmHmTUwi0EPZ4hJhEGoZgMFFu3cGaE5au399m8indrTz+DVmNw/IoaeMnxbRFaXphM5bgj1C181dN+AAaXTqlzdb6ThlqC4AQ/bd1AxI8SALeZGHad280IKOh2uBnY3RFk3297WzzUf/0pVND9TqLXmSRG5o9ZyrFkrQw8LMWsUqqixwn7KIDW2pv2jSlorZ8CnvL6ugMRtzuDbnb0d/3oMrrbqgCo+9LzrnfknCARBqFYDDRb12qRheHVZ9DKuauqCJS8kN332ws4uTMhNMd9YQPBIe2+3Mdt181sDbUEwQmFsHUDDa9LABoao5bNOM1s9J0N22y7vZsxbFCIYyc7s4rfjgND2fuLxOid4R/dQc3cd1zdJ5N8ZoK7LVkRn3JgYReZfRk4D2hUSq0GHgaShk9r/ZjPaxMc4nRnMNVAWM1szGTnv/TWSIz/6u99EbIgEQahqAwoW+d3lM/KubMSsopEza5fDUucEr3/EjqPDAFg3F8/75uQBfeOlozwETyiILZOKfVp4IckMlF+prVe4cV1SxEvxZThy1lhZqMf3OS+lr8lFqc2i81te3s0Bx47H4Ch532Qt5AFZ98xbiPdkrUigLOa2UHAIWAeibR0Iz29Xzl45YyTncFMA+FWyEYCqYoNAAAgAElEQVS+8oecnbuanpbqdoZTIgxCCTAgbJ3fUT63TtwpNeGi76JH//1SOlurgUQ/gMq64zlfK9Lzfk6pCXPkRDtt8e4+5+TiaDkd4SMIDvDN1vWkMf8E+BSJMWSvKKVWa60LPle7EHgppuzKv6xsdC7d3xX2/tj+R2YTe3cMACM+9TpDz9vp+h6ZOP2OcRvplqwVAezF7Gil1O3A6/QaOwPpKlxCONkZdFsje+iZ3iL98V/9fU5CNhRQrLxhetIAWbVTrwmHxEkTismAsnVuo3xuSxisnLva6hAn492mTofRyCMfggFFl9NCsBSObj41KWTH/eUfqRyT38zEDcvmJY/NuouKoyUUkULYuguAd7TW7wEopX4LXAv0SzHrpZiy29S7d9E0U7uby1xuu7NTy8pG37iJ8KSDrq5tRlApy/Vn4jbSLVkrAtiL2SAwhHRjZ9DvHLxypaExapkynLoz6CbycWzrBI6/njAEE5Y8Q6Aqtzq3VCEL1kZ/+TVTc7q+IHjEgLN1TqN8uTQ3sfqc33V14nNu5XTk2xwqAFSFAqaRUCva3h5Dyx8/AiSyT/Jp9qTom2EijpZQYhTC1kWA1NzX3cAci3N9xesuw2Z4+Rm32giM9Phyc1es63OPm+ZMcF0za4bW0PLclKSQ9XJixU1zJjj+feQS6ZasFcFOzO7VWv9zwVYiuMZwNM2EbObOoNOatF0//iTdJwYxZHozIz71um3XOrsdQaX6Orvi2Aklitg6C3JpbpL5OR/eU2Zw26omy8+8mW24dEpdciZhTXUIrRPNq06pCXOivdO0I7ObwOy+387h5M5RhM/8kFFXNRGo7H2f1aEAGuVKXIdDAW5b1cTKtTvS3qM4WkIJURK2Til1K3ArQH19vS/38KPLsBVefcatNgIvnVJn+V6MUTduuhlnorsUzd+9EoDgkBinfPEFAi4mVqSOxjHDTcM7SRsWcsFOzJrt3PVbvNzBK8RuIFinDpuldGSzcZkDsUdc/joqYP0iBXzvxuls3nnYdFfwc3PMv6DEsRNKkAFl69yQa3MT43PuxqF0YxsmLVtj+rxTZy61H8CoqxsJhHqjuaGg4tuLzgV6xXVNdYiWtrilwxZQJCPCMudQKGEKYeuiwISU4/E9zyXRWt9PYs4ts2fP9iX7xesuw/ng1Ce02vDP9l7uWTiNexZOo6Exym2rmlyF2LtiIXbfdzkAgXAHkb9dh3L4V6IUvH/vguT7c9OF2QoJegi5YCdmP1mwVRQZL3fwCrkbaGUgurXucy+rcRzQV8jWf/0pWyELiV24VOfT2BUMKsVNcyZ4MhhbEArEgLF1bsm3uYlfDqXVupzUj6V1aP/as2lCtrY6xF1XT02LqhqOml1mS2ZEWOYcCiVKIWzdK8CZSqlJJETsZ4GbC3DfNEplZItbn9BsU++2VU2m1858LwtnRiwDDGac3DWCfb+5CICK2uNEbn3e0esMtE4X6lb2120zLAl6CG6xFLNa68OFXEgx8dLh8st5MxuKnc1wOBnFYypkHQzEjqQYJ2NXUBDKkYFk69ySb8qX1U59vs2erNZ13awIj26JWqYHN39/fvLx+L9/lmC4V6DWVodo/KfL0843a+DklGJ3aBaETAph63rm2P4dsJZEje4vtNbb/b5vJqUyssULn9DNe7ln4TSe3Lq3TxlGJke3nMqR3yf6GAyeuptRV211tJZUjNIKw2N0UvImCH7gZDRPv8fLHbxs18olBdlqKLZVBOJEeyd3NmxLc+qshOzh3/U2X6pfmj0iayDGSRD6P/mmfFltuAVt8tic2Ei7dc2eOCL5PKq3xKJ142noeOIrb8KStX1mZreYRF7ddoFPReYcCgMVrfVTwFPFXEOp1F468S+z2Ty378UuEw+g7Z3RSSFbfVY0JyELELNothdUim6tJUVYKBgiZvF2B8/uWrmmIGcbih1Q6WluLbE4D2xsNq2bMAr1dTccXDOD9t21DD3vA2ov2+64TmLu6SPEOAnCACGflC+rDTer572osU193qitPfyHs2h7a2zCcbvyNVRFXycsoBQNjdG0azrZ0AwFFCiId/W+J4lGCEJxKZXay2z+pRObZ/VewLzDsdU9AY48P5mjr0wCYPT1LxM+3XlzJqd0aU1EhKxQQALFXkApsHT+ZMKhYNpzuTojdteySzexI1sNmFkHT6tXaEB3BmheuYC2P0eoPnOfrZCtDgWSUZSgUtxyYT0PfOki2/UIgiBAejmCk+dztZFWjBseZue/LODY5tMIjTzOqKubTIUsJOzsklVNzPznZ2loTPSrsdrQDCqF6nkfK2+YzsrrpxOpCSefczpTURAE/1g4M8KGZfN4f8UCNiybV5TPZDb/0srmLVnVxNwV65K2KPO9QGKcWbQlhiYhgm9b1cSpy9awt9WivOM/PsHRjWdAV5Dxf/87X4Rs8l49otxYvyD4iURm8XYHz+5aVkX80SwpyLkMxbaiOx5g1/evSB7XfvLPthHZtni37LAJgpATbtPjvCz56O6Gl/5xXvJ49PWbUaq3ttZqlMWRtngyMmK1fjOxKvZREIRMsvmXdrbNLjPFTAQb1iwzwJE6egcSje9S+wX4hTTCEwqFiNkevOyeZnUtq9QPBX1qXFONmFdDsTOF7MRvmo+3yERGTQiCkAtuNwq9Kvno7oZgSjDkonvWs/dYeg3XAzY21XDCjAhIsVMVBUEoXzJ9wobGaDI92Ko5p4GVIHS6wdd5vIroTy5LHjtt8ukV0ghPKAQiZgvI0vmTTWeAacwHXmc6VG6HYgcUDBsUoiUWR3epnIRs5lrEiRMEwQ1uNgq9aNqSKWS7uiAQuDR5bDiS2Syp4YTJmAhBGBjk0qDT7Wsya2Sd+HTRlhhzV6xLS0124gnGW8Ls+Y/e7BS3fp8XSCM8oRCImC0gC2dGWGKRamxl0AyHKnP8zaRla7Ias24Ng6sqOHKsi0NPnwtA5ZhWxv3li+4XT/7jNARBEOzIt+SjqwuWLk08HjoUWltJK6NwM2pHnDBBGDjk0qAzl9fk2iE92hJj6SNbQUPcrFFKBh37h3Lg8VkAVI0/zNjPveT6nm4xGowaSCM8oVCImM2RXHbwINEcxEwUuh02bdetLpVdezvZdd8VEOxi5IImhpwjxfiCIJQuuUZC29th0KDE45Ur4Y476NMPwKkjKU6YIAwscpkHm8tr8km7Te2YbsfRLRM58vtzABjzuT8xaPyRnO/pBk3Cx5WSDKHQDBgxm0sqiNX5uY7YAes0uutmRdJqZo3nrRwqs+tkkppiMvisPSJkBUHoQ64bc6XE0aMwfHji8bRp8PWvm59n50iKEyYIA5dcms/l8hqrQERtdYjqygqiLbG8mn4eenoax1+rB6Duulc8F7JGJ3qz9xCpCSfL4gShkPRLMZvpnF06pc6yuZKZw5JNrOayG2dgl0Y3e+IIx06l8fzy1dtpMRmQHT80mD0/+0TyeNSC12zX5YSg00G0giAUhHyFaD4bc6XC4cMwcmTv8Ws2ps7KkRQnTBAGNrk0n8vlNVYBjbuunppmc+euWOe6tGvnvyxIPh73189TWXfc8WtvubC+T0Alk9QAS+Z7CAUVJ9o7mbRsjWwICgWn382ZNZyz1NlbD2xsdjW7MNusw1zHRxiNR4wRPT9YPCNt9pnbmWgLZ0YYXNV3P6Lz6KA0IetV0f9NcyZ4ch1BEPLHzNa5nevn9VzXQtPami5kjWCGYWsnLVuTNqvx0il1ZG7JKXobrMhMREEYmGSbB+vVaxbOjHDvomlZ51KbXTsUVIQCfYMKujtdyEa++ntXQjZSE+aehdP6rOuWC+tN15n5HmqrQ6BJNBtFZswKhaffRWbtZm9l4laUGs/nshvnVwQkc61dsRDRf/skABXD24h8eb3ra0Z6otlG9+SgUtw0Z0JaAypBEIpLPhkiBl7OdS00sRjMmtV7nCpkzWzt5p2HeXRL1LSbfOp5UD5RaUEQvCGX5nO5Nqxz0hfA6trGc0Y6cmdccezJ85Ovm3D70wRC3cljoymTVeqyguR13fQrSD137op1HGlLzxCUCRhCIel3YtaNE+a2uZJxfi7jI7xwPLOttfNYFQefmEmgup0Rn/wzg8/e4/p6oYBKGmMRr4JQunghRL2a61pIGhqjfPvxd3n9wcnE99by13e08fPv1iR/bmVrnczqzmaT+0N9sSAI5uTSfC6f0V3Z7InVtY3n3n0Xzjgj8dzwi95mxMffpjtju84QsheeVsuGdw/3udbFp4/I24aV86ao0D/od2nGVk5YZmJGtuZKdqkjTtNEUvHrw26s9WTzCKI/vYz2XSMZdU1jTkIWYMigCnHOBKEMsNuMc0ouaXLFpKExyu3/+R6v/L+PE3tnDDWXvc6fwhvT0tnytalWr/cirVsQhNywKh0oV/K1J+vX9wrZ6il7qPn4W32ErEGX1vzJRMgCfHAof8HpxXeRIORDvxOzVs7Z5yxy/81wIlbd1rf69WFfODPCopHns+/Bi4DE7lx44qGcr9eSkSoiCEJp4oUQzWVjrpgs/+Vu3v+3jwFQ/ZG9DD5rb58a33xtqtXry72+WBDKlf64kZSPPbn1VpjX069u+Md2UHdtY9bXuC23c0O5bYoK/Y9+l2acaw2D2XW8dOhySU12wqpV8O3bEh1Qwqftp+bjb+V1PdlJE4TyoFRtnV9s3gxb75sDgKqMU/eZV5M/S3XIls6fzNKHtxLvdj/aws4mSyqdIBQHv8q0ikmu9uSii2DjxsTjUde8yuCz9ua1Di98Pq++iwQhV/qdmIXSdM78+LC//jp89rOJxzfeCDvObiJfv+rSKXX5XUAQhIJRirbOD/btg/N7epwEh8YY/7fr0n7exyFzMEXMaHS3/s0DjmxyOdYXC0J/oL9tJDU0RglYNGQysydGbe0bz47lyMazARh9w8uETzvg6r5GMygDL6OnA+W7SChN+qWYLVW8/LA3N8NnPpN4/NOfwle+AjP/2fzcgAKnQYr1b7ozjoIgCH6yfz9ce23i8dWfO87bk14kdbR2pkO2cu0O4l3WBi8cCuaUSu1Xdo0gCPZ4tZFUCg3cjJRpMyFrZk8aGqMse2QbO+69HHSA4NAY477wIsHBHa7uGw4FuW5WxPHmnSCUEyJmy5DVqxPO3dSp0NgIM2Yknreqd+3WCUNmNwzboFx3OgVBKE3ycSC3bIHZs+G00+APf4B584bQ0DjNdFzF3BXr2NNTU2dFJA8HTlLpBKE4eLGR5Nd4RLeYpUxDouOw2SbbitXvsOPbn04eR768HhVwV0KRi90rBeEvCE4RMVtk3BqM5cvh7rsTj3/9614hC9a7l7XVIbTGkZiVlDlBELwiHwfyoYdg8eLE4x/9qLfhSWaGS+Y9rIjUhNmwbF6O78T83oIg+I8XG0mlUndrFTDo1rrPOpqaYNPyS4BEn4AJS55FOSihSCUXu1cqwl8QnCJitoi4NRhLl8J3v5t4/D//ky5kwXz3EugzzNqKUFBJypwgCJ6RqwP5y1/CX/1V4vHXvw5XXunuHplIOrAglDf5biQVou7WSXDCacr0gw/CzTcnHg+aeJAxn93kej25+HQNjVHueGhrnzTocm+4JfRvijKaRyl1g1Jqu1KqWyk1uxhrKAXctGb/8Y97hex998Ett/S9XuqYDXDUAyWNwZUyY1YQvGSg2zorRzHaEuszVsOYIznmxpeTQvaLX4SVK/uekzpr0s4ZLYdxQ4Ig+I/fs1Cdjg9yMsbmT39KEbITDuckZAdXBll5/fQ+ds9uXq9dPS9IGZpQuhQrMvs6sAj4jyLdvyRwulO4cSP8/d8nHv/sZwkHzwpj93LuinWmu392tMacRXAFQXDMgLZ1VlEIIC0LxXCijn44iP0PXwBA7QUfcNVXQ0DCGbPKZBkeDtFiYru8SCsWBKF/4HcDN6dZKNlSpu+6C1asSJz7kZtep71+p6P7BxRojW0KdrZswGxZLlKGJpQqRRGzWus3AJTb5P9+hpN0kxdfTAzInjgxMVN2zhxn185lB00MlSB4y0C3dValD5Du6K1cu4PWPWEOPjmD4OCTjLzyNcKnHWDl2nCa82fmLA4KBfo0uJO0YkEQUvG7gZubNGarlOmLL4aXXko8jkZh7n3OhCwkGn3+6+IZtu8nm+C28xvFpgqljNTMFpFsO4Xf+EYixa4iHGfc36zn9vUVLK2cnIxk2Bllu4hIKKhAQzxlXo8YKkEQvMawSUtWNZn+3HCedjw3ikNrzwUg8uV1VAyPpf0883EqLW1xfrB4hnTeFAShD4XqymvlcwWUYtKyNbb37uqCihRvPBqFU06x9+PMyFbTmk1wW93PqtOyIJQKvolZpdTvgbEmP/q/Wuv/dXGdW4FbAerr6z1aXWlgt1M4c2aikx1A3WdfIlAdJ9oS57ZVTTy8uZlXm1ttG0dZRURqq0PcdfVUy/sKguAOsXX2GJFXqyyUL3+ZpJAdff3LSSFr/Dz1sZWzCEhKsSAIaRSyK6+Vz2XUn1rd+8gRGDGi9/y2NgiHE2s/0d7pag3ZMvKyZQNaBVhEyAqljm9iVmt9mUfXuR+4H2D27NnuhmuVAWbpJqedBu+/n3g85qaXqBx9LPkzDWx493Cf62TWZjhJqRHjJAj5I7YuO1ZOUvD5C/mPZxLHYxdso+r0A2k/T80WsXMWZWyEIBQfpdQNwHLgLOACrfXmYq6nkON4Mn2ugFJZOwLv3w9jxvT+vKsLAgHn48YyyVYqli0bUGZpC+WKpBmXGF/9aq+QHfv5DVSd0uL4tZm7cjITURAEv3GSxmfmJJ11+Dx+/kw1AL/5DYSnjGDl2gNZN99kbIQglCwl1fCuEON4Ukn1uSYtW2N77x8+tI9//NpgYAjVY4/zwFOtBALW/QEyUSSCGwZOSsUWzoyweedhHty0iy6tCSrFdbMifeys2FGh3CiKmFVKfQb4EVAHrFFKNWmt5xdjLaXEmjXw058mHu/YAVf8VytdLuIz0sBJEEqL/m7r3KTxpTpJmzbBhRcmnn/xRZg7FyC7E7VwZoTbstTfCoJQHEqt4Z3Tma5e09AYNY3MGvde8v8O88N/SoRkRy/eSPjUQ3zrscS4nmyNmAw0iY7tbiKodzZs44GNzUkR3KU1j26JMnviCBGwQllTlDmzWuvHtdbjtdZVWusx/cm5y5UvfQmuuw6uvhpaW+EjH8Fy1pcZ0sBJEEqP/m7r3MzKNrj77oR4veQS2LvXELLO8XtepCAI/QMnM129xm5WazgUZPQb5/PDf0oUyY68qpHwqYeAhN1cvno7c1esw4nnZ4wee3/FAjYsm5dVjDY0RtOErEE2ey0I5YCkGfdQqI53ZqRuYv7mNzBkSOJxxGEnu4jUNQiCUATcpvGdeSa8807i8cMPQ12d+3v6PS9SEARrvGh4V6hmd8WoAbVKEQ4qxZv3fJo3e47NyshaYnHTmdlmuLV3K9fusBTJktUilDsiZilsx7vUe65cu4M/fau3A+fBg71CFuxnNBoYu3OCIAiFxk0a34gRic6dAG+/nZuQhV6bvHz19qTjNyhUlCQjQRhweNHwrpDN7gpdA2omDLWG9/7lyuTxKX/zHKGRJ3K+R211yPV7shOsktUilDviAZBbqlw+3NmwjdtWNaUJ2TOWrOOPzdG08xbOjHDvomlEegxNZhVKKKBo6+hk0rI1zF2xjobGKIIgCIXCaRrfmWf2CtmmJjjjjMTjhsYoc1esy8mGtXd2Jx8faYvzrce2iQ0UBKGoZApD3aU4tGZ68njCP6zNS8iGQ8HkeMV81mWgcB/lFYRSQ8Qshe14Z9QtHH6u13iM/9qzxKtiLFnV1MehWzgzwoZl8/hgxQJ+sHgGkZowCqgJh0AlnDhNbzRZnDlBEApF6oabIpEpkjmT8Gc/600tfuMNmN7j1xkZMdGWmGsbVugNSEEQsqOU+oxSajdwEYmGd2uLvaZCk7rB13msiubvXsmJ7eNZ+BfH6OqCCWNDpq8LWPTMqq0O2drXXNZloIDP/f/s3Xd8FGX+wPHPlxBIKAoIKAQleKeIdEHQQzzEghVQ7JXzTuwVUezo6cFZUX96NhQVTkFRRDnEAniCgBCaIGBDJIEDBCMlAVKe3x/PbDLZbE12M7ub7/v14sVmZ3bmu7M7332eecocc4gOUVNJT7sZE/sZ70KNv31s5lp+X9SOncvakt58JwddPpc66eUtDJHOBtpnzKxKYyv09hRKqZoWqhvfhAlwzz1w8MGwaFHFeypW5x6QNX3LDaVUeMaY94H3vY7DS77cdf8rG/nm+aMBOPKovbz/emMg+Jj/IT2ymJKTV+n5B87qGFWZLlj5U+8hq1KZVmaJ7YQiocbfDuqWxVd3nwBGaNR1Pc1OWYXUqTxcJJICnRbmlFKJ7OijYfFiGDwYJk6EBg0qLq9ODvPqlhtKKRVOzntZfPO8Lb/ddhs88UT9smWhKpU92zarVmUz3Pwveg9Zlaq0MktsZ7wL1trw6MdrOfuoLHwjX5udshIJ0ck7XIFOC3NKqUTVoQOscabtfOONyhVZqF4O0xmNlVKJ6NJL7cU7gKefhptuqrxOsEplsOfD3W3j3qnf8NbCDQFvB6Q99lRtoJVZR6yuWAWbyW7+3eWTPbW/eyZ7gk9QDIQv0GlhTimViNq0gTxn2OuOHdC4ceD1qpPDtMucUirRvP56eUX2rbfgwgurv81wra33Tv2GCQt+CbkN7bGnUp1WZmMsUGvDthldyh6XlMC05Z3KCmFNGqSza08xRaXlV9QiKdBpYU4plWj+8Y/yiuzu3YFbZH2qm8O0y5xSqiYFayE1Blq2tLdXbNsWvvjC/h/Ja8MJN7fAWws3hN2G9thTqU4rszHmbm0wBigVGrXZwbF/3M0nUxoiUrkQFizJhUt+WphTSiUCY6CoyHYvHjLEtk7Urx/+dZrDlFLJIFgLaUkxzHw5i19/tet99x3UqxfZa6HyRJ/+ws0tEKhrsZv22FO1gVZmY8yXmP75n+9Y8n/dadx8Hy++VsSQng1DvsY/oVUn+SmlVE0xBgYOhJ07YcYMOPtsryNSSqnYCtRCuuu3ulxwfEtK9sDdd8Pf/w51AsyFUp2Z28PNLZAmErRCm6U99lQtofeZjYPTjsxiwb0nsO9/TRjUqyXn9IgukUxdmsfwycv1PopKqYRmjC28ffSR7VYcSWusUkolG/8W0n1bGpP73EmU7Eln9Gh45JHAFdlArw33vFug+8O6W1sv6n1wBNErldq0MhtjBQWQkWEf77cfjBsHEuRm2IH4WmSDXWnTgfxKqURQWlqx8LZwYfDCnFJKJTP3uNN9vzZi86TeABx0TC4jR0b+2kiedxvcPYvR53Qmq0kmgm1tHX1O57LW1ocHd+bSYw4hLUBB09ejb+rSvLD7USqZadEjhvbuhYZOb+KsLPj99+i3Eag7ipsO5FdKea20FNLSKv6tFVmlVKrytZD+Pv8PbBp3PIgh+69f8a/nw7dWhGtdDWdw9yzmjezPujFnMG9k/0rdhh8e3JkfR59OVoDyofboU7WBFj9i6MUX7f9HHgm5uVXbRqiWVx3Ir5RKBO+/X/64tDS63idKKZVsBnfP4vQGvcj/7xGA0O36JTx1fduIxqOGa12Nlep0Z1YqmekEUDFQUADTp8P119uK7EknVX1bwQb7p4nEJfkppVSkioth0iS4+GKYORNOPlkrskqp1GYMjBgBTz7RjD594M03oV27P1VaL9QdKGpi5vZwk0Uplaq0MltNmzfDQQfZx6tXV68iCxVv7eOTmZ6mFVmllKcKCioOozjlFG/jUUqpeNu7t3welJNOspPdBZroLhHuQBGs/Kg9+lSq027G1ZCXV16RPfdcOOKI6m+zprqjKKVUpHbuLK/IHnYY9OvnaThKKRV3u3dD377lf3/8cfAZ20PdfqemaPlR1VbaMltFP/8M7drZx+edB5Mnx27bNdEdRSmlIpGfD02b2sft28OaNd7Go5RS8fbtt3DZZbBsGTz8MNxzT+j1E2W8qpYfVW2kldkq2L69vCI7dCi89pqn4SilVFwUFJT3PunRAxYv9jYepZSKt7VroWNH+3jaNDjrrPCvCTZedf/M9BhHp5Typ92Mo2SM/derF/zrX1qRVUqlJt+tro87Dh58UCuySqnUN3cu/OlPkJ4OL7wQWUUW7HjV9DqVZ8Pbva9Y7/OqVJxpZTYK33wD3bvDqlUwfz5cc43XESmlVOzl5UHPnnaM2CefwP33ex2RUkrF1/nn2zGyjRvb4RRXXx35awd3z6JRRuXOjkUlRu/zqlScaTfjCC1aZFtjAUpKoI5eBlBKpaD16yE72z4uKtJcp5RKbcbAyJHwzjv2788+g0MPjX47+QVFAZ/X+7wqFV9aTInAvHnlFdnRo+GEE7yNRyml4uGHH8orskOHwgUXeBmNUkrFV0kJ3HwzPPqoveXYb7/BH/9YtW0Fu5+r3udVqfjSymwY8+fbMWMAY8faq3dKKZVq1q2zt90BuO46nQ9AKZXaCgqgbl149lm47Tb45Rdo0qTq2xsxoD2Z6WkVntP7vCoVf9rNOITSUhg2zD5+8cXyx0oplWquv97+f/vt8Nhj3sailFLxtHVr+eRORx4JTzxR/W36bonz2My1bMwvpHWTTEYMaK+3ylEqzrQyG8TatdCwoW2dSE+Hrl29jkgppWIvLw927IBnnoHcXOjXz+uIlFIqfmbMgNNPh4wMeO89OPvs2G1b7/OqVM3TymwAb78NF10Exx8Pc+aAVJ5tXSmlkt68eXYYxWGHwbffVn2smFJKJYOPPipvkZ0wIbYVWaWUNzwZMysij4nIGhFZISLvi0g1RinE1vjxtiIL8M9/akVWKVV1iZzrZs0qnw/gwQft2DGllEpV770H551nH8+YAUOGeBuPUio2vJoA6lOgkzGmC/AdcJdHcVTwwgvwl7/YxyID3+AAACAASURBVB9/DMcc4208Sqmkl5C5bsYMOPFE+/jFF8sv4CmlVFUl8sW7I4+0lddu3WDLFjj1VK8jUkrFiieVWWPMJ8aYYufPBUAbL+JwW7AArr3WPp49GwYM8DYepVTyS8Rct2aNHS8G8MYbOrGdUipmEu7iXWmpnal49Wr79+efQ4sW3saklIqtRLg1z5XADK+D+O47aNrUjiHTCVCUUnGQELnu55+hWTPb5e6yy7yORimVKhLt4t1vv8F++8FTT9l7yRYXQ4MGXkaklIqHuI2SEpHPgIMCLLrHGPOBs849QDEwMcR2hgHDAA455JCYxzl1KkyaBK+/Duefb2e3U0qpSCVLrvvvf+Hxx2HiRDuDseY6pVQcXQlM8mrn69bBoYfaxzfdBGPHehWJUire4laZNcacFGq5iAwFzgRONMaYENt5CXgJoGfPnkHXq4rhw+HJJ+3jZ5+F5s1juXWlVG2QDLnuhRfKh1H8+iu0axfLrSulaotYXLyL94W7H38sHyp2wQXw9NMx34VSKoF4Mn+liJwK3AH82RhT4EUM115rC3hgx1JoRVYpFWuJkOueesqOGQM7H4BWZJVSVRWLi3fxvHD33HNwww12KMXcudCnTyy3rpRKRF7djOH/gPrAp2LvfbPAGHNNTe38L3+xt+AB+OEH+MMfamrPSqlaxtNcN2YM3OVMwfLVV3DssTW1Z6VUbeP1xbtp02xFFmD+fDj88JqOQCnlBU8qs8aYP3qxX4BFi8orsuvXQxx6uCilFOBtrvv55/KK7OLF0KOHV5EopWoJzy7e3XOPvXh39NHw73/DHz3LvEqpmuZVy6wnVq60BbpHH4VrroHGjb2OSCmlYm/lSujY0c4FcN55cOCBXkeklEp1Xly8Ky6G9HT7uFMnO5SiYcOajkIp5aVEuDVPjTjlFOjc2c5cPGKEVmSVUqnp+uttrnviCdvlTiuySqlUtGcPDB5c/ndOjlZklaqNakVl9qij4NNP7WN34lNKqVRyxRXw/PP28ZVXehuLUkrFyw8/QN++MH063HcflJZCvXpeR6WU8kLKdzM+/HD4/nv7OD8fMjO9jUcppeLh3HNhyhT7eP16O5unUkqlmnXr4LDD7OO337a331FK1V4p3TJ75ZXlFdmdO2H//b2NRyml4uGJJ8orsnl5OrGdUio1ff01HHMMNGgATz6pFVmlVAq3zO7dC998Y1sncnO1RVYplZqMgVmzIC0NNm6Eli29jkgppWLvpZfg6qvtnCeLF0OHDl5HpJRKBClbma1fHz77zE4GUDdl36VSqrYTgXfftY/1op1SKlXt22f///JLrcgqpcqldDfj/ffXiqxSKvVlZmpFVimV2m64wfZE6drV60iUUokkpSuzSimllFJKKaVSk1ZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWaWUUkoppZRSSUcrs0oppZRSSimlko5WZpVSSimllFJKJR0xxngdQ8REZCuwPk6bbw78GqdtV1eixqZxRS9RY0vUuCCy2NoaY1rURDA1QXNdwknUuCBxY9O4oqe5LvYS9fPWuKKXqLFpXNGLaa5LqspsPInIYmNMT6/jCCRRY9O4opeosSVqXJDYsSWjRD6eiRpbosYFiRubxhW9RI4tWSXqMdW4opeosWlc0Yt1bNrNWCmllFJKKaVU0tHKrFJKKaWUUkqppKOV2XIveR1ACIkam8YVvUSNLVHjgsSOLRkl8vFM1NgSNS5I3Ng0ruglcmzJKlGPqcYVvUSNTeOKXkxj0zGzSimllFJKKaWSjrbMKqWUUkoppZRKOlqZdRGRv4vIChFZJiKfiEhrr2MCEJHHRGSNE9v7ItLE65h8ROQ8EVklIqUi4vmsaSJyqoisFZEfRGSk1/H4iMirIrJFRFZ6HYubiBwsIrNF5Fvnc7zZ65gARCRDRL4WkeVOXA96HVMqSdRcB4mb7zTXRUZzXXQ018WX5rroaa6LjOa66MQz12k3YxcR2c8Ys8N5fBNwpDHmGo/DQkROAWYZY4pF5J8Axpg7PQ4LABHpAJQCLwK3G2MWexhLGvAdcDKQCywCLjLGfOtVTD4icjywC3jDGNPJ63h8RKQV0MoYs0REGgM5wGCvj5mICNDQGLNLRNKBucDNxpgFXsaVKhI110Hi5jvNdZHRXBd1XJrr4khzXfQ010VGc13UccUt12nLrIsv4TkaAglR0zfGfGKMKXb+XAC08TIeN2PMamPMWq/jcPQCfjDG/GSM2Qe8DQzyOCYAjDH/BbZ7HYc/Y8wmY8wS5/FOYDWQ5W1UYKxdzp/pzr+EOB9TQaLmOkjcfKe5LjKa66KjuS6+NNdFT3NdZDTXRSeeuU4rs35E5BER2QBcAtzvdTwBXAnM8DqIBJUFbHD9nUsCnMDJQkSyge7AQm8jsUQkTUSWAVuAT40xCRFXqkiCXAea74LRXFcNmutqF811SU1zXTXUllxX6yqzIvKZiKwM8G8QgDHmHmPMwcBE4IZEictZ5x6g2ImtxkQSm0puItIImALc4ncl2zPGmBJjTDfs1epeIpIw3XiSQaLmukhic9ap8XynuS71aa5LPZrr4hOXSm61KdfVjcVGkokx5qQIV50I/Ad4II7hlAkXl4gMBc4ETjQ1PNA5imPmtTzgYNffbZznVAjO2IUpwERjzHtex+PPGJMvIrOBU4GEmmghkSVqroPEzXea61Kb5rrUpLkueprrUltty3W1rmU2FBE5zPXnIGCNV7G4icipwB3AQGNMgdfxJLBFwGEi0k5E6gEXAtM8jimhOQPyxwGrjTFPeh2Pj4i0EGdmRxHJxE7+kBDnYypI1FwHmu8ipLkuSprraifNdUlPc12UamOu09mMXURkCtAeO4vbeuAaY4znV4BE5AegPrDNeWpBAs3GdzbwLNACyAeWGWMGeBjP6cBYIA141RjziFexuInIW0A/oDmwGXjAGDPO06AAETkO+BL4Bvu9B7jbGPMf76ICEekCvI79HOsAk40xD3kZUypJ1FwHiZvvNNdFRnNddDTXxZfmuuhprouM5rroxDPXaWVWKaWUUkoppVTS0W7GSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOlqZVUoppZRSSimVdLQyq5RSSimllFIq6WhlVimllFJKKaVU0tHKrFJKKaWUUkqppKOVWZVURORoEVkhIhki0lBEVolIJ6/jUkqpWNJcp5SqDTTXqeoSY4zXMSgVFRF5GMgAMoFcY8xoj0NSSqmY01ynlKoNNNep6tDKrEo6IlIPWATsAf5kjCnxOCSllIo5zXVKqdpAc52qDu1mrJLRAUAjoDH2Sp5SSqUizXVKqdpAc52qMm2ZVUlHRKYBbwPtgFbGmBs8DkkppWJOc51SqjbQXKeqo67XASgVDRG5HCgyxvxbRNKAr0SkvzFmltexKaVUrGiuU0rVBprrVHVpy6xSSimllFJKqaSjY2aVUkoppZRSSiUdrcwqpZRSSimllEo6WplVSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSZnKrIiMF5GHQyzvJyK5NRmTUkrVBBH5WURO8joOpZSKVrjyW5jXjhKRCVV8bYVyoeZRpZJTylRmawsRmSMie0Rkl4j8KiLviUgr1/ImIvKqiPxPRHaKyHciMtLLmAMRkRNFZI2IFIjIbBFpG2Ldv4vINyJSLCKj/JadISJzRSTfec+viEhj1/JHRWSDiOwQkfUicncUMY4SkSLnWOeLyFcicmyV3nDF7Ya9sCIi2SJinH3vcn5kR7qWGxHZ7Vq+S0TucMVd6cfdec0fA7w337/8KN5DNxHJcT6/HBHpFmJd93d2l4isdS0TEblHRH5xPqO3RWQ/1/JVfjEWi8iHkcapkoeIDBWREudz3iEiy0XkTL91/urkjZ0isllE/uM+3xOBiDQTkfed83O9iFwcYt0TnPz3u4j8HGD5bBHZ6joeg1zLQp47YWIMmV+qQyKoEEiI3zGxFZt9fuf9cr+46/ptr6wyFOC9+f5dEGH89cX+hu4Q+5tyW4h13d9Z379+ruWhPr9WIjJNRDY68WZHEp8KTkSai8g8Edkm9jd7voj08Tqu6vI7J7aLyKcicoRreT0ReUJEcl3n81gvYw5Eois33CAii0Vkr4iM91t2id85V+CcQz2c5SIi/3S+B9ucxxJhjFruCx5fRJ+fk0PHif392ykiy0TkNNfycJ/fDL/l+0Tkm1Cx1YrKrPj98CXytiPc3g3GmEbAH4FGwOOuZU85z3UA9gcGAj94EGOo1zcH3gPuA5oBi4FJIV7yA3AHMD3Asv2Bh4HW2PecBTzmWj4OOMIYsx/wJ+ASETkninAnOce6OTAbeCeK18ZCE2f/FwH3i8iprmVdjTGNXP8ejXLbk/xe3ySSF4lIPeADYALQFHgd+MB5PpgbXPtp73r+cuAyoA/2M8wEnvUtNMZ09L0OaAxsoOY/g4QVz9zmbD8thtuKJNb5zmfdBHgeeFtEmjiv/zPwD+AiY0xj7PkeKm/EK8ZwngP2AQcClwD/EpGOQdbdDbwKjAiy/GaglZO/hgETpPziZchzJ0K+/HIucJ+InBzl66vD9zt2OPbzfsq17FG/3NS1Cttv4reNSL8ro4DDgLbACcAdfnnX33y//cxxLQv1+ZUCHwNDonhPKrRdwJVAC+xv0z+BD+OdJ2vIo875kgXkYcs2PncBPYFe2N/JfsCSWO48BuW+aMsNG7Flu1f9FxhjJrrPOeA64CfK3/MwYDDQFegCnAVcHUW4Wu7zE+XnVxdbVvsztox+LzDZd8Eu3OdnjDnNb/lXhPkMkrYyKyLdRWSJU+ufBGS4lvVzrlDdKSL/A14L8PrWIjJF7FXTdSJyk2tZL7FX9PJFZJOI/J/7A3OuIFwvIt8D37v2N1xEtjiv+Ytr/foi8rjYK+ibReQFEcmMNNZgjDH5wFTAfXXkaODfxpjfjDGlxpg1xph3XbF0FHtVb7sTy92uGMeKvUq80XlcP1iMIlJHREaKyI9ir3xNFpFmEYZ+DrDKGPOOMWYPtvDQVVxXGv3e5+vGmBnAzgDL/m2M+dgYU2CM+Q14GVu48y1fa4zZ7XpJKfYiQFSMMcXARCBLRFpA2XdomnMsfxCRq3zrBzueItIQmAG0dl11ah3B/ucDq4BO0cYeB/2wyWqsMWavMeYZQID+VdjWWcA4Y8wGY8wubOHjAhFpEGDd47E/LlOqFnZqEHu19k4RWQHs9i9khDs3ReQdsS1Ov4vIf90VLbEtAP8S2+K5GzjB2d/tIrLCec0kEXHn2zPFXnn1XcXuEmmswRhjSoE3gYbYigXY3DbfGLPUWWe7kxt2OvvKFNs6sd6Jc64rzw4U28qfL7ZVsEOoGEXkGOe95IttUesX4WfTEFs5uc8Ys8sYMxeYhq10BnqfXxtj3sT+kAdavsLJPQAGSAcOdv6O5twJyRizGJtfujnvo46I3Oscyy0i8oaI7O96nwGPp4i8CRyCrUCUtRqE2fd27DmdCLkN4Arg785v6Grsb8rQqmwo1OdnjNlsjHkeWFT9kJOLRFZ+u0PKy1ODReR0sT3NtkuQHlbGmD3Ob34p9jepBFvwbuZsO9PJcb+JyLfYnBIsxqDlQLGecuLbIbbnWCdn2eki8q3z3vJE5HbXNq9yygrbxZYdwv72B3iPhcBkKpf73jfGbDTWz8aYN1z7PVhs74etzm/C/znPBz3PpbyV8K8i8gswy3n+ShFZ7RzDmRKiV52ffkRRbjDGvGeMmQpsi2DbVwBvGGOM6+8njDG5xpg84AmqcA5rua+CfkT4+RljdhtjRjnfw1JjzEfAOqBHkG37f35lxFaA+wJv+C9zS8rKrJNQpmILO82wNXb/q5sHOcvaYq/SuF9fB/gQWI69ynUicIuIDHBWKQFuxRacj3WWX+e3/cFAb+BI1/72d7b3V+A5EWnqLBuDvfrcDVuRygLujyTWUETkAGzF0N3yugB4RET+IiKH+a3fGPgMezW4tRPL587ie4BjnBi7Yq/w3RsixhudY/BnZ1u/YVskfPtaIcG713XEHnvAfvGBH53nq+t47MlfRmzBfheQiy0c/zvajTrfucuxifU35+m3nW22xrZs/ENEfCd2wOPpvNfTgI2uK08bw+xbxHaV6ggsjTb2qhCRjyR4t8OOwAq/xLOC0J/faLHdCecFqBiI3+P6lFdg3K4ApvhdnKitLgLOwF7BLfZbFvLcxP6oHga0xF4Jnej3+ouBR7BX+Oc6z50PnAq0w17pHgq2UIq9cn41cADwIjBNnAthEcQakNgW4b8ARcB65+mFwAAReVBE+vjtA2wPlR7YHhjNsL05SkXkcOAt4BZsi81/sJUt9xXlshixLarTsa0CzYDbgSmuwsxIEfkoSOiHA8XGmO9czy2nGrnNORf3YN//HGxPlrLFfo+DnTvh9nEMtsDk+y0Z6vw7ATgU29vHVwAOejyNMZcBvwBnRdpqILanzhBqLrddLPbCRaBlTYFWuH6fCP/5dXdy23cicp9UvrgU6vOrdaIov2VQXlZ6GbgUe373xfYiaBdiHyuAPdgLSa8YY7Y4ix4A/uD8G4D9TQkmVDnwFGxZ43Bsue98yitd44Crnd4jnSivBPYHRjvrtsLmtbdD7D/Ye2uIzVf+5b7bROQ6EeksUt6l1smlHzn7y8YeU99+hxLkPHf5M7YXzACx3eTvxpY7WwBfYnOBb1+xLjeE5VSmj6diZadCGZMq5mAt91VQ5c9PRA7EniurAiwL9Pm5XQ58aYz5OeROjDFJ98954xsBcT33FfCw87gftptXhmt5PyDXedwb+MVvm3cBrwXZ3y3Yq16+vw3Q32/bhUBd13NbsF9qwXYl+4Nr2bHAumCxhnnvc4AC4HcnjmXAIa7lmdhkk4MtCP4AnOYsuwhYGmS7PwKnu/4eAPwc4niuBk50/d3K2V/dCN7DOGCM33PzgKFhXjcBGBVi+cnYhHN4gGUCdAceBBpHeKxHOe87H/vDtg3o5yw72HmusWv90cD4CI9nbph9Zzufb77znlYDN/l9B3c4y33/BgSI2/3PAH8Msc7sCI/LfcDbfs9NDPbZYM+3xtiC9hXYFvY/OMv+BnznvN/9sYUPAxzrt40GzvvtF0mMqfwP+Bm4MsBzJzmPIz43sZU3A+zv/D0ee4XUf9uXuv5+FHjBefwvbCuWe/21wJ+DxRrifQ0Fip3vYhE2p57vt85p2AuR+dguhU8CadgLs4XYLliBvq+TXX/XwXbT6xcoRuBO4E2/bcwErojgPfQF/uf33FXAnDCvOwknPwRZnu6899tcz0V07gTZXjbl+aXQefw4zm8q9iLnda712/u+QxEez5PC7H8O9ncs33ntRKCF6zu4h4q56fUAcbv/7aP89z/YOh0iOC4HO691/9adHOyzwVYA2jnHoDPwLXBXJJ+fa1ldZ5/ZkZwnyf6PyMpvhUCa83dj5/j0dq2fAwx2Ho8CJgTYTwa2zHOF67mfgFNdfw/D9Vsc6ruLqxyIbY36DlvGq+O33i/Yi3v7+T0/DttV2Pd3I+ecCvu5+50TpdhWri6u5WnA9dhy1F7n+F7hLDsW2Erg/B/qPPedR4e6ls8A/ur6uw72PG4bwXuIqtzgWudhnHJViO3O8XuuBDu8zPf3Yc57kQjiHIWW+2L5+aVjG9FejPTz81v+A2HqBsaY5GyZxV4RyTPOO3Ws91tnq7FdWANpi23uz/f9w1YADwR75dm5QvE/EdmBHafV3G8bG/z+3mYqtjoUYJNVC2xBPMe1r4+d5yOJNZCbjDH7Y1tImgJtfAuMMYXGmH8YY3pgW0omA++I7WZ4MPZkC6Q1FY/heue5YDG2Bd53vafV2JP8wAji3wX4T1SyHwG6EUfKaVn4N3CuqdgqAoCxlmJ/JB+MYtOTjR1TcCCwkvJuEq2B7cbp4uhYj73q6Vse6nj6x+8e7H6Ia1FzY0xTY0wHY7t1uB1ljGni+jfTP273v2DvzfXvhKBHoaKoPj9jzEJjzE5ju6a8jv3BPd1Z/Cr2yu4c7FW72c7z/hMlnANsB76IMMZU559/3IKemyKSJiJjxHZB3oEtvEHF/BZo2/9zPfblNt++hvvl0oOp+F0PFau/Bc53tSm2ctbXvdAYM8MYcxa2RWcQtgL8Nyf+DALntwrnorFdEDdQfq76x9gWOM/vPR2HvSgQTsxzG4AxpsjYoRaniMhA5+lIz51QmmM/y+HYwla683yg/FUXmwcjOZ5lxA6r8eU2d/fQm5y8k2WMucQYs9W17HG/3HSFf9x+uS1Qb5vmfttYHeZYgP38oOJnGCq3/WSMWWdsV7pvgIewrTX+6wX6/GqrSMpv24wxJc7jQuf/za7lhZTnoICM7XL8FjBSRHxjrltT8Vz332+ZUOVAY8wsbAvmc8AWEXlJyidfG4L9fVsvIl9I+eRB/ufNLmxFKeB5E8Djznc9G/v+y+aeMMaUGGOeM8b0wV6gfAR4VWz3/4OB9SZwr5hQ57mPf2582pUXt2MbCiJ5D3HJjdiWu9fD7Gs/YJffdy4ULfdVFvXnJ7YX7JvYCvQNQVYL9Pn5Xn8ctpfGu4GWuyVrZXYTtg+7u4vVIX7rhPrSbsC2jLo/0MbGGF8B+1/AGuAwYyduuJuK3bnCbd/tV2zi6eja1/7GDmqOdlsVA7A/ng9juzRXmqnNGONLwA2xV483YK8kB7IRm6h8DnGeCxbjBmyLr/sYZhg7PiGcVdguGEBZt5k/EKALQiScro7TsK0rn4dZva6zr6gYY37FXsUdJXYCj41AM6k4k+oh2FYGCH08K33epuKA/F+ija+GrQK6+H3nuhD552dwzienEPiAMSbbGNPG2UYe5cfR5wqCjKmopcLlt2Dn5sXYSuBJ2Na8bOc17s8ymmO8AXjEb18NnEJkVbZnX2ALetcClznnt//yUudcn4XtyvcrtuUi0Lld4Vx0vrcHU/E75o5xA7Zl1v2eGhpjxkQQ+ndAXak4xKMrVcxtAZTlryjOnZCcgvCT2OPn60YZKH8VYysU4Y5nhc/bGHONK7f9I5rYapqx8y5swvX7RHSfX1luC6JKvz8pJpLyWyylU17u2UT5mPNw+w1ZDjTGPGNso8GR2C6UI5znFxljBmGHcUzFNihA5fOmIbbBIdrz9RfsxGJPizMngN/yQmPMc9iWvSOx+ewQ/+7vgWKi4nletknX4w3YLtTu3JhpjPkqgtCrW26oxOmG25rKlZ0KZUyqmIO13FdBVJ+fs9447AWBIcaYogDrBPv8fK4A3nPKAyEla2V2PvaEu0lE0sXOTtsritd/DewUO+lHptNa0UlEfJMBNMY25e8SOynRtVUN1Nir1i8DT4lISwARyZLy8bnV9Tr2yzLQ2fZ9InK02KnaM7BJLx/b9e8joJWI3CJ2UHpjEentbOct4F4RaSF2DNP92G69wbyAHZvb1tlvC3HddiCM94FOIjLEifF+bF/8NYFWdj7jDOz3ta6IZIgzy6rYSRc+Bm40xnzo97o6InK1iDS1ww+kF7YrzueudX4WkaGRBG2MWYvtbniHMWYDtmvUaCeeLtix0r5jFup4bgYOENeEKklmDral7ybne+S74jbLf0Wxt4oa4ByjuiJyCbab2cfO8mYi8gfn8zkS2230Iee88W2jDXZMT8Crd6qSUOdmY2w3tG3YHiPVrVy8DFwjIr2dz7Ch2NtlVft2OcZODPQKzvwCIjJIRC70O5//jG3NLcW2VD4pdoKONBE5Vuy42snAGWJvB5aObYXciz1/A5kAnOV8b9Oc724/53sYLubd2JnaH3KORR/sxYM3A63v5KgMbIFbnH35Jpk5QkROc36j0kXkUuy584WzPOS5I/Y2DHPCxewyBjtzbwY2f90qIu1EpBH2ezLJad0Jdzw3E/yiaTJ4A5u7mzq//1dhu3lW4nw+vh5dR2C7zH3g+zvU5+esk4EdfgFQX1wTq6Ww6pbfghI7cdtxTvknU0TuxJaPFjqrTAbucj7bNtj5BYIJWg50yli9ne//buyFoFJnv5eIyP5O4X0Htlsw2HPqL2Jvb1Ife04tNOHGAgZgjPkUW0ka5sRzi5OjMp3f2Suc+Jdiy7ubgDFOTsqQ8tsVhTrPA3kBe/w6OvvdX0TOizDsOURYbnC2Xdc5H9IAXx72r5BfgZ1Hw7918A3sGOIssRMtDcd1DouW+6piDlF8ftiLQR2w8ycUBlkn2OeH2As15xMk91ZiIugrnYj/sNOQL8U2cU9y/rnHXOT6rV/hOezVgLew3ed+ww6g9405Ox57RW4XdoD7Q8Bc12vL+qCH2N/Pru1lYJPET9jkVtYPPkBcfbHdIYK97znA3/yeuxNY7Dy+F9stYge2C8gc4E+udTthK3O/Oe99pCvGZ7BJb5PzOCPE+6sD3IatJO/Edu/7h2v5KuCSEO/jJOcYFzoxZruWvYAzJs/5e7xzzN3/hjrLXsP+WOxy/VvlivFj5zjswraa3E35uLB6TuxHBIlxFH5jcbDjP3djr7q2wV4g2O68/2tc6wU9ns7yV7EVinygdYB9ZzvvM+AYZGfZbr/3PTZY3P7fW2edIr/X7wJaOstnAHeH+Py6Y8ctFWInEeruWnY3MMN53AI7W+dO570uAE52rXu48x0qwHbJCTSm7C7sBACe551E+EeAcV1UzDdBz01s17wPnOfXY7v4uL8X43HyaLD9+X+/sBNDLXI+303YCV0aB3lt0LyA7TI81++5NtiKUhdsXv4c2wq7E3s+3+FaNxMYi71K/jvwXyDTWXY2djzj79jKRMcwx7O3s9527Hiz6ThzE7i/30HeRzNsi8xu7Pi5i13LKuR3bG71z21znGUdsIVw37mzCDg70nMH9QmprgAAIABJREFUe1X8kSAxZuOXX7CtTquwBfw62ILYBuf9TwCautYNdTwHOe87H7g9yP7n4Pc75lo2HtstzZ2Xfg0Wt//31rWOf267zVl+Cc5vRJD918fm5x3YAqh7nPIhzrZ834XHnXV2Y3/fHwLSI/n8nHX8P3vjdX6piX9EUX4jwJhi7MR0lzqPR+HkI+zFreXOdn3DUo53va4BtqKT73x/RxBkzCwhyoHYyaBW+L6b2LGDjbBlio+x5asdzmd+nGv712Dz8XZs2aFNoO9VkHPCPy9fgM119bGV2hzs+ZiPrcCe6fe99c0M/CvwjPN80POc4OfaZcA3zvvbALzqWhaTcoPrc/U/P0a5lmc47/XEAPsR7NwO251/j6LlPt86NVHua+vsd4/ffi7xO1YBPz9n+UXY37Ww45yNMWUfrlK1jtj++NcbYy7yOhallIolEVmGLShEcmsLpZRKeVruS01amVVKKaWUUkoplXSSdcysUkoppZRSSqlaTCuzSimllFJKKaWSjlZmlVJKKaWUUkolHa3MKqWUUkoppZRKOoFuopywmjdvbrKzs70OQymVYHJycn41xrTwOo5Y0VynlApEc51SqjaIJtclVWU2OzubxYsXex2GUirBiMh6r2OIJc11SqlANNcppWqDaHKddjNWSimllFJKKZV0tDKrlFJKKaWUUirpaGVWKaWUUkoppVTSSaoxs4EUFRWRm5vLnj17vA4lJWVkZNCmTRvS09O9DkWppCYiacBiIM8Yc2a0r9dcF1+a65RKDJrrapbmPpXskr4ym5ubS+PGjcnOzkZEvA4npRhj2LZtG7m5ubRr187rcJRKdjcDq4H9qvJizXXxo7lOqcShua7maO5TqSDpuxnv2bOHAw44QBNeHIgIBxxwgF4dVaqaRKQNcAbwSlW3obkufjTXKZU4NNfVHM19KhUkfWUW0IQXR3pslYqJscAdQGl1NqLnY/zosVUqcej5WHP0WKtklxKVWS9t27aNbt260a1bNw466CCysrLK/t63b19c971mzRq6detG9+7d+fHHH3nmmWfo0KEDl1xySdTbGjt2LAUFBXGIUiWSqUvz6DNmFu1GTqf7Q5/Q7cFPaDdyOn3GzGLq0jyvw0tJInImsMUYkxNmvWEislhEFm/durWGoouc5jqlVG2guU4lI3f5rraV6cQY43UMEevZs6fxv7n26tWr6dChg0cRVTRq1CgaNWrE7bffXvZccXExdevGZ2jymDFjKC4u5t577wXgiCOO4LPPPqNNmzZRb8t34/LmzZtXWpZIx1hV3dSledz13jcUFpUEXJ6ZnsboczozuHtWDUdWfSKSY4zp6XUcgYjIaOAyoBjIwI6Zfc8Yc2mw12iuq0hznVJWIue6qtBcV1FN5Tp/iXTMVfQCle+SuUwH0eW6pJ8AKhENHTqUjIwMli5dSp8+fdhvv/0qJMNOnTrx0UcfkZ2dzYQJE3jmmWfYt28fvXv35vnnnyctLa3C9nJycrjtttvYtWsXzZs3Z/z48SxdupSxY8eSlpbG559/Tvv27fnpp5847bTTuPLKKxk2bBg33ngjK1eupKioiFGjRjFo0CBKSkq48847+fjjj6lTpw5XXXUVxhg2btzICSecQPPmzZk9e7YXh03F2WMz1watyAIUFpXw2My1SZv4EpUx5i7gLgAR6QfcHqoim0w01ylVNTNmwFdfwUMPgfbyTHya61QiC1S+q01lupSrzPbrV/m588+H666DggI4/fTKy4cOtf9+/RXOPbfisjlzqhZHbm4uX331FWlpaYwaNSrgOqtXr2bSpEnMmzeP9PR0rrvuOiZOnMjll19etk5RURE33ngjH3zwAS1atGDSpEncc889vPrqq1xzzTUVkunHH3/M7Nmzad68OXfffTf9+/fn1VdfJT8/n169enHSSSfxxhtv8PPPP7Ns2TLq1q3L9u3badasGU8++WTZa1Vq2phfWO11pi7N47GZa9mYX0jrJpmMGNC+ViTKRKS5TnOdSk6vvgrXXgsdO8LIkdCwodcRJTbNdZrrVGjBym6RlPtSQcpVZhPFeeedV+lKnL/PP/+cnJwcjj76aAAKCwtp2bJlhXXWrl3LypUrOfnkkwEoKSmhVatWYff/ySefMG3aNB5//HHAzg74yy+/8Nlnn3HNNdeUdZFp1qxZ1O9NJafWTTLJC5PYWjfJDLrs3qnfMHHBL/gGJuTlF3LXe98AaIU2QsaYOcAcj8OIKc11SkXu4ovhrbfs488/14psMtFcpxJVsPJdqDJdKkm5ymyoK24NGoRe3rx51a/Y+Wvo+oWqW7cupaXlk5j6pkA3xnDFFVcwevTooNsxxtCxY0fmz58f1f6NMUyZMoX27dtHGblKVSMGtA87ZnbEgMDfl6lL8ypUZH1qUzeWRKO5rvx1mutUMhg0CKZNs483bICmTb2NJ1lorit/neY6FUig8l2oMl2q0dmMa0B2djZLliwBYMmSJaxbtw6AE088kXfffZctW7YAsH37dtavX1/hte3bt2fr1q1lSa+oqIhVq1aF3eeAAQN49tln8U3wtXTpUgBOPvlkXnzxRYqLi8v2CdC4cWN27txZ3beqEtjg7lmMPqczWU0yEaBpg3SaZKYjQFaTzJATBTw2c22liqxPbenGosLTXKdUYK+/Xl6R3bQJqjCfj0ogmutUIvEv34Ur06WalGuZTURDhgzhjTfeoGPHjvTu3ZvDDz8cgCOPPJKHH36YU045hdLSUtLT03nuuedo27Zt2Wvr1avHu+++y0033cTvv/9OcXExt9xyCx07dgy5z/vuu49bbrmFLl26UFpaSrt27fjoo4/429/+xnfffUeXLl1IT0/nqquu4oYbbmDYsGGceuqptG7dWicKSGGDu2dVKbmFqrDWlm4sKjzNdSrZ1MQ8AJMmwV/+AiedBFOnatfiVKC5TiWaqpbvUoHemkeFpcdY9RkzK+B4DAGeuqCb5wlUb1ehYkGPce1SE7ezeO45uPVWO2HRK69ARkb1tqe5TsWDHnOVaPTWPErVMsFaFyJpdYhknUDjMQS45JhDPK/IKqVUVcT7dhYdOsCaNTBwIIwbB/XrV3uTSiml/GhlVqkEFWn3N//WBd8sw4vXb2dKTl6l56F89uFgr3Wv436st+VRStW0eHUFjuftLJo2hfx8+/idd6BevWpvUimlVACeV2ZFJA1YDOQZY870Oh6lEkGklUwI3rowYcEvlbbr3+oQTctEbR6PoZSKn1CV1WhyYbTicTsLY6Bv3/KKbGGhVmSVUiqeEmE245uB1V4HoVQiCVXJ9BdtK4J7/dp+o22llLd8ldW8/EIM5ZXVqUvzgOhyYbRGDGhPZnrF+4ZW53YWxsC998K8eVC3LuzdW/0xskoppULztDIrIm2AM4BXvIxDqUQTTSUz2lYE9/rBXqszFCulakK4ymosLrhNXZpHnzGzaDdyOn3GzCqrKMfydhbGwH33wYsvwlVX2YqstsgqpVT8ed3NeCxwB9DY4ziUSijBur/VEWHq0rwKha1AkzMF49/qUNtvtK2UioxX41ar2xU4XDflWAyfKC2Fa6+Fl16C4cPh0UehTiL0e1NKqVrAs3QrImcCW4wxOWHWGyYii0Vk8datW2souqobNWoUjz/+eMTPKxVIoO5vACXGVOiCB5VbF9JEAm4zTaRSq0Ntv9G2qp7s7Gx+/fVXr8NQcRauK3B1hOsdEqwr8AlHtAjY2uovnt2UAUpKIC3NVmSvvx4ee0wrsqko2jJco0aNAFi/fj1HHXUU3bp1o2PHjrzwwgsB1x8/fjw33HBDlfalVG3nZctsH2CgiJwOZAD7icgEY8yl7pWMMS8BL4G9H1nNh1l9xcXFMd1W3brV+9hKSkpIS6tcUVLe8m/5GNIji7cWbqDE717QgSZocrcuRHvvxESa2MkYyMmBHj0gSJ1cJQhjDKWlpTHZVnVzUizyogounrewCdc7JNBM6icc0SLsTO0+8ZwXoKioYlfiZ5/VvKUqatWqFfPnz6d+/frs2rWLTp06MXDgQFq3bu11aEqlDM+uHxpj7jLGtDHGZAMXArP8K7LxEGzsTHU88sgjHH744Rx33HGsXWuv9vbr149bbrmFnj178vTTT1dY/8cff+TUU0+lR48e9O3blzVr1gDw4Ycf0rt3b7p3785JJ53E5s2bAXuV7rLLLqNPnz5cdtlljBo1iiuvvJJ+/fpx6KGH8swzz5Rte8KECfTq1Ytu3bpx9dVXU1Jif+wbNWrE8OHD6dq1K/Pnz6/2e1axFajlY0pOXqWKrE9efmHQ72+ytrbu2WNbNI4+GhYs8Dqa5BePXPfzzz/Tvn17Lr/8cjp16sSGDRvKlgXLPddeey09e/akY8eOPPDAA2XrZ2dnc+edd3LUUUfxzjvvkJ2dzQMPPMBRRx1F586dy/Li7t27ufLKK+nVqxfdu3fngw8+AGxLxsCBA+nfvz8nnnhitd+bCi6eFcJI8tXg7lnMG9mfdWPOYN7I/sxeszXi1tZ4zQtQXAwXXVT+d2mpVmS9Eo9cB8HLdrfeeis9e/akQ4cOLFq0iHPOOYfDDjuMe++9t9I26tWrR33nBsN79+6tcAHwtdde4/DDD6dXr17MmzcvYAwvv/wyRx99NF27dmXIkCEUFBQA8M4779CpUye6du3K8ccfD8CqVavKcnCXLl34/vvvAXjyySfp1KkTnTp1YuzYsTE5NkolklrVGSYeXaVycnJ4++23WbZsGf/5z39YtGhR2bJ9+/axePFihg8fXuE1w4YN49lnnyUnJ4fHH3+c6667DoDjjjuOBQsWsHTpUi688EIeffTRstd8++23fPbZZ7z11lsArFmzhpkzZ/L111/z4IMPUlRUxOrVq5k0aRLz5s1j2bJlpKWlMXHiRMAWCHv37s3y5cs57rjjqvx+VXwEa/kI1mUYQn9//Qt/iV6R3bEDznTdmKtXL+9iSQXx7Bb6/fffc91117Fq1Sratm0LEDL3PPLIIyxevJgVK1bwxRdfsGLFirJtHXDAASxZsoQLL7wQgObNm7NkyRKuvfbasm52jzzyCP379+frr79m9uzZjBgxgt27dwOwZMkS3n33Xb744otqvy8VXLwnios2X0VTuY71jMVgW2SvugqmTIEHHrA9SrQi64145bpQZbt69eqxePFirrnmGgYNGsRzzz3HypUrGT9+PNu2bau0rQ0bNtClSxcOPvhg7rzzTlq3bs2mTZt44IEHmDdvHnPnzuXbb78NGMc555zDokWLWL58OR06dGDcuHEAPPTQQ8ycOZPly5czbdo0AF544QVuvvlmli1bxuLFi2nTpg05OTm89tprLFy4kAULFvDyyy+zdOnSah0bpRJNQvTLMsbMAebEez/x6Cr15ZdfcvbZZ9OgQQMABg4cWLbsggsuqLT+rl27+OqrrzjvvPPKntu7dy8Aubm5XHDBBWzatIl9+/bRrl27snUGDhxIZmZ5weGMM86gfv361K9fn5YtW7J582Y+//xzcnJyOProo+17KyykZcuWAKSlpTFkyJAqvUcVf8EKZyXGkJmeFnRyp1h19fNSbi7ccQfMmQMvvABXX+11RMkvnt1C27ZtyzHHHFPhuVC5Z/Lkybz00ksUFxezadMmvv32W7p06QJUzpHnnHMOAD169OC9994D4JNPPmHatGlllds9e/bwyy/2Hsonn3wyzZo1q9b7UeHV5ERxkUw0Fc2kUIG6KVdn8qp9++DCC2HuXBg7Fm6+uUqbUTESr1wXqmzne9y5c2c6duxIq1atADj00EPZsGEDBxxwQIVtHXzwwaxYsYKNGzcyePBgzj33XBYuXEi/fv1o0aIFYHPhd999VymOlStXcu+995Kfn8+uXbsYMGAAAH369GHo0KGcf/75ZXnz2GOP5ZFHHiE3N7estXju3LmcffbZNGzYELA59ssvv6R79+5VPjbKG/GahC8VJERltqbU9D01fcnDrbS0lCZNmrBs2bJKy2688UZuu+02Bg4cyJw5cxg1alTQbfm6rYCtqBYXF2OM4YorrmD06NGVtp2RkaHjZBNYsMJZlpOwHpu5NuBySO57wi5fDmecAVlZMGsWOL2lVDXFM9cFymvBcs+6det4/PHHWbRoEU2bNmXo0KHs2bMn6LZ8ec2X03zbnjJlCu3bV6w4LVy4MGAsKnruQlKTBukYA78XFlUqMMW7IBVu5mGfEQPaM+Kd5RSVVhyG8dvuvXR/6BPyCyrGHqt5AX7/HZo0sY+feQYOPi6PPmO0cOklL+6V7stTderUqVAWq1OnTsg5Ulq3bk2nTp348ssvIx7jP3ToUKZOnUrXrl0ZP348c+bMAWwr7MKFC5k+fTo9evQgJyeHiy++mN69ezN9+nROP/10Xnzxxaq/SZVQIs2NtVWt6mYcj65Sxx9/PFOnTqWwsJCdO3fy4Ycfhlx/v/32o127drzzzjuALagtX74cgN9//52sLPulfP3116OO5cQTT+Tdd99ly5YtAGzfvp3169dHvR1V80J1hfN1wctKsXvC3nordOsGBQXwyitakY2lmr5/cLDcs2PHDho2bMj+++/P5s2bmTFjRtTbHjBgAM8++yzGGT+uXeRiy7+b5m8FReQXFlXqslkTQxeimnk4QLfegqJSfiuoHLtbVcdXbt9eXpG98kpbka1O99Z4jfOsbeKV66It2wWTm5tLYaGtWP/222/MnTuX9u3b07t3b7744gu2bdtGUVFRWZnQ386dO2nVqhVFRUVlQzfAzr3Su3dvHnroIVq0aMGGDRv46aefOPTQQ7npppsYNGgQK1asoG/fvkydOpWCggJ2797N+++/T9++fav0XpR34j0re7KrVZXZeIydOeqoo7jgggvo2rUrp512Wlk3u1AmTpzIuHHj6Nq1Kx07diyb0GTUqFGcd9559OjRg+bNm0cdy5FHHsnDDz/MKaecQpcuXTj55JPZtGlT1NtRNS+SSVDi8f31Sq9etosewKefQufO3saTamr6uxIs93Tt2pXu3btzxBFHcPHFF9OnT5+ot33fffdRVFREly5d6NixI/fdd18c3kHtFaiQ5FaTBaZwrWy+CuAtk5ZRVBL+5gb+sUc6vnLq0jy6PfgJ2SOnkz1yOl3u/Rxfz9G+feGsG/IYPnl5lQuX8RzTXtvEK9dVpWwXyOrVq+nduzddu3blz3/+M7fffjudO3emVatWjBo1imOPPZY+ffrQoUOHgK//+9//Tu/evenTpw9HHHFE2fMjRoygc+fOdOrUiT/96U907dqVyZMn06lTJ7p168bKlSu5/PLLOeqooxg6dCi9evWid+/e/O1vf9MuxknIix4IyURMkNlSE1HPnj3N4sWLKzy3evXqoEkgEO1zHr1oj7Gy4vFdS/bvb2kpDB9eXpHNy4NY3KFARHKMMT2rv6XEoLnOG7Ux17UbOZ1wpQAB1o05I+6x9BkzK+RwC/9xu5Fq6nSdzi8sCrg8q0km80b2B+x54+7CXLo3jS3vHs3e3APo2beQe57eHjKOSI5VqPfpiyMYzXWVaa6rvtqY+5JJdXJGsoom19WqMbOQWPfUVKmrOuMbQv0wJ/P3d88euPtuW5EdNAjefhsyMryOKnUl83dF1Zxg4/X914m1QHkuWIW1YF8xo6atqlJFFmzX6VDcrRuPzVzrqsjW5dePurF3UxOaD1xCvWPzeWwmIeOI5FhpK0tsaa5Tqa4mJ+FLRrWuMqtUdUR6BbiqMyzGa5C/O+79M9MRodIkKfG0bZutwAI8/TTceKPeykKpRBCuxTMeBaZAee7WScswQJPMdARDQVH5/TjDVUarq3WTzLIc6avYlxSks+WdXuzbsh8tz11EZrtf2ZgfejuRHqtoZmNWSqmamoQvWWllVqkIRVPRrOqV92CV4OGTlwfcT1Xidne1q4kZ8WbOhFNPhXr14M034fzz47IbpVQV+BeSQs1mHCuB8pyvq3N+YVGguZ0i0sS5UBdN5TczPY0TjmhRIUcWbWvIxlf6AdBiiK3IAuyfmU7D+nUDVkTTRCrNcxCMtrIopaKlPRCCS4kJoJJp3G+y0WNbLprZ5Ko6w2Ko+81WdYIQLyd4eeopW5EFGDdOK7LVpedj/NTmYzu4exYjBrSndZNM8guKaFi/Lk9d0C1usxaHu6gX7SeRJoIADevX5YGzOgad+d2fb6K92Wu2luXIfVsal1VkGx/9Ew3+uKVsfZHgEw49cX7XiI9VJBP+1Xa1+XysaXqsVbJL+spsRkYG27Zt05MxDowxbNu2jQwd2AhE19pa1RkWQ1V2q1rpjGQcVl5+Ycxn0pwwAW67zT6ePh0uvTSmm691NNfFT23PdTU9u26su9OWGFMW962TlpF9QGal/OuWmZ7GWFdl3Zcji3fWZ9Nr9h5h+x37Pc36r67wuvyCophVRGviVkfJSnNdzantuU+lhqTvZtymTRtyc3PZunWr16GkpIyMDNq0aeN1GAkhmnFO0YxvcI9nzUwPfX0pXMU00JjeSCZ4AWLW3dgYeP55Oy62Th1YtQpcdxRQVaS5Lr5qc66r6hj/qqrOzMThGOCrH7dzyTGHMHvN1oi6Tu+fmc62X4XNbx2L1Cum+VlLK7TI+vhyvXb3iy/NdTWrNuc+lRqSvjKbnp5Ou3btvA5D1QLRjnOKpMDjP57VPelJIKFaNAKN6b1l0jIapNchvY6UzdAZTCwKr8XFcNNNsH49XHwxvPwyZOqcJjGhuU7FS3Vn14321ii+ZaOmrQp6uxw3IbquxwaYvWZrRLesmLo0j/wt6fzvrV4ghgPPX0j9rMAzPemY1pqhuU6p1FETt85K+m7GStWUeIxzCjee1V+owlSwbRUUlYL4Zgkl5OQqefmF9BkzK2j3wqlL8+gzZhbtRk6vtN5rn24iPR3+9S9Yvns95w7P04qsUkmgqmP8oepdlAd3z2JfcfjcJ8AlxxwS8ThYn7z8woB5yt/dz25l/fMnUFqYTvMzlwWtyDZtkM7g7lkhc6BSSnklEXNTTQ1hSfqWWaVqUqy7l0VzX0FfYaoq2yoqMTSsX5dlD5xCu5HTQ+4n2AzHoWZz/vHbdG6/tBUA+/X6kbrHrOGu99IqbUMpVTOiuRpendl1q3MbsnA9UaBiK2u7kdOjbqENmc+e2saaN7sBcOCFC6l34I6A28lMT+OBszrG7dZpSilVHfHOTVVtXa2pISzaMquUhyKdCCU9TXjgrI5lfwe6AhfpTMmR7DPQZFPBktL9r2zk9ktbAtD4qJ9pesKaoNuorUQkQ0S+FpHlIrJKRB70OiaVuqK9Gl6dXifVuQ1ZpHytrHWqeHNq/1w0dWkeNz2Rx5o3uwDQfOCSoBVZ97GIZkZ7pZSqKfHMTdVpXa3uEJZIacusUtUQ7dUq//VPOKIFExb8En5HruaIYFfghvTIYkpOXtBuy75KbKT79HU59r2nQMmn8OcD+OV927JxwGnLadQlt8LyWCesJLYX6G+M2SUi6cBcEZlhjFngdWAq9VTlanhVe51EMzGeW7S5wWBnLfaXniYUlYRvr3Xvb9T4PPLe6wpAi7MX0+DwzRXWzUxPY0iPrLIJpHwFwpoqmCmlVDTimZuq07pa1d+HaGllVqkIBaqIuiuP4bp1BKqETlq0IaJ9F5Uahk9eDgRPLLPXbGX0OZ158MNV/FZQcVIVd5fB2WsinyHS/Z78k9KuFW0o+P4gMpvupcPQr/mVymPNYp2wkpWx95jY5fyZ7vzT+06ouKjJSldVuyhHOst6IGkilBpDkwbp7NpTHNFrfLkoJwdWTTgSqVtK66tmk96soMJ6WUFy+y2TllFH7GztwbatLBFJAxYDecaYM72OR6lkFE1jSTwrjdX5PanOEJZoaDdjpYJwd+Xt9uAnjHh3eYVuFhMX/BJVt45AldBIWhR8Sowp6+oRyMb8QgZ3z2Lp/acw9oJuQbsMRlugLSwqYdS0VRTss4VGY2Dr1KPYNqMraWmG8R/8zr0XZFfpvrq1iYikicgyYAvwqTFmodcxqdQUrABTRyTmE29UtYtydXJDqTGsG3MGDerVDTtLO9hJpEYMaM+CBXDiiVAvHQ66ZH6limzTBukATAiQ2+1+K29b81xANwOrw66llAoo2q69Iwa0j1sZrDoTBMZj4tRAtGVWqQD8W1ED3T4iWBEqnq0ihUUlpIkE7G7nTiyhugwGu4IXbLtQ/v5L96axYeypADRqt43X3ijh3F7l+4n39OvJzBhTAnQTkSbA+yLSyRiz0rdcRIYBwwAOOeQQj6JUqSDYfVx9F8QgthMWVaWL8uDuWdwyaVmV9ufLdZHm1D/9oRlrP8ni7JFw4IHw2Ku7eHL+PtxpPT1N2LWnuFKvlkB8LcOa5yoTkTbAGcAjwG0eh6NUUoq2a6/vuWjLYJG0/la3dbUm7sutlVmlAoj2ljluoa5iVbVbnVuJMWSmp1U5sQRLTKPP6cxjM9cGjbF4Z33ynj8JAKlbQuerlnNur/L7ONZEwkoFxph8EZkNnAqsdD3/EvASQM+ePbULsqoy33k4fPLySheofD0tEuHC02EtG/L9lt1Rvcad6yLNqf99+yD+Pcs+vv2JLYxf8W2FC4NZTTLZvbc4onveQnnLsApoLHAH0NjrQJRKVlVpFIm2DBbpDMhVrSjXJO1mrFQAkV7x959bM1SlMlA3kKrwddOIpNtGoFmPQ3X7CBZjUX4mm98+xr7HQ7dwyPCP2fS7TnoSKRFp4bTIIiKZwMnAGm+jUqlscPcsSkP0tIj3ff8iUbAv/K150tOk7B7ZWU0yGdLDzircbuR0CvYVhy3EFK5rTu6sdgA8+fZmxq1ZUlYB9l0YHDGgPb9HWJEFHSMbjIicCWwxxuSEWW+YiCwWkcVbt0Y+h4NStUV1uvZGKpoZkAd3z2LeyP6sG3MG80b2T6iKLGjLrFIBRXLF33/Gy3BXq9xXt6qvzH37AAAgAElEQVTTQrt7rx27Om9k/5DrhbvqFmlXla0/NWDL7GxKC+px4EXzyThkO6AFuii1Al53JkapA0w2xnzkcUwqxUXachmP+/5FIlRsApVyqn9OC9cluPCn5mx5rycZBxSw5MsG/O2DVUELb5EeKx0jG1IfYKCInA5kAPuJyARjzKXulbQXilKh1cTESTU1UeB330F2NtSrF9PNVqCVWaUIPFPxpK83BJ1cJKuK3Sx8lcg+Y2ZVuUKbX1gUdtzb1KV5QbsYhiu0uiu6b70FQx8sJa1lPgddMZf0JjZmLdBFxxizAujudRyqdgk2djYQL24vIwSee0AgYDfeaIZ/FHx3INs/7USDNvm8MH4vHTo0YOPrwQtvT13QLWDhMZoLlrWdMeYu4C4AEekH3O5fkVVKhVcTXXvjfduckhI4/HD46Sd48EG4//6YbDYgrcyqWi9QC+aUnDx7/8IAldmsJplhW0UD7cOdlKo7drawqIRbJy3jwQ9XkV9QVCHR+d5PsMmcIi20HnoorFsHbdvWYdS4vby8CDbmV24t8RftvXeVUvERqEBUsC/wJEde9LQI1iQX7eR6/n77oj07Fh5KvYN+54DBi7nv42Lu+3hp0PVbN8lMinFhSqnaI9wY2OqWteLZ+jt3LvTtW/73sGHV3mRIWplVtV6wcQPB5OUXlo099RcouQCVKsuxYCjvZufuQhyu9SJcobWoqGJ3kJaXfcmDn+6gdZPM/2fv3eOjqq+9//d3JpNkkkASINyGqzeoiIJQi9LWYltR8UKhlZ5qe87p6eNpn/Y5ldqcYuvviD09j1ROj7Y9t8ce+7Q9Wh+8plKsqIVqRVHBBBAFWy9cJlwCJFySSTKZ+f7+mOzJzGTvPXvPNZf1fr36avbMvnwnMitrfddan8W9K+akNa5OBAUEQSgMqQ5R6ncU7B0Yw6YF20JJgkn5DvQSbayxBif1qEcfm0/o3XEAjFvxGp4y+zm0UmWSH7TWfwD+UORlCMKQJBe+Vj428LSGG2+Exx6LHV96KWzZAipVYCbHFC2YVUqVAy8CZb3reExrfWex1iMMH3KRJTWMBvQZgpoKH2c6e+LZXMO4lPs8GSsju8EoIbbLXqRz3Nrb4bOf7TuecftGjoZjzqATY+lWTl4QhNzgdJfejQOT6jAZ1R6ZblKlrtGORBvrtFT6yCMfpvP9sQBM+sZzaQPZgElFi2zECYIw0MmVr5XrKRT//u99gezzz8fmeheCYmZmu4ArtNZnlFI+4CWl1O+01luLuCZhiGPmsFj1bVWWeolq8yytMd6iqydqK0YSCkeyCmQVUO330d7dQziSPi+RLkBfPs/acB0+DN/+Njz7LKxdC0/2bCLYluwMpjOWhRIUEAShD7eBmFMHxq7Kw43jdEfDLn796n4SuzbSbSImqmparSFxNvbppsl9gezfPYvXby8OpUgW0ZONOEEQBgsDzddatw62b4fvfS+Wnf3a18Cb/fAOxxRtNI+Ocab30Nf7P1G1E/KKmcNi9Y+uuyfK8nnWTkxbKJzXjKu3ty6jsqyEFR+eHD+2w8iyWJ25eY/5GIS334YFC2KN+k8/HQtqMzGWhZCTFwQhGTcjFtyQzjFy4jjd0bCLB7cmB7Junm/1DAX86MaLUMCZXQFOPHdB79iw36UNZCFm9+fc9Wx8JNFAcw4FQRCsKISvZTbaMZXm5lgJ8ec/D+vXxwLYb3yjsIEsFHnOrFLKq5RqAo4Cz2mtXy3meoShjxvHJBzVbN7TQiBL41Dj92U0XzaidXwO5INb91Pu8+DzWAe0Rgnx0rkBywA92BZi2qoNTFu1gbnfjzlyq1fD+efDyZPwk5/A4sWxczMxlmZzat30pDkxnoIgJJOvQCydY+TEcXr41QMZP9+jlKUtM0Sbzj5yMcefnkPlrCB1n9mOKkk/u9agLRSm/tEdNDQGZSNOEIRBQ7a+VjqMah+7eeR33w2BhHzP669DVVVOHu+aogazWuuI1noOMAm4RCl1Qeo5MlxbyCVuHZNgW8jUaDjF7/Oy+vpZ3L1sdkbXJ9LeHSEc1VT4PChiQXJthQ9FrPfr7mWz4+VwTgLw1o4wX1heyl13xY6ffhrmz+97PxNjuXRugLuXzSZQ4zddlx1OjKcgCP3JdSBmbCrZlQI7dZysVNWdYHWt3+dl0cw6Ssp7+P0vJlA5s5nRi3e5CmQNwlHN2o178+4cCoIg5IpsfC0n2FX7dHfD178O3/1u7PUf/jBWWlysQBYGiJqx1rpNKbUZuAp4M+U9Ga4t5AwrKfLOcMQ0A+BVKkkwJV2fl8+rqCwt4WSo/7icxP4uMypLvdRUlKZ9Rkc4yn1pVIUXzazjwa37Ld/XGtpemEHo/TogVl48fXp/gZZMZixmKiggPWuCkBmZjFiwEowyUztOxY2acTq755ZAjZ9PzKjjnz7Tt0E4+romlCfzZzS3hWQ0jyAIg4pcizclYlXV88F7isvv2cwbj11MxXgv//qr0/z1pyfkZQ1uKKaacR0Q7g1k/cCngR8Waz3C8MDMYbEL/AwnzDAa01ZtsLx3bYWPO6+b1c+4NDQGqX9sR1qHrr07Qnu3s7LA1U/t7jduI/EztbZ3WV6rI4q2F2dw6rWzKZt0nHGfe53p06+ynLeby90+O6RnTRAyw20gZicYlW60l1cp2znbqbborLoK/nS0PdOPloQCXvrOFdRdeDT+2pRvPx0PZDMNnI0Mdj6dQ0EQhIFCOvX7VCFRHVEE//MKImfK6bxqJ+NufhmPL8o9L3qpHRMtut0sZmZ2AvBLpZSXWLnzI1rr3xZxPcIwIdVhWbhmk+W5qeW6ds5SZ9i8xO2u9bsdKRG7oS3UJ3Bi5phaEe0soaVhHloraj6+h5EL3mVSbewzFjszaqXCLD1rgpAeN4GY3Xc93eaRXbDoxhbZUeP3Jdk4gwnVfurr4fibYymd0Mr4m19JyshGtea+FXNMs9TL5wVY9/qBfrbY51FSSiwIwrDBzE6vXNfEreua4lU3idU+oQ9Gc3Tdgvj1FecexuOL+bsDpXquaMGs1nonMLdYzxcEAzvnLdXJsXPkrL7UZiN7ckm6TIpB58Fajjx0GXiijL5qJ1Wzg/i8fY6c1e8h2BZi4ZpNeS+9y6RUUhAEdzQ0Bi2DzGxmb4NzW2RHjd/H6utn9bMF5SVeRu+6hEdegvGXHqD0YztJFXg3RKGMtaTarPlTR3HX+t1xm2w8KxN75nSuryAIQjGwslF2Uz2MKp27l83mf39mNn99o5+T744CoHz6UcZ+7vV+dncgVM8NiJ5ZQSgmVs5bbYWvn3MSSOPopX6p8yVeVFvhs3ymGaebJnNi44UAjF68i6rZwX5l0Va/B0VfhiXd/MpskJ41Qcgvxo68FcZ3Ll3PrBWZBsEGhmBeqi2YMKKCzqcv5bcvl/Ptb8Nlf+Hhu096k9Zo2KmFazZRv3iGaSl0rsqI3c71FQRBsMLNxpjTc+1sVDqf0UjMXNl1BSffjb22ZQvUv/gmwbb+5w+E6jkJZoVhj1VG8M7rZjk6NxHjS20YnGydOzN8XpW0tnSZlPa3J8QD2TE3bKdq5mHeX7Ok33lmn03Rfw5vPstKpGdNEPKHXeY0cbQXwLceaTKdDWunlJ6N2JNXKdP+fB1RvHLHIgC+/GW45x5QKoBSfaJ8iXaqEIFlsVsyBEEYGrjZGHNzrp2NqrZo4zBof2sib58uZ91/w+jRMPHSIPXP9be1MHCq54o6mkcQikHqLFPAscS5IYeemBk1ML7UiSNmck2gxs/az16UtDa70UGnmyZzbH2smn/CX/2RypmHLXfRUqXeayt8tvNqZWSOIAwu7Hbkl8+LlZ9NW7XBMpBNbEswI9NA1u/z8qMb++yaYUMPHu9k3z9f03uW5tqvB+MlbkvnBtiy6goCNX7LDbd8IWJ1giDkArugM5tz7drGrALZnpN+9v1wCcfWzyX854mMHw+HJ+3itkeb4v6sJpbkgNyPA8oGycwKwwqrna27l822Veg0rk0s71hy4QTTsTUL12zKum/MDCsVUcOQ3PZIn2Ky1tC2+UOET1TiP+cIY65twlMaW1N7Vw8NjUHLYD1xPIcd6bIf0lMmCAMLu5aKx7cH43bLLJAFKPEo2++7WSVHOjwqFkgn3nftxr10dEY5tn4OAKo0zJSVz/LPz/r5zMXJz89VYOnGXolYnSAIucCN/XJzrlvtg9YXZ3DqlXPixw88eobf7jrDQ1v397Ppmlggm85nLiSSmRWGFW52thJJzLZq+sbW1C+ewftrlrBl1RVxxydfu/OlJSqeTU7Nii6dGyDaG8hGQj4O3LeYU6+fRUltO3Wf2R4PZCGmhHz7E7tsM6tOhFxC4Qi3rmsyXY/Z7yvdMwVByC9mVRx+nxetcbQBF7JQbIeYzcgkLxvV8ODW/cy569m4fQge6+L4MxfSsXcitYveYsrKZwFrp80MN4GlW3tl9XscCOV2giDkj9TKvmx9Gjf2y8m5xvqMkuB0RMMeWn4zNx7ITr9+L0++EeTGBQFbmz7QqlAkmBWGFZnu4lsFwSsfaWLu959NMmy53p33qNgXNRSOmjpahvHSQPexKg7+5Ep0dwkj5r9H7RVvU+Lpb9LSBfBuDJWZ45fppoEgCPkjtZXAKBM7adM/lYqVA5etc2Nssj2yNUjrU/Pp2DueUVftZOQl78fPqTFp78hFYOnWXln9HqXyRBCGLvnYpHdjv9Kde0fDLlauMy8JNqPnpB8iHrqaa/CNPsMvNx3ivd/McJSYGWhVKFJmLAwrMi0Ps/pSa903escwbMvnBZJK9tJRWeqlvdv6XI21CBMQL5vuPjKSQ7/4WOyesw4y6pNvA9Z9bOkMlZsSlVTxE+kpE4TiYVcymyqy1tAYxONCuMlKdCSbkT4GZ055WHFp7J6jFu9kxEUHkt43W2IuVNAzsVeJv0fj971yXZO0VAjCECUfwm9L5wbYtu8ED796gIjWeJXq13aReK6xjlRb19AYtCwJ9irFSH9J3FeNhj0E/88iou3l1C1/nYlf/iOjaxVfWnRl0rV2Ey4GWhWKBLPCsCLTWaZOHbVQOMLmPS3cvWw2q5/abasYBzGj8JmLAzy4db/lOVY+ZrAtxK3rmgDoPFBLyxPzAai9YjcjP/xB2rUmKi+nzl689qIJpobRjkTHT3rKBKE4ZKKO6Va4ycyBq188I26PMiHSXsrBf/00AP7zDjNizoF+51hlkLNVQc/GXsmYHkEYHuRjk76hMcjj24NxGxzRmse3B5k/dZStrolxrbGJ5lHK0l+LaM2Zzh58XsXJPXW0PPHh2BueKGWTTuAp66Gto/91VhMublowZcDZNikzFoYVbsvD3PYfQMywLZ0boOnOK01VjxPRwEM2gawT2t+awKmt5+Cp6GbiLZsdBbKJysv1j+2IB7IQK/db99oBLjt7lKt1eFRfT++imXXSUyYIRSBbdUynpDpwS+cG0to7K6JdJX2B7FlHGfuZ7abn5WszLJtSZWmpEIThQS7681PJlY5Lug3J7ojm4AMfjQeyFTOamVr/O7zlPbETFExbtYFpqzYw9/vPxkVCU/3le1fM4QdLZ2f6cfOGZGaFYUEmyrqpO+5Ocxc1FT4WrtlEc1uIar8Pn1cRjlhfndkwi1jG9sSzF3CmaSr+cw8z4Usv4SlL75h6lYoby47uHtO1haOaD4672200jKkhjrV8XsBU7VkQhPxhN5LBcFByMQfbzIG787pZtnO4zYh2lnDkkUsAqJq7j9FXvml6Xj43w7IpVZaWCkEYHmRa2WdHLnVc7Gj9/fl0HhkJwIS//COl408lvZ8YC7d2hLl1XROrn9rN6utnDSjVYiskmBWGPJmWgWWatTjT2RPPdKYrM86UaNjDgX+5GoCyScepu74RVRJTGrUaj1Fb4aMzHE36PdjR3BYiYFF+V+P3UVlWQnNbyLTfzii3HgxGUBCGEnYtEd9a18T3ntxl26PvBDsHrqzE49huRkI+jv3mYnraKqlbto2Kc4+Ynlfj97H6+ll53QzLtFRZWioEYXiQi/78VHKt45KI1tD+ZmxtVRceoGpcByPnHqCzx5l9NkT5YOC3TEgwKwx5rMo4bntkR1ywY9HMun5ZxEx31sNWQxqxDjRTscvmJvaWAYz7i62o3oaBQO9nWff6gaTrfV7lePyGgfF7MNuJTHQsp6/aYHq9ZCYEoXA4ybZGIetANmDhwBktC3ZVKImET1TQ0jCP8IlKxi7fhn/6MctzK8tKXDtThZpznY9sjSAIA5Ns+/NTybWOi7c3uRA+UUnzzz4BQPm0FiovCKLGnqazx936shW4KhQSzApDHqugKrEsNlGAycjc1lT4knpJDZwGpGY4uc5O3bjnVDlHH431PJRObGXCF18GYsbv7mWxPoa71u/u71Bqd1lin0fFjWm5ry/TYpYhkcyEIBSX1OqTfOHzKsug0NTuWJCovD72xldtA1lwvzFWSFGmfGRrBEEYHmRqP6yC4LuXzWbzLwL85Gex11RpmLGfex3lVPTFhMGQmJBgVhjyZDIyIhSO0BMxdwzPGVvJn46252JpplgFst1HR9D2xxn0nPInOYBGNtZOPTkc1fEdu1Rq/D6UIknNePX1swD6Gcuunmi/6yUzIQjFJRshJzeEI5rvPbnL1PEy2/gzo+tQNYd/9VEAqhe+kzaQBfcbY/kYoWFHrrM1giAMHzKxH2ZB8Dc+NpP7Vk7khRdi54y+ZgdVsw9mvb7BkJiQYFYY8pgFW04I94/bAPIayFplfTv+PJZj6+dSOv4kE760Bd/o2BoCFqXAZkS0xu/z2pYMJ7JwzSZHDqFkJgShuBRy57y9O0J7d+x5iRlPJ/ScKufwg5cBUHP521QveC/tNZlsjIkokyAIxSTTNofEdhEjAWH4edDfzzJ0SZqbIRKBr++E8lEd1H3pj3jKXNYUmzBYEhMSzApDHsOAOJn7WmzMAtlDv1xI9+EavNUdjLm2kZIRXUCfkXGalamt8CX1zdZW+LjzulgG1lBfTjS6bhxCyUwIQvHIpPokVxgbXDV+n6197TlVzpF1H6GkNMqYz75CWaAt/p6xiRew0C9wa1uk9UEQhEKSGLxW+320J0yKCLaFuHVdE3et382d1/VPHiQGsIkJjcRWuPrHdoDu02QxNhJDHYqVyydy4gRs2QI/fqKZ/++Zxqw/j4JBlZiQYFYY8jQ0Brlr/cAPZFPRUdi/dkn8ePzNL+Or6oo7fYaRWbmuKe29fF7Fmc6eJHGqznCUbftO8Pj2oGlvmTiEgjA4qF88g5Xrmmx78msrfCy5cAK/3XEo57awuS3EvSvmcKuFLQq3VnDk4QV4SnsI3PQaN107ks17uvJWySGtD4IgFIrUHn0r+9ra0V8d2OkISDM9gmM7x/KFH0wEwFvdwfJf5yYbG6jxD7pJFBLMCkOaOxp28dDW/RkLNhUL3eOh5TcXx4+n3PY7VEk0HsgmGpp0WZkavw/ob2BD4QgPv3rAdKzO2o17M3IIC6UgKghCH0vnBnh02362vHvC8pzO3r6JyrKSnAezE2v8bNtn/uyOd8bR8uR8PP4uxny2ET3mNJv3dObVWZLWB0EQCoUbzYLUVq1M9A50FIL/eQWR07HEQuXsA4y5Zqe7RRPb4EzVOhism34SzApDlobGYJJK8UDB7/MQsmrIJTZ7sXXT+YT+PI7qS/9E9cfeSVKiSy3zteqZNcqIl84NWI7PMROEMp7h1iEspILoYEIpNRn4FTCO2Mbr/VrrHxd3VcJQoqExyBv7T9qeEwpH8mYPp43285DJvdvfnsCxp2KbcmM/u43SsaeBwvSuSuuDIAiFwK09a24L0dAYzLj17fiGOfFAdsKXX6C07ozrexhJkaGSgJBgVhiyrH5qd7GXYIpdIBtureDoox/GW9lN3We2UXHekX7npJb5Ogk6080ks3qGG4ew0Aqig4ge4Dat9RtKqRHAdqXUc1rrt4q9MGFoUCg1Yyu2vtfar/qlq7k6HsjWLXudsol9PbLFalUYKo6bIAgDB7eaBTUVPuof3ZHU9pUOreHMzsmUVHVSeeEByqceo3L2wYxG7iRmX4fKpp8Es8KQZbD1yJ56fTqtm87HUxZm9DU7mXDeGTrD/dWHDSPkxjGzKhlePi+Q1DOb+gw3iIKoOVrrQ8Ch3p9PK6XeBgKABLNCTij2dyx1Q6zrUDVHH70EgLGfew3/WS3x9zKxL7kIQqVyRBCEfGDmX/k8Cp9X0ZGSvPD7vHSGI7aBbOpUi+6WKg79/HIAKmY2U3dD5gJPiRV7QwkJZgVhANDy1Bw63o4Zl7rl26idfoo7r5sNJGdcF82sY+3Gvdy6rinJ4KVzzOyyt/OnjspJtkIEo9KjlJoGzAVeNXnvFuAWgClTphR0XcLgpphqxql0BWs4/syFqLIeAn/1EiXVyesq93lc3S9XQahUjgiCkA/s/KvUjbhFM+vStnvcu2JOXN342NMX0r5rMgDekR2MuT6zQDYwxCtRJJgVhiyVpV7au4tXeucEreHklnPjgezEr/yBaWdHqV88O250nKrepTpmZtkMM9GVXJWZiIKoPUqpKuBx4Fat9anU97XW9wP3A8yfP3+waZYJRcSJmnEhCH0wmpYn5+Ot6mTCF7fgrewGkjMNZoqeduQqCJXKEUEQ8oWVH5X6+sI1m2zvE6jxs3RugG/+6k2af/kJelorARhzw3YqZx7OaG0KBp06sVskmBWGJA2NQbp7rHtTi41HwcjSUj54bjonXzmHKeeEaXrNR23tJ/qdmziDLB2GY1aMkjpRELVGKeUjFsg+pLV+otjrEYYWS+cGLMfiFIq2F8/j5CvnAjDnb5v43ufOZ+ncAAvXbOpnu9wEo7kKQqVyRBCEbHDa7mB3np3d8nkVi2bWcckdfyR80k/kdDnekR1M/JsX8ZRmnpgZDjZOgllhSLJ2415XzfWFpqfLy74n5/KRqWOY/134x3/04TGpvksNStNhGK1ildQNFTGBXKKUUsADwNta638p9nqEoUmgiKXGJzZ9iNOvnwXAhL9+kdKRPaxc12S7Ced0rbkKQqVyRBCETHGaIEh3npU98yi44fyp/PBLZxPp8jLhr14i8NVN8eqWTBkuNi5t84pS6nNOXnOLUmqyUmqzUuotpdRupdQ3s72nIBjY7X5lIP6WU7oOj+TAvVfR9s5oPvMZ+Kd/wjSQBXcqpYlGS0rq3JMvWwcsBL4IXKGUaur93zU5uK8gxHHrsOTKDnb8eWw8kJ34lT9QNvY0wbYQmvQBa0NjMO396xfPwO/zJr2WiYO2dG6Au5fNJlDjRxEL/u9eNntYbr7l0dYJwpDEKkFw2yM7mLZqA2ff/jTTVm3gtkd2WCYSwNqeXVN6GT+6eRY9p8sprTuNt7Ir60DWq9SwsXFOMrO3A486eM0tMq5CyBtWu18Bhw34+aL9rQkcWx8bVzFm8Zv88IP9/Pca63KVdMGn0YuW2twvJXUZkRdbp7V+ieLvoQhCnFS1zEwJvVdHy5PzKB3fRt3ybZRUdbm6r5NKkVy2L0jlSJx8+XWCMCSx8sUMJffU/7e73pPgDeioYu8PP8WecCwcGzH/PUZ98u1cLJmo1sPG3lkGs0qpq4FrgIBS6icJb40kFohmhYyrEPKJVUnZopl1bNh5qChr6nhnXDyQHX31DiovPBjPXlj1s9qplNqp00lJnXPybesEIVfY9WIZO/9OMHO3ait8dIajjitB2t+ewPFnZuOfdowx1zfiKXP/VXFaKSJBaG4QWycIzki1tTUVPlo7Mh/3WFPh446GXUmJFK3h6GPz0b2BbOBvN1NS05H12g2GU/LCLjPbDGwDrge2J7x+GliZy0XIuAoh15jt5k8b7eehrfuLovh5ZleA489cCMC4m16mfFJr0vtW/axWQWm60hERY3JFwWydIGRKul6sbFsIWjvC3LdiDquf2p12RndLw1w69k6kbNJxxlz/Bp6yzMRJhpOzNUAQWycIaTCztT6PwutRRDLUYmntCMcDWa3hTNMUSsefpGr2QSrPb6ZyVhCVYf1WZamX7p5okk7McEteWAazWusdwA6l1JNAu9Y6AqCU8gJluVqAjKsQ8oWxm9/QGOR7T+5iSxH6RbWGk388j+6WkZRPOU7d0jcsMxhmzmg2QalkM5xRKFsnCNlgJ+oG4FHKssTNCYYf1XTnlbYK6ocfupSug6MAGPu51zNW2fR5lCtnyywrDbJh5waxdYKQHjNbmytB0a7DIzn8y48BUDVnH6MXv5nV/RSw+/tXOVZaHqo46Zl9FvgUcKb32N/72mXZPlzGVQj5pqExSP1jOwhHCr8PEu3ycugXH6OnrZKquR8w6tO7bXferLIUEpQWjLzZOkHIFqvMq5GhzSaQhVjpsVEdYtib1HE/R5+YFw9kJ/3ds1mNi1j7uYsc2zWzTEn9YztA9zmZhRg/NoQQWycImG+S5Usos6XhYjr2TgDAN/Yko67MLpCFPr9xuPuJToLZcq21YfDQWp9RSlVk+2AZVyHkm4bGILc9siNrJy8Twm1+mv9PbEi1k0AW3KuRgvO5Z4Ij8mLrBCEXWPXPe5Vy3OeajkQn7rtP7Ex679S2aYT+NB6AybduzKhHNhEjo+zEXplmSkw2KAsxfmyIILZOGPZYtW5U+31pWy3cEOksIfhvn0L3xFSM65a/TsU5R7O+ryIzv3EoknY0D9CulLrYOFBKzQNysW0h4yqEvGFkZIsRyHYfHREPZP1nH2H0lekDWaVg5bomFq7Z5GhcBfQZ4sQxGLc/scvx9UI/8mXrBME1DY1BFq7ZxPRVG1i4ZhOLZtb1G+ng82RXWpyKscvf0BikIxyNv35q+1TaXjoP/3mHmfLtp/GVZx88u7FXbjIlMn7MEWLrhGGPVeuGUvSztXYunN170c4Sug9Xo3s8eEeEmHLb73ISyEKsmkY27mI4yTYRqDgAACAASURBVMzeCjyqlGom9t9sPLAi2wfLuAohn9y1fndRSou7mqs5+viHAaj+2F5qLvuzo+sMf9RNqZxdD50YuIzIi60ThHQk9qh6e3tfE8fnBNtCPL49yPJ5ATbvaaG5LUS138fprtwJ0CYKhiQqI7e9fA4n/ziDytkHGL14F8qr+dGNc1i5rilrMT2n9spO1d3sXCEtYuuEYYudJgDQT7W4xu/j2osm8Pj2oGkVjJkdjHT4OPzfC9E9Xib89YsEvraJkpGdGa3Xa6GHEBBbFydtMKu1fl0pNRMwctl7tda5y78LQh7IRkI9UzreGcfppil4fBHGf+UP+Ea3Z3QfJw5eQ2PQ0hAH20IsXLNJSo9dIrZOyDdWIkaJpW6G05LquoTCETbvaWHLqity2kKhoJ+daG4LoTXsv2cJABXnBxl91S6UR8erSHK1VZiYSbVqmzBTdfd5VVLPLAw/Bc9MEVsnDFdSS4udcKozzPypo5g/dZRtEBw/f/tUWp+/AICK8w6hfBG8FZl9vfw+L8vnBfoF0mLrkkkbzPb2UXwLmKq1/h9KqXOVUjO01r/N//IEwT3FKLNtfXEGp145G/+5Rxj/ly/h9WfnF9iVyhnG2AoFcWMroijOEVsn5BOr/qyyEo9jx6q5LRS/T67Ki83uMqHazyvfvSJ+POaaHShPb5Cd44KXxNJmu9FD0F+52Ow1sXPpyaetU0pNBn4FjCP2z+t+rfWPs72vIOQCs4q2dEQ1rHykiXtvnMOWVVcwfdUGU7upezzs/9HV8ePqS/9EzcffyXitXqVYPi/AD5bOjgfSYuvMcVJm/H+JzSO7tPc4CDwKiIMnDDjSBXq5RkcU+/851updNrGVMdc14vFF01yVHrtSOTtjnFiaaCClx44RWyfkDau2ADeO1cQaf0bOWDoSA8cb5gSofO0j8fem1G9AOVHXcIDPoywzqenaJqzUOsWuZUQ+bV0PcJvW+g2l1Ahgu1LqOa31Wzm4tyBkRaY99VrHKmi27TuBUv039XQUjjy8IH4c+NrvMy4rNohozePbg8yfOmrYqxWnw8mfqLO11vcAYQCtdQfS6yoMUPLh6FkR6fDFA1mAcV94JSeBbLryETtjbJU0EVEUR4itE/JGtt9Bwy7k67scCkf41rod1FzyHs83VHLB5a1c+k+b8HhiGYJcUFVeQqDGjyLW73X3stlJpc1miO3KC3mzdVrrQ1rrN3p/Pg28DYgXLgwI/D7zsMfJP/5QOMKDW/eTOHJWazi1fRo9p/xUnN/MmOsamfqdDa4DWavnJ84SF6xxEsx2K6X89PrJSqmzga68rkoQMqRQjk+kvZQj62LZi5JRZ5j6nQ0ob/b1d6kOnhlWWdtAjd9SEEBEURwhtk7IG1bfwdoKXz/lTAPDwTHsAoAnR4FlKjqqaH7oI7S/PZGRC/7MqY+8TEe4h3tXzCGao9piOy0Dq9+P2K68UBBbp5SaBswFXs31vQXBLXc07EpSaU8kEwvXebCW/fcsofX5WZzZOZmR8z6g8vxm1/cJ1Pi5d8Ucy4BWNvTS46TM+E7gGWCyUuohYiN1/iqfixKGLpnMRXVzjRvVy0wJH6ui9YUZ9LRWUrfsdSrOzY3MulPMxFASs7l27wm2iK0T8obV9/bO62YB9FMzDqTYuobGIPWP5mfcWDTs4cC/xHq9Ki84SM3H96IUtIXC3P7ELmoqfDkT1bPq509n14Sckndbp5SqAh4HbtVan0p57xbgFoApU6bk8rGCYMnDrx7IyX20hqOPXELnB3UAlE05Rs3HMuuN/WDNkvjPVuJSsqGXHstgVim1UGu9BXgRWAYsILZR/E2t9bECrU8YQjgR+MjmmobGIO05HFVhRmjfaFqenEfpuFOMv+kVSsedSn+RC5z8TqzEUBLPF6EA54itEwqB2fd20cy6pOP7Vsyx/K6ufmp3Ur9proh2ezlw71Xx4zFLdiS9HwpHKCvJUdNsCqk9sSC2K58UytYppXzEAtmHtNZPpL6vtb4fuB9g/vz5hZ+hJwxLcrERGOnwcfCnV8aPx67Yin/a8YzulVpJJxt6maO0xX9cpdR2rfU8pdQbWuuLTU8qMPPnz9fbtm0r9jKEDFm4ZpPprlOgxs+WVVeYXGF9jXGd4exkIrfuliOPfJjO98fiHdnB+C9spaQ6fxlgu9+J0J9eezU/i2vF1gkFxcxm+X1e0zaDhsYgt65ryvkaEjOyAFO/syHnz0iHAt5PyE4I9gx0W6eUUsAvgRNa61vTnS+2TsgniZV92Yay0W4vHe+M5/iGOXhHhAj87eaM28vsbL1s6MVwY+vsyozDSqn7gUlKqZ+kvqm1/rtMFygMTzIR+LB7LzGLmU/hJ61h/z9fDdFYdsJNIGs17Dod0iNRUMTWCQVn9VO7bdV7DfKl0K57kgPZmXc8Q6gIk0alhK6gFMLWLQS+COxSShk7MN/VWj+dg3sLgmNyleSInCnj8MMLUEoz/i9fomzSCXw1zn00v89DKBy1bCFJRFSLM8MumL0W+BSwmJiEuyBkhVU/q50zk64H1nD+8hX8Rbu9Mbn13kB28spn8JQ6N4xlJYpwFMIRiwoIzIUHxMErKGLrhIJg7Lrb2bRUW5aPjbpo2MOJjTFBKf/ZR/j1oz1s2xfg168mK3UWAimhKyh5t3Va65cQFXhhAJAL23ly61m0vfAhAKrm7EMpXAWyAG//49XpTxKywi6Yrddaf0cpNUVr/cuCrUgYsmTSD2B2TSr5EnzqOVVO8D8+CUDl7AOMvnonboVEDeW8ylIvHd0Raip8aA0nQ+F4z9zj24PSI1FcxNYJecdpliB1I8tuo87rUURcRp+JPV9jrn+Dyg8d4vYnPIDqF8jW+H205TFdW1vhkyxEYRFbJwwb7Gxnhc9jqWwM/bUEaj6+h+pL33W9hpsXmAucSTlxbrELZq9RSq0CPg/cU6D1CEOYRIEPQ7UzcYaWVclF4jWFovNgLUceugyA8ulHGXPNzqzu19Ed4V4LcZf5U0eJUSsuYuuEvOM0S5C6kWVXnaKj2rK6w4xwawXN9y8CwH/uYSo/dAiAkIVTV1lWwunOnrwoKCcqOQsFQ2ydMGyws522gWzYw+H/Xhg/Dnz9eUqqnE2uUirWmuZVir/4yGR+sHR2v3MyEUMV7LELZp8BWoEqpVSiZKsCtNZ6ZF5XJgxJjC9q6hd55bombl3XZNpLYPQQFELkCSDyxzkceTn2/HEff5fyS/dkfU8N/XrhDKRHouiIrRPyhpPSYrtrO7qtFdqt3bE+jAxE97EqDj1wefz1scvSV5k2t4W4acEUHty638lybalNqUqRTbuiILZOGDbUL57hSjhPR+H0G9OonBWk4rzD+Ba+Q+XMw66e+f7d6cXszDY2zfQSBOdYBrNa63qgXin1G631DQVckzDEMfsiG/v+djtUhcjSHt94AWeaYs/5yt+38VbtPoJtubl3sC1EQ2Own7iLZGWLi9g6IV9ksgFnODR3NOzioa37s1LgrPH7WH39LI4EvXz1uvGxFz1Rptb/ztH1Gti8p4WFZ49i63utRLSOZxweef0A3RZaAKkYWVixbcVFbJ0wnFg6N8Bd63c7mpEd+mA0R9ctiB1oldHc2MQ2NDvfLhMxVMEey+FxSqmZAFrrG5RSZSnvLcj3woShS7ovbGLpcSpL5wbYsuqKfvO5ckHbS+dypmkqABNWvMYfvC/nPGi+/YldNDQGgT5HN9grGW8E8sb7QmEQWyfki0wESJp7N72yDWQB2kJh/tcv3+TrX6gGoGzKMceBrEGwLcQb+0/yoxsv4r4VcxhfXc6DW/c7DmTB3qYLhUNsnTDUaWgMsnDNJqav2sDCNZs4f8II2/O1hkO/uiweyFacd4gR89/P6NlGN0Y6385K4FOEPzPHbhL6rxN+fiXlvX/Pw1qEYYKTL2ywLcS0VRuYtmoDc+56NinAa2gM0trurH/BCTqq2PfDJZzcch6e8m4mfeM5Sqe1EM6DrGeiU2dXaiIUFLF1Ql7IZKd9Yo2ftRv3Zh3IAoSPV3L0/y0Aj6Zu+euM/4tXM7pPKBzhrvW74w5aJhiVKUJREVsnDFnuaNjFynVNSUHklndPWJ4faS9l/z1L6D5UC8C4m16m7jNvuBb6TCWdb1e/eAZ+nzfpfRH+zA67nlll8bPZsSA4xolCcSJtoTD1j+7ou/7RHTkLNCMhHwd/cmX8eNI3ns94CLZTDAdXSk0GDGLrhLyQbrSYGW0d3bR3Z68LEHqvjqOPXgLA2BtfxT/9WFb3c1Kqlw4ROSk6YuuEnDMQ2qUaGoOuevvDrRV0vBNrvSipbWfiV/6AskvvOaDG7wPS+3aJLXPSYpYb7IJZbfGz2bEgOGbp3ADb9p3g4VcPOFbJDEd1fFcrV4Fs5/5RHHn4UgC8IzsIfHVz1jtyTvAoRUNjMKO5u0JeEFsn5AW3G3dATgLZjnfG0fLkfACqF76TdSCbK0TkpOiIrRNySjGUec2C59VP7XZ0bXfLCA79/OMATPzbTVScexjfqI6s1+TzKFZfH1Nnd+LbifBnbrELZicppX5CbLfO+JneY/kvIGRMQ2OQx7cHXY97yGXGsuPPY2l5/MMAlE9tYdznX8vZvdMR0Zrbn9jF8nkBmTE7MBBbJ+SFYowWa98znmO/mQfExu/UfPRPBXmuU6TypKiIrRNySqGVec2CZ6eKxYcfvJSu4Kj4sbeyC4/PiSa8PalTOMw2McW3yy92wWx9ws/bUt5LPRYEx2QiigK52zZODGQrzg9Sd51z6fZcEQpH2LynhbuXzZZSk+Ijtk7IG8YO/LRVG/L+rHBrRTyQrZx1kDHX7khzReGRypOiIrZOyCmFapfKZsRZajtZLm2jArasuiLpNSkjLjx2o3l+WciFCMOHYu7MH31iHqE/xfokxq7Yin/a8aKtpbktJKUmAwCxdYIbEkvcqv0+lIK2jvSzU71Kua5GcUP4RAUtDbFAdtRVOxlx0YG8PStTJDtRXMTWCbmmEO1SmYw4M4h0+Dj0i4/FjwNf+z0lIztd38fKflt9TvHtCkuW7c6C4J5i7MxrDfvvuzIeyAb+5/NFDWRBMhTDCaXUz5VSR5VSbxZ7LULmpI5caAuFae0I247WMkZF5DOQ7dg7nuafLUJHPEz48osDLpBVxErx7l42Wxw8QRhCmCnzAnR09+RMvTyTaj7d4+HAv36SntZK/GcfZczS7Uz9zgbXgewHa5bwwZol/OjGi0SBeAAjwaxQcKyMX76IdnnZf88SdFdMaW7yymcoGZG70T6ZIEZw2PEL4KpiL0LIjnROVeporcTgN1+0vjAjnpEdffVOSutO5+1ZmXLvijlsWXWFBLKCMMRYOjfA3ctmx5V8DVo7wqabe5ngtprv1GvT2f+jq4m2l3Ns/VxGL36TyhmHXT+3tqLvMxmfM1Djl825AYhdzywASqmFWust6V4TBDtS1ecunlLNy++dII/JCgB6TpcR/PdPxY+n/P2GrBWLFVBT4ct4VIUCls+TEpSBRj5tndb6RaXUtGzvIxQXJ05V4jmZ6gM45cTz53N6+3QARl25i/JJrXl7VjaIgvHAQvw6IZcsnRtg7ca9tIWSfaJcCUE5HXGmo7B/7ZL4sSoLE/jq5oyfe+d1s5KOpXR44JI2mAV+Clzs4DXXKKV+DlwLHNVaX5Dt/YSBiZn6XCGUPbtbqjj088vjx1O/Yy/AooiJTKXrbdNA4z/ExAQaGoOOlfQSr9+8p8XVNUJByJutE4YGTpyqar+PhWs20dxbipwvTr8xNSmQHTHX+YzFQiMKxgMOsXVCTslWCMpuVq2TEWepiYu65a9Tcc5RF58gmZsXTJHAdRBhGcwqpS4FLgPqlFLfSnhrJJCrGtFfAP8K/CpH9xOKhJ0hynV2wgg67TizK8Dxp+cAMPKSd6ldtKffOTUp4i2LZtaxeU9LWmfVqxTTV21gYo2f9q6ejD6DOHcDhwLZOifruAW4BWDKlCmFeqzggnROlc+jaO/u6ZehyDWdB2s58Vxs/3f0kiaqLsislM+jIEdju20RfYCBwUCxdcLQIxshqHSzapfODbBt3wkefvWAaaKh51Q5p16fHj+eUr8BlUUTpc+rmD91VPoThQGDXWa2FKjqPWdEwuungM/m4uFSejc0SGeICh24nfj9hzi97SwAxn/xJcomnjQ9ry0UprbCx70rYkGvU7U8w5hmk10W525AkXdb5wSt9f3A/QDz588vQIghuCV15EK130d3T4SOcGxWYURrotmPLbQl9G4dJ56fha/uFHVL38A3qt3V9Qq47OxRvPZBK+GIs39m2QS9og8woBgQtk4YemQzW/Wu9btNZ9Xeuq7JtvKtq7maw//9USAm6jni4n34ajsy/AR9hCNaWiMGGXajeV4AXlBK/UJrva+AaxIGGemGZjvtd3CKnU8V/Nnl9JyoAmD8X/6RsvGnbO/V2hGm/rEdVJWV5LW3LRFx7gYWYusENxiZgobGIKuf2h0PZCH/Wc5jv72I9t2TAJj0jefwVna7ut6rFD+68SK++8ROx4EsxD5XJgFtQOYrDijE1gn5ItPZqg2NwYz0RxJ9PeXrwVvRjfI6N1CVpV58Xo9lFY1Uzw0unPTMliml7gemJZ6vtb7C8oocIqV3A590vRKLZtbx4Nb89nOlNv4Hvv48JVXOFIvDEZ2xmJNbxLkb0OTN1imlHgY+AYxRSh0E7tRaP5DtfYXC09AY5HtP7qK9uzCbXwaJztuEL7/gOpCFvqqSxADcKW4C2doKX1xXQBiQFNWvE4YmmQgkJaq/O6HnVDnB//hk/HjExR8w6tO7Xd0DYvZs9fWzWLtxb97n5Ar5x0kw+yjwn8B/AYX9642U3g0G7HolGhqDPPxqfmceRrtKOHDf4vjx5JXP4Ckt+D9VWyp8Ht76x6uLvQzBnrzZOq31X+TyfkJxaGgMUv/YDldZzVxw8N8+SeRMOQDjbnqZ0rozGd1HESvpyzf5VqkXsqaofp0wvGloDHLX+t2ukwg9J/00P/Dx+HEm1SkGRvVgNuXRwsDBSTDbo7X+j7yvRBi0WImiBNtCrpV+3RI+UUnzzz4BgMffzaT/9VzWo3dyjd/n5X8vm13sZQjpEVsn2LJ2496CB7KtL8yIB7JOWifs0FCQKpSTeRbAErJGbJ1QFDLZEIx2e2n+2ScY94VX8J91lIoPHcpobmwqzW2hjMujhYGFk2B2vVLqfwJPAvG6Ta31iWwfLqV3gwsrxeJEY1CIkTsGoffHcPSRjwAw6qqdjLjIOgN87thKPjjeURBHNFUlWQzjoCFvtk4YGhS6jyr0bh2ntp4NQOBrv6dkZGdBn58pUqI34BFbJxQFtxuCbS+dy8kt5wFw4rlZjLvx9ZytxbBTMj928OMkmP3L3v+vT3hNA2dl+3ApvRs8OJFOXzo3wNm3P207ozVXnHptOq2bzwegdtFbtoEswJ+PtnPZ2aN469DppMyEUrkrifP7vNy9bLYYxcFL3mydMDTIRszO51GEXTSeHn18HqE/j6fivEOMvmYHnrLBUQ0qJXqDArF1QsEwxPLcjCzTEcX+f74mfuwbfTqngSwgdmoIkTaY1VpPT3eOMPRJp1hsUIhAdt/aqyEaGyI29rOv4T+7Je01Gnj53RPcu2JO0nqnr9qQ9XoUxOfUrt24l5XrmiQjOwgRWyeko37xjIx6Zm9eMIX5U0dx2yM7HNnIfT/sE7MbvWTHgNMAsMKrlGzoDQLE1gmFoqExSP2jO1xt5PWc9BP8zz4tsrGf34p/6vGcrqvG7xM7NYRIG8wqpSqAbwFTtNa3KKXOBWZorX+b99UJA4Z0isWFQOuYEIoRyI6/eQtlgTbn1xMTP0ksla72+1ztFqZS4/dRWVZCsC3EQ1v3x8cGpWauhYGP2DohHcZ32Y14SalX8fCrB3hw6348CjyAnZZwYiA76e+eLUggW1vhozMczXo8WVRrsXeDALF1QrZYtZ2lsnbjXseBrNYQDZXS+kJfxnTK32/IuQ6Kz6NYff2s3N5UKCoeB+f8X6AbuKz3OAj8IG8rEgYkVj1QxusNjUEWrtmUt+frHg9H132EaHtMCCXw9eddBbIGrR1hgm0hNLGAs727B58nM0vpUdDe3RMvO0w110bmWhg0iK0T0rJ0boDGf7gSr0MPqzui49nYqHYRyP6v5/D6cy+klLpqBZw/YQTlPifugD3SKztoEFsnZIzRdpboS93+xC4aGoP9znWa8OjcP4r99yzh4E8/Te0n9hD46iamfif7QNbnUVSWeuPHNX4faz93kWy6DTGc9MyerbVeoZT6CwCtdYdSA00vVsg3dvLlqf20uSbSXsrBf/00ABXnHWLMDY0oT27KmcMRTW2Fj4rSEprbQlT7fZzu6iGSspOoev+X6IhGNUTTlBvK4O1Bhdg6wTG5bqk4+fI58Z8nf3MjnvKenN7fQBOzZTrheMu7udH9kR60QYPYOiFjnLadNTQG8SiV1lYe+OmniHaUAeCtCuEd0ZmTbGxA2r2GDU6C2W6llJ/ev31KqbNJUL8Thgd28uUL12zKWyDbdXgkh3/5MQBKx7dR95k3cv6Mto4wjf9wZfy4oTHId5/YSUc4FroqBeUlHkJhu5yKOZKpGFSIrRNMy+egv+0LZCEGlUrby+dw5o2plE8/ythl21El7m2NU7wOnMtMMSpRxHkc8IitEzLGSduZkeSwszWJoxUBqi/9EzUffyfr9YkY5/DDSTB7J/AMMFkp9RCwEPirfC5KGJhYyZfnK/vY+uJ5nHrlXABGzHufUZ96Ky/PMQs4dUIxntZkFMiKquegQ2zdMMdMtT11VrZRUrd8XoDHtwez2sjTGvbfEystrrzgIKOv3pmzqhMz/D5v1huPdv21ohUwaBBbJ2RMTYXPVDMg0Zda/dRuW1vTfayKQw9cHj+e9M2NeDOoRqnx+7j2ogls3tMic2KHMU7UjJ9TSr0BLCBWnfRNrfWxvK9MKDqJGYpqm9mpVoYtG1r/MINTr8bK7mo+8TbVH3kvp/c3UPQvjTMroXFzP42UtwxGxNYJTr/7oXCEzXtaWD4vkCT85obEQBZg9FX5DWQNm+R0HrhZ0Or3ebnzuphwitV9zMoNhYGF2DohUxoag5zp7B90+rwq7ks1NAYthTWjXSUc+tVCxn1+K+XTj1J10QEqZxzOeD2VZSX8YOnsjK8XhgZOMrMAAcDbe/7HlVJorZ/I37KEYpOaoUg0TEa24vYndrJ83iRTw2aGR8X6TNNx8tWz4oHsmOvfoPJDh9x/AIeYiZ64zTRLADukEFs3jHHz3W9uC7F5T0tmgWwU9q/tC2Sn1D+d10C2xu9jy6q+URfpNA58HpUUtJplPJbODTB91QbTzy9aAYMCsXWCY4zkhtVGWGVpLJxYuGaT5Tknfv8hTm+LjTI+tfWcnMyNzVWrhzC4cTKa5+fAhcBu+vRvNCBGbwjjJEMRCkd5cOt+x/dMF8gmZSpUlMBXN1MystPx/TMhFI7Gy+Ig9rmtlllb4eNUqKdfD4gRyCY6i8LgQ2ydMNFFH2y135dR0KZ1aiC7AZW9kLAtJxM2I41gNLV8OpGq8pKkoNUKq9+XaAUMbMTWCW5wIvLZFgpbnhMNezjwL1fHj8umHGPUp3fnZG2qd32SRBjeOMnMLtBan5/3lQgDikLvrEe7vBy476r48eSVG/H48ieCkkgoHGH1U7vp6rGes2iU1620cACDbSEWrtkkmdnBjdi6YU794hmsXNfkKNuqlPsWC62h9fd9/8SMGYqJ6sL5IDW4XDo3YJtlaXP4mexU7oUBjdg6wTFOkhtepUzPCbdW0Hz/ovjx+Ju3ZDRW0Qrduz7xu4Y3ToLZV5RS52ut86O+IwxI3GQosiVRsViVhpl867O2suz5cPys+jsguXzYzgEU8ZNBj9g6gXKfM+VytzoBOqI48NNPg4aaj+9h5IJ343Yun4EsQHtXT3wGZKIOghVOM6t2KvfCgEZs3TDHTLXd6nvrJLnRr2JNg+4u4fgzff2sxuZdrpG2BsFJMPsrYobvMDHpdgVorfWFeV2ZUFTMdtzd4LQ/NrRvNEf/3wIASie0MuFLL6e9Jt+OXyIKksqH0/1eRPxkUCO2bhjTV0qX+4qQxMqT8rOOUn3puzl/hh1toTD1j+4AFZutbbzmIXl2NrjPrFqp3AsDGrF1wxgz1Xa7jXi3yY2Od8fS8tiHY9feshnljeakZcwqkSFtDYKTYPYB4IvALvr/3ROGKIk77plkaC89axQvv3cCu3GGoffqOProJQCUT2th3IrXMlprtvh9Xsp9nrRS8+Ds9yK7hIMWsXXDmGxUzO2IdJZw8MeL48fjPpe96EkmhE12F6PExKEqy0okszq8EFs3jDGzdXYb8W6SG/t+2KcH4BtzipKajqyysV6liGrNxBo/i2bW9RuHJm0NAjgLZlu01k/lfSXCgMPYcbdTp7Niy7snbN8/tuEi2t+cBEDdsm1UnHsk43VCrBQ4k6DbKCGG/gqfVkYy3e9FdgkHLWLrhikNjcG09iOT9oZoV3IgO/U7G2zPd1rRkktOhsI03XllYR8qFBuxdcMYqw335raQafkxQFmJx35u7JGRHPrFx+LHuRqpGNWa99f0Bcjzp46StgahH06C2Ual1K+B9cTKUQBEwn0YkW3JcSrB/1xEz8kKAAJf+33W5SfG2Ak3QXeqY5pJ75eInww5xNYNQ4ySu3QYquUd3T2O+mWjYQ8HftwXJKYGsmbBcaEDWZDNt2GK2LphjFXZcLXf16/8uP6xHaDNKzsMug5Vc/hXH40fT175DJ7S3PiLZtVxErwKqTgJZv3EjF3i1q1IuA8w3DTzu2Xp3ADb9p1wNYbHDN3jYf+P+uTZJ31zI95yZzNq7TBKWOoXz6D+sR3xnrBEFp49ig+Ohwi2hZKcyNReETe/MxE/GXKIrRuGuCkvkT66UwAAIABJREFUdrpZFu32cvzpi1AlEUZc/AG1n9gbf+/mBVP4wdLZSTbbo1Q/AZVc4/OopJ5ZcLf5ls+/MULBEVs3jFk0s46Htu5P2kzz+7woRT9baOZPGURCPo4++mHqlr5B2aQTjJj3PpUzD2e0JgWU+7ySHBAywkkw+19a6y2JLyilFuZpPUIGuG3mz4TNe1qyuj7SUcrBn346fjyl/mmUx955c1rW19oRZuGaTTS3haip8NEVjtDRK+JS4/dx7UUT2Lynpddp7J/9yEa0SXYJhxRi64Yhue5x7zlVTvA/PgnAmBu293PuDFuaaDumr7IvP84Er0cxoqyEk6FwUrlgJgFpIf7GCAVFbN0wpaExyOPbg0m+lQKWzwvwkIuExbENF9L+5mQAOt4Zz/ibXslqXTctmCIlxELGOAlmfwpc7OA1oUi4bebPhGwcvvDxSpr/6xPx49Ryuxq/j/bunqQdQDf9aYq+jElrRxi/z8vNC6aweU8LwbZQ0g6kVfJDRJsExNYNOxoagznNina3VHHo55cD4D/3sGmWwszW5GMUWiSqqSwr6dcPm8nfhEL8jREKiti6YYZRWWFmZzTw2x2HqPb7bMcUQkwH4MB9fToAFecHGTn/g6zWZlSrGBgB7dqNsYoWsTFCOiyDWaXUpcBlQJ1S6lsJb40EvPlemOAcu2b+XOHEyJnRvnc8xxrmAVB14X5GX53cm1bj97H6+llAcsYg095XiDlZSQGsg/tI39jwRWzd4CIX5a4NjUFWP7U7I5tmRdK87JIIY5dtNz9RxZ6fuGazsr+E09HEVD3Ngm470ahc/Q0oxN8YIf+IrRuepFZWmNEWCpNOdLj7WBWHHrg8fjzhr1+kdOzprNYWqPHHA1mpABEyxS4zWwpU9Z4zIuH1U8Bn87kowR1WwV+uArSGxiDt3e57W9teOpeTW84DYNxNL1M+qbX/OaEwtz+xi7uXzY7Pc21oDHLbIzscZUusznCbZ5G+jGGN2LpBQi6cHSeOnVvCbf54IOut6mTS139vea7WJAlO2QXVgYRgfZpFKbLW1mruufobkO+/MULBEFs3DHGqC2DpT+mY5smx3/Qm7j1Rptb/Lut1pfbESgWIkCmWwazW+gXgBaXUL7TW+wq4JsEl+VbVXbtxr60IgBmHH1pA18HRgHUga5BorAxHM99iKInU+H1iKIcxYusGD7lwdnI9TzbaWULLE/MBqLpoP6OvSq+MHApHuGv9bjrDUcu1GCrtEAvArVovjOy02d+ARTPr4noC2fSgiXL70EBs3fAkmwqK9j3jOfabeaiSCOO/uAVvRTfeqq70F6YhYGKPpAJEyBQnPbMdSqm1wCyg3HhRa31F3lYluCLfqrpuDInWsP+evplgga9uoqQ6/fXGM3LtaDrh2osmFPR5woBFbN0AJxfOTi4do67DIzny0GV4R4YYu2Ir/mnHHV+bbrxPYrZ27ca9llmTE+1d3LquCegrOQ7U+Fk0s47HtwdzUrInyu1DjrzaOqXUVcCPiZUu/5fWek0u7iu4J1NdgFRfrnR8G7660/HpEdkQqPHHN+oSkQoQIVOcBLMPAeuAa4GvAn8JZCdtK+ScfKnqNjQGHZ8b7fZy4N6r4sduRu8YxiobR1MR6+093dVDxMXAxmyVmoUhg9i6AU4unJ1ciS0ZGQuA0Ve+SflU54GsW+zsYqhXuR1igazPq6hfPCPnJXui3D6kyJutU0p5gX8DPg0cBF5XSj2ltX4rF/cXnJNppVvnwVqOPHRZ/HjU4l2MmON+NKPf50myTwaLZtaZni8VIEKmeBycM1pr/QAQ1lq/oLX+MiCZimFAQ2OQ2x7d4aj/tOekP3n0zt9vcDVDtqO7h4bGYMY7cIEaP++vWUJlWYmrQBakhEWII7ZugFO/eAZ+X7JOjVtnp37xjNjM1Sw482YgHshWf2yv60DW7/NS4/fZnlNb0fe+G7sYjuh4BtUMsXcC+bV1lwB/1lq/p7XuBv4fcEOO7i244K71u11XunUeGJUUyE657XcZBbKBGj+jKstM37NKICydG+DuZbMJ1PhRvfe4e9ls2UQT0uIkM2vUOh1SSi0BmoFRuXi4lKIMTOwk3M1I3MWr/eTujGTaWztiQlDL5wWSSuMAfB5FVXmJZVmeok/AKRNHTUpYhF7yZuuE3JCzctcsYtmOP43j+IY5AFRecICay/7s6vraCh93XhdTcLcTolpyYV/7g1nGwg47VXixdwL5tXUB4EDC8UHgIzm6t+CQhsZg2laGRCJnyji+8QJqLt9L6YRWRs7/gMrzmzN+fv3iGazsbX9Ixc5PkwoQIROcBLM/UEpVA7cRm0M2EliZ7YOlFGVg4lbp83TTZE5svBCA6sveyWreWCgcYfOeFu5eNtvUWZ2+aoNplljT5+S6LSGUEhYhgbzYOpCNu1ySrbOTiaCdQfh4ZVzsacS89xn1Ked/rip8Hv73sgv7rd1KuX3DzkPxkRVmQbydnbMThRJ7J5BHW+cEpdQtwC0AU6ZMKdRjhxV3rd/t+NyjT8wj9KfxAFRddIDxX3w5q97Y2oqYqKZVUkQ21IRckzaY1Vr/tvfHk8CiHD47XooCoJQySlEkmC0ibgSYDv7bFUTOxIzSmBu2UznzcNbPb24LWTqrVg5cIMEw1i+eERdDSYeZmp4wfMmXrZONu4FFpmW23ceqOLZ+DngjjFmyg8oPHXJ1vVnv2NK5AcvsRWtHOGkebapdnPv9Zy0zL4l2TUSbhFTy6NcBBIHJCceTel9LfP79wP0A8+fPL9zogmHCHQ27HGVlIyEfB39yZfx4xIffo+Kco1k92+tR8coT2VATCkXanlml1HlKqd8rpd7sPb5QKXVHDp5tVooif2WLjFNHr/mBj8cD2XGf35qTQBbsd+yc9MstnRugwuekFVwQksmjrZMesgFEJlmBM7sDHHrgcqLtZUz8mxddB7IQqyBZu3Gvq/WYnW9w53WzMGv9vXnBlKQAeMuqK3h/zRK2rLpCAlkByKutA3gdOFcpNV0pVQp8HngqR/cW0nDTz17hwa3pe1y7DlUnBbITv/IHRl3xtuPn3LdiDpWl3n6vJ3pfRg9soj5AufhnQh5w8q/qZ8Dt9PZYaK13EjNOBUEpdYtSaptSaltLy/AVFm1oDLJwzSamr9rAwjWbXKkMuyGdo6ejiqNPzCN8LDZvfeLfbsqZiqciWeUu9TMD/cQBls+LlbIY59zRsItOkwyIGcaoinz9LoVBR75snWzcDSDMNsXsOP7sBRz/baxH9sKb9uKr7cj42WabhVbKnlbnJ+JNiWZ9XsX8qdLmLaQlb36d1roH+AawEXgbeERr7bzmVciYOxp2seXdE7bn6Ghs8oTRLuGt7GTqdzbgG93u+DmBGj9L5waoqSjt9144qvttwnX19Plkhj6K+F1CLnHSM1uhtX5NJRfQO5eptSZtKQpIOQr072M1mxdoiDZlW062aGad5a5epLOEgz9eDEDZlGOMu/E1lDd3/0k08Pj2YNwZM/vMdy+bHZ9PZvZ7cbIjmUg2oyqEIUe+bJ0jpI+sMBjf9ZXrmtIqtR/77UW0754EwNnL3uYfvjqGu9YfcSWskki1iYKx3WiwdFnb1N5fQ8lY7JmQhrzaOq3108DTubqfYE9DY5DVT+1Omk1txpk3AxzfMIeyyccZc8Mb+Ea1463odvUsJ4Kbia/nekSYIJjhJJg9ppQ6m1isgVLqs4D7Gqv+xEtRiAWxnwe+kIP7DjnSGQMnwa4ViUFwTYWPM53mf8+6W6o49PPLAfBWdzDu86/mZHh2KsbnMn42ey+xF8yt7LwZMqpC6CVftk427gYQhs1L9ws++epZ8UB2wg07+PwXPdQ/tiNj8SjA1Gba2R+73jIZvSNkQb5snZAH7JIVTkQ7tYb99yyJH3vKw5RPas1oLU4ENxM34cROCYXASTD7dWIO1kylVBB4H7gp2wdrrXuUUkYpihf4uZSimJPOGGS685VqBK2yDadem07r5vMBqJx1kDHX7nD9GdzQ3BaydDQTDadbYxiQURWCPXmxdcjG3YDBqVp758Fa2v7wIQDGfvY1amYe58GtztoX7DCzsVYOYY3fZ2u/ZfSOkAX5snWCA9xU0tklKwBWPtKEiRh6nNAHozm6bkH8ePS1jVTNynzkTqrgZjqBJ7FTQiGwDWZ7VTj/p9b6U0qpSsCjtT6dq4dLKYoz0hmDTHe+nGQ2T75yNm0vzgSgeuE71Hz0T06WnBUTa/wcPtlpOq7Cm5DacDuGp6O7B59HEY723VeU9QTIr62TjbuBgxObd7pxCie3nEtZ4ARjlr5BSVUXGVYV98OsmMXKIVx9/Szbe4lSqJAJ+fbrBHvcVtJZJStWP7Wb9u4e+0D2vTqOPnpJ/HjKt5/OqjXMTHDTWKNVYC52SigElsGsUqqk1wn7KIDW2nl3uJBT0hmDTHe+0gWCp7ZPiweyoxbvZMScA7bn5wLjc1mN10kMcM1+Lz6vIhLVRE3sdWtHGJ9XUeP3cTIUllEVAlAYWycbdwODdBt8h361kO5DNQBM+PIfXfeTpUMD01dtSLI9mY7QkdE7glvErys+bivprGyWXX9sz6lyTr5yDpXnBykd38aI+R9QNSszwSWPipUpW9mXdHO/xU4JhcAuM/sacDHQqJR6CngUiBs+rfUTeV6b0Es6Y7BoZh0Pbd2fVJprtvNllLYE20KmGQIDreHgj68k2hUTK5l4y+asFDydkjj31WrYdmKJi9XvxXjN7PpwRFNZVkLTnVf2e08YtoitGybYVXMc+OmniHaUxc77H3/IeSBroOmfjUnnEFqR6XXCsEVsXZFxW0lX7felFXZK5PCvF9B1YDQAI+bsZ/yXtqTVNykr8fC5+ZN4fHuwX9Lk7mWzs7YxYqeEfOOkZ7YcOA5cQezvsOr9fzF6BcTKGDQ0Bnl8ezApkFXA8nnJ56eWtlgVmkTDHg78y9Xx48krn8FTmr3IUjpuXjCFHyydHT+2UlVOHWNh9XtZOjfA9FUbTD+nCA8IFoitGyJY9aTVL55B/aM7kloNAA785NNEQ7ExExP+6o/4RuU/YSWKnkIREVtXJNxW0jkV2oycKePgv30qflxz+R5Kx51ydG1XTzSeEPEqRUTrpOSCIAx07ILZsUqpbwFv0mfsDERpc4BgVrKi6T/uwUmvWPhYFc0PXB4/nvL3G/KiWGxG6nqtxlXYjbFIRYQHBIeIrRtCmPWkrVzXxK3rmuKOWiInXz2rL5D9mxcoHXOmYGuVjTWhwIitKzJue0idjAFLFXkKfHUTJdXubIvxHz+idXw9EsgKgwW7YNYLVGGuWSFGb4DgtGQlndPUFazh8IMLAfCNPs3Er7yYmwU6xOl63Th/IjwgOERs3RDCaoMP6BfItu8Zz8mXzwVg0tefx1vVVYglxpGNNaHAiK0rMkvnBti27wQPv3qAiNZ4lepXSWfQ0BiMp8zN0FFFtNtLy5PzAfCNOc3Ev8ned0sckehGdVn6YoViYRfMHtJaf79gKxEywmn20a5XLHFXzzf2JBP/+qXcL5RYIFlW4jHt/3C6XjfOnwgPCA4RWzeEcLrhdei/L6O7uZaK8w4x+tomPL7sR++4QTbWhCIgtq7IGK1hxsZaRGse3x5k/tRRQJ+/UlPho60jbBnInt4xmRPPXMiIee9Td/0blE5sw+vPkew6fX39TlSX3So0C0KusQtmC1RgKrghdfdr0cw606b9VCfJqlfsxPPnc3r7dADGXNdI5fmZzx9L5eYFU9i8p6WfOJOTbGk2WVXZIRRcIrZukODku+1kZNe+Hy6J/5zPQLa2wseZzp5+dre2wsed180SuyQUGrF1RcZu1E5XTzT+nlV5sY7C/rV99kuHvfjPdt5+5QanqstuFZoFIdfYBbOfLNgqBEeY7X49vj3I8nmBfkGjqQFJ+TOWOIYikx4LOypLvUmCTqmkc0gzzarKDqGQAWLrBgF2vbCBFJGn1I2wRBID2cnf3Ji3QFYBjf9wpWyuCQMJsXVFJpNROwYdfxpHyxPz48d1y7ZRce6RnK3NCWbrz0VbmCBkg2Uwq7U+UciFCOmx2v3avKeFLauusL129VO7CUdi2QEdVexfe038PTe9Yj6PorTEQ3u3vZhUe3eEhsagpdKwE2cuEzl32SEU3CK2bnBg1wtrtml11/rd/bIb/QLZ8p68rbemwsfCNZviQey9K+aIDRKKiti64uOkcsSMjr3jaWmYFz+eUr8B5cluLQq4d8Uc6h/bEfcP02HW6iVim0KxyfKrIBQSq12uYFuI6as2sHDNJhoa+w/GbmgMxnf9op0lSYHslNt+5ziQVcCKSyaz+/tXcd+KOUkzX80wBAQKiewQCsLQJN13OFG0BKAz3Jdx1RraXj4nfjx55TN5DWR9XsWZzh6CbaGkubJm9lkQhOFD/eIZ+H3epNf8Pi+1FT7T88OtFbS9dC46qvDVnWL0kiamfif7QBZiG25rN+51HMhatXpZfSbRBBAKhZM5s8IAwW5HL9FhguSSWsPBC7dW0Hz/ovjrbkfvaOChV/czf+qoeNZ0zl3PWpbHFCOAlB1CQRiaOMloGDYnMYurNZzYeAGh9+uovOAAo6/ahfLmXrjVqxRRrZlY46e9q6efXZQKEUEQrFqo4P9v797jo6ruvY9/FslAJoCE+2UEipeiIkoqWhWtrXqE4oV4O7S17bG1RY/t461SoVqF2haUp2Jb2yrPYy/Pq6hoVY4WPQJCj4pSRQMCgnduATECwQJBclnPHzuTTCazZ2bPdc/k+369eDlJZvZexvLr+u31W78FNy5Y3a7h0/Y/nklD7WEAhK5dyuArX8xIEhu272BjwqN/IuOa2xYJNduUfFMyW0AS7QWD2BOm7XX11H/Qn48fOwWA8pE76F/1RkpjsBam/m0N4ASweMlwPhJIHccjUpymjh/ZYbIXLRxzwkmttbDlbqe0OHjUTvpOfDMrZ2cHAyXMumR0a9wdMW1RzPepQkSk+CXaJ++2heqGBasBaNwbpOb+tq1jfca/SWnPjhV08Y7tSUZDs4159nZYdFyLJ5VtYSKZojLjAlJVGWLWJaMJVQTjtiTsMGFa9/nWRHbg11amnMiGNTTZ1tXeujhP9fKRQEb/jkIVwaSDsYj4V1VlKO7ELfKh1ZCKoNP18+62PbL9L16VciIbqghSHoj9f5ddDB1ijNuDPFWIiBS3cKO6VLYYhCqC7H9rcLtENvSDpfQcszXme+dOHkNFMHZ5crKarO1QIgxQEQxo7iQFQyuzBSby6de42csSltReeilsWnQ0AAMuf5Wy4bsyMo5wwuxW+lcRDOQtCOoJoUhxCrnEmxJj2k28bjp3JJed3BYDvG6piGSAFdPOZszMxRxo6Nj5+LCyjrFOFSIinc/C6hp+9OiaDiudyWwxaGqCk/oN4eW/OzGi29BdDPrGSsB5YBZ5ulc4loTnOuGV4FQaS4U7watEWAqZktkCFm/CZC10iVhIGPK9fxDouz9j9w4nzG5jmHHRqIzdS0QE3ONNZCLb1ETGElloi3V7XXoDxPq+9pCJdC7hFVm3kt14WwweeACuuQaOvBj6XVhN8IhaunRra1DXbGktBw7FKVuu/NnihHtgI0UnxSKFSslsAXObMH31uFC7RNbL0TvJCJSY1hUGTdpEJJPi7TeLjDc1dfWUGNOui/EFo0NUfWsf0IOSHvWErl2WViJrgK8c0x9wOn/Gmii6lQ5rgijSecQ6OixSrDjxt1druPyLbTGidkcpvc/aEfPz4XLgePOrOy4c5XrMTjBQwqUnhVi+sVZzNSk6SmYLhNsEL3rCdMOfNnDZGf2AbgAMu/mZjHfunHzy0KSaGYiIeBFe3QhPCqM7tEeW0xloXQWpqavnlgXrufgLIaAHvc9dz2EnbUp7PBZ4/HVnr9u+gx2P8ol8sCcinVe8lddYWwxu/MVu7r2tbd40YPJKgp+Lvw0sUblyrId9bqu5IsVEyWwBSDTBC/vePe/y4I+OBaDizLfpdfp7WRnP8o21WbmuiHRusVY3IldeI+Ng5CO6poOlvPPr8wDoOqguI4ls5P0f/ufWmOWD3buWaoIoInGPDouMYVWVIebPh3tv69P6cy9bIRJ1RNfignRGSmYLQLwJXjhoPfwwPPgjp9FTz5M+zFoiCzpeQkSywy22bK+rdy3ja9rflW33/Vvr18de8yqZDlFu++Dc9tGGJTqiQ0SKw1eO6c9fV25x/XlNXT0/+N17XLVtN4eVlBHoO4hep79H9+O2e7qPOqKLdKRktgDEm+ABnHQSvNFy2k7fiWvoMXpbVsdTUZ5eK3gRkVjcVjeGVARjxsGm+kC7RHb4LYviJrLdu5aw/5D7vjY3bmcxxptYJltRIyKFL1HF2rbfnUPTvjIAut/w3wwe9Q4mweGY0efIqiO6SGw6Z7YAxDuz8Mwz2xLZQZe/lvVEFsBlkUJEJC1Tx4/scOZheAIXHQebD5Ww4y9ntHxlGX7LooTXTyWRDQZK+PoXh7qOy02ikmkRKR5uiw4Nu7qz+a7zWxPZfhdW06VbU8JENlBiuOLUYYQqghicI3R07qtIbFqZLQCxjqMoKy3h02crWfeS8/WYG1Zy3HGWFe/Hvkb0E750JCqtExFJRaLu6OE42LS/K58sOhHbUEKf8WvpOca9vC8dvcsD3HHhKKoqQ4wd3sdTyXCiihoRKR6xqko+fW0Ee5Yd1/r14dctpiSYeP4UGXeyRVsgpJgomS0A0RO8geXd+ecdXwYgMGAvg775MnsCzbyxpYRxR/Zh5Qd7aLKWEmP4+heH8vOq0R26gKaT2GrPhohki1sDk/D3ZvxlG2vu+yIA/atep3zkR1kbS3lEgyevjVXilUyLSHGZOn4kNyxYDTjVaw21PVsT2eDRHzHgktcTXmPT7POzOsYwbYGQYqNktkCEJ1Lvvw9HHeV8z3RtZPCVL7V2watvaGLTrnrenzXR9fMLq2uY+fT6uAdr9y4PcP4Jg1n05o4O79OeDRHJl8ObQqz5tTPZ6n78tqwmspDeKmqsihrFT5HiVFUZYubT69n8Yog9S0cx8Gsr6TPhTbofu50uXZsSLiIYnCQzF8mk2xaIGU+tVzIrBUl7ZgvIgw+2JbLBI3cy7MbnOrRzjzf5Cj+Ni5fIAnxa75ynWH37edw7eYz2bIhI3q1YASef7Lwu6VlPv/PXZP2e6ayiVlWGmHXJaMVPkU7g4EFYfcd57Fk6CoBDHx9GzxO30r073Dt5DHNb5lJuLORsP73bPLGuvoGF1TU5GYNIJuVlZdYYczkwAzgWOMVauyqT1y/GvQC//S1cd53z+uab4eW+66mp6/i+eJMvt6MtojVZy19XbuHJN2o4cKiJIRVB5k4eU/C/QxEpTNu3wxktvZ4C/T5lyFUvxnyfgdaYv2rz7rhHZSSSiVVUnfkoUvwWL4bx49u+Pv6aVezrtbPD/DP8z89Ni92szkslSDrz3Hhn4kYe+ShSKPJVZrwOuAR4INMXLsa9AA880JbI3n03TJ0KC6u9l7B5LZkLd/4sht+hiBSmHTtg0iTn9a23wvIeq2I+yAtVBFkx7WzA+f+BBa9tjXvdeGV/JcZoFVVE2omVQC55spzf39kbgMOO2MOfHzvAxV8YG/dzFcEAdTEaaSZbCZLuPDdyf280NaiTQpSXZNZauwHARNfIZkC84xAKcWJyxBHw4YfO67Vr4fjjndeJun7GEu9pXCKF/DsUkcIROfHrsXcg6+4fy5FHwgsvwJlnxn6QB3DgUGNridyPHl0T81zYsIpggBkXjeLGBatjJrTN1irWiUir6ARy87Zmfjh3M/veHky3Yc30Pmsj3YbU8ZMnSzCmbY4WK/EMlBgCXQwNzW3Rx0slSLrz3PD+3lhbztSgTgqR7xtAGWOmAFMAhg0blvD9fj8OIdnSkEOHoFu3tq/37oVl79dw9ez2nw2vRCRzv4ryQIcA6qWzsV9+hyJSnCInfvvWHs6mZ04E4Js3fcKZZ/YDIroaP7W+3erGngMNTH1sDRjiJrLg7G0DWju8R9OETkQiRSaQtU+N4cCGECW9DjDkqv+hV2lzu0ackUllrMSzocnSuzxAedfSlMqEMzHPvePCUWpQJ0Uja8msMWYpMCjGj2611v5Xstex1s4D5gGMHTs2Yd7l5+MQki0N2bQJRoxo+1xDA/x9bcfP3rhgNTcsWE2oJRBC+5XarxzTn8dfr2n9zJ4DDQRKDBXBAHvrGzzvLasoD2Ti1yAieZSrngKp3Cc88fvXG8PZvcQpQ+l1+rss+XQrM2h7cFdVGWLOc293KNWLfFDnJrIJizoOi0gyttfV07g3SM39bXFo4OWv0iXQHPO9sV5HqjvQQPXt56U0lkzMc1Op7hPxq6wls9bac7N17XhSnZzkYoKXTGnI6tVQWen8bNAgZ7+Y22fD07aaunqm/m0N2LbJXE1dPfNXbumw6trQZOnerbR1ZQKcoPbE69s40NAxKLe7XzqH04p0Qn5rdperngKp3md7XT0H3h3Ymsj2HPsBFWe+Q00djJi2qN2/YyqVIl0M7P+ssd21Zl0yWhM6EYkr8OHn2PToqJavLENv+u+YiSy0TyqzscCSqYdwalAnxaLojuZJ5TiE8MSrpq4eS9vEK9MtyhOVhixfHjuRjffZsIYm22FVwi33jHWt+gSJLMDeGA0LRCSucLO7FzJ94VTiVrwHapmU6n16HexH7RNO85Rep71Ln3M2tP4s+t/R62SwPNCFEmOoq29ovdaNC1bz2KrUOx6LSPFYWF3DuNnLGDFtEeNmL2NhdQ3WwrJl8G5LItvnvLUMv+UZugSaCXQxBEra936JTiqnjh9JMFAS9z1e6dgvkfbydTTPxcBvgf7AImPMamvt+AQfS5rXp025ahoV7wnd7bfDnXc6X99/P1x9dXKfTXUcyY4t0edExJ3fmt3lqqdAKvf6JZTGAAAaFUlEQVSproa6RV+gtGc9fS9YTdmw3THfF/53jLU6EUswUNK6+hod4yyw4v22+6hzu0jnFKua5Lp7apj6Rn+eWdiVe++FQSdv5zcv1LK9ru0IMIhfqputcl6tqoq0yVc34yeBJ/Nx71hyNcFzKw2pf/p07nzZ+frdd+Goo5L7bDKiGzy5PRFMdH3tIxPxl1TiVqZL3tzKnL3eZ+5cuOkmgADzFu3iz2/Wxzx+J2x7XX27SWK8B3GzLhkNkPTDQHVuFykeyW7FiHw42NzQha1zJ4A1mC7N7NoF118PMITJpw/p8NlEsUKJp0h2FV2ZcSrcJliZXomMLg0ZcliQjT+fQPXLZYDT+ClWIhv9WXCS1EjhVu+RgoESrjh1WFKlKNFj610eoCIYUAmLSALGmKXGmHUx/kzyeJ0pxphVxphVtbW1Cd+fStzKZMlbvDLnWPcBZ79qdBn0N74RTmTh+efh+xMHuX4+LPzvWFUZYsW0s9s1dYrUuzzAqs27udHlTEU36twuUvi8bMUI/50/8O4Att7zVbDOfGrIlH9w6qk5HLSIeOb7o3lyIZcdLcNP6Pbtg549276/bx90757cZyH200bwVsoS6xqJjvoRkfYy1ezOa+f2VOJWJkve4pU5h+NI9FmGdfUN7cp4L7oInn7a+dlDD8HZZ7tfO96/49TxI5n6tzU0NLX/te050JBUp/Zo2lIhUvi8bMUY3CvIxmUD2LPUaT5Xfsx2+k+qdn1QJiL+oWSW3Lco37IFhg9v+7qpCbp4XCN3K1tJdsy56moqItmRatzKVMlbojLn8PE5kckstE0m33s+1JrILlwIkyZ1vEYs4SqR6IdxpV1Mh2Q2FdpSIVIckt2KsXUrTD5qFD/9azPdhu6i99lv0W3Qp4oFIgVCyWyLXO1p2LwZXn3VeX3OObB0adZvGXMFdubT63PS9EqkM/Nbs7tMSmZfrNtk8oN1ZUyd77x+7TUYOza5a4cqgq2JbPTDuFSEWs7jXr6xVkfziBSZXsFAh7OooS1GWQsXXADPPAMnnTSQ//N/a/j1P9awY29uYkGuzvwWKXZKZnPowQfhuuucY3f274fy8uzfM9akL1Y5Xpj2iolkjt+a3WVSMmXOsZLSPf84hk//eSTnnAMPPwz9+zvfj5zYlQU6lqpEXjteGXIyDDB38hhNHEWK1MLqGvYfauzw/UAXw9TxI3nnHRgZsei6YAEceWSIyaflJiaoOk4kc5TM5sjVV8O8ec7rp5/OXiIb/aRv/2eNHSZ98UrxtFdMRJKRTJlzdMK79Tfn0lzfDYD/uG07VQ9uZHtdPRXlAfYdbGw9Kzv63GsDXHpS2yp0Og/dDHDFqcM0YRQpYnOeezvmXKfRWq6aWsfu552//xUVsHMndO2a+/GpOk4kM5TM5sBxx8GGDc7r6mrnay+SLUXJROmd9oeIFL5cla8lKnOOTHhfnt7WXO6Bv3/EL59/szVWRe+rjWaB5RvbOjy7lSH3Lg9Q3rWUmrr6DseSAVQEA8y4aJQmiyJFzu2B174Ng9j9/CgABl/4Jr+f2ZeuXXMfD3J1JKRIZ6Bk1kUmJoPNzXDzzW2J7M6dMGCA93EkW4qSbuldRTCgSZ5IgfNb+VpVZYhrz2+775Dv/YO7XjpAk/XWrKmmrp4R0xYxpGWf6+Ov13Qocb7jwrZEVfvRRHLLGDMHuBA4BLwPfMdaG+fE6OyJfuBVv7kve1/6PP0urKbirA0cNnYTprSZOc99knZcSCXWZPrMb79R/JVc0jmzMXg5m8xNfT2sWQOPPAJTpsBnn3lPZCF+KUq0ZJ/ouZ1JO+OiUd4HKCK+4iVm5MIf/gA7djivh1y9jEDf/Z4T2bBwPH789RouPSnU7lzsbqVduHHBasbNXsbC6prWM2g/nH0+K6adrYmUSPYtAY631p4AvANMz9dAwmdVNx8qYfNd5/PxI6fSsKs7zQcD9Dr1A0yps5Uh3ZXQVOeLmTzz228yMYcW8ULJbAzpTgZ/9+ROBnz+U7543qeErnyJCVfXtNuPsbC6hnGzlzFi2qLWiZfb972UosR7oldinOQ1VBFkzmUnMufyE1sngqGKYOtxFyJS2PxUvvbHP8Idd0BZ3wMcft1iAhWZGUN9QxPLN9ayYtrZzJ08hoMNzdTVN2jiJJJH1trF1tpw16WVwOH5GktVZYiJ5aewde6E1u8N/u6LdB3wr3bvS3clNNX5YlVliFmXjC7KeZjfHqhK8VOZcQzpTAZ/cu8uZt04EID+F6+itnkvP3lyLcbgeqTE9CfWsmrz7nZlc+HvlwW6dGiGArEDcKzuomFN1rY+9QsHy2IImiLSntfytWyVgx17LGzcCJddBq8O/5/WlRA3gRJD966l7K1voFcwgDFQd6Chw77XsHA8ViMVEV/6LrAgHzduboZ77oF7ftIHgO9/Hyb+Zw3Tn2gk8qSeTKyEpjNfzOfRatnkpweq0jkomY0h1b0Mv/gFzLqtLwC9z1lP+ed3Au0nVm4Tr4f/ubVD6Z3b/tdwa/lokc1WYo1fEzyR4pfMkTlh2dpf229gE7s+dkroNn7+ebo0NxOrsrjEGJqtjZtEj5u9LG481sRJJHeMMUuBQTF+dKu19r9a3nMr0AjMd7nGFGAKwLBhw5K6b7IP3T780Dk/9qmnYNw45xQJp+lm4u7rqdy/2Pe+pkK/E8k1JbMxeJkMhj30ENx2m/N6wOSVBD+3q93PwxMrtwmWlz1kPcpKXQNw+EnfiGmLYq5oaIInUtySOTInLBurmuU9mqnf7ySyQ296ln81xV6RDQZKkiqrSxSPNXESyR1r7bnxfm6MuRK4ADjH2tgTG2vtPGAewNixYxNOfpJ56GYtnHUWvPgiTJwIixZBjx5gItqDpLoSGu/+qcwXi51+J5JrSmZj8DIZtBY2b4arroKjj4YeF73C7tLdHd4Xnli5TbxKjEk6oa1LcIzFwuoaurhcTxM8keKX7KQt06uaM2ZA/X6nFcOwHz3rWlpcYkzS+8MSxWNNnET8wRgzAfgxcJa19kCmrpvoodvatXDCCW0/+/3voWfPTN09/v1XTDu79T3q3OvwMocWyQQlsy6SmQweOgTXXgsffwyLF8Mpp8Czbw1j+hN7XSdWbhOvS08KdThqItY5iRA/IQ0/QYyVyGqCJyKRMrWqaa3TsX3sWOg+aht9v/ompsT94VyztZ4mNvHicaKJk46IEMmZ+4BuwBLjLImutNZek+5F4z10u/12uPNO5+thw+D996E0wzPbRA/9inXvazr0O5FcUjKbom3bYOhQ5/Vtt8EZZ9Da5AncJ1bxfj52eJ9233c7SzFeQup21qyXlRAR6RwysappLXzlK9DYCEuWwInffIeauvhVJpmuEHGbOPntzF2RYmatPSob13V76Nbl7SO5c6Hz+tFH4fLLs3F3bWUQ8Tslsyl45RU4/XTn9RlntD0VDEv0RMrt57G+H53gJlpVcHuC6HUlRESKX7rlYM3NUNJyVOJpp0FZWfyu6pDbChF1OhYpfNExpf7Dfux//Qjuva+Rj0+Gm2+m3fGH2b4/qNJNxE+UzHpUXd2WyE6dCnff3fE9mSxr81qqoSeIIuJFquVgjY0QCLR9vWJF7OqUyGN2cl3m6/ZwL1aMFBF/CseLWQvf59WffQmAgaFGvnxUKUdNiPfJzN5f2xVE/EnJrAc1NfAlJ47y17/CFVd0fE+yZW3Z2selJ4gikm1NTe0T2ebmzHQNzTS3h3sGJwb7YYwiklhVZYjn5oV4teXr9WtK6ds3t/dXvBDxJyWzSZo3z9kne/fdMGkSDBkS+33JlLVlcx+XniCKSCbFevDW9IETT3r2hL172yeyyXw+V/Fo6viR3LhgdYdGehZUaixSYG67DS69FM6NeziQiHQ2SmYTaGpq64z31a86B3HH65SXzFEXM59en9V9XHqCKCKZEP3gbduug/zn7bv5/UxYvjzEl7/s7fO5bsBUVRnihgWrY/5MZ26LFJZQyPkjIhKpS74H4Gd1de0T10SJLLjvTQ1/f2F1DXtczomtqatnYXVNSmMVEcm0yEqT5s9K2PK/J/LR30fz0/t3Jkxkoz8fFn5wlyuhBDFZREREClenSWYXVtcwbvYyRkxbxLjZyxImjZ98Ar17O6/79XP2hCVzdtnU8SMJBkrafS9yz2qiSdz0J9YqoRURXwivXjYfLGXrvU6nlcCAvezvs8PT56PV1NUnFYczIVFMFhERkcLVKcqMvZa6ffRRW6Onyy6Dxx5L/l6J9qwmKm2Ltb9W+19FJB+GVATZsqORbb85D4Cug+oY/B8rkl7VdGvABB3jcLxYl04cVB8BERGR4pWXZNYYMwe4EDgEvA98x1pbl637eTlr8OWXnUZP48bBn/7k/NOreHtW403uwsIJb6IkXImuiGTT//rSMXz9zEEAdBu2i0FfX+lpVTPRmbPhOLxq827mr9zS2qgpMtYBae+7VR8BERGR4pSvldklwHRrbaMx5i5gOnBLtm6WTFMmcI7aeeghOP545zzZZMqKvUo0uQPoFXTOvEi03yyfjVVEpLg1N0PVF4ZQeepBdvfaijnhnbRWReOt0EYmsmH1DU3MfHo95V1Ls9owT0RERApXXpJZa+3iiC9XApdl835uq6HhUjlrYeBAqK11vr98eXYSWUhucrf/UCMLq2viJuFeVptFRLzYtAnOPx9++lN4/aUyjDkaODqla4VXRcfNXhYz5pUYQ5ONTmUdew40uDbMUzdiERER8cOe2e8CC7J5g1iroeFSuYYG6Nq17b179kBFReJrpruHK/zeyp8t7jBZa2iyzHnu7bhJeLKrzSIi0eLFr/feg6Nb8taysvhnyHrhFofjVamAe7Iba9+utl6IiIh0LlnrZmyMWWqMWRfjz6SI99wKNALz41xnijFmlTFmVW146dSjqsoQsy4ZTagiiME5qmHWJaM59+gQVVVt72tsTD6Rnf7EWmrq6rG0lfim0pmzLs6qQ7wunImOABIRiSVe/HrrrbZE9gc/oF18jHe9ZDrFu8Vht6NzwpqsTaobcSbjsoiIiBSGrK3MWmvPjfdzY8yVwAXAOda61Jg515kHzAMYO3as6/sSiW4Asn27sy922zb4wx/gmmuSv1YmS3zjrb4m6sLpttosIuLGLX79bP4Wqn/lxJapU+HuuxNfy2uneLdGTPH6CIRa4l6iFVdtvRAREel88tXNeALwY+Asa+2BXN//scfg2muhTx9Ys8YppfMikyW+8UqgwX3yp+MmRCQVbnFq4xNHAnD77TBzZnLXykQCGX7fzKfXd9hyEY6FyXQj1tYLERGRzidfe2bvA7oBS4yzIWultdbD2mjqfvxjmDPHeb1kifdEFhI3lHITbz9XKkmpjpsQEa+i41fjp2U0fxbg2Mvf4zcXDfB0HFmmEshwLEtnz2uqcVlEREQKV766GR+Vj/uecQasWOG8fuUVGDMmteskWk2NJVE5npJSEcmFyPh1cHNfdj5yKoHe+/ntc3WMO9nbtdJNIGMlryumne1tEC1SicsiIiJS2LLWAMpPrIVbb21LZLduhVNPTf16bo1M4iWkic6MFZHiY4yZY4zZaIx50xjzpDEmiRZz2RWOX+U7Q+x8xAmEN0w/yKUne3+gFq9JXSKZbtiUSlwWERGRwuaHo3my6rPP4O23nSZPkyfDn/4EwQxUnXldTdV+LpFOaQkw3VrbaIy5C5gO3JLnMcHmEBv+7MSvv/wFvv3tvildJp1tEtlo2KQqFxERkc6lqJPZLVvgW9+Cgwdh1SoYMSJzZyZ6pf1cIp2PtXZxxJcrgcvyNZawdevg4oud1wsWwL//e3rXSzWB1AM+ERERSVfRlhk//zwMHw4vvADXXw9HHJG/RBbSK8cTkaLwXeDZfA/io49g8GBYtCj9RDYdOitbRERE0lW0yez55zv//PnP4RvfyO9YQPu5RIqVMWapMWZdjD+TIt5zK9AIzI9znSnGmFXGmFW1tbUZH+eSJTB+PJx8MmzaBBMnZvwWnugBn4iIiKSraMuM16yBkhI4Ki99k2PzWo6XzjEVIpIb1tpz4/3cGHMlcAFwjrXWxrnOPGAewNixY13fl4q5c+Gmm5zXe/dCr16ZvHpqdFa2iIiIpKtok9mRBf5wP9FRPiLif8aYCcCPgbOstQfyMYZf/tLp5g7w8sswbFg+RhGbGjaJiIhIOoq2zLjQ6SgfkaJwH9ATWGKMWW2MuT+XN58xoy2RXbUKTjstl3cXERERya6iXZktdOr0KVL4rLV52+iwaRPMnOm8XrMGTjghXyMRERERyQ6tzPqUOn2KSKpWr3bKiR94AGprlciKiIhIcVIy61Pq9CkiqfjOd6CyEn71K5gyBfr1y/eIRERERLJDZcY+pU6fIuLVZZfB4487r6dMye9YRERERLJNyWwLPx2DEz2WuZPHKIkVkbgmTIDnnnNe19T44/gdEZFs8tPcTUTyQ8ks/joGx09jEZHCMHt2WyK7cycMGJDf8YiIZJvmSyIC2jML+OsYHD+NRUT8z1p45RU47DDYtUuJrIh0DpoviQhoZRbw1zE4fhqLiPifMfDoo05SW1aW79GIiOSG5ksiAlqZBfx1DI6fxiIihaFbNyWyItK5aL4kIqBkFvDXMTh+GouIiIiIH2m+JCKgMmPAX8fg+GksIiIiIn6k+ZKIgJLZVlWVId8EQD+NRURERMSPNF8SEZUZi4iIiIiISMFRMisiIiIiIiIFR8msiIiIiIiIFBwlsyIiIiIiIlJwlMyKiIiIiIhIwVEyKyIiIiIiIgVHyayIiIiIiIgUHGOtzfcYkmaMqQU2Z+ny/YBPsnTtdPl1bBqXd34dm1/HBcmNbbi1tn8uBpMLinW+49dxgX/HpnF5p1iXeX79761xeefXsWlc3mU01hVUMptNxphV1tqx+R5HLH4dm8blnV/H5tdxgb/HVoj8/Pv069j8Oi7w79g0Lu/8PLZC5dffqcblnV/HpnF5l+mxqcxYRERERERECo6SWRERERERESk4SmbbzMv3AOLw69g0Lu/8Oja/jgv8PbZC5Offp1/H5tdxgX/HpnF55+exFSq//k41Lu/8OjaNy7uMjk17ZkVERERERKTgaGVWRERERERECo6S2QjGmDuNMW8aY1YbYxYbY4bke0wAxpg5xpiNLWN70hhTke8xhRljLjfGrDfGNBtj8t41zRgzwRjztjHmPWPMtHyPJ8wY80djzMfGmHX5HkskY8xQY8xyY8xbLf8dr8/3mACMMWXGmFeNMWtaxjUz32MqJn6NdeDfeKdYlxzFOm8U67JLsc47xbrkKNZ5k81YpzLjCMaYw6y1n7a8vg44zlp7TZ6HhTHmPGCZtbbRGHMXgLX2ljwPCwBjzLFAM/AAcLO1dlUex1ICvAP8G7ANeA34urX2rXyNKcwY8yVgH/D/rLXH53s8YcaYwcBga+0bxpiewOtAVb5/Z8YYA3S31u4zxgSAl4DrrbUr8zmuYuHXWAf+jXeKdclRrPM8LsW6LFKs806xLjmKdZ7HlbVYp5XZCOGA16I74ItM31q72Frb2PLlSuDwfI4nkrV2g7X27XyPo8UpwHvW2g+stYeAR4BJeR4TANbaF4Dd+R5HNGvtDmvtGy2v/wVsAEL5HRVYx76WLwMtf3zx97EY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdktkoxphfGGO2AlcAt+d7PDF8F3g234PwqRCwNeLrbfjgL3ChMMZ8DqgE/pnfkTiMMSXGmNXAx8ASa60vxlUsCiDWgeKdG8W6NCjWdS6KdQVNsS4NnSXWdbpk1hiz1BizLsafSQDW2luttUOB+cAP/TKulvfcCjS2jC1nkhmbFDZjTA/gceCGqCfZeWOtbbLWjsF5Wn2KMcY3ZTyFwK+xLpmxtbwn5/FOsa74KdYVH8W67IxLCltninWlmbhIIbHWnpvkW+cDzwB3ZHE4rRKNyxhzJXABcI7N8UZnD7+zfKsBhkZ8fXjL9ySOlr0LjwPzrbVP5Hs80ay1dcaY5cAEwFeNFvzMr7EO/BvvFOuKm2JdcVKs806xrrh1tljX6VZm4zHGHB3x5SRgY77GEskYMwH4MXCRtfZAvsfjY68BRxtjRhhjugJfA57K85h8rWVD/oPABmvtPfkeT5gxpr9p6exojAniNH/wxd/HYuDXWAeKd0lSrPNIsa5zUqwreIp1HnXGWKduxhGMMY8DI3G6uG0GrrHW5v0JkDHmPaAbsKvlWyt91I3vYuC3QH+gDlhtrR2fx/FMBO4FSoA/Wmt/ka+xRDLGPAx8GegH7ATusNY+mNdBAcaYM4AXgbU4/7sH+Im19pn8jQqMMScAf8H579gFeNRa+7N8jqmY+DXWgX/jnWJdchTrvFGsyy7FOu8U65KjWOdNNmOdklkREREREREpOCozFhERERERkYKjZFZEREREREQKjpJZERERERERKThKZkVERERERKTgKJkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmpaAYY042xrxpjCkzxnQ3xqw3xhyf73GJiGSSYp2IdAaKdZIuY63N9xhEPDHG/BwoA4LANmvtrDwPSUQk4xTrRKQzUKyTdCiZlYJjjOkKvAYcBE631jbleUgiIhmnWCcinYFinaRDZcZSiPoCPYCeOE/yRESKkWKdiHQGinWSMq3MSsExxjwFPAKMAAZba3+Y5yGJiGScYp2IdAaKdZKO0nwPQMQLY8y3gQZr7UPGmBLgZWPM2dbaZfkem4hIpijWiUhnoFgn6dLKrIiIiIiIiBQc7ZkVERERERGRgqNkVkRERERERAqOklkREREREREpOEpmRUREREREpOAomRUREREREZGCo2RWRERERERECo6SWRERERERESk4SmZFRERERESk4Px/zcYazdP9jTUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hFddbtTU9cGf" - }, - "source": [ - "#### RScore correlates well with ideal score\n", - "\n", - "Higher `Rscore` implies smaller `PEHE`" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "i2w9dPuI9cGf", - "outputId": "3adc25ea-2f29-46e2-be2e-4a5162994be3" - }, - "source": [ - "plt.scatter(rootpehe, rscore)\n", - "plt.xlabel('rpehe')\n", - "plt.ylabel('rscore')\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT8klEQVR4nO3dfWxd933f8ffHktxxswMFtZJF9IPczFGjzZnV0G67JMYatJbTDbLg2oGdbKvXrl7Weh2wRai1dhvm/mG32kP/iAtYGYYs6DzXCVTBRR6YLg/O2i2baMuxIntcFcUPogpEycoFiZlYkr/7g1f2lfSTeEnz8lDU+wUQuud3Hu5XP5D88Hd+55ybqkKSpNNd1HUBkqTlyYCQJDUZEJKkJgNCktRkQEiSmlZ3XcBiueyyy2rDhg1dlyFJ55UnnnjiW1W1rrVuxQTEhg0bmJiY6LoMSTqvJHn+bOs8xSRJajIgJElNBoQkqcmAkCQ1GRCSpKYVcxWTNF979k2xc3ySI9MzrF87wvYtG9m2ebTrsqRlw4DQBWnPvil27N7PzLETAExNz7Bj934AQ0Lq8RSTLkg7xydfDYeTZo6dYOf4ZEcVScuPAaEL0pHpmXm1SxciA0IXpPVrR+bVLl2IDAhdkLZv2cjImlWntI2sWcX2LRs7qkhafpyk1gXp5ES0VzFJZ2dA6IK1bfOogSCdg6eYJElNF/wIwpulJKntgg4Ib5aSpLO7oAPiXDdLGRDD4YhNOn8MdQ4iyc1JJpMcTHJvY/2NSZ5McjzJbX3tP5Xkqb6v7yfZttj1ebPU0jo5YpuanqF4bcS2Z99U16VJahhaQCRZBTwIvA/YBNyZZNNpm70A3AU83N9YVV+squuq6jrgvcBLwOcWu0ZvllpaPt5COr8McwRxA3Cwqg5V1cvAI8At/RtU1XNV9TTwyjmOcxvwmap6abEL9GappXW2kdnU9AxX3/sp3vXAFxxNSMvIMANiFHixb/lwr22+7gD+y6JUdJptm0e5/9ZrGV07QoDRtSPcf+u1nhMfknONzDzlJC0/y3qSOslbgGuB8bOsvxu4G+DKK69c0Ht4s9TS2b5l4ylXjbV4kYC0fAxzBDEFXNG3fHmvbT7eD/xBVR1rrayqXVU1VlVj69atW2CZWiqnj9jOxosEpOVhmCOIvcA1Sa5mNhjuAD4wz2PcCexY7MLUnf4R27se+AJTjTDwIgFpeRjaCKKqjgP3MHt66Fng0ao6kOS+JFsBklyf5DBwO/BQkgMn90+ygdkRyOPDqlHd8iIBaXlLVXVdw6IYGxuriYmJrsvQPHnjnNStJE9U1Vhr3bKepNbK50UC0vLl01wlSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmoYaEEluTjKZ5GCSexvrb0zyZJLjSW47bd2VST6X5NkkzyTZMMxaJUmnGlpAJFkFPAi8D9gE3Jlk02mbvQDcBTzcOMTHgZ1V9XbgBuCbw6pVknSm1UM89g3Awao6BJDkEeAW4JmTG1TVc711r/Tv2AuS1VX1R73tvjvEOiVJDcM8xTQKvNi3fLjXNoi3AdNJdifZl2Rnb0RyiiR3J5lIMnH06NFFKFmSdNJynaReDbwH+DBwPfAjzJ6KOkVV7aqqsaoaW7du3dJWKEkr3DADYgq4om/58l7bIA4DT1XVoao6DuwBfmyR65MkncMwA2IvcE2Sq5NcDNwBPDaPfdcmOTkseC99cxeSpOEbWkD0/vK/BxgHngUeraoDSe5LshUgyfVJDgO3Aw8lOdDb9wSzp5c+n2Q/EOCjw6pVknSmVFXXNSyKsbGxmpiY6LoMSTqvJHmiqsZa65brJLUkqWMGhCSpyYCQJDUZEJKkJgNCktRkQEiSmob5sD5JA9izb4qd45McmZ5h/doRtm/ZyLbNgz62TBoeA0Lq0J59U+zYvZ+ZYycAmJqeYcfu/QCGhDrnKSapQzvHJ18Nh5Nmjp1g5/hkRxVJrzEgpA4dmZ6ZV7u0lAwIqUPr147Mq11aSgaE1KHtWzYysubUz8IaWbOK7Vs2dlSR9BonqaUOnZyI9iomLUcGhNSxbZtHDQQtS55ikiQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpNPc5W0YHv2Tfmo8hVs4BFEkquS/HTv9UiSS4dXlqTlbs++KXbs3s/U9AwFTE3PsGP3fvbsm+q6NC2SgQIiyS8BnwQe6jVdDuwZVlGSlr+d45PMHDtxStvMsRPsHJ/sqCIttkFHEL8CvAv4DkBV/SnwpmEVJWn5OzI9M692nX8GDYgfVNXLJxeSrAZqrp2S3JxkMsnBJPc21t+Y5Mkkx5Pcdtq6E0me6n09NmCdkpbI+rUj82rX+WfQgHg8yT8HRpL8DPAJ4A/PtUOSVcCDwPuATcCdSTadttkLwF3Aw41DzFTVdb2vrQPWKWmJbN+ykZE1q05pG1mziu1bNnZUkRbboAHxa8BRYD/wD4FPA78xxz43AAer6lBv9PEIcEv/BlX1XFU9Dbwyr6oldW7b5lHuv/VaRteOEGB07Qj333qtVzGtIHNe5tobCRyoqh8FPjqPY48CL/YtHwZ+fB77/4UkE8Bx4IGqOmNSPMndwN0AV1555TwOLWkxbNs8aiCsYHOOIKrqBDCZZKl/A19VVWPAB4DfSfLWRm27qmqsqsbWrVu3xOVJ0so26I1ybwQOJPlfwPdONs4xNzAFXNG3fHmvbSBVNdX791CSLwGbga8Pur8k6fUZNCD+xQKOvRe4JsnVzAbDHcyOBuaU5I3AS1X1gySXMXuJ7W8voAZJWrAL/U7xgSapq+px4H8Dl/a+nu21nWuf48A9wDjwLPBoVR1Icl+SrQBJrk9yGLgdeCjJgd7ubwcmknwV+CKzcxDPzP+/J0kL453ikKo5b2cgyfuBncCXgADvAbZX1SeHWt08jI2N1cTERNdlSFoh3vXAF5hq3PQ3unaEP7n3vR1UNBxJnujN955h0FNMvw5cX1Xf7B1wHfBfmX38hiStON4pPvh9EBedDIeeb89jX0k673in+OC/5D+bZDzJXUnuAj4FfGZ4ZUlSt7xTfMBTTFW1PcmtwLt7Tbuq6g+GV5Ykdevk1UoX8lVMg05SXw38WVV9v7c8Ary5qp4bbnmDc5JakubvXJPUg55i+gSnPi/pRK9NkrRCDRoQq/sf9917ffFwSpIkLQeDBsTRkze3ASS5BfjWcEqSJC0Hg94H8SHgPyf5CLM3yr0I/L2hVSVJ6tygVzF9HfiJJJf0lr871KokSZ0b6BRTkn+S5A3MPsn1d3ofE3rTcEuTJHVp0DmIX6iq7wA3AT8M/F3ggaFVJUnq3KABkd6/Pwt8vKoO9LVJklagOQMiSYBvJRlnNiDGk1yKnyMtSSvanJPUVVVJ/jLwQeAbVfVSkh8G/v7Qq5MkdWbQy1z3Mnuz3DRAVX2b2Se6SpJWqEED4seBDyZ5ntkrmcLs4OIdQ6tMktSpQQNiy1CrkCQtO4PeKPf8sAuRJC0vfiqcJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktQ01IBIcnOSySQHk9zbWH9jkieTHE9yW2P9G5IcTvKRYdYpSTrT0AIiySrgQeB9wCbgziSbTtvsBeAu4OGzHOY3gS8Pq0ZJ0tkNcwRxA3Cwqg5V1cvAI8At/RtU1XNV9TSNz7dO8k7gzcDnhlijJOkshhkQo8CLfcuHe21zSnIR8G+BD8+x3d1JJpJMHD16dMGFSpLONOgnyi21XwY+XVWHk5x1o6raBewCGBsbqyWqTdIKtWffFDvHJzkyPcP6tSNs37KRbZsH+rt2RRpmQEwBV/QtX95rG8RPAu9J8svAJcDFSb5bVWdMdEvSYtizb4odu/czc+wEAFPTM+zYvR/ggg2JYZ5i2gtck+TqJBcDdwCPDbJjVX2wqq6sqg3Mnmb6uOEgaZh2jk++Gg4nzRw7wc7xyY4q6t7QAqKqjgP3AOPAs8CjVXUgyX1JtgIkuT7JYeB24KEkB4ZVjySdy5HpmXm1XwiGOgdRVZ8GPn1a27/se72X2VNP5zrGx4CPDaE8SXrV+rUjTDXCYP3akQ6qWR68k1qSgO1bNjKyZtUpbSNrVrF9y8aOKurecr2KSZKW1MmJaK9ieo0BIUk92zaPXtCBcDpPMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNQw2IJDcnmUxyMMm9jfU3JnkyyfEkt/W1X9VrfyrJgSQfGmadkqQzrR7WgZOsAh4EfgY4DOxN8lhVPdO32QvAXcCHT9v9z4CfrKofJLkE+Fpv3yPDqleSdKqhBQRwA3Cwqg4BJHkEuAV4NSCq6rneulf6d6yql/sWfwhPhUnSkhvmL95R4MW+5cO9toEkuSLJ071j/FZr9JDk7iQTSSaOHj36uguWJL1m2f5lXlUvVtU7gL8C/HySNze22VVVY1U1tm7duqUvUpJWsGEGxBRwRd/y5b22eemNHL4GvGeR6pIkDWCYAbEXuCbJ1UkuBu4AHhtkxySXJxnpvX4j8G5gcmiVSpLOMLSAqKrjwD3AOPAs8GhVHUhyX5KtAEmuT3IYuB14KMmB3u5vB/5nkq8CjwP/pqr2D6tWSdKZUlVd17AoxsbGamJiousyJOm8kuSJqhprrVu2k9SSpG4ZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNa3uugBJ0sLs2TfFzvFJjkzPsH7tCNu3bGTb5tFFO74BIUnnoT37ptixez8zx04AMDU9w47d+wEWLSQ8xSRJ56Gd45OvhsNJM8dOsHN8ctHew4CQpPPQkemZebUvhAEhSeeh9WtH5tW+EAaEJJ2Htm/ZyMiaVae0jaxZxfYtGxftPZyklqTz0MmJaK9ikiSdYdvm0UUNhNN5ikmS1GRASJKaDAhJUpMBIUlqMiAkSU2pqq5rWBRJjgLPd13HkF0GfKvrIpYB+2GW/TDLfnjNQvriqqpa11qxYgLiQpBkoqrGuq6ja/bDLPthlv3wmsXuC08xSZKaDAhJUpMBcX7Z1XUBy4T9MMt+mGU/vGZR+8I5CElSkyMISVKTASFJajIglpkkNyeZTHIwyb2N9f80yTNJnk7y+SRXdVHnUhigLz6UZH+Sp5L8cZJNXdQ5bHP1Q992P5ekkqzISz4H+H64K8nR3vfDU0n+QRd1Dtsg3w9J3t/7PXEgycMLfrOq8muZfAGrgK8DPwJcDHwV2HTaNj8F/MXe638E/H7XdXfYF2/oe70V+GzXdXfRD73tLgW+DHwFGOu67o6+H+4CPtJ1rcugH64B9gFv7C2/aaHv5whiebkBOFhVh6rqZeAR4Jb+Darqi1X1Um/xK8DlS1zjUhmkL77Tt/iXgJV4xcWc/dDzm8BvAd9fyuKW0KD9sNIN0g+/BDxYVX8OUFXfXOibGRDLyyjwYt/y4V7b2fwi8JmhVtSdgfoiya8k+Trw28CvLlFtS2nOfkjyY8AVVfWppSxsiQ36s/FzvdOvn0xyxdKUtqQG6Ye3AW9L8idJvpLk5oW+mQFxnkryd4AxYGfXtXSpqh6sqrcCvwb8Rtf1LLUkFwH/DvhnXdeyDPwhsKGq3gH8EfCfOq6nK6uZPc30N4E7gY8mWbuQAxkQy8sU0P9Xz+W9tlMk+Wng14GtVfWDJaptqQ3UF30eAbYNtaJuzNUPlwJ/DfhSkueAnwAeW4ET1XN+P1TVt/t+Hv4D8M4lqm0pDfJzcRh4rKqOVdU3gP/DbGDMmwGxvOwFrklydZKLgTuAx/o3SLIZeIjZcFjwucXzwCB90f9N/7eAP13C+pbKOfuhqv5fVV1WVRuqagOz81Jbq2qim3KHZpDvh7f0LW4Fnl3C+pbKnP0A7GF29ECSy5g95XRoIW+2euF1arFV1fEk9wDjzF6t8B+r6kCS+4CJqnqM2VNKlwCfSALwQlVt7azoIRmwL+7pjaaOAX8O/Hx3FQ/HgP2w4g3YD7+aZCtwHPi/zF7VtKIM2A/jwE1JngFOANur6tsLeT8ftSFJavIUkySpyYCQJDUZEJKkJgNCktRkQEiSmgwIaQkl+ViS27quQxqEASEtUGb5M6QVy29uaR6SbOg9i//jwNeAE0n+fe+5+59Psq633VuTfDbJE0n+W5If7TvMjUn+e5JD/aOJJNuT7O09bO5fL/F/TTqDASHN3zXA71bVX+0tT/RePw78q17bLuAfV9U7gQ8Dv9u3/1uAdwN/G3gAIMlNvePeAFwHvDPJjcP+j0jn4qM2pPl7vqq+0nv9CvD7vde/B+xOcgnwN3jtcSgAP9S3/56qegV4Jsmbe2039b729ZYvYTYwvjyc/4I0NwNCmr/vnWNdMTsyn66q686yTf8TeNP37/1V9dAi1CctCk8xSa/PRcDJeYQPAH/c+6S7byS5HV6dzP7rcxxnHPiF3uiDJKNJ3jSsoqVBGBDS6/M94IYkXwPeC9zXa/8g8ItJvgocYI6Px6yqzwEPA/8jyX7gk8x+1oPUGZ/mKr0OSb5bVZd0XYc0DI4gJElNjiAkSU2OICRJTQaEJKnJgJAkNRkQkqQmA0KS1PT/AXiZS0Wzh+rUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "r8eRryFl9cGf" - }, - "source": [ - "#### Choose CATE model with larger Rscore" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "wTaPVNH39cGf", - "outputId": "bb85de97-45cd-4a07-d659-38bc56183bfb" - }, - "source": [ - "mdl, score = scorer.best_model([mdl for _, mdl in models])\n", - "mdl" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 57 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "cULnL_mZ9cGg" - }, - "source": [ - "rootpehe_best = np.sqrt(np.mean((expected_te_val.flatten() - mdl.effect(XW_val).flatten())**2))" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 295 - }, - "id": "kLwPBbku9cGg", - "outputId": "125c9a16-1d42-4800-8ee5-c77c24d330f1" - }, - "source": [ - "plt.figure()\n", - "plt.title('RScore: {:.3f}, Root-PEHE: {:.3f}'.format(score, rootpehe_best))\n", - "plt.scatter(XW_val[:, 0], mdl.effect(XW_val), label='best')\n", - "plt.plot(XW_val[:, 0], 1 + XW_val[:, 0], 'b--', label='True effect')\n", - "plt.ylabel('Treatment Effect')\n", - "plt.xlabel('x')\n", - "plt.legend()\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZhU1dHwfzU9zSxswzIIDKsmArJH3IJGMSIaoxI1asQY45vwmeR1TYgaTcRsYkyicXsTv+invqLBdVwwirK4oKjAgIAsUZFl2Jdhm4HZ6vvjdjc9Pb3c3qa7Z+r3PP3Y99x7zz23B6vOqapTJaqKYRiG0fbIy/QADMMwjMxgCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCqAVICJfikiNiOwXkS0i8piIdAg630dEnheRHSKyR0SWi8iVGRxyWETkMhFZJyIHRKRcRLpGufZhEVktIo2h7yIif/f9Fv7PIRHZF3T+SRHZLCJ7RWSNiPwojjE+JiK1vn53icibIjI4oRdu2u+VIvJejGtO873vfhHZ53v/H/rODRARDXnv/SJySdC4fx/Sn/+e/DDv5v8sjeMdvikiq0SkWkTmikj/KNfOFZHtvr/BUhE5P+jcOBFZJiJVIrJTRF4UkbKg8xeLyPu+58xzOz6jOaYAWg/nqmoHYBQwGrgl6Nz/AhuA/kA34PvA1lQ+3C9Ekrh/KPAPnLEdAVQDD0W5ZSnwU2Bx6AlVvVpVO/g/wNPAs0GX3AkMUNVOwHnA70Xk2DiG+ydfv2VAJfBIHPcmyybfszsBNwH/V0SOCTpfEvzuqjojzv7/FHL/SDc3iUh34AXg10BXYCEQ7dnXAb18f4PJwJMi0st37lNggqqWAL2B/wD/E3TvLuBeYFoc72WEwRRAK0NVtwBv4CgCP8cBj6nqAVWtV9UKVf23/6SInOybUVWJyAb/jFpEOovIE76Z2joRuU1E8nznrhSR+SJyj4jsBKaKSIGI/FlE1ovIVt9MvMjl0CcBr6jqO6q6H0eQXCAiHSO854OqOhs4GK1TEWkPXAg8HnTvClU95D/0fY5yOc7gMdQAzxD0W4vIEBGZ5/stV4jIeUHnwv6eIjIE+Dtwkm/WXeXi2aqq5cBu4JhY17cAFwArVPVZVT0ITAVGRlodqeonqlrvPwS8QF/fua2quino8gbgK0H3vqWqzwDB1xgJYAqglSEifYCzgc+CmhcAD4rIpSLSL+T6/sC/gfuBUhxhtsR3+n6gM3AkcCpwBfDDoNtPAL7AmbH/AWdGdrSvj6/gzJB/E/SsKhE5OcLQh+LM6gFQ1c+BWl9/yXAhsB14J7hRRB4SkWpgFbAZeC3ejn3K5Xv4fmsR8QKvALOAHsA1wHQRGeS7JezvqaorgauBD3yz7hIXz84Tke8AJcCyeMeeCCLyiYhcFuF06N/vAPC5rz1Sf6+KyEHgQ2AezqrBf66fTxHWAL8A/pT0CxjNUVX75PgH+BLYD+zDmU3NxjEF+M93wRHOK3BmU0uA43znbgFeDNOnB0cAHxPU9n+Aeb7vVwLrg84JcAA4KqjtJGCty3eYDVwd0lYJnBbjvveAK2P0OzXCOQ9wMnAb4HU5zsdwVh1VQCOwFhjhO3cKsAXIC7r+aZzZsJvf870Yzz7N98wqHDPIEuBS37kBvr99VchnSJhx+z97fffkR7nmcZe/yyPAtJC2+dH+Nr5rvDgTlhsjnO+KY+o6Mcy5H/l/P/sk9rEVQOthoqp2xBESg4Hu/hOqultVb1bVoTiz9SVAuYgIzrL78zD9dcf5n3NdUNs6nFm9nw1B30uBYmCRb6ZfBbzua3fDfhy7djCdcJRaQvhWO6cBT4Q7r6oNqvoe0Af4SRxd/1mdWfoAnBmqf4bfG9igqo1B1/p/Mze/Z5OxBztjg05tUtUSVe2qqqNU9V8ht3b3nfd/VoaO2/8BRkR6t6DPD6L/FAES+vupap065sgzg81lQed34ZjvXkrWz2Q0xxRAK0NV38aZyf05wvkdvnO9cWZXGwhv/94B1OE4jv30w5mVB7oLub4GGBokPDqr47B0wwog4HAUkSOBAmCNy/vD8X1gvqp+EeO6fBLzAazHcWb+zefr2AT09ftJfPh/s1i/Z5O0vKq6Xps6srOd0L9fe5zfdIXL+6P9DfJxTGqhCsZIElMArZN7gfEiMhJARO4SkWEiku9zqv4E+ExVdwLTgTN8oXX5ItJNREapagOOg/MPItLR5yu4EXgy3AN9s97/C9wjIj18zy0TkQkuxzwdOFdETvEJj98CL6hq2BmkiLQTkUIc05NXRApDBC84NvbHQu7r4fOFdBARj29838MxFfmvURE5zc2gVfVNHME/GceWXQ38UkS8vj7OBf7l4vfcCvQRkXZunpuFvAgME5ELfX+X3wCfqOqq0AtFZLCInC0iRb7f6XLgG8DbvvMXiMggn5+jFPgrUOFbDeD7uxXiKIY839/e20Lv2brItA3KPsl/cHwAZ4S0/Q/wvO/7/TihdPtxHKKv4rMN+86fgiO89uKsCH7ga++CI6C2+9p/g8++TRibNVAI/BHHMbwXWAlcG3R+P3BKlPe4DFiP40t4CegadO7fwK+CjudxOILH/zkt6PxJvn46hjyjFEfQ+G3gy4AfB53v62vvFmGMjwG/D2m7BGcmX4Dj9Hwb2IMTzvidoOui/Z7tgJk4tv0dEZ59GrAxwrkBvt9gf8jnxijj9t8T7AOoDbl/R9D1K4BJUf5+Z+A41Wt8f58BQef+Dvzd932I79/bPt/f4eOQ3+kaHN/KARyfyr+A/kHnrwzzt38s0/8f5uJHfD+oYRiAbzY6VFVviXmxYeQ4pgAMwzDaKOYDMAzDaKOYAjAMw2ijmAIwDMNoo+TUxoru3bvrgAEDMj0MwzCMnGLRokU7VLXZpsyMKgAR+RInFKwBqFfVMdGuHzBgAAsXLox2iWEYhhGCiKwL154NK4Bx6uxONQzDMFoQ8wEYhmG0UTKtABSYJSKLRGRyuAtEZLKILBSRhdu3b2/h4RmGYbReMm0COllVK325Y94UkVWq2iRvu6o+DDwMMGbMmGa71urq6ti4cSMHD0atC2IkSGFhIX369MHrtVQrhtHayKgCUNVK33+3iciLwPGEFO6IxcaNG+nYsSMDBgzAyW5spApVZefOnWzcuJGBAwdmejiGYaSYjJmARKS9v9yfL/vjmcDyePs5ePAg3bp1M+GfBkSEbt262erKyFnKKyoZO20OA2+eydhpcyivqIx9UxsikyuAI4AXfYI7H3hKVV9PpCMT/unDflsjVymvqOSWF5ZRU9cAQGVVDbe84FTPnDg6bB2eNkfGFIA6RTpGxrzQMAwjAe5+Y3VA+PupqWvg7jdWmwLwkekooJxn586djBo1ilGjRtGzZ0/KysoCx7W1tWl99qpVqxg1ahSjR4/m888/57777mPIkCFMmjQp7r7uvfdeqqur0zBKw8gMm6pq4mpvi2Q6Cijn6datG0uWLAFg6tSpdOjQgV/84heB8/X19eTnp+dnLi8v56KLLuK2224D4KGHHuKtt96iT58+cfd17733cvnll1NcXJzqYRpGRuhdUkRlGGHfu6QoA6PJTkwBpIErr7ySwsJCKioqGDt2LJ06dWqiGIYNG8arr77KgAEDePLJJ7nvvvuora3lhBNO4KGHHsLj8TTpb9GiRdx4443s37+f7t2789hjj1FRUcG9996Lx+Nh9uzZDBo0iC+++IKzzz6bq666ismTJ3PNNdewfPly6urqmDp1Kueffz4NDQ3cdNNNvP766+Tl5fHjH/8YVWXTpk2MGzeO7t27M3fu3Ez8bIaRUqZMGNTEBwBQ5PUwZcKgDI4qu2h1CuC005q3XXwx/PSnUF0N3/pW8/NXXul8duyAiy5qem7evMTGsXHjRt5//308Hg9Tp04Ne83KlSuZMWMG8+fPx+v18tOf/pTp06dzxRVXBK6pq6vjmmuu4aWXXqK0tJQZM2Zw66238uijj3L11Vc3USyvv/46c+fOpXv37vzqV7/i9NNP59FHH6Wqqorjjz+eM844gyeeeIIvv/ySJUuWkJ+fz65du+jatSt//etfA/caRmvAb+e/+43VbKqqoXdJEVMmDDL7fxCtTgFkC9/97nebzeRDmT17NosWLeK4444DoKamhh49ejS5ZvXq1Sxfvpzx48cD0NDQQK9evWI+f9asWbz88sv8+c9/Bpxw2fXr1/PWW29x9dVXB8xSXbt2jfvdDCNXmDi6zAR+FFqdAog2Yy8ujn6+e/fEZ/yhtG/fPvA9Pz+fxsbGwLE/rl5V+cEPfsCdd94ZsR9VZejQoXzwwQdxPV9Vef755xk0yJa7hmGEx6KAWoABAwawePFiABYvXszatWsB+OY3v8lzzz3Htm3bANi1axfr1jXN2jpo0CC2b98eUAB1dXWsWLEi5jMnTJjA/fffj7/mc0VFBQDjx4/nH//4B/X19YFnAnTs2JF9+/Yl+6qGYeQQpgBagAsvvJBdu3YxdOhQHnjgAY4++mgAjjnmGH7/+99z5plnMmLECMaPH8/mzZub3NuuXTuee+45brrpJkaOHMmoUaN4//33Yz7z17/+NXV1dYwYMYKhQ4fy61//GoAf/ehH9OvXjxEjRjBy5EieeuopACZPnsxZZ53FuHHjUvz2hmEkQzp3M4t/hpgLjBkzRkMLwqxcuZIhQ4ZkaERtA/uNDSMzhO5mBieS6c4Lhsfl2xCRReEKbtkKwDAMI0uJtps5FZgCMAzDyFLSvZvZFIBhGEaWEmnXcqp2M5sCMAyj1ZLr6aCnTBhEkbfpfqJU7mZudfsADMMwIDXpoMsrKjO6kzjdu5lNARiG0SpJNh10MgoklYojnbuZzQSUAr788kuGDRuWVB/z5s1zFd9vGG2NRM04yTpQE43A8SuOyqoalMOKIxvNT6YAsgRTAIbRnGSEabIO1EQVSLpDN1NJm1MA6XIK1dfXM2nSJIYMGcJFF11EdXU1ixYt4tRTT+XYY49lwoQJgV2+9913H8cccwwjRozg0ksv5csvv+Tvf/8799xzD6NGjeLdd99NyZgMI9dJRpgm60BNVIHkUiGaNuUDSGeN0NWrV/PII48wduxYrrrqKh588EFefPHFsGmcp02bxtq1aykoKKCqqoqSkpJmqZ0Nw0hOmCbrQE20nkAuFaLJuAIQEQ+wEKhU1W+n81nprBHat29fxo4dC8Dll1/OH//4x4hpnEeMGMGkSZOYOHEiEydOTOq5htGaSVaYJuNATVSB5FIhmmwwAV0HrGyJB6VzaSYiTY47duzI0KFDWbJkCUuWLGHZsmXMmjULgJkzZ/Kzn/2MxYsXc9xxxwUycxqG0ZR0x8HHYuLoMubffDr3XDIKgBtmLIlpOp44uow7LxhOWUkRApSVFMWdu6elyKgCEJE+wDnAP1vieencVbd+/fpAyuannnqKE088MWwa58bGRjZs2MC4ceO466672LNnD/v377d0zIYRhmwQpok4ov2KY+20c5h/8+lZKfwh8yuAe4FfAo2RLhCRySKyUEQWbt++PamHpXM2MWjQIB588EGGDBnC7t27ueaaa8KmcW5oaODyyy9n+PDhjB49mmuvvZaSkhLOPfdcXnzxRXMCG0YImRamuRTVEy8Z8wGIyLeBbaq6SEROi3Sdqj4MPAxOOuhknpmuXXUDBgxg1apVzdpHjRrFO++806z9vffea9Z29NFH88knnyQ1DsMwUk+mo3oaG51Khaefnvq+M+kEHgucJyLfAgqBTiLypKpens6HWo1QwzBiEbyTN0+EhjB1U9yYjpPdEfzRR3DCCc73N96AM890fasrMmYCUtVbVLWPqg4ALgXmpFv4G4ZhxCLU5h9O+LsxHSezie3jj+Gyyw4L/7FjUy/8IfM+gJSQS1XNcg37bY22RjibP4BHJC5HdCK+g+pq+O1v4fjj4emn4eabYc8eCGM1TgkZ3wcAoKrzgHmJ3FtYWMjOnTvp1q1bs1BMIzlUlZ07d1JYWJjpoRitnExn3Qwmkm2/UZW1085Jup9w7Q0NcN558NprzvF3vwu/+IWjCNJJViiAZOjTpw8bN24k2QghIzyFhYX06dMn08MwWjHp3KGfiGJJ1U5et/0sWAAnnXT4ePbs9Dh8w5HzCsDr9TJw4MBMD8MwjARJ1w79RBVLIjt5wymaWP18+CH87ncwc6Zz7tRT4a23IL8FpXKr8AEYhpG7pCvMMtH4/Xg3n0Vy9gJh+xl/dBm33w4nnugI/1tvhX37nFDPlhT+0ApWAIZh5DbpSp6WbCI5t6uPaIomeONaQwOcfTZ8503nmksvhdtug6FDXT0mLdgKwDCMjJKuHfrpLqjux42ief99Z3b/pk/4//vfTpRPJoU/mAIwDCPDJJPvJ1p9j5ZKJBdN0Xz8MZx8shPHDzB+PNTXw1lnpXQICWMmIMMwMk4iO/RjOXnTXVDdTzhnb4G2o/dnYzj+Fuf4N7+BX/4S2rdP6aOTxhSAYRg5iZvooVSlfokWThqsaCp3HWT3cyexd20X1gCTJjkbu448MukhpAVTAIZh5CTJOHnj2R/gJpx04ugyVixqx223lAbuu/kvO7nzxm5xvVNLYwrAMIysw42ATjR66LbyZUxfsB5/kpNY+wNirTQWL4bzLqyj8stSJL+Bwv47KL1gIeW7PZxQkZ2FYPyYE9gwjKzCbRK1RJy85RWVTYS/n5q6Bn7+zNKwzuRIK4qNW+u45RYnXUPll146n7yaPtfOosdFC5G83KgZYCsAwzCyCrc7gxNx8t79xupmwt+PP+tn6IogdKWhDcLWp07i0KYuTAOuuALmtJ+Np9PBZn22VM2ARDEFYBhGVhGPbT/UyesPC42kENwK5GCFExzlc3B9V7Y+fThxz7/+BZdcAmOnCZVVzftJ9Z6DVGMmIMMwsopIQjNPJGoufTemo3gEcmVVDWOnzQHgJyNHU3n/eLY+fRLejoc4+cxqGhoc4Q+ZL16fKKYADMPIKsIJU3BMNKECPXgj2M+fWRoz90+kviOxfnM9//WzQ/z8sh7UV7fjt7+FPVsLePeNYvKCpKd/M1tJkTfQVujNfvFqJiDDMLIKv8nm588sbVaNq6augetnLOH6GUvoUuxl/8F66hqda8JV7oKmZp+Jo8tYuG5XWEdwMNogbPnfsdRu7QxAh+Eb+Nuf87nqzF5Rx36ovjHwfXd1XcrSWqcLUwCGYbQobkI8J44u44YZS6L2s7u6ztXzQs0+c1dtDyv8RUAVar7sxrYZJwbau59bQftjNnH3ux66ljoCPtz405XWOp2YAjAMIyzpqNIVT47+SHH+8RDODh+pz9od7dn0z9MA8HSupmjgdrqeuRx/ocGaugamvryCQ/WNYcefrrTW6ST7jVSGYbQ4yRQ0j0Y8OfrjtdeH4hHhwmObRwmFFo6t31/ArjlD2PToNwDoPHYNZT96m24TDgt/P1U1dRHH31LZR1NJxlYAIlIIvAMU+MbxnKrenqnxGIZxmHSZM9zMkoNXHiXFXg7WNUS110eiQZUnF6znhUUbKfB6qPKZjPx9aX0em58YS932TgB0/dpGik9ahafDobiftamqhnsuGRV3JbFMk8kVwCHgdFUdCYwCzhKRE2PcYxhGC5Auc0asWXLoymN3dR35HsGbFzpvd/B6hOIY0TbVdY3srq5DOSz8a9Z2Z/1fzg4I/27fruCRfwodutQn8lr0LilKKq11psjYCkBVFdjvO/T6PokoesMwUkyyVboi+Q9i1ckNt/Koa1C6FHspbpdPZVUNHhEaVCkrKWLc4FKeX+TeLFW387CdP7/kAO2HbKLzKWvo06WIiaNHA3DDM0uIEFAUluDxpyr7aEuRUSewiHiARcBXgAdV9cMw10wGJgP069evZQdoGG2URAqj+3Hj6I3kXI60wqiqrqPiN2c2abutfBlPLljv6n3qqorYt3Ag+yr6A9DpxM8oGfsfJL8x8L7+8d3xygpXEUYCaasx0FJkVAGoagMwSkRKgBdFZJiqLg+55mHgYYAxY8bYCsEwWoBkiqnE8h9EmyW7XXm4Ff6NdXlsfuwU6nd1AKDDqHWUnLwGT/vawDVdir1NxlPlQvh7RPjLxSNzVvD7yYowUFWtEpG5wFnA8ljXG4aRfhI1Z0TzH8QKLZ0yYRBTnltKXcPhuZ7XI4wbXNokx48bX0TN56Vsf3k0Wuvszu327Qo6DN3U5Joir4fbz21amNdN+Kl/VzJk7yYvN2TMCSwipb6ZPyJSBIwHVmVqPIZhpIZIfgIRuH7GkiahpdfPWMLo385qGl4ass5vaFBmfLyhyX1Rd/Hu6si6u85h23PH42lfS5dxn9LvlzObCf9ITlq34ae5kO45FplcAfQCHvf5AfKAZ1T11QyOxzCMFBDOfwDQGEFq766uY8qzSyPa3huBxobY1t+6Xe3Z++GR7F/WB4COX/uSLqd/iniUgvy8QJqGkiIvU88bGnHmHs78FWlFkM2bvNyQySigT4DRmXq+YRipJdi807nIS57AgdqG2DcCdY3qOrVDKI11eWx65FQa9hQD0GH0l46dv/hwf8E5eqpqYufoCTV/jZ02J6moqGzFdgIbhpE0ofH7VTV1VLsU/omiCtWf9WDTw6cFhH/38xbT7cwVTYR/OOI13+RquudYZIUT2DCM3CZc5E+qQva8eQJCE8dw7fYObH70VADyu+6n61mf0GHEhmapG6IRj/kmmaiobMYUgGEYSZMuW3iZT9AC/OqFT9izuZiq946mek1PANoP20C3s5YhnvjVTe+SorgS3uXaJi83xFQAIvJdVX02VpthGK2baMIyFZk7gynyeppE6Mx4fxNr7h1Hw/5CADoeu5bOY/+Dpygxv0GR18O4waWuM5O2Vtz4AG5x2WYYRiukvKKSIb/+d7MQzuDsoFMmDIqYrycSocLHf3dweKYqvPQS/ODcLgHhXzpxEV3P+NS18PeIMPaors1y9Mxdtd11ZtLWSsQVgIicDXwLKBOR+4JOdQISy5hkGEZaSXUO//KKSqY8uzRQdSsYf3Wuu99YzbjBpTTLsxyDxpBjxRHO828+HYBPPoGRI51z3m71dD9vMe2HbI77HRpUWbx+T7OY/0gFZ3I9tDMeopmANgELgfNw8vX42QfckM5BGYYRP/EUWwm+J5rCuPuN1WGFfzCVVTWuc/LEorKqhuXL4frrYe5cp+2734UNIxeyeV91wv2GS2WdbMK71kBEE5CqLlXVx4HhwJOq+rjv+CWcVM6GYWQRd7yyIqxJ4+fPLGXgzTMZO21Os4LqsYq+tORsWOvz2HD/GQwfDrNnw7XXwq5d8MwzcNO3jk6qOAw0f5fWGtoZD258ALOAYJVYBLyVnuEYhpEI5RWVETdSNaiGFfBuqnO1xGxYFarXHMGmR75BY3UB4Nj977kHunRxrgnOtZ8ooe+Si/n7U42bMNBCVfXn7UdV94tIcRrHZBhGFMKZbdw6LoNNIW6KvkyZMIjrYxRnT4barZ3Y/NgpAHi776X0wo95+Nbe3PXGaq57v6lZyv+JtCs3GpFm9q0xtDMe3CiAAyLyNVVdDCAixwJtx0tiGFlEJDt/6Ew+GpVVNRx1y2sRN2q1xKy/dmsndv57BLVbOyH5DRQduY3u51fQoTCPW17YGdWPES7XkNcjtG+Xz56aOnr7CsXMXbW9VW3aSgduFMD1wLMisgnHz98TuCStozIMIyyRzDb+KlluiXStf6bsX2WkMrYfHDv/xodOp7HGMfV0PO4LSr7+H/IK6/F6BK8nj6qapqYsvx8Dms7YW9uu3EwQUwGo6sciMhjwr59Wq2piuy8Mw0iKSGabBlWKvJ64VgKheES48FhHiMa7qoiFKlSv7snueUMCwr/HRR9RdNT2wLPvvmhkxNDM0Pz7bd10kyrc7AQuBm4E+qvqj0XkqyIyyFI3G0bLEyl0UYALjy1j7qrtCc/aG1R5flElMz/ZnFLhf2hLJ7Y87rPzl+6l28UfUjRwR+B88K7faKuOYAe1zf5Tg2iMZaOIzMDZB3CFqg7zKYT3VXVUSwwwmDFjxujChQtb+rGGkTWUV1Ryw4wlYe33/k1UoX4CcBRES9dTPbSlE9ufH0PD/kLyimop7L+T7udWIEGxhx4RTjyyCwu+2E2DKuLkfYtYOwBottIJTRthNEdEFqnqmNB2N2GgR6nqn4A6AFWtJu49f4ZhpIKJo8siCnK/eWji6DIuPLYMjy81pkeEr/Ro30IjdPLzb7j/DLY8fgoN+4voOGYtZf9nHqXnNxX+4Kw65n++K+CTUHWEfyQB4xFp8+kbUokbJ3Ctr2SjAojIUdhGMMPIGGUxdrCWV1Qy46MNAaHaoMp/th1I+7hUoXplb3a/PSgQz98jxNwTD+Fm+pFMU20pfUMqcbMCuB14HegrItOB2cAv0zoqwzAiEmsH69SXV8RM35BqDm3qzPo/n82OV0bjKarjiO99QP+bZkYV/tHMCAphN2lF2gjWltI3pJJoyeDGqup84B3gAuBEnL/ZdaqamEo3DCNpIoVBglO6MDSMMp0c2lTClidPAs0jr/1Bio/aRtcJy5qZesIRTUV5RCJG+oT6N9pa+oZUEs0EdB9wLPCBqn4NmJnKB4tIX+AJ4AicfwsPq+rfUvkMw8hm3GTuDK2zKwJV1XXNrg/n+E0njXV5TinG/c7Mu8OodXQ5bSV5Bal5/vdO6Bu23fYApJaIUUAisgD4BJgI/Cv0vKpem9SDRXoBvVR1sYh0xIk0mqiqn0a6x6KAjNbCbeXLmL5gfZNZcGg0Syyh7o/s6VLspaqmjjj2gSWMNsKB5X2oeu9oGvY5wv+ISxdQ2H9nSvr3iPC9E/ry+4nDU9Kf4RApCijaCuDbwBnABJqmg04JqroZ2Oz7vk9EVgJlQEQFYBitgfKKymbCH5rm6SmvqOTnzyyNurvXfyZSErhUc6iyhG0vHkvjgULaHbGH7udWUNh3d8r6Dw5jHTttjs3wW4BoCmCKqt4kIv18aaDThogMAEYDH4Y5NxmYDNCvX790DsMwYpKKgit3v7E6ov27sqqG0b+d1WJC3Q0HN3Zh6/SvA+DpcIVjRGMAACAASURBVJCOY76gy+kr4yrAHky4Iu/BKSjaepnGliSaCWgZMAJY5PMBpGcAIh2At4E/qOoL0a41E5CRScKZZEKTkLlRCANvntnim7ISobHWw+b/dwr1Vc4egvZDN9L1zOXktUvczl9S5GXqeUOB8Hb8SJk+gyuFGfGTiAnodWA30EFE9gb3BaiqdkrBoLzA88D0WMLfMDJNuERsdQ0aiLpxO1tNdQH1VKONsH9Jf/Z88JVAHd4jLns/LnNPmYuMnOF+Izcpqo3UEVEBqOoUYIqIvKSq56f6wSIiwCPASlX9a6r7N4xU40YIhSs9GEq4dMbZwsGNXdj52gjqd3egXa/ddD9/MYV94rfzJzpbtzKNLUu0fQCDVXWVqp4vIgWqeijo3ImquiDJZ48Fvg8sExF/CsBfqeprSfZrGGnB7cw9lqLwK4d0FlqJl4Pru7L16ZMA8HSoofPX19D55P8kbOePRjQ/SjjlaHH+6SPado2ngr5/EHLuoWQfrKrvqaqo6ghVHeX7mPA3spZwO3DD4Wa2OnF0WVLlDYMpKymiyOtmU39zGg952PTINwLCv+grW+n947cpOSVx4V9S5I14LlYdYivT2LJE8wFIhO/hjg2j1RO6Camk2Mv+g/VN0i64ma0GF1sJzdLpzZO40zgcOFRPXpzSWhuFvR8NZN/CgTQccOz8PS+fT0FZVVz9hJIHASdvOKLVIfb/vpbrv+WIpgA0wvdwx4bRJggVTvGGhYZGEimHN3SVBdX3jcdJHG/qh4MburLrzaHUbe9Eu167Kb1gEQW9kxP8fjye6IrInLzZRTQF0EdE7sP59+n/ju/Y1LNhEP9sNdwM2C/8gx2nkXL+J0PNl93YNuNEADwda+gy7lM6Hrc2YVOPCM12H9c1aFQnuDl5s4uoG8GCvocG31swvmEkQLQZcPBqIpXCv/FQPltnHE/t5i4AFPTbSY+LPiLP25hwn2UlRQnN5s3Jm11ECwNN6+5fw2iLRIskSnVUkDYKVe8dzf6lfQP5+Xt+/z0Keu9Juu/KqpqYdQnCYcncsgs3BWEMw0gB5RWVVNfWhz2XanPPwfVd2TX7GOq2daZdzyq6XvQxBb2SF/zBjBtcyoyPNjRxWnvzJOZsPlQJ+Kt5mRJoeWLWBM4mLBWEkatEyuyZ6lq9+yr6sWuWk0nT06mazid9RoeRG1zb+fMkej3eYLx5QiPQEHSDJ0/oWBA9NUa438Lq+qaXhGsCi8hYN22GYUQmnPMXUif86/cWsu6ucwLCv12v3fT+0dt0HJUe4Q9Q16hNhD84yqCqpi5sjL+faKGgRsvixgR0PxCaDC5cm2EYYbitfFnacv9ofR7r75kAjYfncqUXfUzxUdvi7qtRndoCqcxEGi41hoWCZg/RUkGcBHwdKBWRG4NOdQJib4c0DIPbypfx5IL1aek7OKwToOuET+g4akPC/XlE0lJUJlSwWyho9hBtBdAO6OC7pmNQ+17gonQOyjBynfKKSqa+vCIt9Xn3fjyQ3XOOCRwXfXULpd9ZlHTengZV9kQZb5HX08R049ZkFCrYLRQ0e4gWBvo28LaIPKaq61pwTIaR05RXVHLjjCUkHmUfnrqqIjb94/BmMW/pXnpdMR/JT92TSiKYgIJ3KfvrE+85GFu5hRPsFgqaPbjxARSIyMPAgODrVdWqMxhtgtB0D7Hy3N/ywicpFf5an8f6v5zdpK3HxR9SNHBHCp/isP9gPV6PhK3W5d/17I/iiWYuEogq2C3fT3YQMwxURJYCf8epCxxYs6lqyusEx8LCQI2WIFjgh0v4Fo4uxV5uP9dJgpbKDV01a7uz7ZkTAsfdvrWEDsMro9wRnSKvh0JvXlRHb0mRl/YF+REVXKSqXX6self2kUhFMD/1qvo/aRiTYWQdoTHqbiNidlfXpVTw7/nwSKrmDQFAvPUUH72FbucsTcjO7xGhUTUgzIGoBWn21NSx5PYzI/YXLVrHbPm5hRsF8IqI/BR4EQgUhVHVXWkblWFkiEjx+i1F3e5iNj08LnDs7baPXle+l5Sdv1GVtdPOadb+82eW0hDGAhArGidSFI9HxDZz5RhuFMAPfP8NTg6nwJGpH45hpI54UzVD5mLRG+vy2PDXpnb+Iy5dQGH/nUn3HU6g+3+HRKJxIkXxmPDPPWIqAFUd2BIDMYxUEmrKydaC7apQ80UPtj93XKCt+7kVtD9mU9x9hQvLjCbQE43GsSie1oMbJ3AxcCPQT1Uni8hXgUGq+mpLDDAYcwIbbonkqIzloAyXp8brEdq3O5zfZtzgUl5dujnpGP+q+V9hz3uOcPZ0rKHoqG10PXN5QnZ+/3slsuoxWj/JOIH/H04E0Nd9x5XAs0DSCkBEHgW+DWxT1WHJ9mcYfiKZcip9effDJSgLjvwpyM9rIvDnrtpOVU0dW/Yc5MkF6+lSHLnubSzqdrZn0z9PCxznd91P76veQTyJbcMVCMzyLbzSiAc3CuAoVb1ERL4HoKrVIsnuOQzwGPAA8ESK+jMMILopJ9QUFC7yp8jr4Z5LRgEw5bmlgbh4v9M0kXw5jbUeNtxzVpO2Iya9T2Gf3a77CM0eKsCkE/uZ0DcSwo0CqBWRInz/7kTkKIKigZJBVd8RkQGp6MtoHaTKhBHOUeknNEFZtOyU1bX1TTZFJYIq1KzpyfbyYwNt3c9fRPvBW+Luq3OMGH3DiAc3CuB24HWgr4hMB8YCV6ZzUMGIyGRgMkC/fv1a6rFGBkjUcRuOiaPLWLhuV8REbMEmokgrhVQ4g3e/czR7P/gq4Jh6ir+6lZJTVyWctyc4Rt+vLG+YsSRq7n3zCRiRcBMF9KaILAZOxFlxXqeqqd+DHvn5DwMPg+MEbqnnGi1PtJl4vEKrvKKS5xdF3jHrD40sr6hMeVEWgNodHdj8yKmB4/ySA0nZ+f30LimivKKSO15Z0cQMFU5ZplKhGq0TtyUhy3BSQOcD3xARVPWF9A3LaIukMk98rA1dBw7VB2bHqS3A7mHDvU3t/D2/P5+C3lVJ913k9TBucGlKTFumAAxwoQB8kTojgBUQyHGlgCkAI6Ukmyc+2NwRS6hX1dRFTYcQL6pwYEUZO2eOCrSVfmchxUdvTUn/AHdeMDymYgtWllZ4xYiFmxXAiap6TOzL4kdEngZOA7qLyEbgdlV9JB3PMrKfZPLER6q5G41UCf/dc4aw92NnY7y32z7aD6uk84mfp6RvP2UlRUwcXcYNMfINBStLK7xixMKNAvhARI5R1U9T/XBV/V6q+zRyl2R2mGYih0/t9o5sfvQbgWNPxxp6/fDdpO38oQQrwWjhraHK0gqvGLFwowCewFECW3DCPwVQVR2R1pEZbZJENzK1pFmj8VA+G+6d0KSt5w/epaDn3qT7LvJ6uPDYsoj1BiKFtwpw4bFNfztL2WDEwo0CeAT4PrAMUl7kyDBSQkvk8FGF/Uv6sWvW4U3rpRd+TPFX4ivA7hGhQZUyF8VlQvGfC40CUuD5RZWM6d+1mRIwgW9Ewo0C2K6qL6d9JIaRBOMGl6at+DrArreOYd8iJy9iftf9dDpuLR1Hxfc8r0e4+6KRSQvkiaPLuPuN1c12I1uEjxEvbhRAhYg8BbxC03oAFgVkZA1zV21PS7+1Wzux+bFTAsd5xYfo/cN3E8rPX9egKRPQFuFjpAI3CqAIR/AHlwiyMFCjRQi3kxVokrhNlaQzc4bSeDCfDX9raufv9cN3aNdjX5M2/4ZeCZOKORypEtAW4WOkAjcK4J+qOj+4QUTGpmk8hhEg3E7WKc8tBSVQozeRpGzRUIW9Hx7J3g+PCrT1uOgjio4Kv8IIJIx7dimNMVKrQ2wB7TZ1g0X4GKnAjQK4H/iaizbDSCnhQjuTTcwWjZ2vD2f/UifflKdTNd3HL6f9MZuj3jNxdBljp82JWTQeDu/kHTttTlgBH0/qBovwMVJBRAUgIifh1AAoFZEbg051wkkLYRhppaXs2Yc2d2bLEycHjqVdHWWT57mO5482zrKSooCAHje4lOcXVUYU8PGmbrAIHyNZoq0A2gEdfNd0DGrfC1yUzkEZBqQ/tDNcPH+v/3qbdt33u7q/yJsHRB6nv1CLX0iPnTYnqoA3x67R0kRUAKr6NvC2iDymqutacExGGya0Mpc3T1yZV+JBFareGcSB5X0CbT0uWUDRgPgKsNfUNTLqjll8e2Qvpi9Y3yz/kEKT2XssAW+OXaOlceMDqBaRu4GhQKG/UVUjF1Y1jAQIV5nL65GUpmve8doIDizrC4AU1LnayNWl2EttfSMHapunmqiqqeP5RZURxxcs9GMJeHPsGi1NnotrpgOrgIHAHcCXwMdpHJPRRonk9E2F8D9UWcK6u84JCH/yGul7zZthhb8/tLOspIh7LxlFxW/OpDqM8PdTU9eAJ0KFl+DZ+5QJgyjyNnWfBQv4iaPLuPOC4ZSVFCG+5995wXCz8xtpw80KoJuqPiIi1wWZhUwBGCnDb/ZJh70/XH7+3j+ei7drdbNrBSJG08TyRzSoUuT1RJ29u4ncMceu0ZK4UQD+QOvNInIOsAnomr4hGW2FcJWtwtG+nSes+SUa2gi73hhOzRelgbYjvvcBhf12hb3eI8JfLo6cpiFajWFwZutTJgyKGZZpAt7IJtwogN+LSGfg5zjx/52AG9I6KqPVE0/+/niF/46ZI+N28DaoRi2X6K8xPP3D9YTu9/LP9OMR7lar18gG3NQEftX3dQ8wLr3DMVobkQRdOvL3H9zYha3Tvx7UovSb8m8kz50XIVrMvb/GcKjw71Ls5fZzh8YlvK1Wr5EtuCkJeTTwP8ARqjpMREYA56nq79M+OiOniSToFq7blVJ7f2Othw33NLXzl/1kNvmdDsbdV6RQzUgKq7hdftxC22r1GtmCGxPQ/wWmAP8AUNVPfNlBTQEYUYkk6KanKG2zNgrby79G7aaSQFs0O78bIsXcp3KTlm34MrIFNwqgWFU/kqZhbvVpGo/Riogk0FIR1rlj5ggOLO8bOD5i0vt0O3Jv3P6CYKLF3Kdyk5Zt+DKyBTf7AHaIyFH4/r8VkYuA6BmyXCIiZ4nIahH5TERuTkWfRmYor6hk7LQ5DLx5JmOnzaG8ojItAu3g+q5OPH+Q8O83ZSaFfXbHJfz90xl//H6smPtYMfzxkMq+DCMZ3KwAfgY8DAwWkUpgLTAp2QeLiAd4EBgPbAQ+FpGX01F83kgv5RWVTHluaSBTpz9t8yXH9W2S/AxIeFevE88/gcOiG/r895t42tfG3VdJkZep58XnuE1l9k3L5GlkC6JRcpj7hPRdqvoLEWkP5Knqvog3xPNgJ9voVFWd4Du+BUBV74x0z5gxY3ThwoWpeLyRQkb/dlbYWH5/hIx/k5e/Fm48aH0eW585ntqtndBaLxB/3h6/0ikzQWu0UURkkaqOCW2Plg46X1XrReRkAFU9kOIxlQEbgo43AieEGcdkYDJAv379UjwEIxVE2si1u7qO62csIc83aY9X+Afn7QHo+f35FPSucnVvl2IvVdV1Nrs2jChEMwF9hFP0pUJEXgaeBQJKoKVqAqvqwzgmKMaMGZO+aiBG2og3mWfNF93Z9mzTuUC/X84kQrqdsBS3y6fiN2fGvtAw2jBufACFwE7gdJyVtH9FnawCqAT6Bh338bUZOUZJkTclNXkbD+Wz4f4zoMHnIPU00Odns/EUxd+3hVQaRmyiKYAevkpgyzks+P2kYib+MfBVERmII/gvBS5LQb9GCzP1vKFMeXZpwnn7tT6PLU9+ndqtnQNtPS7+kKKBOxIek4VUGkZsoikAD05FsHAL76QVgM+/8N/AG75nPaqqK5Lt10gN8eSq8bdPfXlF3CuBna8PY//S/oHjnle8R0GvPYkPHAupNAy3RFMAm1X1t+l8uKq+BryWzmcY8ZNIrhp/fh+3CqB6zRFsfzEoKEGUflNec2Xn9+YJHQrzA07ecYNLmbtqu4VUGkacRFMAcbjcjNZEorlq3NjdGw/ls/Gh0wMhndKunrKfzMZT6G5zeft2Hr7ztTLmrtrO7uo6tuw5yJML1lNWUsQ9l4wywW8YcRBNAXyzxUZhZBWxctUEm4c6F3mpawhfLjGYxro8Nj/6Deqr2gfaErHzV9c1NNlc5g8ttYyahhE/0YrCJ55Ry8hpouWqCTUPuTH57HpzKPsWDwgc9/zBuxT03JvQ2FSJmEbaMmoaRny4CQM1WgluHbvRipPHk8d///Iyds4cFTiW/Ab63vh6XPH88RLLDGWFWAzjMG6SwRmtAP/MvbKqBuWwyaS8ovnWC39x8i7F3qBW5Y5XVrjK499wMJ+ND3wzIPzzimq56N6PaKzz8LdLR1GWxhDNaOGfbn+DcIntDKM1YiuAHCHZmatbx25wgXZpcm0jNXWNUZ/RWOuh8h/jaKwuCLT1uvRDrrqkmDH9yxg7bU5g/Oli3ODSiOfc/AZWrctoS5gCyAFSIZTcFCEpr6hssqErns0eu946hn2LBgaOe135LkcMrKG4XT5PLtjBk0FFYFJZDSyUuau2Rzzn5je445UVVq3LaDOYAsgBUlFCsHOEdA2diw6beX71widx7+bdu2gAu98aGjiWgjr6XjcLEdhdHTlRXLqI5gOIVYilvKIy4ngttYTRGjEFkAOkooRgJMfr3oN1DLx5JiXFXqpjmHiCaajxsuV/x1K/2wnr9LQ/SO8fzyOvILWF3uMlmnkpmnMbHEWbSL+GkauYAsgBUlFCsCrCzNY/4Xc7U288lO8rzHKYIy77gMK+8UcN54kT1hluzVFS5OVQfaPriCOInQIiViGWaArVUksYrRFTADlArJmrGyIpkXgIjefvddU7tCtNvD5Qo4LXI6A0MT0VeT1MPc8xKwUL69CUD4mkgJg4uiziNZF+o5Iir9n/jVaJKYAcIBUlBMMpEbfsWXAkVW8PCRx7Ohyk7KezUxLPX9egdCn2UtwuP+y7taTgjaRo/crIMFobpgByhGgz12AihYuGKpE8F+UZG6q9bHv2eGq3lADg6VRN7/96h7x2zZVIMjUBqqrrsqJ4i9XqNdoapgBaEbHCRYMVwW3ly5i+YH1Y+3vjwXw2/M1v53euiJa+oemGsfjJJgerW0VrGK0B2wnciogWLhpMeUUlzy+qbCb8VWHn68ODhD/0uupd+t80M6Lw93qE288dGtHJDM7qoMjrCXvOcvcbRuawFUArwm24aDhFUTX/K+x577Agbte1mp4/mhvRzi8QcMTe/cbqiJvGBJo4dCuravD4zE9lZmIxjIxiCqAV4TZcNFghNFS3Y8fLozm4rjsAhd2qeezlKi75em/GTgvfn19w3/HKiiY7fEMRYNKJ/TLi0DUMIzamAFoRbsNFe5cUsX5zPRvv8zlepRHx1jPyZwupuOdEoDhqf+MGl8aMKMql2b1lCDXaKqYAsoBUCSA3USyqUPD+CWx85XBhlp5XzKek7wFuv2C4q/5ipYQWYP7Np8c9/kxgyd+MtoxojFDAtDxU5LvAVGAIcLyqLnRz35gxY3ThQleX5gyhAgicWfadFwxPmQC6rXwZT3+4gZ3zj2LPu4dXA0U99nPED9+OW+kMvHlm1ERxZSVFOaMAxk6bE9HMlSvvYBixEJFFqjomtD1TK4DlwAXAPzL0/KwhFYneonFb+TIen72FnbO+Rs2angB4u+/jxgfXMe3iYcA5cfcZbVdxrkX1pCLPkmHkKhkJA1XVlaoaOfNWGyKdAmj7dvjDd4az8YHx1Kw5gvySA/SePJfe//UOz1SsS7jfKRMGhQ3rLCnypnTl0hJE2oOQTXsTDCNdZL0PQEQmA5MB+vXrl+HRpJ5UJHoLRRUmTYKnnz7c1vPy9ykoqwocN6pjfkqXrwFyw7maijxLhpGrpM0HICJvAT3DnLpVVV/yXTMP+IX5ABLzAQRX7/LH1mvFYNbPOipwTbuee+j1g/fC3p9OO3dL+DZSRS4oKsNIhhb3AajqGenquzWRaP6ZUAF7aE8Bu+cNpnqlc9+Rg2v5dEk7fvfv9Ty5IHwf6bRzp9u3kUos/YPRVsl6E1BbIBEB5Bew9fsLqHzwsK4t6L2b7udV0LM/FBSczpj+XSNu1kqnnducq4aR/WREAYjId4D7gVJgpogsUdUJMW4zOGyu2Li7hh3lX6N6Ta/AuSMue5/CvrsB2FR1eJUQjnTbudPh2zAMI7VkRAGo6ovAi5l4di7jF+hb3utP1bzD+fkL+u6k52VN7Ty9S4oibtjyiKTdFm/OVcPIfswElEP84dm1bHh5GAdW9AGgXa/d9Jz0AeJp6sj3C9obZiwJ20+jatpt3pZb3zCyH1MAOcDOnTBwIOzbdzJ4Gig6aitdz1xOfqeDza4NzsHjjxAKpaXMMOZcNYzsxhRAFqMK//oXXHbZ4bbeP3obb0lzoS7A2mlNd/WaGcYwjGiYAshS7r8frr3W+T56NFx+OTyxb1bEsovhZvVmhjEMIxqmANJMvJuMNmyAW26B6dOd45/ctpslRRXcv60magK2SLN6M8MYhhEJUwBpJJ5Uw9u3Q48ezveCAvj+9+G0yzdz97tLqdkbOfUyODl4TMgbhhEvVhM4jbip0dvYCE8+eVj4A6xaBU88AY8sXhk17z44Nn1/yUXDMIx4sBVAArg168TaDXvPPXDjjU7bmDHws5/BlVfGvh8O1+Q1m75hGIliCiBO4jHrRNoN240SLrvscLbOBx6An/wE8kLWY5Huz4ViJZZgzTCyHzMBxYkbs46f0Lz5DQfase6uc1h011hefBH++79hyxZn5v/y0krGTpvDwJtnMnbaHMorKsPm3c+FME6/kqyschzXfiVZXlGZ6aEZhhGEKYA4iSfJ2cTRZdx5wXB6dyriwLIyNj4wPnBu9Won1POIIyILTIA7LxhOWUkRgjPzd5smOlSZtCTxKEnDMDKHmYDiJN4kZ2veLOODWx2BffzxcNNNcMEFTa+JJjDn33x6XKaTbChybplADSM3sBVAnLg1y6xdCxdf7Ah8gD/9CT74oLnwh9QKzGyYfVuZRcPIDUwBxCDUnALRzTJbt4IIHHkkvPoq3HwzbNsGU6Y0d/L6SaXAzIbZd676LgyjrWEmoChEMqfcecHwZlE4DQ3w+ONw3XWH29asgT59Yj8nlTl7siEPv6WgMIzcwBRAFNyWNbzzTvjVr5zvJ50Ed9wB48fjmlQKzGxJAGcpKAwj+zEFEIVY5pQvvnBMOy+84LTffrvzEYn/WakSmDb7NgzDLaYAohDJnNI9v1NAyLdvD7/7Hfz0p9C1awsPMAI2+zYMww2Zqgl8N3AuUAt8DvxQVasyMZZohJpTtBFqV/RnzfuHyzGuWQO9e2dqhIZhGImTqSigN4FhqjoCWAPckqFxRMW/kauspIg9C45i/d3nsOW1YYwY5uG995yCLSb8DcPIVTJVFH5W0OEC4KJMjMMNQzuUUbqgjKq3neObbnKcvonY+Q3DMLKJbPABXAXMSFfniSYl27ULunVzvnfoAH/8I1xzjfPdMAyjNZA2BSAibwE9w5y6VVVf8l1zK1APTI/Sz2RgMkC/fv3iGkMiaRHq6+Gf/4Rf//pw2+rVZuoxDKP1kTYfgKqeoarDwnz8wv9K4NvAJFWNWO1QVR9W1TGqOqa0tDSuMcSbFuHuu8HrdVIzH3MMfPyxY+f/aGtmk6sZhmGkg0xFAZ0F/BI4VVWr0/WcWHH8fvPQl5/nUTN/KLtXOgrmhhvgL39x7PzZkFzNMAwjHWTKB/AAUAC8KY43dYGqXp3qh0RLi1BeUckvp6/kP385AwBpV0fp6at54A8duPjEw4Ld7W5gwzCMXCMjYaCq+hVV7auqo3yflAt/iJyU7Ppxg7hx6n4+f+gbgfbe//UOxcd9xt/mNTUPZUNyNcMwjHSQDVFAaSNcWoTBO77GxSeWAFDQbwddv/kp7XrsC9wTKtizIbmaYRhGOmjVCgAOp0X45BO45RZ49DWnvdfXN+A9+ZNm8fyhgj1bkqsZhmGkmjZRD+B//xdGjoS334Y//xkOHoSHHsijuF3snPXBu4HjKctoGIaR7bT6FQDAoEFw7LHw7LMwcKDTFk/WTEuuZhhGa0SihOBnHWPGjNGFCxdmehiGYRg5hYgsUtUxoe1twgRkGIZhNMcUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhvFFIBhGEYbxRSAYRhGG8UUgGEYRhslpzaCich2YF0GHt0d2JGB56YSe4fsINffIdfHD23zHfqrarOKWjmlADKFiCwMt4sul7B3yA5y/R1yffxg7xCMmYAMwzDaKKYADMMw2iimANzxcKYHkALsHbKDXH+HXB8/2DsEMB+AYRhGG8VWAIZhGG0UUwCGYRhtFFMALhGR34nIJyKyRERmiUjvTI8pHkTkbhFZ5XuHF0WkJNNjihcR+a6IrBCRRhHJqTA+ETlLRFaLyGcicnOmxxMvIvKoiGwTkeWZHkuiiEhfEZkrIp/6/h1dl+kxxYuIFIrIRyKy1PcOdyTVn/kA3CEinVR1r+/7tcAxqnp1hoflGhE5E5ijqvUicheAqt6U4WHFhYgMARqBfwC/UNWcKA8nIh5gDTAe2Ah8DHxPVT/N6MDiQES+AewHnlDVYZkeTyKISC+gl6ouFpGOwCJgYo79HQRor6r7RcQLvAdcp6oLEunPVgAu8Qt/H+2BnNKcqjpLVet9hwuAPpkcTyKo6kpVXZ3pcSTA8cBnqvqFqtYC/wLOz/CY4kJV3wF2ZXocyaCqm1V1se/7PmAlkFPFvtVhv+/Q6/skLItMAcSBiPxBRDYAk4DfZHo8SXAV8O9MD6INUQZsCDreSI4JntaGiAwARgMfZnYk8SMiHhFZAmwD3lTVhN/BFEAQIvKWiCwP8zkfQFVvVdW+wHTgvzM72ubEGr/vmluBepx3yDrcvINhJIOIdACeB64PWdnnBKraoKqjcFbxx4tIwia5/NQNBVfCzwAAAgRJREFUK/dR1TNcXjodeA24PY3DiZtY4xeRK4FvA9/ULHX+xPE3yCUqgb5Bx318bUYL47ObPw9MV9UXMj2eZFDVKhGZC5wFJOSctxWAS0Tkq0GH5wOrMjWWRBCRs4BfAuepanWmx9PG+Bj4qogMFJF2wKXAyxkeU5vD50B9BFipqn/N9HgSQURK/RF8IlKEE1iQsCyyKCCXiMjzwCCcKJR1wNWqmjOzOBH5DCgAdvqaFuRSFBOAiHwHuB8oBaqAJao6IbOjcoeIfAu4F/AAj6rqHzI8pLgQkaeB03DSEG8FblfVRzI6qDgRkZOBd4FlOP8fA/xKVV/L3KjiQ0RGAI/j/DvKA55R1d8m3J8pAMMwjLaJmYAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADMMw2iimAAzDMNoopgAMwzDaKKYADCMJROQ4X42FQhFp78vRnpPpko22h20EM4wkEZHfA4VAEbBRVe/M8JAMwxWmAAwjSXz5fT4GDgJfV9WGDA/JMFxhJiDDSJ5uQAegI85KwDByAlsBGEaSiMjLOFW+BuKUHMy6WhGGEQ6rB2AYSSAiVwB1qvqUr/bv+yJyuqrOyfTYDCMWtgIwDMNoo5gPwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo41iCsAwDKONYgrAMAyjjWIKwDAMo43y/wEIBoSo5RCemAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AWpMuY_49cGg" - }, - "source": [ - "# 4. Interpretation" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "PkjmyQgj9cGg" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "S53DNzMd9cGg" - }, - "source": [ - "#### Fit any CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "XoHzf8Lo9cGg", - "outputId": "e5b36880-2294-4fbb-d4f7-b4e2535f1d9b" - }, - "source": [ - "from econml.dml import NonParamDML\n", - "\n", - "est = NonParamDML(model_y=RandomForestRegressor(min_samples_leaf=10), # Any ML model for E[Y|X,W]\n", - " model_t=RandomForestClassifier(min_samples_leaf=10), # Any ML model for E[T|X,W]\n", - " model_final=RandomForestRegressor(max_depth=2), # Any ML model for CATE\n", - " discrete_treatment=True, # categorical or continuous treatment\n", - " cv=5, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability\n", - "\n", - "est.fit(y, T, X=X, W=W, cache_values=True) # fit the CATE model" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 61 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2N5UElbB9cGh" - }, - "source": [ - "#### Interpret its behavior with a single Tree" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "YnMz_1Hr9cGh", - "outputId": "cbca0155-0c49-424b-9366-c0496df4e3b5" - }, - "source": [ - "from econml.cate_interpreter import SingleTreeCateInterpreter\n", - "\n", - "intrp = SingleTreeCateInterpreter(max_depth=1)\n", - "intrp.interpret(est, X)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 62 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "JVQosW2K9cGh" - }, - "source": [ - "intrp.export_graphviz(out_file='cate_tree.dot')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 248 - }, - "id": "Rvq9jg649cGh", - "outputId": "b43e7d52-09d1-45cd-b21f-08d2f51cfa55" - }, - "source": [ - "intrp.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1RURxvA4d8ufelVelFsqGBBxYbGrlFJ1MRu1MRYYotJTKxRY43GRGOJ+tl7772h2LtiwQpSRIogSF/Y/f5AV1eqbRGd5xzOkXvn3p3B5WV27sw7EqVSiSAIgqAZ0qKugCAIwqdEBF1BEAQNEkFXEARBg7SLugLC25FIJDLABdAr6roI710mEKFUKuOLuiLCm5OIB2nFk0QicTE0NpybkZ7RyNjMJENXT1f8R37kMuWZJMQ90dPT17uSlJg0RKlUnirqOgmvTwTdYkgikdjpGehfatujvVXrrl9omZiZFHWVBA1JS03jxP4A5o6flZKelt5QqVSeKeo6Ca9HDC8UQ9o6Ov3qt2xg3mVAd62irougWfoG+jTya4I8Qy5bOuN/k4GGRV0n4fWIB2nFkJ6+bpdGfk11i7oeQtGp17w+aalpdSQSiUFR10V4PSLoFkPyDLmNg6tDUVdDKEKGxoYYyAzkgHVR10V4PSLoFkNKpVJLW1uMDH3qpFpaSsQQYbEj/sM+Eb92H0pGupy/1sxEKn3xt3bT4vWs/HcZs7cuwMHFgb9HTOPQtgMAdOrflS4/dFeVvXr2CoumzSf07gNKOJSgU79u1P/8M9X5o7uPMO2XyQB4VKnAnyv/1lDrCu/pk0TmT57LmSOn0dLSwrdFfXr98j36Bvp5XiPPkLN85hJuXr7BvRt3MDE3Zdnh1WplsrKy2Lx4A2f9TxN6PxQtLS3KeZWn50/f4VTSWVXuduAtdq3ZzrULgTyJjcfGvgTN2regddcv0NISQ/SfAtHT/UT0HTmAezfvsH/jHtWx2KhY1s5bRdse7XFweTFc4VqmJNNXz6RZuxaqY+HBYYzrNwrX0m6M+28iPo3q8NdvU7ly+pKqTJXa1Zi+eibevjU006g3MHnoBG4H3uKnKcPoP2Ygpw6dZO74Wflek56WzoHN+zA0NsTdo3SuZTLSMti0eANlvcoz7M/hDJnwEylJyfza/SfiY+JU5Y7vO0pUxCM6fN+J3+dNoJFfE1bMWsrq2cvfaTuFD5fo6X4i3MqW5PNObVg+cwl1mtbD2MyERdPmY2xmwtd9OquVlRkaUM6rvNqxzUs2Yutkx+AJPyGVSvGsWZnQuw9YN381Xj5VADAxM8HEzARTc1NSnia/VX0z5ZnEx8ZhbWfzVvd52Y2L17l65jIz1v5LmUplAdDW1mbyj3/QZUB3SjjY5nqdkYkRa05uRCKRsGrOcvZv2pujjK6+Lv/buxQjU2PVsYrVPenZuCuHth+k/bdfA9Du2w6YmpuqynjW8EIul7Np0Xq6DuqBRCJ5Z+0VPkyip/sJ6TrgG6RaUpb9s5grpy8RsOcovX/ri55+wYvZLp44R+0mddWGJuo28+X6xWukpaa9szpGhISzePpCejTqzP7NOYPb27hw/Bw29iVUARegRgMfdHR1uHTiQr7XFhQMtbS01AIugMxQhq2jLVERj1THXg64z5UsV4q01DSePH5SmGYIxZzo6X5CDI0N6Tn0O2aOnsGFgHN4+9agVqM6BV6XlpJK7KNYHN2c1I47ujmRlZnFo7BIXMu4vXG9MtIzOLH/GPs27eXauavYOdnTussXNG3bXFVGqVSiyFLkfyMJ+Y6LRoSE52iDto42to52hIeEv3H985KUmER4cBj1P89/Km3QlZsYmhhhYi4WuXwKRND9xDT0a8LqeSuJCn/EhMV/FuqapGdDBUbGRmrHjUyyv09KfPpGdQm5Hcy+jbs5suMw8owMajWuw6TFf1KphleOnuWhrQf4Z9T0fO9nY1+CxQdW5Hk+KfEpxrms3jMyMSIpMemN2pCfpX8vQltHh0Z+TfIsExn6kB0rt+LX7UvxIO0TIYLuJ+bKmctEhT9CIpFw/UKg2gM0TXo+S6KUhzvdBn1D/c8bqoJ4bmp85sPf62bne08dXZ13Xc03dmTHQfZt2M3Pf/6W65ACQGpyKpN//AN7Fwc69O2i4RoKRUUE3U9IpjyT/ybOpkYDH6ztbFj+z2LqNKmHobFhvtcZPTufnKT+cCz5eQ/YxDjHNQWRGRsilUpJSUoh+Wkyaalp+QZdY1NjDI3yrycFPIMyMjHO9QFf0tOkfF/7dV09e4WZo/+mY78u1G/5Wa5lsjKzmPrzRBLiE/hrzSx09cQCw0+FCLqfkK3LNhEdEcXYuRMwMjEiYO9RVs5eRp/h/fO9Tl9mgJWtFeHBYWrHw4ND0dLWwtbJ7rXr0md4f9r2aM/+zXvZs24nK2cvo2odb5q2bU6NBj5o66i/Nd/F8IKDqyP+Ow+pHcuUZxIV/ghHV8fXbkNuQu4EM3HwOOq1qK82x/lVc8bP4vr5QKYun4FVCat38tpC8SCC7ici9lEMa/9bRbteX6uCZPdBPZg3cTbN2rUo8EFY1TrVOXngBJ36dVWNt57YH0CFqhXzXViQH2s7G7r80J1O/bpy4fh59m3czdSfJ2JkYkSDVo1o3dlPVdd3MbxQrW511s1fzd3rt3GvUAaAc8fOIM+QU6VOtTdqw8tiH8Uwtu9ISpV3Z9C4H/Mst3ruCg5t28+Y2eMpWb7UW7+uULyIoPuJ+N+f8zG1MKX9dx1Ux5q2b8GeDbuYP2kuk5dOy/f6tj3bM7h9f2aO+ouGfk24fOoiZ/3P8MfCyW9dN6lUSnXfGlT3rUFczGMObtnP/s17kRnJVL3F53OA34ZH1Qp41qzM9F+n0GPod8gz5CycMo8GrRqqzdEd0WsYAJNeetB4PuAsaSlphN0LJSMtneP7jgFQplJZbOxLkJ6Wzth+o0hPTaddr6+5d/Ou6lqZoQxndxcAjuw8xOo5K2j+9ecYmhgRdOWmqpxzKWdkBQ2hCMWeCLqfgMunL3F83zFGzvpdbU6uVCql78gBDOv6I0d3H8lz/BGyp4f9PvcPFk1bwO99RmBtZ8NPU35VLYx4VyysLfn6+0581bsjifEJ7/TeAMNnjOK/SXP467c/kWpJ8W3RgG9/+V6tjEKRc2ra3PH/Ev0wSvX9lKETABgy4Wcaf9mUJ4/jCbkdDMDvfUaoXVuxuidTlmYPjVw+eRGAvet3sXf9LrVyk5ZMw7OG11u2UPjQiSTmxZCunm7KCv+1Bq9Oxn8X/h4xjcjQh0xeOh2JVKK2GKIgz+fSzhz9F4/CIj/I3Asfky71vk5KiHvipVQq7xd1XYTCEyvShBxuXLqOn1cL1sxb+VrXHdvjj59XCw5vP/ieaiYIxZ8YXhDUdP6hG606+wFgYWP5WtdWq+OtethlYChyawtCbkTQFdSUcLDNM/FLQYxMjSn9HoY8BOFjIoYXBEEQNEj0dAWN6tWkG5+1aki3wT2Luir5SklKZvOSjZwPOEtESAQGMn0q1fCi50+9cyxmiH4YzbwJ/3L17GVkhoY0bdeczj90U8uloFAoWDNvJfs27CY5KZmK1SrRf8ygHJ8qCkoULxR/oqcrCLmIjoxm/+a9VPetyciZY/h+eH8e3AlhZK9haqks5RlyxvQZTmJ8AiP+HkPXgd+wfcUW1s5bpXa/dfNXs2XJRjr378aIf34nOSmF0b2HI8/IUJUpTKJ4ofgTPV1ByIWtgy0L9yxVm9dcplI5vm3ajXNHz1CveX0Aju8/xqPQSP63f7mqB5ySlMyq2ctp9+3X6Bvok56WzuYlG+nUvyvNv/4cgJJlS9KzSTeO7TmqykJWmETxQvEngu5H5H7QPRZNW8Dd67dRZCko4WjLV707qhY9HNiyj70bdhN+PxQtbW3Kepajz/D+arkTfuvxM1YlrKhYrRLrFqwhKeEpdZr5MuD3wdwOvMX8yXOICA6nrFd5hk4ehuWzGQ5Xz15hRM9fmLhoKhsXrePGxeuYW1vwzZBeqgCVl4C9R1m/YA3hwWGYmJvSskMrvv6+k2q5cUHteh/0ZTlnX9jY22BkYkRU+Iuk5BePn6dcFQ+1IYe6zXxZNG0BNy5eo2odb25evkFqcgp1m/mqyphbW+BRtQIXj59XBd2LJ87RpG3zHIniZ47+i7TUtDdebi18WETQ/YhMGDgWl9Ku/DJtONra2oTcDlZlAgOIiYymWbvmlHCwJS0ljV1rdzCs+1AW7F6i9gt97fxVHkc9pt+oAcRERrNw6nx0dHW4cfEaX33XET0DPRZMmsu8P2Yx6t9xanX4Z+R0mrZrwRfd23F4x0GmDZuMnbN9nnuLHdlxkL9HTKd1Fz96/vQdD+6EsPLfZejLDPDr9mWh2pWbrMysAn9eUi3pa22PEx4cxtOEp9g52790LJxSHu5q5aztbNA30CciJJyqdbyJCA5DV083x/itk5sTQVezlwG/70TxwodDBN2PRELcE6IfRjFmznjVL2flWlXVynTu303176ysLLxqVaFLva+4EHCOOk3rqc5lpGUwZs541VzbwHNX2bNuJ9NXz1TtnRYX/Zj5k+eSlZmFlvaLB0a1m9SlU/+uAFSrV52we6FsWrSeX/8amaPOSqWSZf8spsXXn9P7t34AVK3jTaY8kw0L19CqcxuSEp4W2K7c+Hm1KLDM6yy7VSqVLJwyjxKOttRo4KM6npT4NEdydwBDEyOSEpKelUnKNafCy8nT31eieOHDI4LuR8LYzARrW2vmjp9Fm25f4lmzco4EMSG3g1n2z2JuXQ1Sy2vw8EGEWrmyXuXVFjfYOdujb6CvtlmlnbM9iiwF8bFxWNlaq47XbFhb7V41G9bi8LMt3V8VERJO7KNY6jStp9Yz9azpxbJ/FvM4KhYrW+sC25WbgjKSATi4FT6d47r5q7ly+jITFk/9oJKlC8WPCLofCalUyvgFk1n2zyJmDP+TzMxMvGpWod+oAdi7OJCSlMyY74dj42BL35E/YG1rjbaODmO+H07GS0/QgRxJzbV1tDF8Jcm3tk524MlIV7/WzMJM7XtTczPiY+NzrXNifCLwIqvXq2IiY7CxL5Fvu/JSslzBKROlWoWbvOO/8zCrZi9n0B9DqVitkto5IxPjHMndAZITkzAyNXpWxoiUXMokPU1W9WTfR6J44cMkgu5HxKmUM6P+HYc8I4PLpy+zaNp8pv86hRlr/yXoyk3iYuKYvnomNvYlgOwE3gWNjb6uJ3FPcMZF9X1C/BPMrcxzLWv8bPXaj5N+wbmUS47zz3ui+bUrL+9qeOHK6Uv8M+ovvv6+E02+bJbjvKObI+H31ZO7xz6KIS01DYdnidEd3JzISM8g+mGU6mcP2WPEjq7ZY7jvI1G88GESQfcjpKOrS3XfGkQEh7Fq9nIA0tPSAdR2ZAjYdzTXNIZv48zhk2qB7MzhU5SuWDbXsg5ujljYWBL7KCbfzRufy61deXkXwwvBt+5n7wLR3Jdug3rkWqZqXW9mjvyLuJjHWFhnz+Q4sT8AA5kBHlUrAuBRpQIGhjKO7w+gbY/2AMTHxnP9wjUGjhvy4l7vIVG88OERQfcjEXzrPounL8S3ZQNKONjy5HE8u9bswLNmZQDKeZZHz0CPf3//B79uXxJ2P4wtSzciM5K903qcPHAcIxNjyniW4/D2A4TcDmZgHrsoSKVSev3Um39G/UVSYhKVfaqARMLDB+FcOXOZUbPGFtiuvJSuWOat2hEfG8/YfqMwMTel2Vct1ZKNm5qbqmYw1G3qy7r5q5k4eDyd+3fjcVQMK2cv54tv2qkCpa6eLm17tmfNnBXIDGXY2NuwZu5KbOxt8G3RQHXf95koXvhwiKD7kTCzNMfE3IS181YSFxOHsakx3r416DH0OyB7XuiwP0ewZMZCxv8wBtcybvz610gmDRn/TusxeOLPrF+whg3/W4u5tQU/Tf013wDYoFVDDAwNWL9wLbvX7kBbRxt7ZwfqtWxQqHa9L2H3Q3kcFQvAb91/UjvXyK8JP076BcjeImj8/EnM/eNfJg0eh4GhAW26+NGxn/ruvh36dEaRpWDV7OWkJCVToVolfpr6q9pDOU0liheKlkhiXgy9zyTmb+r54ogFu5fk+4BLeHdEEvPiSeReEARB0CARdAVBEDRIjOkK74RnDS92Xt9f1NUQhA+e6OkKgiBokOjpCnk6uvsIe9bt5H7QPeQZcmwd7ajdpC5fftOOVx/izZswm11rttN35ABadW4DZO8sfCiPJcDPderflS4/dKdVhaa5nvfyqcLERVPfTYME4QMggq6Qq/mT5rBr7Q6atW9Ju15fo2egT3DQPXau3k5aSqoqQQ1kJ885sT8AgIC9/qqg27FvF1p0aKUqN3vsTKxsrejY98V0qpdTIn7VuyM1P6ulVg/DXBLFCEJxJoKukMPpwyfZsWobP076RW2lmGcNL1p0aMWNS9fVygeeu8qTx/F41qxM4NkrxEbFYlXCCjtne7U0iDJDA0zNTdUS57zM1tEuz3OC8LEQY7pCDtuWb6F0hTK5Ls3V1dPNXjn2kmO7/TEyMWbA74MBOL73qEbqCdCqQlN2rdnO/Mlz6VCrLV3qfcX2lVsA2LthN72adKNDrbbMHvsP8gy52rX3bt5ldO/faO/dhg4+X/L3iGlquShio2L5e8Q0ejXpRrtqrenX+ju2r9zCy3Pbr569QqsKTbl+4Rrj+o+mnXdr+nzei5MHj2vmByAUOyLoCmoy5ZkEXblB1TrVCl3+1MHj1G5SB3sXB8p6lSfgDYOuUqEgKzNL7aswuSE2/G8tmfJMfvtrJL4tGrBg8jwWT1/IsT3+9Bs1gO6DenBw6wF2r92huiY8OIzfuv+ElrY2v0wbTv/Rgwg8d5W/R05TlUmMS8DcyoI+w/vz+7wJNP+qJStmLWP7ii056jBrzAwqVfdk1KyxOJV0Ytovk4mPiXujn4PwcRPDC4Kap08SkWfIsbazKVT5S6cu8jThqSqHQL3m9Vk4ZR5REY9y7JRQkNnjZjJ73Ey1Yx2+71TgzsFOJV34YcwgIPvB2/F9ARzcso/FB1aott0JPHeVU4dO4Ne9LQBr5q2khKMto2ePU+3aW8LRlp87DybkdjCuZdwoWb4UJctnp4hUKpVUqFqRlKQU9m/eq7rPc42/aErbnl8B4O5Rmi6+X3P++LlcM5MJnzYRdIW3cmyPP2aWZlR6llmsbjNf/jf1PwL2HKX9dx1e614d+nTG55Uk6BbP9mDLT5XaL3aSkEqllHC0xdjUWG2fMztne+7duKv6/uqZKzT/uiUoX2ztU7pCGfQN9Ll34w6uZdxQKBRsXrKRA5v3EhURRaY8e3gityTmL+9mYWxmgpmFmSp3gyC8TARdQY2xmQk6ujrEPIopsGxGegZnDp+kdpN6pCanAqCnr0eZSmUJ2Pv6QdfGvsQbZQczNH41wbp2ronYX07WnvgkgTVzV7Jm7soc93ve9i1LN7Jy1lI69OlMucrlMTQ24uTB42z837pc6vDq6+kgfyXBuyCACLrCK7R1tCnn5cGlkxfyzCH73PmAs6QkpXBwyz4ObtmX43xESLgqkfeHxtjUmHotGtCwdeMc5573rk8dOkmDVg1Ve74BnDlySmN1FD5OIugKOfh1/5IJA8dyZOchPmvVSO2cPCODGxev4+VThYA9R7GwtuDnP4e/UkbOHz+M4dgefzr168qHyLNGZcLuPci3Z52emqaW9D17PvIxTVRP+IiJoCvk4NOwNq27+PHPyOkEXbqBd/2a6Onr8eBOMDtXb8e7XnXKepbj7NHTNG/fMtctb6rUqUbA3qOvFXQfhUeqJQuH7PHTUuXd87jizXX+oRs/dhjIhEFjadimMUbGRsRERnPu2Fm6DeqBg6sjnjUrs2/DbtwrlMGyhBW71+7IMe1MEF6XCLpCrvqM+IFyXh7sXreDwzsOIc+QY+9sj2+LBnzxTTvO+J8mPTWd+p83zPX6Bp83ZNqwyYTcCca1tFuhXnPDwrVsWLhW7ZiNfQkWH1jx1u15laObE9NX/8OKmUuYOeovMuWZWNtZU7VOdcwss/d06/JDNxLinrDkr4Vo62jTyK8p1evXZO74We+8PsKnQyQxL4Y+xCTmguaJJObFk1gcIQiCoEEi6AqCIGiQCLqCIAgaJIKuIAiCBomgKwiCoEFiypigMXeu3Wb7qq0EXbpBZNjDQiWzAYh+GM28Cf9y9exlZIaGNG3XnM4/dFMlqgFYM3clV89e4fa1INJT09l2ZQ9a2lpq9+nVpBvRD6Ny3F9bR4etl3e9fQMFoRBE0BU05sal69y6chOPqhVIfJJQqGvkGXLG9BmOoZEhI/4eQ2xULP+b+h9SqZQuA7qryu3btBt7F0c8qlTk0skLud5r5KzfcyxumDRkPKUrvH6+B0F4UyLoChrTuosfft2+BLJ7nYVxfP8xHoVG8r/9y1Vb+6QkJbNq9nLaffs1+gb6ACw+sBKpVMrBLfvzDLqvrmx7cDeEuOjH1Pup/ps2SRBemxjTFTRGKn39t9vF4+cpV8VDbS+1us18SUtN48bFa29174A9R9HT18uxL5sgvE8i6AoftPDgcBzdnNSOWdvZoG+gT0RI+FvdO2DvUarVq46BoUHBhQXhHRFBV/igJSU+xeiVfLkAhiZGJCUkvfF979+8R0RIuGrHC0HQFBF0hU/Ssb3+6Bvo4+1bo6irInxiRNAVPmhGJsYkJyXnOJ6cmISRac4ecGGd2BdAjQY+qgdxgqApIugKHzRHN0fC74epHYt9FENaatob70px59ptIsMeUq+FmLUgaJ4IusIHrWpdb25euk5czGPVsRP7AzCQGeBRteIb3TNgrz8yIxne9aq/q2oKQqGJebqCxiTEPSHw3FUA0tPSCAsO4/i+7O1v6jbzBaCNZ3M69e2q2pesblNf1s1fzcTB4+ncvxuPo2JYOXs5X3zTTm1oIPDcVRLinnDn+m0ATh48jkQiwbmUC87uLqpySqWSgL3HqNmwNjq6uhpptyC8TARdQWMe3H3AlKETVN+fPHCckweOA7Dz+n4AFFkKFEqFqoyOrg7j509i7h//MmnwOAwMDWjTxY+O/bqo3XvVnOVcexbQAab+NBGATv270sX9xcq1oCs3iYmMxre5GFoQiobYOaIYEjtHCCB2jiiuxJiuIAiCBomgKwiCoEEi6AqCIGiQCLqCIAgaJGYvCG/t6O4j7Fm3k/tB95BnyLF1tKN2k7p8+U07Xn3YN2/CbHat2U7fkQNo1bkNAH+PmMahbQfyfY1O/bvS5YfutKrQNNfzXj5VmLho6hvVPyriEQe37qdNly8wNjPJt+zDBxF837Ink5ZMw7OG1xu9nvBpE0FXeCvzJ81h19odNGvfkna9vkbPQJ/goHvsXL2dtJRUev/WT1U2KyuLE/sDgOwFCs+Dbse+XWjRoZWq3OyxM7GytaJj3xfTwl5O7fhV74450jEaGhm+cRuiIqJYM3cln7VqVGDQFYS3JYKu8MZOHz7JjlXb+HHSLzTya6I67lnDixYdWnHj0nW18oHnrvLkcTyeNSsTePYKsVGxWJWwws7ZHjtne1U5maEBpuamlPMqn+vr2jra5XlOED50IugKb2zb8i2UrlBGLeA+p6unS2WfKmrHju32x8jEmAG/D6bP5704vvcoX3zTTiN13b12B9tWbCH6YRQyIxkly7kzZOLPRISEM6LnLwB83zJ7v7aK1T2ZsnQ6kD10smLWUuJj4vCoWpGvvuugkfoKHy8RdIU3kinPJOjKDdr2aF/o8qcOHqd2kzrYuzhQ1qs8AW8YdJUKBVmZWWrHJFJJnrtHXD1zmfmT59J1wDeUq+xBUuJTrp69QlpKKu4e7vQbNYB5E2bz24xRWNlaIzOUAXA78BZ//ToV35YN+KxVI24FBvH3iGmvXV9BeJkIusIbefokEXmGHGs7m0KVv3TqIk8TnqqShtdrXp+FU+YRFfGIEg62r/Xas8fNZPa4mWrH8ttZ+M7127iWceOr3h1Vx2o1qqP6t1Op7NwMJcuVwt7FQXV80+L1uJZx4+epvwFQrV51EuMT2bl622vVVxBeJqaMCRpxbI8/ZpZmVHr2xL9uM18kEgkBe46+9r069OnM3+tmq3217NQmz/Klyrtz/+Y9Fk79j+sXruXoJeflduAtajZUf2BXu3GdPEoLQuGInq7wRozNTNDR1SHmUUyBZTPSMzhz+CS1m9QjNTkVAD19PcpUKkvA3qO0f81xUhv7EpSuWPht0yvXqsqgP4aybfkWti3fjJGJMc2/akm3QT3Q0tbK87onj+MxszBTO2ZqaZZHaUEoHBF0hTeiraNNOS8PLp28QLdBPfItez7gLClJKRzcso+DW/blOB8REv7GCckLq8mXzWjyZTPiYh7jv+sIS2f8Dxt7G1p2bJ3nNWaW5jyJe6J2LOHxkzxKC0LhiOEF4Y35df+S24G3OLLzUI5z8owMrpy+BGRvdW5hbcGkJdPUvsbNn4S2tjbH9vhrrM4W1pa07dEe51KuhN4LBUBHJ7vvIZfL1cqWrliGM4dPqR07efCEZioqfLRET1d4Yz4Na9O6ix//jJxO0KUbeNeviZ6+Hg/uBLNz9Xa861WnrGc5zh49TfP2LXNdwVWlTjUC9h6lU7+uhX7dR+GRBF25qXZMR1eHUuXdcy2/as5ykhOTqehdCWMzE65fCCT0bgidnyVKt3dxQCqVsn/jHnxbfoahsSGObk606/UVP3cewvRfp/BZ68bcunqTM4dPvsZPSBByEkFXeCt9RvxAOS8Pdq/bweEdh5BnyLF3tse3RQO++KYdZ/xPk56aTv3PG+Z6fYPPGzJt2GRC7gTjWtqtUK+5YeFaNixcq3bMxr4Eiw+syLV86Qpl2LpsE/47D5GWmoatkx39Rw+kdpO6AJhamPHdr33YsmQjO1Ztw6NaRaYsnU5Zz/L8NOVXVsxawskDxylfpQJDJv7MyG9/fY2fkCCoE0nMiyGRxFwAkcS8uBJjuoIgCBokgq4gCIIGiaArCIKgQSLoCoIgaJAIuoIgCBokpowJGhN86z7/TZzNnWu3MbUw44tv2uHX7csCr7sQcI7V81YSeoCMr8UAACAASURBVCcEfZkBnjW96Dn0O6xsrQGQZ8iZ/usU7l6/TXxsPDIjQzyqVuCbH7/F4aUENq/WZfBX/TG3smDZ4dXvtJ2CkB/R0xU0IvFJIqN7/4aBoYwxc8bTuosfi6cv4EAuy4JfdufabcYPGIO9iwMjZo7hu1/7cDvwFuP6j0ahUACgUCjQ0tKiQ5/OjJ03gT4j+hMZ+pBR3/5KSlJyrvddMHkeJmam77ydglAQ0dMVNGLPup0olUp+mzEKfQN9KteqSkxkNGv/W0WTL5vled2J/QFYWFvy48SfVflyTcxMGN17OBHB4TiVckZPX49h00eoXVeyvDt9Wvbk+oVrVK9fU+3c8X3HiI6MovGXTTmyI+cSZkF4n0RPV9CIC8fP412vBvoG+qpjdZr5EhX+iIiQ8Dyvy8zMxEBmoJagXPZsPzSFUpHndSbPFo5kZmaqHU9PS2fRtAX0HPodOro6b9QWQXgbIugKGhEREoajm5PaMadn34cHh+V5XYPPP+Nh6EN2rNpKUmISj8IiWTFrCRW9K+Hi7qpWVvFsR4mYyGgWTJmHnZM9VWpXUyuzcdE6bOxtqNvM9900TBBekxheEDQiKTEJQxMjtWNGJsaqc3lxr1CG0bPHMWXoBOZPmgtk51IYv2BSjrKr/l3GugVrALB1smP8/ElqPevoh9FsWbKRKcumv3V7BOFNiZ6u8EELuR3MX79OoUGrhkxcNJXhf49GLpczYdDYHDtAtOzUhhlr/2XEP2MwszTn9z4jSXySqDq/ePoC6jSth3uFwidAF4R3TfR0BY0wMjEi5an6TIKkp0mqc3lZ+e9SXMuW5Icxg1TH3CuU5tum3Tlz5JQqUxiApY0lljaWlKlUlsq1q9KrcTf2rt/F19934ublG5z1P80/6+eoetbydDlKpZKkxCT09HXR0dV9l00WhFyJoCtohIOrU46x2/D72d+/Otb7soiQCKrVq652rISDLUYmxkSGPczzOpmhDDsnOx6FR2bfJzicjPQM+vv1zlG2Y6229P61L37d2xa6PYLwpkTQFTSiWl1vdqzaSnpaOnr6ekD2dDBbJ7t8t+qxtrPh3o27ascehUWSlPgUG/sSeV6X+CSR8JBwfBrVVr3+pCXq26cf2rqfc8fO8tuMUdg7279p0wThtYigK2hEiw6t2LFqK1OGTsCve1uCg+6xe+0Ofhg7WK1cG8/mdOrblU7PdnVo/nVLJg0ez6wxf1O3WT2SEpNYO28V1nY2eNerAcDRXUe4dPICVepUw9zKgpjIaLYu24Sung5N2zYHwNzaAnNrC7XXCjx3BR1dnVx3tBCE90UEXUEjTMxM+GPhFOZNmM24fqMwszCj50/f5VgYochSqM2/rd24Lr/8OZzNSzcQsMcffZkB5at40OPHbzEwNADAwc2RwzsOsnDKPJKfJmNhY4lnDS869x+fI9AKQlETO0cUQ2LnCAHEzhHFlZgyVkyJP5YCiPdAcSSCbjGkpa2d8jThaVFXQyhCSqWStJQ0HSCxwMLCB0UE3WJIKpUGXDp5QXRzPmG3A4OQamnFAo+Lui7C6xFBtxhKSUqet3ruytToh1FFXRWhCKSlpDJ/0tyUrMzM+UoxzlTsiAdpxZSunu4QqVQ62adRbWWFapUM9PTEaqqPnVyeScid4Iyju45kZmbIt6ampHZTKvNJtSZ8kETQLcYkEomjRCppbyCTVZVqSQ3f9D5ZmZl1JRLpA4VCUVFLS3pJIpFEKxQKZ4lEkiSRSmPfZZ0/BUql0lCpUNhLpdIQpRK9rKzM+lpaWueysrJqaGtr70QiebP7KhTpaalpt7IyszYB10Uvt3gSQfcTJ5FIJEAMcBM4CYQDw4DrwBClUhlUhNUrliQSiQUwA2gN/AfcA8YA+kANpVIZWoTVE4qYGNMVnAAjwBboDjQC2iqVyuYi4L4ZpVIZp1QqewDegCUwHYglO+hWy+dS4RMggq7QGtADrgHNlErlF0ql8lwR1+mjoFQqg5VKZV/Ak+xPEcZA16KtlVDUxPDCJ04ikRgDpZVK5cWirsvHTiKRuJD9OxdS1HURio4IuoIgCBqk0YQ3EonEWUtLq5OZmVlrpVJpKnnDp7hCsaFQKpXRcXFx64BNSqUyvqgr9DokEokt8LWOoV47CZgD4g1bfMkVCsWtzFT5KmCvUqnMLPCK90RjPV2JRNLAwMBgZ8eOHbXatGmjb2lpiQi6H7esrCwiIiJYs2ZN8pEjR5KTk5NrFpeP1hKJpIqWrpa/XWVnbftqLjI9Y32QivdrcaXMVJAYEa8M9r+VnBqfciYzTd5SqVRmFEVdNBJ0JRKJTE9PL3rPnj2Gn3322Xt/PeHDM2PGjKxx48bdTEhIqFTUdSmIRCKRaulqRVX7tp6lg7eriLQfEUWmgpMzD6Q+vh01LUue9XtR1EFTsxdaVqtWLUsE3E/XoEGDtBQKhbtEInEr6roUQh19U5meCLgfH6m2FI8vqhhItbV6FVkdNPEiurq6NVu2bGmiidcSPkza2trUrl07g+IxT7W6TUUHvaKuhPB+mJe0JkueaSuRSN54Fefb0FTQNTEyynvHV+HTYGpqKgWK5I3+mmQ6BjpiV5WPlEQiQaqtlQnIiuL1NbY4org+NHN1dWXUqFFFXY1CmTt3Ls2bN8fMzAyJRMLdu3dzlDl//jzdu3fH3d0diUSSa9sePXpEmzZtcHR0RE9PD0dHR3r16kVkZKRauR49eiCRSHJ8hYeH51q/YvUeKFaVfWHfsA3c2Fw8plzLUzK4suo0e3/ZwPZ+Kzn0+zYenMj5nlVkKgjacYV9v25kW5/l7Bu2gaAdV9TKbPl2aY6v49P35fnaRfmfK/6af0RWrFiBlpYWjRo1YvPmzbmWOXHiBKdPn6Zu3brExuaeyyYlJQUrKysmT56Mk5MToaGhjB07ltatW3PmzBm0tLRUZT09PZk/f77a9TY2Nu+uUcJH68KiAOKCY6nQtioySyMir4RxcfFxtPW0cfB2VZU7/79jxN2NpmzryhiVMCYlNom0hNQc9yvTshJ2lZ1U32sbfJiZ90TQ/YicOHECqVSKv79/nkF34MCBDB6cvQOvq6trrmVKlizJ4sWL1Y7Z2dnRtGlTgoKCqFChguq4sbExPj4+76YBwicjMz2TyCvhVOleC5e6pQGwLm9HfHAsEedDVEH30ZUwHl4MpdG4NhjbmeV7T0NrYyxKffh/8Is098KVK1do3LgxZmZmGBsb4+npydq1a1XnlyxZQq1atTAzM8Pa2prWrVtz/776HnwNGjSga9euLFiwABcXF4yNjenVqxdyuZwTJ05QrVo1jIyMaNy4MQ8fPlRd5+/vj0Qi4fDhwzRt2hSZTEapUqVYv359gfVev349lStXRl9fH0dHRyZOnKi2Z1lB7XpfpNKC/zsLUyY3lpaWAMjl8je6/mOQEBbH8en72DlgFTv6Z38cDj/z4v344Pgd/CfuYueAVewavIZTsw6SHKO+rVLAn3s4v/AYwUdvsfeXDezov5ILi4+jyFTw+E4UR8bvYHv/lRyfvo/U+BTVdTFBkWz5dikxNyM58dd+tvdbwf7fNhF+LrjAeoefC+bw2G1s67OcPT+v59bOK2rv14La9T4oFQpQKtF5pTeqY6CDUvGibg9O3MW6vG2BAbc4KdKerp+fHxUrVmTNmjXo6OgQGBjIkydPVOdDQ0P57rvvcHNzIykpiblz51KvXj3u3LmDTPZiDPzo0aNEREQwZ84cQkND+fHHH9HT0+P48eMMHz4cmUzGoEGD6N+/P1u3blWrQ48ePfjuu+8YOnQoK1asoHPnzri7u1O1atVc67xy5Uq++eYbBg0axJ9//sm1a9cYNWoURkZGqh5kQe3KTWZmwQtktLS0NDrUqFAoyMrKIiQkhN9++43atWvj5eWlVubSpUsYGxsjl8upWbMmU6ZMoVatWhqroyad/vcQxg7mePepj1RLSmJ4PPLUF/PrUx4n4+pbGkMrYzLT5dw/EsSxKXtoMqkt2novftVibz0iNT4Fr64+pD5OJnDdWbR0tHh8J4oyLT3R0tXi6pqzXFl5Cp+BjdTqcGHxcVzrlca9qQehp+5zfsExjGxMMHOxzLXOoafucWHRcUo1Lk+F9t4kRjzh5taLaOnp4N7Eo1Dtyo0iq+Dc6RKpJM/3q46BLvbVXLi9JxBje1MMLAyJuhpOzM1Iag1qrCoXHxyLXWUnLq88TdjJuygBOy8nvLr4oGukPsHk+qYLXF5xCh1Z9r0rtvdGR/bhDTEUWdCNiYnhwYMH7Nixg0qVsufLN27cWK3M77+/mLuclZVF48aNsba2Zs+ePbRr1051LjU1lR07dvB8hoS/vz///fcfp06dUn30ffjwIYMGDSIzMxNt7RfNbteuHWPGjAGgefPm3Lhxg6lTp7Ju3bocdVYqlQwfPpy+ffvy999/A9C0aVMyMjKYNGkSAwYMIC4ursB25UZHR6fAMkeOHKFBgwYFlntXunfvzqpVqwCoWrUqe/fuVfslqlq1Kj4+PpQvX56YmBimT59Ow4YNOXPmDJ6enhqrpyakP00j5XEyPoMaY+poDoCNh71amfJ+lVX/VioUWJe3Z/eQtUQFhquNUWbJs6g1qBHa+tn/57G3HhHsf4v6I1qqPh6nPUnl6pozKLIUSLVefDqxr+ZCuTbZr1OikiNPHz7h9p5AavRtkKPOSqWSG5su4NagLJ4da2RfU9EBRVYWt3dfpVSjcmQkZxTYrtxs+355gWXq/tIM63J2eZ737l2Ps/8d5dCYbUB2kK7yTW1sKrx4/fTEVEJP3MXU2YIa/RqQnpTOtfXnOL8ogNqDX/xeOddxx9bLCT0jPeJDHnNr5xUSI57g+1uLD+6ZaJEFXUtLS5ycnOjXrx+DBw+mYcOGqo+wzwUGBjJ8+HDOnDmj9tDnzp07auV8fHx4eUqau7s7hoaGamON7u7uZGVl8ejRIxwdHVXH/fz81O7l5+fHsmXLcq3z7du3CQ8Pp3379mo9088++4zhw4cTHh6Ok5NTge3KzblzBWdTLFu2bIFl3qU//viDQYMGcffuXSZOnEirVq0ICAhAVze79zBo0CC18i1btsTDw4M///yTlStXarSu75uuoR4GFoZcXnEK98YeWJW3Rc9IX61MQng81zddIP5+DBlJ6arjSdHqG/aal7RWBVwAQxtjtPS01cYjDW2MUSqUpCekYmDxYpbdyw+KAOyqOBF68l6udU6KSiQ1PgUHbxe1nql1OTtubLpIalwKBhaGBbYrNw1GtyqwjFEJ03zPX119lsSwOKp9Ww8DCxnRNyK5vOIUesb62Hplt1OpVKIEag5oqKqXtp42Z+Yc4WnkE9WwQ7VedVX3tSpri7GdKadmHiTmZmSh/ohoUpEFXalUyr59+xg+fDjdu3dHLpfTqFEj5syZg7u7O4mJiTRr1gxXV1dmz56Nk5MTurq6NGvWjLS0NLV7mZmpj/fo6urmegzIce2rT9qtra159OhRrnV+HvgbNmyY6/mwsDBcXFzybVdeKleunOe5516eNaAJbm5uuLm5UaNGDerWrYurqysbN26kc+fOuZaXyWQ0b96cY8eOabSemiCRSqj9YxNubLrA+UUBKLMUWJe3w6uLD0YlTJCnZnByxn5kVkZ4dfHBwMIQqbaUEzMOoJBnqd1L95WPvFJtaY6PwVLt7N5t1ivX6pkYqH9vrJ/rk3yAjKfZ7/Xj03KfOpUSn4zMyijfduXF1Mkiz3PPSfLJVfEk9DEhx25T79cWWJUpAWT/MUh7ksL1zRdVQVdHpoehtbHaHwKrcrYAJD5MyHOst0RFB7R0tXjy4LEIui8rX748W7duJT09nUOHDvHTTz/RpUsXzpw5w+nTp4mMjOTUqVO4uLgA2Q9xChobfV3R0dF4eHiovo+JicHW1jbXshYW2W+0ZcuWqV3z3POeaH7tysuHOLzwMmdnZywtLXM8yMzNh/Zx7l0xsTfDZ2AjsuRZxNyMJHD9Oc4vPEaDUa2IuxdDWkIq9Ud8jswq+1OXIlOBPOXd5lRJT0wF+xeBJv1pGvqmBrmW1THMHvOs9m1djO1zBqfnPdH82pWXtx1eSIrK7v2/GrzNnC2IOBei+t7YzhRFpvofnucK9Tb7AN+LH8SUMT09PVq2bMmtW7dU46spKdlPbp/3UCF71oBC8W43P922bZtaINu2bRvVq1fPtWzZsmWxt7cnLCyM7t27F3jv3NqVlw9xeOFlt2/fJjY2Fje3vFMnJCcns2fPHnx9fTVYM83T0tHC1tORpEcJ3Nx6CYCsjOzhpuc9VICI88HwjhNKRV4OUwtkkZfCMHe1yrWssa0p+mYyUuOSca6d96es53JrV17ednhB9mzIJCH0MVZlX3Ry4h88Rmb5YjjFtpIjQTuukP40DT3j7N5uzM3sT6Imz8agc/MoMJysjCzMnAvukWtakQXdq1ev8ssvv9CxY0fc3NyIiopizpw5qo/uPj4+yGQyevfuzZAhQwgKCmL69OmYmLzbFA6bNm3C3NycmjVrsnz5cq5evcrChQtzLSuVSpk2bRo9e/YkPj6exo0bI5FIuH37NocPH2bLli0Ftisv3t7eb92W8+fPExISwvXr1wHYu3cvtra2uLq6qu4fExPD0aNHgew/bEFBQWzcuBGA9u3bA/DXX3/x4MEDfH19sbKy4tatW0ydOpUyZcrQtm1bABISEmjVqhVdu3bF3d2dmJgYZsyYQUxMDMOGDXvrtnxoEsLiuLbhPI413JBZGZGemMb9I0FYlc8OgBalrNHS1ebispO4N/HgaWQCd/ddQ9ug4E8wr+PhhQfoynQxL2lN6Ml7JITHU6VH7VzLSqQSKn7lzcUlx8lIzsDGww4kEpKiEom5GYnPgIYFtisveQX6wjJztcLMxZLz/wugvF9lDCwMib7+kLBT9/DsVFNVzrVBGe4dvsnp2Ycp07ISGUnpXN94HseabhjZZMeC4KO3eBLyGGsPO/SM9IkPieXWrqtYli6BdQHtKApFFnRLlCiBlZUV48ePJzIyEgsLC1q2bMnUqVMBsLW1Zc2aNQwbNozWrVvj6enJ+vXrVb/078qSJUuYNGkSkydPxs7OjlWrVuUbADt37oyxsTGTJk1i7ty56OrqUrp0aTp27Fiodr1Ps2fPVnsIOHDgQAC++eYbli5dCsD169f56quvVGU2bdrEpk2bAFRzNz09Pdm5cyerV68mOTkZZ2dnvvjiC0aOHImBQfZHWT09PaysrJgwYQLR0dHo6+tTp04djh07ppq18THRMzFA10ifoB1XSHuSgq6hHiU8HanQPjt/j76pjOp9fLm24TynZh3C1NGc6n0bcGbukXdaj6o963B7VyC3dgeib2pA9d718g2ATj4l0dbX4dauqwT7ByHVkmJYwgTHGm6Fatf7ItWS4jOwETc2X+Dm1ktkJGdgaG2EV+eauDUopyqnK9Oj7s/NuLrqDOf+80eqo42DtwuVOrz4NGpobUzoyXtEnA8hM12OvqkMl7ql8fiiygc51KWRfLrGxsbzJ06c+P2rT7uLkr+/P5999hl37tzJ9wGX8O506NAhaf369QOUSmXu00M+EBKJZFSZzz3HV2hb9YP5jY0JiuT4tH00mdQ23wdcQuHs6L8yLTM901mpVMZo+rXFbsCCIAgaJIKuIAiCBn0QsxeKQoMGDRA7IQvFhXU5O75c1KOoqyG8A6KnKwiCoEEfXU937dq1zJs3j8uXL5Oenk7JkiVp164dQ4cOxdxcfV7fgAEDmDNnDrNnz+aHH34AshPg5LUM+Lnff/+dsWPH5vlktFGjRhw8ePDdNEj4aISfuc99/1skhMWhkGdhaG2MfTUX3JtWQNdQPXnLlVWnuX84CK8uNSnZsDyQnX82ryW/z5Vr40V5vyps+XZpruety9tR9+dm76Q9wpv5qILuoEGDmDt3Lr1792bYsGEYGhpy+fJlZs+eTVJSkipJDWQn0Hk+P3XdunWqoDt69Gj69u2rKtenTx8cHR0ZPXq06tjLuRuGDx9OmzZt1Ophapr/mnPh03Nl9RmCjwTh6luGMs0roqWnTUJYHPcPB5GZnqlKSAPZyXIizocAEH42RBV0y7b2wq3BiwUyl5afwsDckHKtXyQXMjB/sbDg1aTe8OEm9v6UfDRBd9u2bfz7778sW7ZMbbVYgwYN6Nu3LydOnFAr7+/vT1RUFA0bNuTIkSNERETg4OBAqVKlKFWqlKqcsbEx1tbWeSbqLlmypEjiLeTr4aVQ7h+6SbVv66qtDLMuZ4dbg7I8vhOtVj4m6BHpiWlYl7Mj5lYkqfHJGJgbZi8GsHkxXUxbXwc9Y708E3cXl6Ten5qPZkz3n3/+wdvbO9flufr6+jRqpJ6XdO3atZibm6u2milM8vJ3RSKRMHfuXAYPHoy5uTk2NjbMmjULgIULF+Lq6oq5uTl9+vQhI0N97f6lS5do2rQpRkZGmJmZ0aNHDxISElTnIyIi6NGjB66urshkMjw8PJg1a5baQ8PnCdyPHz9O69atMTQ0pGzZsmzZskUzP4BPzL0DNzBztcx1Ka6WjnaOhCzhZ4PRkelSuXt2XuKXcxG8b1u+Xcr9w0FcXX2GnQNXs2vIWu4dvAFA8NHb7Bu2gZ0DV3Np+ckcORGePHicnWC9/0p2DljFhUUBarknUuOTubAogH3DNrC93woOjtrCvYM31N6bz5O1x96J4tSsg2zvt5IDIzbz8OIDzfwANOCjCLpyuZxTp07RrFnhxqrkcjmbN2+mbdu2uLu74+Pjk2v+3MJQKBRkZmaqfRUmP8TkyZPJyMhg/fr1dOzYkcGDBzNs2DDWrl3LnDlzmDhxIkuXLmXu3Lmqa27duoWvry86OjqsWbOGefPm4e/vT48ePVRlnifsmTVrFrt37+b7779n1KhRzJw5M0cdvv32W+rXr8/WrVspX748nTp1yjPDmvBmFJkK4u5FU6KCQ6HLP7wYin01F4xKmGBR0rpQu0PkRqlUoshSqH29vCtDXm7vvooiS0GNvg1wrOHG1TVnubbhPBFng/Hq4oPHl1UJPXGX+0eCVNc8fZRAwNQ9SLSkVP++Pl7dahF76xEXFh9XlUl/moaeqQGenWtSa3BjXOuX4caWS6qg/rJLS05gVcYWnwENMbYz5dz8o6QlpOQoVxx9FMMLjx8/Jj09HWdn50KVP3DgAHFxcaqlux06dGDIkCGEhITkuW9YXvr06UOfPn3Ujo0cOZIJEybke52Hhwfz5s0Dsh+8bdiwgcWLF/PgwQMMDbPH5fz9/dmyZQtDhgwBYPz48bi5ubF9+3ZVmkc3Nzdq1apFYGAglSpVonLlyqo0kUqlkrp165KYmMiiRYtU93muZ8+e/PzzzwBUq1YNGxsb9uzZQ8+ePV/rZyDkLSM5DUWmAgPLwu08H33jIfLkdNUyXYfqbgSuPUty7FMMrYxf67UvLz/F5eWn1I6V/dwTj7a574rynLG9GZW7ZfeyrcvbEXE+hAfH79Dsz/Zo671IvP7wYijuTbL3ywvafgWZtTG1BjVE8mxLKEMrI45O2k1CeDymjuaYOVti5pydW1qpVGJZugSZqXIeBNxR3ec557rulG5eEQAzF0t2/7iWqMAI1X5qxdlHEXRf19q1a7GxseGzzz4D4KuvvuLHH39k3bp1/Prrr691r1GjRuVIhG5vX3D+ziZNmqj+LZVKcXNzw8LCQhVwITvx+sWLL7bTPnz4MH369EGpVKqSqHt7e2NoaMjFixepVKkSCoWC6dOns2jRIkJCQlTDE3p66k/HQX1HCwsLC2xsbIiIiChky4X3IfxsMHom+lg/yxnr4O1K4LqzRJwNoUzL18tpUbaVJ3ZV1Dsi+qayPEq/8PJwh0QqwdDKCB1DPVXAhewk609CH6u+jwmKxK1+GZRKUD5LmG7maoWWnjZPHjzG1NEcpULJnX3XeBBwh5THSSgys8u9nJkttzroGumhZ6yvtmdccfZRBF1LS0v09PQICwsrsGxaWhrbtm2jXbt2PH2avWmgTCajRo0abxR0XVxc3ihDWGETr7+cdD02NpZx48Yxbty4HPd73va//vqLUaNGMWrUKNWmnps3b2bKlCmFqsOrSd6Ft6NrqI9UW0pqXHKBZbPkmUReDsW+qgvytOwNQLX0tDB3syL8XPBrB12ZpdEbZQPLLaF6bonXX06wnpGURtD2KwRtv5Ljfs/bfmf/dW5suUS5Vp5YlLJBR6bLw4sPuL07MGcdDHK+3qvJ4IurjyLo6ujoUKtWLfbv388ff/yRb9k9e/aQmJjIkiVLWLJkSY7zt2/fpkyZMu+rqm/FwsKCjh070q1btxznnveut2zZQpcuXdTy927fvl1jdRTUSbWlWJSyIfr6Qzy+zP9jfVRgBJmpckJP3CX0xN0c558+SsDY9sOcjqhrqIdjdTecapfKce557zry4gOcfEqq9ngDiLwcqrE6fig+iqALMGTIEL744gtWrVpFly5d1M6lp6dz4sQJGjZsyNq1a7Gzs2P16tU5yrRu3Zp169apzcn9kDRs2JAbN27k27NOSUlRS/yelZXFhg0bNFE9IQ+lmnhwZvZhwk7fw8lHPShlybOIuxuNdXk7ws8Go29qgPf36kngFZkKTs06RMS5EMq1Vt+N+UNhXc6OxMgn+fasszIy1YYSXp6P/Cn5aIKun58fAwcOpEePHpw8eZLPP/8cmUxGYGAgs2fPpmXLltSsWZOdO3fy/fff57rtTdOmTV876N6/f5/Tp0+rHdPT06NKlSpv26Qcxo4dS/Xq1fnyyy/p3r07ZmZmhIaGsmvXLiZMmECZMmVo2LAhCxYswNvbGwcHB+bOnUt6enrBNxfeG/sqzpRsVJ4Li4/z+G4Mtp6OaOlqkRjxhPuHblLC0xHzklY8uhKOa/0yuW5xY1PBnvCzwa8VdJNjnhJ3T30OsFRbK8/t2t9Gg0T4YwAAHAxJREFUOb/K+P+xk9OzD+NcuxQ6Ml1SHicTdTWc8l9WwdjWFKtydoQcu42ZixUG5jLuHwlSjet+Sj6aoAswa9YsatWqxbx581ixYgXp6em4u7vTsWNHhg4dyo4dO0hJSclzY8UuXbrQuXNnrl27RsWKFQv1mpMnT2by5Mlqx1xcXAgJCXnb5uRQtmxZTp06xciRI+nZsycZGRk4OzvTvHlzSpTI3txv7NixREdH88svv6Crq0uPHj1o1aoV/fr1e+f1EQrPq3NNLEpZE3zkFmGn7qHIzMLQJjuZuHvTCjy6HEZWRiZONUvmer2TT0nOLzhGYnh8vtvUvOz27sAc46UyS0Oa/flVHle8OWNbU+qPaMmNzRe5uPg4iiwFBhaGlKjogP6zzTTL+1Um42ka1zecQ6KthUsdd+y8HLm84nQBd/+4fLJJzAXNE0nMhQ+FSGIuCILwiRBBVxAEQYNE0BUEQdAgEXQFQRA0SARdQRAEDfqopoy9D1evXmXAgAGcO3cOGxsbhg4dyuDBgwt9fWpqKuXKlSM0NFRtu/eHDx8yY8YM9u/fz/3797GysuLzzz9nwoQJajtcnD9/nlmzZnHy5Enu3btXqGQ6wqchPiSWewdvEncvmuTop4VKZpPf7hO+w1ti6Z6dfzclNomra84QfTMSqZYU+2ouVOpQXW15bpY8i1u7rhJ++j5pCSkYWBji6lsG96YV8txVRRBBN1+PHz+mSZMmeHt7s2PHDi5fvszPP/+MiYlJoTNxTZ06NdfFCRcvXmTbtm307t2b6tWrExYWxujRo7l27RpHjhxB+ixT04kTJzh9+jR169YlNjb2nbZPKN4e34km7n4Mlu42ZDwtXM6MV3efALi16ypx92Iwd8teTabIUnDinwNoaUvx7u1LZqqcaxvPk5aQSu3BL5IkXd94ngcBd/BoVw0TBzMe34nm+sYLAJRuVrh57p8iEXTz8d9//6FUKtmwYQMymYzGjRsTGhrKH3/8UaigGxoayowZM5g6dSr9+/dXO1e3bl1u3ryJtvaL/wI3Nzd8fX05f/48NWpkb98ycOBAVc/6ddNOCh+3Uo3K497EA4B9wwq31PvV3SeUCgXxwbHYV3VBqpX9hz7iXAjJ0Yk0ndQOmZURALqGupyadYi4+zH/b+/Oo5q88gaOfwOEsIVVEBANiwguVVBcEHXauo60ta+WY6eLo+NY9dWx1dbWarU6ntaO49HKuIzT9q22toOKtkytothC6wrYioKyVAHBDdn3hGzvHynByCLaMYrczzk5x9znPk+eaPLzyX3u/f1w9XcHDBnRAsb0IWC0oZyQe7AX1dcruZqaL4JuG8SYbhvi4+OZOHEidnZN6fCioqLIy8sjJyfnjvu/8cYbTJs2jd69ezfb5uzsbBJwAWMe3Ly8pqTVjVe8gnA7icVv/wlfkl2EqkpJt8G+xrbKwjIcPByNARfAvY8XSKAo/YqxTafVY3Vb9jGprRRzLLjqyMQ3ug3Z2dkEBwebtDU+z87ObnPfpKQkjhw50mIaxtacPGlION047isI99uVVNP8vWAYq709x63EwgKJREL19abSUIqInuR9n0lZbjEapZqijKsUJufi97jpd0YwJYYX2lBeXt4s52zjTa7y8vJW99Nqtbz66qssX74cN7f2JRdRqVS8+eabREREMGjQoHs/aUFoJ51Wx7WfLtNtsJ+x2gOAg4ecy0d/QV3XYMytW1lQhl6nR13bVPOsX1QY2gYNP7z3rbGt96QQfEd2/OoO95MIuvfBtm3bqK+vZ/78+e3eZ/78+eTn55OcnHwfz0wQmhRnXqehRoXPLUMLAD5D/bnw1RnOfHaCx6YORqNUk7bzpGE445YL4JyD6Vw9nU/Iy8OQezlTlltM1n/SkDnaNrtZJzQRQbcNLi4uJpV2ASoqKozbWlJTU8Py5cvZsGEDtbW1xjaA6upqamtrTUrygCFT2fbt2zlw4ABBQeLDKpjH1dR8bJztcAvsatIuk9sw6M8jObP9OPFv7AEJ+I7sBXqMGcNU1Uoy49IYOD2CHr8mLu8S5Im2Qcv52NP4jur1XxlzfhSJoNuGoKAgsrKyTNoan7cWHEtKSigrK+OPf/xjs20DBw5k0qRJfP3118a2nTt3smzZMj766COTummCcD8Zqg5fpsfwgBaDo3doDzwf86HmRiXWckONsm9fjTEWhqwtrkav1eHUw9VkP2eFK+p6NQ21KmRyG7O8l45GBN02TJgwgejoaOrr67G1NfwPHxsbi7+/f6slfTw9PUlMTDRpS0tLY+HChezcuZMBA5qSUB85coQ//elPLFu2jJkzZ96/NyIIt7l5/irquga6DfZrtY+FlYUxd2/ByUvotDrjLAe7X6sbNxadbFSRX4qlzAprh+aFUAUDEXTbMGfOHKKjo43Vgs+ePcuWLVvYtm2bST8rKytWrFjBihUrsLGxabEqBcDQoUONMxMyMzOZMmUKoaGhREZGmlSf8PHxwcfHB4Di4mJ++OEHwFCKJysri9jYWACee+65//ZbFjoQVbWSkuwbAGgatFTfqDSWv+kW5gvA17N2EPz0AJO6ZABXUvOxdbXHNcC9xWOn706lS6+uWFhZUppTRE58BgNeGGK8erVxssMzpDvpu1LRqtTGMd2c+Az8nwgWK9LaIIJuG9zc3EhISGDevHlERkbi4eHB2rVrmy2M0Gq16HR3V3YkOTmZqqoqUlJSCA8PN9n27rvvsnLlSgDOnz9PVFRTpv+9e/eyd+9eADEfspOrulpOytYk4/NrP13m2k+XAfifT6YDoNfpm31OtGot19MKDOOurQTHuuIafj5xCU19A3IvZ8JmjsDntqoWYTNHkhl3hl8OnUdZWY+dqz1Bkf0JnCAWRrRFVI4QzEZUjhAeFqJyhCAIQichgq4gCIIZiaArCIJgRiLoCoIgmFGnnL0QExPD1q1bSUtLQ6VS4e/vz5QpU1i0aFGzlWbz589n8+bNbNq0iXnz5gEwffp0duxo+15Q4wyE1u4Ojx49miNHjtzT+efn57N9+3YWLFiAq6trm30vXrxIYGAgiYmJrU5lEx4eV5JzyU3KprKwDJ1ai727HO9BCnqO64u1venc17NfnCL3+ywGvDgU/ycNmezaSlLeKPiZAfSeFMpXM7e3uN29txcj3hh/T+dfW1JNwfGLBIzuc8e5ujVFVSQs3ceIxeNxD/a6p9friDpd0F2wYAFbtmxh1qxZvPnmm9jb25OWlsamTZuoqalhw4YNxr5ardY4J3bXrl3GoLt8+XLmzJlj7Dd79mx8fHxYvny5sa1xni3A22+/zTPPPGNyHk5OTvf8HvLz81m1ahUvvfTSHYOu0HGc/TKZvMQsfEf1oteEfljKrKgsLCP3+yw0Kg39nx9i7KvX6Yxzcq+k5BuD7u1Jys98dhJbF3uCn+5vbLN1aVqG3mviY3iFdDc5Dytb03SNd6OupIas/5yl+7AAsUCiFZ0q6MbFxfGPf/yDHTt2MG3aNGP7448/zpw5czh+/LhJ/6SkJIqKinjyySdJTEzk6tWrdOvWjYCAAAICAoz95HI57u7uDBs2rMXX9ff3b3WbIABcO1NA7neZDJo5gh7Dm1J7ugd74fd4EKW/3DTpX5x1A1WVEvdgL4qzr1NfXouti32zJOVWNlJkchmuAR4tvq69u7zVbcL90anGdD/88EPCwsJMAm4jGxsbRo8ebdIWExODi4uLcQXa7t27zXKeAFu3biUoKAgbGxs8PDwYP348165dIykpiSeeeAKAwMBAJBKJybBBTEwMAQEB2NnZMX78eAoLC812zsK9u5RwAWdfN5OA28hSaoVHH2+TtispeUjtrAmZZlhYczU13xynCUBuYhYJS/cRN/szvn0thuPrD1NfXkdx1nWO/f0QAAlL9/HVzO0cXXuw6ZyTczm8ZC//mfv5r/vUmu2cHyadJuiq1WpOnjzJ+PHtG6tSq9Xs27ePyZMn07NnT4YNG8auXbvu6bV1Oh0ajcbk0dYKtsTERBYsWMCMGTM4dOgQ//rXvwgODqampoaBAweyefNmAPbs2cPJkyfZsmULAKmpqbz44ouEh4ezb98+hg8f3mLiHeHhotPoKLt0k659u7W7/7WfC/AepMChqyOu/u5cSc27844t0Ov16LQ6k4de1/qCqeKs65z7dzI9RvQkYtE4QqeFI/d0QqNS46xwY8CLhl90Q+Y+zu+WTmTAS4b/FMrzSkj96CiuAe4M/d8ncA3w4KdPjt3TOXd0nWZ4obS0FJVKRY8ePdrVPyEhgbKyMp5//nkApk6dymuvvUZ+fv5d1yqbPXs2s2fPNmlrq6rv6dOn6d+/P0uWLDG2Pfvss8Y/9+ljqIsVEhJiUmVi7dq19O/fn507dwKGhD0lJSVs2rTprs5XMK+GWiU6jQ5bN/s7dwZuXriGulaFzxBDsppug/1Ij0mhtqQa+y7yu3rttM9OkvbZSZO2tqoKl+eX4uTjStDEpjFi74EK45/l3oZ7FU7dXXHo2jTMkXMwHScfF8JmjQKg62M+NNQoyf3eNItfZ9BprnTvVkxMDB4eHsaf8lFRUUgkknu62n3nnXdITU01edxeqPJWoaGhnDlzhkWLFnHs2DE0Gk27XiclJYVJkyaZtE2ePPmuz1d4uF1JMS2x0y3MFyRwNSX/ro8V9FR/Hl/+lMnD74nWy+0493CloqCUczEplPxShE7bvpwj5XkleIWa3rDzHqRopfejrdMEXTc3N2QyWbvGOJVKJXFxcURGRlJdXU1FRQV2dnYMGTLknoKuQqEgLCzM5OHt7d1q/zFjxvDJJ5/w3XffMXLkSDw8PFiyZMkdg29RUREeHqY3RW5/Ljx8rO1tsLCyoL7szmOcWrWG62kFdH3MB7VSTUOdCkuZJS5+Xe5piMHOzQEX3y4mD1sXu1b7e/TxZuD0CIozr3P0g4MceC2GjNjTdwy+qqp6ZHJbk7bOmm+30wwvSKVSwsPDOXz4MKtXr26z78GDB6mqquLTTz/l008/bbY9Jyen1Xy6/y0zZsxgxowZXL9+nS+//JK33noLhULB3LlzW92na9eu3Lxpepf79ufCw8fCygLXAA9unr9Gn/9p+Wd9o6L0q2jq1RQcv0jB8YvNtlffqETuee/TEdtDMSIQxYhAlBV1FCbncj72J+zcHPBv4wpZ5miLqrrepE1Vrbyv5/mw6jRXugCvvfYaKSkpfPHFF822qVQqvv/+e8AwtODl5UViYqLJIz4+HqlUes831O6Fl5cXr7/+On379uXChQsAWFtbG8/5VoMHDyYuLs6kbd++feY5UeE3CRjbh/K8EgpPNV/YoFVrKc68DhiGFmycbBmxeLzJY/jCsUgsLcw6i8HG2Y7A8f2QeztTfc1QxsrCyhIAnUZr0tfFrwvXz5j+ymxMQ9nZdJorXYBJkybxl7/8henTp3PixAkiIyOxs7MjPT2dTZs2MXHiRIYOHcr+/ft55ZVXWlzBNW7cOHbt2mWyEOJOcnNzTZKUA8hkMkJDQ1vsv3LlSioqKhg1ahRubm4cPXqUjIwM3n33XcAwVczCwoKPP/6YP/zhDzg5OREUFMTixYsJDw/npZde4uWXX+bUqVPNgrDwcPIO7YH/6N789H/HKL1YjGd/HyytLam6WkHud5l07e+Di38Xbpy9gu/verW4gsujrzdXUvIIfnpAC6/Qstriasoumf4asrCyxFnRchXrzLgzqOsacOvlicxBRklOEVVXK4xJ0h26OoJEQv7RX/AZ4ofUzhq5pxOBE/rxw/vfcvqjH+keHkDZpWKup3XO6YydKugCREdHEx4eztatW/n8889RqVT07NmT559/nkWLFvHNN99QV1fHCy+80OL+L774Ii+88AIZGRn069e+ZM1r1qxhzZo1Jm0KhYL8/PwW+4eFhbF+/Xp27txJbW0tAQEBbN261XhTzN3dnQ0bNrBu3Tqio6MZOXIkSUlJDB061Fhzbe/evURERLB9+/Zm84+Fh9OAF4biGuBOXmI2hScvodNosfdwxGeIHz3H9eVGWiHaBg3db0sm3qj7MH9O/+tHqq6UG8vs3EnOgXRyDqSbtNm52TN+bVSL/Z19u3Dx8HkKT+WiUWmwd5cT8vIwuv16U0wmt6H/84P55dB5Lh3JpEsvD0a++Xtc/d0J+/MoLnz1M1d/uoxbTw8G/WkEx9Yduou/oUeDSGIumI1IYi48LEQSc0EQhE5CBF1BEAQzEkFXEATBjETQFQRBMCMRdAVBEMxIBN07OHfuHKNGjcLW1haFQsHGjRvvuE9SUhISiaTZ4/YENzqdjpUrV+Lt7Y29vT2///3vm00j0+l0rFq1Ch8fH2xtbQkPD28251fonCoLy/jxg4PEzfmc+MV7uJhw4a721zZoiF+8h69mbqemqMrYrtNoSd6SyKG3Yomb8zkHFsaQvCXRpA8YMpRdTDhPwrJ9/Gfu5xx6K5bz+35Gq25frpDOqtPN070bpaWljB07lrCwML755hvS0tJ44403cHR0ZMaMGXfcf8+ePSYVJLp3N0348d5777Fu3TrWr1+PQqFg1apVjBs3jvT0dGQyQ9b9999/nw8++ID333+f3r17s3nzZsaNG0daWhr+/i3P1xQefaoaJcfXH8ZZ0YXwBaOpLCgjY08qUlspihGB7TpGzsH0ZivHAPQ6PRaWFgQ91R97dzmqaiU5357j2LpDjP7rJKS/Vpa4dOQCGbtP0/vZUFwD3Km6Us75fT+jqW8wpngUmhNBtw3//Oc/0ev17NmzBzs7O8aMGUNBQQGrV69uV9C9PfXirerr6/n73//Ou+++yyuvvALAgAEDUCgU7Nq1i2nTpqFSqfjb3/7GO++8w8KFCwF48skn8ff3Z926dcY8ukLnk5+UjV5vyFtrJTMkOa8rqyXrm7PtCrp1pTVcPHyBvs8N4uxO019OltZWDJ79O5M25x5uJCzdR2lOEZ4DDBcPV1Ly8BniR1CkIc2je7AXyioll4/miKDbBjG80Ib4+HgmTpyInV1T1qWoqCjy8vLIycn5Tcc+ceIE1dXVREU1rfzx9PRkxIgRxMfHA4blwzU1NYwdO9bYx9rampEjR3LgwIHf9PpCx1aUcRXPx7phJWu6buoW5ktdSQ3VNyrvuH/G7tP0GB6A3Kt9yXEai2Lemk1Mr9U3q6cmtZW2mQRdEEG3TdnZ2QQHm2ZOanyenZ19x/0jIiKwtLQ0XpneuvovOzsbGxubZgnRg4ODjceurzdkZWpMcNNIJpNRUFBg3C50PtU3qnC4LWA2BtCaG1Ut7WJUnHWdmxeuETwppM1+ep2hqkRdWS3n/p2MvYccj1uqW/SI6MmV5FxuXriGRqmm7NJNcr/PajMfryCGF9pUXl6Os7OzSVtjifby8vJW93NycmLJkiWMGjUKqVTK/v37eeuttygvL+e9994z7t9SRWAXFxfjsQMCApBIJKSmphIS0vQFOX36NHq9nvLycmxtbZsdQ3j0qetUWNvddpX563N1naqlXQBDFeFz/04h+OkByBzazmeb+fUZsr89BxgKWA5fONbkyjpgdG809Q0cX38Yfr2eUIwIpM+zLSdyEgxE0L0PQkNDTTKIjRkzBmtra9avX8/bb7+Ng4NDu47j5OTE1KlTWbVqFX369CEoKIiNGzeSlWUocWJhIX6oCHcnLykHrVprLNneFr8ngvEK7UFdWS0XD2Vw4sMEfrcs0hisC05cIudgBn2fC8PVrwtV1yq48NUZZI429J0y6H6/lQ5LfGvb4OLiQmWl6fhYRUWFcdvdmDx5Mkql0pgTt6VjNx7/1mN/+OGH+Pr6MmLECNzd3dm7dy8LFixAKpXi5tZy+j3h0Se1k6GuU5u0qesajNtaolGqufD1GYKf6o+mwVB1QqPSGLdpVKbHs3Wxw8WvC90GKRi+cBwNNSryfzDcy9Dr9JyLSSFwQj96TehHlyBP/J8I5rGpg/klPgNVlRj6ao240m1DUFCQ8aqyUePzoKCgezqmRCIx7q9UKrl8+TIKRVOtqKysLJNjd+3alWPHjnH58mXq6uoICgri1VdfJSQkBKlUek/nIHR8ck/HZjfMGp87eDq2tAuqGiXqWlWLVXgT//oNXiHdGfaXltOASm2l2HvIqS2uBqDh12M5dXc16efcwxW9Tk9daS0yRzH01RIRdNswYcIEoqOjqa+vN46dxsbG4u/vf9flemJjY7GxsTFW8o2IiEAulxMbG8vrr78OGGqcHT16lI8++qjZ/o2BuaysjN27d7Ny5crf8M6Ejq5rv25c+i4TbYMGS2vD1/ja6Xzs3eWtlutprDhxq8rCMtJjUgmbNRInH9cW9wNDwK65UYV3qKGatrWDDZbWllRcLsUrpGn+ecXlUsCQk1domQi6bZgzZw7R0dFERUWxcOFCzp49y5YtW9i2bZtJPysrK1asWMGKFSsAmDt3Lu7u7gwePBhra2v279/Pli1bWLp0Kfb2hg+jjY0NixcvZuXKlTg6OhoXRygUCmPZd4AdO3ag0+nw8/MjNzeXNWvW0KtXL2bNmmW+vwjhoeP7eBCXvsskeWsSPcf2obKwnNzEbEKnhZv0+3rWDoKfHkDwMyFYSq1arDgB4OLnbiyZXpicy83z1+ja1xuZky31ZbVcPHweC6klipGGOcASCwm+I3vxS3y6ocabvztV1yrI/PoM3gMV4iq3DSLotsHNzY2EhATmzZtHZGQkHh4erF27ttnCCK1Wi07XNH8xODiYjz/+mPXr16NWqwkMDGTjxo3MmzfPZL9ly5ah0WhYsWIFlZWVjBo1ip07d5pMEdNqtXzwwQcUFBTg6urK1KlTWb16NVZW4p+uM5M52BCxaBxnvzjFyY1HkDna0i9qULOFEXqdnrstVCD3dKLw5CXOxaSgrmvAxtkO92Avhi0Iwcapac5636hBSO1lXD5+kez9Z5E52tIjoie97zAVrbMTlSMEsxGVI4SHRaeoHGGO4C483DrUZ6BDnaxwtx7kP65Zgq5SqSwvLy8XH+JOrqSkRAdUP+jzaIfqhprb5k8JjwydVodOrZUCNQ/i9c0SdDUazY9xcXEd4csm3CdKpZJTp07JgBMP+lza4diNc4VqcbH7aCrNKcLKRpqr1+sfyGRicw0vHMnOztZ8+eWX4lPcCen1epYuXdpgbW2dqtfrbzzo82mHn9X16pJLRzKb5z0UOjR1fQPpu1LrNEr1A0vRZ5YbaQASiaSfra3tj2FhYVZTpkyRu7m5iWWsjzitVkthYaHuiy++qC0oKLheU1MzXK/Xlz7o82oPiUTia2ltdVLu7WznM8RXLnO0lTQubBE6Hp1GS2VhWUPhyVyNVqPdpVVp/qzX63V33vO/z2xBF0AikTgAkXK5fLxUKnVDLEN+1GmVSuXVurq6OCBRr9d3qHFSiURiA4y3lFk9ZWFl4SFBIj6vHZRer1dqVJosvVa3G8jQP8CxI7MGXUEQhM5O/M8tCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRiLoCoIgmJEIuoIgCGYkgq4gCIIZiaArCIJgRv8PTM7cwIYvyIIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WCtJ48zI9cGi" - }, - "source": [ - "#### Make tree-based policy recommendations from CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SZL7vB1_9cGi", - "outputId": "b085ab61-7631-4959-b5e8-ed458e8e80d1" - }, - "source": [ - "from econml.cate_interpreter import SingleTreePolicyInterpreter\n", - "\n", - "intrp = SingleTreePolicyInterpreter(max_depth=1)\n", - "intrp.interpret(est, X, sample_treatment_costs=0.2)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 65 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "-tWTr9ha9cGi" - }, - "source": [ - "intrp.export_graphviz(out_file='policy_tree.dot')" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "J90REc4o9cGi", - "outputId": "44988977-d39f-4fec-cca2-fe02014c6bc9" - }, - "source": [ - "intrp.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAEGCAYAAABvmUxSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wURf/A8c/c5dJ7IwmQAAmEXhQFFUWxV1CxNwT1sStieexYscNjxYIdRMWCHfSHiII0EaXXkARII5X05G5+f+zmuEsuDQIhyff9euWVu73Z3Znduf3uzO7tKK01QgghhGj/LK2dASGEEEIcGhL0hRBCiA5Cgr4QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOiLDkcp9b5S6knz9fFKqU2tnacah1t+hBDtiwT9DkQptVApla+U8mntvBwutNa/a62TWzsfNQ63/BxOXE/WDtLyT1RK7TxYy2/C+hcqpa5r5jyDlVJ/KaVKzf+DG0jbRym1QClVqJTaqpQ6/8BzLdoaCfodhFKqG3A8oIHzDsLyvVp6maJtae060NrrP9SUUt7AXOBjIAz4AJhrTq+d1stM+x0QDtwAfKyU6nXociwOC1pr+esAf8AjwGLgJeA7c5oPUAD0d0kXBZQB0eb7c4DVZrolwECXtDuA+4B/gQrAC/gvsA3YC6wHzndJbwVeBPYAKcCtGCchXubnIcAMIAPYBTwJWOspz2RgDvCpua5VwCCXz/sAC818rwPOc/nsfeBJ8/WJwE6Xz7oCXwI5QC7wKuAN5AEDXNJFA6VAlIe8NVbOa4ENZr63A/9xmbd2fnYAd5vbuNAsr6/5WSTGQbzAzN/vgKWe7XUssMJcxgrgWHP6JcDKWmknAt+41JEXgDQgC5gO+Lnm1awDmcBHHtY7DvjDXEa+uT3OdPk8DvjGzP9W4Pp68n8DUAVUAsXAtw3UweEYdbUA+Ac40WU5Hrc9EIBR7x3m8ovNvE0GPscIrHuBNUAv4H4gG0gHTnNZfr11uKFtATwF2IFyc92vNuE7fZq5DuUyLQ04w0Pa/uZyXdPOB55o7WOT/B3av1bPgPwdoh1tHFBvBo40D56dzOnvAk+5pLsF+Ml8PcQ8sA3DCGTXmAdZH/PzHRgnBF1dAsFF5sHSghFQSoBY87MbMU4EumC0TH7BPRh+BbxpHoCjgeW4BMRa5ZlslmMsYMMIjCnma5tZ3gcwAvYo84CdbM77Ph6CvlnGf4CpZh58gRHmZ68Dz7qs/w7MwOMhb42V82wgEVDASIyThyNq58dlGy83t2k4RsC60fxsCkYQrinz8a4HdZdlhGMEmaswguJl5vsIwN/cNj1d0q8ALjVfT8UIyuFAEPAtMMUlr9XAsxgnB34e1j3O3E/Xm9v3JmB3TT6BRea29QUGY5xsjapnuzr3W63t46yDQGeMk7WzMOrgqeb7qOZue5d6Vg6cbm67DzHq2YPmNr8eSHFJX28dbsK2WAhcV2v93wH/rWd7TAR+9JB+koe0noL+z8BXrX1skr9D+9fqGZC/Q7CTYYR5sIk0328EJpqvTwG2uaRdDFxtvn6DWi0BYBMw0ny9AxjfyLpXA6PN1wtwb9WeghkMgU4YLTU/l88vA36tZ7mTgaUu7y0Yravjzb9MXFq9wCfAZPP1+3gO+sdgBB0vD+sbhtGKqjlArwQuridv9ZaznvRfA3fUzo/LNr7S5f1zwHTz9eMYXbZJjeyDq4Dltab9CYwzX38MPGK+7olxEuCPERhLgESX+Y7BDHJmXisxex7qWfc4YKvLe39zW8RgBGo7EOTy+RTg/XqW5dxvtbbPeJf391GrxwGYB1zT3G3vUs9+dnl/LkbwrGm9B5nlCaWROtzQtjDfL6RW0G9kvz4MzK41bSZmPa813YbRs3Gv+fo0c9/Na+r65K99/Mk1/Y7hGmC+1nqP+X6WOQ3gV8BfKTXMvO4/GKO1ApAATFJKFdT8YRyo41yWne66IqXU1Uqp1S7p+2N0Q2POl17PvAkYB6MMl3nfxGgt1cc5v9bagdHVHFezHnNajVSMVmBDugKpWuvq2h9orZdhtApPVEr1BpIwWsCeNFROlFJnKqWWKqXyzHKexb5t5Emmy+tSINB8/TxGj8Z8pdR2pdR/G8hPaq1prttjFkZwArgc+FprXYpxqccf+Mtln/xkTq+Ro7UubyDvbvk3l4tZhjggT2u9t558NVXtenRRrTo7AoiF/dr2YFzWqFEG7NFa213e15SnKXW4vm2xP4qB4FrTgjFO2txorauAMRg9HZnAJOAzjO+M6EA61I0vHZFSyg+4GLAqpWoOOD5AqFJqkNb6H6XUZxgH/SyM6/01B410jK7/pxpYhXZZVwLwNnAy8KfW2q6UWo3RYgSjJd7FZd6uLq/TMVpJkZ6Cbj2c8yulLOayd9d8ppSyuAT+eGBzI8tLB+KVUl715OED4EqMg+acBoJdveU0fznxBXA1MFdrXaWU+pp926jJzP00CePErD+wQCm1Qmv9f7WS7sYISK7iMQI4GN28Uead35dhdBuDcU9CGdBPa72rvmw0N9+18hWulApyqXPxGNepm7Mu1+npGC3962snasK2P5Cy1Ky7uXXYVXPXvw5j3yutdc28A4HXPC5c638xLmkAoJRaglGnRQciLf32bwxGF2pfjFb8YIyb3H7HOPiB0dK7BLjCfF3jbeBGsxdAKaUClFJnK6WC6llXAMaBKwdAKXUtRku/xmfAHUqpzkqpUIyuWAC01hkYNxa9qJQKVkpZlFKJSqmR1O9IpdQF5p3Jd2IccJcCNa3ye5VSNqXUiRjdsrMbWBYY118zgGfMsvoqpY5z+fxj4HyMwP9hA8upt5wY9xj4YGyjaqXUmRhdrc2mlDpHKZWklFIYN+jZMW5Eq+0HoJdS6nKllJdS6hKM+vAdOFuBn2P0HIRjnATU9J68DUxVSkWb6+yslDp9f/Jbm9Y6HeOGuynmth4ITMDYzp5kAT0aWezHwLlKqdOVUlZzuScqpbrQ+LbPAiKUUiH7WZ79qcOumlI+Vwsx9vntSikfpdSt5vQFnhIrpQaa28NfKXU3Ru/H+81Yn2gHJOi3f9cA72mt07TWmTV/GHelX2G2apdhXLuNA36smVFrvRLjpqNXMW782opxXdIjrfV6jLvW/8Q4gA3AuEegxtsYB8V/gb8xglE1xoELjJMQb4yb4PIx7s6PbaBsczFOVmpuUrtAa12lta7ECPJnYrRWX8e4T2FjA8vC7LI9F6PrPg2j6/MSl8/TMX4loDFOmupTbznNFu3tGCcG+Rjd6fVdJmhMT4ybBIsxtvnrWutfPZQrF+NXGJMwbmq7FzjH5XIPGCd7pwCf12ql3oex35cqpYrM9bXkcwQuA7phtPq/Ah7VWv9ST9oZQF+z6/xrTwnMfTQa4ybOHIzW9z0Y93c0uO3N+vEJsN1cRxzN19w67Op/wFhlPEvjZQCl1I9KqQc8JTbr+RhznQXAeGCMOR2l1ANKqR9dZrkK46Q2G6M37lStdUUzyyfauJqbkoQ45MyW1nStde2u56bMOxnjBrYrWzxjDa/3XWC31vqhZsyz3+UUQoiWJC19ccgopfyUUmeZXcydgUfZd9PgYc+80fECjBZnQ+nadDmFEO2XBH1xKCngMYxuz78xfnP+SKvmqImUUk8Aa4HntdYpjSWnjZZTCNG+Sfe+EEII0UFIS18IIYToICToN5OSYVmFOCwol1HplFJXKKXmN2GeB5RS77RwPpRS6j3zrvvlLbnslqT2YxQ/sY9SaodSqkwp9VFr56U2ZYyeWK6U+qOxtE0O+kqGZa1DH2bDoB5u+WlrVAsP3drYQVYp1U0ppdVBHB2uNQ/06hAOVau1nqm1bvR5B1rrp7XWLb09RmA847+L1vroFl52qzgU+84MoqcczHU0sO5xTQmQHpyrtb7KZTndlFK/KmNo440Nlcd8lsK7SqkipVSmUuquWp9frJTaoJTaq5Rar5Qa4/LZpUqpTcoYFjlbKfWBUsr5NEat9SiMMT8a1aSgr2RYVnGQSR3wTLZLm5AA7NBalzR3xra8f9ty3lvQJxg360ZgDMI0RykVVU/ayRjP1kgATsJ4eNgZYDz0CuPBUndhPEr5HmBWzUOxMJ53cpzWOgTjAU5eGCM4Nl9THtCPDMsqw7K2wrCsZrrrXcq7nn0jojW2j14DvjfnW4Y5aAzGnfVTMR5QUoQxVGp/6h+6taE6OY4DGCrV3C6afUO5HmMuc7GZx1yMetzQdgwz92OOmYfvMFqc9ebBXOfNwBazXE9gjDy3xNwmnwHeLvls7Htcp45Rz1C1HrbB+2Z5fjbz8huQ0FjdMz9biDlATc2+cPmsn7nMPHObPeDy3f/YJV1Dw/COw/iO7TX37RUe8j/B3L52s4yPudTbreb6v3Etu7n9bzG3f0o99b7ZwwO7fD7a3F9FGHX3DJft9QRG/dqL8QCpSA/rbmiY4TkYwakIuI6GhxJOxHg6YC7G8WwmEGp+9pG5/DJz+fdiPKRJm+VLx6jPNwJHYdSvAmp9jzAeSLTBTDsP97qjzfm3mPO+hvH971NrnxU0MQ7uAE5xed8LI3a5Dhj1O+YomB7m3437MMxPYA6YhDGgV3at9DnAMR6WE4jxRNAfak0fh8t3oN5yNLGwMiyrDMvaGsOyXoRxIDnKLG8S+wY1aWwf5QJHm3meyb4v1+nAXxijotUcAGJr79taeaivTo6jmUOl1lp2N9d967LMauA2M+9+jWzHCOBCc18EYTxO92uX5dXJg7nOuRgtin4YB67/w2hBhGDUv2ua8T2ur46dSK1R6zxsg/fNfXeCWQ/+h3ngooG6V7tsuBzwzO2QgfEEQl/z/TCX7/7H5ut6h+HF+A4Xsa9OxWKMQeCpDM51m+9HYQS5I8wyvQIsqrX9fzbL56neH8jwwEdjnCCdas7bGejtsr22YQQrP/P9M/WUqc6+Y99xc4y5bD8aHko4ycyHj7lNFwHTah2fXINoN3PbTDf322kYwflrc9mdMeriSDP9aIzjQB+M+vEQsKTWdv4O47sejxFEz/C0z8xplwP/NlBXa+f3fGBDrTSvAq94mDfMzE8nl2ljgTUu8eM3jJ50q7mNdwIBLulHmPtWYxyHTqu1jjpl8liORhPIsKwgw7K21rCs82rKVmt6U/bROy6fnQVsNF+Pwhh4Zzi1ejbwEPQbqZPjOIChUqk/6Ke5vG9wO3pY5mAg3+V9nTyY6zzO5f1fwH0u71/EPDjTtO9xfXXMrT7Wk9/3cRkeFqMVY8doDDRW95xlwz3oXwb8Xc/6JrMv6Nc7DC9GECvAOKGqE5hrzeNct/l+BvBcrTJVAd1ctv+oBpZ3IMMDvwlMrSfdQuAhl/c3YzbSPKSts+/Mbed68tLc4+4Y1/1C/UG/s8u0XOASl/dfAHear38EJrh8ZsE4AUpw2c4jXD7/DPivp33WlD8P+b0KlzhiTnsKD0NDm/VZ43K8wzgh2uHyfgJGz0O1WY6z68lHZ3Nf9GqoHtb315Rr+tcgw7LKsKzuDtWwrF0xWiae8tTYPvJYbq31Aoyz8deAbKXUW643xNTWSJ10W48+8KFSa7ju8wa3ozIGT3lTKZWqjGfjL8IYQdHayDpqDxdb+31NGZryPa6vjjWV63exGKNLvOa72FDdq0999aa2BOoZhlcb1+cvweh5y1BKfW9+d5vCLd9mmXJr5Tu99kxNyRc0egxorOwttq9o5LirlOqklJqtlNpl1s2PaXwYY2he3fyfy7rzME6SGz0OtJAmD21spq35vE5a8wbA5zBOtrwxenDeUcbIl260MeLlTzQ+gJhHDQZ9tW9Y1pHm3YaZGNdsByljWFY7xtnTZeafp2FZQ13+/LXWn7jm32VdCRgDldyK0X0XivEEtOYOy1qzrmCtdb8GilffsKy7MYdldUnb0HCfrnmIb+DmlpphWa/iwIdlfQGjmygUYzCX/RqWVWs9SWvdA6NL6S6l1MkektY3LGvN9qg9LGvNKH2uw7LW7JMQrbXrl07TsHSMbkxPedqffWSsVOuXtdZHYow01wvjppk6+WlCnWx0Vfv5uev0xrbjJIwBcIZprYMxuslxyWNjeWhMU77H9Wnqul3reCBGt3fNd7GhutdQnpsyWl3NMLyuZQvQWj8DoLWep7U+FSPYbsSoC03hlm+lVADGZRjXfDe0berNVxOOAfV9Z5qrKXWzsePu02b6AWbdvBL3705L1M3/1NpOflrrJU2Y90DXDca9RD2U+6ijg8zp7ivTOh/j2D6onrSDMXpRVmqtHVrrFRj3ItX3awAv9nM/N9bSl2FZZVjW1hyW9R3gbqXUkWYdSjID8f7uI5RSR5l10obRbV7uUu7aQ5s2Vicb09hQqTnmuutN04TtGIRxUlCglArHeM5/c/LQmOZ+j2uvuylD1Z6llBqhlPLGuLlpqTZGy2uw7jXgOyBWKXWnMn4mFaSUGuYhXb3D8Jqt1NFmwK7AaKl5+n548glwrVJqsBmknwaWaa13NHH+AxkeeIa57pPN42DnZvRQuGp03zXhuBuEsd0KlXF3+j21FnGgdXM6cL9Sqh+AUipEKXVRE+fNArqYdW6/aK03Y1zue9TcR+cDAzFOyjz5EHhIKRVm7pPr2Te08Qrg+JqWvVJqCMZlzH/N91copeLN1wkYlxH+b3/y3VjQvwYZllWGZW2lYVm11p9jVO5ZGN1gXwPh+7uPTMEY2zgfows2F+OEBWoN3dqEOtmYOkOl1ipfqVm+xeY6h9eznIa24zSMG6r2YJy0/tScPDSmud/jWvM2dajaWRgnK3kYNwtfac7flLrnab17Ma6XnovRvbsF4ydStdPVOwyv+XcXRqs9D6O79aYmlvsX4GGMg38GRovs0qbM21i+GjsGaK2XY9z9PhXjZP436vaWNCUPTd13DR13H8O4mbEQ45c0X9aadwpGECxQSt29H3n8CuNG4Nnm92ItxjGhKRZgtLIzlVJ7wBlY67TSG3EpMBSj7M8AY7XWNY2E2st7FOPSSyrGfnlea/2TWZbfMH8doZTai1F3ntZa1zxwqi+wRClVgnEM2oTxvWy2NvvsfSXDsgrR5iml3se4YazJ3wkhWoMynnYaC3yltb6msfSHklLqZ4ybk5drrT1dpnVqMw9XUMb9BSdhtII70caGK1X7hmUd0ki6Nl1OIYRoj/Rh/LRT896TJmlLz95vs8OVKhmWVQghxGGgzXbvCyGEEKJ52lJLXwghhBAHQIK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXQgghOog2M8qeEAeTUsobY3TDbsj3oj1xYIxp/4vWuri1MyNEa5MBd0SHp6xeVyqL9U2/mKTqgK59vZTNW3rA2gltr3aUZ26vLk7910dZrM/YK0ont3aehGhNEvRFh6aUOsXqHzK3/31f+vt36d3a2REHSWV+JmufGVNaWZB1t6Oq4o3Wzo8QrUVaNKJDs/oFT0wY+6AE/HbOOyyGxPFT/S02n7tbOy9CtCYJ+qJDc1RXnhA6cFRrZ0McAsE9j8ZRVdlFKRXW2nkRorVI0Bcdmq6u9LMFhrd2NsQhoCxWrD7+VUBIa+dFiNYidykLoVSLLKZ8Tzp/3zccAJ+ILhzx3LImz5v25bPs+v5lAOIvvJ/OZ93aInkStbTQvhairZKgL0QjtMPBuucvwuLlTZ+7ZqHMwOGormLtU+fgE5VA8s1vOdP3vuNDArsPdltG0ZYV7Ph0MqXpG7AFRxB78gTizrjR+Xnns24l5uRrWfPEWYemUAeoIj+DlJkPUbh+EcrqTcSRZ9Ht0slYfQPqnadqby6pc56mYO1C7KUFBCQMottljxGYMMAtXVlWCmlfTKFww2IcVeX4depOj2ueJ6jHEBzVVaR//TwFaxZQnpOK1cefoKSjib/wv/jFJB7sYgvR5kn3vhCNUBYLSeOnUrx9FZkL3ndO3/nNi1QWZtPj6mfc0nsFhGILinC+r9izkw1TLycwYSADH/2J+PPvI+2r58hc+KEzjdU3AO+QaJTFekB5dVRXUlmYfUDLaIx22Nn4v6upLs6j371fkHzL2xRu+J1t79d/j5zWmk2vjqds92aSb3mHgY/Owy8uifUvXEJlQZYzXcWenaydMhqf8Dj6TvqEwU/8SsJFD+MVYPTIOyrLKNnxD53PupWBD/9Inztn4qgsY/0Ll2Avk5/hC9EYCfpCNIFvVDwJlzxK2pynKMvcxt5tf7H7pzdIHPcCjd0TkLnwQ2xBkXS/8mn843oRdexYYk6+lt0/TW+x/O3d9hfbP7qfv+4aQu7yb1psuZ4UrFtEafp6kq57mcBuAwnpfSzdL3+S3BXfUJG7y+M85dkp7N26ku5XPEVQjyH4xSTR48pnUFYvt5OftC+fIbTvCXS7dDKB3QbiGxVPaP+R+HXqAYCXfzB97/6UyGFj8ItNIiChP0kTplGZn8He7asOarmFaA+ke1+IJup0wuXkr57Hlndux15aSPSISwkbeHKj8+3dupKQfsc7LwsAhPU/kYx506kszMY7JHq/8lOxZyc5f84h588vqMjdRdigU0i89iVCB+z7NcL2D+8jZ+mXDS6nz50fE9xrWJPXu3fbSnw79cA3sqtzWki/kaAs7N26Ep+IznXmcVRVAGCx+TinKYsFi5c3ezcb9z5oh4P8f34m7syb2TDtKopTVuMT0ZlOJ11Dp+Mvqzc/1WV7AbD6+DW5DEJ0VBL0hWiG7lc9w6p7h+EdEk3CJY82aZ6qomyCex/jNs1mBvqqguYFfXt5CbkrviXnzzkUbVlOUNJRxJ1xExFDz8HLP7hO+q5j7iH29Bs9LGkf77CYJq8foKowB1twlNs0i5cNr4BQKguzPM7jF5OEd3hn0r56jsRxL2D1DSBj/ttU5mdg8TaCddXePdjLi9n1/ct0GX038Rfcx96tK0n5+EGUshA94pI6y9UOBzs+eYSgpKEEJg5tVjmE6Igk6AvRDDl/zMbi5U1VUQ5lmdvq3IR2sOWu/I5t70/CNyaRAQ993+j6bcGR2IIj93t9y27u6Xwd3HMYfSZ+vF/LsXjZSL7lHba9P4mVd/QHi5WQvscTOmAUFXvSjETm00HDBp5C5zNuAiAgvj+lGVvI/L936wR97XCw7YN7KMvYQr/7vnTrSRFCeCZBX4gmKk5dw85v/0fPG14ld9WPbH3nDgY+8qNbl7UntuBoqopy3KbVvLeFNq9rP3zI6djLHiPnzzmsfepcQgecRNTwCwgbfCoWm2+d9AfavT/w0fnO1xZvY/m2kCiKNv3pls5RXUV1SQHeIZ3qXU9gt4EMmvwz1aVFaHsVtqAI1jxp/PoBwCswHGX1wi+ul9t8/nG9yF32tds07bCz9d2J7N2ynH73zMEnPK7BMgohDBL0hWgCR1UFW9+5g4ijziVi6DkE9z6Ofx45mfSvXyDhogcbnDcoaSi5K79zm1awdiE+UQnNvp7vFRBK7KnXEXvqdZTu3kzO4s/Z8elktn1wL+FHnkXU8PMJTj4WZTHu0T3Q7n2/Tt3rlidxKLu+nUbFnp34RHYBoHD9ItAOgpIa72KvuQxRlrWd4h3/0OOa5wCjNyCw+2DKMre5pS/L3IaPy/0D2l7NlrdvpTjlHyPgm3kQQjRO7t4XognSvnwGe1kR3a94EgBbYBiJ455n9/w32bt1ZYPzxpx4NVVFOWz/+AFKd28hZ+mXZPzfe26/098f/nG9SLjoQY54bgW9bnoTXV3JxleuJfPX951pbMGR+HXq3uCf1bt5N8CF9jsB/6592fLO7RTv+JeiTUtJmfUwEUed57yJryI/g78fPIHcVT8658td+T2FGxdTnpNK3t/z2PDiZQQlDSX62IucaeLOvIW8v74n89cPKM/eQc6Sz8leNJOYUdcCRsDf9MZ/KNq8jF43voGyeVNZmE1lYTb2yrID2JpCdAzS0heiEUWblpLxywz63PkxXv77nuAaNvBkoo+7hK3v3snAR3+ud36fyC70mTiTHbMn8+9jp2ELiqDrmLuJOfHqFsmfslgI7XcCof1OwF5RSnVJfosst/71Wel9+wekzHyIdc9egPKqeTjPY8402l5NeeY27KVFzmlVRTns+HSyeSNgBBFHnUfX0XejrPsOQ+GDTyPx2pfY+d3/2DH7MXyj4ul26WPO6/kV+Rnk//0TAGuePNstX4nXvuTxZj8hxD4ytK7o0JTFWj1s+jarxcv7gJdV8xje/g98Q1Dikfu1jFX3DqPTiVfJY3gPkhV3DCipLs7rr7Xe0dp5EaI1SPe+EC1s/QsXs/rhk5o1z85vp7Ls5p5U5Hl+uI0QQrQE6d4XooX4hMUy+Ok/ALBYbc2at9NJ44g4egwAtiAZ9U8IcXBI0BeihSirl8e73ZvCFhiGLVCGeRdCHFzSvS+EEEJ0EBL0hWhjts64k/VTr2jtbAgh2iDp3hdCtLisRbPIWTKH0l2bQNvx79ybLudOJLT/SPd0v81k10+vU5m3G7+YROLHPkjYgH03QWqt2fX9y2Qt/JCqvfkExPej++VPENh9sDONo7qStDlPkbP0KxwVJQT1HEb3K57a70stQrRn0tIXQrS4wo2LiRh6Nn0nfcKAh74nKOkoNr58NcUpq51pcld+z/aP7yfutBsY+Oh8QgeezKZXx1OSvt6ZJmP+m+z64VUSLn6EgY/8iF9sEutfupzKwmxnmtRPH2fPsrkkTfgf/R/4BmWxsuGly+VhPUJ4IC19ITwo2rSU1DlPUbprI8pixTe6Oz2ufobAboPQDjvbP7yPwo1LqCzIwju0E1HDL6DzOXdg8TLu2k+f+yJ7ls+ly7kTSf/qOaqKcggdMIqkCdPI+3se6XNfoLpoD6GDTiHxmuex+vgDsO65sfhGd8fqF0jO4s/QDjuRwy+g26WTqe9ZAlprMua/RdbCD6nIy8A3qisxp0xwe/hP1sKP2D3/LSpyd2H19Scgvj/Jt77rXG9L63XDa27vEy56kPx/fibv75+crfTd894g6pgLiTnpGiPNhfdTuP53Mn6ZQdK1L6K1Zve8t4g7/ScdzxsAACAASURBVCYijx4NQOK4FyhY8yvZi2bS5dyJVJftJWvRTHpc/ayzh6Dn9a+w8q4h5K38nqhjxx6U8gnRVknQF6IWba9m46vjiR5xKUnXvQzaQUnaWueT47TDgS0kmp43vIotOIrStHVs/+g+LDYfOp99m3M5lfkZ5C6fS/Jt71JdnM/m169n02vXYfHyJvmWd5zTMua/SZdzJzrny13xDZHDxtDvv19Tnp3CtvcmYfULIuHC+z3mN33uC+xZ9jXdL52MX1wyJan/su2D+7B4+RA94hKKd/zD9pkPkjRhGsFJR1NdVkTR5qXOUe082TD1Soq2LGtwOw1+YqHzsbuNblOHA3tFCRbzJMNRXUlJ6hpiT7nOLV1o/xOd4xRU7EmjqjCL0H4nOD9X5uh8Reajj0t2/IOuriS0377LBl4BoQR2H8zerSsk6AtRiwR9IWqpLtuLvbSQsMGnOq8L+8UkOj+3eNmIP/9e53vfyK6UZaeQs2SOW9DX1VUkjp/q/Cle+NCzyfnjM4ZOXY1XQKhzWuGGxW5B3ysogu5XTkFZLPjH9aRy9CRSP3+SrqPvdvYk1LBXlJExbzq9b/+AkD4jjPxExVOWsYXMBe8RPeISo3Xv40/4oNOw+gXiAwR07dvgNugx7nkcleUNpvEOrX9Evdp2//ga9vJSokdcCkD13jy0vbrOsL/eIdFUmV33Nf9tIVFuaWwh0ZTu3ABAZWEOKFVnObbgKLdLAEIIgwR9IWqxBYYRddzFbHjpCkL6HEdI7+MIH3o2vi4jvWX9NpOs32dRsScdR2UZ2m6vE5C9w+PcfnvvHRyNd3icM+DXTNu7ebnbfIE9hjhHyQMI6nkUjsoyKvakuZ18AJTt3oSjspyNL48Dl/Hktd2OxWZcDgjtewI+EV1Y9d/hhPQbSWjfEwg/4kznaHee+ITFNmFLNU32H5+y87v/kXzbu80eVVAI0bIk6AvhQdL4qcSeej0F634jf80C0r56jl43vkH4kNPJXfEtKbMeImHsAwT1HIbVL5Dc5XPZ+d0rbstwHUjGmKA8TtPasd/5rJk3+ZYZ+ETFuy/aPHGw+gUy8JGfKNqyjML1v7N73nTSvphC/we/dTuRcdVS3ftZCz9ix6ePkXzLO4T23ddN7xUUjrJ6UVW0xy19ZVEONvPEoOZ/VWEOvlEJzjRVRTnYzF4G75Ao0Jqqoj1uPQ9VRXvwj+vZYN6E6Igk6AtRj4CufQno2pfOZ9zExlcnkP3HbMKHnE7R5mUEdhtI7KnXO9OW56S32HqLU1ajHQ5n0N67dSUWb198IuPrpPWPS0Z5+VCRm17n53CulNWLkN5Gr0WX8ybx191HkrfqR+JOu8Fj+pbo3s/4ZQZpXzxN8i3v1smbxcubgIQBFKxbROSwMc7pBWsXEpR0FAA+kfHYQjpRsP53gpKGAsa9AYXr/yDmpKsACOg2COXlTeH6RUSZQ/RWlxZSnPI3nU64vMH8CdERSdAXopbynDSyFn5E2ODT8AmLpTw3nZLUNc7g5BuTSPYfs8lbPR+/2J7kr55P/up5Lbb+qsIcUmY9ROzJ4ynL2k763BeJGTW+zuUDAKtvAHFn3kTq508BENz7WByV5ZSkrqGqOI/OZ9xE3ur5VOSkEtRrOLaAMIq2LsdeWohfbP0t4QPt3t/903TSvpxC4vip+Hft47y+brH5Oi8rxJ1+I1veuoXAHoMJST6WnCWfU5q+nsRrngdAKUXc6TeQPvcl/GOT8OuczO55b+KoKif6BOPhRF5+QXQ64QpS5zyNLTgKW0g0aV8+g3doDOFDz/acOSE6MAn6QtRi8fajPDuFzdNvpLo4D1tQBOFHnkXX0XcB0GnklZTu2sDWGRPBUU3Y4NPocu5EUuc83SLrjzx6NMrqxZqnzwOHnchhY+g65u5608ePuQfv4CgyfnmXlFkPY/Xxxy8umdhTJgDG3ewZ899i57fTsFeW4xvZhW6XPe72EJyWlrngPbS9mq1v3+Y2PerYi0iaMA2AiKHnUF1SwK4fX2fHJ4/iF5NI8q0z3G4yjD3tPzgqy0mZPZnqYuPhPH3vmuV2b0DCJY+grFa2vH0b9opSgnseTZ+7ZmL19jto5ROirVK6gZ/tCNHeKYu1etj0bdb6fgN/qK17bix+MYn0uPrZ1s5Ku7TijgEl1cV5/bXWO1o7L0K0BnkinxBCCNFBSNAXQgghOgi5pi/EYaTfvXNaOwtCiHZMWvpCCCFEByFBXwghhOggJOgLIYQQHYRc0xeijaram8uu718m759fqMzLwCsgFP/OyXQ66WrCh5yBMp/FX7D2NzZMu5KwgSfT+/b3Adg6405ylnze4PKHPLuUnMWfsfObl+p8ZvHxZ9jrW1q8TEKIg0uCvhBtUEXuLtZOGY3F25f4MfcSEN8PgMJNS0j97AlCeh+Ll38IAFmLZhJ3+n/IXPAelQVZeId2ottljxM/9gHn8lbdO5yEsQ8QcfR5zmm2oAgAfKO70e+/X7mtXynpJBSiLZKgL0QbtP3j+9EOOwMe/hEvvyDndL/YJKKGX4jF5gMYA8/k//t/DJnyB2WZ28he/Cldzr7dfBSu+yh7Vr8gz6PgWawyOp4Q7YScrgvRxlQV51OwZgExo8a5BfwaVt8A52h+2Us+J7jnUfiExRJ1zIVk/z4beQqnEB2XtPSFaGPKs3eA1vjF9Wo0bfaiWXQ55w4AwgadyrYP7qVowx+E9D2+6evL2s6ym90H5wnuOYw+Ez9uVr6FEK1Pgr4QbU7TWupFm5ZSWZBJ+JFnAWCx+RBx1DlkLZrVrKDvExlPn4kz3aZZvH2bnl0hxGFDgr4QbYxvdHdQirLdm+GIM+tNl7VoJo6KUpbf2nvfRK1RVhtVxXnYAsObtD5l9cKvU/cDzbYQ4jAgQV+INsYWGEZo/5PIXPA+sSdPwOoX6Pa5vbwER1U5uX/9QOK1LxHYbZDb5xtfm8CeP78g9tTrD2W2hRCHAQn6QrRB3a98mrVTxvDvE2fQdcw95k/2FEWblrLrx9eIPu4irN6+RB1zofOmvhoRQ88ha9EnTQ/6DjuVhdl1JtuCo5zPAhBCtA0S9IVog3wjuzLwkZ/Y9f0rpH35LJX5NQ/n6U23Sx4l/evnCRt8ep2AD0bQ3/3Dq+zdupKgpKGNrqs8ewd/3TWkzvSh09ZgC2raJQIhxOFByc93REemLNbqYdO3WS1e3q2dFXEIrLhjQEl1cV5/rfWO1s6LEK1BfqcvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchP9kToo3J+m0mu356ncq83fjFJBI/9kHCBpxUb/qC9YvYOfdFSnduRFm9COg+mIQL7ycgvj8AlQVZ7PjscUpS11CelULUMReSNGGa2zLWPTeWok1/1lm2X1wvBj/xa8sWUAhx0EjQF6INyV35Pds/vp/ulz9BcPKx5Pw5h02vjmfAQ98T0LVvnfTlOWls/N84YkZdQ+L4qeiqStK/eZH1L17GkS+swGLzxVFdiS0wnM5n3kLWwo88rrfXzW+j7VXO97qqkn8ePZmIoecetLIKIVqedO8L0YbsnvcGUcdcSMxJ1+Af15OEC+/Hv0sfMn6Z4TF9Seq/aHsl8Rfej1+nHvh36U2X8+6iujiP8uxUwHjQT/fLnyB6xCVYA0I8LscWGIZ3SLTzr2jrcuyVZUQff8lBK6sQouVJ0BeijXBUV1KSuobQfiPdpof2P5G9W1d4nCew22CU1ZvsRbPQ9mrsFWVk//4Jvp164HsAg+hkL5pFaP8T8QnvvN/LEEIcetK9L0QbUb03D22vxhYc6TbdOySaKg/PxgfwiexC37tns3n6TaR88ghoB34xifSdNJv9fQphWeY2ijb9SfKt7+7X/EKI1iMtfSHascrCbLa9N4nIo89j4EM/0O+eOdiCo9g8/Ua0w75fy8xaNAtbSCfCBp7cwrkVQhxsEvSFaCO8gsJRVi+qiva4Ta8sysEWEu1xnswF76O8vOl2yaMEJPQnOHk4Sde9TPH2VRRtXtrsPDiqK8lZ8jnRIy72OJiPEOLwJkFfiDbC4uVNQMIACtYtcptesHYhQUlHeZzHUVmGsrh/zZXFarzYj8G28v7+ieriPKKPv6zZ8wohWp8EfSHakLjTb2TP0i/IXPghZRlbSftiCqXp64k9ZQIAqV9MYd3zFzvThw08mdKdG0j/+gXKsrZTnLqGre/dhXdYDIHdBjvTlaStpSRtLY7yYqpLCihJW0vp7s111p/920xC+ozANyrh4BdWCNHipH9OiDYkYug5VJcUsOvH19nxyaP4xSSSfOsM52/0qwqyqMhJdaYP6TOCnte/xu55b7B7/ptYbL4EJR5BnztnYvULdKb797HT3daT/8/P+ER04YjnljmnleekUrhxMT3/8/pBLqUQ4mBRej+6+IRoL5TFWj1s+jbr/t7JLtqWFXcMKKkuzuuvtd7R2nkRojVI974QQgjRQUjQF0IIIToICfpCCCFEByFBXwghhOggJOgLIYQQHYQEfSGEEKKDkKAvhBBCdBAS9IUQQogOQoK+EEII0UFI0BdCCCE6CAn6QgghRAchQV8IIYToICToCyGEEB2EBH0hhBCig5CgL4QQQnQQEvSFEEKIDkKCvhBCCNFBSNAXHZqyWOy6qrK1syEOEW2vUoDscNFhSdAXHZrFxz+tOPXf1s6GOAQq8jNwGCd4Oa2dFyFaiwR90aE5Kkrf3/3T9HLtcLR2VsRBljH/7WqLzftbrXVVa+dFiNaitNatnQchWo1SKsDqG/hrQMKAfjGjxvn7xfVCWW2tnS3RUhx2ynNSyVn8eXn+mv/LcVSUDtNaZ7R2toRoLRL0RYenlPIHrvQKCL1aO+zd0NrrYK1Kax2mlKoEig/SOtoMDX6gAxQqDzg4XS1KOZTFmlldWjQT7fhAa73noKxHiDZCgr4Qh4hS6llgMHCW1tre2vk5HCilXgPigAu0HIyEOOjkmr4Qh4BSajRwKXCFBHw3d2EE/UmtnREhOgJp6QtxkCmlEoE/gXO11staOz+HG6VUArAMuFhrvai18yNEeyYtfSFamFJqpFJqmvnaD/gCeFwCvmda61RgHPCJUioGQCl1m1JqQqtmTIh2SIK+EC3vJKDEfP0qsAF4rfWyc/jTWv8EvAPMVkp5AXuBk1s3V0K0PxL0hWh5RwCrlFLjgWOA6+UmtSZ5HKgAngRWYWxHIUQLkqAvRMsbApQBzwIXAjal1E1KKd/WzdbhSRluAGKBK4DLgUQgXikV2KqZE6KdkaAvRAtSSkUDQcArwAPAVcBW4ChAWvv1SwD+BZ4C7gTeBLYAg1ozU0K0NxL0hWhZR2B8r4owWvphwJFa6/Fa64pWzdlhShseBHphPBf/bSAF6A4Ma828CdHeSNAXomVdBgQAi4ABWuubtNY7WjdLbYPWeo/W+iGMrv1vAR+M7SmEaCHyO30hWpBSKhawaa3TWjsvbZ1SKgyI0Fpvbe28CNFeSNAXQgghOoiDNbCIAMzfG58X7Gu92qJUL0CGbxOtQmuNUqq8stqxpLTK8b7W+s+az5RSVuBcq1/QVcpi7YPUU3EImHWyyF5e8r22V30oPTqHhrT0DxKllC3Q2/JlXIjPieOHxQb27uSPt1W1drZEB6WBsio7S3cU2WcszawoqbQ/XFHteEkpZbX4BnzmExZ7WszJ4wMDuvZFeXm3dnZFR6A11SUF5P/zS0X2H7OrHZVl52itF7Z2tto7CfoHiVLqP4PiAl76cnx/f1+b3C8pDh87CyoY9drqspJKxxDgGP/4fq/2v39ugNXbr7WzJjqowvW/s+Hla4p0VUWE1rq6tfPTnkk0OkhCfK0TbjuhswR8cdjpEurDhYOiLDarutTqHzKh85m3SMAXrSqk7/H4RnYFGNnaeWnvJCIdJJV23WtQnDxMTByehnYN8gnwth6p7dW9A7sPbu3sCEFQz6NtQJ/Wzkd7J0H/IHFobZNWvjhc+dosKIUf2uFtscnTgUXrs3j7eWE8m0EcRBKVxCF351dbueKj9a2dDSHYOuNO1k+9orWzIcQhIz/ZE8KDnzflM+23dHbklVNe5aBLqC+XHRHNjcfFOdPM+iuLOf/ksCm7FLsDenfyZ+LILoxMCnWmsTs0037byRf/5JC1t5LwABtn943gvpO74meztkbRRBtTumsT6XNfoCR1LRV70uhy3l10HT2pTrrKwhzSvphC/r+/YC8rxieiMwkXP0z44NMAWHXvMCpyd9aZL3TAKPrc+REAu354ldxVP1KeuQ1lsRKQMJD4C+5DLgG1HxL0hfAgxNfKjcd1pleUH342C8vT9vLfb7fjbVWMHx4LwOKUQs7uG8HkM7oR4G1l9qpsrp65kbnX9WdwZ+N+jtf/2M2MpRlMPT+JfjEBbN1Txl1fb6Xarnny7O6tWUTRRjgqy/CJ6ErEkWeTOudpj2mqy/ay7pkxBPY4gt63vYctJJqKPel4+QU70wx4+Ae0w+58X1WQzb9PnEHEUec6pxVuWEynkVcS2G0QyurF7h9fY/2LlzJo8i/4RHY5eIUUh4wE/XZq6Y4invo5lY3ZpViVonuEL8+c04NBnQOxOzT3fbudJSmFZO2tpFOQNxcMjOKOkZ2xWY0rPi/+ms7ctXuYOLILzy1IJ6e4ilE9Q5l2fhLzNubxwq/p7Cmp5pReoTx/XiL+3kardex76+ge7kugj5XPVudgd2guGBjJ5DO64e3l+WqS1pq3/szgwxVZZBRV0DXUlwnDY7j6qBhnmo9WZPHWn7vZVViBv7eV/jEBvHtZsnO9Le3ohGC39/Fhvvy0IY+lqUXOoP/a2F5uaR48LYGfN+fz04Y8Z9BfkV7EqJ5hnN47HDDunB/dP5JlqUUHJd+Ho6JNS0md8xSluzaiLFZ8o7vT4+pnCOw2CO2ws/3D+yjcuITKgiy8QzsRNfwCOp9zBxYv4xlB6XNfZM/yuXQ5dyLpXz1HVVEOoQNGkTRhGnl/zyN97gtUF+0hdNApJF7zPFYffwDWPTcW3+juWP0CyVn8GdphJ3L4BXS7dDKWep5FoLUmY/5bZC38kIq8DHyjuhJzygRiTrzamSZr4Ufsnv8WFbm7sPr6ExDfn+Rb33Wut6UFdh/sbGmnf/OSxzS7f3wNW3AkPa9/xTnNvBveyRYU4fY++/dPsPoGuQX9vpM+cUuTeO1L5K3qS8G63+g0Ui6DtAcS9Nuhartm/CcbufSIaF6+IAmHhrWZJXiZDwdyaE10oI1Xx/YkKsDGusxS7vt2Oz5eFm47obNzORlFlcxdm8u7lyWTX1rN9Z9u5rrZm/D2svDOpfumvbkkg4kn7msFfLMulzEDIvl6Qj9ScsuZNHcbQT5W7j81wWN+X/g1na/X7GHyGd1Jjvbj390l3PftNny8LFwyJJp/dhXz4A/bmXZ+EkfHB1NUXs3SHUU09IiJKz/awLK0hgPrwlsG0zm08fuGtNb8u7uEFWl73cpZm8OhKam04++97+Tm6Phg3lueyabsUpKj/dmRV86CLQWc1z+i3uW0J9pezcZXxxM94lKSrnsZtIOStLUoq3Ho0Q4HtpBoet7wKrbgKErT1rH9o/uw2HzofPZtzuVU5meQu3wuybe9S3VxPptfv55Nr12Hxcub5FvecU7LmP8mXc6d6Jwvd8U3RA4bQ7//fk15dgrb3puE1S+IhAvv95jf9LkvsGfZ13S/dDJ+ccmUpP7Ltg/uw+LlQ/SISyje8Q/bZz5I0oRpBCcdTXVZEUWbl9JQZdww9UqKtixrcDsNfmIhPhGdG0zTkLy/5xHa/0Q2v3kzhRv+wBYcRdTw84k74yaUpe6Jsdaa7N9nE3nMBTT0c01HRRkOezWWg3RCIw49Cfrt0N6KagrL7ZyaHEb3COMLnRi574tts1q49+R45/uuYb6k5JYx558ct6BfZddMHZNImL/R4jq7bzifrc5h9T1DCfXzck5bnFLoFgwj/L2YcnZ3LBZFzyh/JhVV8uT8VO4e1dXZk1CjrNLO9CUZfHB5b0b0CAGMVvWWnDLeW5bJJUOijda9zcppyeEE+lgBH/rGBDS4DZ4f3YPyKkeDaToFNf7kuZ5PLaPKrrE7NHed2JVxR8fUm/a1P3ZTWmnn0iHRzmm3jIijrMrOKa//g0Upqh2aa47qxKSTuta7nPakumwv9tJCwgafil8n43KGX0yi83OLl4348+91vveN7EpZdgo5S+a4BX1dXUXi+KnYAsMACB96Njl/fMbQqavxCgh1TivcsNgt6HsFRdD9yikoiwX/uJ5Ujp5E6udP0nX03c6ehBr2ijIy5k2n9+0fENJnhJGfqHjKMraQueA9okdcYrTuffwJH3QaVr9AfICArn0b3AY9xj2Po7K8wTTeoZ0a/Lwx5dmpZC74gNhTxtN34ixKMzaTMvNhHJXldB1zd530hesWUbEnjU4nXN7gcnd8/jjeoZ0IP+KMA8qfOHxI0G+HwvxtXDw4iis+2sBx3UM4rnsIZ/cNp2vYvp9mzVyZxaxVWaQXVFBW5cDu0HUCclywtzPgA0QHehMX7O0M+DXTlqftdZtvSJdALJZ9jxw+Kj6IsioHafkVbicfAJtyyiivcjBu1kaUy1OK7Q6Nt5mfExJD6RLqw/BpqxiZGMIJiaGc2SecYN/6q29scMv88mf+jQMpr3awMq2YKb+k0jXMh7GDouqk+/TvbP63aCfvXpZMtMvJxDdrc5n9dw6vXNiT5Gg/1mWW8sgPKfSK9m/wBKK9sAWGEXXcxWx46QpC+hxHSO/jCB96tlvXc9ZvM8n6fRYVe9JxVJah7fY6Adk7PM4Z8AG8g6PxDo9zBvyaaXs3L3ebL7DHEJRlX70O6nkUjsoyKvakuZ18AJTt3oSjspyNL4/DtTJqux2LzdinoX1PwCeiC6v+O5yQfiMJ7XsC4UeciZe/++UgVz5hsU3YUgdK49+1LwkXPQRAQEJ/qgqy2fn9Kx6DftaimQR0H0xA1371LjF97kvkrfyevvd83mBvgGhbJOi3U1PPT+L6Y2L5bWsBC7bk89yCNN64qBen9w7n23W5PPRDCg+cmsCwhCACfazMXZPLK7+739nrVWusAKU8T3McwKOca+adcWky8WHugdpiHngDfaz89J+BLEsr4vdthUxfvJspv6Tx7XX93U5kXLVU935NT0mfTgHkllbx/IL0OkH/oxVZPDZvB+9cmswJiaFunz0xP5Xrh8cyZkCkczk7Cyp4/Y9dHSLoAySNn0rsqddTsO438tcsIO2r5+h14xuEDzmd3BXfkjLrIRLGPkBQz2FY/QLJXT6Xnd+94raMmssB+yYoj9O0brh3pyE18ybfMgOfqHi3z2pOHKx+gQx85CeKtiyjcP3v7J43nbQvptD/wW/rXEOvcSi6971DovGP7ek2za9zL+ylBdjLirH67XtQWFXRHvJXz6f7FU/Vu7y0L58ha+FH9J30aaM9GaJtkaDfjvWNCaBvTAA3jejMhE82MntVNqf3DmfZjiIGxgVy/TH7WiDpBQ13PzbH6l3FOBza2dpfmbYXX5ulTlAHSI7yx8dLkV5Q4fZTt9q8rMrZazHppC4c+eJf/LghjxuOjfOYvqW6911pramodl/mjKUZPP1LGu9emuwx/2VVDqwW9xMlq1J0tBEvArr2JaBrXzqfcRMbX51A9h+zCR9yOkWblxHYbSCxp17vTFuek95i6y1OWY12OJxBe+/WlVi8ffGJjK+T1j8uGeXlQ0VuOqH9638arLJ6EdLb6LXoct4k/rr7SPJW/UjcaTd4TH8ouveDko6iLHOb27TyzG14BYS6BXyA7MWfoby8iRw2xuOydnz6GDlLPqfv3Z8SEN//gPIlDj8S9NuhtPxyPlqRxWm9w4gN9iG9oJw1GSXO1mZipC+z/85m/qY8ekb6MX9TPvM25rfY+nOKq3johxTGD4tle14ZLy5MZ/zRMXUuHwAE+Fi56bg4nvo5FYBjuwdTXuVgTUYJeSVV3DSiM/M35ZGaV8HwhCDC/G0sTyuisMxOz6j6uxwPtHv/9T920TcmgG7hvtgdmmWpRUxfksFVQ/cdnGt6HKaen0ifTv5k760EjKfd1Vx6ODU5jDcW7yIh3Ic+0f6szSzhrT93c765L9q78pw0shZ+RNjg0/AJi6U8N52S1DXOgOMbk0j2H7PJWz0fv9ie5K+eT/7qeS22/qrCHFJmPUTsyeMpy9pO+twXiRk1vs7lAwCrbwBxZ95E6udGCzi497E4KsspSV1DVXEenc+4ibzV86nISSWo13BsAWEUbV2OvbQQv1qtbFcH2r3vqK6kbPdmAHR1JVWF2ZSkrcXiE+C8TyL29P+w9qlzSf9mKpHDxlCWsYWd371MzMnj3ZZl3MA3i8ijR2P1rXtfzPaZD5Kz+HOSb34bW0g0lYXZxrbxCfCYXrQ9EvTbIT+bhZS8cm78bDN5pdVEBNg4q284d51odD9eObQTG7JKmfjVVqodcFpyGBNHduHpX1JbZP2j+0fiZVWc984a7BrGDIjk7lH137h2z6h4ogK9eXdZBg//kIK/t5XkaD8mmD+NC/X14q2NGUz7bSflVXa6hPry+JndOKlnWL3LPFAV1Q4e/iGF3UWVeFsVCWG+3H9KPFe7BP33lmdS7dDc9oX7MOAXDY5i2vlJADx5VneeW5DGQ9+nkFtSRXSQN5cdEd3grwDaE4u3H+XZKWyefiPVxXnYgiIIP/Isuo6+C4BOI6+kdNcGts6YCI5qwgafRpdzJ9b7e/Tmijx6NMrqxZqnzwOHnchhYzxe464RP+YevIOjyPjlXVJmPYzVxx+/uGRiT5kAgFdAKBnz32Lnt9OwV5bjG9mFbpc9TtiAk1okv55UFmTx72OnO99n/fYxWb99THDyMfS7dw4AgQkD6H37+6R9MYVd37+Cd3gssaddT+czbnZbVtGmJZRnpZB0W9cchAAAIABJREFUnfvlE+eyF7wPwIap7jf41fdAINH2yNC6B4mvzVKyctKR/uH+dVsU7dnY99aRGOnHs+f2aO2siAZ8vz6X+77d/kthte3oIVMWBx9o9/LhaN1zY/GLSaTH1c+2dlZEE6R88khV5i8z7tdav9jaeWnP5Nn7QgghRAchQV8IIYToIOSavmhRc66t/3e/QhxKNde7hRD7SEtfCCGE6CAk6AshhBAdhHTvi0Mqt6SKlxft4pfNeWQUVRLq50VytD9XH9WJM3qHo8yn8P22tYArP97Ayb3CeP/y3gDc+dVWPl+d0+Dyl945hM9W5/DSwrrjhvt7W9jy4LCWL5RoF6r25rLr+5fJ++cXKvMy8AoIxb9zMp1OuprwIWc462bB2t/YMO1KwgaeTO/b3wdg64w7yVnyeYPLH/LsUnIWf8ZODyPlWXz8Gfb6lhYvkxC1SdAXh8yuggpGz1iLr83CvaPi6WcOmrNkRyFPzEvl2G4hhJjP9Z/5Vxb/OTaO95ZnOof/ffzMbjxwyr4nqQ2ftooHTklwG7EuIsD4iWS3cF++Gu9+f4FFuT8ZT4gaFbm7WDtlNBZvX+LH3EtAvFF3CjctIfWzJwjpfSxe/saAUFmLZhJ3+n/IXPCeczjgbpc9TvzYB5zLW3XvcBLGPkDE0ec5p9UMbesb3Y1+//3Kbf1KSaerODQk6ItD5v7vt2N3aH68YQBBLoPlJEX5ceHAKHy8jAPfnuIq/m9zPn/cMYRte8r49O9sbj+hC8G+XgTXetR+kK/VbYCbGlYLHqcL4cn2j+9HO+wMePhHvPyCnNP9YpOIGn4hFpvxhMeqoj3k//t/DJnyB2WZ28he/Cldzr7dHHDHfdAdq18Q3iHR1GGxep4uxCEgp5fikMgvrWLBlgLGHR3jFvBrBPhYnYP5fL46m6Pig4kN9uHCQVHMXpWNPERKHCxVxfkUrFlAzKhxbgG/htU3wDm4T/aSzwnueRQ+YbFEHXMh2b/Plrop2hRp6YtDYkdeOVpDr+jGh+ictSqbO0Yaj6k9NTmMe7/Zxh8pRRzfI6TJ69ueW07Pp9xHNhsWH8zHV/VpXsZFu1eevQO0xi+uV6NpsxfNoss5dwAQNuhUtn1wL0Ub/iCk7/FNX1/Wdpbd7P6s/uCew+gz8eNm5VuI/SFBXxwSTW0LLd1RRObeSs7qEw6Aj5eFc/pFMOuvrGYF/fhQH2bWCvC+NunYEp40rXYWbVpKZUEm4UeeBYDF5kPEUeeQtWhWs4K+T2Q8fSbOdJtm8fY8RLQQLU2Cvjgkuof7ohRszi7jzAYa2zP/yqK00kHvKcud07QGm1WRV1pFU8cy8LIqukc03qsghG90d1DKGMnuiDPrTZe1aCaOilL+v737Do+qSh84/p0+SSaTMqmkkZBQQg1VWEAB2wIiCiIoKiyra8OCICCCbQH5CYgVXXXVRcRCEakqSpEqSKQlGNIb6X2SSWYy9/fHJBMmCRBKEiHn8zw+Zs7cuffcOOa999xz3ve3JzvXNUoSMoUKc1kBKp1nk44nUyjt1fEEoaWJoC+0CA9nFcPC3fnstyym3eCPTqNweN9YWY3JYmVrTD7Lx3agZzvHGuDTvjrNumN5PDzwysqUCkJ9Kp0H7t2GkfXLZ/iPmNag/ny1yYjVbCL/9610mLocXfueDu+ffm8aeQfW4X/Lwy3ZbUG4LCLoCy1m0ahQxn5ykts/PM6s4UF09XNBhm1I/729GdzTywetSsG4Ht72SX21RkcaWHM0u8lBv9qKvb79ubx1Kvt6a0GoFTp5EScXj+X4a7cTNHZWzZI9GSV/HiRj23v4/O0eFGot3gPH2Sf11TL0HU32njVND/rWanud+nOp9N7iuyk0OxH0hRYT5KFl+6M9eGdPBkt2pNqT83T2deal29vzxi9p3NbZo0HABxjd1cC7ezM5klZK36CGM6zrSy4wEbX09wbtJ57vi6dL2yp3LFyc1iuIHgu2k7HlHVLXL6GqsDY5T2fa3/sSad+9gUev2xoEfLAF/cyt71IafwTX8L4XPZYpJ5nfZ0Q1aO+74gQq16Y9IhCEyyUTy02ah1YlNx55ro9zU59BC0JL2hKTz+xNiTuKLar+UYv36dXuvq3dJaGNS1qzwJy145O5kiQta+2+XM/EdGZBEARBaCNE0BcEQRCENkIEfUEQBEFoI0TQFwRBEIQ2QgR9QRAEQWgjxJI9ocUcTi3h5e3JxGaXY3BRMW2AP4/+rd0FPzPgzaOkF1U6tE3q7cPSOzvYX5eYLLy0LZkfThdgsUrcFO7OwlGheOscq+xtPJHH+/syic8tR6uS0zdIz+f3d0Zou0r+PEjmDx9QlnICc1EWHaYux2fwvRf8THlmHEmr51GacBSlkyveg+4heNwcZHJbwqn4T54hd/+3DT4nVzsxYGW8/bXVYiZjyzvkHlhrWyKo88T3xskEjXn26p6kIJxDBH2hRaQXVXLfqljG9/TmzbHhHD9r5PnvE3BWy3mwn98FP/vU0ACm9q/bxqleDv3p6+JJKqjgs/s6o1LImLcliWlf/cnGad3syU4++y2Lt3anM+/WEHoH6jBXS5zOLr/6JypcU6orjTgHdsZ70D2c+ejJi29fUUbMskm4hvWm+7xNVOank/DfZ0EmI2T8CwC0n/QqwTU/1zq5eCz6jgMc2uI/ehJTXhphkxeh9euApawAS1nh1Ts5QWiECPpCi/jf4Sy8XFQsGhWKTCajo48zsVlGPtiXedGg76JW4OOqbvS9+NwKdsQVsnZqJP1DbPXM37wrnOHvHeO31FIGhOgprrCw8KcUPpnYiaEd3O2f7eTjfPVOULgmefQYgUePEQCc+Wj6RbfPPbSe6ooSwv/5FgqNMy5BkVSNnUXK2oUEjnkWhdoJpbMe0Ns/U3LmMJW5Kfj+8y17W9GpPRSd2k3U4v11CXm8gq7quQlCY8QzfaFFHEkrZUiYm0Oa0ZsiPEgprGw0Xe65Pj54lq6vH+bm94+x5OdUKqqqHfarVcoYEFz3R7aTjzP+ejWHU0sB2JNYTLVVIs9oZti7f9B76REeXB1LXI640xcujS3rXj8UmroLRvduN2GtLKc8LabRz+TsWY1Tu064hveztxVEb0fXvidnf/oPv8/sy9HZA0n4/HksxqJmPwehbRNBX2gROWVmvHWO2Ql9al7nlJnP+7mp/f14d1wEa6dG8sggf76OzuHxtWfO2W8Vni4q5HLH1L0+OpX9YiKlwIRVguW70nnx1hD+O6kzTioFd396igLj+Y8tCPWZi3NR6b0c2lRuPgCN5tO3lJeQf2QTvkPvc2g35aZQcuYwZSkn6PjYh3R46P8oSzzKn+/9s/k6LwiI4X2hGRxKKWHyF7H219OHBFz2vs6d6NfF1wV/vYaJn8dwJrecCO+mDc9LEpirJV65vT0jOnoA8NZd4fRd/jsbTuQx7QZRuU9oHnkH1yNZJbwGjnN8Q5IAiY7/eh+lsxsAHaYu48RrIzGmxeASFNnynRXaBBH0hauuRzsXfny0h/21u5OSXfFF5Na7o6997aNren2CPoG2sqeJ+SYivJ3x0akpKLdgtUoOd/u5RrN9HoCPq23/Hb2d7O9rVXLae2gbrAwQhAtRuXljLslzaDOX5AKgrrnjP1f2ntUY+oxEpfNwaFe7+aB287EHfACndh0BqMxPF0FfaDZieF+46pxUCkINTvZ/PJxV9A1yZW9iscN2u+KLCPHQnHeSXmNOnjUCdRcKfYNcMZmt/Fbz/B4gLqeczOIq+gXbqvHV/jsh32TfpspiJbXIRJC75vJOUmiTXMP7Uhp/mOrKCntb0YmdyDXOONcL1KWJ0ZSnxeBTb2jftp9+VBXnYqmo+96ashIA0IgJfUIzEkFfaBEP9vMj12jmhc2JnMktZ/3xXD49dNZh+H5bbD5D34nmbInt7vtIWikf7s/k5FkjqYUmtsXm8/SGePoE6egVYLvjD/d24uaOHszZnMjh1BL+yCjj2e9s2/SvCfZhBidGRnry8vZkDiaXEJ9bwfObEpEkGNvdq2FnhTaj2mTEmHoSY+pJQKKyIBNj6kkq8zMASFm3mFNvTLBv7z3gbhRaV+I/eQpjeiyFx3aQtnEpfsOnolA7Oew7Z89qtL6huHUe1OC4XjfchUrvRfwnz1CefprSxGgSPn8efaeBuAR2adZzFto2MbwvtIhAdw2rJ3fh5e3J3LryOAYXFTOHBTks1ysxVZOQZ8JSbSv3rFHI2Hwqn7d2p2OyWGnnpmF0pIHpQwMcVgG8My6cBduSeXD1aXtyntqlgbVWjA3n1R9T+OfXf1JtlegVoOPbKV3xdBGlj9uysuRjxLxxj/11+salpG9civegewiftgJzUTaVuSn29xVOOiJnfkXS6nmc+PdolE46fAZPJPiu5x32W11RRt5vGwm8o/FEOwqNM5EzvyZ5zQJOLByNwskV927DCJnwYvOcqCDUkEmS1Np9uC5pVXLjkef6OHs6i6Ai/PVsicln9qbEHcUWVf+oxfv0anff1u6S0MYlrVlgztrxyVxJkpa1dl+uZ2J4XxAEQRDaCBH0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2gixZO8atGxnGhtP5rFnelRrd+W6sj+pmHs+sxVNGdhez9qpXVu5R5fPUi0R8upBADRKGYnzb2jxPqRtXEbebxuJWrinxY99PSs+vd++zFDfaSBdn1/byj1qmqKYPcQumwSAW7ebiHx2dSv3qG0SQV/4y7t/VQzeOjUr7gpvkePteLwHfk3IEhiXU868rUkcTSvFVavknp7ezLk5GEW94j/nGv/pKQ4klzi0DQ5z4+uH6rK5VVmsLPwplQ0ncjFWWRkQ7MrCUaGEGhyTv+xJKGL5rnROnjWilMuI9HNm1f1dcNEoUCpkRM/sw/cn81m0IwWh+cW8eT9qvTfh01a0yPF6vLIDtXtdnovyjD9J27gUY8pJKvNSCRwzg6A7n7vofioLz5K0+kWKY/YgU6gx9BlJ+4kvo9C6ALaLt/Tvlzf62b5vHnMoQHT25/+SvfN/mHJTUDi5YugzkrAHXgdA3/EG+iyPJnnNAodMhELLEkFfEOoxOKvwuEh+hbLKaib9L4bega5serg76cWVPLshAZkMXrgl5IKfHd/Tm3m3BNtfq5WOT9le/SGFzTH5vHVXOD6ual7fkcp9q2L55YmeOKkUAPz4ZwHPbohn5rAglo7pADKIyTIiP2dXPq5qXLWKSzx74VqhcjU45PS3VlWgMQRh6DOKlLWLmrQPyVrN6bceRKHV0fX5dVSbykj4dAYJn82k46MrAWh326P43vSAw+fOfPi4rQ/nBPyUb/9NQfR2gsfPwyUokmpTGZW5afb35Uo1ajcf5CotiKDfakTQb0FfHMnm9Z9TiZ7ZB5Wi7q/z3M2JxOWUs+4f3SgsNzN/azIHU0ooLDcT4K5hSj8//nGBSnDPbIgnt6yK1Q/U3S2++2sGq45kc+jZ3va2tcdyWbk3g6QCE/56NeN7+jB9SABKxfnvTJtq7bFcPtiXSWJ+BTqNgv7Bej6e2AmAEpOFV7Yns/10IRXmanoF6FhwW3t7Kl1ztZXXfkhhS0w+BeUWPF1UjOziyWsjQ3lmQzy74m05+7/9w1bY5NspkQwKdWu8Iy1k/fFcSiqreevucJzVCiL9XJg1rIqFO1J49qZAe3BujFYlP2+9gVKThdW/Z7NkTBjDImx/0N8ZF0HUG0fYElPA+J7eVFslXtySxAs3h3B/37qkOuFeTo3u81Jl7/6C1PWv02dZNHJl3cVP4qq5lGfG0W32OsxlhSR/OZ+SuIOYywrRGALwGz4F/xH/OO9+4z95hqqSXIdh3Yyt75K9axW9/++QvS13/1oytq/ElJ2E2tMfn0HjCRg5HZniyv9c5e5fS+YPH1CRlYjCSYc+oj+dnvgYsJXBTf76FQqjt1NdWYEutBft712ALrQXAFaLmZRvXiP/9y1YygpQuXri2Xskofe9Rvwnz1B8clfNMb4FIHLWt42m4G0uutBe9r6mnefOvL6iU3soT4shaslBtDU5/0Pv+zen336IynteRGMIQKF1sd/1A1QWZFASd4jwf75tb6vISuDsTx/R4+UdOLeLsLe7BF27j8iuVyLot6A7uhpYsC2JnWeKuLWzJ2ALeJtO5TN3hO3Oz2Sx0sXXmX8N8sfNSclvqaXM3pSIp4vqivLEf3U0h0U7Unjt76FEBepIzDcxe1Mi1VaJmcOvrMDHqsPZLNiWxPPDg7ilsycms5Wf4wrt78/4LoHYbCMfTuiIt07FO3syuO9/Mex9OgpPZxWfHMxia2wB746PINhdS1ZpFbHZ5QC8+vf2ZBRXYnBW8erf2wO2qn2NWX88l9mbEi/Y1+lDAnhqaOAVnS/Y6gL0C3LFWV0X3G+KcGfe1iRissrpE+R63s9uiclnS0w+BmcVg8P0zBwWZB9ZOJZppKpa4sYO7vbt3Z2U9ArQcTi1lPE9vTlx1khGcRUalZzbPzjO2ZIqIrydmD0iiH7B+is+N0O/O0j6cgFFJ3fi2etWwBbw8o9sIvjuubbXZhPOgV3wv+1fKJ3dKD3zG4mrZqPSeeI1YOxlHzvn169IWbeI0EmvoQuLwpSdSOL/ZiNVVxM0duYVnVf2rlUkrVlA0F3P49nrFqyVJgpP/Gx/P+HTGRjTY+n42Ieo9N5kbHmHmOX3EbV4LyqdJ1k/f0LB0a1EPPIuWq9gqoqyKE+3lZBuP+lVKgsyULkaaD/pVQCULu6N9iP34HoS/zf7gn0NGDWdwFFPXdH5NkVpwhG0vmH2gA/g1vVGkMkpjT+CxtCwLHbOr1+hdHHD0Gekva3gjx/ReAVTfGo3p9+ZgmSuxDW8HyETXkTjefmltYWrTwT9FuTmpGREhAfrjufZg/7OM0WUV1UzuqsBAH+9hifOqT8f7KHlaFopG47nXVHQX74rjRduDuHOmn0Ee2iZNTyIl7YlX3HQX7EnnakD/HhscF2/u/nb7gwS8yvYFlvAmge7MDjMdne+fGwHblhxlFWHs3n6xkAyiisJM2i5IUSPTCYjwF1jD5p6rRK1QnbBu+Nat3byJKpm9OB8znfBcKlyy8x41ysJXFv5L6es6ryfG9vdiwA3Nf56DQn5FSz5OZWj6WVs+md3lAoZuWVVyGTgVa8mgLdORU6pbb8pBbZqga/vSGXBbSGEemr5OjqXCZ/F8NPjPa/4jl/p7IZHjxHkHVhnD/pFJ3dSbSrH0G80ABoPfwJGPmH/jNY7mNLEo+Qd2nBFQT/t++WEjHsBrwF32vcbNHYWyV+9dMVBP33zCvyGTyXg9sfsbS4h3QCoyE6k4Og2ujy3BrcugwHo8I/lHH3+BrJ3rSJw9NNU5meg9Q1D3/EGZDIZGkMArh36AKB01iNTqpGrtI2W2D2XZ89b0b104Um457tguNrMxbmo9N4ObXKlCqWLO1XF2Q22l6zV5Oz9Cu+B45Cr6ipUVuYkU5mfQe7B9XR46A3kShWp65cQs3QiPV/Z4bCt0LpE0G9h43p688TaOEpMFvRaJeuP5zGiowduNcHIapV4f18mG0/mcbakikqLFXO1dEV/yPONZjKKq5i3NYn525Ls7VarhMkiUVRhaTQYDnv3D9KLbRXvAt007HyyV4Nt8srMZJVU2QN6ffG5Fchk0P+cO1C1Uk6vAB1ncm3lSSf08mbSqlgGvx3N0A7uDItwZ0SExwUnxDVGp1Gg01ydIe5aGUWV3PTeH/bXd/fwZskdYZe9v8nnDMd39nUm0teZwW//wZ7EIoZHeFzgk3Vqq2U8OSSAMd1sF3Hd2+k4kFzMF0eyefn29pfdv1reA8cR958nsJSXoHTWk3dwPR49R9jrv0tWK5nb3yfvt41UFZ7Faq5Esphx8r/8yZbm0nyqCjJI+nIeSWvm29slqxXJbMJiLGo0GP4xfxiV+ekAaAyB9HptZ8N9l+RRVZiFW+TgRo9dcTYeZDL0Ef3tbXKlGl1oLyoyz9h+J3+bQOzySUS/MBj3yKG4dx+GR48RyOSXNm9C4aTDyenCF6d/VUUndlJVkInP0Psd2iUkJEsl4dNW4NyuIwAdH/2AIzOiKDq1237xKLQ+EfRb2PAId7QqBVtO5TO6q4Gf4gp5f3zdM7AP92fy3t4MXr69PV39XHBRy1m5L5ODKSXn3adcBvXrJpmr6xqsNW8uHBnKgJCGw86umsb/aK2a3AVztRXAYQ7C1da9nY6Dz/Rmd0IR+xKLmbUxkTCDlm+ndL2k+QbNMbzv66rmx0d72F+7amz/y3jrVOSVmR22za157aO7+Mz/WqEGJzydlSTmmRgeAd46NZIEeUYzvueMbOQZzUR4O9fs3zYK0NHb8QInwtuZjKLKJh/7Qtx7DEeh1pL/+xYMfUdTeOwnIh553/5+5o8fkrH1PdpPfBmXoK7ItS5k/rCSkj8Pnn+nMnmDL6pUXfc7lKy271rofQtx7TigwccVTo0/Muny9CqsNfuRK5qvwJUupDu9Xz9I0andFJ/eR+Lns9D6htF11reXNN/grzS8r3LzpuTPAw5tVosZi7EItVvDIkzZe1bjGt7XHthrqd18QSbDya/uok+l90Ll6mm/IBP+GkTQb2FqpZw7uhpYdzwPuVyGVilneETd3cvBlFJGRHhwb1TdEGFSzXDu+Xi5qDieaXRoi8mqe+2tU+OnV5NUYGJi7wsPPZ4r0P3iQ3JeOhV+ejV7E4sbvVON8HZCkmzPwGtHA6osVv7IKGNK/7rlRjqNglGRBkZFGri/ry+3rjzO6Zxyuvm7oFLIqbZevBpkcwzvKxWyBkvlAPoGufLajylUVFXjVPNcf2d8Ec5qOZF+zk3ef0ZxJYUVFnxcbcGqZzsX1AoZexKKuaeXbdi1uMJCdHoZ9/Wx/RHu0U6HVikjIc/kMKExIb+CwVdpgqNcqcbQ7w7yDqxDJpMjV2lx7z7c/n5p3EE8eozAZ/C99jZTdlJju7JT6b0wphx3aDOmxth/Vrt5o/bww5SThM+QiU3uq8br4hdxKr0Xag8/imP24nHOedRy8o8ASaI0/oh9eN9qqaIs6Q/8Rkyxb6dw0mHoOwpD31H43ng/x1++lfL007iEdEOuUCFZqy/al7/S8L5rh75kbFpBZV66/fdYHLMHJCuu4X0dtq0qzKLw+M90eOiNhvsJ7weShCkn0R74zWUFmEsL0BiufA6NcPWIoN8KxvX04q7/nqKowsKYbgaHu+gOXlo2HM/jQHIxPjo130TncCLTaA8KjRkc5sZ7ezNZfSSbQaF6fvqzkH1Jxbhq6/7zzhoWxAtbEnHXKrilkydWSSI2u5yY7HLm3hx83n03xbM3BjJ/axI+OjU3d/KgymLllzNFPDkkgFCDEyO7eDJncyJL7gjDy8U2kc9kttqHuj/cn4mPTkVXPxfUSjnrj+XipJIT4Ga70w1217AnsZjkAhN6jQJXraLRkYfmGN4/n7t7eLNidzpPbYhnxk2BZBRXsXRnGlP7+9ln7kenl/L0hnjeuiucqEBXkgtMrD+Wy/COHni5qEjIq2DhTykEu2u4pZPtgslVq+T+Pr4s+ikFb50KH52K139OxU+vZlSkp/08H+rvx4rdabRzUxNq0PL10RwS8ipYeU/H8/b5UnndMI5TS+7CYizC0G+Mw0x+rW8H8g5toPjPA6jdfMjZ9w3GlBOoLvA82y1yMJnb3iN792r0nQdReOwnik/vQ3nOHXzQnbNI/OIFFC7uePa8BUmyUp4WS3l6DMHj5l7R+QTe8SxJX85H7eaDR6+bsZqrKDrxCwEjn8TJNxTP3iNJXDWHsAeXoHL1ImPLO1jNJnxvnAxA5g8fonLzwSW4K3KlmtwD65GrnVDXTHbTeAVTHLMHU04yCic9CidXh99ZreYa3rdaqqjIjANAslRhLs7BmHoSucYFJ99QAM7+/ClZv3xqT5jk3nUozkGRnPn4KdpPfBlrZTlJX87H0G9Mg0l8OXu/QqFxxtBvTINju3UZjEtoLxI+nUn7Sa8iUyhJXbsIrW8o7l1vvOrnKlw+EfRbQb9gPcHuGmKzy1k82vH58DM32gLIlC//RCmXcXcPLx7q78e22Pzz7m9oB3fbeu2daZT/aGVMVwPTbvDnm5olbgATe/vgolGwcm8GS3emoVbKCTNomRh15XXUJ/f1RaWQ8cG+TJb8nIqrVsENIXXP8JeN7cAr25N55Os4+5K9Lx+MxLNmxrpOreCD/WdJyrc94+/i68Ln93e2z2h/eKA/p7KM3LLyGOVV1r/Ekj2dRsFXD0Yyb2sSo/9zAp1GycQoH54fXncBVWG2kpBnosJc+4hExv7kEv77WxbGymr89GqGhLnx3LAghyV+C24LQSGXMX3dGcqrqukfomf1A10ctnnh5hBUCjmzvk+gtLKaSF8X1jwYedWW7QHoI/qh8QqmPD2WsAcWO7wXeMczVBVk8OfbU5AplHjdcDd+wx4i/+i28+7PPXIoQWNnkrZxKdZvyjH0G4P/zdPI3feNfRufIRNRaF3I2L6StO+WIleq0fqF4Tu46Xf+5+N742RkChWZP3xA6oYlKJxc0Xesy1TYYeoykr9+hbj3H7Ev2Yuc8SUqne1iS6HVcfaHD6ioGdFwCepC56c/t6+V97/1YYxppzj28i1YK8tbfMleVVE2x1+5zf46e/cXZO/+wiFrn6WsAFNWgn0bmVxB56c+J2n1i5xacjcyZW1ynlcc9i1JEjl7v8JrwF0oGrmwlsnldJ7+GclfvUTM0gnIFEr0HQcSOWONmMT3FyOT6j8MFq4KrUpuPPJcH2fPiyR5Ef46atPwRs/sc9GVAteKr6NzmLs5sUEa3i0x+czelLij2KLqH7V4n17tfuUXf0LLqE3D22d59EVXCvwVNZavASBpzQJz1o5P5kqStKyVutYmiII7glDPoLeimbwqtrW7cUWqrRJUMODqAAAPHElEQVQRCw8xd/OFJzYK167oOYOIfXNya3ejyYpP7+fQ4xHkHdrQ2l1p08TwviDUiArUsfcp27JEreravh5WyGX2VQdy2ZVnXBT+OnRhUfRatBcAuVrbyr1pOl1YFD1e+hEAhabpk12Fq0sEfUGo4aRSNDpT/1p1PZ2LUEehdrJPzLuWXKv9vt5c27czgiAIgiA0mbjTF4TLVDvxD2Bgez1rpza9uMj0dWdYfzwPgPfHR9jTIwvC1VA72Q9wmL3fFGc+mk7ewfUARDzyvj0lsnB9EEH/OhPw0oELvn+pwelShL12kMWjwxwSC7W2oe9Ec2c3L54b1vT6AucG8/OZcVMgA9vbliXueLwHfvVm+/9wuoAlP6eSlG8iwF3D00MD7cl2ABaOCmX+rSFELf39Es7m2nZg2oULr1xqcLoUB/8VRtgDix2SCbW26HlD8ep/Z5Nq3tc6N5ifT+CYGeg7DQSgxys7ULvXJcEqz/iTtI1LMaacpDIvlcAxMxocP/T+hYRMmM/vMy6cQEi4Nomgf52JntnH/vMPpwuZsznRoU1VL61tlcXaoJ57W9c3yNXhd7bwp1SSCir4+N5O9jYXtYJjmWUAGJxV9pwCAEfTS3n46z95ZmggY7p5sTO+iBnfxePlorSXy9VrleivnTlYV0Wf5dH2nwujfyBx1RyHNlm9FLpWSxVy5fWxdPJqcQ3v6/A7S127kIrsJHt5YACFxoWy5GMAqFwN9jwCANaqCjSGIAx9RpGydlGjx1A664Err9Yo/DWJoH+dOXd9uV6rcGhLKzQRtTSad8aF83V0LkdSS5g5LIjHBgfwy5lClu1M43R2OQYXFbd38WTOiGB76didZwp599cMTueUY5VsVfQW3BpC93a2zGID3jxKpUVixncJzPjOlvwj45WB9nXin93XmZe2JZNaaKJvsJ53x4UTm13Oqz+kkFJoYkCwnhV3heN1TuW6tcdyWbk3g6QCE/56NeN7+jB9SIA9H/+AN49yby9vcsrMfHciDxe1nAf7+fH0jba0n+M/PUVCnonlu9JZvsuW//vgM1EEeVw42qqVjhX9tCo5asXFq/zV+ujAWfoH65lRM7oQ7u3E4dQSVu7LtAf9tujcNeUKJ71DmykvjegZUYQ//A65e7+mJP4IQWNnEnD7YxSe+IW0jcsoTz+NytWAZ+/bCb57jn0GeOGJnWRsfZfy9NMgWXEJ6UbIhAXoQroDcPT5AUiWShI+nUHCpzMAGPhJBjl7vyZx1Vw6P/0ZyWtewpSbij68L+EPv0t5eiwp37yKKTcFfcQAwqetQKWvewSTu38tGdtXYspOQu3pj8+g8QSMnG7PwX/0+QF4/+1ezCU55B36DrnGBb9hDxI4+mkATv3feExZCaR/v5z075cDONS0Px+5Uu3we5SrtA3aLkQX2gtdqG2FSlrNcYW2RQT9NmjxjlRevDWEN8aEoZDL2JNQxL++ieOl29ozOMyNnFJbRb65m5N4625bHu1ys5UpA/yJ9HXGYpX4YF8m938Ry96notBrlWx9pDv9lv/OCzeHMKabweF45mqJt/dksHxsB+QyGY99G8ej38Qhk8nsfXj0mzgW70hh2Vjb8b46msOiHSm89vdQogJ1JOabmL0pkWqr5FAK+OODZ3nmxkC2/as7exNLmLM5kd5BrgwJc+Ojezsy+qOT3NbZg0cHtQPAUFOydsCbRxnY3nahcbUdSSvlwb5+Dm3Dwt15cVsyVquE/BKrB7YlqesWE3LPi4Q99AYyhYKimD3ErfwX7e99Cbcug6kqziFp9TySvphL+LS3ALBWluM/fArOQZFI1RYyf/iA2DfvJ2rRXpTOerrP38rvM/sRMv4FDP0dU8hK1WYyNr9Nh6nLkcnlxH3wGHEfPIpMJrP1Qa4g7oNHSVm3mPCptpwxOb9+Rcq6RYROeg1dWBSm7EQS/zcbqbraofzv2R0fE3jHM3Sfv42S2L0krpqDa1hv3CKH0PHxjzi5cDQevW6j3e2PAra7crBdMOg7DSR82oqW+JULbYwY122DpvTz485uXgR7aAlw0/DW7nQeGejP5L6+tPfU0j9Ez79HhrL2WC6lJgsAoyIN3NHVQAcvJzr5OLP0zg5UWiR+TSwG6oKpq1aBj6va4a7YKsG/R4YSFehKzwAdk3r7cjCllIWjbG092tna9ibVVRJcviuNF24O4c7utn7eFO7OrOFBfPpblsO5/C3UjUcGtSPU4MQD/Xzp7OPE3oQiADycVSjktqH42j7VlusN8dDgq2uebIm5ZWa86+3b21WNyWylpPLiBVnaMr9hU/Dqfyda72A0ngGkb3oL/1sfwffGyWh92qOP6E/off8md/9aLBWlALYCOP3uwMmvA84BnegwZSmSuZLimF+BumCqcHJF7ebjeFcsWQm979+4hkWha98T3yGTKI07SOj9C2vaeuA7ZBIlsXvtH0n7fjkh417Aa4Ctn+7dbiJo7CyyfvnU4VzcOv+Ndrc+gpNvKL43PYBTQGeKavaj0nmAXIFC62LvU22JXo13CCqRIVFoJuJOvw3qUa8S3bFMI9EZZfznwFl7W2125pTCSrr5K0ktNPHGL2kcTS8lz2jBKklUmK2kN6GUq1IucygD6+OqarQtz2grj5pvNJNRbBttmL+trnKb1SphskgUVVjs1fIi/VwcjuXrqibX6FjytjHfTGmeyYzCldG17+Hw2ph8jLLEaM7++J+6xpovZ2VOCsqQbphyU0n77g1KE49iKclDkqxYqyqaVNJVplDidE6ZWJWbT6Nt5lLbSgtzaT5VBRkkfTmPpDXz67pktSKZTViMRfYKeS7BkQ7HUrv7Yi7O5WK6zvrmotsIwuUSQb8Ncq6XbU6SJKYPCWRsd0ODbdu52YplPLT6NAYXFYtGheGvV6NSyBjz8UnM1Rev3aCQ02BIWyEHWb1McbV1IKw1/144MpQBIQ1rqLtq6grP1J+YKJPZRhZak7dORW6Z44VHXpkZrUqO/py+Cw3J62VqkySJwNHTMfQf22Bbjaftkc3ptx9C5Wog7P5FqD39kSlUnFw0Bqn64hd/yBTI5PKGbfW/mzVfKslqK54Uet9CXDsOaLA7xTkVA+tPTEQmA8l68T4JQjMSQV+gezsd8XnlhJ6n7nVBuZm43ArW/L09QzvY7mLSiyopKLc4bKdSyLFehYjrrVPjp1eTVGBiYu8rW/6nVsipbuGrgL5BruxJLGL60Lolajvji+gTqBPP8y+RLqQ75WfjCTxPJjdzWQEVmXG0n7EG965DAajMS8dSVuCwnVypQroKAVft5o3aww9TThI+Q66s8p9cqUayisc9QssSz/QFZtwUyKZT+Sz6KYXYbCMJeRX8eLrAXqzFXavE4KLkiyPZJORVcDi1lCfXnWmQnz7IXcP+5BKySqooaMIQ+4XMGhbERwcyWbk3g/jcCuJyytl4Io/FO1IvaT9B7hoOp5WSUVRJgdFsvyiZ8NkpFv+UckV9PJ+HB/pzKKWEN3elE59bwccHzrItNp9H/9auWY53PQscM4P8w5tIWbsIY3osFVkJFPzxI4mr5gKgdHZH6Woge/cXVGQlUBp/mDMfPdkgJ73GK4iS0/upKszCXFrQ2KGaLOjOWWT++BEZ21dScTae8sw48g5tJHXd4ot/uF6fSuMPU5mfgbm0wD6KcOqNCaRc4r6aymqpwph6EmPqSSRLFebiHIypJ+3lgoXrn7jTFxjawZ3VD0SyYlca/z2UhVwGwR5aRne1DffL5TI+nNCR+VuTuWXlMYLctcy5OYiXtzsGzQW3hbBgWzIDVxylqloi45WBl92nib19cNEoWLk3g6U701Ar5YQZtEyMurQJTs8NC2LW9wkMfScak0WyL9lLKay0P7q42noHuvKfCZ1Y8nMqb+9Jp52bhmV3hjO8DS/Xu1zuXYcS+exq0jatIOvn/4JMjtY7GEPf0YCtjnvHxz4k+cv5HHvpFrTeQQTdPYeUr1522E/IhAUkr1nA0TkDkSxVDPwk47L75DNkIgqtCxnbV5L23VLkSjVavzB8B1/anX/QmOdI+HwW0fOGIplN9iV7lbkp9kcXV1tVUTbHX7nN/jp79xdk7/6iWRMjCX8tstrnqMLVpVXJjUee6+Ps6dw8M8SF1lebuS96Zp8mr+GvL+ClA62ShndLTD6zNyXuKLao+kct3qdXi9ni15XazH19lkc3eQ1/fQemBbRoGt6kNQvMWTs+mStJ0rIWOWAbJYb3BeEKDXormsmrYi/pMzM3JhCx8FAz9UgQbKLnDCL2zcmX9JmEz2Zy6PGIZuqR0NrE8L4gXKaoQB17n7JlN6s/v+FiZo8I4onBtiFcH51INStcXbqwKHotsuUEqD+/4WKC7ppNu78/AXDZowTCX5cI+oJwmZxUisuuWe+tU+Otu/h2gnA5rqR2vdrNG9y8L76hcE0Sw/uCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoC8IgiAIbYQI+oIgCILQRoigLwiCIAhthAj6giAIgtBGiKAvCIIgCG2ECPqCIAiC0EaIoN+cpNbugCA0TpKo/X5KtheC0Mok8UVsCSLoNxO5TFZVYba2djcEoVHl5mqskmSUyRVV1VUVrd0dQaC60lgNiC9jMxNBv5moFbJjB1NKWrsbgtCofYnFFaWV1b8iV0SXxh1q7e4IAsWx+yxAdGv343ongn4zKTZVf/jmrnRjUYWltbsiCA5OZRnZHFOAVeLb6vLi/6RvXmE0lxW0dreENiz34AbJUppvBMQVaDOTiccozUMmk8mcVPL3nFTyh+6N8lF183dRqRWy1u6W0EZJQHmVlb2JRRWbYwqotFgftFqltTKZTCZXOy2Xq7SPeA+eoNKF9FDJlOrW7q7QFkgSFmMhBUe3lZXEHbRYq0xDJEk62drdut6JoN+MZDKZDOitUcrudVYpuiJD09p9EtooCSQoKzFZ9lolvpEkKfXct2UyWZRMpblXoXbqjkwmvqdCi5Cs1fnV5SVbgY2SJBW1dn/aAhH0BUEQBKGNEM/0BUEQBKGNEEFfEARBENoIEfQFQRAEoY0QQV8QBEEQ2ggR9AVBEAShjRBBXxAEQRDaCBH0BUEQBKGNEEFfEARBENqI/wdnnlfdbaOeugAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YMzp0si39cGj" - }, - "source": [ - "#### Interpret CATE model with SHAP" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "FS1Uy2V-9cGj" - }, - "source": [ - "shap_values = est.shap_values(X)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 194 - }, - "id": "cXdMGuBY9cGj", - "outputId": "f980abf2-c1ed-4305-f76c-48fae99331d8" - }, - "source": [ - "import shap\n", - "\n", - "# effect heterogeneity feature importances with summary plot\n", - "shap.summary_plot(shap_values['Y0']['T0_1'])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAACxCAYAAAAVms4JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXwcdfnA8c8zu5uz9wktLaXlhgKWARSQ2wtBRDxAuQQRlFMQUEFFUBBBVEBE+IHcwg8BtRyiUOAnN8NVCpRC6UnviyZpmuzuPL8/vrPJJk02u2mSnbbPm9eW2dnZ7z4zu5lnvsfMiKpijDHGmPLyyh2AMcYYYywhG2OMMbFgCdkYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxmx0RGS2iOzcbl4gIgeIyKUi8o0iyrhERK7uvSjbSvbVBxljjDFxoKo/K3cMHbEasjHGmE2KiNwmImdE0wNF5AERmS4iT4rIHe1qxaNF5NHo9UdEpKa34rIasjHGmI3V30Rkbd7zbTtY5mfASlXdXkSGAK8CD+S97gN7AB8DjwPfAm7ujWA3hoRs1/40G7TJkycDcPjhh5c5EmN6hPROqV8pvK/XBzv63K+q6rSWIkSCDpY5EDgTQFVXiMjf273+uKquit7/EjChlLBLsTEkZGOMMRu9svWw5tews0B1b32Q9SEbY4zZAHhdPLrtaeB4ABEZBByxPoWtD0vIxhhjNgDSxaPbLgVGiMh04CEgwPUX9zlrsjbGGLMBKK3+qKrjOpjnR5NP581uAI5R1bUiMgB4FrgpWv6Sdu9v87ynWUI2xhizAei1Bt3BwGMikgCqgHtU9Yne+rBCLCEbY4yJPe0iIXe30VpVlwC7d/PtPcoSsjHGmA1A75xNFSeWkI0xxsReb9WQ48QSsjHGmNjrKiFvDCwhG2OMiT3dKOrAhVlCNsYYE3tWQzbGGGNiQEmUO4ReZwnZGGNM7FmTtTHGGBMD1mRtjDHGxIAlZGOMMSYGrMnaGGOMiQGrIRtjjDExEFpCNsYYY8rPmqyNMcaYGLAma2OMMSYGLCEbY4wxMRBuAk3WG/8hhzHGmA2e4hV8lJuIfEZEbhGRydFzX0QOKqWM8q+FMZuAbEaZ/149j//ufZ6/Yw6qWu6QjNmgKFLwUU4icibwJ+B9YL9odiPwy1LKsSZrY3rZmro0lx/3NrWr6hBxO46pkxdx2v17lTkyYzYcMT/t6RzgYFWdLSIXRvOmA9uVUoglZGN62VXfm04mHbYkY4BVS5vLGJExG55y14K70B+YF03nmr9SQEl/6LE+5DBmY9CwOosXhpDNkkinSaTTSDZb7rCM2aCEeAUfZfZ/wI/azTsLeKqUQqyGbEwvS2hINpUklcngRcfOYXlDMmaDE4eBWwWcCUwWkVOA/iLyHlAHHFZKIZaQjellKoKXzbYkYyDejW/GxFCcT3tS1YUisgewJzAW13z9sqqWdOxtCdmYXpbr+1LaJuKmhgyVtfYnaEwxYl5DRt2pEy9Fj26xvYExBagqf71rKcuXZznx5BH0758ovZBoMFdWpGWXEgLLP6hn1K6DeizW7lhw90ze+85zkFXGXjSRoZ8eSe3uw0gNrCxrXMa0F+casojMo3UwVxuqOrbYciwhG1PA90+dxZqGEEQIXpnFrXeMJ5Eo7Ug9ISEewpraGqrXNkU1ZWXwljXdimnVzNW89MupVPZPst1XxzF8j2Ekq0v/U142ZQHvHvt/LQcJ8y95jYXRPmWXV7/MgEnDuxVfX2v49RSa73+bxMETkIffhoYmKq8+nIqv7Vru0EwPinkN+dh2zzcHzgbuLaUQS8jGdGLGnCbqGiGdSgHghSH/enQlXzx8aGkFpRUJQ8KER32/GrxsSE1jI9WDKkqOacnU5fzzyKcRIJEJ+ejBuXhJ+PSf92GLz40uqaz3Lni1ZVoIW/71UN75wr/45OLjSo6vr62YdC2Z15cAQua1BVSSxiNN+uv/QwbBO2ESlb84HNmyxO/MxE42xglZVZ9pP09Engb+Bfyh2HLiu4YmFpauCdnzzgx7351h9drW8QnprLL3nc14v2pCLl2LXNLI3jevpa5p47kC1UXXLKMulWBNwiMtQuh5zJ3fVHI5QkgqmyEZhqSyWZKZDHTzSl2PHPcsAiSzIZVZV2fQDDx31osll9U4YzUhQhZFcX3dIR5ZhOzy0teztzU8OYeGKXMIG9M0v72UcE2a9OuLyUXuYg8RFHdYIWRvD8iMu4Dw7Y/KHb5ZTyFS8BFDTcBWpbzBasimoBE3tCbhgdeHZM4VEp5wymMZXpir0UglgYTwwvwsFzzezJ++tHH0P9Y3hEjC9RlnBbxMyNChnf/JvP5yHbdf+xHZJmXcNhWcd/kEAMSTNrsLTxX1uncsnK3P4AGJsDWhCxA2dT6YU1VpnFNPxfBqknmDyLyaBJm6NIJHGF0RWKISw9IGh/a62Tv/hea3lwNKigwCSG2KSiAZnUSWu4Ci4kVJOZeYE+gJN0NwSbnCNz0gzk3WInJpu1k1wKHAY6WUE981NGWXTmfWmff9J9zO7753FZICKYkO6xQE/jm95y54MX9FhpunrOGFGeW5qlWbY25xu/tUZcd/MksXN3PTVfPJrnXH6rNnNHHTlXMByGa1dbSHgpcNSWS7l/BUXJrJeq3RKcrwPYby8hkvMvtvs9osn17dzMOD7uHJif/ksZH3MvOP77a8Vjm8Cq9lPSWqW7pIwzBeNY7mt5cjhCTJRIk3RBuaCUm65AwkCHHD5lxdOUEWj6xL0x8uLvMamPUV8xrymHaPKuAa4IRSCrEasulUR62qU+a6mWtzeXdtNm9soZDNe1MYKiMuq2d5g5JMwC8OSfHhCuXLO6U4bMdUwc/e7kfLWLkmt6NVTt63isu+3n+916lYL01biyhIGFKTdX/uqkrYSSJdtSJDUrXl8pgiwlsvrwbcUa+Kq7MhECYTaDbLqnlrqChw2tPSdz5mxqPzGbBFLTt9bUu8RJR6VMkkPDTMUpVRPIVlzy5lRTZk7v/OYsWry5l0hc+iJxbw0tFP4WW1ZaT3Oxe8yoTTdwAguzr/gEtJkcVrab7uWuN7K0kOqyI1tLqIpYuXXlDPyhun4vWvYMDXtqFi3EBy12lqeysBF2sz7reUhDbLQOtBla7to4O69+bDIZe46ad/CRM2g+nzYfgAGDqgb2LYSMXgalydUtVv90Q5XSZk3/crgJeBJ4MgOC9v/tnAucCuuOt1Xg98JXr5AeCMIAgaeyJIUx5hB7lndD+XmBAgo2333KFSlfeLOvgml4wRyGThosfToMotr6R55cxa/DEd//yu/FcD89dAk7im3gEKtz3XVHRCnjariZ/esppB/T1u/MFgKitK+0NetirLxX9aSUJgYCbv2FuEJUs7bgEYt3XVOucZq3isbcySFWlJiBA1pGaz3PYV1x/cf1KC1OCQBx95ma0+PYwXfj+DMKNIOoMXHeA8e/lbeKGCF71fIRHScrERAdQTyCof3vo+2313O1745jN4za3JGJE2R1m1uw1m7dx6PCDpGnZbyipUf697YSHT9/573tnVUcPw0Cp2mHY0FZvVdvretdNX0Dy3jv6HjEXyavlNsz6medZqJOUxZ7/7W8pdcsH/kRxZjaCEJNZJttpyCAFpKkiQjua3fhdCFq+x3a7oqbfhsddh4hh48CVIJuGm78LgfgXWvAjbn9U6vfX3IelBJtqaX/sU/O/561d+sRrWQjATRg6E7bfom8/sZTGoBbdR7K0VVXVK0WUWcxs43/d3wiXlw4MgmOL7/kTgReDQIAie8X3/ZmAn4Ejc38LfgTeDIPhesYGsh26NjsmGys1TlUUNyskTPcYMWP8v+62lISc/HpLy4O4veowbGN8jumI0NWWouq7tvIPHwrw6mLEsdHvttXkJSpUDxypvL4ElDbRm9Fx/p0b/KOyxBTRlPAZUCj86sIIX5obsvkWCCUM89v3dSurSrUkspcowDVlwrTsNJxsqh16yjI9WKBUJ2G/HCvbaroL7n65n7hIloYqoksDtlA/avYqfnzyIw85bRH0j1FbDw1dvRjKRlyRV+coPF7GyHlIJSGehMswyqDnTWssCEuk0d921NZ4nhKHy8IMreGdqPTU1Cd4LVoPn4YWhSwiqXHn7dlzyrWlUNqdJhCGiLhnXrmnEC0MkVNC8y+ZnQxLR5vLSacglrVBdQo7WDREIlQH1zS1JWVVJRs3jXlIgrXjN2ZZkLYDXFDJ4mwGkBleSaUxTH6xwn0VIteava8iww7dk4GdGs/mZEwFY/rcPmXvJyzS/vZK2Z2PnevdcIKnR1WQWNyJJj8ptBzHmxgOoe2wuS2+eRrhoTcu7BIWUx4DDxlH/0ExyKVZa/qQ1alIPo+ZoiZqt0y0HAx4hFTS3JOFKmhCUBM0k3PA0Kqlz5e48Bt66Ev76HHzzupbPgGzLZ/PLo2H8SPj63pAo4pzz+kb442PuNz5zMdzyROHlbz8LHn0V7nvOPT9wZ5jSvvuxE6ow8Rx4fyFMGg9nHgrvzodv7AM7b9m63OJVsNlJrc+/OAkevrhw2Wub4Zxb4JHXYM+t4b4fQrIb59w7vZI5p8q1Bff1u+hZfZqxRWRW10uhqjq+6DKLvS9rVCM+D3dpsH8DjwVBcKHv+9XACuCwIAiejJY9GJgMDAmCYG2xwXRTtxLyD5/O8tvAvXVsf5h+UoLq1Pp9nzW/z9AYtQIOrYJlZ2zYPQIfLM2wze2dvJgOXR9yc+hqymFUW+6oWh0qZKOG0NzvrZMqWCoB4do0WfFa/qwTobK5hsyLEvKhv1jGrKXuNB1QEgpJ1ZbmnmSUjHOJToBB/WBVfevnjBgsPHDFZi3Pv3fFUt6d3dqE6wkkM1kGpDMkWwYLQUVzmkm7VHPaD0Zz502LeOWFete0DZDJkAIqwmzLKn79e6N5+PrZkKGlhjpw9Woqcv3zqpCNGuOi172oVu5lM62129z8MGxT265ek6YiHbrXw9Y4vdAdEEhW3eLRe7zmkIrGqK4RamvCByrCNKmWAVJhS9Idd90+JAZWMPP4p9o0GefX+VsPPTuox0RB5d+1tm1rgqvn5qZby25tpBSyJKKCkmRaEnIla1sGdbnXmlsODmpYFiVv9z5FEb0H9vgJBB/mRZK/C8m658cf4JJnVw79JTz2WtfLFXLvufCNfbtebp+fwPPT150/oAbe+QOMjk7tGvltWPJx22Xeux62HdV52afeADflHUzsPh6Cq7uOqWO9khjfkOsL7ut30zPiVYXuhlKqcNcC7wJTcbuXn0bzt8N1YL+at+xrQDWwbQ/EWFBdXV23pp/9qPW7nVsH7y5qWK8ymzNhSzIGWLG2+7HFZfrdhV30OKTDaGernR8WaV4Szi1ToD00He0PSQgkPEh4ZBMeVYnW2OYvzyVjAEElbw+QS8YQDcRy8pMxwLJV7pVcmR/MbzuALVRIekoqzOJFid0DNJHgnamN3PHnRUx7o6FtoZ5HKmxtMfCA2e+vRsKoX1bd+ciSN0IaEfAEzW9WLrRbadmWSjLtTljKeq7pWvKaxnNJLT8ZA2ii88KzUQ9sSNsbvi+//0PqnltE60VAc2OYc8ms9dHxpYrWndVRFJL3aP9cSUQjwfMTvkQpOz+ptr7qasiyznxGDiwQXLTcP18p6m9En32ngzUp0bPvFvVZ4bQ5Hb9/9Rp4a07r8ks/XmeRemn9XXZY/ksz2yyv0+YVXr7AdG+J+aCuHlF0Qg6CQIGngeHAnUEQ5EZJ5Dr28n8FueleH8XQv3//bk0fNr511XceBjuPqi36vR1NVyQ9tsjrftpxaPdji8t0Tf8Cg3VEXP9Y0oOqBG1qvzmqUe253Xvb/epylTRPYEgN6/S5poB6T1pi26FN37O6Gqrkz2kXBjBySNt540e5tJ0rc48d2l6kY+gASCOsrqhom9Ciybmzm9hm+7bbJ6FtE1IIfOrg4WRVaK5ItTyaKiraJNa2wUcHN6qE+dszr2VBMlkqm7IkswqeR9jutKo2K67aegCg6gZ4tVkmV25IRXTphfZlDThgFIO+MLalSEeiWq6ukxLXkVw3Ou1gqj1pN+0R0jbpuwSdJEOKDIm8M6oraGxTgkb/AXDDyTCiP+4bCvNiUFp+rJ/arqi/ETlsj07jL9qhuxf1Wd7R+3T8/s0Ggb916/LjR7Z9PSH022ZM4fJP+2ybt8jEsYWXLzDdW1w7SuePchKRASJyjYi8KiJzRGRu7lFKOUW3qUb9xhcDVwI/933/gSAI5uJuMQUwEFiVNw2wupRg+tLFn/LYZTgsaoCvbydUFKg5FOv9kz1+9rxSnYSffWrD7j8G2GnwuvO+uBX0r4B739aW1r2Wqlio1KTAHyX8d46i7Xf+QK6+s9dY2HZYkq2HJTjmE0meeD/LbqMS7DbKY9wlq1jS1Jqo+oUhA/J2w/edP4Tjf7+CN2ZlGFgNp3+hlgN3qeQ716xg4XLI5PqPowQ5oFq4+ccjOPPqZcxbkmX08AS3Xtz2spCXnzGUUy9fwvtzswwZKKi6C2Y0J2BtGFIVumbhVDTKeo9P9efzRwzhPw+vZPHCZiorhOf/vYLGZIqKMERUyagybrtasnl9kaHnsbaygtrGRtcXHMVJrik6avJXAU/yfkPiTknyVFtq7Dm5Edy55moEkoNSZFY2IwqJjILkuhSUfrsOYsRhY5j7u7fJ1mcQVSrI5DUPu7RUveMgBhwwii1+vjviCTs9+2U+OHEKzR+sxtWWpYN0qgw6bluaPviYzOJGqncawhZ/+DSr/zWXJVe+SnqO211IlQdppXKHwQw9fRcWnf40mtfk7nqxyTtAaNtMrhD1H6db5nlRf3CCDB4ZslQAaYguf+LljvzGDoNFN8HqRhh+EqQzrsSEBxd/HSpTrn+2GHecBYdOgmwImw2Ez/+y6/ckJOrCAb73OfjCpOI+68/fh6H94aGX4aSDYY+tXR/y4T4My6v7vHsd9PsmNGfcBvvghq7LPu1zMLw/XPl32GkM3Pz94mLqQzGvBd8AbAFcCtyFu5Tm+bgBzkUrdlBXJfAKMDkIgot83/8LMA44GKjE9SF/MQiCKdHyBwEPE+M+ZNO1txdn2PnOtvPO/ARcc2CC1JXptlu+KQtZJeVB86XuGs0PvNXEV+/KO90k+q31q1A+uLA/I/t3fNBy76trOP6ONQwQIaFK/1AZM9TjqUuKu/xhU1r5x38bmDEvw+hhST63VxWjhhXfn//enDSnXr6MhLYed3uq9GtuZrsRynEnbMYOO7e9DvWKZWku+v7MNhf88DIZfn/3dvz0a2+1JmVVBq6uoyKToTrTTCIp1OzWTO1WISOz40kmhXf/sYBMcxb9uKklA1UOSjFodBUrguV4oZII85p2syGVza27K/Hg8LeP5I3zXmHhQ7NJZlrzcdaDI+rcZXefGfO/pOc3oAhJsqTyvtAQZT89ZZ1tk23M8NZO95KeVQciDPzSWKjPsObVpaQ2r2LUZXsx+KitC25fzTs9LF/TjJXM++ZjrH11cWsiFqVq4hCapy6LzituezDSn9Ukcc2x7qAkTQJ1CTg6YkySISX1yNQrYecxbT80DOGKv0NlAs77UtvWiu5IfbV1VHUq4QZt/ftNl4R3nwD9q+HGU2HrAv25PaV960vf6ZUPfVH+XHBf/0k9tWwZW0SWADuo6nIRWaWqg0RkNDBZVYs84iq+hnwF7tSmS6LnZ+H6ks8NguBq3/fvAi71fX9a9PqlwB19kIxNL9qyg1aowZVC0uvgdx/Nqsk7vfioiZXcfJTw66ebyWSVfilh4uYJrjuiimH9Om9BOHr3Gn7zVBML5mbop26/9rsTi+/9qEwJXz+o+6evjBmZYPNhCRYtzbTUyrIiiCq77dV/nWQMMGRYqqVGnuOhvPdGPYmwdQBa9domV9sV4aznPwPA5MmTAdj/8B0B2Occd56wqjLz8QUkUh5bHbw5ALds8wCIkPVcU30idCPKQon6kVXZ/bd7Ujmkkr3+si+Tn/iITH0mSsjqasuRqq360zTfjRNIk8gbLNW5RHWS3T5sfx390nSUjAEqtx3M1sE3SS9qYM0LC0gOraZ6r83wKpO8n7wazbbf0yvpaBcmKBlSpMhGvc0JkjTi4Wq/esgubpR1e54HF31l3fnd1Xgf/PA2V9v+zfHFjdTuLeVJxr0m5jVkj9au2noRGQgsBAofnbZTzHnIBwPfBXYPgiANEARBne/7xwGP+77/OHAOcB0wI3rbA8APSgnExE91ZWsDYs7RO7g/iv5VUJcb8xVGfcVAbburZn5nzwq+s2fpN1F47YeuvXxFfUhtpVC5niPgS1FT5XH9BUM5+ryFEJ0LLUBVqNRWdx7H9jtUMn16MyqCF4akwpCRW1QRoiTDkNqGBpK5UeiqrJy7hsFjO7/jk4iw9efb3jAiDCERtUC3NF2LMHT/kez+412oGVVD1YjWvu0vzvoaj466j7Axi5dR9nzggJbXmj5ak1eykEaoiL7vjhqj+0pqs1oGHrlN25keJKJTunK/ylxTdprcj05basUVNJIk3fr+2St6P3Bwpwr9/uS++axNTJwvDAK8CewPPAn8F9eEXU9rTixKlwk5OpVpnepGEATPAvlXADgpepiNRCKRIEGG3PjMhMD2Q9xu8KEjExxyX9Yl4rxzkS/ct2dP9RpSoCbdm4YOTLSMrAbcICvPo2FN55cGPevS8dz1h3m88WIdtbXw5ZPGMGJ0pTt/NpNpTcaRWc8vZfDYLUsLzBOyCqn0urunIbut26TvJT0OW3IMYTrES7V9R/OStg1YuUtnCiEdNYKU0/BrD2H59x5Hor5lSQmDL92P9I8fzp3QhEeWZhLU0IzQ7nuqj9/NMkxpYl5DPoXWBpyzgcuBQcDxpRSyYZ8oa3pdwzkeZz8ZkgZuPMRraW48eFyCV08Qvj05w4ylwsAk/HjfBGftXXptOK68/CY/EZpEujxKP/bsMRx7dtt5irv8ZzbqE3cztVs9bYnaJNmGLOlUAslkkdDVlIfs2MEIvPx1Sa0bt6bbHiC0DpqSDkdGl9Og03aj/zHbk56xgtSEwSSGuFaAZT+eTCIv+bqzxrOkqYxOe4rS9ZVfL1fopofEPCHPUdUsgKouAb7TnUIsIZuCKpMeN36u4yQ0aTOPN0/ZeBJwe0MGeqz4uDVpKcouO3d+WcjOiCpNqRRNqRSVzc142SypTJamxtKbhQ+6xuc/p70EuJHQFaokaxLs9pOJJZfVb+Ig6qIrdQmaN6hLkFQZ+z47kRhYRWKPtoOhwqpKZG1TNDJcqP3zEXjPz0KX1dH84UKS2SYSVxyF95XdyxO06TExT8iLROR+4B5Vfba7hVhCNqYTvzhzKGf/cikhkAhDRg702HGHzvt8CxIhkc2SDFt7P1NVpSe9cQeN4htTPsvqOQ0MGldL86pmBm0/KLrxRGkmPXIIz45/kLAhg5BFaL3gysjTdii5vHIYtvIiVvg3kl1QR+1Vn6P25N3hu58sd1imF8S8D/mzwDHAPSKSBe7FJee3SinEErIxndhmywr+8adRzJnXTMqDLbfs3n2eswl3feuaqCYHgOexzf7DulXegC1qGbBFVFMfXXqNPadyRDUHfXwMzcubqBhWxYcXvsyKB2cz7OgJbPUrv9vl9iWvKsWwaWeWOwzTB7JxG9iQR1VfB14HLhCR/XHJeYqILFTVXYotxxKyMQWkksLWW3UvEbdQdw/k9ruThiVNDNy8Z29dWCpJeFRGo7InXLUXE67aq6zxGNOZsAcu3tRHpuMuMz0X2KaLZduIdRuAMRuDZCZLVTrtbgwB0eUsQ4Zv23f3dzZmQxempOCjnERkkIicLCJPAh8CB+CuajmilHKshmxML1NPkDB0t2XMu1xmqjp+A6eMiatMifc172MLgOeBe4CjVHVVF8t3yBKyMb1MPY9MKumucZ2bV9aIjNnwxLzJeoKqLlzfQiwhG9PLBgxOsma5kkm3XhzEi/EAFWPiKBvjhNwTyRisD9mYXveDG3dEEtBYVUVDZSUkhK/+esdyh2XMBiX0pOBjY2A1ZGN6WXVNgp8/sBvzZzQwfEwVtQNSXb/JGNNGnGvIPcUSsjF9IJnyGLeTjao2prs2llpwIdZkbYwxJvaynhR8lJM4p4jIFBGZGs3bT0RKuoi6JWRjjDGxF+eEDFwKnAzcBIyN5s0HLiylEGuyNsYYE3sxb7I+EfiEqi4TkT9F82YB40spxBKyMcaY2It5Qk4A9dF07jID/fLmFcWarI0xxsRemPAKPsrsMeAaEakE16cMXAZMLqWQsq+FMcYY0xVNeAUfZfYDYDPgY2Agrma8JdaHbMyG439Of42p88cAwju3v8CFf/tUuUMyJpZiUAvukIgkgK8C3wQG4BLxPFVdVGpZlpCNKaO3PkqQuwHjknRNWWMxJs7CRDxvxqKqWRG5RlVvBdYCS7pbVjwPOYzZRFSFrbeZSKoS3PZ6GaMxJr7Uk4KPMpssIoevbyFWQzamjKrWrmVtVZWbbm6mvq7sOxZjYimuTdaRKuBvIvICMI+8G7qp6vHFFmIJ2ZgyqqlbQ2VzGkSoXLOWxlRJ9zM3ZpMRerFOyNOix3qxhGxMGSXWZtjrzVl4ofLqtltQaXdKNqZDcU7IqvqLnijHErIxZfTJabNZNrAWFWH39+YxZ+mQcodkTCzFOSGLyEGdvaaqU4otxxKyMWW0ZFA/Mkk3enTxoP4suHMW/HTPMkdlTPzEvA/5lnbPhwMVuOtZF335TEvIxpRRcypB/3QjyTDLqlQt04cMKHdIxsRSnGvIqrpV/vPo3OSLgbpSyrGEbEwZaWUj+y6chgBvDR3F8NXxPNfSmHLLxvQ85I5E5yb/CldDvqbY98X3kMOYTcA2Hy8kd6LTxOULGNyULms8xsRV6EnBRwx9BghLeYPVkI0poyfGTeBbR32DpkSSnz7zJP1WWkI2piPZGDdZi0ibc4+BGty5yaeXUo4lZGPK6Ld778+yfu6SmWccegTnP/ZEmSMyJp5CiW9CBo5t97wBmKGqq0spxBKyMWWUf9Sf8TzqvVQZozEmvuI8qAvYQ1Wvbj9TRM5V1aL7kNtabcoAABLoSURBVLtMyL7vVwAvA08GQXBe3vyzgXOBXYHjgW8BE4EFQRBsXWwAxmzKdvu4jucqUoQi7Ll0FYlUrHc6xpRNNp79xDk/A9ZJyLiR1j2XkIMgaPZ9/1vAy77vPxIEwRTf9ycClwOHBkGwyvf9BcBvgO2Bbxf74cZsKva9J8NzC9z0hIEw82M3XbvtSJIoe855n8ueepDR8z8CjihbnMbEVRxryHkXBEmIyIFA/lHDeHrjtKcgCN72ff8nwG2+7+8J3A1cHwTBM9HrfwPwff/EUj7cmE3BzJWtyRhakzFAQ2UlAAurNueRLfbh8rk3wZszYNdt+zhKY+ItpjXk3AVBqoBb8+YrsAg4s5TCSjnkuBZ4F5gKZICflvJBvaWurs6mbTrW00sb6VI65XHw89H9zN9dUPaYbdqmuzvdW7LiFXyUg6puFV0U5O7cdPQYr6p7q+o/SylPVIu/mL3v+z/GNVWfGwTB7zp4/UTg4j7uQ7ar8ZvYG3xdhlVNbjohkI1+tYlsSHVzmt/f+Sj++wvZiadJ6oPlC9SY9dcrVdmzvvZuwX39tffvEMsqdCmKHmUd9RtfDFwJ/Nz3/QeCIJjba5EZsxFZeWaSlz7KMKwGJgxO8sTsDGEII7a9gYowxIt2NdeP+gLnlDdUY2Ippk3WAIjIAOASYH9gGHkHJao6tthyiqrn+75fies3/n0QBD8CHgJu930/fr3sxsTUXqOTTBjsjoEPGZfks+OTiNCSjNOeh/Sz056M6Ugcm6zz3ABMAi4FhuD6jucC67QkF1JsDfkKoBl3BABwFq4v+Vzgat/3k1FZKUB8368CCIJgbSnBGLOpeWaXHZgwfzGJMGTm6BGsyNifjDEdycS4hgx8FthBVZeLSFZV/yEiATCZEpJyl4cVvu8fDHwX+FYQBGmAIAjqgOOAX+Q1ZTcCN+GGejdGD2NMAdssnkuzetR7VWy5dBFrU3atHmM6kvWk4KPMPCB3/kS9iAwEFgIljacq5jzkJ4F+Hcx/FqiNnr5Fa+3ZGFOkRCMsGDqQNZVJtloCNQ0lXWnPmE1GDJqlC3kT13/8JPBfXBN2PTCjlELscNyYMpoycRxXHbo/oefxmakzOOypl8odkjGxFPMm61NoHch1Nu5spEG4q1gWzRKyMWX04J47tlyB6D+7bMtuwdtljsiYeIpzDVlVP8ybXgJ8pzvlxHcNjdkEjFm1omV6SEM9XspGWRvTkYwnBR/lJM4pIjJFRKZG8/YTka+XUo7VkI0po3GLl3Ds6lWsqq5h1LLljP7kwHKHZEwspSXWTdaXAp8Bfg/cGM2bjxth/b/FFmIJ2Zgy+r9R29AkUBFmeX6bLTly20XlDsmYWCp3LbgLJwKfUNVlIvKnaN4s3FlHRbOEbEwZrUhVsaK2puV5KttUxmiMia90jPuQgQRuVDW0Xs65X968osR6DY3Z2O26cHHL9E6Ll9CcqChjNMbE11pPCj7K7FHgGhGpBNenDFyGuzBI0ayGbEwZnfT6u+y2aBHNiQT7f7iAgbtsU+6QjImldAzvh5znXOB23MVBUria8b+x056M2XD8x/8E/ZsaSYYhDxywFX85cUS5QzImlppiOKhLRDZT1UWquho4UkRGAFsC81S15AEhsT7kMGZj9/k3XmV5v/4sGjSIg994g+pBtV2/yZhN0FqRgo8yaX8lrhtV9ZXuJGOwGrIxZXXM9KOp/ts/0Yxw5O1HljscY2JrTfn7iTvSPqgD1qcwS8jGlFmiUqCy3FEYE28fx7DJmtYR1T3CErIxxpjYi2lCTorIgbTWlNs/R1WnFF1YDwdnjDHG9Lx4NlkvAW7Ne7683XOlhIuDWEI2xhgTfzGsIavquJ4szxKyMcaY+IthQu5plpCNMcbE3yZwkq4lZGOMMfFnNWRjjDEmBiwhG2OMMTFgCdkYY4yJgXie9tSjLCEbY4yJv40/H1tCNsYYswGwJmtjjDEmBiwhG2OMMTGw8edjS8jGGGM2ADaoyxhjjImBjT8fW0I2xhizAbA+ZGOMMSYGNv58bAnZGGPMBsD6kI0xxpgY2Pjz8aZwQytjjDEbPJHCj3UWl9kisnMZIu02qyEbY4yJP6shG2OMMTEgXTyKKULkeBF5S0SmishDIjIimv+CiOwRTd8gIm9H00kRWSYitT2+Ph2whGyMMSb+SmyyXvftsjPwa+CzqroLMA24Lnr5SeDgaHpfoFFENgf2AN5V1YYeX58ObPBN1iLyODCs3HEUkkwmh2UymWXljiNObJu0ZdtjXbZN2tqAtse/VPXzPV2onp9c30brA4FHVXVh9PzPwJvR9JPARSJyN7AceAaXoLcCpqzn5xZtg0/IvfHF9zTf94MgCPxyxxEntk3asu2xLtsmbdn26FXPA5OAL+KS8zPASbiE/LO+CsKarI0xxmwKngIOFZHNouenAP8BUNUm4DXgR8ATwIvAPsAu0XSf2OBryMYYY0wnnhCRTN7zHwP/EREFPgROzXvtSVyf8SuqmhWRD4BZqtrcV8FaQu4bN5U7gBiybdKWbY912TZpy7ZHCVR1XCcv3d7J8lcAV+Q9P7QXwipIVLWvP9MYY4wx7VgfsjHGGBMD1mTdR3zf/yNuGH0TUA+cHQRBUN6oysv3/WOBC4AdgXOCILi+zCH1Od/3t8U1oQ3FnW5xfBAE75c3qvLxff9q4ChgHDAxCIJp5Y2ovHzfHwrcCUwAmoH3gVODIFha1sBMr7Aact95DLeD2RXXT3FfmeOJgzeAo4F7yh1IGd0I/DEIgm2BP+LOjdyU/R3YD5hT7kBiQoHfBEGwXRAEE4GZuItbmI2QJeQ+EgTBw0EQpKOnLwBb+L6/SW//IAimBUHwDhCWO5Zy8H1/BO7cx79Gs/4KTPJ9f3j5oiqvIAieDYJgXrnjiIsgCFYEQfB03qwXgS3LFI7pZZt0QiijM4BHgiDYJBORaTEG+CgIgixA9P8F0Xxj2ogO4L8H/LPcsZjeYX3IPcT3/deAsZ28PDK30/V9/2jgm7hmuY1asdvEGFOU63DjTza5sRabCkvIPSQIgkldLeP7/pHAr4CDgyBY3PtRlVcx22QTNw8Y7ft+IgiCrO/7CWBUNN+YFtFgt22Aw61lbeNlTdZ9xPf9w4BrgM8FQTC7zOGYGAiCYAluYNsx0axjgNdtBK3J5/v+5cDuwJeDIGgqdzym99iFQfqI7/tLcact5O9sDw6CYHmZQio73/ePAa4CBuO2TQPw2Wig1ybB9/3tcac9DQZW4k57eq+8UZWP7/vXAl8BNgOWAcuDINipvFGVj+/7O+FuEzgDaIxmzwqC4MjyRWV6iyVkY4wxJgasydoYY4yJAUvIxhhjTAxYQjbGGGNiwBKyMcYYEwOWkI0xxpgYsIRsykJExomIisgWvfw5p4nInXnPHxORC3rzM03HROQDETmxyGX75PfRF0SkMlr37csdi4k3S8gxJyLjReR+EVkkIvUiMk9EHhKRiuj1E0Xkgw7e19n8b0U7up938NrTItIUfc7HIvK6iBzVO2vW+0SkFrgUuCQ3T1W/oKq/KVtQXYi+m33LHcemoDe2tYgcICKZ/Hmq2oQ73/6qnvwss/GxhBx/jwILge2A/sCngMcB6WZ5pwIrgJNFJNHB65epaj/c/Xn/CtwnItt287PK7VjgLVWdWe5AzCbvr8BBIrJ1uQMx8WUJOcZEZCguEd+oqh+rM19Vb4yOukstbwfg08AJwObAFzpbVlUzwA1AApjYQVmni8gb7eZtJSJZERkXPf9LVKOvE5F3ROSbBWK7RESeaDfvaRG5OO/5ziLyuIgsFZG5InKFiKQKrPKXgf90VmZes+gJUXwNIvKoiAwWkV+LyJKoZeL0vPefGDU/XigiC6NlfpsfR1frLSK7iMi/ovVYkVtvEXkzWuTfUSvF/3SyrWpE5A/RZywTkb+LyNi815+OYnogimGmiBzR2UbKW6cfiMj86D1Xi8jQqIzVIjI9vzYpIkkR+ZmIfCgiK0XkSRHZOe/1lIhck7cNL+zgcz8tIs9G22CmiJwnIkUfaIrIUSLyZtSa86aIHJn32jotRCJyW26bdratRWR2tF7PRvMDEdmjozLy5s0WkWNFZBTuvueJ6L31InICgKquBl4BvlTs+plNjyXkGFPV5cDbwP+IyPEismMpO6wOfBeYqqoP42rep3a2oLgm8dOBNPBmB4vcA2wvIrvlzTsReFpVZ0fPnwV2Awbhmo5vE5EduxO4iIwAngEeBEbjWgo+A/y4wNsmAcVchvMoYF/cnanGAS/hbgQ/Cvg28Pv8hIe7H+1YYHwUx+HA+Xmvd7reIrJ5tB7PRJ+1GdEN51V11+j9n1XVfqr6nU7i/R3wyeixJe4Sk5OlbYvHCcBvgYG4uwPdLiI1BbbBllG846NtcSYuueQubfog8Je85c8HjgcOjdbhv8B/RGRA9PqPgMOAvYGtonVtuY9vtD0ejcofDnwRd1vS4wrE2EJE9gbujj5nKPAT4K8islcx7+9iW58GnA0MAf4GPJq3XoXKXIA7yM1GZfZT1dvzFnkL95s0pkOWkOPvAOBp4BzcjQgWi8hP2yXmrURkVf4DV7ttISJVuB1obqd6C/AFWXfQzEXR++cDRwBHqeo6fdGquhL4By5hEcVzAnBr3jK3qOpyVc2q6r3A1Gh9uuN44E1V/bOqNqvqR8AV0fzODAZWF1H2Zaq6IjoAehhIq+rNqppR1cdw15j+RN7yIXC+qjZGzeG/wR2MAF2u93HAB6p6hao2ROvSpmWgEBHxcNv5YlX9SFUbcL+NHYA98xa9T1WfV9UQuAmXmLcpUHQj8IsonjdxB2GvqOqLqpoF7gK2FpGB0fLfBq5U1elRa82lQBaXWMF9L1eq6geq2gj8EMi/Tu/3gftV9R/RdpqOO3Ao9H3mOxF4QFUfi76nR4CHgJOKfH8ht6jqq6raDFyJ2zaH9UC5q3FJ3pgOWUKOOVVdpqo/UdVJuBrMBcDPiBJhZJaqDsp/4HZ4+b4G9MPtWMHVTpYC7Wthv4rKGKGqe6vq5ALh/QX4ZtRce1AU34PgEoeIXCoi70VNiquAXXG1oe7YCtin3UHHrbjaWWdWAl3WbHB99Dlr2j3Pzeuf93yJqq7Jez4b2AKKWu9xuBsFdNdwoBKYlZuhqvXAEmBM3nIL815viCbz16G9JVHyzmm/HXLrmytjTLsYQtx2yMWwRfQ8P4YleeVtBRzT7vv8Oa4rpRhtPj8yk7bboLtm5ybUXex/LtH3u54G4MZvGNMhS8gbEFVdo6q34Wpcu3WxeHvfxfUHTxORRbga8GA6H9xVjP8ATbgm2xOBe6PaELhbCX4H1xw8ODpIeJPOB6PVAbXt5o3Km54DPNHuwGNgNACtM68D3Woi78KIds2/43DbE7pe79kUrql2dbeXpbhtPi43Q0T6ASPo2/soz2sXgxc9z8XwUbvXa2l7MDYHuLXd9zlAVYu9s1Obz4+Mz/v8rn5P0Pm2zo9bcN0Tue+3TbkiksRt+5xC9yreGfebNKZDlpBjTNzgoivEDWZKRQNpjsL9Yf+3hHJ2xPULHolL5LnHnrga5qHdiS9qyrwDOAt3y7xb814eAGRwCcQTkZNwNcXOvApMEpHdo/U8A1eLyrkD8EXkJBGpimqi40Xk8wXK/DtwSOlr1iUPuFJEqkVkPK45NtdX2NV63wVsJ25QWI2IVIhIfoyLKJCwo5roHcBlIjIqOjD4LTAdeLmH1q8YtwEXiMi20XiDi4Ak8Ej0+p3A+SIyQUSqcc36+fubG4CjReTwvN/2jiKyf5GffztwlIh8TkQSIvIF3G8w1yXzBu7A6bDot3IksF+7Mjrb1ieJyKSo5ed8oCZvvV4FDhY3gLES+BWQP7BwEW5QV/5vFxHpj/t7+2eR62c2QZaQ460Zd/T9IK6paylwMXCWqt5fQjmnAq+p6mRVXZT3mArcT4HBXUX4C7A/rtk8PyHcjhsc9QGutrQjBQ4iVPVp4BrgX7im0pHAc3mvLwIOxI2cno1rjn4IVyvqzJ3ArlHS7ElzcDWmWbh1/Bcu4UAX6x0N/DkANyBtPm4Hnj8g7CLgUnEjl//cyef/AAhwo3bn4pp5vxQdIPWVq3Cn8vwbWIzrsvhsNJoYXP/+48CLuO00F7fdAFDVabh+2XNw3/cSXJIvqktDVZ/D9aVfjfst/AY4VlVfjF6fiRuYdRPub+fzwAPtiulsW98EXBuV+w3gi6r6cfTa3bik+hquiXwu7nvOxTUD+BPwctQUnxukdgzwlKq+X8z6mU2T3Q/ZbNRE5DRgH1UtavRuEeWdiBtQZeeTboREZDbu+72rq2VLKLMSmIY7aHq3p8o1G59kuQMwpjep6o3AjeWOw2y6olHohcYNGANYk7UxxhgTC9ZkbYwxxsSA1ZCNMcaYGLCEbIwxxsSAJWRjjDEmBiwhG2OMMTFgCdkYY4yJAUvIxhhjTAz8P0lQ4GVHRfA4AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 193 - }, - "id": "rowyWQ_l9cGj", - "outputId": "0dc74436-6ca5-417b-e45c-b260c20b6e19" - }, - "source": [ - "shap.initjs()\n", - "# explain the heterogeneity of the effect of any single sample\n", - "shap.force_plot(shap_values['Y0']['T0_1'][0])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/html": [ - "
" - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - } - }, - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - " Visualization omitted, Javascript library not loaded!
\n", - " Have you run `initjs()` in this notebook? If this notebook was from another\n", - " user you must also trust this notebook (File -> Trust notebook). If you are viewing\n", - " this notebook on github the Javascript has been stripped for security. If you are using\n", - " JupyterLab this error is because a JupyterLab extension has not yet been written.\n", - "
\n", - " " - ], - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 70 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dA1nRbFK9cGk" - }, - "source": [ - "# 5. Validation and Sensitivity" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Nds7Fwyg9cGl" - }, - "source": [ - "y, T, Z, X, W = gen_data_iv(2000)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-zHcWkF19cGl" - }, - "source": [ - "#### Instantiate any CATE model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "0nMA97Jh9cGl" - }, - "source": [ - "from econml.iv.dml import OrthoIV\n", - "\n", - "est = OrthoIV(model_y_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_t_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " model_z_xw=RandomForestRegressor(), # ML model for E[Y|X,W]\n", - " discrete_treatment=False, # categorical/continuous treatment\n", - " discrete_instrument=False, # categorical/continuous instrument\n", - " cv=2, # number of crossfit folds\n", - " mc_iters=1) # repetitions of cross-fitting for stability" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z91lWEiQ9cGl" - }, - "source": [ - "#### Enable dowhy capabilities" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "QEe9XMai9cGm" - }, - "source": [ - "import dowhy\n", - "est = est.dowhy" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BIWgh7Ce9cGm" - }, - "source": [ - "#### Then fit" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "roPf-t439cGm", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4d24cac9-58fa-44fa-87e9-f8e57ec68176" - }, - "source": [ - "est.fit(y, T, Z=Z, X=X, W=W, cache_values=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 74 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5tlyZMcP9cGn" - }, - "source": [ - "#### Use it as a normal EconML cate estimator" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "lHr9Ooaa9cGn", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 290 - }, - "outputId": "e86a4da8-cbac-4271-ae99-8d312fd1949c" - }, - "source": [ - "est.summary()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
Coefficient Results
point_estimate stderr zstat pvalue ci_lower ci_upper
X0 0.99 0.035 27.933 0.0 0.932 1.049
X1 -0.012 0.027 -0.441 0.659 -0.057 0.033
\n", - "\n", - "\n", - "\n", - " \n", - "\n", - "\n", - " \n", - "\n", - "
CATE Intercept Results
point_estimate stderr zstat pvalue ci_lower ci_upper
cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061


A linear parametric conditional average treatment effect (CATE) model was fitted:
$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$
where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:
$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$
where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.
" - ], - "text/plain": [ - "\n", - "\"\"\"\n", - " Coefficient Results \n", - "========================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------\n", - "X0 0.99 0.035 27.933 0.0 0.932 1.049\n", - "X1 -0.012 0.027 -0.441 0.659 -0.057 0.033\n", - " CATE Intercept Results \n", - "====================================================================\n", - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "--------------------------------------------------------------------\n", - "cate_intercept 1.018 0.026 38.577 0.0 0.975 1.061\n", - "--------------------------------------------------------------------\n", - "\n", - "A linear parametric conditional average treatment effect (CATE) model was fitted:\n", - "$Y = \\Theta(X)\\cdot T + g(X, W) + \\epsilon$\n", - "where for every outcome $i$ and treatment $j$ the CATE $\\Theta_{ij}(X)$ has the form:\n", - "$\\Theta_{ij}(X) = \\phi(X)' coef_{ij} + cate\\_intercept_{ij}$\n", - "where $\\phi(X)$ is the output of the `featurizer` or $X$ if `featurizer`=None. Coefficient Results table portrays the $coef_{ij}$ parameter vector for each outcome $i$ and treatment $j$. Intercept Results table portrays the $cate\\_intercept_{ij}$ parameter.\n", - "\"\"\"" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 75 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "o1z0z-E79cGo", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 235 - }, - "outputId": "5cf7bc63-16c6-4eb4-9cd7-3ecd7a7128fd" - }, - "source": [ - "est.effect_inference(X[:5]).summary_frame()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
point_estimatestderrzstatpvalueci_lowerci_upper
X
00.2860.0456.3620.00.2120.360
12.7300.07138.6180.02.6132.846
20.6780.03022.8660.00.6300.727
30.7600.03819.9510.00.6970.823
42.5390.08629.6050.02.3982.680
\n", - "
" - ], - "text/plain": [ - " point_estimate stderr zstat pvalue ci_lower ci_upper\n", - "X \n", - "0 0.286 0.045 6.362 0.0 0.212 0.360\n", - "1 2.730 0.071 38.618 0.0 2.613 2.846\n", - "2 0.678 0.030 22.866 0.0 0.630 0.727\n", - "3 0.760 0.038 19.951 0.0 0.697 0.823\n", - "4 2.539 0.086 29.605 0.0 2.398 2.680" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 76 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cAPR5eMZ9cGo" - }, - "source": [ - "#### But now we also have DoWhy capabilities: Sensitivity Analysis" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "9aUCWN489cGo" - }, - "source": [ - "ref_res = est.refute_estimate(method_name=\"add_unobserved_common_cause\",\n", - " effect_strenght_on_treatment=0.05,\n", - " effect_strength_on_outcome=0.5)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "7bTLzM_H9cGp", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "7b5fdb67-e26d-46f0-b46d-572001977533" - }, - "source": [ - "print(ref_res)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Refute: Add an Unobserved Common Cause\n", - "Estimated effect:1.0314669223854354\n", - "New effect:0.9983858330683743\n", - "\n" - ], - "name": "stdout" - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MuaLIl6X9cGp" - }, - "source": [ - "# 6. Policy Learning" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Z5NSUCzK9cGp" - }, - "source": [ - "y, T, X, W = gen_data(2000, discrete=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_oGYT0HP9cGp" - }, - "source": [ - "#### Fit a Doubly Robust policy tree" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "PLk_-21M9cGp" - }, - "source": [ - "from econml.policy import DRPolicyTree\n", - "\n", - "est = DRPolicyTree(max_depth=2, min_impurity_decrease=0.01, honest=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DVBwu-oh9cGq", - "outputId": "8972c75a-1793-4611-959c-708e85ea5796" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 81 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "WNpPMq0Z9cGq" - }, - "source": [ - "#### Visualize treatment policy" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "4YnPJkJW9cGq", - "outputId": "5b9b02ea-01dd-4c3a-d598-4fb61b8e02ce" - }, - "source": [ - "est.plot()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAEGCAYAAADFbPcfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gU1frA8e+7yaaSQgqpEKp0FRBBVETALipcEMUC9vvzXnvBgt2r14p6vfbeBRXEjlesFEEEUZrSE0oqCellc35/zCRsyiYbSLIJvJ/nyZPdmTMz78zOzrx75swcMcaglFJKKdVaHL4OQCmllFIHF00+lFJKKdWqNPlQSimlVKvS5EMppZRSrUqTD6WUUkq1Kk0+lFJKKdWqNPlQygsi8pqI3G+/PlZE1vs6piptLR6llGqMJh+qQSLynYjsFpFAX8fSVhhjfjTG9PZ1HFXaWjxtiXvS2ELzHyUiaS01fy+W/52IXNrEaV4QkfUiUiki0xope7aILBKRIhH5roFyF4qIaWos6uClyYfySES6AscCBjijBebv39zzVO2Lr/cBXy/fR34DrgR+9aJsDvAE8G9PBUSkI3AbsLpZolMHBU0+VEMuBJYArwFTAUQkUERyRWRAVSERiRWRYhHpZL8/XURW2uUWicihbmW3iMh0EVkFFIqIv4jcIiIbRSRfRNaIyHi38n4i8piIZInIZhH5p/0Ly98eHyEiL4vIThHZLiL3i4hffSsjIneLyAci8r69rF9F5DC38X3tX5K5IrJaROpNuGr/2hWRziLykYhkiki2iDwtIgEikiMiA93KdbJ/QcbWM8/G1vMiEVlrx71JRK5oIJ4tInKjiKwSkTx7fYPscTEi8qm9jjki8qOI1HscEJERIrLMnscyERlhD58sIr/UKnudiMyzXweKyKMisk1E0kXkOREJdo/V3gd2Aa/Ws9xpIvKTPY/d9vY4xW18oojMs+PfICKXeYj/cuA84GYRKRCRT9y2T+19cLi9r+aKyG8iMsptPvVuexEJBb4AEu35F9ix3S0is0XkLXua30XkEBG5VUQyRCRVRE50m7/HfbihbSEi/8L6cfC0veyn69sOtRlj/muM+QYo8aLs/4wxs4AdDRR7EHgKyPJm+UoBYIzRP/2r9w/YgPULaQhQDsTZw18B/uVW7h/Al/brQUAGMAzww0patgCB9vgtwEqgMxBsD5sEJGIlw5OBQiDBHvd3YA2QDHQE/odVE+Nvj58DPA+EAp2ApcAVHtbnbns9JgJO4EZgs/3aaa/vbUAAMBrIB3rb074G3G+/HgWk2a/9sH5JzrRjCAKOscc9AzzktvxrgE88xNbYep4G9AAEOA4oAgbXjsdtGy+1t2kUsBb4uz3uQeA5t3U+FpB64okCdgMXAP7Aufb7aCDE3ja93MovA86xX88E5tnzCAM+AR50i7UCeAgIrNoHai17mv05XWZv3//DOvmJPf4He9sGAYcDmcBoD9u1+nOrtX2q90EgCcgGTsXaB0+w38c2ddu77WclwEn2tnsDaz+73d7mlwGb3cp73Ie92BbfAZfWWv6nwC1efL9/AqZ5eSy4FPiunuFHAr/Y261OLPqnf57+fB6A/rXNP+AY+6AXY79fB1xnvx4LbHQruxC40H79LHBfrXmtB46zX28BLm5k2SuBM+3XC3BLJuxlG/ugHgeUup/AsE6S33qY793AErf3DmAn1gn4WGAX4HAb/y5wt/36NepPPo7COvn517O8YcA2txPFL8DZHmLzuJ4eys8Frqkdj9s2Pt/t/cPAc/bre4GPgZ6NfAYXAEtrDVtcdbIC3gLutF/3wkpGQrBO0IVAD7fpjsI+2dqxlgFBDSx7GrDB7X2IvS3isRIGFxDmNv5B4DUP86r+3Gptn4vd3k8H3qxV5itgalO3vdt+9rXb+3FAAeBnvw+z1yeSRvbhhraF/f479vGEz34mH1jJ0C/A8P2NRf8Ovj+97KI8mQrMN8ZUVaW+Yw8D+BYIEZFhYrULORzr1xtACnCDXX2dKyK5WCeMRLd5p7ovSKzGaivdyg8AYuzRibXKu79OwfoludNt2uexfj16Uj29MaYSSLOXkQik2sOqbMX6VdyQzsBWY0xF7RHGmJ+xfiWPEpE+QE+sGoH6NLSeiMgpIrLEvtSQi/UrPQbPdrm9LgI62K8fwarhmW9fQrilgXi21hrmvj3ewTpJAkwB5hpjioBYrBPkcrfP5Et7eJVMY0xjVf7V8dvzxV6HRCDHGJPvIS5v1d6PJtXaZ48BEmCftj1AutvrYiDLGONye1+1Pt7sw562ha9dCawyxizxdSCq/TkYG1upRtjX588G/Ozr8mBVkUeKyGHGmN9EZBbWyScd+NTtZJCKdUnmXw0sororZRFJAV4ExgCLjTEuEVmJ9QsarJqJZLdpO7u9TsX61RhT38nfg+rp7bYOyey9nt1ZRBxuCUgX4M9G5pcKdBERfw8xvA6cj3UC+aCBk67H9RTrTqMPsdrgfGyMKReRuezdRl6zP6cbsBLEAcACEVlmrDYA7nZgnRjddcFKJAC+BmJF5HCs/eA6e3gW1sm1vzFmu6cwmhp3rbiiRCTMbZ/rAjR1We7DU7FqPuq0HfFi2+9vt+D7sg+782W35GOA40TkVPt9FDBIRA43xvzTh3GpdkBrPlR9zsKq2u6HVatxONAX+BHrIAzWL9/JWA363nGb9kXg73atiIhIqIicJiJhHpYVinUAzQSrcR9WzUeVWcA1IpIkIpFYVeQAGGN2AvOBx0QkXEQcItJDRI5rYN2GiMgEsRpyXot14F8CVNVS3CwiTrvB4TjgvQbmBdb1+Z3Av+11DRKRo93GvwWMx0pA3mhgPh7XE6sNSiDWNqqwGxyeWM88GiVWY+CeIiJAHtbnXFlP0c+BQ0Rkit0gczLW/vApgDGmHJiNVZMShZWMVNUmvQjMlL0NkJNE5KR9ibc2Y0wqsAh40N7WhwKXYG3n+qQD3RuZ7VvAOBE5SayGv0FiNYxNpvFtnw5Ei0jEPq7PvuzD7rxZvxrEagwdhJVAOe319dTo2M8u6w847LJOe/Q0rONC1THiF+AerLYtSjVIkw9Vn6nAq8aYbcaYXVV/wNPAefav/J+xru0nYrX4B8AY8wtW47insRoobsA6SNXLGLMGeAyrPUE6MBCrDUmVF7EOzquAFVgnxQqskyZYyVAAVmPN3cAH2NXlHnyMlTRVNaacYIwpN8aUYSUbp2D9en8Gqx3LugbmhV2VPg7rkso2rMs4k93Gp2Ld0miwkjdPPK6n/Qv/aqwEZTfWZQ5Pl28a0wurMWsB1jZ/xhjzbT3rlQ2cjlVLkg3cDJzudhkOrKRzLDC71q/26Vif+xIR2WMvrzmfQ3Iu0BWrFmQOcJcx5n8eyr4M9LMvacytr4D9GZ2J1dg4E6s24ias9j8Nbnt7/3gX2GQvI5Gma+o+7O5JYKJ9J8xTACLyhYjc1sA087Fqp0YAL9ivR9rTnici7rfMXmCPfxarXVQx1r6KMSa31vGhDNhjjMnzMnZ1EKtqCKdUu2D/8nzOGFP7koA3096N1dDy/GYPrOHlvgLsMMbMaMI0+7yeSinV1mnNh2rTRCRYRE61q/6TgLvY27i1zbMb5E7A+gXeULl2vZ5KKdUUmnyotk6wriPvxrocsRa406cReUlE7gP+AB4xxmxurDjtdD2VUqqp9LKLUkoppVqV1nwopZRSqlVp8tFEol2rK9UmiFuPrvZdGvO9mOY2EXmpmeMQEXnVvuNkaXPOuznJPvSAq/YSq0+gYhF509extFUiskBESkTkp8bKep18iHatXodpY12Zt7V42htp5u7XGzvYi0hXces8riX48oQjrdjdvDHmbWNMo88+McY8YIxp7u1xDFZ/MMnGmCObed4+0RqfnX0yH9uSy2hg2dO8OUHWY5wx5gK3+dwnVseBFfbddA0t83gR+Vasjhq3NFDuOPu44PWxSKzOHF8RkT0isktErm+k/HV2uT32dIFu474Vq5PMPWJ1snimh3m8YsfZs2qYMWY0Vj9VjfIq+RDtWl21MN0H6qfbpV1IAbYYYwqbOmF7/nzbc+zNaAPWM3A+86JsIVannDd5KmA/wO1JrIceNsXdWM/wSQGOx3pY4skelnEScAvWE2pTsB5Sd49bkWuwOvYMBy4H3hKRhFrzOAars8V9500HMFit7hcCj2M9Shusp/7lAgPcysViPYSmk/3+dKxOwnKxnkp4qFvZLVgPI1qF9ZRJf3uDbMTqpGoNMN6tvB/Ww6iysHqI/Cc1e/2MwLqdcSfWo5bvx+7IqZ71uRvrQT7v28v6FTjMbXxfrE6ScoHVwBlu416jng7G7PedgY+wHlSUjfWgrQAgBxjoVq4T1tM0Y+uJrbH1vAjrToh8YBM1OyOrHc8WrJ5bV2E9zfJ97A69sPqm+NRexxysB2A5PGyvEVi9lubZ/0fYwycDv9Qqex0wz20feRTr4VvpWL2pBrvHau8Du6jVsZfb/C5zW9817O1NtLHP6L9YB4R8rC9yD3ucYPW6mgHsAX7HeqLq5Vgd6ZVhPYDrE7t8Q/vkNKzOuR7FuktlM3CKPe5fWA9CK7Hn93Q967bN/mwL7L+j7HkutGPMxtqPG9qOHe3PMdOO4VOsX+AeY7CXeSXwl71e92EdSBbZ22QWEOAWZ2Pf4zr7GNaTa4uxnp5atX6J9WyD1+z1+dqO5XsgpbF9zx73HXZHZlWfhdu4/vY8c+xtdpvbd/8tt3LD7XXKxeqdeFStz3eTHddm4Lx64r/E3r4uex3vcdtvN9jLn+e+7vb2/4e9/Td72O8bisvjMcAef6b9ee3B2ndPdtte92HtX/lYDxuLqWfZ9X527D1uvmXP+1IaOO5i7VMLsPbjLOBtINIe96Y9/2J7/jdjPTjO2OuXirU//x0YirV/5VLrewRcbG+L3VidAabU2s5/t7dzLtYxQbCOHe6fWa6X58EtwFgP497C7oTSi/mMxUpW6xt3C1ZHkK9Rq0PERua5AzjR7f19wHseyr4DPOD2fgywy0PZI+1tdaTbMH+sO/IOtbdxz1rTTMPtu+gxZi9XTLtW167VfdG1+iSsA9pQe317srcjrsY+o2ysL44/1kHvPXvcScByrB5Fqw5ECbU/21oxeNonp9HE7s5rzbur+2frNs8K4Co79uBGtmM08Df7swjDeuT5XLf51YnBXubHQDjWSboU+AbrF1AE1v43tQnfY0/72Chq9fhazzZ4zf7sRtr7wZPYBy4a2PdqrxtuBzx7O+zEejprkP1+mNt3/y37dRLWfnKq/fmeYL+PxfoO72HvPpWA1V9NfetQvWz7/Wisk+1ge53+A/xQa/t/ba9fffu9x7i8OAYciZWonWBPmwT0cdteG4FDsPar74B/e1inOp8de4+bZ9nzDqaB4y7W9/UEexvEAj8AT9Q6Po11e9/V3jbP2Z/biVgnvrn2vJOw9sXj7PJnYh0H+mLtHzOARbW286dY3/UuWAn6yfV9ZvawKVgd5fkk+cA6tv2J1Wnga3iZfGCdJwz2edkeNhH43UP534DJbu9j7Omj3YZ9am97g9Wfk3tv3zcBT7pt45ZJPtCu1UG7VvdV1+pfVa1breHefEYvuY07FVhnvx6N9QUfTq2aHrz4wtfaJ6exH92d4zn52Ob2vsHtWM88Dwd2u72vE4O9zKPd3i8Hpru9fwz7JIF332NP+1iN/dFDvK/h9gsN68DrwvpR0ti+V71u1Ew+zgVWeFje3exNPqZTq8bN3uemYp1Mc7ESuzoJQq1pqpdtv38ZeLjWOpUDXd22/+gG5ucxLg/l3Y8BzwMzPZT7Dpjh9v5K7B+L9ZSt89nZ2849iWrqcfcs988Fz8lHktuwbGqeKD8ErrVffwFc4jbOgZWIpbht52Pcxs8CbqnvM/Pmr3a8tcY1R/LxcdW60rTko7O9rkFuw06obxn2uOraMPu9056+a61yTqzuJq6vtawNQITbNt6n5MObNh9T0a7VtWv1mlqra/XOWF+U+mJq7DOqd72NMQuwLof9F8gQkRdEJNxTAI3skzWWY5qvu3P3z7zB7SgiISLyvIhsFasflR+weh/2a2QZtbt8r/2+ah28+R572se85f5dLMC6VFH1XWxo3/PE035TWwowqda6HYNVs1WIVdP1d6zjymf2d9cbNeK21ym7VtyptSfyJi5o9BjQ2Lo322dFI8ddEYkTkfdEZLu9b75Fw8eqKk3ZN590W3YOVrLe6HGgrRGRcUCYMeb9fZi8wP7vfhwLx/oh6Kl87bLULm+sPq++AE4Ukaq2nk8A95pm6L+nweRD9natfpzdMnYX1jX9w8TqWt2FlU2ea//V17V6pNtfiDHmXff1c1tWClaHRf/Eqv6JxHo6ZFO7Vq9aVrgxpn8Dq+epa/Ud2F2ru5VtqMtu9xi6NNAIq6pr9QvY/67VH8WqYovE6oBsn7pWN8bcYIzpjtWI+HoRGVNPUU9dq1dtj9pdq1f1cOvetXrVZxJhjHH/8hsalkr9jZr29TOyFmrMU8aYIVi9tB7C3gZgNeLxYp9sdFH7ON59eGPb8QasTtuGGauB2Miq8L2MoTHefI898XbZ7vt4B6zLEVXfxYb2vYZi9qan11SsGgb3dQs1xvwbwBjzlTHmBKyT/jrsDtW8UCNuEQnFujzmHndD28ZjXF4cAzx9Z5rKm32zsePuA3b5gfa+eT41vzvNsW9eUWs7BRtjFnkx7f4uu7mNAY5wO89OBq4VkY8bm9AYsxvrvHGY2+DDsNrC1Wd1PWXTjdWZZH382btPjQEecYsTYLGITGksztoaq/nQrtW1a3Vfdq3+EnCjiAyx96GedkKwr58RIjLU3iedWJczStzWu3b35I3tk41prLvzTHvZHst4sR3DsJKTXBGJwuoTpikxNKap3+Pay/amu/lTReQYEQnAaii3xFg9zTa47zXgUyBBRK4V6xbEMBEZVk+5t4BxInKS2F3Hi3WLabL9q/1MO3Eoxfq1WN/3oz7vAheJyOF2svAA8LMxZouX03uMi8aPAS/byx5jHweTxPsaG3eNfnZeHHfDsLZbnlj9FdW+y2N/983ngFtFpD+AiESIyCQvp00Hku19bp/Zx58grHOpv/1Z1VvraG+fIKzaIrHLVi3/DqwfQlXn2XlY372LvAzlDWCGiHS0P+/LsC7deCp7iYj0s88xM6rKikgfsWrWgu11Ox/rB8339rSHYCUrVXGCdextcj9UjSUfU9Gu1bVrdR91rW6MmY11x8Y7WFWCc4Goff2MbOFY23g3VtV4NlbiBLW6X/din2xMne7Oa61fkb1+C+1lDvcwn4a24xNYDf+ysJLnL5sSQ2Oa+j2uNa233c2/g5U05WA1aj/fnt6bfa++5eZjXfMeh1Xt/hfW7Ye1y6ViNVq8Detknop1gnTYf9dj1WLkYDXs/D8v1/t/WCeTD7F+kPQAzvFm2sbiauwYYIxZinXCmon1o+J76tYeeRODt59dQ8fde7Aa3eZh3Xn2Ua1pH8Q6YeaKyI37EOMcrAbr79nfiz+wjgneWIBVA7BLRLKg+kF1nmoLPHkRK/k/F7jdfn2BPb9jRaTArexIe/znWDV4xVjH+qqaaPdzbDFQaIzJ8TKOu7Aut23F+swfMcZ8acfRRUQKRKSLvawvsdpmfYt1rtrK3h8tgtW2JwNr37sGqx3Kr/a0GbXiBMgyxhR7GWe1dtu3i2jX6kq1eyLyGlbDRq+/E0r5glhPj04A5hhjpjZW/mAkIl9jNeZfaoyp7zJ+tXbzkBix2p8cj5UpxtHOuhyXvV2rD2qkXLteT6WUOhAZfXp0o+w2Ul5pT327tNsux0W7VldKKaWqtdvLLkoppZRqn9pTzYdSSimlDgCafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVJh9KKaWUalWafCillFKqVWnyoZRSSqlWpcmHUkoppVqVv68DUKqtEZEAYKxfUIdzxM/ZGyHQ1zGpdsZQbipd21zFe94HPjPGFPo6JKXaEjHG+DoGpdoMEUlwBIYsDopN6Rh79NlhwQm9xOHU3EM1jakopzQ7lczFH+4p3LLKVVleMtIY84ev41KqrdDkQymbiPg7AkP+Sjzp70mdz7zB6et41IEh6+c5ZuOrN+6pLC85xBiT4et4lGoLtM2HUnsdHxiVFK2Jh2pOMcPGS+ShY/xBJvo6FqXaCk0+lLI5AkMnxx49KdTXcagDT+zwCaH+oREX+joOpdoKTT6UsjmcAT2D43rod0I1u6D4HphKV2dfx6FUW6EHWqWqSaBo41LVAhzOQIypDPB1HEq1FZp8KKWUUqpV6XM+lGoBm968lfTv36TfTbOJ6H1UjXFFO/5k1T0nETlgFH2uerV6uKu0iNQ5D5O1dB4VhbkEJ/Qk6ZR/EDPszNYOv8UYVwXbP/8PGT+9T1luBoExycSPvoj40dMQEa+m3/Xdm2T8+A4lGVtxBAQRktSbxJOvpOPA4z1OV56fw8rbj6WiMJfuUx8hbuSUmuMLctj+2X/Y/dvXlObsxBkWRVivI0k+/VpCEnvt93orpWrSmg+lWkCXibcREBnPptdvwlVWXD3cVFay8dUbcDiD6H7+g3uHG8P6/17KrgWvETN8PN2m3IczLIq/XriSzEWzfbEKLWLTm7eSOvdRIvqNpNt59xOa3Jct78wg7ZMnvJ5+yzszCE48hK5n30HSyVdSnpfBuifOJ/uXzzxOt/WDf1FZUVbvuMqKMlY/NJH0796k42En0G3KfcQeNZHc37/jj3+dTklW6j6tq1LKM00+lGoB/sFhdL/gQUrSN5P28WPVw3f+7yUKNv1KyqQZBHSMrx6+e+V88lZ/T8rku+h69h3EHXcefa97hw49hrB19v1Ulpc2W2yFqaubbV5NWu62P8j48R0STryCHlMfJm7kFA75v+eJHjqO7Z/9h7Lc9AanryjOJ2Ph+0QNPpVDLv8vcaMuIPHkv9N/+hzEz0nGwvfrnS5/wzIyF84i+bSr6x2ft+ZHinesp8vE2+g6+S7iRk6hy4Tp9LxkJq6SAnIaSGqUUvtGkw+lWkjHw04g+sgz2TH/BQq2rKIkcyupcx4mvM8I4o47r0bZrGXzcAQEETfy3Oph4nAQP3oa5XuyyFu3cL9iKctNZ/sXz7DyjuNZ/ZBvHjeRvewTABLGXlJjePyYSzAVpeSs+LLB6SvLiqHShTOyU43h/qGROJyB+AUE15nGVLrY9NZtxB41gQ49htQ7X1dxAQABETXnW/XeERDUYFxKqabTNh9KtaBuU+4jb80PbHztBvxDOwKGHlMfqVOucMtvhCT3w+GseaLr0G2QPX4VHQeObtKyK8utE3rmog/IXf09GENEnxEk1aoBqCwvxVXiXdcjfkGh7Ovj5gu2rMIZ0YnA6KQawzt0OwzEQeHW3xucPiCiE8GJh5D50/uEdTuc8N4jcJUUsOPLZzGmkoSTrqgzza5vXqU0K5W+171N8c4N9c43rNcRiH8g2+Y8jF9IOMEJvSjNSmPr+/cQ2KkrMcPH79P6KqU80+RDqRbkDIum6+S72fDyNQCkTLqDoE5d65Qry00nJKlvneEBkfH2+F1eLzN/069kLpxF1tJ5uIryCE48hC7jbyZm+AQCoxLrlM/6eS4bX73eq3n3uOhxOh0z2etY3JXlphMQGVdnuMM/AP8OHSnb3fg6HvJ/L7DhxX+y4eVrq4c5I+Lod+P7hHUfXGd5qR8/SvK46wiI6OQx+QiMSqLXFf9l81u3s/axvTVPHboPZsAtc/EPifB2FZVSXtLkQ6kW5h8WVf060sMdGZVlJYiz7mMgqmoZKstKGl3Ozm9eIf3b1yneuQH/DlHEDp9A7IiJdOh2eIPTRQ4YRd8b3m10/gAhib29KlefyvIS/II71DvO4QyksrzxdfQL7kBIch/Ceg4lvM8IXMX57FrwKmtnXkDf694irPug6rJbZt1LQGQ88WMubnS+zrAYOnQ9lA7dDiekcz9KMraw44tnWDtzCv1ueB+n22eolNp/mnwo1YJcJYVseuMWAmNTKN+TxaY3b6X/9A/r3FbqCAjClNe9G6Oqoak37Q52fvU8pdlpdOg+iJ6XPEFwfE+vYgyIjKu3RmJfuMqKcRXn1xjmDItGHH44nEEYT3eclJfWueRUZ94lhfzxwJnEDB9Pyt9urR4ePfQMfrtjFJveuJnD7v4agLx1C8n+eS79bngPh3/DXfUUbPmNNY9Mos/VrxE5YFT18Ih+x7LqnpNI+/QJup17b4PzUEo1jSYfSrWgrR8+QNnuHfS7aTZF21az5b27yPj+LeJGXVCjXEBkXL2XVqqGeZMc9Lj4cTJ+eJecFV+wcsYownoOJfaoiUQPHYd/SLjH6epLGDzxCw6rt2Fnleyl8+pcwhn00BKCYjoTEBlH0fZ1daaprCijomA3zkbWMXv5Z5TlbCdq0Mk1YwoMJnLg8aR/9yYVRXvwDwlny7t3Ed77KAI7da2+VbY8LxOAioLdlGSlEhAZj8Pfya4FryF+/kT0P67GfEOT+xIc140965c0GJdSquk0+VCqhez5axnp375O3MjziOh9FOG9hpG1dC5bP3iAjoedUONW29CUQ9m98isqy0tq1AAUbF5RPb4xEX2OJqLP0VQU55O9dB6Zi2ax6Y2b2fzunUQdNpbYEROJHHA84lfza19fwuBJY20+6ruEExARa61D10PJW/MDpdnbazQ6Ldj8G5hKOqQMbHDZ5VW34la66owzLpf9vwKA0uztFKWtZcX04XXKbvvwAbZ9+ACH3fMNIcl97Ft8DRgDtWqkjKsCxK/BuJRSTafJh1ItoLK8lE2v30hAZBxdJs0ArFtne0x9lFX3nszmd2bQ+x8vVZePGXoG2Us/Jv2Hd0kYcxFgPZBs14LX8O8QRUTfo71etn9wGHHHnUfccedRvGsjmQtnkbn4Q7J/+RRneAyxIyaRYscEzdvmo6FLOKw/bMAAACAASURBVDFHjGPH50+z838v03XyndXDd33zMuIfUKNGw1VaTFnOdvw7RFW3twhKsC4jZS75iLCeR1SXrSjMZfeq/xEYnVxdttdl/6lORKoUbV9H6txHiBs9jci+xxIYnQxAcHxP8lZ/T87yz4geOq66fP6GZZRkbiX2KN/cmqzUgUyTD6VaQNonT1C8cwO9r3oV/+Cw6uEhyX1IPOVKtn/6JNnLPyd6yKkAdBx0EhF9j2Hr+/dQlrOdoE7dyP7lEwo2LqfHRY832h7Ck+D4HnT52610Hj+dvDU/krFoFpmLP6qRfDRnm4+GhKYMIPaYc9j59Qu4Sgvo0G0Qeau/J3vZJySfcX2NmqCCzStY88gkks+4ns5n3gBAx0PHEtK5P+nfvk55XgYRfY/BVVJA+vdvU56XQc9Ln6qevuNhY+ss38++9BTauT9Rg/cmOgljLyZz0Wz+eulq9vz5MyHJfSjJ2Mqub1/HERBC4in/aKlNotRBS5MPpZpZYeoadnz5LNFHnE7U4SfWGZ98+jXkLP+MzW/PIKLvMfiHhCMi9P7nK2yb8xCZiz+kojCP4IQe9LzsaWKb4TkT4nAQOeA4Igcc5/UzPVpC9wv+TWBUEpkL3ydz4WwCo5Ppeu69Xt2R4vB3MmD6R+z46jmyl39uPbsEIbTLALqee0+929obQZ26cuhdX5H2yUx2/76A9B/exi8olMj+x9H5zBu0bxelWoAYY3wdg1JtgjMsenHPS58a3lAHZUrti5LMbfx299gsV3FBrK9jUaot0MerK6WUUqpVafKhlFJKqValyYdSSimlWpUmH0oppZRqVZp8KKWUUqpVafKhlFJKqValyYdSB4ENL1/LrzcP83UYSikF6EPGlFLtSP6mFWQumk3B5pUUpa3FVJRx+AM/ERzXrd7yJZnb2DrrPvLW/oSpdBHWYzApE2cQmjKgTtnCbX+wdfa/yN+4HHH4EdH3aFLOvoOg2JQ6ZfPW/kTq3Eco3PYHjoAQOh42lpRJM3CGRTf7Oit1INKaD6VUu5H7+wIyfngb46ogKK57g2XL92Sx+qHx5G9YRtJpV9FlwnRKs9P446EJFO34s0bZ4p0bWP3Q3yjN2kaXCdNJOu0q8jcu548Hx1Nm94ZbJW/9YtbOPI/K8lJSzr6T+NEXkbP8c1Y/PAlXWXGzr7NSByKt+VBKtRtxoy4k8ZQr8QsIJvXjx0jbvs5j2e2f/4ey3AwOvetLQjv3ByB66DhW3j6SbR8+SJ+rXq0uu/XDBwHof/OH1X3MdBw4mt/uOZHtn/2HblPurS675d27cEbE0X/6R/gFhgDQofvhrHviAtK/e5PEEy9v9vVW6kCjyYdSXnCVFpE2bybZyz+jbPcuHAHBBMd1I+Gky4kZegYApVlp7PjqOfLWLaQ0Ow2A0C4DSDrtKjoOHF1jfqsfnkhJxmb6T/+Ize/cwZ71S/ALDKbTyPPofNZNVBTuZsu7d7F71QKorCBqyKl0O/8B/AKC68yj342z2PzOHeRvWIbDGUT00HGkTJpRfWJsSN76xWz/9CkKNq+gsqKckOQ+JJ92NVGDTqouYypd7PjiGTIWzaYsZzviF0BgTDJxI88jfvS0Zti63guI8P7p5FlLPyG89/DqxMOavhPRR4wjc9FsKorz8Q8Ow1VSSO7vC4gZNr5G53YhyX2I6DOC7GUfVycfxbs2UpS6muQzb6yxfTsOHE1Qp65kL52nyYdSXtDLLkp5YfNbt7Lz6xfpeOhYup13P8mnX01wQg8KNi6vLlOwZSV5a38k6vAT6Tr5LpLHXYerOJ91T15I3pof68yzsqyENY+dS2BUIimTbickuR/bP32SHV88w9rHzgVj6DLhZiIHjiZz4SzS5s2sMw9XaQlrHjsHZ1g0KRNvJ3LAKNK/fZ0/n72i0XXK/uUz1jw6mcqyYpLHXUfKxNsQcbD+6YvJXDKnulzavJls++jfhPUYQtdz7qHzWTcS1n0we/78udFluEqLKc/P8eqvsqK80fl5q2z3Lsrz0unQfXCdcR26D8K4yilKWwtAUdoaTEUZYd0H1S3bbRDle7IozdkBQMGWVQD1l+0+mMLUNZhKV7Oth1IHKq35UMoLOSu/ptPIKTWq32uLHDiG6CNOrzEsYezFrLrnJLZ/+SwR/Y6tMa6iMJfkcdeRcMKlAHQ6dgq/3jyMbR89SMIJl9F18l0AxB8/lVWZW0n//m1SJt5WYx6uolziRk4hZdLtVtnR03CGx7Bz/gvs/n1BnRqX6ulKi9n05nSiDj+R3v94qXp4/Ohp/PHAmWydfT8xR56JOBzkrJxP5MDR9Ly4bvLTmB1fPkPavMe9KtvvptlE9BnR5GXUpywvHYCAyLg646qGle3eaf3Ptco6Gyqbu4vAqETKGylrKkopz89pUg2NUgcjTT6U8oJ/SDgFm1ZQmr2dwOikesv4Be69JFJZXoKrtAgMhPc+iqyln9SdQBzEjTq/+q3D30mHboeze+VXxI26oEbRsJ5HULjlNyoKc/EPjawxrip5qZJ44hVW8rHya4/JR96aH6go2E3sURMpz8+pMS7y0DGkffwoxTv/IiSpN/4h4RTv+JOiHX81uXv52BETCes11KuyoZ37NWneDaksKwHA4R9QZ5zDGVijzN6ygfWUDapZtrzY43ylar7lJfsVu1IHA00+lPJCytl3suGlq/l1+jBCkvoQ0f84Yo48gw5dD6suU1lRRtqnT5K16IPqNh/VROrM0xkeU31yq+IfEg5AYFRSreERAHWSD7+gDnV+3Qd0jMcvqAOlWake16d410YA1v/3Eo9lyvOzgN50Hj+d9U9fxG93jCIorjsR/Y4l+ojTiOhztMdpqwTFptR7q2pLcwTYSUNFWZ1xleWlNcrsLVtaT9mSmmWdwR7na6rmW+szVUrVpcmHUl6IHnIq4b2OJOe3r8lb8yOZP73HzvnPk3zGDXQ+4zrAugsi/fs3iRt1IeG9jrSSBIeDzJ9mkfXznDrzFIfnJlfi8Kt3uDGmeVbInk+3Cx4kqFPXeouEJFs1EeG9hjLowUXsXvUNeWt+JGfFV6R/+zqxx5xDz4sea3AxrpJCXKWFXoXkHxpZb43CvgiIqLpckl5nXNWwgMh4+79VtrzBslYZp3vZ5L51yop/AM6wqOZYBaUOaJp8KOUlZ3gMcceeS9yx5+IqK2bdExeQ9slMEk/+O34BwWQt/ZjYoybS/fwHakyX8eN7LRaTq6SAstz0GrUfZbt34SopIDCms8fpqhIO/5AIIvuNbHQ5/iHhxA4fT+zw8RhXBRteuY7Mn94j6ZQrCY7v4XG6HV8955M2HwEd43FGdKJg0691xhVsWoH4+RNiJw8hSX0RPyf5m1bUudxVsHkFzvAYAjomAtCh60DAethZ5IBRteb7KyGd+3lMHJVSe2nyoVQjTKULV0lh9SURAL+AYILje7Bn/WJcxQX4BQTbNRk1ayaKd20gZ8VXLRrfzq9fqm5wCrBj/vMAdDxsrMdpIvsfh39oJNs/+w8dDzuxRnsVsB7Q5QyPsV4X5ODssPfXvPj5E5LUG4CKorwGY/NVmw+wnumx65tXKUxdUz3vsrwMsn/5lMgBo6o/T7/gDkQOHE3O8s8omzC9OpErSltH3rpFxI+6ELEvmwXH9ySkcz8yfnyXxJOuqL7ddvfvCyjJ2ELK2Xc06zoodaDS5EOpRrhKClh+wxCiBp9CSOd++IdGUrjtD9J/fJfwPkdX39kQNehkMn56H0dACKFdBlCStY30b98gJKEnhdv+aJHY/EIiyVo6l7K8dMK6DyZ/43KylnxERP/j6HjoGM/TBXeg+9RH+Ov5/+O3O0YRO2ISAVGJlOWmU7DpV4p3bWTwvxcBsHLGKMJ7HUmHrofhDI+leNdGdi14laD4HoR2GdhgfM3d5qM0K43MxR8AsOfPJQCkf/t6dTuY5HHXVpdNOvUqspd9ytqZ55Fw4uU4nIHs+uYVTGUFXSbcWmO+Xf52C7/ffzqrH5pA/JiLqawoY+f8F3GGRZN02lU1ynY9527WPHYuqx/6G51Gnkv5nmx2zn+e4IRexI2a2mzrqtSBTJMPpRrhCAgmfvRF5K39kd2rvqGyvJTAqESSTvkHSaf8o7pc13PuweEMIvvXL8hYOIvg+B50v/DfFO/c0HLJR2AQ/W54j83v3MHWD/6Fwz+AuFEXkDKp8V/g0UNOJeCWuWz//Gl2ffsarpJCnOExhHbuR5fx06vLJZ5wGTm/fc2O+c/jKikiIDKOTsecQ9Lp1+Dwd7bIenlSkrWN1LmP1Bi28+sXq1+7Jx8BEbEMuHUOW2fdx/ZPn7T6duk+mF6XP0NIcp8a8whJPIT+0z9k2wf/YttH/0YcfoT3OZqUSTPqNOiN6HM0fa97i9Q5j7DlvXvwCwgiatBJdJk4o04NklKqftJsDdiUauecYdGLe1761PCOA4/3dSheqXrC6ZBHlzdeWPlUSeY2frt7bJaruEAfAKIU+oRTpZRSSrUyTT6UUkop1ao0+VBKKaVUq9IGp0q1U/1v/sDXISil1D7Rmg+llFJKtSpNPpRSSinVqjT5UKqNSv34MRZfUn8Puu3R6ocnsviSJBZfksQfD57l63C8krvmh+qYF1+SRPoP7/g6JKUOCNrmQynVaoITepJ02tU4w2JqDM/943uyf/mEgs0rKdrxJ1S6GP7CVsTPu0OUq6SQHV8+S8GW3yjYvJKKghySTruaLhOm1ylbtOMv0uY9TuHWVZTlZSDiIDA2hU7HTCZu1AU1OrcLSepDz0ufonjnX2z/7D/7t/JKqWpa86GUajXO8Fhij/obkQOOqzE86+c5ZC7+CEdAUIMd4nlSXpBD2iczKUpbS2iXAQ2WLcvZQUVhLtFHnknXs++ky99uJSTxELa8dxd/Pvv3GmUDIjoRe9TfiPCi8z2llPe05kMp5XNdJtxC96kP4/APYMPL15KZsaVJ0wdEdGLIo8sJ6BhPSVYqK6YP91g2csBxdZKf+NHT8AuNIH3BaxTv2kBwfM99WQ2llJe05kOp/ZSz4isWX5JE9rJP6owrydzG4kuS2PbhgwBUVpSR+vFj/H7/6Sy7uj9LrujOyhmj2Pn1i3jT1cGvNw9jw8vX1hnuqX1IYeoa1v/30r3LunMM6T++uw9r2bICOsbXuNzRVA5nIAEd4/crhqBoq8alomjPfs1HKdU4rflQaj9FDjwev5BIMn+eS/TQcTXGZf08B4CY4RMAcBUXsOvb14keOo6Yo6xheau/Z8t7d1NemEuXs25qtrjyNyxjzWPnEhibQuLJV+IXFMru3/7HptdupGJPVp3eWmurLC/FVVLo1bL8gkJxOAObI+xW4yotprKsmMrSIgo2r2D7l8/gjIgjJLmvr0NT6oCnyYdS+8nhH0D0EaeRuegDKory8A+JqB6X9fPHhHTuR0hSbwD8QyMY8siyGifqhDEXs+GV69g5/0WST79mv2oAqhhj2Pj6zYQk9aH/LXOqe5+NHz2N9c9cRtqnTxA36oLqrujrk/XzXDa+er1Xy+tx0eN0OmbyfsfdmnZ8+Qxp8x6vfh/a9TB6TH0YvwDtmVaplqbJh1LNIGbYWWT88DbZyz8n7thzAeuSR/GO9XSZNKO6nDj8EIcfAMZVgaukAFNZSUTfY8hcOIvinRsI7dxvv+MpSltD8Y4/6XruvbiK83G5jet46Fhyln9O/oZf6HjYWI/ziBwwir43eHeJJiSx935G3PpiR0wkrNdQKgp2k7duIUVp6/SSi1KtRJMPpZpB+CHDCeiYQNaSOdXJR9bPc0GEmCPPrFE2c/GH7PjqeYq2r4NKV41xrmY6+RXv2gjAlnfvZMu7d9Zbpjw/u8F5BETGERAZ1yzxtEVBsSkExaYAEHPkmeyY/wJrH5/CoXd/TUhiLx9Hp9SBTZMPpZqBOBxEH3kmO+e/QFluOs6ITmQv/ZjwQ4YTGJVYXS5r2Tw2vHQ1kQNHkzDmYpwRsYi/k8Ktf7Dtg39hTGUjC5J6B5taSQx249XkM64nrNfQeqcJSTikwUW5yopxFec3HI/NLzis3V+uiBk2nq3v30PWkg/pMuEWX4ej1AFNkw+lmknssPHs/Oo5spZ+TIdugyjNTiPptKtrlMn6+WMCY7rQ5+rXEcfem81KM7Z6tQz/kAgqivLqDC/N3FbjfVCnbgA4nEFE7uMzKrKXzjug23zUZspLAagorLt9lVLNS5MPpZpJaMoAghN6kfXzXEoytyJ2Q1R3exOOvbfVusqK2fnNK14tIyiuG3nrFuEqK66uaSjJSiVnxZc1Y+kygKD4Huz830t0OvYcnGHRNcaX78nCGV7zKaO1tdU2H2W56biK8wmMTaluSNsUntZ91/dvAtCh2+H7HaNSqmGafCjVjGKGnUXq3Eco2bWRyIGj69xNEjXoZHKWf87aJy8ketDJVBTmkrFwFn5BoV7NP27UhWQv+4S1j51DzLDxlOfnkP7d6wQn9KJw66rqcuJw0POix1nz+LmsnDGKTseeS1BsCuUF2RRtW03OyvkMf35zg8tqzTYfhalr2L1yPgBFaWsBSPvsP4gIfiERJIy5qLrstg8fJHPRbAY9tIQgt6eh7vzmVVxFedWNRvM3LCPtkycA6Hj4idUNeTe+MZ2Kgt2E9zmKwI6JVBTvIW/19+St+ZGwnkdU3xatlGo5mnwo1Yxiho8nde4juEoKiB1Wt/O02KP+RkVRHru+eYXN795FQGQnYo+eTFjPIax97NxG5x/RZwTdzn+AHV8+y5b37yGoUze6Tbmfoh1/1kg+AMJ6HsGhd3xB2qdPkrloNhUFu/EPiyYkoSddJ9/VbOvcHAq3/k7q3EdqDEv7+FEAAqOTayQfnuz86jlKs9Oq3+9Zv5g96xcDENAxoTr5iDnyDDIXzibjx/eoyM9G/AMIju9Bl4m3kzD24n2qTVFKNY1481RFpQ4GzrDoxT0vfWp4x4HH+zqUA9LqhydiXOX0/ueriJ8//iHhvg6pUZUV5biK88nfsIz1T19M96mPEDdySpPnU5K5jd/uHpvlKi6IbYEwlWp3tOZDKdVq8jf8wi/XDiSs51AG3DrX1+E0as+fi72qkVJKNY0mH0pVM4bGbnVV+yzl7DupKMoFqPEU2LYstMvAGo1uG7s92RP7VmitZlbKpsmHUlWMyakoyPF1FAesDl0P9XUITebs0HGfb1V2V1G4G3H46+NTlbJpr7ZK2SoKcz/PWTnfu57UlGqC3N8XuExF+Ve+jkOptkKTD6X2+ih31QK/qkeTK9UcrNuh3yypLCt6y9exKNVWaPKhlM0Ys8u4Kv75xwNnFGcv+wRXaZGvQ1LtWGVFObt//5Y/HhhX5CopfAZY4uuYlGor9FZbpWoRkTP8QiJuqSwrHuIMiyp1OIPaRStUY4xgTCgi5SJS6ut4mosxxokxwYgUiEi7+CwqK8qlIj87UJyBG1zF+U9iKl8yerBVqpomH0p5ICKRQCIQ6OtYvHQnEAIciL2iXQkcZv93NVK2LSgHdhljsnwdiFJtkSYfSh0AROQiYDow1BjjXVe07YiI+AFfAUuNMbf5Oh6l1P7R5EOpdk5EDge+BkYZY1b7Op6WIiKdgOXAlcaYT3wdj1Jq32mDU6XaMfvS0AfANQdy4gFgjMkAJgMvi0h3X8ejlNp3WvOhVDslIgJ8BOwwxvzD1/G0FhG5FrgAONoYU+LreJRSTafJh1LtlIjcBEwERhpjDpi7WxpjJ13vA7nGmMt9HY9Squk0+VCqHRKRkcAsYJgxZquv42ltIhIOLAMeMMa87ut4lFJNo8mHUu2MiCQAvwCXGGO+9HU8viIiA4BvgTHGmFW+jkcp5T1tcKpUOyIi/sB7wIsHc+IBYIz5A7gW+FBE2kc3uUopQGs+lGpXROQh4HDgVGNMe3jYVosTkWeAOGCiPkVUqfZBaz6UaidE5CzgHOA8TTxquA7oDFzv60CUUt7Rmg+l2gER6QksAsYZY372dTxtjYikAEuxaj9+9HU8SqmGac2HUm2ciARjPUjsXk086mff8TMNeFdE4n0cjlKqEVrzoVQbJyKvAMHAFG3T0DARuRc4FjjBGFPh63iUUvXTmg+l2jARuQQYDlymiYdX7sHqUfY+XweilPJMaz6UaqNEZBAwH+sJpmt9HU97ISKxWB3Q/dMYM8/X8Sil6tKaD6XaILcO467SxKNpjDGZwNnASyLSw9fxKKXq0poPpdoYEXEAc4BtxpirfB1PeyUiVwEXAyOMMcW+jkcptZcmH0q1MSIyHRiPdbmlzNfxtFd2B3TvAIXGmEt9HY9Sai9NPpRqQ0RkFNbj04caY1J9HE67JyIdsDqge9gY86qv41FKWTT5UKqNEJFErA7jphpjvvZ1PAcKEekHfI91++1KX8ejlNIGp0q1CSLiBN4HntPEo3kZY9YAVwMf2A15lVI+pjUfSrUBIvIo0B84zRhT6et4DkQi8jSQBEzQZ6Yo5Vta86GUj4nIBGAicL4mHi3qBiARuNHXgSh1sNOaD6V8SER6YXUYd5oxZqmv4znQiUgXrA7ozjbG/ODreJQ6WGnNh1I+IiIhwIfAXZp4tA5jzDbgQqwO6BJ8HY9SByut+VDKB+xnULwKOLEut+gXsRWJyF3AaGCMdkCnVOvTmg+lWoGIXGonHFUuBYYCl2vi4RP3AcXAv9wHishIEQn0TUhKHTy05kOpFiYiHYFtQIQxplJEBgNfAccaY9b5NrqDl4jEYHVAd7Ux5mN72HxgpjHmC58Gp9QBTms+lGp5g4CVduLREavDuH9o4uFbxpgsYBLwooj0tAevBAb7LiqlDg6afCjV8gYDv9odxr0BzDPGzPJxTAqwG/reg/UAsmDgVzT5UKrF6WUXpVqYiLyDdZklERgHjDLGlNmP/d5jjEnzaYAHIRHxB+KNMWl2W5y3gRLg38BXxphuPg1QqQOc1nwo1fIGY93VcjVwNnCoiMwBFgCH+DKwg1gisFxEPgAOBy4HhgMjgRgRifJlcEod6LTmQ6kWZPeqmgHkYf2qPhkYCDwMvGSMKfJheAc1EQnFSjpuBFYAbwJPA6nATcaYb3wYnlIHNK35UKplDQb8sW7rvAaYA/QwxjyliYdvGWMKjTEzgR7AZ1gJ4U6gLzDCl7EpdaDT5EOpljUKK/G4B+htjHnBGFPq25CUO2NMiTHmWaAXMBOr7ccE30al1IFNL7sopZQbEfEDQo0xe3wdi1IHKk0+2hG7Vb4+fVH5SqUxpszXQSil2j9/XwegGiYi4Q7hsg6Bfpc4hEMEQBqbSqnmZwzi9HNUhAY4FuWVuF4E3jPGVAKISD/xD7jAERA00bgqojDGz8fhqoOEOPxKcPitcRXlvQp8ZIwp9HVMqnFa89GGiUhkhwDHwqO6RXSfdmR80PCUcIKc2kxH+YYxhrwSF9/8uZv//LC9cMee0tmFZZWXIDLRERDyatzIKc6oIac5AzsmIH76u0a1PIOhsrSIgs0rSf/hnYLCrb+nVZYWjjDG7PZ1bKphmny0YeFB/nPOGBB9ykPjugfW7JNMKd8qKHVx1st/FK1NL3rML6jDDf1vmRMS2rmfr8NSBzFjDFveu6ssc+GsZRVFe47xdTyqYfozuo0SkdDSispTbhnTRRMP1eZ0CPTjxuM7hwQEBl4RP/aSQE08lK+JCCmTZgQYl2uIiCT5Oh7VME0+2q4Rh3QKKYkKdfo6DqXqNapnJC7x7xQ95FRt36HaBId/AB0PHe0CTvN1LKphmny0XTGJ4QH6+ag2K8jpoLKijMDoZF+HolS1oLjuIUC8r+NQDdOTW9vl5+/Q6y21XTtnA8Nm/urrMFQVYxD/AF9H0SZsePlafr15mK/DOOiJf4BgdRyo2jD9gJTygRVp+cxemcnK7QWsTS+izGX46erD6RYdXG/5BX/t5r8/bmd9ZjEVLkOXjoFMGRzHBUPj8HPszVGvnbOB2Ssz653HsusHkxihj4lRjdv9+wK2f/5finesx7gqCIzpQtzIKcSNugBx7L3KlvvH92T/8gkFm1dStONPqHQx/IWt9d7ttOHla8lcNLve5Q1+ZBmBUYkttj6q7dHkQykfWPBXLm8vz6B3p2C6RwexLqPYY9mPVmVy1YcbGJzcgeuPS8bhEOavy+H2zzezMbuY+06t2/v7E+N74qhVb9YxWL/uqnGZSz5iw4tX0aH7YJLPuB4RBzkr57P57dsp3rWRblPuqy6b9fMcspbOI7RLPwJjOlOasaXR+fe85AmQmpXu/qEdm3s1VBunRyOlfODCoXFceUwiwU4/Hvs2lXUZaR7LvrxkJ/FhTj64qD+B/tZBe+rQOE594XfeW5FRb/IxfmAM/n561U413c7/vYwzMp7+N3+Aw2nVlMUdP5Xf7zuVjJ/eq5F8dJlwC92nPozDP8Cq2fAi+YgZNl6fA6M0+TjYFJW5mPldGp+tyWZXfhnBTgfdooK5fEQCZwyIASAtt5TnFu5g4eY80vKsPtAGxIdy1cgkRveq+Qtl4qur2ZxTwkcX9eeOLzazZMsegp1+nDekEzeN7szu4gru+mILC/7aTUUlnNo3igdO70aw06/OPGZN7ccdn29mWWo+Qf4OxvWPZsaJKYQENH4zxeIteTz1w3ZWpBVQ7qqkT1wIV49M5qQ+UdVlXJWGZ37awezfMtieV0aAn5AcGch5g+OYNqx126fFdvC+nUR+qYuIYP/qxAOs2wpjQp1sz6u/jzqDIb/ERWiAH47aVSBtlKu0iLR5M8le/hllu3fhCAgmOK4bCSddTszQMwAozUpjx1fPkbduIaXZVsIW2mUASaddRceBo2vMb/XDEynJ2Ez/6R+x+Z072LN+CX6BwXQaeR6dz7qJisLdbHn3LnavWgCVFUQNOZVu5z+AX0BwnXn0u3EWm9+5g/wNy3A4g4geOo6USTPwCwxpdL3y1i9m+6dPUbB5BZUV5YQk9yH5RHPQwwAAIABJREFUtKuJGnRSdRlT6WLHF8+QsWg2ZTnbEb8AAmOSiRt5HvGjpzXD1vWeqzgf/5CI6sQDrP3NGR5Dac72GmUDOjb9e2OMwVWcj19gKOLQZocHK00+DjK3frqZj//I4sIj4ugTF0J+qYs1u4pYnlpQnXys3F7Aj5vyOLlvFJ0jA9lTUsFHq7K48O11vHthP47tHlFjniXllZz7xhpG9ojk9hNS+HJdDk/+sJ3QAD/mrc6mV0wwN4/uwpKte5i1MpPYDk5uOyGl1jxcnPPGGoanhHP7CSksT83n9WXppOaW8ub5fRtcp8/WZPN/s/9kcHIY141Kxt8hzP09i4vfXc/Tf+vJ+ENjAZj5XRozv0/j7MNjufyoMEorKvkzs5ift+1pNPkoLnNRXF7p1TYOC/LD6dd8B9Wju0XwxrJ0HvzfNiYPisXfIXyxNofvN+Zy90ld651mwEO/UFDqIsjpYHTPSG4/MYWuUUHNFlNL2PzWrWT9/DFxoy4kJLkPruJ8itLWULBxeXXyUbBlJXlrfyRq0MkExnSmomgPWUs+Yt2TF9Lv+neJ6HdsjXlWlpWw5rFziew/kpRJt5Pz65ds//RJ/AJDyV42j+CEXnSZcDN71i8hc+EsnOGxpEy8rcY8XKUlrHnsHMIPGU7KxNvJ37ic9G9fpzQrlb7XvtngOmX/8hl/Pv9/hHUfTPK46xA/f7J+nsv6py+m52VPEzt8PABp82aS9slMYo8+m7ATL6eyvJTiHX+y58+fG00+XKXFVJZ5vmznzi84DId/w7fvR/Q5mvTv3mDbhw8Se8xkxOFPzq9fkLv6e7qec7dXy2nIL9cMwFVSgCMgiMgBo0mZdDtBnbru93xV+6LJx0Hm6/U5TBnciXvrqaqvMqZXJKf3j64x7OJhCZz03Cqe/Wl7neQjt7iC645L5tKjEgCYMqQTw2b+yoPfbOOy4QncdXJXAKYeGc/WnFW8vTy9TvKRW+xiyuA4bj/RGj7tyHhiQp28sHgnC/7aXafGpUpxmYvpn2zixN5RvHRO7+rh046M58yX/uD++Vs5c0CM1U5ifQ6je0Uyc3xP7zaWm2cW7uDx7zxfGnE3e1o/RnSLaLygl24b24XswnKe+Wk7T/9o/fIM8BP+fXp3pgyJq1G2UwcnV4xI4NDEDjj9hF9T83l16S6WbN3DF1ccSnJk221wmrPyazqNnEK3Kfd6LBM5cAzRR5xeY1jC2ItZdc9JbP/y2TrJR0VhLsnjriPhhEsB6HTsFH69eRjbPnqQhBMuo+vku+D/27vv8Kiq9IHj3+klyaTNpFdqCL2EqoCgiOJSFBVcRRFd2651LftbxcVesa5dERuooIAFgRUUNEgLPXRISE8mk57pM78/JpkwTCqGhHI+z8PzMHfOvfdkMpn7zrnveQ8QddGN7CrJpujXz/2Dj9pyIkdfR+LV//a0HXcTCp2egtXvUbZ7rd+Ii3c/q5mjnz5M2IAJ9LzrA+/2qHE3seeZKWR//RT6oVOQSD05FSF9x9Ht5lda+Wo1yP/pLXJXzG9V29QHvyY4ZWSzbRKm/x/2qlLyVr5F3o9vAiCRK+lyw3NEjr6uzf2rpwiOIHrCbQQm9UMiU1B1NIPCnxdQefAP+j22EpVeTNk+n4jg4zyjU8vZnldNXrmV2CYuRJoTbnNY7C5q7U5ww4gkHd/tNfq1l0rg+iENF0GFTMqA2EBW7S/jhjTfi+OQhCB25tdQbnYQclICZH3wUu+2kTG8t7GANQeaDj7WH62grNbB9P4GTDV2n+fG9wjhpXW5HDKa6RmhRaeWc7DEzKGSWrobWh4uP9H0/gbSEoJa1TY1KqBNx26JUi4lOVzDFb3DuaRnKHKphB8zTTz83VGcLnxe45ODukmp4YzpFsLMT/bx0rocXj2FwKujyLU6qo9ux1qahyq88QKVMlXDLRGX3YLTWgtu0PUcgXHzd/47SKREjr3e+1AqVxCYPICyHauIHHuDT9OgbkOoydqJo6YceUCIz3P1wUu9mAm3eYKPHWuaDD4qMtfjqC7DMGI69iqTz3Mh/caTu/wlzAWH0Mb2RK7VYc4/SG3+IbQx3Rs9XlMMI6cT1D2tVW1bU4lWKleiiUwmfMgVhA64BIlMjmnbjxz95GFwOf1et9Y6OagLHzKJkN5j2Dd/JjnLX/IkogrnDRF8nGfmXprI3d8cZtirGaREaBnTNZjJffT0jw30trE5XLy2PpclO43klvvmFDRWeUQfoPBb8E6n9ry1Yk+a2hlct/3k4CNQJSMyyDcPIkqnJFAlI6es8bwGgCNGz3DznMUHmmxjrLHTE3h4fDyzFx1g7Js76RKu5sIuwUzqHc6oVoxSJIapSeyk2xZ3LTlEcbWN5XP6UF9qf3IfPbd9dZD//HSMS1NCiQhqOodkdNcQ+kYHsP5IeUd1+ZQkXjOXwx/cTcbDw9DGphDcewz6oZMJTOrvbeNy2Mj9/jWM6Uu8OR9ejbw5FTo9UoXv702u1QGgCos9abvnfXBy8CFTB6IM8Q2ilaFRyNSBWI05Tf485sIjABz475wm29irjEBP4qc9zIE3Z7PzsbGoI7sQnHoh4UMmEZwyqsl966kNiagNiS22a61D792FraKYPv9a7n2/6dMmc/Dt2zi2+D+EDrwUZXBEu5wrpPdoAhL7Ur53fbscTzh7iODjPHN5ajhDE3SsOWBiw9EKFm8v4d2NBTwwNo77xsYD8PhPWXy6tYhZQyIZmqgjRCNHKoGvtpfw7e5GRj6aSWiUNVEnrb0WNKw/zLNXJDeZ05Aa6RnlSEvQkX7PQH4+WMaGoxWs2m9i4ZYiZgw08PLU5kcEaqxOamzOVvUpRCNHKW+fnI/ccisr95n49yUJnLzGz+WpYXy/t5TtedU+ibWNiQtRsb+4tl36dLqED74cXfehmHauoSJzAyW/LaZg9bvETX6A+Mn3AZC16HGKfv2UyLGz0HUf6gkSpFJKfvsK46Zv/Y7ZXELjifUqTtRui23WHSf5hmebzGnQxnlGInTd0xj4bDplu36mInMDpu2rKFq3EMMFM+g2++VmT+O01OC0tm4VeXlACNJmisJZjbmYMlaSMP3ffu+3sMGXU7r1e6qPbvdJlv2zVOFx1Obub7fjCWcHEXych/SBCmYOjmTm4EjMdic3fLafV37N5fZRnqmfy3cbmd7fwDNXdPHZb3FG8WnrU7XVSVGVzWf0o7DSRrXVSXxo03kKSeGegCNYI2d015Am29XTqeVM62dgWj8DDqeb+5YdZvH2Eu68IJau+sYLfAG8k945OR+FVTYAnI3kujpdnoub3dnyxTLLZCH8LFgnSKHTE3nhTCIvnInTZmb/qzeQ+90rxEy8HZlSg3HzcgwjptPl+md89ivesPi09clpqcZWXuQz+mErK8RpqUalj29yv/qAQ64NJiR1dIvnkWt1GIZPwzB8Gm6ng8Mf3UfJb4uJvexONFFdm9wvf9U77ZbzYSsv9PzH5R9ou+u2uZ12v+f+DEtxFgpdeMsNhXOKCD7OI06Xmxqb03tLBECjkNFVr2FjViXVVicahWdq5slf/g4bzazab+J0+mBjgTfhFODd9HwALu7RdAGiMV1DCNHIeWN9HhN6hPrkqwAYq+3oAz0XXVOtnTBtwwVYLpPQM8IzKlJhcTTbt87K+egSpkYqgRV7jdwxKsandsfSnSVIJNAvxnM+i92F3ekiSO37Z/393lL2FdXy18HtM1R+OrhdTpyWGu8tEQCZUoMmqiuVBzbiNFcjU2rqRjJ835zmwsOYtq86rf0rWPOBN+EUIH/1uwCE9r+4yX1Ceo9BHhBC3g9vENp/gk++CoC90ohC55lhZq82oQhsGL2SyORoYz0J1I7aimb71p45H+rILiCRYtyygpiJd/jU4yjZuBQkEgIS+7XqXCdy2S24HHbkGt+/odKt31Obu4+IMX9t8zGFs5sIPs4j1VYng1/exmW9wkiN1BKikbOnsIZFGUWMStZ5a09MTAnjy+3FaJVS+kQFcLzMwidbi+hm0LKnoHXDu20VopGxbI+Romobg+KC2JZTxTe7jIzpGsz4ZoKPQJWMFyd34Y6vDzH2vzu5ur+BmGAlRVU2MnKrOWI0k37vIADGvrmDoQk6+scEYghUcMRoZsHmQrrq1fSNbj5gaO+cj9xyK0t2esqg/5FdCcDCLUXePJh7x3gy/8MCFMxKi+TjzUVMen83V/bTe6fabsyqZOagCBJCPf0qqbZxydu7mNwnnK56DWq5lIzcar7ZVUJMsJIHLmr6W3pnc1qq2fbAYMIGXYY2PhV5QAg1x/dQtGERupRRKIM906XDBk6k+LcvkSq1BCT0wWI8TtG6T9BGd6Pm+J7T0jeZNgTj5mXYKooI6jKIqiPbMP7xDcG9xxDab3zT+2kC6XLjixx69w52PjYWw8irUYbFYCsvovpoBubCIwx6Lh2AHY+ORdd9KIFJ/VHoDJgLj1C4dgHqqK4EJPRttn/tmfOhCAoj8qJZFK39mN1PTUI//EpPwmnGSioPbCTiwpmoDQne9jU5mZTtWA1Abe4+AHJ/eAOJRIJMG0z0+NkA2CpK2PWfSwhPm4wmqitSpZrqoxmUbPwGZVgM8ZMfaJf+C2cPEXycRzQKKbOHRrHhaAU/HyzD6nARE6zirgtiueuChuS7eROTUMulrNxXylfbi+mq1/DcX7pwuMR82oIPtULG4lmeImNPr8lGKZNyw5BIHpvQ8ofq5anhLJuj5M0NeXy8pZAaqxN9oILUyAAeHt/wQXnr8BjWHDTx7sZ8am1OIoOUzBgYwT1jYtu1LkdrHC+z8OJa32TF9zcWeP9fH3wAPHlZMv1iAvl0SxGvr8/DbHeSFKbmsQmJ3HrCDCGdWs6lKWH8kV3Jst1GbE43MTolNw2N4p7Rcd4RoDORVKkhatxsKvZtoGzXz7jsVlRhMcRedhexl93lbZc0Yx5ShZrSjJUU//4VmqiudJn1HOaCw6cv+FCpSX1gMce+eIzsJU8jlSuJHHsDiVc/1uK+4YMvR/nIMvJ+fJPCdR/jtNSg0OkJiE8lYdrD3nYxl9yKaeca8le/i9NSizIkkogLZhB7xT0t1uVob8kznyQwsR9Fv3xK3g+v47SaUUckkXjNY0RfcqtP25rs3eQse9FnW+7ylwBPLkd98CHX6ggbeCmVB//AuGkZbocNZVgMUeNuIu6Ke7wjQML5Q9JuyVVCu5JIJNdf3ivs7fdn9AxsufXZrb7C6bYHBnd2V4Q2intiC2lv7GtVpc+zUX2F08EvbevsrgitlLPiFXJXvPyk2+Wa29l9EZomatsKgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSiScCp1uyezend0FQWhU74eWdHYXBOGcJEY+BEEQBEHoUCL4EARBEAShQ4nbLoIgnFNylr9M7or5jPgwr7O70i72vjCdygMbAQjqlkaffy3r5B61r+PfPE/eD697Hw945jc0kcmd2COhI4jgQ2i1l9flMP+XXPLmjejsrrSL6Qv2sjHLU100LSGIZXP6dHKPOsYX24p4cMVR7+NFs3q1al0cofNoorsRO+luFEG+xbjK9/xK6dbvqD62g9r8g+ByMvy9bJ+y6G1Rse83Ml+6Fmg8CHBaa8n59gWMm1fgqCn39Ouyu9APm+LTrjRjJaZtP1J1NANbWSHKYANBXYcQN+UBv2OGp12BJrobpoyVmDJWnlK/hbOPCD6E81o3vYa7R8eib8Oia6YaO0+tyWbNgTJq7S56R2n550XxbbqAf7y5kAWbCskptxARqOTagQb+fmHjlVYLK23M/yWHnw+VY6qxExagYFBsIPOndvVZxyWvwsr8dTn8fqySkmobEUFKLuwSzD1j4ogNblicb2RyMK9f2Y1N2ZV8vu30LRYotB+FzoBhxFV+242bvsW4eQUBCamo9PFYi7NO+Rwuh51jn/8bqUqLy+q/ArLb7ebAf2+hcn86URfPQRPZhdKt33HovTtxO20YRl7tbXt04YPIA8MIH3IF6ogkbKV5FK77GNP2n+jzyDICEhsC/YD43gTE98ZSnCWCj/OICD6E85ohUMFV/Q2tbm+xu7hmYSY55VZuGxFNeICCxduLueGz/XwxqxejWrGa7Wu/5vLC2hwmpYZx28hodubX8PIvueSUW5k/tZtP28MlZq5asJdAlZTrB0cSrVNirLGz5XgVZruLoLrlZky1dq54bzd2l5tZQyKJC1FxsMTMp1uL+PlQOb/c1d8bqCSFqUkKU+NwuUXwcZZLuPIRutz4AlK5ksMf3kvJnwg+Cla9g6OmnMjR11Gw5gO/58t2rKZi768kXfeUt2x6xIUz2fPcVLK/forwtMlIFZ4gt8ft7xDc6wKf/cOHTmHXvAnkrHiZlH8sOOV+CucGEXwIQht8trWIfUW1fHxdCpf09Cx4d80AA+Pe2snjK7P43539m92/pNrG6+tzuTw1jPeu9axaet1g0KlkvPV7PrOHRtE3xlNR3+128/elh4jWKVk6uzcBKlmTx12xp5TiajsLruvJhJ4Nq6PGh6iYuzKLX49UcEXvM2vZctP2VRx482Z63P4O4Wl/8XnOUnKc7Y+MIPbyv5Nw1b9wOWzk/fAG5bvXYSk+5llvxJBA5Ji/EnXxLUgkkibO4pHx0DB0PUfQbc6rPtubyg+pyckkd8V8z4q6VjPqyGSiL7mFyAtnts8P306UoVHtchxraR65379G8l+fxlqa22gb45YVSJVqIkc3vAYSqZSocTdx+P1/ULH/d0L7jgPwCzwAtDHd0cb29NweEs57YrbLOWjVfhOxj2/ku72lfs8dL7MQ+/hGnv3fcQBsDhcvr8vhivd20/u5LXR58g/GvrmD9zcW0Jp1f4a9ksG93x722/7yuhxiH9/otz2zsIZbFh/wnmv8f3ewaFvRKfyUnWPFXiMJoSpv4AGgUcqYMTCCfUW1HCrxH64+0ar9ZVgcbuYMi/bZPnuY5yKyYk/D7+y3Y5XsLqjhgYviCVDJMNud2J2uRo9bbXUCEFm3MnG9iCDPY43izPtTD+l7ETJtCCWb/BMojZu+BUA//EoAnOZqCtctJCC5P3FTHiDxmkdRRySStfg/5NQtZNZeqg5vYc8zkzEXHSNm4p0kXTsXVWg0Rz/+J3k/vNHi/i67FXuVqVX/XHZru/b9VB1bNBdtXAqGUdc02aYmayfauFSkCt/VnQOTB9Y9v6vZc7jdbmwVJSgCw5ptJ5wfxMjHOeiibiGeJep3lfCXk77tfrvLCMCV/TyJa9VWJwu3FPKX3uHebb8eqeA/P2VRbrbz4LgE2suW41XM/CSTxFAVd46KIUAl438HyvjniqMYaxz8Y3Rss/tbHS5q6i6yLQlQyVDJ2/eC63K52VtQw6Up/h+eA+M8oxW78mvobmh6kbVd+dVIJDAg1ne9wJhgFVE6JbtOWDX418PlAASqpEz5YA9bc6qQSmBYoo4nL0+iV2SAt+2oZB0Aj/54jLmXJhEXouRQiZnnfz7OoLhAxpyBCaVSuZLwIZMoSV+Co7YCubbhlpVx03K08aloYz2jQ/KAYAa/uMU7rA8QPf5mDn90HwWr3yfuinuQypV+52grt9vNkYUPoY1Nofcj33pXlI0adxMH3rqV3O9fJXLsDcgDmn49jZuWcWTB/a06X9fZ84m44No/3e8/o2zn/yjbsZq+j37f7AiSrbwIbWwvv+3KkKi65wubPU/Jb19iLy8k9vK7mm0nnB9E8HEOUsqlTEoNZ8nOEirMDoI1Db/m5XuMpEZp6RnhuUAGa+RsuX+wz4X65uHR3PftYd7fWMA9o+NQtsNF3O1289CKI6REaPl2Tm9vYuVNQ6O49csDvLo+lxvSIgnRNP2WXLbbyP3LjrTqfPOnduXagRF/ut8nKjc7sDjcRAb5X+Si6rYVVtqaPUZhlY1gtRx1IyMRUUEKn/2PlpoB+NuXBxmWqOOda3pQVGnjlV9zmb5gL2vu6E9MXSLpwLggnpmUzAtrjzP1w4al5S/pGcpb07sjlzV/W6Kz6IdNpXj955Ru+9F7S6MmJxNz/gESrn7U204ilSGRem47uZ0OnJZq3C4Xwb0uoOT3rzAXHCYgPvVP96c2NxNz/kGSZj6B01zFiaFuaL+LPTM4Dm8ltP/FTR4jpM9Yej2wqFXn08b0/JM9/nNcdgvHFs0l4oIZBCY1f8vQZbMgUfi/9+sDQpfN0uS+Ndl7OPbFowR2GUjU2Fl/rtPCOUEEH+eoqX31fL6tmB8zS5k5OBLw3PI4UGzm0UsaRjNkUgkyqefC5HC6qbY5cbncXNAlmK92lHDYaCY1KqDRc7RFZlEtB0vMPHFZElUWJ5zwsX5xj1B+zDSxNaeKi3uENnmMsd1CWDTL/5tXY+qDq/ZkdnhueTQWjNUHbxZH47dF6lnsLlTyxgMBlVyKscbhfVxj8xwrNSqAD2Y0XKT6xgRw5Ud7eTe9gHmXJXm3RwcrGRQXxIVdgkkKU5NZVMs7v+cze9EBFl6X0mjA09l0PYajDI3G+Me33uDDuGkZSCToh/pO3yzZuJT8Ve9Sm7cfXL4jYM7aynbpj7nQE9xmLZpL1qLGV2S3V/nfzjyRMiQSZUhku/TndMv74U0cNRUkXPWvFttKlWrcdv/guv7WkVSp9nsOwFx0jH2v3YBCZ6DnXR+e8jRg4dwi3gXnqOGJOqJ1Sr7dbfQGH8t2G5FIYEpf31oBS3eW8G56PvuLazk5paDS0rrbHC05YvR8i5+7Mou5K7MabVNaY2/2GJFBykZHHdpbpcWBxd7wQsikEsIDFGjqAgxbIwGGtW6buoVRIrVCitXReC6N1eHy2b/+/1f19/19DUvUEReiYlN2wwV31X4Tf/vyIKvv6OcNvCakhNE3OoBZn+/n061F3DrCN8/kTCCRSgkfOoWC1e9hKy9CERxB6ebl6HoMRxUW421n3LKCwx/cTUjfcUSPvxlFsAGJXEFN9h6OL3kat7v5oI8mbie4TwpiqMtzipt8P0Hd0xrdRxvdo9lTOW1mnOaq5vtTR6YJQqbUtKpte7OVF5G38i2iJ9yK01qD0+q55eeorah7vhCpQokqzHM7VBkS2eitlfptjQVc1tI89r08A5CQ+sCisyYoE04/EXyco6RSCVP6hPPexgKKqmxEBCpYvqeU4Yk671A9wIo9Ru7+5jDjuodw87BoDIEKFDIJewpqeHrNcVwtJJ02NZjvdPnuV//o/rFxpCUENbpPj2ZyJQDMdmfdqEnLgtQyNIqmZ4c0Z+7KLL7eUeJ9HBeiYtN9gwjRyFHLJRRV+X/7K6zbFqlrPjiKClJSYXFgtjv9+ldYZadreMO3x8ggT76BoZEaJIZAhU+w9v7GApLD1X4jPuO6h6BRSPkjq+KMDD4ADMOmUbDqHYyblxOYPBBraS6xk+72aWPctByVPoGUuxcikTYEaNbi7FadQ64N9l5UT2QtOe7zWB3hKYAlVagJSR3d1h8FgNLNK86KnA97ZQluh5X8H98k/8c3/Z7PfGE68sBQ0l7z3MYLSOxH2Y5VuOwWn6TT6mPbvc+fyFZeROZL1+C01tD7oaWoI5JO3w8jnHVE8HEOm9bPwDvpBSzfbWRgXCC55VbuvtA3qXP5bs/sjYXXpSCVNoQS2abWZeEHa+RUmB1+24+X+e6fHOb5sFLLpadcTXPFntIOyfm4c1SMN/kWGmaKSKUSUqMC2J5X7bfP9lzPtn7Rzd+i6hsdiNtdzM68GoYn6bzb8yusFFbamHbCqNSA2EA+31ZMQSN5JAWVNqJPGAVqLCACcLk9+TZ2V8szlzpLQGIfNNHdMW5ahqUkG0ldIuqJGgKOhp/DaTNT8PNHrTqHOjKZiv3pOG1m70iDxZiDaftPvn1J6IM6qisF//uAiAtnoAjyTdi2VxpR6HxHok52puZ82MqLcJqrUBkSkcoVqPQJ9LzrQ792xs3LKd2yguQbnkUVHufdrk+bTOnm5RStX+St8+F2uShc+zHywDCCe43ytrVXmch86VrsVaWk/vMrb+KwINQTwcc5rE90AN0NGpbtNpJdZkEpkzDppNkv9QHHiZcms93JR5sKWnWO5DA16VkVPt/kc8os/LTf5NuXqAC66tV88EcBMwZFEH7St3ljtR19YPNVRjsq56NHhJYeTew/uY+e//yUxZoDZd7ptmabk8Xbi0mJ0PjsZ6qxY6p1EBusRKP0vDaXpoTy+E8SPtxU4BN8LNjkGbo+cXbSpSlhPLYyiy8yirl2YIQ3N2fNgTIKK23MGNhQHK2bXsOag2Vk5FYxKK5hZOn7vaVYHG76x/jOrjnT6IdNJWfZi1gKjxDSd5zfbJKwgRMxbfuRfa/NInzgRBw15RT//hUydevykSLHzqJ0y3fse3kG+mHTsFeZKPplIZro7tRkN0wRlUildJs9n8z5M9nx6FgiLpyJ2pCIvbqU2uN7Me1YzfB3jzV7ro7M+ajJyaRsx2oAanP3AZD7wxtIJBJk2mBvkABwfOmzlKR/zcDn/0Ctj0eu1RE2aGIjx9wLQHCvC31KoYcOvJTgXheQ/eU8bKY81BHJntLuR7bRdfZ8n9GQffNnYi44ROTYGzAXHMJccMjnHI1VaxXOLyL4OMdN7avnxbU5HCm1MK57iN9skokpYfyYaWLW5/uYmBJOudnBVzuKCVC27pbFrLRIvttbyoyF+5jWT4+pxs7CLUV0N2jYld8wbVQqlTB/ajdmfpLJ2Dd3MHNQBImhakpr7ewtrGX1fhPH5g5v9lwdlfPRnOuHRLAoo4i/Lz3EbSOi0QcqWJxRTF6Flc+u9w2MFmwuZP4vuXx9Uyoj6yqfRgQp+ceFcby0LofbvjrI2K7B7Miv4fNtRVw9wED/E6bghgcoePCieJ5cnc3VH+/lL73DKay08eGmQhJCVdw6oiEn4s4LYll3uJyZn+zjxrRIEkLV7Cuq4fNtxUQGKbgxrX1n8KZTAAAWFUlEQVSKUZ0u+uHTyFn2Ik5LNYZhU/2eN4y4CkdtBYU/f8SxRY+jDInAMOpagroNZt/LLRf+Ck4ZSfL1z5D/09tkfTkPdUQyydc9RW3+QZ/gAyCo2xD6PbaS3O9foyT9axzVZciDwtFGdyPp2sfb7WduDzXZu8lZ9qLPtty6uieq8Dif4OPPkkgk9Pz7Rxz/9nlKNi7FUVOBJror3W59E8Pwab79Ou65VVP0y6cU/fKp37FE8CGI4OMcN60u+Ki2Opnaz7+M+FX9DVSYHXy0uZDHfzrmXWdkcHwQMz/Z1+LxRyYH88ykZN7+PZ95P2WRHK7mqUnJHCyu9Qk+AIbEB7Hyb/14bX0uX+8ooczsIFwrp5tBy+MTk9rrRz6tNAoZX93Ym6fWZPPhpkIsdiepUQF8+tfWL85275hYQjQyPtpUyOr9JgyBCu4bE8fdjdQ5uX1UDKFaOe9vLODJ1dkEKGVc0Tucf12c4BNIpiUE8ePf+vLKr7ks222kuNpOqEbOlD56HhoX3+KoUmdTGxJbXIU2evzNRI+/2W/7yfvFT3mA+CkP+LWLuuhGoi660WdbeF37k2miu9H91pYLinUUt9OOvcqERCZHrm0YMYu44NpW54x0m/OqX4XXxjT1+gHI1AEkz3yC5JlPNHuMtqwo7LSacdk8/4Tzh6Q1VSyFjieRSK6/vFfY2+/P6Hlmj5efxaYv2Ivd6WbBzJ7IZRJ06vMjFq8v1rZ8j5FHf8z6U6vaxj2xhbQ39iFTtf/UZsFj7wvTqTzgqRYc1C2NPv/yrwh7Njv+zfPk/fC693Fjq+m2Rc6KV8hd8fKTbper8bnSwhnh/Pi0FYQmbM2pou8LW0lLCGLZnD4t73AOWLqzhAdXHO3sbgitlHjNXBy1nmq3J1aBPVdEXHAtupQR3sfttV6NcGYTwYdw3pp7aSLldTN1gs+TUQ+Acd1DfRJ3+7YwQ0foXIFJ/VpudBZTRySJabjnofPnE1cQTtLvDJ8BcrpE6ZREtVCPRBAE4XQ68+otC4IgCIJwThPBhyAIgiAIHUoEH4IgCIIgdCiR83GWiX18Y6vaXT3AwKvTup3m3niU1dr5aFMhI5J03mJaZ4PFGcVUWZ2dtubJl9uLuX/ZEaQS+N+d/f2qsr68Lof5v+Ty290DSA7vnMXHTtXGOf41SxpjGHl1q2pPtAd7dRmFP3+ErucIglNGdsg520PxhsU4LVVEX3Jrh57XYsxh+8PNF/6rFzf5fm9tkJrje8j++mmqjmxDIpUR3GsUidc8htqQ2OY+5P7wOtVHd1CdtRN7eSH64VeeUfVXhFMngo+zzOtX+gYUK/eZWLnPxGMTEjGcUEgqMazx5a1Ph3Kzg/m/5HL/2LizK/jY7lk3pbMXXHO54aW1Obw/49xZ/6LbLa/7PDZlrMSUsZLEax5DoWsodncqF6RT5agpJ3fFfOIm3392BR+/LcZWVtDhwYciKNzv91j06+dUHdrkCRglDQPn2jjP7ClzwWH2Pn8VCp2ehCsfxmW3UrDmffY8O41+j69CGexf6LA5Od88j0KnJzB5AGWNrKgrnL1E8HGWuaq/7x9vlsnCyn0mLk0JbfbbsdPlxuFyo2phyXeh4/WNDmDlfhO786vpe47MwDm5fLalOAtTxkpCB1zabAEpt8uJ2+lAqlA12UboGDKV1u/3WJG5gapDm9APm4ZE5n/5yF76LAC9H1rqrdcR2nccO+dNIO+HN0i+rvnKqCcb+NxG1IYEoPWjacLZQQQf56D0YxVc/XEmL/ylC1VWJ59sKSS3wsriWZ41RmptTl5bn8d3e4zkV9oI1ciZkBLGI+PjCdU2jJ6s3m9i8fZiduXXUFpjJ1gjZ0zXEP51cYJ3qmb9uQDm/5LL/F9ygYbbPvW3Fj67PoWtOVUs3l5ChdnB0IQgXpzcldgQFR9vKuT9PwooqLTSM0LL83/p4jcNtrV9nr5gL8dMFpbd3JtHf8xiY1YFCpmEK3rrmTcxCXXdCrXDXskgt9yz8u6Jt7Ly5o2go90xKoYHVxzhxXU5fPLXlhfOO1xi5vmfj5OeVYHF7qKbQcutI6KZflJgOuyVDKJ1Sp6elMzjK7PYnldNkErGzEERPHhRvM8qxgAbsyp4fX0e23OrsTtdpERquXt0HJemhLXrz1uvYn86mS9eTZdZL+A0V1H4yydYS3NJfWAxwSkjcVpryfv+NYxbvsNmykceGErYgAnEX/kIisBQ73FMO1ZTvGExNdm7sFeVItcGE9JnDAlX/st7Aaw/F0DuivnkrpgPNNz2Kf7tS44suJ+Uez+j6shWSn5bjKOmgqDuQ+l644uowmMpXPsxBWvex2oqQBvbky6znverwdHaPu99YTqW4mP0fmQZWV88SsX+jUhkCvRpV5A0c553kbaMh4ZhLfX8TZ148W1L+fKO4rTUUL57Lfph03wKhWnjUghOGUnpluVtDj7qAw/h3COCj3PYh5sKsDvd/HVwJGqFlIggJVaHi2sWZnKwuJaZgyLpbtBwtNTMws2FbMup4vtb+3ov0Iu3F+N2w41pUYRp5Rw2mvkio5iM3CrW3NEftUJKd4OGxyYk8uTqbC7rFcZlvTwXqpNv+zz3cw4quYQ7R8VQVGXj3fQCZi/az7S+epbsLGFWWiRmu4u3fstjzuIDpN8zEIXM04+29BnAYncx45NMRiQF8+iERDJyq/lsaxHhWjkPjfd8mM2bmMTTa7IpNzv4TyvXlbE7XVRZnK1qq1FIvSvZtiRUK2fO8GheX5/HtpwqBscHNdn2WKmZyR/sxg3cNDSKcK2C5XuM3PPNYYzVdm4fFePTvrjKxvWf7mNyHz2T+4Sz7lA5r6/PIyFExczBDSuv/pBZyh1fH2RQXBD3jY1DLpWwbLeRmxcd4M2rujGtkXWB2kvB/z7E7bQTOfqvSJVqlCERuOxWMl+6htq8g0SOnokmujvmwqMUrltI1ZFt9H30e+8FunjDYsBN1EU3Ig8Mw1x4mOL1X1B1JIP+89YgVajRRHcn8ZrHyP7qScIGXUbYoMsA/9s+Od88h0ShImbindjKiyhY/S7735iNfvg0StKXEDl2Fi6bmbyVb3Hgv3MY+Gw6Urkn+G1LnwFcNguZL88guOcIEq95lOojGRT9+hnyoHASpj0EQNKMeWQveRpHTTlJM/7TqtfT5bDjNFe1qq1UqUGmap98otrcTNwOG0FdBvo9F5g8kIrMDVhN+ajCYhrZWzjfiODjHGassbPhHwMJPmEBsrd+y2NPQQ3L5/TxWUF1RFIwN32xn692FDOrbgXU/17V3e8COiEllOkLMvlpv4mpffUYApVcmhLKk6uz6RWp9bstVE8mgW9m90Eu83zbdrrcvJNeQIWliHV39Udbd54QtZx//3iMdYfKmVD3jfvDPwpa3Wfw5KDcOybOm8sxKw0qLQ4+21bkDT4m9grjnfR8bE53k30+2ZbjVd5RnpbcPzaOBy6Kb1VbgNtHxrBwcyEvrM3hyxtTm2z33M85VFqd/HBrX+9rMSstkis/2suLa49zzQADYQENI0HZZVY+nNGTiXVB4ay0KC55eyefbSvyBh9mm5OHvzvKhJ5hfHBC3slNQ6OY8sEenlqdzZQ+er+RkvZirzIy8JkNPqXD81a+RU32Hvr833ICk/p7twenjGD/6zdR/PtXRI2dBUD3v/3X7wIaOmACmS9Mx5TxE/phU1EGGwgdcCnZXz2JNq5X06uqSmX0efgb7y0Ft8tJwap3KKqtoP+T67xr2MgDQjj2+b8p37OOsAETAE8Q1do+gycHJe4v9zbkcoydhaO2kqJfP/MGH2GDJpK/6h3cDlurV4KtOrzFO8rTkhMTRf8sW3kRAIqQSL/nlHXbbOWFIvgQABF8nNOm9tX7BB4Ay3Yb6RcTQHyIClON3bt9cFwgWqWU345WeC/k9YGH2+2m2urE7nTT06AlWC1jR141U/vqW92X6wZHegMPgLQEHe+kFzCtr94beAAMSfB8688yWU6pzwBSCVw/JMLn/MMTdazaX0a11UmgqnUjEidLjQrwKUvenMTQtiX8Bmvk/G1kDC+uzWFjVgUjkvwTd50uN2sPlTEqOdgnCFPKpdwyIpq7lhzi1yPlPqMUkUEKb+BRb0SijqW7jN7H649WUFbrYHp/g8/rCzC+RwgvrcvlkNHsNxunveiHTfVbs8S4aRkBSf1QhcdjrzJ5twd2GYxUpaUi8zfvhbw+8HC73Tgt1bgddrQxPZFpg6k+tgP9sKmt7kvk6Ot8chl03dIoWPUO+uHTfBbPC+o2BPDkspxKnwGQSIkYc73P+XU9h1O2YxVOczUyzanl/wTEp9LrgUWtatueCb8um+dvVir3z9epH/GpbyMIIvg4hyU1cgE8UmrBYnfR94Wtje5TesLF54jRzLP/O876I+XU2Fw+7Sotjjb1JS7E9wNJp/YEALHBvtuD67bXr7nS1j4D6AMUaBS+AUZ9EFZudpxy8BGikZ/y6q+tccvwaD78o4AX1+bwzc3+wUdpjZ1am4vuev9h8u4Gz7bjZVaf7Se/vuB5LXxeX6NnKfM5iw802TdjjZ3TNRensXU9LEVHcNksbL23b6P72KtKvf83Fx7h+NJnKd+7Hpe1xqedo7ayTX1Rhcf5PJbVLV+vCos9abvn9+OoKT+lPgModHpkSt/fpfyE455q8CEPCCEkdfQp7ftnSJV1AYbD6vecy27xaSMIIvg4h52YB+HldjM4PpB/NnFLoH6BtSqLg6sW7EUhk3D/2HiSw9Vo6o5355JDuNxt60tTI/ayJibf+By+lX32nquZ2wNudxs7fgKbw+Vz0W5OgFJGQBuDnECVjDtHxfDUmuP8cri85R1aQdaKWyX1L8mzVyST1MQU7dTI0zPqAfjkQZzYp8Cug4mf+s9G9/FepM1V7H3+KiRyBfGT70cdmYxUqQEJHHr3TnC7Gt2/6c408YaUNvG7POH91No+15M0dS7Azam/T10Om09Q1ByZKgCZun0WFqy/tWKvu/1yovpbMspGbskI5ycRfJxnksLUVJidLX6DT8+qpKTaztc3pfrU7jDbnVScdAGWSE5PLkC91va5rdra6605py/no95Nw6J4b2MBL63N4aLuvj9veIACrVLKobqRihMdLvFsSwht+xTVpHDPxT/4NI/stIU6IglnbUWL3+Ar96djrywh9cGvfWp3OG1mHDUVPm1P9/u0tX1uszb2u+rw1k7J+dDG9kIiU1B1dDuRY2/wea762HYUOj3KUJHvIXiI4OM8M6Wvnud/zmHJzhK/qZlOl5tKi4NQrQJp3Qfeyd+/3v4t32/UI0Dp+QZ3clDS0X1uqwCljEqLA7fb3aoL0+nM+ainUcj4+4WxzF2ZheOkF1omlTCueyg/ZJb61ASxO1188EcBKrmEMacQPIzpGkKIRs4b6/OY0CPUL8nYWG1HH9j21/fP0A+bQs43z1OSvgTDyOk+z7ldThy1lSgCQ08YPfB9rfJXvu036iFVeb7hnxyUdHSf20qmCsBRW9nq92ln5XzINIGE9B2HadsP2K582DvKUZu7n4r96USNnXXaA0Dh7CGCj/PM30bE8PPBcu799jBrD5YxJD4IN5BtsvDDPhMPjYvn2oERpCUEER4g555vDjN7aBQBKhm/H6tgZ141oVrft40hUElssJLle0rpEq4hVCsnPlTFoLimp4yejj63Vf/YANYdLufxlVkMjAtEKpEwpZkk2tOd81Hv+iGRvJOez+6CGr/nHh4fz4Yj5Vy7MNMz1TbAM9U2I7eaxyYk+sx0aa1AlYwXJ3fhjq8PMfa/O7m6v4GYYCVFVTYycqs5YjSTfu+g9vjRWi1mwt8o3/Uzhz+6l7Ldaz0Jnm43luJsTBk/ED/1ISIuuJagbmnIg8I5/ME9RI2bjUwdQMX+36k+thP5SRd6ZbABZVgspVuWo4nqgjwgFJUhnqAu7fOztbbPbRWQ3J/yPevIWvQ4gV0GIpFI0Q+b0mT7zsr5AEi46hF2P3UFe5+/kqjxN+Ny2ChY/T6KoHBiJ/2jzccrSV/irXMCUJu3n9zvPOX4dT2Go+vZuvLvwplHBB/nGbVCypc3pvJuej7L9xj5ab8JlVxKbLCKaX31XFB3iyVEI+fz63vxxOpsXt+Qh0wCI5ODWTK7d6O3Hl6/sjvzVmXxxOosrA43Vw8wtFvw0do+t9XtI2PIMllYuquEjzYX4nbTbPDRUVRyKfeMjuPh7476PdclXMPyW/rw/M85fLy5EIvDRTe9hlendePqAadei+Py1HCWzVHy5oY8Pt5SSI3ViT5QQWpkAA+P7/hCT1KFmtR/fkn+qncxblqOKeMnpAoVqvBY9MOmEdzrAsBzoe113+dkf/UEeT+8DlIZwSkj6f3QkkZvPXS/5XWyvpxH1pdP4HZYMYy8ut2Cj9b2ua1iLr0dS3EWJRuXUrj2I3C7mw0+OpM2pge9H17K8SVPc/yb55BIZehSRpF49aOnlO9R/NtiKg80FAGszcmkNsfz+RM3+X4RfJzFJH8mAU84fSQSyfWX9wp7+/0ZPc+NetvCOSnuiS2kvbHPZxqqIHSmnBWvkLvi5SfdLtfczu6L0DSx0IcgCIIgCB1K3HYRBEEQOoy9ugy3095sG3lACFK5soN6JHQGEXycuew2Z1uraQhCR5Pgdp6eWU7CuengW7f65HE05uSp023hdjrcuN2tW4RJ6DQi+DhzFR0vs4rgQzhjVVudSOQK7JXFyOsqgQpCSxKvmYujtvkiaAHxTa9v1BKbKc8ClLbYUOhUIvg4c6Vnl1nkBZVWonVtLxwlCKfbmgMm5BJ3sWnHGn3sxG4if0xolcCkfqft2G6XE9OOVQCrT9tJhHYhPjDOUG6326aUSb985LtjZruzjSWiBeE0K6qy8cya47U2i/nt/J/etljLCjq7S4JA4dqPXbhcx91u98HO7ovQPDHV9gwmkUhUgUrZTwmhqiGz0qICRyTr0Klkba22LAjtwunyLDC35kCZc8HmAmuN1fWC2e6cJ1WqH5VrQx6Jn3xfQOjAiSh0elHJUugwbpeT6mM7KEn/2l6SvqTcZTMPd7vd/kVyhDOKCD7OcBKJRAFM1qllN7ncpDmcbm2bFyURhHYgAZdcKql0ut0ra22uT9xu9+/e5ySSSTKN7naX3Xyx2+lUSqQykfAndAC3xO10ymTqwFyXw/qJ22F72+1253V2r4SWieBDEIR2JZFI1EDblvQVhFNncYvZLWcdEXwIgiAIgtChRMKpIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKHEsGHIAiCIAgdSgQfgiAIgiB0KBF8CIIgCILQoUTwIQiCIAhChxLBhyAIgiAIHUoEH4IgCIIgdCgRfAiCIAiC0KFE8CEIgiAIQocSwYcgCIIgCB1KBB+CIAiCIHQoEXwIgiAIgtChRPAhCIIgCEKH+n+UCd7yu8A2OAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JjBym5Iw9cGr", - "outputId": "2fdf00f7-9f6f-494e-be9a-84b85ad7d30c" - }, - "source": [ - "est.feature_importances_" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1., 0.])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 83 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "L7q7UxZG9cGr" - }, - "source": [ - "#### Produce recommended treatments" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "sZ_E-Tjk9cGr", - "outputId": "4773b57f-bc7e-4f70-f65c-50ad9471041e" - }, - "source": [ - "est.predict(X[:100])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", - " 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 84 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Zb3MFbCq9cGs" - }, - "source": [ - "#### Fit a Doubly Robust policy forest" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "N4CAMtPQ9cGs" - }, - "source": [ - "from econml.policy import DRPolicyForest\n", - "\n", - "est = DRPolicyForest(n_estimators=100, max_depth=2,\n", - " min_impurity_decrease=0.01, honest=True)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "jK5vBCCm9cGs", - "outputId": "1b97cc54-6324-42c0-e403-fba3dc3dee14" - }, - "source": [ - "est.fit(y, T, X=X, W=W)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 86 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lhiGgCKD9cGt" - }, - "source": [ - "#### Produce recommended treatments" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "lAGuJ1wB9cGt", - "outputId": "b1590aad-d1d1-4657-8e65-012ae7abec58" - }, - "source": [ - "est.predict(X[:100])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n", - " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 87 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3xWXtC8k9cGt" - }, - "source": [ - "#### Plot one of the trees" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 279 - }, - "id": "Xen6bm7Y9cGt", - "outputId": "25f978fc-a5d0-4395-9bb2-a0b089ff2828" - }, - "source": [ - "est.plot(0)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAEGCAYAAAC3o5WpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gVVfrA8e970xNSSCUkEKp0BRRBVERUdFVsCyrYsG7Vn7271rXtuqyu61rX3kARERusBRGkCCICAtJ7egLpyb3n98eZXG7KTS4QuIm8n+fJk3tnzsycKXfmnTNnzhFjDEoppZRSweIKdgaUUkopdWjTYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKNUEEXlFRB5yPh8vIquDnadarS0/Sim1rzQYUY0Ska9FpFBEIoKdl9bCGDPHGNMr2Pmo1dry05r4BpEHaP4jRWTrgZp/AMv/WkSu2stpnheR1SLiEZGJzaSNEJH/isguEdkpIjfWG3++iPwsIrtFZKWInOMzTkTkIRHZJiLFTl777dUKqkOOBiOqARHpAhwPGOCsAzD/0Jaep2pbgn0MBHv5QfIj8EdgSQBp7wN6AlnAicCtInIagIhkAG8ANwJxwC3AWyKS6kw7DrgCew5JBL4DXm+xtVC/ShqMqMZcCswHXgEuA++dUpGI9K9NJCIpIlJeexISkTNFZKmTbp6IHO6TdqOI3CYiy4BSEQkVkdtFZJ3P3dW5PulDROQJEckTkQ0i8mcRMbUXERGJF5GXRGSHcwf2kIiENLYyInKfiLwnIu86y1oiIkf4jO/j3L0VicgKEWk0AKt/NywinURkqojkiki+iDwtIuEiUiAiA3zSpYpImYikNDLP5tbzcp870PUi8rsm8rNRRG4WkWXOHem7IhLpjEsWkRnOOhaIyBwRafT3LyLDRWSRM49FIjLcGX6BiHxfL+0NIjLd+RwhIn8Xkc0iki0iz4pIlG9enWNgJ/ByI8udKCLfOvModLbHb3zGdxSR6U7+14rI1X7yfw1wEfYCWiIiH/lsn/rH4DDnWC0SkR9FZKTPfBrd9iISA3wKdHTmX+Lk7T4RmSIibzjT/CQih4nIHSKSIyJbRGS0z/z9HsNNbQsR+Sv2Qv+0s+ynG9sO9Rlj/m2M+QKoCCD5ZcCDxphCY8zPwAvARGdcJlBkjPnUWB8DpUB3Z3xX4FtjzHpjjBsbuPQNJI/qEGaM0T/9q/MHrMXeQR0JVANpzvD/An/1Sfcn4DPn8yAgBxgKhGBPZhuBCGf8RmAp0AmIcoaNAzpig+ILsCe0dGfc74GV2BNfe+B/2JKaUGf8B8BzQAyQCiwEfudnfe5z1mMsEAbcDGxwPoc563snEA6MAnYDvZxpXwEecj6PBLY6n0Owd5qTnDxEAsc5454BHvNZ/v8BH/nJW3PreQb2JC/ACUAZMLh+fny28UJnmyYCPwO/d8Y9Ajzrs87HA9JIfhKBQuASIBQY73xPAqKdbdPTJ/0i4ELn8yRgujOPWOAj4BGfvNYAjwERtcdAvWVPdPbT1c72/QOwvTafwDfOto0EBgK5wCg/29W73+ptH+8xCGQA+cDp2GPwFOd7yt5ue5/jrAI41dl2r2GPs7ucbX41sMEnvd9jOIBt8TVwVb3lzwBuD+D3/S0wsYnx7bHHYJrPsLHATz7H/mxsqWkIcA6wFYhxxmcBi4HDnPV+HJgW7POa/rXuv6BnQP9a1x9wnHMSTHa+rwJucD6fDKzzSTsXuNT5/B/snZTvvFYDJzifNwJXNLPspcDZzucv8QkunGUb5ySfBlTic0HDXjS/8jPf+4D5Pt9dwA7sBfl4YCfg8hn/NnCf8/kVGg9GjsFeDEMbWd5QYLPPheN74Hw/efO7nn7STwP+r35+fLbxxT7fHweedT4/AHwI9GhmH1wCLKw37Lvaixf2Lvcvzuee2OAkGnvBLgW6+0x3DM7F18lrFRDZxLInAmt9vkc726IDNoBwA7E+4x8BXvEzL+9+q7d9rvD5fhvwer00nwOX7e229znOZvl8HwOUACHO91hnfRJo5hhuals437+mXjAS6B/NByOdnGVF+gw7Bdjo8/1KZ91qsEHaGT7jwoEnnXnUYAOyrvuSV/07dP70MY2q7zJgpjEmz/n+ljMM4CsgWkSGiq1XMhB7dwf2bugmp7i7SESKsCe1jj7z3uK7IBG5VPY81ikC+gPJzuiO9dL7fs7C3nHt8Jn2OezdpT/e6Y0xHuydXMfa5TjDam3C3jU3pROwyRhTU3+EMWYB9gQ9UkR6Az2wJQaNaWo9EZHfiMh859FEEfYuPhn/dvp8LgPaOZ//hi0Bmuk8cri9ifxsqjfMd3u8hb1oAkzA3vGWASnYC+Zin33ymTO8Vq4xprlHBN78O/PFWYeOQIExZreffAWq/nE0rt4xexyQDvu07QGyfT6XA3nGPqqo/V67PoEcw/62xYFW4vyP8xkWhw08EZGTsYHuSGzgcQLwoogMdNL+BRiC/Y1EAvcDX4pI9AHPuWqzDsVKXMoP5/n++UCI81wfbJF6gogcYYz5UUQmYy9G2cAMn4vDFuwjnL82sQhvF9EikoV9Dn0S8J0xxi0iS7F32GBLLjJ9pu3k83kL9q4yubFgwA/v9E5diUxssTdAJxFx+QQknYE1zcxvC9BZREL95OFV4GLsBeW9Ji7CftdT7JtM72Pr8HxojKkWkWns2UYBc/bTTdiAsT/24rDI2DoEvrZjL5S+OmMDC4BZQIpz4RkP3OAMz8NebPsZY7b5y8be5rtevhJFJNbnmOsM7O2yfIdvwZaMNKh7EsC23591qV323h7DvvZ3+f5nbEyhiOwAjsDub5zPK5zPA4FvjDG19YcWicgCbKneUmf8u8aY2vpMr4jIP7H1RurUOVKqlpaMKF/nYIvC+2JPKAOBPsAc7EkZ7J3xBdgKgm/5TPsC8Hun1EREJEZEzhCRWD/LisGeUHPBVhbElozUmgz8n4hkiEgCtkgdAGPMDmAm8ISIxImIS0S6i8gJTazbkSJyntiKoddjLwTzgdpSjFtFJMypwDgGeKeJeYF9vr8DeNRZ10gROdZn/BvAudiA5LUm5uN3PbF3nRHYbVTjVGAc3cg8miW2cnEPERGgGLufPY0k/QQ4TEQmOBU8L8AeDzMAjDHVwBRsSUsizsXKCeReACbJngrNGSJy6r7ktz5jzBZgHvCIs60Pxz4qeMPPJNlAt2Zm+wYwRkROFVuROFJsRdtMmt/22UCSiMTv4/rsyzHsK5D1q0Ns5epIbEAV5qyvv2vAa8DdItLeKd27GvvoC2w9oeNrS0JEZBD2cecyn/HjRCTNWa9L2FM3S6lGaTCifF0GvGyM2WyM2Vn7BzwNXOSUAizA1g3oiH2jAADnLulqJ20h9sQz0d+CjDErgSew9RGygQHYOii1XsCerJcBP2AvkjXYiyjY4CgcW/mzEHgPp3jdjw+xQVRt5czzjDHVxpgqbPDxG+zd/TPYejCrmpgXTtH7GOwjmM3Yxz4X+Izfgn2F0mCDOX/8rqdTAnAdNmApxD4W8fe4pzk9sZVjS7Db/BljzFeNrFc+cCa2FCUfuBU40+exHdgg9GRgSr27+tuw+32+iOxylteS7aCMB7pgS0k+AO41xvzPT9qXgL7OI5BpjSVw9tHZ2MrLudjSiluw9Yea3PbO8fE2sN5ZRkf23t4ew76eBMY6b9o8BSAin4rInU1MMxNbejUceN75PMKZ9iIRWeGT9l5gHfZR2Gzgb8aYzwCMMbOx9WPeE5Hd2BKkh40xM51pH8NW7l4KFGFLz35rjCkKcN3UIai2gp1SrZpzZ/qsMab+I4RApr0PW3Hz4hbPWNPL/S+w3Rhz915Ms8/rqZRSbZWWjKhWSUSiROR051FBBvZO7YPmpmstxFbwPQ97h95Uuja9nkop1RI0GFGtlWBr4RdiH1/8jK2l3+qJyIPAcmzR9obmktNG11MppVqKPqZRSimlVFBpyYhSSimlgkqDkb0k2qW8Uq2C+PRc67wNMjOAae4UkRdbOB8iIi87b7YsbMl5tyTZh55+1R5i+zYqFxHt9C9AYvseqxIRf6/gewUcjIh2Kd+AaWVduLe2/LQ10sLdzjd38heRLuLTKd6BEMwLkNTryO9AMsa8aYxptg0WY8zDxpiW3h7HYZtLzzTGHN3C8w6Kg7HvnIv7yQdyGU0se6KIfLsPk44xxlziM58HxXaIWOO8tdfUMkVEHhPbqWa+81l8xo8S24nnLrGtJF9Tb/prxXaYuEtEvheR45pYVoSI/NdJu1NEbmwmbzc46XY50zW4zovICc75qtFzpIh8Uf98ZozpDjzc1LJrBRSMiHYprw4wPQYap9ulTcjC9ttSurcTtuX925bz3oLWYtvi+TiAtNdgG5Y8Ajgc205RbU/QYezpODEe22bRP8TpXVxEhgKPYjssjMe+pfeB+OmpHNsOTE/ssXkitlHH0xpLKLZhwtuxrWFnYRvTu79emjBs2zYL/MzjImzDdvsukA5ssLX75wL/wDYBDrZ1wiKgv0+6FGxDOqnO9zPZ0/DNPOBwn7QbsY0kLcO2hhnqbJB12D4QVgLn+qQPwTaSlYfteOnP1O3dtHYH7cA2Ef0QTgdVjazPfdgGht51lrUEOMJnfB9sR1RF2CaQz/IZ9wqNdJzmfO8ETMU2oJSPbQAsHCgABvikS8W2+pnSSN6aW8/LsW9c7AbWU7eTtfr52YjtoXYZttXNd3E6v8L2sTHDWccCbMNcLj/bazi2VcVi5/9wZ/gFwPf10t4ATPc5Rv6ObRQsG9trbJRvXp1jYCf1Oizzmd/VPuu7kj29pja3j/6NPUHsxv6AujvjBNu7bA6wC/gJ2/LrNdgOAquwDYN95KRv6piciO107O/Yt2E2AL9xxv0V20BbhTO/pxtZt83Ovi1x/o5x5jnXyWM+9jhuaju2d/ZjrpOHGdg7dL95cJb5R+AXZ70exPZOO8/ZJpOBcJ98Nvc7bnCMYVvYLce28lq7fh0b2QavOOszy8nLbCCruWPPGfc1TmdxtfvCZ1w/Z54Fzja70+e3/4ZPumHOOhVhG+oaWW//rnfytQG4qJH8X+lsX7ezjvf7HLdrneVP9113Z/v/ydn+G/wc903ly+85wBl/trO/dmGP3dN8tteD2ONrN7YRtORGlt3ovmPPefMNZ95X0cR5F3tMfYk9jvOAN4EEZ9zrzvzLnfnfim3QzjjrtwV7PP8e28/NMmdbPF0vr1c426IQ28lhVr3t/HtnOxdhzwmCPXf47rOiAK+DG4GT/Yx7A6dzzSamnwdcU+/Yme98TnPyG+0zfhEw3udcu9BnXG0L1ul+lrUdGO3z/UHgHT9p38I2Wlf7/SRgZ700t2P7I3qFhh1QxmO7zxhGI518Uu8353f7BLgTtEt57VI+GF3Kj8Oe4IY469uDPR2MNbeP8oGjnTy/ifNDxHbvvhjbc2rtiSm9/r6tlwd/x+RE9rKb93rz7kK9H68zzxrgWifvUc1sxyTgt86+iMU21T7NZ34N8uAs80Ns52f9sDcDX2DviOKxx99le/E79neMjaRez7aNbINXnH03wjkOnsQJKmji2Ku/bvgEI8522IFtRTbS+T60/okR28lePrYDPBf2UUs+9qYqBnvBrT2m0rH97jS2Dt5lO99HYS++g511+he2Lxff7T/LWb/Gjnu/+QrgHHA0NnA7xZk2A+jts73WAYdhj6uvgUf9rFODfcee8+Y5zryjaOK8i/29nuJsgxTgG+Cf9c5PJ/t87+Jsm2ed/TYaGzRMc+adgT0WT3DSn409D/TBHh93A/PqbecZ2N96Z2zAflpj+8wZNgFY1sSxWie/9cYFEowU4xyHzvejgN0+39/CXkNDsDcmOUAnZ1wc9rxV+zu8FtsUQGPn7PbOuqf5DBsL/OQnXz8CF/h8T3amr/2dZWGDjXY0fo78N/YmtHb/HZhgBO1SHrRL+WB1Kf957brVGx7IPnrRZ9zpwCrn8yj2RPGuevP17tsAj8mJ7Ec37/gPRjb7fG9yOzYyz4FAoc/3Bnlwlnmsz/fFwG0+35/AuWgQ2O/Y3zFW53j0k99X8Lljw57w3NiblOaOPe+6UTcYGQ/84Gd597EnGLmNeiVyzjF3GfbiWoQN9BoEDPWm8S7b+f4S8Hi9daoGuvhs/1FNzM9vvvyk9z0HPAdM8pPua+Bun+9/xLl5bCRtg33nbDvfoGpvz7vn+O4X/AcjGT7D8ql7oXwfuN75/Clwpc84FzYwy/LZzsf5jJ8M3N7YPgvkr35+640LJBhx4wSGzveeTh5rrwtjsKV4Nc7f1T5pBXvzVe2MywOG+FlOJ2e+kT7DTsE+Smwsvbf0zPke5kxfe7x+WLsPqHeOxAZUS7HX4dr9t0/BSCB1Ri5Du5TXLuXrOlhdynfC/lAay1Nz+6jR9TbGfIl9fPZvIEdEnhcR367S62jmmKyzHNNy3bz77vMmt6OIRIvIcyKySWx/MN9ge1n29yy5Vv2u7ut/r12HQH7H/o6xQPn+FkuwjzZqf4tNHXv++Dtu6svCdujmu27HYUu+SrElYb/Hnlc+dn67gaiTb2ed8uvle0v9iQLJFzR7Dmhu3VtsX9HMeVdsR3nviMg259h8g6bPVbX25th80mfZBdiLdrPngSApwZZw1IoDSowxxjm23mFPf0X9sPU8znDSXol9fNXPGX8xMEMa7xOpxGf+vsva3Uhaf/kC2C0iY4BYY8y79ScS28niM9hAeF96nq6jyWBE9nQpf4JT03YntjjmCLFdyrux0eZ456+xLuUTfP6ijTFv+yzC+CwrC9tp2J+xxUMJ2FYs97ZL+dplxRlj+jWxev66lN+O06W8T9qmuir3zUPnJip11XYpfwn736X837FFcAnYjtX2qUt5Y8xNxphu2ErJN4rISY0k9delfO32qN+lfG1Pvr5dytfuk3hjjO/JwNC0Ldji6MbytC/7yC7UmKeMMUdie6M9DNs5WoP8BHBMNruofRzvO7y57XgTtjO6ocaYOJyOz3zy2FwemhPI79ifQJfte4y3wz6+qP0tNnXsNZXnQHq03YItgfBdtxhjzKMAxpjPjTGnYIOAVdhjIRB18i0iMdjHab75bmrb+M1XAOcAf7+ZvRXIsdncefdhJ/0A59i8mLq/nZY4Nn9XbztFGWPmBTDt/i57X6zAVl6tdYQzDOxNzhrnmPMYY1Zj67z9xhk/EHt9XeOM/wx7rRhefyHGmEJnnL9lBZKvbGM7zTwJOMrn+n8BcL2I1D7mPQp41xm3yJl+q4gc39zGqK+5khHtUl67lA9ml/IvAjeLyJHOMdTDCRD2dR8hIkOcYzIM+/ijwme963fL3twx2ZzmunnPdZbtN00A2zEWG6wUiUgitm+bvclDc/b2d1x/2UkiEt9MutNF5DgRCcdWtJtvbI+6TR57TZgBpIvI9WJfcYwV+zZCfW8AY0TkVBEJcX6zI0Uk07mrP9sJJCqxd4+N/T4a8zZwuYgMdIKHh4EFxpiNAU7vN180fw54yVn2Sc55MEMCL9Hx1ey+C+C8G4vdbsVi+126pd4s9vfYfBa4Q0T6AYhIvIiMC3DabCDTOeb2mXP+icReS0OdfeWvVPI17E1fhtgSjZuwjz3A1v/oKfb1XhGR7tiK48uc8YuAM0SkmzP+FOyN1PImlnW3iLR39v/VPstqLO2VItLXuebc7ZP2Hmc5tdf/6dhzwuXY60ZHn3GnO9MciZ+3bprSXDByGdqlvHYpH6Qu5Y0xU7BvhLyFLWKcBiTu6z5yxGG3cSG2KD0fG0hBvW7nAzgmm9Ogm/d661fmrN9cZ5nD/Mynqe34T2xFwjxsMP3Z3uShOXv7O6437SrshXm9s36NFSmD3b/3YovZj8QG7IEee40tdzf2GfkYbDH9L9jXG+un24KtBHkn9uK+BXvBdDl/N2JLOQqwFUX/EOB6/w97En8fe4PSHbgwkGmby1dz5wBjzELshWIS9mIxm4alS4HkIdB919R5935sJd5i7F3+1HrTPoK9YBaJyM37kMcPsBXg33F+F8vZU5LQnC+xJQI7RSQPvA3n+Ss98OcF7M3AeOAu5/MlzvyOF5ESn7TPYSuf/+Tk9WNnGMaYddg3g57CVpyejT1+ahvoew17s/W1M/4pbKmQv3PevdjHdZucef3NKU1BRDqLSImIdHaW/Rm2rtdX2GvXJmf62hJ032t/OVBqjCkwlu+4XGfZ2c45eq+02b5pRLuUV6rNE5FXsBUlA/5NKBUMYlu3Tgc+MMZc1lx65d1mGcBkY8wVTaVtM43WiK2/ciK21CCNNtbVuuzpUn5QM+na9HoqpdSvkdHWrffa3myzttQ3TZvtal20S3mllFLKrzb7mEYppZRSvw5tqWREKaWUUr9CGowopZRSKqg0GFFKKaVUUGkwopRSSqmg0mBEKaWUUkGlwYhSSimlgkqDEaWUUkoFlQYjSimllAoqDUaUUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpZRSSgWVBiNKKaWUCioNRpRSSikVVBqMKKWUUiqoNBhRSimlVFBpMKKUUkqpoAoNdgaUagtEJAE4OyQ6fqyIKx3R347yq8Z4PDvdZcXvA9OMMYXBzpBSrZ0YY4KdB6VaNRE5TsIiPos7bJhJPvrsduHt05EQjUVU44ynhqrCneQv+qikeNVcl6muPMMY83Ww86VUa6bBiFJNEJHDXOGRS3r96b8xCf1PCHZ2VBtTvGoeq568tMxTVT7EGLMy2PlRqrXSOiNKNUFCI65MO+GScA1E1L6I7z2c9JOvDHeFRV4d7Lwo1ZppMKJUE1xh4eOTjj47LNj5UG1X0pAxoRISekGw86FUa6bBiFJN8FRVpEZ16BbsbKg2LLJDd9xV5SnBzodSrZkGI0o1wRhPiCssItjZUG2YKywSPG6t8axUEzQYUUoppVRQabSu1EG2/vU7yJ79On1vmUJ8r2PqjCvbvoZl959KQv+R9L72Ze9wd2UZWz54nLyF06kpLSIqvQcZv/kTyUPPPtjZP2CMu4Ztn/yLnG/fpaooh4jkTDqMupwOoyYiIgFNv/Pr18mZ8xYVOZtwhUcSndGLjqf9kfYDTvSmy/n2Xda9fKPf+cT3PZ6+N73TIuuklAqMBiNKHWSdx95J4Y+zWP/qLRx+3yxCwqMAMB4P616+CVdYJN0ufsSb3hjD6n9fxa5V8+hw8pVEpXUj//uP+OX5P2LcVaQMHxesVWlR61+/g5w5b5E64iLadR1I8YrZbHzrbmpKi+h01g0BT5809Bw6jLwUd0UpOd++zap/Xsxhf3iepKPOACCu1zB6XPVUg+mLVswm77v3Seh/YoNxSqkDS4MRpQ6y0KhYul3yCKuemsjWD58ga9zdAOz434uUrF9Ct0sfJ7x9B2/6wqUzKV4xmy4THiL9pMsBSD1+PMsfPYdNUx4iachZtFS9ltItK4jp1K9F5rVXy928nJw5b5E++nd0ueAvAKSNmMCaZ3/Pto//RdqICYQnpPmdvqZ8Nzlz3yVx8Okcds2/vcNTjj2fxTcNJmfuu95gJDIli8iUrAbzyJ07GQkJJeWY37bw2imlmqN1RpQKgvZHnELS0WezfebzlGxcRkXuJrZ88DhxvYeTdsJFddLmLZqOKzyStBHjvcPE5aLDqIlU78qjeNXc/cpLVVE22z59hqX3nMiKx8bu17z2Vf6ijwBIP/nKOsM7nHQlpqaSgh8+a3J6T1U5eNyEJaTWGR4ak4ArLMJb+uRPZcE2ilfNI6H/SMLikvdhDZRS+0NLRpQKkq4THqR45Tese+UmQmPaA4bul/2tQbrSjT8SndnXvpXho13XQc74ZbQfMGqvlu2pthf43HnvUbRiNhhDfO/hZJxxXYN07orSgOYZEhmzzyU0JRuXERafSkRSRp3h7boeAeKidNNPTU4fHp9KVMfDyP32XWK7DiSu13DcFSVs/+w/GOMh/dTfNTl97nfvg/GQMvz8fcq/Umr/aDCiVJCExSbR5YL7WPvS/wGQNe4eIlO7NEhXVZRNdEafBsPDEzo443cGvMzd65eQO3cyeQun4y4rJqrjYXQ+91aSh51HRGLHBunzFkxrsrKnr+6X/4PU4/atba+qouxGH8O4QsMJbdeeqsLm1/GwPzzP2hf+zNqXrvcOC4tPo+/N7xLbbXCT0+bOnUJoTALtB56y95lXSu03DUaUCqLQ2ETv54QBjVec9FRVIGHhDYbXlkJ4qiqaXc6OL/5L9levUr5jLaHtEkkZdh4pw8fSruvAJqdL6D+SPje93ez8AaI79gooXWM81RWERLVrdJwrLAJPdfPrGBLVjujM3sT2GEJc7+G4y3ez88uX+XnSJfS54Q1iuw1qdLrd6xZTkb2etFETcYU23M5KqQNPgxGlgsRdUcr6124nIiWL6l15rH/9Dvrd9n6D11hd4ZGY6qoG03uqK73jm7Pj8+eozN9Ku26D6HHlP4nq0COgPIYnpDVZcXRvuKvKcZfvrjMsLDYJcYXgCovE1DRcR7DrWf8RVYN5V5Sy/OGzSR52Llm/vcM7PGnIWfx4z0jWv3YrR9w3q9Fpc+e9B0Dqr+StJKXaIg1GlAqSTe8/TFXhdvreMoWyzSvY+M695Mx+g7SRl9RJF56Q1uijmNphgQQL3a/4BznfvE3BD5+y9O6RxPYYQsoxY0kaMobQ6Di/0zUWQPgTEhXbZEXR/IXTGzzyGfTYfCKTOxGekEbZtlUNpvHUVFFTUkhYM+uYv/hjqgq2kTjotLp5iogiYcCJZH/9OjVluxqsq6e6kryF04nqeFizpURKqQNHgxGlgmDXL4vI/upV0kZcRHyvY4jrOZS8hdPY9N7DtD/ilDqv9sZkHU7h0s/xVFfUKSEo2fCDd3xz4nsfS3zvY6kp303+wunkzpvM+tduZcPbfyHxiJNJGT6WhP4nIiF1TwmNBRD+NFdnpLFHPuHxtsuWmC6HU7zyGyrzt9WpxFqy4UcwHtplDWhy2dVF2faDx91gnHG7nf81DcYV/jgLd1kRKaf/qcn5K6UOLA1GlKpmtAwAACAASURBVDrIPNWVrH/1ZsIT0ujstDEiLhfdL/s7yx44jQ1v3U2vP73oTZ885CzyF35I9jdve9sZMR4PO798hdB2icT3OTbgZYdGxZJ2wkWknXAR5TvXkTt3MrnfvU/+9zMIi0smZfg4b7sn0LJ1Rpp65JN81Bi2f/I0O/73kredEYCdX7yEhIbXKfFwV5ZTVbCN0HaJhDl1biLT7WOn3PlTie1xlDdtTWkRhcv+R0RSpjetr9x5U8AVom2LKBVkGowodZBt/eiflO9YS69rXyY0KtY7PDqzNx1/80e2zXiS/MWfkHTk6QC0H3Qq8X2OY9O791NVsI3I1K7kf/8RJesW0/3yfzRbn8KfqA7d6fzbO+h07m0Ur5xDzrzJ5H43tU4w0pJ1RpoSk9WflOMuZMes53FXltCu6yCKV8wmf9FHZJ51Y52SopINP7Dyb+PIPOtGOp19EwDtDz+Z6E79yP7qVaqLc4jvcxzuihKyZ79JdXFOoy2uVu/Ko2j51yT0HXFQ1lEp5Z8GI0odRKVbVrL9s/+QdNSZJA4c3WB85pn/R8Hij9nw5t3E9zmO0Og4RIRef/4vmz94jNzv3qemtJio9O70uPppUoadu995EpeLhP4nkND/hIDbFDkQul3yKBGJGeTOfZfcuVOISMqky/gH6HDSFc1O6woNo/9tU9n++bPkL/7Etp2CENO5P13G39/ots6dPxXjriHlWK24qlSwiTEm2HlQqtWSkNDqoc+sCd3X0geljDHMvyoTY0zzvf0pdYjS5uCVUkopFVQajCillFIqqDQYUUoppVRQaTCilFJKqaDSYEQppZRSQaXBiFJKKaWCSoMRpQ5xa1+6niW3Dg12NpRShzBt9Ewp9auw5cMn2Dr9H42O63f7B8T1PLrOsIrczWya/CDFP3+L8biJ7T6YrLF3E5PVv8H0pZuXs2nKX9m9bjHiCiG+z7FknX8PkSlZB2RdlDrUaDCilPpVyTr/HsLiUuoMi+rQvc736l15rHjsXIzbTcYZ1+IKi2Dnly+z/LHzGHD3DKI7HuZNW75jLSse+y1hccl0Pu82PNWV7Jj1AssfOZfD7/3c29mfUmrfaTCilPpVaT/wVKLSujaZZtsn/6KqKIfD7/2MmE79AEgaMoald41g8/uP0Pval71pN73/CAD9bn3f20dO+wGj+PH+0Wz7+F90nfDAAVoTpQ4dGowotZ/clWVsnT6J/MUfU1W4E1d4FFFpXUk/9RqSh5wFQGXeVrZ//izFq+ZSmb8VgJjO/ck441raDxhVZ34rHh9LRc4G+t02lQ1v3cOu1fMJiYgidcRFdDrnFmpKC9n49r0ULvsSPDUkHnk6XS9+mJDwqAbz6HvzZDa8dQ+71y7CFRZJ0pAxZI27m5CI6GbXq3j1d2yb8RQlG37AU1NNdGZvMs+4jsRBp3rTGI+b7Z8+Q868KVQVbENCwolIziRtxEV0GDWxBbbuvqkp301IRDTiCml0fN7Cj4jrNcwbiACEx6eSdNQYcudNoaZ8N6FRsbgrSin66UuSh55bp7O+6MzexPceTv6iDzUYUaoFaDCi1H7a8MYd5C34kLSRlxKd2Rt3+W7Ktq6kZN1ibzBSsnEpxT/PIXHQaUQkd6KmbBd586ey6slL6Xvj28T3Pb7OPD1VFax8YjwJ/UaQNe4uCpZ8xrYZTxISEUP+oulEpfek83m3smv1fHLnTiYsLoWssXfWmYe7soKVT1xI3GHDyBp7F7vXLSb7q1epzNtCn+tfb3Kd8r//mDXP/YHYboPJHHMDEhJK3oJprH76ijod9G2dPomtH00i5djziR19DZ7qSsq3r2HXmgXNBiPuynI8VeUBbeOQqFhcoWEBpf3pgdNwV5QgIWHE9TqGzmPvpF3WAO/4qsKdVBdnN9pBXrtug8iZ8xZlW38mrufRlG1diampIrbboIZpuw6ieOUcKgu2E5HYMaC8KaUap8GIUvupYOksUkdMaPIOOWHASSQddWadYeknX8Gy+09l22f/aRCM1JQWkTnmBtJPuQqA1OMnsOTWoWye+gjpp1xNlwvuBaDDiZexLHcT2bPfbBiMlBWRNmICWePusmlHTSQsLpkdM5+n8KcvG5TIeKerLGf967eROHA0vf70ond4h1ETWf7w2Wya8hDJR5+NuFwULJ1JwoBR9LhiUoBba4/tnz3jt8JpfX1vmUJ87+FNpgmNjiNt5CXEdj+KkMh2lG5ZyY5Zz7Pi0XPod9tU2nU5AoCq4mwAwhPSGsyjdlhV4Q77v8imDWsqbdFODUaU2k8ajCi1n0Kj4yhZ/wOV+duISMpoNE1IxJ5HKJ7qCtyVZWAgrtcx5C38qOEE4iJt5MXer67QMNp1HUjh0s9JG3lJnaSxPY6idOOP1JQWERqTUGdcbTBTq+Po39lgZOksv8FI8cpvqCkpJOWYsVTvLqgzLuHwk9j64d8p3/EL0Rm9CI2Oo3z7Gsq2/0J0x56Nzs+flOFjie05JKC0MZ36Npsm/ZSr63xPHHwaSUedwbIHTmPT5Afpd+t7gC11AnCFhjeYhyssok6aPWkjGkkbWSeNUmrfaTCi1H7KOv8vrH3xOpbcNpTojN7E9zuB5KPP8t6JA3hqqtg640ny5r3nrTPiJQ17lg+LS/Ze7GqFRscBEJGYUW94PECDYCQksl2Du//w9h0IiWxHZd4Wv+tTvnMdAKv/faXfNNW784BedDr3NlY/fTk/3jOSyLRuxPc9nqSjziC+97F+p60VmZJ1wF+Njc7oRfvDT6Zg6ee4q8oJCY/CFe4EETVVDdJ7qisBvGn2pK1sJG1FnTRKqX2nwYhS+ynpyNOJ63k0BT/OonjlHHK/fYcdM58j86yb6HTWDQBsfPtesme/TtrIS4nrebQNGlwucr+dTN6CDxrMU1z+2yP0VynTGNMyK+TMp+sljxCZ2qXRJNGZtqQirucQBj0yj8JlX1C8cg4FP3xO9levknLchfS4/IkmF+OuKMVdWRpQlkJjEhotyQhERFIGeNy4S4sJCY8iPL728Up2g7S1w8ITOjj/bdrqJtM2fISjlNo7Gowo1QLC4pJJO348acePx11Vzqp/XsLWjybR8bTfExIeRd7CD0k5ZizdLn64znQ5c945YHlyV5RQVZRd52JZVbgTd0UJEcmd/E5XG4CERseT0HdEs8sJjY4jZdi5pAw7F+OuYe1/byD323fI+M0fG7Tv4Wv758+2aJ0RfypyNiIhoYS2s6VG4e07EBafSsn6JQ3Slqz/AQkJJTqzDwDRGX2QkDB2r/+hweOxkg0/EBaXTHh7rS+i1P7SYESp/WA8btwVpd5HKAAh4VFEdejOrtXf4S4vISQ8yinpqFtyUb5zLQU/fH5A87dj1oveCqwA22c+B0D7I072O01CvxMIjUlg28f/ov0Ro+vUdwHbYFhYXLL9XFJAWLtE7zgJCSU6oxcANWXFTeatpeuM+Oar1u51iyn86Uvi+xxX57FX0pAx7PziZUq3rPTOu6o4h/zvZ5DQf6R3f4ZEtSNhwCgKFn9M1Xm3eQO7sq2rKF41jw4jL0UaecymlNo7GowotR/cFSUsvulIEgf/huhOfQmNSaB083Ky57xNXO9jva1zJg46jZxv38UVHk1M5/5U5G0m+6vXiE7vQenm5QckbyHRCeQtnEZVcTax3Qaze91i8uZPJb7fCbQ//CT/00W1o9tlf+OX5/7Aj/eMJGX4OMITO1JVlE3J+iWU71zH4EfnAbD07pHE9Tyadl2OICwuhfKd69j55ctEduhOTOcBfpcBLV9nZPEtR5N01BlEZ/YhNCqW0q0/kzPnHUIiYrxvH9XKOP1a8hfN4OdJF5E++hrbAusX/8V4auh83h110nb+7e389NCZrHjsPDqcdAWemip2zHyBsNgkMs64tsXyr9ShTIMRpfaDKzyKDqMup/jnORQu+wJPdSURiR3J+M2fyPjNn7zpulx4P66wSPKXfErO3MlEdehOt0sfpXzH2gMXjERE0vemd9jw1j1seu+vuELDSRt5CVnj7ml22qQjTyf89mls++Rpdn71Cu6KUsLikonp1JfO597mTdfxlKsp+HEW22c+h7uijPCENFKPu5CMM/8v4HZBWkrK8LG2JOTH/+GpKicsLpnkoWeTOeb6BkFPeHwK/e/4gE2TH2TbjCdt3zTdBtPzmmeIzuxdJ210x8Pod9v7bH7vr2ye+ijiCiGu97Fkjbtb64so1UKkxSq9KfUrJCGh1UOfWRNa/82W1q62BdYj/7442Fk55BljmH9VJsYYfZ6jlB/+q+wrpZRSSh0EGowopZRSKqg0GFFKKaVUUGkFVqV+hWqbPldKqbZAS0aUUkopFVQajCillFIqqPQxjVKtyJYPn2Dr9H9wzEvbgp2VFrHi8bHsWv0dALE9htD/jmlBzlHL2jz1MbZ9/JT3+8CHvyUqrWsQc6RU26TBiFLqgIpK70HGGdcRFlu3qfai5bPJ//4jSjYspWz7GvC4Gfb8JiQk8NOScdew7ZN/kfPtu1QV5RCRnEmHUZfTYdTEJptpz5nzDuteuQmgwTKX3Dq0Yc/KPvrdPo04pxn7pCFnEpXeg4Iln1Kw5NOA862UqkuDEaXUARUWl0LKMb9tMDxvwQfkLZxOTOe+RCR3ojJn417Pe/3rd5Az5y1SR1xEu64DKV4xm41v3U1NaZG3x+T6qksKbYu0EdF4KssajO9y4f2N9ia8/vU7cIWF067rEd5hMZ36EdOpHxU5GzUYUWo/aDCilAqKzufdTrfLHscVGs7al64ndy+DkdLNy8mZ8xbpo39Hlwv+AkDaiAmsefb3bPv4X6SNmNBoc+2bpz5CWFwKMZ37kTd/aoPxiYNPazBs1y8L8VSWknrcBbhCw/cqn0qp5mkFVqX2QcEPn/PdlRnkL/qowbiK3M18d2UGm99/BABPTRVbPnyCnx46k0XX9WP+77qx9O6R7Jj1AoF0x7Dk1qGsfen6BsO3fPgE312Z0WB46ZaVrP73VXuW9ZeTyJ7z9j6s5YEV3r7Dfl3Ya7d9+slX1hne4aQrMTWVFPzwWYNpdq//gZxv3qbrhAcQV0jAy8qdOwWAlOHj9jm/Sin/tGREqX2QMOBEQqITyF0wjaQhY+qMy1vwAQDJw84DwF1ews6vXiVpyBiSj7HDilfMZuM791FdWkTnc25psXztXruIlU+MJyIli46n/ZGQyBgKf/wf61+5mZpdec32MuuprsRd0fARRWNCImNwhUW0RLb3ScnGZYTFpxKRVDcga9f1CBAXpZt+qjPceDxseONOko48nfg+x5E7L7C2WNxV5eR//xFRGb1p1+XwFsu/UmoPDUaU2geu0HCSjjqD3HnvUVNWTGh0vHdc3oIPie7Ul+iMXgCExsRz5N8W1blwp590BWv/ewM7Zr5A5pn/1yJF/8YY1r16K9EZvel3+wfeXnM7jJrI6meuZuuMf5I28hJCYxL8ziNvwTTWvXxjQMvrfvk/SD3ugv3O976qKspu9DGMKzSc0HbtqSrcWWd49tevUb7jF3r9+cW9Wk7hD5/jLt9NqpaKKHXAaDCi1D5KHnoOOd+8Sf7iT0g7fjxgH5GUb19N53F3e9OJK8T7SMC4a3BXlGA8Hnt3Pncy5TvWEtOp737np2zrSsq3r6HL+Adwl+/G7TOu/eEnU7D4E3av/Z72R5zsdx4J/UfS56bAHulEd+y1nzneP57qCkKi2jU6zhUWgae6wvu9elcemz94nIwzriUiseGjrabkzJsCrhBvqZZSquVpMKLUPoo7bBjh7dPJm/+BNxjJWzANREg++uw6aXO/e5/tnz9H2bZV4HHXGecu29Ui+SnfuQ6AjW//hY1v/6XRNNW785ucR3hCWqOlDa2RKywSU1PV6DhPdSWusEjv901THiS0XXs6nvr7vVpGVVE2xSvnkNDvBMLjU/crv0op/zQYUWofictF0tFns2Pm81QVZRMWn0r+wg+JO2wYEYkdvenyFk1n7YvXkTBgFOknXUFYfAoSGkbppuVsfu+vGONpZkGNt5dh6gU1OJVhM8+6kVinHYz6otMPa3JR7qpy3OW7m86PIyQqlpDwqIDSHgjhCWk2uKvHU1NFTUkhYU5QVbLpJ3LnvUfXi/5KVXGON13t67uV+VtxhUc1GoTlzp8KHjepx55/gNZCKQUajCi1X1KGnsuOz58lb+GHtOs6iMr8rWSccV2dNHkLPiQiuTO9r3sVce15ga0yZ1NAywiNjqemrLjB8MrczXW+R6balj9dYZEk9B2xt6sCQP7C6W2mzkhMl8MpXvkNlfnb6lRiLdnwIxgP7bIGAFCVb1uz3fDmXfDmXQ3m88MdxxKTdTiH/6VhOyG5c6cQEp1A+4GjD9BaKKVAgxGl9ktMVn+i0nuSt2AaFbmbEKdiq689Acie13jdVeXs+OK/AS0jMq0rxavm4a4q95ZEVORtafDqakzn/kR26M6O/71I6vEXEhabVGd89a48wuLqtoJaX2utM1JVlI27fDcRKVneirnJR41h+ydPs+N/L3nbGQHY+cVLSGg4iYNseyHtug2i159eajDPHV+8xK5V8zjsjy8Q2q59g/ElG5dRvn01aSMvDepbQ0odCjQYUWo/JQ89hy3T/kbFznUkDBjV4G2VxEGnUbD4E35+8lKSBp1GTWkROXMnExIZE9D800ZeSv6ij/j5iQtJHnou1bsLyP76VaLSe1K6aZk3nbhc9Lj8H6z8x3iW3j2S1OPHE5mSRXVJPmWbV1CwdCbDntvQ5LIOZp2R0i0rKVw6E4CyrT8DsPXjfyEihETHk37S5d60m99/hNx5Uxj02HwikzsBNhBMOe5Cdsx6HndlCe26DqJ4xWzyF31E5lk3Et6+g3edGmvIrDaYSxw4utEm6HPnOW2LHKtv0Sh1oGkwotR+Sh52Llum/Q13RQkpQ89pMD7lmN9SU1bMzi/+y4a37yU8IZWUYy8gtseR/PzE+GbnH997OF0vfpjtn/2Hje/eT2RqV7pOeIiy7WvqBCMAsT2O4vB7PmXrjCfJnTeFmpJCQmOTiE7vQZcL7m2xdW4JpZt+Ysu0v9UZtvXDvwMQkZRZJxjxp9sljxKRmEHu3HfJnTuFiKRMuox/gA4nXbFfefPUVJO3YBpR6T2I7TZ4v+allGqeBNICpFKHKgkJrR76zJpQ3zczVOBWPD4W466m159fRkJCCY2OC3aWWpS7shxPVTnbP3uG7Z/9p9Fee40xzL8qE2OM/577lDrEacmIUuqA2r32e76/fgCxPYbQ/45pwc5Oi9r28VNs+/ipYGdDqTZPgxGlmmE8Wnq4r7LO/ws1ZUUAdVqp/bVIPe4C4nof4/1eW0+lDvsKth5ESjVBgxGlmuAKDSurKSmIC4nYu1Y7lfVr78slMrULkaldmkxTXVKIhEaUH5wcKdU2aa+9SjVBQsK/LVr+dbCzodqwouVf4QqPnBfsfCjVmmkwolQT3OW7Xt4+87lSd2VZsLOi2iB3ZTk7Pn+u1F1WHFijMkodojQYUappU6sKd05f8fhvy4pXzWvYBLtSjTAeD7vWLGDl388vq8jb8ikwOdh5Uqo101d7lWqGiLjEFXqjKyL698ZdkxEam1jlCglttT8cY4xgTDtEKkWk8Z7k2iBjTDjGRCBSIiKtdvt73DVSU1IQLq6QHZ6qiueMu/rvxhiNYpVqggYjSu0FEekApNC6K38/DhQDfw12Rg6A24A0ILAOdILDDeQaY3YEOyNKtRUajCj1KyIiNwAXA8caYyqCnZ+WJiIRwDfA+8aYx4OdH6VUy9BgRKlfCRE5FpgKDDPGNN0JTRsmIp2BhcAFxpjZwc6PUmr/aQVWpX4FRCQVeAe44tcciAAYYzYDlwFviUh6sPOjlNp/WjKiVBsnIiHATGC+MeauYOfnYBGR+4ATgZOMMTVBzo5Saj9oyYhSbd8Dzv+/BDUXB9+DQAXwcLAzopTaP635jQClVDNE5EzgUuDIQ+31UWOMW0QuAhaLyDxjzK+rFz6lDiH6mEapNkpEugLzgfOMMXODnZ9gEZGhwEfAcGPM2mDnRym19/QxjVJtkIhEAu8BjxzKgQiAMWYBcD/wnohEBTs/Sqm9pyUjSrVBIvIc0B77eush/yMWEQHeBCqMMVcEOz9Kqb2jJSNKtTEichkwErhKAxHL2Q7XAMNE5Mpg50cptXe0ZESpNkREDge+AE40xiwPdn5aGxHpg22hdbQx5odg50cpFRgtGVGqjRCReOB94AYNRBpnjPkZ+DO2/khCsPOjlAqMlowo1QY4dSLeA3KMMX8Idn5aOxF5CsgCzjXGeIKdH6VU07RkRKm24UagM3B9sDPSRtwMpAK3BDsjSqnmacmIUq2ciByPLRUZaozZGOTstBki0glYBIw3xnwV7PwopfzTkhGlWjER6QC8DVyugcjeMcZsAS4B3hSRjsHOj1LKPy0ZUaqVEpFQYBbwrTHmnmDnp60SkXuA0cAoY0x1sPOjlGpIgxGlWikReQQ4CjjtUOt3piWJiAuYAaw0xtwc7PwopRrSjvKUaoVE5CzgIg7BDvBamjHGIyKXsKdDvanBzpNSqi4tGVGqlRGRbtgO8M42xnwX7Pz8WojIEOBj4FhjzC/Bzo9Sag+twKpUK+J09PY+8JAGIi3LGLMIuBd4X0Sig50fpdQeWjKiVCsiIi8CscCF2u9My3Maj3sdqMG+oaTbWKlWQEtGlGolRORy4Fi0A7wDxtmuv8NWDL4qyNlRSjm0ZESpVkBEBmJf4x1pjFkR7Pz82olIL2AO9k2lJcHOj1KHOi0ZUSrInA7d3gP+TwORg8MYsxr4I7ZDvfbBzo9ShzotGVEqiJw6DFOB7caYPwU7P4caEZkE9MC+uaQd6ikVJFoyotRBItbV9QbfDHTEdoSnDr5bgUTgNt+BInKi0wKuUuog0JIRpQ4SEekCzDPGdHS+jwAmYzvA2xTErB3SRCQD26HeRbUd6onIQuxjM329WqmDQEtGlDp4BgOLAUQkHdsB3kQNRILLGLONPR3qZTiDl2L3l1LqINBgRKmDZzCwxCn+fwd4wRjzWZDzpABjzBfAv4F3RSQMWIIGI0odNBqMKHXwDMZe5P4KVAAPAojIESKSFsyMHapEJNwppQJ4BCgCHkODEaUOKg1GlDp4BgPJwIXYTvCGicin2P5SugQxX4ey7sBPIvIG0Bu4FDgX+4ZNbxGJCGbmlDpUaAVWpQ4C5+57OeAG7gPGAVnAo8CrxpjK4OXu0CYi8dg2R67HNoQ2FfgnUAhMMMYsDmL2lDokaMmIUgfHMGyfMyXAdcDLQC9jzPMaiASXMabYGPMI0A2YC/wN2Al0wu43pdQBpsGIUgfHKGA3cDvQzxjzmjGmOsh5Uj6MMaXGmEnYRzf/ATzYEiyl1AGmj2mUUqoRzltPEcaY0mDnRalfOw1G2iCnCXGtWKeCxWOMqQp2JpRSvx7a3HEbISJJIS5+FxMeMtEldBcwSLBzpQ5FHoMrPNRVFRXm+npXhfsFYKpx7mpEZKArLPJSCQs/27hr2mOMPgpWB4W4QspxuX50l+16BZhmjKkIdp5U4LRkpA0QkdSYcNf8kw5r3/Hio9IihnSKJTxUz/EqOIwxFJbVMGtNIZO+3lqaX1r9Qlm150ZxhV7pioh6Mm3kpeGJg04NDU/ogLhCgp1ddQgwGDyVpexeu5jsr18vKd/xy2p3RclIY0xJsPOmAqPBSBsQHxU6+5Kj0o6585SssGDnRSlfBWXVnPH8T6WbCyv/FhqTcGv/uz6KjkrrFuxsqUOY8XhY9/INFQU/zPyipqz4zGDnRwVGb69bORFJrqzxDL3hhEwNRFSrkxgdxvUnZMaER0b9PuPM/4vSQEQFm7hcdJ3w10hPdeXJIpIQ7PyowGgw0vqdOKRzXGVUuBZ3q9ZpdK/21LhNh8TBv9FaTKpVCIlqR2yPoyqB0cHOiwqMBiOtX3JGfLiWiqhWKy4yFE91JRGJGc0nVuogiUzrGg50CHY+VGA0GGn9QsJconecAbj+g7UMnbQk2Nk45HiMARHEpacTgLUvXc+SW4cGOxuHPFdouAt9Y7TN0B2lVCuTce93TY7//qbBpMftaWbms58LePrbbfycXUZ4iDAsK467TsmiR0rUgc6qOoT88uJ15H33PrE9htD/jmne4e7KcnK/m0Lh0lmUbV1JTWkREUmdaD9wNBmn/5nQ6Lg68ylaPpv87z+iZMNSyravAY+bYc9vQkL0cnQo072vVCvz1Hk9Ggwrr/Zw+4z19E6NrhOIvL04m5unr2dQRjvuOKkz5dUeXlm0k7NfWs4n1wwgKzHyYGZd/UrtWj2fvAXTcIU3PJ4qczex4Y07ie05lLQTLyMsNpnSTcvYMfM5CpZ8yuH3fEpIVDtv+rwFH5C3cDoxnfsSkdyJypyNB3FNVGulwYhSrcxvj0hpMOz9H3MxBsYN3DOu2u3hoVmb6ZMWzbQr+xMaYp/mnXdEMiOfXsqjX2zmP+MOO2j5Vr9Oxl3D+jfuJO348RQt/7rB+LD4VA6/dyYxnfr6DJ1Auy4DWffKTWTPeYuOo6/xjul83u10u+xxXKHhrH3penI1GFFoMKJ8lFW5mfT1Vj5emc/O3VVEhbnomhjFNcPTOat/MgBbiyp5du525m4oZmux7Wy2f4cYrh2Rwaie7evMb+zLK9hQUMHUy/txz6cbmL9xF1FhIVx0ZCq3jOpEYXkN9366kS9/KaTGA6f3SeThM7sSFRbSYB6TL+vLPZ9sYNGW3USGuhjTL4m7R2cRHcBbRt9tLOapb7bxw9YSqt0eeqdFc92ITE7tnehN4/YYnvl2O1N+zGFbcRXhIUJmQgQXDU5j4tDg14GbsjSXUJdw3uHJ3mGrc8opKq/hmmPSvYEIQEZ8BMOy4pi5qoCyKndA26g1cVeWsXX6JPIXf0xV4U5c4VFEpXUl/dRrSB5yfvqjdwAAIABJREFUFgCVeVvZ/vmzFK+aS2X+VgBiOvcn44xraT9gVJ35rXh8LBU5G+h321Q2vHUPu1bPJyQiitQRF9HpnFuoKS1k49v3UrjsS/DUkHjk6XS9+GFCwqMazKPvzZPZ8NY97F67CFdYJElDxpA17m5CIqKbXa/i1d+xbcZTlGz4AU9NNdGZvck84zoSB53qTWM8brZ/+gw586ZQVbANCQknIjmTtBEX0WHUxBbYuntvx6wXqS7OptN5tzUejMQmEhab2GB40lFnsu6VmyjfvqbO8PD2wf89qdZHgxHldceMDXy4PI9Lj0qjd1o0uyvdrNxZxuItJd5gZOm2EuasL+a0Pol0SohgV0UNU5flcembq3j70r4c3y2+zjwrqj2Mf20lI7oncNcpWXy2qoAnv9lGTHgI01fk0zM5iltHdWb+pl1MXppLSrsw7jwlq9483Fz42kpvXYjFW3bz6qJsthRV8vrFfZpcp49X5vOHKWsYnBnLDSMzCXUJ037K44q3V/P0b3tw7uG2pGHS11uZNHsr5w9M4ZpjYqms8bAmt5wFm3c1G4yUV7kpr/YEtI1jI0MIC9m7ip7biyuZu6GYUT3bk9Iu3Du8ssYuMyqs4fyiw0OoqDGsyiljcGbsXi0v2Da8cQd5Cz4kbeSlRGf2xl2+m7KtKylZt9gbjJRsXErxz3NIHHQaEcmdqCnbRd78qax68lL63vg28X2PrzNPT1UFK58YT0K/EWSNu4uCJZ+xbcaThETEkL9oOlHpPel83q3sWj2f3LmTCYtLIWvsnXXm4a6sYOUTFxJ32DCyxt7F7nWLyf7qVSrzttDn+tebXKf87z9mzXN/ILbbYDLH3ICEhJK3YBqrn76CHlc/TcqwcwHYOn0SWz+aRMqx5xM7+ho81ZWUb1/DrjULmg1G3JXleKrKA9rGIVGxuEKbf0mvsnAHW6b/g6yxdxLWrmHA0ZSq4p0AhMYm7dV06tCkwYjymrW6gAmDU3ng9K5+05zUM4Ez+9U9uVwxNJ1Tn13Gf77d1iAYKSqv4YYTMrnqmHQAJhyZytBJS3jki81cPSyde0/rAsBlR3dgU8Ey3lyc3SAYKSp3M2FwGneNtsMnHt2B5Jgwnv9uB1/+UtigRKZWeZWb2z5az+heibx4YS/v8IlHd+DsF5fz0MxNnN0/GZdLmLm6gFE9E5h0bsP6Gs15Zu52/vH11oDSTpnYl+Fd45tP6OP9H/Pw1HtEA9A1KRKXwPxNu7hmeEfv8MoaD4u37AZg5662159dwdJZpI6YQNcJD/hNkzDgJJKOqtu4ZvrJV7Ds/lPZ9tl/GgQjNaVFZI65gfRTrgIg9fgJLLl1KJunPkL6KVfT5YJ7Aehw4mUsy91E9uw3GwYjZUWkjZhA1ri7bNpREwmLS2bHzOcp/OnLBiUy3ukqy1n/+m0kDhxNrz+96B3eYdRElj98NpumPETy0WcjLhcFS2eSMGAUPa6YFODW+v/27jQwqups4Ph/1sySZLLMZF8hgbDvSxAFxSJWZRMVrKKItta2rq3Yt6611gWlitZia1WsVUREQJGtgIAGEdkhBEggIXsymeyZyazvh0mGDNkmmDAs5/eJuXPuvWcWcp859znnOaNo/dsUrFnkU9v+f/gMXdq4TtvlfvIMqogkIifO7XJ/Cr5aDBIJ+tHTuryvcPkRwYjgEaySs6+wjsKqRmJD2i4K3HLxNYvNSYPNAS5ITwrmyyPGVu2lErhjZKTnsUImZWhsIBuyKrlzVKRX25EJQRwoqqfKbCdE7f3VbA5mmv1qXAz/3FnMpmPtByPbT1ZT2WBn1hADpnqb13OT+oTw6tYCThjN9I3QEKySc7zczInyBlINnQ+5tzRriIFRCb6NPvSP0nbp2AArDpQTopYzua/36wzTKJg+SM/Kg0Ze3nyaWUMMmG1O/vZNPsam1+vriM2FRK4Jpu7kPhorCgkIb3vtElnAmVsoTpsFR2MDuCC4bzrGH75svYNESuTEOzwPpXIFgclDqdy/gciJd3o1DUoZSX3uAez1Vci13gt4NgczzWIm/8odjOzf1G4wUp25HXtdJYb0WdhqTV7PhQyeRMHqVzEXn0AT2xe5Jhhz0XEaik6giUlt83jtMYybRVDqKJ/aeud3tK3q8DZMe79mwIKVXZ62XbrtI4w7Pyd68i99OpcgiGBE8Hj6ukQeXJnNmNf3khahYUJvHVMH6hkSeyYT3mp38sb2AlYcMFJQ1ei1f1uroei1ClRn3UYIVrm/drE674BH17T97GAkMEBGZJDSq21UsJLAABn5ld59aCnH6B6ynr/sWLttjPU2+gILJsUz75NjTHzrAL3CVVzZS8cNA8K5wodRjMQwVY/NWtlXUEu20cxdoyLbLI740o29cDhdvLmjkMXbCwEYFhfIr6+IYfH2QgIDLq58EYDEW58m+90H2btgDJrYNHQDJqAfPZXApCGeNk67lYKv3sCYscKTM+LRxhdREaxHqvD+jJqnnJ69WJtc4/7Mzw5GZKpAlCHeAbQyNAqZKpBGY367r8dckgPAsb/Pb7eNrdYI9CV+xgKOvTWPA09NRBXZC13/KwkfeQO6tCva3beZypCIypDYaTtfOG2NnPr4T+jHzCA4dXSX9jXtXc/Jj/6P0CHXkjjrT93SH+HSJ4IRwePn/cMZnRDMpmMmdpysZtm+ct7ZWcxjE+N4ZGI8AM+sz+U/P5Yyd2QkoxODCVHLkUpg+b5yvjjUxsiItP312mTtrOXWXcUbmw/z4o3JJLUTLPSPdI+CjEoIJuOhYWw+XsmOk9VsyDKxdHcps4cZeG16x7du6hsd1FsdPvUpRC3vUsXlz/aXA3DrsIg2n9cGyHj7lj48O8XKKZOFULWcPhEa/ropD4Be4Rff1N7wET8nOHU0pgObqM7cQfm3yyje+A5xUx8jfuojgPv2Qem2/xA5cS7BqaPdQYNUSvm3yzHu+qLVMTv6Zd9eZeFuKyLadJzkO19EFZHUZhNNnHv0IDh1FMNezKDy4GaqM3dg2reB0q1LMYyfTcq81zo8jcNSj6Ox3qcuybUhSOXKdp8v2bqUxopCUu55HUuLQMvltOO0W7EY85Grg1qNHFUd3sbxdx4gOHU0qfcvEWuHCD4T3xTBiz5QwZwRkcwZEYnZ5uDOj7L427YC7r8iBrVCxupDRmYNMfDXG70Loi3bW9ZjfaprdFBaa/UaHSmpsVLX6CA+tO3bSQBJTRdinVrOVb07r5cVrJIzY7CBGYMN2B0uHlmVzbJ95TwwPpbe+vYXEFuS0TM5I1a7k9WHK+hjUDO0xehUWyKClES0eH+25VQTq1OS0kG/L2SKYD2RV84h8so5OKxmsl6/k4Iv/0bMlPuRKdUYf1iNIX0Wve74q9d+ZTuW9VifHJY6rFWlXqMj1soSHJY6AvTx7e7XHIDINTpC+l/V6XnkmmAMY2dgGDsDl8NO9nuPUP7tMmKvfwB1VO929yvasKTbckYaKwpw2a0cfrF1voe1soR9C8YSPflXJN32tGd79bGdHPv7PWji+5H2uw+8ZiMJQmdEMCIA7qmt9VaH5xYKgFoho7dezc7cGuoaHagVMqRSCWf/YMw2mtmQZaInvbuz2JPACvBORhEA1/ZpO18EYELvEELUct7cXsjkPqGcXWzQWGdDH+ieUWBqsBGmOTO7QC6T0DfCPWpSbbF32LeeyhnZdLySKrOd34yP6bxxC8v3l3G4uJ7nr09CcpFVEnA5HTgs9V6rdsqUatRRvak5thOHuQ6ZUt000uH9RTSXZGPat6FH+1e86V1PAitA0cZ3AAgdcm27+4QMmIBcG0Lh2jcJHTLZK98FwFZjRBHsnq1mqzN5zVqRyORoYt3J1/aG6g771p05IxFXzkHXt3WwkvPh4ygCw0iY+QSqyDOJ7rUn95L1xl2oIpLp9/BHXoucCYIvRDAiAO7RhxGv7eH6fmH0j9QQopZzuKSeT/aWckVysGdK6ZS0MD7dV4ZGKWVglJbTlRY+/LGUFIOGw8W+DRF3VYhaxqrDRkrrrAyPC2JPfi0rDxqZ0FvHpA6CkcAAGQun9uLXn51g4t8PcMsQAzE6JaW1VvYW1JFjNJPx8HAAJr61n9EJwQyJCcQQqCDHaOb9H0rorVcxKLrjAKKnckY+21+OTAozB7deBK3ZPzOK2FNQx4i4QLRKGd/n1bDqkJEpaaHcPfriW8/BYaljz2MjCBt+PZr4/si1IdSfPkzpjk8ITrsCpc79XoQNm0LZt58iVWrQJgzEYjxN6dYP0USnUH/6cI/0TaYJwfjDKqzVpQT1Gk5tzh6M369EN2ACoYMntb+fOpBedy3kxDu/5sBTEzGMuwVlWAzWqlLqTu7FXJLD8JcyANj/5ESCU0cTmDQERbABc0kOJVveRxXVG23CoA771505I9q4fmjjWk+bz132DHJtCGHDp3i2NRoLOPq3O3HZGzGMm0XVoS1e+yiCDYQMODMiVJ+fSeX+jQA0FBwFoGDtm0gkEmQaHdGT5nXLaxAuLiIYEQD3WhXzRkex42Q1m49X0mh3EqML4DfjY/nN+DMJfs9NSUIll7LuaAXL95XRW6/mpZt6kV1u7rFgRKWQsWyue9GzFzbloZRJuXNkJE9N7vwP78/7h7NqvpK3dhTywe4S6hsd6AMV9I/UsmBSgqfdfWNj2HTcxDs7i2iwOogMUjJ7WAQPTYjt8rog3aGi3sbWE1Vc1SuEqOD27+2nRWpYm2ni9W0FNNqdJIereXZKEnePjuowX+dCJVWqibpmHtVHd1B5cHNTNeAYYq//DbHX/8bTLmn2c0gVKir2rqPsu+Woo3rTa+5LmIuzey4YCVDR/7FlnPr4KfJWvIBUriRy4p0k3vJUp/uGj/g5yidWUfj1W5Rs/QCHpR5FsB5tfH8SZizwtIv52X2YDmyiaOM7OCwNKEMiiRg/m9gbH/JpXRB/sBhP42ioAiBv+fOtng/um+4djOQdIn/VQq82BatfBSAgPE4EI5cpSbclaQk9QiKR/PaOERELX57a++LLROwGzSuw7nlshL+7IrTD5nCS9Pxu0t9tf0bJxa55BdYRr+7xd1cEH536+Clryeb3/uhyuXxLpBH8StT8FgRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxIJrMIFbcW8Af7ugiAw4PEV/u6CIFzSxMiIIAiCIAh+JYIRQRAEQRD8SgQjgiBcVvJXv8bO+W1XA74YHXllFjvnx7JzfiyHX5zu7+74pCpzu6fPO+fHUrr9Y393SfAzkTMidNlrW/NZ9E0Bhc+l+7sr3WLW+0fYmVsDwKiEIFbNH+jnHp0fpyrMjF+83/P4wativRaCEy4e6ugUYm94EEWQ3mt71eFtVPz4JXWn9tNQdBycDsb+M8/nAnYNRScoWLOI+ryDWKvLkEikBBgSiRh/G5ET7/Qqtuew1FO0/h/U5R6g7tR+7HUmYm94kISZC1odVxObRsq9izEXn6Bw7Zs/7cULlwQRjAgCkKJX8+BVsei1vq9yaaq38ZdNeWw6VkmDzcmAKA2/vzrep6J8ZbVWXth0mgNFdZTUWLE7XcSHBDB1YDj3pccQGOBdRyf2mZ1tHmd8Lx2f3nWmzkhzoNie24dHsHCau9haRKCSxTNTMDXYeXZ9rg+vWLhQKYINGNJvbrXduOsLjD+sQZvQnwB9PI1luV06rtVUhL2+ivDR0wgIjcbldFCb/SO5y56h+uh3pP3uPU9bW52Jgi//hjI0Gm3CQKozt7d7XKUuAkP6zVRnZYhgRABEMCIIABgCFdw8pP0aMGez2JzcujST/KpGfpUeTbhWwbJ9Zdz5URYfz+3HFZ1U5q0028mvsjC5bygxugBkEgmHiutYvL2QTccqWXPvIOQy7+XcR8YHMXdUpNe2lpV6Aa7vF0ZSG3VyvjhoZGt2FVenngmUtAEybh5iIL/SIoKRS1TCzCfoddcrSOVKsv/9MOVdDEZCBk4gZOAEr21R19yNTKujdMsHmEuyUUelAO4AY8Sre1CGRmEx5rNvwdjuehnCZUAEI4JwDj76sZSjpQ18cHsaP+vrLtZ361AD17x9gGfW5fK/B4Z0uH/fCA0r7zn7dlAkvcLVPL8xj29PVTMxxXuEJSE0oNOAqX+Uts3KwIu+KSBUI++wyvGFxrRvA8feuoc+9y8hfNRNXs9Zyk+z74l0Yn/+WxJu/iNOu5XCtW9SdWgrlrJTOBrNqAwJRE74BVHX3ttp9eK9j48huG86KfNf99qev/o1CtYsIv3fhV7b6/MzKVizyF1JuNGMKjKZ6J/dS+SVc7rnxXcTZWjPFEtUhccDYG+o8WyTKgJ67HzCpU8EI5ewDVkm7vnkGEtu7cNNA8K9njtdaSH99X389spY/nhtAla7kzd3FLL1RBWnTBbMNgcJoSp+MSKSe8dGdfrHfMzf9pKeFMzrM1K8treXX5JZUs+ibwrYmVuD2eYgOUzFvWOjmTPC+5f/hWrNESMJoQGeQARArZQxe1gEr2zJ50R5A6kGTZePGxcSAEC1xd7m81a7E7vThUYpa/P5tuw+XUOuycK80VEo5RdPznrIoKuRaUIo37WqVTBi3PUFAPqxMwFwmOso2bqU8FE3oU93b6s+so3cZc9iq68iYfofuq1ftdm7yXxtDgGGRGKmPIBMpaXywP84+cHvsdcYib3hdx3u77Q14rD4VlRSptIiVQR0R7d/EkejGafVjLOxgbpT+yhc/zYKXSSaNir7CsK5EMHIJezqlBBC1DJWHSxvFYx8cdAIwMzB7oS3ukYHS3eXcNOAcM+2bTnVPLs+lyqzjT9c032JjbtP1zLnw0wSQwN44IoYtAEy/neskt+vOYmx3s7vrup4pkOj3Ul9o8Onc2kDZAR08wXY6XRxpLie69LCWj03LC4QgINF9T4FI82vxWJ3crS0gZc2n0alkDImIbhV23VHTaw6ZMTpgqhgJXeMiOB3V8a1up1zts/2lwNw6zDfb0NdCKRyJeEjb6A8YwX2hmrkmjO3voy7VqOJ748mti8Acq2OEQt3e124oyfdQ/Z7j1C88V/E3fiQV7LluXK5XOQsfRxNbBoDnvjCU0k36pq7Ofb2fRR89TqRE+9Erm0/b8i4axU57z/q0/l6z1tExPjbfnK/f6qi9W9TsOZMvTlt0hB63/UKMqXaj70SLiUiGLmEKeVSbugfzooD5VSb7ejUZz7u1YeN9I/S0DfCfcHUqeXsfnSE14X7nrHRPPJFNv/aWcxDV8V1y69ql8vF42tySIvQ8MX8AShk7mPePTqK+z49xuvbC7hzVCQh6va/mqsOGXl0VY5P51s0vTe3DYv4yf1uqcpsx2J3ERnU+uIW1bStpMbq07HOfi299Sren9OXqGDvYw+LC+SmAeEkh6kwNdhZfdjIq1sLOFrawD9v69vu8S02J18eqSAtQs3gmECf+nQh0Y+ZTtn2/1Kx52vPLZD6/EzMRcdIuOVJTzuJVIZE6h4tcjnsOCx1uJxOdP3GU/7dcszF2Wjj+7d5jq5oKMjEXHScpDl/xmGupWVIHDr4Wkx7vqY2+0dCh1zb7jFCBk6k32Of+HQ+TUz7n+35ZBg3i6DUUdjrKqnO+o6GgiyvWzSC8FOJYOQSN32Qnv/uKePrzArPLZDMknqOlZl58mdnRjtkUgkyqfsXtt3hos7qwOl0Mb6XjuX7y8k2mtvMReiqzNIGjpeb+fP1SdRaHNDiz/m1fUL5OtPEj/m1HeY2TEwJ4ZO5vg0PNwdb3clsdwK0GZw1B3OWpjadaX4tdY0O9uTXkpFbQ42l9ajPV/cN8no8e3gEv/v8BCsPGsk4Vc24dhJmN2SZqLE4eOiq7g3IzpfgPmNRhkZj/P4LTzBi3LUKJBL0o6d5tS3f+TlFG96hoTALnN7voaObLpzmEnfgmPvJ0+R+8nSbbWy1FR0eQxkSiTLk4rgd2UxlSERlSARAP3oaRRv/ydFFtzP42U1oYlL93DvhUiCCkUvc2MRgooOVfHHI6AlGVh0yIpHAtEHeaxJ8fqCcdzKKyCprwHHWtbStC+S5yDGaAXh6XS5Pr8tts01Fva3DY0QGKdsclehuNRY7FtuZN0ImlRCuVaBuCjisbQQcjU3bVD6OIrV8LT/vH866oxXcu+w4n8zt1+kU4QfGx7DyoJFtOe0HIysOlCOTnrkdd7GRSKWEj55G8cZ/Yq0qRaGLoOKH1QT3GUtAWIynnXH3GrLffZCQQdcQPekeFDoDErmC+rzDnF7xAi5XJ8FhOzlRrrOCGlwuAOKmPkpQ6qg299FE9+nwVA6rGYe5tuP+NJGpgy7IWyH6MTPI+/Q5jN9/TsLMJ/zdHeESIIKRS5xUKmHawHD+ubOY0lorEYEKVh+uYGxiMDG6M/fX1xw28uDKbK5JDeGeMdEYAhUoZBIOF9fzwqbTOJv+CLenvawFh9N7v+ZHj06MY1RCUJv79Okk18JsczSNqnQuSCVDrfA92bOlp9flevItwJ1cuuuR4YSo5ajkEkprW9+KKWnaFhl8bsHSdX3DUCukLN9X3mkwEtf0+VU2tB28ldVa2ZZTxYTeIa2mAF9MDGNmULxhCcYfVhOYPIzGigJib3jQq41x12oC9AmkPbgUifRMINhYlufTOeQaHfaG6lbbG8tPez1WRSQDIFWoCOl/VVdfCgAVP6y56HJGzuayNQJgr2/9ngnCuRDByGVgxmADSzKKWX3IyLC4QAqqGnnwSu8k0dWH3LNDlt6ehlR6JrTIMzX6dA6dWk61ufUMkNOV3vsnN62BoZJLfVocrC1rDlecl5yRB66I8RpRUCvcFzmpVEL/KC37Cuta7bOvwL1tcPS53dJyuFzYna52Z9O0lGuyABDezkJtKw8acTjhlqEXV+Lq2bSJA1FHp2LctQpLeR6SpsTWls4EIGeCX4fVTPHm9/CFKjKZ6qwMHFazZyTCYszHtG+9d18SBqKK6k3x/94l4srZKIK8E8NtNUYUwR2PQl2oOSPWqlIc5loCDImexNz2Xk/Jtv8AEJg89Lz1T7i0iWDkMjAwWkuqQc2qQ0byKi0oZRJuOGt2TXMA0nIcw2xz8N6uYp/OkRymIiO3GrPN4RmJyK+0sD7L5N2XKC299Sre/b6Y2cMjWl1IjXU29IEdr4J6vnJG+kRo6NPO/lMH6nl2fS6bjlV6pvearQ6W7SsjLULttZ+p3oapwU6sTom6aUpue69z2d5ybA4XQ2PPJJtW1NtavU8Op8uz0uqkdvJrPttfRoha1uasn4uNfsx08lctxFKSQ8iga1rNVgkbNgXTnq85+sZcwodNwV5fRdl3y5GpfAsKIyfOpWL3lxx9bTb6MTOw1Zoo/WYp6uhU6vMOetpJpFJS5i0ic9Ec9j85kYgr56AyJGKrq6Dh9BFM+zcy9p1THZ7rfOaM1OdnUrl/IwANBUcBKFj7JhKJBJlGR/SkeZ62pz9/kfKMzxj28veo9O51RHI+XIC9rpLgtHQCQmOwm2uoPrKN6swdBKWM9Eytbla8+X0cDdWe5Nba7N0UfOleuyV06ORuSSIWLk0iGLlMTB+kZ+GWfHIqLFyTGtJqtsqUtDC+zjQx979HmZIWTpXZzvL9ZWh9XM9i7qhIvjxSweylR5kxWI+p3sbS3aWkGtQcLDqzpoJUKmHR9BTmfJjJxLf2M2d4BImhKioabBwpaWBjlolTT3e8cuP5yhnpyB0jI/hkbym//fwEv0qPRh+oYNneMgqrG/noDu9A6f0fSlj0TQGf3d3fk9uxeEcB3+fWcHVKCPGhKhqsDnafrmVdlole4Srmj4327P/BDyWszazgZ33DiNMFUGOx81VmBQeL6rl9eAQj41vf7jpUVEdWmZk7R0Z2+9Rmf9CPnUH+qoU4LHUYxrQuBmdIvxl7QzUlm9/j1CfPoAyJwHDFbQSljODoa50vRKZLG0fyHX+laP0/yP30OVQRySTf/hcaio57BSMAQSkjGfzUOgq+eoPyjM+w11UiDwpHE51C0m3PdNtr7g71eYfIX7XQa1vB6lcBCAiP8wpG2qIfPZXy7z6jbMcy7LUVSORK1FG9SZj1J6KvvcczgtKseMMSGivOlCOoObaTmmPuUgbK0GgRjAjtEsHIZWJGUzBS1+hg+uDWw/Y3DzFQbbbz3g8lPLP+FBGBSm4bZmBEfBBzPjza6fHHJev46w3J/OO7Ip5bn0tyuIq/3JDM8bIGr2AE3Muar/vlYN7YXsBn+8upNNsJ18hJMWh4ZkpSd73kHqVWyFh+1wD+simPf+8qwWJz0D9Ky39+0XniKbhnDhVWNbLykJGKehsSiYSk0AB+Oz6WB8bHEKw6819zVEIQ+wrqWLG/DFODHYVMQp8IDQun9mLO8LZvQV2sa4u0R2VIbLUK6tmiJ91D9KR7Wm0/e7/4aY8RP+2xVu2irr6LqKvv8toW3tT+bOroFFLvu3BqqrgcNmy1JiQyOXLNmTVqIsbf5nPOScr811utQKsfPa3VrKWODH9ll0/tnHabe2q0j4m8wqVP4uokMVHwL4lE8ts7RkQsfHlq79YFR4RuMev9I9gcLt6f0xe5TOIVCFzKnE4XVWY7RTVWrlty8Jyr9tocTpKe3036u/k90EuhM0demeUZfQhKGcXAP67yc486V5W53WvEqtddC4m86vZuPcepj5+ylmx+748ul2tR560Ff7s8/uoKQid+zK9l0Cs/MiohiFXzz64Zc2nKq7QwfvF+f3dD+IkSb30ae0MVgNcqtRcybcIgryTezqZDC5c+EYwIl72nr0ukqmkmkO4yGRUB95LyLROBE0LF4NvFKDBpsL+70GWKwNBznhotXJoun7+8gtCOi3GZ9O6gVsjOeXq1IAhCd7r40+wFQRAEQbioiWBEEARBEAS/EsGIIAiCIAh+JXJGLlKxz+z0qd0tQw28PiOlh3vjVtlg471dJaQnBbdbuO1CtGxvGbWNDu5Lj+4+Asv3AAAS1ElEQVS8cQ/4dF8Zj67KQSqB/z0wpNWqsa9tzWfRNwV8++BQksMvvKJpHdk5P7bzRoBh3C2t1rjoKba6Sko2v0dw33R0aePOyzm7Q9mOZTgstUT/7L7zel6LMZ99CzpeiLBZ3NRHPeuy1J8+TN5nL1CbsweJVIau3xUk3vqUp/pvVxSsXUzdyf3U5R7AVlWCfuzMC2qdF+GnE8HIRWrxTO8AY91RE+uOmnhqciKGFsuMJ4advxkSVWY7i74p4NGJcRdXMLKvjOIaq9+CkWZOF7y6JZ9/zT5/9Uh6Wsq9i70em/auw7R3HYm3PoUi+MyCbOdygTpX9voqCtYsIm7qoxdXMPLtMqyVxec9GFEEhbf6HEu3/ZfaE7vcAaTkzAC7Js49O8tcnM2Rl29GEawnYeYCnLZGijf9i8MvzmDwMxtQ6rq2GF/+ypdRBOsJTB5KZVXJT39RwgVHBCMXqZuHeP9nzjVZWHfUxHVpoR3+enY43YXYLoUlwi81g6K1rMsycaiojkGXyAwfQ/rNXo8tZbmY9q4jdOh1qCOT293P5XTgctiRKgLabSOcH7IATavPsTpzB7UndqEfMwOJrPVlJO/zFwEY8PjnKEOjAAgddA0HnptM4do3Sb79z13qw7CXdqIyuBfk83W0Tbi4iGDkEpZxqppbPsjklZt6Udvo4MPdJRRUN7JsrrtGSoPVwRvbC/nysJGiGiuhajmT08J4YlI8oZozoysbs0ws21fGwaJ6Kupt6NRyJvQO4Y/XJhAVrPQ6F8Cibwo8RdyabxM134r46I40fsyvZdm+cqrNdkYnBLFwam9iQwL4YFcJ//q+mOKaRvpGaHj5pl6tpt362udZ7x/hlMnCqnsG8OTXuezMrUYhk3DjAD3PTUlC1VSBd8zf9lJQ5a4s3PLWV+Fz6T3wiXTs11fE8Ic1OSzcms+Hv+i8EGB2uZmXN58mI7cai81JikHDfenRzDorUB3zt71EByt54YZknlmXy77COoICZMwZHsEfro73qtIMsDO3msXbC9lXUIfN4SQtUsODV8X1WMG96qwMMhfeQq+5r+Aw11LyzYc0VhTQ/7Fl6NLG4WhsoPCrNzDu/hKrqQh5YChhQycTP/MJFIFnigSa9m+kbMcy6vMOYqutQK7RETJwAgkz/+i5IDafC6BgzSIK1rgX52y+TVT27afkvP8oaQ9/RG3Oj5R/uwx7fTVBqaPpfddCAsJjKdnyAcWb/kWjqRhNbF96zX251Vofvvb5yCuzsJSdYsATq8j9+Emqs3YikSnQj7qRpDnPIVW4Rzb3Pj7GU/Ol5cW4syXy/cFhqafq0Bb0Y2Z43ncATVwaurRxVOxe3eVgpDkQES5dIhi5DPx7VzE2h4tfjIhEpZASEaSk0e7k1qWZHC9rYM7wSFINak5WmFn6Qwl78mv56r5Bngv2sn1luFxw16gowjRyso1mPt5bxt6CWjb9eggqhZRUg5qnJify/MY8ru8XxvX93Beus28TvbQ5nwC5hAeuiKG01so7GcXM+ySLGYP0rDhQztxRkZhtTt7+tpD5y46R8dAwFDJ3P7rSZwCLzcnsDzNJT9Lx5ORE9hbU8dGPpYRr5DzetOz5c1OSeGFTHlVmO8/6WBfH5nBSa3H41FatkHoq9XYmVCNn/thoFm8vZE9+LSPaKIDX7FSFmanvHsIF3D06inCNgtWHjTy0MhtjnY37r4jxal9Wa+WO/xxl6kA9UweGs/VEFYu3F5IQEsCcEWcqyK7NrODXnx1neFwQj0yMQy6VsOqQkXs+OcZbN6cwo426Rt2l+H//xuWwEXnVL5AqVShDInDaGsl89VYaCo8TedUc1NGpmEtOUrJ1KbU5exj05FeeC3bZjmWAi6ir70IeGIa5JJuy7R9Tm7OXIc9tQqpQoY5OJfHWp8hb/jxhw68nbPj1QOvbRPkrX0KiCCBmygNYq0op3vgOWW/OQz92BuUZK4icOBen1Uzhurc59vf5DHsxw1M0rit9BnBaLWS+Nhtd33QSb32Supy9lG77CHlQOAkzHgcgafZz5K14AXt9FUmzn/Xp/Wyu/+ILqVKNLKB78pEaCjJx2a0E9RrW6rnA5GFUZ+6g0VREQFhMG3sLlysRjFwGjPU2dvxuGLoWlXrf/raQw8X1rJ4/kCEtytWnJ+m4++Mslu8vY+4o96+av9+c2uqCOjktlFnvZ7I+y8T0QXoMgUquSwvl+Y159IvUtLqN1EwmgZXzBiKXuX+NO5wulmQUU20pZetvhqBpOk+ISs6fvj7F1hNVTG76Rf7v74t97jO4c1genhDnyQWZOwpqLHY+2lPqCUam9AtjSUYRVoer3T6fbffpWs8oUGcenRjHY1fH+9QW4P5xMSz9oYRXtuTz6V3tVzh9aXM+NY0O1t43yPNezB0Vycz3jrBwy2luHWogTHtmpCivspF/z+7LlKYgce6oKH72jwN8tKfUE4yYrQ4WfHmSyX3DeLdF3srdo6OY9u5h/rIxj2kD9a1GUrqLrdbIsL/u8FrSvHDd29TnHWbg/60mMGmIZ7suLZ2sxXdT9t1yoibOBSD1l39vdUENHTqZzFdmYdq7Hv2Y6Sh1BkKHXkfe8ufRxPVrdfvBQypj4IKVnlsQLqeD4g1LKG2oZsjzW5EFuJOM5doQTv33T1Qd3krY0MmAO6jytc/gzmGJu+nhM7kgE+dib6ihdNtHnmAkbPgUijYswWW3tt/ns9Rm7/aMAnWmZeLpT2WtKgVAERLZ6jll0zZrVYkIRgQvIhi5DEwfpPcKRABWHTIyOEZLfEgApnqbZ/uIuEA0Sinfnqz2XNibAxGXy0VdowObw0VfgwadSsb+wjqmD9L73JfbR0R6AhGAUQnBLMkoZsYgvScQARiZ4B4VyDVZzqnPAFIJ3DHSu6rt2MRgNmRVUtfoIDDAtxGLs/WP0noto96RxC4usa5Ty/nluBgWbslnZ2416UmtE4EdThdbTlRyRbLOKyhTyqXcmx7Nb1acYFtOldcoRmSQwhOINEtPDObzg0bP4+0nq6lssDNriMHr/QWY1CeEV7cWcMJobjXbp7vox0xvVVvFuGsV2qTBBITHY6s1ebYH9hqBNEBDdea3ngt7cyDicrlwWOpw2W1oYvoi0+ioO7Uf/ZjpPvcl8qrbvXIhglNGUbxhCfqxMzyBCEBQykjAnQtzLn0GQCIlYsIdXucP7juWyv0bcJjrkKnPLX9IG9/fq/5LR7ozgdhpdf+flcpb5/s0jwg1txGEZiIYuQwktXFBzKmwYLE5GfTKj23uU9HiYpRjNPPi/06zPaeKeqvTq12Nxd6lvsSFeP+BCla5A4JYnfd2XdP25poxXe0zgF6rQK3wDjiag7Iqs/2cg5EQtbxHl1G/d2w0//6+mIVb8ll5T+tgpKLeRoPVSaq+9bB6qsG97XRlo9f2s99fcL8XXu+v0QzA/GXH2u2bsd5GT831UUUktdpmKc3BabXw48OD2tzHVlvh+be5JIfTn79I1ZHtOBvrvdrZG2q61JeA8DivxzJNsHt7WOxZ292fj72+6pz6DKAI1iNTen+W8hbHPddgRK4N8Uv9F6myKeCwN7Z6zmmzeLURhGYiGLkMtMyj8HC5GBEfyO/buYXQXDCu1mLn5vePoJBJeHRiPMnhKtRNx3tgxQmcrq71pb0Rflk7k3u8Du9jnz3n6uB2gsvVxY63YLU7vS7iHdEqZWi7GPQEBsh44IoY/rLpNN9kV3W+gw9kPtxaaX5LXrwxmaR2poT3j+yZURHAK4+iZZ8Ce48gfvrv29zHc9E213Lk5ZuRyBXET30UVWQyUqUaJHDinQfA5Wxz//Y7084XUtrOZ9ni++Rrn5tJ2jsX4OLcv6dOu9UrSOqILECLTKU953O11HwrxtZ0u6al5ls4yjZu4QiXNxGMXKaSwlRUmx2d/sLPyK2hvM7GZ3f391o7xGxzUH3WBVki6Zlcgma+9rmrutrrH/N7Lmek2d1jovjnzmJe3ZLP1anerzdcq0CjlHKiaSSjpexy97aE0K5PiU0KdwcDuh4e+ekKVUQSjobqTn/h12RlYKspp/8fPvNaO8RhNWOvr/Zq29PfU1/73GVd7Hdt9o9+yRnRxPZDIlNQe3IfkRPv9Hqu7tQ+FMF6lKEiX0TwJoKRy9S0QXpe3pzPigPlraaCOpwuaix2QjUKpE1/AM/+ffaPb4tajYpole5feGcHKee7z12lVcqosdhxuVw+Xah6MmekmVoh47dXxvL0ulzsZ73RMqmEa1JDWZtZ4bUmic3h5N3viwmQS5hwDsHEhN4hhKjlvLm9kMl9QlslLRvrbOgDu/7+/hT6MdPIX/ky5RkrMIyb5fWcy+nA3lCDIjC0xeiC93tVtO4frUZFpAHuEYCzg5Tz3eeukgVosTfU+Pw99VfOiEwdSMigazDtWYt15gLPKEhDQRbVWRlETZzb4wGhcPERwchl6pfpMWw+XsXDX2Sz5XglI+ODcAF5Jgtrj5p4/Jp4bhsWwaiEIMK1ch5amc280VFoA2R8d6qaA4V1hGq8vz6GQCWxOiWrD1fQK1xNqEZOfGgAw+Pan6LaE33uqiGxWrZmV/HMulyGxQUilUiY1kFSbk/njDS7Y2QkSzKKOFRc3+q5BZPi2ZFTxW1LM91Te7Xuqb17C+p4anKi10waXwUGyFg4tRe//uwEE/9+gFuGGIjRKSmttbK3oI4co5mMh4d3x0vzWczkX1J1cDPZ7z1M5aEt7oRRlwtLWR6mvWuJn/44EeNvIyhlFPKgcLLffYioa+YhU2mpzvqOulMHkJ914VfqDCjDYqnYvRp1VC/k2lACDPEE9eqe1+Zrn7tKmzyEqsNbyf3kGQJ7DUMikaIfM63d9v7KGQFIuPkJDv3lRo68PJOoSffgtFsp3vgvFEHhxN7wuy4frzxjhWedFYCGwiwKvnSXDwjuM5bgvr4tVy9cuEQwcplSKaR8eld/3skoYvVhI+uzTATIpcTqApgxSM/4plsyIWo5/72jH3/emMfiHYXIJDAuWceKeQPavFWxeGYqz23I5c8bc2m0u7hlqKHbghFf+9xV94+LIddk4fOD5bz3QwkuFx0GI+dLgFzKQ1fFseDLk62e6xWuZvW9A3l5cz4f/FCCxe4kRa/m9Rkp3DL03NcC+Xn/cFbNV/LWjkI+2F1CfaMDfaCC/pFaFkw6/wtPSRUq+v/+U4o2vINx12pMe9cjVQQQEB6LfswMdP3GA+4Lb79H/kve8j9TuHYxSGXo0sYx4PEVbd6qSL13MbmfPkfup3/GZW/EMO6WbgtGfO1zV8Vcdz+WslzKd35OyZb3wOXqMBjxJ01MHwYs+JzTK17g9MqXkEhlBKddQeItT55TvkjZt8uoOXZmUcKG/Ewa8t1/f+KmPiqCkUuA5Kck8gk9TyKR/PaOERELX57aW6SfCxckm8NJ0vO7SX83399dEQSPUx8/ZS3Z/N4fXS7XIn/3ReicKFAiCIIgCIJfids0giAIwnlnq6vE5bB12EauDUEqV56nHgn+JIKRC5+t0SHupQkXLgmAy+XzLA9BADj+9n1eeSBtOXuqdle4HHYX4FsRKcHvRDBy4SvNNVlsQPdUsRKEblbRYEciV2CrMaLU9VwhPeHSknjr09gbOl6UTRvffn2mzjSaCq1ARacNhQuCCEYufJsPFNYFVJvtrerLCMKFYN1Rk0uuUJRVHtgUGXnV7f7ujnCRCEwa3GPHdtos1Bz9Tgn8r8dOInQrkcB6gXO5XLUqhXT9n74+ZXF2de11Qehh+ZUWXtuab7aZ65cUfvVGfcvCcILgL4Vfv22XyBUHXC5Xib/7IvhGTO29CEgkEq1WKf0m1aDpN3dUpHZUQhCBSllXV4cWhG5hd7ooq7WxIcvk+OCHkkazzfmE1eF6S6pUL1QEhd8fN/VRbejQnyHXhoocEuG8cTns1ObsoWzHJ40Ve9YanY0No10uV5G/+yX4RgQjFwmJRKICputUsnkOJ0PtTpe6y0VVBKEbSMCpkEqqbE7XGrPN+R+Xy7UbQOKOPGbKNMH3ORsbrna5XDKJRNrFCnWCcC5cEpfTIZWpAvOcVvMHLod9icvlKvN3rwTfiWBEEIQe0RRAd61ksSCcO7PL1dXyzMKFQgQjgiAIgiD4lUhgFQRBEATBr0QwIgiCIAiCX4lgRBAEQRAEvxLBiCAIgiAIfiWCEUEQBEEQ/EoEI4IgCIIg+JUIRgRBEARB8CsRjAiCIAiC4FciGBEEQRAEwa9EMCIIgiAIgl+JYEQQBEEQBL8SwYggCIIgCH4lghFBEARBEPxKBCOCIAiCIPiVCEYEQRAEQfArEYwIgiAIguBXIhgRBEEQBMGvRDAiCIIgCIJfiWBEEARBEAS/EsGIIAiCIAh+JYIRQRAEQRD8SgQjgiAIgiD4lQhGBEEQBEHwKxGMCIIgCILgV/8PeqXm1WcBU08AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HInWzLf-84ta" - }, - "source": [ - "#### Plot decisions as function of covariates" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 265 - }, - "id": "0EdmyR-39cGt", - "outputId": "992dd9e8-abed-4f2b-a3cd-2d12e507ed05" - }, - "source": [ - "plt.scatter(X[:, 0], est.predict(X))\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQt0lEQVR4nO3df6zddX3H8eeLy2UWfxXXayZtXYlDsk5U9AYxJBvxxyjoKOrcYLrNzcg/YlwkNTAMbjijrpnORBaHzjgdypgiaxRT3WQxIeC4WH4IWFOZSi9uXIWyGaqU8t4f56Cnt/fec27vac/tp89HQnrP9/v5fs+7hT5z7jnfyzdVhSTp8HfUqAeQJA2HQZekRhh0SWqEQZekRhh0SWrE0aN64lWrVtW6detG9fSSdFi69dZbf1RVE3PtG1nQ161bx9TU1KieXpIOS0m+P98+33KRpEYYdElqhEGXpEYYdElqhEGXpEb0vcolySeAVwMPVNXz5tgf4MPA2cAjwJuq6pvDHlTL07qLvzTqEXQEefIxY7z3NSdz7imredd1d/KZb/yAx2vf/eNjR/Hw7j08fcU4Cex6ZA/Hr1zBpjNP4txTVnPdtmk2b93O/bt2s/LYcapYcP1ces/Rb+0wjhtU+v3fFpP8JvAT4FPzBP1s4G10gv4S4MNV9ZJ+Tzw5OVletnh4M+YahbGjwmknHMeN331wUcetGB/jdS9ezedvnWb3nr0DrX/fa0/eL7jXbZvmkmvv3Occ860dxnGzJbm1qibn2tf3LZeq+jqw0J/cRjqxr6q6GViZ5FkDTydJi7D38Vp0zAF279nLZ79x30Axf2L95q3b99u+eev2/c4x39phHLcYw3gPfTVwX8/jnd1t+0lyQZKpJFMzMzNDeGpJGtzeRd7/4f5duwfattD2pR63GIf0Q9GqurKqJqtqcmJizp9claSDZixZ1PrjV64YaNtC25d63GIMI+jTwNqex2u62yRp6MaOCqc/5xmLPm7F+Bjnv2QtK8bHBl6/6cyT9tu+6cyT9jvHfGuHcdxiDCPoW4A/SsdpwMNV9cMhnFfL3Pfe/6pRj6AjzJOPGeNvXv8CrnrLS3njac/mqOy/f+WKcQKsXDHOccd2vl69cgXve+3J/NW5J/O+157M6pUrCHDcseMLrp/rw8pzT1m9zzkWWjuM4xZjkKtcPgucAawC/gd4NzAOUFUf7V62+BFgA53LFv+kqvpevuJVLpK0eAtd5dL3OvSqOr/P/gLeeoCzSZKGxJ8UlaRGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGDBT0JBuSbE+yI8nFc+x/dpIbkmxLckeSs4c/qiRpIX2DnmQMuAI4C1gPnJ9k/axl7wKuqapTgPOAvxv2oJKkhQ3yCv1UYEdV3VtVjwJXAxtnrSngad2vnw7cP7wRJUmDGCToq4H7eh7v7G7r9RfAG5PsBK4H3jbXiZJckGQqydTMzMwBjCtJms+wPhQ9H/hkVa0BzgY+nWS/c1fVlVU1WVWTExMTQ3pqSRIMFvRpYG3P4zXdbb3eDFwDUFU3AU8CVg1jQEnSYAYJ+i3AiUlOSHIMnQ89t8xa8wPg5QBJfp1O0H1PRZIOob5Br6rHgAuBrcA9dK5muSvJ5UnO6S67CHhLktuBzwJvqqo6WENLkvZ39CCLqup6Oh929m67rOfru4HThzuaJGkx/ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRgwU9CQbkmxPsiPJxfOs+b0kdye5K8lnhjumJKmfo/stSDIGXAG8EtgJ3JJkS1Xd3bPmROAS4PSqeijJMw/WwJKkuQ3yCv1UYEdV3VtVjwJXAxtnrXkLcEVVPQRQVQ8Md0xJUj+DBH01cF/P453dbb2eCzw3yY1Jbk6yYa4TJbkgyVSSqZmZmQObWJI0p2F9KHo0cCJwBnA+8LEkK2cvqqorq2qyqiYnJiaG9NSSJBgs6NPA2p7Ha7rbeu0EtlTVnqr6L+A7dAIvSTpEBgn6LcCJSU5IcgxwHrBl1prr6Lw6J8kqOm/B3DvEOSVJffQNelU9BlwIbAXuAa6pqruSXJ7knO6yrcCPk9wN3ABsqqofH6yhJUn7S1WN5IknJydrampqJM8tSYerJLdW1eRc+/xJUUlqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqxEBBT7IhyfYkO5JcvMC61yWpJJPDG1GSNIi+QU8yBlwBnAWsB85Psn6OdU8F3g58Y9hDSpL6G+QV+qnAjqq6t6oeBa4GNs6x7j3AB4CfDnE+SdKABgn6auC+nsc7u9t+LsmLgLVV9aWFTpTkgiRTSaZmZmYWPawkaX5L/lA0yVHAB4GL+q2tqiurarKqJicmJpb61JKkHoMEfRpY2/N4TXfbE54KPA/4jyTfA04DtvjBqCQdWoME/RbgxCQnJDkGOA/Y8sTOqnq4qlZV1bqqWgfcDJxTVVMHZWJJ0pz6Br2qHgMuBLYC9wDXVNVdSS5Pcs7BHlCSNJijB1lUVdcD18/adtk8a89Y+liSpMXyJ0UlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaMVDQk2xIsj3JjiQXz7H/HUnuTnJHkn9P8qvDH1WStJC+QU8yBlwBnAWsB85Psn7Wsm3AZFU9H/gc8NfDHlSStLBBXqGfCuyoqnur6lHgamBj74KquqGqHuk+vBlYM9wxJUn9DBL01cB9PY93drfN583Al+fakeSCJFNJpmZmZgafUpLU11A/FE3yRmAS2DzX/qq6sqomq2pyYmJimE8tSUe8owdYMw2s7Xm8prttH0leAVwK/FZV/Ww440mSBjXIK/RbgBOTnJDkGOA8YEvvgiSnAH8PnFNVDwx/TElSP32DXlWPARcCW4F7gGuq6q4klyc5p7tsM/AU4F+S3JZkyzynkyQdJIO85UJVXQ9cP2vbZT1fv2LIc0mSFsmfFJWkRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhw9yKIkG4APA2PAx6vq/bP2/xLwKeDFwI+B36+q7w13VLhu2zSbt27n/l27WXnsOFXw8O49HL9yBZvOPIlzT1m96PMs5tgnjpvetZuxhL1VP/81QHXXHXfsOO/+nd/Y75zXbZvmkmvvYPeexxf5Oz88nP6cZ3DVW1466jGkI1bfV+hJxoArgLOA9cD5SdbPWvZm4KGq+jXgQ8AHhj1oJ4Z3Mr1rNwU89Mgedu3eQwHTu3ZzybV3ct226UWfZ9Bje48D2Fu1z6/Vs/ahR/aw6XO373PO67ZN845/vq3ZmAPc+N0HecPHbhr1GNIRa5C3XE4FdlTVvVX1KHA1sHHWmo3AP3a//hzw8iQZ3piweet2du/ZO+/+3Xv2snnr9gM6zyDH9nv+2fbsrX3OuXnrdtpN+S/c+N0HRz2CdMQaJOirgft6Hu/sbptzTVU9BjwM/PLsEyW5IMlUkqmZmZlFDXp/95XxwVrT79hBzr3QMQdyvCQtxiH9ULSqrqyqyaqanJiYWNSxx69ccVDX9Dt2kHMvdMyBHC9JizFI0KeBtT2P13S3zbkmydHA0+l8ODo0m848iRXjY/PuXzE+xqYzTzqg8wxybL/nn218LPucc9OZJx0RlxSd/pxnjHoE6Yg1yFUutwAnJjmBTrjPA/5g1potwB8DNwG/C3ytqooheuKKkaVe5TL7PIMe23vcgVzl8sTXXuUi6WDJIN1Ncjbwt3QuW/xEVb03yeXAVFVtSfIk4NPAKcCDwHlVde9C55ycnKypqakl/wYk6UiS5Naqmpxr30DXoVfV9cD1s7Zd1vP1T4HXL2VISdLSHAlv60rSEcGgS1IjDLokNcKgS1IjBrrK5aA8cTIDfH+e3auAHx3CcRZjOc8GzrdUzrc0znfgBp3tV6tqzp/MHFnQF5Jkar7LckZtOc8GzrdUzrc0znfghjGbb7lIUiMMuiQ1YrkG/cpRD7CA5TwbON9SOd/SON+BW/Jsy/I9dEnS4i3XV+iSpEUy6JLUiGUd9CQXJakkq0Y9S68k70lyR5LbknwlyfGjnqlXks1Jvt2d8QtJVo56pl5JXp/kriSPJ1k2l5Al2ZBke5IdSS4e9Ty9knwiyQNJvjXqWWZLsjbJDUnu7v57ffuoZ+qV5ElJ/jPJ7d35/nLUM80lyViSbUm+eKDnWLZBT7IW+G3gB6OeZQ6bq+r5VfVC4IvAZf0OOMS+Cjyvqp4PfAe4ZMTzzPYt4LXA10c9yBMGvBn6KH0S2DDqIebxGHBRVa0HTgPeusz+7H4GvKyqXgC8ENiQ5LQRzzSXtwP3LOUEyzbowIeAd/KL+0YsG1X1vz0Pn8wym7GqvtK9tyvAzXTuMrVsVNU9VdX/jt6H1iA3Qx+Zqvo6nXsNLDtV9cOq+mb36/+jE6X+d5s5RKrjJ92H491/ltXf2SRrgFcBH1/KeZZl0JNsBKar6vZRzzKfJO9Nch/wBpbfK/Refwp8edRDHAYGuRm6+kiyjs6Nbr4x2kn21X074zbgAeCrVbWs5qNzA6F3Aku6ndlAN7g4GJL8G/Arc+y6FPhzOm+3jMxC81XVv1bVpcClSS4BLgTevZzm6665lM63w1cdytm6z913PrUlyVOAzwN/Nuu72JGrqr3AC7ufJ30hyfOqall8HpHk1cADVXVrkjOWcq6RBb2qXjHX9iQnAycAtyeBztsF30xyalX996jnm8NVdO7mdEiD3m++JG8CXg28fNj3dx3EIv78lotBboaueSQZpxPzq6rq2lHPM5+q2pXkBjqfRyyLoAOnA+d0b/X5JOBpSf6pqt642BMtu7dcqurOqnpmVa2rqnV0vvV90aGMeT9JTux5uBH49qhmmUuSDXS+fTunqh4Z9TyHiZ/fDD3JMXRuhr5lxDMdFtJ55fUPwD1V9cFRzzNbkoknrvRKsgJ4Jcvo72xVXVJVa7q9Ow/42oHEHJZh0A8T70/yrSR30HlraFldpgV8BHgq8NXupZUfHfVAvZK8JslO4KXAl5JsHfVM3Q+RLwS20vlQ75qqumu0U/1Cks8CNwEnJdmZ5M2jnqnH6cAfAi/r/vd2W/fV5nLxLOCG7t/XW+i8h37AlwYuZ/7ovyQ1wlfoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktSI/wcFDUSp/D5FigAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "tags": [], - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "c90e1Sei80dv" - }, - "source": [ - "" - ], - "execution_count": null, - "outputs": [] - } - ] -} \ No newline at end of file From 83d64851312c882ba3f5f3d24591a25bee5f8973 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 12 Apr 2023 09:59:09 -0700 Subject: [PATCH 10/33] Update issue templates --- .github/ISSUE_TEMPLATE/task-template.md | 10 ++++++++++ .github/ISSUE_TEMPLATE/upgrade.md | 4 ++-- 2 files changed, 12 insertions(+), 2 deletions(-) create mode 100644 .github/ISSUE_TEMPLATE/task-template.md diff --git a/.github/ISSUE_TEMPLATE/task-template.md b/.github/ISSUE_TEMPLATE/task-template.md new file mode 100644 index 0000000..805c6f6 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/task-template.md @@ -0,0 +1,10 @@ +--- +name: Task template +about: Tasks related to launch and organize the KDD 2023 workshop +title: "[Task] " +labels: '' +assignees: '' + +--- + +* Deadline: diff --git a/.github/ISSUE_TEMPLATE/upgrade.md b/.github/ISSUE_TEMPLATE/upgrade.md index f854fcb..b60dfa8 100644 --- a/.github/ISSUE_TEMPLATE/upgrade.md +++ b/.github/ISSUE_TEMPLATE/upgrade.md @@ -1,8 +1,8 @@ --- name: "[fastpages] Automated Upgrade" -about: "Trigger a PR for upgrading fastpages" +about: Trigger a PR for upgrading fastpages title: "[fastpages] Automated Upgrade" -labels: fastpages-automation +labels: '' assignees: '' --- From 5830ca87ebb0e2283b60ad51839e6f47ae812aa0 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 14 Apr 2023 15:50:08 -0700 Subject: [PATCH 11/33] add the CfP page --- _pages/cfp.html | 61 +++++++++++++++++++++++++++++++++++++++++++++++++ index.html | 10 ++------ 2 files changed, 63 insertions(+), 8 deletions(-) create mode 100644 _pages/cfp.html diff --git a/_pages/cfp.html b/_pages/cfp.html new file mode 100644 index 0000000..54f27b0 --- /dev/null +++ b/_pages/cfp.html @@ -0,0 +1,61 @@ +--- +permalink: /cfp.html +layout: default +title: Call for Paper +search_exclude: true +--- + +# **Call for Paper** + +## **Important Dates** + +All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). +* April 30th, 2023: CMT submission portal opens +* June 9th, 2023: Workshop paper submission deadline +* July 10th, 2023: Paper decision notifications +* July 24th, 2023: Camera-ready deadline +* August 7th, 2023: Workshop + +## **Submission Link** + +CMT submission portal will open on April 30th. + +## **Aim and Scope** + +The workshop aims to bring together researchers and practitioners from academia and industry to share their experiences +and insights on applying causal inference and machine learning techniques to real-world problems in the areas of +product, brand, policy, and beyond. + +We welcome papers on a variety of topics, including but not limited to the following: +* Industry use cases where causal inference and machine learning are used in practice +* Challenges and opportunities for using causal inference and machine learning in industry settings +* Techniques for incorporating causal inference into machine learning models +* Methodologies for evaluating causal machine-learning models in practice + +We encourage submissions from researchers and practitioners working in industry, government, and academia. We welcome +papers that present new research results, works in progress, or case studies that showcase the application of causal +inference and machine learning techniques to real-world problems. + +All submissions will be peer-reviewed by the program committee, and accepted papers will be presented as contributed +talks or posters during the workshop. + +## **Submission and Formatting Instructions** + +* Submissions are single-blind—author names and affiliations should be listed. +* Submissions are limited to 6 pages (excluding references), must be in PDF, and use the ACM Conference Proceeding +template (two-column format). +* The recommended setting for Latex documents is: +`\documentclass[sigconf, review]{acmart}`. +* Additional supplemental material focused on reproducibility can be provided. Proofs, pseudo-code, and code may also be +included in the supplement, which has no explicit page limit. +* The supplementary material should be included in the same pdf file as the main manuscript. The main body of the paper +should be self-contained since reviewers are not required to read the supplementary material. The supplementary material +will not be included in the proceedings. +* Submissions violating these formatting requirements will be desk-rejected. +* The Word template guideline can be found [here](https://www.acm.org/publications/proceedings-template). +* The Latex/overleaf template guideline can be found +[here](https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-sig-proceedings-template/bmvfhcdnxfty). + +For any questions or inquiries, please contact the workshop organizers at [jeong@uber.com](mailto:jeong@uber.com) and +[zyzheng@berkeley.edu](mailto:zyzheng@berkeley.edu). We +look forward to your submissions! \ No newline at end of file diff --git a/index.html b/index.html index 2610784..e8457e2 100644 --- a/index.html +++ b/index.html @@ -31,12 +31,6 @@ The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming language. -## **Important Dates** - -* May 23, 2023 [AoE]: Workshop paper submission deadline -* June 23, 2023: Paper decision notifications -* August 7, 2023: Workshop - ## **Outline** | **Title** | **Duration** | Link | @@ -99,7 +93,7 @@ * Xinwei Ma, UC San Diego * [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact -### CausalML Team +### [CausalML](https://github.com/uber/causalml) Team * Jing Pan, Snap, CausalML * Yifeng Wu, Uber, CausalML @@ -109,7 +103,7 @@ * [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact * Zhenyu Zhao, Tencent, CausalML -### EconML Team +### [EconML](https://github.com/py-why/EconML) Team * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML From 45bf3ccb943841d0e750938ab9350081eccbe9b5 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 14 Apr 2023 17:52:31 -0700 Subject: [PATCH 12/33] replace cfp.html with cfp.md --- _pages/{cfp.html => cfp.md} | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) rename _pages/{cfp.html => cfp.md} (98%) diff --git a/_pages/cfp.html b/_pages/cfp.md similarity index 98% rename from _pages/cfp.html rename to _pages/cfp.md index 54f27b0..4d08a7c 100644 --- a/_pages/cfp.html +++ b/_pages/cfp.md @@ -1,5 +1,5 @@ --- -permalink: /cfp.html +permalink: /cfp/ layout: default title: Call for Paper search_exclude: true @@ -58,4 +58,4 @@ For any questions or inquiries, please contact the workshop organizers at [jeong@uber.com](mailto:jeong@uber.com) and [zyzheng@berkeley.edu](mailto:zyzheng@berkeley.edu). We -look forward to your submissions! \ No newline at end of file +look forward to your submissions! From b44ce722aaef571639f3b611cd3b5ba82e8d2416 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 14 Apr 2023 20:10:19 -0700 Subject: [PATCH 13/33] update abstract, add the link to CfP --- README.md | 37 +++++++++++++++++++++++++------------ index.html | 36 ++++++++++++++++++++---------------- 2 files changed, 45 insertions(+), 28 deletions(-) diff --git a/README.md b/README.md index 77b6824..7b97efc 100755 --- a/README.md +++ b/README.md @@ -8,23 +8,32 @@ ## **Schedule** -* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) +* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google +Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) * 9:00 AM - 1:00 PM August 7, 2023 [PDT] ## **Abstract** -In recent years, both academic research and industry applications see an increased effort in using machine learning methods to measure granular causal effects and design optimal policies based on these causal estimates. Open source packages such as [CausalML](https://github.com/uber/causalml) and [EconML](https://github.com/microsoft/econml) provide a unified interface for applied researchers and industry practitioners with a variety of machine learning methods for causal inference. The tutorial will cover the topics including conditional treatment effect estimators by meta-learners and tree-based algorithms, model validations and sensitivity analysis, optimization algorithms including policy leaner and cost optimization. In addition, the tutorial will demonstrate the production of these algorithms in industry use cases. +The increasing demand for data-driven decision-making has led to the rapid growth of machine learning applications in +various industries. However, the ability to draw causal inferences from observational data remains a crucial challenge. +In recent years, causal inference has emerged as a powerful tool for understanding the effects of interventions in +complex systems. Combining causal inference with machine learning has the potential to provide a deeper understanding of +the underlying mechanisms and to develop more effective solutions to real-world problems. -## **Target Audience for the Workshop** +This workshop aims to bring together researchers and practitioners from academia and industry to share their experiences +and insights on applying causal inference and machine learning techniques to real-world problems in the areas of +product, brand, policy, and beyond. The workshop welcomes original research that covers machine learning theory, deep +learning, causal inference, and online learning. Additionally, the workshop encourages topics that address scalable +system design, algorithm bias, and interpretablility. -Anyone who is interested in causal inference and machine learning, especially economists/statisticians/data scientists who want to learn how to combine causal inference and machine learning with real industry use cases incorporated in large scaled machine learning systems at companies such as Microsoft, TripAdvisor and Uber. -The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming language. +Through keynote talks, panel discussions, and contributed talks and posters, the workshop will provide a forum for +discussing the latest advances and challenges in applying causal inference and machine learning to real-world problems. +The workshop will also offer opportunities for networking and collaboration among researchers and practitioners working +in industry, government, and academia. -## **Important Dates** +## **Call for Paper** -* May 23, 2023 [AoE]: Workshop paper submission deadline -* June 23, 2023: Paper decision notifications -* August 7, 2023: Workshop +Please check the [Call for Paper](/cfp/) page for details on important dates and submission guidelines. ## **Outline** @@ -49,7 +58,11 @@ The tutorial assumes some basic knowledge in statistical methods, machine learni ### Raif Rustamov, Amazon -Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for brand advertising at Amazon. +Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on +shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel +metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video +creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for +brand advertising at Amazon. ### Ruomeng Cui, Emory University @@ -84,7 +97,7 @@ To be updated * Xinwei Ma, UC San Diego * [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact -### CausalML Team +### [CausalML](https://github.com/uber/causalml) Team * Jing Pan, Snap, CausalML * Yifeng Wu, Uber, CausalML @@ -94,7 +107,7 @@ To be updated * [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact * Zhenyu Zhao, Tencent, CausalML -### EconML Team +### [EconML](https://github.com/py-why/EconML) Team * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML diff --git a/index.html b/index.html index e8457e2..1e9b395 100644 --- a/index.html +++ b/index.html @@ -14,22 +14,26 @@ ## **Abstract** -In recent years, both academic research and industry applications see an increased effort in using machine learning -methods to measure granular causal effects and design optimal policies based on these causal estimates. Open source -packages such as [CausalML](https://github.com/uber/causalml) and [EconML](https://github.com/microsoft/econml) provide -a unified interface for applied researchers and industry practitioners with a variety of machine learning methods for -causal inference. The tutorial will cover the topics including conditional treatment effect estimators by meta-learners -and tree-based algorithms, model validations and sensitivity analysis, optimization algorithms including policy leaner -and cost optimization. In addition, the tutorial will demonstrate the production of these algorithms in industry use -cases. - -## **Target Audience for the Workshop** - -Anyone who is interested in causal inference and machine learning, especially economists/statisticians/data scientists -who want to learn how to combine causal inference and machine learning with real industry use cases incorporated in -large scaled machine learning systems at companies such as Microsoft, TripAdvisor and Uber. -The tutorial assumes some basic knowledge in statistical methods, machine learning algorithms and the Python programming -language. +The increasing demand for data-driven decision-making has led to the rapid growth of machine learning applications in +various industries. However, the ability to draw causal inferences from observational data remains a crucial challenge. +In recent years, causal inference has emerged as a powerful tool for understanding the effects of interventions in +complex systems. Combining causal inference with machine learning has the potential to provide a deeper understanding of +the underlying mechanisms and to develop more effective solutions to real-world problems. + +This workshop aims to bring together researchers and practitioners from academia and industry to share their experiences +and insights on applying causal inference and machine learning techniques to real-world problems in the areas of +product, brand, policy, and beyond. The workshop welcomes original research that covers machine learning theory, deep +learning, causal inference, and online learning. Additionally, the workshop encourages topics that address scalable +system design, algorithm bias, and interpretablility. + +Through keynote talks, panel discussions, and contributed talks and posters, the workshop will provide a forum for +discussing the latest advances and challenges in applying causal inference and machine learning to real-world problems. +The workshop will also offer opportunities for networking and collaboration among researchers and practitioners working +in industry, government, and academia. + +## **Call for Paper** + +Please check the [Call for Paper](/cfp/) page for details on important dates and submission guidelines. ## **Outline** From 57ee61f2a286c751b5c337d327173fcc847532be Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 14 Apr 2023 20:13:03 -0700 Subject: [PATCH 14/33] style fix --- README.md | 4 ++-- index.html | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 7b97efc..fd1a3c0 100755 --- a/README.md +++ b/README.md @@ -8,8 +8,8 @@ ## **Schedule** -* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google -Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) +* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 +([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) * 9:00 AM - 1:00 PM August 7, 2023 [PDT] ## **Abstract** diff --git a/index.html b/index.html index 1e9b395..fa5ff80 100644 --- a/index.html +++ b/index.html @@ -8,8 +8,8 @@ ## **Schedule** -* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Google -Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) +* Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 +([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) * 9:00 AM - 1:00 PM August 7, 2023 [PDT] ## **Abstract** From ecbc739385072f72a04175a68a8814dd3a2692cd Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Sat, 15 Apr 2023 16:03:51 -0700 Subject: [PATCH 15/33] fix the cfp link in index.html --- README.md | 2 +- index.html | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index fd1a3c0..38a76a6 100755 --- a/README.md +++ b/README.md @@ -33,7 +33,7 @@ in industry, government, and academia. ## **Call for Paper** -Please check the [Call for Paper](/cfp/) page for details on important dates and submission guidelines. +Please check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. ## **Outline** diff --git a/index.html b/index.html index fa5ff80..c61776c 100644 --- a/index.html +++ b/index.html @@ -33,7 +33,8 @@ ## **Call for Paper** -Please check the [Call for Paper](/cfp/) page for details on important dates and submission guidelines. +Please check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on +important dates and submission guidelines. ## **Outline** From 6195ea25295f62eea98f1448c29bbb2326fa5212 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Mon, 17 Apr 2023 08:44:30 -0700 Subject: [PATCH 16/33] update time to TBD. add Vasilis to keynote speakers --- README.md | 8 ++++++-- index.html | 8 ++++++-- 2 files changed, 12 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 38a76a6..ae043a7 100755 --- a/README.md +++ b/README.md @@ -10,7 +10,8 @@ * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) -* 9:00 AM - 1:00 PM August 7, 2023 [PDT] +* Date: August 7, 2023 +* Time: TBD ## **Abstract** @@ -48,7 +49,7 @@ Please check the [Call for Paper](https://causal-machine-learning.github.io/kdd2 | Paper #4 | 15 minutes | | | Break & Poster Session | 30 minutes | | | Invited Talk #3 by Ang Li | 20 minutes | | -| Invited Talk #4 by TBD | 20 minutes | | +| Invited Talk #4 by Vasilis Syrgkanis | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -86,6 +87,9 @@ in the form of a causal diagram. We further discuss data availability issue rega derivation of the selection criterion without the observational or experimental data. We demonstrate the superiority of this criterion over A/B-test-based approaches. +### Vasilis Syrgkanis, Stanford University/EconML + + ## **Accepted Papers** To be updated diff --git a/index.html b/index.html index c61776c..d5e1fde 100644 --- a/index.html +++ b/index.html @@ -10,7 +10,8 @@ * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) -* 9:00 AM - 1:00 PM August 7, 2023 [PDT] +* Date: August 7, 2023 +* Time: TBD ## **Abstract** @@ -49,7 +50,7 @@ | Paper #4 | 15 minutes | | | Break & Poster Session | 30 minutes | | | Invited Talk #3 by Ang Li | 20 minutes | | -| Invited Talk #4 by TBD | 20 minutes | | +| Invited Talk #4 by Vasilis Syrgkanis | 20 minutes | | | Paper #1 | 15 minutes | | | Paper #2 | 15 minutes | | | Paper #3 | 15 minutes | | @@ -87,6 +88,9 @@ derivation of the selection criterion without the observational or experimental data. We demonstrate the superiority of this criterion over A/B-test-based approaches. +### Vasilis Syrgkanis, Stanford University/EconML + + ## **Accepted Papers** To be updated From 28b9243f4771759805e63602e0c0ed34e3b8e6b9 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Mon, 17 Apr 2023 11:07:44 -0700 Subject: [PATCH 17/33] update the logo image --- images/logo.png | Bin 514901 -> 521071 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/images/logo.png b/images/logo.png index 64c392f26cf5bf2bd975544ebc8bf10935d4bdca..d3c5e1fdf919275f87bdb889f6f73be0e56befd8 100644 GIT binary patch literal 521071 zcma%E2|QH$+aF^_W5~W$(zL1Usf5I|FA8Ok7_E|+7Mc)F$iI}jbt@IorfgBN6mcSS zlhj3&ZKP5OQ!2{#K4a=Rx+O;?>_)NkP#T0Pj@JS5*4<|Mrhph&maI3{8 z@IS8?o5{TfkHbaozyUezYc{~YvHzWff3SNv|0bL|j2i?0rGR~tASPHn0nfXWOh^#t zf5x7UTV%Ur)hhV6?dCmOxBBe$^xZdkL(?tzLXy7Hc`pv9G9CLzY}NW{EF4aJ%nm!J zeNJoFm~QsnrRTB5chgoq#x6Rx4$h2W3LkfE-RD7J?DF>6Ysy$Sg?)u7e8#@kpF&|@ zvTx_YDNbu`C`)|zY^50K8R!{IF(*?f6tg{BwwbP9x}1AE{MW)Mp8NLEP4)Hn@87St ze~zB-p6&XxO-xMm4Gi@S4RzrP-Mt5V_IWULefCb}EW%r7>DIlQ_w1nW+u`d&!PfQI zg3`Xk-8Z^yP#Zo_`z+{WgM^EfkX zF;klzjIG{IOLy!7Q3Gk_^JW_wn6aPp+fM>YIkztH_4eIkOZV8k)qFPh7NM_(Uv0m4 z>z*aPyWlzd%mu3D-Y5Ly@Eh3_ItwT?G&UBYQ0OP2TQQbR*KghH>+Oe$+}>x$K667e z{gJ*NewVZ0HuKqY=W=fn{&x5sP9xqS{O#~NtoQ5yL3m)KVZvjRCHx)tdNX~@RD?{2 zW0&l2!7$CqX8L?1Hz#ilCA`PssJK;27uhkyJ~w{!uX_C2i1{`4uW8iE2hCmm);qg= z?oSv`I=?W)evi7sN_3Uk%H))nAydmQSo#L z_@Qb2|Gl0-Qo`erVAB6*ZT2+@68MhssSg!Kpe5CgW;)hGVQ7|H>*>TV71J~<(@So* z_ndyykk;xR6n(C-Va5aNX5G%&A@2EB#dP(q3C)#*=L?@+IwNyqwuO8CGa2O`%k4hV zCG+QZrKkUVX_@(Arj>hP_#4~)84sQ{&EM9Qe&V|9$CdZZ(7g|`x^I~_npW*?(^}1Z2TDUsM_Aj+V}~V{j^us zU2s=)cbUzoJGRhvTY6^uzX!s8*BNyqfq-wnbNc0?;R?Empq?6UwcVEF_L)TVFIH>1 zpGX?q7>V1N5oB3+5;dC}16;<)=O1t?J%_frP-`%NUIeaM!JwBAmJg5~d z|C`;ISti_krWzJ_RgG!cWt)*s>M2nO?mp=r@IY1$ z>$P?jU8Wx#|9TgrDTbdexANgbAF@pLcI4rkgYwhz2OC}{=Mw6-kcWFKvOJ?CijK1f?(ea({nG_itV; zD+LRCw@MF3AKEPZtn&G}GW~3l%PTDpoV*B*L=(q%YlVHB7eVwbO#BpfTki62hEB=Q z1Zm7$6gYfM8+XJmFP+p|a<(8REO_9Xi9_Fn5?lf-fVdJ(-6e>dwcq%pj0^ZUPeNks zFbTso??424mH);KV*wd2b!^l5!UG@DboJ%IVMT$qA zq{*wqPPEjG8e!oQA_1?OvuFA+5!mcS4rn*qz4BH0b@5T{tG?Zz`gUSaf^HzbzI~r* zW)S1HJtXtVpYLhQWx_ z4S*}ttc6j-zGs|5>1MiG0~N{e|AW`%m@_rzv$cyF67DA@(^6;Vo*BF)9`^B|*IMu2 zP&|1GMb7C=oT0U-shmX64yHSK==yW_fQdW1FFx#anF5-9GRwf%!j(X5Ll!N1xX0(L z^KgAFqC7t_OeAtndDP_3=Zb>Q&HA>#-J0dw;nIR&VrMNyl$81nr^RSVc`fW;YU4h2 z7&@K>+H#ea&j+oF@Z71mGGbsGQurl~<(^FNWb=fWlJ{+%N$+!*{_tm?>8+Xz!wvi^ z82(vb>!<${S&C%0o<>i3)7JR$GxoR^G`M8JVV&D z&&~qc)~xLrhUnu+Yc}sLRO-!BkB<5jaxTod-Mu4tPF;}YG;HDP`JyojHWz4woE){GnMYJ z*1$pO^Rr}fqE?uMFrC;^%s>F{X2m_j0@Ic$2I`f?A@N}$19cL0+^AxtZ;&$0SZd6( z#fK`Mul~5`x9Ci_q*7QahjT=Ur>G)IgL!H}GK1H9KE`mp&2B|Pt~88KN}L{ENEor@q9X-r>_~_}E9;g+(FLUu)QM48c-4ccQ`? zv4`Jkt9=cLfSoHhG+4Du8#9E1bnPxv|`LIw8x2C1A#aMc|*3iOJFW#{k zNpQfs#5o(#XV@#~EIyQ$@QR+6UAIY859o1lz_AhYMLAE{fUk<_zBp#+efq$QYa5~r zTsY6AO~ubrH%_O-G~IZPp|c2scJ2T_zXCmpB5R#Ig4XzzHy`NLe=wf=1G1HL_rme^ zP^Q_;I&$1u(?jJMezKyBWmtg-{k#HIM4lk$WJAdsTo|7-*ird5#H@ptzJ$QLvqr*gm3V={W!18!f+fLE%Y3K3hl76{M4^}J*O&ZVVY36BavTCm4 z5@eY%z;1L`UNY(Ij;N;*q8t+tss(-+;oA_qfvzbILkmvmhO|va_dVs>AjxiRLcPx; ztwXb>)g4tPTrAmH^O9B|N=$+k*tFm4wL3+?0a;J}w&M0LcQQ^z8CTX~SinI-AjMC~ zv()fVCY>fta?2U#bNx3j$xs0?W*G#MM8x=ZnnC*DIecgmo=Hpn(lfAogvB`m9_&2w7j}+s>t_`*U`pj1}A;@T{n<^6K5>>dgy(xWyUtn zHMDhzk9PLBXt9TH^s~n|MV}!IkFzurShRfiK2_00mr?)^(?Vvn=n!$O@qA-r?L(^9 z8%K!u1l&Fad?)q{M+Vkh;Q7YApQ5G%xNu(v_pCT1X<`O{tqfBnMm9f*l6y`|vh*Zv zs>U2q=fELdkOKubKUNme)5*UeIHll>WpQpYMBJR$!IslGV7^+*h9DlLbtvgnLMUxj z&OdiWmP;T2pVR9IwmggAV0?w-u}wIGh@tl(j`+}v_0raw+{mCalS0X*{9P`x2xS3q z_c^=akZ>$MnS-vCVx~BgY=~%nh^zy*1gu^{Arhhr)9N-E+smbv-AO$pYQAP00QFvM zDd0Yj8%FIFV%BUXqU{id@Qm5d@wuz}w%_9NkCc(;ZW_gQ z)sA*7Ebt7Dx*Wf(uUQRmc3ceY?%mG6zGjG)o@qUYVt!j7b?qb<{04{sR^e*_GcQ5 zPVO&pdKAQ|nF_5DW(;W7- zuDQtP6F!(o9-C1$1;-d)kGnx(*3eH?eN8*VyMT5apVwIDW-KAzHu>Q^^Ve5Jv>J+L zV(7H?gM^5oWss3>wSLQvkjh(2LQ@!r0~PqD(|eYxrIK4%qqjl&Mkv!^MPQ5X0Ta>0 z?V_q2si9vZMvSKmHZ4n$ho0lbL$BJ{i5;7au1ggbBA{N+{RgaIUx!5**B{W&XP3E( zkVyfye~sho5c`0Z64v*2ee+Vm=T}QGHuo_f@;R_ptc!Yx9tdoy_TmL%-f97|{&|F4D56IcbqsNSz*Yh+uPt`MLyoZBH#zePAKZ-tP^8J^ite3iwwfO9= z6wb7$+we1Tl5uWH_?TCnE_&R@P@v41O}CH`uWI&5ohD>Gm{<`%5{YnY$tw{I09U6t zh{ZXCNx&xMwx-NVn4$}L43rI%ZUA0 zae78`nW_+9jC`usjM!v}PT!m&pPcW#6M97veaj4}J{r%u7zi(?p|Ub9#8!$~P42br zuafNb(B96oEvW5m0Sm%ayFVdc?63pWkJHSw%Le0 zaFdpBbChlPG&dzrZVnG_*ta9wv4Z>J^RWU>0@H*gSZg6t_-a_;w5#>2%UwCaa(bEN0#d5A3}GS zt%m&Ma9Eo2cXXiFOPHZh>HwfqdtsRaCqrk`2f%*%q8dDFaS zH5AB@vX}f4MPlkgtfzMSgoBVrfa@3UPA0@G4!uebnD@;4`&pqb8EQyeZ_J|Q*@qKc z{zb~K`RVhV52Gb@Bb7q$c&j1ACe$yI(moNm%5Yr#;SVlC@(QwLmb~;crr(&j{-TGF zUSOf*>0n}M1BTqJnXLdrMYUs^^V32re`$$r%N`ISigp#>=aQL>BpssNn694tqJl*i zCJNF3x#4L*hMw4D)NfUwjF1GQ$fPlPTJKDS@AY;7hB5~)u}g9;?a1N;&oM!>kJjK; zESgTWAPZgpM8`mOj7I4bWY-z-@_hUELPZD_>-LTFxj&s!PqPk8n#6UW>wEgoIEIP^eAL5(0ipsEA7ML=`Q51 zAK~Khn?5WMqChU!8Ztj~?z^!?O)AhP?JtZqaGS(*6<@R+Z7!2GwOF$XpJfTgd`mmQHdD- zgrXcNDE3^6kX|3Jp(!lDO>&oxl4JgJMvk_v-uIpmGu}4L5{Ep}7>yD-ZHW;*Y(dKl zp$-K1CZY+KL5=0p72_*03ln61~nJoGZMK|v(qdAh+ z+~l5vddmQCwC}7-6hc+>6H!m%^p){6FR9qq;-U=@8$G0YIYUFH;iFOcJd;e}x{fLd zOIc<}CUR3w3~|x-g!L?aBF@%@sYIG9tQ~5?c>FB6m}H4W=xmcktw!z;HNjmt%X21Q zlcW8zOhZIfbu$}{>hPDBUeh8RM<8*9xbr^0@1+1GD03j{7(3u&iDG4ny2zaR;Bp}; zP{a|3O!*XvXGKWh0|yE1?4`oC+Mp~)%5QH`6tbRqfPL#NnI7xLvb=6ir&nax?h)pV zm4G_jIAA+3qu$4y5vM4mJ-M5w!KdT=t2PK-pDX`dq4#jn1mTBn(PwQ+QI7Usu#9RD zD2)?Zq8f^vjF3pX~|~X`)WRvix3^7=inV;iI5o z00zm7RKu%38eSkfB~s@*kj-Al*^h-R)hzE?Qy8;Q6cNmm)$d8o%q2tchL51um?6&b-n z@41)JVlq*qV_%V#V-0#HEKr!YN`U1cm3V!jIF#Xy$hKVtUJuWy!JS*%9xOyV9{9SLUBj7rK{9BZ3;VseYD1=A?h_^eGPyIP zYmmrEBqk%XW_k+UMx~tw;x1PAcngRdM|PFjJP&QBBzT368^r0H7Z%PuWt({!i4%4@ z3nZYW3AxDav2!*GmatduWz5z(6neukSI>F*Xcn`QiGRb(nbywb_*@8!5blA8c+jJ)Melk_dZQS+JKTbtR z;nV|QZsnP(+ZOY))C41Zyxxjsa;#|uqA&*qJ1OwC7c-^N%J}uJR^iM5eFDokE^jXt z@cmUmt&|MOBs0=U-oRc$6ih+p>BQGbUQD+c`NtljZZ0)wdW5Q-3N!8#6)P*E~Il*RvOm_V;0|S1OlZ_HihrtvKl^O-ZCS9~n>FAD4cEUW5d z3g`OO_7FsFE!eqHAVL+n=PC@bY3D>&K~9mO>QR&a{D?+dkge!*cHh~=Wqi{PMNL74 zwMiX9{<(SzeO_#M2)J}l+il&90(AN-H(>UUT# zr7+S#kVDWskki#Fy+KOmCBLchW<2U6O(=NX5q|Erm$11|gTdT?cHC3u1Jjn72I&$E zlb9{J0hU4m3S;G`YXs83luSmH$UzfRBz*Q?Tq@*JH}8S^D(2UH<$w28F<0%_W;wc&d8}-=OTK_o zt^#Dq`E@>JAoXj)Y$E~CvU<7KJ&g}yP@P+!yLx2`)ECCZH7h-yb&BAHn z?;9oK$j3^nAYd2X)};pscMLcyU7C7wF_PZuo~+?1WNtPa!TUaS#+?^Z8eKUBYhZk= z9A-fP1};om-bR9WPtJz&f~-EFJX6Xq%E5Qs*;N2^!IRY$Yok72p+$7;4^ts3F71cf_a4*Cy&zT@@ zyP#$H<{In0Awmzkq)n0QbzRgfXp>}sfw?fNrwq@JAaCE0P~+V|5MQAC54yH1vW+hk zImSvTb|#M#n)XR`rkR~rslnN*(Ty+N`uR~~7(_w6wT5Y*suH6Gc6lM{;6rlF;zZi4Tx!7V3J^R)O#>5A74m zjHAf0-^-RQLtCR>Tyft$k^f-shlFqV1&!OJCH#xaH$FuF^*t-ecin1e9b{y??DXKX zzE#oqo_Yje%Qr9A?4h_Vhr?A8u^{>(>X7+Y`JFTY>Y>X)YV)6TweU&vQ(=UdOAlR= zDSk&^-?nwbgyFO?FXAhfOG}g}4EZX@<%SRoD%j$D&Om z#eB3z@9=-&aDWTcT4V7ZnEMe?7ow-3=w(LuoP>+fW zEKvBAH^K&O-c+?-$|<43=Mn`BpD@>5;6(SBwG_S@^Y-;8QdVEL!oCh>TQth`c4p6W$uyW z%W{OZYVl#~r16)=9yMUrZlCzuQgV!FG%C#jGqB*Gc|!KU$cMzJwIYbG2Y}^4&-LNB zp@kE+{T_0lW_P6N6UBQ>C)>*ir*clNU{|}f9rlXJ$4pj|G#`v(%HZA-u$EGSF`Z?a{F7??zJq%f(B@vv~ zD%fL1D!~uqb@K(TDW_+<3{@laQ%E0b1)-V?AT#4otDJG#Afvx%w2wbZ!}-s70$G|< z^g#nD9ws7VrJf!N4O1hi?_y|b{66W)T8MP0N%yZaU1VLqqc;@tvgb|LAy4I zbo}`j?7}MA{@iBCF^7;G=X`#6y!jVoO~;L@*7GdLL<$kTp{xC!U{)HtZ7+V5U`$t%hp+t3UL)CtGVi}sDUVlINlRBvmPPhHd*aiNBj zA2#JythYg&`&97ozXt*X4gaSs7U`iQ8PlSVp5j9#kKl5}mAc`!Sk5FA;cd2p?Pzsf zy2rC<4nX@_kMS^eP%x;958cZ9g|`mDVG8~3=|f0kM&qtqZwGz&c1WewfElHz`1A7& zk@F>Rr#Q@tKjW&>8OLV!*PT5YMOk3G6*Obq>s4z_){$ ztS_7F?v5!?C*yxD5-hKHj?`|{tzg?MNnpXNt9S|;oxA#h$x$_%RPHE_k zay7y+WwFY>)*AE2jr_;**(3!mp+w+A8oI(Apw~WOjTN8zzo`(v2^VRCfzkcMXPa=W z_|uDwA1Dy=wOfTdbX-*?64t93z zR3#jRDW+|yYIS4v_t)FU7MSpLU2O*}3UxaWEfVa&Uzx|Mw_Sv4eLiQxr=G8eAYEuZ zmlzer(KB?_db6UZ^2Of{rKf97ZW~{KO8B8z>7xd;r-b2c2#j`ydMflx165=Ifg^+7MD&H#f_|kiB%Ioc2@11-*s>^_2dw4$D z%CjFoRpa&(QAeQx)OugP=9j>l_;PBH_k5(owC-!1q88I6RJ%A}d+lBxJv_+Sq6HwX zv$d`ViZoPGTbl?CpT>^{BUEG%FOf)M z_JRtiH*%|jd#4EP^qMUJs~pED;JY{7kqHLgyI^qbjr}M31SvXSKcVP$WFXB!Ub>+@ z%Y4!|L5YVd0O*|y{lMG9LK=urX+puNCUJFDr_#&cgDn+G?W<0+46+oOpb;p9eC2?A zu7|G#@}y~~Y|&fDfWr+hyi%$BLS7FQkXeb?yjj_$`oP?4=XjIZ91B!1I`mg?2HFX~uJ&G@sV z3Dw|x*PAp>^HR7}cbdV4(wAr$WE;7Ik%8FUFrN$F2U#*SMy_mNwm*0lRx23NIGF=F zZ0hs<&eI{NhZHk>r--Zaza42e>d6+9_7y|kd|<{7LDOym>_0S+@*;Vl_GCKHVrNHG zKc@NaLd>g?*n|3_#VXHpYJSZQbH;H&eQ^Ll_Nfp|NDPQ7R%|}|v zW+F1FCvRB^y6vjzUL*eK1X6>|%#_w_jwFb0+U z9{=c%0d#3ZW zi+Ev^UVEGQi)Un@?`Tl#TWpM08H|?V@h!~Y%}BIT|31L5M#^pe?mE&1G7q+Xe1J#O zGNR_~87%jBiI&EX8CSFocJUr5Y*}X~pG+nU20b5}B-F06!H$#!bfwpDL)Ce5zQu&Y zg;o+Cb1!YvqP-HPg=gwPvtWM=9B}{rG=1xz{2rW*A}n>m``T8X&QGDx|j%8rI6jTjkVsV>R8o7EsV1V5<# z*>qiyS=d3pCS&o%t;t+Q;F(Qvr9aTyTFfoU3t0!vM>yOB+dLVlPr7pOk%#C5q3M-j ztu~0E5cAXspCh9lPO}v&|Gm3Hq0*f3>HeE1v_KR0?p=Aevq^nC;TU1_T#|m3ym>CO zC6uf&R*O*BeA?bn;y98mQ0R^cuROupL+Wam_ue{Y&Ex44)=%7?{*-5oa!o27NZ+FU zGz*E548dV~Mpayvd{gtk%Nh2iojk{NIs=hCc?1BbF;?`wpUSH zrAxb)xQ!@Z8#3aUbe!ce|E}#vL3NU_55w`T!9CB%LJp-IlQxTovtMDu@#)UOw6h%8n3;qY&L+eZg>D`|EblK7?(Xw( z1wDs{jd92^j;HhEFVzIw>AEeujq6uiv`)Up-=NUE6h}&)DO5;%Ek2hS6^(h25Jgws zUm43`AGr@W@^aUTG;RWYGaQ}!>}z`KB1WL;%|}6Ng<3yCK++6*F6$?>xH0b455C;` zjGyDCIzjuS1oh!1H&E#GZc=J`lpGrN;%&LD`ACAICj5&ZQ{QprILqON^GClJGwyQ| zl0oM7jV9e(r_!47{Dc@JotbT6KD|GezYsACFSysPb*sTO*N zLfgW2Z#?HIw2>oZ1dxft<|1^fmgK$aeeY+*GXatr9Bp9zJj~C_dRNmFEX4-DCrxUK zlPNT9<7-~z!yZM?5(8%X?c=PJ2Ub3oIc{9i;FuWf0zK*AwpOV!_(}T9Z)?#kq)W#W z+A^A73eTVMv7lx~Q0~WDgiW5A z4y!xLr`Nqnb@2G;s~_{taL(or9D362t@Kn z$%1F0d$2sZ^@AP<7yxlq!*(`ug={p~O(J7H~;%x`KBci)r+z1}bR6Mph* z8>$@X+f<(An5|=`1G>eZeyCX3G3*=%&n661VRv!1Qk@hOi^7;OtfTr>#rWQ8d$GP2 zFXMkE6b(O|$q`q^76jTpz4IKTK4)LFEXb_qxy@I|@1JgtPviQU(;?XM9Gj%YEZkl^ zy`e%^$e?(XgUvI|k>#J&`*)_Q^cDxV6;ug=SP)jkOfcq`?(Z>kSZ0s5Fib7p@(0Ly z407^BhnX3*J0sj>13hk}Y+#blH*%Aoo97|dtT3wP&etIC$k%W*FWFeUKtUoVN=kKS zwy8F<_Ighh*i;Z^?S0E{ajEARgSu?dmSinjqQ%HjGhrIO{`P97FBp51L&~%{hCCFf znt-vF-_zg5b!ZsZ@-mk6H6L5_&-LWc2@Mh_Mhe2As3XAN{-Z`k$J3t~b8}-k%1N-T z0U4fva|lhB5|cv*Tvp`sYh59ULyBQ2`R#QD#Hzz#9scJNw{mR~hpdO_dv?==HQcUv z-CaoP6b7MhoH@v-vi%Y?QV51k3@Wq6Emei_d~8}`03t=d7tWF8qcWMo4qDoO`(cxmusD zks?-bWD)vJbTpT*O{yOetBPnemn`&?&lTRLpe0lduH>uO0bR_3>=k<#NQezZkFevy zS?OjZl`K9OP$xA@-IIsZd!R%4)UPd#Q@KLPe>NGf(NkPPJC!s-=MB?NLK8j`z{+>F zno#M8G=TQ@*6(iT@H9@UUpWOocvXv5T8OjcH57Qy#8!dxcMj`xp*h*%zsLEG9}kV; zbRE@#z>#&r4?H+tJfwzTOj*r4rFglS@H(OBF2qh3GR@9p6~@JqK<=%j5U=Jnxmt2D zZ?TQ?^K?-!;~Clksksx5v+DoyLJka(Q#skpTNopcsdRIh#RiMVs}pXLduKZk)vfMq z$SL8G%3FY=b#wq9S$}&26V~ZzH|F*%s+U2wtG8gsMD8`mLz6@2D>aGG&sQ?4D^`Q| z^$u@st{K)07ssEu_?B9FAU$9+? z!|)+l%@LR z0X+hZT))_kQeVK#vK#XpWSAc#ypR*;y15aFHWA2bxB0<+KL~9yl9{r*cd7$1f4r5- z{U)JlBoPhJ6xm~r8<-9^?j0!$)a1Gra}ktIV|MW7)L+hG_1sw0+qWg-*@^(s6Nm!a zXWXG)l|O2O^@&b*wM6lpU@NwN>{30zWq5_8YpGXgNU6%h?E_z~7PM^|#RY97*lEf@ zhU)9I7&(4QHvv0h#gbrf((}j8%;rpw-l@X|*9A0DY_=jw5^FA_N`n2>i{OC`*9x|? zs{mvT5q70|L4D9m8L|D$)?)QKN|x;4z)i=p>(1N_1{--0(NXWecd$_rxlg(#$DA}< z+W6>YLBYm1OwNbuwY0n{>B15lY+@qkx-)myz(x#KB72|W)MnU9KhUJLLOpZQWj^V# z$`{Rty%v|AtsA)egEoe+#Hn5X`^aV;4%o-`lueEh(~mrDs#iJud_7mkq38p)?jz{w zjrl$KVWTK)0p8bIqNU=-!??{O_Rz5Qi7Vm4ahq_wd#7+jn}ErgQm}#}XHzNZ=OZ6B#n#|b{8_=sy2u&?4Si@*Oi}9HlhfU+-^Y^=Qv;MAXrs>U z3aBWm9ly~Ma(fx;M)`|P?sOh-i7o~12qR2T!O2S>`^mRhmJTen{mW0z{MchhN(64` ze;%lZG;yTeBDPDT-Gpq@3RZmGVn$AFK-2Lc?oPmCm{2!p@5o`WwZ@u@%!j66$3M&+ z?mu)#@p&q95#lbJ*HSjn8P*oZL*gLpEe0;8yz+iO;nv~PSG1VUAwg}qvZJU!6#dGc zT+KrLEfrhdCEe#Z?PI7(3{D)(Ud^Ei8?Y{B71m8*BrjoQ>Nfr+A#R2qWSyW`99meW zQY4fUK)T^YGjqvj1SQH&Z#T zV4%oQ)y5Bw(;jvfhszRXyy$!4h2zV6E6d%CU%yz)=+5(yU_T=vAN=iIjuNKP*()|}mxppXU$fsaKzOMeSP1))~#qq7Hyyg3EPm0bW1ydh; zjKZUh8{&97f)#RCPOnSi{5X!*G67dEJY2}xbo+Z1^P89Y;Qu_Rx`)c|YQN_V8}O`| zhj$t?U=P34hUrjugx5_I*--(Qt3SPn(Y@p3AMhza^4e-7X%jD(dkgK3n64%l6O67c zS_#YOi4%NBY@9>Q839cp7#Z5CACqzPfdtm z@!qi^a)6)Wh~(TTX1&jiZ~w|IuXt?pj1}mckq|-mcky}1aUeKuD$mjC1*tWORjfkU z0c_-;`^*Ln4spZP3ix#$ZGT|ZJFrr!MSo)ur{4AhuS{)!wtaqw3A(%UGO1L zIp^8x9`gN*SH=A;vBL-#Ww4?UyD9jZ%)kwB-2jfN}OM#c(7X>%oq2I^$DJGPFw zMHe~#BO)}`E+oupx`DlvcNxD+XR`~4^6H9zg%JgX40hfk3MRBqGmnKxj2ctVPIA!lIE?$+P66&%3&N_aM=^~y3< z4gF63MQ(T-W&~`3F*T4l7}07jcdPp}x67oRJEd#m0J6H%dF%kY-a=gPU6oMvv0hI0 z9i2ICWly8UsY7yHN8=1F_QPdVO-*78IG}`3jqXr z5{x+$7e=#Az81e>^pKZ#{hlr)9K#Qpe2Q=kj5D;Vh-Eu0^#?5RYKVZto=H7V80@(` zsVQEzeD3tUzt5HO6c{v}RUAA6OsVfvt~i&JZNSm|_AXAsn;-{cUALFfEg<(?DvBX& zU*|G-My{^et3;*91$rWOn+h~J$2<36jb4v)Y3xJFt94l)_t=Gtm7U&^)V5;}=V8KY zaKAzHiR>XNTjS?kDve;uA@}D(1941UkDZtuA1V1J8e4Qm&B;Tl6A8fx`!-cWmEDA+|I^G^fYkJm2p)Khf6^)+q?e3EEUQ89S$*- zx@JHl6BFq?%Sv^Gjf)3Om)LeUj+>th93$$CH1fgr`p2uFw6xk4&a2}Og1xk7{+Py< zYRII%mVs9Wo5e{aMlW?Qk{ z>-TU9;b$VEdfSgR^x!qQV_WO9-IF+$B{~95oeb|E&?^cp{_^+e_(j%OU`uwLcKFp6&wR1 zu|rSQWd2M7TdF)yVmks7$W6WXb(yqs0g&Yi0N6(U#d%jtu8Nv` zm_2$jxxq82b;=Dk0qD^7E~}V&qdW6Lv*$a%ihDH2x5@jT{-L37o19a29htK1uPH`f zFTXpY<6QlWNR7X>`aFJBLf5@i1>4^0waka0ZCTB3&h9vUBQ4gt-GDi5&C!qFXN)j+ z&gUvulhsk$&FXSDDt@2RR(pwe0EH0?M%>zv&zYZcC4DQ~T9;fLn)#|^vMfh>ze@+c z>72}Z^E1;_sn@jsTSa+b{%cFFsPn+Lx)i>0v-f4p;#C?y#{ASxXDN-i4o4sx@k5Mm z)Bbmnj{6@x?dEteinXWq;|_2(bQ-2*G?o{=xS9KLhtT;IE@%l{UW3B=(dXC_Z&4VG zF39K36!c=RciJg$!O1)p5RQ7OG}XEgWM|Y&O#dc&xL;&JbO|9iHAiMJt!c5b&vf3l zkSv@t4$3{hAG?%Vguj|fcKQA!^nl4)r$wW+7N9TiPSU#|Kx1&Ad|R)7>(8%xZ=SM= zPPht8PTZAx2a^Ns3%;z?(0k%qm5@!_N9^BoP!?3#S6{(ObesL0tKLokRz`?+I(8Eh z4)c0%Jwi^-(1G25foMdP2_tQTgYW%%+hx-oLOdKfPt%1|*n0=}ZB7m|GB*0k2hG)T z*uThe)WVV^mn+BU8%SYQ#=E=sf94*(r(*?9h0!IjMT`d0St=abM(=OWVTk@j6U;d-tO<(6D; zSHN{N{*y9qypf5$?ZHoR1twLB2Vz}3<@1lsaN^&i^cLg)AR{z-&WP<*stnL49s({|=sWUz^o4KfTyJgi+Iox91$u z_JNI@d}5g`W{=MoB5|!c>X%d+wbzW+BgX`ziVsN=M}}^OakpSr!f`o+tmqW%r3FXG zPq$6ZUvMG(q4W8hp~H_=aom9|?;Vnl(!yF*iZ}`6N_dBd!F8V$Y%lx>`R%*AGUD4j zVjYi=XO1vS%dr^B$wYL2x_fLS-u(gNtY&C3<}ef!5X##Pw`d@gYts#$BzK*&*Np*wP~Mj*_g*WryC)xE2q&?2FLnr(G7cHcm3H}V^zcgPKX+X(kA^&$ zY(GYPGR90N2 zMrR}84EtF^_9wKk*#=r`NhYfvBG1N&+`SQMJtn87Mcp8Kh=l{05WTDp&7>7g!vDd; zR4A;}CL?2?N&U7Dj&qysui?F}b?-aRb3NTmx9HjKvl*eI=Fvc-iY_MWNcY0PtPfSD zoNWy!82ey8xw(=39$=N}bo!~tutfzot4w}7q$z}Eh!iq3uw!a}<%tQZ7J(c)dkyea zm*{hzea-M0LR^TmlOR~SeqnuTrez7)s0f(3im~h^9#;{Lw#!CHN&2_m>INIp1y38H_=!sXRGj!Z~qu+7ez70|@qIk!~B>}bES5J#>Sp$IT3J?d0vP47+j#Aay|EF+Rab6z&*2Xr zkEB0$DGVNa+bYuw%|CAk;;`-q*k#s>JobwO`)6hN&6O-`{aQI`;7=+`n8(W(w(Wes z^9r`kbF6#j)8mM3Xn5X5_Zdlb!I6wD>*obr;=mMk(Fm~3G(slLcR!42zpc_I@Jt)~ zGW088$vNN8>~mTMD-v#+M~bbuXTVg~h#Ywtwxl*_vKre}TY4ZnbJV|vcX?@A1;#_Y z0aeI?8mkg`e!@ij=}qICYU&APA>4|YCu33CHpWf%uWTQYvxJ@a-4Wdu@^9(k6NEjU^<+Pyt~31Z<*CO&J~&4#qI*gNo+y57KQc0?aPu=_xPA@kf+ z4ekuYhywqRjdm6K9G>4?@Y(;bWNe29Sq@>_D0!kL940_~$m++BLUDE9IX3wZf+jUg z;lZt6xwaW+h)o4vNttVGxg9GH5EJ~Q$YpiyQsU1pbBG;zHHthEl7C?0;MXu4+LR6l zO%TdUEm+1OSQU#RIYb$W1IEVxbuJ2ylG|dT|jCp5E9G0d@N_kJ(-txgt&7kGP zA48FkT<>=%JKZg$h)rlK+po;l0nQ!?ZDJP$j>PO}%@&5M+rkecj*{~k)guHC{@B{v zQCkrezmVfQQP`gE-`Bb^gQNDg(iJ4O7loP&PBV_6^G=1{kB~xG_(tHn_HasZGkEU+ z%fro$J$Aa60Le&xilckV!^Z{upl&Xw7u*B0oBt#(nWoRZPP;NXeD1A{f|(_7wRw)Q+2Y3tBm zM8rO4NFz%;(5)G!!~URwh^@olp?MTx_GY0O2ihAnX%T4sKFm0gr9^X?sEpbiL)w)N zNB(Fxj|qVRP{Vl583(dAJ!%d1R^gr4@PKw<6!4R906)pZ=S`2+HdiG)MN_7lN?&HT4g?==0A9ZgLo|-2AKdGQcfq|U*vv&hZM%<%% zv9rlX$d870{4ZtnSpha%cb8CZDX2M0adKxg9#XQ9)x8{S{rtU~wR@&?3~R+73VJcT zt}-;KCbV?}Q$*CkS1`PcB3^Y6 zZ~(1c$uH#tjX!o8odJ~_aPcB3lKZW=;FRkC|ml+I820B@C(YEjm@(D zQ=wys(D%{m@7}IW^v}pz4N5~F5L4wCzFPXwdZF$oWJieQRjoNQf=%+d=}o7)%1vwH z$dZD+^JrgSI=n1iLAkDTYs=#&p-24PN7=e(L+D1;|MlQo7cOGk<-dTEYcji%HK~+! zNVfs=vC+dL*?+wK2uZ!BhY*2R+>vbvPR=?5ang|zjFIn1Y$`h=1{}P0^ZQdKk~>AN zYiwy?INO@8!C-fcL!rGTCPqljpDRkNx!d=Ivl}6V@&b{pw5K#pJ=Q~JXK^c6Kw=)} zmhv~-ts=$Bm!|y5rEthyV!%~+TTRD_P&nnV62hUu?ZevV;Cn(g)GRRam(rfh8OR>- z;S{<((ifFBAGl&5q* z6^`hfQv6>?qhjIn|G2f+mO7JVEja|}o{$Gl)Yy^s1hP^)ijSg>bc|>BnGuhZaBZI{ zBX${G5NZb3AZMYCke!bt!a*mb9N)EB?YYszbF0k$Aay_yZA6WHtVe|{_YaqV?Vf<- zDVX8?&%G|N=)dfaprI+(rAsE7KYfb5KJq#CmMx=w|ER-fdL-KCrYX&c{Obl5Hv|aC z1`okExmqj}rI?M}?8!3=NJy#Q{uQ)9`tIHVJwrtBTAyLJa#od9`CrfYoc6$Iw(0GI zp{|Sx2knS#7}I|bEExUK_6aJ}=+l&PDXVTkM;rYG$xm&w_#9Xoy-LVFkttUg^B?+y zcU2vjnNcui2gVaM59^vVT4c_^oG(sI!b}-Vf8bB1Pl5NQFk}szqS!#1@BmDpqXT>4 z*~y!zkA+m^e=Fgvwp`b;(!f(}0o=6(0mL1gvy-F5e2cMZU`2g@v?3TV_;Lx}6TSN8 zMy&531xcH$agrifB>dfyzyVh^y2;&V{Pz!xq)Rx;GFwTlYaM$V_PHLIf&ce%Z*WFC zTFA-B6HDB)6?YZ>p&1It=a*5Mt{&^rVq2o;2{41efUSwp+10{2J+j|JIB{xJOLEYa z>#{EmJj)RRW(5-u8o~=t6_kyK_H^j`D0CG3@%eL?FcS*4?~p&e?OTx!1QGf<0Ktum zFG1))FA&USq{@BM|7qI#AGR!)BNN@jIo;`*4LoG_ZT81_V12wx3LMaR@#&9x2&F0# z-zQ7!st)>&-2Q_8vcysgz>r=w$0_odggK@i9y+%zD;mY zb{dv)dAO(=(Bi95FzP-rGw5 zX*ec^!>6_SvDD%}Ogf#G2vN}*0cv+f_!?ndB@U)?4ImJ z3?Le?vl5QyZ75;is|i^qQ94-Ux~+URUDlTxewXY zd{ua#_;up?`;DG(I{_8Y^%K*WDwe;njJ%Qw$_&bHJVY$WPseGNN! z2EUkS6)yH)pfhcjT-RS@qUNiBWr~!H<-p3kH+isayo2Ojqb)A;?8)4t_JY^P^7BpM z4|{f~XfA}k@8o+l){(knEH=$11G_8!<%AyxL z{`xON4MkNEM%Ub?B^<5Z11Xk&_w#2%pW54&RvYm6AAj_Ctikg|FZ$BZ32Fhae2!c}<%+ zg1C+G@O>Ygx`r5V-mV3D^#6sw@D?7aM}esTz?@e@L}AlxvDfFwWBQz#f;IR46a26f zIVXx&skJRePN;sv=4)I5#`8b5VC^BZm9+J1Djg+apJ{wE(*I*>2Jo?gW_mFK%g@}{ z_`vxy1Y_e63H zuD`eBpQ;fMT*!5E<3k%?b+)~=$D9_MzSo;v2@pYxrota(`0Dj+4)2uKXv@HRqnA7T z6&RFnZfakMUBrUf)8{j=%|BVCI@1f`r;ivg#b4#ej>-hvZ1$65*F2Hy`iIRiu!W#y z_YS~h?-BB6_3hAr)BI2K$Ou9h)<#Vi+2+B-Mh|4?cgtYrQ8(#r3+wL6y8(X$KVaGq z|E1~kqJt-1vJoc|Vx#%fa!7qw+A*s#NRzCBUj0|L2jjc=G2a)yW~6i0=!2}isriXE zwnoBytzw_%J=Ome;z_CNC`~B~Z*{$53xjR}!ss(O0B1Xnkg<)GgTAN!8#I0qvp)r9 z&p7Qhpg0?w+Ph1II89t@xD1-MQ(@znRrZ$wGvM3CQBG&`EX1AAH1SfzZat;mWsk5w znfDZu$JnknGl3SVE$`;$gVSU>zma?LhY}oQNfjp~et%HEKk~F(*EoPSs@bD zqmOf7^voeX`&yazVBTJT>`*uI9kg_-aLhLNC5*61jkRz6JkRBce{7_IHJ>9M{=Tp= z?N`$+c66u(NK3zHyqMcu_;BLC3R^(W*Hh`P&Gn5P+dIx@oX3LXGT=u0kpDP5;esxf z8N)u&tJ8D&@8%N@O*|E0jw{zYSEnfQms>iU5_ial3Y{42oDSZdXuz62`#(d3iqz-Y zo`4g}RYG>`mRcK!Lx>;~J+C^!I4`&8@qp+D|9ZPdkr;2WBjswk3xpf0(NMmlW7f`#E0^S7h^lj^aF~h z`hAOriImDh&@%rMItVuy*6kUJ||1wB(a$E zuk!kN7eHAc9zAsG$8M8c5pfK{j!WDdE+(~Es_mZ*4Et6#+fW=?`N5A-0eO{NLdO*S zUKp+_iIaZSxqn6j?BI*&h>boPGG-EBGt#+Q&*1H3wGGLfh7su+|9x!ym&LHdO>&fm zgqtrZcM?H|Xzf6+IBVpXIxSii+wG-n-qO_mvAfb9i=bYY-v*Q{Rv;~P$jMAO6Htm` zhzZ)oJp{#$zt}1GRV6uES-sczo6jS_xSfE`V^fx-FamE1!rXOhb;gX?zg*q$YuNAF zvEuC2R^po*SWoNIoK}5U=9Nlxq`I z^b|w1jRdO{Z&31R2_Dl~q2&Dm!|$^ek;{ld^XAlEiNP;gN3goK4XN3f(ic8V-oC3%QNdao%03pv50nS%rQs1yqK8S}Bsi+t1wq#+2Kdj78NKjB=&Sh4(-n;e zqW(bGhR*;r?vSDrpLF*)BFhCRS7&4iXn-pcpZKcQGbR7R`pBLA(AK^6@Do_9WLvAt z-SI%*0#?^*2!=VrU-J=!DrP11oGkn2-n}zZHsbqX&XCyAl6Z1S3xmt_sw)+cmV5$F z!Sv+&g>wL|?3a3!)?_9p$qw$hzY^|$Y#qz-u#YV855ap3#$3SW%d({5HUQa_MYlmN zKpYNqq2Mui3IRcu>gG2}!zlxL{?Ljk=7E>-BWwSwg#sX?&s zYh}3mkMr!ppbWx-$sdQfLnCgVo==A10J&O0t=DHCNC8lHE%vp^_0-VxyZ9OV!3}%< zg&hv?qL&fP>>jJo|K-6b7B@5+A0I*!S4fQ|RAkI6A7DIa6I?l;WN*ueHvAj}au|B- zS;rc16aZT|e>xcJVbE<+N(jREi#-2va@Jmzby_DK{AL{-5BpaGLN1i-V(pzSD#ryp z!s@oy-)$?Q{B<910@M_-w>wnDnFFyQ(5rc&K(-v$out5Yus24yW{4J76skJ+jrU-^ zfd5{y&3bgIb5GxRAbm5Vxo{fj+mj_TU_m75`ulZzph>p!q1Vb-<$TQg5-q_C+rQ%z zAFgVLmXpCltXnyJja?8D|I>f`=MPBSZ}yv@anX7i2$s>|eH1P|<8US;iFu*z{vT~U zj#cv6KK@xfqLmJOl#ut@dHAPuS$!>4!)X>HADjN~CCC3O;M@nfz@}FebSpX)xOA}R z5nmV_a488Dedo&Y*f0RHWeSuEsd}O`G&`ORzafFrG09D+s_{Z}>|G5v~%HAbxTR+x-ktLuX8(@g; zTXXgBK(d|;z?jIpY#UgnvCnx1NX=D<0m^Z`ASOX6g$nPFC{xTlZ=-oXuH#keSn_{e zr3*g#TkE3;+*0QJPZx`S>j3khg64tx76?}%1IX?576W8_kINp1{O`#FLK+?If>UKVN=JaP)HD0r)Yf24af0)~o`t2!0Jv1GJp;-<3IUg;0B*Z~mmXSOASH;|HM3q& zQk`}Q3_xC=aS;sQ&*TgU!x*G5#NS!1owVh&3b0fUA`}k<8^EVh zVK%{)g+Byo3qc~`JM+}ekN{loTjDF7k$1U}T9%7X5LFs>8g0Pqv!d#{Ew_#K3>f|(5yq6;nO zt%fpO9XY{~ACPH)$Vk%M2SPnNF!lR!$~N10R}Wqc0eWe3I_X=c0m=!ir3$Df<(0|H z@OFxM%A;m$1}lG6g&*>m=S0um6rLBAgIbk^pusfk{v42$&^iE0qX1E=p!`G70YiYV zRfF8FYDaIUmj@(KQZS1c)Yo)4c(3o5oc49NfF}hi)m(iPQ^_uMDRjM_BVcR~VvU-C zAWI1d4|G0<#rdk^<&rrb~Wyd8x_Tx>ziNKUj1FT zccBwS06lAVZ@vf=T?Ab7HczLmFAENdRG!PM$~X4q5E1!LkM*YqP(0rAO};8VOl*t{ zVjrUs#1j%gI$qd`IpLhcUY(@}s#!lPXSDbHV3i2}VP~)@t{{6F^sVy+I>Jg^f%=|$ zzu^q+0e%?dTm(<12R81*V!llrg{y$`_Hsp=x0&W~p{fUbwkpp}>j7MO1!PUU>0HXNRLUN)7x#OoIHr9Lo(2Q@wop!N3j+}m zZ~_2_o;RUxA(qk}cHi#C9&z#BD^~X(MYE#POx=5+TyLjq2#*`lY5|<0$y&_}=wJ`e z=i-(rzX>rf0r2PkqaZj9hC4V1TR6UoPeOlu8(jEz8o;m_xKE}k&h-ecQetZ;ZT*)d z|0O1>GgGRP%!{*}?OlS%`kQetPS0GLturXkaO~CwMnvKjo2?qFi&;#v&`>ukb zR>qU9)z2#YfTkc+#agRp5*H5S5Vxw4iyxN)C&4)f22-Pu-<<*?dYQnXxRQ>3T|YP{KriTK<{Tfp#tC3k+SI^=mfOC1X49Xd!bd0 z6bRy^c%`fTbBp8Ojkb`HvpF^EuEpnAb526yi9)a&HPmS$Fy-M6 zv*Ug>4F6o$w~r@8(4nitC{NT8(0{Z|Ac636I9!OGm~^*-alaTg=lf|IGKEmYHZ)n3@y+oo+)U+j2_ob`u8Es)GvY+q!2xmpNdD){w=v9#L zkTx5 z%_8DF>38knkt|%B62pUa3Sn&kQMi|{ymvSFX8&g!vH!R4MG@wD41_Q-N{bZaCFULLQ-vC0Jo8T}+em`I_!_Qzi zOwNzqf@B2k0FgRNJWXO=13ZGYJJNJ+e+C&8MMD^f9hsl#K*ywWLEOnIE8||ekL|Fb z^?K`w!gtbrt`7Jo#%DR9)1tIvO&8Ldr3@2*C|JfEE`S$$zbkRHx!S6WZC`HwyOaA> zEPR&%{p?FyfL9$G4aS(AiPU0ZhB|%XwWJ3FTtKy$A?4g_ApA0qs4V1`_s;|W`^hon zJZChv4h{!tPZ1s~IIm;UnQn?iUA- z0EIwL|6tfjaHbSMR}Yikzi-*^?EIdALA${Q7F=zn&bGiHyrvj%zdjhV69RY8Y-^Z$;Sor6DtbNofiyfUE0oX7AiTFjW ze2jnU=%RIm+QFn8AfnjE5P$K@DpYy>WLC27<(9zOFz6?O@684jC7I#)Fg|CW@hb>3 zAcXk7%<}lK|H#EiY;8gTkuB?(nu?`TTe1H@= zuOhyAe1H4x;a#IsXRjBj2{m;N=ES9@Gm0b@Fj#5xvpx?ud{9Yu7d}<+ooDy{LThX zlRr`gcn9e`oj3A;DMtReaFBh!JAi(=mt1+Ml~w&X-K(#Qe`z)YEW^^eB1Hw zSy?MPI_)*(3e*C+|2J5uGqvLXh^C@A*sICWiz z93Q~aEv|oMvX(ZC(zx!4!1H|kPU0X1N5JG6x}ZKz3=fF7(SHNugh6~*R zDgmBr12dSOy$w!9A%@>RPQQl%1?v**P zI|^=gNaWVR**r(AnForUl=pfZg6M6R)L|Pj`3x&;47Oqei12DY;p#=iPi;{0fh7Uh z=`>Kt8`GVCy&(0M|Ju?30Y^xnz&@+xFgh3jHW~MOB~{3KM4MIE^al1d@4Ye5chQCR z^DmBiEB^6uvPU}DG35F93UAhKADCprGw_#NENI-+-YJ69gg}{2Y21?6tyF*e*z?fy zpU?UHT`P4-v+U=2NpNsk0eQpvbG(8S;{HH+`aSnwk8A9+h*0e20>Y5wLb)#&(B2Ty zDe5EMHA;aYW`P1V>#3N-D+ljEH}=L&9UKD3J5@A z5AuUPgHiA-0WCOB_5B>*oim&UhAr9oOV>{wtU-Xc8ynGFmGQ(IY+nM{K6dX;>1$*H zCq}PZqz;qmWbS)5bx$(GXqe6P@Zf8=;Sxa31hvAC>%Y*hxF9h<6*ao%lo0w$UH19m zGP;oTrq&(;kp%%%@3n-kRRMO$6bkCtA0&;+?O%rk8{Okf=}00`I$04{VkaYi3opnH@iJ zE1yuGGqr;OB6%5h1aH})r7s+_DbmKEzJb>6x-HU3ahLfP-A{<``!zW0wM{b7ISdp^ zm$FudfJYC~=W3t|r^m-S;Z@hmF3&z@xb6PqLfU`ohra|00!oO4I2o_~-8nh{$qaTP z*-kr};P|-|tui(1@_@U7zu#g1yJA$@qX#ZJY{#Aj^cjebtS_g3c{rz1U!0&Ld|=9* z_8@%%b8H|HXh`~OX!thKcwOjD0dVjo0|uRJN)W$huU+@|Z~s{#=|XV!lRY^5moy&Z zt9BHsWsR9)5+M$ud2wrRr(q2+=s?G`Hz=45$zhu-T)C3Qsl#fTB^a0n0v~`4K%{`p zH4hQ)aSWZ!B4A8G%%@&#j0KvksU1kq0AvosI|1IMx%TryuEU>ZA=p-AZcZ?pWNX`o@{0nQKbriVhuXbaVVYN*pHCbDLAQy!5k z+P%F$0U6rYh_k@s5<9v;9|!2*yu;}hMrNo(*^wrLLAMqffeFH|gC2`qT@t!^MII8T z3V&n5aj56xy26!%!KR`>(z3eAMbk9(sP`u`Bqonwrn8};*+Q^lRqXHAApaHyz_M~~ zP!U?tZ1MWW;OPSIudn2UMBE>-Ik|D*NxD4)0t9G6g+=1M8_xdWEeF1?%+)7v&CWjP zMCFeGQsJu>H2oQD+${eHYIc-FjIYZt*&lmpJi@blY0&$c{O+biE>i3Cc zxog8bsZ~iY4M@x!3_1@C9Y|{I)g#X5MnVFB;3p(LY?XU!UFxyEiVd*G)Jp}X)@ z?N2C;$JtwQe`bJ^fRjCwksR}H^iNtp*Jz4)ee#!mY>B%%Vlk-|iCJ&GbeQB)RwjF2 zytc8X-EICguSEEb46WYaqp|4P?cHDA|oNCfnh6$u`wG1g{r{r3X4}VX5yv(ScM)NoduS2V)YhMs-{ASJ}%7(ScIBT=pF2ADQb~BJpvz zdJf#;y(J^(vAGE1RCE>Gq~>o$99L%oBiS?eQ%Ir1>TqNoDv=6oUY9VL4i>zN6mi8! zlyCVTx$Q988{7m`27Qqb2TA=K?umJP zpe}<&L`}8aKujc$ADWaNCHuVz`~GAYjdZY4wKJB+hh0C8Kyb2h)3n=M8DVS}uK0iK z&>>hFYu#Oh91ISBV3sc-pg!<2hs+I^=>;7|GCc(I#Gj}SEUp5&&xs2b^FWJm@&tig zardd9)!=&=={+uj*a}PUx{5|bJc8H`xD+q3YC75>st|m_g&7Q`iX6TJh6qgX+Fczk z7>1>we;CqI{BrhgtY zod;`HB}d2_svYwndIfa#VpL~?o@oeD4-G~khDQ04_P|MwmHgC~x?2;Ntp^-rz{^=4 zr6MJhx`=oLiNr=-LWoiRt2T-BeY@qO)EG(@p@p9L@|rBTCTJjPmUtfAL4z(2XBN_q zL?zmE+GUVoxF9Te;BiD3{Yi%W1#q4m?GbrlLnpm5;@%@uAq{*Cef}X>9WGhqQM8t1 zn-QNeHQeni5*d3Z(Z{cgK6X+kr&qB1UG*$x(m4d<#Z9}wqVj>1{$&dKVWj&xFccBf zQ}#@bSYZ>)CuC3lDBKXK7Y^+<LB+QT)4^_&7<$)77!?lO0Xx27`C($t0G8UM^7f5@ zdEqX06$hr$Ss^)h&R5n-I!)hy>>{p{G?)`d(-C)R?O2{bV)<^Fi@!~8|DO=#Fe5xU z?=$v=Y(T<&+{n!p63uFrw=1?I7creoC&BX?l1oa4D}4P^;C@foHn+y|vLad}=ml@Z zbFy?1I!vXb!V)W;!UHk}lmRfR<>^N6!XYD^qZkJPWTgpKHvH33xs`n2t4vuqf|Ilj z(;ru{`;vG^-`1Ft*k2aEeyhn8V6L9Y%IaH1cEE4xr(Ty4&*lIA*HD zg#Ad_MkO*|R9qM+RE3>NmczY^HvBHiY&B-A@!UO99B+>K(snuqi80i z43D;OxFFnX-7FS|QFO(EM^U!2qVWPX1c?-VkC7k{Sr^?zdd_3DX9+RL3uC&^%*4JL zk1|Z9FIFl-+H017=~H*qmoT#6_Yy)b7-nO*h~W_AmFt)5U*Q!*Bzq&> zFe4m0?Wk2ub%h!GkzVriVNY=o9w#1Z;oF?He@ONCxG~L_q(c%IkabJTFRt->cJklTZzNc49h9SWe+Crh@6jO{?=)z01N+H!KSDzl@)0c|sAZJ$+FX zGevkSQs@aKuxyXH%iJpSSURVH?8UDc7|K%0(3Z3#t_Qeh!3KriyCwRA{8(7pqXPE<3yzCj1nS z7?_RZJ?ut=3o)%s4q*}DWx*03GJ0jCf%JRW<a#7gZPRqI!;s+!na`7oT)Ay_0? z>rr$O!y9?4nj^RZkQeUwlBUkA@3~d68%SKFS0q z9`ik?L@#Py0wt02LW7%kLJUYa4zYxf@gKOgXNpLmce%>Q#hm zAs&_^BY;5XZLr_ z_q02Tu^N7YLnRZ1{KtH}HM(H{yrBJ*JCy8U=5n7@G0!JFC=9*j#9Q>UHWZMCS>qiV zacwl$>95%3W->l)#&l5@^Z_~~L1)zK`fI(ZqbPw}cfPC51G~_r_|+Lh8%Gc$K%_fj z%H=LX27|eaID336{&t9kc}oPgfpKi99D;cp+thJ~!_MOtf*2JWxj|=H!Wt3KSY;}8 zwIvHvwY$fh^?|IuVlN%z2!IORHZ-o!@)v^yiaF{wNfSENCbU2VbJ?Jl<3_j;2>f=*^-vC=lay}*odGQC5lsdM7^v7_;b;ao5k1>c8-q62Np zn3@kUZZV4eq+Cd4Y)dwO4Uh=`R|e~{dUhWfGy3C&HWv^WPb7u3mTQ5_Sow=_O3r7# zO<;(*Eg=!9xWo&(*j@&h?(ii#WTV`<#NKOO^oZ7L9mgA+C;Zr|A|~EO>0a^1FqKh? zLt078`P7f_4z|$X#%lxkMAcVi$OX1=8GHI=CR5dEOe4W{l3LEX+;g}B3_xeEwbNN% z%{d$qhQ!>8Uy?!Dvxgb$^P9I?n*p{oQR-}}{p1}r2Qkv?ZZh-Z{VC}MAdTr+n_;5pm#Daz=O0 zF~wZO5HP?6UPbvt?*yL}6443Vf1>vD4OVpCOr;Ye#t~pX6sg5SrzJ_>vq5m*zyiP@ ztrT6>8rrI~p`|1$Q7?DAI)B~;@L*G`aspHJ;RDt{{LJUrozXjR6;R0;;$KL<9gX@{ zcn;Go2dHE@l1HEJd0Y|o7c*Y74YeTeSbi$QXK;;Vz_Xgokh>Nj#-X_&F z4>{H~=5_w3MLZ}J>*6QEyyO8-mEoBxA+XUuAm6rtu24O);C9n9n8S&{fIrG38s7Ci zuX$9E97&~fM+U4(9?!;81(s(1f{c`!4%4tSA6oh8-h@HL5&;ay&S4?iM+#vJ49kBUNi_p-(XtTYC7++e|2#9fq#RTFoj zo!d~%Kej}$9mkD-hUBTaCIa(Z4?e{Vh3qejPI{+5tm3M&fEnen_J=(|f^5$S$B1Uh zD6QwnzwP>0HTi!$0XhQy=xs7csHY(aSnqw$4hQQYWFBp%lDE#F z=yB3Q9$=h*62HztUewZEes~Wl0V0jXBYmmU)K7zGIODHjo=sSg8NOGbwvkZb1%Pz; zgeqYWjUp(X2{4wfJxr2O!qCI)C?R|bq|=6FlU3`LQml00-fh-|FO)I$rwGFwH#me!iB|I_3 zgyn@{rAnNohsZ&lpy_*d_!HP?tY}T)2a*m*Vbx?(jODU|?Q@n<)==7Fn|hr9O%J9c z2YW0JRpNDwz-eJ)Y*D9<*PeSK&`$UiE(`pGVN;T29G!5iWv=QI3{wGAbyhIM+My0?R)y=Ar}AzX^8$V~}?E4ro?hT9morIaGNE zR~6)CS@>6aJQ;)ydt$JjoW^t}M6huB?Zs-IqV}sWnBMg@leln6R`Qvq@Ru4GOJ$2q z>C|Ic{qsOF6rT%Z0NTaEaB0WWnU$^=;00S+mGhV;gzVNp_6exrYwdZ%nKdfflYQz|WS>cQqA45rzP5Bc07BRq@ld&Hc##>xh$ zT8`Xl@jqMU`;M93cLwFB*?|i@IDjG5KWLw4VF}jcIYYHvaAWdDIIm^4(Jf;szxDIX ztk1tx!5&|(PmeLBf7RyMUZ{N2EF^@{Y;rO%B!rz!Cohm)ucVH>WcK{P>i48v(_Wbf zKFizr(xH~ZbHiQprj!S63g}oeVx2{BKEGx#5=$K(i(0vMxU=xQBV5hUSidNMj`MX+ zLm@E|kp}Z@d_hMr-W2kLH`S=q$2i-q?o#+x9|y^KjskC^uX<})Fzk}q9U`;tmvI&a z?v#_at@=_r^7C`ACj4Dq_mvT}{tZvglO`ZIG-PCb5{#$$+UvKr?#{U99<`+qsk1>O7)S*__5WV1QVg2OK4_Eqs_hS*yFMq~xXLyteqd;=`R0 z?ot10hMswR`H~%Z%vR~Cb*qoK;olpG0z)HjTCs$h@-UB$8IMOHRn^&bZdj(qBo|y@ z`92{dF5h&)X}jW?*7nuiA=_!o(Mk#bz-oWdg_cf__QqS*6vs!w5q20ZTsbx!??`_g z99xB02`Ih9j)-P3<+CT3a#-p2(#T3jSVJglAcOCCLm!7Y2X~S}_VznZ36!1Ib-ml) zOB*ttdG5H1Pv&omQ>)PUOa4d>(Nu5`s?DcIoy#i7$SFQ%N#3@y>d23dvfgmEZ4dvN zlvs7BJKN~<=|$~|B;(#M*nUs5B^$aHE3a+GFA)k0b}=5K%X*0tTg&0Ez#LE14-zvcGq?ns5Ej{^JmSSWCmw@{L_JmeHg)1`T1)s?$+OdE5Y> zS2YuT`E!QYIJCB-Htl95&FyA=v&O#Z`3jONAJI@cFnk;xU0^|%-cd&~@odsMkNW;@ zN&TGF$iiiBBZ}ikC%&<^3V}aU;>X%v+^wE?#Te&BYVUW>r5nYplUxQ*`_e>7-M z<31;&tn14xMHsmAsd9B^*x1z-sV=2m&=8nvQM`GzAr`A80(p;MbSiR=r-7U&$S#Qd z{!i6kp_CH%&Y&2&8E>JD47GNM?(5OSjBbECG`DN;hL55cg$+MyxF_a-#UoE(FJBHd zfxGQCg~~ge^fWpw=kTJwL8ghTCZQ{^M&ih^0N;#aWk10Mp5E;k*T}I7Dh8cneSa36 zC@)y?@?6x(YhyJR4C)^F4+W_;gbMWt$^Y?3AWF_O<}D`Fo!RZh@iJbx=bS;5Sen*& zDv2X#?#i*yHwOLz+dHmdy3QlB*}E4X77g+X?IoH@;%L^OQ)!(haCny@hk*YX1gF4V zt)yp06jv^X9tDgnpvO+vkfBFBR=k;voqUV6^PE?&ov)<*;QlBw5LpKa9i0M*~WeMb4@?spBap# z`Rej+M)=lja!7V9;Y9L!EH@ogtJFAJ6G3f{)}3D6z7;(1J;g|(Rb@PrMNA(JE4+V4Is)q@`_?J4=2HT!{k<2RIi) zKg*) zxpp32D3{PIa(mqGw%%*I`d*_hp?mO5pTpo=$D6U$kiaytZGGah)%r{V2cL`BTz4k~ ze3z>57J6Yr+*{FrxPuDCmXVbi&GS$UC$+dEb^YRt(2^;qA;yS=S`)<>)?0dZ3A*k} z(d{Yr)HRz(uirBSBs#<1KyTYkUdp;HLGEgq%ECXa?{z3rgf>)syfJ`QBZ^Jyr1`Yk zLk-&HHsQ?3%SVRlSmvGvDD+v*1zWWdK`TScW=7-=ip5P2l`S=^xC8j_#5bR`$DQ=3M$g(XD;n1RATPc(Y;m}icCf(hu zr=4^W4fF&zSCsq}1D_6@MYLYg2PT8Yh z$KgIV>)$ObR6Bc)~i2qVh@UQZ0Geuqg`oxi?&7l zmw%f{B@GbGZh&w`nLyUXyB!|8YF5QFa$1&to!9mPM=3{u)`@3Muc|g_5+0rhtsc&? z_`&pmT7$XfW1DUM#Ple~AxP_E<6QH(7jZlR`&hxedyQ~@>* zMSv#Vot9^MWnhcgwfsAEl&FHf*xq9l;bXJI!Gd36uVLopTE$E=15>f2K)>$YU=2x;ClFA^=-SZX| z+#$3&eS9%k+6}o^^vstd85@qcdInldfD7mNVqMEzz`p=??c)h{}XfifX)TVe+5$Vz%^`3LT;W7rIxR`oh*^XgX>h?_bk zFRF2N8trN&GeHc)y)R|BeQYEJ-tOX5s`11MAokw^6_8g!sbRIMJgD1@#RLqf10X z&vsfwsG=@jAo;^SPmz4ziR3U^@i8XMy8?xxpWYgNb=X&NFjRV^2KyG${*?6fi{&D% zIVI17L%J58S?oas!?{Rx<#&^eW-XHFMD~374no|3)ebD92nd5nIUdGuUM%9aX&?B; zM2&aNHi!n0=uTB%ohxN`oxO`X<elnS3Q6J^sb-mNQNMk40{k%FlQ;VQ>>$Y2%uSoo5Ks0SC%JUK_4;F$xIvXw&UcO4 zwu-J(aozlCIPlo-g-}aH6b7s51d z58S3LN5SgTiN1dwa_ke!gY(ncwex3^9z2t|RrdNvDqJjF( zNhCrCLce!B{~hI|)rbO9I{y9zltrI2j`Pj}PMTPE@;xC7UCjWdoJOwqIJ6F`G_>y% z_cYWB*VOh+*Q9*EX#^h)8ECd$v|x&Cr_2&G`N7|_R@yU{0t1i1w-jb6jA;BN#_ubS z{KsC8C_eK%ZLK69X(Rm03mt;JqzL1kb*yV?a_El*Wu$S;?kU#I({_cY+}>SiFCQ7_ zU8OtjFDq^HjBNC4UHf|idM1_*w`TFY53@yw{|LTJ@Wk-3duPYS^7-v;)*?r@STa%_ zLn_9{VNrM4XW3;NQ?5whRNQVp-RB5%2BCA|`rdFC^UQ5&$R1%YVeHH> zIcCw3QMQsZyQ&xHa`ewemtjHWBmajz1NUdjhS0X_D+QgxC$h4=ijC&k)>Z;}Swb6# zhWye>1;=*%cR%aYaZ{c;P8?>d&3qX+Di!wF3zE^o@kyon%*zlLVKChH`O0O3!nQ(p z4afMjI8_knaN(C@b8|22yM8{eRb=t_*421}?*&u2=`$ZK9oL7XZ`HoMdYa>DB+oO( z@g(Ea(a=6-?we2F-{4yBju~Ug;aRL&ziT`@6|52vI$if>_XZ)-O>9|DaPtd`Xs@`? z@9YhQiiEM8+96!Z^qk|^9^8`pWIr)6o@Mq&fsZ~ykfvLn`_}%W`o+ln+0iPNI{~Zb zH)i_#S^3>M28bFO&4Mm-Bo@R?6nVX>x+I*Er~sJ*nvB3GvhY=UU!rsl<5Lw~?oMY( z6bhNyco~25qC+Lw4Ha^*2Lbmh{o}6IgUVU)hU{1VUblwyvC3+{z+GCG+?ll@38Ngg z{M$-QcFtIAR7$VKwLk0%T)E;Y*a*knckNhO#RIXWr(bKXZD*dQmKHxS1KZ$8p@VGMgNe-^^#2A#BGuzGoG!VyWa1d zPcM`)mZfOq)_S{^Y)kNiljNj^yy+{HC%bfeZ9?NPwkB~g8l~@An6aWqA@7u~vka0X zV%#*8$w#NH9UX>ek6dp*nQV$|z}C>^m~-2Sp0L%eiFQ%<^1?Ew8b&{)WpET(e(okP zMOhTT*<@cYpm{Aixm1+pW;z5I1U_;#_frwPGWEwvt}7>&Pa2KHq+_p z6+>D`TmA{7sE2S9x$tud4Da(-rM%Vv>KL-fw<u{9rh81sg)_@4UO%E*!g*FAkeOV9o+0y*?oDHhNJk@8$IJsa}^}S zrj+a}5QFMG#Um!>`zPYa;#^(}!C<01Cy&j_C~N8Z)Yo}@RJuwFg#>z*SdC)$)z8C5 z`~~hM0P)eHb=~20&Yf$>VE6B{Sz;Sqpd1R&Zz;RYW^TAy8Dxs!7jDRD5MpX`=lcV7 zM~uM;#+w7%+XJ6>>s<5R6`gq<@$HMlAFkewK}lbonc=-;{z{R}$cOA}1p^kz2L3|@ z)2(eG#d#`a6Sd|n%)NY?%n%V526d_rF}`^~M@+1F_{r%zT5&BPf6~C(zO-3? zSJCO!CcuzwE8jlU(ZW&`84*!r?M>C-q;*+dSR4!$_tCfMiI*nrPCv3b%VraD%)y;@ z;*Y)Ohub~Q0kD8zdpHR4frGES&sw%YX!g$(%YoqX+2cBqru~JFEe6bl`#za=rsP@L zUyVD?1^<*N`yTuyatgctCSDzzUqbnf+jgM$hU`v4@Y0;~Wu(u1PHA?VCm8}XdvYsZ zw}^+FyvAtdA`w|&YNe1e*{;J;wplbWr_by{J~FOj#nw`~=%;J9BA?+Xujo|HJ1^M1 zc@gK2>;_zjN3feCdG!(%ci6(&bB_I*2$)j5RIFq}2#LRqp`c`xs@Jbc4rikVQdj8Zlm>i^ zeJ!btK{U6tFNr3r%ttF<00RIr-3`Bc{BJ=HZ>ZpW{fHsSNf?;al~_)3MKRjN2k&k) z8+Y^&Cu!yIkm`0<<7X{(gqkDIq~ zLS_M4FDIMmK-WdKDE^xK4Ov+q%T(bqXM!Ly6fwLHl?*Y2v!oFfJd6p-*`=S}P0QrT z>zM^#xyBrzc1qsNT@}LB5lT6gnc|*vE)RTYdI1Mg;j#n82$ZozuRo4DV#5gbf9%#Gq~!6#>y zxmCuz`Q;;cg7arTZMr(??sez?{7d6kB5bGqnz_tUK}1Zdb& zFa6HfTcqF}>NGQMv$mAr32YA!4mbAI&7C3m|kdLsv-9or&G~I9Qx6B={k2~;sVJNlG+6|#4ziZW7zRIsEOMpY`@?6)Z+Ok~i{KpJ;9Ow8JWYOry zv+0Ma@{V?glt2iAi!GxR&bXbN3ukuxYbhRrSNfmB?Ktiw(MZLehY$L+epiVg!MA{K8NgqRbd(JrSZTQA?!`<9U$+vFPK~P zFS7_IWtOZYfJLm^H!q(LjEP|x8@GRznGlsGcb>J8vWZaV2H|sdz1+&uuI#4i*O%*? zwp}X4*~*G?t@_l99r|t#nAgIe=3ejwrHAq-$Nol_=*j66;GAj|N@m8rUvA_Rb(OOV zH=N34=h-p#oSj}=w2cR-I9GRC2#EbM&d%ZC)!EFO#dg#1(r?rGQ@KwkJX$_=&l;}U zo9yg->Ykjn{DikDG$bZDAplr1nw)p?C!~1?l5X8HsjU(p*Nh1TLb^Rb@%VCDY;>Yo z6MYkWHa?P6OZZ!V(}qR-rnTOxdXC=2*WTGiF?y*OCjQ4Y;31sWmhs>g-fcZ`|IAI{ ztJ#fTmxCKZwOhp9ciRaPwZpzfn?&_mwv?r9&S|I0aiWemXXxc!>dMeJo4pyrx+Rg#)uoN4R!r2JxI~z}DZZna-|s>_ zX|YOIGPC3V(SiPb-sG*Js2REQoH71qjmNs?e8*ez#0WIjiZsP<=2>)V7tbyzPA`QV zx#svOKW8OebFSm7%~y6kyljO9kbc(r#0HGM+%!Tw;3D znu2@NLRroWQkAA^yO>b(a<8fP`E90`xzsbch6E|Y=3X(pied3>>JJW|OB7O+mk%&$ z2uV+O*QZ=6HU%Z!%BR+rC+XS+Z&v*`qU}NlR_SANsLaI&b6Y$K`D)xEdOxisfL>mj zSCfPh`hmM~!y?+Oo(Y;wr~_kW8|%WM4JC|R7ta~!>a$={Jmw^uQSqH;`hHkP zBI$>xd4$@+16C4!9f#LQKe#h>Fm7*jUmO9AjjqQQqP_8Jead$0zU;#G+&COM;VcFP zJXpMa_2O%TEkY;qtnhHlPxO3Nh+f4rMHR507PD$RH*I7IU>5s(+(Y0JC!Nx)=3~>+ zL-K4RH=+wKX!sS(^|VEiO&CVkt`F7Sk|`mineNwbJ#9EU?XjhhxFhyfC|O@s^PHB6 zK@wB#On-MmT>XL!tOb1KY zm$EU{Z0Yu$?%2o2e2-AxDK}78vyA@4^U;&0vhhacHbWxq8gMmpg6ynMX#3Y`8(w=F20@ckPvLbV8m6u#E_~s@}i4X1FzIxr|WHkCAje9Bi zqf{)f=kf&aUMa7yrnWTM6ySBe!72;5?Dc(x_qkl%GdZm{7H^!(4Lhs9NFH5PyAD5tocx&BSx zJ?&87rvlLF+}&8)86TaL}JMXe$@&@n8 zXe%b7eEtACN!g@b|ESHYy_5i4*qRx=^mM}as@>h0E_8x*?)nv zjKp+o3Jr)`lxE82tlCE$v+(!a*6|a1J2Sny?SE^{{<`ZoPJKuCGH+^w`g=sX%e#2czdreUu{qva%Yp!KaJ3_7?4%~ znZDo#xO`;BK!J@r?c@udyYksgDXBuHh}>%o*I`d{8@bWvR@k04No$k|$Q+(tx%)cQ z$7EVR&n?_-ewBsmbIk?D5t;ILHxzo9 zZwt;&t!wW3WK^2oGR@TKE}tmI(vaDk^qlFWU5H#XwN+fNt6g&0gBQ8o?n4$q$}aP% z+eYKhrH_Gks_%w{mawC&s&|A|3QWq_SS_SP}Wt6vp!7W!6bWQT}!^32Q!i3)PFJG$~J zrU!`#M&lgyLo>ywnNNZ6W3x)0=Kns*=0 zDKpvWn0pmhae~pnZ3DfsE^S~yWoL3#I?T9!MOe)^E6L;Qsh+PFSj?kM&WZMwUWEXK z^d~tExpOr_EB3Ey@IAICUDxMlHQ0nj6#}NZWfJ5&*V~3$HC}kOZ#25LYkh4{9xse2 z_n_L)SL>zN6+Rm)d!$d#W8)k3bd~k7Re8y_`#2TbTN2DEDR2B{OJ*$C)h{$O|7h;G zoexm6$cB>;Pc#(uWpzAl#Ht=;x9pvNwl!N^S=Fd=o>j*Y*}2l(3Nm3NVi@Mq2^!!r zH!}ib=IW*VIdN)ZoEDC;NIYYq$x2o(yRq7p+EPIHs_*0FyiNyB+0-Ye#2d876F(i( zEnld)Q<43`T>L2wThNDH(>}Zhszld9lLbG)8&0`2;*BH6&j*@>oLZGxU*BwNU#ee9 zW6+j?Bh4Err)H>d z+fCQHF}7xOdi;}vYXmCCGm_!f>foHXdgAG(%9EpufSb`({_WO4cQ|XQL$sWH-pd!7 z9jKUUKmCGC^N{iMREAA4hZuV)D#O zHd;FlkLE6^41K#>HW&0Zb2-PJxY%fF`18$ay9;uXl2t}x8&&^9(^tnu)qP*f(B0A@ z-QA6#AT3Br$I#skQc@z_sVGQy!_eK`-7$2>dwIUU_wPINxp(HAv-jF-t-Y`55%D_% z%$GShlWv=16UD^CZW!-W$htH8K3i{wiV2}+agg6lL&*btZ5!C$`xLoh z?;nZvvAm+Y6~aDtb~C-nM?W^#VJ;oD%(RljY0OqUJ-e~}yuYxmz!BY4yuPy^4v9%~ z9YQsm6@8)on|@RBLh6)|C^&}d`>zC3S=6J+=X8d-#&%-u;qvP7xzAA}w9b@yQXwV{ zS%q86PxKM@f@m@G0625e=Tx%jg zL;rOBxzKM8DE+YtJcE>EPE(Fbd|yqzdU5>eFr6nd!B}WBsid)ZWA&UZA2NMQiMf)i zt@1Gy_f$Ok>7%~q39>WjT;i1;o9QR5D?^zsYR&9J`0L!z#qxoWSM$l6Hbwpc&zS)? z>qi5n_~>+igeVN3$$&I&@%cA}mnZ)Ik%7~-qWpU{%boX6o-fhKrta~c7YFGl)gV|` zO9&;NFPqg^c9w(ZP0e$qP5*mqBEz<5MQ*RC`$y_K?Hkw8mzJ{0?S`e5*}LJm=Xth1lG9%jT`Zi}D>=za`;CdVM`(9# zz8DUFeGzq9jux^s{=m~Kfz&Z%luea0FN^3wAnuuBu6FtO-!GFfk2S^eX5vrxZR9G` z6zF+mXJ_6{T`x*;*4``3dQHbCv+t%0SG}luNX;?K94|~W$%keoB=k-cU^y=h+YBO4 zFnPz;b_PdllQvp6?!RtRctfo#`E7u&rP4NO_Fwk50k|1Z({9~J)rCvxwXbB9>wj?2 zPyY}(!Q1y6T+W@JRj*ldhg-rKo6QEB6I+4Ynrl~Q-~13CIok4f_Fqh+nHtNA$G$xCl>@G>8$oC3LI%?{Uv@hgMR`e(nMALpWO#i={QdL=7E6q z+Yy#~kY=$pyKb^!IzN!2`HEPZ$GNQoGeOcDJ{x$5j03vD1Ak z9XoqKoqyTx8^uU+iIDB#onO>r3tkqft`&u=Q2>VICcfP&vmez@njkLvVZ55ugvEVgA_I9O|}6?Tf*|onSUP9 zc#wt$tAUkX^L?E5du>?$7Ja~CVhVqQ`LajWa5fUQ{ge8Io{WFB<8T?n?8PPAyk$)< zMrK}{CvsbU^g6Dz>BLU&^mBG?5=#a<=Bi`MaS`{CbtT2a-L1N>jVBracCn-bCoJBd z%bQG;!oM@~%Q66uhE)+nYs&u6u1o))8XqN5D45DW498jjd15ksP|;m#OTrwLcpoQ=;c>x{R6tznPbyW zkR|Q*g#ND(Zv$7j+xt;uxK=V)P0> z6|(hjQlM5)y3E3<*dNnXv1JN;x$nv_e`?dk|67d!OZuJ_%9vgfbZ&iPE+ZK3ke=5v z+$zWX5R?J98Y<5+$s0ew+KPMax*pCc$9Q|)op>v{CJ4@_o?j2LYZ0ydqKm9Ihy;Hn z=LaV!a4}nEIE{R8>LkNNU}9eOrh{!0yWt@mu>ZiVCDOngXPC$Rlj?+I!-m zN!gSFOlKKUauP+g^Sj>afex1Nh|>R$`4WUdpPPsW*(JmealIk?mSwzZDk-x0I7qrX z+&|#btZ1uJg==+PiK-;hB@|A!WeE8P@xpSh7c6w^PVLnhv`I=Y+G9lG`67}0;JF@- zxII(Ej%3PVsGhw#T*(F)q6T#AnCH!Sio{m-S6vNW4bcs2!BWM=0g@O9#a8Kw6+I{c z&5uzgTgeoyHP?6Q&|P;pEQ|U8Huif!;u;7NEpyxo*68$ZE)CrVr(T9Z>qm6Fs+U+6 zKb?gIfLr_~P2rl)i%on1mmOn?36Tv*b419?e|&p`fdtj!%|Z=9mN9GLVc6(bk{H8f z*2b9eC^LQow{~&?@`I&>q@+HeuA?=la1PK`y)hYY zd(ydl*xR_f*xFFTNG2fnha|TLs2{uD9WR!($ey(9qg0VzrTue1YeIwr;G{$^XpQdq zJm|8uPA2nX2{cnP+xuJ8i;+Smxn_3s*BUF^$~>rUcGx-Le{?1$3SJ6YV18^cqW8z- zxYw>vZAMJnWW`t6Kj>BVCxlxX0F8ICY`es2%h96c%g;`+XV)_Fw{T7DZ^r=?a0w*E zdPKZmN6cBx7j5IIQFl5zIjiBsv|dm`UNWZ@dX}@n*@RVaaoub_TwL#BTGd?FzI8BwG9HpohVs!nX9M9RHhr^%6k*&(k)rZ#Wl8 zJ(-Z>Q-A1$`lCKtXTuho1--O(udKFm6BUX3JWT&4PQ898o4ELQQM}zA?n?AFmLo%(Wu}GTt^FyV=|YL5buoX!Z>bG z;}FH$ev69XP|zWUMb=?o91BV9@%5@#$Npk$cE7D=HniV{9UwS)9~yDDp7;?Plk{ef z1^?L?>>hZ=M;iwSj_+&ySs!RU6$eRTjTM*I>3WvdVDgx+`U?N{5CK<0n;F?f7b9~d zFh@5I*~Ls&tl59gPyY3&PribtAqX50@;;oVsWTrKe3l@;J5)BwpVi}UxLy`lkGk`0 zaGG^Z)(M>L7!{xHK7?19VAAO$(63^iNvX zxwJX#-AWeo&qr`a1q^g*tr7>A{?};J&0=hHsxh5ixS+~GvWz4biepV&Ni_G#Nv?!=Sc8O@}f)pJRUBE2?} zDw3Pu+#SkbS{@bt#KXX0k;+BL&`!FwJEF^31rI(iL~c zsytvB+-o(uB*?C8yPPw%(#Z85a`J)A+TY&mma^lt&}bf15??UwerPXYt6wQaxLxvm z%GdbFGAle8fKjYftHmaIEPJ=U7#rBOCkJb|!uz0t{sm=mA~odBlTLWqbtdGqk zcb}?m@QdW_@W1D~FlZk-LH7Dy2*v*J*FLk^tEF<`$N%i)SZ`o7IIf^Hd{_3fowLp} zdl;)3+{SQN4hDuRNBgBLA0|tsWCWk9otF?D3J?|3_!8wCS7~16tSOvTr&8ma0br&2 z%KI}0h?aBhRLGLqOG#CGT4a3&8idzr+gU_t(eKNiKKyyRcx1C++jZT{S_b^-#To)3MQ{5pe?woSgt=+GT|0yv({A8bZ~ z&IdFEI__nk^oY;bh3$SmQ20w?h#WE82yMI{Bo;X@*A8uln9f`{-;=S_L?cnB?f6Oa~YOZQDG41WeadYpfbx%-{PWm)AF-=eKY-J$;> z*Ag*JX_07f!(K%RzC6L;<`aUaUDl;BHoA__Ln6U@eA2&?KeJnJlCH>SnpO`dic`7g z_d6bi=BDPLC)1j2!kZSoY!U{I7OgeGcg|&P?0}?M(O3uGcG_Qj5OZE1FIRNs-@Y;M z*hZg7Fll0R&wmeOJU|L-jM&$(y(?Z1X(+I!5WxMc$w^Q*%0~B87x~BoEc83PzR}^> z2JSx%Tu$gw^78WT`L=b$#}hT_d&)lt%EW!yM@9X_+XK>5ro>uKDr)QZ4uBiex`$~? zB=>mj)mr;zx6n>I7rb^H)E%9bwU`Z-)O~Wj`ZUcCbl#i;j42LUJ#vXTdBfns27vok zyONfG+a`i4ET%F7C>Ve)hSUZ|fEh^KWab_8wKQ~Jon3La39lHaz4P~l(Q`W1sFHT* zNmD;u#g1!x#q*#dwpe<^W?DotKLv)5dKx-bNi!{y0EFB)JhPhN(j!(A#|^DeNav9( zZCNuVIvwE{PelBtlehD9It=3rOMs>&XplDiZ}iuVRy$aUwLyE{&GrRwG+0|+aZ-zy z*;b7$@o(1|Y!7!g)w3Llu+cucpezp!jtaSYWu#Pz@Xyt20{GtzvDk}7HvA!5ZQFmV*91Q>{x zbd)&y(d*|HEj<@r=g4JXfA3+Y>Fr{2wfW$Y%Dqu&9YPzVW^QS%Xf__al??b zSDVYToG-=L*atX1oUx<7UaIm2{Aro=1s{@arfJ0(PmnDPy+?~i&}}&k^P3U2L_7|8 zxps=y6ZzqZzUjpPd_MhCsOIuHvt@hJJ9aGCdJY);->Xhk6B$A3kNr-V7h+ z?5gi-XPam0tF{7tfll4gb@H=%?qy`(|7S7vVg0E`dgc1kx!?&*K;pVc3yuF@1y?LV zgX3tn4|wZ%=3Phq1%&H>dBmfcUElyZL8%Oa$2>z(_y>S{XuGAn9C z+6x>?&hq`TGvq>VVy$<7uv2@nJCxvU-}>H#k@N4stJq7#-Qk1NSUS`FA>_5jIek{q z6sX0_4>)IStrohSWn_`Q%IV%t7HDsYDJ^j(Selg^2da z+LQG59-2ANeuvw;AK0xwPU;;R7vQ#Sd7g65_gAC;QCE4;*s$a^MOxMJ5Gt<-hP3CE#g-HB z654~TDC+Z@_EbCYZs3HVwlI#`x`)xHJxt< z6zWH#F!ghX05a+evv1ij#oT9L#A z%trTi6IR!JDYk4I9BVJra3`n(d};WBD>s)vQ`P*-oa7z+Gp)G9eb4$I+R1WcWd0D< zT~cL5@s6+;?R>@o2KNmu0XUa=&?if@jBXSD0z4>O26(b|^V9Cf#umjnR#U}zvS}~h z!w#&1yaJ=ZE~q*IH3+PSl{-cZ@jWr|09WPYTL2`VbhHTZ1Lm{%Ca*AxeY0;NURR{byXo1X?QaJc7jfip$we=zT~b@sP@76$R_2@r%u zCd_kq>=fz)gN}G!J(%@$KNWGfXO9jSIiO=#iO#2v^I%asHYX>nj6bhVDe4?ejUUhF z+?p)Fl)Th_oY#LeE8}iE%>HTK6Z6umkA(eG7BWvBWezBBxxm1c`1H;tHJA1>W!`-&%S0cbtIa3PX6#g@~n*!Fk{ zdnjYzt(5dG2%&GR&VZV*oY+NA<8iw+W>DFrt#C)*&Ph(93Rd6!(6@5fZBcmoH}i3| z?W$yH)3KN(;9h1vp8RhNQ^3XRT%GW)jHjdBM~0wjDwsgA6lE$~Uye^MfPWoCpMzNS zoFdwp=;*pv-@tr4VbKY{1K`CV1d+wli1)fupCtnY%jI{9vBcqLNE*RbWEaz?S9Y5* z3-HEZPfF2oTk~<7Ec@oE-Vr*Gf%|94Ry5z;8c0k$3{`-{ISAg<^ZcyIp62CEZE;-y z_^sFNHK1^Yf3|u%W(aB-%gLi6M0|MdoHc2?dr$Xr?>roIeJgsgI}!(EUtaltZ@ruU zp145)05r&N;B#O{Z_%;>@*0m~gFXD1YMj*JdmQpNKX_Ja;_-fYvM^GBX{cgh+yE_p z_Ca(Q1ynPnGNsFK+egO#T`U{eZZ5~QO}a}@;CR8ZaPQ3Wifw=<*$!Q#_-Udn)Y+p^ z@LvxVBodT16tzJS_~&`wO29i!lQ`Zf&!$uGE(*A;i~l`60EM4R)za(9jZCOf$c?zH z4MOttAp5(y`5FKBUM%sKM!jS*vq)Cq)FPfmIaKHKqF0xE^9NK$Mz-40+F3KbOVfg9 zfE~y%<-VwArxa4>js4nN^n;hE8fba` zxzLvd$0}CSMY6`nhB9mOoj-}G^i^fncGs>uG+8IRGpn?3dIFbHO4||!jW-mb)@qqo6 zw_nD?y{cx1JB@9)M7!is3ux9HRvp>>&bF^ms3(y;?6W_wU%8m&{Rxnir&>90yp&!W z0WOW@{|-7;Dcp#;QmJ`YnKRHxSdeVF=7(I}nPle{nV>u0Z)h?XJt-z4O4I z?-tm+WE0O=UMC{B#=72du~2fb>?hl$HGDy8?NsCMnk%bCJk4(`HBnVrj5Yo}6}b)C!0WH^*s0rd~Fyguv0 zlBQ;j=5BQn<`jI?>dS5OnVI`{?updu4U=yYnfTsG<}hJMO+@D$1$?T?<&_RV!h*?y z%MxwH)bjdVjnAM2dF!&Mud9Ududw8PL8!v6p zQVZv4W;)WTacUqr=oj~w620se;()I^#Xq@~#puSWXXg;bqy+^*oO%i~dTdCOUuMM-nmw?#7&S7MUwky0?OeuOLfH8OXET5Si;HsXs)4EsJ~| z+g0>Diz&5n!Q}GhK>mV{EI-WCMNr&=PRpZdpb_HYqQ|EoA(V0U^H2xeBxq^4%mouo z1Y-|h=ao#oUmI^(Jnh+}H62Zqk&Q2x>x-L@hdgw8zdMU!?TbfrhmmJB3IC!W8h`pH zhD^a&g7u9-o6C>H&#TDCjaSpg>0-F*f4GBP!?(GRwmc^@I&?Z(XQmiYaLHcr5ff*SUl5k2%Z?;e{@uP*5Mv_8U~b%-l4p?W}Pc#%#CZZa#)R`V+p zi#qFxBHPEqeUpn_9@y4loqg1cHAsYR$Z3#UHHOlAq%AN*!1>+-l~#t}==UGw2i#1l zQ^y<*7x0hjZ~J%D)MPwLt!Mt=x*YSPWn}0=I#lam5b>7fJG|X|(y9*_hG()x9fK35 zKf8SDVqeK_6?I8~Vp&GS*HVL|CGz2#Q@%fLBC z&y_aU7|iO?QBgxq%Q>!561id!5$=OCe zMufkWB7BI3Fkwm_-M~~$F+Yh$hShoxdRffphVhi*wJD6eXpUr;qDbPClRPf>T;wDs z^3KgyUF5XZ> zn*4V2yKd{*Br>U$t?k*%&rBauc$m>j;K+CD> z{j^TG5tK2dQ#w%Q8v3{@CkZ`mr%v6+K{CY@I;lVl%tNCXa)*keHC9L}HVh3cq%~9~ zaiJU6wol4n%HkP(Ad8bmneup&bN;{yDz{`_$ z$fQvQOLCoQ3fjYVID)WgKUr@a@n#Px=2ZKecGQ*IGGUKc%TMcU3fjj{zsaxGjyt4SX+b6Y1*x8RX_oNZq~fmivT@$irB28)X*VJX$%Q zC$KZ#@-+aLE}ELcMB1!oAZUepO?XW5C(c6B%dbSLq0l8ND#O1O- z7@r@bHtq7~iYyA9RH9l`8+$*V?PR8FuFd~KT)R6@yYxM_A>7)p7Tmvx~dn?Vos0OfKH` zDs^`I#4K9>etm3*caW$^K- zQ>+Tk{4HWqsOL`?eCl&YigCPvGRvMBl0s<4%$xD(P7#&HrHR8qH*MFD6gk8cJU>g_ z(TR@>cd}B6QK~P%N+1;dWO$up@U=EvF+88qx=mBoWz{-| zw9S~+llALI5zF`;!V?elIqjKlQAhs0bU#qrXf>$d7_X&7G7^F(*tCAbP1#R;3m=q| z*WM||>8?YT566W#O~Lqysm|X^dDpfNGZWywh>G}GV4}U4@M$@}g=0$-lN>MBOL4up zG1|=aYBBg7)fP^Xo1MI28YahkAXld4c6`2a$or5f4EuGq#PGeY8J!mSLW`o1{g%_{ zi*t~x?l&TtS+;cg$ECpG;jcMJ)yFe3I8vMLNHK|jz@w#7MKe~EEgbS|z3%#_&{nc? z%W30%FIhElC!4TYv|T0AKr2_`f%P9gd$Mns$(uc{k!s6c)MPLRjze$Msp&^ULKVL< z<x9yaqu^&_C+6!MOBTN)^|z?Y{`APu0P13%&&?%T_~rRsQX9@qPnv6;%!ssJ%U~ zV=>6`#<52$6> zEIK$dCqhi&BWEqO#t@3dv?SzNPO0%8-@k?{|5yVy;9{>Y*F^=I-JAM;(or04?3<`2 zS;kVHK4Xp+HYw>RSH3Yy;te-=z8T0>_i`o*f=*5J%m~ui9%76T>EO0%3qX5gEo7obTye_T~+kIoD#&I3kUKIF}Ed zpXnsX)m~&r8UZnS?Dz)V3<=}MlVvJNO82ftcmS3+I{s?;Z;Lr$e>XH!lTODU zT>Db&A~6@y`oR%CN&ewG^3;XTx-;%`0)(Qr zFl)Xg44n_I&2)S_)};&R=^abr{GD5O%-U{CEMCv#X`ePAyf37IxwzmrVBqzn(w zimAbt5<3B|EM+&yM;J0_!AGcCJxdq>9pVtuS1P2{y&uqFQgw*T^BbCyqsw}u&tLL7 zXrS62&7U=kwH3xox>&V}JpFe=kYdWeKVbw5iLY@$0xl{w0CNyW_KzLt3zt?%FFhp- zF;(7v?oSjCwQ|q696~`{-*GNsC2ALGi$}#qH880G5g}=sJF}CKv^Q z2PbC90Z& zXw=jJsTvD6dx)Y4QDe*|@~T=KBxv9TqKOvX?<_?mt6B7z(4MyZmn)h8A_8|C-IBiq z!|uH-e)9ZB_xd}U7os(*IQ~^T#Y=D|h%WI1(pFH(2T}5+hIh-DQx7!_DljeAtlLe9 z5ds+*dXPl3*a3qA!od!WG&3T$+w2SMh}8Grg64xGMpXq>%Vx<>kIrCEpD)S3!NRtO zDk4>z%-`a04<-2iFw6D7J90EGYG7g3uB95%YSbUF7^al~{k^?o)Gfxlw0emAq9oAH zWM}_bH(Yyi!rW!^trT+a%#rg{qS+;M%6rXU%-^XRzI$kR(G{MbFV}Jlnn_8+Ad69_ zbLVk=+p4i>T~#qlqFnFuu~`CTa0G)?lqjucAI;;@Lp$UjuhB)j^VoAT)7sM+Y#E36 zoo{dDxmU|sz>*hOKPDm~Sg|M>iNwCDygZ?25uw6lvu_02j9&HrErTj)=*RKQEcrKs2u*@I;plSX)l?GSBuX5@=LrYljN?lSjyAqrS|8D`Dh|yIZGPOOn4$C&O4+>mdQ>E z9}m`nqdBSTnN06+l$&gUw@F8mDi^gKaDk2qWT)bf`Zi+eN2*HIN*QAkWwiaTibs1hGx$WSsYJPQ<3AZ4-SYd>H4Yky zkRCeMJTZsmja1x_Om8OjGFSk7!N|}*Q>ENun2#jE_KfO+HW6>I;zERkgititv$~Dh ze%OC&e~F<&$LqZz=L)qpVA3c;*Skjxykg#wvXDiZ)e;xFc^ZJ;IBYi;zAq9rT;&Kl z`VR0VO25G3Zi$1drTY_|)gP=4(QtqG)hxz0_iQ6ZG0q|=&HsJ(r?m4IfTDMvU_jWKUZJ@ zk>UR^GO+6UEgmQgve>psM=-FdM%dqxFvHAa$dRmF#^cP|d2PLn&iv34M3Wz4B5$8; z4Pn8L5-C}`DJg_T`FkA9MN4LnJfg;0LWJBEr?qQq61TS}CHh9ExtEc>m{;ey!y_N$ z6JY^hxo|{vSS#qXn>cOYG=g@#F5%>x>nbgQ7YNjikhKc6kl@2PYsxPLI`Xo`!IGdy zU)<+UP*<8$054{U`f2sH)GV^*_t;sRyH#WNo50vwQ?}<1qe;m!X$5|~LYL2eQ z=Jb<%s*&7s!s~w$vk`gpU1L$uE|(if`Bg@UwV0hih&8+1Kr*W(c~; z!ZkuUS?0TbvH2pP;==YI_Dq}ukmSdUTHnjx81mr0??^4idIGKr-x-K|VO1#ktp;>~ z+js~NHhpX{*m&7`erbq*0ipcvzr}(KO;ypMg~90QKwfd~CxIO6(Q+nqrO*zAS%y7Y zfVX%h-KcUHVVFpY85zxLsU>r`mg1x23{q&u$539EJAeZOprF%?#B*%h`=Jc{WsQiN zXh>6Cmg*h-XOYv~>bOwu{7?1&wy-&3=WNbhv@8mKj^wFOet{@Fb_oTU?L;IorOz>G zCx=w3y0T}Bj}Pt&YbYH?LZWcA&J{jY8K<&vs8PO_O9#{e@ze;>*whG7P~VqWe~z>I zxpnR#oQuo#mRq{97a^Rvmr=0M2E`DX*0;nA&4JUVar-W~@@hQp{-d()s>FkT<@G6< zEeaw3%CAm6_XI8Qwpg{KwZQvk&UC2z^hx#P+^%BGztTU+Hg|nboF{|s#1u27h~ne%=ZKUep8Wc zb}Q_Ed0Qb^LRK1WEm9#9uIq=zzxY5aose(`pKsmfzg5xSSRn!bptJ-nT;8u=_^IvY z@e3Li3hGRf_720}O@k8d(VVO%jeM}8w-pn4(x(b@4P$ZS_yUd7kznw^k>zVS5*~kY z);i`x{NIZBi&L}=N_{9t6iPvt4Ngr>m8>Og_z*0|g^+m|CoRSNJs=N`BS=0w*92x1 zmkNDQ=Xs_yvhOF*=qq#TwfT)mJu49a4j~KVfA6AvecJU-* zase-{l&`1kocQ=e$bWwvh2=>2=k|U%F}xL?Q^qO!8@K3M`OIZL4AWL?lYPYJRQ7ng zf-1I`di>bSw+`*N8r=2M9lC;2(GEcR`kfnkWJd)3z|sa%MwU8y$9*gQ!McdKNDdsh zjSIp82Mb@cudBe@o5I(ml#yi#8EbdYzUNFV5|Z?ZKh^qDpzJwMtM+Qgu`&~GkDKe7 zQ13z$?#H8FbKb)vzt*zaex5$CxT@r6{D-!_2av**+i;``A%7?PpiU1vU5!!&+oS3! zGEIv4-pv&~)S^7{nI*f#q1 zvQl}}?v=bTJZ~DuPm}Zrmaof|(M|I=t>`J~7X*b*b2}!8Zc-kEFGFVN>D9)mcUCWi z`mt?QJALqNwHEX=*ZEcST0}aXY$UpEpXB=t3JS3Fk%P3fze;ufDR~2BmnMoxY8}WZ ze4J>&U3*&3EMN;D+vN2)`r`0u(4R}oDYL^nLkB&LrY^kr5P)jARc)E+vwO{De8O&r z{CE+`Y-Pi2OSP<;4UOf8OTNNbQj zT!ZJd95)vi>f)|}WAYmGq$mS~{_bfdJw++F!ga-16<`E<5le4>n|5X?panjW!UuyL z1P#Y_b5l&8GuHWI3`$W{P1x?sB+&hGO4P2JW-1-PAE*^*yvR?^ZnOj;FE45aFYDeER*X-Re9oV}3?pKfrI`|0c>(d0cSbTZCiZI;f~GH>3Q>CK`Di)Ydi zTABEdyJAIK(S6*riFsF9Dqe%EJ>|qCb~TFD8ZzGh!JO^>==LO|{Rr%-i8$55@x0)ot2{ zEm6URGSqtsMS0hLuLzkcfj>VAnWh9Q6JiKps1<(^^vsAO_#Xn{&<3?C;H9jr446KY z&HRX`RH2ojOPQX=h{Q`q{y@9@2mIgR`|?SmP}`AciK{3Mk(bF5v_D}UY*j-dm#^TF zvZ56AdTF>6%!*j(@Ugg->`7`N6wF&L3jeVB;Wfgk~ANuowieZv!Q~+%k0= zeYPo*A|58`YFM{eRkR8yRkpft9cj9yJ1TRMM>Ds`(ZmUc7u`3>WzyehJ(ufm?!1Q! z*cSpv4qG7bj7REseQCYa7)NGl4=+9L2j>_y(}{#iG?}S zyi8A|lex>iE$qfF?BppFhU0TtZtB-08x>v2afB?BbAXEZf<;J1M!RU#!5NJkcHOtb zPAlVKApG47Q5vR!xEN*-tsDC=Yj%w;0{~heYEu01Kz-L3%?iNhwpmP=Ae_1ntpCudil(&1C^d zj|y+Nxly+2ljRXcS zG`yNH>G_rrKE%nT_ePqZJ|A1>r%RrN zzrmK3$k7PuIWlV0{zkj8YP?e()KmwG7?vh{=8N6`xYo7aqA+({wm715q~7L;+FhwZ zH#-z(#tf6h_1x7!L#OoJ>v~TNVE?jpozaZ-u60jNdzbKW`16UQM3hMv21T1wQ;DW5 zr=q+`^+45zps(29Ans+N>(dv1f2JcZq77SB^mEIh5^*jrR|I)e(tR9)eu;{j-wXo5 zhJX>fa0V?Wi)38DmS*rCqCv(SE1|u|(^b7X$e`NM@hD^+XwfmoD7kn*473Hp>a1bw&bxp7S!A|t(%#`^#`Svyji%^k;WSXTw69gLy#7lY@?j*92d0JMV zv*#{ug}heZR=-eeU!nKD8bXK^D+z^KiNS#{$^!`_uH@`l4g{ZR?qPn106T%^Q_iO% zj8CPwHF;jkp&b4L7DnGBK0k5w2>jJ162YFSj`os6r#oU#;^;whXoe3Ybl%;mnQ)EQ zsWhP7%GvkMfU9)rRO;*EDr2<#9E^dF zD*Ol1zcFMyvXX1;tP7SapOwDOSdGEGRiZ%5eHVHoVltallTq+^#D|Z&>b55sP@*E^ z2DyD}tRaB?O~T)RV$3ZA_ol)7!pcXj;VC;P95Ss#Uh{Skr{3k7hORz(ea7GA@eI(J zeV}~EpqiY=@aV7~VA^lc<;FkV`k__(lVLZ8!xMrW7DIR~J?;8c{aXO(zIjemTU#5t zy5P!7S}>*h8U+K8aZb%{kO0wjHjrL22jvIi%p~3aA^IzDIRJRx}!Y@XKpzHpxEHzq~EBdjAV-Yk1g*FLYcstfWl7G!AxFw}~{%%G8@=T6v3S z`=`R)@EZi{oo%>jzWH`#>L_<6NrpM9?NS^3y)!r`!bpIc6wCvha9$jI4}`@hxrgabhfOko^bc%M0| z^T$I)7OUXfuOD*ST(4K(V5?xlI6Is9kq5yg)Tm;bS%tsD20|@N59SF>7W-wUBuS~^VJf;yrUSRy3Hi@YjvSqfeQY$bk?|M3<}M% z;Ffv^P(GqjWOHN=ABF!bq~58NC`pyeo0NG3akRw%Vrqw6L|AA9whjY^#two=vo~(D zVDdmW9f3(aK{-pA4p6On8Csk7>Xir0%4?2femig_Da8L!dHlZJ(IhGG3px>oGTA() zqoZSgt>%x!D`NiSPILl_6vk$qOavfd*^3$k0$z*0G$~Kcflh_d95z3=nS1NBOx{$$E>YZ1EF}B@9P(aE-^j|FtSQXTN+f!;%jbEN6 z(j24d{Jcrfoo2<$Vy^qgnD^Z`iDod$Xh8>%jp%-Klm$Atpi6b4 zM!Qx{?`S3wwejfBxERAndd{4W1s2r*ElwVs%EQ)w@Gg&U;)r~hTNox`Ghl(b7Mt`MMee>9FA|S)=Bam47}Ch3x>pS9NgJD zX#S{F9i8jv4e=AGi|Um&9~gA=cz%zjAfw>1VWb!Z3^^c6%Y0}Dczej(q-X?gve;LZ zjSX}wA%|{E=5w1+CxPwZ@DPe6v2K+6euMDq&$5*jEV=-_+6+%f$AoIl?a=VhyJT+| zNZ6AIYf>Ulv+r@7Bnqg4OX5&TRGs?B=kADeRO)Kk-R*i_y~>DBgCu<_z*sG7=WK(~ z$B>pA{S($+lJ0#LcoY{8FUR$3+`K=c0p@$GMcKRIZo$?}Mu;v7A4V%|2nJ z@T|lXE1U}OS&n__3Xr8@;=*~WNP+o^8Ugi`7M(tpx1xgcbo=73^h{qBL$bG+Cu!{e zA-FX;2)#fAT%azp^=<}S;KEs)uQkO027|DglkDqx8A}cb3CT}@IoO_*xo@1Xdg0Kp zgGYpXIfJMbB~AA9e0*c>wE1Ra$WdyYE`2_{LxPKnGA49NOL5^< z{A+g@`sZ*qQ4Tna-ltI~ORQ|(sU`99YRRTgR#YazM<(In$R|^3Wi574MYAp0(L^P=_8c;F<~O_@q{K zqi=6GQ1A@68$Oj+PCVA_K9?K@Y_c>L!=-1)|7X$x$QODnG7>~T1=wvH8C4!$QdS`p z6mt0DY_h%si~rBzHX{8VT|-DhL5q|5@ZldSTusk!q&11PNP5imvmjwr4T+U`X$2HE zR}E{>K6j&J0~4=A$u~$a8OrGeyw7^)DIftrDh1=)Ck9aD5(?ks4`_xS2`+2XN%Avv zNYmV|g(zr)w3v?IaUaE7{Yie1&27>^AMP59wij7g3=EGlWtZ&?i^_vt&a_l1|la3u`Tw zE@kM9D>GfduJ_v~&3O}9mz(q5KwsKZCtH+&1Tdk!eznB+Y6CeP&p;w8lq5Czm_(yJ zM6EZfSToIiw?C+fqf(h(tKO}tryo^CBpjd5L!0s6NINR)9qlX3?Nfr#(*Q@IQf+$p zooMVtbUKUoXEzCLjyT-^g4Yq;YaRlFH^RbrasgsDvgJi2>kVLds8|0+q@Et>df6|+V@QoW(3X3&VR#=iDnX@-Z1Vd{{ z$a2YLp#MkIS4KtkeSZ@}cXvp4H%NDbfPi#&NJ@7jJ(M6_(kWd6(kb1Iv~)ig{r>*X z3tr7ytUGtk*=O%hofO;IX-`$nlWT(3&XB#9pFiQhduC)Eo-BvNz4%vNcs@(Y^2?d- zDLzp`QNSA^d>X+m#FY>WqkC{44V$yyJXMgqQaj<(X3&-l6CF8vp4-%^c6^X-ZYBRF zB0|Q#iMLi|sD1tAo9a|RZDWp6EdZa@{+S(EXl<$rH8a2QIY%yvBcM|^p1G${Sq+Nk(TDxTg;u8&RXd-i-7c{K`Uwo)m)H5F z!MG$d3BDTB*JZ|nUve0FPO24O0F)gYLw*mRPnhZVh1bcCPSu;#HCKmkH7A}skM!Dg zW;{j+dhZ&)*-ag85?~pfeYYkw_T0Kt&p&ou`NY>LiIABGoT$ z!`Pd_M~9yj@3aZL9@l~Dpj!@ervC<-k~j!qVp-Eux;A6&O$IQ^eOhUoYp4?&wyG@@ znYMMfdZQ%SZMxSd&c0JM#qFP5gm{e%?J!BRjFwF9?DXiLj2A{ zCrB`N=ShZU9@$-Qo*Q!}z8n!jK0ZA?Cipjh;Q#c#Tq|?s;@e(sZ3#z_ACtr)43ApS z5mBIbQ7U|(ig@kvDWIhLB?l6cqETX)N>AvuqpmDR&RI!r9K(+tdUa^Tmm4ptJOC5Z| zlB6marh>-~y4xf7%bi3gxnPzUAGfte_%~D1DFG}^!x@bvyYXy;f@QAyl|YZ_JJDXs z0F#cTIo9sE@zwRyyzF)ps&V1dnV4aB9`*doN!XeiffqUs4nk9vK3Ev~ zCvvE-_VvvQQQV8j+)79qzQEjIK!zSVq$Z|nmTYeq2)#_GgqR3t{d9Ozuvz)DsHdmZ z$8VZVl{Uw)WkZO2<23B?k+cD(YaaOky zB5BckLei4s?){h91-FJ^rbErG9u2p@uHi6hq5^70_y!_wb1d0TY8HGRV^~Gv#l5{) zewOY?HmtDAFwG@Y@xY$Gq?iyL;kEWF#gFYBjPiBo9M~}bV|F&syKG9+zm)5wQ1x2Z zu{S1z0uf0xhfqtOn#fOuriHz>D~{EYbup{0s$-lvcXhorF8=CRdxw&l%g-9ya!vdwD^b-RL| zpwEARTVgv}O8Ky{|C|-Y%>an^ex}iL#-wo($tPF9E00yaSSw^ncS2eS>35oR`-3l@ zDe1b%q_2*V{hwSw9N*35xt3GMzs{#M$mAVvYp12^xAM2DYNGIKC;p{c1L&Y?oSg$Q z=;pY^=E%kk|E^2#$x7V}2@0t8%Em}Zl#_@Pq z-5`$cwcsV*^~)LwyPQ1&MpJCq+v=bg_%uRD?Cul>LxM&3W9UpRW{W)b>7Sq*KoZ?G z2arcbuM}vbx|`K>A@4S$2KF+CCHHL{Bskb>pf(*A_O{zstL%8>#zmhm>k#>QUmY$Y zpbf;tT(RvYyBd?xwdL&*)8cP)vJ6mZzn0rx>QQL*w;8oBMTV0fp@(lf{I0|YY0_Me zEaS*TTaX>fERC#7E5og{`={cWz~)bw=AV#oa}&FDd!B!Q0s+o;`XlS29x4v5^qX}q|)A0-Ndt>eR*=%7w{Ih`rzE= zwU`#j2K>gS1V~#%0VyOvvw`zMoBHCSii5(UH%R~Y4e~-7YH_E40^8_mPrrf!2QM~i z!L`sIyXBPu#E2ZK788J^!ponz+;$Hyq^6au1u5UWDolw*z7q)`I z-|jh^jNA!)_A7CtEz%R^&`Xvly9Vh~Y-cnpAqk}$>(%E@a|1Pzadn?LKa2?xl4>q8 zWs9<95=U=Zah!vk{+u&wl?H$UA;Pa6ER*W*QreVG_Hh}s5CKLEmU>t-@q{~ZX?AfD zmS#)`w%4m6Jlw;Prm6JkkR@9f7O6Nc{G1avFunQC*{ z=2G!Li*HT~F7I_*w$*vbZL-EdY)gjtjA+L@cZkor0y0CNL-X(xIA`4)gpOrF*c1T- zdArZe1YuVWv?;%Ed>yn(mPA6YJkOI6!oT(avS&zzK4ko>a1D+=adQHR>W#HAx7;&u z*5NFZoKt1KU9kwsdtKmc5uE}tRg@7c^3| z`?6kw{rTVL_0+FQS~eB7X{Dtnx0UCH0hil9cUYO}))_&fBlvDxe?GBsVsQpU)e#&% zP9f{*^(9AicwaE+3AjLA+kHUmFr+6cs9eKZ9OptPXlw|jK6LLXkL)#G`>cd+O0g4+ zCAheus1Xxf4WQd0?CPdVMX$6w!?0xYkBzwz71)W{SmQOkqKv(iMum+r zvSHy91-iucJ#(<~WcyY$Hqo5ulm3-$Fv=@~Wy9!cuJ1IPU^#Q{ ze9m!aSzI`W{PLKO=D%y(d*mLQQw3}x6*=5E=m*Q(I3Nv7G~bZ#i~K>GFi*7X5SKE( z-{fYim-!G8fu1@6Q3pA8XZro}D9K|^cH zrqIWW`bp(WfLAsl^{R0G2l)la*pqnma9~blQ-{)Gdh#Rmmf>ktvI9o~>^wZj#>W~W zEtU|<2M@#tjdV^(rEDLVW+bT2+U~s_mm&zTR@cpIN!XW$fRmF^N{55dX8^|SG**TJ-nANwI@=PwC>he3uV+{esGLqB zCyRipe?B&NK(|?1Yro32L%^rK+yj=tQQ1s-sU7-`XF{&$mU#{0UF6JdZ)D2|78IrMnYva93vym z9YNeYhANiqMS9?b9;W%$8xE|k&j+qVI{x@nI-WXyHeS@3W8cf*WVC0IOTfqH5xa~9 z;4^HHOav;@ATH{FJT4A%_#gcxhR6|SX9Bf=etbw&o}oE}c8mNU?|nQUX2Mc8;=lkx*eSvo=fQ6R1t34J#@~DRp(ic7m?DK_UOW zo{!&Ty%KH7jjap%+XO@frMTa71dSChSb)&%^0&-K!B+D@SX5NyL3{B-V2P0f=sEFxVVnLdc2kh-5YTEV;RlpgI)WgJ6dKj4Q zgAIJ)5ii4au)=zFJHZD#GD}%ih5~TVEnMO0Tj5X^@Kpa3j);O3;~)1x#yr+Y}lyUJmJbi~Df zKXk9<6}&iGJ>CGu`C4L?kK+Hd*T62uXMpULb&)|!M!CA^t6I@0OD6lk{Rx-am}8Hv;YdDd#q@a+m^#h$S#Vh?}2Hy6~CemHxwQU?s>KDoD=IV+uhKmei!n4b+9B zF%Io}!f!vKfeO z1jhvoL>C8OT}a_8%kPVPq}U$mE$#_bviX27;(}11@KsIHBjg92dLGyME%JY}H9j2V zT0C8jg8BJCA}BB@?On5xSPnh%>&6h3hWe~LrrPETL-5w- zfac~WSP8jKpfZgY=NW$%51=(eZ$d3aiL|tu0sS1C#|{mhY60K4>UJhpV4Bsm?7+!U z2Cf$hDGJi_B5daMS8y$yKYdVuGT?`G!222}Sgmjq1h17hMI!2C%gXYfX!-oN9Rb3K4G z44vQepko~P_;T&WS8quqgYP|3ZENkcY9~YP>-g3039%cR#es@telSOxnAlbi;_v}#Q%sCc1R>71)Qd_@0s8z z1PA2q@`?&b4Vtd}5$z$rkCKRe$;YJ!(lRyaIE=;gLjXoE8Oo8tXR#Z0PGrK><-Z?M zSor;P04*2iiSvu^d*>tlkmdp<+E^tW?LVDb_Op$gZQh3nhv0F%Np1&r0K~{qtK<3q zhnZ?vfTI=H_o9s#?-Iq+83JHBfchLwMz0T}T7(Y#>gbTdAYg>t+~R|&f_(OKIv;VK z#sJ;lcL53{^&E;9o8}?ZHj5qVT_sZU2@_ElBqTch4n%B=9sJszpD?df2vez|1u;mq z-X1q%y+DX^9J(cwJ2V~C>UF{F&Q|ojm(+NW*BaWwY=Nqu^Z1H@zf;>{9HONk4=V)7Pbm4atb@oj@<%r7CGZ z%XHEFdvWN8Je_t_{-RuzkGm2-CzzrO2Qec|2@2DkVi+s>H`Xbig~e{0MEr{xyb-R_ zyZWFV8xf=FJ;+B;)2O|b|9{u7n)WJS z3z6;*sz|Xm@TUs|W-6$X{Hc`xYh6Wa)OWf8qWboBRlyTZ6@9))!BI9-IR9)u589yB z6IL=+(^)B#)TuGI0~dQAE#L1HIrq(*`t=a7n$11$1259>TS#L?kV6+NNeydiYStgFI6*M5T@~N(HqKT_*1IKx zjB~pc&n$!paLB5UBEoO%!uy#8e^5>wymUeM;}8A_HO>ulsdRC24Fl|R;s{`B3{HrC zOSoK@EM+pt#a9JAMUD;B+Sob3%>E`X9N)JQIN0^F2jJwCym}Zqj^O-8d(O~fr3Os+&k~(CUZYRw`Rh0^ffS=G zv2QQQ?%;&JyFfdc6u(&vP)kCtS(vf-*K17#1Q=RjV}Yh_V_{3o7D52X#Yk~6k_-!4 z8h|V3Uz<+g@r>d@XWe1m&plD_P+#A+pfyz)hP8A)TEri5*>efUFSNS_7iA7Nl32iv zWHkk>J_D^uk~yJwUK1HV$-E$+ILmAkG6APt-hdtd1%yQ_lV-=C8z$r12?Rs4KUfhl zG0AJC*`)LvKgS`QafJ{o&r<+%wzlgZxsV|;cBuS}pv0`|N0m{gxfGl2@6_GP?SIm75uhh#t@7Ptm4VvDh>tzxR^)sMFh|; z7krgq$`HRTp3BimHzs_$uYIN-nLXp}<`~rZo z(giS8>nNF;zA2F~r!|QjY5EiKM*uvnxbKPkn|szC{l0(aqT2RCx34v3ujQzDIahwv z>$OWi&V9YiJ51CeY>pz$WZ1B*Cd`xnaj8SxZCEdhCpS zK+ooMZ)0}sreL!=(x{$x5sLQ^92D_~swqzlizx5rGp3d(8hI2H}=`{d?u`tJvH5L_%^ z(m@qA6lM%WadIMnlk>A)#npA+ht$TLU!>vIuI11+8^ToG)JxEd%b#yn_))&My=YW& z2;h8BK7Ah^NS`1$5rn*b$WTuf5#w|g=ncPCp%W5=CK103Y%UcJz5w>GX*u+Wy%rI? zG4#X+ni@Z&JBkCnfgg9wiyo<)})M)P= zT#&jTxtz!3M5yy3@bb*jj|~kdAs#1KPR7|tty0H=jmw0ME>bbd6FuKLUGyU z{7io)Q)g0~e}e5B2}m6y-Xow;TT64U5n{Y3j5C%~^Px9}LBtD3ZHE=LziyVSVMuR* z|53{1y&TJkr@^ZAZVp4Sg*(j+%aAW8inac=xe0wIv$0b*;Pi5ha&TJkmaeHkIE4od z`E0I5Z<@qG`TNGCtFkMezjJu&^1Qe#EP}t|>{P*;HAdYIxKY20o;!za#gw9hO zYB}(|k<1AR2^8XL$P`AkAgD*5`GWWIn7PMrU8{p~OZu*h!tp7tMTm$3xtuLofIleY zl3vEa-2SLplR^%X8^eVxTmSc?SMp?Osii?6F zQsC?e{3#eu9={dd#S0+o#OH~x9o(xH9~T!_9k=nF%(X&#ZV1ftizpq(!rcuaK9?5< zL?*o@Q;QT7@ypB?=1wwHj$om)9`{oE$sD3I&->(6ZMfp4PsOqWBE$yXlNw=u5)@5&B&BwtQtV}o~d!l ztc8%!+@qix8Gs*06 zHFzK(6N5%lwzjwaul3bv6ZDt{9vV$ZggAS~2i_{yMpv~}gc)`4|J7u8Z1bJsWR2G2gUvee%Hn$-yj1gCNE;(07EB0y;ttXw@`8Z7lHE*;8}BQf5DRbiSlLLn}` zG9ND|E8QG$2H`*%{=Ki6y>jLfS@^kuy^5Fg46v=*yH9$5ptXFD&*hHDWxpclXn4;T zfn5C2>;5d?_wR8bk6v9<11SSGmX*8~mT0HZ+Wf9Ml8gYzQ0RAJ%@%`bJO@FE%lO!k zz=8O4C!4HVJ``Ti*^|{3@Z3t$Wtj+d_`}g4pA7nLl7oTUK`n^B7+DVsbW z?E-H4Y|`s#W&D4JpMc6M`ZV;^6dIsqcq)agR}uGD^GMrnyz&M4l)b@B?<18E?FR-0 zoBuM}=m3>@h7?I5mJzsc5{`2JN$AO@jAJ3I*L$=IoB7GQSr zw28J++k93v&Yte29GVF4Y*#zJNiR`1Ob!>vg{H!g{QMy$9}SrR2TtdZ#NwU^x69L! z4uHprj0}SMku1jkV;p9jXAAj=q2YJ$2*4NZfT7vUmbrfBpN%+;XqUtq%cVDEvo5wmL6~1G3@mdaM2uv-zfqGdri(BE0kT>6^jZr%%$K{Z zaPdu5bc!4rs9TcZH2Uajnk<2jqS{RQQ0@K?gg*0BD`#hHl~t|;96{~D`O->2SHz+H zVack#LYSzJO^jU2dC9>A7#O2QUTlfhT~N6Rz=$WymgqTF3IFxMis7PW zihyf?%GS&W0a&ikYy0zj&&6w~8D|Y8@li-G6I}#RboLiW}y*+YK zQT`42B+)HUhu1+*AoYlc;=Px@4=o3ApL~cY&~oLzI~A*Tm}AEmv5o9UlfrZ^oTC6B z>x%0E%%2n$)|twxRn9K2|M}|o9Tq%FF2_=2PwuN|6CDxFb0>d}d_H)^9q&@QemkFb#cH}+ ze(q26;D0`~)73xAvtYli`^oc$r&%w744THs*ny?ss>)Cp4^w8E{F6@qnB0XHlyZSu zG`HO>VcD!r4tQ5p@E?XIN)9=taUQM|B#IjIBrZER1j*R^cT%TQh8T|4C@<0ji;j#m zx?JdL1^r1DOKm#4`$Mp+LI4d2w4#Wo|7hAkj;YW73W9=O7sld>;;>AuSGQmXR9AW8 zGz7FE2xhAtekt2t+*Pt)CsCM~Dnhu}d3az+MZQx~X~~P788_U>Fc5sfq*Xg)7Zks6 z*EfdDOkggfQt#>L>+csQ_O>=jQ##vN$;_~080KNIo|ZEQYdTjV^}A$+Gd)qz{yUe* z!2wA*BNPTl9^xNz+qE&VM|xN=wAU~^KU=}yMw4nO`c)VEw905el2%p`6LMtY0#afTz$LZ- zZbHlTuJz}jCZX%g1C8fbkIl1=Q~wLE;5@G0!hzI|HnNLgZ zY-}B__02V*eglp5e;NmCtS&R#gJWhTBB+7YXm5t08Z4WSN`OVkm8*pL?|!^P(5_9) zuMoTmB1#<>3+Vj%2+4IB!TZ}E`4IXYUS$}jIfK>r)Y?pdc7}T8C?}<79G9VvrsfZS z!D8!dD1_ix1Q!GGWs)INbp75u-+mdzqPXg4N3>q{5p)4rI)MO$Nf*W>AfT&uUfW25 zX0|s2D4m^IBmII=9=`$d8y|*RWcV}`>ExfwXniAu7IJ`eo)C;Td#(NQ-8Ui8e7;%d z?OuzAqv6ZEd#D5u)i)zt+J4Oie0eE5T?6ju4z`-xdJp5sV7iYDz8Z@XFXs z>9O`gGmVjD)!JL|@-c^`KToNBF5s+mx?7ez8SMlZ!5_7ULJiS6tl9i5z5|<^+h2XY zb~7VsR4qja+9Co^NIh%YZQ3DBywcGRzWg*1fn-xO{6 z*zx~fKq57Ie_}ffEF8yOp=;<7nkb6ler)s#7Y0Z0*~X=yZ#`sMNlB^w~3rfPKnne0nMEzksr zgYABMb^(T)!dpuN!;@PAbn{g*kyq?H3K7cL==9LiQB8kVP?`850FAoFj7{ZXt}-c% zvLf9=wa#HOPvO{|4Mf>xv9u01s@U>iO%DypJNi>daqtQ1GUJls z(x4cX7QSt%mvB8WC$>U+?^JXwAjbLP#*Z6$96T^EH6&1@S-E^-y=F^}sbb2s z!j;1YI6QXp#^KdTjHy=hsp80bM<}S~Kiev2c%4n!9BxbZB5x=tz8Ipvee0;*9Fd8S zo(ZOGYRzUYSV2h;wfXRYPNTk{y2upwk=ZsCDLPf1eB?7eA!Z_w6H;C^R}iY~$JK85 zYw%N0R)^m+2wNM{U8*SkNYp7kE>4cB1-b+qSV4StQ$|hT6j6^qv_a z_Dmu0baPqaob%kqOvCY?UX>GQHUwmuZ=Lz{OmqVOSJPb)RHwN82C_kc9JPgLWif1n zIIpdN=nm*r$YNnHP@0#bJ?p&iWst4S15PXNvXNmiB({r5!Jp*|Bp?xa=M&I9%YwpX zyF?Ix@cFVK-pJX6LP6nqlTPWAUaP0pBnM_jBWLsR6g-Q$yVaZ)04OR}$}P|8^ZO&7 zthJ1dil7bbmJ7jyZ8z+n{W@ONdV(?i&(1k(Q3zL(Y1CL!whS>SsEC-8RPddfNe4<_jv86nnnJD~?bTHpz|nRUi%FT$Q*Tm@FxzIV#vn=Nv2 zjICm>x9_BP_{#2rOTU#D(P1iW7PqG&6*48zpYPoSxHPVGPm2#w(_(8*sz$k2zBF=D z0CW_KYW{PTxOY9^+muUV=CY#b29S9cCeF9u{0i*`cZv$xPijDECXWtqhO`?D%=%Ek z6iDAB|A?zC{Jh=y@Et~Zp!O1vSreS;FX0?REV)p8W5DL!!-md($5GRvFXT&n@8N)I zoNMxx=LJIj;Ozsm6YO@Q2-tZm<(C%_ofR3=P1qvPW;C-Hui z`1iRDZ9q^Ii*K0dEb(G$*ZO4B_wRh7kg98_O2*S=)Ouw11v7rw>g&NZ=fU3HWucsq zj=xhHwX(cKY0`((U=c=Ga0v)NGJQ>oT#D^7QOrY8N-DvH}*`q;8sUzuSMw_?zg=L(nMKf&&C*zdrffyDzu9z4b9e`}E7)IUwnss%qCX!>^Lw>Gr`pcXv6Yl(IQU zTU(+N-vRcJNC|HVh+(558i_ZDLDpN^tv=1%!^{fqbbzXZ_hnmq1q2v}(Qfsz%pHXc zdWP<%$*HuLL%xwc;P%pBzVr>@ZE0u0f75Q~nJ=uFqt^iZf;k$^@&d=-j+JwnJ`gFJ zX#JU|nzaDNb2i^2qprc=wsOEm|2oVVoS^hO0trs!@4$9Fi{6hDr1Le-4HQY}=NF$% zjq~r_)ao!@p|R(hJCsw1X@Ze$Cj~bFXQ= z`zmLD19&qU8CXhx^?>uMpSg)b{%1eyeVysF^LwFue;>=<-d>~8M1H4-#ll-Dz2^aE zVvcEQ)x^kAAf5~paeY5<#mQ_R;na?@Ru(3I$=FB%MOzDb{@p#oAq^&c| z8Fpj35traEQRLS!O&{u8;RKL9oj1*xAW7arC|XXW^QKCC9fZIK}HVD*$Ku zE23E41iXBY_{#=R+szLfj(o2%n~Xa4@cGIdnj0BGwwZNArZ|la zA(q7f)p$6C2*hR}*baV<{YJ$eQym}&5@#PfLg+OHe0_3uZ^k!W4>-je1WDXCE=`xA~+ z#01=d!ia~6k+;bi^yckS?fGY=s8mMfpKnTU_@oW!rvKZUY#*TtniF3jqFWCW zI*-fF@rf~@H`IJ2amx;d5tvkCH0nH+_vdO#xh7t2 zpGjy!J{7;OYXj&OfWejL`~v4;3!{l-9@e0+*8|8Wul_LJi~&h*0ol;fL%+4QbIt)n z4WuO;qcxm|ePGhd$@^M_+CJq>VQ6h#-N9WIESbqkwE*+&F=D|Vu&cNFtR`Xn#9gEd zO-T$2{#HGRO=4n3fPyx|p>obWDeMImV6D9F;!XG7F7f=_ppha2YiR}SNh&FAH=h6v zV!%R5G8eY+SAH+iK^j%Ne>EvS{nb7qx?9d~cAZh*s$dyc=Uo+vPDq$|DNQ`L4hn{5 zQg|%b@P!<%{KM5|@y(zKV;r64xOE@^BR(n;TXJD)Aqh}h>F4!4VefGcGvQ-xNcyUyS!6Io9q9oML6NNDAx3zB;0{wXu z2!c^cNB@^_6dw)&#L8}@O+?Rs`x256yWj3l_Y%V@9TMI0SNOvw@YmrK7f5NmxF1+{ zOa%Vf=Cu)X*&~h1Vn7H)uQH>A2=ceezAP0q!Z1~YqIpzv$=E3}Ew{R9%1@u3?lDHj z^oUEmp`(KUTAEjOU)|n+i)hyN%&L7T`NxCYZD)G(ryh~!&Vg_*AUD>mZtk6P+?8oS zYxyM;m;r-3>2csz=((|>ZYzVCx`xNJG5S2%t0&J5RkcHY^aszRErA7(p!X&llUBEY)Y7dDY85wCME z%(^iyNX*Hwef&dQ5ptVxtKvX}J)4hzKHt3}UJ3WXbsrT_>kM*7&K`($0ZewiSek5GNzKB+0aE*V8L(5H#`CXS zhym8x(8$X(4_9KMrh_RDw)&G91+cIc;>Mo^EH=j>d?4jiaa!MXl_k~NkFKv@|L3y| zK&ElTCplv13LAzrYIO_-P zsMpE>ZxRIR^Yc_&#o18;(0bZQ-%@qKRZ}1<@b-P(_-RW^r6x+U#ZXr0-6N!2=h?%bQfLF$?EX77p_GOB$FlLwj<4$EOBI#CqJ z_C9n*N<7GJRw=i`1ul1D&=qtebOQ+)up(cpC|Y6fknn;5UBXYy={|0f`rq@=PJh59 za%F}h{y}$&Y2k%g1Im^rRH^lPp@E*Oz>p$9Y_y;zAs%GD0sex8ZKqYS0#R!=p1y2B z(_G21m{6<$oQ1 zm@*(P#Go0~e-jyt+`vi~)rALs@&#HNfV6?uZjsrxvu>W}ueQVKeMy69bhqCAc()Qq zop}%w9F)gIBamUPh!1Pn=^2ekpAt;E`t5Dox#t_Eq6pDlMLVt9@{ec%s!sLJzfAUT zZQb|)N~z7SkZ27E&EFWhd&g!uC2OUXPX&ZQqB`Y_XqWqK;VMSZSis^7$E0`H=9U|F z1R$*aKmq5iH(DNsiE}{w@Mm#qZ01?GIfJZDine_`S$-LSdtXQU8C{o#q)rmmbgu;v zsW_jK!2p}&bwn_S&zZ>E%b5(&nUo@2eSc-Y29mx$1_AC73u>Po9P=DLC@H2Snd@MK z3L*q7Xo_ASFK{qBRDZjMJy{zj3On4Zvk`rD890!|hXu@y&qpEwp4e?+%aq0maG;)01^RMm2k^Nwueeh?J z5wh)ZD!nWRrAZn6(R|<(#p??Q`lTkDhU!~EE?oGyc0yIj; zQ&d=ACgO0sF&7!ZnrEcnR)aNZt7}JQ)Sz=L&cCp^i}HG2?{`d`SA-lVKD3X|jlTv} zbvdj4C!k{^fzrs*Ts2i9fV$e2TY$U*$+iO8XFwnr@i%wfjhNuM|lO(jt1@obRj|(1~a_SQV+N zDXTw4#zrdJq>K#@SBnW3j&Ak6JJ@gnl2O!ognZ`T=dZG=eqw5OeGv7%|wZ}JiL?C^q>pdAST zI>@0N0X31d4WpCoNj*{~D#EiDJRXNh;pSf=6?MjYEdT`DRZ0oxr#oN^>DRBeFJS&G zPs1fU${2IG(v9i!4R0J1>_*!>7BR$^sYhf*^0y49AtalbK#d@V?MzE9-6hGa_Z*nU zcN(dcTqtl_E!RS?`{wgdJl*naHIP}HtPJ|~juDIekgr(9$ll=jFt)rrtk-{&`V7~V zI0v|RaQz%{2RT$6bXti&lg{_m@}@$RM+EFBv707Te$~f@GLbue6&C}!A0cF`(oB?| zfZ8Z@pfKP!jcS(pCWCG*lb*1Lx~Igsk6(njT&ME^@v9D>u<17h;6$6d7YxH%I$3Fh z6`Xg3wrIS-;7jLvQ?I_mC~>a7gT*rS@YbSy;Jh8zZAfm5!b@1NtzD+x%u#Y+OoaPA0CAVo=m!iShr zbYIkDi zaL{C`Tvk(v40GiJ%zUU_*rq#(l0XUqCq5b{@8%vOFmKl)K|6O@Uu`Z-8PS4C-z}a2 z*K2SZ?O0)12n}aY;(4}T$MOBL9JI!<>pg5Yef?kb0>0r z0zRvt~2dr*{=&g!9X&RkiPqHv8}>UUjYcE<1dc~>!A z(h7^Tz|SdV8VxL;`3cZVd`VtL@n%=nR5~8PI8;OjPyU#O zbId5fHRKUR0e&4XJa@E%Bg=xlQCPlH96es|2BxTy%41YBM)e%wC(D11Dg`9My8K9q zsvE+zi4TO0JQBv8G3`=JLb!jARnGC0`nBSyN5=wr5}sxb*;cn7tRAdv$K47}uyTMs z^ce5e+9lfq-=8LORa*_IY?&<eKNU(>2z)$})8DSIV@S#?nWxdOE z_*ysuok8#NC(hLT`jWo((-y4DQ3_E?xfJ34WZgIkW|NA@#ZCH}>3gFbdX%NZ&FMT` z+2Ye!_I%-Z#}VKsiOqQ6I)ZfZ_YVw5OQ(m;*B?bYW;X%LLj*N z?r^s|IhhJ!dso_?`nSh`?ZYz5{T=Rs*1+=7((#Z1$7a@>glxBj-QtC(0Y83uKen}Z z!|6HYx^BPa_ol}a#)>X0{oel?Kb|T|jKHC?I@xE!c|X(wspKd$^Rzx>uCSf@wWBGB zr{Pa{WwF)raw+6wsv%KU;&-Va_io8OgDHJsvhzwt2f~r@nq^R8zt=QTJ{b>n7F@a{ zvX?=27;rlm`MN(O6clCCX9RerKm@6u_1{^DI`&{sN0z9xyIpUoP)d#Fs8qEW$T z6!Ci~%->PCxXGd|5-JdYdH!Qon2NPiLQr@;<&XaF*CjV;y+3TdEyIteq15_NWxc%e5}y zh(4LvMF_E3G+Sbgbl|))>hN1#@p8x2B|nN(!Os!OKkrw0m&UtFRfX$=@%^~)(_bko zknAQw#!$N!MOL8JqhGnc&#Jve%xEinYR{5JsiMKsO53}wr18bDs~DPzISAy_M6heT z<~COYHmxFfo13HFjOZx=i+MS&Y`mlH0$1gEiiFo(_syQ8u}#Bdb$&@w7rP-(_pPhY~(oiiiWA6g7UEei?Y&F zdU@!lOfvPd47ty zvWocc!HudBlI^R}NL!TTNlfKY-9{b)v`xhc#V;vpk`JY{ikF*;&qg$F*_-Xo#nW$l zoBj+Otx2A`&yJWo*p<=`Ho6{0sN2jHs$L`%qfpxS*bX(Q* z6`S*ylf$CSa;}=DD#l5~^*(s=fB-b$c|21&$Lc;qukZ=It(*uzdvgBpO|>RbNbvG0 z!jj%&iEm||Y&670zq56_$&RKAXdiB z_)zkby?p^EC6Ns3NZT0TM!5A*a<*(VdhZOJN@uR?Svo3T!K=))^1F}F zxqL2*ylSr0)UpD;2L#kJ?!>lT17phh4LJ!u$=9?#$+4dZkJ&1u;XH z-MiEb(frgrEzJEK5;G`;b(19OvpTf31m?`=&l$3{pW+VUEK-S{&b_s&E5KaJvWoRX zFb93kqp}(42`mJ=Pbt}8i}tzt%da06KNUTG?Cn>I{*|>`v8YXrl8=G@y|q_Puqo4b z#l5cTVdd!XxoNJW^2@@U^{2AOhZZ1C$5wwkZE7zgauA7``B%1Y7GA$H*=vEMh2g3$ zs~UuAFzeQ1G+G-p_x9EC$`1n*6-deCm>;@-Jf$2Tk|@$!Jt0!ho5nh2zUmxDS$MZP z@7-QJpp3A;*Xyf-+}Pn_rSo2Q62^hueDsQjqjia$)*YOA|Nl69%cv;ZE^Jtap+Qij zK}H(smL4f-6r@|ak!~2c6%~~3R7$$L1qFug4h4n|N$K|*?s)F^d!Mx)`Topu$;@?~ zvEw-Qx%WQj9qh?{;M>wC)|Xh>JwJWJ@UnZX?~LcAsxiV~zx zr?0*`hVu-S^%^_9W1cQd5VZPp7m0vf1cPIJF7~Xn6(!41i3vZ%Ar+g8j=%!0GjsgQ zXl<~b!|nbhZpqVvINKl5yi15aLNY z$81ekY4v;3lRh2KitR4V7%k9$A{5UG<8{Xw`K=Wil;rvqrAMZ@pAhT!L7UU7m9NX*``W^`;_h!9kS@rwtT1uBaeIJvv z^6hq!Feltcyxa7d5@g6Ys5NeS*OhX2pdc6ZRG(#EksgyA@R9)m&1kX%#0iHAP$MoX zK56>vaovIiVXbzNH0oA$xcbs_m7cdUtekM79k6eA7;VQ8FHGal~N?rJ2kYE8cf+Mk`u$Z?Yl(w zg!`_SZ)2>IECJgq-`7|SIj=a<3&;VXR=}u0X6o zbXF{aqA0MhoQhqzvi6+Cq{U10*TPrIl)g;2qH<%w5&DT6kL;Ez#nolkEM9$fL z_aq|0INq6AJuiCZWFZQ<;B9v%>de$0MFsQOWia$ECx;YcZtxkT*7&tCIE~^}d)QZB5cfg<4Nd5|^1iPEYQE(*!GIBI<9A6O{UL0U&#IMmBKxP_s*UD_ zUl@Oofw2jg>_85D8!6_WGVYn7K(9oeS3jop^qk01EjC{K!dSMJAgLH|n!n@Ajz>Oi zm_3pG;1Rd3=nCI%ZX8{yh(HbrMuYO~DTB#s$ET~IBa+Vs8L=}yE2s=OJ3r6F*9K^X z-EHF-G3FjnD5+EaDPaC+vO^ksu1EpHbx#a{UjOec(09z$x9z$ZA`dy5_T}D|^Svt9 zYgX0;(uCF=0)N)&PqO4mikx?vEH@~08kmpE50n+S@!^d$o+ncDbPZy=v3=p&XN!xs zG!xui|EkwG!MXdEBrC7$sU%Axw8KO>Jn0mlb*f!DUS4JIo9ZpQJF+xFZ&S|d-nd04 zAZ>*h;Q+Unet*+|MaH`s#{;b&xKa9V5bP*;Zr)wVnxCm(K`Gtk?#)n$YVLk}Q=Iv- zoES}|B?FUE3L5n7Z0;~X&+G8;u7&;6j4ifw0U>eQGN$`u-#<5|Iqnu`v*~mZax_Xa zbV&5z=Z-_?&VNxnDHk9fB2p3e0dU)L>XjI+SH{CFLl}_y)_tMU01=oKe45I;(>4_> z#S!)6i@16B;_>W5?F6zbxA6IE@8m5r-V8^jd*_!2<4_UmIE{k%uC26w(y_@f=fAO0k{dgAueU+!07JSdTQckW4AOt<1wh*{2+ zG^>7HsK~E_e2uj|f9m&r4pco#Hj-lJs(GUe!q%63>1p`IjaRP#!z_H&c5a{uQ|qs7 z!S>ld^KARHH^L*ZdHZr6Q}Ci8q%h7hyN}VpOP4q3WyRD1Gojh8$+3crmrg}pixbiS zfo+M?Z5_J;fZjvHDgrekd1%48-ht>Qe==T33;0LJUPZ}HL$xV z(gTj6n}6`7yEp*v=^fe{j8zwaoLN%e6HYKgE$Y|zA_MKbx_i!B#&_2K1{H5%#6jde`%>(jQ^GI zVtlcEu6l;eJxLMf_o!Iou9hgH_-du`7+%N8iu0yiN@1RQ`j^(fdjZJS^@nPl{aF0Y z?er^YP)DR&8i}Avw4vSTglXzNrXWyT1+B1AypiGuBo}*{9x(UpxYJp3`2$R)U8-vc zbmxo5QKGa zQ@Xc&m+&|Z^7?-5W+FvFfmR|`3c?RXv~TUnz7NH3i10P?oNlv0J3 z2kK9+-1c-F=;pehdfx1BvoQNMMTO__v+cUfiKAWG<;jmbA%6ZL%h_gu^Aw_wg zV##dD>iwGBcvjF)#eZd59t~*On8BlChWi?2=O|C!Q@$K|iFUhLH!Rgjx?fDS%2oo_ zFZ^?%ep-o z-?MIA23;cn#J_*bMPd;?YBN%{eK4NRRvl|SNO&Jm^C~RtO}*p?UI@Oep0^sk1FO%W z10S|@%}yevtIjB=wjI};J1&0Y;G`+(Rzzy{)D7KIZmt~eZ=4YNK3}7a(~MU*u_##3 zHkhq9L~1pOD0$JJ!Nj2`%fzVCxL0Iy7Vzny>x0$E@YFb!e;HNzyhG}AwS5FpH}TH# zBmC=&a33+IKZaG$of+oOSOVlRS+^u4)@9l^tn(ra|7et}G{nPhL%w$^xN{(^sf?TS z>kGLyay}c~#}SE24T`wv))Q66T#KS0tYvr?(vmq#iaRdj<#`KP4|CW}xtGZAuPc>! zl^0Ryc8_f>1r_`83%DG*m>k>gM5SVQTm%gceYSF*jw8y)8F2nJKI4%@M5%WcUdPq; zv|NK~&Anf8@0@~K{$!5`o2uG;a{Fq5&}js#FIkfLGcDQL8ux1JCHHd9OEl45lWW^? zp9Es1`%@Ew0yCbt<4KNA97Thqp7*q&sQCA(M4qSm+0~5X5ehRBy#u+xtt@nxW9pM| zeSZG@DeWmYlAUYD-fp?}N5%(XW^3OP=T>s?uc7)h+5D=ltX|_M6Sbd3_iw+FDD&IO z6ZM}y=^hoBdzg6V>(;dPGh9IIIq*d<^0r!yrPo6Ahb_$m$LFcpI^5T-$7w`(4B0}C zeoRv<>}%Lju9c^r`ymdGGZ#x4g~~*7NIt=4IhuHeysj$ToD8eKCHSTcr?TP$n!TGC zFz3N}kimr@T@*Li@G3pa*M4Q-Ve^OHWPMtD?YXdKDaP792}3Lg$N0Qk81Ci#n|OGn z>lfx69d+;rVL`XKVzK#XebEL&p|pp^xMw5LJ?~Q#qrE;zb=X=EpUM^0Z3m}S zabIc_sj{h-yB_-d`0-;ou)8=`GuR(7adJyDXktdN(Nij41J}znp4V>eihESY>(rm& zEzEp?U4A&SRi)uqtkgbYb|l)=^Ro2J>=14yy~aI!EnXh75PB9!V#9mlrdzJ1DK5*Sz|rYsOS(`?I9qoHZ! zYUmejxX0o0O?J3p6vT3o-2u|$2<@h0m6Tb(>Abdg9-sFr&QUyR~MaS*ED=Ue#v5vveHiq89mWREFqK+?qcBd(7sChCzXCW@48z43I+6Kd5a>B(S z;EGtmeG$+7#p316tK{z+ieWMN&tq&(XYA3+_-!VI7{)k)T!I7qFfMkSi?v}EUbLx( zKsKcR>Y8T3f>2JgO>Fz~d@;*ORlH3H|0S+SkAP5fdhHJs2D+7Ac;$ZR-I75DckniI z1Q{KpbLn;wZ;F?r)%uT?EeZ`XYJMJ_E%`>d^33#WiE3t!5(6T+GJ`#7A-ADX9F5{z z98)n8?VI{t1%NHLP>OK~^3@yoWT8fPX1SduBO?e|e~c(zhwuWRKf!s=3(dEAea5jX zYHFSo|LARRD;|paFrG+wc13aW-WB786@KjbAYnKVv8_sW>y!TR^>St2XR2byk{gB> zH@)Mp2#;o~UtwlTP%HH6z1Eg5;(l=e$*yv~icU0wFs@|dM@E-ka(I$Oy z({U{`A)#=V3tz@!ue&IuzwzW_vb!9;Cl4Z3;FzQro8Y}hsj8XU z!wV{wfb$?`-D7QM8wR^W52%nT6%%lO zc%Ew)kbs{6UHWBhi|D&A_~Y|p0V@#md)8>aIji-(n5gd9k~jVE@VGe~Nxdq_VQD&9 zaP=jCNQB2JeJiWK?*$)k74y?^@S_MZZymx$CHKj1wIEMlkINR2T06F86Zh^?Z|rqf zaxf6Hb#IT@yNn}TYU)UhtHUEdF+0>+9N_+0U)AhT@Q~!BfAqvUot-)~wb{??R}OcJ ztw}GwYqm}hA)Ocd+32xYIUG#=S!x${I+W?jQtR51@eD6k?{bBvw!UBeF6Pqx&-o(3 z*B*%r2)%|>e`)ZPGHfV~T~)U=qW`goj3wOy8Dp+u2>`cf10a}f(Sog-8^iimY?^K$ zR$Wbvx5`P&jIT$IVCj6tt7-)ffa?xmZ~EA;VyG6%D0P&rNn2A4)_-=WT`~6T1;-IR zkL2Sj4NRU`u8?Kh4%pZJ)nO|)ReBLHEOpvtuW7(Y?JFv$Q)#txO1MzhJh0GHf1jKV zUwl8&a;!$nRwvJUA&NtX%w8zX??ZGiNy|D(miDs&w zZ#)p_@@085mfQ0&LMI2{Wv(r>V^}+Z^1bxd2s*XYski+8eTs5(wQX;uOL3864dVpg z-f)bbxmv=}Kt}+S!1EG;%9i`Ti$tW7Q0>$NKp79uGq`s3kqKA#>J zcr`6BJ4?PxD|>$Cj&pF;$-BCI$!HKBF@N>&bXKvs*t0T*dxdC<>Sc6;ID+wHr@UAJ zaA*xe(V`dZ>JOFK8-9?paPF>C*w1b-jEfR_uEv#Rt3DYo@2eh*h?Nnmu=B=0oNLx^ zTqw(50#IZei}x|lsNX{mr*yB3LXDNd9>1{L_sJvfeka$O$#9?l?A3GT`&vY7fgcMU z_1P8%&J&~&dXo&Tlbee*i>w*^LI{DByfFZSiSNAYx~3{L4C(aA)}w;$dL?A+ZDQ08 zvsu$6FU#Nb&g1b|k5tqWVLmz!`I)^5-^k7k@Ru)I)vwbjTO0m4jHD`uQcu%QH}n_M zE*|OI*Z2ll<^~5QrY;Quty!mz4Sm-~J{_^<_+>C;i+odw4Kn}aXfo{k2l|lTVYl8! zpQFIhV3$~K$H%SP)yglLjN#R*T~5_S^^SVH&IRZQG2ta&=Q}Q+PAJx=)MCdNneIpPd_8-2u#vzZC~R6fEghRl_X^}i={b5>-5KBIoTYMg zmKB46D$CpbJ%gj+!H(Z$kmW66Jd|pzRVCH7o+H77HZF}UOpcg|LffM|iN2T2YReM+ z-N+M#71WiZSuq#i89V!$OWSi?!irH%fOeGb&=p+@_knHJUIv?Icz-Vpldcv>tOw_5 zmf@VTZBV1DRcA1UeuDQMV!Z+az9k%5#`H+pBlH+be(^+?l2zOB(hQ-i;7KPE0Z5y z>h5i1QqyyA^jjUFvKOZ?$9ayuit8F=bSqQ7MeX>*KXoK3T<5M}xQ+kGt9~&bO)tH1 z%?i5UD5dUKb3m|R=&)zsY-T*IE7+lN`<<}Dp=f4S8GG}Q%m%w(V^UmIbpZOyH9wj1 zBBjfh1?RvSopzOJ>l|V2IR{?F@S)FTmZm%g4{;;G0wOyrWZVD8yzgv97vW5GF^@J! zUsLDi#)lnKv@qhY<$i77G&B;SEtmCh@rwn!wYd!jXCCP6CzoELVGlNzOqKzk0j#ll ze2pLCk_)6X4XyzFo2o1Egy&jxMZVf!svk`2oZ!l!TWztB@(`Wnt2{dXqb~=Zg?LSk z7vQ*YTvX$+t;x}Minqd-DBZB5kFO(;#|A|EWg2+eg_Lhw+*el4CmT3K)baG~n3oY( zvK+|pF`hjiD3d2TfP{T52tc=6>;H7(Y?@p<_(Yu6&3+yskKY?zv{UTdd#r@#5%wxO zEeH^XWW6e<+Mbk?{Dxx$OPSj!_W12aSgqXQ!G2wroW3$}e5e5gw<~?KOzOc0-+o|V zG}@+kC-PebhLRn^3QoFxr{guq2m2@X*=vXLBtA}NY+33UTpXQIN8xRZ#UIb`3KPE^ z@I()K?0J0Hs#>Yz%A&QO&S3<)cJSjkbY|#F;SbI9=T!t;!vk7q3h-!@LIT?9t{uV$ zOiO0{3&G`zab(Pp}KD5`&ea zTcwo$__mI+qQ5;a*~=kSwWa+#ZKlAPM<+swLeKrB%yE=@kDPojd;mBo)hMy3ZI@zJ zV`w6N z>tL8e@{!_EbjtYDxUcXOd`S(wEx|Zw3w2c_mSWqnx9ILsBxziIEL;3|1@Vj`ev=r`zm#G)OljGQtnh;?RkEmw}(LN-vEVyvCmXGWrurMTux^K9= zwEABB=ylRap8mK{UsoR-+x_qlzQ#G|P=T3^rdbW1&8;)V0vXe?AK<9UfM->y6LrP(Gal@EirZZlzcc_LmFa)8{816BK3V{nC*M zsSIR@2?lbd<_ygu9rg7w8>SVP4STfe4R@tREVi*kzd2sZnUNVLw_4ko5(Amr{%teR zM~~gMC+zL|2M-2zaJ??&n(M9Qi~?_E)bhV;-UPz6A(t-A+vX?Et<-zpLV`?t^OhrH zBkxw)6*$FMYY@@&PUK`&usr{~)cG^qei${)=b3$DRnlRtfzN1UqpHJz_(-yi&HT^R z$lf=av`C^Tr4Lm=&q*@1C%QY6BJyDU>50%&xasGv?qh*wVo1sEjtdsp_+h~7;A@ww z2T7-1-Zxi?LvyxBs^8Y={(^=mF(Nq9&K0poEKQj#&ss2E>9iE@r1 z+k+xo{o+Ksa`mJ(sqw>7Mpxz`n?~M2Ah=K%TIFo67`3c$IXSNVnEfbJf&=cx`8b{J zww;Z>;-D`TiRxyldC|3*@W!!ZIG$`)ia4~HFCW;jZQ1vcd}6&gZ5_Ttzd21d$m<>;~b(t$I}uo?am!*cH@XU5#~rI@?!|4 zqGgF?j|I-OJ6WB@9`++B3Mwf}(Bt`eQA+BlA8jvPJrZ|}y>_kv0eGOwhcOYS>Lxqi zVt=UKCGa4qy%*)SS8R7Q$Lt%I8^bxB?)7`F@YQ;u zQY?qj_VA*nKIW7$O6juWK(LoQYm(k|{_`1>t##43g_i14f7G`Kn ztiR#$$`^4(tV67^udzS2H%3%YlfxdZKN39sLpjzRpio(EvtFNe82>tr7zA+L&}oWd zd6CsZM;Zc=M#LaFQpe}7-SMV%p=dGW{9@Q7*mq}otmB|YB8>Uq7@LSiTi^sZyu!5t zFm24N98cS~p`TKIJbqyf0qD$DXn~nj!ltFnzIoHd=p2>|ikJMUprY71*s|{#~1h1UP(D@s>sbTlPBwp zn6&FpYbCqxH_q+O9_@ZW=xF~PJDf&g<^`SnblAkR9ib?OwN~O zbu%r1L{!i!rJdWqBZ2U^zFU2peLRDaJU_w7DseO~t2W3GmFwa2Jku{P6n8_gM9Ry3 zbflmnoP;cv!^wZlICBp^@0aIa?l{Pdm{ZD|Ty<%DF2Lw+6Hh1-qjW3uGM`MsO`n&S z#Gt2c7>9$`0_~tNo1{&mHN4UYk9*jtRnhqqhoDsso!vZxZjUzydr`FON_A>-zBRnv z+9=B0Y4EV)taH*;V_>M@&=Pd(P|Dw6b^aD~HqCm?n2j;>Y*?KoR-0oys`!0U!mYk_ zzQUd)vmR+O{kSQ4Z4$|^I?Y}W0*;DXP>x*@KjNF*4`_Y@NA%1=mRlQlC&n-GI~}e~ zfC0gTua6~_$gnWqMKV@TefqgouI^&JDqjgTid%6_O;mZ<&OM~I)@~#AJ>twNux8l6TX$sG1G_exTPN^v&q+-mpV0a%} zN25_AMY3T3<>_QP{g3=4XXmM3eO6o(N8)$`L(U>~elFD6Y4bYly2r4(RQ>{8lRo^- zXs6|F1?Q+OmFDJki(lLOxf&fk+fV!RBU{I-MwceZRuUG!7#WSP*mj;5J#!Pl_&-0Of1p`E=Y;KzGE?Z?)39e04Nz5m zUArG_)Pjon^WL9E`hPwI$)}8pp{nLBb7;RTw}Al}nUy`Dx)q#r?b(0x0|OlRQACb` zsYG@NVB%jg6HxdhA%7m_19TmE%=N!MAa$U2C!*f8fEJ15i2!WacjN#0lm9%m#TcdV z$l9r4@HPz;YV-gqm(VJadZQ;?=bex~4FXwV5CZ{)TWJBgf+=6VsRiKTU*~LH$8i7m z$Kajx^^Mk9Am^`zNiaxu2&CnK`M>A>&qUrNLd)d#h)ERkD-GB25)Cbg4e_#=WmgM zf<%VD@lhiM`D%)Z`;@bUfpAhQ zePAX@j#ZNH@}WC__j_Zw9%hX^q{|d5lZX|N3NaFzC;P^`EWb5_KPR~$0UIeu2P^Ig zOkIM&U<8jGgA;EWdh>OV;y2a-`IYT^5Cx;wjaLCJ{(4TJ2XHi!hWEQnHyOl3l*neH z1|dw$^A37J9<36Bu$#Oevql~`6kSo}_h@#NfG&vBNri4#+wI<95g`jYC@-3h4Eexd zazZ%TPP6gu^?BuQK4QTf2*w^83jhE9H5`4X*$oqumqF^?_D$dIhVr8M$Uu^dnjoIA zC#qs|VeaAitKS^>wXiREAxCc@4LqR}z4REp)$n%|;4j$-&;(c5IzpmXVz#H|R6rme z)GFHYTQ^YVTPWV(NS-$+(`*#OD6m=`_6eysL%*p%f4-)HIXqbocVe551b9F+&Riqe zF2_xTPYD)X5CCSTuq|wezm2K*QLjW`zV(3o1~#pe5$aTK+1XNBXcxP-*N1M z<_#91B?%ObH&;3Lf*%sT88GLwIAn8!UmF>s^b*L98b!q8VbamK%vXc`uL{bpZM|j41LeM?~q?w!p6=sT}94K{tCbF+@%e_~~7&^(_JR z#+$trb6KuO^TYdT5_;lGWjJR07fv$T8|*rP8mQDjlpg^C@v&uMfwOMn0Wp6mLdNnt zzUe`YgR0Xkz~8aw{Xbxfk!Y{d_`chn>Oxq-eBVw zbYVR+;id^`S~gsS1f=Gi%%$OFPL8U9HYRxxGK0!*51RlZUDc4Oy73Z z7;QrgaJD%b{XK<~`ypknJa{))M*>NZDds^JeC)KJ_XYxV3pPR2iHDH$Qs!j1<&*M& zlb(lP1Y8~1hdBP9jWD%g7ggxcb6z8~+Ant}h3!Wz(+Chy93ZTsm z-$^lUFn6H-L`GTG=>?=U*&h{TLiaU8-{BS_Fsv(ubcH^Q&yv;7_+pX1{!f%oWW8JE7_p{&_x0xqdaT-zb<$1q3{xygP) z93d#;7FY-BP$OjsT|({U`#F&T8MyNeY{D%N2Fb27k&Yo6_|#LH%7@1c`$nP=gq3N5 zK~De|o-j@InbSmpqfiy1#QSV@Gd5TNDPLN_EY*baB-bz&GMkx4ITo72$;oKC^n-4TAc<8 zCU~Dtv_t$cObiqApdbEbGaEj0BW84)Azj`2Vn~DvpoX1M0PHawLtFe^m~#C+M=i+v z0BG=69Bn;o{^dZNk2i}r!Duiu%`oUm;VfUGx6|5($v_v;d4m^8*rGQv(dWzyaaz18 z7~oT8^$hWOhEVL^2dxB-&CtBAyQ{&7$$%D@au7&NZg@2q?=9C&u!aEh`z>+6Mzd2^6Udc+eDEe>4n68IdBh!Mf4H6|IAmz;p9QIKy zpXAf!p}L7SzR+sH=dw!0#XLau!EJUR6}o|!Ul0PqLjfD7_w0j3$Ou-0M?$|BF=gL` zsS%W@wA?E?^jV%7I{G;wV8IQZvgl6!YY8D@RxzP0@@dh`QGUGo$=dA;O|`W$(y!aU0rS#E4HgK_k%4JSPffW*YYSJ zO$tnl1oM?dWJIbtOORh2d)(*wTzB8>$vRH+>%{uMH!Jn-fT=4HVZ)hztFtD18R~;B zIG(39?Z@)J6}qJr%0%L<5X6Q31_3-;DV+9$kg`3+?wj@t!d3eXP=esU1 z^%&Y`;a*i3;J##j?QCVrX77j(=lR;?V?{d5N{Q7@rk<>HZfL|kDfIjPY0UW=td&)@ zcpKxL^BZH7_e|$D*Dz8TuE4?6o&_Q&@aZ8SjqV(OUl=H1mRcB>6Ndv?OFrC*op_7k zr+8TgK{Bf2=lLD1g;N!AeHO_kXxK9L%sp60d(`3pLS|_Jxm4p3N&7&a5QD&+7!;_c zSQU`@7W8lbLr);vk0swSa+{rMrPt=u91i9Prs7{GcR*1+4@xgIE8+9ZTr9G3Qi-^Y zxNy3*F`s^WzS=O<#h26QErxbGnWdmj4uzRk3UOGVgpqr@8iRdpM?F{}2x05KmA+UoNa39Hv#Yp0LoD)}7M%Vc=gRn3g%G?bF5$%0q z)O>CKjdMBHL-T_3C%o1l+Ur#9XTfKheh!NNJ>nKCm>`dTCER9RTDQ6CrJ=t)9Np~9 z)gu%K7Jp{|_c@1%Uvub{TLt*j(^DbybTVWpod5-vNi}UY^lQfyXj8GYN+{HYSB)2r zEY*y;_n~Do0qx()^^bEi#xli__#}>%wfMy=g@WPec~~Vs&wmcBfD zUL4w&c#vQ4`F)7d7$AlLEs<#com7n+ait8xkk)|P0p*y$3?LF9uL41nb-K0T3q8-x zIbGAssU?HWeUvVm?PDCdB(7GHJ&P z3Xf)992^|5Lk^7_1RPyQM#M6FY_TOuur?*MwIUCeaG3A%MjB4_FOn zQ~P^IHvMvL8nGtbrpQ8|Tc9JX&6!fA*LY;C!weTp$0B>7l&j$k($I4?x%a zG!5xOR{BdDD~ho-g|l>gttbj}h^ z(G%5^98MSe{_OZM{y8FHPL+KERhLlzFBAuhzZ)-NT#%VfcV^uK6hcpI0$pH6<4JLm zL88cHx_(h1D4_G-;NfJ9NLh9U>GIn}uTa;k+;6N;+ni})LwxHGxC4b$p(Pij-=p41 z_@P?b_>A-aq79BxEg=99xx&9ah<=tL=V{)&L9gA7k|QzXIyPs^txF?R|t~phi-wwIZdcxqtNc2s89--Fe=0 zM7Peeslc#&>OKPh2K1DqX4ZLMGxTM*f`bl0ds#Zl4crgST!Isc>M|K^Uu z;0CS9*Z`<-6&UeP(6RjuAni6w_-aBE_;%YpR!uCh&EUf?qy&$`p`4`A#**j?EvBr0 zM#$TLea_13I2k1Y4{(?km z_t?e}hp~x~n@KG)#l<+MVbDh)HO5N_kADhfpF;ef%NGnX^goSg`1wUmjFL?9zmZ_a zAYh;F7~mM7zTe$Vp!$1t7rbC!_gCOmY)Sg_{iv>-Ko*I*(*bmNmlA|oqX6OHP?_^v z7Ib%g_vb=ODJ?`D&qV|I)nt{+0{F(dF-V}V(a&7}@|(EU0!-VoORDhM!H>`YIl+?0G&5NfMPR}Y@F(<~>)evxGoQa9W&MBqS!&mHQ{XxC+z)0cn$pMjMFt+*ikBcao@iu7|c8*3$lR9uA~o zpYuRu0{@M5{*v+qY!nXqN|r6`QVF5&^qmr~TiX7Xf1rHwywU!Bfo`R$PL*Jf^Wuf) zj6h^U!uMLgVPo(MZD7&#W7!P|_yV2YzEy4Vk(MiX`WPO|#`5yz&&a4Kwpu~KyPdr; zPYq-xKKck$CrGJdyX+9xOkO zC1nzEHj_FWfhKKq1P068iqQT?7ct+2QeI}CAJ>kHKH*wkc^Mfe?%3f>o8E@mp4yU3 zrk26IN*r7j1HeKSsxZOFA9hAY!64#P7sDV_AZ3IE%dX|o{m&)= z^-W0u=x7=bNp?<+?+~n>s!L(~?OahDFnbdDwTFg>GbLWVn_DeeTkZqk!`Gp&scRfm z(zjsxAQKti)kj~|1!ib8_5DMDI-nBSZuX>b$f+7o2xK*s3~izL$aM#hbArb({5dc6 zzJ>)=Iawx>)>>|s>p?Jr$@%RWd{5^&T8#$AzP{=?PpY=2T~_3G_y@~g`?RO`fb->$ zPc8vg$Xtz>q~i7=lwU#yrkH&f`JM%0SeY5&QiU@+?{YUwqAGp1h8#F4cDA>x zFR~{Tw+r4=0Z+Fu&s3;7)T;Aj*G2Xy6H3udGRLC4`02RzQs1!JEyC~G3*4i5+Wd^L zHutJUB6ZpLpYb8J6dGs07~>U-RJ8&r?xFrMZrBu+DGF- z{qp5}Yh3f$&Ewr;y-B8D%f9YSXJVDvZ6Jc0C%!W`k#gy=H&=zVchonBhP3gr-u^Gf zBb^kK_~7YIFPnNEDTmuGeGwk!bLf9IBcK{=eklYHTfO|g2Sqy`Lw!`-c6(t(JB(CP zw_uHEL&K^{GI=d?_*1{e0m4eBo~Kd$5~~M!63&zgP2e`mQjN*`>irVSAgk4tDopfc zKP8ZRPsc|;38#Amv;sOgxTx-#XGXMJ9NND&+$Q=;eX8kzy8JaHh=_< z-VtLO;MNq23v*lNcKCbITkgZeNqVDtDaNOH_A&ci^O;{3WGw;wV}T8JXrqyI`$-kA zxiJW+=#2Q#aY1pQI^iOMWb5r^P~Z~LEc=Vs3~I(Kwacl&%iV9C3wrY2C-R30g`h|D zpS!A#oIS?)*D(I3oM0df|BBAN2p1Fgk3Bjbfm8Q8XBKLvf0j@H<|4ouH2?mxz4ld% zksR$Dm1>~ozACWGu`Q~E9-GheH5y-6*v${-el4X0X3;_d8nqdVoZj|+{@Q0Z%cXv= z?sJ&cScPH1-nVBvm{k9~^j`zneHB0wIaA9G8Ni8%Zt|;6CHuPcMcG3<|D6r5=0KU0v8dAR&n-Ti_94E=o){6Ymc z_7Y!=8F@SP)Gm@;3Rl^^pW4&@Z|A20&0yXlw*CYOnXj*%&7kQdG|VAveK`LZm^7SB zI>s&_W>M=E9mNO1L0vFvEM1d6~B1bY*NkIp`IXK6MIXYlWGhh3r5+yDq!lGV|Hryi!y zqa8Ra==xZRRUfs~EXDbTaRtKCqaUiv|M#jmD(K^#O5jQmW}xGt zSHF7UH*dB?8?7*XfPKE``gE`B`wtVZ~9~O{F&;D)bTSkMHIck^cHL^ z?=)RUg?>O5R*%TL?X_PXp#CkTj`b}nCe4ve3^<`lAP_1nAoRZA%$CamvWnmFRRFr; zd97nA-PX*51hO@a+FrJ#tJunX4S5-_L?qDJoM`IxViy)x*z1wbFT=u$41cPeH~N_w zkDM>YX_-a#0{wlaLEAS(trMaaoC`D;s<0hahSSHoe|@ypJ_lqzR#?taPBz(vY)(|E z1GQK(Rd$oMRY6;2rmfVGCS$HIUcDOvvcsKZ8_|b;#uH`&HhU;jTOrq1wz1LTn<3^s zh~sxN&F)uP;PPaI-~?d(k<=V0lPDKUIym-1lq;ap9@dBYRmHGq z&S3|RrK{p8XT<11#}m-$vU0MtH%x)Pj%D_}hKOTD=YrBNBGt16#ftm2QEVR@!lMN? zau1E4$i`TYN~6YDkLA(Ea%B}#+~t*R)b1Wr&9T3TbpId-S)fJwmAI5E%JPj% z2cW%J*~>Pe4d0weXV>Q3o%-ZtTbq&P-j@bRZ9?b!2Knp&T70o}#XDR)N1$3O&u0Zx zcaQlEKT&)}^{yzx)VUxfHt``4jV;iwojEP&Dhj?7Obyrq9~+GKc(ui>qzL7?mSTRMyK3-C9A0Jwa8Nmb*Rf zhM~M0wy_1e7jZ;PnbQ)+N8hV};R{Jb?yz3Z=MJ z`Rq@=5e*ak8GjM7;8{Fg-ZOZM}{V^NiHf!3KTU;8(c zPwH1Z41$DL0M=ffqr!*MZKJd+RYufM;5#1R+Ka9=!@qM(_NuAkdF~@CKT8T0CZ(V` zzEwq3^SWfuA}p6;^FT14H&r1gioOH6X;Fd@NpG47+9&(@I_&`|ikb;x>+MwXlS;_|6NKH;KnO#@62AMX+@w7MQW+8P|D2PS6N+ z&TM29>NND~G0?IZtV_ zH-Ik>Z4?ca_#1xk_li8v|6o4)S!YIj;#r%6o9{6a{(O!0LkFnFe#Vbj?V z^I>20L~VCnpgr0Obt6l8_Qi{>dN+$Qr#uHw2FVn2EBJgx``&)o?eKRDJo+J$)9~CC zJtkz|l`;!;dgoY}Jl}?WRF~AzVGeZy5Rq3x?_eAIDczE75(;numQ{6BEs` zyg$yGoG4wR_u_?d)aG$bkxK7rE=Q-ZsBq+$}9edUwDrxVzHVUSOv-R%0MNWus4Ff2_ak zUR3VUM*ow}8m=_$G%K%}!pU1(mZzST5^lcc@2U24Mb0`KHNLed6s_BVz{1)c6i-HFE1y3`^qnhZtDI=Z?hq~zl%f&6lp!Da zC_Y7UG1vp6QY6#qrJPtB0SM5bbaD&}gZJi~->2!?6eXUr&`VFZQaJm@%J*Wzj&2Kv z67#$@M%bQP5i>$RJ^($w{p;7Ht^QhP82Lz!_EN=&WsMR~|Lnwt-o^{RnqoYQQ+v&$ z$lx?jw&b|Y1dZ-nVOQoAp;SEZhdYfcSYemkKscJEMnRkepf_C)4>zhlS{fx?TFN~+ z9B=Wm%ZbO0*YA5YehL7D?CCl?Z-3%TE?qwXGRmC9{zRbOvDDY|6&uvSet^0+FdwCH ziiGX0?-yqMo8v?WAhwr6Kk5w& zS|$TiIaaxP?Z=PvaOj5{nm6rr-kmmbFv>~ z$Uh!kI!djtS;vvQH~h%TihE@3rB851SX|Vlv&>uj7tGIAKApelJry`y`H3v%FWeCv zT>apuoRyGv;%u%XPX5bl4k)u9=jo3l6i#C>BfR@*kS+F~u--2j2r2x}u&pb5#N%f_ zF)>;5?hXG3H~ztvPSWuWXdTU7k9b{TNU=s@X;q46GcM&-)dN78FZVjT`i`VHjpEyc z7M66}#_`xJ%WB>WWYNxh@0;c0#_M)lZ1+KawT-8BKVaD1I&kKQZE_c70@|H+;YNJb zwjiI$O!IXUV7rL5n^Rc6+fCy63{c{2p(wsh!KepP3aBF%zkc@F^ml)Ma^Hq~_^_ON*os)TnP1;s=f%PDWBe{^gm;`dzO#w0 ziM+)|KX9B@A)k^uaPoX@aKn7Vqiw5$)c%0gI_=zW)St-zX)q>4+PFJ_am5##ovl?e6 z`hCwbQ9{Y}c2k+fi+!8Vrzn&$i#|F#$G~{nP%vAp$s;)XJ>aObo4oC?@OE<#M z(%m85U4lq=cL@>_(%s$NsUQu~9g@=04c`x+_j&YNYyOzEoEe!r=bp3A-uv9USAMG< zpu|SLS~;U1Wl-sA?5E2?&Anmfmt1Ed9fMs)@B&_^!95Rwq5oIyLVMby#dXHXnTU%R z8`46%7i45bZRgGD_1RWfK&fx%+R#_4im_F)7vCp|U)Tx&hs%v$9zM@o`XQkOeQ3RB zV|Sawfn!SY=mBtW8Q;7P24o^&!(|7*??%SsJZ!W*_G<#?LCu`E3_^-Dzn}49!$PMF zEQ!CRK-0`!?#sH3;n4FOc<25w#?tH1Pc^IL^Ps~i&+oa%*3>8=-vlUeMJttWM0FNf zF_w-jI*${8nwjB!Rd4#nfP;gcw$1fH$896Meaqtu4{&bjV=~EwQTGch{>6Rqf6je; zYH0kQrWl4pjS<};#gR>0$nHT1aFZ&be;EON5KM#M>0^Lnc}faj$kZT-*665C!j1R? zszp95>uo@M#NDb-#Xxn>G6IOsG!GWI74x_<>tw1BbtAf@B7xs!vA3t#KNHbahGm2Q z@+Z`uzdp45DHui(?R(~OPmRuTw(!lmqM)Xt~*n0 zo4~;~;c^m|8pUvy=FZwL;D$y9YTqJUjM!)Oa~Ew6)y4igZ&)-MS*fda@f&(NX6biJ z`6~&yXS%tnDL=R>Um^ETmbsEQI4F(-V0LpM3LT*M%i%qy9e5QgWMw;Yt?Mi#e0`Dz zp3cJczPuS6iGFp|vUJ+zd)=FC?JpsY;vvGob^a1V@FdWbN=vH?W=>P{^^X?jaUjbg zz|kcJOXScgG)bxUdPG^k__QtqN56C~l(YCfmv>`-sW3=Tq1CQZzULgoYcY^`%k`4! z@gl#A=_W0AMHQ#NAx9#4l<5dI{HH4`?dnU6OrOoBG+tulM4x-hrRx3xDbIehUJd9} zJzat8-tMDi?C&Hs4SL?{yiEm+zpK4v*g@ACYwc zx=ccbU8^UvVPipWw$aTrXh+{c2nUzz?uGIekJlyBHO{}wCb&uh!v#?AD2)|lhZH52ams1Lz(LjMh+;2X>QPy=UDUiTrPUPLE) z=mp5>d0Z&s+DglhA;kgVK1;cJ9z7Sf{g}~q>KmEud2^L}DJcAt9_)V9CLKp5i2(+w zD1e0M3WKxBW)&(GM9m;l31pHnz^xM=NA#p^ZKI`+tx8Je`=|TMOE!0+_AR336pq*GZh>WZgWu-GAw(k}Mqz^Ht=CugPy58nMniQ`5mQP|d7F#Jzh z-_iAtXM4qU@LOuNBk%8soX@`V?@qN>ahecPHcO@2Hd3Z@x#@V&d*)qE%$s05d|E^P zb}%VG%$CXzF8jckF0hU){RK}D3iQ8+AcEgd*Y$G0_qBo(@GwRs@IyaezU6`Uh5Fy) zryL0lO^85W)|CDITWK$>TT-BJiY9s$ccgM} zq-n+RBHW_l!AM!k*-4H3*rZK|;3laZ*e8WQiQmnI+HO!wq7utzC@)Jmv)1fDU&^}v zbuxmw9l>G&3$B+#$`}DypWZJv_FeM%SB|rJq)}6j%fj$-e!P{&>%qtsGsDYp3$-X$ zJH?C-FVL=8`d0bVJ_!1hzo;1&2ow-0)v8zEMQxc75KcvW1`US#_tBRu_z9t9Em;`c zmxs~xfeiWIg#%Vl@CEe4c-^}u#8?&=B1-6{ymexS_cS5rreJFa`;*x$2@Ywu#c~JK zle4qfHGDZC;4LKNFm#Q}?K?JOWQ~E-)sP&!k><1oa#Z5kkL`GT!tkUv+D;FMgfbO1Af+5@!l!!=R}%IH;^+e_kB$o|z6e zy?p2t(y4MK3U_zNoDRD58_vIBgPf#KXWs~y=5`1?8B_flVP7h zCxH%^+GKN9aHTN5eadZdu^vP==3Y_nxxPzbyv*jR$yc(suiiP4mJZfOHIYjf{HnJv zhcn9MbKZ)Pjefhj%{{iLDUeUv*+BvY^WOs(9L)X}jaM0nDD+>HPH>~RmT>>BC=|3A zNZ4T`JG)0(`t-4I-HA4Vzxhr7x>(1kf>Ih2g~UtMGR?>P9tUC3cPQ*+E@xJl!YRR1Sb@{9lW96-c_R}pEZ_E;6_6M>yE9+G1YIp=FEY~yL5xfX7FGw8g51J0zF z4%qv81bke%v@he3{Iz>&qk=$UwC>rLA2|{k+LNe1$0Evg+s}S76nGCAb|xu*oA|Qw zp7Wf$igTN^Gp?TDrGjSf;NU_Q$;sZ`FZG-6KkgqnRhChyJRXKtbz2?0#l=XZ zpKtZK-Fc3S%48sKC=AoaysD{1W6f*phQVQAxzZ|ED{~lx->LJ^pD6(4UFIXJlDdvq zTyE_t*J60APG^Uh`VFG_aj0+{_MiXrGze0x=0R#dmEyykP_s)zCB-OvzW>mO5Tr^*Jhi{U` zZx8!JlA#hu1JoFkXRF z1>d7;IXXhmYPR^&@E8smMBpc=V~I?t>=+UMEl0r>1PcdSz~>n3BjE8U%k8c(+*FE8 z;>obw;i3Jp+?qN-TAbe}g*hAB(7-+-hbB#3jUoq$^5$|yB9bh`~Gf?7@_`sC_~~u|ICR5 zEkLR_n8d@VTCOKO7hP|2qitq^WnK17e|exjI699;-%q&uYp1}|TTDUGVn}6n#2w_K z&-5W)vQ89t5+dH-xL{p+TKma(!pBO^o8TyUG! z!d1g3WA4^bAOnmoWZS<&0=*?MK!x^B^VC)O@$Q&)9~k1Iq3J%D?2YhDQ|dVq$5m$` z0D~E?O2&uJ^lfbmH7whm(^&j1k`4Coj0|HZqMEU^H9k{Pxrt!)BQ3aIONXjb8y5 z5Pmcuaynx0y6=Y%#eC$>K6bl`J_IAaGK8`4?WO%Z4M#G%|^t&!nRa$-3!aLuh z?KVWx*aBVo-}~|Lh@H1`glOwzdSFq;Br7#SK{gY>7rH=rNLnAqqrR9q>zxjQ!+MP$}M@u#pia@i0YkU+cdZsJ=cg z2$3>8SgMOVTyCf2Q?soHn~ztQopHkdu5%vFmRTJ7yOfZ3s}8knqd`Dc8%rQ=m+fC$ zYhy`jNZ>g3fapgB`1z8ft?v2)fuWvmFB!qK$z1m0=jMT|1j>G1*`B&K&lKxAqdu?v ziqFI6iMFj`P-1EO4yRt$3xr3CUOKZSTNpcQBWDZ z@=hzda?+@bVW(F%;iJSVFFWAuOV$86tq^{@lDS-`SukhCEzWwS^+%@K9b1e5g!f58A;Ed zcom^Eww8D1c$-+^Ch&MR%Z`h$f!tS?@b>A`Nn)V%p>Ef{{^%~NF_^|!l~QHfWzEDs z;MNqF`@nMLwOt8*aWLCD@?nmY65N;C`DKnJHr0VY5%zI7mQMRemu&tWA2&qG0^z7n zRTgLTI>|b?cvUdfR7bxq&isUDl9 zMk?=e40Se+d1tGILWEOZ-bqg{AD!Ct$Gdf`Tn`968ROX)KK%z5ZP8#J)!@%w_n1$4=0tTV8DS_>Cs|N^`2)D2K**He zTMs6Hdh<$(VdR_WN&(v-jx-jiy7KsESDRF#^WmKQ8v-B)nUJm?9#S!Udyd|L-APB@ zNfxN@eMdxJLiaW9klK2f{d%uTrAmu_Af`gF*@(c*$WjKmZN8VQJ3OMBuxVc2*9Q3q zXaOjgs{;-KyDLuJ_5d5BoG)XSXt6l};{>v)sc|lqaSMsViK|Mzu4+ zncDMEb-Jg z+wQp0CJYta$Z9F16l@aHCcqtl!a5xG;KB*!i46tuBR3~)_zSeoQxvf5L`vv*-1eD< zlV1zPdla1U7>&=UMx1{j{geakG_$S z6>4mO+MY#B<))K$mtmN6#ZG-p)*>zvLM^NIamD7U67Nc(`Gq<)5k747y}3({Avduu zNl1)M6#RU72ti|Xu&2{O9w8Fe%VsMniw6^zTvs~rk1o{P(F5>unFyzOWK&9-U)T}t zWvr|Rp$RlxjlGM@E9~MP1fib$+s|v9O9dLFcdaJqeqBj1y+31Ig1&#)Id$B88(RZX z97BYIi4gT&aQ3+a8o1*{+)cCF&;i?~lPzVUnJJiR>ecx;>4AiUSH)se*0Zre;RGUF zU+hDqeB0SKJH5@PEpmsg&Q(mf9derbuXRPMeV9J<`*5T>NOiKDrC>Ll<8rTCU5rEj7= z^oo~2M&c5 zuJY^aJr$9j52G1%S6j`Z$8(91abxrz>+9=3mB$RPZ!>TdHOhJ888CoBuYXf_rx^kT zMV^wdJ;cpp_L55qRWJw5Y7Ct@ckNF-~My=mL^XtoiA~I$7i|s>|)f9Lf1|S274; za(p-AnLl#+CMFsqN9amdk?6$n^;0X9au`(6dn;UbswY=N)HafO#BACN>m3H+xSdS} z2p3zz8t=2la7x)Lw9D$&_pgQ=#L2}x!M0p5D?VKFmFzP;(s68Ob&FUi&N7ayWqS3J z*GkfHC6bJ77YuBs^HMXji+YVJbD?MJtypL0KQB#3N{NHT${+{PFvt6I6R%9aB!2Gx zB1lf3Eo!ECUV;+Gpq^yTW-9DoAR2!&so`s@3}4 zhw8n&dmm5Zc|UQa8PRVF)sSSR+Jd~)b)MLADv5WRZ$-X-%oe+Iq(WplJq ztMZHS&kKBgKZB&g!pvY111H4nm__RCZU?_UzmP%$EjK#HIU_)aTAp59WFe}W51>4I z1VRTDY>R>Qb4^T}NA+8Us(2{$wf~P+eQ&b%KFe6Uz))vhcW@Xv5+=kj4t{=kSk{8L zhdwtt8hvLV4+$VCq;3vRQR7tIJY%(`q+Sm{n2}9kAADATS}0Amj=?v+8{WrIAf2V_{^dxk`1Jt*9L-d?_gp@?8KF zd?S+|l8OA7CuuhG07R|qO-+JL_T@M49E8Ruuj;a`ot->g8PEJtD6P7^4~-g=GnHXt zIAJ=J1p}E2Wd8touiWcN@B9Rab4cxA{)vcP5*SUJ2>71_uo0 zOIh0SSkNq|J=vMI$8-BVq+fSt1USsegsjVo=B;&Fga;oJbGYf&xS;$3g$oC!&Ob4E z-|zC+z8t=`C~fF{*#~WPhMf{3?@)(@@&?tjtC@YXf1|00%b;a@@FoJ?UMO$SgZGuTaT*sE@5MvW) zvl>1TICD-a?`RHBj`k50Y`(2Td-}Q0NSKVqU7H=Wy`>u^9L~|pe0cekOize6FtQsi1tY*f5Gt>nXT$hRr(+Rf6QeR;pNUjm z!9{#eZ6cZvdVYh>>9t0E90@@}M$E_2CzQLZfSjJ6=Da-$M>D+GFBUepdsj!Z724GC zaMq@TW`f6wUD$em%;~P4iu7(U-K}N3mMi`NKbicM7xOjFjqTz)C3?hnLUawoTh8B@ zz>?%(a)`!ADlh***0_(Cr>EI|!^BP;$I7dAXcc){omx(>SCHEF(_{6GA4TQ%loh0; zr0LlA>@jN}qU2F|+%~{v01Jt#j(xovf9B~h$uY5QRu*}VeNfdAZA|<9Qh+i0LN}w1 z`c)fTnFeoU1i@lS0?!rDtp2;oA1OQO1BMOEM<ypq_R7)%w1H#{`!d48&HH zZX7yU6Ze+A2d?xHSyCItd5b-It;yko%XRYWS0>6*`k*OCJ+L=?eV0HHM2iw(-WkRX z#1@1gSd$zMF`laU1D+7)e!XeA26Ntqsgi|4uC~bO5nV`=LNZ$AT9%ua@ zh|31%aG&2^-9&eQ&4S?3U>ow@9b-OLYQ(G@jem+nZ6Gts`g(4Wu+#lH!0}?zuGwKP zf0`<`ch^gZg`WMvi2w#c_{v3Dr9b&<>Q$}Vfxhsh=isjm3l3L*`>p7iFB89D-$y}( zRRq+S6nrOWs&#Gvj`}W8+Jx|`rLnP7iNohsSj2q>cxj1Vl!F}F1V-~R()D%2ko$MW zIHPG<4h8b>*<>2-0irGUl~&!va7JE4qr39(O*rdVLY~7u;j5C(^$Xd(x*0o<(;8>~ zFiwFhL$WE0@zmDV*0MC~F;^G60PURj^5YwG(mR{!2Q*5xT&l*N6WSYXJo6rf#fia2 z)-XQ7N3X1x8_Rk73EnpS45R5VT{-IG7BKq!b}wS-!xej!csslA+WLBInZwuJ&F-?q z!1@t}^~I;RO2K+t z@aF9Bl|C90@$W9|cZW){S`1R^`H~Yz&D6QwaikV*@HUm?J4L7@c_um4pNg0mCs@ww zR%CxZF9q@>6JBYDR>)h8a50=Ez;Af2CD{NsYNK*rBy9!OAszq5~ zIa_>A?eHG|;*5&=txz|6cmgc4Y72FSv8@jE@wKK71LUTSeKTpqRaF{)*FGviywpe~x`%^cflg#q+_iNq z>0}?hQ%~5J7l}^qN82ZsJF&>7#v$xoz5o7HrmaWM z8;}kLD3M}Aa+-hcvHF3~r$Ktuk$h7n~PGE9pQO!5bj z8Ysamvd=of`cds9S&nbRjsMmCe1)&1HUQ8aH7UQIJIY<&am4Umk@!+jbNAW>MRl<$ zZ=%6R>$VWa*IiFISP;%{J^N(-@F3+~epBW%1?|uD3v5Y;`m{5@8|hfitrpdVvh1fTYb!a2 za_NL@*SivZ3<~1@3C*?~3A+95arc-=^HudELWg)2SS|1+6a6cGlb_2+ z#@tSK)bvT0((~_k9_MM{H%@UMP~HR{-=6)7Z2!JopxW)h1gGvr%zS}w*X}IbN<`#k zn-IIA3DqLDc&FW}qDk}c1M?3mAqed3&~?~!UhNMJBwd;QMwzdm6uPXh`o2zO|M{QH z46ghDg#>%DK`XdD+J|Edl=}OYhCMR)R)ej1yFQ+{gUp(G1CDp#(HBi{DBS!vc4o*v5K0qxA)ay?NvH3g*mGL;{ z5O6v4BfiD!$a>2aLaTiYt1S)jPNK4-h$i(b?DNptvncm3XrQE|G%w3s?|DInAne+Q z^#~9=W@OauW*=xz3rib~_io(zA4AKO2@Q!F@afd5KRIW0SoREL-)G+7t2M?o4mfwo zyBvuSCBx4pigbU$!Pc?gWW=Ic$3FuU6!SGbtm}fFpR@N|BJ;cscY62Ffd+tfr_Zm= zY)A6`a{5urc6%U3-kgAwg994-`)Kk>_&7z=i_6o1<;;`p96$5*Sw>{$#nl(3c%6u3l;NW@{sDw$|qK zfOFbg(yx7SF*U`Q`WH4NM+;^b`phc=^3%aXgZo2ukr?Q~cxD}xjFHDuH0st`?vpTp zH{omKKiTchqHz}rf;EbDDA(A-n4Su4ln@Ezgn|CXDj#_U_oh^@fV7PaGFMsIExE4d z|7_*un~YW-6-^7acKALlT#Ic>!;SI0Zx@%SnL)$a%0~|sO8wPXx!?R9>Oe|?)HZuT zY~}&n3bjDPp%4>)KtOG@r!@Qu;#u9<;FVxP!$dvX+|M1cwY%7hLi~NqXscWU$}HC{ z81e(FSmlW~!cPhsuDT8?^;!#}i&N8Iv}H2*xd0L2#|#sj7;WcFT*jTe%sQwhsx)xF z&gPo*=mcw$uFgQiKats<0#(vx`8sGdUs*;~6Nnz8+&}oW@l;Tx{ot{IH9Lah2jZXYBq*p3BVTJ? zQPMG#dNAMone1q}-!fS2wh>F-ym%2`ew+bHD;5m*TXB8?D%WYvJX<4e2p~A$6#d%c zYgRb#bSMOLI&VCv@Ab=IU(mK z%QC!op*A+{-a<70pQTZExxUOx?{vH__u ze4LLFSBY0VNaSU@+v%9m@PO2QNk81pmzJHLOtrLv6#X2%NXrN7DZ&w~t`j_;vPYF)t`>@MuXa@?Bvy zbHK`t?;@7o(Bj=Cq>Qk*8Ww^WOYcG5#=eFzhS(gJ9Sr{rW{XszS_ZaQv!cokeVjRF zEpK3)gJnw@5D~cD>z1(8HSIATiz*khVJ-ZG#Z*2Fum+8-)yu>TzS|}oTXq|~nGy!S zjOnMocXspeP~JAVMN@}jpBEPXTBzvY#6bY4)Wbh1$=m%v3;;jg(qNvTA&GWtT&@y&x+ei;mGm;gAr7@eE3!N-NwfX{jNtIee7kyESH$Nw_zW zBPz)Gc(JpFB=;9-q=@ixiBH{aa8<=F_mi3s_ihZV+Y{{lpAHFuSyU^M%gLXICC6gk zetaFC?qOCqOs@hY%Q1m9B$qjCB1Qj3KK$R7fOp_kbEgIN^0*(|x*1(_)ygRa8E;%N zKI1nPOU~#qj_;dc#O0#l;FD_!JmqO;WpsHlFtNVA`}H|mwv~z5k`(;qUDm_dt2wo z4y>mU0KGE~poF-*m$CF8+|NA3G+RqyoObTX?$4GIap{~WU zxK+iM!7*xKFi*yPzAt_1b04y1Xf(n8<~l+D8S25Ugo;TSb&o*mU!4azm`Mx2;7M|+ zD3@s_=Y@_U|96$4-~j;IQ_MzVa>(nrKCik%qu1u?cX6~VhgC9FO#@JgNPq@7mftij zvlb@#PX-qArA=FIanO#x?Y+Bj_0FVWRH+Hx?neQfCehbYqBwNj?=D8j;LlLuC%b)h z-P?Z6GWWuPZDC=oc%0Pd-F2`gq6pre9nT0PmftsI`1r=F%Q)7anQP36h^YP;VM0;& z=5aRl3A!C_UH>*Um>p;qU5%NsI~}HxX^oA9h>{Os+k-S+`vz5aZh z>AAV9l4+}mTYhko#Nwh?3{(>>NtA449r) zUPHtHki4}5ku0`mx!GG96=q7Eo}Zu}+zpxD5dorttX7L*Nc5Q;5swVeD52pTe6kTU zJMvHAzm6^JWBsnjk%$U|^2WF1d+W``N0cOw_itL7n#N34Mp>=m2+QY995>sCu6CM^ ziVHuuuJsA==|YZs)-Lmqyp_?z0xCK0HDgr2t?g#rxygyKZAovBDyeMf8n>eL@q!K| z#1ONl^as$_P~fb1E)}pxqXo0F=UuKLQ*rPxkwp9?#S>cUJBO>wOYba7-bznru;&X+ zsAY%O91CC6dX7IB+v(j?(F3pLfFJuI{Z(8LoCrt!_+KzK68LSzs)S0*km@tKh)kFB z7LQS)y~z5M`3ID*`hu>$tYehT(+=Ksrl)o5r)yj2xcykWW|@|&areaN`m&Jw1-Aqz z00DSUK6&TC-qpEG92P|BQz#~F5hQiW?uxI_ZJ{7em50k?motsuZE}})n4Of<1D@}8 zjie?o&{I$l0U8w*74O$PPj_5M>aZ5yRN#PG@vh~dedD=p*tNVw`=PCy!`Kv|jUH-`vct z3lA&?qvz#ac?}hTc~19I^5V&?#g|?+EBCS6*bqYiOt;U(ep{hX2e&yC*SmEcFV_k* z-(Y>c21m|se_4TxD#VvsKnVGwO*`XQ_#_1%zH=WM^Pa!Oq5*$N;*y&A7u(e2wk?W6`Xc*iAlY&(SNMS~=a*b7+ErlfHk^?Ns@CV2YZV znb|5P)&~OvgPMZ%Bj$>&xiw5L>Jd&^Q%oGC*)+cA7jh}n?c8)dy%UYx>OGYKD(m2? z$?}ltom-cqO2@|Gb^Fa>3A$#Mk~qwYG1xC*TaN^32REx!zZjfy^C`nwvl}Un;+s~C6w&B1X)|@GPb6K=;WePoW@taJ0KSpu!#Rk9P z#`I1IEO7A1EJso`+wZ{aWF(CnR)Y&&X<PK>)@|Hm$`!8lAp^I=-I4;^F-4jKYSP z*dpJcGzP3eZ>^zX{6wClx}6jwny99l*X>P|_V_4=Hd0YfT=CFah<*$~KW*@!bP1n~f38h@BE$xW!u-Mc zYWrvopRUrNm+c*ZuZz`XT4l#ARlp-u=|kf(p}*ixDcT>ED;3me%(Oyf)O~;!3hTEk zm6vj=Ku-JD67j;k&6dSgcT-U0+PV7i%<=SwEi4f7#B~kgjJydP@W(8VhW~AE)CA6` ziZ&g*VFOI|TMcg~)G)y>&t{!jtf@5`3#)4{4wmI~*t*fm6h6a4RB98+^CMD)IvHS` z@Hq6cP8;~MSe~vF|IfzTr|dkir=2Ox z5e4@(J)GSqoQ*a1Yv!j#r^*18X2d?V?O9`JJbCSOtxFnE#z+hZ{62Jp<{7(9i|Kf? z8;cd3dyjE&cusMU3#4&I<_~CTp92UamTp;_VC;z!3Y5_a??+1_GdaaDUD?#c<6bi= zz58a1k{mNUt~X z3jtl!x=Zr*qpO=68j|K)lGRWkP8MYCs+gtXiNKhm^1O3$Z|F=AzEs>lzuZ@aKPYTIANPe;MTfXt^C_y6uVSJGaqgMTUSH@h^Pk1e%U9_Sqd+zp9Xk>z?MX z0xgwLeUZ=_wr3Z3l?{WLBgMJ{sqj9nEf-&sdJWKFGq3dmCUMwFnGY(){ zb$}@n4t72m$QydT(>T*RBQIfN|65cN3rkQTgWrf-L{~LG#iFKgQRMd6W-mI&Yxq7# zyXfcZhVaWFeIW#uh(Gl1?%7aEVOmlgopSmK7M*1Q&Pw@rjqOEw26ONrz}#6L`c5`t}@Aldo$(EtQQMOC0AjP4>H^e6V9;5qU9^5yFbYy|N0M8U2C zkZ3h}T}hzh=)=T_42cXIcKk%dv*6;ThRX2^`srhn&=n}ff1RHeM13bn+A_>f^AqZd zedQx$OhY(Z6EmP*R8E&p-M!Ht70krv2NM|jUHa>C9>BB5w6wJBoYuYS zLR7U-&Z}OHg_y)j0TA2f!ngM=E~fqhIVUXAivZh$ znI{Q;i5HKgN(1+#AM}^)S)B?{ zGC+85fh1X#yfzk0N%j|G?CaYG(hyW?a<|f|a!qe5uTCYVJ)B*xvof0Y?=(iLIWsJ>#6)VXDJmKS9g1ua;Np>gL)YeCNv#lPheat-0~k=y)Zh90 z`LY1E8-0KuF`Z0^DReEW9%)svvRZVmvkz~U>yVSiPE3p<5%mg5?z03EOf8_PE1LbJ zUIID+m8%xUd53S~Q-e74cAM2kSEq515{)vdCaxw8bu8&_J6@Qv%bZwBT|lcgu1cl+ z&Ob(!zA*D;5<@{XN%4LF{9AbXr!}M_2PY&7(_|agwWOpNV>sgF$$(#yWB-#j|F?r| zbzs`yT8n`U^8ui#q=1s#R|y$tns~LdQT28FExYM_sQuOm?f+lvq2SdX_lw}%xVF_40Jl36E~ZWWH8MP!mPKIQsX8yA?@ z?e^PRxn}_9dph29D>le`{_!`Tyb8y4*3`kZ#fm&PJ zimVC_&-Rf5sC860oG4E(Q5}m?lp4oZ^uxB1pjV;S@O?(o`Ln#RZS#y69Lf?H(_?lX zNLO@1Uc$kYORZjn?+wK3HJaM}{(b9861tTzJy-3q4YLQwlH^CqoA;uXQ<6dhndEYPzzG=%99m$2ZtlF2x$ zGkw;Yt`U_6K60(-dM}_bQ=v!od+4H%(suU>EmXzPD5S-7Fs*n^j;yIK)?-_$hRFy% zmCNoEz@9Nvac2M5{P_C5fxjzBI#o&zkG2WNh*1vl`G3Cj2jS#Wd9@g-Rm^dwds+~{1QjCB{6ct2aHwdFJ_5U0y|0N~-MG?8DgkRs zZk$3a!j?~aOiVPU=oq7@#>nCZF}N^8#1#hm8N$Y}e$+0zxww_6YGZfhXwjqOo)$ zfMl2x;NkM-*F)tXfHuab&n*fSPp452RuOSHD)hZfQPt+C`bUps_^X&Ndo=lCNA z?tgH=*Y^~y4=p|nqFN#L@!~-3dp1?vLn6x_v(W1PPE2k9y>b>J&MM&J}`$ z`U`?)MN@y$@MOb-{?zhl1joIl4DSr)K$XQMkCUIIWpNr^zu>J@J%ua=n^mLLB`2%B zUY#6!HL6yfWj?ujSF1sbScq>46dl)p{2)C{Rk;)kA?HK8_Gdx{4N3WGYa9(m8Kf{k<@$B0WMVDMN!aLk;#i_Rc>kN8 ziK1p8DSjVPq1NcV23AoLMP?4ckP#Ivg)aNM!Zu`4j@jnR1<@F4T!zjE7o3>>of z%Vlxb`d9oz_*+AJ$T8|)KeAva7r<^5MU0;1k0FBmWcD)-Qi>GA*f$sIL`(57uN<#4&l_+VF7Aibw-PFVQoQ2%=VC>wp3idbBCqi`}0 zCI-cv}@X5Igg8J(3(H1 zx_v!$o)YboPzcx=Jss!rz4jR(!6%W3>!HTQ-5(*-0WV1mUO>mGHe#Tom%e#n^eE9e zwxUmXFWAh}^#V1*8#(ItY{*j<@jV8u#VAp8i7k~Kjd#4bYS_p+Huwzvr{VDR^#(oZ zo2nL5IWI~Q_O@A{$=lggIiAd-jYTjdj->H_?xOZ$zYUS%pMRxmpyGu_T(OnN=w{CLzFzu(-*$}5Xy1&E zj%r&^=&`Z=zAmrW=+sgQD{ObpXt&!!3yuRxohVv(&ezcLjEwfIcCSy{z4qYR?xl!7 zVn1s}QgjV0W-Af~h++WSK-7yMan#DopEKkrFr~UPmfrb9NCo5yBgbJQJ^K45!T;i- zc%-1Dl#-{V#GP5R^xF>{n6EdOu!<-&DNAAG{L5Y-K?SCrhvSJPQ7FX!%QON7Ga``* z_$)9X^OH;MZX!2pz$l2Ii}gw@QGs*?PHwN@?=I3cR?xP7Klw^TEQL>^bn$Ckez|Vb z88tgiWK(D~c@lYO5J3o|JuEaikY;8`t=o1bzhSirxLbgi8l8J4&1!<@zb*v;7JeE9 z6=Fusd>GYYJ?&s9i>QVMR5t|X_rS2l0ZT*?j-i-6T}LprVzTv8qjeA6!bf4SDG$$( zqa_R-^;QZ}B;h=x7im#Z#5oZuVQ?U{r>7@9LC9NojMd8}-%OIWr7wSvLs9t6inbpw zNxwN%>e$&@?p=I_`?mIrJp5*Ixl2f)IckPt@|mEdTzMgDxbukZh%-=N@gr883t zMMY0q!py32ayHboWL^B6ty|shi_?hcGKk3LMSfFRosuvS8UiLu1ID#)&k-rhUeoij z>zGyLUbRM72)-qK7!(KWr^?4l#zjwHN=-Lz!Q&*71;3*L76eDDZ8+K1GGIswhEEI; z1dPtvcm>JDD|D?+-45j<~94e zDPR;-`65ceD_VVZb9speG5ZeRKN9wz>yq9J(t6FUXZM| zVz_%az^;Bm43ba){<7C8YiGAW>o1uH|9<8003dO({YxB>=+hoT0${adNdVOcldikB z*m9;mTuV$?^*EJO?m<|Lb?m*4<)^dFNvp|N_j4cBe__eL?H4ahX%5EaRWLs0<~D;m zxKLq^niz}h5845sxKyUlM7&mD_=l@22^X%#b--|`Xb{!Bi;MCc9sy`dCCNLdLU?(3 z14$Ix6W7wg&(b;Fql#y&Nv!zXc_LIatO^0T&bOFyiFCHqdo^Mr9(;<28lt$02O4@ql2GWMKcL~c z0L&-=u3E8FJSY6n`r|{XY5O1hW|Ved(4W==K#mBu3kE(m*BL3Bh%j}_y%BCuQEY#H zSYN?upjT=wGH#Kpbvs#R#({f#| z|3OmV2@YAORREzrI2h57;ViaC>8T<7{m}XBTabXm=5<2z5eFn5OD#(|80*p_68t1* zCHnfd6smMph&=AkW>chee-Nd#JA+53nTK_N#Z<*krEe)#_-9H9Mc!a(AkPt)HQ(G@ zE!OaQj)GBU8*cVI)zbf>Z(2}Y6ZYO)CD)Xg9^^;W0DP0E>6|x)=|EX8df)a9oxHPd z4*tW34Tbpev;~g1o@zF52X?7m{rBk|?9su`EF7w3s*HQb*^rhF)0`2k3F8I6V_dku zHxe+#i?&+d1(DGT6g+e*HAjO8lEVG{JKcc3kcV0b#{&brxdNTg_3SnaW6;&2p}<}o zk?Nco%>V?SVi|Cw%Z!@&WOkiMtxBtpKr|qw#u2y!5{;o9)jxZU#Nr8`JwX4E{f z!w(5Vw}Ib2xyqibB;y0D`se(+hgWXy@4cHQWZ_|&0&jp-wbYBr!&o;oq9Y8o`;%mV zli($NX+gzIW-E>&$c1aa{$81v^1h6Yu_Y?QSE80fodB6wVsEH=Mqnl_F= zJf~)zBPnHfkLK&iU(6nusQFgXX?LY}rN!&2sQY^#tbU>NVg8!(Mr29KX*qhYxvTpTH>i!H>rqTbagcdck4V=?N=Inp$g%DUCC6IyD9PB|Qg z?lu7fL|S~P7=O$JP#~QEK}*Bx=s+njx)eZm|5=eJ8b840{5he)CEsYMxu&Wx z8tdiDchhH4I8U+;7#=}&#&Cancn>o#(>|o_BLm=}uf^4V_hjKv2d3cx$Abnh(X-#9 z%y9^dVE@kCTnb}&h-wMtJg6g|PEXuV1K#a2;)cB+chjif`5`s_l|Hm|(C+Ikpe=C( zXn0-Eep~zXc`RIO;#19hVJu_epLPJd+Mz+5(K+s^Vz(&^ z4wCW*laS-F(}s7$p=?ltv^By1Toi8>G8Sy5T!` z@Adlr?|b(i*K)aLF=wB>_pf_&?%Snfrb|{h#=3=&sy*p>~#tu*dIso_tji_BWmv=%yAHq+h=;=JNU!tWW&((>($f)zf#G z&Oe@6LBVHI539S?UrAvxnIipFhq1$8#|RINRi3ywxGNOvIh-H^=NizhzJ+3qG&HWp zeMjwadNS{`PW1>hL4DeYun!LbcPpGkIA9Y9nFgY&_Oc-HhuO*L-URYrhaW8rU20}h zfs+2mGXCit$jC^N!7r{X-0H5dcw`_xUhd}4qE(T=6vv5B#&-vbt<93Y-Q(g>b4-VN zB5G^p6UE45bXEA4mufv4HY0zD`T?5aaj?|_i>+^tDx|1> zM2WbGZEdz#)t3vV6?vQkW@FC*yCJNx?VhY@8n$zaS@;JN7R9v;^~$1@ zoF$`1^b^0%3kP1CwkOY`c^pq1Et2K8vd!CK>4ZeXn3(y3)GxN#TRJAGHi39#QHe(; z#U1H*o=*Eu`9R2Fq*S!(d&Cg|A-6mbcl)LrHk{`#2UM#vQ&@G?+`7KsOW?a1zCRaG z`Zoh#fvli3(0;9UX?WI@hZ`bCA00zc{~zq{2M0<%(v%Bn*GDVIsR!3sSs1o`*?+j< zQNHj>TIQwV(_DpX~1T7HZJGQ0KEapEOs{loKR8v#X_k|lN=17<0 zM<{9ClfF2_aR!#T9ziUQ-4Z#Ut=)*Z#YCr&o|)tjrSVGlM`dx84;-}^nC?YJOU2fG zZ*h&O;;Bld;%0pZBQ13A0U%>I*E*TF?cYqL)(d&3P`3B1_YpK=rxYh4A6k0V*v?0 zLqaANt_U%77xsMWvQ41q^zFi7Pn&!0_on&<};Kb0;(U~>V z-nr9~#BU(2`|gCYy6Y3rVK0H!m*QeJvqAQ&97gP-d}S%36UCypeUU^)j1V3AXMYMPy$l5oRYj; z^G^Zyb9?8Y*d&WN)X`%6arNmTdG7ZHdcCKkGLs$;(i$wJREus|8myo@Zf;l@Df>~I zP3^c?My9n!1UN2uv7Blsl-SRz;|wf##&W%rue98me4nXU>Pp`8rYbG7FY~?A+V`tH zSsqtuXx}fM1rg=AozTAL@XSy!%XPF~_mjE^OO85pa^H1Tn8YV_{q29z5x+_ zJ9MILGzOK3nU+BkpZ%HYSJA6ifgWg6#x$tqXo=#30xuD3f?zAb6Yq(OQ@8ECy=R06 zJ@A;pbJ5Uhiq8eUHkC~suhIi+{?H6ebW^j7$xo&T2nfW1wEo;`vUEcP1&ZZKiAP`A zuH*gwBEt2!B+4c)38Jp}rx6ETLhe7(5lze^^npj(R9PR2+(whGbBmwFG6vrdjOBGy zPUmf2OlDh!*>9fUcEkz3`m`}#X!(i!bM^V00E6nMd%&odQB2k%srgMW!+=dh=La6c zm}{hl4(>_C82RV1b)UwwDz&}<`HtbW`rcPepDvsawF9u5lYC0<51==#o-cJMeMt%d zjK?(9zWZs35=cmkKLrts6x{JZV;l*AeXVSFham8m{)X0A?rLLEg%?0J)KubzU{%%4 z>i0?Q7~*G-yjkgkJh~i4dEK0y2; zLAHb*!~IM^gokpX`q61eb(TE(5@1kCsW~M~tx@}BkUaQd0zXALM6-EY?u?&W=k@tk~PDg zPNjR4cgyT3$xWOhQMQWgy#Sg``@Rk#cl+Ae`c4n5a((&!5;rZ<|ChYflq^(#b=Cf2 zfmYg9T*RN(_3Swbf4sj$QsK~SsY+ui;9)qw3iLJa)~>SR72_)y0Ewg|Rv#V) zK|yJS$1@VUX}-!FM9rC6L}y$ghOp#)pnuh>HJmQKmy=@T0?T7}km|C*FRx@(=}bJd zDHU&GyDn~JB=B@CgDeI}rwmy2%8?{r4zoECewnLaPSZ~L5<>CqHOjuRF4 zlWnuVVsU@?Av{Qke)&>zX9pr^D~rhz{v(3GKT70({7*+G3-r^}kGdN8l;{rJ07{&~ zdMwR(a`0!aXib^G+@kLtLu6bBM|V zQ3;YWH7e<;H-b z#!lVytBC%s=*2Kre>M62)!qO{OBGfDu0S6D>Rx|k@6WAyuL9};VfoBc#D8t?>^8#~ zvj&@*BXRPs7Fz{9VBHBHjc{e11tRaSJbr|=9(sdMLA_GFXo@>?##sJK+2B`oivrsY z-m(m!p@2dn-FI`W4B@xGDi$-8*-PUk8GE~-xev%V3ZAszQ`UsRx-4P;7Y*l1?i2l+2BkYF*gbM@8Yb;4K zT9wBNt%kT1rq6|>chBf=+@0Ypb3R|Yu(FHLx>0N_iG)h@Gd^L3n3%eWd}qT97|cdt4`jn4J*h|T-b;^6Y4}ReP~s(^uCn&RcVQEKMG}}+MpMbb=M}-{bnFAPI45L_1t+L+ zXQ_Qi&b)SXG_iApn46x~Nk?n{nY6odHS#9aGrh%BZt>`rl~~5pU%jWV)YwdExB4x= zLoJjm)upeHR&J9Y15hil;YzxE&RZ4IF>2qRW@#--KG3vI;#O!Syym9TYClKX+i=fuCdZA}i^Vl*Q*w9yk<~K^+r07f3>#}efgj6`VOy_t zdrE!K`l2jumSn`^2!wKXSA!?}R)mP&q37!OAsR6Wt19@-9~z3-k1o#7C&sW!lII=< zGCFKy71v}cmJ5cb%0?d|6LN7oaZ5IeLgx;>47J8Vo3(n z42bQ86j)*j99LzSjh&15^)+#}iMk!*l^u7qtISoFzfZ884?*frJU|xHuyzg=uD6v-jywAbdq9=#mtGd+yoZDuOfM}J z?;h~Jc>S?&AYt*c!##FtL`3^V__->7{2R*q2?~Kd@lgg8Wy%SH`m;w0-k zgi0a>ojz1bFfJulwTG9(&$4h`ROAg5Of)AZ8lFozIgQ8krK%(UnsAkaaHt`#GQff) zd#l^4<$7VihH!!2r^^B!=jH7Jy&c|h_mS0?qEtUDZtL3+W*?ZPr8N8kk=WbOK_6J*+~WMu3TCv_4!Ke(Y!}9q%b5 z;wH3Bq|m%u0OVls0yUC?F8XI8Qe2y4x`>nvLk%e6;&%6&XN@0EvZzWbsQ?+nw)H5l z=;PSIg-9Ub(^?`{DW+ltUVh(A+tbN%%Bs8&({s{M)MW`Y9HiF~KWb;ncx3$0=+ z)0=h=rmU5-UhM7NFs;(y`-jIzZR&6CO{V!O_7dv8m`#{6-`!r_?D=-!hl92o#FpiH z{KDBHMsUlFK_lxXCs5c8RFsH#o}a%zT>WvYND5nz%y(Okv2Xw2?{Eg!9nA!NA&YKn%@~^c_hhQgW zo|&OAYu!^yPtgx%tz2wsY+731ruGVdXx5C`wLADw7;9bj)I0vsBT+P+^JpH+0>W5d zRtk!^_rz@CFE!B6fY#248^l+wHtw7B8=BoxH0ZoHc+*VgHH2CsUb#Lv{_#W%$eiVqe4UM~&5wTv7(jTakiwW*}&0 zGaz^?i17%3=Og*20oagKiT;AUXYxtH^IoFNpF(hpISnP#C7Of-?&;McDd`>q>1HRu zcLkcVJ_A2q6(a|&AK26%1)B7eq|B5|pL-4GW^8pezwz}pEc#Ho(`)yMH-TYx(Iy&I z!Fc%jq`dD#GIA7j()(htt)kx7W=cRZrke3wO%h*Wq20VuGV-$`dD&yBTp)+2O0xxw z)nw#+li7L1lM7?Je}7PssCU7}x4+iv^-Z(Ur;?JeH$RhO@S0j!&LHM<_;o(x$3X4% zk6Qx&1LaO=-*0eQiCm5*`ABc;Gye$)x01ZS_8iEXd3$FjY4^R1gnn3f%Be z{)eQZPMK*Rg0oqXkPJT8OleCm1#Npy8HRIR@_zn#9HwpiS01v@c6;-}*!D%|$K-+;ksnST~fxk?D!On?? zzv7rrweFeO=gX@X+2Ja=Hi_weS>LXW3-Ru(n$ENyR=zMZSUhf|G& zW@0eqNtLQu8AlxI$wIxedEz&FHVsS%Z%jVbcYu~+SO8sksXF;|qDac)ECz-Iise^V z`!)?__q)kd-Z<=Cy^46S+jJ5yr_$3(_N!9X=DXU51~H&9=HqDp86*X~Iksz8Ed%SF zYDo>4kWKowNIuuyVz~s(l7u%S`|EoN0TW|R5?aA1Io$_ixPol}UmohKYCu=!qy8(-*Kk3;) z&~E5cPo{>~(4gGI3y&TX;73<+130pU^$K%1 zIwCj$pjkPXe3oX6*vq0PV(Mg}c~s)kF#<>Um0PvRAr?P-4}dQbUeooB5qJ_xpEnwrHe zD=+>xCA|!5HW0uh?ei&qP}_vEt-Lg7)lC{q=g)it0faSs-xdo&Fn*Qav9Pb*V-K)X z`f3rRzx*8$gaXWoeQ67fklecR%1za2iFQQOMLg)r&?T!T#KF(#R85J#>@2XR2$r^D4#ma8y`%7;ZR+~n#Q^2c%`yWc_QLpw zlq6a0+zT-#@)=*Yx*RM?)C(0WFGA|AFvY2?5W>3y{gYIv?sH27^zuG}@w<2DzecaV z6Ih|#ceTl(4Z%c5Riqqiz&YAm9F0bMnLhL%DV$wuZOaGRash(rKEH;VuO{EBAqpw6 z_-x8ZtQm$%@Jg1PaO)C>!0db=57$RGd8+RmeuE~kkPTLxc{wc1^&m9+>F`%!!#@<` zKJHhFkQZ@83Ss={X)sHxbHlj!C~TQKsVmh^MmA@3!pf6Cc+#-xGZS|f`r&#Il6<Xf;^FKpkcnT~$gwW`3Bc^Q{whfs8Xcgha0wXtA)za9qoGU489A)^W`meu^TYR6MC63K2fnL(mPnZ z9NzkMfDvii$s8}KgMfR2Fn`uqkKq@-gS$eXFv6ZZkxrZo>)*9)`cd)nGc?o<^O=Kv zzU<@vT)W<;Ob;~a0bnwss}U|y3A{)G?9_LWk!Fgf^gy4iF*8>nuh23(A=^`p>N$3W|7@zv3F*a26 zRV_U|!^^P)kI8bTaN)BEU{;{c9X$KRFd%L?&yiN|91d_tJ zn-+;TFTT^&O`i5eQ?twto2jW2?tHLvXT_kGihZ9ct6yg@4ZcAX=HuV})SqEP9)UklDIwEo+sR1bF#nS!n4M##8KKF3P+1eEJl9o{jc*W`$?>@p;N7QxVcr2`oL{W}{ zO$ATDfaJ;z`-d7lDKBgtU@2!sT~yz#wEl`CSvPS)8OHREzZ4^ldd%w}*1{xN?iPE7 zU2n`Jq2R$hTK&66lv>LhspV!Sb>C_lX%cvjw!l}`L*xMUT48^kjk79R+Zv)2@v3J2Ph4~?jlkw4RqMwJPz<~0r&j@Eq%qQ zntDz0h4$FVh;wrL1~b-w87wgPolkw!UBwzD2xzRLmDz@QX=x|m;wLRX#mCO_Y$wP3lg@B2|{iP9j)c|fq z_S1A3FF_UI!$4}5I}|TU$4eUHZP;O6j&d}6v72Xb7D&uE4_4E|KOnFh0nZQI;-ta; z7SQWk$(bo8`6sa~VIa=11o@f1dFrSkpNv+YR23C`#sMfyU!1Cns&L0LTY{1Jti!15 zNm}4qWa0*ABI}lDiPL%Q^?D`N^Ud!uo9;4SM{qr*NWKIDIG}2VuqT}N+-BM;x;qhb zVk*qHk>{pb$>2xE9mDB%mht30|9$gH3%9zZV4-8#l7p<#q2lotnIu}fliJ{Ojl;T9 zBLAVvW$v;Sqwj0?cj~MzCQd?Wo>!Abka@|eMfg|_s&__}iXYYuv0z$x4Y`S+=ZtK# zVlT3@44ic>x(kpwti948;0?5zbD50yV#2uA^j%MjG(yX2U*M*qo%^hs7vG1ASW4dm z_o-Vt+jARfge84hZeQAz;v<8sHqS84x#CxG08;uvHuBiYca<}&B|XYxaAD?-61i0$ zd4O>D5B7sotwL-}nrA1!FGM)mO-q;itUG=yonJS;T&hCwvW+Y5xX8&bzsl3)utv+1 zBej#4wSg#WyFx0OgOkjq9c9`qQjGYC}Aq*U`ZRZfDt4Ue4JY zzC{Lg0?}lt_;-GtUDBR!npVmag+%CRgq{TprS4S^HB|8*9e$pEcYQN3-q0}6isx|j z_H7czzD88Jv$G?QH#m_@0;inKet}sPT&Inb?zHB`Y~_;BV5jRZtIaN29to11uUAOc zoiZ1-?|lg3?$j(__ZA68zc@hC62BI&W|42PK_U65OUYgR^?+WrXCvpd0OjdpITQQU z9`42M9UebrsogsLCzo>OrOp<=)m`r4+bBHe@!t~zvmSdPH%;EL_=7P4kgVe=3xqYo zwL|#^1f`jOg1A6!s=qkCXIlbS@{O0s@y*BO%}D~6)F-9wm}jr&{%(a&sPxXM<@Tm@ z`TDy;7U^&CCHO<)$>)Z+mK99y?5Upl>-&7t&Tp<=N&qTSNFWvukNZw*d~&#k9zlMF z)y{&|J7h&&g)hOLD|R~RNTU(!wi#dDmePaoxT!HZYC1GJ)iJVGj|E5$d32ccCHV^+ z3=65d5A2y}FTd1p8F7iRdU~)o;xRLJ6yyI{##!X>G_o4!eEn2XI72n!fY}d%#d|t1 z-Ag%1JaIroiRQMRo~JaicyC`wkxqcYg@x6T3Q_I5xw5rf^^j8Frb_y)sK}luA87MqwPljlN z$tgEi45oMPu^vnO$=Go}82i*Q{Ns!@F$4O+#1mrnKS|UZt^tWL&okkfS(>er@pKl| zSd_7sbGO;>p2M2sf|L>w@4G3M-Vd6bEgC^GqzivPaWO69L)=<*q*M)?tolA?-M3f$ zm?dodWO$!%4Sym`{=WO3nGAY4tE&1*0-v>*mi5Kjm2z5?0(B}sbMrm42CAv+g4@N* z92rEhZjOiXj4T+9x^|O$nqHe?onsEc0`kEXGH0O~3k}*$YSdsH3m`+QAq}mCHnA9Y*z`iE^Q>=;z3dk)54wo{I>l3Pu#m zSPILEjgj4>(+f=(7vdXa?Q<38<<`x+QUZ_St!-~mbn4T^jHQaaQO3pOT^pFr8nu)- zU)VeQ{@Sh!l{Hg!cuw)XQ)%M~CH}-AX|lia-av0nhn)k>A2PukUJ2>Y1seP&wPu#Cx?6=^yyJ(#!&C5!ePt8XvIyB-+NZnTPNmL~R{J7oT@-(plYe)_6I9 zF}s;KUe%bUwRMYyuiS8tad{_nlWx+9y@VwG1cTO#RQY%;pIPr^wNO*Hxq3wDV4C%o zjZ>rmp>Lh+M}xCKB8nR~p47_%d~0sP*HLje*Rc2YR-}&y7Vkax)4N)*$;!jk=>RJ& zd1eT6f2M~7!cfL=v4I<37P+T1K6%*t|~v_5gmO3rPqRK|IT^30^< zF3NRH`;Gg{F?lnaTCrm@T~$aeo6r5p9iAMX2_0ESh0AjU1qXBeNp^tlfT7=RJVX_L zS|xtgaYQOIX`RQ(QIN=r;ny5dc<#F@cD$ti*Ta8GhlIQuDe-|Ct&0p|9jCu$0cpaur zUq8?igGJ%;{ro$eqxoRW#!QW2pb>ja^MnH1am3)jdiNEbf9Vcac7J2sn9v9L2)i&?-8eWWUA!zVqjxtsDxITu%D}uvC!rYRoy-myyNj%8U3VD zdw#CvSqS%oCsGHEZwb!SC7oE}SJ+D(zB;Ec9S2IJ}sMt#?z@58= zH6AJNSHXz!2?G$e}&2-KNrT_j;gb{D=TaNb|0tKSo<=0y>o zj1eR}Us)U~NOYY_-yfl48Z#N%)hiZt^R3s~8L=l>$rUK@|7kj)LCUQ-Z?%8mO}(RG z!h?M{x6L^{96rn>K7mh7ME$4racR*4D+F$1Gd5M^n475T%w^5_HXZ^$c;Yl3$MmY? z9(smmto-4f+h`cU9#%T;4|2wE-`ZRhEZ?omP_e7S6d$M-6?aH!yiP{OHL2T{vuv2( zmu4!^V3u;Jm1V`I8gIi6)o~-7@1%C0EQw(Gn0fBLux`T`0%{+#B)p0m4ho0@Nf~?_ zz2!1O2I74}#jLiBq|xac85G!ei9{GK_5KanS3{Gm80kVyfy{7N7xcC*DS);wymO94t7}Ia|Um?a0FM4mVo}Gn;aLex{PsZo= z8lYdHsG2L(>6tk3HEH?KI9aPpU`F~=(F#HdJ7XvoEP6i>JidVm6+Ap$$(af73_Iy+ zwqK_C>#;uw;A=LV9py?>f|mQ%9Zz&x$@EOs+?yyS8BZ8b8xj}dTvoR3(GzQ-kLjjc z^wx-$J=EI1sZ$13+lJV>W4P?1DIO8@*j@6naUncIlPipgz1&h|jo9&}qz;S6d8ze< zfKw86KnW|$qcTysd8>St{62$zquY{z-jU0YBeV)uXg41wcxlD)@BSd)9VM&8l4EhWW64zDf&6q+Q>NosGUt+-zu&aw*Fhe|i1DT?jee zLK07PRl!8e#!C9OsS})yc!a2qrQAeA6E`5x%gD%xD=IM ztDT+)1ZQvADDV^H(ViFa`vq;bV%@ofJWaH z#3>p&p`XY{6r|%7O%CUdgca|jYEqJ`AoqmnKhW-wosF(IzJ?HKWFlU=26iF#*Gl+Z z#dQK$``LI6(Ej=laQx*fs!a$v1{5;|JL=#h_#E$-Z~ia3fBgzB2Iaj0GjDQjB(dqo z0FC55bmE4`4edH zNK|xm4DNe*?-`+(1pXq_M>#*8>wkYo2cEH;Zw&%@h~9FdTjSNwxBlA)``{YckGao1 zIF(@L1-Eq$x=B$$6N7OU{1!>&`)i2T5x31Zx;0+^+h#wnVITb0$}d>u{$r29@`^Wn z2MHOqv5ZyKjwf{Qd3<-Hefm)V0XXCyt_~S;&YD<+fK)FKrKUm{qf+V6#46JCj6ju}S z5kSm(Y?(kqCq+YBDz*)Ih!DnvJ~VOH=qIlJ{euD;I(~oxCEsz)2n2zVA;n+zG#;!R z0}eb7fafW7&IE_ge7QL*=mS&9GO)=SZB>mhKnGR)atiXRXu&bsC5&2uBm1>Yveizc zT|+d^9g8?{aXg?Ldjg76e~@_wfw7BkjVmde$p1%r{11AD??GOOZ&fKbWDjPppd$7n zs4@yg-q3+Qb|niNk9;9%4B!fa%z?(N$A=LeykYodKIiS+6xG z0+TNSJgA5nWzE>D(;$dKO?&g=wg2N(|I-;vaZ(DSCVdb!GvBT0@%_z~U+96>##a!? zNT$pS+&Wa&+JO5|d*6l^G@MgZs0eogMbFa4fkt#p!nA7T!q>cSz~4AZIU(Ycrvelb zh*!J>15b|$%aB6+z4V*dDZ<))MqiOYUlvXPdEvVfc#Hy7yt;x7dc$rM1VVUE^bEM= zplz-+x?;>fVdFn!VuBjd`*Qv7vU~H$gtgA-C$be@v;9SroBLAJh z`Bx;t7oqQQVHx{3V@Z=Dz!Q-ZntaSWX|=HS1K*mBsu*H&uneQGk#Gl5^FR{W$Rlnq z7%ZQZscYxRW|;cm$-^=>ZYmVcQT+x~4G|w10#9B8q*TSFIw%eGhep6akq=!?Cx($RD6^JOd(eS4>kzak^7$)P^KflW zG)(T)&nzPU#Mb|bb9q8p>YTjSYM>ztw*&@9>?!%yj6F$y1C}x2*{JA>xj&AmQ=&8; z6!V{l_y-{AOC)?mMVR>oMBfPN{DY`gArg4!_4VH`(XvpQs4^0 z77$pj5Cpq~@ntR?zA-sL3+ujU1AvfX?2^>3I1p#cqxq7C8iG4diCAppux~R3UOd285`9XlL3w7JUUr` zN7pb!fC24lj%v7f5;*O1ywT1OA?kaR`7k3gqj75H|XWr_gHFn|kjn@yfL z%l;XCzP|PR3r5XG4A2+!hPNRBqd}C3=>)!Q$C-k^9(D>n+XO=m15{Dp?l;1s5pW9v zNMHnd=iu%##{Xih|6*HW99ima0q_v9N5G{BAX*gkjK zfx)5Q0OJX?sqOGJ3bZI&P4%x5H4tLN6bBoYA=;J;dMB!Sh)CmfUgaoY*(bhejWeMG z4MnPMM}&j|gc}vA$eXfWIY0$|rL1Ct+@K6q4pU?-_>;y!e07gJ!=aEiO8wsm<^UK= zW4Mfa=J%*og78NFf^sXWJOM1jUUryqL>xRF7ia)C%hqqvCV-3z-n{`{WpKjq86KWN zA!cxUdeDGeDu9O*K={U`)w{O@*) zX#5w*|02f!R%^8Q^u^}i{ovZAYIGG}ew4O>qf&$;T96ub4n6j_jiYV~(4>|knZU;H zr~=US>L+_#(94!Sz;k(u)-ez@xjMDEk4AsPShrW#9z#Vma?D@jo6sZw4bU{f@B{VI zuViIoD`&Y+MKOMR01h&jm$Fw+ctXKu4uhs)f7?Ro1$|E{+1K!oPi|VvQ{}vuN&=kHrpU)g$0T%g|QXlN|k=huS1}%m15<|Hof|n(J0()C^(mg(PwR|MAR!!?@-U zGRsP$&cecTzBl$~@#FvIpub;h4^L2^lku&=eBwh3+8=@6f;4ixs(A|dL1J0!|F?4L zA1E$C3SzMBtpiYsRAo0hcna%&3%7AL$GOCTtxc`pdpnNbSc{6VeOJ8)U{9r1(Y}@w z^ewL-3}Io4DC(3zMz~Sq#ec*6fBnTc7;X|?a}QhD@Xqx9t{CHQh+z$g!8Jsp!L`-0 zywJaq^lykn6rtctUh+iIYfbQ(lLQw?V*0gYM2+rF)~3X79Fi0&p>$nSjoP{dL(1&= z|ANAQOD*FFcuPR7&KKbXe(ijBjh_Wy|3EN*d{rQ-U83J{X;;)`fp;pq)vppjVpf+; zL0>K579=t7T6QM(w|7;>Vc;*8@+`r)Wr}zH!_W4Uf3+w$Zp(&TM+cHQx_-PVzd<22 z4UonV&KJxi{JGJ$KvM`HQ~V?)pjjBuhz980Aq(=~u&c$;!sf0%ia=)>zkdt`Z^B%K z4CB$4>sv2(t~scI_f4-LdLZ>WvjYfVM+y(0uHWF+cC@f8OnzJ#(|F90&Jq=939)2> z=v|r|foofRCKdp_>T3+VC#2RThU1LpUy=P6p7fAf6=6&f8{}?rzmwi#wGb2SILqwJ*qz~jy{uOOMVE|YUG&GP$5X5Z!j3Q{G3Qna5Ni4j=O!6TYr5AjZ zOE$P>1Qn5Zzt)vyo(%kE2^tU@Mr8kYsEBRv_3a_dU*P=D7c~xmo9tRy_|_z;kBWjO z=_?3K6d2SIrkVfGZ~sNjCEy^oC6T#pMHhdA;mC=IQ?ZrH-dZ=8Ctd@+m3NIZpa*af zCRDN%*8CjBpnX!r8d{J%tld*+@9j_Q|LX_hM{p`@GBR%PyHvn}m`Kb!rYhPaJwXEl zkq0qjgi1go26Dkibmtywe-YM}=1m8mC-sKAAPNZ}ZIi~o6HCEDyn`nYyx3t^a|It1 zVSp)flt6;UK_iw*1_DU>KJ#Tp(Da=`^%fa&!Z2pc4SEUHTPZ~E+T>&3n%>IcwQ^0+ zh`kC~g-YZB%1HD2tQKhAeXDm>5_!>i+dlSRN$pQ|a#c$B0@qdsoOOGrO$f<-&^P<) zU(+;P4G0O+&9-Kq-4L)F!gh1uTH^bcVuFH@-5&JSfYMC}LWAv0Di(ph0RCy% zoJ4|t;}n}501B%tzc0Tbj;yh5*{%b=>3+E5wG*TZV^Drb<~@{ z!{7C>_AHM!3=mBFZ@oW)mt`#Y#3;~+CTO{Jf*<%&tul#(+b2dXQ(5mdUVzp62u++z zGlPkQ-#~78Lvxx<8Z`C3mHAT)2qJ3SrIR(mhEjnv?{2t0V785=A3$fpmIxx$(ZV7i z>T1+%Lwda~pbyz?2cbcNyg)?=I1#aFgIxxo8Eu)|`}#NX7TJIlcmml0d=U3VVqh5Zecx>ZEtTE&%|sJW~VknB;*YyZ1-%2eiaqVr)6j#DF^1 zcL#w-*X|qmFwKiTdF@SNV$g@Y>?rUOzbOk;Hprx21#8a3Sy96>h{*<#A(Fb!E9v#x z!K?H~5D%JHKslJ*J(n`@p}9enOTU`|nv`1O@aShh4+z2awE}Lk-xX3D9nV1yJ_!T( zrYt05lid4ox8Jal*HFVWI7;k|9LuwfKm)`Zj!(~wY}}%K0KUEEt;nSbVclyV4O*jz zp{8IfGt8KQWMXWpw<3sb082dB8ek>bRY)aMw-(3Y?rK$4NM#jxXhS)eW#6AkUPGKE zy4@9k#{NcCheST0)5~PQ((M%l87kmPGHD3&_>1%!fCdI!+k+}67zr%r1JFZ5*hXK* zSSTaj2B)fq%qqc{oXk9%(?D+qPcTC|Zqq*pgzv~Q7aLgkFDW88Tx!^W z;$BCAX-i)=7O)Gc-Wnm!t8$~Of#^IxmeeFz!_OPO2@BGq&Kb+B)YJO{9wyw7GXoBQ zA{Pvg?ZJmkfv8W*H9z2pxvMBIeuMb)=(;Dlxpuf2u%jw5S8>2oCz~SNwW%4&)vUKhC2(H z=kOwhAkJ_R0-hIa?qDh9>#LeC9Di^u2ls-$dfD$XEFd7%RdbT<(ZLs<&prHu)4Ky| z??;P`gB6$vO`<4y+MQx*Y#`3AS?xtE1Qzo^cmT+x+Mv&4er@??4?e80>+>V4jf!~s zQ5~f=uABYwC0MQ6h`Iin1pvx9dW(mUP^o?mASVK&v&DXe7VNo!-cBH^F7_jp??%v3 z0-gW|p$rBKh}aJV7GT|#D~KCNKzRw&jt4CGvA=%0tfOc- z^H5nU7X)p`UWJ$;0nnEKJbclA@tA)Bm%fU2uUJbphQPS7QzFN6Qp^L;o(C}KOdOyv zAw-RIXFw5nB6$q~+GH3r8P)aFFn=STt$JJb&T8>f-x|Wg^}Jth@Gnvo9teP64Sj7J z^pXT}NT?*~D>F2rfcnJpKZ_GxC8o-Ww1_Rsw~o8t#J_w*=_SXr9ffDR>~>bD(&e$MhPxLEmdZ=t?kr(;E_4j9XTtEqhKu3TkqqFZ$@Lv>3xipxW6n@5nZJ(^GG z=zfX8wnrsZyP6rl%k~_b!^rMjk&8?6(&LNSGxx^r`Qi$8j7Q%n6^c&3u+%yo}3J7{dvr~@;GhVpVW);Eiui57eUyiIYPruOKTo!AaK z^R}ynXbsILR&h?!&eSgGrhA0(nIDe#@7BegtWB;Yt(18J6DHJcmPLUf7M8}#c3+pi z^KG7m0;9gl`vCo9oLcG=4Spm zrvh*-^pJF$vU|B`v3cxFy_8GKWS5;!ey|l>2ByBBd4XPiKHoLMF&N$w81I4(Jzr}U zLXSWFep0{FB{)u)Eb+R5XhdjB#z?WurS5EqcJ?qEt%_sXX51cr@kLzcfD%$38X zH7v*Z;zd0$p-|#E1|J23RWSL*U8);elrLbHQ}+loa`YQc#wXiT4`TLUOYy;Q8gR!eXLK$_xffv zFrsO5e0uu&hE#o4A@7&k)7w<#O1Q=&9z8R=i{=%Zln!esCf1pQs}8GM#k5vcrNCsn z`g|Dyl8v(UB{P!2!C>dq^_vpOm_?Np}R5y z6f>krah}^-MFphSI#qxk983(qi^Dpjdc9!&Z?=KJB%Ke-aP8CBBeg}Z(s|6>t2#AB zY-V4?AzM;pmlM0n;+hpkeIvD8#i?>snVJiqOoc~kNyJk&EVgHk%*4QFx~?E<6j91q z{?ZfhiJ$b~@?lpyG4R_TmDy!d2?Gk4Vs27045xDzfe2rjv-#`16v#oW+n%SC7tCa? z{p=2SgQV7}<+bP^l%FuT2y9QCEjO2KG<>hC=m?dt6<4T@bsQI{IPWj^JqsZkOqPlv zW&;H(^BPT!b5S+W6Sa@BCY;t>khz=F>ists(vF@JEMzP|Xt<*7;%Vk&WEF56TSrokf#fsKg ziHc28v}1+PD@kDMTfN2d#5M89T1%C$pF%9S4K`c(3 zIK%&=>m38@P@nDL*o|!`jnUY)8rx0N*tV_4c4OPNv18k4taqP#PtUpczW-mprP=wA z=b4$cX3d%>&5rizU(D?vU#7CrqP^Dfc$T9o&3S^ccI<7hcY&FRDDd2~Pr|^3vl&KE zHbk%0?t@EyoCbxpq&)#DNm(PyIOug7yj^7TB7QgVA| z-K(sh$rI$xd!qoltBtt>AV#jt1wDP**3Ar755J5R5G1H#II2A6wAZp&$=cH?&*3sw<*}%t>L~Vk)S(nfy?E1-AOBe z``xe|F2nFcCaB8k7BATyaYR>O1KRsJpLUKSGlu6_&Tz!83W=)yy51?oX}`;ba^b_< zZQ>)i?Bno-L=Dn%sBvdte`NMxY|b>qrt1l?ZDHockN9hersEzR+M~bc4%5|wI!On{M4k$NJ)woyx%gprN!Pt9 zp2o!cDUn1jH8pjWmi2%9E0k-I123$XYS}LMh`zYdXK=DyUaU0nI3UzF?wP!x)lRCg z>0&Mhb(|MsHYl-I9XAiYXA=aG(a2*$Cep~FP(5*+u9WZr{y9Wat}|={v*WVt))p}S zo&G4=7A=g=nozC32`D=dEk`CsXJd>V-z3cHKa)N8&{N93jArcBBPUN~#jbUzjb|ge z?sgsK%*0!mpK;nXO!L*f_!jOWo~0;8qK z9{I6;(%UOscmsHB^_h@P^D?^xZ6HhG5+z)30%xcJy!)FQ=UUG#PN#4|=cVVfLFlo1 zzg}S`jc4^kq$FcF=zj^Bh>|%3Avy}p=(4ptcAzJqrN>X^`uP=`Qn66YYiUf{ARGqW zF3-3W6Vgw8G8^4baMbQ)h2rsjKY|kYKU3M5l#%_jrwq90VsIWLiln515TPI_#9*Sn zFvy_);|oy{!R*0HB%z!RJ{ysj@9t6&VgGzg4(;m36*8c$(P;lJt87KV!^0zm$pc5F zQd57ydr8Z_{c{A8W5{?GZPi}2a_Tzv%1IrB4`&YKjRk{spt&Xwc|Il zR7P+B566<-8mw6iQT*CdJv$s7M-URaR4#IhVT7|{osh$@a!&PPD@~ig5nPkUt=3YP zasG*syKbhq;o6;yS)qjHfeN72!A2^!#6nv}*IAQhtevou=~`OR!1o~dI-q4~+xTg% zq}u02{QFWZpNes`-!aR#86Ew7=cBMyucdmU+~53zU+=UcraH5?)?n4Xrt{rk&`>g0 zspMxZz!@d(WH%Wo+1iJH9$!WubG4xFT{21K$f^o*f+uM2^1R1Lno1D`Fk~@*b4X}% zaQF2=G`L{kdU=0!JLGc5Es`390s{*hj23d=9hlpZ>;2^K zONz&R-+Psw2op2cK9ZlK&?a7O+$Sv;4w{dM9HhOvNFUO9j@J`eBSLr4fVuSnPq@+c zDKmZ1m!gjH$5#aG#3wPeL08Ebb|#;b?@}o^P8}3{5-1ZPO&e!-bJ*g)FNnho8mOTn zM}LFUQnfqYn;gwIb36Q8GqJ1k;04g7F%v%5TR{vVo}p6WM~u#-9BTBszHVhr=Ne)N zs&k`LC?8S!8g&~Lj-Bd_7#^4Oy>Qn5&`Wr@)G-6&Q+wAo$Pv_w*gijIDA0a-N3kIWv#Ymg?&Eh2zT62iA+{i(jrRZ{R-G z=Xx2CvAFy1sz~gWIxqrDHFfoZ+XMG^W4Rs?+~ZbfzSTE@2e!gOGiekKIbH$MS0~G8 z4r!>Jj9CB$v+bi4MFib$$}y516UdLv1>X_c42W=#9s=Z*IF&9x#cVa8MCwpJ+j|NXb@! z@8@!MK+TQYP^yXo9hE+TyROmk?Zv;6od5il5i&Uos+aIqvn6)**PLy3D$#gFUWjVJqtiQEs(iZGZ2g9D89=nz*;}s!Ztzy? zmWF94-i{dSk^GHq>m+FI>J%^)I)M3cY1XB{WbvvfwG}}T)PSxL?1sPt7|&wD@2mqv zGz2z0K#;1jLub&0+M$vy(C~Q1g);_gPYAg`S`|HN-O3?u_Pi*V&Pbsn zCx?hWU;WHm)fsrHDdnuBlp_hNR6>pP|G$bI+jdTFW>*}RY1zHf*~J3b`?@G#{l zJ6yTm>9BfzEhVGH8utaw)MgsuW8No`JLd4-K)Bd|A{1yg8@<4+ncC)C&C!lnxjJcK zA63j}HE>ajetj-v#XJwjS??K|s&N`Wc9`r(@r^D+_dyGtsGLw{O%_D)yYN+5uP1v) zgo6Vi!VqoAl|}wl7{)H-=VzPAB^nW0&UGs&eArL=RSEGw7BKR^3)mh>p*-5(1#C+K zWWD2C6cN-A(uJDpxT%>L^qYjdKNS56t68_}E0ip~0|~Hb(f>9!H386NebRsRY}v~Z zZvg&SUbUqo;9G-=3)TW5!8@P3>t*BK4~o)Aq7M|Y?CpdpXzZ0bf*eWd^X8$9<7emZ zVA-Ai6`Q4A2R5c0QPpz%#E)u5wbG30daY+(o@NKuUu;Sz3l5GO@AQ#v zouaw9B({gore5jPjSP5be?3yKR&)Q0#fa`=ks_43BLOQO@(yXkf&ts zL9MWM!K$QXEZ7rU0TCWmqw+aiaUnd0Xrm|PU3a_glB%JVn2s^&qW`9Pv&$PLX-<)p zcL-Q~XDJ^gss%&3g><#S;FK0%&_RGD4`uCQQ;DpDhO4PcA2Fb{!QTeg{k#lpC%d2l zFRYD!XzEJ^XVpfBofzBMMpjkN+W_mrjfDK`^FAvK99(33=-4JAB4RAFj5C9ka{fOI z;2(F>;1i>Ff||CeRq~i3i2FFimXyt zb0){o8(PKPCdjX@Ht2!81-Dti2X1?N`&*-Un>HLM9b@Z{ZCMRo2e8K%Z5vG~wwNKj zD!_D^9JuTC@3^#eMK%uZ#ffZgsEw{`)Ww*oPT5$t@+P@3P_iv+%{qw2x)Jan!K-hp zOm3q3S8qr8-#Anz&aY1(BQG`~UzaSDL~~fTz8?fXon4Ed9DhmOolV_E1=s%IbpUe4 z+C&Q&9&yI3X4o+d-Mm!*W61@w+x~0GQ7e_>)0{-5@C}8dJc9YGDRO*7{GVU<|H67V zDlGQw{c-!;g#lI{>X5Y8zxX6eZo4zBm%`!p^JLOj_vKRvyY5RYYfjjZ(rMe1_l=*t zTxlIkKvTnp>Pfag#H-I+AX|i4U+r?jHeiYfu2EJ_$`We=D*M64iV!M^;&P*u!L_w( zYZ6RsLL0yk5aMEEH&wU*k*>}doUYFBYqsOTro-?#rN@_{ppo$CE0?LL012J5r3P$q z41waEmJ63L zxW8N)=8D+=a(VZRL6^dg=>7gU*)Rvphd^K!+D_!&4GKJY#!{kQeIrN&Z^f?CVIm-G z*$8VL{g$20V~34+u`=%T+Ek@$w7+@SYh(YI$a%TeEZypT0H?bfMWv968(%0%QIPD@ z_VpbzUPe7WHrAloV>i4~RXEwrqZ8^ZBF*k_(DWXM_M5##<{U1s)YA}=qo-0x%w1@C(Lq_QPH%B;pj$ds|At<>4 z`6lkLmS%+`HEYyCPY@S6T?k_bvdmp1v=-aFC1g55+((1WmKW%hc}O)Z_Jc^!W8(5S z%ShfIm{jx2E#_?a8+8+plUh%NN4@S32dWJDug}X!m=oAYn_XV}vz-*|;eT;Jh^#7o zEu#mFV}}iYu~cHFLQ*T7AA4A6ZpLAj4W#6p5Y{^URcg;4hXYfYyU@;WA1$~(o}M4k zi9bHN`JBp^YDn~6A=Yjc!T#LvKZWt{+Nr?;ItSr*uM*!AkHmeK`FCybB>_7^a0PN~ z?D+}|2xw@Wm5fz)N2s$|7wYJ_woFIa-c*!B%Rk}_TlDj_F(-Xo$eEDItpwV`_|)B%5u)n&q=I;$Aw$5 zFbM|(H--ZDW)t`D9GWmm{O1yRZfaw<4DOfjnQlmPee%;^-&O&EdvqH0=$usYq~ur> zB>!;G{}Ty?sJ2Ww=X06~Q?cRGUkw$z{%PR-x?tNq@3EmAtt(4e4I;6fr;B84j#hji zxWHGA;OEZYtu(kjP$8g8sH7W|ewQM?L}W8Yo&bW@RXQtw2+(mo_2_DYjNK~%TRHy` zzI4Eep84Qc^iG1+uDM9eavOC|fqVlxYNpuJEybf2(>qi_6wDxNuo$AXfYaouV?Fbo zS&2%Q?Y(V2$_uNvHiG50Pl~^Olqt1*<0BD~AjvqixWfl~u-YUx$*_-a?ow2UCB#RE z;aCo2L5X8CBeZoU5z2vC{0V$>=j_cB_@);b>J8y-##=2%gsHg|H{m7IL?*CKiNlG%a;LReJF_&Ruim9>5w zj7K9iV|V1*F|Z!`CW&&zy%ZI8C9@tX3OIYKlD@wA^c1N^Yyn9JMH*{cRKbXHEx^-V zGK-~Q+3NFxpoRwaI6j9;$pKwu=1w84Z+?D4thYyPe2;WTW7IhloN)uH4IiH%y%KQ} z-8~BN=paDl;x(w=KjZm7HZBvWOyn?*(+dtFjsC6oxu*Z*jqg1$8lGVWKb_>3Vl#5RFoX2y;0=1^$EFPksYLfpdCMRO7hFeD^zK4)-ZV>m@x__m3 zViWUW#TEX=))q*Y&&M}Y9g*d(?F`mYn~lpkiF-Eyftn>xf8gPP&mymp(Q_G={MeUpU!*erG#Gux#!7Uj3 zPp zRr>q^4pfLDK|dNMtVVb4U2Gi#^9o1dxH$5tFX7ROTgjy;e=38Z4R&6;(|;-MG|?lh z+8S!Id1l{kym<7}6`pjl+Zhb{x=-VP2hAq?pBhRF5(AqYlWJ=rVlD`+vFl>HKT-WC z;0IvL7P)keBERnbz=C@R&jd|xIEB-FMkHg-F}T-~5Ajb5nj7lzcj8GM?o}GoE$sX( zYcQ4Mq*!30Nv+-z+)J-*=0FXhB9ntAAS5gqPY3z4N(;Vp(HiD@hbophgcT)+fEG07 zBRC{T2CQUG;-PQffeK_mO5>|qh3m}~zYedL&PiR1mj;VP9x{ojsDKi3VpiB`uv{8h z7*OA_hw^y&@b+?%N<+9or$()TM+@@|y4>vQ9mIg&9^N~)Un+FGW}fKGrtXEq9#Xt9tCK|?LyCm5H7q$n0Zk+KsFgBol!o{z)vTmZlJVEEG`VfSrxZuc!| z5)0p8zcjV17>5EK9s`XcQ?UGym~>Lyg1*ulY8=(KaSg>hSuqm-Zer)i01>z5$F7@QPEqUC@9#~V1O6a+u|@-HC9x4LnYp((LEd2SMbRkUgc2xPPd^%Rl*SMh zYb`0>2wu&s4$io8SA9{ou1~mhxIMt4&z2E^coy4G6_1xoee_&d_YEFQ$>7eP>nt1& zeJa0Cdk*+_Pnsv?omU=Z+k<0J5)Or!<3sblv-cD-?pof|u&uI2kJIU=E@RAmL-=Z~tuw>uePNZNsnV4t zqczW&LFB;FH>Nd8y9btXRs_-!MQxPKr@wt1urah=RQFvk=NFACH-`*vckYuT{C$Njw&6+az2qy z0|wT~%l7+zPZrLCz%CELs?xy=h((3*lSiTL=KG{0eDVdx1kOKL(ahA!=7tOG&;0yA zeS2w@7((P$9Fr&`hV8)TVR>hJQ)-Nafb2F`vF0n2sftgt^R{e3!|S_fNN?Q`l5m-P z$0Nne_c5FlVkWC#*{$>K$&L^p1^3?&8LH(q@@_zYMTBzPozrUf+J)uhf{;m$2#0>K zuDL|z7oHUhEej&gC;yX||C=a*pi~=x1$$FOELwNR#!vgFDgyp6r6mME;7q{a}@FL^Xg-G1y5dHl6cNSEuFS%7%dEMp@fs7A_kUci2L=>9zNb^hD?VEhV@F=4UjZ7T4~sxVaIJ2E+Jc6wiz$JXE^ zKy2n0rwr?v7<_j0yo%O&f)mc`XK0^OeEE+T=n7{4#cKu*jNqJeqo&cd{tL*T_F#p| zcalNGz1~k|oI>_5Ibg7YN9fXUw_7hKB1mg@!CudCqo=lE{TV5wF#W#oLYbp5K3=Qs zxY6a5+x13KCsml9h_&!Jm_r?};RL3SYQk@qBdhyyd5qZVSyq~@N|Fc2eS!#1)vIfV zHqp(eR&bws9u2|-mHdo$Qe`-pi|gCNi^i36n8r05Fh*5ME5Ek|2?80 z%}Chil~3qeeu%;O#f*V#PjH{-ce*Bi6LQOQL%+5KZt7pQccjp!vw-2!dA!^#8+&I) z&9iWW=P9ornZuKSIt;3?l+Ig&&^8i)#Z{^sj`N-MmKalh+FecvDW7Ndxn_n_y-p*y zZhxe_o12!W4z*gXV066TnV&8SFZcPF#M9&R$dlAgT9gF#V}XubOx@XB!C6@G@CohS zPYBb@$`*dYV(4$-aJ<<$yY->nQ-aFtnqt3W?Elb||64%?X(9H$Kj&dU3_6B7C#nrf zy#4!$JQCkRP%K$Ico)qQjRvqxPzzQG7P>f#(@EbS1OZ1kc`!^4_Zdu1+qi0J_KfwX z8$|d7nR%-^k2jEWgCN`@O4KsM!1gcpi<|T>Ks}o!uPY+uxF#ZGM3M@77*0hdXT7%M zh!AV*ua!!hc3zMHCDNU$8&!ju=k-`RF=>Wl)Hd=U9GOLtP|N20g)^N31S z_vAMdFjdE@Jp#n&=xMKRNd}|t&`y_QR&?p4GW6@8t6lp1FTK|RZ7HEF{b%^r4>o;N z*$>~E$cp`dI*KHK_P>aK%gky{#Od$C(?Zl0@k`4c#HS_KtU!|#AG9<>D(|hq>e1-iO$#-5Ns~JXo$bS}uW?_eCev6eoCm1t+Klc6g z@h5@G<9r3sz~yl_u*U5~S(4$o!Hq^{-}5O0z`4NFA`(vDkNRgCHks7EK60beykkA2 z-`YdnzFv#SC4EnrbCFr5M4{c*YLcSWXtu^e>ls&R*UA5kFPsWK@tZk7c6s6CL9@=a zF_t+`87tiJr?X_l%F~kFPH#7}a_SM2>b$B>*2~8;r~bL%^BlPn6F{{58aRvqgL4@Vn~p^md?y8yVQacri+H({Zbe8nJc|_D%HRwO zHS{|?O};v-NmpvICED0AMnB#bh0vSyRf3K@OsBMJwH2r`+-Q<*w~B}(*R(eT#9X%X z1(A49uCX-W5?1L+A_kK_hamc0FlN~)V5EEb&}o(8Kk)wiKLhc9<9$(3FuI7*U5Gdl zp)nW$66N>bji_ZLP@k^U;{=aB-z-@f2Ev8-8|7EGuSy&qs(9szD7Y;DmZ zT_|WlFyg;+`)+Dh7a2ohk#8X=p6#bwyI}i`3k$Rzk9tNm34_BIPJc!3FWgeuUe}wO zGN@ki79&1>Ji`K^U}yfhYhq=2xo0Ug0#rseBJ?*-T{jTHoKC0uzrS*sOeUd0#iUO8EtBy(7@XyFJ|KG&SM zCoDSYTS@>`hst5K3dv5yjbuJ&28Iq(f{{FlAEG{$^(%4X;O1al8-#K~`*RrhjGR=3 z;PvWp{tHmiUXZ@#0Cj8>so}W%HP=k>lWwf5z;e&7VCp9%4d4f|8%k3bQ2T)bB2?0P zC*V|F7{VN*Y{AgfWFS$Jt{=ku(fg3#2=%-C*?Oy<8I@3H@4&=y>C8(KgT9!? z@fNgrc$h$^kJ)e6$Ym1s4gcvJHy&eWCCgPfRSOXy7ss$rP#4+k92OWlTG{-XY`A<& zN-+j={9Y%4v~`LlaM7Y@dw704$rr-~3slI=CNF9q*wnY^Ih3wv_x%>KlG?beB>vMm zrc)9RkxY|t3){~J&Ya7P{d*vcGWxFcPi!jM8QA16FpHq`535JMzAwV~5; zA6HoV;pD^wIG9t+a}=vg_~gy3)K(#Wqhby+#n?_j8Fv}dWJB!o-m9Zzu}r{Zw1p*4 z;5X?NEXuooU&Z4fgN~B;V;(I|d&h z!Xm;24&Ap@)>i?ld@yhbCWk?Sf9c=YmbDaFSOw5LjC-T%FhHvke2vin6px1o*Tft< zJ`7N`fXqg^1erPn?eeZUJ+Qs^C_>}p;*vtVsM+oJJ8QXxbwE305}o*hGui3!?0o}j zLWqtI^XT0(HDPeyM7DdrhmMwEG-%>86qw<56Cg9YXP|KTX#!v13`TzC{>GCcbM@*q z7{LGd;v?%!7%?zuA%BLSTr7xkpB_d*#k0SCOX ziK8K~Vw<(bNTGc?V284}J)<*TSZR0(kTrNEK%K@9Nc~}_DjEWhe!5;Rs$Q)35?P5Q zUqxc8%zQN^;X#X9Z*^xjLP_@V+UW2zARCR{wTN~3i&UVpDCHb|pU%r9fA;!F(&v)3 zTm{ZG6CnH;Q?akk@f0dGra_x@64Of8*DU61!RfMjf?CvWFnaS?DZRbNT2e8Qw~zn~ znfrqTGV{r5LcTa|f<6(tv_AP{%PLeN`OsBA^n<5#(}eMNmAex;Yzk zGn7IO+$@%28vansmxLF%rFbwlN<^kq?2+uBH1~;UGOD|E z$NdE;r=R}?5Y>|SsFMTp&gPfiR1HXlfr2b}u+cY5XwrKlBftB=8nrPvgw=n%yPcZ7 z;FKbBT0s~`x!asLKPMn|K3j_AHT^L>66k-Fl1Aqyef%2j|D^>j?cFNwJzSbNFl_4T z?XriGo?yA|)71+UA(_tm!qmfu(Z#P93TG*rx52O>61{eaSaLTwDPoOgSM!m5f->6a zmKXgWoFhnOc#m~c!>r{ueY?;P1rYpu>ot(g4}NIVTv*>R7W zCA3#dLA9p@5|pU@r?{{3fjft&rZkd1LxUEXfnkp4(qsQNk7%$d`^ZO<{(@*VbJl;D zRX^%dohdzC78mIBvRI;l!1p9Gj)kE~9a67j^+KedKjA@NuN^kh&ZldX*shFv5ofOB zCgwYVsu(PoSb*6RP~)O~vu!h36ve0o$6sy&=e{FE_>sh@X1b*mpO@a>=h2i;r+Qz~ z5di)hmql$^Jj$}-+uOG_NWY_ZR62qJO_>;S|-sn%XKYx5RyOS%_DOZ8a#z3yuOISa^Qm9nW-164`a~cj0vexe~8Lbq4fHeZZ6vq(ymOA0uk45B(*i0SStk5Q6>+|5$nW&d? z)vXFO%~M%FY!4(zT)mEn0QJYt5i4&~BOy=GPZ=;ZK=+=x9hkF2yKLb}{4hBl8ZSDd zF3HKk?=@L4&h4ZA+z#6$*l@;d9tzkmpV)Ag=?S{vdFn0)7f#s^oG+N?iL|N^L0|cH z29!AtJkOzkGezS=2o3`xVM-S$fv!9>k=)%QpqN@9MV0~rxha-%RjwE|dxoDXS32yM zphdlh)-7eI&Y0!b2B>0EdN3EvO<>Noc!4jDmX^z5)tZSn&HY|tAIoavO+8F0krTSK z2nKo0so58y%er+~c$#@SZg-tLg6-HLuq44UW*6JRQ6zmCAuJ~I7f&Dt3L1(H&LRhm zI8%F`^}Cx8{7>!4{XP%YdVh^pdw}{!q&V8$Qis9eSj0!h+|}FHA|t16Dbdur!@zh` zTAX$MbHRVW|5fV0=xK;xo8;Wjcgysof0-*Tv9ACogOQP7#zLj|R%DmG>W}X4YLrV$ zc<(=cC)?vHfMkNHTMHm$rl}kUhNbH-Ez6w)~5|4pTvCz7*Q-l$E8@bqpcp+Qj2a? zSR4GE32MFV_%Eq@AcJLI6-_VdL8Z2@ThDe}iHh=2HC7$+%?cgF5 zQT5=}+TX}9%g7`j`d2R^^$iYBb-E+sw_D*L(eIMfd!IG1fpl{~x>?+VR;H#i2Obmd z!`VuUENrdI=LIZoAUB*Meg>JlV7=X4$UUcQvHZHPV2a=Ig<-sMzh;dIHuoJO?9wSC zr{>$WC8x6iRZbmQOt(WX8zp-`^gDYRsVeR-r7qa|@0;r!@O?O>aXhw}LGgs@8u^3wO-$16UZ=!SV(8Q4Pq4w+KKyUXKy?q!if z_0Psru1vJ5%o+bkFQS5&ps%ES=C1lBqH*N}KQ}^ksehKJe4?Dtg^iY%mu`|jHxC6# zsx+S~jQI`zWkUl6M`2xOS&qv_GMhPKxc+AZN_RSZz@R*MO!Cw=O4~LaOZ9jpmo**f z%P1?Lkd?}nov}f;RL68-3_n*8dTgW}Xg0-!ehFBgPC!Gt+}OLgQO&ay%3lry5d zAH)lDsnkD6+NGjR2&S-$YEcT~fFoRM8L3cMV&X1SDOU@zK;(+rW$wmX&CPw~SMTfV z(=cxnv<)@WfN;sKqy5&CN3n0P-TEnM&%u6&qX%TnpitJ>W8a?)Q42>66<61+kF&Fg z8LL$@F945GXsd+mg)F$>$;XY`)p&XS6zeGwCB`@6QmSDRiTZ*YX#B%Bot%GM*ShHU z3+=pp#1i1RuCYGmU8?p3{b>R)XFKIEB~2&_k2wE%B9J8J_4J!Lrwus<#&qBFdI@_s zGB_d4*+vik#l>=7voTRZprS(#T~!WeS>L@X6yE|U!R8uQ^{fr}KBlz{tbxRwtwRBQ z0HOGKN_1|WONy)UIVz;#$)%x0MM6C-eibAuU@JY zlUPds%lRR1B8JpBYlnx+`e=jjLiVv;D=ji-43>3elC~NQvhWdmz5xTx?jTu*(1Oj9 zfvbgfnwRZQXmx*s$w@+D^9mNO8fwND%gu$T&-!QJtC$5csgcG14cYVhR<+X(hkoY_ zK*M(0$4Q4KYb1!%Pv?{H?YvdmIyO(jpX0>YTH`Y}{r*dcufq=cw8fEz>bJ9vHn+sp zC@~qX?#iYrhjSWkIg^pBh`;WihnrJ4jO7*5zSHu)En`cUkXamoM-W<`4Lo!F3W|10 z(1n|h$W%6vW#%br>@ae9;K-_OZ+K!26b-KE(xr5f3(c8&ZnLV@F~o!M4c`! zl7U?dhAJ9RalJ!f;1AiiBSUYyH3R+Xtymq3ygm*r`O>Nu-t)) z5d<_vm_^@ye-^MB48uZ_W@RoJ7L*V~2VpPMgBwJ;An{T&7Xli#LGO=8TN0R@=0Scb zQxaKf)`@nE_$u)f&m0~hG70)iqyl^*##o+z!sY|*QC z1If|3oz2zYi)wv<#_oA1h#63umuHN4p2Kbi`kuKrNEb6V-M8sc7SAdhof;5s_EO5Q z3{jw;oW=F+28S+-4F%|Gp6Uc-#I&xEX7Ace?S}j|xlBl_HhOoI3k7xZ6TP=c9`_@x zI1&Dc1`dpD9$N&j89`sIn>}uEkCvKoEwvhkk62bd8VkntIbl7wf7?xW3Yl_xyb=di z!}_EDVOF8OykPbXp6-x-_CFBEP7$rd{((Gdu`NOeTbzFHtCvT=DFjchH@cCGC`v|+ zPr!+CavhhIF$KhPOd5hYs|hN98nlazd2fx#V>eqoa*&ql=@--uy!Pcwpbz}2T}yg+ z%$&j~G7Oa>7&z<|=T$w|N2fG$}UrV79m0Ds*?)xm2}JYLZ$V``GQ`dlKTVAl!j4b7!WsfF`7V*ZV3h} zV8(BZeS`kiZ)`ed$z?PcKCm`U11q$3ejP58RUD(!lbkSy6N8w~gH(mLeuNniEzwR! zMSF=QqH?apo)S?UBP2kHDhN6eL1kS#71z#nWI+_f05sGY+y`#Qckgva%RRF`H8}(?pa;!Vgl-e{l*{mbm}CUcYhwm(o+GZs~_UE|wwjSUtOSTNE8! zq$(r1gYAf2*Z+9GUq?P~sZs*8BnY5q@w*#@^)Z!AAuV5ub*!@ayD5wJB~P8mrbTmu zpr`M+c_;#sn9MbZMtT@d*nta&5xO=L>AY}hD)fkt%K=p!GNG5_O1EGy?N!?B0^_Ni zU|9m*-(lAeHY9kxfqM)|qSIPDhq;^{8ddj9&DylhQ*K6dF4O<0alXWV2La-}yE;5B zT;ZSQQxJj_W~+SM4!o@o`hK?%*Kd+&ziiQ8>Q;?~89WhIZTCV~ruENT0NB4$S%Lcf zS1DW`9*^AhZlYjUooR+!7D=)1;K#IQV!jY>*4xGSen)&od1 zT6Uj@>YQ$n0Nv;30i-Ox0}rwa%l(tBqhIf4-&3U*TG~=`yJu5?DhDfV?${It$k-<% zP0|Von`G11cJX9Jt{!FTWEMGY$u!=e3~Sp>sIi=z@JCoHZRAiL;6!{B{?ca!s8^(O z?S5w57<9m#Lbd+D2^3ba*6sMEDDz=;u=Ji;zP5Au!LWB#u2dF{uk}_Zm0>a)0xLd< za72@s@$LXWrr}>Tqlp$QRJLNe9d}AV3G-%(LvXk>R$a|x+vbDE%~1ghTn^ev8M#jz zbm$Hw>7X!-8lE|v)DH~<=6US2n>PIJ{)gAL9eNZE#N6IzDPH#cvLDW8b?X*@^Pw|^iE-D!|jos0R<2z+$MDXaG;7HsHm6&%zMeu$sg@D{Q#R8 zd3ce;XX3o^B34>ID{4=HQCeEdUj$yKb^D{x_lStk>?pO9GczbV4$fa*My&k}pKMy} z5)!H@NCn`S%NEVCuT}1RGCAQzfb@Y_$X^s{DC`h7OIY?5VMaK|pno$v+co&%MG79_ z(;esl9#BC0QlGkfdhIcTbnu?%c;y_b+S;|Wk!t+n_60uXVsm@edQbeiF1zW4Gd$15 zN{fCSqHBEgGS4Em5E@PvXkmx8I#Khz8#~k-NRj2Ee0*w%P7LX1NqWqT6V?RN5Plfm zuo4!-c}$4D2TonCKwQSx?2 zkXfrrzu3KP6|QaH+OtW2`G&`sk594DalNNSN|;HVKt30&OhAar1Yd1~WjBOOpGc`)i98J^KfVtvzVf*E3jDE|FG*Q63y~zjS7=;WRRi0;A|y z(wz%A({*2eFz{`lnL?*E3#f}o_E+Y*1sFvuju*4a4$$XM|Y3eh!7*{yPYM_&#BqP3PD3@QJ>NyQvVyGpJ|^LC9A z`$0?V*~Y<)w(D>7Q-U)|FxMq(%)|7Dv`u`vs{_$!>VTaOIuR-+B>xw^N7c0r^_&A(^%xOnXrc?@tPtTtY*5>b{*9*h|6`+4YkeseYh{$074 z7k{Z`Mab9O_7SsiLDt5qumc~wA@!HULGqcvAfwXDj|5{*ya7*=6`?lEOviX?%| z{e4ZTFRW0i);EL3Ao34o95Qjy0zDHAE{Bi=Fy`%=aE1bi|>&{_W$-D9K*3iJUoT0k_vIOutK>=zpn=#1*2b<* zbASLgHDaM2b`>ni~Gs2!$a#|M4lNkP2wI!saTR zc#Wd?A@OjEK-)y*CmNw<*@e2RhMU<1azt{w+gf^P5}C#fVV(OR zeCmJvYu&P7h|V{qZzmWKqZK@s-}KF0{%zc$LEBqcn>}coU2aRG8;me9Xw={i%GbcC z5ekUGP#|`wBw;X07vsMzMbPXP{Uk9Ut!Ozo-&hy5-(@RaPyPO z+J`DPVkh;-phS!Kv@hmW3C+4 z8-K1C1KN07pR(CAjRpgO>g2mwDyl;C#VY8WI1>7aWszuC;&;=hdSM4Md!p!vnr zGX<2Z%|54TDl}hWZyRbUp{H7uPm?BtFm8*5Y!#6YWk1;UTfTW=Gn+DCF%!QBS3C4c zbGo@+cEMU*F{00nV{>2!E2NDz$nq%EGaC>10}bQdI+UK`am9s0&-=GIjsvB!6m6{u z-+*A`k7EqAoPo`>a~DwfJ){=3clVGkz>@1$l&eqzr4qAJ{C=d()wSci$YY zYt0AWc_;`y%W9Hg&UO81o-EURbwUI?*z)kt?pxolq8txwn69V>lr+5oqr zutqC%5KKm0A(~}jqwep_%fG{cXCk!LY$PMO+37q|lxkskrNQ3Lixv=$(7w!AtCKif zb37KrQSB-Yq>XOuHY%&2XRMbi1FYib#%F`nQ1z@=Z}$fa@Z+B-`j?8LR`^X%9L24s zJa!*p(O7b&K`YIzb=zR<^`~-kJ)dp~%b1C0xMqNhLdMR_?%KR&tdIpWFPd|R)YvU< z`(XGh9YL$rUyH{;20mz}D!gPYuroJpZ$K_%rC(_@4%X)~V+_8ioh>OAeRUen>_T=p z+uI#~NlSbfi2orC;Z3<|>`%MlSD7{m*Q%OZx7?$fZg}vR%kH+0ZPyM&YC{f(sdSb+ z{eIH2XTaDlMx>Fv8ab58ef7=@v@X^Rfnou6_17qOCO=raE6;8+>sl$x2s638nfieS zx7TiKH7NJgfjgeOK5AR7-e?NArE-!^X7%5Rx5eN|b!xP+rk9PMw)3L6z{U69`p@|t z&DGGdS~X)_FSaV_cMWa}_`SfGf4IU}cg*)s6zND8~^h zll{5ZP+w8vpNVoAyzSY0!3Q6w#WX5#=${d9)oj3z#cOH!atgGleD{}c(CJ9)(|_m3 zD6Y*=$|SOj)StSRcRP^U#9_vGTXe{^Ul%6|CWnB0=_~ z;u&wlAE5&HQcVuB;lWam?ZuvFa_};3qag4R39CD%>1I>Z?~9dX!efy;3XM2FGg zci)R(;QA~KEMigy7`@VK{wcQijT=(PgLMFK-g~MgHzrH&dzlS%+)FXIlj>qwuzg1a zI^rPAlF2FWbv~?JGlQxy9u7S-Q|=ywJuK|vCvV)8Q`?e?@41VMC8#a`Kd#;}EYtP- zAFg|{HQBapH*vBj+nUVDc1^aMY)>{PyNQ$SdanKZ?%Dt2czS!i>%7l%t@Y8;Za0a^ zW}tWe_}0W>{ldJRb#GoB=oskPQ&dkCbg>^m) zR&$y{9VP^Qw#+&74CQJ%+f*-!a&_^k8`zUhED37BVTC1lGS)zYphaB!`BUVGQr-$# zR`7}uD~ez&K>&-~Nujbi_O1J&4P($i{};hY<4*xr7>u%u=*{%j+HXU`@BwF%nu9TJ z81%&qQZgIAqb-Q2mTdGIv7g**Mmt?BTqzT(b?be_t)A|QK!+%$COk`rJ^A&Mi%h;V zKTmNS#FEPE3A!oAyWVi1#U}gqhoW6(!}54F zRYCjaJaF^V&PX+`Jp9a5GOtA&0<2jFzGp?R%uIf89OlK1Cunq8{mxhhuc zls^onTaMN;!5#6rN1(qT)4Y-U8o8lU(G_OE$nopthxYAb^Xmcpr@Db?EF$Il*_IHHJ?Aw7 zU+dhRyQ`?ws^jm$#ah*634k~Z1m*%9o1|vvqJn_B87RKeX(+%b2kuh6jYFfAW@C

khqc)i!It28|9E zkFXr(8KSZ1FBid`Q&RWmz5PPuP*E}KOzMK}Z%H$8$v)TN6Hr+@zBffAw6rPoJ+QW$)|4rhXbF}Bk3AS*BEu!cAM;WEi6jB; zb?xsN`cYiL&-S{4(9o`SJAg>5!7~ANg4JXMN&qURE&)~RfVrz?GY)eq6D&C5y=aLX z{g_;$;NKJqYYKl{!B#^>ltYv1Xq+1-Xz^84@c&)N8g|g3k<;TEEZ|dPZRf!+*S`Nv zB?t3UL}VAKbOp7hqu)J|&13XeFGRp67(ezB#T;QkCSlrB+ zuww~ZlwK{0U80i*x!|x~8~tp(!^%P> zL;rssRbI?udQC(H7GrJv*k*fv!~GT#%tde;>o!VEAy}>@kb&*6eef=76`~Qx zEL`gB*TcLbMw$(*%$evIm<}=)=VOO>l9k7|Q~1TIEkrSf2#}+waAwP83vd5}?-O;T zZI|c(7|{amAzX{WA8Zs7r^)XWd`rtCISl2H`#Ii%%q1r^LUv)KTpdagM*A@45}#fB z-baH~l#fhzAJr6F`(PBfN%F;}0(L*4f{PDzt66dQkMun|xe0aq0)cFk?wYJ@{F$Fk zF)$z`qsJ?Q1U6nYc)tY(7P?NLLU?+$^#K`DGH$0rr+J@<)^*1bF+h`P?7eGd<10kL z`-d&~sXif;pOQW~LG?|kyu<`47;wiQVP(AdGy41-uf18-=vu^if^xol5Lv2qq-Z#r zmD)60(H-i~dF%GIthdKppu?E$0z9BVJ_3^*LKymITy}eCfNDh-h5w?^DX`Xh5HYmz z?w4E*`XKc=z6$c9(_W6;MS-4&a!1hJPMC#L0Zo#HOd)-T01!iefa@oXT<|z3y!(p& zk8Wd^ID9ds1Jr%Mn9W1D(S5t0EUMl<$tYboH4zk^NrL2z7>z@R*>7Z*ewY-7j_3RO zLIN<<*JI}TTDDh9FwRWbJW5Z|_|N9n@kM>(>C;8UY=6(?;JAiov=QuyG!VVd{xoVf&Qks+;b%|OA~>UGoX zlmI{1sFC-bvBtlzu>8Q4E+i1FJ4iUH85T3H!v^O^-Rp* znIpQD6zwOz3G;JdnSopm`lX2-6AJwoDO^w75MI8JFi#V`2>N{El7op&Y?zPf^J@C( zuawyO^@F|!AVSz)=;{hlV%JY^l`QzJw{O#$`$_tB5zO6tdf-=4D8nYHQN^EcfB}+Tmn>)UeHDg?*#hu1gZ`kmnt7mgQMxnRD{BxnSHuCvZ&S4pR zRL;57Qkxk~d#Vx&keKwxFl0aqN5L9xEHz@pUpF~1h}+s_`=++WWzIK{ zixc8&_^d^yFo3~;`yCFYCJ#qxly4{Xys?!PipTymNJn2X#SY~ z%1zqau(bua6Nb_xJ|sAIZT~Ofyq*as9nCp;BRz25uOo#tcOj69^c5~%Xm zck3;F$YH}n&-&gId1HFvtRHg$7Hk#*o!^a0KAUyrSB{Sm3)Ui$!_l~-uu^vFv+T$` z#|i=W4*-$m;u0ZN5Y6ew&+vQS{~dx)faa1`p;^G#aLxjz`<+;&YL3vCi9t8N;igot znFRrt4Uw~24*^K5i_c^)7#lKvoblnyg=$ZkP|1af-RGDw15rv=Dc1|~X~f1;zT&3u zqRd$GXD2WFJ^)i3T?-5NUS>Gicd_G&cfK|$o3ZCjfZ!Ak#5~P&Kf3BrQTor%#4gq| zqxW`B3)Rdn`K1&G^b7TG`4jIk0olo+)B^DEJU*7(8TV-^TmV`T9T+cacm&qxwV-fh ziRcluYjPtl5l7eN(ueUiKfw-_=8ovnT5Ydv2lXfCg$Kh6z+*`w#sCyfa@qJ%gDQu8 z>Rz!-R34THVR!g*(u2fjuD8Rf_6D0zHP~EAt;U$0>s;!Su9JoFqB4-bmjF?sb;_0` zdrtRtIQqbMUO|k$&pI7Q<*fHn+>XD~SE43P4tlDP>uauBIzCJ>F{PnQCJ95QGvz#T zn-<9>OO~j>@?u;%8T;M7gpU+aiiwGCVWO{G#%Pa|%w+b=re7C_p<^5BU$UVE`{Ui^ z1pFguqkxLyRd)gJI}S+Zi|J|6k_Dq;42u%;YI1TTMCTzKrHJhTrr|v6>lNa1UdR+E zseAr-BVqD@O*V%e)Tv?p7Ve}f#b|T5G6=`!x4twL4a+KzX)Sn2#|0GX!c1;A$P*rC z_>ia^Snh4ufqW#NjRP}6X~F$mV|cnGZjNkL!J@vkm;HTpUm_1qr&Fb-X&6>zu1UsC>jvo z>spcbTra0jReoc&ndyFi8o*l^>^U-kpg6(khu!bbhG|C&=# z1T4OiT=(M(y3 z#nJmFjQ@^~4tcLPJ|ofJs6NVW87(09zU+Itv%D6w?1%Px4FO33=DOk)BczZUJ+Aq3}GV@2%#vW<!wF3um^S0FbGC^3>g5m`>CN8b9>>L-(od%DCbo%%W zl*w7RXp{7{#_%6*nk}was+D>}l?wR}?N(WmH70X{ zr9e=mmMu;@o3BP&U*6g+kiO<%^R8grZhUp;sOe$gVxHOU*{<3Fm@|{Kp={vJI z&kZ&=+H|dsYA)M0kn<;Agq~6YxD%KGOJ-S8y|VNrZ<$(2cEXq?=xzf8C%am&C+j#> zqPS4^?-Z;`VGtEEwZ#S3!DC>L^`W=7QAkHe?N3tX-x~E1wMT1SbAt{ro5b;cfuh63 zL6oorxd&5U4RL3t(Y5^wpB=9(5}=2qX01_W58gxTSzZC=|G?X^eONk@K&}&+wx&6Zpu%^J!s&MwS^xTRb+WMK0eV5x@d+O_Xa#T17aEOBOaaGNB2BgVe zdS5>csIciM+25;L&i*X5gg5cqOk7oY$rOcN1R@7pyzhe6*2h;E!{mLvr?#~%fha@& zZ+@r&=kK*_m?Ft5h^<+4N+t_Mo6IAYSYuYkG%lztexukU%Nmh(?}ITwpo970FE12! zBuFt2izDrzy_u+O(dC~n7Luo?NN|kn5{o7%eJmZF`FWg zP9+!L#2yHe;$wT^#vy;^xgRHgTAS&5-T*{j3PlD8}~ZM(&IHCO$_n_Ap=5xMJXy~g@>B)d?5wRLH7Zu}?2 zeS+0>-v|a7`GX7T4#BX~&|tDU6HNam^A#pNoTev-{8N;_(MJp@TsSH!D#|xmDggxB zioIKEsFV3(@Z30c@mxh{SqLucMR{@FEFSk9BD5N5Q23XGKjRa|c>?H-|DttzxsRre}vK}XITvmBoM4Kbl^KMfapZX9C(;EHI% z`C{zemDT2em_)4;|9o%X(e?8llCU7#_D^6~c)=k`SmNi1BzimoP^8vIhZvW|>JOs( zw|xdpaVMVB!O{8aY-|h`Z12u{Jf3if094^a{eK}8ZBXet8zn*t!r&l2fr+h|oZd>x ze*()IFc24GPGINif{yU#vPdh`o;2zQr|}2MIq7*3L1UkTcAhpC5noIcsNw z__%&xt_%tGQPx;BaYE@B_EPVbFIFN(rPX4);&;m!2}3?CSS{%Ws3UM)UL6_t;YqCQ z-~oV&x;VC_Tc=;~NSso2g>I9sht|l*uIDQASJR$qeTUZ_tpZmmb5acCO9TL88<`pU zg-@N*r`$|R>N7|`PGD7r0_dIHFV@!0m)u7h8I5qJ{FpNNL7J?q+66|pZ8h${_0-QE z?VE||-|3_fEExC&AH5A0Hwc1Z(`w|%+g!_Np!$umdMJ%Aq5yW{;qn!43d67AOQAT9 zgF?b??4At6#q}%9M)sKu2UQ^fzrKQ2O-Kedvk?mQ+W9ENK>kia@4+r$9Dt!gjzyQi zYqCH#rB#Eb3P=owPom+`P^o>B4I*JNV?6(1ZX^D}0X-FEXS@Zfok4$3~nIo+jYf5{KrF+9?_O?P+2~ zl7D`@driVE9p@;A0Jc8Q`5tgUPgfhOEHyaIyFcKt=ovbPVnU>fn7n0W?(q~PsnEI&743{C`mwvRyIi>;Hs{5q|;zdKaiWzJY{AKG*dIu+t2Y=LnYbueJe6Q`9QOcwS8ol&_ z8hp?pJA2({s--Sp$Om{ADDj~%z{3azrx*pNE*R^!g(&a?>Ktv${Y0_$$qf|Q!Q3yD(gc9Qng;e~0JCr7w+^{8^7qG;munW_<;;R3M!5SRgJ zP_!p1V+UmXnt}N)6TKbgC{bnn`*h1!Dw0-m$Kvj8(pJF^zYq8JUo;9Ce4-6_TrpVHWw;nBI-zXp%wG3TO>C{t zBsXlXhJQo5P1uIqQT^osEkT1;_xQU}gClw=c8Urr4Zu42f4><7Ky<9>_s%XS<^sLH z=vbdNF>S^PYjuKon?Xo$yjU(HqZNH0k&jBTH2gzfX&8!Qpj1D%4N2%!I~Q|}v$Ol% zL*B(UCW96xZsQ+n{_4yi79)#$FAg^mV)PF{niDL|5&3~8bthuXDH1w(%;7qC%}qMs zc&ro1<%14pg;2z9v|VRC3gF`PLdJpiQ!6#92cbKc<-=6kB;$^kndP*~AFaP1#M)l~ zV8uSJs_waK%T=F_J)m>qYRRI(%SG1%kYmKNbUJ+zOCv~Rl0l$_1(yhTc;dh~?4j?K zu5_As3TZ<-^~9e7Y@hjGs((e?q}7S?fbXb@y)tN4l4F=xNpUe|u{D%w9qaS^KpcJw zHf3Spng03@jF3Q0A<`?J!jDn^6qECXo95?j47Pa>;0|VX-6t(o{1Kz|s_tZt8go^h zEfAmvZ`N~o1fP7;w$Wt8X#r)q{Fpg(Ljir4Mp2$wvLQ06tJSH8-lJSgN@l(RiUY{) zqm=-2Jq)W*TJlN$4s*P)hto>KNTfK*tZi$=?6nKGGNn08;Yi#UeXJqm6QiP;_A7j( z)TW}}NrLF9O?&KCLxLr%Zs*90fE%oNBiqT9#RKn!0j~Ped5_M-39o_d?=k;C|Mxy0 zqKF;;E`IxqbrXZ|VIgYjV*g3boc&lK0=QLq%<_vFqJye3ZvHmc3j#oY#02C`5BLa?N<;1**2_!&+vjEHu`5=J_Y>1qzmt`{E*|+N!+!C zB}BzTie?B0K=Y#edpfk#hw(|HwKUR1=-wo8F6yg5(z<&gqBWNlc-d@mY=d}~5IUs{ z{W^EI$0NwObN9H)>#X0Sf7rwAvO^Cf ztX?kh!8%oM0?Ge3X(3g+Baqy7hT*#2ivG0d-8H|gfHa5}c+llTNC-6>IOf!82btv+ z#&mpvdMztC1EK7d*pmiZ?AXeV~*S*~$jM-=W zstD}qG}uJ*>Lm~kt2rBN0*qq?L(+IOk}pC#wq){ER29Jw2EUgr!W)|}pWABlLa>o4G`pg04%ZoZ&~R-q4)Vk4DkaH#yuDcqFCDo8=npqHnOjD z->0P`Q>Wpw)`bUemBzo<<^mv;AChPu1rU5OYDL4(AN72|89^iW)vj-9(s>AZ1UHfg zZ@_%gNq*Ipr36;up5aczgIc95J>T|^)yeeP4}-Ers)zMllU5n#Odq6`I_wJo!N*>& zX3G@tRa_)d_fBJbJ`-}A=Pdo1xzd2CaMD3b+WVdD=8VBQ&$&L`;e3JP;{8@uTsvbb zJ}bNinAWS{LIJ%ATEcxZNH7i%sDESf&1t!BzMsDIXPnlC=@=|sE#&Aop(yeQA#$Gg zsS^DN0p#D5y3-6NH|O%mQ#aY8yJmglQ_vk)iLA;4)NkMl?s@+`xy2lPP^?UV=h1^dO;sC80ezozI$~ zx5`XOfewZM-iDAa0^B|zXh7}A7hsNZeWt+u_cG-WQIV25`l*Uzc&>aq2Eeurw+-aa zw~5BX&4DCEIs63-Jpn&7oT8fUnN!1;lcGAAZ*a#+h~#ZRXM1D2iG5*4N9{1T02L=K zCcfC%0Fp`GenuVeeFCykvF-GDs_oJ17u2ehKHt3oTP#vKf7Id;u60T*Fj66(25-u_ z46(7APnlj_4oO=A7WM6AfwI#LvB7kD?cEukOo;hPhWEOl%`Wc{9Sx={Y|uUDOtkZ0 z0%F`W56iu-ww%A+XMo%4d7&xTo?S*4Z3{a~{%y`MZ!-@Q-z`h*kcl$iD*aWH+Xr8_ z-Ccc{rDl)(pIHh6gpc!;rD{I6b@~rX+Y_-{8jym#CQ(k4#^z^8ncxDf&S=(IYo^mF z<9&(ktN@E8wak~`4+0~Bg#eL2d~5&vC+6T5`T^;{|F?si+r2QtTh(K1dtBtnq}=`Z zr26Hav0HI_`P0P7$;r*J295HF4nUqdJ!FNexzPVK8mJ4n6M#CRRMRE?1r+$RM{nby zgNcgNwcm0!(k5B+os642oaLiOSM*}2Lke_rY& zOTWF`^3_~IPvT`o0xd!>nu`RbA`)+#Evj(x+09OLY-P`2uqAI+yaRIx<0FGk4eM7A z_>YUE9rHu|PL)0@Tmh!n=E4TVWuP=q(J;kD5u>M7uId7L8g6cwyZ6D*((v>3a*gC8 z-al7|7Ju!VHMUPos;J1Y=e+#R)$-kAzmrXtRNyL`YK%PCUSH*^d(K#4@iFr$JqViO z@)%W(i-@Q3(ALzX4&#P)kIH-QQQE@gB1B%q+-75E$DoWpgkD|9kbG0)rFNSNVm9AX zr`D~@RMuE~Dw*4Ij=G<=PMr)CBuEzyj0gsoZR`RzjjUq-m}jA#F`Z(NEMj7f`aKxS zB#ww2E+>O97Mf9xQc12L^WLy_roX#yYHp7V*sKy(*LQtO2cH-emmOJozW0XkTw(f) zhbL0shJ3o4ru=&>Jy)p0li97;*p#RsR9t9f*oGIjAW2~u z6cF$W5{4-a>S>q>+!`IIr}ZG?N{R6wW({wWgAI@)g4u$||Kv!nN=`n94ANO-cz-Vh z#yGivt$MTYk8~=iPf_0swY;4{p+Q04=hhT$jaiDwbod-2^7(uEt{lMUsD%4uB)0b( z$M{9RpVUjQRw>r|vH=i|*e&YA)g$`W>%|$v@h>+!#n>V`)eouyzb(1JA0B^)T8QNu z!Bn6BuxY&x%xE`nxa>QZ8yh8R^SYw(1HMZY2f1^5x4d@@1``03AUaJ>opvQ^2&Gv zFN8_%5J_7^C}`(WEwJQczkkwNV4XkOMTa$6x)YlD?`fcbJjH~O%%^tsKkYA&F5qz| zAp>Xh_oza9jy0GJfL!nknh;p7That70Wy@i{)+V0)q1sVlP6(fZt73uL?|aG;RxlS zWU+~Z1h{H}uwu_WeO_+t@-%J%q|7ES^bUp;fgkZ?mK-?+KI0QFN0;Q~XQ`t%SVbKV z&dW}Rp@OGQX2E@em>Wgu+b8f8j*JlqPO(|E>hO$>EEh%(y$ybCZ|c=hhKss%7?9mU z0v0!h*JjNE`xee47Y1UYE98_XBNwDG_~r_yAhN?d@|W-)&FFIm`xJljQ7ZTBU7NS0 zs`fcm0sAMD1^W58s>jZ(t%iWmkD~;Xu*ZW@{iR=q!*=%%+dl4(FJ&ih`F#0ss(~p4 zKcl~>3_p3VYo9T21!61lwCRd$WFjW)?N0ihw*)RsGO zG?!tlQpIq>#RQ;D97CJM{l-}n%mju8atRVRKpPZF1HS-4;C zPFMqBejLV;ST$D07!>Ri zd*ge_vN}{D&WJ`>e*nPP)QS|4R1zMg!y9eBklAdaS*dPy@4FuX#zy?88Psk!!a+WA z@s@SmAET2d!?9aD+(|^6O`-6o?^Y8M8XA1#SSy0VZhcu(rtNH zPf2(Sl;j;O3*?+sh?LFZPGu@lpuFFmu8;;x_sC2PMV~{Bc)xRw6tTob?LCtbuivDUY36ISIXFmAdsE zhi{BRzV}y}w9+#3DrmS*U23ta*Sk+*c0QDhJ+RTge*XI~VuQeWG6jGW9y7$l1*zde z{C6o;Aj;=$LAGtTfywY@KLN>cx=A>kk~3wrQ4w1msH&g5UI9qV@1(ZblJ4+Pr2vPO zUGonR^mRx6yaW*sQ{Px03`kHTVI){ciEDiNXf>IQ`4__vVMq#mRvW%>S?k@@D_YW?luuFYJ{w21eSU7(@5IDA`wx6v^EKwDcF z?^tbQZjP*_DZM^N6;m2N$Ruc27ih@smxG#<%r_ir!&$#Pb- zV*kn6!n`5{Twg2Zv?{0SCOh|bn_GmF8v)gI8MELI%%u2lRf^?J*k1@Yzl*kPAdYn& zFD#kU2+~=OC!&NIYsl2hGx#Q9|L?&4)yRlL>&mse79kOYKeQQL6&#>DF}# zaxa=lBlNk+Nbo>`FmWY(NJb<8#Zug0zx&YsaEu>?u+iuEzvtZJ^?t@5WHl* z41n3n7Hi_c0ZTxFKX^6uC5GN}wA$HfHwMu}&qD~L63ssqPR3F2xs%`Q$iRp<){h;0 zmXd+-zTLqgo=FPb8`t=h;u&9%m?&PdGjJJ!dq=eS9AycL<};Az&zS(mPIRf*2bery?3?Bhwvbu}gj zvDU(DeRbxev(@Rcvi%fK8@;q;CK)+^soZe#3vcq}5xV)fGmU1%Dkjn%`DBCfb^9K| z*X`-CBpCNLLweU4t2pTlm#K?>Gi7OnZp1IyP9j#U|6HQTct^gb_oc=&Fq=W6tJh#? zH1xWmItnFhGXn^>J;0HSKmWz6KG-*fMr%R_n_iL^!H4trW*e|W;F~zy$@%V(gxXrL z`&<4q5B*=KDGSrX#I8SQfCIsP5T!`N zvN(O&*M;CQM;i=p5s0X@Yqvbf4x`22F?ZqEp2MSr!5|$^T z17kfWdpfzF%C6QXy#$ERot9lK+U;pl}q% z;sD9d?Y9xMD)PxnK2p+DD&f;tDq{pxAAgNKERz_Gl!<;3) zvf!!Uw7*#Zp1DpJLHF;q#zWg%kNT-h%eNPM*Cp?E)5~<^YkN$}%H~?H=?ZuJFKR+L zLLN8Pik?#cz1v{_zT2z)pqj*=-0Wag>=1t|v@jRUE|WIe6G9GH3odtup$9O#uGEGS zGH!Fhdl5YB!2{75I5k1kXk| z`2<-SLy2u7$#1U|>C3voeGY+iaf)FO7}jg?<=VO@`dnXIo2)wQKG<_r?8*K@|GP1> z3!Lg~ypgZ=EqgRaJaGXO?lT zT8>%eGJZ$**FTUpTJ2HhFp>9P%0<=Aj9Z+K+r+bBh+vXG)Fv@Ai7A)s%ATBl(35_U ztI==wCQ(kVTwmoJm0v9My}Lt-V^mR3T#=kV-0tL4I#ssy+CT9yq2Vh}@rR8Orw?lz z!(=cBcNM@(fu9^5wNA7Q?P=|f>8taYYn1KjAJ(*Lhtv5K8Id5#-r*-{drLuv-L9yNT-?4%OSAehIkC=0vWTFR_OhO_ zsB28^7_%r`S(9rno5o9Uf0Hff+ml5;=7WOqFC^fP0uu`6bQ@Q1UX>;XBR+)GWX8e8 zg=O_$X+{Cf5Gz*6Fi4Zouzn>smrS>q`yoUwcR~;i-PKMg&;k!Ed4xtS%6fc|M} z$&o^?GbS`qz>=^f$jZXFEt&j7?2nGPxC~KGJ@?!vr^I~`<$Sb8bGXuhM4!ecL2Et6 zmO|52JN_9+y*K>R+bB9}xNYJ!Xu~5XE$^C99kBCDbwc`TRpU)u!ra^zlfFNw54E^q zw!xF8=l#|Im`-xvOKGN!FR+D;h||0wYC4!{{eCRDqR7Az=e~|(Bx~KhHz5Kn$Fno~ zD-n2r+_F$trYuWCUl{OjVLq zjRA-5YY=UMCeF@m>s*@@akdT!o7WL3ceW+|6kR7N@=vt8?kLM%Prw(QpFsbQAcgQt ztaU@v$xI(I+gp=zl@fFFadkLb3LZayB+pyrDPv9DPE4Sph?o1%dn-)>rUxFQtMC=& z|9eX@AaaP;73=jc;!h04*{IkqKj!`dGVE$ofEMMHBJ$Z&y;G_?%? zb$f@%SELH3nl)~Zj|jQ2c#}(ve`!Uu;(1!!fHsG1R6Ej+pykv97<6-W=T}%bN?y%~x6aaFo{(}N z(&`Ra3sUQfKXrLt%5|IeCq*lG*pq+QXVg?}Ex_jQ@Vq=p#Z*e3d@YI}=K`R>0C6}h zv+a8nWU-G+bAE)c1Gj-*&8_;+vo&5^6#e_>hMU_zvvj(5Cw@n7NIP(w;WY{8aJ7=K zvy&@RNE3b^yFCIb+}S+-Ud%+o6Uie$XuainLD78pSUvXJj0w^^#(=@q;#>iH@E7Pf zX#yGg-i8Z-MG-kjxHCuW0sn5|I8}FUw=-Al$1b`TmCBe}lCP-C(<&jlB!yI`4n1Cd zDQsQH^>wOu`2Wn zAI*2_c1dDjsLoIY zq%QVz$5cEx2(SghM4DO##2sc;JHVb%k+^V}0GJ@86Ht3< zx{z%q5^Fe5Fh<#|a8KK2uJDX93m4}nc-^3zpt2oTdo`kv`y&{vsW;P0GBQzv@lfVN zJimE2REiU0Ld$Um_xGwHgf73u^ZR153g29}dcz=L9UZ?es6aPvLnvSRJ$68rcAkn5&b`6D60ecL$23;dM- zy@gCPzL)IcY{J_8>Otf|URU3khSSRnx{77E)e=Ux+k2xSgtqZYVZS1Q$|(@WKzhu% zL_s)Gd(Ysw?PGf2PJhy)x3@~&RgZPn)>+nG>$x?tm%fV*E#5rv=$t&qcQGes ztKGDbVQ{`%GcX@AH@aD99P6eA`Fg*f5!oc|6R7!hbkQ{SFukZ9Fo>MOjQBUX-pOn? zJiGz;Zu0{RwkcR?OAv+C<%$(-2wVVJ36$`W%sd0h7d7X#b{}*X3suD8`e3*mO;`_E zcGX!*;J~C9zte!OIa9g4{g^6}{XnrnR;_iPgi;(bYdSd2txz6bg8w@VW;75IYpdrz zD(H0F%8uOIlK#I&(g7kOxeNl(N0=m<5}FMt^e34OPU`l)hJJOC-nQB;x-OPj47$Ss z3jlUlf~O3in|cx_h2d6g{015{8O?|)Ih=%M+K8H;hs27X9GK~Igg&e+R6yA4bx!k> z=}7vPY8DVyu6c-m6b()QUtYb=vXL^KI2Y=ola80&j0I6b&(%4lYvZOgXK+_CMIElf z0v&yYDXp>%mm9LhMjkZ%swWt*I;+G(a3R4T5HU?xJ%f?-4R{qEr!v8Wn}&-hLN0JH z>Z_@%g82Xe`4Cfq?akY$ba;b(HS~5V_#PPTO~ye?LJEt4#~O^i&u;dG_?LoPK<68A z9X%lU#evQ`rc8o{gbXptI-s5SEm}T^Ugd zmTlaAO!I5bgQZ%JP{o06XdRgT)r;m%y$K;($id~m9$JLEQMsdm7cx!n(4?*C)O5klMLgr@JqSEUHyvWR&S1~R(vn$Y`CB+Rs# zS!txjZcdw}t`&6x7`8!Uj{47sTWrHE|@&9ihn2gZ6m|bDrvV5fYMW^S9$zpDglUjK}TC@KhR2b{txFr zn`T7Y2|rAf_oEi6z^^zuoGVz2`NHqyL$dxR>B-=Z2@9@q`jukf`1|sUOTHU|uI`uR z-VFCP1va%6gr0VY#%$?~HbL$r{D0>yJ5-0bk$E=RtIv$bip`};M*m$PBvgO}!I#VK zhD%D~b}-w+TD`*t)00lLg&wY`?F&1PRi~eI^OdSm~79+`TK02qTdKfQoNaa`i~!o7HSEOBbk=dm7X+qqXzq10HWrJK={E~!ycN+{`72W zd}KMy*3pSxKR!V;#P$3Rk;IXnr;;_VP&T)VE}Uf^)+sH7)k(BVjR;|5Y4j6p&M^ zr|Z6fe|I~Jq64*$Qbr(NBgJ1ZR8E3eKt&jj-4%+go0`eqzp!U!4ohV9DY-D5NX1#P ze*Ky%7I2>gFgsa+_0K&15$71PMeNcO^n>H4(jYTB+&V0L{#b?T%(?Rn@Outow0u-m zyJq?Q8x`&&~o(ocNdHvnxDBGTFV&#VVDm4r|319d%pR8x?fNoB@Xj4tm| zP3|9LsoxFWf3frF@P*-R%43b@#7D!+LXxtixjkBtLm0JMJrPEpP=l#f&7+vb5J9=y z?wa18uLUUaeZ8~Jjxt`1o5*-QM6}1!qF*ghM?YxQ$x@y zsKy1NfQuuGh{Y2~B2p+U|12|3f-yMSq9KD8?pev|*;OvEDH$U81R-8@MQPjKGg1(0 zu>4|q0VH%y__19M!kvE(xwCk4-8#RyE(3f{2a8&r3E~u-=tjaqU@9RIoD~t@I zo2PghUvtilU4MM6y%4(>R{Zwg%?XDgmil~F%}@^$@I5xrmR=HuorTRx^6%h`0-_{S z%(b8a#)2kVlb#%rxfht#we zu6JNj>|Ehiw}ZtU9M$|HBRmQw(LCO)*)S=6_6(@g>lqhQjtJO|H8JCDQR=Pw!_N3{ z+M2ng-*KKlXBbU*o>@nIHn~K=uUv3MOuCEv=n?2qC>V`SG62}tDHI7kE?bDv~i?Raf-bWR`as{N`Dfgx zLeJL@hj_}h-^`yFNO#-u*cp%+5;BGlb6*Z-quRd7@vDKA5|k;`#Kjt^w$j2?pIk{q zJ@7yQ#lO4)7M&LFwQt*vDb4@k|&7zT1edJcWBohx;HWHEU@|pac_G4koELb)rQPswy=mJ>J40vomGTp}ksg6BPTUIyKyTXjU$ZK|4DQ`qkplnKY zJ|BmPv(lJK4fU3Oqo+LB$CAtRR=Z_Ti{mY+x2Wmf{rULUvei4FPx1%mN8#WTK?z+M5~LU2iolkqffgP{V$^7% z`a$?(`ZBr{n8IkhmLLcqx}a2bQBAqQchlmg4#a+8N1;H^qozz`QMynAN)?!B^CW{* zO|2fnA9#n~5Hzc`bTm60nM}r#KQEf}yc0cZZtb5<-m>>N9qaQXlcyxQJ1EBe`Qw0k z{b@S~$_A1e;%uc36X3H;cyOjCCkcTHh*+;-H_w1`@je7I)^O$3g+3gwiFb*gcun}x zVx&O=ELp6+?i^~v^ z?)(VbGmwPgPRGZZ+Y26SA#+vm7dJnaXyot&i-dS_$eOR+doFR>Ip&h z_3$lh$$HtC`2QbMXB|}a`gd(&)7>H6DM$&D(%m54-QAtijf8}hv~)^?bVvz;bcrb4 z_1>KK9DmP$%!V0e_BZZNTx%_o{+SM&PQ$JZCB#|Iq!sMyzSYHhf5yF zh@evl{YNhy3N=Th3?6jJ^IyokL{-Hfkate(5wyJz=+?$&>CPPlqF_GDHk5~#rNEJp zH-0I%6qau49*|47ijP-J%w!BMx4%Yywec~zTO{do!ibpwD-ZK}m8lTLPiZmriQDP{dc`GN`iPvd03_LPe?2=oE58SXoXmGn1KW$yVB7L4~O~K*0AE zKiIDI1SYxCOUG!Lr|Adpn2 zv#|#r^KIFuPA?EFbQ~ ztTcrfRbhmT=x5NO)qQjTw&AxWKtvP}rX`E1u{|U&wRT`Q_(3k_dr%Q)73wHy`X@~U z3r-HB2P)d0a0PbVWb@ISJli&{g0mk>VB(pvdAGKbv%~eWot25c-_@0~J+F*ZR8-Um zmf4fXcUpQ%HR-wHve#6BsZvJ0%d?{Ki~*Qg_Q!-8G=8DaEDU?u)ua1-gZN?#;^(Aw zrC39$tnVyXt!|Pm!JXhUJzsr|E2uKw|Ar!%KAOwS{=zi6Cg8!^{5-BQ1u?uE ze3g>;I&YT5{kmx7{tO}pTPWe|A=At57($f&-7li6u!(9Ez6Ct~S-V3fK&v(+%fIfW zndpOnJR2EG%;9u}?;hda70sM3YkV0%rg`>^PrHqNEUk-uueHd^E7rq72hDNyGjdmy zfi4A%!=GFuTiZeIQ%5jqdj`Gjm4?1CH@YjUFTO;c=iMJiApD(2=MSoRSCYgsKLb%A z;O?(|G$KTE9TSVb^ER}G~}j#2Q~WpzwH>nR)X3PL6lD4P#JV$kRZ+U zNR8Ridzr$piOnfm(kz`u*YPvXyvfgL7oXYpqo54p zD9uWnhs+Lx{I3Wb6`ACljQNEz%~I4BDkFG#B5t5S+vk=#fh03%9=<{*^~I=VFel{a zF&MfMW1Q#=mc* z9Q2&jx?U_RgonPn>Uk0UptpIceIWps@3E;lEw~QRH1OK3m17SaSA3cg7|p@5h*e76 zUaiAc8a9a}l&L6MPz2=#uB>MF*!4^n*MA%vlJ%P*Klt94jT(vkE!QAw0Ar&6?OSNg z_^J9IZ62AvJ_a($);f$)w@{4#ZOJq!^TP@)FH)HKv$c#yABO&p4n@09FuPSf=JsFC zaUFwIU~i29soU#_DO^Mp)Q8*nai@o~JWl=wIF@#rLu2)C-842nzn5GVv8{kV4NPB4=)p9heW)Rcu`JrU|S(FCwN9m8LY^gxH zPCyVa$;n18KJv&Q&lJLB(C&;D!hXStV&F|3HOrRf!{lp$F6ZHjfFL#WUhv()Lz252 zcK%k>rLuJ5w+dsKP3GO}3c`}{#BgRAy-!!ftZX!o<9baps-JH8nywBm&$?gCKp#3w z5T&CVymD+Sb!v+ZoqX~6a|$#QTzm!xc@vosf@@~7QQkTZZAgAQ{bTZ82}~$T+Eedl z<7)HK6yn8HzghFdksYpfetiK$!77c6guangNUiIXN9pQO{UY^MmrK%PM`$w1WX`MV zqIMbovgueEc9s9mEff)`R_}kRL>!nGiOIwRE;z*j|Mdt^l=d&et}RLCu#(XPjoHbNPu{Og&Y!@?{ncT>EkS;<8@bzv#iuEFt%lV>n!N-mFT zsqsa1BsbLXmvoExR;qQ7XTX|@<({ZFu%zd%cawOz5VuC2*5k6nj0*b1n6plZu+%vJ z877aq`bV91H=*S&UpXy#ImEF3r8b47?!@EzjJ7lK8k=1efMI_Twu#q?Uq{z%@x7dP zXI0BzV4_(2^-c$l?Q1(C@(r;+Y}}=g5lS-H{S0!W_`w%=`rhmXJE-*^zJ2!QN|UL( zCx)i?7rveBzmvpnOhkt5onact{^jc^%6KNUkpHTTwYNc1qHJYhsO7v?=F%L*{H63p zd_)}g|IBwwdb!lS%8bNI0K8!&w|&9IFLQDD9oe_Z9+OPC)sSiEJ$1rSOFI71_w7^m zQr~Cesn9Ct1(!8QQ;u6SA|a_*EWwfVMbg8bRJ6Pdh!?e!>GK}z2Qt7yY9~t)6t)_d zUACt>8A6Ku;29iOb(81|&2BxBiZM zr;wqg_|2CEw3Td9XBp;^8KUL>*Hk}Jtz|QDb6GFpHQYJJVnE$^+MwqNeSUoT!l#%Y za`bu??9SKDqNsaa<^Jqqe4Z^1!}!t*v(Z0p2>Qd89zkvuj*4%UIpLIaLi#Mu-#U#o zG?P!`kJc0?YKxI78`~4=qbeeLH&4;`MiGN~RR(9kX*@pTAKRIf82Edmm2ipC8nj0F zKCNp2PzkL)Xe*K^V^R<4M!IaRXc7aJa;ivScBeBRvuFocYNZ?|WW^js);UBqTQpXZS1{W&1o3lDPM#NZor+*ax}gOB?|! z3ph+fW8yms>vS9}mL%G`%UKeMbQyTcaT;JUCufh_d zU`EY|XJuHkkGwbt%Xhp{NAkPf!P658jCcvLql|e7M4`f`hhsn;g}$9y$vKL14UeIb z@h3didF)rPR^rosUV3I^IaG>NA5v3Czsbxq%4N; z*7vq3sOTVJ>;$t^=i>_?^F>_7_R2{0tL4C>2{%n4u9(`py*#W5xQ6+2`JSn$9EAWV zG=yWcZoDVT?R)234_DegppY;iT_f@i#G`$d>yE5dy?9w|keWv`m>X;;)Q1Nh)(uiK zok_x9Ro70B3g!fqu;uU%bf~^2kxZ7t)BFohb|WHM6=0Tfm0|^beDRlD2JCoY3XYLB zwrAWN6i=lVq|{BKgbkuhRhRlHHbbYuG!KQ_C6oIJ$)o9o6SGE86z9mu| z4(B$6g>-BNy+#5K@XBvE;vD3gc~gu7zf5FsBlzdtL#QJj{fQ{2RB?|J+2f1*ymcQ6 zXrZG#(v3hw`BsxO6anJ82_!dSmGvs8@}=*?*^A{)?=)W>ndEDygxAosQu)eJbyJOx zh}{w>CB*6H4zq1IG&_}_iG;{mNCo`I){e6G8j%q5r`Py*uJE z-kTMNhH=)@r?ib1Ko-cDcL(tD3^B5U`=3vn%Np*-d~b^dKE0~3Z2vRT)a89HIz$3B z;l7|f{C~yo<0TRT$1{?P8Xv}E9LZ$F0H-@g$B2{lEybRm8AN~uC~n90MQ_$$yo3E$ISzNdy4snhGiO8Fqa zO^oG9wBi4}WP>mp3rWa{B`>DfTd5{FSg4cHJ$MoD=Idj5gJD}CwC0=iP6XJa)1fq% zrwA;+&p|2j0|Rc(6ZrOi5maK)KOA*x?VJ5|=1?|c31N{M=>x_~6iK7r>GXcrcfh&J zB??Q>^@uRUF7L{FO~L5PZ95Pjj7}uIvWXNS`PPE@MpAq6XP&wf8!6Lsw%WFm0TYt8U|1sC(qc(W;XAcp?(S!j0-YXFk5sWh5t^BW-T0Stc1s9Sb;xBA&F`>hscDRYGhPkc zBcqT_{I3q7fD}kQbr?st6XQ;YO&;5?4Fr5)KqNuPN*^62Bl}I?fIC}qH*lOogKck^ zc00kEYaP)nlc?ZpCHrld6Zmk3g+HDJd8YY%Iu`XU5g^0$JX31BsEU8{3n$-gIA*3Sr4=R9bj(tSK3xyknZo!F+2T3ih6;rBrm&^Urez_4%Obv(<`ZtGu+N z)rA80AtcN7Vzq3pq+T4VHA6z0cK}^qfu-#6B-q?7Remj0@iZ4eme{zTW91uuYmj%M~bJ?sb$p zPg5uPlv2u--K_kA_wKg($XFw=!|%bZRPz&(C%32?j+E*|L>h`VqiN^liZhntI`$2l zzZH|i>;xBtn8Rd+@*-1|n-wc!_c&|7wb+%F4_Lm|f5C|CiYMRUz-7_R?G;A5y8gJm zAx!tNbbrBj!K+l4r%QZ3rmQ3R{*$4=Zos%oGWj_-8Z=8v^yQTy>^19&-{S?^!J|EM z>L<;?24Ks0b2$Pswv;GCPko%qdbDD$(yF|Gbo0upYy{a@ci z7FxZlY7nNg(9{QmldKxde{)!=HiqrsB>Y^29joL!-6v!i=S^M?+ zu@wWnrbVQ`+=fl#+1|Hx!&TCjdSBf=)!+|2~)R_ zS@`tJ6!!h*Zn^(tFhGZ-wQiKih0RubV4tKk=NS_u!+aQvjg&x|Ip@kVNcp_3OuZtQ zPv5NZ+@!cjhEy5ft!+OH*`wNd(`6iqfT7^KpwjdQKG>_X<52bWt)=EqJ8qoqtU|)g zVZQZ8uzdqOrTOIu?IWqsmv*Z|f_MUopsi{h`~dY|R~Li`nO)l&rh_o0(cwa44*Vm$ z`~R@r4Caw>MT4&A&x)T+gNL#2rxMc8@oNiaxYR2P@vyrejEbp$r7NS$q-1g+@N z=+@K~Y1O5~lEWCn!mb1J%&CuJID7MT&(*g0hS)Nqa^+GhU`mH1@cCeFGmDT}eF$s0X%1#!Gz&+A>c&^w*((=IgFM6s)`Ee{uhe8t0H<6(1dJ09kxSezlM zaX_NuJ1m%T+Z1yXa}mI>l}|-?Mud|SDqQl`V>8G~=VgSWYBC2nKCB-(e-TpdG;qC`8VIZ%5PB*G4nL6txE~BnFEdgFs_9#_@MWZ zTKs{2uf?|{02kw$;Cg*W1dv|XOWqQQh)DrrLFSueGf{lBEDj5`r8UPqdyq^{7@53Z zvJ><>QM@f+5r&dxn#3D9q$9M0@286He{)HZX2jB-;S>c#0L=Z+Xbw{S-^#m@YHduK z98K39!V+0fybcTUy#`^*=aP;k*1%@8hRTS}%|;XF6?Yjl!0b1x3C%~|0(&?FVD7+G z%-EO|{G{;GvVLdJULHtLs_}~L;76y7*Y)Div?8F#su*#^z8gTi;1bvIAoV3uI@c)=gRHvlx*jGS~${C__=ltFNYv2i$Ty zJvq<5^*U4>SJP zIbb5e*f^b-)!)n_k_~5A;r#cx2%=ROlwz;K`*zV&8R++St1T``k_?2L2a%VKv=Z;- zD$i!$cIM>sP=~l%>7miRkmyGFsI+e}ReGmVZ;YbZG@|&DPuqt|8p_Y@@gMT-i3dkx z!nN2Ae%3vqU>jCB#*Nnn@>0cKX)jUg5i>W#Wikk?4u2&K-UVp7^)2h?6( z)J`xwTA$oYuCfTW1VJ?2+T(VN_Dp*~m_u+m|#e1m{!#zaQ-8^1lk!$wDqkO*_I zBwe;d`h7#Zxh0zlP!_G0t1&*A}L>D8qhgOfs3itI69*m_y%`Ys<6mHS740v+3l%75Yropp>8b=hiNIk>5ron(Z8`D9pB*&y;b4j->Qr-6 z+^rx(mImEisf}#;_{u@nRl?q>$Lu#<72fq!Ip@R0{*TTV0PB=b!97~BFk5|&Nle@; zDD?b5t`9#s@qY`s*CJ?&xd)4yQofxP!f`H%RwRGly|k1;<|j7XHgH<1%5oq)1KDgS z3$`XUF6m${W)~Z4bVBihRV&r0-vr}hXDvsKvGIo>^J5VC#grD-jUe3Ys22<*Ha49u zFGsc>SAvn98MS2CslTIX;?E|fIUu2{2A*>pLGMa6_}+A@R<)`SGP~LS=MI`L!vh?-1)WP^82CK#1R{j;D8#cQNI*T_wF~aHMK( zAHD}*3KaUm3cSXz(nsy?UtkE)vEbRGk#d@}#13|iLwzIG-#M^ju=%|Y62l^~$#>2M zka9;FiA5Kg8pnQGylv7d;C78)#&*{04+^l{p4|N68R`Hl2~%Em+ysWYJvA$&>i`7* zEOx&s9B->P)L&g_wnM#^##>gTc@7kir~D{;Nz0SuHAMx|%<2U!%$^;JX3{C9>y`_& ziXy3cz?`UZx*!#9n zkVLzf?cbc{qi~?Q$Kjz;uQF(K;+b{)YLJ#8u}BD9^WlX9jwr|1du8v$-ZyaQiS#dR zAksvfki|6K4i2ESv>fgaxaxiAMuvaV(ag#dwQClp>zPXIkPJq4xk_M;m(SS(w~F|r zVq>hOqgJEt2Inc)J>CzS-4Y2Y5tpH(y8|pu(i6DFD%x3pheqtk|GXn6B`bO)xkiHX zo&WZ{lA=&){ug#jP(ZdcWv4~H(h+W5h|mMX9#Er~L<70P{-}VudokjqPAU~I0GCOX zd4=${9G!~Ta&$)_#^TfYpX8CW<^w3u4AdB477$$nvImeG?i9&{!4+ln2$ggkYpa8B zqueGk9pHLMx)#kYa=YHKOZSd6?@SnqlSYoAD3U3fuYQaSTrJC*+#{hxVgd!!SMDh1 zRbLMb_P~8Dp0Zo&FHJVw3_5KvXM_Thte*J0^tKb9gP1zN(}k7H&-A*>7`chMWDJ33 z@|azZ#5uFf@BG)S-X1sZ;FE&0`|u^lDb~;g?$z=FP1De!pjv(Zv}xJ21$$$w&2Qw| zI?E=z7b=9zQ6FE5(f;sqF!{5d=(kX+K`#^a_9glo5R0L5-`?9GvGF$JD(9u;Gz0JT z;OmvXl)GJKJrZzpv(n(heSHZdjeIa280PjT{6)A0D6?U)>ZbSBFIJ?@ZL1 zx~joEF|t2&UxMw24rL4x691(QlOhwhf`VqVfYGk#sUNL0Q;bHH-K<U)< zBvdT`acgS&)DTlDoHzqI-Ad!50FZQ{M5k3FY7uL&_HDkEH334z&_v7!^SZv>xT4}- z+7W0bw&YT$Vm*rF*5xDvf9pA-vh59IhBR{HozBqe?mdg+o3c!fExsMyMd&@{f8H9Mn zS?9Xj*=ICT8r%!z-8*~W{1sWqx6ac^8TVVySFFUhVR^a+O%}s?B2=u&gc3{ODO=pg z)z|B@7)lOZqC%^VN;ze~5~;HvAU+2g@F0ez(neT<4{-othmX&J2a`L^QTx;YWqSvp zDLA?quK<703QK^v!>A>%@Gk3Gr_n0@Ok3&&6v70}8Xh#KaZl`V@0a~QNy@Kw!{LfV z{yQ_EEFl3W$EguX3W)vP@fSRp#55M$8Pmb4f&UeYL742M!9|?`Q%$~sO<8X5)k9{_ za`&5-$5WAO&nVK{C^(-3f$9aEIz3hWbI4JK=TH9kSOIg?!Gvf%q|Y>A)3vay`FX10 z?>Gx6qw+yJgPqy^{#c__6G4*`4~L~=bjhH@3!eJMJ>rQ0KSdX$2nd1H2~lg6_z_Zb zESo*XaJ;9HNn&a&aMFU&FAC|NG}~1qx<4&me~^MRV2LD|*@(_U%kG#&-4l-`hF3$#hD_ ziZ-+JFql?fYYFb0jS?`a?t!%9gH(3JRJp5T>0Aw*+Kj6vDWx6|TaQPc?^7_YSCCO4 zN0R!Y#UD4T_i*Ss@@G$l#czXS5r*N~Y2BML_b9=k`Z_GF40> zXmWUN_i8JD@_W5dW0Ev%CdoHNOc z=;*(GK!fQ}Ux$E>8PfM!ThxH&Bu23{%P2i_gV{rUaa9D|Po)vN8X&iMjyzE`p}P7w zU!-;#xg%q>1GLxjY0C1MCS!lTq{U3t%D68ydb2Xil{zf$6vh^P{cJ(h{n&+=#Xji! z!Qywj94+j)RGtqZQE>mtFwIoA2Y%rk#(*{nk8GvR4cz)k$ky3l zmfT<9r4bDLOWRUFQYrHB36xf1hgLKBzefdPmO!}n|IbRPggU6A@*|5DY+MCy=o_}& z>=l*m^wNl6=34r3LnN(;xG`{OEXDx}I7lx!-Z`v<7ho9r1ilG;_LO4ErV$-xH>oQXeMjvX{5E?$pi96gVk!!@9*4^-vQGXr zj!bDO3FUX?IFu;=D}sb1|KyvZ#1XfRt@s2-Ss8B(JWk*?*ZUUs<)Y=W&~m$Lia)%A z9PLEo5FeGKdBtqHOI%CNN_J!rj&4ROpYC%R#<|bAe!81sHJUpELI|a6A*(1pwPSoP zwgu@a-9K<%osq#5W}L(_^bJ^twlyZHt0TnaQ0fB5?LRb3MN_<99S3twlt93W+;%|@UAuVB5-;EA@mWfr*A-h=q*n5(11%(- z)l*2)Zh{6^82K;Rdn75s`aG9PG(Sa_Bm8p@)#KlThLQpU`V)=JVqd~MyKS$NH@f=1 z`$S-& zUI&yZlV9VoH8_qZlTl@4(R7+V4lpy3aD6VxKOsq1{1(GkTj!}bvHz}<)7=j&ht0ye z``f4>n&sN7vu7Iik;MuqwWrkjC6&q8)#Vd~&KLK-gm>--?CMOZL;#BVA{$DOKJsVB z(uT|9;^ONWM6**MjPZyh0#xxbyWH5(;yBPRUf=zgE79$;axKo8j|+;6L*x22MLLoD z>bV=%*oO{&aLiv%*VDI3J=GOO=mXinO-9i71W{*}0rs~qS_o4kae1{*!iY^heO%aT zQ)LQDr1rg2Ef$vbSjbobu`j(GI_R=YWS8w*-{qoXpav+G#FIgus-I-Ma#8pu3NHIE zEYnoYN583j<76+JGqCBO`|!JNFx)<>nvJ(OGLJ}~EuJzMo_!HifrA!e@1-@cRsQ

|COh%&rH^j#b&O*zQqeVP6j!ka@^CaMooIUc)+8a|nI?k+{kGU!2Q(o88 z-B3)S9ICGbB0bF+f7+zeCwD25EPm4VLnh&aIoEB7Wc`&6TaKG}A0smNDh^shJM}vs z&j$+CU={05$=`GZ+fnVlVd&a|omOyN%v zVT7BaOwh4KU6YlS>!8)6+*^9%HTdVSp-!vTjwX%n{T4knq(H2DQkWGaQ;Y8vD68M; zOypi}G3#L`U*AZ)GibQgasR`bc8TvSOoV%eRuV^qYMVY5>ha@NtjEN>d!^@f8<}{v z87}{^57x*~U(1!%=y&sEY%g2|jn(A>F{L^GWHEnAc3F% zQtz!1T7=E-uES-P`*lv;&mW@*CgT|4zog*{tiR~B2P4?x@Cx#kF7v^I`YBrt^+D*o z7d|v+(Kavb|J4doKv?jfuDUp4!-856_TNwYfdZPeu!J>8veL~747^N2B(dQ}G2E>5 zNYfow92Z>Bl2DhNvYobf!uUoNbnxt2dUUUY67`ndyQP0Z*QAMIZ5}yucNomAnaHnn zqt&=sKPIJoa2&LNCoA?A6WbPN5i6GbdAVe_-UEh@V{$<{74c93N-qzm#8k1qiuTB! zLnAq9HMqf*z0U|z*2JOmmJQS-7KF=}O(tW}$YNf!{_&p|fLmplyQqR1qh2}5!H-&* z8Il0_$t-5_HM83Eh!MY>8`N;3%?O)x_~&aixXj9xxLi;EGSkHZ+>-eLrx(*3H0t%Z z=3X6ne8z;n7Y)G2YD+=e_~+8A%Fny0DzM>2am6aYfrkM|)cIOKpQpMwLL;BVibI{8 zt*Ubegoo3Io#1(uL2>TOP)bVAEo(AH^5QV1#++n@J|hvp|NgSFobl@)U~3l?2(%`1 z+-uT*2E!31Vk@oUBDRZ9niMm&fGf}UwDAji%6gX6 zyoeoZ!(>qZjOu1;ZsUZX5ElXlrZnWcUkg~>C&BX$xs@YpF>z~ECx2sSZidVOt!pncs5Lgl1_QW*TV7JP+y+&+k z_JkrQWx&U0)F!KWPtRm+ZEwwKmL8vw?wxO0=XjnyJ(> zbyBCVIGM*-BH;_2)O0W_ z2b-jE@7IXtLVRZH+bW?+Se^zKwHUE{?J?j~(z8bt^A^?W3s#HkW;sz+S(!9M8O!== z%X=;Jt?YFEzNLnysv;T+Naq8HXxVzSUul@gyMR8T>&6z@mDr!~^wUy`Xh9$(@|kN8 zaRQTA`T?=!(c_U8Or83GP1bIRY$YI-ZE_Ll^5L=c;)0F5TaN4BS?f$_$2lLJ1#jQK zIwLO1c8%QC8g6bwG#kr;MNVU=sGcGGOu6n2O8n@dwa$QtsWv(C5)LbJF|L62q^-#4 zLqKqZb;XlLg!+1R&$}}h)s?k3I|OY;Ui6$Z6VRNqRt*L5`Tz~p2l)0p`g$@*^t&oZ zn$2u|F7zlNqrs&zX`=ii;;ijFdUSeq>7zKK*nf?y2t169%Mot<_4|Vid5XWZwg@62 z8T5P9>^7&k9UIIKA1EvJOx3)A9ohPemm^R>ydFxM9S|uXuN^bygDKKj1kAieFJBkR z@D0cI#ed^Tk|nVyl2mwa!=8pW~FihdfITHF2i~` zANlp1KiV{?7}^&|_ZD4u6AIw$HKRpZnHtmDl#7K8e*NGEI&aw5#iA@y zz}Q0ch5G1RjIs4kz)jg2^lGtrg-ya94)9-)!EBfBZ`R`qz4WmsLR`Bf3HT!Z9hl?c zzPpof{{+mqqve-2Oj>>ELV)91kQ~XIn9&?;%?PLfHX|bMI>3jGkN97by&`*Ws%u%c z_DEH*%38Xj|H)f-E>~*Lvnci7Zz-seDxVHP=>?^-f=59knKJRq|C&D|Mnnpv0fk&s1QpK)6)w?`>htJ0e1Hc-6#Ot%?88ZN;OM%r4 zrKavmx(7WcQx)KB+UXq>R-GSv3vMd50?OQ8_cLoX;4;q?+?!bOmtbZ93GAFR&o^UL zLt*{0@%37nK3T#|e|r6j2f?hjD9Ht2TXlIT=_7%d5e1bjyX5i9(SmJz9OH#V$GC0! zh)3AB(Rn*#;`BWF7!qif*4$YA$>B;2=%3BYTi3D6hW$72Py8r*2vqSxJ2jalwXx;x`>$Vy)h!YGh{o6(!KM_AL zwyK)Rzfz$HVjfqCGXc`~Amm`P`QV_!!jv;8cQQ4bGEJo%)q?rp<*q`%lf9lU$Gx;_ zEUTps;nebcea|l+ zf4)RuA(H=s0j=IY(`V)mM(9^))AEy1*uJ*a^9J%Cix-*HKgpGs1m-De(Gdnlo|Eyc zjB&~b@B5$^i21Fg}SEtE5c!iKDtRb7FI>TKLQ0uPZ&Kc=%eldmAw^qhB1*$8sIQVu_(NchSZOkZtN!YPgTy85N zhxsI_n%ejO(EwckKEAVN^g3rMAGZE-K+Lb9$QfddDrC-;MW39aowhf$nP0ECL_{$k zBgAJu#Ri96AuY4gJCCSi!AQrJ>NLNo1lncQB;rszmM%E>kw0>z15`o#$gq-1;mO+- z(P)(_Tp%oBkI(Eq7h@$478BT)$4N>Un~HWvr6G(P7SW*Q31A!?{5G|5*t_T9;hD(g2Gk@s7}V09aO)+-nX-ZF*70>S{f-2 zkVj8>_KQpBht?g|A$)Kd1Z+dyuRcGWy$>AK>3isD8M~Fs@W5-JzW+>PbWvDeGNavx zpE_e(b^Ie43GKNIv^lEgs~_oQT|8D_p+Q!N6iWS>Q?d&Bznz&L7Vvxgn1N|!iGy-r z*T|OBgXip`_+KH93DZT9*iX;rw$B+WC_d{^w|!ng!0tb01PFmXw(GCYKyrkJi2ANp zgEL!dm8x1c4MRB{V!p}v0iG_cIliF6ds~=@-u%ftAW0*0o_1BNIKItg>>v%hCeeZ7N8k&mUuSgx|U zj-2~PFh7AV-`g8VjLiW+M=yxb0f@YujTu>Xb+qm`V|O7Ldr$5Y zH9lWSaCFr;4W7=>&@zPav{?oxj_9#hm`;{V+~mvNYNr#$z!9t^=}h`Y}~V*w4(yA@2szguOw1TrCuvYL8ZaC?y|wSzOgsG z49t{2vK)_RGdSf>*3WKoar^{;kv(duVsTorY>I)aMCV)6$;qKs9iok3bKY~i zQrx%S%0YUoh)v0jDQiUe!BbT{uYaR8nrQtV2CI8g1DK{!fE5l*Aq>zQ15@K}pryqf z7=U91SUrR$Q@6r=I0?am<%gBVHwjz8`JMP@UBV^L^-$cin;Mzm4nSqtbJy4oMZiz^ zwYRqyDsLP;n|E+SCip_WxHBN;VhXec&nKy4z3!~#|GkCN@R;^!vk1@zR^h={ zJZt7;9?-0mm(Xh7g`5$;LU%If&UAqU++Cp)OuSeB^Hu;+>gnVM%4MEe>*?>xIE)TR z0!CjWIx0!La2zrMz`EqmkIvz7VLnX)Xcp~g$O4d*mHpECxKg)0fibgiU+tFAhlpin zg4NA2CzE0;CQ=V{1nO~YOhqcckw@Ry8V{@8*kWmF%B%DDPC5WJirIN{s-pC)Y#I-2 z<$?zya2hgav{uW-e+!lTGs}JNxxguiK<$aG6~h~3)$U}H&+0-}#v1?5!buIQn9)v> zIIAFuC>{ZYJ@{lrCPp^~bEj`>Cf2A-GnJ6Rf$=$o_T`B(ZKIKTI+>vV2e(f~QK4~t z@oy4(O!I+Gt0=%O3L(+u-vcc%JSb&knO`H9g716Th9o}4Y}Ef6`vx&6@**y)#nGfC@cC+xkc^19r;2yct`LvnZD z%>J=5PEg{S(bWaFvckJ9ISLqXubI2+)^hMTZ?+=Ej?t@YN?z$SIAZ|OTKF$nzdLmL zdKO6Xi;(#-^X#HwBDT=--)mdiprkDxV3YCpWBmn1#Igj8tE@PvSQ;ZB*d3WwRitZ{ z$_;$4UdfF37Hl#_MQ*=PVZ;oqCp_1gYf-R7)N051{PR`umimWIIx1zrh?Wke!bmKE z)qzn(?{rUwYn!~b@k;scX+o#qimzxg22btH&zO0l+%5AnQ$`!VVkY&J-19Bq0-U&2 z0bWzJ*uydT-jQSxI{gGQ*GUYuFXi=X;DI45mYSOW?@J>*8AO;b>-ee(nRJFE~CTxR<)%1l9cJzn;J3l8ho&9rw8qgkA6EGuXHxJ)YZ z2eqmQ|8)=D(^$&czLp>1DQxJAB^9?q|97MJQ>gOj42D%KAKMRvFb;nNd#4O`Cq~sne+rcy1Hx?JIE1L} zx*ZM#`rW|WZG9xXURH0vge@JD&9IS2z2aNgP;VO_Q~EnZO{lU7{J_nQsfe_gwdV0( zYoM@5e~FpyeD0(0L32|xkw?rTX3TKBC<&1lz&AqxZy(F$#ReLN@)BPSKT79Xi_jf> zF+Fwjsjaa8F3#Jar-#P8EB8ThVuc5P;d_4wyH6tdy3^Oc@LTsQ%x;Z&P!$9ni}`S< zt`UsG$JG){W}(uKXneqKLXL+?4^~+F!^kMCS@r`Fv@#*t?U67Evvb&(BHK{v@TV6t zJwjq>A1HMB;`Vu^FDP)Lpppv33&uI|v3FD?2;MX*kqZ(|Jh+np>D4G_k=?2m8J=8p znuV;MGbC`Q>ybi3ei1>Dp0u`sX~lPY#1Jy^{tnh6jvO5nN$_$E2yuBcV~eh0d005b zzT`I(Gs7}?&(UZcQp=S|VM-EEn$sTT)T3uBjDI$V8OVewZfRC(8-8-iNPCl%yiK87 z?T1b2G_j>}boLeY>h5QuwvhPCFGzmsza08UU`>ZLRUx?k5C#KrNR9e=k0Afr#$p%M zpN*SHB_5nB0;^7%UQ1yNj`8{;HUi*6cTQv7REH(`nGreS8#yUpS{--V!y_P5& zssY(IVZ8&Ry-D}&>yw2DYrv))m>KKO4HnND@1JGTZ1}E-4umtAFpVz}-xgx41DC2W zbW)kOr3@e6{L?ac(P4wrdTviVHpmLM&lZm<1fNmEAPaG|-4q9~lt{h3qVC+{&z|Wv zmFA6{Si_cP6Kau|f@%M(EAL;?sD=DCH+ zXrjoQR!!KS%}0mrP2DObG(PKNGEc0p4rR;ra8fe`HS~N0M{Iw!1d;O1ohyGso6EtU zOicK=9CWbRH7{S|2jgSO7Wez;YL|X9Wy*SnTL-oQ{MPjjA)tK$BDvJ^`?bSH_feRl zU0jvso%WAz1N+LIKKeg1A*<3`|1&NShOw!D-FQ1k4f&2msr>j6(_H%hcN|7cFc+0v zctS=ESjx{2z(BjCr1+PI)`TrcDVZvjeSwIE^p)$4AA6(ej7^Fxj{2&dDveDzu`&7LUWs2uO>&h7D9k;w_08>zmor ziQhKfn$B(9?<$dpEl);}Kf|7=#U+2}@V>`Zd~n9(sn$aU?^6r21rdc**kac_ebeLi zE{Vw8M3!*!GP`hLt5<<>t8puKUy*Zlsm8b+{7Qy)o>Qe(5?-~_5-}IXG6{Nh4K8hP z;;~Yfhg0{UM+IwP*Mgjn*ls_lc{aoDY7I{=wX*@=o+n|Nc2};rm6Myxe8)*geGCfq zZwq+(bmmXKTKzrA6Fm#g8`4`W-@N=%=lgnlxrEs`UbyS4XTI{^Kx{{k@=Xt+>F|$j z_y)FWb8P-z@pBHd*yVN39f6k-tUG+LVC5B@{q1=lXidVB$*G@_B+nfaCowo;)id#{s!V| zuw%RzTv=_eJ0&M*kF9w2D zYh%fZi4JHyl4Gspzw~4n6wbQod;UgNeBFU!S%va9d7^8>w-k-1)Pawthl*`xGL!8= zU3{A6bENI8x=rD6Sco!Ob>=mE@SHa!=qy?%=32GJJt2J|ed!oI5plt$W3_06ECM5; zcG~l1jXFR4cgsi0H@vBs95udGwQ+A__8oSR@`+1Iem-O?XsbAVIQ2%tq!0;$f`)-0 zKK&p<5BI|!Ux z;GeC~9YuCsE*-CK8pf1Oc4-H^gn8X{{Hse=y8B8P3d9i&?Si!ehSQZFV48SM%d)+P&}k!5#_|&bo^*PdUvvsFz`Iuj6i??NRld zfNAyqqIsm=QfWj*J%n$mPIi9%ZoCYw+0&yOIY{{U=VU6INp z?HU71N`X7|Dw#)lQtr*+jeMQ!SP9)E{$i zWbfdvUv@q;o~Wo_jz3!DJs!GVFjN%lHvo@$L7zK^>n)7Ha=$+)!uoK~^*0;y7fnHv z`%1;sm|9ugo}K4$Hkz@UF8`0Rw~lN2UH`{n3>YaXAmM1FrAwGfiG(QKH9~51$3y`s zL8MbrQ97hShA1^sq-%6{O8MLSoX`25a|GXKzsF;L@L;=lU-`VQ`?{|CHKTLhI}d)X z>IT)Eo;wHC$o$+2aV0B<&h5?qJW)B@gdZO!7i8)W%uDE|S~4{DFE$F7joP1YyeyYI z-J3f8xigY=YEcm=l%g{reqFTs@%neO^$+_1{ifad$VKSpKt8w3N!qUy-5i#4-8Wwr zygDNFf{stlmLCY5I9qpHz0{taJo|b@8$K*>w$`INK;V`biGSsKlKyFsv!P);4xFf8 zCP}|SsIfPppU_5mi{A8C|IS)_ywHoFR=!d2d!zOUq*AL=q&AeQzhjY?{l(Ooy#LMB z+>V}aHWd2$WqH1*OPceDTIanQsUH>D z{nIi3Z4uvrI|5XPtl)&#Pvw4%X1zN6yt^(G(@6aDl;*P*?rR~{*#2-kU@c2*kX>L& zqbaV_fk^|e>CcI&ymQx^zh-1YM9N3hQ(8P4se?wWJ}(!gd(47+W#KE0J^0(3c_6vD zSI_lttu1YFanl4;68?gkG2`4?O@CMs5aFwuod%Gs*v&thxYf9{C5;9KZjtzb$e`2W z(+ciRHmd%vT_-JP^0ukXStNu`1ljRK-%j|~b@9gP#DO)pmEnSeB-21-tiG-xJpk@p z-V;={-kQX6zNXP=aLxkwPKS4TM^##8tU=d$Ot^8ko}|bAAIzf&;f>p@bxT&JFob0 z@4_G1-vE+UN-|T}P((2Ei@t z$pZrN2PEBp`-$iOqVT`y`CTUerny8CuA@dL!|}B|d@19D`+wf&zs2oHt>;nc#12R3zokXTVNAt}(lQ$usZC%z)XA`rncoio-|YS0 zwx90)V<8Zrn_=P5`mz5$#(ToJOI92vQ~>b)?UJa_kbX^Xc}$rE`tru6)OHRQmK8c| z=Bo=8QGEN1sl5jygm4GrJ{lT>VYOw(0{z3EF_lp;q6633zU@aLZ$;HD{gEPF(oHOk z1#FfASpCOR@wBK!JM;e^@Kf=Rg@R<&WyVzpPgf)`HKV;pW|g7(Ub=~+^u#LqtysrC zcC@0HF8-tdE_YA)Xy{?6k9KX@v?BMz{L0cG%#~{c_kb?zqz)Ulrnh<}R{k@B{|ybFeXl9g0q`CBpnCoqsuB&!W2y*3O03%(~F#CSW%bzCV?=$4fTSIu8B9W(uA zYXDZedkWwAPjz3r&vdYCaZ?9VW3(+o)Rw#1699|K=gi$S3Ny(u+cFrE1su%CFw{UJ zMPl>bvef^NEvpd@T_ZIWZ2N=82PM;sdWRVEiI3*9yO5nsf{sMxUr7uG8d(ZKaJc@( z@2J+wX)S|O~szM9N15r$WVr4P(liy;}9`ZHXb$V!pF z+%?VCUSrXb`)4(QQ7fjo96XS~L5Q^q4nch|wHdO-G!|!z1El-ApmSnmAfppzKR0GN zE=+C6K?m{-(RC~>h3Nt^y$DD#H;@$Xor5dlzNDq+9ZXdL>?W`h;}>>KdrY6w=oQaS zE{?lieTf_WKV$pPKYAVEYBsZCR3HYAlY(oEm{Pl^Zq{GE=)^@<9oKxYF(YJ#slDlC zK?Hb!P8y+5nQ@eS`>J$f4902IEwVOMBkNhQ5i!p_HBM&n=NrQqv&jeNu$mF00gYet zSarBYf-#>uX1UlY)m^xNTmZbGVTU9gLyu;p9JYgSI9b9G6U!~66Q#&D*nf)s?-0|h zAE4Iu)sZ(r{2FP;ft6+0)LxC3Kc)g+3Wr!v3sF`rSN6%9P^z#w9Rnp~F=h9YVfGFE z>S#Pb+5?u-iKMtmOtTxrd)(BQ&&F)gC~f~~c^7qrsbU}~b%0v?7e^5?3H!GCb}y;; zNmWb@zk!;T1fRVere;gOsqjdJU2NKF2?t|V?`PkmtB%G8q&?&=HBO41q`)-lQUX(7 z!NGxa z3D(4TPX@ywX7LLTWW7Giuw%?C4WS6%Un^0A-g@tI7CLkMr&G#bV(523P&&wJfv?Mnd|HN@~TP<{<(5_JP)~F-+LBD$PIffZ)Fv1#l zLsVpSumFNevY$6qrDY)YjV)G!sgo~rg>5@ zf&>=`a0Vr&i8HQWy}NT2W5w1$`XeVq%kH2g7W6XJu8mYAn#R;>V2UzTB#>p|6+hH!*3zhBSQUydxJ|~jp4`G_ID- zr!NLa)MeOg{$Aw%6MDmAh|tx{)4kcPa>D4P`F%8FvF5u`ZbNfIr%+Fmoz!1}f1qDz&neep@n>f)c5Md z*m=iXXZA5ZC{FVCR<5N&P-8v0x|q6Wb}j$_=aJYxtW@F|&Ns$XvRH5=?r5U1y}~oZ zwAlmCs;2;f#1N!7%&r?)i21yfsTu210^l)1EeD;7= z07EPqoLYzJ|9{2&`gxUDth6p`AFucqA|YeD33S{4e9J^n}dP% zkI_+skzFxP!7<<0OX3(3T+82k;9$Um13#=%qaWYD&O7@*%eMcNA)*#{G*itU3NBf{ z(dl9OHU{IgS(oV3t+c@o2+CH1%Q39+_HhQxvj?t_KxQq=6-(EAEDZKjA-cMWBH z#?{j#&Lqoo_1| z(EBED8FTdw9}p@3!qEPEJ>f-GeFlu6`o@WKdF!ztvb`(}H+H01Qn^|<0Y?NJMEt$ z@NYWr6@&9bd!@)gB95@Jz~H?k3>j4;uWp>kAU41Uz;lGw6f0WZ8%-T!*yx3ufQVWA z-rq56R`*DvNF~V`V8k#HaMwZI4$H$?xc4~V8G=C`y;zb7?vkPgrN@Lp#g>1>iUmwaV_J=pVvnUO?@aY5^>ETUw3+44C#l-80EX(v^4P0yZ6^J8UJE&J>6+$msqV>1Fw2N6I>rJt{o- z$&xwqkObXDCgCj#n5~Cv6S?0q9PEOi9O_qAzno(TgOF?};EGfx-zxghcJAqQU#fC# zQOWB+76+bIS^Vo+0DtFDXv-?HK}ykq7`*&57h6ueucEWKf>`d&EjvDvhA`!P(jQ%D#t(;oQI;0OeDV5L{tlEG*a z7PLl;DbgUR+j#Y@J8CDTZhet`<-K-{``G_~81ugbP@NAkEwh>+1s-I7oi!G4-^4J2 zK!$LS1&v{u&Fc7oP3IRKu-^Uq14kHo5(Fg#?~H{e7F;RpN4q}!ip{KSx{@Wv4G<#W z@hj$4fAAK%2ZEbat&JhCOJR^KA*+ciz=O9xEad`4qA{(*iBo#_<`C;I;=pr~v1$c& z<)+qzsxZx^Yx!bFN;_ls-+9QQJ*iB?4RSdDMN}Qb0A$48TeYSq0DuQ@|MVWf-SEJ0 z-JU|W^GK-)5Ri+`GgA&MJ_P)f#CX$sZLqLq3ghad)h^rXoh<=U#V!BWr2k)~8@LJ4 z-c8{_bTO^j5sonV<&NplPy@x1rFDTgdX(l>(D;h}&sLMOy=%M}dYw8@h$k_n^mBzt z^ih+;kE&h!dQ43s17cck(Le~4O-Co0UUDONn5FWNP2h1V^{Vz?)uj(nVIh;o;~1{Q zf`3MzS9r@U0vyoWE)ZeVX;m$muoO9NV49q&CmDHXH8%pQ)pdKaVg zHUaRIa}hh(^`Oq^6pWGz^thlE`d2a#MOpK1vwok1Wvf~qVYVZP%(f0PRc_vpPnJxx z7V?4O1EwcBNEPrnlVlYN-kNs!QJ6n$iz%vr-xFXqqyLuS@@3IQ>_wKz|0&f@{^Z@~C$efXI`69(nFcNy3^PnfKd#m1NtwF< zI46gS(q|u+|2=Z`Pom)O3ETV|e9#>=4OLb8(}i#5nD(Mmxy))&kv-_yTRIwcwjMKY z3O09FndRB;uq-eMU ziJ^eOB@XaTCur#Xx=eJ>R5YEbCcEgh6(xpN!K(}LT(!;wz=yVk@b^Vy9WX4~!`X@2 zoF<61z+2Z$4l5O*_E9U>w8SuMiy$5Xg~}5~_|}gB51ocSy%cHSc-8d>ss0`oN`TlY zg=wsWK$HH?Zyst~X&Abl8391ZP+W-$RR4a&L5NrS(L85yJ5(4$F^wC5%MDUSzB_S1 z*6>Uya>Ws4H!y@oryJmW4`~TFg1-9JB;AymeHy0cR)izas=_G;{irMy$v8*OZJ!dy zQ51db$gAIF@`pGtPSF;nV_oqn4c(-h>{Y$dLH}d~)1f4Bve>>_?7iUm*!{6pLC~kNGX)+z(x+mK6 zt6+XIl%RUtw5oqY@ZYa41eEDJ&)4iIz!5ypC&y8@fdEd{n?J;%1(=%XI#4J+VT5=6 z;II8Z`7yk^f$<##y_jIt!3joOfV16^t&J3%fHj;)?|*^cA5pJ)|TF z0PY17vDs(bs=wHW%k}_VC&FHcx4mwtTkLwteGXI$`b)$)>b6K`iG~b(_~7lf512Yz z=G&1!D=MqVFFFpq5~Ovzv0AcQ&L!v-vVE4}ZV^54N+0oTAeqL_SZi~2&p_nR3g7r8 zo>OfE7S>Do_I-mN9g3BjRo@c=C&~N9F51~OP8h@U#-Ezc=d0JQGbJ?W9b9?AN~?zt z+}$TWgOZ`&L@e9t@%?OCXUo)J1JHY^dtA6X(yN6%fSu%pPRTZHQ)p(zWochEpGJJT zBmvE41^jdwx;<`1w)OMe+{Xo`H*sB&Oi+#pIaDr$+F~QFmZnRXSg!6wS3AkFq^!9f zT+%UuB_OzDl_)^kL_m|NmG6AJPfjPxL++a%0xlCHffdU6*V2djC?U88E7{R> ze#lN=zK`}z7}M%(76>O%C_*K;9E8K^iL6j?c zo-qmaQyB~+h`8kDS1%j90GRv;*odCNQt}I%KTE=&_v<-C-qs@S?11aD3pO@n^y5xN zb_6St|Dumk)P^Dolf@)*sk$YfJp-h<>+C=K9n5-V;GHIRNXqOQAkxn;r|cG8qAvb+ zh3zHfItV^6j}T4{@(+X=$&O|vZ8k`7P5D&PFgN9Jb4k1)5h6}THm~P=xGE9V(`M0u z+AdjZv4MI#;w-^Qdcu4GOLRD5Q}X|@x1PUHRsF34cMTQYgT1fxV!w+zI|o2Fk9=UJ z1CR+fGsD9+Rj5E19k@PU95`#=JsaoGL*D^x%F!!>m_29Tyv%=T2-=K{-?~r9RyNq5uK%l2F^LkB<*-Hq4iX{TM1l?Pv)~7T4fM5^Y zCIvk~LW0B`Z_%n^@s8VHEicgkLK5C-09{ZqEJEiV6t@yej9A_qUyR5icfqppj9NkJ zo8^`Rwf>F|9ARbe1KFJ~gH&hA*b3jY?sZc%;x|mtZ+1qyi@Y)jz-b}8fP?Ts!t}FG z`GM(Gx%R6zbXPh(Yd`z0g#K<(=z}#bAf*)TM_ASb`9MHYu(u}-|Bv!(Oc&GNPdX^0 z%Hlkr-TUy|jHvNF4SYb}?27(M-ORiNX=jGloRIoRItZuk2neSt`9fEs$v zMSbqgMX~&a*ii!$r;`Uxa75Me_)Nvb@`p9m(#a>?hM1*8OX!10zL4d+LPdzHBW}?P zFOL5oV;k8MfHLj;TS4fFk1g%*uDBmO?_CTCm;48^iffgx<41@K&_zk3$697Hwh0d$ zk}%9yZF3>kc|wNo3e_Qx9Th5lwga~;KEG)gzsEIzdq)!8-3F$#^RIYhPxi^TtMZqSZk2f z!Lx5)5R09TQme28#*W&En13{dSi*0m-HBjh&LJGHI1>mXf(uukj z!D)B=88uT=(Iu2|p(&HX(`5m986B_!^#qg#XdYZ)VHEEvF?%{AG$(eAI3GOjF2WnH zS80(FQ)XfE6d?S-i{h!hAyX0Ii2|)4C~teCwfc~SIpuJG;zoM`LvpbVz0!^|#cPB} zatmkHaw&B&$%?#LL!99S^M*%*tP)iW8?ff7ugOhPgN&GqFJ5$$Vt?>#YK9|!no%B0 z@NUpaoV#BjOv~i!&JIfO3ruNVn-^c7QNTo6h5)ET4PXT&-9{8{f2f^$z7s6H?R|Bs zJ~L)@C~w6lj<9n*ZG43=+yf-oT2FITU{;poI}3?xKq!EwAAivsU0xg@7bdG_w4915 z?cok92|u}~MUt-dx```;mX9u#Pt&9S0tRMN0#e?6*AamDJZmx3UvTx)%B+_%n$}!P zy#OTWkJ90Fehi+KZFcHmJw5RMRU$JI2@NvI{5G3JN1T3L$GnNS3%ZX`{lxd4xVtAu zh$@-6`b3ju^Y$x(`bJUyy6sa5CYx{dT?_iViNC=ASPLO0bF;+JVm3N~M?XzzZgVA~W&G*zx8Qk@yG+9b0!L-@ppyVZZdFHJB@+$1#Jt~&rMEKc zHsV8Y5_9!tqYT$(>&rupoI9xg4-rX^<`<}H(CX_5)@KmpA+)AXSH({6U$jnk`UTTd zlTP3K$U`*PPa+p(W~4*RKpd*iRT8EC$MI5&~or0REEc0tWhF_=i(imwt>D$352Rk=z$ zOHo-6;I64H*c@y)>s|QuN0TPAKt7S!>-pibppl;RYe#2EyE_dc-YKN`=E5&ZEb*9{ z!Ij3U#p!o78XZEs`NGPtv-p_{Mm>i2uo@*7T~{~~Xbv6_L2idCwayBCd`}Z|I8U0| z^dP$VqPyJ(q-1;_G zjI%IXK&YqP99d#mIjaCG4D@ySy5BL*mOleU=SELQgkVVtz}(s7hu*2ziCR|Up5znG zIZ99^Pk%00siHAQB=v0;;2oVmZ+`R8LPxzbZm!aq`0NX{=#O*3=2y*IU0hH+7X0a# z{k*MINb{Q{!H@H%ONIsS4#2K2=wHU8pk&-W1PkCi*5Xbwb-x`d%fYf;&IY2J~6I z!)!9Ax1SJy`LcPvPyu>)M7gEmynI34XyGU?cJd3~_0WS>FiSfDKmYJb9(PFm<9bbnn|U}+(MnJX4#S$SobPgm%P)FR2|D*y zg?g$OW})3JwP0!_1&tl;qvjWq5l8a2?5V(~*ur~>1K7f3M-v~2llxC)UqpD)E#&|D zk$|0FZSV@@&uHj(md&(1;%~Gs@z5P#=_YjJ_D62q7?z{Ta?u-yEbd7O*tz6b>Duf7 zw_}u>v?0F5-lhY1OF!yo^U=d~{OPSgRqAx6lfGYP!5y&K<@(QkL*B==t;N^VT_l>6 zXY;;TFxZnvp}XBW_~RLa*OeE?ICC_iWijT`c)zC;*#dx+l<$K)V6tkCO)t;Z`Lye# z9n&MlZpF*Pq!(v$dR5`X?;9dkJTwj$(T&J^<2JNg3aV*-WabF}hR1Pw`9jW|8pYD7 z9P_hS=T?Ze{-x$I%&f)*Rk|>iG_DG!z7|+84@Sj&D*)3m(QNQKlW{HRJU)v zQ1mP?G^5I@v9eY%EXLXv^3^BE*D9qI)=^WIW?&B=GflRPTd z9^nBjhqXaF`gp9S>q^%bwY>#MX0qZR2QT8$Y3#lu8mpnXy4g89zt`-yZN3)?>v@23 z;vKu`0sH*^V)o0c0ilKYB#Mvp`^rt%-RqI6E~H3il=&EX;g(-@2qbj6jL;+$J1bq4 zvYsYkXCY2KGHN`<(>fJpRHt06ZCHP+J+XM%>jf!&|= zgkYUI!&$WhzEHyhi}pb61Pb)wSmp_QWTFC0?n>SXi9(Z-~9Z+cZ`{GKvDDb2u@{T!MS?A!V&@2V=0c5~Rs%X3W6v~H+XCLE_e?@74N+M|>HpUFKNKP-PI1Ph)9YEzz&x33u^ z1o98*ry<^Scs?60%2mMG}~qxzbkw+$uR26F>-`f-&cV3gDV8tiYxi_oAvm=!fBYRiO! zRbv#4=i4hr->5fz+yn+MocaH%9!5(Elue?m zhpYQVF&x-+*zRE$NJT%E?4>PT5PJSxldhN$mmlEL*UJ6j;JA{sgXE2@$$5=VWB`fK zvQCA6Py31b#?|7v%>1saWBeN$lQl7Qj|*Jl6NvI#eR>t}lX}sWL^uBH_MG?~(}RoC zouzV>uhBn!^E+i#8lkZF-=%p-0tT$l%H6Wk=81{j&G617RO66C*9BK223#9H=@%ABo=x(Z6$44?YiF zV>cHEZkGH`5?qZ){@8)+V|^b?k0ZyN?h5_@#TBIBVAhq~fu@SxjL&TANojl(K|iax zL%eDoKfh9<{T9F^moyF2+F!KXL>?BQGbPu~T)dI0rsvJeZ9OD8>Q_v1f@;G08-6%{ zAhwv_`g-fdt%!G(a*g|u>%Mgc6aZER|_;ftN!utbYcSz?zRm)RhHXXY0G*T<9>F|$Vx$?Bz%DZU&EEb^3%U%b4S_}4UFmWU!A;ey zH!o-o7J>8iUC>*Sjm8_o0rrOyCe_Ya!;3%LhNfOMI&2PJtlFeg$3BzFFRf_>z|+bF zHaAqhI>k=CzHs89r~J_Dv@cRYhrXdljO@0e!mfy44#|g&j@TODVLOxI)tgzBBDwvO z%n=iyrmpw1Ww$b36)t~LWucM?7o4dz)czJQ%}xdkj7#Q38B>denqwv$ahn=69*wj3GOPbx7rV4k$JN{0 z2p4;IndL{~naqhqR^#Lc-<|ED{N9OsZGt@HlP?ex&3YSZ_q7P31Si=5;o8p-k+UA0 zbw=&ROgBTk$9d0WZraUOgcMCUYqwf$yAbX zb!K{vfJsJ}%}uAsqqb`v1`hPjzVF`Sdl|rK-XWnFdgkhGc(Z##qC13`sb#0cl~#KI z(4(&DAKH5fy7B?a_ka9ul4#9yGaj&dr~ zw#~-6$2Dm?3$mfsCJ zIjw7u&`){Jr8x>&iKQAR7w8tz2A69XxB-CxdKmu>eH%JV%!knI;_WHYT$IH_GxC*= z)_g)ws2ShgppaxCaUA%jgNDW9F=D{r>(6W7B9rePe!KmnE0XYuHrOe)A0+T4IC6bO z7M;BXkmg|-iK@Z0zW9mD`gMSfCgnz%68*@ZBD0O==C1V%(Mlp!0=5@jv^Jz8z;j&c zcMPnMTQif>=DZbmGqdu1Eyjlo(`mnYN){AE(bnbP36<8w6%6P{;d|whN2Ti|P? zbJ=ZG1)eKeIj*bjmv%zmO6tWq>niXBhVDy&z68unRuhiSyVsN}PeHpkMAT`WCt*mG z=|PZ86nAi6Yg6Cbs4|Vd9vOVPEkAO+kPx2~rEg!GvD#GNBkCI_FK!$rB>WOuOM1k< zDAF!zymMvkhdDyyYk&@GCzM>G;LyEp?A!Kkx|Q<|f09g2N^hrI&V^G^Emv#`XQ4j2 z=}aPd{ctB_c)6rL%Gv*t8>4BI5=BqEH3RrJa%hcHS_5>_^Y2(|whQbS@0ZQ-TgN){ zJn<)A=Gjf|7Rw)mDsQ#tH}6<&mdH$HCF%CPE{IL)$G7?A+MWn6H{#HAf?Y%E04Fvy zTD8gen_(|($cdv)h+F4>)ObJ&KX)C9zgI~5?rSf@eOQIgCImzL`ZmM-&@fJ%xgKpF z0&DyDYW2vN5t08TL7S|E^aP3$xEp5|i)@Z(AF|OCJg<3_zdvgrnbP6SbQtMTGfT|g z@;WbeA%k?T>q5?fM`$&8Ls-M0{4cY2mz|9M`KhtAaVVQIl{itvj%k z3`gmQ?g}Z3M@c#etLx6UZP0Q^3#1Kfqbn@bJE0*iTHEwG%$1ymyXcN6adULXZnD(T zw$W1@*#-o8ef=U*t-L6HqvJA0R3N0jRD#MT zs6P;XfO_+Ow?zL3bf6ZK54OM?@nj`KL+m0AE@0Mpq;=fs>RIP!*>FO*KDj_hFkNt( zVxwCcN0q|nN{269Y^PmN&ZudWjhJM?mzcV32}YAl5@6I$XRSS)vLD`9KF63J8x}1NCIRB?ZuR-w$_8 zUR1V18wrO8w2wl`Kji})w72Y2GTI`7JYal>we*jQqe3-r3dU3gNfaF?4iM!-M(^FK zRfy%!CGLh8=>Uwhn)CAjEwu{+!1__%69)a3GU|#`SMF(->NR=luV*>QVv^iD^FP`n zZ)CbTHxr-Ywn*H0DtYD_b1Q!j3W42J*fM5Z>9sYch6&txu1~$CuL@1?mkOflzh)DB z^KOoQ;Z2CI~1>FC14=k+yFXflGy=+H!s6sQSCVtnuFMI6mI^tAlMb&1b z6xWn*r7rFsDa+Hu>GE_cvE023#Wvo%k3G0xHS#~rSGW#jqRjNsSOn7-6?M{i7dfjW zp6BVRd#gKe?qo-{@in8fUx4X1?A>RH6$~1oD=d~Y=&C7&#ObfKjOU(X$`sHhvIWDmbV>W?Y0Oq-Q?#m16=Yd zaRM?h!hCFg+(EtU>Pig!Av5fxYjeEa`wggyxa@_}rToC!-7dmPc>N*jqgC;ZiQdw1 zrVq2>wsB&5@9D^=V+YB)$c8g>7F*h}FKiXlD!B4rlAkis#wY5w4q?9&H> z3WPb26o3rcoX3otdNWJ94MEx>?Klc?R^8#fZNBD()ycsGm%I>Cx6Ib>nC9zg@0!JBf=6p(i-(}?G>^5Ge8f>tiJ(4q=^3%N zRI-+3K%AX_nw0j90Q&xLiec_wT*rsN(vyT(u_C^Qz;Y%IUuHGIRk%n~7CX+lhwO)L zc6^ij4A5wYRj&qd199@cUVHP|!3cbZOSWBA$I2zBYKQs|czY(gJ58>8%qxnhW2)X8O z$^9I-+@N$)vH0VWJCr48g4{k$IO?1j7OvFG>Cc$d+W$d{pMf(|(gMnGe-2|o7TOz6 zpHsBSx+YJ8sA#4%5~QjpX5wFh#7n;nd+GZEQn`V0EI6c86g&PB&#C&dibEp^B|gNk z;hC(^E{BArx;<2w%A8OYSpR8qoZ^YEb{WPo-NOnaNNR`vB+vsH?MSlxc>fH+p2gYrPoOFi`abz+TC+nFPBr=h9BhZLQLDh62Yk#id zOO8c%vIMX(ZsBVC?wy&b=MRBFn(~Ndq`AY|6(~`R$W%Ig{8^!k(z~hS@2!{8r)pLK zLJ8Is;9(QN@5^cwSB+_F_}Jhb)3p8pH{Bte-G4C?HMb{%XdYWY0#fuFBwSY#*08UgmG z}yaYT4`V?-46Ni)P4dSx4QJ1h;x`)?s#iPI1LR$)V^(C) z73x%=?tum)_+)M5AKa)L7;&Wiy(O`yg7(8})mz}>@_vId?Z_SX6bt&f_RG~d!0+I1PFNujOV76+%oC|JUhy*i zOf*r|^R-AhYrA#10mof#`_fhAQb3SCzA=|7W2YMy+5|OwHCT4KV|P=u(LU=Eqq)xR#ZvF5gTMy z$o3^p@yILYG3DshV>0ZNkkxJZ?^AE3`WYCxZ*9G{LJKyFSaD#0j1HDZ)kHV3t%%cb zZ#O+Zc!-67zv!u2_VUft%j8=ijcxSKQSv^2z5?P7im;33XEh(NsP}12{-yf2*D%w> zzAqZZDt>bgPY6fjBuAN5HCs~tQ{0>H4HFwn^@?r5@+51vh6VQPO=s`16}2D>+3J+4 zj~6Y^aK<%M$WQg-uzyBMH_u>?F-M)DW15aXqf`i_@{yTLVd$tjeSA2r za)d!Z)FZzL(zX`pI-WsF4v?cS$&b(ONf?Ewz#cul5ZLZX9JZVZvAe@da-gWj&3;w; zTg81mjJ(&Kb-p0?heZEiteY&sIZyNF%6x$`_B>)Xo1W4GL7^eks}*(jm*i1s5wG3_ zKNXa}d8TC5=$Wryv6mv!WO*-G*@m2?gvoX3iSIHc-vja`E@f*5C0d!KioAe#R}>dt zmy-SKSpcLCnpu?+oF->G<-oavu6`ip*_Gu@e~B2XCMDfwWy;QaFoC)#&*>wh^zQc@ z&p&c)@&#C1$4Wilqg{UL@!8WkA-%yc?DS6v5rY-;68V?{9cC?d4+4uH1;{YATzSDW z=;1Z=2TVyvME@N4p&WZ$`x3iKs*ntaykl4~93F1rtE8Ai=3FH3(^-oCo1}kc+qKSJ z>Ad{ctO;)sp>uZ>NDAZ(`HB4H_Mc?mOI?UtSnwAlz}`acmq^uKdq(AbN5v*UJa)R( z{~ao+?^+y|@H;o*eyLSqx0av6T~kzi?oA+7XzYgXLg3@?{-u{?hX`kO#3r)@+LZ47 zW$N8y(i5<(?ogg#H?NUDF%vu|V0G)Mz{@ih;D!ol{Gq$t)5a$6he)WlDBEB(prEwu+CxZr&23Os#@veh!FSRzgL<>gpzn%Fz36#Nj)Xsma9k+D^O*oU{RoG_S+wh zQG>x)PA`!wf2rq*TNvD)8HUT*Z7gQgW zUEOk8qss%QS@d6l^RWgxL!wS^j0p_(&zG4n6+l1b%PtfUW{S<|WXZ7L5hubYyT!%|}Oz{!QsOo;(8imk)fL zv~zk+Iy~U)ni8n@F-$u*@5d(?F7=;|nZ9I*dtcOC^^MWTOkMYl$;}EhxGs&?j9m(@ zt9P+{h;PJlxdL}t!^abzLga7CmmffGSkqI!BOZLO+O&gJk;P&lpWH8bT5s?Wzsid4 zp-sf&b!AiJX7NrRi}Ct#tlxQD_B^xUj5#U$iE+&P2vToWoWO@x2upo`c|x|wX6YK@ z$>Nh=nYNwt`wJ?^3Rk*x>U_SC%bDUR;Rn95&#uS1{7lWRef0lEcVpK+hz%QN z6rgE^U{%0ly94f{pUx(W#HC+#P{KJr(8u(;mLI0H$XAAts5Byb7g0lY_|gvgRW|> zk_~hx%fyUfo+~RWEnf)GzAFKMN~G;Gf*vxO`jO z%IF;b#c)N(pK9atC9$D^2|g3f`prz*kmit%SQ zIgkOr5opO;IUZS8C41bqx`@;p01H82&0|GhgSR4cpI(cx0Ik`jbWa!-PdzOeb`0Lq z>9Diayn7%Jhfm*iRNdDHh*wtBUgP0L4d~fDVaE>CWP`lHVOq}k5FE!rTkUf@xc|r3 zboW<-K1xDh7L>H3Jg$E(RnsOrkYYQ|y^BP>h{&z#ftuvnVHO)KX_;g@tKbMbNog!~ z_`M)R3{rXCpM3?12`o#Sc8XIV1|*~@}QrYaVGJM(^L3d#BT`rQ`l=_lJJ&c2afsH#t8;6gl_kIvwJ zGrC)Rj*H_9yD~2l2A#WYpNi<+hr5ey$mt}!Lu8ra7G2DOP+pX_tKt;7MCTLbTmI{Y zAb;7!#=`f9bvJO&D@m)(FUeSk$pAZ5Z1@vzIT`N_Ut0lxR0(_e5_Ct=U0lrJ>MM#j zk<4xtK0{aR(RYlV8@~-yxH>Bxu1floVSVfR5ka=r(q&i-5FNu@+K)w(izo%VRvGXFhdF4_a%l{h0ePaeQe^ zRdYj#WLs~lQS+MN!?}l?s~-$|X5EUI4U886tX3-WkZMMJWZZY)i~Jr6>_(F-`H$Y& zd}dlc!F}I(50sipJlAn%k}tIcO+{Ua03E51<(qJ_2(GLqm#1sk_U7?N^+t7aq#=7K zKsR*U-Y)-tY@PLAlen|}<*5qDdu6e-lrHo%Xp=w*Mgd|aKS@+XG4MFA{ED8U+(w$s z2XoX-5%>kIHPF7ju`${ivV{Q!H6eM>;etKMPa&!I25sNVR+Tf#;PKdES!7xz#>kzw zsDsUSNj5(+#}ne0#E4kC#2B}&z@AI}jU8v2J8e=LiOb|WXfTx;fhfXKoz(JQ5+BgaTJ)7>1mlCVoFwMR} z|MI*{dUN{Y-jS;gi}UtKa@lVTb=999AdO#v7mi+;In~2-SZ83nWUj&U3|sC z7hhj^iX_<;jxoGSt}tSQP(o71$MRo#x^o9l@><{kQQu@+H8MlzHc=iXc&2G9nz`S< z+OSe-1E+u~4KztR&vuTo&Ow?b**rc7a(tlx{^hq0@r|GKb0Sf&rzF}ps_AB8U7CcL z0DRu7@ea}Z$QZx97zl1)G7v@ix_XS}qw8FZA{Mq2N}M0H-q(T3yimejVot`n`L=D} zRka?In<#SsW7#UpS`zKsQtH*Sa4}oct*g&wf(ft{YxDXvRPpDAs=IN-oV88I{#)YT zVFyE{!2=k>wjLt|$&Z@nfQ6q%h79?fSdI^n3XU+DDn?j0o?`l3#>ABaHvU3S^UR?< zP}IY+zR#_y>g3YL$RaLZDsY&`utq(7uWCS%D#d-B+U z)`#uDJB}dW**Ze-zIHL(GCP@OGpZMO72o&D-muDkl2Me6M_t}Xyfa-5tylC8%F;2L zZPUP|f(&}Hme zowVh8?rzMtI0EqmVCg4y%m*GR1-|2lGE=@{>$aaa3{8DAeyg9`?|g!@Rtf;)u>VTK z2FTz-yy_1RrK%ICahdxa?Z+0dWS#Gh6;=n2U)x`-$N$4=@8%|#wUGM)c{X9FqO6=z zm{{9n2v@pIgrJ1EZq% zuxRvBj1>sh8n3cxAf{y8bDJm~O|+y`ahA;DJV-+irxCQ#^6oYL5Z&$c?o7g1tquoIifT2ZHh z@Egj+P0B0sRiHrgr|T-{oQw+S{r4z8AZ;S$!f@2xYTK+TW`mH}SgR2_>2ddsufJr+ zuu+i5Ugf+|p1Lb`RX?Nh!nyDkEF5K=mgqTLx`0u8lv#S;3-W$Nnkb_%nEUai!IjKA zA{}2HIya@iB9^CK#Ia=7G1|?u;B;;_v;GpE*7A_p^c##jK930v6!=G_%*Gb%80NlG zXYpTt8ux$p`_}U-Bs$jmTVe$A;D~|2VZ*v92s$ou?2pMB4T_vH6|rVmGWV?BhCest z9K#4re)OhS7OfTjJ`4tN#TR=BQB@((Gx!Vys4^z_C|eb%i}q5tT01yWCy^vQxS%7{ zxsOX3a=)nX+Jm)d`><$jIQ#MM##J%qVYg+Oz1cqTJ8@m>Hd9cn@sF7|YxudcWO zCjXKL&DEb&c77i6RpHrJNjJ9X+K4B8uUed`^{=CR^AF_JWTzf_dZqQJtw&&H8M$(K zuGoqmEjr%nwd7sn#he?njTlqJ0Vv(BV|#+8IZ2IRxZUH3bXJA1 zV41b&7I+{mf=gY0d|hKvFOM!3khi`cLbG<-QPDSM zah|66)ju*9VqT%vSG52XS5Ii7H}}(ecy7+rqw4pzQ~s? zxq+?3uGwJ#Dpx5_s-Wc{YN8)QrpeiSk>vSB<~;gH-a!LxJ#HRf3$FU|Qj>fry_YY8 zko?Xhg^Mc@m(%l6eO<)|tZh*D8mdd7fWzaEl?YgoeRN|4i36M@(pmWIi z^p&y_%lKaOTiCoN*TbGXi$856s7hrH-*S&irN-1FZTYvO;K@hZo%;6{rq7)n47XW3 zurHggPDyKCL`4i-VVO(z`U4^XuQ72GgK!%c$Si}|YSkAGkyxvtY<8&=3B?tE4%)pd zuV&whtAOK_-IiT5i#%DCr=y1vsQ60r)xEEu`2Qr~nO1pCZta=r zRO^=)_8FoxtMV+OXawBm-eberpO-HTowugZZq7OD8K(FlBz!T6)F-cU18xYRtzIxf zz0DWf?qb@TncmX%)xcSd5*Io1_#II67hK&B)&a$+R4y&hGO)DN{{5#$1hd+=P9sf} zTf^RI$hvYDddFEsvpgAqtb8hZE*CW83;XePc}ADA)7)HlO0Y_BL78TAT9G1-`Aifl z7*(0i<`$3&^WrY6#P}$xVfb8;v(Mhcti#sg&%=SIa&^mHCu|S7pY!LROpg7&&=o&f zA9uRETM0&6koEzP6eB-N&oBIeW4bHd$kmqVTs;Zjz4#LKk@jMtDOsszO}0|6NCyTS zdZaL0uhWU!lQR8+Y?m)`ueZ#wG?S!Jcg_>D=SaVtSdHQ4 znUc^6lZ8_Xg`H4;5oN|b;D9vR0K;XV;J?bS(u*?SJiA}^`By&v+k<+WOjGt?y^;2L zHI9)S0kZcgeOc~_^C+08d@5GjvhMtJ!?t+92M{_;v34MW%NV}t2alMAgNM0&e|zX~ z=um8F526$fzK@$IPRQ?J^X(#i#a^i{D$ZIROFid|fNL@tlqMj+-Bv1 z*upkg#VubBO#VzX^%RbB~Hpxew@LQcLx7_fXcMD9B* z&N~l&F1qa^6~wnP`}ImP(Pj3HLmb#_isuz4wEmecuc{vURC-ka|9z}+4JH)BoQ zycv-kL*j*7!(__EhAH_UFYl5L7p`QOtSC>w5YLLH(#Cm(#Vt*_m(&I2zm9rh)-7yg*hFl^P-Ejt+74*Xxnw!0Ebj4_Kp07otD|1A|FIm?QMc zLle>~^|&Ap0ywDnH>#3c6CNoiRnvp^^yp9SYtNuCa9cEE*xS4*RN{->8` zYJVj$WCq95dNAMEsdtkVc+VRfRM6CFFOy3mgzdiH_`~5J?MSO!B4E_E31rZo7Z389 zg|OH~ADXQ8DH`aeN_hs#G=UOrgrkhgmk`=t>sLl%%&<4%e@83|6lAWGxmydUBM*z8^0`HSn_G}&%|?di(Vv|dpq2Em1;y+ocPZ5*oE!J41iJ)O z?m%AlW~MuIWNr-Q=T6H{J-h7SXJpu#XO{)WpL)h6&oX8_WdJ~yr}yvsUrp)Xl!}Dy z=zRNW4WDv|6#j0TjB_%fF;G@z+!$$ArG#1OyV9#Z{uhUI`3U!t`uXiSjo*mef@PN? zIYB-=b1gynq(MIIFTecb@fl>@5hVBOHxgWuWxubD8^x~ZpaV$;Z8-GYjVf3u1#8la z9fKyf4g3)Lu{H7@P0AO+V)%+Isb*}nkqzk-MCRb+ee-$sS;cZlE_+eMdYDv{HO!Y@ zLjt_!B3al83aGLZV(|3Qz)if%r=vG2M@4RmNt^P9zvRXA1hQiErtUdLh{gI$RFb>8 zp)-V342EeBhcD}jBYip4AC(2!hYke!`e{XdJxVSa^JencR?tA_$0D)Q*}JOc%Xt!Q zOcAoT{`9d)*>kqkBoOL+HBlJ-`&rWK+XZj0w8nhyu`66MP%QJy8 zz@>D}w32H|9~De%Tqn7;TTSSDP$>8n9mDzVK8H?zy0c_6sPdiByE?l_Mrf?xk5{{ouN2|y_4z23(z1CYi5yt2c4HA>dNui{Msp!_?sMH z!iMEJr0j7(4SYVdS)G-txNBDzLdc@^3kzm z5pILh1EuLE&7tm{8h@uDLSo*qIUi^_ricvfnwJL5NxY}f2W^nOVD@U8WNy#m&TQy` z-G>pt!jA3*p5{m%4`-^{NIDPC&2QIGv;mSo{+$tU`!+spr7A6oJ;&NW9>c=uXyoBy#fz^qfuC!J}Zb)QfLnLnmH zrjyU}FHN?nxKxeV*U=%{W?5CI(vKES0q6&0G2jjA4e+4cazfz;PDM<_pfS4?c$gCa zd9Pf58*br)a0Iuno6OPa(dB%^LmF?H5H(i32&n11LMO58p!54%(KrS5gdD)v=bcM;LFzap!V)*L=2k`LWEJn1e9^?1V(;EIOFNj9^<@8S$c&SS z*-GLl(<9qw2I_?5YsHGiJ<2(83mr71S{ zjohOdP>GQfgC46x^7maUuZOSwGsqJ16|1Aa!{Wl%N801}%`RfZ`Kx9~HMBz4tvANmf30r)Mf`qt+%BmMUf0!rP@-OXh;TZ>iAS3HY z{KpVNFDN18rJH4ql2PG7rLbY+X>sdv;L?+1AeU*Dflk_v2is?o68)0Fsn|1Kye4zNS{XsXa9cIdCW+Z+l&g+Q zKXcI(T#BDsaU?=AAJKoy_v_efTp5%qB3dA?V3%jfb@y?_mE_ChnOd#2=}w5g2TxUo z;4_^lo5W_D#gx@tU$!uXLz?r{xh<_Skb9?S=e9-47ub|&=3R5hA486#{+Re!GB)B z?fsR!5Mt|MvSAO&mHN?{ACM2RDxY`iyL7#Ut7yV#VF@M8B|O&r6G_^4x+V|Z779%q^**q9!Xm}bP3-Ai~9SnSyHXew$)8CzSYi5X3wBGd+$ zChw&dooJIYZKe7~&KkXf-G$iri*zE*2g_c==I z{C!GlR*V1^HI^H2Itv~-*KfEz2Z%|>!A=jR>Q^!G){R*{7Ev7b>`Ad`KGRCnf`I%=VqMTzUpp^xH9wREanzNiiA@&2bQt+6GGtCc=1GKA z1WF#isk()tY@g<2FJsv#y>BUy*EpWjcaHuyg}&x1+NuPRPgoNp!%B`-LgZeWjTnA` z)Rjh<+5`K1wmm5&ARTy%L}@nlTK{CFXzG*J@T^7IN`QtInvZYLvSmGwy_) zD?FLk?^e1zqxHWUcJkE8@0Wn@(WMv4-!=*qA9GJ0C9Y#U; z$FC^3hO+uZw4}#kz#^Q35SM>=_FAk|+8i#Od=v~-p4Ed9>IguFN1$Y2a~4Vwn>uj) zRpoE3YUOl!(!nZfB`Y=Me6vz1CGmGi)`p%ZIs|G_(88_}O}}wQeCp_lighOP^k?;o zbUzGap36cswFTwhp3j9#=omBn8Bzs(Nrh4J&(qL&9!cUG!&+*4^MS>yj)LB=pIc<+ zOAY$o_ApX8o2#s0--&6pIHWwzBcf%!3j7X^(3SyW9o3xqcrv!gUg``mixa; zq?v?r#zZyu{oFSS?N)_y^h%Z z1>>#yYHsNKIesTMc9BBzpeoYte~T0LnrM9BB~UI=8O0q=j9PK=5G(KGL@X8cz9kn( za8JUnh=kYlz5ZG66q7ia=U~1rj-Sk4ruhaCS+Ax$Tx+t)QpXG-KltpPtpwm<6J)XG zq_+;-bXotQ@HyZm9Q7odY=KYtCy<|3aG5QD$BlZKrp$O~P7>4M`GkhggaPD7lFpk8wwre2xM3oCTp(o0l&IkqRmZMu-F!Tzoww*4 z@5x|*d)K$Ebv$eVI>~%J5QZx$*;-DT;NGr>={CIR*qmH2m^AF-WNehsPwkF(BlK>( zvb(C=0i`{8r8!P)SutiUMf|`Np74I_P}Y+*iYhB={)uu~jE{6q6xq1EaUq5{0_W#% z7_@gi+cFP%N3{cUtSD{m3@K;YAD%kQz9lcJ+9!Oi7G4{quYL0G81a7TjXHFjFIkTc z89wxq-e}gm+2NSdmDUCQIF(>69PSf3Za0+P9ukD|wgPdCy_@rYO8yF}?vC(G*dw&g zyK70^a%hGEAagL}V+7j=CvX5anho#`#>iex4+h3@4D0XAF zxU9M6IiDOP?JAgzc&h+yySNU6Oc;rznF zyRJ$zB`VLL-3_#nu_Tdi`Rw=1O!)@!!$HGB!h9YN6?73zd@5Jgc%ygJdEy&XHQ<-@ z$SCEH7MBBBg!hdD+*6LfAL;_d)tH6 z(`7;1r2kN3fxZ97dV&UvGs)G85$b87!8+d*jUH;j(F*ZvIdqAeec_$z{zaE;Rx$ATBj+Mgp}zkXnNj2^0(uZKHo`zwG=0 zAh)u3obTZ9+Jk7EQck#6FYng?nq0M!`m_5n^YMbX%hpHr3-2kNqdZ+&>yF08w>}Z> zd%rmE{IpTv|QX>d{(~&p*n3E2w zxsCiqQ2Aq-&8n`yNi`!;+$Rc;-uwrwM+~1JuSHI)ofcKEIM@EZK32FxN_TDx6(yM5 z1zIm9GFcU<1|cb3iA=@nlqN=#FOM~1!yqawW-JzPp3m#b$!Dk)8gw5k0o^!`XJFxE z`Rw^8OocD1E?s*c>IE-_QtEK`{^cui4cCdp@Owsm9Ho31D{=CM`)_jFxZ)Y+m6tP-Y`a9sN8Ok%Yx z{6%PcUKflIYO>BzWUB;-r5rhLuXibl6WXZ1?4TWUKvR|TfeFgV+UF=VcR%Y!E^Ymz z<4S>J2F|%n43H(-#kXhd%q_QpBin`SuSqh4*gJvp=j2==Hom=Yt^^q{`9mNOE(oin zZ&-(Sz6h6b0;_Wh*Z^qRK3KHw$n9?4iKb5m3ohmLMlmYt$zx`9FkCiIdRfs%;S&cG zI*PP>yyP9xaKHBG&4@}l=wlmlXphao+l4VrL>W6MYMrADzfO*ak6pLx@(d_@g~s`W%Q{Q^1&tce5&dF(iiy<3N>EWsNkO{TqP(! zB$!dPMV|DxYM9~yvh^B<6k7&u{fS%YI*A@t_K>|z35Xt5ZVQYtZ&_x^?uh!4T#DxG zf)Ei36%1n35?oq)XE;eyM8dAme`_{AL#MwR)sJ>=?3lFQGEW+q5bLdNNuVrxSK_IT z5gqLyvt;;se~sc-il@(8IP&8I+m7oAC0*QE_?5iJ?S-HILh8tGJ){oNF)1b*g}eN| zA0Adp`LgS=SCF?1@~x>1;cEg2ZXI<}6KiAp)Oz^TmM8Bk$3NBupI9x_UXH(SGhf6?>#gFYNU9^-;6B z3!p3@B6j@T;BE_raQEZch4I*Y%fb+$oE4a1+z(SAVdgf6(+GSUEfHO zV9wz{&ZMv#Cf(>*Au7(MLA?X0TmHGl10B}w$Qm|PVsMh!z|S;Hz0!ab3QC-|?*97& zEdi#`NhAVX47S$h`*43QiPqHLXpQ`Bu+ghAVFT!Jr^PoQj*Lo+d>e%B0R*TmkhHsL zKWH#XxI=~gS*M{wc3A?!yDs3hk;Onqh}^Fd8+)_Cvx`NuuxnPuy~Tmx{tPf-p821O zf?n?Pp7#ke8=oZQxA0ZaVke&T4W3lm!(^)!u?{hJ16+KdI6W)I!6-zV z3BG=qFvK9a>5pC#4(KlE$r)d?tkBner)kN(QQxKU;4gzh{sT4>CGI5d9Y#C;W|y0h z7b67P`%kJ0TJ!ZUq_9|?yG>JLt>OYX!V3OVycq#n){o77U_-}cmG!*5Urr?y98d0m z40i$5mjODx@N7Rdq{NufP5=bwgY@GfJ5pMH-MfoN=8YAaHEIiIIcwLpUzt0-{?-_` z1gMQhHnd07j>8rBY^p+cM8Nf-%9B!IDUTvak@e(Mw1-7|kzC z$&0YiL~$Lk%5%$&C_DlSQr+cZ?d6zMmg4;dzG@2ekfE|6+LU!tsFU5ZQUJhE?FKew z?ayoD=mkQvkL<7eNRW{YgM1~P z(gQiOXZ=H%KS9)Bfg?7#Sn#F`8F&U_`4##XZwKHKrov)i#&@dNVqkF z$wVG7acS$(y|u|V7<_Z`)BgDQcbm9=wiTAJo*e;Berr~gs^Q58A&=)s0VczB5gV>I zoF-5E4knPV_OMu$C>04mao%Yir6MSnHr(^IdYD#Yln4B2S+Z=-dTvQHn%zZzaQzNH)v%(K9+n5Yb+j?G^AVkbfrH#cVZ9EJ9??I0)u2!KyEB zRY(WS)jW<9wv>E|Xmg~?*VLTh+Vwv}eQ;L`!s}hck+>bC2qu1#JUmBRaz~wc-Kryk zy5f=g>So*7YUj_K!s6B2z*OXyj6;_C$nOz8Hp6XS-IHuKbW8Sr4ref`N0I^?P zA=`OBqNv^>viN}s0O`;I&)Qqd{F`j(UIli8+-B5nr$!z-Ei7((m227-I+QXe{%eN8 z${4`HMQOj$s1r`g-V4yh@Dl}|-sc?z(%$7SEPM(DC$SKLwF;j2r?DVUgRMiLDCSxT z{m%m?N=kAsR)e=-Ga95f=fw4W^Q?osul=7&>>$(9v@K zCTEq1fuP-{_DR3SeS`6N6eYa(F}ldrA;8z{aEZnfAP^Y{Ucd;-Thc^xM-VxWlZ8n` z;TW|AA#+zH%ZK(HKYcs)#1vBz<2`-J)e+kJ-~AR}en}AoZhgf4 zN%&h(xiua2{t4;KCXaTv{Q02ATa4I9L;hou5jJLl)x6uy1>-m>6lxxVI%eJ?gk&m< zYRpOw)|?x_f&{x@4B_?ZFSPi?^`K8N(dq>@^k5V?qb$q#jNnfrJCr1F$Kq2*4F7|W za*bJou5aR*D#z!YWFW`9?AdP{^UA1*C~3)q79Th#8t}AcdCgq$L~b>&rX==%{o+R zPC>R}ja#(vKU2=X7Il?eiU8EubV2iCZ-Yg@w&9CiegM3`hBJ}u$Zsm zq{?fT$(ASyLcfvZw-eX*S?W~j=lryL&f2=}6s?odJ12gbai!0DaEi(cp~7%P@8n51 zBXnt0DX7KPLItt1`{=w^2)DL_W^9Go{gC#5rIHnHg=TP&OC0M;UDhpQ^K$8ZkXGQ{ zP2Lm45`jiXm8Lf{dL8CGF_WC= zRjf-e&^1x?!4#nbqh{ylh%sTh>a|QcCpW-yVo`&dw89g)QdtY@mwL2?5oUPSS*h>FU43G=4 zUfAFew6fe1Hu>TWLR&N4?mx^7`yabrMXO%4+^WY*(go~`9vy_;61@5BQ*Z_Cm?H`1q4>6kxLOj z&e;D`n&Bwik;~8Ap69CD)c*e1~$5jk&HDc)egsLS%Flk>Sb7U)k?QxK^k{Grbuu z63d|2Ah^OD#*7Uizx!Lhe<|BNV~e;?cv0V`4wc7&JggF(8YjG}con7-pTeC%(G{87 z*yE3lbZqp7B<-%Rw4Fo2d+$CTZtks=i+AaLUammu9AU4Ul^Kp}*b@o#IUJV}^41Dh z&}b9Ys{+1`_%K~wmzARR<;T%-Yjfw8h;^frMi7ay!m5oqSeDO_0^QipQRV4Co_bYk2Uh;MajfkL4r#z z@|3z&e)<}gbO`3*!`LppgD(Hk@h?@41!T`-fAbSSD%{5Qe=BXW-$GXs{etGlx#FE) zF9Z#sLyjsjk`#i1OIpb_Evg@&&sc~L%`8;&4}9)>>ri#gyo@BiO;3v!D$>dlGEohnyM{Py~M-mT6JBP{AFwx8oQrw5=SLim1 zCsTjIldZ2^zTm3+(eWZK8!ZB<>B$`kd^gE~{RVM9rp&z;7v>5~yJyS>(REE4mAkxG zro^1E)i7fACh0r3;wl2nv6|p$(D5)pU$W=?}oz5|#2* z@`l5wsMeHVC7avu2gbeCCnqu8pHI#y4v9o;Mo`O~#Q@hzW$2^~Rb%oR!{GpPwY5~Y zjG^u*VOkL;vNYqcoNJ`9`Mpp1OH#0SvxlP#(CZV4;oni1ReMI z6Jy=yx%^7^=6^LU??N`8&hL3sCK0O8nCW=2`n=lOC7f$te`#_3ak?(u{zC0ajM_1; z1V$JpQ#O-?Z~S$p$e%Y!$oOLeiMNd`O!icW1|Gxad1`%r^iksi|L@wrh%K06rEccG z9K3!R^yS_DE#Gj++$>5N8tMGEgB^wsq!$#=L?fM5x&f}r+N($Lc6aYWCjS2}0P6Hl zi37;{xzkT!_b~S~>_wIKTL&m6#I{^>Jl=D8KQz0VH(yCm0x)sefSwci?80!TYhf|& zQAn6uyPmHeKI|%~7tQ_Lf(0FBSK^qc*|H;>lnsOf-{>r?!y0766h$be!*~woEdnlv z2tbo2+vQ~*X>mW`9HiwNHhLqJKlqmB{L1iYMd$+bI1*n8|4y{{(g@ki?(-uC#M-Ugf>#M2)_wroGUHUysLOu*b8{grNFg&;&#<1SBs>FunCe2 zE-fO4{Gj`UM4Y-IFYdiq#qCIS6H?AHdE@c+Mn`<=F?luoc=#M4uvP50xGu-Q$xuxe|{+izVD8abuFxehdMsL2p6Kv^-pGpe&!jw1MPG)@&Pp$)V-5cb=h?8V*)@KR`&$3xLn#XWoB~ z3+BTwwD=m-@s;xKx@a03CD+9F;Bn~-h5>A3@QLurF(eq)=QU}1Xm_abK4S>c0inI%Y1o4hOdpwbQ7$ub$xL)J zYU??Nv%Nx|0_n^~Y=ybvh&Z!oVS?f;;3yy*e#zNn~ zy6l#0V>ay)nRL@cvk|;pfPr9)3F)sF3t?UdntO_E&thSn@(xI{0LUg?63)}ggnf-L z{vYZ)iIXQ3JsG4%V=AA+CKTOK3fsjxpEiX&wNAKce1jbEo24Jd#@=n&Gan8ot$pz> zEt)DR72u>yUPby&r%gQLi8qPmRQ;p3(H|bJDnZB{*Q?OD>6ArqjU@I=F-yDa&iS(r z^f}+;s-fZ@tNNa@A|Z?bsT0M8g&bXQNxN3E%J2~Uhc%|`;?OS7n6 zf-^S!bw1RIo()4mW?Jhx^QoG%bX<3XzH z!ha8CJtO345qKp@mbCRJ%8ZM4I}|ceyC3^qcLlMcwn_ZMbS&F6$Fa9obdq+JYdYxO zTL%XVv^iY>EUNzagV`a&YHOcTgG}BJQLCCu{4RO{GfEK+Wnm1Y)71g)C`D zXNR5Js+CaW{mMbGG?u`6dAEt@K@5nTB}ty_lhjusp6HVJP^3GuKbJHD;;IZYAB@^% zBTD%rb@Ng?U${D`J5aXEKl*PDW|O@8F7_tObH?RAsr(uzk?->BnU)OHnIE6*Z^+ro zo@lRKU-?6yT9-v)x+~}YGxjnVau@mn9-Bylgd$r6SQuZL1Kx&7!ogLqOn-dTX^}Ni zeT;jCM}#kSi|r@uOWk~>9SprLrEe={bQ>To3-Y|vT7hvV7C@vE))6$aCWU#RHEtIi z*@wlg>!CtWT$k{ZpLwNtWW42kH*3-z%8;_=@IrruHv^L6oePIfL?*M!!dWUiKJ~dF zG!QZ@HAka7F}dHM)qXoJO?e!|UW6V-QMeN;N?m5!s0nMLgVBd*H?bIp+vyxAUO+cXFeX2~m2`^?CW4$+0iz+J^8^<{UYWe_c59dzE=QnL}bAAjq`)D*x>F4?mhY1^48a?Vdc4d^| zH>?3R!9(L?`)+$s653inKAZJbPTKi+ExqYEOtTTz!J|mqAyX`~&R-LC)V1utO2izS z6t6O6PK-@^H%q1!8V^ZjNUv)R3~UOG6_kar?ZK_PFr~J+E@W;AkVdyL9UZ{1`_GxG z3mjM9=D=e2puT#uwK{fYtZF$s9V_;@D6h=YlMIZPZi_nxxQ@5Z9rG!DW+QvOgO=I} zZSJwSZ3}63QUrzl;GKUnJQONU&U*9@|3)0R6qK@z+nV`b$h5$_Ogw&?FwqlF-qJJF zt?<7MEo2cJ5S?({%)_O)A69PPz6peTqf-%{;;F@#0W`ztRtz(tU{@@3%XcYYbv7_%=v4 zN(z-2iwqPL-Q-Dr4v^F1G-dO^U+P%90D zYeH}Q-#_5yU4JW{rlZiHdG};IdLR%uD#HzULK%ZVI*NyYc26pIn1T|KTXG4t`Ms7S;E^&9z{Y2wRG;p;FlGQb~N7l!40YCrE}E#sPEjfwg6T655k>uz@_ zT$Yzh`)b*vTzN@c|MBOm2aW4bLVjs2y1vsPR1d?Hi&{k*DcWx>RA<=xU-!pUoA%>M z>}>VCrY0AGECr?AauR+p;vg4bNtLB2sOx*jfZ63y2Yzr>JNZH7<$BDvxoUF3z&T+AO3kF7mUwkQtL zBWYc4ljsS2J&<>cj8A4nU8_{$3xNR z*|&_difWRH4eEN`GE{NU9;RJ1>Y$ZoR9hpYd%{kzH0KWjz9Jb_IDXON%ZMrT+#z*QuDo|$ zL=y0Bid&3VfG{>6VAf;4ww^F6-^VqlS}`{EqsSqQ$u#x!Ee!!Rz6eu<9+~5HW3}vQ zd!kwRolNa-sq9Z6c*VqkA=)>OLS9u;spF3i!G+>}D~KB`s1PB-5NOf9xykM4B`>=o zhCj`16w5A1h_k8h>0cxhO!1cd*QF7kR z&gG&R!t(6LwPN#ZawZIn`=bc0KpN#$dekov7)Qjl=lk|T@xr5#qoC=N{1@8yO8D}V za<}oI=_2A|ZK7eT#m~G+&_bd{>)O4?eX3kzcctB7CA|zaO-ZArtTwU%qkaY*#8`M(-w3&!~;>G4eB}a<%71PVGIBoIFj}G5F)gt?j8U*-L zo!|GK;&pRL!bu99d94HtZ~R`&LAI-@xAXTRA!H-V?KF#{K-`!h;68FJ#MP4r+<{LP z_R;+cvHPzczAEAlD5RlXJ={|sKSu=mZ9_;QWS?WPqVfrJWvBm}0 zPw?(YxU3Jw_j1D8yJwrq;X+zM%X-^kPfEt%bVsUrN|RX#-{=%A!2>fJ^3kjquK_y$ zGu-fE`~0}tzGAZ3PwP?Cg_g60ngg1Q=hfcQTVt0DFd9g(vx-mFs0j!e?Y?pjyD7Us zEE~eCdMQ`PsMd4gQ4Z$GpyfsW^Bw_peSi~2lReiiA;Pd!mfs(7J{inp3bnPzsBRh~tVC3#5;!t#M7fb;G?(e0kao?Xjry_>); zn(q=($XAWq+~l<1uhYZ2H6+gYsUm;YznF+Jd+@qcYf=MxpH%PWlYZg3n;YX$Qm1xH zza>}O9I_9^@PMIHfRof+vnOJo0u=X>MnJH_NiU#k#POJ;MM;R};Ev~c+zkUfZ2Ieo@AQE|=gIt>iq$Mi zl(@j~Rs+DINP3R26V9=agYZOP*w6 z=}XHLMEV#wx3(Rq2#l?tJ^nv*y=7FCf7dpAPSFk0F?1uH0z-F73_X+*f}|ihLnDo} zf~0f`5)y+TA*g@?iXbD>NT`(LGuK-0_1yP+{jX=foooF*%{tcJ$KLzc$A-2hm0JCY zFLP7j>y60xNmxMz=5@TRI_z=U$th)>NWyy;1C|)tHXbv;$zbdpZnkGq75T6#G7iD$ zrSD?w`@z;eYA61Nf$pdRUPHmys1g{ zX~Xd5)5xR_hvq*`T zpKgCCWL}8h{Mpx(ppK>O=-vC)&AgEQY_hKAnzS>a65)_%{GVPwbraktrP|TJXYk38 zUTB2ME$?L8qwM`JUMlJBPA64SPfpOkZf|#99E@3C^|&|$?9*}{KAwSccxg~+Q@I(F zoY&Z<`8WRwq4y3lIT^DfMqkfJfjDWI4$`1%{m+``b&kiY|FdMqyH=}!W?-)h5O^tL zOXg=>$c%39@{WZL!~c^o@}rY5JaKegyaur!BK4@oXyv*4`d4ISv@Hz;ZS?$^rZ?S! z=~^Mb5|a$2h`mPV3t#8&a~aiZ4^$I{a*pW9Yxaj43RZvQw|q#emae~jb3!4b_C#-E z2IRx}+k+64=pP_Ysyr^bO1(>9=eQ@x%Ev{YO({w8Oy}_fnam{hcGXH5C?|=?Xvd`b zt21Ppd+ZJWgUYI!dqt}2{^DD4ExMyrWX{pn@SbX=f$J&o^R^Uw*mvC6<{@m7n$sqb zfo3`B>`3o7TNXAmDifm{JfYy89w#4%zp#s(%|p$mZ-(IOcjEQHN@Du@q=f1}1{`}a zW$&{pxnBl$=siN=Ygcx5r+6~mA{^!{UY^C(^qB^D_Erebl6Da)8O_Azr)mxx$hzpL z??2>O<@)8bRV-QJs~3>1`MgM1V$!~i;Jk-}kXcnQE;c)zvz%Nys(C50DHeOd`@ zUQFs4OzToN)Nu3G&u~?g=A2x#3pJ;b-)c~<9FTgapP_}=83eff{}egn{gaA-_mq1XDa3U63Ys*TJeohK24Ax{LD~P|lh!~4S}o3* zvdykK{Fu;?MfLYE{%Ojo$bk9`>2D_iQGXF0o-O^;SWWj8i&auh@+h$%i)>ns3%Q?v z2kmkj~&3F?Tror0qhB|;Jj(@oNl<(ZZvEn*R%}S$}WL#gHZ-tIV z|2dahZ}tUWRuWyK){No4z6*0v!RfyydPZ<=PD*q25ia)^!_9mgR%KJ~+C1f$HbQYj z`D1GBtz z@*RX(dq#$zVHDgEb4EIW^HYjA<0n>1mUh(ScH7*HROBXfg}rV=UU3JTGqR znTj68$|lnM#TTF@y;f(qk^a41E4ghkE}N~p4+%lH)U9T(OaquBokjl`D;@Ik$fZf? z6z${(7r1k+S73=r-dC&0&bZ#b-VGSqIsUbFrP<6R`I;wY+ge#bl{=+Ptm8uu{wwn? ze}FC*ro z{;s_Ld-HGWVUx6jifYHZ({r5@r7VyMesxoNu#!}T{yb3g!5%Sz9c6)Ra>TguKx4cv z9byKuk@q3aVJVu^W=QJ#R!2(z`+s&1T?JS!d`eA`mJJ=K=8#_=XS`Ywz_9d^ z+zR^7mN=3eJf@Mv|1aT*VOI4^9xYS`)eUj;crSr5tH%qI8ljIi4HfT-b4uFidyX-M z(j|$>t8!{=MRUtp45*CI^Q-=j_l^$1YqE-w2L^k)=IJl2Li?xvDRkn*o%xEKZcl$a zO|1k=6%ZN}C%Oq%3#`Y!q_)>y7`Y8?G~9{M3zBz8ycn@J?;+A*y0jGP^^2tSQIfYNikr>*Ih4%+f7SVIOKsm6?nW)rRayA5&du5ld)>PHn64(_uM!YQ^Hn!MtQL1+;@#P)^{;K7-ke5BwoOp+4R+>^bRZX)acN%X* zIli^L%=u{KjH-cD&-`coLXzg_rQzYA&v>#CK?7tt8{8e8(xT1QY86bp^0i}OIyTy=-!q`9WLcXBhUkqC;L6Vs&+50zcsffg$uIe*kNCxy{zN|j$z{~{gSeo^_1=7#tTG_f@Ahp318 z?~mrLOPqh<=kUvx=gD-8o-rNI74~(I+K(=@R|ka42iTmfp3&haZuu$OkB?1w2pu0O z#W*JEFdH(Nv&@Y zhid1hkf&yP{8eb=z* zhDu6yBc<*p3mNZ69oo*9oPEE@O2r8q%-lq02)R+e49f;8d7`zV0>+UI?(eJe_K!G) z9NO{?t)EE3r?;r4@Mh*UW9W!G4qS&ZJhdC%ixY$G)G-cj7?o5&7V&(el<>lUfAXY(xzN=2F|*PBxrK3s48B?6Ze{h9ohC_0_m zGWXXA)eh!$wQduykGyB0!M0xsv0V?t>CV=(kd?YAf7O4cxsnv137_N^@sfiBu`Ked z-YSmb<-G@W&1Vu*|J|4in1NnX7kf$W#CgORCP>A^QM-@zSEeM<*SKjSNFbbckT z%Dw@#x9%!D)GG2KfGG>4@Srg&O-8W&o%VNj_2I8y^WwS&94`MpXg+%u{c|g_Gwj5x zIxMoK$|I8I_qJZ$t1O23=EFwrtn~9l-I$z`ZB2sJ_b%xfvnu!%Jqmem9w41t!Z_$+ z^{GsmO!5~$2OmtrJ`j}9S|nA5)%Nx8T_z!k zfg_DX-eIGah=tW6u0Vg@i-|v+XTzyd--XSoE*X_}C^>iWK0}r5_W3__IVO7#SQ}=g z>9uaLFoicwq|fmRHYni@Q{oi$ii-AA8H;QePBP)%uXB@{CUpXOL1PxHisKu@_GF(J zZrygN+n#??pBHXoUWxb_}%}U!q)5KimyTx|2LSfFA{%0!f%lsXyLy9C%4CvP$Qmt zWRF+{#O1VQW>IA)U1{}L@zA{0y`!zc5~EFIw@|1HWv2BPf(ph}(M`9BMR1hkj5K=i zXS3YjrEKiVcM$u}B6NxOc5P8=Z*wA&sR-}?`Vq<8W)N^!`;MY#`My|=q7)Qw$$LVR z^#zwIFv{w2XQ+GSv-u7BS(p6N2FM{x?IXGlO*_0?E14qHUdNeqT#vtvz<^g*c}%qu z#>>q3`or!fI(z#Qd+RUyCsniNnaRk3PvNx>sP`!{@TqD?>!{NlMk{z=&ovV-J1nj^ z5j{yAp-0%?pRU6+U+nxdcEN~_b;{`9X`jLjQP zXOL94-0GUQ`6JPIHt8>08pHbc=05GWK%-F$kLz!G8w_} zzHH%g1O-DHcXgWhgaozglIDv)rKp5zVLmt5#~aEM{1sZS+G(|;xwn-@~qe-w;>qc zuw~Xaa53CaBquG$PX?u!_i$T<@vi&FR7H^!Be;FXKiY4)hM=W`$g* zM-&ZOvjk9MJf}a(Bn=Kta?QRo%Qy8FYi1;B)-xI4Mg%CRG|s zDuLaAzs2gqeJY+#9SN%3U?DD?&N#X^T6xC+%DVL`6|F;9PFfdBH_(@EP9wbVHL+7^ zc7P5~x(`gMNTTX%@D&Xo-UHe3;-pwbi+&L-OakMGmaikD~98Q?HpN+-9iH~L|}ug1}b~?CdA6ed}>b9{g2MtU{Yd@n@>kWDqo6v5v(v%*JWnc zxC(KS{M7=rT2+h79?8lc|B!lC(u}>eDmDx!R@V&DNN{HFIhza_%!?ID%0Co1SC^JO zmNN3Jka(1oP8378YS46d=Y0Uhj}+ce=f#xxB>#qd%t#1tcUELM2fN^1Nw8^B4G~7M z1p3>{+5E646~EMddb8>a-kY;uonV`jFj*rxGqiK*jS76xLGPC0D^~m#)HQpFb+qSs zoi1kd?)+?3KR5497rXb`?;%I~`ifyybZ?@2zgQOGF1PWk3C%Bgp}y8%w?}XB{yb4^ z`OLJND8e`0vQ%Vw|G6FK@lgQvsS=MxO^$-^29ex2xmnr5#6@4xyQ&?L6-M9 zX}J52smP8BHxt50B~o&Rs*JWB^VA2JAYgo})(oU7Wa&rZ^&^RXO#ZjZr*SfMy9R?k zaVws7)sr4P^o!GF#$VPyjKdrI{Viza2J8R&H1a1mrJFh1hO*a&gv*Iyly#Mf)u`~m zzft>W;3u!9VWTToe2I7DAF|WR^WQ0MhQo+Btkzy?no;Muy_f1{2i*yHqN^Q zA+6COCr+}Va&G^b(D)7vi1Ei4ZocUYNW*)rbPI<6rFi^cW!Klv9Cy0L5=i>bD8>f| zb82n!=1_jyxnz+SRHOPT?4A_;2%$xgLtnEQAjoS*nN{%lN;Q0ca9%sFZ--tD1IMEL zP9~rJxm2C)K6!urz8x}Bz>`U|5jj^UdP98`wGh_n;5nbZPjTdZ^rHiCAVQcS#PNm< z!XlYlY*ve_tFkL-sTLlB!}3kEbr&ICjs5m5&GHAEC35n?Z6M~gP;t}ub&Gkxhxwfr z4VJb2hpoXUUH@xQ+qiSonxiN2Y2j#mOR2Dp3lv;A8Gn0`xcW#{Lbvu+3FfZpB@$rs zapwa3J1h~NQesZ7BGRX@^j8Cx%}>ke_1}?iZfoYvQ9vC)(qPngk|3uKqu`h%QgrID zN0mX>$J}5Qkw%b>&uktD1NumVjJXGLSenTNzEs{UUB;lA_f^mR_vJ zRPlo|!F8k$WmINpcf#7s_^JF14wgrQ8z65bOVcv~m=^8!;%2c{yG0f@>^BMw8aU@j z=Lmn;P!9zHh&VXUK}b;cug#H*)L_B+KK_{MN5R;g6SP+-X-|DQX|~QQ=I!r9 zN;Y=J!{&Vh7Rm4d@#!U@I&M5+wZpeMH}cp~6t%tPNNn5=Nq4qe7;P<-HDa==)Pvzmvv) zJilKH_-UdMJp>I5A8=$$z@taOmFOc)DZs#pwDL{cGt(5bAR6=#EClHXiZ)5#Vq-qK z4@LT66l#L~uhiEl!H)W*wl=iDd^S+|S3vd0w~20mPqK#regl^)|J;n@wfYir2C7x5 z19sUI)Lo@F+TV6f1@q_j2_S1G8nI=KYjGfd%=qWB^DL1~5SN2)NQo!3r$VAMHKE4q z8PDmBJmy&jEVnda($-kyK{L5@5B1^Ltp&oK$Db!VFepis2nw-xQyMN4R>ee|8f$0z z&PYv#!|gAr0ZJ+07Z`wE#MU#wbw}2kzPT7R-<*i%2U8A=<8Kx2>-a}3DN!?qnzNBy zy^a^BKV^I}oFV<5xq^3gsPzRW)xi%hELtfBgn`UMiC6eS)o8h{7H5+Z=sK6c9OmrK z23CZ`laGTmA}n`BOSJ87esVlUdo;ZFs2!(a{<(MJ+K-aJ1Byw(p1OHFz`;N)zuM^Q z%)M_C*QZ$#zP=J8TlVg#MhaxgSpY>{e~!@h>pLDjl=PEf#6J}{e!Pu<{#;@Edw60i zptu|nDEg)TRtsTE9>7RhwbXQ`!{P6gR@DP}_Yts|eXzjfZ7S;QSWc}2cowA~tIl~M zyCrX?bZ8xlEU5I*YKb(hm8c7}M7?*YFdOQyV`rvbjU>c8uTTmHT6o0@r`g_NKwmgo z=-xg}-eTFV=ik zKk%uLc;8zfvcsmk#rHoL{J((2LT;e9{9C{wf++ZbSn!?G;zsEE1Kg{f|NG+KfW$bJ zA^?RL=7gAhnufRM;AB7=m+(?lml%7`c>c+Q!M5*!l8>6MXg3|Kiz_mnzIivx~3>F9d)mz%xCp2O^n9 z`=EPMZ1dgLg`)@?;GVOB;pNB;p)Z?+^i-hc zmoV^(5FfbxhJ({K?F5*8%7vRD^-%r&{y>=Dx-YpV=!eKy~RVIWzn4PPud`+ zxRShgLlRrnvBLP{_R;saeviIP6%5w?{&cc=VZe1A;z?mNBD$*{rhT5V4sP zH2tKsH+U?w27YUAUVG^f%_PbdCYfc!V~e60b1v#bO98(cyo0Kx|F)%#a7AkFkA>;X$&paRGT zHQ;PpS*)>jaja-IwC(Hk>?SNNoU(WH9skKEm^6q00#^e{InzVX%S^D}`rh zkl^F?!uy+fVa=yr-R3mkRL7KWJ;lzy%po#k1EfT1;l|rI^nuzqvmz z;M}a+E;M=r=JlCW0cEX4=r09|S^dr>Iej6**u*bDF@f%az9C`!&@23>i@k)U(JhJs zRskAkd%Mj7htGko7nC3Elq?cFBWh5}bw|vI4~)}_=g$$De(OP3_}CC!bhTPswszP$ zGx^=l16jj(z&o(hI)cTy1eUZO{+Iyd?G??6h!Wt2C$}PqorZy)5+?65D{jv!oENn5 zT32skvg(p;@mPrRLyp7BLR*XMyU3R8H@)BEUM;w9MR2|&b~h<4<(`cc$o~#H+j96) z-Nb0%?zUK1??H?mL&|+`5@=DGe%VPzT*O{3_@^Bze6x6Wp6@~6t}GX~ z=dxd*(?xV8SRCzfd1E3KjeaAEV&dK=YcXfxU6w-O|9p~yIgmfg`w(GV$UC`p1) zbuR3Z*QeUQccDm_`C5O3>a^hS3~vLKS1D%uOa3e7kH3{+#&?t@C=0$){2N~X3!Vp8 zH(G+RC#u@}W$^^yd`j)3HSvVzJ04GknEnPnZJ&DPGBHM%_Myf`%=6}%7J0u}Ne1XhK)ze%g$ z6G%$bf;Isw9>fRmsXG8)Ch>wMOP(E?ZlAQgl*Qk#ZvT(ihpG*lZ{|n2dp-}shINn zF=8I@^NiRR&i9HEm1wyjz&M&%noC#GEs6q-AO$v zSNQ92uzVMTzRq&THphT55X$rquUFWnP@g{Nfi@{R`zG2HkIfF2pS6*UwQ`eUIADZe z;+L~8wdkivCu2Q*s_!BXUDF*LI%M8YNbmz^p^10S6RWplfqD;BoRFuCQz$)iXw4NU zZiRpenF)OADLZc7Dvfws^c?QLNs2QtK8DUI{L1OBhfuC$%VWC_`AULKbBn0Lp&qth zlyslanADryT!x#fh6`Bgcjo<4u)O2<;CxXb>U%jZY{VjVNd% z>0jDOk2w*PA`X8TugWLr6%m4T5#9Ul)- zJ|@AVu#zk4<^P{S{tLmF4FO;e#ELP{K=g97l^!}A43~+Z{Q(64X$ZyuMp!olIXVOf*Gvb|*R77T)_PmxI_5~PDn_2%f zxDT49fWvL>BMg%ggR$I48HleKY(g9BTYCW9`>7*3&x-F01C0RPCO?~XvnGKnfjC_T z*GkUWhLkBC{eDl1el>%FYGHmZAiS$A#PO4XVXi9b_o(=eQQo`U3VWba_vjd7Rl1CT za-;AUnV}cWi_jO%F0B;8!M)Yi9(pK|f{eqy#!G+R*xT(!h&Qhe%Qf2s{^wCa4%W}^C2KL;=3*u(~KMB+RM<`l6U zJ<*wVI1`y9V%F3rxV-i1YW|mQLJLU3rFo9-s zA1?N|jI=TT^p2O518T{%HugVj6Fjndyyyz+XA!G_4N?l()|bM)27uxQ&q zV0giH19*x)0UZw&ua#kM0FO9gtkKNIhh(dMTxhT^85#z!HiZKskU!2+Qzjmu&AWVt(|j=0AhDQb)1xUmz^S_K zuCdS0x<-UFz>bLFvB~P-MQFYCw6Ly=WUyWc_WpXfVu|8=+sH%<7kS;&;8g6;{^RPL z7-eOPguYfcSts6w0wiO4{;y-ep`ITguPkFWrFEb&O*>_X^7~#@5`32A0@I~bc`Wf~ zuSLg0XQ>ZfE*ekR6JHU%oVl>e4Q@(DiBu*Z>nN=DvJ24Y`qunF?!XuZk|YueS@t1LBa;;uWdx9qjUO5f<>x}4lV&AVZUkK;+3$z zGwX*WHMe(rXlh^e&m+-azEuz%@d;{0BsngYu2ROefg@?4>-A!h_$-|)1x znd@V5{CY{zIh7ydx!@jVfLQnIe1yC?M+;-3n1bD``O%YZ?PZ(CUC-A(*ENEDNpvBM zuBt4_iKv@Y0lsUju5u_cd4Yb5!QM5D?8e~sU9!)#uVsIbwy!?aniA_LW+g1g*C&0` z#rsTqg@5^e^$VD!Maa?fg2UO*;e-GjC2pnR|Ap*;tdzlawmfyjX6;v+i#>$k=SC>) z=n1U=HC4;sT@k6=@0C}d@8%MuBt$4Fv`BUh-ZBlhf|2AY%cu=*c&;t}x18PfuV^{3 z{r6S=9r!^A$9IO!Wn=uMP_}0S2tBda|AkN9F$0xCe-S!^MC@%zNN+m}(6JWjs`&Rf?Z_(L%#buy%naE-d*%Hwj(M8F;mHdSCie>Ud)# zBqXesigybd!E+wi^Pco{;#v8OzTGy(0hj9?=6&LmL7GrFYtqSiwZ3p4zEW~5AY{cB zkp3a{zc$~EGE|skd9HsbbDvx3gM?G?8#ZxYwN`>I(d9YTCldjrb)gM$5**x-t4{;W zM+wo00Ijnhxc0N1@Lj&pefb9H9!IfNbr^^5gIUHPF4H^KO(@Kj?EH+;f$Az>Xn3HO zZ%qDcNmSxPVZZd`^Sr?PR*2Q`>*cBj-nIl=FVeXy4?>5}sy_(nD62SJ^JQ_($G?^!{jP7r-B2IdF+pcsB0r7Bjr+u(Fn6Z-NBOc)4$qab{7y$ z{&1Db$g>kXg%oc8v0zG+41p>$c+}tLrI-AB=eM$oyj{at5d?%2ru^gLY@GNKM)>c> z&i?{ws1pfxPacU$6vCI)W%}>@6t9A}pGP%(Q<`i3^WPXK3dUZK9)seD8fcuEs6y9L z01_-g1I#6jv;ef@gr$r>^8l0o5TdmQFMtAoULZ&QjaLCY$z>_&5JBnkh6}I;+(d}F zGC>V!Uam%x@^3Bcl@}n^+DYN=R#+|21oVQy3In}0>+jocZp6$3a%eI^me1uch&%=Z zUrKmi1#fttIfNI?@G1TxLEoNcJ84OgDSs^wjDwm{(~n|+cNfUd*f<08qzLM#=j0G!~?VUxEkAOWJ55lhzqlx%H^YK z$~X$~LhY47{!o&l&jTRmK2CX{HNMjUC(0k}^MkBFKw*j5TIEPsvibQ(?pwO0zO8}KE#^mt{tNC zq7K&8=U!WCCXQvUbT$hT%u*{Js6N%wn>uLp_Ps5Q?Iwl+fz)7={JyTc1ijGLtKkXm z2oVC8+KiVB6WKv&OSN6EZu-V_>iEWd)OTe_$*a_Qq&RiAzgU99k^@ja_%3&;P0D(z z@!<`LTa@DMs&dP2bNeq0Q?{>~8@{<@g_J3phwF`o9=zk>T^`X=De*F>P@wzq-+GP% zx}XBK&uoOk2c~#xsbW#fWYYOjic0>+ZR}F#KeGBQTMSfyW)GBo>K{f;1;_s&0L(XL zsExWMqXsJe#H{ANj)WRtrY_YpnqNo+@%HOWA^HM~*h;rmd-Fmz%Y<`WCuOjmrGGa|8ph>! zf0ROp|7uttkO`hl3`VrS_F|_(VRFD0g%FB2zin(~Q{uejw;1`sa58ZwfFZASlfls&yi_gxr1yqF5HaX*X!uY|Dj`*f5bC(z9s&VJ zWmzK9IRa=?&vApMO+LH;vmcf1nLp!1G`_J228BTJ7xkW?(AczZ<{d%?@je~oeMcwx zw5r%ppN{;I2;{ESMvMxC{`Rf<^b;V9b?8se;~pG4BQi6pf-n#){1_W|G3dfIM?H<{ zL)n&||0I9o!ah;lO<*{BaW<~Pd)a!X{SNlKyg{z;j>RXU_T*(}j~aaeaewmEV?a5#iX0>WmVLqV0*z0|@_ew*`uMtVkxywiO_eP2ooYYez1sl>QPab_T__f#i zq2xV?W&&K_|D*xarjOQUs%GR^up&90{V!=Zst_!$L}7)Kz<0YNQf;N4($9o?cUVS_ zhGhRY{)xm83TB#;_`My+Nn(kyx%)8!$1pQi;s(Y~nObOBHMK=EzjsRZ<34u*O8rN{ zJOC3y8P(zkA{#4(OvMOahtgwfh-IJ`R0xv18Ymg@6nL@pQJ|R`mdP4|Qkx4a9HmNN0P~m2156(C69#g8&!w|mDq@8)B0UTsqmME+_-&V`(;K<74$SuYGN?`iH6s zR-e(LCfQpXXni=jGkH1ZrSnc{+Fa#uv(4E?U)|C6*jDVLpVdxoOjH8orayHLTpGCB z@tuz|Wa(&-^($m#c89(_%$3vcHd-LEx;aP{F+KM8H~-ta-(UjOgxjp!@F=>rFGsF_ z-Uz&TvMkQ==&K`cz+sDx>UqCA8Z%7N_pajKUI4#DiR1TBNC3AT=?shLqW`v|WP3iYRqTnM%{gBq6PY#4@^6G+Q79 z8IS-maAX^FL1PSJ%EQ>YsT`?-o)1g1%Rd(lVxb?SOH`WvHtRwT=Di0AvOqKfR~CdQ z0-v;=oPGUBnml@O0&xRd49!%fG?w-jq%SATVr_?D)u!5o=V2CVo?W5XsD$qU2s_0V68eLTbuHlri1B^9Lj$&|Yn=eC9{$t)^C;B@a8zDA z_I?{(C=Z;-`yr(98S6%Sn|yOX>+^Y9+>sh?`B=M$n1EpMZ;Sa6o=w_NnHz}TNj*B` z>#cG#vz{bQl7Th+{gql}0w7ST($0OZ5?R<1a6730W1xmV(m+${TLT*YIH6_2}m&s?AG4zukB*o7D4bk~1S%z=U%f^AzVFasV64;_VvLu

h{lgKrZ;YPGOK#2<4yk6TARPT{CYMijkE;jybeE6 zhiYl=`mP;0eP{?k1q9lOm3$^;Bn6z$OqR7TjhUpMVUD2{UWTpuV<%Gm#XYLEJ1L6O zwbXC9=gsd(HSxHoJ3V3^=2eOm4!3T8VcJOfNp?Lh{mtJydc2*@|BFEWduDi$_pd6) zuI}>ulRNz2glWQhpIDV5itb^rw=kx;sYCeR5B~?;7ZfDG#v!csDVd*pp;!z^2w(-m z&`e%?+EzX6b3efH&?9wvt<2m2v~xQ2ZV>(ZA;qsfC4cYRpc7;f<2gcDREtoj2+yWE z@cn>m>3$__uw6ZY)EL1kBB?bMf7a6SDL=jnGAN2z!(z2(kI7g-h zgkI9cbvOHi9Mg*a(3~_sba@&W^+Qos4Xccn22~(1T@)&?5;x--PJgRt4=L|d2+&Ae z>7!4ILL3Wxlj8m6Vm$R6unwMGCbHlD+U1qJQ&%$l**#;-`rY_s#e$;#(=SfDhDXQ? z*JZ*21JcMLFY5&e)TN4&s-;UVBX1kJIVKn1*I>PKr3OdY66dZN2hFRf6?uxo*<8L+ zNSAaqj7BPlb7GaKBBNXbzTMt%Lrl<^a5Tje|6PehV62^!50FQGrcT&L+bO45xsMmN zc9;JHu>Tn&mI0~8NdHcDD_qvUl6xiUMG5Qg&j?(@2k^=AKd8WgI1JwaJrWvJN{r!e zsf2m}D8f&s4Ss3*v=M&fcNqJ|SiYsHbFu;Khu~L8L^y&Lp|w*-D6BuxC=4Peew+GR z))!|8OrZ%j)_>p424v_cH3>5l-Y5cTW%j~(*fWriT^chd9YhZM2a{hkXw6R@7 zZgCBq;NVaU6@TcT9IvU!jkD}=*kU5`+ehrh7t$&ctvWZM3Vkh6R>#*pM7JcOKroVQ z?&&eFl5MdaNWotu+-q7zXv(v_Nq?BsakdJmF_BpZFi5<5{=l%w>w|Ylhi7d&qTI_D zdN#xi(S#8}jW2IE#egj2q^%3`of~g^nm=Z^cbHQSCa}-~FoBBdAA1@LpC|_&ydcQBq@0>q7wkCPACU<_1;a>zlO?q3+DxQcqH#N{KbzJUn{?W zPg1rqKRS+J_`I#F)F_wwu=X4on7+@vY|`)fGx+CDg((A;IT=~3UzldWq%#bSd=@+o zURUrDI`|$hq7R;b@!;DwM0Pvt{{I^4{2Q>PW#~qT?C`;E1)Vt6sX+Hr#(dGQG2j8V z-!~7~{>ytT$zl_LCh;|Dr6L;hs|!cm6tUrbDoeoNdvk4_1(jF?VeX5|D78mvhzK27 zQqJX~g@QN}(_{2f+uo#oP7NiLr}e$3<(bL%#UA=)QK7uVR~xBmk4)+QiA$qr*3*M(tq`1dAf_bFBonk z-PVmPFGxCO^Ce_`Up$_epbGay76V}|1BA! zG{dcsU=j47wUr>h5`;A^0c-9woSdW-`%3#zKyXt_4{}R7N`EXa?oHoKF@{=7Z+(!d z;Y~jaSwH3$0t7kL@YB+wbX+0&Q4UEGjMN#S18{c`eyxEZi0Xq=s)>y?`!czL0j#I` zecr38=4q1~kF?*p^4MB@#wz6qpz4@s2G!Z%hMSYGbf4jffAeNq+B@*MX=R(=FTPmd z#WGMobq(cpy3M{8_@;c${sP<0s0jJ}-MFiZk^oB$u{@Hgeoc`lv`TR@*nW+IiyIR& z$}O0L13>~1IHliSE$4!Ap~D*On^#TPwvzR6#XOMrf!A#~m8q$9@JG3Zk4yAGgfWb* zcx>f!6AC-9$|b)9eP)4069$kgO))FZ+m<&UrU4g3(wz-qD!w8xqSK90OT3nF`cD9o z)a?pPX1uFGj~}|W=RXLURRzP{fXYLyf!KKx~V6)~ZSTvs27Fh$9~gdaLhlFT*cKH>xyuV{2>2 zZK6U)(LcA`pVt565bYCtG)i5_eccst2Kiig9vG8b=`Nzfw5^!*V<{fqVfa{(eI`A; z=;6M%jKs*9rkpA?e@{QW0Zc!E{;35sC1*6<)g02=dVd1hq+}ShBbOUQ61ZL8M0liS8EPLzzzRcR=`EhC4gWlw)IrQAY+$tloPC7;YF{vWW=J#=4{T~&Ku}L87dbWFt zhuMEu{vC1ux7zJ~HE=H-58S$c0k>|EY~zPh|BGJ{%B+(uBzryoW&X5S4fuh4l|bM( zAE1lbV)s~1M=O9>38JjeY%SxAB$Yo6)W{HYtjJr;LMcUMKqwdp437tWBm%O{TH=(T zwnxzEObC3-0#2mmESRdk_~ zDScBa?d{9;^DJ=iEl=8hJpj6^OU#q4U@mv1+!o4!c@S0|8}N3(%y_=><14x?O*5FO zWL8{AsvhzSZ3ygE;vJ*}sex@BY~o=h%TAp{wT~i!7fM}tYmNy;D^850=xeT&cc0K* z_z1pXLIACYG`9{DM0AKAkiZWfqohhO)CzkqjK>reVB(MMPz{i)j&S7V`5(0-4Y8PL zp*>T8@yFx5!8YHbmeN7&8HXPWfK!D+u9{Wn>eC#pb#wwdY0(9rn+JHuVr5j({ZQtO z`g9xut}?=wKi*TDVEZ_+txgxg6vRyOS($KQR&fp6#ub=&ls4f8E_E}RqpgOG)%(%HQ5> zVZCu%Zi!S5A70<370*66YL@9H9x0YSFBBojZmQfk)-H{HRCy1a-euA^|7~qr_$D-b;`52uL+~7E?xw;1#r)ps%@&8S!X@z?LLz8LJK&Lpv;;$1}2g%k3_`6lU zcZ$NZJ(-fLD4J|I#36}74-v{)n*6wQ3Yjt1FA0buDU74FPz$%W88RF)1M*_BF*Rr3 z9&)i(CCP%l=tuEY!4}mZuj?8#VHXMUO}Y%z%@2AUVJ5Y#@5+pTCxqbVEs6v{+ov8P zY}(xO^e?`p$_p&M62Y)0@V)PFx4PbEw;ty&-yEln4sy!O8IM2+0)ng_sqPKJLhJV< zQ`f1EBwzLr3|AaGjW-7BSTSSn6CG~-uDcOQ{MnSen{p~8b*=KXM&g;i^pQjY(iUPn zY$Prgg8_k>t)S4VU=0z$J0=GHYx;#~Z}fAWnX8=)ymmO_@%D>FXyB#)XX}d=MOs7B zPkBC6ueqs#e)L+HF#gmB9KMI~r|s?QHuq@?u6MVI-)X0ZJkoq2SLjjYdNZQx5)`6; zJ4lt`B2*Tc#r`JpAfiD@L?i&GQV>@OW4=ZEi8rqE?4bbGqKI>}>M#}BGa4yQ7-md5 zdE<}|C3xUci?Wz}CEOjOLRnwdrBQ9T?cSixS^a(USN{{>`RuLrXe1{cI>8-#zlb}0 zA)Mk92kHlUPd~oObXF_4TdXypXbpHtZBn=>_e96)TiQy{P>InuG`U`BX1&Nh|A#DV ze*0QNfyCYpqF!NPyzHX`^8oehK-cHHO6iL+jq!FqnaMVq-U?+ilitX`x2KC0zfhh8 zUzoChKqr-|{$1sF2l&&9STOh1-e+|K;;q=EU~I+$>1PJCcz*lFA2xyTbq(8$Z-)wB zEv4bUw`giVX?i~9lAsVN54*)@?i60>mTh)FqVtG~DuBr(SE}Q^ch%|OKMF1s%uyY5 z^_87(bdcnh4hVwzV0J&@&uH#-h6Ba z)OQ1Y#3k+cNg~8a|EyiW(gT)RTw_o;akLlU+Ye*&N`cs#er;)wUsG#=<0@zDfvgng zo}XlZ_7YY7ZHQ8v5r07PdV&ydo#2e6aaO))!JZ!$(ClIE|xAugrA|gxGK@#$EIvY%pdkdxs>QTsgiFD>p zM^L;4k0kqB200j_rLbC+mxAz2;A!%4CFgQm!-VJu(Xlqi-l!Qp(ewyxd>6s)_#rN@ zK^F}1omjzZNrq%anJ)KfB^s?9ycvl3-PN3hude z6BC76^0mQzpJVoov962uJpmI8>*IPFATC;zSWy|{CCQWJ|3lYXhDFszf1@+Q3@sqt z3?r2q-BdT>=7UJm>nK^SM}ca^|37 z4oR^*?e*i4a<7~2E;o^B{P0no&@J<7YGo@-C&!D+Y@0sgE&V}DwuzDSd4CUsbK?gd z9@z4dojGJ2y=o~Fc>XDPJ@k{jWKEaz#P4;@sV+cTv+}+hL%)xs`jIU%kwd#|{G;TY z2d|{a67-NQjYN#VL6OC}j+J6VUScAo6*uM~UPRp}#=gj}$IQ@_kLOCn?ZNsjDl~us zT<+tbtXtalji7)}WXm9Uf+Zk(m!Kmi19ma=to8!!V{FHwBtmO5C@G2ff0x3LPxm2k z#IJMMz%Ph^JN=A?Fut@ukDVN?oW{QNVMWx4@Nr3*J88P2x<$EivUo=$VPDi7R{{Ii z(;yL(C@ZpL?W9 zj8ER8R15Dn3~gv4D68Y~IuO^@&(fh^g&zFrT&;L12LEQt>G@O}3*Q8|HA`%m33-DN zi17)e^6(&%j4hMrGtN2%0Zh{RjV&uWSQuhcbyC;}d)GHJF?wLHNL*3|bS<{%CAiSe&pf)Gyx8DAovaW=v|oW}~3?y&uv{WGX4eeG+R zO@>*LdvvCsQmN#k^rwaG9(viy^_<0O?_ski3dCbTH4g(#+F6O;BRTfwVg(c~0Rkeg z0BB9K5biXSvMloO<%XINr5krt%Qg_OJ0W9#Hk`#ydP*s|ILg_>LN;NGdJxaq*mKw$>{EJye#ok-tv#QRoxBPdBxRwttF z!PqS6J_j7y`&8Wrpaf;+BPzM3UY!mFsyciBDV~)CpA{PyF&x8>!=9{@B8m1Bv}c#5 zoQFMu-UgrsW~6g^vHc`d;19HMa$Bnk9dOF1^P*yDpPeN=J-3)S7_($vg(Qj#%bjsr z3qIi`QnwTOK{|oKln86xXEn3d$YoMs&uz0nJaKQ7X6)xk4>ZUN%d`&U@smEF1p?j- z{f1V2L+XJ~a4sZuy1hvL_#c*Cw*-`J7<)u$)iO_ztgPBDB$>+7XDp_Q^uJ3Y+q-Sj zMMJeml@klDXnI`Cek&<(mY;s!;;dr^{yqqNibXf=Sh|!78FV-|;;$Wg&G3n$O>-s_ zBj7VDpv1;I6)y5*R)_-4`GQ)S!?KzW*ke#Kmme&)Q2tx*jLyfx9Q-GX`x4I$nawfVAk^1Z6HIvdFL>l=eI~6hpj%0Pvs(| zf}@XfDeU{m1$~8ef;yvlyPPJ32Y$PRP#m7C;E&o(r52TL|>*VdAcmY`sXZv zR6t6Ero=z|_ApHv9-J{8dJuS{-DUSvpbq25Bg$`XL@DoHzngzx-pNjsatlB;!{H3B zDEKdkTLdsm;e{I~CjRgAHsg!$*>g2)h{=^azN?P(p_hTBUyj6q)L%Myu-v%U-S-v{ ztdlLCvJIfhf2l?**#VIQ;jbjn`q97Aluq2qz`Ojm=WSeEh(F^0WXKGQs$l?3$z$fs zjtKD|m)zeXdA2;w{#@DvX-9Nk4Y|isKOthZO@DNsCpTAMbAi#ST}MfL+b)nfqF+W(gaoU?r#D|4&6Gi4-=$Mn+KqG4mcC@+ zkv3wm;QYa1i3@J{AYJx7SrYc5p@A1NSd`XPLb60toHQkzlPO$gX6lqKxiTtA-0FVs)x!_7YMCp39O`8sy{EsZEx>*=rL-*FQT;B+6Z&2OVh4Hr*Y;lWqk!VZK1P(=UJeFbOxoIX>M(Ma@lOVIrDZrMNt}*~@%qF%E z*)N=No*6G*lnMW`Gd_Pa=VBl#@9;~P(A0@jPu}o0UGcrV2}ju~Hud`%TGxav`_38B zE#S&mikJ($tZ%_`ns--arel>}E4r;>&r??Uz`GoMEzUnc#DL~5bRgwA!)%sFaefW;Pi2?3k;|Y0b0DI`ucECx@B#dStD2zzEuqn4p4sDLU!tz0qU&m)OgMShG;o#Yp zoWOmzwj2h?IB{7I%}C8%0TLUMleXtu^~C!!6|+C&+% zAnZ5XLg5ajo7OZFYH`+*rW)GPdu&Z`)uk4Hvnv9WHH(0IktHZLu_6MEQ}EkAep%7g zHm4%2>z-+_vu6GfzIM@!A83Bt_JTAMM7ULQregR#I%2UZKkU()(xA#NBUefy6dZsE z4>PYvBVVuL(O?64OnoNG^!EK6M(#_0QK;!T4N+6AfDKRFaoW%qvpVkW>vS^7dYz$l z^VNu{9s6dzBD#Y})kqIxn7r5!)#V4EZS(4RgT$L=(F{yyGE~7BITzm1r5p==wTa6w zj89Q243R;;U?x*{+c(YTIA^c&)(=I}F^OVomzi@8@!hi2MpjAoXR5#Oj&UOHhC}qO zJK-UoUp!IxsaZP884&zHrc?N%Dit_`1_Uysu#d#nqZtoSgZTpON^m24{4 zPtfh7ODhHfXy?H$?UJ`~c0}%IX&?l`L*Pm9&fiNsf<|bI8})~h&146^5gIrb`r`Y3 z^pIxV4VE~TbvxN-HMPa|FX^8P#M<-VMyn^QVQ%ZT56z4H2_3$e2!6+tR&IDQ8Vpd|e)twK_@LM6(FjpJ`PqLg{16$~xTDPX7i z(}egFtNr|Apmom0jefaOzr)2eG&MZyjjN(@*bIuP$WxDBz(P2~;WQ$D=7_0=erG*O z7F-gO-^TE;g0O|%c#>1_|(YpQ#0-}^lid@1PrtOC&-WFeHu1$2MA>coDTnOYu zTX_u|HqJPFeu8$4M8b&~@GHt6c236?3qYp_;6qNqmmiGnq%!+}2PF-6wuoa5B1*#D zsXq81Y(J2^(mrOYvm-i4AWmF?+NS zf+UQe1lS`TO=4Mw0u{zC*7r`&fIwMiKK4vtGbuLZisRjkoXGLddi%AR>tu;XDk2w^ zttul0GD!T*DhEIPsq$he(E*H&oSk3HzZ}jO`-;12_I{1~O3pn?KK!q_*l^tt(xgE6 z0xcS}R6_##U2B1yI}_Xad868G?<| zdum-UEIRO_5m^w&syXFHOw6g;S&qcL;8`FDT(mnPWo`C~GV!rZJ@=`NQ|`l~EKWnQ zl3Qc0Qp@RwMWsO>q~R=r{27eP*uNvc&id)7ErZ?wa&&UnvZClDyP_CD-!!p1A}B_C^%rdEL>&8_mr`lu*Z#r2uo z6=KhDV}idx`bzp&>m=4*vw7-Li%+E{cnMa@sET@lj$MI*x|^uryX5a5n{7K1%I1$_bifQva%!j>SkltBNHZY7y3lb28Tc3&TD8>?O>UDM6MkPxEa?+(DLaleI#sMy+&fd!M(mB1KAfg;`d*@3tEl<2f+l5vCa1_4Qd4^-$|wzRQN(g zin!~HSv7=o-4rAeY#)up<*~>k$T~oR>kSWUJv;o&`y(ieG+_@|9ZG+(t$;LH{zQ$B zv~H3v_JO3-f2SCNG61JB->}*FR1s%pQwy^| z1vl8r2(NL_K!#L(%k3G}u7b)EU;5Mwu{*w@93g=I60T~Rm*!DXV~KbT3f?xhpPOz1 zRP4TbVGVD5+KGDy<;iifpxdPKXH}0Ef<8i9f2RnVuP@$Og=V39)E3;|2Ez>p$>1;` zE`b+G0;Z&5?iwIHS zgUd`m0rzlTERo-@7Ack^KZk3A;mzbY?ul$&B-3PgiN;RPRGkj;5Z+7gC%KZjss*T`V0Nl-w=8uu3{?!H$XFK5Sva!HyY(!EI(2^_Yg9 z%5zNXYd39!GUb{Ha(M?JD9#3BDptB%>Ypb?nNPJ8Og`l$4Uu*DmESek7@V9*?dZjc zOv*mJI{u0ZNOSpu+GP%=*w1P^JbvnMAo>4^U;f{7i$rlYm8}t4d!PX;bxyC-rS&ZC zZw?dbpvP|ed-peJ<#yg0*Ql@4}ll68<4>Ua?P(iMlzVmFAc%s))v)B7M%mUe1PaID7!ALdIla2 zCn@J$ha%~rt%z${3vK#!=7Pos-kQO;FL?s#07RpHN6b(t11zRRN}PpAQ6_`&i-T~z zBuUS6#-$-2AKES9aV}ymlU7f^g{MI0jv-W!Mk|}T9ZTQ@@G~VWkzP==WlelxP*KXX z_=&0TC!a?`8a!Nk+Sk|AB9^6?!{zo?ZYXQPrIUYM$_ho8th z5q@kyYe^^BsoGV1^hWLp0cBI8)@EdjF-|^P^y^2VkoG0L>RJw7? z_m0GSxoAN5l?D#41!5dLYXH-Byqm=l>ogvS@A7m*+DC?+?s#eO!c}WqsIf~}iXPe} zAUdT@Y^Bm6eeyi>$8Q!xtP>4$@z{KU?t-y7ug<;nQ9g=2k0|}TbC z)q=~tnSm)#7+;D39=rA-T$Lm3960aK{Tp8$4shv4t8*GVed?~@5OL7Y%BYxnt=06pJW!PkU+abelRemltJou?M69lOGdX(qDEt zPWeigQZ;lo_qC4&%gZ}(yL;GoUuOCMTfYQooqglzdUetADaK%k#Kp=Q>5LUwuGE6H zeoX}>bc53ZF~;(R-R&B;rEle*USAL+PT*>d^PWhlJ~y_3!CegAL@fBZZo<$0JF4P_ z$A!*MnTaHpX-3O-B!LtcQb_qdAib5*8UWhdp=w6^zd)}4L*1_Xlfm22c@TW{a0D{T z&@X!Yrm4qxpPom5nEAbm5O;L9$A2`jO`wPkuo`wYV9|sGze7Mnh2ZFi^LKMEd5{V7 zwPTHA1e2@2y<}F(Vg=kBt^%hN1q-kL@K@xQH*!xgntJ$$zb%eULD$NxOu>yl-Z~yQ z45$Za0kD4%2YP5Cjo|G5kO+Rb_~e#ph2uma>Nv& zV&q4&rLvZSnLIajo{UkO9!aJNo0(35d!eGsHTv^wRlMVcJ{3~SYC2q)%hMwM0b_Kx#y4SM@SA{1>~3 z7QouYLJ$apeqYdSeBH#50EcCa<;L9-LbZL5;_H;}sw@^jINSOixJ?~86T6u~Q=5E8 zIk}WX)TgasPvY?Xn1YEtZF$r1opYFhkK0o1b@;^+iI_Hpw%YxgD$~Taty}Hhgqd6P zYM#gW)#cUcP3bgRuIMs+7NiDz0j{+q`}$E??UnD$oh0Q6oD;lyR7s7J|KRsx_7+VC z+EIB~}KDK%}2)b{(ITC+*g)A;ygmkIvSkcKZ)<- zjs*$Rza-E8JaMHOx^(%Ov`QePI^bKI4#hd`snTf9z_{sS_}P40L*Mxs9gp2Dai|Z~ z|67>)IS;)`hXq4d(psy!w zBiL)U4M67@+h7gGMtUhiheX2NSJT8H3JbKx5N4VBG~lOCke5sw*1%RW^=KB%I1Z!{ zK-}MoEYuBKIz6Wk&&+ZXRqEo6D+PG7~zwA5xr!_bmu0cgI>%c)ONRX8VlbGLVwA3xr^H=pmU`DToo z*5jF~mK7oluuLxUY6$}JzybeZ=L+}>Bs`a?(?_dj7vi@4l$$i0@x|-!MlU|i3I#Wj zQ?({7%4C9a;*D(-Hd!={85MW+98LP3BTaR_3vxfaZYh!pLgz0#xE zM=dkJH^k!{U=66?Ay#R3mVLYB`Dbeum+7j>S7xw)K1Qb&eDP^>13%NE^4qwjHOilE z*J51GJtJ*J$NKl5F|NYgaRHk*S2|d?5AfOq48KG>>h%2!y~;8G3=N_2uIRsbm;3@1 zuh2c@r<{M_SaQw35HkK#+!!{1FOdH?RP8|ukSGpAWmDUW^b+GGaVvidH^r2-FHYT& z3fxWmos>R*6SiR@T==>Dpqtrn#froaN8-(-nvg_o_ z_<{Yvj)xB;&OatXh;Y~`4-grIPy$MDtv&K_$6daW2~_?v3gD=}!vrmQjpbb7W+eFr z$G%HPF1F|??u>9gZWSgecHMBiB#xFCD3s-82Fw9DX7zcMW~*B|V1{jv8o?8=WJDcl zXp`FX?nue(Ezi7>r1E&K%`@MJ`9@`U$Opc0JH#Ciyp&RXXMG=%m|uSd!>LD^Y3%Tv zpEJdKu7zLJPJw{U_`lr`S?a*_BZ5$(W$nzqekKbGsv|bEG;yoK7mvuxO_ATaarp}= zCA+wnh2dz^^WisfqMC;0)cdv3D)2P8^blH{64uE*j=%$!Gk(ngG&6vNYMGyOwYo-u5)r){4swjZAI zUT|0}N!p?OHcJ@3ywfFLdec2d?Vp5{8KaobIBm<3X|Y$xf7LVpG|zSt#p8Vmd0poJ z{?l-QW@rFpSqs-)wpjK&iu|M2Xs(+WD-&IlJ-}@lFP`R*F|C|<}W?Pol1D~&v4gF#bno$HiX ze-HgjUto$Tka~gqjGon&w2?w65&isQLD|vwSKnR2hYbEHk^w+K>qK9gSX8j4LA7dd z0i@)yW(tVc@5xldndi8NEq_i;)hJ1k0+PQ(*Q@gP6WKRFL4e3JzJPvWMx+t|vGg{} z*76M3IgG zVorNLZc!SNP}?RVdza37&7BGr$f~Cz&iTCybw!+&!(R4qlxK0VLzf&dX2H0s)CFc# zFUY3y|C4`}0laLWb*8v|W+)+XasGHuf`U68x*dX)hJ=k?&xQ)+R#v1zo_a2nBNgiI zzd!noHq3Bi+@S?rZEWI1lt-}4QNX9MKU2EkUFWBMknb<^*3Y+^@PEI*H%@avq9uwR zZI7V*)_e}u1>$Jw@ijmbGX-z{qv@~KwoCMh@I^efPQ1^l8~pxGBBH?V0GpmBuGyB? zM&!Wwh;kz;V(8>pQw;>${RssR?2o35%QKZrxaH2*3=O*?_rDtee1cqoQ{Qs>_yC`cavQJ6 zcqBaEC5S0%ks0_8kTtL9R%?aG26*W;aPiKN1ooIj+x@Fubs&S+qubTSa&)`8r29O2 z++yLr`g2P1Y3S|rzv(Oh5ik%m4VnhvDZnW4K*oVXV{5T>{y^t-Ib(AJQ+M3oj6keO z7#zuH9N$04Yxt%~GKOaOsfka2E{P#}(CV*8Mb4yV(Uby0i+D(#zaEv)g%YAXT<@D< zEOolx!V;v{84V)diaA)J(7R?vAFl|?88Yb3BWH`^ST}UG!03UyuS?Kb{|E0A%X83mzCTDVySxKC8V9HSq)g_~^q7 z;5rqD3GOT3szGyx8Z8ET0fjxXOY{&V4sA@WQ|7LPZ&YX1v()G-GB=GI(z%4*1f=8= zR|ylH(TOm|etf5PrQLx~O4fDh1N%3`f?YDoVY5#C*Mh7|=j^j-7c*DR{>+E@=RX~s z6{U5uPGpKT9b!W|8*TRwS{B8=%F%5>ZJeut)*(%z-3^{N9)5E_p6x3cxe1(kw7v?q ze5}9#_HB`^e|NTTPTa)(`=G(j(@1QjM_}_y(Ko7(0FBqzh216UmeYd#=1iJ zzayhuO`4u+0frtn7$R!CsyRz+*ndB&`?)~A10W?{QLFMY@xshZ0Ilw}{=mgoky;1; z#Os)SHte<*KT{@2EV=P8c=9Lq!Ou~qrS0X{Fyz8s;n!LqX4r~xjm%k>fin3RniaJY$U6M>du^Rn z{>x$kGTRat+nxzzTp}$LS=|!;xv@c*stG&WQCLJX7<0X6n!YtWeSMY4TAOP7bMjf3 z{KkN(Rkmk!`pZv#zHUV_N!eD=uDSrSrujGn@*6VWlxZpDm!@iFI1cpF7}vuhvrCs( zDK4Imovz9YzUn^xxRj%2xhi_drn?r%y+29578vTLFfUMkU?wDNStNj!J7BRb$r=7J&SuxEqVqdAUxk1=TufM<4P@=W}(R9fMefwZ??5B?ZH z|L-Z+Q&tm1EVW12UqZ`laVo*c=cQ}pi#BQGqdg)mxG}ZsmJs}oM-=6?KA{sU#XQL_ zgtuNQ5aKS3p1HSv3R4a1HgMUxKR}@E`Jn%4EBo@!+tb{Bx#x~=CLhLLk6enr&%X|>Z9Jzj_5b$$dwyxTVS=1OaQ`7aj|anGhpf|$tZj$7_v@D$)}v7XmSTAyC;Sl6EOMeP z+}B4s2R5?2Y%wQK4mgbvpKUBm)`fV8I3V6sdhM(x_SdGiv zyDBDQc+xs-GdE0et=Nyuyc=hc9v>gOXoCJvcJKE#zshf4*tQd`l_s24#!mOk@@uc3 z6Erp8X*Axkh7|Zh@DLp(!@(X`j@y?)jHA07fx*3o6y^>8pkn87k+Xk$T0=Dd;Kn62 zu+@Gp%ljOy=Ry_#%|{jXTKX@ZyF?0?Kf44i>j2uBwCRQ}PytrBj~B0n^L##^QZ9%$f>qq|H_ z`>vjgm$o@DX5kTl==I~3Mr5hIEp`Q|1doTBAW)(MfQj8x*F+!SB}GIO$Vu_m3H|e! zzyzjQxF%f5yL(qyKG+2j5jHd^a=PPUgLyaTp~DY*O> z?e`lp4mXLNFXvyL-~PO7dGo^q^7(PwbZgQkeS2h{u)Y|JN>!STX`cV`l!Ho8SGNo6Wvc@!ijvb}vg)N4u3# zW%d6f>%rQ)7c}z`F>isvOLdmyaz!;MoR)Y@Oxchrq>b z+I5i3g)$Sf5$ORzigH*@}`dTniaa?b+}L2lP{H`byd#VFP##+WhFwuWYKr#VqPk z|5{<4+GUTcG*n0gf^sH!=2#dUX5CU9M0e!{0rg~j4sps9mci*AH8_d_XaW5!Qa6!s z<9Uq!AvrE<(aVlm$h$dFI@ED*0@eQdTV(9L|GX~h;|!ig-`&3cWy8eWA9CP*;``EK zWezQ)e=$AUL zJx6**UZ<+iQqmA;!iXT&DoygU(&8tgAzDS37g)2wX9n->|Utgo}?Rnu#c$2C@8dg$@N_?RRY4xH83hf zKISEoK(m}t9@fT09t+GU*G6Wn6 zN3sJ;U>@Qq`{Q(Ye>PQ=$-TI>4s*}b)*GkSrd1L}WZ!G|g zn*y`z>kGB`J>kVpxvQHU$58iI&CAJ-;&bP34Y!S91BSRnBlljh#l-lZO^p-QIQaO^ zduL{5DEZnq!;D_|dN+>u-L7Krl;s#nLNM6-4=)a#))NH`*21S&yH7j{|5K~ik8xYi z2P*3^WGuyY0=v+!u&^QDS4Ivf`tJV9`yz%`)Ab*O#oIC@w)XVX)nwbd3&H8M)-eSm zbo8Y52Y(KHVr8sagfS**>&ea8A5U4o_5fJqO9%C#7UmQZl(%v5V;MS3${59l#UH8( zJVnq&Xpj}ijcS z4S<0G$rzaEctvyXUpPeIMcM+ll(JB&JX)ElB9=)@P?m?x|J z>)kXLk7+(GKO1f2-5B~~J={x7+EL_mv9=QVAaIqV#LD!)B5Y(SnX&7X5x)>RpooVI zZ8pesoeH!l3`P^Tw_%bSod4+4&}>32E+7?H0w}kxuAyp>6*v&DvTxoqo5h1D!T+Grynbkzyn+L1H0~syTxYwj!xZM zHz%HkmGG3W>wdCsUccxF@8>IAK7zrM2JuBbcuQ%4gnbRK3jYO~Y>~n<(4dLuUyiTc zFeDoF)!4Ewco=Wt`_DoA+JAY1(ElYcn-vKd1&i1S9GFj2u2Yil#$efkESV_nRp|k5uCAd8=RMKJ0Qa-8By2=Uk$z_P#m~W$*+9I zOstq;-j6kZpvU0vtL@uCjY&Q)jbuE2&Jc1L<81P>Z=iTZ3=h1L5x;&20w93RxM&6~ zFob-Os(CdV+d4@k6G#EJZW!U*P->*XG6ddF1F=Lw^nyH@_O!x>BM7k<^A? zCk-T!Ow;TeH%&PgDa(#*54srX?F6Q%G0*0HZ&90SoA)oxEjFJQeAoZ~5GOi8pb`$31~fi*WYtJ7Qo8V2B(-A;?c%(sZcJgX#= zZ(584gXtHcIfMhJr|jdEl^jTF2PqI}-gGGARM4$F&#Nc|c)Ij2w^<#MPY4llM9n_=TFW~lS%H^B?jh@|CH*YVJJT!I|la0j9=eJVZ54JwS})LftfZo zzvK+JBm8G@jIs#`jR4sA%LIVBuPzW3aK{3%bSul!dm>vxNS|8$>DcrK|0V+Ni43Q) z4}#YB_+0P|vl^_O@NFc@L0dhce zE+8v(wD|^Wmp3+KN3vFgwVpR@Ah0({2sJeYWeRAT7|-`pR1-nR^8d|t-LD)#uscp| zI+snYYPRjgUkilRoxyuM5-_pxF9%;?AQ1A2m)aXrpDOq(EC))DLq;CBz4A{$vuR!+ zw~NfL53x4K#RVGJQUAlb|F4E=!*wHe01XB+`nZMt?Fho7_Jl0iz^w=*RU!DG?;quP zr3O%h2NcJL9w{sW36r+&&W2Ub&xg@2!>8?Uvk+YXVXB}`gUM<>*Vuu*uVcEErerEC z(T%2=G+DK^Stli^q#i+tfKUlQpKvck-B|bL>E#=T|8ncu z;_uk=)9h!0x=TxUtJJ3ClEB^aGtHNl&%QW6Ga&?8;9{|vXY+WaFmRU2=<^h8ba-xr3)}~w_0Zdp>+M^tD6cnYXH5AMqFo^LX_I9sw z*>`p-azV2?T57y%C0tQx5pqo~HidkHfyk5M3ox1LcxWhhAD(ps@yGp-J`r81$o?i6 z8`%376aLkYVMO_~Wa$-s&24=5qJHmd@f}&~KXd1RTwd}(YYOf`U;;4aR!Rns%LyIK zMtKl9MM?-ZfR&&O$19$wLxnG+9Q#~;<{ch#p#%;q7ZmRtL+56tj(g)c%X#paOexOV zo}-r(-P^u+yM!}>Eq*8gH1@3SHf{qSW|S;POaZ37&hd9+GsKU>K_E9iTolxDr|Oe)6T$Nbjmvg(?f@+c2r3V5R*d@1ZF{|4aXI8btK?fgy^>lp^bk5cMNRAC zI8(d9jWNyBYMp*$f-yYKcxMxv7W4l377h}CcJ7%~Z4MOsCpljM=2|7&D-?vUyygFO1`raQghzGUeSBMUNJX3lzx$F4G zM$k%VG<56auJe1}^}!3R+spEtK*Fk54zM6g!^O^N%HIUoe0RISbhE*MY~DPN`LtD| z|A0CCnV1j4_=KwxXaHaPBUYAblEg_14Uy*V;|xqBLiKU+HW5CS~aonML4o3$JneuMEJOj_vJ&wxJjQ8rA;Z z?vXvCZeKhH~dj%}drKn-%* z!4!Hzil=cYD(V5#ny+>Q3XCgItrScI{QDZ<^=k8F!9`*GL8`TlJ1G3a^A`fMm{97C zFxGhItnVisV?M9u71DVg8X{1d5>r+=_yl{lgFaYCfJ2(3?PAy87woi+@xSG_h0* z;KtYZdzv%;p5~0bslabUGi%9Pm~3|$7ym!w8JsM;1b);C==Y++Q$a7&Y9e4yiP@1b zE{y1v0zcveKYiQq^(1kOw^dhYj%y_gz06p;^rFVSJ@a9#3Q;)5SPjnwFx#e{@3=k- z#c=dxEQG6W#s)$Jec*B8zT$Y2HJc__>RD{OOO+{xIwv)xs(!CI_blRHf^&4hd<7_w2EA@$N&mBhtUj7& zAv75KX{m^iT{K;Ie>n@8tkqwa`!BqP9%uf@K|D5e=p(3X47lOsyxwJa8bOo~+MAIM z<+KgnyH*URgei@k(8RkXo@zcZme`0N`tM8nm1<}XX$}iQAD6p}?R7UwlN`FFjbYcb zSOQ<3jpP~+lo@}^b-Jt}1?Y?Nb<`2JzlyhAhOKDx+9UoHT?3|LhD+$YUFx*~ zIn=5&gbo}{_|Mg4x%q0OX6+}J}U z+jVYAr` zhBgUQr%8BvNq0?2>g?x&vLzFB7)*tvRaL11aW0u6`_e!2T&S-YLd=Yo>$*4T$fUbC zJUx0#Oz5kvxDCK8yTsIcl4@Bq$JYXt?9IHQCkszQ0@WGx^5*{A;npD!YXJD@Lmo)@ z7wRD_+uR2nJe@(hbYi^Y$2y}w6 z_}!D7*ue)6_L62XCD%teFlDd#eOcyZx>7M2Yl*IutKYVV5jrW?sW z(qU!SzUAV#K2s0Pr6BsOm!qCPxW<5;&RhB2GU(T%-=~)S@U^fv`ZpkO5JQoJNeH#v znaAjBrhBz;yEZ-daN~yOet)jK+phHt(Zs>X(v3~4jp!`G=I9*sguq@HoZb47 zwaIuod0O?W9f;EnD^TWzYQFqHL+U?g$Q=;5_gOUG4ToeZBcHvhQ!-qs=2oQfk5=yB}u3HrBiXhZ7Q^B`OOR(9=L zs3GE?wZoS0p&z5C#i~0>_MK5Agc0zJB$q2hDHOgMvY>oJV@9VqLRE zE;gn@xh|Exg@%)Q8@c{EL#@}jE(bwYuL~YHaA@-9YfC-=@*>=hD!*us$*obwyFkQ9 zWDol+k_ioWckP2PF~RogpJQ*X88k7=^$jqt8RG*w;vHAl_b9m{knnT}(b(^_H$)br zU)T2Vr(-o=u{kYV{tXWE9A0=Y%kc4b^@HlU9(th>-;2ZI)pxUPCK0y!1d}^?H}5NR zuDS~ke%|8^>loUmiytmWF+G8B>4&RQJT&uXlHlts;M1*6VnaiMmQEl56dAlrJgREFkcCE!fSJH;pT|7Ru`S@>o~Y z_yBHBDwu6wSwHc-nf1F%_nWt$L^aE12fq^f_u?&(jJ_~$Ok3i!3%d%!(YcU$6BsVH|Kh<^Q{VloP58WrA+J zbPiGY@xq15EBbbMV%Y!3XKZ-hH{s~m>yGYk86#EZb3yo1)PYF3bIQ)^bDAH)`KYg_ zVafScp6y-t%*g`U)cdD*#&cC2(}I`x3+c@vZ;SKXYOwlVTMR}TzE)W_{HV?B^rX0q#qIp& zW2Vn5TXSQyw6nEB*ta9}X?Vn6N(@NC|G)nkv%pUyZhqK;YUPk}>ow-FxtALQVZ(CP z6NkXUKAit;^DPnug-61}$Sn!RO;Z;KqaSO%4lS`Xxep#BDj9oZ{HTOl&!cc7YEwIx zpl)ZRju0o|d5&?OXy)TjOUf4Rq>%6@awv6Es_zIe6qT)5XB-}Xsl{k($!s9A|j2QiUCeopMlae)e{7JF69i?u=ze8*9W}Ql? zPhizw#V3VRrNdPKw_zp6KBD-?88^i<*+SogWh)c>(=6CQ-*Y~$AckgP~+OAam37CEFj-}e7f7_71I0&Zb98(mSc zl2tWME^5hj8af-j(jMiiuNz*{ATzz_(mmZB_s&8C`G2lD_FzLhpwM4i0sXZ(EfT3O z9rVJfPCP0tLL_LGvLm#<{htq50)eq$Y$?^xT)06`kEQV=wedV;hgq(wJrqM`8t|ed ztLb$X)TsCvYU^@BAr}+wN*~$$!8t$FP(K-7%ku`&g&M-EVhA#lMH&^|H@iCdRrEP3 z#Esk?%+d!3To;xm~=3V%?*lv?@9y~^Ohnxo?T zt~_k+?R@j67?H;2UA0QLdejqAY5UGTrg%mSOK`Gm_@cSkCf_5b>ti~BMAH9@uJ?|H z!~3E~8G|9(FnTaEM(?6UFM}C1YKR&nQKI*5)X{qhLZX)-Li8w!mPV8ydWhbM5+&Z` z{nlH*_01>mFKgD)*1h+fv-dvx+}n*LMes5`D9ZDG7BbwQJmi3FEQ!U24Td4aeUyWzsWPYODNgO0)&+k%nNZA70 z$we}umGv<I1tJrc)m`Gs3M==3QW_Hwgtp?aY&G-{JzH{q>RE$(w5m z^E*5m)?9LCyvJXAtNG%~CA**sh#+bXk%b%d)GDc5%l_4l@fULBHzc-|)R1^HPbT@`|0EDyz@=7< zxl(T_#39yR6Dgz#x40b4zKZz36P-|=2#VBGFH+7O=6lXw;-dl99r#jsc00}aYg!k( z1`Nn4A`)+7Ps#g0K}uqvNCy>CHT*m1Rp+!t(m=o}jKC59c}htAuyd4G3A<67VXjGJ zinb|T_A3CG|IFwQNeT1YVV^=xh( zaB}_3s{-W2LwYko`R#})CSvQ}o2JlByHr1{p|ALkh9yGVO~YZnU6Yi* zbk_gk=tj4=Ed>6lbUkR$&*;5tC%yOb^kM!)20~^PJzxAVWcW@pPo(0e@wA=7=1SVM z_D)nr1u0tglfG5$lWDu14(EWnB3hA28<$)zisKZrc5L6$=kXDl_@6Va^6l;allO6; zB8;S@@cT`cFTQVisb5mH#N90|3tpnvW;>nk>k3J7)aWjE{`)L#>EhiM{1{eF&8LHH zDyh&kZB!Yp%HpU0v2&(lT3h{r()7@V#re|%S?7@t=JYT)3%tgx!pxz4I>z20P}L$> znCk-*2U{~(FMm{`2?|zwb2t_M+V*ZR!oP^UQu#d>hwo#ETr923PIL)c)q8Xt3LN*0 z^PzmNqF@k1g++~TLE6pGpvRJV&5Z>CfghvqHpJcf(H4@a6~!k~W4ol2xFnp!y|d%x3G25HHuXTVE^N6ja^u+f9({IR<_GSq>PMExwv z)AwzVT9!3$9}&S2jm^u;ouaeJ=CLK$(y-r$S8$+`KB(OAeJpVy6_Q~~BjEvA$J{~! zHjIq}5HgA!m$PdxXkxd}Gmg6P=DV-$Z1qo9v&!&Tik7ai_>iH@n!~N?{J9Qv>$UC> z#6f8?5fq1<(mV}p+x^(xeH4V~IZ@UF_&*BXOOChIzKIERKVhx7nQ%AU#?2Vm2NXYdr){#X-Dv$^7=SwtctAJvGynNMAkL{D)os)c z7vCGccmv^ZtFW^E$Ju$oh7aVldxPq!DBMZGPvz^^xQKP@Ip2!1deSFf&*q`5&zN&p zGiZ!hL1Z-tX!vpe=kI^g^sh zVK^pL^fsmJ5XnYmtQVjAWA%|^T+PW{#FABjF#PHIGWtz%eZ20AX_058A)otk&tYil zLwO>%%!kf*s1S^7zbq*%H6!234YWH{h(trMpF;RWgy)5(`=zR~E-kY8iaJCoH;l^2| zc0YEv{&1=>^~T(ylP285%p2t`{`I1g2b{9^hN(+alzmwHFX*r+jUTdx!$>&nfck?S zEHiUYH*hg?z2_Q{Yp}oZHxua&pjMQIwozS+($SK;lZ*h~FPYmI=&+efle?#(K(Jj0 zjv}@ho50ulmIF5(D)QF?9O@AA_G4OugW-COrg8Ku{E-R2epgy_vd8?OGkGCJ(-2Z$ z(8P0qF5SvJYVy!&-_KE%{9&HGy;aJ(5hgC=hTULFak9FbME#bAnqe6W@<)XY%7aIe zL`oeh4BJXRs8akuv>szKd`H;&6_W#%vto0z*_Vy>HjKilmR=6ILSb85 z!x`{1S5@HU@ae5mlFk&U6gN>E+2HLByGIsWUj?_Nx+K$nCyBjL;C-N|N+_Fl6Eum4 z8uBq4A(W$EEpI9czI-!x9xNp$I$FqZ*O$dtBE%3Q-I2^>E_U)Yqt2>IJrVKq`Fg*! zk;YLPyOH6P5fIv%^YO%nObq>_EQLVo|nw{fe7 zuuF^NGWHDNqE=clJI36Jm%clYRNSUi#Gp{@3YI%1|M93C6$(Dyy8eUiWd>iHu_`yl%cwYx;YQju5B?NCrzl0w1g->KY?lxufj2O;Y zD;6F8IBdUryiIyRn(|@k!&7#Lh-N0|_kr5SrlLs+Q2jypt5OiAgn(7G_cPH5;3J=$ zo?W-+S2p{6k&{}l&{D59jcZdi_1UlAsQpvMzuKdJxma+3XnNI1Ld)rksQ}jk;FQ5I zt59160e14dA3GQZN}d5Tx;32rlqes_G|RR?2vQ0Sm0B8 zcKAZa52CfLRZaK6@+!TWHjby1&H`fU7h30vt6Zx4D~*h)&i;2B$VCp$2;%WpLMijdxhFL5z>RzSP|&{F{7*k-T8TAZQ_}HZS=uq8lU3 zsB^JY*o255%61L)k){01k?v4`m=i_5_b63b1r;+D^%NBw|0nwDixuOdd-Ex$+U;{^ z`QoO6$S<8Q*?5=kxUe^yHl=l`b&J;AxQ`@4)2Sc!P^qQuS4f|yl}k07J2)JDV-%?A zd+h{TbTUbCkjxl1sNarzTBC!kM((R*sO+mmvQrmC>$*Sx7*y$v4WA9Y``~H%kzW4o zt%`U%)P1XIcpU2%nDFj*9d!5$gsB|;5CZV~4y1dp{A%ea`3OaOsd}_Lc7HI8K$S8- z(cNSth@lF3Ju|ZlA#Q)O^hTc`)X=b-($xp9zqsquyq=nLd$aZ}h?Ir|Cr6fdAuLR#5%M~@QTTAQ0oSJW&~9JNXn&G9VU$&p$8PwgAe z!PEH@VxoUSEXdn&w)v?`gVeMOpZ;P?KO|`LZ$$kv1bB!22X$mgLk;&M^}8CO_kPDz zbRRw$eOi!=;2zu|(T16kWR87)tNemj4tSfyF`G{RB6G7@a8=?}Z%>l{T#byqlMn0a zQR9H~g=+ILW{R7O@AJpK{4HlXQOf&LMCRwQ2GzE+vU3^o?vPx{2E2TudZ_G@e z6`0no+^={~CXNggk%E7H_C!8^U3$KbQlXt|BFKSz)^OwG-uANz_jNxmd;I%?KxxG7 ziK7LU;N`1+sf5^7)6Qe)k;-V4dGhVj{8FJzU5dQsl`Dpo22gGq*n$1r>RWQ#S8q`0 zVCYQ1>dlQON5-Ouc{M)n6)P5R2EZ4U%l{=ZDWJtyi;XQg-Mln7y!zp8`D!o@+)v|l z4OhV5q18PN?qW49Mh>JlKG4fj*{Y%`L03w4mID%D+@5=9m(lCAAzusdc9N8ih}_kOpZCTtBRE{S`5o5Ny$_IGx*KpgU+Ow{s(n?Tn%D9T#w#K4fEe#0jqc^mY{$1W6As?$y%z{!!+nGecGoM zHnLKwKCVCPI>^s*uTTgy%5o?A_;`86;l~B<>Mzaw@Xq!91ZK|OmL$YjQ_;qXcY{fu zS3}U3G2rmSdBTLxIZhTG%tdoQ_2e34qgyA-1G0`Z?prkWsh9rnHMjhHUxoSM{gb3I zkDryVY+I$OOLy{bqz0XeWhF_N^~tEt1o6RA_COfaYjjA*x1`CxiH9N!$>J;AHdg)F z#?8AG{a0JuszU=;ItPV?JYTgF_0GosMk>}dpvc8L8bo=cAgX_! zCu|fp_5ck)!!lp+m52{&mB{SaD_h#TqOwL`{YD(aD00mcsD7K&@sKdDn3Ffu&a$(V z9lkHK*UijfzgZu;P5nq@A@g@k<8uQhR8w0@P@h=JIu*~h|q z;H*R%)EiRU)&^WESd)Lu?U4=lj-o1Oc71V?Al9Ruh`UJpmQQqC+mkWU7{wBAEN1OW z?=}VE3PtqTaTdC0;mGgd%0B*DMOG^n7)nn*6y*sGmf}h3y4t2+NV@0??R;7)*0Uhg z7{aaRc2n7wRYy41z0Q*hr%)EL?4mE(Rrk4K!`Q?WX1C~OG++sr++OYlU0WSl?)g7E zOw}}9mY)OtC~ieHmJ=3~2MtFxD<S$NR`SJvgvMU#}y>%ZXaZvGk7z#5O zW`;vdKID@0e=7#Um^3_!8-jn5sPvyC8WQC=-v!~g6RK3wb;n)guQG{GVlR3h`|&ar>#TZ%X>M_mF`~&6F$=9`)TTu z8+;m0BAc&Ryxw%o*HMG0@CZ!>(D%5q1G_5qft2w#N-5RImb%W0zghR5>7QG(B(xzR zhyduRtEOI86USHBFpO06VaVOs!RSq9p5)N{llZRW;kfG{xp+uVVW>G|A(UeLH1@n| zf%rZ$lN~GaZK6fp4gpwfe^;|Khp|%}1v&-P?U@aRP1hRa?wqy{eH<_~0FW_i!*+~x zVEt*Gw&r=uFHb6W8d#mM=y3;RxQs_u_IpRaNhg}Q`D{)g+9|sdk0IR_tT07D~ zs48o_?%?-fGbJPw{wuy)i8_H%e}m2O6ufUYZ?e3MrVr89{ieK_YuO_0okzTReHwhH z+~A}&_x}|R{%=HgS3|=hxvbzN;cCT3KM^`Vf5zWJ+^~y5$fNG**Us^gka{o}F4=y+ zJYs^=dUJ47Jt4V||6UkQxGD9x*s?aSkEG-o-PM=;bsH)0Cwk3kCqW<_{EE`RM0Hzi zCix9m7VC!%JNA^K*bwgA>cCR3+WynjwsA!w+BU-1Z%Pb+31hYrk93R?oH`luK#_wk!jQYhJhIZk$+e4vi zjOQj>Na#EZlTe$$^0%QmV}S&kc@bPSW8#aUc2HRVt)ih`vHYgLvp#zot-9mDp>LIS z;ph4?|FPUX3;qPt6P=69qK*l$xnv^V?p9;6F(2Kt{*HOca%w04;gO%hc8X0EcX&vT zJk&q?(WDXi8R#F>_K&6xt-Toqc5y8|yu0N$v7T@KUp1JH1m~Oi@!hprd-3#llk02K z7GFM%Mf-N6pe}p5M-finX^k7ZcC-H8_?&Jyz8KIhs?ts#NUBc*M)?BPp0iE?z-1)+(Iw*z5H<)&eFo9rB#2k779^!-i-htxD9WRyMueLaE>;k2|V z8}?kC?+9Zh6J3*Ed>TG#C;0@Foy!NmNd_0^36*_t=`cgheU?Lsbr&E{YZ4vmYkoa6 zTM+kIDtNFkRd;Eq!Xs@RQ0^|zO7W&wAe7ucQmHCH=A78Dg-?+4r64e< zx%OjbmA`^W&9&424~G!K|3#cejo5ea;UU5Q9+nX`nx@=oFP^b=$77V?cI7xj3j7Oo z+J_VbiT+Qx2J{xVJ~kr;OWsahkmqsl>e3$rIeJK%<`4@VoVZI ztw{n~u1;LCYXmD>SNk&t=SbWUnZg$+<{x3*$qwe8`IsjsiMaqpQdI=Xsn;Tj>@05d z=*qC;7o5g2NF{-?Zr_6*V-bTVE!T!mR?ceW@{se}-b?cf>-NP(Wcsd82=z!z56m}S zC&!YWU3Hu_<6utB?LX0Y`q4fbIi5+3G!^|0L{ zXj#%i@NXtz4RBJ2#s_GlF(6+HG%Zix{WK9NSZf#-W92K@AO3K64UokUq#w}_Z zY<<%^R*fI0=iIgEA2abb5+5aQ<`C0s=4g%e zdW&o&OZ6c+YCeOfHcvw&%Ylg+#bq1au>nG(4eSUY~eS&XRCh++7-AA+=Sgx zenzCOK7t>ZSZ$LI!XU}UWfnO!Zd#GA&E&e*D5Pc;42G4IC)bxgKqyVr%k8NbGSDQD zBNX5SxSp-%?~keY3Mddl6uS4NM*ne8tfzb4-^=@Q2ar0&Asjj@RwJiVi|oM%`&YAOn$nOF2_y)o)BvtP0+ykH~ur82kgd?1G{ zI{2HYshvOPwl$%C@hIu%OCFeObqas!!mxY(;c)zyCG|0cnT1A^@`pvS4@u@SHjkG- zHBw#J<16vSn@(0;RFlYJ@${~mGFH>64-4(2=P+QjkUA9-?5nBj{iLFI7^P~t{b55 z8*b2h9AAHvori@=B-Oz{ba7<yqT>*=!R(Kkwgr(!c4e3b^Vo z!6D`^mxf#CC8Upp$Bw3Mce%z|&tOq)u1(W@d7pK9F7Ko{>(FS~DgGly@_=W*K8)bI zdK~0_<=Xe?syDgv^rf6kz|&(zv0UyI7K?ASwmbc;YH;(7NGO{(Cu~Ly-=ewn za-|m8ejyS!7=)Z>Pkik%grW(WXXClIh+HlKi&}%CsLj|dDyHX*! zNyoho0(B-Xdg|3s3N9EhM4qkha?M&l-_Zg&oQU6BuivZHuYOl(&RLENbt8f7?7q6K z#_}VpS33n|Wt;pxSHbfn0j__ec@sT=6mJVJuKu_H`GK`FwAKEh3hVbTmTmOOehOLs zqXj*YjMpWvqO4r?h3kWIiFF6=w#vmA*_yt^Pk{9(yzFmba%M|~}Av{kKq<5@h3Y#LsX zu6lUdr`DEo1{wi@^j!L$B$AOBcgQk2f?GeSU(SzqBMLoGJ*WJ*RPaJltXy81HR>1% z9)B6&h90?P(5Up|T_JtM(tv5#*`=H+(WTi@`q6#&01;lbbWNh5#;1kkNU2%FpYJT} z6yXG{E~<9jlyOvNtJc+13p;9YE)23|R+RGicVAFqytY0MolZ}h3gptS)afaA z{X0f*?YSPnbIL&c`}aM*QZS|rK7v`Vr`w~DzCN0sPGQ?_E#Ba8+ozhwNNcyK3i`~~)|Am_e0KmZs^P1@xu&fdmRDXp} z%#<7)+hB#G$`xl-Vm&1{I7Jtu`WaIR(zA2=xh*#B`H#hPnrI&!CH9l?gfBQIL9jTE z?5>8i_(z&*Cs{1Ri4<*rdZV>>Yx}R{ryOZ7=xdf9h3eaq%6tDOXhH!kASAni)+;JN zY8KWQQbj$K#_1IWxqWA(zcGC8)0p(v$B3TT3QVQ^RvNR?hcO7p#_6k~c3BjuYVuDI=%0lAgCccsF3=Xu(6 zNuIUB_>M~>yBVIJD}p}ZAR156>VgJM0u^d{ktR{3>DFrHaLQotPE~}N=u+x+3a&Qq zs*>ScZch(vP6><^zD= z_KIq_a1FaQ-ChWPp(NH#CAsdAPq5a5)9L+KF;u5-jd|hv&{IZVt2BI$GlyreQ4t9u z>R3)}81*#+7t>=LnCX<<3PCQa3~7!QoJ_WCH*tU~6Z19B0+Nes`voiGV)4$dO6nZ$ zT&~SLDLYy^YDNGo$@)ix&fl_~tJx`Y7Tu)I+*jnmpeYl8gR-hb+YpObEhJGRncvgS zE}=v`+wcp~&vdyf0;MxvKEob+LxqPoj0%sVPT5B6QoVH{=p*$fa4B_MJ5o4p@#SG{ z2|H5g@z(9I?dEbw5Ahpg_X?3HkY7pH;Pm9FKxsQX;Mu^J2EkNciT{;eD)2G7Nfag# z)t7C$Bg%_gotu^aKTPR6tO1%F-Esvns1C`|f!Bfi=O{l*dMQ@0+eJWmD(6|dU3c9BL&dCAe1H0+ zOqaY<7)M*_ZPCTDev*waH2I}*D*l4~EGrs_q?nzM*z_YKlnDL5qRIc!P`aN2-Sph_ z|A12x95`L8zI)UeI=u%`5d2v;eO!0{Uu8BAFEvr(2Y!>vEk~a45w(%@j&9u`ROsb8 zmwFKcinA>Pgeh~c)Q!aQ6{V>%8IE#Mt5RWjN_{>ZS(-T*a%@C>Y=ju1s}u>pGl@Jq#7>x>Fg)#Y0v9Qu4u*)c5m8$`=veAGild#Et*i3xz^mn_n}-AqPi> zub%fi84;CaQUSj1KD@i3&!_to&XKe+33&%R^4mAKhyesrWt&NsJI(48#e~ z%{3Ky0d(8E!NLxa8%JsFPkH?R(;ux1$5Sx-Ui2ro{}G^f@4oE6;(ASZ|K9a5*s?J*l6ao5}V-HFqVsl-z)szu?IZ! zOc2dmc>K+YRSh~8YO-@&mAR{wNI$n`mbP8%!|~aXDn*_lyGh_a_bBlVz~O?)5_sm7 zHInyxd=KjMR(L8r&f$|=wmxNQO8sD)k3p)WQ7kr8>k(2^X4k0=i!;fVV;jv_XP{#eS85Zps4VsSP#vVCzc-;1TzX#h5>G349s*9-+xtqOJ zWR>Q_hVwKB_Fsu-s>a^JD(U$~*WNZg3W8CunE(W7aP@%iHBKisA1f@G-tDKll*%Rb`!#ez5&7MR7bDkAhS%4kskb z;DqF@5JIQC7Yp4|Jx__nh7FYy* zh)e^}qN&Oqc<-Z+L#imeQ~4_*X2n_^>Dx8f^7Uz|y+_Z>9v1Hmgdou1%2-G>&u8A? zvBJKG2Wnzq!^C%T%PB{KoB8_hkA86q&8a}yX;hG-llNNIVyRI;`CX%E0Dw=FO%g`E z*ox?k$Mi=N>8dFKdoVzRKIuR(pCbQ&uRt>blJ?fOx>{{~;*LISgeWwh;{RZuP$QhK zNcua0sshJz;cBv49Pf=wh|1Y4j$K{LX>b6APjpfJeOL*}@BN1|cHOl_xg(((=UO#q z4gEly!OaL}9|<{(`nEhhz@JW7&95+{-|8Fp=?jTZWri5>%1_ycxdTHEnC}t{n*Cq> ze!&>`Z=~X1q~VJzO!y-G=KTlX{EQO$oTHdCH*PYWv0qRGaFpfI-hbZD?GWw@5r8m$ z34L-rRlRin7pwM0yc~0;lj6of1STA-4kEu>zq+=s_x;}WmS@*0BgKUgo-rI zhaLS860VB8&0fPh`aKh()?2FT9qZa4-g2`QijZ&P7jx4#_xG}W{q4Diz*8^%pu6IR1vr>?L(>q00~-`UlE~NB^0RmA%cpiRFi*JOO!U z@_}XX{`Q(WcRx7e=|xnLv!hn<1kz3scy{!}u=+H%A4szY1^N~(q|u$BmT|9c;Aluo zYq7g-uC<-gKXOwHxLXd#4<`Ruy`5Uq#O0G8JA}&o|M-5{@FR(P-{|njQXPQ&0hP&y zrGCovaTVitdB;#}36;-=7fah!sKR$mT^EL77iv13Z?d#J<^Q-feIj4JToSb$Bs^3V%B%3=Wv<3t7aQg96 zANFI{63_%{!vQanpBsn@)hZ!NdX4}Mh6k&1MSRiXAJ1+G5h}WIg1C8QsIi#daR1=A z9H;YfXuEYu$+4-~brU8r-9p|{*~Mwc%POTn`KcMhfJIT>XGp~fT=SbzII(^*)R~Uq z*T;7tH#7cOreE=^{s;I1QAoj!%)!8ot1w8sLC$sHORKZ6;<*=ZFYF^zs$;jgN@pSw%dtl<<5H_dV z8{pbBL%16oPtrjLpaWQa%zW|7Kgf{vlx;2jY_daK{rlM8CVk9Z6}-BLMYR(8L{Xzg z#rH@g^6j}|nY~Mb%09E^rs5pvyY3N)mAircdPbz=213cP{c!MqA78=L!WNeTb^$r!* zgXFgE0{9u#^$-V~2lXV2krJJtoYt0-5y{O^8R)$Le!s0%sWmK~ns#>PWpbH8g$l6N zCkoA^!Xl-zD)J0O$KdL#IVB|XdXR?VtD2>VQD8dmBouR=51wEPP3TgmVhYBQ$ z!FXYSRg|t&xIvBLE)-xO9><28PQO2hmB3n0Wl3T7A)|c+x4#!bOTVboeSMdsP(q$` zy*_1tLw(`*Ph)Ok0|X^OVS*MB%z2h8q`P|hKSf1Y@7SguQJr8xSgNU6hDfn^slX`3 zj|}nkr9Wq;%PY^x6H_&vw=|90QaZ++n;|e^63jq3!Fx;umQJd(BOib0E&m10m5`kx z&W$J_3}1|qoar+YpkYao@00rZ=8AXk-B)Rz-maglv0gm^zQU7*eiFS$FnRsDBY`Jt z4W6y_Hccx-gyhu>PV8?=Qt*>G@Tgh#s}H?GGwm-7sCR#@zhbaA+YF!gme%Q@6enuO zfin(*T_;%<9_dA9Tn|iaN3^q%)%43h7XLfYP1{Y!Tx(Gr{F3S{xAx)Z;gva;_Os`q zpF>1OUHAV%CoF044cqCuveVaJvR69rlK^gqqtK=ad8L#EWf|qByNayHDydBCk;mMm zxt+p#RLV``tOi`U8mYfWCsu+zqyoUN(C45n#PMVQ0e4MKH#U5IpzEo$NC+qODFfGF zfJGwy54p1Ms7eiS3k{Q89Y()27utj5im(L6rc}C?n#LLWv?qd8K=D0IyP`J?ZV%M4 zIw(2#H47RjJH3D#O~8rEbcOT0+WVGuQxkqkVv9FF^Z`SdF^AE73&b~@UilT%qx?JPs)nv+61sx2Ap+a4if!igmS*HjB zIG_yFCfT-2`&UiHee|W8+I$RY;l!2I=|5%F`EKLt+L1$-*=4fO)j!>sTkK(2C9y8f za^o_{T!vjFB{mEx)}W>WNMBt}gnT2@j&QcE$uk#^yS2HwkU~zvUh%fGS5Ntief9`I zGDAM6C1U%6ny`nRGdOa$hn}A1ED?x(8xuCU)o-tl>`cVo#4aLB6ybOURSLF=G?Cpe zPzP69qoay8I~%_$5>}hR$5TRIbyEq)oS(|)IkJ6Av1Q#kRR(;*>GG^Q$X-Q+YOhi+ z7w-4g0C|V4=Lv7!s2e5O{g8rxWNxKA8o1OBfC;M-Ft*N= z^;yk&{?`3mJYCJSLs^4iu9-d;?~?Rg`Be8i^$FR5he;&`@&8T4??{3&Y;jUTT`I2k zGU;dJ6r|Js=AnDz9B*f#uH(PFl6A?7bfO^QibWK!_IpZZutO|L19|DB5eW@o)FD>x zL!GdNL(_;w2*CKJoHo|w;uQYjCl$K6`hDnlkXEDa`NAP3aiH<@-~d&&;?R37@Hkj- zpz+7~Z$MVvu)wEi5eb$4<<1{6$_plXc#P~wG9>D)zz3cvG@ERJr3O<6e>8dN$yc=| z_HX)`4ReGEC`#OnevA{%EjPq~a(cJF$yq%Z{VW@joahs}5eXoo>>f;->bexGfvi{JIV1 z*dORagkUT@A^)8o@yi5K-GU%^e#BV32WJ~pYL`~@khpRS?6*e7Z!qBNre>M&^Z*WG z?J=XG8ChU|o106j6Nk06(|t{kyAz3CJ)gc?HBNkk4$EM~NKjaO$kG+D%pM61MBGN8 z4ZVi@fWLv5BxDiGdsUB94MyQoN*4z_=r56pbCuF>tech(w%31uWlJO%;LGJy9ybTt zF`IFSRQ4nh@uXf;;99^l5j9Is?Yg^gZs6s-r%OA(jj`d6DH&f%n-md-=5)Kl@A&I1 z1R$N)q$cCpw;FiI^z^mv*S~AlrV5@&@$CIV>FG<#nGHM@1hFWMX z>Vlz!4%OdyB*c?mW?|dV8uwj3rWR%5%#wp)D(^M26NrDW%ba?XQPzB^GO?12!P=K) z%;#x5U`oYLZo+Z+8FI!HoHr=E1oY76MQcuXA&km*FM{=Gwv34hY?|ed!n`tN*H{#i zE*v0E#gE1Flg0%+2SJGO^o~$&$mT^Xr=1e1ZL+NhuYKO1Tv-BC0|nLD=lyXT1yV1` zFsW>GP0g|WH(yfX8s1$r3I=j7+p3@7?0z^Z@00zBB?N@Q4c{)AbeXp^lvE#Jkxvg#{adM=(L<_-GvBr$I9VzO3pzuO5u-7K zn44VcI9;%%!)YU{Ko?qY&@8vk$nGd_=atBK6}!=y4LFqCW3p2$!V6(bU^fy@#YZzH zfTpq$sJOs+-Ge5*nZamh&P0XYt_bb-VN8%S)F1pX4D#*@2^ z9~Jv`%~USLUL-iFb}L)g2>QO!$=a{IKGN*6QpR4*=Y!l40G z@Aa+8jsOD&7)L&*i1reFrxZ!vW6z?Mc`2SkR^g3eMg>g2ZpjF$um0JCVjPTO22*P@ zvznAKusc50CEXci<4j`Hn`o4iDB=ArhEY(%16P)FV^F~*3lC+5xx9ssG)XkI(OPR7 zYzZ9@-)0vpm+$5_+dOHE4%kyj-}Y0SBPJV&B|Ae`hMUfhGT<_qEpK9DNAnuzO90Tz zcJ0wghvWw5qhPJ^*jPP-kSBL7P2h5}sn=LCoS^`z$cgacoY%H3>RWY3dOG5d)Rlws z%rx4AD=NbFno{v)((q?s#Jl#vnoBhgx(R20|3`$NXUB zNxX%B$2)FIuBmhKHaKtoC4NL@a{qkjN=mhfPb` z@RgYUqi6OQ_F(m&P-z+)h<^V=Grds+K{VbWRoK)`Ej^RLGU7_3bT{l}kBABxzf-_N zKxi7?sqb9?zkx1I5qQbcV3oD9CMM3VUoO65{BB9Nu+wr(3t??q{y@5k8wPrj-^ z+-OYbkXm0QvinvM!Kzq~v__*@)6;o5=Dt5pB^*1(xxU#D-{6(EQYUb8MSokB79D_Y zC^s|?Jif;1aA(tXZl8zu(u;tsR{NS;xe@;zKT#wHL5V+Prt~)J-Q=cbghM^pXqpK1 zaPvWzgAKQrSPMM(WtKXVrWWdT3CKm`?c64Bz&Fb} zDZ_i#K*b_}s6xukDT6>X(YXID2=2e9q*>fxO`oTMJsP;x739(Y(?~k3qSbqHdu&cp zq$}d)MyYbuq5(Q|0RaeUXP{5zG}+5G7@gW;LH_JEry}zYeJ!3P{UCRdU6sgA!y(+D z_a3s_uW*G$?r+kFPvZx{53!0-!9g5vs5R^*#ogBawLzg#zh~D+ekT8FO8H#@zueNd zQy6;9_)1kXoG>+u8%DetDDsqhg$EuTsUZJ)P$Dv=KL_$I5zC+Rfc(nDbQ|rZJhk{p zD^j5^>Rw8&6hPav;+y%Fa!{@e+lyFlJ%!+-a*`J}@go(1omssIQdPr=&Ua1bSJO2b!GL z&*Ni*X15M3pWVHuL;3g(v(0UJlP4OogRb+Ru|HHuFrf7k!r#1%`wc~Z93>_mi~Lb? z#6O@bEsIxC`^}|;`Jf$a*q(S9iZQ5S4_7Y0;L}x@XYxPh;#*?yc0pYWxPvWC^^(dY zrrP|-GpKn+FoauUF>2Jk<*&Sm``BR#0Qom?+o|%w1-{=)k@n+Pim*C`ox_|`D)nM@ zmt_FNNsESj<R5la>0g<1i+sKg>?>+t3T= zIE|t56XDfC5EnQETNwz7_4MYj&q;_bcJ>>@kxivi<%|N^38*V4{t=iPz^0!Kw7b}N zlJO`Ul5R8K$Sqte$N94rI)6I-tMPmcRRnhZ(0PnB>u!3?uuku6SMD*|GvvD*U{8gYvxHZ`4(T~Fda>r}7vZGJm3E}t6tsdmVQ zQ%h9|5zhNfCz|1c?4zf@;w+b@eKd80REaWf)&}N|Pa@-J-Jqy3oDP27z)Iu&rsh^(9v-A~LNcxUivyiWI)sbMhfoN`8)zddKUc2%Z{I@r zm3z^8__V*lIgM^wjr{G>Q?E`;iewX3=yWT!MayyL}V2z~X@1yKwXKoVD<}%81pq7;?nx0q{md|+)jlC|qkGlp$qsmc?BZKNb zj_n&~;8kKI5%RB(nUTE;{W=Cd)FTq9K%opG@4JAp+9ojV{^y>D#=mEE7#|PSH|DjwPz>E=N5V|^7?;|VR_@p&UWCXB%B(H_5A~_ zMV~1kiCL%G(_LEXbysMWF22?*u^v~*gCl1o@ix+~+c~k0^rRxQS=;VcOf&a~BFF5e8xVfJv+Xszdo4iUvTBiH)+}hJg zFJUn%o%6E6!iW7PY?r=O_LxSRCDbcvWmcuBDdXuukFQ#Q4qC{o*dk5s@<_o9(3C#Y z#6y`Z*P6Xd&X+d8>9lm*eGimq91m!x&QV*gwlNUJK@T2Wb7@Ln&W`8zA1J{=6;dF5 zcXRsr`N(8P$i$up;pveqq0h92w7=cqa}RQMypY>$IKfE@7p!C`$AG5cX(VF27W8^B zq(cP-##xut_BgXnGdcYXwq_`9NVNkk|Kpcgqv{5K_r(Zu-jT#n)h(Ysr;tupTGA7o zVmw%ehTbXQx9@yuju5bMj4A_fYC9hU{CP3n5TMhfAEBdUr zYoxQt(Q)==f!JGYm;hRfpIryXk*a7G>z{I+e>i;c!>q;py};)Mw!Q^eUlW4B5)~)M zrW?11yRODmc`^IQ-5nl#=_SPz&BS(es*;Ak{Io>mRq5%M0^~IN`!F_Cs{qW+YOg{r zQOK^_FmQrd=)b!zi@|dUcSo9QJxju!l!=3?$;*6^Ze8MkYD$W7pvdOult1Eh{KA-3 z4IZk89`VBQl=1yZ9Bhl-8F|9hADmkw6pGYgH!LgWy`*{C1R}ZaeU)G7#Pu}UK+zit z&d&_D)A*yPv{QWQ8WjvQ#PX|f9e(2{ib(bJ!SReQ(~g$3EOz%+w6qO?7j9J zE<{;th7$Y?X*LLwXOXKX+>JvJ91JFY4Vzx>?`6xT@0oMDXyhxT#Z(OM8QH-@#vl0-j`AzFdxyPQuVZ6I4Yq7uu2X3z7 zT#Z#*s4PDa=6r5xvcdhJS)Y)GXCIknZKZ6@TUAL^tSvxgn&ov|QmYOM>Y9ti2}EqkufKMv*b-oHMVs1PA6Z2MbK98bqnplL$* zr2Ia0oaUzp*ukzw&c^I3DV;E&&Y9QQ(p1~5YB*VhN7=S=HH0p0g|qgb`yc`qkH24) zuHPBgT5yO@>skvy-bnBnTa5{R=6lfKNK4Pg|J5TS3Dsm(1}<`89t`EjpWR4eJI32D%ezXJ zf`7&f&Q1%}{XL3|Pt%fzCx{IlYRgM*9*@A`kO1>Xg)0I;il%#gN?k@bt+ZUeZ5sVo zSE+k~cW70tge+4-ZmJBT^oi0I#Yz=fw3PucV{45)&5Uluq3VPo35T_2qYN z6iO-$m6O?BRUAGraGo=8SR{7FJugPhG0gVb_YL18JDZ#_nMr2s@H}t=tC(OF{E4-M zU#RO^tWG@$B6mVdd&eOhO>EvtVB%W@>A`+~)WO#nzFs%-#ABdLACKl&vR5}KY%ddj z_Vf=Fo^qmL{u|FHGeVNqz`_wXbw(hVXh9nv|{-O?qf zfP{b`4KpYpol;7ObP5tf4@ycml0!*J2?&z!;C;Wp=X1UO=Og+sbIy*n*V%h*oSO=~ z*XSz)u6%E97oMJV#h$h(%L@6iCGnRR)KemRwJ8|dwq=-6P5&;24?Rhsp`wP=+h)Jg z!NZ{naW+!9b^2VKb#<2|2dV_QLrt%Mpi!f_o$;_Jq)&l-I@0qLM%hmLU~XC6lby!L zAJgK#%$DyFO%nOWY^%F_%?acvkM4|nq$oZ&^>gcEu?%h@b=iuD5IbHe!|}coyStOs z@B^PtQh_~xsdxhKqE`qGP1pGwt+5y0>`s^mdCNKzIt~&ZL3CF}xdQ63#+wA_UwGPN zWq4MXE9{zSNV?rcq>()UIWcO;B5derjS2JYL_hnpn#7zFnldC8_nT43E84IG5uzjG zIs{J6Q9utvE-phi9`2$%d7*qYs`F)`P69wxR7$rU=1irIH-(tPk2w!_{?1R9%Vu3) zwCF#93Zt-9;(0EUko5U4vk|?ldmGuLvd?(x?$wwL4mkQPY9+bmmrY}N93k!jx5|C9>QCa z8m4%H6R5&+Bh!z`OFlp)qw)AB#cz{Bu#>=kE}LYsWp1g0TIcCJSEY@Brr&dEItBgz70P)J8V##vJ+{7VorWXXCk?Q_Yc{rhP&VhqRYFFE()=WoASQMh7e-3zRHjRD6H ze|8R6?S(o?S~cxmp*HJhf5uqEBU02aSIpn0V&bcq-C`aM>C^^hmOO&&WYxp`Z{$Rw zD6qY?R)%bu19MTF}H=zHHB^cThkw=U= z`u7)0Cq1cNh#qTu-%ELA_9i{?=YNG#o{+#!n7tF52+8w2$Bs42tYgma8NkkOGC^X< z)gtWmoOF_V7R=OeS?LeGZk-=zZbs5+cGKh?9_aY2E1oVYVZ4e#n~}k1RXz@(!O@z} zck}F_b`IFm(o*SgvbQAk8*TiKbPW-9x-f+@=gpL)wkD3A4*FHVeDa~PDY_2xuCc6z z>F280Rls)Y;bjlTbkP5a3{md5dk0kIVVIv_M*r{;ky7Vnosd_j7?(3U#|XgC=B@2at}zqh zS|a7+0%r^#o4V7u=0Csne-EIP78n>mH4j@#rD#+W7tE-YKZoHcFtu%q8J(g_HXdPe zwhH2PVxQ+ou_7sp4{PKWXQS`%ZweC~g1Z;R=IpAms!vb7r&LtVeQU-cSpk)q)9q55 z-Vu+%U}n!Sz4vfcEDd7F)9S6iy!8&UxiYqbyMChpHehVj8;z#?Z;;FBT@}2ydtTyy z35CL}@RLb(>sCK6^XLw)q!=dtCN!u4Yc(QB zd_SHE0$0yr1{Ue68r&DMvu% zY=Ewr&yzRvgV#rHDUJAWbokwXWvX<0zciDaXP`DIc1ne~G%QG+_+dE6yRaGqh%lYe zy?zmQ)W={W{Rc7Ef#{F=(3=`0MvtVwKHNG?i1L=CtSA#lcr{-47K${LisSyNA#rW1 z{wTR$!SW3=yBroDT9`u^{TL%ZTsV1{Xgoaa(2jrk#^yx?h@g|K*Pp#1`{gGVEGFEl z)p|wj-y`n`BXw(zn_mPqfe#FSPcr z&gcFrGm{F~coBbPYRnvMn2T^yCsNpv2PrVkrcI#$3!nR#1OIo9*$0c&W4gc$S|NOa$8)#05fno@&Yv$ikX5Q2mWR~%G z|3QWRd4OQ?-@te(DhmEEE3zZcGI2<9rf|^RtQLmIr z1l8zA5T&l5k{*louzj?Z_IXf0(wEp+`9+dunA0j_`j}@S)5p?}kq?T|j_fzA9NwXz zRXej360+dv&yEm&0TKn2M`5LFtPF7z5%OD+XaY0yFu&ogDm%Q$60urM` z(p_6tD;q|ichbM9<{Lz2+l$F_&su{3`!AqVf)sYdcruE`6rNl#`dozx2SJttVTvK^ z$fe?fFv_Zintf7owoT(u#9{ILz;dt5+Twki()OEln^;z|nhhq9YqvhMo2P`+tl1tE z6a^TBq&Px?dq~>WO)^4Y(7^G#$RuFF{)*P%$~uVHMwPTl*9r6R079Q_$K-&XCozd( zpjbRh_ea^t#Yx|tivN}Y>P$nUgO9|1f2reZcadeDEEGqyVgTjU`O;XMaO;i#c6t&) z+)vS1dfAY;a+Y`<0PAtQOzNYTt?`(&$C|95wwORK0Q$(1$_xoTA-$!h!NCy+dF_>) z#%iD@FgZ)LA{WyyG!7&pOxrXZq5gbtQtp;X0|7gKz}SuOL9b{W{=NgU<@!)tq;LI_ zc;{UnHfNI&W}Xq~Q=!*T%fY!DJ@6ZkaC!u-eWJYQx6)>H4_kQ@L*`=F;blu@IbbH} z&K)M`u#IR28`8I@$?4A!$EO7F`W=uTV0=m@D$#K~6=jJbZRZ>)tp+=V^U?Z$B4{9K zAqi}@m$17wmuN&;?-fPrMFds6!pLj{q?!(%D8uE^5C#kOxoHi_H&-?PtS7Reqm#(X{3?IQh+>^ zJC_IfH;(hpJ9#eow9Ysvj-lvo|3rj&3jY}v`7tmT^%XUD9WlMBFroeC@`|Z2dz?OY zY|qtSN=nje;cwH48gBYV{MpXFrV1$oBe8} z3O{@8Rx03MhCj>#4mM7N0b0?_=ijd`MG6O1&out*;y^)mSm2;wGL>~% zCY8lxB8~{MHVq@w&(B$!Hw=hds-+{@zSq1>U`=KL{R~T7IWIP7fp&38M$c&Oua zgi&$@4&LnarQi9=GP!EUwa}7v_yW3|YBwvUjB5^xAu1Xl$eYUVexaz~?YzO4e)6nEwvE-^vgQ@%v3oYt(C?bc(luZJoM+I>_irz9BUx-8WVoTz$t$*uE|pIYc%CH z@|0Ybmra=czrC#2Zh$_HcUDZ$b3)k|Rdugcms#m?1~U$W?#GWM%J#8d6S<31N4MtL< zv;*E+L`B-F4s_Xpr6)(kLNzH^M(+y8+V&qTNf)Av9?MNnFdN7*Ifoch7h>Q#-c>6E@=$K&t;zLde<-igTC2La{V#1pb z&xt&mrc|sO#jCtS*nwT!n_;S(H~fq6V;;7d$ZKhaI`51Q{ZoBs=IvOWj8_%<0VVx$2@|L5kG$!(0}lKzaW|~RyMOK zwdzsQ)!cG*(Um$r^f|$fR+sdQ#8>s56kVR(#wX&b2eqR|%X60*7vXqf!$Ofng{#R< zE;%hbcUbv#fvTiYWJq>uS0i^eLB`W#=9^xA>`fDYnvw=O1#+TXD@ODCysl;I_xqZZ zqjC4tTU!YwI)bjK{tg+@5(uJ;>MBip7C2ewtTJ z30fuA^{v%wl@|H8?K4XY=z`)O5zQ0XpGsia^ybti;a$c#EE~qp3@WFZO)q|Bc;U0{iGfym`kYm`bu-BlKlmlmi49B7 z+=?b&O|(;EXpEJFob~rQ+lH3a4_M5s@kqIF)S1m~Eq190lahAs8pmt<3}_x|C}t9{ z)zLH6CUrI0`Zf(O&M*Us4+FG83}|KOSkl|Cxd9#ypZRqr@l5S zZDx#7Im|X0_2Zt`EL0L1ANZmEI}}|<4EyowQ5^Bci!+(U;KgIM_vjMLr!j& zLs8NbX9yBs-gh~$X^c{_-RzEbljhg$PUqI4z21PL=fCO$3Tt2c(K%PWs|MK7EIGeE z&{~x;dT=Y}(vuakqjt{Bgn?n@IbaM7Gj<5BA^dA+^)U&m=XXlJ*3;6qTa$Lw$S$xa zTq(YqtklPzJQ4YCb&lf0WrQ-N5xw4l>E_27DV>h!;SGILx{DE8>gruNaagW+N&Qfc zlZYp3RVZthcqZuUn_o(x<^C^C;a`hGpqukXb`QcRFWs$zTxKjcf*uJ-NGuz>AX_d% z20QyF;{eCT3>B4h;6}Q~tqs7Snr%ut+a_7J1uLPmY|U8TiP_PmBmFz{sA|eVMV@`? zqjIB`Jm;0|n9N}_HK@i>CR6>6>Ls%v8j+*pGXs^S^)uL%DSP`R%pP z7v*}`T+Vx6_oiE?%Ec-FQmw%f{E}Fa>mnjaj}vycb4ti3^9kW7LZl|(A<`4k>yac zk*S+GrM0^SC=SrXBewhLZf7K&nX;wExKsI6IcgTx)=YD3DUL2c&v}y<#sTCXpI%)YEB14o z9R3%ixG=+L)E*{0W)5e?%;R`-kUnCf4iR^F`KxQ7?u<W@|U-=X?w(s>LTUQb7ozwYRGVRX#JCGe&!lgD7%qSGc%-iu+kJS&5veZzNQVB zn030BvRJ!qp7A83z`U%=;&~Z2ugF=GE#vX0?TA+;HmL>qITfE$*Vsmv1SkhtF^@uN z5htSKHLuo6f8NfM{PA3QCMViTxN0i*FJ&?}0zmj1#~fVa7|f%ejxFfT>E!3Eq{hny zS>?ard1FP;{hPMrXUD~79^gwM7IJa+2#PzmapE7PKf0&Nej7SZ_K?UR4j@TlSnIoO z6I5W<^mT!|wnmD^isF6GBNc_k=5=|~VQJ&19;JF$r!A9PmJ60&Jvkze>33VUJ(gM| zUT>SO%=~;@AU3rDopH{?b54}0t`1Kis7^|J#w^T+x~RV0R?0KX9c$b9)X$dlSLx74 zM(JC~g`HcUW1%MXYqpbH%O@?{vC@|1LCtebnZJ%?4C>}u`{t_|Z?o2%@RwkW{X}p2D1NQUDlpBNrW$Q!<(ul0{o7o>%rnbROQ`o zr9d{qo~RI3w!9=^GPRsAY$5$sj2Z6XdYDp20>XaJ0@h+P%4?TfUX8h#Zn3*k@q9o! zK1$Tp_u<7r$k<#JGjWf+eJd#x+iZVzUlFhq=bB(QrAcf3XofV0P zqnhpW+gffuKKJk3bsiqIa_?h?w2&drx)daSRCLbipC)%b^ITY^2gj25Y zU;cz1Cz>)Www}emrY}}8ePl?w7?(T@d6!Uhc@?-b`8N1ZSs}DGDVnc;Rk__N)6Qgx z(~I*e+V^tjS1$?Niz9|#{=Bz{TVA|ToAX`EbEZ6J?N*|>#C1W2r=c|WJSr<6qQY~T za@&eksEn>!YOQ|u8MPj{NAVl`R#nxqkPvgY8tHa6oX!(@T{l@gBC@{&Sr5(qsMTok z-Nl0Z=`s1Z*0S%@lKY3)8+;N8@Z??bxojUdYI<)?=XO8twtHABvP?i1RgglhltHz2 zJ1Qnep!UmQn^%TRpX!WOcz4vkIiqh$j>snSd`9I?IYrZD2Tszl>_;VL#i6JZ#-?4% z@7XR>|Au~;?~AIxPF=ZeixD|p3 zY$CLb4P6~ep=YC_8?s=3;R$(IBWd1wrpk}zj01){|EC2&P_+GR6x~U>3REt+N6z4V zS7;rsTCD_7sA6F~i0O3Ges?up)_!^0z zUuh6QyA$`Kw8YCap#dJvChRw-*3EzL@u)2(*hARce~jw7m0c>?r3gbIeKD4$)`*B4 z=Dt+w5C6mWP>?`T;0jbhKq0hkMQ`-J3Zk^)GIyy}!)oVs4~e`B`8?T52sgh+`e=^i zeP10XSZ-*MOrYCsqVU4$8E{+De4VW+}r9qjAh`JKxS!;S6pLL9MwR z%|8Pv;5cp0ZwjZU*O9ep{YZOxw^Kl`qW1u|ooWK9xEIaQDG)nlCH0UiY*lb?ht82^ zv$^M`&Y<7j%(`@|ryHloYR@eFL5NKicp0zVtAn{@rut3aO=nIHoh)Cksy~PM&_}-~ zpt9)b_m0eUFbl)4ol7v~6TQz3$fd+O#ntLqTg9T@Dc!#siLH5X_b4~J@o^9r`}g;s z6$Vx3;u!cVV`M=RdVgRB*lWsEo;fQ*zpLqejh`~|AR0_s(vt(9&8`V4cnGB3q*Y6s za^hUQBe!UQZFcD}p0Bu)Kos_+{!!wz`RRgtjtQ^xrU^`9Q=~O|Tuf_!J5ZhSi5pR; zYt*C8eP(Qd*!#^)@^}ilvb35J2l09z9amL;unmJNWc_#j0w+PI_-|PX!?C(COE^3# z3WRnVGI^RM^BkYu7D~Is&-P0E7wxv!g@ZP}t~$B1Ft7EicReG8**?7IuYLLPVg?g? z{VD&D#YGPicXPZT1`J|0P#BRNEVqfRpjw!)s$?#Cr323EV_K@1-?MWk>8X6x6MOHh z_;W^A&2+Om{`BxoYL`mDJ6V-bdwcfWSF~NGVjo(i(qS8~b4^Gh80JE~_z~D7DkJFz zuuNiqBzG99#_c>wiC8EcGi5+@qQ5(E>mhL1FUg_M9wFs7`cYCkB;Y7h?w8S7AD>O^ zt90KWmyHYD?U;9)Hl&B7;Jm4 z^+)eFYL}hpQ}E^Kxw|j996I(Ad2;4&@Rm~#9nPl5s2BJvW%JmSP&E{J^!-Qvmh*?p zT2CSOfQzyld_Jqr7e&ukaMuK8LJo#=(MlbGb$LY=bVvCZofquq1sE2~a8y)wr4OV_ zy6`JdES!p>A(`?hMhiDR+4*tZ35nD)>J6}<1zovrqHF36 zcmAEUo7h0Kr!$8bk=zZUv>jMbxXj2xj@2gLaJa9+>1TCK1-z!a0edg5%B8RR164nq z)=YOgZ#^|TmgG~A39QL75$v8>*Y-Sf-YVJp@`Wc4>YTW#bKty+rHCgrJcK*6W$KAP3*aY^x7m-qLl>y3L<{K`AHTX5EFa?x^pzegu03|pn| ztEiw#_fU5{z)en#C5}ySiN%w-V@m9}#PQ1mj&Bd$-!IKHji8UViT7+r{ttar;~UO0%knk%!Jmf{my z+Lq;}LxX$thu;s}KR#+`**KOkm$ya1VF$A><_yccYYh2nk2!~sD|81tVz9e@oM*nIJ+iCmGWzFdNb2r{htN>486P-B{VL#H}@xTB0_y61@!vhEd zpjDms?Qliuo4e@as@uTg^g!Gt8XPpr|2$fsG4Z>V#!%4wH$Sg@`BqPr`A)jPz`^0s z-O;bwSHAKJk5RDb2KBJUX|qf{j>)6EJR8M55bT@QM+$!Qw#OlC9Y4bVpfF^#7FrYqEGV)Tef(*l(2ij zEmESpR}()QH~sC;Qal6P{9OpQ&M$xVkG0i1uMTVowZSp6$amc!Qs$0ilD@6^&g(G; z<^MfKWgrzECC2gsTd$YUw|2IC0&$_o+VK4k<~;wOLH=W7QFs6;boECAlNdvDTrIGB z_l}1cl)@FUteQ(4^Fk={W>hjFWY)haZmQG6ALY;#+3Hl!Gipt5CjRrWnU8&GeqBnz zv+w#TW_Imk1GKMh8|Y-o$8H$18WoO>d3a1fjUV1$aIq{gf?7>P%Ez;umDJc^7Uyzv zP1lubfn;Y*keLwqk4@k9@Q!ua=e#yEJblA{TVos9tMyV?1g%R%o(};t7OCxS7zi;) z^QftXBFT_+ea?X9q!{(Ivt^ZGEjBV9ek$h)C8MHLTtENTYdrXKuuC`Q6|&sI;pSS2 zzt59tnhL9!BK^j|-c;JjH%|t~X2uvSZEZvOd?H|8xr?jc0P}_RpAA@D1Eo>`qjwE= z9M8|?F_Sk(eISfvoxtm}2hUKsnO6T^Y>ZOZK@|mCeX{Vl^-U48{`J7UV0NJXKA>@? z7ek^G9!1JsU%@}l^?#87Man^xxZYqG3PMbzhOt|?KJ_QxMXrP=E?~P$B`=8ON0|%%h8S1=>$17dN5?V;|YhYe{S0w|@e|_pP^y2f*noKkP<^ z&ieDx;?IVekx2l+E?>s&%{YROp@MNtC$O#j+B!(WY|3Vwh)($!fR468WsN&wRc#kY z=*T4QSp4EFe8md%X2YrVpXI`^_T5)m5%1a!c-qH`;UAxD2-PXf#(1A@$A?Xo&jDSH zILC9e2qu0-#lLj?`H}54|FQ$}J7?TN6tNraNz#_K->Zds%W|tS?hZSp$1zdw4>)wY zCi!$n*C-q6HDr#yQ8}MHp}nu=e07SK^|Zc-E92)ctpJ-K(=TpGl}T;}$Bgj4!GTxP zHu&2%+`U?zB}j1c@)}n?7=-?gPvD0n)2D*x%he=Owcf&WfOIu zC-?q1e&-T1i?Vhh(s1!dFysp}5I4t}0&5W0k{++WI-9;Hqpf7EwA`pmYPKC{w zHX=({UJmi@-p5T?EcsMRG8^ZLq>0Bvvaa8Z1KPo?Q9R8HB;7+JGK?A*%^v{|v4q~G z>{uIk96hRPnfN^HDL_(%7`HK7?}-*z1L<7_%moBzFh*!veA0QeKDeb}wkFQVXL z@qT3vvTtOBYKrlOa~Y=!k@Sez3C|;{TfpPZANCeSnk&X(X7tMrps%mm>GN(r-grXP zKTwXh^=SBwp!vt}N_b^zC0OUJTXoT()6Jnwd_Cj2F=DeN#m6rfW&@wKTb#AlSjZEt5g~q`a7`kjlUWrYtQ-D+dI*@%Y1`l4#%kOB*DL^S|4wrNThS zy;ng)kaKr;&{(_F9#DTl9# zgk<#wDx-`{314p#Ss1bqWHX*_9Q{1xn-BR0;wXnc`UwGNTK$YX7(ip$w~asXDtSHd zWIXYGLhb6=4@J*Q`)hwUwub_mfF*p>FP7vg56!oI+)-V0E0S$gs95(}l$36VMVEuRmLi?Tu^@vG4d`Z_OCP7y+OyFL>XZXgO z%_LcpNuoSy0A3;VTrehqGnJ1QK#=Ud^0B%0Pk=H&4u1_#yY?^i1{pumiHGT#8h$y7 z3$yw!xac!W;(zjtAv&B4&J0jMh2TtPaB0@w9gexn7$d`-@eT#6zhj}D&`WIn`B3W8 zS^u@KE<3mpD1>$yOLhOTXj-S3C9~k#xFx<&Wb2A6UB9>ZxLSxa;*u(bEl)RwEvRwW z=N2O)<7XPi7jL7h?lKN2A?f0mh$!!PG?YM?-cgR25Qf_F7GrDKi5hJt&*z)D|RFDIHI^FHZ}9uT(t$LiCl9XHLKYO z?^?!;hpOD>MrMxf5(pBnwIXo^IM<W8R3H?j z(G;{95i$Dxl6)q0m2%ycen7P-uSZyW?*$=~FyjZtxZBo@yvpz!W1k;hai@$4)BRdG zG@`~PQ?+sx%dtYL?_c)HRV0+?xku5tUqZ7-ulqe|XR62)QCc*uT|fQ0ofbxRhe=ix?W znOkwr!#e>8#HN zNGSkBy}b4c?Fu*oRWLbgWNr;r3E2-@KlWPFqHjXUV(m2i`v$#5piHap^o|z4hm{cX z%e^-7)ttEdZsE0KX5mK&_=(w%V_X@2^VrnAuJM?f;<#nBd+ss#G0v-dfHAQ!wR@@&^4TiZp)ls%Q5dCy zZ22fieJG1zKgi|R-~5%=t3p!ffUutGPG zRI(&v<)PK?;OExj@lrWRy$R^ixY(<)p4ggL(zftB! zn5(y$5dwONxJw$qtSLCeym2Ge@4c~Bb&Ek3kO@c&r@1p6y{@pyd;tLfEdf}wq(pKJ zpKrX)sJtI=6Kc z7jJ!-H>G@uoW6s{vv`MfuDO3!>aHC<~^Zgu5ni1O=f|36hQ3a^P9>Iw>r{vE-5 zuG5TE!&&j~2&S}u)w0Wr#M^24x6gb44Hm&PKOQ>PBz?NcNaTue&r$Uuh(S}7yY`RL zoPY{rgv))&MnHlAS?v42SginVrz1}lIY@=CWJyDwkBU;jLr8&40D>$DQ^-QbrnEI! z9Yy=7#6gw_tkW5xC+;Hh1Q_5iz1M z63yp>!-`0gMGBmz;2or8G^_BAA)KXK^^MBb?5)zy=0aS{o{bkN_J#jk5Ri(MlLxoBa&H>aScB?w zwgZ-p+#5*O^HcHrI;oLZAc!CXs5k5QwFGAHfixIdPHtOVu4zVPPOXdp1NVV=)Y?EC zL?5+RJ2i!8^sxF}o1A;2%e_F~&j+CG)}bG|%j=E3hzYgc(!q-%18ZrE`-pvf&BMp{ z2XUg_Ab~sh#dghkgJNL!x4%F7|K1p%HbQjfRIudw2ZQ;TFlU!IPigrOnx3u!!aHAc z`p_+i-2L;8rQU)nkdR^mRyC2anGO8RlaLzcik43Ee=Vf zf{+1SIM)?-yn~_S>wnOfk29~{4uF<6-DG%|GL}^VeCf{Ny);@hTe^aWLvX^EhqqHg z&kZbhjVTY{*~{TU=M`)td4Vy2HdiYekS?az^3lfsANk0juf|cMDG`h8;+lJn2XNqw z+ReV_*_(pJy{d6zTO8z){EWP1$PXlvMi3C_BN$xEHtzcA#+^Mvf$-zS&4P>EUl!xY zy74&m>`rhRR;M@Y?3Csil^xAEV;bA<{Pp94F(B|#Y1j)MsHkZt!!(N&f35Uc z?;%wul7$Dc0R%4e=%pSRU*M!>#3buHTK^)(k%3_Mf&f8dyA@v?>h7lm`oCbjl<}jS z1N>QI29|+75b+2Q|AyIF*Dzb#&&sEbe9EdqaT9&O5J>wUmo!G?0?<=-c`Lv`T8iul zAd$!;RhH+s>sK6Ztb2)Ws7Lj{K9O zr;cZKa&v(&xorGX`6o&vG?v};MD~l!fN)r7Z7u7%Za=SfUPdKOJ0sLx%gx&rEPw+^ z(mLcp#7dlI4&?cTk1i-i(PFOO{ z0s{F~8M}{Mp#&*h^exT9+_jT$I@0M<0D2%bgz-PDTN6K&WQtwc=-vntSk)xEgBc{c ziz}LnoK8b4i(gqWR%&?#6 zJhT5Ev`JF60W~JZmY)S8He{;`^`r7EHmG+RHmSNsHH6+ZYh1p==VxR@V~jT-x&WR8 z3*KZ53i1hmuD{j)<_AgZhHq;VxP0i}akH-;Lr?4RaQ_AzgC!VGTpM37vT}vaJB>&7 zUXJ(Y4hHuw?wI{fh`$*Z56tnq!h6kEX!x?dn%W*bAVLewSgvkM)ANsj|4rp&Z{Zdovrw>AtHAGZX@z$svO zbFP9k*f^L4La!)11% zCYOFEkRCx=pyvGR9-!9@qmg5_!Gi$vK`PM%uXb+l8-(1!odP+EQ$?@(=AGTX!+bC3 zP}d>Glf>290uAMOnZnuYwy-nWb@rQ4IVc36g&cwh$wkBSf`X7l=5rh|3(1j70lG#1Wg)3mw9T0BJOh)uU%5zlFy7Wu}p8DLan(* z^9*vO)wu%cl;B3Q`JVeJ2A@EnBk4uJltV0MHtXhNvXPC68lo}kl+3E!efEv+XE383 zOh+DrBlj8n(jBX5XbL*i?cHnKAr6O2$pZT8ge);i+hKE3F*{$V`Q?vV->X-@OF|}b z)wZ8SFysolUP+c)SPpUh+j~C@;q3)cQsG<|&Y4yiPH8ac=4>$3FuPneS9IoRX@UK3 zs1gO@bd`M2&*GczdXo`;yqYUfRu541 zNSY?{wkb3@B)}ix&&GO-5DR^#cWOSJGTrmC)gER1vT&6%Xe&MWJ$oD!AaCWs1f+<8 z0s`Y283vT>+&3gA2=aYwT)ZsD02!a__0wkXuvo#D2JMEGC(tV~@El&x| zZ3hw=uP&R2&X&4X`yOuyj+heWzb(ok)_?6DvYxmJd|BVX&@=ah4#p@6Fi9StNH(XY zee$$KJUlDD_=n+-kNYsvg7THR>jZ=NY5+H;v96v!e6(6_}> zGb4=wPkmY28ypCSFcNAma{mV2Z5H)Cn8=6R8;|dH@dxSxzQ5`11>N|?jnf>pMc3}u z+Pq$M_~Q8@K{q8ph4h?*4wN{r{?tji)<#O%{l^Mo-ZL907 zYsHqwRRxmGN0pB}s$M1Wp7z{C-_jqlGx@i>|I&x|JWGzJFn3dZDi<;WY|{RDtldgZwP1hJpXxBp7X7}rall0IEVnMdn1nWPGQrZXR%f3 zoaH1bW>W!F#?PUA-??t^l`GMLsMgi7fTS{e+nGazo6uZT51t+Bpf_;e5TnbDXW2Hs zxza>=2GCVuf2*d)F3I`0Z0e157({Bli`g8rbxN#?Po7I2$SbLKtLfucPD2_HNilgf`;J%18w zh?=$-m)x*-l2&(^3ZKCaCj8nZHc@y#GPD!Cv>_j2tbUFa%FOEGlSh?BZ8iuEy^9rJ zE|UpV>(2D`ECMu1ZZe0IbcozAG@}VJo`7;;eJDRI+V!HC9yrMyg=E?L%j!i~qfSYq z^C(x1X^Mh9x%+!|8l>(PeYPOm0TrZ)P z8UvlED7v&xpK|<%)K-B*2e{6vgi*LZD)3fTOuqcrN{p=i@=Q@ONDR26=*4$ER@*0EH|lCzQ=X-L$9ifFqNM_(hMyDWME&b!rA+NQy3}Avbe3=P=E2|Orohs-sI1mD%_Iv^F_SF2~ zKp>B)T4UrJVlB8|Fz^^b4S_5@@BSok^GTW7@_Z4G1%fpf7t7{0Mj0&#$sL0+`LFbl zJ2>mXwD(<<$6}P8#9ns(B&v6EtTw|w2B?i;1E^!5FK@r*zo^)<15d)f2sT_9b}S19 z{qL_zz6e%l1SIM|YSGCc2*Q*7rQk;hYJjbz$Bx7qT^ z_p8`dZt}k=dn-FM1td`U4yny7wKpI0?xxbvXsIBI6yAh>Xq_06=!{CTl%exrX4vwL zn2eH7q>3C%rUJmHBd8j^MXc$do!T%<>FEJv1paL;1V`<{WcsZI z-YismS&@jhpsr!9PW|baZz`XSZx*H^V0zGH930~-wdFg$d#ivQ+*P3Xa%!U`vV2AL zSYvzr2VGuBQfGCF9f#1vcLC;!y&wPxB$x?yF7L5Ou`3EC>SGPyV(Of4Qy{)UpB01(w<$|w#azYD+g^vY-F3S1U8QWq{F<}*vJrVF;dI-llc0B% z2O8HbB6ay-IU=gy*L0K-94;JfA(iEXZIFfXW%R2Zp3nUpTSFmje`}cu_9&NY;^Ove z0b76WrpZqqQ9?xBRJ}()&|UO`gE={^Z_K7+k5!fRE$67`-v%y>p9LiUyFfP4%LI@V z?%P*p!$owzv|OQMN3ySJMh#I|0PJaM#Vxqxm;fWzY4{sr46mu?94v_;p(Vg#5F&SN zNB!oa%a(GlA`$a$&5aE6Qr9XFmXu*Sx|UIKwvdTFZxdfMXGo4HZ~DVXsbf*ksy2Uk zd363*$a`z622eEs>@E$Xz8#{dt;q{$7^&p!vzF?^GF$YEr^)=Cs6fOgW6?m z9IRYCvQ~;uwKyhCTydg|O@rZdU8qE*ThYQ1&onzml4loQ<&~JG``+5iwqezJ0eCr9 zqEpONsJR9vsER#J2klbdaYG`8}_$x~Hp>1B14tIzDHmVjOG zL|5=Yr|ymAN#n_M`&lSquBH_J9xJfSg>8&Vn|iIBy~du@(=qk*(Fd<6F5gA!ms@cZ zR5*L@G5Z9@XvFxX3s~%CN`V%Ud?5Qi(@~H{&>dye=bDCW-#M_e?a70tvtfj+!7#qW zJMi>db@|M2<57``>R4!;AV8fXBwt{nxUKr`2(P2LY)Ncnjio#8!|!$vW(Te8PpG{G z9G7eUFfuae&xyk`)k?za`n4|^bZI1RcKo@_#1)DW&yn$wGynHfE1cY09M7IfQhV>N z!$pfU_dG7u=MF-6`THxd!V^pSu3RZs`LwTlk3sY(z&uyMjad@R1~c4kux8WUeNEH( zWHPgayShipc5|LB`QMkJ1u$5BQVzd3ZJQ;xk&?jeSoLi0Y5=S2Tx6_oJcpGoaTK;e zHnR{gOYd;FLWue%e1F**(Eo-PK!?Hyfb1G}u-ovJP2oI12m&k?8X}@FOw*n46J3g< z6CQ(tH)2vC1S?J^^@5w4EwyE5ZC8H|=G*)ZAYBg#By0a+2 zGF{Q(!3R!$`5($>kGxlZlc=fqP!-^;J^}WtOOFZs52vm38C| zCXJ+Oiq`j8V`l}aIX$Tk9`d@0#9qrvNLs#|Xni@z=p8uvTb# zc;bkS9pKP9DC0nwUqrD^SrlK?*WM1bD0UifO@@$Z)N+FY+>s#HsQNu!_E??@rGK6s zxRb9FuM;$j@1T8uSuskzAyCuvSy>j3gME^1&OBgrUjyXSb@z*;bVZ!tiJUKiP~aTu z=!v=_rJaAS^r4%&3nt=KK)@{%-nC54pPG?QE3rbt)A^LAS~QP3{mcQfn|3euFAWGo zt7GlBgfgBR56IH~YN#f6vMhmI76p`mU~WztgE%!g_H68Jk1P%-Ws1+g^ZfYr@APT? znB0Ez3WNk-zg+P9T?4OXza}-JgErU^**#vG&+n$uZ}=Vs=6ZyYeVaCMt$*_h2B5-u zr8(nL{EGS373dK5v1H})7jWFKl|%p{i{WDfE$!_GBjiM+*>XX7&<2(=z@;niG?70x z>H{B@tMW#$n#ZoN~9CI_I7vm|=@)f{;Fpgaoc)@@|47Y5Ws zA%_lViM*|C=bDHY8RIry&sgCwK-=*6{oIQ7U%R;zT)fjSRtO3u3c~_{Rj#37-Sy%KehWRp$!onG(n=k|NQdjIWq{%~E_^D*x0`Nls~0{!69Y~a7ag>5jM zZ8x(FE5q!nd&48KvRLmh?B_kHR(-f4?@Ix_+mb#Zk`dK1j||hUX{luwwr*$O5`&_` zi8XcR2c8gEG3*H;REx2l^Sn4a3;Lylzyu?{n2z)-5ZUp{MU*X|tL6#E%bBFpR%Z^%PJ((caXKd-i_ii>F! zvc;82JE?M7Xf0~R;H*Wk5HQS*l=8a50mM^ryap}fgwduZuhX>DC4^L;O{WRbiz8P; zme559X)SW{df&o8Vf&M?`t}(sp|9(;#B^G1x}&#^#85hK%qHsJzld=ao_9CxP5{D! zHp?y?9}6K3ZlNFMHzrO^3C(+|v;2g6U0f_vHxczjjM4|<}tmXA*LA#YqTbvmdx`4n6PG`x!E;*DvmvFnOrK{(R zXUlpTS9E{tXJFfdN+(6+V5xr~yT^XOXtWEp-M}T`)ssox>z0&8?9Y@fHlWdBVw`p8 z>hxaInm!9=*TP4_EMFw=87j!8FHWcRjW<2*C2o>5nmtE3E?20A4MG6OGWaa4;H|` zpQ>-HmCvDq%>#(;x>Kz9zf4K*cn6HxUpGnj7Cu_KZZn8Lmbof^xq&qg$Q*5mF(T3R z`k$4uqZ;=zBhsgy;-8LOLcp3Gb~~`91Tv@cQ^1LDC9m86^yCa`clSkI-zO^b+)rzJ-_CS? z8*KLRHpmHKl-_{wm7)_dKKj2Pm+*8@MF2aTt~>ucKjP=p8RBt|YHc4vM0J$2ji!KW zIaN!3B=5}pI!wxEmibUod^jd0sUA8iar~EiNH*Q762jctm zQI+fXKnBZT?Fqt8h(1(vo+d@HCOPKNVzFOAsT7Zk3cR!#xIPpdzoVPSt%-@og~}3^ zQ4Y9!pFmxWLu4jKJK^{R4b9JpWq7`dZ72$r4RYeN0c*Ktoxi}oaeSoP>8Q3Uy$qsG zsNLrwW1k*T(y-g44qk`_%`X3dp5kUt#VUSj{=1yj;owz*S^b=MS^j)v8P>403(nNf zuDMqBFb4Cmw2))(*|epo|KYQ|N&&BBVZC2A{apl+fmZUA-n~4>S2<5zk;)0JBA=g$ z>f1x&f^T)q_N;tc#ogVe8iI3OR_*fMK& zJJT3U87=8(Njm4Gvb>}`J2eP^O>R00qCo5_Izv?KM&ijKa$y)C<2|!@Q+(S9^0lP8 z<+WmB<&Yi6fUu-iLO0d5>MQE3)GO^bo!2j zSnG@&Sn^O=k=Zm6BIE}VDNf&}C&7w3;NlljM`2s8)zC&Tf~2Q!hhHZvDZyoz0~rzC zFj0N_JRxpz%tw}kT{ac0)xGT95u$8TFcXA&u=CFY!aLF9o>B1`V>%0IRVO@e1y@?Y z(PuZ4_KWYHq3Rj564it+S4|KEF$BkYd+iaa$=MHErOBR2>30@r2&k4cmp&eXdklX} zecFA~P#Tm`DqbGEo-IiIctAgUpouwFHka<*&TWa5U@8XoZhy`GvvvwnXL5&`SGjaq zV;*SXmYDu{DvmrS*uJfEDX;pQsz=wpaR}~Ny*0)}%Q8roEMO0*{ZR3x*c}Qe|F0^w zrg7aSz)N55H~8u%SzXVa!yAW~dhe|9k8NViC4pFazb2!pxR9MJlQDA5$?A{0R$ zO)Flh6jv~Wge(K2E<6*NTm#gm-f%TfY z%-uzJk7ZIP#b*I+dSRK%My$_Q5tu8GSgNMSgOCW|q-i3ufq>YaV=pry9B{D<>jj+R zwmRxhiOM@?VXKra${@O|wfKcZ_EG3Vx`$Aho2yi;zA8N+isNAxzeVc~%1Bx&uMpFp zGf`f&j3C3io7~pipeglVe5K9`Vsiuuh}pci7Epb zxW-qDxrkA?vzT5LBfxJqzPkazbd$A|+12j-Sl+?nlV;K7kAx_t%q6 z#oyJKShxJ=={mAeIf@DZWTAOr7ryAknEz&7;W6We1NmYr7!yK~ZXJKWcBvaH#)O!f zqj$>eJ;)2(MA@7SG|;%NJIB3!ljIAAI$>}BTjDc zq$pCl?AoXt+{B^##J?{Wnq5r(tjygSl&YSyZzG{a|&W)%8i*^3=FcTKDhJD1P^ zx!`+)0KJs4J}sLv7xBD7=vits&eKf^seb<|g9+|>M|MWzkRwz)bFP zqnAb~PafI46v17R-F;^83+)thS>JudaewHhmF4G)qiK8Hkkio^CFG1m!18Sy zZ*D{JBy}VhuI2d*^_hWG-W9>Hn_FiiBtwuMv0A8BvP;xH#FGpTY+m}Kh#+p^D-(l%%wZP5536uucJk4eex6= zZPF9>Ixs$Q`aQn+-lOZU#NGx|4@`78#u{8sOWb=@MAw2n*x~QWkiCaAQ>E201u0>! z3F?O01%^B=T*+F+4?s}|z$pj{_grQUcOdQEMKfJ4yM4{5(MP|gO@XBr08!~8>t3D@ zN7;a1M4i94_S0frGReT8X5e-GUK(wh^5icIrRc#g9>hF>-lPxiyun3V5PK8~ywF=>L!( zpUp9Re!S@(>vjblm8ABwz5zDav!K^}#I zYjBhFYj6z-$uS4t<$Q7sHM*z`%xka&CG4=pX}&wEl!OiBeN%K}8qU8JC`?*l=hKD+O~9z-f*XuH`mw12EPF_OIthZmeySa>4LVx9i01bR7!fk?cAbT{y2-LT zDY#C!0HTcHe8=N-UL`cWOEHW1Y^y5{)L%#Pc-2^<c%~ zN+%BaHr(OlEy`VP0tq8TTp8J0;8j|DwSQY@gAw9d7>H^Kfo=LKYzA|mXCuLUl12T_ z5q;2iXWz1(ZmP>2FnQo$Wt}9i{G?InZq>oEngRw_UgI%XkNJ{1?OW`xbBA@nZWe6! zaU4scNZc;-qDYp8;Nt%g8uV3!{3@kbFEk-i* zcA-b5v6KS-v?Tr&5)=-o>_f~vc->(;M-Uf@U7v)h^;)!n$t{F@EeB4XW181a*t`OZ z%acR#B8769yD*3m(IR4ca_Cy;I9C_O*tO`*(i;OEcRvo%YBBNQRCUVa}_L-0$XkV*HYK=ta+Rre4Lei!F8n(jS135Ez7sotxW7y&$+Oon3ueM zI7@WY#l!oy+)bEbXe>!%W1-rCRMT zY*UPSTpJjR1&3>gk=}3HiAlaY(3uMvIXg$yP=4yBOJ&dxrA|*TK?`gf>&5#)N*JyWW2brLah50zvHXcW44b>T{ z+4Xi-WLtV28M=AT)HX*blEasLw?#_92+HbUN&az140oL)WM`~oy9 z-Ta=tj&?{|PRaAwi<+_EVx{1BP?2UibU>wsy){Z(b9fK{G(By;JEYW`9x_p+OKbda zQL1s{y#Mc!^L8%yAr$iKwbY+u{NvgmlaWW>><5^+t?sw>Io9zQL)SBn|K)~Xm;q%N z?fV(RyptX+cdlglfbmAVp&<*|HaH0gM<_(ND1^AieN0cU^xnzyFP`JJ zhTf*7&DZ`V^^($dm=T*^%b1|iri>5&u~#UP?-caIFRIFkzEkT#bUyyFGzi+u@di+A zggItMRpw(*VJw_5@uX4l)6i3P`$d05UbTUAXIVzz29rG!bd(ywpBy-}Wqi2&81p3n0a=N5GjYX?KFcCjNY zV3?)U?5f)v{UbWINGB0(g{KO5>xcj~#x5oT`nfQW4?hGPBYo$6CuozVMKpFelpri4 zLux4cHW?sH3${+eSpy!)R@1zdjmo&*Zr=q;vVa3xfL z2+JtMQiln z%p+G;ZB^>A&DkgKwTOZ=v+Wg$NzfdgMGLY4KNGL^$txMAY-crtpas;fwyl}tdvey0 z?IdR>6*~vbGeS~p!fVcy8fJvJ95Wv_m&ns}u++d7g;VLhf%e_)mi>~FJ2rf2`TT*l ziqLB14C`k1CKif0NV#bVF4?QNF<*6$y~_ zc@p)|CmmwQiqwDj=Y!6#-wecTX*FTF@DEuvmGQ7H%xSp#QQYg1_~a3N&CQT&q5Mi= zw60--%bqm>r}gY)EJcyud{^S zeKpe&h>H~d56Ep(j*3hV+f;^EB+zy7Sg?EOO8Djn10SCVFDOL#LrLNrzIEg~qj2WJ zftAlr*q9J?Cs#M*Mt;rH3|51#ncvM`Xp6JvOrYi0r@&1%%9O(Fu`fA$EP7|O_G`SN zTTt^omJBm2uHoH*`R-5)&O40hX!YYVh2Cp9-$t99-+162#pTFOOEhaf9ZpaXx2wYU zhLE0@i^b(Ny7-&YJ5qUDkoHp`lBBwD`?Anq9kt)2jWkJY%qTLLoWgy+GSpy3AKBQR z<@TDO!OVxunrSIIhb<{ay1DlOkR*A3B5a6eC5-oL&(g!I5+q)QA!Ye@btcID`@46w zP|@h=zs5Sk>a2g3`>8yfaqq|LFJ9Gz-rL#{?Do4r0Ear|)O@49)_nTcO8!G53|dxP z?pU(C`@|EwSvxu&JkhrUarY{S7IsA=Vo zwRgfn4jYFuVJ_w{a$!~04{}=kYB&gX7<2`1Vqrpql=xoVJaS(O_lQ_uma;$ok?&dR zz_3x57&C}gmdN4V<>Hi&PT^lpo{#gm`OgfsGBdrjYb18Sr49DM+zq$8U*cgHlr2$q zJO&iTws&|(#4!mz1!O9i3hHKqv|WxL67-K{Qt7T;bgo@7g{(3{6S{Mj?$ORGZGTiR zkKVN0{=M&f4L_$N3nAFN~I!o1aJ=gJK6Q zzce;xG3cWAj9z%f))xqOE&lYII(gxrP5P)94$SVm7Z~gDg`8JQbzPjDa~VMw+h-WI zgRAX4XBQUYC@_JjVNB?0OkODa1G z;wNUk8nfo~3zzLZ+1%=_DNwjrG?fLyF{!?wO}GWsuiW%n)cnm76H;#NT&>c}^7ddU z>j=jz`Gf%+xC=W%yPSW|{gn;k&*)T%YY-L1cw`^MHvue!`>By#$uva2%T9rNp)s5C z8m3RadPqzRPS4)30@hoKXbIVpRWe-q+Zx7{?V}>S#aqLQ6KC5lin`_cRV$iA;ECT- z8TD|`b9kIp9;0&l2i(N^q(FC4Gm43Gwu@oRjf+kOhnmZ ztjqRd?SvhK@mv!J{+JA|j9*&Vw}0awC@MtpKM1(JMc9|8KQqwwcLSY0GvCOJP02hA z=};ISDDuHXS@sp344DTyP=G|r_xU z%v9qBLTpFA$#UYt8Y4M9h{x4t2nnxW%40h!qCoW?9OCnB`4Rde3gGMR5_dsR?uknR zRGefGBbh;+%c}IUYzys&s^wwdg4^QucW#M|T2nT1G9?|{7%mjt1|y(RWjR->mxPL& z6q5=ka{j9 zy!olTCeKnN>G{>Qb5L6qSpnMe`Ig-yF>;llA@*POghrt!gk!oM#7zkTFI4FK=2qV( zE+**}s1xdwAI~cDa{=-rg_)V;FeyfP|Qmqig;Jd zPgKZQchKS+O2e~BF$G|S85jE{o%&8Rv4u(MtoyCak|2BFVL{qjh>-B%?$sO1!%EuDP4^J2eH z=wt^15^`UzB%zr`kjPk4mz9!1B*mXmC1KV$-RFEh>@y~B;^@yLMD$h=AXwNrKo@Ce zL}{ZQgHPd=Emj#9XhERRGOh3h3>_lhXvf|?ETyXw%;GLrp!D)RWbPw^#~=_8X53K4 zU@rRUx2us1+2F7ZEgn)ju1zjD%Z*UuDJw?Ut9moB^J(ipEE{8OBa!|4a*;5DkROBY z>==U1%5CxK-PBHCHbTLJEY#`D_{^HAtn3yqAn-oeOro&V0vd6oTd;7TPJP1LRZgAP zAxH#aI%5T=KlK8Fd)lQ=&a}wJJ-rqW znHu4k0b6|XW$}G;RUk8b+-h~m4x_%R4(c_S^}MrLQ$xSl1S!QSrl|)?DIY*Z!SkgD z-2CDMq5pHQuE%kP?1bp@m;PT(z5%eI2`b<;;p9;kuj~X$9i3&;t*7h zQ)5I4$8!-v!w(s}@y~Z2t#-3{86!3uC}aXRgWo#cyeFr1)=Jasn50?5IyZ45aVWm} z>o2at{}LQe8Nz?{k3u-?*o5F}3;HV463|6|?dm&Av8qsqJFnQLp?ydB{uMmoc`Qflp@|V2Lmqs3{ z(qVxG+x@87s&fR6va%C+X0W$x2$FvPX1};LA zI6~XVKaHb{vPjU(HsvOB^J^v>n>O{LO5PjSzx585mUND<2DJmuHdhA$UpIo1I04C2h?*kvC-xa>c zy7J_8Pe^>N1aG=@54MM?K%(Iij)NG%2BMNKSwIjJpqroUPH9XpaJpLbVr?mtd#vpK z7oUv2CNkl+b)ckrvSyn&rJJIrMf7(I8mG+FdPUfZcK|JT+;Gp z1YTBr$x$pDv>5fI@+^o{9I?iICMC^E+e&j43~mLNq-| z47kcLHC*Z4Xnpq$@N>DSZMAifDBtF~TlMu!A6o*$=|`ulO|6&xZX#td)Ko8~jVTqh zB^3gw)6RRf6D!u{&94jg8`#~#dB@bF979mi;&usC8CkjzMPk1 zzBQH@%x0Lyq|H3W$D+c2?VbBseDLSuTGo1H)m^E`1K>RVdv9goTh+QYZ)=l2UFuWN zhR6JUHlmQC?QBem?3o)0boN0JT^9)KtoQCXeK|%kw^zG!SAAptYp+G^xlH;}qlGEw zxU%R;u_f*)o}ee|mKAE4}y9qIUu zpW873&3$7eBLCQOr(DU>oo6=quNg}hE`BS=R+cyM#dV^Oc3kYTYpe3xEmBb;#F-`; z69&n@R3>OmyST4*R#|}z#xmbOn4zZqdF-j;^DN3R(y)-C@&0KA!?3DejTj#vKN3n1 zsZqz|R?hjefzI^-Rzf%GkHx~?81{Miq^OynOc|;8K_MLc!Q3^NBAHp?F_uw3ZO-7( zvbAyTE}ku;1k=*=vxVRlxK;&TGMErB3poOsFH1jcyuOj|hD`Kny5rTvOt|wA7F2E0 z_4yMV_rxS+;d;oU`L6{Jt#5F-g<;s~_F!L;5fWeAt65Cl8)!%hl!qNox(+Bst!L6g z%`o1Sev=CsnXAR2(ygZRIzRsz$FYW>0y4@99L51$PS7zWgdoUC*rFwo`Rq7bz~?@| zn+Y~+ffj-;mQvP;6@G zhcxduU&PFVZoO3b3vNxX#BFAt+cZ0;{9O8a=kUQzy6w&d_13Y?R%jh9APL!`^ESR=dSNbdj{E*HpUZ6TJ8LcgP+Pz zZHC%4K(DwH&xDM)Z*9(dO+t*S2X&$fbao)A*&rTJLShC8=B%>2C->=+*NKyw%D(ug z`ERSe3cPDstCtNhC=3u*3yrNJ4Y8WIYO9*?T4^mTVTB9r%I^=cShB<35-_bBgC?sHO*oR)}#ouFINouMsZgXE9H8cY*|J?k) z4`~4|!8ZyWpx8e1C_S1w-F3HyVePdCF;6aWJrujAGj-Y(gy8hj>%webCXqpg>5J=z}rVy8!{pc)dZbOs_%j zm*@VzH}XJWDzhS*_-F{r~ z@UY46*@^u-57+cBajH%(<>Mwn~B6_1U!b@IYQj2u?u*@+iH2|3{WLOEk&mf@d;6=jC8 zfRJm>>=%w1$b!L;4)Y3p!$JN}l9J158tvvEwQpoDv@KlSz5+;>huyj@koMd&*tp)i z=@u1=ifLP5krH5X3Xw5es_>hLInv7dY*y=M_kbl~^a$Y=R*V333Z;n(=m(xD7AHF} z4oeTq)!9Z;b`FV%hhapT=5?|Uu%;zk_ULgVWAr9yPRJg@yDCnPIo+$_hS&*-?X2g^ z4zgr$Ad>36Ig!R>LxfA>6bHol6@5&U6Y8`&tF1$lT z3qXs6xsB0IsvJ~a9UN8k(Yq_@^y&I>ByW9-x6)V5fH#PPhR?tFlI3e^-}~TjFL}2; zh>G4gijO+@H$EF@N^2#fZOM<9@hp-lQu#=`&rB32)m5}YpVIe=H>Wj$JJHkl9s3)K z{e88Q9)pJ_+1ZC++eek-X`wE1)NKBugn^piu0c|*>WQk7lJqD&)U9JH7r96g!skV; zg@df#{jj`@XPEhIf&Ye#V z^mD7`^NPVzu+77FEFl3%lygFN?TFIB#q*q!lVOf?MSS%l_G zpxt811CFALgG$6)RYM;v2TK`>aJwDAEcit%(pWvT*b2xvD;iK@L^eITm+|AV=r#>6W`kno%R>H?-6QkH5K6xc_ zZ17d2$q;RO$&R{s!7S+bE{t^DgYmZUH$sAzUA*rJ`9VgT^hB>?)$I@GU%gMWa{3*j z1Ye3#4tzOzr3wZUPJN7?3dC^O$EN$=-YLaOaIMVRI~D617IA7O8SD%l8kq6T&eZGE?oD5Mt+0EAJVba?o8@_xf9E_(605Az4kI3Zc+E1(&u z!`B^-N1W=hx&W7To7~}0vpWh19k6N5c&W!osuiP3=;cwXikDa|5WIj?;PFV#cm_%s zbs2lfNbHOfcVmU^X2e=6;Xu}9z!5gl>^;wGdRumVJCC5~YNnG!;2sWV@Q`VEUrWGG z?shx6hntIJCne)m>!k2Oi`jQL)~uZxfvv^H33li@*OL0RoXc^C=a(`OfMPlBiKGAnpMW>bZb;z&E;Bqh5wuhgL0k(S%^d!_At zF0#nQkjfo;R{`K`Ptr&5YVaXhfIE9``talTLn(sH6wf=>r)>U$3AYRAr^gxXD6ihr z{L{8^u{R03d~9p#W`BXucKUkY>&!A1iOT`FVSFXWi@_t@1!)zJN7|lStUP7TNEBhi{JTREnEt zzdFLE!-Z@jHFGuQYHQW9k|pnekFP=vJgERs*ze&piyG@bhc^Y66E#q(D3tfS5)-LF zN_zTpS|x$#a;o&oxlgGD(|YpTyZhFZ<~A}DR)5N~9n8H8g5(fv4l>EK1yBTTYt^`z zZ)-2AUZs!mF8NM*3D$Z_HUeUU!FWQ0n#jp!s;{& z{=ft0DXcf!cuCf%F>7g_WY4&I)(V*&uYvyx8B}MYN&<{bO6hvAoUtsrv(6RlSjhp3 zq3;TaJB@My*21-=Lw4CDM#D>t6OGGPyu;?#2cP%)Q+ zX!tFMeVg*H)-yndzhEqa`~FE}yDwmi+`d0&cxWF+U$)AaL_U78Y#bV9>OS??@*c;3 z!vHDS)oEn>!R*lq!Q(qAbP2};a?rb1YSQ}AA~bL^v-+b`R1=j;>U0USGjIKI1Uuzb z?B{lxvN}FZp6uX^S$mpbA_C?6X%7^ol79sSIWc%imD!h`MNNC+X)$`>u_wDhm9Cyc z{9OzF7P7xJk$F<49f%GGqxqXiatbD+Y|7a28zwi{{$x=VkrIqW@!sjOmh%9t>KWNS zF-8D+N7E^s>ifNYOL2T2G3&ccGhKmzC9~<2tke_DnXk*j7`pjy1aF6%V5&wDH6`xm z=~3(VjB{jhJ#_DN+mG8nmCNSa=;yOZ*hr4R+uebqipK6_J)bMM@*N7u$_4)%KZYA1 zd`m~KBz`q9rZ|+-nvUQi<~LYs`=AEDv!Imk7gGvnfLBUf6--zJu$^yc2*d(^F4zoW zRm=Z%H&FDhX#HyIHS!ITbdz`OXz=-@FVck#_~MyboY(Vy_V(VLsym8z+97CG_*DlA zHZ3;mbPnM89ieQYP}_K3lqcw|i!isfxSeplg?_Yewg+Js)N?D;m_cB28kYv30Oqqt z`Z94Y&+01e;+JL16&igUfZ_zc{Z}N;!CPbCx2~Gp(HF zwTa4%w2#dr-vv2{_;Z-~VoI*uwQ^&=)9QaKPW|t|aZKCq?*4fYgvdoAu+8L|_d^DB z*n_1&Zwd7OuI1b9@NFTfAGycYER?=_-H>{UrMSL(!MQFD6evI(ghY5v2HerVqi-#5 zy(T4)gThE1Cn^lr@a`No;kO^ZrbzxRZOVp#@eOH#px22r8wE%%9j10bparIW(2q$t z(tOyckfeYi=V8i+B<+Av<^`#KsB+EYZ)56savXUYZ5Kusyg=E{!i2y?&~@Y3XA{v{ zw4~TD*6{>P>f4+NEvg`X86n%WPfZ%@m1|7ic@fV;?X~XYa~dJMi|bHG_wWm(7S)6lP~yV=N49^MST_#c;)VQhj?XT7K?;ijeL9K z4wK~uxkEn!He~bKQ*@$~ zc49KspyY$K{tmw4{nrNW`MeD;#wWk=JN;_&-XCd|C7n-cs3CRX?E`&3(A8vR+hv)c zAsYXjt)Lt6{%GB~EcZHRU*$XfHyYbqOp5^ccMhIEaw6ee(Qs3}2&t0aHIydxeEgD8LbR9vxbA#-m|G#4^SF5Oc<4 zpfyDnP09a$XFotDLA~(V`i5-e#$M-yR()CkhcVsPv2=iL@sa2-&t=i6@ecp5H@=*- z`P#VNkFy?=cAw@E5v{>g?KWJC1UYCQCz%9;?Z1E4d=pCu2PjNjK9Os;efIS|b^Q~r zeJ?)khwxyqhB_p&B5jj!t1fTwPz^@Wa9*w7XV_r$)2!FHe$?;Yf6u(X!7#J^z;{zt z2K2wlioEH~YnKN*qtCP+T<+%=%d=l@{e$ z7x1Qq<4;o}Cn3kyz=)MLr3b1~33-c#Y2P0-aYe&2ibY*l(E8i_;(2XVVrlUUw}(S{ z8p$az0>faWxPs6x<{aP-aMx_#ORMu(?kqPYy`d!eiydLyTcqnp;Un989*buto4-350^?P#6+rp!~m-gcV&MpAX&dD~U6`D#pclYP&a`|}C^ z7hP?AO+Qx>3dC^VDs_GKBl^pSV#={4G+?jnaYtGYqY|HR(3n3*O(n}WBJk8t&OZ@l zDef;#6^khWuilnEhShF*Y@125=GLQ*{vmLc7$j3SA6f39O%d1Nep{B8^J02UdBTG~ zOq7NvH_TlPN?A0dD8#mQERf6B_=Zm@5G+g#Mjp$>I|#h*J~rt(>U%UEM#&ntVF`i$ zdIxFViJ)MMeq{D^P1#g4nEkIYrU$+qM{fMb+JqbUlj%P2re*UpK~edA!G;BQaeA-r ze-)MZV|skL%SW|E$|q|#)dg0&VTKqW`BPClMHGv^G9U5=?Pq3^aXH|YJU8#EBqF+! zqK-}UsxbCUTwsv9`A2If8Mi-WM24-y6&vf=4#?R&g5(BK62=%`agvUXd+uep*HH2_ z;AxkH60AEwQ~~F^p9=C5Zv`Z}6sLGTLVyfo zQggw=g{mAj@UdJCadxZ81G2Q)q`-xM;%6a5O%Kh&a!V(_PBnnVR6z?+iSP(QM#U20 zGdwaAM+!`7GwZGHtY6WY#b>ikJypVBUdI$u8xjaM{{5309BTFefPprmO+k!9b&kv- zw=+rFjlYC(KJ~lS%5^1SnAoV&7*pQh#wIiJ7S}ZRRzUpSeGrDlF0Ghqd*){ay-$-= zO(Aicl8L9D`8WmMRh>^c4!*K$R$V1*NV7YBc9wiZpYnkRqfb=spq`ohF9#oro0AaMz* z8xf1&GI^U{_ncVxYH{0(>r?X>FvWJeZvc~9I?=VLgPklJ z>+#BH9}Pkveu|Ak$%uMB#dvppVXek|yMnu7IE-pERT1*pe`qSMMP&3-;q>S3s1aW_ zoks(U%e(_MmKc@fiWLAi1FEmKIr5F7esb`jUcrwtg_eK(;~<}c-*dPD$lT?-A?>lJ zC63JBFGhB0(N^umTHp%I-=%)f)fAj%FSg)|q|prn9m0s+`im2=klzeD0+$B7UeaHp z+)lL65$0AlVj2LB@9K@H#z_eHxP$kGVd)di2|OMOeZ1S2J7zwQM>UOFk=k+$R^;*C6`Fl8HyPWQ7c-sJVm2 zHH@e2>6AZ9zJ}MbGmG1hj};ii+Kgt3F}Qz|@cAck=l_4>Vz9K^fu!jU(Oi}t*_!blLF z$#fM40)w3|ePX|XthvfeaxYxI7&~^onYYUBiq#h|or%&-v9V(>*)Vp23-AHt{58BZ z*Hx8_Ip`k6Iui!QZhD;S1}+Ai(1J}oPT`Qda&5xrli+E!Otft?KdA2eiO{oV4`URv zJS@!OHrd@r)zaI2&XpXeV^4Q?V`AyIiIWUgubGw$CcDtB#Yh=Ar4ob608lrUWJf^o zdmb?W&0;NtcBdJezUIPMC#g+ss(&a3M4rb!i_^5QTe#f@jV_3Uq$1!)zj zibVL@HQFeL7{}G+(G0z2+555%x8W+68`GA#jJRcZ!;klb-=zy;E{H4_Zs}MqB*~^6 zfZErD+qCm`cVV01$H(wGL^S)xAH?gw@d;gXjNW6yOfb6j>eK=DoUmt{B@-47EEpAb zae8el;&62CFW7#!5ZL|Hr6aK`d?ml;sWTwLyZs{D4b77Q_#l$%C<&tGA*6P?OSQiuJ$;UGb#myhw7RTOFxcraH8=xq@i4-Wm z8(infn=|+&xGUu`a0_Dz1cOgT41b_bZu^cZx%9uQ=iNwpX3|4&x82nr=DtCe|4uPn z*(*43&R=LdmJTTEy`O4=nMV$JBHW(tE273vUeR`2YdSOAK6CI4U2uf=T>Ng zBc&aFqLe&}og0@f59Vpf0))oVlX@l&Q=F4^j@gW~(|TT|os#3NeKP8EB>B&@gZBAV z$>x72^RCkBrJY`od<&7v7BqUt5G50A4@FZOBF{BbGnNo@hX~( z^}WnVu9$EvUY(!kY8lW8Y6hKA>r&C{UYM{c&E697ZLx$6R$}@El#B4`;Y#?Tbv0WlNp)alGURDKXEkg)h0yoK)=n-=V&Sd+EVv{oJPKtoc`0l%jcD ze2403yaLJQ-2Z#*BE(?hKbaL;xNe_v{Hd-Cs)QFA>z+Q>7h!H2T3td~Te;9^Rnl$g zuP*$rQ%wN1Z^P~`+!CvjM3?knBp&AEJa)X3*=H~|KDMm*a4mFhVkP;g0BI?-*cpCZ*P6U|${?aG%@L>ZFHoz2x*QhVuTVvIs);qyN&1fImTgCP@ zCtyk2iN8mW3D0pQ&|D1jmzGc+qT*F<*`aXrj#cV5M8h8I$b61!7rt~g3XWwz;9TE)XY|u?#QL|rgxOinn}ojziQit+kY-<`M=i| z)@qC_sgSm!5Jx0W?b(9tYYSuB9j~b5M{TuxVd&@1wJ7y27r$ojr>|ol#Bf4k3*^%Y zQeB=6-OowY^640D?bL^1o1uh>W?{d}awovX%`Dv9_k&cIPjNHU_R-UbJQ;1o8RYvH zi+AxlqGl+8Q98uZ_kujBbqZK@(pA}FDh(YPE6AgS$0QVXc5o>|stp`4Q|x9MfHtyw86M{SL}<7zGEN&5Y->D)m(GGp8=*mb^< zn}pZxbnpRLV7=%x$1ki^&Ya@SY>;Bk?E||xa2WBxmj;qV>X+>76W^o;Lr2!8a}$15 z{&zPcWZv_`SWYfx@;>nYf#Pv@3D4iXezPU;H4eW0$u=K%p}6}0vGtV!QLf$EGs6rq zbPOPZjC6w=kcLr2y1NksM7kShPy|8g5-9~l8l;9Eq!g4cr9q^mQ}TP*`#tCEz2EOA zKbiY}*1guXuHdhL|J%?%%^9})P?Y+ZC{1bO>!f|-f!u7vN`Xa4UMr3Y`;Cb=d1+8t z%nH{EI7S>dT_-bSYI6e7q4?OjbJp3!iboCj=R|c(S|~}5mx~XMf%!s(T8uZRp4nlv z-*LCmF~=0VqC^Yq_c?E&sjX18c=;fCvL!OYADnDjs2rN4xotExI1C&4M(z}>g~s=f zy-o|F*pAYp;d*i?sM|dooNd;M@Z*6gxvKIx_ky=qs&&s!+ZA?Vhsv@o4x@$J+JIkp zhy-7;abNRw=yD#B1)biD-ZjgJ>o9?0blc>5>D$qgu3JQeY$q)xROf@li!d!VG}}%b zRUZcOwkq+l>Ed9`!Ve`APiQ=41a8KSrf_`EpHi_Vb0@;6$;Ui3aq}pjT!TLc5v?D0 z(MxHsU1L-twKemP8yutxwn9x!U2S8H_<(6ZVC>w-mCg)P)8(=A*It(IzwP6I-<|fi zq1WuBFEXkU2L}wG4bWhK{j3+ztFfak)N34wv~s37#Y}k=!uycytcB>hv1AT<&SDt} z6YgeqAz}@GaY=A>^FBlzjK15W8gl1FFS8JH9$XT9IY;5XS@kd&TwvU_0BP_~(kNTY*6wwGp0FJ$n}GE>TOwh)SmQdWv_b3zyA z%CfJcRYNV^z8}2{#uhk-L9mWOQ2^&H!S>0u;w1`>3%1CCRvK& zUfkzs{TB_CxB$oe`oOyR_ikuijhomQQ!OO+DjSLQ-tJ9%=zWJX(le)4PfgH>OIw&Zn}?wbCOQ931_9_^Ch);dPntY$aK8z4yNUR-1*v)iLb+O2dI({8WHZ6~ zyb9X|Ndjp`QSCefqTJ&MxHX2J<32<^u`4BX5j2WMmsihdH@I1$4)7U_Ce{Xx$xGTOD(E`yDuO25}zXEuMuU0dw)rZL?xG!AWsZN+cc?s#2 z*IoZ|ZMw2B_6HbYHJlz*l9H={DS2oTN18}#UZWE+A=D192xP7NUO|W+tmEX$W{(@s zBa$^D&j|-sC+71j(DF(p_NkT;2liUMfPNE{G+K5gb(nyab@d+DfCD4|u!y8{`d+Qb zYf=!Oe&`)NR*5m1_e(Z|fK9P6e-K^`;6ki$P!Xl7pj0~u@;vu4Ak-qmob01*4Zr=s zk4LFCg$!j@pq23wJi~F85Gut>y&|g&2w?Y7w9y;3VBzuopwZ=KJ3(0pZ&ZGV_C8At zM4?KZy=)DeKVtulcS7mkJ*_ zQ25g7!(i!hXn)n9C;<%$u~*f!K5ra={e*|Y;b)h!hr1mA332>iz4&GSjQ^v$cqilA zcRoI`Na8&T@ow2`9xV=hSFA$S{Dk1S#OZx}!b+t<6_)4J`A?OpuenoUap3o- z%SEASR7wed)d_Yt2!?^>HnKW}x7>*t39~*GI;k=U=|B@{=^|OCN|O2juh6a9@157{ zjprjH7IjGJ-R|6set0`vHHWcz|2giKTQGZl*bexP=aA6?tsjs5eVpo4C(B0uqhyfr zzQvSEp4(6QHIyf?wAi!OFMCj&9PlVZ$AaO}9UvELn-u}t@03AI{8A%B2P&Q~pmwNz zQPyi^8IZv9=ToR|N>zvJ-JtzlUv}#blg68zIJ-)A`%&^q;MeD+G{qE|s(0#i5?RA% z_Z0YEumXAyj>YOIpN@e_FHViIqVv4s993(FJjyY^q4&hl3szf9+d08v&D9`Jr_s06 zP}E?;P-R3X@FJS)!>Q9hHK!%G8u(f5=t%5y+P%xpGDHV&DPS-TyoF%FhDIltmQ_u? z+1UpR!3)_N#uR^VIserD;i7e{*v9h~tF+yRnD7aY$2T2Nd=Z?%rPn{_3rI|WEg#ZT zY_aR`mH9AqHlzTUn-U^J*R;&R9E}*w_`a*4y!+$j%hqcIemXQv5@t(4X3g9Uvoas@ zRF<#o+!!#Jbt#{X;PER$#$QBiZ`qLdPoo~KlEbWAd>}MM%8n@70`k7KlW*`daad$* zo*pM)!hXEnho!g4v4;d~>Jt#&*!9PnP zNgqnL57xY#Ack99U|nDK|7jrhe-*>x8HBkLRPr45r{QiT0G(qe#%G(aocl{hqqEFJ zV*(Okh9CdU<2RVg=K?K?4PACKW|MyGTyw2Aj-T00v`Q%hi41*%yl1DS@Cpl4)xD{d zZ{k#PJLUP%lD4tEUd^--2R1gE+y( zM@#sG6vuMeF#zuwGg@%sf>*S2-Y0|<`R)N~3oAwl*NsnhmPh4Yo?rni-QAcy1wv}) z+hjj9ojvyA%gU`5y<+eBfideKNMv8(Q_K|jEHV>2`E2G^kUBzM_xk}RYfx@xUG$9E z-QW0Ddi59nm#)9fWCis}@Jnx*+w6t`eE1dQQ9_dha|4AdWhxftNkTel}WyTy3tA1S2IeXX&> zp`E&GhzR?Z9AOEK*>+xqdB#QVHMRXXETx~vE(69z3 zgwlUEa=xE#hhss>2~h(LNL0Cm6GvYSg@`xA!gb^hPt~Yx?qB zvfElg5{YE9em?>{m_F!D?Lir@uMd$^@7B8NEvo;sW0-3LDtcY%Y~3;V-PKHHfX=qQ zdUmcd4I&C>p|Fc_m;aC003at4nR9e<2HaSE@abVA$0t0m9_mGZd%0O-%sWu{Guk(n z9wO7VG2jD@55gBX4K%k$S(Rg3^!QvEex4KI=YSDc>NA5w;F}OCqG5VIjf>e=r3T)m|iozv;$W;96tJ$^{H85D?O4)p44F>_u zhFoi-o94n5R;xn!y|?%?uVZcx->#Q=%rt(ZfRC~JT>}~JmTDNp^;9jWv1aBmaGv@w z9j6gr9UNWdZgqi3n+oZfF>>zmG>D}DS2p&N6?XhoP;hpVMmv|M<#k8Ts86mRs~C@-p*H;&S`?S<1HZE} zg{XQv6u^Si7}!hQQ205^Qp1G~s_4xCyP(9|H)d(K@fHOBMy8)5;NEs`wh&tWE5_&( z{J4C^m`KhP0|*bNAFCHW>5p!odDxchcJzNrMGZ*oG?$daRKivyS9 z?Y?w7y-2XCQZ4n$xtKP}I^{bVt(D7bHe8RRFS)DBfva0GgX$R!FyRdMWNQHM8L@a(Kb1AOdc6 z^Cvvqf-q!hxyaJO1efI30CC&-?|uiKlmx%qfa@&9n^SHMU5Fp*Ul<`GNgIYPR>LVG zb%E%u4eCu#+l`>?_GaM>uwy5XLKDI(26&99p0x0!z#lI*GUVt=Cn1hk?O<#!3O*R| z5{L;zFN;?;fg{aNdCfBC&JVy_fWG%OeDd1fNkfXNhgSzIHJs8dr;^H75hRykI(*P5 z6D-t+mhUoU3gp6FRLH@(;sPRfa$JIL4B-jh&{}90_chade*peha$rapN4M>5 zL%#0X(5&Yt?^q}~mQ_THMcN2Bzg^p|#v!)RB5jcVfCgEV{j%-_GY2L-gSd{}szzPH zxOw(5uL7Wy=pB5l3iRC_OmQPMIC=qJLy+?wRkXls6><|VDxr=V9sv+CB}(wXMNfSG zl*I~mROA^FyJ#OwV)t`3mWEsp!!uCfW zK3zEV;rO)v!-<9hxjH5XIQw6?w~9-uqL3&P4aMvFtHk75WARUxpP{FLZJW`F#cJ3r zAsHK~)PT1JwbQ5724c7K214f!UF+41MIIYwvQSXSi^LA?DaLE6x(xP*1AcHb{^MAC zxT9i&+-ErxWbGgLI&$O74S?J-JNCH-PDaBplw5is7TL1m>A^yujXh5m-etA+$Pmol ze=OsU>hA_E%~5OrytMe z<)qGCH-0+*tCZ{W;Gq2BL{raGL?i_0oB?ADmHbE>D@!d{VEA<^seX0*)QGA>W?0;s zL~5~f?9Z8kuT(JepTxoV0&iS&R%({~s&7)bP9&Yi+jSYoE)RGYC=2Bb^}xBL;_;|f z`Q$dd@gDy67$A+PZ?OtDPM_QTg(Lsw&Ye%>qWD-9MVo@iZ*&qX)}WRSeY5#nQuegr z5s(VP?kkkR$PLbVbba;8g8#E9zO{0f0Z~S0A&D=qS$PUf4MZFR3)#KQ6}Qz^%-12O zSS=QukeOVaF2%j&rMP849wha<1&p`JbPy#70bkNmL`os!<_dGxRgda-O$)YcE;Pz| zn_Wx+v3#P3IciSo&KS;)*94szdGPG@jY9|d#SB?-@Y--*VNtucw~$&H+9srl7Zm6C zxf!10?L+#I>4;x~G*JImb(vAm1RUM(aW1NoP09m1X@}L9duFXveJJmTZGI|=-R@Jy z_60Qf4A`CXhxadz-VHW193E4o(?5v~D3_pHuHX7ycDVSM83b8pm}D?98458!VzgQP z6pLIiV(^(w9MbyN;OzDULVs~gP%aj^IBHJnpOWSrc?x_#LXRZ2Jjgx69H$mn zna;0I5<~LLXAv|?a33H)an`U__t@qB^R3&fZ7>gBmn%T^4q5S}2MmxR?9^b2Gi#}R zNyU;IWcHOA?w?q7YFZ;%St=}BU*yt3-ebUlC+?7P%>EGjFl^We&Nq>2Dli_4{WhYL z`lPss*W`e`z8;=rX+fqq_8O-yAd`)l{`s^Qc_e*C7}k%EvSKK#A0yw$i-`^x+NpZ% z=k9&(w8+}m`DT1nsxHQSLGMUr){JSddwGj|6Ft1D!)LP@nCEceey`=Iev8}T&uqoN zeVSMejHMVuXVlNbzh;>6D||^(zo`!n#QRM0*1VN#;5uwf$NpOvNBkZ{-N;6OPY8uT z@kzL}5*yWi=|G-x)jSt<@UH*alV}&3y$;>3ac;E_bS+}l{3NJavcvc(j-%U~imarg z-7riY3Oyw7D3e?#Hd7Xwi$SI=f*^`u)wzTub0$i`dLC{FIzAi;CAoxvme71~8Wx~Pe_-J)v0mcZ` zr@bzoal_N!9x@l!_0Kx>P_x;f1`!u;_XdR7xx;q5Dmq#PnEtCA)(pEh>a-(at;gr6~Rk0g11PGVs=Oe&tQra=SjH4Ei~#m z8D>FW1fXCl#^Jo&JG-p#qbIq$GxFyOENGNn@vDtyleGOzQ?b{NvMeR)&c8M1Wr`ha2)z8-UFG`C z-mBzOlAwAdXGP9b(&G#{yG_Pl5}~9JCvEomn7n1Z;VE!{^6(&|S}BVWsgnL0%Bg{IPrU}dXQ(u zroSDfV`*@Y!w$DlOnve-mnLn+Ixb+pL~SqVtzKRpD|?MFifD;>+^iTAy<5}f?G&7^ zU9ws)ksY(I&A-=XV1+>pq>{yHep5wg7JD2z-s`b6lh#BiDl79+i{E+pnceMOQp;;x zJ%T?dLi2})V$^(X2Fg&Gj*mcU$|x1tY>&72>rty;4&;&SSPi`+N&DbVHDh~&%F!2Z zt03Y?PnW4hJ@gZ^*mRGQWyk8u1YIfKgN89YcMIxpLDQms_$^6bYVmBh=bRq?F;m&0Y|BSb9Y$+}nc=r4(JDXY&Mo5^6_jv%JxXIwnj@=do(5}_9@0OvFd|O*MnbD-E(?hh?$pZh zS>Rbm!wRAb_T(SGc$W_Q0-zCke4~Dfe6XF1BqJiD)m;z-}CXMSDZ zi>^Mz@cif*Sttu4z$N>-!`(^^^;@6Zdz3zV+IFDk;``tPEo;wv+qfzD8$bGE&5$`=Hn+bqY zr;9l0@{@KG_SlZ{qROe0U;ZbzQ#zn~qqe=@Lh6L`FTJRhuEy3TXT$FykhX-+@yeOEowOa`)$a{*{kyt0l1JXNB3l&=s1LMyZ27rgv=V^G^&^r zg130G0;!ZEZs%NN`!4*h)G@rISw~v{{vrIHvqy34Vnh0n*SVI=L7(mWK*=t zO!rj>)9NA;b+K}HH9JYQ>t7adO^;zb>GXmkZ%k?UWt?h?(u3%Z2jX}$IXc_la30Co zc`v{7S>}w~la=n@_@njYTXUA{rTq7x>78^&0*e7@ze;|i2dX)DOi@}d|pcxYCy5Ed1J89zh+18C) zhwE{R1@%7ps*@hz;Fou8gIB@LQtRjDo$_PHqw3?pt&#~DnhuW<@`$d=99CrCtB(yd z;>I=5hqVl%chH#&sdc=a-5bduNS%S{{9~9GO*SUnU?Q^)603{6`}$G2iYbD29f zk4o?x{+A=$OFkX^C!mF zfZ%R`QPtiZ>%_H%NI+!k(;Z2tvtzYFR-ezE7s(2nzZ^Gn^}|&&OIeoYm;5Tz)Jsw= zTWj$4&+eA)A6J#p^l$mykUP_hz$N2C(HIbBy&=?T#bk7$CBkPr^UF(rHG<%he_VmL z+!b#FduMN7j~;VAx>~&{ase$5<-%_*-U=o7+0E1W(9qQg-fotI$>5s5+tvUSfV5ng zbZ)f>rjdJ@X|87e>2r69-;X?kZf{7*y^%8Ye`3)eym{1cI9u>lj7hMW;zf~U7*5h7 z?XDpsgx#^E)x}zxv7kD6*?W~l8h--kumE2%LPk~1aG{c;iRXFEUVB_y`+YAEQU%Jl z{S2y)j#sOXvo$&61&;5H=W`lqeT+EV zL(GwUIxwTofOhOoHr6a09Tk6`R{;v{Z?!L>%|Bz09D$0sS%x~fp$}{UtX)mx=<~j>D)IIv&iNAF z2+u*GzSM4tNt&eV2P^h?$Hog~xA*^TB&mQz7l1;G+4L*^`k-a6KImAJnQ=H@1;qQj zGVS`y%bDwZ|E9;_Sh#Rg6&HQ90}QLqyvapV<|+h|pn_L~N0|y)Ojwj)f(h3sZb#GY zE)G5arNIB#)UL~2;A66iF?sUOIu74fyH)Y-6g>@?b_UU-)x%_2qf1-GTxe}Zcfb^M z(ac>-(nFyzNBJfRx~rr4X7!|8invh1V=rk9hu7{^A1SxDnuo2A(neC`>w9Bi6`#yQ zHXA=OmthRi5lX~O&GADf7rQ>986`^I->BY0A9_vNFB}>KkORk8#)EnftN1B37Vr4& zx4$ssazb#kC*ii8CmsO(s~5kjE`ifGkpCo^$lH$cZxIVeyQug`RnE9 zTi%wfcP4<^POBn_IdTBR=WiTc!0kURx7+{wpGDS<8DQ4TDDrPPUcJQLOXR28 z2iR|XOR6=+vF#S3o)-MV*+K-5&y;qAN`dZ;!3GQ(*{+{Q_Do?o6s)uI)*Ge|lBtlf zl#l7WL*xe2db#HH%7#i#|5x`q4M^=887J6ylNfZy=C`Do59hGm-gGY)-z07S%!6TT z5MN4tsI0|F7Rw~zl2H3fq^-5*+IDFfxR8GwN;B$3iB9G+^Sy#fvNXWfR*+;U^!7UB zbm)i_Es0~lVo|w7DTM&xF%I5Sc$<&ncYTv zSL1(RO9?Rum=ioTm+^%e`!0n@kwr}YAW7>IagmOU$4)`2s8!{-yoI^Lz>rzj8dh~7 zH+u%L(KspS@Uc@;+~U1>Vq?~=3N0U+%_Wm#<9!NDPV3nVfE^72LyQK z;$#rV6$XO0MHK(S?Xl&M7{(+0FQ(Ow)cNF1P+WyJ~2&imdFcY%!sDl`-YI0V(S|Ux+2 zlCQqrc_P2STB$|%UW_^(zT$azn2axt84p`x#qX8W3I{awP1yIuN_b^4!U~y{Pnhq5 zKfe!)cBYg(q!Enmf7aPD1X(0G20)1x9en0b{1nSL&y7#??}+KfV=5~I8mD47Agn26 zyeV)flyJ(RXRfryfCxJ~n}6$>LQPEn-MHLAYq`H&@;`y}?J5MWWckULfWJ_3@+(=s zyx!ieD`f3hzP1DJ4(2aw!atb}|Fc2EFuwt1+|^(vF?%LOwGL1{XmA}4u6h-qGLR1R z6AK)#4%PFjcBA(*8SbSGx42L#kL^Y}V`_RB9!7wN&tdPQ+}lw%uN%bQLnKycrA%a* zxoYyW$YBH!N_8l;_6HXt3u7{|V((Q|$zIwPze8oNijmX3BwD0)_zt$Lub`CuUCa+BMZTrR7#pUXLoX9;H5dG(`-(>WAN|b| zAmS5m*~_9(Bk0gT2uQj9LP4OIz(kSHR%-m7j^cwUc~zu_P8r@sGkZ#p!$I@H+Pj&E zb(=!p8p*em zg{c({m=5HM6T+J5*Kp0-YUgWs@+kuZ9Vj%*N3j#A0lgw^Ku5xdg~h-K!Ho|;&lzDY zu*Rh;CeB1NQ0SRDuvmo50;1in$GYRujwbIyH4Hm|C~$a?J?z+JK~J%1o$%>T37kwR z$FngQTmwNJ7&iQ{iQ$$oNR&w!ain@;HD`rG<%nv{RWd@mmzT9Q#mmfhqS`YbhuLVdMsrR4Ikg9Jdm*|9^NQvASrY z(A}AYGg@reQKd`S_p@a=@fZ-_e#ZFMjl&|#p;_RLLXN@P7_U|=HyHeusW#N68Q z*U|zCd7TW6HCeqmR!Pd0tHHDrp+5z2?^RiW3t$kKXREPg9&j^}H@%valHdx^Wd;}1 zcH2&l7yhp++&6>vG%W0yg5?0k=}#&OEfC+Rb*U~ndg(kRqeLarR+Y>U#D~j>E^;30 z={K0O=SF>b(#f7Oroxpf{`n}?RoFfG_#5Khw0`>bMW^^n&F>LOzn+d%&WWzIX(#W0 zWK?BjuU(KfqVet=qLH_0%^v-h?KdN`pOf0f3_y5E9mCV@79b1?)1hO90)1ih-FdH| z>E%cSHT%jvu9~V3Xg&=;&T0s1{M_TA3Ue4XcA!_}Fe&?M_VMrS z!hd20ICX&i^o>iB^qgnx&xdoH5O_Fc?@BX2hS8d1#4=6tNM~e5HM{-=@u3meI*6J9 z-UFQOjx_hplC+L7ynZz^;pe0v!_mA}zv%FANEPl)IFi=OIJtfFM-!6})Cvwuf*w_JRLy`kWj$hbyS`PBoTQOq1ou;)%9lkg)U9tsl8&?mm=V(5 zO8KK~F-MZh%HK9p4h~X@=Z0eMJXK<3m`s~uN9@*lH-w6i9xcn^rc9sx< zR;oVNf4q%ZnO9(USm$4-V03i~26vcUui6&?9tXp+$daOa|204wVNSVoh#Wy65F8av z=|G2P(U|e6Zva1W!W)B#e|pQW=!c7ED|JguGx)GbZH+g0y9g(2MQxUp!-)ZT+#Ger z5~$QbE#OoXY3?`uma1P*K_fh<^4#cA;D9=Y8YsO1)D-GN-^e$DNA>_%)YeXEOZLk7 zYT#W3)z5!MPSFlVhkwk?BSyhi0A-ik5-<&bp)Ne5OYhJ)H@lITU+Y)g@_v1!*~G){={Xv6YtoXawedeDij_0s=^am`%Sf%vuKQ5Y)j^|BJyktB2$$J%}@N5^*5q%lYh> z@`j@VOpx})j^#Cw)0b94W_bM$T77C9>L3EeA9JG^%DYWH6>vR9Y*zX=@Aov0BWfsE z1dRK@$B#Y*fjrx4;5qr6^tpmo;ngYcdj#5d*sQ?lT0KRls0O!clh=eXln>KD*R1Ns z$<1>#vFKG#KQ=9xZ-qHPoExL!a=Xmqw8yzW>JE98Ycyt0c@7o^1CEUWb=-z1fCf-E zDp0$hMe`OLCsAs9;RSFArO9DBXKXD*Ni2u+4U!I>SYd5G5E;G!>ok8~4hoGn&@IKo z&xk>YRrlX2D~_t`&|ABSxFtk)7v)!{;vL^Q{ijpwg@b^`v1=v8dPA6-b! z5pom~c;Kx$EHo5|V9fcY$we@vB!u*YkK&KUXYp(nvgJr1c(q2*Ht*_c7;L+R=pM3H zdZWQDd?fVkmxtG1O}58n%L z0*gk5Svd6UJ)oTi8~u0)V^lI(zUCz%)guVh6u;YWuAh`AZuelfS-mC6ygHyQs~tG= zJ8e+?t_q?upE%bY@?-VI^qloY-TLZPdeDP4Jer`!!lX?P)BLB!=CDYqnU)@cu7sWX zA*dsX#41_7sbKXf2?ZBD#is^NEebSK=|naR7rXQBU1hL31$#sDaKcboIgP8Bq(Y-U zaYcIY6Z61M$&mH-HhT(1+YmL%BW({njU%1abHKYlSbER^VOxrgg}*$Q>O0a_X`G5r zWIxhFg(Vl>Q@?B(g}VOhEH%pjb();fUkgC#WT5-XR#6_exhjpLKRxc8%(ccm`~N7Y zU9^yu)M4C7cG`)f-5#YdN^3u=i2sCM% z;dM1LM`o*Ng>zDOG-di!w{anh7`qiMEfKvHI|OX*b;=43{hX|wpzwVzdT;;57>-Z; zK{z#11nmQ{Fm_h`rlP`r_WhENxCxKMkIxs!1jd8{lD+Ik&UsqEm!$&v{mn*+5|0-I z-;C}a0H~}_jxLP*7I&rqL~O~l>QoBa@@tUv)pwotKsvxaSpNyMry_O{`S?j*So9@9F^(_|kJztmNg!Sh(9+%Ru&<&hU?|0AI ze^(Rh{bzf4CIn0SVgD}Mp5r}180aLuWM;hM00Tf9P;Z!F#^-5#C82x@4VOFakJL0c zweTVuTC6aek?i?hi}jNww69G#(ivm*KIXMkGagaF8$g<%B(;4ZO5`0$+o7H=7F1Z- zR0{2_0Ae+ak_Y@(#yB*$2GTI_82Z8yZK_N62!&J0FkFW4(XThqoXpY>JpgQQ1P0*F zx!VB>R%(jeu9HImP4)oiEY2R|ehMk!x`T5gn35y4=N)_V%_!S+F8l2B$6I_;E&H#g zlEx;(^g%`;@lwb#12h_i`t{`5pH=`QurSeKd4(K_!j^7F?8N8anl>cvRX4e03fh>c z=xF38?gybuSj>4Vs~H3^xbIQmqFB9ladIAiw~laj=TLR-4lo<$Y=yI|TCt#Aspg_k zt)5Kp>x6uXLid1b<*hDBhY{Me`%zXR0p(un;-w288g5pk(|iOuf^oCAGXAJ_Cllo^ z)5I>Q1ow5<%u5Pq?VM4mycj*naL;yo*KdCIJ}l{rNlcHuS&F+=myFP?>Al&N+>{aD z1IzOpYAMk(k0dr*#bc`5*BKTUBj`q#CQ{$5hkx3m5_mHS6xsh7Ac4~R1Y(-`c*jLQ z^vjj23_#hcy!wQVv<&U9ddyi{`!DzG3|j~Ot)wR|M{QFQNv=C4NNQSb^?bF{#6eMW zDC$Wk)&ui&ECF%^bE5d*ZaTLE$42qn#mDKNTn!S5$@;?1-PNhTiA#(wF=9&;G{jVU z1+8hNj^oh?sJ2jiIWzqmm=$Z`=~_Tp;bPAZPFRZ!f4>38DaOboePos*F69pKy?cG> zDB8K|_#p|13!yFd16uB~%h*+A%^Xr3Kve39MtwJh7n)j_p3H%aMqG1Rn{z|JKz1!~ zz=4X>pimJ0H`fb>9Qmr7S~@vBliq+EB<##KP?QnkP6TxV<3msWGzS1waXa{mq7nm; zgFo zxXm@xoR*th;pp>xDG%t2q;(ZUQ*Lz|c4XmgB<-(QpBJX0ZT5gFphgmCi1N)Zk;pi` zwk;_1kF5FcXTfdY){E9vyhc`v#9DLl95t^Z$>=LGaAU(Y;Svs0n6!bi z_1|h581Zj&T~Dd|JR}@5(RaRv7H2KX#(zx;1`)4`^gUNw%kD8RG&0tF}^E2Xw;+mn(@{A5)z~WIZhgf27GsVc8A-HcUo1bgG!G0#Dnt_POfKj%K%4- zw_tZ*03sHeV`d&>aTWqn-S1z`R(}5Q4qvmKm-g0N6()HP3=OF$%$41B7LD=CIiiZc z#gqDp7tr2_Q5MXwl0Z5x;FmqYbtbFm#|4Is1B~(f(0%8;TUlP8yFK2*-d~tn9oXN& zG|i;$@!60ShFvp#`+gWSyb^utlxIdqq1142WXcORbakz^OP>{07pjT)DcP?z4(pbl zt1BymEskN!cFNv&P4tMCJ)ZUysFw>GI|ly&LX!1bdNCi=nbG%q_2bSFM-*lRKbHJk z4D%N%V`TS!uXmC2@j%#87i6CXQpVslJ=F2>ci?f>8=_l~Q2kN+4=1iBE!goS!gKAf zwdqzqZue6Aw?%TJ1<;Jq>SBs6{KiJ0-?Uvnq(QLb|3Kz}s*n|QqnC-Bv3kku$!k(1 zGI0WpDM%mLbo6+w?1FAf+fVV>OPtud`|d!^rr_hng1}oL%dhut<3Oun?qjOgvkFc% z$0DjjuqPRW12$oD5*IJzg{NMC*k4V>uAY8a1d;k?XD=gplvba*6MQ+@i7-^AJ@Lf1 zSaxQ-$-Ss#mTj$Sj2KYW@P75UMKe%*xL+{H;Qml^LH|wUTq<50Z=ii=LG$oJG~jRy z*hx-=O(H<50{e~H<AjPmK{?sLOzu|?{{p*j#ohHP zGT1~@4J6B{@pDCm@8w&2z?_d(Dels*-xE?xlUi(>!+#X$z%uBXvxc!c1bAT`ef^ZG z{U4dOwbuJYYDq=96nbnAGDCY`4126O5*5wpsLZ*+l30;eqJ?3~?JX?bs9J)#7@J&? zhEg_Q7I03P!5v^Jglj+iTEFphhj#mA_%kiBBNG1?jprnFHFFMid&W_+tFKP;gAblC z>jTRm#|(%&ZP&M0*?fx~dYN=ljw9Xxla|jOAAExZ4#M_!uJx~$eT!f={t;}CI0^qJ zl;#J4UDQnT88DQ$i=Gqxa6?=nQv|SI6vs^Wypw@HXgULmP0l`O1A?m_7b=5)4ZM7D z5H-HyMm4R(8M5Oot;BJVt7YGP1x*mxcztk}vY@>l5T`;wOu#e=jD zl1Fpv8YDC19g_ZNE&x-zHMywJl%_JQ_tJ8v3CJj?_fJU;Qeu{nbX-0|;GL)))awu#fBtfKN!qo^?; znhPJu`pD)mD&V@$(CUUSO-n*QkkMsmwyy!hTVQ)(ij>pCrj1!MJ}fb(8dZ*3nS3_J z92lHn0>b3&Z4`bzOS4wY=FGvJwZk_lkJa)6bG=?PTw`z6t=ne_ZJ__@|Fwp7Sah=u zORecew!c^v4Rip`S(-Y<&u7V(DCM&GQu=b`QCe zc*b`t-BB^rR9tCcz9p?K@+D=DY}8iA{ih?7Qs=w4=0WFN;!>5M?n<5^iM8Jldqpq} zh!M{jFQ84Ch#Ome{5nuULDJ|R)J_$2+9qRY9b-*2zz9R9SH{a@h@W$#pYbZlWDpo@HW&UB z|M5*m$bf>`7=P`^I25qs&KGH;RE5DHCW|fK$?Z{{=BpIvI^AyiU(RQ=eg*NSo#di$ zN0XVLVzDK9LXxz_O=pNuy25KOIdql4s^>M+`f*T(l-8*m{zLFn`(L($s^@N~9QzGv zq&WKtq1Cp;qkj8{&>(|H>p4xSl7rYU!4SC{IdWM15B))(H!cG<&TeRX7g=)F4=8#{ zs*^n-+2to{3lp}I&mPpz%^HlV_@;{wM<`u@A3G+EH zuo^@h+Z4Z%J6ns5KatP;hu8p6G zxNBH(eW=&IDxnsjb!K(b9*?5UfEVH1#lyo%Y=Vz>z;bsd+Lbklx4^J^P2A16ORRvI zaMxX{BSfcficiN*WA>@QM&N*KkP~z@94~i@tns9B=kp57Nw4xG2EF$AdyB#u<*H*KO69Lmq%^w6Lzq;)$8?VgB{=TPCY6il@ccm-BBDX+>C)X+?;Ryt>x4obPIbfpgnE!{n$6ApQF%=C*nHz!flsLDjo{Z z7x$=v=0}G+(csm7PrQmhsHk->r4otTCy4H@&AVV7iVaY*5$ zPreNp=Pw%rskD%wUd&X9QY;BBL1m4-LMd}3Wr!>iMz~#fp*^M*N;^5EXiSQP?#=HJu755&vlTaYJ zy(IP|~5$YnqK=;HBDzTx&%J4KcyHJVM{^chPSCdJe6h{?})$3k614_L{9V^Y0Z<281K^*=N1RQC!GOManAr)sP47Mx@02!5b!u_AXx2kMt76`&jr{2O~Vx+xKQ_( zJSpnWd0RGjZzxLRYK;RL75jOGA6VYSut2tdbb%xH;#6EqZ$@x%e5q;4n7u6Q!DD+U z5_=E~M_aKytg0=86?S*|SKo4HMI~QiL*wmdTCo?#!0TTk5sdT@kMJqrUe$042 z$tod>QxJ5kx6x_kAmGTMLAIKS)1AgIRLVi2Y8w9YS|YSu1)jUUYywQ@sv&9WUV#SjW;TWT6?{_m#W;}O@ z%A}MNy|;*~S;(o%|{TR=n@693q}xuTe8?At_{)QOMuG>b9cC+WOmi}`x{?nLEh zx7#Lr=T6)Zdd;{=Pxvuev)}n8B|6Dby!1Ywy2Ci2YkJ6(gFLsb=YRW0nPT96n7bUt z!=rXMjiC?ynBa)1MAO0hnxd#nk@Y4m_P+idR}|Vzw~xT7U&rtl!N8A$ex7PzQa|u# zSdBn%lYR(c%Nd{IbQ7c$6Z0g^t653NZv7r&Za7iTXJ$DA34|C3tY6GI>5*<6HyNaQ zUEZYoNq@3;C#3f8EUya4ksi8!_gxk5l&BFLhoL!>1C%f0XKbKiUap5wS)@B&_NU31Pc z<{0ProQ@c!=sDF%=pPwbps9VQ319eE7qSRO*N4OZ%6Z@WK(nl8LOVEWG{Rmp$>zO^ zn$7Xa-gQ2GWfr+~US}OrCG0)-s18EdE0s%j&ZC6<9SR4--O_h{^g5e_4Nx{EX@uqg z!C1Z2`W2C9A0-V&5cA@xa!q3M<>1l@m0yQ_aQM2hJ}yl|LfF`eqM|9!kme3H8XFcA zaxjOD&4K6?Q}C?hMs!sZcrhmGq3DW)^b1BRbAu@ODDi;P-l5emb~1A6#Mkl$>N?Y` z^4#7lg>)6IHCAd^#ip6qxv~Z(rn8v4^2vk23<0ctcN1-t6j+aaZ51wn=}LG*>KIv{ zdbYhi9LS51mI#*33?Gr&rTlX(u!E9u#*ic2dt**sKI|RG2S_~A1hm=oVXg4INuz=! zS7#DCtGDAL2*_~sabW6U8+hlKL5&C6%wi4j9>M@Usplf8B2wL+!$GQ}MH4v0B|9vX)ecn4U zQ7miRe_p0B7AOChMc+()&U4bj4TAl?dx)J zz93zG`Di;+>r+(SKT03ASs=#Q9jNd6-Qpne05nvrJsXlc49exd$$7LJF-Y4#7|=@ zj(9|tTBoklU%RsIX`mw)fa?xTtk^|Ll6)yFSyLFeIsB>d(PbAQ#=Hy=`RM^nzy4j5 zbyJnto_3rPGAJ9>UBiY}AiaG1+v4u}gBotL(yKD!kzBeez-DT|22c;cp^cQ8igw&n z*|wobj8WP9AXYV5js3-txHlD+`OWh9x>fJEeFxWA(vU`rDWf|;??pER%D}B7Sn(8- z6v**57AD~(+90@hK=j^NS9^W*J6V6c`3cw{*c{&e7u0vkM49%8ok!>vgz!R9e0w?gU)ToVTirSh7x7? zAOJQuc2cqN@pIAjzxW&bl_=9P)Ax2&Oa6fe&VLGTLBh}@yUzS-MYF$t^*jSJFe@(V z9bk}iC#|Eu_4Gvie^VjMfz3ibR_vYqh2xqoZ3x!^KM?gb>S%#1WQ?%!&e?&m$;;>+ zW8mB6f`Q*z63!pwOOH2npWLR&?8Z!;K@0($XlpXp$P+0;>I~AWCgR~AL)BKt8ngr1 z=?4kZX`ht^3v!AekcqmJht1|4=BDzb`U=@f1wNi@*0cAl9CR+QN1 zCztK<0q_9GfRJtK7-;4I`$@?gzYYK+nLQOEZdz9sg~A|f-Zk~|%kKi2*sa@(58lub zoh7b6ELs0`W6@BR-h*+SbGud7XT4S>!qc@uaG@k#gKk?eXsmlY7`vE-zIR@YsR3t5 zvvBi)Fc!>v2rmcqcE>qj)t_iq*~Y)r%)z0ph$3&aNUGxA^7m#*5YiC3%jDi?yh{@tO`R8 z(M$gy3qT8uO1orG0)-WH7UPyOwsD5fWqjo3ud+l`N>5bPn#ZX=q5D14=NMDW7hi?A zExYKT5wyolkNPf{EMU78UDNs6+^6-w1MRZmO!yVMU1>HjPB>4*6eLu`9aayQ=xo=z ztd$=9I9n1DiJ+V|zxYxZ;rq;cr;6P7ThQ+s53>NiB_9Y@Tu$^T_lqoer(XW_PSTO( zKbL}6BPh4uN1@XGZLVr90I<-l7fv1<0(^2Xdr48d?xNA(7PM zbk}`?W!GchV8^ZfXsO$pA)g827L$%xUlU84=Uuro@rfZI`|@7349Gc`Umk~~2|y6T zgRaeqPlP}?TJzT&B<}Vuv4h|nWm4T}0bjMs4&%$wlyNbz+MPd!VZ!<3Un zjC(;)90Ft{5dMW#P`6H=>)iy68EO>cuNmq^;b~gj(!1g~ByzcTxnv|sPZprSu7pc?BkRY%& zRlcy5t{8p>^a-K7A7$s1ohxfQ=uKb?kj_Qezv**?hW7&s`oemq>=3|ar#70i={3#} zT=W~LzF7TIWsZvmY5WlPpBmm0ZY>tsqZy3jJe7CIz}N$}POn=0R-3*+LufQl!F-^) z)o0OG0;5L58G60-;JmqLMk2xR+)oV#A5E$q<>@@jSeDG393p8SFDQNCzPb@uS!KR{ z@}r0hUhv&3Lg`cRuvY-*^;~iu!%4YOZxTS_-bOt8qGAKX;L^Vm6U-!bWw^B?)giy; z6GqIs>B_|1n7T9H*8b7I(~_6(P%dH6xXs_Xy%`_>mk;z;WD_tzLL}4EK4rH({6L?~ ztKg{3xicKdJ5~34I}1gK(0P2+dpfFqjjcUSP7uV220Nn!Fg8^jB|-&E-zG&b_X-P^ z;Y^yhtP~;Pwm2<;~a@bERG4(7TLx_ zZKKli+n-@WKOO>=UeVQ*WwDj5PkC(DVn)Sq-v%JDju{LT=jwNw^{#rI{|*P1(Dc6?i?i5Jl6cs#+C%X6f8Pd<)fHO(2KAo77); zVEpBlK-e5?ZN_xlPthQ;0bp_+lZHS%l|r z?K4(|`_|~oX9f2z;L?`A+s+dq{SIB~4hSUGhn@*mW2v)w2e`zob7<9rL~ZaM@6|$wNt_~V=`s^LFjYK=49m-gjIW)lk`z};b)ixo zqXo3Tr4grhw*^mD>tEmtj5amgS*V@8E#IlV6M+uj995M5SffY7+IXY#Dq>_YE}`)r zk&Jh(-Nt(8mTg>%bx8j}Zm-(^;5aaHJ~wC<{^QL7#lLfu{1OaeCBNkT=wJG4Oqc%W z>j~`JClddU8w+x_7%nm3G9dvZF>2ohL~&g+klscPPK5g88Haz!69Lw`Neb*M3#Hg~ zCAMsykPfFT&AT8V*3qijD%g--VlT=-b_M)05QUc@NXkAnUlqf41oUEmQ49W%g)pO+ ze8A}ca2f+b!rH~>UK1M_b2hOc$S&5*p{R;9RQESGvT^xY^TE{q!xmX`N$GLVu#1)T z(2@DV8vr=usR4+@&o-BXuBKnOmF2-&&nKqi4eKe5GX%)2S#)Qb#O-&uK9pwJsn4f+ zDnmMY(Lqg+X#|0B8H3j%BPpTvYvL37)&$;fK@JP%9$4?+@?lrm{Uv5wARUL6@&A3M z>fpinsa<2riYX$B(pP(Xav0hy>d2!t+pP>jSx$l_YPr2O!eVrsX#_GdFH}@kfeo=o zs{6&S&;Bdiu5%i9^A%78am1{dnVBz2 zQG*zU+R9c)PedE2ixOur1hLb`m~7rkpwqYyT`N=YE?-w4sS5#|UKK1z*c=)AgGR_-*s@YvipYuR_TS{F>;%ahUZ8E)73-HJ6i&uLivyc&y73h+sm!|b zj~e--#kan*FUpTo?i0Ic$;pqpUF=@3j}t}oZDa;NdH+6B^UT{@4`#AKA#)`o_m5dt z^a&4&?mYX)hrjiP@mAp|{{vsN1sWLT;%KMn!h&p3wLyL z7F^b4`AMzQ0-uh`s7KqV*0e^mgOI}t9W2rJsj;=>VwhX!Syvmu3G^-+6vP>H-)uxv z0=#1DCv04aaq`1L-vuB8RK6Vp-p^8`&!o^2k09arDYZffV#8D6ll;%h-$HznK~ijC z^#KX9ZO|WG0ZtEFtt}`DQj*@?ywV6qrDRu_&$J2(3t@Oi(FVTDGXXhZJbTH} z#^a2dRHu$_oK8XXE!?;u8C>wMA@*B?)A)y2LF<{VRX}j+Hc8C0<4m~3-&>HDoO6H{ z`qDuK&ScND70DH^VuBn%gtHc`Da2*sRd54le8Np+WQ};&UkOD@s90;kel@uavcRxE zJQoigJ?@DYP*Mo!Jqc^C4kyM@k3)N5kx}6=$?3-}V!|?K0uVu^L4%&Az>IX@2$ta9 z6in?L9KS0%d35)Oux&B+#qFLCbAqa4Utsf=Isl!Shj`q)Y+mP$M~80V$vr+0E~%|t zlR^9h4(x~>%B*g}3q@2{2V%MwQq_+f%FPfLYHoBpK{X#8t{mvBfp}NpwZn zpEAv87f22>Q0oN^Uv%lMOHL9q__rUO?K6U^bX3))&v2hGftjK?W!Bp_;3E^; z19Bjsu&eECul&Y?qny}XiRspfyw6d3Cz2|GDeXnV|a6bo;=hu<~1Z7e65wX zOM>V1hMmew$9_K8Q8FhPq3R{O-FM54mdFA?6Txn%an8#Gt$76YmIH|SL~&=VpfJ7j z4O09&n?iB%)Qo2CHFWUPcv5cKQ$vsu!dTrMms8lpt}PE}R8IeNi_I3i<}HK2SDY+G zg5CA}Virb>15;YO*UV1ue>ULqbOah7#8KnjG%vf2XDi8bL(%KQByni&%C7N5qXMT^ z|5stcamSmk6^FKl30{nQ4lL-|aRvfWOqe(|5coLp3`1zPS0IncD#dmX6e627SYdPo z3uP6kE$kED)k=t|>UD!}`}R%U2=)Y3ZzLlIng#U5xPr|1-H1EXU0<)x84c>Ze|WX> zii#*Ji0!V@f{8{uAq>YQfs|K}$vgA(hq*3q$!M>Z!(EJgy-NQ577oGVp(icm!Gbdl z2OjLL*n1!}tqoZjjS-R8f(h>uG1;7nbVuawxTvUciOUCYnTxsz(`5!?{~g8m#sdt- z!^Y9#IcS=w-x#HI;cqILbhZgBA8nW#xK=ju-^_nEED>lWz|fu>zS--o$C}kO;$CxU zyD_}@rY_XB-83{~)uN7i_Fs}`lm{LfZ*ZaY?~yRcKl6Q(*3ecAr=txN@klK0cGtSM zE}POC?_UE(3r-?xtAh}8wP5*?A!Vtu zi|-iW3hweuv=*^0;xdx!6vDrY3y~q|1z`FQRQwUigk;V5^#xq^Q7xXS4u(Uf9TbFy zyGg%@Pf|YASIrjFsLEFsbWcIDFqsb?px_3otQg{AHUpw!QNmQAZ4`J!jfd8}*fZ}U z=>Va?->!V$^dOG)$I(6<#u1X(S_r=R4ef&du8WWFqO!*NUm$j7q!R##2s#7-gOvpI z@UuPwuhvA`r|v@^9#yhm4`xuttDPqEqBzOsLK^@Aae=NojVy-(Uu(K^1wrpt>6GYj z=wRqje;-Jf-0*7Rx0FHspqSyGjX$xklnnml}6e0y7=J1~#xGirytq)aQH z@81j`-3>OSUIpoggz|PKcknvmdq$~6Rw8c$FinQCMWeonS~yBLBcmeGDAbuit6~e| z1M?aY@z^)pzR&1;n%t{^hl1BumcnlO{cc2#RE~cbjbNFvBNgwPM&YeK#5LrUQXGS|CTBJ4+3`=|5PH zdk^+!sU;7yf3G|8G-)=s%hrs_chVpGVXy2t%fizw%CIlaiQ%IRP2!K+YA3!*1$>Sh zHtnZTmDzv2(ghjzlMA;8#+*ZxPS-zOeg5ArCmMq&l09R5oL%?!@qRj{GAQsT{t5hg z*FJ5EHsL}k&oNr*C?JcMgH3FFo&QlIqA)~4tX&x-IflJAn5P-)fyu9hSu3r-pO^mL zIhN>N_ZhyY%v&{X?N64=&9NiN7!kv!Vh_ie4=%gt@~(XB0n((x^b7#b@IQ*(5-^7Z zg~aT1us04aHz!Y_toClvXeH_yp91ND>2_ZT&`p98sCW!v18n}h#ig9|rhB!JY&cNy z^lW*q%=tT*eu5(JNnNJ5Orl}6`HH@{wGjeFVlRAWRt6E3F;CG^C3j<$y2@0Kw-q@0 zOix>DL$N>}L4lIV^Tz*@Nu8{C%d*byD#8_rRH}7dF{>&M@uij}5MR%+{AC#o30|Lt?D=$7=>(C4}ZGF;$ zpSNAQ;ZzFP;oxZNGub<0fr^$yv-H$1?oFClYMrbk_$^11ebONwmS7Ct()czZ zQi!s<`U0prCJcTKAZ~JG5hl7LL9_$^Dq&Wvm@`A7 zTxbynP+AD*+!C@aJ+n;VxYj6nZ434VMCR<|G(9as7`k8|s@q*Zw31N8IKbz!p>YU9 zP=RC^qxItQ!jf>a<5%`pSAosU-o3*_#g&jXG~Hd031*g-)di!;w`-LNpQe}C#gA7vI1>4i& z`n*WdL&EAk3(uTEi`*~0d#3;kWLB|{DOn|<+@~b1G2iI)LOE(dywSf3+^UQLQ-}qU z&C>*qu;$pHywO=RUhL}rmtJPNRlSB37|uE{B(9_>Gk~~J(hjg1x$mOpW2wV6>&yFq z-Zk;-0sk0_2N2@)Marlfxq~@Hr)udHkR6tYHQ)g?qoZK#P1(<9;>)o29PpG7K>uWG zu4O}o_z@V07Pr4Nriz_7A3Ps^^0hbUO@ud}c|@sDPDA49Dhi)&AV3s5XY!ljrSXoD z9B2u=BIbpYzR&Zn%+(z@MXO_Yu^Ky{5q#7pBBFZqd)YT5yciXh4%gh$=-!e)Bl{~f z{I?g2=74%(tv$B>J7R1UV{VZfeqsw0e`vRlnyUH+G&;}yWGw&f>4~JQK|IXx{;uIE z^%8Kb9zC=sMf%&hNE7u)yGvwz#7R7cDJlJ!N}xNu?f%T`*lp3TcDOk9I%#vf+HOlw z#q$fczz8*81Po;N(vgF!nKFyB)s05Fw|ts zSu{f)a4OcZvP(5&Pz`0NYJ=m#S?^88Tn8tS-q)!&pZ}cFN(qoz`DyNmb#g#|;_#cz z8ScQ{(8PlyU~THZ??Sp~y6gN1ozr`?cM{Oh`IYcbK)DyJ$NL}zzC;}L*i-M=m?+*T z{#97QtSzUvr$H^@G;IK@zZBWt@0 zzFOaZAcjm_xXb4J5hC2bHC4>TSb6SeJqeKGoRZ|(tuk3>jz8NRlpUxPU7(=q{yK3T zGZH)L6Z)`QD%>>1?q4c_mDP9qjA8?On4u<2S=|#)LRhwyXXVuV4|Vj~(k9Jn(xLnH z1d^|fZolgv{bGC*#HR;L@*JO8Z4OmxHgRQ83Q4$6==K5hS!T{RQaUuDnPk-*t?90)9n8!gXJ$9Os^K9;!JISaU9IUT&vb~hR{*-P=%LmVmXYa)Xt2lJhKq4@lqhwtq3LN!Sm(zBP^{xSM7kr<8s4YP@hiEB0%oQO5N3 zdJsB8&nNWEpTE0UBxZZtFhRg{*cw=svf`tqi?rGqhH$TF5K6h|tTEJM0cD$L%w`0qc%T|tu;;{7-PXd6rKTIS)h204Y z>i`47QHWkG1bhN~+w4n|e3FRXewwBL!kQKbh+@GM<@eU#>mXf;wO-PkXSQZ~`4?Ny zQc=PSq$1qa`F0-cuBd_Ib5RIsA09Rn!2|DYFi!D7{F5eDmS%<(HQ>9tO_xv>9YI7` z02YSi83OK??$3SR1jQm~vmKopc+xJn`oddiN@{y%8{)Wq;EOn|UhhUMo+Jvr^0sDe zs$Fd=FP(82nk2(`p@CF(#r!CgokEE?>$zsX`xd~jH{r8M0X7u2(ZXAea5YXlo2cK{ zliwGd51&A)du@o5N$OJ>Ingv!XMPWwD-`Ab;VEK{EJkI7cYauC`OobHL$E)Tv?Xu- z^cRBWvDgYxSlQDdjYeo@??1`wK?- zHIXRk#_&+A*fv5oklyN5&dgN=0-$|bH#CmrT)?MuvswTq$XYnAojQR?J!Ar^1JswD zf^1818OSB5a|gf1Xau)33S1YG!||6ufGNj(ULXuidSnp^ zzdU{(d%3PIgiDq+0-Zv&kELy}Hv<>P@y=N01;3S^Z5n0%BJv;3J>q#rlFk&Q=n)fk ze5e{mC=rEcBBAF0MF04?W67pTzOVFgeA<%n4kz&A*c(o3c}c0yd{s4Ff$8BwU|7z^ zJ4H)}3#oDEADezmcdNo1c+_|%EK^rV?p29MiV{xCA+oLSRERl_J3BZwV*1HhFKdZI<&uVSArEVSi&t3Y(?e6ia*$O`Yvwyl`9+Hrc zeGy6<(9XIiHvXmfw3OpSZ6kYdruR4{{OYasE0_FOy4}%Bri+lApu_Pz-q@2uO0K=#*pF&-hnTxA1>t~p2_xLrs2miZ6}cQ z%Bk|Vjc-JBu@r3w$qeV6hDRPlpJJLqCBPF8PhSZXK-+jHps5Omm65VucO6n0l7VXM zDVQs;Ce+{Xh8CYBOV=-_fGCj-Duh2!Amphj%s~+3?8!MKrZF)ks@ ztIjHvgh2hXy`c@Lg#fBxC|{$g;$gJtfn?zW5+V?ct!5v{4;M|P4LxhOr7+ejJo6hg zSAWUcg7Ba$)~YHr_+GQ51@SK!9Px;WlZnoy;71O{=5e&#-nnfx#QF_2WkSytb86DB zguN;BY3jA|kd;dQxH9i$?C3~{a8VulH1_BZ2B@jtvC&Ij)bur?!&%T?GEeY(G6&V4 zkl(6Fe5E^tjhQ+r$kLR7?h{h!@1YlFbLCsvQ~|PMffEoBPvLOk#C+J2{fSy7PvQQ?{dlZ{wbI0WiL= z=+ZBqlo0v}SaC3N6@DfS)olHw`zu%Kmg_(%O*;%=Cif*d*NnOHM!YoSA#FPS%-u=Q7W9r0Eqlayzw;sV^j-Rb7)-lIAJf@mZ;dkq%MbcK* zRc}FyJfi|T%1nP$$6xI4l%Sl)kdy@riiyG|rAiq2lO7NDC;3iiOg#D3p!btb-g9i7 z;M^c=H7Dmqz{L0C?3S%;Z$+AWW z#+4;|>k&th_xmlKwTsf&TTx=WQne{>IDmJ)CW<{(nt=->VvcPcO$);mDWNUUg$J3P zWmk=CdpKuI&G`579DDGhmme03_C!)4s5il`L_mDNA}8Dr^+HU6M1sO2!=q%lDcA4w zCld^wWI$n7W-POqa*G*xovH=v;BfB2_$IKX#H5%~2BM~-NF3C?KE_U5VBIbB01zI> zI>W(Cnm1WP5#Gb)SDN>&OfI#j_Y*JbD=>19Xf)Q7zrM3WRvo#APm81A6AX#ThvQ{SLb@Q?2uN1mtF4*T`@}^BY*r8ttgKzusyrAPO65#y@o2BoM%i`AkSn^2Na7?X#AjR+y zG%DhWnd!VJY*>bSNK6N5W}|adC6x`W5Pj4|RI64rPeC_Ebb2EQT!)?BEKTW^a$3f@ zFIm}$bCzvTc~KaRTwwxvf@~U<(GaoCH!2Mzv}0bCKH)*Xapy!!LMelB+wAhZ;jIyQ z<%($AR)F!AlO_Iu9ZgS|UPv47V#X>1fipGGdm3jQs;f4XLIK0>kolcRN<{h< za9>+fBzCx1`j8Gy!$dC#*!ty#9p`*4MAAxoI=QcB8HEcm$CgpUQvzUF12xD)$1+6< z09f{svAfw5koV_^x5LM;PeI@=o=FH;aK#=nN43|f^z>t_`ZfL_{GAt$7ehVsH%?UC z;#lHT3VUz)nPtssK2KQve90YDrpp)i`3~;ZZcSDo`;ZS&c4gO2cCRZynOkhSZdKf@ z3^)yyfbr=|sUU+NLA06IS1{d_q%gd^%xuUEf-1N*Z%Wf@2uYk7j`{@|e)O5{+~!S*qNm1m?5_k2a- z^lmBX65{;OmOV@`c}`t2rUMbEcCAjNosAa2wm~90y#g_GAtUP_bn&2GL&M5CyqWJ5 zP3Jc{K9DO;rsP?Vgl?S#Mv)+1kPzQ*=Qr;0KsQZ5M109WmyXx-9Sg=)SIMmB zrfymcU}`EP^Z@NA5FV0twaC#@E~S=i>LGsD-hTjvb**Ne#x1OpdZsz*U4o>Rc3)2i_92FGg(l#X_B4Z!A?@~zbjbmT(God*L^9; zF;`(4cw$qe#4kTcZw>lU(WjF&lJZZFbX+i)oV8>mDhoBUCY2beZ5k+=(us6T0RT9f zzwu@hB>j?YfNPh%Xve`pXap<(&Qx$QLrH>kxLzOma9jj)UN*^70envZ4Ai!BB*zL; zU9I%?s433^_0Kl*I$_1<4=gGNRrGkgdcchYaOFGD8~|$QVmu%S0PiE=^0&O;Np&YV;3=Ld+g*0TZ60JXIxV-x!tlBP0J7|eC`5n+#dcA@;ock4RjfVTi8+k?D} zE5k)oXqQvbtDN*v6$Jo!YhQBB%HvhvFu@M@9+olb2yTG%9hbi0?R{(~oFfd%Z6Iw6 zH}lTdt>B4lpL=7`8gU zh{33nh<<@BGzx1CGX&|^+#^W{X5eUi^3aT!S3!BY@`m`67BLZb|$K#(YZ0LnzWRkUKqWj#kK3j;CF$7OrIRT znTG*el)qJ1RCc!XHc$QDewT;}EPlTxy3EJOW%9%6QDYoG=@+?bU?~^sD!Iw2;cgzUs9=)a^pl z>=$6Yt@Eysu|RIvAtc7;XIlD>v=0`WhnLwZrVuOXTq)2_`dp--KeA@pv>2Lb&P@d~ zgB$jNart>}NCTjd0nLCR43&4{YvRpN0at1oCme``2F7!~ z4q$&4t2BSrez$w&U`QT5+5ZsFZHM-gy^_;I4gA^cwcW0m(r%ciFtnL zN#-TZ!bO`MwR_IT_Ve4uGltI|Y+vU+QV)-H4Li2>f3J4k4lTsc{v3GqN>%E%-Rc{%okhsE2l2=}D z#Erw)uBsA=?;D(uPM|gFC^w3JRl6(N61>va*6{ukD9omCTGhwTVGsK6b4ZOL=iOE} zxKWY{0!f2(AiR*S(yH}$*{FEZ^9Mz*Zk#*liH#o8J=0r)Xrun`L6ei%%g9V%yAyO& zY)TTKS}R%a{79QHO~V>b0jhgsvHoI$K4gYTCLjZ_I;oo;T17!^Q&x{}iztgBg=EZM zn89@F)^pQMd@1+MSUw`z?qMzZZd=vl(m#i>m9tJT8Ul!c^6H4Z_@HY}mDP}yD-rkhsr?W7Sf9P7T4la*!!^O{Q&0qnpWOdUWo?-Qm zpTbrh{=C#lMJ6^klhR7Lr<*0}!!ej5T$RUNF&Ph$Jtt?~iA)-;iMfnB_x5-`FmfSd zVOmesJLWT7W@p5Q@DpHouF`?i91$!g_47s$1s0fU_OfDc5k3C{`20!2bm{yA9eMIB z5$y{DwfW%rTbKPI@mr39dFHT+0LHL8!~rQ=u{c@l7j*YCW01w~N-nBtJvzeQy0dJt zTod;ZHsqBfUZ?KHx~Mt9FFtJQ{ZhR*y;Ak-oL@*_|9F^Ae#rNj{C5X#-3H0l`t4RO z2ascg|A;<}<~HR=-o;9XFNm2-lVt5;n?%m-O}PJ0HS;xpgZp8Z7ps7a<2+raF0BfN zQ0xLJJX22p`~$q-A!JL`D;??Frr}AE_m6*9?y#Dj8H_GUiva(uvcI38a8T&o+Xs!m zudq*vbudc{O^a)esVX48FJONDjdQ4lwiBmih8_*s{Ixd!`-dJ7(eHHNVSVAAIKoVjYbMkRUsI5(2v2YQ!h>;=#P%HX^G{)v8jxYKh!6velH*!8T^8={nn!=YfE- ztd>RsCxUr~(lAUJ`w@{ML>Y@t>-#*{<#X&k>1!?@*>PYi8%UUWPGD0@fqM9~C3wL< z{Fv3U9TXTFef(7L4UytiQlZ~jD4}c0_a=$fWtAI#qZ)$#=psFjLD&>`MM;%;?njFF z+ku_XA=)wD&bgw)UhmDNSe!vdAx?e!<6j1>CLm@n+o4~9T#KyprVRH(AKLx%MDwBr zcJT{~4>K0O%R=C0q1;*RnGc(7gl1Zz}hRwpZma z5z7bW3K~`)VwR`eOwLTb$V5ozs%I_PuPk%jHTIEb*Uz)w+*@W`(0|ekxj|@Ls45rH zRFm>)aBJl}&X7vfB~R6Vxua>VaMh;&ASeOn#r#GCi**BbuY%z%%Qj-I-Y#OoT%IN}CX$-jtx2KD$6W(%5wG;z z?iVXg5H#Af@5x+e&Ob`*Xj#xVo_?0&Lr<;0$8BJm$+psP<>?xkvhJIW7HQtn#z81U z*=!EqTud7c7v-zi7cCXq5E1LurA(L(uuOPn0DO(%7p50RPVlvmcUc3xbd1E|28vf+ z#={2q{)o79FOQh_vqnoQ-73~rgT8rRHt4vjHS#s4FDeh-RbQ7^&ERhxHSBy*_*&K_ zZQ^$@b}+FzzO-`yH7@Ewgn*|PYDkO$|YWnTaFU6T5SHxFJ zaSjK~MD_I1Cr5WdiY7eu+zt#5pCZ?kYsm_+pA{Xm8U2{*Nj1leS2Qu*(C3b5P^>l6 zZV79=(vTfZw>_#(K&8$ONe=~r7gDe_JT%zgPAEqCYGunI47eBvxqDan%iNg!pYU%V zj9ac@WI$UR;Gt6SLnA+r^(O{<{q{-o0r*+DQsR$MW!4oQ)$DoAdCMP@&q=P6L_Z9x zs`>b{PhjV3ePE?=*Yj}YB6$v|yY?bT)Hs%B0cQ}K%5zR|yGEL2W?Lo-nzyG-slMD) z>yVm>y%-O3LTzgKR-%2U8*3i$mW`I}lj+K9J&~N?KU(5=+q$L>xqPtpSVwu@U^^kz5m84Ozde(K@qvf(bWpM{+%h+Ko%l9 zXLvS(Ut=<*pjPV_$idvSoA|WDt=Ip*GX;VBJ^-`|-1>?36LNl!-WnCe8aZKwV105` z$5R%ZH3zo}EGDG&u=7fRe4fXk zMjiA(^YfdxA?b;t>KM83f3s~&=6&b|Viw-SCZTt|)ph!^$Hh%A%tUGkCQeBH)}*OU z#N4To2-j7*P%?#E2HmZ2(3;Fv#`>Yw)MZ5;7d`vCl&_IZC_nv;;GNflp(Lc`MI3%z zj?*ti6Fw3XC%!!#XlE5WEK^l}v|_!CimH#U9%#2=ikgbeNjD-{;-HTjWciI;uZl}m zKW0m`tHi+}iPi+tZAG5wQ767pQl{7ERjkkI!1)>Vu7~b7dqGv=ZY-w>4tFs)T%H*e zK4%^`l~FvejJ0-U^XDu;Hxm!)WQKD?AEn)>5MRL7T}WLCT%C8KH&i;}^mV4>w-zlG zbROC!1=xCQ$goIzv=@upe#JJ5ad)e7pTDgvmM`9}IeB(0>l*noAWSRY)iLG05~Ntl z4iL+9FA%jb)GX)s)Hz`Ho4F6>#YY<3)a{p$ntlVFcP*fdK>Zybj3*b z?&bMYK<~wLsl;84ZC_;z-kSn+?aQO!e}1lbi0R2?b^Z+PXpl1F=RY}D-gCq=RN3-& zXEp*?h7?2peZ3XYGCJ9A=-&R{bmFfwKqekeu;xD5rTS}>O>dVc&Y<`n0dqa0Fq11q z%9>9~Mkz3?aFkhy>4tb1Q;)yH4rak(5p{a9Z1_CHd~d&nJP~rj{MqpRc9;%nU*z?SZ?a>dPauh45Ee`w3;Y7F@AsHI^Ot8ZsxViR>vE^ZCuIjFbt)&0#|_FA!`gW_!aj5? z2i%i&7vA3ulE3*L^aeg_nX9^I6p?|uQHQM_d0e?tK%HZT^RwY;a1LuKGnm9jc2O<% z>5Ko}x_-ni(;JfluQPyUJC$wXn17Cl9g`rwS$m(0NfwP^=*;wPj3dlIfV5$)wn~XL z?mwbHkO~Ag74v>E<&#%oxm*YdWy@U_nr3qUSYY@BlknguAVPAmyVyl_D9+fdR4jfF zfk_29pS(#2TAa0O(rL(#QL1YVcHDpJ5<#MIEW`q(I9U$GB)9F%!pcruxvYsF`(kj^ zlr)%9Pw{+N-4lvfB8}K5m@-(@=mJ;RB$X4_)ci`~ddW0WQ%|1bMDR{R&Q=>erHmjI zjk*GIq`1kyOS*&`w5Dyw-@v$f0~||UwXk6pSDd=3Iv1ej)6-`zcCOsSfRwr__EHKn8OnYe!&X1Q zAFtOg>EIReHex}SI$h{AuPb8}CwXjN<*^E*PeMwnS?dzEtu0M$f|3Z#^RS8iU*=eJ zIx#o%yk*+R%(PSPU4E)Lvi(L!M2nB8ry(Y2P|o7VKMz&`9mEp#^}F$_m2RNzyF|Ia za{Gm7%vQY|J9>xt%tjgoZxk8~@p3-ny)*pB9v3WuP_;QTb&JsbIDSq{Er^dSmXg^c zdP|_5tumrebUH|Vl`0AWenJ$B#k;7Ih{32c*u+HH1k+d0S~*gYK;q&UPtjDknk!Sf z3&RknTB>+4Uz9#c3g85n!3j>sbFcOI{guDpQ)E(;GASx=fyE|`7XReaq9zU~5T|YEpfuR|Trz7r zoi%|)+U`%?uJ5shtpZlAPCPX}&=}C2f}d6?g^io?JV15L?}=!vVQ(vKNfU!!Z8|4I zVhLi{%5ICs@Rg$!n|E-IV@{N(`7S5On@@0p@YT_k(Un&$&wiE3SE_|SD1?rv&^(l? zA6snBX*$iJEo7qGR3jF%h<54NEvgF_b^5Y7yy+Y(Zmu=GxyygKPARFuIQ4%urN4?x zc%XQ(d&ki{e_iPgO>xX|LV3(4HtvH&bnP`*!{m4B#BVy5UU`$qh5ch+w$UPGZ1v(6 z$hiDs9hCi0i@$QdClAWY-q}~XkT>PWI!d8Ro;?4ULmoz?hJz805htjVFQm642&h>4 z7Auc7-Iu+X4D_9g2@9e8nzblbw6@~sbC*E(<*bIaxv>Li>5u-lU~zD zrxKe5MKMzSaI-H9qgu+D6F)1!+Lo!m)z9!pU>r>vc7=l#ZD%Jp4pAiKANE&*e)I9B zV5b0yZ(C+8nd`3hK58mAS|-JqHqTA{l~Y&j6_qsD{-bhJ_Uh0 zC%PtTCo=3TG~6c$Co@>CYm!$m=jlNvJ5;kagW%lLLumf^?cNQI+69SITW#TPp8CzV zvRhu3-TiVKH4>-aa7AkiyOF0|F>>4!kSazMtYQJoX1?aSCMS^|2iv{XH$zQske0NR z^cak=jwtZP(#0RnAv>~&$e9HTaoyQ3Bv^j>+*B7$-r>r3*Pm8ShhIFL8cC5GXpqSJ z--8vC>jIGZ_h?+(pZtzi6VQh;PW<_@47r#csHV0}j|rCV$&d+sl{edMc{ftqoyO#$ z*8lj1S-~J?_DyUSx~J##Du)WzaECd$oiZg2^5T2S&slvKif)O&s)0|H#o}C4Q^`&L zKenziEUK*w!!R@oLxUjQAR!3S;s8T;r-&dREs_I_A`VD*qjX6~_n=5B9ZE|INOyk+ z<9^qB@AI4=!-Fzs@4ez(?}|;<^34Q7=A`3-nSu7~v`Fcz2roaX*O?994F?x$is>eA zm_@`BvGcmeI*JTw2^ExP#>yeWU=em=h2o3He2+Xx)na^m1Cjz;rtHUlAZCfn|HN+r z8%D$_ml>?7F*3mTxR~nqEP%iaO-N_3S8RxCPyI4<^sDhHlUwP&e~b(>7vn`_+jc4= zI%6pjZA6EE9gR0)KqDrLz(IU8Qcn+@k;vWa^8KDO_{xa+9qn1Gfm$TG zTZ+~m;ka#c5MIsbdNxV+jkFLvn4XN0T5>Pc?~7)=>ct(YI=5_Ion+pluw&J`wcoW| z{m6(jSKi!Ee`luB{6b6HNGDdiv;Bi7Hj_!>M@8$`u}n`hGT5xHt~_(|^=bFV5dRi! z(BblrI9C-kU9v)GOmQY3*V{SKE&w3^>mYJa`it^#zz}aLgC&cGn8-TUIktq1FVW%O z9!aKGcYKC|im|rTggn#~?`D8}84DrYCnc+^(E?1VHr(A?C6~w|8#PqIZf6(Bm8DZIC zIK4yJlT`*aU1lhIIHfMb+THz7KRF9m*RY#zisuC>lCma8uvN&}+UTd#Tm^US$5laU zsryR`ZmFx}1zU=Z88ohPUGX;BsLMo*4REJNT8RXFkEOX6yTAL4l@Wv3xs<`c$#nL~ zsr&uAY0Cq=edp0w2Qh*zQ4^nLR!&V?oI>(YGLoD*hr5+%c^meescOLFAOx>rdt*Wow&kKqdi z;vh?KpR0O#N&0^%TyYgZP_b4<3F(}~*zvuLtv!*$BX~YKyU5asj+Z?{g{E~6%uqOp0R=FyJtBAU`HO#cQZ0$5%e%- z-F<}aFEK)C8O}YTqw3Bt>)6og9(b5Gxp_0Bhjh1E2@u8 zGS-UO?VVIfLc(CpnUZqyTJC~6EZ_1RaNxTqL$!rX6>R4|?$XDZ7f-d!*dQPAuJUm; z`_ZF~JgwfBZ7za4&qBYae%H!fnKz;O+us$xmy=WAxejmYyK&&_U)SYi?gAP`2sqVTlkB(U{mAl5e3 zN9&pETeHRtdrsuYy&aZB3k!GN9o@I+k!M7LGbm3@vn;HPy{)k~Ff486J0L0>4boPu zEUcbL`!06*?=O#_>5RnM&H035c{fx$qLqcoT2XieWbTmH;W6<@cA9X(Sm?>>$}~R? z4-O&=SI&^(&B942cL~u#u;|bA6cOXNsWL1)WYZ&md8gsw6M2SVT17)C$<-XKJ-0$) zbb}YLLa7K=4_A#1ii|6A?A+rsEDtMjA{yAm30j$Kr|2a5K~_>hIj*+{fy>?2A4Z=` zR6Sj-`H>-(k7d!+Wk?YNDJ2qlK+!r3{6h~K(CPN39z60c-aJL&pS(3dGal-O@m`J8ePqiV3aE4Zb0C4m?>ScQo7fo!Wc z3rSNXR=fQ1v+1`P7YrFhjRo9U4Uf21NJ%sb+iZAZ89kH++iY(#T0}nm{DTv^758Y2_qTkrCO4>!Q z*sD0PCayXdmfV2dVt#u=lb++*N!h8ubBEg8yfDeWaLwj#u0wj3wUW6aVUKsq?!-}f z8aYsu=gwm{8XE9IQF+xTM0Ps3^g_qfvep$64B2tSY)zr7*A6agA>y0 zaUid>2NgA58M}{}9+?2Fe@TjbGt3p)2iwia^DBxT?OxJ49m3!EY~^%E@hc64ziQwX z4g|^4ZCJ_-d2Yu2exdH6=E$94oO_r@L^jWn{!m&=I(rkQ0BLAE4V4rBn-Ze0iUTh- zl>#e;cy<>#_hYXpG%Kakz-^^+ zxq7ybJU-?7+;q0xY6S5&6-vfDMELa9yeSP>mAO!;dr+0>2W{(>F^^-trjx;}m^6xL zdTj3?7Pjcn*ED`_zV?~%YBQJ0rT9uWM_e_ z@y|$LiXA-w3u`s<@G7%F#1t?YA1Wjo*MT}kPLRwUE|@pT&A!y|Go_r94_IYSWf-UD zOWAj|%+xH!_gPqcL~>1)Vu*WgK{Rro=vE58CRPTvMktX`SKX2pyDBuF0}-WG_F1(b zBA-gr9|V7&KVD!&k~O%GSCGev1E55r08X_PM_jauGQAb z??EW~rTY9B(blWHgRg!D21gKP66#b#-WnO>)`d8C(&b%Sr6(VtOV5L|z5Q;`9Q8q1 zCqZc0EMZpu_Oo6s^|o9g-}kqpWke2MKz; zPk0Kh@&A}_XUV`9@kfFK#Y8NPWjye?><4K72m;a@L!6%$OmiD`1=Rc{k{F0L`!vwd%`pdVSTUsvbBn0 z+Bfgl2UTk+cy3qlksW^YWU`{SbqbrqkuNJ158cMtN`6Z!;(ymnxz&RG9yl0w^-=gY zdD{gd>czL4h*vI+^jSlK&4!V!QPlYyxE3lPC9~1OlC!ry8k*fQh2;GpgQZkHeXN!Y^+mdwRD>4vTq=vtN%QCXV(_DV5Fhmx3*}W{wZz+CP8m?SlDc*T?~x zr9K#$aTcyss;1TbxwqBqk83hM-8jCoM`p4Id2~0X;i&db@!fvUrUFUrCBu<;JxZcI zLIiOn@l}?uE)t)D-?|Iae*ghKXt|KdtTO8TxJbg8r9kxso1^_UTVkhCjk>gQ1l{27lsWL8he>1 zmnHiB1%U_aorpV!+ycg7HD*m*FdJ)v;hX*?TPKI6DqUk+UIZ)6GI==63kE3ZTsHE= zYfDF!@9MIoEX7*G=B{!u@m@5xY?F1eafL=^&?-nrenUNeo?68tHOi=It^>i~vZ0K` z~MxNFNDYfQmUX}5W9oo|hZ zY_sB;zziY-oW^OZnbkh*6|eXX9QhfNdFn-ye|66^s`dF)xo@i|C%M|Ay_Kn`w#cV7 zD6y=7Q|j_L_<4)9>Y-sj_sG&T6_N=`1qFvZ433f&#Xo+}ytc!rqou{DXs2rN>N{># zZBsRjt|;&6&So4bKlK9Xt*k3O12cO(#ls)yehBU&E{r`{??llxf1f-kIe91hXZrRQC(FLx21nbpCH?W_H)perMVtkEqNVe4FD%dQ!+BrR(R{lJXOEBQ zeQ-P@3eUBwV@vV>R{eKE%$>2cOkYK+Xn3QdSPuyF_z=}lz-k-SB}oE1izp#J^vs0# z(W>rV{ntjTk5PJW*htg9{tAl>g*hL_12Nt$BC5@zT+(W4|7N%)+@iyzu&lksL)!0j z@zYGQh*9d`u$q~u0+A-N;`6nucku`yT5n-S12_Wo7Qq4_yXs*WlQBdIid@BXmR(8L zZE9-$q4X&5x{Uw+tuejENToNMF796njM)xS;n@wLc_qOFNH74;3%~h8amD+rk9AvH z-m*31OYk00mV5|q=wmaE1MYluoqkteBEX?aOapb&cF*q!$u^ckI@ILge~y5uRqJbA z=ojW~R6q{N9SGB({hvY>=Rz!4v79yZ`;6QN=9dBFI3Evqea|k^Cck3!-lft^%gn@o zvN~>86{{4&S@{!*I|iX?JV6=?_H`WB%6*PRC#*LBeYZuwjsbCB(P8X^-^hmd%&v$! z0;6NR;?lKhx>IO+Ve3y18R7IX^kyzsBB&NW)EBesJoLlUW-(YO?rJp&TX*{jT&^qn zH}R|4*0T(dyjfS@o-P}69NP-Z5@Plm7-h`+KxprJ(ZnQ=gg=xpd;jFX;$7FuwIc@& zt^rIY+$TeRY2T=6*oSXU8&F4KbT2>_wuJnhX#Wn1OjD!_Z>9SVCzSqlA)J>k#A^XQ z#me^{OzAO)KO4Ew7-0vn7eoJ|JXJpRkMdh2k1(Pk)J_$=fpS z+%xRmv|b+BtOcm3Ul0-X3`ctpn+=S-r~Dh@UYeA~ZAr&VlafWtk&QYnoS?#<{lh+c zkbn;zy3LQJWeoK&R2$(JCF}`KZ6p~r5m<35rvApnBKGq1v!(qjsVnrgBf>o#T z&7ijT;2}7Oq7A!Ek5QEO55;;xjM}RD5NYi^rE{YqJ?5K3jPH6h8>ul?qRF2<4{Wd9G@yti z)o+RFh7}4}F$1i2K9k?iHEPsi)I~`6-c_E*iH9 z?geVMC|^;yk|hSUtx>&rV7r|8^UPzw53BD7Kk+stHe?A+%B*;m_xS8(0prHo9O#A% zMziEqbbqYz?n!=p&$RQmqP!gH)A#4WKgx*yFEXh(e2eu}z|alV(uODi#3r-NjBI`~ zvq*mh{4k31h-a7)^J9DF)Tr*B%OB1w!4@=!c>Mee1LNd}JYoxaruC3ovn~SRkauc( ziH&Jp5327p>|ybfgrk=sRy9VsGB5@gDm^5Y7LzVt9%aNFaiSXZ(6;niFp-F+ww~uh z2GBs9{6&83goD)d@C!F8n|LWFr0*cb%+U@1aLfOvol7E6?p%AV2_-+zP8yJqKKG}W zI)FqoBgR%lFZUi3{s%==37$_T)A;5hLYpyog=~yn$u>TBfqzelJp62(bB+6)LBNT} zHj3IK){!{7;YQQ-a5!0m)a7z(#1Ip5)?Xb>S%OEs086_6SXU$< zp4ZAea)7tsCOHI*d+L+G@(|S051e#qp?*G_NN|LT%UEZBENM)uGt^0)k29vlL(20r zcm90Bv$9635GJCPM%s4@h6f&gm=i(@Vp2-D3WwBBlW-&CICt^n*7Px2p(k zFTZ2(GJvWuV;JoPGVot;31T$Y(#O|^)^~)z{t4YLZKgeVS1m*^reCG2Bv~J^cTIdNT{Ris10=Xp1}msuLUlmOA(3xaJA)?Yz)e zuZd`VBAMZQ&z%0XT~1~oj81PHe~BQUC5)WclJVY&O87dmIfH&z6l|D|9vWaWH}VOX zlcR|>z8qS9?d>ieBuo|OAwVe|zN>cnoS(B`#<${Q;lq19OJ5}PQpgjCda zu(;*MRNMdgg})A1d8Q0^bHlC8DTwIX&%JUI1KetL`4%yNw5ZrhKj&pNui`H>KM}jB z`YzY;x0L;qHQyq-Otpv`H5N-+-bheplcJkt?dRV}cN+!&;tiNDou3U*61m!*OvEVCEmaII?gLtoYT@^L5&YZjueWHveIW5Wf!f5|Uhm zs&eaI`=;(M!Tw9ae|!j6LZgb{H~t9#5xkehFApS50SN`dNnOBp@5tRebD!3n37N+G zXR7WdLSWJniWLLgz?tu87I~I{B>J4Evlst;SUVbCmGx~ttAOV&IIbU^m(&0#c}4om z=QdWjdZbkys1EM8*c7Q2jNkrVi5=U?_lPLEloa3B`1D>%#5!&5t3s-_SRT0L;=W_es4T|Tjfde zSOEpT2Zejc>t)`G+Jt`wC&1=(fQdfc7z7gzCT4)rA{g}rW=uC2b4YNXwkJ&&g%IZl z@V0$LcZ}+(kT*b380LqY=dBSD^fHsBrR?o)M7hk(9>!aJrM-cB(o{7jGBi_pe)`qe@I~r7`ZsgmXQu^zAuX@ z9)Z(QF;0~O7%=Q$qR(2?_XY;TI3Ec`u2)ZV?&(=pyi-Vyk2qjq3xCkz@U;YPBRf*3 z@VNV$X-P{qfyelEZ}nl|?YW!mYV$krSb>>0d$l%nAGJ74w_j`%ISrGJW}2VM`Yw$4 z3jHQ3{*pN0gNH514u81ybI~t^cm`DSH%Q%d1VSRfCis4NWJ_O?8YWcpZ=XOxJd8XZ zjU@2MurV9#k(M!ck9gASy{unSYo4tmGr`4D@u(oS$}qv<{wp86dn%4yqg(In92Mnn zoILWBavcTkxFN9Z-uCz&kZLym<&X(q|3GOqMDM&!m?SpA!`m&_EMJX5tnJGONj%Vl zA(ZoD)ND+JYMCK|UeZJ&OX}}l|1UftF7_kHE8sWyW#L``EdC*%!xT^fX5NN-S~skG zF|iKiETxkFle*zUBr^Ly4m1lS_)HZxV3UP=9STJ?RzamzUIY`sj%SK9Fmx?fbQb&3 zTsbiMO?ql+@7I1(v5NuGYk-%yc0}8Jl6b?ku0LCoiK;(!w$~GVxA&~IZXxc&yVX_W z@or&wgJ$)~sI@~zQv*-#>*6aMaSE6p6{4=zaHm`inWa{K$Emkj_@_SqL^Y^#68${A zfoUP~)t`K9@*^(;_WZ3cDKVvyR(l5;l7OJo#@JBo&KSQEW>ug+HVx`hMEnC zh`MFqu2jt&*5CGA8iNwOjEcR-w+rq3PI60VON@bXf)cH?n^9SbvMQ$ajdxa7M0byq z+K*aq$a$`Qp4mC`Iq~!${7*kb$k5lfAsB&v)EM|n?%o4(=OZHKX!AqvY{?W5csgfl z3JADts?$#^|CiJz(1M^z*PxGqOtcct_uawvK?fW}2Ld}uMwu&H^z3?aMYAld&JpWF zv-IJxNIf&7xr&T=xv2{No4PENV!?{5P=NG^rhWT`B~^1`9>(f~HtT4keQI)*_qT>^ zk80XNG0Gm*~wKD?j!%fv!2FY|v2!j28mK-*ifP5C3`zS76hrBHYmy-ZDgpcW1 zqEgFgXg6zaB0Kys-sqi^Fo;VVSf7d-wVZBe5#EF3S zY`kcZk*dTWp-tDJeA=t!P4^>j^nbMT)Bn!6f=*TDrpb`c%k+M!mm?dH$Q-Bgx;$i{ z)Tc~C<9J5*IGz#n&)^HFA-M-4?j$<%ib8L9Wky=RXa?sp%`o{xqz6{B_dB(8wVtE(5cQ`nWP&mjDQu zvxMiHi=ir-m?RQqnFmX2rYk`$PB5A~8r&k-$3`CBRsX3|J4EJ1vHZUm(ar!Y!db+N z_va$AIXKk)Dz`Tpd;Vp&QR6KBut1{Ekxoy>t_7eSZe=AuA!XQ<=6I$+rffCFC2F4F z-QoRp@p)^zSz|m2kas0+!mk>@NzoT(1nVvh%9O|5Vg{eHGi;t6%K#il40A`5Jn>iU zwL}gRlVnx*h#sM>^O>6H{qQ9g3{$YXNe26a;IE13b0q&^x)B`An=jk+sqB6^R1fh> z!w{Z*0ECdgk^_#Ja>w?~Vsp$s$A4(yW)%(;Z|vpEp=cbBqKB^X3>a6LLHh$~%qWr| zYuMAiL$-0}_I841@Unv5VQjFi;ZG^eHF z%Ozf3UE` zmlE{GSRox~O+gJ2c{CdE-vkm;JmIg28%W#Ya0+m-M=_53Ok|rweC2O2FxTv@ln( z2?(Nu?V=30@8U+>RY-zGwa}ZtpT)W^{4q(^O49m2?32e0(Da)jlKTa}jFZ}3z&H&$ z?V0`rVeW-{k6)wbt^K-#tQlF&*0CCSrB3nMu7aTYrC9}pX{%p#p+t_eOMTRG8Zq~~~g5QOu2T~=GV6;;LD z(loFg=&XnIzt6_2YVYtJJ23eGnrlQ;_t`taUjYHqIdpcjDT^}uhm`;NaYh!WsHz}{ zU+b5WFEQ|4h`-p3w#S_NQ6$)JgmFjcl$h8yYdmSf}Q<0 zm0?-;2miTEX(=d~#;EgRe$5Nr`A&@!w9D6bdJZsGTq36}m*G@en6&J(=cjw!%}>UH zMP!2c|9OP*to{>hgnR>N=?ce8Dt!HDN(>R~h)Hw-;BF%t-*n%XD%z-|rnynho%{m5 zEa}E9M2K|jodLXP1IpWd|LN|5uq;%%{8oBLMjPdCiP|9sB&wkSF8D*D)C)g;pqTdK z)HHWD2Z}KqvH$GMBqfp_y#^awRh;K~4nVaHcF`GxB?_(rJ!9fF&)@Gn!#^TqDCJ;? z*f@$k;>LP%mxe|WoT8Lj8+ifp#Val={OjEQ{$aBLOg+qvu`NdOTcj>A$Wh`6@`vAe zW$J@|p38{2&$RG41Y_%uuC4?WJ`rWtHj@`!|0$!2lRM@1beN?y5LB|OILZ69J|hs} z%s6ELMKLBcKU$&~=L)q|b~|%PMj}pIP88GxUfr@7Ka3TYsvxWi&Cr{A>-&*&iQ?ti zzqqoWvR9HQO-28FI<@9!aMC~kguA@&C*=W84x}g^ARjSe3h4hLkN#R8us9^%=jaOe zsb+O%>1b<6O0f5WKwnQA^}&$kjc}oj-Rt7sV642A`04Lr ziV`6-Fl8s7W*13K`gA4F($gY?f01QBziM*@chegHnK#LQn=zNmVnP~kx-UP>821nt zaNXyvFYW)V2~7(^n{EyonT#X)VZl26(|hV{mWtA^iYY(SSB)}nDu|z*YM7$OsM@7i z@7}XDbQ~Tyk;O#}*9!L09rL+W_AbY3l z$&pa1|LPCQ^bZ~0{02TW!3J>kt6xjvRRUaB_x3^mPuF$HxAy9CMN0n6O8j5VW^8bY zQm%anXP?Z*0TdTTQZ#x$8`ps_a9O6i94}$@Zqke`gvv=r1AP>@Zs`8&I7t}R!~j>+ zbZrJmV5@t>nInK>k)MH-Gr>HIwz%yi#mb|hX*vN#N+O*V%67Me;+SvtcK?ZwpDQod zl`3O>(_dV`|K9*mq;S-<&|>H3++T*d`_eFPkD`PCL;(mx_a_>TO+WYlpbFKL&=PT} zO2dgh)8^PK`1_?k9zvGySMhG)IC}NC5m%WBJ&kU1h2i5>-Wvl>9uS$C z1_#UaRY*x)re`IINT^<)+hwxr?++rE3Ft8;3-$cvpp~%!sUCEuHOBu*dyW<4T=rE> zd&hySPj&z7sT3DLIGrG^a)eEAl}*0*(#oPw#Di;GN1{nTN7IO?x1#Rhz+q}dFZ)O# zz1r!4mMGcmdIptEIj(Mh90U{(xT|yDdnB2VjBnNdh*@Ocl4B6F+{{v%7~d!*iFy8D zP}#pD5w1|8Y|>fYcut>%GOUa$P|P$LwKExb)R=Q}ZP;!5Ucw@Y>*U{0=I7_8AQUh4 zoMqAAPeW+#g;S%GmS*=g>5_sIK~z4sJ@y<@zL>234=@VBjTno`^SjMCLr<%CE;g_` zs=y1h2hvA^#)(rHyV5PC6*(}XSZi`@WM`+n3R$U2XU8WMF8V^ao%soAVuZhVi21CdQ{9Rt>lO>RM38;#!fZ40J1->4We7E{t_ za|wN)Q;g}{`uhO^pAp_fK%zf!M5yf-)6ZuDo)AzQ-E*=BRtr#VZ5BHHFzV&%XaA;0 zQFBD}A8bmHcu0an1r7AX{g@jbW`kvmk#ZjTPzZNsQshW=4joXV8@E|etFA=Hs8Sjr z-O4751*Htp&M&a-@Mp?a8ct4d$U7(FkGR6VV0S*B&dL`HuE{+KF7hm}UYw~(eG)!q zqc&K}XkQGAkOdi=*(l_sD)Gn;K*95068P@rZZ{Zn{3&*qt9n6lIPS&7U-f%YaPWkv z+O&{!=+8whYVw#MTj(z3PW2yh7lXD<9EqMN8hkDy>n=B@m3?xB zO>K3SH+I=4S<$bKc{$uhNnl1yLCr`OkU&|iN9?kkn4RJ2-=A%4jVU$cURB;=P?nx& zx6h34|G*a-2v^~@mLgNR!O8~*M?AoW_6@nZc#J93zp%DBnGs*3Ny}|~|0Il@ooe&2 zA#Kd7t!Ak(>S6qDk>K8UK^E*lijIHtoqP!4yEF2g{vkHMwT$gj%REhtxqfKbrmER1 zD%jCZU*vx%nLi3fZfXY7YK}lZAj5QOzKKH>A=vUF*mh)CV5H>>zMWbVu>b(^5|L=I zVDlVz2q2Fm$%>(z5TFYpM&SboR2tV0hJdm_AO_3|_jyo{Q$+;?OE>ZNA;eo52;R}GL( zi$IcoF5p7Tkz8dcBRove>$z;a_=hD0NB~<2{=nbzJP9~p)q_3fwV(3*BGwB^dh`&0 zRU6eu>&%Rxbr^Vl5B5&e$mS`wp+cdowgWQ@SSlkyhy_$E z$QgW9KQzz(wu%#vWOWQHr2!FS^JbZX*nK}>GK3&aci=G%KAv}}N9Rr{d7`nhc^8iH zx1(=YVpNTKyZUW};bUwnd;&8zV>&U?n%L>91}od#3Y6dXS!z~H<%lgkWqWb+1CKDO zJsZs;VB@yhsgfRD#pQ+f{~6sKuxzGUO1Itk84*~Kz&U>$Xs%=Ki|>7q z)?KtjfXc}A@?})n>`^$rJJ|Epb4<)OmqZqedGgkBfQH=*uSHEMj;L2@H+ih7AfgaZ z5M@o%fU?3MP>pphYb^h^w_fYN(jGIcAf$hY!7nXtxC+R#S-YDH&kw|c_O+U-VnVX) zKU@kq$j401azz0usuzIb1}}c|zf9r)EjAtgK4odUyGQ~c^`>n&$O5=fb-{8N2{(gN zrcS7K3)27gt(i~Q)_!>!-zBfMSaW8%%sq+MH7}Z@W97R74mP@#an1k+#)wO*T<9dt z+|9lsM=WknadCr(z#y&uWu&IL9X6Cee0Zmg>m`?0F?$xN=}>v>AT|^Dm?0t1Ze8>* zqW#wglnG9QSutB1=dV*W1%{I%N|p?3bAIaV3!wq*@PVEn8Qxzo_^&?z25R3KclKC7 z*P~f$#FS5nqpH-rx4bf72-;2s1E4t0R-C!kD@*7>0oV3)!9b#bJv(5QWig>(<2ck% z#K)M*Y~F4q?nawXaYFvm7>pe+*i%>0s_eX)fOCFKa0Gh2m#=7WhG)i5a~AG-g?rNZ z0F>H%(QTKT;doO2aXASjA`j6hh~w;}2f^Grzd?E@!mm55V)-ef!wq6Lt!8QqVlZ3+wF-d)*Bnf(j*tug|kikk`V=*Um9pk@RIbm_6={`6QOxbzrNST%#q zFzmHEV;lqEXwE}vix~qoo2QVdiYfi>=;o*gsG|z?WHq~B<9!E)T--&syYDoW-Vwj0 z9~po@j(3^dt{kG9E%)WqSJaka#X6PvCe;+OtGery`J1bUEeyxqn~ zV5Uj(W;2^Xgf^<0Y@ffcJkUpp`Of-Y81s7=Z3wvV;+Af5e!)^f;3F=MxI;wI(zXxy zx>nb_jiltcv`yKMdYebB44;{jmzJ#Sj-(bP;%_&frH>{y2Ckm&7kBMQ^g2E_`Eo-g zExdV2bpVJv07K}J3LH^)S?8!HR&nKzOy>~8e;ERCdl*FK!H5_4fujeyiHVr6! zv;BK;C`EvGA9XYZ0?!GBMsVH71xdWN?P-zWo>SL;@H+G znifBr+P1%PJK~7)GOXI9#(l(NfaMc9`pNAQKO&+4YaA6|cFD5MkUqU4gbxs&6MFhe01x|?lbcTY{6(X({UZlxI_@Ak_hzPAS>1_|BX*uTK6N6Bv7m( z#WZ@^O~dk}5wa_rjX+-(hrmpMWHmFcZW~7YwCVjo$;$c&^xM9bBEH!fo*jbRkNFW4 zjM76=n&{~qNsH}`6*;hD}G@bwcNxk9MjQ=HGMPqg&3nx~^v zKAduwPLhE}Y0!zN-sqO(%4J5bgj#*<-m%VA!Pmg?P4a3q<)hs_vEid+hd&7m^VBPL zH{g}>TWKFc4B75!zZu@v9=5Bb?wvE)-=SFrCo^csevlFOl8~iZ<9vNcf8os4ZSqjp zM&ITlB4;PYdSPE^QQ?(bgY4(R@aGeYlB|b zt+f3?783SxMhDZT?!^<~=C-%9rn1yal2@F?*XMi)%Y8l5x%B0YXMPl zBpx`(QSUWl*Pl>PxCy!H?(1zG_AfVM73RPDk_hBYY#hb{UjHVx#ik$+#hK8u zL}_JnuvBu$(D!#yKF*?_9u^e&()Wrv5`9_$=2g<+pZumS$I!5V%f*1elpJH%vt0ft z@j+`!K~2Wo>ILP{0ou3BnLX9(FtjflPz|92wJ~Cl+Mr{4*j)l~@#QQgm8?@9mL_hr z7)CpWo|Qxk&kn0o3>}hin%+rsz8F%W_^{na`+MS5EZ5t1^oL?AuT|QLV|$6P%t~%D zH+<2RJk0HH!v|>U9H&4WLQNW7xVF(QFp;c;g&TIL!!bmi8cR^>mD?yU2ZdeB313 zm%fRFK9AhR_KPG#@uIg5qq(!09=?sIkCeQ+!MZMW^{ix=H@Vfq zbSFE6LL@p1HY3K{lzVO?@Q<47VU2b^QfkzEp)JQQU+-V+Fxwz(sm z_=QGa;m+r2>$X9@Pn+(-s_cPPl?k0z^i#^ZLgYND2F?UJb zte1KhbO+ZC92kniHd?mMicW-%@s9~q_81HD*YB@SBCjLWDYfEEm+$NAN@6$sLZ#xo zh%1)Tp%TAAs_!L8y%5@^`bmAHzvNx~7eYZ@WAh)EZ2f28eA&_ag8Qu2n>zog`_-O71S4jg%~Q6_BMlDClN&2v3}T@5 zLqm2qb59C^hgY^Ze~!ty+^%p0*p3Q0^-$c4=++Z+87JyxxL9Se$N6Rti+S~ z+NG%_gUG-m(|9I+PWSNo8ny+sz)T`zg}vYD&9f!Hi$uxg%Dd3|Cq|HU)|-SrwY1Fd zw94;T)>$2&x2F%l4hG-NS{SO^N8Uw(_u}vw>E98N5YO~~^%b3%R;wSU8|>Lb6cs45sI>d{?6 zwY2fK`lXx-#_;SC>TLz?&zA4o7M?Y5*X0*a>&4?c`nF3rpLs8u ztY;@5>@U=onVorL+(J}I0?i>vri=VZ-t3`>ligZUG>BfUe0d*tel1aQ_t66}a)_Fn znkztvT7MDhMx+#NjPshg@LrlLL_4EDfqvL+$q~uMAI*?_hiicS@ zL&4h=yBcFsbMc@4WUn{(ap)=OF`i&&!f+c3*}wP!gD!zt^LY=g?!I~Uu(i&UfRsT! z(p}K$i~8g82eKe$&KY;$5?vxBB~T8JXLD3Br4^DKcfWD8qyyd_S>m|S%etu!%G#EQ zZICydQ6mQVO-m{?Z_wo4mr!fBo+JWok$Z%(;`g6MppWV$+1#&<9f?oQ=lC+eDVR$k z+2@kh0=x3jRis_j<#-04Hro0oi>$U5sTwQ!_V+FB2sv+sUM3rya^A0OmQiQbO>~ON zOm)MxnwWmahkD1OQs<7xy;2vihg#T{l_6`#XQnh3$`Vr{QXk%KJ4o{x>KiNK2W!d) z8&5S~oWCHFi5PJ?@pc<`d~+daZzg9Hzy?g(J=?QBK3v*Z?wvjdL}pFOMop96CNUA# zo|66gng^-$T(+_J(Z^+pawgl9np-i~Jyy@$mnUCrJZ?OWvP!af;3j0Ly3*>~HQB(- zTP!s&{~X$nOkppx)l)v-De=p>IJr1$jsjf>uSdRxbC_lJh$7mf=1aa)+*+A=w#Ph& zO`~S5cYIpgHQFR%Y}P~Zvc!a9B~bi1&W9Z#auCbCcw#aQ^t)GM^oL_MM`LiPqu22V zaq!k96&rZye&V|qR z)BUnZI^V=>?S%->sikj}Cb*7Y8bHq?I~RDfdo8x(n^PWqq&QVSdL+uNH|iZVhf`Wd z%X3u9#;B(D0vW<{c1owqGb8l|H&6D$!f=fv#a^1XNN)FtV4CDBjjNbGB z-y$!JL#HFmy{w`Dh7a8Vk__6$SbFa+F>q5Vs`r}8TGoAz&2fz%H7|cTS1lR;JK9j} zjH(FM!z}km)!4YlOFlqLHJQ^!Ly2I^v&U1tk?02L2=%rl2zsJnR7~8;ZI(^3PUS2d zIe^-3z|3ZUV;6B6cE2uNgX1{{V?IC1v`O_CE8SlEBNBbK``*I1?v4)$;Orm7NM>w7 zvcrLq2Ds;T8`>PtdIwsZ*`SipMxul5E7Z@ng|H6xXzXEVKFv)LQ;ytW&rxw1x;)FC zGK+SK#Se)5L};FCca$BU-C-c_`A|MFSl+eM;`JuNd1>w@AZ5Q?rt{Ez$5p9KqN#_B~H-h63?wm+9yeo+WtqRu^1(y;_{LWMRAh z`m-}*HL8!8vNb@s)}gCdmbB1kh(sWth9WEEsF%47Dv?7RiMARR^pVUEjH3yehA2K{ z$n(b?RUJm(qrE@9(`oYBqG^**Fv>rPtJ2iC(Hkq7pgkjgpl4X=E&jNAl4Rj@d_CK^ z{N#fBzS5zU#8)A(3_p+9qw<5PbuD{NwP$V*ig&NVKbP17aDHBQDE zRikD3*n$e4JEd&s`J_Z5j!;HTv{6CzTK2MsnK~-TQE^0|X<(`b)d0k%hg66!ka%y7 z;cl?AGFCWC8$AXw8c&w=@Etm;Ub>BgsiCHjocCN~=_$itvsWY{JjN9=W;W0Ovm|txWOts7@Inec-BM<9n^6%BxD3{94)d z1M!pF;)yTW1H|iPU!go$BQVL@Zw9oSF=ZDF-;HL%UR-(rmyN`(bj*OPKy=GU5AzPN zlwY>7kFlL~Tujcfk4YN#xR@=hN<7&b(`5;Lc=DZ_x$A5)wSsA@M43&oRhDrk)`eyE z+U$e%*zH8dCE!|E(ou$ynS0Odn%Ei8t%3?;Z%xA^aPkxwXHGVn)i#<>80;MywH~7? zk)Rjc&zx>Hl^#WCZQWGmUoY!+ed*2S^(gBO1&)(npIkVz>eXT2u-YIKGYbxz%*Yap zffHCK=MmmAUL+AiOvlr#@UX`%!F7S!&mUG+C|97!IuV67ItR)V!d|jfv)AwTC6&xS zo=%_4Ecfti>t%6lqqB-^)$2`^5=@B3k)+&XxhN=!Kkb$f%A-H{{X!$x zYhL`)+q6%hS3=n1d1TWTnm$=@4eYEOdl?#N8Oek1Om=hIu|I$}=66hu(S0~r)8mcR zyCkQ97Eyh`uEe1?<8^UeGIb~}W`M9FGZoYW(!zlKgU(PeVgi@1aoPs|WVC+Pr~>7E zRv?&LhpdS#m6#4Q>TKuUaiN6vW0bFG1gQr-M+9j$K@QWb#wG_*5D{pV_?(;!6R3Kc zRuW(opx=Ois1{kC&fI!u*MD-R9@ zF$>JliRCU!`O#))4w{PI-pIKrp(Y%wiNh=bu)Tht4HcVxs)<1}Z<$enX(cxsqn;)p z{a`$)Q_{Ve%;*Z*)?>@__B}2V15wz!4G%?E+3^OYK_S;k=h1bo(v|S9NW9AQh@(4? znR+Z&E=m}j$h@XO&K?}c(OdJVrs*kr)j&9rR50B4L9||@h$W9Kz8#k$W&Z^d>u~zw zEH}q5J2f@j#@$+s_WK4W@szrai`xcMCrbW8g?!(&zUH0QyW=s%Ya}X#EQxkH90;k? z&HKm8OU-u2Is)`EGY1e_K6wwVVAZr_;8Jc(e=wvc+$gj+n&x_Kg*nJK9j_nkR^|jqfl+&*pDL=F5;xKbr`w%x=)NE>SS;7h zhN~RFwbOQ88{!TM!m_K6w0z-Vnay$cTiwki-uq1JRQp!Om_04&X>34zE$}W@7E?9~ zOz3Jf3NFaX@;fk5jZ{tA{q*MGShat2>!I+FoTC4ygGUZp#dKZ2yLwg4;jfb{l(*KC zJyd?AIuLr7-N#&Y`o%w5875*;yveuWrP-)@;+;Q+bq+$&YSj>}nr4fAkw7oTO1Q~B zGq=4G*2L&z#@nTZLz$3Jwbi!GS6Gyg(|NRJq~V5){TLoy(rlFRY zV6Y8$cP%nphP%7N7%~{}b^E{fzW0(Q4ZpMr35Rp-+;bP1aiOgxD_Y3))Xa5Xy^HU> z;%BG|Ad0i6J>r19y3z{y$h|IcqFL#!y`lu{?;5BDc=W6LP76pS7cwmtOwx;ufV_92 zj-#oDe0j2iEZvwZL_iJw`U@p6Ir`&=9!pada??bYytXq&8_I2jsoDlFft8qO1(^?G z#Tc&?p05-DE?M5gy3y`)LXO2v(_nIPQhJ)pK^fHFN7ceJgThd6ZSz79jSIyIIO3!! z{_&%dwZ!`|CP@$8`j#m=6g5NY1#wW^vsay`bVsD5I zH_WZwknIyMB(-~wq;B_G0GB!8F7=em8_gl^#6wYKYrssmHIbEVFT#^)Nkjh?Vy5M4 zUoxt!mwcA3S}64QDZ*Ct!P03B5XYMJlfvN!SF>Z5#`&PK$GC2?eO{{>b7|!Xide_K z6H=+|aV5X7y@}Oteot{g4H&$$@blRB83_#YmW-5)J-cg9iub4J$>Q7rF4)=I-HDb$bz(TL&#^wN%L;(}>6c%u&_$*8JPsbPlOMT%IjDHO z`WYC+Jlrtq?ckyT+55Tkxc5_uV{^bp{+d|sPTGQ@v{As7t8+s8Mu2)24sb;jr<6@=FGmx#-wfS=e zNz(-;awKjpoPC(y>M?q|xT44pEjT}Szob7u?C>CKe&$rZrYZfII?=dr65cPSKl#M> z%AaRyF~h@QY+Kry%5{UPCQ+!KW(s2|EUE#r@p7M1)Ln=k#d?yhPwBu#q$n9+d$?3S zaQ*Gp@vFd`*J{(o%Kk>$o?%n>=vy9AM_Udotpkzs~&%^47gyC_B~Vjx8mz4OBElcgwtf08gYk&%X1_ ztzCC1Y!>-!7kL@4kFI41?R9nQ#6)G&b`_so_g8wimM-_UINk_;sea6$FAwo&b!+Dv zziiE`BRjpIw=t1tsL`IzE6}tMS(c_fUm5qf5G$eWHBsCDkoT%<(aShDbK{S86H-nA z6*fvE`r>Acr2PRknK5+Wi~@% zHmTr4S)>_KGE6fKtb;s?fR^_Z6>_kktU^Tw5)onD1hnpe)lZH{KjBlnL_!YIPtKap z(o}4ep&D!Bd8MEhtQ!Po_VH4O(7`197IKEZo^Z*))J@n>+~?ig}p^2#ug} zj2^eH4AYnf130HKwF#>fq?>*iy1FkDVJJy8n@@`EMgpE4!6a$KrHpJV6T)e-G;1#c zV{+pz)t6bd=cRrmJH(K9z8V7jc$4yo0}!@=)Tg90v_CQAl~TezKX1Gg2>U-O%LGeQ zz7-aX6MDZI8}Tz(BrV@~N?J8C+^w_b74|l6vax#7lGgmZ*a#TBi6Q*-$^ZAS1sQCG z-KKAQdy#0Ke!|btJ=3aHtzSk|HqOZglBb$xi0PIEK5=U5KfBxdAw_`lr#pUY+Y5fl zR|3;d>+!&hJ{hmhTt+MnDwM)=Ww7e;J7$kPZS0meK`l&1S*(e5rrQ%tymns>}euu<+_?(TUPIQE51WCMPk6jO~{dfy);3<~{j?!uDu{~2@8 z!VxFK2Fx%1do_OLkB;!n*!=T96X_x2Q)YyTd;87*vJeO=r2`$gbA1&2{-L1cT_m*m z71~6@LMmeeRTD~2gRoQ?^qkb7hwRax=Qu0D&$1L?qRno?Ko;er~b_=){pi#?h$xK)05zb>wY!g}uA?P}lY9^Fcy$?M-L>#1;zrn!v z1P1kdA)k6~Gn7PF-B@VIxb^Uuz8w^vDNYEGMf?5n_Gcz^8QGWy{Y2676RpnOgASlz zoYmn@EwmIr=~+(>v!kht?1(MugQip$*kxs4{;{E>E^DSm?z@YZ030W?@>;mS2>ZE# z?3%?6)M@tIhT#At$aa1+Ves~?fC_aF>e?M?;egP>LEq2w_KTTEjEzDMIpxmKP{!eC zoH@(c#vjj}Z5{y}L5_5gN};Z>!S+!PmRzPg`(nY2c(>2sQmhWZ@K{3v^$API?X*)Z zm801STl7E`{M6l+%L8?oDUJ366F{3!gtZrk4f#W1-sv}8sRf?7x&v?N4&+!XUP`DY zZ5V#U&r2cKf+(G<6bAj|1qD_B=khQ;7r#$m=j4(cLHTmXK|bTL@sbLaj2Vf|BU!wT3M>FQ zFei645+wl~`NvjrK7ZRFkvuiE(skfx0Hj^Nf1y3tH~{VmIjnRUJbyEHy6AsmcTP!- z<4F58-Rag@R~vJ}v)Twf#}_IBCiL(UB#KZMx%Hh3aLoERFCaaO|UL#CARBm4Xzmz?wloC<{hL5F$L6<&? zEqRxf2;=dy6PE!h$tq3`S;j(0LNrfQH@2&%FX*vB7L$SMlN`bUk!Ug>M0TNSn*|!W zT9z4kyjRBa@S=>zztE1Pu&%}@G$ zXP$)1S@u-LTdv#feUm;@GoM=LW^b-OBPF9V+g|MRms}lBkX2j z+mEAZorbv!X-gizRLC|*Sbp#sEg2l>YdNmY%iW6y(=1!I`;k=_4-R6w#dTQ}$c#Pt zvvz&aESGz;`o3Rd#%Fo6{2*ZO{j*aTWbcMPGp*VQ=g{^wS9OPu_O0tA#^*Eb71s`a zocU<|;~#^2T03DG^<6*Do90?EgsUgUZ4=8s^3;Db23Q+*v z>t8JhL#Hv@E|1jz&rK%B$ZYgbEgyLPlgz^kD^v}}D0x|BAp%Bd!ab`nmJx^EJ$@rm zQZA=trpKTLsAe*R7Ro&MHc4+=XnLadcoj1GwkAUgNFc9IMj=+Se8+;U)^Z`KSUHS! z`Og8j>ml9t1}p2~F>R~1%b#4&p8{T#e?FgQW-4Iam9Z@OFVu_5q^@GqB~`|Sf|21U zYHDEB2Bw#|zIwr3Q zbRLdj+-z5DMOiNiJ8RU_N#QV2T%g!rGwM*LS?!D%ia<5{A<7u~J7U~b7>Kzj>H{6qA+l=9L)K8}9yfk5IodPl63*c%9%p?i0cmXWo z#sQX9FAJ28cyz(|t#}^P9WJf`+qeZL08<=MpeH-x)aVl48JfPI0C$SCge^8xOndt+ z8NjesR(zD7S2U=1xCm9WC)Ve8A?|p`qDN_*6wy&na#-$L<6QL%@?1OFM(PE!dPn~mkONI3i*V$h+UrpO-m#ywJvvY9=vI*+nS*|i3RXvs(NkQ;> zqMdvJ&NfPbo^*zH&>IFHaHnh}n})gR@O!U+5B1K$QO)1^4hRiM$%1^qODEssTT7m^ z8`6BDecv^t5oP+dji;OmXmPE}-v$qV$D>;QmJ)H|93iNe^vk6li=IX6atmCErJJmQ z<`&$td?v$i`CH+Fdx}^IV^5^i(Et8tM3O#F^CNfhyhZc5&^_j-r#h-lV22lgy8!Lu zJmQA0d1p|3AoLM0oH>w}(h2RAurq)JR(kV{%7pd#foa6KZw;yYY5f-OE!@982Yq8( z1J+QyKR=PU@1eQ;8X0KJ+P!HVaNf)?(l{VJxfipv2!!*akQ~K(WmtnZR~1 z{5JTby{v;A{s&UAFU-Bq76fLE_av3!E~%Oex3hdn1o)CaWkN;tNuGyquD3UY-~<^i zxt0Z~roN)wC#(Vj`0PSsq!v~I&5}5=Bg&a^HUiFoB@CCf2bXV=fi1}E&;@y$P780DgB~|sTB*Cdg>ESv8R=;@(Pl>X3yQJO3+}{TI94+9c}TSi zC^g0e7>bunI*@`k$T@SuNo+*GL}jPMjnZ1J^E$k6F0F>y1ERm2$GAyu`nblQ1kjG7 z*QwHo<&BInIen{b=b9uoREmileJW_zRC)(AUaS3>R= z>Yb<3Y&MUsYD=rXjvzXmqSkGJN75b+Y;5^XF9ZSCi|m_Wd6i4mb_Ywc%(@EGwIXKz9w zQic`~E)Q%0al>;(w?A+*L4&0O#P@8`{l(ZABAhSmCI*AF63VBzS9ey~L(ZIzyPY&F!F>Xp)k?;Dc(=%lnFwF&s zk>JhvRM=*%axhZ5c%uQQ7`b&9oro{USlg6ELk^+dwenjz%ak9RHpS1czZY|<%cd6 zXX6%`=gZ21-6Pg*x6R}2x5(g1tr?)Imu1D*sG~sh@mrKW9sV7h6&{c7FtL)zU2S8% zS6udqupS!$K>iD%Q2SP-^>shTD(2C-=xNO~>2n>yRWTTWIGI8|R5Og-5wlV|hcx+R z*ElvQjp&>=vBUw>1F7r_5-)3Qk87AmMmu{-MTJam3g(R)h9yt!o+ZPr_xjk?=BU;w{9a%kvpc{nHQ+{^QX!ldY zfz`Dq9TR`S*+BrO1oUO6@1%f!zzJZ459f=yc~KORQH68g<~?D10;SS_GbMycT7=1q zKDbsC5K9d);>96kYef#HUlf;o-3%?rSQt)ez!c{}%?)2ck)xZ*zE@&6W?O7Y0DmIA z)ldYNB%J;IhL1i}G^ET*Hj+OlBt6TqZ$=pV+wW8GZ36VDIyM(#VU9CfR_&uD+F3a^ zoBQNT;f%ub-!ObO{2->j;6#IVq{Or{uOWmA9@E-GA@G2JU^g6@Gs{he0&Ue$Du(^o zM*LYNOTsjCSj613P_xTbt>buCQPjC+If!lgzR-vTsS=n~Zwj?6NMqJGo_$5`ueCbe zj3&VC0}Hh<VEt87Mz>1Ysm7_G5RjmlzZX%I^V8m^10!xSuGgdi8 zg(uXmRbrhXl1;aq6}fq@rlXEXE0o#6t|y+45;LvtReO8Q22OUQYzfr!YM3#W>BIQs z*c4cq&=e#ox5P+I+mt)KgP0a~FTvPP%iy~Bu6}Bmrih=F6pcj#H%;n_ioxPvBL&(iK)oPEwsOzuFo+Ok{d!02A{qbV&D~&QLt0LxZ zZdA&dm-q^}PQ+!tEcVTYzNgdTSqfUBz?SGPRoyE!8jiy9aT`#x+G&^pg+W@WZYYI+Va0o%oeDH5BYf z)*Dx0Tzrc{`U|#o3h1GLuuIdqG}sN31@9Cnb3#Fi_Xm)82Dyt+IFbZ4hlxChZ5BY9 z=c?C<{(kH4r!e@`hp&_&Uk76LWnFn%Ie-NBA zwgJ8_GRJ1S_welrn7c9>^#0gK?p{rzD8doS>E74;8C?oWI=JB##8j$cPxidXy(*7iYVhv;fcrD z;Sw&)zJAQX(L~cp%aj1=0gU5d>d=-JwGdShGNN_YQ1e0pDXa|Tnfs_rfRFJDa=^>4 zfUT8`$t@@40+A$Xz44+UCa`f-znKIbOj=~>U!05eal}jf=K++JTV(e$-Ot!U zHaniKK6G|=_O`Ea6c}EY!YQTmJFjF4aVbbvz|}vf3062d5T^5AtY>e7t3)d&)dH*o z+7J9mL%9Rcg*C9BB4p-Hq+H15Y=1iizIC;uW~5RXmTWu4fYa1>@Zn!}vR!lF5tsKd z$iqsu+5CRnqTSVlj6^FQKU47WIJHXOdWSsGMDJ zdaj9a=3~4E)6g_Qqxp)@u*m(g1H7L0cJ^T&^sPD9w^ zZ|c}cwP^uaSPwA@_=h21L1TLtNxD(;-|%0J1uGNuyL4}}?vC-~BF+8JSN;&`KUgLO ziu^R4!rtpfO?rl2#*AtBK>uS})(6D0H{UQW)_}FV{k(|cVK5W^MMK0{(t-jHmlECm zVPVU~-^5a!#Kg<7rN0>7Z1Yvp!Z!1{|5&(XVnp3`*%lisA49~g%0d?&ug~%#M#I#= zmY84^^J30S)CFnKg%r%=@o0`a22W3%(jq=)qWwjQ^+@1BT-7STR&_Pf{ZhiBxnD$YCi(#x zt;ZyZojHwRfYa@w)Nl4PL}$82E&Im#4QQ#BIDSHRcM>Q3eRi3?>e?unV_WDW>@gKf z!m}Oe%C)$A%8({$lDZRyZyvfO#PP+Kn}b3wsN@S5F}k{m_|*uI341cPgWWXWYekIG zUWrBYK(!}z8~;2YW0%a++?LKR`aVK`)36n|?sYdc+ml|1ro*DGP&=YAUw1HSck}&P z-}X9UNV6~*N1+hwV=6v0E#SBtQyovTy0{*F*5x}~)*z=^zHx3}PO!0Vg9xY2)U->q zi6Mi6O{66RhBQGx76*4^u=;aVg-*oCX5G}WX4%W^WE+{6YxSfM7JsC9RrFX)2_FN7 zW3E29e4uzFYqbjhgq(@K&_i!3rC+r9`_S`L%JH#nsbU{-_Q(m>z*rC2mN+{L-+fGz z7bRm6fp^{C>i60rTl#i*T`q%q(J$4D&W;F!EjWE=RdlvxD)*=}Gae}voJ?FZvIA?V zrgj#d5~mCeM^|&=rja`ppze9Bqtq0a!=!?^W9D$)E7RW+76I_g_kP3Tv=ke2yW7Oq zxl_FIu>KEo210Jt*gK4wyTXb*iT?#lBbYzvg^4r@{Rh3Iuw4|FJgHBpbO>FyT|XcA z{}b$?Wl<%tCJ-1@MFpNIHOM^Y@!kjD6NJ67XU6pR*7M{P%fZV>ZrQdB;;TfJvl!EW zqlEbimeF+;MNJ0dbK&L78SBNro8)Ja5CMk9ET<&2G{DGY*`X(`EUIxI$x7!U{79C0 zv@1^esH9kXD*|^~Mm8ICE2>74Zr%DiCV&@?H5k%(iaKqO&&*K?t(OGtLRpdUw=OG4 zl~|Uy)Tmdwm^Twr(3}i)(xTrPo(DG1m#HBb)S)-G6En@#XfS0mnQHL9IX;b<&cMJHWC!e7c7;UWbe2uL~u7WXv4&)RS?kt`8Y6l)rN!N zOm6op@+X@s5KZ=VU8Q@ub#$Or@u2C&sIck93BEeKfRF&tF2e;QHVbzbGg4QIQC^vN z{9-DemU3+J!dq#KITRsDCFWbQL1`87781voB$$l=Hnq(%gNmw3M*`$R4Hn`cW=4(H zIHf$FM*{-(^v12@dL2et`%1EOZSB7BR5(?r^Nx+-@!iU=Vyf^5NiN>;(K(<2#O{0t*ta=GFpX*ZJW|MQWAB#+H8)UW;#Sy7TszhA`qA7{d`K9LN7f7Mi2hcG zsk>0{DzcYG?&}G$elNGsAleXv7;RSg+l&`NYj#Zh8Lr6SmX7eih@6jlUl-Zm;C~)*|%hm-Y?7nr)@XJ<72!Hs?#B<=9dIPiztxst8HvHe2 z&i|yQ5M>bva*!~r2J7@+)Gt6iXL0TyN7h?Y;Ec^*ymCnYi;q9P1L%l^zFwG{$C*0N zhz|5o*E*a8 zy^p1m=&de_8vGjNI3QgM8ORXwiUEuXODR5O#UFaCC6xmXIC<;V`)XGh- z%aS-6LUri}>^G(KNr`KeDEX#%83YX4h-c|LctXWIYLmjUJ0uz)oH;RiSD$#kFYOR4 z36vnboQYor!~lVWHMC)Z#9|xTopgJ7zN<*m_`PacGmtVIe6Ia{$)V}{sa43ffK4Fi z#ZJKX(-dBnIA({Iz;Un%1WwqJgPU-`vJ_*U5rKHaNz*s!MRx56H2Vk|;b(0Stvr<*H0H-cSEKnr|WLAbnJ zq)-dM@9rw$QfLJ#5H9$lg~64ym<;~1V%dKw`7(IQo?8CZ$hfI1 z5U6i#lx`n$PrFdzu)>E^Z-w3RMGilz!WN9=7(LczU)ATeUfYScLaHl&8*i#9eS}4v zHoh#xfD}#e-l5Lt>lDbEi>j84e8i}b*UQBPhec_UGa@%D+RUnphCm`Q^b_;S8y&QX zDMNe4d87r0h_PHZO#G`v9Lm>u--p=cs&2g3WL6SmD3P|8b0|f<9NL>PZwUTmwSK@; z8$U|r)SRcJp?9!oC z*pyF+%s6U@s_y2ZGn;--di;Uh4UcxT>djE^32Z@xW;T)UuNkg0S3B;s7$uD zQcB{L4${!#)ZIN_Ud6Cn!$u8hW<$4M#jST3l}OT|H#*|iE1#an-*tKSJ;4q|??h6i zme9cJUju_l80{9`NlTVqX-W!x(`0RGZtNsxnNU(h#$Hh(E(=mjg>T#%;KD2jA2*%u zVBP&XmdtMSphjlL#S#~Ke>Q4Gr6F1otf7f5TBE^|skiC(&AUUeooH|4dtuuLz1+Qw1=Hd%4&@u@SF_OzvZt5lJ-d>;2r^lGFWZ>tVyHsP> z%FxTi_;G9xWD&Pm#tt#?gV(}XW^sc(h@{#<#9j1Ci(x#?T}3i4Uwk8(X3-w|=Jej} zw$HW}zq%M2_4)MFnER(P3V>{s)V^ml288R%?XPz1bK4)dC2l zy37YcV%}JaFpr3S3;}w6Inx<|wksVhcKKFMEmwrvQ6_$B+N-+Gm0vYP0|EUF_S!Jf+zRv;*>!=n4(#Yh`FWIbK~wfl z+Gi5AiQex#z!`gmdcPiY3!o{1vY5zut)zQfA_|2=P&f2O8Y9Ku9v$bNky_~6)axJp zdNLlCNwBK0s|Impf#gjYz3K4_dyJl~TCp~M0}@_pl18sF%~5;FLf0F*FhoHd6hVAj zr&!ums(ftm;K&}em#KSc(o3~7T1V+?86x9Pj#XL`TB1>)yPoJs_`7e%=Lm}Ua3!)g zK7Q&d{3$leT{7e)aAMCU0TgBwyCp?9@Xl1R56fu=pYx=`*7`H~>T4{RKE@eFF}%+7 zlfkXg0nT}kr%t)MZ$zx!kw-{~3yH-rTfjRb-^J~?rST}8ytvRey9?j2f} zM-JyceD(RAH}=b&z?$<*L$MbL!kbfdY`tX_rE;4P>c%=+1kP5;v*AW3b!tJoc4se^ zJ+4w{E`a`HX6rdODF^Bpyk|quJ}FFI5oN+4hJWz}(L{@K-8i!E-BPx^JtkbXi~N`% zN{l3xY8sOZ4{I|1?Rfa32?i!?h}!+P&h10_C;0cd>Y==Jpln$3{Nh{Jiu6+Z2Jy)& zuX;_vzNM32B!=jNg2$0X-VB9ZM%7fwHVctUi?ni8^hRW4zSzz_tR(rKrCzJKPjwev zX%Rv-a1i!I+%azSK{SP!MkeqpMx__Z8F!0E?KW0d_VeITmz7t@H3pS7B$Y8+ac^B3 zHcT=7|1|XDAxz?%Pc{s8thh$Hm7Q(>;?ZstD2+Zd7CZ_4eb500+{5*3=yZL03*8EJ z%hsOzcQN*-n@}nm$i<(|>-;r_-w@|#yd=!3qX_VHMDbFy1t$v04I)z(gX+EXb|dGE z4V;)PiZiWd(&S5|`R#{oX)U!{zlqP|_cR zpD-!l>U3W9yuyW`C%vd3t*(_s+_~U(G-)8;l*uU4_+9ihR_S_=J(dfVl8=N+!OXH# z8>FI9R(v<&mV`>{zKwG#6AX*E22QhKe0MO2Xb$TMjtos2D!-*CKM!G8i40nn-u_l? zle2MPMHQGMa?3UyiSu0rU?<~@!UYL;{Em(4JLux z>>+*n%kf|fZPhS0&F(;y@0B6^^jxD%h#|ulw_PQIy7lD&Q=JUrt-U=>hFi&P>|;B8 zD=Y5i?PXjuN^?4K<~4A$HnW;!ofS%z_V5C_y*f3(c6F1*`gO$!^R1bvd48b&s@^AC z^7r!RQjX8xO?HD)#k~0x4w??U1o5tpm88s-%Q{eYZf!6-DD{0^X5wvV0QRdU;y{CR zW_AxP39{Fb9TAvKSs7}DcA@e6wj-R{y{i-mPNU{oTkom0li*tMU4>U#HQ*9n-Htm@ z*0EGqWv#q(C4SvJkqD4Jli|7S{L7j%36O|JwZ$@iLZ=6x5!=JR2)z)8CZpXLKHc?y zKcgN8V@!QNb7Mt^pyVd(wfEn>fsfn(3ihac^UxeOPm!U!2|kzWEMlG?5% zTi`8kBIB|@FNl(j5#W!05Z#?>qi4*h-V#ZjFg|act8_Mw5%hbt^1kGpu6YHl&CFaG zS_q|bp5`&;%lUJM#nol5=1OAy6}8W0*^e4Sf!E-V0#`lhHd{W@n??W%M$v=X4gT+U`_r5sI5tv9f^vH zck!0aU25o$!t*`C|q`R0E*P9Mzx{Zs5bJ)mb6$!)$=pH0D` zz~#@8Br+rpp-T#y7r9NV?=jyZ3<(1CPiFG&oyI3$ZGTfe{+K>{#k%^MF zDfEghEhRE=)u-i^qpVYYaY#jrX;nq6fvP)0+92{^pCVGJVfuGrk|1ONMFSVb>QaD@|Kuz@={$Pp*+l}8&W`x z9OtW;AI55^7BvQ?e*HNkery2Qr)G8uAJxHL!MjcG31D)`H#bSKcLr131I&+dt)POr zBFgMYW@P4#ZXrNkrMQBa;jzZKDu#sn!;fFpmp5<90>KGGYt+PL)`=qCPevb18Tg4l zkM5AfYR2Xw|Ei_llZ#|j6YhJuXp;$8;lJ1g--~NfL$G>LL5 zS-rqwOW)2ep|q;wZ0*%7Yg8isTkIWG zS%1!U;I2InnYd9J<7aN1*YcL7crj?e+T~QOh34M|GB_ZM3X z5}OG(E;`kG-^@|k2g-N#%x0p!{n|LHhFX0tJ>xIF`Ze&TC1{y)U)4Ie;zLn)Sdrl59Q+)tyLN=pO zEtr`({l|WWhPt})UzYu;!iDk&zk;PCFwaTFE9k61veQ<2>0?-y?Wqy(mWwd(h{roi zxmb`Oo?61$q5y>(CDiqnF~N-EwJmG?Xef)Nic$Q@Ii;Xrqd4{~O72_a2qTSSj$?(+ zE47%^0I?3iOFP^xT1m+o$j!yWM8)tX1AW2Ap+$O{yMl0Tr#I5}62GFoEFG$>LSZgV zNu<)g5UZ<&637zGBI0wnF%IZ{Wg|bf;g=ZR&SSkLhEyMh2!%)XzhhK&!CZA{Lm4?C;=rhq77vuel#mt zvt<-8T|O@iryV}zO&%Ldh^inkGD>g@(m;BS0*Ba4fWmrM@R33A?PMEcUd5RW>jW8QvKX?yY=;r`Gv*864I<{2?Vh@Ri0=L<6>)Y(%jJ zI)~3~RG_IYwWUWABjMB^;}G)>Q5Xz|3V_DFJ)2cA^j)xHIVdbdfX-9vd2U5MN;70U zJ-A7Dr3Xc=;`3vaSmeh+vqWO-Wl@T))FFQFeI)(`MyD)6OmZwfCzxVxB@1=7Quj|#G}1Y_LYNdg2odu8gK3EOhwlO!oX z%kbcd?b`0aw>c?xE)x|&ACqO&(`+;yX#Vud`R(4Xtgc53~F4rBlKUdTzj>{regKbza=1S6FM*TL<_QLUt|nN?#WU~-llOCzGe#T zWDR(+MDZ_(SX{8aCM&S&>NG3%`t)h%`fZcL#f`Ug3m$_L#m*j|v+oCb@JVtK#>wbt zkxJzFasu)xO;8=Q>F_7)`2l}hsYhSn7P~7LPkP4v<)M#8fZwI;oqju9u75g$CS{<_ zn1L4u&E6N%#+{AX;xcz5!v7z?{0*q0FmOg6kjKOfL<^eB@V-#Or%UelXgZQwA4D^78eU2+VdHCcIlNUau>|8C&63-x1j(*U>e+YI&`2lK59M ziDc7hg?oJyRG5i7o@t%IIaWSI4x-kr)$vi7I8t!X#upxmE(|Gc9N}-*0Zfsb>Zoj! z)}b)a{oW;q@47Gs{+ABcx+O(XTRZX zeYLL#v@bPAAMbg}=LmY_|H??vq9QQb|u!d?Q1B_pu-}pWq zT-4m1$uGV`BgkbDXU}dCpLB~6;!}}5tK+Q!lY>-5i*inUnE}M3RR0&oOR6aQq z>D_`BJ|?|fHOuX@T!oV{09ACHM_Zs-k8OJ6;#b5fuOhrLg7#J<){QtD8*5#D_hWj( zz}h)0$z{0KHP_iS>ab+$Z%DQlhTF9@)S0Gu!H+yS3Jyk~;DH~*k48nlUuR3MTHw<9)+qd8H&{U>t%qcZygR9s+9O*8PTv_o^* z0{G_rR?A0dKNw!@FcYmG#LAM|X(c5_VNm>WUdVMR7N@|r1mvRdRwnpYVzU0S28(qX zZ~`!GYVqyCm!?2Wn*KOOO_qT@pjtct`yc`@R;sph{K&1j2@`1!$Qtk;? zDe|+>9sP3aRCbd=ja$JJf|RcvFBs~O1)VUvHsNs9jb zX6lgK&Z17=ZvWkulzRgw$pd<+YLh;CkT*6S#_iY~7ocZX$n%5kCE1d`!-KZKBx0xX z(7I}~g~BJYi%{34bDB^QLF{NXT27CJ5gEUK(HlDOat+B6(&kSMWzm1ni&@~FGhzNoWX~MfFrzJ*r~Oik2xE97_pmt_}#qgtiDb+)4GvVEQ2BfJNn)&(uD0Uj$a_5LfleWAV*Z z-LH#N-{xC$_!hwym3Zbyy+vFzSlO3&jVD^e`r}IrBOU&=vjE26n1POQ5QRFXvn8g^yEg=6)}Z%}2aCfq zTlbmf2R3Yp(dty3&;^yZyli)n$BkXG`%Qh`)fH?)Cu0Y4;;*HgiOCdjc^U%%!jm*E zYTN0Osc7yFP>tUQo`J6I*vFfW{9GLL!w3$6co!-6Yu#=VI+>FqEGII4cd!_)FSCZ<;@ zf6(fuU>+~vTHB1FYsCf5eWeq*&%+pn^HCX{kF_YRT$R~?c$ih5_@Yp<@03Cr7|I*z z{iTYnK(o>moa2F;^g^HP^&R4Uh_hXq@ZJKPt8G z>7&dhm{YY#oNn*==A|y)c>zQYooz=C?!5*V_2pTdCW#Ey0l&Q$fdOYZ5w1Br5}tiw zY)$>$voEt7v*(;c^AgW1M%a{2whX^*J-)4OvuMkIWfY@8U7oC~{k$+{l@a^HbhY3| zF}ue6{nn?eg$#}_XN47>OVKrp$-+C@DR5%WAT5GBdgN^f0_r@yw8OwcF&$)@Y^qJy zF{rsx=z=+A&$Z{spq%%^O^+ruAeW3h!ch(W_sPq1_vPK^7dozDDooyZg(N$+#Fh6{ z>|e7oQI}*-wdaJ0q&_7u>-us#!P1oE;mm4jE%e3%>ByldUPCH{^S`IElUGD{QPAr=F-|kIVsuoV0gxLF@-(p!8R`I`GmM=-&Ht)jwC2u; zFVbk%Ki!oUa~Yo?IWn~ z)2rof{6mYIl+b8=4|?lA{;!{n0QcbJRJfI=tHMd2H@^`6mlb&u0xR*$)2w0R5lpx3 zYG+@a?%=&jkuOd;=tCP3Vuky3AHJm*6B2W(yPrK|QoO`fd1hH4s2NgrS^82+%O39n zjsoUkI!A%trQl!Zu6E< zAL-(10$%g<47y;yP7_JJc)J#axs=DH#sjo>5oMkeo;}k#p=kwHg^}8~6W`Rd>ajzs zjb_QErSDxo#$VhNeQWur;`0VDRK@nyMwz@@(5%Oe>!Fm}o;2B?b)Z6} zV=*}QM$qyc#lRS&1?sL7nYFy?)J4{wvbG}Zj~4W(;KUmccXyt!W;fuv1IFdpoc>HRfIF z%tP%@$8+lJi1+xnB+7nOo~8cbLm2GDVz$yO)ym2VaYGSnxsy3WwUfD2eO7Q6haE^t z%S?W~T>hM2$dM2Ertw-Y#rk!I4(NNTnxMXt9sd4b4kWJ%vo`nsrgfKg0LF)0c*2^J zix2;axk2Qjn{ffekC^WTs{a&6XVuozS8?!DOA>kz3Y?zPYeHyEF6i0 zT6PD_45VgF6wkXfU(lk5E!!hNZByWlV7x~#di=KqOiLRMa@6`%(mSZFa#7?#DWGa) z(y-1qozmDNCZUvWw5#5t5Getnl$Pbas;g>0mj5n>Y8)F_aPcUFe7DA4hkW7#{0hB1 zfEO6F%$qw0Bd}>(AW!upFcgf7WQNB}!N~tK$3J9a=ob-ukED9GqDuAK)#=Z6%hpe@ zYZy}@>&rOCdld~>8?lVVeF{o#G5LWr3Th!SKroNNGaw6l*eEQPDH9}&D9*l+r#X{(A0 z+QxBZpgz&fRmOH_?aGKlZ$J9ln--a>%r+b$cV#PPqAKxY#9*#QXJs)Nr3lzm*^~rF zDVbUJxoSH&`wCZbz7E+Ht>=o@0BI)}w~=drfhAObyeJ8lP}=cr0g_x*(ydX1bNkf3 z%CBc}DnRs?PI~-{#GcwWK;I_^Ry1#L^5{BN#LYhKlYQ3R6Q|>MLaOY&K>=5AUdkXa zs7`m*iZa;aC&}?m`l+FG6$C%!Wr;CDIHB?VoNRz+rn5@Num1(z4(gNgz5XqB@~(>Ju>oRaP(rvJ zGuycoYKX_4&*iZWU;Zk4miKCszG@T8Crx6PkQPN@5;aUvcKAyJjCZA?K*`vRv)oNz zvkw=72;3X|DR6MDmaswfWZOO-xEbtkq)w?Tf+#UuHFX}A64R6fb64={e(#IvfnsaR zH>e_k`!q@!udtRf_4F7FUllXd)Jbb8LIsdJsxZ>>rEEifC(!>QTus?sW3ikA-D5$q zINcN?FgUc;faxi&-iene6Z!9Z0;A2rC?(@bZvge?pvXs_77-T|m%6!P5&;2G>4Js7dcVPI-VK>TDDC z82BP>z68Rf##cLon2@F=m5%;(eQ<9RM_9v7z8`T+EGv5+m@pBX`5xIrL^*Z5Pwg&L z$Iai}?7V|;6a`#y?pCC`W9Sy7L%Naf zlm{xrPwG9N!&sZ0vhYwNkM4pLI06?&9 zMVU(t(ntp|pUgMWRX?&N==&y%SJ9znmn%Cz;<-rol&|Y2Viwo>JjFUb4cEMq75Ug9 z4r}6QT*@9{XZGT`^G)~P{{!Dn$e5I|^T1^n{cFx$j<$;ap^bdTLXxPnlCv+}|HRfY z5rNJmEz!NUBJ4g{9qy$sR(t+urTXs>i{u1IqD?!m8#YsO?pQ`{9_CTATBhyB5e|(+ z&MSzrCKL!`sk-L#{Tgob?6UYy96#vjHi)#n}d@YlY+nyU+!>&pvT7yOuIq@ci%0K-WEi^5UB-|el! zCexXzXfDKhOLS4m&w5}*qACKdkrDc-$pGyulc&ooe%nZ5&D5Xps3d@s1J(~T#_><5 zXO=%t-a@%EmLGDmTq1_0hkjmfbogJ0qN#RBw>nrpS4@wsbaZwFr)bYXceT*EkaUe@ zPjh9!55JfBn`#8oYT%1;_j*%labh5ywq}K!%MRA#_>=yHjARsB+ubjCw_lO1UKj+C zcidL#)ls&C8kMx|tT2Hw9C(u;)I5qD;n;=c|Hvm%c?C9VRpBerLa!jj`e$QCc{Us$4 z7y#@rD*Rgn|B0V&4~XNs&}Fd9vnO8;wpz(aX#~e)w()2`3~miHlnO!zaxs|EpDN^w z2iYi~A9T=J60w*{i0oZrH(e@t6J=(yAIE0PNt!UAZ@x=)N!qk$l1S5edPm}@N``QS zHh25TjUDUS2VKQcZS2?C*gMd18I_5ZRdC2w#IXmZ%A6XIQh>>tk&-vb)-yc#;pW6kOrKVaJT*RfR)sZH4wPent{7WoTt|@P=VP?rG1h@L8=Pg7POy{V3cG>jp zbo9){<*_lV%(nQ-gNX~v%$i%U6JL=? z1^gAHM#~WA{vA*5UtA3tSnwhOM@hI6J!1Rs67wtQc)-%Xiz<%l_W#2v(j)Mk+D4FZ z?DOS=Emb9hS3-JMrgW8dv;pskx0vS2H+mL<7YF+eJQzGWQ1om=cS$ObT6Hz)=O-TQ z#~D!thqzN*7gIgfqr||gB0NvmIX<38h`^R^%l8>~K@G5x#eC44QRKEhi4syC*iPl7 zPexb8#NU$~15O>Lbf|k-FPkno8RVESsnG~c^{;ave!S~a6AXzSbHNEa7vB2l$!_9? z>y!Hef|Fkk8aLp67XvbNMJZfbgkXHDM5i_qEo|LUta?a?d9iIotl6FTRq7@BFXTS5 zJFMMABV%0U#q**ENNE&Zc<>y?(SeYjtCk({FzM&jBePP)lWHw}9?R}4+I!HEs4rGK zt*AWBac7y5gjNuH1l0y|))RGJ8ZFpl6as$42M`0*#IY}^=no!~E^v-dNGgRe55_;^ z;(dWPv@Y#-CemUvR(~s~R>e!cT&cx?uE;n!GgpY=?N;O@@@T*;!4=tBhy|fE=~mA6 zWyqJ>Ke8TcyYUBS)%GH$%9Eyy4+tPCy!fvpHx!rdl6#d9R8$S!BFBwQJO zOy0nxS6@ABH*ULAeJ_vtz!oAS9`WuGncd4RRQe?19@x{X)vuVDj;}7e5W(K&`ke2t zUg&M?Z4@EZuTjLFbKe(uiD@>BR0Z8@maq^X70bYHwu21N=6l=6+RBg?7MgwKE8BC@ z5o~#{Qz-hYZNI$7y$wxxN|7usU)?ewD@Xtw4N5>Sk}hh?Wg2cl@p+&zkbCzkMw}eo zdJyZHB0+V>WZ^&?d7Aq{;^~@|YCBImMQqsT>#!62W)V8`OYaxzR1Uq=o6bsAd!DluYtczVEiM6*Qjwj1{>?R~5<4xET5~ zLw}Ocg;k~SCMhgid*LL ztu$){;@JgBRD)HsddrreMg`aIQt}$0>XyQZEbHM8vT@-GLuwP~I*i?T;L!jC`kxd5 z2dzjV*)z?M6VTs@9+oN|$i>6{dEfBdC|`ia7HkO|$y386NM0^SFB>7GSO+u(=h0`2W=;I0wOl{?8T z<`&P z|H9)u!1}A_`=2H~CI5*KTA4tur|gBk&-U(KtNjNs`j-sjh;}HBGQFHUmnnlOy`&s{ zt(~5sz+I;?(tBD`xiu6_Omo#_^sM!DWyp^Pk75e0Z$snGSM6s;t$QoqwKAsM1SFjj z6-|msU!zILP{QQBKB;7=kqcAE1ndx?i6sHlSVBOa5X)|=afiy=ykafQ747DDd{UI(-qx|M zCC+uHWQ_qukzht#w8^4{yf(Gy{&3;pQGJ&N^qddl) z0sPOnO!b=#Y8%q&`zJttlj;}bTj+d6oz&qmnL+&jK#KoF2wV`fH5dPd&S#nMaoDNJ zU<4Q)@Vrg0DJM|~tG|>y43j}Q;cA~&Df6TM3xahTKke1iE1#PSI*}0|0oc}dieH;w zvA}iO`SayFz*T=sxlAnq4+Qz8u|$O&LSH5TGT&#*6V88IOH=IsS>XJLFas3O=sXn> zc+{NoS(DqM`(it41&!=E!9;`&VoOAlOZR?WgR}`R^0fGamj(*sPftatX&=5324VUb_lcGV8h;Eqd(z6(DZt;Hk4o?s18Q!dRK$X@ z617$((MIc+NIb5}Qz5@$>*h!Qp~^0#^1UH)X%l|1>hX=oGuG3NSut7qVb60!Rs_w~ z)v*tOymXe_Pf3~=>-f*lue5%Stv+L^nw3toG#8Pml3A=?@B1ppcRG#IP@AaYnw(eo zdM(D{6xc+d+cM_;#T zB+k$6rvnp6QhVoUyfMFq^GtCjx=m}+FE?U7cOUnG9#&B~yREi#fM{CV4@d2*nO|;6 z{cTA)7=Sr*N~Q(hEV@(sXGWd>sxy)2*dC#+y^S^gheGE`hjtxQpDVWX%WK6ekFfK% zZsXq_$M2Tbj=uYy<;vz}k=o!i)TL_IiG!#&bJ#&|l3~Hyk8@1uw0wnc^)fN-XF*o-n@0&1sZC6A@i`Qq)}t0&NUOn3kjZ+}IPBzU32o8-H1- z_AB2&mNeSZg{rmlOtj7RSUpq>A8BL6O4O~SyF`Ha}9_*J&D0)!4$Vco5> z8YYzQNSw84!;Y$`TR*?0mSo;jcwhBs`(v~f|9;NXBD@8h^)04rox>nHRN3CeWP-`> zj}AdVlP#pOngo(qoT2TAlCCBThWICHwpodK@S>YT9nPQ~bRKB~D)*ai z4kt#J`Cm-n{;B(dj_)u;`doA4uH9*VokqX*h)GV|ui# zO^=FPP=z5i+Vog5`2)#!e1Yxz>}hHx!WI|uCAx&fxeJgV9HY;-Mn?2>)|ar_kG3eU zZ^LU^JBj%CntM-A%ZUMM?(AhpWHaG0>C1LX&6l@FQt%V|6aSy-oli=<5}bfuP3lB2 zEyau$_+T>kR=Gaxak|?l!)GpTZj7PgtypAvdp%`%RJ87OC?(iAPuKDR};t=(YN%`o@wg$caQ&RwfY(cT(Y9IF;4RR&MoJ zdNjN~ENM^XCb%Qrn|e7?F^GRdoy{GL{qr3jgXl(QmwK%yF{-g&jcn1J&4l1r`q+e- z?>LtCUl+{F*J6wVu!9;4wS=Qe);^A(u5#JZF!#)ss! zZjT7zr5&|@aP%*+NX)&YJ)pz=&x;O0Bnu-EdGC*f`~TT|rx~IV&IS*B^Aw4p2;wQk zv9OuCVpqWb@-Zd2HpMwVYNUB--2MTQfU&ZUQP>~>>tQ3EjB>35-7u{`ma@p3(R^IUADVOCD4 zyR!a*D9kj4ATqPX&dNY9M>^Q6Q0t}t51(a7X81yQIiYm7)mNUZocH8Ej`nsYHul5< zGJW7FNvQgbju`EhH(a)mkdC|{T};g$a1;>Em&8AmWx~SmWdwdY?bRmwE!d3@B*~uj=NKGf>#{ zZ~x%S1+=_XeZT|p`7gwA^jmlQ5!LPEZ$X^^@JSqsabOIw=gfn#wJo#mnBcEtf9xav zX(3E7z$P?t1Lg)^Mv>G57-~`cQkPBf<@lv2*m|=>)kBxEapuWfcLB-rQ|>kurr=0< z6A9sg=k-km3+CAG)noO`j4_SUcN!op57l)lNy5lG6;b@%ivUEZZI2w&`)(}H1@ zj@>ejAJ=hH$zJ`|(0?;)V3}SY_)#VgE7{okt~wGZCrh|LV))$zVuoHt_60?LHEoE) z0~ZJhVbHjPu;g89Cu7Z|XrS=RV5}_74f^jG>KLwr8ubj_nB@px%05(X{v*s;d5dzS z8Lh4vj1~cW^acigbxC%{>rr)x+Yy*#`s?Qmf)di{?JRA&P zWnQY%NV05}#h8C$ZkkuUb4uS&Rc}}S#^>YaiTOmM(Tk9|&sG;7JVLu^5zvW!&}R`K z?=AE0dZu?1!YBN{xTgmlJfwR)v}1k#cUJ+UKtf-V_w9yw0Z8C!>dzPw{J&#}6$p^B z4w)5igMk(j3CZ-0hip*^)}>)Qb$HQJ=x|TNiIeMKb_z#GAQzwczleJ(|}Ohq;n(; zSVSzvwjs<%axo*cL7Du&{&h^ z(rCSxAn167Q141F2w~6>JEL(vtuRuN+U+kwug{Tm{vi;YHvHjPHfjg|Nr)HoR`uSZ zLsTu_?BQ*ghi@^Jj~;&+^^!+tM%F%kYR{+T+Y z0=cB`>op$)(0KG(+rUfzT?zj!N~UO##qRJR9R6;%5)}y0UAkjezO`bgHOca3$@7H; zksN1|bPEhT+{MmYHN6>|blwsMB)6Gizgg6~&?t~wer~92cVux8rh}#sW&^$}S4YWG zigJ9Tkq045Pc}g-Rh@Fs^XK=`*B-ueSePZhH5%|KuTcZE0=x(|Q;~7THMFb2E;eXMr96$J z)K;Bc0?>mGVQQ%8&b*YauSeSOi|K|AO3V{tYw&eX3#zWZ9^OTp z20#YI_kQCga=LlRfPr+bmB&x7Xw!XUqMj6C+)s^iS}2?4^jzu3n=k+sGIWM{bQui3SdZb>n4;`=$D#|Smi zr}B9TBDQ&xJFq1k6m%Z$Y@`r9ZAswuW~sbs4AbD)v4cB+s1V%@t;bsCE&4GmfyUuO zH`mxE1eigG7Fe32`os4oNq3J76kUdP?3Rs3+_ZGU5cNbZJQ2Is4ZX=u&Y53!S%HyP&|lR(#Sm#xaU4 zsouf~Rr{xIayJ#7xlYWROj~2r?ZiAL#xApCu?CXOKE=$hrBzy84?n=M^eoUwuoCP@ zgErC$9(|KOw{BkM!&3$BxfO*iT4%P)$P<@x;6?^oXhdkyy#28y^c6N*`cAX(QajlP zzMafVe=G5;?>YA&%!x##7%Pn>z3B1JBq!mvdRiokjRJ}p#GMc$D3vMYY2-a{8p2|k z9DIyl*B&(JAiDDX8Qz_S21X~3I`>cup_YWM`sLRjr(Y(p^M`8E%IW9ES#i+z1F_xbO^v?a9LsuL_)m25xY^ViM? znHrAUf5*m=vM4F39Zo<{j{v=Q6pvBuZYpTGI63Aa&t;nxT{$k~Yk%DFRjY)Up8TBYtF@XaF>`g9b67-ha z-)R%)T(%gv%R>l-mPObUR1oP7snE&y5111Gg`sGC!W&!pG>$|#bnyZpt8)i~xa|6E z3m23RSmy2EQAgaE(M^(rJt$hf#_N9RA}^KpLDro|=Ag*}>hJsHmoijxbjPu#WU|-7sHR zSV>ui$JR78JycXjV^3v+vL}ay;LFp}t0$7|(fO#Wdw*<-? zx>bR8BI}fsC$fEBLACD*g6M!5BN^X5QH|w24xqksaO?8L*v~%4BTmp>cHta!e@%0u z9Lf~dNdNociGb_kkGzTgqzO+pB$w^Mm4oqkn?sSp8s7g#i4`SaSQWK0UjjoU6*^xQ z5g3Ux>?GBnRY=HeuVUcZG}{iM!XErKsDeG695jR0SgP!ugu#+psK%>WNQmT6fMv7W zQ-AsUX*2MDiU(wtUs+zUW<`L!X7)pai-|{O@Lqy6q#(r-7=@?W^S@fHrVKy@?*yu4 zyw8Vp;$tfBF6`333Huud>^RFT!E0{E zZY@sQ(PU?&1!=es{J`T#2E&)uy)g9;gtTeVoGd;L%p;!&R~8>HYmbh>N;c2GMMLnCA8uJmR{q=mW>{O(H8Z z6itw4_a=SFPcDP_8rp{r`|6db_(t0$iirg@ntj>ZjgdnJEL{%XhxA3@*d_D*FJY18 zw-o*59Gwx(pRZ|!bovsgt@*7Qp3D2c7qG_&g71;kKo~wrH+`86jUolUBsHs7s`~t! zXq4G6y;M{TG;;^j@0@IZWf8dFK;lInPjegQN5|(`Lu;y(OBW!gjB=(;7y`I( z3FpE!I~MxvCd>^TPPwoC+_h%lMLS)F7uPuQjqT!}|65 z%*=)`9R(rz_uvnYkCU`I`3Z5ue?`Ds%Ab&vqqAa$=3kR?wEY)Gr{`y>b?BuwCWV~o5 z64_QVYvydXqT=xS*MwErH)*y~uIW{Tt;Xu<=yQgb-*o1Bg7RK8W)2|)W9J`*hrEAc z{N=mtT6U)Soz>d3{75&%kW%}HJM2V+b80)A7&=s*bU#;w)q=#n);jOWk?Ru>6;c++ z3Ylk})niT`QRguC&FvS^E%4p_L)co67SA>brE-x0#(>jZxHy_5;b8fkf-Ppe+3AuGD||B=@KmH6h#X0Wd1vFe48{n#SN8WrD>*hb^5h zLn3VRTYo7b*P{ju=SEgdi6kH$ru#rku&VZ?nMu*Ga}FscBQ<(5!UOY-OVPkUHf6XF zgnVEBXHgO}4`c^?5AvbIxXU_ObF$ND3{uqj;3%mtzjcI6g`O}BMeC@?i|Z@!+76zmW!D|6pp$fPaZxpMftX*PFZR! zxTW5Rmw%$4q)>-HkrjraE~!BJ9uK$k{IOt)Iy9DN@U2Ex)PR`|!S2y&iCFK@i+em; z(K~`Q8~yc#cxMxiqzX-XTuEh~fkz|3e{5=VuG1c&Z z)X}zEwcNFn>{Xf(aR_<2)|M~Hh+OiZ=%z_b3hp)=jyJ|q(3;!zlN}>H5O*7Sk=%s}V!!{K9Q^{Q6$sB^$=dg z%aD=W4~*anj?m1hsgj_=$)zpQw>vmUaeemRk?>CLq0^68QV1ZQ3GmgII>AxlTbU-tI{IdA(j5ViGQX?z4auy@~bgHJ}YFaE7Oq)N`44ald%Y3 zZ|=bzaMN^{R&Zg^QV>1?gtsj44p?djv@F$TwPRDSqIv{A#&s&so_*VCr-fY=xbInW z9;N6t)96GnyXjo!60QZLkT1a1m;b?@!n2RKr8VIHkfheZRUu|6LahUjeG{|wIJKrO zhmbWf+Ihahu7^0Gls)vhmUoBiKDL=oBMwZme_Vp&9U$7-v@#TGd)u*y%Mlw4vxQ16 zDjq8APP4b=c}JXwXKqx<2Wi*ggF@rSA(WCTKWE)V)<)*N2GbDOU*oYpY0{*}fX1mUJ(r~a>LOith}}(v z&nm}0-s5c^6$_`~C&sTUSq3FnZFyhpL$xXh+TOc=zw+6511917a@LJ>=yt*Jt~90v zoiJ6PKW#zDW z|7{@t?!1aA0U%xQh2sMpz_Bz#i&WWHUe}nPCd9{(H3lOEe_YN4vDYSg8TB%)8Ei?#+#Kgp1_w$J#y(3_dpCP!C0SOb~ zl?avGCj8>-ngOx)OR1wuxu_HmjGbsqRD9fStcyWBHCXLv|D1;5+gio>8A0**g(a>q zlQv0J0={AUcc4(hPqX}uTXnJGju9z1(Izz&dH-qHY~xc8KgSoxgQQUV{cw+Vw&(#h zxzid`eodAH1&|5=X#}reQS{wY&;6l<#sAlAao%xpwjztZxLwJZ$)i9qbOJi&a zXyNm_w|%s=faI#x(m$u-pRU6n4ovE)q@&W>%1H5jQ8wy1X7zJl@fOrW$lp_fG}|S5 zaD3Ex=E$IpRP|8A@Dwbz*Gy#MzDbA&*lg#6V9CcS7TscNl_6uviVI0X@F)Xee9cHJ zs?A4D*^dQ9<7=*3sTMzSy0zZ`AR*mWPh6!zTOI31RHpHFwQy8;q|S?gx({+W+EYg( z=N2;x{R_N z%oFWLw4DrEjV23ql{Qur$EcyLCR#m`%K4Vdb`XQIRlyBLJ+JL|vvgJ18_KrH$@&^= zQP27_H-UL)fyfNkyR*&gvk<}XzMBQ~8@kJK0nsoCjf3cPjrVG4EnaQ1hXi!-`nx%& z3A|S6!=;`|1)bY3%?@cIQwo-!Kg31aTXzHNOz`>Dy(@_Al}+Cr(R_1O@z`FIMIKT} zBic?By;!t}?Y2;P;CSZa@)D=ha?!8a$}))#M4F-X-rg81fs!a5P>F-E9|;WRp2u^x zUdFSWjl4;(FukDBQMFfN;Ps%jsDno?O%CDA&P%pUoHhm=kh zO921z0i@3chCbb4hER|T@)CC1srcr`U9C(Mlste542kK{J7Vnxi z^qY7Ne@eepjp~b%4c9t5Tzz&eu`GdGxfud!40I%b|hP@4wsZOTN?dx|2|z)!<% zemyvh1eRsmNvaH3SO_!LUCVzaztm6RFMg{dg`@E#yij}(<+S+c){)K036^ED+?&Wp4+tUuymrGp1+@rlI$ipC;Zm;{5L9i9>IhJ>9Wn_w0 z@qmHRde>I7@bIlrZrLAbh>$&9KJmbix!0c>8#ghbZ3O*TQVEJONl(C z*H3whms*7K+u;6)Z*R)5CXQdb0-;afN{4oO6sHn#Nvp|5x6PFKl;ox5@Mkl{HU*OY zVUC(teV68+6Gg*+)X$iEA*p4%d}XTNe4^i4EH{B*47*p}OKo{hP7hU7;(Esqe@@!+ z#SphNb()h!;5HeH%6jcvHmIh$9cY4k6K!D5e|p~tj@3n;lnN` zYT%r?XN8i_Hss;8(D5K|!WdUT8D~kt*(~IxJrdqB>5G42H#~5vD}%uT@^;&joMQ`iBrjUg4%0!f zDcNa~Dl^*Mu&lSI3GWGCd$6;lSVkUR*SIr33?fDQyoFFO=88%CBxoTDVueR6=^J07 zO(n+e@goGM;~%jM6zNaBV7{)ESSwg6y;W<@9t21~JvEY8nh}&1UsAcn6iW5XeedEh ztsX{zWr^J{fngE+ba?PqL>lcgMhGJ!keMwX=m~8cKy7_+=k3X2W-^)toRA^xuZqPf zJ(rawq;P!fGG;JOz7lU^0)o*N;`@5@N2)2a|h}pbk)KDp?*qf3Jag zJ1LBm$D~#RuSlJRI0`x(H4tgzx!0$Eb@dx-z2-!-^Guh$ztMndCkVYZvOVN^;ZDF5!i_x9tz?IgQI!?GXZGsobw3?mKio@mT#Alts#| zz(|GGFS=`yzfOV3`imqxo3Ibwx-8w&G++7r(QW~yHe;9{8Xjt6{H zKn}S(U_j68V175RFo9>wgD?x-K2qslQV+mn$h>D?IolgG0~~!98e<{8SNK?m1z*_o z&iYM<@tc*etgAEBmZ%F6cT}zXl&3nE>z?_8<|0<&mw7~aKyLCKKR}-b`Mcv&YoaOw z!=n5S4Xw{)PnKUaPm*eYzAI5?`q z)OEMS?U*sWJ>P?H4!*}B@T+4NztcQ;hL9nceEqb@bS8}6`uz{*r~Y3ey4+rJ>eR6x zSoD56(?{=^j_}Q_XG%NJ^I3mWP*Pa!>26R^B?8j+mZPlMO(hX|VP7cp{wSl}8(Kf3 zW}Xy5n>!g`dj=kVGVOJz#yX*zI=}DIQP16$mAaGvqAV9t?4w7F7JEm(@qPZ?jEYj<(x+S zinTx(Dwkmr*uB7s!L-x2du-nA-*TU@>G=W-&s!P7Q6VA*K|mHM^?*-}Q6KgrW((R% z$qoQOr#Bs{`YPLmpfuO&`m6_3(OLwEygQ}kX=j-+YqC+-I6EcbX+aOpBU_K+i4Rq- z9g6y59K=nIItGRd@g#vyazxf}wkoiWmss+A)OOR)zLDw-`n?#+B_MLb$qH|`)Q?|` zJU16>bF{O!B$QyULIsvpmwG#57aHTRr#dlep!2u!5y5L?BdHG}^wB@?>K?+p#Rydg z?<#RHsCOyX5D!0XYvz3O4keFL32p9IuszN6AE0n7+?z>!0^x?QKQinIeCC27(n%f$ zGgfoIs!FL-oft*u!AI)3zV=Q%0b-nCpGzlPddP8We}A7e{Id=>6ar7r zMip>&4)}WaU=CMfI!S9EczhnRZ4V zo7n4JcZ*$zk8gT~f7xc_bUOuhvsnRP^Uj%_qzuDd*NY8zH!BAbp%t7<7>D)gsCFSh zbI3aFy@%4-6*9Pvr%B-B_w)Xr?i`Pbt_GHm{>I#K6Nw|_*v>fMsPj+!ap?iFG)}{} zkJrx2?!V*$xr~46b(jP&=j25qz z=tIp-Srv#$0n(Xw&q8eGZZ+fP>o-q{AA~$X#X%dVF0Gu&S*op?$eKvvup0fLxFQzt zTyA_K{k_=wMecZE+in05+g5X%ophinT&3)zSC3n_uD~yVasIQ>u(d~WgB%z^m2eQR zOpE5YgLrb=APz=}jg;*dCWr)iZ+kA|&?%;}M7o(xxtzoHezT>0U?G0j+<-z2aH!Q)P=vA`SPB3%u9X8fAkIL=_ELk z1@PI>!Gj$fGP^c9u9Hg#xcf7P9l1=tG$u$h(^5i&5p z^6v3{oH&>GW^InV1Y-WA6dLY%1x>nM6PJC_2{ zE;?PEj*)ulYMqfGl_)_mJp}3*KpAVuQeb_|nB4kq!%^rx(BVzCO0T#o-1Di1(1yf! zUCIs9G!>?dA=6h5>v3hXR6&+!Z8@i=E^MuW96Xc_E)K{37`W#9=ha#p@E7;bbsQ{eR+@|#|D?=+9xtjZt|KggyjhytW56HMI5>(+zS4c+x>soia!F-U87wh(11S zHdddwY6n)!!Rqc%u*t#A4mp1+`0uJcpBsn@tKMMsru|#gzhWJu9t7ZzZ14-B8^u`^ zZ6yA05wGe_WI@^MfzTZ45QIg-hdxNekV^&mUJ+w&kiZ8K>YeaMPJTvW*6h4UV+`JM za!7815GDlUS}McDBo}*o#||6RD|oDjn!u-;J{z$^3)fLt*LT7|!w@Ndp!~&I8_%+1 z=zW|MCe7v8OX?c5w$?^x=4ks8=)qE{>lgDTH=|X9sTPi|oTKJOjRjj5_nDDkw|JU~ z@gI?AjkAevSytsBmn z;&V-TX9=3}yQah2#Jhfz?zpAi&ki%6o{u9&B`*hz;@PRqUD;IlUF+dl8qB1)z01M^ zI6pDv@_ZHvO6R9Pi}5>D0%_TgI-OwKvqFm9GX*7ZTm{*H+(4w8D`!EIbnOzo)J!{$SlD$sTDaisEgFzG>_-xNn}dt`dC1#|x69@ss#NxuERH5cE z;{KGV{74(xZj{$7&yPjR6qBn`&U->}M7(2aF$-ldQ!=N$i$m8+oL;2tzp9%l^X|K- zyJ`IFzUVK^XZPuHvDJDtuI)bb>nyawrR!I(V7Wl=dxA@8pR5}lJ#5~nQ9a7x=Qiw9 z@7FN}dz=FUk$tBiPrg{&*EI~B*VaMxU5>o5ia@i)AfAOoR9omYA zp*T@v=7yruu|%XBpIKbxL&U^C{U5U4Ix4ER{~n&EOS%L_kPbmw98jb~x*3D6p^=;c z1*BBEL1m=7Ll|0VDQO0fZb2G+$NTY#-}n8Cwaz)P7Hh6^&EEU7_r6MWcxxM={aYhMsn4nUotI>vG~_xtCY zp_#ez`o?MU;)6=$dq!o-I>K&|5V7!|IV6RI@v}j$<`{?jn=lW=tFL}Lmqd1r5@grX zqqUu}o1L%`F)5bQycVsW zcqf^8Y-eB$Iy2dGj~Mdhpw(;~X*42wx2>U}g~46b zL369-yH@XcxEhOqD@2Tvl0iF*wL{oBi5y&FIDA|ODpf?!+RI(I*PfU(EM5LxYe=Xy zo&ib5wHf~1O)Ww|7szMGofEg8Obtr`|9K358`sH$H7b?2#!6s0V1BoJB6o_I$gC00 zV_q>fs$lQl?wm?^_RWdVbHkTZz)DA4%JOF`Q|NKCZPR0COE(*81mwb75U^$@tfNlt zOX~}2M80dk+h>wWrU1gci>cwCa4@wqS20#An2P7ByU9?N2QxL@b!s)->N|_pfqk;G z`;H>BPmlWH__P&ZW05cdW9jdxWi)%_x1(wM#Tua0Q!VcBKsNDSVJX#gemCyRR#R1A zE%~ULer45YQ*aAlA60tNnB`FaqaXI-o3YivW=!Flg-(`gFeLy$k#mk_FPn86K){C~ zt7Gp*!}M00?q#{W_oMo$6Jf&o#f5z1y?~=qT(Vs9=ukwfvDONv0_JGIqezxJV&4R_ z*U|)k0|ds0EY1GXP*1YADRiCzCJ2u;5FaXirj{a!O=bR4d}FoUUIjd{QL9p6wq5u_ zDQNxJXdkYMTRI4oq$B+D^I`A!@{o?uQWL`nq`MA62+84JTioiQeM{5Yx2sHD#5s)u z){~oE>WBOW1e!Tyg6jY^5WCE;jC(ZR_|{G&NtDR7d-Jx&tc)>P|`z&wSQZ4~Sn?5BiPrZ``s$k2yKZ3LPc<}%$o=dj>SjJEM2e42q&VuC& zuQbH%k@O9|QTh_B1TWSGw1YBqGqe^rG=54S1`m+in~eQjRD>RUFE)9shk~Pj)Xg)g zlaCfSb(H*pnD`A>(*BELv$4-?#^D?uto|YDO~z0bLjTI7Ihmb5JPNz1k77fTc3qBL zZ<*8d9sD>r+btrG<_(~G;)q{c*r`j*#GI2u`0IGCDR!N>Yij65 zrKs&KR+}F2;YSE;s>eJPMA>)6d-yXKjwJUHPRV}giNmL&>{pkL3ul^lyrnao$&q!f z_|qZ57c<(Eqk~ua)WVjU?(d#SX*t~t5P0_eK_?xLGZ3s~@Ai9Qopp@FnKp6kS*;PR-JppBQJ7*e@iQU#?Lw3pC^Bm%vq zI)#!GW?x5n-?704vD|ID@-lYk6ysH7rOsmJN#EIsABMQMSgHoWvCsN#fw`5b%A!E9ULp1ec7dlj8X}%LsL62pkOMDJDpUi)062^y}?qt zP>je?;5OtPuhB~s!ZT?^2})jHmD-;(+gqBId7}5sGtu|%Y#tUxk#f_BlTg^*NKMe8 zuGC6mFw)snr$RWO@e>J8iRp`l$Fo*7-L8a1)pgEp@bFDud zKeG^oeGD*!BbP7G(_I7l4jv>tF+aa;=j<|wr&YD%4xUpa2X2i0#v!;`hw-}e=UI|W;y^mGE zVdELmZ1wz=sd<2XmtzXKn%ai-CyksitL(b;v?&*g52%I|Amm%piTdg%g%@nBn-GD5 z3`4hEQ3mZH>LDgko9G|1c9hxJmRrJhdyj%|Nr-cSN<2P~3Z2Q_xGYq8;s{N$`96>2CK2jUMC^NS&Z&qbXR{pxVX^;y?A$% z;Wn0nK$V)`5DRWaId)48mBe)n^QckpXX%83bG`JHOxMGKKrIzxeoAEacGa6_N$ER@ zs=lW#;eMa0p3magI;DB&fII-e>u=1!M~ON{g6RGgFI%y+;A24re6HxyLMS9gIVB*W zlY8;;&B(#slx32Taa9*yz{~rT?JG+b zGQjN%xH`ahlX&m)m7fi_w-&o8%0$P_-NjAlzW<`;C>sYMO_w=Y(%rPm(b>SkduA&4 ze?B388=6_Q50>hTp{cDK1z}8Qexm(%X_oG?w%OdzGFI$#D%YzR6a%!bIesnwhxI$? z;pY7?W#+Exi+3$dcmHxItQqikPMX7l!{4=Astybsy0j^D)W*esd+;Al_AgZ`unq** z&dKg{jTtS%TEUHSc1M3R3B}C!UX!E_n;b@@9hJ*`baNatVF6OL`|qSvWOuOz10W#( zcf2*(2k1cq1SiE#kQ}fO>Ks3{atJ zqR2K7On$&xf@ZmG9Jof4kZCCIX_rX z4OTZ@>zwCcCw@cu+huB?kx6$px7MXt1A=bFRQU&#J35qv!qhyG=a&|?wI*(4j<0sCOpyo) z$K9P*8MBw#E^DX!$ZzmREWLQK&KFi^x&Z(e+qDbcF)o~#lRmmo;A z2K$&8r(_C7s~1x8DG0$Wu&4x(aPkZg2)c{9J%aUofI23I(^heO%Ka=(56Ayks2HfN z=cDhbt^_pk7;uUdfhJ5@F!u~Sj8uj^l%Y)bL?BE&h;yQ`-1bLW8F_+V!xmv3d8}q> z1tlXjXm`nVC&nrUPa~N78po=Lxatc#iw)(1=TDx=3bno5XW4kOD#T)42v1ZfYl9GK znj&E=?|8qX;MLtdT5416>i22D!>o0#hI^b1Ev2-@E{8;4M2^m#qb*P8UOx8EyYaoY zio{R>t->3+r@60Xc8$subb2$r!Hi;?D?nIub&oAS#F$`@naFvGVJD@0yz?HT4>4ha z8Mw5X>Rwmyu+cR?N!T#?VYuDvZ};r0W`b9L$H-Ate_y-7P*&(i>5Zkv5M6ENI1He$ zD5qh_CL;S8*r@W#*;R;+W+d3n6($?Yhbs;9lmZ(-z=>qns(c;=WVm~O@YQ!JS30vd zQy7GT*^Woav4|PqwiLGdwuS_4u8uXIU3;&27s-?DTD4eDff6v`Qd@YX4v$`eem!48 z|C9VV+t5!aY=If5u=-J+p8X07tf+OLZr<%iq;}TR6s&oAg|AVc9K{yp=RA$N2f(1W zg4dGrqUSzg-&(AB3O(4o=!0Y5r+*A}i@7-_Jd5* zzO51t*aND+-4F($M@qd2qd@PT(spalNWS30)fo)=c@z3$fQK(7>3%jE54hp+X^|bTG(Cl*?g|i6!->1o2J05R2KAg;% zNBnmkyU63$@q8P8M$zzRY5!Tr1QstrO7BI@mf?F{(4RYv|6cNcZif>C?gN3bp*1(c znwv13&b1&0ALsl1|&D&520Tf2WIiJv|xCmntb9l8e0A@%qhSnI~509cr=7 zBT5tVwlo>{7ywLZ1ib|S1vJXwx8T`?pq^rKLwGd*1~P43)J_GBEgA&TGc6YvLq-tRtEQ2~i#%+R&kyegxKGpP_O?dP#z+U-Ivb~pm-%l+~-{4PS7ymONL3x!m7M0fcH0QUSt4)Yk0 zyIWCum%Dk?Fvg0Rl2t^N5gz=4aFSkJarJ?GeFMdyObC+ego0sDw~&4yp6f)%8GSgm zqu9vidJ2r{DA%;>r3Ih60cR3E?fxJwa*5%EHY4nMGu%qxbBS|H0tK1 zvxHgA^ui)eSj^k2{U`?BX=08G(;*^3K%PD|@fVzg1-U{k>Oqo_SZihk~)o0O5#0q)V)FYRg z*sGCsV^UuB9B8Z}U`ZwB?8=v`1~&f1`j2qt!%8gHE9DL|JF!2PmR|Y%A0cArF&2&W z>)1E{_uj1p3|zY$4CJ|ZAwq8Rd3|#|`MBfX6EXa6p=~~)q>hNXfLPGzCI~_t)m92V zt`(7`zJP7lB)uY^NH%5i=|$BvhS^EXZv!yI!L5C>n#eamv|AY8GO#0-Z%Sd3!U)O_ zQe`Hp0s-29TMzAmjY0X<%j93K>|mytn`jCZX0@}~&?!JNzA8f)mpKfP7!87pfJbbD zr1uHp2Tn6FR8TLo`AnVu0hHoV|?J2`_B_|a=7|kD;ab}TMBtJ$_@$Iiq=hj zR0LY(_D!AOX!WhC1*($Vb=lBe;hSk9?Ca6>`{mJMl`Id=i!yjQpT)=(GGWJX_d6-# zSWD%cc*>9(9Olm6>|q*q@GZp?o(2L?2aw1)k94D5gOUMXX0QG86Vop3PLj(w*5sGF zB?C6s@v=?1NRq^6;kD0Dpa6acWkCiw7tkyFWFwZygIc% zcNq3^yTVR`_lZZdyK!;cX#d??PLgFds*KKd!N2(HhGZ8^*4Se(Qy5guap`YPJEh+o zq{%!t%z*$`gEpeKzwC?Y>_L0>J(GEnFya7RESM+Yh3mjj^y`H;vft+jh;(Jl_}Sbl#8{|gD5HHJ{$UeJ$~Z73nvei zSh483T(Z0IcsRHA6JU>jz#gR!N9WAKD69Nb&J%Ne-gKY8xhMNz$%aCL(@(;4FfNff zsXA63eW15E(}3T3-(axSa-zuUrY!)(%LdN=wos1JK<}fIooH+F;^XNPIRGUgsZq(7 zb%Pze1rkPgJQzx=bH-(egYuSH_J&z{M+lWI&prP)&%>S5;3vN4hX<8^2fG%@po_hB z#UIaXezuwH^n3n~QjD|W1{gi+nd`qO#$RJma&o=dV#=->zt@GdZXv`WUlH!zWlfxV(6r6$-{Am)DHc(~FuU;?Bb zqMI?CJg}iLy}I;1Qh!*y>Tc}=Tykf|eOuO9v@ja@jV@#GTR=E<8Vh5$yEi;$$%ktS z#vit$-DXk@UjNG_7oy6QA%fU|B+Bl zlplYIyQJyVSOhbA3UJN^nnRN2w9JTl&D)lxVSw6G-B~hD#0)>ILD&0wZ&qff#Metm zlYfcxBcNAP)9ULC{6rn_q5qJ=2CLSJ%7Mz&uZ6u?y=Q9Sp%e_cEmB++v&s^3K6)S9 z9f8sg0WOpKRGAX(9=pP#G|`^&!M0fUjS^xy3*QCl*bk{gK2zj}W z`YQYCDyN+8yOwg}HN~La4eO`cpI)~{>}Z)2d?tj&_hN>H7aN|hKUijf(I}fN1eo75_LJL;a}PnS(%j=PaW)EnyDlqf#NC^;OF2|=#J^${U zPi>LT(5U%AABUTWrg7G;3hlHDNwY5Tb13ZA=X)aQc;#T%$zST|kEO<<3bdQ{3OUN% zv?ljoX9C(qAHQR}=no9K|25r|qRC0v42K zd!7SgycT06XgnmY>4o&t?U9vblMT)gNGV?Rv85}Fj62c=@1q8l1N=UET@wN%h4Pfx(csv2yhyd*)I!Dc ze>-wughPhSM&7}{zE1~EDs`TSn!o>8L;W#lWVyleW9ifH*=nq&kCTUQMjEqcQ)76*i)tEvGzoDT&^YNgBlMsk<}~ zqfwVMss>$kdI&L)K)lxb!85TSCkG@vmlV`wbkPOKVx3|i7Lb!2KQ(^UH={%bcrv$dh$5%d9c(g}=@pMe5fP&J8( zGL44xsz3D&afLJh*e&tW5?2)K%j<(b$>Hp-GAXUW>+ZP9w%v~GOA+)_770^!_>5x; z8DYn|!Mwnh=vHO0f5;yxnFe}QZ%W*#uXMwr=hsiKe{eO9Shg8-#dC6!>ihaH3K4<> z0}1KemiMMlzrYwR;c=h;ednJCnh2o`4qzWpa3S%~JFV1KQ*l_gT(Mb?Vzf%Tul(eV z_FpjM8z+;%Z{h=BOHd97#P{`-l=7`!69EW|44vi_D6J9rv}`VDdntpULSWwkK3XJl zoiIoU%i9THN}!a_@9!~TwNq^kRo|HD&ca`Z1yiGeb`&V~6=Y6PbbzwWRUL-R5fq*> zP(RTF(Koh_&@aH$S^mM?2B(0MVMYwVr zskGkI;pcei`>4;M*Kj*TV! zWvNNIzfiH4m7c$Qrks_&qa>)JDPd~t{LWMAVJuy;SgR!X`i@>Z8ikDjm}kpp-si&@ z-e~A2)6C2ziV?=WUi|scl~FfSiJ-kZvLuUphoYco(H7rfrmh2r$?8NZX7~H&=@r6= z$2R-RYJ<4hkxFnJUdgL%-|ueW547VQyak|m>LYG7h&qvrTzExdkG!_)xr-C@DWqwG zy?HBVlueCb7qoT4kUQ57Kw~|sikbhoC_>u3S77=EJ<9Bq1R$G&^Bz7ul;0~qh{V7< zEbp-WF$C(Cg=_K>(B2DexoLFQ>Nt5@M@oHPKj_vCL+xRxVc{=E%49WiG|6#6#t)$q ztRXLa=33>_>lsVh!hm}%Ld%pB^pu2KPJ;og)JyxBZIyM^yZvXu31C8+CX>hZej&zC zf)(1{70NYNzc+82due@|iTC{WE&bd+jl29;#zWT@;jI-eryG9r|KJfHytN`^FNlJJ zMsf(7@_#%&Z$83750M9jYnImmAGyB206POlls`te&mkHZy9|Squbp5v$kx830(aiu z^uWtgg`fgJt5=VdT5lT50+N)!Ks}oW(GjMOeF%U{4*i0%FTftDYR{}EyTZ2Y{Op7r+RGDf`r;~VdkvPdSJx2ohXev1lYt%Pe=ABoxosS-u*i{Xe z^eT`rrmy(0+EX%HEmDR*o1+0}cZ29ZJPYEcq|BIzDG7E!JDvxxCrgHow%T^RNE|lW ztb?p1j8ld0lzUc0wEXPcQCx@pARr7UVYfrSF}+0k&%GHy-NV4*MR5$>4_MWLH2BON zO1w4LaW&YX*+<59!G#O6c&9J<*m3sVbx$S0fS<^Nj#wQ_+nI5|^uU{@Cso|?eR~53-)e^}j>aJy2;AT8>2{tnw{Y+-om_J&G2i)_8SWh>Y zUeTkl?=c8$iQMg{GgB^va*!=|h3fLmr(TN7{^Se9YDI~!P3ys+;w8tgs|f*FO{*8Q zig?(KxBSA0^@!78;Gcdo|21e7|8cUJ;_J9t{sAK{X23v(tJSh=SA4nH7#76;HE75} z#l-o8;Mutv;AP}02nNA{Q#VQ4IL!I+R;d>L0O21QU1^MN*08`up$jz=H%U?z1$m+EtmdV*^)Fq5dmk}5Ip?+wgyPZSd_DP6GdYVL^JZ)lL(?D z!Lc=7mhj;itQbNlWZ3pMc>3q^xZDpy-gbE*gPy%GAlfd!|5*Gsv#iGI{hTfrDcCHv z&nqxTzL6G2>dYJB53~R_Q<1126@;z=$WW6IFGhR|QC9%oHJ}~>tR=mpc;I(_DiD3O zm97_Jq68i>ogxXiwH7Oflg!`QkbYJPJ_Pm+T>KDisC?cz=|enl5ZO0 zINJCv@VX_J=$@Wl#wI1Nl3*|!HhO$J^C(*2)Gv!Uh`}IxxKk2g|En4_`8j|9i6rFmqD2bWlr6VRLH~ZjcV@4sI$fNw_)pG%+u#+@ZS6NpY(}pbZsa z+{s7jqhD?+NJ7X@!(VcGx%g)$)5H%=J!_Xw2cBm9_&cNdBWkbB>zYIU!zzpUuq`D2 zh$Lgz!$wMA1OInL(?I()v_`4bb%KHDvt*Th5)TPVK$qLi53j450M9PY@6CUcB$#+} ze=(2nqMfm%1Z{iu_>;j4`Xs6Ywdt+w1fl(lgvRT3 z_%d>M_Q7Fa+@8vgi=>zr^x47}+XwY2JLABy=n|{?*}FM1lq)jpF-MYO;xzOqm;9DD zqoYD}ajD87qU+U6tbH9ROfwAU)TLqDy7^VKZxfoP_M65URw3Frej~lCeDGdzUbBwS zUb=kXu)El}3qu54QbQLb&?SZZFkwxthG-zOQ)cYAy=Lv)FJH;!B1lCwP%hDl8Jvj_OEmZ zynj5JXtsSdero4)tadx(1M*{&h%m(Vx$a;fY96zAY0>}^(gyCZVvVr8=|D2#(R)Li z=6En&E%)H*##rY-=Ps39@8SWa4IBZV0lJ#Bv%ZbTS+%0S-k@X{LSu6>gg`4qJ`@2%e8qU^;s^L ziE8ifvoENs4Ua8eDf$lSN(EQb>4bo8Gx^8Us>qB&Lh=BNuG}-UqztSZKVcHFJ;_JO zx(n^82g|Vg8&qN&YPjJ=%HK=+F*|04)?!*ioPv%yBr7Jk(Qq}>ri*gcl@GTyTnRd$ zl-~Cca6q4v02#p!rL@SC73XbJvpxmptUvo4fiKAGo%AtIF-cpk{ow+aY-rZW&by#+UC{D$ar(J;S;{#idLNS$9 z=#2T2wDEgy@00U$8fBEWrZc)uc>k)Q-pP)sR@t*yF9xIYVrA;(w2>uX9$sRdbNsnM zr^gbVgHluP2%9ykq@8A|oh%U4^V%nqp<_^HT4e4tbmP5cRR#?C=*mz~;+*@e#BN%q z5hekQz_CKW52YZ_s>J28)s`%D5gxj2Hdht2H1n1DTpg-}1?WnMzSs9e=3kraKhYr;6_sOC2O0vJxw`9f0sr28|9Cg9s{vszJDn$!_f}w( z@i;j&12s?+hO|go4g^yHrp#xs_Ht5Nf3f< z<>Qb(T1xJ>@!zl>R4{)8K=zT%PJDUZVQll1Jim)AhoCz%z;6nkMbjX@AWQ^rz??r( zD~b79zM@G>rwjLEW>&=(yP<(9mujj{5&`Z>pH)UvUr37yNi_ny_y0p~>?(>wc1 z65hd*3mYbVs@A5Qd02?O7Bt|&Cx8@WA$E2=j^|3IX-(BKp(2#sB_)IXU||0;5yC)? ziUtH>QA&;aY4h8i%NCU^J;ArXSs+d2 zq*CUY3{VGDX3TGMBAzolr<1mZN zj?0Ay+><|frx0inBhndNt&80shl{`JHm4YnN*}~aN z68-ChG_#;(0e2%TV#Dy z7BNv}4W=h3Ilz4uFl|M_13P`p?M*W+*tgsQ>O68o><>Xg%C>rxCkuhBVQiN{t;M+5 z6aC6&JLYW;F56oCmJ-uPyH^^ghEKM+P&_D}y07rZHy}GOp(1U2^iG@oH06jjZM)f-xUISFRpul2m(e_C zdBhBNas-E2mdGdG%4A@Q1bQ)=!t4X69P*Mc)f!8bR6ozoJ_R@#Hv9P72a`>xP2ZxQ zb{bcc<|2=@){YWu6X+klCG;jKuzbLi0DqXQ-a$$A@Z$=iB(X>j^ELug z6~e??4^=+kZYnz_cQvdWmiAoUrbN~nUn4b&lR*fuY;kLp)qsgVPz0na`8pPNCR=b* zO;FUTBH-z~DQMud{Rri34#D@Kfyc&QU&U{BUTXSn8NUa|`rTkq7&j^0Q(B|<`>9+y zUSGsNPCu`N4|07d6@mpwEHfnw(G(l^Z?jhKiqojNk;Ri3D+&gaIkj^Zcm~>&2R@TZ z<4h*~OHaR})PP$I%ea#4cICl23{l$j9T4_eD-(uy5IV|kv-A9GpTeTL>00Z{>I`y@t zs|#C)k{74vK?y5o&unW=-Q2brXL>}A!oc|-JO>d9MoHj2e>HbG%b``3SvjqmWlEzl zX}r2^aaJk&dR@&Bcgm|Ripcf4o0#s)v`B~4R zBuoY%gh%VOvdRbNP_8hXi@qg=Q+~g}t+AItm>oJZas&nL*a+iFX1)SIBvTZmM*`bt zI*lz3zk@Z$#pi?wlR|TWcK|83qNOIv`y^9$3o_#v)1gHXc+WzSkr z{J^L+%VApj9;D1&iIz2A#-+4p;k5!%Z-7LCW+fPtd+{1oZ7)fc zBN065u0RMWOq=u7-NE2Y1iWNWkI8t}0M1Xs{q{U#VpL&}1l?u7lrY{u9~)d*DBj}h z&0IeE;dbE1Ba<{cnA70YZ(5C&D7L$J{~BTlwh3eT%0r33XX9|uaauuNMYO*+8xdzj zCbp_eogZK>*=+k^@%{$3IHEM&lXMu;WUfkBUd{dhRmTt`R{rnG=t z`wVDB*Q+}1ZuMvocWa)`yX^+j`QKN?Bv}X^bKra%xO*>CwksWIcW0M5E@r=TqcQ>L zx`Kd1i7f)+|2WL#)SPyspq-OtwMbD+lzF&OABeX*x@NT-I`PN$$k_z_Fk`4*PrbiuTpR6A1tsncCJpt zT~huL>+m3DFY3?KoY9=rCE{O~um^f5w&Yhck4`31WCvlsh5wJ|A5A=gtFUmi+a4TW zVQwxoj3NvE1+ZNJOwezIfRiy$TEI(Pc434ix!t#IKJs8uB*Q|M2Hts8@1&HEK8AdH zS5foYGG2+j~qi4bafg3R8f)*JVcfM_l_``?IthlY$* zeddQBFsF&ftu-1_3N-H75_20oP6t3^AlIT5UjtL7ih9CJ^E^Fr+lwhyJDT9H)2+|Q zS-zZNY42o;<-(rFPc~I zYh_RoeXMaQ?nslV=HA5mZ*-2WG{jHVZGv7mq5obQlm`ad(un~Mr%%_U#JZ>dr@I3G z1o90CE{(lk=kqJqaN%j5R0wcznJ`q8VZc)o&1n?5NE*|2Lxb{KzMXepf?&hww#_EW zGRJf5H%zTRjAhquXmAP&$F%CfHdMN!;uw)ekbyhG!VZzq>uR?X*Pvou!!>y9ns}4!AWO7`42Ti28JVH zKoKs)w;3+z`8(elKK6>+hH~ma4iBbxKrrZ4VXUfDtyBtFmDj;HuJW)I{*K4hr9hC{ zsRlQd=$WpaBm6jEP1TG}z*CTWEfj?md2@~ zV8X!N=h+_~GN?u#46vtvWu#=-qZZCK15Sg0c5g8A`rx+-X(ZZIcmWI>P!G7nwr$Yv z*NO@=0fB}eEl!JlaQEioQ=9g=j=SpiY{mQ(bB8qzNuzj$v+MP(B>;+4N$^ywYV^4r z5RFYsvoAGQY85x|E?CpN96T=ewav(Rr6TDW9B35QJoD3IJn79vGso5oYiErJZ+Vu{ zwBBX12EMNg`CQ+zzMt)SNiYdpUedveQ!6ZYX&EFxr#40uwa93q2GEWzTUF4+Ey9Qh!B9yix;tgh^W}mna{%AHX2qs$!iw%Y z&z`!x@WapFp1M|a04c-NhKsLGr+<(9lmHj`M$DGad@q5tcKLCPoT|Aw{7%f~Ws&X; z2G&;6Ov(5WydSq^Ag#mr(Fq@oX?bVyY?O7D*qw0Ru>34-IV+!851*8En05=yzz|<; zw=BdVu$6JoFwVQrV-n8>+UUPKDmeK?<&xRih4sBzI_;}uQtJI2@*>qiXBbSf>W zb-7lm#=TcIDO^U|wF_!MI$=7vj_Wu!;OI)wuXT_6*<@5MQyENDoK5s{BeFMNavo^0 z03q~0&6f}{?1~XtsU^HdVqz|X=& zaeb$ zLQ08%D^a{Xc|t*y!=o3+V=|jx+|Ay{jgL6WE5)AhXFcw&Yp#phmj%N?E8K?mZa%zW zk3QP5TNIBICfMt{3#8M@tuu1uRt6fr%}>9RaF)b?8!%7xQES5Vn@r7ScnoQ}Ggh4| zuIoYbNzVh^3APHiB1u}qKokNQd&?LMRZV=M-iJFsgXyg9cFJTKaAQ5ADW@VbNYd(L z#iupv!$rci0v_?*@|cqC1K`QTrY`ZLM1# z-D{%0@R`}`=%{_?s(BbH;rXVARX8%B$G32VdFM>R(v3wRS9MJ8dNdd%LCGGI7<6^@ zyN`8m>qo~^CT?bLgUs#7kqz74m>%-Zue7Lh+^k=xBLuX0#t#&}eJQhpI-m&c91fWM zlj~9isxw_-NHz5@=YIaDng|JP*2KHHTQr64PyNfzii_sMQVjlPNo?O0kb*=#O|6s= zeC<8|ubcnkxHcbA46NX3e)D1kD~b;R#}CLu7D*>);~zB)Dt6aE259e2pdPS_{?q5; zmJcQ`!dqHto~OTEGNh1}qu?3VwzhZJunbP8GyN*e!w#65JX;(fDEWv(ecHqN) z!>rptVX}tU9RSi!b>|fp<+)Dc0rj`5%*M|P*yT%l-47T|Sk?#(AT%7#jym+cy7fCm zs;PukIBD*~t$^Txp(l>W=c8aU$r!hKi#qaaF8l|KL|;A4(*Xi*Te{VE>v``8lCy`6 zSgOW}p1IVqXRRRF z3dgdrD1~g}ZNh8Paf$1yQ#FoZF`TnvbOo^U@&cNKI>UG3$zp}n81AlDPGU@7r6}K8 zJzu{Kqym1jC2@jH%u+6&Cjxnb@AIa;wCTO4>$`@m({i9y9@J8!C}PlZl`?S5wWE!eC5PzJvrK0_m=88t&d@wsr-D>-_erex9=Pq7tc{@ zdm;{MhD$&Mv2w{`bJth7O#MaV>F3T1c!cr#=VV`Hf{k5^R_c-S$;m1ktn})#dw1a> zPl?dLVBhvN#9Nzs^t?*%VbPblTqW4B=)u;qA2gdcKNx8AW-frR(S(UK&&E^URV{Us z;lfzH`Hv_2wqdr#6!GsFf&M^>doMzofd7FsB)WJ=L+{nvRR8x9zBvZ`;P-Jh%hg+5 z+>4;hz_oSL6@mZQ!T;paw|TKBwmk|S2Ngp#-XRF)T?HM0kegfHh%`_XG{A6keiwPg zp}}Vtj1EE#A3?!8gsOaC%sK<>2lSp;-$_&Tr-Ul{w=r@|9eJGFS^@Cj?qs~Huc(cY z5=VRzJBfhH8)8u?SJ*heUigY4&^G5;wC~3k>a?URw(BVvnSd9Gy5quC{dQd%CD})y zeSLf*MD}xMcP8;1a5>NXok*D~g4DR@usp9H6G(o2_(-anf zU(Wb)(>^(P+3kEp-0Vm)Qk;A=^!>&=*KDrNW+ss_PiDgS5zhFL?5h;*ZXofUY2R%w zJr5y0NT)GrfWg5AnIuh&XUl>DAz?UkHiifW(`!J~yyIdxZi7IzuQ>^>$#twFON|q$ z+3|BpAj4aa*6CopKdkISs=ZUwG^lF%%HZ240aultJ-qVH@R_DgdKf4xx+X(?xsjUbK*2kx2=7{d(_M1maC9CPbE+ za7;I7e_Ktk(Ui+192eF)@tdYUGljIo~T1EyAOnjDMZGqet< z$5_M5%ye+&Xpxf?L2PI&BRwyUdYEYyA_AImb~?S^tt8U2oUnOqu$OLL=S!jVZMpkE zgI|}AP;4p|B@PYh3Pv6p#zT{8(TfPKzvEfiH!<9Rwbl0!-{G)dz^ zDVKF321{NP%{Mcc@{&h|1s5Dq%uV|0yISxk&@B1yG;I?>oh;&iI;mBR`YqCh-Cy*& zS=;gs;E?$~FG&$=1?U-ED4bReve)>l50d))(sV`w&{z~+VEEqod&dr|yQ_1*<4q^S zuxc@72Iw}ZXYKBOR}ef7^)9^VVI_>in7_i3$McjT@0w(^WIItb(f`NQS4KtsuF=j6 zLwARCceliVba%%H2$Iqr1A=sSBhuXs4oE2o(n!b%(k%!`dB=19=iGDeTEE2y*1O=# z`_z8+-Y+`*=W$lJlf|?Tv6-9e4sKaIe~FD54*Wr|;jbmFQZ zpJN+aig#Wb3f+`_*{&h+h)R9@TNA55)I2Keo^ zseC_h<(*t!MF+N09+)AK>o;ca2=yUYU?6Yzl%DP^RY7^zmFNo~zZax6v8TrZN@KfZ z+9;ss%?rTRDOm$l+LjlRSuD6&=6D%au44hh*WJbtSr6}Ym(veP@xoc!a~+yn^>nXJ z1GZ@|IXI!vOc`k)v-`L>x~0ifYWwxP#%Y9 zD-qA)R>xOY{`4mfS{8gB?_JzZIgbybo7lRrqTx=4h}sj?Xsh&$3-Q9n&t<`@Tyal} zK6cd;bpqDM>D{hx-JtLwu5;9y9J zW1Y$b6A*McRPS7P=9g0=1!%q|fv3gU|K@_ngr!{cneEj7163kP;#tT&|3Ka0cKttE z27i03vkw`ATN@ej{@*v=6`6ANOZ=xC{L9V33Kdp7yho9tB#CG!;X=q#ADHE-61(8} zLz(d`59M@`ypE_IjI7ePa0l+#dYx>g(CQ zu`mAmOgbeT3w;#BQqe(aws~_N1B&*8%rN_eD4ntd>+F>|f-VpR)WWRDm6Xth4w{zQ z-FG|m#~&X%MKS3+t}Q_8dpESn3*NyrA*GfOY{FS&XH!W;j<1Y766+nl5Vy4vK zqvnhqp^UK)Lh3K4Afg^-ygTIqb>!JHFv!*RJg+FeGAMT*&))fU2QV53JYy!o*}<+u zJWk-BB?Cas@^*!7mmVVePTK6ROK*Y52F~B_Z3cX@cnWDRT>Rxabl{RS~OkJ z6wDIqcV@!ma7zgw?Xlr!QUZ!5Q!dI3j53P5JSR)5S=j>Q<`k1cDtUq{egQZY<-~TZ z_`=>Malqp^X7C3A7IML%^65;o(9esjfVkdaL8;K;RmgTFM+zb_5%)2`e3~>|MZ<+J zP1K)@Z)u{mK!^(s-KfUUt7s_7i9cm7117Upt;dNlX9CrOx!4BW%jZP2j4iM0PcS>; zwndPC-T9e^hH00j?v)Ba{r!drM!ck|I%a}i{Q?dFxW?1nN$vo>el&l&;o)^s7!CT! zuJ=wAYYeAEEsI}!H8mHL!2+4Vf|1k01pwzIZ?5OKOJQNul;Xr13Q|+J`EAqeJRknP z${@jKbrh{%lb)N7w#=Ld8_b+^jfaQaz#`5H0c$ulL}e4L_uXN>V*`)N#zAIf%4pAP zcZsGkWTb9z0)C}$jy!HrI!>EPJCpWGamAV!JTm?e!|9(;N2vyyPHSlkhqc_GHl0`~ zI3RoKsd#{Mg%vAv@!iF)_u3e%omMfixUs08@6fl$=i*X*IzFaZGAvGU%?;u(*umhr^GlaH7j1-;qBn+@8CBVRBq2bCcjwWwhV>i-Qchz zf&3c>YdkxcBOJyuD3`E7g>yqRhC#m4=LElOjc;?mcep!oNm<)z63yt?OJJh+QU@5B zduc;ip=3>~E+s}xQgGPbCk;vaf+dxYal}kZKnGDh@%LqNractz)ZmfA;GI>ln|>H< z{RaOg;kRcU3RvCB5lT&+=vsj9Jq8hLq9Vw5B`+B+p~zbxNq$m>|Bb-0%Jnwv*nnV? zZGNEy2mZ7Ty!norzOTa<-@Dkv3`(Q=utr0?psDQtK64O;cH)Tg09dTumjsf{M)bOt zxO}46FG2xJ5rQ!=a$xX_B+Ma;LN&9T<^Ie9 zBda#|%ar%`JEcFeIyUd+bTZed4-C_gZSR?`e7u=#Hl|G|mJTn{R;O!a3FbY6qKTpk zzo5ki6li47ns_J$LM=G&ERpyOrwDdk&&xv7IzLo%TyTZwTIQgMu~AXG2gjws^yb~j zD#R7RbDf36v7*1LOu^8VPjRr;79U3X(fD5$ult77y%BqmuVX~bTjt(#v1JMk9q@e~ zLr%?}>!Hu`S+c3EynRuKNF~p~UE3q5+8bWhGWxOo-Lh-`oYTZC28t2!#mCRH;0KMq z5vb*I>9C*&2y21@n?*OGV%>0^%0J*N_*!{qBEivaes=M;RTU3FiuAX+_ zp4;WZJ!#%VW3`1il$oInAczoSEic>{5Dqhj7>kR5tonyJB*hhrB4jp29bjn?DGKaM zH3BL)RkaH)=Db$CHqf(-h<4Agwt^>(uu{OMg+MmbRME<6UB;Udot;H7ha;qQHT69Vh#o8@dOxui@)lPD1q8Yuoo=vN zdZPjp2YPzJ&o(5Q$lZLmY{~-OjOY19fIh%JV%X0Y2>L^bGz_NlMFoRmFQi5-7aP>M zhpdtE2t+K&%Pg-5VEk3@R%{+(;UBFK(s@nquf4?fi(gv*q2NS;a5DZ&$33~^$V2%2 z_w?Tyz)AvOCyKXEA>DUU)yBT}%PYqm<#1O~Ge9Hu;qF2uc8vHvg=QBOWUgi!|BMDN zoWqjm?$`TK+AR#GUFEaaB&mc)jD~KJeT-kqJJB-S@levCuJf7p7F%Q!ny<6l4reNt zU7V$Vor&@oFN`1@4>oEZ9G{q#a_qZ$m@$#omfMozsN~tNQK-h|!#lmLW(&M~UJkqi z7SohJ7jb~7k5SPqi=T{WvAVm+1`0B2_7P%qY0f%Sj2OhdB;A_#{Yo$D5lKulw|!&A zUov~+BrS=t+2!R-&jmA^buM(8M}29mAFQ3}gug4(@LX16#r>W}7`Lom>R&%383~Yo{HYuJ@LhxUQA7N#$BQKExg$r7_FYxQm=+KCl=d z%_9tu-gT-WWz?6z4)7x?j%c*bf~o~k<%?gddd7##zaLUXhN--?UoVQxcm5GZCHoF3 zAt_02u_*mSs#ml))UBt_s@y)~&hKTJKT^Fue!j9=n93`resX>(^DD+RPrUdttL(#( zFE6QsXSQ%OH8p4Zw`1(*s3LzB`uTIrGEcC26e0Zw<_H8!C(`M^w?Yjn>v7c5c)%LHA zOlumuOhJZT~X~64l#j7qht4-`DTHhME=AOa%z{ z>Tq-5cIq{7S|xvbAdea(Ex4gpj5LgJ2t3V?HK+EsokVJ|92od7 zOBzkpk))a(9CklAPSz+(%JPekt^S;BawqvCUG2$hs0?I`f&0C{<|prk_V6h#HR>0h zyj^)|GCA;Po9=sI0gs=mN1;U9PjpPb39G76PT&S-Lm&yR#qJkU`HS~42H(0+wWyiRLU0KhVy z5_$_8F{vn0AI73o9xZ(-4OfDjjo^rK+WY*ZA!K*cPtutYo67t3%!;#I{BFtencc?Lx z#Up;vz^w_kh|vDbV(^6lxnR%Wy;pHe4IrZ+sJhx;6!|QIiB#Y>EFQl7<`OwNr6n%?Xve{%YKp0X3iD|N&JzKR4&PaxP;~k}Ytr2wU5%<5 zXSIp)9*Pqxp?huTO@}ga34?-%FTwo)2Bcnop|eqV2x9d4*itU8i=6CPI6i0QslEaI zw|2AahL0XNoln)nYFX4g!dgxPG^8503iK|29u>$LMiQkItt5HTL6;Xu#sz?|Kt5PT zmq5xqR8MXp%U(p@5X~494SXN36)rHK()h_kU!p}Z(T4ixWgJ81X56;?QJ(wP4wsAj zUf66kw#f*pyR{ok`BWC8L2t#dyAIe6S|Y=`m2&rkm!Anyb}w?c9ZO;(>2nTCZzvE? zYd-rmj_B#i9^=wOorurEf@wK&E=iigrxaxS9B?9nOXxq{66cc*rVPT`I7jj!O*V38Q`Kkt_L}qKNbIU-9`{TcA-Y)0ap_ahW(q+N_+9ZX>Acy=%0@Hq- zfA)5r$cGi|C@pULMFi0^I~$^}|DUzRm=0vCM)ZfnS#r4J(hd#=jz2ef%T$c;TjS>` zgUW=EI2Y6sS}o`cT)-yU8`~%R^c>FN^QBA_XM`m>)Qn{^1So4?tB9kU!%LW8;#nW+ zaK(2l9qBW-#KneOpLkLbpD|}Qw+xW$vArNwjBTdd6<^7C_(SoNJ97}=1TLN@KO{CB z2`xu)y~&VSDUic)+#QR8Dpwv#+@#c(?ygY{XC;ENU?im zHG5xNKts)CO4~zGBx^SBXM53RW-A$6Ly#IB4#xO!(B`IE^V69Sd4&|R9D_lzh+LfD zEwjUZSN+w!X$80%ce0%CNXrV=S{wjL$B2$N{ekE2DS#1H?1PGiH}rd(zO9$3m(Qkq zIFhP-?j=4y)UvsW%K`pjUF~MOgw`Ex?N!zX-+q!`bKeVEoa9+WG}RQv$tjwo<3GoC zgF%Kw*)MtN1i0R8ra7}*v$?$;e&LN_uwv6~WYk6jOZPgGkXQ5#U8JXKudp4=a*m%>G$nlGP%De2DH8`e7PpBcx+hmT8#m;>`6Ds>v_R|Z^VxN^TCW14g zyM}FwY`82+ow(HIYwk zFNmW}*0}so>yhH;c;tG0q{OIWD^N8r;O{tu*e4l3On&`WuKp`+BVOB&w9o!O(f8LN z{ndBQAi95CMT!)Vu6;;>qm2$!yMg5Y+nERVf;I!}`AN@A%^kx}D==v_evE=C;PiDh zHd-*+YR$v0RL4gwyog<4hSr1bAm0XwpxjEbKqaX zYjFbW1SGkSpdgQbKuylQY@Roskt`|jT|M7unA~-!!EB~$X^LQbYrO{-l+&n4Ua4cv z_sR=*>Raj)KPRJ4%#~3lALZgRZ&fXUxnX5x@%l__#~9jnDzBW=$4`a+dXO3!7BOohuG^5Lsfne(IpHx5q} z-yw=z7fLvcbkNIkL|(hK982bu5@&fI6FL(hupq#*SSG1LobUnK&g`HS9yTcs8qlvn zyrwC~%z8$5tkLksS5NA$)z~KME~J#DI()Y}qVg&jA%ohbFu|@p9~)FC`)%{vFzFWv zgeP{QXEW`%468`B1~e(baj3+3+=}-5jYBQ`&047^Xe`b%p++nZjei?8fdrdH0)6pw zIX-$@&8&J_2NB!*aD?>hc9hAX0_T`!?}7*|%S%IbXQA_(9k?tB1+~^0{rbfGc41 zE4k{r!vQ}3VdCZj+z|yRqzvgemxjfM`Whul!yOcpXSsy+XVUpa^}~eg8rB@t5rP^=Ru4S5rm6I*D>3 zG{E)Wb$yXmc;3J(6qL=i|CnU{g{|*RkR;vv=G(x1x|UIo1T-;W5CW1YmoZ?@RX{zcI7Bi>{6L6aXQC89@*0E+ z&=VuDXk|xl5j=UC|6LSaZwO#t^NTRMhAvF#Rw3vm`MUXDsiFO`k;CV9E%j0JU+(1gukJPW_0^sIepARi8 z_P*9QR0AgblXL+HZynY*TUK^10=rkrj;w7dnowYeY* z>u{eZJsoAATnh_dj@3&<78M2yUQ0IE_PEvB?B};n@?LOHk$*tAy~Soo-TYJ(V0uJ_ zQ$N7ob<`VSHd$jMgaU9?JsK4kVJC=Qz|nhg$4%35$qx`5X~fFA4(onCOsc8=xwjFU zy8KmlAldkg-U)J~Vxk5#f1*suc^G^DN7)_G`{j$!0Q+*DEt2nmtcOTh=~af|KAjrz z(f>f}_tbx*RYEd|=YOJgPq69IFX(0Ldy=3^pQ+511%_$aEV0k5Z}hSN(K!jlf$(>0V33^!}-8s?Ew6C zFrFQnC`ijrv`T$<)(GwU_d7-cKU*CO4mN-H9v1R09u%DOJkVL!Ks(bmD@G6b_sTJ< z(ls6B$Uw&!VUXi|bL@700BAH6)MOI&3lwahB41JLSp5Nry3fT=pI59JR03I}yhBqg z?T!09^=@Mi(;w}Ak>DQHyPfUxHITpjDQ_$+tEvbqhvhuyegqeS);UTtEy^( zhNt_lfjh95s@<`zNedjWA>YiYv}jZUpFg%?l0zC^sR<+?)h}T|ahQ5&)|{@_QF>rM zbWgx$sKIjxD^4GZi0Of<1PT=ny93gQ|NV3U(C>*FWd#L8CcmrY9PVLQoF;6o0jdbK z1Q>3nQM`CEjn(#fXm%yh3YH3~Ao23)|5>m@k__}pQ>z<9hbSp>ap>?WY_qv6WbSyMPT&V;!Z)zstO0pCThuZ=twut zvAfwb?5Fnoo-lbHZB>EQDfN!<>2J~6&Yub`@rwc?(MpWLkM1Y7izpswvbxg6@5P&@ zpw-+1fJaz;Lxz_4pn({uCH;;LfcQ`$@?f@irva{xN?M~sdSyI!!vL?PJ8yp*)b(d; zifgMa!~T}_nuQ}$wYBi1HoAS+l}1tHXB{HYvoW2sfC3H7`|%+?qn$&mi&^75uD;vt zJO#afs#Lgl5ueleSks-OIcxKZHQv%^*yhS;!}1jg8=)18QaCU`RH-D>A-^23cy5%G zwMOD=9qen|aH17BFmqCdtIXR_DWs3H`SPO>jo(7Z$WgR)ChJY{AEUKLCjw`EB-zJ4 zNqxIgFnAwX`DC@j@sYOYCQEdd|6B89HIcArSl+x<>OX`Bb0p!RPZ4+M;TzQ|eARsE z!`(mcp#3eM4e)FdC}3tb!U;;lj=Rf;kV2UQvjMAF&e(=rICXdVMe&)V?kIJrnx>O1 z_5ri*s6Rp!AyiP(6de%AAQ4T$!v`qS*ZdQ>QH76)x%FU1kpb%n!=H_rMHo&QZtpOb z3)%(=Q`G%*7cHX$X!u$gjg=M5d4QznF%XI(4m@9evD9Z>F;PPz&|ZcUe0eSRnD|+I zk1qKI%=ZLtQ|X>(&$@zrq#}s`n=2xmZ1$Zs{Q&4si##Q;cO?fMAvqBZzNprvzhxXv z%O&`siY36MonKnl*E|uWk=1LA<>=>x44?J@T`XO$O$-$7RNoh?8tJ7h@f)I~?!hQp zJX%B)(FG8<9hb_DC)b@2#~{*|FBWhugb7VhzyKT*9m;~w?bHX~s5mtR@S?Jkw0Q<* z;WEe>2d@j`s+}%-Pykv*FO}pV3oprg8qad@&ZPi|w9I~wi(~Q`38pMpI}=#n!G76L z*C*rMCNS;(aX6KtSXFAN!xl*YG~?zseRR^WnBq z15)PR?Aq?^vMi)H?RMU*dlJ#VutN$lFA^NV@FaywElLS@bq+Swi{GZig!cqrrdW=n zj);mwwkhVms9bYUSG;!X8Gf&tP`ppY7|n368{-~LvfST=L3pOY5uZ%@`vkHp_4J|Q zGJ7>obfG~rHtzOXUjLWr&?hA?vICa*rBXJ5w-iF2RdN0+^!pO8k{;?ANl0Uw#W5BB=?P}OS~d+ZIb z)lTvc^R|3qA(yp}pIH~YJk$*Ot#oBSN4(-mL>*PYJUTE5khrhMqmF_NtwS755P8z8LYi`KkHuqsX6#Xt2LH z1!EztxRMFE5>E0nU`M7K#bq$s<;v<$1Bu= zMxlst6oaX;$g?*%NC=;so{`!^#;#0dmkQsqGCQTHwng*MfMee%=o#ZqYG9XM!9f8= z6m@=5c4R4f-nd0#3(tkNMy1cjD^*+sLqjB7L^=icdqQ*tX?Y{@le}zJW-u!)xYFmh zlm#1zDuT2wOjdK2)G;D<{0(`Mr+gI8oZiVD)T(4j=Khbdqte0o_tdh&9OuO|&-S_JK&(vT*f z5v|2qfhc2msNhQ1UlHSng#thU<9;8?WCzg$({ZXHdQQevh`9ygMDMFGUY}GmFNNxt zX`N_}vd%pHEd?R6E3S@Aae5u3fL&jiu~60&+SoS2k?2PRdbir(4CisZ)eY)*^}saX zOnXVXo$wN-kZ6|e-q{IOdMS@!!!hw}^T$7gyAx-o`ji%KB-WJ-4`gb{NxMNia|%PV=c`X`;|rD!T;Yn~=;<(Q~!Wp%!A zb>v747&T5<{1|M1v@=*KVJo}ANKN;`_o&IDXsh?(=i|1N@5G@2-$p(((rlQD$HX0zZ7d!<((l-=4v)xiT<~cA4DuG3l7QdUqe*{94ZaUd^6l~W{_xiht1yaUgV&!dx z9s7wqEPd(mSet?02}5Y36Ie=D7#;@GLlE)axlzVGjtV75)lXxsIDB3W(R}5>t~q;w z!+_iJ*fS*lMaX-EJ%fUsGFc$66qPkM**4|IB&?!YO%h@USs|#7^tq+rB0>v*)9R+o zf8*v5#K+9^eYuj6(Azr0dBuz}uxics?bMYdIt}PYLP%*HIE!=g)@ghDqv`E=Cl6*?bIvfLhY^*PFy(SWtU2z}OE|7;Z$rOT zCpCCB=UE1?><4B^k&I929(0aTnN~z{HDBFS$qeS(5`V=AMztw>_oypg#(OuWHKu}J zaSJqw#85n2?zx{R@p7jcEFv4guMWeg*|mfNj9NX0h1ZyPrTu+QY_z=;wYf7AEC_jc5Im^eSu$gpQ9+q78hQ zo8$JJ6wrdNzwf4iQ*HCrJ~~x9p>6TR2NdupH=CcxK6U#k(|YJueWjJ})qfQHzUP8| zK3ph1J>64V>)V=Z_ye1*m<)d9So0(AuWjcT4=#y3Svz`Eck>zUShJ7f4nmVnL$6s@x#>Rci!!0F&X{Dlsb-br1d8nEmm6CRQN={nlhu~ zRHSiBi&gnon*TV3A`@0Jfo_^c21A0LVb$R-kx#eW<-ulWtQqJtMG(9x^w~>S& z-`Hvf3R)DsO`v+`cQh55;>++Gn=;K=yV@i@CKd<7k8%BFCwn)i!uu@Rjt*uKM$j7= zrC>=Jm#WFQ$q^Gvvs9-;iONq0#Wc>NISR;+*Rv2B(5ct2=r?w8x8x5Q3UXkrNHH*^ zhY767Gk-}t!#|6TbP$+z<_^7r5?ORVxX+x4z-JAOdg-ka1JV?zPa?qG5Hd)Gs%-_#I2>G@#eT_rrXmuxw`b)vvX$2Q56 zVxMwc){(&0bzZYHpz2b*NlSNsy=(r+t~MR%$Z6~BZ76S#+Vj=Jt4ojC;{6GaVIDz_ zbRX^?JQpauiw9ml{5ooZn6TG_5L?rT!|fVI6-;tbb;XFl_WAxm{wK;**y`LCp`nA)gAD8ZVb)0B)(uBrQSCpL~F&#*{)N~@8eg7?vEZ@99G)$g;jiZ zUChswZg9)%D^B>BdoKBv0^9L&szq%=Xaj9WtL!u-!8~>~K+4Val(Xh=U=~b=l%~r5 zA@W*ubv-7lw^!b;cRrW4e_RW70I{ACfn{98;@kvtET#Eb3S?CF zFkpIMT*DR9-Av7syD$X%vL|w$K!3sSk~;$WTGGH;)=r`D8C!n}Np0ryq9&eo>?PwV zH&RRN(!-vU-u3z{W_aS}?gvdpv?B#?I8S*R-do+J;;~uHkWcG`mSiCL{-GwbrHJ8ln8)_z8KHW;E_RpnE zGj2gmNJCxok*RN?8W{fdT5Jk(qkiv;ADdoP-9>i&!FgW|6QNm})0GH&|HCiAe0^%f zL>H6_S|Y(b+dSg7gA8ZC8XF@bc>nUTTwL}k584V}B^RsBlVjRi>Fxo;ld-7ot9#Q7 zw2|a|5gPi02v6&sYUO~>&J&3O@nIrusTh&z(*vtA8WMV$BkxzsO`^`?>;m1(yld$~ zW2<0vp}%WOQBPEBRyagSQqvwTgjdn{^5L3bH>%E~X_L|)tIRyRx-v9(2@5y3H9_Ie zZp3I9kOexJmZ|oU88gM>4#_kKQpA)BzSf_~`mwU;ATs1EX((x3Fwcif#M4?ZSu943 zA>Y;8!PXB~nE#nC@WA(cKWXR#kO}?Yt&SGx9(Ld9m#M-KT%jWTcQX0sYl;IC6t*A~ zdR7_<-|{H}nGDaG7Yn&0DQpM?^+LVJpGB)6UA?W%)22J}RMDj9H%~tZ~YPujV21fg5Aggg!A}z_n zL_s}7_NGGWJpowt;;BKTESLv(EMSX;Q|-uBf5q0#mAcY4mdM20r)%`lI2KmM%$n)m zxWvVq(U8+N!WMlR*V;;~$Zvr4yuGr#BTXqM#zZ9|-l)R(v4`i~E2KqBnDy!GZFDh; zT0+69V%Ol800wb^eP@sKRX zHO@R1Pj7XO^`~kZT6XZy$AuJ)r{BWZlR|F^Y_pmteUY{9{!`*=ZOOwouvIv`ClpT^ z?Fas)#eW+Ove&RE_{bi5=g_}X^$6y_+*;b>!`Sr@l|q}?UH|RmbKp*d^s}bcjKmy{ z?^W;RRItyL1?l(Yv`OA3sD#8g-gry2VF*IsWzCi`{z)bBwieVQ0zKj2VYe}pvb!(h zz-Lt^l72(PM^KouF-5{az>pGSrwkCik;$SE6{UA6ffU>#^(ww$@|0AXl|9m*s}emTp~8h5qpUA zCzB23{q!)5-9^DxVM;+to$z}_DsWpr%3vYOLUFjA$%BoP9z-^~P;twsnuFgPVJI25 zYz3}ma^=${`~F!nkd7ni^6PGz;#eGaZWP4F{8H5~XK{h^;iLa^IveVG_&uYlyj7}g`(@Cke;N6iS78Q_(|vgdPQXO_CVs{%1{td zejvlat4_&ZNu-3awrY&^T+xfEUO=xTV>OBd)IIw#W$S9<`ba8*EyORKzTR2m@Yv?zaPpbSgT+(Ys2(# zd_t#?(f;t^-6n()adpxFo;yy_c#>A*bc<8ipEN&98c--7)`C5dwC!_PbPzdhdhO?$ z5T3jAlNFd?++X&2UqoiNE$7>|ZH|!r?>|)Q`w#DG7?Phhmi4Z+= z=cA6NhlHdld*RgDRQ~^J$yu5jWwGw!?I8cj=ltO#j8F#m=GzbT0{=?zCLW-Bgho$$ z7!4OSEdKuvv2_H%(qM)SAM~xw{2#K6uvD^36A*zQ!3^+gbo7Cg!Vd-}Pv9)&Pkcu? zKjwRCwR<^@)!1>U8qXVo@{llQ1wuks`erN!0!#u1Jl#{h7D7R?6D6tn$p?Xe51@M8 z+&cAF7hJ9yEXT@+A5dpj3C_Kf^b6xN>d1XQ1`vS)Ow=;kl{59wRAzvweQNgGzf%cb zs>kH?JYriuZQ0Hp7P6=&{%AA~8;>L5wH0)H+Yntp4$FTLxPv0VM#FXbx9abCih&YR zd#qx9WUD_5CcFzwv(vvtFxz`3^TYHuQaAG)DXu}%kzJI(RMQkQ6fsH~WAc>IwWd?1 zGj?2*cGQW9plNq81|Pfj(hkjbY4#qwzI3VB<{16h()Whg!4m}~5i?emH@{UJBm5*s z!dXjE^OT74d(qr6UH)L#%`Fd&Rd7Op8XIaZPRnnJzo z#zmEB2l+u$e+K0h1swHgK(}r;z zI3>E4DXkE?rrsK2`g5*EIP_D1MAqg;NJum!!AW$LK}{euwnm8xT2@0s%Ky$!wKP6-Pclp{BVtj@y!;>#9{_3BX$ezJ-ST)xb++VH!b(c0I|ax zH_+X}|GBS|gb4JPW$-_D!IZk5JEFIV|MwpE>4G@)iX)jYaTQdaMat*IV}ztJpE0Mf z`72F)a8rP=&Vo>ku=Ce^PG(5+jgvKQz=EdeERLR%U;c_JMjHGyH0_WUhDeh?{J?@muq;mWJCIMWdD%vI$I|DE7>a-gt1(1&piJ$Ue}euEu;r>%1H{ zKNWLYNTQOtB=4#*1HRK7+T zS%{Q%|GNKF^8zAp5Pi$#S zM1tzn!@CQnDo@Kbas|`}PRbi~N}81U?|p1>Y%R>!_{33%ih<0x2%}(Hq(^u#?b+9q zIk5JtP4BgXz9B9FCPvQ9Wu2c?gnJRs(E`ZnZHf-)>xJhul-IUzSk~BNv}1{?v^A0U zl|%t<_Dr^y$&BOIL2=k4?{}wO@yGjW@oaeXu(I9zaJzmLAdYR~jI*xu3yBPeJ$HQV zrCH-LTvk1L)T>=0uqwx-#QWe|p&vP}ilIz4^!p;QO^RimYAox$3LAkRhYUx$<|v*| zy5kZ`ryll`4NtTs>HpdD+T$=wolb2K3Zb1|F!wzz%dWJf`Lj3LN$#4!w6J{BnIBNJ z*;){`%OcNECMd(wSkVS2GF5L*9(O!^k}u%OF=VC^PK1(bp4-tjdF5M4yd@DfI^FJ5 z{_P8)WAM+fSu#u_)*NW~eajS;Yvwp>zXc{BMKryRlZ(vtYLD^Wi!m_O0k;nQKL1xjE^Pp3|TBcOL zZgvX1E6&@D@5(Ok`mYAd9LOcj1HKH7)->0@@-Dgy&KDf;5ZB;N|n>jrEg(q*WPe;VZ}^ZPoL3>p_X2k zupg@#OSSx+cOAxSYnd<{)x)-XIL*O@^dl}dBzUnRP1b8aT!mrcO`k4yz;rv2TjLUL zDiTnA8E!2T!aWdtuP=`n+q@W)jeG4UOByZvP{v-A9S3HMRcax>woDvvbqXpU3iga> zA)S62FCfN*B52=`#f>iGv)WKA)`+tIY&!d}YyYM%WF=Q@joKUanEe#qm#vh?Sa|*r zMOa#R8I}~P1a4!#tCS!jotZx%l2y%KnO8X2%aAur4Ou7!B-gK4!Drl)!;cWTb+A(2TePF35YN?34`z%(Nl zp;;;*m$ANmRJQoDq;A3C=vBaL%p7<+G2$z#Aibe#!Q98~_#%fBDR0`Wkr8f8$dbg*| zT(O`qRuKNhkKg?gca$pbJ0?V(4h`6Qnn9h;%G@n%$=22Mr)=tDgpo{%j;tQ3AbBbR zje&_Vgk^9CXsCtv)=?^kv7z-@t4f|^!Rqy#>|0;D11=?q5N9s}vWOgXJ z*s(YiGeA(9!wg5s3KnUV5QI>)D_ILGvQP(zz0$@fx!G#<7ci#?T&(^c2xG4!6+#DURT+kCDP zEbP8kR64Ct8yn^wF5D9Eo2D*(7TxaH&Oa!WKFRYc3;L1gr4+I~xSc4@bwA<}Og`(t z8!|4fTwGCIA+VG}F|zEO#bLB$JC$=(_v+1kG)~uGnNR9ZGp`?9V0i^dHYI2~Cnwm5 zah|DBH80^3;bps%_gGNvplq1T^o!&L~2}wMDG!V`Qh;Go{O$YDw8j z{b!a?yV0t1BOlI5Oy5iB7-9K;C)nb@6YMEd=a>IZuqdJ&k$=v+dpDVbfBzSwd6f$x zo9a?3E9#eHQs_QQV%C|gc&m6HD?CUPh8GKF6>wFaP(a^G=9Krg9g zuY3{w-qy-%DemI&cfhOAu=RrI&Yr1ia?kA74YeCyH)YQUv`x>32pvoIBl*!lp z#=eOO-(Q4@$~Fs_3b55PP*Tufo{Sl&2(c*20_Z`_8ENf;J_IVnFENv?W}(8z$GWoO%nLWV6ad4}2?MUPTMXTP&x7myI&U zFD62p-+I6!0WmoKW#cdfY`dq|BD?o9>ni!(w02`c<&2M<=cly?5BiMssX$fAU{*{* zN709Dr*|~t$r>s(3ZMj%#kAM>3j;Jipv-yVf9kVuEBwYw(QL3=R(inLdVGwA!puE5 zXb*c^5*XVQpAPrfMokO}b602->C=Y^{|{GJ9TnyGykS{nL6lv(VV6caq(j(+rKKb! z1xb-sxI2(DM3I$VpR|j6=|hGC8deVo@)P0(GaQJe6fzfBFw%rcNR&Bgfwwbj(=8na7CC;$Y%pA>9nz)R*7GekeBY8iCpf zwCAZnBAHM}2qmUI%C@#zufDxcT#gCaiM^twckP(w)63g>iS3sfws(O^q4SDiZx;il z+yeyW&WQ*fh_(ab3hEP1P*rSiAKrkOoGYO>-)G1@@Wx2*`Q zgyltQrSahJiw0lwaFysFjSaByPzq#z23Ix>Z)WoO~vl*2^a5)n+HRF zQgZ?;*`+eT5YQ*R^?dnnR8?=gO-jU#@l~koPno!<7~puAgia<0oz%*aNc(q}ukQzP zDY4qn@I1|aEthZZ#L{jkKmSPqVShC9^O%0kK-Sl^+bHjn+Xwk(lO1cLa@^-Z# zFXjgpQHdt#Lw#Gte2_Z$oznEi{eItNzfZ-@?W`5nbReNThK-Czm!UkAS9Tu_eUwJA zlMAL-_`wtPkPeCIp|s&$&+DEgg)2tVDHm!KgG-&=3gd`&)09}l68gW9*Ac6+C>zJ7jY-Asw~#{~&>HFbGB4-(j(r|9ZZQ7;mbo;uKQzM91MVe(Mn)sCac zS_Y6|YAr^nWIsc4`ff3yQZ(-Odnm24%+_$dN{xiDl)(wGIZE;evyAT;!)WGGyrDTi95YVC&Gk6bh81D^%jMJhwJ zIz+e9&*H#IbdP;*e*ZPCYz9Z-MxLCu0OR1c&gWC+?tTVu_xk&XnC47Hr^+SSk-T-K z0#Gc0%CRyCS+DdaTqc2DdA9kO(nx1ButU%%L?!7et=$t8 zv-wh*CQ@04$~}%d5S^2?WsM2Pj#MnkJCDoCa`L0_6iM0Jny9(w z0%~5$ustZjU5V?aDv*yyC9hXK$lQa;2C4fAlX!QLF30(hP~hEjH>U3+o;W5|s*op` zrbaLzR9Y{~v+VjtRyRE^E!aWUVZR=Ic^}oM1TY&t6%Q(MJTqpz{m9Je2zT%^Z(V6Kl}Hf5|<6ZI7?e5C>DamCMCE{s+0 z8uHfIC-h>Vpdj0XAZ^3*)}%ZM%SW!y5s-HZWVsag|_06&3WOA03 zUy8o`-2PFHG>KktATLmY4DO~UmDL6(;%}KF$tlN`UiHgeAF_AUu6q~w07ARy3?q2v zfEu-Wlg0idzLYj1vti29psRbYh`rhCKHiB%hkfDxBmUH^>oWAu_X7s)Ilk=89`dbz zZn*n7!()IJeZ9Eqnaz#u^yZ*D6PqOwg5Uf~XL7wexsu-SjhOV=GuWgp?h7Zs;p-E0 zrY}pXX6R(E7Vjw&wpgx+Cs_9GH!HKyiqU^_`&o{>!n5`L_2``hz>Di>SrzMFI_9PO z7;O7<(AGTf7d0cR0O0xF-cR4QM>cuVIK>-OwG$N_ydr1PQrY!eMt}oThvMyD z)ZJ7%P6`c=paey=668qeWumUZ4_S+0R8U=#jR>2%v6k~>^1gVQND9MC?oRBD%8OK6 zLShP=yY6+e-bX=k%fla5smAI+8v+Q1r5g<5T2ZZ62e!;krne^3?ylfBx;(aCS0P-j z6?_i+O!_&_3ugkB?Q#s`AmXHpCwk-FV40hNX9JT;s@5i%NALB}etR7F+12aj>h;Wf z$PpvSm(i0Y4JD3x1}`;;16MZCBCMtA-XjiqFJi^naj|-yo*$$^xvMX8W7<=1XQ$?G zBp`gu$6(iO%*Nf_Sc%}m2pJ0}gq#rK3x_Uri`hEfIkMiv`sQQ528bFRPrPu?QSz|A zgPq8o;unlQ@sb83_u9gFguzCgAs~Jgwa?dSRwj8wFP0<^_Xg#D= zC%sCB=;2V)468(By4-TP-yHc)xou*!+el{(oPcquy?1rGrn1ZZ&;%rLO z)a;SELdX0wA6s2s;?Tn}6N~CQVPr@5B)hT!tmbEHX{(4;oQ!~!w8nVf${JHG5M(d^ zVeAqu{nNK{eS2(;nDyu;JZYiWpS*C9Ku^&1(vbL$>(Xf$T6 z|LC)DEdZy|Oe3&%>sKW+`br2(yC;ct{`}d(PYne|^^2eNq*Ba)vRk_%B1C*MgfT-c z+K<&F9B{1ok%OI* z(NuNvgWsM8{4RV-e7Wfwajdu;X-*fYF;Vs1&%GbnPmFUl%(It`{NoMdd!=tEjSk7F zS*%eWtz1<)1+f${J}JjNM1IG&z=K>d6zM>@9!2zZ61@|C`9^Xwhailqyy~NWT2#f| zSjrOr1tq2FrlOe!@_h3|3pL4d>DxR=x^i{UEqFLD!YZ#TaNh(RS{FrHxZPp)u&H;~ z@P-Wvf`k}cA5zH&=ccZ3@Qc(~HBl5_z_#?;b1L!A7X>1qXSQ%u4(~nIWLsot5idmueLwM8JS(bm4Vb2VVCF zNw>EzP7r9|+9StLN_?~M<($((i2G{_LZOW!l_hN+DSd1MCBIO&Y@CdZbZ4AJ@lH_U z)e$PD>dMVBNGaApB?gNvxv%hKapl%MHR?iImQ9^G%A=yRYysLxGC1#qO;qjMnm5!x zEK`dlFLT}=HGW{&7`wA^xg}VJGVervc1pQgVAGrw4xPi2a$eZ|*5ND6%~m?s>VHh# zGD%mXNe{qNp>W)?yxgX%u+3%8?Sb(2CpP`*d9B5jv^mdgk~Okp=9>@wMpi_#LWnhq z*MExhggxIP^7&g5@6o`WBnrAtHGcaKy{ENCC&raS6Ixo}?6@qg_Hxu{_Z7{)nbZ?Np)Jwb)U93^tS@gzpRbjP8jI)3FYr6!W+ezti!R`G# z|9k#PXshOtk34IAFNV@|?iFF5cqwqvr5{-9uYB8YRHi=q|t*syO02#*+B9< zXj`D?iTNg5RSHa@D%99y%CkqwS zd~myW;ogPr=2uoO!rNX|+&>K4rpWL`HBh1vazVPqQS$F3Fmr}EqQth?B$o$|lE!v+ zDJCrl=9Ng4z{oqwskY6V68qAU^Z`}wcMs@j?#8_X!J`g1<$ZtJ>+NN{k@tOj(9s&h zp(R|T-WPRbmK%x}i05qhzTq1S8Y%hJv>lgVyKl%H(I~zMs&CdxS32hj7vM?2g(87iymdq&;^+?bTX7tKR-5 zB~LMeG@WF>rACsBhgupcD(7Z?lqkLa^1kvH*}Z^BD#H)MQHr28<6@frkNwQpHuF$P zt0nG^g1P1?;4LnqE_Z!{KwTl&z7<}lNeSEM(N{JW^DP51Qa~Cev10{{j(rM%)2Bp& z+4I?yxDqFt_MaCp7&O}$n#BiTwG#=LB!=@7ItT68EW|0Z|zKAtA! z+uX{GWjZvD)sM9_E=8@OSw%%4fnY?57Rza?Sef?9eZ0Oox|hsc)IIWAD%e~2|#!zEQ`Pfr@$9|2qlA2js!d%umJ+Mc1NUyJ_moU#u9Zm09(&+1xgTw|0Vr0(jV z3t@z%x+Ydqxt|9RE!G*{Mj93hpRZL~sRTR%&izATd3fzm0_mrV@TWz~MfE<7rYlTS zp5;Y8Leb?ZMay}eMVIomkbLY>X6h7Xmtuz*I%EKjd|Z#~>HBZrAkd@AOYn8gQr|d^ z=D=jq-Hm1=pg)v~!>weq>Gcg(-BqUmiTy0@5M-Y1E!ZOLaZ-?`l2sHrE!onVuaxgC z&Yf8I?Ok#YK2YA1F$V*7f?>oDID%EgmPXV=6RT)mI{fWf5hU#XwxO3|;hx>=t7EW$ z1Ok2bc1lMtkB?unUL=d#^4xn9k#4wqWlh729bu-t^GIbzBm4H_4+))&C#^*_ex%e- zl*iL$po*-b2^p#9fOn1;YQ^ z=Q6;He^L|Qi4#mq5OE&z-Q7RaV9^TpIgX}8v)6eRs!Jz3)yVS#4N@J=op4% z*N_4<-T6~2u)LD8pE^$EV}HM%_JgJO?`5}ruixx+G?}$@WNh{MtsT=p)kK!AZg%`<-R08wL2f5N z^$JOH*skyVC*M6SUCB@=`mym&qeEi^I9}zjfw#BHDE3fDXSRo>wQP&3`-11K)QK7Q zVT&O@rE}by(!a9bxj_sU%3oLegh;t0GF^$R@D4A8X1qOG8(&(!i;Ruxig2PF=|FCk z7rP4^MPrJF2gUDhMsU;;`hK5K5!HLQy0HIz@bc*Q=@28y`HObBX;t5U#6O4J4n#Gx z@iHs1!thT9clLXuF7BF$OiM(%V_~a~FYJ;iA7DaC^PnJSI9}pX#_{+_yYZK}2q@@t zT=i4#`_<@h^|^6|A@RZw!;HQucZ!ymRN0XgBzt7;iT-Zb4K3c=$d{qv6RnRN(xAMN z+~{^iW|vq>Xca%l82QRDu#r%@rpe9qszdJv0K5{UAD`r-u|Y3p|dPf z>v@(r{Y*8y{aQXqHXbn6~h$u=N;B@!iQX?586*Bhme&J~e| znFr}tzSdNdC8>@?2m0NMuj8?fMhCngUxn7iuhx{LkOdBA|9ot2% ztO2ezFma~es(=otbYsz8nwV@%h-!{Xb+J?*ek48Z4fB}j1MzH8_*7r3m|$F-w?5?) z>4$eeycGC$;IYPF|GlT0@~c7R{ew`?YG%ijuyNIyiGXCBJCcC1o*nE&^i^^DvD;K( zp^`2Lc9G&)&FH7j|7WS{;GoYg)I<#0ux9nZRp(#iiX4a zck{(V_ej2oh35k9p87VC8}}hT4U_SdpD@RTf}Y`BWj34joT9C;4X-7P8HQFv#xqi9YmV zQQ4oaF^}=C48=s(W^KP>`>OUZ`0Vw?r!eLK@dtJuN894OkG}uKx$E`B#*l!qqvbNu zKU9|02|#6`;fLP>p3aJ$sa9~V+kjvXHBEI>5Dt*Ad(>Fs$Fjm|-iDflE%#@M{vZR*k;l92eE^9oOQ2*g6i(9Zd7j~T&= zx{?)#UKjaesPIM$Si}~W%-KNg!j+iWvjYa57tGMf4Q^Y`8D=ft+VrSg2(|=Xsi0ts zLsOI+yadRla+NpA5Zh+muajB`0t7*S@BzJ1g!<8a(uT4fOx}eROu59^SA*9pRoq_4 z(SpFk1ei-REvbIEyg0JVMz(Z6+0WFbxxguMljzZsT%PDT^$P~ED#?WtUH*`Vka9>w zj12-$<(*O;K0F>o10#V8sY0=V6M8pnWwv6(<}N)k(#r9&Hkkf*t9@RB@5t1Jy;C}r zUHFqwtZ$!g^g-bFOaJKsPGwyoCoBj2h0s-+Hf9+>Tueq}+4={4l0nvu+2t4#!rAv6 z#^a&f?idG$TV-l0P8y$-t}4YuIXEUJd}8*~Yh=lUZLtb|+bqU@MU9T?0;*?zTYl_o zMy7S5_kJHazjA>)d=DMyzZXnTPS4VG*BGo@*pe1{;lU2@gBQ%|I3-8L@p#gKW z?^`mg6&1#xKJ4;`m-F;bM7|l4(8^=SBd1%BduGvWF9%{i%DAc6I>k1fu1hlpTH480A8gPry`QtO8?SVLDIZ~qQGRgb_u1&hz9|=v&NAJ>VBE>bu+Jo2!kw6; z!poCB8ww7Zj1@Fs#S0xjn2{lxBF@OU!N#)e0$Swes|KQ>YjZsL)=mt?k8>!~U&gMi zW4IsO9AoRa^ZncZ+iQQY{CBbF0nZMZB1j_eRS zv0tnQNmA+g113&;FzrAddr=Sid`&C-6RRC02b1jD#ge@aHCAr3x_0o zvFj4gKuV#GW#(B$p5J`H0=E495dAg%G^|3QsR=NJO9#n|RAgKn=gDMrjE>}tAT<`0 z-mk<6?QZh>EnPC3-p7-dnZToX8P|0uh9zG+NY80nhaB)0k)*q*0aQ#C`vs9!rFDbA zm<&d55#l0p89-_r#I9te`bDgexM zTlv-U)g4VkYy5=^G4s5iEZmhHUA%Uu`&mn|aBs%N)77d%FPUnXipF=cJEZ(I7XI|6%R<;o5lfyS>kX zHmZ^;hacYPU)NE3^oBZtI01j`W^(s6m(kUTY&n&DiyA1#N@MVSJpPutwCjhDOk}9S z`0vI3?p@?zw=?8@(9(8#jK%2CG*iVJq_IsVYAlSUEw3+YR>b@)Lbd&;75Z(O{p6qE zsHe7yt!qtxl8ka@fP5_*nQy)EKd2T;#f1~ZJJttE$R#^bmTlYDvL6Ue{pDUOxo~V0 zU*&D3zj12y#{&t$rTk-ZUS9{q{Ty)2Tw@CZhbu&Ng|WUq_w z=;qWgs%C(DqV!~O5cV*BA-tpH8Y#OL6Pl4towbi_1Q3I)VQPE6g@WhCB_;!U6YJo6 zYT)l`7Rpa$hLHxixG3oE-i=4ziCQU$bgx0=yz=b=&iw}^{xNx4YPU8yj_y9qMaUw& z5s-SZxrI0Bl7|T#k={e;-Av(& ze#*m6WJ9u789My6cz0l?3KdGQ{9?NUwA_J+#2+!jxz>lpqIIwW?>!NT_kFM=O0v9{l$c&gD9t{B^=Wnr z!`y}11)jWE!Nz@Jo{zhX{h65AP#}7ZBN0_pvcYXzV~!$5B9zY|nZ11R@Y|nCNySJ! z&Ax8(*8L0g2u-LNuEvf_7x3$#;SX;4?%aY{1I#}|Un9T@~E>dL}|JmblWBuO6t z4?NTvO-gz@nCjtMqrQ^KFHw;OJY_N z!$QLDvh&qdD1QwF2NjAaLo~8cGqvY__d)Y((GRdgj2(Lalbu$nZr%7b?5jR*^Ul<- z#V%S%p@8l?a$h*w0*1Vf8D+`woe5vj>Y14I(^@l-k4oACV^1jP)}KGS4M^_%g7Xbt zBF|+fX&7D*M>W}ZhaicN=h(G`7IT4a)OdrIuA)us_=kC(#!1<>*Cwmg%S=uhFQ6;U zqgUVBzARsQp1I`*>yw~cMp`024mo3OR-Mb|8K~fH+}kZzqR26%nB0U5Lo2`6UiRo2``M+A_W zg>S1Ur+w#0ek$ct&U2vfy?XHtJ|Yt=Rs?wLLsSBu8rk7#-tQd53yWXyhPd$TGIo+D z)R5;}n*U@%d5-J)&C6*KF?EMv{Zkn~l^QDRq0VJfeaaW^-A){psL0(JSk9>oZsn*H zM=h}@xWR*Xw1oRkGD+BsuP@US%N1Ux9!L(7BF@+(2Ndsd)|#7|>~GO~6MGp6ep5>%$(Ady<vVC>@fFcJkh!Yla4CqjPRwWXsQ3MoGJ||eYmrQN=k)0`e zeK>JlHFG+UI3ywpf;PaJ^Hb2pi@oHz;QjqrNqy3sy+4i4I8sNwn}0+En8S80V~a-}Mj9rw%}#E?^qhAonYtu1A4)J6=vrJy#|<^r#Fl z{Y!BJAJ9<6qa%?a^^R_^+e=drEO6v!s#F!Hjo?!Y=&~~nlQ~2&za(9ZSqSb5v824P zt`iy3mba}$B0JLLnc;-IsOjx?%K+xdyjr2L&qmIwH2q>r#l68I4k#Wx%(TUcgiRDw zPRkRev6W=IS0p`9759A|xD>G4iX-4@?KEaIPh6-_G9E~_nKPZkWRCxH3_tW7d zd0Mr2^XaJ(f5s0aB9FHVSTIn`)gI~gm)wjvN}3PjXHFkDcZ&$z?P6+?>8~%Amc?G% z|Cb2@g-GM8puM}V&X3AU^!$!~(}l$A=fh7vxl-lWwe6136hng?kL79^!$R4*^~^j)&A>9wyN@g0eRDuay{SQ2KM&L|KD(zR(aP>moUZ@dV*AjR)|b5Pk! z2HExi`P>|ZKW?MfG_71n%qcSc0I7%+Z+$j@x%`&uJ2RhHYDiD3B>d(u2hnB9hcNf` zT8XQf)4H0lNa22a4Qk30@hys@E7JCUNsusfxG9qo=VDz})L@CBu0hUcF3O-k>jIYM z!vRuQyBz)c0^m0|4&^IO-HBvY3&rnQ0KkuYga9hg=+nB5{pD+#W$}X^Kh-9&Rtu$( z>$hnHK6CafKu5927!$~&&N`L-EtiVsrY%k)G7A(`pjLp%}-vl#HEo zC9&92l;U+)17)zR9umja9U@axS#!Y``}LbDt$OEDxYT*OEnIq;a# zV0IB!iZE7+#4I4)L<9;ka^TJ4k>7;5dti^PZZL7|=vekoN!sElIj%?3Jv+iIZcc@Kn((3r6Tjia_9(m*jXgdbJM zMn2sN#@*A_rZE$|oMl)Dtwc&&i=GJMw=3im{z&&y*3{p(0>7*?)_L+xALWP@OyBL} z+=|cx#|=m24#&$kJUK?FvmT}N6FK`g#)x5hrH-n*^rqwdJFfpFQE^~qVAf5;VNj4x z-|N4yNprdqa7&XZ$vgj12SWctsf-xfU7bRx{K`e6e=(}2l_Bw?;P=$WRu2ZB!OXQq zOpIW7y$1!eWQD}X`V;-vX#>`)_&2$cl?uIZ6tfPnBB{rpI?ni@Rb?Qx33Twa{006_)AiYz;MmcQ zDog(kmMOn~1kL~BTh-XvF08A$LPhA5==$d6d9>DP3Q6r6WoRF`QLATKpsz$jjMK37 z7FER9zlJ5?3A`Ax&<2iVfSOZ0isCo-0(<>zQUlr7;34Aq{=5qH1 zY_(l%m=c&%Y$b!bgnsEL5;S;qr3k5r`XX=e1ZX1s5oEq>UocvM80)m~L}9<_FV*SY z!f*u|a&6V@hd4xUzAk0|p#Q!z5u^r-*;Q2_-$*!0kQzzeZY<98%_Nsxq=;pkwZQ-r zG(Uela~6Of$c<7opOT3rX{b=3^*D2wJlUp#txx#r zJBBf+Q)D9u>Zvkh21PHr`9krnFYXDR5AjCrf0?I|vrOSgN6LFEABO6a;R~@V?gR5G zk_K_2E29kC%HP>d*(f@b$musk&xc#X^s4@!;ZB?genu{i%i zgFuPeQuA=+O4;rgtmUEKxVbz1Ut!rP1wF(X&-`I#PmL`)`I&vkqXl(IHhR{@(1Z?* zNZL)suVOd)#WhM}yl@9m=X@TOgg`?1TvJ6@VOKoBFNUV~0*vV73TX(pFVW9hnv{X( zL-!vXE4~Z&ZpqY>v4rkbeV5oz6MG#f?kdKNvb?BL@F_27)j8vM=ysCG3t5vz!r!UU z|5z7b#xI%7`&ox)K@oB-XI49YI-O@Fruk1QhT{he52Xzccsj-xs^j)=N1rM_mizu|3MQ^qx$Qvv4$IoS)EOZ*vS5n7;U%^hz>GTvj<}A z?V+f9ci3!kJL(k8WeXt}T%5UMa_j_p74af?V)9UQ$jw`)4G`-7Qf!@?hcAeTVJjYgeq=xAFEo(NJuP91 zdR_Q+Ypg(`;2)Nvh;!spum8PwljNbxtuu&wT5PZ35#LHeP*`G4l+ZwEKLLwMrWJx< zSV_IC2ZW^7H2qAT07BxX?+@FH__n5xkb6Ax8HrX$o@abmi%s#BPUZ7?GWgQI%GAnADV??7Y7 ziW3wWPKg34pcAuW9adBVpGO>ipU&xjQU^oZg?c<@R*+E)s!pchXBZOWGHRKMrXo`$ zA-mRkD*}8cnVwV)X!s6H>xF32uvCth3q7B;%7qcKyp(g>#A?9tYrx?&%c+i+X8>ethr9)l_n z`*$He@`Ha+s~zZ2>B|XIZInXm)+wWNd$R9$W(XwA|K-f@pKNN^mteKqvr4W zWY3>!0mFt;{xDazpu;emmQsgMb$CFZ4q5+?%e`j-gQis9Rek8DD6a4}`$HpxKM-UX1gfNQASwsk$Ki+aDq>$|KCaz`j zO*;N`HQbXQrBJo#hgtP0M~6-|DOa#iDkBJ0Y8Cfe`M%wtC%b}h-T04z{BP%QU{3Jp zzB8*H_@}?enYiXd3L9BmXhlb zFK?`5rGLlD{OBHO$#iIDLy-mY{C8fxX=6BuN>WID7}Qgyed);QjNw{=j3A7+29?h> z*NnRU-Oy>1)8fIk=E^_Iv`WPbCRD>F2Q%M|ekr7&lr{0X=bw{&Y6gbB8fK3lvQ4W? z4oY2M8B4?`12~XP91_BgS})2cK!6Yzoazrb1Ogfb+3qT%nED5^{5Vjz=;D?WK}me* zdMkF^v&pBD%VZpc7ta%t@S!isW+_RI)Quy@{m%NBV#L(}mbAl~0lquZL5wE`n&xr8 zO$RqYyvxvaW-^;lC>L;d6#%5#&!jd zRhU*6I0A#KfE9?rc-)j{=Hh|ZJoCqDu?oCXTB6vuHxnC-L!L*jn=urlV>c(}ql0u? zG`m9&M8F4$VAW?T(_fv&UsF(8oN%{_rW-5`p6ONRHytx|J*hNb-9&j#9-=D^n1ab3g^b zT$i9MN;XZ8*t2E0;2XFf!v8WaRd<;4{hD)^0^QVUGWX{6kU@vo>Dj97#NeAdEeJ`4A_SqwvJYs4w6BgyTwMJPL1Sz z#$4akBI9y>wd~1$ML}1r@;4$oCdaS@<+`Tb;p>;Q{ZQ_Yg+gz!I4Lu;3?}dU-FaUd zB>3OB%m1QhvlfWqZPY!|Ps1!EXL3@UGcapxcT{fr=ijHDreQzv925vT7`+s90JMkw z8#kYZfIq&d*}l)JGN{nsg8(HWBmuUM$*slWmNQcVzH=%*%~P(mkL)q>-ag7l&mXs9 z^L*nVqaQVX*65Yr|0=~TKy}#-xqwrvhDctSIfGV=VW73=^c@E)Z=%d91P6Y5Wh=T< zlJ0?p2g9$sXGI8EKc9r5_8I3FpmO|w!OHS?5IpHfoy8yMcs7+JJRK1cD*amP7ZeUP1nL9Y$H%SuhZ;QL z3c1@xOc7OQ>I0fqa0q*2bh{dqOlu-zzv=hQTH1A&=?t_Vc_xLPBGR5rh_` z4}|mV$mY1RM4GVgaV+s$oPWKOu>dH5h@E#@yEE={TG{-#>F-<34>~TYF+Ex-`wcP* z;W$Bq%as3X`TanoF>qVrPq03{ek)ML@2^jk_LcCQmo6mCV$NYmcdeh%c}%B*U&iKl zsu9K<3lg{+}Q`{t&OtcrWfK zwH?>mjRA`7&u^3!7~ldVI1JbA3a&AFv4eS)Sb6S^0plPB z<-0=AR=v8r)bEUD4qYSz`I&VldvlXGKgJFw4;I-w4S#pEwDo<VzW~L240~deo#Zx{YLFlo=LRYCQ1sVC>O!nWeoN1%K$r%q; zK!DUC<%ZGqMS-Yu<7uP~#Xw{u9v{l)cGuJ=UR$h^j&?l^eV5Hhn`ku*P70_mdQk3| zl8L?ikON!MAsm-7lY9Jx`5GH|8ctSan~<*Q^kskRL75#h@S-|H+$I=W62_e{q%OYC z^nw53L+utpT_F?($$CM}U`)^1EB;J+laA9P2gZH?Hdf#;xNEm~hRo@?0%SfOn@QJy zllzx+LM$8pm(Kk}_JQJFTGiQbw`s$j&N7UIBB*6sccW)$srS+<-%G_c-a-Qs#< z0%cccb-bUH+`#v4Li_Cb@r35x&Fq*dDgbFm`gH#`Oe>R9pP8ELA@c{X0I6-r=Uax# zB(jZ+nZI4af7e`A3ZK0y(^de{w!+IVv`>3uA{L2rK@r|sj5Az{I=7R3(;zAs;+iG` z`Z<_HJTeqc8Npp_LTUOM`2ypF!K%nySGUZ%FCLcZ=8`<`5|}-!D+u395n&y9J4i*u zY3!w1kS{1o&g^SB=cTcv5b4)sRhi@a^keo4+OI1hj^7|ujCY}r2Ej6KQ_e~-7gX{z z?w^zFhfeSG0yEmu?wlbRZUT}nH#-0KE|&o)e~RW$tFbqZ4*(_bafQ+0fwSxX=NWR7 zL&o_J`4O$~garC@bO_o48@96W!XcJ)2Rolrs+ntv2|~NcMY`IzSi3)2ESKQ^!0|d~ zCj$QJ8zz)7%0tDgxqfuy+6%`^38WEUoP<*cFticeGzS|s(}d?BL6A61a2olEfY(Iv zgta^3A`Sf9MVk-uHW#m|!N_|IdT%@xU|zo9eif+-Zhe51LvZwW#&zK77&7Qtxl~Zk z&e%~%38C&{gRnUJJE~urj?P#tCqN1XjozkQtEbn|&u~7o3r0Z9Sx>DA&a+>40r{TsN~jX`KLj0G~mnS0|_ok%X)yvtmT+yA>sr2=yTUvWpvg2o{OEB?i3 z*NH3c`D-tV3!xa=ku+}fk`)4?=O95r4onXu|B@Ozk@%>d2Odk=xtyt2tJwe9X>C&> zLQr$YDgIzT42F2r-o}SSfO20cjogQ#u}H+ZL^0YswBg7v%D93ms}RP<&*92iorCSH z-HGMBH@LW&^(09fp|KC^*y+jX;^lRB!ashxYD25@&*MjHS(#5|0fCp2>3H^R&`-?< zTrkI)qQvjmdMyX9?a|&;!JUmP1mSTJCiI{G!wGD|?)4}xqjI>X+G?T^>ElW_5F#1@pGj+;&!#Gop-#xdbmI8yaNgf*YdF|^Tw9VbW=`FbP~zmGgJ8zY+` zSt5V&S}1-ZGim0Mf+VXl0-U&-fr;~1Cuk}9)>Pk37C>%ImKsCxpv$58T1=hhW2W+d z!z0q=}CKHohmPYYM<4lU=}XG}U4{F(#2^G#sV^FkK+ z%w=}MAfWejlzBM=6El)X8c|Yz&EmSj=37CtB&dU4lofI46gxpsDs=C_v1(VDFIMB6 zeN--O0?hH?0--RJF3!;$pp_AATTU=v=w+?%aw(bZUBwF~#(J(XX(hhMz+C>fOTYW($v>ob{K$$9eIwb)iMA zNC~}}An7%llWStlIy7A&_s~o+?ZAbO0H=`?E;~_BCAVLg40~?LZw8;pXSk>Km3U;r;CkM}Cmw$crndcJftz5FNZ_qhSWsvI2ntDX17zHrHBIG;*_IRVf?#eX$HUW**PVszjh5C!s5fXvolCdDaYdnb9%a(vl@plF5gu?mQ3Cd))-AE+*V!nOd%OBhU$!G+?&MFIi71}Q25 z2=H@2y`Ix`{fX)qbB8YPtg`#b*_fD}QRdgIHB{@xhn%BYpI=L&q_zH$-X3F0c=A5qZ*^k`6E7WFHJ%4D}2kK?wckA{a zc>l+Ig+iZS3E8YemLC*#`B-uk!wC?OZ7OLfi%?p5sg_Z--F~cX(=!ei6jW1>b)L>4 zqp3GJm4*ijb5maS%LG(379y<0xw%2xgFB|N$=z_iRF``Mziyplssj;{# z6pQig3b_^c>PI$cC(u7>*J#wW`oxQ6SdYqcvnkj1_0Lvtvv`iDi?LT-eZJSrt)?Gy zlh2WCKk2;Iv3+;TFxyb#>axo)D%d%FxCp_c%0&-ply61mx6SUo7^5kjVQ0%&!{O;0 zk8+>{y&TMdjH@hSoFFd7j5&G$ksk5QjS} zW;T`vE$_3%k?pq#o(+}8H&64m#+|^GU*~sPcI)_f!dw?UMa8o|MNV+0N_^@(3nAg@ zoD8?QiQ_hL5I0R^55xU>mD;Axdb>=tq!Efzwq2tAwZ%>2O@L|Sy?3L;lkL?+v02~B zs^@~OrDXh*=Q>$pTQiTO7>g=qGzab`-D7FMc`u2%Ya=KS1ap+{Q}J0KLlJ+Y8}1Ut zt{P$*ptR1gCioQGBYO^-VqbKW77$h*`Uv6uwO(K*eu)bku`9-x zpxc2!Effw?H_)Ir<9XeE&&H8=QY)>pj&P(#(&(+{yBbvq&k}70a%PWd2id6laieqZ zVrG*!^eQu?bSCFjJ;mVygw(=|a&3Zb+NIH66p6KO<+p#IYLZY{~`RKdYOmZWt$w!ew+ zr=;N6%ga&J#{5BsBr~ow_ij4WjQvyJ2?ww5^w(ZanK0gI9|@bL_MRhr|C7$fB3CqL zr?fYyGdjch^=5jRhedO7q>+RsS;ln|RgpEB#@gomac_@RAL7q@W=aDoO)oRHIT#~cVyKES&zn^-2KQapSvAx8Rrj^yV*Cou>JRJ zfYl0z#(x}+ii)XoLV0rXJE!u!yp(p?{WIrs71||f%h!4iQztUZ8WEE)*BaiR@r5Ce?`pkyAatn`O)en=*i9Ze{X7~G=lbTfw| zoj!Qf&Yu$(vD5|~fqeZT#`z=cGZ~X;bB&EovqWorui` z@uJ*X-bzUQgTq;108Pv$J^82J`t%2QmvA8X`}3%ZZPs?&vD@60*|!72XYML6S`iAN z(-K6UD|dWibP4tB4fb1W{yFm2+p+>GPXhK=M0wnjericz4M!C`pgMONfE4a|?hT5>RtL%`W94#22@z%N!xKpI1Nf5ZUS|dDi zJ@t9} znDc+Kg@J1TGkV}Gs7G8SdGTM`o{bpG9eBT8%vLPYt!9=!vERv5#h4+1+K49zMo@h7 zj&IYQ8p?wYUALsn*S&~Pua$Ai&0hixi9^5STd<&HFz@b8C1y$tRAzL%7);6kS*qn^ ztPEs@@oX>d>AH1!BW)Fjax#tUJ!7>dJ?-Q@)6BdcR zN(;PEe`b`!Df4?oJpBZo2LtAB`>gmGCLy-B*a@8`Xz8x@ZFqz%@zuH)u^c#k&)CLD zvlFV!1ehiV)Ba#Un3YwcL$^%(6d}os7>rL|V*k!k`sX(j#h{fQK;!#=bzONNRO|a^ z49421tci(ASt1I_GP;&FX)$D<%9bn>*=6P+-J7IaSxRcETV#nMOSXesDnz#|S;v*! zvW;Zle(%VcMc-e4O>@q9-)H?i+k3`Fp4Cs)1wxZ{KHt|}c=~<#_~8St5$B8j0%J6S z`)-|6Hbs5Dy-zCxhrxsJ$MT)4S_E&wk1g?*|scL-oA986~@y5_;Z18otofd;?4p`c6~D5!F0OCiB;BWxfQ&o*Q;zY8`+{gv73W5YnYm#2fKE~$+^X7>63 zOeQ8!I`V(NRM>e#xK&=Fd)u+kFCgI}sIGAPQD?t4w{6=~&g8B8t~aDD#=UE!>Bri~ zA^YM|OmyFnEKF<8DDOG(+gCq%>;?^)a|FK98No)nSPS*N9=b1e$FKoA(t3?d^8|DTsU8E_jz~JtC ze?&cuj$O@~)<*f);jN&fbKZ!f#}OfQL>{s&Bs80Ye+Gj~Bxr+;6?)c6@4Q#ISO zn>kP2l&ry>Tz}e6XWeR4$|cb)+vzEr-xfLV6|@r8-{;-yXDHtNe}inBKs`+H|cJW)&4R6LVau`zg<$u)I!!O zc9>}8uv+P=1|)lRQ^m8VW9|zP{M%G4{-ye3|G;wl9~jrl9=L6?o1IuRSt$wfpzAx*P4N_rJtx@I3fDO(2d9gcR*}fn&az=l{mn z;oA~hX03LV@4BAUK8;$+D)0x@EcA{P{MhVW+Ey^oo#y|KPg}9I*WPAD0eVQuqqT3x z7rVPsw-tH^c%uwtH+g=)F*-2w;zdTu$l?>dkn6fnvu~an5fM#HYrO`}vp4Vapx^{( zS=I8&)1zJ6Cqs6{dv=VqpDuPZ*`m=E8k88)SD)@wH0xRZ?02fOl730TX+Cx57~?){ zdme_*?ICOTy-ipg!yRLp+gFF+iaP`FVtV24#@34zmd?w@cnLBg) zAN@L``tdJ)Zko?z`zw)b=JSgW{oOhJUMpyfWcYnfIoXWcN#j(o4)Tn6t!PUBrHF>F4h= zMWaN1vPa>9Y9#5$ntN096o1O4(GQw4ZO%*g_->z%eP><8w=6Djr@DX(pIVfM^rhOw zV%w+N#sb8mGEaI>&osGMZ&Ruz60L>m%**ebT7SOwNB4|F?WJJp9fMEykmkRiLUWJ( z*);l2VQrx(kK5Gnz22U?b93TjPWKO=+!>#j{#i%PR8v#K&oCr=>};W+`4z?OyJC9@ zdo{V9rTUG>G@bsSnU+A{4*MztRb-)p^)VNFNxz$0WAx(=yU6r~2{U;~6MKC~rNS(h zHZryS$7!FB1css+yzi92VzNg6Ee`m3E0N6mUD9q*aUtQ1xNx}Ewxr%q3td^e6%iw7 zEykPu^X!si!NgFFwwC9-aGoh~$UDFGe3(`oz9UQUZ`T7o%4?;Jivn<@)YG+|DpA6y zSG_x`F4&5VOdIpj60`j>C5pugGVMN_8JCa5RS{Yoo%O{ldZVY`7tMc*KZp7A?M4-T zH}RLxD^2yHD>o|pS)MHUeZYOQhWUc*9r0BkGA59=!Y0*nt;lp`<_8Du>wCKM~A-Io4rRddsQ@&bkrwDUR%+`EJq1J34ct0~({% zA$g+6D>ke(-ZOYq@=1;YIw^sk!R0X6EmAqINKE=v!XH0J3WyxHHSFqItdssyyU)c$ zod=Re>0g?5FWO!mW*)Uq+Q~8_B(R!#o$tLl_`Pl?t0ZTu2-{Kh^@kLul25>rC$5U- z+~0FD2Bo$3W)pW(l708&{78!uqC|B0wyQ?ou2_27hb&%iCdc|0D0tejEhWpA+87Gm zy)XVM?}&OECcZW$^YnlL7xUh5<*Q`dwzy=wn08Hc(!C<#Y1h4^wcLg77xVlK;>`0` zIThB|?}w)E2n)GAEeQzrS!?{lt7KL+(pUPjJ>TF9!gyu4v(p)8^RD)1M~Q`kv#Bp- zHC2KT0yYJqEvl5g0ZTWlnre__$swnitYN3{xYeH0M{Du+eDi+0FI^%_N7mBYE%INN#SOU_s(;v9nau;) zimTiAx#2XT{DYz(+tccqt3(wAfb50W56}MhcX+7SkJ{rbaGLgf z{S6GG&9-T=&tbp?Y0A0dQ(A3NcCwyq~zfsTSW(ZBcQ>4*6?M zNkWCfi*dc%Z>nWz(01&Bitlcy$Wlmd8s!^xDUQQC%GFYdcXkvE__uI}op0E1c$ci& z3s*VEFPi9^@%#F6Zrm_0ZgfR`N^rS9j#q+A(*#>xN4`lUQ_zL3K|Fgn5N2 zoy$sP@APo3TgM{ug|94Tyd^iCsl^dL|C^y*Mc~`EkUr-8`b(L5#x9qs?I`l7et*-z z4+T}A2oIT3L9`o2v%kFKNfl+ZvSRC2xUrf^qaUbu#JwA#90wsqYwF4A?F|Fb>Z z_cLE6>>yW1a~KaTPkVK0R}E(BrRs!28&N;|%PAAo=%c51rlF8XEf$4HycPUg|#WCY5`4(eEV-4%Y!imDvjF zENd>`5l22d(XB4}cI>^TRPfGbv!bDHfiWcn;h7KOa(z*s#y3V$K5cGge%WdSR-3n9 z6J)|d(LV!2b(P6?+}HKA-;X8LR$w1lE*lB+F&v(_3jGXA%V`jO8=uz3Gg9eS#EZ}^ z$%{r+?CoX#-v@-CGXvUHWM@ys(spoyclkyx=s6{ZbVk5_`TzJZw3FOqrUs4LpH?}M z_2TBT!3KzfkT&qP*!SmsRB@p7g2idgHjMmu?Z^=|x~IPH%TkMLh;b4Z(Q{2B3)z3{ zR#+B-mp#p+RjtB=01mE0g%(3|%bp6Eufbx%ckEYU-e`#<_XGw8TP+-aF6N|K5Txb~ ze*a{7VfrTSd$9T&-Q|FT^+?1kMbKx*KjqGy)AMTnyDnz=#zqtns)XvZt;-D5i%o59 z!&Ln4300Urhbz?6>Tf3BWZLOq4*X62!DqMm=@Hap!ra4tZE%3*mWtaV2Ld;3XZr804LEG;<$xVR z%htrekdnoSvsmwFMX9MkhiyLYYLeT}Gi`K4JiUr?_S)-3Qz?xqve?u*6E2cOyfA88 zbB%(q?rROAY^=rj?~Y6dC&u$05)JK3N*7GFXMRbw1^TMDv&`G@Q^s}x9N<|aqqvOy zz$RY8U%i^zv-`HO9F0VV>VAwXh$I`sCk8Lil=*4?M`##pburAjvPw}cShmJ|-bcTI zNYgY4UR0SuFYB5D7x2!ER=4FG5z|oNVa22RwOEYTmlwChS<=4H726vzt(L*N5b`7r zIJqcu@8GNW0s%R*@rw7vBX{H{YEO!B!x+pJ_pxBrx96UwEAzPN(t}&obIhXrWGdlm z4BwaSrYQNphkrvfo-HsJthc4Yi~!H=YG6W!#}mA}*n{E^T3Sre4vd!0$u*(6oh(^d z9d^nM`Wk+OchTp;YFbmU^|s!#J8vfF--!>Iv)jI?xyznc-ULJcOm#k_D3uJsS!;u@ zK4i=BQ-$=`jn}Fl5hvYPd{NEXyp)0`_9nHW1(x0J0HkB{L0KwT>!#weN`QgT36Sud zMXz~H7Wz1W_p(xP+`klpl*Z!Cvl2;P&D3BogQRChpm@`i0Db0Ukz+@^>m@ zrsnp3DC*3PR6%^}juY^tul0_9B5ryNS~PhMXGtZKp)*VXz)oGmFBIv<%F8^EBHql- zKz-4UikxoK!zMqi$Xc6x4>r!1dM8V?7P-MccP*%DLVbJnF^HRuYY&zs~6S=WjVE# zb|SSS1)kt_TEFV8dP9sWcJVmdPHAAL-7TG2$W96H%b~0ciQuzZibzfYlI}dz&Dr+L zC6?v%pgL#W(p?vj{DM)A>FydN5V$QxL*vPQ?g;u|(-XkT*@?CFNWM~_NT2M>7v#H= zHa6q{+aepHJ=IA%LQ|tI(OgCnqqmnuOy7a3jwlpFmFo{1)$=-DKp>Pj0;1An#2+2F zWnZCvMMsczp4bT(b&5Owf!u~*J#bU#BF5zm&G}u-s_FCwrm}V%$K!G2#Mu-Z8{HJXJv2+y2m>O{ESU@7|K{ zpQKIKdzDD~1tPA3_&0;hazJA&$1k1U{uQ%TK#BOJx6&}*i3Bcbb> z&Z=^gf4?(hlNCZAtc2=3q!dYs`u^c7{d$Wm(*bcHctY&K6G#68K3BeFF=Y2PveQAs zka}bZ4o%3J(`v4RpJUHJO_Ze8?7El76l%U1(8JCH-uIWe0sXI{J9U{vTFSuJ-qepb z5vtjk&3B+pr#tgG{sTE~kx+7$&V@Ey5IyM=YG%tp>u> zTVN#ikG$?MNwx>Ie1~T42gF|5z`G78a(vCn_m6B-RDKm0G%IjUZ&M_tIzyQ@Z}_#7 zxe$865dcy5`O^J}&PbLFlzlF?Fc$9DU>Umme=PPz2*7xHBxT;`FBZUZqvBO@*s0gl zL*~d*xoeAVG6ZjAb8I7PN2Unu)am~+q`r#3v)P`D$#v@;kSqBunZp%?xjgh3mY6{{d%VYijOS($gCKiuI-&6xGO z?!TCD!KA2dlZH%SZ9`i1cYS5HAc?-S9|-C3Uyc_MlBlbL&u@RM%y-3INa25QCZnV= z7?5#^l5>bJE+s{P>0N^rfVG93KX)ULw&N(xXyg?^gS1Vu_4WA9t%#u^OyJwmFH(>4 za+3|$6?lL9asXjF*Bn@8SiY1Gf?|!@knLaGT2fOr(|>s%({Wz85EsNJ0CG`~u#_F- zWrcrq;1(RV=(q4BB%{L~7XXGpVK!Z45mY1 zF%gM3YRk&I`LF*YE-tm)eI~|M=(f$Iv%53x1VH84rX4WGq=02Xr=SnjPE9gXpQ(j4 zL0_8@iqLJqLR-Hy=>#pa1>X@WExVIw^iHWy6BWsf+K83`(mM*snsb3>i*bndw~=oW z4s3O;SrU1ol##GmqwR_y6C7T?BtdTN*8EH3aQmWfW(LcpnDaS`3W;T@oz9M7r>JIQ;4F zMB1~HR0rDR-WgSdVuU{GdDNdgS<0w|bJ|-vuWTXCmUFuuT$ZH=fC=JQ^T*4GcC*(e zo5_&Y3wv#%>_c!7xrWAc9KhN0xMOqgK4z=9@xP(bsCCb-J~BoWl)E;$PC+Wza2wf7 z<;4F$8@L8#FB}>tni$0Jdy=7 znS`1J=1A9!VPolulI)Zc0VdJ;<{*L@obi6N3@wngV8@e4D2JEFzIb8tFIE-&To5IP zLCt6~x6a3d1$bk+FN(%Gx2p;5QFY&%4PNn z8fBn?bg8NSVj}U3M289UzMtBHUJ1Ei=`|SC6)UvYoLveI5g44rXdig>iZhK-0)ycz zApU8AWYKI`gyX;>^zc?3HrP_bm)ZRActjx*wOX38SSGS0KIn@e2BjV3U5^ydcv=r5 z3n&~zx-S4q1y!S<>)$8){(|zfHX+m?Wa8&}o#a;C-$}=xq0Oj2WEq5)F=$H*r61ad zi1#oVN_kT{cXpf9@x_E4JS!HWZbju-8^hJcgG}B+R!E zvVCh#FI%;QXidKi&b*$Eky>R8rxhZ7M}TZI0KS@i>pQk1bi<-(pENPy%a5LvPU(kQrdSd84-^2w*1{AHtnct*DMddH;OPh55*>MhzWc3d{5CtE-lkdGAHi%FH!ywe_zum?cI?Qww?3~z-p&r_2ik4 zK=Dg8LUy#eue*HNzes}#F}o{J9I-6Sj(xNcE7V+%%i%-!HK|Ns$5Vbu2r(eYK2aL`-ZK4HY58p|tJ+_N zk&kw?rcvq~NpH&oqSPl}&gWPbHrQp!?MN=lq3FO`1s$n4i-rl~A{ zXj}~)O0)8Y@)T&f>X_DRt~wToPeTTv=hZRB>xZ<)xKTr5$@P*14UKB(`b`&Nn041d zmf{(#;>*x{Wrvz1bfYL`oLM+}0@Obw-^8jorbw{C>R0c<;Tp97HTOlxnBMNrDAT&{>Z@6#vUvjdNOjK?Rt0# zu&YA*5M1S?Gl zxCr$G?CzPU?_%~f5R%fc#|wGiNmR1C=J;xm&a{LUvn`qcpDQ@d$D^*aiNoWUWC2fN zeuSlduO6jlV3KD!7GmT@{V$5oAS&cWt%I_pru5`mju`xElO5*7wFEBbRMjZTN>cFq;pwU`0+zWZ0zlWb_NO%g@US7ORaF0#75SX?6(Xg@~vuhT3G znmSI@w6|Ka?sMf+Q?3mwwU&taQIcw5PczQ>aLqPlGvdC0ToC*V{5$KJ*hzIokxjSI z1FVEgP*%1kS_^w^R zt{n#djRzt32N7uQ**;Z{YeT>Uyjnt2)L0bmr@3i57p%FG0SR?RpI70OH-3m$@4Y~< zqX?bUm^~kkWS>i#xClb1VO@P1>xmtEh}zCTOwQ&9dfFccR>d8+y3T=6kTuBLAE?pa z0F!DRFjHo?6>1Z(g>0vY>nxt>PBaTZ84+}S2Iq}g@bFW^u#+Ie6mT?uZ)no*e8*ZA zPmX}J;r(3!EHw>2hR1{D2s}yz-NQOP296sGS-#D1^6a&*XUMgllqgLZPoa*t>JVEJ zJ#`5NQ{laDx0xt|##o_jw`zb{`Yw`;IC_OfL1!YuimPrv zMH*fAmcrqt1t2LevT*EY)vkD=BE6vr3@anF+GX=tMzloJt);G0v-nzbA}J3bPfGSI zDw)|k;(`pYV8JL;k`QabHs!0?(OOc$XEQyC_7yx|*y}K8GYEh#J7HIBuE5xKem1Rq zV{~%6pZoW-7LrjU833@csU=Y}pg3FWHSC!ONM^O0xZ?R-cUXz!zK`|xV?F1&5iIrK zrC%oNt2W$KaULz%;Ij`riR+r%Wm)cy#U0jxu2-k?No|0$Fdi%<$Ki?HK!cOsrX8!8 z0^~*|z~e4X3vUvuY(8kFs-?5vzZ9}TAjEJ_)W-Iv^XVQIA-N0nRI$jwgo8Ajo@vsB z6ktHU@DtvJKMoUPc)B0U6b(EiG3RECP4oBDR5Q5UFmzLnb^{vo5!6VzqM4uN*f>cC zb&2gx4SPY$THT2i)Nt#is%$2lDNP6WClb4lWr;mq||GSy?DS zBjT@>Dbu>^9`j9=B^oj-RlvqDSSQGRSAM7HK12J4Xl znkdI?noHTpPe;G{;IUP9C|U~_to8nAYfB_+X>OGFYF$~E12kcj=-b?!O{A3OE(eyX z@_`xTW~=yiv2nHqH0xA+6+rohSG!<8#jD}U<{fq$a(x8m^dl)s{C23qlkY8~iaBorRCup$JX&Ot>HUPYJ|^E7e}JZ)^=ua#zS4IBsLK%uVQX|jW0Y+wl8b`#a{lX9 zqEfdkOzQ8UsGH4S%Z4}|UNG*5|lvnK} zj;`~hIIf589`1U`CWG`$U=5Bo@6NL-Qyl#>>XVr+FehEQr>gAKXCYc7yYTnWJc@+5 z-Rx;ztGw8$roe@uZi^^M2x3zUKz9ZvSHi;lU5ENpdIQ<^#(~B-m^Te)tR_}m=Iflj z3oCJ4rGmWehbf!%DR7V=n29C!zyqgmnu!~8HtWi_HO7AK6WJMwy9Jj`=elH35xn~ z2TONO#p2opD&A0toLNr3Em0cfV9n!|7gfwAX*{tVQIr zacQVAqDsk_;rmCB2%g4B+?9Anu4I7_pK5>~3~6UW+)8+BIc-@$q|*o4EH=RsqX&%4@^me53R+F z`RYgp$cvOW7LBd*<6*n{aSyJV++YUI=~bwpkH?z&UuV0B{k0GPIISm8CkawNYhHA> zgGKHALpmc)Y?jiRfj3(Kr_5~`B6JwG6EH$I5jUS&v1KLKB`HbRoS zvcqi?yJv&q*QKu_3mq(xz~#?&P6GHMJ`W&kN?ExZbNt9Cmg7JYt|^twUD^IM+`of8 zmejA-{Vzy|8;r`G@;19`vvY}~=Kz`(-}aiaEEI(8W3*6xbzk3Sp|pI5m*s4oC43q0 zl^AK%V3PaAdCg1bIgzFfB)P5c0(96~1>l4-`V}~x)>#kM3gG~UZyQLVMP5AN6746f zcvp;=DR}A#yWugGaT_xg7p;2>`SyxgvPXsq6Kea`K3gkpM&gYc?BnJn3ey3MwlwMl zYn;Vc*l_LZOVCJ0b5)+-x&)3q{*E;br@WXN7b?azn6x6D1X3o0{_mX5`W$ADj$xr7 zthrswzL3_}IiBUv;i*;%J!K{Iv_HXFC(Xr=pSD|I0T3ZCCPFywQEO1S6jY-U^bm>F6 zJx+zsO@pqFiflQuuaOPVY2CbLN2W)1pcoFi=uQxD@YARfA7!shasH~fht+fG!H33ku(0!ne!w#{iS`sZ^ z5Yv?|_up=&!8IyC)mbR1o{A3`lpBVfYz9~DjH3Ysxnt};#?Xa!2ESV$+;__EO9sD> z7c0g1=uGnwhlNpc>8Rt2raL*N5FZZ$7&MeY&1GfR=&Y zrz!(mTVb^DHlWI&$0KbVjOB_+SxWZJ1%9%dQb0u>>*EmCggLc)=*IO75mG+N@V}%J z6?sNF{fF4`8c!Vu4w}6v$T~H^Ft`Xohc2@-J;5%zbOpAi4;bQt?quQyxK)nrK-5od z&w@OlC`YBYoMU+qEn__)X~DYYs^YTuPQj;6F(?1DQC`spBBU6uJYJGd*b(uS;tv3Y zV^+0tu{norOyOyPdO4Aht${`+=8${rDyPY4rYpne(KBU-@)sSgx$C%S#uZ_Ax!ej4F3YpuM#hkamSPFo=d)?(DoS8@7*v&JjUY!UP*AFY!%l;?fb)Ax#B{; z*Vr}S!5FX$Nqkz%p;>LnOQrOQT(C4-vlHs|;to#}#EEe*gljYbKCt;o#;z4UPn7FJ zX~`bHfL4@EZen2w^hL;}slsc~-as_$VTvpJjF~}JBMGb)qn`VfbG3`857YNun&5!F z^iT!d)V-_j%RE4#f|vO+xrou=T_X^vxQ;g@oNHm{4@Wm(M7{_8c^uy!4uig`Dr4O6 zr12s#Y}WiOq$}Ad3RMSikqErG-D|kKYTl+Wr{_y*no9v`cE#6Vj=+z$Q_}c@LL?Y# zpdyP2#<>B`+-sKemI*5yaP__lFYepz5Et#vlN;^Kffhq`kR#}d4j=7)&MtmDIEkjM z7GuL*nfX+rI;_IO=ju-z@rZ`s)2q3t5^&sc>+3&Nj|f5yWI#UBtzS770*6ZTrk_R9 zT+uvv^(1RCmQR*D6OYaNilYYuo^vfk5ZpNzD_~?F-Y@Gp!-5=v_;gF3U#T#ko32Jw zq_hm%a;lASx!rG+r;?08ahh}P^J2O17tV?UM~`D@0@LTsp$RNFco=fZUo^PV=uF_&*h7)#syoGznFDjC{{Spo`VO<^?@PSX)<6UMti&8H@Z`M8 z^IOw^1Z>z)P*zl7E~#nJ8YHOtD+iO%Jfj&EA3%~^AweDpy#J8^`aj9Wm04SKphNg(AqSgP4j0kBX?7xH%4dO}phh=^ zq9O_w919j5eRrp-mv^!?*_L1!F9L$$ncTfTE9Uy)nfL;ka(nQbLHf8jYhWocK zr$`=;V5($KMZiF}$8^eUNF9fZ01j@cgM@Bwr}l3v*!=^~hsvv`j|V$F$)r-R(v1_$# zo!a6pGyKyxcUaS?@=XiYl@(btNwZbtI7go~>=_gzIDm>d9GkL=15&{}22=Oty-$&# zfZL|ZN#n}Ex-Qiv>;R1}?aB&c^kNLi{c|#hMux5bPT)Wl3f=(dW#H+dVYV&}L#2ap z@W~^I8!9oFF0ZP{v1>g@%3gFAA2Zk7Q&F9@0KBg?&}DI$pZ)ORPi=3)VgHLo+!&Fz z{v}wqO~`#`B`8taz98AQDz7HJPliaV0qZ4;MK7QVtz3ud-cgv)Ic+tH<;P>IX61co!4FEfnfVTc^3vfxfC zZAf`zvN&JfKg&%hxdS+r+4WEMkokkE$dTmuO@sO?sVD&HTA|t?@*WJ6>Spw#BfIF@ zAa?4KiX9Cb8kd(W-+1*zMU=7C>_Cupdmnhyi%WY+tIPB)krTjp^K|T6F>>qBe-ZvSGS+vHd*peak6Djog&TNP6BZ> zkuhC7*JHsshQj0%s2R$~FYwrGsBD$D>8UimDIioZe&z&dOn$VYCfx%970LUzduIFV zQ=RwQoGm1qyg6}@8`TZWa>_B>kTvsKG6!(J08B!?svz4Vr1fj-&Y!5woGzkLEu5~?bNMbWn+;Wb z2j8y+Qq0wYvgkUONzT?2>&)oBW%a$v^Fv;?4lB~~5qiRjDu1Fvc&bxmme8O@w;{|A-0(5)@Ewu-N930stbyZ|3$Ab< zE+__L;zo~xK~p%BN{qprBEJw^{be*f$C!fG;?=Au6rCB@YL&cK5fQWS?^8p=Lp{+~?=hBd-ELM|Ig>m_by{}vU*6P-!wd09W0 z((pA7jZp;^dsr>eIc9bkJ*W9GNM}&#-~M&1lK!X3faFIFP~Lt2v%yN)fShCXYr*JR zv9FcPBVWdS z8?Po+@>AJAj=YoKr>SjZd0Kn)+>4QT*Qth;Zpm=L{|{e5zq%4d*h>-@&5Df7%%z1t z-7~Tv)gCwi$3Q;!M-_S6l*=;pAYpK z_=fu{PXz_Vx^osvO6rG|l(6ddHf9zVO(`f;u7>HX)elwX$ag+>D+RMLWaAj4DHHAx zwZMNq$M$LNXH?m=hli3y^7ISih8=-SiGh5l6MZW2SDaXjtT=;KhaC~rwtGBepn|)Q zKRErUslRc$GqZE9?0v&@AR%Q$_#jzmJ}# zKI8mceFqh;jJnkre^2qy-D0HQ^*2uPFE=bY+N@Q6XXF+(* zn#)^+PQ0g`5SuIeI%C7XTb+K&)+dPPjxz6y;efq4_Z7Jh1z9jSAAQ}{T9xWQk$52P zxhw^rR>F0)ito`K7%H~v4IVwL?wK_Z}_9A;CK_ z#rqQIUf$fH$baapZ|&_XnRdPs_NGr{ykxJ`?y%6j=fCaK=bOqrmVKsvfp0xtioU$e z_N++jVC&EGs-7tgm^s`G4};{Dmjy9jA-?)pjP>a+&DY=HH}ZS%;28(j9@r7JDV$A0WEZAL zecnzb-ZcyV0AJCH-#pp8=bayR4KtzXBmUIa?KaPwH&&|5wHQ#G74%V+A3M&u*78g$ zdplP6s7?8;P5ajI9%9;gwKQY%*6V9qUk+@hjo>XUo?RO~d-1r-u`a9}R)1$4bvn<{ zBke{-qO5UP?-+@;USY9fPVBP{Tm9GWyY&9Ln4MU&zq^v+7CB0{G5qNy32Ud{3ErWd z>T8TD^)D#fJ&U?+a$7y{TaB2LfupCtZY9g?D}`{~*8wj+a~7w5#DIk#%sJR*SEYKavUF_z|E>wfSXM3PsOax^s86S3ds){=kx!nzOxeJgj0Te@wRVq z)Q7GE;%pBC??lm6JU!2H+V}T9j&i0h*Aey?`y(IcZX!5}@R$W;2OK7!gcbN0RI){oxwH9TN+B>8D%OjC4zm1$RSW&1B$r_OHe9*Hi)YR@F)iq|!5U8-LND&i|;qS24k1DI`>?x~Au2xL&R?4sOF=;kouu(ss^3FK@?J3`9{#;6H3#pYJx9l&p^59 z*-nu`(W-%}&%Y={WT$EBrC9~{S=MRSZIua*{!`-;Xc^c}Cux3hIr zahRxnT+#A8`s&WIm+xMd4hAzd@V~QoaWd$emiZI0I_W0Y=wWWQ%A%5ky&8S?6)aAp zPGK3=j(wZq?{r0LWEI)f)`ML7z5~D{#k1%DHW$}iN$tua2hN_0bIR?208zXXTrbIl7r#yPT zbq`n6l#u7!@4VZd{z2FXK;AG0( zF}0@bKi=l5A-Cd*p!@Q%g8rw?zwMqVw=GRuFU z`FQI7u(%|jvzGN;sRR1_zwg*`_izgjJsFnh%>8hqtm%G}QHXX*a)|ytEf-x&zAtyv zR9`+2^*j>rSxcMer0V*6S!R|u>*2|uAul^yJEy@qi|60y z)gF8waZd^r51 zqc8mU!$`&XyBgzP!=5Iy#t5D_Jpa_MyM^a!?=Yh2fUu(=Bw zrca#AOqtR5b3bTW6u|u-cW2)4L{fM5+*9eJb$2I)>fSua(9fEg3JhV%)@D!GeQMIS z>butZ_*3zpbn;J&xqhiV(*N01xw~<| zEZVlMUG;H9x1`?1r0+9c*Uo+Vl6XRo!*Yw|uJn!REH>^r@=nvg`fHnNev8zdc-hvb z_DiiQ>79X9s#j`i_7`X2c%`1(P6qCx3_bZ;8wVlO% z##j6H`i?68n9pcoXj6Ax{Z%CT@v{^4ah6AHx~1egY%e$%4?m7PH1}rs%IMAR=wju& zoY7nLToUG8J`6Upo;o^ywVr8%9&dW1g7nU;er^|Fk2xg0n;@KwrU*d*)-Aj;l_Y z(Y5SqJNfphFC6zJH6{HdBO7;RjJDRa8ckc5Wh-Tz^wOEPZkHc+-Ic1PqN)cwduE8iI?+~=Z|S# z&uIP%5?-~S8wm8;<>pS1Hpj}m?+a19ZAnwcjRzfJkjLzHc^YI6Q6v*VZ-c>l4SR& zU;>9n!#rJy_tooXK9%%9*>T5I_pq6&D#b4NOie+xijiV9d|Cznr&z^KK}GybL2+ai z$Kq#=ReTG-!B9{HSWr+d{N^Ynmbscq8 zkI9_1u@W*lXLH6>$i>PQtwSN_A_E_-OdU;(<9b{bOcMyLe1E0~?!aK0UpEzES z-=V9jj#aX;H^uIS057sbffkF!%GsYYlhHVEXyJDFOMb_BM@L&3VPR)yXCY@XAsc&h z;XTsQ(!wI5!lI&r@C!i)S8GQT7eQ->ouoy`>l`q3IBRcV>u6zPjYaF4oUw6ol;5!f zJ!tWNBsv`}%$A;H?Xa*d*q|`FBD_aPMEGB~nYvi~pWDzC(rv_jksc?97L(D{FmktoG?;=WeP#kHsZISZVI$=!i%b_K>Hk)=^*jSnLad#@}h}`k4FQ3fi%e=-;Unt#E zJndCHr&M!SS|>DoeA`=Jid7g&Y6dLMhxkDp*W8!hL~oNfY39AHRE=n zEPA*)QIAdH;&+Bd_x{|8XJeBc`O$3=`8v~XM@uBUge@;j_od(PPOG!dE*S304Kk7( zaqXLkRgLiP_!1Fd_9eV1Ke{s_KdDEzFH<#K+=4(a6}Ix(Gm$tZe6k|da(aF$VQE#2 z-1|~fV1)_ik(@E};c-hN8^N5Qjv>B8Lh<8);xgx2)4M6Dkp|8UPN8Q7_0o1*oiN+E zup#2k@bBoTJ(%(j(sC{PmJo{(&`DZXQT9nVzdmYUY_!Ix$#F-rC@+J-(;Qc+99O=a z!NG=0b%Jj!zVY}F$4h1Vxt{7fF~q$f(98BRtj#|$QI}+Z zBsp5FI6rDMuT>=@sJ47zaawARZy6UXd6pKAO2G8gBnwk!=+QaUB%C@~&3;S`djpfG zm!2fX5M0pGaSNUV5nUmA?&UCyEO_~RnEig$*nb-b$uh=rZ)?&VbY3MSqcye&t z1ZP8VtuF=sBJF`DHhqq{LngL;!(Gnt+KI1f-y|)g?tQ8cL9(VU*>y=Bf3di<1xYF} z{IuROP+eIWlP(>`gjHw7gW`>@)}gFfQ(#q>Cip3wXBo47aG6v<537XYGJ1koT?UKT z(%HN7W`;fmJ*vUMGcF3Hd{dKUNm>(}v`(SfXLSL7?bb~)&cC;uPP>>n`OA=rY@(nf zpbnU(cNhKkFVXu`#~5VUV&grncTdu$kw+1ku-6GkH6Pp=$}uomshJ>5bCCCwI%W4o zYlja}KVT`#exFgA#czMA7*7thM^I*^u7cQXwgHHXQN>QFH3zM3{?Q3mZuH~y3E^ei z;b&!-h;*w2T-(F8@SjKSVwCB-b#`AXb|T7`o;F~My^7RCvu|5d z-;dPzCd$$sOS8OYWc#lHj63N^kXQbA zqkB+fr3%tKz6e}|gjFkpOPk()WgRL>i?1;kFNEJ)@|^f{;M+oT6<;iQJatigm%Gyi zn-BUNy$aL4uel?d4xp#0%j19O?Q`y_7Tn_c^JdGHox!$8ySl9c!j@#OsflaWJ7Ilo ziQu^Fg!tq8Lozq6qLWsAoo#y@OUa^8F0*VinTY4U^eT^j9BP&V#U9x|@D5WSD-s^FdJ8 zbcsRKl}CXrVIJNkvQ&Zz!)1#3hch^+a`x`s`+;Ab8~r|n9bfuTwnS%@a=K6O{^qW1 z{Bn<@au;mcVEXB4L^~1*{sB$Gsn=$qwvt%~hhJ#L+s8&3plflr2?2^TEgSTykOZ|Y zU3(U-g8^Gk4HDd0zHZ4ss|(>_m7-NP%)N(newRin=IbB5f0rnu%A>~lvt!qiF~2LK zm8HP>7d#HwdOF!oZJDk{iGmG&l+yEClqz8@r6B~pflkGF>0|drpW3qY=g*BMZ+OtT zo=AEK7apQ&$y*!dIdJ+fTe_lesA;%bE>RRB3pD;t(=S|PVin^R>moU;A8!V}pS@AE zum6Fx!waoIC!*+aA1KqByr!ilz(xFEa4F$*-d#Jxvz$U}Sgt`K80j~O$n$Rq*M##n znSH*u(daFQ!3Tk6EAgjzq6kFsJ8#InVwgL$-S*QR!IRZ^`z8H~QN}e#Jj&JJC#wXm zfa=cfQ;bdFlfvGU*92Uc@^n5TO~!wub?m9O3XS)1Zt@)e$ZEWoEVEUZ&ERj$TpUst z!-l#cK7W3;-;TgxP$cWrt*J9`=Wbmuk(llH)$~%vq5Z2GZSrSDD<5hv`4>%XP^wcl z@rz0oqiZ}jGdU<29_{1Y@%cWck-7irS42DZ6lU9OmvSMm!r;}3XXa&(9y|3^f7qqI zcagi4jJvS|sskN-L1Y<5Wnqrq6$;Atb{_iq!Q{sq3zNni*DAsH-NbvayqIm%-%DBt z#$!U&XqC5lIwIewCR4*hW()=19}Jtr+KiI?4ek(Cqig3w2EXi+vB$1@E0`+T<9GdL6#H6sHFmkX+=V1? zlAjzhr8izln(M25ZSKKh>&S5)#j^!#KE(uzWTiZ+w4l`Q9}|A0UMP&dp}@|g8qT~n z_qExVkB|SmL(*To70nx)CIx!03rfwo;G*@Ew(ye80UP217SfuoLNo#5w|b1a8MY={ z1`h4B8F_74^+NDrhy22$39M8KBab%}wb=Ak<;%N`d~bDaTuMzt9AT-i&MKaZbW-8F zWL++-ZtT+jvUTB0yatV9ccn#Wyf?BB4OOeHOWQJKVVJlRR`YZ5{vzrG!(6w}co(+a zy6T@Di^*o(&0P-ePc>;yzBi??dvEFC#XBfpY{w2H`e*H3G~Kja1E0mpn3GzAk~%yg z4N7xMB8M>i5o*W2A5Mst2B(@MyDyNO6p;&~j0_Xi*FG$*+|CH{F63F&|M|Yyr_|f7 z&+Q1wVQBny~^tk)cUR7AeYi5t-8ozT+}Au%O1By>Z!$#phU$l#QAH?VUrKH zxP!t=unSzkrBVee&P_;7%>Lw6+^jG+cta<9OV48L{;3Z7T&P+jx}Z@}?3glz>5DEu zZz>l|47L@%yUJ8JHQEz@!hewgrc4vxOB7f^t;6ywSO{b}zyiAvt1iFVOV%oBmV096 zYFmat@Q&Qc}Uay!;&kU zGf<#i=Cqh|L^)z0dg)*Juj$)yMR~{H^_h-L5m(7v#yS9(KU+OtEa8f1at4bzOnSe+ zY=N*GSlFl)ugxO)xMI-`4$?gE82SM9nqU5Of4=t#hs}#QVTe4a6&{bAe zzT0lYJQBQFj3+_&<&(D#n-_8^_Up2-+taslJdIj18fMwRWW)zDZtd zi27K#_;ZF4A>EWHxoh_pE9I!47}@?Dhn5#jd^1*1&wQv6*}lkg8OV5ledpC8oA(i( zfp<*DkrL?)mp+ouJ~teGh0Ka58I1eyO!F;s)n1+bkbN3G+@G*mII6P%Ia=QZ$zQ}J z5N0Na+XP&r>-HXhB$xT>n%+{JJA>(~OBb#m%hX9WWYMeHzsS2P@UGfrjUUN-dPTci zFD=0~yTh)nILt{fl&l)mT*sp>)Fk;0jH5Kh5Wj0N@!-4aLrCYk&O^>?xRi{)gzxpM z+pC;@(QEjNWax=|yB2l-#V*^4mVkic-c#RNz*DVzDC6|PQjm4gMe`-XVs9QTA_JQG z$cqcqCrQ(~>Llr(8f4$CLe`^@t$4nX#P!~&JbzT6MdkxG<=`rOKkKQS!wWxD$s<%g zKUo-eBD!FHu7BSD;5An6d}9`}0I0c+829In3sL6tK6KQ0VtI1iqO4}YK1S2+$>Bb# z8&jq@@3BeV&2dJ|^yBRpHPIA{=5diaquoJb>;xN$lej-h5q?G&Kqgv!B(uULY2Bl1 zmbs>n+|75&+HdV8S8GvnU;slI;beVMe}n52jED}A%z9O`gaqNZsp^L^Z~dqy3qsrw z*Ief!yOZpzx!G(#b=(RK4_VYEN{scSKIXtlvU~Z+1=So=f(7}GQ5Lvk>WK6W@*P+j zxZ}ZP1NGGlEcp`)h>P>llhC-;Wf)R>Bqtqj)s1TM1&um^0c+W%KUxP^&65t%#qzRw9$d;CBYBSpsXsrE7R$48 zaNOGu*}v|)WB!Y(&hY*&uD>ytuEl1!sqYGB{J_*XUZ1;FE61h?DFvFc?H+&m!?o{^g z$|MI^^y8;2QomwCX?14PEWX9Q35_6osgM)k&<;sz>n#xRi?TSFQ*Xknv8&r~Sw2Yl zQ6QyctNZ0L&)*J%Whf9e7JVi=X_ZW%qMakoV}S}eVhVgYr(%2rz^Nra&xwa@RhHhX zOm6sdH?y%8na2en44Niv`$A|AW4R|`b$X)D#+xG`7lC`G00@x<0$b5zk(wDOEQAVh zQfkJkA!}5-%wd5a*bqtBPU9v0eA0Fxo&25MpC@wW-Ial6-woD-8Iok?!w*#a36I== zZw|-jl87kU8AF%p%|$WEGE?|q^FAOM%gsw z*-g|vJ07{_#@>?Ccd{5(GOLJezD2Pn5?bmyK$cLn98Bh5%pjWE6UamCpY zN0uZqB7j>BELl(Kuuy`8(BokrNf3t(bEG&A#@|{r84CO@x-Fg~6|j}bGH(TxyK+Z1 zT_$hE66%xq+||_!(dWpn0f=q>UD>Y6*EemfPBt?7nyI>2z5-_CMm5&p+%(`P?6F4qW>LmoC;*Xn^NqPja_$u$CD@u)gT?Xma21PaL*o7aW>$R*>tygx^rn_5% zTBb!*agwfuYzEacOVij%WI8q*<2^SV*%l?4<@tKKPoVrLSpM>C$^L@|>^>3RS2(TAAYrUKq7f(c~Mo9QIj|1%Zqg8sbSku&lbi0o; zMS(=oz$!fWBv=FFqGV?i5;7vtU_WL=%w>xTT;_ankKQq zF@q&9(s^p+SJ>%lndNJo4_a(HZ4QVh7;6927DW{6H8$a-)10i! zKz<+G9!$VixAPezUyrs$Zt(0BVSc=>J9g2;(36MujPD#uiY8Ho$kyHBL@`;#{GJ`G%L-E_PxQ3eo?0bOJHuMt2O z?pPteWzH5Cb(PV+ZGjNuYe0zLE0=`=i!Y4Oc0+Ni*W@Q7|2mueT+Nf= z0Smk%I_|4%=b@*teFFTfQ)`bFmb6NUA+XhLT&;Se5`R!MeMJg~So{ z<9NWT#Od9XgSVV2+o-mLIm1TqU#P+*Z49ZsHpp~Eec9knZfbpx^&vP%98g>E(h{uq zL`?Q?8EFLIf+N3AdO>0&ikY{kv<1tu{@3)oA)9Sa=wp)h;~K$rxz^du5~;!;qLmwZ zztgUKny`9KW&Q?>GuFdEdyxhrnd>GIW1Q5_5T!JythNO+!ea+Ul^0@lCI0|` z*Lz?yLF`(cu0-&DQ7Lf0D4z&;O^^3)Tbqw^qlR~83+bXLFLvNd{T)kEDRujhF;tI0 z3k2RfX8T{S5DLzh>hzoQ8w2txScv7LZwbf3v(FiU$<4}FlZrR6YlJ!orq?qby0Nt( z%1&*$!BOCcXx>;iWHHSA25V~9d;fWXE8W1A=XIh~M1{jc$@oxaZ@tIxmlo&zX#-bQ z5rLJg6)Z;`y~Ib(byn$5I>lCzu7-Gll247RuO%)T#fJx=tYlw*ve#(*la4)$nIKU- zyLijzDjTzz|;l_VAv^9@| z%ElXR)L!7$iyZ*O&}JVbt44^nx}_866z^fMioJ5k{zxGZr1IzKQ=f!iq5(lKBOR+#EK#~Qb5fs_j5jK6Ir z?fe$6EtH}Vn|^)>4b^!NxWZ_l{4|>SdbhPX-E(?OEBWB61r4(R4SQ-QPDfM~=ndc7 zbG9{Vyd_{;k|pO-WsR7J|4E1Xg=Z-DgENoGe%uNe-3Nv zorkWgTzb5$afQ}-ha$pWdQaiJiPm>ju?v7+)Ew+(N>7^P&$$jY6T9n;95y+75{&W{ z_BiohUNl|w;VW->yiT&zg#2jb$!|J23mMWf>(}5JfSO92-hF=XhIdSYeLLCVkyw6< zs#I})2H*=6>TZ3~Tqq4w?t?26V-O~3mV(krlkwhwgDuMOi@T}%We1)z<@%7DiFkqHD9-Be;l$@TB2nnY|iQ)c% zIw~zsoelJzk?5cv*4l@jMjp!3nG_C5d!r?#}XbBM69_I1p}KyzxN%iLrqq%E-# z)*p`?T~=x%t$IKWT}y6{(RicvY(^e-YBJR%dLURq+`DuH%pEIogHVZeqB zfKrrNUYjDr3`B)6Hl=)Islo>j5& zIO!4iGoaW-U7Janums~K1rL`iUfKZ0R%Aa~Vd7{NI%qKpLZuF-9@I4UfJDam7~sQA zTYr*lPvap@l<17AMMxx$3Ffcd2nF7XdgONl6#MRDy_rE`oC^`68#O(iwvlj`I3+YD z5SZMRJN-MmN9xn|72<@9TnI1hHFymSa+c?BNP?9oQIXOTej$m*X!=J@w{(HUf*VK3r*;7ewO8MO2jG{N-o3N* zq27(x56P(_Ni!&^#Sb)3wB6XyG*K*B@JwO!x&Jx`A)J2WCO})FEy}qv?!+i( zD;anraS--&6Qg73YPx0SH(((_58jFp_Z+efj2@=Yo*}Zzsqrv0A+HZDqZa73o9sNq z@fRuDsCQ1+G}9reG(R`XA?s&H+z^%xf`R_U*E~oXQF|~@*V$|t$?|kKJ93>26)$Ma z(~VMq)3r8_-#Z)3|K+k7>GEdO_q(W+O6>a;(aAyl9MsB%eAIa`^gf=v333j76*tm= zGPvyCS4R(bh|!R^0pgJqkbO=>kNB<<23iW+Qk-G#i~D{V7m4kQ>p(6E6CvQi0H!tk z#j}@*xWWoNi7$v`FwU*-u0FkAzWdJ=YAH*lJ0F0>zz|+-wa6aQ3fF)JLD{Ejh`W5( zh&JE0>j!AzRnl2| zqUaa=Cz6*v=B~c|VULJTdQKTl>k|SbJENoqADTjQgcveDQln1FzWxo~6NM?4`hI-e zZMm$4Oyo_}84L_t1tpK=cE5<-&8fOB6j+42Pun#IM@Pmzs0J?zjq@# zHX`2^RQ(0-z}4d(J7)6d$LIH#J(7>txlEdb!TEs`VfinOh}LT=8`r)vh42jar}K;= z{!b^O#k5Jz#WrK?$Av-&_qwUE8jJmi1zlD5 zB%;#vp3@`0PR^duB#G?^0`oVw-yawt6+X0OL;*0` z4}2;tL{2X_4D<*y$|r>Jx~92HS1`sTfH{N}Za;nL2r)fl@R}&xR&3G_>4wr$--Rp$ zR(w}=X@&Fjp>($~l6Wl`Ak#6qTM4N={sG;wNCkO%w~`y%A{}V@{uDqMqg3Yuht_yc zStzoeb0?B!8`!yld(090h}`4HL!^PHgMsQT{(@*fBnqxjoldvr49Hu(mY$2`lNkk| zF6yo3L$PU+l>|emJ&@Yd#E`Wj*+Z%4RFZ9wC<*vU zL%)~gTx8sO4hhX%Rw^Wwh0T*b?7+hiXi=n&K1}}MNS6HsZ1U<4`XZ!4O&9>tbY~RR zLU~j_N?!i`r>lDh!<~H`vu8(xIc0g$4*4M$gUf>jCV$v8fWl#4Vw$EK$6Nc~9lnSs zrftjp0`-iZadPfhpi6@;E1dcs(UXt)vQh*9 zE$2+MUTgV!RCqlk<|ewY&K=GQ)Dc9FIHv}Qf2Lp+1N`xIr-;YIfGrw#7;Gzf_UwGv zpQb=LCuj>pIYp6H^$un7$4GprqOAX#X*q&i2sGIrc}@MA2yBELrIT%6=bu^_ODU8; zGlV=wd74$-vC*fSkuz4w^AYd}%~#$9#U?J6(i&>h38Oq(cd^vO@IS(5CR;{dT3u_I z-0%GPxq3YcBqx~6$|y*G)u;{WF3y^YRq!;kQPni)xgfC5= z*S$+rL9JCf6WU=-t?ZHph9|I?#)JHqxg{mBP0#}(Cr zXo9CehrGz7zqj`F{BW%KAG?8vP~id1R9MF;BaT`Se&cc^u@ylKy;dPc3>Ihbkj_Zb zyCrA;mf7+53Uv(UVI=K}g7W0h-Ta)z%(afyw&{u$hcwYAbu-)(x6qi87cXd(3E8ru zib1-3kt+p2se!O$4{p@5FewUT;oux3;U41p1eUz@l43+0WlnG)dfP0YM;k{|^HM97 zZ1CkOcp-zVcRJHZmC32%`)p9r;W@S_ByjQl#xUH|0ye-hCQ(qzfcUlCVGxQj(DI;z z-WI)*|GL@=OOQC%ZozEp zXT$ES`UO^ri^7cvA5onAaGcg%;Jh{eauN_NgyUXAp%a!(00qA#@n{+NGRdL~19qFl z&#Oz#&kPp^vIq>(J$CqW30xRutlC5NfIOtZ@tSy3V$@y_iHLabEq3@r-Gn%sG%scc zV_@1Yrk{vbu!0*GcO%_kXlR`Lk4|Xd#*n1{AhEilg;g+qyohfMGzhA+`!4G`bPl_W zkqaE9*_Z+4Qd`+YXw*i81l}ep&f$&FV>jikgg@}R=yHZW3bcSzp+lvHZuTXsu=tnc z0Y$QQ0Y^GkXva)Q4SHC}Sv=3)entEG{A#qlW=}i~6VGKE&{31I-dedOxsnB}fn}h| z2WM>1RiEiV`$B66+VAa?pyutBdnMry4J=X1^Eg9NAf0|nOs7|9X+9OeJWSrP;L68E zkikME2Mz1=rue~&!{%d--r0RMxf=}@4quD5fmPhvuwfi~RAwrSVF@w&T9Je@kINzzvU|J8P{ph+dKb7+SLpO^S&M*@AKwrw?x& zGxLZ}UEXs-f@AouVhojQ%g@l`^u*D%emCNb&nZBZ%zCeNorQrbP}A z-Up5es(+dr1wM-sMh)4Zq00(IL^2rx(BNyPZDO_#zlALBE&<{36Rf2Ljaj$1tmwKR zdVU^lMv%Y9wNA(+I^*q#InG+JwJjH4vC^OjtE#Fx(XEruE(E7C&`~N6@x-HlQ{qMk zGYevNU9ymvxZSWL>NuAX>}4TaAV^R>nb*yq>W=sIew?Ygi+4#u$Q;QLCI(`@i3Y3m z1{b1^d;~unF|=M2HA&H&0@{Y5H&KIE>e(nu#&D@@TfFBsXj4tm+YzxhE;x}8Q66*x zo#W`R%8n|K1?fm`?Uw+8J;xGm9;ujV006*ilrrV4axpot=@?={(uU>|c{b6^N z+$kQDL$+hJ<^erP*-1&?hzf+KM8^N0gc3h8hg$@g>@2vOKhur|6|8@yjQ`D7>e~mK z!NP-W26Nz~Qkbb%C^52HP(qkxS4N#LXnue-8GCSWn%JCjQC%FHTck)mfB-{~8@(k) z!Sbr@?kFMgsat^?OLZnpAwmKPa1L)9^uC#(|C1FamP76$F56aA4hBuYD>XrcNY0_V z{}8zscBr?l#2?~e5xyG)0Mpr$AVAoTR_WX|U-kO0)S8;%ybs~1a4s{#RYV-S%GX@C z--VPx^9aFtLi@-M)Oe2zApA!~*V^CX34_7ic4;U7!4ysH<^nq5>-jb5aBL;a;JYQ- zQVPm%t;33m3u-st@SZvA;l9Ph#dEo29hQ`V~8&c$-b|v}XRQ(!WwMSc4l6A-^cnG-!+Tt0OGB#2iop&DtllpbqN` ztSxjQiqh?p3clX?Bg;lKl=Bg1f6z>fN56a1g-RD+v{x9X%_~fIykiEB#Q9RP3L9=& zn+sDpR^?K>E2|!~QwEh=1h%{ZzX^9wGziWW_LLRA{dow2WM-{p5F-|jtw5N4m!7+E zjK@N!@=v@EMKnA@`v%PoZYa*Vob~5`ynGerAizu4D8*3*v7Tk3NZ4!R{MrE+Nac{J zoJ7Pgsu$@4BfrSm;_DM)$s2bb;(DcU5YiLuCvb+l`;!`h#s`EN01wLZz2^tO8}TGb zQ2m|1Fz_8}4%0EDL4e&R(Q_($zHK5R%Ild2ILYHd>^oB~*1npUM(yLOdoAQH{c?g- z!U)i(Vz^jYO$A6z%3|AuW_OQB0OQ06@+=9DV1vhz#iGLE0}Np|BwwgdIv z^RrLym2M#tLWM?R)pHHw3hS>}6 z#7d=h?l#KHIVNzAXpbw`fF2wv&xTsEO#5sW%HmicozlXkbHU8h#)<0mJeE9Ace7{P ziOCl7a?6&83n8=?U27{xb2@S5fp^gT5&(bJ*6SE-#HyR&(;M9ch{I%S6({!H*AXR+ z_pIDTFD+`H>f3+dZgFp#HoO#3xf!1Fad&x4$E@=G8WD7lD0hnS+y9Wkh`{MXGK#Qb zomH4BX6Wb$>>nAmfa#0pW}B-~pzVgx5RoN#5=N}5nD0s1ospUy`R12fRZn^0Z|`wV zqnRy#;vgh3;7CnhDXM~5M(Km8*nbGWOM(APQ}0w`Fz9V7q@N+;kZZ9x$-Yd@8Hs?e z_Zmq!+{tx2dJXU^W3vX>m9$Twj4E@($M&H5{)A< zZihtfz(wC3;Cr4Bx~t+*ws<-BaQzn0_di@$`#``&^1A@2f9^MKCg5B2nx?dc+^S#$ zlO=Bi zXHN&d*by~dF9XEIwHrA4>*z}dt|#fnEeBBf zAOaefn~;FSwEkiyy86eCGA*ERXV{9lT7zyovn%ICt*@%xF#nU9+d*Kr~TT-kRkxM=TFbcj=G8- zdlU6m*a?XuerDZNOD!oFW-Nq*hM$u=&K98r(Yp+hO4NqvT$t9dybB$tMv ztPaPvR8?$0@fcwNAVtHaM6l#f0o>o%)tH-IHY55vf_*zKYCG7I|9NS!r%Jj6gKP=Z z72j=;CBEQ^m-`pulU1pHq*-yW?$%|1L8h0#RwV;zAtv}f(fWvL_?U8)@Z{jN0*IqR zy$uJ7=>Ea@+Kn!tr2F9{Xd&Pqp$}snA?!onl-eVG)lYB?wG8(ZJl)W7eqEUSlwki# zwP;MsKIpNaj8!BNmMUQ#YUQ11>sjldBm(LM@Zh`pYlg%j0 zPOrB=DiQGw&9X^Aht~RX3qL%cDPy!+uMp-c!*Yuq7X}wsa1p8=b>1Ej*giCip8Pun%xB(^2sL=1vaD z?|lDYJ*B7s5njH^#A}wO7zEK3wJ;RM4Qk*DnvW4NDY*Q3?Ae}w-5bb+M&}CPm~ddk zyYui1E*0Q-)E9NyRhS|g$Nt6!?>H9a^9!@%%dH--PyGh^E^so7F0)H36l6snc7rRu zki^Wb7G#r6Jp7NRKHZ35N%ZECBVzYYfr6>Sfg2l^K|wI_K@7~dJa!%KFo7Y>qT^=B zyRVQFvMPJt6t~gta+rRoA5ApDP`=ukVsPnn1=N79OvnMCw+CF#b**zDjS{Yu7vE!C zPjzA;r2I#uqMxIupMs~G=0eVnyGq$n7P;*boV8^9V#fZjM-T0`C9GO|8A>Q&R~|G| zvG`g9Y%=ELGqv@Q&=?!m)gZ9wFTzb3q`Kpx3%u|Qo&Fl zXE2NnGnQE{o_SfZ%H{HG=YHGq2Ipw7THFiBBA)*cDq;km1#ffNS_)PDg3tQ%$L+CPP%J`ktQ($`6Ks#+xb@AZa3R$1VBV@v4p!sd8@GOe? zPpHBxbLLeX{Q`I5u;Un``KcN-%wpdU8oz>OqU@lVFw)Mx$5y$smk;k`DmTj2F9Z3q=y8pVln?r%f~`>_AKPhATS z!*qL&J&=0&Vy`aBG4)_3z*@C<8e*gtaRMTg_jr=!`jt~|^iN9@z-bx^je z+=j&OMBU>}7|I>^v%%6l$08)w{{vZoyBWDrqgMp5paWGg@OyBBs3{r3N9?Pk(={jd zlBb|afooA>sTkCICt4`5pn)qf1o<{pKb)+O;Qfs+JVZG$F1hl5Plkm zPAIkhgmFb<2fQ!64BzJnNt@yHTu^|&g$ybI1E0OGzZ~cfX{BDAeFIs+31)t|@p^}= ziN{SA_qqH-+|ekgHWk_u=-z{q`X~f_XxW!k0274c0_ZslAoiqP`VJ!d%MU=VcRxXp{dtY}_Fvl#*@XuPR~Ak>?$+8XaEAgv0*%ja`2jLmxB^W$ z|1bfa*cWD~4*ct0TvQ$gkS}EvFuUEehGARkZ-CL~_cOsKBRrh;y$sb+&A8*z`QGI_ zhqia(>C~Z9=XW`)RZxC~hPi5I-t%xs!!JQOJ^j62Cxc3>3AhPc&2QH%_41aoug<}qXP_7|Zp5y8e85HZbmgV@;7;lVr6hIO! z;DFSuW@-Nhq>-oEgF)#dO2-557wCdcR|3(Ap(Xn;lz|&3$^#UbiHF6+{D?L0AI}9D z=Mvvm)Cl3Ra{Mvu=@!~^M_ybYt{a_9zBRQ~{I8o3o8Koe9F8cZ6k$>_U;k|$banj3=lnZhWA)H+TRK&WV1(NRw zI`noR6Tl)P^85C}rN3#XzJ010#@5#bZ1Zxtud@e00t+^Pl04T|9gn(>DcRz1?4GoP z*=8M)|8sjK_W)pUd$%}Mo^X2D3T3o3+}<&>0XI#V#$!7(SP}r9!>TW3{2!GRQmg$K zDB+9>>`FLw9#`#F^1=OpjK`vG&nRP@4?2We2s7>iDYv-)K{>iz0l~*K=t#DwniD-d z9YTM{#lqC1aCQV`9Gl=kZkn3IKaeNnE_dxFp5+4!OWQ>YdY?)6FN07qNp>)|CW zEcz81|6&|KoD6t)lYrv7O(Id-l^z`R!4-qtH#ZsgZG@RhFm2Qb(r)_p@UNB?DPU+Z z63dn5x4!XjvY<7q5{^Uf@jEPVL>@8%?PhQ*8}1rhI%Ue1y8JZhGFq6qZD&Vo0-)Mu z*&FZ{%1@M?&&gM=!at!zi6+VxpLB@)1OG$2f3Xvdr1+tCFUeff3!}gvK!bZP*9T(N zIq@*z?SJ-$d>Zk}KQ-sb4iR`|knPm3XLrvDg+f}gI0p__yys?6Z}JZD%D?0YpHm<=np&O>939I8Qo8@aLViY*&5{Wx$I}&gGxrWW+MS_GY&;yvO5` z4RcW;XJ7stx`F>nJg|(qX%|m*RVQ++gBl78uH-Gxg*{D}*{M-FCZ1#OCI9<##)`z! z5G8!3L#KbJnhbxy!wdHpXRJDoA?V8F=lh$|J*WR)loBA@QFY!(1OoUeU#}t4CO7y_aO*J7KXsV;r(Uy8{*+b* zOnD6lMY&_h0d>^@_#bjLlJGB^^09|8OM_F88b zxB4>z#789vu|0Aq0b10Z`_4hEqlS4YHAVc^|Xm*BNt@&!G~`SkxM zvcpT%&~YYOm=RB`$yD2c!)9XYxYNbM04z4b7j970|E_1W``?+R4{o>Z`|SZCkSwi+ zM0(xDC#*w)w#A#xFF%X)lKKCeT|a~GJ$Mh!)T^Ku5oEeY ziz3Vk4pAb|FYW(ePGD!yxB=+J9}3Nv_xP`K;}&1?19>l$HK<`DWJY`T-zMn;2ZQ0Q z5$o4(^RRu`iP8dla5x`o>B11^^zk--3!u93!&}z=zuRA8(0hFf(ECZ?U2jn4 zU_wxl2%Mle^Gp=ss{arKwYW+%yu^S8jsRH_^+nwkh-m+ks1ntPIq_W<`VwxD{r>`v ziH`pW9vu{edAT>YPljKEaWC+UN7n(C@{|#s5k+rZc^)ga;opyDIDeY};kFPR(l`{f z_X-@xgxf#aT%>|B>B?McB^cF@X1g{2bgYoq*;6BgLvDbuy8Ygd2b9#z{KV$UO$XpQ zj)n>lmZS-H_oGrz5#sdEs8@l3*Y?qXt0CL&v(Cx?+5c*8Qm9 z1%-c#fB_CsLlD{T=x#0}0XI?6y+m!A38&b+plf}Gn3+fs`S^=O`q zabGgbJ{|o|qq17(XnfA?A2r%1&TI%8vaHfB(0fwJNVDV2VXhOGC7#^*aW?49{_`h> z#${)3nBBksxjwVA-l2b1A+pTF4350YeHyR7pE*8LI_$3SKfbOytm>@m>h+=^1}LF~ zAdEq)l!D+j2x&n&MWsWeq`fjKk}}drsB}tqI1);CmmnZ5-SF*$`hL!g_{TiYJnFso z7w7D=_u6Z%y>fbW&+^)At#uAN`LCbW4*W&bh4hissz}>!30vK4=gwYF)%F)S6U^DP z#f{ae+C)e4|F)mDz721%7uwH7*O3}i$9I$gQcd{u-cK~b;VPI@VfOb&dyAYh;^ekl zDyOgY0Z1YVHY=9LjrITBfzKq+S!O6-@yQHZfU??V@7hXhkrdJthDyf#Q&jc;FaPt& zGmt_@;CJnb0`e_;7SBzIhqzS?rf_2Qfgjw(^uc?O;eGtgT`*w%)UDcCzjT5EjUlKJ zpr}S7(UFU^E>E$pBoBb$%BrV{P3QUlpZxhz(p%&GHEfw^?|(Qx0#HU}0UH2RXWl$~ zIOTpaljMVZALtRQ9~C4QZP+GF#B7r!6Ox?(I}*afA+CS79KerYvG&osrk~?_FlPRZ zpdk6nnsfA*hyX0q$9ubgcQpdhjU`A=c@GK*bCM945f?H{Yj&WUgcl#j<#Zi9X{A3muUhN))`YS$4K-r z@ZwLN|M*174!?8P?g(hMMK93S@A~!DpqF`Ae1(|JXZHb`0G{?cFEA>NSo{zL$yeja zS<^WJLKOY@|5#BCQwm-ynwzg9A5o?TkZYv zG#F?VOT(!l1*Zp_$kVxRGUfk%6WM9x33P|kK{v#*1*6(bh95e#Bxb(9RgZ{_Uvt8|zrKTq zIAbg#-dI42-x_6>cnBUOQ%G>%AJp2@m?9v*cBS0Bn72(D3eG;D33KQG>auv(Rdq(0 zFu3)3o1VGc63o@72dY~ppnoha-X*U79}3*}hfung6%G@9fTQ)D_w$_2yp>3*cMmRr zdJRjhk%CN#W%=M;ywEaDnN<1pmq2(&5tSB-;1S3W?UwoDpJGQvam87lQhrH(ntkA# zD+=a563hH?Pq%xIyDCpT`0!PTSe8vCVY@@!@Towp%1>gF;u#i*P4Ko#c5#4)KEnC%ys!I}*}F zn*SM+{`(T@uH&tHY)+}xF0L>3PJQ;aI)&3RfNd1Zy(STU7!&5OpzK$+{FqYXOUVtZ zZw4~IxDFNUF~_A(5WHsEtT9+V4*I@M8%`0D4_NK$9#Aem{WY)-tFev%Z|p= zQVsS)BQ}Z>q7i>X7E}!*ymr5AgrMBP;<6UldP_U+IVc50aVbgzv(xyY!w>`t%}q+w zNsjQEsEu~#S=$09ElNbhn4txuir`LX#^$V<%+02D>V=Q4hgVz3D1sNlTx}f5% zF8SEP-i6Gl+uvpB|5*)Ra*-gh5!AQs^R7*}@MjQ!gTLINHfY5%wDALPCP}^@_4NK5 zI^a*j)$x#W^M$~}o|qhfHr)mzedMeY>)N$&Nj&7jQHQ0@zp5S<*rqrG7(%fRY|5m1 zHx{zuRbx8{xxyiW>T)mQXxw=W82p-v6nUH^Iz?@h440Y@>XsB!le-t zF7d3g6fbp>KN$2?YyglWEYxNw&}wlO(IS3%8=w&bKaF$5D^}3cTk(ze#yJzhKDsOw zaqBbVz44Uty$eHELCUa&18WOYvRLkQ=toBa zbttmi;o?7K)jwUxXBI>pjs$`sSFdoBRJbQWghkT8i|DasBE%2Thq9t3c_;TaX~<3t zEkyv3TpNLp^&%5Cpc~*oR3@HldTHEjT$18ri=(jvnH4w=84EsT_5^ z(k|hJDPb|saT?i&9CFc`dVc&WpQU@qHXj8x*cM~m0(3bPjR6XTP0t?s)L7nsZNce; zk59^FrUmbWW!?yaZQdU)TpW`UIt429)<`}YiSQe+gsBH5s6_k`N)?jWiIRTy<^iqk zK2Pt2Z&uV4P_0E?#>>1>1eg<)5XwHE5?!331lRb3sV_Gl6)dY7{#)?-<4N4y5^jqj zKT+;D***ANxckIaIlUd~xd9sQc`6c=Y!}DGQiI z`(C@Tiy_nJ%Zd8mEsuWu=>NZmm`v2X4F$6Re*?vML5w9MeV;0Cw3tXd8>&im#ugmG z@Sr(K#bMjme;LD)l&zf^It3&*RT;OS<6soU6jEs^I2T2a=k0mGsG6ntHjDmV_5c6s zKduA+5{oeI@gOIu=6FBc2%IJ2POcVb4&ni8;PIg4=kbbb-gXa=vEGA5eiU$p6Z;gn zMIg74_{c`x2yh1PAeg!xe;KdNWo$=c*kbwiJO2WWT=}w_=rFQbcIbofFR3R`?s+8 ze+O&$SpwU|$q=X|ngX0TnK6kde2|j`Q_1y#t18*Jah06mcT>ZEAB4C*aXdOgU5HL& zgM=V*DA!oL@S26XMH=X1diM$5Z`G8JLfY?3^u^8OdR;ct;MiUNs#`5-xq?)j{X z*?$VI`+bP)E(6k~=43}-)Q|9cTDWbnlVm2r_l8(?#9kLMZS!D27Pzc<3QWj@ak@4P_77f=Q6&Q~`*seq% zA;becTB){G{M9QISw}5+rnHbkh)b_7e2C!8zh(RXzb)Ql5XD7~^>8eS9u}q6pICX8 zkD#g`9r*aXIgdVV`>H|^8O_eG!zQCyVXW%b!U-8ZNDmuA4$+Rf7qcYi{{`F~Uleg_ zXmm8US*XyY>wpGJBj^Y&Kf?mAIO9w8T>|o@}%LAC*V{2)X}AXKo5<0p}04 zq*R=kI`eTL13WaX@9!8(#bNEhNV0y=_Pav=S6f<-^b3F$xd2kD9$S$LH$jUdST6F- z@iTgL^cUs|$bR)9bS-!_EVO_9BCUELQ!$U#jKt26kbJGaDj$-AT&bBk!2UlQ2;=EpA*9JBxW&H|FG!S+9M ziEhdl@9T}bAIHkEWy-4$!t9E8+xcyyAU29L8$itl$QyX8c@7f#+<@@wt}7H4MT(l@ zX*X+-FDqB4!1ho5^NF|h!qj(TLvE{UKE?$?=EgqTUY{jFFMEM_!S?Jg;=s4>658v2 zOhCn8nBiT9e9FV4h2)JF-V)-G7R~{xeva2n#@l`rt3$F?VSq*Y#rIa!ptOOjX4SoN zNrwa)K9s39Yrr9PbYE@ze>2q|e{%YY7E~@$i@i=xDj>&o)03jc^07f6j{Zm^;SQlJEO<&k4Q{oJS;i zyL}d*K1{U`xkPBsMBlf1;xSzX!x^jbHdfzRIIC6t*hl_h%K7u+tNV;WXEYU$k&=r2 zbZM~K-(M?F!j-qzxNO|fC&k(oko^45f86obT0KVu!N}=)bcmHoU~U8l7Q|Yb9Dm9Z zsljs_0cJ6ae3-?yDHc7+mQO@3q|vtk-h}8K$wyn=9Vl|l<`40~wR#acZr(rZw+&~J znhtk(j90Us4a3JURU)5ygJY4nv+YWj5KjA#-J zVo1KSwJz&*^nk0*sr^UKMd+8C_HFyF)(O>MI?PC1d{SK4fieB75CpsGqO$~dFG5-y z1!YgFAYZ)yb|2q?=fFZQF%)U~(;LKCrs-wmc5>PqRwPf8AcFqo?UyM)6CS)hqA6;T zSHfE$L&y-^CE2raRQIKK_j<$UeNX;vN%X&OYI+3>*X@c!WM^_^(|FKMAX}4+K2SOs)UAs4!^qZzB)@hspOF3BQ>x;U8DeDwEP$Ayc+ndjEj zqHq$Kp26yd4w%?BU0=AQIueW@jlvqdG2RAqgDLSVtLS? z_jB96xO|j;FLrUM)uQ?-^8N!GBVHSYSg+6@Ao-5%buuO<= zwTKd4W7d7Ak-UBB=1oxMMaPk0&KTBr$WyX7>(5h>q?-uHKhdseZpU>8^#GJ)t;l|pY=WWmci054~$~}tq4K| zPZ})_`h&1IW@Y4cPkx1`s~h|Blys=XZx)BoR_-dx&yo6pLGps5bB!ik^_oX;=3~)8 z*0#>{=-%RO%S#R`+zc4dt~OYOak&v1-ZC6hC_iNt}>3nX7Ct49;v`L||SQ@JUr(%J=cs88ff) z%jdMUpw>i?M}jQ>=F|7m@?@|FTm$07MrJBGq@l@q=7%f!kG$!B87FLh1uSZlrGthp zYsOs?%M7=hSXF%^k`EVqiAl%jWw*cTbVg(yf!2rB!dEhU4N<_S&I=rNStySRhoq1{V>$s@Gi>(_a>VR9}`OhQVGZg1hk+zy7FS?t9#*n4 zR)T>{_~+hIk>7x^6`+I7e9|!``1%wB+dsM zc?42}5XZD~EFU@`qqD~^W)uU;8e9m2V5AE^*8b+{g^(e>Q)5!zWXH!h<5EDm#1v`} zkrPP-oH-6hG%z6)Eb_Ossz0rlpOfefw(r@TZm==WAOA~X9wWag;M@vSTOA~P z4m+CJ`E&O6^Lv5~1duH_Iz(6VbSA8j$ESRPono9Vr?S4Y0N6ewuu)?jOAWRKAwW7H zPk%0%8Ow)oQqstiy{9(9*T9R);5T>+wBt{qeQW_J8+mKE->3qBbh!eSr55%;Uea%r zro>zBh?i#-%Q1qgw9H#7khmgYl4Y}A}>1YsLN2RILaKiIrB5=O(f*0d$)&9!taxje@tu`*ZZtkX{Ryg&DpTcm(`OY7j5p3@wfd~|NrCD^fEEU zfPn@Hd(s3dDBXH|rL$RS8Ne#G%?r%=Pf-i^&^X&mb?0pZ1KjvYiGb%|oY6Wo8>*)P ziAnHcR~Fw4j2~u$uDMB~pzil65dZtlpZ*7DOn|D>%npP24y!9;k%wS?-;92<5aPXA zurQ1}xP3G?CJGqr^plu1q5NvxV}9xV2S(pnXo_uBZNGlUXuVWy*@J@ zE04?+|NJXW)wgE|+HDl}=iD^cUXwZ0KkFcdQ+w51X7(7ekpkb!_@VW>f9=Pg9@q}( zAENxbowe6jK_&L~p0@Z~2wZHF>zu}yj%#cWp5VeAu_vWo>iLP@qN13>NqFsKt8r$#&XWlqE-xsmtId;ikBor1>|gB#oNwEHzQliCeGK(Z z!{wIh*owqAn8KWTzoLG^1wpVq8k~wbwmo`4n9hv+xh$Z>NMCvBQH|b|`OD#>!pk2R zy&@!e+W&BXESB@4?)Cv3{2B-oQp%|G!C*!ox>T`YQe*nf=+vjW>mW~-W=CK*HuiF4 z%Mb3CuREL@O`0F`-_uxUiKpBqRL7@iwR@@o_^td1)%fM-wqo$8qSiYC$|{}Z zq|^%Ld458HWKmcou5F`>;b5t7UL8{1dHx*&+u_f!SOPAixmcW)*1LU&+8~nB3@=yS z(6Fc%(ud?tQ*hyTcYd1?c|DJS8-cO=yCXtRp<%!;A-~BFUfyo8nnjNDmq-}@l_C7R z#r5QiRSFYRx#om-_C66TXgt8Kvseg8U!%#~FXY}o0&(~)>?AxG3uvqIRz28vX9$xf zvHZHqp4YA^Z>tT;TR81uOZQ~sH)&SYwQv~gsgGhlyx*{op`j*Nh$(<=T50Y3UBewt z9ec!5R31v3mY(%zA4W1b1lqi!{%I`HPxZtyzu=TXkN%OQtmb7jl~^+UawtS1QQPd7?7}E zQ0)D$DGpmZB|xJOoXR9^fpHzxJ8tGo1ZPJZQHbq%fY^fgd82ku|2#tb=hp;9(?{%` zN5*T1+50++htKOQdeU7g#Ea>WvW)8tR!+);8x9v&t2owiMjm zZ7QTS_oZI{g(S~)DN~m7Jlpn#u|c9*KyHwDBkUoTR&`GNut%=V6No3yp<@A|9BrN9 zr&`}`zcWHe&~!)ET^&Tpww=xUdTse{(|(x(tmLl+-~}8Q*QfkVKBq&1#s#?UOA%*H zxyHFKE4EDU33Rkg+)R1D7&Q z-UqfNauAaE^YAGC@B+}ggAd?356pStW7=}4pvFtBBJ)yo{^1zUk!^bcJMacX5cW@v zfVIzEAg)PY2e4oKK0{o+2jK#mKHeN7M*Ew$w*NHpec*zSxSK|K_JF=0lcvuQt>b_@ zh&1S=gN;(JyYh4X=I3`}jEUw(n^_Q~l^AWD%n6%nZ2ZrR=I(%QmbOkm&xzmsINO%9 zb1v9T0fG&<4d6Y?MDCLZK{P!99nJk`4qg3CFabc+gS$l(trjq~k|wRzXB2^7H!op} z8`WGNRTScmr2Wlv+f4#85Tjfmw^C{S@dWa+kfPnY_Z@kT(pWya$CJMaCS+`H;bS^! z_FzK0{5rTrgB*^^L$$OgJXhCFTc@d-j zo1h(&Q4Hn-4bVwa88gul`p&F@>BvnL8Un zpKvBG%jlGl)ApNxKfRWpsYB?soxObgrf2gO0WC;M(-`|^Z2rqNglpd#?qC7JN#BCt z72c4oc-3e;`!-@LW$(~(-roQO9l3^Mqd$+B|JQQH2@o5>h*5N~%wPO7YAo+)p`}H| zZK?t-Q`(R->f4f_2%7?nVX9;Um=G!J7MM&<27OXJHM|+98~Raa(GkEz%ZA(C+pi;% z7!f>ZiFnsxxP?So4WFTaRnf?b5iH`DGfH{T^OutHGub{18dX9-4b!<==K15W@@Zd2 zFGad$*j)mjbiOZ%?Aw2k5Kde`IsJ}-Eh!fWds|m!s0ue>-@aq=Y%h3JV0rJgh4+th z`=^)tEp@A-$AIHsx^kiAefH|FY|GE6fMeeQE|KCr;@!VF$@IAJ@InPuE3IEWrZ7l< z#ohD(N{QtW_x1uXEBMzN`Tt)Bqc=eQ2-57`gp^BkdGYc$Px`;~lJXWAXX?UaVSjwPv-4?$Iq?>D0GTSE`Q0DH% z0^!CJ@DvrpMEQ612R@3!)6T!clF&NdgV@>sSxWy)u%5>k18-ZKtyk?aOMKV9-iogK z7Yx3GI5|y;+qW=bov4!s-1Sp#0L6W13;2U1DGV+#1Nx_W;)B7>+g7IBWX;=m=josO zBZ3v$z=4YMqlq}U;JtM-=kK5fMzC?_$2SI+zu8AHI1iUFNS$U6RPy<_=GfO21Um6+ zG9n6c#p68&266vCyK@I#40{071x>*97CSIech+prQnuLuUwU%LKjI;n=B4bY*Bw^>DG-J$6X*b6a}MyeC;-CGP(Fg4$(0Di-Yrge zq~kx$s&Oe8bjI>j@(PYIWst*y%-m2OgOi}|k1xoM^V^l+Pg1tsc_De9cwzSh)XV^I ze@;HT1?PhhWTDq-vng4#sEaBDx-}|LMwrKIZjFbLam2$Y!!yByXwuS*b>=&}CEwk2 znj=qn0hXL|+FW#soQnQ=dRJW=2Bgz+NxNvk>NaUU{+}FmS4x-k8kjDmJ-y%1j0z6Q z=uf9N@a+Yq!G=GDCcHj@PT*a?Ch*nJ=T(@lNAD7eE|qRi#0Nn^nyM^`nA)R|76t)f zp=eD-3r|qEb|KRV5(K76`!Ik&76cqkmTlpnY(#sNqez?XA7%1914-q=wK_DBHp!oz z_s%5(d&37RFj*}S(9T?{1zh9Lp-WUB_NgSwKTXI$3UZyaEupmm_#^3%9z_#QB6HaG zMHm9b4W+A^JY54y4-u8ZNMP^-;XE)|BCo$VDPKTK{`0B>RRihQ^?ENyA3qJ-5d-{RTd7Db{QLsf~e?$YcjB4E+VdA`*>eDozq3|VPypcg2M<5j1)x`lHt>i zZ~LF>iWa0UqMFNMDJ-OAn;mE>((yGuP8W1IfJnzSLy^GD=Qf6+DEgp_VORGDJDP3_1QjAeWdXFYBgeuHpaKeKgZ6~Z>z@#Y=Cmo?qO`hrP5?s|3H)4 z7z{!sSn5D_K*n2FvOhs=8dKWCEWfrS*7>@&_D zWS7Ms1@D~?yJcSfB8^_vNXEZgBP!Nh^<7{gs2B4k1vSrb0W* z!4NEd)Rn5CQ+g@_KC_puPdkbt4}%OuZzNB%kN4#`Mw%o>cdPB22x()^{^Kpnj-VI1A77M4UJDbnnRKSE z@qI={G_k5#CLxKhn^wzhCt=uCExST%qtT%3n^77R@40-7Vb-K~=Su2bJeZT|^7TF3 zRnb7Z4$#3)0*2i@z}B+5KGHyDg9HgyJh~lvg5pt?JDLC}FQ>p+&R(&^DV|BwE zc-CQzSE5zM=#Rv+=_b8SahZ^_Fsp#=oG9s6cz1EQvuBy!u>lY^VSjl;QGha4c|WklvC4+-a%!Zz!S7iYttjZ%g>b36wx@d@C|v` z)a(P|k$B3S5Th?hpYrruPMbu`>ab!*<@=!6I9r+3_u^EaD#;RXQcbK(FSi7JM=T5& zQC~7T+okUGiI%^+^rJ(l?w&8ZthE~ttVh9C3r7gi)+=zd>F8y}>_;RyTc`~qxi>Hu zH$qGI4PR_EWFO5p_%?-=>^Mo7Au{4+2x3m~Kn_Zl;NtLhfeZO?2Mn%`M29^(jT-ax zUqlBlf@#?!l}3=$ZEc0{2lx~IYUe^g)>g{<@~T^kj^dlB*c!aJuO)Nchmn_X9g7x7 z6C*^S93fRJHJ?Z8^ak|O3+XT?NulUI_ttrc-%aMSC{|!QZ{Xt12Gb<=2S?=|mwJAg zL{A2Rv5+wL<&b}6+hNxbah<8*!uMUc0~qnhC9Q!uK0$Wz{lzcg&aw&JktBLI@c|jB z%?hf6Jo!rTBU_rojRoc&urg_c!zi@BZ2w&qJVY7Zb#PsmrZ#%}E?xS;_r_j2GYKyq zJ&Z&_MQQ3yL0JF&`^ z-Hk0%>3!ABq~Y1{spY*!KoiYL(&xAMQa6XpU3)L5%dWx<$523z{DGiHXQ}$>BacuW zZ_6C{oU!u3Pr$CySaLiP2H=s8|lzfiBhV#isB0!@2TpId&B}|O5Z5546zXTZQ_kutVgGVN;)iB4$lD7f+qL(H>I&ax(N_(>IC_dm> z5m-K04n3EeKuatN@y%S#)1-3+kRBwMciq(O)D9OHNsubN-)asBT!N@yJ*+2Q8ge(XGOa0&`;Od*F_Gwd1I_NU z>_TFql+fO`?B|@o9ZSz}o4`_Cq1XAu@wOO~<8imdg%kqh^_=EQ4yE8^ZS8uqMr@b> z3e9Im1-F^r@|zA5qQ|4hj#oNx8&0L9_{(Tq<_K_3l96N#q`fQvcx((S6!VGRxW>1f0YAAe;&`0j(RAH2suC4cwpZExl=eYQqI) zUt%MO$1QBhFKfNgrUSCLHp}7NfugPrZ>T&`PYqrO|(8%q50P6q|&5sDN(=c zD=#Kcrxf=I&?+`dI!n(T_#rZvhf{LW0?jX-IkcKEg%^$ocLyI%F!)xe<8u$Y1f~&l zkgiEc@c#cw5&B4U ziU9pyKQhuKuNP<%nGFll<%Boov_Sfjpkv9|#0?$tqnYw{?^{$&L$p2aMXq3wErANC zDB?9!&`b~r3%iJnpihSgy3B(vg)7a;Q9vll@o{KG2iTuDti7hwy5*4zgxRUSyW-jl zE`-N@pJpFph=(+mSJiM9@@2N>^T@0W(Np~6r1`GWbKpfUWdl$>Ebm|oGank@K|NPp zzcCGTfIy(j=Bstaq|YE1ic-ahbVrCYX;ag)sQA&AoK<46N6oN8?e$Nv=uQcBtR54v zz1eZ6*~=|h^Kae_9x$NYy7o>Cny8)&+=xan=jmOL;(l=QQGwa}MC4VPx)+g6h*vh| zqA#%-QjTS6VhZI2EfGwL>Gsvs!S`d z4}<2t1_V~6u7g_T151Vb{~0H2eUG)?<`79&4ML4 z5(WsU!)IbmdkfnoI;9k4AMa97w`?}boQ7_w>f?@^-;P--Ir>NO)0->7y=ywvrhj#S z5DIP1u7EmWp@+DudrMd~clM5kc61E6#!V_2Xmo-Gjctd*Y+CrP?`th^D|5GiwcL{L zhA60+6nfSCuXkbh9*S9PFEBf9xjK=>A!=Brqb=DZ>b=yvx!#*YU>9vNkA(L+D`iH# zOF0ySphAujO8eeRusrb=ia*`J3kK~Y5RFge-AeFtsN;cE!N>9yb*|wINJ)FzUPKFc zN9VhdDmjqv=e8Gw>`dd>iOJbp1(WCXBYhRbKuROw#-6L^x}y?eo4a9b2&fRdEoU^5`^5lkB+lly=5McpZjh$kguaRob=Y&RG)^ zIE<+1;E0|*zAjrI;xdmfhg>BwnmUlkl@$d3`YMoNq%F7^Wi@2>YcImkjKFnMO@MA> z4K-5)@8=(MTf7b8I*o?}fhdHk38#eQHXD&(5hyxY)0|V!pu}iJV zGtC@8A z6VIa})C@xf6C%`F-MAH}9yD5>-Im{DJLWJ#)54PQ_KJUN`Ll=pa9H^|2uzn89)ZSs z{6~U8Vg5jH-4%ywO1%T%Vu-QXX(vovUEIdOlBJ?>OS7YJYtssg#%817P3d_2oXHL} zim+oOFd9q*aB6)$dT%`LQ!7>BXu)vBWZo3woIYUIRf&)rZxn5=7Fj^Cr-OgEuuwUh zBkErO+{(L`dl7n58>JJ&FWXzrI*{tSqB`5RH>In+1_`Q5Sw-t?0Pe{Uooq>b*PCkcg@{$_m<(}-zuUJlC{x&;&)jre?mUJ5RM9?RlMnZQu zvO3y(pDa<6YNjMy<`#?S_A1)X=0t}^PeHQw!r*42Cm*E}XlNUt&hazwre*A*rh(OH z$sV%`Nl!eEH4s3B#XGUn!Oh`80~B8qAL(=v9HGRZ&L|lZ$>knXhcVT5MKzKbD`gO8 zG(s0Vz=0O*@3tHUDBRui6!rj*3z=QY=Y4EwrleHhY>STj8z036yws~!fA|=RF`{VJN1cXM8Y>g zjZm#~w|s09+NPYd)&?#S%Dm<;o@GE3479W}k|IFZC zS$cj9|2SVPvBh!)W;QC$f|O3bs>3bZG=GmONK;jLhBpeJcfizhxXj~W2K%(rg-5qw z4{N$Q4rYX!tEEqYVd(<-ZBOcA6yB>gV8>l2eaIpAtaswWOK;t0TDR`tm|mAi`jS@F z#$UrZ0W@zT-y3VoI93I`h7cqwQ7fZK_8`QTw!*p5J)W@!t?Uz!w;L-*`M$2vkCtKX zx}bBdTsL!RmBcW>id(5i0VxN)`whVlxz_4gt%=jdY*-^Q`{DvVJgc*UYI#S`5(W-? z(}g^8-bza48VG;vyFQsIm+@srxo;9KB8ngM z!;Rpo z`;se}kr|#1<4%fYH+&Wtk!dB8kN*9Zx7v02w5wba!CHV zSagd9KLl~>!m4X~&)Hp{Kw~0?G({9Rmi~+Bt-^QapDnuD_&tzTyLs7}DtMFj{FnjSA zO2}*}TxvDU3XH+wBWC!P&+94m%7b#Q$D0ZdXRLiyU9BGj#wCb^Ro;?DxDb;epGQe{ zD@lPGq-IbR=a3~W53)^pa+A^Lh@w5tt;xarQ0y12sktX+-rNmJ!Z=o00fY}UPBqMV zF%GI%VLW@i@^y|%d(jkmA>ne%B&gfYt~VaDzCyoYMHZ;B3{|I1=7##ITs=jMB?pP2 zz|e9QbBnvX)@6-IiZnY@D4xh--77&eJnb>KHDt~2>0|p|5P9y^*Ig0rcTmPk^{?w- zWoJI!#9*D|+U`oN6-M{#~ygHCEDjYJiu#xQDn z&e%@v7+#5GCEWP{bHr7%_m}IZi1r>05QdUc4DgnC3w6L++@72rU~b9032XlOQylgx zvfp8?TYV9>_DAWy-gCZ6bWA$(f}oLYSFgT1s;awk$dFG+rCrHwkku+zpVRco$C)k4)e8>zc!*N$WAz)$7l%27^ka-gJ?=tezAERl5e z_RBXqA*frDdg5&0@pBzMIVJlk%$!Z`_?@0*4Hso`0J905*giK6yMn6WWaSl#R+E{E zhuj&rx*{~51iy-!d=Unu(xmeeB>LtB^$d^p)C(Wg;IOp&%Oc-|U`A?~=JKO_u_~Vm zPNi;@BB)c^xNK%Vw}diRXDZ2MemE*{_VAgh)*Hko5xO4AcGJ9h8YWSrAk1}D{;LQE z9gIfRvh@@WbCB>RrdRFu>Ww_-A5d`Y^2mn-nX*L*@4a?F*J|INdv{#ZaG2*&gPFNS zSBWf#gNZRsrlnN)3C5elo}*no(?zFx(oRFpt4D_aKy%m6w6!+sp(*7)=qk1cCEaa$ zoW$>goY+cO(Injqd6l-%Zeuc&j-F77_`_{JQ#(pJAxm-LkUoY{v=thExf0h4fEj)V zKdRK26ew0z?3q!fEl>pOFmDXCn26cZWdd{Mc^#DDSV}u;X=C{SHnF&2Vupf7bG$!J zpP*kj>Y{F)6JkTb(Nb-^mU8m8_X(4zIR9};vosZZa(Qi!;)~+gE83FvAMT_=LOtAm z)5NkoD8aje+b>v#@Y>2y_VFQLu5#Ro(#$APl`Scg+$U5eGcH=h_<-W5rS{)K0zF@; zDr-t4S*Mj>f&T#Q(NqU2+}7++*L_EAe1%n1SU4Ex55deY49aN1qgr;|GXI(Y#n*|y zKe|}(nt5+QY#CUF#|l*jF8thvIZ<+oWrsOs7`q)JY}vRqLe>^c@P*|Gh{HVBwZ<%|;Yq2WXN<%A^ z{9zBSW)xA?@4D(&3!1dJ51vF)`IgYk#OqjufRA&k7bLpz&yTdj`IFXO=slU^cS3fx zeCp<%rr574eyxeS;Sg>%qCv(5-QKuhN&GON_d z*~3{@RUllUbZAPRp^w^-g}M3^iT=miR^u3AR+&X-Q=&}auUQm#!9lUgZ@)nVD_csa z`C7HxV6aaar4p1}4N%4?G~>%8Wo_(r;tWp7Lo*G}4svtrqOrg050HON{K`#|W~T|I z>0U1@G;t`3ybXwyjUcC#wclYBafs8cf0yymmUx4l@FPrk>J(N$0+qwhn$YN_AF`f9 zAB+q+D_CHyM&dth0PBRqTX@#2sl*Xhv#kU%8i?4g%)*@Y}eyBlGDMsuFqs+ zv_tZUFFk(6USpo}=vR+g%ap3C0)7|e45X)SOzaTqA_JQ?UW!b?uX6(*SIuCkk!;u7 zC@wGDof9t98q_0YMSi`F&^(K*JKX-)GP4)8YBf&wXsvw21JC(A*6=pZStY*~6nYDZR8mYH z*)VB@NjjIR5J3tcHREx2ce~6t%t(1{LS=svp&R4{g|ye`rSVF8EKzqb@fp-%tOelA zmeWM1d>*OE)J9Db8y?W{+^z6|;JTg(Q`IS2$_;kg4>*`&%SIh+JQlv*jxvpi^9&9| zuNz)PTB}8DkaTp)O9^d3?KM`Ur7dR;|x~FciJVs8tleUH!~-j6+mO^ zao0FE#QA8j1BzyT?-G37RmqVdHMGRT0f9aSCjjRioJo^+)SEqaG`3Q^dp`p9)X9-; zx?Dn$!U9)D^O0c?q5FAc#9LY}EG@~9jR_{^j>d%uq_Z!25uZcTb6qXPk-$8c=6zGh zM$cj)@BI7Rl^g_xtUk`iFbLhghWn%8{ZNRNAp2wpOtu^WOn{A~LgmPZ2raIYDM{A)UfgSaQ2b5uF5g&q#cXlYSJp#Ip?bUVO zQn~e&;HThC;9w2fmpLf^66>F;R!oQ7uV7+2=lVHB-x$D4325kusaIE+LClZNR;I7L z4<&)F;q&44C%JHNpW(!R_>)vTf~z6*04KG1MkwXiMBKS=-JLISxP-@KoI_LsZJqsO zbW#jos5xcan9Xi6V9r(_g7m|qwF!vgVXzGL)3vC`7Oc^-zSJ4(J$}>41^1Y ze0Mb((t(kpa$Fu{j!~~UDXkksn5*-})&2+qf=EwwOc+iGV`g@?_8dU0U2z=eLd>fe zf`No!a{FUmKP29lCZM9V;gxG%xm|$f9Aw2=`sJi9g&~DPM1bWc*s%NL#IGpeajewl z$ZiLwwPZeeGdA{|@b5B$HdHan&+dL6OWr?g#u>?{0lb>DT4TU~`hF?8B7Pn-5>d`S&!zHb|bF~Up(brg#FvB>OTiE_6wVk~+VNxI@)L#G- zoI7LtEN9N-0kp40g->=`A48J#3W4S?Tple;m&H}`lv=Z58i3SuMeYg(camrNVMAVF z=Fdv+Z^nk;5^B3e#}-S+BN%kj%G_hJ^%?!1m}_KY*GYmjd2VflEG4hvgsv4V#mIfGO8s?L@-B~8<)c=Gq1l6o0%wYpK^DDTs8fD{`|#*5z!`l+(h z0+2x4mNui#KwzXn$weGJmu^W_CQ$y>IjZ>ZRt|6yi z_EDx5b_FUCddzvq5bq4^i*aUL2DazR7Ny%B2PV5yx`XC*p4UCo3RU){wF~*2qUb#} zHZUb*uP|ctjM{~_P0P9FSWE0WfN-UAm6{u=a^-D-5IJo2f~2-E$-n1gV^l#dfqiFV z;AD=HGshz?6mD`E(8Rf@0Gq~yyLbW$(OV>RMzhS&6_L8M+Fm;oSC};FF)uTaluek) zl0oW1O#{jc)21kR03Q6Tz#yBWF$hhmKrK0;uhE=?328NA-Wq3X?<21?)N`*r*(3=9 z$a!F7z$q}<(8h0mFTsf)0&ES9b}u{OwcHI+&5ne-5Rk?9&|1i(9Vj|p?f}hFuDc{o zs2uWRiya!yd9c}1#e1!UuMk{#Os;N(HoXr=az->owJVP*?1pxfiLO`z#~P^B@;RU0 zOrJti(_I@S6`R7*Yp>gh&kl{XkV0}>4PXlcq&-YdrwZ z{++o|Y-3RhvzTiIVXvXf5Zym_V_t9}b*`wsWzco;8fp_v<|9ls+N8(D@)GjE9O_6` zqRwL(i87yfSwUof97zaoIt(>8y+vw3Di}Y|6dbo=?rq2`2$+`qL|#P)g$r>D!fQJD zxju59&0}HpS)p{HUU5}3%{S7XUVg1I;1%d56g9&Ud{^8_3Q#LQI)`L@F~X~0Muc;h zYL8B^aRcD|4WFz~aPqM(OF|Y^&|b`X?~sbLa;}Ha9JO4~+qfAd9q$NCJT82rjy}Si zolu3-@;C|IJ!-SvgO@g@y^y8b(ES4p1tt+!nLb@Na=KC(4{3p6KI}lK0LR&%sm@?1ds0r-qB)41kBE+i+FHwA^OsK zZ1?37)`bAtzpS5aIv^e6R+KEocn>mcMahft(n2*~JuE-^YGYBM7tQ3)8K{A%zhakG z>b-*Q(+-TVjjpF~2g|W0Y^&syfAf1jvw)i5J2@9`-dAh!$24$4_62aPpu&1*a~>2fOv2{9T19p0`O)m~=gWdv?`}8|jQG9q$p%LrHct zz(t&^uw1hmU^GS}s18H4yPN%zA6$fPI;E{AJOH|#y;n-(dzB*Yddw=_d8X9_B+>@R z8x{szk>jLM^{mq3#X^SnSMSI&GdI>dt+zT^Ucf2OjrTm@ING}Kcgo<@ReP^m5jH2v ze!GM;|l(+Uonz)J=H0HyLt{ba2~TK7h$a+6z z(FaGmj=I#;QxtL8XIGOHFeSU@&nIf)0 zn&Xd13<|-|g7wjKHHEPFmNMwh|B-h_E^(#lD*ZwHlDd1*yp1mmEsj8Sc=BkPty|D1 zYUN#!F{Y`Nzn*a-rU7xrNt zn%vLZ^&Ht`D%c%9`Z^Op{;fNN;m64%h&3B8A7Tqn`gt&}WC&y-sBqrvC`knUP`iq@1 zy!fQOB@#=?_9u$G9w5$99_K_}$L0e~lC&n*)3o~uDeC=&P2aeX8G#tb#;RcAYb4zGq4R~z-fvszNKtDg`d0UG(2 zKARjhE@Pd5#&e06n8%iP<$BFvx4jyjYjCeBiy5aKsd#gVd(IN=4Ycg7@S#Em;)+L8 zg7={dwQi-22T$wBmk8x9$Yw}6Rn2+jfuWbSakh$2w#<33e`T#UR3kJs&Ai`rf=0ix z|L4~ z6Wmq0j~Uh#kFD&YB>+5)#Yz ze6Kj;cj7N+Yf4!{`D?L!5!o3^r90k24Zw2@QN3y=r&v|&7HFr=G*z_e$Ojo!BjV8` zkGZbazdV)glQ=B~-J2KM9$fO*eb#DO#q1IJ2QwRK$q3k=*uv@509mk~Hjmx06OQGK zrv-qHBBfXaY~{~<<~%y{W!0tX>Y)=L!>bZJRo?qFJC?VhX;`^`%9+*KW^Zl&WOkqh zsvd}0-xgO{PyT%jC=tr8$}?ti8%={S%~txX>ZRIqsOQZm9BRDf|aZ{YP504^^aicL9SrMU8cfGHH0bT`l6 zE_(;bz2e9{eh0OPj4=b;MRu2KXJWn_vhEbYU1I;^T2RKqqk{S@LJ47*qYF%gcC+cr zNfc?0j2}W_Eja+nNC;e)g zekgfN$vMuYDaJeWp27Qo8}|YI7?iR_1yTTa63OW_oZ7=0^A@c&FE@$fHh%dWucf;e zQ9E+sr)3MQPPFk`S~IAs=SMNh8*7}v6#DvP6LBUVavB(zl2&vskXz(1IpeYT z+NRcJZt<4Ee8(D1tF&vtE$TP?1MZwrM6Bg2g@~`3w9BiO+f4EbicJDU*+=7U>xvg! zpOhjUPb@863bd#M(tOi1T*N&@-&9vJ9r#T4@##*UDr-r(zI0|y`N!^JY`zu2 zT9sC^|BTt5{43$(81HxVvO9+4VP0|2s?a3EuEG~5B`e&-3gn1N#?B=l3TwW7)Wg7^ za7B1;+ePsN0lIcepOwQdK6y49i5?PXfF7?Zf2;pVBIrmi8KXe2L!AW=UhH77+hW*$#z0EMPzr{Me#fAw$RL)HM-Ibz-&xzF(UG^ z9+qxqF?qW;(jxRDQHWq-nS|9Mn(7)wy7ca#Xm4wbD9nAt!kK-mz{_B$CSXC&h zdKa$kXCJ*Nc&cpPzPTBq(P`Y=&6y%B-$k?) z84lr>&Nu)Y@8*3yq4H~QBURq@_#L?B+NCsR0RWvzyHDj}_K|Ebs)!6w?`ppf6bP$@ z=dO!hc^|cf^)nt7$XWlPqazZRk$vRF;+_gUURnL}s?q$`+b?b1o0l$(-?p->N=;ID zb}%1U%ct+qeo>-Z-Au8j(^4QGrYqO=WuW+T$Bi>LVi|-YnOwCfoo{Hn>G{N@l&vTd z?KNmRva77;^=Teg0&!Nd*oOaO?5*RXT)XdK837SRQ4s`0F$oEk5>P?}m6Aq=RA6XO zQYmLZQ4lcblA$Gr8X8FvB?if%Bn�lzjK?dA{d(&Ut~MJChq&Xuh@I-wbphs ztZ!v_-cNajp6h|N=mno32u6%Y;pqD-o70`>)hH zGStRPIROmmPfCgsyw+Z86mizojQEjdvX5wXgP#~o@-&ZN>D!TgiKzV^&t5>@nZl0U zhPuVjZ10NBBtXZxTa)EM5(j2^eY!FAQMV(9xG3qLJi(G9@-DUUN_UjGxy*r5{FLXy zLMg_JTS}9F7BZaRz1fZASoW3L(j~zA%rw%}@{AR8O3OF0i+>A_x;{*k9q(Q}jhFK5 zLY2efjmoO(e@Ij_vv7`{>MZUNhpxZJnP)q4#)h?_3!&0eM&9}K{CKshzkNK?WozIYF1Op6`X6$&LZNl5j3k=Pe54%n}YYOkw=jf5(2w)W{ zuuXUTE*yF}yZizJ?=BF;>?`qMHZBQ8bAsj2x1c zHa5&1=V5h*Z5}gxK=zlXx@#Q^M%VK6RT-pNe2Pc)x-n zLA_WKRiI|a;rf16=JN5?fqcp!>K%{EMqN7>?JwLCiQlAQr{6Yad=o-15;SR4n>H*F z{{*BM%v&G2vFTUyo(H)#<CE)?PCQ8B%TTr8ynkBJdz|B^8UW7IO-fKFw+v-IJgSYmWxyvJ8jnWUv0{C{2m&?Ibb zb9~|>rK9_hqgKS!$5C{z&X_w_6=O5roT}OSVE<9;x@7Gc;6R!Ne?QYG%lug@ORg9{g zBhDH7EI9Fm3~PxHf_NiOjUB(4YK&;yf~G?Gdo21`V< z+`}ez$YZauDq{oEvc_LOR?CcEK%%r_c1;>)bnC%8LZzMLlCno^ zE@6E7{!XWG#QVIO80~8ig^z5@e<2GXZjB}2Z60ZDhm9Y|RvHq7rtl}FHG%r?QiLD#OxeyHA{S=(C~l!ms@;n$>0iRGHU z)XZLlCOR&DI_K))Os1DcH0`HB%YQC%%&kLHn<~w)&QZ?04w2iN2%EA}(o3;3pn%wQ z4wQj+&+p@8VE-w0y;9_;+?T85X{BqkY{>1Kx5Ueql%6gd$j~ABV`59V<-_(R1~c>d zhnzM6->}RlOO_)L#h(Ro*r>s?)t^{fHFLQYXvi{UmS0ZJcNkF?aGtzrIKh*4eqEnS z*0np=^l8t@ukXLwZyy0Ur{Gj?p@_WFq0o4t79`Hfb`0}8KDe{XpaQD55EkI&KrTWC+@xe26WfI^>>Ny8kJ_#K28cR2T9x{a9Ss;878u-<3P9dDX=*mf7#1-J~KqJes$h z8z%KvzPSAA%Q57E&!cFUOX}$lp606LD&Ga-H0{QXO8 zQvx-b`%YSt^t_~&;m-$J?21(#j)<(LwVQX$W6y=bZN?64&57dGKCsnjrJ%Avz^d$e zR8pkf%D}2{;>?4V{HM7GEOcn89);we+*~pVBh?w2bv?*L=clErCe+@T*+n(LIxi8I z|FzBI!E1xE5~1T|A}U^7&FR|w{7+Tel9jx>tK7@Rd-BtDitSCyuP*PSfKxmWOMUvx zXnLc4a4Z$g@`m*-LA9q?I|+KvE8B2+lz|t2TuUD_>fj{sT;FgH*wxot^z`7xnzQcgG{>ky&rpIBnpk6_<*{SMndaoLEvs*5JeS1n80|`&a*m=>X-7R90iDDk2%d(EQ$ZPd zQwwteS={ud6uhJ~oHc^G2JaO}GJe|05VYSsyiXTJf8zvJ3MBvTLAUG8PcTu`L&I83 z`_&3(GM!5=#YbqW&6;$4uVr_hMNnI2vF*pPD$~>)Km=47nDWQKv@bgGNBQT<@A0V(|4TXWul zY$j7hv4wVZlEBA{#(BHngXjHiWhjeC88VrVB?2SyV^my5k{utksq!kj_28IK-X=oT zH6msL66ki?f4lnS6*YV>JSJ0$B&Xyx9;wQu2aM>_JD?bnY?wWOJiuh^)4U{>GKP`( zg>Y-80O!5(IhPt-fD0qQvT(Hhi&)3u6LC{-_KP`Bnitp&*rxp0ZHat13DEmkX}U>2 zDQ8OS6o(Dq-A5k{ZxA{y)aARM2Nx-1<=V|2>;pu-m9Vf}(VLeNMQGMIv*A>j12|dM zPo{G_ls{jnT3*q2iw3{|CniCajKnzL(`N)dS(P0i$EHeq;CR{-g{B^b0A%+koYm|P z;3Lu(dA1;1T4g9!qO_>o&V1tL+Uqdv%qBxfQ-s$x6wUH6q%ZJ_s#1=VIi+*-)2RhF zQ*mf;T}fX$`gB)YCARfN1`W^6?8=J(cI#M_zLq=K%yRMG9n~9i7f`r^%_R>>kwQdr zg^(3F96EBM(<@#hk@amLW<8F7wYcyd_PbT|(U2s56=;K-P$hz9S^(5s1om*{it~$C zDqmn*i%S$`W=6B$U_6129tn778(4L}2amV6rfqKdNlw0|>!7KNOje4TUbwiI{kalF zpTZGIPj}(cZ0%l_vj-pTrgURFv=>P^WNAiUrFxYIAEmna*5#RZtLe+82+5t4Y6rRs zY@&2Zooy_|9~oImVnVz2M32dh!YRpwQgYMJv&m3hl`g>%Z@r~<3*SudE=XP2j>oCc z0RQH|FmwhxSMnl!D%WX3s|}j+TDy2J?z^TSHF3~#{jzQn^r^r=d2KMiVgLAm)ZP&33ujYHNDd#==-~hMsAmdYzCLQS&iGKP# z#(0Tu-@g5_ifd-7_ zl;NKzSWRCX?B1hXLX*vS|IVX}pW`J9ly-^o9P!J+k}cOj;6XgyoMU{I=&`z(k$>YY zjmdF5LlM+!>k|ELFLhx3tv5W1XqRbmc}?%i88R-WMmz@}h@FdCj;VsINc&$w#DzmR z(z!o5^uRqJ94Hmr4`t*Lq%XKWc&%5Q8?uthK%t9b2?i?5Qg2#$jcdivVb(dQD1;WV zu_BX6mC=Z8;OIv_3PVQ6z#jvm?|r1SDCNWWZ1VL9pIMjUg<`Bjt@}s$CX4it5iiL8 z`Xy(XmIs~p0a38%P%MMSugs|+xAj86@j-8?;5N~x9Q^zrcO-pFGlv7#o;5dwABEIQ z$|BsrcVa$Cf?JxM69sN0*%3hBP$@CaKMKcRT1)OB&#+-qR1}gECSQI;>#42eL33f> zXj{s&!r}a&T3W#$psivtJ&Z>#`z~Ync~d`Cx#FU*n>*Z{h^j|9k$e*yivmp|A+}>m zlS$xQK#q;IxaqtBNB+Yddh=JgE^^TnG2DYf5$Vgjr~1Mc1=iiS#ayN*^ORU*DsNCE zwYKjz)Rh&O0Ud#L`by$>hfrjCl?|=lmHShq#7Z`sM8T#K3I}LEC~ElvLw|<@UlqZm zcL(?d2t0%!yxMx)>Hp|48JoqDMBi zvG&xUwx)|v(8m1yF{Ip^c#d+7;R47%8$pUXXckiO+6sCBkauXV$5&nURLyp2iWYrz z@$04xE&j|M=^TE9J{}IoP>S6xg+N((G9}MJ8%6snh zzqy~IWBhR^XMl+;`}kP&f!FA(U7A0EUND)K+Evh&p(Ee`Y1_NSWzpGX8uQ9}5Gk3I zI8Tl9s7n_(hPeKOQqsqwpGf=AC*}k9b$v=~Eg?Xvh`Hnqu z{=?Ed$472bqJH}htyQ2DB&uBCn}Wss+!4}({SaEZijDk>#&^MDH8WX)PTohr?6SJ z;TC1ZaK1BGiwReh(kLGRRt=`^)ydE3j;mTwoa z6<+H@E|hvSqdhXQyy$#OQ-UZRXN%b>4nLr%W(j$t1xl2;hRTo3)-90OecHbS|J3tUX+vGx4t~GHZ$=>uF^Tm7FOXbh&J;!X*HM$`? z**Rn+Mw)ioHyJWj<9k5;I5{#Jt$S8?2+)x^vW;PZb%cv;TU}tnM{fk7BOhzFrKEIx zn@U`eIAnfeU8bmxqZ!(PNtz6$-62Vpo2LH&bBd^{PxEX3|^6wBDw=k zKkOLl&Q80?ht7NbjjkI7Y2Gy%qtDfkEG9#G_)3bIMzAw$Kj+l9D;Q6lR*DQq3i|<< z*85~d6hI`)`QQw%O0VC+GmQ{`&|a+1qA5DiY;=({3vi~3hn*WmQ>BeZ?wNKuNyKy-yk zz7ac3b$9L1!=F$B@y5=)3Q7$Ak?9wj>5Eo9dlzDt{;<$+mBTK7_JmdTci2M^{TkGQ{t5~8`nH7>wgas)*6ska@MVnys;-G_n%385!V zNRKbL!==A>_2oB|PTfsGd7KNsJOF1GzeBV14%r{ee&VlhHq8Rmcb9+XE17LLMXDb^ zew-)7*Q`Gi9S+}L==+1(VYo5J^Bzo?+>?kz>8oPV$hMbSd?hCj0aDyZZ5-RC7Q%8lReQBMnwQqUs3af6LG zp#N#L8p9#Pd@R~gn<5Ttl$&L4Z`*hC?A%#jL5Lt8|%3=Xr=4WEh~%Jvb2&9-qir$sfEbVrj~VN;(V9hl8m zR@{D_)^Yk%H>VKZP@r1y>FM4FZ?7K_i#n!~A@vEfL@PrScpu1Sg@)83BOn&Be+U`| z@}!_V)lnaNsI!N|(JMZdmYbe<-dKy6EcCPm(-PShN!1i!7gaAwo;pv%TF4x9Mmtjw zQtP?${boPlBoqWbN@A)(*~*Q91!6hFh1^Sr1Y4e&R9G$gXU61hxSk(^*rrf|cpsb; z`dR9wb)qDgnF@SgVROxqC0jV(fF^23aB#w&^D8K)KJ*@IH*Y@_d?(W>UMT)0l6H0N zzggi~mg8|Nm315X3|FQsR}rw1&ZIxiV&w&4XJCi$%TzsqKx-ycdBLMpNgW*IODq8o zmlDjA`{7htd+jGi|Dgms6`>NTf3)TY)b>TELQ!16a~g;#h_E%LT{c&FnjY^&qt1nn znnP4WreVPa9V=0Y%M;Dwv?}6KqL!;*W*jEnMSGAtvF+WpsRU_`;^N|dopM2LSze8MgN3(Kr>k8bwu@LI++u7)R?0k0N~J>O3U5H`4&56WuLx7dg#Tz zW`9q@(9~7cZ0)6}{~H2xpRCin-w|rg53&{pHGV&i#kx^25#4+9twuH~QSI?h*-Zh0N5HZ|Q zDR~5mLa@jb=b8$du0`tGZG9bMo&{zu;3id5_kGk!9S}bb8`+$FR9=YJ1iwd|*F5Zr zu`Sm3m}IT!VT&*cBngeVEl!S^oP81~#51$EE}E$z=M26oBa#qn+v2*w@+k*WKF4$; zNf;OQP*mz3bO1^%gFG8xd_|I$UoDUVca|0$^V{`+$Ea1h0geMb$hn0Cf?B=TH8Lwl zkeYf;mR5PikNPum0&_39kW2^S(HrNZlFI_fG-SnCfc7s;iM96SKm}wN=r%GXr5t6k z)G{`GB|>9U-SiYpD0#O}aJCyT6 zmNPf2AgS^dvEpm<-|j26zLI&0gW>t26=BX~C27gH&ssSNIagAxU$qwSWliK`ED!mi z%H^-yrgKWAI9R%!)dW=8hVAm?xF&uH7%_q%eJmJ*yu|{d3C-<Z~WL3-T{6QyxEmkJ3t|J`} z&-dM8rHlr6xgHFxBGjH=P3RX|(I4Z55K~%;f-z|{Pm|$I#D%-@gmI5l7eI`Yp`QzR zN9)1K3~I7P-zBO~`iXn^x;$@Hgz@T<6+Vxj4yg&P33(?;{`NyNdZ`cF%D|g zsWKqkkVPt4dNiC};;!@N6G|Nf-A>(v53Vw9EJZ-LBnT%k3#L+9I7-jlb|%_pa?=yK z%QNd?lN>Q|&I*L;RXR~#Je8J5x1jMN1npc?i$FC?j&>GIqV76G@g9ZV(J`#ZxxSZ1 z##JiGN!iIK^=OJbZYOEJqbIzZZ>S+my=VMs9!Gv<0etu(qulP3Z#^@{ zD@sc{b;$B&8up>3igS<^*;53>JF5ytkubC(Y~JLl+?ZBd$RN2KiqS5!4-Y7xML7RZ zs}&R1$hg^pq@iPzkv}9NPn7}q9lT_`gHmrN(!=F6KRb zVTqvIWGBjOp_nf3&}raC2yva$7K5#Bt>W|oksRA`t~Xlt<>(Xg_m0gVFuFQ<kEO_MX^=`g7(ab6t- zwCU~;zsSL?L0eNhwlj5PMZ6b&s@7%zjvT^Kv-#6dAzwuss)mg9U;qe^n>p$k3S66N z&IIXZg(zVg|MNWEoap`LV2mZ4wvnowBu+lp#a(A|C0CTaX3_0NH8l8B7Ep>3R$8lf zp;X)7eCZKrZfZ+wxoqD--w;>%<$WK27 zO@?Q{I>-*;*6%M|Fy5{&#l6l;g~RU}rGDKSj`Yuvb#?;dGz3zVmH2po=Ao)o6$yY# z-HDR(FU(bBZ~CF!p^NRqmX-c)ZuF|fWLHiy)DVY(ef_MXJr0V+OM#soBVN^thG6eF z2e`+YF3ACyt*jbX6e_r2~wQ&Ac{xtoR2@^NKuZ7tR|1yrF9R} zuGGKJVtls56?ii0R~L7p1%R zLuEtyCtj5h!P#yA$MNcC6~BwrB+Czi9{AQ5B{a+9?2g`pfG91g?OhFNlDDec0AV6$ z>xV3kU;~~$R!#mlvtA|?m8?P?}z_TF+>1%#bSL=5Tt)a}+)E2V0v zyKXTGif3(-x5<*;9c;8~v{nnuXT1CB1YJ`Wlono%yNJSh zyq@`kX#rpovx?VTIgkYr}dY)PLSHRla7aogmpqAi-W zV?Dqri7mlj_7*3cIYcrEsUAZK`2FrfXDiXHDbe_|&zJmJ>R;D#!RKc4n-eKuDu~&VFPy#%7P`*RN6_VroZIR|Us)Q&7ZGGR$kD z*I$Qy07Q3MKryvGe#7hQa{LMWu2!V8wAc=f4=>CGO_M1MK`pkgwxF|1$J>HXb}EZp(+|GVtS#^q>Mz#ki!F|s z^|d4ZKrtzn?f@(3-D#mlmD6PC6}NJlI^1GvM|a9k=&E}0-vPfP77tm%=%&{IP`Ngm z#3p#GG)h{`9eh!`Y@Ll~>1I{%LcK}Q0a|V>W+C6G3dKL0-dPnb>hSW_Pu(;PF7+&f zOKq=JPb66LqK^u(rbg`|wl^N9^HfafGT_h$@s&A>{5U9*Pe& zRT=2~dIg7dq>sY)=N&VU9OR1v&!{X4GZt;9Z>R@yuYT*#)`=E3m^k_<(&`FQC~Rr_ zvvdpjy7gc7PXo>*EZoMGexj~%R%vA6<-GKCw@Q{$*@Ny6Kf>;jl3R}!$l^IE=%$<5 ze^j@2TXF5EP#0vZ_cJ}w-NYABzePDFKpU?{xhV=64hq_K{o*aSV`uWtB$1<6X z3io=axrbB~MGEA?$MZz)w!7$O>_|1Q%|TV5UtPu(zIk(TW(4Yh9}!7N|F&~U@o@ZY z+5nI-Oj6dY)VHFTxF`5T%__WP(Yx(BRgAS80xj0hesQUHNMa-# zdEuiUn_Sx8+ikEZ)S~=l6&RMI1krR{a-An5Sya7t&pKh$?u25M0b3zi-XQ0;tXJjI z3~fC(P4Kvo-gP!rABLpo`8tB7A`#m(PkWmNjaBqNvq{|OY(4HuvaIBzqNt!0Y|!?e z{lUb`R@JKTQ+Amd_Vn4SQU|E2FN}(IBs`nnZJ4yE?#GLOYOpbY`Ex^5z?UCBK73a~ zY~>BnUlj!o&OfsOoIx%j&1I^`bg|FHFu|!v@PL#dCLvG^V&%d$T@9 z{`QW(3_KKzDd_Mmjpb_*OoCrK7X#jAi?$4y({w41Wb8h9i?2RAPUjV(W*gii6I&Jh z<%VG-FH7z50maUh_7NqI=^V{SVH?YS&s7^coo9;P4YZdneF8V$cO5pr)o@%jOJc7f zSPJ(6&JRo9H>jl0qHNUyuKy)F{W#s5u{L=rk~vmpMUjOC^iIKYO3f%e_)5|aLVC9P_6j_Tw(23k|QJG}-tvP48( zqgzcdN-XAM5a7i>a=!rR_ER%1>rc6#iCO zPzh|bX~K|IX^hEu=evBlp5F2g%E|olhVx)Scamt~+iN~`yKk9JzC{Tox`V4LJ%2Az zXqKIGo@vF|EnYk@&{{ta`(a7VR?D`p#44 zoTapt!FXB6v-qJCdJH6=cG3?n_2h7{k!yi6W_b-}qBCoTl&pr87x9RvpX`vf8XkjK zM&Y8T@CQXa7(!{OhjO^4SouP}{?YunH!3vpR$8a!U1D>{wB8sVl1%5Bg;{VT7TdX) z_7UxNAtHV$!o>S+UAy)tVP4&WdFpIVj|B3yup4(}hmo_9=_L95@yPqvvkNbrdo?E` z_22*;;m-^jQ_IhyEK}$vC#zMXB{`G&z$xANjXSN^IZl<{uk97GZ2w>$ zacVulJixw8WK_X3^79Gtvd88=rZ+ohn-2NX<|2*kjQCG&LS2&BvzG-)puVu}AnJB>-r6F{PRaBw>Hx`-r1U$i#$ z{8WrQH;rDoj;9(*e6XW=sDU-IyLRJnpRzm_Yp15zFNglBY?Vb$(`-NrA3xc;?fG%Q zrLTl&WwU$YyW`PjYjr9EnK z#1rY1mW9takjbNvny8_DM}b*akBRF20dL7*C2udO=afa|J6pT){D1I$3=@_7Jla%SYivvcgvg`j@?{K2?>4)!qo4mi9?$_c-Ak7Wy*W28MFPKmtkB` zT!^o1#K79H2zezrKT9ZqOCIJD?=Xnb&PF<2y?#S#f~p@Z$Hu1gY78Q;i-48#@mE8) zbWxEOb!GIrC6b-#xM2AMis$+>bVximl149Gop4wGg)t)+V@<<3%G$BN4$4%w@4PtB z5ytcWkyH^CBcGl*(z))=(T97>Vu5ITAH*3RuTy8a1$(bfoLBK=XhuuH{^qkCc2z0% zL6p3S)$kx0_8B7*UJM|LcGB=^tCfx>nvH; zA?X~JuJ!^Os9HQ$iJsi%Xb)s|19T66#agSpU0!q@lw}C*N=dT2%y~P&8=k3*;^Xph zXtKU_XKd(0#rOLLOtr&Uo!1NGln{lE$g{%{)YN`r^x)&BDe0@;6Y;gqZ?@*W`y zDsG$5*U1ii=E)OPhz*cM(jnfP+8PhEse=(+ww8C(+BatpatZgOsaSm8GpS>k+c{0JNfVR$ZVrnML{?% zgb)N&jrjJ+;yRJY@Mj#ieiw2Cz3H9^sNDQF`Cv+$RhKj7lBIviHIO;5Oo?fVwt)PJp*%3G`RfNNcc9R< z?cWoTvJWm{kYJ=r#a`7h)50d?M>=mK0(I-BVkvo+8s6=>Iq< zGq)ooD6|=%SQe+D;!D_I*UB&^Z@xu@Ku`J_s+u^0Jn+RBP~;c5T|;A#f!yV5%20m8X@Uq-$3m$>-9C9waJ8D6jl@0kMwFBmD$pLkBb=PfD7z(t+MlNKI6kD{N zb^t%+2#`GYkB(dj1KL(sGgN(PNLzIK?s1-0t8 z2b|54R(&IgX&VL{kZ{vxw_@DDpra8H^yfL=(0Ga|833hq`5tz)<~&H9EwZShl_r2$ z5p{oV7@lHYz<>4^W*XppNj#8Cy}~`%Fxk&pCMe2C`Q;RTz6mt#Xe=sa~mpJ2gf~kqH_Be-te4?0nwTJ^j-ab|59#r~}AC z0lFxKRdh3QrQ9-e_~ zRPG7R_O};0-&H}as6{r9tl{3w)h-O}e_!Q-Z10&UL^r~V&dYXQF2QAPdfep)_-BE-6Om-+{Cps4 zMdks#VB`=lVc)}e_HfLPF+Iw%(cx#*#^VAuT~EC>5TDBcY6fmKI~Rz`g@HEwkT*5s4ZsF``;U6&Dd)8Ck&Couiws!SW`k zasajjfd1>-TKxGYT%Hd~zHk{(jwqn6wl&6xiv*)e>f*3zm}u(!3}ChEf$iEbIQ7?! zTZbun%*S0J%ZvQdUC`5{R08kA2H|B9=AanjuY@I@ykdIzK9HG|AOd+asIAeacgDdV zlZ?a`r_BW{7nl{Rve~n`e(Pk!OO!tP&C)r;n*m>J`0Q}pW)kTR$sZWX?fL9cisKYcM{gMNV?^R=f~nk z?c#$b$b>oa$5zf|_5u3q^I?dv256nTqQT-+R&wmEfGTUwh6Vv`eWws6dOC-d zE-yyf@iC$?AXoknB`-Sow)8r0p$ERIpF4 zt)x)(T8uuuX4bJJwN3E<8!Q`PaF-aZm~fTxrgSWe!?9%6L+{5o3~S)}=-6SRHf4@& zhO)_oX?API{a>sSScg|+jNbVjJT2eZ_yVvuZzhTX^EKRE1{(HRVkIzt?EsvXZ~!Aw zR;tt9u5HSf$fO+b%&40f`FNE+FcwG>!vyA}g#$LpTyruqRr*P55(sx4pwP9~FU61} zl`@wz8|Z8IbuL*u-GT$Zf74ud;c;0%R0~}vY+eBeB+j{~#3_BOCE@Xsj$$m^+vh$v zDT07x8L>FkyCc4W)(0_@?4P_$dLC%m!s9~M{07{nW2nE=&S@CUAY3E#l5qX0eU+0? zjOWBW8{L#EwC#Jta~bgn(NYdTH6q8=7zC{?R>HlqRd#fiNTWmyE z9-683BA4vy@iz<*E`=ABNoA>dTG3tnHNaBKRKcf-dd2qSJtp8_yY}(gW$jqAd7WgZ z2{KY%lAAd4I1V8wb3V}k7|Q_;3|4|TYeBr#{iLo?H(?CPVz#Jt+LCPwfvm3xkz6)9 z9|fxR!ydK}sN=1u&q${-+Le>AR4l%GLUi?30tFR#ay+=`kd#U0S;8NT2}8=zhk+qA z3~p%Wx{oa5rLs`v-G_tI2MaL^mfIGgcbT_y{pj95768riNxap|*E}QpBd}RFMnWx- zrC&)qdb%G3K<3I9K2x?qEk7fPTD=6B9Rmt3Da_|obtRpvAMWf|G9;8HMIGrb*_Xt+ zd!_O&1g%j(p#G)s96k5PcsN2Fa5%$3^zN4{cEiSfB~D7E&Qpy*A7U+HzRxObJuBgc zw4&}eyG-?>`fNgBkpST%I`VE0g74vMU>@1rjavN??WGHD8N`g%>84o8fiTy%8otp& z={h>DdWkveZuRK)TvLU)`ZHNI$BPVR7x31XN&?%g)?t%cx(M`0wL1bS6%#!vkn$$q zdh0Wcv|(9koblQrY5VDd-5o6TwO=BGmkaU&{vq}Toko!z=}Y>5E*Nd8PIW$sy`}Vx z-2x>JV25g*A17oO2;8BB?io(xc#O?h62!-sYJv?9EJH0h)#!L6pUGp$IZC9J90hVA~Ykb`y)M4v5icI?w>ti^<7fwHc-0|oG5Y$ zfi#6eL!4w|tAOzlG++MC<~6G*2%(Eb@XE1f%-5C_2+*DF9`RGYPmWh5Jl%~UYKyhx zrDOUs=CfBSJlD_i*Qn?mncs-ty&YZfZqd!3T3j(wu+B|VwSE{dcBaHZNOl8=Hr*XVN#6?@RI8boTFI$n1la|p+%|Xl8UeXp(A-GZqQ5}mCw78w7k$PM3LQ>*jB=w_u zcc_lZ%}68F(H1iU`5!2jS$w74Mix{ME)H3V<#W1GIaaLwP)HDJK)68A$$4Kyg*TM{ z@6XV&;PH8rb>&P}DpNm(8p=A;`i(<0Er5Sq7kjec%74z~4?9O)`GA|u>drLmy$c2v zroAAz_3xe&{X^FYwZO(KD70}Imap9~EKyAzI9RD^nO_rz2^+5s$IPjz9cZ46U2EED z?9tg64I9h)d{QGrMEyMt-6NA{hQZb!z&~<#h0WMuMAeewhM! z%Gv$KU$g|-Pj0$-_aB{ql>@USw*P3+o~OO(USEHe#iiIqaliOKAWW#UIowRR45Zh` zdBCPTcUut8&sT!Xvp@42w_WC;(HLEbA#7$iJnmhQ22Xs^+9=Zz87B?g?=M8c?nJ8K zK7`E?CsFHB{mG3`A>)ca8!NpM_}2@i)+oUt=Ymz0fd#ivl3LmyWU^m};D7$Xn^3%C z%|EOdt}wd2{8nws9|6LDu83X|2X675H z!Ae|QZ3@)5f32-Q7MLV%0J!E_d&MT1Qnl{BKKv_q`|BUvWy)%adt!M=Mh{w7^arlb z$B^*u&sVUAqoCw23{eQ&wMW2*cV%8>Alo+uuwyv5rkTLn(Lvc0ur2ehf5o zYPoT{mucOryr^Vf(ZBlbg5mF8r&U05kCcF{`q1U>#Sw_iekJwL->wJFG0t5;M687d z#wUUwAF9Xlk44M;L?^WUHhwi|JS>3Ipv#PuhMlhwSmA_@8}EL5#jmlxqHhG-b=<`( zsPedrHjXU6e^K@6%9XNP;>Pn#zyJ2vp>T_Cd3chU;z-)DLGa=ifuft`Cj-O7{J#&- z!<%?ux&qhWV=%X7eZ4AVI#q|E9{>h+2d(iGwSSHcAa{*=yO{U{p-8^BCXh_YOygl@Ew|-^Vf}8OQ zQ|&E;(Ep!%r@svl=i}vXElz*G0^H4=56=-CUaN^cV-;zNhGuIyuBvyle;+Y=TO2IZ z2%tb8@+ed-u zS{i&MA~@phN`K3C-h`&Af7>gU5|F9??OT;`@F*j)Nk8Z`E5jU{KCivScmDQ*8Xe?O zYwfK7xL#`_#s2rtN2b@8)AR+`U&mb^yJ*uR2y-i;sO;4R1c^r`_pg6wa-=|H+z3j4 z#YeOUGY-E4p1fj=m=of8Wt`;6{l|v%=gXzo15q7mn#7WeK?BKg5uY0-4Jx2Q_xn@8 z+Ta*@(KmN3rp*Alce=}J^`x5Q-|h-4HHl>ZN7C||DBX>h_77qIT9`7`B4PjM1pq~X zkV=p-S>>med#s`fvGsqw?vJZ~k}efa{!S+=KZ59bp}P8RVWH;kZ%-U6MMGt8Z?9-; zo0$qs`H+6-yw{89hB9vERLiex`2BsnVPR9{JybI=FyN%QeC{obc-%eSmg~O{*awbg zWQ|rC2njfiYj~CYeDf0#;r=zE@RKAJ#M)-yfirFvLLR4;t#pB1j=b&l-xqWCu~~qN z`sMN^JAOh6xjru-`P(M=$DG1$qHbNEIJ_L(1UP^Iz~X0td$hF4ql&0m|C)A2*9T$G zK8w`$l6nG=)DzLs{I^wKqmM`IOMqsAGox{@ECd_xWKcNa9w&PL{(*me^j|;G^WwlN zE*wLOq*}qFVp~OdigUJmgpM8l+ok;V`age42-{*mqv!CCRpsL>5-O(+9+q*0lgg^F= zhx70M;;~ZAWqv1Sr_qjsT^rcfz*cwSBA<$0kzTG*B$W#C4 z<<(pn1a+4%G~P){y_s{H{n>?V0e9~sTzkKDC#rApUiQKCO2|S;&>6)YSorlc%PXnZ z^|yKxy(kW;hiAWM_<)^(iX5GQ`}WnyIO8qeSA$eM{8Dt)<3;THqrVtf|MLw0`=}!~ zz07~sVOSB-@ob)1jH{Ju0^}iUuURPf-xtQe22-k11cz_>acXd)mn-@BzyJK##)JIy zBn_L(up@_(Z&2L++cl(;#g1;_*z#SeSj=*!L7CW{t4E8F19STlOB^DO`uA=8^}8B_ zLCEI>q@#xvDn%Cgm9}klBkasL_ROzQM7JB)ljryfA|xM_gZ?`3X|nmR`o`aHDH?8-kkynnn=iv2LkVWdgO_W;^hhP8J1D1gWhx6R(;pdb`CTd~=?3)SaBP-W84#y;w%5fAY%z)u zDS1+mX7xcFu<Y=hcH@dLOA9nI2PO*YS6tesK_JxNUMuz@z{`K}ND6^j4+=5Er1HAC-xNV(;yUZOHI>LgR9WZf)!Ps8pFBe)4>_hng|dav{2== zi(oXu9d71r@O!xS--nHhriO2@VWo`gjaV1MR!1U=H~a2aIRPjeXUw02TO!)$3H~#% z`uEqsTsv>_9ddHo!r5O<95>Y7jCB`vm`B((hHOz72E2a=MR36Lz|6I41mFm*?7&CF$h*_kP?af z-rP{$UJek8FhJt=p3eoJ{Cfoc+dUUJHqW|Dm*%%=}0=M0m zf+qvOe@K&$iM&W|WY!e%q>{r)2+z-$+ z35tzV@mxJyuZrB`DrK%tMDv#8W;WtcpAkyG*$&yQ&RsY$gel7bOCsL;e%nk*eAjZW zXBN>xe#`egm&L(;C1%y9gJga&G3qP`_u+rtAC89>5o+j6D5J`eR=(%Ii6 zj&9%Tcq!WdM6nY1O-UI86XTjP;#++KJI`_AManPr0(7_^TYlmGd-|5yqz3j`_k5}gWI zX7!8hPfaYzea-)%`mY!LV@XN*q2gjcPkh;?CTQyLKOa3ZF)Dp4!34Y!$}@xlQzv8r zrH=&uE5rQfJO`diL7SK^-7@eQE)KqN-21=h82mMx!^rJrMm}~1?C_Kz552@}`TyfY z<)iOGj+E^i_3>_74VIBUdmdNJ)c_V#w#U@}`#Hd0aqPRG#?{DmK8t#lHvJ0+d+y{#0FBc50trIZdIZy>&_(C%WmEND8yURZ!Y0=Ec6WT3@ z?;GkV6Tk2ot&G`qPDu8Ys8GqNPg=6-I#Zm{^iC#t@nGKi1*D|9eHw2(f5@_BIO(_uOMX zTb(#QHPNERyyb*=ehLS!iV+Zut@emf7#fNq;_oePjuTxu;{@}R(T22jeuB+Hd73FL zI?)Xvo)XJNC$qEeXn@ni7Nc#ViwC|fqWLd(dRxd`et<*yWYl z5$r-(+6>*oCZuW{)(_ZA%-LIB{4sHe<;DL#w%PZfJeATGP7R6!yni9w!GDV<1=KQr z6fD`fq$8;E^0R6?w|cbf&);AT1>7B+XSnJ_N|!?G`QZo}`bC-D>e{w}4W{#C*Davi z4;+uZG3@JawhRsz%$S1z5K#WdL-ynve9r^D*DC~vM7A7+N?+{JiDk^;*%)D)$RO{e zeOtbRT^{9GgBIAc{IXS4o}Vjl%NeA%QxPh#Uz6=&9LC7GHod~?nR>;JE@p^!c#B6w zMnOINJk)e8SWN`qhIN-&loJ0ASpJu&iron6hA&>ACSg7l(8xmTFI-*OLa)Of<_RTztI$nREVsKGYlV{&@o( z^w2|9nd75fMR)zuUq2UC5EGuT+L~tDqpM_pKiA4Z#VCL9?|9g$nD6k{pN*!)G0~Qo z={Py(xitRwGG|Kxop_uZk_-;Yfb57U{|$U>{Qmm)V8J-=-%E4xG57DMRX6s4H&eZ5 za);{w^TPf)9%zRkPXxOK50q1X4^=YYj<{Z@_y0`n{@be3(##Slgbvm5qbKLUJ3DXW ztjyn=W`Zw#aT~``v~PCg%wZ4ml_Gn?vL)te{ui$y35BT7M@!7ohvX(DmuOm`AyKa< z^Zx(egX4e8Wnu{|luv*T@%x6bJZ7H1hB^rn+P|eSe!L;%@Qf|dWb^&?0ka5#01u)3 zsyTQXT*N2C?f!B>;lb>1-fVfPX#KT!3k+<<0ox1it0@S4>RpO&Og*&pRbQ`fD44h3$s};DYwE zZ%ED-_Cqx9!0&HWyP^NT$Tf(U5F)C+R^zPZ`!;uMD^twr%209z^WPp1`m$A=xq#hF z>7lQxyehC;^ ziroN$=nY`DdMq#O9Vdz*N*$ABI1SW|KKHRLz-4-^JMn*f7@;#dmb*Zm6$b)>IIx%n ziT0^@!N^~5vHO7pI7|y8+$ddN?SJ@ny+jaElIt8`NSIgmLR)%;4a~*IKZq|NO1J-^ zc(P{IDKVA01^%09Q?8Bu$ObSqrd@=++5q0^z#ZnUgdtJxu8kt{GlKSrOhI-334mY$ zs;pOmo6HgP)>lf+&79fKBjz^$eVCD_M>&F!*mrls1$wvC9}6WGt+TM!SnLK^>^h9K z#~%N8Ur8l_{@P#V@IF#@JRs7~8%$JCeo?p|{>P^e8YjqrRa`f==G$rT{K9s?45Tmp zg%?osJG)|Wk1==E%jnc4pD44JJ|OK`seWVrKRhBlyOQcWVrc>VFHun5eqAaACfRi` z6m$gI#p=kKMxKGSnY>6NqI;=k;H#GM*)V~z36XE~-;#tt{ugEU#(SGT_{0*3LDagX^BgJ2Tf_0k!3S?nhQFFwHlLE!*8?b;`jtL#(>ITAN%Bx*qC8Yr$ zi7tQ?_HUQ=!}5TNyXUPo0&g%3ms-qe7+-yQ5ijv*4H*;f?*pT=A8`r+> za;RNappV_$Dh4)enyJE_&XZNW4pXB4cDZ51O|Xe~)=O>S?TsJy03d1sLrxR+_B1(V zym7Q~J3ek)MD_`;9w8x-r}l(jN<<0}#uEM;bO|2IgEjOUSQK(YTWX2&7VJFp3wi+u z^TJ}R>r_quXAu{3^T#wWSc2Jq3X(axc2w$vfjl_fIGCHR1q>E3L|#g5`u1ZALL(Hp z^UZeC2`CC2Kv^dyx6`vr+BMX<>hzL3W(t}1JiW3R<%vymWAV=tB2MP0@;noJ!>UK39}Z2=kOa`&km^_(D~HyVC_9=>=XszOl5N&yZ31+nvN)5JDt z&U|H7#Iv%LKu_>~MmFb=vP#t_KNg24g8rte3hZh#KFS9ToQ&J2$L6Q^hj?3FY0BN$ zIK0hK@zX?exjJj-KKZil-1jGAAehS4XFmwlk#AQDm^}|$q29o1Tqn`zW6HW)x|>gt z^#>vNr^PS)+6sxffjgrDES!GW19pQS)Li;GDyP;04AH;g=n8>>*EgK6ou&y!n;N9F zI)Yd4;S+sZZ5+aD;M!-B2BV?P%>{6}uWcbojj|!qp!02gf8-j#p&wWa28XlJ>%oU( zZN$xXx_7yC5KjVd#zXXw+IXTE$3M=dk0^Rg2#kZuGiolJjZ6KlbDDsNWUweLq&rL-s-tRliOJ7}?2Ol>H z+!H6u?*5{!&aMeI+Qx1I=SFiA<*`FQaBO(P;4>ZXUD?2O0er>Z&tBk?;RtS5p8#vv z=_f6siI+w8KTy7^2N`ZZSQ}C&=_l%5pd>JXS8!D6!)U2Tsl_DFt4d1Bb`GtEI*CEC zt0rY7gxF#e;_w8c$&Hc|_OVykZh*d;lry2LL&;*HC*l^h_AEKOI)O0VD|XMlea_+f zTXtZAE$f^(0M-&=h99NwU|^vY#`Do_#9^qmyloby_TW5eejQjW78~b*kbozcQp_Tg1#!#T*Y0GYRXT{J z5mA9|XpQoF)j0Mgfv#-eDNQ=Y;n_%Xyqm9sI2C20ISTHvZv~_~wM;;i0f-e(utAG9 znUWR>t*9z!%4885Ml`*YUS6PgWPocWE{U1sC4b$fe3sgouKPa{um~liuu3}1>u6dD zZ=c`)oU`fyb+OEA9TP>I6NCnZI_+8FWScDQpk6haGhl zzDW_rVG-^TSbifJFjrbid05)|+XR@p?3y<85_fXDx21xggB`)$_lVb7MyUI5mN52v z%O5^{&XtXmCecKvlyxlnr8ci<2*)nvzVL>TC&ylY;(nw1m!--8UsDcJ$ zjVA}Sas8`&D${wLN$jKYQ>})3TKVuve`&ONev*2>|9hSLNjw(v*(FokK<0|K`>CAo zRpaxQW4#PHE^toREb)Vqxb=%L)D%0XY<`?xp^Y1jAbF8ui{lqVI0oAtFUmqn=jndH zbXB)ibrGC6M%!o?%wt&t?Vo{-iJ>f*r}7$61{I1HhkxoI@QWa(2rJ~n>E_P1pJ6L} zYO>$zunAZO2W%8NU2ooyxSt{8<2v#P;Z3XE_*sod>0u4}{0}NhOfU}C%d=vFDReZQgf=AOPfGeO<%Bl(?OmRPP><1QM~>Iv5hWw1 zBod3N#d?r|zP^s})_b?O9QmOX45#J(-L9$@43i}e8k-!AO-&|G^KzWNrJR4_r2-}V z0XaJ89wA!zl-LPkO0KO<6~(t;$3iXk^$@ns&nT4VKN>dNQhK3MH2)n{ zuz|n@F!)S@SNIy}f_eG{+I?R&?A&r6(|nO2lzfCm#baYdB>b^%N1~_R)4`aHOmIC= zE14(Rl8o)&3t>%Ocg|iP2M>QG6d<^%6Lkae(%xTw#dc7knn;`B?|? zw>GRIx!T@%Br2aNEZL}2NfRGz?$IFWVY_vweHnj8F8=qdQ*c$y>qi1Uw(HmK6)&WO zBvP(CYew(!zD<|7j5w1=ZrJuEse!jxcFVmcabtYWWuP)HK|fsaF64|+y{9y#^CvFBKUp5M^(J!0c<+P3CU1^al4LS+KLh;;1UtrLZIm_C z0#Wp;S&&?LGAkV31J{fd*w&B0(CcN@DrW2vV52LeFVfY6A{+cEcPRozDu8do6L|ny z$^}PQV zFbn^xEU9hAzxJ-aG^-Y#-lgMj5}iOO>NKi3GAq(Q5Aka#O92sU4triK8(ABb)?$f_FRNDT~YG&AGea9L@*-{j13Iu!F86lEg?n;Nd!6lld~Ps_ z)Ir=fC(5jFa{?64iVjzVRsspNiJ5-=x8l2_Fk))y{Cqda{ntSOLAKO%Q}4;bFN-qE zpj_4Xjzdl#0$DDdtib&MrG0-+RZz(pgg=DjM7-gmd+#9AXEq)YAnHb;GTI`=|2bw@ zgs-&bLBACb)pb{M4xXQB>s_;CyYeh<@#A`jZC)3rJkRUL+LqW3?kC;RFH~?eUlXGH znO1SrV)ypom4Adf?Gb3s8ZxqK`vqV_A7T(Dq|NB|Ui^I{4ExU6$wTGb&$S&$HLM4N zu8XehpKoU$ppN?3cwa_qJp7# zPzNbTE-YVotnIczFfJPWPeH;GilvU58V7q{`ap}SS(r`o=g>VO$MC(Vw1|MtA;NT0 zD@_aeDi+AN3<~315Jj|k!^f~0T|%)Of3>efsWL}O5M<4A%iRNrw>3E!I{l*6#fP*ACx zqjJ2CV1S=i3HeL^{8}KF{}czxN51JB8@}iDJSXqCd0buGO%&gfNHN9C>Ny>RF*yV)dRC+Q zn6w9!M+msVw?0|@{pd!ht8(ThOt|SbWrvnoDyX@aSr%SV(-bj3Hr<$b4whQwAx zWdq*6Vh)(*2`I4CKy`037qlt)5R0WzC6=BWAPmpq7*XEaIHgVBB7v_J;UIsQ^*TeU z5^>pmD>EJ1i3783D28D)9^9#(bVPPm$T}3=U&9Tmj7W5LGI^$a0-GAj#sk*3DBTMw z{ZF`8ZCgT#yUiB6d_A{O>CUA7PqYcDBM{8HWg5CCM;Isnid^*(e`e%x6)OYlkh}N# zq?q-DU)~}t?mW>wcrN7U(V;w_Tdspvir~|3Un+ASopWNw6}Agv9|m*c89u-eQ*2a5 zDY*q)Kf1Q-70B*(BO8xi8TgZEt_Tk?Mh?PJ0MGtk095f-TC)w z^S*9ZOH>n7GYp94V2sz6?ej9`4h4@&c&&^WUak;rJ^u#u*sbPn8MNc0WXrqbX8 zN%sT-H-I(5%Q{z{;Y(QD$i{_&%h=b%wGnpr5IEK>`ex>n4nB{*5$$I%AGrR$;PSLg zczrjx<8n&f{76uFW|L9Qwue+LUHnB23BXP|5IFN*1eA(KQ*K3H-0ickVEWIK3lV}Z zfruQ8JBd$O>4lq^pTK>gm6gitJ8s2Qhb+Vw@$I9Mo zMjkWJL14n)fixKyn;J?Y1XbTLC-1?6ZQL2z&xdh+_0at)Fj1@FXBmVHB;CfCc6y=M zU2)v^tb-W-tr?MTTy-AGn<4PGU)t-W*EjvX3TR#&gruTqQLcOC0SDd!)>cpc9QKo> zThvSG==|BbyD8QiZ^w{VFfWdSIAonyp zRYB4e%1-`9P~z!zfF^H(r3viK%OmuP9g64DWpMzjly!0DP8vCVqxRdsf8E&$e9s5- z+XQJZ$KE*RkZD-WQ!_<~yE;}X0HcyYYYhO#P^~uFq|q;7UC3~qB|Xwd57EoC)0n_& zJ%!OQC_s!Od0;7~9#GyjrcUMw+Hq_D{@4{^^bv1onr9dDm4OKLOqH`Pv73#@q5{j~0B_;cM-qi9Sqem^h=T&I;w6 zYTH-T{1%^1mb|FUru*K_o6@vQEy$OO4g!DO=LFZ@o4xFN3%ckYP$FnP&zF0Na<`EH z(K^UavZtHwyf5=Edar;*QVigi66ExJ`c`RA$!e|Q^Ov8L1pQyY9068aM_T;vg z0&Uh@gGIZ~vMNoqfE#mypjAiXdda%1|5z(XmxJ}VuMq8rS9y5%LRonorY1%79q<%~ zqrAA^p(oXuxNjc;75St!|BzEojV~1Dd?Rx$0e%`&#QEi*E`N>GF6k0(4*?0A7Skta zsf_b&fTf7rPu?I5$`n7KZVI>wt0b$N8FiS7L{{hT#-LBdaD}6Oo_?}W zme+t5viD6iOQ#flEXH7q6LUUHNT%dO!75p6w+M&{hzaYCCa-UOloo)-lY#jiinnckTD9y@4Y8Ec~>?zSI{Xy5e-8qR8 z%)py;iBg*(a3g2UxD8(A#}?&&Q@5rd8t3UHq^_P7?uXThYCzz9U1kWu)*xW{ZJL+{ zgkS6PLzK&e^kY}^U#ENuJKe>0?f751=E@Om}yezT}{0y%HAbLfN`icw} zcc5={!xG>ydQne3*9fZucq_91pI3%OIIb8-V&PY(e-7RsE`epR2tB7^p_#lbjULT! zFj#mhzOcGT!g#)LsBCrh6#&(|?yAh44)@8~4Fc%R8ZJ6elQ<1WsW=*!4zEZB>{pEn zDN~;9B43Qe*Lx|gHD84U1EpNMOQE^k?H{1cNb7;5#%Bl)!rFJhM%ET^7Zs;cmgJIT z>r0*jLk_GRQ<1~NFiN^weHTh#%c>gQfdz06FxGobJ-3u^3&t!%r4|=nk64j)fO{7U z!dBitjI?)?_UB_7z_@OK%@O7K4D@N)?Kmfvm*-{;q+&59^#IE!gXag~kV-62MITa@ zlndPko7<#-^5(begM{cqDS9$^$qk6vc<}HzCQ0t@uiM)UF8*Pdj}RRv?Sp7W_6DF7 zt{}UPN$L7<_IYNr+~OdA%L6U`mi7;LxmYz9<0dCP*UfW>Tmh_SA24SMfysZ-XVFA$ z+Kg_u=ADOcL*tHE4+8J|zA~amEw_-^m6m?T^gV}SN#0>7pgZ({iF@?_O6LC-n{fL_ zNw=1_npyKi^j36{kKc9)^R8;O@D1!2H`sK<@h`ka6M`onWUwP<)7uCxR zVCZWMdxLbFIg;CZ?Xx#N!O(^kRtAs_(~oc?=@(`-z0kiIns{V3_`BG&2cLOz0LObj zP4wG6C?a?cD@d-pH{@JU{T^-5%7HSL1IwD0GWraV^@~{*on$<3#HaWEg)=NUT$Lc7 zv*BQagtU6g=hGV+iq+`Pg7aSJ3A6GXKwyo}hCl$+!w=2zOv(>Q(r0aE!_ z%aFff@?*C>{GgCd7U|hdJL)HwPqK#{HMTHr94axBahPqYpN8`1MhqsK@6NZ6Mf@wU zE`#R!Ian8g^uK+C!D#`7oJ8Gj5J7?+I=%(K@|(PjE9Por3>0yM_|z=2x>JU=m1AQP zN|CHL&p6a;5l}INUF(J{_lk$FiO}yUZWJ%zj75eskjav5^lKR{INM0IEqJkr4K@84 z<9KFme*{9tB3`XX|4diM>V&IT+i0jWgk=*dHy^Y{l=1oxl85a^-nN5V5he?Bh=dFG z?(XzJ`D2vX8GuW5a(%p9G1+Jw_Ns!=Jt(%MtnizqJ_;^6V{bfb#5^ND@ipQzJZyMG zl%$fLFV7??zWi_q#@o8Epc8-R2!N6W@z;yT`TRW!m{05}0-a(}m$Rk(Pcuk=oEkVf zE_fVq>c|vLjB?Gz_@F~EbO_g4%WIJ#Z2L-FK)-rI8;s$##OLZCrSf5TLlakEuhk7o zUjt%(TODG`MZ|fw2&2{55UI=#^^GnGMWge(XJbl4R=I0k%fq>7lV3nk79&rM7};1* zhe5gFE7iJn)Xnqso2rY&=c>I8=yY}`GW6MIAE36{PBj#^*V=qEvJ&J1e3t@GdfxkjZx^ktV0-Sajp7;GG{NdE0aCh! zI;gIiOq?T}1bL^c_54XhB>Ryi&Lg7P_u|FuzkcYfaGjCXc@4Mtv z72oWnZq^6qvo{XP-<=#|OriLuoT=ia*)f5H`-6rvTSt&qFawk8Dd|2Y#)3*!tW#8S zYk-%WN--3av38E6;wxfoStR`#g%=40aRQ8U_r$+nIIcY8DRFvuBG!nWyjxgfZAZQ> zFp44eon|vKlo2{Bh@^LD!cW{H*cFq&A1=KYoX^)iF2yrZc2hMsk}O}T%79DF(MzCtas!qfQ- z)aoRSG4gcs(pHjnnwYos(f75UbLt;XJn&tu<0oM6tZ}sy_@caB-s-9Od*6Dg26nvl z0jod&TyJVCj9XodzuwuJDhs0{^9sAKEP2PnmE{l(l{(rT$DJR{0K~U&FOGi)$1VN% zlg#wA+suW}V#%o+P`k11lK%1PMiO(D2Sl9rB*mF2`k-<>Q*82j_tGmCVa4`dCutFb zG*JhGdg7!e`BCNRYse&~4Bd7=I1GOw`i^OU3G4uRM`B_6d?BqKI2ysX^a{{2WZR#~ z{kx^w7l_^8X2$&M1%U4i|TmGqx+KvcbdG2*Z z5ryyg_y%4IJOA2YMqL3WB$J*A*n0}~q?*P(B;@lO{BVlO4# zCsgotQR+`m!adSrk_C+uD-W42!hMYMlm!w6GXwP-1ug~4M_G?62nlz;XT4OB^c*|_ z8^PyQp?lh!ur)HWD!cM3zDJE3f|P*Y#pWS`aKi|M9m0~t#+Mj1-1tIwcOU@hDvPls zi?Vy;sMa4YJ+dfDATDkGk>+jZ_T}O2WrpFWT}`9#gGam?%m!vtl*r0s4lWJvLznqr zlxr=e;b$6B4P0C$Y%)^#1m4P#k6ybp&XZQ`%RH2gLYPTSNDYb@dNZYl8N1 zSh1FII1b-t%21DEQ*DGL*&%C&%aq0Oa4;P_fO0kbtPCN@_HX8BU@*mOn3h|Ixr~!) z-CF89v%W9nKpkso7yw{nhXc#J4XDlRG>8<6hr5I6DaakGsy5!@uI^3LZ&4-oaj;Fl z4LKwJLHZOKi_vso!vL~?G|i~{4(7A@pYK)PmQ?fvDnB9+mXt3|2S|EYw8qdfbZtELrj1r39X%C0;{CVdIz&pa#L)Kr(Sz$A09AJV~ zPKf1xMTS{%@@y2C6{wt-Rpsc$eaN>+v4mAt)adWcVTcfGw zryWApBm26}wy%U>uFQx@zVvcu9(omOS*%OR2@kJm67k#vUWh561% zUpTF5W?wL0X?gKWbb7eLNqQ?L&bs7@fQV45^DxK=;~&>WXmY}L z3v~B$2ILau!Q5QgF=b;FAmKueXQdXct|nqTVQN^qPwOTw9bQdDHnXY1-Y;7i*>a4i zgz`)B!S!Y-#Cr&sW=?=ggZuE|w@6sBY`C>m(Kc8(wGj1&!pMNUFBq-#1Aw9N9#Ztp zj{u0Oc>dH6rVUrMu($qjhI>53Ymdb&>k-})JPPXy4wlu%-PI9|k;R=MYkG=BC5Gel zXNUu7iNf@j?dymAUS>*^tl6{+dms&YVadosj+dJ3yZyPnP@5RP6(*s=&f|gzh7$H7 z&8g`2*AEqU4}FuvX^D+ez24IMIkG^PeIh7@WX}H1>6D=fnh>RPa4~{ew_spQbN^(d z!x_gkuy`I*HF*cOW|9^MFsmehHH_aIk-jhhlO9ZSy^|mctnk^uqEuTj!l**vN?Lj> zRqd-S0$0?|Gf(0nm52{t!psWw!;;q;mVj--vli$o>*I6}>bD~A*_j{ZtFi^d%#}qK zu2k84sKk;HFs-u;tH-Vu0-qMc<(PrlKz9#Lq`cY^#pZ2O+-9K)YZ#oM^K!rW>CH38 zw>BiG!$?X63$lgiPE*YVrz8(=DrOpJ^FPS(5eX( z2-fIN$%{smW>)898+TG8uay)X1o}4(*cpp6J=HKn@=L<(WVYyfG^V0NB7TNETX>;K zf*X*>46;kHy>e1&V^CKZzBrdCo~NB@LMkTjaTT9R$oTr)@|-&kK!8C5g&=C~u*mqoHiG(#Bsog zcA6t_`+;h&lS!O7)quIa*rw*Lz|b}`PATBgCTk*HwvmOfW{Z2D0O?PWIcxyYuc}{2 z_Mhm}(q;?1p9A=clLQ|<{v+=0k095qzD1yfJ@kcj(x}#UAOmpG-t22J&nG3$tWypw zw;Rek@cy}qtOWDBcLCq;QnyXn5G^?ad$l;~YQ7esZ+-`~aQDmENikPUl1fq?HJ(@i zvevG%r2O*nnSLZ+OkyF;|LfZa6?icb3}!`7-Sh9`oj`i=SqbF>*=?5 z0#15;`#vU~l1)|d2=7_ZI@kA)*Ym&7LBD*95HL*nb z2N*cb<@dp=I=N)RnZG4`H-D;AV-J5ngf_}c?B1ouGv}^s8|>%GNPiAIW%M<6GAkdY zdo#uJspOM3=(3$(_2@9PNIuZa{TvbirpJk7R6$%qXIz|l%)HS7-W_uJ^es>CGG?@4 z{u$oXMaVzB7-sO%Df}eOw2kN4hoB(Q9obQCZDupFpDVLc6!7Z((E>|{FPp>qrm1y7 zD|zt9%Y(bjVW4{)NyoL(j!By?5u2dLcaexbahw!PQH=L~c^IaPKiMb%&%n((u4QEglnJ{b-$j1;oAFC-4t zlw#A$(p&|{07%NsldH`< ztM&74$Z5H=^JD|F>rW#Xkt$MpO7)R(1YTbJ!_~8cZy@1$OsEc;BG(F7cm{JDE)fE( z{vr6itPs)OkoTmD6o8rSnCeVtp={%w@A*~0ctB7sFOesHafnw=%y8WH({oT!Z*m_w zv6Mj@`x7j%MXT@HRnotgNtJXVrXm4yUmwO8h-ZqbzM9IB>5+w}C_6yEhMExdB-X?2 zdcb5+OMA6y4oFML8s4g@NKt(RE-i^5LOO4lOh1wb!~?+ugTt!hxjswmKVeZOy6SVm zsw0#q=UT4Rx)%wpBQq>`GEU&oD$~_uvl#X4YAu4G7T8c46|q?iAm^%`r`fqKqVWL?T{|RUsG!Kki}R z`nT2C6dfep#BUtJu5Fc!pDNOd?0;?(P*%cBff7JjI$CjxQj+SFHW*8e5Krm&C8w6* zFnn$Mp;!e|)q32i2^+s=pjsjmgFD4nzmOmSM2XWKUd|MqtBgO*f?qn}6ZkX9Xn9Di zNtI)GA#t=p4nm(aA)TT4@#PBU+DM590bMJu?@cCj#ClwB6&wz3{<12I2pXC;%vb1#jCEY}Yt z%at_Ok4DH>m)lc<4E{_O=S^@RjR19FvTpP)LwK#@h`M?b*V7z_niXLjfa1MUJ4e%_ zDm2{v^^c$MIr40aw-jnC zS6sF%8@@Po57dKC8P0a-Mo*Jqrv)jdNw~T4Hc-zP1NU9ESskEqz*E_BZ9=4al5E7z zrk8F0K0FAKWy?L(QqqmEO?es;w>oQ(B(f@u6tFsP3;(bg&L0+i_XOIrAwtkj%ER8A zb=7Xt!9$34A?0TV-AP<$o20Vuq<=o&HJtQr!70*n-nY!X=OYW_Fs?SH**j(ub-3W7A0Py}Hm=N_sU>rGuxfU^1Rd$v3@Fid}#^{|h zuE^!Nj?>6>ob|+TbXon~kkh_aZFS=wd@&c9%Wf{IJHYMAs$pioNtohEBHS_d=1#c5 zjOx0xb+SzN@SBtqMR*_zt=!&VgB3<0Ct zJFxjV?oudOTkuti!R8d1YrtKZ_jQBX^CnCzB-IwBTfz5lDCg4Y9AfeL?alz^|#I<7XH3qpe;XR#(Se^F!>O<-}8PGietN z;JFF2afM-6sOb|tD?!fC0!b|y3U?zQa#4$x>YN@2H|qKSa8RBTo&-iDutsgYDix}I z7CP{xZf|8Zcq^d$0hRs;RP(E2LUj+@ce-G8Je@)Mm5mIv0?tn$qUSZJ|+-%3#H4pFug+5tj%WO7p8w?5k1wwv5k@i~6dO)}o2;LPDH&fzmAe86M zETr=o@~{SYL?ROvn6uxC9*&5eT!!p^DWG@xPrPQcBn$!~1!e`4pZ>%bu1#DV0j6?^zvBCncAsfZQ!{w z#9kaosDuk6Gc#mZhBONx{96?@CSCXk3ng#s_z7x$^+-x?r996Yhvot#A_ow`NV$T5 zAfO6_1!D_-9ZRwbrtCRQNqE1gK&v|Wctp3F>AVAjvjfUrjT^0 z&T9zr(v4RiAyUu`QbZ;Ivn=AKkxn<7h$*qmXnxU)TQ3)rrYa)a8(mD~E_@vR0#U`x zWq!M^cYre(;&_tV4E`ggVWIXf(U=6_dg0wttqM@=FByR{!+t&Gc2MU6hKEti(V$J6 z-_)*6DjJ_9U;*s}rxN{bG&hi%p@rlA)bn$2HW3GBdl4MnMIaK^76e#8tH>MCaE%Wc_Sns}B) zm?7&Y{@LcD6xM|mGz*;=hm_kp4KHh<`|DeAbYu>4n-Z?_D-W1#wd_FUV+P)Zo4j(YM(UNW&mhB$KKz?GWE!YN#gQs#41qhZyd7i19)f~+cuJuDDW zIo9jI7o+&JV+y4y`driIL!vJ=y8h%;*!ng^tSeimoC+_>oz*taH5h=S(c=>8 zi(XCA&X5!ue(AQY&kTiym`jhxITpxoFJ!`F6- zfW~F6qwftm)C%u)lcix|vEb?TX!pyZ(OA+b;}f7XD#>wJN?`(ii|6L7nZ|)Vr9)kO!S~nnNpl8fs=wUsf zICsPLG7ZdW#Spk@TxrULEQEc5x)NpgFLW_AU;e#A5Zg`LN&w zC%lvbnZ`PU5N2)0_NW7GDZKjH)2vgltZrW?QQIr_*@XTQ5@sNPPki{Id>J;V@*&L+ zd!~52FLk1ow)S<+2)Ek>Lo%C9IeP083tyDkv>+LEDlvT8;`(Zj6#od&Denk-OepAt z7-BgY2F#y)tz%Rqx@KD-#0MTHx!h8Tu{*^)BC%Ha;_CpJ=?R7+!$>>{j*Th$b z`-Dc+Bz&jb`C(qDrK#MdGREIGh)k3_r|G{rQ5*^;3riUgKt@m@p{Pd~Isj2dj0WOe zYM*F=^)19E))fC7Hh0b-fTm{ZbzeS&ut;$Cy(h8bOzY22>0N!Ah9#!PK98zuALywT zhDA#csLp79Weft^fYTZ!L(Am53M+UA>4ZvATX`?XJ`HC1!fzK*K-}1zq?G8gQZBrh zNMfN9k|xzFC>7|r!4Yax^h9{bpP7$gXcTE+S}$Iph1=?IhfkCOMk`VVhiGE^MDB|_*oybu_;vte0Cj^{?7q_@EjZ)JFhH2d zd+htCB!V?B+;;3GLcr#b$x#|BHfDu-W~78-HP>I1gGV zk!;M)xg9G+;?HYZr!(?ps9FXuO3Ml*bl#)DYqCK&RKkj4^ikQQ93Ni#v&1bex& zQv8~Q0a_dctX>%8kpF6@Vt{`9UJn#(&b;J(ER_={|9laz2~t!qMVo8`pR*?H4Im~c zn){wnbZan)x(vZ7jE2YS3B!Or)8Y$#_X}#r)5=n^I);TPCJp_aFHI-n58=<;F9bpA z=!L(47w)CkJ-cyS4Z@TrLc!!4<9hP^&L_3m^kdm#pFO7dh;-(FYam6;HWxvb;joDx zZ0S+H>cUMiftT^PPXM4J>}aLE#<~Ej6D*z&`OSD}!0(w!1;dvi?WGPn%wEEA(w|=i zk1uji8zH5D`T4C(#pzqX{QZzFc&hw<+-b!h%BIV!4}rd_QcI*U6+zJg&sGuXWOWCCpjo@DmG2199yUQ~@|A1u050^zv;VwXiZnZk))laSX5I z=R=kEQFF4x^4>)$k@DinAI$KVp}pv2lpFYi*scJf0crA; z5O-_OmBYHaco1j&H2-#iFjTAUj6G1qaCNI;6lwoqS2wQyoHcF!EQZHcJ379Zda z>%nePDeo^SoCiJHc$bjRp)ZXuA^vouU+7eF#$h*%Hq}PHh%FIBzvx!2F7RU+2&Et& zFqaI_`WzXvG*gofA7a6@_1Xo+0N8-*S~K=qx$4wVT8_8CzsxjGinb5Vw#!4@_@^1G zX3Fb)cN~KldK_~!+!+WSBbY{BM}_xkCOKYc2`h_b#cfXkI@<%B7=$W@05@v!EMfah zJ5p5a;rpqu!lGF$ylW^jlbFLs=zjWfesIPCH0co_5E?kYp8mmpFt)u3%D}2U2Ol6F zkWf;!Pzu2%dZh-IT4{!9??@o2GKh>-r3b`$Ra2Hc{emnq zpSPN`1J1uNhyyI1M$W$uP_MUrH$q&AB@+76B_6>>I8*@d>Em1hMVJnP0170%43@qD zGDCBIW`3))8j-68uQTq}#$j#H5K(fWVR`TP`jL@f9P|dn z)hRB0y{WNp60%^3gk4G|@9u^(6ZWq8L=19)w#0)#9AE%25eEV@Xxi(sJPPEF5Xg|J zD=+xW8K`l&M1ZNB#p2Vv=h`f&IK{J_7OVyRBg}L3wG>k zOJh<}z!5)**ZA9j#3|SI+;bdHYbdjxN$B)AR)Df$M0Qb z&sa>sG6f=JE8S0cS;yVi51NkWc0z zmfqPVnBHOn;8TfbN2n`3zVnHO^(?}Z0O5mJ_G>3~AYpPq6<#(o;rIQM7F6qr9(Dp< z6k=C3RRIjsDkN0HAHbclj=Uv#$OUR(UbBW_Z##i2gf`6dnavB)91kFCAqZ-OJalLs zQs)P3JT8Z?UEu5i7T!k~m5({914LI{!{oY{^4wefl~-MW$G5Ls*K44DX`iOfY}RJv zo>W0f*dVgDO}k*Y-1s#TyD(=$W7832k=zJI5h4(gxIMLk=NKgH>#zZ$=5v9b9|6Sr z=@jdNVm66Ut8_}BH)}(?eO>7Q=z=$t9*iX+=#((jx9vs~+?XwUpv&-Dv`kZpkkCt7 zDwXOpAZg&tOkx9;bL6eUkO@ft3hVZ!xD(t5yPMR*Zi)=D|B?pBmF0JeH1d%M2Y_U}ZI=-5RqmbFkS1 z(bRAo7A0~1tkC~Wm=cK!^Op8Md=NBpZRJ&MT4DA2Q}bbHK%9MkJU)L%5BA$QrdLuM z0RCvtH*I9{8el!%&GE*GB-TmFWgUC(wNWit+~(R?NiBwg?@-mwjVq+b=FhR>WzU*Y zxC2;)#`>vRp_z6mRcZzS^CtKHVej*s@zqZaSJI(8q?7jBVZQMiNgbAS*wX$kikCa# zH|?Z>6m0`04M5sU0Q##sT=@{8^n->JEQS_-#wH`p<&-X*F6?xO>f8X)Bti!{>DUiw zD~Vgz+qTIhJIWFNuFkZ_yWN6?rmm3wE!J`#@s;1}sS;z2ScvYt=SwoSq+f zGK*oZ_)cZNJf}j!)}@_L_)~K!2e3s<`V&VBNg`Gk{e%sod4z)eWThCR_VF}kUI_=L zC>{ogz9!HD2S7B#_?o+OqGe>~B9{SAFs{5ImKDSEg)PuC8>Td3)*TQ}Q7gjS`-BK* zdq4SC>xq0%l9OT_4Ex(FtRN?@lI_5%RwL{EjN(M|zw^5M%__8lrZACiJe4${R25*v zRN*|B3S0#RHys1!RB7AP_*EVJ7N#YTXZ_@Ek%vP4`pzZ*_N$N5up*${F?l-`db=qAsyf_GoS@($Jx0zMk=B3^L$i8%si z!FN#8e}ZT9a+d$kZ^%=J1Nq`Lq^6jaC|RZ~nl zd|rR|umLQI6<{*Vj9`UFnRUtk#w!XzvKY*qJSQR5i8U$;Q^j>$R)0lypJfkBEE9CP zV8(DXAW{FPDrnP336^%!wmhcQ^A1NfX<;Qk0AgP}5GN-`2LWs71@$({A&+a8H4yU> z@)*t9S%#1sI<;5s6xRrG^aAt*}avJwu@J1pQ z{3;7Wwp~@NDd(T!ynp;VP*63^UjFd_ z(wriyY^WMorWFvYr+jy|-(P+Wl?9%I2iGi%4p>>-fpK88*DBP&qWS0a&LF`lz%FI= z2>2P6>dEJJ&@o#;hRFktcFp92HH+MVLy*NeSF?&QkaWm zd(fXw?!3y&0wx&%XL`V~S2S&O3}6~F=yA1L4winwV7rLiV>m$^mK{PXRmGefUxeDl zhAAExmtAD1KCFYe>}#NYPzJDC{81m@ei(Rj&$q_s%UQTSc7*6N0Z`8@!RM&iK{hK1 z+rL9kZR?ja;<&Z^%zqqi)U?iPjl6zIS)f7c%U;c%tRL~Pvzq_tSb;XQ8?s;tcdJZ zKg1e%3PXcyQ(V_rkH1!TQHW#=vgbu(p{RC6X7`A`kxb@l9#Eq-p@i|25c&ByilA*! zr%;F4h6=ddX6}so+hlE88|O-!vM(z{KP)F_cxKG)L*B-c3NtJMmXh@(cnK;}e!3T? zdcT3Xhel`SfNdOWaf80#R>@s+$oNA15r@f7ci}$t`g3}yfx!zz7()=P4 zKbih4*ME*5CNXehj%S8sR8r=wO$6e(Gj6@EF?0S!^}`oo7qg(;K}aK^H@O}hH(KQG z-0-=~q}@f+;d9+XeBYSiB0U7%&6GGBbY~)I{G&CoDuLGT2b%#}j>0PX;av{!nM$Uy z`%tFTt*%*Z86BA}D-c~F9NlX#(uJ=_B9UQQhvEx7;?2+RnAe-;-Ti+|*j29)8U!Kb zScLDJyNLBdS1iNxRh4f4w;!EMC7PiKLo_)G!<7G4{~6lywIM?r--v{Mf=XHF6NiSy z+9!u+<<7kJI9!UOkRh@jEMosTpc@>42Y!B!k{i>RUVxg@9V-Yb>_RmSrDx;ppxu62 zgjWY%aeah32G4!~UZw1x6N56WhlgvD~jlc=N~)Hde|v@?gEab(rJ&sAfE zEJkcUr{go!FJjPmJ3|cRzG;)K8F|4eo}YectSs=%(N}4sURbx6LzQ>J>B8=@XjKO2 zLQb3ks{rMeg(6O-BWyx?Y?I8GIG9)_AVxA3UTarmG_wW-2@rDVe3b+cRyu(ueOOW1#v6$t1L&Hj^1w#zu^~843xAYdoU}FFBzDK=P@BZVan_K={~- zrYA&^LkAqngvyPsLz(>z1Y<;U5->ucZjysfF+MOGCo}NRjEoYl>KztnQE!JMw2A95 z1gqJ>=gvZ=97ei`ug5ehhUtPiqyLt|V%LZBPd_uid#2C%%-~tVNc z@YFY^C`+9NEV9jG0=ByhY*QVF08`KK$nJ~8LKa|0WvsVT%U+@`Uuuh%XN|j~U65s} z4OFIFK;eY%{r3Nfuuh6>5G@e=QXtQIDWPgPoe7z*9_7C96IKlNz~)zH5%PFFRiR8? zV`1c5Ya`eO@)>ONWf&g-(&J}gnbk`s<9OZTVfF+3W({X+Hz5ZIgNEvlmX84Onqo9# zNPG!yS-Fs&gH7^Wsd6s@ypS2spH;%kqPtG6PqGZZ??pCh<)$Oy4n|m$zOsRYb?`^} z;C#XHS>`wfc~TJMU9l-c*j3WwiWeuDjBP$|og&P97@{f3rSXv0;o!qMA_udKa20CT z_hB0Uor&5y-1}1bcJ^m@*fkw~{H4U>AuA9`*+8l)(j9gMj%=vvJP0)sK!PxlRzb?` z5@$|Z9l$-n8V6B>2H^NAx4BuW#kdWOwJbL84|!i#ik0WqCKq6ywRq-@oHCi2cZ?QdwMa3 zjUg#DeEx9$|FHL!VNtGK+jL5ah*F{=2uLa2N~nN@bR!5zgLDgsphzeZ(nxpbzg@Lgl>{k?m?KL5V&$K%1l0Wvf9eP6Mzwa#^}a~;0?=3u7dp%Mjc``bhOC;UAn{%U7hzgj0GGP!r~`Vtsh_&qG`Ktw0@Ob!qECQ!4N)+4D2m+2=>w3<`zSvEtfX>HP?({q+VY7PGjo^& zJ#`Sp`AP#O(rXG&1kD;}TH~UyOW{r%nYY^2x5irwy(g2eqOCF~ureNk z%&`?>6XaFD0@iILzy*d){D_-SeVmF)yFkbt1w6o|g=XEc=YEs#P@Z)Ti^rvD8qmoh zMNPzx2MTg-5q;w--1a&)Jgfl ze#JCx5&<5Ej-&yotz+qQ2U{MXa(HOt9v$4^u-s)Tq#BjWTl{RM9^?aOTgWZR`T1y-;V_nn-7frudC%o zn|b69L@_Hf-jCxiA{%>fBd!xvNeF{-PU!=3<@+FQIQtRz((9^`4HzT8mNhr^nLu&C z@4^`6co)xWIZV%_kZ|T}Pf}>_VkPnD1-fsWoBb+S?HxF;=YS=|k~aX^k-iU7gdb%j zAy{RbiZjm*FQM~u0i-64@qldFB8o=TLj#o88brBuFG`&gq1j7kJU&8yzIg&z-W$7- z^A(Q_NgRV74C)0FEr1&G2zvwoE`qEmVKy+@2r3Fvb1x8su`e-Nb#vVo1_~fnD=n5T z;5hYl8xzD*!qfLy_fI-s91p5u6En{+0YXJ#{~6SY8EAm9chXy1$pw&j-?M^(*g-BJ zK+ab7HyxE$S&|?Td7LT+U^%`IxIq^m2o!nJqRx~w@6!`#l-B7?jQ^Jh7=VH*3q3t? z*L^V6%T5b*rl0;+$BTywYtd7_gaAut&G0PtJ+M{7<_Dl$N#Kz|BOZMjs$~Oqi1)bg zm@cl#Z0nn+GtETQ_grMJ(bQ^0gxnL1XN|^8e(~gXs(dgvDw+05&~q^@%5nw7l>KSI zu9c^+@u8!IvjSk0J6UFN0Z4_Qj`ti<$$+aAZXjD)y7Y3ilD%c$C{!fGU|51{lu?4=Y_WiyN!@QL37{Bu#|QLYvF#R5_ai#uR> zTg;A92N3{vixs(UbzTZUdZcOQThTzMl0W9Q|4AFmf!+2LY?t7V4W?n=16NWiu>K`x znp42JtRso0^aSOGS)Df;y!F8vly8{F61_>i5Hg{z=PD)OMkX@%{D32q&wn%QtRSkh zBXb4;O|4V<*PU%R2x?G{;Z#T9e(2y(V18jqJ}qPT8}>TTYT5T)%Nu(BwFmf6iS^hB zVb`ZtEJ_s>;QmKPLr0Jx#>L7C$vf}C@n|}rtF5fkQu<&3EW0+~I(`|ASoQW?@tbWup|9!Q0xiThwMs${wPf>VmBw`oD| zYP6N|hs~IQPhZHMu>u1AnfoP?VR-%@0Vy zNt^;m2sSLR8ThBGY~Wz+%lzp2!0!}P3V-UNfZc051WdRbt&*;*sofvIqql=tFAo)X zfLeOCXho?};~Z?I%s@jfAao&DbR<*>*42{pL>FEmNbhC7n?tF9ybP~K#isClERd?U zgYD+IfF5$GC|(O|Om#{y3YO|vo1%Sn#){v4C)eo#$eZ&-y0*M)JiB|Pl`#d9&OV20 z8}GZ!#P~@?%aYtPIRp^(i9x8!ejrV#zbHpZJ17UawIx;N-;D~y>Vr`dXET|-Ccq3Q z0muBD+9J?>0&IgkL9{GZva|>;Bk7!&*R4*rSN*EBx`j7i*8p)jmQm8IEKs0w4Fvvn z<5-l`WPm+< z7R6F@(k)^Z*D|`XEH1Nlk9+_Pg~aw+&us32lSS)1s05fUGHRhxcmsS^sR+?g7MDGu zJI@7f1{mBNX4l-DqM8G)FlA~*Dk^dCEF8~ZJqQF}XdF}^K^C+7w@#*bmW0{rg1P2 z^&wdoIr(;;<>KRWC^@$XrbLgM?UC>V!)?(e|4D!XR9r$qK#p%kqUlhMy6<t(o+ z()+a83_$fI*lfVA$zJj!=QjzH>^|YNQ&aaksk3~~ZAS<4 zYKGD{7LzRoo%;-`q6n%)mx1X_{ZI@zHr5_{q9=PsMdroS%VGx$SF>~>=Z<4`CN&22aUHqPk?MU&ou-gd=hy(y5)@EPP&@E`B6}b5k z)dSpag=*-q5~sz6>-=C0spMV*bI_F66;05>^DW>~!> zdYsdFdW%06sG6l)Q`PEupWP-}50tzeuOu0v4{_>Lp6HI^NQ9GR-L!?*2fobo^P|kl zd6V94jRI(zuHcjh0S%@>LFic=?Kyrea*gJ zw3-37@wI@9d|UJ45BJUm<=%x}3I&I#?PVVTk}{jJE}g;~`iPm8K0F5wp)^WY=*>Ci zC%6_62Sbks@-8ET-S_$c>DdIpm5)C;?2Dc5ht?b{<%BF0=uQo)InWX7=U}~&yQgn< zvmItCWX^ZB{Q`L|NWZBNUIOqsy-QL8Pcz6DSiTi;cl!A02}t3q&{|KeJ00C6Fw0@A z2A!vu0-M>mYKNE0F!ef6;&~3@%RQk$*l0^Vq*iwjb{?ntp~c+G`>V| zB0r>zbdrn16uII6_gDog4p^bj`5++X7z&}HFt{s*##Z1~A|p0o2&jr@XuVSe ziZy}QlOHhtcOv}wy-#WYTR=v@iHzt>07}72SDBHKCM0w5Wpz6UKM6D5Cxrl>NnQ<* zq(P_kTi*i`b{M04OY#>iQltD!T2tvQIsjAS9VRtlD*#FC%kWkK6o@e|h!s>)kCw)@ zG1tioI--7f2SlRF&+@{9EZNSjk@u`1n=lk^_~wEz<(g&zQm7XI2v$mMlb7sv!cfLy z6$Ddj@p6?QNTa`lm#bf=m$uqqu0H;5DgY0)l5 zS+}in&LNJV6X6~)kWDlI0wgTeSmdyG!}v*Ff{c4V>elD*ho_O-+c!ae=pj)5-9}mk zZJplBu<4t&@a6NGdE<(^Sh+&VA47IIBtU_5oe&as0EDUL7T5ve~~-@~1y zLDu&3n+k8-&SWKDUuAkWkPes^gk}-dhwf{gbo4T*D0tYko6g25toA9b4;WHqMe5MA zLOy^MHQBc?In1+8`yC1N#v=k55Fkba^f;3_&U~vPFCtXIrcf`UlHPa8= z`B{8^(>6_pKGQ_-AT+npSpAglw&ZI?1hPv%UjxU=V-W0x7~Hw)%k=D=p2l?N^&a?$ zz&751o)z$|Jb)RJ=Xv8Kb=?On(JVn*AS7|;`PsnQF;JMVG$NFn8&3n_g-U!+$AqHA z$yF9G>sFW6RaA9yqWW)V6*GXO9bc|yK{Wza&;cscnL#jK#AXyVN%vyv0EiJbjn+;Z zIXob&w2`W{RL<%G2d`cPl$LoMB}@lg=5z1vGl?>Pv zDA%ppbql3@_skdzzyay((kn5-cWI}=lL6mB^)YCh9=RPv^#1a*>U)6mRFN7Id@(5N z8YxC*K`rnU#GSs1G8n|6F(MVcIRTxu*-=RIa5q9}1 zQ48UfbyR^%fX3tai-CFxpjwL?NG4ZHi}dw@NLEF}BGe&Z0`FNp@aNb72B}0SfjKi~20*nWx5DGUCG^iC z6@b9UsSYaRLyz&T)IiT`-&otiG5vQsDx{vwRzHd?SQk)zM*v&;@O4I$7m9qUHaL&~ z{IaQCpiUJhX#mvb8tk{duljbgpEoZwNe%B(90g}0X&V;c+M|5imyfYRmJR^`Gz)^I zkm5ELBfxQELMeV3^fF4#0(*>#MsK%WmYF5n1AA1JV7C<^;Qo#D$bbfBe?u5d5xviK ztT@F09u(Se7fP|$_z?)~T z8246Qw+`I{7&4%>u-AoN-DfbELT!}$XxA(hO(P7&(2vx-Ks35T{h`g5h?*BK|K;^7 zK;z1UWgbtI3>0}cV<(ddpDYWaM!jdc!~R=V-;k6aaKvNyp@1#;+WB)W$`vv`+FL&h zQh@d{S&lGaNKE)7YUr=v@5a)S~@ zucP&r3y=5SeoMsFTVq`Jyy=28fOICEoH9K-l;xPJONv|r&eRpR8oR{y)`LJ%Y?XQ3 zGZ*MJW`A(m1BJnWNl!+Xw16duPKwg);IV~ zKvzbwO%-?FfAPY&=gJH8QL})Vr>CXy#~Qzf7G43;Dn(@sKD6Uu(0xEU2rqyhv=eU+ ze5=N0AVouUU2Ow3l9KjGXaXJ!%_S@bIgd-(0UZL@ZOs% zD5d8s>v%pWQaqr0%mOmLQ71>}YcmFCOvimd6=S|PbDntvrII{4v4o-zxOJ-$^f**E^mAK_hIRsmovHIYYH$hy;a7;Z{&!C%SaHh zcYvxhUD%~}2O6Nh8nFzG{RnDemD5P&0bQVCLg$!H=GI_=K9F?eJBz9_&aQKcOnrsb z#R4m1{;36EjhF$UiHfep<4<-e@R}14O-wuyv;w{tJ-Rk3Kf&t7g38HYqVs!9@0BS7 znQ{qcP~#TQC>dux;7=pykO_DfI;cW8yW?H+0FQKCa^@c z`}BI#EzqL8fJndegx*-NUE9U=Mv7xJhwl|65Y27_$TVQy%MZH(lx|~Z%tq+rxzX== zPZW@ac<~ws1ogwW(X!%Ka>=3r+v+_?t_ZJxB6o5S```f5aH>TwQUELn^;Jclb0)9P zHW?^&TW_LNm6Tvet8v_I?LAP$r}v~@dgz|#1OwXZ5x3ld2~PenZTH=9^O9A9^!U>x z!z)vZPeBO-IB7y?_-*SK(_dIlfi11lOwEyj)+~Z%KKcRc6Ie+SCSN~cPWMPRe*o^F zP_OXlEIrEXR54Vbw2e?DmA_q63aEu|(E(VJ)Ca535YS}OHvn6HWC(Z_wd#YR zD7?>#*F}>{ZJp!-r#N7iB|W@!*`K;;0t=p-2s)abV^xy_K?oB#ZJnJ1o`~RM-9{si zjfMjfb)LcHpfO``3_S!^d)m2V?C#qgFjkT`QObh%z%ybKy2P>Art(;i4-XxRDqF&_ zvb8JnfmI)RC!@V(fUW}oMl4Om8hX%aAgKMs|FzV)vv|+ZJ{T9FjV^A0jBnQA4nP?M zCR9f6qCA3-YhXr<0$#iTKstXgn%adgFZMv4O<`v#F!=2?uA2;C3zUz*d77ea-9WFA zG=q=6sI0R>y4B`rbkpD^Nxmyq^vzp9d29Fcth~Kf|NkIbvaI+ zRUZ8v>audOH*Y{{e-W4*18VS@;#lFnfC;Now#?bPit{m5=*kudr*a=EUuC=c{gU<6 zShm409#YFcy?JHO;cI)u;1?|$MdBJt;3KKP@GF@%w3cQv&xIXlfOCC`&K9UxD@{E; z+C)j>1uFsZ0<6Ve@KiU@CA+U|DgcZOyE~qt74C!({=8B=2sz*;<|06FEfr67Gnhra9^G_A2U!yeYycWVObPEKAHTowU_(^ zru+@bjVqlNfOMJ$P`?ep&mTJ&abRH`mBQG|N73P)CV_gRf!-h;RCfo8T3 z(1iq~Z3f$eEwir%WruwDb)olywLeJWj{tEXzDKw{tm9)>5M<}IrbWrSlnPKfECn)9 zu#lwVR`;Y1Oe9Ufs6Ql4le_F=iw{!J61t{qqh+k)={E$tK);-gar^Ep?CePHR%u}N z@6k7)cG@%(8U$70PlZ0tP;NfhKIEVX66O&=lqp~co#c{#8v#GYn}cc)mbVKe-ZGWX zQc8L8npQ|{XKiY2deXhbB9OcO@tL@)dqzV*)sdn}8;G({v_SwoD7acHu(ce4gK=G< z2ULOb^a_9&UjW2tIBXyJUgGbf*aR`WR@pRYpk6^48H~jH9t)_GA&(g;*tAr@!x)b5 zfC0P@!U_~97ZT)hi+JXgf{x!-9Hp}f2&K{OfuJ~603z3$O}R^{ffry;vU^_M&TC(g zXx02pW%1s(D&&rO38A~CZ+v5-hHp03@hv*3jbtj-$CIJs8$17 zD-AXzah~82m0>Ab5mlvjIzd;j_JO0J;JlXT=I2}HMH)cP=-PuAZuXVIc#|2Z9iRGN*UK(9)_Ry2MSwkiO8 zajhcw<_kGdU~!7HK6hGLXxWw6q2Q=%&o0uQ|MaToqiF@|bo=#He-|xWSmWOFQuDxN zlsme{CVQG9f2Gf)D^W~8ZEXGut?YU+7i!9Fc~D7q{B~H_26#mAqwW+$|e+;0L^{y_uMFtmIO+<|{tO25|B zKmCAlm6W4!qLT7k$oK6=zu)e^et*`F2c))2$&y8WkHN3O_{SeWO##S_Vl{oMC-|p( z_`T}C|Fzx>l_(eu?4kQ^(*FD%FASA|^ZjD|pWYLk8_cDkmE@Ce#lrvkuzwj4FrdU! zXt(Y7{(Lv6coNJ7DkT=rd!;nsKb{MKblE&hssutGf4T7g@-uLWXrc1dWTW5VlYboj zzyBvXiijbu_=Cj$A52D^G&s&Pg7H?qQ^>wQ+W+?52NlFp(_dfx7Iyq6^C6FNyZfb| z@BA-M`nNxcKSPB~r01N!)AjzhyZJT~pb&=)pf6@u@3{ZpOYPrAfLwmY!e=rUI-4_2}Zi@}?bM;5Qipy{o_e z_y7F0J{6yIPk!`bvdI7Z+yC{>`e+O+sL`FG3;)*Q@z?7)&A=Tdh@^Cuv`pyWokUxe~0uBbISSOA^qwi;!{7_ng+}Ku^7ur5?pNMSp48wh%oO?O zS2D`e<3QOrjsN^g(n<}CBH8(fh=`y;bFH91P6It@+_s6jx_a_IKltAUvC;se%k7rL zgAq&Kg=t@&#JNAuU6e9?c-!-j2BgKJ9@!oo^HI-Ir2nu`eS(<7Olr80wSdpsButDXd9Rf2PcJ5|q`@$2mW}F)n(?rI z_osspiH_fswu$R-Q{dd6)=8xfhRU8^{$^+IpT@8rmqFZr?LYlc4%NMM4t7fPyMLZ} z9XT*+oz?qhRclSc=l+vnW=Fl@49|Yg=Dx?m?qQUyPs+EZ=>IUvzjqXSv^aYdVXYoV zxuDwKfo2SvexXrv)t`p)S$*2s3!P3Rm{X;p^Rm}Ie*Dugpm+oE8+m!!htua@ID{9$?emPi#~ z*)GT?{CR-z9J2)-y=jibx2sFt(o<5=a z<4bMhK=^1U=q+RD6tBJwm-) zlt|t>{doW{efTzh1XJ(dzvmPZI=oEB*Yf<2W2o~4-L$I9;cmv!0->05VmGJ?Y3i+T z1x7hagW;^dyWXd}rchnpz~2|F z&%yFKJ)8=tJA~A^58kZ_K*P8cUEjOz?&%^%;Gv5l2S4ra!3 z^*P1k>S}w?I>uttf8GL>3mA>loOHgI`UOPNd%OE~^|qti9urT=Cx(h1xE>tX-cIC;a<)cjST6Ov`+h4v)U+wPSuK9Dyd`RTz ziOguX%C+)(EO{kTdIL9`o251M^+~+s=DE>!Zt6|iQ=JHIJ;>+{tI%P`?KZ0v5)->5 z%)!q7A}uYAUqL~krJEK@oh71iHKA4{+gn-nr_q8-kh!Qv9;OiJpHf*nI`ZV^<#}Fj z>9qSbn}0K)^~~5b$n=Sukejead8|&fv#YDC&93h5LM~oFqhq?Jtc-$}kI#?QQzXNu z0OqK%yplR0B$VU`N61W+X2X068g&AoB_$vL{xcr5XouV5<2upr-@okGqsxFP zRD6B)NCB%p{C1O&_^k(DK!DWA=U=?Ot`1xbxJqo!f*}NtE67W7vg#9^v6Ak$6=ifVK{94NbpJw;v=u)6hgxzc`e)9s$;Nwc!gT&{;rhzhwl zMI)>e``HsbmA3#v#?FZ{kl3|9KOWzs8?jud`{Tm=9OxKRn{SOF|MQ~Y${ykvW*UfB zn$8o;*&{%8hz_R~C4PR!`}n;nZY{B^F3}NtMrr)2;An}TPC(^q@rcz%WgW4vh`Zb) z-2Qw~r?Ry#Ukqtx_;e=`H-C8~;p|8?pEaO~#l6@farkpr{@rte(_rcFAVw}P0$#`^ zze&KaVDtdJv!+1?JYa%PNO*fWX;&Cx;}t96AVh;Dv<%D$*WR{WC6xeCCZJ&SBSFC- zRwyD?4XdtGRO9^54|mbWDCn@&7kIG-N?wkjqitUQGSwpZ{5KrSav@K4_G*Y-Pmuv) zpL$@r0uT#R^%KE`?c#9mG>SUw@UaCWTh)TGI46;KoR7dBspJf5d_}*zsVaM>qeTU8 z0zmw6%nh5EoD8{aE-1a0O1KxT~2|2VmhvT za_Prf(ve3ut?07V=c&Dk-1c1^`cyY*^v_|S4~aHCkq7MyLFDng_sKl6iBkU)d%TEA zLCdEHElbCfifoRA@i2crR1@S%FxN5{jLe@5; zCb&byUN9JJ#+~?CMtZv8usa|<*&ZKk7Zw(hO6UjF$^Bfy^$hqm`9h`@>t(>hVqRyU zrLp?wkl!a9pTE@+x%dhOsIDyMpY8R6876!j>W4^zb)i?3DzYmE1Rs9*9->v zt8CiZ^F)=H?`ER@+F5>fh^H0YT}Q^_*%>;AJR(FD^Yp&k~&F0rVoi~q?6?ko(yH>wcJc=P+B$b*Vt5#D#p%%RLV@%6t*v9oml^<^W zw6gP;;TCVmv7y$l)sFy`xGP21lKj`i!E5m!e@VFO4a=}-HcIF6M&q9|w7c7~x)z;| zB>QEh>tABi?4{@5=jEsE)og>iHlE}CVR1UdS~|CXpBG;f&BdD9@u%} zXS&CTmp!`}2^ul4zgu_QE4Dhr2ni1>{{k@w{T?i6q`|MNrhM!?#FG-^8Sd<^0xWSX+VE{O5v^Mi>nCbVBEn?|CuboNFGrO7NdGf^0GjcrKy*H`1X?vu#gR%qp z8z+R<;#IPm2Gp*CPQSIztK%<2wY9aA2hE%E6S}J(UBs?-RqZ^_t**)z`#DWfDSD|Y ziL@-5!GFC@S&}C)kAUSQ_A(p@})?8a6lt`r9@eFOJNN}BdWVqjB1>#yzYeUs? z%c%zeuTaau7Tf*&(}TsUA@SieE^ons+Q)I z<2#<_!{6gaIFvKYZExr?yR!JO=iIwcl1Oofiq}TWt_jW?Gd@MT~2e5?qj3xvjGm& zN}wyFp{4bT0*VDS-K;fW{bBi#I~X?YmZ3x*Q}52#dD?4W{$2+k@G7I`Q!Q$*vWcE? zjbA;GdbIz!s&yJhkFZ4gUIk4 zbwfB}NiU$5*su0At9MY0NO}RLz5?)X23uFVT=ggTVHEY&YcSOn$R#>a_w!zgq=*(K z>R2wCAvlC9Q^d{D{p?<8J1mrLe%Odc2)Vt?$)6$fI5yo%q)k)<_vf^@X#Zu6m2=(r zeL!;JV=U$s_A>B!a#&5ZBK$Jw4%K-m?R_Y+A_cPNorQs=@eFV!=6KOTqrC*`$NU~9JgAz z`>M4G6A>jX>yEJQBKM2_S#*i85z@mwrSh&o}*G|$xqh3ro*bPaxqTztBr^n z283m=R253>X7%;1`o7?WU4AGKa}8CKDjNZB{bjV_y7)EBB_h1Y_#y0pSL|I0ilby8`R^xHL(|m_BU**#s(cXiI`J&0#a3VaXg{~ zQ$OIn*VH4VnMB{#1>HP%BgbpwP&YOYk7KR9+0kt{9HuMCVa87JHmoA^8O+B_PqlWH zPC%_==?agY{1R8*jw9YO>4>hVd)(B84YlmiA)U(dQW~{^rs72JjG3y#J*6{&6OsLN zp^bV0a7XO6RgAIAfWz3GGWEKd-f0ZqqaPIe|5$`^70*hvOv_sy0BfPwd#wQr+CsK* z@#hM)UB}jYTxQl9D-3lxZQ>#x^t5+kxDg@?HUCJNQ?svGJ=S|o0n*uPwNCSMT~wxG zn86WtW+1pQ9Q3gfbSl7{>X#?B6mb`xjLpfJ=1V-~_BiRiJ6%G}*D#otrqPDz;niJz z5amkjBO;UEIN5i5#)BpyiUR5OdWubzgyXu0V^hJ@?l5$9W2B`Yh6tBm^rATsL^}4w z;y{VpXt&e`ukn!oyklfO*5p8Z$=G^xJ?vUT-QmRAq-yNQZ|+3BJGsk#^YCyLPSjCAWHS#bZ*yXUZ80Y6lJrfVqC9jycR@@+q8=0@Mz5Gf)Al8&iz@hfT zx|@hvLE~iI(Q?U!Ex|BHV1s#I)Q*mrv9Hw-;pR(OnQA2?9;iZG4v$ahtzG0NgvHdv z4<$D><(%yKhKbv0kE|^%pTBCROHeoF`low$jvLt1r6oQ5?fdbw`lOhdyOnTw3VVss zb?<&PtJ&7m3sC>*IHF<9GsDGU5!qn$vnRQc+wP`hdk5J)K5O%rCJ5?|w)*)`)95nJ zwN@kMYUb=%-9t-|yuwuwQ|Ilt{+$W`tyjKta*Wh1=uT0+`AE-f+npQv^8NL&+Xbcp zQ2T67(V*;wnUIL?pPSZ4$;YmEln)0wliHjj^z}EsSg%R=_)BNyYgSH&MAjL*uB}kP zvY@q=3KHvQwdOjLDS7v8mW@kBn{QKkT~w7hqjGVY`iWmM3jbKD z!J>?+dTzD5XRkz5hYv#6+bzJf36uC*{X*)Zbj4klWXZA`^-d8wLmzX+U=xg|wC+z`mZ?>U zgKN3e@AEHoW(zhLZL#DJicOjnOBTO7S<+wQ-T!2?@79;oIKd>_472Y4NW^JlynuwY zt!tO_ton-mo^_jRa8B6eCmH=OFRzV`YMt@uFN7t=n{1F^PZ)1zvsj8j>~0-x4RzWc zj+X6BLWpnAr>9HoXfeKkbUUB>%o69B{p|4NTt60+cgeiQAOPx4@Rl}a?Mbcy^=MfV z!HlzKZiawq?$2xrrLsX>?oP1J8h_S$(`@qK&-SEpV^INtVIQFN@)yJ~%Ca9G5A5RTKM z^_AWugjy}C>(~YJhMKU8)Wn&NS;7;ffrMN8FISG5Bzl~s$}7+I03rkg zy1KCm>3uK&K+H}&472PgZHOw|UFjyX_z~#WkKyyDII10{o8{hS^jZ(nuQ3zy2>BH# z+3I0%b$Y(pVSJyX=T55Y{C=5}N4mm@SA5J~QAiPvAec^dH=T&uEI-%PyrgTRt*mae zelVw@9}0c6@HIU9ORD?a)^<`xwjSGj5`PNyGdnA`wO9*GRk6KW*V>JE!g@kx0{0vUv993_HSIBCP4wneeEeumo4w)51!?`t@SDE68accr%T z`4&I#H^o7bOfg3{%f-i3ojX^XIZ^~(^b$WCly=^y$>8Jelcl}!{zkX{Zx@^#Kh?)Z zLF}_^qYQ4{>Z?8O@ErGyoWVkVA?nDvxrX*5k7(sWEw#cWi_fLF(f!Lasfg+?Lsr^q zvE%IBoBjPoR!kG=Fj-cQyN!B6>AIqcCS$+$Cms!xINUvsIPuq>p}a>QB5=M@)4!Nl zj^vIqZlQp4%W|dank${D3~zEs48=LfoknH-LFj$FToxVmrKPfP7(Z`8)Ox2-Xn)Q; zSN*mZiSw5Ki~f57dtmL;e86IN{|zrcs|1P=1#L?tzKf!U4Uz(0}~!z>ITr~1Z5 zhv!69vItsfH+W2lG5Bg~FsE#Gt26_UQncCt;olhH4q?W`M&$orJ7 zhg~|Ve#UHDEf*P_=*p3QFj$9s=zM_iu8~tS%IN&u^=W;YN(iE*|FJaZg^^;e>T&C@ zyFpo@buA^>YhqU2;H7Mp&?)!Pu;L_(KCLtwh@I1Jo2stDc?yg}!EH~4brw}vldFF> zaWbWe2{9yA^ugFeiGW(((hORw-y!O+=L6#G4W(Wb^RYg^j4v974YRGwrPhihy<4=K zZ)BZIs?8!`l~3|pJ2PVp;Ow(HO7K{@6P?=@~C(7CH8HffHj*jWco+`42r#kW2lGQ0U$z^3Pc^Kt&z+x~f3){g1s&e&wA zI*FKvH^(vzk(?K6#TP&e3!uzN#cFJ|)g+fUu z-&(}4AjZd;4KCjIF;$|SJ9le)*ety!|L%l;Ny|$7PzprWNp(dM3%Xvd+8DVIQyPf_ z?N?4#xe+%Prccm$H^*JU!ZlmE=;jY&DErhwQ+Nm%r;`8{p4b>*h%kP!@MU=9D2e+RFS7!<4oD^mbu^t)}W(f|3

Yv6@_17kJ_wjyHAb2(&ORg@+}ikvEJ8v* zyi>>`RSV3igP|J$Za6=VQfgkDqSkPraW+0~e$%9ZnJ1I12rAF}kBP2HBg&7+qhOk@ zxg1|?I~$@Ct~va63ob{7z=@p5T^Ys{2!}A>!f4EY;OmB$V9wt z1e|IrxV|>{XI}mdYH9-Ue<^Du$86!;+g>%q%ih~gEi~a>bpNCFy8g;ts&C8ws6;Ci z2MN$@W~yOXG|C0W{tyTjs;(M&y)|QG7o+@veaMz9V`lFpP#!seHH#NT>>=H*UGvR- z9+e;pUuMNx#V%JYfC-^Wmjkq(0w>4Lf(xEwj{naKprTnKvm}F}lL?@a!2JMPSn}gu zaUGgGInA2_Im zHP$JJOhfn@Z(E9vck8N0;@JX{c9#dXUE^5Kx zWOQD#wjkE4GI(SJ!X7QAkgt!_K^xaub=tA0$S>eLRFoikza?*KQrM3xF^t_N{6mF7 z#%*V5)np}QwG(SKv(~p4(YgVw;sR(rHx9?~gMl>@*jBZRDREJ6DY8iQSFp%AHu0e^ zYRXvZus`L7s@b;Mj`APmm3-%<<@BNqGqi8LimZbrP*}cZWKFuHXKQ?zxtHSIkZhj8 z(ZT<858booaDJ@Qe68f9pODBJ?=r2j61W;{(M(75sYYEtsPH$wT_c30i3VZaM|`tQ z!m`Rxyg%oNxh%%YUEca*7N-1m#xZqUmzgPwnaz*abcRl9J+pp|89iqTaRQfTTG% zvxL(@wXNcF2_cnyiu;>y_{>YYXtYLlJDTcBGSf}j@FjwiKZvz)Z*}sXf(8gyq&rPY zH+F0JU5tzic#$Pwy}9&af=%$mctP>*2X!`_CS_S8#JIs`f50xzeudwr@%k1-JIb$= z73d7~!fBW=3WC!9p2jul>L}LO4Q7qgZl0$r`n*%Ew)HzgG9tL)Ui(4Z&9gqfu_f)= zSUaO~0+XHg805cn_A0R~Zv>swW~M<4(L&cY+NC(~PxmMZ$mL$aGk`#KR1tyM%to7wjjg=&lw1v_KmI(#L1E6*bw0c#vH zBIVjnMtEC5b#Q z?Pt^(Oc)xD{7ep>C+2$MCr@RD_XB(79qc0^1}B+BzFK38@JEA&=RA!m)9#dXOaBC= z)85lP3d^L2UF*^~e+V1ew6lyD%x&2q@E7JgN9AXlsOVawSO6~e46S4(~a zCK*y}<3Yb+v?`63*baSY*y%T>I0->TqoW%_zIahIGC`aN)+pKqFuSb$J=|IrW<;kR zG`hJ?8WNGx>}OHp)r;ygpgnuYE13RH-!qx03YgKScDU+}?6AdtLT!*~-4_LCj~f&gccZ&=M=vQET3cSGbwQKA~Y=icH;w z%Hl^mb|1Phw@F(vH)xx8*Gtr21y%JC{M?No^Hup1u^v_IJM&$8U3v?RZg?H{g#b}cf?<3r29>A<(ZD3Xy67`m(VGHa#>bJ3bwady+ z4@S=R+E=4_cB{14ZTu$q-c~kzu(2qB>ERo%ya3C41AT}vJdR@~hT?wXvxj`>TWKQS z;Czr70?vPF1~9*8npApWX0x$pzo`vk3urr>l5s{Gbz>ful%l8ywn56Sy z)RcSwrnl+3mo00)R`VYo%F_vlHcT1Rg_BRQTZ4yM)K1XFBE7wkyUD$m46Mg!j+nGE zlbtW}PmasbvnNR?tz~$bh6c%}Es?UQhuR?=IEswTwIP*pC_vhx9hnVyh+OL_xjmpy z%_-k#SgYF#v+XAO^8WCBgOTWkLtXrvQ0GfjuOsdwLnD$D%%$Q(; zgBq*npk9p>Z6BOc@AlZG)~T33C3+5?GWZQAgD#!}3H#e>Z4WMbytEBEN{enfdC(u} z6Nd|^2GEWn?b*Xd_Fvuq&LU`6-Ax^DYe`rTf zg=%%KRbac~TC3RET~N{Y;ywrKhXGEQWeuW{A-LrJ4A z+9)~FNZu={-tUom)de)Vi~!Bn*F@hO0H#2L#QiRklpdW$&d4!H>+^u?HeT@ zrz45KSOqpTEj*+)!X+peC}`|+J+eu3zHyQ&y-O##IpDg3Qy#2HK*SZcd^4%zr`cT# z)4+-u?!V+!=q|o;o0W;^B9FF%3@kDT)O^r&sGIrK_&m?<@F4CfQxIZR$XbP=bPC&h zgh-xyIYWwZNJ=1p&&x42m#F5?b-db$XB(ZST}f1dYQ&H=4W@|4P<+wfajA`uQs9M00wE0_J0yPE4dF^8>{5t07SR_Vuxi?Y&>$CZC|RDZ4Q zIC?x=^;(is`nM6lywgn-Q7mK=R6)v_;W5p+bUUw^%lqkK&dp;xl?atBxS^ArS)?)? zPc?g}gve+Lxrl`C-{Dj#o%bzUBAE?3+xYb=tcO=S&JU$U*}~S+Rz0R&xuY&w0_f;8 z_hi&|>c~b?`J37e{3vZY^&r~a7Y`e6>(6IZaNy;VXm+)C)2hG6p`m#FcjyLG#RTIVxeAie*w<^Q%n7y&(1=yfK{%8{f+-aGX{ ze*({ruht#OP|I5?hzE`%4#!z@KMw8!>i?8A3q5xJ#qMoWV?Y8iiklqf8h#@Wo_@+k z{4zxMs{;*5WS|RzRy7XT*Q(`P^flC@`>I%IvJoZ`syY(P{o3^)oD_f0?Q6)Y@BBk! zIMX@`Mp4dva;|+DaN8E}NuUebjJlzj)aXA@of^lDv{E#fd7%JdsNQ`V~&lWv%VIl+rqYSOS~=@$*`}i z?cU(!1xHelcP`OH4P-A>4#wm6n%I2ZswPslf0aF01v@{CV{hab6D{?4p4xh2L3j4V zydp>n9liK*nFDiXXUO^9Gpr*;#ObO2j6ToPr%9De;`1;TQS` z3SImCxfG3tLrgtU&=313g**Ou)>JI3M{a@pfA{9RxpsEge(2C*&(!p42BLOCHN_j_ za1qS2*+pYDYP$lRuen_Iu+M52n-WpF8vORNfUMrBJE?Q^edp?q1?fxLnI((i z&|rsqvlWJb>e053$70t_3S6~bsIJz{@}nido%iXHKdgU?^ME>u2J<%K$x4IQ z(W>561d~{!%Ox#Rr)J|+QXv_g;bcljC^q-SVHmV~Ig>LvK5bHJy4~TK%Jva7o3C0{ z5H)zyH+T7E&b_@7ZfvA1WZG*6Pt{;@41*$ggGUs-Gk=krML*@G0TG=N%@GQiHk+Nm zbq3=b3{)0R5x&<>lN!#ShFW$=C{J7V-oRs?AIz1pbtFvMthH{X#PAyx82`%(oBjYf zKiayx+GnG^oD(i84>7c{tewl%{SJo%1-=r z`yD`EJXt0{X5&DDd6yIiV>*2krZrS8dk()0yW1EXy?pHQ70j2bCxDY;04-fGBUX~jb+)@aIs397q4XH5XLB$2blzeU zB#wA2hSmj5Fl=jW8a(% zIzC^PZL)6c%okcWUfPF9$y1&EwcrSnMc`t+zCsSDXx?w=w6yM0;*yA|H+CIEjoXNU zCmRBs?M`T(4qD0b9GxXTHAR|?$n z>uA5!1Pz4sY-5pb^hB3Q#LNLcN4wFn&zIKD2NBgT1WIA7dzz5j3qedH1U zkGN}xt(t_kHb9>$etVZyiXW?Fq}2yS<2b0dYy4h_+z{{?p)w~H#YU#zA|w77g_N)q z125FEi?>tvOnA+`?y+^BWxRubN|In(XhB{=cv*L=OR+Vphg(qo?oPo;~q)Jm7IQ;4$d)V9$Sal~==a zK;qGsVdq3*k_Ct%q{aipC8ZR;nuYQ zf_~>)BzqC;Vqe0I)`g;ChlMPMmocmCsyYxa>hXd$O2(4pToY0wG)NZ!K2d`Le$FUH zz#WT)rk3tpifF?DoFdES#8kaSg!Uk^oFBO6_rxZl@0E+dDuVidSRy}?9&oZUDwpQ? z?ri^w>LI`z!?B@)YkEohV;(7{E{G^Zf{1pPJ9jh0YRv8zg)}M#f5Qdfgn#;^W3M^6M;6P+;yGQl*3>|M z*vQbDP3-Ra8enSMe@2%R=-Xtcg|U2v-0?IId*)AX4tx zjDM_mx?){mUX5=Y345Fp6+#Bls1jGY5gWaVR+$ihIi;a9E1yy16+?m29`Q_H0>me;TlnLa_^>!S3@sa`5b zpkY59?Htz{s?dN)>qvkJOpzJnrKI599zaIBMo{vlYG>JG=ANi{h8s5&F(Wrao|LR znzw(0^Kow7dQ?vyf4)j*qa)01qLC&;{O^Cpu3xl_o!i?1kQO}X&3eQ|nbG41zlXCv zBSE11{hedo*nlk$Lf%d@Q4D)~&Zzq8WeUF9D)U^s^M>r*`&V8e0T4cAn^(kh6oZ&I zI)G`*pT2p93%!T~#CKx%+B|b-@5Go_B5bt=1Yon4StQ_yzV#*kqjBfjsC~M_da#f$ zO8!dz>Jnk@)7>mo>BW2M86U2xh%I-#4cBU)??vo7xS7te_r*SAIlSx*e#3Moe9{*8 zFQbE=hq?-X##R5xzAX*g)Pw*2;nZTbeewjGTdv-hcip=Ghru?iLS*n~!7>{X7YZM_ z@ijPPn8IE_lq6ug^%=r@!WGX?0)1-HDr>SQ5!4Cflc?jwFZmJIFeLbTHPsx;0$U?O zhXZs>3gGKKD&uwu#qS=pwFOn^?z0{k9*!lFi=vKKZ0Um)E;9+5-zh z5}KU76p15&Zp!IkdZUzsRu9!i{6!m}mBmLpd@ZSaycCP)-F(-t{jnLVtV*+&tq46M zo#eY9P%X>*@kVuf(x72AM;2&V6F3`J_**>~YvKl_v{#E;5s1`07JurDuD zHiW2YxHkmk}0>8Clxk>h3dnKb@M010~rrZM{|L}F|5abW(;;3Pk%9Mm7 z6`t$9=W*AKH5xx}Y`lQ}NQ)0^>b@l>UxVct(}Jw9UqH?;dlo*Mn}siZ8dM~)bGLcf zuFE7LawH3r>iXA9O#sy_PDowhyTgMRLUU_ai|GAYEf`ub=g7()@Xr;xP9RA>XjVi< z!1(!*_o6(yziZrgXC&j|UlNn1Ujc_~yVDigpp|u>eH7k3PhzzWcFE*1<#&a)vj(S@ z=$5W|kjJaV>X+Pkb>NI5z&db~kW;zEUPkFE{OL^X>t78$gb-ie?0Oc>*@us!%rv}Uqjp?(PuF{& z?jX2!BlwY}<9g7+l}-FVWK_UA%(kWoB8VYyhnY)}BHo2vocAe=XV$5yFYorKJFX}3#B(d7>gs*pvrZ>X zIGKxPT;aY^FXvF<2P^5*QR!F*YHhO@kP^RTL|T2XP&=+2tuiVn(Mpb`=3C)w{n2Z$ z`>|b}N@L>CO=?8tZk*l^TBNP1oi2KAo^qLt_$=Femqzs*`1POBH{i9~3 z`AkWd3Gc+ml;JW4aJ;E_+ys&&-7xK_#CHy9Fr}@}_8?~ax`3@7{~b-6uyb7Oa+d6% zvUX8=$g%uO1MC2R;@q9N)j;Gn>tuq7Jji3!<%J4lc;H5-IxZuKAM8G)yo_iJ^@@1* z+WaARu3|;fcdErQag#G@Z3M&>>B$?$L5V>5C>dKY)%XIcnEpv&E1K{I81WaYH& zCKkHxeP(k;>VBpgf^4}G@5HodmUA5|^7o3Dm=vmcoLind2d0LWUYB_iE03(O+guGh z3SXpf!w3KSik(m}0Ss-^?pDPXaJc`~yd{FS9~czi=z!Z?YAw(;c?A!gxL#Fu2z8u9i9suh|jyHs_JZUkHM7!Kz=~wer8( zF!d&X#b4Af=5Q|UR`%XJ)Vt2P7*6Z6?ZbuhH?-ysTm!){?rxREne{M~`_rfU6FDQd zs#cN>eG&gSzT5WyeCh+|``Ew}nn|l2$iKzQI`E_r0{&3wx+_Zj4N_~C!!>YeP|8t! zwL~wo0+d>(BByHJqAm`L08zvoZovh^=p1V=JBL_^CJcWyF%20a!$??h-PY z-yC|e-E#sjDphL-c;5Aa!A3O)f}miH)od&N{9pGKg@g)DFIx zS1?9a{jfo4hbZf7Kp7drMqH?>BB1Y1pGM)emQEGAaeZ-0TYrr=v9`fvjl{IQz3)@H zk-daO?ddeehGbX-D#0KpMb&<3WZ1qF%iJqCS!V4Eyr1=Km{=I$8*5BJwHhyccrBrq zQ8k^>omc01?f(G@eh1iUms9SyZbJ`XWGPHh^}moNKs}X71dL+z6=okkC3$}RAv|ut z1N6D3mhgEMt(C1KagoB*EU=4+B2KM*q~z42!E=6csC@(2^!#u-dq*nRB~ImX9tAx7E=zXv(z^aK-#!OYK*-|LW3?X$A_GY%tXxgu`jtiTs>=wT@8K~eB<7l+ z+#e@}aizziZ9$&B&Stk$JHpTtmY$3@oxILEs+jc<=Vk#~W9UlB^wMBXoM%e5GyXl~c) z>|7hBiIRFDYFx9kPCWn)Fyw!OZk7gcc>LJv-Gzgh5tZR~tvfy13tH3FTxKZauonHL z#bPm!FpQ0X4rH#d5!Wj(g}%$!l|=LwCdev#dxM`PN<3XG<|3q|B7R?F-Jt#P^*L_r zkEhV0o$YZCOC)6L57(b27hMG69mEL1MouC%a5FJar`15=!SFYM{{(%K#MAJGBSl`- z7cX1FUGnKoBA#~mi16MOa%VRd5NveLK#1|*P$xJw@gUB=NQ2($?ZID;I^U?%c%jpmQ`;eB zs#lfes<)p`IBSZ8F?Y!e7T0wW2Iwk^P8dGf2(*}Q_y1^sb{2Sdx z!@T#0c~${l#cDNcuQGm=bL<90Yt{C2WEnSS?8EdTxF=n z4k)C|JBtwC@X#>HRN>YTYh49F*z%{vE>U2oMp4H3I!p4 zP)(4vWEzL^WT)B`r@~wg>k?o9GmQV(_~(hxcHw1AnfLM@F}?%i5kf4#r(+cJ=flZ5G|I(XeZ}+RyhoOgaS)7m z-Q_h^5u;uD!KrbnIK(sIy$w6-*a3e(535WPf2QDbs0bC`0yqJ2v#9`M7gN{`dk^&a z3`Qh@BK?7<-8SNMveZFc!L%&pQvTDbc95WWCdQEFFt_$zR}DccIWa48eQ5O*BXPvK zAwoHT>v)x|-t<=%SGI&cR{D0ulWjM-JBQ-nI#m8RnY;3wM=SV}NBZvF-XI-s1!X~j z(zL-t)JDIAqTUurpL`~z4XMjDP%K#3s>|qk3(eXe<=JCLb6m+tLHI^)MK;1mbJB|? z@@S=*=<&ls*4wF}sOmRle9FAP=ZB0{TQA_$e$02+2M*kWU#wGkEG)LanRbX#P`5OC zPOP+3ov&bZ*yPY3l?JJz9hg<&1lKRn37ERS$&*(kG6y*ria56CNqZk{)`q{~Rle^W z)yR!Qy0X6$CVyVhvn}=;E+iPLsSSQxiKo-oiuSBt&=xRsafHRz)f`*&YP5m{lpN9kcj`q%8ZbuWNWu&((=W?j?r-%NElLr^Bypx45r<0 zTAKxz*`a!Oi9pr3cZpUpylZbQ=)irEsqI9Ew@WG=v*5VHTIZ#!*@tS77U=HrBtTq& z9(uK4JN}|{B|DsSpf>x&rtR(;{3s?pAD5`P5}R}D79fY29}2ZuTAYO!qAH4F1yGU5 z9%$b^$~S8M1^@GPi?j$jr3#ntr0YWu(bXQ-@B)&b_Q6m4=xQwTME^-Mk$D1@Mb)f| z>#@(v0FS#<=8lm3Pg;y)sBOW-mWHcmk_Htkt&I*v2|H~0^S8})wFqu9dXmsKwZlm2 zQzsFLR!Q=yk8tM>Q6wI9#UhM%yi?xd;hO6_3q44nGf{;VjHpgv4#J#`Qqg0t(gJL? zlX7(t22)tJemG<^d6|$FMk$MfCAfR2enS>=$GE=Aeu?X8MDegyHmUR?QR@+=6V)anIUYzU%Do38nTYzonL*oif7_TYRn5 z49{4aT0k-UElsZIG2MsjZB`O?+BM;lPomqZ@0f<}H*HK*9BOS&V58E2k2dQhlp3cn z5qmH-kTA`67PpiMfMxhvDdY`{Ab!-trSt1hzYEMlv0Zu1p-dphLnXaisP0HVDsWQ} zz(^wQgp-2LQfoXeX7S}t)rn#(>GgC>H|CONVPEr%|L5C$KX)wV=*^z%AlFeHM?oe_ zfs-->!9T)cJ!|{Zjf_Pp+xw{xE51OZOMW=`0eAAKiSI$A>~hGyL7ApPe+unQEg4BP z@pgZhe<-mJQr7$=Tlz#Vn(jcVa04wLDFrd28CN3tg`lEG3;<$7t;{-P97ORv1!t4W z;T?stVOdk%xj9;rygsmlWV5CrRE9qNUi$Fy@qGYpf=E0PT{L_JbGu`)dq;|TpvON6 zyvF;7I%|)&`PC!k$uAu8i(g6?ew8EuJ$b2V3rK4g*#4QBPAM+&F=I-%KYIM@rDC6` z_w*jP8stD9uk!YvaEc`8@6d`ZAR_KeObw>-zcG=>H+onn*{f(=!BneRv|EB->xUWK zUXn&!hsy83&dIJytKT?mVtIoi-sHB9yb^qzMRplDK=dp5ftJ<~$@tfjRd}wVr6)olZ$5^Luqn zRz2ZIq;Y>t0VOJ5iKOar7GJF7o99x~6w9n|nihTUk2Uveu=GEb_ny8H{`*afS2vO) z7vlou!^u(ZD;;IHWzyvF^5xWGPdKYP$K!iI=|a1oSVR)rw^CBdcp-q!6Awo^!mb=cMYN+tekajW^-UQJyx)X~PVrTEvpL9Y>l zb!aos_QjCMWoj=rpUd)!99(xb!h&T-)dJVGhiI9HiCA8J>?-TWFS#(6yK@}>9dkLN zetH1w?WVDRT=|B|srCv+;WQ{pO4a0ma>r}<@|t_1YVJDN`wx@tmarO>rcG>z1WWYA z;c)j{jJS-k&r0U}qwJD{_uF2nS+Oej@6i3g!p_lg$0XuOe_K56$vRPU2Mz~R13uz8 zt1jb(v1{H%g5i^G9$l0RHASH^MKNCsK~`gkH)h<(Bf`SRx<#?ax|26trdm;oQwE? z#)Ny^9`J|HX>GWgd#m?VuWDQrIn{O~-Q#>S!@~R-Kmn3<^~f{O`rkL%_e%m*7Ghy< zh)_v8`)-#P^VgKakZ!xpodtZD%tut|3ARZM6%KWHdYaO&fP$yzrbTKC?Ra5!ZNOU> zE5Xw7G+xSfc4@HV*D#lpNv1$-Nt9NI=LU#;y~~)Np!ofP7stN1*065gMlTLQG(Cb- zSO*hB&dsBeg;+qT_n~F|*&_?OCbv$7QC~=585Q%)QC0H}7n@RP{bw;5#Q%$;_knqQ zJ9Y-qC^wmfv7cA|`CSGP#)okeTY0t5s0&Grv4?{yuS{aX4S)Pd{Yg}=0e_9o(6-g- z)q%uS&R}nv>QLfG9a|soG3(If31S5eyz2NI_2-W8$w}}-`B!O8M0IH}*7 zbrfKwG23WQIVUL4Sl+cXxA3xJfSg~P3am2xzoDm7rH$QI{Pby(GNh8GQ6 z-8P5pq3hOdjbNdZ<$Kil#4_EZp8~g|y+eL9zP9TmlEN8X9v!Wt$X7Ng7hnS7xjw1Y zn?b6&LSNxU{Rnpb2b_~!9TBYJw7ro~9oU#`VVn0WPM&y_B#zcs`M4t_PWoz7Ht(*_ zOhqo2;PTKv!G03_x3;NdsoH;u2vSIlro?!cITpVx(;xkmmBpgXuR{dQXu(%dA?nu% z{ryfqU3`y76-`fd0IlT)%(9KF8Ya^hRjQfcq=6%Cg1PvoSNIj&);|e#8-JNxGCiT1 zMcVFZ^$(q^9HB!nMS7wNU(KGcJZqeG?RO(|q%TqI2ohO)|KQh3lGV*rVY9IEwr6Mm ztJ^1aLwC9a;dGducv>EwqvW{kJ+MZt*e4^_zYcuNVHNA8;qZIQ1<>EeO54s+c1EVd z0$yIXec!vBPxPPAjTEk19xsM<+PPW2hD~3XV6^#%Y~Y}%l|gJ;OdPKBQ-4#$2>9=C!p!?Mg^{Z64NtC7pEFISu?%*vQtLqs?o?B+5D~? zgCo(`PP000mqvT?^#4H&%6eqv28VJ20u1j^=^&PRQt`XpyzgCxbl}2o?IZ6#39-(V zVRIc$zpYJelO5)x2yIKkIOmpGofp%ON;sM>*z|++TwMHj)33XBPtkgP<=`&E!GO#CX;KO)yH2nL zD+*Lrnv8;JUY7y(+z~q z$t&iuNe~@rD@sJzUGD7H>)Cob^~@_+avZg}?Ga#@7!u#SR0u^>H01Sm4yEtByuwK% z?Lgj+A=K+*M4#40tIqYwxUHZ89yUSjX~VY(IG=KL`>>b?C6*WzW{&|voEc~rI{IQs zvKe%#5UWv#LqLxOLW3e`S6|50pV#lW^4vBn6l0TE%xyFS8as0)ywu5ajt*@z1#a2o zHis4-u;4q~9ZIDN%ZV{3pXRRk(N>r*BJ-RqmkrFr4#LW(Jc>7+XxOX=yl;oTrlP6C zTK%xTw^7q77Z-W2wBEcjG*-2DFn>RNvSNWy_1d~82q9JkF}^H1W)TqHUmi93ZOx$| zVF~HfzReQzuufofgY6;o7Q>c3F68@75Qz%t!ilk1oN z#*GExpOTDs-(OB-YuV1yMDJPs_6m~LA5GxHMXFc7cjDd$dPT2!Y8{JT@ek82jxOob z(u%rnD_BL{?=xcLnf6zIBWx4u4FLzu#Q{3DP5foyqYHP@jxT!{m(54M{Bp&&m9lN7 z{X*o+q-z#`%D2+{U~%)m3#R^CI`BTP{&>-`ox2(Fgv70Q?_{8TF%tWK@FtIdG#6u` z)6SVHx$HemEHy(~;v3RjK8-$3MX64BuHz-9F~Nt1#pL*{&L!KcQ>xOLbsZiX-N=@5gIclR*=xEKvRONtn)q&p}myCJOE3f@>g zpe8|Sh27j(WN}&@$+zRcKlH_M8IqLQ>cq)9G=y?N<Rp?cNj5h>f+0OR6|?heavQ2LNc~%oWgKvh0a@t)>%`+^aF!m&L;LN9ywJNzs1FG-qS?QvI``{i2yUQ ztHXv~)_9FoOs#HYtC_6l7(K8kq*O{`%(XW&eu9g zujRr!rwvI-eB9OUTQUXT#Lnz)l2upPcq`fk$+_(OjapF!r8KAEv=b8*j!;?=`Fu>B zRj(+N9CEsvUr_c_mTbL0e;utA(Zz-m%r=0wKK)?@Z#uj?9MLH5am_Tx;P}Q^t&b3E zZWMa+?XJ`DNmjR`?+W((2rD|UJKja=r23+|)6EYXEpKD~51n=M8RJIuo7?MO*;?-k zV!qaUPVZ{Cj?Yp~YxC^)X?eNnO0K>=B!ZaR|H1a2{;IAwo*aX*s?YRVzobA1G;LkK zG#Ll>dw0z+9Cp7ljGFoh@~?6;54YRbxnb5`-n_0bJ>nS>vD`~*G{+aB2!%TA_HSp< zP>auu4ik16^<`8?=CBN(>;4;4oxc4d5w`F6Cl9we#AoWq=R&MgQJa#)i=W8<7n#}^ z0LsgaMF#|n(BIOEg79qIO>E;IjE5@I`q81XrYxX6wuZzO5yG|i}sX;%GV*ri4jzk3(f}ubcu!8oJ71`?VnjR%b z+L>Z#r#tAYalyiGMcRtGdfvVuVkLj!{CX&a%pF}|5XlpdyD(p`1|lM^agS@Rk3!MMOl%TlpG2A_IsVD2y< z!k-R7o)A@4r30(stFva?l>x= zs-|-tQk#xX#&J8AGtMl?*};X)S9S|UY*Xgo$o8|%&WbOzLs1ZqR&88vsS@XJG@~; zC24{>FUD;F#JFbM7#N8LBH|RY^_+lzUb~VB zHX~~vX{5wbTMc(8{rLwLEL)=xK5-e}NZlf*DJFln8Zt`?bm#8HN@6ddc{~u8A2sr! zTmFdkOq|BzWB0At#E{B%K91RsHRr$l*f<02?r?`()Jpl*^@|BX7$bP0O*RJ%(8f>a zMKSFj&$Dzl)7n1K2v94tFUHd_sf^XC9kw~UOU=XbvN72o<@X0uJ{gMDd`$?+)WDd- zi@M^@+mMdk4@2*ZGJPMz#1F#^fH%3u$;_OK?w!S()NZWcP)6hMEA37S-8YYz%8UOo zbktckUTfke+`TWqy8C+ae}%5-3u0f+a#_d=5_vie7gq?lO$xYmtCuKI{BNUW`dI?K z*uwGkC$6tDgaXqN(weNxk5qo6x$@}Pk>Oe$=C5N*y_eWPJVQeFDc4jFiw@<>sL`1_ z0)-WT8bx6AexIk!8OuWR&R^3H%k9p>M<$6LpIY4Eh)czsw#DbFwWLiY%3n>0PF*n- zmpD7@UZg}Gh8+MbNs|PO`9<18nD*KORW}dbUIZ2;I!!ilCk|-CCKJ}H_ijHkW+wr9 zyjn?GqoMP=bg2#Z_lwpPaTBS1RDgL|D-Fz_y#R|fn*d9icM&jybH{I$-o!U$={9PY zb-s?GJUO<-EqsCC+GJ~w&Truvs}xx<35R~nBa3>r%X((?NxTE<2sAeIAtXQku?Z?X zkH52%`hB91!uQ!^vvr_TcfWT?&vs~AJjnf(CwBSPovejLjU~Zziajf+-X$nHat;me z%Lu)`R1OKu0wz*hGYwPwc&>o^9;bSdKUS$zyLm{Tep-&D_kQFd|J~)e^||nxECc5w zb>|(>h+(uHkLr4fA3MC$$m|p3JNtUKyzAUI6fbpLRa!iSE=lj^(x5oTKk|m_cha-l zzSLeBgxja>)a0SS_H)|meLk_?uJ@+B)iQBaDN<^?$@Cudfi6AqH_OVEMFw{+cb%SJ zAH$(>cXl34o|deBPit}}kVTI@6EWZ%MUl+I)p4#45B~Z@bb~zuUVZpq(DRHM`-IKa zzOq1W>wA~)HhS~&q3350KD$l~a!O9kow8oTD-LF#?Du!QRBuRQeY-5BD) zet7u6MThS`i?GLWvYguUgAAXa@wvhCyap2;iJ24h2rsFijs3rM;~NHg0kS|4CGUMC z;__jU);ossfmBG4F@mO@(goIYd=PXTrA?L>H&iV(a~ioqb=P+4PbI##{TE3`K55_2 zJ#6!0(gdfC)!RLOnl+9Kmdj4YM$`H=rh~iMu0ZQ!o!Z@KaMe5apW^#Vgymt-)A?IT zMYCZMVG@DLnk%sB;9c=qS#KMDQ^5RSOd~7jE3NrbcS_*RR_xt!|sG9MOk8Uxp__3#_k{^$pdhRFo<;UXR}~+dCqRjn)HW(jCqM zIs!Wu4Iea4_PX;Rc=87-S$#niyu@JPFGEBDv0+qD+_7&z*JnMy8Ls@wuAs@DZX{o8 zNivy1#^a}hUYCh;t}p7!=Kg+%kI@&6MTN)W3<k(>)Zk7GKjkO8H;K&T^LxT#;9*|=a zPb`S|H#Bnf_pi}dBWqp-474WKSG~3|?~?UVj=i?pFA1#feFSK7VBKd=xAOBYDb$d8 z7Di4Zm*}08#fBJug4Ao-#xa4z#3S(FbLI9dXY1I-EJQH7>8fw za(DjiqWF`%F6e?!1QTp|KPi}#j{;dnIPvET?4e-4;%@~UtL zn}z(|$@nr}|E6Pr28jF?Zkl^b!}8Jn#f+R2E*p$;MCa~%-R?OFz0Z0!@Y(Q%;T)}? z@C8}@23j8BCcTL#_@{~ai3|xtMsBnr!Soc{;6Dnd@h1gCNMz0J4S9*844DDvV%_q# z^xLHvlgQSHOpoV~hx5Ul@wDMl%pBxSL_W#*Dy>!GG(nmh=QuSMuneLcGs3;@Oc2pS zDKGQ8`WQ?V?o;=2zZbvwy^SB@b|zrcAt&;UK@k*4v~ypZYjCy}_h{m{5PJFL55KK} zgy7~5P94z6_*Kqt-G4Cq-_NT}r2EwX80>Kw7L^fsE7$$^XX&Qqf0^$P0ZzEhV*{=}B2JCjIthaFKB?x_#c05BA==15z%}6cSh!GV+{_jVj>-D z#CeoJRB!^>H?D0-U*xuu>B4tOx^enwopu#N$m$247ngr>I}1oAuAlmz5k3okZmbN* z6uUh|%D(WI;8*1KY;t(5HmG;lKU3#m5M@EV;#ZGoTJIa`VU{9OL|h|L5lAzQKwhn9 zWqcLZ&V%;R(0>h)u@ph!=FCtZxE zge?ppYmda8c1Eco<4OA!1sa9%Z^O;MzDB_e)JhLIA~biTS~j}#e{vN!M!U6oI@uM3 z9V))2Yzj3e>E#9}VVY%?5a$59wO4z!#myh)kRdU`p;vW&5l`8C!YdZm!Tv2#I{iW( zW8tEGTJ$*ALT7@FlKmakpSrL@jQ-IASkxO6da4h%^C|Yt{QybnovXt`i}Z8_rE%{P zCe~x#x}Q6rbCvXd++^H!j|&mK9kUM?r|vLh`+5Cq_L14;Okv|x6+D~;w;eg}oLGJ) zBu3%D5Vwd!)q6Y9d)I#P66$$)7FYc}bR(2l2ac66h}x+U*NQq=r=f zy9#;nyDBxMV2sbjm+zs&`#cdhf9=c&T1HV@-K12hy5Zg`+-B#3yxjUD3>IWEPD*f zOz|bJ*!qcSfyS5?6FS@MR(Z)P8}-Fm=b~QlK@(HO*#V^qkI@=4)`U}AoMG3Zr{XF%hYqlGg~EZ<7A^LG}p*%%c> zj>I-P!jgYt=>NX`V!(B;r`B>}g!mLC?hp5lS28q2(7YqJgYN-BEpWi-0NE^*+%m!N zW;I{iz0QYuay&2&AT%w#eStlObvFm=X5qw}w^xvTUimT_Zm`%WzjHjS94K~oVa`bq z)eo4qx=u}lt_h!{GyraDowS%!+8tIZ$#Pc z>DwGM72ELE=X3U(og+X>u^N`WS-tzOGVMXP1HgP|{_vgEg~wTjaA=kpZ~CQNsnKla zxiNzBuYK@b_~xav>w;tmS)KyjQH!H`FZM1BUTVz%ewV>cvZT19Q0tJFnX4E4G>1*J``)KB- z^il;}BBq)F3C-6V(9~ABwqPOZrT#RaTK?+%Uk$Wb1*Jb3x9!(5pQi(Zug}8N3b_PN z7K3-a&y!;5VY_PmdPj!$@mns?knJ>Uz98}y%8ykI)q4U<>W+o(&58Xgg2iK!J)dG0 zcYAYG%iBa$>Qns2eBTJd6oVeyeGZt5B%hz^0|b>-u-9X26vpMyrt(tx8A+7C<`6q4 z(f9=jB%z7Pn70q)<@-62&@gU&fBjU#CV1oZ97W>uyG6B^jj@KGV$nJV2Rm&s_2D4r zuUPoieSzCf?Lq!Q7@;hkX_*qt1J@N>hme&BTX3Wg$yscS7uQU(dY+{y+~h`nW*O#ggIhXY_G9}nPK#CA#4)Tbs1`e|O$>?YggxieDi1^KeRjlO zDWm(slTe6FZW-_Wei=B7xT0g$c@Gu4J|MIrTDeeg)DZ`F4~hQU3Ml2ptXZ zR5DrBQ(uVM)lE&7I+)4e*fBNh{K~iM1WmHh)#54h)GHGYE=zl`mu`9?+;xJrIGeoq zl$KbsWc2SE=hQ|Zz;o~SC^OS1}`c;AtL zy|{ps4wf-i2?g<%bhJoWLDZ?>om*YdkXULbHCmWz^b>U!XYN-M9R?F)JT*9=5UFhy(Lk2~ zXqFHFHs2gN)?|OVXgwwqmQUrRhqLycSi)<0v1^ohp>4w?%dOLl@`Zl|3WK(8LkoD& z`jP7^o{yhUhcvM-6eTr7kRE5jtgEkGBn*kW=h`2qFCbs%*H!exWC(XSZFeG#_9n(n z{^lK8_CA$_eMy^W1B4IDL!Q$*leOT}_81)0(dHVIa2R5Gjc|JK5DtbMY_s@|FMw;h4#oB`ej?aDpG3=hc51+O&Vm^R@Yi z;c9|!Pd0;^7A2*>zuBZnHrEYHr-B}tCI+T&97i^!(CsNgAl}*g#pHj z8F)JBKYI$61b*R}2Gw;xbN<*-`vnbH2ZXNj4)o>#rkeE))ujHnJ?nV=79n7^nIns2 z2aX7dxU#9hV0Uqoge8x9S72STZMQl(67s#s=wv68T+|ZJnnba|gwX=@h;O;8s+DF& zeM$vyI16=PFOF_6GB+o(7quXMX+yAvN71XA!y0{iEZ#R!T3|y(@taP(2~X(#GE!At zT^%9*u*U#kn`gk_oQ2?q3u6xK`dkOLc%F>r9j3oePkF&*eC@r?WewnKArClkyNNIJ zV-+?kydkp7kk^+g3DJ7zV_?0-bZAH7q^sdcoAr?CyxaNB)uVMN3sgkhqFHxV3pAbeVG@SHud#Qsac;T!ppG?iA1)_!Ds3!4g6+n;f(M12o!_S}9_THCZ7^V#xy;u?wg?R&iaoynQ)>5E#=6-62&Xo|zKj&l88N}bm$_{bO6n`Q&$r61{5_Sb6Y5v+r`2Z*Mep z?{9SX6{jZ_hzp@J4q@qqV>c9TXR1SponouaFgp9knHLDgXmgw*HwCc18;QyV#PeKI zo+jL3Dxlq&Fw|KTc0-*kJ(()jg>Qh*x9^mZa8~zjbq0Q>h${{p@4hDc9!X=UXmSAe zQpi{k+ofOd8)-C@P(!s^LGEXM5WD=kWFyM2h^Mxg=IMxZz3{f>U3Zbp=1O~ID{&J*1Lfby=P#LdnMz5NXjYqNQ-R4G$+kkly?N6=&6dnjU$LSoXKjqa@XbdNAU#=so{dthq^h)W4MXY|g2pZSH*Z zD-6v|2(7$MtWk2lyJ#h*e%C0|qAlFc2Foh;e{iI8nn}KZAgU;pO@D?MX(3)|?2y$< z<6Iftx490A=AL(5*gO2l$xK%^`asqOgp1gV){LoF?wvoH{*Vv&IwU_{-4c z*sBo@*{$q72Pl2pjCbXK$Q8$MWV50^qG)}aPtyzj~u+NFo)a8E-Qk5&(eX}Qah zBse8SW;VHWA`C+mgK-(?q5fE`ngdf3gWhP0kwy@>f9XbELj>aqzEP7q4~SwzbKmiL za^%Q$bMIt)**QSv;J` z9=kkh*Fc`2jroEB{uxnXDj|`MovSFV$@)F%daf1{3@6&49|@;C@*O#T0_w{@e)RzG zPlXt96nhgkR{W$!+$4+rbOYg|e(wVMAD57XitQXn?lb;JwQbQ6x;p zpB>*|&eM5C#)tQFXd5EgV?QPhSihM-)p*05?Jmm$UqM^WB+Q+p>*3H+{EOquX?4G( zPVrVc9eCD~?8Zk|67+_YAiC{*fO+q7)(9`ku-<3-?NI8>z`WHWr9;`|2hYEapH>e( zb%@zk;VtgK3kd?VU4K?-0rr~wUR>WM79F8fvlw(#jbei@8mPRZ*rITKTkmu&UTJ&p z3>vCd=xrJ_1@ioOQdFh|?(M}sNI7_PH*=qw)pZy=lqG@EL^_1L(!`p{;1*4i1jDT| zDOkTG`c{6)3^>0IxxDc0!g)WU!(RPxk{f zmx+na!_!`)^v?pq|MHkIv?ednO8HO{m`_# zWUywjVqIvT`b_wSyMj^{^Z^meJK15zjLp8xqrkjMKQ;Xb5hzWsb!2EpXBXoxmwhbZ zz4}^^6`a2(*intu&@VSOJUwoqNQ_~Ctq!l2qlnVSS9SRHNquP`JUKzKEe5L3<;}{j z+=N_eQSsqSB~Pg6V{KmZ0fi6A!Y*KnbeFOg+*Ae5vR*lOt^c_soqH`D_4=!j zo0 zVSd>iSzdz*xtWmRjz!;E$~WVVr%cy+@KN(xU}DcL%zOM+kL>QzxDGh~Ap}O>+xM91 z1Vrz!uPv9fyYp8TAZg`%r}yrZJn!7e!Po2cAV0ozbNxTy?iB+qcR~iWmH^+XZ6FK? zAAXr6lx=-(`6vDQ=n*oRrj?@J-E1M0atX5_t_i4G{e;ifbs%kGEKcwKDk8)(a84H!BtUMWc+hMOdoLv_&vP$w0O)4dcG8L58 z*|v?~-u*mFe zMl(!5lBV~Ek(<{jt!IcozxxQKv0)VBz2>N|*b-6orm0r|55FxO<#3p1p5ppq$;Lz# zq@-Dc0<6s{%QQ{J1fMg5ooZC*PgO$aY#;3JTwe+;-pBY%P&- z26i9*1*PgoEidjs?E21rx-|M6gz{9}$&lNXl8P!&JZg_Q~XLritm{~6afcAo{tCs02H;IhbB4s+t%R*)!?qfGeDe1tv&)deIZG>c;TM+=a4^p=Z7JGW?WB!VZG_sU!5W+57Qp=%SJyDy-ZFfjFS#6k+EfIkzG#Cfw+ zYkJXYw&cy4%2+?#c68_AmS?58Zq644*6g>XuB*+OuHG6k6HE1`aI_k=5plg|Y*0pM z1-n)z%dED41eJZ{<}@0--kOfSiG83N_*oe zfnk_ki3;8a&tO%~%p~&-YGhJ(oL-=b1r*FD*&h8qV!=;DHW$er93Fo55ilQ9z_`w6 z^?h5m(kgoo7LNmcb24y#_o?%x!=9qQgGtT&nBRcJtFT>b>Ppw1MCYi8{O$SOgLwS4 zTu)CsW(R*Cj$w{WwKA3~lvG`oIy7l}h96@emfM@twRPiC`_k%Y>IDJ?V6vAy#e(bB zSy&e6)F-Qi+!%4JSjQKJS~E+2OfGRnXh_sj)VAr5yiTdRTwbx*SHKY| z?8pq+3H{jN3%v5=kE(pY8pYU!)P~~^4;oyQ#rArv3Bw0fdsA1h#kEMkA)-}1c1OIJo zg&F@+Gm^e{o_88;UYD?Npupz(kk;N+m-;s)XKVj8T>&j)KvzBqKj)qafR z07~bZ*|UvBp| zCa}k%HICi7c80301Iz8O!k$hS3n6p^%GWQhN8M_+?e9y)F}GgRwPGCLi)>eY1(2#! z`yHPW_+h%#Cu=Aq3RK^-R}LQTyRVSX)B8DOmXg;H#M>YqpVS|4($2gNZgkDQpQ)mY zJEr8-^Nw9Gah*-*eq)}Aq<1&?zE4G{ODlKF?{Z2obS) z+fD%j^Wo`a@!wPGf~ETyJkxBRX5%f&+}j$^c%mXKdr>_nrwHVFGwU5a9ud8g;p`>x0&&Onu;z121}DY zpXLrMO-S30obf0x7z1v&t(_^^AcWe8y`W(>HqxZqg=`&cs;De6@@Unc4EWpG8$ak! zg2faJGL4A)ixfAp+8pc_#mb@myqVkD6cYpZlAKzRWoIx9hccBZl8 zsoG4vB$f8ZH&S2iokG;QqXTYGf#~xb_Lk1EUF_4SvpFP7$EsK+(gaxICEJLKa^7x%^mk%ISf+R zKy!?mdt5uLbd!W^t+Vqi|G&%9>g21{W1d|6Yw8QU&oytiMkJB!)Ke^C_P_Xoi(@$( z@$Y0HhL)7Kp-FNo30_U2@b-s1aI6Pwp9xsqGjoK4!b6oll)gYP?5ld1t!OX8;FES68H-S5nf z#Fk@+lkxK=g@-L|FwfD%7IX@qkB~>t7N|6YR6Nxpk5-u>i!hI`oresco?LK+*|Ie) zo`{1OTp9kGfFHOJ;O@9`_aiOwp4~~X3LtES3+4c2kntV3sn$l%MbjYx@~JC#A;a4i zOHX^`!=Po{(=eUqoLA4J)fx_s@QO~SmBfcyjFASP^{M_$JIS+m2qo^Y>+R96y8pyKgSAqiPtT;AZvUoQRl942=v6HvbK5oM5LYx)%-F zbJMFF{q2ff(=9NBH?tQsA2&X^&gOncSb+@UqZ7(I5)%rUI|X77zN1BpSB z)->@kss3MEY{%u6SPvfgrG+E3ANesKnJ@LN2b|S{FPc$!1UzU9iHJ}>xYt&Qr6vg} zdukG!2+B5>ieJgtahd~!aaI29xttbb_nNZhOPeSa_phNR zGt9{5>K@Pje&Y#OTt1QFMdqBvnf>#qy0|JqubnFkMMgV_?g zxbPLShu#L?0j2;o-*`IJVush5|5HaQqE&xR-gOCk8ZwHzVW9}dl@0rjUmpL;SxBD# zH>j&*vls`M2gO=!lW7y}2jf2qnGey)KpnFrG_747qLN>|5gRpDQ$HqtbLU@yU!7Y+ zGeiP-4vPadRuqgN_}*SA7gAT4hfICAENItwT6@-5pn&T<0WD7Lg~>A`BK)FfhDGb>f2xijosP%g?3dcHE+_6x>qK$%A0 z8ye5M`_AjELb#HK#`uHT+~MSBAz)*!_v?HkQ0!9ddUh+BK^Z@dK1^?C+b|-$*Jga` zMKw)pey2>9q&E-Qk{rtf+qJxbk*Y(jWy8^;(t_u4-tx4h^S9aptMyKx^qidRP{>;@ zh}}z{Cp~p2Cn0z&_}+A$)^TltD%N>2fFf!k8Hzb1riMOdInLQ!2IV=-ahZLY>0OKN zp-|KLGOKdlqo4SY?pyVql6yZg5dXOhCxv|9q?z5lvF&g@k3%!ncG*ap6eaIUzR@B2 z$yZ-I{3>h3J-X_AEr+G>U^roY0Ipgz2Ay%e7k|md)RpfyOhrL#ek-f-@lfFIq324u zAl~XmDiH&`;4&s6%xmfxqQ^pf)m$tl2lca)*wgS2!vKcrpTb`FFi@gIA0B9N=an_qmg|yf!ia=8&e(k|3Eh3*SOb9 zX>~rKsWOCtarm2EDt<40lvmf#{Eh!e<*m!rCx~$EHS2OYyLT>|K{;jYD6cT-WK`cL zk74?^XP)Ietks^i%Amc7=CQlPBMf03ka12_QG~mu)rzwRgptcEmp(66)G>ub*y>H_ ztukN#b$y1hb(`r1&D_3o1&|KmwL~JiONUbh7(?3-Y{(e(0WUAZEf8HaMC`bR1GA&v zZu+*4KFStJb4dK!m+wh^LK|1$V0+QJF;vK?3rAn*sdwY#7IiX@0-#p%tUL~Xy0rGR zYTQeUJ8zKmHU>%piGbbV_kW=;krF!HTIapqsv`D;FJ?L)>;VGwLKsk+&M2-R;w7VF3US!mrX4o9#;hB$;xnRAremo7rWU_9-)1@IL zRu%g$RG?Gfq|%|!oJkMJ7Olos*PcYM-JIT0{iJ_Tgi^OB(o`>luyxH+@=rkLzNb zE~R?HTG>vtNlg?P2kL*BCk+*lN`$qX7}}Z^JJb$eCY4fH3I+bzuu%rS*ZLb)tyN9C zn&dUQ@G&3Fg5P_rBmKo;Pff`rz*_@x%X)}7mHi=DrJZdjZ8V{^NYdE5k7oNmvyoX6 zq)d%ddK=fiA`uJQ81&3YKdPU(tc&j6bel$VlJ)l1l< za%XnLJxX~d{<&ae7YPc4nn(5UQ~>$jM^%*&AJA-1w0f-STC^})IM;lm{lxHkwt{e( zq|Sx4Qem^jMe6%s5fgVhbJ#vln2=-S_(x^2cEtD;|8G^uKB2N?g_*VyM+BDHG-d;d z&F+Z7+>`*xuvM(k%>VR_sq>B4b!uxkt$sx69%i>a-{^lzK`t8#^SGnS9Nl#kJ zImUbAQMHN`*z^)~Ittg@_+mb`{5bJaeef6Dc5Bu5_$d_udbs7~HsrG?GKoNl<=AIk z^A;rl|9ScWYG~Et8$?$DON^ST0Vmi2&dP5S&HuUS{%4DX$fHSa;(VpGo-K~KTAX6D zxw(n3AwK_Ocd$(Ffkb_CnaQ?8@;P#JAnIem_mM?isbA5J&S7s??Pxv6$CVN%=GYR) z@ucC~@{9%UU-2jUZ~dMRO^=>v9yQEYox>;r~y2bOB+En zHbO;x;+o5g&)(rZ7FtL0UV{QMAREDk$%`^#nTd&P#S19(JO~FNuGWSQhss{g4yx z|9!@hHfqSQAyx~MNq68rsOq;~>UZYv^_)aRJ+Wkm@lOF+N{@ShsvT%%{qZ8+$9-}+=H#arx=ImPJa%q@0;Dg6xI8eFQVQBWf9#%CuLj~6SyAGf$3 z3u=41s~z}yWHz47%@UJqU#k#_vP>hV)Tb!}v{=;kVstTb-kWAzyjGrtHjxd3shTN~9|aS*jT@=kmm~SMt0i40LVR)mw_9=q5)_1>p{bgJX+G6yA09*YfYe3|5z2{aJT_@r-kwmQS6`1Fw&N>fNL>PVug;8nve3%T~S`^b8c`1CZNIfK9TXS@- z^N4i{=pH)5H-epw6D|SfZ2dQTmnFGkozD<+J&1}Em(AX7~RE&Y-P!c zLO38lhTTF(eDxT%7Il<51i71_GS`l&CG@F%i6aV-P6D`t*#i6|&6M%9O&s9oULG9~ zdP6ldv6IHSSW5(RN*EMb5#hah4abM81=f!>`LvEsY#{jd6IJxBR_!t=-lfXJu1=Nw zeLeLBX9!BeHzseEee^u~zDgboKp2JkgpcChCksVa7=0S}&#yNE!B7o~XAnDaZ!kLD zKpwcwf1dc?+W8(0C_Xzm>RNVcQuE{Ow$#H|K)j>FqEhBkV+IAxX!X4U4y(!U`VYgx zcGa`9*c3EVv$VM!Vi?cDrr&LcTpd>fDVT)&Wd1-0xxPNQy*otV2cZwWM*leVORL23 zt0~k+chZ;dalQQ*ojaB*>jRFaJa7tZu?<%7ufk8g1&P^U0|yW1dfX6sN;ZeF`$aX7 zw>AUI(so`y&JK*_x5gZ;1Uyg{nC4yK{6fqztD3GBSF9^KI?8 zj^L~`nsxBcq5Gj!PZr71gE}&KcIz$Sqi$FP**EiMJXVRI-Z;CE6NKR0aQh4@bbX&{ zbwRW_MVqrcf5v|wx!eBe^vHdGW|dhGV5qBjtlA!rXz&<~G*mTGmhlU&Sgo+z)FEJ8mIps zEW#A=yW`%MwHp(JX!f%^xtFSssRhTlPfmafjzi%;2j02*7sXXsu0&MgBfVjlhf%e? zzCfBzD8~p-l`su+_THeWc6yTykwkB8a7I?<@{0&-V5GZt_c*@`q{{0?gu-gB+r{zH z-sd4S!Y09G)|8XVnl009-`?1zl2z=DR&kTJb_x}5s zTU?I~W_xA`aTiXVcc}6lqto=mm)x0+F4p&zD5D^Z@Yi%@7zcLLg>zDL@?ABHi5PZr zQlLd^De_2(r{8Qb^AJR>Y@zU4-6PFbRj8pIh4(7TejD0Roa=DKt`?Yen43m#1^Fms zP6SA3VI{yg08Zxc>s=t2+xSv7Mb@nYvv zfU!o+%EV{f-DmMGF7$Bq?wG2c(C<0gf-3BMfGO2WFmv%JI@JpLPvp$1UII9B@;G^e zsE^3EtRvNlLaMEA>F4YFf7K+pF<}3vh?7Q0C^$q?-TAO)WTLFu?z+$rU-Ng6tTX0( z7CTKg?mWsL!NA{jHvDc+X&XbN-MoB>g?=S-+V7+FOVMlRLOS38AD-6h0X7s_-{a+8 zUnZLN^zHr8m=F^eCS_9ha55 z<6ZQ(v)#8s@pm~d=jD+?wNFg}Gl3J}PvuU^+1WHU>aQhZ?e^4sor2tQG6a|oooAJz zY$%4lNis#Fws(U^lahNY$~&-^X-6kq3sn~XFgn@M1nBdnlzu$lWZ+T`qlvG)-CauS6TLm@Alw4Ub1){Nxr^%)aVY>^;M(%Lg4uoYo{`zX2`8kVd@-+oe zS6yhc{D1|*k}8o;HDaV(CgzASi}p2qR5F!go}FC8>EL4Yr7SD+b}l_dB;p&PMNXRV zlOsb_1btX0HU1n7{}-y6;x-m?9DF%f=YvT-oJMa51gnk&EGPpde|$4+Y&g)1WwWcs z-7;KlP_>oC^9`j6sv(xT~a;C{*nbEUmOM2FU!))w-v*q>_UICtw z$uE8KZhjJ&Xqi5)Lj%=dL_bWm#h8|k4h@r{>E>q5uogbAo?|?e5|R95(;^rxo1Nk} zduk)4)hyO+w6LN=fWSr;`*oNwaveUh{(A745iX|-mlM*)QFLI06XpVc+;G>tkhF9LmE2raN!AyN!`QHOQ_xVfcRMo`3#Rec14-0kVgg9M8<51{lD7x7bs4Yw5g!76}W zeN9Ft2{g{mcJgH~Q!m;6cDK}Q8|+gt4EMZORZ|K;kU!~s=+BymxDzIGpniJ*qcEVReFW0+{Z(_z(t z?+&Pqk|I8w=}SAQ1L*qRL_D@h_C;+2>4iA(wdKm`i4;6xsB}Mu$yxW|6<%(XWNwnI zT5TZGFP7CFUK4tX?ar%sXsn=DHz)#4-yITPaWgN4!`IK_e28r_jnl*TZMKM|(Hlqj zPa6JoW!!9J3GW<|Tc$b0QV;#*+yGopv2hj99{c_*7h3r!cdP1GIfH>8aH3w@tUmZ~ z(z&hO=N6e_7EjYF6Kw(7Ui zHS332!RoRDMg;x>cf+w_zaSi50!+J~UoG*QvTpZit0kWEymLIMq1l@5KE{EMy&*&} zBse8N-JJ>M!s^q(Gajc&ombwD621Zd@2s&y`ZFfugD}Y|650NUe4~;0>nTv=-@~C$ z0t&kTlY@#gZp$H&&n~Rlso*W6;i*x{qw(7(y~R+sW_Ev&>{P@t3rY++3IQ~Fz7cI+ zWJp#BT*!f9j-<13ndpMn>|P!lsZs*k(){n9d`Y?6RGNJYrjEM6KIbn<9G3f&q%0h! z2RNgof!MaP9mX)s_h)=3A8-VE+1;(k03S1#KJDIE>g!9$o2J+tc1N!V($GaI>VY*0 zho7(RP)*cq^L&VH?32x8u?9_M9|qrsM(l<8__9F&=jAI16UrpO&pqbYc%d{4*mZBmzd7%OLQ zYaXwp&;r?NCh#do%m%!_AK2P3l8uTr)bqrYR2bSS8GEX)VNz={ViIm_t$iWfrjQJ? z(oX31^@ysqy}mm~*06Bf*e)uDgDJs%$1uGd7-Zu5@ z55AWeGFZUI*c+Jt_=a|H7zIzm%czTw2^EQX=-A*A_~Ee?(N5KfP^L(wRKeq2<|7dNF4}@Dks6QAN<{Ug1Lb*oA0|8J zBEC;()AW)Ez}hN3luOPc_I<^bWxpq>g+yAo1s`5ssKV{cm*Dew9b??XW`gs{HnRT0 zu_C#OD(TklU*b(y2ux&1rIK@^K=+h~TMc-=C8&Ba6XWZHs-R_|2YFr<0YnXOI3XhS zK8+?1>Qsp8NG>=Zu!!@suB~K6OkN}9S6H>%&|8DPocYT(JkV0yT4No+{CuIyYpv+# z13#P!seY82!0bfh>|a|N?ss#$WI}(&5@v`XP|2J${yBJ@RzVOs@PXP(^*R;)Wuf-} z)WChQ9f~~TWTafJQkexYsP z!3-_hf?A3q_aba!d@mZBfy64a&9q72rHwVRDMM=oGHH=1d+b+Zk@gY;CfXD-hUg04 zb?{NZT^FZE^By#AygXh#vmD&5 z;gq}D0qA~>=FxpJ9^}QJ!@HzB!u^RpS*+7L{E?YbU&RKM%SlsMt>h`##u{e z(eHO%GF}Vk4Kl;I-ZLqrSXi2i1~_gfYTGr@KFh_uO5Vzwv>-CVHa>Qr zCGWJ1m*h45Y@wP3Nw+1j*~wu_1*8y`5_}N6`~K*C;-{rJc=OLj(iaPEk2wpfkC;p0 zp5`y`2VMS68irX$&Grp$EqErb2#Dx69OP<%O`jRkK?W4`wA$aQ)l2#x7n-sp4UQ`G zuQrYU$E10I=j)d#0K*{F%WaTu$#tp_x8&8Wd&Kd;{Mx0}7t=BGu$hmxR&vtsW$3qa zqFZl>CG-wwW752V9YHK*z!H69JGaEN3MHsMa0(mulp%<|mtVCz5vtnIxG7%Sw5j(g}s7 zPrWZ;C)|p^ zjVTiS=v0k%BiI#Ua7Se!;i@%Y9BA?|Y!JKG9cN`Pn7deem`c`y zgsAP%eOKqXe3IBayA{xR7tOPJwlQFZgr)VB`d#u22hCxN?Imi&cf*N)-tT?(%Xeg7 zzA-*O&=7=8jX@}tJx}#|KXhV2sFi!Ua<$rjiCUi>S2In2jj3p89rUZ4{r%aBfri(y zmVFfqH$5$yKb?4?Ja$^Q%o5l2e+RriR@4ACTtQ6Pu6Hx6|1H_dFNs*-+>~;NxDM}0 zev#Z4LP;HmD;ha%bnWu1a?AM!14r(K1_IaT3G=u;x%^LZi*_wly78hgb zv{C+;+As`*o=)a}9$xlq@lEVpj};Wrv^i#Q<8{*kAk4@KMQo&FSSZ4x4{AaAP^@D6 zs4+MrX;I5%p*aFQPIpVroW83Tr%%0U9i3#g*V(_C(g8$8q1Q*HVl9eiVU_WWbR*hh zi4e@l3U8!sCL}5yY>iB`5Q}n6kE0`sW-gOvMeqBC0to1Bqls7i-&g&J7R`b>x1$(J zhTis{Tlmk1b*_i?-+NkT|Gx}&cHA#*!bVRebttYEB7>Qe(w92gyfT^&#Y<@X)l|Jw zs0D#_Z)Hqkyl@Sll(a55Kk3(;v=19Xr=9}Q9_&++)A0crsSQWJ3M=b+x|vgIJZI3U z_V_%((|gLPMm^HZepdC`6yuXb+ZmyWoC-n_pP`Gp-gq*`)&jEws9MI=^wq4MeWnRjh}T zm+3K8o)pVLkyXMwc_}3sGPIPM16GOs&B@cpIaAH8s%_E>5fL`1&%_(ViG{mbs%eG{ zQc*i@LDncZ=Fgd*Q+@8U?To>8Oge_$TBcx?*1uh#X5c=q^y2qj4o=k*A&Kb z_N>qn8rp^${Wi85k8ifWmxUVPZC%hh|8Ux|>BaB7sYYV2mQy&WM8M(6i(Yu4rC;F0 zkJ@6ZTe7++A69wt&g*8vJRT|}uf*|NkT(0A9U;T?Q%tT`Qd(ab#_|wgXbwz#BS)N% zurhTn0%~=TPh~-w%+~)u%IOK%z#KT2OLpHFUeAsAQ{<e(iVj7SW3-qMy8Feyu4 zIpCnZkgZEDXXwz$Y^i8}@VRYWLAHKN344A~OtRxnEw~A4C%p8UA5g!isPIi|dLdJ0 z>}T}2A@yKpeX&=fQv*ZeHe--NR88PO=@1U6@$bE?0e`ncL)+TV#oB@D#v>M9@tvDC zarZVue9>0fP6&8OSmAcvISU%x2stTr*Ddv@vHo~==1e@#P_*GX zRZ-;8F2wa8fN&Db_yL4-bWV52K2SLMk4|WH|C6+!&*!y2+Oetwa+iv@<(r!SN@*`X zWl`woKNp@-vyb>#$Y)K0V?TYgI>?e;guSX6!R321@PXUP_S@FGxo?bbssdRY@h3)0 zxZ1x>?|-s2;e}#P&b7MGMok{_W9SP8Hp5{?s*EeW%9Fh;&&-7!W{&cUpmY5AuhNau zl=$F@6Bj_G?AHZS3oxt{>ZBlsqhpNGAv-pTj}A>(>ZD;I6((T3`~+mj+LA%im+kW& z9nQR-Q{#C9O}1%F8dMwli4p5N*A;T6f?Gw`1J6*?--FYp?3 zMg0BtlC%(-D6obT!VatK=6?u}uz3N=>1VbN@#%hZ`Wl#XoTM_9q%By4>K}$mpJ^ zVhD=Y9Fk|-C#o9K453H;sUN^VIc=fRFYbS~KNf#*`nj48LA-C?Pb+c94tAReKbJ-v zJ~@Lm&g&302Q`xq+P8BXb)A$;dF)a3fmuseDUG#87tIH9bh)&+2WIuLz*-b3r+1YO z?Hu<95qsAvkgc|atq?F#8_PP<DRPjr#=kZ5U=s!}NWiWn=q!`tfg}WiRGZ zcDjt{cE#4g)_?GbS~G^~uc!>Flc_KAPvlLl=hEl)f3{K0U(&|x=iXLlLuBE;BeK6< z5W)Awe`a@W-uf~sp)*M^lp4~aJk{-lBQAy7VmZq*l&+?aeyiMlw#_fiK318)yu1}1&TOoL^w?kH!64MM`++h2}89S@r&LZw0S?m zCvLROkDsd^r3tiO#!q;WK4t%orX9$4Zc`aTEa+?DxP+;HgzD!_MK;tZ-j9!}E~^&? zPLx!yRZYiccRQ-snAw{bPWN6D*Dt;%!xX+6Tb^n!yTYlCPn|C@^4-DnTS&5z3|`4= zYxbLJd;UWc8sjhV*Z#-HMn3l5qB$}9sHepBRO$J{$=>4;QZc9%E68(HabE~Uroqw7 zmAYLXY%V~9StR*K=&vRtl#oLE8b1jWMKecIS}UMH;@!Dt!1-gIU`KtY`$AH@ol4yV zLFJ;yLiYiJd{l2$3~e*avW~aY(mocH(q;K!Y2A-97M22_;1xn6XJ-2-r*1i5I&OFO z3@$2T&6LEFbx4c+twEbzqzJH1=CVx3G}1y_26Q#3q17rm?yxSRGagZ1+3^F?d0q|C zkGm`?Gwr0wFb7Zo-3dF6h|a_OLFr73zN5cKiihWSN8tsd!l(o*t$x7|I4DtV5`1F{ z?SM3=TiB^-{K0~wr7%w0m08*l*JQBSbO9b&^4Kv)`}t@4lcaPAArVlQL)h~{=JvYv zijD7-2sNM7v^)W`rSGFuz6v- ze&x!*ED6V%jcmW$;xaP}G5Nv=3o@?jVnmqHoa`FR>YN`(i6by|Y|pJ`OVs9CidI1@ zNMqjOkB*r&fO+_VQ@-Zyg3xiMUYPg8V4F+mzT<`0VcksEhepe;70_|(1x)Pt4;K1x zXdjU0(290GBR_uODmC%I;8zd;=fi%2#U_$nsGX`9erF2|o9=fzCYL&iF2d70st-(= zt$Ld(J{32^fAxM2^7iqU{eSOh9TQBb$%Xb8zq`Jp0@z;t<@EPeE4ESkU&{K(Hw<4+ z*QGZM;9?!qkKBYhgTlu_$(Ei|17*23`!OhW;_TC7C{ZBPAGYU$Co0q_Ig-}9mZZ)# z*8^L%7$-|~SDFp5Ad_Y^#@h`0n92@$^@)#znvG*jDk|v^aC41S!Z_)Jk5%Hx?@KWu zbc{Mh;5m#YrDdTgSZa=CzVgzd_Rgmntd+G%L{ld{i?xeDDOXWeu*>lxChIrmQnt-~ zKAV#9z664a%TRyI4m;S`@Weh`C8}V)zs=EGENu9Rxiy9D!p>A&C8i3pey6rp(zulI z>Ab`WeciTApU`ki07a(Rj8RKB<3*8KNrL4`dvh~1rU`j{=%x|=nDR+G*puOAh=VI! zYN<5}Bz}ilIRa3Q;KR=z109Rfw2B!d`7EiR^LylNW-kfpnT!*co9@V#IW-1!h?x2$ z`D}Ta|2<{+*@&fRTR-<4_EI@1ZkwXBWWHXoNre$J@{hs{=45fdVYEF9e%Q9)%R}t0 z&8AVov{xHSM$cdYTNCJe?;#s6XxT>k6AY1oNLgd!r}0xq)9Sn43sNZ`l-SjA{Km=G zS?K8dlWg?;5{7Aenw7FB*J86@cz2MoCbvd;_VN2~n#48R%q&mXFrHSS*O!Q6bw}-? z$j8-woynoDFZJT;MDK7Lo#Msc-!xn-k9OVW$~`8)rv}oFG7njh^rj z)L=`TNQbQ5_3cQ8jn-kRH2t*bGgt3hbgyq@j3BvimsAD7nBLt1}^M1gWGM>6V$?MhNQSC{$LX=KB2p+>1{0mr33O#Hr z${r0SXM1iixFZr^;N=%DmAaS&1l?`#tF42*b%59UQZ8#oR0sR96d{zoPieV(&x2{4Nc06cb77XYVnMrpbpNh;Jhh6CPzB=aMg(B&hyb7d0 z#ZB%dXCQ{Ut43z&*XlFx_O~qz}_Xk!)c>9R*jZbf3`_N z;gtrD*BFZAAFHHMUh@5oDxRe z;BkX*U%3rRFZd@KLGi&x1UWs`OiD_cM#ONzJ-%-S#?B@NoVz`*)uUoy*=!>37U&ub zlGy?Rn^RGY6T2KCYmUoo3#A5*eK(TrUPUm((9gh)oRQ}H9(GP^NGQh;5ADt?ng`WF zt5sn}E8_d~b)k+GK6ebGjIzt5jdevz$b4J8e1=$>TvS|1>PGNY$DPru)9qBJu-7dS z?k%3v1;790vI>+|*~>s2oylkbKdr~%mAl~yJ7WaJ|M|sQz!+%;IGpBqXrcu)t_0Aa z6#wlvrZLp9&)>wq-*$E<_$J&{J#k*A?S8fyVn?+zinUG@t(;$VQ^gMzj}`pBCN_zY zpU+8Al56U2cO>tiibZOdEGR0D8^Tonx^lg8PLbK2U5zri)L2isyHR|p@6t6(#zdZy zo4rw`QH>#tLSL{Fhp7O!gI;l%ejVmI#ElGP>^9oN>?8PyiF7MiOz!GABWJ=2P1Y`F zMw$2y{kS@2FPhZ%gK`H{Suo{@8MCKLI*rm|x)otzYZV~IZcLl_cH_E*`O^26?(w**&{tKYFvzk^%R&G^tc-*sO1_t~|Ta9nin!*(20{ zGjQ{)2rvK*X5S8}#_)bsWW z#B)U_$fx*?=4PWgom#6s`#oRDx!S}15hWdnl)zvbFZxn#-RqqAWO7Bzn6vmv`J~=> zyu9g@I5Qm=eTNXr7=YgQ7PG-+pY!mvT#OUov&uQE%yp$am_%Q@@H5VI#&nZ^9(4#Lh4(RPzPmo?_Qcof4})MOSgRz;B=P{$$G zeOupp%!{*8`r6o%a|y3syQM{1FlQ#;kweLN)D8v!VEYRmjkOo=u1DEcWoCD)(g*X z=OO13epMxz_j;1p_@3cK=Y|&DKhrLj8*TIV|r|fwxH(LTD4YBPn4A% zO8pKeIGv+|VC!z9b#tFb%3tw#=;88dXDHJ$*OCkVwo0B_TK*p;uhbI>|n1a zLvWYM=OOsoX$*f&rGouHQ7vLihs3O=@6$X9yX}G)5=_y7UZBX_lv0_@rS7hq_?z6; z&Ew@TK>zDY44fsK-kXV;@~&5QMVJ_(Odbwk0+vsz>dn3sM7uPzNl7G1lo4ahWy`E5 zBwJ)2`h;xGZXM=C_@eJ4r~jD!xuv(N&bxH3i^^x|Xb44P6aKRRw)gc-_9W*31LvRse#QbX%%7oTG zuN-qDOKqS*msQhXByFkpaClc)GLu!Jtvw4n&Z@CRGz*XeIn=NGbqsI?zOEqY=!6)W! zb96e+;}8Tic)I1Xp=^7{z{~7+LE@Hx%4Va#GTtZq9ZtWqhEztyq|{hZq#+3{O;0=$ zT=i+vd@v;(G3nAC2&1eBZ-Wn&rStPjIwoe*9DBFj--nE9Qo_*EebfAQv_9!k=>KT4 z8DsxK-a##<-@jvt{DRd)J3am-;+)QN+QY9pz5Uaf$bQr2LxyP+c*#X3iS^qE{xkbj zPK;9q96!wLE}z&{p%on|z)n?6y_u0bHJN-ea-Z7T$5ODxLj~Gsk}?wFo4l4B5OO-| zv1^zc0mts#M{LW@{~mGN@V3jm>0RcejVQT7L*sk2a(p&&Bsqipa)|x_{=0A4!RhN6 z=}hv$qt7Xz-|uUOQvAd}8WH2CT!!(EnU16XV1@4EM>bFRr_g_GX)t-TmGtf`Yv3oc z-mh;y{k{d5@e#t!->msOmkwku^osuU4sx^>2GyojBxBvOv@EzOC#p46p=VLe)!ZN{ z@hFs|%cdBOYq6C!f9}&oxzPz(-o&El2#qc(2X_B-JbMz$!`;B{t{Wt`ZmfX6HSPh6mf9?FrPJy zbH?^D7eYDBn#&|gaRWyii^>?+c&YnKFW0D~L8Ms@i^~%1Ug^3J<;dUOr6~;zxx%++ z?`_K^*1Sx~ua$m~{ZQYeyCOJYANx++QusnZ3!rn{j%*0%_w-C0`G^L86Zi@0bY8~= z$*FX4e?V*t`lU3^H|lEsUH96s6qR}Le0rU|$vL~90AGM6Z9@hhS?lZ>`QQPrYlZK@ zCL}!-9=ciU6Lx_Ch;52Mlqyx+S4)F@fmTHNI@N*usa{amf12dFchP5>Jx83G)oe$Vz;01iS(Me@uOK zRFe(=_cpqvyF>w{1f^3H5lQK;frvhA^gzEZtjql$A%!j@%=A>z=GsjU@Y~J{H zdi_+?>KBGFACLSegyAsly-cV-wsxmcAXH5;O73;aQct}T{_!K-=p({Uh0%IhSkzRX z0B@@ThS6>%)=VWe+cVNHgPpQBtDj{(GonGR{`8>w4M`R@IKy{$4``m3U@j}O%b%(l zKDBV=GKRzJuI!}ucK2cSA;=8mwVZ-1jc`Y)!#fn;BC^rCrDSj+A^i~jWvrP)`I_Gv z2{K`(Ao`V5TN9m)bG+Q2QOvvao+nklZ&`LlsVOru(*pYX#Kfp{O)S|=B~0zuaH%mj z&%fN%FcSDz4Vv+Mv^_XS#;d4;1}2YWL^pd_K<~i5o3%S7bG2BP2w2p#8^)KH zwJ`(`JqF3)1@A00509JuaMml!HVlhD0kDL(v+W3OUp8xz$ssxPX^G#yD^ZX}EOiN( zD4NWn_KEL)wl?2e2--qQ^Oc3??C7D!BjYuMWqusSx8bW6%>4v!cL~mkcven+Wf2~z zLZ2pP{9A#32(s^?18+wKGK)f?ls9M!&mhQW^q4rs=HD=w<{dIqMEsO2f9TO0#IOC` z^|nV~T%9~Yj3zlI_Iqaq(4q>)VS59dLsRVtM*8l=7ZVM8QUfG}1G^~hx zM{CC;$hwg)7E@mCvB=snP|%UGqZ z%%oTL(Yn-_j*SUYU}r#-3d7M!a6-FIp{JSOo8)k<5_S;Te$f%kvE9+7)jpYbdPPk# zNu3v0k5Ky}&`UQj+}lO-im$hn%Fnumy^u88nz3l=cbSupwzm06)pWeweXU3HCZ(>! z^~H-|x|^UQRo^V?#BDkqMai4)7Vis?9e&^*eW&q_yq}%)ow`voLupC!kba`rr>z~m zLmT?3o~r5mUf!C$#@RAks8q>1JW8h|+dguYc4qUV5Da&n$M7%OEW4xD;2=&0F??e= zKN989oPwAnNchZEOD^fuAmgQ%axQHDr=+@Q5MEZm1*avi_>$F~o(dCzLtn!BPVS1C zrdF921qrGRhAwK37juWDZg&)Gp%d^6JiWu7%_B%N2I0AI&!$IqE{*~Rj1-2q&UZNV zCitRzZ58K0=fCp@ng#h@hRSPtdnoY0-tQ#+H2dMiUkc@wjQU?7Q}Z`;6_RD8*3i5$ z=w&EYcfXPv6%=957ru1_iO?-$l_?GlMZ^uh{g!uyqb)Q0Dtdiq;`nKzqwcvt;GCtb zp3SnX!XN#pdgbm7TT|Bgq7{|6DB%Wel0SVk0Uqba<^Yq|Bl~k+-G3Xt(QiIwmj!nZ z+?^s-)d}kJ1j|m)eQ!Rb1Q6n+>mckOTqBQ4qiMigVEmJ~V zhMkne^}Q>GhsD4G+4h1m`kR5%0qqB}ha>%lFQvtwmHkCNemr?z^nUsA`*uH$-ywqmuGD+HN_-H7)qd=*Y+Iy-jjD+?aoT>bfXevYQRlnir(fYrY$q-|n~@?V?P_ z&v?_Z`DnnN(kSDzzc4-WysXlzO^z8|D?*nic#pkujbOZ|rE6RAmGtP(r1fxu$l9( zO|{aAuTn9;lCYQhEGmKIsN=ULM4KXX?)8o5lWmuROkf@dNyvx(9s*iy`A=47;a>GQ zPtA|b8@$(hhh3(KX1qf~F?E0~1S#bVR!V;x;U2AxUbXkquY}&UE&rVDna+ACF0AUo z0SWu5Gh`|%F?@+SkC562oo4RwY!EAR`{CSV_T7y;%5s_9yk^p%D7au>Dybr~Z&3O7 zdMuX`z-=UjypuHWSDSE1 zSoE3%0*OiQ@P2nd1gOrP0U;s*>TyhfxWeT>LKv5SxrASegzEx@-*JF;cFaA^ov=%U z*t6ty&sQHcB4|2ejy2QT`~;PkJ4d+Ib?H`v%UL?$rvfF2}Kf)XfL~4u_af_@mcxd-}p(iLsj_E{<_)DA6 zyjDN?bD$c;CcM)0Nc{Cso#TQ!MuNQSIArikX+rv>nV!emhm~nRG1(s?h}5S{_8faq zayFXpFD1Uo+J)Vf&I0B%6amZQUSG(-Wi^3KuUGH)tF{Fir%f&SSachzCkD%p0j+b+uAR|xwX?5(Ccz~`iYHB;bav|&ECj4oR!P%GaGYmk$67!SV_ z=*`|r>7CDC1Y;TK)iM83)O~(iVsdAFJ#2EHy{)>`kbZyvaMg5rv-H51_%cqEs+}%} zrYEmG;l9k<{p4?tX#zSCy;00?6Q=IcP>h^iiPfmt4T>X@h-G2w z&1>Bofqf>>E1D+`?$XILL3*dF9>*c^x=b)3n3V+sGfxOIM-ct?`6uvvd6vup;y^yJ zb*zD#<0NKqk(GR=gAs=vWQaU&^}W#cI-stb92l5#LCy)}I0w$ObRVqW@I(CR16Isn z?{TJ>Klp6cHF`18bGWfZ1=BTWW6^lW45m<(C$>-=6tKfUw|;@^_6c%+gz@~pAJnG# z!2V%mLA;9sO_qfy8@JGOa1MTu>tJ!orujJfU%yW(FdeMryR2NaDo=lHzfZs$HYUag z+qku3_?x2Bd9ax=Khb}0Cb=+jUAKhtGJRn=JAp&Bx6jy^Y0{mq2H zE^G|WnBB*;6~W{+{dtfW=y5O5f3^!|HQZURzm(ZbInW>dn`vgDY7V7@@xbqroY~a&x!e%H6YnA2<4uqazG3D#xl+ ztcZPF10T=cGj}s^{l5?2o0{T@AVvGRu4xB6Y;t!|2g@R*&%9*R-3s0y!Y!=>9>rp5 ze(B$NVr}m&Yzu*srZ{n!a@;3&${oFM^hQl~0d%;B)LN%l`q?<=^COzXVIft+&sP_X zAn(%Z-(zF{BZF3(=9%c=^X6aY2G^7_(JIT5mR1f#C2%81xJ*AFHkGG$Xa4C)7ShC zvXboS$E!>l?4G7IE=ft3*h2JMsPz*OSCYa4>GV4hY6pYtC;9x2TfG|`T{Vetgm-nM z44GD z4PBO{n4eP`U6@{bF1CNMAqq9+Ti~CpHiC5g3jgZLd>4S+F18K=FBvvu-tV>D!?&gH zUAUi|musj~ny9Pt086Du=X0Ym*50pzLIc1gH`|rDYMOZcmVOem{;kd#$egCO z6i(CjPp#6sTp7(HkM0_VQ|lv-zXqp*4Z7Kv^p+wVd)8l;<>Sdw@^hnl>A~sdK0h;! zyVV<*c-O&>LJ$_Q)2k zOv$}R?qxxJF=~|6Ar_mtM0zk8wJEH6FT z4l7Jjxj1-lP))NisZ`_SG0q~w?|jy3B}hwzjj)OtH@N0+lvO0~rYkBLQTttZ{)gQ- zN&+?0DxgcotH*)*tT+1H(-&BuZaHTD7mICRN{&F**s`d}YQ2ctxAv%cVY*biJH;98D~J>9_X3j-h7m0QDXD@_ujzGa*N~Op6}RFz-Cd*I^_TzR3~K^?V=~# za<%XMwGHFwhO9Dv)GevA2&&FtNtYCYMq_#`wH1U|9L1J0ope02JPl)^9 zJ1l=rr#3b8u8fBAFjqi$rBHt-->jz9_4a?ElC032P-onkBxmg-r$pen~Sx0X?eMY?yWnyyM!G5}1uu zNn&iGqSkmF-AF2&qWWoB-rzER;~UT~iCNyD6z=C7{(`K+TQGdB3BEMH$7YWa>CVMm zp}u{D%l$&=zU&56cKlq^dSy;kXR?Jj2ba}afg_~MwMdw}g(^pmdV+`|sk8XwDprh9 zdg+dYRQyKSP{B4TieaAM`&2t+HScHlEXW^@3kRaJsV)bcy$eYTuLwg>r$Z@^_KnIT zxHHIMv7Tw@QAP+M&E`bPUzw9`0gxF0~eVV?XY$Kequ5z4YLO*f&7 zy*jP7>C8&)a(xd^B8`~Q&WX#B)(5s{*HaqAQFpM+vVrdVtxJo8$zWNSaldO^0R16~ zMkiWMB3dh*sdz7Y<@l%He$bB*psB|w77JrDfZ@qwRRO7bkI3Tk+)tG+nS+lL=wDbRlohsGv& z7NOPO-?>9%>3Dur9}gV%fw2{0r;q_N^uo!L*|*2Tr;6O(2d$oLi+)HtZI!C%O(f6@ zNqZpLyKR;9N6e@$hx<3H$z*?~qV!%X<9zCvvfwKmiO7Mwpzy+Tc9r%G>brGkw|NpA_~sEyxl(BfJ; za5Oh58B|ItFGu#tk-3c%mSU()ri3aT`3Ram`2G;^Hp`JHarO44^uq{O5da}`&Qkx?bb@;4P}}b zet<9OD%d|9t4=PO+$+?(7@J3*dU{~eFgjl{m#sScgQY6oM_AeN`1&q=Qu+*lacr4L zDWawuuui2+Pkvs@C5$bEK0-@4J~0{G?j8hPbf8i+{|zo^R9u!=5al{?2DWaR4cs;g zm#aVgTc0}GpyPl8?N~-x6-o<^O#%HWd~sI|AI#4&C#mJp0(fa)St(*4UEfm?_Sb^T z-`@VJilf9Wcfq~*-N?2GGeRw(x%nHQyq8F8Cr5T$GN?N&wN7SPAIzN-%Nrw}seQeM z;IIz%NXO|$+R}^Tpq7GTN>fesTUpE4a78U9o;^e$e*6X;V7{OLJ2pm*x~r^3SBYX0I=w90nt8I1QDHni?Cisr`;i!zo#k7yM;YP9 z0yg>E^Zee^&uPuCqEMR^F5q>QIkxEotB2$8(OUi0(UPCB$ zPBE(WXXMi+z^DupBnMf3FL~UUlD>+jml%1Y$l?ezUdF%v}r>2tM(zkuEZ4P>-Z<44i35$+nNlZeq~L{s zyR{tGi<}Dq15*jJjIl59qbfz(bG77{kLTmTc-)S(d7OsbtCk-lDeA*qM_75YNQAh0 zzH(Q-E}H7my4~n_E-?N)?b60Wa!g<^K~-A0#HS6T8zHB+=An(l?vZsY=HRod1C1ps zqT_K|xiLxnFCf;6=`+%&9lM0pD$5VEu6rHNn`ULjJ~>RE;yCIre3$-!R1MT}HVYId zj&SuUg9Myx3HD8Sj69|fw6FK-C66lCOBrXo?cFNs;h%?3)s%Wj_f7fj8d6??xXt$W z(7pQ~{i)05NM`v~i{G6WI-k!+Iwu9Sl-TiUrF+YXk9RPcYSa6nzr{B>l`P=nUj%H2D&LEGp#wi zQt6*_J(<==z+uo%-a*z^F8q-K54R_ydD3g4BxpfxsOzf+nO}f%pH0<^DLIT-{s9qh zx<}_bPBT~-28wOfzL2sU6lT%i6$jiZ%3wmgAodE!9_N_rEc zkfq%Q{8Y2hC7}AqwL7=bh_aRNB|k$)r`qKrjX7wbtp{u2*vLf11U%(VBK+6v>DOK6 zwMVk=WRHzq^X-UCo_&ZDb0f?cQaK?VS?jNcX<4o(DH$3?V|pl>J@yQUj9!&k(z#Kw zmiiio#>XWzKsox?N_-TtOod!#^JU-MC}Wc1on9H{sZLnU`OL~)ZFYu}LZH36i)Cb! zJx|Tp75#cK;hk-Rzkcvm*poPfH{Y+BU1OkUeTIvk;2Xfw&g_iMdaEtUz0d)Zey2&4 z!h*0tE!Zzly@&VLaZe~KDO+kDETRRiz{Q7V8p-SsGvT;Y-&bp%35werhP~;e6ZJ2~ zC-1(TxAbA5`OMifXyv0dPk3U>3vWY5k(!+Y^TrLxZQbQJV71u!+0T!b4M|=| z#P78Wtq94Br?E8;JvIF+D3LYe=i+&ZogRf%t?M3}L)j#ADYoRVu)6?d_ER=NMBhV_ zevLkoA}5+C@c+iG63g7`o^j-NS?ro8;5I~Bc2n$H<4TS>Zx2bI9y)&}e50cftiTc% z)hed4el&o^(Yf3#(sQIp-~=pB*DmV4aODpYfvj3Ui@FV&LeskMRV1Y!F1sA|&^n*sCzh5?)DWvtV65Q4 ztar|?;`9GF)_P<$#F5w8%tVL2m_b!@&`s;{cJ{L z#(4Du-Vt}(<4+v;HC?>;Z`q|9)onOmVRDwT^Jl85D1jVdAIDs+*wyWomkG$; zDX_>8aXl)%40tT>&0{F0`e@SXxvg*iw{t2LEt3937fwzp#5-TD8BNNyN^R*KlQ(VD zjzLAu51=Q`rA%W_f$k_|j03Ega3>F7wkT%fi(4od+|}i_)+j9+b+d6+?f5{dhEpQG ze1!WUC6852C79+tCzbeDN%lCwq;HNy1Hf?eEP2tQIJuhC4ZT79E z#>dfGH(R&jm#-0XhN?WZBT`gQ2B^&?W34<%tCIikJsUj#zV>zYzmnC`^~J#yaHtpF zbcRVaqvWe*cMFHFRaLa3^HX=m-sa{Kr3<{RZ`p*c(F_MTT!- zGgp-`jzQA4mmwJSE|Hr8{^>MaaN*j?O%v0Op2PZ<8uu^gpBc4oxj_@z^5^U9ne7`@ zDEsg#FuCn$8+BFc;#G7&pm+0iw)*v`PtnFESkb%=4&=vkIJbAhF9vI!nEKsJo63E+ zR%e7P4D>ybMCQwlrmJFh9-9*qWuN75sE(z)al=B}MXy^j z@?6Yq7GW6uYvCXIZ-j6ew@uXFz2+Jr~-BcYgBU zE^6$K*C%x+DHi8qr%Ho$nFZV9g>(N~$5T(#p8ZH2EhLYS?j%WABIL(&Z%c>Bl+>h+ zO^yac9&OLMoQ&*MzcZY36r!Z1eS4U=#rjk&jupEuZC4b?9&CeF2-+ zRt#+^sV?)Tr8eR%oBa^wWzXe2jgBe8s+ew4sW${NFY9uNo8dl$zU%thxyf`^6bH0% z1QxoM2f%GJ3n(yjL8`A@R-PKH0$8lpe8<r#k7pg6S30_v9z~j3gS=>saS_v`imyQ8b)*qFU`~vg*{iNluftCA|5I zvLAOGL2gn_KV8;)_0avc*#+;d&b!yz=5_}e-N*Z+z(dW4yA8l58wBf%MKo{ zZ`xG7IrYOUf(mrPY)*I*ed$k+&Jo0V0DB`*S!tKIl~Gw=`#^Iu5G~_evP=Y{bo|y0 zef4cSNoPK++&W^0gjdaO;a-KU118X?8;iC1Dj(T$N*3SBF z)-TK|e3Lq;T*mYlnZKpw)4TrcTLl^NjwAzYu37yfZkgVb6m$Z??~AEnq0Ej_+c{+} zxxim#U$9#3f_lGN?}*xE`6oXM7B*RY7hu)*Wr9!7k#8- zwymO%+7yh{O!x`Wm{`J-!Jx)Ux5KT zpXryq$WCpi9P01!Q*&(<>^RTU?E>qJ$e|aGz9cnYv9xh%Kwm(TvBa)FUM2Pdsr7ej zE*#gtk*$7?KmoKuS*mn+$@4BqZ>o>?!b)_??RRi>3>G7ZBm&9oog7*BN`c9GNvOXL zxKAVa?c*ZW>8afP@})k@mqUivbKWZn#WZXmv3*T|q-OVm-UzD)C1M09r8f%Kodf%l z(mzpBs}RduZ94YrcWIr`$=m=+*6_GJ;wGkjS1+XI%qu_aiY!d4m{a=PP2jWC2BRv6 zt6Li04XGHZ83<7*wP%C(SG%)d;34AIRm zyO+vBko@5}nMXgFn&g+Z5<~Ne?2i+>7$lg5!V$2uP5=8%$Q-lcfxjc0FR1=+(&{t@ zcZo=az6UVX0PwG3E|rOrqkPt8*?q_KMgq$W;TQvc$+HVtnYQ4t8l-d%{GWQ>I`LLES3@%rgt0EGxPdv1_R}IAeQ<(M&EM5GR zcbXjkLtHS_faFy5uaaxyUARxe^}6|0myhBh61>K9r9ZX@T!hlYq; zHG7najGV2v_3z2lThI_v7tZ;Wfo5D5AvGwTtXvmIpBP(5YyJfW8&Vo=R7T4D59mgR zA_G!_)c|*?+v)f|#iW9^fJSGueG2Dmr)CF~<@w;jI{Z4F%fi#!cW~9}Anu~)CU0;r z{jcq3N=~X zt6$IdY2gBi6AT3OWk4@JlQzKzsX(c*;K{AxrzF}SSX4&@Wdi}6Wixucl4h7Zbzr>LmN7Y%;e(6WaocI zy)ObVH9-x)-f)IRb`?bRbKKHg7x@;KF4&(~JKt1~%|P;Yv~V7Njd$&Ktx7*a!v z_1`RaJ#@!w&jG*pf?o-VQgTh#6pu}mR!*#c0g*vYztq1h6@C}Uh(ozcY5wc;f@P(2 z$8UQo#Yp3l%<}*ydF7D;GTFx*!Cf!bFxWE;=ux_D$^g0ATcMbWv=%H*G&zOP!Fu^v zi=dfF_62*zQD8W%{BLHr+)D>9O+{mEA)8P*&`lgTuUBdgdRg~WkwRh3vcap{i=0^1 zqy>99Q{|>x0CBsjIM7|AHZipItwuh2MR`F(wK`JK=eyfQZKsomQpy-0E3}~muwc2+ zvY$`Ia%Gy`NK&ERXg{$fh!Jwu|55j(cqW&VJxPP%QM(S!*Q-RUI4~#>OR^-E$3F_w zxD2zpvA}-E=>EF!Tb3dmU z2t*An)WNUAkilzkAtqnwfM8Bxl*Zpr*XnmGGv%kQu(&5TFT%Gv_2jJMT6;e~TDRkG zmGC+Jj^bx`9J=Tos9&x-kwzqm|Jigr=RZAjAXX>FNjHcVj3(g49sk8FJcRp=X6008 z0Qv`-WDD?yQGE(%Iq@KEr<6Jtm(jMB!2H}%La-^h@V&NHcP0oz_0gvh8l1jKL(Uy_ zyiKiwLU1Nz-|eq)F_$nN<=_6Jp7&6Gx;(>rI`HkYk#ZLHA>)eY7i(*wQix#})}B)% z_hDux`zJ3f>ybALK%a(tLM943n$Zg*S)xM*w}TUC+=^_N8lSopYvR5dI+<_D#5BqC z=6nyJA^HyKDHBayG&s7)aA06J7{r;IuicE!jy*6x@pb!?7B_q$)|Ta(={xN(^0aUY zA1>q+Dp!UM+auuiS}L7;wD&%xx6`1l?ru#e(ZspoBnT8YsqXyK3Nx_6_a^G*Vv-}< zCr#>hEANyK9S5#ktwVLEM|DK_PhYBRY%PBG)L zZ^Iu{%wjZ>VNE@)+HR^8$$Q?cp3*OHs@33SU%fj84*b3-wCWewOz;d_*;u~*`C$uF z`-PXju72+?w{sdX60aC)(ItU~)b`eAA+7hldlrOW>s|-i8|$v4*Iuv|u$9j#WkB@5 zbasoZ%F&Y#=-MnT|J?*wI%zyx|8H&>Gz>EYkb82_1+a0&e2q6ac7HRZf{6th6JBag zw`)6byWT<{N$ymoarQytKX<1h?Mp1b>K1_1VgyB7np1mIGwL!afSir(2&M%0MP8d{ z5<-&6=K$uFc)db4U!d2kUiN3WR86GwDZZ|yfswuqr8PZ|209{Nby<`L3oJjPfrOfL zlk`@mN^S=T>@Ans;$NsX#R-+)_L!4wS-e@uL|K|k&r(4(SQ9m+u7C#mv zGbf7s74i9ZsR}vDTpQx-W(ED`4w*W>Y_(+*Msi93}hM zO<4PuH@4h%Kez944XN6x4ha-TUP#}H*g{KT?t+ke+uTM6sm|lfDOwq$>&InT${le? z+&Ss}(V9fp=4-dgMV-6V`J3$XNS|F&<9KP%4jnRMfD5iypPIKX^7^4@`K<2ba^v}3 z>jr#jS3;`3F$`WjLF(v(-UqYnkex>1uXWGAG@86V$^*}cch0)G^DCX=^RQ+eNx9@QK^&EKNenGi^B)!;5a zp@rZN9z7N%@l(O3Z5+A{Y__K6@;bYJcz z? zY}De@>p}DGWg|Vkj^Z=+vN33AlMc`hE9ZIr736r+E!nIvyJdQPeb6y&*(2;KimI#8 z!|!&DKY0wba;`62H2@QWe8uvy!U}3BV29cq`)&A6FOD{noww3;i5T4M$S(3UDPGKQ zqxuSOJS&rM>lFrH3*$s?dx7S!a4_f7oW;F8{aReELh@ccBgkuTm+^xur=Wh-Mm}j2r{gUC#f}_fAoz2b-Y30OPR7 zVSi6Ck9^8kUCpPNIu@OR#8OidLn22-z6Ea&o{-AdO_`r@B{%42i0Yxt`|}0UxGG?q z>=TITFMyAqgn(%_?TbbIdc5K4fi{Ov0iQ%nOOi`)+GF-sVyYeX@Zl8<;YGf6fmDeSC#qL9fee^J8nRxWtJBOO3uB z#lDu5v?WtZ9DQyQj%P<58m|D?0E5ZvpJs5}Z<)>cRc5)h`cXL1Fs^@wP&B!kQ(`2A zN5F~(cT&4q37q$K&H7Pq?R_y!gOwr-UWHa#foQj;uK;ie8^jJ?2@R&V1~yRzQ9U>Q z(JI3M$;)&(_It0ZY~6MnAmW2uSfg^)*0t8(b%VVx0}jf& z+tZfd#gdacx@!UX!DJJKf7K4*Fs|;V`7P7^{rgKdZKs~o;K9SKVc~I=HN21k=p9ZBXa#-B zbu;qE=$@16u6YUGdx4BEqqA~E62etbB{nPA`u3pMsI&2-Y7xm4vHD;;+r94kVw&{m zDk2HSXf->dZgHj%2*W~A0e)i|5~;ECF~{B&HGtkn;acc|w0oYeC6v7gEW2ZK$;Tb(jt<*i6ucjI-nBQ@;8H$meA3?OoN)9f zX|h09%AfcVJn2}+L=u;im!@v-IrQX9Q|#;WKN3=wQMNpO_G*5mzKbqL5QdoGFL$dA zFe~O->L0VJKMqhXkc$q#wNAX!a-2OyUN0JOmQ;^<_^hY-D?XzSD+510Yn@M{zVAYv z38J<)_Jk+rkg#p%UaIWHxD5Z3`74bCUxkJ%Z}b7^po*Ju{zLj*kvb3TpOn95d@_;I z%a(xy!$4^De3Gw}N7BF0=syN~hm%j2*FvhUPslmANA%5ge6}|GymMprquun5?nwM^ z+_w={CIHqQ>#LnJ0Lgrujz&~}mR+hVTq5e`PtnzEglf~BgP?0*(uU+)C1V~RtQ6#m znBLfq#k)del943AVGreLU=9TroYgb}q5OwQ{}F-lg<5-zxvTid^JO~%;R=+}D`3BD zeEE>2I-k$JOXEtG=hu;?f!u1B_2>A_&-^-orSiJ_>d8U_7^TrQ8w7IL-!(6agOUI( z`b0KH1b?>U4_+KqW6JejPEjt?Xn!OBYZ;5Tvy(7Y{m!Qdaj#MwqxyRT;WlUYw@5=$ zc}VroA}@Xd@fp^0Ep2yA0uSf+qM6GzfXSPBvW4ymM;flpqas>vl~0ob-<^%5b1RHyg@T_&`oz&b%l5WLjY{y@K({2%5mG#gU|WWpNvVar44 zo8wW>8Y%A=PhMJP4k0##5-;+XAC-+h_(IHWTW&=nVN_@8WZ`|iTWz#+RRS=e=CH;i zHj^)2bL+;35>;?Xna;mf!XH}-P{{ZL|lz4 zN0;AyUdzWSjxuo_l^8v!ZClizMbvw;LA;i{P{XHG?K;A}_lS}k@t8zvU8QBYZe^QQ zEEesk&F`Wt+uY7C%noIjY@trh^Rtde&%i-@sS2T$7fh)mviVn81m`^A{Z0)Lhx~^; zP2DYFl-22Da4%fHBot#hpVuuJS~kB5tg`z4$oV9~n&#gn-v0UGmJ`@TJ-7N5kmwGPiK zG{_jHcMsYwKei!P{HtvKZrZ`-RZL069~-zMv^lXh^>7a)v1w<>7Ds1FHfVGTcw@Ax z(a9D^Y#^gf!SGUdooThWzM$zZ-E=LueGdO}hfXhLAkWas-B}WH7t+!qo15Zsnmk_SCqGd z>IbJ$pFhgK{s{@~3>pHjVh6;IGN6f(NTQO{$(j->kCk59l)nk}hMAc^RSg1Wl)1gV zbwR|cRo6`SzvP_Kz1+VnzWO98+;3jm*dnxgJzp5PrHZ?bAVS2;%63*NM?;;sRt6SbBp{yZIcT(<<+ASZ^u&6?n%< zvrBT4i6qNNym?`45y7r0%2XE@cfD=TFdx!H?xFot;I`-QTkd4?O6=XcT;N%O$xi6# zp|H&Ii*NA?gGg)GYWbmMbj**N^orX8!?!=5cO`tgy<~hsZqj0>Fv=ImEgl%bB8kD# zkv*nLVEh`&Z?c%R>@+oeAbH*#e=)0U`eeCO2F0!B3VhL!`gae{`=5Y#es5RR=Jyay z3wf%Y|-ooWliVs(NhUkU`%atpTgJYHfxH z+^e5B_r6euA+8|V+O~#nweAaCf-)}5akUM zx$$KZ&*Eu0w*B{_Q^E$+D`;EX{5dk!3IC?pOmHYU%C1&s^e<27Bst&)npt6xO@vbc7F>>AtKVOY-<3F%|}QUV1OQMVTo2}(UGhoG$*%BP!U zrvOc4mM`Nh)=P?`5^gu$f%Xmgm(^!aC+M+(s7tuVQA-hNSSwP>3QZ0++}1D(-9r@hkg zZ+SfOe8Vk~e7ChbCZihigR5=z+QB;FOxCGb>}=7VTC4SUXF$|nVmfn6+N(!7Vh1#9siT@H|8h%y)*&6s7niQOdQ5H1MakKw{j=5 zA?N6`#}&Gm5yl)3W{I^cAf^T^&6WJqK4Ak4gWvx}%v3(K^WQu<)Vj)m^(4UV5-+?M z$1|%~T*;QX-k&*puthrF7Ob5+#kvyKNJyC|186^agk_j<8#6C5Z3PWXT1_Ri>v*H(xl&L*$^)MmDO;tgz5)>qzDDonIg`=yY?ZkrDbd;aTOh zBrw+sNkD(UDQll$Z%h|NS3e`MKTdYm8AY5m5W0cRJ7ixZg{$@ThdFs6C zwLgcC9p$0Q^7<#xOv#@ET)>RyuAG9`gh2iw;hlT@BPIPOHh~bSTq}i4y;>zX6v zeqN`Wc}qs!KY-+T3;uObZPvugsB?uTiMua*Bcw`Ab{Kho{x4ISkR?!w(~mo9fR0x; z&@N0hAikZ`r-RfY2xZQ0bW?vKKx`Z1A*SNx;)(X=u>o)$I(o7WlL}iC)s1=w(H-xY z`fgyB^M}GCq^7GN>>v3$&*s$-tXa33A2Dd2!B`g_m2*`y?=>Og+-g?%`Uc%hC1 z2TTjTbAU{@V&~g7$G!1-LeUqEC(jFDWfX|`%!odR^8VSb6jHyod~jm=D?L@4?i_ji zw&7BrF{vl-Ya;}D^u@nJ2MAt%AC1RDk(AIKl_A?NPDlZd3M8;R|7d<7(S7#h3<6#R zCx0aFekmXobP?oe*nIFV`pAxaSy8Wq_)iUynmZvBlRU(4HrK_AE5hqoYQWU_>JpdW}te2Z|<_PlYk|t-OvBP-@m%x`!W@_LB7px?K zX~@v8uVOZhYfOPTA!UFUh@(8fZ}61}Uk;mRaP-K>GM{h}^LwXcsgjP44w!rw-`6?X zn8(ZYWjZz2nwu|^D_jh2OIBiRL@-)Wh$1U9O-bSV!*#o_L)D@)VabgK6^x0ajEzX< zseJcEp=-a?kyz<=tLFNH7g(~&ThH}Gr90EE`3a1$+6+Q^W)ZX4*IJJ6lP)~_7Hpos zqz26h-Ev2qwg6_7bF#pkz+5T?k$d)iu7)ya!?4xa3~q=3D_cW0lIicH&ahCYh0F;XjXuGNE10G?N;1 ziKs`zUHu=L{y#q5b39G_Am-pt&u{r_EZ_8u7SFXmZ70qR`u*6D^N21R$fwLc{6+>} zby8NluAc}Z*t@y;n0NkO$gxVBxgc`8!69XeRlBVH9ZI8vTaQ1I-i#M>XuG^d?)%v* z(U&Rb+U}QxG(uSv6~CkHi$V>$&uT<=ux=dK5jHJCVU*bI&S*!Fsmq=}Q#@sQp6^SM&;HSXK1Cz@fwp6FrvPj+pY#?SmifjxvJ`y zKQEQ4hzag<&2p^T4jOP}-1j!@+X^hp>qAD>m85JaG&5A2K4GF;DL z5^zbZO6bf`fyTR8Ubb%1p&P86;Pd)d-JJ>8S=g&S>;3M@aL2`uIdelPF%(h!vSl9? z&QHEbt_BqJ)rpnf{qpw+d^s>$);r~t*?tp*f_;w}Y>YjBrR2-Z@h#odFuTPRSZI0O$KLU5O# zKKJ__|B=nLn|aMO$C~3Dm+NsSr58R%y3JM!yJcC}AC}RxG#nr9RdM{`Kc}(x@P8O7 zAak{ci~P3vDBO3de=lF>KK)%&_b}&~RFqc3_J0;R(4%E*4D-@$z*s+@>3%rqil=h& zjtBJLbjbGfk`GsMHU>Rm_0tpL@qWjuL_b#EH&1j+?KIfSgRurY!wX6w$-Qr8P$4yw zDLn6$^~dyEgJfip)^`ZOdT-pv2t(UUDv@|b{|tkXCAMlOW2iqvSPqr`b5$*DN@!m2$CLA0a|qY(>CF>S*VJTZ<6euZMCnKP%`RBxo{x)@ z3)_PX!|R+w_jhF1#KKbwS0fPsCuvDEiizoisJe?Pum25f+8t7|MRlcr>EGxy(V-vwF*Z?b?OH#F zKq>*q4N5Ff52xmn)aQGe_Xfg@z|?IDim2&U()Z~Y2Y3MzORB+n&pk+?OrCFU=WVjE z%uMc%IgHFjEZ3JperN-lc>U*0lXI&1z;pe&=GtzprQj`z>`9e}cLi>h>=&)s51 z06|#O?}t}Xm_qKKNLHlV53kimWFv_^##j>1xXmeU*$w$jGvi z_F01WnpRx#F;w`6AJl=SZA?wFFM0)H?>77-OV>E*;@NV^$WHd zCAzA4BSHzFWR&exh|9Dehz$-H=0`}t$I)ZRzc0I$QkUz-h9}Le`-03mz=b@on&e_)|e$!)PU;>ObCp052zom}Lb?_X&3)%TrQw{Yg zuFB~1lCu(3~YOI^p zXQ>F?yxpI>Ri_zNf6FL3Pn zcI48;{-~g!fGw!u{A_vCFNaR?`thZ~i0ZUgUTQ@oT0D@}8%z5^y}dK|81?XFUQRXC z7Vp-d{4ON#7!}SxVwrvOxYqG6OxQc)1rz*Kf3IyaLeJ@AFv>?H%P9jeXt1L^JvvfDf*3rh-%+T=H0syGjUCLa`zJ2G@rCy%`(SX-^5N$pV zUqme6s{ywC8s2=&TyhT)+)$N7#D>nx#?Vw!v9+89WueUhnD@VYp0W@)8h~*y>%}IpxSZ0dT z1N=awOO8O@UjAQ6P0IIz>eHqA!!uZX(U=gfu0O=b`aMs*2r$PPR=0^ibA%^jMUdA= z$j%8NI3Hs9waSWaFlf}n`*{xKyAVJF**M@dh_dl~M`OXKCfQS@A$VPuIc|KW(ygB0 zbB)8D|J9zBX1@|(yw^=fhTB#FZPLQDAsle+NK5nj}|h0ccP=-{H-@*lVe zEGZMB$@J&fP7!S`YWo*|{P?Es@@vRbuGf3ibst>)_vmj33a!waY$G0gTUvc{isy5z zzkTW!Q17NGNBwNKK|i?o>@!x|nriB{@zN>Yez*@*-jnngmuidyS0R8Q3m9$E9P@sc zoKw;DdAas3`7)xxhuUjYz?=V9#?L2ZCQBlInL{I=owv0wZH#8!a2q)h1Vn5Gw|hf6 zsR2G$ZY@4=mV*q&BJ8dUI<+exIG|k~TUK|8Jxd;T@yp6Hy+-jhMm-w*D|-i#i*~0m_$Q*qcRJavUss}S=x)+Y z1IkA4u4T4MHmm;6wj_r}+1;XRZi2JwM-oci$dHE#FFZH1 zudGFPafHV;Wl%g8`>)ivxwf0Axf=SeDkqJIj=o*1(jQ;!n|NublYRzIebB;W^=o2f zz(R{Bscgu>w}DhxS2p>qjDCB}Wmnu3s0b zlC`i!{4RLW5EsNs1o~}e{9}%bhAND$<9v>=I!1WQM&&iu+Gb#`!bEOUX?k;}#alB7LZ=8f|vPx-H|^@o&)YdOYK>0aD}yYb0hN-rMjllYtR**-9H7ox3)$YwwBC zX4V9oA?=RCHVt!N6Sth99*~xC(P49p1wwal)w++`XUy+2_$AK08Ywyhmn`27CBYVv zJ`_3kaS{^lYd!w=vbrjiA}blh+mJyK9_`8w709|{-|-_Epewz7;vvDHt5(TJ=6%{* z^QY>qY?0E(wRGa6+A(RREdS#Vk9!dD7Q+<348Gy{NR4h>ZGUSkYR-y5e+^pkr!KzP z%8=NtXmu_SS#C~rCm9};3P<4G{Pv)y@+)T%sUMm5V~a=rgA zo8ppMaW$8B6d&mSKa?_M&=KV>CbewoQm+`h(a89lk!pS3S8_2m*XQS+~kf2z`&Nd4E68|VNS*)auL6g9-2;u zA`kGezDt3MJ>vX&3j<0@aSDtLLrOI$JS|;R{JKS<%;TrPdU;04uuRO zshY8Wdn|k-opPzwuWrjYgSZo%yVzwec7fgrt=wJ_O$HWt8+BwO zI_*T>(6f{0oPJWHD&uJtK4W-HndLt&{@%R8$mqRE0BAi*2O_4uY4H?!PDXMO|N2o#!8PO%zMhu5U955usjCD}j#Vr5uJ7IA$ow`hq2DBPWXMkc%MJ<2m7Cqn?_T73|E9 zt&5bDN*CUN(((6q|i@rbVr^T7}$vXPH4@!kL*69()`nQgBSwDVVD`u$?I z!cwPksPqVVrotJS2ILK=g6hz2(zHl8q7I7M&nl`i9n}jpShibIozM+vu`2|H;#;@p zZOg+NOR^|fv@}W7<)?i#oVyi+z;lfN2IhF)1@C@1V1-^5X-TH`mW`7$%uJ$u=lAcy zQvPv%Di98cIoTx@==L1$Qn{6q5F$3#=Xq5C!Zuv1}W5nwMj?Y|(BO zTZG~L-2R$Y@Uk0fxws(ZO?4KP+BNmEJhsBGME|K4bzKD=JGVH$H1Dq-f=MFEkhs$Hl7rdz$;gE0FJTgCEu7>-JX5hL9u}>H; ztRlg0YczaMeU4+c#$LbWO#a(mlR|QST?oxh#I;;9ZjIsh;FG$)eQglbBxfq6V0n_b zJ28#m^Te^|m;-ChVe)$uxwtB!_aF1#b?^zlDR+{^Fd@thW8{O*`B8D4P7vd%Koi1{ zcT?#LDzi@Q-_A8Y9SF{9k|G}70={tP&|fU(zR_@z;~Xl1?asl1Dx{M-|F?`6hEd}- zubVWAmOiO2-b$t7y*JbSJPLo}RD7MvN8@`zwKCBEm1UW!iTN4RZa$~lkif8SLR-+m zHWWoZ)+jAOTcis%34uL6hdxN$9mNL`93rGEeD9XI3>~ZyGAE+(KSGMe)}R|g!l}DS(`EBLE3IiF*XfMUk|azSWDL0d zaJ@092B&^CFe62@YA;c}q=!|RRS{Uf4|*M<(+>77IPPe_JBQ_X1R^RLCt_(uTslWA zTJM{@8IZ_algSm_kV;Efw&Q}0DN1QzC5piR%HJg5Hu6*EK*i^`Yc*}S`CIdMk*eOK zcjqrRe}~y+kOyQdE2#k$6w+D5eG+M$*KiXQGbB}Ox<{>dR2BzfG|nqvy#v|hR9s9BUK&V?+@+v`>?>8EMW^+7BSyVpOl%dU)R)lZ9%oW zkYv%{#5t~9VGYfho>7?7^Adm>-wNO0s5lP05W3LO9H@(bXJ>O7OEne)tMm+mZ1U%x zVAFNu@2IJQ_Z9~S*fkH^=+H#Vo@fk z1WVo&@1E~(zwYKxoX`0F8iewCjDATpq~>cX@lk8c02?a%HS@hi(#vym@alVFdR@wv zTA9nIS9|;hKD6?4aLQL>7!(~UKTPe}dLNen+OilB^|2^~y^50Q#yIbR&Bj%^aQ7>j zS7#^dEiL6zSY|&~@{KrxH-P(xfVe!pZ~RPz_^bEQZY3T6?rW+VXaiL#l3CL|J0Dh> z_q=2THeB9uE!3=tdCukE3`9i8;L`Q(Ra#a+GB{dDevd@c^GU^oI*0EI6URv}jQ}cwPW?Qcz|LJ5&FIQ{7z+;oY zvKs#))U?U5rNv)i0i({TThCp^c+^J@GI+u*(#+LT*?u&nw>I^xFVti!ej&Po;7k-8;gIBkvAhzo>}eR zu!J8<>5|cgp?vpUY-(YF2IjjMwB!b(;D6^g4>}ibelovO5$QNA+z@tSD*~5;2`|~` z*Nb|sg&bsUAG*AxYM|F!Srj($Z051JZYT?eeSn4JDSF$ zoO}0qq)Z#t-LcsR13137Ur8LBlBsWN$h&P#1GZ#gC+(_n$%}RTH}y!qWP-J^?e+jx zR_@Omcb`^w`HTMlq$Gvas~74jzM!izCsTakx2jlW_Pj?_7RSYabE^yIGhE8;M4?TCsrh zPAqM0yq-BiASBz#qHTJ5`)k5J&Pcw44~^&(En{97s&R2AcM@z4bjzXX3MKgfa; zRHfr-ifLGC*@NT<;ciCi9|b%~nLsl(PvDcaQ5QdD8xyAJr601q;_$)$scz;18h#f3 z1Y!0mKgna!kWgxb3|W+wBSevoE%>qU>Wzs2X~F%O!2TI=XN|+aIA@lw$zxf)Mq@Rw zIE`|)xk3`I6_qZXU%-Uv$L0{;)^6#N`Q75yI`TOM$W&AMR%y8L{55-(7g0h>ZEa+38~IEfbw{83A2G!_H>&Gg5Yw$# z*Be)!As?DY-$E`YW&~@6|5$a)wwtZhexZbQ1t_+NeGzo?NK-&R$D4IaH;H#A{cQza zuI2VVAPuE_9n<9;;`r!$vp8MWZ_a?M_vnj^zA;-Xybym&J0^i@2%z8}c5~aOdMO!S zIn>qA8I!45w&Jzo!y0h3d3QQEkX0Dpw5_K1yX;=mYpADVQF=7D?TW@kpt0iC1jjMW zu)v>Na$KlUr^Dc;cA}uL!M{JSr7$-hh|Y zIUEJLQD%2#)B8BdkQB<43D6Iqgz}+uR}!r700v<4>snz!5w+@#D>8@I>XkE?Z~475 z0X4k+`kRDXtzMIYs=>vo1^bX{;Oul`%A@ZB`IKW4cR`S%BNTDYAhYIASVMB9xp64A zkG;1A`t9eP9>qz-Xe5dR_@yCQ!U`?)4)z+7-fCuyNpTF@1DKY-BvtAIZ6kVSjEAkr zpK+1l*1HZxf*Y;FE_;G0lb#5v3a61Algl9th!vGsHimsb$990I?clLwKWw(Tc3V2L z4VBk%2}kN9{+!%dz)rra7qn{{<=OJUkDG&hMG4QOT^Kj^)^)C0=NZ~ciBl+r5v!Qm z=lvpqUpIDves`n;8_q-a-?~1w)XRHw_94h6uuud*rTXi z9&l|keE%nu42~Q%dS-&6JJ_Vos%s)YXBdABMGM%PYh$uTFI&M}N2-#*8zYWuYlyd^ zJ<{K{RM7i9Eifnx2)^-aV;}!kBgEq@3Ndhj&!xt>&<~b`ej30vcdwXNnM*PM$v<+K z%^2dGpU_V-@s-d{B}+}1PVb*Zs*B?VZ~!}NN$cN!u5@IdKtKM}v<+P&3%;=@PG|LK zPup;eCG_k}KT?T*Dg%{jc@^H;V=~;-@7+FflJ6R6TDKfM*2O_u?G ztogIv7`>9D*wMF%k#Aeiu`eWtLIqy5o~k{Zssa7$4?&%WWAL%(o1Qym0o`0-N?f{? zYc+Fokj@v-#jHn@*4nkmz;5iyjJwmoHgm1N3c|V6%sJX8PMz${FQ@e_-?RkrW%$*6 z^A4$jyF|PpIsv|Zed$?8>!xQSOrrxj>^n5qgje)9 zeN6}|iv4$kH2H$jQAY6b)x-YjlYQ@n>Wu*m#T~7uUFgb(1vQmlg?+YnC7Lr~4% zzKZXV7=*Gzs{tanj#THfkahX;*N?d5B(hUl->XXcCeieGVF0I{p}K*KmSBjvSS!&V zM|5vWJ)t}32<`4{Q1y4ui}(p)(mkU4?FWp-1FUbwK&dchcL+rzbXdst6)mJVq?*Jp z6@jAydhn2qS*4h%1+!V5%U$#w&nERIH_I7EaFJ)f;|^di@!%LXVcF{l;sp3U3&LzBlOkK)|0_qk(?k zIw{6Li%uM(oq5knLWEq=bt@f>$fPUC``%;U2_tUb3C7*>b_apKae6ZO zI2uVKrHUi8v%a2db-A}rVJ9|C`qWlJ@SUIRXaDs_Gd8;8`GaR&;MaR+aa6&|4YGNB@!#1?0YbG)g8 zl}^UA>{(0xeLtOh9z<*6Y5_2{5!uSc$(_#ukhVNC>Gb4U0+`ut`XI0Czh1GEoi6HL zWp)(*Ns2;tdsaTvrDiyu7j16wx<4MSoCvFABz}8g?t8jJ;xu(JDNS6_PgfazfqZ7k zC_j4d(`Szt3=(tlYv92Ts8<-%>1;t!+~YOS3(#{QSEy&&ix&e4xAo;=9TyYTDrRB| zcp|7j-!4*}o%tBbNzi>ML{^n#S4~i~_Is}(e7~C;u!oyMimJwJ(TO^*zc)lfEP_9! zxzz^EdHyIuD%=I%45#u3y9}57n{s71aBt5WJKNPa>Gvs-Kg!&``5R}sO)Gl-JN)-! zeX*LZYkXJxok{Dm=;_E{6yA@-#4nP-ZG4u$kpOHU_thiEIMso3xee<@Q_tRlqY-E2 zQ+qcNGe{L0JKiOIA_>MVfxTfA=c*YFM{U&%u{sWkR>Q`;CGf-td!2K3ipW}`V0TJYpBx8U7)iaHao2%a9S zUwd^yHy)7Dr0~8w`v?N4iLf z#^bqAB%3_II$P9dD65(kx6J%x=UF_7MbM~)t)z-%xjdUfLo@5LB|PjrTxJ91gXR_D z-$(hxmbN2>AF!E6KyfHY3L;n4k7Ews67mgZPdwX-e|VLOXR*?UZK9I2AAoG6Fgdxn zsu!<$oSD1>amO!$i@7;VYKtuhUMhm6E$9rzZS;nS1TyP1-dw03id>rXE2i)j(85!P zK2%yupMHR<4U{r>kY+Drm!Zlm>7+hidUF@cD@pgEdF?{ab}EIS-`kNR>PEInFne9I zhDfw(#SQA#-(mLR_fvox11v^|{lATu-&>~iPWeI`L&Rry_$jmxvP1s#sSugbZf<5A zEK)1&sjt&aJ8GPB!!wV1BlUM``n~IinrJ$Svzg zi61<|*oE#7nLZS>NBf7UV|7&4JTuk*<-pprOh>D&e*RaUu|Ii96yN`Dd89ddThvr6 zo@}h#Xs*H8ka0VcI#P#n^bu0ByX3X0XUvlKm2Hd%#VHv~w|PM@z{H9ralnwid!bMgVfkV@Vl_0_Tn z6!1>Qg9y!ZoyD}p?MzheAVKyj{aW9NDDESIGxPQq9zT)CgCZjEcVrwIaeaYqYPzHg z{c+;Bvbp!K0&O@#z)-<4SA*k#?v-{wk-IIC&JRJ4Ng_9QJj0p)Pi)bBgJw`5rkNXzLoRg3mU$7S$^JslWKy%?>!s^j5j6Q=h~ zC0HK+a23yaKa9U(%bV z)P}e&d2qv#w-DE2OET0|slD^HgRlis@C#5f_$jfMw)9XLrU}-@o5ZMshpcvyyBdTz zO5h^HK9i5w68Pe!;*0l#HJfuL(VPn3boM`O8rB?VZ5SSNJ-m_LGOXM@$d|AOHA;MF z%=q14p`XL~?HTiTrmd2#=DpFztZgZftorkCGX0LTk(Ag({PNckMH0KbW-&HCL^biAbGO^PNnS6R8l8VzwOt0Z4NmL;LV26^2ux;N z;*r@{p6|0L0rjDZ>I&NC*&w>v*|)*oa16%^#QLugJ}g%4Dc`sb-r=%uFQ&hKYnxk_ zgY0I9Wu3g+SfM|i_6PP$^1OUD%5qyTi<4Iq;rumTlBxLfkGG!g&a)2lA~9AHYNkI> zca`9j9<?2P+9kX${M$XczNgH-X0oh{kLwI57E`72*VV7HJI`M}RFZV}@BK4%!R z=xK)ss(CSZRL%qqur>OS1`DFu?3Jh_;3pFO+u$II3g zQZhQOZ(sKLEf$Qp4=*fGlyCAq@44aRTr6VXemAdI5L9fx$&z^P zaj{r{bbVT8HDc3fQ|(PZTo2w9j7K5-EQy?t{B6XfBaUIm>!rU;FYOsHmmtYPC-?dW zx3N_nI9(&onQD&bq8F^!rHe3~GHUKb?eWnJ(VsKAI)@m1BzLRK4xjaXXTVl!M8@{R zO15j#ZgH znUL2fL>5m?s~f@7ik2Vn{2jD^Wxd^F^ZBBp`$4~}260OD0*ue)0RPrfAr~8QaePk9WkSC3!q#o(#oXjCdnJ*Ijf~@3 z65^Lo*>@Sb;`)j1lMc^Sxt-cPXJ#~}fcnAj&iO{18M7?{pFNze^pblt37i`_jMgyF zn{bX`d5xMx{Fa(nS+Fm}Qg03Q9i!@hLx=j1GU^md)%R<_J}#FxHT@T%wUe)wq5bOD zf*51O+ukPWVXT+%Wxo;y+R7X7X7@`D-1!^Uqgj3?qgmck=Cb?(KED1EfmPVskx6UW ze5LIGCeAU^nye1*c{SKr(bb3iO3?xQ&pPK-XN}g!nEKRuY?+ zuk3hi5iI?X1YOIakzp@dIuiOQBRB3muVWri&4>|i9qI$W$12AxZ_(r?(w-zn7j`dF zg9cw5oLevCK!i17=5^)?p>OC9#Y+>Ohv=Xo1XgIV%b@`CSkJN7OfU^t$O4XH>tNI) zOuw~|gzyg)^%YQEJOu~fIelj%ZE%5W%2lgLuBY>-bZ zbp|nFZnwL@4rV^C{y!FgKO7qCZJcA8qo}FS5C$`OZD4H~l#q$cy>p+NSk1)QFpd}4 z)%GqzSi?s%#oWc2P-LL4Dt7ju2tI}f{g%kFnd^D?88-8fQpreMxp?|C%c=`<7WDnr zo2{!o3cSNsFO-JJ>}Qdgx47JwAkC15c$)^B)I&N!Lr*SPvis7HGCdK86KlP@hsPu{1gVbVs*M8g$QzzKzRu!CCK5?P0ysWVAX-!XyD-Fm`0DY<%}>V*@Q%jY3>CPz`%9gT3Q;Ucc0d zk)B>D?}<1pOmX3*&V(S7B~H^0;17$FLPUBCAriQE%`SM;H}*)2uu>5suQO^iMKcK{ zk!W(Gc%j6F(PT1!NcM2YVte&L`SuqjP_8&Wgr~($Sgv9}FYLQ$HfvS0yszhn-h()S zT!gJZL8G0(z{Cp|P-QczQ{jbRJ1} zHgU0jdxP`3tu_}+7uB!e!mdaAYMGBImFqbH42TNW8Nx1;*V8*kq`OlbmANe}&y`u` zrn%N*4K=prh<9NkAFZDPjf_P7&RVexeakV(vD`5@X# zvDFUW6>$$?i^~dWwB8DHUG!{;d=7bUME*427{%ki^Lyq!%FYFPV={eQB9RVG2O{-5%Mt7v1OmAhh2gG%JV5dm9SU3-4d(0N6n>o$)utZ7TcF_0bc-1=2#^7y>A$YwGKQ5Owb*-oTMzsydvF)!vW zcRwp!opt+kv-%yjPLk-7?3wnZ#Q7Uk0D~(i3(o*(RWqCy@ZSesI=@Hy&A@O3B{M2B^-Kq%&{=bgO z6OD6Wp+S#P7w4WB zdCw711ea+)h5y{(N2TCbqC6AEnUVAnrOl2Z93`-e)Mn&FAUBvj=) z@jI)dQM~b_xJ?}NFw$b@v7mc=I+&8Z64=(={1vjoF?@K_34hif9Zn*k_W@h+edhMO zfj+*OK)9h6QUh&Ei+bm;N^J`2yYQspY&}z$Gy)%N3)Tj)*GWvDPZqtICo6kLsQiYa z-cwfBIRbUjXvO%OW_vV2(ILtbbGK!fK};sO1RZ&at}rijK5JF$D#F^VX1QSwj@x4K z+1V$OEj<_^k15T}gVVlRqlwA;i8cDeIHA+$R}GR#nDH`pSG&0kjAS3$E&0e(fN%N; zLP*ie%eUNwIvRO87fN9Ph3f3wCarvUO?J9OoP2rDx3RelI3q9_#?WTeu|IpTIZ2Gy zKe71h*dFcEPN$^@3yw_v6RO$gX&0;u?5+T_-vaT_jm7bOBL}EGF!o1tZ++li9lsWo zzcj~!hwv*qANdqMrg|pIBPJ4(IGnkvwxk!;z2SsoaI?%Rk;T>{H z;?Z4q0r@K|rU8YwcSM_Fr?)w+2oJk5r4fvhb1>!|t-h3$x%_+4q1ov9^Om20*C{*u zBelcLwAWKY@>GFO1J~=o>J9nrEb#2VkG{zZ{7dC;t?r&orjKk;wsI{ShEGR7yFJwo zTdS(RFZ(?hbj4#iqWYS+xgzzo)uoNAwoab>VH62HBv*jC(wTCqjiD`PvENA|qQ*WvKYeB0EYmXC z5u{ds8Ngz}DMxKsC|Lqo0^k`CN=#|9GSETSL0q${p1edexZRbd=WHK;l+oR8De4Vp zC5(B_)SR_(U!lUQCOo-y1ts_t(j*Vo1^glD(*ehz_05^R;>eI}Qt!5>RkL(y-a`$w z6%(;1%Ll40K{q-r$IE`ZVObrC2Yf#Z-mggD6S-HND_3y{&IVpNM`Yb)uqFT3McZ&F z63mDG*JO*9j9NTO03Grb`DDAVIMx4Ma|9ZKGkBRlVLj7G0*X_O#%sm!W}oB9lm{KF z-M7J_4xh?i&69mP$=R@ zjxsM|^vSOU8vj*0D7v|TX`*aMnALxy>M50z+U9MS7n_C#< zJZ895*~Z@qyI2+4>p4=e!oyp#&I5|6G|t4vSGl4hbSG(W*HP$Izk;%mXBhW(0Mtcb zA?B{^*&lH>Qr!Un;;k#AD+K?rzRty2${~n(e(syQq(Yjh^ko7{r;UQb`vpEmPd>wL z;bgyfLFo$c1>!5Xlz6Q)@eO;|)YC++7C}uZERe(Y(2sc<1|W<6+jg+hrno)0yPz}h zMt*l|KsWCo5H7KzvT}XUIBDvS^4rCJ)Jf`G?sV)R&hKEaK0hJCCflStFWsq^+Tq)M z-*}?x>slR{{Mpo(z-SMveGTB=ma-4eBqYuBv3#xD@sZ0?}!lX=xZ9TWR zp17A!_uzqEs4R>e7^O4>h_+GIxw4`Hb!yv2zWyN7<~fi*Dthd=PQWZ?dM!%zt*+Vb z&ub~j9rzoGcmzpDt{Tki;hufWvL%P7sQKpyGni3ofcKnUhZ_-wM`j(ry(#`~^3)#~i;Q)LD?$$yw z!`zrInyj|7uco(>g;3y&4Kk(!g0b7}(cBG8_R@W+5pf9#(rDA+K*FzC7dIevm=qFT z?_9pfXlzq~h%pg5TK?RjwSBp8QEsIXhG+D1I@f*>rIwPAz zy_U7o#X-Uu^c+Z+ZsTfm*|za@X3t6+9o|i*&8q#vol2FeVG%}01L)0Vn0MHCri#OK zAyTi&T_Q6I0a*FKLZ2b-Cp{EB*6-PxwPn$P(aP=v;<@{KBcp=4+d?j@*+T<3A>3GFhZ0lM7ug^r2_0*nD~Q z)CUTFfEAN8_|I}M_BKS1^6YT zIbd}YP*P=&OF1dUR7Fkfw9_(Gug0L&=yU(NvsYM6VIRhSG_KyKGMXC=H}X5Hs8dnS z;NG<(wRweAs6L5j;X$fx#q0X%7vZijck_%$FZUBHO6bm~=_vQ+78fGf8uHobxTdJC zA_3iDhaskHMQ!qto&rEyzIIw|WYDwDqhD6fmjjRGX^XeejRYhDa6T_BGP6vd=$-1;Uv&!4!p1)(||EwYbbA}WI_%|x(`LAd<)+!pn%9mTXEWAqE zM;DkivOiv8<)D2wV4cgB@PmbMei5txa&3^8QLCcCoQ?2;LHN;iWBC@)upnRLqnhPf zCkjXAtk6E#Hx6vXRG*G+4)5NdrP<2qBA&zRWYF}q>LeQY(v*$(8qzm2YW{#~q6F%w z7tvv+!(LOCdyuN>%N3o4;Cf}bsPhW*YZrmBdhLr+t>vEg9?M%)d8r>^*Y9pja=Ct& zK5_j1IP}(0h<(=Sec8dip^ZITsD7pTbU0nmdUtr@Gf1de1GDyp^|p;+^}oN);ktg; zww!r5yJ>gC;rpaYMeati@r(h}06N5+Dw6-`6FCSuVt6sBw$e#6#!oqxrAW!0t~e=) z9y^XDOw+T%+W4u|gmtmL*YTuh-M|-hJbikcXp#Yp?KWl6hf^H&Nf>Z;c07U@NzVC%KSuXeJ}qeaq( z>u<_0&1P;C?jjIuf=cAhZ1)OHy`>xDU*b8gZ?lv}&E0>#X`?^>SP|W}H!kDIR0xzVRxl<@4W}VPUB;%5ZN=(G z0+uOY0<75jl`+N+X=d$>PrMgjc6u#nQZASJXW)n_FO`oMNp|Vx3(s==Dz+V!! zZI}+rLOLgpPp;eu`IHr<#!6Eq4sQxrL5x_`DHGVU*540RpV3*}f#>HKl=--G7&ezD z+VDT!Y8EZ!@glt=@{qQ2YwZCg8)(fBD0$p4s9wZauUm#6F*NvSfz(Idqb6ugQSz%Gcx3 zT!phN+bj{VMZgyf=$Oo?8!UHCsv#|kFCsC@bmFQgJd*&I5UmRHNHL3j;2*7Q7#7dT zj|j(A@J_7QU|lWS1)XtFd~=cU{L|cl9z2Y|cA@oYCC$~5MS!HfpV(mznlWct3$jl=w5ia45&*=RS-jdEa?2MWP=?v1 z8?$mEBZdNct57_M>QZC-$Od`MQu**#OQYWo2RI5ofCY0p~Mx$gDAK5VUSxHi)qe|?;q;tZ_pB!xmor`sFe z2AV!jSO41VWw~KjR6hToye7KAS9;P-CZP!rMGvQ0ak(SWg5>|}!vAj6RkB#LHLr`* z8~=XL1j)rmb*EZiUk(lIR(3wz)ybFFRlBoJ$Ty-29kpux+J(92bb|3)OQglSaqarL zA2lt3TG_BbwqAo^^nB{WPzolr%ip%KBKqd_C%Tn<0t_+P(W++b4m)r=9{{h@xj2bs zP8@nxidmd44?8=->0QBjb9>b40kuLqVJbC4mMXkR&*s`TiTXj?f-oMgSQR$0 zv7CemMp~Dmr-QaZ>P_d(famI1MC4T8Mf)l#IpHDM#KdLqi+u>>cxj&PHt z94!=vIr8my`+0pd^BWKO(=>k1IL0%^|IrG|x^$!WW~U$BBQfi1b>I7T$l(Xw+MB|! zwW*_j*p8|%KkBV^QMhz%C3YL^(FE78zj$gF#_N61$7i(gV0)cc8AOliEONK>aI0}W z_ORJ0N58KrGHa`(gW_4Y3*ea!>3TE4{NuG1R!S+sy4u>kE5@Z?%Ik_&y>#7SA;AWpCMALDYHPY1)$s3#pHe9z^eU29%vqySv zVKx0Vn_wOz|M_glWo{2A<`gD&66UOw#ilp|+4i9@%?u_6mo@(tI; zAS)VOzR~Tq#5JOG`WzD4W1cA=iF=j%{aDbhOW@YYw8w=Bq=QEZ6jzv>3={Dj+ zyiNRRT@5Zo0^GLLuzGXR!`O9q*b~Zt3bESFP|mwyf;k5?|1!qW{E-YtaaFbsKz{8X z;bj986$vnh>_lK2xBnqCJ*S1Cj%yZycg5ciCAB(sr6L+VG?cTd)GnSM&AL|?0F)(= z9PWc}EJi}JUlh=*JrE!)3puE!55-IDgYO7V!_jg#xb#{kYAXr6;fCkdMag3hT3o+Cu63{r{#OBf;}E2s8u3I3$lI5L||wcCG+$DA5Ui))rQt}>jW>_LUD%{cZ$2T6n81^ z9^8WjC{V1>;_mM55WIMC3l2qtyY+J3^PT%Ue=;(%_t-a^p0hz6?Y(~n5G|}z*l`mI6&F&QqU?IV z8w;*}d_$}Oom^tW~8c7++o7$ z6&c^f^n<_Y9c&Y4@o9s7i{m7Xv_wh}LFS3FDqc$$rPK8%VnVnNU-oJsXp1csMGns* zY|GRmWFGh2a=2X7eR_x*sA>icPhO2zHCq#;-nlH9-p_iP4v4pm0je{4w2kpi;rQQ5 zp_DjeKhmJEgTCHPKY?*R>sF2<_!XI*_w?C_v#@P7ElfzH%r1LQ!7e#bq6eq6%-+E{ zy^0H|7XBlp zrCe7P(e=M)gcm{e%A5MpbNyU|q1ixU)N^EfWz+rB_U4w43+Ur_-0_Wy`oG!PDhnSX zi>4pH7-W_Dr^?bchGXtwgiu=4kZV*hYZ&US(G(sLIEyDuMW@|NUy_kQV^_DCykzvOi=zHxSq7QEg zwS6@(%qRFpU-a#v36UT#9TG*fkB9%WZ~QFy=0sKLMEXm^ql3LYiq4g8m@02aA%Nf0 zkqyuQ|Ipd6-{x~=tEHqmSQ_iD`E>XWN&CV#KB-*W#VTcGDHn}r$j2$HC#TZQpi}AWr6r}TxveydJ)#hw%VrvHVf}uh&QBj)C^tRNwHo>|l~J;{%z2g)Yv(q4$ zsa}II73J9+h=Y{a*9nS>$;T3Zsjk&q?XRGKNPKh%mWV|^RtVcGE`c32svzb0Ea-KQ zasHfBBTo3p!0M(~+U+(t>h3g1=IpT_kCp9{F#I~{!cS=ZYphnRswAggC{Cu&zBFXM z0DLpel+l<|!a4PurXzYrI&gA@7F3wvH>ALXRT4$Jzb)&Yw$3A7%k2-$4Z`23^F9H5 z>=Es&EYJO=j;vqBS^AexV=naEWb$n~qJOb1{8ev_HYLGg()iOMN8UqO(!B{s9Y)4hqC$d_XG%$Z%@+J7 z`u=mOxj6T4mPXr3P=4Z>I8d3m@~W^_?B>^W$$7LA{Vpbe+{PHEi(BC6_@Uic`X>uX z=AUpjI>>{Wzc+q;NRiDjQlSZO|Z#1KQ*_W{k#kSIZ0f+0d1T z2V6qh+%EhvV-8P@UJF_3I6^{$GH|x3XYq#Ds+8suY#B9ws9a}-@Q&4*ksq~WY17>q zs>dD)BS+fA^!$8vPIvX8`?Jpi$6%pq2{T3Zxn?wMhCP#Q5G6HR(*p_&v3VA6+Y2wY-94 z&XnuZ$_JryTtt-3XGQpYfHIl+h@{i_5+aOXG_$G0><6#8QA6*}QxHHi-f$06s=CjZVPXP1!2)9j| zYt^K~q2T>_7~fReiD7v1i>Yci)X*>e(d0xTp(B-s@)se4pjTCg1~t0aSLj5r%ZQcy zMn!}H@Z{m7E6e}7E(=t6Rim^O$2XU@lB;UcK&#o(Bp|) zBocKX)KhDX{G7P*CJt~4+8q1Q0J#~y-#YLk;1Cq(_K=<3C76(7X6}ozr0Eel=_Cb( zro3s?P0X9PjB?%OF;Fbpe+?0omHf@TFfzM?uv%v|QK)U?$Ma7#AWl02zxOr+;#&Lj z0vlM&B?d*{bQac#hx(-_^g6O813o3V?vCg=(z8%U$W}Ptc}W2G{DWm`?e*0^|6pMc zB06Ou(p5drRX^$ljb^4SIHdH8t@J+yR#9@bxQf7pJb#7xIXUdnX58?>x1Vl2X*?g; zPp>>Ty>Fv$6}_1|+5a6OYW=~w^D z;=D`-6Os4K`8Q7js8WyK58RP&H#zpo6R`6ll6pXy085ET*hJx?@h8Ysn0phW1r%~C zD_S_pc~H%3RzwAR(5zcFAhRenp-fx-+g3I+}AJpWS9Nv z5b-eftPuSKaT|ESq=G+=9Ro$iBh0doDiph)BAq;YQgtOvlATv`#L*;&G>AqGH^>%w zxf4=FspZDxCKL6-Q@u5I60wTk2LvKBmcL2EE1pJ8Pd-NfR3k=*s=WQteGuR|)A4G? z&urk2^ck;);^0I!S&B%e|D|?7Tw^G(lRF(8;g#7&Jo@IIgkIZomaQAh@2VZAD!C{6 z`2ANciHZY(<#57dZ3tb$oSW`TRxM3WM|ofP7QJO*FZm*`vvkr4OgU{qSEwy3L)Ecu zH+;O1@FtzE&kdmB=UgM4OxE>xX0!56DeHdInDVQ}qMx%$@T02IsGw&EobD%B;>#pO zDf}Q^o*HxW<>k2jP~eK)O(P4lTSgt?>#fX8*OW3x zz1WoS9c9@{GxgTTaKagZNr9G6;LE8u@1a%DCP`wn5C+Pg?PSB>4vVgi-Fc1(onXCY zzF_Q%UI_8s%#LnLN+CV!exEdB^t6YYUi=TyICb7Kn;K2o!wwS7r3+Q|5m4nIW>6&{ zetL>7K3!4Ln;Fr!&4~7@8_E^uPC#tOy^K=#P*CaLIjwaTd?`iufi|cnC(QZmI z%{VIssxE@^_bjv54o7|aGiT{z9rf-vqTYi!(CyE*CDkWK1sR%4m1gwQL`+Xipx@9T zbc%Mdy|>Q30-qP;)$MRAMpbco*fh`&aRLG>z2vNqIT)hpL+%xH&0m+w2-#%1v#G2) zVruXT?aMT9R0v|D+Iv<9#C!5idAtIfO?^!%e8Ft}2t5n8lR4d0)|K{JLaRN;`lwEgVTwYx;mBREq z0S%P;G8V$J?X%$@1US)~?fMR+GX&!t?QdvUKbW)9HGT+eM%a#4gq3g&?TE6a6I$P# zz`oGT(K~$e?)o@tEaA%Tua2GSqbolZ8yus*PvBU6sh#n|ML6uHxlIB)_Wl2e6=xe^E%U{cJe+{)J(^?rrQFq7}dtwiW*kHW8xw zI$u%ud%k{RVnW8=B4JEPI7ajkh&euOe=XG8klN;xbn2b@%s$a!2YEK5SHi8_F;7h& z@Dq&_{WLg0+gSw^C1`;0XYz3>n|Wy*X`RzPB9}2!;#yhzQr;H z_ZJ~I2NE~oD2ruFXgTkPRHe>)7hMocmb9P4ZyR62glwt8}Cm0a1@`qpncpBW= zq_#G2#X+8Cn>9b0aB+IeK%SoRAz)MEK4b04wwVwA7i>-6V&IsIoGY8-cMIlcHR5vc z4oE){od=f_@&JhqgvJ+4L07mC{VgCRR6p4F`!+&}n@X2tKCVIHw4DzXLJ@tEu>&2W z-M!4onl*Z!roB=J4AzgY!|Njt7VQ$X0o854^ ztap^QbEVD)13#oC$}H~kWo$Lw8vZ84!}?mDr7Q4iZIO6FaHt(&(tRFIXl9mYlg?kv zRRV{*+bb@1`*|#P&-){<^8`iOp_ob4U}2gWD_=P-a1ZmM`UF$3knJL~;`B7?_+D`@ zNA8FdWY@d2H@d}YyR*ATCO2%T2>^t4G9F~gg6>-I2*R3kKTqcwcuz1=G+$bV`Gez5 zJf{|Zs|mW>3w8K73mXW36lOMa(k4}a?&aI@5l#G^D)hxsMZ{-nIFbR#(4ED~Hn`M2yUc4W8pdbG36#p7MFs+^*dwciw7S*3K;ZjgW zz7^)0rs;!Wn?H^Y->~tmwO}A&d>p;iRJa+p4a%*Myq?Iw1#E$6B0Yb?%wRsGogvtL zwp{J@`DvDao+-{CYNJhN^onkxle`iS5258)!bCdLF$;^*1H@FV8o0;XC1e|UH=fhM zW?6-pT4~rp60tgx#4b}lso4`*e1QM?PH4Ade7<)y=B8a@%>p6W|7f{0 zwqw&Rqip6epkHl5M*DyvVU*67ihI0pAS40D3#F zw&TYUtad%tnWqp`VqcG3m~4wWvR`N)CWz16@46OWO}s)++Hf9xWRjIXcJHRw%t-i z{AtL|HV4Vz$NU~2I;%?kyQ^$e7|RLCfmJzibBW=K*z5S`4(e=;-UDmzJ3w@PB(w|H zlRQ)74LGg0LdJUU`fi$L!Wj{aPFilR7@n2LK1}qV{c9=RS`aiN)d>%e{6Oved;QYk zoM+!f1N!$f1{Nm(#jesgQ>VuOCqGhSJ4`(l`^-e893OG!(cIPP?$IKDT9<4m1VMk>y<2ZE=RCf zabox`*q#@JkmT=l(v|;rci`#+S6CV!3U*rY94jZ&$v3>X!!dU+S*nLgpNRVen#M3pHVbpl#FPZJUnNA<@_WB{NltOoe>&tKqg0A z`K7?@z`M;&A?94N@+L3~68(5gIJ}3K=Dk*pa(QJqOJ?3n&KC>c9$LJNdFf~)s(;#8 zdy2X2Z3=)e^S+fT<|U0D0tAat`2b9h176|h_7=FfMxXSB*vF<|EjHt@BgiH_VL78d z?n(T^02a@!dcLX3?JU{_oN!uc!ApA@<@{z>Vcf4p-9O(9kM}gulpigm zwP9&^f@C%rJ|f>C{GIQsTt|Wf=8F6wV5O8T(@N#sWt6w3lO<_j&K*!P2%W0AC<@tyVO$7^E9=F@_yoq;08`pJe2hz`JjF z|JuTVw?$gq4qJz(?QFywj@H~D0E(aAlr&74XuO*v2j%7xCXLtM#npKU83W44mNsAm zuPA>Tdbh`YEp1lj(V|OF4HtNjWj6fZql=n#ovOYJpx98#q_Wjq`utW44bin>R|0FB zyQ~cA2~NA+-%-p~jJ66A%(g^^2xWZVFbxQGBIBOM1NzE1_Z#h`G=&T5>||DJTbyt~ zwcnrgY?ACQMPKYdZnF0u@3tCZf^Q|A@Evw1vSPY@*MwpznWQOEaBPMomN9Xoa&thP-8F1a|}39c%6{oxJsQ+Cjr zySqD;D+)1Z;h8QO#h1Aq?<0#5cR(j+%$x+1uKB#r0)1a-oCclhJxMT(%S_1SaL!)* z7rs6sA21ZGpj#ulE$4YCXK0j}2tT(o_an;O*!2EkrLv@kf32kE#1(C8-n9R7=|)mg z+d!f%#?FwPqOpHk?xsqp%3YBP1m1o5b7BxCTi21SB8;FJ+GDeJrX_GUH zzaZc5I5^SoUm+iPV%zo=l!yosjbboBFtFUAo++B7YBaYhroe}|{}c`2mOl=` zMFbTO34)8a0G+KNnbOovQbmUp$8n$4mTchplUuHkan+fAvwUYX?W(?Xn2C7AVSV6; zAIdpGuJphVi`s{pPfOD+wRRmCNUZ?CI<59 z`+@jjv+Maii|a9ckQsPt*YC&JDK)J6`-xHkbCTHSCK-pqwoz%qbM#nRT1&cfJBRP< zxHcokj=vHR|5)77r7hw*0#qeEVZeD67mUTuiwej56W@zN%+>LH46B!~IxXk;cTWcM z7-5{~@mq5lSy?R~1mC=jba(S{)eW>oGVr^u3wZvNn#@)(ZACX#w(A656;GKs8_Q5@Z4iwhAzLW>MtN(SLPVsV zeCX}4+noiU{+Xn`*(vZE|RB^**R zhe|KWFA-Wc&=<~B-73Afrl+eozt)j{4fs96=TL-e^NOb$1%}!=iLy_Vaj}?vt2yW3 zWW;i+bhgnCS2gl-)SIKtm}58C*dOjve%Lz^@B3ix=xP_WVSqw3GGIzi;PXGkMny+l zy98TJh=}bJ|Mj2XTkO3yVH*`w(nN_R4_$-hP48O7*Nf&sWVTHvfvASsG?ugz>W%yL z2051nW3Zhs>P_Q93fOO{Fn(sa-H+By&dXP z7v3WHmZ_rj5ql`Bz6;0v-tWX&ZG3;io&4FdPBM&32pMvY(Qg{YFWR@r@t1H61cfY( zN!<2XU_1_0H-4UBXRq{??H*X%rluLw8qJi_&sV)EyG}#czvAkC{O^Ze|5ytFt-nv+ zQ8oNt-!o6S;^=>ow*OCFS3o>SC%@u9D~e(k0ehj&F^ZVe;ob5#taj*|+6nuKPOD#Q z-4%e==I$#J$uIHM(QhCqU2jBCp^(;uB{WXQKPnRXh{syaRuQc~FOE1~=Rc_Docvxu za%Kv5Wfr!8R3MC!lcsck6K+&B zK00fu!}1je&7%&)mr2=}hZ0vp-WkZ2{cZ^6MF3E23Z}FseJ5dRXgn@#afs;_t0KoB zp7$&BCXjr^eG3s$;Su65eh_=>)vCSvMORsfK}`SN0447tCX7T+7WTo?IENNdjgSn%AeBqJ|#0c2rjCa%%c^O9Uk=JRNi{uBYwBDmFMN zcJz#zTKSxCF6(TeqUCOR>yUfmo_&tY*tO5$5GthOzC{+ zG=ChBE}7rykNJDW?;S(pBcUIeJDzSR3)(yZXKt&SdCRJVKN|uyB!vSr$j>{u+waop z1It{ow38k?stPBEe-=7gMV{=AMWjt7!En}2%Iud$ z!Y0u*#Udl7qN;YzpQ86(+!Y`MDWT<1daIz2I5rImJxb(Eh39OMT7Pu+!}t_Pc_J~M zq$)!hbQe@l_=A5c9~C%dQ24miSYELrFIEsOxAW#Y+oD$rTBEHb<1ga%mB{2tu*O&B zlMQnSR(_756767NUdF+?;EcKz|D5o}_~kwp^%CYXf3RYuwPW{(S)C3Zww8)s zd-fcXV!(I@UePUS&X2d0-pSI*w!QK-xJmZ1QCQ1sw8jabcR{{6CK&sfB}=m=0x@3NSDuV>*dyh#v%3-8+W z(5bvpnN%OYsj)QwBwqS)J+O1^1CQvB<4NLWvvsBSM`+yJeEZhC#J43*wW_e)gke|T zE)+~_7tGfof#o$@(>W@K8wB-jQugfeZxvCtQ=5IYx|fk(H>C(1HiWnra2?E>%(Puv zJwUX>i_lxxoSEAg_I(shkTN7qk&{#sH4mFjdfvPFeI;&%+K%IL z(;QOf&D2m;biVe4a(>;Q(EfdNMSWvaH%|%_;Wy8mYs$G=&dQ$Zd?~(0YrNQqY>dlG z;FjW2xppZyxY-tKnQo?%hpw%jEGpNa9$U{meWoVN?l*8pYktNZ*4d;4{G6onciMlZ z`BU_(4|obcolh%zoBfGBkGJS!EZ|hf8@&!kR_QGc&Alj};z%pDKT>FHnJMs7!ek(;EZ;BM>Z6C17oNeMwGE z?`GvYt|X4K%vuwMT^ljSvr>uO?s^G*m#XlUK ze+n`SsS=fY?J%YTl>PEg9t=%&f>UCP?X^zB39h?YhQDJomo{+NHN#!<^W6vW9d`M{ z2}kuGwhy)xZY^vd8pd@|?Zd8G*KJAPJ>oZ~DpQ+^CO@+rhIYLv?B!+1dNdU>7gYcs zTdY?f-CbP!5oCp&t>Q>Dm#+RZm!c~bK8jxdlAqW7>0j~jJp!4{pw&&|=Q;EAnLfZM zKp*>J<4Ie$>NfYkmx4bSWBWG~%HNw575?d13?|QJqMFj;ag{A3$eA8cX zth5AjDAd$Xci?oIDNxt04VEgZBB}8VY;n6)F!wW$0y4~WFf6*Q=z}m(t@i*?o~?%r zFcsI=V%mhmoxFjgJ?~cNwTXpEO;4@Tu^$*=e`H0ko%$PU+EaPw=59Y1r3*`V|B8_l z)aYTDB>}+ED@#1*Ww);M#5c7_HUyX5j@+x>A-SyAF4`6B5I{&ETs#4SiWEW;gWmk# zmkk#IkQ0CephJItp);0XHIHUHwbhQG5s6|SAziks(h|A-oM51)`8x#ViMkOBnRg#< z13uRx1(ZS*fg|RLL20y|I!FHQOc#>-%ox0t#LGlpjV=#L_l_^|-rGsFgT}*6e<%5- zFYVtyy+nP}M#peM_=Mx0&%2)7TRpbu;sAiHcv(~+vVM;ld~wi{t?T~&j3?l_Dl6cn zq-_ErdGfZcz^`dY$(Cq6v@M2o7q=7`ca z!}=zG7i-DJq4dZ2=z8goi&9v}`G$wCVVdm9zz_r@O$cLueABYk$4r2=6v^L$jXaA& zRy|K#mk#H0Skioa=p96@S@DyUf(VI($niCi^;9t6N(sM0{R3>ibBm%l3H^wa`!#%K~p%BEV)W0Xqe>7%KwJ;j-2noduEcC@focgBY1?p+Kt{WP{ zZTx#+H7yI?zJrad1*sG|MI~WWk3KBK@GdtgE(Mrnfa>R_{tWBt8njc=PxVUS*TSR% z+qa_b{Z9zO^2YiaoGg<+Ah`qF!i%Uhze}2cK>BLpV#p zA(Rs?FW%XG)PBdCx38+s!ERRvvzMF)pSIY`+}=JO@bc2JoJIL3->`-4_N+SJW19)5 zWdUN*>c%rf@F3eeN$jCh&IEw+(s{p-4vGhsoVmL8qW*@=DCF|U#JK(a6u{3`fSBhq zS*HHn)RjtT;Me5g;|e}$z7WT^${e9LKyvA^VM}bmZWW z-KPPHh-9G3s8o=@waX}UWo)%U#B5B|np$eWK}eqgP?uWKhbMgCdZ&XQM)vK$EC7S| zDBHaAP(=nN0X7P%0>KaI-#KZ!qH-M^;}+T(tU_uff6KKD)R>iEKo<|EhETqu8;yq5 z2t4$4+i&@|$m=(*%wE-x_DUiq>z4s*=v7X0e}NDb-O84Z%`0VJ_J;>MDc)xcdBQa6-=ql}rPOe%A+q#isr> znMTO_Wm5Z=oq!atFMu_!(>b2tGr*byIbc5@g-%~5aj{83V1C6XOZH8sq_N{0D@0DP zGcEh;)rx`+O$}g0QnPE{u7zGCmnpbjQ5Y^V^H*fuwm@1B@f(kaS+p#9M=@)h17}REJ0E6@W3M9r+K-iz+|3dL7L9oV+6NpF?qFhC3uHG@ z87TE7U`%tRiP4Y#O&RI5)|PPiAU;K2hpX{q*}wTTA;|UO*9s~9W%!o&i#k=3y=2m8 zpOC&ac7-8-&g@^|IthB)9pU_8cXzipx~>Ks!r|a4ey9$*QCCR5_LzNcnbL*Qj1F&E zqkFmIFdtoI?sqPpJYfk(?QEQDZ1KI+XXGA8<99Hz@9JotWeQ%Y3A)~6Ivv}KyUzyu zWS=(Gy*x*ROOaU|B~`Sgbam!JPqjFZ-AE}YB+i6L+!tk026d7W(|^^b&lSrwItnpt zW3f(KT%`>AT(BH`pMM?OitaZS<}REy`lCx%TmRy=bB_9=SO#UI%y_b049+{`G1NBjm+or{HrLxZ>8q>V$V>b|-;(7q4yq(aI?w9G>NtLOAA&m;Q&45{#0LEI zW*OJ~cLQgz1`?&FeWr$r%DaN)^u?cc($&iAjV0`OsdUBfL$`q1# zh#wVt8>t;Y8RZKTWKsn33mZ{>M6cLMuh{y~=9^BNJ9MAuILppm90z?q!>J`oNMk+R zCYEw0u(KzgVwlH3n3P_PLlEj`{VG`-`4STG3r9%kTSL}0i&*I#(P#6v(iWwLk74MZ zB~aXrdVgg*arhg3E~~rJ=|yr>*m1$mY?}>OqFT}F?cRn!s`w5?L_3!^jynhMhBTm5 z(AIF>*)HU%bvxR3+J-`eR~B>IL|<~Nk)**9!`dNimcK6Lu0w#tSFG(%%Exc!M@m>! z`UpH5_dKqLf(ZJPY(fB+Bo&|;=}K9v$lUE8wC8Y185+N<_v~MP9Q#Qf(d$_kx~SgN z8$b<+ch*tZ>e>GuNx=pXuxmD&x-Kf*o-v(EJDpHw2Rs?<3NE$R{!;GemCdWf;#Hv= zTc=F?rafheit{`FnPphdCu9cy3@hql5fuqV*0`nF@6VsZql=nprvD(#3CWM#rKn73 z!(=eIZe{YKDwTiSQK1R7x`Mc2zv0->>`KRgj!L0(aM5fsO8 z>u4@VdX#l}~yefryJ#e+{^9SX?LHtsOf{sOrEe|KW+sR8s+RK{h^y>XR-HZC2Tm(!B1?d6WZH(tkGS6u9T61BWULbXz>{h|r5O@SlXarfmT>}RX8 zNbJBJf~4^f+^gdi@ILm{z|fl(NyCN%0{6jI%Lfmlt3f+-|BAtugZboxxdi*5ukO1V zn1vW51|g9_M!@QkX@@l7E)UJ_)S`J_nX0(PXawWsa^KuxiQ_F*k-0~VrI1#ifKxsi z&mDWA-RoR(p;FJPe^C$RX#}p}T@!CM$cg96fN!@u@gvEUKP z-_Bfk#1Cq?u2~XT(Z=ARXA{+pD)h*F*k|^9igNwHe7t6Te^2==;dA$>;BzsiE`BRE zV2N4k^o--&)QD=V{Y2&^|2sqx*^ezT%y`?s@zzNhg-PaaG-HTC=jh9$w=f1$Wf{Qz0OK9~b?LV8zRVPzg9K_1tQOC=2} ziqQw3TAezRI-SlemmaNYS71Hlz7-jCFEu{}E%BlOwp@xaF$D?HYPw711qF0W8UWh@ zhcUd{pKpiJixV4PHLzHW_$boc;aE4SEI1^4A6UfeEpe{B5+{$Jx`6P^p5s5DD+@qf zajfG=Xj{ELv9{AMT)|!uVd-m?tiMa7Q%RD58t!7RHx3w2d_GXa&e-D+?#q9(iKU%d zh~K~s*NSmrQ;Tb^2O(d7uXSiuq+L^i)&W0Vm{9M|5`K@E*q#VFPB9gt ze4_Jk=SynFM1O;_##A2@Hy!8Yreh^^cWgYt0U3@i*1Q2ksn33qoRIlvFxIkM)G0bSXSw1c%&g z<*7_lRb{F7Q+lt_jhMns{Stdq4sR`HNo=Nx2v$CBRC>Q(owKH27O+gA#G2TZ^<^fg z+=GxPwUKv-=Dt{Kxx(MjNWpQ%>+BMz+`pXvY8K-r7Rm#FjIYnogFW_m8+sd2JbDQG@Gtb^(n8gvmo{nh zfm(DPljK7N@ypROJm|WQ?%Ik1`S%K7n0r<`V)@E|`vt|Box1@Oq+*JbA|qXHYm}%m z!j~jz3Y3{znj?82sp1Wu zEDc0lK&m$pulTeSw7N*Wv+F@Ah$ha=bN+EvU$OzUP$jzXa38=8*_slcJ>xh{yzOyg zD1+>2cU>o39;9H{VBD07`QMyOJ(WS7U{Xy^%oUM;T-r!H_7QV5T4ZI1d7y0LX`b3Q zkkz&lf$;OY1+vPrUA5rvuwVBcOSPSWJax-Fn`uQQVXv>F^;U(7`iW;%7s6 zPLsx~IHrk){ZKaDNHcT+%qDcf=myj({*H@o+XUkAvA^0e3eM+QGTx;tIhN}p@OUa~ zcMZ5zZ~&+trJ@k)a|4$5Rsr`QQ!#RRqr2g|43^FuNixVfnSMlOx|3n2o|@T)UF}>jR0BY_~0-<0$t@| z%jgJWl6YVUKZuu@#tD`4*B&;9UR>Xw{^#A6t#!hmG1_`Gwv1E@HIQ7D3UQs* zO6&}5DLMFz?3;4Q{=k1dXV=VPtobfFKx}3^m`+*c-SykSFo+*W@4!sKg?LzhvWd6$ z6`PWl4JkOu#V~pRwZFDp4+k*49Z=hYl(te|TitiIWn+$;lu#dVL9Yz>(qy_~GWA*E z+a#zZ(mnKJ72*Kx1YL_cJY(_KvgF#*z*khH)qSqzq1SJ^lGKy=^vF?Z+~MUttF)Wk zppgM43ewY2j>y!5XE-U;_Lvo(>Fx4@NGzFTStkqB|DR8I>Pqn1hoT5;2=(%5iKu42 z(g6ILat`RfoU!Zo<`P|2Bjt~rAikc_{ZvxV$0F#**zqtie0RBN^zHK6`>otkIl67(F#w2D{Etf@mG^Yq8FGSBPR>vUld z|5ba^7|oON077EjoBN@M7!zW&%#55)t22MXWA^+942+qI{(6NDJx+a8xL%wrSgDZz zWlLBOxpdBR`iF973u1j^1ujw<;97IRdPNOxr+4*XnHg@AW}W7J3~S*~zFb~7cKo_u zm*JAuMV%GWe=TQGh4tGYQFCWH=-HB>J`k}Tn-jGuGt0U<}wv1ccW( zVc1##&%&ZE!>5UGI_q!JU%rY8nBw1aqi0va5v%F4ETNQ8nZNH8O-{rf)}GB;{V%ZD zX0K^1T@q5Zmi533vCWmREz#le%HRva>-yO~*M3p8Zho5gN2`YfWPmJpiG8U4>&4Gov~cN>>rBhf^|XW`>? zdX;5_A8WoBZi3HK$okbWli2o7mCN_>PeYH_kC_y<`#EOdD) zSxhsNtu@w^Z#%<|?0?>jn2%GibR|kH_i`ck1#$yzW0l0f{6-iCWnQdArkmXaoGbTA z{%7*fml^s}cUNX9g2!LK0)H=FOIM*wy*`A4Z=|}rR;0$p&6C_w&<6+Ur_kV=3;b*+ z)|9DUvI{UB`o=ptJXMC?biQ^xidOmH*=y*5`G^t=9ofRR|&m7x#wE z$!(YfxBdhK8zE4&0@w>qG<8_jMG?W8px5(uR^R_5mo;;4^CTWr57qt!e(?;yjoJAc z&bB+aYCaX6Yd2Min(c@)p-L+=`*j_(FG(-h-SPWB>a>2tdhs1nV4idt60=~;kR2F{ zANoC7DMDDNSK^wsy6wZu+vT*L)mUJ}bQSxfUg4p^$R8$S&ya9D&y!WzrV|*}&SQh! ze4bI$hBNnOH&a3J9i-ReLM@r$*6#W!^PPVZ(!% zus{U2sje2lzbG%IKHaRw3bZ{bdRgSmt(!gG&upEzqEp*?*}jP8WS~1jKDUjdO?Po{jw?s$J^Hzhw7|RX_fA9B=9wP%%483<01pO?9pLzps-Lct={+?3)jk#QX z5HtJKabS)0&ZJ1+b#0SG3$wAzm<&>(9nD`a(|}?Log| z+Uj|*Fau|{DybRnFC|zW*LsJf(9Ejd=Y(rZK>-gjzkPeLr{lx8{R;N2(mS{JAhm!K zST~lNd(bNqgl~?G%Z;u|sgq{n#Ga%2VFY&bwZn zjf`XG>|3R!KeyPySCgx1-(Nz4D@jZL{tAm&9gURARBjh{b^IIy|J?kQ&Sq}pDgHeC z#+SyAx14<07CMRqaiOdZFVrKX1Houb=o@8?#SL(Hde{hC8cC4pPUE7q&|`Ld zU?2bTzN0K#8{noxCAZvy?id|oOPunNwS?RqxpLXk#IYFMK&@h(z9v5seeLm&oS2wG z5CAk_z|9di^n+hbD`^m!oo5~xZS0I*YA{$t^L2b%@^rQlfEL8DL}}U?j2#}<$#q@9 z?9i266RKWrg{pm*SyBin*k)#>4o~yz(x2rkS@t`DkZdKCS`n4ARHKQBInQP8gwDn< z0*`)EHr}bb7ko6#%+aV04ea{OuPdL8!0-m^6OG3ug4EsrgjJ+%;LC#{MCk7hdw{^x z2IaHK{qs%N-?!t2>9zk&7c&!(r7>#yAb+31Ieq?rCH}vu zLvfw$R;2jbg21I+Pa`J>*sB)yXjXuS`p2@Sq(nm`_TK4OkT8Ew)CIC2lAEp7f z)!|c~n9!wU5=A^SZhb^;wGoIp%C(%EFjzc{!l{1kxM--R#O>gA=(0aaxqy_?Ki=WT z@6O-=NFJMms*rx$$|9{MB!_MgEpf<+l5lV(LyKgfqZYlfkz5i6z>xpC%(NoN;1V4v zpeu7XzoO8l2t1~XFp2MI#y)=IT8AvW4{&O?agrT#EW)E?|ef`V0boqAvD>PUwi@KvheYR{E}R*Zfk#Q_@=$^(?NsN`>fOr)@Fy4Z&e05zP`bOMM7jnDYy*MOAV_zE#ORKX=Y8Jy_x-!w zf80BcU3FgPd0yMgYJvO(?U#9IJr@rjpUr7Jpy7Vx!Lmu2>DwFZHr%=^Bu1%~NC%rFZ79yw0rVop!Of5`$?zMn;SncC7nz4-@vJ{-PK!GwBMW) z;#T>R9^@_lqPdtCIZ_}=+H1KQxCl#=(F38sVon!>F2o*!!{@ z&ZC&T7Hi$4+|&n?AJ=EPx~=yPdxmAqLfocgEcP0l_fGaU$F%hhRU2Pi%)J-p>4x}( z1i@%es+yO+-esswm+2tIo1H?o^_=#RVUSmOVivtmS4W$ip2+o*L;jER#`EH{QwHzP z9*#~1xul|YgI2r3H?q=c4%Gik-SW}kpiNFuk>ncm5I9gzdZHz5mwY7JW&c-d>jII6 z^Lcw1GenG9s!NHD95>z<-mjS8Nr#$&cCOGjR%aUHh9TZuAH3&q5`T z_zh_l;7PItv1Pf$El}?~(RVD_Iq+mB{xeJjT_@%!soBaD%<}F)|je}CE>IsKtu;5&XM*+s7?3cEN zMsjXj+~z-Bgkrrv{Je;a5xK@iJSm^PXUyYS^5da+BciScC4b!g>}_FKVCTJ2w>QO!Y${ zJl0icT>{Bk>}uV>!tWRthMbr@gYV!9*&$W-0^bb+Y*&8Ww-+gR86<8J=xQ}ZQ>+(; zpWWOk+{_svCiGyu$*PnTsvrCp&pHnl&n}UUr8M`}5>-58MS8ym;jZcRoec3)>T`zj zoy!zk-f<-yBgPf+8oI71!+_s_rr@TyA0#dLJy;mZb`7kOx!Y=~i2E9L>f6m8kGb4MXW7Kf#>-MAN>>?aTL#t_OWkH8KQz8 zsFnd&wuFW!(S{_RbX<2%FE9fr)UbaR)7T#Qr-an<0F+RLM#LI%hB0b=vjgVxgcIo= zw5IH>eo=&8Cy2^NTqPY8$Hlf^auGVbj%c}5xJ}T*WXvvhNl}zg^{G3c0{HWN%-MV+ zCaS7&_g_z1t|l<*($6~Wo=rFubpd}%41ORD<-rT|dhxmC=LYz-BxRx07NT(*EZ;}J z<5i$^ne*e1b{RHvzTp1w0mCzmOc3FBhNHmSgJ#)DhxVlfuTu-)`3{YF1Lc_^vGzrt zWFYIx6&shCGKqm1^vWH4qLH`TD6R zAJ^YSMeX{xgNowXlYgaE_91c-P1Rdpb@oaI8$Kf2Bb=%#4l1$DI%}$v!>7B$ZDKYN-rkOA9byJnAj!S~JE=NCP~9cr;5k>H^a0gUtThM$@`yK}Nc^KWw_HaGzxhf)r>Bcv2b>7-{ar~?-O zz)wM9_h)i@zq-F=7XJEns}9-4(4MRy;ji8Vgzt^qVAqyqm)gab4b&yudyE0BtLq4) zBN~Us$-KFb?rC7jPg4KQQ2-@4!Z}+DpzTQ#d%GlBUH|D}?#|-UtRIq!Vsc{dvvq%r>$-)tH7c4IE9-$_ zuWDIjZ{@h=@Ccn!{c4|nkFQJ#hdWmD-^N@Xp3dGB_X?w}td-QC`zU^Bu9`B63PVjw z%7WZMJ~W__AQB}b&M6DvpdhM)omoeQF6lE|;ScO?gF!SdSiO2R`xRM^dOsVZRfX-V zTvn2T1XhsjPV--I?CLMFPY-@C@xNJT4W3u_=Du)^-NW%m-H`m_{CQ_d>JOnNnJNd48L@&1ZppA`@`6E%!kF zy;QW_B}TGbp>Rny4tYD>cY3-#vB{I=oL|~=LSD4uQ4t=2=$gyyTirL6Zgz^|-+swyD;1I`y=CF>_1_L`R^g*j zMRR|$K8&Aq+WLLh8vH*@My?sGeBx`E$F_1y@X#rxVD@x8(@JpX)OzD})&I1hN72Nt z%2GE{P>aNxjr&5exgI=3=<&mYfQ zc#5f=rQ7TL?fu=z;I-MTKdqS#yhHsw0kSXp9Kt7qS!X;^7a65p$ew@9S-7~c1*fWi zOT56ZZE{vFv9}Du*O`cYx`lP=SHC|nemf;#?|f4^aH7M4>O#IaAwAD?5RtQ*AgiGr zrO9$O@@zNr5kPY#Oeb*^{vzO|8R^r<>g4XWeY9<}OP&1U>fvv%f1F9Wn3gTO~Z*E;@251Xf=AO1G@YMjJjz^Wy7!D9&eh2SEuR*Rj z4-b_a*ymYx_8u5c;kFwqWJzkULyVh#AD{E?!Iw&qXI~oZ=`<-%{B!;zV&t!_BL`b5 zo@>uWx_j-E21U6cqY<)NZ-IRc^C5*6sS@E53JtZ;b{5ohZhmgFzL8LY1!tD=}mohQ_*(OyMrz(%%biantUEk^FLgxC3jJ z^p)P!l1HO(Q!Ccb0A`(Mf5|b;=&Uw3gKdY*!%sp)tG~E2wG6yV5*XaI>{@t`4xV3% zI-YyGpKlz^OidnNBLQN7o@KTQ3*#Aid(kZkHR`SJz1ISW^_AH=JozJD+mCJ)1x z=5brgZl1R9_QqSukb8b^p-E=@TTyKiAg$YrGv($=AlZ}&?~2ytH_-ompoQEzPD{w| z^J^VNonzE^H9TSY`w-1>(XP(CJ+1(o`!j)%!Sz7bbYkYkthUn1HKpva49C&1!T`Fo z9fId%9#ehMpr=d-=R?-jUoVZ&Pk{G_UBvhMtjVxgL+J~`iERUfRHr4f1OI~$3(2p> z@loV6tHPjQ=29k{6_6Lb%seM6aJH-x>jX6|=N^v4Scf>j!r$pU^BNAfpvB2-1of8< z#p5RkXrlI1>l6!uVn826hKbS9D|A0NSACYp?ZY6(Uxg zg?nO_5Xt$UR+$GTW217k1X3rioKROs|LaY&?!nrlC#<>(&Cevog2qduH}~15lBe|;LYvuh)pop?qjSD~-X*Xz9J2G$q`szSi@Sg2` zCV%-UvH-$KMGx7F&)S5Z$F)$ELT%|rT6pq^!YYtL4%>)3P>-EaY@K>V=gR?98 z_)K6JwC&H>h|Mu*<;T>>^p^t{?{WZC+h4!=luFm#0zeY_S)sIEFI5ZBk02s~Nzib_ zB}$9?o?yW~gJkIN#6=c+3m(Kv$=)_I=37qvJ4_&b4pF5uocopIZjC zL0TX=EpjU%3Zomn_;BB`Hbe*bO{itc9?ly6TbSW_cy4AtFe($y#pT|hfXj?J#&3S1 za{N|e0BsE;X7^w-RoTwnlJz}$nSvT^3qFgBIO-j(1NyV1%lFR}fg4I+%;3fE(j1NF zBtU;MAHU19M*cVw_b#NuO7k_M0UJq6b_xzG9dt12X?gxE)$c2`xkWZ+3Ms1<&S?*E^TymSJw^Ux^D=xb*M6g z{aO4s8!^4?=du<%rp3;x7C#E;u3rtk7e7^($n&=i7Wa5*wk&(EpMmT#a*@9~vMJ74 zc0i;y89HK`OFPAcQ*R_c{0$|XS2TGyeG&GVZ%~o65x~?R5tcysM&hsN=2$ssehhpz z$dlBzM38AGIVUbYXsTKxUFDCn(v=(_jG$X9t9nz#ez)uMI*-jL=jC?B+=^sYUH;c? zpBydY$nE`5a^fjrNM(b1Df-8Gn^1>Z85A96?&S?%^WYUIrMw8g8E3{0or-FG3{maM zv4ts(t+G{OKesuOdwnz^Io6|Zt?qgsKW4ea0f%xTzLHRI79rPODr4N;uk*5RU|{G6 zYk}FB#o7{`YFgEixbOU6bhBRJzyEDmIl6Q1hWA@z>D8f3K9OqS7l)r)2ybs-DNanJ z?iHhhFLPLAlrQtOSvq^%yP!iAfVldJtx=UsEi#uaqp37N={EWsH1^#b;MD z4iw#9Cc2aw^yy&PIYOlnKXBwAUc7-Z5V{mlS5DkeLRqfoM(5 z9xsQ#{UOu-)D69nI=I?ydRYr$r+LV`VmSTuFfc6sGt&$abg*eji)cC#`=%X|Fu4cH zd*Yg}O+eO}4YpXT|4oVkS;Q^V8#zrq5|~#?g%5U*`}u)c=lVS+|7L^%VDm5FP%xHZ z6qYdEXq#dk5sk}MLCC8U(wHepKp2-&C{~X$lmN(kq=I2e_EVMWy%I<-IO!_t)hi<5 z$@HqxKI7bj(N53gMNwQp^s@GhMMS_CG}j%}6Es>`e+T-kEB#zy{%BqY95{Z25oYG1 zpfpfADnm&^=56OQ^=E+}ZV1xsumIS!eh|gE&{3-5?>04?AE*l)sUi+$_LXCXm6K?! ztrOF!GJBuESgsiEq-Kl1tp2R(`yO)&j=#IkP<&M6#T6fOLWO$SYRApAzWL%DSxb}> z9LBqiXOvP>I9!bxqes2U>5(+?Ob7KqSTJis`==<5+=Vc%#33}aAa}IjU&_7ba{y>N z1MjRrNN^bs6V80{1W(+;kt`yf-UGz2l^DMy-KA6Ni3cVP)NS|x2hN;V<4@6}%tT9t zzU#>&l!mxK zgX{Axm5D#Rg43-_he__fO^|@=WnLC`>QXN2MRVn3MlA<^Vv#((QdW-X+&9dM*IW95 zh&TOuH9PyerO_nbiC7XhBEju2cIK5&+Jj>7POY$Y22Yu+5$Rc^y$wf3J13f}IIRRp z?tUyqKeQ}K>~*iA1IOG}B#u)0qqGri8s(Fx{MH8UW)l8?!{nsL< z0#C_Ais02>B&ggw={A!=K+GZlbU<`_WqlI2apK=GUB6dw$=yzj= zq62cfNfgfYX?1p0g+i1wje&FzsvIa-mm>Ily<4D>s>I-!b$6hY4EYJu*b38(+uuLs zXrMu?fcrDiR;2FI_KZPXJ`Ftu?03p_kk@3{EE$HWAtEAgq9x zx+u3S(I!(GU;Wv=$O&&HVYX#)^dq_oJ%F;2!zHUWamzBhdK|h6it@bZ?Sz8Z=a+F;Dsaeq`{!edE3-4gscC1Eu#GZ zAZd~OXrvmLj%U}QtrY|&fe(Gva)%khhVA>Vucw4-irrBY;0cbp(g~~mWNVS^w%BA6el2HvSjP66! zyTeL-sMkz?gWJxKqUl;`k$`v_?wu_Trra93CUVQ% zBo+Mp+*-%xNIKyhweV{HL#@2T9X~TClY(PIQDvwm^)8`~bd5oCmAZUR&2+Zg>Okxj z=y6r5H_6?4L5lxoQrOdz{o!aVeTJq)>F@F5eUDi$tK*QxK8LIaCK#$4wi&(P;+>|P zOPL^LSUmhjHgqbjM{wuC_Gszb=*DT1zb_*P7tNcjCde zq>6}RedGC9p;3-rP!ROxvOl_+Wm{iGd>o%GVC(f}<$yHd?D}dVM*T3ak-kc!g*T^#Nz>M|ky8pU&HD3>l7P~K3g9#kY&KmT-)i!GQVPEzkdV%l zUT)*mEZ68o^YT?a`bo<6b;tUi=`{Tq?*E<)ftD=Ry;vI9tYI>fQ%10oZ_>YASKfMN z1&to>68(ghJwGs5Lys5xBa{_`U9;cPhUydMf!>Box+HHLZ^#dP0}S4Sw-lTt5UYIo z94y>r+U@a);@*sCmt2vJaS#|MGv@EC*yT)8xrf07=uyclJF%O-` zvJnm_dInB#a&VLk?cjfXrn=JxB8*{SzWh+I)?An9>*m30dXXyKXy4X9r!(gnx13Uv zzcf*%7MXp0Ms^y^{1)qqwUc#+jm;2}?cJJN*qFZ(1F1i}_~k0*d8JM%=_#D&vv$0o zdLkBp4_To+uMECEX`RoUX03WE?(;w!vF2dmrBrrxL`uxoZN6508Wz3U9+$_(#aCF4%^|kK;@o`&{N7|-03UtdLJ2l#V0EtD02vWNWT)m7~ zj~&2>3v_M{lJ{|h-UszvhQZ3|oLiUM^}P`RFp9fs78vtTm~Xvme!xlp0$OR6(I{D? z$^Rvrl`!JxVXvawr@Njyl27L4e`=sNe>-gVSYiLmHemE|syDYeUonf_UP9>rs8ip# z{y=G&Uv|Nt`xA2XVW}NPhqIjm(7?=qLRoN;gn^&C5ek?bfYX(hOd;{MPruV}%xbeYr}wdh@4+xdP6cA-%sPgT zZo^+4=8sp4I_6CPh|6_uOyr{md!8N5vaO`sGe4IP0_bO{0Fnf!-`L@C%k?_qV7Nsq z{>;7b?lqzhKHVOn-)ql-L%?1)J&Z`y7^d118mrS!l4yGDmw*c+s@cD2LV#>+5pA=% zBN$eLB^6V+q_AB)b#(c?2hT9t^mBGtD#k9nm~BJzi`j;3FCQQ-t;%BC>7Htj!~i!+ zio?2Etkz#m^3+lM^osuYZo8LXHsH`hjn3rUyRt@8zTM}N@XRv2HYmM{;2@X;voJdw z*wSP$E-vRbvCy;SfE{;)=s?AgJZcb=OoAJq+01txT3&jY^rt<>$E|0%FlA2>C>o zzQ4*f4^D2!_qJ+th~A;Y8wDoUySar;_*Sa~GZ5djj*rT9Z0Oti*9Te< zkh~C1^A(sc^t4PEZ0{|+pD~K4l?{H?uf!A}Dn5;_oyOrn9gWW3_~OtCjh3mX7;i!{ zTH27;s~;9KPdQ2&rc07$mGvOyaiZYZ-qHJusjnAJ>j%kmkXmu37Vv~O(*I3}b5$aS zRrKyQ&*(=IIU?YfokQ>RV_Rn3YW7~zWX<*4CpUVyu`-ot6t0Bk?GI}9D!w$Lm73l1 zakwA0^g-banj_gS8oxK|utAWVJ)^uDiDnEpbP(+@S)QauxNsJQBivmTg{|y@IUTwr&}aycGu5 zBwsn#`{d@3sJkMWz88qw`I;t7kE$M~J64J5$O2{3I#T#kU+DAZyMXf0>Kh~77s}Lf zziQQzqWhpr;GdXyJZrP(+stOGz4V?|O`UOg)5)82kT5!qs zJ~#dcBS}R+)Wcbbb|0CN;0Z9Sz%3C~uJVs`L^*}xF>@0!x02K{uN)Ql=uBmOK zvd}5j?vD-W51qF?M~+M}afQHmtn?U)IWo-rFF<Y7X zO1UwCiVFS77*Vzv^FsqcK?9BgP#ahHt!S|cru4*c1y?(->z=jlwRL8{z((n)_|t1F zas%qrPsC={?a!!1-EhIWyB|qC!Aq}sfEivFCZs;E!e)fGUxdF@ z_)AAbMUh<>8lNwS+g^x)`)pvgOqq&NU#w4R@DsYY7N@ScT<LoeR&Zi$V}@|E z4*f_tdv{5(Mhn^=AFZo}aS3q{nb&9@!eA5=Rk^--Sv`EpJ6D5wlYq z!n@IhE%}UePUP&xhakz34G*&OvY$e*T@r%?Lv<=eIbxqbegNo&0A9bBZ2wUc=ZWM9 z<2)$7)98$PN6~PcF9!u!-px8X$4io&nEoN0E z6P6Z=J4ZA0lS4;+j)C%<$*aVIK>WkpnRj0bV{6V5y)t3zS9etMX<2R#X!d^r6$ALP84#-a1Lr&Tg{UG|#%^~3JR&5FOdWX z>bxWbs8^Ebf0B>cSp^2NBrmS4cw(F)1LFIZHG`@a4B8g^MJvXi=Dj;yzu@*{DnIb? zCQq+e=8x@B7{aGvnMNB+cWxB4J0BO>%qAQWKziim_GNuJ7dx(vafdD8Z_By zy6fef0AoGZHj}wC8CnJ29CAG-Hb_3BdZl_7n}079KHUE7#BaE6tgiYl?t5>W*reqT z&wmm{3kkbA3beT{?azpA^-eBmsWrA-S5fERp{gFvY=M$l3B}!&(#m*CTS$OSJDVW8 zb)WfpdsF_o)hoz>a8ef=w+iT3VlYgDBH|4eJn3Wj>7lduH0tv-EF&cr1Bv8XzXtJ-=7fnMHdvOfYRp7c~KDg38 zevdMee7>0TRj6!E>8At5yjt&GLjx{QlW58{-j84Qk=S7&Py^0YFS8Y9KYu>x$tG9#dOX$F(SR+ieLM=`y=Lkfm)6{QHoZULNdsPwEbj-#fq4h6ojA!D)so>go=NGpeH-x*k zf99HNkIO86ca*;SBbRG1NtTlW;o0=Td_H1_&@$-o>V;YqCt<2~)!on4rr(E_n=(na zF*=hpd1^?^pf{3+D2k2fw_-WyKeqNSlt^SXiMmhW_2%N|nvFF_7>3cwtaq?X7~5u_ zVp;l!CVpDSjzrquxLO?vW@v*}qtrVq)Zq(2bgZby2>0=?DIG^Ji&s zHk2x+akpE)Qsd$ELr32%7Qb*mBivzeo|xZ+=eNxkHtL3lj9>?J|yyUO!KQ)yg z;+p>xbj|*j=8hrUzYW+?yeYPU^1MNm~y$q4s6WBTl z+;p+M9U_K38n=9lX^1u!)CaWht%-CkjkbyDDkBVUtFjRw(UkSrYgc6+wM~&!I_ni` z+vCP%s?g5*AgXw5qO6nq0~b^5bxsoc){M>avOJ{(Jsnh7y7IJ~%+{uJ?Zk5X=SjkU zr;(Np;^+SDB=?t}810@R`)RvOQJ|OBlRBCIfJ`eg5P-*~NGCom;By~O0UlD|djs*Z z0w-?TE)HP@PaJYdB%lvCWGd$W0s!bG=5j}c>>PFsy@-$LX9A27!;4-P0iTu9!3$oM zXTwnwfz*JPmFzuRfAohaMW0)FG+g~OQ6ZlFvmay{YUp;bhy#GKfm;C#?-+LeL>wDc zaG};uSt)&Kw?eG5DlZ>$O7lY*BT)p-R5FtdiYF6T6_(IywO;C6aJ_72bHL%@^X7iv zdvxB4lQ0AuzOJalIZD4o5g)YHRZX?r!108>OC~^RLwm!L&Re{DIj%DVCYj@*GYc^^ zU3*!}<8(5%o@H*4OCo-1Z5XY9xEYre1JMTZ#-4<>bVhGM2$KwKD;bkT3|!|(vr$#) zakGb7q80Fvci%}|p#Gd`HKPc0Vsj@;1jb3r9}JC*>2J=dVL{JPn-uB>-#m|xRuj3d zh@I6G&xSk{(LACpdq=klkO#k16ZfVK+CGhE?wjlu+JEAczT5s0(~F->cH_|tae^yX z=04R_5`U*W>|(5$rD%R9g(>5p(g*aY54A!hjILYNcpG|fy)>T=f|*6oq-05m%sj|p ztPCYE`b3ixBZ*zW=5P>Kmsyf*cm~VpH~rUd*h%ANw;h6jHQM*wOQcTsXFl`~M_)v& zbL7{rzO0gFR`z^w89@-3Eq%>zUy7gR60-6o>1B^5|8&j+en0;cnx$A#`B!Z)gP5Ig z72H^#llP4ht8dH4j){dNxTg@k$p~CBKkx8czI;V5qT`uU`fP@?_rhAkc3YzebLsnx zS9;_@(Si^9e<;naRM%WYP^vPaOzRle@nd8CL6Q{p<3dfQFzCD0(oDp_8Ne+N=x|yRS)v z$n`4A$dQ@AoVat7S{Y>rzub*JonR4S6jd4A3+-V1el%ZtZZFQ<$F^ehbcIsl)SltY zVQuK9D~pb7OHZ*DcSBWk;H~Y1H`dT|HS~x(ax2|*nrApOdQ=Fs*XRs-KGR0} z8ERnnaP&dWoED1E`*UZbea*QNV`)oj^x#wtV(|H8Bh0|&K2Hq9iD0~c9-OlR3c)qi zp}os&$je^OwuVrp|~sCLP}ay$BXEfqXAXQ;FE?|Nim zofr`Fd=Z-FPNQa%Mv8G?&Mu-;(hsU6H%(57GAtxd73Qc%zMXn?8_OU3U?| zQBZ(PGYWPeKk_qXfD)ukneb<8k|(s>R(4*X+ghFXz9clDa%BuGtN)s=2&2m(-q4^v?H1N9l60`jF4{t^L)q~J7oOLfjyRfZXf2>E{5yNuj>;JL*wBG0?hkg}G zOkGm7w+}$IQp@a~t47UuZRKkH#K7C6aeZJlM|xRzc$=FMbpCXB`H10eh;c88w_f3+ z2Y3v@k;`ltah(5C$02Sc!Q5fE@&UZ7ItEj^&H>J^3GzQ3z^9F*!!H|EQ`9+Iu~ zeXw(sco}?tfb5+|n#K?@#iio8;C6C`AN)X0V%*ZLeZ2Jkep(;QIFxo!zN4)hdR@Sy zu14k#BAF(*c2vimciv6c7aJg#r=|U%#hn=qby93}Gt8(rP)2g$?72-Sy3HL5?myT@ zGkdN&R$NBa3X@QJ4>z(EB4&HQJzTDgk8zMW(@Ne z6zZG5{N~xQCHGeh)D*i36in;5(!|JIuY`73&LVF4OC1TV88@>!5}~4>UFKgf`Anq| ze?!&JF62j;=Fl`XED{eHxo}eV^$3O*b*}@n+m$Y&#|5K|Pz{^M=o-+{U4E)NwVr`g8c(8Qo7FrNuE`y?a_yI1x0v~Qf zPObRtU0Bo#Ay(%zc85@xEleO@K@M2;xOFT_0^}sp*lwpdV57 zYhHhWwR`{wYeL^=;~Z00{1~}xtW<|{v6Nw^u;Qc)4h()DiP}cVXA6<7(r!4S<@J{ECz(dIn0%5 z2VXS~==T`?ySluc1QM|$zeankA%7UM#p*_g|-zbNW~A1qdP95 z4;dTje`dk`h(%jueJcGq%7+{b#LH-pB*>4d3EBi%UC#xy-!zb{AAqWR=gxabo#6|F zaKn9J{_LR78 z-9WtjTqE#eZB@UP)ibQ`-Q&63gfl3OwwhY`y`d^p1Mxt9Z?M6$=Nz@R&~olaNif|9 zwZIgAwv?Yu0`?3P5g`-vfGc|N`Uf_L;{#+6f$o<69q38W)lF|_du;I(*^jX6TLo9O z9@yg`EGGYcpQH{Nad))A&wd<5HS`3rYQTR8vg@p?jtLn+{hbEiy&E@HOwb$wUjct@ zS#bs1ZaU+vrP+=y%;S7?17w|*i?7lQf2XnsxB6CgH*Ge+CXnZKxdcav`qp{KaoxSE z%_`88<+nP*c$(R-E`i>H&}%V5H|rmnlI^2rb8)bn)uyXiqp+5GL85s)Vi8=@Fl)+R zg1TW#J;bflUEifj;MyWQ%tNsp;#-8d3qg5^hgk=|NrINsNjn`Ky zp}(1|(u>_mEs(-%3@J_@(p<8SzfD`T_vlqy!8vgWoFs>4+QNd}I}L0Q@}#KVR2!8F zlF>D3*AV51H5WJYCXov^4y1?Rs3^0%d8?2?Ur}6$=I=I%lAoA$K~%KaUv5@;O4@JT zjtZ0A{tjjO9P+6l>H;wnHqD}&uQ_K{sS!H&O=58bN%k0H4&*a`6d~Cv3{T3<^8XQg zZu^08=TyB9D9f0q06ixtMcNU1@Drg@_;D#jIJEt5BE922x+4DCjSV)e zUQs7)07wG?-xniXHaN7K&LZ1tTi|O^6s^)-PxMSm zx}WJLNGwU`ktG0y1u{FmPUJ9N7IT}Jg|_w4O$%bw@kkDQo&A#W&ae@+1%lc_`<5*0Ube5iO<|_t~@#`7KRH7nmuGk~|&Sx~Uv(|DVQoN}M6fb`8`ygbsny(oJWysx-4zYsjGn>Xhs&KOm;lcb7_DVvG;Vs<5>BN>>5lqQX1-)AR-GTx3LyZ+$-&~VV=m=UFL23n(n$fK_y zP}fz<0X&%hLxAy5Pmz+{12Hx>Hmqm2rU7jsOXC+8Dl$v0t*zEu>EIgWx&Hue|0VOq zJD~8$*CG4`Uh%D5empGE)dM3X41IMV{~%L7v>dcdQPiLIc{8~l`cxU1U4LQCcNhJP3;KmYwRscc!3T; z<&#PHsME8%SW$S3Bz);`x z5z{Z{gVWy{zKqiE)W7Lby1oUsbZHG}dC7?Yd~6yr3AWS5VGJ}J73T8O{C&{{;U`n| zdoRUTO)bbLkoHy&Wckt&1rf)WfoWeVV{lv-x6yJ_zZ^PtPGv8uNcC7L%;C{XbwEWa zv-cckf|yZA$=s_nHnS6ZOd@xgJ-9>s*^*yPOmpof*~T`ar_xj=5H&?wV%3s(WeASF zn~L{-nX^qpN-k){gDNy-{fTgdZm}Kmu-#WS+xy^r_kffnE>k;*w7)+mrOAyLzRkVb z9W_H|NxQF>nn!UYVr<@(&WsQywzpodiz`Q!gsEAvkIxPkD=wvW_TZ$c7+gpKyq59H z4?b=}&O{~sD3k>c&Z+Sf+sZ0uT|Ndcp+6Vj>0Cj(s%nUTAYUK(wEtA{5b<8?Y-;fc zJt=>dI7*sdktc@j?iOr85AH%iSG}q^CYdpt57ztmg}4dcoAGSQjg0GR_03hy`>`b| zQdnAPZZ_Y@3hnBdGa(#(KN;2U*n@e}J~1~$bqiJMkwL{Mvik=PkSHyI`CQb)+fsM( zd!@MI>z^Gx*Es?s?fhcmsq|^~V!Y&4rCxC`4K&vp1%q(5q`W$PwB;k`<=7>pw=iC` zG#1n*^1QNXF!R}2q8sgD-;hMS3*0x1fW9vqK~GLSC>!g^KnNhbMCC)1X(GCmaX*9TF85-1PO=D@hMb2G?l4}xUT&{AH@vaN)hh1nQ~X|7%e zmk!EXd>WK}bX;NH(g}0`|+1Urlj`LxV>%RG<6!qNm>sX;?6FP zC7wB28jMdPKhbNhQlwocMa`a?Fp8O}s}|EtG#X>!ZH{a$KMEa^@QxU7?YZ$#O>lK* zXhjGFC+H8kf<^Mf;TF+J3o##HGBS=Px==CU7(L+BluJLfJ~$FEe@uMrGn9|J(XgsG9heP?B^&Mavf@_!?oW`m%nol8L-qw zni2eyK@7FFK@Uy-r$*}Oj-Noe^Y+482p0HX*7MJPcy8g`e30`Fc=OC}f$=&s*M zE4kJ$;f#%!ke^d)ZUUgs&8&zo8xZCVkH6FL5qkOdJrA=?(8TGrs#AyKeA9&(B#i$h zk|R#ee@A*>kd!hZ=kCbz)I~fz~mT?ma zF<@@l5BstW%wY8p7Z-iW)<=B_kRa4nQ9n(eZdFa zoe@PyAn{6XsqJ|MTg7#*^#1JQei-MPqD=&E@FetK67SRU)d=S*u$=engMTV$X=zsR z%eKRGO;30<$%N2JU6K6SPGXVU6LsHb|F^tHXQJau(z*XKc^T^rstro;;G5L|)Xc5s zDa1v~6^1)Jhfj77(Ve7}kHILNZG+!TY zm+x<{up|RPX+rw5OG>b^DH@V!JYsKK8Ns^Tp$~$r_&EAkX}DXHZOC|bGsf%&s%V8z z^4OWYM-VTWw*zT7^1__hWiMvXg6)%IJ5_P%*2Qsan_WKAQA_AX!|rd@dXeISl$fQ0 zR$d-LBc?Mkk7vIsj>Dd4c;4&!`(4F{uUEzSMKd+dZTQrM?xE`u_d1U&Q*Zh+7MPut z=-L17r@wcWu%$=M=#k#~;5vm)!}?;!%s99WR-VI$MNVg9{aWpU-MsDI$g=4ZTIjbp zvAFC&_#)9AO`NhSt&voiC;;kClAdVT3*xfMQQ_V^aN$5d)_;wlnJ@D8Sa`WVY4&qE zg)zM(XT>@0fOD!4O0|6vx}Gh4DtY%e=G(j4exD}SU8PEs%(4Xzz)oOo*k0W)davI5 z*|6I+Hzsu0T@P0;0qpYLXK!-a5?%4_;GB7Teau$+i=m+omkZv`PiFt4e_!UJD~(Nu zrmob)EaNQ@vv*n>M;^C)t~_9c9Z#!MXbxP^@{T%dvHzu%7kHarSdYy{HhWv`yO554 za+!Nzn%`!0C%ItVV8S&v!c{l6%8rC@F9iw(UOXMAl(+>)zdpIoULNC2U<(2*nV!xd z(EJutTp(B2UjFllxB{`cC5+$$iSTRY^XtA1QNI0x%tZ~`?aV)F36PE#T+mBz<3~k~z)n+` z8y+p{n~%E0E;VcEiRqITcUl9$4@cqsem1d$1ii2%NQvmxR6MoFl@pC>4$$P~-u zgzz%{Kc>DiEULC^duCuHC8bk9xF%zf8T#Xi z`+2`({hVKW&#~8at#h5RDJf*A%$U{8p#5@vT!LALS_d}cxi9;z7Vz8Z)V29pf5<&O zWR{yU<3<-0mi~1g*htTlF>1IF#=3;M=g?uPZ~BHmmDyJhbo|Gdt!W_h{h4pBi^DQC zya}oR^eZg9?)`2ivyN~b?Y)djTVL$R?2dYSqa+b3q(Gu+w}9iz&;t78OZEHpItuM) ze0iHDbF1NPtGL17W>d0t^8pv4>p6yT|36V!L_}$t8#3blKpZwxuSfaQ5DtGPrL3&T z3jfO}Yq+&`?8-xXoT{*n+*m~#j6I14;y?lMBErYaVtgG_j{kO29_i!aYuMJ3D4KO* zv#?ZcfTT?6I+q@3rjMtv&BiWm`$xpjdmg(>u_&SEP0I8qCr1yI7f!;`W^d_jSe%V5 zg>!sM35;$!5PBJ<*!bQ12w z4^OAr8T7EejS@Esl#}_BIdxmYYQ2?Ik-y?vAW?7x2^fBq_(Gdv<5D6SOsZ8}e;j508_=T`mmD3Dhoq zr(0QN|GsB$w5CxP?c(#;M75~cu<~W&JI!4-8BfH&K%4E3eqdwRvdXwO6R`vOW*)yZ z7s?*0qnd>$m)BP4_&g4F=`OT)})Gt)Iau%sSI!Bu$4l}qR2E=gc^K5`9pw0Z+A{s<0w$IM$D8s@?d({IbVNd%7%Z}Kz4wcd{o+o1#zKgK+W${sHUP@~ z3hp9>UpkEjuspW3U0-)_+>{_vf4}?ZTwPoultt6@oddc3iqk=@_^V!(f**6iFt{m( z3P~JFOJ%1G#O$h?iVDHdGBvkLjqvj2rx{#an2)%$1?VeHVTrJSV zp$?SKeT|6?%t3DinIK#QPk30l8GN>{sKTvsZWKh$X1_GMS__vi*1x0F{VN2`{geJ4 zR4;2R=@e*pCjJyomKp1nsJP>gP0%m$6X^w@jg%;9w`c32H?AupnBfLXgs_6oNP$zx zs0VBj?u2Sw7nN1T-A>tbb~9O|zCP)^c2r&I`5-NAOUbH8YqVJ@>UEeT`+6mk^J*Ub z1}GrI=jq^1#W52nLltp!e#svt64Z48Y{8EvB*0_rB}CfaR8qu@uN0>IQxr(baz^9f7|m|i;!T#aemW!w?y^koK(%txBBv>W;H*+FE=a&D;)#l zv1#Rwi+igt+C%4+#KTb)H2?WT9WU|11-z{!{W1W|vp~7Bx%F?&D5S~sm{|dBz8$q@ z1*`xLE&jlGJ7*)S=uk1o7J`(NC8F3yUD1e}`m+Tnp$2a^cxD-<`wxU0_e8#qScM;M`^M_rHdUzvC$I~QB>dSsTR$I#vP8J3~Q^Hm|NYDA9&Hf8vgzj(?ht=(G^T$hU-J)GUpI}sf; zV8VI@>NOED9!0@0GXm*>=>Z|P;rDd*roIjVm>VlCH32lCaU*$W&|qfZP;%MQm#6$c z4>Wld(S%!1DYbP0b35Z#I`#Q>Q!D?VqMlBy@ol*`l*|%Ftxsksm*K;|*Ty$pl2*=G zZ4&?9^>t$R768n+{T~KSt}l^y7@Wwc8Moj@{8HU~3Ot_zj^n`t9-Pm_y6Y-$i$i9E z$17oYSEgetK}E}>ck}5jnX{Qcr3V+Qo#pxCy+J=uo#+V}6tUC~?`(Ob%PYaQ=g(*{ zdOS-@S}KXNpKA$Gi&ED3uioxor>(CDMmSgG+vS6`928#$28Ipgrwiqce_6XZSIm4! zdHT;&EM61tV$3q)qpM6HHGlcGT-TUvK84LteJodfWju0J>d@O2%k$_4St+S}+ekSf z6WhCaXm>~*+|*KwjKztbglklphvXLse)!OV!?OGN*>|82&>3n94n0}Vgo7wItnfk| zK}2**U#En`MPEp8ewfeU0I0P?*odJeMC|Y-$EiNbP7Zolk=jpMXt2e%wg$oTJf~)i|R= zjLBg5qhVWvVyY#~Ff)p$aP&P2VaNEmX=z0{-R?K;@>^}t;S^yfbV0grXK3gXxu6q{ zJKScOfwN>q{lOl+q0iGnrS{5!EHdYkCy{lNl67o2BxTpm!_4nk#m=Eq^940k1}V~) z?^&BIb@B}e4|Vqx%v6p8omWxk)S-G9@Kcm+8ixmC(esS#v0v&TUQLCE_z)c}fNR@R z0Z{>4ct7*?PV0%V^N9*e>&4F<)98Nbg^7Th3i0riEjG<{Y?pUdcD|%A1N$XD){%oJWxSp1dc(5$sNJ)cQiZxYvwB3icT?U??)%dNu_HRDWO(iv;{ zdrs@HjQtlimv7hfEo5)aH12D5gEf5FceUVYvr9uYzPWwzu5I>|DelIMOVr)bI5+J| zYzMW`BR@TABj~AUbsH7()~~Twdtwe3N^i9MsYmNLDqZ|yCW^`?n5uE(A#O8`uP$oz z{Fbo|_o2<9Y_PnwZGQ>N+ z+o?ape!!_I1R3vHsbSBW+%!@myj?nFkuu3O@{)I}{NFf>fq_`Eh$pbdVQm8S!&X#E z5WFqEH)>h1l)=9RG8@D;!a=G$_2Rey_ART2{EK+)HCL}vgx8+B17Kaej5myTRYv=oK&3BwVkW0F<$47MW98y6*efBQ` zlec>5*}o8q2rytEs_$=V1)97{j9#5 zxlQ&TD$r!QP?flQ9UsuV&g(^POA_J`Jh}h+!{Oy#L0FQgd-l}efmVf#M<$v-U~@$1 zx)WWK^bZ#%S$tP^Jg&gfhx|Vg7w2QUpB2aj<&M8q`V!`)PmK-ZY6nA&`0Hj8`)h@Z zE2t&0O>8&cc}XtmNP;lD{>~VRP*ya@=Jq}3IfjAx0Y#pB%kQqdFkm&q@*Y;UWDOQT zx*>=GvKXcxL#j(`gm{kJ7?Uy`-fmQxUEP(7u!DXx?#4Z_*G|ohDaM%Aeg4N*bP~;U zTS!X*fX+1xtEZ!;8G=Xx*zR&n=$e|+aBL%b26guq@ZvfYRt)`Wkue?E=xZ< zxCOARS_VMf-fGuF$~IbXNVlSsGjq-dZc<8Hs-8yW%c4fHhy@V4{IiPND@)>-1?-g|HU)~EA> z)1zGbu0eQg@4Y6=JXeQjppjwiJir|(O3CK(uR_{%T*@NgMat{#Wgw=J8nyi)3bp>H zT@>aNS1L@U9Kqv%aZmAeYLN!xO;x;Lw6PIEmnUPSc% zZDGSM@m}H_7Pd`Z(quvc0rgDjk8IzYvkGr$%{+)Mk+(Xpxn9@xZR*EGe5hPzMZv~2 zFPRweb(dvw)^1x~t)}RSiZwHiC0IN#U`FD!MAx4|wicxPPU zm9ZCRGyv9}3!ORe2}L$ZoT|C#UEjOWHdjKZ$7`WXMAe6ZhPJ8LRD4c_tAleFl>UjS z?~;Ek8O+kt21llaN-I04%x!IiEMqBA7MEgTO85byCRJ6%Mz!g%FJblQ#svU=WQ|4$ zh1N<_`hta~3LGTO!Xi2(Uy>K@GFAY!^WnKO^)X|a2FimKyl*i#j3`btjM9Tz2k5Rp zj#9%8w#h6^Eq_3hO&G6@;MNAxF4$jwSmtq>wHer{0$HpB4V%8=DEe;;rN*!u(f zH#5*|7x-Hg+8J0+$ClGbf>eSgOaF?=2cO#B9M#DKGedg-am&Kd3pEyeo1K=iU*FOE%xn+B^K2-e&gU6B2A%wYPV0!wAK`+Xg%m z&DN6{-OX!lToe_YzEWG*kX=@KR;sljO5oHJR}RzfqQHQl&mG}aYFWg4w0GH7`!HKHKmQq^&jHfCW+zQ(-KfrO(3P2dZZ$OK z@@Q$}n}lydZd~zTo5Ng|1Z@SH-Li`gYbB;m@>%Ed@><*_FC8ZD3`-A6vv8x`c$g!k8^MfhI0IcRkZ!vLhit;dChr=Es$S*AzY|O zd7~Bpf*ofk&Pb;&H2Zx)Y-x$zKJMH7Z^*Jn#vM(})aVLo5{mpGC{}Vhki!FH?Tb*1L!X&WWx5biD`hyJ=zx zcVagKes}&5e}r5rFTipg4Uyt^Y3`aS^lr`s{Vs?{rvb6ROn$Jum%i~k&fpy|y7^>{ zWg+l`j8~vxTuR8B`}YnYCm82~HMLJ;lEiy__e_o=#XuupLm}W~&Q^C;ME;Wf56{y; zCNj2{>rqe`%gsbYA^_51?#hicW6qh&5Jl`rK+A3q6sW~Grl}`!hrfPYy-U) zWX0ehZj4`(UX|rQR+iVpX0za6)XzE`I=X0GXo!=6i0g93L$hX3K3n{sj=QgvycX{Czg>rwq8h<-78+L%k)XJ%ulGMqz9 z7~iPf3cfcnp=yiW+oYwrE>lt76Y#j_kY$t=`EywJaFP&OH114W>TG-gQ+jyx1jV=5 zjaGSl4ETrtA-@r%LJW0lLgJJZY^UUyj* zlk?aDELZx~_S2B`9(XyWOeH17BQP24yzNTN`IZ=nb$6$l$T}F~Ad3E&G+w1M| zHEJZEB-RQa^TpV@SUq8cP?kBXp;5OZr&*E-b^Rc*G4oFwNNbC0erAN@6nLm^tM7IA zENS%KaDry^v03|YU_*MBRfTXwen+J+`%cNvX>-=Drj; z60yslVv<`nvUk+Gfef=D*dFH&^f$_L1E${l)A1O|4y0?-EYIHm|JLa}qrJZgWmkz* z>;b>sv2g5hfBnE~fH$8j$%*8Ope+zN*(3 zkM@D@3LvyII%D?qSIYT*w@9GziSaXX)xi18Mu*Ri*;cofzP+5&0j+W_h)z?l;-d=VjEes45E9Ikdz;jd{ zU~5SF$yXg; zpvO5-qzSk^9xiwcT?GlA-3lE|f+_9#L}vgtVGUN^^%P-N)9cqcnNb{~{9qQyV{211 zrkS{*R|Cb0R|AoFz>dm=9#7?hwmGXV@+JW?$|iW|h<1uR_|)$1;Tx;}9TmmPF&(3h z%fOk-rIJyn@+Os_$9K~H!77^jhOV=B+M2;9?mZi58aUxx1xrm8h#@0VDKqS^uYS}r zAM{PK1c*$MDsfJ>ItENqam9opHxxw=wImQQi1eu}o9ekT58HVzC^k=E-()e|jJ_ic zM#msi;G`6DW+ke^RN+$*m1wvl#rS|;w^FWMAT^Zr4_f%`C>ZnY`q z&{b~RwH6wIG9QPzNfe*^=z6w(+$gJCd2!JKyE~1kcMc92Y*nAva!?m;IYI#Y`|3ISvhnT~+|C&*tO&>*u*ozW4V#;!j^onj-(ZGEM=DF<}V2;fMqX zvXkVYC37a^XuslsfWHAIshv<60UBHuQgtTrSTV`~)Y21#E{K&Zje|>OCB`bp``B~y>xZ~I!K}Bf(=|qxf1MIX8W<tWXiPE*1y&8p zwM06HoAlwlqTAbOE7Eav9?;EKLN;aOXo%ItU=kvpHjp5n8xLA;A``9@ta=tDVQ>~L zK%Cc|_l76$q)%$1UwVdrbr?k^M_WpfRM&&g-#wg|WcnhiJ&qNP)pTC^eq%PXG_W6M z*PVQZwso5k;|Hvq+RD-!b*(owo`|)L)4mL(Q}M@w=NHR^{~QbYNIeHDkzLKtj>0zD z$2OYoF|exIawyN_B?%6}pg`8f!04BSQvLNva>gi0(&T?NW7^zG#$cJY?)b3$7tz8& z5gQ!Fu;-I`y1W&GSdJrFXW+2wT9}bGHFE+%$NhQ0+Oqe5E@KnnoFOQ0^WI6i?GGR* zvLe5br|n{cg57S7T7rk|7tp$G6=MSwja?Aibb7Vm^$|2^%g$l)<0zQ(hm`JzjHvVF zl(NAp1kA;TMP5u`!dJGuI1pi` z*T%CB)Fk2p?sP&he6TN~aHzNr(DJ zMz|1-ViHU7ks$FC_v&LN`Hx2M5Owa_W>s=5fLDP2anZ~n%5xNTq_GA+mh3x0X;ULL zuWv_$xK|8|c>bmvLvOByd~8o2#<#=vpT&3o#d?1dI=xml`|OBIzTwG!Xb$%n9EQ&= zqoYB zZaFeO$<>35C#8WuYK54H=1D2yUeX_*V=-JLlpQe;qes~_zZgue|MiW_>kH|x!!O(x zV7^Nm_K75M7r5`#^eD@IojnJ0$Qef#iN2I zq+RG|I0;r{;?0dWx2M^|)N{wLbw-Mx{331HYj#hqHr3VEZDTLFJ>0#OoLdfb$2LyBGazs{*t3#e{j8V9K69Sc(@;7_sqr;D+NnyuGy?C|=-t$i?)c?`|FeCFlje z-LlWQ)OH4j;cQ&^2A`_A+oe6u{93uzQK7Nz`*=!jr3jx!4H&N6dxhgp$O&hUiw+}K zdogYmePr^DbfcR&@s8bvmy$}IE2Y+Ltq@# z_@~Tcg;70DCVwix>(cSq^p&K+kwZDLmI)63X@7~*d+dOA1L79B#cQswZgX&^{-e!& zTHZZ|g0CTBzo`W@g$Q*W(TE3Qxg6|wk^XO$+q4W~LWv4`pVTeluPjlsb)B#wq;rjO zZ;$x~@@wT&pn%`qKEK=N-E8waN?@Om|Gj6Hm>aXEQntdF)~bhlZd5*keUsmFiR0{f zPmLfTWNg<3uGmldO{<0^>ab^CKMQtFmv64uMg7GMT73oU*p|Sjcd~?y#uW?M=yOIo zCp$D@5zj#XD9EaPN$MFCJ5?`q%@qD3aP@kRb;ILpH+g4kz}Z4=JG{HtW3lL4$#~hn zF>hF~S>Rp7l5N?8CC{g8*@wry+(+yCiGW*Wc*3IQ+<$;^Sg;k)XcqnBv)b4bKBT1_ z_@VOEJD~Kofse6t&ey$0;I2TJ(R{=#P-WMyq8HKi>2RTrgD{O~y`uHO$jtXip>%b@ zd3_9XG$-PS;2vSvi2i$Fdr+x|(+;9KYmRuN0BSF33B%|xqBSAa!Ofl{O6%wDHl!9i zmA{8U;jbB%fRlTd@k8KdoMlx_@8iu=ZTe+_q=b>qDYb>+YeuAE4iK*3LCyoRyp%BiTugAM%V69}5p4j7 z=Yt#&CJqEKNgUB#G@x)`h3W(-w{ml&N|cNa|y&X*lq0`6z;2Z{}Qv7ND1 zegd6njZ*;M2<`x(r7Km7({JrNQnRTuP&7MGI>N-$hy>ve3X_w7aWVy`tAw$mzYY`P zC3Y%+5?e(2H;18M)QT0L0%r79 z%vRlnpMfMmXMX!NPg7ckk&6+#;mI_%!SzO2+;bM#VSW6J_(e34V^43T^FEZ&YfH$# z1_kL{6!=-_YHK5qe=^ied%GGkqH|9Al$PaAi*N|3S&nIx%VlFQ1t z|3!Xi0^0Ifr5>%Mn!y{ro+J>)YcgRnE`K8uy$yW(k3kOJc1xt_I5nQzNXpwNkFTD@ zBo!(G$Hm=8M$#EHI`)-$K^!mB)7kB1RomI84vg32I z68VPupTj}lj#3ow<0dq9R`dK^6fB6@Ao>hX#1-NGoL%M()+*T9$YYl}(aroApOYJv zCCC@(PO>48Rj%50hYXGizdR1hJ)V{S4;>d~8(X~|n;mNX+>XN<;9XB$-O?~p3q&1) z)A_>}m3kb}em7k6`!({bP6fepKzVw~JzKc5twFF>pWTfaj|}J5wxv*}85}rf@YBMP;{7DL?;96iomd8w3iWd%yWL zu?oo`wGhYWU+d;0YVSVAYdNO3xESd9Azva{u>sko0g#ul2KC_ zemV(>IL<@xM&DNl?ltTMq7wPq zmntH-gDP}wUY*O%P}uM+)&QeuQC7&JphTV`~lR+1E7yw_@0K9 zOagrKVtMM4F#sruVChLE#;v;mGND`B8ty+d&&TjR24lQf{2VmIMjxn)4;Z&Q$|xi5 z(VD;%W5=cxC&WkmZ82;kCzCI!Y~{tC)st14$?W`rRG*NEFY``}UV-KX5F3UiNg=ty zcO_k)ac6??hA;ccq45KiE_@aP33L&x8hoR-MZNUY%5javB(xO}{-BMQ64_XJe~e?c zPApo|ov67U({g#x%KPmQu&?h0ebPu;_@DatSUYpNZx|P#B6q5H>q-mqz;`z@LW43l zo%!I5iJ*j>{Ijo@$h5+|Ia{&#fePXe_(G|OOxSsB(#9i02WuzV+IYO!*=7MU2NSi(l*`tVO zmlFGDN~v%aUL1w(v;2aeC^z66n8bBL_Ii3f<(c6f{7jeIas0Brc=>mh9OnO_s@d_~ z4_4wi2C+Hp#6bN;YWXS5R}Yl}?3Rg9R;)hUtch>n0-;APEQ3a`#`c*(U?}GCEdBOX zcR!DnDSCjpW7~}-D-Tm$6!MS9nPkqZU#053Wc0oUdHui_XSYHahrik1IPKYO;B!r={3+mn_jNwqynguU=>v-C z6+#N}d1r=YVdPe~bg4d4FOBT)wr62mPyMJPUe7J|eb0UJxz4XG!`cc6{MmjV?%Vtv zPSqz&r3BMj)uL*X6Qc?`_1PVh+{|I11vIOD?}XPWY#-%**x?g=zqt zV6qT>Z@c8MqI=-XrL?Tf!e=4S+P@cOXfvpJ0Pi!Iy)LVCUi@;X%m;55g{@-=k+<*izu z%Nj3{3c=uja(~Jw*-7swh9F6buh9{xhXFWA(GX{WdzYk>ycX8kLsY_0Y^QA}1<;i{ zSP0NUDpC*nEbOz2`ko6yK^zc#>#0B~_A(yEyi-Q8&R<3eh#D{Bw2AP33Hh>dt2Trk z*V}Qg25L-O@nWOC>7afgkS>BV9PuFA^BPx(S8f}?)^}bM77Gv%#YD2F=->LOja2%X z!x7+#%1RrI={b3{fv>em{P|b#;jRi5VEQA&*9>XEZe$>TZz>fV^?9FoO<(eD_J_<|8H=kE{wjguYmbmkmN1e?*ShT#Jp|lq zk*)u`oU7~#U210k<#qHZtL?#zXKi#cDvyhL2Z z`3J)HnMP{Y_X?G|PYcQrO#v4%>0L8lFvRQHJomQh+w+5nzs1yES_dRA$*q*W&K;t9 zMEYz=$?Km%G~y)6z|+#JfdQ%h^R30lqL1|ZQN{tt-c^9T8RteD|fZf=BRn$4JmtJOX<{&%7V;O5C11mk@L?y zltK_>p&0m-N8NgbKOdF2Pc=Rf5q5PSQvW4!;qU-Bq=ZBEY-T>7MLB6_B>-djHb8+Q9s3f$}}vaLw_~gvytn=m(wjiG~aeJQz@VM znYw{NcK-Vc-Rxi&6hq+xm{T<(Ex|me5zcn>UjMfE@`rK#Dx(PcAs2!C!Ho77RY2?f zJQ&o&61C!a?-Rj7SG|GwDhl5o1+5fjd^t~ngobNvV?$&Mpr1H}aN%lA3iNOaq zlr2<=U&B8`KC_-S0kw!J0Gt723=3&1!gaLCc@@t@c~F}?LTyTM0B`LW>BS|eqlF>mn|Ku*8v2Sm>Bi4FmS{|b6a_}wz0jv=(8Wvu3qHH1o8C^=%~%Il+tFe#B1)6t;?)DQl55x4T)j=JqNre?$do0jucM}`t%#g{u z2QKGi0O9i}-at@59f3E@I3I<0DM`3go@A28J+O7TkO^4X5Q{Cn(goFk+Czmd8Gjqd zQ2LM&p8{+8yS@JV_#d5W4lldHRX{U3u)-^FhYrYh&l>;<4tS{a~v7x75-=e1X7p)!$y_jpws% zHPsG4YT1vYARyEUudmVT+%iYRD)%+d=)CQbe_8||`X(gtOj0K$NLgPnUCNSN`xIOG zuJ69Vwsjpg_Ot|!w&N8!;!Fwd7hje1$K(C5lHWSR?|$@jd(h@gQm?dwebitzIyWmj z^tc%pFgkGa=YgsZ?+KA>R4s(Ji`6>b{i^K~#F5bQBN?Dd!yeT9*2G5ha~;UCzr0!EjZ0+rD<%<@aKJllYbclG}rHx#fumh_xgQ^hpkO=U}q9 z_E*_}-Ly+u-{Q;_!i{Q7f0-%gD9(Dcx{ZubC@&1rDg528ZE-f4F!ZwT95J$)yH)D{ z)`B}iSX?449dO~Lz7^r7{i=1T*2_vtWLJRdQIwg>XHP-MT$>@Rmtu05)8c4_ru^#W ze20xa1YlaRB{RT>ULpfqpB^Z_roFt>Zr(eE6~uN#ghdU&h;Czor!Lg{yX9$gk}O~L zl>5bTjLh~p8$dJy`!VH?eG@zS)L!A-@tXo<&`Pk7F%Q(YRGL56&>LZig)Tg5L?lU9 z1P}3*KC(tH(+{0d!m0<(yDM5h_bTO7d8{-UYnAI)ZiRpc1`)4&Dad68lJF;u61Z9& zSkl;oTJUYNL?Y+dWT;Nu0QT(PPXjfM)S|xS5%1i7^4}6zkEOGb`NsL9A5|fie#Tbd zI$r#cmd_(BLWLvo>=+=xmT=}>El?`j7G2)8|Hgvl_QJ@wuGN;7wH@@I!X5y5E6L&x zipqsVcwv}ezcvmtib>T;QRZW}G@IiHE3K&xul z^jtc6*_uU5y0pvZLk^CjPRA4Gg4^c>?BeYXw_tG4zso$ZfUr%=LdXRIPf`}M4me{7 zFcrUF!`5hpB4hlgMBWpQVPwdTZ0H$eR=p(|9E< zL#&Pi=Jw1;?NoxK=Fpr&V0twKS2r2E>IHG0XAwAgYCw|~%gNq#&pXJS2P(}hI_s70H^@ys-Jk!MYv zHf|9>MeWInGf2^un!0T|Id&7$(A@<}rGeiV{|FYHge>^ZuLaEqC#e=npA=6Muz%4HJF))oz8xb3P;4NKxDdRP7sSyL6&- z`5YF$x4~vO0g7-UAN^bY)WlEXUyqiOsuc!Z1j@|!Tz$IO4mr2!#*22fDVQ@|a@N1r z$;u0=8F-1^Ok$zz0ObfU<^#61;{4(?+YyD&u)cD_4%P^Ni9%O_tOTo5a*a+uE?QscfJ-iyk$uPD zVdpRIVtt>%^IE2O?Q4u9jd`h1&!jsU0)}LEOp+xsPy-GeLvb5yZ*^Ee4nwb3KQl8GlkBPuOVNneSbDrH~lddmgl!WpMS$W(1d&qUSfMS zGm|UnyV@3DK@9Rr+$GRcS2D^JK|viFRL24~=_+Rlm{^Tw)lS?MQc!E^ue@gDGrwJK z(+^`=QpUhs2p4-Z%1Q`NVbMCGiFJPVhH}pHFf&_Ph?6kv4%hSnk}?Dp0tJ;0$U0+U+fax@o!;aCL~z{ys6B~LTpj~+XVVR9XKIxC~LO* zfUU*Uug`%eqBe?elNq$BwO3`e0g%^djJj|d{vqT5OdLtdcGFg&Gni3Jl@RI>ax1{7 z@=>j;NRf6T6`+j+0rIs!zT$`_`SINBo+NPI0G* z03;G?I=q-rq~|qEN2-?Ae$el*EVa&t0nny_2s@;&)J0PXhs;g7@if9y6h3$Ty`|br zGR7Qg_E?^;1(yo-L6)MmKTsBsC0=aEb$nI)0S-rVQX%Q8iW*>s(0^F$r?W+GumloO z!ioBYfTd;b6Qs!{Ei-?Z&;BB5JK2VO_|bZ0PX>2vF_xE3@$fHkgc;Hs1d1e1#+Y#G zXr)J#7kc)S_lOx}y|h2?|4u$iG`E-$k2HwSpq*h)%XXw-R|%F}rwc1qe^XREn*o~W z;w?Y^nT4yLkt6Xd1@Qy=%q3a-toTU~+Vz&so{g`T*xLcqVo}v;i=Nd(XEip0T<5VM z6}1Z=K)(X!qSn%yK3vgl`{4rgw9YhoTqm;gX13?>J!RpOxZ=y9n6-7x3e(9K@R)q# zwm{^b3EKnoV#ZaJTooK(MBoc+$+G5^_P*T`;&PKV&$@KAlUO*iC`Sdr+U<(B~=mp>m?PK5syQYao%k?AJ zmK%$2pDnILThrIAvL(f_r)L}M)Z2O1`UnTfU_|6FR-MWqhG8;|T-jXC(Sw|0&YFtl z&%{E0WQB9|MH#oN zputurJo%bobd5PT3rx!RgZFck&twx_E5E1otBt#DnzP}kPVE+!W%fxvBP5>5d6yl2s8X@Yx%hQvUIzF&J9Th+V`Z#nFe1VF& z%d;mAv0#+8HG&{Pq`wjM-*@q1)^hKFra$9}Yk>sTLlP2S3i(NBulHaTr#{2lDabBJ z+j&1Duz8QG{$4Jz(Ys%Thbl6M%H9r@e1`}V<5u2jhWDSabO=6 zpjhKSgNVqP!78@Y9zKstb;i>vi&6oAcPyM*hrQ{$?c{TWeJ|oMDsegALqOCMK-xqM z0jG72R@sk*Ue-z-gi1m@*v6>w1u_laeB5BTkOWcF_$go+AR4(ixwjWO1FHpk%v5m9 z0vz{6@;oibGb}cL2%|Vl7JLNM;Wb$O-KH31qw55kDCP*Bpi6wnDFoPj^GuKz(~E90 zB>T+@RCy=%#aGu3eSqntanSiCblY#=7s(g}55z_CW+l9Ef+V=Y2+>$-23nkTzir!)7IS#bmr*P0R zVRE9Y%)s>_7C}-#%9nm9xPiKQiC|3y!^`U6+x%&iKjJkjo!u?Sh-?Etk5@RTGUC71 zWLOpbsg<4LtQ%#STv~wRJGceeEs-TGr7HM&f6zqU?C!{_W9){M3BhiHtW{YU`0Z*v zJH?*f_Z!}JB>P>lj!?dt-4v#{t2;lq8aQzCIhVsa;YVAIHbWV~GvJDeX&p?*i?Wi9 zx}R{&PcIF7gUIHmasADq>cCM#bfejL8}Y%63d(F^TXNscKB-)Rkx6n@bnEHb=HO+z zWJ#RM8<;9t&MhN8`NNP99LW4oq$qyi8e5(x_Qnb~@Eb_nHd-V0+kw{0WOMp*L;$3I zWNgdRXmj#4l&Fa@C$9qJyEjUjwE49_Xacc@scpBdHUOzNJ-YtBxnJi;&)C!@^9oF&@lw)5<y1W{27_ zaEFteb2GV}XAOrH%l_K1Ha}hyD)H}vwatKB@-ZOrwi$2i)#m4boC+w_{VEFf>i$~d zKZ6#P6;N@}1Bm+OU}zz?!cWm1RhvMfebR@VnmVSm64mo|C|SA`qUA$x^aUzCYaNu{ zBs}~!j%DHZ+E1gE7twaQUj8Fh&7aYK%ywrQaTGMD1$qUnhH3!VL<*Xqrg{qKAJN%6 z2R~ceO`@kn9^qgAK^K^wCrV;NaT+qm1UMB;Kv{JNP^TEKn8FLUdZIL?_`G~P!bBzk z@#oNhgcyr)S!y?KS_pC;IyG(gW>Pgup9dArj3m{pXNXHgedZSGt5C0*^^j+4U2uB* z{b!j{Q(~8ddvbhX(6aWDw6{882@v+qr8tv6txP`phnxjw#$L05MMoYsixwnw#JRQ# zf=>A0#@St$@Aru0LkrbHL1mPiWrUqgU5h(0*(#t{6N$ufV|F!e+$Q?Rss}_4mVQdv zIhuMq;6`}m8d2ZbmD=$OX@LLa{(uyBm(FSQ{GHA*GDpGU;wk^Ym*g8^f6wGL%oy%J z?LdJLQSep78Y7=ymiK(H;%y24N|mCi;S=`CL%H9>^Iw<5knsL-d`GYWDL%DE%g7I< zLBN!2g1^}9_V+xIbJ4;Du-)&yJk z0cdlvO!*^IV&4K1mw3H)6O3Xv(*4z9i4sjhe}43l2QH4p9L-@^sb7^n~}#8j1Py|Csv9sHnQW@0phc~p8L73`(5YjS?jF*Vehkl`L9@z)W;#qKpNgz;~rOKf7%a>i^*8cn^{i*E8>Z+x=E#KsK={ zk_{6x_#_Tx$AN08z@!0&e@@WtV!0J4Ai}zF$W+nCJ0?`NZL~DfX?~M#nx5wBzu;*w z#)|xygTCUUbAcYpKv{frLcMpZ{lMTFQ3f>a?M8ZoR`6kf)#{u(MT+@a!W%f}x!v%> zUl9hRMIVbnXEM^@Q&*jcCdrx~^HKHuP*%b^hMT(l7bKO)m|YQ-Wql$ye!w0&8RJf- zgc{@lH&UdO$9L9QDa+@N(97(F?3d4Xg#UM#TsUfVi&6J_@tkwjd<@S>Ju|~` znwmZe*=ldl_TMGgD7{zmux#mdVK|2`kMmjh-I%%V${Biwmt}YVb!PmGH&R*R=AGd42rhm83p*}; zW0A2hYIDVya-t>cz@C0DfdYH_rswUeNVR@z7s6d#*LGr5y&|D`u6$dfzhMCHpeVQ_ zV=f-`!^>~%bv!A4d!AIxR2IMKkYZMiYBcJFZ|}~Hg~!mu%->*zZyO>QS@8~vLU#YX zlL%^|BA?;}dtfI~j$EjVm(08}E7)mvbgHkXP9LN0cB(M-~JQ0gQMIU_R3pv;~85p!RCO3s~ToGv)mnNfX5O031I2dyT?>A|o14wCLFCszPPZ5y5_kF00S6{mu z7r3#GUJKEcTLXM(N*SL19Iu7AUZ@ob;!1A+suIjw-}N!jE(SOIjhrAW>G-!}`+0&6 zl;kw;YG2nUe1rMDOO#b4uA`n}ETvo@@zZ*Y29l<BkpYt$5dGf=|wwS z{`+M3S97&!;&1e8jre<37V9aI+w{Ge9d4m}&c~C#k3%;vK?pQ95;4%kYj#-72=Rc{ zO(;zPENK_xt@zAl>yzWxX`o@Zw&54#Y~AZ}?)Ak+;0Zn_3hs%+NX8dh%@ z5LU09+zn3tSd~}+j8TlTJT0)afUO$Rt;7%IHMh&!swZ~{+%)}dwN27+1XxG+9hxI> zz^-F{NZ{&>&;oF&t=DKJoJiFHt{hYDKgPVTHO=Ft)$ov9Io8@?Z{jfQZGGUDe$;0` z@1x45l?(xO^bbi|gdlaUBRzAX@|wZLiDz~Y9b=oB z(QAKs07gn%=@5;nc%a`Jd1YPq>M_mE+bmzOUNrk8etC`hPK_G8*Xbhuk)72bMZi$0 zO_fV$Zp1_aL5`QxpbK#b9P$R)2S(L<5>vP7!TtT>5cDXfIm&LoG;U3O{mUAv6mvnd z2$C!@Q7F65eFth~ObmEbM}g8$LhE=fc zszmwjqReTo$7E1fWN{Vp5fSC%!u?AYhN8~MV=p@MisvJS@Yy}KzMwj2Mko9(pKND}uAP~o@Pty`n5?&VS%TL0W zBX}xPT3(4WoKV~(w_w=nHlG36ul)sFCq33xqFarMqVIpauXd%Ayjd>ols@5nJ{ZIN zawm5)a=@?mtEr~@UGaR8SsTJ@X`Ftu=PWKRuGW2f3*fNrwA^6CQ?_wAAW5~*TNGT~bRmehhC<^$Zuyok}4X#Ie17TnvN2F82$n&hoA0#8`?Qj1gJn~woftDw5jw&n=DmOPY zaBT8gq{#~{F$1HT;xJN}({wkX#OSUl|bipnk?PqSYHlQibl(Mn&Z5v*9!zR%2JLTB%00pU(ra7Hr6MXfU+xtOX zm2yt-4`HJzZh&NXa}oq<2`oWxKMXR+4zD{l;*Y~~WUvFVF`=jzW(Yjh9dT(vKnrEKskh7as_81DtKS zAg8zfXgQAN#v}y1l<_Gqmn!x+`$}U-2;}`E( z%yisxXX@~>h#T-S>6h2go&%cK!cT;}e`gdvkEN-5KU%!6ZaRE?ycSC$ES#VjmhDZ+ z2YDT_0-zwSAnh{P#>qa;pEBbK54fAuD{g-!^Hg5dbv5Io@4y`X_j&U@GJp--_*R{d zxNk08X+9pH1^m)q>WI{t45Kt>%#%~#amDZEm&D0A*YDO3 zcn)K(WM3TmKkoHn$#~?XLZZ2( z8NBSu!jR6oRXT~~?bCOvdX2DZW~0S<7 z9RjE_%fyNM<>m;xfjz1RJ7x$lJ9=l78l=&+e{X3+&bzJneE^H(*{CnmtXla)$b*d8 zFF-V9rbBw2D@iFtSmKM)t}c~~iQh3hv=0ll6tPtl`Rgh0yFdP$!iTyyzv6}0Zb-ho z^!@oqRr!kG7mrYgB1?99QOqKVdqHgcUQX)S@M*x1XucJ7??0=(`=SGmKVbq<^b=u$ z;*AV7jnL{i6QF(GkoJ$!u4FyE6H@)wbd7KPI)j6^&F-xrqUI@h|e-iweYrgo_S9rlHWk zDZfbKhLZrHK&(=-w=jr_6>$^RZ!BEK2rVAn+CN!ch%o^CR1o}N8lNUm4`3%n5tJT4 z9&S+DfS~1=VISxNde;=Xu8jnRafkBBWpWWvE(DM@VDA9}vVFb|Q&{!vWPo}-cNM`9 zNBdFGQmksGnV5E59q|R3JvH=7cv1N@|Go3L*5r*5!*^GKA3`{(`qcxAm(Nb-3RHB#lU{cUiOH%E+9M-oLIdU(WlwZ=1&6#u(HgS^To}KUkkD`b` zU3e!>ns%eH_T!v$=Oh2y_UPV+A6oYGy7fWd-p~C^8;3lMacchSZomywTdlg7^GA@ zo>hOTY6>rh+ODRZePkG{60mHI|B(`kVRYRZbt$0_YL5^ABGdy=%|+M^cF z1wH|{?fi)v1`UTqOYVT)e_2sv+`D>haB@y{UtTMbcDE)DO};RoQ?lVG*cstfeeo$} z?tUx>2xVDWUg_6_K7?%|4>PzOhi~5bmi4^TU)rpXJP8LRx&ovI;J(J94l@FZzI{>S zfU~VhM-Yr*a-Lv_|J`58lnT_*7^DFJ0AZfL6rg5KiIJot7Q|q3V#e+UxIS)#n>Z+B zF|cC6G>gVdrP^b*AB{yJa=HH!Gi`L>bO7(d3h^37x!K;lSie`m+%{tXqC+4GlGad( zFa{^0JI~6rp)Tnmd^?J}-M5FgM^24NuLEy*sC3h9rQjnhed5{0ehl#Y_6V{A90Fvh z05MqodvmlRsuta3OZCL~y%78<5QmwJbT2w!uiwkSpxIcJcE6lWIBd6cH#t<6W`PPS z1={_riDf;R;;>|Z(vMI`N8a6n{eI4b`n<>Jti__tZ-*^ldX#c227nhJ)|z=-aL#0~ zJ!s-B|KX#1sUG#v?kp8lVdO-V!&59V4@xkhBYwZ=`h4=svVN#*<7VvQF{2CpRyZ}Q z79n`IixpGFl6i$fi3kQNf%u*Lq*0gD@2;ltJq*OK??!&cESCW<_AeTTO)jY_W__xK zMOP@vtw#G@E8YyI;aP{*^RP_2uthea1aU||&wTD!|GbEOf!82*KATC+!ceVw&#yJ` zPU8_bo|haDFHyj~j8Gsy&1&kwZf2^UHqvx@YPKfqB51z(az&6<(H&MD!3;_3@bc^P zy9zgNYfo>qDKin09#XcDuZ%5@MlotL8mZTA7>U|V2ciu;$oG&HoY!|`cu$^BWCb#0 zJ5D=a&=(8nm;p}33^AA1NVkYU;1a+5=0=^ku#T}`8??*cDF;sFG}-GBmM8<$$qlMZ zZs;3Z5JUB;e*OJ3s=m4z`v9C7VPX-N=C?u2Kijd1;BBmJpur*tps1enkG|TIEDe0j z<>v!<-B)s05xu8e5dBg$ez=52R*_u)UY0H*K`&R^`S~pk7qupjk{2kMoJP1kWq_|4JRe>d5knl5;% zSOp=BcJSF{cPSlKRi*9fJK% z&gN){&J8u;*o5|YKM#HlY}c$ZfVq~x0j6#2e6`&m3LwbdHc=<&IU5bHQWCmx_V_T92&coEpAJ%B|lu? z==k59YPb2^UpZ7BIez{Jf%(<|X0OnN(G1@bXU9;nv8I?-i&`p zl1nRhi5)t;4vV-vPeFbV>uGaoYNUg*$`RQvPEBc%*vYR#$loZlpuGGNc3KI_Ox*HR z(y9E?%X<4Md<8%3I5;8n_>S_2WAe$~pkQA7Z1Dr+K&1#7Q8Jx=54gEN(e{bY^T=1F z@w5jJ!jgHIttKGlVudAI3nk?gt^0goGkE~kp!4EgNtBuwo9Qgp@pWLxz2sK`WieyQ`dO8*OSW3D#N&fdu zaw}$9T^6*5vb2f{tNssXO&!EAN+F-4(b@s2&)KC*Z=AE~uoxSI@;;@hXQ!Ag%?GRb zqjStg?PYJ_=dK`Q<)@!z>u2%SI)BMVsd;axp)zwBQDDj|b8WQ=w{$%#{dnVIdJ|M+ z0kKc#mTqfrU#so%cj8kv4w^Xvr zWnhF6mca{FXX`d-XX!HkLHEQg;AFcz+m^9|+tgP$l&R6AiE>e2^8qyItda zXD-s|)Gqxr@&}H^pxxIl43ZGxzB*@|#`8@4u4-Sxwr@_qQs}%oqccsvu-R0`qyAn$WwZCNT5x$+XIrIw$Y;d?~1{ZO;P40C&RXk5Yz%S<)UX znE0DcMVnFcMnT~A2@=*t@^-DQwvy7i_ z23oai`#+hTrQ5E*&x)pxsGjKm3(ilijidm-B?Jk z8jiP^VQM(wu^C(X!i{qVThFjD60ew8rR9ju9R{yX7vaZlG(WSt!e?(5=rdQH zF8e>0kuE>%zkLi8@fped`xMX3tx@gZ_b5)|?|j1};x%C4zw=&YSAVP^e!*C!ShVYM z<$XiEc(y~FFpUOpBz*QeH#pc98#*V9x77 zWhd!YN}S_-8}CO!i?J-xwb@4fHFe~xdsGfA1SdPrHs{=w5Lo_M%wLJQq62*+mic(ItaMo_l#Szc~R;5%+$Ywb6|0w*+v| zT*7O0HX0EO$dNKH9qwW~&C}``bOL$T$RqK|SZSzeyfBK0fTKPWc;%?sl{IZ4c?xB! zO|jef&Wo!Hz4p#(KaEcJcD?2hH?5J>qLURd>-MuN&A1`x6GMgm1R4eY82A-)E0Huef$b8uVw@LT$DTl%`XP5PM$Um^hB z8MkEJ1_@eILiCw?{fEpK>Du`d(FzJnbK~XmwF-S+Sti7bocIb}CXX_m+6r(izlc^Q z&lenfm;VuSG3G$MZ-NL&_V%RUI!l{H9_vJ20>4spc4~Rxv)hAQbfitXg48MyZt_bdRKZ237FtF z=vG#7Q}Od~yF8cb3Y$+erm#I*!|JD6MP#dVl$W6yWX~FZa+Ei#1X@bSP*w{nf_e*1 zujUz{OL9_xVpN%(x1=#|wt^MADs@P}nKWbYbtvxPp#g8BDEc+Kz5utWZ1s)eq|LFv z=ilW{dJVey0z30PQ5^{=nDkhgNFl)a7TsGh?hmPFlv6V`{AB!+x~WTY--%I>{V!+U zrc)(D<6M9ohgr{SSZ>F2C@aYEqV@4;PMVwi{`1`2wp)b+wsS_~GmSGxL?slF=yU?_ zW>;4cpFtmvvN0%VjTD@G2kuF}Poq21h3e~kae&TB$mkNAoY*gGxy??J{d)3dm0NaE zBtsCMZ$Mo1dc2ByzN#pFe!A+^*H74in>liB2k;hLzOU1akjF2@me~nQQbo@GkYkoR zkf<)8Zs6z=lkPcZa^E}@uB-XlMlmUqsYk@3+;+e?^o5{r7e6kyO0;nhcQ^i2VCVai zb-^gUK2{^cmPbfvKlii5rPn|lo~i~}oBQXC{J$>*kwrG7Anv@U&q+lZ_(&n~;ZKFO zZ;a;g2OG6IDzU+q3hWkISV-?q6T2^|6?|>dW7k!jm114Sr9zJjo=2Jq`05 z6Xtu`b*8>bZDeuYT&F=xt4H9!K3^c>@}Y|xsJ9>@@sRkAgbTlz0qn(-_L zf3jUW_SB7~U)PDPxn7)j$nkCRd#n4;zLM+)O)o`Xv)}4hXlDk>^0G*Knqq_=_<}cK z0|;Xq&D+@*FAt?6B3$p=47}F8pM{4yzO4pt8lHt{!+%5?bLb(zOHW!)QkKn;Nte3*Fm8QQUy$?wSw!9A5p&fi0x z8;tig(wPl?|Cn6fF*&L+k(FN*vr4{9KF`RqE|0Nx*;Tb)jVf1-DRusb^-&B$_!v}K z;>KQnU0aTFOXp_y(VD{1RFRB)e8uk*nfSVwXEt#%G&KTKKpy zB}mmrr^0|W0|Ao<`b=xkpjp;6zsZZ!2t0TU%+78M=WVANrKvz91(!UM|C`P2m9ddx z!+Td0N$LJ}I1y~1ei^X?@>x!l`vU(2YL9Wuc#`ia#Ug8iWBWZ?Cepxh<=S?N2VMWQ zCxS%xbbTOf%PRO+P%c2I%?XCsEkh;Bd{-X5PV^lYyh|2KBQVU__~DZkM+I(;FV`RO zBk>)xxICML=`iouCUe4MUr-}_t+%YwCx((!7R16NekgP8-VpQah^QfA$HkXb*a)`* znn^7(HxBCW{ocgqXOSoDu|6=uuJ>yy8FI7K?0ceXh_E!jyCt$T<$n*X4FFwQ!CiAj z69~O)3wl{9h(v{`Mh+fU2ZC1Rve6G!^XWskg`p0D3Z(D)8lovd3U3yu{A^2KvFRX8 z#K(2)c9;C0E`Uh`4@Bu3_WVmPuC{iirmXfB>n@KX%S9f?TEJ(8>CL&t0W?hls#~Uo zQbBaHcx01#T=Q=OOcqrSE^{)!{XWli@?IOTw0@K|GxrT`yuRI{9gO-eU)Ju9U6+0- z25oRo<9D2tGOHB^YBEeu8P_cwhI2hAB87sZ?_o?vI2o7W-+Z@YeIMo;-unz?zhRoF+X5^ zYSwfPaSn+q04{x__sW*^gC6jss{B#%N`LhS1q{~~T6-kiWd%KAn5kMHzQ7fSf;EYNv)G^aMlTkQQ1 z47V%}%vgA|uz>6SE1=GgnwSaT zY+*5Ip-GBqW#rdmO^VY7brNwplaQ+^{M451*t`OiiurZ-}PMx_UK|82yltqHv~51y1AL;rWYPCf zU*XE#7cFSgIyx447!G}K&d`r3;@4hl3T_J5mK)Z3}cY(gh{-n6>Hw zsrq28;@VzsUPU=k=vSNB9(c=KPZKB_6k`Mp45#u_X!_7&F{_ctArs*;U(M{C9#=ehHS`(#19jmgC?q-2J=Nih<9nc>8%KfTq~7KOQBZ z*8A5PMD&XGBmAs-tun+^6>shsMiz+3W~K2n{GSY8IKi9rZC5?=-hWrjS3l+IY}uy? zGOYLA^+Ywt@&IY(0w~Ph$c2V`(sPpf&;aY>*-%o4e{wsUgn=x2ZYo%qO)O1HY!I%G z;iCL`{b)vrw$*`OdhnHhcjRTE(tU9py|tl`)_8;^k|>9vjD>9u1X6VxLlUdCstwGhiBYLyVK~%yihJn{w=Su;B*{pGm^J&3A z=kt6t>oV&GY-u9W$w+cr;XqrJdi#1N%ZWj0m8g3=$P@^WUjYP>9RGlY*795eWy8|B04c;br}%j zUcGw^F^dHCCL=aaLV&!zcRRJS5n?7(kG&zgyRz{++*~|U1KVzYVD7$pusLk+doq&B z2M*sZasRVzGc4dhgmN+N@Q8%mFKjD2;*#6z8y1cSgfw2i8Eyv_z(cPd;x5FcoXDu% zTs0Wo^YFs6Z@^1xwczb(U1JY#d+XPJ8kH$fNr6qb(nvwGaQwOQn$a0fevVtw z)mG}3g_?vgHNE1E*pN<#4s2!Yr`QMIu=O1bFY!(;h+DoKd+?DD z{UO573=nP^MfumYzUGdKOzDH2D2aISI!B=MpoW7aNan3M+W+z$9$L)VEx$>+#X%N1 zTLhMAp|8{+PEiPm`@&=mepjk@`@L)Z<{2e9WAJLOc`W8cWK=b-_`UfjnmBTt?~M7> z2+eebWm?UXdSbY0t0^i5zaKRYs0BxAP{2q)fOfu3^u$0+Ers8r*7S`I7PO6VhQ~FA z92BkM;jnnRe)hJlrV&;nbKBS?=$4dRKahfw#9dKouk%*XJ^t-)G|O05C;`sfW6=DRX+)&n_ylx9p`Dkb-W{Ww>T6jJJr8W&X(IIT-p z1V8~`h7&7KgO^h0tu5L4F*R)4x#0YHAdBKCfK0+5*eOy6QD4?%@*!ZijQuE?rtrq zbyf}4@iNOC)^UIG7)la|hq!y-juF(JRIu++qh&f5=&vzmQZQZqBfZCip&QM)*bGa?F&^OeEp_Sj$W} zYR|8^h%Wn&LXl?;MDlGh97a)9D0U`M=YRou?ULBh6zw?}=eT(70K@!th#x<@i3YNv))NKST8LC>gHv1*Ohi?mVbI05s)8 zU*$jN-uwR{7~e~Ok$1zz*TP-7)G-{%0pF$HjC^23 ztjHJhy&}mD@FWB*{YZ$Zvgu~BrNCks)Puu-$>J52uQ2IWgqS%Y67b;nn+)1G(;$$= zkE;V19?-q6lL1HFptAt00$`@B+=bK|i2GZIGoKL~!nR#Zs91IY+*12#ADbKijWMyh zs6v`5*#?1Xn=U9aQgJzj^EK>cY6YC}a+zn~Xpwv0`SKv{!1G6Es1v2HNriqTsq?x$ zK~e(p#i#$}Z0K+Qx5Y#Op5n$dfV0i-IQnSHyftF7qq5|cIn9X1vQ{zAMPd@?qtwU* zft!Sb{nNdvf>W2GM-BS-=LCZnCk_=$T~DRpV5!K{{O?yu|b^UlbL za8U0WoAiOZf%bwk6pPsA9_+r0 z^SSf4$3&erg7X`?s9gP?8xG4yx}OU9SmLTIX=(Yy9=7BLmY!FdI<1Ek((4QM)ORP81n_<{CCkHC?sRITqE&*=PChNn!#N zQXOjXr*?XeGhB8+4eTrkr7t7xBM8&#!WnoJAFm7fe(s`{eP91!+KEgo{Ma z7ovdYj6Hp_5Y?LP2N`9Ce@g^{767aMgDs8Lja7M z2AFUciRY!SOIE+s!M;?Fvb`%)$VV^14t9u6?tOJTc^GIDn&(nscsGw-!f?mMyMLlP z7npRr0w$=K8A|j%!KImCp<-hOY6EP;PX5G_6C(hKg*?|RGLxI;EGC>$dCGyqSndmU zNHPq_tU{_5Ac!S6_TI#iQLO4emkmJ;7)8O-MF= zL$*(SIJd9g&-EfvJ6&PrI@7&UAr~53|GQp#@6*p463+6gOToJeVtwx@IqZW|Bq>BSlOq8nKJqEvFW6V?z2-OtzwEmtvfG z)#P#~Pt{YT`ZM_ErV_F{%i#0JQ;^iYb;&9Dw z2rl%ZsClQhmMCdIEPqy@v8LLo<1LgT$QjOmvdr>Yv2Yv?bvRo+>#gM?SjAyA=yo$> zB#_tjxh0-9=(-zvj%D@_?-M?|t`_-+3YoP8cHKHpU0pChO|*NPcAflAOgd&Xf=KlDg81@)*hWDU<4o9-7d8?PXe!iId*p^(Plhz)1`tF6SCG!ie4N6Ec zb#ewLG?|gng+-YuTZP?kKn~~d1WkFAP{{l6e&-@!+Yjegr=cYG?6EOxb=uI;0J-A$ zA){vHN`Y+B>B?(<=;jSzqfgWw;}4dmh_l*d)2OZpip5;@ zI>ap9Q!+`eM$0U9_8m8wn@vb4Mh%L$_SHA+62EX-;}37ZdnS&(bX7Dei6(K0V-f(vif^tlY-sYkl(p^MlEh+}ui2}SPKqx(uP;wJ@R6!v?|z^4+1W9f1617#p%1yL;y6;>cs4O)m^6=W zt^f&n?OI}2`AO5?8q4fo92r>?ql}CPaZDLlE!6Ib~4E?l*DzvjKk*pEP~>TqIqfK0fcDsH&YakDO^#2}<@;=KN=$x- zW!>=IV9dNYi94jh)S<&^V!=3JEH+p0sy2bq`f<&r2*~yKdnaDq-*X55!Cm8U={)xH zqRU2Sax!!pD_l2k83jD(YXPF!??>Jb*QY^se2;?%3^&&`+*h5_yPkwMgF(U16N)^i z8H`e&ZyD<6*~6z_4k@llKM+|L>zDZ7Zku#+uv~Cf;yp19R>g>N$qC<)104zQ-mQ<- z2EL?F6_)R2JXWhdg1*oHJ)6j77u}x^VIqE>mZ(3JajyM-#l&q#663zP;r(0ClYopM zT1~LqBeioT@B9W^6VDQJgi7{7+j-JtDjZhTi8ev-2>QyQaPxz0XWv+VQ+q-g@imSF zaIgGD1e}R8UEnRbWRdS8A|`B*9!%lhnI9ZwfIyMQh9?~=%G=_Hk0Zrt!nxci?$K>E zu)->f!7m>hud#OsCEwL}2}DSKApFP@jzf(DkbqD6Sw(5dda*Hu&|mP;OvIdW08?uh z2fu$-E=D#ig+1$GZ0k!rm9R_5BRHv6;4u1q;C983qgG6M{qBgsaM*1qyFUF7SW4Z& zY1`(LFJX@FnSPhG=7#5#8$7P5uKaiYAzioG+|k+n9?i|$Um_0>D^1^*R#Ool`#X~V z3*9-^Gj;olIi2I28F}nz-odf^|L&I}P7$)t>wj3cT-VjF)z=U@X^erh$IRUqWdgA` z3{N)(97mJYu+FBI`-P9CyvUY>L=_m&OV>|C0lR#!D=O0|lX zhnIMMxBCMJ@IbxJl&wk58LR+(A$rW_Ag%l-G5D&?kTS8U{q4X=@}gt890qiXWt^S+ z|9!*=`Xxs5AMKh%92L3VihPIh9k^V3gr(1Q4{IL}DvF^5T6DIcGWu`@ilksWWvjW` z0thU@Y4yO1w=Dpa-t8L?Umwm2fDjA zwQ7(nRDgHUBdYc{SO9d^JqoksZ`t5EAUHH;HseQ(zJi&+&vz$Vs2;%w)C&j^G?5Ks zi=I7_ejny?S8+`h$8~4AAG@Y*SmNo3X*?dF-A^ryky#9-4AK-8#^W9?Bbi@_h{suF(b~Mo!PUZK6HN%P1U0 zO;4v#^HWMf)Z#OalDy;*6T0GjTiI}pWbn-o{A4&lo&{vFAP*@XD=}cYjN_xb(H=(t znKZw2S)tMNfEvbJLN{fSGa@fG-G&XE%_2g#k*s{M6C_}p#CHBfCz{B26|k0>KkjPQ z_NOh`mmTP(gF%ze8x!vUSF@z(yfX42Emw>-J9i*i(Ru?LyYSGC6Tgq*zQf-a7`=p9 zu7|^ZC1A`xG>_c{xc@C)FC~QhC9+rp?|^L7mA1S0-)2txs(d5GWV_;)4!`2 zFKLjo3QUTfRc_I?`|Se}$u(<};;78}zrR`iKb_Vx9F$BEr6X^Z!Bez20LDf8qT~-w z!xa@@*^?izI?M0IsATTu#+!bZ`?=3!x@|WvD$|Vu0KawQALC}I*M#yiUmxH6oDat5 z2qTbnLmJMdq#DQX@oV7gbgEy3%976Fney5eV~88^T02(Cc(dZwsO^JOW~ZO6wq@8bwmTT&t=w4Lzr zi_zZubMzuM;wv3U)07Sjp3zoQ-<0P`k%jiUQmwTBc2s)a@LD}xH7uU~;hB8w-@lqK zBO=t7gjUcr?b%VV>2%i37cI9hhy)_IC>r$^|GD=q9A4)UlHU}*e%WxX6PN7;&Tze=`H?Yc`u_T%(POg3*^~=4&kpq4?M=EPqzsFb{uQ=yQL_zW+=;Z&|*K@ zyL>}=PJwE*oJ-nUUFe}LJ2OrD|5JG{=(NC}m5c+UN3UK_l2Rq*rdQNc{1K)!`9G@* znFe{)5Frm6<$ivbsaW+055IZ6P0#io+;1N3c@)K-Qq|m)ntbc&2F4Ll$VNHs(!jYl z1FHqdwGUmP94_~GliX`mfLjR3yk0Wk2QtIjV?_iPu@!l39F;jO< zSE(6L4w2PYCjv!eWV|t~BaLm6qThUNz@>KSC$j-MTrdl6{UW0^iqFC^3UT9myMy8+ zKUL4OKfQn8%bfI)m^vD)H$!mW6iL4i5CipO{EGNilNAZ+uIeDNSzV!*qemECoX&q| zq>ARq6r$-H?xMdi1uKvS1Cs&!CggFAa7A{H6l`H%^h&ixW)ub{)pRzpcnu!Y5lV%3 zaKP)ssG{KnJ$q*4 zC4E{iyEFZAdTaPnD&+UTF2KcS8J)G%IK5`uFP*^I2X)H|U=E8%z{-}_qMBcq$G<*V z_)0DuwbOID^gZ&mCCi@N+Ci_)Sj4}>rmAbTF+7}L)kfV)jB){ML7Ifn#<0`@KVP|{ zm=~mJ%~@L|mID~GVYR2i;kKdNP3Iuy#k@PeX0+@+nZ9+yPprB%IwFPU=-oIf>k1VI z1+I@4-CRhM#@d-+Xq!xRozI`AfA&j2>o{U#-uyWkH~`C~TzZ$bv12)#1;6Cgmd!k@ zEg`29Syr2d-@y_nZ}=nZ>-JYk?%o~={j|;5h_pRZ-T^>i<@xzmL=VD_VFtu{wWP`pKvZ|Al)3p`?k?$)t~>v8?z!iF_S^mDw_mLNThFuB_ld$Ixt?=OPqjPOYcq|a%-kl* zL^Z<_mA`7#T&?In@$xhPzq~2g#Y5-xm@RTTnYm`UKGDw{Z%{#e&a=1s)RSD2y$(X` z$?}YXmdUukmY#+@I(YnWD|l-IGc({$8uQmzS9-@fMiqe5lG*Zk#KN8}s)ToHN*n0= zg$QSu?Yxrh-hKPn@!z2WE)wu%lBxwu)EB*CZKIQ+rB?ZOqgi5*+)V=h4>y@2AQ!nz z)VkvKZwEf3UX4cob(WE9VY&3XY`iuz2XWd4o_h>lx7*1_iJAr;rUMjMum0UfIcQ5L za4|}w%-zrn5gh;cy4#(qFE-Dy|AW+CZtffM#!NF|RSiT?Q$dwcJ;m7gClvsBrZl?j z=xA>L=f-3?aO3q+SgGYJE}Qz4DhpOeuU`~3X7Lq@-)#|4Lo{K5uu>;1Z41OA3z&yS z5N!4uh@MhO_V$*=p&YevP?48O#Xs45$6V+9T>58IgtxOXp`5nX0QY&fA&edD%ufz2 zl9DG@(-^haO2kCwGF3KQvnc-p_=39j`jIgKr%pXDD$FYtC6=J@O}3=U&$%RRiOIQa zG#h~Q$yIsa``^I?vOloKtl}N;$KLf9&?li5_ZoK!hQ2{`RXs?HLWuANq55AGj?kUo z@Had|R*V@x1I+Xk}M&_Zp{RgM4hOT zZ(Qi)e7ZP!>doPbS1oSPNWAWvb*wKQBr?H;u_-nedV|?|svN&HTUu>II}s56@L@^A zl33}sF7So5TGp@>>~j=b5UB|mDMN`LX@N7f$^a5GCVk&*c8V?8zG|3`?}dWruIfGA zC`Ew}M}CQSUo<*_h!3svU2!~E){IZS#R``vZ&(tMV4W-U8o;MBfDE`7gH*``AI^AP zJ>^R+Javp+IeNRtd9OcI%C_zjN8a%=DJ`7!4!WL)y-Z6>Z;1Qb=yJ7CU-xyIn4{f9 zlap6&Mh`v@o-SvPo*%GV88Nh6IG~0fo=-GF_+m9<*1h8ZhXh`Rk4iY}w0O$pKY#C^ zRKB#Vj=Cz$dcf_tVd}l1t;Q{BKxm$&S?~bG6P<6jjYlDcQc~zLn;H9yB_X+X3_pEz ze%2E}{I(1e<4jtB?DJ#%!?DUi<;ElC)kKRLdPb3S4u;QD^!UYI{CE4kP88YfUV8d> z#`w~HzD`Tckui!}$pn=F*oX2wN`H-RONR5gT6&l+=jms`K{PM&ipgTKHx?uk=A4|y zNR`O1gw}DBrFW>9h%!cVe6IRK;EPNkx~QY}Ba#UXBZ>h6+_ntMYzjbOi7z~5rGUym zb5H#5yB;0xZ|e8pQhKt6?`}n0rMC7os@e@bJ@xDyv?Y5Zym~6vQHwA343Fo!xErYP z{-4m{+lGpgy{GhZmqV~@e_k1y4!+%SFQ*pvWeGovh#ws}S6poT+Bw5%2t{h$k2Dm# zy{%cS=on%;xA{vERzrC0jFjpLTHel(oaj!j(5oM)U~xUJ>OEX)>ODM6TCwzIi~4Mt2fPoGk3{^J6)XFJt?E z%J8!5!KMH&DI45Orw z;2LnQ#PP~PhITnRQoCKmoP7g$z#s;aWs=QVgmw>J;>+Rbm|C34=G%|(ECj?gDs36$h2Y)6@6&=9SfRZ79Do^ffJ*2~ zoKUsZLLC1?r}%R&LQj(Y+_QL3OjpW zip}D`^O5b#g3{+9XKtS&%_{19IQM0+D_cT-VK2W`VVS^MziFm~Z+F}!)@I8cw!gcv z^5+gN_I^^HVXj5W8jUts-Yoa0fa+s)ud8EpzQvFGEgEJ4@%+y#!4dRTHXYBGB!}3B zJ_}0Xf;I_spEbU3z7M>qwHckejEI@Hsfb!oe%h-zoT$^+Eiu??w$jy_uSsKtz_#83 z=t*AUlWuxK+Z@E0qji!2e+(NQn(JZq^j>)+`;K#V^bMKW;w}z2r2dyV0^S|KQoZK{8&y!@P7y# z2+CqYEmS9dnjl!cIJh)sV?^nF2I`XH|}f3?%nNsZcXxeE%tuJ>}bh8A~D9r1@X z$7P;O=N2>_hMxG>52JXshmJ4&vqXp_N0aIguHF4`v)Ra7M==P?G;9Qn`)S8YQ<(lD zgVN)r6^dI+t2?_eSc=oT)K5G;GiP*!0Z#V7D}(m0^J0ze<14=RkQq0Mze%+<;$ExH zgU|e!(xU>^dw8XZA1h&tA|r6RL{)M+#*?Oktg}n_eDC2+(Ih{&=;o!vfzMt;lZF7} z|LWF=V_E7-XszYei^M}uuG_CgV}{QP)m`7%|LgVw`)J~CNkumRS`^F5A#w6=?~BKh zw5k1JgxahawvG{t-|gum-1rqsRU^&J~Kt zmvl2lv9Q}xb+uWJB378J%dX!S#|1GhfFY=31+CgDUW#9FTRIgZT-(K>S9<_KVi?W+ z408E3LdMAT(CU*#&DA;=c>7fbIV?A}gP-6%Q1^4KYByquDRj274Xlbi6@xU=6XbyO z^A3(pwB?wDdiA@Mu!nNjje9;Z8#Wiz;Kt2wg*(SC-OLT+NOmB0AM_x*llW1`Y=L~3 z(8*0Jr8{5odqn*a1BcF!GB1^Zj@{!ud$=)6Y_ohj%1sz1Grv9O42=)Kih?8_>W(>L zHDkG&N@`>{VGVFU!$I)V&c8XYO1RA+JBnbJfQ3(pxH*|O(N@#i@)cV|p~``;?2Oi9kKERzo=I0-60c?Akt zSbvB+SWlGTnA5N}zI}t;*PmTMTK^#5@}f%A^$T0OYTg6=?W_q~UXOi-(xbfEkI!#g zCwj?DQ0I7j!-;r|aO{o`=?2-F%oZ>pjJ@!`?GPsrlcO(*1;~eoZLh0Wze=u{670`Q z93BNyU1VZ$@zH0qwxB5K#A3qW_I4@ftaS5&Q`y%R*Jmx%pWRxqDn)r3&Ka(pI+n|O z5!46_np!0L=B2b31so%rXuN;jQMdY+yEbZ4WygKxRiDx|>7e%?72^Llqj3sgi^Wqx zmo0E3EIRql_$$ucptfy0t-hgIa%lC%hZejipiyJs2bF7>M{HVAVB)p#;L{-pgAL~V zLY>NIRXY5xCyM-Pq~&Cu0%Ug4DzBgrx%g(A<>D|_X;W{2H$=j)3>W#20E#DrE<0L{ zgn`^UY*>=s<f2(kZScK@z|4kboQ(|ZQFAYeB4J$)c*CcSrX_$H z0r|}xd-qiCH7}e-{0nU5Jut9IH)H-YyS_U3EqMno8QrNdAbYk*GtMH@RU-|m=3mQT zs(Rp6@}wK7)e4;J8O=c3m8J7vtaV`|J?{>Ou(Rnxe0n!u#zZCpj!-6~OTah9>G5GU z&g|W*l&};6Qg$uj?jV3lYK;%wt)T?Jgt$KSI5&NIx3nE{(4ZI{zo%0V)?|3aj~d0T zg{Rev6MPewG|Y^8v)Gg*irSQ%B7E4o`y_u2HhiXZ0RD1q*m01@m)R8jEu&?IBi(I0o>R5}Mm++4NfWu=Q>lI}LS!6+FC zShl)r6NG$I0GRf-H};a>DZ^e&yb6EW+{fSWqi_7K6R3x(aarh`j-LW|O!9}lN#cM= z?W;zcux|Cj#PQvjZGGt#~6$@~O z*2(%NGYeRdwV>_^fxm_qaX4@&FIyN@y+gX)0GCB%^sB?}1+Xi%t7>1!S?6V4Vq&f^ zrW$!(1t(l>yvxk>wGuvK?48hzLy74%s&wnme_JY7p~XBmxcU%NUp-m5?RT3Bu_x#v zlW+s1y~V82hfoagXrjgd zw2#&*DfIs8M|g&(Q@>>{;$Qjbt371E%x(!z+p`{tfg1R?y%GyTfJ&{$Z(cuW*Nwu! z>ZS(?P2Z!2qUTZ0f)-`vy-Hmf2ANe`KXy|yxe7XVqJEhrEvUCI*YzqfpD)5Px=uOb zU{`S!H2Oa%7vkU9sZG<#tJlu+4epFunVixXBOV+$@eerFHf^@np!!AT?FO{nlYd53 zKYfvEM7^1JpUPXDMBo06A)ALum3M`Hi#c78UM%nYq_U`)viRfo3_+iT=+V)8X9!i@ z3(-~3e0$e*z)o!=k`d`6<=w?CT7-6~|K@341tr#gU0O(aZh# zXm5EG(k9-Y!x=njjucEJxH+69gc#dpGQP<4eZWk17$Nxt`uhp2JL-G++V12B2KzB2RxVTC2eA%+5iHk>l+^C zURJFcwae{m6-q^hB{H7**_VH+CdFXQ+6{gsXdWAyNJT>q09uCBP!w3m9KtD_TD?$h z$`$6Gs!i1xR!bXYA%LAXS5_p_6|hxOm`siuH~*t2!ot28czcXV?^hr@j?sdYucuLbFe7?`tGcw8!GUr0qeMa`K7y8oh z>D;aHD|IC}>bDyFH;x%&%SYg0M@@D%3M&|=1T7VleS*10-cKpR3JMF{TN%1(Ev^JJ z%TGJR3W6}mgb`Zk;6)e;XYzTgdmZN9)w7n};6Vu`SkjV3;yXt!RD$z2Ky{sE^OM8^i8wM7y7ppUZpuoF|W2mp7mN<;o_8-txU{(1#UC*CDAS z)yGxIr62)P`vffBG%&Wo^^OE;08qZPDrT*z7A|b-FM3fpM-P@6Z4FIORL>tV5RyjE)u|u)rr@Viglm;sqYr#o=m$J(>y)Hl74=F?7JW#7-I>H^SjYuL;JN_By@2>xWwO1ZEAQ)~rpTAqBHx>p~L;@nmr{m^1{VzF1HbWNqZ z%o`|2X=phmOj_9-%g957H@+ppEu-r5^-_%FJ1D1GYk%ej_h3ML-OdaAgD*b&NMW^C_>!O&lfQ{<8x&&CXYpQrw!*wD){DQun2_ajWm&!}1g44CA-0 zBLW-8_B$V=p-oSpR$s}1KK&E{rYsW$Bl0QiTVCIOf~+3&tnq#7nIwG}&*AVf_pn(# zxcxKL7{xiVPU@U!FIy&K7@8|-7c>{TnY)$RJZHHsTWu1BkK-k=Q_3SRCiGXI>iS2F z@jvS*|9%?viQT;v*d)F?=8ZZs{YsO4aK_g*)1|x&6{2nbNjD;#$#6 z6BljwovF+&6(4!7xd8&KahMq^dJ1)Qb?XB@Oe`%?*sjW1JP;$j!Tu4*Rq+W~GCZG! zOU*eT#&dGCE&UB&ay))a&&(?V?6GAAcra<}!NCFOhJ%xrnBl|=3M1O__M{qCy-aU# z`n)_=-jvewN6nlWHZyF}`!ao&G1e|KrAH26v`p4kSyHgOQ`YAec!63Q!v23(5JWjm zW~ae96|n2YKc&pRPv+1UiZ-Ll6#Um4Yy1ennI%$i>s@P>W|o#s^`P$KSy%;(s_Nb- zq6wvZOFE*`5|JAvqd)N(1rCY;y%F(m& zXwui3(f}mvFhRw;geDwpVc7(y%uN!-?bF&Llk`oDpwCu>qYlV zfNhlr9TX8*WJSGWT8caN?dk$4;uEk~)RoOj&Q9H^)K#t->&thPO0c^i9nrm&V9xHJ ziI;P%gh|6BvJdRNZ4W=4rrer+!-KIbNPw`LN5GZNQd*7ZsHYM{rvKKfJ$ygZAg12U zM_k}0u65tI7MJJcGJJa)Fz{C-M)V5RFDXmx{`2CY-9p%B`Kv$nPv6=e&Ldo-Q0cqp zeelqN!1stwG!->p)DY)>X;<9dK119-nZqDRZmceZ+IMaqpM*oNavE_n?e^M`H>`G< zLl^p$(vjtL$UWFeapf%Qg_63}+kTn?>1-a;lFmLU5WB>a_}a-~*ls(hnaqyMt9QLH zzfz9?=n18GkBVN;O-#h=Z=^fhw^<3MV~Rb`S!ii3)ow@F&s`Zz9($e|2z%_%w%{yo zJv7bQI@!*(p9hcXP@A6(+OsWUFOtv|gnbzehdNHmN32l6hosgP!1@&oQ~LYF7+G88 zW>QO}wis*f)@MOc3ZuH$4}3bfM_o3FP!Z?{mS!$+)yy6emw43WvJ@VXdedIa;WtY zW62-c+OE}_TX(lk#k#Qj%DA41UHlzZL>oqS1ifFNSi-W{r~z9kUFTZE`dO;*|&%X^Lz(9%7%@L#hezha z2;^N62-P&>ND;XdR6$A*H%Y=p?&u4#4Yom{fr1|KSHjd(Nj`^dgEzWrQ=0P#0rLe6 z(YNqi^g1;iN>rq?xs*LE?++ug>~dDjFLvshwH#OX|4xJ$Y~|E7%09mzTwS`AiDp<69y|FbvHC)|BdCku->r)`1v^(t znsm)YF2z0#)rf*#9X4RUJ~zxQ=|+Ws?X{`#aCloue;IU*Q9`q%7%`9LjU?7dsuoOv zBPpQ-=w?*Q{`A>VMYz&hm(M>EKmw=)DaA?`VD_O1U{~Rz*?-O0a@*u`yQd^=h)OxK zPlD75<6w-}@vu#szQXlkTzJjUkOrlJq@=QO!Q%=Px4)kxO@A^&r{>|ZWl;V>P30nO zR-?A+`98}y|lrfkZvopQl6zcoynjUoz>H>s*V~EEfea&m<+#rno^89$T6OoDF zD8*AFR9>Bk-cH{~KffH%i3e#;;@Rzp-xK~#o?mug_jq;e)q~Vl-IOw1U3s~cV2Idb zwy+^_=fQNiOL<&>J`G`m~R;wm%+q)Vy19UslQxvRb{lqn^7E z&pJcpWq!uD7o72cGu4p z(T39;%(h?gwP1bJtsY@zEs;GCl~maAI!vX0o+D}A(WbvUc|M|EXhHxvTUKvD5&EoG zH=8kw1Ra;US8jgK*RGf648k?;15d-69ZCqh%!@Izek76T{_kd16}tE(+2A9g_S!^w zMkZ5+z4xT2wQ$wRTuFuDHz~aaZi<(`ekIvDdA|fG84y-}?YuA%;41WO-r~%5pwKu2 zkSeSR#O1a}OtW3JzoXH~(n>S%bLV_Jw)pEuyVh1i`^h)lG$+3Vwv87j4-G-+z)_P{hYr{ z6FmJV!3_m_$rW2bqW8o!e07!ZB9RUBW8OIZZP-CtNF8&1#a7k@IYFUzq|jzVb&Z*e zWA z*StulC71820{D)V|6J=3WTsWVIHw2bNL0Wqi~dkhPzaQ`nK&amxJ^=0qbgw^F0ZUO z)}O5DM0MD2?*J-#6s+dIHN_(6L@twZlC@b>Ew^lg($}l zQWDGm0Ay>!aEYlV;6Q0RjiFkh_@Q{>Xa*$Bdm@QVmOa>O^L3-B;BYj+ve>y9_|GSx zjw2W9TiJNcTaEN-4uw7}34Mamv;KK*-QSx&Dc#X+UGeOOjh1{cMWm23V1fp8H?9ej z@zKZhOI#S*p}NAF`-j6d9FH=jXfu&tW-TvtabbKTZQVQaG##&$`;EfQ1SJ)?w$dU# zp0c%QEYKw}@XWSx?9#5X*|L8Q>Xy-4$8qFLo3oAd&Ic^8^zoknNex=u{ZUaSSd3(d zGo7HbKyx!m{~F*aN>9G=66V%;MjdA9S%;^G7s<`wmfp~N;x{ON4Rm$uqM;s8S|p+L z^=dPOLqI*RYPH|kPG^4{T@U70EKPlnjD5_ zUV6>$m^;6VGlbnn7_Q({PseT@y&qg9cHk9Lc9p27DC}U4H zoaW14%HQSJaB3I1S(1zx*4Ne9%#{5-YJcvb2T=&2kI7c-2t4 zxI6(L^AIUL+^G_cKc#+O&|@XpCOSePC08=%>0Q@LnnxOYMal;>nB_Nr&L^`EI(_Jc zV)7nRh>wD*_3LhBPHJ-YFy*(yTB0|@ z=US$te5NSjhrz7T1pY$Jrl2vBTjyye|7rjA14ht)F-A$mYv}Qc7h!KZ{67ltG7u4) zd;bovxzLyw+^g~(mH0FQ(P=mt8qvA$65OorNMN3TPo9d}|S9DCfHD8@Jn z{Dr59seA0!|0T5iBeq=E!yFTxlcb{A*Y4p2%5%xF3WR}-{~{axQ;-_^fI72yV29dU zN!OY;Im5x>pKJ5kNO1iDt%rU^ z1PlaSNPSPmZkM2O;3r0(`=e1h>wwaY6b}MO3gIFPg2s3x@8$z|-%~g5+6j9I*>5id zJc_fX!8bpczoN+xXKGF959bqU7Qn zl+OkcG8QJ3_;mtI19L8w(zd|H)c%bd;Eil1X6iZxQEvD^r=gG0b=bSxPy=JYq1%>nY+V2{n2-@nbXcr*}x-&ys0qVPM zP2Km+$4$GLbi>633^QG6_U(J|qc0{bX8>1#is!wP4jVq`tmp=)i=eKi;$dlqe^eKt zyL`=acDo+9n))ox{dEvhQ2jo&mYGg!CaM!$u{g58!RFAPNkFHS`>8x`$%w6+EDYx$ zRsj2rIor`sv;-gL&xhe@9cHT~Cm z5NYfHHWQt|U@fHT?`ZX+)wHF$Zq3=zSa>7rY(Lw7wYDGmonIZ&bxg^{~k&y18 z8J^n`-0@#UlbRg+kDD?U(Zc7*G;H|Q5h5$Cr)k7sL2L7!LpP|rOe<{G2gdPu<(gXY zM?|oAW#2g7_n^*Zs7QavAj*Ufl=!`7Py|^oGbn?l$Re0P8(fN*`4Q&Db}t(CyYLH+ zA8V__Je_XT%C70@u@U$%V61kJr4&0Wz^GBt14CxsH(YmpcY>d3xXDxX^&;qw%q;qC zO{Jx?e5Lz5iAqhp_XR1N;Sn&%EZ1;a=^f`Lwa=$lHO$9OfgVxmxd(?sAof9(DyWW1 zfxysO)t^f{JUiJYAyED8pEBy>|IPB+MbMtJDmyltDRp6*s2tXA2xN)PH0~%RVyMhv zk!{W9;YT5Lr!5fRogbj7XdMiqC>y^9;L#5k$*mz#Eh-`)W^Zs6qjf!;d-G#a1I%T< z#Y%I)K9KLK%~gY+erp`m3jvz>(CO{~mCXsQ-*o#}8jxDmZr}LG^#+h7)QEFLcf%fxu$VVz7aRc?LxuO&H$dYa4vEls*IpeP*WuaypIgFE{@@wU&8+g-M=Et?x%qmJrJX!cq&U&CjDkCkmft4^Gv)cS?^LB5$6F zG7E5WH5{W8HQD*UR9YN;ntnk*A}d8!S`KM^aj9*d*llZM{BkK))gedF2SE4 z71msi$@`ZuBM~I&Ez)e^-ex%)7o+`hTV3&wN`;1JT8qWPT#Gh3BJkAgtemIm!+{+J z`*%kMiOtLY!5`8N=$_lW#%D%J4j1x6jxr}BxV+?qf7`W1ODd>Rs)&AC*p4W1y)7%L zALZ@s7DInyi+M^!`Gs-ki^bgLU%cL;-`t-LOI{Jwlk37rK+{(@&2;GD@BKbKPW&te zUugV!cmG{;s;`pCq>0O zJ(~7A%CA+}Q^=Y*aa^#??`|ypR3}^|u^8B2i5?|?RoG=2$(#t16P4-kYB=sy-b51= zxFbzHJ0;!(R{3uKX^0All9)}LCbD=?A_#HCnvQ*qC@K;n!9L@2>i72$r_d=;l%;_< zHEwq|H#gCw)0w1W$0(n!43Z25&3p$+ zz`NN<;e7B~X<>n>D#lfiI5H|~{!RF&e;pjLQ&}hu(yfF!)_{kyy{l zPg}}*;X5F|sZ;lVS4(PKY)i-0Dzz69+UM87ejth{8B`Q35xl!i7$LIy3k_6LN*<4s z>R4K%1}WR#jGA45Rw{sF%-}X=Aj0O52Ah9u?efH6nqf08~b4 ztqZ(UEM|+UO>ip~-b;xEtHhjS^;q%<0%5C>V@hGGf?ab+aCfjK$81^c=vG2XtB$~* zi1*llILQ@lp3x#&@XfE989GC7m#b0rF}}1w9gdMtaHFo5J1cVWUqJjlz|-?oBhkA) zE|ddb#?5?4J3d$8Z-ht$V9BL*l0iI!g&xU0g8zda)3zp!0`4h2BP`M@r$?b3>C1i} zC^_yI+8+WN{zcYPA@dM6Z-gUMRt=)7dA(;Tp*ixBCcXRVg#?Y9gpFM+N{;H1a?HHk z!YBFBw29xr$aI>|PGQ@U-GuKoTLW+jh_R-e`TfoxTxhHqtLQ!y92Zts z3eRn9Gu^=-~bT>5_0Tq`2y({9&toI-5yP){-G#r~!5sXBbW5Wq37 zoD??3CQ4vb5ua6}jtCS(4~IVZ3wEDs9gkv&CEqg{b|K!prK#qm)FD%~g$s zVXgdb1x>FFKR3_&Wg~w)y22GHi7F?i6(%-3u;qc^9bnR_7z1%_$ZjvKkp5X*)E@6z z;#t(av7Td`_9L^poj5qo)isIpk_lNrSX2zMiCrU*WD1FrnrJ5ul`Axu}=Oh$bc=j8HinP0RD&1Vq#`k3cr*=|XUIxaKE6l<8nFD0o_5XQE|g zEGs_~_zd#FUq`p_yZ@yKuEHemv6AAs1XC2Kn)IF9wt-yg(OSa1nPOqHuiXN~#Db9( zbEU;OV49b{V@i#hbN}I|A_%G@#HVrmCZGIUNA8Ay-%)1O#?7PthOy}o$?bleQX4o7 zIVh?0OU`)IMSq(>XB|VW{TOZ|;>r3hi^TCW^PsGi^m)H9!2R|iTv4%X4rgtL;-aX# z8&y|Nt2P+5jU!fy8MyxU4hdlB-}cEb;Z*1V+E-HPo~)^nG2hbkzSST-aFFZc;7}m^ zVfuD~Pa~{{wPE7*c-xkDvhgu9o*ULoO-gG`ggjNQ+c&{w0j2Iuz#1@sckX?3Yjv<` z7W!tMZq|XWb1%ncJu+a$W_F=&yxtT%p0P6SQ65G0gspNOC&s_c;5G zp)FSSe>GVcdL^_%LJ}Z_LZ|2UB0Ja~YV|4)OHYN36$t~fWmluHKcNuh#$g~m1enVio{b}48MX9hS6dD9zdz;bK|hbI;BCg!#Cm&9CFmDR)J#vkZb@re$IQR@Ib$Y zVH({4_;_v9r*Sxi*aFz<%BrbI56Tz>!^zQeXZlyn%BUuC6a-k==;46wjjBk#*dH^O zN7i9pt`LMl^(8l?b)K;*FH~Q*d=U|^02l`+p`y4TKs(H<;ex5M$mw{qU+rC1mDn<> zR&O`#=L@LxjdGaGSMNIyT#q+UOPpc^R#u3RrU6v?LFM~^RrE?(R=5#_mWX|(6uM-p zQ59s9lxBJcMg2x9Ay0|9JFvsg9Ttb#)5npEGq!KU3Jn9iis@ip3-+#h``ZVlu|M*p z^pzm(3C0Z}9>vEeZJuIJMsD;3zzLYZ#`xp5TWD`R)KkWQB8eW7;?+#^{tgUaY;2f= zgLGJ(0dGAWg^ND4>T`Y_>lhzTYh)hIO>4a<>~KQlu@o6;ImDhB3Kqp2{zj3o=RsyA zNb;cW1)jdEE}bh7V5`Na;?z}+{Ryf+xKAQ8tCA|=C_`qYe{~hCylhf+m#N?QxA^ho zxmO#oSSxzAXtni6X}m`kCo;)}v}F38tp_q+Gb(1G>~n%%FV`a4R%=wCByRM4oYj<4zHrDzixnTd}`Qor?E#GkdFX6-VNbA>cu@d;h>@D0~eNb z0f!6~32v({4UdZzK7oLC!TXScj)+aVv-YY6T41}>e~eFoY5$s$inwaZ>RZ&?4K?!@Uj4JLCiLpzGbk5 zfGGuT^fG~?!l#>n`gP{bpP=Cp&ez?B)sNFQ=SY>>#P^KaZ&&tTn*8wPF3KL?64tOAx-cFZ$^egm0S@QHNDXXdsmXE%Lv74z4OvVekSw;w!s_ zIJ^lj(hXQUr35@ODXI~#`k$(mB)YQ;WozTAUNl0n?q+I3c z((WqQu^c@-7=1qJ&VN9|Ffq*KMiiqdQDK^PDTE2&&_IBgX%lI88A%0fTE7<9L%v7< zh-B?P)^GFf=g1VbvC*s$_|p=Y0LJbn^{L7HV2eo zZqaj2m0XJ9xk1HiLvrQnH!2jUnx6nqc3!rt{A$DD zXS&N`4rmpy_vl0^IKR$fM}Z&ewcq|B2zkd5rotGj^QABJ7GbcnE z-q@w~= zBhdy>rwE)$vR_HcoLQP#qI(JUkfSTXV+rsM1WHC!1ovW+Nwy0vj0)~7qOt#y(LQOR zF*g$%DFmaw@>c^hlr*B!W9vC@|#mvn+CAO zXuC0I+f9J{lkZ*_(_ueTM|k>bIuW*@*FO5_{J^WT>i&;1@i0Z=erczX@0vbQNGKsk zZS2`k?6gTDkcz?AC7iXdkCyVXCV@p@CF<9Xt3ev* zr){t5_6b&pqtc4J3q15OTq|5OB=D#88` z-RNdN5W0RmTzzXoys@%I=oVb3Mwevz1bbSTfcKy1y6{@oe%TRp3t zmACtsNG!*MDItJ~qTtIn2DMww=-KUa8w<~TNjGI)za0vU{1@$!1lxnywbmLDIS;Fj ztH3pR2KT??GDq9VhGNGqv?6~0o*!qg1{iVj3Ums*`w@MR^3e}~KJui%Y;Hw9dPPfo z?4M(FhowUPdS$$CF0WS=!ZM?bS+t?k&0uE2<$kYEZyfe{zPMiN6t4sapEiPl9jtd5 z)-|XJB7Q^7SEbS|gp9Kt)r)TM?XfYk^@zl&CJEiv_WPY{t-;l&ny%j;TTr#)zX>MG&@`xbT~MqM(R}d0A4}aaIQu$M z4Iq;PB!59x_N`{C)>RF9NBaAo6@gXZFFx1PY&9rH4<>3{hcahZ0MaPXN|Ew#Y6`jD ziftIJAPot~XJbD&(OafBLCu#3AU?GSCCQDSZUYS{Qm8j z@=;Le>{kcQaj9m<;{B4b!|~epKh9rTf>oY3t^+UZo^5b)cI>Ek%J&f&^V45-Y*-Z$j#Y{3K(a36G-rH1WVV}D^(etr3er|*8509V-Pb;sTUe3As2u-8n z>c)^w|E>1zL%dv3$@iHU<1eyfIs=33QDVe1g0Dy#Wg0miII0b7V*%6Dyg z;ro4?qz@kqs*ixvsL|H`QzYbVRce@9L+gKyklM}YcbU@VRL{QLc3m%cayfOwRm9nt zl7vng>KoWp`zA;La~npJ@Y{UlCgSj^chFUk4(A@=5oI~@<@hPYRztV;9BmoZADj^ZO+OJj8=pZZG{N&P=6{J$UN zTGSi;87=Wl7%j-`Cywpv6G}%uwCTtF+c=o0mehg=WZo%R#s_D`{DJb3V{lvzOCs_l z#<#&fnEmZ9JemUi3xO!9tLtn1Xu+tOA6jh-$$dSX4mDnVlp56xCe~4g07mXrp#~_9Q)hw|75e#afT+HG-v&F98X*fTB{8zXdv<1YA*EycMthyL17_l z0{5T-EGb67arSB!K#Gj)1?NIVkz zx)~c@HLApPAq{%HU(~hk)h61+*jX>c+r4jPX}R{IM3+sr5(*3~$NgM}F5kGSsW(V? zsNFq`YFcQYa@3pBSMI4`XxRcF0$2cQk9LqeP}2e4>fY-dH1ZY8b$_{r2FNzbqhG97 zA%0`D5OsM`qwfBcHdl`>4cCUl><F+Q7}! zGrc>gQN7+x|4GM21iWeWQYu?nMwY{s*oX}vcK#&uLmT_U!Y$K`VQuKk#IR^7slG>) zzJ&IzfUoVO=p5HrV`<&I9awZKr4rm8l%%fVu zQ8`ad_N?WG1ZO#~!<+!ovsA>Qdko!sPRL>l`yw;#Vy}nGKod@lug!IAx6p=C7g|{r z#=QEHAr`L^S$$*gmGAsaSg)v%Mr8<<7!vD62NDI^SB1L6LtRZI9}{?*nSX3Oc>&cR zk$+m-bzqRarCRNMu9RMp$+cCQ{`mPGb*=mUQBq92j%IJe!0)|l8+KN<5iQMPRDsF2 zIt&AHXKvl~1%{y_?1oy8V5{!Z@G!F%wW4Ub&>ym}41+IP+_ zzX41?|J4-Tmnc9lNq)$$fv*kIL6loKvsK1Qt6&AFx`I_IGgfyeulG^tBR7XK6KCIf zpa}w)e`OGt>uN~762Xpm*ZXtz^l!=~Aca>})@Hmy%Cp=%yWMK+1c!&h;J=6~v2|k7 z$P$8w_FvIj9gj_@q_B8zs;)if&R@qKfF4d;Lj?YB=cSV!gyy=GyQ>Vv7yVcC@t_v0 z7t7pi=d1n-Yw5=qYp#zA&H5-q`p`XLoC|emMY(q1IP0Ey_o2Sws)MTqDoiEPz(24d zVf+Tn^e%(hK4a)ldUl)=O$0AwbUcRX?gzENLcsqm3l zEFs~XYtl5Vzf2^e?@*lsw-z@E1dA2&yz`#Ee6{##;dZIX`N;rq`ub8DT0sxrUZX^m zuuVIE*s16--`b5>2UmL~Ds1)uM*Vz7z1Yxx$$rg(llc07$1m6D>Y-4PbnrSp^yUHf64NqO)9SP4x@#B!2j`e0f6fQ{&=J>gkCAJl&v+sBH}kQ(&pM3 z4v&l64$Db2JEK)pSkKh5f)7Csm_vOQ>7yalFq9gJ)|Kcsm-QFA;@3Z-GJez+wO9Z+ zf0d>U%&#m6Ndz(0LRq*x(n8#S(a~kRUwNBFUA^=*NkF<{VY+75_UX5c>wc%#p_FO) zRoqu4fNz2E&@{loc{30F)TXbdS_4YK7cc6gHTa>*qn(UC2fJHDt^6L2YQT_bMr6bu z9()J|(bO3L9TU6^XpIWaT#P4CC_w|FTf_wVR^4f007^ znUdAi^J-!KeZ65;B`6F}E}}W^wYtRfL*+Em**=Hhin$}Jon{4OLELB8 zir9jl`*L+b-$E(7x*DZxQ*IFHF6sHs9^yh7#!t+Z)+Tbpi(?A2M8pKNRG|u4m(+H3 zZj=#&KF{g!jDqi*O?^a6Ae@UJB^pdO7G}tiHmGPjE}zUI$5#FdTlv&3WI&>T;`5Is zH30iD0F+(K&WNDy`cA0>8f93Lkt#=9=#95TjNrr-_%aUYYi^4@B)hh@#yuN?;OI@2 z&pDh4xe;5p&Ir5xf2ev3t~T4PYdZ-p#kF{Gx8hpbV#VE^A|<$MD8=2OXp6hM1$Qa# zF2y}KeBAqf_BZzX6Ea55v97h|G3U&sst!i+A2^`-8$I3d?SrDD-?a}bGHw-VllS2C zr4zJmirnwX$fbJ|t%i4qyEc}Ry;3|~Vz=6W85fsKDju(c;_7p(NoV9SVbs3_;6Lb+ z_aw{umXB`$Zba-OAF+(lXnYXeR~zSzAM$HHVoq<<&)8b6(vE}(#~VTDnnt^Kfk#u3 zpY|*}SV>IT1bz;Ng5OGQ_o@~gw+D;uJWMaMRC&a%kek?mzG-7Py^Rk=UVl?e5|pW^jb ztMBUso{7*UG70ZK=umQaugwW>3=2(z0wp?soCmT3+6|BtvP6&ZH`!k<*gt0cml(g5 zW`+LHn;-qt>di6!^!fCwydO_&bk%JZB7^!-KO4?ykvENbQgEzBfJ1#pot64_=RE*q z(nbg55hAaEhZ3?Ia@yB?&aJzLpvm=x%fU0_Z)$f5m!2d5C1@2;IY5A4p^Z>bFRDWB z1wg*%0bzo*n}!-2z`?M1>4Qk%1EQblNN}D$?P$#b*g- zP22gqxZlL;)7SyI@lI>yS&V?y$|JIyV!(-4In(C+d8&RGzFES%q_308sA6*BlaR>+ zXHJj^u}mih>PIvzK`E#*Jo$NP?wpyjM8r3s7)FmNVq!8;V4Rk`8N4eR5y3!al>pt! z(j2eem&-}h%a8qT%}4i2@lQ4Y-kKU0r#tpsn>yH8;@yw zHqpF-pVGiv*_DpR6YURIPW8j1jUU3uSEHNLap{9v9?_yH2&;nEn-Ia2Nr!pjxa=$twCvX+B|-pII^tx( zY4zCqC(@T<{q3XJ9?kUYkpbiZ5d-8#tGQ=@Yd}&B5hK`K{wKZ8f;PBuIG$k$?e;>;ncM_ z7mc<-4vIJbe3jQh7UN)mTk^TL_N`gEMyLBz1uQ=xjzp-$0*?@BsxIgv~Bl!OX=p>}F)B_OV3FwUd zfd2RAUyH1(uv7ADQ~~8IW@>mp|Tv@Jq@10G;TburUdBX zobmI>m8wj>+KNp5^Q=;h=k1Sr8G8k26=*44N_1hTEPOB;2L8apYvLkViZL*Y&AI=3G{T<;s9P1o>Fl~%371gG)|dv zv0`N`hdj|YS+Jft*FxdCH3u+yCBDn$`b^3bcjDo}C9p@MMl}S;2Pgc*p%DRgSmh4E zJ8J+Yg~C?8=q#%3X6CO#3ul#OM80*EhkEn~5_D}BbUY{~^t|ctya}b4p*J_cI*H`E z@x2iqx_!uS6zWiY5Mm1Vjn*3F@T{B0IixECn3`Et+uX1x9(Sq|du@N}AB(Uk_5aw- zY(WA$8aDSjFU!__41^ufGaJ z=iQN2e_~Cxd&(>=ws(Zt4*RUtP9Jkd(y;cFF&=}M4662^rGA$;cGEgOPEW1RYn=B7&XJMZl9$Xy7#70dW6U z`iyG{stkFZ{vc1h?KJ2559v`7_Y>{|_GdY?ai zH^}~NLDmT}XWrD6RUF#hvk9@{*!Y4l+JY`&1kRfZ*R+b!qB$>0TwmJ&bi01IKVR5<+k!IIBm|xZm0OTLa(zEuVA5#EZIXtD~N5K zI6mwzU%azzud9fC$<2&)%4l5dwuw6EX0s&c-Xk*Drc1eu`Wb%JVhWsf>G^uVoq znT4-Cw5`>!``r!00w^BW$qs+G{g-3nn*sei?IRAk$od?blM#B>l7!DMgS*AQ{-Zw_ z-g$t)xZY8PVqrre$D9Y)AV;(lnK|(r@UlHhBEv(SiZI12^Egf?*Nb@WxMZ&NT>ug) zu?$23wv9TjGy^Cc?3ut-pU7lh`z8NO5uAS2LIy62P`c7w44eGKflMz-bIhfv!2}^m zRq6O4@o8D)RcZ)IM3N@2804SQm>0U&jKz8|LB8GC0g}GZ@;tB>F`xV#u z8e{e=muB=fsDdbN@iA4aaO0e`5*+7hTG98AE1$t{e7AwJng87aP|h!oX7o;vP7!_m zSE@4eu^mpyH%#%glvD`c_X`|Ig~{mMBwT$&_~>v4Ji;G=<_f45egqxbJw1#yf5&6h zUr1f!r_pPUECH8V$`KobGr4h}B#lNv!8dmxWv8fcI4-NEu84MG7mL3sxvRnNcR777F zmtn~GDtp1*W`-~IwxKXD2pfqwcB=KEA9KVi>6L|nOAYHA*rGaj+t6>Ly(uGE2wpWO zVg9g6g>Uus7*jVzSzX?g1gh!8D7kZdsIa%$NwCOCM{u>{r zxJ8OGCY_jEBCBB$&{^LH!DyFE7(BV?Or#9!5>=o6U^p7zHW8=6a zKJ(RiNjwck^F#aHK*N=^d%3r5yecC;1j4blb9BL2gL@?vN_zE${xuA;hEp5&Z0Fgu zmu#QE(?K0OFfWq?li0JJ0l0dc9cfnut8SF1rM~AeTCMVsbpn^-@0b1%{gr}1!4JRv z!#<{uYkR)W?ZY4E8!LInmkftN127lgGa>Jck}XM|2%wQ@vufPdb^Q7EKT7(E8rqp| z+1eqz6LR!v+9>v(@9g4$aD$R04z$JL*@e_H_}D0rzo}Af%dr#`5|3LJz2fs2r4zCX z679SF8_Clc4PA+bW0vRbiHXR0uP}Q{uxGj}AV9hl25D2R>DfnEZwuy}S-}+j(fmh- zB!j2{Til2u+W4iiZ3*fQ>c>rSylG${CL zMEvKL4VEZ%^KawXo%l!GQXs&}r?+9ZiA4add+Ez#UB5#AbHp^Q|HLM}QvZVlShff2 z0MB2byZd|mt{Tm%2ot&dyo05WbXwHIkF*v|m0f}Qv~b4^MFj5w^n#EM zuv$Z3{#RC+h=DeB;WfUw#-RBx+v+NXCJFn^g6P%0eu-Wv5t%j943r;TrWRjW$6n(c z>{Gtj4?(G)fjb@Q3yA1!0*$j$Nop*O80WMt(p)z{ZLc?4gDgyDF$iDcLNPe&;e(iX zE#B-imyy(lPPIf^`0{4eDW{Av8da)P051voBQE2#%}UUubK*{5i=QWrHY5$EgmqQd z&;U66Cusa}CnDc9$>5`aVSoeVQ+)TFn@yCi`{QdsWXR#do-k6jx|vRY_6Yoh`!8i= z51BsYuZJdkz_XA)a|L=P5FXhXAj9hCa6xzTcs?MHM0Q=uB;C_0cA_e~L3#SA5iZ}X z%O6fw;$_tLF7}uPWM>+qPrY987LIw|9w)Wp+awi#I&;Q5cF~S$2@2X}EgHT&AtHwZ zTdxz?U0D;QMcwQb6V(&&dn;xeY%+PCHiX!}3|e1?9;$FSS-l_Nv0Jh%Hp67yIj*_E zT(T2Ys>DUxg4DBmZIr2d9pu413^vuXo|>1TQuC*N(*-qM^?krC0M66wXM$ggU#1kF zCdM+w?B>e#;naSRDS98icgZ6Q76BcKvc_Pn+j$)S^ttiEr}4fiRr#{GWq1p^7;{^Q z?`T8D5;hL5y_p-+uT(+MXj{z8Og`8y)gTXK+VCP}go!3fji4>m- z9@J0VP)y0+T|W9%KJHH!w$6BZe8m`G?B-jHf@)@~nAHUzafq^mEW>;d?Is{sS75LNZA2 zrv1l??>TZfh~-21l8>tdQM_gQjGO3D8+zQvcjwBqWd0qMUc+g+27GD)Ems~Zu01p- zT?{8-u@O14s72@eeA2(HvumBU_R#2f_x1H~nOe5XUzr%6$h^f5T5${d0 zXk4ogDeh}NT2sL$>R!yiSWUE|`~p1s@eqIC(b z?DHR5Mv%HluIxi(fCT+wEIaN5gHa;solela14#4GoJQK~BJ4;D>=pkY46-af1Zd&o z#vjeOVU|iBt+1R^b0g5*0lp6Y`jJ<{2(^T&UnF(nl1A!n%N(+R-j{LkfdeJ5Cz`BE z>{`Djj)H~Hrg{j->#*m$1ZYzIGs?U}rW3iHhi8dnSyE2?Bbd$^=f*m$z7!}f{GDdt zDn(gp_Cy&xnM&s{6CC#SS~6md38&ydKRtH#okI z`)62!%C$1mK~PX3N*6OgE1Px7MVvzFfU%&N7T_5iQjn^ezAi|KCSGH;ew#2*k7&8L+#ymJJm7g$qar&h)Lpv43^0h?Foiuc&jv>6X zOeRmoXN0&n?Ts?wqGOf$zP$iBbpnU^Mh9TWatUS{E>82Fi~^hpge%br{$wgDy{!x# z#hGv`_ONJs)6V)3={>PBAUmwmCPHP|JgVaCQdHvalomt2$KhXO3t2AwQka0dqB@lXolMj-68UDtkdfQT-pYE~m>yvcbZ?%3v7hm50kOrjhQ4~N6PWuSthR4<2JdJ#Ep9AOjU7V>Si zvq|zvUpUlNST_~n2RzHhGM3LZ9a3X~$wHoy2eYkRGK{qdMt7$$>9-9qO~Z>&dt*}g zF647AKh)gpMld5^K10CVP3$5@-N9X3$Zt$`SW{asKMNsd*6w@euxa>Ia3Q&up+pDO zD?;H{hXrQfpT=aGU9DIUOS0Bbrtr99s`}Gk%BJm6ry$iW7Q!hY@;`WuTMEL}1Bui= z162X*u5OOg7mby*Dz4(Ud2b{v_1d<*JiG$zxt2r?wg_kYFHaaegBP|8y+|X$G=qBL z7+y9elYJp?THFt6Su+Go(O!cyuO7dTR$2f&YWOMW9fYr{>eAW&xqVRZEybucmWW9 zD_!jS+|cnO0=$sKuJ7!jiu4u8heQ0!6T%UhU#8b?gqxvFBE`pcZv}=eynJB0kTr&zPdOQvAb>QDN-VzQWF zVd{o6EkkCJ8Z)E*VISM3Bo@9Ak`Qwdvsp&v- zNr>9sZGqstzhHdGqBdOSVrh z_gm%HQ>r~(0!4$L;aofBZ{zd{oD8i(u7BUQi9p=yzzsabs0wt+PcmuI2CQwEN_ly%OoF zGIVt?RXfcjOIxpYA@K8dy2We9T9=!C!8v$a%avYxhuWQ>&o0bAJ+Iunnn9g2DZ!~q z2>vCkA%4Z&FVN+!NqLOa0&TBI*Xz{RW6i!($y0F%s>mJt=PN*ug_1=v#bAE5N*v(5 zRu$NR203LXqVfK>&$BU<0E>vaI)C1Xm30;^#-wXbYN<&TH=zET)u2BJe!$7o-7Nj{ zW3kH+$0R^TsE68$JEV;4NLx{yH7+ZdMN+MS7C(%IOOE@Q;~a4l;R+ARbo$K$#|=ow zgX{_gq#Dbx766E?2bj^K<$$;Ov0pUwzHphH3*!{l;0_3$#+fA)@W&6hS07InRDpgE zZ5LEgH<4E!VsKqdL3z+f z49bxWQLbs>@tsRT--_*}0nVp+XhPlyJiM^2u(nzQvLf4n? z5m4tZIsJpQ^8wc_6MKoFTs@em2cM3B4C%-Fh5T%UMuBx4ADS6yCIWFThn{(AeD?S> zt3sJBYt1S)2>W#(m44W7G*bge zi`jtHJBb&7cPMv8;o@dbyNIV^m*~sibP>-Nn(7T1-G#^n62cMR$4UP-&n8onJmUlN z)q6lKnOT3!1pmYK@He%vdgfY8m@Ny2*ALgV>@GcDfhs#j4Z9ZW7sd)c8^B319rqD4LV_UZ~veO^g8pC$j!gI7~63y+~TRMa5UoROC-Vs(GCYX0$Doxo&GRU5vbnHs@d!rwiuBBx%- z{9Mx}37b?0!;^umken*9)U_gTmCZ`pz|hE^V(+a+bQQ%K%9(onTvTjg{n6^4V6w|z ztti0Zd%K93fGp|7cb-sIb%{ao^$x)L<5}T#zF?*Ejj}1Ex6FAUO^vwq#QK+x2R>0L zJMEghw%}j6ECxxt#6YV-zy8}_p=M)kmC>JxgMk$Yn9!jF3i+7-qH-I2dm}%&tQ!qj7QnQErmt1fZE(NAexjG3;Bn^PuVAU zPLW2nIf3vjT;z zdZMa)Hg>yrS>DKJ&2}!Wqq;rG)^jBs+O(Qz4A8ERgi5O7g(krG?{KXmCYc%-7_qEr z^=wAU`VL-!VJIszZNNZJfT@xr*#!QS7Qmte74qeAVPv4PmtN9nqiX`;lWMCD@DGUV zBL1_9-V87kQ#i9?z6neq0Z+u9o>>z=)#Kdt@BpB@*cnbf8tVH6X0y}9hiTVP6Sdf<7OmI#wnuxc%73NO{KZ_YG2sw+hs*1}JGyYw; z6G+PlS#S(PAh~i@4K3vf#buGP0oufk$Z}96(WC(k+XSx_Znm`H<78kz)zQWS4jG-I z#2s&R2(!E0(j9(OSpJgUi$@>lfM-^Oh7I?an1ad5_gKa@bk^JzQ857L85gvJR`Rm& zop;|u6;S@Mez>>!K;`Q);5p@|enOQcGw_6LzS#V9hOr$(1Xn(H2}`CgBWv}psyX%c zCgDN=xBN1+F-~L3Q8gcBysl1aeRifiyskEk=NEl+wbvT<#;=d*D|(Oj>}Za%HEJaZ zcLk4m;3kT%1i@N82~{bpBDwi3=Ys17{ci!b%*?~E&2aX4E}S;}#lXeFIrf9!b7C`Z z?!UiZHwo_WEq?rO7C>`x!u@t0`ugqEURD9ypL(OkmuF4C{``DL*d4pDnKmg4UdR1| z*gfMu4!bTT<&$Kaq>cl`(!a$7Qk*Y1QS!D#vG^78us9RA_cHys)+E&yd42@aTtSpN zmiLK12rZrIJPE$CvZA5rx15vTt{!GU?b(NGMK>pB#hbDlRF>j&-QlNxaP3{yc-N}P zkjb?l?#(97|6#4DJX^7MP#zEb!&e@yH1C+q?6~1p^rPMfllynHBHtq#a`Q`QNxd5z zAZ9y?3)gYmP;->HB^Rrpvc+x9$s~FF1yH$VIJv?Y)!l94b9IZtPOY(GxYfmyGg` zg-gN&h+^l@Tz=F0B@hK;LEi&G8lcOJz1tb)26f13$v$5VB31<~Zo{6^K$X)x#t&x% z6Z{I$X26swExiXKJoE-J2qpMm8Nl{CLhZ!bk2k2Uy}85_fb4o^ zdu(U%3zKyj-uD9EgRet)jN|HJ_E@klt1u2rFi1)x9}8jv5vvN|Kk*+X&C%ex0*6d~ zTAx!P7S}bj+xG6GAW46NgkzNcCOoFB0^}4!pg;&*Pq2P3MDL$)h$#=_ko_yf0{IvFXuR{GOD{BSrDldxG z;#bF>@#?$Nk}j3h{d{SGe&fqNnNq2HpL7~Ez5|xUbTPLv4b53nXr70_umO&38Ns=i z!x+|lg=bbidGZ&?Ty4e?2fCuxk#0}C*M0CfR*hS!Ze^rIb*^2P(P&ARKWpU4V)Ia4qQ1WbHvrWnVwFZCCZvstZbl1bB1(rXo2 zTADY(u8hce!#N4e*X4*auoUku_K zQV86>qp|rpWm!&ZwSnwRdVbrA3t7hH=Ei`9EeMGU1g2m9sPRES{4&VE;psPu^YyXt zT-O&FLeT$xA&@qWp1iuxMtwKtg#VVx_E*yxx_Lb^M@Mb#j{t@-)C6^ax7ZKt?jpBz zgxYf2Y`16+XQSIyhh7r$zalJH^KE>*asY2TBSQ5gJD)>c*lwEL>iUvB!+&`*%{qwv zJNKqaU|l06hvdlT-b;8Eh=Zj7bS(BeEzmF1kKD+~ae1Mr3%&X^^&}*52~jC7*`pu| z5AR}JXW|rqXIUj-qY>wX#ozl$2@M;6(<`hjO?gD$pVZ7i=?4Kld<-3sjV29Ut#cE> z(Oe$-ZU?23M`YTG{YECYO;%2Y8L0;cQ3~`%Qr_c68SSVFdB*GzbEYd3uLDYGL7g&Xh zNJmEkp5s>Tsx%JoEW>Be4tb+4B?M(2EmF=`bOOF6)dn_wd^m#Bet2RZpC4>`_vti9 zU;A(Y&7uT$rN|81b?ke~t0;V692U*{Cr`Ai-uV%|ACBq$4NZ_!#b5)=m2$nv!MEm^ z8Ua9yKrS#jS<}YJiKLIsg=5vRvVmO+jY&J=c2ZW+2jCaubF%RskVbyD&g*iDgMse% z@bW}Auh zpZt*aQ$9^MEgyTXAro4&0cG|5U7-^Ez+}xk>dZXMOd*f&o-vhVkkyOXa-n$|w9gjj z^`S1lA$U$CGeK4RGP(F@yn}6+AzKCu3zzqaN_rPGC+I9}URk*hg^C;6G~BGNO>nIT z*$k$B6&S4lbIa-k@zp|n6?g2HEDVy!m~`^RS*Firn8!xWg;pxL&b{%c8sMjHjKB-B zM@Vz_T;^v*0_j4b)}*&6^XUu2L|PlZeMUbNxHU4QK3hHaFsA7WVpn;jUWWP<3nb>I zxkN%tz<<2|;+|zwbh8Y(GNvoz^2ZFpOqAGd(z|4uY|_4!Pzd&eye$|@yk28P^dWXe zMt+v6L1-tGXs;6$gK6Z9fnor3v*y=<0KMtUM}?feIeM2g^GbcoKTL@|O_6w$U?BV_ z2pk^mv6ui0ZwkZ_(k+P3Kjn|Y1f5Ft7|Fv|b#wQOFb}9d2HNHq4+QbhJ}prh*v?en zlS5pP*WD;88$Pt^5Bi2#F}ePnU;v`VeVv79#tq`9n8|EMOBECVzI-sMtL!|f0EkVGK>s-zLo{Tm3cH?X>nI+pj_fH=) z?C3@L+wTk)xqXiN4ZnyUjNZuTVQUcfAN3 zTB`X7&j&0a%6ruS&h6B_@)6>%i@=g{w{-u}J1=mGo2RqxlI2Nu{c*@9!SGsHhSS@j z=e#}Pv5~qn7A|~`@e$=e0`I@bq`M+oD>vVyo#p%Xgq*}6RJNyd=5=pf=Y_pr``XN7 zV?tPZ-6##NQ12j*pIz(HzmtIh(U+^2UmO0SWtnnV4lpTjJ}5cB@1AU9&xd<+S9#EG z2?qu&^;|^^3w~MDhE%G>)v^)Qr&$0sBYz9`lpFAS4C(OOd=t$+-&ma`C>Eo|+<#|b ztQpdLGHYju7T$nN=?BVwj+G)mf7%|5C-2wX*}1-LKI~e0#l6jd0!Nrc?Qa(UF|nUG zqanATbLvD!!h1!vV zs|L`30?p9~Y;1DL{nUGFjxB-Phtc9?1E+(mb{w1hwJGY8Q^pnqxoe8XZ}_GLw+1$m z%B}I8xae~P6J;%AMA+agTaC?p_Pac@t4%yno83vGNd2kquoL8U0!%ht)@w3r+gkVN z0A|mL#M&Sv5}K+#7HswQv4>m&gpVrJntsA+yYIkqUX5U#?gL z;tVCOkY&nW%z}D8i2ei>>h>VpR#|c)D5+NdD&h<`kJm_2BQW}zTiQ7rMPS?$F-;CM zC*yPo#J$+;=hr-1g*QU&Gm1Wd7{s}^T1XpuEE=>R@|Um4=H>Nx&>O{&SmF3}%LmuR zmyhAstRIsspMBr*naJ7c18Nu_!o0K(j4=W%ITbGIAkEV=wy=>4cM2W4OSa2OB}xS)L`t=dDe=} z$k3#1<&Ik}o>I9J`s>>p43Pw}<3pOiQv-Gw^YT&eb$6sxR9WGCP2bYY06jhmwW%R{_7ycGr zv^oe3Y;P|R#mjH}5*1JE=hBZv&hY- zi+$+kGm4>6A$U2L3SE&ua=E@a4G<2wz0A4X^`UiP^(_2eTc7w_p=7>FFzfHuU*7Xdp zL&3xx7)owE0&J-1iaYBrLgfB$4%=ROaI6T!rCT}r=_?c#jqtt#4Sj7(b#+6g?tLQq z(dtbRGVsg?a|_*a!|z(t@0#4=NB4hWFp5PG1~Rf5e{)=*ufwTH+$ZwHA4Ju|EX#Z$ z3(OUcA8^Sa%baFeDgz>#yt4p*>m(A2n$RK#;ad8bGBU|}VghFF?gJ{WK92sLdl!3@ zZ4D!{79A=A^HK9?1U6J61sX37Cp3tf2`aUZp2P_OZ>;bw zd%%|YeE3hBldV9OT|3OPU%ekk!xhA)#|}2%A@x&WVZ~(eh?T2r&Rs_Fa;Tn^W!_B^V5KeK2^* z`5ub#I(_F!Jnp1E?^dG3pS(A+OA2)%!D>R(9slsY+zGHxNGQ$!atxveW;lru9pSnI z+XY!|`063zEAEli(EV(riP^y_qVIU_zd_I-x7HLQjPzo3qbtw^ta%`yps^ftet3^% zZA}QNSFFxVLC3_VYlXmzkceLB)Ho$ z`LPk8t==p;a?hXHeewYSk6xKCvn$FOVBot?JH%~kvF1MI>gxLF69iiZpu5Ug4CzL= z;)K&cJk&*ocY}>#yn6TA>kjXd>Q$PID>@t!c`x2yj~~^FKumfX%+brz- zW3Xd`6CVKJ)f6ZsRTmA0)EorU6B5SMX8|fjOl~iHtV7zTwA-(e_4aIhq26^CKq!j% zJPigLf)=R`e`3!gFbqC}NzP%?Y$3|}lV6}JBChYP7n|`-x_zJf|Puwv~_!|D%t7)x@_ANQf|80wuTI;*I z(0;hLCBzB^k7E`Og?OAWq{m|}h2d!V#%(8mtx|y~^OPyGiZb`3HBXd!_RI1lq0sZR zk@@J@{?YL*uUsOF$9FrJj2t`mf~p}Q#1fGslxr*+`;)0HHv3n^q`~w?4^a;{AdlX^ zZy+09MAvlWNs&Ck=|(mwvD~oO`y`@ygRcpiEi=wLtcay=f8rQO?xZ48j?L@4t?abS zeyht8aO&Ipdv9R%4@kzZBksg^tTG+9RhRyxuYbt@mRk6-stS^uel3Lcnw&)mXy>aB zr@-eC2DG1=W}m75dzK5X2S7kv!zT9EKre3ThI#;r3Wv9osk`QuF{^lW)obps?4#Ce zJixNP0gR~K!{i=yqzw4ZYQry$zq+@|m?VSL$)j-6V9>RpzATI;A>gOnN3wr31UjCTN43&49FlYVXS@3s&kS!mLid2s zAQ`{;)o~EW(VRL6%tWfS#%X}?^|MjSQK=({E1ng>xh|$*rxj29T&ehLxGAI8qbeG# zcRXULh><`=M@Dz;c-}3u$y!WQw}!bTXErRdyKzJ*SUO5DPI?^=nARTj@q=cq8`5?o zJ!LvgJi;Vx3~qEv0>8{(Qt=s71+0qJD=w80j$wx$rM4@1m2dY_WXd8|s)}uyO5-^{ ze>D?%oRtjyu^II9pQ~?kF-CBG@_W@}#MfTN$Xj0`TB}!6nt}TOwQGj%TY&*tjmz7pok7fOnk_aLeH+`mPYJ_S=0N7tVE6 zS?*}Mpp2i&rLX2Ida~hH;I+%VAV; z^Ri6ezp3{QPAKJj5~hE-rtpn{6z40EGF6@N?NB4X!m#;%bRe)bTS@vjuZ#0}peb?{G5G%JPbH!Eg{4S_X z$8JTITZ2rCHy_LApAXd24Jx#8)pO}OHdHX0)pf&~enCHSdLo>$QQin~cl^zM4LNb~ z#;erKHf77&iX{rS^e+A&J#QO|pq3o>6OKD8T~~MmdP-wn<2<)AvejU}&UQyWrT4>R za1&j$OV8tn%Xa|@pAqWbGRimV2jn+>{75QP|;Wjia1#c1a>Q>Er*+v|aP z`4#&7N?3nW|BoKL#0$Hw@LM5&?KSvktzO+L{lAy|O0*$00FIO(U7j_FzaaqD@OzWZ zU3xkeK9!!Fh5$9rxU5mOi(m3)y21LQjjhdJ_w#6J^rw;#KUqTbWF@sHvoi<+bT=h1 z9DIP7mqi|Qm(p*Ofoacvu+>Y=>cdw!fO$_)z!}4=hPam|?)N8^B$h#A;jUW@Bcgg^ zDB?--9q!}I^E+UW7}10#9HMu>8wcD{GsfJ-ye#@V+OS^>a`M$qH-iNV8AA@f<1Ho4 zx_FG$X;NlxPT*<<_2b6bn%Px-ub0`&_N7A-fP$VGgtm;nkY+Dc0@C*&jv^7IG3Zpn z@eB1OeHg^BTL4Z$A~Lsc#18W)sXr0>Nz#^I2We%LB%d3QVbV+w{zTx8TY0d>5a8D9 zfNAaAlwH!r@C}EOpp?WJ;RJ6;Z3(0~u($O0oTEn{3Kd+}&QGAX*hLqp{_4O3C#BU8 zy2M(QD2^7`HH+a-P$CIiMuAPNl4~csk*O)k^iRuo(A7oLC3&X87xJ^j6As<5QWBN@y32|S z)oTjKlt^Su;8w+vYU=)?N7&7fT>IWBhMt3EPgp*#D^Ez>azQ^h4mR(j3R`F?KvvFd zur9Hy$ShpE@pB$iNIzX_l3jhfLi#LIPmNwX;6r*_;Ey!a^yY47-qEahWxfMWuS>XO zd;%7r+-R29IRTfd8@>D$Q{*wE?P93Jb+bpezEeDccklbX>a_0_Q9VA3T9W{g`BybA zIE34G5u3?sJpMcTXY1 zRA;4Y2Pb-8XQ}4*DHIWV0)ug}WopM$K-zJ|W{LM#20h`f4Jg?z(De|zjk5dWC`+`vK)3F4_ zr=N9f^7l6%ejO%{Wzu4v;RTqY*6)?K*gP$3Q=sEDEitmsaXaj#kS|W&ttfvY>BHG7 z8OqZS!u;T$Ev`h#fQ5&Qs+R|9UX%XYYsB7Z@Dvo&?H1;r6=ttyYIML`vBPJ0-C6UT z7QRO0_+W5%daq6nE7nY&s(~8mG_`4L-1?dAAB7~gB* zPn<&ek8>Y7&^w3|zuZB~q#CpKR@+pl;%2MC9P5Ieb_&(fx}j^gXiiSgKWS!y4Nx~q z>*XR(sKjPbe*_>Plyf6EW3o-?_V-L|i^@YavH0aa_@}7@s{}b)INCZuz}xl?-u6!f z=dVY1@!U%O|NIzlX@qTAJW4epbK7eOQzdhH+0?f3+uT92W(6(tu4;@22%Mv%wT}l# z=!cap=*@*=gnW_%K=aBh%VplMG<>e^o9=dmH2`rNXAB#sNtg#EVL-PHn6Qmhnf)nT zc{jfIGqaq$yRQ*2n982AH`0tZzCohivQA_4*Ef*T#CBher}4~il{zpE6dAtlZcT%1 z$|46`RwDXClr0O;Qjn}-Z`$_${pcA*NtoYafMBVezxW_*^qx@##q^C)_nj~Ru$S*& z1POb4vY>#8R3%17B}J>$Q0vxtL3W1Uf5h8Rx<)g{iK&AJQ&Z5DPNtZZ5NMFpS;Nt+)13UK3&*-(y%(UVY+2-mkwx|^qv zk-Y-%O$MWzt`K1BpAD!NARk)x*vq)8dLuM!6uDtPg{04r-gMto?So<8yqcmj@7G4al91Xzgjy)Fb7wT z^6?FH-B`)chs6FQL%BcKi_xYQP>-i-N7Cr(J!?ZQxguAnRH^CGs;2$Ial-C9WL?w{ z?iqJb0em}@xCEYl0_sJ5E9q+b28k%ou)ZWxCW=Y-l@76U9^3rOsvy5HJFqcUD0nmj zCDq5A4vL^UbNs8qAp!NZ7jeG+65K+4JS|KG2-8N#i|h8TnUo|{C(GvHR%lz zxp~l2LF3EMWiM#G!<}txR6%={Bx;Ha;#gdBkiQwIM~D-JhzZXrYKxKZwCAdJl=Y;# zNuOWbzZG?*^=AFU2}(gzFpVJgp`gt+UsV43!Aht`Bg{wIuTDy?g96ymJck7x#U8Xq zEi9SWg8yCx3aF;PJLVhAR`EAz@~q2TQ#5$k=uUclu#&(x_XOMcSNM-J+-V#L2)17l zdJej-!ts%zH-v|#)gdnnSx>|#36Ypu+$EcFiy!kALh zy5ll%_Q!x$IVaIBp^PzYxEoEo?Bysp%(X=MBo>UvGC1r>+KXQx<#+&BRq4HK@8&|| z%-zN^h>O|VnPh;GzH+%MPo%|RO#v9-VF?@v5l4V(?j%qtV~PP9y2+vHLU_vvuI_E{ zgX{XBBGi>-ixr@eKrA(%a_n;Z@_PQT_C-pZS0Gm5^^7_%jUNF(7fUF47%nILxiUAB zq%j;$%Oh%g7Jq`^5#OEs93zSu3mKZ1jxX`yX2Kfr#>xL|;iLE{qRSx`m+n$wIyufy zj`oXX0ivzG7R8Ngar(}WI4dFJubZ6bYV~N{n?s%}s3fK@&i2T5P)651H>E9?vrXXB z%ttD41!MCaV3SMr0l$&p_6v~CN5JnlPyd=X>~C~bPIU5IqvQVQqxQOTpUyR>KR$|XbSd$8YKc;#9yI5h(u|e`44(A#fGZ2(HkfybsXh zv*-jT^|wg106Dl_lE~sAx=DEdvJmWJT>HadGh6YlCGIuB(O$8& zxBKJrj_wS>p4N!y!vfO4D6es}-#Ip-2bM`pC$^Z+e&cnLE`PX-!bG$XX!L$z*o{3v zZ{*-o`9v#Gm(8t$V$UK@b52UqP`ht9uMJzQNItI$aWWz=is`84t`N2%h&Uq8#qepb ztUT2-LnxydHnRPTw4)q>sQ=>lr-W>QMZJGp58WZ%Axf9hT>>KAT_W8>_fR4z zEhR18Juq}gOLq@4ba%ru=bZ1o_uSWW|AEhIet7R$d#}CL+Ldun%9W=rUvA>E-s`=X zFAHWba!I&uLIu9acP>rJ+h=>`4P*HmzW#ar)Y^1+%9TMMJ@DcHcUFy(Qj@J4-%OGh2 zyr20>YUQGfzWpHn z$LNg+V2$mUcU9~VR&LBi1$@EXMiSxkpZ_TrVodZKL9Gd-0Lib?Bx5x57RniQ)I#+x z-#qt1&_JkTkywV%Efq-~xynUGmAYm3g~IE@nubKuj1lZx^Cc8_MxdaDE8Z2Tc8N5l z!q;`?ZP=TvjP%C0Cjt^Yw)$qSQ)HcIXxh?DPVe%3!XqJrD&NMEx8$`mK3&vc`jdbzMIj&#Vi|II zu?$}7WKRJJgQy$syeRSwtCpMH%MF!n9O)cSm&yiy`&NOKf~8-#t;DAEYg#cGsg@BA zmhSk|$%>W3;)Z}!Mst6ny=EM2!UydDcLr+RKvwtZfjdj1p59#++D96u{L8+xQodQX zX;}~Cd)C-DPWF&X*sOK{)zzOf_ER-k+)+leHf{A(9cqA}+zQO0uvYM99D_0PC2s6H zA1aMABYAH5ST7<174y%?Hbk>RvP;qHG0lk*h<{>pVtZ)!poV)0(OlCZs$;LXqe^Mc zM5JsSx)$hTK5Pn8<9c6`cLM5_kz~$$z#~?Thm~T+_kUzww_L}hDk~?>MYMbSme@Y8 zU5~=k9e+7OB4x6~*RfOLF$cwks$Fcj9{_akO`%lZm@a?LOvmp~{i#bZRnzNC`MgPq zquPQO+@`Sn-4Oe?cZ?R9bL$hMPngSr+v9lg zn3+wZiJnZd>e*cOljKS#=S-uIX20r8vIK{ZJDz#KO?tIlfxG6QDo$==zr)KZaC=GI zag!)9pJbBu>sE0flN%Lk*1!Ud@?wk|=vMctKbvDI`Yt+3Vf-{*{Qg_9_?|gCML?H_ z>izX}r4bS`{3fz}W~=uU3|V*8RZK~3=awcw&3DVH(9zC3r9kj@Dd~sfo78-q9Bo0r zW5z`xuFUQfT$p7Jk#C0h~T~UKlPo{Im*iYRPk!3OiS?F&gFYLnWKUaby&E; z=bHJ&=5%@)Ye<*{tv*-0EY{%48x-K7n9|^ zKv$}BhL@l&`?>3ldEjycvg_sK*t=MY-UzA=*>h1YGb;XTvUdrS-Eiy;L6j)!B)b78 z^?mcp`41NF{0ogY6oZbh1GxZec)6N-um5SN;}CsavR}U{mi(A}@_WkfTFe$25vfnMHI^hix#q6mX^n!HLgg8}Y zs;V~3P{jKrE>kFAmS0HTmm)3~JR>ZOis#bG`J~L#cYlE-&vOxva)i5u5gX#?C0O+* zgL!k%=gxYmv;q9Mvq0){`sePI|M|A~HE4vJY{M3$~jno1iIAQD)2Ks2ccw0Mrcx|8s|c8eT4f?Y>N@3HvY zaK0}M7Rs{EXyCn(5pHN~Dm)q2xt;yqAt0+20*_`lZdo@W-p{UIQb;VH=f%996?v3@LH+aGh-dnV!lYA1{O-3m8tWXSQPqH6Mi>A+ zM>xCS_&u`dW3;J^x{FR%R15pO;me)^#(Vp5|L+R=52Bq6>(Jdr7p)Qa9Pto5e8zVl z0a#Dv_wJq>dYnJlK1I?#1DdYRzGK|8Ss%xX9M>8;bxh%|1xAFLgnQ3AN1q-?+e=8# zzx`(de}g)Jj|O8>bR&xg?;Swmd#y9m}-3D(G?l>JTp5mMN#! z!T8TV$+ae^|JsZVirGF*6<5d26U^X32weok$Vn(AHU&y?ilUFlYBT2oSVrH5dmK&s z(bPi3WI0zBY)=7O2v!JEhy+KkPhgE-pL9Qky9QRv=t6oyyRV^W1Ay&cyXP9r;%}a*s5~&yl12NXWS?E;ihqEVr9qHlG z?8pTpd}>6|Ui!pW!7}ZT!aV~#^<06Zms*b(sF3Lh`MBDjWl7hi1+-962)I14);rNc zm(ftY_Bag7vKuH|s=rwXBKeyNHm$LCI*WZFhXy9s;k~jVNAMkb1GkMfTbXEH$qkcl{4)!KHN5yz*$@ll*$H?OW$AeH z@5`-|2%C&_kd_J+S19li^ZSJx(`okMZMLX0arhsUJ2`9V=^S;Q zJvUw-!q|>G(gwlDuMuHGE2YwV%af1_?lv>0sJXg^k!G>$L<`utBf$sXp1?zU(+2WN zw(B)7+5iF^AmJ4}`0l%-Qyf~W?5MqGX+)e%#sQ{6#eSbRa9ha31z%}pQ<{XTO^C6C z>w#jI3uOjw#V+#IREMM&Ko*D5Jig_0=u9`1s5Bj6hpJd9!bGiezKrf8LkjM(+ZR5K z5A+R{Zp)|aXAeudJHmT-UU6R22O;FO{$m4KBm{Tmc-RlxJV$q&^~wJH+EU!Sw`b-a zK7(0)TjU~sTlJaVj~@2Z_U&Rat4mA>A>!PBPo|Q!qbZKi3poOZoQc1 zvLX>=JDuUD`Yfxp>TSpNlj^-Z`#X4lJT&FEv~oS)#USsqvK4A4@yDrW>+ed2e%3I< z_9vdyAJc_@w@IHEKbSD{8(wZY$nnYRRrs5R3GqliAE z`x!F5CB|uU{hmwR8llZZosSe*7k#_n8)QWQ!cF({8?+kAVK!K9rfVnfukfWK{0(jU zo!#JWHmrB+ASxvJkYHcj0h2O&CKI2TkDINITCjXaD0kMc1rdaC#3Ot>_x}Ph>Ny``y3`OOAXQ=NM-K_ASAqe3`81 zV%(6inLvQ3uJK`yKdR`jh%iO#M{yOs1mrrJZKmuE&=$=(ir+?@*6IU&)|rdtfP97S zWG3~6=3QB5dQ3rzNXSga9@??fESuF%#)NXY&Nn35%hfH>?{#`7x=6A*vyBy}8!1!( zCPG`k3%A&L6Xe^2&}##VObv(YnfI0%efK7iEr#=Ym2+U zs@I(6w$26c@p7Ug_E(`Je)p2}a6#zy>a3;OoJIX)4sQ5r6+%D}#&)Z);7I7q1k!wJ|7l`D~sbCIhN=fJ6~ zpr>0rh^!vRe@5C>MTD-l0JJN^AKa!%6+ap<8b!YqxW=8ewi7~pi9Pi|_JB`X?W#hW z79c9IGiT@c^!x^;olO);D{`B!e)y6ss(;Ana1rWd%+xX*6T;r9#EIyx%VMQvwB1g! zQMCYy_vU8@6Zze?Gdt%L%DYhqDhx?L=^69~_U$Meuio*hHH$l}FKSmBw*x{NQ}_qS zjV?Sid*1>gYY`JrjcG(q2#VDPjBBtX-n*2(ivi{n=%i)iz9~yT=Bk^XxxUAOSMi#F4EqxQa8aHX#9|*J5^zgf%E^K?c0*hU4 z@WDeo+KtQK41l_DdgP)5S;KdSJB<+dw*5LyX!W{i8+vYxK3*W<$cr$|f4O}!i!LN% zX5y^YrNkRd!8-LoFUSAm3J@b#rk^nGKF?RQ?;ohGscV)UuGwpR zWh;kBE83rN_lQUJq_{Yh#9};IR&??G=}lSd-n>^KV>8A<55$y!24{F>ZT z@eIG#S1X`On9y3Oc0!T*BD`FO+?|T{OAeB{%4VMCsZ-^kVeA#f+y`r2UM{;YJ4TwT zmR%lgzjl-Gbj8#Xfn{v<0Re8qP75+N0cR%_S%Qw~!}hZVrq*kMqZmCB`D67EIAyz| zq?>(q1iZbm>zl}r-6M^1z-L-+lgC$Em?m8y{VEswe%kq_{BRy3?XzD%T;E0;CaaH1 zjji!c2WmhV?C*$Q_}>&PGK%;Ml!yM+0$Mr|T{t!Vm_YuVwE!`W5c_N9k_x7jLcod9 z5!{BJw7oE3`+jOb?0wROmN{a)f0YeBL_BGWBAI(10yoY}S6AEpgEA?I3Ur&xe==5F z@72rdg~3rR0$JVkOY2f%px4QOPcMLi3S`v?=3gzEu7CNUz?T{uH71Q+vHFrp(mdN% zLp06a=*Ze+=0a8|K-h)50qLF{=?gx){_74~i-4Y$+7L?2yi)FBa%r)zQM+h< zSb8M(JhbCfO!al1^YVn@z~rgaA?dKeM1_@$)Sg^ok6G8v0ma&HT18-=yPp-;qtKh) zU95}57H@PH?e~Z5oR(^lGmZPRDB}Yo>716qq5ub|B3Lct8X;oB&mu{*qbZcS(c2Z^ zgcxRL9c&WAHeY5o4vezP8v1!RE<7C{Tb_^KhAB2uC=LnL>$Rf0U~Bn~AIbu))ph`Ocv? zrb9MsMkUzOxRYEl##ow4e$-@?Pckdi2V`J0y23`&XItGB$4}*=lE9vBF~zEPh9+aS zD*31!UGjFfwbL~wU99)Ef_s>BG`n%CNadamORA|-x{`;Pz8CcMRh;&U&LKHYWDfc5 zLB%2UF0jr7u^W3{Et^uqc}6U0%-eMLg_UstuiSt~Chn#0vP$+!bVR1NyKX;3$9NAJi_2^1hf-GU;^qwI$W6>K|BEP*RD%-gfP(tH0;2+HzXj?XJRJ4V zg#Hah9+jY@88{RPJLjvl#+FOET$^NuA>5dRo9r2_-Si1K_`styz?fyI|5Tt}@UTvG zF+pJ7=+wn2&ixI2d$P&x?Ih-J+N$9ex-}{%k#L_wZG>;I1V?AWs8p&r;4eE`miM91 z5SlwY5m3*;IAf7@c{{F}4G#NQv+`_3MY%pEcUnKkl4(XG>aB>MGIIW{lq5Wko+_!b?3r6h;>HOV_K9}iOQZ1~a9yCRZ=pM6NDC7fXWB{~)*BFBFEj0|)6>8uEU2`9Gd8*%y zkzpjv2<0!EDL)3U+DW&46wE~FG@QY7DVL&rb<;W;2wDg7C7LRpU=$e`4Mr#jk1m)-E{~o!&15S=m1W zeZ(9qSWOK2Db@WDKMk5G1}TgeiItzb3|}4WE^SL_g5_y5>Xz^<6-o?i60QB2*#T)%>=`UA%yjdX;fGh0cnz6Wkfw8N8X#zhliZVupUGHJT$vFzpv} ze9Q>4dlo$H+wdnTru6+{-7SLjz788YU*}Z?*P@ahFiAYsz)6tL{t$=YDI-2N@8ZXA zwi0f9C8HLv{rhZaGQ|+<_73;_use6wcZlMqL7xSYm<=)%hq}aa#FIvn+g2bp&*Klz z6((hi&QE7mg_V4sGu0-^KWkVBjwjQy>D- zSMKL>TS&Wj+|yREPO+>SGyxF{3yTDF{8~tS8ZGNv*lrIickKQ?-V+q>VC?x}OyYpi zyzOtyblG5~6YLE=Lr30u)AF<-GArQ~bgDdd*&Dh1o5kc8cGrjC*8$1rT6hPBfHyzz}R5 z_jxIkRf!#ez{M+CVH>Yy&z82^Ay<*-t#pU4S;FGsy13fA>;?>?`#GP_FbHtbOAgJo zSdwK7lG2}1OzP9<>U1-Jb`oMh{Ow6u5Wiab{OlWmO14_J>tVJEnbfE6_}+H~N|VQJ zCb~4=LdpnIOmsP09`wC+r?U-Yd1grZe4sAc=4rM})KQnB7ksA3L!!unD;$%_Pd)zO zwbARX@Us$12*YIGxtnYV)A(9EY8+!%48dH>0_G98zsJ8jinzw$kHSwb@NfwnjMRl~ z#cY?$;4TG2#kOOBheNrPnMCyz=Bb;1E)i>#0w%v6TWYpU>hn&>A#s5M`9B~fMN@ug zJEwg&uS$GK*AETuiNIajh!sQiUxD?~MO3gF?#^Ez81ts`#&ubqIHx?jSeZP%%+(UV z3#Uy!vyq7T$>K~aco>Q`u19US9o5N@Key`t72zdlhyKx)`yq;2w0hV{#8;wBc}jlc z>LNC)F(r1cyqWs2MR8k;(%aA_jGj&%iN@b01f0VqM<0XnMpdj$d0MRPka?T9x7{ds ze>ZW_M~jB9J}72L8Ga4AZ(Da-$IjH$wNq|_6aG>1G_4blKh7t0&SiHjpEO_+!<9WclI$u<@Da`AuMw?Pr@c^) z2pQ^^^fP?sFASyBK@gLU1@@d(XBF*A>tQxvBt~a#4wDt1-g&+KuPlIwy9YcGU=Hk? zT%9*J*ZV)60!heM$>qqYjsP=OYfim74Wv;UQ*vou89Rpj!8=4=kOEa0b$5s-I$F9W zu6{RP{~#?(szWGAc5pFh!-&(iK1<8OGmNL&;@X?w9+q z_m+HE83wQokmlL&Ug_Q}imMA5#qFCX8CdQM5QX`9{)FZ#Ox?D=CYj8l6-YzLUuR4v zF*d4~-Lul9LX*VW>$^p#$YM22vv?i6>d{SKl`W)rv>qcenPD1fi0+5J6{*hrxe`jZ zNeubYnFDgU&}gy_R!g`S{zUM5cJ9rX3;3;pKo=rp^`+pL=MJ=7D4dPltzZBz<0@v0%lx!5_Zgh+IB~kJ*e=uA^c}EA~MomfD-OMOvav=feXz z(jDfkZA=Uc^G43MF$}Xh$qbv=A9V~kZkA=Z17f0*y3$R)Hzu~ZkLwP}JlcTK4*S&@ z<&6M!{NvW+#Tu?c&X`2GPh)ip$;%6@-q=-Gb+4!CWH$4BrGdb$h9zwE!*FJilTV6(qE z_^K=t=sRg}>a%YU9{})n-NBSBqrzBl^dWViLH~kT{8mVdGWd4Kk9TY=C~1VLOQ)d> z%Dl9fe=Wo+5b*6S?cz@HV-j`bMd*?Gy1*bw^d%*S~>e3 z8fzD47?GMV*R)5&`rk_)T4{>f6HzI%Ge+$$ZD&WL{Z2)je&gBi%Zj;fec9m_65ION ziAI|&Qk(kDG3t>mvICn|(zRV1VrosUHGv?=yEn3r8Yu)Lv@vMyHNHNcaI;8` z(_K51PSlo&-4F2iA@Vbup=)(xWDF6U`PhZfcCsw>=~L>)C=4-I^L!`NyLD-SiPHbB z%dvl}=xs4n>GB(wl-V@pQ?}#Y^lQ~){1z9?dBY#s4epHg6;_#|@qGIP-9C25KkYTD zw7*d-T;%r9eDwY5GO+~1IpRYo7$P5v*>rLz8}@@~AT_E{jl?4LZ+?>_%IMmW^O*!p zPVXeaTFfdt&m;{>FsQ=5t)aLFfK%j0g{3ZZ$~JGqW@r%K;6N+)e$Y=hIAKyuY7vEx z9Ug{p#D{v=dyKFSUmH|V2=Nwq9RjKMZ5EDasjv+~tvMy=H%Q~qDHz{Z)crdX_-*TsZ=DEN!~_j=`CKTYt*&VuiwLVT%1@La z)^iSFm%RpA#pf<2=eS@r&+_<*pJ;wHgwYE7Rva-Gg?&tEDHThy#1md%pcV^}2I0!+=u{P9bbe1=fQWsx1XJmx@Ub z_+e5BS~WD(Fc)PFN=vf&T(|mupP6F~yoSq5@n|jr+L8?QGNUQZ){a)c;n?a9uj9Ry zwY78aV-psCy#JZv{?#~EB3eNAL!Sab57CAxYG*l}EyVbtgkQ0yW?0~q`^@g9z5ORC zc&0F&(flhof!MT8bkcvyphkziO?c1?ff6@FcION^MtsHFNd)|ALYkH*qi~v2V8c&_ z%pJ^cK`fzol8l)VbI{Zth)|p#q0LXK%r`M}{e$VOTZizI=m)D2wAGPm3QJDTOBA<~ zOG|uEGJJJh?N0T^iTbTAurk+o2cYL_LQfPQh9dikVz(+=G9yPcLv>&4;0oFb(X3vD zzFUKnkWmZdW7;JsNz%|Yy%JPo6b1Rd4OV_#H@o9xXx(BNK-IsZL}|^9YtiX|iEoVj zw8b<8KA!EN3R(oGFL@rpFpPd%S9rSO$h-8vO|)dIQPO*#n?wk|Qgk$ftfC{e8U|%H z*p+VKke0ni&LpY8W9N|~SIDp>##B%A} zz?cyU8vCvOJrHdQ4VE?C zlKAeqGU4n|I2-meTC$9;3MvfoKm+EKZoRO%;&LA8o$t%XsoVchAyT*EVaP9UheD0zaJ8h1`BBVn+R|9RJAC{h z+5~H?;HWUfwsws2PaE1Kmz76(0(_}wkV?!q0&Qk&x*(5njxKe#i}BZRJGw<&t@}C{ zMAOy*=Pq48V}`J@yIIuPh5z|RjF5at5wq-sMP^uw%_%1I$t|+{6phqwkpgyIUf14@ zXYFNqYo5_yrG)=soV-(poTyTVQ!)I@CIeRz9$G1&BBqL}X8))?$XNH;&(@H}=0|*X!s^2B(-;x2?hjncwOl8It6r??YXjj{NsWM@(mb%I+F;SX zpN4WURM2mubM+mUatl%)#)PO^plLV|wH4RbAZB=RNlnNVVTUA~;5wKPmaC#aSU7)# z)tG!3De}>CIKGu*^mVyG)neH(?_obYd;p>waW%UrzW*BUBQxrI#Mdhd2aqrnW)wqP zXQ?egA5cta;rj> zXP`Y^THaeB!fP7@>N~BJbJpHlRxke)gjd_6rq#6Kx7g#2NX)cnB1bCenQZghGy!o^ zxI-Q*joIxdQI0zGj#M_IP^?M|B$aozyPa8X0;6Bakm{+osfHnCS5JGH51~V3$!LFb zX#b+S|K0{ks+mO)jq|)hFfGs^IJvw(q+axzS5|{2YDpd_V{9>9x>ae;xnUD< zVlL0yybk^eXrG#-lO*G_$X)sITl66iv)=F$I`5D&GxzVWv}x6(V8U0ChOVA{Z^ID* zHTHbct#%@(nh`%hiov2nekcKnm^v@9-Lm{^9+kRBGeqp+PN98=22i6An=0XG z6Y_lT!cwuoz}Ka|@WqCqyU%}Vn}53xo_7LWhLeYrnYUaBtvGOu%8;^%5Suma1)B~L zG&gy__h=-pqIhhoL?d`;3L5ZiCTzMIvnn;v*@e7ibbYorQ(3o$ zkMv$``5homN$qkqHe=8IT8i@k0fWk`kLd`W24Ljoy*iL;%3tP`Q!VXRO{$4+@{ybeG*)ix|8 zs3(l`K(7zKJD=2-p%#4cT~~n9yBJlwjnKzv0#?tcbP{*PQXt@<3$cqRG`JERT}8t! z;)q>p(;1tuA!NIn9yYw1H0=Bxo$s-`5fHQCqMCyM2s0iM2k#GLR#}Q@WoFt%RcHVIulTR#q-l_t3~3F%pBbdQ)6^5IY2-FehdWG6 z(w!I;Zw1;qqTH+GEHzzyKNQcYFOFQDzo zykg)uPoky=Qa5|6^4^kK1nK1W_YW|1#$Rut`cMu$3E8b7V{EbF6Ez3gGo}}Ue(>CZZf9e-jP5Ax zm1LG#!;!Gc=7-Kpc&Lxk3msu6`)$C!2e5yrrYwN460E+`Clswo5ocKN=rCXFLFZ=; zoV1#-(oxI2+OMjrb6oLBh1Ow@lpkz%g!M4nX8^C;LV&5Y`AB*_2-LbUR%vQtuxkDp zFoC?cmzL^k<@KN_RQ7dkAR@qEp=M0VTEV@s>lPSeSPIcx2Pn3GIf{N_7_jqP|x@g#-<)qAo zc)cGnnJNNhtf_a&gaY|gJ9UqoY()YOzm-y`FBfu*5sW_EuvN`Z_P%bPvQCBNpe6cp z+HKC00G@IN`_s^y+WVtQXEznh%f~ZHl-IPW6HA!GJap$MXQS;UQRm`bkMPaukPOI3sy&%Zu`G? zZD-L4R;=j#zp2{4_xAa4*(YkmasMlC!QcHqJ9A|sGTH*z(ONL@2tdbt{B|{ZywSWj zf5jTvFU!oc|CcQ7oy&)uH>_o3U&V!=K|r%eX?ws3oWMia1cvA zAF|R5=zNEL_M~2?;$%#`uIkBG^53XiADl@|Xf)Oep3v{?vJGC&mpwnYG!^(EmJ0?D zcGgV(ZdD!~0aVmARf&LQAMFIa?+Js4Eqc+YLa|c3iey z#Z^XDo+WQ4Em@~9g+nCOnlqOo6ugo_U!nmOTDRee z_4)JaT;piO28%IYt5m1e9^Wysb6p<4dQ{BKxWAZtwW+b=Y3#NbCT(f~m2aG@?YKRD z4sE~AKA7t`i%W{KyZ*Q;K%4aj#6~5D&xW{P@lB zu)0ty_qyu;-F+jY1P;O#l|w6(RP7y~a(j*>bWnaR|61*Kcf^GApN`G9IuWGiZN? zL;|M@T~Cs&F>tV%9gtAiDD55A`d!n}+P_!Swpv}zu;vg6elb*4v;5*V5!=&lx1T=y zYS{&mE^&m!acsS3w)>5KYIgk@ti0fu&YI)i(A4Df8n)vWSmpo;|J4q5=QN&0c)}5q zi(wcSi55+qgpQ>eHCkupClbLABs0w4-}nT&suq5b1@X8DV+r=KEceX_t7m~Vt6H5X ztvLbp!ZcStmzh(YYLZtDgI7ej3wym^alf^6T7+xLq3<#94%c|Im{#|&Ck?wMR}+4T z>HfB!+(b|!BM-n5G);E&;sd{I=+unbE*m*aU5zyy1TSG-jb|o$&Q-wD zP?NLt_ZMq)S+8JUiTzFwbG0paF1$92WF_AzeF9$S-w~TPZ7_^boy6Q>ambmzgw@o0 z*$8VSY>M!)$h*hXa*nbuJ|UqUKHQ#zKZx)6YN}ZEnW&9rQRtgp*)j6RM6n$BK|1eX z4LMx5P^_7+fj`^-08%~jsz)D|3!X1QW0*{!lY59w&HE;;7Q+bJy5Toc!GZ9s&*WaNxFP{FxHQfRMB2cI+NMq_Bi_NY&)p7yH5 zyG^PQO8axv~i<&gxc*~N(WgW9C2ojj0=(Ubd9;~8R|$mbl;m~041ZPui| z0%+9zl1Nk3#uiwpz`fYHpUYt1Dyp%eX!RNc>x;g294`d;p+88;t_bN-`5H~-` zbYvlw#N+}**c6IzBdc<+bAi(|E|iQ-z33%(!kDXBY^NJo@@D&8LTeXCgc5LovDn?Q z;v;pAtLbSH2K5pOt2Rig;O13sF&2NL^@QDY9Z8j5nE_M12hrq}2AS1_YM0>9Zd6`U zk4c0ZL0Tk=0ZEN!0L93O0D{<1`I!2tzH2?_CviE!buG^QJ0d2=iC4Buoi`kvKItwq zb_`u_f~_~$QXaS8K3dG(0*xa|#t^&7-aq8w&HpwUJZd?{ zWmAF)&S_r3c*d3@y^6F&Vnlm0(c;a`o5 za$)EEI@^236Oq7n_e5SGkXco#VQQr@e5qAsEV8CSat_~a{rqBn{?~MQrz81F zMk(B@OTe2MO3civ0Ru$dx+ICOQ4{@H9T`ypkSKzKTfmCmrc#Sq{1&?oKgLH;@Cw*b zXMTz4_S}{}Zf%p6Yh_gW<&OMk zzyW5d83nFVA4bq5ix9vpX6_;0({H448qq73>}T1dHTg3~^wWi#?R8bOmuo_@G1Zs5 z7L@o+DV3D;$p;LOKQkg{jxz(rhEayz;7d}VzmOwzN$kN2!R*A$uSxYl@O9nNM%vsvaNpaOiM%U=Y750LT&BkIze7-#PBT@ z{87jnDmJ1YF^R4d6!~a`=GISpvbfwJ-9qCS*J)oFFK8u)de~%5)aejzXa%xwoLJGC z2zFM*HG9#{7`K>dJbnZSOF<9@lk%wQ0XBQAuCUKKIN?co4L&U@ObDIgkS`@D+X@N7 zJNdb@7uI|+omIex(x8$toJHbvrSiqDk}NS7UT0NNL3^*YpQ4jKA{_=bq$Z{fLC=Ff zGMiHCKd@O>Ajf#+9KDttRS?>lv|eD!mg`?vBOw2Sl?)R@>=}YmF*#Rn4VwEy#sb{m zz*XJ3`DZY&iIGvg=ytS|m%GnO>- zB)cE*bGR=Y_MnwmIyvoaBx~&F{`3LK^dd5uk4p4E(%Jv;EdSKRvJvLM4BLGACVA>n zFV~9Ks?iK~!z~dD-7HCAY~f#45oL+{vy=`8)BDA_1Ch1cQTb)f`F}oT6oiRx@(RQp z!lE9d6fbqwjL4JtVF(ld+qxCCJF!Ws+S|KaAz2$!X&Nj&{^062(C?iy%hMSnafV)P zVDqGz*Y?b@j7Ji|zs}ml1owt!5i*=INcHI1-@54Lyf>TuAvR1H;{y;3GroW3hp+k+xrB0vnMuBk!hn)v`NY=NpbQTC1kENH=51Vj z!ALh%HLv+dLr0Iq%fYJQH^_b{alkP6;Sqg#r(R`gg(@yX8Z zquQY|wu1?@x34GT%bF_v8^gevD~++s?V#$k+KSAM&OrW`lKE;a2d3s#LOBsq{6m-w zZrlaoi$%}g)-`~#vxK37dFOatJ@e9u;gYCh^lwabzZDtfXDqhH1HINf2j*H-Xkdp0 z#8-K3dvxDPM*^OIpH(-GSH1dSOHfYSG@SB5$I>s@9G9dmmFs6-v)8!6{hQT>Xu!3U z+!n`+MKAj_&)1*8(jOGpIL!k^N?FxZHqVX905|VG82y>_|qhu#^cb!M1rl6rV#2W8E9C*nBxdc`w&B06qB1&mMz)1R@qxE*ogUdC z@sw9>ML{1qM%(xu&)6Ulhn-I>Eyt@22e3IvUrEPPr%IN|mJx#h-{^t(TrcOGIL^Bh z|3y2z%-D+n<)I+>&m5A?j^=qUmpJ5Jr?g7(pq@01>N`I^cPYQkcAof7c4u7T-^R*+ zw@4yYAfq;+tR?2PlANmc{dWJH?GNw?dD#r}OHBazziMX9KnIQ>UXlaVU;jdoW=%^@gPdW=jW0yjH;Im1wU9j_?pMQM)-O-@}n*A zAhp4cxYGss;jSXfa=XX{nIMYpk>g zO3=!ch2Qlc%X?RrjZ?|>fPOtmpd5AlH<4m;m*XOm#*kxrdK!Y9YS+u}+sIX`2N{+F zuQSk;!2EV#0}*?as|AMsN~mm%Xx5aUr+#MjbUJA=`faPMaYUzyq;m;Wtx+Yd1=xlt zCTbn^WQlTv;m=G3tYYz^2T{dAAYj~!J&nrN5t?~xZ8Hyx&_jfAOe79?A|fO&g?49B zJXbW=K|*cdQ)l!0516{?-ObkN zY;5&dap`fBFNnTUd8g6@1V~X-eOU$Age2kym3;O0jW^U=x``_PP(W=ayN2@9FEnOm zyhPSyjU!`R-$|6@`nc}lSC}Jo*(o>WPBmnrDAZ)wpfeXSH_{Mxe;L;UR6^un7{_{- zP)2bReQ-d?%n`6+KKO0lC4m63#;(QN;FHc}etAH*_qA&aA%Py(%9jE(zTqV>^+I+n z)6t4!b_bKw{q{n;ZlmV#(p3-X{?!Vpfv1yOH~1cfs#r6_%?5yN#ql(Stak1;9(!;; zBX7f@L+@N2;Xj);1bM~Q==|CmayL0@$L!@#TI8At7WF!!I#vc0ZS8tv6UB{Ou@+@} z(V0SGU2lc*b|Vl6)q|#``i3uV&-jf&4y|hq3Zu9DMQZ8iFBP)clt=zt1S~Z_pC3Eg zUWPo*I{VK!N!0cqwLTVGCiobpror>Rub&-?xXShOMmlj(8Gbc=t|y1mX$#5Nx=F{n zJq_+sb(vHmWe^HydyGIz6?!{{lq>C?MXGDrlpc9^7qhp08KEn5Ke|EoHYqy*+~t61 zwxu5HFp0khf&bNK{Z%(7FNnt7P-N!`PPA!E13LWiu3mUj@#A3nBVvXvw}~+L0@_7# z^2)c?9<~GyZ%#KvsvG|<7&>MbF%~+|Th1}dyPWE7ApR8~M!_tf&V{1i(Z^{tN|TWP z_n%+ABl=lLQHX|RFj&Q(496FR`s+F^fcQ_JPe$Rls&0h<_O!)O8zf{x$a{?QDH&}t zolyh&q|g*LQispnBlvnpaXq)mKr)DgctV-3z)<8UhG{we^v!d@!tR>v!VDe;t|3 z*p)Ltj|qE;4zx_x5XKkIiSmwzdM(+A&iIw*kA%&$?Dy>}lAQZsZ*=g@HH|IfMSo^$Vg-4A=_W$m@r7wfD2Mk6&{vmLFqKj18QaFFz^ za(eFLJ-xh-lfDDb$eBo4D>4fJAWAq-5_bAwmZ(QXB+NZV5*9<-SZsI&89p`&)XkDD z@It&G6Zk4TD$d@D;N^`%wo`{M-IJfvIeNVb3r8A*6h{%!Z~-u;N+ zO@3I4jr=rqh)c3D+^e1NXi0K+V5n4CYO|fTcj8M`Q{#t5i)umT0Lka$uhlnr#oTOT zXe67*Uw5U`e+-!Hyyt$T;t3dH%k1fqi7qI}Gv!N~`amtZN8+^l;fcp5Bew9_wXN%( zJ{8ZIi@M$m$Ir*tXq{Sa-a0;V;H{l>kF$@WfBw-O{9oca6s0SLyOY-Q>`s+uA~2!E zg8G6$ZO%K12 zM-P_P2gYZTGI7|$4M5=;UU7&c-6vuPA$rDF7@Rz3&N4^P5a&2>ij=W!i8<70E2fP z^BSSvs+)X&j0lZZ_@k#K=>^l!Py63XXLD_`){V3N)Ie8fmF0U4%n4hm0>p_KTs1rY{yD!EsQnS zdBKcqx=$oUn(AGWfR*M*OxEm`@O6qrREV&`mwjreA=H7S=}hoN1!80V054xtS)EO8 zGlU5~G@pY#Z>#+=7~7IH=IGg#{ILj}1I_3|)~2mx45?yXQ7JnQ%jbGcv$pc)g0=>k z=Zi`UQ0TYHQtDBZKn_D2q{U2=xM-&ig|=n(;-;{N&L)IpLh$5cB8A!dE-o>psR{qe zcJDuH2_Re3>mn<>$yIu1<+h{hc1WF83ZFe>g;N}UMI0Lap>er|hkcf~_?awmuRlIk zVO2Sq0VDLJXkZSh^9&C)r?rF-OLHt)cQp@_WTLy~ia@-6z24iFuSszys2NUsN2LHB zmRv5#?Vr@@aM)%#;2bsm1~Pnzkv#pPRgUlqc5mw!DMgZyYEhhh0R+-qLoK@6d~PHU z>r(_T(h8hEj5oWDeV>-6Gv8ss0*AY+-}7Up((pj@ra`^#S$iIzkz-=R$gCez_#5=f z*Ca7>S>Dtz1Ms|4-y{W&LG;Y|tVMNBt$h!U;6+?=z?SG+bkmtx`iPR_Kuq^Tzv_-d zvBS3M8|cv=0|8B4F9OUDhb4iZey}uOk~yuo?RXz-TbJKq*^-d|f0<#EII2# zSc%T5Re>zRljaJ-xQ;P?W+M!^|}wsFu`kyHURw>;%on5YAh4RO*NYhF3icNNIkQX z39Ml-uD{)ZCP{!WPKyvh7`;p;z2CbLx(VEx5>8of zW@y50!#6=%uv2r#3k!eHHT?0)tml;#%Ga(%wE%fCbM}dK*{Hra`O7F~alD z&8)8ZLo_NR-Y&On98GV;*cDE%<~TYCnUmB+aSu_}jbf^Cw3@#pA=#&NI*y{Vbp|$T z$Zk%N+qG??xd2z&gTSGG&PD~@4%R`Abf?E=tt*yB(B7wx=IG^oYgze4?G>$J+c@v7?kP$EbOdmWzJa;=b-#d zR$6_XWJmT%wbpzUcv9;JbM=KR3pVQ?{{Ml?j}X=rv#l-r*Du?(9D zeX$$7HMCp`Ih3(MXKX|LX13b>GH^>9(cwJvFzg(Z<>Wyt9x-*vapCA@44C^Jiu;pVu)kDZ>HM<8Syk^cbpTqH$kgY|&z_DJ48^(mEO6=67 zb@?s9vQOSW{-yu3sYsfkGJVxA3yluX5QXn{U8PEZA+nfg?##9#;L^Ig=rI?f)XncM zjYA*OCs*DCT43@V;|Q4w-+2~548 ziHtG#zv=Gd!o8OAjQ*>%41q-4%B=a~i2>a-%(@%Iu~@gRna!UnzxU}G2sbP<4LY?w zbUZo@514?`hj7B#pM1$jIp$7KD2FR>&43V1=Bd}oxyV8>Md|1V#kpoP42Yq(EGy+bg`L7GkOw|GN2>*k|hzSg~;&W%iu>qpI7w7=59~%Z&Q@ zFe5>g=PBbkSb^&v$cg$LJfEk^WVr{f44jaSUQK-aA1p1OLFf>)mDY@8PsTcrQP{_ojm@1A^NJH7ewy1%biOX~a9_j8@ke!_nu4E8ps%sqcwo zTyILkpUwUPvFXjV@e`Ayt|LSHd>bLL+)@%?);sr$uPiBG0P59d~&x@CbwUc zzG@=79u9N%lV+D{MdL6;(ZguB#i^!0gphhfE0TEgqt9twmX}_V33P&`G#GEJV;oSP zB`s3yza@LYRTs1~Mx()m|1baj4%o%K5~$ck#!i(1>uk3qn|$DJNwIzXPIwGr`&CDE z9Q2IZh>Oh0%kH#NqB(x;B??D$`= zOFdZJ4tL!tc{l8@fP1R`!yC_B02tp+64Nr%6_eI(5!STJbQJHknd5v!e|FYvMDa{U zSj;TRYtb08MPT5!O}d)qI#X9E9WJfYwYVmRAW8Oh8#kufir21m6!S?!G-4Qz0vt6L zCddGtQ+V~T2Di9{uDzL3!HT}};)%X|JT$C*hr682#=g?0j^zqmhHqXblG)8mw@yoCeC^k-O~zPT$L{zZ1Im2gZwNqjAZk26e(`lriv|3#Jp_C~7Vvsc&DQku-YffI8 z+pdP_8~XwYF(gFG&*kAWe**^HYElahw;i)7Y!1A7@w#;dt2CAJ_QWeY(L;_ z&aGFa-^^Cos_$NU?!Wf%4RTo3aF8{Ku(#?N%dA9Pn%K@IR8LgHybZ)miemC5S{Wxp zdAzszwqMd~==rRlU%WUpzVOvvlSAM{pRK*ste;p)3|SwrD-Pb`6Q&>HrmEay_Z2(J z%>D#* zhp#TZ(qgAC5v0C-kGGGvm&mDgW+&f}vrL-d3pSl{>FP^=B<}`wMA6A@GmjAR)(1ME zJ{H6@t>-!5wOSdsw*1vAeBpy_x%kolue27KkeD z*Sg~UN49eH={Cej>S_eIZPe)7kXG4p7VzqGC#q3ZK%vgT+Xg6o)y%7aR$kIr1|wxo zWwBxuhAme7okqg%k5T9H%}kS*OSPHKf6$f*n$oc|?jJ-uG)16E6NwK{tSjkW{Jdo5 z;F3}eLYGGC?eQ$Hl6hvLBGdQcIF4)bs#P%lnx=Ma7trxEj=;j9khqXD5MW^XDt{dS z-re{Wg*s)@39}ObU$qX|v7@w#$;OF&?y|Tq0oId%B1^6?&89vAh8hZJ`mvjWP`neM z0BxBG6}vjG3*)FMYUWWSG|B7@wN;I$5C$r1Rn1pP+ZU*enYD!aXWKNl^T?%cByI-7 zWpmSh60uW&A-#;xHiv);j+En30W-_;&_qaUz<_A8i~x$)QfJ|9X&Hn-C~qVOguPoebn^g z=q`suP@(rHI+!LGN{Xyf48JpjEdBQ?PThoO&FRg6RIC5 zS!utssVt{D|B_y-d7w$HG};4uNJCxbNg%iDmL|PPLkF;ce!{d%bW$XFb?Ok#U89nZ z-JF71(Ry(iH}%_Na}h!&%pWTn%w{*_wWqwP0*W&yZ~d~UgGf5{JS4~&7P!Gj)T;2s z&8kHRk6p|HpIH+f7nKF6sKF!U7?<^%{JzDPvyV=>QnF!`%(Kqoz#ZmG*bPSc z;oPg0j6SPCypUJ4emiFV57#+xC8+=Au~uy&A6&-vV`jN{)$AvyDwgAtJBzt;tM$eu z@9m1*&cfMPsgTZ_4tjo)LmQiQ4L^(^f7|AE?M9oxQ_ASQ7qe9`374ZRnD;CPKuVQs z*W`zuNzHalPSb@JrY#G9N9Gy4K=pHpNc+<7w2My0wuY6jl*Z}a5`pRlH&7zn3WvHk zVtaQpg*Ef7Rj0wuRaN6eLH~of^K7|2fYGli#R@ zdrj{aem=Q{9MVjNx)~c8!*DPKtDk`O_UG%pb|zkkxov!*kqk&>dGnTZy{YN&18Nw& z;%CowmnK|JOG_i3yq;Qk0`6`dUSuyKFUrzHsROd6CNB$BDN%?;B&8Px3hf9m$31Tu zbPJ~u(ioy+%Vj9YT5!RUHzTtys%ZD0Sqp2>+9jh;c+*$}Wm#}>W!R3zVu@wKnA#AB zVhAr_?e=9DNi&Z9`CG?`bGv}$1@rYJt9!ofRBT)i-z{py#-lldpgkRID&46+Bn3&E zJ4Lx&t>9uh>y;aWl+k)wEDWO+2)V+Iv6$VIRdsh}wst`otlwRpkAHZ;zjaP8(t1AhwTve(S)Oyx}d zMAY8doxal1j-To0EcF!qR0iF!WU_j`fO6rlsg80Bhc3;{(VHBJ5`>;5KboUd1(;ma z!~rE#W(^ahSXWUZ-&Rsq649vz(!Y>Y2b(XSz8Lx*+Lic~RcPcHyp{*;+u>`nk*U1K z9NW$}dJdLe@yJuJkJ~?@GBH03{aR)3qr3oh4h)W4YJW~ha#6H#Z6w4r0d zmW_;QQIH{TvOZq=yx9(37*QDp+7Xey_FC>tg#0~>mvGTZJ7ctR*hmjN2^jA5Z?_-s zSVEn4b{i-xmXw-_kCadqp6f)=RSX4f0+bJ+7t7|*US6%!F$D%V}ejPf{v77O>iF-HX<`1ivXangs z4s+y@>~>`434X@0m6T3}_vrE2w$WMDK(!<^6f>^C2>s2gl9d)U*2XZyKlZmJM){ys z=l`h^>n_#;E)sdP5G^g0%^|A0?4=+#tZmr)i`~-(m5#0JP35FYfkCCWY;IR(iecFTr)xgT7uXJ2(E*i!I zk@eY@H`OS+zqil0nfHIRFmzI%YMb4fsNt#cfC%fy1;LSK^F|<{QgAG_i23HOQ;gd> z(=W4(v{cyIem)tqH7c1EeYWbf9QmuGOySNB+zFQ^X|c80BCk|dHU7~`XzFb~ZcN0x zK(BT%Gg;g#UX$tMoY2?ZQhs zo&bUxyhKuUv=J7C17dpRI-`Y}y9BJozc9+|OCh2PFgS-X=m>S37UuGR=7H0av7(C` z#jXo~*|fiMp7z+YlyRw>oOO|Ylol?`y!B<|SLqfT!YT!i>YI@%%jcqM=cy*D*jPr4 zI*uzq0H6~PWFDcdg#F^ht56L4QfH#s&j^Yh&T-9o0qdDqck2=6G4abY|JnJtxHxw! zOKYnc{WRvWdH?E;&&&G$3Yqs6myo_>r<=KTZANVu=W;vG3QhlBa!T{8J@rH{3TU2h z!>+~r0t2QK5&KGDn-ypJOYCgcWT(9~IjlzC1*w!$XFo4OiZQa?0xk}8s@?@B$Ex+8 zepp`?V5cJuqZQOYCw*pM+|}@z7Q7jB?Bc7*jP;o7QrThctRLpB+VuxY<+@B*JC!nt zqxsz_{c8HH&~p>=Su{RE>)!*boa;q%zx3d&&ASm0H>JvW>N-Ahi?y9eMelGivmb`< z60k^UBi*22{F)X1ilWV}hrL_1Ntig@mq&^jq){Vf=wd2b3IIHl=Cf4K>2Q;Do8u;1 zme=W5Cog!hRIw)Q?PTBXq+m^n9JG+*@TWMSknC_&h#s9UZH(^lZH>g+_Pl)z^jPvs zlNBWPN!sLsHe_<~d0S57oxT-|N~_51cw-ki)>aiQCuo<_lyTRVmYDX)K&N(~lMPiD zxi+;#7~sn7Diu}u2AwD5@QhjbZ)bT|7VYV`PCQ$r<5!?=^|L{e@jU-C(e&1IbJcNZ z84q$lqUim+u>)ju9gqc{B;9J>sxd4hF`%XxV{7{*z(}zjB1ztA*dtPLp+LRkX2f;~ zTdpB1Kes*vfPG__dWak1B-5qL?&2R_9qF{52TL7r+Uuk&63vpg33WvqCuvcQsQDVl zCbz#HF_1Zw)TRoISq*54w?+&E)J<%_zpiDMNPnbfBPRQT`xcas_8~at6WWbI=jhMF zMx~U6*2_P8)ri5_KgiTu@PrA9Qz(n zu%02^nYxK|nQ)tFq?)7^UU-aInnQpHp1RE!fy(ZuGTs%L)pPF6`ZtZsH=GVYzp;9I zl*q$Q4w@srG*kQ5NXmVNlFC3E?I|15qWH=gfC{CM1}MIj`55z^BlaVC%i$3D7naCY z{;e#xM}FE86%kYB*hJx05Qm%93q*7KU>nD1FWuD}>>3(?yI*_16?~t(R?fiZhIdTK zqNUC1Kt6%{Gg&z>l+Skv3+(L$a{>nrQvQikv`EWfs^NNSIn1b2O0@Ijj$JvWqEQ}U zDN!LBEWcZiAEThVVQneF0!1&OD&>Y|%9Ouw>=Pr#aahFU%A379P3I)#RJ#TNz}Y^% z_2D`kkxAu%%9|O`vr!sJe0nDB)AI_0Q(SAEoi_Q4Q!$$gya00D{3nD{g=zH3-<~Uc zd3n&?xdyhyGo1vU4r>YO(RA)zL2Hu((fSxJM*Rs&3h3Ob#d`%ji@IHh^4g3$O)uUt zjebiq&~~dbz~#%X+nR1Jv4W_&@F-lP_df|8Htt_@TkO1!dIXDYJ1~XJG*+st6&agy zkV&QYw>X$fi*mJq{2}J`x7Mr;{wC2>nFYSI&=*M-A*IpZ|A+u}ao-P$3Uac$!mIo6 z>*V{*+Zc0W`aEmDGzu&p`50*NxkrQnzJHj~w$?`~y5@)a>OC|Jf#AcByB)Vr09mWp%X2TQQ|lEcmYnm zL**W`tE7`Exr(hk8$(rYPve{GZ!)?cpL}gaY&{Nx(gdEg8WtLQdC}Uhdj8)%sXy2 z9sJ5C&)nF*iW_j+oNzVq(6ET>zvZC5eooY29E5VNER~8ZOuK!pJvYq*(H53Uhj27a z8W!lkU4^u^vU}HWp8gJhE6MGkld3qFU_#xh!x&zrG2>lEjC@a}n!xT&2A}N_flOS* zpLeUC`83fl`-jl6>5%o2{#W_``!zWJ#hQEM>F0#*sMc}P+Ht)b;~O-peZ9o&upHR5 zy}W#}I4v=tOnQ725-_v8g@(FnEtDk*fpb3h54E^i*p}SpRoWa9EGp?%&;xRQOYKva z#-nd|_7e4=Cs(@RutTVTH26qj;$kz!1h#y?xZD_YQykQa^?l%F0qP4>(oKM3>5+rz z?%Tfpbt2opVYDMh{x#W|1qs!GOH~RFb%*;RmP4d^jM$;W7J3E}ZoOO467sHJvmzZV z7QBlh4A^J;?dX?DV=sQi^&s~ah)f=mOd2kA_FyNAM~EA$UaJHCV11|&bUs$MMIu+7 zd?f?@n>Ens-k9nt!jq=*iHoA_)Sp1T$=zYPl1Q&_mEux1vJWLrXwFpS2GH=#Rh(yg zVy1-Gr}OQbKq8B77b`p3@--`^Cy`Cz{##r%MM`N|Xfyr2LkCT8-F?9dBShV%93YdP zsiRm<8-OcD8e;9Kud+Aoa%9LDeY92)WJfcz6JyHcIa;phpUFILK*3(;!~{EK|iV1|Bpm#!u|!RcE*L#4)nF7dPMU~`c-g|x@Q#jaee z1U`wwGr{8&^NjiIhh=2kB0W9?oA#-nKtBpo=q)v>c2B}$l%pZ(i|oY&yym962x6z-$166J}yb!^pe@xNc`5RVp@sk_Sw?a%#T)ej{j=ZMD- z5wgps^ZSi?3T&fZxao9Be*iqE1qmAD23h zOTS4xDkt}W&=COQ!0kqX+u2z^WWv-LY+f(e1|@HGYf~2CpjN*IgUV_@hV$p93;o$v z&f$z8=JC6#Fsj<_3>2&I5}JDvp0imSROYGQb`{1LtJ4YHzsJ!SIqOY zkbv8;&Z~G>mXflVVzz~2r>A0$hSy$uy|L2U*hBLCgHAruNU>@-X>_o-!^+6rWt?yn zVnk<_-PS(%d+{aHY&1&+oVP{MKCc%_BIw&6Xy_229_boDM8TLP(GubR6?SCcb^D76;XJd>n;;U)xMJAJf`|BsG!S z?!S*~H~=p(7B{`b52pA|v$VXZs%HNVmT)-;?ojb+(E$h+4sUqz4kmsxnEL~fzWlt% zo3+upbs(x`l)!xWzuWtNc6%RNGUA%)a?E4M<$=(_^ij|_R~93fd!|Do`^5ss^~*P} zS&+^S=Aepk0|Ns>|D2!)-=-_iaqZd1e3$yQ_1cndhCC>=TDp44>Mxb%$CaKc=-m7; zch{Yn^Oo#{>^2h9=Y#M7oxUm$5N#Z1oiYo7X#jit# zrhVM1TmumVCCm}B{uCVEv_Mw(EZPvWIIqE}MWgR2KY{w-woBMo#^Mzd$}_S1A7#2f z?OJfXa#^3H_o=8%!=VWI%HUzG?(c>TlX;y&DOVkRq$|yinz}!=?c8a-yA4tVE2BKK z+Ni%*rv*$!2kq-QZ~}5_xst7z+Gi$vm&sg|*S9=zhv8r>JpFH6ZPKg#a8anJbA7X> zHvTjvc~spRjoH#3S1jmDEGqwl5Ek1HjJDK5P;Z<7u|rz}$7+avRk0^?)3+Mqfpc6h z#2Z7kSh|~IhIfJ5-?dDS2BeU@!>3l)KmT4<@cukVGH-ghrF)_2sJ$unk&K#Xon}F> z9GI;s_4D)6grU0Dfg7IeL54C~6SfvBCA)2bVYBrHW;*YOC+U0%6^_`$Aa!!p<4<$N zolD|46SKR`1@dZ573Xh6!UYHWV3RDh^x6hJT+3aT3U2U+^*{*>R-|=K0C|I!Noe); zH`=jvKBzo5wvxr#ZnT2txxtBh1TUwO*Gkdas~Fd1c64VYZ{f;;a*J_}#)I!R?~!Zn z^~i;(`ev*{L`zg~$BjJV;a~uvdyNJ#u*Ke|A*|V=)o7A^cO%bS2j(3^Lo3wGv{l<( zAh_lEJ4Dk_y0GD?z`R7ySD;2$RHGWS6)~_s+j;f0{}|%13T}_FYS2A`1}bU<|Fo>A zB2D&)_7;f5CtP4Y+kM~J_E?zaH~jWKJ<@K}lZ%5heB>aWQJALz(0faf19&uxj^Sl7R8HR-eVb|n(&`zv&eo?#EVydvXJu09f;63 z8v9GbDcon?m+7M;BR=BGFY`*wzv2dvl1LmNp2hvgXB=i`FM~wug!~ z3&s%oqx0Vkf*p1E-+qcVPOXUZq~+rC46Lt#D}a_j3qFv)|9a*o7svdd(h)-5ACCt= zv2W57<2Y8Ug7QP*h@|Ultcn>BE8_f511oI}#{h=mXMjMX@?l0j+W01GhC%-UuV;g6 zqAP8k50!Zt<)iQSLLeQpr8=MstdpUF2d;<$PDW z+m9ttzJ?o@LD8P)dlxk?6x47n455eyId{$3qAosR1{0S&jtD_fFMwiI9jIdZ0sUP= z;sb!^R?d(r#W8KqFBwE3SH(xIQLj!vJc(hL!57mHm~vcG((}BXQ)YU?IT^&*r~)oF za$a`7l*0IvghU&qN=jc1Oh^**-7<i{K_?m>bdwW^Fuqyfo@17};2>)6v}9fuwQ}z8ob-Y( zEQ=Qj%=CbNR^9?2GicC|_met{TacFrjf_Vkv9=^zFScE>iQ>l66W8e)G}Dlo{!Txd zT9{can(`6i+}4r*x!e9{30|qAF5f%jd5=+{$ei8kgD3)rbqS>)n`OIr0~?@8unBPa z;=TC)o9s+Mk}DTa2?;#W*WQSw8#Y2@f1A?jv;3b%7Ps zdbN7c>Rgk9Nh_?(Px)v`ZY>#{Ne92iJ8UaCJ4c+V=1aZR=9?Z4mMg^3={G&s`Y84} zwByCLxd88Q9)^9tr-wLSJ0*aea9KpV8XR+O_Qw$! zQjk%2^XtQ>R61{8%2L(K>AkdZxfFMbRFn8Dw#8}?^hnK>BNUvZYxPtNmd?5IvV~}e zrq0>aCJ0$HD&_mLXp0>9tyvpWkfL^XR7I;J$H)-hA*c-o9-XF~c-D9y7j+`oZ`?K*-9$dbA9-)|4o47_<$Ok6Gt5{X*)Wk6zNw(l`8~~4+1bK-&jW<&*UK~JO(RYDg(v^l zLOFq2D19KER87ap(;ICv;bBW1T#?_e+eELIyqU9}zM3iT$#;d!&h@ICkBvnSTy!M3 znJ<-e7ZgErt2GR-j!UBU3ubd{7yX?F_)%q6a+K0_XN9r=by`;wmva{VTi7mAq{J^< z_1yLZX&ab{&Jr&7vesixuL+a;e>!D?-j9v0QC<`0)+vu5xT?~;Yc{MvX4!M~x~b6v zzH7BJ6`dWJ*kDb|enBAR=rC39C=HxrfL(fYzGoP`It!mWZ*B>(rs&56^reFValO%r zuOk}SyWg;~?hZzu?+_Iz>io$aHvk{u=UTmW#Z(?voaqvL@}pj+o)$DX5{h%%Vd0 zubMXZnx|idDZnNiDRfl_FXkMi(1oxbt`6y$I%5Btrq~p>vdruEG&Ci+iZ`6&Lip4= z;|&lRBwzJjG!huTX{sR|og`daDLZIj556|%FlY6%f+nMNm`A*jFO5Fcqxmg%b9;BJ zlBs6#eZkq2LrhFT3PYZGd3-Q&qyRARth_K@Ju$_*oX%}~pGT`(=TG<}16DblaHjLe zbjAD0P6@?}0~LRwBPp0rPS8xs%X^XDjSm3`-ddlua!P;w?#Py;d5jt7*5UoUiYYSp zB;FCgm0OQW2K%4=Gzd9x)zFXtDvKF<^Xo^avRO<9nyLsE!85QQ_P#<=`?aWL*1U|?so>CC>BD@+ApetP@4OA@5y?qjql=Rv5Uu* z@l`?+p_EU$^s2Tr=WATvtmhk-(z}{|bJwfk9W{@7zCKysv@GIK-Ek3})z-et&hF81 zsmpV`)WV0v#4`;H4&zai==|B?kuAqmuRS3!2GRD_X#T1*DWPaZXWMG#>)(KVy8k?l zeE>{jCLur#;kT@*t->F|d8 z4eHktqi`B>5pp_IIX9#Eea@EtBr!f!UBWkCinad$uZQ&9#kPIh{34^@IG?m0y4CkO z&Zj=hZ$Reb=jOU=YT|gTYa>7m)Yc)&N0f145a3OfA=a$f@8+c2ByT;88}6oEqC9_h zLKgm6V2IMAv5w-3WrCTaER%VLX>R@AEa#UZWx7G-2wGHmv-8g~!c$fxaA;ZM@ zlsivMcW;PI-Q>N3AJ7#+v!G-lAl6-1jW@T)#~ zx7ImHGuZhL^sxEI+5%fumOGzZ1}i5YX0O7VOLE`BkoU1xRudYns{JNM`}=&)V?V)a zErf8aaaQBbLt3YcfZaj_i60HEnkLT^(2@~hwq@@geSb%~Jb+t-Zs=7oQ0G!zmcZ{N z-IeJQINAoP&t8aFjlXEz_EUs4>SuNjp&9F@i5-LPUdt!TdqbU>8s)m0=E52UlRMn_ zG7otN?1lqi4r<&)2YBP!`?JO@h!e&wYLdPE>(BSMYry2WRz!+(YT@ay? z1G$LlbMcp|4X%*VK$m=P6|V9rEKRV~-?p+`$nEzQRTAeQ9Sz;n?98;C?%R!m?Ya9A zEU*37i-Un#66yQ+k#cW*bqL)xgr~>VicI1%SA-DpDtJSzg5K}xzh4M`9m;KIoj{m z%cU4)6d0mwp<=Fg-FdTHe%V~48}Kjja;&i9Z`pjamp}`{EBPzZ;dVGqqiX5wrmnUO zeA@H$#4^HF?DC3tm>2;=JRRAw02zQV*2mI(TJ8e};88`Mwb}`L%MAus51un%RFge98W~+WZhK zu!kIK>asXOrC4q@Eu=Sz3Wa+be%0;dyAt1$0;f$CWNMKo{~b&A#G}C?Mr-_(^J&Jy z6lVUr$gViog+ypjk6zi%6_b78wI|vo6pZl%b06$)#9+ud94{ONsx!xk!Iap;TQQ{( zZwr;G;ckQMCbn4}<;p6^|B|U20=*wL z;^5JD(FMFaZu;VH`U*bKp+c2mFtapYw;N}b0pwAu%ng1zlW4?IOSbOwhpZ5{ zB+ME;tpv~P;;?3Rl>qD4x?;X&WDt(GeveK1Z>#`zs9C@GN!+dQ-0g`3B@lw8+lB_2X3p7L8>2MARHRn{Ps&6!L_AU0j=SAh znksF(VTn!0_SOM~B?!pt20H+MX{t#&bX`zA28ZEV7@$LEyiQrgB1et0n4pdB<2Ba&k%K5T zyvrMRU%Tn{Mdqv2qoywtub2O(G{J>`n>Af2*20l7ZHPSesLHLj;`@uxjuV^z!8M{# z#3E==^~UW&(ou@{vP{zVqapN8vAypHssA*vok@|gV4`X??)KwPax4Bv1I(z=ucEdh zmp|_DT|j_}yGnDco_Z zmORGf~Wee=^f-TyrSo_ka6aGS&36R{wxjT~g9VJD#_uASQ;qc*} zihf$_9PvE@Z~f&=T1uc7oU&W(N1a`TN4fhHti5iH)*qCz`KAo7!O^i6t@(EzrYQ%2 zs>cvZEK7f?ESv~kXj0m&QyT5#ZRV8O^f5L|7N(o^*&m(!N8c5Ga3WsP(-kr2vq&Yc z{a+u3&9wZH2b##Kqx(9x=KT0V;HCw)T3H{#J%+&lH z&+AEeV}vy_w9I&T@;!2UFxg6r)Mc1wErAGzxit>YuChk!yZR z`QdUrvzD*-FXV)ec|S7e@zZ_E<6Vx^?HXfwz3}%atvim(-gP`B$Zr! zmV^Fi&*px-ow#9AJ>u8rzWKr%kc!^>zyPNyLeufLW=mC+K?g;VItOiKu#W982hEU8 zfA64o1&WeVDF+=HWuJIE*0S%*aM$GjpF)$q;`&HHmyReSSCI8Djn64b^mB+ue=>a%0@#P87 z=l)D4RpKcy=6RZ#T?|-O@d*RLD~>VK?|ye*Mgi90cO*N*K*~*H?N|*!1KzJB5CV|P zCYew@QbQ*kp=DBCb(IL^sPNMSeB-K0wlov##`VEq8LNAom{OagTxnJuQPRVX%#_aNUsWpp$Ti!NVkaBx(=U3YQOZdCIrmR&DCnHAscF|Xa>XFt!)nu(wz+B z9qiW7Q-F!r?QI`u(5H%sfGg1$EQ@w%M_&>s&0*FHH-fThAXB$wpAIL(I`Uc$ZL~9e zU(DHd-BYsn=MjO?HP{ChjcxUfcIA@vV@gxZ~4 zB5;uop+V=zT6l|AE_eF+gPuu9Pm0+n4%3govbP;K#gB@e{I}xlyfI|*g5L;e%(tJV z^jLH|qj`$wI2#r_D!MFU_`RhlJMp6ywhL5^M@H6!dF_}552;2U`szr2&!E8*LEc$X zlXB0luiJB(t}4+f=zfXOeaFL8#hn^|2YoP44#S@VUg`@Y=qzX2TK%9I%ruaag|8&7*(Sl=xHYCWBcYdk)$icDPiSf zxV1O!V@#C!-$rLo8_^ZtTQn9^c;9@0`o2VFW&7RVkrto)ZD>P|DJ}>X42a^1q;u4$ zk8F$2LRX5+WgOz(xhztD)wm28vs($MY0L@S%l}P{H-EUN1{~x%%R-Pxl*eDEpxx}5 zY1oo*&IDNaqx<-u-g~>Q-`kM`mFJHh$ByRW!hHR=|0wPev)XJ?XWFYDY3ICmAYHpOyYZ zE}5{4DknhF4+nP{jf@Im$n6Op2V;}AM^U|wkt>G(rjg)6IC^w+l&6lY~rgVAmK z8g;^RU35!UdMD>7^desx!#-x{ouvM~&sqd?zUL8yauP+2g-r1A@gb+H1E(MM#~=13 z|B#peL(fUp;U4cBjvssbD!%N!=v4kIB6bU!KOZq-2ej!wiIl4}ytj`0)M{tGHfHeL zC62Q;N~?N7fXHtVKrvV?oY=!v>lCrPM@&pn;+t!kbJg$_BDVWM67bR0fiE+sAk!`F zS%Yq0V>)`b9>v}t){H)~TIm6w25<+{p-HXJREl6y8bi_1{%?lEB1Lr$g@?6|eVAv> zN_|GI^-DG60B*aJchtI^UfG?D(yUrl~jd-72jI+P~bkM+k>?l%Qta zc6qjaY&^b2j%Vj$T_xE4rpy2*l4glsxl`;^QF`r@8m9Xl^qEnk8+PyUJ-Kc!KnV~) zd0}u4GzI-pInxN*7}d#TxcIt_c@g?_(S z`Q5-juOSsaR!$PTl_bvIfRb#tckNdjuJ8sY8uMGP@6{DB8E9#H&EW0VjP48wG zK30u#v!k+E(9{FWTz_Z#tl{u#v<27^xO}DZ@u1<&5x{2&CQR@P8Tk^2uYM|7+Oxgk z)Nlf4TD+iLd`f09OLE|HxhcI9s_AF4bH-$hWenLX_F4dos5JhLF7N z`Ua!W4n8)+vIQ!B@^gb?+X|1INwgfaOS+b(!}W+4!>*i5gID(|vvRr(dHz{#0ox;S zC|-@$sw6_3R>~%l|4v{-;#!pYjv@r&$SxeVsonM>DrDx8z;) z{|CLer1U35*K(E!y?42 zpd40(9TL`@rp_rT=EJB&Yz$7_Q8b@xg6*8ec>Epdkrf%N2_;9BP0c4^Y~;PrVP!&{ z(PkU2Rm@iL;%A-GIMRaW@UOb3Y=kz|QT{Urt!*l_Yek+Fffl90&rDY%$#N2`r0f5X z_L5~5eTYwdP)}>y+N{UMLr0zQ5AXDto5%LuR87sfSrKif(mS=8km+uWF)&NwrsprD z`@}}6#;q9}9|*f`Ccu0^dcn1gvwuu_|6mK#gNjY0N_xODpq|n%8B4kBi@CHU=R=a| z6^79{R)q-bH(T|pDl&AztKT*G2aGMxSobF}2VmZ>e8= z#Mv9o0I>l46~)m+kOvDD4dd*qmcF_M;@me)d2kz z>dgD$I^;W_0%Z-wh4dVcXWBA!bBdiXORgXO=0UcZAqLALjt~{Dtu#ZgVJp6JjP@rj zq_-F&q$}KXI0YXgGLE* z_vC-^^_5X^v~8N*4UJn8BsdAdo#0N05rQN@Tm4TRtl+#v*~fyNygg1fuBHtx2( z-|Xy}Z)bOY)v0r;em+(Aed$bwZ~Si^pYc~>E;HJ$$1xW&Eq8qv#Wr4Z-dFe3vjL|h z!6q^kRvEOwH|~%09j>LGQ6u^_k+Vg7C-sz!URE*IwOgB~dP`<8Zut&vC%`Hb`PIeA zUA}_>m!bxilaPD-q{vKRY2fU5@a>tL^Y@<+=QR>YAr z=al2)ab3qe(bo$PL^0~p*pIo}pz2sRBX+y^H_pdy8D}vwhX%!sA!+O?yF#A^^ghbT zeKU?IlM3aitZnll30jR-yVT!M?p?jn!X~cV{?tR#d_;v5+Jzm;Ew+8UBmH-j{y#;a z)SrEiU^^&jWbz?c^Dn^h@$pZ;F41onHvu1)J-oE=p2Qu0K6&XsUS~XB`zBCghy7~@ zbIFx}Bc2C7H;n>o0%dd+lgh-IcofPB{-Mw#hq6#>HPns4xJ6JS?=$}f6# z2ZTV*5oPv7IG?eT^^=6#ZY+X2wiJd5RHHiF+0c0g;(WDKuj5S$<7XG!leq#L=3u-* zUQCt>tnrrCX3zY)!zS2^M+IO!6ZG0BFk=TgwZ%bz7xrX(xub~_?$NxnjJ7W(0SDr% zwTdM1Y_4{|&*5v}-E(0Qf`l$*hXN5Rqj^aanc7L^JB=HDv`tJxJix4Qd&h$7nw5n0 z5}P4M%Y8L3yS6i&Re$f;xy+U5!B&A;Mzd9Lw*llhLX2zpjNwZ(+DrHEyn{0Dzf}gh zJTP#W6>z6TV$^?SJ;?rm=0y~$8Z~`cB(}_~G!ja@9GjwiZZN&05jf;EFH%!eV~II6 z;}96B+As>YYUmcQdiznSv+owUh3WjAz5$$eQy%}JoyXueS|PjSg=QUKs6D636yCl4 z=9fQv0AG>7p`!g!=3;?-d;qhERG9KqXf-{;y-=xKh`qC`KZ!Md&)olHo-w$^;=yd0 z&_*b3lVUSiV*_jcxq}N1oD$zq5H}zEVB8g=l?FO-hMyFdO|QJR_8N2E;Xd|uP~Ej> z%MJqXFURjm#Wy{7dQUm}nH|1>%ZE&POS&vN*@S~SMHH@_{!6bO@^5nF0|S#abRj zofIUx83Ga)p83moBMa0&td{JbmyoCN)At`NpG&X>GyVHO_+Pcufm%S)cOl^&jy{Bm zB3{knabDvVzjkh>nlE@QYRbq$|Kn8=8t{*ALL#0jngfI!oU%{@gpy?AyDIZYpA$Ea zhYE2Ut;~J!@)jU-y4A`ai$$@{V{ly&LeFj_Bp;@!zsDSJ^ZPqEUmy5oUapm*I=M7Ef)Kd_(?Cs>#qmFxeIhJ*5UIM<_3)?wOy2S&~+}K+_^!Ey0<(+A5#V4y} zw6!s4@5ba>)mwM003rG)*t@}z>wxj{-Z-K%n5q$G%2r&QGHWK=%Q?_%z=&w3Q-X@Y z)@$n=Bhs%wAe!$vD8$V>KCFf@Qymq!z+Oe-43B|`Lr*{9jjWed%}lknIR$}>S+%7= z>KLlqbe#02TNwo;KV!ZN&m3~G^e{HPuwsT`7 z(rB$#+vevFW^x+E`sC-w>9!FXmsW9?KiDO`FhKBMhZNMd7WfP=BB4trgQIcCKbr7+h0w zpZw0cjv(9?D#IT@*Cg_W6CIjw?^X(CwwEpaKvzR}53y>PIWEf1_{zFCFGMoUqH-^|ik){a zWWoxqsh26xvQOX`A^;=hcN>trWO+E3*2bmb4q+VDOD4gz-uqW}77iRs)6;Oml2Q$} z1?-;ox)3!A{nvX`S>MFq-+nj#3-kLwQ2T$l5&rkBYZO+jDk?iY@z}j04QS~$uS)cC z-obj~Ho@mQ;j(N}Rrz0V$Mhd4Ri$w7^K3%75x&UdG79D1?ttTcSRAy)f?VV0nsE^d zmyj^7CZL8=2n)2U*)iK6NXx8ELKz0TYQS_e)BM53oNQlSNMqk_jQ#MKRtAcBqZ%sD`a-w!pPi)ashl@X4SP(V%r9^WlZbviQM*H zc~MMwLfRV+d`cr=A{fw;3 z%&NXDxJ{B7CSzx*7JuVG5!A*bO1L66sMe zuc$&zU(?(01RzlMe(e4uT4M-$T4#tz*L{2uh801(Qxw0SEk4!SjobQE*6@y~+*2NW z6yMARhphU@ z6M5@JED9kZy86r%CBlY(2&|U|tR!Q4zWA{$DIB?QFWF30X`*UJ7o?GzRJFSrUFBPA z0?#^l9$K>y`+*gIuWYpMdFXdI*B|s-I+)><;VbpO9X2ChYCm^IOx0J>D?|t0BR+1E zD4?izqIj#K4_yP%0GvsJc!nKl!)l)UiSL3zu^JLzR)0f`4+7*{Oe4jwv%8u_Dx60k zHSp?y^jxfRKCmZn2~}=gF7|WPBxUabyTaF!Z@w+e8kz4V^H899^W+W6WNfiUh0q)t zE9*jC#rEh#!SZz)oAZ7_ixd;ja*OG`7g*jhb9IjV%))oIW83e`k?|I=!&<5> ziMbWH$8!>C20ahzE(=MmTKV0~KEx#jVe6H}}k(ME1 zj^p7(rnqkt6xSk0{Vd$IvQiS6K{V#V3de@`Wiv~N`wI7d1L#J37+pkGl3I0 z80a9kBD+#UCyrdhoVX=sfG?dGTV~ryEA_G}u$ud_Sps{lwL;pn#B1a<_e|OQcAYH@ zo#wOm8ov_b1Ijl$n43A8co;UEwcI`G<;W{t+hX*U_Z-SaXS@<@e$PEsx@)Ms`8+{~@vNUbF9oHx@ z{a1NoOo5Mn^}B)Eq)3$j^O^LU_O9aA*C}MkqG9p!?sS{UMfqSR5=!Uoth z8UDHFkRRn8uu=_Lwi2p43(#e2A94D#CU)uAlK5spBN{??yXx`p5cq$^4xUIQeLb!P zoqx_si~F33_^sOQzY;-x+ zK+o6^&iED`b$;jiacWc`Q7*6l4OmYd8;}jt+nmZsdD!kyc6vajdAd z=9Jjq_CPts9Ng_wR|O<GAq(cScPn(ToGn;=x$gDO>oq1sc!Rl`LGNqz^Y1P0ot&dnN6~#|E;=|OHRExd z;N3uXANd!V{0GPWWs{u;`zIqr!j6U=#3UpKJCUL$;t$7>w&d7R$`z$Y*+t23f@4#K zNA%I7LC&#h(aHw`5|$l##+zI=Wk1xT+QxhBMtFvI+B{bsqzY zWD389Ix3~A?EcxW?Aq@L;MgiBLpX$?0VJR&K?%48@|(Nagpd=Etv$nm?etbWb^RVS z@U_KE*ZZ)PI7T*`q$l4$Q>B=EqqW)oB+}8dy&ZCgw4`D&mXxC}n*ST9&v1TN{1-jw z9%>z#vyZrq$F04`sUOB;G@D1Kq$h(slHRx)J(!-D0kJMII%U&wKdMH*&AAhMS)w9H zPcXij9`MOevgNPUFE?5lZ>@Fosjr7tiIHT-_uz_wj^!Gh693m_1OI$soq`{me!4t` zoiC`nx|v#9-+G~W7!m{QBB#t^VaKsxIB{G)fg7#vIm$hi#*4m1xayCx@$(#mO2ihz zF!gWBnSQ?)-4A~LhyTkn@?UP3UnxuAd}U?Ly)BY(&2shGyX&61_$LtZ*_HRYi6r5Z z-=mZebiyIfGRe(RfDY;A*~dqTXRot-(dtb=gA z&U0%%25fD$vrz}uZF`;w2q+nV{qA`sos`BXSWWT5PNT^(lmP<82Q8t@HG9q^*HXnz zsGFpz#+*_9qWGyYlBFHfxAtoIkJ-89Ks+$4JZKRF$3l$+LR%{eGK0I*bptV&(#B1E zFtLF19XyqDOo2+Z(QVshqQ0=v;YTx=fDC(fAjnuhD7AEikUy5!G=nS4kwa(eM;U$K zZtJL^Oa>1gvsCbQXSJIhQB4DHidem2Ust3Wka1$R1n6u&Ni|8TQ`bUFs1&M^M3HpJN)bcM)eyPUlJh)St102OQ6KCVTBQER`{>hNlZV zpn(Mz6H*LMdh69?XXntoCdIzL1UVWt3xu`#36GW610VV;og_xsz(NsS9u1VKO!*35KU!#f`|90JjI=Gk(T-*(9e8_dv(2esx&f-N z`RV7?X430Rikky1BG^{)vFbpj~Bs?(~mWa2jAVi(Fcf0^8F z;d7rSUd7BceyjN?s*B_jSiAZiQ{&}oth!Bv! zG$Mg|#5Uw?{mc>aEC3#UA$$0RBwe4GOTNvMg#8a-fWMLi&eMS@m3Yzt={Vf}W0Pzx zd`eGvyaA3=75#&uiE(4S>0hs>oc!ye`5J}xdm~o+ep+%8?E`&@u$!&8m+1_dUn)og zirq2S|15M$kEliP`;*D=MT|=-nJdM#2$wZFRH;sVP+r%Xc=}s%25x-0YEe%J8ww3M zu8}n6c(fg3e59AApv@Y$8clv(vsLi~8_ew~LX+Ba%HXPmfBKWgI{VDR=J%=b-+#v& zpdZ+g2@MhgyTl^Tj^g@E12YxkfwyS3#2v{4Ko9IOqaq6RN=+{LMqSO9ikB26P>nr} zY6tI$dT5xX(X1q&QiRZex$5PnY2T8Sjp0TdO+R5sf(R&sbUAb%8#=67BEb~<({(5mAzyi z&c=r74feck*N`(vBbzs1i6~vBJD3!&`Xm%350_uw(tY7&%)Y6rtMF>kG5rc|({!FY zv|wJ<>&@CdC&8!2I3}OqI0{JcI>fse`@ZKOfsOhd)Z$l-r|Ij|pE7!v$|mMD&n!dK z7th0|`lZ2*-eF*^#9oqS+Z9?O)vB#_qug$seQmg+NQ_ zJW%zOr!5BMxj2NJ=&GBA(+$oM%G{l;DafJUv;oN%F&hGXbi2VjYtMQ{BaEh*# zrCQWV;zA}-ER^m1ZnKdn)N4W{h9<_q!zlI?1WUxk;Elm zIILIe>%l>p;L(6}f_DJFEHu?c%#(ULwoK!LJHZrnZTQL8iIWK?)*n+80{H8o#4$?e zZxM*XhM36)p{?Kx3ylmZWxX1k-LDZq2}i%19k=(!*NjJ4#*S#%YoUU5atrQq@ahXL-WUZL%d?91N#2`tlile6~_ z?B#G-st=4Gi-^(Ifw4Q9@St;n>|O9iLA4g{IQoG&Vm*Fs_r;n}4Gs*Qu~@5d+v-b( z01&maN?^GFyI*C)Tn40K7QtW>b7(RK%uJ4;0@>FNQW+E%b)b|J493Yo^cKHTrrXuV z4PxtK)dzZW3s1-Msoq8y)@keN`Ok}5_&_xl(IoXIde}(yP!q<_`ADVs!_^rM4ANigwWN3!;oPF%-~J>^S#qe+~R ztd}l_`}hNzaP^UWb(G>6ZAT+ikB(v%b$Mzt1T_ zwHTk^(}P#G%m_u#R`TmxaAWrdEWHq$3gf89{F$%@RmrIY^)gLjA`l6|ADHVuNu2;1 zCg}%Xr6_AUV6|ZhU@2fscF#VG(Nr7i&BC5)d8$cXJ8^J#4xVl~RF=I`t zgyI>n>S-Xp)d^D#bCJ5&w`Rx_n-$={W@{7xY-T==|9)JhYg}fAd z$fT>H>tSDx;)oGHDV&dJQLOoj=9-7?AlCg z*LWc-)&V7WGal03gN>MY+fzPvgQ)!X$=xT@sK45?NcPGC{(;o7D_pcYi3$n_`S_Nw zueI@4F!1wMy3*NCV!fz6qs}GeJyly$D^7u|+BwN<=Yf|Cd}ev=dLl9Oc?1SwbX6r5 zzK#RI{<4Lqd|%E)Y6iC*;%~!pvwbcEBaKyWdUMCH zIn5jOB(IrM9kwQmT1GCc^0x;Nug59ZmWXRLmq!oT%b)vp%Cvo6gMC0NUsSm>K4d4o z$7)f&eZt}%;~Ja!1=kyxeC*liNn`fwV;GAZCqaM#-W)#Ufy{gi$&(ilFa9xPpv0rY zbiA{u6>pIO3!q))W>4icc&dIwi>D52$kj&q8GOzJFSdQ{~iC4 z1&fIn!4Z*D`?u=~dwa%2ex@ zmIvd~tRF3a>LY+wi4MO3fC!qzYBTK470#i%&(SH#C8tr80#Q$`P}A?>n^K{y&n;t@ zIUlQjsF<=^sf*M|a&|2HY(?Op!fN;epn&>?okF|1j#dT&eC{&aKC^(}c6I17_&G=^ z7zVZ{Vp+~DZng_?29f{+=_KrkNxIlHx$yysSQUlcNnX9w2FlV(+OrH8j4bj%@e6Db z#5>g9TWByY>(otX=*3yZkXpK!R(7eA{xa73mkd3fqcJrCA=~uss4E()mj$dmcKmS5 zBCRjh=XqbD&Sgw#8Gl8cb7QN05zGcTUS=>iaGb()ML>*Gb2T{ho!jgZ`Y2Jrj$RyLQub^$iv zG(M%rd@{K(WQ}(pvpmPj|AMkGHt~frLX@*$1Uo)=e8)BQB$k3=hxSyFIMFc6sxasy zS728$8ZWm^4A=4TY9g%BO9x(`Mo2su^MS!iaqAPwXx{V|4YoImf5Nn2}L~t7LEfaVQ`EtfZD-O9;*(OFR%*7SpEg-M&f) z)PeADwm8Z%JswnzwF;dVk&0yr4a{XyKlr*tll{33NgyXqy}C2;I24&E{>xTbciCIs zQded+rmXoOuRJa8Omb(xl)5FU)H?$AL+#U>RDT(lGurtyTk~ku&GKY#+Gc) zs*D7R1jF7?iRLF^!uE6SWhsT<_O2b&R}B`55$ARc^Pt!AY(!S|B1S2-zp36FzfN&# zxbvRln}U?>r&cp*KIafUuAQ-yv^h@^XjCn<$`B@59RaE5Mi%R03R!3r*>{B9Y9W5i zb6uixLmS;_E(Jc#2`*PxN}z4LfMLSP`b1$D?TUnZS5?%H)9J1^W*WJgk`t6P(pb7I zmy_i|2LfO3lsrgDv4{SXBVq07UE^s23>EC{Me|)^~c%|=4lq~Bd*(Qh3|SsXn;;f z`RDKlB7mIU0z=Sxn7s|rtyqzonCx)QUlB$H>x`I>p7BOy8d)fHA1dto=Uy2o=zC(v zF(dOls+;N#6tpN3o;hq!NbRk%PX6fsWo#b0mTVENRwer*Q-tLEt*epk0xN&TLYmc_ z(5={5-4@}V!r#ZayYNk_CDS8?;Rv{MZ3vbji!{? z)ly5lD(6p^>esPX^z|hqB`C;^8!ygy1~e##&HPXuB>z)-Qw5K1{>P|f*210DWN{si z*_!}|yN8vB*283xNrXdtsLzwT_Q_`TfXf1JY1I!^CO(4|?<{`(t(l@$(!x6RyOE*0 zkZSAUjQ4DWB}n}LP4N6{5?sa#ate0qI9n!s61}yW9r9XqNTD|4yAtT1Kb?>FKp)sp z%st^`GDtb3iuvVl)nY#k>#S#{Om5^yUKv=gJ0cn%)Rhv{b)&-%Xu^qg1Vl-H4wKr#;ZB+wA{ zCl$+seh z%j^X65+{KwMR{0I`q5QKBHX`!)B1=aDRySNC#U9mk^v)-7s5^?1yplrH-FY3F`d&} z-kL6+(u8B8I$puNcOA7~{T@Y{*bDP~UjY#22kZXn9ZoD5^xdV^0&{o`Ej%8T0UZn3 z>*OXc2$tti_ak2}F=;ZA40|6RJwKqB0iAAbb5D*{9-kGslx0F-Mw=v|DD&=#7rpwf zVa}u9dUA$4vxl0Ck-IcBI6iRo7l`ZLFg{b+!z$kiUWbrKI@U;sfY)3pWq9+Tt6h=k zk1~*THcfAmGKnD)yJv%|sFAl}0hyXo9?*}My+q^iYD(&i=U{m6eZ!) zS5hrf$!9;RuNm%_iEcJjGHtFrzf(^nB_iMX1|uX78W>Fu3zFqyFl${d(eFh_eY7}M z>Tw+UI4s$%?`3w!aE_Ccrji{nVH?b4^w_NK?R67XbeB_9TNl-H?Vj1}3r=w#lcVmY z8XBKp-Hm@M0W!IdJ(ax7X4NkK8OLj3nQaczM>viAJyGdu^P|wJua6jSuq|KB*sE7@ zXtYNDy>}*&#}X}}V|BX5;jMl(Wmg?t&2G0iq$ze7Kd?u>2Q@-&_^sW=c;9IKzRe~c z%kKI?GA#P>vRB%R|3F^kX~FrIg6!YWfPWnWgx5D3^~*()BpY>U)Moy;twrj)RgxA{ zpCfc1U7t%AAD2UxP~Lx}0+E#|FYGlE1~wB7q%X+dvgr^E7^y{sfz-JVit-Llvw(3u`_#VSo$A zlwdv|ZnW~L97v|shGi3x$0X%A0phVGkTtaI;^Z(f&A5})WS5p>$ozf~Wo2eAFF~RT{6VJ-b8}#3UA^c}V1v>-LO6+$b_bK+i_} zxb|NBam%OrQZDV}qDQ!LUb)CiOn!VSyXv>;!LqLFSc6YCl4@CV_{%A)YB08fnXn-< zgasL*A)yKJClepHb32zhZI%()WGC)&lQa~`GL#c z>2UOQqDM@kQL>J^T?_78w!5z-C<}p~`b&Rl9Iuk4-S)i%q#8>GvKl-U&U6{vl*k;X zRL7LZ-Z4yIH16)6x(Os@iXD0#OD6u|XOV}xe%>I3nL8;)H+X0uGahx?Mh{#2mqq}YgzEa#c*v-s0!8)dbiTNi1(UYOBe-aPd>>@NG&a z-Y?(&%0T-D%|~dlWNuxzVH?0mjTTta8K+W{G@oGrWWiZRCm&b_2j+f7iU!`UrfXzH z*!^*P7TS4gVXTp&q57RU`gMG^YNhe}`yi&IR;N?I-a;d5c}VSEz^)N|fB&E|2tPEg zcoqDjMfuvWHO?G`6G}>T3IV)el+abw!&pkl(#kXqe4#e)Z)^{i;LHRGOdV9h*j=*5 zX=O@&3(>Ra0p3;2Ap9Is5~~F@P`}$KCg`8zZ9CAbl<(AmYu;I*9GGvxM=g2E=Glhh zMC`Qk_RHkOy6W6qM4NCq`&TYpP}dcswGH&)&QQ{)D!hnhjO6W&>h!EleUe>l1*u{B z4|7JQlQy8nouv!#>dT>vU?$IL;`jth+A3qO9cj(wUm8j7%Gyb_L9_;v1a#=!<;IE> zniqB86za@d4=Bf0K$Fnpa`dbsAo__*m6}a?U2XLf3=CnLwRx)oAAFG=t+65Rb>dU? zxFP#T)o)rM7NXewCz1_Zz3-EIAzIv}mmG_l)qv&!M!{XFfM znoAyAViGUYjFrWtE)tAo*P4pOZ`~onViNPA`fysCdxIPcJiX>8Ry?3CF zqCfc5uIP+yuA(KYh~miiho+u`);t_|4B1#r!S3l&^->U}nu@KjI*@kS`!Gs1U}dD_ z^Vhd2O}QiyspK0g|FU!H_exs2*PlDTF0wy80*j1ul!qCyTc=VPb)Vk6@Z>g`j{#m9 z>mXW1WKN^|yh`{s#iznae%~G%KI^lp{PqF6_Gdx9MfkOdn;S_t&E66~S}M?OMh@mv^B|d0#S~1zR8H#m^(Ql4Y4Eytvmn&;rp>DNREX6Ww)l?? zKu-l4xTmHal2@o2?xm)s$D0z*OHT9s)-Z>0`Y9lCd^Cqim$}Tm2%*91z9fEMGBGuk z=9~SUE)&S*FjaG}=k<{|0xA(j4uQAdbhK5drr85(1sio0Ln}n)(A5}`#Zug&p?Ths zr;Ob=Jo~^Acs5ZY+bUYU0<*5yTn%4|u+ae1WiQIIA7aonijEzb%Ql#Xh_1FdOn0Ai zZ;H@rtFKuwS0~w?n|T#)0S?vD>KOxWMpnotewgZlYfhMDoWww0Tq> zhB}nyIY%5xP4{tcy70^Zld++y&bqiWg0~FkfWY51%wq%?1r#=}LH4^Zb-eb)v46|l zX9P7SewqHOdKG~P(w0Jg`Bc3y2dB@x4wm=q=gw)IDATlnS*?P|EtW8ApH~v>JNf#) zyeRgXD`QAx*V5p=k0LEe zr*hR1Oj0R9yZJZjqp5Z82UxTti8Z-yE7F3zve}n!$Mok1T%b~c?JVj~1HhfE>{*%2 zVx_FwY@ScU^|@d!K1@R4Fq7912cIXPu02z+aI<$^^m;!qNk%A}LbH#F*cYDe*TLJE z2r(e;-~JnP>ANX%%GmKPWllQS!k}gAyYFUcCR0E@U&fyGHyE=Ld!Xk7a#MjV=8nBe z41K%sHkDW!2Uv2`C~J8FZj|cZ7K#;in%@Z2AiMvg%~t;s>!y%G`}fdqk&eZvKXpz7olA$@ilJh_<5jNA2K%`GSzJ0lcFBP-Kc|(yY7WGcfy9RTBT3 zERq@v++N*YtM7jF6h3vk+=bA{BqDfX-an(!^3gIMMKLc+D8MC%4PS&70d4JJuEE2w zJEaNcK!_!B+OAJ-WwNgRhs8kI-*N2*%iWvKM(@16Fa4P6xlHf$a%Yb&6< zTj7vRB-(H(IFVBSSqh7RAdYGu2Ri{rjbW1&g4K?Se4T`qpkEecop~aQjarKy&0^4* z&tm-5?H2$>HVrQ4Am}%C?4J`uJ)w5xGXVCyP}G!Onl9#DW~9;dOzt)({Y5#*jz%J$ zXP-OlXEE^uwtX0rNzrvB{Vh4)qK#$-j%foamIEVVW)`GkJQB7jmNj!6H$hyU1uAQq z5AH8sE^!gJ{B1pAgN`O%vf$WDPS@DH#m4@3r6 zKySFKs%g|^-JB7Zq)tgE=^6#(2a0Co+h=QJ2ha{o7fiHJ*pIWt`J;G*G-X}EvPnGYFJpfnoS>Bh=-H!JPY;zXga>;lGH`l z+2_Bj^1ZH*cIYrG9p>4DCr;?|Zz|w_+Y*kTg#XYYpRe|m$bAo;-n$Vrc;8R?EOYPHtaE+f7Y zSeZWySn$`%Fs#qZ64zTrArOCS6dt&NpysQ{6ECV}7gvlS;TEnlxE5Z7N3E8%{>}^- z(0yOZO6`!7itFp`*G3C~Ni3b6G-@PXUqgL)=+l#SxHn^XYQrZuiQ(m9lm4E=nKc^k z6>O`+`-Z~+obhQO7d6&j74{@-E~7Jqw`GJS@h~OWGHxw4KpW*^l45;SVGw)=#78v( zM;X0h7MNR{ZJi}n83(jlTcup$!CgX5c4&-L5;mcOiU5mMOoM{Cjx5LF)^~&nV~i3k z(g0Gmk}q0%>0-lNDMQ2JltvW8MGa$cvdK;&=*j+BYIqp{`P`v8G^apQWsH+!Xbu0C zVTZ=@wd-?4^{zvO;DJ+qmV@hcou^3mdu60Kag!l$(1JB!c+p_jFhi4eEqrb;UCiL| zX6bQ3PFuj@rQsYNG7fu#iPbFWlf)gN-Jhx>no8wxr3UHU^ypa*g4~5h`cIV1W`jcT zcYQoi-oLd8!Q|@Mcg9V=!X};mb=iWnGUDjfu>?@oEkJH%3$~-p3Rxr6V*2&k5(_~o zDfVB5QdlIzaAW|+4l6be4?~k#W#>vsC%0<9hX+@e9p92oVvxj`{(__zy>eZb=0Nk0sv<{kFI5qA@73C3)c!S9iM z5HeK_W7Kq9?X1F=_kl0T%okYzwRLG|_P}dt01PrKl+50{qnk(40|d+*JpUu;;=ixR zPs2|uBTX({HPKk06fixj{Y>wh1k0<}NB8iskCvaF49bd#Yv{7S0MNxH@LM?{xLKBs zZRV`(4}`AT(izL8U-i?uZ?qX85rtcK6CNo1ZS`#T_XE7bI_}yH9d_ket*r<#6V2S= zL2%%{u{zGwhQI;(t55ZQ*og+>kfx_3LLi_Ml31W>mfI`!!1T6NSJI$vsN<5SYUU+E zJ-PJVt5K2u!{bcqe#~y=XgXEuqD3y^dOA&xJzpQaLd!Jc))R?U&2NzIx9#{y^%qlZ zNqWgwZTlQ+5$el;VHVmxDz9e}tZYh@3Oqs2W{P=%37`N~0t4yEPT2z1DO4Ev7g4AH zK47pvmUW6zEx~=R)&R*5s5*OsM{~Dl!-qjvArGShX!Yka>YM`bCbcSdHl&g!zCl(8|sk&Bg}An69;3gh#9W0-U;@1#P> z27A2)Fn$u?c`Ky@HbT9svD5b@V)>imejvX(bQSxwGgWvgtDmN6p6KRaHKRM(S&f`=R-4? zSCZ|L`hh;!gtq)XceW;2oG608A{(EU3Ww4R4O;p>1wH8jxW9Dr7qbD}0TPaA7y2q_ z(S_jfy4IX~_&TYCn^$x`W#gUWX7dGCt5fj;WYzsxznk5{Q7xZkr#Zb#fAKIBFvpIl z>{*S!XIj6Q)b#3ZA|1vP+M0s)<|Jtmf7`e9(RSNMy}ZP-E;z=4G6cN}^=xF_m33IN zKY~4_F|z7Ay z{xYIjzxS9!Xq}TENs5n6D^uRJLQzZe?o0glS9_V)w86yDTM4OMevP6hZO(Y)lbtJk zdi{RnApGx*O2t4W+b9qRsyC&oV#bMFH69tBolWzRA8js|!9K`y^KF3WrBdKJ9L0f>j&(9HPS3vIXmc3SlV~Lc8abyZjZVRg%9r~S!RFrX>0{s^C>i`z2n86 z?%mPqlvaH;@0@TqfC6n=`ii&;92ZPD)riU7rLOk~ zEE-n#bcH*VDMwFTdlz5h3)hJ?HigJRhlwra!j`){jxTaJ_gfh%O()v7*Iu|G?aK^! zdw`@_t-6kL(lwM;a&eg!lPRT!WTNef%jOm}#NzXea4de2Sd8DE?Iv5Y%X^es<7sEo z89xoWgi@SNyEK=i<|*F3;+Fh*C?AK(e|whf3GuBkYW_R3o535Pck$btp)+?V+~p@; zZqJ(bW<$&1CHyr%PxUpGHIJ7=vhBgm-R7`jLB2u?jSV7~prl|Lt-GCnV^5J{Dr{PKdGW;lA1CktO^Zbd_E%9gO?|GWh_c z_->!RX{Xa;7rzC%?+xg?D3gEuu>r`UeMcP`N6iJ!Ms4dMEl{X-Se{3{OwcW!WO6C8 z-zu!^anVSh0>UWzK0Jcz6gFO`L;yTAujF%15wh=APlhKvT4zYR20K9+G^o3M_GLP@ zR{a4FJ(;13@dW8mLGF$=?6?=z2=M)D_R`maEn`DK}t6&UBR(+!hhymmNkb-I!8z9BjGper>F{I^!rtr z#$Td7o-@O^Xf!xKa+Y;8mp0#VUx#wc+|->?<<{2KwAg;KU_Ux5KTW)A1#y&L2ZIY_ zl811FVnz{XGD zh7SA6zVhcovB6`1bYb%}^xJZA%WmUQ5R_dv-tNFD<*z=!b7JP0*h(J9qUYd3kXGx1 zn4ANUZ+2{cukrF|Q|LPi>f&_~lql3*y`fL7()}9`A5ny1k4e}H+mv}|JjwZvRV;o! zU=~Y1>nw()KU`{wLHW;MLUttPymAxkHTu;6Z>S>uOs7fDl7rk%@IU1FBR8@!oVCZ1)hLEE})=;o?Y5kXL&Gj$}5v^dPkoqt5Ytsw8=M30LH;G_FRGOv7(yQioZ*nMy5UC8~p&f|IDtThku(|aa5zA(*1 zCd6-34mxaGRh0hwarp-Z@;GManu(fwc9OM?`4gEt>tJsaw2-=_bn%JG%Shg9912_ajDuNY>_HYKJir8+gCC{xdn?G=Ga*breu`nmfMvnF zjmtwc{FR30e6%F9Z@<;62qlN*M?pMFby>w8&4;dh9Z-vU2K*x$96+4yp@2xEZ)Ra{rzO#Z{u(yH;@l(O5P(hV8X&L0E=Tcg2 z5efTj>%r}Q;7`By5VztRR8_aDogD+fwyEd%j%}C2|b&kPg~ZKQ*yeHqp78~@%?cr4(?N#+IFU^{81mb)g!(QOee^?M2x~5cf zarsx^^1AuuZ8*m~1=p+j=H}_e|3%naM@8AV-NG|NgAyVj2m?sBN)8<&A}!q@AYDTa zIVgw<0)ljRcXvs{P|}@44&8O;dB5|nb-s0e&w2lvweGd%{_DE;Rr}i8R!yRbk>+^# zhj7m`O;_Hbz(i+44_dFw8+;f{O3n9_OmDAKPyO2bKV;@VxY2zz@xp~Id z7~(2tvS|Pr8$G!gdN$fhdr_k&zRr;he-dg@b@{z|7QB#LKb3(k9jC&c(T$w znoI)pQCa!(CRRE?y`=4_DzlX^P~cO5iAgikPFt~ z51|kjbvU-9qOWtrTjizSY0Pd2Adro^eGh~-c8X5tIn{UK6XXDCDzI{WOZN>Z3B0o3 zL+LdvR3=Y307+>9K4gR%0F1*}4B{sr^avM$$|FzK^ywK-0kKx~2IZoMwQ{{%V0tA| z^9aD#M;e+DBXb$0(%i4BnMU5Y5fJtb4SEIP8RZ_kE1zagobtV`jwP?KNztcdc$tYKwooF=Zx^ty$hsIf zB1ACY%r2K`Y^UxW$Kr>esoFn!ecJ(_bj5LSaI{2Ptu>QYxg5yj>gIl#Sq+CsdR0Vd zFgE9pNIm_?;>LZhD)ZESs`L4#tl8nw(QioyFRzS5yPwD6WRmiH(FdpUc=^|Hf~n7x zrq?KfxKw_*XxDc%j|3J>Sxz^qd`UVMW!c}3uI-UcW%EznL#5(K9D0Tyl$YfxR_~5) zS63=mv%hJYFSqvhtpfX^BEQlaKJ z_VpON`aJcRlgwe6a%IaN42~pd?()E{AE7{*PQCHX=2iCH z^=!#HZ7m3)tcDuF=y%tru{1ztSU<<1&OcH>Omp~&^OQmg&(@x4mGsc7 z>O!C!=1RyXd4jQGq?U=tH|(JqQhfw?A665tPfJwFN184d_#IGms05Ll%~dCUssVvUd?^z^I_Swb{2 z^OCzlmJ8vf(t@@vpM(eo5(~A8{}#RVL@~gt&b9PgGQ|ar4l2+>XlV*)<)PxcTQwQ# z1WBWbKl=6~FB)y{bH+W6v2IF^PQ{-JVdo#L#U0cXLIZCYeQT2!dupnrrwA_ly-G5! zrt0&iy1bJU2gYrkYpzTBNNpq4dyVg&9;3nha`-d#pbtf66kF#IexDcnjnRyiNEW(30y4&CpM8 zW7BMtq9ax&R)E=@8C_X8-tD&Pf~Olb^|A6+W~m>;3jl_6$<(cy+>^+VR8Wxs-ax&h zZ&C}sdJ)G_ewYSntN1@?HWG}afHZio zHYB|9h)D*cNFjKS2ZiZybjA#GjCi;W0~`-TmNml++Mk~}eva~ZL%4*t89*j-y$pL& z@^^N&pt#r(?TU-FZUySj?W9L+-~)bBcdyepj34M*c^%Cvb&#)}Vu1zm#-6?i+;gl5e?VXfJ|xR6fv*R9wh1>mbG3KD965uf3~;5{8mJn)-=l z9pt&0w7Zri_EC9CP>>qMcg;1aegq=Ndnzws-2Q%pTeHM+=<6);wNeyMl}_R8WDvo5 zvj2@BlxZM-h@`6cq;~-UW|-2xvEDqp68%6_*j13EEfuj@2SdWl#JvPoz6MvH=%=X9 z7=CSW{G1~Hs3}iDy6&0A&1Rv8iV}Cj!2yK|p?7Rg*_UAY$rd%RF;K!7+?pV0`%e7E zvBkfMiAa9WrBz5Yct-z0o?XcZwo7O&kRL6uq~D-s7JX38{OkEsJbJmO zm_cU7y1JFIE!~znO92cU9#cbLpIo)n4!y$OnFFsQfl&_KgXe2(|GCA)#Zpd2*VSTf z>d^W0jp&0lvT`TkruDOUFET|67EzjE>1 zfo_88kQ@;h0PX=GnluFwmDaRKa&7}?-6wz>9`%rJiOzZ91+=Q2gX{f4-q}DRTj17RP}&M+Z@Z2k`c|39vV8GM{jpcRtO59r$%D_$%-1R-(C+$`D~Vs4WwpwFTNskp5oIH5Ep5<# z{Jh#$$@)+G3mh9Mqs9Gif9VyDDA(oNUW1IKrz z2Rz#XYd1!zszf2hZ%--x^fPCPnf^7fzkoh!ebiP{&IO_CW@M9RsrbXyFwUV^*9oa1 z0hV$is2}b0TF+);k1rYX#kN^lxKuti3FC+q)Jp%XPDm2q1z$YUf$3P**#q0) zD4BFaj$&U#Q8nm$hlQ;I5%*_^=T#m zZJ&5>{w4*p3Cl~f6!0sRqp2Y?yqYrTvP82;R(T=7U^#^5>5iVPV~^y_=4e2))5j^w zSn46FT{{wK5&CL8zNygf+kI!nCye@o7(Z;21S!2eZv?zPluEurTe_X(_kny0RYbFz zGZ};nul~LtZY+HD(l}|-2^IhYo->M`dYVnJOYZ*ac!S}Cl@_HgS*E~SoH1ptYr@Wk z_efze-}whR-DV3^M_yaa-J}yq|L#$hgk{Flbks}aM^3^rGKP;yS%r!ChXxW~g%z4F zta3v9CTc8BdTyErK3_m}+Z*>P4faz5WI6o4rTi_gr76{;HO#LR)?MRb*5oEXqgf6a zIPrAOOFgn9-bxwzDzH|m!OZvYa3BBh265Tqi;RxlkAAp}L7PdQ`}1miZ;{~(`P^*u zb1HwfIVej%q$`W`-)9`TO2Aizthw3&=xV~lVXrdvuIO&I^e*8J4aFO5C<|9Ebg(Oj zfci-}konNfO+1Mtkd@-wI)?hPMc+CzvEvnH6T-SgE|+q@4sR)*`DQrZ#+YG7DPIq= zuf2D}hx<>Zz!zIV<0=q$2_>O1jR>}0jMJl7U}Tyy+!>KWa~O~qdgKE1*uX@roonc< za=NYK8k-OCBr%zLafCp2Ek%m9k;Lr1OAD43h%7JSc!b zC<~X2vu*3;?~wtv>-4)2$w`tmG~V7ds3?7L9)3fG>1oxu!qoGV;!yfjDkRLmYOqr` zP>2*$BUEj!`paa9Jnm*6Q?k$vCZ`K{Qe(vObz8ur(`S5eRHy_2>u?kW%*<@y*eWSG z0s~!g%&Sr6p;f;AI#Dd=8?+%y3~Fe)U&IMd%(K0zh4c7&EGyhCQk)_2C}>IP6RVb~X;H7oqgf|TvFGn+dr7Q1>JxC<2BHd2l$Hmph19}xbRbc@ z;u3ZyM84$fc-q`ceDG!kP{%b>>*~=(=VlaSp6VgF<`Wg08@m;}1MIN}v2#(p`ue_)Rj7(n zQBD2vB5Nlli6#X?hZ0BgAp)D5zZo+4efC$xm(2P+0uOq;f}Ez1+QpZT1$~sm^$)Q< zpZ`0|W`jOze$-M^F8v2)59U3G{cdXgMc@Z)shL|wtWGvhN4h+?JBHUkG2KEV9kpOy zCxphboYAd<{KGKBv_U=L<%>Os!Yx8YDX}2^m>cb>#hXBt6d+9{VD36dfv{V^*b~@u z0DJBhom*=P@hFSQgAE4x&)1T|x#3!-aUq5L$H&a+Kg+wl!nCVf6?C??o#5WF#Df@V zyxiu7r`nz-7@MEqH8OzGWe2c{4%X`nY?{SY#>~f7FK<|gsu@_g%hPC>Z60M$U{Z;< z(I)_j$tl;^)1xmOFCZy4z|Y%{%A{fbl=(9H*qlNPZH49N#nyZiX;qTS8?SA86tW2X zdD|u`LwjF>dHCSj2x?bIK*{f8fS&Bvm|c&*VBkAE@5h%VjwP^?rPmRHSTqOjB7tJ! zRo%_rG0lFR{m?r0M}oU7l5UXfT!1^!_~-CSA%>hIs!uH6VYcse4x3rTO?=e%BPO$< zmncp`W2*w0g_($Yz%naQRio_;@2E>cpbF}5@8jk^Pdw|P7AV)i_u|`R>2p*JxsMEv z)V*}|y0Ybv+{to;fKyu3xDW@|_PEtFF9#{RL6CzLm{*h!$a|ka5*Pbjr#V_(_t212 zOHj(nIB?CU+jqfcxq(}sa!bUPs946xf+z@er|m{v=kpH3cypr;S6hw6CG8;+!AQk) zV4djG78;=>EZ&c!Es6Zie9#xY&Nbi&@0VO~39C&q5CXsug-=ElHWernqsVB8{i#TBBk0IkUj>`1GS?b}CD&BZrQYnTZAmu<{l-VZ>E|3 zYv~JC2bLGG=IZ|gx88nxys1~Acax5HF?au{u(BOkyYl=4w_iY@8f)ooWoJVr%yocu zymZh=yP=5J9T^9}gy&&8e1AU!DXMH`xu3vb7wbkb1iyci##$=`guBXLw zR@YrHh|>5vfV<>x@tb#>l*FZ~tkeCI4aLOlwF=ye`?1Egi&EpJ+i2TA(}lc3;%}+bm;H9B)G5$$p}hoP%{RFA0aIs%yJ-Przz(c0X|#BQ@8Z5l3lgZN0Y=De zlAJ_vL;|tT4@W?L)Z9DmGIF+R?h}|VnaxhTnjMyz^aw85|CD!VApzT1P*UyDik73M zMo*C~gEilPa@-<9VcxL5)f{j-%}Iv=?l(k}vl_)&WTdNvuHWtnG_|(G7~CWpBb+O# z6{L=MjcRWFaq{0<0C<00u|qw+aGfj*)6G5=H2%7uWFx855x~pTkS~cGjDxtt6;g4A za?a|GOintmY-y{DmO#@sgjv68l{%?F9erv>1yjC7zS2HK(X`Ks`D(`@NUR(4W61Io zWEH}B_S}Kz#!s}yJm}>0&%~a%`yBwp84K;YO1ow=1^bZ4+%|(4bO!8H;|8dUo8=@po~ z_bz(BA&d1nx4Gu*96Vj-j1~7bPTwGxH%NN3!Mo;z#S*8a-JayIOAa)&<26AYdsSKR zsD)*_UT|)ai=;kcj_UAY^UOA;)o3)U8$m`tTh>m>tr`lawKG?3J9@@PLtg1*R`g;Mmg(dFe-Df7Y|6OzmHYd``%h9Pip z3Q;`sEZD7Bt8!t^qgcdV&3|%X^hA1;o>`+y>iaD5)3chtg5Aq6^)wRCc8V_~wm*!? z9q=T=lsu{ADj#&Jg`W3}%jMZX60@86jPw_(#AgYePS`|k*$I9}GtVM!y~IFcZQG_E zTWQ*=H@9cc*ZIM^j`JC`aP9NqJg!aMn;e&UzOsr>z6hcPgO^N?l%sk{0ZfAta!X9B|(Yf4VTKH5J z2*!dlzYJD}ZMyL2Uolu5-Fu!Lbuf50pFH2c@jF*h7V}kHtmhPHT05^T^|_%sdyBlx zlvSg2twh8PJ4I3N-c2nnyF|?ky})U0QPH@q>@D0JWnj-^cVxVxz7aoAZJm_+*O_p* z7Eo68k;j3Y2+l$E8KC7rGe6v^mGfKDLZ(#GcoPPrMF9%&Oi!y{cm3{f; z<2=%)z#ZYNxT`_G*C!Y={W;ECsCi`ym1{fP=M`G?=d(rmzH-*11$Im!-Yn~`N{~3FwnBJ~5XeEh*(vy*kU%B^@xfW0@j6!#2XWy`!ez&vB+4fj^A5!onN>YFVR*cTw$c)zs6g}-(*}# zfV?S>))iz7MvkIdiv5mXtRx6JO-0_sH+6-0Uv00&m8Ql675Kw?i+2qt(#aI{)50L^*~< zTNJa>e+yhZuJT<@yE)wBpgPw)vsUsV_@OWIMaQ4aAe!of zkN)-|DRV?4!E(D{9{+K{jDC2?_mp^#Eb|BSnhZ_2xJLGR*STKR0NK?3i=5#ph&2xz z(0q7=-~h62#3bW80o^UvC}CvIyx#w(sfN{lu!$hbn{^hkS zER79&8U%p8&G;)7LU2vGOdF?IUKLs09$QDj%1M;qR`O zOAOOIQfmItuKy;>O8yW_-7lX${CRO}x5TVoVxfIN*mX(>>wf-^gNhkt5hr z)CMU>jzkx#C~tB{G+#L_?F1G~Dgk~P1se?2^#xo*j`Tc%rg|gKyQs#xfja zK6J6o5M!yhighu?)~CjJv{ z=^OxGs0a6Bf**bE{5Z$>mj#NrGf7mr#elNA>FnJaoT6ra||CRjnOR2YYTwqj5m*y17`xMH|({f$oC|ZQRtEQ)d)1<)o=9$ZM!#-8p)$ zPOo@ocDA7yG-Y&kE+`gU&=!xOea)qveVu|Jx6U;GVolqo<54!Z&j)BA8^{K&x=9|%0IVJe0;<{Tw24Dyc{pJ zjs1-h$9z=2-iK6j7!}AyOU>_GLa{eL36n6^U#E>e(M|Ar<{IRrm6)J^oz+jl&TK!j zIM?rtvslBV^)KX?{|#7{?}6<`<@v0ZGU%4Y(k!JZRw4GFGni;twKTKvpMWxDUq-0c z3kR5k;waN%lYXfRr%|rB1h-Y4k7)H`i6~PPy^UMsR#lM-YcJWuHt2lEL6`GdJJf2@ z`|=ZABHeu6cqhqs?~8li-92%}H;%)bpuEq}jUQ(LP52B3tXg&(V@$hXu&(jTXW{~M zEc@o5z)c`1TWmI6nMjrkJtS-w&0(13dV?nAhZZorg_=?WiLlKF>gVZvDmI-w|1v8&_t$VI*Csc5SScotPkTy91iY{R#qw=+ zpK0AjTi7_r-eGl9_aE|%&dFF zUbJdY1=y%Mk0po^Hia3i6;jj`VY-SN1&^kVrMx8P|aw$IX}l}IJ#JH>81^HtKbaUOSsPidja z4T1L#mAk7^FUNj9`8;>c`(1oFVtD!expO(T=9S9hicj?)cCA!=52O1&w}#~YM@0JX zhs&I7PWQK0P8TWJc$uX@pW%@}!$$WZ2^0TQIe*u$UNnY}(fCEA4kTJ3fIoRgS~-L# zimw73E)$xqTc}2N-FqAlJr5Q%^9gdDEkEI(>-C}|dNqZj;p~WMjds(#jvL{{k4w(A zmcH|C3wJV-2PJN}Q=)dYLV=Ui4gqaC)Na>!R{EVYA%zrtTMqqrlEYud3YEp+4upBW zl)=ndx~8t`LJC-SpCpCrwQ`9YsygHbf($y;^m81ABynVpuPanyR6EJi42=j)40_fO zxWtJgH8X+YY72ED6-EuViP|-yrzcMjMYXN0W}UYk}O*;MoM1V)g zD2wg+?{FQ{0v7o39C~RQg=%{pnr~352Q!NvnGF;NN2=&9Yp(JJyUv_>JY&a~_m33q z4E-Wi_SH?^BkI)^)njeDiCR(vDjGmCl_=HCZ5dOK=W*ab3KZNcyI*bHM7@h+BQ>#| z?#A8{n$zDI;!?L{9Vti=3oYJT)<21nx*(xzowIWx1yn2Z(>A^LUZ_iJ#LV+XT;>c; z{6&UhXVn{dS`_klf6=S8nyq!g_|lza`1-})zuCf@>xEhi42W$)q$>^5gQWHhUd~2c zS1Uh#_z0QV)am-u5@Ke0%+J6+O}XWO$|#r3c3r2m2`r|zc_Ks817{uwoN z^EngGaj-qMant?WF{wO7&f}l*y;GGAk73Ve;3(?2?<1$%H}qlR`A{+c*sdcb>Ef9i_lWlf}Np=InChgv~o~3uVezfa;uF1Z;Pybzv?Adbc%Gxam}A}T!fOd*h+g1f#eri`bJ0b>j!?mfs9Ne5U-p4j zfk~w4XIlegj01bzD%g>RMmPGzh-fI7?@V;kDm{_%^DUW#5+J+JZI~TmMH@AxoA1&W#$tqvn3=Jtgq}}~GXP@saV@m6)1vh-6XY6)tZOH^Q}Iy<#KAER`NfoCwn!l*S7Bo&;zOHNEF%CiGWkMw7xM{OiSC`I&gT2-RkxTzO%B!CXpsX zOoq~H4$e~T8`eX+2nh-I?wh^){0eyT=flYhHDw9z2P)_UMxN#t&9Cju5p%t^x}AAA zHm3ggF#K@+FpB}bP@a){RTWL3JF&%#^<8WuiELf_e*ODxwN5V$fX8dE@k)J6V7R9% zSkZ!XCuVZdFi1rBx4l? zV8F|ITiM!m6&egNvL6Cif1(=sq7dz`0#qeSP?9SV0h&S-_F*AU8~At5ffWpJ?Sa_~ zTH#Z@c#C4+wH*GrK&bc&A`Uw8H5Tr^^v8Ik1|_A_JCiYA`jY27Xo@TVEwH2pN;uVH z;tG%Tm&K~Zqz!e*L%a84YXQ`$k_y*RN8+TPsp{e}5@G^|@Z}8tXzGFB?4+E3$zQUv zY{d}|TNf5h?5(9F61ZHkh(Go67p}3Bb+BW=2%0FiNt03l zWjBFL4tsk*3%v11c`-S7_e+=72u}tF;XDlI669ELQvpt+B7(+Yd!Pq5CLT^6mMg#=E2{$mFK7`n@_V?I@}Zp za!3Iz^@K_Z67@d5o9{8Idbq7jt){*Do4fZ@zqYug;^SlL9{k$7Pgny#JT1p zF3Of0liGPV59hCQ4CflG=S|&}se1oPo9^LxXmY^Bw4m(L> z_8ZWde@F&%2e*iWq%rW@TJ+#xIa9SQx%o#3$2wyf0jq}EyG6VMb;5zow!ZI;%*hEu zM@n8#jmzQy*;`~+A90lCLw`HoU-*~lb1c#QMm?JrV7aiFfo{AgiyG;|-&X8hQ3Us} zM>utecM3pUoi*?^gj>yZ+dLi_aIAI=0ph%c*f$Poq8c>`O^9T;C|KY;yn`4~eGG$s z4AjxSCOOhlMB5>NL-V4SgS;F^Vz?nSoetwhb1h~}lKVvwH4_}jl_|(BpGe@Y(rjGj zcj_jW`La&L9~=Eb!Wc3=y*t%QbD;5dj3z>>TfJzrNEL(kM4X^bi`xh&NksCfY9C{8 z178!@ynVOtU4#aqC7LoToSnU#dTn3N=7wuhKx;>A>pGn%DFu;ErrqJP#{=2E{?LXb zNz*ymyDmP^x9l2mi&U){>NSLo)*5#lEAiNbU3eoF? z6i-B$dvKn--9_KIs3U?&1c^LTuaZK&X?8CfwN~E-kvRx>zB6_uq^O5U(WiL}B@+aa z#d?ccOP2EGTx=~rX#^LYXN0}^*LmoF z8NN9LgVNigwAz44(xe26KP0#P!QhN%fBAvGh1Zox$tfb@gxCU1KK}t_2**5NX^;)O zTU<$j1TKf9HZ(5ufaY>fAb43PKd#Oy1oKz&W_AQ|{aSao|0*ue- zztnwPUMicarZ>?gG>(4Mvs3pyjq1jl^X}8Yb>J^B29_mtrfOfs{3oXi{4xPxFj`d- zhe+(g*6aW-{@ba=L5GmSf%Z~#&mCABnAu$}yzSw1N{Gv~fTM@RGi=8HOG>A$?R+?f zG+;h38|pXIXS_gl9C0{t)QNNh#TX6H7PMq3!p_)VNU~{7K4d6(m&;2zaW%S-y%aLb zHfW91ueVv?>UaOCPlaaWgbe^Qkb9+OSbk!+{PrBRFFD{xLSCcq(tmN(sqNbC;@QP0 ze{SL1I#FpJ8yzOtxftm^RUL_sezCQKa!!{MCxmoNgb54*hHgZN_H7?dhutp_hI2DB z)gm6Kx|F_vS%ouBj@9VS*f~+n5@r6h{9}F|w^`U)*aYs0!IHtrb6oboV+7RC4cLd@ z&Xrp)W9%kt2AE_vEu$oT9a71xR3OH;A?6LMY%x-4iuTqx^le;<^?vOCfYlJsjb+{fAtF)-uW8#sG0Gnu_D=(491%f}Bpj zlm6lP|BfQ%dXU5ssRRjXQC(basn{Fn)0!xp>zT;?f#CXn)A4@uzgZ;WidcbLn6(<1 zZGm;CsdefV3DN6sq7}x};^^W!E90{lWbyuhzV+$mi`MfJQh~}ad*4hk-@Qst@t&NU z!^w-mvo&BUI;Ps~3sGR5f3o`)(EB@hm`R(RTRA|!-B?N?XrD~M2vQqB;EwqcLl1#l z$oUfgrFxjQM@>a|+-#f|)=L`j+K=e9*T#&0o$2v@&Mz!6{B|Br2=#u4YgsSLk%-(H z$5wrYd}aD;ARCk(5B#&6>Oo@4)+xVV#`KR@$#4;_(|ms2g%9yLbsCo15~i=-5Ovt21@t8nTGMZp zAgMvqsi%~70t)VvAUi2p>l2N4=h1g z0e|J*9~<2%6-1U$F&@AuNyTq*O%^-Z42|gDoZAddI$I+3nQVU**2(EOCu_T?d@8z! zZt0lBu8}-$Ew#+?|wtuY*@oVdk_avx=yMn=iH}`I~oqKF;Tgv1s=&w z1ZWOOy3P+4f5Aq$s~OL}&_2;gU?SbM&vJfHhJ?GJCUISw<-ge{2R8zaUvXc*0TzTm z`M=Js{?ELJ=6(K2inR5&OsgF2s%0Z?yReT;N+xSPdfsYkj24gE=P$Hg6?w(b&))!z ze}?u^iPQ-b=&i=_ybCJOZh3GYObziQt4kto(GAn_(9(+>uT3b_4`1_^GxYEf&g$CU zJy+sqj0mpOjL>Z6(8k4k+(dIaE7?x-9E_UX8M2jZsjA&@5}GS}N>`#<(t)l)gtCYN zKX8|5*{^j`a1OVa(K*)})x6+dVmJL&YwX>5Eu`RGiLDwLG1#_{Wf(+`{rCFIEaojS ze|xU{!&5>%!Vyq?aL;O`6>mH{XF2>MRnIGw8WH7VKoY=bBM{qQmv$+BN|w+x{!O;{ z2wyNqEICC~c^tuzSqCqg{-tmt+_f<;Z1?0vqoZI-qx=%7$F`~$@CD6vzt|u{ClH@s z%wy`+8QyE#=O^rPW!j+veUJ#g;j-Iiof1T`tRs1;Ui#x}|N0=C#Sim_oV_9L9aRwb ziLua{4LWVs9dJ*$9L9XJlD~(-4h?( z;{AL3r~Dlxal$KM_EA|4QSwi^L(Rj6-FjpJOT6OWNAFaZzq7#^NW0e$BP>;8E4eJI zKkA7-smgvFE>I9r3vyyP2ZX7SKD^I@xv}Qq_gU-rZZ2Fw+Nwpcz4~-T0HORfw4iO2 zKIN1nUXK|~ZgE>1+su&F1uiwa$_8d zm&8>XydM2yH{zxqbHO;1B0{b#yGewb@BlV7>yFbfXC1;5B>+8Y@wy-y(BNWaO?COc zdRhn%@8^I!lW~o$cIgZ|_r^nmuhj*3nSDPpmi#4K+79YNfcmeA4VfKIOxLY`Z)*m% z9s*oeN$y^bGGUrC`#5If*Tfc<=<^&Et+RU z?(3DZjkLrCMwRt&+O{MHKQ7eT64O89{qxa-C7EraL?WkXz2D95D<$2frKiad60xd?@ z6WlrxU>g45MjsDnZ-F?4lLZ3MjMWdip8I6*Q`-9B;Dn=bscg(wDXll*+IWj zsTEKLjrs)W)a`gDLjP3gDWfYqPy1zt1S3!HZ;K5I<^{)NIOnjgmeq=DjPTf{T6962 zFtn}z1^rh7w&P~dlW0(kV%vzjlp0W>J}*kx7ocY(ig_Z{x5yMQL~_HPRA$f}9O$wr zDkrpSGsN5kM(qLO@(u2O%go4-hDd$d!XVV$iFBEjfn)fKVZQc#_XCkZ8st0SVLVW= zSio3F>l?dQZ4kQ`O`YooFtU*!_nk4NNBMZ0TgvWu$3*lOwiKgl zh0(I+yjBFyiq9D1fi(ULc2Otx$Lrbld;QcuJ^+?ZsXdBmacU<2(>7<4SJa({~)q*wBCDeN4e-u>DZXzEwRw(rd=~(dNd*j+dVzcAN_Sg%Z z9p_)jy+Y!dCQqTACntV#aZnUY4(_>hN)Gg_v1Fx|2DVMY*gQ%bD<_huEEY0UnvRY? zO+5)rDYA$s8b}h3EE}(Dbk6b+GG+%XNHcJ9=!C&*V=qf&)FhpU7m?8^VhBb>QFHr8=P6WA*<{h*f?p-wPY1TzAhqV)z}*AWk25K~~599SV@xe#Ietma@#e4Wj)1_;xaYg^UA^$o(H$tn=KQZTXxF*m!zE=c0Kk2~Z+i*jnn?Yr^r z>y|_Uk$Zvjo%z(r0DrA5lm8*2p0d-`Fm^xP*yBK#)O*9};mZWZm!EyF28?S++UWm* zF&}^S<&jAssiZAl12q)S-WqF5p)7==cv3jn)azsR7fJct3!^HE6Io@$6E(b6hfDvJan*f9Q;Qj#nwZm=ZD!xme*ir1MaKFzI#c%;*BuF5;Ay)2Y}n-Vi@Jotds~00<4zve z7GPe2`wjCw{^5B~U`xuchqw(qC1U^Sg+EV>=wq|1hXbf|$tSIqgMu}ie2Lm0d3IwJ zNAyyjlH1KMES5j#5qC_a;GU+pcgGdvj4j{veIJL!bIEzxD;r>K^C6Xao-Lx=l&dY( zRkFBAMvciRru3j}_`7CGxX!zn^Cy;`V;=h%E?1HYiv>r$j1FFD-%?c+1_iw|4KbR?zZY&biwSqa*@ zB1N8K?O}FQrN}Pz+hPNliMLo|Hv*5K^g(XWPhKe+^C9X%LuYH6I8Hwg2dv?FNoCMP zWftGyco(}rtJ%8lTAqu*62V`xLxT zzrWaG+xdyYk||6@>b*2M!KZ$Ehz&>4L7Zqif0{k$?&}wFlpge=pQ``aM5!Y9g3I|c zODFh-2$;az<~%c5lER>ISnxRE@mv>{2!?0BdO<{6=UTO&h+5u5O?XYHO{kMuAijT4_HrYG~7ar&#~WEwCfcoOT`W?h@N&e&=BkE)a0c7YpOYbiEh3IE^nxJ z_1sBW7sGY(3S+#a)T&!&&S@?o)JiVdr}%p&*thuTS3Oyc?q#*XyETt|is#;OJ1&=X1hXLV*3ves zsy18MkaK+wV|y7Rq+FTF2p3=Qhqd?(ygM#d37K#_s&nt8SfoI4_Yk(21M53dR09?+ z3M|mawBX9+2DUNk8KXHYDqE)MVM9P;Cp27P;{&I%?YizhDj2k zJaxv8@me%=$WGxaYqv~KeI_H0gB?{r?aJpP^j9zJ_1pU&2yqz zE#{^DOZCSCXWCpi^IwKmBmZnbs2ig`w0U3`Y4k#XyO*|5+&w^XcMlNUNpP1h-S2y@v(NW8SAHbVGjp$*b+1_y!fn*x zx=%>P6uJI)i}dHyFHkLsO6-WDr-mcaW2DMWA-emcz=NJ# z^pGrvO~PF6kn(tS^K8UhjifKVgtqh0? z81LahCHflks(n~TBqX52|EYCs$_(}w7ch&C@J&h?`IEbWOEsEwz+6YwY*^oqHQTuK zqq%h1#ORw|@QzKu9KAnuUocnsn0>IUW?v4mr5GqG{Fda0PXrOUSC(u62Yn{XF$_P= za3JKx0h>n8+ji_iU=MRI7rFjM5Yl?U2!mk{R{kc#l;te@98lDBX{;hT`%cWOc;aJP zqk4Vzn@`Oy0>#dTR#@Kb>&sjVHfs~oLb0?oUbm;2RDGqnJY#_;=I2+qk=2R6B))f~ z(Nv55zm+(gz?KwP!D*v*=n`3%YezmhD@~%;i+;wv=v=)s=e?tRR&1iV`d2{RsF`4T z7C(06oq{z~6SL&QX+Hj0wOe-T`nq0gLY^>= z;CIOcQ7=EUJ0x!bA0hwj>U^g)<$>^6bh0E?KuDL=>TY?hjAS_UD%>7-4TVxS{ZuT7 z9Vdwdw=Zc`?3n9_7x0>>WWNAwk;(JWKw=i6;`QKLHGa-pe{fuJNw?xh{<%fJSIi)UmQJAa6?=DxR= zOF|MwLNvzL;8MyH(F9MR>xj}$t=NmS#6Gu9iwkA$@2f1%dwJu)b{8pMG7DN3p!yy} zZ>`ngO#Cm%adn^YHk4nefIM}g!C*a)D06%yvaOvieZS2qnjzen(WLqik}*C?jOH7q zETWPJ$u*=*&To<9+M_7^>w46six7|v3?JUYo=uBmJHIcruX5yJMPIh_=o)VoauQG( zJh?Ve0Bq!tU_9kkY1>)2BF6@e8zf8?U9ER~MxPxE#Tt{Y)G*C#pPSvOH0#ftH<(IK zfp8?OSf6T8Q@#H(@v1C>S{{gAM|icfBoPq>pfB}0&D z8zZp) zdW7*mLSYP4aW&N5q~4Stq9Snj9-znWwETHn=R;fG$W58?(;+W^Eg1m*o7!1Wg5vzUk&h%%DmNr7RgK=I|kfs%nP5NUknr zCEtz`8F2@39P{f%5kK-R2?jtJFK`#bNz4o+#brfidmik87^NAnK>wujR+ke&#~w4! zN5MQct%jwwCg&r&WFx`@vFEp_#`n#ss1$XKF(jVXIm5zhrhJ;}*U(k;toUOJAt0pL zbHT%l4>P))s(ad~uxXW^W051g%wX#ArZUvOQ(d(a@@GE`>7#Y*jPcL-0@k*&iOOQy zDCMj>8YGXM`MhfBAcJNaT>X|PR4{p2xL1GZ>Z+{{tiZJ5iUj;-0J{9k)!%3^6f8n# z#go+fkk+rl;F_nrNtc!Q1v!y&)VbY1 zI)5okg*JAx68#j2#=;*){HmQ6HLhjlth-1ad5N(3VgInHV+J+JJfjK06{c3?@#)&| zczwV*ra2EGKWe>(2FZc9o2s}4UtOod*;LNS17n|w(WTU)&n(lRUQ%BYygO$*-`r*n z^e5ZJT*`T;T|Uwn@U*;8fkE8<(oYTU1VVg5+(t;FyL5B@b}e=w>-5y<)@mf8SHCN( zo(REmXh8G0U7y4?4p=XEr((27)z#nw&6%6XW%*uK0PKp-Fbyt9Jp@ z!@EN*YP}EF1%;{++g*gM1Yz4qZ!6g#XIVSezQXy7rW#ob$?k+*zyc?==d}}etOgVEcc(gqWE83iUL(?46)(TM;C3n8`<&KH^&K( zD_<}kTmnl?<9UKu74F+M5Az86`xvG+h4*)W<6e~gT*t4HR(()V6wcCiyd%Mvjyga7 zPyA)8Kg=0FY5v>bZ542(9dLym#|4i=xR;-P5M%GT!ku}G4(}fH;ZvmoV2!ZaEo!9k zuMZu#;YiT4%^(92gGji^-+e~usZ_+uGm2@coCYT_vkxJBhPl6tDAb^p93mvYgRQ!6b<$STV3C{Vg1UvhYw#JlAhl_!id;#W#>Ev2g(Z2nu9`}+ z9S(#4<;f_Dh>DVRd2^c6`GVs85X;a71A+s#G|O_^OpX@v>tc^4^iLj9e>CBvTDs?E z-zzL7aviBi(IAHBb@9oN6e4uaHS1<%e+!pfb7-@WU*RspANMp07?T#jx`e{)z<+zf z=La$&TZK6t_aOhx@HO+dEhrs`Kw9N~LBW5KgGYidLik^?Lz@Vlyq!+(*bWF3E0T^e z{Z~R}Y9j2vawB3KdyVilgo_KwU0zUBK14IDfAe~$5^}d_%9QDBzthb$La5h-mvOSb zP3>ys^c$go!L6>#(%l^yzLQ=doFV1rTZt2aq#!Ept_u^prdGM0VFPoZ=j`E>(fE1S zjF3Bx`PHaPwExH1usy?q>|xC(3T`Z~oiUD8OW7 zvIWj{jRG~AFCRNE-{j;-UifhcaQEEPT*%?X1m!MHx%MF8Um#s30J0t*srt<7e5{iFTUYj@zYD)z_`hbm8rC zTa;Y*lgr}f_Dc_yyJ(e6IZ{P-n)Y*`gV`ji%tzZ;3(R8)nGZ#O{_kDjZ32nY?citQ zSEj;r-7z#EBfMgLNSNT-wx93H4}MV@wt#_>HLd{kJ;feX#@bk;tDEU>VbscdtLInF zSCf#?X_)|9oWM^?Bk$Lz#Dwd|pDQ~TT2p&QwDtsK+@n`I*pF8B<@rb*UXT6I&FTb; zmBu|gT(sTLv}vn;WIeTG@3L~}w*ugKUY>*HJLyH5kHC*w;z*a!ljGCH#x?}wj}W+| z$YEA|+w--6`#bR_6+K4ai^ZK-$-ue5MY6+|^Pzs6K4fDWP*{#SbS2jDC?Iu2+r+Ua z>wXBKo2!EHAN+V@4=56k7l8_j!=qI^1L@u$!xM%+1LdG1>AK+A#3z1 zM>K7R(63zlXApdZBMCn8nNM_?H#TN!ee*rye|Jm z;Cfw?=oob^$X>q=ux+?|aP#zBz-?Bo9vX8;>WX*ed0{-BL-m_$>wz$SN52PGsr}K3 z>~u%*SE0Prd`U|%z4I&`k4PR-*~CtiyKnQGJvtT0bh!sap1YXD`Zg&pxF8n8WXtk9 zdvSiIJ3mzF{^=No+-iD0v8~iSGXkf9K7?CQ!csvqKLW+gTc@N7)C3G}5Tk}Cz`IRn zG+#V#{sPyb$ms39&CqO@`}6&CU%l92VVolXjRGKcAfPf5k!Q-N185Slc6HGX*M?628xxm7(} z-F(YbFy2bc1tGqVku%hKAKta3RyfMzdIY6u74e%q+S)By9G+9&mlSkxpc&j^o~V7f z21+5&Y%cbDi+z>Q#sglU3Jp1*B@ML503evSXG?xxW6?#lnw^vVIzNCx)(O6Zl77JYv>pt%1~fB&m<&FmrqUnP>L%^+-autU%$k;=)<*xGELtE77u7`@XUQ>PMR1K5c$@ z4H!iocwbfmnvm{slENJ!i(H~7~MxB zF%-Xa0aVO+o0oyNrP2g+8hb;O!Iw{EwU3@sRq$)YdeVV^UH+2h`fw^cvnBD)k|ta- zUMJGzadoH(mlph`ef-NSI!vYqKcjP)P%lN~Zh4UnMhTOIj5!l|Ne3Kk!N>U3x}zJ% z6`N*;HJ@FeG&ouFOAIoz73f2Fp9>6~f0-P;Gw3f>CR>%3f@V>bT9ye^B7B3;p*Y6- zlr`QxTCi`RLGgb#A=jr;3M#h&p-N~Ix~(Z8DS0vb@l@4aeJLEj?*q~prq5!sP^qjW zLEo>OvEvZ~gbMNu^3sj`{`$jrcMg^cro5a5JO%?PotD=a^0^CxSHEH3sf(`>7e)>= z|IEU-hccHO*f@Vwsuob8Swcdn)vDSwIbk9Fr7?$e zZlem&L)@25?dbE|c$+)avSs>RL{lOn;8Hyw2_;^1VcPZ`=qph?!;>XY&&Nzw+FO2d z#K%1$+|lw_X!RGTC+A2g2kC|rt+Iq+Z%=snL3O>s$o9f#SKMDM-z4elGzSzOsz1k@ zW*f9!h+PjY4)^~~Z5nqb;2U_1IX;~S;&Jl7d2t+;zO!gi4a@x2Wt*RaA#AakgAP{x7fHRaew?-VNd^ z$LcuT1g&Twfqaf(u!pU`!RQ`)S>>c)}NxWKd(kYq0qwL&9Se&W%BF*=Z$gg~*>dSg6_=>eJ*1?)wXq)M4 zs|nMe)VSL`krnXOjcAU`@Wlc!?y}%~^!o|6B`eT2S!|Hi}G>rgZNPl?%DT+@zm(dfrzM(Jn zT=dd0gl77WR#}VINC3kni0YreQ%5IpLYwv|>u_C}q+gvxo9hvSeybncmf_`$oc0^` zKR2B55F`VEMC4@lcg=p$E8fNpP_MvfLKCgOhPv#!cPmk;jTqV4%86A?=1=qV^f@9> z_&$ZfXl89o$4@$zb$Y)53dVHCJjfyXHP9Ypsl(m!_8K#b?gpIukWX(y>bl!Wnla>R z4W(2Q_ei-j5XpX{;5bLcMZ6Wu-`MXn&2ds$rzZB^CH)nc_*gI-`X=-y7pDYy!P*@- zR|z_8uQ=;Dh+QydQJFfLXCc0dd8~Amb+eSJebdD8Q|2v5^nUB+L?R>^OXHPq?hl4n zb>-0(tz2mXnfl##rQGg4A0f;LLoH@PB5=3O9m;FvsA=yS#dpd-N@@F+4CbYo+4C#9 zonwh@@L4NXnz4=#p+FBequi5Afs4a92W_7S=fuk4I!EN8nlxkxZF8sZ?{LkxHsz<GJUt+O$?rP6atTkFWI+AjLvPPk>oz2#UL>g?L#77 z`qr}h1{*B)GDUb9-oJOr-li@))JpwH!O?I`Gi!g7eZs%YH1zsj5ea4gFKeMG z=-_jpG0y%H{v^I0VW|;?8djK|w7z|rL20Q-d`>u{YaVY{%;0kea5F*iH4M})l)M7B zk|wZPd4RA0avGkWs&;sCy;6ueI_@b=KV+r3o0!lM?na)9jk7c7iqJbeao~?9wuGzjYCW#35^ZWFax{!rj99vIPDPwKNee$ru6HXJx z4^r<;b9`Co_USydU%$p&QnofG&ZYhZ=srpNQQEvz!m|~?P8bxchx#4Y5g>v>H;|5P zFLi3Kjma5%UN`7JCx_adIXP4q(b^oI(D5V~`~|n}7!3_ZSom9;J4DPMbElYKQzKoe zM2kKde0KJM9tljJesae!Uc@4p#7CT+5J8QfWnbchg%2tvwo}F{EYluL{fS%?$7986 zj<;NoN0UQntT!+=o{>11^b0jk_4f&m6#Ywa=UqS#3#~tygWsd#${!*-+g)YxF2aWg z?*ZEnix74z0Z0!kl(946Rs?yeGBe#%*-S6|&t2kQ>+os_n6TxTc5ag5DaIH*%IIQ0 zjea{^<+D_ZCy)Oex9gEoj{T~NHIzVuI=8Q~S}UgyaWDiS^{=xB?@u23JWB3sONBTg z?;@9`T>PmkvbDCdI;vqYWK$=Th$ED95P-`#tT5NPl$$>2<4C1?w{>w6zQTWA7-mpN zS6yV_g!vLL`5)RZwz}>=_72P8V+1m&Rk(iCcS#`c62M$%Qg@4uZD-tL4)$qt5@yFe z2dn9N3sZpm{@%|z0Fb1MtyN<|srhg=o$Ac{s3dAn1ISWSaKE@GED=4jL7G?0q*@}% z7k)p_OoZ;8XHI3Cz(X>a!P!0SAc=DGZaj1>wQo}Sb`Sb@V^WNJ)D@^bdIsJ=`FI^| znvd5xb%2c-Wd52Vz$3)p`eJl_JAMZx_yw_7G6qvuKla3Vf;q< z!>K>a)%fSu+Q_+Y^w+96-`vCbB91%95Ma7f>i!sPY%TvOH^D3Q^r~*|N~_5|UvvWM z4?b}W?j#X9VBa`)RC}hRKRbqf@6;q5d$tt(rf{tB5M>4bFf&g{ijMx&?+u;2Tgt@u z36?09PHlLa+?m(IUi)np#?*9$J&~)VBVy z&-ZeOfEE$r*dPVv#F)kHzA6>%>miIPd0RG8R^k^vxB#Zj70BM!HMG+8Bx0x{{eaA? zIRbnVbmsm-?_0)uLw`WGvD~e$me#Z*tS+_2)=3UzyO^}Q?R$M05<{yf&I&uVPSUgX}>PJUaW8+>BCh^ zDF5u2WhG%{sKYuVXAuG^KDC`Nm}($w+h!!eQL3c0gtIojx4f_$Y_cGNIkF(ZPxYJ2 z0D~xI;G|4|EWXXu+kvOFzD{%kyzNGbEp0Wy-6&>yLQ|OU{igIIw#dhV*vScde2_bF z&q-XcwX4yDE=#>DEAIe8@s99T2k7sIVQ!43S0* z+O^@xy>4=Z#C_0qXaVejzB(}~(GhEI@0PA8{G>ua5vrj(E0>0B`2u=E4hPe}e2A&X zeKPpFb969MY_5q~EG?nkPc4}&euFPQqr_jvKTa~V$wbce4fr*5?^E=!wCm%23@4(2 zuI?-L8(3IsCfM|jpFU6Z{yIKCN+`fro<)kbp$@(8UGlwIZw7;{ld!7PdIZ6`h*>=& z3-LRGEbk!hu`t`b(DjCXKTzFGH``6NrrjXUpv=jJFuzSq?d*LVwPqR4>T$?x1_}iO z;Xl0(**7^w9Bb(yQsrf(@?DgwDy?)~kc#g_-7ZnY$^;}m_%U`6yj5m@ZjjWG)DCDS zU6Gg6>~&GErlCc4z-}a%Wy7V=Ill`(1yI&OBd?D z$zKrcHDUQ#^>e!$N#=cBo(TOb5eyc?4V}4EO^ib|G76f=LVv8{;%-ry+Pw(V@2W@8 zNr{rbivf{3y4|9)b&Cp{QRYP71;$G)C^5gKH%RwZesq8|$8E@E*x=Y+EG-K_d_{XC z%23b-y~;g^2d;}k*t{M`HFCT`rV1j1m+n-_VFQg@&IWI0a&z^~=0v-~KF{+sf_X~X z%5#D5cesl;ayQcLJ9_Oz9{QG6+wUhf2PHl`+fM9EnU5R99UYrLGYk_XF2gCj#a}y1LqZ88u@nIt>e=+Hj z&vg5~6Vmrw>s{6yg^PW+yUn{74H8C_1nB);XNv|9Y|329joEFDj2u<(lzFEE0L6U%3EGn8MeKyG-x5LGy+jj?+Z^c8M>lBn|gXQ`6y4% zZptX-UJ%l;H85(sujdQ7GJjH08E7QmoppDxjh)bMr}3yUBphqh@Ah+sO*0 zYt7CKfY(XKnq%yLZN)Q=*|m2f&_6<%>38p zBV9kdn>UfW+n9*NWll*36@@5M(qM$HIYdm;q%?2m>axH-H4whCka|~SXXD6wm<*`UkV=}4_s_wm;9n~d~> z))zyliS>ssb^J|i{5U@-y0zJ~T#|b$c8Bc?ZaMJ?Tw3FGpUC8YV5= zULj>&X|Y@zr#A1`OxQ~&ZTyMn({Gb6gVuWbHnd`$dvP*cFr4TnbFjWW8#l8EYXtR8 z&U);LN5GJk^0D^yb=|YaWZu4;2?KSAS#_V_hnU2%8qt`aokW;XI3$a1#AaGowJim{ za%j$M*Rnr4YikL19oKMp?SEDKJJQd#G@A4?AXch*W^Xwhm4BIw`D^R2y%zK=$nICx zPQm{r9+nZY*kG=`EGx%JA8d>WHvYC$`)8$T-?(a zO)#%mUZVJsy7CG4n7S$e z%@ujmUmXglcd)f2yG(dyr}tIRW>dTy-Oe+8o)EhEc4jdU-Vhwjbcb~DFsuW6YX1Tq z%t@nii2ebcJJFg&aNiK z`N^~>#u@t;n|}^fkQ?d#C9cNQ%EV5UDj% zrk=j;w;^(w6m19#Ppbm!>0#<)u}ae4*)4>_I!Wi9HdE-{N(WwQ3@MHjO)2}1ZRmF+ zHX?r%MtCb0sANWIvHwaAJUuElxW*ZWdVq1Z5_{ehSE$X4!i{1ae3KoL#D9E>FNhr% zKM9SiRubPhp#U)5GvX#5$LblMd>yX>aR%b&AoN-dt~3u?oKe54xVn@OzV?&-a15W5 z$)b|6`(a)YVcKt%IvIRf_=y#?b0-w>O+jh!Fv5_Ld&~02{VJ({J83TiN_F4ev7)GK6=HM3PF*+Sjce zES+tf4Eg@_IS{ksAA>&8aP!@~{`q)*EQMX%{=NwxY5>B8##V>bF7Yd^k*XqV9~dLM z4_M*^r{j+qvX09$_rGtyCx2NInqA7gz%$`}L(y&2DMvXBV`GG^Op7v}nJk(lec!J6 zS#4UQ4A43CQD*v2@%691zznj&Ma(C4+b;8&PJForJBG(gJPVdKVsCK_+0J=G8-=G` z&$k7IDf6+u1>^dG8CnX6jMemhEIcM&_dMT@mQ0UW)rq!Wm^Ln5cmWiV6;X`si|mP% zqjhNIBZ-K-Gd`p$xL15Eu}X<9^{*j{65UEiuj=#b2(}szuTg#%J{A2gym00-bI|pv z=&P`^!b$Xf4R}SvjI`Fq=x5cUveN3q@KOz<+LHIKdJ)fy~0Rla{uUddO z1K5d{&~m7n<36Q~CU}lup63hLsWAoPX(jf(`un95+Y4%IzacD=Pqiv) z9V%ZSj55vfCsW?F<4kEgkSNS@s^?s3q2yQHx-P6fp`^eT3n4XXMvjbdsYguYR9^-_ zm*V)(yK7Z=O9SZD!FN;((~c+m*2=-fQAVfHHb&r0w!trvYeG-(+%Z9!9OA%dx*v3oYu`gJ$i zAtkNbJHQVIlxEJ}(vzi%`*Hr5fPlmJ1*JsisBNLAKX&D^Ka4h87j-37ql2P^$*YUl z4D49ObD|0x7n~*)2N&r4G&y11LIr4*AFxkqQ3RR7*tagUuq2H3Iq3`O{T5VxDVM7P z%=obL^Dt(N{XdMZbtF?0xmTkE6c+Q^@-Da+8R5WZBYj(FK$fMHWS1PSNP$Geal!!_ z^VOFE|CK)=x`bph;Xe2EJ;nnOSUb@gd|reMNquhK!6IcZvUk7;;MMhT?9hn|9EuPf zt!LxXv<|zd59rV)uu8nt?E4k`0*9Cw8c0G}N5|v&NDWR>Cn1j3khP*4IOk@kdb#eQ z+4<40@`8Lm@|UQHLvr%0Xs7O?l|9y)xqE#w^;YXTJc(ov)D?j2h$43n?e1FkiH9l0_?}a=))-w z>>P=dJ7I%qYF&&|R2sR%%BngjAe0sBtak4nU{AA$Unww+dIUPJ=Jhu~H*3+|6afq| zl?jmWc#67-)@{4!IS66^gU1V?dDPbl@Z~{V`$6gc{=qpVB+k0JSnqF)HhDw=1*P7C|Z zYe_i|nfF!E)x&!%D&el?_NEo06abZ628~%I)_O;&oY;_Qj5=4(c8>@x5NngHG4&; z+hudH#7{^bdi*Wn$kWv!?{umjBt+aw?>B%U)*z>_KbI;?To{5aC)6ISr1@Qa#|E2p zv^LB|zgos`#l`22r`W>#7iXR;3t^W%ezvXzlTftS4mY1TMgMQ+9t!&jDZwf!n;(*W znW3EWLA%>zJbb+QLc{}mv?Cg`{qR=tx_-pNu1;NJv9>tu8bN4XPJSR`uAQJqTk$m* zmRpi$DS^8`YI>Fwb1m$Z^+WZYB4rJlx#kk#ah$n%*|=a)m*uE3Fxb?|i{o-rFhwUX zyCvQfg!VfOWg^F&CR(#*!d;V$8|*Cg9aqdIEt_&FvK-?zt z$SifGqcpUM{@h-LahZN!1plnkbTWIZg_P-bx!a(94K$w{LpT1PruKgcfKxlV1d*;W z$J?8LmmAe3->bv9j5_T(b%4VCqm__i+~X?79_~{+kPx43%C5;&go#Z9QTdXhQT@j@ zH>NRo*Hst5Vcg*-ByM};<##bAz@VGNzV(_kGNs4WeC>MmNqFUkkUj@7ra)?w@h=-* z(iK@>Xau)1mg&Yl39|;kB>7Xw#zlJf?Jw=_(-tgM)D@l#S;Aq=(jI$TVIQgWXohvq z;gzV-8h5851w>>nWMEK)OBc>?SPOX`{Nr?vp^zCPWhMI(Rts^dJhsyC8hZz4aQNU=Sf8kPJl+M051!TClwZ5UkO+leIsw|Om6()v|? zlvDr4!@<`e!(tG44gYJ7-|erO#;!%k2d}{r0qh;mS5*VP4ax48@d}T>|51sez8Dz* zX)buhhV`#v)7hf#VFli_L2x?n%R2ABUx~W^JEH_Yp=2dk*9PCZZnE>sXwl(s?;aU54culdnhyRq4pa1?qfjfT_}^qBEThf>)QOAkE;GX6fklN=w82U$%;Q(zl6ysZ z#glI+FL4|X;23xxHoZx;3xI~CtjYydBz}%wf*?D~+$7fcFL&3NL%+IQ==J)w4c$87 z){s*6aN$Yvk&YO=3qdoMMl_&LuVk|wT4Y8mqwGIjjRD8C1c1rWjh7%f{fP#9po|7y zz*!ex9Wp8pGD+hQB}i44yuD9QV`yr`eMaI_CI5UCS!K36eBaR}klWdWI=ETzqkmD5 z1M$SC_a@Upd#p}|zy6yy9+KrJa8b|`IdMzk0C3733+_ZmcWH| zURh?aSiwYZ1T{OCQPjqTf&nuO<+kXt!HPpHBE2~&kS zJLw$*y2v`-T5vn9x5NjekQ-GJ5MhVJ;|AW=)9}N*vuV=;bopIba<1LW^t4(I_I6ok zsF{ecFa>NOF0vCZE)k}#2#20LYLxB3_VnN9X7mXd5K`NAbH{)kZGR@emj?)5z&T66 zInuSbyU@R^!A4s2CiEn7w@2-6!e<`O!#bf1xeCSLA9bzqB}QeV_b&?pul5d2IWeZV1ues|5nKI}faX>frDqy`H;GhxUwdsJ+sE9Uj#QiwI#evo?kgou4FP&i znKN~wexgME?);tBBc}!h7`q{?sRuJF_eDn#*{8f{cZz=r4R2U z4xLQ~Z|KV&_~bkFUR8{}4zhDyOgrItj@`DSB3T|q^4@A*!E>$%Y0y^})m};W=o&r> zaYd^>#J{+19p6%P+GA>r{nhq*r_BF;PF-z9-%8JeEoLa!jEsgl@@Jh7mNXL{x0XJB zC1r@injRf|wrF6?+q(SKK?aL3;XW1n@(&u#UlHhgor04kE8hExp3O8eLTsM)PPyiD z0zFcwo1P`KJ814D@d>NHs^7N}mx}1y9o>3_91h!*;H$NZE}|cRqf341DFx7 zn-0iPKyheZgQoRX)Nol6t)mAG9GCd*SVzNy>oec>x`?d~>+EuCfz?7VKM>U*YS zc25{&CS*Np;S!GlE+<|$t!yciDg5Kqx3tE*smXSi zYP~LOa;%#@V1RuFm#MBlGliaRqVv!odS(`na6l=MGO+QgaJF~{-sXfy1}>DKRC)ig z{kf(()%N%2zU*w4asr6W8wLSU_Xtj`bdb-1;Fgy}iAv@Nf@80TWKvs`+DjEH0N9y1 zIoRsz>UiB)l$MJ-YZAC3F?C*g4c;JH@}MpVy7ZIstxxAP*Y)#dJ8`7(!?#(~fv#tA z@rSDg<9P4n+-mdB|C&HAe*9a~mrY|7p#lxK-vi+W+^xm?`0U@V-EbHX<~y-sw?pdI ztky(?#6p9(U-ep5UY&>U>f8SM{@35WbJcPj(WbdWFRh`&H_LcyZ}4n|F7w5svudM| z8gPD{cwM587H@*LOwYL#XO-VsU4?^bG$ICn+I%(B-vxzE!sM2=9X(t=3FO+-|<`d zcQHQ+$37`|cHtmA8Lhy-k0t3Q;cDb&_eWGyfEi;>hZm2VyGJ;u%V)0wCVpnS`QQ$hc8F9Scz$q*I4P_JNNVNE5zz%};T8_Ny0 zs(*hC4_ygA=7*aZmlJjnE?uizbpU{oL}f6}GwI!lMr< zU%c{%U=q)A3g3lw|M{Icnn9fvO<56wdxiM~msSk=feKK?e9q)FV!ySP~`e)HEu;n5K{rBLOuQ@Ye(<<<3+qoj_eT&&4 zs~>v;P{CFDPg{7-pQpm<8XEpR9wWyBlU1Ggx+9zx{;g5Hafs3A`I(0~D{ih3ksQX& zY^0Khxj&Cx0(xUdD~Ugpw3GTbR}QWx41&8L{>ZxWaB8zCrCQF`9FkQR7qqg%tik)! z5VNm(pu#l{4N!xNJ^G$L*ApXp&Ow4csE~knbAf-oi>)`oJt3ZKG8S!PolymoorAok z!CFTcEDUGEI=J796AUfR@#jP({ShXiXDWK5{b=3G&|eN<7}up!Ig1;A-;I;s;fJ|L zghnm{Lp$6?XRKGWv=DIqLLykX&1~1AQ6+yJZ)lsiMA5MHXA6yEm&kq#)gL4&a(G#! z7{G^ubHc%+4?T#rpTg7*H)(vraXOF&IzB%(^}L+t zzI@P7C3!hzk$9yXaFZ{c>^GcO*I!Lm+8SYAs|Yb)v>DfCt@|z~LQoL&YEgWe?*8q^ zJkxLBpFRvUCR_Zntl#PT2f4y>o}%r?&^ek z`$t`M$rfYp;NU<34)v@kP+MTH_?oM-I8Yvz ze)rV>kRaq6`*?abKs$hevMYBZo&wR9cv6^{&w9){7q`8&d9a3DKrjb-eBCPt#gCo6 z8Yh)2K4au?pui{R{nfmA2oyqK(L&Ig1^+volVj=sM?#f?F^xo5^$8xNTu`erSl%C!VVj$>L5_+0d5GJPMbYz zVyn6qHj;vS7H7$^b%`5TosLS}1@_YDzYL{Q#8=itPZPP+6(v{qkW4Jm^oZV=P&sfo zhNSA>V9xoyD_{GDWgfC#@uAcd=*vLt+{{p;&gil%rDm7%IuwcoZ`& z$muT2VCC){d67LqVuSZ10YKD|)o$2`-qVJAuoz?ar!YV_cBUL8ecp^ivhM?*#!d9~ z5W6fqr|z!iOirISuN-?fJPq=&fG^n z(Iu_%8tO+J(-l)z^L}|Qp^ja2(k?A~b1=tOzNZj3SvTr4Cv5jS#o_mKHF!CUc?0er zu)DpytBs1Pa6cZEd5PI?SQmc(_)VV*^qI=a6S{`EP-%=uQr#NM>p|}KUTR*nn<-@_ zWH|YgRuImvM-TIRIs$ZRT5w787W;x4NETZef#G9ZNXr&IJzPYy^eby)-~kDFp%HmQ zIbu&ZYK?#J+`_UqU6m$X8DyH`WR|_Ut!yc3Xp9=JMvEdCQq}7-Ph=!sx46!ds%4&6 z&&K&ba;E>$a2R7K_>?+)a68p^1d$v)z&dFq_P*|S0Gz&iUJFe{`UsyhwE^GN6e1g= zriVnMjH)KE3F*>J9o>mm*>l^KnKK;NF3x5rXliLLBz1=Qq$O0J418?9T{*1Vqw5&Ozm43Y%O?3eu-kt^5+{1 zC1RDY{g+5EXLnr{k%cu0p$l~FQ#o&wLl}7nFC4i>qOoTC$mUABdr>gWE*@yK&x{zp z?e`K!%9JryK^|7!y}WKemUzQ(prrPnPMV~-Hf;sHVM1)aI9rd&`HzeS1NwUXSwYgJBk0OhjK(wVsesZK`f32aka8=6^v57%3@1@fBz=V zx`6+d06=F%&GjFnPZSh*Y{F5YZT$Ygfe~k`G_8iUf#nyg_iJjh+8jX#Mlr0A1^Xiy zj!02(VR%mYc;J9?Px+>0$uUQ`tjh@i&`F`ObN;$m5!Hf|-bY&OGR0F$f^Gi5)rwmf zBU6K60m}U2^LZOoaycu$DR{Y2JsyyL{YJ=wQD6iW1CqnMU4g453xTrRJbl z&1eKIJw82}$_{dB#G(|Jx|=%X_3}8;F^V)zskio0Z?sh(=AE?uP|*B@>|VL&X8IrT z^t#KD@&9E#?_Xb{FZ}cYC2ymkZ3KiLtG}Jf#6e1*mQ4mDH$5^T%OH~{e)^D7XHI}= zh#t#tA+6k2et;Q2R4At5Tj6amtjJzNE|Csv9u&BFkZxwC@ z>5}f04(Sd_MUd_oq#Ma0M24ZeTS7rE=-f`OEIR&B)E>Ta)IN6=l(qd5C_qyXij>l8HzgY}DmenQ#Y zTsNDmfP2O%aM)Mey?U2$=nt1DHuY52alO zmU{UJLt0B+r+-5JEb*2Sa;8drwyFF9yd!&YJ+~#I1D(!(lBhhcXHltMwkxGVuVUUQ zQFf8?IpHcL-F3+QlcE2#Sl@H09evAf>D)gK@RIKtT?V19Mp-srclO`S8XLA>v_CA@ zRW}pfu}B^neUM;*Xogwzj7|PLtHrPz1}#-aLkCptSau?k_Zs*-4If zV&QfHztXJJyZAh^=0Bcuk1WQ)8%+YE3l#+B?JD-f_0Cb3Q|HCGxTKU6&7Nq1yGf%f zeaWuiXAc_KTtIB1HgRD|=5sS7UnvkL$R*Z0h~sXt?=+J3MXr*dm*uhoU0ITIYwrzk z83|gcyRUFHjxc=VWmHkpr@PL^U!AJ;eHlz6yVk?b#XTnbUy>&Mo2%NN(cQ; zP+t7-7fXo#Qaj5%fI0FyFfloD1Xt>mVn@K29eYgqhXp=c!<$ii%<6`xPlak=giCD~ zDvcLQEfyOOoL$tSt=PX80^;yTh%BtVa95oeIgQ)MpZC1zn7=p5Z)zeFgHz^*+kb8h z;+9H2DunGP7troA526 zEtgKAk6znt@2k6J9LWGJHKBYVT<|#})#RZ~ZL4~=L@3OO`diG=gzxxu$^jALQ`9NZ zCZ*(x&XD=x8Ux z@1os?o~!PC=j~YsEiJi|Su@Dk0hkw>0z;0E=Z}ogG>6<=jjWvF&+2&MqA?oB+oR7s zV`v@SE>7a-OL2?|G|BSKg2Tqv4tVbXQeV_`%tqGV&#b`AKniEQQPb zAp2PXvDjMpG=UJ)1iu1QB9^Km#-!cYrw>;&iQ5>9_{pP3&wo_#nM6H*@82V-`s+_q zE;)Lw5`}iBkc$PYvuh3)-%oRLpk1!YFuSkLB}LC%b8{;(NgE+Fkd?e0H~yKHUD@8rD$nRxzih7t9_ZgXp?SMZ`?wZFweI)Pw~D}L`+Go@n@>IvITVM& ztjE%1cKzj+J@CV8|DX}Fv)-(h?GqPiGmY-z*9_^VnJ1@zOfY0;3@u82@xroi%|W=b zx3v}rqsmE60Qva<#I2nGW-~Quf6cEny8-vsggJwzC}%q6hf-YElw81g4~NK3y@!=Y zvdr~klWa4r!3GylDBcoyTfl__v}A5Z*5)e3x!8i`HczeCKMuzkFHh7xDc6=0m0??_ zut*0y7+@2r$dO5$)NsozCE(R-<1V6scd79l$Obq>&}Qh5>l=htMYBWA*gOlQ4qtLa zo#LZFjWgn}eD2=t#wi0m-|-&z`|eg7?UgW_(RTJ&G!pYGh^Ba*W@U7YJD<+|6Hzwd zy?*u@qtEl?CC|77FBd__OMfwXo)^8n9T>3%lp-7KYVqBKqqXuWRW`BDNs$ar9BH$^ z^JYbs8dM!E9MP~0A(<1+B8z8TDYMJ1I)nwBvu`V-oHpqOU1O03KW=;j>_pj%3ki19 zTeu)%)7XC&HHUgUFgAR(F@UzE52g+hIu03Ig5`}}u$knQg5mMjs(PyD;1?Z(5GWzH zu?XqX)yZCd&R8JrgDd~tx!IjG=xIxeiMLb6?kuv$E6Uiqou*zg)_iGn+JOp>qFw60 z$(>)`=y%jee1l~-*nfb%e6reZ5Pk3j| z?eb2I#hAvZmJQ&5R{B$!{8M26glwKKTQu@d9;kf{!^dSn8=A$ZaLQn3ZS7pR{&pOA znJVh%0=g~gGzdvH20R17Z*uzf)_TQDM+4KKVI{lgEsopPNFG#~oZr}=w;ZnHMl9V) z;X5@K+S~3)pk&Pncy}g8!g3umx6vTTo>?sdlVq51F*aeY~8gv{t95ZOnTRGGF#~pXw?ta3`(fFWLY`Jl-RMyeM)EGf}rS75TG?_a8W0 zbd!14UxF+u3o~oq@M37cvv+*e+#;8Dt;=^M#P`ZCeYgeJ;-w_HUk}FG=WAy79xo7A zjF$VVSDZS7eR~m57sLgFI ze8b8HG8VrNp}z;r(>v2E*BUkZjjV2CErBHjsfKcJ%W!L~d25V6sf8@Ps05$`wXAlu zLGfBysfNPn4JT|jY89gh1=o`C5kdhQalQg~{g5k9ytMb{cVA*%@0z#?S1gGjMgAiJ~(z1_#8HB&H^(%bXDgklP245yAsu@{6vtH_%*iY7;_N!xC(cZ&GxE#o^Xajdf1s~mXGs@+1B;Q z#g!prWYj27wBMEN;56M5;A~6+vn*spShl!7V^Pl)w{?|T^T~y?o5CXVcKM~tcm;|| z4w9dwMr)!3A2zr748xgmdkF+@%*i3&u2k(wCex2C5To(q;D9A#h8KJmUbj6g@(2;n z&kV^gz$GC?FLxq{G;+2xlpxpG;S;4>s4)g&Sl02@Apg89&*l2>3?U1*hw_?KTYGSkbZo-h6rx-*?RQVy>1Xbc)_qqI}9dBYX}G zL3EC5@8-X<9R#;>B4}~n62lhBuuRqq1>fitYDUEVs?xG?jV}+Ii{%bqigw(i-DQnK zT9ve?adSiDvk%P`3j8GnNrcoKL_W|R975#g<%+=E*?Wrs?${0WmRWm?^u0#mJrxMFr*)dC&0K^PZJ%6HEB;Pi5UmExy2U~Qh2 zJwM*uAL;)Dio=xEI|gZtWnanbQGwbaNMtAhGEtT zP{Z89~Z9jcioM8YXv9HLI&{bF)1A3`oYis123PtpsC0O;%gJS#}CJWcMB| z)kg&30gsMMyxi6$RUrS%@Be**P!T^94A<(H!R*LBN@1H!2-3HLIK?qxj6Qp-+{%ps zbtcvfDAn^7@-kq0V?g^S02MRXuTYDV8zqc6*DMS7Urdd^ptrs}9ew(QD34Jz7KI!% zi~uolRmgH~#7<6)V_vv6OHwni0-ds)G&NI`p!EipiiC0}53lT%dS^xx-w+au?z9vq zAw7zpkESVtkL&822&Pqf8Rm>&9vo+}(P2^_2TIPUwa=sO{|NAd@A;@yC4eVB{Q|ak zEu*?ci+OL+TUkYS03j-{GB!0EXN1Bq)^&K~%+c_v@fzyc&sTKHl0;cL+p11HqSC*% zTLY??0)`cRTglYfHe&X>cbv8Etli4b%CTLQ3ha$5^Wh;D$3*yljK7pazE)>(d)9BE zPE~~@Y}u$JT>mK=+tM_1tjc9+wi|Y2YD-BuTUEA~wNP^$RPJVGz*?#U5CGo^C20qm zN!xOsZj&u(omLG++$dbpyqVwe!3^e!{el=QI=o+Pl!O3L3L9VQIi6Vv3bH#|LZ#qx&dKtb{D^PvK#aL6FT>{dN#r=t$@l4dA?PLl<5ZS~yRIux$ zO$idB#Q2^cF*b+5*w8%5vs@rs6_rW%Of+f;azuX~^Gh8hT?T=GgR35nun>2;SD`LJ z0-OL4^!B&XN@tm{97(Z0N_fha3Y1gw&B5>G$d95bl@tjfp3vQLH6Dk}v-qNvqW+*s zot*wV11g>psh`yNJ_pqCZJwP1Rnc=*MkzYhv+}qNdU8!Iq!V?*6h-XWljZ-(0s8sTPJ24$K9u%Hx}v4x{adIYQChk|_EuV?>g% zQ1h@YlTiaOoO>yw-T^PWJ)v5OmX1|R^!vQ>N2fDz>pSQG8KkvKs5B&xA7{W(v z`VgM*oe5`&0>xuVO?XLX+{A>pZT~-$=~GG2*S{cvm#^;MFWYa5X)gZ{Z4o2F=6Qcq z$!5wr^T2yOZ_%@}i?Cefv&3F^TedTKpU;Ue-%iZf1kbAHVolTg0z!w3jZ9deeX2~s z!ZQLNm5N&wG%i}VPRAaiROR|L;oJuH=?<9WB*uwCQdz14>!b3w(rbTce|s2qE2lt8 zWmU}JtfDCUO0q&CMm=sY1kOpYqNLLR;923(bkn!$OY%$JGKnElvqR;m>4YQRCubU! z@CmDM)cmfwpMKdStEXofYo^l%{-S%}AUF}1V3XaRK5!cKW#*I6PGP?%l$_n4woXt7 znVEEnYnM=-2rUJYR`H#v&<6%BUa~*~R zO+g|a4iJZHY<4q$h1X58bk%^1O-#kF3g4ry85e&5%0S~EIps2|^_8@N;sZ~#W6k^y z>VAD)Y3?6dk(t=XZkybQFNj(n>ieHJi8rV2$ zd)#~^zQN3k0&*DVQs6wkP&lgSKL4ejUM8n!Mh3j*U&*77Z)v7?%D{obh}kJqwyhZ5 z1?V&ENa?fS;u(_g2!=E-2Qsx^LiD@Z{;C6>zoaheQ9|DB4UO*pA2l2Mb66`u53G+& ztzN!tt+$7q_RIGA@@`csG&21gQj&XG$qYDJJW6Xw?nvd{Owd6m=&lI2cMP zg$LA$gS8=0d$O!O!WM@!oazPMKoqUbUgYF}`K)=96Cj74RWU<|voYGK(*sb6_b_QVxhyeV^TlVt&38j1<(Wv@C zxLdatfQ>{PtYK!F(!g&##%H6i9)8yS-=*dQ#@8TVo-6)inyANGhZ`WRMz*^xU9x(b zK8ne#yd*{Jj20h9RIDE6)))6wMLCt6>qkqma5AQvari(*^w415dkzURvQ*C~8|eFF z*dFL<>T-rsRkMs>_8wt=)Y>UMfeY?e&=J`xQwFCBJ3Tiapz?huTiLV#Uh(KHYrZo3 zdVVf51ydXojblw$VyRi#ef;tz^ji2J>s|t5=mLx;;=wg-=%q|8u2`+N>b-Hu^>Oi? z%#HfnRpHIs9Eo9%prGw_KXzjAHG#dQk*o``9SqyF9u-WGTU*eUP~;N4#MdRvpfg2W zG&JIAVq4ilgZ6`q1y6H8Yi?akY*h$h10nSKaujJ^`Q-e8emtw}6sMP)Z~t<}ov_ao zP9L$;6)*7;ME`i7!$?7?T5C`>!tBG!0?yEv_qmB6FjdMZpCHwNvis}Y8ZuAn zJf7?kvOX8J(0BI^K}6IEvOF($mU-ghnwN#={j_Deg@T?dZ>0itGXda|cb7Ddo1g`5g_yxMp~ zL3-9;4#79{u2&dj+@uAn?p!?N-C03ke1M6z5^q#3gtqP(-mTMS(p)L%b_NoLykB{Y zsQF61OU8)?VyBe!rq||`7*i=Id}FM`T&YKAgqT+x{)I2kfhWM>v%adfa-OCh<{Vfd zMyITX{}})^Svgx*Zj@?JE~)wWih}(6Cu#eY=j)kF#!owIjHxii*X!x`^w>V9$`i5b zXkF;7#uP!}BqR-N>~ugu^OsaD)PR9_Uv^=OHOn*|t4gAY>%$5-C};^+`T-)1jeJ;t zkIkj5hiTjp(`une)12i`9~P?o!yT6Myy)cO)!=DH{XXew$L7knxse*T!y$w4XHOU_ zwGUsSgjinK8^Z4PiGjqO5=@o^6MEInnn9CS(SWu1G3yu=rIB2P-dB0F7XwLkk?<{M z+UdJfO#i9=w9wCiwN+Jd%d9)jY1+o(L^rbBg+tBOF|%0eW&HYlMIKbajwV0)rhe|& zR1L|vGlU3~i_`lw4awyom4Y=^-0M?f-pid2he>x6XvtLpU=^O>x6eRQ!yPhSib9dD zQsV4l?XZcNUg9Ml9eU@x&K;LBQ_#E0+w6h@Z;ZsX$vKae z69=;b7>%N9WZCY)&Oub^(pPkLqK8!voKf=nsh}Uqc1Q1=d~{O+6JZUNCNbwXy|iz` zT3(u4%UUym@W^jDbB*NWpQ&_o3aKoSy)saOsr#!Sl0G`-IaRA(h=GZSh{kF9Qx?D$ z_eY(0g$%P>A`O~3sd3)^&Jti;!SpZo6$14}YymmMjr?f&gI2$nH2XX!rm%BGY5z=E zHTh?Vyj&r|H0y0Xf9Hq&{zI{Z0(vX=Uf>qJJ8}_5BISR}_3_3ZRC=k1z0n%F>Wu~0 zGU`IwpFY9tyZ=0hOa(zo{W^u(j(aFqP>HbiO#aLPI?F9fyO%<3h=Z-{uqtE{h8Z$Q zbOji{MJ(X(0Z%ICXVuXz$5zK6k0wtZP9fu+;;+_dymn04x2!Kij9?#V`qj=W*_Ynm zag~*k@1Q0%;f`Bc<1Lu&%L109Kf>2g*TCb#hp*6!ZihDy>Ta|r59|a7jb_cCUoQcj z0E+5)(Gjx11Dkms`Xf$;zX(TEp;x1mItaP4dOJjYpZD-5h$8S{CXnmy-$0z1i^=7` zx1B5g^4z^_gcP%H^$WFXVX1}AR>d_BN;LUy2k{#3VM)*X`%C$%V(g!AQkIdaPM(KC zvzJao+Ih^NB?Txu%RtN9(h75B1yL0$`MW=pE4KTmcW`=*{L;5QSM0r zDdHHmnC)jwX8Fc)pCm|N*TXJh-1Qk*892zh<=&NnFxt?8mjZU0nA?^DoV6oqR78A< zM=^EhFeo*%ZP-3f{<=Qv4mN=DHX&fM;;sD8NpiRH3~%g-qnY5$GSc@+_sWW!1}hY=Xv z3hJ9IT4e7e54y~^HDm3Xwg(7q9-e2OWK%5a3JW3Xda6M|1ZaWqJ^s{I)`~b-*L^@z z9o+lBA-tnA46;&vLai;R0t7-B#D`sqGT3PNOSv-4u!$N}6l*l*h)Prc7|Byw1X83R zwXwH2Mdu6{%$QNd)9U{*qwT~%%}cK8w}-h6qqCkRaH^fACC?_BfcRTd@o3LjrMHVU zz3DK*E*8=Alr6<`yUb4)r|c_7@8H%a9lw@{FtjfR?YIeR5ce@lX?K!*P#4OVN4tJi z_d)k|8>BO3->bRmbNX%@uq;%nUfAczJq&1*S?B$sBPYSL*i3W7su@;zb3n;BdD>@- zeYp@kuU8-v>We~k;E$qpXiScEqB9ykJRU(Ge~TAqro|5v!UVKa?gvY*bxZRb_Ai)m8ji}@m5c%%&gwcJqTBXZ5dL(2?{GR&Uy949p zruwC!YxxINrtknSfrDIpA8Y*h&V)e}T=I+ZDRdb19cg6S$3_shOP8yT^-8)$c>fMC zGU!Jd5{ERWzhP+K9ROK#{bUTAnG@S|nQkRJ+Vb5kF=#t9Schg%njhRy^tn&A{F6A$ z9b!s9aQU&h8w_SKr~LkLF6Sz@c(;(5gGIYQg%MJ2)JXv$&2%MR_g3>=%gt2v39M(m^=qi(tOOX{x=ut@ME6{WfF}y~gUW&uTMfc+#;6f0 z)y?&xO8cMuk%rn0nzz{%UMALey~1w!Mokcb3W1aQ5wewqZv0W}*&5tu4IzznmmsTi+T3_6RL}9T=Vt=7v`F`^7)7{0CfIwxU}` zHlc4icj$#ZICsoAUFh76|4?0ymEDKkedh^NWAo#Io!E;6Jjh`$8e1n8hz10h#wt+5 z)jsxY5nKjo`1h=!1+Aj;L+i0&frYMYCh6 zNLTjAdO1E2S{Fy|l1|W^TazT(IXwjGHwT1Z=1Ga04?L!)__4+=^Ngm(T0_ikV3qpQfP(ulS!*LwTC4vie|xam{Vq zlwIAcqaJ==-7k@@<=o>;YjVlWGCQTFhw}X!Q%A)cD z4W!<3h@TeLeIN2+3%HaXr}0G~q18N-`Ct=nFMQL|if{sxjXSWr(47Y+AqBw8_Dy2{ zX%$)z(|h^ z;k+Jyn&L0)EpoWh8#}!a-boWSU!WWAwChLJ&FL8p;=&7^<6E)(YHN|6XD|P}RF}E6 z9#-|rR_2{oDlPs&UUhUlzWQ~#SxGN@>_hDoYzO_mb=7fuKeGc91*@9ytq#}e`j&zuAZ(|0wfOL+_|1k4o$_vXBRfUUpPSM zsrbzS_Y|U1NCoC^MUdA_t7xNtX#8iqa^=6uJG!5z7C~N0@zv0RHAil19A*GP9QE~s z?8oM2+AO!FVspkxgzfA>I6MyOnh;D(n%m8;C;eu(xk(a-4wAL2$D&ubTk8=CTfP`9 zCpX}j`d?EpDoD=!w4(N%*m#XP<^6(y2-N_Ze7=>BEAiSth3pm%c7QJXki1RuKL;O0 z-=MG7b&@&Q=ucqv*Gvm{>q+Ukec^KBQu&@?emGM3 zm)FqutK-Ndp=ec;G6W^6bbZa%0$Fz)*leW5`xy|zK>-~rA0`?2E^ZI+)mJAZkm~p+ zxvu!A{e?>^#{q2KtN_?j!cmVNH_^q-cUQX`Y@dtJ-@&ldfK2jS%gb(6YY(p^qQ>!U zMt1aiHiACC>vGzB!wL^XOD~evcPMQJ(01am7nQ>bH#BDI?C$G-vn1dBzFO}w?sC@V z)7|C7W9Db3gc1G%^nX1xt-mm~zs`Pg zU8kkJlGLAZ|GHh-o*UkM31*I}fBC$?>PJ)GysLGitU}1 zj@j1wMEjie8y#5*S1(Qq!!l5SX|rFH#)z2wP>@3ia~Qo()aG>eT*rx5M-fhrD0QdC zs0`s_Z`++(bnViw-zwnZ(E=G~tTJJjDrzg9tvZAWnFk5B56O2vJl=ap^O6QWwV4Ms z7RnA%ZH+rQifRCpKjt3xd7sTUQ0qav>?czQ|45cPF>Ft5&|mTWyt{D*;{}xVUIaTX zCXr{(*q+R7J+=Z;QNz=dvhw{kj`hhrcmHLHTwT6n7GAL=La_SqWS^Mwff($nJ@?Xa zK>`bnTDnV`?i-pSo#ERQ1qX-J+A-fd3Ax#h&y*8^S$rW?acf2h7Hq~+SMPC`;&ySG zumGkwohrRPr-N!C80odBm*8*e|0dFwpWydlq~4%)2(toDv!id_eBiAm9jn(a=C&fn zjdveK9w$(}oTrVz^haz`OSOx6{MLs~A)8U+>pjz!%?Ca!zHw9kY5$6cbF%A=kOss{ z9uRq58V$L{D$3GOyRRC;mSpuOk=rtfePZAKDX>DT;%kDiMoke zgv7!cs%CBKwvHVMhRl9Uffa;pri?FSZ~POuZ;fZ4Kg|E5PP1T0AByetvz#kz>Q=zw zqVTd{*L(ZS_vAh|))$o@^vg5-*KUyxE98bZ^YSq&Tiglgis7@UzZQT&IJD4G26iz` z$2%poG6s5M3`z}pig+WrRS`|Unrq2aR*V;29Aa;7PP0wL14mE$3E2BsSXlv*N{u&I zq}&RL!e*ORFIn{(KLjprKxmLfud0SweUyzUp0+DLS=z&W=FJ!HbD%ioP-z;mBn)$Z z-6{uL+QHIV-=hvMHD#sW`sC7h9pJsdv<LWSW&)R>f6!% zCOpR_k%#lPhnc)46T=KtiAf+aBovh-F9`m~QScS^^1eBlO2@DGPC+#1XOo_(U5_^5 z1@Prgb~XR(i6ieXglVSxTQ+z+)bQiinsCF9A15^i1*ISrtI8# zb7ZKA32W;NVGA4w&NTJK6Pw;uK?H!WqvFB)80+*jnI=7x4C{YibCTOjhb`=f?VnHGwl`yK9IAFkvQg{E2Y5{ZyE)3cCtT|6&|w;VsHa6^e&Z zh#IZ(xsCw|W51d!()Yc;wrhDOd33Y>zEZ7x=YDOdcZk3V-P0?`^uC+muvq;*(>c96 zXn~&96X<2RmfQ?97%ejB?BM@7wKcb&P=9`OGZ~{yc}Nm`cf01z%Sg0m5!K&hltpQA zvGgvz$yea7eck_Vsbyu&8-d9Y-%2@K9q4izaOrn=zfbBk<^#3TjJV_8CK^gP=4rcg zZ}h)*_c@=^>*Rp65@MRAoJ`*V>+?=&dts{wWY^*r>o59ESp$6_aF_n$eRgkm#10xH z;z&>%`nV{4M@~Ee&SGujYx2gcw(4>-V)A1K_V)01*X0*5uj%Q|bl%T>CtIBx8@X*- z>KXK=0i{-v^y@Z)QarE*l|mQgx_j!Tu2qE7_DLFbSMouQ4g z3E{uLq5J!8>*vPoZ&eTk>=lA+IL8~7^TLW;DA^4o2B*5`Gz>HGz9$Ie=TM;n!{9n{ zeFT}6b21x73=;ex+YtPoVZWrKfwggqarLXM13A%2ED&1G{*scTai)s3Q}s2*wqR><=cy=P>f4lXiUfx`p1_CN z`g&bImB0ZnH{#YW0&%m&E>}fb60^N2xiYLK7n$!v`(E`@O*vPWN$9sZ82I1ni_;R0 z$GN0SvHs_|g(@E=^v?==U8C~qo4cktxbp^iVHbJ+~FB1=0$*caRS8fQC?gqg4ns5BZw&(ctZtnr4ccu1u;MUeXal{P6tVpoQ_XD-G5fBeFkk43Qienu9 zN6Wgv=N)=o-XH%%n7RTj#V%H9#PC{6y)}CXOV@>CD-@2NA({)SXYQ@27Nzk zN6T(X$C)VfmlKe6HppHn5+pmP5_8*hM-mWEUE*oDTMyUW>M*Gy`#tvitXXQoSXTi`3~YoXjXLCA~P0u;rg zB*7i4RwL~z?~QD5@N8xG3Q|Y@4R89l#l+)ZF<`8NAhEVOC`Q#&fzsJsx_b-HqllvN zW5?wx2c!poB+cycW8=}ppk{#47ZK5YOG+kx$(i+xnsGZ9ZVL~PDx0Y67-r}#y}wR_ zl=_t_XnlQhZPYSsaVta&c5vZq_E9czrWFQ*DJVO4N|-_Y1dUs~xJvJ}??esS9ayy- zq=w4;G!A^{*T_8C)Hl0e2}g^@;CL8N{0ut=l)I9^>;CYOObmrKs^|3gp~!Hy^RrOG z`Y-vW@A;Aj=;^mxqxMuSY4qY7FA}n-a9pdZNPQyLH{#+Sp#S#C}=$ zE(UqO+Zc)XrwqN4h*taeZNM+}4c zpRa8NJ#2NNB7~5jzl#UOiv)@~|6c5){LlDUE6}Ibq|l|*p4$v4#w?eoO_+n(Dv4e; zHMf%4J49Jvcq;ruQmJ@?%LK8U5qk+|&gL4iLXt~|YJm-QnWIT!|1jy5?!t$!|2etv zl9|2e$!*t$bZ0F`Zn=st9x6%$nK6CiF*BC@#J*WT_e zNzpf5(Z}*mw+nE2H6iNp+{?TuquATS0p}U{3%ySv7mgF8?wE17VF^F`)4gpXMkx~^ z?=egw4Et>MTT7nkdM?O@?_9`52rc{k>9Z$Pq`=;H$uAS%+^aY>Ei8+TY!Lr zMp+{i0f!hGPZuIIP2ZY0KFq$oVe$13ys^ZFO9*@5J@eywv*YsOdD9mBseHtWvVD)+ z@+jk4_g3RwLMZD+buF#wi_N!z8eY(VU;9|CZmkm5x-_l*r2hGOmlr;9!FM3QK2qX? zh`C`hYC`>A4c`-t_1HV(rtde(N@sznfgq8v!bAe_^H36H^mRR4{mv`KN8p#P?~}~T zYVSvH=NJ`f+}XV(>XCy9Ix4>lX6tGn0S$> z2QEr!-v!)he{Xs>q2^hrQ-=)5ZD0;$7V7HUQ*QM*5$^@WX-JDugbCxVG}wVk?R?&ZG9k!_ z$feS?b`VB{Ddyro+E5Q;aduyuJ{)n6J!@mwOU<@!&vnV&lFF>swCl?$2eY@3sR+F3 z#hF%A*m2cnscFC2>6PK)rSI$5yvy1}P3#jDF5p3-(6`;C2UspI{{kL(ZROcZBY82r z)21>7iq}E|y_S$I-^_c*C{a+w8bE$!;*7j<%4xFEVP$g|czhG{@PY+~tn7?}(p? zQ*e<3uC%E1m^R!^Ibi%zjfKRWlzMy^sV-(%AtL>mVA~$o>8Av8!stha+vHi;2Vgbp zHaHSSqyl%IBo5gcd8^}`u<&X4K()jz+v$YClNhsMD0*U~a%pUFibyd`v2%CvA1Zp@ zJ`rVAG|Bu)GhFtsExaAgw=JD#9BK4!4V}I5O(v2e{v+8P=H3?^z96^lpRxL|fG987 zkyJZM^h2*tC^L?}21tu#&e<_)-GSsqd}QRd481TiHvddxq54a_z14&z3y;Ssz3q!^s z`Eg7mT_k`d5t;UGXO_>JIGLv%9FnBQ%3;sw$z*BIIv##UJ%`9-W(;D|vP4mpB{$L<)Cx#Kw;{ zBy0AipyRja1I~pcPTX7|XE_PVr6wDH25fx#pFx)FXYNiV=t2t~tSDc3Mt0CU?f{w| zq+QR|w}$>UEzf=7{z^{|&W7-%xfk?VHinT)w{B3lGRDkouft|zJZ z1k)4(>=gQ7o`>g_H^?g27jz1;8{5s`gF();g3 z6QZ>Imy?YzL@_T%zJI6tQ+(AufGw#_ygw?STE+H%dJZeYw_W~3I|{K1u602Vn%M?! zz2yGv8-0gO!DesqNsNO9@0(}z@mTo-&*3E2xXAdjhL5aaNW&omqwX&n73?c}e7eX* zJQEPxE?r)wdYqRWBZ+tmU2InVtPwU*A<@c4O|e`+1);U#p?Q1$5Z5mgR(0y+7WSAK zO)|6VW$3TqVBw(CR|2d3!D@|GDii7$D{>!%xmc+F;IALCt#fbL@g~7yJ$j9Q*BLT@ zt{J{sFSB^Eg$M|rf$LQkyfOtTu)N@75{l+6azdMO`#}-AGD+ve+_!gD9QoBd3ZUzj zJEeJ6ANu@Y4@9hcJSgS$3asDzRWylNR5Dl8_lgWPZv<~;$a0HTbRG|N@3^LAtb;S^ zy8@mf_)Z{?r-@q@BN(^)E(@H9E_V!}BZ=I%={N4&>>M7+5JS#?Ytc8(=Bv2xJ#^RA2 zJU~3-C*|5T_JnZR3^8SW#PQER2_RE5qZq3{)#$@CDIiN*ondw_(G?Cbw>0oi@>@EHtJLgtUigNx@;`BTBLTon=C5HB}_L zC2D0L0@JJ((oPY`$OtGmWBeDNG$lz}Nbv}0ew~&W1{?U=RC$um8b z(>8#tgj>@Z-M_IQVA~O$)~$36C&@wdS7}D4zgkECcn6TaITq(o*-?niJ~{`s&M>IY z6(x+697=k7@q<6p(9$Z(E|M~aP?M%^xW9g<&ig|_KqPG5Cz4oiPvLD@e6M#>p97F< zHRVw;{CgY8!y!wDHzfSWJ!S&{W;N&Nj1^ zLC}X1Px-@GJWy`Es;v>n@_Na)S}ya?HIMxCJE=1rBfGl#bl4{+Q1WnNWs69~Ynfi{ z60dUkqiMNM86Fl?B(9mBZH7P<(5L)7$MX8rzu_kqXvU z>|UK6@5i50!NoV*5w=g7zfnxL5hsl?Z;yK)O*G&lHObqUDZo&OTKAFP|8ztOHG=7rM;r!n9i7N`jmGf+GuNa< zWc-r;s}5-J>_Tt**^@$XhFf`sDdmN;(ohO(kJ%)! zN9wvsZ%59!k4@f-A-u8Jgba99{X=XY+ICD-PRSFpM&Fch>kIM z>i=F@RaHavN>x|P4IurtTs(&ul|S`Z>OOO zS3o}*8`*^XwJG5HJSDI_)=B6&xd-^C($ca8cy|`6*46P)z?DJu31JOflkz|);k@v4 z$A;EWfs0pSQYpF6v_0slJ3By5d6ZAuW2W z@BF>{qh&NXxT$aG^1KD)-7HR2>abVxDd$?%NQ3zD;!^Qhqelsq7zM~0ydJP~;XT2g4hM}eaoV11EYNdpER24^+yqagY{QunL8va zR++-DfqWz1zM14$VDT+HX}P$F9ka@5Y90Ep|GYGoluv*0arZtgG>eDDc$umHXU#!@Xtd}|^PG8#SG(Cu4hdJ=OfPnMSKLO` z&9DnWLkF_2Z65Se5_@%R^-_%*1dozrpo9>uJ*>46Q-G$BEtJh=>I;}Y2WxHbZ#hAy& zbnD(3dmX<<0*VHAScgtg`A-%{XLG!b0o)f;cJ(Oaz&95YHv60Bij`KWw?49>?qxXG4W>C+EP@Kgwp9%j`mh*Zzx3w=qoqfzdoZy8%wQafM7pM6a-i%QG)g`E4tA z*Qa>NP*b=r@A#uf@o8weYKYLue0@e(Jq=5bYJS(#L+(_1Epa*WRe?7xozoNUvxWkA zNW)qE^j_N@=J6#QJ~*Wxrb<2bZ$l%5!hO`UhBD>!Eoa=87z{{!S zx%$viXzg$|$13O<=>`Ox4!*{HUc75r&ZO(++$p1WbONgi;Ty2T#Zr9e$Feui)*NB? zZg9r-mXGBEeBS6uH3AB4W}JTLm>q42OQ7AWnkk-TqPePC%#DZ>W#h84{8(H3dtG*m zhKi1xU^J`<84}}@6q4R{Xqtw~as6N887lY<|1Z|xIC^?{I5OC%xB6DDE@Z2o8)Fg{ zEQ>L9JT@bZuTv-0urX@zV*G)}4|~+9%@Gh05g~~Wh1OQ2dEIc9@N4R{2N&^?!fMfN2c4D=nIwGd5(J6kyjTUcM(PmP5T+%fIKs#^(NHg#tJITm+b| zu=H00zV5+ql~b{@;x{X(pjb7R^!}I#>>csA4q)!+yeWGi%4`|n(FR>|xIk-|u?bvM zT~(W?3$D~0C_`@WlOPY< zkc0+{)qzTCR*6R$g7RNv|9C+c1qs?vE{mG&#TTBqmAY~p{c7-WZ~+U^er?U_ z?Nive9OW8$)vrKhda<o)yy1`m8Pfnv9z2?OPN#pH>Uyt zY8onrM*;TJXFE#qGr8UhyU(|!e)`-K-^g_1pz`~Np?xmL{$?W=ptUjZ_Rs*tb1{8+ zVlq%|5W=xLRoLL#fOS`9rmzOrnWO8HM~~#eqN_^z;!ICN7QQHCiVTi z!^rx_!c<1#+Z(kajX^S=k`zPPY*;dvg!q*#DKwKM zLvqpNgTpZ6O6e(N#)Mv>%`@(dfcq%%d~bc`)-JO&o@eM@go~?YN^(Om#fEv(Qp)Lp zfw(~q&L+ckIwnB^;xZdqnq8NN%h)~$SUi(D!yx|05FKGcOohd6>aK;S@mRZJCt@x# z>dst5o7X+dJh7C4;nZEJWRNcp9puc`+))KFFMs{~l(l~3PSm+TnJ4t3qoT|kclvH< zsXb@5KN>#|><;V6<2Pv}X4}1G(usCO?0)xZs42*#DI#ip$pT@5Ac&9IF*yLp?dTX7 zdC4E3_-x)9Nk_L%%!qUB9KQ0^$s&)6|F@VJ-a`toveb&AG1xu}mMDCf(x-`zoZCv+hRQJUF(!}$YOv6_w6XCC! z1M{C(wmXBmvw&GgV-WzxqZ9_$q^=uQRJs~MNu}`N`yXnJ0L8`0FRW2U81QN%d_?=L z3b|#vUFy#tk?M?&68hb|0HdhFLQQ%Ir%Ge;OB~%!`2*3oR4ZTm@T8$pbrU^Yr%&|( zUKryZ76px?Z}-~3R^>^un>`Khn>}CRXxbOFw-Q269H^l6 zefx{SP-iQ!{i8#-GjJQUn!WY_ZQwx^Ykh&)-s0qJ z=KYCEPA={n8R7VvgFm{MuY4(@v41Q_4HV-kGQ(x}p{G$iL&(4gbe2It_3%e+mhYa= z!pXk#(`NJZa(de}+vg_Kqr6J$6J;zT+Hafy=29m#lEJb3~g zIvQO0Lh0~FR^uF^r75JBZA`|57Tyu6^1dw)RaNSk8{_qCa}pg)vCxh&(Mn!rh_NnP z`b0ck{qZIGE?fD}27yocZyCId92gW@4}O!)OCFBwh249TbS7P}2EOC2t81lhB;D#A zTBSI-l)@XRiVYVt#2Q%wy&7(5x#l5*t)3c6(vL+q?iTD4D z{6AhH9Wnq0L)liyKjmge`DM~z{cM$JkX)tK_Q{dA5AJisxS+iOPO*m#Adn9EhHH4I ziJ4?A%lF%iBz%_OM?@KEsovm{T?N<>#wv+77Mx@Ftc1ruooB+~v@DR!LIr+%df5wu zcN5Ckb0NM*7o2LC)wL2UJ^!F@U8OU;g?%1t;mCTX=9Tn<-jYfTY;5gquk5b>ibPOD zT~}R$f%2F){sethhmi_J!?V$*rSUEzvK`f!tPwRutL z;kXwlh9@E!;jb@nf*0iU<>yf|4xv+;skdxmZxAiVWXQbT-JjLOt|sFDuR4zm%!0SLFj2m;$+Z=g-E3;5e5EIDUB$9g*E&J5r%c z+U6WnB5U?Fs5?qd$^O{bpyVBDf%P+YH22>}@LPbF0QphpsOn8I|1) z;Ua&Gt={fA3^X6ALSMG2A(us%!|R8_87pn41~qIrQukK0%!VhbNkK+0mDShU)=Fbf zmC~9tx}n3E6&OQcoiUz+{dmg#h{zcP^K)~d(#bjMhV(iV%^P|(YAc*LY2+{i9T*@56bWT1avv*wu*%_d)}f}y zp-U*dZgM$VrgTb;CX-hmLCiN184PbpB-E((*L?jrLFw#oT38eo8Jtj%i}~h&xBmS* zDtFhz25w&2dlg;4x(5!n5hGKh9P4;bW6LK%B`_49^fEbJL2&TWZ7{dN&|0Lrtd9P1 z?BDakziw3-3~q3I0}0&-yr91%}E2~3~rSZ-XdJMeqLKj9il%JkhC5|0a*;1%WL;NybDseY;c|^ z0ojWXeFGiH?1+KRJysYm&QtMneo{F-1~a7Ko`{t~eSB?`YT~6Lj{8C-H6eKBFY|Vq zgx-A+)-3WXitAQR2)*=d$v_SX(bDw9ozc>qF2ptj{%hA`@Vl`%Ib_>PBD{iP*y3b* zXlvKLF55);vBd1>XJNm{jHN4+FYx}x_-3X_Mru5jKpVh7Wfn@H`9_8dUuC74f&Ui@ z-{#i=8w{;;YjR3*Ji5$}I^h{kxB=qs4>IIgc{pMOHDZYwqOnHMlz0i#tufAu^La!oM zgbSKg8AO4gYI@NG@+s7qW-$xQyQa4+JC0KPb46>m`GHo12Xjwva43veJQsfzU2iXC zeKwDhywx?G@gL;{X5n02v@FL~wp@Qrw?(0yoA_Fl+4Y}U_CK{*Y*S>6kW67Z7WrTU zxq{3F2nPlnzf9PYQj8|AdcmOH;KDs+C3;Zz>~U?2IRTyYmJK-?QrE~!i+rG5TI$@C z&t=}Kvmco?36V(Y94UJv^gcxihlKXtUvW|^fV&$%E<)Vswn&_tPSZ$skU&VmAo zv1lK{M*rgl0DJC!CP^Q6dcW8NT`h_RSuZ50l`)|e9gx(VD&Wh z-GIxToaXhzeEz+j9MeC~hCl!+&O}ZQcvUr&<13#aljsxG&4;z09Q3K7pF+ECTDO%TK|#h1D8suQ5@}! z(j!lZYv57dM7iT+&j4a!^JxOeDeR}Q*6+L8PNnD|V2ohiTS0r1nAu%z#_!cZezqJq zc!^-%9OgA*8z`H|hwPpM<+60D^*Hm!pbpAhEUR8Fi_qscgkqF-HkuvdBnfpRI}!V@ z=u(Mg9V&~atN^|hg3f>5>NDjSQf>5L;DsuCc&w}}xAA_}$tg%UEezGD=CjC^q&qSL zy?{hNO!DoE(ivP$rk!m4Q=0#Ib+JTr6Td2#Z@bh(N-xzDKOel~lYCTT7k?lg#jH`yl(!4ArM zg_5!*NA+?+i*}2b46?(Y^?JI>tQQyVIOkdcMj(|b47~J&9P`=C^v#w1ZdoIPgbK3` z6GtKsE62wXH>1Eim7|U-Fbmiv=ld@Tmi(5Tt-u|D^dT7NDtMgvdJlO@e>4cL8cc2* z=(kdo<^EJ-SVAwWhc*rvP+r#80Y19_ZT+uM@)MsVu-YW8ayn>w%M>h;SwoB%9A7be z#)~_=!%^o*I&Z@_&nu{@(-4-TG&`M?A*Y}NeuBL(TLqVWC)lM3_YI@Aa>AJp8$K2u zF?{ZryikRZzTk?+Vl&pa%;$jA&5r4p9Tr0Sw{t~hjsIlTkO$+=%FTt}b%b07X%1kM zpXVM8j0b&Ho@`=y>L`$0bsbpL(g$Jn#|#Zvkm6YjXCuc4|B|Eck)V-23*qwooj`QBT+M6uA+`~Ggg zp~@nJ+6f}ncJ3Q=xcDZ@%-g*t)|h2RyW8Jt$4$2c*5<{x z|LU;tP0?2}YWupiq@R`ad1w(eA-|;}?@OHq3#Ec#9c@Rvutq z#+%j|1=k){hZZG78)<8pn7$@Du= z62AQL!rFY6-sUSo3#m+`Vb}Qq)_?|`+0VvID@lr|(gE3^ui?FBOlO4JEv*g2jWh2N ztDZ@w-ZTC$UL1B9_!K^s5*8&XwVsG_fEZ&-9goqmbgA$zHHYxsb+NC{$c$kZQ7z8C z{-~1VJEvYv>E8a!ImY{A5CLQ#qLN@L3{!x%+8fH7XIhm90PT?4SFYFZ5rnO+ovpOq zq&mIh^9MXZE9RNfeqzER;T~40fzaQ{qk`1+v|?#U;km2hC|(P?Kh$TkGy|NV9C$#U zR_;GvU3BIJ>~u#9j=UiA)crLBq<+3hvG@u^vBj`?7K`gOlZd{zH76b-?rVIvy~qN; zmCX3BJMJs$)7(qRXOzaXv(CBKq6jgiE){2}1oO)EQtM-qr)a|GXl<6m24A$eShWvr z%)}T64oyI_m%P8Q#oG=hP8&NiDUd(?3)B<&5P9RrbXo+RZL0+u0UP2A@|xaf%m8RA za~08UiA7cabOS?rZ|rrg0tM)cg~({5YLK}|s23x1E!ezMr`x0RJUp+IrkH=vm?C(t zwc8jMUb0y7*mn7i>HDbdDxElgN7~5^Cib4JG9)L`_SuiatUk>Ub+-{9)W)bFCALp; zpR8J*taO&hEX6!!^BG`YKdvTE&S8MdXeZmR1071P0_t$%{|tHg5O zMU!CJWE6t@H%nl#-Q|+9?;glAgnjodKZMZiyJA-x=jxUV=plETbh!O~Bq5agqoFdg z^Ewj@fn9{QH=Gzz6gO`Fdbd&}|8uHGA{bvXBlnjhO!*NSF%%<|^6yTj1YMP;eMT$V z$fB&7v)&lv3dEftvRcui8iQjV2X zKMh$tJ>9ciCwQ_{tJC|z`_^o}|>S6o*DpVC>*kDS98Y8(`7hG8U|*RYNNwXvPkrdasz*OE$C`s}R1LYs78b3gjG z#;rum+?_=Fry1g%dvE#L=tM;_2@Y3|kdT>0AU1zn{^POli zeTI$vpFbU($)6@*KYnwrW}Y^objjv;_FkoG#$TNMo>qCFnT=Aiyr(WrE!QZTC>nwD z4VpnGFK5oO15eO%1Cj`RB?+!}@*j4-9|lRPOn*aIF$b#NzZAWvIg>a1b(s-zouL|H z!3Ay*=hQ$X4^`J_MwUI-hqgGHpYvp z`MSn=J#jD=x9O-co)z`7TCzZIa-VC~wyl>6F!BA+A9_1%tSr?M&MPaEb!6Ya5^P;E z0iORz2Hp2H5tjN%Hp6_=yTMmyMilAfMP;Aa*A;aJ)wFP!t{<-&{1_HSLPI`knx=^~ z|5`tqR_qon^W`M!+PqJD!ui=kh!#OVXgS1p0hdz1s4w6djXMaNB!r5p_KWu;9)9D? zB>$Wl8I=_BArZrUCQDF*7Bvv+C>u8@S)G&jvsJEm)Y*i!Cg0X}GSM0b7&$$_3qq%N z;OE^OMd!e*+?@+Ln}mGhvjO}-?`7j#c48466%#sppxt^Ju#`)4@`Eh*vFg13>Rw*S zW>58Mm2qz)@!uW#U!$Ra*lYJymdG54B%POrXH-SwcP$Jr<;wlT0h_*bC6hdC)kqC7 z(W7jFjth?ro4tdpz~y52GD+e)lpjZZ=2_G?Tv9Ivm&bZ?yBqB|%3=In5Z~CM^}KTU z_4Rf22NW+myO$i?-0}?&Kt6k%m}1~w49PyhL3H=}ywRuH1r*MqsfA5Z5Kp;@`+WlO zrk}4pvz*B;IDi)O9vldZKzaiIVkdGs<6Mn+rx)=B_Ox#7yrKGeL0f%uXt@tS9Bpwh zkv0lwJlj1Z-ie#gvzLvRhw(ix1i}reTv=Jsr6HT~*cuOdJMZvd{GuzR!)`xEVbCNr z*Pk=CXx1DO%wj)x{Nj$htxbU0iQpk{lvRIW_iK^xD3zRS#V;x5UIb51aK>!Z%aYb+ zwDxEb+WyJU12(Pj+=QZujv_^wbC{eaC7CGZ4aQJM<|l7_22T=nqYx(lF+MS2 z@o=+RDs7=zdN#Wv47XTlBPerSrU12v(p7XHj5d&_w1k3<1*8tF=k0d%R5Y9ZULuW? zyz;92PjYpA9pNFOvG>MXEU-Gk;>#QcF>?WR?gFHUOu=dWRW!E02HC zvPGwt8{8~=R!a#3K_u$dVpi1_jjq0g}lSmvwbcB^uumU9u`zD!;)l}bCPJUWWN zmx-yKSsYN8y&(RnAgFv(OPJY0`0>1LE#S+A_-=zV!NF7SDq01%SzKm=XJbcXXDIp(?cz z2{u~pqIqpzd2fK9uB8Ae=6LV(3e20Ag9?XO3Y{+}Io*@bVq+^+q;ORY!p_bq8W&SA zOlr=8pe>8uCIbikDgl6vORZz}FqZk-%;C(J?Wgy*ml0Yosz-1y9Tm&rYXe*<(sN>* z47ghK>U&X&%u}amfV^myQjFt3k(uLDvIs2{-Dv~{u{z@lwppNN3ExH5ezz_hwh&j4 ztpgaPlLc`Xd-)QKaj=n)Sav z*Xi?$iw6Q+s?V)k2--+)or)L zd=4!^e<`=PZWacDVPyrKZFvfX=Vb+5+#93GQ8G*ywNUW$gC;Zr0yaR4m%-?qKL+#L<=6l(?5^iqc1aQK*<^v3}wMryM2G&_#+94 zs*_w*4UfZHyd-kMjvSqcHhrBWIlhlapG+yR;+Q{~i8UkG0$~@{hiep#kKR~UQtE4B z!cNHTmsi3PQpm!a=wzBOdOlk99-kwnyqF4htlA3u!R~r#7=zR?#y4e1ZA1lFG$Dn} z?5htC4EJmMt#717lA(6)+dO_-Ga8~;aAhOS>9ak)oqcAaTHbhW)bFV7#o-%%*E(^b zb;vxZPQKCn^_u&XW*D%KLb-SS%u`qvuM91yEYu0-pj~xaPB#9asA#ZSb6@DN_kJto zf7r^uUoHvYkB73mctxi2x`K^*-o)pL!$6_HI*>s;roWu2p8SgNb6yMKw_P6YOEIF2 zB22f0`D^cm%MJPCDj`wzK^Kg{{xbdVaDdFf>{`ahmx9qjTe^hu6@3u!@2M$GrZdf( z^240X`K8%UTRPJSQF|?qJ8ewqeX!_!Xo*J^%Am9eP*?x z<2Ooy0)s9GOU&NHv-lTp3aREuW*u_PLCzt7q{3cHBAnXkW}`1<)te6Msmp$!4u(TFX%6xl#6 zh?H4Suc-i~=r1~1f<`+iI9t-2m|1)<{hXv8{8_ezs&o+gr|*5Hc%u6YEdW(S$I4i|7MDq}p5+%wT|?607L92EhdJ zs9}Cwl=4R&KPswG91~-#d$2jzIeyaDuXr`$)XY2sNVP03BbY0~$m&*Gmk}KTIB#Tg z5GJROHA<-Wfy@J%u#?~$lYoRag$HvCt2oeoQk2XCYkqm%I0EZ#C&DYu*K17E*6lIX zp>=6iMNMaEfPAkxLRVvu;L+efzs!XUS~~trRPeHdJ2F7X87z<^_&iQ9dydh@h|bdM z>95x5K4}@Tf9SLSY45^L7)*oi?(51|%xRDjQTxuX6Y?g_kKzG}<4;a_;2SL53&aa@ z=eZr#{lec593zq4Xl(G*%wp4+Jo1P}e#d~pD{gjZ=47o|g`q2t-*ZTasEO*f#jlAT zN~WM%S6fdmD+DoJ{B~m0YyEL$Os$3hfCqoLy>^-f|_V}kJ-zaR`LDTQ=e1c!TO^l1a6>^RY zxmxUs2lUO5VbEFI7UwQw=#Q*{>86{118Sq)XOo5lG>2i~D<$$#!(9eA0@Pk;7U?*N z#Z`x5jlW}T;@M#Lvk8Sl$(?}{D2k>Z>s|Pnm&@ul9xC$lNptzx(x@h5>~s%A@gjS8 zdPTNbP%n1ZN)mo$cx?J#SlK#$%DP+3eHL5Ll;4;E|4Z!tZxP#}raaS6VIu5gTk}-d zo05#9d?ngDul>9dRNnHM+b|d?X;J=)pG`TsR_viDaU$kzAwNU>?i-s-kg?co~m4hqUV*M(%@zlDJ;KUid_HCs8QT)#gdsy4FqrQY)g1SZ*7vlk|RK z;hy1fn0XOYKIqkl+_&R&I)8V5bJlU4BTSDA6yww!pu(BI#kD9RnXYPE3jU0}EsiL}wVMkmG6M@p}#i1eNf zuEmOcWE8Piu#yoyFuTi)o^_qL2j-Bhr&mbZ^D*jrMcr#L5?wE#8e0a6VFLpMatkB4 zJNE*;r^%hOxL0@WN~Vb9j1BpM?DB=_-15o4dfnJx@yU`T@a`@BTo?gMIUMKqZ|<)1 zFbkfCjnC`;J=4G7=D(g!D)=ap5kU0%^%%UM7lvXWp5!kQj=bWv01LXM78)*NKj0=7 z4I?Uq7*jPiC#INcB2kN3_;b-2tTLP6SEBj$4)cW5vhZpD@IjNB{AYQ=Z|_o3v`~b_ z&hW)PO9r(?tm&K=^u?fl0Tsl)*Lv;Y;UPT@*?Obyt6?RylBQMTKi(>V$cME}JjfY* zm9BF5h??3GJYpD-(jDai1LoqI1bQ=?94*GK5#g{U!6;b{RZ9@0skEbJ%LkUx+;j1& zhGQPK?_!-0Qc+Hl0T+(q(J5`(6JNDb;2!srF)#Axe2wQ`pu9LtQ~9KDT}y`~;5{rW z(h;TPTzckBO6A|Cr{i58do0GAl$?}Baf;ZIN z=XtG8N;5Z3VO6DcyVQI#%LrJQ&5#oB89`rBWK6Xz7aK>GLP8^DlvOEJ$?(y* zm`fzqz*6sC69$C@U2agMg7K-uwfn(alQ138R{1if+Zl8Rr><+}S7rULu0O7*YKaSF zmT=J~Q+WejkMkjurYUX>hh%B(xzDRg7RU-S4@8SymQK2F>WODBv_!KYeQ=fjhe_3w zOUD9FLHyieh+j~4RJE~|G$+NF=$PnMLVN$AJX)}c)@b&e_0~ksCAw&!Y5bkwzl-x< zQ@~KdNUOA`GkbX zCQ7z6Qgj&Lx2dzArVma8&e!=b&*Cp-(@vv6m%*C?o{tarc?6wK`;W|a*_zi?-<@Ty zxT2KFCgd6rdNN|l33x=ydrV3Ug+lM?q&}PAA>hqqm?o#VJ{sbsB<~oLJ5^MUJJXbr zpZL)=hQh^Pt|bSMM*v|M{5lsN!v=pmF?mq_H#sRT9ojOEVW4aly3}+Y zZg#F;@SH_h^5co%CqT$>A{vDOv!|;qzO~kwO$FS~^MlIo# zgB2;Q;7BseX1!RS2+pV;qZM@;up;VW4b~%y_wC%bp$eDiEh^^{92J0H%d29zFyvDT zZF9_8kzpEj1}a^($_!?q1F>@#0YQFLvnOritq)dW*$E-Ke1{wlF(U_Cq-fRSy?Qdk zW5%r{O?n0lU)`Ld&&4cjoTLuawtf#jE__v4qRezHP z!Gb%-_U&>xDKK$TnqO|Bo0&?HY_kF!I0xTNO#!$YF^npHxjpoB93k~;rVqc^CLR5y zednW^vxF}2cGNu&D-txc*z6dxfQ^b-Wee;XhlH-wilt1?bDIr_XHpJgI5cV4?0|ki z!uA0W823|^ifgq}6s=B7s?0JSa&D!SFVe<*BP(e^*32=_xqR_0?4Z6EWCFQVxT;kh zbl8t*9LFTVG#KU@=AKBr_SHbvE)xErY@FZF9_B@8IJ0OE20aQt{gB|5k$^oI^TUTl zSy!VN1!05edJJxNp2^~XRYIHi)<0Owv3)y_N8%}JF|8!Dud7ww#tnFg$t;wwiBH%; z6a69&M#c>Ap$B4#<_|Dj=E2!4>dALINprc#E%|pU#(yFE51W5S(cr&{>_fT8G8M)` z2G<0Tlx+$!{zF`T`8ViHgZdu8bE{QUAsibf7FK6&&&+QcL=~?xw6^;CWz@s2{K2Ai zsW--#*Cf;SjNFP(hbwwI8lOI`Nj63>dTy8fO9p-hx|qcmr81^`13Ovk$f+cB;`WLa?Zh`kw)zlQ)q!1~ZADvp zbk&&wsx}n0_T{{|9j=t3*W9Hfz03l^@4dvjyw2~>S1IrOlrEGUPbn&&POuZP zO8(vfr&IqXCfHQUZFD zi_8TKGjZtD-uSnFpt0E7k906OCMGyE(D6q7=da?vnrj6GAVJqkudAMZ`GD88#n zGj$7O*=V&yG&sx_B5j%*{DM<=XFY()X$n7$&o}fI+(!G(c%42NzYQnn-PWVLiu01F z%9PFaA{x#%ma?d0y!~;?@DkCIJf$^uyIX;@qF9Pr(JtW}&Q_=a#VHcBRSIOl80cdv zq};u{1Yk|=J|)A1#@vdW2qw~)6=M>QYf90U`6cYj_t(ZqC$<6k7+Sfiovf^wD>1b` zc~|PK>=ABbs*0=EFuzOhtLTtcTIZ#}?w~-bkhoOo9IoK2)%zj0eS{;@hCcX8`!t;* zjEwFn3*+Ydaqb5{$zew1zp7aH7>>9d4Bj7H#ofn$_=9hJ#5fk6fy7n<)le5G>yq*U z$VD=^j4|Oi7gG4}yPZdYyIyoeq}GQeQIKnVyK2B_oWNJ--|a0)Ee%dnBxR;Rt&il& zZ>VY8z)WnW^chi14r+71tUDSb-FU%fUI6Zw()~Cg}9Vpx-SFQqu=)-z)Poy8KqvR2OV>t1=Qio4`@O=tYe~2^LM=HtZ{kF<*a* zwL3igjVG)~6McYa)jeYv%w zZ4w>s^Dqxuix)D_9EXJ5@2Qe>=8;VpG5B@}y6?~+S^vgMTZE#DKaXgSEOYSVQM43} zOUJo(4oLweEI>!SM?OGep=tS2o@o00u-MfrT1k*rz$T&PHiloId~ZLt4f(V37Da*onR47BZg?WDXPJqyqJxqP$L#AUsI1 zXz@%86^?CNV^5Aw@PLaQ20?21Us3?uQa-DNE1yUb8s=Y$!-HH*zLOFS@2SN!FuAl2 zDl}HCpHm)br9r@f3_XVM+ld}QV-8Q1Ouq3ql!|k0XYdyA)NJ4Tr!WOyM1P zOQo~3;X%iwj%PI`Y3E0B?-xQ1M(UaQn zX~ps2A$xMZj}f;kD|hOebUqdP@9r;PNZRw;YzJu$!6!_3Y76O!aXvn3=V>kiwIv04 zA;`xd_d61amY2Li^pV~(JfpzBSm``rsCOS=MxJYqt?r$Ukl?VJY!#IZmH->8kxx0R zKLGTiZ*|mlnZbUE5Xve9&>c%PU}jQ()_{1zbTHH>jP`sFAq^wK(iiBpQdl2Bia{#& zz+tfRDE}6fG6|e=w;_FnrIWKHb!{kLs)Zd1qm@6KCVfi9eNmVk_|cVS;5IdQrkU2A*W_v09&9)m4qzKsqrsTd$E)rFEVM* z3TJ1+VRRb>KA-iS!> zJr}_n-=u-Tm_Vc}jcYvvu;#9D$uE0i5{f~}_dg*2*F|fInm`Z+y1KC!-U40ien@w% zVM_V)e)&(qHz-p-<&RlV>oh$DCEOW|$vlk9qc-UmoQoOU5kyc6SLt3fH2G)`TO{ao zdF+Kp`gA?25|E#TA^hK64Q#1}rcl?E=cH=#f*Si`Eg|H}uk^carXd4tjVVu4%vUXs z{rHj7ssi{UBw>f7ap}~Q)hvj+$pwzrEomhso8uSn9$0(o%7&>DIVo zj+44?=`zJgg&}#{Ycyno-30TmISg{y5a>%hyeINwwtF%z(UbcUX2Xv%Y&h6)?N12tLmHJ<)GI^%SglQ2TQ~}pT@C26$PN-1uBmZXzVyI4UaT; zSR~3Zeg8fHD*X5dT?l%9iID4ed&baA28LKH93M!)ex4*;gRV+zV0F(%aIH{{2~h9G zh6-{_l2ZMC;4>0;e!WBOz*xS$XzHSIu?;zs4>@C?R*{TCUc+CMQJEAs7+g9-7#*Eb zb)pR$@!9qYWXi0j8zP<+nH>*QR=0sNfig)AnDK_MV-^Qm_>Zy7eozt@82gbAlukrC zxqmv~nusPX$Uz@qk@0gC*34+^U3gOGk90`*(fbBT0falhc4T-?OG%06q_}Q&dY1rR zDMcf}YLS9LHC^#1*+qX*Pp# zZTYZ7+7czEO}AbR{$5}8mSf<{BhYirT&h|;rBgQs>GJ;KB12iYt}y%T+tPt!eHSP8 zOXro7Ap5KrcG1D-VHzfr)xXpy;(yLTvzpq_-UJB-Zp71JOFecyx~zzg7XzUK_tPei z6GtI;^N%qWlR+eaT|mJtJ#2X^IQpRXq34S0zbRGu*ig$jJR6!{Dea;~xKiI`^&4_6 zGy6hS9(zff8l0WJN6TLxo={IEq@n?ZCW;QTGe28HS3s=C`#NmWzBklEr=NpPv-VDv z2HoI(c%Fs1x34r$xxkT@kRPi7$awcXmwN&$#C>%`3*qfghuTY1DY1!S)fkf);tD{7 z){G*ma`^{Hi-nem((Blc>)r1umgQaF^NKzU_T;W#PJlzNN{+coW5E3RrQoXkN^{7< zRP_WK9k8FNOTF1^9BOJ4J4SMVQz+`*7^8Z zG2T6~LKwI#;|MuR#N}69aqjChk^6EgT-*fgO2BdsRYZ@C*AP{MN&g@UZm3KF8w$v0 z8MOdP){%rg*yENkOzN&z3I~3F=+panMfb?a_?LKWpTc;JYW|5NbMl9Y43<-r58RLC zlg(F|A|w2^itMsLwfTg&sFyh)+)r3(4Y<3c>)b8YJf=7DKXP41`n}Sfhy^K9G$UdW zQD_6uF+>-!vtfu-oQe3y$tl%ss~n5Hw&YLoVD^>b5eutujzqb%T?^|jomn4xk;MXV zxbG8z|E)iK2`mkp%sb6&8NN(sqLw$CY{N&+N>*)XG=6*B735;BWuM?Q>q;3ShzWJ|@>wuTI<}F_+63zS^Z?H#-$}9JyDop$t4TBDpSD@g%AcTz> z)3JH7IKN{xs1Tr`m7#PsJ~l=Ohh@2$IeIyoAUy$7j8eMn%p;037WF-L zI8hcVRf3b-y?!NtAZrWdu{woF0;4VYEbZzYF%@1EFTyENvQ5C{+*p+=TMWregn^Cv z;WZsbm=L43zBv)%@rm(2?5y(rkS;VuUU9UigfB#A+2QfD8G*Lke(*7_oBLsv8?7Z7Ij0PU z{hd>uZL}wTc#Udx(7cmkWiuGO*u0p#gI$q-!S2s_H@#iTNux4p%+H4oyH(x;T zC1PEgo%p6X!NZn3I?~VAK(sUVh2Q9V&`XCC!xtrO)y@FUk# z;<(dVX_PrqYEydi4d=*iBO6L3NEmO;PF5Ej;h5a-G#ZIY+HX0J37PH+>*!2G>9$Ep z#AB@}*E6?;5F-(kxw7j#wB28_F^N<8%>N+lmg&mV#hjLGJC8rx9Y} zsjzlJO!y_-|6`DooVu`62r5sob!u+sA$t<$DaU*p3NPn1!?&{4@#+aA36ZQx5^^e` zB%>4ue3Lm*yW=NFjFyjiO?IQsky@_bj&w@%0u6s56mguemdcU)kbT)sNt;BuJ9+oYTh#1&XLei#I3w3Vk=AKp zkpKuJxRWbG-TVr;!7Y@akvh^74>U_@bW%PmUl0g9y+JPGW-^5!dQh0SL5Op)KegnC zFa!E>eU`$=MNb3jwFEB&9n2tSw5WVJpmp}|%3oafAmLFHQ?&boFqhx(Bp?YfARq1I ze9ee)x32nN+1_(MoPReg-#JY8SDcuE_4Io>DIN#8EKZhrnWGbU;SjIIA00rUob;WM z)mezqu8g6nEC1&pSdNw|4^K9!n)76MW;jv<^alHOgq>-FRwPvIiHo=~R=g9G@zMgd z#u05z7TPQsCyI;+4+>&c#oj0THRnV{ZovPnNe@VM*H!su!a;@;$oQN4?}{iR+n=Hz(&|wbi{|F9+3X# zbo^lT@#HV^7+G7rQ2SmrV@Ivz!_d)3DT$Qx988TiC8OD zsgL~TH`_65Sm~<%FSULbh7dlayAP-hnSMsZYrZdF%Bt;_QJiH%?dSZR=rpgQIQEm~ z>0Rys?+gt?etUy3@Rc&kZ1r4%T1B(o|KaK@gW_tprEzx;uE8w?cL^|%4DJ>r5Zrap zU;&cBCAbD>kl-5JEx5bG;12nQ_uPB#Ip42c#Sf}x?^Vz0r&o6`s^y<;$`3sG@S7C(*ANTBck(g zU#O*Pc=&Ac$(aU7LdCgrIsNLVdOfEw#~H@!xb`znNS3~C`}+qA25@g#uL)x+ov(S2 zkhc9|;lw-huvQP!DpR6%-f+s^JS0A<2n$G~C+1cP1w{s0yv8P3I+=Z0bKSS91{tpW z?~6HKHm#`AA!|o-OLJH-Q}AD+lchFg5G8xx3M0IWIRyW^IEV(@eqi;#$vsLwgou{d zZxh0tY77HR^QAHX{=9rg?#P_vdbMdEm@zFo_%%O5pGe#`?` zn2iJ7lFUPZ$7|trTvY$4h@dbB2URUBM;SXi*jj)9r>sbQ59grW@jg>T^-(n5k|_7* ztUCIi+GmMU344iTH6?HTUUJ@H476FlRm3YTvn07xrUIz7XvJ==t2Z3Jtv#1InF z#i-JeQk=IxR%qIJhEir@+wSY)H5Ec{56xXVeEk&)%}bxLQ-4$UVSPXDiNll+Y-?i1 z(L3MV6eqzYI_^z!j;ZM%=XNLr9lD*_?`#wCv?tPDv!vJY+6L&~Qj*Yp8i9cRKAQo{Somtb;tRo{eP%f|J4WQZ3o_72pP$D$q z=AYPgQ2t=rKmT*Q9r!&*F z5PVlzTS??W8>@ws%=VKEt36Q-Ails|S~Gn?nalWATOimeDdAq z(XR2_{1Q%7G)Z3k6i;wm+q6x*y_&Ks7q(H+xer`0q{rLVY-;Df<&*h%G2dbpr=&B^ z9ZC>DU+=ZwC==(&NpnZa1=kY%iRVEF@ABMKecyPmRbc^zCBHJa@RfAD8GFBT?T(N+ z)*a?t!HfQ;1hhXZpypJEWf0jk``Aj*Au5-|tKzhv!+pPeC_pd~*NG4nw3U0^KGbb6 zX>=|hnu3(CMKHpXqa6WYR(ws+U@m&uRLHFYLYF*yAMzctUt=@#mQ|+H6Xt2uo{pO# zIuS0|RocDvmREf*=HHjf=!g--nRDoM>A!yao=sj-RNjbtI~&*_F(#Cr)F%3~1yX>{ z05jEE3fR?zRKycfrbS$S*qm~2iI(Jke%HmL-0i^YY?Q3nx`NjHUMe|1Bb_oTz5*L6 zhBR+WUgUq|1<~qDEitwYU5&t4v?C)_CiSf!%G3Tuu}NNgx4BpBP~ zo#JK81-NPDDsgF($8?kNA#TNTri;>)Ad2Q_{%pmN9|gNJmq}BOwFFgfOqZJ81*h>M zRX^xx8R{7oa=MIX+fYdaBZ7ZGOV|Wxed?13Ak9(aWK2%4=xe2D7(bZLeWLVY6I}D? zA~XHTJeC-hM(GghRR=P;yHyY)RV8^6;$8Y|RahM)Ae0S8kM zMY&DU7p+gkWu9rjzBeHefN-}JIS8(bfaKHiMOx%|jUW0QHG9Q6NH9M2uZ#+75!=rd zi`=^1ha&R1wozeStit%I|Ghziso=9p-I6E-bUWocm2#!D@)(ouXti>$zjP?szfHqd zG|7Z~7L7|&j%FA*blt%lD?^NFg*6+%3hw@)Yfk=WjBSo}_F{HtyYjR5J8u@F8iTa1 z4h8~%kquv~`dFSz{6`vpd|k=U6;rGzu1vU1l&kcicHPHDFe@h1H}p$v(ad3fCa{f) zigK0-iKi#{y~BteAqe0fvm!ri-JdwCr$^BqFz)-YIr1Qjv3Qh16#Z7dH9*(MWcb|c z=vY|Uob3Zz?2$XA$aC2aqNkV${_kz@yV*19%-3<3bqWfLseJ~_p3t4wH(m)%aldeB zIC~OQy1Igk&QQDX>K?|kH?c)CBcR|$A4cChzo4U9C89K%Io}RgAV=x_v;uAM((hlM zed|x1XV4H-Nc>Ai%u9}an3zh4TN{^8xTnK@j}#1G;QRwH7+wH|ycm?5{KdOqK@xmJJSeIZEXrZ}P2Pox59Dyw$t~BGkxp)ncHmj}kO4Rv5~Uh@k9Z z05IT7yUKJA7<8a+De0LJy&&RuXM=+_bGh={yiaeZT=9d4@IY0ocxBba&19C!_UDCF zjf6g?sT>G-!fp>t0^{(_THcB%(11Cfq8KHhfEtYIY z|Eh|v+WM`TMbWY1@Smii1$z^IT5oCM)?IHqTVENj8kNKz^1PDo*oDh8Lfc{!iZ54_ z|0_};QqWeQc4EGW%H-Mk_7HD=Ib*(-d&;Qu^ru!9Ai^*C&SbF`2~Y{+Ti=>H5UOem zJjMTJ0eF#cC{w~>N~zD@6BD-y?fb2i5tjcP<E=! z8jg2PD%Rjqd^DX(dx1{H0o}#Ti|7lwvn;J|<)8_`EEk*5%sWl2S()s3 z>u*LX*0vf^nMQ~mj)tk#Co&li!6Pomu;ZLs9_i;_Y^L9$@M7b7%#%mM2b4*3>9mX( z1jjpFbp38w$PMF~kHx2&7Pw>bk%gD~jdQc#)v@WdO3&plScWdyC3oHSd+o_OFU}q@ zJZ9!|GqMmY&|mAcPML~hd#0nAWH8-o&yj|dZhR+kv- zn%w8$zdkD=*AshiH~W?whXNySGa|xh=JD*8lSu0~~D|Rd7 zE}TwY_8Im)GU@U&Hufnv4sK-=-brUN~{cmD}P)e$> zu^YDMuN$2I1;-N|1zmBVlz~C}X261(;=To@kBe!N=p*(DJHK;?27Eaa%`E?BX6|J* z8|5bg-vahYmH;XJdSH9SF~GiFnhG7w5RG+;cdJq2QS1i@C{22ExxUPqncvNocm&TX z(FbJE#wH}Sk?ZRe6zmSW7JV>xF3a56XmG}2dRG(TpngS7X&a{>w?v>U#Q8!Wmc&LlLw3OUmdfpN6>}jP~W5;R~oFMi&DVke?q~u z5#h7}Rs5fZVE#DF9zVS{o z;@S&eCWbl50KR!lwU+oj8Gj-7PdMp}F-zy<<_hQAx}cIy9LC7Om^WZpJWAbL4 zWn3&{<1B}?-P?%i@TTG%gPs}J2mp6j&BLYs7zh#LfRH9eFop?$pIKh`2Sy%q%H9iUVgjRT4rw*W+``UyY=^C?r?X1#H0GE6^d1k-3e z3p%b~z39i%Pfh#%03V54clO+=O1FPS*LHPGHZIFxrrz8dZ&ZClXb9{o>cP6GTMv6k-6}~;I1W!>BIQ;JqMLaoDM_eR z%#=VRd8Z*sc(66o>iO5B;o$^i`t*!Q)KSXfa`-D^A?c6mml$m9Zx!N-AH3A2Yet*2 z<`*r0^y*+0eq-7xMAQ1`m)eMdWk7214xcd-qetTSFn_1) zG5&e+JFk6`A%>vC-&KUj4FpvVdA!9g^8vB8R`c=PxdqljRsv22ZK|>F$3&lkbSq@3 zZ=7+M+@nTML)#ss$rm#p{%Ixu4hZT1FvO%!#z_!F#)%Q=#bLy0vkjIJ{8ljbs)&r% zQfSK?Tak9zVn$$U^}p6`eGoW?$U5QGq81cwL3TSnv9^>(s-tHosAz2$@2YN8 zYJZ|5v${3NISx*wF%yfiFPPZ*F?;7nP#f>A1hm$b@9gsX)AK7pU_OLGw4kh~ z`7CS~Dj1yvBnWzco5^_Zy^0@1v>@CS`!d#o`Q8aMn(#|_N36C3xZ-*UoYtf9b-KivfYI02jO*vsAw0JcubFv5X6Aq zX;p^u1nb}0Iu3_n_&U^%qeY)Aec9ri7)1*ys%cOw*6x>NuZps17}@b-vo@7sGGsWT z@YW|!L|kT;VKTG5bf<&3V};&apSd1O3It8|8AzcZ5yH5@7JR~Oj9PK`(~!i zRfZ_4e>rmujsh6MMD@nIAeLjx>usex^Xsj zP5rdvq`=?1`7g5m1JAudV2%z1TSu@D&~&LP@s#jfd5^L=yK{s<2W0Ug-L>I%yib_3bKug4WAcIf*I{|zwsYAKQi-SvM*}alADMEfA>c8`l|d${eQ-TaeDPR@aoD{#qr&L52#=-QoVn z9*^O63KdlrSqln}v?Q}kWBur-p6f+!fpj+LhRgHUp+AX}gLnM@G2i^w5kbGkXO=G2 zSCiPSH7Ln8ki9U=Hm_^-CU;DgTR&o~|08V`zqmM6gl5L|hH9~<8FADmqdviCTu20q z=5%4F3UT(jF%vZtp~hF!RRbnEt#qY@Vxjo-_edjA9w*=nFM?Qe36s*f$g17Gn6bDb zFwL0`e2UA8h;^r};s)3E;!WBC^#Jj|*IF`z67%hErPs*ipi4`Jnm6~Y7LdLqz{*N= zncD{t&6)AR)zQ^KgA+k`JW_hUX{+;QFJZ1=vG?+5+`_&eu4Lo8KD8!=dr{M?mH5{Z za{;AK?_<#<8Vhzo)`OeJ?i*JZ43g&zux-~5`YryNgUsJDp?SltV`!Ju@Qv8QU>Lv3 z{2exfRJq66dQw1oK5l=iUxz#&Ksrqxdrbaii6$k3U$z9rL?WXpuQCg!T38c@9x0lO zeS5DG@&TaKKSW}hSV{)FwyvP@ZJjU?a)q4Y4b^pxPTHW6a(Af-@Gv?Lmmg=_g{Ftt z9n)yD8p>=pQA}4c)L5y`CUtGr_MHCp3*fdJ;||At-l6F_{(C1_7WF$?_9Gth*;L~X zr=89_)jvGt@$8Cyvojt=Yqz#>d38qNr<(9N_r$?5WJ7A$hN~4JljAH=sw>)QrpN1M zEQYLvV4q0CR-3xG_90{%m3MwkHD<(8-1^n$N?RcjMX->^WLc68u@c`#@@c2 zA_C>FST;6?MB2=a-u$K}wGW@pEfKWeK~P?rk@N>b{A2$c!~Y2m9JR@6WDKq_Y9`65 zWn}WDj`xlE7Gv>?QgGdAiltz@1-9LBBjC_rH8La_LsYi-XL@g#21$IrmxKdlTrPJ8 zX;v^NK}VP$|7>AMt3^nO$*QtU3DPy$A7Kd_F_WLyJyY~|OaQh~a2^r8p3ELjqzORG zgp`EDtbg}y*wQsiZ|rRKH2o`1x=%o3*)b6bO{PVK2y2M<>_l%Y| ztKAj3$NAUzx9Lc04XWr4dzM{6q7s@{`Wck81GXQ`8CyN3e^@Qe@t(|8ia1QpIX?^w_`z|pb z0=E!C`zdBS-j=}2O%mlrnom9|b0P~1X6AvdF(dkiA#G_uQ*V4@R zWC1*y4%+&Ui{0GyLhhV_VGnd|;@Xn95#pt2nFhU2jX4Q=z`o9%L6^@H;jw%gIbxbP zhc_o-XAx(WjidfdpL>Ef0pSBe-L9HE=0^u}3t>mb6?ilH3_@&PykF*f7rxNq zgoJQaLg+4@&lh@eH+}bt&W{6!Tu8caoD-isGkT=j|Mt3H>wH4g>PGx@;r1aWs{zM) z#J{5vnRj*INf{Q*aE4T!11WZ+sVTEe9x?3X7@&>jn8oAR_)yRd7rBm0?i3IE?`?HqJ#ccrJr7?!RE2ts!dW;AZ=i*pW zQGZmr*VjbTXFL!?8EAG4cv$3}h2-aMWw2=uC`R+)6FO|3?Yej&P2S>boVlle;{|BZ z4_B@0I>&Xuc3W)DxpbEF*bdl>CtGuPJ2b=W%)a+FS?XHu8~~=f$Fb*m$*4`)+|h%E zf$cp!#a(`*<`oU5cT66zzDe_@Fia8sy1$ zfWp${VF3TnOCY$)(2xEnG|4kUNqonc_P-D9Sraed)L0d1Dou&Kj9Se7^D2NUF`kyvdf&Fxh1D*f+!xJRIpG$W=9oTB z*F6VPYurs0#7Z<_+qM;nlJ6-Dx`__Oy7D=;0nT5AAE-KinXVY0qbG+sNqo;jH{a|s z1^=kNaa@%aZlSto?(2d>DL7UdKLMQQ(pQkn;}#}rp(aB((KZAu*r|NYRIjC71g%Xv z?gt9ke{n8YqZ1sue|2)&$-=N{59qu;zmAVQu&w8GJsLgA_`)H`c#U&lJ77HBof%aa zdS#y+R^XA9)DRQBf3+`oXY_9Z_(j|NCnRvpjIEIon~;_1N5O$s0b~f5K)bLQnl+s) zXQ3E&XILn!PFxnLI~~ndZ)s(f*Qv+cW)X&=NA<*Zy0g2>fI`5h&CGCb=QFA61wM+h zh%1qfAbqfvPz8{?0)5gmWg{?Q@p1@J$qieRqDTa4uV><9GP4p~=a;g=ytTzo7%>2* zrMtta74>5b!>~1z9HQFgVC$Rx2CZpZt;El*K36s=usOl1_cI@0y7}U1B1tTIg|J01 zzw&fNur_iYj-;eOki(3|dhLX`CGkM3A{8kcbG zp7cTHe9q^@PePW}ZrJOy z@V!>>V5<5*use{GJ}ip_YAsCINCPv@!S;1Vv8}?4@seX-Uu^N*v>0d!R0I zSyLIz>i63mqZFl#_U5GF1Qwgrz`Ap(fFfxh2X1j3?5Sqiym(V`+4pa%>%`%t#VFaz zu{B#h$wnUzqiRJ?s%twSK+ zdGlRx6Xi@r~XCeap<{Gvr=7nn4Y zRFB}!Pv~v5XQ|wZkKr?l&xeTM*$Oho&e_#4*fbZ~H~<2*;oVM~JWbOk!{Er;+ZV~g zA2$IPlb6^|*TJ*|(-$F$F$a?7wMRbyO&aT_h;3WzTCLjC%2pKX`?oNR!9{UOkub#> zya^U-A%=9GL5fWc(;WmkZg40arLH?ACja^UbWUEUaspk7cU;R-+a;-W?|dz=CnQ8|cZo)GH|#%-^Oy49 zcinJl5Mws7-WhOsx}cIij4%w_ouB_GLXZ&Ur}Dqg`m0E`!$V5Ff?K~5z#Znhvaq_WUuj!2S>oyOpkEG)+O98&5l2LlO>YEie#I0QQG&}RtiA)vct=irCX7e(hqM^}M zS5xE98}x6iq5)m4k*=qel99&2N zPjwSPsXoGppP0TT5s(@%IsS_k0uvf$O#|a9Z{NxhvhMKicg(6~B_v0XX%xJM$uFtv zNBsfOzbY)khRWk?;^0awYsY%bf`7392AF@JapW%-UOng~MKzC=Xy0(+bH;9!TEs)O z@O@h1I<8G7>G9h)Hh80A`C;n!Q=clEG~tzWv7B@5&f%(U-8eLljliv}+4yPK#C{WI zO)ns>u})@|8>i0-YRN*Rw$z?`QROJsoNUXcAf|`YNI+kO@7m5 z!jga-Kl;h9eUj|}$>3~1R%cx8ZhFCD!F0XgJFy=7MdI< z#3Ijv4x*k6B2y_aL;q4s6){zQRm&4q^I=!2H6Yoyt;hjAx@_`SU{jr*bqKa4hM;Y^ z(@A0@Ph`-fL)uW1>d^a&a!0LB%TI|s!&_IOUgc%>VfO+h>%W6kU(ecOWwd;^@%lv> zh8m8BZShX4%2eE6d<73h0o`&<1eDUEk_U2EM%lw6#{Wc$@efXTlfWC2igs62fE<6z)l&eL=W08++KYiLy#NpuVv*EhpO#D- z{Dyuripk#t5T2jd0RC3W{joQz0o-dK8Bz|!H;jpC-WrTtHBYH|%wyuGNrnm>UrcM2lKvd`157E^ehRD*-%Uo%TPG?--R9mhimxZ)z?g04-bAzKhgrb)EX zq&&TB`edWz{>2Ub@hWdV=kBe`aD+Do@kt|~#Cbpp!dhzHf5EJm6uCKZpsQKH#k(zB z>jNy0Q-^8oSC$J84bHtkuw3s<+Zqt?#by92PmTAUI$RH)=(M2N+Oq(pqD7jUC%R=q zs&Fti>|Y%)CJ`ZseP>NBfVN6DEdO>+_^Q&E(Q~y5g0?D>gO1GBoki(-H-UX=#vs?% zO}0IoXZP>h@d;Ko)}DBufL`T3;*DUk2LG24Axym((;UCAzf_;}^+VKF z4jCR(P{yQ$r|1%ya{0{wP+M&i#m_Q)!tpa>tWH{NaEdjeOLS!WqJ*U z=)qp+o3eP3bt{`#2|2tcw4WbjxcWZK=d4$oSD2dfxMG>)zZE9Utx&U4w26QgXjV_Hc)%sij>UWuSq{`K?!FIA#b6P{vsAfq+CPkiU}Cy{%t za6Kk6KjU9Yzzm{^A9(NmW_cYGhZ88{zrA3wkhDfkt!pJsMkdH&pH zBg*Q}B;4I^wGw=lmvST2zRfMJp`%&qf5f=yhH%J3P4+k#}O^Ajxnl zMt^$P{(LBXLJ!j&TFb%a5rt=ETN3YJ>2+2#WdC>yVO}D7!LR2tl=V(AegxlKzToAM zOMyPP74s)lixT6InGqAzDuS2P(PcMy$h;7TmB1~| zuvk~~kg$rd0|CBB8b}B^I4kIEpGW8|UXl}V-htV~N&NCVQD;a0>B}ZCqv<3XFcjV$h4ubt<-jvE^a|Lu_ef>Pv zC`W&j2q^v9ctIAcUVg>%hIA~K-kPWlvJ(WTX3tu{Fv20O(i?uk8MZW`% zPN*gJSeB?&Jo)>L6x(5a8aI2J>XOZ!#95uj;KM=OrB3)^e@Yk6nHnkfMo(wbXg4uh zFL^0LRC32Wk#FV#QJXgQ`VJ@U59D}QZUyqiNe7F`k;~+vqmI+d&{pZnD9w>`|nkgZKbBRpS#1}jM8|wg( zOuXex`qyv}3gSfv*1^EX)-K>jPE(~KP5@>OIY3RY0eetUSE)LaS|I7`*) zZ@<)txwn0xvd-6g12-EBeHWho@HAg|wZuo1)zE2y*hbnodkf6J^@NL=ZAZLa*?P8E z71g6mcX34U^Tw9izCF2oNBS3d8G-e=W);(ZgRk229Lc@l>Cq_rRPf6fy-zms{lrgQ z*b7>_#yItkP#vwGeLX{sgN$%X4L-!HZTOBb+_{Z;3EKu)?|9)*h5>t*c|}qrrR=w= zF>Z6j^+a!(7+rEBw$i3Aa_nkHj(uE;NZ3C8Hr?(TNwyoWu%-#*R-j#VFrdq(n9-ce zKRF01ACMOPJIuj12qsOFE`ET7KEs}jOx+7O9o}rTYf1l?hdAouuG-IYc%BIZ2yv>AIb7o^$y|F z*66Em&5{15Kam8?s#dE?4|MdfH^^?Z60Q}#%h2d@AqDDqcyYL~#3__~rKb2b{E? z_(RSz&;s3y_Om=C{`%ssVeMw-JK?G|?4DSdik?W0_M8ck#N!E(rmp$?JZ&yO4Hr?jdIqM8dUA;uo_r2v$g*FJCZYN1U**W+q)8m8)xlwg zj*L@^aHf1+Y5b!|M}4i{|F9mG1q$`QY0gn(!NZ^=MQ&kW;t~ogYF-&%zG4tId^j+) zoQgomo}}wEQtAu%MsVlJNLp^WG05Aj72maSpIUo0XZ^vTEx$U=q^_d&drV;H>? z$d*?wQa%#q0?$sFmEIv6YT5fCJvlgKspAJ1(8&D~$+`w>g;%uz9u=56Eud6mi#T0c zXdX9IM{jj1Mb!{gM}e+wVEOrv6>xsCYe+jaHMT3Ir9)QQN;q~_XZuZN<;n)Sds9F9 zH`m7ei|exNP24T66U?KX>G9lyxOa$B+`GUGE^q&IK^ykW;6L493Vtk;3A^?sm!^$d_za6Q(HK>ICBB^}BmX?*64+6nXD_+(<%{O?0&;0$vEeUcPAe7)`uY&kxf^ENf4$^LbmA<0yGN_)G8+)oow&>>ksSoUlf&sz^w~p$%E!pteX<1w&<5%tcpko@N%I z;wR=OCMSTIGtV!x&#nEQ7(9v4S8cB2f3B|D@t2_1>9Y3^p0f|d(X*jYw!fJ_sh@?V zNhL&o{iqX#+XY3p<4@u1aECq#XVP3eO)=DABcG5Ww>@riQBc2K^QQTj0T0#f+QjO&WLLIVulGoqfQiz^{!?s#?-A{b(Y|Y$9e|O+v7Mm4$MvH{^#Y zC3#^e>#YOp!~UDMBO+jMhE~I;>j_Cs_N4#md;jxjE(^r<<@-1)C4{(#wbdLy^!s%* z^#RdW#Ud+|>sMSI$cGgN zbZ5NzklOk1$hj`MB&p+HhN~Vu$4t~fL*#W(Tu7gA@#K^fElq)VOC22LwUpL@%ajcz zZNKf=T$%c8!s7Hu9H(Ci10i7DtX?cs!)p87u<92)XTBm#~Q)mwNBI1Q{(L_D%etF=sc z-#~6*3RavidQilBtQ|xRmcYbTFjsg72z8N4{uHgU07oJQddC9)3Jx0s@wUv$DGT1$ zGlMRqe$(M=XBB0qGc~HaF|J#-u`$hCa}erUhc+t6Gf%?P1uIh zl$347tDJ1_QFnQbUlyVjp}~Wq!j5(qqZrvtp&&#>;-TLx9adkyEE4Uq;w1yfrB;$5p~QjNPJ^2!*ii8x~u@tv#Ti%<4awvd|@g}=a! z#|lJR(n{sCc6>1f)Mts)j9!7gApau@WmqR$`hif1PWFx?r^8f-HV|ssE~D0--vN1A zfXvf8uhT4e!lE-&8DR(&+<<`O6s7@Yz()k}nP0GtT@n=9wlk5!LAEVMFnleMY=YWa zaBs`|moXnL-erzPqWl)%HmWt`c699l*kWz37#ZpK8;5G9Y76aR#b`a79V1`?Q72Q8 zJdnW`@faU;25ox-6iy5%8>FnU`%Qbth0(jjEHVzhUkH?nY(c;yMJ%SK;g9Cx7Fp(`#Gwu1@v?XX7~*=s(l!w> z213jda9Y=sh?o`u{zg0tULp&G8A#BNS+>>ut@DPAkPhdd=5RIs*$=VXO@Vv0{khRy zfqga6*HL8Y@(DU!yK(Ewd`@+=>w-4yNx#bMd!sh~hZ)Hko5c|Kujo3VIpv^hODoWG zbR93PuQh-naMV}ltUjonutgp-tEIEeH`;mlAGAG66bR^e4TC`7F9`6y(Vbe6BCnCf zeqG$aq;3CO3L&n*P+-_|;h&U-pU?20ao)no>h55T8iy)UqyKz;%C5leR9`K`jauP> zgtA$8d{yp$+>~MLJ4Y?hmLyYGO*Q} ze`MiUKt!8OMITtP0z_!X;9S;Psq|srUN2`ubvEvUUzpUUY$?9rkPyR5kPkkl(dUmWM zS358!<;T-ZbJ33$m6@F%#i3A6iM26UH`34*TJgu)ag~@2ZGt0(YZtPBCx>(TIC*!m zdz`3a3_u>o!1H8Y6mR_ubvnJIFp1}ypzc5jgqJgE^A)zn?LgI)yq+_^KB^g85yO~e z3WRv<*V>*gWNtNoSz`K7DN4|>~|kf)`oUn zy}jo%y?1_S1{O&W&1bph)i0nBgrjH~W&U_{MEchqLP1Ce2^3 z5Els?(sKzLS-91QJu{lCpOfB5_s@fn$3Znmr720GhIV4SKDRc^Ql!ebash0mePKA) zBJc+thedT$dg+M-i1y;nUYRDpsCyVVUaG>dMs&7f;a(Z?`EQGn_hxRnpmDt=AiUT{ z3fN}=I*d%TVm=<`Q(62zyIS45kW^c5Gh^@0;V5p)Pob^3TlALCzWj0U zEu0DN>aY*SO~nJ~Nvb$6#{c<}r5W}>AQIovq|U0k^Bhd966=QHTfr;7Tl*>*zs z@+ovYWrJJ)vvxwUT>hSnHnD2zCqEaAz82!G^QVJ_QzN;vx{JLYX11Q2DgRY;=eEsU zIF2u?JXIkG3h#p8+7z~x-igN}WIZhH9;rNUsT>)s-fOcEz>Z!8HF&$~HKV1{7$a;f zd<^03@=xEjt1@}|sIaSv5=-kj=87eL*8Q>5+iv9qj_LxzI-S(GO4=vP>1@B?Lq{4&nsSP`#<<#O#B^Q>Dba z4HS=zx#{^wzs#_a%RL0d3h4-?R`xn~q2e_p9jPXCN9QP~91n1-#z#_w{M&?sI(?jWBd&*Eq`y3wC?FDTKp9 zAi-B=aY`UUTLUFjXixF8uH|I>y)yaBPxNxXgwZzSQwzv#wxu0k3>S*UmfAsN({;(OKD|H%ZFbT)Fde28=>{M)d)&x3;hke{emPuLxuDno;MHRl|zR3J(1cB=x#9|fWOF4A&r zbnNvUW+3%}m=U}|heOpH)`n7?%U&>T?E!}Z_n{V@`xa3ycj*EKB`(OweS8X@c;eWz zNgFbKywzn@R#g+5-rQ*TyM#E@B(-=hp2n}2TJoau%59ipR@<)G_|LOnewA7AXM6XV zpsk+*Juh|tf7RgRgmFYQZgu*UK|=Fu_o;Pk)fyyOA=&oFBivp*CJ34H_QU8GiX?$e zvo2G`TMH?kz}_w`#9XIY5xWJxQku*hRDbZYRyU8kvv_7U$7W=tm>j z>n{*77D3u3c#8$^#M)up$*&=C9veNUAbGE5Kyr!AI#3dSeJWyafg@TpzUE z+#SPs7vK4ZrP&_y7feZo?EkzQAR!~XO2xX#@=zuPx9UeC2E17(&L%{@e3~khxLU_0 zQFviL5mf_mB2lz1V?J{K^~rjN$Z1_peed#{;5mh(^_Arzn}P$tsW$s}f^liaHI$9U z0WzUfu@p<$-j$1zf{}_YruS>|NN%ukk=PI!&8oJou`M>+9*~pi5+xk!&!unf`oY`( zAxQ&g*{*_-mR%6i;i&Kzdpn=0>|$$xP=Hs`s?o*zXmq@6H^;Ce)J6}QYw(9}$u~O>Tk<7U$+& zFJ=uXc@5>hiwbHdLe;_PxXBxJ20s|UpXhazH@n?o;R|FuBtA|V-)P6R@pjOZVHa%?n;a@DcCq*~WSmu+CdC}S`$73@40v6L|R6;UjFXgBMQb`4UU$yqzbiInH+xpNr~PwV4Ws;^VP5(anZPuH*6GxJ3~fmXd+FmP&oKcgL>_k zHRp=A1tK5Nb(8IFOo3~H5T0>DeVtz#(PDN+Bfyj6w?s-!X=|rL-0gOMR|f-X%Imf5 zl=&)x)?U?qsIAs6ET0?O)ElQ=eF4n>@maxP2sejtt@UX^8XY*^%t3i75_c9ZqX=0} z zgv!6dINbk7)?da&-FDsM@XWvvgM>1GN-9W7C=JpoDAEl>iF6O$Lx}<8@wcsUMxO|B#ucy_a* z4Cb=RA``sSi$z7A#ymdj8xmY~!psv7ieK7Xz&N?Nse=g_W1G`UMMc`~PW@_SiIj86 zO3p-;YXVjPUZ0*og+d{?dt#wloEu2!*@jlD)%@k$>DKPwn_Zc&*b@m^K?p7&pW8WO z)C4usSC!|ES|!WS6+s`kR&Wi#A`~>jZL{%aR}&?$YQp}DF%rwmXOfz0ACT3cqVI(L zMd?Wuot!bjt&DD_4sm;bP{|`xp*ofyy)nmAP19HT@rucvY`&Y z0{OB9m7MHVRf*EHUV4m0?AD*mMS9UTlXxa2N)o^U+ye&88f6jaQSr}z7)BRw+)$h8 zMB*$6gLb~9jqmOQHn3)ImW4IUWxze7BZd+fk{4R%2R$23X!*bsa(gKYZZD-L=G)vG zpcxwAV~Cwb@o$y(3B-u!k+;dU^`xp&bNvZ#c(wR5^nOf@8J*kmo|v26l)(g|=b|UM zdhAWV^@+VHyho(iY+6_*&%~y^TewIT)7{S&$z_}=tdvI96Of(t6;{{1UFcww8b6k- z!$CC6g%q6YerqpEY@P&e{-osP($uf3VvmJloZ|5dMLqEs|cZQPR3A$cxC)Ie6G zc=7@?3X-t_UXy=>zb6IafW?yd07n3psA=oc=6K1mdZ*Pn_d=)uuo{TfF6>WL zn(b6}e`KNz1i8r)c-G#D7)Af=2&2Mgvq7>_HicK!?}vkw5{2?K_a30uBU2_=UhN5c z?6u+BOV432ju8e7Jo7||#pd+%zydF%;4OF33VOMT;Qx6KLSuR>UttQVTxvt;eT97P z`YjR}67b)OT&%27sGS)KjcFKAXMsyed->y-{K7g<7DFE-21d5!y|SKL#OXf$maNKT z_gJ(rs;{SZhPp~v2Es@@ zx=l2G!v7=Pgk< zHno%`YBu3VQql|-J*cxJl&&-APJ~2v{WtKzYA7mT^!HU`UBbgV=tpiWh}g1{!?#}T zj0^Z~k0psv8;>l3rO*(=ou=l5=(@^#4zGb#K=iMew=L=h@*{gtB*oJNsH8{$Xz1=q*RRxj?bMr&tUE&VL9SkTqR$7F1ya1+$2 zk&>uimQ;TZz1L9QY_e_k!&P9S_zC_&8An+mSwHfnkB&uk8ha^Es#P;x&lh>SMVbYj zs3eEJx-YNNz+VeB+2Z1e>dg5?mhAQ4;D|2^be4yI6?BOm`8_s(Tkf(IyDF6WZWkNF z|A}9*pV1b4*1x%^3v8BDL2;Kkdw2-f`-(l~jCcj0;t2ztfv$Gk63wCbKOOCmU6TAp zGz$sJ4G2MW7|Iax$eInswIE<@<@lmv=mwk2X4n?W5(x3o=I`8%{@?_ECL{3_3+LSg zw$ZgDU6a1wALPqOxJ+%oCS5aqkDpFx#GURqer_H(2);ZsUt-vxTfMC}E|q|jpzudn zVI}WYSjjVN%kxuRpq@W_4cWfBZRY$Jt+;~M?B`rxn4s?}kj(45Pg@FZZ=_Id8{W** zPX~wDYy0G~h1d*^my}NWQJ`sAyLLaq=j=GNxHHp$old+&nw$!gCq4Xaixmf}?^h|@ zw-;;r8$(L){{OQ8ER9T6&k>DqGE!Wpv2*pExeau9f0~GKuQ}Z?L;tT02zmO{bUaaA zo)0E(o78!Sc2hvFrWlyhlHn*DC@+$U{?W1AuJCAj`R8}bJ0}ZFco)&WZVYEH9xk4B zT+fUl27ZM;L?usz|CQ3JzFRbqp9Wa4(_cug>nGfS9KdO4gEBKl*W;)eibpp87f6xz zU&;VD{F?O!7(&Wo^9+Kro>U!vmrt-0|8wtW8^JQzLKrF&c8v$y;lt}(tjXrwQD(+p z$11|?bySYeK#h}~sVyW8kw09*12s_7^4Ck2i>8G%?$BljM%2w1>@2RoNmOTK~-mC@I#x`az!oBO+{>+$DwO3%VBB zUsFeeg7g{Exl>zi|9PxJ#=ry_e8>BxEvwGU&Dh>k+(1i{WG-Hsx)kR5!{EYDqRLu} z%Q~S6zB8a}YSrmlBS;~g1gi(-!H4eM^I*uE$>Uf3wM1R2e=od4zi=Q&S|qGmx0O?? zn5HpC9zvY^qIoR%0nj)`t=3Fy&QtC3^qtLwfM%SDTVi$35%O4`mV@m`U5592ck_(( zud%|UOKh=lJOyq94f>>}2z=3tPUcU`A1u1gr0Io&Rzg!7V5VCMyvvSS+$M=L{$@Qh*#M`wEN z|7!0jf$RJde*x++bBisV&>XarsF7U9rDe zX-OAVypR2@TOLZ`p~#$XxU2oF;O_-owGp8ZktRJz`U~jfb}e-`X9@>pkv1FALFk_i zZXFNBlG)c9yI+cUX|!`|vTSGItMSlroy833Ly;72T^BP|<8NWpwb2WECp`r;KU{j_ zLdQ9(i>vDyesS_~*Voib0q9_spx69fvm<=jFrZ(oXG1+mtB>ejEY7QaJ5KPRmSD*Riv z#VZS7oMO+VJf9LaH}tn?gV-~m+Jl22=mhL_7#E#Uf*o3CqbrYceQ&3kLJ~_|o6*z^ znSIJ=t4Xq8Y;I&5{EBPP0`;Ndn=EEOHMY=Iy=t>L4`TzgxY46s*Rk-w4Yt-FT}^EDGm$Rd{pg+izMlHBsg@Fv8fQwW z`EX>j5OrRN`vHTLk=PsM^Bjx)TgB=>OEV!?2;eIXu1B3YGI03}_x@LMsC$rnJm>@H zqY9#3^lf**%!CY==(`!xOn@ttCRx%@^1gC}$lZ9V3FZg|H~WUAgcCp?YgN(-K431A z!?kR6VJ_RD)M3zb%?!Co*Mp=P$KIQ>1MyR#Q|RdfyOTieI*EEEU~O7%f;jgnFJgj) zk7o*)AfB$bV=LZ8@|pD8oa4YhrK9o!hv9i>+r3-CCFWLe85s+&VY(Guu(NzxgC5^T z8!Lsf`S>I5Ww%pdS~PCJ@!%(7KGp!Q8g6_W>s)57Vxt0qLCWQ6jk;B0;0&z9Xl&|D z3Np1~Dv2$HOKEB&Ma$N9hyqvKw8N?cqNYK;@*2L&ZgXh8ihX*tYin$;BMw%q@UDO6 z$2=!Ak2}<&U6rS@-Oo42@){5P$1AEI^6U8=Q@Fg2lhIn`-q5a;C)GB%oBI&HG_JN| z6zslZDVZy(EM$Qy1(X#;{t%@2y4G_PE4KgJd>g9|BwqLWopZY`;s^B4h{BI3M_Piy z2CUP0&FQK-k6mU;h$u)eL_S4)uQAJ<64`P1r04G~huikLbjEG#c)$zh(M%fF;_`-S zVLYz3sb$vJ2ENJW;o~$z@8#GFoL|E9o1j-{cFV1sX#WeCI5a^4Jiss-zPkdHlVK@Q z-Wep`SnC_Z4=|yH*e9|3!oO%wDEEJ!EDBC zqsbe`o2!%)agx(6Q!7}5!K1W$0!=X!F<&0;PoQ|{={o&94ymuHuUXn`s?fiZtN(YO z>P9KG(jL2+rb0n#zI`2k`L*WSsz7FzfBiB8m#%E;c_x6TA{Ilib0X@gv}^w4;Zv6@ zQl()KiQ;B-k!9eln=8GYl~1n~@qH-f!^(CGy7%E5Y8lg1A*l~fgjSlHV0}ZUEj5Gr zl>-dW@RszdZF#+F{Rt8}v0;HHZTo3>wL@v1z;^$0!Oear*7M@t;^U)<+Nq;){iXj- z=BRx&z>qwU2KW+aDunN!k0^_ai^Ekh^uWZ$QbWs@jnjZ1=uRk2Pl#e2=^&YIV(+*I z6i`$Sq~=UfHvgbqU^{}(?GiLRX7Ua0`*PLtlGEgVL{-Sw^T%>95-8|IHJ>pmIE_D8=iS{;jkA zl>RS7ikI_)*MZ*n8&^3}#BCj4g)+U1mt--m#jz|lmGxGs4F|J5`l9Hmng?xz!O>H3 z1~abXCDYY{+}f3zwFZUuIKhr|q2enPHy*fK{XHXkCEDfLvi|A_d)b*4Y;`|^P*DWN zc|m?X4YJg)_YMiDYaS!sT&C8HA$QN^3Mms=1_wtEXc56T*n`IMUlkUp&Dc6S7u5{p z^Nd1d_0v*Rgf_m3Y^~b*xC~nb3`q_d*P071vkv6VrrKie?64L&Rc0dFD6HKeJ>3pn6op>>Bg>CFuTy%8C$v(S?&>Ioz__DLF2=Wo#v?gR3>^#`WUL(TJ1Od< zbm7Ru??*ZhbZ>m{H5z6|z3eGKP)SxvJ zVao2G+X<{QaJxj#nK6`voZub7XX};N(7AO!gqQt3Qj2MrIpMsHQv7soW*y}dk>S}X zB0#6hpeqU*@&jLESIGV!h*HarP`TrJn`USzuxW;-)T)Y&ZSNA>vwCv9>o?zWIlKGu zpC?6*ViMz5Tbe3T$@uhJBMkl`@7c%D^Jtnf&^JVPQTyXl+$V-D&QlM!{l)(Ffct}d zM`}t+Ecaesl7cz$b%2JLQChQVF6;04(LGgh1>`kq*1FB(_a@Zc*T@eAIJ@k!7^9ws zSiK=xXaGDLSg@v^00&fR+S?Rn&8j7?b8bTVRziDILG4}l0Pw9IGXaY7($ z3fk*Zt+s*&&F_gZw08Uro_^BDr8DP5r5rD+Hgc4Qgr(Ltd)D<--8ZD2r1zk*6&r;O zAHemF{VQONr2XBYtD5$0@OQ8DdDkU9&77g%!?fEj@j;2;)Oy7`oF7I9)OyWFP@@qC zua6sg9t3Y{QIqu~`@E|UKUNL~rCLkV8MNn09QN^cHg{)3#O>cTEF5<6 zX9=wxZ>~h*tDFj%{}UJ`sD#!lQ)~#Neh<^O-JsaICb$V{0-~gZ>ejNAkU!t^Q-&lKgQ%)wjqR zWzp{ol#A6+Z`An z;TcEn=JK(UUWdegQ^=X9MvgKn+ygywp|ynsaa?0+eJ?vzBsz0i zlJBU~H4ic4H`R()q;r#y*!$p$sMZY_4Eb9R)_BpjdF_%)?D&dZ@V_RXeh1uf5@W-z zw#m_Na(|}q8ugp_?6_CZvcn5GrBie|Fy(#V|AwHqw>O`x zC257$u~31B$36n7e9B^HYogY*Grc_gO(7j77l^Y-Wk{c{6fyrf zNe45Us;Rve58#e?FYL(wDN0LdZBE&^I{EWi0Z9zJ@ua9Y!i!n3qCLonrSngO$OZ&o z|7mx5<533Q2lkq&h8zJ~!o3J6$wQV>k$vs={=<+Ew2H;5|6G=Tofj}uH*;Ya4rIFE zSb!B}NBG$fBIFtx2omB?8FG<30(zdSFYsX#9*(;pbNpciq`o=*n?^Q{{=rFQ;{qqR zq`f}&olQ;ND1fPgnu9;Har8`yZXFf;xz+P@M-tv9b8xK?q}L0Z^==d9X|wd zw#5WXLmssHUV9FM3HoX*9LdTiT%iuja1R=tm0Re93~Hlao9N8oRXC7cEt2osxj%@Jwe5$az7< z>kDjMT=*ISiOi7gAhgXR0@ z^{yFBvqI-o)-UnYE@m`JXTeJ_tdlE9;pT}b0S;8 z&^U)5_nRlfWBq}h2n^~uP5MoZ!bo`nLFSuu}ULmW6Y>ic^c#V6u>Ja`u~hc z3qn`}f5I)LX7rcBNI9V$bcO=};S!1xg)<4VmqCo=+;xq{dV1al6aqBeQg;O1ohAvl zoGjkz=hHvR$7U6=Q&<6uqRQJ1#%&QEpfic@X?v}gBlu*TLhg+ZZKBsFtE!h;0MST< z0)k~P0fY;_0D0Tv3tfv0bI~-_B|pf^MG84SrZ8fPP%9}mRC04#di$!eIr;3_ZZ$Jn zbnTC1%BGybTp0Z5RxZuYAml+h%&mRK!!NI6K5G39=^rAYbv#ZZU(+`*P<%9;?sGDA zgkEge^&&ftaQb-btJw2}0#0s*xvz&Wr=DPq_7T~)*=gA{>}{(dxCOf{?4fZgR^-I) zINo_U69URa&8nli#Euh@g`amea6QH7qJKMy8S^sOPrs!dwD}k(BdjO?mPmBqfoMGs z%c{+rjMI;{2D*2h)mhEz-xlY|knL!v+8oS*o_5JDS4$IfD?<7pMvx*+$`y)EoyyCX zf}7UVntD1TInw!{xaN=T+*G;(#jsWv|JgK13GBB#b$5SCoReT7dw{e;$=o+sOPmg^ z9_{k@xT}b!Q#12@Wci7+-Y&6?>tfY3k8uny5&RIcb3##5A6HvsRzvF2*Jk&t@^g}< zOGRPLcbQeNObGj%`_9VLcmb^kIE7m!6OFZ8Z zLx&_dzWJmsPxy|Lc+Ihk30wiI2xlk*TL*24o4gi&GwPi*6o+rNTt3kT#Y`5n3MDn{ z6F?}0{;os*8^J7g=rAMp$rPTK%SCos>KM?^HT;WcswcPCN{9)v z_5DlZ;7H&_8ek?Ioh~HP?MU?L$*y%~V&$Kg{J|Cd5{ME?% zwcTV9x_4pHpMhQE?!EJsio*0#kD04W6TNL9YKhkM@_bM0wMMkr8ahGVEvS-es4x)J z+us9cT;iq6PYtTFd%M}7U?pj)>JgGlMG0Ok9G@)FX`HJ%8OS+?YBs`>s&cA+&T^!@ zddOhp5Yod_*M=fynB0U{D*PYXu1+2TI7g@hIBCLBs?tp4W@p%m%qKk@rP=$S5GR1V zFSbbw5xwO_W)v~sBl*%T40H#WRHw_9rbNMmpLgi_XS``fIpQP>oDATf?FjQa9{w(W zf}PlxEo+d)C`oQ4PdzypMjz7UHWGX4ZFoV7GAPNSqCwNOJV1plO_Xvl%=7v)^~SoO~a;lv_0N+&9dxi(~E1$X(O!LNy6ti3C`QsPzVqy?sF?SA@3e zsy^4ky?Vbm8EkXm(EH+#u>64R`fqVq>c-RY^`q3VfO;`e536q9{RH2(n?t{AC09&S zdnTLBLDh*hKUh1&1Czb2tA!mO+VB0!NRw++yib*dk;X-!%>vWQUKm)kH=Oi#F8K>> z+nkFvdUEJlg{F%8YSD=`!2t=_gL;NKAR{2Nnzok+mXHfgwox1~3jT(-Y^S7IT;Kei zYyi~$1Va{oX=Jim41Flf@rje2UAf5VZJ<9*XKhZiDUsn&tm)}u&bWQ4hUiJSYPm(xdW#}{y^5wcl6W#D{A}?LU*vI0H^~A{C(>l zdVHz8o4{D|N|IfY!aOU40dEfY5Qqf4LoqtoOGwe8qC51{PT-v|hG5S6yDeBhv z$L6~a6hEu#{Q7BC%%PJa-vSazD#+ad6pn;SQ+Q2cJy(B8v&Ou(clUn#a~%J8^KKT= z3gvU0;7$hk)vx$+H_?kt#=EKj=3(TatE?+c7JwtO$G{A#T<%TB7nSrbv%A>6>${eM zV1)c)nwu7%Zhhe?mMdBpW=Q;Vy?^TUcgsz5$@`z%p)QQxZH* zP*0DSw9{Ygoz@c#=$cliJuf*pjIZ!$HdNU%363d=FP_hP!U8uGM&PG59n2Zj!s??J z>~xGX6X=A^56u;4oJ-zUcc`80ZpY)@`}OEu%X~z&26ue9eZp!9Bq`*y3xKoWlPTq@X5sl*P{2o6g+7e>f20P=x{Sz$ylxU=>AyA{iBEZb45TD)Z*S_9v z{UC4uqoCH#MIw~&qk%+tfx;CaW@(Hox1r^g<|ahSPgf<8=fGz6WkI+N~hLMAM$m|yKQAP)?O=h zI9Zz6Py@fg(dS9MQujo!c#!>0;fR>}nhE@xL>3}j6yYtvTh)ZDj0q!x_fS$mJT*(u z(YCe8Ck+uJ+vI7)8G2Dp8t3p=uVX^AB60lZb42#ldZ^G8?)|Km_KvDUH6t~{N3n6{ zIk<6PalzW+`i4w&Ge2fogU(n==lgN>S81M8_vkjxnHb($ZsoV1*6rZ*GjhkVwn8x@ zzSsfDRpv#ka!m{&TlKkVWmD!7@o=N&^N(9NiP8w^J=_^VS$IE>-<>t zL@=b{bpl_?O;xJCNTz?~W=%ocBLw$=v9yc)kh-kVL8{h)nBHCL|F%{Hfp+r&dp)xe zX{}H>LIxLER>^SC5H14f)2$MwM!p~mZ1VINjPd`$4L(f#9d0%dr z7R2`Ok_JK4hoL+53RGSIIMOuVD*itjEi2}2KOYAF3(G0auy${kKp@sYg0{bvk>^X? zs|4BhwET{>2rq8o{=eBN1B4xs&~H_yN~@N^m}-r#&ZQGFp}+hkYiqWi-R!wf>~(#0 zzU=yBaJx(-QvvgYPgFddFY7v?rZ^}D$)r_Y~swm(( z4mHZv(x%coIvqC5N+p23vh?y6Je6elPMXlAWKXU zZ~VeZO!wmP>86nLad*hzbj|_vv=M&J{tm7g$cxa1b>raCt2gncJIfb#2HsN#v3bN* zJUGO)oHt$+q7m#a_4kjJ)mf!3Rl-+X%=X_z>}TS=fOklX-1K|0PS_g+%IOsES~{#< zeA(>zWMieqN&L2)Hf$nE7TcNqKhN4f+yP1oTkWX=sE7uX(#ZdKn3*yAKMV1^A%KBT zQ~;mqs-VR@8gWaQ-#|s2xKIH z);ffVMqd&+1H3^3z)XCgfPKE}Fltk3b||R9F%_^lnk0*EkyPYc)b;wbs~5Q{0;u{8 zN)`SXXy?rA&D-@s8jz7{J4ts<@+U2W82zK_bB*xwlOq0YObcpC-k27UXnWF-X78qi zE>LJ9xs`7hc-Z&UB#zZOC;e^_c-}1n-!G6&Q40y-z8UmAsSNohb1#AE)({EU*{*S= zy85CO{)k~0?cJFZ5Q=#}mF9cEb~)m{PdB592*#yK>O4Y$QBJQhX?8%jFU_4I6RNw6P#F+6;wn z#*-uZSVOkucxomrbXxPHhIQvTW5EIV0&XY992z|}EWm!jS*)4uWxfzyVp7Q8LA`FYG-j!o}Y}EwBY7?a$Y6T~@FaIw2 zO?wdY@i2^%kLIN6;{~eU5Bk;XqCiV{*tELQDno4Y-+~!dkG6*{)bf;QWl$-~G2Gvg zMWy11BU`){Sz2SJNHgS&r|eN(_C6U*J^&+b7qGNu;TW`LA{B`x6JG=26$=+Xy9xK2 zXa98J!VO|$5(p1(Hvq6Baq!w;8XMdl#(H=`tZGiG!gzaYf_ISxKD9W2~KzaOtt-$vXU01IfHZKcmUCK)5)^qDh|FQ zu2n`7+?QS*e{BA_AK31MvmKMZ^j04%>vWn0s{M;?X<@%>+p-HiJIa+vy#aV*mw?yr zPSX*SfJuTu8}HgF{IgoJ%>zOauUz;?M8%|L$E-PA_uJ$9)6-NA(EbY6IX;au<2TbL z3`QdCtnVtNIU_vnBA+comdjEq>PF>53xw zkR}Ct!wdO2!)DErg-j!ON#5JFI-KoFN6bggG-1<2B9@{lTV1J3L$C9IYJnPXTDNSW z0@%tF9k=Ofp}*AuYF)nWC+J+kjQ49Dv1kDjSA*Xh%y2Mi7Z&FY1UoCjO0eE(4kC!K zK6`Fk0B76s)PvxMjLYLD4}+9T=3R)Nl1V4ozJ5#jBI=Mz!Bb318&!&O(~M+WEx}`n zp3>Hx56b`4*W29NU(0Xw{WwX#i!ZpSEbt;*$2ZskB0J!YNHYm;ISD{%e? zXp;8#(M0(t$nfGt`nMufNUy^=hMiXa9N{8B_hx|*24}KH`Z2d(TdTNcAa+ZfO+*|@ z4weUyr)fZm4=zEL@yKv)yp7wLXYMtecTgEtVcqg<&90N1!cN!dmU&}OXJP{RFL+Hk z+ZNJ}ayyT{bUXDO=O|Q>(h}nLSGz<-Far!An~1LEjSfuTzR-@;)6o>r0{H#XpA|Zc z0oXfg;(;vpj=}hn0saYGiTAhvy?+Y|S$&`px5>?IL=|EQr`-t-`fWwX)o=Q16|CuS zcGp+%pGK!^Rmnh-&)hi=76jicMW&`! z>&@lk6$|cdC{IO}3OV8TgcLFijgK&G`&M$0ywx`IR~>Q0m70NkfgzD9<~1M2si%KN zZ#=Huh;0{B8bDU5x(r-wuLvE%?TpU9whIz1r;)8)uPfc)7qXl0_EH&?AC@*{KfHIK zVC2FOkQ^tkU96g6vI!9x>CiINd)1ZuOjiQi#g@1Hd}+X0lgFJ&IT_vD6Bu^LFQ`J1 zA#M$JY1pi8u(h|#KiA<%cq?)m&e>x-gPzt*Lz@LO(>ypU%%mag6y|ft)Ll60utYsdMr$}pBqd2mF6#w72wm(MaMqj78nWw0K+ev0UY@_t2q*qtR@! zsUg~JD7_C7F#N!NJl5JR*HVvKPg7;pW#@=ZPgmSJMxF>V3ybEhEpX`6@t2e8^c>lM zaH8!AVOC||nC`R9=fSt^bP8)sXQyivAP<)op1iBPpF>lTJT+^fXX-hu_~IgJtacn% zynAM>w#mrez{AyC>FJb=l9<`Zq0Y<}|91O#BF&_fxWL*d)IkP|EH@7O!?Rz6Jm#?+ zLO5F*v;^x&WM9A_Bk+T1a~!#rZ7*A_;~NG|MI-O(2gMwN15@odq>%BIqMGt}=~w1e zO0QSh**`eF9#|k>rK{+VvmT$Dh9Y;qh@Ng_N8U$%HF(NaTS}+arC-=-J)*aJMp_N% zG$RWZ8!kW6JsxDe;x|S zM?6cQM#(p;-WU^q{J>Wi)iHKwYs_njdWp7>%Km@D@5>TEYcB9T6v54<4f`tO3$(6# zf*qNzYD~*RoRHTjPD=oiJ9PrSP^A&~sxw9wNWNR(E_-M}IEhPkAeZ7T?03_2y%!=; zm0;*AEM;rNLZTVc-7>4nQQT zElJ@Enf3LjtX@*wWeLgyRYcgtW5~e$gke{u&M7Mb`<6N6Laxw**T`p`w;|K|Psp_5 ze7j!9FJC=0H8a1(gAS1t4wIXaURbJq_7?EH?60qM0-#IpBG2` zsLG?!V_E4_WTW350k!vy=nVU6$s+nu}27e>zqPk0b54lA^7Sl?_ z@@(@tsC2C3fv^fN3ZT^Ammubzjc$qw)S0oF;2cRE7Y3WhsnYT*OS)rx zOAAdbT?G|Q%-lIfpYP)EcZ(srdxMLHdTrYbi5$wH-2*Q)cim+p{!j1!X`P z@grh1!CaW2G(tj|)`b#l9Tmt07W0y(eN}5H;N(*?z@a_z#d)#o$^8hX1?2_W!q z-bwViSkF}}(LU&io{x(flxz=#t?>e^yINaiyT69^Qt&85r3 z{XdEnOq}XHnn_4yS>5x<*eo}Ktx@s*;#Bns?8a{jI$^Ek;hSWI5|dC;mM**3JbWyB zqK~Ndae5;+U;#~V`b`vQ5^S5>_5kyYOH&>+Dy-M+J5~@-Ow_{$i>a)sX)(V3Saoj? zY_!C#=&GZLXib^`74Fu{oi;H%#i0|^iS|gF{jr2V*FK$q-TIJY4LnIWRYN&Q0 z(RKZ))Z;L%IYVLZOHN_)nI4uxo}usc1sash;EZb7Vw2)84FFrkORmYE?crm(E;IG8 zN`tVbDxE?_1(y4bK0X?m-!^MpFjkkknANf)Ol(ppML1>i~Vd!R)Wm|Po(@$(HE|eqAGKiYS_xXgP@gDLmpbqbnB|GKc z*};{|&HDL&{2`0V2<){gIc}=0V{xPcs;0aD`3z-FRPMg@lm&zcz48wQs7pg|9-M++ zrtMDrS#|kDc=VxdzqkGJ1->gt=(N%$pO!TTCkY6WFc_K|1!+$ z%VpTb-S`K;&T`3#UMP4Yr#|oW!N2~e$$l#X;_&RrLP7MWWjF?mV932=rp!Ngv>9(Ig8d5kd^yD zAu0y_2p`(J1=ZD5O`Gw4GgQxHq(`IUp5wqfNJ!#^Nax*pUNb|cnS9gf`gEjA?(&O)^g_ zH&6Ewz+gKSqUDoMyI;L?x7v|8S-S6wyv}n%GXC@2U8^tfrk}qHovcq^4R;C#h3MaQ z7hFSLU7u(GeF<=UBrc~0b6}j8o(DoYSlr6Wupv59C6`T;j4UF489gT+frq%RY3vM;F+fn%K;do7po2_y;nQ`QKS_yoQcptP?UU2*jZ)%I>3I-K~KhdD+G2wHq!(y03Hn-xRg-~ILDu4FYLNDbHNtu0D$@EZ zy6Lm3Ou`|YEe}4eA^NzX#&k%AyIZ5l)nwLHz!kcaT;{@AU%=6A+E;@Er>N8itwGrO zTOQg-`V9>7o6<5QpR5i$R;N$reo;SpYJ+OS_6+=ImjeNqq#Q&tim-uFhB&3k#6@)@ zguVgpf|Ai?k_!zNq=?sU(I9$YxYwhlW~&Q>s2P>NL2%_T>of9IC7;A}ZLbN<_KMdctJ zWj6xWa0seou^EcyaD~r>ez(M=j)l7ft629uAlmBd(IE;SAUM-p$ps5jNb3&r>MGq| z!nFa1I(^I357xnhs+nY9(A}?^C8}sQA+GF(rP41+@ueF<>EC@{8)ympf=v`WK6yR- zna>ffrzIQ^_iZv~@agxm(OH!V=3MBF4#^+OU@JP;k2S~R#Mbr`8cM*Hcv&yV@Es^2S^QRt&`2ZZJxVJ;%pzK9rZ$_H`8&w zLzb^7BsH7XpzZIJI!R!~4?}MPFiz*Ho?G81bb_IUIh$QT;M9ZnQk8kcMJnnW+4*zd zo_l6uIfC%QSFGj-cXrcQ#2PW_j>q;o54is~o063YFm~xC>Sc_wb9DSo=Xd4kB_E^e z-*O{&W(4m6A!c>tiAHwMvVM<}!sIWW3ihUDWw#KO?mj!3b?U+KgY1D1o*N@BKawq` z8BYBWJR~^#j`aib49@L}?%}=sH~J=7!1o)???~K2$_5zy9=E3dG)y{v6Rp8{wl^%PF5x8BoXLP@W$v7ZJ@DSybC?U3BG0ktPLy^n{_u z6lClz{JR+(91NqI>XGMW1|)Gni!*q7#@5*ixrlDqWA}}QlyKN(elHUSzbWZ^*X>cj z^Sk;ZLy0tPFCx?_LAl$(yyJ}`gM0C1{227{MW%UduC-aa9jwVlk7_=ey0##qww=Mg zwurOV-qiK=r5kjm{=GitvE6o&C3XKeWq8`?xo5J<-wnUN^aZ&HJB`%KZehK%d~*1R z-Soy-p@^3LG1<`URCz_a9BBj2j3ulx88%RFHAOj?R`CZurRn5hT~flabx?x@Lf+)G zJ!yZ>Yt;VE5if-xayCJxwov&u<9hS~N$(@%3)CC?YSR4Q!jBBn0=?b1HHZDYH9F@E zYfSJBI|s>^j(x6*|F6JE4nEsfXv-8XoZpKSzsM^tEoB+#ia-8Wd^7WM_Y zEuUg)MKj}P*S%;^_8V`)&3z+)r8_|UW;UDh!1-CPz#39@i%aDv$2?amGc@=L76sNQ zMiK`A7Xy_n_hL#CgQVh`ES(2aumiKY(789;8s)!~*J%pK@5J2CEPVDK0z)Dn3mDQz znZ|=aZ~Sj})F=&|-cAtwhq4grgAlxomT+6$;GemdoeEP|oX;;X>vV%cM65eLS6E4u zO*ddYE6L2Y1;{*F%$}|NE^Ai_oQ6%-wneq<8_H6Jc1z8CKvx6hD$j5_+{+yyRoc$f zJ7C?>O~|3BkTcZJNZfv>A)rA|)b;pS9#Y)&fykUrm1`k%!$}6FUFR%f0wz{xt*NY@ zR_IlTdn%YurZ1|KB2pYR1Sc=_)NCy`w&rgBx}k+c)+{Eq#L;;UF)Ojn@5VCN+4eSk zX=vxG#V*%;8)1lf!bMf>qoQ1IJONHCgb<1ewtlesvb})V`DI(AhEqs>H1_!dl8fCx zZ{Xo@2x|M;Z+7;Q`iXm?Sv0ROaUKtQOqv7E898ZG9mH^;*q+7Yi7AKmV- zTio?uMdqb05J86^ISUgdXJK(5&2!Tre^IL67=LhGQe6Cmbt_^%p1Bg_M|kQDO&DcV zZajP^uEAC?`-Fn-O|DuWhjV#`Q1IHD7P1GQ1>D${$;VA(+05J(+3Du+3Bs=C{y)0D zJRS=5`=7BSDM>23k|b;P-IP$NkgQ`X*<&!-4NXd$rILMYsmQ*MZH7|W2idn7vW$Ia z?0(Op6z|kd7tGu&&=m_oYwFgKh(jpM=)O!H{dz?$nhFUk^ESIqy3T&vdCT zUcD@0cl>Kcp|yO`=FInZMAm( zYg+;-azrk(vRwO>wyfGkVNF2Ji158s}dxK-M{fWJ9P_`M9l^?d9a;qL*@iZPKm%S|5bvSXL!c zN#tRKTkA*k5XGNVpY+{G$~>QZXd>axRvIlIcZtTYUOEnI(M# zdX{OQuVvlTxZ%j)-+kU4iaE|Lq!8E{&fd1sx~Ap4sEi$8F7-J`zFBI^RcY6fc+-VI z@dCz3-?{OlROb#3ozhALecEPUY9T4tjcP6|bm;4Rti#^2cSTbo3FusxqFHs} z1xhWi+F437H`SH=UsM#IGWYmVtEPr*(+dsx6*jPYxTlWwCq_%?uGmWX^mF9EvMVxN zTRx5kGz66FI#ud3keX?mIk)vmM zE}V7GZM&i1RXF9%tnqrf+mJ5uK#A+xrN}~|<16;9?bb%zOKpS;~J4H?Xh1k+3ASe*PO;05nLfmgBr*n3d;X0xM+`ikKQ`&jSi zcY7EZQIFdfQft%vaK8W3WoVM`dPwtm<^|}ZvhLf7mY4OW#Z{?f`88D@f1SFR>MNo9 zx}Ew!Lt{L>_HBl7Y3bBr-}~EF`m3`{ib#oHo(`fS7i}kzyVqz|S+M#4=>?!y`SI;F zsW~q%T$zUQzbV_C8qngicM}g153LIr2}>|99O$X}{vtj?qUDj*WtI8!*@r%6<1T6C zMJQMC%x&alTxF(u4%1Vju4s28F{NZjMtd5vM0h6-x=k&qGsmn{P4E zk6F=vL1^56JQ8vt7bN0;NWKKI>*BE8|(ZfQ{(D-rXhfy`Pk_+P^Lp^&D?K zf7vn*aW*fOwX!+#0tn(3Op`2cZiMp$&Y5%?Z#XuJPCNWqd3RYLno)q2_m-{)LjUeN zqnt2xfpGdL{hqNKIrpRYb_C)RP2N@*4!=oj06JU9xUaB2;+5x8ijC6p=m?NngZ?s4 z^}Fw3isF2y>~hfMrq7hTCSTM#FXkh4$>r!WC&mM!)n>OR#5#+06LiN87)CFb z;!4C$7JOAXq-7_qjXgWmyzn8X;e@vMEF?JI;T) ztYnl`jLY_~bY~V8S-q8QD>%xO$YREGp~yo$=t{lwD*+?Ch0U^o{Y1dyF6DyJ6{6T6 z+xci>w7p}<&j}y;lODdRo~w?t%{I!(XN;Sw8Tr_&Gt=Nf7M>yhuAXI}Te~o{5Dk*( zR8~X0ufwTl!A->DQ@u4R%W>OP?=;m})jLV@S$7jzhwfMl(q7PExF`M@nRfEz%*xmI z%{n@tZ}f*yxk7LT8oFR<}%aqKp&Yi&B^I` zQ*og*W0z>9AK^Ck=$6<7_6+Y^(gbzh7zfR&keMAcSKR`dtAw;WZt}8~cmrbf7&0*FNd`4+y40+VEetg1qp}g-a-PmYXcvEjBdsbNq*IpevAD(c(@}1uU*B$~gm_&#*HYn5 zUh9{k9&jjg>6R|l1unuZlS{2$cba;ku0H0EP8qpW5sT}e`ZS84CUsbnJcgm&`L9-t4kj&7u@FI zJ^a*S?gG;(JZxz$jP|_HXI3#NQ}NlR#phq%s?M`qxEa=;sEirQx@j{`=OXxX#*te$ zuUL$n%~f3RWqgc*M@R>bGyYi}{PtHyNC6|Oc~@$eov=cty{4Zb-W0EL@#4qVW)ZT- zdd&41CZdK!#0IkZF5a#j)3YdSXFqjRsCm-tLAL?+0LQme47W*lhz;8zW5-Jrjn2bv zk%S#z-@kVk-@t0XX)kf#&e;Gz5{9mki9fTl{Oei*>~6eLQSO_*^fw0@nO`ZAVt!_P z^39RxswkYQO+I1XYRF_{BT~fE{gNR z(}V>v##S}A9xYmKzLaM>-w&2|&uWKRepTsa>x;RZNDQK_`V9YA!VQFU>?C+{Ig3ObkxHJh*6P*zdYJF4HEXbtR?4!MkGQwO-W~^RpWE7e0}xDr}tR zQ<6{8M(EVDU_V%kHC)_^DoTFf@Lr_vuzu30`8S*vJcZ_v70)xV;TX3$$dcQtZ>jBp zsweY5+O&s#3oZXsW@JsLy82m%-Fj*N=o2Uvg7}9ovoE9G$vst*coOct+$^X5W-ke= zgeoY?n*X-!uQt6+J*f+_(;5qhm z=m~8|oOP3Z2s=N|mlsax=j+|9GNp&>aP2qc23JhY%?-@=i1VLuH{~FM=F?d6jRr43~@1Bh^5+AB6f>7_uQ(4jf#BZ#g4bNWtLD7OY7SFd02N&XwvHUrMhQVG~hE8 z6|R@EO9p=?H7bxJaplL|D`UeQe>t?@6CaMri(yHUPP!S zq4%X?J>ACUOUi*-4u^|b={?PP-cwD+=M*zM?XIl4&b2F@GWcO~a{%L!+=P}ZY_iCc z|G{x!-bXPC6(%rL@K%0TP9|t#owz1_6_b$c@m1h!pV_XjeCwdkmyxaEw3+QoJ9nSV zWiJs#X0ykz8_UX`N3QZiA5l?5Xc><3L9O5rlf!W-#1#fv*rmHpy~M+uvhSFD5Dp}C zL@Alz=Om8~A4|lQRU+sUJTfD(3HIoKMBd5-6@=!URh~N*{sZ}AJvNPv7g_G`a!|X{ z7n^j(qsBYDE$CBC+F&$4y&EOC)>Yf{w|jM;;H2*LCzvfM1pWHrjSTK9yRovwpvxTI z|MvT<>%mnf29DeTcYqL2dx_ zex{^8&d@Rxy@Jw4ZrG|?e-~mYnR{Lz*0U%CX?6G*m@NL7cvWrWF!^2jcJtV)Y0(Cw zW!4cD7FSz7*sI$kyb7NsRKB*S7mBuzFgKvi_ssT};#S}$ye<8DCqzxmPH?*$PrlH( zO9oYN^DCnHBo{8hT?`f@m*IEd9`UnTfN;h`jPr{I0-Z+^fytRUL?r`Oa~feA?Cac= z%bM*_{MIR*S1+Pa3?C8jF;qhLxuo|jeE)?}o)^l{xF=(!NkU@YjtYI(Rcxz2gQ0n< zHEXjOCPs}7*x7vh#no`jmH|CHaiz##M?x*bggIpFc{F!X5&HO-aiLlsn0l}J5&1l^ zVP&Pw#Lg-O9P+TtNNf%KnkP=YK3N`Sey+^$KrQE|b(4TR+2}`jGOthKK)09kz`24k znFgmwY8U#l?46jx_g))IV;+{{U8-1<#s0ojx!lR!m>Z)p=vM$D5kjvK3koN50Y2s_ z_`odP0Qiu}^|@I#S3ccfU}UcGgbG!E;yJUk))CmJAKlyAYhmZL2K9pK);|TmS*+Q# zEMK1t%UTM3HqsSA?RNMDKNWsJvX*79&anfR9?~4td8U(ladMdfhR`86U-T)Mn)ACJ zD8eEu8qM|!im=VO7$qKNeKS7t5?l<$RU2|Js_s$h882jSiJSUlsN9}F2I3@7VS&iY zYmc%o9?W~NakrRJPWWx%{0__7ktiCBuihsNfM8eCASol4EM_6}~?~>5iUd3#QyVp!grOT|o+dIZP;UwOD4fB_(nMs0X zPRY@H&)RMlNR*OjY9MBDAXnP7rU^I@i+~OWU#KdH@=1LDk~mDht>5sA;eEK;uZ5-e zso@s{xe+%G`=4x%w;ca|K+o>`nq1l0W&5CJe`J_YP-kV5>;|e`W08<1NWhFPwJe`G zwRi17?dly`+=i;t8Phd^+?&CevIomiTdInTn%1Wb4{90b!Xa$ zYm2+_Z5s$OX`or_fgOaDn(?KkKYjzVHpJ#Rb zZ&xyD9<8v^?k&9#rTwabz@)ZiEi|@?+DI|O%O}RwFXC6c&!6L5(k;7#aCs5G1yN(u zRuk`0y)!OmdNhK0x&cWh8kJm$oLez|sgU`=?;hlAP~T+xh=xz2^=LtRwyF)U(*mbp zW3F3HqWmRG|Hpv_2_3!1wXdid_{u#Hng((1aAoCU<;8Cql1}xH3mmq_C9QX}Bt_Ri zf9i-sDuuuFN8RGfJ$8>i*a$YJ5k@hwYBG;9Vk!h>dJUDDf2DN=3}Z_yKRez z6n}bHgk87eQS`8nm=IRwLd@1zyRE)mN%HWshKzJsLf^?0uOq4=GJn~deKcsEYh`4W z;%c%HE&M81Q!~I?BChHk`vq4{DS>#PN=iPQi;H>W(%n(1G%iyW?a&Tktc?f zj_p>~YL#yMVo)-=(i-bW#)rHle9rgP%lRN}DB2P$e8{F4F1Cs`sCh*auftsR&>7m^ z*bI$tP+zo2S5wXE|tTn4u`K(bTdbum3T=m@7xvZ;7py|379nPnDsc%fC zX-GB5F_dB>6JbM3jpE`8WQs}Iqu@bqnGs^ZM?P9At}3$`nd|?Q0jQPpx`;0C8Z$L) z;!e7c{Wd@1hxsxi`|BfKl1WwkE-dYH+uyu)`3QNn(OKKsi}&fX7u$u@_1MtjO(RM=e)nd78*4nG5%JalIfJ3UEMkgb5oE@G$Ql9(4bJ-*ao9j@u& zO53W3RkHRJ+vw6S`A#qhS6kDKEmwU!$gbbmB&rw6xy8_8Dxcf*yw%HgAeZfHyY06t zO#?mg-glq$^jixRq00Rqik(&wPK@5Nv}rXXOA{n@h5e@sdM^6BJ%QA-sYFh9F~rGr zB{`d7bF#t&#_0JMnpKZ<4k?#s{KH&GIHH&iNl7<3{@jl1OwHz#k7f>Ndu4Hlyxxoq zfOS@ZjQD8j%yN9nH1(nJXo1DyHYT6&@cxU>MElFqTq?z1$f4`jl;I==!YNU%afx<%@dw%qpO!0MtP^$H+TDTcT5il zB#|6=&Oxovbiuz4BSaSlH^2?lIn8y&cOR?RtB>qiuWKu(slL-z>sIo^_2Q?9Sxoqs zUEF%OxX7|M37TJ==bV)UqO8Iih@kiR^BvE$Z_MtzL&`d~U)k4H^_vv^2mHm8Q1fA5 zyf4$H>13O;GGF=rAnM0Bi*llWIJhhtas2|ZhK(a#AiG~6LUa9EWPq|X?lxEX<(FEW1X zGk590kC)w2jUg%QEL?D*a4nCyuEWz)-nQQtug^S{v9Z!(e{SvkO4rLTAe2u5*j+v^ ziM5@Pd4Pc(OBgT{(TF}zYdxV#z)X)*CLLcy>2?qQy!#uQ%N-1IqcdSGet!~)?XvN9%}uS zuuRL5Rd(g>WKYtfY2>#J4@cUh4Vmyar{OI{%GXzvx}V@*D?oag0-OvUa4Fepo>AsL z@^smWM@}gwWkEN%w$1lFL|&c9lpv>)uXwq8dw2or{$iYc`9#ztV*H0>({kfL%#&Wd z=-crpwhl#0=6%j>ic!j}ToF*TjCgy`J4Aej4pF`Kie!q5vozbp3YhRpE=NMyp z;J*yyY$2?It(#sqZiSFU)rSmQV>&-=7>g~UQ%089 zc)>Y!u0*T_t=5$6asJrgK&sdEVC>>v-;z@$k*F7aFYIM+sbyikyl!w>*`CX%NRtqy zQ*7BjkCnfN$^UpKZ@+WjU-fNxEn>+q{3Nr@BjxP@?+2LbLNTR;&Po1y{@hKdZ-@d*8oj%fT8&AaCuDH_^o`IJx9d+TYEoS9P?Of*A9k64H3ENW zlj_$PmEw^f=&Eyr>bu~Kovki6TaBIy*RqsNL&jm7DL27)DL4BY5-@`nvd$Kkz8L2m zl*{4QBgRSv*Gq%zeMaR2R|>~*CLUbZ9wz#or%$q*tA8jr*Ai0y3CG}%xGj)W)u_yz z@=sko4%xu?(1)^L9pA+*k2hyh-=7nT->MIo_anX{pQIUkA()uXtK5u4YV{SkducvN zLh$S2v3}tSGkFCf_%eyFT?0mPfdt=vnV*P|6^}xGR}0)q@@Cgq{W{;YO1SdvF0DGO z3Z|M}V<^4^aqr`YhbqHQSR25*BoUn0|}(AU#fRUFb{m>zr00eQ z?s0Vy8W1}8)X8J9V@B&qLA!hG)OyE;)x-0d@B{DPdD)-8fEanP$i8)|rK138m(*A! z^ieJ9BhId-q+qPpEBbSO?Lyqvyjc7J%y(~hvo@l zX{5fJC%d*d$Tfd`a|GLP6-HlXG90gMPui^%Hq1INY?LGNjLZG1Ok&f;@P{`nv>s8R zJddt}2=VM;n=REh)=T3HzGpqK;KYh+fit6i`cNBJaB5O&2Qf*5uvc$AZdee=hC zt&*&{>`M;x(d??Wwy{F+fRk!W4zSuQl^U)Qz(bBIQ4CcwHGxLJVb92S`oOfS*=x(Fo@S+uW`^65A4B@N13 zUMX`Ew&}EHekW+8athgNlF!w`J?At~KVoY$zwjkEJOTM)UP>2FRq3g`t5-8DPYCM? z^sWutEfBSk6TR?gq~4>cmvf(8QX(*5k6y6VRn1BbG>;`N2N;%)ixSmCJ~f97A=)Z8 z^alN)3a)Kmebu79@KXfkmir~K-b9RlGqe(}RD%4uuD=NLX|48cCt`izju z-XZ8a-PRP}$s<*~r%PAS8^%Ru1&X#JjuUart5-@*gQm9aaD0#f-^BFM*%uiE)GVyA zHLI89vR1nC(Vgcn3ENi!UZ_06=!8lrHH4z`rg2?-ci#VY+Wq#2DfB}ulj z+^+rES{yW)uor$U?6c3VypCm};`R5>=rLMU2@$+XNie_Je|o4lK0tASKAuAre)bAK zarfDr4av4c6=yHlF9*=$R@IaERVGeh#e#ZfEW@N|i0aJBd09T2lLc;#QF=*ty(*M- z28$3D|t&gIvJj6_AT*u?dg{TdtW*|G_OoNQON$ zH#THkbnnnfVu#$267K_pm9AeMB0kMU((vA?>0i8yd!Jdp-FiVK4GW~rl(`XVJ$f52 zgAdJB*_d2qfI2;Ooj$e7wt==g0t=51uMLv2!(S-8r}H`M?d)Kek?+>#nVC?H@YGz7 z@ZkyL6CJ8sT@h^G6%s`nvs;>NqMiw!^z69rMUo$>Rp@ZY_czfb=>PIAvzu?CLyXY& zkJts}r*(HssLyP1MwZghxb2o6KCHpOrN%omElRVqSSfECT-yFVx6rOd2w~fDq0sI| zuJ$eF!Tj2J2wH1_)en>2FzL@CjhW;YyG>87l+A>?O`r)(YKWO5IgZHn-c4i|N z3D(+A68nG6uYFlp3Xm2J8Z28x{nW^Z&u;g0%aWU$Gl*t*p8^<;uAWaeIw7&5ut6^K zjolBzk5mVTm@OXi+L~cwWm4E=CdGhN?;ac-@WH3>f^FX-Uv4=E9ipQ!ENV@c^>fOfMfmbD(Rg2zYjcB%N1s%!lf#I6__DcSK=eP(LOP2@q z1UM12`P&FCk($1kM|Jn*gnhg^md7ss@@VU>9GjdTxD>|EL+tbalvD`x3h&`djyM%V*e7+ULK76G4`GPED2*p$iXl7Jw&a|FgGIx0G z#Z)nGZ}<>{8=1>m>}i7a%S5~D+{QsW3O>hW>fD$RyqErA)MKuon9fSYfcJU)ddoeg z(`ktQN|MN_B1v)8<8i3@%HG08^t#n_$a?Do9i)!Li=bxx+O24_E(PKEq=WvXNR!2s zj=^}LO9I+S=aYUfy8o*bzanB^aaR;B(955gzyX*t9fx-ht6u~~nRB9bLQ zs8EY+bsrXErIZnvPai4*^0chVr`zm^FS=(QsOx#a`tda5s?~n}Nq1)oiQTmb@;cfd zCtIOs$wB<~p#~~U9lE9e{<3`F9m~Syh2o?N3n~8w(zYF!n5AS9;<62?(WxiCC0AQl z@W#r;no+ay@^jsbE#(h90xJ6N-xz!^&*NC!wK#R!l-SWdnw;3VlyXXE`tl0%*^rh9 z743S=-vO(0X3530Zo*kjQv{{}EsonIgv0j*=9?y^9FyZZv1Lz|Iv7xe1)c@4wS0P9 zTeO+ELqHZ(IuJi2$&dNOuA$w?g6tBTIAlIWvB!)yzH+ z^LZoqkJ%qWF(W6`$KJmZb9{xHpheA{tdn*p_n!(YjkGDTm9v;=-C7+}e2N(HpQuZgq#-b!hg}-GN<-XEwxdsEU%wU3oQDUVys3WzhcLBG zT^yYC9Cmib+65)WzZvCs$nJcCwsQEV;tL;P!P$9oyxsfx03xk>jxwoUR znN414uK)S|edBz*M+N<0kav1HT& ze;&(!40s${w30K;3htp4umir6o0|#7X%-raHKd{n6MPKW)T(h+~YnOibsPXb%%Z#1G=XqJV zCa*9vy+fhCB&19&1bpFFn2V{hwWCszDCJ)h4GZ`oS~JO%q1E>@%aGBoc;Qyf8^y39 z=6!~Di?yz70nG~F6LSj0Ouor09YS4j1`VyH`Ti1k?haSTf>)8~py?N% z0B5?YRF#}=RwW$OY}MShxIc8Q}bmsgk7p3 z%cO9sn@L!!y}-Q$1Bdk%fsky0GwewQvbaw!+B0#bq!6N@K9P+?+SH6U+gPti)l9Y( zNuyPfn_@MF-ihJ+aihF6C>}}TDg_q)8{>NB{d?GiP^d}4{cH81Q_-R@&EGLA2B|P2 z+ZrqQt<6Xx#+x{(!pEPme_GRwDR-FeDv*H?ap~`y#}Wz~yb55M<#Ob?W>r;l8e+E1 z)_EFYQPXP-TU?qQJ!u0B2>{T-FpBp2dj<^tf?fT+fZ#<}jtZ=*`OELi=|AOWMBp{* zK79oH9eli8ZZMABEbNm_X@!Fm+yvuh-J55F=i~ahByW!=Et#)R0sB%@q(W0R^=K?)V%!_Y!nsB<#=7$9D2D6 zz>y2UakNxP7{IaDCOVS1kw8rOM|kS5T{(q7FhHV4 ziZUFEr-lnJB&Y=jWZ&R!J}9{`Se~7$jP=n!?8_T!wOY?$h`GXm-XhHbBU5mOI7_or z{GR+pF!6kNt~snr8Ji-ehQ$V2NvjhK1Vk6O*-}rk^0hvND5NDI`hoI|5a(M+*mg=j zKs&{w$h%ReMM?4gzBihpd45Cjm*zoJx5oDxucm%}Guen&mSTxi^D|y zFdSAork4vU2*7cPDUpg0pZ$Q&t_MEqtzDT`8lXqlN5XTHf*X(?fUy5BfUE6kP4C)> zO%5>npA@$+qam8T^!|W?XA?qOfi9I_!0zSOHtetzs22Ddm|*8V7YMD9xgDw%e=d&m zVA)mGI2yHy%XO(^Y2-m(>Xp8p7O$=JuO#UPnBlb+AeUU;LnsfE8FU59df1Ai4>vVr zkni;#Pg4T{-42j#&rFSi`@G#aAT{%le<@mta}ajJlC=d8?w}zu1p;X` zQEvio8V3a_P3@LuCi-S5S2}u>i3bsDdBR)0%sm#0o_QM9WTmZ zww+DoG?b5yu>M0XN{bg+v^_V!D|Ym^ZF~;4(Zz6i+&#VwjiARJ;BtlTl)H`m_{oc! zxEgJVzfJ_5Y_w;3;#1~Z<^uV`@ad#YB5%VX4#o3@HtfSKcZoO#Z@%VP*f<+B&Cm0wD7vjyj@R) zL;I&UTqU@3LBE*%5Bw^b`s@LMdzOc->@+oI-pU6UR@wF_S)k^j^f*{aN8ZNVGhQ)b z)iQo*dA(fqN0Cj)8VkN!u4d^eive!LT>e})#ndxQPU)dEvF z^>Jk#daP5IntAja{KpT41>`mvr-tC>_{Ngi)P4-6vv|gie$0do*?Q@~Y`M)-xEP5N z9!_?EMQLEqaJU0?8UoUq#svIMmAcJ zL^FNbg)`qH!p`jgTAJhlaANt70d( z%nfp|VPR9aN|W#L7{T|F8!w7=I=4V3lg&+4E;F$9{YL{aR6-|q60tsT^8WchczLH<79}!}wqR?Rbw@|zW30+E@M{&iF4I8gTGFpnSF<^r(tsUmthJJ9X!XnykkAZP-pI8H%bC%m@lJ z#DPY+s`0l??bh>ztcipZe#2{58k9Z?x_De74NGC7g7JCsmP9rAqo?77O{Yi7N0CjW z5Rb-IK**TBx2G8l#t*~A7WWmB5QNg`MH{aHru;ArNHQWPGVvHl9{3Trra1E{A?Yjs zJ4J9HTOtxNkS->%lOo2tnTFvC<1rj7ATVgt7-f#hXVQnI!09namYx!)_!E&o*q@Vr zHnXo#^zztq{;>2$Mbhmahct>dJO}|EnMS>WJ>VGlV@KCLyH&{4eqgv(0wJ0iJa7_;MLUbA6OmH`XVpF%>`>Z5 zMp=iel%U-kgvRRl!$p=!ExC8$G^Ad z33q6S;7(H>h>VtX6av2p<#JMfXQf>mFGCqJ=TVihBDrr;0YEZ{cRN|^;tHq&V*PzU zgJiacwol>oIQErsYxXr&pbb~Iveulh4^;rd!LdFri5K^&*KQbo#%m$Dkf4h6_2?B& z2TOz|2hlCjh%3|roVE4>M;wm}@YP9X+@7&h%k-OHSzG&kd6mgfC-xC09}2MCH^yiC zG2J!^80UUN9zgy$HpiFn?3MgX3M#BL2n(znAkYuUO&!NtTFd(N!C`poK9KRDN86C_FVX3@$j`Sho9N_lmNuhWL{ZMfKhX% z9i+ji{e-oW0^ilCrDuWb&wf{3er$D&Jxt0{r<#%eQdFwrG1d(~LOG|cnN`=V>iheO zot!?-cV)x+ePc;nS_H|u1SKyQ?siI*%uN>1Kn~ot!7j5>h0=B z6h3T&9(>tb{i+MqG-LU-Ji{qX0t zvGmli4C_Y5aW1DYy`Bo4DxSnEkDvz*Rqo8f#TD!*C`h27pfX2OBbjl)wdSzQ$_{w8 z#_xB{hCEg`MW`HGsx4!32eKYw`zVfRr}1FdACR=-K1@|r6{sQm0vF!q=HTc{Lxiqf zWA7+&VIQ#7O~7PLHN%3j>H+@xh!vIr~R0w`7Ug}%3Zh5gBd`$_sp$!VWjTr={$ICL5 zR-Q6HXqxmUwaiI?EeMnxFQ3PV@WVvMuG?~Tixzdp%f7~IcOi)Kt?@3Wvl)B!{UT7YYj`pNrN1Gl;>7HVK_d!kYVF9?wY=3vRQ6>_mtqOuR zn695K72%uuI?Ev!qT=$TRdhU4T$%OEuA|-a>yL#?_(aOxD|tP zBJxfK?<~(z&T3g6zT!Cz^n$EhIXANKBSn||FPI8B%A%yJQIz0 z(CamCe5tOMi&D8tY4lRy*qKpa+Z@NS>(W>Bc{IDY1L0Ig>U!HkLqp?1BpNbQ`l*?2 zEtGs6G_3AtjDo$$0Fg7QF?ApU?#5 zOZV|~z{*L3aD6}8$@v3q1{BxUpi}7h$LW1!FCP~TA~Km#7=`Iryg@M~W1qd$+zP^7 zNdcRaZ@0Ew2$f~@RiIo)*vH9Wx8yQ$yL@Y@B|BLzXsk=J$)rA>?Yqyufk0p`4>Exu z8M0n=wA()bCmUq3&tX~X6s&+G?3U0`5H-V;h zHC!6+W_q&hlWmi%r6{{!ACks6Iso6TFaavc1SkYsb9kzNF5Qwo#*5%%rvPlpAIuVr zujYxNL_DaRT(fnWZR}?R7*YbBI0@Fb@$`Z}45WOnI0TnxGZMRYx{kF%!gg>W7N8a- z`rs%Uj^6=WElr_Sl};|-0GJyhg&UnQgNAtUkjn3}b&8cklp5F*=S1wa*xnO zzyijxW9R|*d~cA@&*&~?>>@gk9)=53;d8S|Vb@696hp=>val3gW!BUGrCX=_V2B|I zEt*~e-2lEoNNB{ZvW@ZhMqr0JzNEH#{A-_+&1p?haHqWiCO@fGXK<#tk| zC#1`5$w@~?XGgVaE}&m!##tqhJW{FyIMlg==`+qhJ7o-T zRoC*vBju_#nnO7-UqH&^e~8-%|Lb9=Ohqq${80LTPrKsK%FJ#kfULCs&`)h~(QY%u zO{oL$j{p9`zkdK>4?rpwzPEcotc4a5$(3nl$kk43pR2WJ{&%>4e(;nXi1^CWC@G_E z9b0dGrh134@=4C)cJylGziGgKzoXS2C8XZQA!@Zi%dq{pn(m~Tt_!G2*<62@I9auT zVE$XePwAjixOYZ;)(7>I)gEsbOx8EbpE z&;H=wYx?`>TF*g1#>94G&a0~b9JUQ)PWto!qQi_dk{F6&tHDz{;*q@DLkFC@ga?1) zH1c2dnls z_pJ|RwxS%41jiQqFwn>93SHYVge>j2avj@?xUk{GuRLsSF zC{zLmm;gXO`z`ZR3oV#h=}4F`dC-ga*VO*rw*P)rt2v~W$L~QIxHDDZq^qg^sJaxy z5^EEB4l;n5QJiuf--(ntF0|fnQ5DK!tRB;aDKFJ6f#B1v1(Sp@;K3XP_^&aLrU%6& zdHx$qOMqG5{Mnm8iCX>>^MB1{@O0jT-hw628_u)VD&#Sxq!EO%<;z%)O^Bf=j4KOR z?h1Mv>EAyJ{w9VGMIokHrp1nr@#Elk9;O29apq=RWQnmtfmh?Bik-Uun%AEOPY}(! zU;mb3-|#$72&{Y(lR)oYtD;qeCM(f`#H|^4Kyh;JREXZ6fJdpNJ|Sv)rz_V|4R7b> zO(89O3(j8+WHlkIXC(r6w+nzTa!@h8{g0ncmZBSPjyIBZ?(2w6=yn3I1$n@J&*&@9 z7#@~XgI6>fOPu=^{f_zqjrRN8QEta#WSk5qXJ@(7Qk6tN_~rP~b=k!XPAQbzi5TGD zv7b71ic~1C{QF12-zaKZ^%XgM1bnejF&iU_Nw@w_F90CDSg?b$;%|-|o4A1z(*N|( zwstk{4>JHs=(7^i($crIJdMH9MOxcOzi=v1Qq!*kOGnc>f3ukT-yv=f?VXs`dvX@J^$^7Rz{U)8G2TCP5K& z?k>`#tCS#rNE#4nWe@InD%6EM5c4juZ#(mwbGg4)_90OGi}8VUiZi|lRCyRCZ-f=3 zE5I>ZMv0hQ{w*)MFG=Pgot>f}NVzOvbq4qstSK`fBYy`4BD3!RLVwRD@6Wf~kdFjK zh}{8#U3~>`4#DevJ`6|GA(@8R7XYPC{Vlsikr`AD$XmCdX(;ZM#2WzE7ag8r5MaGQ zHL)p>#jAf_*8~R&z1&o$L*Y5Bq9B81??wVlgHd^XC}<3b=*K?~7Iw0(43A#!pbW+i z2CLWgx$q&>1AA=dA&?8M{w^yeS+7f|4}AeC&3cc$>hm|rQ$O;gzo%Gzen0Ev$l zP673JcTn>Iam$a)*Bya4cbZ4|}4 zlfzEll>Vc%NjN|hv|Hgw6$}@lptV0-0%bUV zj}<_rFD#@mBh$?g%`*STaCadJg0YB*{o%~58gz?1=RfR%IrGt}?ks8DRmBRpE5S$|v3*REUoFlL~HCM#aN%WoF*P zPn$VQSwN0A9~?^<_Mzgf6qE)gZoL5+!D?_^I}x1o-wF@4(vMe@FmpcVjul z!EpiP1w^q}?1;Pn0fE1#{a-zq>_=zYk_a5M-rJvU#QwwvNlSt#iA8eSw3huNU`UIh zyQfP$rn}rhEX8Y8{&3iz){xIur|=yOJH8f{otX+sc^1JEUdVZAf+DO-Lm=2F2Iy0t zJXi1OKT)>{Srl5kNkM}mNQ1z1&IV`NGf@O7a0?SCOiBt={jCgUe-6sIQ2gm}v-kVq zQWiiq8Y88TP}D>>ZmoE!yc-+#TkX#Nssk?Zk&Yma=uv9%<$$)Wm~`YgL=9pJlopac zTm8gae-@+)T6eqz=?KM)Jd6j%u|Fq$@hGqeE~Uf4`vI&!BU_imh`@t16&Q^12K&pd zP#URo;43~<6Std*@Aj4~cMmcBh6;cajtdJfbo}2}PTqt&PD~sI7V8|yOvJlJhQ5K; z(BU?k;Zc@=ZM&2{9tMR(|2@zD|AT#EHKn~-^fF#4*M~;#9{4_hO6QI-Sz|~uTj|zZ zMdLw1bnBl%-70~iaLqALJ^=4YKO7B)1{D|a-kqVbP<1*(5JTUq?k{z-R;Oc%{~Zoc z@*xpW6LX)s?#lt*ft?_k%V2p=pv-jOf6^L!d)1At&QU!0 zhsB|hR48+Z<@T?WjiB4(nmMsT{ofk~wh&5U95u7VZ|tWS--8o=VKf+X5U9NUyZ6-x zRH1(Y25|K16maP2b|9XBq5x+sPSJbh9QZoMZHhDGXj#Sh2hmm39il`V8v?iBd)YL8 zIgQ|VPALJa)nlS~Y~NL$)Cnx#?tpagHXmTtBL-2Jf8+v>wPQg1BOy}QQ-FgXv8F1gX9D|osx(vYSgd{yu@vm*^dIOvn z3Dh>tB8<3c2=2kuC}xq$|DECnsucJ|3SQ9&@2><~GkEG*s1*@Vo~`jw6L8R1h6WHV zqI)Ykdv_=S;oy)Si9f92VK5ZmJ2qgBAKni}ErdK0NJz?e4F{90pydfzA71(-hyCmi zo`xG(jR8L8@A~^jST#_eM!Vzi-A`O@-&i8rsqKKCgK{29UvM6Il?ozDHxi+{!<0TB z(cnEW*CoZ_raygAheA0zlXY#=1|Xpt0eqjN{_m;a7tbF$DVCKo4?@+leLixP;?)yg>f|x zPJCu04UF0&umF-D1!kVTHXkte|2H#0nM~XptZy(Ho$dY0Z7T&EyZnzoQULKBL_%({ZMY=6?em zFlRUjg`Ju3{9>+;w>La$h|Wgszdu{CZT^E2R`sMr+7zd~i6o;#NU)k@Q*6zgJYfk2 z7)2kCr8S_}B&{c$^rt z1?#wT?5f_Mgw|%ZTS{h!UIhO}lIgL(HArNu4!mNkp4+V;i1I@qcIjtspHjWPkBb#V zbpBukWN|f!A1#UF@EUSxT!G#yyih26>|TR5`rC*C?(40Ttj;ryQj)|!gr4o5aQ1|;w}zRv}5$5rY;1(BGTHTc8l?9=ACkHTOruoVi$+8Z#2 z&bOrgTVg|MyNnjGwj079ZxBNtA0HjakR)H4w*r5{e$3s*cI?C2u#LwH^LM}=atNE$ z>DDzEZ}%tM#P=@!j`joPiFb>>c|JFK2d{ce{zqF=remNOgx)lS8BRtd+{D~CNspP_ z5BA_6{XWr^!DMS~*;`~A>@WucT*lqoMTUA+)J-Z><_e$QdIRB?RU=O(F{p}a9flfw-2y8 zp@8FYcW3I(hk0Omq!T7`BZ|L2Gf#W*`O>|~`TGaq^Agv_$gt!J6+CRej3q=_dzwn% zmr`NiPaJPE{R~oWF8#~Oq0}_gnpAQY6UH;FI1mM>M)j9-u~K6Sm}P%l{dP*^ z&m!%_$oBuRL+Ff$)oXW^AVH{)cP8D0PFqo4dQE>?cc)@^v)@E>qXf;vNY{OD4Gd7m z4nEFm<(GzF5p&=$Ju*qire%-m+|3xBFUHDDC0~%exII1%Uf!YSx}$-hX|%BKh8+p zX-ieo5VV8&v?a1c8_m!PkCXQ{@^4xTj1n$Kp>Nh1+A;#uX#Af}T;CsN@fh5&Q1bq_ zmN|Uzge?g+!HX!Bh0Is&)(1D+s^v(&eG#Yr@MJh2CGu*~xF^}+Z}{~B${++y-V6jIx2z)UxEn?xhv7o_K<4}lZw<%7v4+QOmaeGKB|fGP5GQnYm?@bDmC;c=J5^tPwY zPrz`qo4J%qd?? z+MiL5eVg)0CAbTeJhZ(US#nl6rSFPq=0Bu817w)$+&wuc-Tbe!@s7%N;d4OWD3q+E z+uP#dhjJ(yJ-%ohT~YmqAO)0}IrFXqFzkK?C-#9l{WVfi#?IhG;^Y7^EIu*)>FLU3 z>+1zR^G)fp)0B%`!nfKJGZN_)lcU549_xO1ZOeMlX%=pVJV^47Eb;RFtMA#%l5>BU z0aWam?=4xu;WhpjtO_#qVA0g5tFMAp9-!=w&tmzva?&q`o1n0vOyHI`0v zloruP`ox}DwV;<vDJl=0;dInn*WaaCVSu zzI-8zht8&Y44kOd(hF@r#%Y*9s8inYy^!gbMo(ky#*l~0L^Kh%&D?`nC!Dr$$WE>1 zU%}Y^RYA0^v#Z_S1%CDzH(6&uzcjjJqTO;xXVvTnkzlrfFbVp==}PszeYbH>x3_`=rIevNfeQHD%)Rxfy zKKk3{?DF7|A6S?CQzaNj?eY&L7rF zY+6<|-!?1Mj*e{S9~`v+X-n7umZ?Txx|lkU%8kPtuuRXsW@kt`&bI_&ZSXIi4#ACd z?gjm(M(C76$=QM7psXiYh0=X|FOQ)wuD}2D9@=Byc8Gh=reN#`90YsFI&Z6GCYOU( zg~JDcLFX%g_9r$H?xtvrCyv{t_5Zi?50dOv8lj}F!Q8k6>i^IKV8i$>L4Q~+rHGL- zp98oOqRsk}Lp*a|iz*X70{XpSSqW$fxc~LtcQp0b1mNE{UmMF-z%+Md6SA!f8~stF zZ@2Hs{&`v$bVY;t?vn594CeQzzC^a@@*aKkwve#w{%d0p^OLL*(AGh3 zb$JCcG$`9!2W3@zgbOtVkqJ>8Z#nR^$Kdt`^eSN48Cw7{^y&xg6-*h*R|(+~chXRDAV=@#yy*6q{rlA?V05stz%^LGCkL>1X zuR)JrpxNiX{=UHB=l^WAcsl|WiK11MOe||5x)y}z-msrmup!_sc<1%7`1Za*`0BYs zATbkZ|3O=LY6V1Ojw>{cU~|}63tG%7VX$hz{|`Rtm{Rv6xQ3B4ikB@;nwGI_CU17Kh+g4lcXfAI#iz&p8mECbFK2PWqv`OEQ zx}|=pf98bc2!B{CHC`?iYMRw{a65yc!r32pO9*URg6t29V4Wt|QFb1$;E9 zLK$uMRUJOd14(F#RtJzN^1k^!qG7i;ZgR|Tl6JJy3v{}E&3?UksTRkmfhK z2TI86)wd%S3qK4yA<*7=8vceHO*ZAjo@bUI@2{^*upggP3nFI z2yYF8-D<$8HuRU*jPW$G^0a+fYM-oIeAFfRu9|fdg<7=?&2mA|Dsb9 zO{{$w;qdfpHh_nHCS*rAW}PIMXY3+2aOd{Ld#Zqk%G;5pj7~G*5inHe7llVPK!+9+ zVCb7Mj#<#-Ue^VmJ}*N*ypj_p)@K zx}!~=$<&l)zC!J5kw5tcH!TUegub+T3wvQK@>&4w8GkAl2fasX(kWrk=Wg@xig`4! zz)!SXpLk5Krj1)>xEL9r0b+B3p~Sp25I%GkxXvm=fx$V-b9JrJ!H!~g|be+hqx8I|%J)TL6?m#NspxG-r812=S zR;t$`iM_&B04(hYbM`7kG)nXGVF)*xoUfUfm}vGrhbh2WbAg;IIEteE*-+#o_Gp6^ zLj#IH&epv@Ac(hxi_!+Wr+?KgY9hXVH##c z$tY}LRcwiAO?O1;g98Jd6UhL6nX{#80^!=^6FilzP z?f~?lH>zA8c`gw=horV|s7dsqq%X-sAeBzNTp1XRexUO=WSsVf?L3JNZS30a+@-$B zi*o?DcSgTKVfLN?BW=M!9qJQ98oa5CKdbsGHc#p?R3*5-CXFe3CP$Mdk8Z9(NRs0_3!}c_zL8RGG;6s!S@Uj*2j4rDf zJj&yruZ~a3_Kb<9?ZBuNYk^W=p2z!9^G^KW&e|mg!-hOQq_oCc6o~|tPxiJ`+rDhQQg;sTZrM46WZFhsm_5=6;B)(vMnwx}y%gh$cqcGdv>~L)Ri~qRf3w-&+fQ-ZN`d zfSTdtk-r7|dTy2r~S*O1XO=$uEokA%?zVBwsVTymPbqrrE-?tOuv!H&R^e z1x5!7Be~NLb2HvE1>-}@NnDl+;SIa)47bi7iK1b-bJ){??=V!B1ABrm?;sMShJ8&@ zgXCQh$Nlr@e~^(w=}>?^{{%>_gXpd2bA||74i(7NCVAD!h`nEMw+}mKR?py^*(kMn zp#MPzHD#i2Z3SjG5hl?5g z^2n~+{&ur*+CQTZ5}mQZQEP&WHBXj}ndJdlQH%vEUmV}b z)!S2OV`tm|g!N`j=syF*3;=k*l5Z%) zf>N_T-}rn{o5LktI8-2x`Vb$qglt=im+1h?>)lD%0ZPD zvaV*t*<4S3z==Y&ub&RR>4Ri8)qR zr;H;M6n(o={j3e)V-OL_VQY*?E$j?_38O;2jY+%@DYGZv;(FTL7zQ_&x$j6LOaK6B z+nC%FcmuR+ptM8)wxABinOU5JuA_AGtMr*eiR~1qN(xnP(VwLEiD~lVitwEn z3=ZTl;EDi}|HD2>N!P8zR`~+tPB8vq3`MZPdwP1>m3a+(H4Ot4oW_Y?iy1bJ3?vG5 zSG1L2taMFqxOynt^n6XJPZ#-`c#h%hK{ntg>iy`~L5%f%+z_E=1&Ka1$(xG6VGUfh zD6%6Bv&|XH$WZ`W-U2xlm6^F>DCWgtbnqb)sHi0#isJPmQ`tgy+ad<9cLGlFOhNp; zJ=j14I3FLM#yqJB$25><#c+XHhHvKL*#X}w1;_5(C1EIuVSctT^mx<9+f}+ItC>d! zIRDINuKQ-#aNLwJT29X59F)S{u=sSyj2XeK4`O}yK;M2;D{%Rm%FWnXmw$m*ZzkTt z!XktU&R=dn&!`WN)0+)yUfXO$Ad6|4)FMeia0A$9sL;$fX~JX{odcjQ?+P2IV1huG zZ2~OQ?8Q0AP)aBJZ(}F|)-V!Ej!m~uev2J)P4coZy1p4RHfCWHfP5FJK@z%c)!AtU zGzi825VBd1!jm&5a+=au97g-`DCN*#VmrX|l(9HtgX9V&NN^Ycwq{{xC!jFw=Z*1- zQ?nd?GJYJS3;Zm@Jbi%?bnoTp%#n#J9lz`~ z3ROtTe31zvxFe9aoeA1CL2)2{jBbP_oCq*lF_HZTO$fW6$5)fMNm~x)o0n6WANFMvC2gdB!EA&?Tc<> zSo_HR1#te&9xaAolg3hvsLx0v_y*2P29BD}l89C>@VA@D=^Gi5Cm#%xu$ z!ANT7Ttpaz;l)&+efL-b$tPYS{r=LKJR)6o0;l5jy%;0{WY=CDDRp5+-b9{&XnWvn z$uJ#$9Ih3J8Q#LZedef-A$Q!l=5zvvW9HD4NdHGXlR^xGG&R!gr6 zEFR42qUpJ3bi9p@&hzo;{J5dCH9M)j@2thxPp`!Gl_p9^1imvw41Y9X-6y7yJ^-eR z*;?Dr7~4?nxVX8w-`%BwIl%Ag>Uz-2vk$45DGf>B#2+;?yASPf^?1G7+uHV-+*rm~ z3dI>TLa~ya9!9y~^%S_BP>$C(k3^T;$=%tN%@t@w&nM<8hCO(dsVqs9Q=pV zh8b^I2lmUuV=F@#foypt$F?s|)(m&Hwm#{1$)6PxrHHa`R99bXNQ=}a+nG?-F*X_2 z!0sKd$!9DlRvZV#eY?(8H#IdmbDv@Yhon~n4+JWP ztjB&!NMlRS$hcXH>cD>Gi81sqYmleXCPZQkK1)eS>0o%dAcH#yKR`;HGUFd$kW`)v zyaxrR?y=7?6R(OkM9hYK$*e{-sM5S%G>9F4;I6l1FuZgT7vm=pI@@xZ`1n-4z%AbB-X=Cs~$dOvGfOm@1H-Q>FF8SSY*2!{I zM|p|&hBOqQjkjn*SudbwY%MJH+~gwL7>pqU57v$}$6P;OQ!_a+WRvyYb=DZF3n@u{ z4WLB{^nqPN)61cGGMoRbxM0ovF?1SpkUlfOrd* z@hk$0Ridp9dbyxMRE;SRC3%-i+rLL&y+qey<}@h(a6v7=YFG$VS^u-S1#{^kbcdjc z`@9{P#^>KS@Di?^uR&GRao6=`Z!SAv4!YdyW8J~ES?%4;nk$H64N74-$6k?62ctterZp6hsh{UDIYJy8kx zebx{0>i?$0nFymGWy`);Bo=O zikTBJj(z@Ijl+`!K-FIZk5)1!DV+s;)t`8+2%9k>kqr!t<+MSb4Bw?vn~0I3QUwbryEq_cxsumY zlT;n~BwdIlFNpB=N%e0i)y&RU_zcMlary+9v4y9XG6%(|Dg6^i9Q#oLaw{uK|L3*G zOujBm0J)X2GoIlL1xtZ_Q!fSL^D2?P%3ycv3@eLrfXf^8ojzZUOzkI$`<+<3L`j;& z-VRZw4LFq?x^u5?PIGBY>8>hHCf}m9N{it>Kiad$H^%+_6`}8PM?)Ep6Y9XKxi~4j zfI-d|vfbazNLvw0i%$SIoJd+IG~;vy%Tx06^R-%hfVuDebjVOT_<9|S#;PEK-8Zhp z5=KC`Cqi0o9ft*j&iVrC{$65Y;+JnvX4=31ttUM>;;9o2fjXJSU!xU+sUfBwtZRCV3FhN)5)pEIAS1% zKLV?-KQGGEWZN$hhNEg6zmO|OyoS5$Tm<7dXUycOGE($%9SuB2nqxlIPx~U6G0Vs2 zz%Sq|e8^M}cCy_7ZI;QUbya29n_j-n61A|V$4?1nW@gL!E&av^pdRuVizIfysPRwE zK$!+wckDx)goK3CFzUr|=bN?jj5)~5CPR+VLzCp?<<%&o#+uL8NZD^ z6R=1h5^EqT-L}h)sW33(M_#7v%a@RjrYwN^Drj7%ux57(3WOdy9sI%w1F;|2THEm9 zrc<|=Z+ptimoMeXcV@C{FNY#ATd(?)7;s$Iue3(7%I&PBa09Y-!>hx8v!tqQHzZ>V z>S*LrebclZfmq~{@ms9UC1j+LXPJHE$RzJe;t3^JYQcm>~f1y1CT&4DCM6=gzYBoWYI!RCmwre~j}U zo=NSgFQ_jY0x#ptD^gANho!do85EXTlkD7B)DlrcKOsH{V%P64n^fkb(!o%MNs2Z# zB~2|rM@Q%1?jeBMuPY8;JR{anTZBWEpv!vSq@)l>{;FYdGy4`CaS}l-5U)_wI9=S` zjjRhuT3ytFg3QS8w^pIV9xT3L}d7UYf=O!vL`3T^0J2(GKCFd zmDOCx@z_x)=KH8ZiuF159h_bPGFh1Ufz@RKkw^rg1OX!P*;AnJvFiNs`U9;`W8+3T zjVp<@y?B{5D4rG(!TP{-`7ksOxN{+=xg;v1_u>o?lL;SX#fB4WR?-m4>6}Z#ZstZ2 zTwxYpoiv!K91{X1@6ytO0)5i=7i&GCLnoJ9>~YqfQtok~$YD7|;p>x89skzmG6Ux9 zV^_hsxsoi3sxuJrR1eg;=ZskhN|tUKJMB{U_TpWl=M?D((nh$?4|iY1tV;maZlf3O zwLi+*^auMuSri@LE65lr*p#yQ67T!FBz9l-&L5!_8Us_lJ|UtF9$}#p zO9cihMyHyt=+S>ylQ-yv)2~$Fk@eh_Nom$n0k~SBh1SF#;qo#N#NCWNw2e zSYbeJ0mp_u)n!ss?E7E~^~R@lN7#?EK2Zi!!*cO&EQ1W6Nh{%kyp45%qc>LZAY{O-vRVZ4!2=d(8@?KEC0H`LVj)necu-*i7sz6) z9a|1BNW7S?&7#qJKF4EZwQon57A#=`IAg?YzXbF6v+>JGjL-`VCe(C1x~&Y;zsWEM z0^Ax(pDy!(3aM*QWhwaj_3Kcwtqn_Tu+MTQ;UW38Wi>TYt}ZTH;Iv(f@$&SPR}Xb! zO#|;N4RTfRbxMj6y7!B24&K!H#8*r^hEFaL2%Bo3#KdDsU&1}w6Jva?h7T8`>#lss zf+d|GX_blFaN^_TysCX=y3k3rhqumiijzY?P3%usEn*c)?}A|SQ1w-JdO+H~-h`K$mZbFzk#t?#BfcDq_KQ2D8dLF_LW!}+Qxi>ZTGQiLr%R%#E9K;EXrq>-gR*!fc7DutW%cW612zS7KL z7vk8!ZCO5pZA27RRaJxWC=+-sNXlT-u>F*WgWtCb727tXHi60WI5AOqZRk1{cM@U` z!8DG3h(OmYqQQgrQ2;ofUq?fAE-lC>^YrrCfAq-<)>7Z|*`7WfsNwKS#Al?K806kx z5~=-CjaBhwq|*XZ{We0_cIXTteUTRXATd>wq0NVg*vB9J;gp zj@7)7_4350r_O8-r_N*H6|f)`6yl(y5}N?w8k@3tD&M8-m2{r#(DJKBJ+Tmrvm$Nc z&EX9-;>NgYzCq&%4J9H^8_Rkl%$0M&ew5^Tkos<}u8ld?5-fa#yfm0?I%^sdsDc5E zU@pA2Fb(F=%=L^BVS_-NI^M0L@PBA{ks9E$rTEiygS$og{Vb_qmn@Z6v5f3yuT!hOdBeb8X&{!dcQxLw%T zbld|>7<~3|>y1-cUkE-RZ|O`;w!ZI$s2qSLcX>FtPf160oMw$TS+)brk2N$7P4+X zl_iWpfZql=bE02{#b10PJ8GebL1fv27=16d2gTk@?~L#99V#FL`T>SJo4SHqpJ|3KXs+RNC(ST)hI-hkB+%^z>? zS6omvP48_$@7r0S?REzxKZOc9E_67?MChgW%tmb5B_qVaBtrjH zS7tp-*veK7T6|@OA6UK$Ix!44eF25eu~9=qW+AEay%*H2HYDv}34Y{e!vx0Gev@X7 zAw7wc@*TF$?9&vV6n9(b?&j8%bBe|L0?Q6VuN*-)T7bVhlp&NuHr?Q^(=Vnq3`+&g zhO2q??1B!9hw()+jcG5x?;3 z6lM5CwnCPLGk97=y-;#&{Vz_dpC^}8IW88hVwoA<`S1YKtufzg1%bmIsb-v>kZ^W> z-|jPwjFoPOSv^aN9c8f$K7XwveYj`MFweqnVCw?coU4qlDE%CYW^WX$v&??H*9Cdl zFZ2Y#W|^!b1daO+v42aR`rtdC2iQ?J7ihsbZ*Bdst?nr%5QMZ=`7c<&5x!%K;Q<`m za$7q)QRiKKQSQ}8tauVwW(>Qa1w>-|Cl`!QeX<58tZaVyy0@~#xHw$$K%q2vsW9G6 z`N96>>sKBQk38dQD7*)^?d3F~wgWqB9_P9z&YCHupIuzrdCm9nvENr!wpmzMw5~Ho z5O&y~W*h_!%YBBb!swDDGMQYW%MA2kruP3(`Fv9o)58L3iQ^R4a+Ds00MQBq2=yo| zP_CWyzlCTO>x^4jYw_CdU_TV5X!t5xq`z{$x#BicEPwzE0^Za;L0n3(k)o6s2U{G#gQn<;T|YsYrC&WJqo!1L+^&8c=FgiUO`l6oSOiyhf1 zY}65R8w+HFP~Wlry^z!z-UJuS?ebQ2pQeg*Fc^6PoJ;~D?hY}nZ7IKB4x;BbpGRr5 zevrSiN)m?klx{?e$?|lii)FTdOSrmR**v`WO6UxuHUc>4bYjHQDGpjM=lJ{G|Fq~; zY2=gQ_?(`6u@xPEeZYupb&R6hmAaZUw+ouA)fWKXbz62BDobN2fe@$&H#=l}e#(mC z6Ujghf;hdaI!pIQ3W-P`2ApU9CVvI&eS~Xx1SPTsh_2qZ8BHPfG7iGmPN{Gfhw@8{!&FpO zosXU#XpV)BROY0xmd~imi!sd(9Iv4x1bHPfMl(@Ek&wrN9k<+iN}}~M{^?u6(hBIQ z4~UnVn;lq82{k~%S}rYR!F*cyTxfiCFe&c>qDin1B|Sa8!M15%Y6i45?9hC;X!;R0 zIC0BupTC~Mk_8hf5acCp{;L-HImzaHVg#sU6j41sH;0D-bXnWwp{O~N4S2yF)%j*9 zG`#^u@?{kj!b_-i>@B85A9Y_iEDxTMMKHnopHkVcU*c78LVE7IY$1cooPPBXGinRV zf>I0A&LZL?&-8FF)^&saljZOudUd`Y9)NQA+n-Jxz-;x+c!!+vL9NOxK=c0_JOmY| zUxMv3S>6!rhBT@V^G=LUoaT6D;MXAHpxw}H7=aRmtnAjy^ zhrsl{gKKUGQ(3$wYF8%kfrz=(G#TuqO5+_R_ju}vxr{{!Xk z-seQ1cB;1B^-U3^Aa|OEhQ_ytsx#CXP#9%pMROx&RH#$>InBZHq$avVxq&Yg%0dwFduJHfe z;uZ`;XmancQXR_A71sBb{!PnM`!aE5HD8cXc3ptjz3zN&}u&bB9_At_qz3lT}6tCBW%zM zW0?iqE>{j1fZxrzNjq~-uS=C^9j`5Ydw62{BqI5TZdIlyJ?EX~WAFyuDAx@pJl;tU z_gZ;4ZucH(@1B5Kq`mCd^GG6>j9Ld8OY6rSx(Du#bep|gxqzqiJdxP>vd3E!P`ztn xCB*-;>>Su$V*%3mI8kBIv@k Date: Mon, 17 Apr 2023 11:08:53 -0700 Subject: [PATCH 18/33] update the logo image --- images/logo.png | Bin 521071 -> 62601 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/images/logo.png b/images/logo.png index d3c5e1fdf919275f87bdb889f6f73be0e56befd8..36ac7e95d620a561233d56e1a871c804d1674466 100644 GIT binary patch literal 62601 zcmZ^~1yo$kvNk*nHbC&;HfV4U?(XjHF2UVBI0SbB1b270;O>^-!3i!uyyx6|&v)1T zXV$FUQ(e+k^>lSl?>!L;a^i^axbOe~08vsxL)H?|D!z@_+OF`ak-HH(|+Rv2r3IpO1@o{jU7!*?VK#^oiS-x zBHsvbUnDf0002z#_YZ`m64^Nb010cUqT#F|E5l`MZ%c1zVsB(h?{53$T@QfAo$IY> zYwBzWcDJ>$bK-L6CHaSg>#hAxW*`Co!{ThsOQIpG02a1)GzGKKGtx7X@WF$@U>-*k zGcF|&v44xded8suaCZK}#lYa^=0@+vLT~SA&cMXU$;rUT%)rb{_r^iznuc48>i!(0?$-ANde*J5lrtX&iW693x-)_A*$nf67 zz(mi;@PCOpTbljzh;m2>mDZe@kfm zpA!E`{ofMuj+So`H+&!3dkp@u@Sn7Q^YbvgL*+l9^DkWfLwy4#A3P7ke}kM4zKGWH z0{|cZkQ5PAafkSm1?{iXurM_1>UMl8MX&-K(EWNO~vD zkwOi6APIC_RSgYX&sxiO+(=tgiIJSSa*q4?ivP-5#xN&YlK8 z`!Yn7XLeR6%S*b2Z32Ox!vs*kpTk^+sX_%3sFJ%;4DasIP(Wd8fu{8Gel5_iOWcbn z_z-peRJP})I9wL1u_9vw=$Zfr2b z4~;$zjX8Q&0#P~<%QSVYj&bCi3aqdTf`U-mjSGbm%q>{1!NQcjOm6+tZc48$1Zfx` zmiH>g*xei_VHzH>nxAoeXKl4!jP&=ampmq7Q3HjV?s}1@EW*0dtv-d7ncNE2G>$%& z3rU;Omrei-iqo0`{mlbq=lw8N0l`8I?5q_|1cySwq=&%a@cJVFgq4-PgHg#3X3LT9 zRO*pR+ymi&1NbiyBB<1k)R%X#ktj+A(6AAlNb&-RAe}x!v9JW7{^WWfcO~{N zM}ultfY3LIh~*I0_?0T2TW`0}A1uXUN#n3>Z=0WT*Fa6BB2l16iUK9kVYe}=K7k#X za4|OWBV5u-(Jnw6oEKn8EiVKmg@OIz@v7rq#R*kDejUgdf$(vmgmuz}%rLDA!9*TGFB9@vT(?-e%FeY z4+Dt>X+8QkkxJ7Mzrd0*S)tsmxLD;kHLSh+96&+;{%MQuoal=_1)daCOhz1U>?>5< z2U0C~vtD3Jv*u{FZTHgre5tl}*#!!j*{PDK#(B8dOr=Mt^=x~DsN4O6CigM`*)G95{r6ebWo!MpPOu`S zxlwTLO~<{R-i?wr#Du@O7|xjT-*y(2T2DPji5Lw4G{tzbR{c_qX%XDVM!kz~T$&e) zeO}K(Z|HuQ&mLJRn1Gq4XOtgL-ZBUvlIeDhl8y54^J5M;Ck873fzEgjAL89#C3uMw z5TXl$f+bNaMA!#DF_4qt_?8B}Pdr$>iUN`!6Hn*1xwZyHMxq>$oArntuz8AT3ENGz zB>w)46(S54XN3+1lqZCo`yip`8JCX+~bI z>7aELeNX@D82mUva$gT-xK0H7+{77&rm(&usWN6{oecw9Hp1VmrC6<^8IXgFU^kl;*%Y##VRmm?i! zelI<^HsB3w4ednz(6BiUQKTGG9E{3L8COA-$?D`E8NhKO-3XwrlP7F2JWiOqZI%d^HsU(y_=3MEp=i8I>p)XOhsS!PJ>oO6 zfx*fcd3R8w^uZ}w@71KCloM?wSWKli$q)}$E-Pgp^RS!3=qRY9H2JdzrCbsi1&b_t zZj!q(3JMO^P*5;V1#V0=TjDJ$NR|WWQOIbGcxhbx@~hDwMJ61UOYeB!{NsD~uZWKI zg#PQ&5ebnbb15TROX(!XTv97Egc5=lH9f~=y%v6tpfko|BIFOuZ!90*;HM1A4VZo9 zq;Dy~By+Xz<4U0YxiR@2g)Kmh_APVe0#Cmn1JGZ;#QfSnuVdiH(+&{*pa~15MhOHZ zn66kyGWB3m@vfL2=9Yb+QTEnf{z9$S8g2@fm?T?Nx~IGR?b^RO?D#{&c{sz->sVBtYf zP|4zeX#7$6JMq?^?16s$8Ex*!Ds}G@BglOyWXL(K^xP#k-3iGh4)6043UL`%G{75@!9xK2rM3<+_WbWD>9caqq-`~Iq^MAfIk*mYQuTN zbwXlCM`K*r(~>ocKzXhd41|(w_Yn74ZzhmkP)po3yO9V^OZ+o2VS?>2h>?m^D-s<| zGkB@Yhh_GBTC6?Ja`;X~efDDtiA2DM1AI3*bU2HNFZ< zA`1B;sJOgGN>szMBItLKg)A(pn)AZeaWRR%Ff&AeBgs|+syC?*7pseHAF$t%MC0K^ z(EnSEVu_pkIH|aHd2CLW@z6*ps7%QafgK8}lpvs)ZAR8w%+m^jWN`<*(~3cacjB$i zNwM0sqfacj9;5$0+xlREzx#wq2}VIFCIF?f<-3sL7p^uLD=+fY=z5<}>aNp?qJS}M zxEXl9e5?kx>82pxLcKluaFVOR62A4;2Kw6f}5p)QSEV7@Ax)q;QpK-nW% zHECzDp=M1^y9gO|!_OYj{vTqYpscVVSWyQV%9b>}m&8{<`+uN_m1;uYB=DO(dU{CB zY7_SIPSyjzx8q}nYC{4WARy{dgC!7bF*d7|Sy(KgiIrZG;eZ8EsrM5hC~1`9oYvfL z%u!n*t3Y4_NX ztr&lHONTG2>;zi#($->Ne#7$J0sZX(1Yp58igPoXMp8ldscE5as#LilIgmh?4-in2 z*@LdDd$KyOa^s1{_;ln77w_r%z^3=*{Aw)3qcH_zf^Fhtt4ZKJwa-ET!yYImX#`~0 zVTKtY;x0jSs+Q;=fMk$-`>f2AD;fUh$PsD<0Wesh3pMOvqjeAc+RWxyiF~le)3O(N9PshgfY zJkNd5U*xw6K>~$BawoD>Ymxh&*Fo%H3CIP3_65P)t*4j~t|}f8EofI%6cFfR7ywV}ONj]G?BWQ_Olvqmn}UU)$S zHxm$nfb2SxRpP`WlxpYDN3Qd3_^YtL!fPi%MoY}snXgw#JEv8#i+JAv7tv#n*rHnF zx=LHjeYmj?OI5;IZ{Q9D_{Q^{WVF(AolIS&;EpsWo6HzMg{!l8yjl;UvFjs11)Ud@ zcQAe=1uKN18ff2bppmSvn9Xl%sgxf?)7)sRds5T$yok70XV^{g9I26p&cHxfQ33Dd zKOJ!#ms~knTf&u9Y2eJKIG;!?BOu3QKTDgHLHp9UUXT9+Ac5QjP`4BcN#fq#G9l&q zs;G933iC48g?q<>z!*hIHQa&}%(mjE2V+VTfm}I~xQ`@SNQ|mKfw`fK;uTH6{$SYX zVq`y<@jfnRcepqAOOXReghcjeg?x{>=cOUgun0NEf|g4=-F_)_`3sx~fT=`GCeqpT zDdk^s**IhU1odD(Z(#^4 z7{V_J=cxDtT4|jr6XJw?V}uC+L}BU;c-FTEn*J3FpR;^-wsc#gB)s@*z`G`Y0b5}} zP`LL|j87d3$)DfWeDN!4Q;x|$Cg4#RcpNWNsC3xH#i!m9FwuzI1Pk>Bm~em)nXr;c z#6`KyPn=5Cl!_AgAe0iUml4yabPx^hjN1__+M5g%!xIz;BIG`=2m-jg? z09+_#gao$KeqxKiF8-<1j(K~lQ134wkoy&tkvM<7+nic!?riI4L#xEQ(rb5wNNp=> zLtW@Dde>Biy?4e-P)z)*6}57JQuk@d#*t&PE0@f~B3bjY%i%t&tk%bAkqYoI(iUhYU@drQ*uycrTMiNfbRH~* z(GFMon3pcXLjWZ#h^`tY=Repw;LE5ZdX5E;zGIdNYDy$MTrehuzdy$W`_UuBS7#dt z^#z5{hK$WO=B8x^s}lNsQ}=Ed6fn3mCsMGZ5@v-E`^H8VIMfp1DYqG&25oqw>k;jI&Ap za39|kypL{xw7VZq8W9r@X)(yQQle}e9u>Ud3=LSi9&=XZG22dgL-qSwApu5VH?24* zF2^7dVANG~Sny^=QdBoI_?L%{#9QBM)vkekxL9Dl^>i-&$z4j?3d!h{T%D7Tc1ZtN zYCwXxqb!>@LYq7H|5dZRDahneT1O|c0 zCbi3Ga&~4a6d?lpU~8THRE=MGTXFT?OVRs;;{knf1$mj)cyX%CqF>^ogFB7t3Os1z zMnfJ#=05zFml(o;&d~+=W~j^GXpG8g0|}*5%AY9&im_LdWE4f;RwD)Nkg)eu`FA^l z3`VxE7pSgC=uBGhN-u<>K`2!|GFe0m-YUl0p#}fcz;HlvriHCUr*^7xowabOu0NP( ziZA&$T>~j@(9JZ!%e~m~y2lgi>t-Twn-xFdHhNH^6)RD{3&o04>m} zAl)~=G^aUY`}-P(`D>*LV86OQ#{QKvw$v0~X$gjK?LVj#2M_~e2lDikY39mQ{d0Z5 zB1OZud7dG~WiXoqkbrj{7ZL-SxvP|x!_OZVv~7X?)ehM(1fr zi`I_T&8+hUV%smaDu17mKH@|<7SeLD)7wpaphgE%tf*+o4GTRM+wW&;?<;$mezrBM zXtdY{vioi5G?|Q$pyO-GX0)=|uCz9ua5tNcYd1f&>%b)zeibOwBCoopM?WpLf_k|Z zKTc(4)-8I0PX!n2^7iFLL(cm`p?pkB(`38&Iia`XcpV0|tgKln_i$2=%Q;KNv>@&E zWYbI33U>weV9nH8q9a(9mbTa?!J)thp9T479A(@DoC~0sgaENHO3!!IY(jLp zVNJeR>VlWi0Hz##{;Pf2L~ygTndLkoT4{ckq+=&1he85pf&v&%|LoTF{M4~(T;`JK zj;Ld*dVBEmtYwc*D|JsT6R_oB7HuEvIi2Obq&KpEf4-N})kfHhXQ;GxB}z!Six367 z&1Aac?zWTX)xz(4pEr!IZPyjqws#Z8S~Dz>P8Yd`(pmlm%BGiin@P;rX@pptx}`ACy?HMTFqrD{2Z9gp8y#AmyvVDftULfcL|9#{5DQE-zLcA&=t zBYOO*+Qx!mJzSI@z4G;;N;^P|zAVfv>+LOd>r~=@tf2{5on5>(9VQ{yT-*NG=7d#t zHa_mvA+Osm>g`;bc-ob_Rt0*vQ~+TNi6;YFuuE$VlGqGAPK{9W-(NT5p48 z;FL#5-8Oe%kTl0-bGVjeb9j1I41RPVIhR$|G%l-sioyFu*!=9t?ls7|*r|-Q*tRLa zuDDnE^VO-e?KDPwY~pJNPtwS=V&rl8T81Y-&X2aP+S@`|Wsjr*3Y{7*>|nc*oq-!- zeukAmu2!u}nxLK(cJ0Z@EMDstSQ|9q{iyh%a7{~UkAS_ZU;D!eB{oqqwha8w;S?W& zY-JU_MBQ$TsH=5;L2L5)?j+?j|M<+g z?T?H9eXW|d6M@@_sCf%#S2|k*&y7Plaj-=)?JBIK4nUpvY<%HOFE1U8<^p}WdP8R>R>Cazjld7{L zJC7|Km-=n9ovG@^gR%}JuHJRmadNvk1bMA}yy{EF+iC8qwl~+iZ5!4nYUddwU8V5) zkG96*(pg8Uk3}3s$rS$LA!%oNl>`lwbpKZ0KD96tgj%|s(3!CxML}?NB@?vI^h;ra#AT|f5L$X%T(IM=V>E(HIiXO;V2%u$ zwA#cq0!}t$Iw&}uz4k#-KKshF-zK8Utmmmk%_NYl+xYew*~#mVU-61A(%+}T8M(Sd z)k}AinIg}P#9d-1?4r--@&gGxJ(Ep|U*n_pB4|k&lup6w zwHIad(~^B|8w-WJ8%|pB?LZHKTY&sXW$7nP9Ecz*hC^K`nz!mG@+?RY0&+Co={8OL zl*J^xHSk{Gmj5bL+jM@L-fP6j7~WNp!N;_f>$diIJ<3vfZBZ#=wcgg8|M@IheO)ZW zKFeLNPk1a?Q0613Zr@UwqJ^{0taTs~b0wIbDoL%Ta8%BD}Jy7gatXI^`+M8X;@mS;}uxW3+Zo8Yjjg>u#vpwco&f30;p zTo5)rNcsR1&H~8(@ig{!8|Byia-A9FB(z!=CY^T64FT8k6#=&krf`%{=3&38;6M>6 z$RJ&0nHIH=F)En77ZB#7XBYGMYcXf-H{36sO1>tw-}t_XdNhAouFA|^uYR-Y7u@9P zg0XQ#+Qw742A)_Md9q;UoDm&N7g#OwK2(ZtA0_a_#Md{uz5yxEg+;edP^&-8<>nwc`Rh_fp1gEs#q zdfFVb#`lj`Lif0q!1;Dj>9!y~z_!d8Roy2`radsj`Om~oUX3ulEu?aUG*WBDMK(=( zc5(Go zfBNPY&ryQ}yE|V7XHTcSUXFcVUXJVG7#Sy<&#lrvAhCvu;m%8ni1$!-J{~!_EfKCZ z=k+bRc6q->x9!D*t+(RY?%B0Jz0MWI(yIrP%5!OBXWNXi%G)|0f5vLtC+wJf(p>uk zNtW&N$Cv%#cyc|*u{g)?udQ8ve2MitL~W!rBZQ7h4OX`b&sNSrGK&U0{; zXWcz}+S}|8^D?p=Vx#&CvVu6XztvYwbAr|f7T34=p3imN<~CM8C32j7%~R$l{q@jBrH5t3j)+ zoubg2u=!G<4H5!o{dE&>O|@yGYP~n5HSDZ&zEY8}*!q?b)6iW1XdA)PBwOe06j8x; za)?H0{o2zKN9po|dB9Gj=5F{^J0EJEx8L(kq-u%f>>iRCLPgzn5gVw+XD9@=tA`d9 z#k#U7&+8&+`gAwex4J8Z?@n&4uEG*c6PMA6wT$Pa7;HyOQtKd9l)1{Z%6V zcEbm@b)U$u`-IJi?zRjHBOR%CBs&GA^(Mh-t>qKGSubRlJoSZl-5woXES?EW|5{&N z=Tph8`heRef)61``rtOl&p9RAM+tR%+J1_9uMBwXW#6*0?se><#xFKECyB~}|9VSQ z*-}sS<>$9J4GNg3bN{J@X1R=sh4LF4!+>tH3WdiQ(Ti@VhdE)l76NunS=YO&sI)-x z-=^&8RKYj5)2|zh+k#xj;U2;kMXBxvy)ry8yawjzgj@JOUW`(MQ;Awv7fu_nvXdA3 zd6?oOH@y7>+{;_{T2DC}9CX}S?Uz>&HB3{FTa^6R<)5#@d7E6i$|gFWJ+k2z-geGw zh5MN%KF+PI3P;#Ke1k$$&-t!WA=f`+W!t)IJ|267UtA7KPqz9rtquo^Zw8e06R~%p zuka)mdfBxM9z~;E?=m<#r88J~c+7;tl+b(Oe`$smQW$i@=y98@SS*z>Uxq^61lf8H zGyO=%fI$4}eMB0-V|KEfevO`_s@W(zS&B_AMt#G|Z$Xo+aN-3oHZFsR*e`*h1CBQQ zMc4Fs7R~i}CoYVN6>Ap1Krj=#Hd#cF&voyhWk1_}%IAK>%Wgedyt#_cW3!@j0_LdPuyvL7w4Qw9rCsa)e);E0FM80WW-Z4NqLA6VRe&SSM4pLx!W zX@7Wf+jL*%y*lSr3v=*$wXB=9KJ%U%V;z(0dfh`noMQRzAJ}Q#YEIO$c+&jXX_tk_ z*1&~LIsbt6S4u`cO>=zBr%Bhk#pQ5A`lUFFOrUO;)n}@5nX*8TwU2NKpH91UPo^}-oQt+=Dt!A?V2y#sGp%AVOUU(XpwOq;gQ_(tG$~jj zpL|QQc62Mq+x7 z7CD`dR{EZ)$G=?)X}?;tFX~eKn6^60`E4U6d^qpspFy^{S&WsV=A+*5Aok0+gz2w3 z#tNSZF8!fGQ&1tCaU<^Ik5S?PN$hJtbci`&i+Jh>=P-Pq+I!Zi0!{glFNgf@;TfDh z>6RXk1iqPR<7OitUC$~OHCjTE^oQ0Ro=wfH)@(O}#y?nM)aXb0<-tz91pDNCSqQNT zQZJ7R-rV$=O}a5S^9>rS>1?1gxm$NMn4L%VnJpu?~L}TIr+WZ)Qx{z`5GaxRDt&yH(x$P zB83h8$_;Y^i!%a8Wo($(OnWN+Q|5N#x`()>7N^xDh27tV1=Xo;?AyJclS^k%kYLJi ztsXtUjfk*S7yU4=9N%@@)_GU6bi?zC(nm9yoFl?HnU?Q?NMLU|$x?$bSw8)vu;QE4 z`s$&{oWx&9JVzpBpV<6@k2c^vm;AzHO}|=N?QtdqUm#+B@Bh6}t15lF9QMirF;l4R zh7O*4&GpLxSTk)xpFBsHJ$~17r^eZZMCaL?b24o^vnX79%q3k%H#%b1@vIbme0u0> zn)#6J97g1p9<8$}w{(wc791*!@Y#~{>@vfoRA+rGrktwR&uRWOi$Zy!l&x+5Ikb(4 zB|y~gdj-2PH@@GLU1h})+`2;_#%a-Gwlm#tgke*8GLFz`{>z94HmB8f`3|!^`X}!@ zQo`0NvyA?FtJ%TRr#nA;O^=I)n*7HM2EO?2j%maM{XKh84nbs|*G8y$ikmdYtz16O zE`s%)5CmO*xQJtVzE#`0Uv`yEPqHlY>~j1M{=>+Wbg+q=L6cp-7Bt)-jd!-b=5AR3 zen6Aklybjz+0SwOrtSA@Ty}WcJ`yiT4bZ`uCTyM02jUoWaM~^FX`0u3;WbF*xRGb6 zAxT}aAZDCoHI6#=INI{j=No^xoH);DphN=)w)UzJL+qrHSWPJfWR{@a(Q9re%q74c zvNB>pfhG*Ytre8-F;Y9|v@u1KmIhcEod1v!b~@mS?vdh8VvTf0|3dWxAay1^AWzY{ zN-DKkOy?(!??|LS67yTvGbDNE@qM5M;jvxci@!PrHBfvHst2c%?s7dp{ak+uBlwkW zVzwl3L?-Be57oMp{1_dOfEi?WaAchx0gw0Dbnw%ZY$qv5oLgnZzbT{iE~Jq)TJaDq zUs3@e2x6sbgU0uIxKCf#!xc3z?U)Z#cSOr{nK;=tW?MTTf&MaAmDTub*&+5>#((R{ZnpD#njhmbQ=Z_I z&-nzUG^7p)9?a?*B->Q~(*Jq1X?st*g_oRXnvWM1h0$ONY}ufn4rh~EkMLx^xN#r8 zYI9s+vNsw%7_(wtfwnEb-*=j+^EGCzPpK*3#P@w17Use&FrSb@{hosI@05fpka5NeuQjw53b;&O=WRVF)yuZm>1xe@L zVKG^2*|7L#EaOo!sUeA1s*0*;;MAD&2Jf%8)vMwo$+u4`+uSv);TyeF@fU&09d(k%~7ajq=CDp@m3|LE@>$C}9xq9An^q)$#9 zr4ul4kD~fx&I$eZlQVlvhG?oq_oLuJRtEZ@6+t)*mYlK-DP!0!)n$&zc8+4%7ly|_ zOGUO3f>KMr&iG%qUJ@Q+OTrnK;Eab3R@_1)j~w_>5Eznwp+~C*lWY%_<6iYX+Q-)R z4A9Yfn`~`+UG#fm-FV_MIl`vZFVqR*F>MywrKLgzA`b?)M03exF)NPQXWpxL6A@Z3hLF;bPH|*ZVquc=bF%D`>)-2^w7S;4(jt?x#H90};9q zdxJy+QxWsT>viS20%$U>US%zVMVMcn*3}y|+|lnjPznEVbf2Q#*`<;NC_CI2>}jia z&R)vAC<0rXR24*^g*|`L33wCrd8;n1AHmz0(tIL-F$usnn`s`KdTbT{PYqr>crc|=rOxL?D&N8HCHW~WX$b^Kh-7iH(;&oZle`yKG#n8@ zyY=kCc@YS&P0y7Bk+l_LZ7$+|{#p+n#3-U0ggZ_JuP$rYDx*cq-f1-NKeOxC3{!iv z&r~IQ(c-qH?b)~8+V8 zz`R&I<8MRW^ihuIC(^*=V9=IcT616aV7~qEIY4;$NOOq5XqrY?ZT63x+{9ng*A2~8 zVS^hIT@r`tdr|?dMx*K~3t$qf%GfTe8)l11ESz*zPjw*Pc1=rt!!r`M+KQwJy^JH# zwrtt`xqYv+0|nMF?eEn|Ye9?Bl7Ssdvw0L5EGLwebqw}R>qH22dL}v8EA|uNMHJRM z!zdL{j=XbTsycj}7D$&7CX4a*etwmsXnYy}=jM;m=P07f-zP1f!$d=-V!$X2cOE`;|?k`W%_CB_&Ppn`RUA~A@(n(vLGOt>{XK1NIrgb{VEPb zGBI(<7{$>KfT2L0MeIo{`?{5vEyQ!Hkd+rUmpT6Ui~4bMC;V&y%Zwo}YWi?%%;Sq! zhi>m$$T=8>Ks6iU{O>-|s=Z#t;E4Mmw7M1)C@5Q#gaALRP?7feK!_9pao4FofrJPW zax^6btw&)hICr?R3OV8?2x2>B%lEQ>p*^9o;q(XNwrt_xna{Z*1(bcu5y@>x<}t61 ze!?{75z$YJY&BP;g+R&bDU{3IT86*7qCQZ2d!!ZZ z)n?Ft#a3|f#r8jg%DM&->&_^lc#L)!rLn89z=XKj(&UV`8O%=P5TU8)Rk}pgU7#z3=L6k@+h;7Wy$bL z_+jy=sq1USvn%$kq7;BLMlql@fHUC1 zrs&PI{w+wL>`)hs#^7t?eubBaeQrn#?#E)#vxtwqwNj5Dy#SKHko@M?Dc4!e6um~ zifS8I&Xydfqdo$<_!J`!jS%BK_V-T=6d)U9VH0$yy3n`VoVv#>GVa5XU>NK>H?5xz ze*)UlD_+le#agHJeXLI4St_Sglsz=F$b-ZCSJYx`hOJYGB&`QNiG(u*V~XZ@pVq*d zz&|f{T+j7USa4YsZHnMkq9GyPJDewv^+jTuW>gQ4C<;W>!!q_axh~X%H6yr0^)fx4 z{b6iM|Dwh(BmOO(RWlNri6Vmv8)lQxYZ=uebV0)ZgE3+|IGAP${AEeesHfe-ELqrK z-aJ2J`g!l@qvrSPYD@&dH0W^qst~Q)c)CYFDzl$PEaf!(Qyy^gI`R(tZ^s2+d%=Ee zbu!#1iXk}Gw{(j!jRWp`Ot%lxlazKZm`)aGyz`1)08|EkHMWBjxAoPEilsY?jDx{= zO+m1G(L-XRgF)_ejUmd1Q?~|HNwVNp^0cm@=$?S?0EKC8=c6OvMe2)vLcb|&G~!Y} z%FOG^jLKRsP!H=>V5cUi76#F@&pXsgK6u=#mIi&j&jy(eKH6j>^L}OET3Wg<+IP^B7^Nda$_FF%s#@9ATmCcKZrat<4cJpNlZTc z#SZoREoFjQ2D38mS+Tk;FRA>*>-T6$0LloxPiw z47s1+uVPm4FHISX(i8G@XL<2rmj+Kwk;{{hSl&?BOczI*4o4xu|9ClzypHN+do~<- zKF?4;FG&O~set*jEGm_(Mq-0ukJe6@Ul2Wn63Zu!z*c`&3)_{$V1`9J>T&w<#d?K1 z#>xWEc4StcqR=LU9sOGmF4_Y<1pe)&YnCgo`&53#)Xb8^H{Yn76IFs}0ZPVX|9};x zAp|&S)^UWuEV_`XrwBsQT12j^X5oh3S6QcimX?;sy|M;9Gj&U%EE}CbA|TR=ZDhkA zeC+&gnS+)2hg%``s|jZc=7>s-y|2mZ!AaQ9PRZZ?G}AauxNM2Rzy`ga)Uy%wXjk!A z*U8kQnyr-U$QANwEq_H^I16$)@}sX?#;#LrZ0?qU>M1}K8;e@Pvc6lvTXN~uC+a+= zc$B%LH3NX?0;9Jtovy~%el{Zi`Uw9OE+7#Fr~B#tx#kaXNB2}3q7X>*=G9OTC-Pup z+6Ko-L~Ib?Hk0SIBE&7k#gyV*YC!};&kfIl5WKKy671_Vf?{B1{%5n_bstm`-Ly1# zZY0d7h9tanlF<-;X&!1LqvSK+%J# z0!i(upO+TQqO0U54t8>8YTmka-wEKhak+C#KRK&A3AN+RavnMbf)c5iqpJ_>C;n&} zRnD&E4P_g#7|IBBmXGZ*Jx)_d`qM5J>wsWoew6nJeyR5Kt)YOV#VyE!LDp4G45vC> zo#d}o{oQ9`^{k2hjr(nSdb^J`jvydHlWg@3vx{BJR>famz7TARJ;@LiFd!*@TUt)h zIjdaYvzjYwA^EAHIw9o^WL%2J-CG5(j$^?TP-f0onXU$voO9d#M6QhG-3a$u@aT0f&;AC^!(#$G80;=(=n zBB*!Dduedj-clAT$0Z->gV&U|Klv_>d=*S+gz8&RIZ2MxXL+j{w}yOvW4eM-ORHCDfV$ zxvF^00A)m{222CUrp;|5HZEhRqvao6J~x{!3z{#<^Yv(%C?aetL1wZ!^f$%ctkS*2 zo~MP2%ha1Cmrid-I~%EREIw@N!LCa_{Hr|Y`7ALFXYE_R2gU%T`tmZd1NvB&XB6QI zqvB^R^L&q3N3na*>sND>_rWlh+dB1c|3~1^tLmuEC7hAb^Ll}MtV4)MIq3&&#JP(7 z;bnE15qW!7I`XEDE2onw?VF|>Nm{-A7T{iW)mto=e28bwjZLISTu7Kjj?9yBK!6=~K2(o{yi-YPLW*(|HEI*>HIf#liPeLeC4` z$a7(hyDUWa&@1Cy^2nv>R7D&8$aVvy$3;6YJoMWi#yiM{y*oA6k-L;vh3xCb+=8>P zs4;g!m}FzcU1SSJB1nhsW)J00aA_e+`A}caqfbe*I*|Ehyx}{Ea>r}w;Qef#g$TT} z?EU_bAJ4L3vX*RR@%}pX-obDi^W|>waO@94y)JtA@cWqugxqMgEUbO_T{KB-4xM;t zXJM7lb0aHmiLAC{Obd#hv8W}?f`)vFPwv(4jzjU$Ih%{vZ*OC94{X@)0$=< zA{Og24wW0RsT$C@&wS$Ws8oGAqS@-qpSpMXQW32sP}mB-{xd_J|mX>ZnL{8HngeW>mGQ5OsfswSv`@Q8P-f=cSor zLNqA4Bi^ps)-)S;Jr3q1_E?P|!X(pSiE4;XZ^De_2V6>L;DT=k@d1)()&^*{}37(WuKt;eo8 z#O~CVUM(J;P(oidF!Snv`k8E=aqE~B@v<0Yqb)EzqBf0EcD0n$0{nmvY9L}kf&7{! zMVBtQ$mEijjGhz(iEQ>WR}3%^;fxJ(mRo?>;t?kW>!#xDF_|5VvHE25*cTxc?!qDm z=9aL*^>52@qOfrQJhJCcza>K)ov9lQK0UkTG|r3fny8KT3UGrZgYb$1B@1O&8>NDD zWf3NWwlt4I`o8UJkVo;uB#P5;-Z|7>;!TR&E8wOQ?WGqZT^yHYJ)iz8VklIa-ftl= z(+hW*-i(y*s(+MvT*vzM_yHXn>6{9;qJF@dp;P*;2055Cit9A_wI<@-N9sqZR=17l<2n=A`ND{p(I39%V^j zSpAa|A7=(MNt96*-Yc{WG&Q~7E6>|QN(F-1FF2PZbQ#MOFiKCHzWd1dHjOrr^ir|r z5>2!&;XgDN`MqR{*_-cBW=J%OK&_*5%PTSMtT;^N+rUnuQsg*$D?Am7uAS_^wzfW$ zY=YgaW{Sa<5Ar;8!Qotb1s)}Q-i@9Xy#Y5L3*~q3X!vpDq-F=p2Q$bSGXFoO-Z?Om zX7AsQZQI-!n`~@rgAF&fZQHi9aW=MX+qP{@esiC5pXYu5ot~bmuAZ6hs_*r=It?bn z1&fY2?UiN6QJVAV!}jrz(1@$DM*ALtGf(EAo?d2C8k+e!g1g9n1km2mlVj{ zEW5C^_~~^)L6HmpmsXprj0kNU1`eCx*nNjWqEmi@WXYa+oDMHxSE_0bnR6Hs%_FW& z`E}A7)j~5nJzYe2qfkDRYBBLIcHghx#^Z{c-eq-%_m36T*9Ia~`Jpaq6eds-@DgBz zx9cGPx&XFi{@RxD$CZk3b1EQVeYF-s;E&l3A?Ph7m)Z^d)O$&m6pc-gH%?FV-Re$l z6rKG{t`^a_FQSSEDrfcxCt- zmtvD}@c*#wQg4_%=9*I)t;`yu0(zBvkXy8{n@tklF)-5>>i+=23)&DUFln{wDlogb z4B^rkB)nl1nuVLL@v=pQzm)iQoBsvCOUYsEwh|R-Gel~^24r%?5=7}4X`hC;!6a!+ z{zHiW2S}F&^E70bvnMpR*TP`JMoWN>^#X=k{?cWAiNzAY)&yRf291P_2{G7MZcJ-JE)|vhu$A&DRxt-KKFP`dsFjTdR_il zV)2J67>3zkR@koazLf%y>qGj7uL#0nRh3*bdZbA3SFE5{Iqde&4he+HhmXB!^lza@ zX4Yc;gCpC+*BdHJ4~9}nuLY(Zia9BU>ABj9oK&~rn9I$fOo`Rl*YwhnSY5BW=U+Tp z^=@us^AhI*tdG?pS!=-Z4XK2*=zYbWT2TomiOsoNq-TTn?@*bz85l3LcFK z2Ng+{2j~8jgJ1Siq|Cd5qsf{^c@QO!3B&9+eF{7{D4KKB;XLq?-@>3!KFy*Ze6x8d zRDOYJShq%+6qsStav{)Ucse)GM~I}F!Qr03bD9--F_ZJ+a>K8iMtCe~7j;tb3{W#Q zs5WYU?i;~5xCru?Tg6_D@5rED_y5JIZSS9UptN4;oZocAFS>5$*rwg~;LU&N9g13e zf9jO2e|Jbtyyo&8iN(k+)W=1`bJ0~DWN?W}wlh*yk$XPS^={L?)$}_yCik&ofgHu# zwB32Ci5Q5Z@F=uv#p*QO(?3>~3kTJaU$Cvh3Cw9nYrGh`y%PF!sSU$#I2}T&Drnbr z4d|Qi^osteTH0>5bJHaP_25%2m9J!5>>B@?N!;j?*6yW#xGV`AzV#ON%ys&Xvb z43S^2Psr43BCf~xeG!}e)=VEAH3nkE<6Yaz^>+~cV?J`{%|M`-^e{y*taRR6CJ!3M#PDh+mLl(#_XKfbWPiL|`jdBRkg_1A5?Bm)Qem4BydG~|5?oakSN#XM- zs}5^y)bso^IzzGb1xB8yFF)nURJ3HYtPF+&pRU#w68aPBv2zY9Oyv#sgG8tPOrh+D zJ}>^d|H-4f~icmL|0@b9Rq6TjERlIGX!8pEt$lLBa3CmMHNK9_IT_;vW%2NbMm5e7^ z0=TuOpE-kaurp304svh1Up*rW)ui!wE#0Zs{O8e3Wln_N2|OAIO9xjOB~2lAo^^fo zB@W0AxQ2_i^GL6R31K_dGR{vbt`;W2{Q!AW)K%2320Ra48@_77&z6_h5 z9e~^Ic>&^AA1{rNimsIR$57i#r>;IHr`U-YIb*EPZaUl9!ca%^q&gkuuiN!IE6Ow7 zGHX%yxzs>irSLj2v!oK;!eX>8H3Cp)uEy&6&RP_bQwm8`P+`Ye^%sFUO6Q;YV2cP~ zA)Plz6AsrEA4m7Gn>Wr&OnpDd?tjI+?b)>$jEHy2hW@~;+s>e^pAIgN=lbgk z*jROerRILPR-Q^;wIF_vf`#ZkO3!1#W+7!KZNMhq23>@oZG(eLTV$I4AqC#v5#L5* z{u&rMk_nz72`8)f!9RWCzo&a?S3NK-QGTJ_=FCY9J)H<$vg8ez^}I^ze_kr{wN5Dc z^u7b|aC5l*8iy7#&oItsgdsVLnepFU15qZ*T06$24}iR6ktu*AI9IwE;D}|a&F2t(nP^R@ToMFG1?mdR_;qj|d zf&~y#f*FJ5(<+sPfz zm>M^tcOw1!d;n}se*q|aDq)xMvQ5>r^r!all=kJqkF=6p%KjgEf(L`9bAjfLSB zY$bBezMp_d{f0BV^A=D#WDWVi`o845fckBAuuOf476+AE$?RP3h^%2wZGdl;p>XEA z{ezkd6^|wkRn70$5*ntcn#Pzq>q*ri|2KgA(kqV(Cag>qR?X`0~)CvTqCK?UrQ`&8pC6`ccRbqPU1(qewS^RfuvI8DQ~=yk!mqNVl$ zOC)cbmF>GG@yJ4D%xu6^NiIWYl>q|!5Ww6AajM{m{wjlPOh)6T`?uXt?bZDA7Fz$c z$?6va)KpIwa3y<#hU=|_=InfphuE3tqA7ODPPb69=E!C?AM$E4HP=y1*RFU@J*jEs z%XN{#=3V>Aftf!5N)kQfyZ4z<^Q8wJb?)kWT*0PqRm*JW``h@{LI0DqPWMYl`$Pl8 zdVFjXS#y8f;4U*UMxOvFV7w`wIBgQaPiOw&#P(e2J{nboX=g z8sqfY>)O2n#rRWiEV`UsUit?K=)=ILYfEabJNv8WS?FZ*YA>PloJMi{&^b8zA;H5c zt76y70{PX@_>_$ILRWRulE>8u`jlO!Rcj@Sdp=#R=Le|k`XaW5MyvT*;jPQ{J23qt z?)#W-o|GB8F}vwDy>GMo@oICx9eCmTb$4~bQYEuYq$(hVoJtyPJen_twPAmoKK!~K z(cyZ!HJEkLS6h654R$ zLM)Xu*_A0mor!aFk3eCVLRK;w8=IUlxa`V&!O@1PUX1WF742VAUnlgo7y$XOx+qr= zsB>Jx{XKzqKM>Ud#h}?D_@~W!vn!Oy@HjQIvrAK^&1)}B3-CdCH$0I-T;e{y0sL;syf1k;-`W)NpjCP{JI^Fy*drO zZW4-N^O&z}Qe&T%A5wpNAl5@jdAIqeo(IURHp`C8Y7+1{ANshB%$`I5}&(`}IO3vs2e)o)3+m8UHisWI)tgh`8&%t^GNr{P4tjcj)Ug^wU0j2ZFgA zrgtNKm#l&w@o=?6tk`7lej~G*-&RTq+w4%kycG)#huP^Wl)1OTW?4x1?nk4B(c1e} zxxyuU<_bAvVk)er24qkcb^Q*HL)c}DFpp|iqj=Xgm zQq>gls*xd?#<0Yl375_w$Z6Z>^eQE z*4hOQMeA^Z(!At>-)aMAr%od7^WK=+qRN`epvgRqs3h0})FD&b;bCM|Ko#LyZ&a{_)T#yym$r#pQ_^dejel_amNk@f^My+4c zYw9JCv_5cUHtApCbbQ`eIHlJhCa_4sD=Q_r2zKl<`Pue^?-ahH?T0)G?77kTTAI_r za6k-|5O)}M_tN~iG~VMmD`Z12PWO6s%E;V?0S$)j z(IbRR&fb@+Jjbh9MzC^$g}JKYQ4)GM47rz)@$2=2FrUD5%W~h#3m5#_l=s*6>d67m zRW537FDY*dNi$mr?YzHYez#%dd_21E29!pkyrDp)0=D9>3vunRm5eXS4mE19G?28_ zT~U)Ba=|**@8DQKP8)it@I}@LD@Y0kkHf3-;Fv6M!>2MG+hmVf7KbrN3Ou0q*j(@Z zgm~=Z3cp&koARm^a5cP{ac)DC3$qrG^Q)x))qDO^p&cD*YmyzG$n8G)7!eyifdxvu z5Jd>$lH184w(BFuq)|j}q{m6`gx_G8mEq7>;{s>eyJ@p#r5#v^{7X}zYIBj>y~fv| zHed!%+?#dsNph^~T|RlDzvNQ~;&@$TcPV4rF`V@Ull-T=+B^d~&D}(D2lQYvQ4d0L zXHqk1S=VdL=Xq^L?wM~lL=wGs7-F_sJj~vd>$@i~e^a}<`72^c_#i7}O7s5Ik*|g;@yv9Q9ByUeF5-vl#0_#Z z_Q``UzaeQuf`+kgSMRo6H60;Ro6X=MpJU?=NL z0^bn_yMj_Jg#0)r8D56HNafgO#NpdT{($^3jJRo`=8OKYO2c=5L-sH|g4y-T z;W2IU6rn<@+Jy;4!MdP@v?rtri3MdtWPhsO{*6Dmr|bR1;(Eu0t;L>d+V`;~6|b3S zbk%;+w%&+hm$v#yi;OY(8=Y{yD(McbJ(&c`NIowZD3|eJ)n$qMR=X#AK zJSe*D72Mdt|H|QWEau8s2YSIKn3WNe-DxDI11a4}2T(cGHXL$yrTJ#0Z}9(MW?&uO zN@Eb=@Vaz$bm@p~{X+S`y2tFfoo%;WQGjq1w6v`WFS-tfzD^1j1UVn~K>8!OBjn;z z^?q3*87UekeDJ=1axEA4U8x2v5seDIix=LADA4EQi4K1125gxzB=wt^AE2j-!m1(+ zBwQx05M-B%+oS#EA8#?cF)$$hhBR_0N$A{!R2?jP<)I8aY(l<~?<0oR43>v5OcYQ%-PM=Uc zo%^E+l>r4F8F<7BR_|q725`sDyC!IQ-|Kc#885I(Bc-#o&d@%!_RRYq3TtT7udEuq z4}0UiYoRLsL!G|^d-?BgI4LBS5<$M2f)~>V2{H{s3RoPSR}kHppAJf%X6tkVcy}VqgRyyUq zntr|jE$PK(Md}S{&X2U=Z~0Nl>uGv=7)jwBHO}aL+;8Iwzj;{Z%2-cPNP~(&11mTp zoIOmQS7i?LQt~8?Wxbj$i6$H{Xbe1N@uH}S+s1Q5$A#QB04Fjwk?}kf1tlnHkrWst zK};sR5IE#X8lIk&U7_ltVO+=2sW~pDI!?*yf~)9=h=@bdK`ZmI8pNSv#(h#(Bmg zREH@vWN_m3i%&f3wlClFp11LgoqMb#_%F%^D-yngqR2bktT=B67C0)SxUod{*!&H_ zhTsBVH6$!_-|Z;=Sb&2cy?+tatDCXXN36|(_8+vkG7CKvZ&D4~o~h#{ZARg?x~!eo zfo>aw>l`eE^1hvYHvuy?L2jJslfP@d6DWybQK*SKA%Gp0*JLw72S<}ZiNYZZN@ryi z(q9Jg7JAgoaY{d7TT8gy{)2UAE_7}FoyR-TB^ZThAu{=m;&E%e;DQ^#pVYF5Aq)Bn z_y8vB{>CzLfcg(b2uc{@2|U^U$L`?RpmX4tE#8uf`MXzLXb18yKg0>8dP$9v5Ro-d zSOb5!^A+}K<{FY}Awkl3&*nCZ0A+T_7$ap;f{Ux+B8V|H$A`q*XP-9fU;-u(_Tib4 zP_KsJbgMDkZoPzi;j-c8{9GNa%5c}b2_>>g+HP~%q+U>s(`#8=mLvl&l_=nBB;Ik@ z#G?U73z-qNX?ghlyn&9q_D7959CD3y|FDEO+58y8Tz@k$%D<6R5yxtmVtD^(n_*YF zL$v-~nnEv@Dnu0wTwq2?S&YV=>N@z8SaVikg<%4#gn8;A^r~Z(NSlUqH?bK&iWqdy zfHy0c&Dl3tRN9bZ=ZP>zX`Qe2WG*m^E1@;-jn}V@n)n(tWOf zL7j|c_fg6lQh+Oqey2Qvwy%VoxG}8N!w|mzqis98tIWjvSQFI48(Bx5f6?1+({yjC zE}2$NQx9BE(9aNmN+5_F(sJyK#*F^H=ECKp0&kYbldMAp9?Z#nLR~yOhA_RxDR{Cj>@j-1`EL;h>8vnB+G@CF zqfI5~3}0<#<&j?7)Xq@&gm6bD<5z6(IV%r!gt_viX;A+{)~R&BJ1Lpn%G$v2%DR|m z_!M~WM}GyYKzHS<22R@PT6??)9GhLi-VZ(fy-@`nwwosRv_fi=duIP$O=GWFXV(=D zs!yoOy%mpx0Oc=h4j-(8Px|8TBBWhbTK=?=c8B$hT}z08rzh^jl7ej&kUhk+N<90j zNu@c%u^RkZ#uJGe(XDo3Bg^SxesKys=_zY)AyHhm{gX{Ki%VW1NZXEul_aLIY)gYR z&6w-u{R>jDm-;u!H@vTY(7SaK*Oov`(3_$x!%QBg)X(t99{5&)Q)-Wz0^Lv+EudJ{(-5#xEL%R%yPc{ z-c$)M9NYHW8*uv6T$VpR6VxqN;g8of6@o^T+j?KsGAi7RnndI(^W&e>R)d@G6phwT z-VYU5bs*(d6AjA=`PT=+Z*}_M2GXtXH~9S?VX}8NB4=&xkU3uv^^#=THTkUi7CmHr zFhI|kV?G$7m*T^n%qKTt!J$$Kv@cow$Jpp>C2e@pII|D!?+e6PbPJ zkaMGdx>gh+Af1wKT%(jzQ5J&xJmGwUADWobQAUMWmcXa?V8DKs5B_+%_F+s@UgpQG za9IcXnw`w==SvjY^HJ#mV!3;bn4tj;dI2ANeU!>;TCc62DBx2`x&foThTI8hUK-bd z;j!tSSuPufzMPtD*4>Shx!oUn=+Ga;kZ0s_8Ah$-jf5~J0!uJLR_b9p`ss$$)-EHv z>fPqa+z$(xxue^8$?J1Z%;EWiXun+EAk|vWnYf0pb|L=^N_)h}gzz3+WFD5GkjrX7 zHj#t!qdqYQu4snZS+k$G5H1YKV6}Gpe2)6GAD1b*&@&6i)g2$1Wa6ItA8)yYUe-nj zL(XGsS|;2m8pP*U!}smCuuZwPUwVe6&(QbYC{@C^aqY^fcS%SMx`-1l!jr$e4&c;6$ z;-&7^Tr%O7X4ey4myt`8qQ*L}#J{ozaVXK+ZlOzKH@JJf{%2xN`BiU9Uwb6RlSmH` zPHT|!mk%+U%l9q4d4>k(VaBFk!{yU_r#>?# zVOGQfzYwwpJ^0=qzF&rfb(*kh6FQ!?wz*n9H*t^-FzvwZ)^@3m*_MA7A#bQ>G|d_? zz35`Ppw?e%xAhGk>?#M&0oV2q=G8u9UBC^IR_|IcF3W>2BWj4N&=I$B9}_$;gG&;e z$u>M18<(1`Et*t2M)|3Z@9W~R$4m-}7EM=}skyt&R`%apS4(mD%@*IQ(7{k|*$PQyP<96$Rp zFR>Q2^5Q)D#Xw9z_eDJY{M~oM%#rI8OsyVqNzd@~dt9hc4J8CgR6Z^;w#S8a+5=D5 zBfR-SpTd3$r_qp)(`jq!UEV$&?(qBaZL$q&-(N=T2(8~;Mwm!sCzWb5UAf;GabPSK zNIi6P1!7LWdtg0#wdnA{%)o~a-~m;!mh)L7oEn^7%LD#b0%{6Rq>FxniV(a70j;RN z5%zB;5?sGpPm~|eGj#(+)EQ+Hg-*|}ZfPx}KR?UNZ#$+-S{l4^K5S(9?G44&@@fds zG;6uz3yahu1f%Yv0uX6r7ML!~J-14xlLfy=g5+<$3yrKgDPP>a2Hmh4maX0eZGeHH zDx)G{>Z?9N@=vqN>{c58wK1Om``4xPuY<}j_b~{amNFFxm=@NAA$@K(c~lpziijyK zi>uv`{{bb5FnUFIcrdwges+FIeW!u2>3^m<1TZraQG;9PbP$$gic;c1K`h39Y>mLp zei9&-n3^z2?E0_7{ht46L`W_?oLn_Nx~Q%O7jpqzgU!T)SD76oYzO|OX~`&Ziv9Fw1_5C>ceX*F@g z`lyl`_VCaD$n${C*H{od7{L7yX;5?Tb1=w%c^(=zuoL_fLYVlW@c{JBiJoBm|9Sj` zd%Q?i>cIZHFR%kZN#hQ`Z4@5bZ<0fQh7J6G+y9buO9O%Z`G5WV=WU;61PJPf{`CL% zCO3XEYVPX)Uk`~OD7Y^q*Y9}IuMqz`9R5&If_>&OXR|8-H38V2pwA&cAOG_m`-uc$ zAYQ%$P77_byY!z|fI}pj$HGGg_5XdJ(ow=jqeh_7l%>X!1Y2nTJ^Ogp6md5J>G|`tUA1zORmWNHeG3Cymb{s$NYY2#iokhk}p{j^e0& z2=B2iv$3&h_s$hjMZO{_)6>w@@Q?wYbs>3Q!-z}1;JHsF_Z$85yT!r^1H*{x>+9tFoXy~ttn%n#4oIS=? z1!`o`;4c78hQGSw*TfHhaj`DQ%i(d>Uh63l@hY)AyARwyI)^!=?##uWUMc&dcav_& z5}kD!tCqNVEIy^nqN`Zpej@&QygILVu%Ms*`^{65Ivm71b2j8e5)Ng1H_`R`4Ki~8 zP<=7|`F8(YW!;Ws^OhuK^AF{0SyAslJ~=AIN(ALSZ!)zw>%a*U+)~N3{$IyAm)45filA7T1Pcby_;_~GvE4uhstN8Bh=9t z`jhhA_GH^kIBHG z3hV%}gzu%#tA0Z!6|ZEu@-d^$&X~w%&8}r@Om-V%D!*}X_;e0e|Lp}ZoWFN8k#h?}1Awa$<(n?g9NSQ-qZ**{=pu>J zftz>U9Q6OQOm26{FUR0IexL12n*?Sdlz9ato+lMK zq>N0z*k++$2a?(8dYyj&U%TzL>i83xJi}+}1<%q;P`|QGeX%=-+LOC( zY^H&4o62UM>3Cn+^QVNjJziW+wY_L^8f5z7vWa@u2o(<*P<;Xuw$dbg%Eb*W<^xSU zt-iTVDO%o@&T=%#&OHfgs;bJImPbym&y#BHKxs_p3h%Z1n{%^&+TZ0YlqwCNdgg>l zz!CbAH-F`Ls`bI6`Pg3~O-~R4H|sXJnRIP3UZpTBs|LI>xb@_ulNTSR|H6OVmyYSXT)XKoiUrWgYc^c z@@MDg4TtEt5zc66lcO@Z_NS*>g|FT!t!aLML;N%2m?`GuoafW&^%i#hKf;wwp6YHZ zOkRp56^J;Qkv$(*E%w(WjdAgnuArQ(G`rhB7z zK4Y3ZejUDY4ZUb;%mga!U`beeCY+C>)iQ2y3hy{9Xa7oefvXZxS^o*<+1=UPTrbdJ zN35mbO_4&W${N{D-7mTBvR{qFPPgOCDl9URG5chHqZ@}W1`6+frgj?D$`PIL@FTzV z2iY55bbVi1U)gE~WXYpUE(3kFoEb`AW0jsFKP?d!;|2#5sx_iq#ID zl*S~x%+6+Jb}iT2If*^4_HS#6#~=4Be^rIfZT$XqS}4_)qis+@>s`5)sA*kjZhfZ!7_1|^VgcUt~t{3%5|FC2g&WU0U(3l zINzi?vwhLH>((a`=qXGOKWNVFs_)=-J=Z@<;Hm1KPyqlVHDe4iFK{jXtMo~kiPopq z?e{ro7~XPv@yi`t_0~5YLd#Xag^jEc*!=v5td4*am9Y?~L%Q z-*2rR-;09)g)p>|cY{d#U0O!F%+tagztZb#yY<@ro=R@65U;gllJ1%BdBkzr9dI0f zpXH+It?PZidFI;T4X8%G9RK>5UvoLB`1NS;e#xZJz%)GFh?TCK|!Lk2B{wg_R$!vH1-cIqr zqi*QR=eWZkou>Xi)rjn8lV?oNA$Ufa%e1`tb10H2lK<7^mkOuY3&;B&*c(I^Q=S~j zt7@^2uDG_RtD!P@fxc1gv5I=$=#gC8ShaqHlAn|^*(q4a?*-L)D!H2a7{VQ&tC`kJ zr%Uw9mE2tY=FP95B1vt3?m@(vk;2x? z;&SV&3iFh9{Xj$EXTYvB%allEA_e+bkw%xfBpJw@M)zCgf`rJ%w=@rZl;usA+~}7# znfAjm_+LvNpi(4_ygu93PaF8xJUpT*-;eNd+)eBB?R09r!Z&@-zo#txSOkepNwCoQ zSRY;jDs4Gukp-SipB_XmFD6rSnmQ@?Vm~!O{J9ZB z)?9b=UCvNDv*jqczHjDqd~xs`R@^fbn6vq>L04g)tZK=Oxu2vjR{-I~7<*&_hopM= zO}A6`D(x906L~GTbg-NnRPGzAJVnDt-fm;sIZ=z#l+aZtVRtq;@t=mUm?BlD@n&VhI*z`%E?9u>XE~*`)p9+piUH7sh zYHOf=o*+(R%MzUYA7D_l;Bk5vKZjJyR7$)*Z9d>I%%GP$>cMl%pl6Io1IOxWm=%`s z+PY@Mtu&G19xIxpQSrbDBuySE5a*hN8O+RxU6_tEG@3}xsA_-GNaenu~e%6lkVGVrz0f4BF5K<|C<_Ka4qKMcXGRzsYFKpbt_CLcwssqp$*(hY~Fv|{CG1hS-nK&Gp1#gWSz|iuf|Xe+^q(C^cR}62<@oY`I(N$ zdqFe25qrJ8$zcW=OPU=N-&GJbS!jmKvQ0zx6dN9{_>SG((Ids0n&X&2_1oK$spegO zq1lGgrzY)YD7w{#tS#R_hX$Ui)(pVwidg`N-Hxrnzw(%w`Krc7r$B~MCx8S&>9){m za*H3^wAxR~4Z;g`+L%^wogiioTqUv2de1C(x>jE5Ft+qOOqaOWh-7M(^%id<-(3~s zK83Lzhyy20{cRRceVWMrFqI$PbFF$eK$*Jq|Oai%aH%y(CRKsst zS%8m_&(s88IF)`GnMzKIjqj$V1#) z36RrE2&>CSf){$L>VB)r5f{j)*dG+h`vU z^%u0?et&9}jDuIcX2>rpbagFkyWdQg#m5YTW5-4mSanSxT4vt1e9 z_MWkEk^RDy`YsY6m0z4j63A+vL-nrcKr>>t)K_^1f}93=4gGLN2g0)YOLHZnC^D;A zRrwIe(CJ@ot1%U4}pbjzr2xtT8~s z0R<;T!a{@hZ$5YkD+=8&&`up=Kd2=l18|2#=F>Qrdx)LQysm;OW$E*v+2okFM+Q zFCP5YN9-bLnpfwO_OIlUwLgj|w<4IZQS7EqPVdLywrjrpAD*N5=eBgAK36R*P`}+O{7>ZQT!1lk`XZo7tw&=wS zkW6Clh31oF^8fKV2P8ELF#eF~e!_W#ET|xhQkiMt5*<%uSwLH&ZGVo`%kyDK60Jia zM>sdckp4iRe=$TJpHR6zts z=9zm8k&?_{F-~w4qC`e0t$;{0&&sd}9WS`Jh-6H~u*)&@_+8?qf|4}(EheedCBg18 zxE7#LHI9oK$Yaq3Q3)uE^wgf?=@GgksnK+SR3cuLlIM9g-~lAnXH7!vkk|{jg9eW} zq*J~ggOe-RCg?A3c*SbFy*fX=^AJ1HDK)E!KI?n-JiY=;koM1i@W?Oc_d%MODApKV z8()IYHzMJ0;tUn)2H}sw7*C&WJ$;>5|EgPVn(JE25s=q&|wJw7ZNj4#hX`ykDUAOps!b1CPXSsJEew{g%IQUb2^vh)~ zblvMLUB{7Imr`(B36<6~CI95w)r`i*-I)a%Wi9DZhU7jHcN4STxg!ZE`bvnq*8M|W z@m_;}XV|vflg{$i$n4StY@X%M$J!@gJb>PO+DRk~Lph(WQd>h3%^?4xfmL%ZS-S5R zTi$Ye)qp0N8ICnRNz6f&Jd<2OT+}`3CkuiUN#c(WMsi_0!GR~@^LTQ0z7y^?k;^m^ zz;DP^X_3iZ5X05~RxFs6D%gTi%|z-R5w85ETs81$wEF$3{q);2dLY3gjCs-m7_*D5 zt{t}P&LE4)sqef|wHb9>hJa~`3h1TvXdj{y{()#3lft;d@R&;RVjC5G_^6C9BuJvd z;sKPAG<6yw9RM_x$ovzTi|mcIDSwipKUcD}W-ck65#Jd2v79hrb$2O7G zDOh~*I-hAxR8j18>v0hho@AHt)G?zrk078&5_l3l*5Q>u!<(aLkbFYlx0q!eXFymn z4e%#sDxwvL0ZN$8EStxQL;etnk6o+j*!^`3qoI*>sM_xznsRxbH&qa!Scun!Mk9E9 z;5o3vClTz$%rrepYt5-v_~EisJVBIFA4_a>Dwk=wG3g}Wd$(!S45!=8C;=Ztkx3T{ z^4ng&???1+&voL)&;#z~G(Y*_ET_NO?y|nR4URo6zhlr5)TRwVJP42^k$FG=5|$o= z;6xDtk~e)OZL@;Ly+qJn7K@h6gyxi{YyG_i_VCN-ZIiz#KBP0N{w)T$+1AL@p4~} z%_P10XTy;Tz)HojyFSsgxF-Jjl6dy^$6-R#GEprrHHs(Ge#4%tFIWO60ma;?mO6P` zErlETd=C^%POPW8nP@w%J=VroL@k!8>$}~%P2FC4(K>N@+(4dp{-%6nd!T5eYIwUx z&UZ6W{`4Ya%e9V{<7lPiJoFIeBtpcIDUYS+-oAzB-m`o5agC}>=$4lQ{-NmY{+Os6 zRxv(mKY>#MGvtfBO0uHsIBm$Z(iz)*@L{OShDf2S9>OM+1Ezqay9G$59k8)p--*bm`++Rm*Rcw zg{0>g!-5Eb?Y@ST8NiY3vAHYmVqhM%YtOb=_^@3lzaR71av!PM!zRBk3Q!;u02oW! zpLD;yUJ;eU1>Gj_77PVr7Vl6y8%L~nxErb%->nW`uit{Vt;3YT&O9r8=qG9CMeCQC z8|q$6z4#eR_W6yga$_QkL(>@W&Je}cln`~ySF+A3?!z`(&3bw6+I}Tul!VSVf)n_` z_yTm&_(CiQ2y5zV?xro)g_K4+IZ8e0+!ZEa7ckmNIu6Eu5wDGuM-EJR%+dQ($s%PY zDB#519^7&y(&L82C)mm9bXnDor;sg@l(nngUFeyHer|u=K64hxT>7JLxVXsKcvF zOdXO0UL{r0NYOu3w&mAi9)ikrqAA9@WEId zUI2t+pLW9HS(8#v7)uQmPx7LOD`2at^+dK=`f%%Xt-$_WWO^mpw`Cj@Apwo0PSU4n z>_FUEiL4C2v|m!*V5S}XyDO!hIF4x~lqd7(w?bvX8=ufUY!+Z!eP5jVE}-#*oy4sVbJI5d~kD3i$s3;t~e ziV<$lHjoh5|^bd{}?1CB1H_5u6X2}%yGJF-CuP-79e@5 zAMO;$?KeXWZ}ioZ7A`r>hb+{V{O@vcQcUY?Ll!Bz1Yh|~#@o&foHiSeQmi|b5oEB5(=!g2_Pog5^ zyImE@EV>FqG@5~b;RJ5lPg>j!YGy}OU{pi6^FF?-m``=QP1jNX&Ub<~b5Fb!hMDBO zBHw1J!LW-(NF?kjD@-WAcX|dk@KkrJ5NOl;J`f$Mly{tCaSn5y9+vJZN_I1xKp@K` zLZA$NM-jb8R>ncsHzGQjz`L^dw23~%<|9n@%?Nh;z9#~lV0s>zoNa?W!U>pE7=ee# zi->^S-F~SWKLciFis*^`L4OhSU1O&Fg|$f~d~YI_tI@;kIia<&mpdMdu@|IPEeEf|QzXJ}nAUR4uv)pmP>c)Yi|YHv_LQ)n?`k&xy^ z2Zz>zu*fVzw+2+v6(;GL)W+{6{@obv!2$)tpq^%Z0SIS4omXQRhTtoumVivPQMFzD z<;t6poC6YTch`A-J!W5g0E=?C-u^jMjF~QpU27bF0>D&Z0kgUgiE3s<#83$1It>3r z??Qc$$be-{F!H6&%zF=@C?SNOuYkq=%RyZ%R4=~I+kvFW(uWG?&zw!R$M`xpal?Ji zgm7FL$IfQayfu+Gs#U!F7sL%rBlrzzj{5v5Fc2D)Gf9h$c8j_(*w`?CJMPF(u@Atwz+rV&CV_KpYXstcpwyTR!sm;vW2s6af&>OdVoC6D@@K8D1{f3@9r zIcd80y~H0pI?&x&UCP@v4-nUfCS8f~r2LF34K{nN{z0U4Hv>rtx=i8NvVkX`X;gz; z-A=>kJk4U{kE)OlRK%0vo45~3#4sggMtmw==CZ_kL||GAi_qYwRg>&8@HWKy8I8{- zcFub1rJ~NpCKc^Q>j(Uo4C5r&8+EqtUQU)NT^vXz;P^&L)-yWAucvyS1B+}V?BiUm z0+c{MUer+Rt?G;DZ9jdo?S-ne0gZ?he%vR#KB4)?*QxDRx2Q~E9{wmJKjl6#Tx$Jy zbX&JWCLJo@HLU-b#g4Jw=-06d#WX}4fxN2pVu&R$j zu~#7cXPt<*AQZAlq56i;Yz5(o+lI0oqnALL&Sndlnejf#>!$B_Z<#|rjBT@fXo9B{ z7Z}gD_@`Xry@Z6)U(#N)BJ0rLmqIavMNN3#JaTx5t&ceV=oMbUHV@#O?Phsg*&yG) z)wfh?RT|h0-gcJeKy7}o+?4=v8*0l5pSX8k=q`ALlMw43{#O9s-eFTpVAihb#Qs#2KsJ@@| z=3=l$^wx47L3>&{pnXz7Tn`mj%rxRq8bD4W(#4PpR9sbjP2RA9#)ja^6zN;U5KYbZ zKVEV`mPxpJ$2iLSv-!iIN6tIeKpMewf#iTvpiZO`%S0|n`xWm zoQ?B59WBRUULIQ&PnJ)6#QGrXdJq}zu$1M2LlAYKPX3<-2X*wglV8VZx!;<0*u>u9 z8-be)6BQ#DxXri_wNCB;Q+%0Giavy`nR>XTCsnbdn4p?wSOw67OX40ht>a*b^ z4a$uH0GOktXGiCb_yM^llgxAfMopvSZ~jLz0spP@Qo`j`Iqrtq9G1Ud;A?zwWpm_j zPv;w>qVXki(K|&plKTwGoQx7xb76f&Ws<8^6R!6!X^*?nY4d#f@_~iOkft}Hw=HCk zXfGjYrN|2`C-kCLrZBup*zim$LHyI{rg7UoNq22SGb6c}B)p_Jsp)Su!5uG&C~8xz zxZqV&8IbL_q2<L;5r53J!; zc+15262p*a5Z_-<_`Rf4>9Vg>l$q3kpd!*H$+%lUu$!*myiQO8RC(@}&pt*XehKZi zs#7zgJw?7P1z+Vs>*q(z47qskB+;8QQ=Dtv)to9u?Bj?*~4FNC{KZn!8ycx z6OuR*DI12aOE4%GwY<1w){uZ)7`j$UK@V&~CceH<1x67tqC~LD6Y%!o&p+qzTS)G; zaWHGK+%L{vdpBuZ@Kw9p&IH2+jTa{xgA6rwpnBjl%zjoR*^7#rJ{MIFDoQr(YE<>?oD1_>M^ac>*p;vUi- z9AcRkb8pm+Jf?@XPP71jZyv_i2&@9>VO5x&Nza(^{n0-+lz9e>d^i41C!!|dI&}GQ zLX8s5;$!Jwg>ANMx`O$BY2}mmy-jhuC}2D$FWr|sE+6Glq2439zItFu@@|Us_4E+{ z^(23BpuAlKO4m5*|K-_gqN)KZcv3H5>_-*E5(cb$nlqJ4@*%KMjIAy6M+XHA z$L?3!^{nPDt)rbY>)ZSNW+h(h6Mg=ko&!Vd+%BUI%(kAo4dt2$_4u9!dxeQwktf~+ z8a0|g*4OKWL1q6_FC~0+>H02~{_UXtHVkZ5RbOo3>#!qJ`K+~d$Vcg;!bEHizYyal zZ-Qz>R7^J!B9x)t$S0W$(ySj^jt5f30L%kQupz4n5u?k9{8t_e5i zmM5ksa6e?DHC-_S);b9S)^>#j* z!Vo>*Lgcp1ZhyQ@Y7^+@)9OcF{)6*~MdW+OhB5ra5oJw%5=0L8Kqmv%*n9y=XAuT@ z-mu;+mxB;p<6HHb0ng6JNI20rOWvRDEEFA7hBwL$)H)B9i`wgDBCuv?S>N)4R`DX* zfMu=#KHxvy1z}AhQHLQP+Lu7tz+kf+w)VC6da3ADzBclVFcRQOh z?ze#*oUkw*pGhAEcXFZt$nmej8I6)G@)Z+|bgH?=l?_-Ow_EOL_P5sY`V#jWvC^1$25SM(ztLMk2wUJ*}H0Rew} zcfnkcu&BvzT#`+0zT2vyF5B)duQC|_f#rMY96}*OHk>T|O*jfdukq9g(wHGjd{b!U zA@bY8TE8aoX003yJ?l(Td1}(5c2+k^BUF^&m<&~S_H&pj;7=*^Qr-CHedp<<6O;(|^z$aS;88^XGfKIhb9G_h&cK#O^B5x2Vb=Ysm~G{U$NHxIW_1e>Sr26>~}uc{`Zt$!cqp-n*O(} zj(qwr-0`Ka*Mk074}YPWLXbo7I5w8ZK?;Mz9dhLo|JKnltc4bEK$?PVYGd$19%-iR zObpnpmB!#F9u67aGWZl+iG8^1FxTixk1S|OkUG4ty61#T5zjiB)dL@E3hDT^%NnL0 z!wh*6+!BgRRA#|yyeX1vc9=6+csh!2s)imZb^=qvCf>PN5 z{mn8z-aw+pL~e&MGGt@VA43`14t{GA4n zl3FwhE|hDLHWAHww?8;Cf}wlBY;Mi?Yz<+Ln&iw;v}Nxj!XPFM+c#=9t8#a?KY9w} zBe5TF*8Y+tNnX_)MWuwZ=Z&9(8HgZCG2|~m&Tym?csPDjkjZ0X_d0ZbAk9bi;>?t| z6^B}tOF*$-*-h6!jKvH3ee(4V$oOf3HhN8iwM51q9&ZHfruP^Io`T)oRfVp;hKmNr zlgU(SmS29f<9_CRjS5my+S*)4Q-n-Hr?M30j~G*}a++=3J4p!EPVBe}UPJ^R--Nn; zEbbgrX#MfAyE-9p=thB0Q?2C-79%{&2j2Bve z&Xi*QQ3etrKERQ*WH*wpVs;6m^DN`4j8TCxAwT6TOUg84oWW|z{*!}(VVijaoX#!C zPq7;>D)0k6`Qj}9gGr$0jxnF|F@hvOJU^2vZlvetc@peKG16vAB3Q&#zplrfZ|v+!0u3{rlJTYNdjIm@yB#x%%3WCQ{wdHrj-ddF6I` zswcv}0_zapgmglU@v zYfhI|MSFVn^ax`fY2nwm5iEc2p~tnW{9KqNYWZCAGSDw0Hd6NR7#Hr;e+T$!jBi!) z)JIqqkE)Bh48__Uqr!{zXfGMnkEe}t!}`;}yFbV9)ZZT&itt;JjRgsk} zp%b|0xt16ohj%ImTgcB9n~l64Za`ku6F=2k;1XpkNh%n7D&o-BDziQD4%7fy%lo-L z@TTBw)B_YSc`HC86Mt)E2tZ2f-t`v@p*6dfeUCr+APIVExt+X+R&*Bm#fb)fGjx3y zN>LyA*l)n*d_|^!3F?4Nz?wyS0 z1R# zc-kKU9A9MR|Lq(a6!;)_EVKI=)Kzo2UuOj)5@T?qq=Vpnpn7dGmH+cZ5^77wUq84V zVYp!QZ(p6tk5vQ!`kVH6>kLg=44cBWWzi?v8U;_W69z6r|4$2|qP`V$A^=qhq92l{ zbu5*?yGp+-t)RJbMxmS$JRE=6|F#mi_zh_DhYWbZRhf>2x9cEF{iGPpq31Y8g-OljJR+e_BK)BkN!wuKHrW-=jC z&<6?NQs+nkzVUk|kV|qgBAgJYNbO+z{;x|U0zmQsBd`e{geF8|K)@dZiekkBq`UHu zzwlnz|M^TJphFytQbyul;t`+}`m>(RUxdX0O&lp1jLRi1(ID=BEU7R`QtSd&5C*g4|L+htIsj((BjzAs^5|AypB4}xVtlBs<*Zlm12Qt0`aePO z;4X3C)G;JCu9JfCEMP-}UmHKBkpFAnt>1m7E@^Y*zVbx6>L$fsznh7HTa+OZANb2_ z9E7a?XPE!vQfTGA^4g-_0Ur*z4Ne*b)={?j)CMKm#}sa|csO*j}_$X6}PGPwVV z=B<1{tTH~`*gQcI+;ySx&u#VF=d5qPMGeq#|DV>~=>AuQJwkWE^xj(5z22}QP@Kyt zaFVJ9=%<3kkBN-u8vpBf1}GG?-8+kjl)Jua6agN?qKY~cp3}>GI4^?#-0&q#2!eao z=Na`XK}+|F77_&+7ky;reh#OShb46Nf4$I14d~q=gLH7UBOYy8QoC;v0uV!l)Y0Y$ zQEvvp^@jYfnZMMBf$Dmt;bm@k>q6ZEQTRWzEF>AL%wy5O{_ju{f?HyMBcijnS20;u zyZ6lk{BhAQz^!yeOs(VipCG(OzdognKEgN9!g;`WvPBaZ`@5_j&Te2YN`?Br`hR@_ zKw_R*kw^nYw0-@(qP{{1#AIjl8&I(^Q8Qtw+&kE_gb1gDG@mETt+*Hmls0r!Tc1o(^%t42eiIq^9t2T}uw8})qH62cob z>V0|3o&*0I0L>ZTcyJsWneV@kdCI1J5Z{2URQ}HNjpFsM6>wAC3xGf0A(Acg53o~0 zzwBXC1c)l8_jHJ&@Tn$$z853&RQAy5~bMgW6D~dYbdva8u z-pjJT^R_6sQkPV)&{Ru_)|l)`O9bEw1cYi54YMK441AYq8(w$~lx_LdTIRk9FL(_k zCWN{AFUDny0HkRl3SvX+h^mElI!968$h*3sHzQYvU7FeWtx+bj)# zZla^v{2X7L>1TsIxD001cdi^ueuBnEZ_T@ z7PsWV1R!G;9!qE-!a2MZsF@o`oGiW0kgwpW>%^&1Odc~O0T8qeVnS%2 zlV1$@Ai7dMg(4t`bKk9T#38XLqW@ySCdhQby1edGT9&)cCzMS}0;SG6)%m-k!AZAT zrHWM!zFp%j2Z&_LtLRdCQG`rSSdw;w6~_v7YoKMt8V=HEyUIf3^*SoA;?c6x7>mXz z@MqGcwe0pt#R|?L@_!omLk9fypRg=IILu*5%>FqIz0PN|ctHR*82JE|ngSXF6;pD( z!Jy4h@}O`VlYtO@Hb7m=?Wqh}lBFf%Na47rOeZ0nFEd(|I-0+2R5I$HURnMd1zw5Z zxC5As`yQ{ZxU)VRm2?62g?c&;b1I3>!@3;j@Q7avl8O~v9bkdqf7ebq6?ENR841(u zd$vNi4((!X`2&jXxbi(Pg3p6VpVg+aNsL|LrNgX5U04<_`s~g`#qaekq{Uk&fTuY* zE9*bQ;VSwwN58^xvojoXvxv093*Cu;u-bMM+@(g`*sOQRaj{6jH(9P4ZH>C6O2_|#8x*WZk- zW_+f9loHJg(r6U5dz+;H7%!i^SS+8cQc#ie30spfX&sQ86KK~d-C-d8-I)4?(IWR^lMh?^WqdAQi6eeZTQ2p3vE;|L}3vKR>7aSI1Wuw{h& zRYJqp(PN+F8Uf?Q*1=|Ftz%M4)bFQee)Q|H4M+{^*tn&w6i8J{p5@G|tM4FDTJl&m z(PsFrL~8%1{LMszOIJ0y&=1N}k4C@X$2%DC=Oy>LyzPfWL{7r`+6-r1Giwhc@=v{k zC3WwN&wv0Ayw$p$C*3vn>C(|Q7W9LgUl9gfq!wX-;0~OzaG?{Hvf7EQ;~_u(Hn$>!y>6E*@M!vTIEj{MN@K(ump9{A zM=#??nlrKzJ-->t&Tch4vmsOQ1u3vGZdTyB9kRJa^om zMf?w9FrgZ2JhO|PiOg~75OxIXJX;v!V)frk%}l;sm7)Kd7A|wUrWh=(Z4db?kNpb|u@OfSfBFY2VzeDQCunIEy+m7%-@-jAFK{Jkv05Y>Ss{Op z--;Qdkz8y7Q{FH8gk5~ujY76qeL_xLQ)m@bj4-P~`ul1}8uAYgcGc+X-~S~c+=t`c z!=$W$-epqd{WOi0)y~}SapD!6;+D;JZB~&iE5o!9%QuBfKgK-bOd+>$4}Em)x*rtM zB0=dFQ_E20lEFTl-HsQvx}#H-=_obS|9)iISmVd;9m@NjwwGGH11NEI+~XzY?Z>Q| zbQ8po#@?iL53Jw4(UVl3h2`;tLxEqyx(ZL+q?$n`GpNQAI6PxiJ18cD1e4i!&QYLc zoY*+?k>n={NtzKtDfd6#lb2f_H`OSLo1k-~k#6__jY4Cn6whLk4h!Qb5OwXsO-*Eq zIA{j3<9{#aI{Fl)ZLF<8A{+fsR3lsMvJW}AczTlUYOzu(+d%yroLg*;J>5iypIYmZObTfx z>SoJ&y}71o&^Kxzc*m%|{T`ppjXj;LGbLU;cEggb>*sHsuT$OC(r<^Z2T`O@_J!vS zjj!w5AOUyb+LgzAcBCGP65n#y63Q}Oyrs_tgl;l-y4EZxf~Tv+so3+Cfo+`DIpAd9 zAe=*#KWhH3BIVGF4HnU+H9E#ocQ@S!xE%4@(9;)BlbWq^Ph|5HOt5JiMYi{D24(;H zaH(Ik^n4`KS3H1qYSeGYVX#6IGBI&gFhN)U?K~Q43D3RLZp1N=&gU(h$_RB)F|i`+z`(OS~O!5kg6A(>}iW9k}sY z&y{9{hqWzd6b#K9TxM&`Ud{HlUH+pFv(ZgE*_+F9{GS5c=eskHN0TsXorP&@cURHL zWQkV14GZU*U|XvV8s1D65!Fi8RWi-AEI+jAzk-g{W%Uh3aeiB7tOZT+LLXBjjEOCYJ8s zy;oylInYEsiufK;=z*Q;ebBB&9$%Ag1UQqBw)&mPj=s@0vZIl#f`G7qvHc=hr&IKj zhP316Ev!Xg#P?`!gw=Dnw47j!u1`1{Y8gs$<;*>!9loVvx0$c4-t^Uwg|X6$>$ zuls~1C8Fn&zJ0$$9zYyH;(%$5y4?<=HtDKK$QQ_I_5evw2o7D@zaZEN=8ez3=UTYx z*J!K{$O0h5>b)N?l)h;INBvc__Lo@Yl!s&9hrq~Qr`Q*ILjiFdduGO7;IBf!*j5L- zAQ3o9ykQuQZ6}kFz$k>M+r?~KwI26i)`TQUF~V7}p|~eD88@UC|8>JF{`kIzBmsEb zo&2Rq`M85E|2OmIFO1olpMaOwXNBP7Q$iGecojwLwwbVWO#|ulEIA$GHmNCPo-;Z__!Ru^}C# zae+8lUX6}2XiXH#=_VTM)1)8Myl}*BSd}-C;~JW7=5#UoOYgEdj8hWQ1sJQP_;M2h zIS|?1LxGUs>;M+}!mxTIQy##u#y<&^=njrz>;+>f!uQb0p^ERv;9w)3;Um<=<@xi& z9q?_bS+ri>{^`OmU*PYAV4?`-x>KSEux7mZt1L?^JeiJ+^MWD@>M-7+UUq^F#~8M6 z-D9S8{2P6uaLXs=q*0YXpcrq;c&aF>4;asN%Po7HmhmWOnM=o`CdPW*ixr*5%f=YF zQwhmGUq;F4@>?EeZR$N~ol?Lc7{R8H7M*LzJ(!PM2_R`QoKCcC_2gwB;clW=j1+<3-Sq6IJs0 z2ODD+sS}w?b1DQJJ3jSI_6O9pyVIs29>aB)>~4K8{x_zwGj=ySfZ5zPfx@)^g81tU zaJeF}KNCiO1OJ}b?s~4pTkVRS)JZmt>R*+TMM@K{0~}|t@K8U#ECK98_{O;{?@%(- ze~}L2;uuJnHspNqZ%Ri=H2Ipu3cdtk;GH|*Oguq|G@a&AuC7?yup5hDMM^@@l{KeJ zoR{i@@6``OcYQIhuuHHblSLJ^g+BTfny$MDkFJpmbFFzOX%&wTPD=hfnBqDuqcpD6 z>kaVXu&vSIaxThQW}Rf1bD1TU#yN1vzZSPtG1GgZKH;g$n^+_Qyk@zs3o4mFN=Bg5-qdNK_ggg6Gh zytQFEj+%C@e!+F5e7l9p0rOy#tk(ohrOy+XrM7^djm55B;y!1z<%MZo)m?x4FW&3# zd~5nlWOWOg6CguMR~WQm7KWIXnc(Wo2fiTCKznsijpZi;7z*y>y?)*7_>6M&?-;mc z6e;34av2O|KuJ{rs>wFfJAemUHo9ULBQ#nn(xF)}8a;IObTfjGLCwJznxuk&p8^c6 zhaqcK+BNCl!@k4gAGf=Ua(K^;UA~-R_NcaHU|o@$e#x8Jw4Q~0FWbUl6@Am2 z@7C<&#lnK5NYf;gQFQ9}fcktqOA~9n<(_Z5MdXwc&BNb2Afu2ki78)vHhhA0kD>a8 zD%Q1Eu8U`s{ObockC&(w=jIQ`PL&6WcOdlr8+&fc}cbHuz&#s%Ch!Bdh2%zZ= zOZtw3ub$N^&0wZPj!Qpv_YVb~hiA9P=Vh&?qr#|3dF~0r86=*fS8yI%KZ`cm#HH)j zN#uG09W9V)`SdM3+(n3AbaTBEumdsnfWQWidMC%6iq+E&=MN)ib8E5VQW;27?@iO& zQGtY%&j)sFkP@60$e>qU@B?5l~rjSz@ zpz|D7H*xEJuGj#*-)@C%c4{(!>Qq^I)&zewn&?KksC8F%gFqV;I1`hWNqHy_Cde;` zVJ|K2!(6Mzr`ajpg2Wn;o0qNv0~>PJKnU}f85dKGmL!0;kr%#iO%%F*cH>$0&=D>y z(a&uT9_5_=kN9Q6zW*|U#ngQQVPG?fw*PEwMx+-6z$6;T4Xc8(PW^~IoPS)EpfgXw zyf(Wy6jE6c;w;4RHg&S4nqd$rd*(xJOMxg!#`oVM?#^HAFvZ9*N|Dgg>rTxUiHy)u zJY=qf@x#$88x8ySYYKKiBr#`ZejIB7FnEX`>Ef0J-4GonpxM}CMLz#I_k&7CqNxP* zyR9Y@K^)5=waDkUChg28-TE+ma6ewnY- zG>;pmMz)KbIyGX(vHPa#(wYfsxE)h;K+uMkrPE%QDqKDN1K8@o*P#y*>gQ_$m#4Y> zNP=OJy!oiBJd`X?rQOTea$z!v=03E1615 zFI`)%Vx7z-u8#!wl|7Lejs*2>7Asug(1kfMyi+fURq$ap8FU(()|2qJem+1PS&{(E zov9@XhJ%oUnmz4bl#1#hp4%QS!ec_4TU1XrDfLt~eY| z>=MO@h$L`(o`{OryV?p}|ClMZ(U^Tr$07|PTra^vcT6hB%0G)D2jMFxtPaOSk`C}6 z`VMCt{xh)BviDu+Y$qURL$FB)lgR20&bpYz4&8|%VY3cSie}PwkETrD=TbmKrX!f_ z_m2|^lCXyhl52CK>#-KEP^8un@VFx~kD);Eh?Zmc57>NKmTk66(!5Q^t~MU1^@3Ly?jW!%>=fWz?*mm9VJ#REV^>@!BLiA$ZEnS^?j33=)eZ8PkYA@WppR zp% zfO`09za+6pL`(^S6wa2`bIrlZ<`8fM9BaZ07Sv6WAW`{h@c1>DWlbfCSa$5o>~aDv z$LIDI1tLt5c#-Sy4j{20AV%4%N$Hz&$iKN@Y7kYSOVi?T-tRQmUE%*aCF*%MYVruW zf(GL7R4gG7f8*^>1y|Nj^X%FTp*%4jc_a70CmRpyOOzlWc2|jLXl7}IiCY?i=KiQF zn?SK{l_2^_mX7|NS(>&Ts!}+}(}X}lXIdFmBoms5#h{!#s=(EDTfHB1*ceYj+YQ3X zY@C3+95KA^dwdklVXE<>s4ZJAWwj!`5BAl_h;NR+CCu zZM+D<;*pt&Iw2W^V;~=v=mBy`j9K@6>J|ADJ}0np^8F90qc1tCfFhaLw#c4P=4rAp zpBg5Qc1}f5YCFjN28)!?hgOOs>?+2DF1w}&DXVwIlcsB;mfQm+gene-QJ&$NA-{?+yFvmP+9jS-6Jh!g&cr@bVH7oQR+Z-E-ZH?1kfn8+O6BW_&Ky zsVIo%xHnzz`HvYjzletSql&4YfI%DmDsXoJL;fBgJnxTBZjW~}UsBHKc`W}(Mm=gz zJ1d)^ZYIOKGO9i!1)*n6HL85-U7nhT1-IHgp46UBRqz5s3OF=c(X7I6tXi`#q+UeAF|6}7xr*R|Z;@IyGbrCfeE}tDU9f%zm}b%Tiqq7%s0KQz#~DQ_1m)tXC;7H#nqG^yeka zrrk$8>a_f>k|B1{V1JoXzA1mwzW&1XjY`EtHPp13diFTP%K35>8tYrUtkW9K!~z|& z9FMYTDc4a*lU<_m#|E3j>8v(5)9>v)Q~t6ElH`A~SKiiS0EegK6gQY!Mc)8$T9)-f zTsA#^le8P0P-HnWYF(^ozZPrW!J}%&T(ixA5y{$#eJ^W6!4ckbm7Stxi>~O3Fe^gY z$nA$_o&yc*?|VnM0$_cC3KuyT72V?uNXxo7j_1sZF)+3+!?!u3NTAM)2)Dq@*Mg0nE+aPI(@> zo4!tczqS*X&A_Qprvrw(1H^7#`*27WUADbq`F3iR;gZ0RnX~det?BxC_pGLi0JF%; zs*8U^!Q4f1|K*-f6Ql?nx9M?K&tE#1PM|)OoqKO21;d}!;6k~VWV3&>zs89G1E^OG zX6G*A9MrYLAC!QU^mlncl9D3ulIWx`4o~`|Kl-f z|FPXr|Iy_o-HJyj_QxEpKrvyPKci!bFMje$7CeqmDMZld_y@K|P)vlXm!-kwsR-Ce zQc1MStW;_d&Q#$<%)QQP6to-lMaQ339hM~Q0Te*AWPOc(65jnr59^eoGFATQS)Y-K zZGo&thn#plCiSMX{TkxvvTGvQZ3f9?%^c33w`Q4U3Kj&%2~kp;-@@dqN=LRlKP@tH zHYt|n&gK^~EnN649vwT6manX{u@C(y7#lCA(W-?vN)!{BYFZw!rn{o}tSf#0aW6v< zpp`JzSLzWMIHgs$#x0lTR^w`Iq@Jt*@5jI7omQ!?2$bSq7RMyViqQbPkbb_Jy0-8# zIi+lM=t-Zg5|iQ{n#_Z|vlvPPz^AL5#K5NA6x{|5-H4$8a7g55Yjlc<7rEiGJt>Ln-_v()IL+)ip6ewfwGKg)p~KdsIY zMr2KRE-Q3agogpEl0J*F2o3d1j2@bTeqRY-9e#rhoptI#-+5ALvmZknOPuSjAMiWs znSrCcRpD(J4p|r5YJN>V+(qhdD>x)+e{q)2Mpa!(2*tdS366MPntyCF3}3dJ$CLj( z1btk|HR$GK{X(%Qm5tUZzVmfFl$zAYveIEmbUD=)-YA>-uzQs1^!>xqS?lG*t(_3f z+-0A*r*c8;p+5!wW;oCFW_hD|Rwf%>4J9_ifR^F3oWX9e0S?C$Tkq90=SwsLG!z8t zjJP%fP{xLWNAokt22CG5FPLi>(BX0oo;$YC<10jI|0*g8I`|IvB=RV+5tkgItLIIj zORu`A0O^Z5K$L9#1UVTt<1CS_wu$C?7OFmz$r!Fz+tcV0^&!PnS3d(rWx@dXTkJMQ*uX{f!4W+BjQ&KEyUwug{JL&C-27~jFU4Fb_F>g( zwT$6?pI13sCf))y$ut7XW6lL~9I}Rxqc#^fN~eGT~hY6)Wg~BXXXJy&x36h*(A-<#{bT z09+S95=<5?ZruFKk)anD+t-ZIY|U^JAL>nHFp0z9z4CF+b3QI7y12TYsc@U@(EaeK{BcKvl?8(Yj#dPhMV>E*wRSir zOfKDYu}HCH14IBTI-H`-H95kJh~+pnYEIzG*KhtxAMAh88JmQyGb zt)(Q;{qU8Gy}xl>ompn(t#k^#s9m;aBEFAyiJ2`^*9`yuX|u=m_R*8UE>cq#p|mWM z*STPu`nTV`?O!W+oU5$PFPA=8`NF?L?i-zr0!0FeV;f0TVPpwN%L+MA`>|34%)2*U zeWa|*IMXL+44vg52=MT~01`s^=IulgO<0jk+P3}e#5pm#iTaO+Pw5=^fsA9+za-F3 z9wxA5?d+m8eUoG!WT$s0i3)Y4!8BEw%z64gYausE(`C>MohFJlab5-~w#j-p-%AW9 z5;ql=7-aKtAAcx(-5=QHFE`jtC!LaOhzUG8*i%G1b-S>b#m6nPzUoHz+7#9FV_;sl z9Sqmz7;H%se16lAN1Eubv}(4duYEU)?*8<z@HZ3w<>#8|mT<4A zqudOE@(rU(s(3_cXj_B!c5tw?;_P@`tTP=F5Vo)K$6~FGCukGh;8c+TdR7^j%NxCT zfI&1B4>}Fym$o5)8ip}px>~5wXouk}fZMMtUv@-vCAxjl_If=9bCt-Op;61auIT3@ z1%k@kRX%y zp@{oUgw)J!lA9cmK82QhD*1~S?%BPKnY40kR8^4sUrP`ZMb(FJaTt$-gk*o~qpHk~ z{%D~|1+OEI@tI6RZ&#<)CuA6^r+q@@*;wVC|jt_b`1 zdp7Jk{?n{-SJztkyKeZnL3wi6boYcgXvHTv*!MR$ME?);Z?gOHTR<5aG5bL+Ok zUspY?}jRV#2W;YIXbukYo_tHBVy5 z9QXnW%OuE_!b>LHQn>I^$Pr5TNCl-Z>6-F4L8^+Dmn>JuMP?aOz%YW%$D*b>O%~E^ z&c1I{sl?OQw6D=JlaXx+k@QfbhR0t)4Wqn0-N!oBc^81-2y zpFDAqR^{)tax4puELsc`YWy$7vfAlJes6;bu6^6|^lEQhxGD|uk}-b{Bn=m3zVoC+*ktzfCuPHb8!`p;Bg&WR0PL7#-V4@SL_i zT}(iD=k|jNY1KPuLK|G6NC2%4rorC?l1kDxm zF1$a13RU)3XUiZ-%qAq*z6+7nAkkjDEcY52OkX>)>xj6x#=F=H+kJGRo21$jPL36J zdT>%FjS2!i%qiRxa&ZIso@dw07`?XsPxs4!2Iis@GC?TKO$dl^t^)B6b^%=nCFHk@ zImO45Rb_hRH~q{~N*j~6YoD8|8hOX3Y275NyptYPkF1LuR!?=O3#h&Gds1%p`kq8{ z9-9xJF47dD7Xe$4z?0&4)S~(F-g{n|3m0)Zp%vv<>S1^1S|Z#;CbHBn4lX58}=-kVFq zuAhxNYY7+17q53Pnpv3C2Q1py^ak^HWYs-)+T~Se7C>e{h+u73xhj6+5MAAzwTZ%@KJR6-TIFyT9q} zpGUNou6?LM?JDXWIo6%VPWN_}9|)lO(i{190%gyMF3#MqKgLrlrvtZ|aah=>^F^)k zPL#7145vGUykyOCx^7?ay#|89;Ie6P3jzl!5o<+V6#MEpX||@-%+m|_=^BttO*Y6v z;w`H6qfbEcL8F+m1+oSeeCT~z^;RX1UdI`%=~uki000xNq==x3Sw-hP*g*xa|D1&U z*a)1qp-XWfDg!t|B_E_0|JAnHI>Gt^3_NhEg$>Ie+SpfEi2 z>vXoN>)o2@3NQ-#kv`w|wDwsp&WCd{by@=x>U%o*i%~zs_+Y^3fzSDx@S|de7Xi;Z znjya3x{w!#Ru)}A_@fKYeSml$7MQ9tgcS~BDmRvm-u zyl3A4e3@IDE6f-j$S?tNj5+(H)90sqjK>0YycSI1OcIoe()PyQKt&V3l~*P> z;L9qpvUsXqg&r1~HX9@wud%%E-9h0p>6T{i8-q5mm9_X#eJ}$L99S@-B9x)ao);ct zN6`)+BNNiz+b5^ur|(f%kUxVCA|B3{4jy+-Ch7Go(}Nx@Oltqx#v?954~p+R&tOgn z%mgU-f3vLA4nR#D-IpL(M&aQp<_Wh3?!5h&o6+sEtm}UJKz+O0C`6ZGSzWg~M$7LM z^U~B!0-dJJLK37sMFoCcWei3-EUSMI)G9n*$!Z(6gTpMTgM~|=CM4H?LE>#734Y}n zM;=<;MrFrtHTQE+dG8dW?`oiA5J&AJpr2KgND$RCfxdd*zMG6nH@jRQM_u5HZtEWDhYVjG26#;5 zv#GA!w#!Mip~rZuhzeBra}nx8+EXwi{@v(RLBCOSmqi%VuP24^{{@CEdD2KEUpJ3R zH!A$T+bO^}z-XQ!qj`Hd3Xy6WKdVsy;wGLz0~-j@T35>dJyvJD+ebiH;WjA{sF=*s zWi;BPHtgH!_UN0F?EWkIRy(y-c?60Dk+!ml^c09Z^!^mvw0@nn zY>{Rkem2ow`ee2}er10L9+WdmN8{cmo5tbIlI{GSoShPHnX(7%D;vno0@@B@NS*Z? zpp4YlQs8oc0x-4`?N1l*_7PxvSNL$W1mO@?Duf1*^9*40 znuOLs62r*xbM2B>Mp-Lul3BcdlRbKVFFT^Y4$9K+-^^KQkBA1RDsbYd0@!rf1EG-w z4itd)f3sHDZIhSVefzes!@4M>JCj7o(OmE7s&OR1O`)bSDK)v)B_0pkfA(&fRHKaM zr5{9%l0bapy(GfHDolpeVdP#6r$ZHD!1n`R&XxY%w#dEXid9y~0@F8~mz zv(zW;=Xh)UVteeDJ?*Fg-JFf*{}k5#CE0^cXq9Fs>O{gMty-fr5{RI(%967|GpVs& zoxRFBI_WLR0S}Vx1ct)&@7c1Pz(^6Y~DRHWEnBe7k|)s^?P)kg zYMKiV%u;Z`L|eEl$C_y~UV{)8q-6JYFOIS6EFlVOoA{!74dpTgVs z(Ae%Kbyczmkt-VENySiyMu2U+ZU%6t$SZ55uHM%(%X%wxdzh*p1y~eymd&F{HI1-a z6^hjg0HMQdGF+?8hA!|}2qIM(1A8Pdk7%q6!gCd!7d4mSSIhzi_Q32{ibPGtPaU((U%w zp$8I4oM?Jz$EKD7u-q$E*4YdV9X=d~g69Efq1r6XxM z-@`wpn%=h>4c*}!NjZSk0@-vrvQu^NITl`KEnaNwbZ zZMyb))Hd*dFtq|e=!gdq&Qu3PW-QBd-agU*gpvpZs=+A$4~)fT!)C6q7qwHphwK8x zi9&Kvw0PUAT@yRzkiDIag#2YCB$znuJwa>ruUTuXUKIvMP$out4X7}M6sQCRJb0wa z<+^k8;8a0|W^Ecl)lUIji3d|&77rr0#&HZJ4@-hbm})QuqTr!Ed@k^Ke#QzLl9}v$ z=UEzftk@_Q){R9Q6|!CL8+kA1PiR9PC#U$Ew?Q9(r-8&-!izZj#5VGWKZg{67r8)} z5nkkZQ*8ndo^q`M5IW=^RAU)eyEJbUPI!n?LsKkxd^t1QZkoKzF5j!U9ox0J<*84E z?I@m*`ozO`DF`Ttw6OJGOtwhwir#R}0611Evh8#ouiKzO1DCy$*t1p908sEJ2&03Q zNU`||#8}aNCG+~aw)GyASy8!VH8ZGdTVpZ^_+tkLcUKx2pi^hM)KgXT0sq8RZzn>#xJusE*oSADzIabq@67Q zR23_V(@BDG67Jh1scEy@U0HS^o}o9?J%P6xx9Uz22MNpn9(y+c$6w{3DY%oiP*!Yv zDx<2aUte_zT&tYaxJ{eYclDoCnYyZ6#~!+Y#{+n9{6yExq#$&R`pfm&m}(_}@Sq~| z%+h4MLjO2B1d$puem!`ge#Br7c-$lKI9A}nhPfi`b4b^FTtpfu&Bb@dT=n2VMBJBj z4*45n7u$XrjqJSVzqL0M71)DFRX77+G2w?XwtAJe`e}gfweNn`yhWB6_eS?U_5rao zy?z7?=KeIx=FgdB4I9Q=L4iW|2v82_)z^}eQv^W45xoEaz_DWaQky<`g6um1W8W4n z;^N}1acZhHY0}i1G;3ywNjl|F;6z)?W9+`JwQE+}lnLVk5LACEstZ7iQ@EDolvGPs zT^UWAS#sl`{Qy^ab;Z)8x_^e}03Mv@(M^(v-;>7m+L~%DfbhV0a4;i0AVLtS8ACW0 zJcc28D8AF3-I_Y^VD~kLAr*nRyQA%mVe{a*VVq$-qx%C06XM}W3BIiL#?qu zWus_NUR_nLU=Q5Dp00Lonu*}I2M0RAD?4En|n4E`{Q(MXA z@q+#y?$KOot4t?(xEVozDpO%vdXs3jK>efE#()P*6!2KMV4nTs z%~$QEryh*vzvEBO*^$Tn+?qCPF5p6aM^AlXpo@MDf+^i~pZ%Ols=mHEX~JcLDnWgy zj~36LFNtQo`(@U&3C7=BL!Y%vuDRLHz4&rVYm!kuh^QDqu~}vtNfL?xEQzNfb?Mmz z)c0*8ywGM_v2>ZO%gJ_i&HHJZfNq+-|JPUSwDW#rmt1wDwQSX<#)3!`JfybTOKPjS zAbGe4sh3(0AapbqM7p5P%Fc7E9Xts9FehJ__8bLx4zM@kIej7EctkOv1}GePBdI+m zEWqU!qj`ND-`dcYDVU2ZWV~!H}qRO2N1cuB#3NXYspr4y}!E}X$(NXAL=Al;@^G!r9JcTJvL$N zNSE!HlTNn_es{HX->;|JnVz4Y=a_fNlJ(719uzur>O?#9SHH9Ke{-eF>%b#1DCr~E`mo59+0T7|#Kb+b$XufXFl7ND>)bDM=)Te+L9*?70q^B}gT;eCcBQ=-s#M ziTiJj68yFYpSGh;IN3=Zg_1fpZwyxc(F_%QNJ&YvHtjn&+X&!TTz}+~-k{X}J$u{W z!;g_l=@`4^%HLSWuKU=_Pd#M&9oXB39D8D5<0z*dZ$xh-l~-2Vc9xo!E~&-aG(44E zMXvrH2lTQ*Lyoo~N1tF1-u`>Fue1H@y*I5_zkznjndiBMT{%@%yUQLt@U{XxdWpRSrC2~{V5)Elqk zaiiezg(Q!w2H4;}f#eZe94qTs5V_Y$BH!3sQfKYgt)=^|#Oix10u+xlR7;!#Qcs}t z!|3nqg(n`i;s5ukyW@mY&ygDGGTW!e0j|9T1qFfBL7OX?Ft8UE7CKKUf-`R2F13Z` zsLXh&%?>^CSiAeNXYJ}=pDtr}x_$8WU+lo%2V1%f-Wb-mzP}g%>C47K9hs~8$~KDo zx`JobyZ<1&>E1ut`9B|G%`;ou8!tX<{Ra=RR&Com$*8QlD%tJbl8xa-=%f_33uw<7 zK|W*0$!=*xHK?Rc0SNTw!SkRSYj-G~5;L`9o!Cl#091o#Qm31cC_4i#tAM(AUcle< zS^py`_yR-ZVvf`>#IpKSXJ}Zxk>#$ImD?3Y@Wd%PoT*STvtW9R1rHuCy*tYO^0~m{ z8o;BoQ(KkA6ku*1L~fTP0*IXb{#DRCxXR` zsj$K=o($E#3$?O=FnJhHfdC;}=YH^xtN}o<+6(?Ri}`PIppQE*XQ>~kjfDqyY@*G6 zxwb-Qi)3rl9~=LO(z`11w?^-4b^gd|T-wh11VACNG)_&k-u(v2W|8lTUNCQt1Ja#U z59QDw=o25G;6TKeJ!kfeYHvvAc@R}MBe|j5=TVozgXdP~BoIGX83-^4j9-Ar%;mWX z1;07!LE-a-@4JTrJPV}2?A${8boz3exhCJbq$@z8_I@-^ig$paN9Gt0E|RPBi|hmK zOz+t;#m+eH00%N$cg!i$WLULlBsU(ov@)4(!>^{`2@q`))s{P0UKUpjI-E8-K3UTS+W6K=RT*TH?te> ze87%4{v>Oxy%89kN!urNxLddD1zNGkq^TqhpVsHBbt=B{K+N~Y=da2;5)1o5d|JIS z+x49`;LU}7raC2B19)Vn#96zh!3I|PU-}tWr#A2Ew$xbwfv_G#aJ$=EMld!TuGR6l zaqzl2oc9uUS zo5xkpkF>1!$Jnn<>uc$a6M{2FXjmDE@c~oCp7QmW*>?LoKiav!=xS#le}L3QW@{ut zrODQ|)i{cbD>e_3TD9#c{=y?A?%X$QZ*9`!b$oC_b#3C#?QkVZtJ44iec%tw z5muXo9+;b*FD9hpaRn-oxn2n}hFNxm0?-*{j0QY|LRsNG!;X32&^sj?JT zh+u|*hnWB0bPoEb%huZ~ecISTt<#+Pkut_C%&`Y_{ObT66$%^T9?DIYq>-f03v-KX z_=X}oF(b)NkYvM|F@M)NA}2@%c0~WK_Jr!Y=7|x`1^B{K`&e2zAi{WI+yEZK$Ih`U zo*7}k9Mr}xIlZr?>5P(pOk8a3(~_*O019faHfY(kw@vj*2(ueX#*+!q#cMvE)ui9wN@GE+rzYbD8NL7 z+SsD@YMNxDrAk~Sp!i-=L^rwfCW!g#zXOlABj9nTY#4wC6Ptu8Dp~5tJ+x2(bA)V~_Zp~dC=VUgvtNOOpN-_wqJzrAJYbrB)eZCzj5P9<20rslY zS+Be|#@4PYaCQ>63U{>xi;Y2saM{%V}E|8E1j?)zd7SLd*!*uZP9}HZeIv$tmvvd(uQ5}hOG&vT`1%B z+}SguRWy@2t0Glei9VM25-pq?8VAr%B38%Oix67MK*8 z28?-^kN~M4GL|FRvMgDWZRr2E=d670_0`ptbgv{!yCdCm?>T#R_k6qO`|tPIZ=2?7 zu_jX6FbnbpGAf6L(wcCvn#3LLig?RApJXXoR$pFfRWpjMPEy1MfyDRar8Qr+luM49YYnqBL6GW-G)s~W(#$`;(cemm{B z7Q5$~69gjf$*?XEkxI;mad%^Zx?;)0fyc@7?JB9fss$d;{HDzw{Pk8_!7}+AMh%RT zcvxS*fgBZB0pF(Z zBtLuPVXZK4c6ZKSxJ1Xn3re|?@*{J_QC(6KOS0L%twW(&p44K+SuXS9mP1`QmdtmK z?ODJB#~SQvOXaPJ>%Z^+v2Dr3t}OsahW=roFx$Y*SG+4S;O6jhWGE_}%8>$)7oo3Q z>Z^}QrSwOu=G*BlwE}@6YnROf$>XsYJXQ%j_Tr(X{H|N{g_(VcT!8xo`h5Ziw@s}& z@Adb)?8g7uU~>f?SFD<6jev*l^(qoPxlWZ=){E^u_G5v_PPxsVdfXDb=gTMBg9>Bv zfIwusBoVy5kdu<&agijCE2Xxoku>w%d%w58QP9U_v$c9&d7046=2pA<;&bf&yKht2kKdS!$Sd0fuE)714?2S#9RXDsajjSgxU*}A zJ^JuJ*{1dHXmxq3UHrvswa{;oXdT&WGSy2TxTG(*RwFG9TAwl^&6LiV;hr0n-E;r> zgj99?_OZ`=))uuK;(#nJaoi4o2X4A-39(ELHZwIQ-B=4eV81>I0J0xR#FR8p7%;QN zyq0PJ%@AWkrN#M>3P%CRD<0$+5SnHt@*OdFJSydM+ zuHGk!Y?m#jxVXsv>&18NPwtDq18w8A@cDy}Xc4t=M*5q&UXc@SZX+@(#CalO5JPcW_zMzB1chw%d5ytsHcD%r(Mv}!I-N1c#(;qRp09QbL^h}J@(~S-**#+GnO^lM~_`%-@V4{+Pj~33s09UsI%+-_E&bn zNs>HdWUrr7W-qsP+MVlK?aaC|J9~MPY$<)#CJ-AGK#~{Y?=VdM@xmg2;b%X8iCcmG z_xFF#o_yrTnyvTQbyt4gF1Y+^``ksBDPGl55lIqTdKh?}^QpLarb58KWB>8QqyALN zu}@|0>gloV?OUDA&XdIRw%vLEKibm6kI1?%gXW|9Dk&*b82K&s>{CD0 z`j$9$R-!hX0ebr6;kb3Hv99Fthkv3-!=26p?YD2eZhxsDkw+hQqUuU>I7pOH=&$Zs zL_h3Z2UnL`Lq&h46Pj~ z*R1*##nbxfI~`IdmDuG{TP49Gy;1N6$F@}F$%|_2c1a{(QwVw1hTBiXb*UCHV z!57T7y=`Ck)MC5*++(ako?NfXjrh*Bn;b}eVdXrj+ooGEz`h zzwheaWp}K3NP!s7h(gh1k#vSEY!n%I&#`wD>Ahy#2kad_1?=#Y$b8&Ksm#}>{8BH^9Z&~&gih${1!;$yT59F-FrI$`^$t#7b-2QPHdehDwqG*^3+ z=y?G<-=4HW^fTIjWKLC+lR{=!%u!6MCI^E1;1gH)NZrVuAFMpDYiLmU3vB7~6}J4y zqn(WfAj+mD+rRGoouTiYy+h!?SdKHOKGmEcb>v9m03bOK%CjB@7W;}UD=xElwO*vV zU*05|wWKqF9EuEC2B8293meBFwdHo#Neit`swbEWv-8G^8QRMBL#vXM(60YOq`s<{ zS?bgd1W7E`%fDHDaIY#Pcq=#4+ZYx`tTd0J>5W z&+Da&m8*}JU82S9WavWJE4CGCt@5&2alH|vMy1uV^e}tm7uu093t++_r>Tr0*>u=H z1dt(YJH~CsGGX3HgO%a>NTAi!JkS2&v8N)biu$-~WA zdBbt!6yU`Mn49F$rw5!FqUzAN`Zb^}yd5FBUAv_Ki{(+eGbHD4bn`H+%x4FVTC!5Bs5~Lb)uE0A5PAvj9qW>O0zsl~F z*mBEjo1N5i-il@?g}5~%42BGe_BCp)gEKsaMbIOS5Otl!q> z24qla4U?EzvhywO;(}4jlgNTy|`(IJtN?{O^XtB+E5goq%|rx z$yMyHUfyioyEodUQe|N~!4oW+<8n+*o^krKxiC=jAYCLhRsQz<7%-snfq-r#DVMe+ z%LPPm!5v8&Ze1g(Bhx+L11hVs(t~V~;#oNtU7h26z>Z85%YH5ZNOt;Uyy|BuFga!~ zfCwQ_y0q9Wgh0tivJsv1bmnGWZX^K-8qV_y=H+IQ`pvZnK=7Pl-*mu3Ux!HaALaE* zf_YjoxUQ4r!T#%?UfN)Um3Ouil}A4MwN?P;6O#z0^%(bWlM3tR7dKkbOB-#aq@)Iy z&1LY}2aY3UoVnhYYrcU7jq=M_*EiDUx-p`g*;^)3S(Q5Q^^?JomOIt&3ji{T5x}5i z0J@02a`oLLN#y+<^3oFbk~YL$8%6Qq)-(!uOh7ULHPS(X(-1xVd|EO4ek%WL8Izyc z&}r)xHs$ui>+N(cVgx5(G*0~$RpmfL6W4u7_4AVru8wG|u$zusVE3)tWN*B=#Y%H- zz`o+bx580??(kk#M3|_O;{z#x$LMLkZ%Q@#vZiDS3{Dt{4mPi<)Wys}C6enbcuEp& zln)Kfp?7-XT<*L(LIWh3cO^Mquka}!m)kCj7Xc4?m1~jaKE0;+w<|(w92xWvtt+?d zSI@Ubxq!Z_^&|(%%zTh1n-r)07-3;xg}khmX_5zcL_I&8u`(&hQILlS5=b7%>IW(_ z8bWw4Ybv)5azSn1xyKoIL1{l|^H5zVVzd;XGlVowhp*!|w3g(Ah1JfU!X@l0AA&^c zP$UcwBEFwp^~#9NOBQk0xwyS9l=s(F3c<4HrAcT*s z;#x@gp+EqT{Ls;r67w9#SQgc4LDG!fwoz&=X0$9)VmOC10Vp5_0w}N`^upzhwxFua zfd?&v=e(&9C|kOEZEocZTU1>x53T(<4t>2|yC1%%wJ4P{751WD0Rd$^$8+rJRdbyL z>KItyR%6=X^c3$IQpapb9jq#6=TQ>pLw7h*NZv>p734r9E)xSggLs2LWShdE z;A$GAkvtQ81jRWfBW_YE`^O@={le&xMp$F<{Qq^>U9Y`wCHj4kB$2ObAtS*XkuG6C zKHqP*cH7-+H`-Q(TiKxtUplnbJ|z_xhIiJkkZ|eUA9~!S@KFE?@a{!Yht$c*ji1y% zTnl}Xf1<zR4fGktra4opmLP!?u)Do9!uUlRshBz4sk8{n7(BHKNcdqC?fVF@ z$Los7%ew>sRr=kn;|xhDtO^HaJRjmnzHS{k-=~`^1srabxb9z?tyCe(QH{9O-pWh{WLDbWML$ex{cV|A68?AC7CtP~BnR3jZqVpN(yBA>FThqW88*8P+^TB z=^6Ya00W)-T#4LO(BPG^%dGr zBz{4-=K7=XO$jv&L4g1uLl9`JFDHRyr(!g1-ri@}M^K&M`pe4`()dsyFs{PVJqa9) z_1alQ)+nh1??qDb-6(8JLg~3uAOJ|Nlp4c)9whuMtFvd1lStUmh*=o#QlVTXjO z3Q7S#&XG6}EvmKaXJZB1M+e|2DB<%^cmR+*5V252q|bOUwB!2QqqPSINhBebp9h;l zwIP%nC{QR0qyUF1nWI3YNF401LkbdyBg2IL2mmsnyC-T~@jdoTnJ4*f^NzpsK1@n3!2w)8SKcO#5@;IPobE0A%9#(V#6% zzI4poFt)cTG)kAewnz?0;+NN*2p@q0V@Lsj17X9jX{wTOyiO~~{USh`k{rWh*tAep zo+uCiBu|7K&tlSF!Y=Jmu~iaD=dQh4EvX&17t!96euJGG|XIL+_8GRRC@&1 zC{|UiqEVN!*?gQBi$1SE7mf!W1pESC!|TNqTA6-QhD#@BTSzyT2^NeTcmNjft57#9LmrQVEL_$rHe25JHC20~GKez}WKA2AgYDE2=bM)n_Et zRB2;xppfuo(oi4($fW7Y><aISo7z@aq>|h0LbL))2vVAfnne4Zbr35PnLu=RdF`10cEZVww=aZ`-q3=$2h_?KRb0U4Fh)Mz%VC*Fv`^7n62+S@6m`sgv;Q_$gHTaEMiba38;rcKmo*L<6$e$0# zsX>7NAXB5Cvp%JlFg)`h^KSWI0wSonx+I}sFChgrmm|ZZ`tbHIK*LEIdOG$!sgyyy zQlK$Qv8jA0bsikh2+{_W2q^$a7y~I3$iy5xm|%GKk_k7#R8W0;;PF6|QegNo;V6*o zFK^QTL}p6TsE}QwLehoV2tja^5)tp2?d)8 zMpYQlfT~O1-Mtg{(WX?(9ANO_Bn)gC5!B<#odgZSr>967F_ql?Q;K5YVRNNG0FYcM zHO2G6a{!5CV)jZzV1NWQ7i&zss*B01a}VZ*n0W;WB}u))eRtiY5BiLM`iUd`hia<4 z6iFkJGLnXHTIBjD&Re(^hLR@>1p4eOzHDU8BR9;9Yy#f>@6wk0yY$)(FmE+3GSW`F&1sv?Y4-W$I_DTgZ;0hWeh(91+q{e07w?%giFJxfMZO$ zEfb&s9=*HwI#B5mpdg_TqsvJtFhOxMnBX+s3}Z`YZZV%6exnYsJ2E{tbakqz_*uwP zEMPz-1z-^2woFHUr%M>z5&$D6TsY*F0s%nsO3qMNk^)JFpUxD?2UF{p+N)1Mf-MC= zK}z8qpyFrN^mPQzhv*UYVj|;%FT7bzBLg>xQQ{P`%~KKE9D#=E-u<3RnY!Ljog1o-Zyg$Nj8aESL>0U-EijfF5F z`Yup#=XHaRew@7`xaiqldTj00000NkvXXu0mjf DudiES literal 521071 zcma%E2|QH$+aF^_W5~W$(zL1Usf5I|FA8Ok7_E|+7Mc)F$iI}jbt@IorfgBN6mcSS zlhj3&ZKP5OQ!2{#K4a=Rx+O;?>_)NkP#T0Pj@JS5*4<|Mrhph&maI3{8 z@IS8?o5{TfkHbaozyUezYc{~YvHzWff3SNv|0bL|j2i?0rGR~tASPHn0nfXWOh^#t zf5x7UTV%Ur)hhV6?dCmOxBBe$^xZdkL(?tzLXy7Hc`pv9G9CLzY}NW{EF4aJ%nm!J zeNJoFm~QsnrRTB5chgoq#x6Rx4$h2W3LkfE-RD7J?DF>6Ysy$Sg?)u7e8#@kpF&|@ zvTx_YDNbu`C`)|zY^50K8R!{IF(*?f6tg{BwwbP9x}1AE{MW)Mp8NLEP4)Hn@87St ze~zB-p6&XxO-xMm4Gi@S4RzrP-Mt5V_IWULefCb}EW%r7>DIlQ_w1nW+u`d&!PfQI zg3`Xk-8Z^yP#Zo_`z+{WgM^EfkX zF;klzjIG{IOLy!7Q3Gk_^JW_wn6aPp+fM>YIkztH_4eIkOZV8k)qFPh7NM_(Uv0m4 z>z*aPyWlzd%mu3D-Y5Ly@Eh3_ItwT?G&UBYQ0OP2TQQbR*KghH>+Oe$+}>x$K667e z{gJ*NewVZ0HuKqY=W=fn{&x5sP9xqS{O#~NtoQ5yL3m)KVZvjRCHx)tdNX~@RD?{2 zW0&l2!7$CqX8L?1Hz#ilCA`PssJK;27uhkyJ~w{!uX_C2i1{`4uW8iE2hCmm);qg= z?oSv`I=?W)evi7sN_3Uk%H))nAydmQSo#L z_@Qb2|Gl0-Qo`erVAB6*ZT2+@68MhssSg!Kpe5CgW;)hGVQ7|H>*>TV71J~<(@So* z_ndyykk;xR6n(C-Va5aNX5G%&A@2EB#dP(q3C)#*=L?@+IwNyqwuO8CGa2O`%k4hV zCG+QZrKkUVX_@(Arj>hP_#4~)84sQ{&EM9Qe&V|9$CdZZ(7g|`x^I~_npW*?(^}1Z2TDUsM_Aj+V}~V{j^us zU2s=)cbUzoJGRhvTY6^uzX!s8*BNyqfq-wnbNc0?;R?Empq?6UwcVEF_L)TVFIH>1 zpGX?q7>V1N5oB3+5;dC}16;<)=O1t?J%_frP-`%NUIeaM!JwBAmJg5~d z|C`;ISti_krWzJ_RgG!cWt)*s>M2nO?mp=r@IY1$ z>$P?jU8Wx#|9TgrDTbdexANgbAF@pLcI4rkgYwhz2OC}{=Mw6-kcWFKvOJ?CijK1f?(ea({nG_itV; zD+LRCw@MF3AKEPZtn&G}GW~3l%PTDpoV*B*L=(q%YlVHB7eVwbO#BpfTki62hEB=Q z1Zm7$6gYfM8+XJmFP+p|a<(8REO_9Xi9_Fn5?lf-fVdJ(-6e>dwcq%pj0^ZUPeNks zFbTso??424mH);KV*wd2b!^l5!UG@DboJ%IVMT$qA zq{*wqPPEjG8e!oQA_1?OvuFA+5!mcS4rn*qz4BH0b@5T{tG?Zz`gUSaf^HzbzI~r* zW)S1HJtXtVpYLhQWx_ z4S*}ttc6j-zGs|5>1MiG0~N{e|AW`%m@_rzv$cyF67DA@(^6;Vo*BF)9`^B|*IMu2 zP&|1GMb7C=oT0U-shmX64yHSK==yW_fQdW1FFx#anF5-9GRwf%!j(X5Ll!N1xX0(L z^KgAFqC7t_OeAtndDP_3=Zb>Q&HA>#-J0dw;nIR&VrMNyl$81nr^RSVc`fW;YU4h2 z7&@K>+H#ea&j+oF@Z71mGGbsGQurl~<(^FNWb=fWlJ{+%N$+!*{_tm?>8+Xz!wvi^ z82(vb>!<${S&C%0o<>i3)7JR$GxoR^G`M8JVV&D z&&~qc)~xLrhUnu+Yc}sLRO-!BkB<5jaxTod-Mu4tPF;}YG;HDP`JyojHWz4woE){GnMYJ z*1$pO^Rr}fqE?uMFrC;^%s>F{X2m_j0@Ic$2I`f?A@N}$19cL0+^AxtZ;&$0SZd6( z#fK`Mul~5`x9Ci_q*7QahjT=Ur>G)IgL!H}GK1H9KE`mp&2B|Pt~88KN}L{ENEor@q9X-r>_~_}E9;g+(FLUu)QM48c-4ccQ`? zv4`Jkt9=cLfSoHhG+4Du8#9E1bnPxv|`LIw8x2C1A#aMc|*3iOJFW#{k zNpQfs#5o(#XV@#~EIyQ$@QR+6UAIY859o1lz_AhYMLAE{fUk<_zBp#+efq$QYa5~r zTsY6AO~ubrH%_O-G~IZPp|c2scJ2T_zXCmpB5R#Ig4XzzHy`NLe=wf=1G1HL_rme^ zP^Q_;I&$1u(?jJMezKyBWmtg-{k#HIM4lk$WJAdsTo|7-*ird5#H@ptzJ$QLvqr*gm3V={W!18!f+fLE%Y3K3hl76{M4^}J*O&ZVVY36BavTCm4 z5@eY%z;1L`UNY(Ij;N;*q8t+tss(-+;oA_qfvzbILkmvmhO|va_dVs>AjxiRLcPx; ztwXb>)g4tPTrAmH^O9B|N=$+k*tFm4wL3+?0a;J}w&M0LcQQ^z8CTX~SinI-AjMC~ zv()fVCY>fta?2U#bNx3j$xs0?W*G#MM8x=ZnnC*DIecgmo=Hpn(lfAogvB`m9_&2w7j}+s>t_`*U`pj1}A;@T{n<^6K5>>dgy(xWyUtn zHMDhzk9PLBXt9TH^s~n|MV}!IkFzurShRfiK2_00mr?)^(?Vvn=n!$O@qA-r?L(^9 z8%K!u1l&Fad?)q{M+Vkh;Q7YApQ5G%xNu(v_pCT1X<`O{tqfBnMm9f*l6y`|vh*Zv zs>U2q=fELdkOKubKUNme)5*UeIHll>WpQpYMBJR$!IslGV7^+*h9DlLbtvgnLMUxj z&OdiWmP;T2pVR9IwmggAV0?w-u}wIGh@tl(j`+}v_0raw+{mCalS0X*{9P`x2xS3q z_c^=akZ>$MnS-vCVx~BgY=~%nh^zy*1gu^{Arhhr)9N-E+smbv-AO$pYQAP00QFvM zDd0Yj8%FIFV%BUXqU{id@Qm5d@wuz}w%_9NkCc(;ZW_gQ z)sA*7Ebt7Dx*Wf(uUQRmc3ceY?%mG6zGjG)o@qUYVt!j7b?qb<{04{sR^e*_GcQ5 zPVO&pdKAQ|nF_5DW(;W7- zuDQtP6F!(o9-C1$1;-d)kGnx(*3eH?eN8*VyMT5apVwIDW-KAzHu>Q^^Ve5Jv>J+L zV(7H?gM^5oWss3>wSLQvkjh(2LQ@!r0~PqD(|eYxrIK4%qqjl&Mkv!^MPQ5X0Ta>0 z?V_q2si9vZMvSKmHZ4n$ho0lbL$BJ{i5;7au1ggbBA{N+{RgaIUx!5**B{W&XP3E( zkVyfye~sho5c`0Z64v*2ee+Vm=T}QGHuo_f@;R_ptc!Yx9tdoy_TmL%-f97|{&|F4D56IcbqsNSz*Yh+uPt`MLyoZBH#zePAKZ-tP^8J^ite3iwwfO9= z6wb7$+we1Tl5uWH_?TCnE_&R@P@v41O}CH`uWI&5ohD>Gm{<`%5{YnY$tw{I09U6t zh{ZXCNx&xMwx-NVn4$}L43rI%ZUA0 zae78`nW_+9jC`usjM!v}PT!m&pPcW#6M97veaj4}J{r%u7zi(?p|Ub9#8!$~P42br zuafNb(B96oEvW5m0Sm%ayFVdc?63pWkJHSw%Le0 zaFdpBbChlPG&dzrZVnG_*ta9wv4Z>J^RWU>0@H*gSZg6t_-a_;w5#>2%UwCaa(bEN0#d5A3}GS zt%m&Ma9Eo2cXXiFOPHZh>HwfqdtsRaCqrk`2f%*%q8dDFaS zH5AB@vX}f4MPlkgtfzMSgoBVrfa@3UPA0@G4!uebnD@;4`&pqb8EQyeZ_J|Q*@qKc z{zb~K`RVhV52Gb@Bb7q$c&j1ACe$yI(moNm%5Yr#;SVlC@(QwLmb~;crr(&j{-TGF zUSOf*>0n}M1BTqJnXLdrMYUs^^V32re`$$r%N`ISigp#>=aQL>BpssNn694tqJl*i zCJNF3x#4L*hMw4D)NfUwjF1GQ$fPlPTJKDS@AY;7hB5~)u}g9;?a1N;&oM!>kJjK; zESgTWAPZgpM8`mOj7I4bWY-z-@_hUELPZD_>-LTFxj&s!PqPk8n#6UW>wEgoIEIP^eAL5(0ipsEA7ML=`Q51 zAK~Khn?5WMqChU!8Ztj~?z^!?O)AhP?JtZqaGS(*6<@R+Z7!2GwOF$XpJfTgd`mmQHdD- zgrXcNDE3^6kX|3Jp(!lDO>&oxl4JgJMvk_v-uIpmGu}4L5{Ep}7>yD-ZHW;*Y(dKl zp$-K1CZY+KL5=0p72_*03ln61~nJoGZMK|v(qdAh+ z+~l5vddmQCwC}7-6hc+>6H!m%^p){6FR9qq;-U=@8$G0YIYUFH;iFOcJd;e}x{fLd zOIc<}CUR3w3~|x-g!L?aBF@%@sYIG9tQ~5?c>FB6m}H4W=xmcktw!z;HNjmt%X21Q zlcW8zOhZIfbu$}{>hPDBUeh8RM<8*9xbr^0@1+1GD03j{7(3u&iDG4ny2zaR;Bp}; zP{a|3O!*XvXGKWh0|yE1?4`oC+Mp~)%5QH`6tbRqfPL#NnI7xLvb=6ir&nax?h)pV zm4G_jIAA+3qu$4y5vM4mJ-M5w!KdT=t2PK-pDX`dq4#jn1mTBn(PwQ+QI7Usu#9RD zD2)?Zq8f^vjF3pX~|~X`)WRvix3^7=inV;iI5o z00zm7RKu%38eSkfB~s@*kj-Al*^h-R)hzE?Qy8;Q6cNmm)$d8o%q2tchL51um?6&b-n z@41)JVlq*qV_%V#V-0#HEKr!YN`U1cm3V!jIF#Xy$hKVtUJuWy!JS*%9xOyV9{9SLUBj7rK{9BZ3;VseYD1=A?h_^eGPyIP zYmmrEBqk%XW_k+UMx~tw;x1PAcngRdM|PFjJP&QBBzT368^r0H7Z%PuWt({!i4%4@ z3nZYW3AxDav2!*GmatduWz5z(6neukSI>F*Xcn`QiGRb(nbywb_*@8!5blA8c+jJ)Melk_dZQS+JKTbtR z;nV|QZsnP(+ZOY))C41Zyxxjsa;#|uqA&*qJ1OwC7c-^N%J}uJR^iM5eFDokE^jXt z@cmUmt&|MOBs0=U-oRc$6ih+p>BQGbUQD+c`NtljZZ0)wdW5Q-3N!8#6)P*E~Il*RvOm_V;0|S1OlZ_HihrtvKl^O-ZCS9~n>FAD4cEUW5d z3g`OO_7FsFE!eqHAVL+n=PC@bY3D>&K~9mO>QR&a{D?+dkge!*cHh~=Wqi{PMNL74 zwMiX9{<(SzeO_#M2)J}l+il&90(AN-H(>UUT# zr7+S#kVDWskki#Fy+KOmCBLchW<2U6O(=NX5q|Erm$11|gTdT?cHC3u1Jjn72I&$E zlb9{J0hU4m3S;G`YXs83luSmH$UzfRBz*Q?Tq@*JH}8S^D(2UH<$w28F<0%_W;wc&d8}-=OTK_o zt^#Dq`E@>JAoXj)Y$E~CvU<7KJ&g}yP@P+!yLx2`)ECCZH7h-yb&BAHn z?;9oK$j3^nAYd2X)};pscMLcyU7C7wF_PZuo~+?1WNtPa!TUaS#+?^Z8eKUBYhZk= z9A-fP1};om-bR9WPtJz&f~-EFJX6Xq%E5Qs*;N2^!IRY$Yok72p+$7;4^ts3F71cf_a4*Cy&zT@@ zyP#$H<{In0Awmzkq)n0QbzRgfXp>}sfw?fNrwq@JAaCE0P~+V|5MQAC54yH1vW+hk zImSvTb|#M#n)XR`rkR~rslnN*(Ty+N`uR~~7(_w6wT5Y*suH6Gc6lM{;6rlF;zZi4Tx!7V3J^R)O#>5A74m zjHAf0-^-RQLtCR>Tyft$k^f-shlFqV1&!OJCH#xaH$FuF^*t-ecin1e9b{y??DXKX zzE#oqo_Yje%Qr9A?4h_Vhr?A8u^{>(>X7+Y`JFTY>Y>X)YV)6TweU&vQ(=UdOAlR= zDSk&^-?nwbgyFO?FXAhfOG}g}4EZX@<%SRoD%j$D&Om z#eB3z@9=-&aDWTcT4V7ZnEMe?7ow-3=w(LuoP>+fW zEKvBAH^K&O-c+?-$|<43=Mn`BpD@>5;6(SBwG_S@^Y-;8QdVEL!oCh>TQth`c4p6W$uyW z%W{OZYVl#~r16)=9yMUrZlCzuQgV!FG%C#jGqB*Gc|!KU$cMzJwIYbG2Y}^4&-LNB zp@kE+{T_0lW_P6N6UBQ>C)>*ir*clNU{|}f9rlXJ$4pj|G#`v(%HZA-u$EGSF`Z?a{F7??zJq%f(B@vv~ zD%fL1D!~uqb@K(TDW_+<3{@laQ%E0b1)-V?AT#4otDJG#Afvx%w2wbZ!}-s70$G|< z^g#nD9ws7VrJf!N4O1hi?_y|b{66W)T8MP0N%yZaU1VLqqc;@tvgb|LAy4I zbo}`j?7}MA{@iBCF^7;G=X`#6y!jVoO~;L@*7GdLL<$kTp{xC!U{)HtZ7+V5U`$t%hp+t3UL)CtGVi}sDUVlINlRBvmPPhHd*aiNBj zA2#JythYg&`&97ozXt*X4gaSs7U`iQ8PlSVp5j9#kKl5}mAc`!Sk5FA;cd2p?Pzsf zy2rC<4nX@_kMS^eP%x;958cZ9g|`mDVG8~3=|f0kM&qtqZwGz&c1WewfElHz`1A7& zk@F>Rr#Q@tKjW&>8OLV!*PT5YMOk3G6*Obq>s4z_){$ ztS_7F?v5!?C*yxD5-hKHj?`|{tzg?MNnpXNt9S|;oxA#h$x$_%RPHE_k zay7y+WwFY>)*AE2jr_;**(3!mp+w+A8oI(Apw~WOjTN8zzo`(v2^VRCfzkcMXPa=W z_|uDwA1Dy=wOfTdbX-*?64t93z zR3#jRDW+|yYIS4v_t)FU7MSpLU2O*}3UxaWEfVa&Uzx|Mw_Sv4eLiQxr=G8eAYEuZ zmlzer(KB?_db6UZ^2Of{rKf97ZW~{KO8B8z>7xd;r-b2c2#j`ydMflx165=Ifg^+7MD&H#f_|kiB%Ioc2@11-*s>^_2dw4$D z%CjFoRpa&(QAeQx)OugP=9j>l_;PBH_k5(owC-!1q88I6RJ%A}d+lBxJv_+Sq6HwX zv$d`ViZoPGTbl?CpT>^{BUEG%FOf)M z_JRtiH*%|jd#4EP^qMUJs~pED;JY{7kqHLgyI^qbjr}M31SvXSKcVP$WFXB!Ub>+@ z%Y4!|L5YVd0O*|y{lMG9LK=urX+puNCUJFDr_#&cgDn+G?W<0+46+oOpb;p9eC2?A zu7|G#@}y~~Y|&fDfWr+hyi%$BLS7FQkXeb?yjj_$`oP?4=XjIZ91B!1I`mg?2HFX~uJ&G@sV z3Dw|x*PAp>^HR7}cbdV4(wAr$WE;7Ik%8FUFrN$F2U#*SMy_mNwm*0lRx23NIGF=F zZ0hs<&eI{NhZHk>r--Zaza42e>d6+9_7y|kd|<{7LDOym>_0S+@*;Vl_GCKHVrNHG zKc@NaLd>g?*n|3_#VXHpYJSZQbH;H&eQ^Ll_Nfp|NDPQ7R%|}|v zW+F1FCvRB^y6vjzUL*eK1X6>|%#_w_jwFb0+U z9{=c%0d#3ZW zi+Ev^UVEGQi)Un@?`Tl#TWpM08H|?V@h!~Y%}BIT|31L5M#^pe?mE&1G7q+Xe1J#O zGNR_~87%jBiI&EX8CSFocJUr5Y*}X~pG+nU20b5}B-F06!H$#!bfwpDL)Ce5zQu&Y zg;o+Cb1!YvqP-HPg=gwPvtWM=9B}{rG=1xz{2rW*A}n>m``T8X&QGDx|j%8rI6jTjkVsV>R8o7EsV1V5<# z*>qiyS=d3pCS&o%t;t+Q;F(Qvr9aTyTFfoU3t0!vM>yOB+dLVlPr7pOk%#C5q3M-j ztu~0E5cAXspCh9lPO}v&|Gm3Hq0*f3>HeE1v_KR0?p=Aevq^nC;TU1_T#|m3ym>CO zC6uf&R*O*BeA?bn;y98mQ0R^cuROupL+Wam_ue{Y&Ex44)=%7?{*-5oa!o27NZ+FU zGz*E548dV~Mpayvd{gtk%Nh2iojk{NIs=hCc?1BbF;?`wpUSH zrAxb)xQ!@Z8#3aUbe!ce|E}#vL3NU_55w`T!9CB%LJp-IlQxTovtMDu@#)UOw6h%8n3;qY&L+eZg>D`|EblK7?(Xw( z1wDs{jd92^j;HhEFVzIw>AEeujq6uiv`)Up-=NUE6h}&)DO5;%Ek2hS6^(h25Jgws zUm43`AGr@W@^aUTG;RWYGaQ}!>}z`KB1WL;%|}6Ng<3yCK++6*F6$?>xH0b455C;` zjGyDCIzjuS1oh!1H&E#GZc=J`lpGrN;%&LD`ACAICj5&ZQ{QprILqON^GClJGwyQ| zl0oM7jV9e(r_!47{Dc@JotbT6KD|GezYsACFSysPb*sTO*N zLfgW2Z#?HIw2>oZ1dxft<|1^fmgK$aeeY+*GXatr9Bp9zJj~C_dRNmFEX4-DCrxUK zlPNT9<7-~z!yZM?5(8%X?c=PJ2Ub3oIc{9i;FuWf0zK*AwpOV!_(}T9Z)?#kq)W#W z+A^A73eTVMv7lx~Q0~WDgiW5A z4y!xLr`Nqnb@2G;s~_{taL(or9D362t@Kn z$%1F0d$2sZ^@AP<7yxlq!*(`ug={p~O(J7H~;%x`KBci)r+z1}bR6Mph* z8>$@X+f<(An5|=`1G>eZeyCX3G3*=%&n661VRv!1Qk@hOi^7;OtfTr>#rWQ8d$GP2 zFXMkE6b(O|$q`q^76jTpz4IKTK4)LFEXb_qxy@I|@1JgtPviQU(;?XM9Gj%YEZkl^ zy`e%^$e?(XgUvI|k>#J&`*)_Q^cDxV6;ug=SP)jkOfcq`?(Z>kSZ0s5Fib7p@(0Ly z407^BhnX3*J0sj>13hk}Y+#blH*%Aoo97|dtT3wP&etIC$k%W*FWFeUKtUoVN=kKS zwy8F<_Ighh*i;Z^?S0E{ajEARgSu?dmSinjqQ%HjGhrIO{`P97FBp51L&~%{hCCFf znt-vF-_zg5b!ZsZ@-mk6H6L5_&-LWc2@Mh_Mhe2As3XAN{-Z`k$J3t~b8}-k%1N-T z0U4fva|lhB5|cv*Tvp`sYh59ULyBQ2`R#QD#Hzz#9scJNw{mR~hpdO_dv?==HQcUv z-CaoP6b7MhoH@v-vi%Y?QV51k3@Wq6Emei_d~8}`03t=d7tWF8qcWMo4qDoO`(cxmusD zks?-bWD)vJbTpT*O{yOetBPnemn`&?&lTRLpe0lduH>uO0bR_3>=k<#NQezZkFevy zS?OjZl`K9OP$xA@-IIsZd!R%4)UPd#Q@KLPe>NGf(NkPPJC!s-=MB?NLK8j`z{+>F zno#M8G=TQ@*6(iT@H9@UUpWOocvXv5T8OjcH57Qy#8!dxcMj`xp*h*%zsLEG9}kV; zbRE@#z>#&r4?H+tJfwzTOj*r4rFglS@H(OBF2qh3GR@9p6~@JqK<=%j5U=Jnxmt2D zZ?TQ?^K?-!;~Clksksx5v+DoyLJka(Q#skpTNopcsdRIh#RiMVs}pXLduKZk)vfMq z$SL8G%3FY=b#wq9S$}&26V~ZzH|F*%s+U2wtG8gsMD8`mLz6@2D>aGG&sQ?4D^`Q| z^$u@st{K)07ssEu_?B9FAU$9+? z!|)+l%@LR z0X+hZT))_kQeVK#vK#XpWSAc#ypR*;y15aFHWA2bxB0<+KL~9yl9{r*cd7$1f4r5- z{U)JlBoPhJ6xm~r8<-9^?j0!$)a1Gra}ktIV|MW7)L+hG_1sw0+qWg-*@^(s6Nm!a zXWXG)l|O2O^@&b*wM6lpU@NwN>{30zWq5_8YpGXgNU6%h?E_z~7PM^|#RY97*lEf@ zhU)9I7&(4QHvv0h#gbrf((}j8%;rpw-l@X|*9A0DY_=jw5^FA_N`n2>i{OC`*9x|? zs{mvT5q70|L4D9m8L|D$)?)QKN|x;4z)i=p>(1N_1{--0(NXWecd$_rxlg(#$DA}< z+W6>YLBYm1OwNbuwY0n{>B15lY+@qkx-)myz(x#KB72|W)MnU9KhUJLLOpZQWj^V# z$`{Rty%v|AtsA)egEoe+#Hn5X`^aV;4%o-`lueEh(~mrDs#iJud_7mkq38p)?jz{w zjrl$KVWTK)0p8bIqNU=-!??{O_Rz5Qi7Vm4ahq_wd#7+jn}ErgQm}#}XHzNZ=OZ6B#n#|b{8_=sy2u&?4Si@*Oi}9HlhfU+-^Y^=Qv;MAXrs>U z3aBWm9ly~Ma(fx;M)`|P?sOh-i7o~12qR2T!O2S>`^mRhmJTen{mW0z{MchhN(64` ze;%lZG;yTeBDPDT-Gpq@3RZmGVn$AFK-2Lc?oPmCm{2!p@5o`WwZ@u@%!j66$3M&+ z?mu)#@p&q95#lbJ*HSjn8P*oZL*gLpEe0;8yz+iO;nv~PSG1VUAwg}qvZJU!6#dGc zT+KrLEfrhdCEe#Z?PI7(3{D)(Ud^Ei8?Y{B71m8*BrjoQ>Nfr+A#R2qWSyW`99meW zQY4fUK)T^YGjqvj1SQH&Z#T zV4%oQ)y5Bw(;jvfhszRXyy$!4h2zV6E6d%CU%yz)=+5(yU_T=vAN=iIjuNKP*()|}mxppXU$fsaKzOMeSP1))~#qq7Hyyg3EPm0bW1ydh; zjKZUh8{&97f)#RCPOnSi{5X!*G67dEJY2}xbo+Z1^P89Y;Qu_Rx`)c|YQN_V8}O`| zhj$t?U=P34hUrjugx5_I*--(Qt3SPn(Y@p3AMhza^4e-7X%jD(dkgK3n64%l6O67c zS_#YOi4%NBY@9>Q839cp7#Z5CACqzPfdtm z@!qi^a)6)Wh~(TTX1&jiZ~w|IuXt?pj1}mckq|-mcky}1aUeKuD$mjC1*tWORjfkU z0c_-;`^*Ln4spZP3ix#$ZGT|ZJFrr!MSo)ur{4AhuS{)!wtaqw3A(%UGO1L zIp^8x9`gN*SH=A;vBL-#Ww4?UyD9jZ%)kwB-2jfN}OM#c(7X>%oq2I^$DJGPFw zMHe~#BO)}`E+oupx`DlvcNxD+XR`~4^6H9zg%JgX40hfk3MRBqGmnKxj2ctVPIA!lIE?$+P66&%3&N_aM=^~y3< z4gF63MQ(T-W&~`3F*T4l7}07jcdPp}x67oRJEd#m0J6H%dF%kY-a=gPU6oMvv0hI0 z9i2ICWly8UsY7yHN8=1F_QPdVO-*78IG}`3jqXr z5{x+$7e=#Az81e>^pKZ#{hlr)9K#Qpe2Q=kj5D;Vh-Eu0^#?5RYKVZto=H7V80@(` zsVQEzeD3tUzt5HO6c{v}RUAA6OsVfvt~i&JZNSm|_AXAsn;-{cUALFfEg<(?DvBX& zU*|G-My{^et3;*91$rWOn+h~J$2<36jb4v)Y3xJFt94l)_t=Gtm7U&^)V5;}=V8KY zaKAzHiR>XNTjS?kDve;uA@}D(1941UkDZtuA1V1J8e4Qm&B;Tl6A8fx`!-cWmEDA+|I^G^fYkJm2p)Khf6^)+q?e3EEUQ89S$*- zx@JHl6BFq?%Sv^Gjf)3Om)LeUj+>th93$$CH1fgr`p2uFw6xk4&a2}Og1xk7{+Py< zYRII%mVs9Wo5e{aMlW?Qk{ z>-TU9;b$VEdfSgR^x!qQV_WO9-IF+$B{~95oeb|E&?^cp{_^+e_(j%OU`uwLcKFp6&wR1 zu|rSQWd2M7TdF)yVmks7$W6WXb(yqs0g&Yi0N6(U#d%jtu8Nv` zm_2$jxxq82b;=Dk0qD^7E~}V&qdW6Lv*$a%ihDH2x5@jT{-L37o19a29htK1uPH`f zFTXpY<6QlWNR7X>`aFJBLf5@i1>4^0waka0ZCTB3&h9vUBQ4gt-GDi5&C!qFXN)j+ z&gUvulhsk$&FXSDDt@2RR(pwe0EH0?M%>zv&zYZcC4DQ~T9;fLn)#|^vMfh>ze@+c z>72}Z^E1;_sn@jsTSa+b{%cFFsPn+Lx)i>0v-f4p;#C?y#{ASxXDN-i4o4sx@k5Mm z)Bbmnj{6@x?dEteinXWq;|_2(bQ-2*G?o{=xS9KLhtT;IE@%l{UW3B=(dXC_Z&4VG zF39K36!c=RciJg$!O1)p5RQ7OG}XEgWM|Y&O#dc&xL;&JbO|9iHAiMJt!c5b&vf3l zkSv@t4$3{hAG?%Vguj|fcKQA!^nl4)r$wW+7N9TiPSU#|Kx1&Ad|R)7>(8%xZ=SM= zPPht8PTZAx2a^Ns3%;z?(0k%qm5@!_N9^BoP!?3#S6{(ObesL0tKLokRz`?+I(8Eh z4)c0%Jwi^-(1G25foMdP2_tQTgYW%%+hx-oLOdKfPt%1|*n0=}ZB7m|GB*0k2hG)T z*uThe)WVV^mn+BU8%SYQ#=E=sf94*(r(*?9h0!IjMT`d0St=abM(=OWVTk@j6U;d-tO<(6D; zSHN{N{*y9qypf5$?ZHoR1twLB2Vz}3<@1lsaN^&i^cLg)AR{z-&WP<*stnL49s({|=sWUz^o4KfTyJgi+Iox91$u z_JNI@d}5g`W{=MoB5|!c>X%d+wbzW+BgX`ziVsN=M}}^OakpSr!f`o+tmqW%r3FXG zPq$6ZUvMG(q4W8hp~H_=aom9|?;Vnl(!yF*iZ}`6N_dBd!F8V$Y%lx>`R%*AGUD4j zVjYi=XO1vS%dr^B$wYL2x_fLS-u(gNtY&C3<}ef!5X##Pw`d@gYts#$BzK*&*Np*wP~Mj*_g*WryC)xE2q&?2FLnr(G7cHcm3H}V^zcgPKX+X(kA^&$ zY(GYPGR90N2 zMrR}84EtF^_9wKk*#=r`NhYfvBG1N&+`SQMJtn87Mcp8Kh=l{05WTDp&7>7g!vDd; zR4A;}CL?2?N&U7Dj&qysui?F}b?-aRb3NTmx9HjKvl*eI=Fvc-iY_MWNcY0PtPfSD zoNWy!82ey8xw(=39$=N}bo!~tutfzot4w}7q$z}Eh!iq3uw!a}<%tQZ7J(c)dkyea zm*{hzea-M0LR^TmlOR~SeqnuTrez7)s0f(3im~h^9#;{Lw#!CHN&2_m>INIp1y38H_=!sXRGj!Z~qu+7ez70|@qIk!~B>}bES5J#>Sp$IT3J?d0vP47+j#Aay|EF+Rab6z&*2Xr zkEB0$DGVNa+bYuw%|CAk;;`-q*k#s>JobwO`)6hN&6O-`{aQI`;7=+`n8(W(w(Wes z^9r`kbF6#j)8mM3Xn5X5_Zdlb!I6wD>*obr;=mMk(Fm~3G(slLcR!42zpc_I@Jt)~ zGW088$vNN8>~mTMD-v#+M~bbuXTVg~h#Ywtwxl*_vKre}TY4ZnbJV|vcX?@A1;#_Y z0aeI?8mkg`e!@ij=}qICYU&APA>4|YCu33CHpWf%uWTQYvxJ@a-4Wdu@^9(k6NEjU^<+Pyt~31Z<*CO&J~&4#qI*gNo+y57KQc0?aPu=_xPA@kf+ z4ekuYhywqRjdm6K9G>4?@Y(;bWNe29Sq@>_D0!kL940_~$m++BLUDE9IX3wZf+jUg z;lZt6xwaW+h)o4vNttVGxg9GH5EJ~Q$YpiyQsU1pbBG;zHHthEl7C?0;MXu4+LR6l zO%TdUEm+1OSQU#RIYb$W1IEVxbuJ2ylG|dT|jCp5E9G0d@N_kJ(-txgt&7kGP zA48FkT<>=%JKZg$h)rlK+po;l0nQ!?ZDJP$j>PO}%@&5M+rkecj*{~k)guHC{@B{v zQCkrezmVfQQP`gE-`Bb^gQNDg(iJ4O7loP&PBV_6^G=1{kB~xG_(tHn_HasZGkEU+ z%fro$J$Aa60Le&xilckV!^Z{upl&Xw7u*B0oBt#(nWoRZPP;NXeD1A{f|(_7wRw)Q+2Y3tBm zM8rO4NFz%;(5)G!!~URwh^@olp?MTx_GY0O2ihAnX%T4sKFm0gr9^X?sEpbiL)w)N zNB(Fxj|qVRP{Vl583(dAJ!%d1R^gr4@PKw<6!4R906)pZ=S`2+HdiG)MN_7lN?&HT4g?==0A9ZgLo|-2AKdGQcfq|U*vv&hZM%<%% zv9rlX$d870{4ZtnSpha%cb8CZDX2M0adKxg9#XQ9)x8{S{rtU~wR@&?3~R+73VJcT zt}-;KCbV?}Q$*CkS1`PcB3^Y6 zZ~(1c$uH#tjX!o8odJ~_aPcB3lKZW=;FRkC|ml+I820B@C(YEjm@(D zQ=wys(D%{m@7}IW^v}pz4N5~F5L4wCzFPXwdZF$oWJieQRjoNQf=%+d=}o7)%1vwH z$dZD+^JrgSI=n1iLAkDTYs=#&p-24PN7=e(L+D1;|MlQo7cOGk<-dTEYcji%HK~+! zNVfs=vC+dL*?+wK2uZ!BhY*2R+>vbvPR=?5ang|zjFIn1Y$`h=1{}P0^ZQdKk~>AN zYiwy?INO@8!C-fcL!rGTCPqljpDRkNx!d=Ivl}6V@&b{pw5K#pJ=Q~JXK^c6Kw=)} zmhv~-ts=$Bm!|y5rEthyV!%~+TTRD_P&nnV62hUu?ZevV;Cn(g)GRRam(rfh8OR>- z;S{<((ifFBAGl&5q* z6^`hfQv6>?qhjIn|G2f+mO7JVEja|}o{$Gl)Yy^s1hP^)ijSg>bc|>BnGuhZaBZI{ zBX${G5NZb3AZMYCke!bt!a*mb9N)EB?YYszbF0k$Aay_yZA6WHtVe|{_YaqV?Vf<- zDVX8?&%G|N=)dfaprI+(rAsE7KYfb5KJq#CmMx=w|ER-fdL-KCrYX&c{Obl5Hv|aC z1`okExmqj}rI?M}?8!3=NJy#Q{uQ)9`tIHVJwrtBTAyLJa#od9`CrfYoc6$Iw(0GI zp{|Sx2knS#7}I|bEExUK_6aJ}=+l&PDXVTkM;rYG$xm&w_#9Xoy-LVFkttUg^B?+y zcU2vjnNcui2gVaM59^vVT4c_^oG(sI!b}-Vf8bB1Pl5NQFk}szqS!#1@BmDpqXT>4 z*~y!zkA+m^e=Fgvwp`b;(!f(}0o=6(0mL1gvy-F5e2cMZU`2g@v?3TV_;Lx}6TSN8 zMy&531xcH$agrifB>dfyzyVh^y2;&V{Pz!xq)Rx;GFwTlYaM$V_PHLIf&ce%Z*WFC zTFA-B6HDB)6?YZ>p&1It=a*5Mt{&^rVq2o;2{41efUSwp+10{2J+j|JIB{xJOLEYa z>#{EmJj)RRW(5-u8o~=t6_kyK_H^j`D0CG3@%eL?FcS*4?~p&e?OTx!1QGf<0Ktum zFG1))FA&USq{@BM|7qI#AGR!)BNN@jIo;`*4LoG_ZT81_V12wx3LMaR@#&9x2&F0# z-zQ7!st)>&-2Q_8vcysgz>r=w$0_odggK@i9y+%zD;mY zb{dv)dAO(=(Bi95FzP-rGw5 zX*ec^!>6_SvDD%}Ogf#G2vN}*0cv+f_!?ndB@U)?4ImJ z3?Le?vl5QyZ75;is|i^qQ94-Ux~+URUDlTxewXY zd{ua#_;up?`;DG(I{_8Y^%K*WDwe;njJ%Qw$_&bHJVY$WPseGNN! z2EUkS6)yH)pfhcjT-RS@qUNiBWr~!H<-p3kH+isayo2Ojqb)A;?8)4t_JY^P^7BpM z4|{f~XfA}k@8o+l){(knEH=$11G_8!<%AyxL z{`xON4MkNEM%Ub?B^<5Z11Xk&_w#2%pW54&RvYm6AAj_Ctikg|FZ$BZ32Fhae2!c}<%+ zg1C+G@O>Ygx`r5V-mV3D^#6sw@D?7aM}esTz?@e@L}AlxvDfFwWBQz#f;IR46a26f zIVXx&skJRePN;sv=4)I5#`8b5VC^BZm9+J1Djg+apJ{wE(*I*>2Jo?gW_mFK%g@}{ z_`vxy1Y_e63H zuD`eBpQ;fMT*!5E<3k%?b+)~=$D9_MzSo;v2@pYxrota(`0Dj+4)2uKXv@HRqnA7T z6&RFnZfakMUBrUf)8{j=%|BVCI@1f`r;ivg#b4#ej>-hvZ1$65*F2Hy`iIRiu!W#y z_YS~h?-BB6_3hAr)BI2K$Ou9h)<#Vi+2+B-Mh|4?cgtYrQ8(#r3+wL6y8(X$KVaGq z|E1~kqJt-1vJoc|Vx#%fa!7qw+A*s#NRzCBUj0|L2jjc=G2a)yW~6i0=!2}isriXE zwnoBytzw_%J=Ome;z_CNC`~B~Z*{$53xjR}!ss(O0B1Xnkg<)GgTAN!8#I0qvp)r9 z&p7Qhpg0?w+Ph1II89t@xD1-MQ(@znRrZ$wGvM3CQBG&`EX1AAH1SfzZat;mWsk5w znfDZu$JnknGl3SVE$`;$gVSU>zma?LhY}oQNfjp~et%HEKk~F(*EoPSs@bD zqmOf7^voeX`&yazVBTJT>`*uI9kg_-aLhLNC5*61jkRz6JkRBce{7_IHJ>9M{=Tp= z?N`$+c66u(NK3zHyqMcu_;BLC3R^(W*Hh`P&Gn5P+dIx@oX3LXGT=u0kpDP5;esxf z8N)u&tJ8D&@8%N@O*|E0jw{zYSEnfQms>iU5_ial3Y{42oDSZdXuz62`#(d3iqz-Y zo`4g}RYG>`mRcK!Lx>;~J+C^!I4`&8@qp+D|9ZPdkr;2WBjswk3xpf0(NMmlW7f`#E0^S7h^lj^aF~h z`hAOriImDh&@%rMItVuy*6kUJ||1wB(a$E zuk!kN7eHAc9zAsG$8M8c5pfK{j!WDdE+(~Es_mZ*4Et6#+fW=?`N5A-0eO{NLdO*S zUKp+_iIaZSxqn6j?BI*&h>boPGG-EBGt#+Q&*1H3wGGLfh7su+|9x!ym&LHdO>&fm zgqtrZcM?H|Xzf6+IBVpXIxSii+wG-n-qO_mvAfb9i=bYY-v*Q{Rv;~P$jMAO6Htm` zhzZ)oJp{#$zt}1GRV6uES-sczo6jS_xSfE`V^fx-FamE1!rXOhb;gX?zg*q$YuNAF zvEuC2R^po*SWoNIoK}5U=9Nlxq`I z^b|w1jRdO{Z&31R2_Dl~q2&Dm!|$^ek;{ld^XAlEiNP;gN3goK4XN3f(ic8V-oC3%QNdao%03pv50nS%rQs1yqK8S}Bsi+t1wq#+2Kdj78NKjB=&Sh4(-n;e zqW(bGhR*;r?vSDrpLF*)BFhCRS7&4iXn-pcpZKcQGbR7R`pBLA(AK^6@Do_9WLvAt z-SI%*0#?^*2!=VrU-J=!DrP11oGkn2-n}zZHsbqX&XCyAl6Z1S3xmt_sw)+cmV5$F z!Sv+&g>wL|?3a3!)?_9p$qw$hzY^|$Y#qz-u#YV855ap3#$3SW%d({5HUQa_MYlmN zKpYNqq2Mui3IRcu>gG2}!zlxL{?Ljk=7E>-BWwSwg#sX?&s zYh}3mkMr!ppbWx-$sdQfLnCgVo==A10J&O0t=DHCNC8lHE%vp^_0-VxyZ9OV!3}%< zg&hv?qL&fP>>jJo|K-6b7B@5+A0I*!S4fQ|RAkI6A7DIa6I?l;WN*ueHvAj}au|B- zS;rc16aZT|e>xcJVbE<+N(jREi#-2va@Jmzby_DK{AL{-5BpaGLN1i-V(pzSD#ryp z!s@oy-)$?Q{B<910@M_-w>wnDnFFyQ(5rc&K(-v$out5Yus24yW{4J76skJ+jrU-^ zfd5{y&3bgIb5GxRAbm5Vxo{fj+mj_TU_m75`ulZzph>p!q1Vb-<$TQg5-q_C+rQ%z zAFgVLmXpCltXnyJja?8D|I>f`=MPBSZ}yv@anX7i2$s>|eH1P|<8US;iFu*z{vT~U zj#cv6KK@xfqLmJOl#ut@dHAPuS$!>4!)X>HADjN~CCC3O;M@nfz@}FebSpX)xOA}R z5nmV_a488Dedo&Y*f0RHWeSuEsd}O`G&`ORzafFrG09D+s_{Z}>|G5v~%HAbxTR+x-ktLuX8(@g; zTXXgBK(d|;z?jIpY#UgnvCnx1NX=D<0m^Z`ASOX6g$nPFC{xTlZ=-oXuH#keSn_{e zr3*g#TkE3;+*0QJPZx`S>j3khg64tx76?}%1IX?576W8_kINp1{O`#FLK+?If>UKVN=JaP)HD0r)Yf24af0)~o`t2!0Jv1GJp;-<3IUg;0B*Z~mmXSOASH;|HM3q& zQk`}Q3_xC=aS;sQ&*TgU!x*G5#NS!1owVh&3b0fUA`}k<8^EVh zVK%{)g+Byo3qc~`JM+}ekN{loTjDF7k$1U}T9%7X5LFs>8g0Pqv!d#{Ew_#K3>f|(5yq6;nO zt%fpO9XY{~ACPH)$Vk%M2SPnNF!lR!$~N10R}Wqc0eWe3I_X=c0m=!ir3$Df<(0|H z@OFxM%A;m$1}lG6g&*>m=S0um6rLBAgIbk^pusfk{v42$&^iE0qX1E=p!`G70YiYV zRfF8FYDaIUmj@(KQZS1c)Yo)4c(3o5oc49NfF}hi)m(iPQ^_uMDRjM_BVcR~VvU-C zAWI1d4|G0<#rdk^<&rrb~Wyd8x_Tx>ziNKUj1FT zccBwS06lAVZ@vf=T?Ab7HczLmFAENdRG!PM$~X4q5E1!LkM*YqP(0rAO};8VOl*t{ zVjrUs#1j%gI$qd`IpLhcUY(@}s#!lPXSDbHV3i2}VP~)@t{{6F^sVy+I>Jg^f%=|$ zzu^q+0e%?dTm(<12R81*V!llrg{y$`_Hsp=x0&W~p{fUbwkpp}>j7MO1!PUU>0HXNRLUN)7x#OoIHr9Lo(2Q@wop!N3j+}m zZ~_2_o;RUxA(qk}cHi#C9&z#BD^~X(MYE#POx=5+TyLjq2#*`lY5|<0$y&_}=wJ`e z=i-(rzX>rf0r2PkqaZj9hC4V1TR6UoPeOlu8(jEz8o;m_xKE}k&h-ecQetZ;ZT*)d z|0O1>GgGRP%!{*}?OlS%`kQetPS0GLturXkaO~CwMnvKjo2?qFi&;#v&`>ukb zR>qU9)z2#YfTkc+#agRp5*H5S5Vxw4iyxN)C&4)f22-Pu-<<*?dYQnXxRQ>3T|YP{KriTK<{Tfp#tC3k+SI^=mfOC1X49Xd!bd0 z6bRy^c%`fTbBp8Ojkb`HvpF^EuEpnAb526yi9)a&HPmS$Fy-M6 zv*Ug>4F6o$w~r@8(4nitC{NT8(0{Z|Ac636I9!OGm~^*-alaTg=lf|IGKEmYHZ)n3@y+oo+)U+j2_ob`u8Es)GvY+q!2xmpNdD){w=v9#L zkTx5 z%_8DF>38knkt|%B62pUa3Sn&kQMi|{ymvSFX8&g!vH!R4MG@wD41_Q-N{bZaCFULLQ-vC0Jo8T}+em`I_!_Qzi zOwNzqf@B2k0FgRNJWXO=13ZGYJJNJ+e+C&8MMD^f9hsl#K*ywWLEOnIE8||ekL|Fb z^?K`w!gtbrt`7Jo#%DR9)1tIvO&8Ldr3@2*C|JfEE`S$$zbkRHx!S6WZC`HwyOaA> zEPR&%{p?FyfL9$G4aS(AiPU0ZhB|%XwWJ3FTtKy$A?4g_ApA0qs4V1`_s;|W`^hon zJZChv4h{!tPZ1s~IIm;UnQn?iUA- z0EIwL|6tfjaHbSMR}Yikzi-*^?EIdALA${Q7F=zn&bGiHyrvj%zdjhV69RY8Y-^Z$;Sor6DtbNofiyfUE0oX7AiTFjW ze2jnU=%RIm+QFn8AfnjE5P$K@DpYy>WLC27<(9zOFz6?O@684jC7I#)Fg|CW@hb>3 zAcXk7%<}lK|H#EiY;8gTkuB?(nu?`TTe1H@= zuOhyAe1H4x;a#IsXRjBj2{m;N=ES9@Gm0b@Fj#5xvpx?ud{9Yu7d}<+ooDy{LThX zlRr`gcn9e`oj3A;DMtReaFBh!JAi(=mt1+Ml~w&X-K(#Qe`z)YEW^^eB1Hw zSy?MPI_)*(3e*C+|2J5uGqvLXh^C@A*sICWiz z93Q~aEv|oMvX(ZC(zx!4!1H|kPU0X1N5JG6x}ZKz3=fF7(SHNugh6~*R zDgmBr12dSOy$w!9A%@>RPQQl%1?v**P zI|^=gNaWVR**r(AnForUl=pfZg6M6R)L|Pj`3x&;47Oqei12DY;p#=iPi;{0fh7Uh z=`>Kt8`GVCy&(0M|Ju?30Y^xnz&@+xFgh3jHW~MOB~{3KM4MIE^al1d@4Ye5chQCR z^DmBiEB^6uvPU}DG35F93UAhKADCprGw_#NENI-+-YJ69gg}{2Y21?6tyF*e*z?fy zpU?UHT`P4-v+U=2NpNsk0eQpvbG(8S;{HH+`aSnwk8A9+h*0e20>Y5wLb)#&(B2Ty zDe5EMHA;aYW`P1V>#3N-D+ljEH}=L&9UKD3J5@A z5AuUPgHiA-0WCOB_5B>*oim&UhAr9oOV>{wtU-Xc8ynGFmGQ(IY+nM{K6dX;>1$*H zCq}PZqz;qmWbS)5bx$(GXqe6P@Zf8=;Sxa31hvAC>%Y*hxF9h<6*ao%lo0w$UH19m zGP;oTrq&(;kp%%%@3n-kRRMO$6bkCtA0&;+?O%rk8{Okf=}00`I$04{VkaYi3opnH@iJ zE1yuGGqr;OB6%5h1aH})r7s+_DbmKEzJb>6x-HU3ahLfP-A{<``!zW0wM{b7ISdp^ zm$FudfJYC~=W3t|r^m-S;Z@hmF3&z@xb6PqLfU`ohra|00!oO4I2o_~-8nh{$qaTP z*-kr};P|-|tui(1@_@U7zu#g1yJA$@qX#ZJY{#Aj^cjebtS_g3c{rz1U!0&Ld|=9* z_8@%%b8H|HXh`~OX!thKcwOjD0dVjo0|uRJN)W$huU+@|Z~s{#=|XV!lRY^5moy&Z zt9BHsWsR9)5+M$ud2wrRr(q2+=s?G`Hz=45$zhu-T)C3Qsl#fTB^a0n0v~`4K%{`p zH4hQ)aSWZ!B4A8G%%@&#j0KvksU1kq0AvosI|1IMx%TryuEU>ZA=p-AZcZ?pWNX`o@{0nQKbriVhuXbaVVYN*pHCbDLAQy!5k z+P%F$0U6rYh_k@s5<9v;9|!2*yu;}hMrNo(*^wrLLAMqffeFH|gC2`qT@t!^MII8T z3V&n5aj56xy26!%!KR`>(z3eAMbk9(sP`u`Bqonwrn8};*+Q^lRqXHAApaHyz_M~~ zP!U?tZ1MWW;OPSIudn2UMBE>-Ik|D*NxD4)0t9G6g+=1M8_xdWEeF1?%+)7v&CWjP zMCFeGQsJu>H2oQD+${eHYIc-FjIYZt*&lmpJi@blY0&$c{O+biE>i3Cc zxog8bsZ~iY4M@x!3_1@C9Y|{I)g#X5MnVFB;3p(LY?XU!UFxyEiVd*G)Jp}X)@ z?N2C;$JtwQe`bJ^fRjCwksR}H^iNtp*Jz4)ee#!mY>B%%Vlk-|iCJ&GbeQB)RwjF2 zytc8X-EICguSEEb46WYaqp|4P?cHDA|oNCfnh6$u`wG1g{r{r3X4}VX5yv(ScM)NoduS2V)YhMs-{ASJ}%7(ScIBT=pF2ADQb~BJpvz zdJf#;y(J^(vAGE1RCE>Gq~>o$99L%oBiS?eQ%Ir1>TqNoDv=6oUY9VL4i>zN6mi8! zlyCVTx$Q988{7m`27Qqb2TA=K?umJP zpe}<&L`}8aKujc$ADWaNCHuVz`~GAYjdZY4wKJB+hh0C8Kyb2h)3n=M8DVS}uK0iK z&>>hFYu#Oh91ISBV3sc-pg!<2hs+I^=>;7|GCc(I#Gj}SEUp5&&xs2b^FWJm@&tig zardd9)!=&=={+uj*a}PUx{5|bJc8H`xD+q3YC75>st|m_g&7Q`iX6TJh6qgX+Fczk z7>1>we;CqI{BrhgtY zod;`HB}d2_svYwndIfa#VpL~?o@oeD4-G~khDQ04_P|MwmHgC~x?2;Ntp^-rz{^=4 zr6MJhx`=oLiNr=-LWoiRt2T-BeY@qO)EG(@p@p9L@|rBTCTJjPmUtfAL4z(2XBN_q zL?zmE+GUVoxF9Te;BiD3{Yi%W1#q4m?GbrlLnpm5;@%@uAq{*Cef}X>9WGhqQM8t1 zn-QNeHQeni5*d3Z(Z{cgK6X+kr&qB1UG*$x(m4d<#Z9}wqVj>1{$&dKVWj&xFccBf zQ}#@bSYZ>)CuC3lDBKXK7Y^+<LB+QT)4^_&7<$)77!?lO0Xx27`C($t0G8UM^7f5@ zdEqX06$hr$Ss^)h&R5n-I!)hy>>{p{G?)`d(-C)R?O2{bV)<^Fi@!~8|DO=#Fe5xU z?=$v=Y(T<&+{n!p63uFrw=1?I7creoC&BX?l1oa4D}4P^;C@foHn+y|vLad}=ml@Z zbFy?1I!vXb!V)W;!UHk}lmRfR<>^N6!XYD^qZkJPWTgpKHvH33xs`n2t4vuqf|Ilj z(;ru{`;vG^-`1Ft*k2aEeyhn8V6L9Y%IaH1cEE4xr(Ty4&*lIA*HD zg#Ad_MkO*|R9qM+RE3>NmczY^HvBHiY&B-A@!UO99B+>K(snuqi80i z43D;OxFFnX-7FS|QFO(EM^U!2qVWPX1c?-VkC7k{Sr^?zdd_3DX9+RL3uC&^%*4JL zk1|Z9FIFl-+H017=~H*qmoT#6_Yy)b7-nO*h~W_AmFt)5U*Q!*Bzq&> zFe4m0?Wk2ub%h!GkzVriVNY=o9w#1Z;oF?He@ONCxG~L_q(c%IkabJTFRt->cJklTZzNc49h9SWe+Crh@6jO{?=)z01N+H!KSDzl@)0c|sAZJ$+FX zGevkSQs@aKuxyXH%iJpSSURVH?8UDc7|K%0(3Z3#t_Qeh!3KriyCwRA{8(7pqXPE<3yzCj1nS z7?_RZJ?ut=3o)%s4q*}DWx*03GJ0jCf%JRW<a#7gZPRqI!;s+!na`7oT)Ay_0? z>rr$O!y9?4nj^RZkQeUwlBUkA@3~d68%SKFS0q z9`ik?L@#Py0wt02LW7%kLJUYa4zYxf@gKOgXNpLmce%>Q#hm zAs&_^BY;5XZLr_ z_q02Tu^N7YLnRZ1{KtH}HM(H{yrBJ*JCy8U=5n7@G0!JFC=9*j#9Q>UHWZMCS>qiV zacwl$>95%3W->l)#&l5@^Z_~~L1)zK`fI(ZqbPw}cfPC51G~_r_|+Lh8%Gc$K%_fj z%H=LX27|eaID336{&t9kc}oPgfpKi99D;cp+thJ~!_MOtf*2JWxj|=H!Wt3KSY;}8 zwIvHvwY$fh^?|IuVlN%z2!IORHZ-o!@)v^yiaF{wNfSENCbU2VbJ?Jl<3_j;2>f=*^-vC=lay}*odGQC5lsdM7^v7_;b;ao5k1>c8-q62Np zn3@kUZZV4eq+Cd4Y)dwO4Uh=`R|e~{dUhWfGy3C&HWv^WPb7u3mTQ5_Sow=_O3r7# zO<;(*Eg=!9xWo&(*j@&h?(ii#WTV`<#NKOO^oZ7L9mgA+C;Zr|A|~EO>0a^1FqKh? zLt078`P7f_4z|$X#%lxkMAcVi$OX1=8GHI=CR5dEOe4W{l3LEX+;g}B3_xeEwbNN% z%{d$qhQ!>8Uy?!Dvxgb$^P9I?n*p{oQR-}}{p1}r2Qkv?ZZh-Z{VC}MAdTr+n_;5pm#Daz=O0 zF~wZO5HP?6UPbvt?*yL}6443Vf1>vD4OVpCOr;Ye#t~pX6sg5SrzJ_>vq5m*zyiP@ ztrT6>8rrI~p`|1$Q7?DAI)B~;@L*G`aspHJ;RDt{{LJUrozXjR6;R0;;$KL<9gX@{ zcn;Go2dHE@l1HEJd0Y|o7c*Y74YeTeSbi$QXK;;Vz_Xgokh>Nj#-X_&F z4>{H~=5_w3MLZ}J>*6QEyyO8-mEoBxA+XUuAm6rtu24O);C9n9n8S&{fIrG38s7Ci zuX$9E97&~fM+U4(9?!;81(s(1f{c`!4%4tSA6oh8-h@HL5&;ay&S4?iM+#vJ49kBUNi_p-(XtTYC7++e|2#9fq#RTFoj zo!d~%Kej}$9mkD-hUBTaCIa(Z4?e{Vh3qejPI{+5tm3M&fEnen_J=(|f^5$S$B1Uh zD6QwnzwP>0HTi!$0XhQy=xs7csHY(aSnqw$4hQQYWFBp%lDE#F z=yB3Q9$=h*62HztUewZEes~Wl0V0jXBYmmU)K7zGIODHjo=sSg8NOGbwvkZb1%Pz; zgeqYWjUp(X2{4wfJxr2O!qCI)C?R|bq|=6FlU3`LQml00-fh-|FO)I$rwGFwH#me!iB|I_3 zgyn@{rAnNohsZ&lpy_*d_!HP?tY}T)2a*m*Vbx?(jODU|?Q@n<)==7Fn|hr9O%J9c z2YW0JRpNDwz-eJ)Y*D9<*PeSK&`$UiE(`pGVN;T29G!5iWv=QI3{wGAbyhIM+My0?R)y=Ar}AzX^8$V~}?E4ro?hT9morIaGNE zR~6)CS@>6aJQ;)ydt$JjoW^t}M6huB?Zs-IqV}sWnBMg@leln6R`Qvq@Ru4GOJ$2q z>C|Ic{qsOF6rT%Z0NTaEaB0WWnU$^=;00S+mGhV;gzVNp_6exrYwdZ%nKdfflYQz|WS>cQqA45rzP5Bc07BRq@ld&Hc##>xh$ zT8`Xl@jqMU`;M93cLwFB*?|i@IDjG5KWLw4VF}jcIYYHvaAWdDIIm^4(Jf;szxDIX ztk1tx!5&|(PmeLBf7RyMUZ{N2EF^@{Y;rO%B!rz!Cohm)ucVH>WcK{P>i48v(_Wbf zKFizr(xH~ZbHiQprj!S63g}oeVx2{BKEGx#5=$K(i(0vMxU=xQBV5hUSidNMj`MX+ zLm@E|kp}Z@d_hMr-W2kLH`S=q$2i-q?o#+x9|y^KjskC^uX<})Fzk}q9U`;tmvI&a z?v#_at@=_r^7C`ACj4Dq_mvT}{tZvglO`ZIG-PCb5{#$$+UvKr?#{U99<`+qsk1>O7)S*__5WV1QVg2OK4_Eqs_hS*yFMq~xXLyteqd;=`R0 z?ot10hMswR`H~%Z%vR~Cb*qoK;olpG0z)HjTCs$h@-UB$8IMOHRn^&bZdj(qBo|y@ z`92{dF5h&)X}jW?*7nuiA=_!o(Mk#bz-oWdg_cf__QqS*6vs!w5q20ZTsbx!??`_g z99xB02`Ih9j)-P3<+CT3a#-p2(#T3jSVJglAcOCCLm!7Y2X~S}_VznZ36!1Ib-ml) zOB*ttdG5H1Pv&omQ>)PUOa4d>(Nu5`s?DcIoy#i7$SFQ%N#3@y>d23dvfgmEZ4dvN zlvs7BJKN~<=|$~|B;(#M*nUs5B^$aHE3a+GFA)k0b}=5K%X*0tTg&0Ez#LE14-zvcGq?ns5Ej{^JmSSWCmw@{L_JmeHg)1`T1)s?$+OdE5Y> zS2YuT`E!QYIJCB-Htl95&FyA=v&O#Z`3jONAJI@cFnk;xU0^|%-cd&~@odsMkNW;@ zN&TGF$iiiBBZ}ikC%&<^3V}aU;>X%v+^wE?#Te&BYVUW>r5nYplUxQ*`_e>7-M z<31;&tn14xMHsmAsd9B^*x1z-sV=2m&=8nvQM`GzAr`A80(p;MbSiR=r-7U&$S#Qd z{!i6kp_CH%&Y&2&8E>JD47GNM?(5OSjBbECG`DN;hL55cg$+MyxF_a-#UoE(FJBHd zfxGQCg~~ge^fWpw=kTJwL8ghTCZQ{^M&ih^0N;#aWk10Mp5E;k*T}I7Dh8cneSa36 zC@)y?@?6x(YhyJR4C)^F4+W_;gbMWt$^Y?3AWF_O<}D`Fo!RZh@iJbx=bS;5Sen*& zDv2X#?#i*yHwOLz+dHmdy3QlB*}E4X77g+X?IoH@;%L^OQ)!(haCny@hk*YX1gF4V zt)yp06jv^X9tDgnpvO+vkfBFBR=k;voqUV6^PE?&ov)<*;QlBw5LpKa9i0M*~WeMb4@?spBap# z`Rej+M)=lja!7V9;Y9L!EH@ogtJFAJ6G3f{)}3D6z7;(1J;g|(Rb@PrMNA(JE4+V4Is)q@`_?J4=2HT!{k<2RIi) zKg*) zxpp32D3{PIa(mqGw%%*I`d*_hp?mO5pTpo=$D6U$kiaytZGGah)%r{V2cL`BTz4k~ ze3z>57J6Yr+*{FrxPuDCmXVbi&GS$UC$+dEb^YRt(2^;qA;yS=S`)<>)?0dZ3A*k} z(d{Yr)HRz(uirBSBs#<1KyTYkUdp;HLGEgq%ECXa?{z3rgf>)syfJ`QBZ^Jyr1`Yk zLk-&HHsQ?3%SVRlSmvGvDD+v*1zWWdK`TScW=7-=ip5P2l`S=^xC8j_#5bR`$DQ=3M$g(XD;n1RATPc(Y;m}icCf(hu zr=4^W4fF&zSCsq}1D_6@MYLYg2PT8Yh z$KgIV>)$ObR6Bc)~i2qVh@UQZ0Geuqg`oxi?&7l zmw%f{B@GbGZh&w`nLyUXyB!|8YF5QFa$1&to!9mPM=3{u)`@3Muc|g_5+0rhtsc&? z_`&pmT7$XfW1DUM#Ple~AxP_E<6QH(7jZlR`&hxedyQ~@>* zMSv#Vot9^MWnhcgwfsAEl&FHf*xq9l;bXJI!Gd36uVLopTE$E=15>f2K)>$YU=2x;ClFA^=-SZX| z+#$3&eS9%k+6}o^^vstd85@qcdInldfD7mNVqMEzz`p=??c)h{}XfifX)TVe+5$Vz%^`3LT;W7rIxR`oh*^XgX>h?_bk zFRF2N8trN&GeHc)y)R|BeQYEJ-tOX5s`11MAokw^6_8g!sbRIMJgD1@#RLqf10X z&vsfwsG=@jAo;^SPmz4ziR3U^@i8XMy8?xxpWYgNb=X&NFjRV^2KyG${*?6fi{&D% zIVI17L%J58S?oas!?{Rx<#&^eW-XHFMD~374no|3)ebD92nd5nIUdGuUM%9aX&?B; zM2&aNHi!n0=uTB%ohxN`oxO`X<elnS3Q6J^sb-mNQNMk40{k%FlQ;VQ>>$Y2%uSoo5Ks0SC%JUK_4;F$xIvXw&UcO4 zwu-J(aozlCIPlo-g-}aH6b7s51d z58S3LN5SgTiN1dwa_ke!gY(ncwex3^9z2t|RrdNvDqJjF( zNhCrCLce!B{~hI|)rbO9I{y9zltrI2j`Pj}PMTPE@;xC7UCjWdoJOwqIJ6F`G_>y% z_cYWB*VOh+*Q9*EX#^h)8ECd$v|x&Cr_2&G`N7|_R@yU{0t1i1w-jb6jA;BN#_ubS z{KsC8C_eK%ZLK69X(Rm03mt;JqzL1kb*yV?a_El*Wu$S;?kU#I({_cY+}>SiFCQ7_ zU8OtjFDq^HjBNC4UHf|idM1_*w`TFY53@yw{|LTJ@Wk-3duPYS^7-v;)*?r@STa%_ zLn_9{VNrM4XW3;NQ?5whRNQVp-RB5%2BCA|`rdFC^UQ5&$R1%YVeHH> zIcCw3QMQsZyQ&xHa`ewemtjHWBmajz1NUdjhS0X_D+QgxC$h4=ijC&k)>Z;}Swb6# zhWye>1;=*%cR%aYaZ{c;P8?>d&3qX+Di!wF3zE^o@kyon%*zlLVKChH`O0O3!nQ(p z4afMjI8_knaN(C@b8|22yM8{eRb=t_*421}?*&u2=`$ZK9oL7XZ`HoMdYa>DB+oO( z@g(Ea(a=6-?we2F-{4yBju~Ug;aRL&ziT`@6|52vI$if>_XZ)-O>9|DaPtd`Xs@`? z@9YhQiiEM8+96!Z^qk|^9^8`pWIr)6o@Mq&fsZ~ykfvLn`_}%W`o+ln+0iPNI{~Zb zH)i_#S^3>M28bFO&4Mm-Bo@R?6nVX>x+I*Er~sJ*nvB3GvhY=UU!rsl<5Lw~?oMY( z6bhNyco~25qC+Lw4Ha^*2Lbmh{o}6IgUVU)hU{1VUblwyvC3+{z+GCG+?ll@38Ngg z{M$-QcFtIAR7$VKwLk0%T)E;Y*a*knckNhO#RIXWr(bKXZD*dQmKHxS1KZ$8p@VGMgNe-^^#2A#BGuzGoG!VyWa1d zPcM`)mZfOq)_S{^Y)kNiljNj^yy+{HC%bfeZ9?NPwkB~g8l~@An6aWqA@7u~vka0X zV%#*8$w#NH9UX>ek6dp*nQV$|z}C>^m~-2Sp0L%eiFQ%<^1?Ew8b&{)WpET(e(okP zMOhTT*<@cYpm{Aixm1+pW;z5I1U_;#_frwPGWEwvt}7>&Pa2KHq+_p z6+>D`TmA{7sE2S9x$tud4Da(-rM%Vv>KL-fw<u{9rh81sg)_@4UO%E*!g*FAkeOV9o+0y*?oDHhNJk@8$IJsa}^}S zrj+a}5QFMG#Um!>`zPYa;#^(}!C<01Cy&j_C~N8Z)Yo}@RJuwFg#>z*SdC)$)z8C5 z`~~hM0P)eHb=~20&Yf$>VE6B{Sz;Sqpd1R&Zz;RYW^TAy8Dxs!7jDRD5MpX`=lcV7 zM~uM;#+w7%+XJ6>>s<5R6`gq<@$HMlAFkewK}lbonc=-;{z{R}$cOA}1p^kz2L3|@ z)2(eG#d#`a6Sd|n%)NY?%n%V526d_rF}`^~M@+1F_{r%zT5&BPf6~C(zO-3? zSJCO!CcuzwE8jlU(ZW&`84*!r?M>C-q;*+dSR4!$_tCfMiI*nrPCv3b%VraD%)y;@ z;*Y)Ohub~Q0kD8zdpHR4frGES&sw%YX!g$(%YoqX+2cBqru~JFEe6bl`#za=rsP@L zUyVD?1^<*N`yTuyatgctCSDzzUqbnf+jgM$hU`v4@Y0;~Wu(u1PHA?VCm8}XdvYsZ zw}^+FyvAtdA`w|&YNe1e*{;J;wplbWr_by{J~FOj#nw`~=%;J9BA?+Xujo|HJ1^M1 zc@gK2>;_zjN3feCdG!(%ci6(&bB_I*2$)j5RIFq}2#LRqp`c`xs@Jbc4rikVQdj8Zlm>i^ zeJ!btK{U6tFNr3r%ttF<00RIr-3`Bc{BJ=HZ>ZpW{fHsSNf?;al~_)3MKRjN2k&k) z8+Y^&Cu!yIkm`0<<7X{(gqkDIq~ zLS_M4FDIMmK-WdKDE^xK4Ov+q%T(bqXM!Ly6fwLHl?*Y2v!oFfJd6p-*`=S}P0QrT z>zM^#xyBrzc1qsNT@}LB5lT6gnc|*vE)RTYdI1Mg;j#n82$ZozuRo4DV#5gbf9%#Gq~!6#>y zxmCuz`Q;;cg7arTZMr(??sez?{7d6kB5bGqnz_tUK}1Zdb& zFa6HfTcqF}>NGQMv$mAr32YA!4mbAI&7C3m|kdLsv-9or&G~I9Qx6B={k2~;sVJNlG+6|#4ziZW7zRIsEOMpY`@?6)Z+Ok~i{KpJ;9Ow8JWYOry zv+0Ma@{V?glt2iAi!GxR&bXbN3ukuxYbhRrSNfmB?Ktiw(MZLehY$L+epiVg!MA{K8NgqRbd(JrSZTQA?!`<9U$+vFPK~P zFS7_IWtOZYfJLm^H!q(LjEP|x8@GRznGlsGcb>J8vWZaV2H|sdz1+&uuI#4i*O%*? zwp}X4*~*G?t@_l99r|t#nAgIe=3ejwrHAq-$Nol_=*j66;GAj|N@m8rUvA_Rb(OOV zH=N34=h-p#oSj}=w2cR-I9GRC2#EbM&d%ZC)!EFO#dg#1(r?rGQ@KwkJX$_=&l;}U zo9yg->Ykjn{DikDG$bZDAplr1nw)p?C!~1?l5X8HsjU(p*Nh1TLb^Rb@%VCDY;>Yo z6MYkWHa?P6OZZ!V(}qR-rnTOxdXC=2*WTGiF?y*OCjQ4Y;31sWmhs>g-fcZ`|IAI{ ztJ#fTmxCKZwOhp9ciRaPwZpzfn?&_mwv?r9&S|I0aiWemXXxc!>dMeJo4pyrx+Rg#)uoN4R!r2JxI~z}DZZna-|s>_ zX|YOIGPC3V(SiPb-sG*Js2REQoH71qjmNs?e8*ez#0WIjiZsP<=2>)V7tbyzPA`QV zx#svOKW8OebFSm7%~y6kyljO9kbc(r#0HGM+%!Tw;3D znu2@NLRroWQkAA^yO>b(a<8fP`E90`xzsbch6E|Y=3X(pied3>>JJW|OB7O+mk%&$ z2uV+O*QZ=6HU%Z!%BR+rC+XS+Z&v*`qU}NlR_SANsLaI&b6Y$K`D)xEdOxisfL>mj zSCfPh`hmM~!y?+Oo(Y;wr~_kW8|%WM4JC|R7ta~!>a$={Jmw^uQSqH;`hHkP zBI$>xd4$@+16C4!9f#LQKe#h>Fm7*jUmO9AjjqQQqP_8Jead$0zU;#G+&COM;VcFP zJXpMa_2O%TEkY;qtnhHlPxO3Nh+f4rMHR507PD$RH*I7IU>5s(+(Y0JC!Nx)=3~>+ zL-K4RH=+wKX!sS(^|VEiO&CVkt`F7Sk|`mineNwbJ#9EU?XjhhxFhyfC|O@s^PHB6 zK@wB#On-MmT>XL!tOb1KY zm$EU{Z0Yu$?%2o2e2-AxDK}78vyA@4^U;&0vhhacHbWxq8gMmpg6ynMX#3Y`8(w=F20@ckPvLbV8m6u#E_~s@}i4X1FzIxr|WHkCAje9Bi zqf{)f=kf&aUMa7yrnWTM6ySBe!72;5?Dc(x_qkl%GdZm{7H^!(4Lhs9NFH5PyAD5tocx&BSx zJ?&87rvlLF+}&8)86TaL}JMXe$@&@n8 zXe%b7eEtACN!g@b|ESHYy_5i4*qRx=^mM}as@>h0E_8x*?)nv zjKp+o3Jr)`lxE82tlCE$v+(!a*6|a1J2Sny?SE^{{<`ZoPJKuCGH+^w`g=sX%e#2czdreUu{qva%Yp!KaJ3_7?4%~ znZDo#xO`;BK!J@r?c@udyYksgDXBuHh}>%o*I`d{8@bWvR@k04No$k|$Q+(tx%)cQ z$7EVR&n?_-ewBsmbIk?D5t;ILHxzo9 zZwt;&t!wW3WK^2oGR@TKE}tmI(vaDk^qlFWU5H#XwN+fNt6g&0gBQ8o?n4$q$}aP% z+eYKhrH_Gks_%w{mawC&s&|A|3QWq_SS_SP}Wt6vp!7W!6bWQT}!^32Q!i3)PFJG$~J zrU!`#M&lgyLo>ywnNNZ6W3x)0=Kns*=0 zDKpvWn0pmhae~pnZ3DfsE^S~yWoL3#I?T9!MOe)^E6L;Qsh+PFSj?kM&WZMwUWEXK z^d~tExpOr_EB3Ey@IAICUDxMlHQ0nj6#}NZWfJ5&*V~3$HC}kOZ#25LYkh4{9xse2 z_n_L)SL>zN6+Rm)d!$d#W8)k3bd~k7Re8y_`#2TbTN2DEDR2B{OJ*$C)h{$O|7h;G zoexm6$cB>;Pc#(uWpzAl#Ht=;x9pvNwl!N^S=Fd=o>j*Y*}2l(3Nm3NVi@Mq2^!!r zH!}ib=IW*VIdN)ZoEDC;NIYYq$x2o(yRq7p+EPIHs_*0FyiNyB+0-Ye#2d876F(i( zEnld)Q<43`T>L2wThNDH(>}Zhszld9lLbG)8&0`2;*BH6&j*@>oLZGxU*BwNU#ee9 zW6+j?Bh4Err)H>d z+fCQHF}7xOdi;}vYXmCCGm_!f>foHXdgAG(%9EpufSb`({_WO4cQ|XQL$sWH-pd!7 z9jKUUKmCGC^N{iMREAA4hZuV)D#O zHd;FlkLE6^41K#>HW&0Zb2-PJxY%fF`18$ay9;uXl2t}x8&&^9(^tnu)qP*f(B0A@ z-QA6#AT3Br$I#skQc@z_sVGQy!_eK`-7$2>dwIUU_wPINxp(HAv-jF-t-Y`55%D_% z%$GShlWv=16UD^CZW!-W$htH8K3i{wiV2}+agg6lL&*btZ5!C$`xLoh z?;nZvvAm+Y6~aDtb~C-nM?W^#VJ;oD%(RljY0OqUJ-e~}yuYxmz!BY4yuPy^4v9%~ z9YQsm6@8)on|@RBLh6)|C^&}d`>zC3S=6J+=X8d-#&%-u;qvP7xzAA}w9b@yQXwV{ zS%q86PxKM@f@m@G0625e=Tx%jg zL;rOBxzKM8DE+YtJcE>EPE(Fbd|yqzdU5>eFr6nd!B}WBsid)ZWA&UZA2NMQiMf)i zt@1Gy_f$Ok>7%~q39>WjT;i1;o9QR5D?^zsYR&9J`0L!z#qxoWSM$l6Hbwpc&zS)? z>qi5n_~>+igeVN3$$&I&@%cA}mnZ)Ik%7~-qWpU{%boX6o-fhKrta~c7YFGl)gV|` zO9&;NFPqg^c9w(ZP0e$qP5*mqBEz<5MQ*RC`$y_K?Hkw8mzJ{0?S`e5*}LJm=Xth1lG9%jT`Zi}D>=za`;CdVM`(9# zz8DUFeGzq9jux^s{=m~Kfz&Z%luea0FN^3wAnuuBu6FtO-!GFfk2S^eX5vrxZR9G` z6zF+mXJ_6{T`x*;*4``3dQHbCv+t%0SG}luNX;?K94|~W$%keoB=k-cU^y=h+YBO4 zFnPz;b_PdllQvp6?!RtRctfo#`E7u&rP4NO_Fwk50k|1Z({9~J)rCvxwXbB9>wj?2 zPyY}(!Q1y6T+W@JRj*ldhg-rKo6QEB6I+4Ynrl~Q-~13CIok4f_Fqh+nHtNA$G$xCl>@G>8$oC3LI%?{Uv@hgMR`e(nMALpWO#i={QdL=7E6q z+Yy#~kY=$pyKb^!IzN!2`HEPZ$GNQoGeOcDJ{x$5j03vD1Ak z9XoqKoqyTx8^uU+iIDB#onO>r3tkqft`&u=Q2>VICcfP&vmez@njkLvVZ55ugvEVgA_I9O|}6?Tf*|onSUP9 zc#wt$tAUkX^L?E5du>?$7Ja~CVhVqQ`LajWa5fUQ{ge8Io{WFB<8T?n?8PPAyk$)< zMrK}{CvsbU^g6Dz>BLU&^mBG?5=#a<=Bi`MaS`{CbtT2a-L1N>jVBracCn-bCoJBd z%bQG;!oM@~%Q66uhE)+nYs&u6u1o))8XqN5D45DW498jjd15ksP|;m#OTrwLcpoQ=;c>x{R6tznPbyW zkR|Q*g#ND(Zv$7j+xt;uxK=V)P0> z6|(hjQlM5)y3E3<*dNnXv1JN;x$nv_e`?dk|67d!OZuJ_%9vgfbZ&iPE+ZK3ke=5v z+$zWX5R?J98Y<5+$s0ew+KPMax*pCc$9Q|)op>v{CJ4@_o?j2LYZ0ydqKm9Ihy;Hn z=LaV!a4}nEIE{R8>LkNNU}9eOrh{!0yWt@mu>ZiVCDOngXPC$Rlj?+I!-m zN!gSFOlKKUauP+g^Sj>afex1Nh|>R$`4WUdpPPsW*(JmealIk?mSwzZDk-x0I7qrX z+&|#btZ1uJg==+PiK-;hB@|A!WeE8P@xpSh7c6w^PVLnhv`I=Y+G9lG`67}0;JF@- zxII(Ej%3PVsGhw#T*(F)q6T#AnCH!Sio{m-S6vNW4bcs2!BWM=0g@O9#a8Kw6+I{c z&5uzgTgeoyHP?6Q&|P;pEQ|U8Huif!;u;7NEpyxo*68$ZE)CrVr(T9Z>qm6Fs+U+6 zKb?gIfLr_~P2rl)i%on1mmOn?36Tv*b419?e|&p`fdtj!%|Z=9mN9GLVc6(bk{H8f z*2b9eC^LQow{~&?@`I&>q@+HeuA?=la1PK`y)hYY zd(ydl*xR_f*xFFTNG2fnha|TLs2{uD9WR!($ey(9qg0VzrTue1YeIwr;G{$^XpQdq zJm|8uPA2nX2{cnP+xuJ8i;+Smxn_3s*BUF^$~>rUcGx-Le{?1$3SJ6YV18^cqW8z- zxYw>vZAMJnWW`t6Kj>BVCxlxX0F8ICY`es2%h96c%g;`+XV)_Fw{T7DZ^r=?a0w*E zdPKZmN6cBx7j5IIQFl5zIjiBsv|dm`UNWZ@dX}@n*@RVaaoub_TwL#BTGd?FzI8BwG9HpohVs!nX9M9RHhr^%6k*&(k)rZ#Wl8 zJ(-Z>Q-A1$`lCKtXTuho1--O(udKFm6BUX3JWT&4PQ898o4ELQQM}zA?n?AFmLo%(Wu}GTt^FyV=|YL5buoX!Z>bG z;}FH$ev69XP|zWUMb=?o91BV9@%5@#$Npk$cE7D=HniV{9UwS)9~yDDp7;?Plk{ef z1^?L?>>hZ=M;iwSj_+&ySs!RU6$eRTjTM*I>3WvdVDgx+`U?N{5CK<0n;F?f7b9~d zFh@5I*~Ls&tl59gPyY3&PribtAqX50@;;oVsWTrKe3l@;J5)BwpVi}UxLy`lkGk`0 zaGG^Z)(M>L7!{xHK7?19VAAO$(63^iNvX zxwJX#-AWeo&qr`a1q^g*tr7>A{?};J&0=hHsxh5ixS+~GvWz4biepV&Ni_G#Nv?!=Sc8O@}f)pJRUBE2?} zDw3Pu+#SkbS{@bt#KXX0k;+BL&`!FwJEF^31rI(iL~c zsytvB+-o(uB*?C8yPPw%(#Z85a`J)A+TY&mma^lt&}bf15??UwerPXYt6wQaxLxvm z%GdbFGAle8fKjYftHmaIEPJ=U7#rBOCkJb|!uz0t{sm=mA~odBlTLWqbtdGqk zcb}?m@QdW_@W1D~FlZk-LH7Dy2*v*J*FLk^tEF<`$N%i)SZ`o7IIf^Hd{_3fowLp} zdl;)3+{SQN4hDuRNBgBLA0|tsWCWk9otF?D3J?|3_!8wCS7~16tSOvTr&8ma0br&2 z%KI}0h?aBhRLGLqOG#CGT4a3&8idzr+gU_t(eKNiKKyyRcx1C++jZT{S_b^-#To)3MQ{5pe?woSgt=+GT|0yv({A8bZ~ z&IdFEI__nk^oY;bh3$SmQ20w?h#WE82yMI{Bo;X@*A8uln9f`{-;=S_L?cnB?f6Oa~YOZQDG41WeadYpfbx%-{PWm)AF-=eKY-J$;> z*Ag*JX_07f!(K%RzC6L;<`aUaUDl;BHoA__Ln6U@eA2&?KeJnJlCH>SnpO`dic`7g z_d6bi=BDPLC)1j2!kZSoY!U{I7OgeGcg|&P?0}?M(O3uGcG_Qj5OZE1FIRNs-@Y;M z*hZg7Fll0R&wmeOJU|L-jM&$(y(?Z1X(+I!5WxMc$w^Q*%0~B87x~BoEc83PzR}^> z2JSx%Tu$gw^78WT`L=b$#}hT_d&)lt%EW!yM@9X_+XK>5ro>uKDr)QZ4uBiex`$~? zB=>mj)mr;zx6n>I7rb^H)E%9bwU`Z-)O~Wj`ZUcCbl#i;j42LUJ#vXTdBfns27vok zyONfG+a`i4ET%F7C>Ve)hSUZ|fEh^KWab_8wKQ~Jon3La39lHaz4P~l(Q`W1sFHT* zNmD;u#g1!x#q*#dwpe<^W?DotKLv)5dKx-bNi!{y0EFB)JhPhN(j!(A#|^DeNav9( zZCNuVIvwE{PelBtlehD9It=3rOMs>&XplDiZ}iuVRy$aUwLyE{&GrRwG+0|+aZ-zy z*;b7$@o(1|Y!7!g)w3Llu+cucpezp!jtaSYWu#Pz@Xyt20{GtzvDk}7HvA!5ZQFmV*91Q>{x zbd)&y(d*|HEj<@r=g4JXfA3+Y>Fr{2wfW$Y%Dqu&9YPzVW^QS%Xf__al??b zSDVYToG-=L*atX1oUx<7UaIm2{Aro=1s{@arfJ0(PmnDPy+?~i&}}&k^P3U2L_7|8 zxps=y6ZzqZzUjpPd_MhCsOIuHvt@hJJ9aGCdJY);->Xhk6B$A3kNr-V7h+ z?5gi-XPam0tF{7tfll4gb@H=%?qy`(|7S7vVg0E`dgc1kx!?&*K;pVc3yuF@1y?LV zgX3tn4|wZ%=3Phq1%&H>dBmfcUElyZL8%Oa$2>z(_y>S{XuGAn9C z+6x>?&hq`TGvq>VVy$<7uv2@nJCxvU-}>H#k@N4stJq7#-Qk1NSUS`FA>_5jIek{q z6sX0_4>)IStrohSWn_`Q%IV%t7HDsYDJ^j(Selg^2da z+LQG59-2ANeuvw;AK0xwPU;;R7vQ#Sd7g65_gAC;QCE4;*s$a^MOxMJ5Gt<-hP3CE#g-HB z654~TDC+Z@_EbCYZs3HVwlI#`x`)xHJxt< z6zWH#F!ghX05a+evv1ij#oT9L#A z%trTi6IR!JDYk4I9BVJra3`n(d};WBD>s)vQ`P*-oa7z+Gp)G9eb4$I+R1WcWd0D< zT~cL5@s6+;?R>@o2KNmu0XUa=&?if@jBXSD0z4>O26(b|^V9Cf#umjnR#U}zvS}~h z!w#&1yaJ=ZE~q*IH3+PSl{-cZ@jWr|09WPYTL2`VbhHTZ1Lm{%Ca*AxeY0;NURR{byXo1X?QaJc7jfip$we=zT~b@sP@76$R_2@r%u zCd_kq>=fz)gN}G!J(%@$KNWGfXO9jSIiO=#iO#2v^I%asHYX>nj6bhVDe4?ejUUhF z+?p)Fl)Th_oY#LeE8}iE%>HTK6Z6umkA(eG7BWvBWezBBxxm1c`1H;tHJA1>W!`-&%S0cbtIa3PX6#g@~n*!Fk{ zdnjYzt(5dG2%&GR&VZV*oY+NA<8iw+W>DFrt#C)*&Ph(93Rd6!(6@5fZBcmoH}i3| z?W$yH)3KN(;9h1vp8RhNQ^3XRT%GW)jHjdBM~0wjDwsgA6lE$~Uye^MfPWoCpMzNS zoFdwp=;*pv-@tr4VbKY{1K`CV1d+wli1)fupCtnY%jI{9vBcqLNE*RbWEaz?S9Y5* z3-HEZPfF2oTk~<7Ec@oE-Vr*Gf%|94Ry5z;8c0k$3{`-{ISAg<^ZcyIp62CEZE;-y z_^sFNHK1^Yf3|u%W(aB-%gLi6M0|MdoHc2?dr$Xr?>roIeJgsgI}!(EUtaltZ@ruU zp145)05r&N;B#O{Z_%;>@*0m~gFXD1YMj*JdmQpNKX_Ja;_-fYvM^GBX{cgh+yE_p z_Ca(Q1ynPnGNsFK+egO#T`U{eZZ5~QO}a}@;CR8ZaPQ3Wifw=<*$!Q#_-Udn)Y+p^ z@LvxVBodT16tzJS_~&`wO29i!lQ`Zf&!$uGE(*A;i~l`60EM4R)za(9jZCOf$c?zH z4MOttAp5(y`5FKBUM%sKM!jS*vq)Cq)FPfmIaKHKqF0xE^9NK$Mz-40+F3KbOVfg9 zfE~y%<-VwArxa4>js4nN^n;hE8fba` zxzLvd$0}CSMY6`nhB9mOoj-}G^i^fncGs>uG+8IRGpn?3dIFbHO4||!jW-mb)@qqo6 zw_nD?y{cx1JB@9)M7!is3ux9HRvp>>&bF^ms3(y;?6W_wU%8m&{Rxnir&>90yp&!W z0WOW@{|-7;Dcp#;QmJ`YnKRHxSdeVF=7(I}nPle{nV>u0Z)h?XJt-z4O4I z?-tm+WE0O=UMC{B#=72du~2fb>?hl$HGDy8?NsCMnk%bCJk4(`HBnVrj5Yo}6}b)C!0WH^*s0rd~Fyguv0 zlBQ;j=5BQn<`jI?>dS5OnVI`{?updu4U=yYnfTsG<}hJMO+@D$1$?T?<&_RV!h*?y z%MxwH)bjdVjnAM2dF!&Mud9Ududw8PL8!v6p zQVZv4W;)WTacUqr=oj~w620se;()I^#Xq@~#puSWXXg;bqy+^*oO%i~dTdCOUuMM-nmw?#7&S7MUwky0?OeuOLfH8OXET5Si;HsXs)4EsJ~| z+g0>Diz&5n!Q}GhK>mV{EI-WCMNr&=PRpZdpb_HYqQ|EoA(V0U^H2xeBxq^4%mouo z1Y-|h=ao#oUmI^(Jnh+}H62Zqk&Q2x>x-L@hdgw8zdMU!?TbfrhmmJB3IC!W8h`pH zhD^a&g7u9-o6C>H&#TDCjaSpg>0-F*f4GBP!?(GRwmc^@I&?Z(XQmiYaLHcr5ff*SUl5k2%Z?;e{@uP*5Mv_8U~b%-l4p?W}Pc#%#CZZa#)R`V+p zi#qFxBHPEqeUpn_9@y4loqg1cHAsYR$Z3#UHHOlAq%AN*!1>+-l~#t}==UGw2i#1l zQ^y<*7x0hjZ~J%D)MPwLt!Mt=x*YSPWn}0=I#lam5b>7fJG|X|(y9*_hG()x9fK35 zKf8SDVqeK_6?I8~Vp&GS*HVL|CGz2#Q@%fLBC z&y_aU7|iO?QBgxq%Q>!561id!5$=OCe zMufkWB7BI3Fkwm_-M~~$F+Yh$hShoxdRffphVhi*wJD6eXpUr;qDbPClRPf>T;wDs z^3KgyUF5XZ> zn*4V2yKd{*Br>U$t?k*%&rBauc$m>j;K+CD> z{j^TG5tK2dQ#w%Q8v3{@CkZ`mr%v6+K{CY@I;lVl%tNCXa)*keHC9L}HVh3cq%~9~ zaiJU6wol4n%HkP(Ad8bmneup&bN;{yDz{`_$ z$fQvQOLCoQ3fjYVID)WgKUr@a@n#Px=2ZKecGQ*IGGUKc%TMcU3fjj{zsaxGjyt4SX+b6Y1*x8RX_oNZq~fmivT@$irB28)X*VJX$%Q zC$KZ#@-+aLE}ELcMB1!oAZUepO?XW5C(c6B%dbSLq0l8ND#O1O- z7@r@bHtq7~iYyA9RH9l`8+$*V?PR8FuFd~KT)R6@yYxM_A>7)p7Tmvx~dn?Vos0OfKH` zDs^`I#4K9>etm3*caW$^K- zQ>+Tk{4HWqsOL`?eCl&YigCPvGRvMBl0s<4%$xD(P7#&HrHR8qH*MFD6gk8cJU>g_ z(TR@>cd}B6QK~P%N+1;dWO$up@U=EvF+88qx=mBoWz{-| zw9S~+llALI5zF`;!V?elIqjKlQAhs0bU#qrXf>$d7_X&7G7^F(*tCAbP1#R;3m=q| z*WM||>8?YT566W#O~Lqysm|X^dDpfNGZWywh>G}GV4}U4@M$@}g=0$-lN>MBOL4up zG1|=aYBBg7)fP^Xo1MI28YahkAXld4c6`2a$or5f4EuGq#PGeY8J!mSLW`o1{g%_{ zi*t~x?l&TtS+;cg$ECpG;jcMJ)yFe3I8vMLNHK|jz@w#7MKe~EEgbS|z3%#_&{nc? z%W30%FIhElC!4TYv|T0AKr2_`f%P9gd$Mns$(uc{k!s6c)MPLRjze$Msp&^ULKVL< z<x9yaqu^&_C+6!MOBTN)^|z?Y{`APu0P13%&&?%T_~rRsQX9@qPnv6;%!ssJ%U~ zV=>6`#<52$6> zEIK$dCqhi&BWEqO#t@3dv?SzNPO0%8-@k?{|5yVy;9{>Y*F^=I-JAM;(or04?3<`2 zS;kVHK4Xp+HYw>RSH3Yy;te-=z8T0>_i`o*f=*5J%m~ui9%76T>EO0%3qX5gEo7obTye_T~+kIoD#&I3kUKIF}Ed zpXnsX)m~&r8UZnS?Dz)V3<=}MlVvJNO82ftcmS3+I{s?;Z;Lr$e>XH!lTODU zT>Db&A~6@y`oR%CN&ewG^3;XTx-;%`0)(Qr zFl)Xg44n_I&2)S_)};&R=^abr{GD5O%-U{CEMCv#X`ePAyf37IxwzmrVBqzn(w zimAbt5<3B|EM+&yM;J0_!AGcCJxdq>9pVtuS1P2{y&uqFQgw*T^BbCyqsw}u&tLL7 zXrS62&7U=kwH3xox>&V}JpFe=kYdWeKVbw5iLY@$0xl{w0CNyW_KzLt3zt?%FFhp- zF;(7v?oSjCwQ|q696~`{-*GNsC2ALGi$}#qH880G5g}=sJF}CKv^Q z2PbC90Z& zXw=jJsTvD6dx)Y4QDe*|@~T=KBxv9TqKOvX?<_?mt6B7z(4MyZmn)h8A_8|C-IBiq z!|uH-e)9ZB_xd}U7os(*IQ~^T#Y=D|h%WI1(pFH(2T}5+hIh-DQx7!_DljeAtlLe9 z5ds+*dXPl3*a3qA!od!WG&3T$+w2SMh}8Grg64xGMpXq>%Vx<>kIrCEpD)S3!NRtO zDk4>z%-`a04<-2iFw6D7J90EGYG7g3uB95%YSbUF7^al~{k^?o)Gfxlw0emAq9oAH zWM}_bH(Yyi!rW!^trT+a%#rg{qS+;M%6rXU%-^XRzI$kR(G{MbFV}Jlnn_8+Ad69_ zbLVk=+p4i>T~#qlqFnFuu~`CTa0G)?lqjucAI;;@Lp$UjuhB)j^VoAT)7sM+Y#E36 zoo{dDxmU|sz>*hOKPDm~Sg|M>iNwCDygZ?25uw6lvu_02j9&HrErTj)=*RKQEcrKs2u*@I;plSX)l?GSBuX5@=LrYljN?lSjyAqrS|8D`Dh|yIZGPOOn4$C&O4+>mdQ>E z9}m`nqdBSTnN06+l$&gUw@F8mDi^gKaDk2qWT)bf`Zi+eN2*HIN*QAkWwiaTibs1hGx$WSsYJPQ<3AZ4-SYd>H4Yky zkRCeMJTZsmja1x_Om8OjGFSk7!N|}*Q>ENun2#jE_KfO+HW6>I;zERkgititv$~Dh ze%OC&e~F<&$LqZz=L)qpVA3c;*Skjxykg#wvXDiZ)e;xFc^ZJ;IBYi;zAq9rT;&Kl z`VR0VO25G3Zi$1drTY_|)gP=4(QtqG)hxz0_iQ6ZG0q|=&HsJ(r?m4IfTDMvU_jWKUZJ@ zk>UR^GO+6UEgmQgve>psM=-FdM%dqxFvHAa$dRmF#^cP|d2PLn&iv34M3Wz4B5$8; z4Pn8L5-C}`DJg_T`FkA9MN4LnJfg;0LWJBEr?qQq61TS}CHh9ExtEc>m{;ey!y_N$ z6JY^hxo|{vSS#qXn>cOYG=g@#F5%>x>nbgQ7YNjikhKc6kl@2PYsxPLI`Xo`!IGdy zU)<+UP*<8$054{U`f2sH)GV^*_t;sRyH#WNo50vwQ?}<1qe;m!X$5|~LYL2eQ z=Jb<%s*&7s!s~w$vk`gpU1L$uE|(if`Bg@UwV0hih&8+1Kr*W(c~; z!ZkuUS?0TbvH2pP;==YI_Dq}ukmSdUTHnjx81mr0??^4idIGKr-x-K|VO1#ktp;>~ z+js~NHhpX{*m&7`erbq*0ipcvzr}(KO;ypMg~90QKwfd~CxIO6(Q+nqrO*zAS%y7Y zfVX%h-KcUHVVFpY85zxLsU>r`mg1x23{q&u$539EJAeZOprF%?#B*%h`=Jc{WsQiN zXh>6Cmg*h-XOYv~>bOwu{7?1&wy-&3=WNbhv@8mKj^wFOet{@Fb_oTU?L;IorOz>G zCx=w3y0T}Bj}Pt&YbYH?LZWcA&J{jY8K<&vs8PO_O9#{e@ze;>*whG7P~VqWe~z>I zxpnR#oQuo#mRq{97a^Rvmr=0M2E`DX*0;nA&4JUVar-W~@@hQp{-d()s>FkT<@G6< zEeaw3%CAm6_XI8Qwpg{KwZQvk&UC2z^hx#P+^%BGztTU+Hg|nboF{|s#1u27h~ne%=ZKUep8Wc zb}Q_Ed0Qb^LRK1WEm9#9uIq=zzxY5aose(`pKsmfzg5xSSRn!bptJ-nT;8u=_^IvY z@e3Li3hGRf_720}O@k8d(VVO%jeM}8w-pn4(x(b@4P$ZS_yUd7kznw^k>zVS5*~kY z);i`x{NIZBi&L}=N_{9t6iPvt4Ngr>m8>Og_z*0|g^+m|CoRSNJs=N`BS=0w*92x1 zmkNDQ=Xs_yvhOF*=qq#TwfT)mJu49a4j~KVfA6AvecJU-* zase-{l&`1kocQ=e$bWwvh2=>2=k|U%F}xL?Q^qO!8@K3M`OIZL4AWL?lYPYJRQ7ng zf-1I`di>bSw+`*N8r=2M9lC;2(GEcR`kfnkWJd)3z|sa%MwU8y$9*gQ!McdKNDdsh zjSIp82Mb@cudBe@o5I(ml#yi#8EbdYzUNFV5|Z?ZKh^qDpzJwMtM+Qgu`&~GkDKe7 zQ13z$?#H8FbKb)vzt*zaex5$CxT@r6{D-!_2av**+i;``A%7?PpiU1vU5!!&+oS3! zGEIv4-pv&~)S^7{nI*f#q1 zvQl}}?v=bTJZ~DuPm}Zrmaof|(M|I=t>`J~7X*b*b2}!8Zc-kEFGFVN>D9)mcUCWi z`mt?QJALqNwHEX=*ZEcST0}aXY$UpEpXB=t3JS3Fk%P3fze;ufDR~2BmnMoxY8}WZ ze4J>&U3*&3EMN;D+vN2)`r`0u(4R}oDYL^nLkB&LrY^kr5P)jARc)E+vwO{De8O&r z{CE+`Y-Pi2OSP<;4UOf8OTNNbQj zT!ZJd95)vi>f)|}WAYmGq$mS~{_bfdJw++F!ga-16<`E<5le4>n|5X?panjW!UuyL z1P#Y_b5l&8GuHWI3`$W{P1x?sB+&hGO4P2JW-1-PAE*^*yvR?^ZnOj;FE45aFYDeER*X-Re9oV}3?pKfrI`|0c>(d0cSbTZCiZI;f~GH>3Q>CK`Di)Ydi zTABEdyJAIK(S6*riFsF9Dqe%EJ>|qCb~TFD8ZzGh!JO^>==LO|{Rr%-i8$55@x0)ot2{ zEm6URGSqtsMS0hLuLzkcfj>VAnWh9Q6JiKps1<(^^vsAO_#Xn{&<3?C;H9jr446KY z&HRX`RH2ojOPQX=h{Q`q{y@9@2mIgR`|?SmP}`AciK{3Mk(bF5v_D}UY*j-dm#^TF zvZ56AdTF>6%!*j(@Ugg->`7`N6wF&L3jeVB;Wfgk~ANuowieZv!Q~+%k0= zeYPo*A|58`YFM{eRkR8yRkpft9cj9yJ1TRMM>Ds`(ZmUc7u`3>WzyehJ(ufm?!1Q! z*cSpv4qG7bj7REseQCYa7)NGl4=+9L2j>_y(}{#iG?}S zyi8A|lex>iE$qfF?BppFhU0TtZtB-08x>v2afB?BbAXEZf<;J1M!RU#!5NJkcHOtb zPAlVKApG47Q5vR!xEN*-tsDC=Yj%w;0{~heYEu01Kz-L3%?iNhwpmP=Ae_1ntpCudil(&1C^d zj|y+Nxly+2ljRXcS zG`yNH>G_rrKE%nT_ePqZJ|A1>r%RrN zzrmK3$k7PuIWlV0{zkj8YP?e()KmwG7?vh{=8N6`xYo7aqA+({wm715q~7L;+FhwZ zH#-z(#tf6h_1x7!L#OoJ>v~TNVE?jpozaZ-u60jNdzbKW`16UQM3hMv21T1wQ;DW5 zr=q+`^+45zps(29Ans+N>(dv1f2JcZq77SB^mEIh5^*jrR|I)e(tR9)eu;{j-wXo5 zhJX>fa0V?Wi)38DmS*rCqCv(SE1|u|(^b7X$e`NM@hD^+XwfmoD7kn*473Hp>a1bw&bxp7S!A|t(%#`^#`Svyji%^k;WSXTw69gLy#7lY@?j*92d0JMV zv*#{ug}heZR=-eeU!nKD8bXK^D+z^KiNS#{$^!`_uH@`l4g{ZR?qPn106T%^Q_iO% zj8CPwHF;jkp&b4L7DnGBK0k5w2>jJ162YFSj`os6r#oU#;^;whXoe3Ybl%;mnQ)EQ zsWhP7%GvkMfU9)rRO;*EDr2<#9E^dF zD*Ol1zcFMyvXX1;tP7SapOwDOSdGEGRiZ%5eHVHoVltallTq+^#D|Z&>b55sP@*E^ z2DyD}tRaB?O~T)RV$3ZA_ol)7!pcXj;VC;P95Ss#Uh{Skr{3k7hORz(ea7GA@eI(J zeV}~EpqiY=@aV7~VA^lc<;FkV`k__(lVLZ8!xMrW7DIR~J?;8c{aXO(zIjemTU#5t zy5P!7S}>*h8U+K8aZb%{kO0wjHjrL22jvIi%p~3aA^IzDIRJRx}!Y@XKpzHpxEHzq~EBdjAV-Yk1g*FLYcstfWl7G!AxFw}~{%%G8@=T6v3S z`=`R)@EZi{oo%>jzWH`#>L_<6NrpM9?NS^3y)!r`!bpIc6wCvha9$jI4}`@hxrgabhfOko^bc%M0| z^T$I)7OUXfuOD*ST(4K(V5?xlI6Is9kq5yg)Tm;bS%tsD20|@N59SF>7W-wUBuS~^VJf;yrUSRy3Hi@YjvSqfeQY$bk?|M3<}M% z;Ffv^P(GqjWOHN=ABF!bq~58NC`pyeo0NG3akRw%Vrqw6L|AA9whjY^#two=vo~(D zVDdmW9f3(aK{-pA4p6On8Csk7>Xir0%4?2femig_Da8L!dHlZJ(IhGG3px>oGTA() zqoZSgt>%x!D`NiSPILl_6vk$qOavfd*^3$k0$z*0G$~Kcflh_d95z3=nS1NBOx{$$E>YZ1EF}B@9P(aE-^j|FtSQXTN+f!;%jbEN6 z(j24d{Jcrfoo2<$Vy^qgnD^Z`iDod$Xh8>%jp%-Klm$Atpi6b4 zM!Qx{?`S3wwejfBxERAndd{4W1s2r*ElwVs%EQ)w@Gg&U;)r~hTNox`Ghl(b7Mt`MMee>9FA|S)=Bam47}Ch3x>pS9NgJD zX#S{F9i8jv4e=AGi|Um&9~gA=cz%zjAfw>1VWb!Z3^^c6%Y0}Dczej(q-X?gve;LZ zjSX}wA%|{E=5w1+CxPwZ@DPe6v2K+6euMDq&$5*jEV=-_+6+%f$AoIl?a=VhyJT+| zNZ6AIYf>Ulv+r@7Bnqg4OX5&TRGs?B=kADeRO)Kk-R*i_y~>DBgCu<_z*sG7=WK(~ z$B>pA{S($+lJ0#LcoY{8FUR$3+`K=c0p@$GMcKRIZo$?}Mu;v7A4V%|2nJ z@T|lXE1U}OS&n__3Xr8@;=*~WNP+o^8Ugi`7M(tpx1xgcbo=73^h{qBL$bG+Cu!{e zA-FX;2)#fAT%azp^=<}S;KEs)uQkO027|DglkDqx8A}cb3CT}@IoO_*xo@1Xdg0Kp zgGYpXIfJMbB~AA9e0*c>wE1Ra$WdyYE`2_{LxPKnGA49NOL5^< z{A+g@`sZ*qQ4Tna-ltI~ORQ|(sU`99YRRTgR#YazM<(In$R|^3Wi574MYAp0(L^P=_8c;F<~O_@q{K zqi=6GQ1A@68$Oj+PCVA_K9?K@Y_c>L!=-1)|7X$x$QODnG7>~T1=wvH8C4!$QdS`p z6mt0DY_h%si~rBzHX{8VT|-DhL5q|5@ZldSTusk!q&11PNP5imvmjwr4T+U`X$2HE zR}E{>K6j&J0~4=A$u~$a8OrGeyw7^)DIftrDh1=)Ck9aD5(?ks4`_xS2`+2XN%Avv zNYmV|g(zr)w3v?IaUaE7{Yie1&27>^AMP59wij7g3=EGlWtZ&?i^_vt&a_l1|la3u`Tw zE@kM9D>GfduJ_v~&3O}9mz(q5KwsKZCtH+&1Tdk!eznB+Y6CeP&p;w8lq5Czm_(yJ zM6EZfSToIiw?C+fqf(h(tKO}tryo^CBpjd5L!0s6NINR)9qlX3?Nfr#(*Q@IQf+$p zooMVtbUKUoXEzCLjyT-^g4Yq;YaRlFH^RbrasgsDvgJi2>kVLds8|0+q@Et>df6|+V@QoW(3X3&VR#=iDnX@-Z1Vd{{ z$a2YLp#MkIS4KtkeSZ@}cXvp4H%NDbfPi#&NJ@7jJ(M6_(kWd6(kb1Iv~)ig{r>*X z3tr7ytUGtk*=O%hofO;IX-`$nlWT(3&XB#9pFiQhduC)Eo-BvNz4%vNcs@(Y^2?d- zDLzp`QNSA^d>X+m#FY>WqkC{44V$yyJXMgqQaj<(X3&-l6CF8vp4-%^c6^X-ZYBRF zB0|Q#iMLi|sD1tAo9a|RZDWp6EdZa@{+S(EXl<$rH8a2QIY%yvBcM|^p1G${Sq+Nk(TDxTg;u8&RXd-i-7c{K`Uwo)m)H5F z!MG$d3BDTB*JZ|nUve0FPO24O0F)gYLw*mRPnhZVh1bcCPSu;#HCKmkH7A}skM!Dg zW;{j+dhZ&)*-ag85?~pfeYYkw_T0Kt&p&ou`NY>LiIABGoT$ z!`Pd_M~9yj@3aZL9@l~Dpj!@ervC<-k~j!qVp-Eux;A6&O$IQ^eOhUoYp4?&wyG@@ znYMMfdZQ%SZMxSd&c0JM#qFP5gm{e%?J!BRjFwF9?DXiLj2A{ zCrB`N=ShZU9@$-Qo*Q!}z8n!jK0ZA?Cipjh;Q#c#Tq|?s;@e(sZ3#z_ACtr)43ApS z5mBIbQ7U|(ig@kvDWIhLB?l6cqETX)N>AvuqpmDR&RI!r9K(+tdUa^Tmm4ptJOC5Z| zlB6marh>-~y4xf7%bi3gxnPzUAGfte_%~D1DFG}^!x@bvyYXy;f@QAyl|YZ_JJDXs z0F#cTIo9sE@zwRyyzF)ps&V1dnV4aB9`*doN!XeiffqUs4nk9vK3Ev~ zCvvE-_VvvQQQV8j+)79qzQEjIK!zSVq$Z|nmTYeq2)#_GgqR3t{d9Ozuvz)DsHdmZ z$8VZVl{Uw)WkZO2<23B?k+cD(YaaOky zB5BckLei4s?){h91-FJ^rbErG9u2p@uHi6hq5^70_y!_wb1d0TY8HGRV^~Gv#l5{) zewOY?HmtDAFwG@Y@xY$Gq?iyL;kEWF#gFYBjPiBo9M~}bV|F&syKG9+zm)5wQ1x2Z zu{S1z0uf0xhfqtOn#fOuriHz>D~{EYbup{0s$-lvcXhorF8=CRdxw&l%g-9ya!vdwD^b-RL| zpwEARTVgv}O8Ky{|C|-Y%>an^ex}iL#-wo($tPF9E00yaSSw^ncS2eS>35oR`-3l@ zDe1b%q_2*V{hwSw9N*35xt3GMzs{#M$mAVvYp12^xAM2DYNGIKC;p{c1L&Y?oSg$Q z=;pY^=E%kk|E^2#$x7V}2@0t8%Em}Zl#_@Pq z-5`$cwcsV*^~)LwyPQ1&MpJCq+v=bg_%uRD?Cul>LxM&3W9UpRW{W)b>7Sq*KoZ?G z2arcbuM}vbx|`K>A@4S$2KF+CCHHL{Bskb>pf(*A_O{zstL%8>#zmhm>k#>QUmY$Y zpbf;tT(RvYyBd?xwdL&*)8cP)vJ6mZzn0rx>QQL*w;8oBMTV0fp@(lf{I0|YY0_Me zEaS*TTaX>fERC#7E5og{`={cWz~)bw=AV#oa}&FDd!B!Q0s+o;`XlS29x4v5^qX}q|)A0-Ndt>eR*=%7w{Ih`rzE= zwU`#j2K>gS1V~#%0VyOvvw`zMoBHCSii5(UH%R~Y4e~-7YH_E40^8_mPrrf!2QM~i z!L`sIyXBPu#E2ZK788J^!ponz+;$Hyq^6au1u5UWDolw*z7q)`I z-|jh^jNA!)_A7CtEz%R^&`Xvly9Vh~Y-cnpAqk}$>(%E@a|1Pzadn?LKa2?xl4>q8 zWs9<95=U=Zah!vk{+u&wl?H$UA;Pa6ER*W*QreVG_Hh}s5CKLEmU>t-@q{~ZX?AfD zmS#)`w%4m6Jlw;Prm6JkkR@9f7O6Nc{G1avFunQC*{ z=2G!Li*HT~F7I_*w$*vbZL-EdY)gjtjA+L@cZkor0y0CNL-X(xIA`4)gpOrF*c1T- zdArZe1YuVWv?;%Ed>yn(mPA6YJkOI6!oT(avS&zzK4ko>a1D+=adQHR>W#HAx7;&u z*5NFZoKt1KU9kwsdtKmc5uE}tRg@7c^3| z`?6kw{rTVL_0+FQS~eB7X{Dtnx0UCH0hil9cUYO}))_&fBlvDxe?GBsVsQpU)e#&% zP9f{*^(9AicwaE+3AjLA+kHUmFr+6cs9eKZ9OptPXlw|jK6LLXkL)#G`>cd+O0g4+ zCAheus1Xxf4WQd0?CPdVMX$6w!?0xYkBzwz71)W{SmQOkqKv(iMum+r zvSHy91-iucJ#(<~WcyY$Hqo5ulm3-$Fv=@~Wy9!cuJ1IPU^#Q{ ze9m!aSzI`W{PLKO=D%y(d*mLQQw3}x6*=5E=m*Q(I3Nv7G~bZ#i~K>GFi*7X5SKE( z-{fYim-!G8fu1@6Q3pA8XZro}D9K|^cH zrqIWW`bp(WfLAsl^{R0G2l)la*pqnma9~blQ-{)Gdh#Rmmf>ktvI9o~>^wZj#>W~W zEtU|<2M@#tjdV^(rEDLVW+bT2+U~s_mm&zTR@cpIN!XW$fRmF^N{55dX8^|SG**TJ-nANwI@=PwC>he3uV+{esGLqB zCyRipe?B&NK(|?1Yro32L%^rK+yj=tQQ1s-sU7-`XF{&$mU#{0UF6JdZ)D2|78IrMnYva93vym z9YNeYhANiqMS9?b9;W%$8xE|k&j+qVI{x@nI-WXyHeS@3W8cf*WVC0IOTfqH5xa~9 z;4^HHOav;@ATH{FJT4A%_#gcxhR6|SX9Bf=etbw&o}oE}c8mNU?|nQUX2Mc8;=lkx*eSvo=fQ6R1t34J#@~DRp(ic7m?DK_UOW zo{!&Ty%KH7jjap%+XO@frMTa71dSChSb)&%^0&-K!B+D@SX5NyL3{B-V2P0f=sEFxVVnLdc2kh-5YTEV;RlpgI)WgJ6dKj4Q zgAIJ)5ii4au)=zFJHZD#GD}%ih5~TVEnMO0Tj5X^@Kpa3j);O3;~)1x#yr+Y}lyUJmJbi~Df zKXk9<6}&iGJ>CGu`C4L?kK+Hd*T62uXMpULb&)|!M!CA^t6I@0OD6lk{Rx-am}8Hv;YdDd#q@a+m^#h$S#Vh?}2Hy6~CemHxwQU?s>KDoD=IV+uhKmei!n4b+9B zF%Io}!f!vKfeO z1jhvoL>C8OT}a_8%kPVPq}U$mE$#_bviX27;(}11@KsIHBjg92dLGyME%JY}H9j2V zT0C8jg8BJCA}BB@?On5xSPnh%>&6h3hWe~LrrPETL-5w- zfac~WSP8jKpfZgY=NW$%51=(eZ$d3aiL|tu0sS1C#|{mhY60K4>UJhpV4Bsm?7+!U z2Cf$hDGJi_B5daMS8y$yKYdVuGT?`G!222}Sgmjq1h17hMI!2C%gXYfX!-oN9Rb3K4G z44vQepko~P_;T&WS8quqgYP|3ZENkcY9~YP>-g3039%cR#es@telSOxnAlbi;_v}#Q%sCc1R>71)Qd_@0s8z z1PA2q@`?&b4Vtd}5$z$rkCKRe$;YJ!(lRyaIE=;gLjXoE8Oo8tXR#Z0PGrK><-Z?M zSor;P04*2iiSvu^d*>tlkmdp<+E^tW?LVDb_Op$gZQh3nhv0F%Np1&r0K~{qtK<3q zhnZ?vfTI=H_o9s#?-Iq+83JHBfchLwMz0T}T7(Y#>gbTdAYg>t+~R|&f_(OKIv;VK z#sJ;lcL53{^&E;9o8}?ZHj5qVT_sZU2@_ElBqTch4n%B=9sJszpD?df2vez|1u;mq z-X1q%y+DX^9J(cwJ2V~C>UF{F&Q|ojm(+NW*BaWwY=Nqu^Z1H@zf;>{9HONk4=V)7Pbm4atb@oj@<%r7CGZ z%XHEFdvWN8Je_t_{-RuzkGm2-CzzrO2Qec|2@2DkVi+s>H`Xbig~e{0MEr{xyb-R_ zyZWFV8xf=FJ;+B;)2O|b|9{u7n)WJS z3z6;*sz|Xm@TUs|W-6$X{Hc`xYh6Wa)OWf8qWboBRlyTZ6@9))!BI9-IR9)u589yB z6IL=+(^)B#)TuGI0~dQAE#L1HIrq(*`t=a7n$11$1259>TS#L?kV6+NNeydiYStgFI6*M5T@~N(HqKT_*1IKx zjB~pc&n$!paLB5UBEoO%!uy#8e^5>wymUeM;}8A_HO>ulsdRC24Fl|R;s{`B3{HrC zOSoK@EM+pt#a9JAMUD;B+Sob3%>E`X9N)JQIN0^F2jJwCym}Zqj^O-8d(O~fr3Os+&k~(CUZYRw`Rh0^ffS=G zv2QQQ?%;&JyFfdc6u(&vP)kCtS(vf-*K17#1Q=RjV}Yh_V_{3o7D52X#Yk~6k_-!4 z8h|V3Uz<+g@r>d@XWe1m&plD_P+#A+pfyz)hP8A)TEri5*>efUFSNS_7iA7Nl32iv zWHkk>J_D^uk~yJwUK1HV$-E$+ILmAkG6APt-hdtd1%yQ_lV-=C8z$r12?Rs4KUfhl zG0AJC*`)LvKgS`QafJ{o&r<+%wzlgZxsV|;cBuS}pv0`|N0m{gxfGl2@6_GP?SIm75uhh#t@7Ptm4VvDh>tzxR^)sMFh|; z7krgq$`HRTp3BimHzs_$uYIN-nLXp}<`~rZo z(giS8>nNF;zA2F~r!|QjY5EiKM*uvnxbKPkn|szC{l0(aqT2RCx34v3ujQzDIahwv z>$OWi&V9YiJ51CeY>pz$WZ1B*Cd`xnaj8SxZCEdhCpS zK+ooMZ)0}sreL!=(x{$x5sLQ^92D_~swqzlizx5rGp3d(8hI2H}=`{d?u`tJvH5L_%^ z(m@qA6lM%WadIMnlk>A)#npA+ht$TLU!>vIuI11+8^ToG)JxEd%b#yn_))&My=YW& z2;h8BK7Ah^NS`1$5rn*b$WTuf5#w|g=ncPCp%W5=CK103Y%UcJz5w>GX*u+Wy%rI? zG4#X+ni@Z&JBkCnfgg9wiyo<)})M)P= zT#&jTxtz!3M5yy3@bb*jj|~kdAs#1KPR7|tty0H=jmw0ME>bbd6FuKLUGyU z{7io)Q)g0~e}e5B2}m6y-Xow;TT64U5n{Y3j5C%~^Px9}LBtD3ZHE=LziyVSVMuR* z|53{1y&TJkr@^ZAZVp4Sg*(j+%aAW8inac=xe0wIv$0b*;Pi5ha&TJkmaeHkIE4od z`E0I5Z<@qG`TNGCtFkMezjJu&^1Qe#EP}t|>{P*;HAdYIxKY20o;!za#gw9hO zYB}(|k<1AR2^8XL$P`AkAgD*5`GWWIn7PMrU8{p~OZu*h!tp7tMTm$3xtuLofIleY zl3vEa-2SLplR^%X8^eVxTmSc?SMp?Osii?6F zQsC?e{3#eu9={dd#S0+o#OH~x9o(xH9~T!_9k=nF%(X&#ZV1ftizpq(!rcuaK9?5< zL?*o@Q;QT7@ypB?=1wwHj$om)9`{oE$sD3I&->(6ZMfp4PsOqWBE$yXlNw=u5)@5&B&BwtQtV}o~d!l ztc8%!+@qix8Gs*06 zHFzK(6N5%lwzjwaul3bv6ZDt{9vV$ZggAS~2i_{yMpv~}gc)`4|J7u8Z1bJsWR2G2gUvee%Hn$-yj1gCNE;(07EB0y;ttXw@`8Z7lHE*;8}BQf5DRbiSlLLn}` zG9ND|E8QG$2H`*%{=Ki6y>jLfS@^kuy^5Fg46v=*yH9$5ptXFD&*hHDWxpclXn4;T zfn5C2>;5d?_wR8bk6v9<11SSGmX*8~mT0HZ+Wf9Ml8gYzQ0RAJ%@%`bJO@FE%lO!k zz=8O4C!4HVJ``Ti*^|{3@Z3t$Wtj+d_`}g4pA7nLl7oTUK`n^B7+DVsbW z?E-H4Y|`s#W&D4JpMc6M`ZV;^6dIsqcq)agR}uGD^GMrnyz&M4l)b@B?<18E?FR-0 zoBuM}=m3>@h7?I5mJzsc5{`2JN$AO@jAJ3I*L$=IoB7GQSr zw28J++k93v&Yte29GVF4Y*#zJNiR`1Ob!>vg{H!g{QMy$9}SrR2TtdZ#NwU^x69L! z4uHprj0}SMku1jkV;p9jXAAj=q2YJ$2*4NZfT7vUmbrfBpN%+;XqUtq%cVDEvo5wmL6~1G3@mdaM2uv-zfqGdri(BE0kT>6^jZr%%$K{Z zaPdu5bc!4rs9TcZH2Uajnk<2jqS{RQQ0@K?gg*0BD`#hHl~t|;96{~D`O->2SHz+H zVack#LYSzJO^jU2dC9>A7#O2QUTlfhT~N6Rz=$WymgqTF3IFxMis7PW zihyf?%GS&W0a&ikYy0zj&&6w~8D|Y8@li-G6I}#RboLiW}y*+YK zQT`42B+)HUhu1+*AoYlc;=Px@4=o3ApL~cY&~oLzI~A*Tm}AEmv5o9UlfrZ^oTC6B z>x%0E%%2n$)|twxRn9K2|M}|o9Tq%FF2_=2PwuN|6CDxFb0>d}d_H)^9q&@QemkFb#cH}+ ze(q26;D0`~)73xAvtYli`^oc$r&%w744THs*ny?ss>)Cp4^w8E{F6@qnB0XHlyZSu zG`HO>VcD!r4tQ5p@E?XIN)9=taUQM|B#IjIBrZER1j*R^cT%TQh8T|4C@<0ji;j#m zx?JdL1^r1DOKm#4`$Mp+LI4d2w4#Wo|7hAkj;YW73W9=O7sld>;;>AuSGQmXR9AW8 zGz7FE2xhAtekt2t+*Pt)CsCM~Dnhu}d3az+MZQx~X~~P788_U>Fc5sfq*Xg)7Zks6 z*EfdDOkggfQt#>L>+csQ_O>=jQ##vN$;_~080KNIo|ZEQYdTjV^}A$+Gd)qz{yUe* z!2wA*BNPTl9^xNz+qE&VM|xN=wAU~^KU=}yMw4nO`c)VEw905el2%p`6LMtY0#afTz$LZ- zZbHlTuJz}jCZX%g1C8fbkIl1=Q~wLE;5@G0!hzI|HnNLgZ zY-}B__02V*eglp5e;NmCtS&R#gJWhTBB+7YXm5t08Z4WSN`OVkm8*pL?|!^P(5_9) zuMoTmB1#<>3+Vj%2+4IB!TZ}E`4IXYUS$}jIfK>r)Y?pdc7}T8C?}<79G9VvrsfZS z!D8!dD1_ix1Q!GGWs)INbp75u-+mdzqPXg4N3>q{5p)4rI)MO$Nf*W>AfT&uUfW25 zX0|s2D4m^IBmII=9=`$d8y|*RWcV}`>ExfwXniAu7IJ`eo)C;Td#(NQ-8Ui8e7;%d z?OuzAqv6ZEd#D5u)i)zt+J4Oie0eE5T?6ju4z`-xdJp5sV7iYDz8Z@XFXs z>9O`gGmVjD)!JL|@-c^`KToNBF5s+mx?7ez8SMlZ!5_7ULJiS6tl9i5z5|<^+h2XY zb~7VsR4qja+9Co^NIh%YZQ3DBywcGRzWg*1fn-xO{6 z*zx~fKq57Ie_}ffEF8yOp=;<7nkb6ler)s#7Y0Z0*~X=yZ#`sMNlB^w~3rfPKnne0nMEzksr zgYABMb^(T)!dpuN!;@PAbn{g*kyq?H3K7cL==9LiQB8kVP?`850FAoFj7{ZXt}-c% zvLf9=wa#HOPvO{|4Mf>xv9u01s@U>iO%DypJNi>daqtQ1GUJls z(x4cX7QSt%mvB8WC$>U+?^JXwAjbLP#*Z6$96T^EH6&1@S-E^-y=F^}sbb2s z!j;1YI6QXp#^KdTjHy=hsp80bM<}S~Kiev2c%4n!9BxbZB5x=tz8Ipvee0;*9Fd8S zo(ZOGYRzUYSV2h;wfXRYPNTk{y2upwk=ZsCDLPf1eB?7eA!Z_w6H;C^R}iY~$JK85 zYw%N0R)^m+2wNM{U8*SkNYp7kE>4cB1-b+qSV4StQ$|hT6j6^qv_a z_Dmu0baPqaob%kqOvCY?UX>GQHUwmuZ=Lz{OmqVOSJPb)RHwN82C_kc9JPgLWif1n zIIpdN=nm*r$YNnHP@0#bJ?p&iWst4S15PXNvXNmiB({r5!Jp*|Bp?xa=M&I9%YwpX zyF?Ix@cFVK-pJX6LP6nqlTPWAUaP0pBnM_jBWLsR6g-Q$yVaZ)04OR}$}P|8^ZO&7 zthJ1dil7bbmJ7jyZ8z+n{W@ONdV(?i&(1k(Q3zL(Y1CL!whS>SsEC-8RPddfNe4<_jv86nnnJD~?bTHpz|nRUi%FT$Q*Tm@FxzIV#vn=Nv2 zjICm>x9_BP_{#2rOTU#D(P1iW7PqG&6*48zpYPoSxHPVGPm2#w(_(8*sz$k2zBF=D z0CW_KYW{PTxOY9^+muUV=CY#b29S9cCeF9u{0i*`cZv$xPijDECXWtqhO`?D%=%Ek z6iDAB|A?zC{Jh=y@Et~Zp!O1vSreS;FX0?REV)p8W5DL!!-md($5GRvFXT&n@8N)I zoNMxx=LJIj;Ozsm6YO@Q2-tZm<(C%_ofR3=P1qvPW;C-Hui z`1iRDZ9q^Ii*K0dEb(G$*ZO4B_wRh7kg98_O2*S=)Ouw11v7rw>g&NZ=fU3HWucsq zj=xhHwX(cKY0`((U=c=Ga0v)NGJQ>oT#D^7QOrY8N-DvH}*`q;8sUzuSMw_?zg=L(nMKf&&C*zdrffyDzu9z4b9e`}E7)IUwnss%qCX!>^Lw>Gr`pcXv6Yl(IQU zTU(+N-vRcJNC|HVh+(558i_ZDLDpN^tv=1%!^{fqbbzXZ_hnmq1q2v}(Qfsz%pHXc zdWP<%$*HuLL%xwc;P%pBzVr>@ZE0u0f75Q~nJ=uFqt^iZf;k$^@&d=-j+JwnJ`gFJ zX#JU|nzaDNb2i^2qprc=wsOEm|2oVVoS^hO0trs!@4$9Fi{6hDr1Le-4HQY}=NF$% zjq~r_)ao!@p|R(hJCsw1X@Ze$Cj~bFXQ= z`zmLD19&qU8CXhx^?>uMpSg)b{%1eyeVysF^LwFue;>=<-d>~8M1H4-#ll-Dz2^aE zVvcEQ)x^kAAf5~paeY5<#mQ_R;na?@Ru(3I$=FB%MOzDb{@p#oAq^&c| z8Fpj35traEQRLS!O&{u8;RKL9oj1*xAW7arC|XXW^QKCC9fZIK}HVD*$Ku zE23E41iXBY_{#=R+szLfj(o2%n~Xa4@cGIdnj0BGwwZNArZ|la zA(q7f)p$6C2*hR}*baV<{YJ$eQym}&5@#PfLg+OHe0_3uZ^k!W4>-je1WDXCE=`xA~+ z#01=d!ia~6k+;bi^yckS?fGY=s8mMfpKnTU_@oW!rvKZUY#*TtniF3jqFWCW zI*-fF@rf~@H`IJ2amx;d5tvkCH0nH+_vdO#xh7t2 zpGjy!J{7;OYXj&OfWejL`~v4;3!{l-9@e0+*8|8Wul_LJi~&h*0ol;fL%+4QbIt)n z4WuO;qcxm|ePGhd$@^M_+CJq>VQ6h#-N9WIESbqkwE*+&F=D|Vu&cNFtR`Xn#9gEd zO-T$2{#HGRO=4n3fPyx|p>obWDeMImV6D9F;!XG7F7f=_ppha2YiR}SNh&FAH=h6v zV!%R5G8eY+SAH+iK^j%Ne>EvS{nb7qx?9d~cAZh*s$dyc=Uo+vPDq$|DNQ`L4hn{5 zQg|%b@P!<%{KM5|@y(zKV;r64xOE@^BR(n;TXJD)Aqh}h>F4!4VefGcGvQ-xNcyUyS!6Io9q9oML6NNDAx3zB;0{wXu z2!c^cNB@^_6dw)&#L8}@O+?Rs`x256yWj3l_Y%V@9TMI0SNOvw@YmrK7f5NmxF1+{ zOa%Vf=Cu)X*&~h1Vn7H)uQH>A2=ceezAP0q!Z1~YqIpzv$=E3}Ew{R9%1@u3?lDHj z^oUEmp`(KUTAEjOU)|n+i)hyN%&L7T`NxCYZD)G(ryh~!&Vg_*AUD>mZtk6P+?8oS zYxyM;m;r-3>2csz=((|>ZYzVCx`xNJG5S2%t0&J5RkcHY^aszRErA7(p!X&llUBEY)Y7dDY85wCME z%(^iyNX*Hwef&dQ5ptVxtKvX}J)4hzKHt3}UJ3WXbsrT_>kM*7&K`($0ZewiSek5GNzKB+0aE*V8L(5H#`CXS zhym8x(8$X(4_9KMrh_RDw)&G91+cIc;>Mo^EH=j>d?4jiaa!MXl_k~NkFKv@|L3y| zK&ElTCplv13LAzrYIO_-P zsMpE>ZxRIR^Yc_&#o18;(0bZQ-%@qKRZ}1<@b-P(_-RW^r6x+U#ZXr0-6N!2=h?%bQfLF$?EX77p_GOB$FlLwj<4$EOBI#CqJ z_C9n*N<7GJRw=i`1ul1D&=qtebOQ+)up(cpC|Y6fknn;5UBXYy={|0f`rq@=PJh59 za%F}h{y}$&Y2k%g1Im^rRH^lPp@E*Oz>p$9Y_y;zAs%GD0sex8ZKqYS0#R!=p1y2B z(_G21m{6<$oQ1 zm@*(P#Go0~e-jyt+`vi~)rALs@&#HNfV6?uZjsrxvu>W}ueQVKeMy69bhqCAc()Qq zop}%w9F)gIBamUPh!1Pn=^2ekpAt;E`t5Dox#t_Eq6pDlMLVt9@{ec%s!sLJzfAUT zZQb|)N~z7SkZ27E&EFWhd&g!uC2OUXPX&ZQqB`Y_XqWqK;VMSZSis^7$E0`H=9U|F z1R$*aKmq5iH(DNsiE}{w@Mm#qZ01?GIfJZDine_`S$-LSdtXQU8C{o#q)rmmbgu;v zsW_jK!2p}&bwn_S&zZ>E%b5(&nUo@2eSc-Y29mx$1_AC73u>Po9P=DLC@H2Snd@MK z3L*q7Xo_ASFK{qBRDZjMJy{zj3On4Zvk`rD890!|hXu@y&qpEwp4e?+%aq0maG;)01^RMm2k^Nwueeh?J z5wh)ZD!nWRrAZn6(R|<(#p??Q`lTkDhU!~EE?oGyc0yIj; zQ&d=ACgO0sF&7!ZnrEcnR)aNZt7}JQ)Sz=L&cCp^i}HG2?{`d`SA-lVKD3X|jlTv} zbvdj4C!k{^fzrs*Ts2i9fV$e2TY$U*$+iO8XFwnr@i%wfjhNuM|lO(jt1@obRj|(1~a_SQV+N zDXTw4#zrdJq>K#@SBnW3j&Ak6JJ@gnl2O!ognZ`T=dZG=eqw5OeGv7%|wZ}JiL?C^q>pdAST zI>@0N0X31d4WpCoNj*{~D#EiDJRXNh;pSf=6?MjYEdT`DRZ0oxr#oN^>DRBeFJS&G zPs1fU${2IG(v9i!4R0J1>_*!>7BR$^sYhf*^0y49AtalbK#d@V?MzE9-6hGa_Z*nU zcN(dcTqtl_E!RS?`{wgdJl*naHIP}HtPJ|~juDIekgr(9$ll=jFt)rrtk-{&`V7~V zI0v|RaQz%{2RT$6bXti&lg{_m@}@$RM+EFBv707Te$~f@GLbue6&C}!A0cF`(oB?| zfZ8Z@pfKP!jcS(pCWCG*lb*1Lx~Igsk6(njT&ME^@v9D>u<17h;6$6d7YxH%I$3Fh z6`Xg3wrIS-;7jLvQ?I_mC~>a7gT*rS@YbSy;Jh8zZAfm5!b@1NtzD+x%u#Y+OoaPA0CAVo=m!iShr zbYIkDi zaL{C`Tvk(v40GiJ%zUU_*rq#(l0XUqCq5b{@8%vOFmKl)K|6O@Uu`Z-8PS4C-z}a2 z*K2SZ?O0)12n}aY;(4}T$MOBL9JI!<>pg5Yef?kb0>0r z0zRvt~2dr*{=&g!9X&RkiPqHv8}>UUjYcE<1dc~>!A z(h7^Tz|SdV8VxL;`3cZVd`VtL@n%=nR5~8PI8;OjPyU#O zbId5fHRKUR0e&4XJa@E%Bg=xlQCPlH96es|2BxTy%41YBM)e%wC(D11Dg`9My8K9q zsvE+zi4TO0JQBv8G3`=JLb!jARnGC0`nBSyN5=wr5}sxb*;cn7tRAdv$K47}uyTMs z^ce5e+9lfq-=8LORa*_IY?&<eKNU(>2z)$})8DSIV@S#?nWxdOE z_*ysuok8#NC(hLT`jWo((-y4DQ3_E?xfJ34WZgIkW|NA@#ZCH}>3gFbdX%NZ&FMT` z+2Ye!_I%-Z#}VKsiOqQ6I)ZfZ_YVw5OQ(m;*B?bYW;X%LLj*N z?r^s|IhhJ!dso_?`nSh`?ZYz5{T=Rs*1+=7((#Z1$7a@>glxBj-QtC(0Y83uKen}Z z!|6HYx^BPa_ol}a#)>X0{oel?Kb|T|jKHC?I@xE!c|X(wspKd$^Rzx>uCSf@wWBGB zr{Pa{WwF)raw+6wsv%KU;&-Va_io8OgDHJsvhzwt2f~r@nq^R8zt=QTJ{b>n7F@a{ zvX?=27;rlm`MN(O6clCCX9RerKm@6u_1{^DI`&{sN0z9xyIpUoP)d#Fs8qEW$T z6!Ci~%->PCxXGd|5-JdYdH!Qon2NPiLQr@;<&XaF*CjV;y+3TdEyIteq15_NWxc%e5}y zh(4LvMF_E3G+Sbgbl|))>hN1#@p8x2B|nN(!Os!OKkrw0m&UtFRfX$=@%^~)(_bko zknAQw#!$N!MOL8JqhGnc&#Jve%xEinYR{5JsiMKsO53}wr18bDs~DPzISAy_M6heT z<~COYHmxFfo13HFjOZx=i+MS&Y`mlH0$1gEiiFo(_syQ8u}#Bdb$&@w7rP-(_pPhY~(oiiiWA6g7UEei?Y&F zdU@!lOfvPd47ty zvWocc!HudBlI^R}NL!TTNlfKY-9{b)v`xhc#V;vpk`JY{ikF*;&qg$F*_-Xo#nW$l zoBj+Otx2A`&yJWo*p<=`Ho6{0sN2jHs$L`%qfpxS*bX(Q* z6`S*ylf$CSa;}=DD#l5~^*(s=fB-b$c|21&$Lc;qukZ=It(*uzdvgBpO|>RbNbvG0 z!jj%&iEm||Y&670zq56_$&RKAXdiB z_)zkby?p^EC6Ns3NZT0TM!5A*a<*(VdhZOJN@uR?Svo3T!K=))^1F}F zxqL2*ylSr0)UpD;2L#kJ?!>lT17phh4LJ!u$=9?#$+4dZkJ&1u;XH z-MiEb(frgrEzJEK5;G`;b(19OvpTf31m?`=&l$3{pW+VUEK-S{&b_s&E5KaJvWoRX zFb93kqp}(42`mJ=Pbt}8i}tzt%da06KNUTG?Cn>I{*|>`v8YXrl8=G@y|q_Puqo4b z#l5cTVdd!XxoNJW^2@@U^{2AOhZZ1C$5wwkZE7zgauA7``B%1Y7GA$H*=vEMh2g3$ zs~UuAFzeQ1G+G-p_x9EC$`1n*6-deCm>;@-Jf$2Tk|@$!Jt0!ho5nh2zUmxDS$MZP z@7-QJpp3A;*Xyf-+}Pn_rSo2Q62^hueDsQjqjia$)*YOA|Nl69%cv;ZE^Jtap+Qij zK}H(smL4f-6r@|ak!~2c6%~~3R7$$L1qFug4h4n|N$K|*?s)F^d!Mx)`Topu$;@?~ zvEw-Qx%WQj9qh?{;M>wC)|Xh>JwJWJ@UnZX?~LcAsxiV~zx zr?0*`hVu-S^%^_9W1cQd5VZPp7m0vf1cPIJF7~Xn6(!41i3vZ%Ar+g8j=%!0GjsgQ zXl<~b!|nbhZpqVvINKl5yi15aLNY z$81ekY4v;3lRh2KitR4V7%k9$A{5UG<8{Xw`K=Wil;rvqrAMZ@pAhT!L7UU7m9NX*``W^`;_h!9kS@rwtT1uBaeIJvv z^6hq!Feltcyxa7d5@g6Ys5NeS*OhX2pdc6ZRG(#EksgyA@R9)m&1kX%#0iHAP$MoX zK56>vaovIiVXbzNH0oA$xcbs_m7cdUtekM79k6eA7;VQ8FHGal~N?rJ2kYE8cf+Mk`u$Z?Yl(w zg!`_SZ)2>IECJgq-`7|SIj=a<3&;VXR=}u0X6o zbXF{aqA0MhoQhqzvi6+Cq{U10*TPrIl)g;2qH<%w5&DT6kL;Ez#nolkEM9$fL z_aq|0INq6AJuiCZWFZQ<;B9v%>de$0MFsQOWia$ECx;YcZtxkT*7&tCIE~^}d)QZB5cfg<4Nd5|^1iPEYQE(*!GIBI<9A6O{UL0U&#IMmBKxP_s*UD_ zUl@Oofw2jg>_85D8!6_WGVYn7K(9oeS3jop^qk01EjC{K!dSMJAgLH|n!n@Ajz>Oi zm_3pG;1Rd3=nCI%ZX8{yh(HbrMuYO~DTB#s$ET~IBa+Vs8L=}yE2s=OJ3r6F*9K^X z-EHF-G3FjnD5+EaDPaC+vO^ksu1EpHbx#a{UjOec(09z$x9z$ZA`dy5_T}D|^Svt9 zYgX0;(uCF=0)N)&PqO4mikx?vEH@~08kmpE50n+S@!^d$o+ncDbPZy=v3=p&XN!xs zG!xui|EkwG!MXdEBrC7$sU%Axw8KO>Jn0mlb*f!DUS4JIo9ZpQJF+xFZ&S|d-nd04 zAZ>*h;Q+Unet*+|MaH`s#{;b&xKa9V5bP*;Zr)wVnxCm(K`Gtk?#)n$YVLk}Q=Iv- zoES}|B?FUE3L5n7Z0;~X&+G8;u7&;6j4ifw0U>eQGN$`u-#<5|Iqnu`v*~mZax_Xa zbV&5z=Z-_?&VNxnDHk9fB2p3e0dU)L>XjI+SH{CFLl}_y)_tMU01=oKe45I;(>4_> z#S!)6i@16B;_>W5?F6zbxA6IE@8m5r-V8^jd*_!2<4_UmIE{k%uC26w(y_@f=fAO0k{dgAueU+!07JSdTQckW4AOt<1wh*{2+ zG^>7HsK~E_e2uj|f9m&r4pco#Hj-lJs(GUe!q%63>1p`IjaRP#!z_H&c5a{uQ|qs7 z!S>ld^KARHH^L*ZdHZr6Q}Ci8q%h7hyN}VpOP4q3WyRD1Gojh8$+3crmrg}pixbiS zfo+M?Z5_J;fZjvHDgrekd1%48-ht>Qe==T33;0LJUPZ}HL$xV z(gTj6n}6`7yEp*v=^fe{j8zwaoLN%e6HYKgE$Y|zA_MKbx_i!B#&_2K1{H5%#6jde`%>(jQ^GI zVtlcEu6l;eJxLMf_o!Iou9hgH_-du`7+%N8iu0yiN@1RQ`j^(fdjZJS^@nPl{aF0Y z?er^YP)DR&8i}Avw4vSTglXzNrXWyT1+B1AypiGuBo}*{9x(UpxYJp3`2$R)U8-vc zbmxo5QKGa zQ@Xc&m+&|Z^7?-5W+FvFfmR|`3c?RXv~TUnz7NH3i10P?oNlv0J3 z2kK9+-1c-F=;pehdfx1BvoQNMMTO__v+cUfiKAWG<;jmbA%6ZL%h_gu^Aw_wg zV##dD>iwGBcvjF)#eZd59t~*On8BlChWi?2=O|C!Q@$K|iFUhLH!Rgjx?fDS%2oo_ zFZ^?%ep-o z-?MIA23;cn#J_*bMPd;?YBN%{eK4NRRvl|SNO&Jm^C~RtO}*p?UI@Oep0^sk1FO%W z10S|@%}yevtIjB=wjI};J1&0Y;G`+(Rzzy{)D7KIZmt~eZ=4YNK3}7a(~MU*u_##3 zHkhq9L~1pOD0$JJ!Nj2`%fzVCxL0Iy7Vzny>x0$E@YFb!e;HNzyhG}AwS5FpH}TH# zBmC=&a33+IKZaG$of+oOSOVlRS+^u4)@9l^tn(ra|7et}G{nPhL%w$^xN{(^sf?TS z>kGLyay}c~#}SE24T`wv))Q66T#KS0tYvr?(vmq#iaRdj<#`KP4|CW}xtGZAuPc>! zl^0Ryc8_f>1r_`83%DG*m>k>gM5SVQTm%gceYSF*jw8y)8F2nJKI4%@M5%WcUdPq; zv|NK~&Anf8@0@~K{$!5`o2uG;a{Fq5&}js#FIkfLGcDQL8ux1JCHHd9OEl45lWW^? zp9Es1`%@Ew0yCbt<4KNA97Thqp7*q&sQCA(M4qSm+0~5X5ehRBy#u+xtt@nxW9pM| zeSZG@DeWmYlAUYD-fp?}N5%(XW^3OP=T>s?uc7)h+5D=ltX|_M6Sbd3_iw+FDD&IO z6ZM}y=^hoBdzg6V>(;dPGh9IIIq*d<^0r!yrPo6Ahb_$m$LFcpI^5T-$7w`(4B0}C zeoRv<>}%Lju9c^r`ymdGGZ#x4g~~*7NIt=4IhuHeysj$ToD8eKCHSTcr?TP$n!TGC zFz3N}kimr@T@*Li@G3pa*M4Q-Ve^OHWPMtD?YXdKDaP792}3Lg$N0Qk81Ci#n|OGn z>lfx69d+;rVL`XKVzK#XebEL&p|pp^xMw5LJ?~Q#qrE;zb=X=EpUM^0Z3m}S zabIc_sj{h-yB_-d`0-;ou)8=`GuR(7adJyDXktdN(Nij41J}znp4V>eihESY>(rm& zEzEp?U4A&SRi)uqtkgbYb|l)=^Ro2J>=14yy~aI!EnXh75PB9!V#9mlrdzJ1DK5*Sz|rYsOS(`?I9qoHZ! zYUmejxX0o0O?J3p6vT3o-2u|$2<@h0m6Tb(>Abdg9-sFr&QUyR~MaS*ED=Ue#v5vveHiq89mWREFqK+?qcBd(7sChCzXCW@48z43I+6Kd5a>B(S z;EGtmeG$+7#p316tK{z+ieWMN&tq&(XYA3+_-!VI7{)k)T!I7qFfMkSi?v}EUbLx( zKsKcR>Y8T3f>2JgO>Fz~d@;*ORlH3H|0S+SkAP5fdhHJs2D+7Ac;$ZR-I75DckniI z1Q{KpbLn;wZ;F?r)%uT?EeZ`XYJMJ_E%`>d^33#WiE3t!5(6T+GJ`#7A-ADX9F5{z z98)n8?VI{t1%NHLP>OK~^3@yoWT8fPX1SduBO?e|e~c(zhwuWRKf!s=3(dEAea5jX zYHFSo|LARRD;|paFrG+wc13aW-WB786@KjbAYnKVv8_sW>y!TR^>St2XR2byk{gB> zH@)Mp2#;o~UtwlTP%HH6z1Eg5;(l=e$*yv~icU0wFs@|dM@E-ka(I$Oy z({U{`A)#=V3tz@!ue&IuzwzW_vb!9;Cl4Z3;FzQro8Y}hsj8XU z!wV{wfb$?`-D7QM8wR^W52%nT6%%lO zc%Ew)kbs{6UHWBhi|D&A_~Y|p0V@#md)8>aIji-(n5gd9k~jVE@VGe~Nxdq_VQD&9 zaP=jCNQB2JeJiWK?*$)k74y?^@S_MZZymx$CHKj1wIEMlkINR2T06F86Zh^?Z|rqf zaxf6Hb#IT@yNn}TYU)UhtHUEdF+0>+9N_+0U)AhT@Q~!BfAqvUot-)~wb{??R}OcJ ztw}GwYqm}hA)Ocd+32xYIUG#=S!x${I+W?jQtR51@eD6k?{bBvw!UBeF6Pqx&-o(3 z*B*%r2)%|>e`)ZPGHfV~T~)U=qW`goj3wOy8Dp+u2>`cf10a}f(Sog-8^iimY?^K$ zR$Wbvx5`P&jIT$IVCj6tt7-)ffa?xmZ~EA;VyG6%D0P&rNn2A4)_-=WT`~6T1;-IR zkL2Sj4NRU`u8?Kh4%pZJ)nO|)ReBLHEOpvtuW7(Y?JFv$Q)#txO1MzhJh0GHf1jKV zUwl8&a;!$nRwvJUA&NtX%w8zX??ZGiNy|D(miDs&w zZ#)p_@@085mfQ0&LMI2{Wv(r>V^}+Z^1bxd2s*XYski+8eTs5(wQX;uOL3864dVpg z-f)bbxmv=}Kt}+S!1EG;%9i`Ti$tW7Q0>$NKp79uGq`s3kqKA#>J zcr`6BJ4?PxD|>$Cj&pF;$-BCI$!HKBF@N>&bXKvs*t0T*dxdC<>Sc6;ID+wHr@UAJ zaA*xe(V`dZ>JOFK8-9?paPF>C*w1b-jEfR_uEv#Rt3DYo@2eh*h?Nnmu=B=0oNLx^ zTqw(50#IZei}x|lsNX{mr*yB3LXDNd9>1{L_sJvfeka$O$#9?l?A3GT`&vY7fgcMU z_1P8%&J&~&dXo&Tlbee*i>w*^LI{DByfFZSiSNAYx~3{L4C(aA)}w;$dL?A+ZDQ08 zvsu$6FU#Nb&g1b|k5tqWVLmz!`I)^5-^k7k@Ru)I)vwbjTO0m4jHD`uQcu%QH}n_M zE*|OI*Z2ll<^~5QrY;Quty!mz4Sm-~J{_^<_+>C;i+odw4Kn}aXfo{k2l|lTVYl8! zpQFIhV3$~K$H%SP)yglLjN#R*T~5_S^^SVH&IRZQG2ta&=Q}Q+PAJx=)MCdNneIpPd_8-2u#vzZC~R6fEghRl_X^}i={b5>-5KBIoTYMg zmKB46D$CpbJ%gj+!H(Z$kmW66Jd|pzRVCH7o+H77HZF}UOpcg|LffM|iN2T2YReM+ z-N+M#71WiZSuq#i89V!$OWSi?!irH%fOeGb&=p+@_knHJUIv?Icz-Vpldcv>tOw_5 zmf@VTZBV1DRcA1UeuDQMV!Z+az9k%5#`H+pBlH+be(^+?l2zOB(hQ-i;7KPE0Z5y z>h5i1QqyyA^jjUFvKOZ?$9ayuit8F=bSqQ7MeX>*KXoK3T<5M}xQ+kGt9~&bO)tH1 z%?i5UD5dUKb3m|R=&)zsY-T*IE7+lN`<<}Dp=f4S8GG}Q%m%w(V^UmIbpZOyH9wj1 zBBjfh1?RvSopzOJ>l|V2IR{?F@S)FTmZm%g4{;;G0wOyrWZVD8yzgv97vW5GF^@J! zUsLDi#)lnKv@qhY<$i77G&B;SEtmCh@rwn!wYd!jXCCP6CzoELVGlNzOqKzk0j#ll ze2pLCk_)6X4XyzFo2o1Egy&jxMZVf!svk`2oZ!l!TWztB@(`Wnt2{dXqb~=Zg?LSk z7vQ*YTvX$+t;x}Minqd-DBZB5kFO(;#|A|EWg2+eg_Lhw+*el4CmT3K)baG~n3oY( zvK+|pF`hjiD3d2TfP{T52tc=6>;H7(Y?@p<_(Yu6&3+yskKY?zv{UTdd#r@#5%wxO zEeH^XWW6e<+Mbk?{Dxx$OPSj!_W12aSgqXQ!G2wroW3$}e5e5gw<~?KOzOc0-+o|V zG}@+kC-PebhLRn^3QoFxr{guq2m2@X*=vXLBtA}NY+33UTpXQIN8xRZ#UIb`3KPE^ z@I()K?0J0Hs#>Yz%A&QO&S3<)cJSjkbY|#F;SbI9=T!t;!vk7q3h-!@LIT?9t{uV$ zOiO0{3&G`zab(Pp}KD5`&ea zTcwo$__mI+qQ5;a*~=kSwWa+#ZKlAPM<+swLeKrB%yE=@kDPojd;mBo)hMy3ZI@zJ zV`w6N z>tL8e@{!_EbjtYDxUcXOd`S(wEx|Zw3w2c_mSWqnx9ILsBxziIEL;3|1@Vj`ev=r`zm#G)OljGQtnh;?RkEmw}(LN-vEVyvCmXGWrurMTux^K9= zwEABB=ylRap8mK{UsoR-+x_qlzQ#G|P=T3^rdbW1&8;)V0vXe?AK<9UfM->y6LrP(Gal@EirZZlzcc_LmFa)8{816BK3V{nC*M zsSIR@2?lbd<_ygu9rg7w8>SVP4STfe4R@tREVi*kzd2sZnUNVLw_4ko5(Amr{%teR zM~~gMC+zL|2M-2zaJ??&n(M9Qi~?_E)bhV;-UPz6A(t-A+vX?Et<-zpLV`?t^OhrH zBkxw)6*$FMYY@@&PUK`&usr{~)cG^qei${)=b3$DRnlRtfzN1UqpHJz_(-yi&HT^R z$lf=av`C^Tr4Lm=&q*@1C%QY6BJyDU>50%&xasGv?qh*wVo1sEjtdsp_+h~7;A@ww z2T7-1-Zxi?LvyxBs^8Y={(^=mF(Nq9&K0poEKQj#&ss2E>9iE@r1 z+k+xo{o+Ksa`mJ(sqw>7Mpxz`n?~M2Ah=K%TIFo67`3c$IXSNVnEfbJf&=cx`8b{J zww;Z>;-D`TiRxyldC|3*@W!!ZIG$`)ia4~HFCW;jZQ1vcd}6&gZ5_Ttzd21d$m<>;~b(t$I}uo?am!*cH@XU5#~rI@?!|4 zqGgF?j|I-OJ6WB@9`++B3Mwf}(Bt`eQA+BlA8jvPJrZ|}y>_kv0eGOwhcOYS>Lxqi zVt=UKCGa4qy%*)SS8R7Q$Lt%I8^bxB?)7`F@YQ;u zQY?qj_VA*nKIW7$O6juWK(LoQYm(k|{_`1>t##43g_i14f7G`Kn ztiR#$$`^4(tV67^udzS2H%3%YlfxdZKN39sLpjzRpio(EvtFNe82>tr7zA+L&}oWd zd6CsZM;Zc=M#LaFQpe}7-SMV%p=dGW{9@Q7*mq}otmB|YB8>Uq7@LSiTi^sZyu!5t zFm24N98cS~p`TKIJbqyf0qD$DXn~nj!ltFnzIoHd=p2>|ikJMUprY71*s|{#~1h1UP(D@s>sbTlPBwp zn6&FpYbCqxH_q+O9_@ZW=xF~PJDf&g<^`SnblAkR9ib?OwN~O zbu%r1L{!i!rJdWqBZ2U^zFU2peLRDaJU_w7DseO~t2W3GmFwa2Jku{P6n8_gM9Ry3 zbflmnoP;cv!^wZlICBp^@0aIa?l{Pdm{ZD|Ty<%DF2Lw+6Hh1-qjW3uGM`MsO`n&S z#Gt2c7>9$`0_~tNo1{&mHN4UYk9*jtRnhqqhoDsso!vZxZjUzydr`FON_A>-zBRnv z+9=B0Y4EV)taH*;V_>M@&=Pd(P|Dw6b^aD~HqCm?n2j;>Y*?KoR-0oys`!0U!mYk_ zzQUd)vmR+O{kSQ4Z4$|^I?Y}W0*;DXP>x*@KjNF*4`_Y@NA%1=mRlQlC&n-GI~}e~ zfC0gTua6~_$gnWqMKV@TefqgouI^&JDqjgTid%6_O;mZ<&OM~I)@~#AJ>twNux8l6TX$sG1G_exTPN^v&q+-mpV0a%} zN25_AMY3T3<>_QP{g3=4XXmM3eO6o(N8)$`L(U>~elFD6Y4bYly2r4(RQ>{8lRo^- zXs6|F1?Q+OmFDJki(lLOxf&fk+fV!RBU{I-MwceZRuUG!7#WSP*mj;5J#!Pl_&-0Of1p`E=Y;KzGE?Z?)39e04Nz5m zUArG_)Pjon^WL9E`hPwI$)}8pp{nLBb7;RTw}Al}nUy`Dx)q#r?b(0x0|OlRQACb` zsYG@NVB%jg6HxdhA%7m_19TmE%=N!MAa$U2C!*f8fEJ15i2!WacjN#0lm9%m#TcdV z$l9r4@HPz;YV-gqm(VJadZQ;?=bex~4FXwV5CZ{)TWJBgf+=6VsRiKTU*~LH$8i7m z$Kajx^^Mk9Am^`zNiaxu2&CnK`M>A>&qUrNLd)d#h)ERkD-GB25)Cbg4e_#=WmgM zf<%VD@lhiM`D%)Z`;@bUfpAhQ zePAX@j#ZNH@}WC__j_Zw9%hX^q{|d5lZX|N3NaFzC;P^`EWb5_KPR~$0UIeu2P^Ig zOkIM&U<8jGgA;EWdh>OV;y2a-`IYT^5Cx;wjaLCJ{(4TJ2XHi!hWEQnHyOl3l*neH z1|dw$^A37J9<36Bu$#Oevql~`6kSo}_h@#NfG&vBNri4#+wI<95g`jYC@-3h4Eexd zazZ%TPP6gu^?BuQK4QTf2*w^83jhE9H5`4X*$oqumqF^?_D$dIhVr8M$Uu^dnjoIA zC#qs|VeaAitKS^>wXiREAxCc@4LqR}z4REp)$n%|;4j$-&;(c5IzpmXVz#H|R6rme z)GFHYTQ^YVTPWV(NS-$+(`*#OD6m=`_6eysL%*p%f4-)HIXqbocVe551b9F+&Riqe zF2_xTPYD)X5CCSTuq|wezm2K*QLjW`zV(3o1~#pe5$aTK+1XNBXcxP-*N1M z<_#91B?%ObH&;3Lf*%sT88GLwIAn8!UmF>s^b*L98b!q8VbamK%vXc`uL{bpZM|j41LeM?~q?w!p6=sT}94K{tCbF+@%e_~~7&^(_JR z#+$trb6KuO^TYdT5_;lGWjJR07fv$T8|*rP8mQDjlpg^C@v&uMfwOMn0Wp6mLdNnt zzUe`YgR0Xkz~8aw{Xbxfk!Y{d_`chn>Oxq-eBVw zbYVR+;id^`S~gsS1f=Gi%%$OFPL8U9HYRxxGK0!*51RlZUDc4Oy73Z z7;QrgaJD%b{XK<~`ypknJa{))M*>NZDds^JeC)KJ_XYxV3pPR2iHDH$Qs!j1<&*M& zlb(lP1Y8~1hdBP9jWD%g7ggxcb6z8~+Ant}h3!Wz(+Chy93ZTsm z-$^lUFn6H-L`GTG=>?=U*&h{TLiaU8-{BS_Fsv(ubcH^Q&yv;7_+pX1{!f%oWW8JE7_p{&_x0xqdaT-zb<$1q3{xygP) z93d#;7FY-BP$OjsT|({U`#F&T8MyNeY{D%N2Fb27k&Yo6_|#LH%7@1c`$nP=gq3N5 zK~De|o-j@InbSmpqfiy1#QSV@Gd5TNDPLN_EY*baB-bz&GMkx4ITo72$;oKC^n-4TAc<8 zCU~Dtv_t$cObiqApdbEbGaEj0BW84)Azj`2Vn~DvpoX1M0PHawLtFe^m~#C+M=i+v z0BG=69Bn;o{^dZNk2i}r!Duiu%`oUm;VfUGx6|5($v_v;d4m^8*rGQv(dWzyaaz18 z7~oT8^$hWOhEVL^2dxB-&CtBAyQ{&7$$%D@au7&NZg@2q?=9C&u!aEh`z>+6Mzd2^6Udc+eDEe>4n68IdBh!Mf4H6|IAmz;p9QIKy zpXAf!p}L7SzR+sH=dw!0#XLau!EJUR6}o|!Ul0PqLjfD7_w0j3$Ou-0M?$|BF=gL` zsS%W@wA?E?^jV%7I{G;wV8IQZvgl6!YY8D@RxzP0@@dh`QGUGo$=dA;O|`W$(y!aU0rS#E4HgK_k%4JSPffW*YYSJ zO$tnl1oM?dWJIbtOORh2d)(*wTzB8>$vRH+>%{uMH!Jn-fT=4HVZ)hztFtD18R~;B zIG(39?Z@)J6}qJr%0%L<5X6Q31_3-;DV+9$kg`3+?wj@t!d3eXP=esU1 z^%&Y`;a*i3;J##j?QCVrX77j(=lR;?V?{d5N{Q7@rk<>HZfL|kDfIjPY0UW=td&)@ zcpKxL^BZH7_e|$D*Dz8TuE4?6o&_Q&@aZ8SjqV(OUl=H1mRcB>6Ndv?OFrC*op_7k zr+8TgK{Bf2=lLD1g;N!AeHO_kXxK9L%sp60d(`3pLS|_Jxm4p3N&7&a5QD&+7!;_c zSQU`@7W8lbLr);vk0swSa+{rMrPt=u91i9Prs7{GcR*1+4@xgIE8+9ZTr9G3Qi-^Y zxNy3*F`s^WzS=O<#h26QErxbGnWdmj4uzRk3UOGVgpqr@8iRdpM?F{}2x05KmA+UoNa39Hv#Yp0LoD)}7M%Vc=gRn3g%G?bF5$%0q z)O>CKjdMBHL-T_3C%o1l+Ur#9XTfKheh!NNJ>nKCm>`dTCER9RTDQ6CrJ=t)9Np~9 z)gu%K7Jp{|_c@1%Uvub{TLt*j(^DbybTVWpod5-vNi}UY^lQfyXj8GYN+{HYSB)2r zEY*y;_n~Do0qx()^^bEi#xli__#}>%wfMy=g@WPec~~Vs&wmcBfD zUL4w&c#vQ4`F)7d7$AlLEs<#com7n+ait8xkk)|P0p*y$3?LF9uL41nb-K0T3q8-x zIbGAssU?HWeUvVm?PDCdB(7GHJ&P z3Xf)992^|5Lk^7_1RPyQM#M6FY_TOuur?*MwIUCeaG3A%MjB4_FOn zQ~P^IHvMvL8nGtbrpQ8|Tc9JX&6!fA*LY;C!weTp$0B>7l&j$k($I4?x%a zG!5xOR{BdDD~ho-g|l>gttbj}h^ z(G%5^98MSe{_OZM{y8FHPL+KERhLlzFBAuhzZ)-NT#%VfcV^uK6hcpI0$pH6<4JLm zL88cHx_(h1D4_G-;NfJ9NLh9U>GIn}uTa;k+;6N;+ni})LwxHGxC4b$p(Pij-=p41 z_@P?b_>A-aq79BxEg=99xx&9ah<=tL=V{)&L9gA7k|QzXIyPs^txF?R|t~phi-wwIZdcxqtNc2s89--Fe=0 zM7Peeslc#&>OKPh2K1DqX4ZLMGxTM*f`bl0ds#Zl4crgST!Isc>M|K^Uu z;0CS9*Z`<-6&UeP(6RjuAni6w_-aBE_;%YpR!uCh&EUf?qy&$`p`4`A#**j?EvBr0 zM#$TLea_13I2k1Y4{(?km z_t?e}hp~x~n@KG)#l<+MVbDh)HO5N_kADhfpF;ef%NGnX^goSg`1wUmjFL?9zmZ_a zAYh;F7~mM7zTe$Vp!$1t7rbC!_gCOmY)Sg_{iv>-Ko*I*(*bmNmlA|oqX6OHP?_^v z7Ib%g_vb=ODJ?`D&qV|I)nt{+0{F(dF-V}V(a&7}@|(EU0!-VoORDhM!H>`YIl+?0G&5NfMPR}Y@F(<~>)evxGoQa9W&MBqS!&mHQ{XxC+z)0cn$pMjMFt+*ikBcao@iu7|c8*3$lR9uA~o zpYuRu0{@M5{*v+qY!nXqN|r6`QVF5&^qmr~TiX7Xf1rHwywU!Bfo`R$PL*Jf^Wuf) zj6h^U!uMLgVPo(MZD7&#W7!P|_yV2YzEy4Vk(MiX`WPO|#`5yz&&a4Kwpu~KyPdr; zPYq-xKKck$CrGJdyX+9xOkO zC1nzEHj_FWfhKKq1P068iqQT?7ct+2QeI}CAJ>kHKH*wkc^Mfe?%3f>o8E@mp4yU3 zrk26IN*r7j1HeKSsxZOFA9hAY!64#P7sDV_AZ3IE%dX|o{m&)= z^-W0u=x7=bNp?<+?+~n>s!L(~?OahDFnbdDwTFg>GbLWVn_DeeTkZqk!`Gp&scRfm z(zjsxAQKti)kj~|1!ib8_5DMDI-nBSZuX>b$f+7o2xK*s3~izL$aM#hbArb({5dc6 zzJ>)=Iawx>)>>|s>p?Jr$@%RWd{5^&T8#$AzP{=?PpY=2T~_3G_y@~g`?RO`fb->$ zPc8vg$Xtz>q~i7=lwU#yrkH&f`JM%0SeY5&QiU@+?{YUwqAGp1h8#F4cDA>x zFR~{Tw+r4=0Z+Fu&s3;7)T;Aj*G2Xy6H3udGRLC4`02RzQs1!JEyC~G3*4i5+Wd^L zHutJUB6ZpLpYb8J6dGs07~>U-RJ8&r?xFrMZrBu+DGF- z{qp5}Yh3f$&Ewr;y-B8D%f9YSXJVDvZ6Jc0C%!W`k#gy=H&=zVchonBhP3gr-u^Gf zBb^kK_~7YIFPnNEDTmuGeGwk!bLf9IBcK{=eklYHTfO|g2Sqy`Lw!`-c6(t(JB(CP zw_uHEL&K^{GI=d?_*1{e0m4eBo~Kd$5~~M!63&zgP2e`mQjN*`>irVSAgk4tDopfc zKP8ZRPsc|;38#Amv;sOgxTx-#XGXMJ9NND&+$Q=;eX8kzy8JaHh=_< z-VtLO;MNq23v*lNcKCbITkgZeNqVDtDaNOH_A&ci^O;{3WGw;wV}T8JXrqyI`$-kA zxiJW+=#2Q#aY1pQI^iOMWb5r^P~Z~LEc=Vs3~I(Kwacl&%iV9C3wrY2C-R30g`h|D zpS!A#oIS?)*D(I3oM0df|BBAN2p1Fgk3Bjbfm8Q8XBKLvf0j@H<|4ouH2?mxz4ld% zksR$Dm1>~ozACWGu`Q~E9-GheH5y-6*v${-el4X0X3;_d8nqdVoZj|+{@Q0Z%cXv= z?sJ&cScPH1-nVBvm{k9~^j`zneHB0wIaA9G8Ni8%Zt|;6CHuPcMcG3<|D6r5=0KU0v8dAR&n-Ti_94E=o){6Ymc z_7Y!=8F@SP)Gm@;3Rl^^pW4&@Z|A20&0yXlw*CYOnXj*%&7kQdG|VAveK`LZm^7SB zI>s&_W>M=E9mNO1L0vFvEM1d6~B1bY*NkIp`IXK6MIXYlWGhh3r5+yDq!lGV|Hryi!y zqa8Ra==xZRRUfs~EXDbTaRtKCqaUiv|M#jmD(K^#O5jQmW}xGt zSHF7UH*dB?8?7*XfPKE``gE`B`wtVZ~9~O{F&;D)bTSkMHIck^cHL^ z?=)RUg?>O5R*%TL?X_PXp#CkTj`b}nCe4ve3^<`lAP_1nAoRZA%$CamvWnmFRRFr; zd97nA-PX*51hO@a+FrJ#tJunX4S5-_L?qDJoM`IxViy)x*z1wbFT=u$41cPeH~N_w zkDM>YX_-a#0{wlaLEAS(trMaaoC`D;s<0hahSSHoe|@ypJ_lqzR#?taPBz(vY)(|E z1GQK(Rd$oMRY6;2rmfVGCS$HIUcDOvvcsKZ8_|b;#uH`&HhU;jTOrq1wz1LTn<3^s zh~sxN&F)uP;PPaI-~?d(k<=V0lPDKUIym-1lq;ap9@dBYRmHGq z&S3|RrK{p8XT<11#}m-$vU0MtH%x)Pj%D_}hKOTD=YrBNBGt16#ftm2QEVR@!lMN? zau1E4$i`TYN~6YDkLA(Ea%B}#+~t*R)b1Wr&9T3TbpId-S)fJwmAI5E%JPj% z2cW%J*~>Pe4d0weXV>Q3o%-ZtTbq&P-j@bRZ9?b!2Knp&T70o}#XDR)N1$3O&u0Zx zcaQlEKT&)}^{yzx)VUxfHt``4jV;iwojEP&Dhj?7Obyrq9~+GKc(ui>qzL7?mSTRMyK3-C9A0Jwa8Nmb*Rf zhM~M0wy_1e7jZ;PnbQ)+N8hV};R{Jb?yz3Z=MJ z`Rq@=5e*ak8GjM7;8{Fg-ZOZM}{V^NiHf!3KTU;8(c zPwH1Z41$DL0M=ffqr!*MZKJd+RYufM;5#1R+Ka9=!@qM(_NuAkdF~@CKT8T0CZ(V` zzEwq3^SWfuA}p6;^FT14H&r1gioOH6X;Fd@NpG47+9&(@I_&`|ikb;x>+MwXlS;_|6NKH;KnO#@62AMX+@w7MQW+8P|D2PS6N+ z&TM29>NND~G0?IZtV_ zH-Ik>Z4?ca_#1xk_li8v|6o4)S!YIj;#r%6o9{6a{(O!0LkFnFe#Vbj?V z^I>20L~VCnpgr0Obt6l8_Qi{>dN+$Qr#uHw2FVn2EBJgx``&)o?eKRDJo+J$)9~CC zJtkz|l`;!;dgoY}Jl}?WRF~AzVGeZy5Rq3x?_eAIDczE75(;numQ{6BEs` zyg$yGoG4wR_u_?d)aG$bkxK7rE=Q-ZsBq+$}9edUwDrxVzHVUSOv-R%0MNWus4Ff2_ak zUR3VUM*ow}8m=_$G%K%}!pU1(mZzST5^lcc@2U24Mb0`KHNLed6s_BVz{1)c6i-HFE1y3`^qnhZtDI=Z?hq~zl%f&6lp!Da zC_Y7UG1vp6QY6#qrJPtB0SM5bbaD&}gZJi~->2!?6eXUr&`VFZQaJm@%J*Wzj&2Kv z67#$@M%bQP5i>$RJ^($w{p;7Ht^QhP82Lz!_EN=&WsMR~|Lnwt-o^{RnqoYQQ+v&$ z$lx?jw&b|Y1dZ-nVOQoAp;SEZhdYfcSYemkKscJEMnRkepf_C)4>zhlS{fx?TFN~+ z9B=Wm%ZbO0*YA5YehL7D?CCl?Z-3%TE?qwXGRmC9{zRbOvDDY|6&uvSet^0+FdwCH ziiGX0?-yqMo8v?WAhwr6Kk5w& zS|$TiIaaxP?Z=PvaOj5{nm6rr-kmmbFv>~ z$Uh!kI!djtS;vvQH~h%TihE@3rB851SX|Vlv&>uj7tGIAKApelJry`y`H3v%FWeCv zT>apuoRyGv;%u%XPX5bl4k)u9=jo3l6i#C>BfR@*kS+F~u--2j2r2x}u&pb5#N%f_ zF)>;5?hXG3H~ztvPSWuWXdTU7k9b{TNU=s@X;q46GcM&-)dN78FZVjT`i`VHjpEyc z7M66}#_`xJ%WB>WWYNxh@0;c0#_M)lZ1+KawT-8BKVaD1I&kKQZE_c70@|H+;YNJb zwjiI$O!IXUV7rL5n^Rc6+fCy63{c{2p(wsh!KepP3aBF%zkc@F^ml)Ma^Hq~_^_ON*os)TnP1;s=f%PDWBe{^gm;`dzO#w0 ziM+)|KX9B@A)k^uaPoX@aKn7Vqiw5$)c%0gI_=zW)St-zX)q>4+PFJ_am5##ovl?e6 z`hCwbQ9{Y}c2k+fi+!8Vrzn&$i#|F#$G~{nP%vAp$s;)XJ>aObo4oC?@OE<#M z(%m85U4lq=cL@>_(%s$NsUQu~9g@=04c`x+_j&YNYyOzEoEe!r=bp3A-uv9USAMG< zpu|SLS~;U1Wl-sA?5E2?&Anmfmt1Ed9fMs)@B&_^!95Rwq5oIyLVMby#dXHXnTU%R z8`46%7i45bZRgGD_1RWfK&fx%+R#_4im_F)7vCp|U)Tx&hs%v$9zM@o`XQkOeQ3RB zV|Sawfn!SY=mBtW8Q;7P24o^&!(|7*??%SsJZ!W*_G<#?LCu`E3_^-Dzn}49!$PMF zEQ!CRK-0`!?#sH3;n4FOc<25w#?tH1Pc^IL^Ps~i&+oa%*3>8=-vlUeMJttWM0FNf zF_w-jI*${8nwjB!Rd4#nfP;gcw$1fH$896Meaqtu4{&bjV=~EwQTGch{>6Rqf6je; zYH0kQrWl4pjS<};#gR>0$nHT1aFZ&be;EON5KM#M>0^Lnc}faj$kZT-*665C!j1R? zszp95>uo@M#NDb-#Xxn>G6IOsG!GWI74x_<>tw1BbtAf@B7xs!vA3t#KNHbahGm2Q z@+Z`uzdp45DHui(?R(~OPmRuTw(!lmqM)Xt~*n0 zo4~;~;c^m|8pUvy=FZwL;D$y9YTqJUjM!)Oa~Ew6)y4igZ&)-MS*fda@f&(NX6biJ z`6~&yXS%tnDL=R>Um^ETmbsEQI4F(-V0LpM3LT*M%i%qy9e5QgWMw;Yt?Mi#e0`Dz zp3cJczPuS6iGFp|vUJ+zd)=FC?JpsY;vvGob^a1V@FdWbN=vH?W=>P{^^X?jaUjbg zz|kcJOXScgG)bxUdPG^k__QtqN56C~l(YCfmv>`-sW3=Tq1CQZzULgoYcY^`%k`4! z@gl#A=_W0AMHQ#NAx9#4l<5dI{HH4`?dnU6OrOoBG+tulM4x-hrRx3xDbIehUJd9} zJzat8-tMDi?C&Hs4SL?{yiEm+zpK4v*g@ACYwc zx=ccbU8^UvVPipWw$aTrXh+{c2nUzz?uGIekJlyBHO{}wCb&uh!v#?AD2)|lhZH52ams1Lz(LjMh+;2X>QPy=UDUiTrPUPLE) z=mp5>d0Z&s+DglhA;kgVK1;cJ9z7Sf{g}~q>KmEud2^L}DJcAt9_)V9CLKp5i2(+w zD1e0M3WKxBW)&(GM9m;l31pHnz^xM=NA#p^ZKI`+tx8Je`=|TMOE!0+_AR336pq*GZh>WZgWu-GAw(k}Mqz^Ht=CugPy58nMniQ`5mQP|d7F#Jzh z-_iAtXM4qU@LOuNBk%8soX@`V?@qN>ahecPHcO@2Hd3Z@x#@V&d*)qE%$s05d|E^P zb}%VG%$CXzF8jckF0hU){RK}D3iQ8+AcEgd*Y$G0_qBo(@GwRs@IyaezU6`Uh5Fy) zryL0lO^85W)|CDITWK$>TT-BJiY9s$ccgM} zq-n+RBHW_l!AM!k*-4H3*rZK|;3laZ*e8WQiQmnI+HO!wq7utzC@)Jmv)1fDU&^}v zbuxmw9l>G&3$B+#$`}DypWZJv_FeM%SB|rJq)}6j%fj$-e!P{&>%qtsGsDYp3$-X$ zJH?C-FVL=8`d0bVJ_!1hzo;1&2ow-0)v8zEMQxc75KcvW1`US#_tBRu_z9t9Em;`c zmxs~xfeiWIg#%Vl@CEe4c-^}u#8?&=B1-6{ymexS_cS5rreJFa`;*x$2@Ywu#c~JK zle4qfHGDZC;4LKNFm#Q}?K?JOWQ~E-)sP&!k><1oa#Z5kkL`GT!tkUv+D;FMgfbO1Af+5@!l!!=R}%IH;^+e_kB$o|z6e zy?p2t(y4MK3U_zNoDRD58_vIBgPf#KXWs~y=5`1?8B_flVP7h zCxH%^+GKN9aHTN5eadZdu^vP==3Y_nxxPzbyv*jR$yc(suiiP4mJZfOHIYjf{HnJv zhcn9MbKZ)Pjefhj%{{iLDUeUv*+BvY^WOs(9L)X}jaM0nDD+>HPH>~RmT>>BC=|3A zNZ4T`JG)0(`t-4I-HA4Vzxhr7x>(1kf>Ih2g~UtMGR?>P9tUC3cPQ*+E@xJl!YRR1Sb@{9lW96-c_R}pEZ_E;6_6M>yE9+G1YIp=FEY~yL5xfX7FGw8g51J0zF z4%qv81bke%v@he3{Iz>&qk=$UwC>rLA2|{k+LNe1$0Evg+s}S76nGCAb|xu*oA|Qw zp7Wf$igTN^Gp?TDrGjSf;NU_Q$;sZ`FZG-6KkgqnRhChyJRXKtbz2?0#l=XZ zpKtZK-Fc3S%48sKC=AoaysD{1W6f*phQVQAxzZ|ED{~lx->LJ^pD6(4UFIXJlDdvq zTyE_t*J60APG^Uh`VFG_aj0+{_MiXrGze0x=0R#dmEyykP_s)zCB-OvzW>mO5Tr^*Jhi{U` zZx8!JlA#hu1JoFkXRF z1>d7;IXXhmYPR^&@E8smMBpc=V~I?t>=+UMEl0r>1PcdSz~>n3BjE8U%k8c(+*FE8 z;>obw;i3Jp+?qN-TAbe}g*hAB(7-+-hbB#3jUoq$^5$|yB9bh`~Gf?7@_`sC_~~u|ICR5 zEkLR_n8d@VTCOKO7hP|2qitq^WnK17e|exjI699;-%q&uYp1}|TTDUGVn}6n#2w_K z&-5W)vQ89t5+dH-xL{p+TKma(!pBO^o8TyUG! z!d1g3WA4^bAOnmoWZS<&0=*?MK!x^B^VC)O@$Q&)9~k1Iq3J%D?2YhDQ|dVq$5m$` z0D~E?O2&uJ^lfbmH7whm(^&j1k`4Coj0|HZqMEU^H9k{Pxrt!)BQ3aIONXjb8y5 z5Pmcuaynx0y6=Y%#eC$>K6bl`J_IAaGK8`4?WO%Z4M#G%|^t&!nRa$-3!aLuh z?KVWx*aBVo-}~|Lh@H1`glOwzdSFq;Br7#SK{gY>7rH=rNLnAqqrR9q>zxjQ!+MP$}M@u#pia@i0YkU+cdZsJ=cg z2$3>8SgMOVTyCf2Q?soHn~ztQopHkdu5%vFmRTJ7yOfZ3s}8knqd`Dc8%rQ=m+fC$ zYhy`jNZ>g3fapgB`1z8ft?v2)fuWvmFB!qK$z1m0=jMT|1j>G1*`B&K&lKxAqdu?v ziqFI6iMFj`P-1EO4yRt$3xr3CUOKZSTNpcQBWDZ z@=hzda?+@bVW(F%;iJSVFFWAuOV$86tq^{@lDS-`SukhCEzWwS^+%@K9b1e5g!f58A;Ed zcom^Eww8D1c$-+^Ch&MR%Z`h$f!tS?@b>A`Nn)V%p>Ef{{^%~NF_^|!l~QHfWzEDs z;MNqF`@nMLwOt8*aWLCD@?nmY65N;C`DKnJHr0VY5%zI7mQMRemu&tWA2&qG0^z7n zRTgLTI>|b?cvUdfR7bxq&isUDl9 zMk?=e40Se+d1tGILWEOZ-bqg{AD!Ct$Gdf`Tn`968ROX)KK%z5ZP8#J)!@%w_n1$4=0tTV8DS_>Cs|N^`2)D2K**He zTMs6Hdh<$(VdR_WN&(v-jx-jiy7KsESDRF#^WmKQ8v-B)nUJm?9#S!Udyd|L-APB@ zNfxN@eMdxJLiaW9klK2f{d%uTrAmu_Af`gF*@(c*$WjKmZN8VQJ3OMBuxVc2*9Q3q zXaOjgs{;-KyDLuJ_5d5BoG)XSXt6l};{>v)sc|lqaSMsViK|Mzu4+ zncDMEb-Jg z+wQp0CJYta$Z9F16l@aHCcqtl!a5xG;KB*!i46tuBR3~)_zSeoQxvf5L`vv*-1eD< zlV1zPdla1U7>&=UMx1{j{geakG_$S z6>4mO+MY#B<))K$mtmN6#ZG-p)*>zvLM^NIamD7U67Nc(`Gq<)5k747y}3({Avduu zNl1)M6#RU72ti|Xu&2{O9w8Fe%VsMniw6^zTvs~rk1o{P(F5>unFyzOWK&9-U)T}t zWvr|Rp$RlxjlGM@E9~MP1fib$+s|v9O9dLFcdaJqeqBj1y+31Ig1&#)Id$B88(RZX z97BYIi4gT&aQ3+a8o1*{+)cCF&;i?~lPzVUnJJiR>ecx;>4AiUSH)se*0Zre;RGUF zU+hDqeB0SKJH5@PEpmsg&Q(mf9derbuXRPMeV9J<`*5T>NOiKDrC>Ll<8rTCU5rEj7= z^oo~2M&c5 zuJY^aJr$9j52G1%S6j`Z$8(91abxrz>+9=3mB$RPZ!>TdHOhJ888CoBuYXf_rx^kT zMV^wdJ;cpp_L55qRWJw5Y7Ct@ckNF-~My=mL^XtoiA~I$7i|s>|)f9Lf1|S274; za(p-AnLl#+CMFsqN9amdk?6$n^;0X9au`(6dn;UbswY=N)HafO#BACN>m3H+xSdS} z2p3zz8t=2la7x)Lw9D$&_pgQ=#L2}x!M0p5D?VKFmFzP;(s68Ob&FUi&N7ayWqS3J z*GkfHC6bJ77YuBs^HMXji+YVJbD?MJtypL0KQB#3N{NHT${+{PFvt6I6R%9aB!2Gx zB1lf3Eo!ECUV;+Gpq^yTW-9DoAR2!&so`s@3}4 zhw8n&dmm5Zc|UQa8PRVF)sSSR+Jd~)b)MLADv5WRZ$-X-%oe+Iq(WplJq ztMZHS&kKBgKZB&g!pvY111H4nm__RCZU?_UzmP%$EjK#HIU_)aTAp59WFe}W51>4I z1VRTDY>R>Qb4^T}NA+8Us(2{$wf~P+eQ&b%KFe6Uz))vhcW@Xv5+=kj4t{=kSk{8L zhdwtt8hvLV4+$VCq;3vRQR7tIJY%(`q+Sm{n2}9kAADATS}0Amj=?v+8{WrIAf2V_{^dxk`1Jt*9L-d?_gp@?8KF zd?S+|l8OA7CuuhG07R|qO-+JL_T@M49E8Ruuj;a`ot->g8PEJtD6P7^4~-g=GnHXt zIAJ=J1p}E2Wd8touiWcN@B9Rab4cxA{)vcP5*SUJ2>71_uo0 zOIh0SSkNq|J=vMI$8-BVq+fSt1USsegsjVo=B;&Fga;oJbGYf&xS;$3g$oC!&Ob4E z-|zC+z8t=`C~fF{*#~WPhMf{3?@)(@@&?tjtC@YXf1|00%b;a@@FoJ?UMO$SgZGuTaT*sE@5MvW) zvl>1TICD-a?`RHBj`k50Y`(2Td-}Q0NSKVqU7H=Wy`>u^9L~|pe0cekOize6FtQsi1tY*f5Gt>nXT$hRr(+Rf6QeR;pNUjm z!9{#eZ6cZvdVYh>>9t0E90@@}M$E_2CzQLZfSjJ6=Da-$M>D+GFBUepdsj!Z724GC zaMq@TW`f6wUD$em%;~P4iu7(U-K}N3mMi`NKbicM7xOjFjqTz)C3?hnLUawoTh8B@ zz>?%(a)`!ADlh***0_(Cr>EI|!^BP;$I7dAXcc){omx(>SCHEF(_{6GA4TQ%loh0; zr0LlA>@jN}qU2F|+%~{v01Jt#j(xovf9B~h$uY5QRu*}VeNfdAZA|<9Qh+i0LN}w1 z`c)fTnFeoU1i@lS0?!rDtp2;oA1OQO1BMOEM<ypq_R7)%w1H#{`!d48&HH zZX7yU6Ze+A2d?xHSyCItd5b-It;yko%XRYWS0>6*`k*OCJ+L=?eV0HHM2iw(-WkRX z#1@1gSd$zMF`laU1D+7)e!XeA26Ntqsgi|4uC~bO5nV`=LNZ$AT9%ua@ zh|31%aG&2^-9&eQ&4S?3U>ow@9b-OLYQ(G@jem+nZ6Gts`g(4Wu+#lH!0}?zuGwKP zf0`<`ch^gZg`WMvi2w#c_{v3Dr9b&<>Q$}Vfxhsh=isjm3l3L*`>p7iFB89D-$y}( zRRq+S6nrOWs&#Gvj`}W8+Jx|`rLnP7iNohsSj2q>cxj1Vl!F}F1V-~R()D%2ko$MW zIHPG<4h8b>*<>2-0irGUl~&!va7JE4qr39(O*rdVLY~7u;j5C(^$Xd(x*0o<(;8>~ zFiwFhL$WE0@zmDV*0MC~F;^G60PURj^5YwG(mR{!2Q*5xT&l*N6WSYXJo6rf#fia2 z)-XQ7N3X1x8_Rk73EnpS45R5VT{-IG7BKq!b}wS-!xej!csslA+WLBInZwuJ&F-?q z!1@t}^~I;RO2K+t z@aF9Bl|C90@$W9|cZW){S`1R^`H~Yz&D6QwaikV*@HUm?J4L7@c_um4pNg0mCs@ww zR%CxZF9q@>6JBYDR>)h8a50=Ez;Af2CD{NsYNK*rBy9!OAszq5~ zIa_>A?eHG|;*5&=txz|6cmgc4Y72FSv8@jE@wKK71LUTSeKTpqRaF{)*FGviywpe~x`%^cflg#q+_iNq z>0}?hQ%~5J7l}^qN82ZsJF&>7#v$xoz5o7HrmaWM z8;}kLD3M}Aa+-hcvHF3~r$Ktuk$h7n~PGE9pQO!5bj z8Ysamvd=of`cds9S&nbRjsMmCe1)&1HUQ8aH7UQIJIY<&am4Umk@!+jbNAW>MRl<$ zZ=%6R>$VWa*IiFISP;%{J^N(-@F3+~epBW%1?|uD3v5Y;`m{5@8|hfitrpdVvh1fTYb!a2 za_NL@*SivZ3<~1@3C*?~3A+95arc-=^HudELWg)2SS|1+6a6cGlb_2+ z#@tSK)bvT0((~_k9_MM{H%@UMP~HR{-=6)7Z2!JopxW)h1gGvr%zS}w*X}IbN<`#k zn-IIA3DqLDc&FW}qDk}c1M?3mAqed3&~?~!UhNMJBwd;QMwzdm6uPXh`o2zO|M{QH z46ghDg#>%DK`XdD+J|Edl=}OYhCMR)R)ej1yFQ+{gUp(G1CDp#(HBi{DBS!vc4o*v5K0qxA)ay?NvH3g*mGL;{ z5O6v4BfiD!$a>2aLaTiYt1S)jPNK4-h$i(b?DNptvncm3XrQE|G%w3s?|DInAne+Q z^#~9=W@OauW*=xz3rib~_io(zA4AKO2@Q!F@afd5KRIW0SoREL-)G+7t2M?o4mfwo zyBvuSCBx4pigbU$!Pc?gWW=Ic$3FuU6!SGbtm}fFpR@N|BJ;cscY62Ffd+tfr_Zm= zY)A6`a{5urc6%U3-kgAwg994-`)Kk>_&7z=i_6o1<;;`p96$5*Sw>{$#nl(3c%6u3l;NW@{sDw$|qK zfOFbg(yx7SF*U`Q`WH4NM+;^b`phc=^3%aXgZo2ukr?Q~cxD}xjFHDuH0st`?vpTp zH{omKKiTchqHz}rf;EbDDA(A-n4Su4ln@Ezgn|CXDj#_U_oh^@fV7PaGFMsIExE4d z|7_*un~YW-6-^7acKALlT#Ic>!;SI0Zx@%SnL)$a%0~|sO8wPXx!?R9>Oe|?)HZuT zY~}&n3bjDPp%4>)KtOG@r!@Qu;#u9<;FVxP!$dvX+|M1cwY%7hLi~NqXscWU$}HC{ z81e(FSmlW~!cPhsuDT8?^;!#}i&N8Iv}H2*xd0L2#|#sj7;WcFT*jTe%sQwhsx)xF z&gPo*=mcw$uFgQiKats<0#(vx`8sGdUs*;~6Nnz8+&}oW@l;Tx{ot{IH9Lah2jZXYBq*p3BVTJ? zQPMG#dNAMone1q}-!fS2wh>F-ym%2`ew+bHD;5m*TXB8?D%WYvJX<4e2p~A$6#d%c zYgRb#bSMOLI&VCv@Ab=IU(mK z%QC!op*A+{-a<70pQTZExxUOx?{vH__u ze4LLFSBY0VNaSU@+v%9m@PO2QNk81pmzJHLOtrLv6#X2%NXrN7DZ&w~t`j_;vPYF)t`>@MuXa@?Bvy zbHK`t?;@7o(Bj=Cq>Qk*8Ww^WOYcG5#=eFzhS(gJ9Sr{rW{XszS_ZaQv!cokeVjRF zEpK3)gJnw@5D~cD>z1(8HSIATiz*khVJ-ZG#Z*2Fum+8-)yu>TzS|}oTXq|~nGy!S zjOnMocXspeP~JAVMN@}jpBEPXTBzvY#6bY4)Wbh1$=m%v3;;jg(qNvTA&GWtT&@y&x+ei;mGm;gAr7@eE3!N-NwfX{jNtIee7kyESH$Nw_zW zBPz)Gc(JpFB=;9-q=@ixiBH{aa8<=F_mi3s_ihZV+Y{{lpAHFuSyU^M%gLXICC6gk zetaFC?qOCqOs@hY%Q1m9B$qjCB1Qj3KK$R7fOp_kbEgIN^0*(|x*1(_)ygRa8E;%N zKI1nPOU~#qj_;dc#O0#l;FD_!JmqO;WpsHlFtNVA`}H|mwv~z5k`(;qUDm_dt2wo z4y>mU0KGE~poF-*m$CF8+|NA3G+RqyoObTX?$4GIap{~WU zxK+iM!7*xKFi*yPzAt_1b04y1Xf(n8<~l+D8S25Ugo;TSb&o*mU!4azm`Mx2;7M|+ zD3@s_=Y@_U|96$4-~j;IQ_MzVa>(nrKCik%qu1u?cX6~VhgC9FO#@JgNPq@7mftij zvlb@#PX-qArA=FIanO#x?Y+Bj_0FVWRH+Hx?neQfCehbYqBwNj?=D8j;LlLuC%b)h z-P?Z6GWWuPZDC=oc%0Pd-F2`gq6pre9nT0PmftsI`1r=F%Q)7anQP36h^YP;VM0;& z=5aRl3A!C_UH>*Um>p;qU5%NsI~}HxX^oA9h>{Os+k-S+`vz5aZh z>AAV9l4+}mTYhko#Nwh?3{(>>NtA449r) zUPHtHki4}5ku0`mx!GG96=q7Eo}Zu}+zpxD5dorttX7L*Nc5Q;5swVeD52pTe6kTU zJMvHAzm6^JWBsnjk%$U|^2WF1d+W``N0cOw_itL7n#N34Mp>=m2+QY995>sCu6CM^ ziVHuuuJsA==|YZs)-Lmqyp_?z0xCK0HDgr2t?g#rxygyKZAovBDyeMf8n>eL@q!K| z#1ONl^as$_P~fb1E)}pxqXo0F=UuKLQ*rPxkwp9?#S>cUJBO>wOYba7-bznru;&X+ zsAY%O91CC6dX7IB+v(j?(F3pLfFJuI{Z(8LoCrt!_+KzK68LSzs)S0*km@tKh)kFB z7LQS)y~z5M`3ID*`hu>$tYehT(+=Ksrl)o5r)yj2xcykWW|@|&areaN`m&Jw1-Aqz z00DSUK6&TC-qpEG92P|BQz#~F5hQiW?uxI_ZJ{7em50k?motsuZE}})n4Of<1D@}8 zjie?o&{I$l0U8w*74O$PPj_5M>aZ5yRN#PG@vh~dedD=p*tNVw`=PCy!`Kv|jUH-`vct z3lA&?qvz#ac?}hTc~19I^5V&?#g|?+EBCS6*bqYiOt;U(ep{hX2e&yC*SmEcFV_k* z-(Y>c21m|se_4TxD#VvsKnVGwO*`XQ_#_1%zH=WM^Pa!Oq5*$N;*y&A7u(e2wk?W6`Xc*iAlY&(SNMS~=a*b7+ErlfHk^?Ns@CV2YZV znb|5P)&~OvgPMZ%Bj$>&xiw5L>Jd&^Q%oGC*)+cA7jh}n?c8)dy%UYx>OGYKD(m2? z$?}ltom-cqO2@|Gb^Fa>3A$#Mk~qwYG1xC*TaN^32REx!zZjfy^C`nwvl}Un;+s~C6w&B1X)|@GPb6K=;WePoW@taJ0KSpu!#Rk9P z#`I1IEO7A1EJso`+wZ{aWF(CnR)Y&&X<PK>)@|Hm$`!8lAp^I=-I4;^F-4jKYSP z*dpJcGzP3eZ>^zX{6wClx}6jwny99l*X>P|_V_4=Hd0YfT=CFah<*$~KW*@!bP1n~f38h@BE$xW!u-Mc zYWrvopRUrNm+c*ZuZz`XT4l#ARlp-u=|kf(p}*ixDcT>ED;3me%(Oyf)O~;!3hTEk zm6vj=Ku-JD67j;k&6dSgcT-U0+PV7i%<=SwEi4f7#B~kgjJydP@W(8VhW~AE)CA6` ziZ&g*VFOI|TMcg~)G)y>&t{!jtf@5`3#)4{4wmI~*t*fm6h6a4RB98+^CMD)IvHS` z@Hq6cP8;~MSe~vF|IfzTr|dkir=2Ox z5e4@(J)GSqoQ*a1Yv!j#r^*18X2d?V?O9`JJbCSOtxFnE#z+hZ{62Jp<{7(9i|Kf? z8;cd3dyjE&cusMU3#4&I<_~CTp92UamTp;_VC;z!3Y5_a??+1_GdaaDUD?#c<6bi= zz58a1k{mNUt~X z3jtl!x=Zr*qpO=68j|K)lGRWkP8MYCs+gtXiNKhm^1O3$Z|F=AzEs>lzuZ@aKPYTIANPe;MTfXt^C_y6uVSJGaqgMTUSH@h^Pk1e%U9_Sqd+zp9Xk>z?MX z0xgwLeUZ=_wr3Z3l?{WLBgMJ{sqj9nEf-&sdJWKFGq3dmCUMwFnGY(){ zb$}@n4t72m$QydT(>T*RBQIfN|65cN3rkQTgWrf-L{~LG#iFKgQRMd6W-mI&Yxq7# zyXfcZhVaWFeIW#uh(Gl1?%7aEVOmlgopSmK7M*1Q&Pw@rjqOEw26ONrz}#6L`c5`t}@Aldo$(EtQQMOC0AjP4>H^e6V9;5qU9^5yFbYy|N0M8U2C zkZ3h}T}hzh=)=T_42cXIcKk%dv*6;ThRX2^`srhn&=n}ff1RHeM13bn+A_>f^AqZd zedQx$OhY(Z6EmP*R8E&p-M!Ht70krv2NM|jUHa>C9>BB5w6wJBoYuYS zLR7U-&Z}OHg_y)j0TA2f!ngM=E~fqhIVUXAivZh$ znI{Q;i5HKgN(1+#AM}^)S)B?{ zGC+85fh1X#yfzk0N%j|G?CaYG(hyW?a<|f|a!qe5uTCYVJ)B*xvof0Y?=(iLIWsJ>#6)VXDJmKS9g1ua;Np>gL)YeCNv#lPheat-0~k=y)Zh90 z`LY1E8-0KuF`Z0^DReEW9%)svvRZVmvkz~U>yVSiPE3p<5%mg5?z03EOf8_PE1LbJ zUIID+m8%xUd53S~Q-e74cAM2kSEq515{)vdCaxw8bu8&_J6@Qv%bZwBT|lcgu1cl+ z&Ob(!zA*D;5<@{XN%4LF{9AbXr!}M_2PY&7(_|agwWOpNV>sgF$$(#yWB-#j|F?r| zbzs`yT8n`U^8ui#q=1s#R|y$tns~LdQT28FExYM_sQuOm?f+lvq2SdX_lw}%xVF_40Jl36E~ZWWH8MP!mPKIQsX8yA?@ z?e^PRxn}_9dph29D>le`{_!`Tyb8y4*3`kZ#fm&PJ zimVC_&-Rf5sC860oG4E(Q5}m?lp4oZ^uxB1pjV;S@O?(o`Ln#RZS#y69Lf?H(_?lX zNLO@1Uc$kYORZjn?+wK3HJaM}{(b9861tTzJy-3q4YLQwlH^CqoA;uXQ<6dhndEYPzzG=%99m$2ZtlF2x$ zGkw;Yt`U_6K60(-dM}_bQ=v!od+4H%(suU>EmXzPD5S-7Fs*n^j;yIK)?-_$hRFy% zmCNoEz@9Nvac2M5{P_C5fxjzBI#o&zkG2WNh*1vl`G3Cj2jS#Wd9@g-Rm^dwds+~{1QjCB{6ct2aHwdFJ_5U0y|0N~-MG?8DgkRs zZk$3a!j?~aOiVPU=oq7@#>nCZF}N^8#1#hm8N$Y}e$+0zxww_6YGZfhXwjqOo)$ zfMl2x;NkM-*F)tXfHuab&n*fSPp452RuOSHD)hZfQPt+C`bUps_^X&Ndo=lCNA z?tgH=*Y^~y4=p|nqFN#L@!~-3dp1?vLn6x_v(W1PPE2k9y>b>J&MM&J}`$ z`U`?)MN@y$@MOb-{?zhl1joIl4DSr)K$XQMkCUIIWpNr^zu>J@J%ua=n^mLLB`2%B zUY#6!HL6yfWj?ujSF1sbScq>46dl)p{2)C{Rk;)kA?HK8_Gdx{4N3WGYa9(m8Kf{k<@$B0WMVDMN!aLk;#i_Rc>kN8 ziK1p8DSjVPq1NcV23AoLMP?4ckP#Ivg)aNM!Zu`4j@jnR1<@F4T!zjE7o3>>of z%Vlxb`d9oz_*+AJ$T8|)KeAva7r<^5MU0;1k0FBmWcD)-Qi>GA*f$sIL`(57uN<#4&l_+VF7Aibw-PFVQoQ2%=VC>wp3idbBCqi`}0 zCI-cv}@X5Igg8J(3(H1 zx_v!$o)YboPzcx=Jss!rz4jR(!6%W3>!HTQ-5(*-0WV1mUO>mGHe#Tom%e#n^eE9e zwxUmXFWAh}^#V1*8#(ItY{*j<@jV8u#VAp8i7k~Kjd#4bYS_p+Huwzvr{VDR^#(oZ zo2nL5IWI~Q_O@A{$=lggIiAd-jYTjdj->H_?xOZ$zYUS%pMRxmpyGu_T(OnN=w{CLzFzu(-*$}5Xy1&E zj%r&^=&`Z=zAmrW=+sgQD{ObpXt&!!3yuRxohVv(&ezcLjEwfIcCSy{z4qYR?xl!7 zVn1s}QgjV0W-Af~h++WSK-7yMan#DopEKkrFr~UPmfrb9NCo5yBgbJQJ^K45!T;i- zc%-1Dl#-{V#GP5R^xF>{n6EdOu!<-&DNAAG{L5Y-K?SCrhvSJPQ7FX!%QON7Ga``* z_$)9X^OH;MZX!2pz$l2Ii}gw@QGs*?PHwN@?=I3cR?xP7Klw^TEQL>^bn$Ckez|Vb z88tgiWK(D~c@lYO5J3o|JuEaikY;8`t=o1bzhSirxLbgi8l8J4&1!<@zb*v;7JeE9 z6=Fusd>GYYJ?&s9i>QVMR5t|X_rS2l0ZT*?j-i-6T}LprVzTv8qjeA6!bf4SDG$$( zqa_R-^;QZ}B;h=x7im#Z#5oZuVQ?U{r>7@9LC9NojMd8}-%OIWr7wSvLs9t6inbpw zNxwN%>e$&@?p=I_`?mIrJp5*Ixl2f)IckPt@|mEdTzMgDxbukZh%-=N@gr883t zMMY0q!py32ayHboWL^B6ty|shi_?hcGKk3LMSfFRosuvS8UiLu1ID#)&k-rhUeoij z>zGyLUbRM72)-qK7!(KWr^?4l#zjwHN=-Lz!Q&*71;3*L76eDDZ8+K1GGIswhEEI; z1dPtvcm>JDD|D?+-45j<~94e zDPR;-`65ceD_VVZb9speG5ZeRKN9wz>yq9J(t6FUXZM| zVz_%az^;Bm43ba){<7C8YiGAW>o1uH|9<8003dO({YxB>=+hoT0${adNdVOcldikB z*m9;mTuV$?^*EJO?m<|Lb?m*4<)^dFNvp|N_j4cBe__eL?H4ahX%5EaRWLs0<~D;m zxKLq^niz}h5845sxKyUlM7&mD_=l@22^X%#b--|`Xb{!Bi;MCc9sy`dCCNLdLU?(3 z14$Ix6W7wg&(b;Fql#y&Nv!zXc_LIatO^0T&bOFyiFCHqdo^Mr9(;<28lt$02O4@ql2GWMKcL~c z0L&-=u3E8FJSY6n`r|{XY5O1hW|Ved(4W==K#mBu3kE(m*BL3Bh%j}_y%BCuQEY#H zSYN?upjT=wGH#Kpbvs#R#({f#| z|3OmV2@YAORREzrI2h57;ViaC>8T<7{m}XBTabXm=5<2z5eFn5OD#(|80*p_68t1* zCHnfd6smMph&=AkW>chee-Nd#JA+53nTK_N#Z<*krEe)#_-9H9Mc!a(AkPt)HQ(G@ zE!OaQj)GBU8*cVI)zbf>Z(2}Y6ZYO)CD)Xg9^^;W0DP0E>6|x)=|EX8df)a9oxHPd z4*tW34Tbpev;~g1o@zF52X?7m{rBk|?9su`EF7w3s*HQb*^rhF)0`2k3F8I6V_dku zHxe+#i?&+d1(DGT6g+e*HAjO8lEVG{JKcc3kcV0b#{&brxdNTg_3SnaW6;&2p}<}o zk?Nco%>V?SVi|Cw%Z!@&WOkiMtxBtpKr|qw#u2y!5{;o9)jxZU#Nr8`JwX4E{f z!w(5Vw}Ib2xyqibB;y0D`se(+hgWXy@4cHQWZ_|&0&jp-wbYBr!&o;oq9Y8o`;%mV zli($NX+gzIW-E>&$c1aa{$81v^1h6Yu_Y?QSE80fodB6wVsEH=Mqnl_F= zJf~)zBPnHfkLK&iU(6nusQFgXX?LY}rN!&2sQY^#tbU>NVg8!(Mr29KX*qhYxvTpTH>i!H>rqTbagcdck4V=?N=Inp$g%DUCC6IyD9PB|Qg z?lu7fL|S~P7=O$JP#~QEK}*Bx=s+njx)eZm|5=eJ8b840{5he)CEsYMxu&Wx z8tdiDchhH4I8U+;7#=}&#&Cancn>o#(>|o_BLm=}uf^4V_hjKv2d3cx$Abnh(X-#9 z%y9^dVE@kCTnb}&h-wMtJg6g|PEXuV1K#a2;)cB+chjif`5`s_l|Hm|(C+Ikpe=C( zXn0-Eep~zXc`RIO;#19hVJu_epLPJd+Mz+5(K+s^Vz(&^ z4wCW*laS-F(}s7$p=?ltv^By1Toi8>G8Sy5T!` z@Adlr?|b(i*K)aLF=wB>_pf_&?%Snfrb|{h#=3=&sy*p>~#tu*dIso_tji_BWmv=%yAHq+h=;=JNU!tWW&((>($f)zf#G z&Oe@6LBVHI539S?UrAvxnIipFhq1$8#|RINRi3ywxGNOvIh-H^=NizhzJ+3qG&HWp zeMjwadNS{`PW1>hL4DeYun!LbcPpGkIA9Y9nFgY&_Oc-HhuO*L-URYrhaW8rU20}h zfs+2mGXCit$jC^N!7r{X-0H5dcw`_xUhd}4qE(T=6vv5B#&-vbt<93Y-Q(g>b4-VN zB5G^p6UE45bXEA4mufv4HY0zD`T?5aaj?|_i>+^tDx|1> zM2WbGZEdz#)t3vV6?vQkW@FC*yCJNx?VhY@8n$zaS@;JN7R9v;^~$1@ zoF$`1^b^0%3kP1CwkOY`c^pq1Et2K8vd!CK>4ZeXn3(y3)GxN#TRJAGHi39#QHe(; z#U1H*o=*Eu`9R2Fq*S!(d&Cg|A-6mbcl)LrHk{`#2UM#vQ&@G?+`7KsOW?a1zCRaG z`Zoh#fvli3(0;9UX?WI@hZ`bCA00zc{~zq{2M0<%(v%Bn*GDVIsR!3sSs1o`*?+j< zQNHj>TIQwV(_DpX~1T7HZJGQ0KEapEOs{loKR8v#X_k|lN=17<0 zM<{9ClfF2_aR!#T9ziUQ-4Z#Ut=)*Z#YCr&o|)tjrSVGlM`dx84;-}^nC?YJOU2fG zZ*h&O;;Bld;%0pZBQ13A0U%>I*E*TF?cYqL)(d&3P`3B1_YpK=rxYh4A6k0V*v?0 zLqaANt_U%77xsMWvQ41q^zFi7Pn&!0_on&<};Kb0;(U~>V z-nr9~#BU(2`|gCYy6Y3rVK0H!m*QeJvqAQ&97gP-d}S%36UCypeUU^)j1V3AXMYMPy$l5oRYj; z^G^Zyb9?8Y*d&WN)X`%6arNmTdG7ZHdcCKkGLs$;(i$wJREus|8myo@Zf;l@Df>~I zP3^c?My9n!1UN2uv7Blsl-SRz;|wf##&W%rue98me4nXU>Pp`8rYbG7FY~?A+V`tH zSsqtuXx}fM1rg=AozTAL@XSy!%XPF~_mjE^OO85pa^H1Tn8YV_{q29z5x+_ zJ9MILGzOK3nU+BkpZ%HYSJA6ifgWg6#x$tqXo=#30xuD3f?zAb6Yq(OQ@8ECy=R06 zJ@A;pbJ5Uhiq8eUHkC~suhIi+{?H6ebW^j7$xo&T2nfW1wEo;`vUEcP1&ZZKiAP`A zuH*gwBEt2!B+4c)38Jp}rx6ETLhe7(5lze^^npj(R9PR2+(whGbBmwFG6vrdjOBGy zPUmf2OlDh!*>9fUcEkz3`m`}#X!(i!bM^V00E6nMd%&odQB2k%srgMW!+=dh=La6c zm}{hl4(>_C82RV1b)UwwDz&}<`HtbW`rcPepDvsawF9u5lYC0<51==#o-cJMeMt%d zjK?(9zWZs35=cmkKLrts6x{JZV;l*AeXVSFham8m{)X0A?rLLEg%?0J)KubzU{%%4 z>i0?Q7~*G-yjkgkJh~i4dEK0y2; zLAHb*!~IM^gokpX`q61eb(TE(5@1kCsW~M~tx@}BkUaQd0zXALM6-EY?u?&W=k@tk~PDg zPNjR4cgyT3$xWOhQMQWgy#Sg``@Rk#cl+Ae`c4n5a((&!5;rZ<|ChYflq^(#b=Cf2 zfmYg9T*RN(_3Swbf4sj$QsK~SsY+ui;9)qw3iLJa)~>SR72_)y0Ewg|Rv#V) zK|yJS$1@VUX}-!FM9rC6L}y$ghOp#)pnuh>HJmQKmy=@T0?T7}km|C*FRx@(=}bJd zDHU&GyDn~JB=B@CgDeI}rwmy2%8?{r4zoECewnLaPSZ~L5<>CqHOjuRF4 zlWnuVVsU@?Av{Qke)&>zX9pr^D~rhz{v(3GKT70({7*+G3-r^}kGdN8l;{rJ07{&~ zdMwR(a`0!aXib^G+@kLtLu6bBM|V zQ3;YWH7e<;H-b z#!lVytBC%s=*2Kre>M62)!qO{OBGfDu0S6D>Rx|k@6WAyuL9};VfoBc#D8t?>^8#~ zvj&@*BXRPs7Fz{9VBHBHjc{e11tRaSJbr|=9(sdMLA_GFXo@>?##sJK+2B`oivrsY z-m(m!p@2dn-FI`W4B@xGDi$-8*-PUk8GE~-xev%V3ZAszQ`UsRx-4P;7Y*l1?i2l+2BkYF*gbM@8Yb;4K zT9wBNt%kT1rq6|>chBf=+@0Ypb3R|Yu(FHLx>0N_iG)h@Gd^L3n3%eWd}qT97|cdt4`jn4J*h|T-b;^6Y4}ReP~s(^uCn&RcVQEKMG}}+MpMbb=M}-{bnFAPI45L_1t+L+ zXQ_Qi&b)SXG_iApn46x~Nk?n{nY6odHS#9aGrh%BZt>`rl~~5pU%jWV)YwdExB4x= zLoJjm)upeHR&J9Y15hil;YzxE&RZ4IF>2qRW@#--KG3vI;#O!Syym9TYClKX+i=fuCdZA}i^Vl*Q*w9yk<~K^+r07f3>#}efgj6`VOy_t zdrE!K`l2jumSn`^2!wKXSA!?}R)mP&q37!OAsR6Wt19@-9~z3-k1o#7C&sW!lII=< zGCFKy71v}cmJ5cb%0?d|6LN7oaZ5IeLgx;>47J8Vo3(n z42bQ86j)*j99LzSjh&15^)+#}iMk!*l^u7qtISoFzfZ884?*frJU|xHuyzg=uD6v-jywAbdq9=#mtGd+yoZDuOfM}J z?;h~Jc>S?&AYt*c!##FtL`3^V__->7{2R*q2?~Kd@lgg8Wy%SH`m;w0-k zgi0a>ojz1bFfJulwTG9(&$4h`ROAg5Of)AZ8lFozIgQ8krK%(UnsAkaaHt`#GQff) zd#l^4<$7VihH!!2r^^B!=jH7Jy&c|h_mS0?qEtUDZtL3+W*?ZPr8N8kk=WbOK_6J*+~WMu3TCv_4!Ke(Y!}9q%b5 z;wH3Bq|m%u0OVls0yUC?F8XI8Qe2y4x`>nvLk%e6;&%6&XN@0EvZzWbsQ?+nw)H5l z=;PSIg-9Ub(^?`{DW+ltUVh(A+tbN%%Bs8&({s{M)MW`Y9HiF~KWb;ncx3$0=+ z)0=h=rmU5-UhM7NFs;(y`-jIzZR&6CO{V!O_7dv8m`#{6-`!r_?D=-!hl92o#FpiH z{KDBHMsUlFK_lxXCs5c8RFsH#o}a%zT>WvYND5nz%y(Okv2Xw2?{Eg!9nA!NA&YKn%@~^c_hhQgW zo|&OAYu!^yPtgx%tz2wsY+731ruGVdXx5C`wLADw7;9bj)I0vsBT+P+^JpH+0>W5d zRtk!^_rz@CFE!B6fY#248^l+wHtw7B8=BoxH0ZoHc+*VgHH2CsUb#Lv{_#W%$eiVqe4UM~&5wTv7(jTakiwW*}&0 zGaz^?i17%3=Og*20oagKiT;AUXYxtH^IoFNpF(hpISnP#C7Of-?&;McDd`>q>1HRu zcLkcVJ_A2q6(a|&AK26%1)B7eq|B5|pL-4GW^8pezwz}pEc#Ho(`)yMH-TYx(Iy&I z!Fc%jq`dD#GIA7j()(htt)kx7W=cRZrke3wO%h*Wq20VuGV-$`dD&yBTp)+2O0xxw z)nw#+li7L1lM7?Je}7PssCU7}x4+iv^-Z(Ur;?JeH$RhO@S0j!&LHM<_;o(x$3X4% zk6Qx&1LaO=-*0eQiCm5*`ABc;Gye$)x01ZS_8iEXd3$FjY4^R1gnn3f%Be z{)eQZPMK*Rg0oqXkPJT8OleCm1#Npy8HRIR@_zn#9HwpiS01v@c6;-}*!D%|$K-+;ksnST~fxk?D!On?? zzv7rrweFeO=gX@X+2Ja=Hi_weS>LXW3-Ru(n$ENyR=zMZSUhf|G& zW@0eqNtLQu8AlxI$wIxedEz&FHVsS%Z%jVbcYu~+SO8sksXF;|qDac)ECz-Iise^V z`!)?__q)kd-Z<=Cy^46S+jJ5yr_$3(_N!9X=DXU51~H&9=HqDp86*X~Iksz8Ed%SF zYDo>4kWKowNIuuyVz~s(l7u%S`|EoN0TW|R5?aA1Io$_ixPol}UmohKYCu=!qy8(-*Kk3;) z&~E5cPo{>~(4gGI3y&TX;73<+130pU^$K%1 zIwCj$pjkPXe3oX6*vq0PV(Mg}c~s)kF#<>Um0PvRAr?P-4}dQbUeooB5qJ_xpEnwrHe zD=+>xCA|!5HW0uh?ei&qP}_vEt-Lg7)lC{q=g)it0faSs-xdo&Fn*Qav9Pb*V-K)X z`f3rRzx*8$gaXWoeQ67fklecR%1za2iFQQOMLg)r&?T!T#KF(#R85J#>@2XR2$r^D4#ma8y`%7;ZR+~n#Q^2c%`yWc_QLpw zlq6a0+zT-#@)=*Yx*RM?)C(0WFGA|AFvY2?5W>3y{gYIv?sH27^zuG}@w<2DzecaV z6Ih|#ceTl(4Z%c5Riqqiz&YAm9F0bMnLhL%DV$wuZOaGRash(rKEH;VuO{EBAqpw6 z_-x8ZtQm$%@Jg1PaO)C>!0db=57$RGd8+RmeuE~kkPTLxc{wc1^&m9+>F`%!!#@<` zKJHhFkQZ@83Ss={X)sHxbHlj!C~TQKsVmh^MmA@3!pf6Cc+#-xGZS|f`r&#Il6<Xf;^FKpkcnT~$gwW`3Bc^Q{whfs8Xcgha0wXtA)za9qoGU489A)^W`meu^TYR6MC63K2fnL(mPnZ z9NzkMfDvii$s8}KgMfR2Fn`uqkKq@-gS$eXFv6ZZkxrZo>)*9)`cd)nGc?o<^O=Kv zzU<@vT)W<;Ob;~a0bnwss}U|y3A{)G?9_LWk!Fgf^gy4iF*8>nuh23(A=^`p>N$3W|7@zv3F*a26 zRV_U|!^^P)kI8bTaN)BEU{;{c9X$KRFd%L?&yiN|91d_tJ zn-+;TFTT^&O`i5eQ?twto2jW2?tHLvXT_kGihZ9ct6yg@4ZcAX=HuV})SqEP9)UklDIwEo+sR1bF#nS!n4M##8KKF3P+1eEJl9o{jc*W`$?>@p;N7QxVcr2`oL{W}{ zO$ATDfaJ;z`-d7lDKBgtU@2!sT~yz#wEl`CSvPS)8OHREzZ4^ldd%w}*1{xN?iPE7 zU2n`Jq2R$hTK&66lv>LhspV!Sb>C_lX%cvjw!l}`L*xMUT48^kjk79R+Zv)2@v3J2Ph4~?jlkw4RqMwJPz<~0r&j@Eq%qQ zntDz0h4$FVh;wrL1~b-w87wgPolkw!UBwzD2xzRLmDz@QX=x|m;wLRX#mCO_Y$wP3lg@B2|{iP9j)c|fq z_S1A3FF_UI!$4}5I}|TU$4eUHZP;O6j&d}6v72Xb7D&uE4_4E|KOnFh0nZQI;-ta; z7SQWk$(bo8`6sa~VIa=11o@f1dFrSkpNv+YR23C`#sMfyU!1Cns&L0LTY{1Jti!15 zNm}4qWa0*ABI}lDiPL%Q^?D`N^Ud!uo9;4SM{qr*NWKIDIG}2VuqT}N+-BM;x;qhb zVk*qHk>{pb$>2xE9mDB%mht30|9$gH3%9zZV4-8#l7p<#q2lotnIu}fliJ{Ojl;T9 zBLAVvW$v;Sqwj0?cj~MzCQd?Wo>!Abka@|eMfg|_s&__}iXYYuv0z$x4Y`S+=ZtK# zVlT3@44ic>x(kpwti948;0?5zbD50yV#2uA^j%MjG(yX2U*M*qo%^hs7vG1ASW4dm z_o-Vt+jARfge84hZeQAz;v<8sHqS84x#CxG08;uvHuBiYca<}&B|XYxaAD?-61i0$ zd4O>D5B7sotwL-}nrA1!FGM)mO-q;itUG=yonJS;T&hCwvW+Y5xX8&bzsl3)utv+1 zBej#4wSg#WyFx0OgOkjq9c9`qQjGYC}Aq*U`ZRZfDt4Ue4JY zzC{Lg0?}lt_;-GtUDBR!npVmag+%CRgq{TprS4S^HB|8*9e$pEcYQN3-q0}6isx|j z_H7czzD88Jv$G?QH#m_@0;inKet}sPT&Inb?zHB`Y~_;BV5jRZtIaN29to11uUAOc zoiZ1-?|lg3?$j(__ZA68zc@hC62BI&W|42PK_U65OUYgR^?+WrXCvpd0OjdpITQQU z9`42M9UebrsogsLCzo>OrOp<=)m`r4+bBHe@!t~zvmSdPH%;EL_=7P4kgVe=3xqYo zwL|#^1f`jOg1A6!s=qkCXIlbS@{O0s@y*BO%}D~6)F-9wm}jr&{%(a&sPxXM<@Tm@ z`TDy;7U^&CCHO<)$>)Z+mK99y?5Upl>-&7t&Tp<=N&qTSNFWvukNZw*d~&#k9zlMF z)y{&|J7h&&g)hOLD|R~RNTU(!wi#dDmePaoxT!HZYC1GJ)iJVGj|E5$d32ccCHV^+ z3=65d5A2y}FTd1p8F7iRdU~)o;xRLJ6yyI{##!X>G_o4!eEn2XI72n!fY}d%#d|t1 z-Ag%1JaIroiRQMRo~JaicyC`wkxqcYg@x6T3Q_I5xw5rf^^j8Frb_y)sK}luA87MqwPljlN z$tgEi45oMPu^vnO$=Go}82i*Q{Ns!@F$4O+#1mrnKS|UZt^tWL&okkfS(>er@pKl| zSd_7sbGO;>p2M2sf|L>w@4G3M-Vd6bEgC^GqzivPaWO69L)=<*q*M)?tolA?-M3f$ zm?dodWO$!%4Sym`{=WO3nGAY4tE&1*0-v>*mi5Kjm2z5?0(B}sbMrm42CAv+g4@N* z92rEhZjOiXj4T+9x^|O$nqHe?onsEc0`kEXGH0O~3k}*$YSdsH3m`+QAq}mCHnA9Y*z`iE^Q>=;z3dk)54wo{I>l3Pu#m zSPILEjgj4>(+f=(7vdXa?Q<38<<`x+QUZ_St!-~mbn4T^jHQaaQO3pOT^pFr8nu)- zU)VeQ{@Sh!l{Hg!cuw)XQ)%M~CH}-AX|lia-av0nhn)k>A2PukUJ2>Y1seP&wPu#Cx?6=^yyJ(#!&C5!ePt8XvIyB-+NZnTPNmL~R{J7oT@-(plYe)_6I9 zF}s;KUe%bUwRMYyuiS8tad{_nlWx+9y@VwG1cTO#RQY%;pIPr^wNO*Hxq3wDV4C%o zjZ>rmp>Lh+M}xCKB8nR~p47_%d~0sP*HLje*Rc2YR-}&y7Vkax)4N)*$;!jk=>RJ& zd1eT6f2M~7!cfL=v4I<37P+T1K6%*t|~v_5gmO3rPqRK|IT^30^< zF3NRH`;Gg{F?lnaTCrm@T~$aeo6r5p9iAMX2_0ESh0AjU1qXBeNp^tlfT7=RJVX_L zS|xtgaYQOIX`RQ(QIN=r;ny5dc<#F@cD$ti*Ta8GhlIQuDe-|Ct&0p|9jCu$0cpaur zUq8?igGJ%;{ro$eqxoRW#!QW2pb>ja^MnH1am3)jdiNEbf9Vcac7J2sn9v9L2)i&?-8eWWUA!zVqjxtsDxITu%D}uvC!rYRoy-myyNj%8U3VD zdw#CvSqS%oCsGHEZwb!SC7oE}SJ+D(zB;Ec9S2IJ}sMt#?z@58= zH6AJNSHXz!2?G$e}&2-KNrT_j;gb{D=TaNb|0tKSo<=0y>o zj1eR}Us)U~NOYY_-yfl48Z#N%)hiZt^R3s~8L=l>$rUK@|7kj)LCUQ-Z?%8mO}(RG z!h?M{x6L^{96rn>K7mh7ME$4racR*4D+F$1Gd5M^n475T%w^5_HXZ^$c;Yl3$MmY? z9(smmto-4f+h`cU9#%T;4|2wE-`ZRhEZ?omP_e7S6d$M-6?aH!yiP{OHL2T{vuv2( zmu4!^V3u;Jm1V`I8gIi6)o~-7@1%C0EQw(Gn0fBLux`T`0%{+#B)p0m4ho0@Nf~?_ zz2!1O2I74}#jLiBq|xac85G!ei9{GK_5KanS3{Gm80kVyfy{7N7xcC*DS);wymO94t7}Ia|Um?a0FM4mVo}Gn;aLex{PsZo= z8lYdHsG2L(>6tk3HEH?KI9aPpU`F~=(F#HdJ7XvoEP6i>JidVm6+Ap$$(af73_Iy+ zwqK_C>#;uw;A=LV9py?>f|mQ%9Zz&x$@EOs+?yyS8BZ8b8xj}dTvoR3(GzQ-kLjjc z^wx-$J=EI1sZ$13+lJV>W4P?1DIO8@*j@6naUncIlPipgz1&h|jo9&}qz;S6d8ze< zfKw86KnW|$qcTysd8>St{62$zquY{z-jU0YBeV)uXg41wcxlD)@BSd)9VM&8l4EhWW64zDf&6q+Q>NosGUt+-zu&aw*Fhe|i1DT?jee zLK07PRl!8e#!C9OsS})yc!a2qrQAeA6E`5x%gD%xD=IM ztDT+)1ZQvADDV^H(ViFa`vq;bV%@ofJWaH z#3>p&p`XY{6r|%7O%CUdgca|jYEqJ`AoqmnKhW-wosF(IzJ?HKWFlU=26iF#*Gl+Z z#dQK$``LI6(Ej=laQx*fs!a$v1{5;|JL=#h_#E$-Z~ia3fBgzB2Iaj0GjDQjB(dqo z0FC55bmE4`4edH zNK|xm4DNe*?-`+(1pXq_M>#*8>wkYo2cEH;Zw&%@h~9FdTjSNwxBlA)``{YckGao1 zIF(@L1-Eq$x=B$$6N7OU{1!>&`)i2T5x31Zx;0+^+h#wnVITb0$}d>u{$r29@`^Wn z2MHOqv5ZyKjwf{Qd3<-Hefm)V0XXCyt_~S;&YD<+fK)FKrKUm{qf+V6#46JCj6ju}S z5kSm(Y?(kqCq+YBDz*)Ih!DnvJ~VOH=qIlJ{euD;I(~oxCEsz)2n2zVA;n+zG#;!R z0}eb7fafW7&IE_ge7QL*=mS&9GO)=SZB>mhKnGR)atiXRXu&bsC5&2uBm1>Yveizc zT|+d^9g8?{aXg?Ldjg76e~@_wfw7BkjVmde$p1%r{11AD??GOOZ&fKbWDjPppd$7n zs4@yg-q3+Qb|niNk9;9%4B!fa%z?(N$A=LeykYodKIiS+6xG z0+TNSJgA5nWzE>D(;$dKO?&g=wg2N(|I-;vaZ(DSCVdb!GvBT0@%_z~U+96>##a!? zNT$pS+&Wa&+JO5|d*6l^G@MgZs0eogMbFa4fkt#p!nA7T!q>cSz~4AZIU(Ycrvelb zh*!J>15b|$%aB6+z4V*dDZ<))MqiOYUlvXPdEvVfc#Hy7yt;x7dc$rM1VVUE^bEM= zplz-+x?;>fVdFn!VuBjd`*Qv7vU~H$gtgA-C$be@v;9SroBLAJh z`Bx;t7oqQQVHx{3V@Z=Dz!Q-ZntaSWX|=HS1K*mBsu*H&uneQGk#Gl5^FR{W$Rlnq z7%ZQZscYxRW|;cm$-^=>ZYmVcQT+x~4G|w10#9B8q*TSFIw%eGhep6akq=!?Cx($RD6^JOd(eS4>kzak^7$)P^KflW zG)(T)&nzPU#Mb|bb9q8p>YTjSYM>ztw*&@9>?!%yj6F$y1C}x2*{JA>xj&AmQ=&8; z6!V{l_y-{AOC)?mMVR>oMBfPN{DY`gArg4!_4VH`(XvpQs4^0 z77$pj5Cpq~@ntR?zA-sL3+ujU1AvfX?2^>3I1p#cqxq7C8iG4diCAppux~R3UOd285`9XlL3w7JUUr` zN7pb!fC24lj%v7f5;*O1ywT1OA?kaR`7k3gqj75H|XWr_gHFn|kjn@yfL z%l;XCzP|PR3r5XG4A2+!hPNRBqd}C3=>)!Q$C-k^9(D>n+XO=m15{Dp?l;1s5pW9v zNMHnd=iu%##{Xih|6*HW99ima0q_v9N5G{BAX*gkjK zfx)5Q0OJX?sqOGJ3bZI&P4%x5H4tLN6bBoYA=;J;dMB!Sh)CmfUgaoY*(bhejWeMG z4MnPMM}&j|gc}vA$eXfWIY0$|rL1Ct+@K6q4pU?-_>;y!e07gJ!=aEiO8wsm<^UK= zW4Mfa=J%*og78NFf^sXWJOM1jUUryqL>xRF7ia)C%hqqvCV-3z-n{`{WpKjq86KWN zA!cxUdeDGeDu9O*K={U`)w{O@*) zX#5w*|02f!R%^8Q^u^}i{ovZAYIGG}ew4O>qf&$;T96ub4n6j_jiYV~(4>|knZU;H zr~=US>L+_#(94!Sz;k(u)-ez@xjMDEk4AsPShrW#9z#Vma?D@jo6sZw4bU{f@B{VI zuViIoD`&Y+MKOMR01h&jm$Fw+ctXKu4uhs)f7?Ro1$|E{+1K!oPi|VvQ{}vuN&=kHrpU)g$0T%g|QXlN|k=huS1}%m15<|Hof|n(J0()C^(mg(PwR|MAR!!?@-U zGRsP$&cecTzBl$~@#FvIpub;h4^L2^lku&=eBwh3+8=@6f;4ixs(A|dL1J0!|F?4L zA1E$C3SzMBtpiYsRAo0hcna%&3%7AL$GOCTtxc`pdpnNbSc{6VeOJ8)U{9r1(Y}@w z^ewL-3}Io4DC(3zMz~Sq#ec*6fBnTc7;X|?a}QhD@Xqx9t{CHQh+z$g!8Jsp!L`-0 zywJaq^lykn6rtctUh+iIYfbQ(lLQw?V*0gYM2+rF)~3X79Fi0&p>$nSjoP{dL(1&= z|ANAQOD*FFcuPR7&KKbXe(ijBjh_Wy|3EN*d{rQ-U83J{X;;)`fp;pq)vppjVpf+; zL0>K579=t7T6QM(w|7;>Vc;*8@+`r)Wr}zH!_W4Uf3+w$Zp(&TM+cHQx_-PVzd<22 z4UonV&KJxi{JGJ$KvM`HQ~V?)pjjBuhz980Aq(=~u&c$;!sf0%ia=)>zkdt`Z^B%K z4CB$4>sv2(t~scI_f4-LdLZ>WvjYfVM+y(0uHWF+cC@f8OnzJ#(|F90&Jq=939)2> z=v|r|foofRCKdp_>T3+VC#2RThU1LpUy=P6p7fAf6=6&f8{}?rzmwi#wGb2SILqwJ*qz~jy{uOOMVE|YUG&GP$5X5Z!j3Q{G3Qna5Ni4j=O!6TYr5AjZ zOE$P>1Qn5Zzt)vyo(%kE2^tU@Mr8kYsEBRv_3a_dU*P=D7c~xmo9tRy_|_z;kBWjO z=_?3K6d2SIrkVfGZ~sNjCEy^oC6T#pMHhdA;mC=IQ?ZrH-dZ=8Ctd@+m3NIZpa*af zCRDN%*8CjBpnX!r8d{J%tld*+@9j_Q|LX_hM{p`@GBR%PyHvn}m`Kb!rYhPaJwXEl zkq0qjgi1go26Dkibmtywe-YM}=1m8mC-sKAAPNZ}ZIi~o6HCEDyn`nYyx3t^a|It1 zVSp)flt6;UK_iw*1_DU>KJ#Tp(Da=`^%fa&!Z2pc4SEUHTPZ~E+T>&3n%>IcwQ^0+ zh`kC~g-YZB%1HD2tQKhAeXDm>5_!>i+dlSRN$pQ|a#c$B0@qdsoOOGrO$f<-&^P<) zU(+;P4G0O+&9-Kq-4L)F!gh1uTH^bcVuFH@-5&JSfYMC}LWAv0Di(ph0RCy% zoJ4|t;}n}501B%tzc0Tbj;yh5*{%b=>3+E5wG*TZV^Drb<~@{ z!{7C>_AHM!3=mBFZ@oW)mt`#Y#3;~+CTO{Jf*<%&tul#(+b2dXQ(5mdUVzp62u++z zGlPkQ-#~78Lvxx<8Z`C3mHAT)2qJ3SrIR(mhEjnv?{2t0V785=A3$fpmIxx$(ZV7i z>T1+%Lwda~pbyz?2cbcNyg)?=I1#aFgIxxo8Eu)|`}#NX7TJIlcmml0d=U3VVqh5Zecx>ZEtTE&%|sJW~VknB;*YyZ1-%2eiaqVr)6j#DF^1 zcL#w-*X|qmFwKiTdF@SNV$g@Y>?rUOzbOk;Hprx21#8a3Sy96>h{*<#A(Fb!E9v#x z!K?H~5D%JHKslJ*J(n`@p}9enOTU`|nv`1O@aShh4+z2awE}Lk-xX3D9nV1yJ_!T( zrYt05lid4ox8Jal*HFVWI7;k|9LuwfKm)`Zj!(~wY}}%K0KUEEt;nSbVclyV4O*jz zp{8IfGt8KQWMXWpw<3sb082dB8ek>bRY)aMw-(3Y?rK$4NM#jxXhS)eW#6AkUPGKE zy4@9k#{NcCheST0)5~PQ((M%l87kmPGHD3&_>1%!fCdI!+k+}67zr%r1JFZ5*hXK* zSSTaj2B)fq%qqc{oXk9%(?D+qPcTC|Zqq*pgzv~Q7aLgkFDW88Tx!^W z;$BCAX-i)=7O)Gc-Wnm!t8$~Of#^IxmeeFz!_OPO2@BGq&Kb+B)YJO{9wyw7GXoBQ zA{Pvg?ZJmkfv8W*H9z2pxvMBIeuMb)=(;Dlxpuf2u%jw5S8>2oCz~SNwW%4&)vUKhC2(H z=kOwhAkJ_R0-hIa?qDh9>#LeC9Di^u2ls-$dfD$XEFd7%RdbT<(ZLs<&prHu)4Ky| z??;P`gB6$vO`<4y+MQx*Y#`3AS?xtE1Qzo^cmT+x+Mv&4er@??4?e80>+>V4jf!~s zQ5~f=uABYwC0MQ6h`Iin1pvx9dW(mUP^o?mASVK&v&DXe7VNo!-cBH^F7_jp??%v3 z0-gW|p$rBKh}aJV7GT|#D~KCNKzRw&jt4CGvA=%0tfOc- z^H5nU7X)p`UWJ$;0nnEKJbclA@tA)Bm%fU2uUJbphQPS7QzFN6Qp^L;o(C}KOdOyv zAw-RIXFw5nB6$q~+GH3r8P)aFFn=STt$JJb&T8>f-x|Wg^}Jth@Gnvo9teP64Sj7J z^pXT}NT?*~D>F2rfcnJpKZ_GxC8o-Ww1_Rsw~o8t#J_w*=_SXr9ffDR>~>bD(&e$MhPxLEmdZ=t?kr(;E_4j9XTtEqhKu3TkqqFZ$@Lv>3xipxW6n@5nZJ(^GG z=zfX8wnrsZyP6rl%k~_b!^rMjk&8?6(&LNSGxx^r`Qi$8j7Q%n6^c&3u+%yo}3J7{dvr~@;GhVpVW);Eiui57eUyiIYPruOKTo!AaK z^R}ynXbsILR&h?!&eSgGrhA0(nIDe#@7BegtWB;Yt(18J6DHJcmPLUf7M8}#c3+pi z^KG7m0;9gl`vCo9oLcG=4Spm zrvh*-^pJF$vU|B`v3cxFy_8GKWS5;!ey|l>2ByBBd4XPiKHoLMF&N$w81I4(Jzr}U zLXSWFep0{FB{)u)Eb+R5XhdjB#z?WurS5EqcJ?qEt%_sXX51cr@kLzcfD%$38X zH7v*Z;zd0$p-|#E1|J23RWSL*U8);elrLbHQ}+loa`YQc#wXiT4`TLUOYy;Q8gR!eXLK$_xffv zFrsO5e0uu&hE#o4A@7&k)7w<#O1Q=&9z8R=i{=%Zln!esCf1pQs}8GM#k5vcrNCsn z`g|Dyl8v(UB{P!2!C>dq^_vpOm_?Np}R5y z6f>krah}^-MFphSI#qxk983(qi^Dpjdc9!&Z?=KJB%Ke-aP8CBBeg}Z(s|6>t2#AB zY-V4?AzM;pmlM0n;+hpkeIvD8#i?>snVJiqOoc~kNyJk&EVgHk%*4QFx~?E<6j91q z{?ZfhiJ$b~@?lpyG4R_TmDy!d2?Gk4Vs27045xDzfe2rjv-#`16v#oW+n%SC7tCa? z{p=2SgQV7}<+bP^l%FuT2y9QCEjO2KG<>hC=m?dt6<4T@bsQI{IPWj^JqsZkOqPlv zW&;H(^BPT!b5S+W6Sa@BCY;t>khz=F>ists(vF@JEMzP|Xt<*7;%Vk&WEF56TSrokf#fsKg ziHc28v}1+PD@kDMTfN2d#5M89T1%C$pF%9S4K`c(3 zIK%&=>m38@P@nDL*o|!`jnUY)8rx0N*tV_4c4OPNv18k4taqP#PtUpczW-mprP=wA z=b4$cX3d%>&5rizU(D?vU#7CrqP^Dfc$T9o&3S^ccI<7hcY&FRDDd2~Pr|^3vl&KE zHbk%0?t@EyoCbxpq&)#DNm(PyIOug7yj^7TB7QgVA| z-K(sh$rI$xd!qoltBtt>AV#jt1wDP**3Ar755J5R5G1H#II2A6wAZp&$=cH?&*3sw<*}%t>L~Vk)S(nfy?E1-AOBe z``xe|F2nFcCaB8k7BATyaYR>O1KRsJpLUKSGlu6_&Tz!83W=)yy51?oX}`;ba^b_< zZQ>)i?Bno-L=Dn%sBvdte`NMxY|b>qrt1l?ZDHockN9hersEzR+M~bc4%5|wI!On{M4k$NJ)woyx%gprN!Pt9 zp2o!cDUn1jH8pjWmi2%9E0k-I123$XYS}LMh`zYdXK=DyUaU0nI3UzF?wP!x)lRCg z>0&Mhb(|MsHYl-I9XAiYXA=aG(a2*$Cep~FP(5*+u9WZr{y9Wat}|={v*WVt))p}S zo&G4=7A=g=nozC32`D=dEk`CsXJd>V-z3cHKa)N8&{N93jArcBBPUN~#jbUzjb|ge z?sgsK%*0!mpK;nXO!L*f_!jOWo~0;8qK z9{I6;(%UOscmsHB^_h@P^D?^xZ6HhG5+z)30%xcJy!)FQ=UUG#PN#4|=cVVfLFlo1 zzg}S`jc4^kq$FcF=zj^Bh>|%3Avy}p=(4ptcAzJqrN>X^`uP=`Qn66YYiUf{ARGqW zF3-3W6Vgw8G8^4baMbQ)h2rsjKY|kYKU3M5l#%_jrwq90VsIWLiln515TPI_#9*Sn zFvy_);|oy{!R*0HB%z!RJ{ysj@9t6&VgGzg4(;m36*8c$(P;lJt87KV!^0zm$pc5F zQd57ydr8Z_{c{A8W5{?GZPi}2a_Tzv%1IrB4`&YKjRk{spt&Xwc|Il zR7P+B566<-8mw6iQT*CdJv$s7M-URaR4#IhVT7|{osh$@a!&PPD@~ig5nPkUt=3YP zasG*syKbhq;o6;yS)qjHfeN72!A2^!#6nv}*IAQhtevou=~`OR!1o~dI-q4~+xTg% zq}u02{QFWZpNes`-!aR#86Ew7=cBMyucdmU+~53zU+=UcraH5?)?n4Xrt{rk&`>g0 zspMxZz!@d(WH%Wo+1iJH9$!WubG4xFT{21K$f^o*f+uM2^1R1Lno1D`Fk~@*b4X}% zaQF2=G`L{kdU=0!JLGc5Es`390s{*hj23d=9hlpZ>;2^K zONz&R-+Psw2op2cK9ZlK&?a7O+$Sv;4w{dM9HhOvNFUO9j@J`eBSLr4fVuSnPq@+c zDKmZ1m!gjH$5#aG#3wPeL08Ebb|#;b?@}o^P8}3{5-1ZPO&e!-bJ*g)FNnho8mOTn zM}LFUQnfqYn;gwIb36Q8GqJ1k;04g7F%v%5TR{vVo}p6WM~u#-9BTBszHVhr=Ne)N zs&k`LC?8S!8g&~Lj-Bd_7#^4Oy>Qn5&`Wr@)G-6&Q+wAo$Pv_w*gijIDA0a-N3kIWv#Ymg?&Eh2zT62iA+{i(jrRZ{R-G z=Xx2CvAFy1sz~gWIxqrDHFfoZ+XMG^W4Rs?+~ZbfzSTE@2e!gOGiekKIbH$MS0~G8 z4r!>Jj9CB$v+bi4MFib$$}y516UdLv1>X_c42W=#9s=Z*IF&9x#cVa8MCwpJ+j|NXb@! z@8@!MK+TQYP^yXo9hE+TyROmk?Zv;6od5il5i&Uos+aIqvn6)**PLy3D$#gFUWjVJqtiQEs(iZGZ2g9D89=nz*;}s!Ztzy? zmWF94-i{dSk^GHq>m+FI>J%^)I)M3cY1XB{WbvvfwG}}T)PSxL?1sPt7|&wD@2mqv zGz2z0K#;1jLub&0+M$vy(C~Q1g);_gPYAg`S`|HN-O3?u_Pi*V&Pbsn zCx?hWU;WHm)fsrHDdnuBlp_hNR6>pP|G$bI+jdTFW>*}RY1zHf*~J3b`?@G#{l zJ6yTm>9BfzEhVGH8utaw)MgsuW8No`JLd4-K)Bd|A{1yg8@<4+ncC)C&C!lnxjJcK zA63j}HE>ajetj-v#XJwjS??K|s&N`Wc9`r(@r^D+_dyGtsGLw{O%_D)yYN+5uP1v) zgo6Vi!VqoAl|}wl7{)H-=VzPAB^nW0&UGs&eArL=RSEGw7BKR^3)mh>p*-5(1#C+K zWWD2C6cN-A(uJDpxT%>L^qYjdKNS56t68_}E0ip~0|~Hb(f>9!H386NebRsRY}v~Z zZvg&SUbUqo;9G-=3)TW5!8@P3>t*BK4~o)Aq7M|Y?CpdpXzZ0bf*eWd^X8$9<7emZ zVA-Ai6`Q4A2R5c0QPpz%#E)u5wbG30daY+(o@NKuUu;Sz3l5GO@AQ#v zouaw9B({gore5jPjSP5be?3yKR&)Q0#fa`=ks_43BLOQO@(yXkf&ts zL9MWM!K$QXEZ7rU0TCWmqw+aiaUnd0Xrm|PU3a_glB%JVn2s^&qW`9Pv&$PLX-<)p zcL-Q~XDJ^gss%&3g><#S;FK0%&_RGD4`uCQQ;DpDhO4PcA2Fb{!QTeg{k#lpC%d2l zFRYD!XzEJ^XVpfBofzBMMpjkN+W_mrjfDK`^FAvK99(33=-4JAB4RAFj5C9ka{fOI z;2(F>;1i>Ff||CeRq~i3i2FFimXyt zb0){o8(PKPCdjX@Ht2!81-Dti2X1?N`&*-Un>HLM9b@Z{ZCMRo2e8K%Z5vG~wwNKj zD!_D^9JuTC@3^#eMK%uZ#ffZgsEw{`)Ww*oPT5$t@+P@3P_iv+%{qw2x)Jan!K-hp zOm3q3S8qr8-#Anz&aY1(BQG`~UzaSDL~~fTz8?fXon4Ed9DhmOolV_E1=s%IbpUe4 z+C&Q&9&yI3X4o+d-Mm!*W61@w+x~0GQ7e_>)0{-5@C}8dJc9YGDRO*7{GVU<|H67V zDlGQw{c-!;g#lI{>X5Y8zxX6eZo4zBm%`!p^JLOj_vKRvyY5RYYfjjZ(rMe1_l=*t zTxlIkKvTnp>Pfag#H-I+AX|i4U+r?jHeiYfu2EJ_$`We=D*M64iV!M^;&P*u!L_w( zYZ6RsLL0yk5aMEEH&wU*k*>}doUYFBYqsOTro-?#rN@_{ppo$CE0?LL012J5r3P$q z41waEmJ63L zxW8N)=8D+=a(VZRL6^dg=>7gU*)Rvphd^K!+D_!&4GKJY#!{kQeIrN&Z^f?CVIm-G z*$8VL{g$20V~34+u`=%T+Ek@$w7+@SYh(YI$a%TeEZypT0H?bfMWv968(%0%QIPD@ z_VpbzUPe7WHrAloV>i4~RXEwrqZ8^ZBF*k_(DWXM_M5##<{U1s)YA}=qo-0x%w1@C(Lq_QPH%B;pj$ds|At<>4 z`6lkLmS%+`HEYyCPY@S6T?k_bvdmp1v=-aFC1g55+((1WmKW%hc}O)Z_Jc^!W8(5S z%ShfIm{jx2E#_?a8+8+plUh%NN4@S32dWJDug}X!m=oAYn_XV}vz-*|;eT;Jh^#7o zEu#mFV}}iYu~cHFLQ*T7AA4A6ZpLAj4W#6p5Y{^URcg;4hXYfYyU@;WA1$~(o}M4k zi9bHN`JBp^YDn~6A=Yjc!T#LvKZWt{+Nr?;ItSr*uM*!AkHmeK`FCybB>_7^a0PN~ z?D+}|2xw@Wm5fz)N2s$|7wYJ_woFIa-c*!B%Rk}_TlDj_F(-Xo$eEDItpwV`_|)B%5u)n&q=I;$Aw$5 zFbM|(H--ZDW)t`D9GWmm{O1yRZfaw<4DOfjnQlmPee%;^-&O&EdvqH0=$usYq~ur> zB>!;G{}Ty?sJ2Ww=X06~Q?cRGUkw$z{%PR-x?tNq@3EmAtt(4e4I;6fr;B84j#hji zxWHGA;OEZYtu(kjP$8g8sH7W|ewQM?L}W8Yo&bW@RXQtw2+(mo_2_DYjNK~%TRHy` zzI4Eep84Qc^iG1+uDM9eavOC|fqVlxYNpuJEybf2(>qi_6wDxNuo$AXfYaouV?Fbo zS&2%Q?Y(V2$_uNvHiG50Pl~^Olqt1*<0BD~AjvqixWfl~u-YUx$*_-a?ow2UCB#RE z;aCo2L5X8CBeZoU5z2vC{0V$>=j_cB_@);b>J8y-##=2%gsHg|H{m7IL?*CKiNlG%a;LReJF_&Ruim9>5w zj7K9iV|V1*F|Z!`CW&&zy%ZI8C9@tX3OIYKlD@wA^c1N^Yyn9JMH*{cRKbXHEx^-V zGK-~Q+3NFxpoRwaI6j9;$pKwu=1w84Z+?D4thYyPe2;WTW7IhloN)uH4IiH%y%KQ} z-8~BN=paDl;x(w=KjZm7HZBvWOyn?*(+dtFjsC6oxu*Z*jqg1$8lGVWKb_>3Vl#5RFoX2y;0=1^$EFPksYLfpdCMRO7hFeD^zK4)-ZV>m@x__m3 zViWUW#TEX=))q*Y&&M}Y9g*d(?F`mYn~lpkiF-Eyftn>xf8gPP&mymp(Q_G={MeUpU!*erG#Gux#!7Uj3 zPp zRr>q^4pfLDK|dNMtVVb4U2Gi#^9o1dxH$5tFX7ROTgjy;e=38Z4R&6;(|;-MG|?lh z+8S!Id1l{kym<7}6`pjl+Zhb{x=-VP2hAq?pBhRF5(AqYlWJ=rVlD`+vFl>HKT-WC z;0IvL7P)keBERnbz=C@R&jd|xIEB-FMkHg-F}T-~5Ajb5nj7lzcj8GM?o}GoE$sX( zYcQ4Mq*!30Nv+-z+)J-*=0FXhB9ntAAS5gqPY3z4N(;Vp(HiD@hbophgcT)+fEG07 zBRC{T2CQUG;-PQffeK_mO5>|qh3m}~zYedL&PiR1mj;VP9x{ojsDKi3VpiB`uv{8h z7*OA_hw^y&@b+?%N<+9or$()TM+@@|y4>vQ9mIg&9^N~)Un+FGW}fKGrtXEq9#Xt9tCK|?LyCm5H7q$n0Zk+KsFgBol!o{z)vTmZlJVEEG`VfSrxZuc!| z5)0p8zcjV17>5EK9s`XcQ?UGym~>Lyg1*ulY8=(KaSg>hSuqm-Zer)i01>z5$F7@QPEqUC@9#~V1O6a+u|@-HC9x4LnYp((LEd2SMbRkUgc2xPPd^%Rl*SMh zYb`0>2wu&s4$io8SA9{ou1~mhxIMt4&z2E^coy4G6_1xoee_&d_YEFQ$>7eP>nt1& zeJa0Cdk*+_Pnsv?omU=Z+k<0J5)Or!<3sblv-cD-?pof|u&uI2kJIU=E@RAmL-=Z~tuw>uePNZNsnV4t zqczW&LFB;FH>Nd8y9btXRs_-!MQxPKr@wt1urah=RQFvk=NFACH-`*vckYuT{C$Njw&6+az2qy z0|wT~%l7+zPZrLCz%CELs?xy=h((3*lSiTL=KG{0eDVdx1kOKL(ahA!=7tOG&;0yA zeS2w@7((P$9Fr&`hV8)TVR>hJQ)-Nafb2F`vF0n2sftgt^R{e3!|S_fNN?Q`l5m-P z$0Nne_c5FlVkWC#*{$>K$&L^p1^3?&8LH(q@@_zYMTBzPozrUf+J)uhf{;m$2#0>K zuDL|z7oHUhEej&gC;yX||C=a*pi~=x1$$FOELwNR#!vgFDgyp6r6mME;7q{a}@FL^Xg-G1y5dHl6cNSEuFS%7%dEMp@fs7A_kUci2L=>9zNb^hD?VEhV@F=4UjZ7T4~sxVaIJ2E+Jc6wiz$JXE^ zKy2n0rwr?v7<_j0yo%O&f)mc`XK0^OeEE+T=n7{4#cKu*jNqJeqo&cd{tL*T_F#p| zcalNGz1~k|oI>_5Ibg7YN9fXUw_7hKB1mg@!CudCqo=lE{TV5wF#W#oLYbp5K3=Qs zxY6a5+x13KCsml9h_&!Jm_r?};RL3SYQk@qBdhyyd5qZVSyq~@N|Fc2eS!#1)vIfV zHqp(eR&bws9u2|-mHdo$Qe`-pi|gCNi^i36n8r05Fh*5ME5Ek|2?80 z%}Chil~3qeeu%;O#f*V#PjH{-ce*Bi6LQOQL%+5KZt7pQccjp!vw-2!dA!^#8+&I) z&9iWW=P9ornZuKSIt;3?l+Ig&&^8i)#Z{^sj`N-MmKalh+FecvDW7Ndxn_n_y-p*y zZhxe_o12!W4z*gXV066TnV&8SFZcPF#M9&R$dlAgT9gF#V}XubOx@XB!C6@G@CohS zPYBb@$`*dYV(4$-aJ<<$yY->nQ-aFtnqt3W?Elb||64%?X(9H$Kj&dU3_6B7C#nrf zy#4!$JQCkRP%K$Ico)qQjRvqxPzzQG7P>f#(@EbS1OZ1kc`!^4_Zdu1+qi0J_KfwX z8$|d7nR%-^k2jEWgCN`@O4KsM!1gcpi<|T>Ks}o!uPY+uxF#ZGM3M@77*0hdXT7%M zh!AV*ua!!hc3zMHCDNU$8&!ju=k-`RF=>Wl)Hd=U9GOLtP|N20g)^N31S z_vAMdFjdE@Jp#n&=xMKRNd}|t&`y_QR&?p4GW6@8t6lp1FTK|RZ7HEF{b%^r4>o;N z*$>~E$cp`dI*KHK_P>aK%gky{#Od$C(?Zl0@k`4c#HS_KtU!|#AG9<>D(|hq>e1-iO$#-5Ns~JXo$bS}uW?_eCev6eoCm1t+Klc6g z@h5@G<9r3sz~yl_u*U5~S(4$o!Hq^{-}5O0z`4NFA`(vDkNRgCHks7EK60beykkA2 z-`YdnzFv#SC4EnrbCFr5M4{c*YLcSWXtu^e>ls&R*UA5kFPsWK@tZk7c6s6CL9@=a zF_t+`87tiJr?X_l%F~kFPH#7}a_SM2>b$B>*2~8;r~bL%^BlPn6F{{58aRvqgL4@Vn~p^md?y8yVQacri+H({Zbe8nJc|_D%HRwO zHS{|?O};v-NmpvICED0AMnB#bh0vSyRf3K@OsBMJwH2r`+-Q<*w~B}(*R(eT#9X%X z1(A49uCX-W5?1L+A_kK_hamc0FlN~)V5EEb&}o(8Kk)wiKLhc9<9$(3FuI7*U5Gdl zp)nW$66N>bji_ZLP@k^U;{=aB-z-@f2Ev8-8|7EGuSy&qs(9szD7Y;DmZ zT_|WlFyg;+`)+Dh7a2ohk#8X=p6#bwyI}i`3k$Rzk9tNm34_BIPJc!3FWgeuUe}wO zGN@ki79&1>Ji`K^U}yfhYhq=2xo0Ug0#rseBJ?*-T{jTHoKC0uzrS*sOeUd0#iUO8EtBy(7@XyFJ|KG&SM zCoDSYTS@>`hst5K3dv5yjbuJ&28Iq(f{{FlAEG{$^(%4X;O1al8-#K~`*RrhjGR=3 z;PvWp{tHmiUXZ@#0Cj8>so}W%HP=k>lWwf5z;e&7VCp9%4d4f|8%k3bQ2T)bB2?0P zC*V|F7{VN*Y{AgfWFS$Jt{=ku(fg3#2=%-C*?Oy<8I@3H@4&=y>C8(KgT9!? z@fNgrc$h$^kJ)e6$Ym1s4gcvJHy&eWCCgPfRSOXy7ss$rP#4+k92OWlTG{-XY`A<& zN-+j={9Y%4v~`LlaM7Y@dw704$rr-~3slI=CNF9q*wnY^Ih3wv_x%>KlG?beB>vMm zrc)9RkxY|t3){~J&Ya7P{d*vcGWxFcPi!jM8QA16FpHq`535JMzAwV~5; zA6HoV;pD^wIG9t+a}=vg_~gy3)K(#Wqhby+#n?_j8Fv}dWJB!o-m9Zzu}r{Zw1p*4 z;5X?NEXuooU&Z4fgN~B;V;(I|d&h z!Xm;24&Ap@)>i?ld@yhbCWk?Sf9c=YmbDaFSOw5LjC-T%FhHvke2vin6px1o*Tft< zJ`7N`fXqg^1erPn?eeZUJ+Qs^C_>}p;*vtVsM+oJJ8QXxbwE305}o*hGui3!?0o}j zLWqtI^XT0(HDPeyM7DdrhmMwEG-%>86qw<56Cg9YXP|KTX#!v13`TzC{>GCcbM@*q z7{LGd;v?%!7%?zuA%BLSTr7xkpB_d*#k0SCOX ziK8K~Vw<(bNTGc?V284}J)<*TSZR0(kTrNEK%K@9Nc~}_DjEWhe!5;Rs$Q)35?P5Q zUqxc8%zQN^;X#X9Z*^xjLP_@V+UW2zARCR{wTN~3i&UVpDCHb|pU%r9fA;!F(&v)3 zTm{ZG6CnH;Q?akk@f0dGra_x@64Of8*DU61!RfMjf?CvWFnaS?DZRbNT2e8Qw~zn~ znfrqTGV{r5LcTa|f<6(tv_AP{%PLeN`OsBA^n<5#(}eMNmAex;Yzk zGn7IO+$@%28vansmxLF%rFbwlN<^kq?2+uBH1~;UGOD|E z$NdE;r=R}?5Y>|SsFMTp&gPfiR1HXlfr2b}u+cY5XwrKlBftB=8nrPvgw=n%yPcZ7 z;FKbBT0s~`x!asLKPMn|K3j_AHT^L>66k-Fl1Aqyef%2j|D^>j?cFNwJzSbNFl_4T z?XriGo?yA|)71+UA(_tm!qmfu(Z#P93TG*rx52O>61{eaSaLTwDPoOgSM!m5f->6a zmKXgWoFhnOc#m~c!>r{ueY?;P1rYpu>ot(g4}NIVTv*>R7W zCA3#dLA9p@5|pU@r?{{3fjft&rZkd1LxUEXfnkp4(qsQNk7%$d`^ZO<{(@*VbJl;D zRX^%dohdzC78mIBvRI;l!1p9Gj)kE~9a67j^+KedKjA@NuN^kh&ZldX*shFv5ofOB zCgwYVsu(PoSb*6RP~)O~vu!h36ve0o$6sy&=e{FE_>sh@X1b*mpO@a>=h2i;r+Qz~ z5di)hmql$^Jj$}-+uOG_NWY_ZR62qJO_>;S|-sn%XKYx5RyOS%_DOZ8a#z3yuOISa^Qm9nW-164`a~cj0vexe~8Lbq4fHeZZ6vq(ymOA0uk45B(*i0SStk5Q6>+|5$nW&d? z)vXFO%~M%FY!4(zT)mEn0QJYt5i4&~BOy=GPZ=;ZK=+=x9hkF2yKLb}{4hBl8ZSDd zF3HKk?=@L4&h4ZA+z#6$*l@;d9tzkmpV)Ag=?S{vdFn0)7f#s^oG+N?iL|N^L0|cH z29!AtJkOzkGezS=2o3`xVM-S$fv!9>k=)%QpqN@9MV0~rxha-%RjwE|dxoDXS32yM zphdlh)-7eI&Y0!b2B>0EdN3EvO<>Noc!4jDmX^z5)tZSn&HY|tAIoavO+8F0krTSK z2nKo0so58y%er+~c$#@SZg-tLg6-HLuq44UW*6JRQ6zmCAuJ~I7f&Dt3L1(H&LRhm zI8%F`^}Cx8{7>!4{XP%YdVh^pdw}{!q&V8$Qis9eSj0!h+|}FHA|t16Dbdur!@zh` zTAX$MbHRVW|5fV0=xK;xo8;Wjcgysof0-*Tv9ACogOQP7#zLj|R%DmG>W}X4YLrV$ zc<(=cC)?vHfMkNHTMHm$rl}kUhNbH-Ez6w)~5|4pTvCz7*Q-l$E8@bqpcp+Qj2a? zSR4GE32MFV_%Eq@AcJLI6-_VdL8Z2@ThDe}iHh=2HC7$+%?cgF5 zQT5=}+TX}9%g7`j`d2R^^$iYBb-E+sw_D*L(eIMfd!IG1fpl{~x>?+VR;H#i2Obmd z!`VuUENrdI=LIZoAUB*Meg>JlV7=X4$UUcQvHZHPV2a=Ig<-sMzh;dIHuoJO?9wSC zr{>$WC8x6iRZbmQOt(WX8zp-`^gDYRsVeR-r7qa|@0;r!@O?O>aXhw}LGgs@8u^3wO-$16UZ=!SV(8Q4Pq4w+KKyUXKy?q!if z_0Psru1vJ5%o+bkFQS5&ps%ES=C1lBqH*N}KQ}^ksehKJe4?Dtg^iY%mu`|jHxC6# zsx+S~jQI`zWkUl6M`2xOS&qv_GMhPKxc+AZN_RSZz@R*MO!Cw=O4~LaOZ9jpmo**f z%P1?Lkd?}nov}f;RL68-3_n*8dTgW}Xg0-!ehFBgPC!Gt+}OLgQO&ay%3lry5d zAH)lDsnkD6+NGjR2&S-$YEcT~fFoRM8L3cMV&X1SDOU@zK;(+rW$wmX&CPw~SMTfV z(=cxnv<)@WfN;sKqy5&CN3n0P-TEnM&%u6&qX%TnpitJ>W8a?)Q42>66<61+kF&Fg z8LL$@F945GXsd+mg)F$>$;XY`)p&XS6zeGwCB`@6QmSDRiTZ*YX#B%Bot%GM*ShHU z3+=pp#1i1RuCYGmU8?p3{b>R)XFKIEB~2&_k2wE%B9J8J_4J!Lrwus<#&qBFdI@_s zGB_d4*+vik#l>=7voTRZprS(#T~!WeS>L@X6yE|U!R8uQ^{fr}KBlz{tbxRwtwRBQ z0HOGKN_1|WONy)UIVz;#$)%x0MM6C-eibAuU@JY zlUPds%lRR1B8JpBYlnx+`e=jjLiVv;D=ji-43>3elC~NQvhWdmz5xTx?jTu*(1Oj9 zfvbgfnwRZQXmx*s$w@+D^9mNO8fwND%gu$T&-!QJtC$5csgcG14cYVhR<+X(hkoY_ zK*M(0$4Q4KYb1!%Pv?{H?YvdmIyO(jpX0>YTH`Y}{r*dcufq=cw8fEz>bJ9vHn+sp zC@~qX?#iYrhjSWkIg^pBh`;WihnrJ4jO7*5zSHu)En`cUkXamoM-W<`4Lo!F3W|10 z(1n|h$W%6vW#%br>@ae9;K-_OZ+K!26b-KE(xr5f3(c8&ZnLV@F~o!M4c`! zl7U?dhAJ9RalJ!f;1AiiBSUYyH3R+Xtymq3ygm*r`O>Nu-t)) z5d<_vm_^@ye-^MB48uZ_W@RoJ7L*V~2VpPMgBwJ;An{T&7Xli#LGO=8TN0R@=0Scb zQxaKf)`@nE_$u)f&m0~hG70)iqyl^*##o+z!sY|*QC z1If|3oz2zYi)wv<#_oA1h#63umuHN4p2Kbi`kuKrNEb6V-M8sc7SAdhof;5s_EO5Q z3{jw;oW=F+28S+-4F%|Gp6Uc-#I&xEX7Ace?S}j|xlBl_HhOoI3k7xZ6TP=c9`_@x zI1&Dc1`dpD9$N&j89`sIn>}uEkCvKoEwvhkk62bd8VkntIbl7wf7?xW3Yl_xyb=di z!}_EDVOF8OykPbXp6-x-_CFBEP7$rd{((Gdu`NOeTbzFHtCvT=DFjchH@cCGC`v|+ zPr!+CavhhIF$KhPOd5hYs|hN98nlazd2fx#V>eqoa*&ql=@--uy!Pcwpbz}2T}yg+ z%$&j~G7Oa>7&z<|=T$w|N2fG$}UrV79m0Ds*?)xm2}JYLZ$V``GQ`dlKTVAl!j4b7!WsfF`7V*ZV3h} zV8(BZeS`kiZ)`ed$z?PcKCm`U11q$3ejP58RUD(!lbkSy6N8w~gH(mLeuNniEzwR! zMSF=QqH?apo)S?UBP2kHDhN6eL1kS#71z#nWI+_f05sGY+y`#Qckgva%RRF`H8}(?pa;!Vgl-e{l*{mbm}CUcYhwm(o+GZs~_UE|wwjSUtOSTNE8! zq$(r1gYAf2*Z+9GUq?P~sZs*8BnY5q@w*#@^)Z!AAuV5ub*!@ayD5wJB~P8mrbTmu zpr`M+c_;#sn9MbZMtT@d*nta&5xO=L>AY}hD)fkt%K=p!GNG5_O1EGy?N!?B0^_Ni zU|9m*-(lAeHY9kxfqM)|qSIPDhq;^{8ddj9&DylhQ*K6dF4O<0alXWV2La-}yE;5B zT;ZSQQxJj_W~+SM4!o@o`hK?%*Kd+&ziiQ8>Q;?~89WhIZTCV~ruENT0NB4$S%Lcf zS1DW`9*^AhZlYjUooR+!7D=)1;K#IQV!jY>*4xGSen)&od1 zT6Uj@>YQ$n0Nv;30i-Ox0}rwa%l(tBqhIf4-&3U*TG~=`yJu5?DhDfV?${It$k-<% zP0|Von`G11cJX9Jt{!FTWEMGY$u!=e3~Sp>sIi=z@JCoHZRAiL;6!{B{?ca!s8^(O z?S5w57<9m#Lbd+D2^3ba*6sMEDDz=;u=Ji;zP5Au!LWB#u2dF{uk}_Zm0>a)0xLd< za72@s@$LXWrr}>Tqlp$QRJLNe9d}AV3G-%(LvXk>R$a|x+vbDE%~1ghTn^ev8M#jz zbm$Hw>7X!-8lE|v)DH~<=6US2n>PIJ{)gAL9eNZE#N6IzDPH#cvLDW8b?X*@^Pw|^iE-D!|jos0R<2z+$MDXaG;7HsHm6&%zMeu$sg@D{Q#R8 zd3ce;XX3o^B34>ID{4=HQCeEdUj$yKb^D{x_lStk>?pO9GczbV4$fa*My&k}pKMy} z5)!H@NCn`S%NEVCuT}1RGCAQzfb@Y_$X^s{DC`h7OIY?5VMaK|pno$v+co&%MG79_ z(;esl9#BC0QlGkfdhIcTbnu?%c;y_b+S;|Wk!t+n_60uXVsm@edQbeiF1zW4Gd$15 zN{fCSqHBEgGS4Em5E@PvXkmx8I#Khz8#~k-NRj2Ee0*w%P7LX1NqWqT6V?RN5Plfm zuo4!-c}$4D2TonCKwQSx?2 zkXfrrzu3KP6|QaH+OtW2`G&`sk594DalNNSN|;HVKt30&OhAar1Yd1~WjBOOpGc`)i98J^KfVtvzVf*E3jDE|FG*Q63y~zjS7=;WRRi0;A|y z(wz%A({*2eFz{`lnL?*E3#f}o_E+Y*1sFvuju*4a4$$XM|Y3eh!7*{yPYM_&#BqP3PD3@QJ>NyQvVyGpJ|^LC9A z`$0?V*~Y<)w(D>7Q-U)|FxMq(%)|7Dv`u`vs{_$!>VTaOIuR-+B>xw^N7c0r^_&A(^%xOnXrc?@tPtTtY*5>b{*9*h|6`+4YkeseYh{$074 z7k{Z`Mab9O_7SsiLDt5qumc~wA@!HULGqcvAfwXDj|5{*ya7*=6`?lEOviX?%| z{e4ZTFRW0i);EL3Ao34o95Qjy0zDHAE{Bi=Fy`%=aE1bi|>&{_W$-D9K*3iJUoT0k_vIOutK>=zpn=#1*2b<* zbASLgHDaM2b`>ni~Gs2!$a#|M4lNkP2wI!saTR zc#Wd?A@OjEK-)y*CmNw<*@e2RhMU<1azt{w+gf^P5}C#fVV(OR zeCmJvYu&P7h|V{qZzmWKqZK@s-}KF0{%zc$LEBqcn>}coU2aRG8;me9Xw={i%GbcC z5ekUGP#|`wBw;X07vsMzMbPXP{Uk9Ut!Ozo-&hy5-(@RaPyPO z+J`DPVkh;-phS!Kv@hmW3C+4 z8-K1C1KN07pR(CAjRpgO>g2mwDyl;C#VY8WI1>7aWszuC;&;=hdSM4Md!p!vnr zGX<2Z%|54TDl}hWZyRbUp{H7uPm?BtFm8*5Y!#6YWk1;UTfTW=Gn+DCF%!QBS3C4c zbGo@+cEMU*F{00nV{>2!E2NDz$nq%EGaC>10}bQdI+UK`am9s0&-=GIjsvB!6m6{u z-+*A`k7EqAoPo`>a~DwfJ){=3clVGkz>@1$l&eqzr4qAJ{C=d()wSci$YY zYt0AWc_;`y%W9Hg&UO81o-EURbwUI?*z)kt?pxolq8txwn69V>lr+5oqr zutqC%5KKm0A(~}jqwep_%fG{cXCk!LY$PMO+37q|lxkskrNQ3Lixv=$(7w!AtCKif zb37KrQSB-Yq>XOuHY%&2XRMbi1FYib#%F`nQ1z@=Z}$fa@Z+B-`j?8LR`^X%9L24s zJa!*p(O7b&K`YIzb=zR<^`~-kJ)dp~%b1C0xMqNhLdMR_?%KR&tdIpWFPd|R)YvU< z`(XGh9YL$rUyH{;20mz}D!gPYuroJpZ$K_%rC(_@4%X)~V+_8ioh>OAeRUen>_T=p z+uI#~NlSbfi2orC;Z3<|>`%MlSD7{m*Q%OZx7?$fZg}vR%kH+0ZPyM&YC{f(sdSb+ z{eIH2XTaDlMx>Fv8ab58ef7=@v@X^Rfnou6_17qOCO=raE6;8+>sl$x2s638nfieS zx7TiKH7NJgfjgeOK5AR7-e?NArE-!^X7%5Rx5eN|b!xP+rk9PMw)3L6z{U69`p@|t z&DGGdS~X)_FSaV_cMWa}_`SfGf4IU}cg*)s6zND8~^h zll{5ZP+w8vpNVoAyzSY0!3Q6w#WX5#=${d9)oj3z#cOH!atgGleD{}c(CJ9)(|_m3 zD6Y*=$|SOj)StSRcRP^U#9_vGTXe{^Ul%6|CWnB0=_~ z;u&wlAE5&HQcVuB;lWam?ZuvFa_};3qag4R39CD%>1I>Z?~9dX!efy;3XM2FGg zci)R(;QA~KEMigy7`@VK{wcQijT=(PgLMFK-g~MgHzrH&dzlS%+)FXIlj>qwuzg1a zI^rPAlF2FWbv~?JGlQxy9u7S-Q|=ywJuK|vCvV)8Q`?e?@41VMC8#a`Kd#;}EYtP- zAFg|{HQBapH*vBj+nUVDc1^aMY)>{PyNQ$SdanKZ?%Dt2czS!i>%7l%t@Y8;Za0a^ zW}tWe_}0W>{ldJRb#GoB=oskPQ&dkCbg>^m) zR&$y{9VP^Qw#+&74CQJ%+f*-!a&_^k8`zUhED37BVTC1lGS)zYphaB!`BUVGQr-$# zR`7}uD~ez&K>&-~Nujbi_O1J&4P($i{};hY<4*xr7>u%u=*{%j+HXU`@BwF%nu9TJ z81%&qQZgIAqb-Q2mTdGIv7g**Mmt?BTqzT(b?be_t)A|QK!+%$COk`rJ^A&Mi%h;V zKTmNS#FEPE3A!oAyWVi1#U}gqhoW6(!}54F zRYCjaJaF^V&PX+`Jp9a5GOtA&0<2jFzGp?R%uIf89OlK1Cunq8{mxhhuc zls^onTaMN;!5#6rN1(qT)4Y-U8o8lU(G_OE$nopthxYAb^Xmcpr@Db?EF$Il*_IHHJ?Aw7 zU+dhRyQ`?ws^jm$#ah*634k~Z1m*%9o1|vvqJn_B87RKeX(+%b2kuh6jYFfAW@C

khqc)i!It28|9E zkFXr(8KSZ1FBid`Q&RWmz5PPuP*E}KOzMK}Z%H$8$v)TN6Hr+@zBffAw6rPoJ+QW$)|4rhXbF}Bk3AS*BEu!cAM;WEi6jB; zb?xsN`cYiL&-S{4(9o`SJAg>5!7~ANg4JXMN&qURE&)~RfVrz?GY)eq6D&C5y=aLX z{g_;$;NKJqYYKl{!B#^>ltYv1Xq+1-Xz^84@c&)N8g|g3k<;TEEZ|dPZRf!+*S`Nv zB?t3UL}VAKbOp7hqu)J|&13XeFGRp67(ezB#T;QkCSlrB+ zuww~ZlwK{0U80i*x!|x~8~tp(!^%P> zL;rssRbI?udQC(H7GrJv*k*fv!~GT#%tde;>o!VEAy}>@kb&*6eef=76`~Qx zEL`gB*TcLbMw$(*%$evIm<}=)=VOO>l9k7|Q~1TIEkrSf2#}+waAwP83vd5}?-O;T zZI|c(7|{amAzX{WA8Zs7r^)XWd`rtCISl2H`#Ii%%q1r^LUv)KTpdagM*A@45}#fB z-baH~l#fhzAJr6F`(PBfN%F;}0(L*4f{PDzt66dQkMun|xe0aq0)cFk?wYJ@{F$Fk zF)$z`qsJ?Q1U6nYc)tY(7P?NLLU?+$^#K`DGH$0rr+J@<)^*1bF+h`P?7eGd<10kL z`-d&~sXif;pOQW~LG?|kyu<`47;wiQVP(AdGy41-uf18-=vu^if^xol5Lv2qq-Z#r zmD)60(H-i~dF%GIthdKppu?E$0z9BVJ_3^*LKymITy}eCfNDh-h5w?^DX`Xh5HYmz z?w4E*`XKc=z6$c9(_W6;MS-4&a!1hJPMC#L0Zo#HOd)-T01!iefa@oXT<|z3y!(p& zk8Wd^ID9ds1Jr%Mn9W1D(S5t0EUMl<$tYboH4zk^NrL2z7>z@R*>7Z*ewY-7j_3RO zLIN<<*JI}TTDDh9FwRWbJW5Z|_|N9n@kM>(>C;8UY=6(?;JAiov=QuyG!VVd{xoVf&Qks+;b%|OA~>UGoX zlmI{1sFC-bvBtlzu>8Q4E+i1FJ4iUH85T3H!v^O^-Rp* znIpQD6zwOz3G;JdnSopm`lX2-6AJwoDO^w75MI8JFi#V`2>N{El7op&Y?zPf^J@C( zuawyO^@F|!AVSz)=;{hlV%JY^l`QzJw{O#$`$_tB5zO6tdf-=4D8nYHQN^EcfB}+Tmn>)UeHDg?*#hu1gZ`kmnt7mgQMxnRD{BxnSHuCvZ&S4pR zRL;57Qkxk~d#Vx&keKwxFl0aqN5L9xEHz@pUpF~1h}+s_`=++WWzIK{ zixc8&_^d^yFo3~;`yCFYCJ#qxly4{Xys?!PipTymNJn2X#SY~ z%1zqau(bua6Nb_xJ|sAIZT~Ofyq*as9nCp;BRz25uOo#tcOj69^c5~%Xm zck3;F$YH}n&-&gId1HFvtRHg$7Hk#*o!^a0KAUyrSB{Sm3)Ui$!_l~-uu^vFv+T$` z#|i=W4*-$m;u0ZN5Y6ew&+vQS{~dx)faa1`p;^G#aLxjz`<+;&YL3vCi9t8N;igot znFRrt4Uw~24*^K5i_c^)7#lKvoblnyg=$ZkP|1af-RGDw15rv=Dc1|~X~f1;zT&3u zqRd$GXD2WFJ^)i3T?-5NUS>Gicd_G&cfK|$o3ZCjfZ!Ak#5~P&Kf3BrQTor%#4gq| zqxW`B3)Rdn`K1&G^b7TG`4jIk0olo+)B^DEJU*7(8TV-^TmV`T9T+cacm&qxwV-fh ziRcluYjPtl5l7eN(ueUiKfw-_=8ovnT5Ydv2lXfCg$Kh6z+*`w#sCyfa@qJ%gDQu8 z>Rz!-R34THVR!g*(u2fjuD8Rf_6D0zHP~EAt;U$0>s;!Su9JoFqB4-bmjF?sb;_0` zdrtRtIQqbMUO|k$&pI7Q<*fHn+>XD~SE43P4tlDP>uauBIzCJ>F{PnQCJ95QGvz#T zn-<9>OO~j>@?u;%8T;M7gpU+aiiwGCVWO{G#%Pa|%w+b=re7C_p<^5BU$UVE`{Ui^ z1pFguqkxLyRd)gJI}S+Zi|J|6k_Dq;42u%;YI1TTMCTzKrHJhTrr|v6>lNa1UdR+E zseAr-BVqD@O*V%e)Tv?p7Ve}f#b|T5G6=`!x4twL4a+KzX)Sn2#|0GX!c1;A$P*rC z_>ia^Snh4ufqW#NjRP}6X~F$mV|cnGZjNkL!J@vkm;HTpUm_1qr&Fb-X&6>zu1UsC>jvo z>spcbTra0jReoc&ndyFi8o*l^>^U-kpg6(khu!bbhG|C&=# z1T4OiT=(M(y3 z#nJmFjQ@^~4tcLPJ|ofJs6NVW87(09zU+Itv%D6w?1%Px4FO33=DOk)BczZUJ+Aq3}GV@2%#vW<!wF3um^S0FbGC^3>g5m`>CN8b9>>L-(od%DCbo%%W zl*w7RXp{7{#_%6*nk}was+D>}l?wR}?N(WmH70X{ zr9e=mmMu;@o3BP&U*6g+kiO<%^R8grZhUp;sOe$gVxHOU*{<3Fm@|{Kp={vJI z&kZ&=+H|dsYA)M0kn<;Agq~6YxD%KGOJ-S8y|VNrZ<$(2cEXq?=xzf8C%am&C+j#> zqPS4^?-Z;`VGtEEwZ#S3!DC>L^`W=7QAkHe?N3tX-x~E1wMT1SbAt{ro5b;cfuh63 zL6oorxd&5U4RL3t(Y5^wpB=9(5}=2qX01_W58gxTSzZC=|G?X^eONk@K&}&+wx&6Zpu%^J!s&MwS^xTRb+WMK0eV5x@d+O_Xa#T17aEOBOaaGNB2BgVe zdS5>csIciM+25;L&i*X5gg5cqOk7oY$rOcN1R@7pyzhe6*2h;E!{mLvr?#~%fha@& zZ+@r&=kK*_m?Ft5h^<+4N+t_Mo6IAYSYuYkG%lztexukU%Nmh(?}ITwpo970FE12! zBuFt2izDrzy_u+O(dC~n7Luo?NN|kn5{o7%eJmZF`FWg zP9+!L#2yHe;$wT^#vy;^xgRHgTAS&5-T*{j3PlD8}~ZM(&IHCO$_n_Ap=5xMJXy~g@>B)d?5wRLH7Zu}?2 zeS+0>-v|a7`GX7T4#BX~&|tDU6HNam^A#pNoTev-{8N;_(MJp@TsSH!D#|xmDggxB zioIKEsFV3(@Z30c@mxh{SqLucMR{@FEFSk9BD5N5Q23XGKjRa|c>?H-|DttzxsRre}vK}XITvmBoM4Kbl^KMfapZX9C(;EHI% z`C{zemDT2em_)4;|9o%X(e?8llCU7#_D^6~c)=k`SmNi1BzimoP^8vIhZvW|>JOs( zw|xdpaVMVB!O{8aY-|h`Z12u{Jf3if094^a{eK}8ZBXet8zn*t!r&l2fr+h|oZd>x ze*()IFc24GPGINif{yU#vPdh`o;2zQr|}2MIq7*3L1UkTcAhpC5noIcsNw z__%&xt_%tGQPx;BaYE@B_EPVbFIFN(rPX4);&;m!2}3?CSS{%Ws3UM)UL6_t;YqCQ z-~oV&x;VC_Tc=;~NSso2g>I9sht|l*uIDQASJR$qeTUZ_tpZmmb5acCO9TL88<`pU zg-@N*r`$|R>N7|`PGD7r0_dIHFV@!0m)u7h8I5qJ{FpNNL7J?q+66|pZ8h${_0-QE z?VE||-|3_fEExC&AH5A0Hwc1Z(`w|%+g!_Np!$umdMJ%Aq5yW{;qn!43d67AOQAT9 zgF?b??4At6#q}%9M)sKu2UQ^fzrKQ2O-Kedvk?mQ+W9ENK>kia@4+r$9Dt!gjzyQi zYqCH#rB#Eb3P=owPom+`P^o>B4I*JNV?6(1ZX^D}0X-FEXS@Zfok4$3~nIo+jYf5{KrF+9?_O?P+2~ zl7D`@driVE9p@;A0Jc8Q`5tgUPgfhOEHyaIyFcKt=ovbPVnU>fn7n0W?(q~PsnEI&743{C`mwvRyIi>;Hs{5q|;zdKaiWzJY{AKG*dIu+t2Y=LnYbueJe6Q`9QOcwS8ol&_ z8hp?pJA2({s--Sp$Om{ADDj~%z{3azrx*pNE*R^!g(&a?>Ktv${Y0_$$qf|Q!Q3yD(gc9Qng;e~0JCr7w+^{8^7qG;munW_<;;R3M!5SRgJ zP_!p1V+UmXnt}N)6TKbgC{bnn`*h1!Dw0-m$Kvj8(pJF^zYq8JUo;9Ce4-6_TrpVHWw;nBI-zXp%wG3TO>C{t zBsXlXhJQo5P1uIqQT^osEkT1;_xQU}gClw=c8Urr4Zu42f4><7Ky<9>_s%XS<^sLH z=vbdNF>S^PYjuKon?Xo$yjU(HqZNH0k&jBTH2gzfX&8!Qpj1D%4N2%!I~Q|}v$Ol% zL*B(UCW96xZsQ+n{_4yi79)#$FAg^mV)PF{niDL|5&3~8bthuXDH1w(%;7qC%}qMs zc&ro1<%14pg;2z9v|VRC3gF`PLdJpiQ!6#92cbKc<-=6kB;$^kndP*~AFaP1#M)l~ zV8uSJs_waK%T=F_J)m>qYRRI(%SG1%kYmKNbUJ+zOCv~Rl0l$_1(yhTc;dh~?4j?K zu5_As3TZ<-^~9e7Y@hjGs((e?q}7S?fbXb@y)tN4l4F=xNpUe|u{D%w9qaS^KpcJw zHf3Spng03@jF3Q0A<`?J!jDn^6qECXo95?j47Pa>;0|VX-6t(o{1Kz|s_tZt8go^h zEfAmvZ`N~o1fP7;w$Wt8X#r)q{Fpg(Ljir4Mp2$wvLQ06tJSH8-lJSgN@l(RiUY{) zqm=-2Jq)W*TJlN$4s*P)hto>KNTfK*tZi$=?6nKGGNn08;Yi#UeXJqm6QiP;_A7j( z)TW}}NrLF9O?&KCLxLr%Zs*90fE%oNBiqT9#RKn!0j~Ped5_M-39o_d?=k;C|Mxy0 zqKF;;E`IxqbrXZ|VIgYjV*g3boc&lK0=QLq%<_vFqJye3ZvHmc3j#oY#02C`5BLa?N<;1**2_!&+vjEHu`5=J_Y>1qzmt`{E*|+N!+!C zB}BzTie?B0K=Y#edpfk#hw(|HwKUR1=-wo8F6yg5(z<&gqBWNlc-d@mY=d}~5IUs{ z{W^EI$0NwObN9H)>#X0Sf7rwAvO^Cf ztX?kh!8%oM0?Ge3X(3g+Baqy7hT*#2ivG0d-8H|gfHa5}c+llTNC-6>IOf!82btv+ z#&mpvdMztC1EK7d*pmiZ?AXeV~*S*~$jM-=W zstD}qG}uJ*>Lm~kt2rBN0*qq?L(+IOk}pC#wq){ER29Jw2EUgr!W)|}pWABlLa>o4G`pg04%ZoZ&~R-q4)Vk4DkaH#yuDcqFCDo8=npqHnOjD z->0P`Q>Wpw)`bUemBzo<<^mv;AChPu1rU5OYDL4(AN72|89^iW)vj-9(s>AZ1UHfg zZ@_%gNq*Ipr36;up5aczgIc95J>T|^)yeeP4}-Ers)zMllU5n#Odq6`I_wJo!N*>& zX3G@tRa_)d_fBJbJ`-}A=Pdo1xzd2CaMD3b+WVdD=8VBQ&$&L`;e3JP;{8@uTsvbb zJ}bNinAWS{LIJ%ATEcxZNH7i%sDESf&1t!BzMsDIXPnlC=@=|sE#&Aop(yeQA#$Gg zsS^DN0p#D5y3-6NH|O%mQ#aY8yJmglQ_vk)iLA;4)NkMl?s@+`xy2lPP^?UV=h1^dO;sC80ezozI$~ zx5`XOfewZM-iDAa0^B|zXh7}A7hsNZeWt+u_cG-WQIV25`l*Uzc&>aq2Eeurw+-aa zw~5BX&4DCEIs63-Jpn&7oT8fUnN!1;lcGAAZ*a#+h~#ZRXM1D2iG5*4N9{1T02L=K zCcfC%0Fp`GenuVeeFCykvF-GDs_oJ17u2ehKHt3oTP#vKf7Id;u60T*Fj66(25-u_ z46(7APnlj_4oO=A7WM6AfwI#LvB7kD?cEukOo;hPhWEOl%`Wc{9Sx={Y|uUDOtkZ0 z0%F`W56iu-ww%A+XMo%4d7&xTo?S*4Z3{a~{%y`MZ!-@Q-z`h*kcl$iD*aWH+Xr8_ z-Ccc{rDl)(pIHh6gpc!;rD{I6b@~rX+Y_-{8jym#CQ(k4#^z^8ncxDf&S=(IYo^mF z<9&(ktN@E8wak~`4+0~Bg#eL2d~5&vC+6T5`T^;{|F?si+r2QtTh(K1dtBtnq}=`Z zr26Hav0HI_`P0P7$;r*J295HF4nUqdJ!FNexzPVK8mJ4n6M#CRRMRE?1r+$RM{nby zgNcgNwcm0!(k5B+os642oaLiOSM*}2Lke_rY& zOTWF`^3_~IPvT`o0xd!>nu`RbA`)+#Evj(x+09OLY-P`2uqAI+yaRIx<0FGk4eM7A z_>YUE9rHu|PL)0@Tmh!n=E4TVWuP=q(J;kD5u>M7uId7L8g6cwyZ6D*((v>3a*gC8 z-al7|7Ju!VHMUPos;J1Y=e+#R)$-kAzmrXtRNyL`YK%PCUSH*^d(K#4@iFr$JqViO z@)%W(i-@Q3(ALzX4&#P)kIH-QQQE@gB1B%q+-75E$DoWpgkD|9kbG0)rFNSNVm9AX zr`D~@RMuE~Dw*4Ij=G<=PMr)CBuEzyj0gsoZR`RzjjUq-m}jA#F`Z(NEMj7f`aKxS zB#ww2E+>O97Mf9xQc12L^WLy_roX#yYHp7V*sKy(*LQtO2cH-emmOJozW0XkTw(f) zhbL0shJ3o4ru=&>Jy)p0li97;*p#RsR9t9f*oGIjAW2~u z6cF$W5{4-a>S>q>+!`IIr}ZG?N{R6wW({wWgAI@)g4u$||Kv!nN=`n94ANO-cz-Vh z#yGivt$MTYk8~=iPf_0swY;4{p+Q04=hhT$jaiDwbod-2^7(uEt{lMUsD%4uB)0b( z$M{9RpVUjQRw>r|vH=i|*e&YA)g$`W>%|$v@h>+!#n>V`)eouyzb(1JA0B^)T8QNu z!Bn6BuxY&x%xE`nxa>QZ8yh8R^SYw(1HMZY2f1^5x4d@@1``03AUaJ>opvQ^2&Gv zFN8_%5J_7^C}`(WEwJQczkkwNV4XkOMTa$6x)YlD?`fcbJjH~O%%^tsKkYA&F5qz| zAp>Xh_oza9jy0GJfL!nknh;p7That70Wy@i{)+V0)q1sVlP6(fZt73uL?|aG;RxlS zWU+~Z1h{H}uwu_WeO_+t@-%J%q|7ES^bUp;fgkZ?mK-?+KI0QFN0;Q~XQ`t%SVbKV z&dW}Rp@OGQX2E@em>Wgu+b8f8j*JlqPO(|E>hO$>EEh%(y$ybCZ|c=hhKss%7?9mU z0v0!h*JjNE`xee47Y1UYE98_XBNwDG_~r_yAhN?d@|W-)&FFIm`xJljQ7ZTBU7NS0 zs`fcm0sAMD1^W58s>jZ(t%iWmkD~;Xu*ZW@{iR=q!*=%%+dl4(FJ&ih`F#0ss(~p4 zKcl~>3_p3VYo9T21!61lwCRd$WFjW)?N0ihw*)RsGO zG?!tlQpIq>#RQ;D97CJM{l-}n%mju8atRVRKpPZF1HS-4;C zPFMqBejLV;ST$D07!>Ri zd*ge_vN}{D&WJ`>e*nPP)QS|4R1zMg!y9eBklAdaS*dPy@4FuX#zy?88Psk!!a+WA z@s@SmAET2d!?9aD+(|^6O`-6o?^Y8M8XA1#SSy0VZhcu(rtNH zPf2(Sl;j;O3*?+sh?LFZPGu@lpuFFmu8;;x_sC2PMV~{Bc)xRw6tTob?LCtbuivDUY36ISIXFmAdsE zhi{BRzV}y}w9+#3DrmS*U23ta*Sk+*c0QDhJ+RTge*XI~VuQeWG6jGW9y7$l1*zde z{C6o;Aj;=$LAGtTfywY@KLN>cx=A>kk~3wrQ4w1msH&g5UI9qV@1(ZblJ4+Pr2vPO zUGonR^mRx6yaW*sQ{Px03`kHTVI){ciEDiNXf>IQ`4__vVMq#mRvW%>S?k@@D_YW?luuFYJ{w21eSU7(@5IDA`wx6v^EKwDcF z?^tbQZjP*_DZM^N6;m2N$Ruc27ih@smxG#<%r_ir!&$#Pb- zV*kn6!n`5{Twg2Zv?{0SCOh|bn_GmF8v)gI8MELI%%u2lRf^?J*k1@Yzl*kPAdYn& zFD#kU2+~=OC!&NIYsl2hGx#Q9|L?&4)yRlL>&mse79kOYKeQQL6&#>DF}# zaxa=lBlNk+Nbo>`FmWY(NJb<8#Zug0zx&YsaEu>?u+iuEzvtZJ^?t@5WHl* z41n3n7Hi_c0ZTxFKX^6uC5GN}wA$HfHwMu}&qD~L63ssqPR3F2xs%`Q$iRp<){h;0 zmXd+-zTLqgo=FPb8`t=h;u&9%m?&PdGjJJ!dq=eS9AycL<};Az&zS(mPIRf*2bery?3?Bhwvbu}gj zvDU(DeRbxev(@Rcvi%fK8@;q;CK)+^soZe#3vcq}5xV)fGmU1%Dkjn%`DBCfb^9K| z*X`-CBpCNLLweU4t2pTlm#K?>Gi7OnZp1IyP9j#U|6HQTct^gb_oc=&Fq=W6tJh#? zH1xWmItnFhGXn^>J;0HSKmWz6KG-*fMr%R_n_iL^!H4trW*e|W;F~zy$@%V(gxXrL z`&<4q5B*=KDGSrX#I8SQfCIsP5T!`N zvN(O&*M;CQM;i=p5s0X@Yqvbf4x`22F?ZqEp2MSr!5|$^T z17kfWdpfzF%C6QXy#$ERot9lK+U;pl}q% z;sD9d?Y9xMD)PxnK2p+DD&f;tDq{pxAAgNKERz_Gl!<;3) zvf!!Uw7*#Zp1DpJLHF;q#zWg%kNT-h%eNPM*Cp?E)5~<^YkN$}%H~?H=?ZuJFKR+L zLLN8Pik?#cz1v{_zT2z)pqj*=-0Wag>=1t|v@jRUE|WIe6G9GH3odtup$9O#uGEGS zGH!Fhdl5YB!2{75I5k1kXk| z`2<-SLy2u7$#1U|>C3voeGY+iaf)FO7}jg?<=VO@`dnXIo2)wQKG<_r?8*K@|GP1> z3!Lg~ypgZ=EqgRaJaGXO?lT zT8>%eGJZ$**FTUpTJ2HhFp>9P%0<=Aj9Z+K+r+bBh+vXG)Fv@Ai7A)s%ATBl(35_U ztI==wCQ(kVTwmoJm0v9My}Lt-V^mR3T#=kV-0tL4I#ssy+CT9yq2Vh}@rR8Orw?lz z!(=cBcNM@(fu9^5wNA7Q?P=|f>8taYYn1KjAJ(*Lhtv5K8Id5#-r*-{drLuv-L9yNT-?4%OSAehIkC=0vWTFR_OhO_ zsB28^7_%r`S(9rno5o9Uf0Hff+ml5;=7WOqFC^fP0uu`6bQ@Q1UX>;XBR+)GWX8e8 zg=O_$X+{Cf5Gz*6Fi4Zouzn>smrS>q`yoUwcR~;i-PKMg&;k!Ed4xtS%6fc|M} z$&o^?GbS`qz>=^f$jZXFEt&j7?2nGPxC~KGJ@?!vr^I~`<$Sb8bGXuhM4!ecL2Et6 zmO|52JN_9+y*K>R+bB9}xNYJ!Xu~5XE$^C99kBCDbwc`TRpU)u!ra^zlfFNw54E^q zw!xF8=l#|Im`-xvOKGN!FR+D;h||0wYC4!{{eCRDqR7Az=e~|(Bx~KhHz5Kn$Fno~ zD-n2r+_F$trYuWCUl{OjVLq zjRA-5YY=UMCeF@m>s*@@akdT!o7WL3ceW+|6kR7N@=vt8?kLM%Prw(QpFsbQAcgQt ztaU@v$xI(I+gp=zl@fFFadkLb3LZayB+pyrDPv9DPE4Sph?o1%dn-)>rUxFQtMC=& z|9eX@AaaP;73=jc;!h04*{IkqKj!`dGVE$ofEMMHBJ$Z&y;G_?%? zb$f@%SELH3nl)~Zj|jQ2c#}(ve`!Uu;(1!!fHsG1R6Ej+pykv97<6-W=T}%bN?y%~x6aaFo{(}N z(&`Ra3sUQfKXrLt%5|IeCq*lG*pq+QXVg?}Ex_jQ@Vq=p#Z*e3d@YI}=K`R>0C6}h zv+a8nWU-G+bAE)c1Gj-*&8_;+vo&5^6#e_>hMU_zvvj(5Cw@n7NIP(w;WY{8aJ7=K zvy&@RNE3b^yFCIb+}S+-Ud%+o6Uie$XuainLD78pSUvXJj0w^^#(=@q;#>iH@E7Pf zX#yGg-i8Z-MG-kjxHCuW0sn5|I8}FUw=-Al$1b`TmCBe}lCP-C(<&jlB!yI`4n1Cd zDQsQH^>wOu`2Wn zAI*2_c1dDjsLoIY zq%QVz$5cEx2(SghM4DO##2sc;JHVb%k+^V}0GJ@86Ht3< zx{z%q5^Fe5Fh<#|a8KK2uJDX93m4}nc-^3zpt2oTdo`kv`y&{vsW;P0GBQzv@lfVN zJimE2REiU0Ld$Um_xGwHgf73u^ZR153g29}dcz=L9UZ?es6aPvLnvSRJ$68rcAkn5&b`6D60ecL$23;dM- zy@gCPzL)IcY{J_8>Otf|URU3khSSRnx{77E)e=Ux+k2xSgtqZYVZS1Q$|(@WKzhu% zL_s)Gd(Ysw?PGf2PJhy)x3@~&RgZPn)>+nG>$x?tm%fV*E#5rv=$t&qcQGes ztKGDbVQ{`%GcX@AH@aD99P6eA`Fg*f5!oc|6R7!hbkQ{SFukZ9Fo>MOjQBUX-pOn? zJiGz;Zu0{RwkcR?OAv+C<%$(-2wVVJ36$`W%sd0h7d7X#b{}*X3suD8`e3*mO;`_E zcGX!*;J~C9zte!OIa9g4{g^6}{XnrnR;_iPgi;(bYdSd2txz6bg8w@VW;75IYpdrz zD(H0F%8uOIlK#I&(g7kOxeNl(N0=m<5}FMt^e34OPU`l)hJJOC-nQB;x-OPj47$Ss z3jlUlf~O3in|cx_h2d6g{015{8O?|)Ih=%M+K8H;hs27X9GK~Igg&e+R6yA4bx!k> z=}7vPY8DVyu6c-m6b()QUtYb=vXL^KI2Y=ola80&j0I6b&(%4lYvZOgXK+_CMIElf z0v&yYDXp>%mm9LhMjkZ%swWt*I;+G(a3R4T5HU?xJ%f?-4R{qEr!v8Wn}&-hLN0JH z>Z_@%g82Xe`4Cfq?akY$ba;b(HS~5V_#PPTO~ye?LJEt4#~O^i&u;dG_?LoPK<68A z9X%lU#evQ`rc8o{gbXptI-s5SEm}T^Ugd zmTlaAO!I5bgQZ%JP{o06XdRgT)r;m%y$K;($id~m9$JLEQMsdm7cx!n(4?*C)O5klMLgr@JqSEUHyvWR&S1~R(vn$Y`CB+Rs# zS!txjZcdw}t`&6x7`8!Uj{47sTWrHE|@&9ihn2gZ6m|bDrvV5fYMW^S9$zpDglUjK}TC@KhR2b{txFr zn`T7Y2|rAf_oEi6z^^zuoGVz2`NHqyL$dxR>B-=Z2@9@q`jukf`1|sUOTHU|uI`uR z-VFCP1va%6gr0VY#%$?~HbL$r{D0>yJ5-0bk$E=RtIv$bip`};M*m$PBvgO}!I#VK zhD%D~b}-w+TD`*t)00lLg&wY`?F&1PRi~eI^OdSm~79+`TK02qTdKfQoNaa`i~!o7HSEOBbk=dm7X+qqXzq10HWrJK={E~!ycN+{`72W zd}KMy*3pSxKR!V;#P$3Rk;IXnr;;_VP&T)VE}Uf^)+sH7)k(BVjR;|5Y4j6p&M^ zr|Z6fe|I~Jq64*$Qbr(NBgJ1ZR8E3eKt&jj-4%+go0`eqzp!U!4ohV9DY-D5NX1#P ze*Ky%7I2>gFgsa+_0K&15$71PMeNcO^n>H4(jYTB+&V0L{#b?T%(?Rn@Outow0u-m zyJq?Q8x`&&~o(ocNdHvnxDBGTFV&#VVDm4r|319d%pR8x?fNoB@Xj4tm| zP3|9LsoxFWf3frF@P*-R%43b@#7D!+LXxtixjkBtLm0JMJrPEpP=l#f&7+vb5J9=y z?wa18uLUUaeZ8~Jjxt`1o5*-QM6}1!qF*ghM?YxQ$x@y zsKy1NfQuuGh{Y2~B2p+U|12|3f-yMSq9KD8?pev|*;OvEDH$U81R-8@MQPjKGg1(0 zu>4|q0VH%y__19M!kvE(xwCk4-8#RyE(3f{2a8&r3E~u-=tjaqU@9RIoD~t@I zo2PghUvtilU4MM6y%4(>R{Zwg%?XDgmil~F%}@^$@I5xrmR=HuorTRx^6%h`0-_{S z%(b8a#)2kVlb#%rxfht#we zu6JNj>|Ehiw}ZtU9M$|HBRmQw(LCO)*)S=6_6(@g>lqhQjtJO|H8JCDQR=Pw!_N3{ z+M2ng-*KKlXBbU*o>@nIHn~K=uUv3MOuCEv=n?2qC>V`SG62}tDHI7kE?bDv~i?Raf-bWR`as{N`Dfgx zLeJL@hj_}h-^`yFNO#-u*cp%+5;BGlb6*Z-quRd7@vDKA5|k;`#Kjt^w$j2?pIk{q zJ@7yQ#lO4)7M&LFwQt*vDb4@k|&7zT1edJcWBohx;HWHEU@|pac_G4koELb)rQPswy=mJ>J40vomGTp}ksg6BPTUIyKyTXjU$ZK|4DQ`qkplnKY zJ|BmPv(lJK4fU3Oqo+LB$CAtRR=Z_Ti{mY+x2Wmf{rULUvei4FPx1%mN8#WTK?z+M5~LU2iolkqffgP{V$^7% z`a$?(`ZBr{n8IkhmLLcqx}a2bQBAqQchlmg4#a+8N1;H^qozz`QMynAN)?!B^CW{* zO|2fnA9#n~5Hzc`bTm60nM}r#KQEf}yc0cZZtb5<-m>>N9qaQXlcyxQJ1EBe`Qw0k z{b@S~$_A1e;%uc36X3H;cyOjCCkcTHh*+;-H_w1`@je7I)^O$3g+3gwiFb*gcun}x zVx&O=ELp6+?i^~v^ z?)(VbGmwPgPRGZZ+Y26SA#+vm7dJnaXyot&i-dS_$eOR+doFR>Ip&h z_3$lh$$HtC`2QbMXB|}a`gd(&)7>H6DM$&D(%m54-QAtijf8}hv~)^?bVvz;bcrb4 z_1>KK9DmP$%!V0e_BZZNTx%_o{+SM&PQ$JZCB#|Iq!sMyzSYHhf5yF zh@evl{YNhy3N=Th3?6jJ^IyokL{-Hfkate(5wyJz=+?$&>CPPlqF_GDHk5~#rNEJp zH-0I%6qau49*|47ijP-J%w!BMx4%Yywec~zTO{do!ibpwD-ZK}m8lTLPiZmriQDP{dc`GN`iPvd03_LPe?2=oE58SXoXmGn1KW$yVB7L4~O~K*0AE zKiIDI1SYxCOUG!Lr|Adpn2 zv#|#r^KIFuPA?EFbQ~ ztTcrfRbhmT=x5NO)qQjTw&AxWKtvP}rX`E1u{|U&wRT`Q_(3k_dr%Q)73wHy`X@~U z3r-HB2P)d0a0PbVWb@ISJli&{g0mk>VB(pvdAGKbv%~eWot25c-_@0~J+F*ZR8-Um zmf4fXcUpQ%HR-wHve#6BsZvJ0%d?{Ki~*Qg_Q!-8G=8DaEDU?u)ua1-gZN?#;^(Aw zrC39$tnVyXt!|Pm!JXhUJzsr|E2uKw|Ar!%KAOwS{=zi6Cg8!^{5-BQ1u?uE ze3g>;I&YT5{kmx7{tO}pTPWe|A=At57($f&-7li6u!(9Ez6Ct~S-V3fK&v(+%fIfW zndpOnJR2EG%;9u}?;hda70sM3YkV0%rg`>^PrHqNEUk-uueHd^E7rq72hDNyGjdmy zfi4A%!=GFuTiZeIQ%5jqdj`Gjm4?1CH@YjUFTO;c=iMJiApD(2=MSoRSCYgsKLb%A z;O?(|G$KTE9TSVb^ER}G~}j#2Q~WpzwH>nR)X3PL6lD4P#JV$kRZ+U zNR8Ridzr$piOnfm(kz`u*YPvXyvfgL7oXYpqo54p zD9uWnhs+Lx{I3Wb6`ACljQNEz%~I4BDkFG#B5t5S+vk=#fh03%9=<{*^~I=VFel{a zF&MfMW1Q#=mc* z9Q2&jx?U_RgonPn>Uk0UptpIceIWps@3E;lEw~QRH1OK3m17SaSA3cg7|p@5h*e76 zUaiAc8a9a}l&L6MPz2=#uB>MF*!4^n*MA%vlJ%P*Klt94jT(vkE!QAw0Ar&6?OSNg z_^J9IZ62AvJ_a($);f$)w@{4#ZOJq!^TP@)FH)HKv$c#yABO&p4n@09FuPSf=JsFC zaUFwIU~i29soU#_DO^Mp)Q8*nai@o~JWl=wIF@#rLu2)C-842nzn5GVv8{kV4NPB4=)p9heW)Rcu`JrU|S(FCwN9m8LY^gxH zPCyVa$;n18KJv&Q&lJLB(C&;D!hXStV&F|3HOrRf!{lp$F6ZHjfFL#WUhv()Lz252 zcK%k>rLuJ5w+dsKP3GO}3c`}{#BgRAy-!!ftZX!o<9baps-JH8nywBm&$?gCKp#3w z5T&CVymD+Sb!v+ZoqX~6a|$#QTzm!xc@vosf@@~7QQkTZZAgAQ{bTZ82}~$T+Eedl z<7)HK6yn8HzghFdksYpfetiK$!77c6guangNUiIXN9pQO{UY^MmrK%PM`$w1WX`MV zqIMbovgueEc9s9mEff)`R_}kRL>!nGiOIwRE;z*j|Mdt^l=d&et}RLCu#(XPjoHbNPu{Og&Y!@?{ncT>EkS;<8@bzv#iuEFt%lV>n!N-mFT zsqsa1BsbLXmvoExR;qQ7XTX|@<({ZFu%zd%cawOz5VuC2*5k6nj0*b1n6plZu+%vJ z877aq`bV91H=*S&UpXy#ImEF3r8b47?!@EzjJ7lK8k=1efMI_Twu#q?Uq{z%@x7dP zXI0BzV4_(2^-c$l?Q1(C@(r;+Y}}=g5lS-H{S0!W_`w%=`rhmXJE-*^zJ2!QN|UL( zCx)i?7rveBzmvpnOhkt5onact{^jc^%6KNUkpHTTwYNc1qHJYhsO7v?=F%L*{H63p zd_)}g|IBwwdb!lS%8bNI0K8!&w|&9IFLQDD9oe_Z9+OPC)sSiEJ$1rSOFI71_w7^m zQr~Cesn9Ct1(!8QQ;u6SA|a_*EWwfVMbg8bRJ6Pdh!?e!>GK}z2Qt7yY9~t)6t)_d zUACt>8A6Ku;29iOb(81|&2BxBiZM zr;wqg_|2CEw3Td9XBp;^8KUL>*Hk}Jtz|QDb6GFpHQYJJVnE$^+MwqNeSUoT!l#%Y za`bu??9SKDqNsaa<^Jqqe4Z^1!}!t*v(Z0p2>Qd89zkvuj*4%UIpLIaLi#Mu-#U#o zG?P!`kJc0?YKxI78`~4=qbeeLH&4;`MiGN~RR(9kX*@pTAKRIf82Edmm2ipC8nj0F zKCNp2PzkL)Xe*K^V^R<4M!IaRXc7aJa;ivScBeBRvuFocYNZ?|WW^js);UBqTQpXZS1{W&1o3lDPM#NZor+*ax}gOB?|! z3ph+fW8yms>vS9}mL%G`%UKeMbQyTcaT;JUCufh_d zU`EY|XJuHkkGwbt%Xhp{NAkPf!P658jCcvLql|e7M4`f`hhsn;g}$9y$vKL14UeIb z@h3didF)rPR^rosUV3I^IaG>NA5v3Czsbxq%4N; z*7vq3sOTVJ>;$t^=i>_?^F>_7_R2{0tL4C>2{%n4u9(`py*#W5xQ6+2`JSn$9EAWV zG=yWcZoDVT?R)234_DegppY;iT_f@i#G`$d>yE5dy?9w|keWv`m>X;;)Q1Nh)(uiK zok_x9Ro70B3g!fqu;uU%bf~^2kxZ7t)BFohb|WHM6=0Tfm0|^beDRlD2JCoY3XYLB zwrAWN6i=lVq|{BKgbkuhRhRlHHbbYuG!KQ_C6oIJ$)o9o6SGE86z9mu| z4(B$6g>-BNy+#5K@XBvE;vD3gc~gu7zf5FsBlzdtL#QJj{fQ{2RB?|J+2f1*ymcQ6 zXrZG#(v3hw`BsxO6anJ82_!dSmGvs8@}=*?*^A{)?=)W>ndEDygxAosQu)eJbyJOx zh}{w>CB*6H4zq1IG&_}_iG;{mNCo`I){e6G8j%q5r`Py*uJE z-kTMNhH=)@r?ib1Ko-cDcL(tD3^B5U`=3vn%Np*-d~b^dKE0~3Z2vRT)a89HIz$3B z;l7|f{C~yo<0TRT$1{?P8Xv}E9LZ$F0H-@g$B2{lEybRm8AN~uC~n90MQ_$$yo3E$ISzNdy4snhGiO8Fqa zO^oG9wBi4}WP>mp3rWa{B`>DfTd5{FSg4cHJ$MoD=Idj5gJD}CwC0=iP6XJa)1fq% zrwA;+&p|2j0|Rc(6ZrOi5maK)KOA*x?VJ5|=1?|c31N{M=>x_~6iK7r>GXcrcfh&J zB??Q>^@uRUF7L{FO~L5PZ95Pjj7}uIvWXNS`PPE@MpAq6XP&wf8!6Lsw%WFm0TYt8U|1sC(qc(W;XAcp?(S!j0-YXFk5sWh5t^BW-T0Stc1s9Sb;xBA&F`>hscDRYGhPkc zBcqT_{I3q7fD}kQbr?st6XQ;YO&;5?4Fr5)KqNuPN*^62Bl}I?fIC}qH*lOogKck^ zc00kEYaP)nlc?ZpCHrld6Zmk3g+HDJd8YY%Iu`XU5g^0$JX31BsEU8{3n$-gIA*3Sr4=R9bj(tSK3xyknZo!F+2T3ih6;rBrm&^Urez_4%Obv(<`ZtGu+N z)rA80AtcN7Vzq3pq+T4VHA6z0cK}^qfu-#6B-q?7Remj0@iZ4eme{zTW91uuYmj%M~bJ?sb$p zPg5uPlv2u--K_kA_wKg($XFw=!|%bZRPz&(C%32?j+E*|L>h`VqiN^liZhntI`$2l zzZH|i>;xBtn8Rd+@*-1|n-wc!_c&|7wb+%F4_Lm|f5C|CiYMRUz-7_R?G;A5y8gJm zAx!tNbbrBj!K+l4r%QZ3rmQ3R{*$4=Zos%oGWj_-8Z=8v^yQTy>^19&-{S?^!J|EM z>L<;?24Ks0b2$Pswv;GCPko%qdbDD$(yF|Gbo0upYy{a@ci z7FxZlY7nNg(9{QmldKxde{)!=HiqrsB>Y^29joL!-6v!i=S^M?+ zu@wWnrbVQ`+=fl#+1|Hx!&TCjdSBf=)!+|2~)R_ zS@`tJ6!!h*Zn^(tFhGZ-wQiKih0RubV4tKk=NS_u!+aQvjg&x|Ip@kVNcp_3OuZtQ zPv5NZ+@!cjhEy5ft!+OH*`wNd(`6iqfT7^KpwjdQKG>_X<52bWt)=EqJ8qoqtU|)g zVZQZ8uzdqOrTOIu?IWqsmv*Z|f_MUopsi{h`~dY|R~Li`nO)l&rh_o0(cwa44*Vm$ z`~R@r4Caw>MT4&A&x)T+gNL#2rxMc8@oNiaxYR2P@vyrejEbp$r7NS$q-1g+@N z=+@K~Y1O5~lEWCn!mb1J%&CuJID7MT&(*g0hS)Nqa^+GhU`mH1@cCeFGmDT}eF$s0X%1#!Gz&+A>c&^w*((=IgFM6s)`Ee{uhe8t0H<6(1dJ09kxSezlM zaX_NuJ1m%T+Z1yXa}mI>l}|-?Mud|SDqQl`V>8G~=VgSWYBC2nKCB-(e-TpdG;qC`8VIZ%5PB*G4nL6txE~BnFEdgFs_9#_@MWZ zTKs{2uf?|{02kw$;Cg*W1dv|XOWqQQh)DrrLFSueGf{lBEDj5`r8UPqdyq^{7@53Z zvJ><>QM@f+5r&dxn#3D9q$9M0@286He{)HZX2jB-;S>c#0L=Z+Xbw{S-^#m@YHduK z98K39!V+0fybcTUy#`^*=aP;k*1%@8hRTS}%|;XF6?Yjl!0b1x3C%~|0(&?FVD7+G z%-EO|{G{;GvVLdJULHtLs_}~L;76y7*Y)Div?8F#su*#^z8gTi;1bvIAoV3uI@c)=gRHvlx*jGS~${C__=ltFNYv2i$Ty zJvq<5^*U4>SJP zIbb5e*f^b-)!)n_k_~5A;r#cx2%=ROlwz;K`*zV&8R++St1T``k_?2L2a%VKv=Z;- zD$i!$cIM>sP=~l%>7miRkmyGFsI+e}ReGmVZ;YbZG@|&DPuqt|8p_Y@@gMT-i3dkx z!nN2Ae%3vqU>jCB#*Nnn@>0cKX)jUg5i>W#Wikk?4u2&K-UVp7^)2h?6( z)J`xwTA$oYuCfTW1VJ?2+T(VN_Dp*~m_u+m|#e1m{!#zaQ-8^1lk!$wDqkO*_I zBwe;d`h7#Zxh0zlP!_G0t1&*A}L>D8qhgOfs3itI69*m_y%`Ys<6mHS740v+3l%75Yropp>8b=hiNIk>5ron(Z8`D9pB*&y;b4j->Qr-6 z+^rx(mImEisf}#;_{u@nRl?q>$Lu#<72fq!Ip@R0{*TTV0PB=b!97~BFk5|&Nle@; zDD?b5t`9#s@qY`s*CJ?&xd)4yQofxP!f`H%RwRGly|k1;<|j7XHgH<1%5oq)1KDgS z3$`XUF6m${W)~Z4bVBihRV&r0-vr}hXDvsKvGIo>^J5VC#grD-jUe3Ys22<*Ha49u zFGsc>SAvn98MS2CslTIX;?E|fIUu2{2A*>pLGMa6_}+A@R<)`SGP~LS=MI`L!vh?-1)WP^82CK#1R{j;D8#cQNI*T_wF~aHMK( zAHD}*3KaUm3cSXz(nsy?UtkE)vEbRGk#d@}#13|iLwzIG-#M^ju=%|Y62l^~$#>2M zka9;FiA5Kg8pnQGylv7d;C78)#&*{04+^l{p4|N68R`Hl2~%Em+ysWYJvA$&>i`7* zEOx&s9B->P)L&g_wnM#^##>gTc@7kir~D{;Nz0SuHAMx|%<2U!%$^;JX3{C9>y`_& ziXy3cz?`UZx*!#9n zkVLzf?cbc{qi~?Q$Kjz;uQF(K;+b{)YLJ#8u}BD9^WlX9jwr|1du8v$-ZyaQiS#dR zAksvfki|6K4i2ESv>fgaxaxiAMuvaV(ag#dwQClp>zPXIkPJq4xk_M;m(SS(w~F|r zVq>hOqgJEt2Inc)J>CzS-4Y2Y5tpH(y8|pu(i6DFD%x3pheqtk|GXn6B`bO)xkiHX zo&WZ{lA=&){ug#jP(ZdcWv4~H(h+W5h|mMX9#Er~L<70P{-}VudokjqPAU~I0GCOX zd4=${9G!~Ta&$)_#^TfYpX8CW<^w3u4AdB477$$nvImeG?i9&{!4+ln2$ggkYpa8B zqueGk9pHLMx)#kYa=YHKOZSd6?@SnqlSYoAD3U3fuYQaSTrJC*+#{hxVgd!!SMDh1 zRbLMb_P~8Dp0Zo&FHJVw3_5KvXM_Thte*J0^tKb9gP1zN(}k7H&-A*>7`chMWDJ33 z@|azZ#5uFf@BG)S-X1sZ;FE&0`|u^lDb~;g?$z=FP1De!pjv(Zv}xJ21$$$w&2Qw| zI?E=z7b=9zQ6FE5(f;sqF!{5d=(kX+K`#^a_9glo5R0L5-`?9GvGF$JD(9u;Gz0JT z;OmvXl)GJKJrZzpv(n(heSHZdjeIa280PjT{6)A0D6?U)>ZbSBFIJ?@ZL1 zx~joEF|t2&UxMw24rL4x691(QlOhwhf`VqVfYGk#sUNL0Q;bHH-K<U)< zBvdT`acgS&)DTlDoHzqI-Ad!50FZQ{M5k3FY7uL&_HDkEH334z&_v7!^SZv>xT4}- z+7W0bw&YT$Vm*rF*5xDvf9pA-vh59IhBR{HozBqe?mdg+o3c!fExsMyMd&@{f8H9Mn zS?9Xj*=ICT8r%!z-8*~W{1sWqx6ac^8TVVySFFUhVR^a+O%}s?B2=u&gc3{ODO=pg z)z|B@7)lOZqC%^VN;ze~5~;HvAU+2g@F0ez(neT<4{-othmX&J2a`L^QTx;YWqSvp zDLA?quK<703QK^v!>A>%@Gk3Gr_n0@Ok3&&6v70}8Xh#KaZl`V@0a~QNy@Kw!{LfV z{yQ_EEFl3W$EguX3W)vP@fSRp#55M$8Pmb4f&UeYL742M!9|?`Q%$~sO<8X5)k9{_ za`&5-$5WAO&nVK{C^(-3f$9aEIz3hWbI4JK=TH9kSOIg?!Gvf%q|Y>A)3vay`FX10 z?>Gx6qw+yJgPqy^{#c__6G4*`4~L~=bjhH@3!eJMJ>rQ0KSdX$2nd1H2~lg6_z_Zb zESo*XaJ;9HNn&a&aMFU&FAC|NG}~1qx<4&me~^MRV2LD|*@(_U%kG#&-4l-`hF3$#hD_ ziZ-+JFql?fYYFb0jS?`a?t!%9gH(3JRJp5T>0Aw*+Kj6vDWx6|TaQPc?^7_YSCCO4 zN0R!Y#UD4T_i*Ss@@G$l#czXS5r*N~Y2BML_b9=k`Z_GF40> zXmWUN_i8JD@_W5dW0Ev%CdoHNOc z=;*(GK!fQ}Ux$E>8PfM!ThxH&Bu23{%P2i_gV{rUaa9D|Po)vN8X&iMjyzE`p}P7w zU!-;#xg%q>1GLxjY0C1MCS!lTq{U3t%D68ydb2Xil{zf$6vh^P{cJ(h{n&+=#Xji! z!Qywj94+j)RGtqZQE>mtFwIoA2Y%rk#(*{nk8GvR4cz)k$ky3l zmfT<9r4bDLOWRUFQYrHB36xf1hgLKBzefdPmO!}n|IbRPggU6A@*|5DY+MCy=o_}& z>=l*m^wNl6=34r3LnN(;xG`{OEXDx}I7lx!-Z`v<7ho9r1ilG;_LO4ErV$-xH>oQXeMjvX{5E?$pi96gVk!!@9*4^-vQGXr zj!bDO3FUX?IFu;=D}sb1|KyvZ#1XfRt@s2-Ss8B(JWk*?*ZUUs<)Y=W&~m$Lia)%A z9PLEo5FeGKdBtqHOI%CNN_J!rj&4ROpYC%R#<|bAe!81sHJUpELI|a6A*(1pwPSoP zwgu@a-9K<%osq#5W}L(_^bJ^twlyZHt0TnaQ0fB5?LRb3MN_<99S3twlt93W+;%|@UAuVB5-;EA@mWfr*A-h=q*n5(11%(- z)l*2)Zh{6^82K;Rdn75s`aG9PG(Sa_Bm8p@)#KlThLQpU`V)=JVqd~MyKS$NH@f=1 z`$S-& zUI&yZlV9VoH8_qZlTl@4(R7+V4lpy3aD6VxKOsq1{1(GkTj!}bvHz}<)7=j&ht0ye z``f4>n&sN7vu7Iik;MuqwWrkjC6&q8)#Vd~&KLK-gm>--?CMOZL;#BVA{$DOKJsVB z(uT|9;^ONWM6**MjPZyh0#xxbyWH5(;yBPRUf=zgE79$;axKo8j|+;6L*x22MLLoD z>bV=%*oO{&aLiv%*VDI3J=GOO=mXinO-9i71W{*}0rs~qS_o4kae1{*!iY^heO%aT zQ)LQDr1rg2Ef$vbSjbobu`j(GI_R=YWS8w*-{qoXpav+G#FIgus-I-Ma#8pu3NHIE zEYnoYN583j<76+JGqCBO`|!JNFx)<>nvJ(OGLJ}~EuJzMo_!HifrA!e@1-@cRsQ

|COh%&rH^j#b&O*zQqeVP6j!ka@^CaMooIUc)+8a|nI?k+{kGU!2Q(o88 z-B3)S9ICGbB0bF+f7+zeCwD25EPm4VLnh&aIoEB7Wc`&6TaKG}A0smNDh^shJM}vs z&j$+CU={05$=`GZ+fnVlVd&a|omOyN%v zVT7BaOwh4KU6YlS>!8)6+*^9%HTdVSp-!vTjwX%n{T4knq(H2DQkWGaQ;Y8vD68M; zOypi}G3#L`U*AZ)GibQgasR`bc8TvSOoV%eRuV^qYMVY5>ha@NtjEN>d!^@f8<}{v z87}{^57x*~U(1!%=y&sEY%g2|jn(A>F{L^GWHEnAc3F% zQtz!1T7=E-uES-P`*lv;&mW@*CgT|4zog*{tiR~B2P4?x@Cx#kF7v^I`YBrt^+D*o z7d|v+(Kavb|J4doKv?jfuDUp4!-856_TNwYfdZPeu!J>8veL~747^N2B(dQ}G2E>5 zNYfow92Z>Bl2DhNvYobf!uUoNbnxt2dUUUY67`ndyQP0Z*QAMIZ5}yucNomAnaHnn zqt&=sKPIJoa2&LNCoA?A6WbPN5i6GbdAVe_-UEh@V{$<{74c93N-qzm#8k1qiuTB! zLnAq9HMqf*z0U|z*2JOmmJQS-7KF=}O(tW}$YNf!{_&p|fLmplyQqR1qh2}5!H-&* z8Il0_$t-5_HM83Eh!MY>8`N;3%?O)x_~&aixXj9xxLi;EGSkHZ+>-eLrx(*3H0t%Z z=3X6ne8z;n7Y)G2YD+=e_~+8A%Fny0DzM>2am6aYfrkM|)cIOKpQpMwLL;BVibI{8 zt*Ubegoo3Io#1(uL2>TOP)bVAEo(AH^5QV1#++n@J|hvp|NgSFobl@)U~3l?2(%`1 z+-uT*2E!31Vk@oUBDRZ9niMm&fGf}UwDAji%6gX6 zyoeoZ!(>qZjOu1;ZsUZX5ElXlrZnWcUkg~>C&BX$xs@YpF>z~ECx2sSZidVOt!pncs5Lgl1_QW*TV7JP+y+&+k z_JkrQWx&U0)F!KWPtRm+ZEwwKmL8vw?wxO0=XjnyJ(> zbyBCVIGM*-BH;_2)O0W_ z2b-jE@7IXtLVRZH+bW?+Se^zKwHUE{?J?j~(z8bt^A^?W3s#HkW;sz+S(!9M8O!== z%X=;Jt?YFEzNLnysv;T+Naq8HXxVzSUul@gyMR8T>&6z@mDr!~^wUy`Xh9$(@|kN8 zaRQTA`T?=!(c_U8Or83GP1bIRY$YI-ZE_Ll^5L=c;)0F5TaN4BS?f$_$2lLJ1#jQK zIwLO1c8%QC8g6bwG#kr;MNVU=sGcGGOu6n2O8n@dwa$QtsWv(C5)LbJF|L62q^-#4 zLqKqZb;XlLg!+1R&$}}h)s?k3I|OY;Ui6$Z6VRNqRt*L5`Tz~p2l)0p`g$@*^t&oZ zn$2u|F7zlNqrs&zX`=ii;;ijFdUSeq>7zKK*nf?y2t169%Mot<_4|Vid5XWZwg@62 z8T5P9>^7&k9UIIKA1EvJOx3)A9ohPemm^R>ydFxM9S|uXuN^bygDKKj1kAieFJBkR z@D0cI#ed^Tk|nVyl2mwa!=8pW~FihdfITHF2i~` zANlp1KiV{?7}^&|_ZD4u6AIw$HKRpZnHtmDl#7K8e*NGEI&aw5#iA@y zz}Q0ch5G1RjIs4kz)jg2^lGtrg-ya94)9-)!EBfBZ`R`qz4WmsLR`Bf3HT!Z9hl?c zzPpof{{+mqqve-2Oj>>ELV)91kQ~XIn9&?;%?PLfHX|bMI>3jGkN97by&`*Ws%u%c z_DEH*%38Xj|H)f-E>~*Lvnci7Zz-seDxVHP=>?^-f=59knKJRq|C&D|Mnnpv0fk&s1QpK)6)w?`>htJ0e1Hc-6#Ot%?88ZN;OM%r4 zrKavmx(7WcQx)KB+UXq>R-GSv3vMd50?OQ8_cLoX;4;q?+?!bOmtbZ93GAFR&o^UL zLt*{0@%37nK3T#|e|r6j2f?hjD9Ht2TXlIT=_7%d5e1bjyX5i9(SmJz9OH#V$GC0! zh)3AB(Rn*#;`BWF7!qif*4$YA$>B;2=%3BYTi3D6hW$72Py8r*2vqSxJ2jalwXx;x`>$Vy)h!YGh{o6(!KM_AL zwyK)Rzfz$HVjfqCGXc`~Amm`P`QV_!!jv;8cQQ4bGEJo%)q?rp<*q`%lf9lU$Gx;_ zEUTps;nebcea|l+ zf4)RuA(H=s0j=IY(`V)mM(9^))AEy1*uJ*a^9J%Cix-*HKgpGs1m-De(Gdnlo|Eyc zjB&~b@B5$^i21Fg}SEtE5c!iKDtRb7FI>TKLQ0uPZ&Kc=%eldmAw^qhB1*$8sIQVu_(NchSZOkZtN!YPgTy85N zhxsI_n%ejO(EwckKEAVN^g3rMAGZE-K+Lb9$QfddDrC-;MW39aowhf$nP0ECL_{$k zBgAJu#Ri96AuY4gJCCSi!AQrJ>NLNo1lncQB;rszmM%E>kw0>z15`o#$gq-1;mO+- z(P)(_Tp%oBkI(Eq7h@$478BT)$4N>Un~HWvr6G(P7SW*Q31A!?{5G|5*t_T9;hD(g2Gk@s7}V09aO)+-nX-ZF*70>S{f-2 zkVj8>_KQpBht?g|A$)Kd1Z+dyuRcGWy$>AK>3isD8M~Fs@W5-JzW+>PbWvDeGNavx zpE_e(b^Ie43GKNIv^lEgs~_oQT|8D_p+Q!N6iWS>Q?d&Bznz&L7Vvxgn1N|!iGy-r z*T|OBgXip`_+KH93DZT9*iX;rw$B+WC_d{^w|!ng!0tb01PFmXw(GCYKyrkJi2ANp zgEL!dm8x1c4MRB{V!p}v0iG_cIliF6ds~=@-u%ftAW0*0o_1BNIKItg>>v%hCeeZ7N8k&mUuSgx|U zj-2~PFh7AV-`g8VjLiW+M=yxb0f@YujTu>Xb+qm`V|O7Ldr$5Y zH9lWSaCFr;4W7=>&@zPav{?oxj_9#hm`;{V+~mvNYNr#$z!9t^=}h`Y}~V*w4(yA@2szguOw1TrCuvYL8ZaC?y|wSzOgsG z49t{2vK)_RGdSf>*3WKoar^{;kv(duVsTorY>I)aMCV)6$;qKs9iok3bKY~i zQrx%S%0YUoh)v0jDQiUe!BbT{uYaR8nrQtV2CI8g1DK{!fE5l*Aq>zQ15@K}pryqf z7=U91SUrR$Q@6r=I0?am<%gBVHwjz8`JMP@UBV^L^-$cin;Mzm4nSqtbJy4oMZiz^ zwYRqyDsLP;n|E+SCip_WxHBN;VhXec&nKy4z3!~#|GkCN@R;^!vk1@zR^h={ zJZt7;9?-0mm(Xh7g`5$;LU%If&UAqU++Cp)OuSeB^Hu;+>gnVM%4MEe>*?>xIE)TR z0!CjWIx0!La2zrMz`EqmkIvz7VLnX)Xcp~g$O4d*mHpECxKg)0fibgiU+tFAhlpin zg4NA2CzE0;CQ=V{1nO~YOhqcckw@Ry8V{@8*kWmF%B%DDPC5WJirIN{s-pC)Y#I-2 z<$?zya2hgav{uW-e+!lTGs}JNxxguiK<$aG6~h~3)$U}H&+0-}#v1?5!buIQn9)v> zIIAFuC>{ZYJ@{lrCPp^~bEj`>Cf2A-GnJ6Rf$=$o_T`B(ZKIKTI+>vV2e(f~QK4~t z@oy4(O!I+Gt0=%O3L(+u-vcc%JSb&knO`H9g716Th9o}4Y}Ef6`vx&6@**y)#nGfC@cC+xkc^19r;2yct`LvnZD z%>J=5PEg{S(bWaFvckJ9ISLqXubI2+)^hMTZ?+=Ej?t@YN?z$SIAZ|OTKF$nzdLmL zdKO6Xi;(#-^X#HwBDT=--)mdiprkDxV3YCpWBmn1#Igj8tE@PvSQ;ZB*d3WwRitZ{ z$_;$4UdfF37Hl#_MQ*=PVZ;oqCp_1gYf-R7)N051{PR`umimWIIx1zrh?Wke!bmKE z)qzn(?{rUwYn!~b@k;scX+o#qimzxg22btH&zO0l+%5AnQ$`!VVkY&J-19Bq0-U&2 z0bWzJ*uydT-jQSxI{gGQ*GUYuFXi=X;DI45mYSOW?@J>*8AO;b>-ee(nRJFE~CTxR<)%1l9cJzn;J3l8ho&9rw8qgkA6EGuXHxJ)YZ z2eqmQ|8)=D(^$&czLp>1DQxJAB^9?q|97MJQ>gOj42D%KAKMRvFb;nNd#4O`Cq~sne+rcy1Hx?JIE1L} zx*ZM#`rW|WZG9xXURH0vge@JD&9IS2z2aNgP;VO_Q~EnZO{lU7{J_nQsfe_gwdV0( zYoM@5e~FpyeD0(0L32|xkw?rTX3TKBC<&1lz&AqxZy(F$#ReLN@)BPSKT79Xi_jf> zF+Fwjsjaa8F3#Jar-#P8EB8ThVuc5P;d_4wyH6tdy3^Oc@LTsQ%x;Z&P!$9ni}`S< zt`UsG$JG){W}(uKXneqKLXL+?4^~+F!^kMCS@r`Fv@#*t?U67Evvb&(BHK{v@TV6t zJwjq>A1HMB;`Vu^FDP)Lpppv33&uI|v3FD?2;MX*kqZ(|Jh+np>D4G_k=?2m8J=8p znuV;MGbC`Q>ybi3ei1>Dp0u`sX~lPY#1Jy^{tnh6jvO5nN$_$E2yuBcV~eh0d005b zzT`I(Gs7}?&(UZcQp=S|VM-EEn$sTT)T3uBjDI$V8OVewZfRC(8-8-iNPCl%yiK87 z?T1b2G_j>}boLeY>h5QuwvhPCFGzmsza08UU`>ZLRUx?k5C#KrNR9e=k0Afr#$p%M zpN*SHB_5nB0;^7%UQ1yNj`8{;HUi*6cTQv7REH(`nGreS8#yUpS{--V!y_P5& zssY(IVZ8&Ry-D}&>yw2DYrv))m>KKO4HnND@1JGTZ1}E-4umtAFpVz}-xgx41DC2W zbW)kOr3@e6{L?ac(P4wrdTviVHpmLM&lZm<1fNmEAPaG|-4q9~lt{h3qVC+{&z|Wv zmFA6{Si_cP6Kau|f@%M(EAL;?sD=DCH+ zXrjoQR!!KS%}0mrP2DObG(PKNGEc0p4rR;ra8fe`HS~N0M{Iw!1d;O1ohyGso6EtU zOicK=9CWbRH7{S|2jgSO7Wez;YL|X9Wy*SnTL-oQ{MPjjA)tK$BDvJ^`?bSH_feRl zU0jvso%WAz1N+LIKKeg1A*<3`|1&NShOw!D-FQ1k4f&2msr>j6(_H%hcN|7cFc+0v zctS=ESjx{2z(BjCr1+PI)`TrcDVZvjeSwIE^p)$4AA6(ej7^Fxj{2&dDveDzu`&7LUWs2uO>&h7D9k;w_08>zmor ziQhKfn$B(9?<$dpEl);}Kf|7=#U+2}@V>`Zd~n9(sn$aU?^6r21rdc**kac_ebeLi zE{Vw8M3!*!GP`hLt5<<>t8puKUy*Zlsm8b+{7Qy)o>Qe(5?-~_5-}IXG6{Nh4K8hP z;;~Yfhg0{UM+IwP*Mgjn*ls_lc{aoDY7I{=wX*@=o+n|Nc2};rm6Myxe8)*geGCfq zZwq+(bmmXKTKzrA6Fm#g8`4`W-@N=%=lgnlxrEs`UbyS4XTI{^Kx{{k@=Xt+>F|$j z_y)FWb8P-z@pBHd*yVN39f6k-tUG+LVC5B@{q1=lXidVB$*G@_B+nfaCowo;)id#{s!V| zuw%RzTv=_eJ0&M*kF9w2D zYh%fZi4JHyl4Gspzw~4n6wbQod;UgNeBFU!S%va9d7^8>w-k-1)Pawthl*`xGL!8= zU3{A6bENI8x=rD6Sco!Ob>=mE@SHa!=qy?%=32GJJt2J|ed!oI5plt$W3_06ECM5; zcG~l1jXFR4cgsi0H@vBs95udGwQ+A__8oSR@`+1Iem-O?XsbAVIQ2%tq!0;$f`)-0 zKK&p<5BI|!Ux z;GeC~9YuCsE*-CK8pf1Oc4-H^gn8X{{Hse=y8B8P3d9i&?Si!ehSQZFV48SM%d)+P&}k!5#_|&bo^*PdUvvsFz`Iuj6i??NRld zfNAyqqIsm=QfWj*J%n$mPIi9%ZoCYw+0&yOIY{{U=VU6INp z?HU71N`X7|Dw#)lQtr*+jeMQ!SP9)E{$i zWbfdvUv@q;o~Wo_jz3!DJs!GVFjN%lHvo@$L7zK^>n)7Ha=$+)!uoK~^*0;y7fnHv z`%1;sm|9ugo}K4$Hkz@UF8`0Rw~lN2UH`{n3>YaXAmM1FrAwGfiG(QKH9~51$3y`s zL8MbrQ97hShA1^sq-%6{O8MLSoX`25a|GXKzsF;L@L;=lU-`VQ`?{|CHKTLhI}d)X z>IT)Eo;wHC$o$+2aV0B<&h5?qJW)B@gdZO!7i8)W%uDE|S~4{DFE$F7joP1YyeyYI z-J3f8xigY=YEcm=l%g{reqFTs@%neO^$+_1{ifad$VKSpKt8w3N!qUy-5i#4-8Wwr zygDNFf{stlmLCY5I9qpHz0{taJo|b@8$K*>w$`INK;V`biGSsKlKyFsv!P);4xFf8 zCP}|SsIfPppU_5mi{A8C|IS)_ywHoFR=!d2d!zOUq*AL=q&AeQzhjY?{l(Ooy#LMB z+>V}aHWd2$WqH1*OPceDTIanQsUH>D z{nIi3Z4uvrI|5XPtl)&#Pvw4%X1zN6yt^(G(@6aDl;*P*?rR~{*#2-kU@c2*kX>L& zqbaV_fk^|e>CcI&ymQx^zh-1YM9N3hQ(8P4se?wWJ}(!gd(47+W#KE0J^0(3c_6vD zSI_lttu1YFanl4;68?gkG2`4?O@CMs5aFwuod%Gs*v&thxYf9{C5;9KZjtzb$e`2W z(+ciRHmd%vT_-JP^0ukXStNu`1ljRK-%j|~b@9gP#DO)pmEnSeB-21-tiG-xJpk@p z-V;={-kQX6zNXP=aLxkwPKS4TM^##8tU=d$Ot^8ko}|bAAIzf&;f>p@bxT&JFob0 z@4_G1-vE+UN-|T}P((2Ei@t z$pZrN2PEBp`-$iOqVT`y`CTUerny8CuA@dL!|}B|d@19D`+wf&zs2oHt>;nc#12R3zokXTVNAt}(lQ$usZC%z)XA`rncoio-|YS0 zwx90)V<8Zrn_=P5`mz5$#(ToJOI92vQ~>b)?UJa_kbX^Xc}$rE`tru6)OHRQmK8c| z=Bo=8QGEN1sl5jygm4GrJ{lT>VYOw(0{z3EF_lp;q6633zU@aLZ$;HD{gEPF(oHOk z1#FfASpCOR@wBK!JM;e^@Kf=Rg@R<&WyVzpPgf)`HKV;pW|g7(Ub=~+^u#LqtysrC zcC@0HF8-tdE_YA)Xy{?6k9KX@v?BMz{L0cG%#~{c_kb?zqz)Ulrnh<}R{k@B{|ybFeXl9g0q`CBpnCoqsuB&!W2y*3O03%(~F#CSW%bzCV?=$4fTSIu8B9W(uA zYXDZedkWwAPjz3r&vdYCaZ?9VW3(+o)Rw#1699|K=gi$S3Ny(u+cFrE1su%CFw{UJ zMPl>bvef^NEvpd@T_ZIWZ2N=82PM;sdWRVEiI3*9yO5nsf{sMxUr7uG8d(ZKaJc@( z@2J+wX)S|O~szM9N15r$WVr4P(liy;}9`ZHXb$V!pF z+%?VCUSrXb`)4(QQ7fjo96XS~L5Q^q4nch|wHdO-G!|!z1El-ApmSnmAfppzKR0GN zE=+C6K?m{-(RC~>h3Nt^y$DD#H;@$Xor5dlzNDq+9ZXdL>?W`h;}>>KdrY6w=oQaS zE{?lieTf_WKV$pPKYAVEYBsZCR3HYAlY(oEm{Pl^Zq{GE=)^@<9oKxYF(YJ#slDlC zK?Hb!P8y+5nQ@eS`>J$f4902IEwVOMBkNhQ5i!p_HBM&n=NrQqv&jeNu$mF00gYet zSarBYf-#>uX1UlY)m^xNTmZbGVTU9gLyu;p9JYgSI9b9G6U!~66Q#&D*nf)s?-0|h zAE4Iu)sZ(r{2FP;ft6+0)LxC3Kc)g+3Wr!v3sF`rSN6%9P^z#w9Rnp~F=h9YVfGFE z>S#Pb+5?u-iKMtmOtTxrd)(BQ&&F)gC~f~~c^7qrsbU}~b%0v?7e^5?3H!GCb}y;; zNmWb@zk!;T1fRVere;gOsqjdJU2NKF2?t|V?`PkmtB%G8q&?&=HBO41q`)-lQUX(7 z!NGxa z3D(4TPX@ywX7LLTWW7Giuw%?C4WS6%Un^0A-g@tI7CLkMr&G#bV(523P&&wJfv?Mnd|HN@~TP<{<(5_JP)~F-+LBD$PIffZ)Fv1#l zLsVpSumFNevY$6qrDY)YjV)G!sgo~rg>5@ zf&>=`a0Vr&i8HQWy}NT2W5w1$`XeVq%kH2g7W6XJu8mYAn#R;>V2UzTB#>p|6+hH!*3zhBSQUydxJ|~jp4`G_ID- zr!NLa)MeOg{$Aw%6MDmAh|tx{)4kcPa>D4P`F%8FvF5u`ZbNfIr%+Fmoz!1}f1qDz&neep@n>f)c5Md z*m=iXXZA5ZC{FVCR<5N&P-8v0x|q6Wb}j$_=aJYxtW@F|&Ns$XvRH5=?r5U1y}~oZ zwAlmCs;2;f#1N!7%&r?)i21yfsTu210^l)1EeD;7= z07EPqoLYzJ|9{2&`gxUDth6p`AFucqA|YeD33S{4e9J^n}dP% zkI_+skzFxP!7<<0OX3(3T+82k;9$Um13#=%qaWYD&O7@*%eMcNA)*#{G*itU3NBf{ z(dl9OHU{IgS(oV3t+c@o2+CH1%Q39+_HhQxvj?t_KxQq=6-(EAEDZKjA-cMWBH z#?{j#&Lqoo_1| z(EBED8FTdw9}p@3!qEPEJ>f-GeFlu6`o@WKdF!ztvb`(}H+H01Qn^|<0Y?NJMEt$ z@NYWr6@&9bd!@)gB95@Jz~H?k3>j4;uWp>kAU41Uz;lGw6f0WZ8%-T!*yx3ufQVWA z-rq56R`*DvNF~V`V8k#HaMwZI4$H$?xc4~V8G=C`y;zb7?vkPgrN@Lp#g>1>iUmwaV_J=pVvnUO?@aY5^>ETUw3+44C#l-80EX(v^4P0yZ6^J8UJE&J>6+$msqV>1Fw2N6I>rJt{o- z$&xwqkObXDCgCj#n5~Cv6S?0q9PEOi9O_qAzno(TgOF?};EGfx-zxghcJAqQU#fC# zQOWB+76+bIS^Vo+0DtFDXv-?HK}ykq7`*&57h6ueucEWKf>`d&EjvDvhA`!P(jQ%D#t(;oQI;0OeDV5L{tlEG*a z7PLl;DbgUR+j#Y@J8CDTZhet`<-K-{``G_~81ugbP@NAkEwh>+1s-I7oi!G4-^4J2 zK!$LS1&v{u&Fc7oP3IRKu-^Uq14kHo5(Fg#?~H{e7F;RpN4q}!ip{KSx{@Wv4G<#W z@hj$4fAAK%2ZEbat&JhCOJR^KA*+ciz=O9xEad`4qA{(*iBo#_<`C;I;=pr~v1$c& z<)+qzsxZx^Yx!bFN;_ls-+9QQJ*iB?4RSdDMN}Qb0A$48TeYSq0DuQ@|MVWf-SEJ0 z-JU|W^GK-)5Ri+`GgA&MJ_P)f#CX$sZLqLq3ghad)h^rXoh<=U#V!BWr2k)~8@LJ4 z-c8{_bTO^j5sonV<&NplPy@x1rFDTgdX(l>(D;h}&sLMOy=%M}dYw8@h$k_n^mBzt z^ih+;kE&h!dQ43s17cck(Le~4O-Co0UUDONn5FWNP2h1V^{Vz?)uj(nVIh;o;~1{Q zf`3MzS9r@U0vyoWE)ZeVX;m$muoO9NV49q&CmDHXH8%pQ)pdKaVg zHUaRIa}hh(^`Oq^6pWGz^thlE`d2a#MOpK1vwok1Wvf~qVYVZP%(f0PRc_vpPnJxx z7V?4O1EwcBNEPrnlVlYN-kNs!QJ6n$iz%vr-xFXqqyLuS@@3IQ>_wKz|0&f@{^Z@~C$efXI`69(nFcNy3^PnfKd#m1NtwF< zI46gS(q|u+|2=Z`Pom)O3ETV|e9#>=4OLb8(}i#5nD(Mmxy))&kv-_yTRIwcwjMKY z3O09FndRB;uq-eMU ziJ^eOB@XaTCur#Xx=eJ>R5YEbCcEgh6(xpN!K(}LT(!;wz=yVk@b^Vy9WX4~!`X@2 zoF<61z+2Z$4l5O*_E9U>w8SuMiy$5Xg~}5~_|}gB51ocSy%cHSc-8d>ss0`oN`TlY zg=wsWK$HH?Zyst~X&Abl8391ZP+W-$RR4a&L5NrS(L85yJ5(4$F^wC5%MDUSzB_S1 z*6>Uya>Ws4H!y@oryJmW4`~TFg1-9JB;AymeHy0cR)izas=_G;{irMy$v8*OZJ!dy zQ51db$gAIF@`pGtPSF;nV_oqn4c(-h>{Y$dLH}d~)1f4Bve>>_?7iUm*!{6pLC~kNGX)+z(x+mK6 zt6+XIl%RUtw5oqY@ZYa41eEDJ&)4iIz!5ypC&y8@fdEd{n?J;%1(=%XI#4J+VT5=6 z;II8Z`7yk^f$<##y_jIt!3joOfV16^t&J3%fHj;)?|*^cA5pJ)|TF z0PY17vDs(bs=wHW%k}_VC&FHcx4mwtTkLwteGXI$`b)$)>b6K`iG~b(_~7lf512Yz z=G&1!D=MqVFFFpq5~Ovzv0AcQ&L!v-vVE4}ZV^54N+0oTAeqL_SZi~2&p_nR3g7r8 zo>OfE7S>Do_I-mN9g3BjRo@c=C&~N9F51~OP8h@U#-Ezc=d0JQGbJ?W9b9?AN~?zt z+}$TWgOZ`&L@e9t@%?OCXUo)J1JHY^dtA6X(yN6%fSu%pPRTZHQ)p(zWochEpGJJT zBmvE41^jdwx;<`1w)OMe+{Xo`H*sB&Oi+#pIaDr$+F~QFmZnRXSg!6wS3AkFq^!9f zT+%UuB_OzDl_)^kL_m|NmG6AJPfjPxL++a%0xlCHffdU6*V2djC?U88E7{R> ze#lN=zK`}z7}M%(76>O%C_*K;9E8K^iL6j?c zo-qmaQyB~+h`8kDS1%j90GRv;*odCNQt}I%KTE=&_v<-C-qs@S?11aD3pO@n^y5xN zb_6St|Dumk)P^Dolf@)*sk$YfJp-h<>+C=K9n5-V;GHIRNXqOQAkxn;r|cG8qAvb+ zh3zHfItV^6j}T4{@(+X=$&O|vZ8k`7P5D&PFgN9Jb4k1)5h6}THm~P=xGE9V(`M0u z+AdjZv4MI#;w-^Qdcu4GOLRD5Q}X|@x1PUHRsF34cMTQYgT1fxV!w+zI|o2Fk9=UJ z1CR+fGsD9+Rj5E19k@PU95`#=JsaoGL*D^x%F!!>m_29Tyv%=T2-=K{-?~r9RyNq5uK%l2F^LkB<*-Hq4iX{TM1l?Pv)~7T4fM5^Y zCIvk~LW0B`Z_%n^@s8VHEicgkLK5C-09{ZqEJEiV6t@yej9A_qUyR5icfqppj9NkJ zo8^`Rwf>F|9ARbe1KFJ~gH&hA*b3jY?sZc%;x|mtZ+1qyi@Y)jz-b}8fP?Ts!t}FG z`GM(Gx%R6zbXPh(Yd`z0g#K<(=z}#bAf*)TM_ASb`9MHYu(u}-|Bv!(Oc&GNPdX^0 z%Hlkr-TUy|jHvNF4SYb}?27(M-ORiNX=jGloRIoRItZuk2neSt`9fEs$v zMSbqgMX~&a*ii!$r;`Uxa75Me_)Nvb@`p9m(#a>?hM1*8OX!10zL4d+LPdzHBW}?P zFOL5oV;k8MfHLj;TS4fFk1g%*uDBmO?_CTCm;48^iffgx<41@K&_zk3$697Hwh0d$ zk}%9yZF3>kc|wNo3e_Qx9Th5lwga~;KEG)gzsEIzdq)!8-3F$#^RIYhPxi^TtMZqSZk2f z!Lx5)5R09TQme28#*W&En13{dSi*0m-HBjh&LJGHI1>mXf(uukj z!D)B=88uT=(Iu2|p(&HX(`5m986B_!^#qg#XdYZ)VHEEvF?%{AG$(eAI3GOjF2WnH zS80(FQ)XfE6d?S-i{h!hAyX0Ii2|)4C~teCwfc~SIpuJG;zoM`LvpbVz0!^|#cPB} zatmkHaw&B&$%?#LL!99S^M*%*tP)iW8?ff7ugOhPgN&GqFJ5$$Vt?>#YK9|!no%B0 z@NUpaoV#BjOv~i!&JIfO3ruNVn-^c7QNTo6h5)ET4PXT&-9{8{f2f^$z7s6H?R|Bs zJ~L)@C~w6lj<9n*ZG43=+yf-oT2FITU{;poI}3?xKq!EwAAivsU0xg@7bdG_w4915 z?cok92|u}~MUt-dx```;mX9u#Pt&9S0tRMN0#e?6*AamDJZmx3UvTx)%B+_%n$}!P zy#OTWkJ90Fehi+KZFcHmJw5RMRU$JI2@NvI{5G3JN1T3L$GnNS3%ZX`{lxd4xVtAu zh$@-6`b3ju^Y$x(`bJUyy6sa5CYx{dT?_iViNC=ASPLO0bF;+JVm3N~M?XzzZgVA~W&G*zx8Qk@yG+9b0!L-@ppyVZZdFHJB@+$1#Jt~&rMEKc zHsV8Y5_9!tqYT$(>&rupoI9xg4-rX^<`<}H(CX_5)@KmpA+)AXSH({6U$jnk`UTTd zlTP3K$U`*PPa+p(W~4*RKpd*iRT8EC$MI5&~or0REEc0tWhF_=i(imwt>D$352Rk=z$ zOHo-6;I64H*c@y)>s|QuN0TPAKt7S!>-pibppl;RYe#2EyE_dc-YKN`=E5&ZEb*9{ z!Ij3U#p!o78XZEs`NGPtv-p_{Mm>i2uo@*7T~{~~Xbv6_L2idCwayBCd`}Z|I8U0| z^dP$VqPyJ(q-1;_G zjI%IXK&YqP99d#mIjaCG4D@ySy5BL*mOleU=SELQgkVVtz}(s7hu*2ziCR|Up5znG zIZ99^Pk%00siHAQB=v0;;2oVmZ+`R8LPxzbZm!aq`0NX{=#O*3=2y*IU0hH+7X0a# z{k*MINb{Q{!H@H%ONIsS4#2K2=wHU8pk&-W1PkCi*5Xbwb-x`d%fYf;&IY2J~6I z!)!9Ax1SJy`LcPvPyu>)M7gEmynI34XyGU?cJd3~_0WS>FiSfDKmYJb9(PFm<9bbnn|U}+(MnJX4#S$SobPgm%P)FR2|D*y zg?g$OW})3JwP0!_1&tl;qvjWq5l8a2?5V(~*ur~>1K7f3M-v~2llxC)UqpD)E#&|D zk$|0FZSV@@&uHj(md&(1;%~Gs@z5P#=_YjJ_D62q7?z{Ta?u-yEbd7O*tz6b>Duf7 zw_}u>v?0F5-lhY1OF!yo^U=d~{OPSgRqAx6lfGYP!5y&K<@(QkL*B==t;N^VT_l>6 zXY;;TFxZnvp}XBW_~RLa*OeE?ICC_iWijT`c)zC;*#dx+l<$K)V6tkCO)t;Z`Lye# z9n&MlZpF*Pq!(v$dR5`X?;9dkJTwj$(T&J^<2JNg3aV*-WabF}hR1Pw`9jW|8pYD7 z9P_hS=T?Ze{-x$I%&f)*Rk|>iG_DG!z7|+84@Sj&D*)3m(QNQKlW{HRJU)v zQ1mP?G^5I@v9eY%EXLXv^3^BE*D9qI)=^WIW?&B=GflRPTd z9^nBjhqXaF`gp9S>q^%bwY>#MX0qZR2QT8$Y3#lu8mpnXy4g89zt`-yZN3)?>v@23 z;vKu`0sH*^V)o0c0ilKYB#Mvp`^rt%-RqI6E~H3il=&EX;g(-@2qbj6jL;+$J1bq4 zvYsYkXCY2KGHN`<(>fJpRHt06ZCHP+J+XM%>jf!&|= zgkYUI!&$WhzEHyhi}pb61Pb)wSmp_QWTFC0?n>SXi9(Z-~9Z+cZ`{GKvDDb2u@{T!MS?A!V&@2V=0c5~Rs%X3W6v~H+XCLE_e?@74N+M|>HpUFKNKP-PI1Ph)9YEzz&x33u^ z1o98*ry<^Scs?60%2mMG}~qxzbkw+$uR26F>-`f-&cV3gDV8tiYxi_oAvm=!fBYRiO! zRbv#4=i4hr->5fz+yn+MocaH%9!5(Elue?m zhpYQVF&x-+*zRE$NJT%E?4>PT5PJSxldhN$mmlEL*UJ6j;JA{sgXE2@$$5=VWB`fK zvQCA6Py31b#?|7v%>1saWBeN$lQl7Qj|*Jl6NvI#eR>t}lX}sWL^uBH_MG?~(}RoC zouzV>uhBn!^E+i#8lkZF-=%p-0tT$l%H6Wk=81{j&G617RO66C*9BK223#9H=@%ABo=x(Z6$44?YiF zV>cHEZkGH`5?qZ){@8)+V|^b?k0ZyN?h5_@#TBIBVAhq~fu@SxjL&TANojl(K|iax zL%eDoKfh9<{T9F^moyF2+F!KXL>?BQGbPu~T)dI0rsvJeZ9OD8>Q_v1f@;G08-6%{ zAhwv_`g-fdt%!G(a*g|u>%Mgc6aZER|_;ftN!utbYcSz?zRm)RhHXXY0G*T<9>F|$Vx$?Bz%DZU&EEb^3%U%b4S_}4UFmWU!A;ey zH!o-o7J>8iUC>*Sjm8_o0rrOyCe_Ya!;3%LhNfOMI&2PJtlFeg$3BzFFRf_>z|+bF zHaAqhI>k=CzHs89r~J_Dv@cRYhrXdljO@0e!mfy44#|g&j@TODVLOxI)tgzBBDwvO z%n=iyrmpw1Ww$b36)t~LWucM?7o4dz)czJQ%}xdkj7#Q38B>denqwv$ahn=69*wj3GOPbx7rV4k$JN{0 z2p4;IndL{~naqhqR^#Lc-<|ED{N9OsZGt@HlP?ex&3YSZ_q7P31Si=5;o8p-k+UA0 zbw=&ROgBTk$9d0WZraUOgcMCUYqwf$yAbX zb!K{vfJsJ}%}uAsqqb`v1`hPjzVF`Sdl|rK-XWnFdgkhGc(Z##qC13`sb#0cl~#KI z(4(&DAKH5fy7B?a_ka9ul4#9yGaj&dr~ zw#~-6$2Dm?3$mfsCJ zIjw7u&`){Jr8x>&iKQAR7w8tz2A69XxB-CxdKmu>eH%JV%!knI;_WHYT$IH_GxC*= z)_g)ws2ShgppaxCaUA%jgNDW9F=D{r>(6W7B9rePe!KmnE0XYuHrOe)A0+T4IC6bO z7M;BXkmg|-iK@Z0zW9mD`gMSfCgnz%68*@ZBD0O==C1V%(Mlp!0=5@jv^Jz8z;j&c zcMPnMTQif>=DZbmGqdu1Eyjlo(`mnYN){AE(bnbP36<8w6%6P{;d|whN2Ti|P? zbJ=ZG1)eKeIj*bjmv%zmO6tWq>niXBhVDy&z68unRuhiSyVsN}PeHpkMAT`WCt*mG z=|PZ86nAi6Yg6Cbs4|Vd9vOVPEkAO+kPx2~rEg!GvD#GNBkCI_FK!$rB>WOuOM1k< zDAF!zymMvkhdDyyYk&@GCzM>G;LyEp?A!Kkx|Q<|f09g2N^hrI&V^G^Emv#`XQ4j2 z=}aPd{ctB_c)6rL%Gv*t8>4BI5=BqEH3RrJa%hcHS_5>_^Y2(|whQbS@0ZQ-TgN){ zJn<)A=Gjf|7Rw)mDsQ#tH}6<&mdH$HCF%CPE{IL)$G7?A+MWn6H{#HAf?Y%E04Fvy zTD8gen_(|($cdv)h+F4>)ObJ&KX)C9zgI~5?rSf@eOQIgCImzL`ZmM-&@fJ%xgKpF z0&DyDYW2vN5t08TL7S|E^aP3$xEp5|i)@Z(AF|OCJg<3_zdvgrnbP6SbQtMTGfT|g z@;WbeA%k?T>q5?fM`$&8Ls-M0{4cY2mz|9M`KhtAaVVQIl{itvj%k z3`gmQ?g}Z3M@c#etLx6UZP0Q^3#1Kfqbn@bJE0*iTHEwG%$1ymyXcN6adULXZnD(T zw$W1@*#-o8ef=U*t-L6HqvJA0R3N0jRD#MT zs6P;XfO_+Ow?zL3bf6ZK54OM?@nj`KL+m0AE@0Mpq;=fs>RIP!*>FO*KDj_hFkNt( zVxwCcN0q|nN{269Y^PmN&ZudWjhJM?mzcV32}YAl5@6I$XRSS)vLD`9KF63J8x}1NCIRB?ZuR-w$_8 zUR1V18wrO8w2wl`Kji})w72Y2GTI`7JYal>we*jQqe3-r3dU3gNfaF?4iM!-M(^FK zRfy%!CGLh8=>Uwhn)CAjEwu{+!1__%69)a3GU|#`SMF(->NR=luV*>QVv^iD^FP`n zZ)CbTHxr-Ywn*H0DtYD_b1Q!j3W42J*fM5Z>9sYch6&txu1~$CuL@1?mkOflzh)DB z^KOoQ;Z2CI~1>FC14=k+yFXflGy=+H!s6sQSCVtnuFMI6mI^tAlMb&1b z6xWn*r7rFsDa+Hu>GE_cvE023#Wvo%k3G0xHS#~rSGW#jqRjNsSOn7-6?M{i7dfjW zp6BVRd#gKe?qo-{@in8fUx4X1?A>RH6$~1oD=d~Y=&C7&#ObfKjOU(X$`sHhvIWDmbV>W?Y0Oq-Q?#m16=Yd zaRM?h!hCFg+(EtU>Pig!Av5fxYjeEa`wggyxa@_}rToC!-7dmPc>N*jqgC;ZiQdw1 zrVq2>wsB&5@9D^=V+YB)$c8g>7F*h}FKiXlD!B4rlAkis#wY5w4q?9&H> z3WPb26o3rcoX3otdNWJ94MEx>?Klc?R^8#fZNBD()ycsGm%I>Cx6Ib>nC9zg@0!JBf=6p(i-(}?G>^5Ge8f>tiJ(4q=^3%N zRI-+3K%AX_nw0j90Q&xLiec_wT*rsN(vyT(u_C^Qz;Y%IUuHGIRk%n~7CX+lhwO)L zc6^ij4A5wYRj&qd199@cUVHP|!3cbZOSWBA$I2zBYKQs|czY(gJ58>8%qxnhW2)X8O z$^9I-+@N$)vH0VWJCr48g4{k$IO?1j7OvFG>Cc$d+W$d{pMf(|(gMnGe-2|o7TOz6 zpHsBSx+YJ8sA#4%5~QjpX5wFh#7n;nd+GZEQn`V0EI6c86g&PB&#C&dibEp^B|gNk z;hC(^E{BArx;<2w%A8OYSpR8qoZ^YEb{WPo-NOnaNNR`vB+vsH?MSlxc>fH+p2gYrPoOFi`abz+TC+nFPBr=h9BhZLQLDh62Yk#id zOO8c%vIMX(ZsBVC?wy&b=MRBFn(~Ndq`AY|6(~`R$W%Ig{8^!k(z~hS@2!{8r)pLK zLJ8Is;9(QN@5^cwSB+_F_}Jhb)3p8pH{Bte-G4C?HMb{%XdYWY0#fuFBwSY#*08UgmG z}yaYT4`V?-46Ni)P4dSx4QJ1h;x`)?s#iPI1LR$)V^(C) z73x%=?tum)_+)M5AKa)L7;&Wiy(O`yg7(8})mz}>@_vId?Z_SX6bt&f_RG~d!0+I1PFNujOV76+%oC|JUhy*i zOf*r|^R-AhYrA#10mof#`_fhAQb3SCzA=|7W2YMy+5|OwHCT4KV|P=u(LU=Eqq)xR#ZvF5gTMy z$o3^p@yILYG3DshV>0ZNkkxJZ?^AE3`WYCxZ*9G{LJKyFSaD#0j1HDZ)kHV3t%%cb zZ#O+Zc!-67zv!u2_VUft%j8=ijcxSKQSv^2z5?P7im;33XEh(NsP}12{-yf2*D%w> zzAqZZDt>bgPY6fjBuAN5HCs~tQ{0>H4HFwn^@?r5@+51vh6VQPO=s`16}2D>+3J+4 zj~6Y^aK<%M$WQg-uzyBMH_u>?F-M)DW15aXqf`i_@{yTLVd$tjeSA2r za)d!Z)FZzL(zX`pI-WsF4v?cS$&b(ONf?Ewz#cul5ZLZX9JZVZvAe@da-gWj&3;w; zTg81mjJ(&Kb-p0?heZEiteY&sIZyNF%6x$`_B>)Xo1W4GL7^eks}*(jm*i1s5wG3_ zKNXa}d8TC5=$Wryv6mv!WO*-G*@m2?gvoX3iSIHc-vja`E@f*5C0d!KioAe#R}>dt zmy-SKSpcLCnpu?+oF->G<-oavu6`ip*_Gu@e~B2XCMDfwWy;QaFoC)#&*>wh^zQc@ z&p&c)@&#C1$4Wilqg{UL@!8WkA-%yc?DS6v5rY-;68V?{9cC?d4+4uH1;{YATzSDW z=;1Z=2TVyvME@N4p&WZ$`x3iKs*ntaykl4~93F1rtE8Ai=3FH3(^-oCo1}kc+qKSJ z>Ad{ctO;)sp>uZ>NDAZ(`HB4H_Mc?mOI?UtSnwAlz}`acmq^uKdq(AbN5v*UJa)R( z{~ao+?^+y|@H;o*eyLSqx0av6T~kzi?oA+7XzYgXLg3@?{-u{?hX`kO#3r)@+LZ47 zW$N8y(i5<(?ogg#H?NUDF%vu|V0G)Mz{@ih;D!ol{Gq$t)5a$6he)WlDBEB(prEwu+CxZr&23Os#@veh!FSRzgL<>gpzn%Fz36#Nj)Xsma9k+D^O*oU{RoG_S+wh zQG>x)PA`!wf2rq*TNvD)8HUT*Z7gQgW zUEOk8qss%QS@d6l^RWgxL!wS^j0p_(&zG4n6+l1b%PtfUW{S<|WXZ7L5hubYyT!%|}Oz{!QsOo;(8imk)fL zv~zk+Iy~U)ni8n@F-$u*@5d(?F7=;|nZ9I*dtcOC^^MWTOkMYl$;}EhxGs&?j9m(@ zt9P+{h;PJlxdL}t!^abzLga7CmmffGSkqI!BOZLO+O&gJk;P&lpWH8bT5s?Wzsid4 zp-sf&b!AiJX7NrRi}Ct#tlxQD_B^xUj5#U$iE+&P2vToWoWO@x2upo`c|x|wX6YK@ z$>Nh=nYNwt`wJ?^3Rk*x>U_SC%bDUR;Rn95&#uS1{7lWRef0lEcVpK+hz%QN z6rgE^U{%0ly94f{pUx(W#HC+#P{KJr(8u(;mLI0H$XAAts5Byb7g0lY_|gvgRW|> zk_~hx%fyUfo+~RWEnf)GzAFKMN~G;Gf*vxO`jO z%IF;b#c)N(pK9atC9$D^2|g3f`prz*kmit%SQ zIgkOr5opO;IUZS8C41bqx`@;p01H82&0|GhgSR4cpI(cx0Ik`jbWa!-PdzOeb`0Lq z>9Diayn7%Jhfm*iRNdDHh*wtBUgP0L4d~fDVaE>CWP`lHVOq}k5FE!rTkUf@xc|r3 zboW<-K1xDh7L>H3Jg$E(RnsOrkYYQ|y^BP>h{&z#ftuvnVHO)KX_;g@tKbMbNog!~ z_`M)R3{rXCpM3?12`o#Sc8XIV1|*~@}QrYaVGJM(^L3d#BT`rQ`l=_lJJ&c2afsH#t8;6gl_kIvwJ zGrC)Rj*H_9yD~2l2A#WYpNi<+hr5ey$mt}!Lu8ra7G2DOP+pX_tKt;7MCTLbTmI{Y zAb;7!#=`f9bvJO&D@m)(FUeSk$pAZ5Z1@vzIT`N_Ut0lxR0(_e5_Ct=U0lrJ>MM#j zk<4xtK0{aR(RYlV8@~-yxH>Bxu1floVSVfR5ka=r(q&i-5FNu@+K)w(izo%VRvGXFhdF4_a%l{h0ePaeQe^ zRdYj#WLs~lQS+MN!?}l?s~-$|X5EUI4U886tX3-WkZMMJWZZY)i~Jr6>_(F-`H$Y& zd}dlc!F}I(50sipJlAn%k}tIcO+{Ua03E51<(qJ_2(GLqm#1sk_U7?N^+t7aq#=7K zKsR*U-Y)-tY@PLAlen|}<*5qDdu6e-lrHo%Xp=w*Mgd|aKS@+XG4MFA{ED8U+(w$s z2XoX-5%>kIHPF7ju`${ivV{Q!H6eM>;etKMPa&!I25sNVR+Tf#;PKdES!7xz#>kzw zsDsUSNj5(+#}ne0#E4kC#2B}&z@AI}jU8v2J8e=LiOb|WXfTx;fhfXKoz(JQ5+BgaTJ)7>1mlCVoFwMR} z|MI*{dUN{Y-jS;gi}UtKa@lVTb=999AdO#v7mi+;In~2-SZ83nWUj&U3|sC z7hhj^iX_<;jxoGSt}tSQP(o71$MRo#x^o9l@><{kQQu@+H8MlzHc=iXc&2G9nz`S< z+OSe-1E+u~4KztR&vuTo&Ow?b**rc7a(tlx{^hq0@r|GKb0Sf&rzF}ps_AB8U7CcL z0DRu7@ea}Z$QZx97zl1)G7v@ix_XS}qw8FZA{Mq2N}M0H-q(T3yimejVot`n`L=D} zRka?In<#SsW7#UpS`zKsQtH*Sa4}oct*g&wf(ft{YxDXvRPpDAs=IN-oV88I{#)YT zVFyE{!2=k>wjLt|$&Z@nfQ6q%h79?fSdI^n3XU+DDn?j0o?`l3#>ABaHvU3S^UR?< zP}IY+zR#_y>g3YL$RaLZDsY&`utq(7uWCS%D#d-B+U z)`#uDJB}dW**Ze-zIHL(GCP@OGpZMO72o&D-muDkl2Me6M_t}Xyfa-5tylC8%F;2L zZPUP|f(&}Hme zowVh8?rzMtI0EqmVCg4y%m*GR1-|2lGE=@{>$aaa3{8DAeyg9`?|g!@Rtf;)u>VTK z2FTz-yy_1RrK%ICahdxa?Z+0dWS#Gh6;=n2U)x`-$N$4=@8%|#wUGM)c{X9FqO6=z zm{{9n2v@pIgrJ1EZq% zuxRvBj1>sh8n3cxAf{y8bDJm~O|+y`ahA;DJV-+irxCQ#^6oYL5Z&$c?o7g1tquoIifT2ZHh z@Egj+P0B0sRiHrgr|T-{oQw+S{r4z8AZ;S$!f@2xYTK+TW`mH}SgR2_>2ddsufJr+ zuu+i5Ugf+|p1Lb`RX?Nh!nyDkEF5K=mgqTLx`0u8lv#S;3-W$Nnkb_%nEUai!IjKA zA{}2HIya@iB9^CK#Ia=7G1|?u;B;;_v;GpE*7A_p^c##jK930v6!=G_%*Gb%80NlG zXYpTt8ux$p`_}U-Bs$jmTVe$A;D~|2VZ*v92s$ou?2pMB4T_vH6|rVmGWV?BhCest z9K#4re)OhS7OfTjJ`4tN#TR=BQB@((Gx!Vys4^z_C|eb%i}q5tT01yWCy^vQxS%7{ zxsOX3a=)nX+Jm)d`><$jIQ#MM##J%qVYg+Oz1cqTJ8@m>Hd9cn@sF7|YxudcWO zCjXKL&DEb&c77i6RpHrJNjJ9X+K4B8uUed`^{=CR^AF_JWTzf_dZqQJtw&&H8M$(K zuGoqmEjr%nwd7sn#he?njTlqJ0Vv(BV|#+8IZ2IRxZUH3bXJA1 zV41b&7I+{mf=gY0d|hKvFOM!3khi`cLbG<-QPDSM zah|66)ju*9VqT%vSG52XS5Ii7H}}(ecy7+rqw4pzQ~s? zxq+?3uGwJ#Dpx5_s-Wc{YN8)QrpeiSk>vSB<~;gH-a!LxJ#HRf3$FU|Qj>fry_YY8 zko?Xhg^Mc@m(%l6eO<)|tZh*D8mdd7fWzaEl?YgoeRN|4i36M@(pmWIi z^p&y_%lKaOTiCoN*TbGXi$856s7hrH-*S&irN-1FZTYvO;K@hZo%;6{rq7)n47XW3 zurHggPDyKCL`4i-VVO(z`U4^XuQ72GgK!%c$Si}|YSkAGkyxvtY<8&=3B?tE4%)pd zuV&whtAOK_-IiT5i#%DCr=y1vsQ60r)xEEu`2Qr~nO1pCZta=r zRO^=)_8FoxtMV+OXawBm-eberpO-HTowugZZq7OD8K(FlBz!T6)F-cU18xYRtzIxf zz0DWf?qb@TncmX%)xcSd5*Io1_#II67hK&B)&a$+R4y&hGO)DN{{5#$1hd+=P9sf} zTf^RI$hvYDddFEsvpgAqtb8hZE*CW83;XePc}ADA)7)HlO0Y_BL78TAT9G1-`Aifl z7*(0i<`$3&^WrY6#P}$xVfb8;v(Mhcti#sg&%=SIa&^mHCu|S7pY!LROpg7&&=o&f zA9uRETM0&6koEzP6eB-N&oBIeW4bHd$kmqVTs;Zjz4#LKk@jMtDOsszO}0|6NCyTS zdZaL0uhWU!lQR8+Y?m)`ueZ#wG?S!Jcg_>D=SaVtSdHQ4 znUc^6lZ8_Xg`H4;5oN|b;D9vR0K;XV;J?bS(u*?SJiA}^`By&v+k<+WOjGt?y^;2L zHI9)S0kZcgeOc~_^C+08d@5GjvhMtJ!?t+92M{_;v34MW%NV}t2alMAgNM0&e|zX~ z=um8F526$fzK@$IPRQ?J^X(#i#a^i{D$ZIROFid|fNL@tlqMj+-Bv1 z*upkg#VubBO#VzX^%RbB~Hpxew@LQcLx7_fXcMD9B* z&N~l&F1qa^6~wnP`}ImP(Pj3HLmb#_isuz4wEmecuc{vURC-ka|9z}+4JH)BoQ zycv-kL*j*7!(__EhAH_UFYl5L7p`QOtSC>w5YLLH(#Cm(#Vt*_m(&I2zm9rh)-7yg*hFl^P-Ejt+74*Xxnw!0Ebj4_Kp07otD|1A|FIm?QMc zLle>~^|&Ap0ywDnH>#3c6CNoiRnvp^^yp9SYtNuCa9cEE*xS4*RN{->8` zYJVj$WCq95dNAMEsdtkVc+VRfRM6CFFOy3mgzdiH_`~5J?MSO!B4E_E31rZo7Z389 zg|OH~ADXQ8DH`aeN_hs#G=UOrgrkhgmk`=t>sLl%%&<4%e@83|6lAWGxmydUBM*z8^0`HSn_G}&%|?di(Vv|dpq2Em1;y+ocPZ5*oE!J41iJ)O z?m%AlW~MuIWNr-Q=T6H{J-h7SXJpu#XO{)WpL)h6&oX8_WdJ~yr}yvsUrp)Xl!}Dy z=zRNW4WDv|6#j0TjB_%fF;G@z+!$$ArG#1OyV9#Z{uhUI`3U!t`uXiSjo*mef@PN? zIYB-=b1gynq(MIIFTecb@fl>@5hVBOHxgWuWxubD8^x~ZpaV$;Z8-GYjVf3u1#8la z9fKyf4g3)Lu{H7@P0AO+V)%+Isb*}nkqzk-MCRb+ee-$sS;cZlE_+eMdYDv{HO!Y@ zLjt_!B3al83aGLZV(|3Qz)if%r=vG2M@4RmNt^P9zvRXA1hQiErtUdLh{gI$RFb>8 zp)-V342EeBhcD}jBYip4AC(2!hYke!`e{XdJxVSa^JencR?tA_$0D)Q*}JOc%Xt!Q zOcAoT{`9d)*>kqkBoOL+HBlJ-`&rWK+XZj0w8nhyu`66MP%QJy8 zz@>D}w32H|9~De%Tqn7;TTSSDP$>8n9mDzVK8H?zy0c_6sPdiByE?l_Mrf?xk5{{ouN2|y_4z23(z1CYi5yt2c4HA>dNui{Msp!_?sMH z!iMEJr0j7(4SYVdS)G-txNBDzLdc@^3kzm z5pILh1EuLE&7tm{8h@uDLSo*qIUi^_ricvfnwJL5NxY}f2W^nOVD@U8WNy#m&TQy` z-G>pt!jA3*p5{m%4`-^{NIDPC&2QIGv;mSo{+$tU`!+spr7A6oJ;&NW9>c=uXyoBy#fz^qfuC!J}Zb)QfLnLnmH zrjyU}FHN?nxKxeV*U=%{W?5CI(vKES0q6&0G2jjA4e+4cazfz;PDM<_pfS4?c$gCa zd9Pf58*br)a0Iuno6OPa(dB%^LmF?H5H(i32&n11LMO58p!54%(KrS5gdD)v=bcM;LFzap!V)*L=2k`LWEJn1e9^?1V(;EIOFNj9^<@8S$c&SS z*-GLl(<9qw2I_?5YsHGiJ<2(83mr71S{ zjohOdP>GQfgC46x^7maUuZOSwGsqJ16|1Aa!{Wl%N801}%`RfZ`Kx9~HMBz4tvANmf30r)Mf`qt+%BmMUf0!rP@-OXh;TZ>iAS3HY z{KpVNFDN18rJH4ql2PG7rLbY+X>sdv;L?+1AeU*Dflk_v2is?o68)0Fsn|1Kye4zNS{XsXa9cIdCW+Z+l&g+Q zKXcI(T#BDsaU?=AAJKoy_v_efTp5%qB3dA?V3%jfb@y?_mE_ChnOd#2=}w5g2TxUo z;4_^lo5W_D#gx@tU$!uXLz?r{xh<_Skb9?S=e9-47ub|&=3R5hA486#{+Re!GB)B z?fsR!5Mt|MvSAO&mHN?{ACM2RDxY`iyL7#Ut7yV#VF@M8B|O&r6G_^4x+V|Z779%q^**q9!Xm}bP3-Ai~9SnSyHXew$)8CzSYi5X3wBGd+$ zChw&dooJIYZKe7~&KkXf-G$iri*zE*2g_c==I z{C!GlR*V1^HI^H2Itv~-*KfEz2Z%|>!A=jR>Q^!G){R*{7Ev7b>`Ad`KGRCnf`I%=VqMTzUpp^xH9wREanzNiiA@&2bQt+6GGtCc=1GKA z1WF#isk()tY@g<2FJsv#y>BUy*EpWjcaHuyg}&x1+NuPRPgoNp!%B`-LgZeWjTnA` z)Rjh<+5`K1wmm5&ARTy%L}@nlTK{CFXzG*J@T^7IN`QtInvZYLvSmGwy_) zD?FLk?^e1zqxHWUcJkE8@0Wn@(WMv4-!=*qA9GJ0C9Y#U; z$FC^3hO+uZw4}#kz#^Q35SM>=_FAk|+8i#Od=v~-p4Ed9>IguFN1$Y2a~4Vwn>uj) zRpoE3YUOl!(!nZfB`Y=Me6vz1CGmGi)`p%ZIs|G_(88_}O}}wQeCp_lighOP^k?;o zbUzGap36cswFTwhp3j9#=omBn8Bzs(Nrh4J&(qL&9!cUG!&+*4^MS>yj)LB=pIc<+ zOAY$o_ApX8o2#s0--&6pIHWwzBcf%!3j7X^(3SyW9o3xqcrv!gUg``mixa; zq?v?r#zZyu{oFSS?N)_y^h%Z z1>>#yYHsNKIesTMc9BBzpeoYte~T0LnrM9BB~UI=8O0q=j9PK=5G(KGL@X8cz9kn( za8JUnh=kYlz5ZG66q7ia=U~1rj-Sk4ruhaCS+Ax$Tx+t)QpXG-KltpPtpwm<6J)XG zq_+;-bXotQ@HyZm9Q7odY=KYtCy<|3aG5QD$BlZKrp$O~P7>4M`GkhggaPD7lFpk8wwre2xM3oCTp(o0l&IkqRmZMu-F!Tzoww*4 z@5x|*d)K$Ebv$eVI>~%J5QZx$*;-DT;NGr>={CIR*qmH2m^AF-WNehsPwkF(BlK>( zvb(C=0i`{8r8!P)SutiUMf|`Np74I_P}Y+*iYhB={)uu~jE{6q6xq1EaUq5{0_W#% z7_@gi+cFP%N3{cUtSD{m3@K;YAD%kQz9lcJ+9!Oi7G4{quYL0G81a7TjXHFjFIkTc z89wxq-e}gm+2NSdmDUCQIF(>69PSf3Za0+P9ukD|wgPdCy_@rYO8yF}?vC(G*dw&g zyK70^a%hGEAagL}V+7j=CvX5anho#`#>iex4+h3@4D0XAF zxU9M6IiDOP?JAgzc&h+yySNU6Oc;rznF zyRJ$zB`VLL-3_#nu_Tdi`Rw=1O!)@!!$HGB!h9YN6?73zd@5Jgc%ygJdEy&XHQ<-@ z$SCEH7MBBBg!hdD+*6LfAL;_d)tH6 z(`7;1r2kN3fxZ97dV&UvGs)G85$b87!8+d*jUH;j(F*ZvIdqAeec_$z{zaE;Rx$ATBj+Mgp}zkXnNj2^0(uZKHo`zwG=0 zAh)u3obTZ9+Jk7EQck#6FYng?nq0M!`m_5n^YMbX%hpHr3-2kNqdZ+&>yF08w>}Z> zd%rmE{IpTv|QX>d{(~&p*n3E2w zxsCiqQ2Aq-&8n`yNi`!;+$Rc;-uwrwM+~1JuSHI)ofcKEIM@EZK32FxN_TDx6(yM5 z1zIm9GFcU<1|cb3iA=@nlqN=#FOM~1!yqawW-JzPp3m#b$!Dk)8gw5k0o^!`XJFxE z`Rw^8OocD1E?s*c>IE-_QtEK`{^cui4cCdp@Owsm9Ho31D{=CM`)_jFxZ)Y+m6tP-Y`a9sN8Ok%Yx z{6%PcUKflIYO>BzWUB;-r5rhLuXibl6WXZ1?4TWUKvR|TfeFgV+UF=VcR%Y!E^Ymz z<4S>J2F|%n43H(-#kXhd%q_QpBin`SuSqh4*gJvp=j2==Hom=Yt^^q{`9mNOE(oin zZ&-(Sz6h6b0;_Wh*Z^qRK3KHw$n9?4iKb5m3ohmLMlmYt$zx`9FkCiIdRfs%;S&cG zI*PP>yyP9xaKHBG&4@}l=wlmlXphao+l4VrL>W6MYMrADzfO*ak6pLx@(d_@g~s`W%Q{Q^1&tce5&dF(iiy<3N>EWsNkO{TqP(! zB$!dPMV|DxYM9~yvh^B<6k7&u{fS%YI*A@t_K>|z35Xt5ZVQYtZ&_x^?uh!4T#DxG zf)Ei36%1n35?oq)XE;eyM8dAme`_{AL#MwR)sJ>=?3lFQGEW+q5bLdNNuVrxSK_IT z5gqLyvt;;se~sc-il@(8IP&8I+m7oAC0*QE_?5iJ?S-HILh8tGJ){oNF)1b*g}eN| zA0Adp`LgS=SCF?1@~x>1;cEg2ZXI<}6KiAp)Oz^TmM8Bk$3NBupI9x_UXH(SGhf6?>#gFYNU9^-;6B z3!p3@B6j@T;BE_raQEZch4I*Y%fb+$oE4a1+z(SAVdgf6(+GSUEfHO zV9wz{&ZMv#Cf(>*Au7(MLA?X0TmHGl10B}w$Qm|PVsMh!z|S;Hz0!ab3QC-|?*97& zEdi#`NhAVX47S$h`*43QiPqHLXpQ`Bu+ghAVFT!Jr^PoQj*Lo+d>e%B0R*TmkhHsL zKWH#XxI=~gS*M{wc3A?!yDs3hk;Onqh}^Fd8+)_Cvx`NuuxnPuy~Tmx{tPf-p821O zf?n?Pp7#ke8=oZQxA0ZaVke&T4W3lm!(^)!u?{hJ16+KdI6W)I!6-zV z3BG=qFvK9a>5pC#4(KlE$r)d?tkBner)kN(QQxKU;4gzh{sT4>CGI5d9Y#C;W|y0h z7b67P`%kJ0TJ!ZUq_9|?yG>JLt>OYX!V3OVycq#n){o77U_-}cmG!*5Urr?y98d0m z40i$5mjODx@N7Rdq{NufP5=bwgY@GfJ5pMH-MfoN=8YAaHEIiIIcwLpUzt0-{?-_` z1gMQhHnd07j>8rBY^p+cM8Nf-%9B!IDUTvak@e(Mw1-7|kzC z$&0YiL~$Lk%5%$&C_DlSQr+cZ?d6zMmg4;dzG@2ekfE|6+LU!tsFU5ZQUJhE?FKew z?ayoD=mkQvkL<7eNRW{YgM1~P z(gQiOXZ=H%KS9)Bfg?7#Sn#F`8F&U_`4##XZwKHKrov)i#&@dNVqkF z$wVG7acS$(y|u|V7<_Z`)BgDQcbm9=wiTAJo*e;Berr~gs^Q58A&=)s0VczB5gV>I zoF-5E4knPV_OMu$C>04mao%Yir6MSnHr(^IdYD#Yln4B2S+Z=-dTvQHn%zZzaQzNH)v%(K9+n5Yb+j?G^AVkbfrH#cVZ9EJ9??I0)u2!KyEB zRY(WS)jW<9wv>E|Xmg~?*VLTh+Vwv}eQ;L`!s}hck+>bC2qu1#JUmBRaz~wc-Kryk zy5f=g>So*7YUj_K!s6B2z*OXyj6;_C$nOz8Hp6XS-IHuKbW8Sr4ref`N0I^?P zA=`OBqNv^>viN}s0O`;I&)Qqd{F`j(UIli8+-B5nr$!z-Ei7((m227-I+QXe{%eN8 z${4`HMQOj$s1r`g-V4yh@Dl}|-sc?z(%$7SEPM(DC$SKLwF;j2r?DVUgRMiLDCSxT z{m%m?N=kAsR)e=-Ga95f=fw4W^Q?osul=7&>>$(9v@K zCTEq1fuP-{_DR3SeS`6N6eYa(F}ldrA;8z{aEZnfAP^Y{Ucd;-Thc^xM-VxWlZ8n` z;TW|AA#+zH%ZK(HKYcs)#1vBz<2`-J)e+kJ-~AR}en}AoZhgf4 zN%&h(xiua2{t4;KCXaTv{Q02ATa4I9L;hou5jJLl)x6uy1>-m>6lxxVI%eJ?gk&m< zYRpOw)|?x_f&{x@4B_?ZFSPi?^`K8N(dq>@^k5V?qb$q#jNnfrJCr1F$Kq2*4F7|W za*bJou5aR*D#z!YWFW`9?AdP{^UA1*C~3)q79Th#8t}AcdCgq$L~b>&rX==%{o+R zPC>R}ja#(vKU2=X7Il?eiU8EubV2iCZ-Yg@w&9CiegM3`hBJ}u$Zsm zq{?fT$(ASyLcfvZw-eX*S?W~j=lryL&f2=}6s?odJ12gbai!0DaEi(cp~7%P@8n51 zBXnt0DX7KPLItt1`{=w^2)DL_W^9Go{gC#5rIHnHg=TP&OC0M;UDhpQ^K$8ZkXGQ{ zP2Lm45`jiXm8Lf{dL8CGF_WC= zRjf-e&^1x?!4#nbqh{ylh%sTh>a|QcCpW-yVo`&dw89g)QdtY@mwL2?5oUPSS*h>FU43G=4 zUfAFew6fe1Hu>TWLR&N4?mx^7`yabrMXO%4+^WY*(go~`9vy_;61@5BQ*Z_Cm?H`1q4>6kxLOj z&e;D`n&Bwik;~8Ap69CD)c*e1~$5jk&HDc)egsLS%Flk>Sb7U)k?QxK^k{Grbuu z63d|2Ah^OD#*7Uizx!Lhe<|BNV~e;?cv0V`4wc7&JggF(8YjG}con7-pTeC%(G{87 z*yE3lbZqp7B<-%Rw4Fo2d+$CTZtks=i+AaLUammu9AU4Ul^Kp}*b@o#IUJV}^41Dh z&}b9Ys{+1`_%K~wmzARR<;T%-Yjfw8h;^frMi7ay!m5oqSeDO_0^QipQRV4Co_bYk2Uh;MajfkL4r#z z@|3z&e)<}gbO`3*!`LppgD(Hk@h?@41!T`-fAbSSD%{5Qe=BXW-$GXs{etGlx#FE) zF9Z#sLyjsjk`#i1OIpb_Evg@&&sc~L%`8;&4}9)>>ri#gyo@BiO;3v!D$>dlGEohnyM{Py~M-mT6JBP{AFwx8oQrw5=SLim1 zCsTjIldZ2^zTm3+(eWZK8!ZB<>B$`kd^gE~{RVM9rp&z;7v>5~yJyS>(REE4mAkxG zro^1E)i7fACh0r3;wl2nv6|p$(D5)pU$W=?}oz5|#2* z@`l5wsMeHVC7avu2gbeCCnqu8pHI#y4v9o;Mo`O~#Q@hzW$2^~Rb%oR!{GpPwY5~Y zjG^u*VOkL;vNYqcoNJ`9`Mpp1OH#0SvxlP#(CZV4;oni1ReMI z6Jy=yx%^7^=6^LU??N`8&hL3sCK0O8nCW=2`n=lOC7f$te`#_3ak?(u{zC0ajM_1; z1V$JpQ#O-?Z~S$p$e%Y!$oOLeiMNd`O!icW1|Gxad1`%r^iksi|L@wrh%K06rEccG z9K3!R^yS_DE#Gj++$>5N8tMGEgB^wsq!$#=L?fM5x&f}r+N($Lc6aYWCjS2}0P6Hl zi37;{xzkT!_b~S~>_wIKTL&m6#I{^>Jl=D8KQz0VH(yCm0x)sefSwci?80!TYhf|& zQAn6uyPmHeKI|%~7tQ_Lf(0FBSK^qc*|H;>lnsOf-{>r?!y0766h$be!*~woEdnlv z2tbo2+vQ~*X>mW`9HiwNHhLqJKlqmB{L1iYMd$+bI1*n8|4y{{(g@ki?(-uC#M-Ugf>#M2)_wroGUHUysLOu*b8{grNFg&;&#<1SBs>FunCe2 zE-fO4{Gj`UM4Y-IFYdiq#qCIS6H?AHdE@c+Mn`<=F?luoc=#M4uvP50xGu-Q$xuxe|{+izVD8abuFxehdMsL2p6Kv^-pGpe&!jw1MPG)@&Pp$)V-5cb=h?8V*)@KR`&$3xLn#XWoB~ z3+BTwwD=m-@s;xKx@a03CD+9F;Bn~-h5>A3@QLurF(eq)=QU}1Xm_abK4S>c0inI%Y1o4hOdpwbQ7$ub$xL)J zYU??Nv%Nx|0_n^~Y=ybvh&Z!oVS?f;;3yy*e#zNn~ zy6l#0V>ay)nRL@cvk|;pfPr9)3F)sF3t?UdntO_E&thSn@(xI{0LUg?63)}ggnf-L z{vYZ)iIXQ3JsG4%V=AA+CKTOK3fsjxpEiX&wNAKce1jbEo24Jd#@=n&Gan8ot$pz> zEt)DR72u>yUPby&r%gQLi8qPmRQ;p3(H|bJDnZB{*Q?OD>6ArqjU@I=F-yDa&iS(r z^f}+;s-fZ@tNNa@A|Z?bsT0M8g&bXQNxN3E%J2~Uhc%|`;?OS7n6 zf-^S!bw1RIo()4mW?Jhx^QoG%bX<3XzH z!ha8CJtO345qKp@mbCRJ%8ZM4I}|ceyC3^qcLlMcwn_ZMbS&F6$Fa9obdq+JYdYxO zTL%XVv^iY>EUNzagV`a&YHOcTgG}BJQLCCu{4RO{GfEK+Wnm1Y)71g)C`D zXNR5Js+CaW{mMbGG?u`6dAEt@K@5nTB}ty_lhjusp6HVJP^3GuKbJHD;;IZYAB@^% zBTD%rb@Ng?U${D`J5aXEKl*PDW|O@8F7_tObH?RAsr(uzk?->BnU)OHnIE6*Z^+ro zo@lRKU-?6yT9-v)x+~}YGxjnVau@mn9-Bylgd$r6SQuZL1Kx&7!ogLqOn-dTX^}Ni zeT;jCM}#kSi|r@uOWk~>9SprLrEe={bQ>To3-Y|vT7hvV7C@vE))6$aCWU#RHEtIi z*@wlg>!CtWT$k{ZpLwNtWW42kH*3-z%8;_=@IrruHv^L6oePIfL?*M!!dWUiKJ~dF zG!QZ@HAka7F}dHM)qXoJO?e!|UW6V-QMeN;N?m5!s0nMLgVBd*H?bIp+vyxAUO+cXFeX2~m2`^?CW4$+0iz+J^8^<{UYWe_c59dzE=QnL}bAAjq`)D*x>F4?mhY1^48a?Vdc4d^| zH>?3R!9(L?`)+$s653inKAZJbPTKi+ExqYEOtTTz!J|mqAyX`~&R-LC)V1utO2izS z6t6O6PK-@^H%q1!8V^ZjNUv)R3~UOG6_kar?ZK_PFr~J+E@W;AkVdyL9UZ{1`_GxG z3mjM9=D=e2puT#uwK{fYtZF$s9V_;@D6h=YlMIZPZi_nxxQ@5Z9rG!DW+QvOgO=I} zZSJwSZ3}63QUrzl;GKUnJQONU&U*9@|3)0R6qK@z+nV`b$h5$_Ogw&?FwqlF-qJJF zt?<7MEo2cJ5S?({%)_O)A69PPz6peTqf-%{;;F@#0W`ztRtz(tU{@@3%XcYYbv7_%=v4 zN(z-2iwqPL-Q-Dr4v^F1G-dO^U+P%90D zYeH}Q-#_5yU4JW{rlZiHdG};IdLR%uD#HzULK%ZVI*NyYc26pIn1T|KTXG4t`Ms7S;E^&9z{Y2wRG;p;FlGQb~N7l!40YCrE}E#sPEjfwg6T655k>uz@_ zT$Yzh`)b*vTzN@c|MBOm2aW4bLVjs2y1vsPR1d?Hi&{k*DcWx>RA<=xU-!pUoA%>M z>}>VCrY0AGECr?AauR+p;vg4bNtLB2sOx*jfZ63y2Yzr>JNZH7<$BDvxoUF3z&T+AO3kF7mUwkQtL zBWYc4ljsS2J&<>cj8A4nU8_{$3xNR z*|&_difWRH4eEN`GE{NU9;RJ1>Y$ZoR9hpYd%{kzH0KWjz9Jb_IDXON%ZMrT+#z*QuDo|$ zL=y0Bid&3VfG{>6VAf;4ww^F6-^VqlS}`{EqsSqQ$u#x!Ee!!Rz6eu<9+~5HW3}vQ zd!kwRolNa-sq9Z6c*VqkA=)>OLS9u;spF3i!G+>}D~KB`s1PB-5NOf9xykM4B`>=o zhCj`16w5A1h_k8h>0cxhO!1cd*QF7kR z&gG&R!t(6LwPN#ZawZIn`=bc0KpN#$dekov7)Qjl=lk|T@xr5#qoC=N{1@8yO8D}V za<}oI=_2A|ZK7eT#m~G+&_bd{>)O4?eX3kzcctB7CA|zaO-ZArtTwU%qkaY*#8`M(-w3&!~;>G4eB}a<%71PVGIBoIFj}G5F)gt?j8U*-L zo!|GK;&pRL!bu99d94HtZ~R`&LAI-@xAXTRA!H-V?KF#{K-`!h;68FJ#MP4r+<{LP z_R;+cvHPzczAEAlD5RlXJ={|sKSu=mZ9_;QWS?WPqVfrJWvBm}0 zPw?(YxU3Jw_j1D8yJwrq;X+zM%X-^kPfEt%bVsUrN|RX#-{=%A!2>fJ^3kjquK_y$ zGu-fE`~0}tzGAZ3PwP?Cg_g60ngg1Q=hfcQTVt0DFd9g(vx-mFs0j!e?Y?pjyD7Us zEE~eCdMQ`PsMd4gQ4Z$GpyfsW^Bw_peSi~2lReiiA;Pd!mfs(7J{inp3bnPzsBRh~tVC3#5;!t#M7fb;G?(e0kao?Xjry_>); zn(q=($XAWq+~l<1uhYZ2H6+gYsUm;YznF+Jd+@qcYf=MxpH%PWlYZg3n;YX$Qm1xH zza>}O9I_9^@PMIHfRof+vnOJo0u=X>MnJH_NiU#k#POJ;MM;R};Ev~c+zkUfZ2Ieo@AQE|=gIt>iq$Mi zl(@j~Rs+DINP3R26V9=agYZOP*w6 z=}XHLMEV#wx3(Rq2#l?tJ^nv*y=7FCf7dpAPSFk0F?1uH0z-F73_X+*f}|ihLnDo} zf~0f`5)y+TA*g@?iXbD>NT`(LGuK-0_1yP+{jX=foooF*%{tcJ$KLzc$A-2hm0JCY zFLP7j>y60xNmxMz=5@TRI_z=U$th)>NWyy;1C|)tHXbv;$zbdpZnkGq75T6#G7iD$ zrSD?w`@z;eYA61Nf$pdRUPHmys1g{ zX~Xd5)5xR_hvq*`T zpKgCCWL}8h{Mpx(ppK>O=-vC)&AgEQY_hKAnzS>a65)_%{GVPwbraktrP|TJXYk38 zUTB2ME$?L8qwM`JUMlJBPA64SPfpOkZf|#99E@3C^|&|$?9*}{KAwSccxg~+Q@I(F zoY&Z<`8WRwq4y3lIT^DfMqkfJfjDWI4$`1%{m+``b&kiY|FdMqyH=}!W?-)h5O^tL zOXg=>$c%39@{WZL!~c^o@}rY5JaKegyaur!BK4@oXyv*4`d4ISv@Hz;ZS?$^rZ?S! z=~^Mb5|a$2h`mPV3t#8&a~aiZ4^$I{a*pW9Yxaj43RZvQw|q#emae~jb3!4b_C#-E z2IRx}+k+64=pP_Ysyr^bO1(>9=eQ@x%Ev{YO({w8Oy}_fnam{hcGXH5C?|=?Xvd`b zt21Ppd+ZJWgUYI!dqt}2{^DD4ExMyrWX{pn@SbX=f$J&o^R^Uw*mvC6<{@m7n$sqb zfo3`B>`3o7TNXAmDifm{JfYy89w#4%zp#s(%|p$mZ-(IOcjEQHN@Du@q=f1}1{`}a zW$&{pxnBl$=siN=Ygcx5r+6~mA{^!{UY^C(^qB^D_Erebl6Da)8O_Azr)mxx$hzpL z??2>O<@)8bRV-QJs~3>1`MgM1V$!~i;Jk-}kXcnQE;c)zvz%Nys(C50DHeOd`@ zUQFs4OzToN)Nu3G&u~?g=A2x#3pJ;b-)c~<9FTgapP_}=83eff{}egn{gaA-_mq1XDa3U63Ys*TJeohK24Ax{LD~P|lh!~4S}o3* zvdykK{Fu;?MfLYE{%Ojo$bk9`>2D_iQGXF0o-O^;SWWj8i&auh@+h$%i)>ns3%Q?v z2kmkj~&3F?Tror0qhB|;Jj(@oNl<(ZZvEn*R%}S$}WL#gHZ-tIV z|2dahZ}tUWRuWyK){No4z6*0v!RfyydPZ<=PD*q25ia)^!_9mgR%KJ~+C1f$HbQYj z`D1GBtz z@*RX(dq#$zVHDgEb4EIW^HYjA<0n>1mUh(ScH7*HROBXfg}rV=UU3JTGqR znTj68$|lnM#TTF@y;f(qk^a41E4ghkE}N~p4+%lH)U9T(OaquBokjl`D;@Ik$fZf? z6z${(7r1k+S73=r-dC&0&bZ#b-VGSqIsUbFrP<6R`I;wY+ge#bl{=+Ptm8uu{wwn? ze}FC*ro z{;s_Ld-HGWVUx6jifYHZ({r5@r7VyMesxoNu#!}T{yb3g!5%Sz9c6)Ra>TguKx4cv z9byKuk@q3aVJVu^W=QJ#R!2(z`+s&1T?JS!d`eA`mJJ=K=8#_=XS`Ywz_9d^ z+zR^7mN=3eJf@Mv|1aT*VOI4^9xYS`)eUj;crSr5tH%qI8ljIi4HfT-b4uFidyX-M z(j|$>t8!{=MRUtp45*CI^Q-=j_l^$1YqE-w2L^k)=IJl2Li?xvDRkn*o%xEKZcl$a zO|1k=6%ZN}C%Oq%3#`Y!q_)>y7`Y8?G~9{M3zBz8ycn@J?;+A*y0jGP^^2tSQIfYNikr>*Ih4%+f7SVIOKsm6?nW)rRayA5&du5ld)>PHn64(_uM!YQ^Hn!MtQL1+;@#P)^{;K7-ke5BwoOp+4R+>^bRZX)acN%X* zIli^L%=u{KjH-cD&-`coLXzg_rQzYA&v>#CK?7tt8{8e8(xT1QY86bp^0i}OIyTy=-!q`9WLcXBhUkqC;L6Vs&+50zcsffg$uIe*kNCxy{zN|j$z{~{gSeo^_1=7#tTG_f@Ahp318 z?~mrLOPqh<=kUvx=gD-8o-rNI74~(I+K(=@R|ka42iTmfp3&haZuu$OkB?1w2pu0O z#W*JEFdH(Nv&@Y zhid1hkf&yP{8eb=z* zhDu6yBc<*p3mNZ69oo*9oPEE@O2r8q%-lq02)R+e49f;8d7`zV0>+UI?(eJe_K!G) z9NO{?t)EE3r?;r4@Mh*UW9W!G4qS&ZJhdC%ixY$G)G-cj7?o5&7V&(el<>lUfAXY(xzN=2F|*PBxrK3s48B?6Ze{h9ohC_0_m zGWXXA)eh!$wQduykGyB0!M0xsv0V?t>CV=(kd?YAf7O4cxsnv137_N^@sfiBu`Ked z-YSmb<-G@W&1Vu*|J|4in1NnX7kf$W#CgORCP>A^QM-@zSEeM<*SKjSNFbbckT z%Dw@#x9%!D)GG2KfGG>4@Srg&O-8W&o%VNj_2I8y^WwS&94`MpXg+%u{c|g_Gwj5x zIxMoK$|I8I_qJZ$t1O23=EFwrtn~9l-I$z`ZB2sJ_b%xfvnu!%Jqmem9w41t!Z_$+ z^{GsmO!5~$2OmtrJ`j}9S|nA5)%Nx8T_z!k zfg_DX-eIGah=tW6u0Vg@i-|v+XTzyd--XSoE*X_}C^>iWK0}r5_W3__IVO7#SQ}=g z>9uaLFoicwq|fmRHYni@Q{oi$ii-AA8H;QePBP)%uXB@{CUpXOL1PxHisKu@_GF(J zZrygN+n#??pBHXoUWxb_}%}U!q)5KimyTx|2LSfFA{%0!f%lsXyLy9C%4CvP$Qmt zWRF+{#O1VQW>IA)U1{}L@zA{0y`!zc5~EFIw@|1HWv2BPf(ph}(M`9BMR1hkj5K=i zXS3YjrEKiVcM$u}B6NxOc5P8=Z*wA&sR-}?`Vq<8W)N^!`;MY#`My|=q7)Qw$$LVR z^#zwIFv{w2XQ+GSv-u7BS(p6N2FM{x?IXGlO*_0?E14qHUdNeqT#vtvz<^g*c}%qu z#>>q3`or!fI(z#Qd+RUyCsniNnaRk3PvNx>sP`!{@TqD?>!{NlMk{z=&ovV-J1nj^ z5j{yAp-0%?pRU6+U+nxdcEN~_b;{`9X`jLjQP zXOL94-0GUQ`6JPIHt8>08pHbc=05GWK%-F$kLz!G8w_} zzHH%g1O-DHcXgWhgaozglIDv)rKp5zVLmt5#~aEM{1sZS+G(|;xwn-@~qe-w;>qc zuw~Xaa53CaBquG$PX?u!_i$T<@vi&FR7H^!Be;FXKiY4)hM=W`$g* zM-&ZOvjk9MJf}a(Bn=Kta?QRo%Qy8FYi1;B)-xI4Mg%CRG|s zDuLaAzs2gqeJY+#9SN%3U?DD?&N#X^T6xC+%DVL`6|F;9PFfdBH_(@EP9wbVHL+7^ zc7P5~x(`gMNTTX%@D&Xo-UHe3;-pwbi+&L-OakMGmaikD~98Q?HpN+-9iH~L|}ug1}b~?CdA6ed}>b9{g2MtU{Yd@n@>kWDqo6v5v(v%*JWnc zxC(KS{M7=rT2+h79?8lc|B!lC(u}>eDmDx!R@V&DNN{HFIhza_%!?ID%0Co1SC^JO zmNN3Jka(1oP8378YS46d=Y0Uhj}+ce=f#xxB>#qd%t#1tcUELM2fN^1Nw8^B4G~7M z1p3>{+5E646~EMddb8>a-kY;uonV`jFj*rxGqiK*jS76xLGPC0D^~m#)HQpFb+qSs zoi1kd?)+?3KR5497rXb`?;%I~`ifyybZ?@2zgQOGF1PWk3C%Bgp}y8%w?}XB{yb4^ z`OLJND8e`0vQ%Vw|G6FK@lgQvsS=MxO^$-^29ex2xmnr5#6@4xyQ&?L6-M9 zX}J52smP8BHxt50B~o&Rs*JWB^VA2JAYgo})(oU7Wa&rZ^&^RXO#ZjZr*SfMy9R?k zaVws7)sr4P^o!GF#$VPyjKdrI{Viza2J8R&H1a1mrJFh1hO*a&gv*Iyly#Mf)u`~m zzft>W;3u!9VWTToe2I7DAF|WR^WQ0MhQo+Btkzy?no;Muy_f1{2i*yHqN^Q zA+6COCr+}Va&G^b(D)7vi1Ei4ZocUYNW*)rbPI<6rFi^cW!Klv9Cy0L5=i>bD8>f| zb82n!=1_jyxnz+SRHOPT?4A_;2%$xgLtnEQAjoS*nN{%lN;Q0ca9%sFZ--tD1IMEL zP9~rJxm2C)K6!urz8x}Bz>`U|5jj^UdP98`wGh_n;5nbZPjTdZ^rHiCAVQcS#PNm< z!XlYlY*ve_tFkL-sTLlB!}3kEbr&ICjs5m5&GHAEC35n?Z6M~gP;t}ub&Gkxhxwfr z4VJb2hpoXUUH@xQ+qiSonxiN2Y2j#mOR2Dp3lv;A8Gn0`xcW#{Lbvu+3FfZpB@$rs zapwa3J1h~NQesZ7BGRX@^j8Cx%}>ke_1}?iZfoYvQ9vC)(qPngk|3uKqu`h%QgrID zN0mX>$J}5Qkw%b>&uktD1NumVjJXGLSenTNzEs{UUB;lA_f^mR_vJ zRPlo|!F8k$WmINpcf#7s_^JF14wgrQ8z65bOVcv~m=^8!;%2c{yG0f@>^BMw8aU@j z=Lmn;P!9zHh&VXUK}b;cug#H*)L_B+KK_{MN5R;g6SP+-X-|DQX|~QQ=I!r9 zN;Y=J!{&Vh7Rm4d@#!U@I&M5+wZpeMH}cp~6t%tPNNn5=Nq4qe7;P<-HDa==)Pvzmvv) zJilKH_-UdMJp>I5A8=$$z@taOmFOc)DZs#pwDL{cGt(5bAR6=#EClHXiZ)5#Vq-qK z4@LT66l#L~uhiEl!H)W*wl=iDd^S+|S3vd0w~20mPqK#regl^)|J;n@wfYir2C7x5 z19sUI)Lo@F+TV6f1@q_j2_S1G8nI=KYjGfd%=qWB^DL1~5SN2)NQo!3r$VAMHKE4q z8PDmBJmy&jEVnda($-kyK{L5@5B1^Ltp&oK$Db!VFepis2nw-xQyMN4R>ee|8f$0z z&PYv#!|gAr0ZJ+07Z`wE#MU#wbw}2kzPT7R-<*i%2U8A=<8Kx2>-a}3DN!?qnzNBy zy^a^BKV^I}oFV<5xq^3gsPzRW)xi%hELtfBgn`UMiC6eS)o8h{7H5+Z=sK6c9OmrK z23CZ`laGTmA}n`BOSJ87esVlUdo;ZFs2!(a{<(MJ+K-aJ1Byw(p1OHFz`;N)zuM^Q z%)M_C*QZ$#zP=J8TlVg#MhaxgSpY>{e~!@h>pLDjl=PEf#6J}{e!Pu<{#;@Edw60i zptu|nDEg)TRtsTE9>7RhwbXQ`!{P6gR@DP}_Yts|eXzjfZ7S;QSWc}2cowA~tIl~M zyCrX?bZ8xlEU5I*YKb(hm8c7}M7?*YFdOQyV`rvbjU>c8uTTmHT6o0@r`g_NKwmgo z=-xg}-eTFV=ik zKk%uLc;8zfvcsmk#rHoL{J((2LT;e9{9C{wf++ZbSn!?G;zsEE1Kg{f|NG+KfW$bJ zA^?RL=7gAhnufRM;AB7=m+(?lml%7`c>c+Q!M5*!l8>6MXg3|Kiz_mnzIivx~3>F9d)mz%xCp2O^n9 z`=EPMZ1dgLg`)@?;GVOB;pNB;p)Z?+^i-hc zmoV^(5FfbxhJ({K?F5*8%7vRD^-%r&{y>=Dx-YpV=!eKy~RVIWzn4PPud`+ zxRShgLlRrnvBLP{_R;saeviIP6%5w?{&cc=VZe1A;z?mNBD$*{rhT5V4sP zH2tKsH+U?w27YUAUVG^f%_PbdCYfc!V~e60b1v#bO98(cyo0Kx|F)%#a7AkFkA>;X$&paRGT zHQ;PpS*)>jaja-IwC(Hk>?SNNoU(WH9skKEm^6q00#^e{InzVX%S^D}`rh zkl^F?!uy+fVa=yr-R3mkRL7KWJ;lzy%po#k1EfT1;l|rI^nuzqvmz z;M}a+E;M=r=JlCW0cEX4=r09|S^dr>Iej6**u*bDF@f%az9C`!&@23>i@k)U(JhJs zRskAkd%Mj7htGko7nC3Elq?cFBWh5}bw|vI4~)}_=g$$De(OP3_}CC!bhTPswszP$ zGx^=l16jj(z&o(hI)cTy1eUZO{+Iyd?G??6h!Wt2C$}PqorZy)5+?65D{jv!oENn5 zT32skvg(p;@mPrRLyp7BLR*XMyU3R8H@)BEUM;w9MR2|&b~h<4<(`cc$o~#H+j96) z-Nb0%?zUK1??H?mL&|+`5@=DGe%VPzT*O{3_@^Bze6x6Wp6@~6t}GX~ z=dxd*(?xV8SRCzfd1E3KjeaAEV&dK=YcXfxU6w-O|9p~yIgmfg`w(GV$UC`p1) zbuR3Z*QeUQccDm_`C5O3>a^hS3~vLKS1D%uOa3e7kH3{+#&?t@C=0$){2N~X3!Vp8 zH(G+RC#u@}W$^^yd`j)3HSvVzJ04GknEnPnZJ&DPGBHM%_Myf`%=6}%7J0u}Ne1XhK)ze%g$ z6G%$bf;Isw9>fRmsXG8)Ch>wMOP(E?ZlAQgl*Qk#ZvT(ihpG*lZ{|n2dp-}shINn zF=8I@^NiRR&i9HEm1wyjz&M&%noC#GEs6q-AO$v zSNQ92uzVMTzRq&THphT55X$rquUFWnP@g{Nfi@{R`zG2HkIfF2pS6*UwQ`eUIADZe z;+L~8wdkivCu2Q*s_!BXUDF*LI%M8YNbmz^p^10S6RWplfqD;BoRFuCQz$)iXw4NU zZiRpenF)OADLZc7Dvfws^c?QLNs2QtK8DUI{L1OBhfuC$%VWC_`AULKbBn0Lp&qth zlyslanADryT!x#fh6`Bgcjo<4u)O2<;CxXb>U%jZY{VjVNd% z>0jDOk2w*PA`X8TugWLr6%m4T5#9Ul)- zJ|@AVu#zk4<^P{S{tLmF4FO;e#ELP{K=g97l^!}A43~+Z{Q(64X$ZyuMp!olIXVOf*Gvb|*R77T)_PmxI_5~PDn_2%f zxDT49fWvL>BMg%ggR$I48HleKY(g9BTYCW9`>7*3&x-F01C0RPCO?~XvnGKnfjC_T z*GkUWhLkBC{eDl1el>%FYGHmZAiS$A#PO4XVXi9b_o(=eQQo`U3VWba_vjd7Rl1CT za-;AUnV}cWi_jO%F0B;8!M)Yi9(pK|f{eqy#!G+R*xT(!h&Qhe%Qf2s{^wCa4%W}^C2KL;=3*u(~KMB+RM<`l6U zJ<*wVI1`y9V%F3rxV-i1YW|mQLJLU3rFo9-s zA1?N|jI=TT^p2O518T{%HugVj6Fjndyyyz+XA!G_4N?l()|bM)27uxQ&q zV0giH19*x)0UZw&ua#kM0FO9gtkKNIhh(dMTxhT^85#z!HiZKskU!2+Qzjmu&AWVt(|j=0AhDQb)1xUmz^S_K zuCdS0x<-UFz>bLFvB~P-MQFYCw6Ly=WUyWc_WpXfVu|8=+sH%<7kS;&;8g6;{^RPL z7-eOPguYfcSts6w0wiO4{;y-ep`ITguPkFWrFEb&O*>_X^7~#@5`32A0@I~bc`Wf~ zuSLg0XQ>ZfE*ekR6JHU%oVl>e4Q@(DiBu*Z>nN=DvJ24Y`qunF?!XuZk|YueS@t1LBa;;uWdx9qjUO5f<>x}4lV&AVZUkK;+3$z zGwX*WHMe(rXlh^e&m+-azEuz%@d;{0BsngYu2ROefg@?4>-A!h_$-|)1x znd@V5{CY{zIh7ydx!@jVfLQnIe1yC?M+;-3n1bD``O%YZ?PZ(CUC-A(*ENEDNpvBM zuBt4_iKv@Y0lsUju5u_cd4Yb5!QM5D?8e~sU9!)#uVsIbwy!?aniA_LW+g1g*C&0` z#rsTqg@5^e^$VD!Maa?fg2UO*;e-GjC2pnR|Ap*;tdzlawmfyjX6;v+i#>$k=SC>) z=n1U=HC4;sT@k6=@0C}d@8%MuBt$4Fv`BUh-ZBlhf|2AY%cu=*c&;t}x18PfuV^{3 z{r6S=9r!^A$9IO!Wn=uMP_}0S2tBda|AkN9F$0xCe-S!^MC@%zNN+m}(6JWjs`&Rf?Z_(L%#buy%naE-d*%Hwj(M8F;mHdSCie>Ud)# zBqXesigybd!E+wi^Pco{;#v8OzTGy(0hj9?=6&LmL7GrFYtqSiwZ3p4zEW~5AY{cB zkp3a{zc$~EGE|skd9HsbbDvx3gM?G?8#ZxYwN`>I(d9YTCldjrb)gM$5**x-t4{;W zM+wo00Ijnhxc0N1@Lj&pefb9H9!IfNbr^^5gIUHPF4H^KO(@Kj?EH+;f$Az>Xn3HO zZ%qDcNmSxPVZZd`^Sr?PR*2Q`>*cBj-nIl=FVeXy4?>5}sy_(nD62SJ^JQ_($G?^!{jP7r-B2IdF+pcsB0r7Bjr+u(Fn6Z-NBOc)4$qab{7y$ z{&1Db$g>kXg%oc8v0zG+41p>$c+}tLrI-AB=eM$oyj{at5d?%2ru^gLY@GNKM)>c> z&i?{ws1pfxPacU$6vCI)W%}>@6t9A}pGP%(Q<`i3^WPXK3dUZK9)seD8fcuEs6y9L z01_-g1I#6jv;ef@gr$r>^8l0o5TdmQFMtAoULZ&QjaLCY$z>_&5JBnkh6}I;+(d}F zGC>V!Uam%x@^3Bcl@}n^+DYN=R#+|21oVQy3In}0>+jocZp6$3a%eI^me1uch&%=Z zUrKmi1#fttIfNI?@G1TxLEoNcJ84OgDSs^wjDwm{(~n|+cNfUd*f<08qzLM#=j0G!~?VUxEkAOWJ55lhzqlx%H^YK z$~X$~LhY47{!o&l&jTRmK2CX{HNMjUC(0k}^MkBFKw*j5TIEPsvibQ(?pwO0zO8}KE#^mt{tNC zq7K&8=U!WCCXQvUbT$hT%u*{Js6N%wn>uLp_Ps5Q?Iwl+fz)7={JyTc1ijGLtKkXm z2oVC8+KiVB6WKv&OSN6EZu-V_>iEWd)OTe_$*a_Qq&RiAzgU99k^@ja_%3&;P0D(z z@!<`LTa@DMs&dP2bNeq0Q?{>~8@{<@g_J3phwF`o9=zk>T^`X=De*F>P@wzq-+GP% zx}XBK&uoOk2c~#xsbW#fWYYOjic0>+ZR}F#KeGBQTMSfyW)GBo>K{f;1;_s&0L(XL zsExWMqXsJe#H{ANj)WRtrY_YpnqNo+@%HOWA^HM~*h;rmd-Fmz%Y<`WCuOjmrGGa|8ph>! zf0ROp|7uttkO`hl3`VrS_F|_(VRFD0g%FB2zin(~Q{uejw;1`sa58ZwfFZASlfls&yi_gxr1yqF5HaX*X!uY|Dj`*f5bC(z9s&VJ zWmzK9IRa=?&vApMO+LH;vmcf1nLp!1G`_J228BTJ7xkW?(AczZ<{d%?@je~oeMcwx zw5r%ppN{;I2;{ESMvMxC{`Rf<^b;V9b?8se;~pG4BQi6pf-n#){1_W|G3dfIM?H<{ zL)n&||0I9o!ah;lO<*{BaW<~Pd)a!X{SNlKyg{z;j>RXU_T*(}j~aaeaewmEV?a5#iX0>WmVLqV0*z0|@_ew*`uMtVkxywiO_eP2ooYYez1sl>QPab_T__f#i zq2xV?W&&K_|D*xarjOQUs%GR^up&90{V!=Zst_!$L}7)Kz<0YNQf;N4($9o?cUVS_ zhGhRY{)xm83TB#;_`My+Nn(kyx%)8!$1pQi;s(Y~nObOBHMK=EzjsRZ<34u*O8rN{ zJOC3y8P(zkA{#4(OvMOahtgwfh-IJ`R0xv18Ymg@6nL@pQJ|R`mdP4|Qkx4a9HmNN0P~m2156(C69#g8&!w|mDq@8)B0UTsqmME+_-&V`(;K<74$SuYGN?`iH6s zR-e(LCfQpXXni=jGkH1ZrSnc{+Fa#uv(4E?U)|C6*jDVLpVdxoOjH8orayHLTpGCB z@tuz|Wa(&-^($m#c89(_%$3vcHd-LEx;aP{F+KM8H~-ta-(UjOgxjp!@F=>rFGsF_ z-Uz&TvMkQ==&K`cz+sDx>UqCA8Z%7N_pajKUI4#DiR1TBNC3AT=?shLqW`v|WP3iYRqTnM%{gBq6PY#4@^6G+Q79 z8IS-maAX^FL1PSJ%EQ>YsT`?-o)1g1%Rd(lVxb?SOH`WvHtRwT=Di0AvOqKfR~CdQ z0-v;=oPGUBnml@O0&xRd49!%fG?w-jq%SATVr_?D)u!5o=V2CVo?W5XsD$qU2s_0V68eLTbuHlri1B^9Lj$&|Yn=eC9{$t)^C;B@a8zDA z_I?{(C=Z;-`yr(98S6%Sn|yOX>+^Y9+>sh?`B=M$n1EpMZ;Sa6o=w_NnHz}TNj*B` z>#cG#vz{bQl7Th+{gql}0w7ST($0OZ5?R<1a6730W1xmV(m+${TLT*YIH6_2}m&s?AG4zukB*o7D4bk~1S%z=U%f^AzVFasV64;_VvLu

h{lgKrZ;YPGOK#2<4yk6TARPT{CYMijkE;jybeE6 zhiYl=`mP;0eP{?k1q9lOm3$^;Bn6z$OqR7TjhUpMVUD2{UWTpuV<%Gm#XYLEJ1L6O zwbXC9=gsd(HSxHoJ3V3^=2eOm4!3T8VcJOfNp?Lh{mtJydc2*@|BFEWduDi$_pd6) zuI}>ulRNz2glWQhpIDV5itb^rw=kx;sYCeR5B~?;7ZfDG#v!csDVd*pp;!z^2w(-m z&`e%?+EzX6b3efH&?9wvt<2m2v~xQ2ZV>(ZA;qsfC4cYRpc7;f<2gcDREtoj2+yWE z@cn>m>3$__uw6ZY)EL1kBB?bMf7a6SDL=jnGAN2z!(z2(kI7g-h zgkI9cbvOHi9Mg*a(3~_sba@&W^+Qos4Xccn22~(1T@)&?5;x--PJgRt4=L|d2+&Ae z>7!4ILL3Wxlj8m6Vm$R6unwMGCbHlD+U1qJQ&%$l**#;-`rY_s#e$;#(=SfDhDXQ? z*JZ*21JcMLFY5&e)TN4&s-;UVBX1kJIVKn1*I>PKr3OdY66dZN2hFRf6?uxo*<8L+ zNSAaqj7BPlb7GaKBBNXbzTMt%Lrl<^a5Tje|6PehV62^!50FQGrcT&L+bO45xsMmN zc9;JHu>Tn&mI0~8NdHcDD_qvUl6xiUMG5Qg&j?(@2k^=AKd8WgI1JwaJrWvJN{r!e zsf2m}D8f&s4Ss3*v=M&fcNqJ|SiYsHbFu;Khu~L8L^y&Lp|w*-D6BuxC=4Peew+GR z))!|8OrZ%j)_>p424v_cH3>5l-Y5cTW%j~(*fWriT^chd9YhZM2a{hkXw6R@7 zZgCBq;NVaU6@TcT9IvU!jkD}=*kU5`+ehrh7t$&ctvWZM3Vkh6R>#*pM7JcOKroVQ z?&&eFl5MdaNWotu+-q7zXv(v_Nq?BsakdJmF_BpZFi5<5{=l%w>w|Ylhi7d&qTI_D zdN#xi(S#8}jW2IE#egj2q^%3`of~g^nm=Z^cbHQSCa}-~FoBBdAA1@LpC|_&ydcQBq@0>q7wkCPACU<_1;a>zlO?q3+DxQcqH#N{KbzJUn{?W zPg1rqKRS+J_`I#F)F_wwu=X4on7+@vY|`)fGx+CDg((A;IT=~3UzldWq%#bSd=@+o zURUrDI`|$hq7R;b@!;DwM0Pvt{{I^4{2Q>PW#~qT?C`;E1)Vt6sX+Hr#(dGQG2j8V z-!~7~{>ytT$zl_LCh;|Dr6L;hs|!cm6tUrbDoeoNdvk4_1(jF?VeX5|D78mvhzK27 zQqJX~g@QN}(_{2f+uo#oP7NiLr}e$3<(bL%#UA=)QK7uVR~xBmk4)+QiA$qr*3*M(tq`1dAf_bFBonk z-PVmPFGxCO^Ce_`Up$_epbGay76V}|1BA! zG{dcsU=j47wUr>h5`;A^0c-9woSdW-`%3#zKyXt_4{}R7N`EXa?oHoKF@{=7Z+(!d z;Y~jaSwH3$0t7kL@YB+wbX+0&Q4UEGjMN#S18{c`eyxEZi0Xq=s)>y?`!czL0j#I` zecr38=4q1~kF?*p^4MB@#wz6qpz4@s2G!Z%hMSYGbf4jffAeNq+B@*MX=R(=FTPmd z#WGMobq(cpy3M{8_@;c${sP<0s0jJ}-MFiZk^oB$u{@Hgeoc`lv`TR@*nW+IiyIR& z$}O0L13>~1IHliSE$4!Ap~D*On^#TPwvzR6#XOMrf!A#~m8q$9@JG3Zk4yAGgfWb* zcx>f!6AC-9$|b)9eP)4069$kgO))FZ+m<&UrU4g3(wz-qD!w8xqSK90OT3nF`cD9o z)a?pPX1uFGj~}|W=RXLURRzP{fXYLyf!KKx~V6)~ZSTvs27Fh$9~gdaLhlFT*cKH>xyuV{2>2 zZK6U)(LcA`pVt565bYCtG)i5_eccst2Kiig9vG8b=`Nzfw5^!*V<{fqVfa{(eI`A; z=;6M%jKs*9rkpA?e@{QW0Zc!E{;35sC1*6<)g02=dVd1hq+}ShBbOUQ61ZL8M0liS8EPLzzzRcR=`EhC4gWlw)IrQAY+$tloPC7;YF{vWW=J#=4{T~&Ku}L87dbWFt zhuMEu{vC1ux7zJ~HE=H-58S$c0k>|EY~zPh|BGJ{%B+(uBzryoW&X5S4fuh4l|bM( zAE1lbV)s~1M=O9>38JjeY%SxAB$Yo6)W{HYtjJr;LMcUMKqwdp437tWBm%O{TH=(T zwnxzEObC3-0#2mmESRdk_~ zDScBa?d{9;^DJ=iEl=8hJpj6^OU#q4U@mv1+!o4!c@S0|8}N3(%y_=><14x?O*5FO zWL8{AsvhzSZ3ygE;vJ*}sex@BY~o=h%TAp{wT~i!7fM}tYmNy;D^850=xeT&cc0K* z_z1pXLIACYG`9{DM0AKAkiZWfqohhO)CzkqjK>reVB(MMPz{i)j&S7V`5(0-4Y8PL zp*>T8@yFx5!8YHbmeN7&8HXPWfK!D+u9{Wn>eC#pb#wwdY0(9rn+JHuVr5j({ZQtO z`g9xut}?=wKi*TDVEZ_+txgxg6vRyOS($KQR&fp6#ub=&ls4f8E_E}RqpgOG)%(%HQ5> zVZCu%Zi!S5A70<370*66YL@9H9x0YSFBBojZmQfk)-H{HRCy1a-euA^|7~qr_$D-b;`52uL+~7E?xw;1#r)ps%@&8S!X@z?LLz8LJK&Lpv;;$1}2g%k3_`6lU zcZ$NZJ(-fLD4J|I#36}74-v{)n*6wQ3Yjt1FA0buDU74FPz$%W88RF)1M*_BF*Rr3 z9&)i(CCP%l=tuEY!4}mZuj?8#VHXMUO}Y%z%@2AUVJ5Y#@5+pTCxqbVEs6v{+ov8P zY}(xO^e?`p$_p&M62Y)0@V)PFx4PbEw;ty&-yEln4sy!O8IM2+0)ng_sqPKJLhJV< zQ`f1EBwzLr3|AaGjW-7BSTSSn6CG~-uDcOQ{MnSen{p~8b*=KXM&g;i^pQjY(iUPn zY$Prgg8_k>t)S4VU=0z$J0=GHYx;#~Z}fAWnX8=)ymmO_@%D>FXyB#)XX}d=MOs7B zPkBC6ueqs#e)L+HF#gmB9KMI~r|s?QHuq@?u6MVI-)X0ZJkoq2SLjjYdNZQx5)`6; zJ4lt`B2*Tc#r`JpAfiD@L?i&GQV>@OW4=ZEi8rqE?4bbGqKI>}>M#}BGa4yQ7-md5 zdE<}|C3xUci?Wz}CEOjOLRnwdrBQ9T?cSixS^a(USN{{>`RuLrXe1{cI>8-#zlb}0 zA)Mk92kHlUPd~oObXF_4TdXypXbpHtZBn=>_e96)TiQy{P>InuG`U`BX1&Nh|A#DV ze*0QNfyCYpqF!NPyzHX`^8oehK-cHHO6iL+jq!FqnaMVq-U?+ilitX`x2KC0zfhh8 zUzoChKqr-|{$1sF2l&&9STOh1-e+|K;;q=EU~I+$>1PJCcz*lFA2xyTbq(8$Z-)wB zEv4bUw`giVX?i~9lAsVN54*)@?i60>mTh)FqVtG~DuBr(SE}Q^ch%|OKMF1s%uyY5 z^_87(bdcnh4hVwzV0J&@&uH#-h6Ba z)OQ1Y#3k+cNg~8a|EyiW(gT)RTw_o;akLlU+Ye*&N`cs#er;)wUsG#=<0@zDfvgng zo}XlZ_7YY7ZHQ8v5r07PdV&ydo#2e6aaO))!JZ!$(ClIE|xAugrA|gxGK@#$EIvY%pdkdxs>QTsgiFD>p zM^L;4k0kqB200j_rLbC+mxAz2;A!%4CFgQm!-VJu(Xlqi-l!Qp(ewyxd>6s)_#rN@ zK^F}1omjzZNrq%anJ)KfB^s?9ycvl3-PN3hude z6BC76^0mQzpJVoov962uJpmI8>*IPFATC;zSWy|{CCQWJ|3lYXhDFszf1@+Q3@sqt z3?r2q-BdT>=7UJm>nK^SM}ca^|37 z4oR^*?e*i4a<7~2E;o^B{P0no&@J<7YGo@-C&!D+Y@0sgE&V}DwuzDSd4CUsbK?gd z9@z4dojGJ2y=o~Fc>XDPJ@k{jWKEaz#P4;@sV+cTv+}+hL%)xs`jIU%kwd#|{G;TY z2d|{a67-NQjYN#VL6OC}j+J6VUScAo6*uM~UPRp}#=gj}$IQ@_kLOCn?ZNsjDl~us zT<+tbtXtalji7)}WXm9Uf+Zk(m!Kmi19ma=to8!!V{FHwBtmO5C@G2ff0x3LPxm2k z#IJMMz%Ph^JN=A?Fut@ukDVN?oW{QNVMWx4@Nr3*J88P2x<$EivUo=$VPDi7R{{Ii z(;yL(C@ZpL?W9 zj8ER8R15Dn3~gv4D68Y~IuO^@&(fh^g&zFrT&;L12LEQt>G@O}3*Q8|HA`%m33-DN zi17)e^6(&%j4hMrGtN2%0Zh{RjV&uWSQuhcbyC;}d)GHJF?wLHNL*3|bS<{%CAiSe&pf)Gyx8DAovaW=v|oW}~3?y&uv{WGX4eeG+R zO@>*LdvvCsQmN#k^rwaG9(viy^_<0O?_ski3dCbTH4g(#+F6O;BRTfwVg(c~0Rkeg z0BB9K5biXSvMloO<%XINr5krt%Qg_OJ0W9#Hk`#ydP*s|ILg_>LN;NGdJxaq*mKw$>{EJye#ok-tv#QRoxBPdBxRwttF z!PqS6J_j7y`&8Wrpaf;+BPzM3UY!mFsyciBDV~)CpA{PyF&x8>!=9{@B8m1Bv}c#5 zoQFMu-UgrsW~6g^vHc`d;19HMa$Bnk9dOF1^P*yDpPeN=J-3)S7_($vg(Qj#%bjsr z3qIi`QnwTOK{|oKln86xXEn3d$YoMs&uz0nJaKQ7X6)xk4>ZUN%d`&U@smEF1p?j- z{f1V2L+XJ~a4sZuy1hvL_#c*Cw*-`J7<)u$)iO_ztgPBDB$>+7XDp_Q^uJ3Y+q-Sj zMMJeml@klDXnI`Cek&<(mY;s!;;dr^{yqqNibXf=Sh|!78FV-|;;$Wg&G3n$O>-s_ zBj7VDpv1;I6)y5*R)_-4`GQ)S!?KzW*ke#Kmme&)Q2tx*jLyfx9Q-GX`x4I$nawfVAk^1Z6HIvdFL>l=eI~6hpj%0Pvs(| zf}@XfDeU{m1$~8ef;yvlyPPJ32Y$PRP#m7C;E&o(r52TL|>*VdAcmY`sXZv zR6t6Ero=z|_ApHv9-J{8dJuS{-DUSvpbq25Bg$`XL@DoHzngzx-pNjsatlB;!{H3B zDEKdkTLdsm;e{I~CjRgAHsg!$*>g2)h{=^azN?P(p_hTBUyj6q)L%Myu-v%U-S-v{ ztdlLCvJIfhf2l?**#VIQ;jbjn`q97Aluq2qz`Ojm=WSeEh(F^0WXKGQs$l?3$z$fs zjtKD|m)zeXdA2;w{#@DvX-9Nk4Y|isKOthZO@DNsCpTAMbAi#ST}MfL+b)nfqF+W(gaoU?r#D|4&6Gi4-=$Mn+KqG4mcC@+ zkv3wm;QYa1i3@J{AYJx7SrYc5p@A1NSd`XPLb60toHQkzlPO$gX6lqKxiTtA-0FVs)x!_7YMCp39O`8sy{EsZEx>*=rL-*FQT;B+6Z&2OVh4Hr*Y;lWqk!VZK1P(=UJeFbOxoIX>M(Ma@lOVIrDZrMNt}*~@%qF%E z*)N=No*6G*lnMW`Gd_Pa=VBl#@9;~P(A0@jPu}o0UGcrV2}ju~Hud`%TGxav`_38B zE#S&mikJ($tZ%_`ns--arel>}E4r;>&r??Uz`GoMEzUnc#DL~5bRgwA!)%sFaefW;Pi2?3k;|Y0b0DI`ucECx@B#dStD2zzEuqn4p4sDLU!tz0qU&m)OgMShG;o#Yp zoWOmzwj2h?IB{7I%}C8%0TLUMleXtu^~C!!6|+C&+% zAnZ5XLg5ajo7OZFYH`+*rW)GPdu&Z`)uk4Hvnv9WHH(0IktHZLu_6MEQ}EkAep%7g zHm4%2>z-+_vu6GfzIM@!A83Bt_JTAMM7ULQregR#I%2UZKkU()(xA#NBUefy6dZsE z4>PYvBVVuL(O?64OnoNG^!EK6M(#_0QK;!T4N+6AfDKRFaoW%qvpVkW>vS^7dYz$l z^VNu{9s6dzBD#Y})kqIxn7r5!)#V4EZS(4RgT$L=(F{yyGE~7BITzm1r5p==wTa6w zj89Q243R;;U?x*{+c(YTIA^c&)(=I}F^OVomzi@8@!hi2MpjAoXR5#Oj&UOHhC}qO zJK-UoUp!IxsaZP884&zHrc?N%Dit_`1_Uysu#d#nqZtoSgZTpON^m24{4 zPtfh7ODhHfXy?H$?UJ`~c0}%IX&?l`L*Pm9&fiNsf<|bI8})~h&146^5gIrb`r`Y3 z^pIxV4VE~TbvxN-HMPa|FX^8P#M<-VMyn^QVQ%ZT56z4H2_3$e2!6+tR&IDQ8Vpd|e)twK_@LM6(FjpJ`PqLg{16$~xTDPX7i z(}egFtNr|Apmom0jefaOzr)2eG&MZyjjN(@*bIuP$WxDBz(P2~;WQ$D=7_0=erG*O z7F-gO-^TE;g0O|%c#>1_|(YpQ#0-}^lid@1PrtOC&-WFeHu1$2MA>coDTnOYu zTX_u|HqJPFeu8$4M8b&~@GHt6c236?3qYp_;6qNqmmiGnq%!+}2PF-6wuoa5B1*#D zsXq81Y(J2^(mrOYvm-i4AWmF?+NS zf+UQe1lS`TO=4Mw0u{zC*7r`&fIwMiKK4vtGbuLZisRjkoXGLddi%AR>tu;XDk2w^ zttul0GD!T*DhEIPsq$he(E*H&oSk3HzZ}jO`-;12_I{1~O3pn?KK!q_*l^tt(xgE6 z0xcS}R6_##U2B1yI}_Xad868G?<| zdum-UEIRO_5m^w&syXFHOw6g;S&qcL;8`FDT(mnPWo`C~GV!rZJ@=`NQ|`l~EKWnQ zl3Qc0Qp@RwMWsO>q~R=r{27eP*uNvc&id)7ErZ?wa&&UnvZClDyP_CD-!!p1A}B_C^%rdEL>&8_mr`lu*Z#r2uo z6=KhDV}idx`bzp&>m=4*vw7-Li%+E{cnMa@sET@lj$MI*x|^uryX5a5n{7K1%I1$_bifQva%!j>SkltBNHZY7y3lb28Tc3&TD8>?O>UDM6MkPxEa?+(DLaleI#sMy+&fd!M(mB1KAfg;`d*@3tEl<2f+l5vCa1_4Qd4^-$|wzRQN(g zin!~HSv7=o-4rAeY#)up<*~>k$T~oR>kSWUJv;o&`y(ieG+_@|9ZG+(t$;LH{zQ$B zv~H3v_JO3-f2SCNG61JB->}*FR1s%pQwy^| z1vl8r2(NL_K!#L(%k3G}u7b)EU;5Mwu{*w@93g=I60T~Rm*!DXV~KbT3f?xhpPOz1 zRP4TbVGVD5+KGDy<;iifpxdPKXH}0Ef<8i9f2RnVuP@$Og=V39)E3;|2Ez>p$>1;` zE`b+G0;Z&5?iwIHS zgUd`m0rzlTERo-@7Ack^KZk3A;mzbY?ul$&B-3PgiN;RPRGkj;5Z+7gC%KZjss*T`V0Nl-w=8uu3{?!H$XFK5Sva!HyY(!EI(2^_Yg9 z%5zNXYd39!GUb{Ha(M?JD9#3BDptB%>Ypb?nNPJ8Og`l$4Uu*DmESek7@V9*?dZjc zOv*mJI{u0ZNOSpu+GP%=*w1P^JbvnMAo>4^U;f{7i$rlYm8}t4d!PX;bxyC-rS&ZC zZw?dbpvP|ed-peJ<#yg0*Ql@4}ll68<4>Ua?P(iMlzVmFAc%s))v)B7M%mUe1PaID7!ALdIla2 zCn@J$ha%~rt%z${3vK#!=7Pos-kQO;FL?s#07RpHN6b(t11zRRN}PpAQ6_`&i-T~z zBuUS6#-$-2AKES9aV}ymlU7f^g{MI0jv-W!Mk|}T9ZTQ@@G~VWkzP==WlelxP*KXX z_=&0TC!a?`8a!Nk+Sk|AB9^6?!{zo?ZYXQPrIUYM$_ho8th z5q@kyYe^^BsoGV1^hWLp0cBI8)@EdjF-|^P^y^2VkoG0L>RJw7? z_m0GSxoAN5l?D#41!5dLYXH-Byqm=l>ogvS@A7m*+DC?+?s#eO!c}WqsIf~}iXPe} zAUdT@Y^Bm6eeyi>$8Q!xtP>4$@z{KU?t-y7ug<;nQ9g=2k0|}TbC z)q=~tnSm)#7+;D39=rA-T$Lm3960aK{Tp8$4shv4t8*GVed?~@5OL7Y%BYxnt=06pJW!PkU+abelRemltJou?M69lOGdX(qDEt zPWeigQZ;lo_qC4&%gZ}(yL;GoUuOCMTfYQooqglzdUetADaK%k#Kp=Q>5LUwuGE6H zeoX}>bc53ZF~;(R-R&B;rEle*USAL+PT*>d^PWhlJ~y_3!CegAL@fBZZo<$0JF4P_ z$A!*MnTaHpX-3O-B!LtcQb_qdAib5*8UWhdp=w6^zd)}4L*1_Xlfm22c@TW{a0D{T z&@X!Yrm4qxpPom5nEAbm5O;L9$A2`jO`wPkuo`wYV9|sGze7Mnh2ZFi^LKMEd5{V7 zwPTHA1e2@2y<}F(Vg=kBt^%hN1q-kL@K@xQH*!xgntJ$$zb%eULD$NxOu>yl-Z~yQ z45$Za0kD4%2YP5Cjo|G5kO+Rb_~e#ph2uma>Nv& zV&q4&rLvZSnLIajo{UkO9!aJNo0(35d!eGsHTv^wRlMVcJ{3~SYC2q)%hMwM0b_Kx#y4SM@SA{1>~3 z7QouYLJ$apeqYdSeBH#50EcCa<;L9-LbZL5;_H;}sw@^jINSOixJ?~86T6u~Q=5E8 zIk}WX)TgasPvY?Xn1YEtZF$r1opYFhkK0o1b@;^+iI_Hpw%YxgD$~Taty}Hhgqd6P zYM#gW)#cUcP3bgRuIMs+7NiDz0j{+q`}$E??UnD$oh0Q6oD;lyR7s7J|KRsx_7+VC z+EIB~}KDK%}2)b{(ITC+*g)A;ygmkIvSkcKZ)<- zjs*$Rza-E8JaMHOx^(%Ov`QePI^bKI4#hd`snTf9z_{sS_}P40L*Mxs9gp2Dai|Z~ z|67>)IS;)`hXq4d(psy!w zBiL)U4M67@+h7gGMtUhiheX2NSJT8H3JbKx5N4VBG~lOCke5sw*1%RW^=KB%I1Z!{ zK-}MoEYuBKIz6Wk&&+ZXRqEo6D+PG7~zwA5xr!_bmu0cgI>%c)ONRX8VlbGLVwA3xr^H=pmU`DToo z*5jF~mK7oluuLxUY6$}JzybeZ=L+}>Bs`a?(?_dj7vi@4l$$i0@x|-!MlU|i3I#Wj zQ?({7%4C9a;*D(-Hd!={85MW+98LP3BTaR_3vxfaZYh!pLgz0#xE zM=dkJH^k!{U=66?Ay#R3mVLYB`Dbeum+7j>S7xw)K1Qb&eDP^>13%NE^4qwjHOilE z*J51GJtJ*J$NKl5F|NYgaRHk*S2|d?5AfOq48KG>>h%2!y~;8G3=N_2uIRsbm;3@1 zuh2c@r<{M_SaQw35HkK#+!!{1FOdH?RP8|ukSGpAWmDUW^b+GGaVvidH^r2-FHYT& z3fxWmos>R*6SiR@T==>Dpqtrn#froaN8-(-nvg_o_ z_<{Yvj)xB;&OatXh;Y~`4-grIPy$MDtv&K_$6daW2~_?v3gD=}!vrmQjpbb7W+eFr z$G%HPF1F|??u>9gZWSgecHMBiB#xFCD3s-82Fw9DX7zcMW~*B|V1{jv8o?8=WJDcl zXp`FX?nue(Ezi7>r1E&K%`@MJ`9@`U$Opc0JH#Ciyp&RXXMG=%m|uSd!>LD^Y3%Tv zpEJdKu7zLJPJw{U_`lr`S?a*_BZ5$(W$nzqekKbGsv|bEG;yoK7mvuxO_ATaarp}= zCA+wnh2dz^^WisfqMC;0)cdv3D)2P8^blH{64uE*j=%$!Gk(ngG&6vNYMGyOwYo-u5)r){4swjZAI zUT|0}N!p?OHcJ@3ywfFLdec2d?Vp5{8KaobIBm<3X|Y$xf7LVpG|zSt#p8Vmd0poJ z{?l-QW@rFpSqs-)wpjK&iu|M2Xs(+WD-&IlJ-}@lFP`R*F|C|<}W?Pol1D~&v4gF#bno$HiX ze-HgjUto$Tka~gqjGon&w2?w65&isQLD|vwSKnR2hYbEHk^w+K>qK9gSX8j4LA7dd z0i@)yW(tVc@5xldndi8NEq_i;)hJ1k0+PQ(*Q@gP6WKRFL4e3JzJPvWMx+t|vGg{} z*76M3IgG zVorNLZc!SNP}?RVdza37&7BGr$f~Cz&iTCybw!+&!(R4qlxK0VLzf&dX2H0s)CFc# zFUY3y|C4`}0laLWb*8v|W+)+XasGHuf`U68x*dX)hJ=k?&xQ)+R#v1zo_a2nBNgiI zzd!noHq3Bi+@S?rZEWI1lt-}4QNX9MKU2EkUFWBMknb<^*3Y+^@PEI*H%@avq9uwR zZI7V*)_e}u1>$Jw@ijmbGX-z{qv@~KwoCMh@I^efPQ1^l8~pxGBBH?V0GpmBuGyB? zM&!Wwh;kz;V(8>pQw;>${RssR?2o35%QKZrxaH2*3=O*?_rDtee1cqoQ{Qs>_yC`cavQJ6 zcqBaEC5S0%ks0_8kTtL9R%?aG26*W;aPiKN1ooIj+x@Fubs&S+qubTSa&)`8r29O2 z++yLr`g2P1Y3S|rzv(Oh5ik%m4VnhvDZnW4K*oVXV{5T>{y^t-Ib(AJQ+M3oj6keO z7#zuH9N$04Yxt%~GKOaOsfka2E{P#}(CV*8Mb4yV(Uby0i+D(#zaEv)g%YAXT<@D< zEOolx!V;v{84V)diaA)J(7R?vAFl|?88Yb3BWH`^ST}UG!03UyuS?Kb{|E0A%X83mzCTDVySxKC8V9HSq)g_~^q7 z;5rqD3GOT3szGyx8Z8ET0fjxXOY{&V4sA@WQ|7LPZ&YX1v()G-GB=GI(z%4*1f=8= zR|ylH(TOm|etf5PrQLx~O4fDh1N%3`f?YDoVY5#C*Mh7|=j^j-7c*DR{>+E@=RX~s z6{U5uPGpKT9b!W|8*TRwS{B8=%F%5>ZJeut)*(%z-3^{N9)5E_p6x3cxe1(kw7v?q ze5}9#_HB`^e|NTTPTa)(`=G(j(@1QjM_}_y(Ko7(0FBqzh216UmeYd#=1iJ zzayhuO`4u+0frtn7$R!CsyRz+*ndB&`?)~A10W?{QLFMY@xshZ0Ilw}{=mgoky;1; z#Os)SHte<*KT{@2EV=P8c=9Lq!Ou~qrS0X{Fyz8s;n!LqX4r~xjm%k>fin3RniaJY$U6M>du^Rn z{>x$kGTRat+nxzzTp}$LS=|!;xv@c*stG&WQCLJX7<0X6n!YtWeSMY4TAOP7bMjf3 z{KkN(Rkmk!`pZv#zHUV_N!eD=uDSrSrujGn@*6VWlxZpDm!@iFI1cpF7}vuhvrCs( zDK4Imovz9YzUn^xxRj%2xhi_drn?r%y+29578vTLFfUMkU?wDNStNj!J7BRb$r=7J&SuxEqVqdAUxk1=TufM<4P@=W}(R9fMefwZ??5B?ZH z|L-Z+Q&tm1EVW12UqZ`laVo*c=cQ}pi#BQGqdg)mxG}ZsmJs}oM-=6?KA{sU#XQL_ zgtuNQ5aKS3p1HSv3R4a1HgMUxKR}@E`Jn%4EBo@!+tb{Bx#x~=CLhLLk6enr&%X|>Z9Jzj_5b$$dwyxTVS=1OaQ`7aj|anGhpf|$tZj$7_v@D$)}v7XmSTAyC;Sl6EOMeP z+}B4s2R5?2Y%wQK4mgbvpKUBm)`fV8I3V6sdhM(x_SdGiv zyDBDQc+xs-GdE0et=Nyuyc=hc9v>gOXoCJvcJKE#zshf4*tQd`l_s24#!mOk@@uc3 z6Erp8X*Axkh7|Zh@DLp(!@(X`j@y?)jHA07fx*3o6y^>8pkn87k+Xk$T0=Dd;Kn62 zu+@Gp%ljOy=Ry_#%|{jXTKX@ZyF?0?Kf44i>j2uBwCRQ}PytrBj~B0n^L##^QZ9%$f>qq|H_ z`>vjgm$o@DX5kTl==I~3Mr5hIEp`Q|1doTBAW)(MfQj8x*F+!SB}GIO$Vu_m3H|e! zzyzjQxF%f5yL(qyKG+2j5jHd^a=PPUgLyaTp~DY*O> z?e`lp4mXLNFXvyL-~PO7dGo^q^7(PwbZgQkeS2h{u)Y|JN>!STX`cV`l!Ho8SGNo6Wvc@!ijvb}vg)N4u3# zW%d6f>%rQ)7c}z`F>isvOLdmyaz!;MoR)Y@Oxchrq>b z+I5i3g)$Sf5$ORzigH*@}`dTniaa?b+}L2lP{H`byd#VFP##+WhFwuWYKr#VqPk z|5{<4+GUTcG*n0gf^sH!=2#dUX5CU9M0e!{0rg~j4sps9mci*AH8_d_XaW5!Qa6!s z<9Uq!AvrE<(aVlm$h$dFI@ED*0@eQdTV(9L|GX~h;|!ig-`&3cWy8eWA9CP*;``EK zWezQ)e=$AUL zJx6**UZ<+iQqmA;!iXT&DoygU(&8tgAzDS37g)2wX9n->|Utgo}?Rnu#c$2C@8dg$@N_?RRY4xH83hf zKISEoK(m}t9@fT09t+GU*G6Wn6 zN3sJ;U>@Qq`{Q(Ye>PQ=$-TI>4s*}b)*GkSrd1L}WZ!G|g zn*y`z>kGB`J>kVpxvQHU$58iI&CAJ-;&bP34Y!S91BSRnBlljh#l-lZO^p-QIQaO^ zduL{5DEZnq!;D_|dN+>u-L7Krl;s#nLNM6-4=)a#))NH`*21S&yH7j{|5K~ik8xYi z2P*3^WGuyY0=v+!u&^QDS4Ivf`tJV9`yz%`)Ab*O#oIC@w)XVX)nwbd3&H8M)-eSm zbo8Y52Y(KHVr8sagfS**>&ea8A5U4o_5fJqO9%C#7UmQZl(%v5V;MS3${59l#UH8( zJVnq&Xpj}ijcS z4S<0G$rzaEctvyXUpPeIMcM+ll(JB&JX)ElB9=)@P?m?x|J z>)kXLk7+(GKO1f2-5B~~J={x7+EL_mv9=QVAaIqV#LD!)B5Y(SnX&7X5x)>RpooVI zZ8pesoeH!l3`P^Tw_%bSod4+4&}>32E+7?H0w}kxuAyp>6*v&DvTxoqo5h1D!T+Grynbkzyn+L1H0~syTxYwj!xZM zHz%HkmGG3W>wdCsUccxF@8>IAK7zrM2JuBbcuQ%4gnbRK3jYO~Y>~n<(4dLuUyiTc zFeDoF)!4Ewco=Wt`_DoA+JAY1(ElYcn-vKd1&i1S9GFj2u2Yil#$efkESV_nRp|k5uCAd8=RMKJ0Qa-8By2=Uk$z_P#m~W$*+9I zOstq;-j6kZpvU0vtL@uCjY&Q)jbuE2&Jc1L<81P>Z=iTZ3=h1L5x;&20w93RxM&6~ zFob-Os(CdV+d4@k6G#EJZW!U*P->*XG6ddF1F=Lw^nyH@_O!x>BM7k<^A? zCk-T!Ow;TeH%&PgDa(#*54srX?F6Q%G0*0HZ&90SoA)oxEjFJQeAoZ~5GOi8pb`$31~fi*WYtJ7Qo8V2B(-A;?c%(sZcJgX#= zZ(584gXtHcIfMhJr|jdEl^jTF2PqI}-gGGARM4$F&#Nc|c)Ij2w^<#MPY4llM9n_=TFW~lS%H^B?jh@|CH*YVJJT!I|la0j9=eJVZ54JwS})LftfZo zzvK+JBm8G@jIs#`jR4sA%LIVBuPzW3aK{3%bSul!dm>vxNS|8$>DcrK|0V+Ni43Q) z4}#YB_+0P|vl^_O@NFc@L0dhce zE+8v(wD|^Wmp3+KN3vFgwVpR@Ah0({2sJeYWeRAT7|-`pR1-nR^8d|t-LD)#uscp| zI+snYYPRjgUkilRoxyuM5-_pxF9%;?AQ1A2m)aXrpDOq(EC))DLq;CBz4A{$vuR!+ zw~NfL53x4K#RVGJQUAlb|F4E=!*wHe01XB+`nZMt?Fho7_Jl0iz^w=*RU!DG?;quP zr3O%h2NcJL9w{sW36r+&&W2Ub&xg@2!>8?Uvk+YXVXB}`gUM<>*Vuu*uVcEErerEC z(T%2=G+DK^Stli^q#i+tfKUlQpKvck-B|bL>E#=T|8ncu z;_uk=)9h!0x=TxUtJJ3ClEB^aGtHNl&%QW6Ga&?8;9{|vXY+WaFmRU2=<^h8ba-xr3)}~w_0Zdp>+M^tD6cnYXH5AMqFo^LX_I9sw z*>`p-azV2?T57y%C0tQx5pqo~HidkHfyk5M3ox1LcxWhhAD(ps@yGp-J`r81$o?i6 z8`%376aLkYVMO_~Wa$-s&24=5qJHmd@f}&~KXd1RTwd}(YYOf`U;;4aR!Rns%LyIK zMtKl9MM?-ZfR&&O$19$wLxnG+9Q#~;<{ch#p#%;q7ZmRtL+56tj(g)c%X#paOexOV zo}-r(-P^u+yM!}>Eq*8gH1@3SHf{qSW|S;POaZ37&hd9+GsKU>K_E9iTolxDr|Oe)6T$Nbjmvg(?f@+c2r3V5R*d@1ZF{|4aXI8btK?fgy^>lp^bk5cMNRAC zI8(d9jWNyBYMp*$f-yYKcxMxv7W4l377h}CcJ7%~Z4MOsCpljM=2|7&D-?vUyygFO1`raQghzGUeSBMUNJX3lzx$F4G zM$k%VG<56auJe1}^}!3R+spEtK*Fk54zM6g!^O^N%HIUoe0RISbhE*MY~DPN`LtD| z|A0CCnV1j4_=KwxXaHaPBUYAblEg_14Uy*V;|xqBLiKU+HW5CS~aonML4o3$JneuMEJOj_vJ&wxJjQ8rA;Z z?vXvCZeKhH~dj%}drKn-%* z!4!Hzil=cYD(V5#ny+>Q3XCgItrScI{QDZ<^=k8F!9`*GL8`TlJ1G3a^A`fMm{97C zFxGhItnVisV?M9u71DVg8X{1d5>r+=_yl{lgFaYCfJ2(3?PAy87woi+@xSG_h0* z;KtYZdzv%;p5~0bslabUGi%9Pm~3|$7ym!w8JsM;1b);C==Y++Q$a7&Y9e4yiP@1b zE{y1v0zcveKYiQq^(1kOw^dhYj%y_gz06p;^rFVSJ@a9#3Q;)5SPjnwFx#e{@3=k- z#c=dxEQG6W#s)$Jec*B8zT$Y2HJc__>RD{OOO+{xIwv)xs(!CI_blRHf^&4hd<7_w2EA@$N&mBhtUj7& zAv75KX{m^iT{K;Ie>n@8tkqwa`!BqP9%uf@K|D5e=p(3X47lOsyxwJa8bOo~+MAIM z<+KgnyH*URgei@k(8RkXo@zcZme`0N`tM8nm1<}XX$}iQAD6p}?R7UwlN`FFjbYcb zSOQ<3jpP~+lo@}^b-Jt}1?Y?Nb<`2JzlyhAhOKDx+9UoHT?3|LhD+$YUFx*~ zIn=5&gbo}{_|Mg4x%q0OX6+}J}U z+jVYAr` zhBgUQr%8BvNq0?2>g?x&vLzFB7)*tvRaL11aW0u6`_e!2T&S-YLd=Yo>$*4T$fUbC zJUx0#Oz5kvxDCK8yTsIcl4@Bq$JYXt?9IHQCkszQ0@WGx^5*{A;npD!YXJD@Lmo)@ z7wRD_+uR2nJe@(hbYi^Y$2y}w6 z_}!D7*ue)6_L62XCD%teFlDd#eOcyZx>7M2Yl*IutKYVV5jrW?sW z(qU!SzUAV#K2s0Pr6BsOm!qCPxW<5;&RhB2GU(T%-=~)S@U^fv`ZpkO5JQoJNeH#v znaAjBrhBz;yEZ-daN~yOet)jK+phHt(Zs>X(v3~4jp!`G=I9*sguq@HoZb47 zwaIuod0O?W9f;EnD^TWzYQFqHL+U?g$Q=;5_gOUG4ToeZBcHvhQ!-qs=2oQfk5=yB}u3HrBiXhZ7Q^B`OOR(9=L zs3GE?wZoS0p&z5C#i~0>_MK5Agc0zJB$q2hDHOgMvY>oJV@9VqLRE zE;gn@xh|Exg@%)Q8@c{EL#@}jE(bwYuL~YHaA@-9YfC-=@*>=hD!*us$*obwyFkQ9 zWDol+k_ioWckP2PF~RogpJQ*X88k7=^$jqt8RG*w;vHAl_b9m{knnT}(b(^_H$)br zU)T2Vr(-o=u{kYV{tXWE9A0=Y%kc4b^@HlU9(th>-;2ZI)pxUPCK0y!1d}^?H}5NR zuDS~ke%|8^>loUmiytmWF+G8B>4&RQJT&uXlHlts;M1*6VnaiMmQEl56dAlrJgREFkcCE!fSJH;pT|7Ru`S@>o~Y z_yBHBDwu6wSwHc-nf1F%_nWt$L^aE12fq^f_u?&(jJ_~$Ok3i!3%d%!(YcU$6BsVH|Kh<^Q{VloP58WrA+J zbPiGY@xq15EBbbMV%Y!3XKZ-hH{s~m>yGYk86#EZb3yo1)PYF3bIQ)^bDAH)`KYg_ zVafScp6y-t%*g`U)cdD*#&cC2(}I`x3+c@vZ;SKXYOwlVTMR}TzE)W_{HV?B^rX0q#qIp& zW2Vn5TXSQyw6nEB*ta9}X?Vn6N(@NC|G)nkv%pUyZhqK;YUPk}>ow-FxtALQVZ(CP z6NkXUKAit;^DPnug-61}$Sn!RO;Z;KqaSO%4lS`Xxep#BDj9oZ{HTOl&!cc7YEwIx zpl)ZRju0o|d5&?OXy)TjOUf4Rq>%6@awv6Es_zIe6qT)5XB-}Xsl{k($!s9A|j2QiUCeopMlae)e{7JF69i?u=ze8*9W}Ql? zPhizw#V3VRrNdPKw_zp6KBD-?88^i<*+SogWh)c>(=6CQ-*Y~$AckgP~+OAam37CEFj-}e7f7_71I0&Zb98(mSc zl2tWME^5hj8af-j(jMiiuNz*{ATzz_(mmZB_s&8C`G2lD_FzLhpwM4i0sXZ(EfT3O z9rVJfPCP0tLL_LGvLm#<{htq50)eq$Y$?^xT)06`kEQV=wedV;hgq(wJrqM`8t|ed ztLb$X)TsCvYU^@BAr}+wN*~$$!8t$FP(K-7%ku`&g&M-EVhA#lMH&^|H@iCdRrEP3 z#Esk?%+d!3To;xm~=3V%?*lv?@9y~^Ohnxo?T zt~_k+?R@j67?H;2UA0QLdejqAY5UGTrg%mSOK`Gm_@cSkCf_5b>ti~BMAH9@uJ?|H z!~3E~8G|9(FnTaEM(?6UFM}C1YKR&nQKI*5)X{qhLZX)-Li8w!mPV8ydWhbM5+&Z` z{nlH*_01>mFKgD)*1h+fv-dvx+}n*LMes5`D9ZDG7BbwQJmi3FEQ!U24Td4aeUyWzsWPYODNgO0)&+k%nNZA70 z$we}umGv<I1tJrc)m`Gs3M==3QW_Hwgtp?aY&G-{JzH{q>RE$(w5m z^E*5m)?9LCyvJXAtNG%~CA**sh#+bXk%b%d)GDc5%l_4l@fULBHzc-|)R1^HPbT@`|0EDyz@=7< zxl(T_#39yR6Dgz#x40b4zKZz36P-|=2#VBGFH+7O=6lXw;-dl99r#jsc00}aYg!k( z1`Nn4A`)+7Ps#g0K}uqvNCy>CHT*m1Rp+!t(m=o}jKC59c}htAuyd4G3A<67VXjGJ zinb|T_A3CG|IFwQNeT1YVV^=xh( zaB}_3s{-W2LwYko`R#})CSvQ}o2JlByHr1{p|ALkh9yGVO~YZnU6Yi* zbk_gk=tj4=Ed>6lbUkR$&*;5tC%yOb^kM!)20~^PJzxAVWcW@pPo(0e@wA=7=1SVM z_D)nr1u0tglfG5$lWDu14(EWnB3hA28<$)zisKZrc5L6$=kXDl_@6Va^6l;allO6; zB8;S@@cT`cFTQVisb5mH#N90|3tpnvW;>nk>k3J7)aWjE{`)L#>EhiM{1{eF&8LHH zDyh&kZB!Yp%HpU0v2&(lT3h{r()7@V#re|%S?7@t=JYT)3%tgx!pxz4I>z20P}L$> znCk-*2U{~(FMm{`2?|zwb2t_M+V*ZR!oP^UQu#d>hwo#ETr923PIL)c)q8Xt3LN*0 z^PzmNqF@k1g++~TLE6pGpvRJV&5Z>CfghvqHpJcf(H4@a6~!k~W4ol2xFnp!y|d%x3G25HHuXTVE^N6ja^u+f9({IR<_GSq>PMExwv z)AwzVT9!3$9}&S2jm^u;ouaeJ=CLK$(y-r$S8$+`KB(OAeJpVy6_Q~~BjEvA$J{~! zHjIq}5HgA!m$PdxXkxd}Gmg6P=DV-$Z1qo9v&!&Tik7ai_>iH@n!~N?{J9Qv>$UC> z#6f8?5fq1<(mV}p+x^(xeH4V~IZ@UF_&*BXOOChIzKIERKVhx7nQ%AU#?2Vm2NXYdr){#X-Dv$^7=SwtctAJvGynNMAkL{D)os)c z7vCGccmv^ZtFW^E$Ju$oh7aVldxPq!DBMZGPvz^^xQKP@Ip2!1deSFf&*q`5&zN&p zGiZ!hL1Z-tX!vpe=kI^g^sh zVK^pL^fsmJ5XnYmtQVjAWA%|^T+PW{#FABjF#PHIGWtz%eZ20AX_058A)otk&tYil zLwO>%%!kf*s1S^7zbq*%H6!234YWH{h(trMpF;RWgy)5(`=zR~E-kY8iaJCoH;l^2| zc0YEv{&1=>^~T(ylP285%p2t`{`I1g2b{9^hN(+alzmwHFX*r+jUTdx!$>&nfck?S zEHiUYH*hg?z2_Q{Yp}oZHxua&pjMQIwozS+($SK;lZ*h~FPYmI=&+efle?#(K(Jj0 zjv}@ho50ulmIF5(D)QF?9O@AA_G4OugW-COrg8Ku{E-R2epgy_vd8?OGkGCJ(-2Z$ z(8P0qF5SvJYVy!&-_KE%{9&HGy;aJ(5hgC=hTULFak9FbME#bAnqe6W@<)XY%7aIe zL`oeh4BJXRs8akuv>szKd`H;&6_W#%vto0z*_Vy>HjKilmR=6ILSb85 z!x`{1S5@HU@ae5mlFk&U6gN>E+2HLByGIsWUj?_Nx+K$nCyBjL;C-N|N+_Fl6Eum4 z8uBq4A(W$EEpI9czI-!x9xNp$I$FqZ*O$dtBE%3Q-I2^>E_U)Yqt2>IJrVKq`Fg*! zk;YLPyOH6P5fIv%^YO%nObq>_EQLVo|nw{fe7 zuuF^NGWHDNqE=clJI36Jm%clYRNSUi#Gp{@3YI%1|M93C6$(Dyy8eUiWd>iHu_`yl%cwYx;YQju5B?NCrzl0w1g->KY?lxufj2O;Y zD;6F8IBdUryiIyRn(|@k!&7#Lh-N0|_kr5SrlLs+Q2jypt5OiAgn(7G_cPH5;3J=$ zo?W-+S2p{6k&{}l&{D59jcZdi_1UlAsQpvMzuKdJxma+3XnNI1Ld)rksQ}jk;FQ5I zt59160e14dA3GQZN}d5Tx;32rlqes_G|RR?2vQ0Sm0B8 zcKAZa52CfLRZaK6@+!TWHjby1&H`fU7h30vt6Zx4D~*h)&i;2B$VCp$2;%WpLMijdxhFL5z>RzSP|&{F{7*k-T8TAZQ_}HZS=uq8lU3 zsB^JY*o255%61L)k){01k?v4`m=i_5_b63b1r;+D^%NBw|0nwDixuOdd-Ex$+U;{^ z`QoO6$S<8Q*?5=kxUe^yHl=l`b&J;AxQ`@4)2Sc!P^qQuS4f|yl}k07J2)JDV-%?A zd+h{TbTUbCkjxl1sNarzTBC!kM((R*sO+mmvQrmC>$*Sx7*y$v4WA9Y``~H%kzW4o zt%`U%)P1XIcpU2%nDFj*9d!5$gsB|;5CZV~4y1dp{A%ea`3OaOsd}_Lc7HI8K$S8- z(cNSth@lF3Ju|ZlA#Q)O^hTc`)X=b-($xp9zqsquyq=nLd$aZ}h?Ir|Cr6fdAuLR#5%M~@QTTAQ0oSJW&~9JNXn&G9VU$&p$8PwgAe z!PEH@VxoUSEXdn&w)v?`gVeMOpZ;P?KO|`LZ$$kv1bB!22X$mgLk;&M^}8CO_kPDz zbRRw$eOi!=;2zu|(T16kWR87)tNemj4tSfyF`G{RB6G7@a8=?}Z%>l{T#byqlMn0a zQR9H~g=+ILW{R7O@AJpK{4HlXQOf&LMCRwQ2GzE+vU3^o?vPx{2E2TudZ_G@e z6`0no+^={~CXNggk%E7H_C!8^U3$KbQlXt|BFKSz)^OwG-uANz_jNxmd;I%?KxxG7 ziK7LU;N`1+sf5^7)6Qe)k;-V4dGhVj{8FJzU5dQsl`Dpo22gGq*n$1r>RWQ#S8q`0 zVCYQ1>dlQON5-Ouc{M)n6)P5R2EZ4U%l{=ZDWJtyi;XQg-Mln7y!zp8`D!o@+)v|l z4OhV5q18PN?qW49Mh>JlKG4fj*{Y%`L03w4mID%D+@5=9m(lCAAzusdc9N8ih}_kOpZCTtBRE{S`5o5Ny$_IGx*KpgU+Ow{s(n?Tn%D9T#w#K4fEe#0jqc^mY{$1W6As?$y%z{!!+nGecGoM zHnLKwKCVCPI>^s*uTTgy%5o?A_;`86;l~B<>Mzaw@Xq!91ZK|OmL$YjQ_;qXcY{fu zS3}U3G2rmSdBTLxIZhTG%tdoQ_2e34qgyA-1G0`Z?prkWsh9rnHMjhHUxoSM{gb3I zkDryVY+I$OOLy{bqz0XeWhF_N^~tEt1o6RA_COfaYjjA*x1`CxiH9N!$>J;AHdg)F z#?8AG{a0JuszU=;ItPV?JYTgF_0GosMk>}dpvc8L8bo=cAgX_! zCu|fp_5ck)!!lp+m52{&mB{SaD_h#TqOwL`{YD(aD00mcsD7K&@sKdDn3Ffu&a$(V z9lkHK*UijfzgZu;P5nq@A@g@k<8uQhR8w0@P@h=JIu*~h|q z;H*R%)EiRU)&^WESd)Lu?U4=lj-o1Oc71V?Al9Ruh`UJpmQQqC+mkWU7{wBAEN1OW z?=}VE3PtqTaTdC0;mGgd%0B*DMOG^n7)nn*6y*sGmf}h3y4t2+NV@0??R;7)*0Uhg z7{aaRc2n7wRYy41z0Q*hr%)EL?4mE(Rrk4K!`Q?WX1C~OG++sr++OYlU0WSl?)g7E zOw}}9mY)OtC~ieHmJ=3~2MtFxD<S$NR`SJvgvMU#}y>%ZXaZvGk7z#5O zW`;vdKID@0e=7#Um^3_!8-jn5sPvyC8WQC=-v!~g6RK3wb;n)guQG{GVlR3h`|&ar>#TZ%X>M_mF`~&6F$=9`)TTu z8+;m0BAc&Ryxw%o*HMG0@CZ!>(D%5q1G_5qft2w#N-5RImb%W0zghR5>7QG(B(xzR zhyduRtEOI86USHBFpO06VaVOs!RSq9p5)N{llZRW;kfG{xp+uVVW>G|A(UeLH1@n| zf%rZ$lN~GaZK6fp4gpwfe^;|Khp|%}1v&-P?U@aRP1hRa?wqy{eH<_~0FW_i!*+~x zVEt*Gw&r=uFHb6W8d#mM=y3;RxQs_u_IpRaNhg}Q`D{)g+9|sdk0IR_tT07D~ zs48o_?%?-fGbJPw{wuy)i8_H%e}m2O6ufUYZ?e3MrVr89{ieK_YuO_0okzTReHwhH z+~A}&_x}|R{%=HgS3|=hxvbzN;cCT3KM^`Vf5zWJ+^~y5$fNG**Us^gka{o}F4=y+ zJYs^=dUJ47Jt4V||6UkQxGD9x*s?aSkEG-o-PM=;bsH)0Cwk3kCqW<_{EE`RM0Hzi zCix9m7VC!%JNA^K*bwgA>cCR3+WynjwsA!w+BU-1Z%Pb+31hYrk93R?oH`luK#_wk!jQYhJhIZk$+e4vi zjOQj>Na#EZlTe$$^0%QmV}S&kc@bPSW8#aUc2HRVt)ih`vHYgLvp#zot-9mDp>LIS z;ph4?|FPUX3;qPt6P=69qK*l$xnv^V?p9;6F(2Kt{*HOca%w04;gO%hc8X0EcX&vT zJk&q?(WDXi8R#F>_K&6xt-Toqc5y8|yu0N$v7T@KUp1JH1m~Oi@!hprd-3#llk02K z7GFM%Mf-N6pe}p5M-finX^k7ZcC-H8_?&Jyz8KIhs?ts#NUBc*M)?BPp0iE?z-1)+(Iw*z5H<)&eFo9rB#2k779^!-i-htxD9WRyMueLaE>;k2|V z8}?kC?+9Zh6J3*Ed>TG#C;0@Foy!NmNd_0^36*_t=`cgheU?Lsbr&E{YZ4vmYkoa6 zTM+kIDtNFkRd;Eq!Xs@RQ0^|zO7W&wAe7ucQmHCH=A78Dg-?+4r64e< zx%OjbmA`^W&9&424~G!K|3#cejo5ea;UU5Q9+nX`nx@=oFP^b=$77V?cI7xj3j7Oo z+J_VbiT+Qx2J{xVJ~kr;OWsahkmqsl>e3$rIeJK%<`4@VoVZI ztw{n~u1;LCYXmD>SNk&t=SbWUnZg$+<{x3*$qwe8`IsjsiMaqpQdI=Xsn;Tj>@05d z=*qC;7o5g2NF{-?Zr_6*V-bTVE!T!mR?ceW@{se}-b?cf>-NP(Wcsd82=z!z56m}S zC&!YWU3Hu_<6utB?LX0Y`q4fbIi5+3G!^|0L{ zXj#%i@NXtz4RBJ2#s_GlF(6+HG%Zix{WK9NSZf#-W92K@AO3K64UokUq#w}_Z zY<<%^R*fI0=iIgEA2abb5+5aQ<`C0s=4g%e zdW&o&OZ6c+YCeOfHcvw&%Ylg+#bq1au>nG(4eSUY~eS&XRCh++7-AA+=Sgx zenzCOK7t>ZSZ$LI!XU}UWfnO!Zd#GA&E&e*D5Pc;42G4IC)bxgKqyVr%k8NbGSDQD zBNX5SxSp-%?~keY3Mddl6uS4NM*ne8tfzb4-^=@Q2ar0&Asjj@RwJiVi|oM%`&YAOn$nOF2_y)o)BvtP0+ykH~ur82kgd?1G{ zI{2HYshvOPwl$%C@hIu%OCFeObqas!!mxY(;c)zyCG|0cnT1A^@`pvS4@u@SHjkG- zHBw#J<16vSn@(0;RFlYJ@${~mGFH>64-4(2=P+QjkUA9-?5nBj{iLFI7^P~t{b55 z8*b2h9AAHvori@=B-Oz{ba7<yqT>*=!R(Kkwgr(!c4e3b^Vo z!6D`^mxf#CC8Upp$Bw3Mce%z|&tOq)u1(W@d7pK9F7Ko{>(FS~DgGly@_=W*K8)bI zdK~0_<=Xe?syDgv^rf6kz|&(zv0UyI7K?ASwmbc;YH;(7NGO{(Cu~Ly-=ewn za-|m8ejyS!7=)Z>Pkik%grW(WXXClIh+HlKi&}%CsLj|dDyHX*! zNyoho0(B-Xdg|3s3N9EhM4qkha?M&l-_Zg&oQU6BuivZHuYOl(&RLENbt8f7?7q6K z#_}VpS33n|Wt;pxSHbfn0j__ec@sT=6mJVJuKu_H`GK`FwAKEh3hVbTmTmOOehOLs zqXj*YjMpWvqO4r?h3kWIiFF6=w#vmA*_yt^Pk{9(yzFmba%M|~}Av{kKq<5@h3Y#LsX zu6lUdr`DEo1{wi@^j!L$B$AOBcgQk2f?GeSU(SzqBMLoGJ*WJ*RPaJltXy81HR>1% z9)B6&h90?P(5Up|T_JtM(tv5#*`=H+(WTi@`q6#&01;lbbWNh5#;1kkNU2%FpYJT} z6yXG{E~<9jlyOvNtJc+13p;9YE)23|R+RGicVAFqytY0MolZ}h3gptS)afaA z{X0f*?YSPnbIL&c`}aM*QZS|rK7v`Vr`w~DzCN0sPGQ?_E#Ba8+ozhwNNcyK3i`~~)|Am_e0KmZs^P1@xu&fdmRDXp} z%#<7)+hB#G$`xl-Vm&1{I7Jtu`WaIR(zA2=xh*#B`H#hPnrI&!CH9l?gfBQIL9jTE z?5>8i_(z&*Cs{1Ri4<*rdZV>>Yx}R{ryOZ7=xdf9h3eaq%6tDOXhH!kASAni)+;JN zY8KWQQbj$K#_1IWxqWA(zcGC8)0p(v$B3TT3QVQ^RvNR?hcO7p#_6k~c3BjuYVuDI=%0lAgCccsF3=Xu(6 zNuIUB_>M~>yBVIJD}p}ZAR156>VgJM0u^d{ktR{3>DFrHaLQotPE~}N=u+x+3a&Qq zs*>ScZch(vP6><^zD= z_KIq_a1FaQ-ChWPp(NH#CAsdAPq5a5)9L+KF;u5-jd|hv&{IZVt2BI$GlyreQ4t9u z>R3)}81*#+7t>=LnCX<<3PCQa3~7!QoJ_WCH*tU~6Z19B0+Nes`voiGV)4$dO6nZ$ zT&~SLDLYy^YDNGo$@)ix&fl_~tJx`Y7Tu)I+*jnmpeYl8gR-hb+YpObEhJGRncvgS zE}=v`+wcp~&vdyf0;MxvKEob+LxqPoj0%sVPT5B6QoVH{=p*$fa4B_MJ5o4p@#SG{ z2|H5g@z(9I?dEbw5Ahpg_X?3HkY7pH;Pm9FKxsQX;Mu^J2EkNciT{;eD)2G7Nfag# z)t7C$Bg%_gotu^aKTPR6tO1%F-Esvns1C`|f!Bfi=O{l*dMQ@0+eJWmD(6|dU3c9BL&dCAe1H0+ zOqaY<7)M*_ZPCTDev*waH2I}*D*l4~EGrs_q?nzM*z_YKlnDL5qRIc!P`aN2-Sph_ z|A12x95`L8zI)UeI=u%`5d2v;eO!0{Uu8BAFEvr(2Y!>vEk~a45w(%@j&9u`ROsb8 zmwFKcinA>Pgeh~c)Q!aQ6{V>%8IE#Mt5RWjN_{>ZS(-T*a%@C>Y=ju1s}u>pGl@Jq#7>x>Fg)#Y0v9Qu4u*)c5m8$`=veAGild#Et*i3xz^mn_n}-AqPi> zub%fi84;CaQUSj1KD@i3&!_to&XKe+33&%R^4mAKhyesrWt&NsJI(48#e~ z%{3Ky0d(8E!NLxa8%JsFPkH?R(;ux1$5Sx-Ui2ro{}G^f@4oE6;(ASZ|K9a5*s?J*l6ao5}V-HFqVsl-z)szu?IZ! zOc2dmc>K+YRSh~8YO-@&mAR{wNI$n`mbP8%!|~aXDn*_lyGh_a_bBlVz~O?)5_sm7 zHInyxd=KjMR(L8r&f$|=wmxNQO8sD)k3p)WQ7kr8>k(2^X4k0=i!;fVV;jv_XP{#eS85Zps4VsSP#vVCzc-;1TzX#h5>G349s*9-+xtqOJ zWR>Q_hVwKB_Fsu-s>a^JD(U$~*WNZg3W8CunE(W7aP@%iHBKisA1f@G-tDKll*%Rb`!#ez5&7MR7bDkAhS%4kskb z;DqF@5JIQC7Yp4|Jx__nh7FYy* zh)e^}qN&Oqc<-Z+L#imeQ~4_*X2n_^>Dx8f^7Uz|y+_Z>9v1Hmgdou1%2-G>&u8A? zvBJKG2Wnzq!^C%T%PB{KoB8_hkA86q&8a}yX;hG-llNNIVyRI;`CX%E0Dw=FO%g`E z*ox?k$Mi=N>8dFKdoVzRKIuR(pCbQ&uRt>blJ?fOx>{{~;*LISgeWwh;{RZuP$QhK zNcua0sshJz;cBv49Pf=wh|1Y4j$K{LX>b6APjpfJeOL*}@BN1|cHOl_xg(((=UO#q z4gEly!OaL}9|<{(`nEhhz@JW7&95+{-|8Fp=?jTZWri5>%1_ycxdTHEnC}t{n*Cq> ze!&>`Z=~X1q~VJzO!y-G=KTlX{EQO$oTHdCH*PYWv0qRGaFpfI-hbZD?GWw@5r8m$ z34L-rRlRin7pwM0yc~0;lj6of1STA-4kEu>zq+=s_x;}WmS@*0BgKUgo-rI zhaLS860VB8&0fPh`aKh()?2FT9qZa4-g2`QijZ&P7jx4#_xG}W{q4Diz*8^%pu6IR1vr>?L(>q00~-`UlE~NB^0RmA%cpiRFi*JOO!U z@_}XX{`Q(WcRx7e=|xnLv!hn<1kz3scy{!}u=+H%A4szY1^N~(q|u$BmT|9c;Aluo zYq7g-uC<-gKXOwHxLXd#4<`Ruy`5Uq#O0G8JA}&o|M-5{@FR(P-{|njQXPQ&0hP&y zrGCovaTVitdB;#}36;-=7fah!sKR$mT^EL77iv13Z?d#J<^Q-feIj4JToSb$Bs^3V%B%3=Wv<3t7aQg96 zANFI{63_%{!vQanpBsn@)hZ!NdX4}Mh6k&1MSRiXAJ1+G5h}WIg1C8QsIi#daR1=A z9H;YfXuEYu$+4-~brU8r-9p|{*~Mwc%POTn`KcMhfJIT>XGp~fT=SbzII(^*)R~Uq z*T;7tH#7cOreE=^{s;I1QAoj!%)!8ot1w8sLC$sHORKZ6;<*=ZFYF^zs$;jgN@pSw%dtl<<5H_dV z8{pbBL%16oPtrjLpaWQa%zW|7Kgf{vlx;2jY_daK{rlM8CVk9Z6}-BLMYR(8L{Xzg z#rH@g^6j}|nY~Mb%09E^rs5pvyY3N)mAircdPbz=213cP{c!MqA78=L!WNeTb^$r!* zgXFgE0{9u#^$-V~2lXV2krJJtoYt0-5y{O^8R)$Le!s0%sWmK~ns#>PWpbH8g$l6N zCkoA^!Xl-zD)J0O$KdL#IVB|XdXR?VtD2>VQD8dmBouR=51wEPP3TgmVhYBQ$ z!FXYSRg|t&xIvBLE)-xO9><28PQO2hmB3n0Wl3T7A)|c+x4#!bOTVboeSMdsP(q$` zy*_1tLw(`*Ph)Ok0|X^OVS*MB%z2h8q`P|hKSf1Y@7SguQJr8xSgNU6hDfn^slX`3 zj|}nkr9Wq;%PY^x6H_&vw=|90QaZ++n;|e^63jq3!Fx;umQJd(BOib0E&m10m5`kx z&W$J_3}1|qoar+YpkYao@00rZ=8AXk-B)Rz-maglv0gm^zQU7*eiFS$FnRsDBY`Jt z4W6y_Hccx-gyhu>PV8?=Qt*>G@Tgh#s}H?GGwm-7sCR#@zhbaA+YF!gme%Q@6enuO zfin(*T_;%<9_dA9Tn|iaN3^q%)%43h7XLfYP1{Y!Tx(Gr{F3S{xAx)Z;gva;_Os`q zpF>1OUHAV%CoF044cqCuveVaJvR69rlK^gqqtK=ad8L#EWf|qByNayHDydBCk;mMm zxt+p#RLV``tOi`U8mYfWCsu+zqyoUN(C45n#PMVQ0e4MKH#U5IpzEo$NC+qODFfGF zfJGwy54p1Ms7eiS3k{Q89Y()27utj5im(L6rc}C?n#LLWv?qd8K=D0IyP`J?ZV%M4 zIw(2#H47RjJH3D#O~8rEbcOT0+WVGuQxkqkVv9FF^Z`SdF^AE73&b~@UilT%qx?JPs)nv+61sx2Ap+a4if!igmS*HjB zIG_yFCfT-2`&UiHee|W8+I$RY;l!2I=|5%F`EKLt+L1$-*=4fO)j!>sTkK(2C9y8f za^o_{T!vjFB{mEx)}W>WNMBt}gnT2@j&QcE$uk#^yS2HwkU~zvUh%fGS5Ntief9`I zGDAM6C1U%6ny`nRGdOa$hn}A1ED?x(8xuCU)o-tl>`cVo#4aLB6ybOURSLF=G?Cpe zPzP69qoay8I~%_$5>}hR$5TRIbyEq)oS(|)IkJ6Av1Q#kRR(;*>GG^Q$X-Q+YOhi+ z7w-4g0C|V4=Lv7!s2e5O{g8rxWNxKA8o1OBfC;M-Ft*N= z^;yk&{?`3mJYCJSLs^4iu9-d;?~?Rg`Be8i^$FR5he;&`@&8T4??{3&Y;jUTT`I2k zGU;dJ6r|Js=AnDz9B*f#uH(PFl6A?7bfO^QibWK!_IpZZutO|L19|DB5eW@o)FD>x zL!GdNL(_;w2*CKJoHo|w;uQYjCl$K6`hDnlkXEDa`NAP3aiH<@-~d&&;?R37@Hkj- zpz+7~Z$MVvu)wEi5eb$4<<1{6$_plXc#P~wG9>D)zz3cvG@ERJr3O<6e>8dN$yc=| z_HX)`4ReGEC`#OnevA{%EjPq~a(cJF$yq%Z{VW@joahs}5eXoo>>f;->bexGfvi{JIV1 z*dORagkUT@A^)8o@yi5K-GU%^e#BV32WJ~pYL`~@khpRS?6*e7Z!qBNre>M&^Z*WG z?J=XG8ChU|o106j6Nk06(|t{kyAz3CJ)gc?HBNkk4$EM~NKjaO$kG+D%pM61MBGN8 z4ZVi@fWLv5BxDiGdsUB94MyQoN*4z_=r56pbCuF>tech(w%31uWlJO%;LGJy9ybTt zF`IFSRQ4nh@uXf;;99^l5j9Is?Yg^gZs6s-r%OA(jj`d6DH&f%n-md-=5)Kl@A&I1 z1R$N)q$cCpw;FiI^z^mv*S~AlrV5@&@$CIV>FG<#nGHM@1hFWMX z>Vlz!4%OdyB*c?mW?|dV8uwj3rWR%5%#wp)D(^M26NrDW%ba?XQPzB^GO?12!P=K) z%;#x5U`oYLZo+Z+8FI!HoHr=E1oY76MQcuXA&km*FM{=Gwv34hY?|ed!n`tN*H{#i zE*v0E#gE1Flg0%+2SJGO^o~$&$mT^Xr=1e1ZL+NhuYKO1Tv-BC0|nLD=lyXT1yV1` zFsW>GP0g|WH(yfX8s1$r3I=j7+p3@7?0z^Z@00zBB?N@Q4c{)AbeXp^lvE#Jkxvg#{adM=(L<_-GvBr$I9VzO3pzuO5u-7K zn44VcI9;%%!)YU{Ko?qY&@8vk$nGd_=atBK6}!=y4LFqCW3p2$!V6(bU^fy@#YZzH zfTpq$sJOs+-Ge5*nZamh&P0XYt_bb-VN8%S)F1pX4D#*@2^ z9~Jv`%~USLUL-iFb}L)g2>QO!$=a{IKGN*6QpR4*=Y!l40G z@Aa+8jsOD&7)L&*i1reFrxZ!vW6z?Mc`2SkR^g3eMg>g2ZpjF$um0JCVjPTO22*P@ zvznAKusc50CEXci<4j`Hn`o4iDB=ArhEY(%16P)FV^F~*3lC+5xx9ssG)XkI(OPR7 zYzZ9@-)0vpm+$5_+dOHE4%kyj-}Y0SBPJV&B|Ae`hMUfhGT<_qEpK9DNAnuzO90Tz zcJ0wghvWw5qhPJ^*jPP-kSBL7P2h5}sn=LCoS^`z$cgacoY%H3>RWY3dOG5d)Rlws z%rx4AD=NbFno{v)((q?s#Jl#vnoBhgx(R20|3`$NXUB zNxX%B$2)FIuBmhKHaKtoC4NL@a{qkjN=mhfPb` z@RgYUqi6OQ_F(m&P-z+)h<^V=Grds+K{VbWRoK)`Ej^RLGU7_3bT{l}kBABxzf-_N zKxi7?sqb9?zkx1I5qQbcV3oD9CMM3VUoO65{BB9Nu+wr(3t??q{y@5k8wPrj-^ z+-OYbkXm0QvinvM!Kzq~v__*@)6;o5=Dt5pB^*1(xxU#D-{6(EQYUb8MSokB79D_Y zC^s|?Jif;1aA(tXZl8zu(u;tsR{NS;xe@;zKT#wHL5V+Prt~)J-Q=cbghM^pXqpK1 zaPvWzgAKQrSPMM(WtKXVrWWdT3CKm`?c64Bz&Fb} zDZ_i#K*b_}s6xukDT6>X(YXID2=2e9q*>fxO`oTMJsP;x739(Y(?~k3qSbqHdu&cp zq$}d)MyYbuq5(Q|0RaeUXP{5zG}+5G7@gW;LH_JEry}zYeJ!3P{UCRdU6sgA!y(+D z_a3s_uW*G$?r+kFPvZx{53!0-!9g5vs5R^*#ogBawLzg#zh~D+ekT8FO8H#@zueNd zQy6;9_)1kXoG>+u8%DetDDsqhg$EuTsUZJ)P$Dv=KL_$I5zC+Rfc(nDbQ|rZJhk{p zD^j5^>Rw8&6hPav;+y%Fa!{@e+lyFlJ%!+-a*`J}@go(1omssIQdPr=&Ua1bSJO2b!GL z&*Ni*X15M3pWVHuL;3g(v(0UJlP4OogRb+Ru|HHuFrf7k!r#1%`wc~Z93>_mi~Lb? z#6O@bEsIxC`^}|;`Jf$a*q(S9iZQ5S4_7Y0;L}x@XYxPh;#*?yc0pYWxPvWC^^(dY zrrP|-GpKn+FoauUF>2Jk<*&Sm``BR#0Qom?+o|%w1-{=)k@n+Pim*C`ox_|`D)nM@ zmt_FNNsESj<R5la>0g<1i+sKg>?>+t3T= zIE|t56XDfC5EnQETNwz7_4MYj&q;_bcJ>>@kxivi<%|N^38*V4{t=iPz^0!Kw7b}N zlJO`Ul5R8K$Sqte$N94rI)6I-tMPmcRRnhZ(0PnB>u!3?uuku6SMD*|GvvD*U{8gYvxHZ`4(T~Fda>r}7vZGJm3E}t6tsdmVQ zQ%h9|5zhNfCz|1c?4zf@;w+b@eKd80REaWf)&}N|Pa@-J-Jqy3oDP27z)Iu&rsh^(9v-A~LNcxUivyiWI)sbMhfoN`8)zddKUc2%Z{I@r zm3z^8__V*lIgM^wjr{G>Q?E`;iewX3=yWT!MayyL}V2z~X@1yKwXKoVD<}%81pq7;?nx0q{md|+)jlC|qkGlp$qsmc?BZKNb zj_n&~;8kKI5%RB(nUTE;{W=Cd)FTq9K%opG@4JAp+9ojV{^y>D#=mEE7#|PSH|DjwPz>E=N5V|^7?;|VR_@p&UWCXB%B(H_5A~_ zMV~1kiCL%G(_LEXbysMWF22?*u^v~*gCl1o@ix+~+c~k0^rRxQS=;VcOf&a~BFF5e8xVfJv+Xszdo4iUvTBiH)+}hJg zFJUn%o%6E6!iW7PY?r=O_LxSRCDbcvWmcuBDdXuukFQ#Q4qC{o*dk5s@<_o9(3C#Y z#6y`Z*P6Xd&X+d8>9lm*eGimq91m!x&QV*gwlNUJK@T2Wb7@Ln&W`8zA1J{=6;dF5 zcXRsr`N(8P$i$up;pveqq0h92w7=cqa}RQMypY>$IKfE@7p!C`$AG5cX(VF27W8^B zq(cP-##xut_BgXnGdcYXwq_`9NVNkk|Kpcgqv{5K_r(Zu-jT#n)h(Ysr;tupTGA7o zVmw%ehTbXQx9@yuju5bMj4A_fYC9hU{CP3n5TMhfAEBdUr zYoxQt(Q)==f!JGYm;hRfpIryXk*a7G>z{I+e>i;c!>q;py};)Mw!Q^eUlW4B5)~)M zrW?11yRODmc`^IQ-5nl#=_SPz&BS(es*;Ak{Io>mRq5%M0^~IN`!F_Cs{qW+YOg{r zQOK^_FmQrd=)b!zi@|dUcSo9QJxju!l!=3?$;*6^Ze8MkYD$W7pvdOult1Eh{KA-3 z4IZk89`VBQl=1yZ9Bhl-8F|9hADmkw6pGYgH!LgWy`*{C1R}ZaeU)G7#Pu}UK+zit z&d&_D)A*yPv{QWQ8WjvQ#PX|f9e(2{ib(bJ!SReQ(~g$3EOz%+w6qO?7j9J zE<{;th7$Y?X*LLwXOXKX+>JvJ91JFY4Vzx>?`6xT@0oMDXyhxT#Z(OM8QH-@#vl0-j`AzFdxyPQuVZ6I4Yq7uu2X3z7 zT#Z#*s4PDa=6r5xvcdhJS)Y)GXCIknZKZ6@TUAL^tSvxgn&ov|QmYOM>Y9ti2}EqkufKMv*b-oHMVs1PA6Z2MbK98bqnplL$* zr2Ia0oaUzp*ukzw&c^I3DV;E&&Y9QQ(p1~5YB*VhN7=S=HH0p0g|qgb`yc`qkH24) zuHPBgT5yO@>skvy-bnBnTa5{R=6lfKNK4Pg|J5TS3Dsm(1}<`89t`EjpWR4eJI32D%ezXJ zf`7&f&Q1%}{XL3|Pt%fzCx{IlYRgM*9*@A`kO1>Xg)0I;il%#gN?k@bt+ZUeZ5sVo zSE+k~cW70tge+4-ZmJBT^oi0I#Yz=fw3PucV{45)&5Uluq3VPo35T_2qYN z6iO-$m6O?BRUAGraGo=8SR{7FJugPhG0gVb_YL18JDZ#_nMr2s@H}t=tC(OF{E4-M zU#RO^tWG@$B6mVdd&eOhO>EvtVB%W@>A`+~)WO#nzFs%-#ABdLACKl&vR5}KY%ddj z_Vf=Fo^qmL{u|FHGeVNqz`_wXbw(hVXh9nv|{-O?qf zfP{b`4KpYpol;7ObP5tf4@ycml0!*J2?&z!;C;Wp=X1UO=Og+sbIy*n*V%h*oSO=~ z*XSz)u6%E97oMJV#h$h(%L@6iCGnRR)KemRwJ8|dwq=-6P5&;24?Rhsp`wP=+h)Jg z!NZ{naW+!9b^2VKb#<2|2dV_QLrt%Mpi!f_o$;_Jq)&l-I@0qLM%hmLU~XC6lby!L zAJgK#%$DyFO%nOWY^%F_%?acvkM4|nq$oZ&^>gcEu?%h@b=iuD5IbHe!|}coyStOs z@B^PtQh_~xsdxhKqE`qGP1pGwt+5y0>`s^mdCNKzIt~&ZL3CF}xdQ63#+wA_UwGPN zWq4MXE9{zSNV?rcq>()UIWcO;B5derjS2JYL_hnpn#7zFnldC8_nT43E84IG5uzjG zIs{J6Q9utvE-phi9`2$%d7*qYs`F)`P69wxR7$rU=1irIH-(tPk2w!_{?1R9%Vu3) zwCF#93Zt-9;(0EUko5U4vk|?ldmGuLvd?(x?$wwL4mkQPY9+bmmrY}N93k!jx5|C9>QCa z8m4%H6R5&+Bh!z`OFlp)qw)AB#cz{Bu#>=kE}LYsWp1g0TIcCJSEY@Brr&dEItBgz70P)J8V##vJ+{7VorWXXCk?Q_Yc{rhP&VhqRYFFE()=WoASQMh7e-3zRHjRD6H ze|8R6?S(o?S~cxmp*HJhf5uqEBU02aSIpn0V&bcq-C`aM>C^^hmOO&&WYxp`Z{$Rw zD6qY?R)%bu19MTF}H=zHHB^cThkw=U= z`u7)0Cq1cNh#qTu-%ELA_9i{?=YNG#o{+#!n7tF52+8w2$Bs42tYgma8NkkOGC^X< z)gtWmoOF_V7R=OeS?LeGZk-=zZbs5+cGKh?9_aY2E1oVYVZ4e#n~}k1RXz@(!O@z} zck}F_b`IFm(o*SgvbQAk8*TiKbPW-9x-f+@=gpL)wkD3A4*FHVeDa~PDY_2xuCc6z z>F280Rls)Y;bjlTbkP5a3{md5dk0kIVVIv_M*r{;ky7Vnosd_j7?(3U#|XgC=B@2at}zqh zS|a7+0%r^#o4V7u=0Csne-EIP78n>mH4j@#rD#+W7tE-YKZoHcFtu%q8J(g_HXdPe zwhH2PVxQ+ou_7sp4{PKWXQS`%ZweC~g1Z;R=IpAms!vb7r&LtVeQU-cSpk)q)9q55 z-Vu+%U}n!Sz4vfcEDd7F)9S6iy!8&UxiYqbyMChpHehVj8;z#?Z;;FBT@}2ydtTyy z35CL}@RLb(>sCK6^XLw)q!=dtCN!u4Yc(QB zd_SHE0$0yr1{Ue68r&DMvu% zY=Ewr&yzRvgV#rHDUJAWbokwXWvX<0zciDaXP`DIc1ne~G%QG+_+dE6yRaGqh%lYe zy?zmQ)W={W{Rc7Ef#{F=(3=`0MvtVwKHNG?i1L=CtSA#lcr{-47K${LisSyNA#rW1 z{wTR$!SW3=yBroDT9`u^{TL%ZTsV1{Xgoaa(2jrk#^yx?h@g|K*Pp#1`{gGVEGFEl z)p|wj-y`n`BXw(zn_mPqfe#FSPcr z&gcFrGm{F~coBbPYRnvMn2T^yCsNpv2PrVkrcI#$3!nR#1OIo9*$0c&W4gc$S|NOa$8)#05fno@&Yv$ikX5Q2mWR~%G z|3QWRd4OQ?-@te(DhmEEE3zZcGI2<9rf|^RtQLmIr z1l8zA5T&l5k{*louzj?Z_IXf0(wEp+`9+dunA0j_`j}@S)5p?}kq?T|j_fzA9NwXz zRXej360+dv&yEm&0TKn2M`5LFtPF7z5%OD+XaY0yFu&ogDm%Q$60urM` z(p_6tD;q|ichbM9<{Lz2+l$F_&su{3`!AqVf)sYdcruE`6rNl#`dozx2SJttVTvK^ z$fe?fFv_Zintf7owoT(u#9{ILz;dt5+Twki()OEln^;z|nhhq9YqvhMo2P`+tl1tE z6a^TBq&Px?dq~>WO)^4Y(7^G#$RuFF{)*P%$~uVHMwPTl*9r6R079Q_$K-&XCozd( zpjbRh_ea^t#Yx|tivN}Y>P$nUgO9|1f2reZcadeDEEGqyVgTjU`O;XMaO;i#c6t&) z+)vS1dfAY;a+Y`<0PAtQOzNYTt?`(&$C|95wwORK0Q$(1$_xoTA-$!h!NCy+dF_>) z#%iD@FgZ)LA{WyyG!7&pOxrXZq5gbtQtp;X0|7gKz}SuOL9b{W{=NgU<@!)tq;LI_ zc;{UnHfNI&W}Xq~Q=!*T%fY!DJ@6ZkaC!u-eWJYQx6)>H4_kQ@L*`=F;blu@IbbH} z&K)M`u#IR28`8I@$?4A!$EO7F`W=uTV0=m@D$#K~6=jJbZRZ>)tp+=V^U?Z$B4{9K zAqi}@m$17wmuN&;?-fPrMFds6!pLj{q?!(%D8uE^5C#kOxoHi_H&-?PtS7Reqm#(X{3?IQh+>^ zJC_IfH;(hpJ9#eow9Ysvj-lvo|3rj&3jY}v`7tmT^%XUD9WlMBFroeC@`|Z2dz?OY zY|qtSN=nje;cwH48gBYV{MpXFrV1$oBe8} z3O{@8Rx03MhCj>#4mM7N0b0?_=ijd`MG6O1&out*;y^)mSm2;wGL>~% zCY8lxB8~{MHVq@w&(B$!Hw=hds-+{@zSq1>U`=KL{R~T7IWIP7fp&38M$c&Oua zgi&$@4&LnarQi9=GP!EUwa}7v_yW3|YBwvUjB5^xAu1Xl$eYUVexaz~?YzO4e)6nEwvE-^vgQ@%v3oYt(C?bc(luZJoM+I>_irz9BUx-8WVoTz$t$*uE|pIYc%CH z@|0Ybmra=czrC#2Zh$_HcUDZ$b3)k|Rdugcms#m?1~U$W?#GWM%J#8d6S<31N4MtL< zv;*E+L`B-F4s_Xpr6)(kLNzH^M(+y8+V&qTNf)Av9?MNnFdN7*Ifoch7h>Q#-c>6E@=$K&t;zLde<-igTC2La{V#1pb z&xt&mrc|sO#jCtS*nwT!n_;S(H~fq6V;;7d$ZKhaI`51Q{ZoBs=IvOWj8_%<0VVx$2@|L5kG$!(0}lKzaW|~RyMOK zwdzsQ)!cG*(Um$r^f|$fR+sdQ#8>s56kVR(#wX&b2eqR|%X60*7vXqf!$Ofng{#R< zE;%hbcUbv#fvTiYWJq>uS0i^eLB`W#=9^xA>`fDYnvw=O1#+TXD@ODCysl;I_xqZZ zqjC4tTU!YwI)bjK{tg+@5(uJ;>MBip7C2ewtTJ z30fuA^{v%wl@|H8?K4XY=z`)O5zQ0XpGsia^ybti;a$c#EE~qp3@WFZO)q|Bc;U0{iGfym`kYm`bu-BlKlmlmi49B7 z+=?b&O|(;EXpEJFob~rQ+lH3a4_M5s@kqIF)S1m~Eq190lahAs8pmt<3}_x|C}t9{ z)zLH6CUrI0`Zf(O&M*Us4+FG83}|KOSkl|Cxd9#ypZRqr@l5S zZDx#7Im|X0_2Zt`EL0L1ANZmEI}}|<4EyowQ5^Bci!+(U;KgIM_vjMLr!j& zLs8NbX9yBs-gh~$X^c{_-RzEbljhg$PUqI4z21PL=fCO$3Tt2c(K%PWs|MK7EIGeE z&{~x;dT=Y}(vuakqjt{Bgn?n@IbaM7Gj<5BA^dA+^)U&m=XXlJ*3;6qTa$Lw$S$xa zTq(YqtklPzJQ4YCb&lf0WrQ-N5xw4l>E_27DV>h!;SGILx{DE8>gruNaagW+N&Qfc zlZYp3RVZthcqZuUn_o(x<^C^C;a`hGpqukXb`QcRFWs$zTxKjcf*uJ-NGuz>AX_d% z20QyF;{eCT3>B4h;6}Q~tqs7Snr%ut+a_7J1uLPmY|U8TiP_PmBmFz{sA|eVMV@`? zqjIB`Jm;0|n9N}_HK@i>CR6>6>Ls%v8j+*pGXs^S^)uL%DSP`R%pP z7v*}`T+Vx6_oiE?%Ec-FQmw%f{E}Fa>mnjaj}vycb4ti3^9kW7LZl|(A<`4k>yac zk*S+GrM0^SC=SrXBewhLZf7K&nX;wExKsI6IcgTx)=YD3DUL2c&v}y<#sTCXpI%)YEB14o z9R3%ixG=+L)E*{0W)5e?%;R`-kUnCf4iR^F`KxQ7?u<W@|U-=X?w(s>LTUQb7ozwYRGVRX#JCGe&!lgD7%qSGc%-iu+kJS&5veZzNQVB zn030BvRJ!qp7A83z`U%=;&~Z2ugF=GE#vX0?TA+;HmL>qITfE$*Vsmv1SkhtF^@uN z5htSKHLuo6f8NfM{PA3QCMViTxN0i*FJ&?}0zmj1#~fVa7|f%ejxFfT>E!3Eq{hny zS>?ard1FP;{hPMrXUD~79^gwM7IJa+2#PzmapE7PKf0&Nej7SZ_K?UR4j@TlSnIoO z6I5W<^mT!|wnmD^isF6GBNc_k=5=|~VQJ&19;JF$r!A9PmJ60&Jvkze>33VUJ(gM| zUT>SO%=~;@AU3rDopH{?b54}0t`1Kis7^|J#w^T+x~RV0R?0KX9c$b9)X$dlSLx74 zM(JC~g`HcUW1%MXYqpbH%O@?{vC@|1LCtebnZJ%?4C>}u`{t_|Z?o2%@RwkW{X}p2D1NQUDlpBNrW$Q!<(ul0{o7o>%rnbROQ`o zr9d{qo~RI3w!9=^GPRsAY$5$sj2Z6XdYDp20>XaJ0@h+P%4?TfUX8h#Zn3*k@q9o! zK1$Tp_u<7r$k<#JGjWf+eJd#x+iZVzUlFhq=bB(QrAcf3XofV0P zqnhpW+gffuKKJk3bsiqIa_?h?w2&drx)daSRCLbipC)%b^ITY^2gj25Y zU;cz1Cz>)Www}emrY}}8ePl?w7?(T@d6!Uhc@?-b`8N1ZSs}DGDVnc;Rk__N)6Qgx z(~I*e+V^tjS1$?Niz9|#{=Bz{TVA|ToAX`EbEZ6J?N*|>#C1W2r=c|WJSr<6qQY~T za@&eksEn>!YOQ|u8MPj{NAVl`R#nxqkPvgY8tHa6oX!(@T{l@gBC@{&Sr5(qsMTok z-Nl0Z=`s1Z*0S%@lKY3)8+;N8@Z??bxojUdYI<)?=XO8twtHABvP?i1RgglhltHz2 zJ1Qnep!UmQn^%TRpX!WOcz4vkIiqh$j>snSd`9I?IYrZD2Tszl>_;VL#i6JZ#-?4% z@7XR>|Au~;?~AIxPF=ZeixD|p3 zY$CLb4P6~ep=YC_8?s=3;R$(IBWd1wrpk}zj01){|EC2&P_+GR6x~U>3REt+N6z4V zS7;rsTCD_7sA6F~i0O3Ges?up)_!^0z zUuh6QyA$`Kw8YCap#dJvChRw-*3EzL@u)2(*hARce~jw7m0c>?r3gbIeKD4$)`*B4 z=Dt+w5C6mWP>?`T;0jbhKq0hkMQ`-J3Zk^)GIyy}!)oVs4~e`B`8?T52sgh+`e=^i zeP10XSZ-*MOrYCsqVU4$8E{+De4VW+}r9qjAh`JKxS!;S6pLL9MwR z%|8Pv;5cp0ZwjZU*O9ep{YZOxw^Kl`qW1u|ooWK9xEIaQDG)nlCH0UiY*lb?ht82^ zv$^M`&Y<7j%(`@|ryHloYR@eFL5NKicp0zVtAn{@rut3aO=nIHoh)Cksy~PM&_}-~ zpt9)b_m0eUFbl)4ol7v~6TQz3$fd+O#ntLqTg9T@Dc!#siLH5X_b4~J@o^9r`}g;s z6$Vx3;u!cVV`M=RdVgRB*lWsEo;fQ*zpLqejh`~|AR0_s(vt(9&8`V4cnGB3q*Y6s za^hUQBe!UQZFcD}p0Bu)Kos_+{!!wz`RRgtjtQ^xrU^`9Q=~O|Tuf_!J5ZhSi5pR; zYt*C8eP(Qd*!#^)@^}ilvb35J2l09z9amL;unmJNWc_#j0w+PI_-|PX!?C(COE^3# z3WRnVGI^RM^BkYu7D~Is&-P0E7wxv!g@ZP}t~$B1Ft7EicReG8**?7IuYLLPVg?g? z{VD&D#YGPicXPZT1`J|0P#BRNEVqfRpjw!)s$?#Cr323EV_K@1-?MWk>8X6x6MOHh z_;W^A&2+Om{`BxoYL`mDJ6V-bdwcfWSF~NGVjo(i(qS8~b4^Gh80JE~_z~D7DkJFz zuuNiqBzG99#_c>wiC8EcGi5+@qQ5(E>mhL1FUg_M9wFs7`cYCkB;Y7h?w8S7AD>O^ zt90KWmyHYD?U;9)Hl&B7;Jm4 z^+)eFYL}hpQ}E^Kxw|j996I(Ad2;4&@Rm~#9nPl5s2BJvW%JmSP&E{J^!-Qvmh*?p zT2CSOfQzyld_Jqr7e&ukaMuK8LJo#=(MlbGb$LY=bVvCZofquq1sE2~a8y)wr4OV_ zy6`JdES!p>A(`?hMhiDR+4*tZ35nD)>J6}<1zovrqHF36 zcmAEUo7h0Kr!$8bk=zZUv>jMbxXj2xj@2gLaJa9+>1TCK1-z!a0edg5%B8RR164nq z)=YOgZ#^|TmgG~A39QL75$v8>*Y-Sf-YVJp@`Wc4>YTW#bKty+rHCgrJcK*6W$KAP3*aY^x7m-qLl>y3L<{K`AHTX5EFa?x^pzegu03|pn| ztEiw#_fU5{z)en#C5}ySiN%w-V@m9}#PQ1mj&Bd$-!IKHji8UViT7+r{ttar;~UO0%knk%!Jmf{my z+Lq;}LxX$thu;s}KR#+`**KOkm$ya1VF$A><_yccYYh2nk2!~sD|81tVz9e@oM*nIJ+iCmGWzFdNb2r{htN>486P-B{VL#H}@xTB0_y61@!vhEd zpjDms?Qliuo4e@as@uTg^g!Gt8XPpr|2$fsG4Z>V#!%4wH$Sg@`BqPr`A)jPz`^0s z-O;bwSHAKJk5RDb2KBJUX|qf{j>)6EJR8M55bT@QM+$!Qw#OlC9Y4bVpfF^#7FrYqEGV)Tef(*l(2ij zEmESpR}()QH~sC;Qal6P{9OpQ&M$xVkG0i1uMTVowZSp6$amc!Qs$0ilD@6^&g(G; z<^MfKWgrzECC2gsTd$YUw|2IC0&$_o+VK4k<~;wOLH=W7QFs6;boECAlNdvDTrIGB z_l}1cl)@FUteQ(4^Fk={W>hjFWY)haZmQG6ALY;#+3Hl!Gipt5CjRrWnU8&GeqBnz zv+w#TW_Imk1GKMh8|Y-o$8H$18WoO>d3a1fjUV1$aIq{gf?7>P%Ez;umDJc^7Uyzv zP1lubfn;Y*keLwqk4@k9@Q!ua=e#yEJblA{TVos9tMyV?1g%R%o(};t7OCxS7zi;) z^QftXBFT_+ea?X9q!{(Ivt^ZGEjBV9ek$h)C8MHLTtENTYdrXKuuC`Q6|&sI;pSS2 zzt59tnhL9!BK^j|-c;JjH%|t~X2uvSZEZvOd?H|8xr?jc0P}_RpAA@D1Eo>`qjwE= z9M8|?F_Sk(eISfvoxtm}2hUKsnO6T^Y>ZOZK@|mCeX{Vl^-U48{`J7UV0NJXKA>@? z7ek^G9!1JsU%@}l^?#87Man^xxZYqG3PMbzhOt|?KJ_QxMXrP=E?~P$B`=8ON0|%%h8S1=>$17dN5?V;|YhYe{S0w|@e|_pP^y2f*noKkP<^ z&ieDx;?IVekx2l+E?>s&%{YROp@MNtC$O#j+B!(WY|3Vwh)($!fR468WsN&wRc#kY z=*T4QSp4EFe8md%X2YrVpXI`^_T5)m5%1a!c-qH`;UAxD2-PXf#(1A@$A?Xo&jDSH zILC9e2qu0-#lLj?`H}54|FQ$}J7?TN6tNraNz#_K->Zds%W|tS?hZSp$1zdw4>)wY zCi!$n*C-q6HDr#yQ8}MHp}nu=e07SK^|Zc-E92)ctpJ-K(=TpGl}T;}$Bgj4!GTxP zHu&2%+`U?zB}j1c@)}n?7=-?gPvD0n)2D*x%he=Owcf&WfOIu zC-?q1e&-T1i?Vhh(s1!dFysp}5I4t}0&5W0k{++WI-9;Hqpf7EwA`pmYPKC{w zHX=({UJmi@-p5T?EcsMRG8^ZLq>0Bvvaa8Z1KPo?Q9R8HB;7+JGK?A*%^v{|v4q~G z>{uIk96hRPnfN^HDL_(%7`HK7?}-*z1L<7_%moBzFh*!veA0QeKDeb}wkFQVXL z@qT3vvTtOBYKrlOa~Y=!k@Sez3C|;{TfpPZANCeSnk&X(X7tMrps%mm>GN(r-grXP zKTwXh^=SBwp!vt}N_b^zC0OUJTXoT()6Jnwd_Cj2F=DeN#m6rfW&@wKTb#AlSjZEt5g~q`a7`kjlUWrYtQ-D+dI*@%Y1`l4#%kOB*DL^S|4wrNThS zy;ng)kaKr;&{(_F9#DTl9# zgk<#wDx-`{314p#Ss1bqWHX*_9Q{1xn-BR0;wXnc`UwGNTK$YX7(ip$w~asXDtSHd zWIXYGLhb6=4@J*Q`)hwUwub_mfF*p>FP7vg56!oI+)-V0E0S$gs95(}l$36VMVEuRmLi?Tu^@vG4d`Z_OCP7y+OyFL>XZXgO z%_LcpNuoSy0A3;VTrehqGnJ1QK#=Ud^0B%0Pk=H&4u1_#yY?^i1{pumiHGT#8h$y7 z3$yw!xac!W;(zjtAv&B4&J0jMh2TtPaB0@w9gexn7$d`-@eT#6zhj}D&`WIn`B3W8 zS^u@KE<3mpD1>$yOLhOTXj-S3C9~k#xFx<&Wb2A6UB9>ZxLSxa;*u(bEl)RwEvRwW z=N2O)<7XPi7jL7h?lKN2A?f0mh$!!PG?YM?-cgR25Qf_F7GrDKi5hJt&*z)D|RFDIHI^FHZ}9uT(t$LiCl9XHLKYO z?^?!;hpOD>MrMxf5(pBnwIXo^IM<W8R3H?j z(G;{95i$Dxl6)q0m2%ycen7P-uSZyW?*$=~FyjZtxZBo@yvpz!W1k;hai@$4)BRdG zG@`~PQ?+sx%dtYL?_c)HRV0+?xku5tUqZ7-ulqe|XR62)QCc*uT|fQ0ofbxRhe=ix?W znOkwr!#e>8#HN zNGSkBy}b4c?Fu*oRWLbgWNr;r3E2-@KlWPFqHjXUV(m2i`v$#5piHap^o|z4hm{cX z%e^-7)ttEdZsE0KX5mK&_=(w%V_X@2^VrnAuJM?f;<#nBd+ss#G0v-dfHAQ!wR@@&^4TiZp)ls%Q5dCy zZ22fieJG1zKgi|R-~5%=t3p!ffUutGPG zRI(&v<)PK?;OExj@lrWRy$R^ixY(<)p4ggL(zftB! zn5(y$5dwONxJw$qtSLCeym2Ge@4c~Bb&Ek3kO@c&r@1p6y{@pyd;tLfEdf}wq(pKJ zpKrX)sJtI=6Kc z7jJ!-H>G@uoW6s{vv`MfuDO3!>aHC<~^Zgu5ni1O=f|36hQ3a^P9>Iw>r{vE-5 zuG5TE!&&j~2&S}u)w0Wr#M^24x6gb44Hm&PKOQ>PBz?NcNaTue&r$Uuh(S}7yY`RL zoPY{rgv))&MnHlAS?v42SginVrz1}lIY@=CWJyDwkBU;jLr8&40D>$DQ^-QbrnEI! z9Yy=7#6gw_tkW5xC+;Hh1Q_5iz1M z63yp>!-`0gMGBmz;2or8G^_BAA)KXK^^MBb?5)zy=0aS{o{bkN_J#jk5Ri(MlLxoBa&H>aScB?w zwgZ-p+#5*O^HcHrI;oLZAc!CXs5k5QwFGAHfixIdPHtOVu4zVPPOXdp1NVV=)Y?EC zL?5+RJ2i!8^sxF}o1A;2%e_F~&j+CG)}bG|%j=E3hzYgc(!q-%18ZrE`-pvf&BMp{ z2XUg_Ab~sh#dghkgJNL!x4%F7|K1p%HbQjfRIudw2ZQ;TFlU!IPigrOnx3u!!aHAc z`p_+i-2L;8rQU)nkdR^mRyC2anGO8RlaLzcik43Ee=Vf zf{+1SIM)?-yn~_S>wnOfk29~{4uF<6-DG%|GL}^VeCf{Ny);@hTe^aWLvX^EhqqHg z&kZbhjVTY{*~{TU=M`)td4Vy2HdiYekS?az^3lfsANk0juf|cMDG`h8;+lJn2XNqw z+ReV_*_(pJy{d6zTO8z){EWP1$PXlvMi3C_BN$xEHtzcA#+^Mvf$-zS&4P>EUl!xY zy74&m>`rhRR;M@Y?3Csil^xAEV;bA<{Pp94F(B|#Y1j)MsHkZt!!(N&f35Uc z?;%wul7$Dc0R%4e=%pSRU*M!>#3buHTK^)(k%3_Mf&f8dyA@v?>h7lm`oCbjl<}jS z1N>QI29|+75b+2Q|AyIF*Dzb#&&sEbe9EdqaT9&O5J>wUmo!G?0?<=-c`Lv`T8iul zAd$!;RhH+s>sK6Ztb2)Ws7Lj{K9O zr;cZKa&v(&xorGX`6o&vG?v};MD~l!fN)r7Z7u7%Za=SfUPdKOJ0sLx%gx&rEPw+^ z(mLcp#7dlI4&?cTk1i-i(PFOO{ z0s{F~8M}{Mp#&*h^exT9+_jT$I@0M<0D2%bgz-PDTN6K&WQtwc=-vntSk)xEgBc{c ziz}LnoK8b4i(gqWR%&?#6 zJhT5Ev`JF60W~JZmY)S8He{;`^`r7EHmG+RHmSNsHH6+ZYh1p==VxR@V~jT-x&WR8 z3*KZ53i1hmuD{j)<_AgZhHq;VxP0i}akH-;Lr?4RaQ_AzgC!VGTpM37vT}vaJB>&7 zUXJ(Y4hHuw?wI{fh`$*Z56tnq!h6kEX!x?dn%W*bAVLewSgvkM)ANsj|4rp&Z{Zdovrw>AtHAGZX@z$svO zbFP9k*f^L4La!)11% zCYOFEkRCx=pyvGR9-!9@qmg5_!Gi$vK`PM%uXb+l8-(1!odP+EQ$?@(=AGTX!+bC3 zP}d>Glf>290uAMOnZnuYwy-nWb@rQ4IVc36g&cwh$wkBSf`X7l=5rh|3(1j70lG#1Wg)3mw9T0BJOh)uU%5zlFy7Wu}p8DLan(* z^9*vO)wu%cl;B3Q`JVeJ2A@EnBk4uJltV0MHtXhNvXPC68lo}kl+3E!efEv+XE383 zOh+DrBlj8n(jBX5XbL*i?cHnKAr6O2$pZT8ge);i+hKE3F*{$V`Q?vV->X-@OF|}b z)wZ8SFysolUP+c)SPpUh+j~C@;q3)cQsG<|&Y4yiPH8ac=4>$3FuPneS9IoRX@UK3 zs1gO@bd`M2&*GczdXo`;yqYUfRu541 zNSY?{wkb3@B)}ix&&GO-5DR^#cWOSJGTrmC)gER1vT&6%Xe&MWJ$oD!AaCWs1f+<8 z0s`Y283vT>+&3gA2=aYwT)ZsD02!a__0wkXuvo#D2JMEGC(tV~@El&x| zZ3hw=uP&R2&X&4X`yOuyj+heWzb(ok)_?6DvYxmJd|BVX&@=ah4#p@6Fi9StNH(XY zee$$KJUlDD_=n+-kNYsvg7THR>jZ=NY5+H;v96v!e6(6_}> zGb4=wPkmY28ypCSFcNAma{mV2Z5H)Cn8=6R8;|dH@dxSxzQ5`11>N|?jnf>pMc3}u z+Pq$M_~Q8@K{q8ph4h?*4wN{r{?tji)<#O%{l^Mo-ZL907 zYsHqwRRxmGN0pB}s$M1Wp7z{C-_jqlGx@i>|I&x|JWGzJFn3dZDi<;WY|{RDtldgZwP1hJpXxBp7X7}rall0IEVnMdn1nWPGQrZXR%f3 zoaH1bW>W!F#?PUA-??t^l`GMLsMgi7fTS{e+nGazo6uZT51t+Bpf_;e5TnbDXW2Hs zxza>=2GCVuf2*d)F3I`0Z0e157({Bli`g8rbxN#?Po7I2$SbLKtLfucPD2_HNilgf`;J%18w zh?=$-m)x*-l2&(^3ZKCaCj8nZHc@y#GPD!Cv>_j2tbUFa%FOEGlSh?BZ8iuEy^9rJ zE|UpV>(2D`ECMu1ZZe0IbcozAG@}VJo`7;;eJDRI+V!HC9yrMyg=E?L%j!i~qfSYq z^C(x1X^Mh9x%+!|8l>(PeYPOm0TrZ)P z8UvlED7v&xpK|<%)K-B*2e{6vgi*LZD)3fTOuqcrN{p=i@=Q@ONDR26=*4$ER@*0EH|lCzQ=X-L$9ifFqNM_(hMyDWME&b!rA+NQy3}Avbe3=P=E2|Orohs-sI1mD%_Iv^F_SF2~ zKp>B)T4UrJVlB8|Fz^^b4S_5@@BSok^GTW7@_Z4G1%fpf7t7{0Mj0&#$sL0+`LFbl zJ2>mXwD(<<$6}P8#9ns(B&v6EtTw|w2B?i;1E^!5FK@r*zo^)<15d)f2sT_9b}S19 z{qL_zz6e%l1SIM|YSGCc2*Q*7rQk;hYJjbz$Bx7qT^ z_p8`dZt}k=dn-FM1td`U4yny7wKpI0?xxbvXsIBI6yAh>Xq_06=!{CTl%exrX4vwL zn2eH7q>3C%rUJmHBd8j^MXc$do!T%<>FEJv1paL;1V`<{WcsZI z-YismS&@jhpsr!9PW|baZz`XSZx*H^V0zGH930~-wdFg$d#ivQ+*P3Xa%!U`vV2AL zSYvzr2VGuBQfGCF9f#1vcLC;!y&wPxB$x?yF7L5Ou`3EC>SGPyV(Of4Qy{)UpB01(w<$|w#azYD+g^vY-F3S1U8QWq{F<}*vJrVF;dI-llc0B% z2O8HbB6ay-IU=gy*L0K-94;JfA(iEXZIFfXW%R2Zp3nUpTSFmje`}cu_9&NY;^Ove z0b76WrpZqqQ9?xBRJ}()&|UO`gE={^Z_K7+k5!fRE$67`-v%y>p9LiUyFfP4%LI@V z?%P*p!$owzv|OQMN3ySJMh#I|0PJaM#Vxqxm;fWzY4{sr46mu?94v_;p(Vg#5F&SN zNB!oa%a(GlA`$a$&5aE6Qr9XFmXu*Sx|UIKwvdTFZxdfMXGo4HZ~DVXsbf*ksy2Uk zd363*$a`z622eEs>@E$Xz8#{dt;q{$7^&p!vzF?^GF$YEr^)=Cs6fOgW6?m z9IRYCvQ~;uwKyhCTydg|O@rZdU8qE*ThYQ1&onzml4loQ<&~JG``+5iwqezJ0eCr9 zqEpONsJR9vsER#J2klbdaYG`8}_$x~Hp>1B14tIzDHmVjOG zL|5=Yr|ymAN#n_M`&lSquBH_J9xJfSg>8&Vn|iIBy~du@(=qk*(Fd<6F5gA!ms@cZ zR5*L@G5Z9@XvFxX3s~%CN`V%Ud?5Qi(@~H{&>dye=bDCW-#M_e?a70tvtfj+!7#qW zJMi>db@|M2<57``>R4!;AV8fXBwt{nxUKr`2(P2LY)Ncnjio#8!|!$vW(Te8PpG{G z9G7eUFfuae&xyk`)k?za`n4|^bZI1RcKo@_#1)DW&yn$wGynHfE1cY09M7IfQhV>N z!$pfU_dG7u=MF-6`THxd!V^pSu3RZs`LwTlk3sY(z&uyMjad@R1~c4kux8WUeNEH( zWHPgayShipc5|LB`QMkJ1u$5BQVzd3ZJQ;xk&?jeSoLi0Y5=S2Tx6_oJcpGoaTK;e zHnR{gOYd;FLWue%e1F**(Eo-PK!?Hyfb1G}u-ovJP2oI12m&k?8X}@FOw*n46J3g< z6CQ(tH)2vC1S?J^^@5w4EwyE5ZC8H|=G*)ZAYBg#By0a+2 zGF{Q(!3R!$`5($>kGxlZlc=fqP!-^;J^}WtOOFZs52vm38C| zCXJ+Oiq`j8V`l}aIX$Tk9`d@0#9qrvNLs#|Xni@z=p8uvTb# zc;bkS9pKP9DC0nwUqrD^SrlK?*WM1bD0UifO@@$Z)N+FY+>s#HsQNu!_E??@rGK6s zxRb9FuM;$j@1T8uSuskzAyCuvSy>j3gME^1&OBgrUjyXSb@z*;bVZ!tiJUKiP~aTu z=!v=_rJaAS^r4%&3nt=KK)@{%-nC54pPG?QE3rbt)A^LAS~QP3{mcQfn|3euFAWGo zt7GlBgfgBR56IH~YN#f6vMhmI76p`mU~WztgE%!g_H68Jk1P%-Ws1+g^ZfYr@APT? znB0Ez3WNk-zg+P9T?4OXza}-JgErU^**#vG&+n$uZ}=Vs=6ZyYeVaCMt$*_h2B5-u zr8(nL{EGS373dK5v1H})7jWFKl|%p{i{WDfE$!_GBjiM+*>XX7&<2(=z@;niG?70x z>H{B@tMW#$n#ZoN~9CI_I7vm|=@)f{;Fpgaoc)@@|47Y5Ws zA%_lViM*|C=bDHY8RIry&sgCwK-=*6{oIQ7U%R;zT)fjSRtO3u3c~_{Rj#37-Sy%KehWRp$!onG(n=k|NQdjIWq{%~E_^D*x0`Nls~0{!69Y~a7ag>5jM zZ8x(FE5q!nd&48KvRLmh?B_kHR(-f4?@Ix_+mb#Zk`dK1j||hUX{luwwr*$O5`&_` zi8XcR2c8gEG3*H;REx2l^Sn4a3;Lylzyu?{n2z)-5ZUp{MU*X|tL6#E%bBFpR%Z^%PJ((caXKd-i_ii>F! zvc;82JE?M7Xf0~R;H*Wk5HQS*l=8a50mM^ryap}fgwduZuhX>DC4^L;O{WRbiz8P; zme559X)SW{df&o8Vf&M?`t}(sp|9(;#B^G1x}&#^#85hK%qHsJzld=ao_9CxP5{D! zHp?y?9}6K3ZlNFMHzrO^3C(+|v;2g6U0f_vHxczjjM4|<}tmXA*LA#YqTbvmdx`4n6PG`x!E;*DvmvFnOrK{(R zXUlpTS9E{tXJFfdN+(6+V5xr~yT^XOXtWEp-M}T`)ssox>z0&8?9Y@fHlWdBVw`p8 z>hxaInm!9=*TP4_EMFw=87j!8FHWcRjW<2*C2o>5nmtE3E?20A4MG6OGWaa4;H|` zpQ>-HmCvDq%>#(;x>Kz9zf4K*cn6HxUpGnj7Cu_KZZn8Lmbof^xq&qg$Q*5mF(T3R z`k$4uqZ;=zBhsgy;-8LOLcp3Gb~~`91Tv@cQ^1LDC9m86^yCa`clSkI-zO^b+)rzJ-_CS? z8*KLRHpmHKl-_{wm7)_dKKj2Pm+*8@MF2aTt~>ucKjP=p8RBt|YHc4vM0J$2ji!KW zIaN!3B=5}pI!wxEmibUod^jd0sUA8iar~EiNH*Q762jctm zQI+fXKnBZT?Fqt8h(1(vo+d@HCOPKNVzFOAsT7Zk3cR!#xIPpdzoVPSt%-@og~}3^ zQ4Y9!pFmxWLu4jKJK^{R4b9JpWq7`dZ72$r4RYeN0c*Ktoxi}oaeSoP>8Q3Uy$qsG zsNLrwW1k*T(y-g44qk`_%`X3dp5kUt#VUSj{=1yj;owz*S^b=MS^j)v8P>403(nNf zuDMqBFb4Cmw2))(*|epo|KYQ|N&&BBVZC2A{apl+fmZUA-n~4>S2<5zk;)0JBA=g$ z>f1x&f^T)q_N;tc#ogVe8iI3OR_*fMK& zJJT3U87=8(Njm4Gvb>}`J2eP^O>R00qCo5_Izv?KM&ijKa$y)C<2|!@Q+(S9^0lP8 z<+WmB<&Yi6fUu-iLO0d5>MQE3)GO^bo!2j zSnG@&Sn^O=k=Zm6BIE}VDNf&}C&7w3;NlljM`2s8)zC&Tf~2Q!hhHZvDZyoz0~rzC zFj0N_JRxpz%tw}kT{ac0)xGT95u$8TFcXA&u=CFY!aLF9o>B1`V>%0IRVO@e1y@?Y z(PuZ4_KWYHq3Rj564it+S4|KEF$BkYd+iaa$=MHErOBR2>30@r2&k4cmp&eXdklX} zecFA~P#Tm`DqbGEo-IiIctAgUpouwFHka<*&TWa5U@8XoZhy`GvvvwnXL5&`SGjaq zV;*SXmYDu{DvmrS*uJfEDX;pQsz=wpaR}~Ny*0)}%Q8roEMO0*{ZR3x*c}Qe|F0^w zrg7aSz)N55H~8u%SzXVa!yAW~dhe|9k8NViC4pFazb2!pxR9MJlQDA5$?A{0R$ zO)Flh6jv~Wge(K2E<6*NTm#gm-f%TfY z%-uzJk7ZIP#b*I+dSRK%My$_Q5tu8GSgNMSgOCW|q-i3ufq>YaV=pry9B{D<>jj+R zwmRxhiOM@?VXKra${@O|wfKcZ_EG3Vx`$Aho2yi;zA8N+isNAxzeVc~%1Bx&uMpFp zGf`f&j3C3io7~pipeglVe5K9`Vsiuuh}pci7Epb zxW-qDxrkA?vzT5LBfxJqzPkazbd$A|+12j-Sl+?nlV;K7kAx_t%q6 z#oyJKShxJ=={mAeIf@DZWTAOr7ryAknEz&7;W6We1NmYr7!yK~ZXJKWcBvaH#)O!f zqj$>eJ;)2(MA@7SG|;%NJIB3!ljIAAI$>}BTjDc zq$pCl?AoXt+{B^##J?{Wnq5r(tjygSl&YSyZzG{a|&W)%8i*^3=FcTKDhJD1P^ zx!`+)0KJs4J}sLv7xBD7=vits&eKf^seb<|g9+|>M|MWzkRwz)bFP zqnAb~PafI46v17R-F;^83+)thS>JudaewHhmF4G)qiK8Hkkio^CFG1m!18Sy zZ*D{JBy}VhuI2d*^_hWG-W9>Hn_FiiBtwuMv0A8BvP;xH#FGpTY+m}Kh#+p^D-(l%%wZP5536uucJk4eex6= zZPF9>Ixs$Q`aQn+-lOZU#NGx|4@`78#u{8sOWb=@MAw2n*x~QWkiCaAQ>E201u0>! z3F?O01%^B=T*+F+4?s}|z$pj{_grQUcOdQEMKfJ4yM4{5(MP|gO@XBr08!~8>t3D@ zN7;a1M4i94_S0frGReT8X5e-GUK(wh^5icIrRc#g9>hF>-lPxiyun3V5PK8~ywF=>L!( zpUp9Re!S@(>vjblm8ABwz5zDav!K^}#I zYjBhFYj6z-$uS4t<$Q7sHM*z`%xka&CG4=pX}&wEl!OiBeN%K}8qU8JC`?*l=hKD+O~9z-f*XuH`mw12EPF_OIthZmeySa>4LVx9i01bR7!fk?cAbT{y2-LT zDY#C!0HTcHe8=N-UL`cWOEHW1Y^y5{)L%#Pc-2^<c%~ zN+%BaHr(OlEy`VP0tq8TTp8J0;8j|DwSQY@gAw9d7>H^Kfo=LKYzA|mXCuLUl12T_ z5q;2iXWz1(ZmP>2FnQo$Wt}9i{G?InZq>oEngRw_UgI%XkNJ{1?OW`xbBA@nZWe6! zaU4scNZc;-qDYp8;Nt%g8uV3!{3@kbFEk-i* zcA-b5v6KS-v?Tr&5)=-o>_f~vc->(;M-Uf@U7v)h^;)!n$t{F@EeB4XW181a*t`OZ z%acR#B8769yD*3m(IR4ca_Cy;I9C_O*tO`*(i;OEcRvo%YBBNQRCUVa}_L-0$XkV*HYK=ta+Rre4Lei!F8n(jS135Ez7sotxW7y&$+Oon3ueM zI7@WY#l!oy+)bEbXe>!%W1-rCRMT zY*UPSTpJjR1&3>gk=}3HiAlaY(3uMvIXg$yP=4yBOJ&dxrA|*TK?`gf>&5#)N*JyWW2brLah50zvHXcW44b>T{ z+4Xi-WLtV28M=AT)HX*blEasLw?#_92+HbUN&az140oL)WM`~oy9 z-Ta=tj&?{|PRaAwi<+_EVx{1BP?2UibU>wsy){Z(b9fK{G(By;JEYW`9x_p+OKbda zQL1s{y#Mc!^L8%yAr$iKwbY+u{NvgmlaWW>><5^+t?sw>Io9zQL)SBn|K)~Xm;q%N z?fV(RyptX+cdlglfbmAVp&<*|HaH0gM<_(ND1^AieN0cU^xnzyFP`JJ zhTf*7&DZ`V^^($dm=T*^%b1|iri>5&u~#UP?-caIFRIFkzEkT#bUyyFGzi+u@di+A zggItMRpw(*VJw_5@uX4l)6i3P`$d05UbTUAXIVzz29rG!bd(ywpBy-}Wqi2&81p3n0a=N5GjYX?KFcCjNY zV3?)U?5f)v{UbWINGB0(g{KO5>xcj~#x5oT`nfQW4?hGPBYo$6CuozVMKpFelpri4 zLux4cHW?sH3${+eSpy!)R@1zdjmo&*Zr=q;vVa3xfL z2+JtMQiln z%p+G;ZB^>A&DkgKwTOZ=v+Wg$NzfdgMGLY4KNGL^$txMAY-crtpas;fwyl}tdvey0 z?IdR>6*~vbGeS~p!fVcy8fJvJ95Wv_m&ns}u++d7g;VLhf%e_)mi>~FJ2rf2`TT*l ziqLB14C`k1CKif0NV#bVF4?QNF<*6$y~_ zc@p)|CmmwQiqwDj=Y!6#-wecTX*FTF@DEuvmGQ7H%xSp#QQYg1_~a3N&CQT&q5Mi= zw60--%bqm>r}gY)EJcyud{^S zeKpe&h>H~d56Ep(j*3hV+f;^EB+zy7Sg?EOO8Djn10SCVFDOL#LrLNrzIEg~qj2WJ zftAlr*q9J?Cs#M*Mt;rH3|51#ncvM`Xp6JvOrYi0r@&1%%9O(Fu`fA$EP7|O_G`SN zTTt^omJBm2uHoH*`R-5)&O40hX!YYVh2Cp9-$t99-+162#pTFOOEhaf9ZpaXx2wYU zhLE0@i^b(Ny7-&YJ5qUDkoHp`lBBwD`?Anq9kt)2jWkJY%qTLLoWgy+GSpy3AKBQR z<@TDO!OVxunrSIIhb<{ay1DlOkR*A3B5a6eC5-oL&(g!I5+q)QA!Ye@btcID`@46w zP|@h=zs5Sk>a2g3`>8yfaqq|LFJ9Gz-rL#{?Do4r0Ear|)O@49)_nTcO8!G53|dxP z?pU(C`@|EwSvxu&JkhrUarY{S7IsA=Vo zwRgfn4jYFuVJ_w{a$!~04{}=kYB&gX7<2`1Vqrpql=xoVJaS(O_lQ_uma;$ok?&dR zz_3x57&C}gmdN4V<>Hi&PT^lpo{#gm`OgfsGBdrjYb18Sr49DM+zq$8U*cgHlr2$q zJO&iTws&|(#4!mz1!O9i3hHKqv|WxL67-K{Qt7T;bgo@7g{(3{6S{Mj?$ORGZGTiR zkKVN0{=M&f4L_$N3nAFN~I!o1aJ=gJK6Q zzce;xG3cWAj9z%f))xqOE&lYII(gxrP5P)94$SVm7Z~gDg`8JQbzPjDa~VMw+h-WI zgRAX4XBQUYC@_JjVNB?0OkODa1G z;wNUk8nfo~3zzLZ+1%=_DNwjrG?fLyF{!?wO}GWsuiW%n)cnm76H;#NT&>c}^7ddU z>j=jz`Gf%+xC=W%yPSW|{gn;k&*)T%YY-L1cw`^MHvue!`>By#$uva2%T9rNp)s5C z8m3RadPqzRPS4)30@hoKXbIVpRWe-q+Zx7{?V}>S#aqLQ6KC5lin`_cRV$iA;ECT- z8TD|`b9kIp9;0&l2i(N^q(FC4Gm43Gwu@oRjf+kOhnmZ ztjqRd?SvhK@mv!J{+JA|j9*&Vw}0awC@MtpKM1(JMc9|8KQqwwcLSY0GvCOJP02hA z=};ISDDuHXS@sp344DTyP=G|r_xU z%v9qBLTpFA$#UYt8Y4M9h{x4t2nnxW%40h!qCoW?9OCnB`4Rde3gGMR5_dsR?uknR zRGefGBbh;+%c}IUYzys&s^wwdg4^QucW#M|T2nT1G9?|{7%mjt1|y(RWjR->mxPL& z6q5=ka{j9 zy!olTCeKnN>G{>Qb5L6qSpnMe`Ig-yF>;llA@*POghrt!gk!oM#7zkTFI4FK=2qV( zE+**}s1xdwAI~cDa{=-rg_)V;FeyfP|Qmqig;Jd zPgKZQchKS+O2e~BF$G|S85jE{o%&8Rv4u(MtoyCak|2BFVL{qjh>-B%?$sO1!%EuDP4^J2eH z=wt^15^`UzB%zr`kjPk4mz9!1B*mXmC1KV$-RFEh>@y~B;^@yLMD$h=AXwNrKo@Ce zL}{ZQgHPd=Emj#9XhERRGOh3h3>_lhXvf|?ETyXw%;GLrp!D)RWbPw^#~=_8X53K4 zU@rRUx2us1+2F7ZEgn)ju1zjD%Z*UuDJw?Ut9moB^J(ipEE{8OBa!|4a*;5DkROBY z>==U1%5CxK-PBHCHbTLJEY#`D_{^HAtn3yqAn-oeOro&V0vd6oTd;7TPJP1LRZgAP zAxH#aI%5T=KlK8Fd)lQ=&a}wJJ-rqW znHu4k0b6|XW$}G;RUk8b+-h~m4x_%R4(c_S^}MrLQ$xSl1S!QSrl|)?DIY*Z!SkgD z-2CDMq5pHQuE%kP?1bp@m;PT(z5%eI2`b<;;p9;kuj~X$9i3&;t*7h zQ)5I4$8!-v!w(s}@y~Z2t#-3{86!3uC}aXRgWo#cyeFr1)=Jasn50?5IyZ45aVWm} z>o2at{}LQe8Nz?{k3u-?*o5F}3;HV463|6|?dm&Av8qsqJFnQLp?ydB{uMmoc`Qflp@|V2Lmqs3{ z(qVxG+x@87s&fR6va%C+X0W$x2$FvPX1};LA zI6~XVKaHb{vPjU(HsvOB^J^v>n>O{LO5PjSzx585mUND<2DJmuHdhA$UpIo1I04C2h?*kvC-xa>c zy7J_8Pe^>N1aG=@54MM?K%(Iij)NG%2BMNKSwIjJpqroUPH9XpaJpLbVr?mtd#vpK z7oUv2CNkl+b)ckrvSyn&rJJIrMf7(I8mG+FdPUfZcK|JT+;Gp z1YTBr$x$pDv>5fI@+^o{9I?iICMC^E+e&j43~mLNq-| z47kcLHC*Z4Xnpq$@N>DSZMAifDBtF~TlMu!A6o*$=|`ulO|6&xZX#td)Ko8~jVTqh zB^3gw)6RRf6D!u{&94jg8`#~#dB@bF979mi;&usC8CkjzMPk1 zzBQH@%x0Lyq|H3W$D+c2?VbBseDLSuTGo1H)m^E`1K>RVdv9goTh+QYZ)=l2UFuWN zhR6JUHlmQC?QBem?3o)0boN0JT^9)KtoQCXeK|%kw^zG!SAAptYp+G^xlH;}qlGEw zxU%R;u_f*)o}ee|mKAE4}y9qIUu zpW873&3$7eBLCQOr(DU>oo6=quNg}hE`BS=R+cyM#dV^Oc3kYTYpe3xEmBb;#F-`; z69&n@R3>OmyST4*R#|}z#xmbOn4zZqdF-j;^DN3R(y)-C@&0KA!?3DejTj#vKN3n1 zsZqz|R?hjefzI^-Rzf%GkHx~?81{Miq^OynOc|;8K_MLc!Q3^NBAHp?F_uw3ZO-7( zvbAyTE}ku;1k=*=vxVRlxK;&TGMErB3poOsFH1jcyuOj|hD`Kny5rTvOt|wA7F2E0 z_4yMV_rxS+;d;oU`L6{Jt#5F-g<;s~_F!L;5fWeAt65Cl8)!%hl!qNox(+Bst!L6g z%`o1Sev=CsnXAR2(ygZRIzRsz$FYW>0y4@99L51$PS7zWgdoUC*rFwo`Rq7bz~?@| zn+Y~+ffj-;mQvP;6@G zhcxduU&PFVZoO3b3vNxX#BFAt+cZ0;{9O8a=kUQzy6w&d_13Y?R%jh9APL!`^ESR=dSNbdj{E*HpUZ6TJ8LcgP+Pz zZHC%4K(DwH&xDM)Z*9(dO+t*S2X&$fbao)A*&rTJLShC8=B%>2C->=+*NKyw%D(ug z`ERSe3cPDstCtNhC=3u*3yrNJ4Y8WIYO9*?T4^mTVTB9r%I^=cShB<35-_bBgC?sHO*oR)}#ouFINouMsZgXE9H8cY*|J?k) z4`~4|!8ZyWpx8e1C_S1w-F3HyVePdCF;6aWJrujAGj-Y(gy8hj>%webCXqpg>5J=z}rVy8!{pc)dZbOs_%j zm*@VzH}XJWDzhS*_-F{r~ z@UY46*@^u-57+cBajH%(<>Mwn~B6_1U!b@IYQj2u?u*@+iH2|3{WLOEk&mf@d;6=jC8 zfRJm>>=%w1$b!L;4)Y3p!$JN}l9J158tvvEwQpoDv@KlSz5+;>huyj@koMd&*tp)i z=@u1=ifLP5krH5X3Xw5es_>hLInv7dY*y=M_kbl~^a$Y=R*V333Z;n(=m(xD7AHF} z4oeTq)!9Z;b`FV%hhapT=5?|Uu%;zk_ULgVWAr9yPRJg@yDCnPIo+$_hS&*-?X2g^ z4zgr$Ad>36Ig!R>LxfA>6bHol6@5&U6Y8`&tF1$lT z3qXs6xsB0IsvJ~a9UN8k(Yq_@^y&I>ByW9-x6)V5fH#PPhR?tFlI3e^-}~TjFL}2; zh>G4gijO+@H$EF@N^2#fZOM<9@hp-lQu#=`&rB32)m5}YpVIe=H>Wj$JJHkl9s3)K z{e88Q9)pJ_+1ZC++eek-X`wE1)NKBugn^piu0c|*>WQk7lJqD&)U9JH7r96g!skV; zg@df#{jj`@XPEhIf&Ye#V z^mD7`^NPVzu+77FEFl3%lygFN?TFIB#q*q!lVOf?MSS%l_G zpxt811CFALgG$6)RYM;v2TK`>aJwDAEcit%(pWvT*b2xvD;iK@L^eITm+|AV=r#>6W`kno%R>H?-6QkH5K6xc_ zZ17d2$q;RO$&R{s!7S+bE{t^DgYmZUH$sAzUA*rJ`9VgT^hB>?)$I@GU%gMWa{3*j z1Ye3#4tzOzr3wZUPJN7?3dC^O$EN$=-YLaOaIMVRI~D617IA7O8SD%l8kq6T&eZGE?oD5Mt+0EAJVba?o8@_xf9E_(605Az4kI3Zc+E1(&u z!`B^-N1W=hx&W7To7~}0vpWh19k6N5c&W!osuiP3=;cwXikDa|5WIj?;PFV#cm_%s zbs2lfNbHOfcVmU^X2e=6;Xu}9z!5gl>^;wGdRumVJCC5~YNnG!;2sWV@Q`VEUrWGG z?shx6hntIJCne)m>!k2Oi`jQL)~uZxfvv^H33li@*OL0RoXc^C=a(`OfMPlBiKGAnpMW>bZb;z&E;Bqh5wuhgL0k(S%^d!_At zF0#nQkjfo;R{`K`Ptr&5YVaXhfIE9``talTLn(sH6wf=>r)>U$3AYRAr^gxXD6ihr z{L{8^u{R03d~9p#W`BXucKUkY>&!A1iOT`FVSFXWi@_t@1!)zJN7|lStUP7TNEBhi{JTREnEt zzdFLE!-Z@jHFGuQYHQW9k|pnekFP=vJgERs*ze&piyG@bhc^Y66E#q(D3tfS5)-LF zN_zTpS|x$#a;o&oxlgGD(|YpTyZhFZ<~A}DR)5N~9n8H8g5(fv4l>EK1yBTTYt^`z zZ)-2AUZs!mF8NM*3D$Z_HUeUU!FWQ0n#jp!s;{& z{=ft0DXcf!cuCf%F>7g_WY4&I)(V*&uYvyx8B}MYN&<{bO6hvAoUtsrv(6RlSjhp3 zq3;TaJB@My*21-=Lw4CDM#D>t6OGGPyu;?#2cP%)Q+ zX!tFMeVg*H)-yndzhEqa`~FE}yDwmi+`d0&cxWF+U$)AaL_U78Y#bV9>OS??@*c;3 z!vHDS)oEn>!R*lq!Q(qAbP2};a?rb1YSQ}AA~bL^v-+b`R1=j;>U0USGjIKI1Uuzb z?B{lxvN}FZp6uX^S$mpbA_C?6X%7^ol79sSIWc%imD!h`MNNC+X)$`>u_wDhm9Cyc z{9OzF7P7xJk$F<49f%GGqxqXiatbD+Y|7a28zwi{{$x=VkrIqW@!sjOmh%9t>KWNS zF-8D+N7E^s>ifNYOL2T2G3&ccGhKmzC9~<2tke_DnXk*j7`pjy1aF6%V5&wDH6`xm z=~3(VjB{jhJ#_DN+mG8nmCNSa=;yOZ*hr4R+uebqipK6_J)bMM@*N7u$_4)%KZYA1 zd`m~KBz`q9rZ|+-nvUQi<~LYs`=AEDv!Imk7gGvnfLBUf6--zJu$^yc2*d(^F4zoW zRm=Z%H&FDhX#HyIHS!ITbdz`OXz=-@FVck#_~MyboY(Vy_V(VLsym8z+97CG_*DlA zHZ3;mbPnM89ieQYP}_K3lqcw|i!isfxSeplg?_Yewg+Js)N?D;m_cB28kYv30Oqqt z`Z94Y&+01e;+JL16&igUfZ_zc{Z}N;!CPbCx2~Gp(HF zwTa4%w2#dr-vv2{_;Z-~VoI*uwQ^&=)9QaKPW|t|aZKCq?*4fYgvdoAu+8L|_d^DB z*n_1&Zwd7OuI1b9@NFTfAGycYER?=_-H>{UrMSL(!MQFD6evI(ghY5v2HerVqi-#5 zy(T4)gThE1Cn^lr@a`No;kO^ZrbzxRZOVp#@eOH#px22r8wE%%9j10bparIW(2q$t z(tOyckfeYi=V8i+B<+Av<^`#KsB+EYZ)56savXUYZ5Kusyg=E{!i2y?&~@Y3XA{v{ zw4~TD*6{>P>f4+NEvg`X86n%WPfZ%@m1|7ic@fV;?X~XYa~dJMi|bHG_wWm(7S)6lP~yV=N49^MST_#c;)VQhj?XT7K?;ijeL9K z4wK~uxkEn!He~bKQ*@$~ zc49KspyY$K{tmw4{nrNW`MeD;#wWk=JN;_&-XCd|C7n-cs3CRX?E`&3(A8vR+hv)c zAsYXjt)Lt6{%GB~EcZHRU*$XfHyYbqOp5^ccMhIEaw6ee(Qs3}2&t0aHIydxeEgD8LbR9vxbA#-m|G#4^SF5Oc<4 zpfyDnP09a$XFotDLA~(V`i5-e#$M-yR()CkhcVsPv2=iL@sa2-&t=i6@ecp5H@=*- z`P#VNkFy?=cAw@E5v{>g?KWJC1UYCQCz%9;?Z1E4d=pCu2PjNjK9Os;efIS|b^Q~r zeJ?)khwxyqhB_p&B5jj!t1fTwPz^@Wa9*w7XV_r$)2!FHe$?;Yf6u(X!7#J^z;{zt z2K2wlioEH~YnKN*qtCP+T<+%=%d=l@{e$ z7x1Qq<4;o}Cn3kyz=)MLr3b1~33-c#Y2P0-aYe&2ibY*l(E8i_;(2XVVrlUUw}(S{ z8p$az0>faWxPs6x<{aP-aMx_#ORMu(?kqPYy`d!eiydLyTcqnp;Un989*buto4-350^?P#6+rp!~m-gcV&MpAX&dD~U6`D#pclYP&a`|}C^ z7hP?AO+Qx>3dC^VDs_GKBl^pSV#={4G+?jnaYtGYqY|HR(3n3*O(n}WBJk8t&OZ@l zDef;#6^khWuilnEhShF*Y@125=GLQ*{vmLc7$j3SA6f39O%d1Nep{B8^J02UdBTG~ zOq7NvH_TlPN?A0dD8#mQERf6B_=Zm@5G+g#Mjp$>I|#h*J~rt(>U%UEM#&ntVF`i$ zdIxFViJ)MMeq{D^P1#g4nEkIYrU$+qM{fMb+JqbUlj%P2re*UpK~edA!G;BQaeA-r ze-)MZV|skL%SW|E$|q|#)dg0&VTKqW`BPClMHGv^G9U5=?Pq3^aXH|YJU8#EBqF+! zqK-}UsxbCUTwsv9`A2If8Mi-WM24-y6&vf=4#?R&g5(BK62=%`agvUXd+uep*HH2_ z;AxkH60AEwQ~~F^p9=C5Zv`Z}6sLGTLVyfo zQggw=g{mAj@UdJCadxZ81G2Q)q`-xM;%6a5O%Kh&a!V(_PBnnVR6z?+iSP(QM#U20 zGdwaAM+!`7GwZGHtY6WY#b>ikJypVBUdI$u8xjaM{{5309BTFefPprmO+k!9b&kv- zw=+rFjlYC(KJ~lS%5^1SnAoV&7*pQh#wIiJ7S}ZRRzUpSeGrDlF0Ghqd*){ay-$-= zO(Aicl8L9D`8WmMRh>^c4!*K$R$V1*NV7YBc9wiZpYnkRqfb=spq`ohF9#oro0AaMz* z8xf1&GI^U{_ncVxYH{0(>r?X>FvWJeZvc~9I?=VLgPklJ z>+#BH9}Pkveu|Ak$%uMB#dvppVXek|yMnu7IE-pERT1*pe`qSMMP&3-;q>S3s1aW_ zoks(U%e(_MmKc@fiWLAi1FEmKIr5F7esb`jUcrwtg_eK(;~<}c-*dPD$lT?-A?>lJ zC63JBFGhB0(N^umTHp%I-=%)f)fAj%FSg)|q|prn9m0s+`im2=klzeD0+$B7UeaHp z+)lL65$0AlVj2LB@9K@H#z_eHxP$kGVd)di2|OMOeZ1S2J7zwQM>UOFk=k+$R^;*C6`Fl8HyPWQ7c-sJVm2 zHH@e2>6AZ9zJ}MbGmG1hj};ii+Kgt3F}Qz|@cAck=l_4>Vz9K^fu!jU(Oi}t*_!blLF z$#fM40)w3|ePX|XthvfeaxYxI7&~^onYYUBiq#h|or%&-v9V(>*)Vp23-AHt{58BZ z*Hx8_Ip`k6Iui!QZhD;S1}+Ai(1J}oPT`Qda&5xrli+E!Otft?KdA2eiO{oV4`URv zJS@!OHrd@r)zaI2&XpXeV^4Q?V`AyIiIWUgubGw$CcDtB#Yh=Ar4ob608lrUWJf^o zdmb?W&0;NtcBdJezUIPMC#g+ss(&a3M4rb!i_^5QTe#f@jV_3Uq$1!)zj zibVL@HQFeL7{}G+(G0z2+555%x8W+68`GA#jJRcZ!;klb-=zy;E{H4_Zs}MqB*~^6 zfZErD+qCm`cVV01$H(wGL^S)xAH?gw@d;gXjNW6yOfb6j>eK=DoUmt{B@-47EEpAb zae8el;&62CFW7#!5ZL|Hr6aK`d?ml;sWTwLyZs{D4b77Q_#l$%C<&tGA*6P?OSQiuJ$;UGb#myhw7RTOFxcraH8=xq@i4-Wm z8(infn=|+&xGUu`a0_Dz1cOgT41b_bZu^cZx%9uQ=iNwpX3|4&x82nr=DtCe|4uPn z*(*43&R=LdmJTTEy`O4=nMV$JBHW(tE273vUeR`2YdSOAK6CI4U2uf=T>Ng zBc&aFqLe&}og0@f59Vpf0))oVlX@l&Q=F4^j@gW~(|TT|os#3NeKP8EB>B&@gZBAV z$>x72^RCkBrJY`od<&7v7BqUt5G50A4@FZOBF{BbGnNo@hX~( z^}WnVu9$EvUY(!kY8lW8Y6hKA>r&C{UYM{c&E697ZLx$6R$}@El#B4`;Y#?Tbv0WlNp)alGURDKXEkg)h0yoK)=n-=V&Sd+EVv{oJPKtoc`0l%jcD ze2403yaLJQ-2Z#*BE(?hKbaL;xNe_v{Hd-Cs)QFA>z+Q>7h!H2T3td~Te;9^Rnl$g zuP*$rQ%wN1Z^P~`+!CvjM3?knBp&AEJa)X3*=H~|KDMm*a4mFhVkP;g0BI?-*cpCZ*P6U|${?aG%@L>ZFHoz2x*QhVuTVvIs);qyN&1fImTgCP@ zCtyk2iN8mW3D0pQ&|D1jmzGc+qT*F<*`aXrj#cV5M8h8I$b61!7rt~g3XWwz;9TE)XY|u?#QL|rgxOinn}ojziQit+kY-<`M=i| z)@qC_sgSm!5Jx0W?b(9tYYSuB9j~b5M{TuxVd&@1wJ7y27r$ojr>|ol#Bf4k3*^%Y zQeB=6-OowY^640D?bL^1o1uh>W?{d}awovX%`Dv9_k&cIPjNHU_R-UbJQ;1o8RYvH zi+AxlqGl+8Q98uZ_kujBbqZK@(pA}FDh(YPE6AgS$0QVXc5o>|stp`4Q|x9MfHtyw86M{SL}<7zGEN&5Y->D)m(GGp8=*mb^< zn}pZxbnpRLV7=%x$1ki^&Ya@SY>;Bk?E||xa2WBxmj;qV>X+>76W^o;Lr2!8a}$15 z{&zPcWZv_`SWYfx@;>nYf#Pv@3D4iXezPU;H4eW0$u=K%p}6}0vGtV!QLf$EGs6rq zbPOPZjC6w=kcLr2y1NksM7kShPy|8g5-9~l8l;9Eq!g4cr9q^mQ}TP*`#tCEz2EOA zKbiY}*1guXuHdhL|J%?%%^9})P?Y+ZC{1bO>!f|-f!u7vN`Xa4UMr3Y`;Cb=d1+8t z%nH{EI7S>dT_-bSYI6e7q4?OjbJp3!iboCj=R|c(S|~}5mx~XMf%!s(T8uZRp4nlv z-*LCmF~=0VqC^Yq_c?E&sjX18c=;fCvL!OYADnDjs2rN4xotExI1C&4M(z}>g~s=f zy-o|F*pAYp;d*i?sM|dooNd;M@Z*6gxvKIx_ky=qs&&s!+ZA?Vhsv@o4x@$J+JIkp zhy-7;abNRw=yD#B1)biD-ZjgJ>o9?0blc>5>D$qgu3JQeY$q)xROf@li!d!VG}}%b zRUZcOwkq+l>Ed9`!Ve`APiQ=41a8KSrf_`EpHi_Vb0@;6$;Ui3aq}pjT!TLc5v?D0 z(MxHsU1L-twKemP8yutxwn9x!U2S8H_<(6ZVC>w-mCg)P)8(=A*It(IzwP6I-<|fi zq1WuBFEXkU2L}wG4bWhK{j3+ztFfak)N34wv~s37#Y}k=!uycytcB>hv1AT<&SDt} z6YgeqAz}@GaY=A>^FBlzjK15W8gl1FFS8JH9$XT9IY;5XS@kd&TwvU_0BP_~(kNTY*6wwGp0FJ$n}GE>TOwh)SmQdWv_b3zyA z%CfJcRYNV^z8}2{#uhk-L9mWOQ2^&H!S>0u;w1`>3%1CCRvK& zUfkzs{TB_CxB$oe`oOyR_ikuijhomQQ!OO+DjSLQ-tJ9%=zWJX(le)4PfgH>OIw&Zn}?wbCOQ931_9_^Ch);dPntY$aK8z4yNUR-1*v)iLb+O2dI({8WHZ6~ zyb9X|Ndjp`QSCefqTJ&MxHX2J<32<^u`4BX5j2WMmsihdH@I1$4)7U_Ce{Xx$xGTOD(E`yDuO25}zXEuMuU0dw)rZL?xG!AWsZN+cc?s#2 z*IoZ|ZMw2B_6HbYHJlz*l9H={DS2oTN18}#UZWE+A=D192xP7NUO|W+tmEX$W{(@s zBa$^D&j|-sC+71j(DF(p_NkT;2liUMfPNE{G+K5gb(nyab@d+DfCD4|u!y8{`d+Qb zYf=!Oe&`)NR*5m1_e(Z|fK9P6e-K^`;6ki$P!Xl7pj0~u@;vu4Ak-qmob01*4Zr=s zk4LFCg$!j@pq23wJi~F85Gut>y&|g&2w?Y7w9y;3VBzuopwZ=KJ3(0pZ&ZGV_C8At zM4?KZy=)DeKVtulcS7mkJ*_ zQ25g7!(i!hXn)n9C;<%$u~*f!K5ra={e*|Y;b)h!hr1mA332>iz4&GSjQ^v$cqilA zcRoI`Na8&T@ow2`9xV=hSFA$S{Dk1S#OZx}!b+t<6_)4J`A?OpuenoUap3o- z%SEASR7wed)d_Yt2!?^>HnKW}x7>*t39~*GI;k=U=|B@{=^|OCN|O2juh6a9@157{ zjprjH7IjGJ-R|6set0`vHHWcz|2giKTQGZl*bexP=aA6?tsjs5eVpo4C(B0uqhyfr zzQvSEp4(6QHIyf?wAi!OFMCj&9PlVZ$AaO}9UvELn-u}t@03AI{8A%B2P&Q~pmwNz zQPyi^8IZv9=ToR|N>zvJ-JtzlUv}#blg68zIJ-)A`%&^q;MeD+G{qE|s(0#i5?RA% z_Z0YEumXAyj>YOIpN@e_FHViIqVv4s993(FJjyY^q4&hl3szf9+d08v&D9`Jr_s06 zP}E?;P-R3X@FJS)!>Q9hHK!%G8u(f5=t%5y+P%xpGDHV&DPS-TyoF%FhDIltmQ_u? z+1UpR!3)_N#uR^VIserD;i7e{*v9h~tF+yRnD7aY$2T2Nd=Z?%rPn{_3rI|WEg#ZT zY_aR`mH9AqHlzTUn-U^J*R;&R9E}*w_`a*4y!+$j%hqcIemXQv5@t(4X3g9Uvoas@ zRF<#o+!!#Jbt#{X;PER$#$QBiZ`qLdPoo~KlEbWAd>}MM%8n@70`k7KlW*`daad$* zo*pM)!hXEnho!g4v4;d~>Jt#&*!9PnP zNgqnL57xY#Ack99U|nDK|7jrhe-*>x8HBkLRPr45r{QiT0G(qe#%G(aocl{hqqEFJ zV*(Okh9CdU<2RVg=K?K?4PACKW|MyGTyw2Aj-T00v`Q%hi41*%yl1DS@Cpl4)xD{d zZ{k#PJLUP%lD4tEUd^--2R1gE+y( zM@#sG6vuMeF#zuwGg@%sf>*S2-Y0|<`R)N~3oAwl*NsnhmPh4Yo?rni-QAcy1wv}) z+hjj9ojvyA%gU`5y<+eBfideKNMv8(Q_K|jEHV>2`E2G^kUBzM_xk}RYfx@xUG$9E z-QW0Ddi59nm#)9fWCis}@Jnx*+w6t`eE1dQQ9_dha|4AdWhxftNkTel}WyTy3tA1S2IeXX&> zp`E&GhzR?Z9AOEK*>+xqdB#QVHMRXXETx~vE(69z3 zgwlUEa=xE#hhss>2~h(LNL0Cm6GvYSg@`xA!gb^hPt~Yx?qB zvfElg5{YE9em?>{m_F!D?Lir@uMd$^@7B8NEvo;sW0-3LDtcY%Y~3;V-PKHHfX=qQ zdUmcd4I&C>p|Fc_m;aC003at4nR9e<2HaSE@abVA$0t0m9_mGZd%0O-%sWu{Guk(n z9wO7VG2jD@55gBX4K%k$S(Rg3^!QvEex4KI=YSDc>NA5w;F}OCqG5VIjf>e=r3T)m|iozv;$W;96tJ$^{H85D?O4)p44F>_u zhFoi-o94n5R;xn!y|?%?uVZcx->#Q=%rt(ZfRC~JT>}~JmTDNp^;9jWv1aBmaGv@w z9j6gr9UNWdZgqi3n+oZfF>>zmG>D}DS2p&N6?XhoP;hpVMmv|M<#k8Ts86mRs~C@-p*H;&S`?S<1HZE} zg{XQv6u^Si7}!hQQ205^Qp1G~s_4xCyP(9|H)d(K@fHOBMy8)5;NEs`wh&tWE5_&( z{J4C^m`KhP0|*bNAFCHW>5p!odDxchcJzNrMGZ*oG?$daRKivyS9 z?Y?w7y-2XCQZ4n$xtKP}I^{bVt(D7bHe8RRFS)DBfva0GgX$R!FyRdMWNQHM8L@a(Kb1AOdc6 z^Cvvqf-q!hxyaJO1efI30CC&-?|uiKlmx%qfa@&9n^SHMU5Fp*Ul<`GNgIYPR>LVG zb%E%u4eCu#+l`>?_GaM>uwy5XLKDI(26&99p0x0!z#lI*GUVt=Cn1hk?O<#!3O*R| z5{L;zFN;?;fg{aNdCfBC&JVy_fWG%OeDd1fNkfXNhgSzIHJs8dr;^H75hRykI(*P5 z6D-t+mhUoU3gp6FRLH@(;sPRfa$JIL4B-jh&{}90_chade*peha$rapN4M>5 zL%#0X(5&Yt?^q}~mQ_THMcN2Bzg^p|#v!)RB5jcVfCgEV{j%-_GY2L-gSd{}szzPH zxOw(5uL7Wy=pB5l3iRC_OmQPMIC=qJLy+?wRkXls6><|VDxr=V9sv+CB}(wXMNfSG zl*I~mROA^FyJ#OwV)t`3mWEsp!!uCfW zK3zEV;rO)v!-<9hxjH5XIQw6?w~9-uqL3&P4aMvFtHk75WARUxpP{FLZJW`F#cJ3r zAsHK~)PT1JwbQ5724c7K214f!UF+41MIIYwvQSXSi^LA?DaLE6x(xP*1AcHb{^MAC zxT9i&+-ErxWbGgLI&$O74S?J-JNCH-PDaBplw5is7TL1m>A^yujXh5m-etA+$Pmol ze=OsU>hA_E%~5OrytMe z<)qGCH-0+*tCZ{W;Gq2BL{raGL?i_0oB?ADmHbE>D@!d{VEA<^seX0*)QGA>W?0;s zL~5~f?9Z8kuT(JepTxoV0&iS&R%({~s&7)bP9&Yi+jSYoE)RGYC=2Bb^}xBL;_;|f z`Q$dd@gDy67$A+PZ?OtDPM_QTg(Lsw&Ye%>qWD-9MVo@iZ*&qX)}WRSeY5#nQuegr z5s(VP?kkkR$PLbVbba;8g8#E9zO{0f0Z~S0A&D=qS$PUf4MZFR3)#KQ6}Qz^%-12O zSS=QukeOVaF2%j&rMP849wha<1&p`JbPy#70bkNmL`os!<_dGxRgda-O$)YcE;Pz| zn_Wx+v3#P3IciSo&KS;)*94szdGPG@jY9|d#SB?-@Y--*VNtucw~$&H+9srl7Zm6C zxf!10?L+#I>4;x~G*JImb(vAm1RUM(aW1NoP09m1X@}L9duFXveJJmTZGI|=-R@Jy z_60Qf4A`CXhxadz-VHW193E4o(?5v~D3_pHuHX7ycDVSM83b8pm}D?98458!VzgQP z6pLIiV(^(w9MbyN;OzDULVs~gP%aj^IBHJnpOWSrc?x_#LXRZ2Jjgx69H$mn zna;0I5<~LLXAv|?a33H)an`U__t@qB^R3&fZ7>gBmn%T^4q5S}2MmxR?9^b2Gi#}R zNyU;IWcHOA?w?q7YFZ;%St=}BU*yt3-ebUlC+?7P%>EGjFl^We&Nq>2Dli_4{WhYL z`lPss*W`e`z8;=rX+fqq_8O-yAd`)l{`s^Qc_e*C7}k%EvSKK#A0yw$i-`^x+NpZ% z=k9&(w8+}m`DT1nsxHQSLGMUr){JSddwGj|6Ft1D!)LP@nCEceey`=Iev8}T&uqoN zeVSMejHMVuXVlNbzh;>6D||^(zo`!n#QRM0*1VN#;5uwf$NpOvNBkZ{-N;6OPY8uT z@kzL}5*yWi=|G-x)jSt<@UH*alV}&3y$;>3ac;E_bS+}l{3NJavcvc(j-%U~imarg z-7riY3Oyw7D3e?#Hd7Xwi$SI=f*^`u)wzTub0$i`dLC{FIzAi;CAoxvme71~8Wx~Pe_-J)v0mcZ` zr@bzoal_N!9x@l!_0Kx>P_x;f1`!u;_XdR7xx;q5Dmq#PnEtCA)(pEh>a-(at;gr6~Rk0g11PGVs=Oe&tQra=SjH4Ei~#m z8D>FW1fXCl#^Jo&JG-p#qbIq$GxFyOENGNn@vDtyleGOzQ?b{NvMeR)&c8M1Wr`ha2)z8-UFG`C z-mBzOlAwAdXGP9b(&G#{yG_Pl5}~9JCvEomn7n1Z;VE!{^6(&|S}BVWsgnL0%Bg{IPrU}dXQ(u zroSDfV`*@Y!w$DlOnve-mnLn+Ixb+pL~SqVtzKRpD|?MFifD;>+^iTAy<5}f?G&7^ zU9ws)ksY(I&A-=XV1+>pq>{yHep5wg7JD2z-s`b6lh#BiDl79+i{E+pnceMOQp;;x zJ%T?dLi2})V$^(X2Fg&Gj*mcU$|x1tY>&72>rty;4&;&SSPi`+N&DbVHDh~&%F!2Z zt03Y?PnW4hJ@gZ^*mRGQWyk8u1YIfKgN89YcMIxpLDQms_$^6bYVmBh=bRq?F;m&0Y|BSb9Y$+}nc=r4(JDXY&Mo5^6_jv%JxXIwnj@=do(5}_9@0OvFd|O*MnbD-E(?hh?$pZh zS>Rbm!wRAb_T(SGc$W_Q0-zCke4~Dfe6XF1BqJiD)m;z-}CXMSDZ zi>^Mz@cif*Sttu4z$N>-!`(^^^;@6Zdz3zV+IFDk;``tPEo;wv+qfzD8$bGE&5$`=Hn+bqY zr;9l0@{@KG_SlZ{qROe0U;ZbzQ#zn~qqe=@Lh6L`FTJRhuEy3TXT$FykhX-+@yeOEowOa`)$a{*{kyt0l1JXNB3l&=s1LMyZ27rgv=V^G^&^r zg130G0;!ZEZs%NN`!4*h)G@rISw~v{{vrIHvqy34Vnh0n*SVI=L7(mWK*=t zO!rj>)9NA;b+K}HH9JYQ>t7adO^;zb>GXmkZ%k?UWt?h?(u3%Z2jX}$IXc_la30Co zc`v{7S>}w~la=n@_@njYTXUA{rTq7x>78^&0*e7@ze;|i2dX)DOi@}d|pcxYCy5Ed1J89zh+18C) zhwE{R1@%7ps*@hz;Fou8gIB@LQtRjDo$_PHqw3?pt&#~DnhuW<@`$d=99CrCtB(yd z;>I=5hqVl%chH#&sdc=a-5bduNS%S{{9~9GO*SUnU?Q^)603{6`}$G2iYbD29f zk4o?x{+A=$OFkX^C!mF zfZ%R`QPtiZ>%_H%NI+!k(;Z2tvtzYFR-ezE7s(2nzZ^Gn^}|&&OIeoYm;5Tz)Jsw= zTWj$4&+eA)A6J#p^l$mykUP_hz$N2C(HIbBy&=?T#bk7$CBkPr^UF(rHG<%he_VmL z+!b#FduMN7j~;VAx>~&{ase$5<-%_*-U=o7+0E1W(9qQg-fotI$>5s5+tvUSfV5ng zbZ)f>rjdJ@X|87e>2r69-;X?kZf{7*y^%8Ye`3)eym{1cI9u>lj7hMW;zf~U7*5h7 z?XDpsgx#^E)x}zxv7kD6*?W~l8h--kumE2%LPk~1aG{c;iRXFEUVB_y`+YAEQU%Jl z{S2y)j#sOXvo$&61&;5H=W`lqeT+EV zL(GwUIxwTofOhOoHr6a09Tk6`R{;v{Z?!L>%|Bz09D$0sS%x~fp$}{UtX)mx=<~j>D)IIv&iNAF z2+u*GzSM4tNt&eV2P^h?$Hog~xA*^TB&mQz7l1;G+4L*^`k-a6KImAJnQ=H@1;qQj zGVS`y%bDwZ|E9;_Sh#Rg6&HQ90}QLqyvapV<|+h|pn_L~N0|y)Ojwj)f(h3sZb#GY zE)G5arNIB#)UL~2;A66iF?sUOIu74fyH)Y-6g>@?b_UU-)x%_2qf1-GTxe}Zcfb^M z(ac>-(nFyzNBJfRx~rr4X7!|8invh1V=rk9hu7{^A1SxDnuo2A(neC`>w9Bi6`#yQ zHXA=OmthRi5lX~O&GADf7rQ>986`^I->BY0A9_vNFB}>KkORk8#)EnftN1B37Vr4& zx4$ssazb#kC*ii8CmsO(s~5kjE`ifGkpCo^$lH$cZxIVeyQug`RnE9 zTi%wfcP4<^POBn_IdTBR=WiTc!0kURx7+{wpGDS<8DQ4TDDrPPUcJQLOXR28 z2iR|XOR6=+vF#S3o)-MV*+K-5&y;qAN`dZ;!3GQ(*{+{Q_Do?o6s)uI)*Ge|lBtlf zl#l7WL*xe2db#HH%7#i#|5x`q4M^=887J6ylNfZy=C`Do59hGm-gGY)-z07S%!6TT z5MN4tsI0|F7Rw~zl2H3fq^-5*+IDFfxR8GwN;B$3iB9G+^Sy#fvNXWfR*+;U^!7UB zbm)i_Es0~lVo|w7DTM&xF%I5Sc$<&ncYTv zSL1(RO9?Rum=ioTm+^%e`!0n@kwr}YAW7>IagmOU$4)`2s8!{-yoI^Lz>rzj8dh~7 zH+u%L(KspS@Uc@;+~U1>Vq?~=3N0U+%_Wm#<9!NDPV3nVfE^72LyQK z;$#rV6$XO0MHK(S?Xl&M7{(+0FQ(Ow)cNF1P+WyJ~2&imdFcY%!sDl`-YI0V(S|Ux+2 zlCQqrc_P2STB$|%UW_^(zT$azn2axt84p`x#qX8W3I{awP1yIuN_b^4!U~y{Pnhq5 zKfe!)cBYg(q!Enmf7aPD1X(0G20)1x9en0b{1nSL&y7#??}+KfV=5~I8mD47Agn26 zyeV)flyJ(RXRfryfCxJ~n}6$>LQPEn-MHLAYq`H&@;`y}?J5MWWckULfWJ_3@+(=s zyx!ieD`f3hzP1DJ4(2aw!atb}|Fc2EFuwt1+|^(vF?%LOwGL1{XmA}4u6h-qGLR1R z6AK)#4%PFjcBA(*8SbSGx42L#kL^Y}V`_RB9!7wN&tdPQ+}lw%uN%bQLnKycrA%a* zxoYyW$YBH!N_8l;_6HXt3u7{|V((Q|$zIwPze8oNijmX3BwD0)_zt$Lub`CuUCa+BMZTrR7#pUXLoX9;H5dG(`-(>WAN|b| zAmS5m*~_9(Bk0gT2uQj9LP4OIz(kSHR%-m7j^cwUc~zu_P8r@sGkZ#p!$I@H+Pj&E zb(=!p8p*em zg{c({m=5HM6T+J5*Kp0-YUgWs@+kuZ9Vj%*N3j#A0lgw^Ku5xdg~h-K!Ho|;&lzDY zu*Rh;CeB1NQ0SRDuvmo50;1in$GYRujwbIyH4Hm|C~$a?J?z+JK~J%1o$%>T37kwR z$FngQTmwNJ7&iQ{iQ$$oNR&w!ain@;HD`rG<%nv{RWd@mmzT9Q#mmfhqS`YbhuLVdMsrR4Ikg9Jdm*|9^NQvASrY z(A}AYGg@reQKd`S_p@a=@fZ-_e#ZFMjl&|#p;_RLLXN@P7_U|=HyHeusW#N68Q z*U|zCd7TW6HCeqmR!Pd0tHHDrp+5z2?^RiW3t$kKXREPg9&j^}H@%valHdx^Wd;}1 zcH2&l7yhp++&6>vG%W0yg5?0k=}#&OEfC+Rb*U~ndg(kRqeLarR+Y>U#D~j>E^;30 z={K0O=SF>b(#f7Oroxpf{`n}?RoFfG_#5Khw0`>bMW^^n&F>LOzn+d%&WWzIX(#W0 zWK?BjuU(KfqVet=qLH_0%^v-h?KdN`pOf0f3_y5E9mCV@79b1?)1hO90)1ih-FdH| z>E%cSHT%jvu9~V3Xg&=;&T0s1{M_TA3Ue4XcA!_}Fe&?M_VMrS z!hd20ICX&i^o>iB^qgnx&xdoH5O_Fc?@BX2hS8d1#4=6tNM~e5HM{-=@u3meI*6J9 z-UFQOjx_hplC+L7ynZz^;pe0v!_mA}zv%FANEPl)IFi=OIJtfFM-!6})Cvwuf*w_JRLy`kWj$hbyS`PBoTQOq1ou;)%9lkg)U9tsl8&?mm=V(5 zO8KK~F-MZh%HK9p4h~X@=Z0eMJXK<3m`s~uN9@*lH-w6i9xcn^rc9sx< zR;oVNf4q%ZnO9(USm$4-V03i~26vcUui6&?9tXp+$daOa|204wVNSVoh#Wy65F8av z=|G2P(U|e6Zva1W!W)B#e|pQW=!c7ED|JguGx)GbZH+g0y9g(2MQxUp!-)ZT+#Ger z5~$QbE#OoXY3?`uma1P*K_fh<^4#cA;D9=Y8YsO1)D-GN-^e$DNA>_%)YeXEOZLk7 zYT#W3)z5!MPSFlVhkwk?BSyhi0A-ik5-<&bp)Ne5OYhJ)H@lITU+Y)g@_v1!*~G){={Xv6YtoXawedeDij_0s=^am`%Sf%vuKQ5Y)j^|BJyktB2$$J%}@N5^*5q%lYh> z@`j@VOpx})j^#Cw)0b94W_bM$T77C9>L3EeA9JG^%DYWH6>vR9Y*zX=@Aov0BWfsE z1dRK@$B#Y*fjrx4;5qr6^tpmo;ngYcdj#5d*sQ?lT0KRls0O!clh=eXln>KD*R1Ns z$<1>#vFKG#KQ=9xZ-qHPoExL!a=Xmqw8yzW>JE98Ycyt0c@7o^1CEUWb=-z1fCf-E zDp0$hMe`OLCsAs9;RSFArO9DBXKXD*Ni2u+4U!I>SYd5G5E;G!>ok8~4hoGn&@IKo z&xk>YRrlX2D~_t`&|ABSxFtk)7v)!{;vL^Q{ijpwg@b^`v1=v8dPA6-b! z5pom~c;Kx$EHo5|V9fcY$we@vB!u*YkK&KUXYp(nvgJr1c(q2*Ht*_c7;L+R=pM3H zdZWQDd?fVkmxtG1O}58n%L z0*gk5Svd6UJ)oTi8~u0)V^lI(zUCz%)guVh6u;YWuAh`AZuelfS-mC6ygHyQs~tG= zJ8e+?t_q?upE%bY@?-VI^qloY-TLZPdeDP4Jer`!!lX?P)BLB!=CDYqnU)@cu7sWX zA*dsX#41_7sbKXf2?ZBD#is^NEebSK=|naR7rXQBU1hL31$#sDaKcboIgP8Bq(Y-U zaYcIY6Z61M$&mH-HhT(1+YmL%BW({njU%1abHKYlSbER^VOxrgg}*$Q>O0a_X`G5r zWIxhFg(Vl>Q@?B(g}VOhEH%pjb();fUkgC#WT5-XR#6_exhjpLKRxc8%(ccm`~N7Y zU9^yu)M4C7cG`)f-5#YdN^3u=i2sCM% z;dM1LM`o*Ng>zDOG-di!w{anh7`qiMEfKvHI|OX*b;=43{hX|wpzwVzdT;;57>-Z; zK{z#11nmQ{Fm_h`rlP`r_WhENxCxKMkIxs!1jd8{lD+Ik&UsqEm!$&v{mn*+5|0-I z-;C}a0H~}_jxLP*7I&rqL~O~l>QoBa@@tUv)pwotKsvxaSpNyMry_O{`S?j*So9@9F^(_|kJztmNg!Sh(9+%Ru&<&hU?|0AI ze^(Rh{bzf4CIn0SVgD}Mp5r}180aLuWM;hM00Tf9P;Z!F#^-5#C82x@4VOFakJL0c zweTVuTC6aek?i?hi}jNww69G#(ivm*KIXMkGagaF8$g<%B(;4ZO5`0$+o7H=7F1Z- zR0{2_0Ae+ak_Y@(#yB*$2GTI_82Z8yZK_N62!&J0FkFW4(XThqoXpY>JpgQQ1P0*F zx!VB>R%(jeu9HImP4)oiEY2R|ehMk!x`T5gn35y4=N)_V%_!S+F8l2B$6I_;E&H#g zlEx;(^g%`;@lwb#12h_i`t{`5pH=`QurSeKd4(K_!j^7F?8N8anl>cvRX4e03fh>c z=xF38?gybuSj>4Vs~H3^xbIQmqFB9ladIAiw~laj=TLR-4lo<$Y=yI|TCt#Aspg_k zt)5Kp>x6uXLid1b<*hDBhY{Me`%zXR0p(un;-w288g5pk(|iOuf^oCAGXAJ_Cllo^ z)5I>Q1ow5<%u5Pq?VM4mycj*naL;yo*KdCIJ}l{rNlcHuS&F+=myFP?>Al&N+>{aD z1IzOpYAMk(k0dr*#bc`5*BKTUBj`q#CQ{$5hkx3m5_mHS6xsh7Ac4~R1Y(-`c*jLQ z^vjj23_#hcy!wQVv<&U9ddyi{`!DzG3|j~Ot)wR|M{QFQNv=C4NNQSb^?bF{#6eMW zDC$Wk)&ui&ECF%^bE5d*ZaTLE$42qn#mDKNTn!S5$@;?1-PNhTiA#(wF=9&;G{jVU z1+8hNj^oh?sJ2jiIWzqmm=$Z`=~_Tp;bPAZPFRZ!f4>38DaOboePos*F69pKy?cG> zDB8K|_#p|13!yFd16uB~%h*+A%^Xr3Kve39MtwJh7n)j_p3H%aMqG1Rn{z|JKz1!~ zz=4X>pimJ0H`fb>9Qmr7S~@vBliq+EB<##KP?QnkP6TxV<3msWGzS1waXa{mq7nm; zgFo zxXm@xoR*th;pp>xDG%t2q;(ZUQ*Lz|c4XmgB<-(QpBJX0ZT5gFphgmCi1N)Zk;pi` zwk;_1kF5FcXTfdY){E9vyhc`v#9DLl95t^Z$>=LGaAU(Y;Svs0n6!bi z_1|h581Zj&T~Dd|JR}@5(RaRv7H2KX#(zx;1`)4`^gUNw%kD8RG&0tF}^E2Xw;+mn(@{A5)z~WIZhgf27GsVc8A-HcUo1bgG!G0#Dnt_POfKj%K%4- zw_tZ*03sHeV`d&>aTWqn-S1z`R(}5Q4qvmKm-g0N6()HP3=OF$%$41B7LD=CIiiZc z#gqDp7tr2_Q5MXwl0Z5x;FmqYbtbFm#|4Is1B~(f(0%8;TUlP8yFK2*-d~tn9oXN& zG|i;$@!60ShFvp#`+gWSyb^utlxIdqq1142WXcORbakz^OP>{07pjT)DcP?z4(pbl zt1BymEskN!cFNv&P4tMCJ)ZUysFw>GI|ly&LX!1bdNCi=nbG%q_2bSFM-*lRKbHJk z4D%N%V`TS!uXmC2@j%#87i6CXQpVslJ=F2>ci?f>8=_l~Q2kN+4=1iBE!goS!gKAf zwdqzqZue6Aw?%TJ1<;Jq>SBs6{KiJ0-?Uvnq(QLb|3Kz}s*n|QqnC-Bv3kku$!k(1 zGI0WpDM%mLbo6+w?1FAf+fVV>OPtud`|d!^rr_hng1}oL%dhut<3Oun?qjOgvkFc% z$0DjjuqPRW12$oD5*IJzg{NMC*k4V>uAY8a1d;k?XD=gplvba*6MQ+@i7-^AJ@Lf1 zSaxQ-$-Ss#mTj$Sj2KYW@P75UMKe%*xL+{H;Qml^LH|wUTq<50Z=ii=LG$oJG~jRy z*hx-=O(H<50{e~H<AjPmK{?sLOzu|?{{p*j#ohHP zGT1~@4J6B{@pDCm@8w&2z?_d(Dels*-xE?xlUi(>!+#X$z%uBXvxc!c1bAT`ef^ZG z{U4dOwbuJYYDq=96nbnAGDCY`4126O5*5wpsLZ*+l30;eqJ?3~?JX?bs9J)#7@J&? zhEg_Q7I03P!5v^Jglj+iTEFphhj#mA_%kiBBNG1?jprnFHFFMid&W_+tFKP;gAblC z>jTRm#|(%&ZP&M0*?fx~dYN=ljw9Xxla|jOAAExZ4#M_!uJx~$eT!f={t;}CI0^qJ zl;#J4UDQnT88DQ$i=Gqxa6?=nQv|SI6vs^Wypw@HXgULmP0l`O1A?m_7b=5)4ZM7D z5H-HyMm4R(8M5Oot;BJVt7YGP1x*mxcztk}vY@>l5T`;wOu#e=jD zl1Fpv8YDC19g_ZNE&x-zHMywJl%_JQ_tJ8v3CJj?_fJU;Qeu{nbX-0|;GL)))awu#fBtfKN!qo^?; znhPJu`pD)mD&V@$(CUUSO-n*QkkMsmwyy!hTVQ)(ij>pCrj1!MJ}fb(8dZ*3nS3_J z92lHn0>b3&Z4`bzOS4wY=FGvJwZk_lkJa)6bG=?PTw`z6t=ne_ZJ__@|Fwp7Sah=u zORecew!c^v4Rip`S(-Y<&u7V(DCM&GQu=b`QCe zc*b`t-BB^rR9tCcz9p?K@+D=DY}8iA{ih?7Qs=w4=0WFN;!>5M?n<5^iM8Jldqpq} zh!M{jFQ84Ch#Ome{5nuULDJ|R)J_$2+9qRY9b-*2zz9R9SH{a@h@W$#pYbZlWDpo@HW&UB z|M5*m$bf>`7=P`^I25qs&KGH;RE5DHCW|fK$?Z{{=BpIvI^AyiU(RQ=eg*NSo#di$ zN0XVLVzDK9LXxz_O=pNuy25KOIdql4s^>M+`f*T(l-8*m{zLFn`(L($s^@N~9QzGv zq&WKtq1Cp;qkj8{&>(|H>p4xSl7rYU!4SC{IdWM15B))(H!cG<&TeRX7g=)F4=8#{ zs*^n-+2to{3lp}I&mPpz%^HlV_@;{wM<`u@A3G+EH zuo^@h+Z4Z%J6ns5KatP;hu8p6G zxNBH(eW=&IDxnsjb!K(b9*?5UfEVH1#lyo%Y=Vz>z;bsd+Lbklx4^J^P2A16ORRvI zaMxX{BSfcficiN*WA>@QM&N*KkP~z@94~i@tns9B=kp57Nw4xG2EF$AdyB#u<*H*KO69Lmq%^w6Lzq;)$8?VgB{=TPCY6il@ccm-BBDX+>C)X+?;Ryt>x4obPIbfpgnE!{n$6ApQF%=C*nHz!flsLDjo{Z z7x$=v=0}G+(csm7PrQmhsHk->r4otTCy4H@&AVV7iVaY*5$ zPreNp=Pw%rskD%wUd&X9QY;BBL1m4-LMd}3Wr!>iMz~#fp*^M*N;^5EXiSQP?#=HJu755&vlTaYJ zy(IP|~5$YnqK=;HBDzTx&%J4KcyHJVM{^chPSCdJe6h{?})$3k614_L{9V^Y0Z<281K^*=N1RQC!GOManAr)sP47Mx@02!5b!u_AXx2kMt76`&jr{2O~Vx+xKQ_( zJSpnWd0RGjZzxLRYK;RL75jOGA6VYSut2tdbb%xH;#6EqZ$@x%e5q;4n7u6Q!DD+U z5_=E~M_aKytg0=86?S*|SKo4HMI~QiL*wmdTCo?#!0TTk5sdT@kMJqrUe$042 z$tod>QxJ5kx6x_kAmGTMLAIKS)1AgIRLVi2Y8w9YS|YSu1)jUUYywQ@sv&9WUV#SjW;TWT6?{_m#W;}O@ z%A}MNy|;*~S;(o%|{TR=n@693q}xuTe8?At_{)QOMuG>b9cC+WOmi}`x{?nLEh zx7#Lr=T6)Zdd;{=Pxvuev)}n8B|6Dby!1Ywy2Ci2YkJ6(gFLsb=YRW0nPT96n7bUt z!=rXMjiC?ynBa)1MAO0hnxd#nk@Y4m_P+idR}|Vzw~xT7U&rtl!N8A$ex7PzQa|u# zSdBn%lYR(c%Nd{IbQ7c$6Z0g^t653NZv7r&Za7iTXJ$DA34|C3tY6GI>5*<6HyNaQ zUEZYoNq@3;C#3f8EUya4ksi8!_gxk5l&BFLhoL!>1C%f0XKbKiUap5wS)@B&_NU31Pc z<{0ProQ@c!=sDF%=pPwbps9VQ319eE7qSRO*N4OZ%6Z@WK(nl8LOVEWG{Rmp$>zO^ zn$7Xa-gQ2GWfr+~US}OrCG0)-s18EdE0s%j&ZC6<9SR4--O_h{^g5e_4Nx{EX@uqg z!C1Z2`W2C9A0-V&5cA@xa!q3M<>1l@m0yQ_aQM2hJ}yl|LfF`eqM|9!kme3H8XFcA zaxjOD&4K6?Q}C?hMs!sZcrhmGq3DW)^b1BRbAu@ODDi;P-l5emb~1A6#Mkl$>N?Y` z^4#7lg>)6IHCAd^#ip6qxv~Z(rn8v4^2vk23<0ctcN1-t6j+aaZ51wn=}LG*>KIv{ zdbYhi9LS51mI#*33?Gr&rTlX(u!E9u#*ic2dt**sKI|RG2S_~A1hm=oVXg4INuz=! zS7#DCtGDAL2*_~sabW6U8+hlKL5&C6%wi4j9>M@Usplf8B2wL+!$GQ}MH4v0B|9vX)ecn4U zQ7miRe_p0B7AOChMc+()&U4bj4TAl?dx)J zz93zG`Di;+>r+(SKT03ASs=#Q9jNd6-Qpne05nvrJsXlc49exd$$7LJF-Y4#7|=@ zj(9|tTBoklU%RsIX`mw)fa?xTtk^|Ll6)yFSyLFeIsB>d(PbAQ#=Hy=`RM^nzy4j5 zbyJnto_3rPGAJ9>UBiY}AiaG1+v4u}gBotL(yKD!kzBeez-DT|22c;cp^cQ8igw&n z*|wobj8WP9AXYV5js3-txHlD+`OWh9x>fJEeFxWA(vU`rDWf|;??pER%D}B7Sn(8- z6v**57AD~(+90@hK=j^NS9^W*J6V6c`3cw{*c{&e7u0vkM49%8ok!>vgz!R9e0w?gU)ToVTirSh7x7? zAOJQuc2cqN@pIAjzxW&bl_=9P)Ax2&Oa6fe&VLGTLBh}@yUzS-MYF$t^*jSJFe@(V z9bk}iC#|Eu_4Gvie^VjMfz3ibR_vYqh2xqoZ3x!^KM?gb>S%#1WQ?%!&e?&m$;;>+ zW8mB6f`Q*z63!pwOOH2npWLR&?8Z!;K@0($XlpXp$P+0;>I~AWCgR~AL)BKt8ngr1 z=?4kZX`ht^3v!AekcqmJht1|4=BDzb`U=@f1wNi@*0cAl9CR+QN1 zCztK<0q_9GfRJtK7-;4I`$@?gzYYK+nLQOEZdz9sg~A|f-Zk~|%kKi2*sa@(58lub zoh7b6ELs0`W6@BR-h*+SbGud7XT4S>!qc@uaG@k#gKk?eXsmlY7`vE-zIR@YsR3t5 zvvBi)Fc!>v2rmcqcE>qj)t_iq*~Y)r%)z0ph$3&aNUGxA^7m#*5YiC3%jDi?yh{@tO`R8 z(M$gy3qT8uO1orG0)-WH7UPyOwsD5fWqjo3ud+l`N>5bPn#ZX=q5D14=NMDW7hi?A zExYKT5wyolkNPf{EMU78UDNs6+^6-w1MRZmO!yVMU1>HjPB>4*6eLu`9aayQ=xo=z ztd$=9I9n1DiJ+V|zxYxZ;rq;cr;6P7ThQ+s53>NiB_9Y@Tu$^T_lqoer(XW_PSTO( zKbL}6BPh4uN1@XGZLVr90I<-l7fv1<0(^2Xdr48d?xNA(7PM zbk}`?W!GchV8^ZfXsO$pA)g827L$%xUlU84=Uuro@rfZI`|@7349Gc`Umk~~2|y6T zgRaeqPlP}?TJzT&B<}Vuv4h|nWm4T}0bjMs4&%$wlyNbz+MPd!VZ!<3Un zjC(;)90Ft{5dMW#P`6H=>)iy68EO>cuNmq^;b~gj(!1g~ByzcTxnv|sPZprSu7pc?BkRY%& zRlcy5t{8p>^a-K7A7$s1ohxfQ=uKb?kj_Qezv**?hW7&s`oemq>=3|ar#70i={3#} zT=W~LzF7TIWsZvmY5WlPpBmm0ZY>tsqZy3jJe7CIz}N$}POn=0R-3*+LufQl!F-^) z)o0OG0;5L58G60-;JmqLMk2xR+)oV#A5E$q<>@@jSeDG393p8SFDQNCzPb@uS!KR{ z@}r0hUhv&3Lg`cRuvY-*^;~iu!%4YOZxTS_-bOt8qGAKX;L^Vm6U-!bWw^B?)giy; z6GqIs>B_|1n7T9H*8b7I(~_6(P%dH6xXs_Xy%`_>mk;z;WD_tzLL}4EK4rH({6L?~ ztKg{3xicKdJ5~34I}1gK(0P2+dpfFqjjcUSP7uV220Nn!Fg8^jB|-&E-zG&b_X-P^ z;Y^yhtP~;Pwm2<;~a@bERG4(7TLx_ zZKKli+n-@WKOO>=UeVQ*WwDj5PkC(DVn)Sq-v%JDju{LT=jwNw^{#rI{|*P1(Dc6?i?i5Jl6cs#+C%X6f8Pd<)fHO(2KAo77); zVEpBlK-e5?ZN_xlPthQ;0bp_+lZHS%l|r z?K4(|`_|~oX9f2z;L?`A+s+dq{SIB~4hSUGhn@*mW2v)w2e`zob7<9rL~ZaM@6|$wNt_~V=`s^LFjYK=49m-gjIW)lk`z};b)ixo zqXo3Tr4grhw*^mD>tEmtj5amgS*V@8E#IlV6M+uj995M5SffY7+IXY#Dq>_YE}`)r zk&Jh(-Nt(8mTg>%bx8j}Zm-(^;5aaHJ~wC<{^QL7#lLfu{1OaeCBNkT=wJG4Oqc%W z>j~`JClddU8w+x_7%nm3G9dvZF>2ohL~&g+klscPPK5g88Haz!69Lw`Neb*M3#Hg~ zCAMsykPfFT&AT8V*3qijD%g--VlT=-b_M)05QUc@NXkAnUlqf41oUEmQ49W%g)pO+ ze8A}ca2f+b!rH~>UK1M_b2hOc$S&5*p{R;9RQESGvT^xY^TE{q!xmX`N$GLVu#1)T z(2@DV8vr=usR4+@&o-BXuBKnOmF2-&&nKqi4eKe5GX%)2S#)Qb#O-&uK9pwJsn4f+ zDnmMY(Lqg+X#|0B8H3j%BPpTvYvL37)&$;fK@JP%9$4?+@?lrm{Uv5wARUL6@&A3M z>fpinsa<2riYX$B(pP(Xav0hy>d2!t+pP>jSx$l_YPr2O!eVrsX#_GdFH}@kfeo=o zs{6&S&;Bdiu5%i9^A%78am1{dnVBz2 zQG*zU+R9c)PedE2ixOur1hLb`m~7rkpwqYyT`N=YE?-w4sS5#|UKK1z*c=)AgGR_-*s@YvipYuR_TS{F>;%ahUZ8E)73-HJ6i&uLivyc&y73h+sm!|b zj~e--#kan*FUpTo?i0Ic$;pqpUF=@3j}t}oZDa;NdH+6B^UT{@4`#AKA#)`o_m5dt z^a&4&?mYX)hrjiP@mAp|{{vsN1sWLT;%KMn!h&p3wLyL z7F^b4`AMzQ0-uh`s7KqV*0e^mgOI}t9W2rJsj;=>VwhX!Syvmu3G^-+6vP>H-)uxv z0=#1DCv04aaq`1L-vuB8RK6Vp-p^8`&!o^2k09arDYZffV#8D6ll;%h-$HznK~ijC z^#KX9ZO|WG0ZtEFtt}`DQj*@?ywV6qrDRu_&$J2(3t@Oi(FVTDGXXhZJbTH} z#^a2dRHu$_oK8XXE!?;u8C>wMA@*B?)A)y2LF<{VRX}j+Hc8C0<4m~3-&>HDoO6H{ z`qDuK&ScND70DH^VuBn%gtHc`Da2*sRd54le8Np+WQ};&UkOD@s90;kel@uavcRxE zJQoigJ?@DYP*Mo!Jqc^C4kyM@k3)N5kx}6=$?3-}V!|?K0uVu^L4%&Az>IX@2$ta9 z6in?L9KS0%d35)Oux&B+#qFLCbAqa4Utsf=Isl!Shj`q)Y+mP$M~80V$vr+0E~%|t zlR^9h4(x~>%B*g}3q@2{2V%MwQq_+f%FPfLYHoBpK{X#8t{mvBfp}NpwZn zpEAv87f22>Q0oN^Uv%lMOHL9q__rUO?K6U^bX3))&v2hGftjK?W!Bp_;3E^; z19Bjsu&eECul&Y?qny}XiRspfyw6d3Cz2|GDeXnV|a6bo;=hu<~1Z7e65wX zOM>V1hMmew$9_K8Q8FhPq3R{O-FM54mdFA?6Txn%an8#Gt$76YmIH|SL~&=VpfJ7j z4O09&n?iB%)Qo2CHFWUPcv5cKQ$vsu!dTrMms8lpt}PE}R8IeNi_I3i<}HK2SDY+G zg5CA}Virb>15;YO*UV1ue>ULqbOah7#8KnjG%vf2XDi8bL(%KQByni&%C7N5qXMT^ z|5stcamSmk6^FKl30{nQ4lL-|aRvfWOqe(|5coLp3`1zPS0IncD#dmX6e627SYdPo z3uP6kE$kED)k=t|>UD!}`}R%U2=)Y3ZzLlIng#U5xPr|1-H1EXU0<)x84c>Ze|WX> zii#*Ji0!V@f{8{uAq>YQfs|K}$vgA(hq*3q$!M>Z!(EJgy-NQ577oGVp(icm!Gbdl z2OjLL*n1!}tqoZjjS-R8f(h>uG1;7nbVuawxTvUciOUCYnTxsz(`5!?{~g8m#sdt- z!^Y9#IcS=w-x#HI;cqILbhZgBA8nW#xK=ju-^_nEED>lWz|fu>zS--o$C}kO;$CxU zyD_}@rY_XB-83{~)uN7i_Fs}`lm{LfZ*ZaY?~yRcKl6Q(*3ecAr=txN@klK0cGtSM zE}POC?_UE(3r-?xtAh}8wP5*?A!Vtu zi|-iW3hweuv=*^0;xdx!6vDrY3y~q|1z`FQRQwUigk;V5^#xq^Q7xXS4u(Uf9TbFy zyGg%@Pf|YASIrjFsLEFsbWcIDFqsb?px_3otQg{AHUpw!QNmQAZ4`J!jfd8}*fZ}U z=>Va?->!V$^dOG)$I(6<#u1X(S_r=R4ef&du8WWFqO!*NUm$j7q!R##2s#7-gOvpI z@UuPwuhvA`r|v@^9#yhm4`xuttDPqEqBzOsLK^@Aae=NojVy-(Uu(K^1wrpt>6GYj z=wRqje;-Jf-0*7Rx0FHspqSyGjX$xklnnml}6e0y7=J1~#xGirytq)aQH z@81j`-3>OSUIpoggz|PKcknvmdq$~6Rw8c$FinQCMWeonS~yBLBcmeGDAbuit6~e| z1M?aY@z^)pzR&1;n%t{^hl1BumcnlO{cc2#RE~cbjbNFvBNgwPM&YeK#5LrUQXGS|CTBJ4+3`=|5PH zdk^+!sU;7yf3G|8G-)=s%hrs_chVpGVXy2t%fizw%CIlaiQ%IRP2!K+YA3!*1$>Sh zHtnZTmDzv2(ghjzlMA;8#+*ZxPS-zOeg5ArCmMq&l09R5oL%?!@qRj{GAQsT{t5hg z*FJ5EHsL}k&oNr*C?JcMgH3FFo&QlIqA)~4tX&x-IflJAn5P-)fyu9hSu3r-pO^mL zIhN>N_ZhyY%v&{X?N64=&9NiN7!kv!Vh_ie4=%gt@~(XB0n((x^b7#b@IQ*(5-^7Z zg~aT1us04aHz!Y_toClvXeH_yp91ND>2_ZT&`p98sCW!v18n}h#ig9|rhB!JY&cNy z^lW*q%=tT*eu5(JNnNJ5Orl}6`HH@{wGjeFVlRAWRt6E3F;CG^C3j<$y2@0Kw-q@0 zOix>DL$N>}L4lIV^Tz*@Nu8{C%d*byD#8_rRH}7dF{>&M@uij}5MR%+{AC#o30|Lt?D=$7=>(C4}ZGF;$ zpSNAQ;ZzFP;oxZNGub<0fr^$yv-H$1?oFClYMrbk_$^11ebONwmS7Ct()czZ zQi!s<`U0prCJcTKAZ~JG5hl7LL9_$^Dq&Wvm@`A7 zTxbynP+AD*+!C@aJ+n;VxYj6nZ434VMCR<|G(9as7`k8|s@q*Zw31N8IKbz!p>YU9 zP=RC^qxItQ!jf>a<5%`pSAosU-o3*_#g&jXG~Hd031*g-)di!;w`-LNpQe}C#gA7vI1>4i& z`n*WdL&EAk3(uTEi`*~0d#3;kWLB|{DOn|<+@~b1G2iI)LOE(dywSf3+^UQLQ-}qU z&C>*qu;$pHywO=RUhL}rmtJPNRlSB37|uE{B(9_>Gk~~J(hjg1x$mOpW2wV6>&yFq z-Zk;-0sk0_2N2@)Marlfxq~@Hr)udHkR6tYHQ)g?qoZK#P1(<9;>)o29PpG7K>uWG zu4O}o_z@V07Pr4Nriz_7A3Ps^^0hbUO@ud}c|@sDPDA49Dhi)&AV3s5XY!ljrSXoD z9B2u=BIbpYzR&Zn%+(z@MXO_Yu^Ky{5q#7pBBFZqd)YT5yciXh4%gh$=-!e)Bl{~f z{I?g2=74%(tv$B>J7R1UV{VZfeqsw0e`vRlnyUH+G&;}yWGw&f>4~JQK|IXx{;uIE z^%8Kb9zC=sMf%&hNE7u)yGvwz#7R7cDJlJ!N}xNu?f%T`*lp3TcDOk9I%#vf+HOlw z#q$fczz8*81Po;N(vgF!nKFyB)s05Fw|ts zSu{f)a4OcZvP(5&Pz`0NYJ=m#S?^88Tn8tS-q)!&pZ}cFN(qoz`DyNmb#g#|;_#cz z8ScQ{(8PlyU~THZ??Sp~y6gN1ozr`?cM{Oh`IYcbK)DyJ$NL}zzC;}L*i-M=m?+*T z{#97QtSzUvr$H^@G;IK@zZBWt@0 zzFOaZAcjm_xXb4J5hC2bHC4>TSb6SeJqeKGoRZ|(tuk3>jz8NRlpUxPU7(=q{yK3T zGZH)L6Z)`QD%>>1?q4c_mDP9qjA8?On4u<2S=|#)LRhwyXXVuV4|Vj~(k9Jn(xLnH z1d^|fZolgv{bGC*#HR;L@*JO8Z4OmxHgRQ83Q4$6==K5hS!T{RQaUuDnPk-*t?90)9n8!gXJ$9Os^K9;!JISaU9IUT&vb~hR{*-P=%LmVmXYa)Xt2lJhKq4@lqhwtq3LN!Sm(zBP^{xSM7kr<8s4YP@hiEB0%oQO5N3 zdJsB8&nNWEpTE0UBxZZtFhRg{*cw=svf`tqi?rGqhH$TF5K6h|tTEJM0cD$L%w`0qc%T|tu;;{7-PXd6rKTIS)h204Y z>i`47QHWkG1bhN~+w4n|e3FRXewwBL!kQKbh+@GM<@eU#>mXf;wO-PkXSQZ~`4?Ny zQc=PSq$1qa`F0-cuBd_Ib5RIsA09Rn!2|DYFi!D7{F5eDmS%<(HQ>9tO_xv>9YI7` z02YSi83OK??$3SR1jQm~vmKopc+xJn`oddiN@{y%8{)Wq;EOn|UhhUMo+Jvr^0sDe zs$Fd=FP(82nk2(`p@CF(#r!CgokEE?>$zsX`xd~jH{r8M0X7u2(ZXAea5YXlo2cK{ zliwGd51&A)du@o5N$OJ>Ingv!XMPWwD-`Ab;VEK{EJkI7cYauC`OobHL$E)Tv?Xu- z^cRBWvDgYxSlQDdjYeo@??1`wK?- zHIXRk#_&+A*fv5oklyN5&dgN=0-$|bH#CmrT)?MuvswTq$XYnAojQR?J!Ar^1JswD zf^1818OSB5a|gf1Xau)33S1YG!||6ufGNj(ULXuidSnp^ zzdU{(d%3PIgiDq+0-Zv&kELy}Hv<>P@y=N01;3S^Z5n0%BJv;3J>q#rlFk&Q=n)fk ze5e{mC=rEcBBAF0MF04?W67pTzOVFgeA<%n4kz&A*c(o3c}c0yd{s4Ff$8BwU|7z^ zJ4H)}3#oDEADezmcdNo1c+_|%EK^rV?p29MiV{xCA+oLSRERl_J3BZwV*1HhFKdZI<&uVSArEVSi&t3Y(?e6ia*$O`Yvwyl`9+Hrc zeGy6<(9XIiHvXmfw3OpSZ6kYdruR4{{OYasE0_FOy4}%Bri+lApu_Pz-q@2uO0K=#*pF&-hnTxA1>t~p2_xLrs2miZ6}cQ z%Bk|Vjc-JBu@r3w$qeV6hDRPlpJJLqCBPF8PhSZXK-+jHps5Omm65VucO6n0l7VXM zDVQs;Ce+{Xh8CYBOV=-_fGCj-Duh2!Amphj%s~+3?8!MKrZF)ks@ ztIjHvgh2hXy`c@Lg#fBxC|{$g;$gJtfn?zW5+V?ct!5v{4;M|P4LxhOr7+ejJo6hg zSAWUcg7Ba$)~YHr_+GQ51@SK!9Px;WlZnoy;71O{=5e&#-nnfx#QF_2WkSytb86DB zguN;BY3jA|kd;dQxH9i$?C3~{a8VulH1_BZ2B@jtvC&Ij)bur?!&%T?GEeY(G6&V4 zkl(6Fe5E^tjhQ+r$kLR7?h{h!@1YlFbLCsvQ~|PMffEoBPvLOk#C+J2{fSy7PvQQ?{dlZ{wbI0WiL= z=+ZBqlo0v}SaC3N6@DfS)olHw`zu%Kmg_(%O*;%=Cif*d*NnOHM!YoSA#FPS%-u=Q7W9r0Eqlayzw;sV^j-Rb7)-lIAJf@mZ;dkq%MbcK* zRc}FyJfi|T%1nP$$6xI4l%Sl)kdy@riiyG|rAiq2lO7NDC;3iiOg#D3p!btb-g9i7 z;M^c=H7Dmqz{L0C?3S%;Z$+AWW z#+4;|>k&th_xmlKwTsf&TTx=WQne{>IDmJ)CW<{(nt=->VvcPcO$);mDWNUUg$J3P zWmk=CdpKuI&G`579DDGhmme03_C!)4s5il`L_mDNA}8Dr^+HU6M1sO2!=q%lDcA4w zCld^wWI$n7W-POqa*G*xovH=v;BfB2_$IKX#H5%~2BM~-NF3C?KE_U5VBIbB01zI> zI>W(Cnm1WP5#Gb)SDN>&OfI#j_Y*JbD=>19Xf)Q7zrM3WRvo#APm81A6AX#ThvQ{SLb@Q?2uN1mtF4*T`@}^BY*r8ttgKzusyrAPO65#y@o2BoM%i`AkSn^2Na7?X#AjR+y zG%DhWnd!VJY*>bSNK6N5W}|adC6x`W5Pj4|RI64rPeC_Ebb2EQT!)?BEKTW^a$3f@ zFIm}$bCzvTc~KaRTwwxvf@~U<(GaoCH!2Mzv}0bCKH)*Xapy!!LMelB+wAhZ;jIyQ z<%($AR)F!AlO_Iu9ZgS|UPv47V#X>1fipGGdm3jQs;f4XLIK0>kolcRN<{h< za9>+fBzCx1`j8Gy!$dC#*!ty#9p`*4MAAxoI=QcB8HEcm$CgpUQvzUF12xD)$1+6< z09f{svAfw5koV_^x5LM;PeI@=o=FH;aK#=nN43|f^z>t_`ZfL_{GAt$7ehVsH%?UC z;#lHT3VUz)nPtssK2KQve90YDrpp)i`3~;ZZcSDo`;ZS&c4gO2cCRZynOkhSZdKf@ z3^)yyfbr=|sUU+NLA06IS1{d_q%gd^%xuUEf-1N*Z%Wf@2uYk7j`{@|e)O5{+~!S*qNm1m?5_k2a- z^lmBX65{;OmOV@`c}`t2rUMbEcCAjNosAa2wm~90y#g_GAtUP_bn&2GL&M5CyqWJ5 zP3Jc{K9DO;rsP?Vgl?S#Mv)+1kPzQ*=Qr;0KsQZ5M109WmyXx-9Sg=)SIMmB zrfymcU}`EP^Z@NA5FV0twaC#@E~S=i>LGsD-hTjvb**Ne#x1OpdZsz*U4o>Rc3)2i_92FGg(l#X_B4Z!A?@~zbjbmT(God*L^9; zF;`(4cw$qe#4kTcZw>lU(WjF&lJZZFbX+i)oV8>mDhoBUCY2beZ5k+=(us6T0RT9f zzwu@hB>j?YfNPh%Xve`pXap<(&Qx$QLrH>kxLzOma9jj)UN*^70envZ4Ai!BB*zL; zU9I%?s433^_0Kl*I$_1<4=gGNRrGkgdcchYaOFGD8~|$QVmu%S0PiE=^0&O;Np&YV;3=Ld+g*0TZ60JXIxV-x!tlBP0J7|eC`5n+#dcA@;ock4RjfVTi8+k?D} zE5k)oXqQvbtDN*v6$Jo!YhQBB%HvhvFu@M@9+olb2yTG%9hbi0?R{(~oFfd%Z6Iw6 zH}lTdt>B4lpL=7`8gU zh{33nh<<@BGzx1CGX&|^+#^W{X5eUi^3aT!S3!BY@`m`67BLZb|$K#(YZ0LnzWRkUKqWj#kK3j;CF$7OrIRT znTG*el)qJ1RCc!XHc$QDewT;}EPlTxy3EJOW%9%6QDYoG=@+?bU?~^sD!Iw2;cgzUs9=)a^pl z>=$6Yt@Eysu|RIvAtc7;XIlD>v=0`WhnLwZrVuOXTq)2_`dp--KeA@pv>2Lb&P@d~ zgB$jNart>}NCTjd0nLCR43&4{YvRpN0at1oCme``2F7!~ z4q$&4t2BSrez$w&U`QT5+5ZsFZHM-gy^_;I4gA^cwcW0m(r%ciFtnL zN#-TZ!bO`MwR_IT_Ve4uGltI|Y+vU+QV)-H4Li2>f3J4k4lTsc{v3GqN>%E%-Rc{%okhsE2l2=}D z#Erw)uBsA=?;D(uPM|gFC^w3JRl6(N61>va*6{ukD9omCTGhwTVGsK6b4ZOL=iOE} zxKWY{0!f2(AiR*S(yH}$*{FEZ^9Mz*Zk#*liH#o8J=0r)Xrun`L6ei%%g9V%yAyO& zY)TTKS}R%a{79QHO~V>b0jhgsvHoI$K4gYTCLjZ_I;oo;T17!^Q&x{}iztgBg=EZM zn89@F)^pQMd@1+MSUw`z?qMzZZd=vl(m#i>m9tJT8Ul!c^6H4Z_@HY}mDP}yD-rkhsr?W7Sf9P7T4la*!!^O{Q&0qnpWOdUWo?-Qm zpTbrh{=C#lMJ6^klhR7Lr<*0}!!ej5T$RUNF&Ph$Jtt?~iA)-;iMfnB_x5-`FmfSd zVOmesJLWT7W@p5Q@DpHouF`?i91$!g_47s$1s0fU_OfDc5k3C{`20!2bm{yA9eMIB z5$y{DwfW%rTbKPI@mr39dFHT+0LHL8!~rQ=u{c@l7j*YCW01w~N-nBtJvzeQy0dJt zTod;ZHsqBfUZ?KHx~Mt9FFtJQ{ZhR*y;Ak-oL@*_|9F^Ae#rNj{C5X#-3H0l`t4RO z2ascg|A;<}<~HR=-o;9XFNm2-lVt5;n?%m-O}PJ0HS;xpgZp8Z7ps7a<2+raF0BfN zQ0xLJJX22p`~$q-A!JL`D;??Frr}AE_m6*9?y#Dj8H_GUiva(uvcI38a8T&o+Xs!m zudq*vbudc{O^a)esVX48FJONDjdQ4lwiBmih8_*s{Ixd!`-dJ7(eHHNVSVAAIKoVjYbMkRUsI5(2v2YQ!h>;=#P%HX^G{)v8jxYKh!6velH*!8T^8={nn!=YfE- ztd>RsCxUr~(lAUJ`w@{ML>Y@t>-#*{<#X&k>1!?@*>PYi8%UUWPGD0@fqM9~C3wL< z{Fv3U9TXTFef(7L4UytiQlZ~jD4}c0_a=$fWtAI#qZ)$#=psFjLD&>`MM;%;?njFF z+ku_XA=)wD&bgw)UhmDNSe!vdAx?e!<6j1>CLm@n+o4~9T#KyprVRH(AKLx%MDwBr zcJT{~4>K0O%R=C0q1;*RnGc(7gl1Zz}hRwpZma z5z7bW3K~`)VwR`eOwLTb$V5ozs%I_PuPk%jHTIEb*Uz)w+*@W`(0|ekxj|@Ls45rH zRFm>)aBJl}&X7vfB~R6Vxua>VaMh;&ASeOn#r#GCi**BbuY%z%%Qj-I-Y#OoT%IN}CX$-jtx2KD$6W(%5wG;z z?iVXg5H#Af@5x+e&Ob`*Xj#xVo_?0&Lr<;0$8BJm$+psP<>?xkvhJIW7HQtn#z81U z*=!EqTud7c7v-zi7cCXq5E1LurA(L(uuOPn0DO(%7p50RPVlvmcUc3xbd1E|28vf+ z#={2q{)o79FOQh_vqnoQ-73~rgT8rRHt4vjHS#s4FDeh-RbQ7^&ERhxHSBy*_*&K_ zZQ^$@b}+FzzO-`yH7@Ewgn*|PYDkO$|YWnTaFU6T5SHxFJ zaSjK~MD_I1Cr5WdiY7eu+zt#5pCZ?kYsm_+pA{Xm8U2{*Nj1leS2Qu*(C3b5P^>l6 zZV79=(vTfZw>_#(K&8$ONe=~r7gDe_JT%zgPAEqCYGunI47eBvxqDan%iNg!pYU%V zj9ac@WI$UR;Gt6SLnA+r^(O{<{q{-o0r*+DQsR$MW!4oQ)$DoAdCMP@&q=P6L_Z9x zs`>b{PhjV3ePE?=*Yj}YB6$v|yY?bT)Hs%B0cQ}K%5zR|yGEL2W?Lo-nzyG-slMD) z>yVm>y%-O3LTzgKR-%2U8*3i$mW`I}lj+K9J&~N?KU(5=+q$L>xqPtpSVwu@U^^kz5m84Ozde(K@qvf(bWpM{+%h+Ko%l9 zXLvS(Ut=<*pjPV_$idvSoA|WDt=Ip*GX;VBJ^-`|-1>?36LNl!-WnCe8aZKwV105` z$5R%ZH3zo}EGDG&u=7fRe4fXk zMjiA(^YfdxA?b;t>KM83f3s~&=6&b|Viw-SCZTt|)ph!^$Hh%A%tUGkCQeBH)}*OU z#N4To2-j7*P%?#E2HmZ2(3;Fv#`>Yw)MZ5;7d`vCl&_IZC_nv;;GNflp(Lc`MI3%z zj?*ti6Fw3XC%!!#XlE5WEK^l}v|_!CimH#U9%#2=ikgbeNjD-{;-HTjWciI;uZl}m zKW0m`tHi+}iPi+tZAG5wQ767pQl{7ERjkkI!1)>Vu7~b7dqGv=ZY-w>4tFs)T%H*e zK4%^`l~FvejJ0-U^XDu;Hxm!)WQKD?AEn)>5MRL7T}WLCT%C8KH&i;}^mV4>w-zlG zbROC!1=xCQ$goIzv=@upe#JJ5ad)e7pTDgvmM`9}IeB(0>l*noAWSRY)iLG05~Ntl z4iL+9FA%jb)GX)s)Hz`Ho4F6>#YY<3)a{p$ntlVFcP*fdK>Zybj3*b z?&bMYK<~wLsl;84ZC_;z-kSn+?aQO!e}1lbi0R2?b^Z+PXpl1F=RY}D-gCq=RN3-& zXEp*?h7?2peZ3XYGCJ9A=-&R{bmFfwKqekeu;xD5rTS}>O>dVc&Y<`n0dqa0Fq11q z%9>9~Mkz3?aFkhy>4tb1Q;)yH4rak(5p{a9Z1_CHd~d&nJP~rj{MqpRc9;%nU*z?SZ?a>dPauh45Ee`w3;Y7F@AsHI^Ot8ZsxViR>vE^ZCuIjFbt)&0#|_FA!`gW_!aj5? z2i%i&7vA3ulE3*L^aeg_nX9^I6p?|uQHQM_d0e?tK%HZT^RwY;a1LuKGnm9jc2O<% z>5Ko}x_-ni(;JfluQPyUJC$wXn17Cl9g`rwS$m(0NfwP^=*;wPj3dlIfV5$)wn~XL z?mwbHkO~Ag74v>E<&#%oxm*YdWy@U_nr3qUSYY@BlknguAVPAmyVyl_D9+fdR4jfF zfk_29pS(#2TAa0O(rL(#QL1YVcHDpJ5<#MIEW`q(I9U$GB)9F%!pcruxvYsF`(kj^ zlr)%9Pw{+N-4lvfB8}K5m@-(@=mJ;RB$X4_)ci`~ddW0WQ%|1bMDR{R&Q=>erHmjI zjk*GIq`1kyOS*&`w5Dyw-@v$f0~||UwXk6pSDd=3Iv1ej)6-`zcCOsSfRwr__EHKn8OnYe!&X1Q zAFtOg>EIReHex}SI$h{AuPb8}CwXjN<*^E*PeMwnS?dzEtu0M$f|3Z#^RS8iU*=eJ zIx#o%yk*+R%(PSPU4E)Lvi(L!M2nB8ry(Y2P|o7VKMz&`9mEp#^}F$_m2RNzyF|Ia za{Gm7%vQY|J9>xt%tjgoZxk8~@p3-ny)*pB9v3WuP_;QTb&JsbIDSq{Er^dSmXg^c zdP|_5tumrebUH|Vl`0AWenJ$B#k;7Ih{32c*u+HH1k+d0S~*gYK;q&UPtjDknk!Sf z3&RknTB>+4Uz9#c3g85n!3j>sbFcOI{guDpQ)E(;GASx=fyE|`7XReaq9zU~5T|YEpfuR|Trz7r zoi%|)+U`%?uJ5shtpZlAPCPX}&=}C2f}d6?g^io?JV15L?}=!vVQ(vKNfU!!Z8|4I zVhLi{%5ICs@Rg$!n|E-IV@{N(`7S5On@@0p@YT_k(Un&$&wiE3SE_|SD1?rv&^(l? zA6snBX*$iJEo7qGR3jF%h<54NEvgF_b^5Y7yy+Y(Zmu=GxyygKPARFuIQ4%urN4?x zc%XQ(d&ki{e_iPgO>xX|LV3(4HtvH&bnP`*!{m4B#BVy5UU`$qh5ch+w$UPGZ1v(6 z$hiDs9hCi0i@$QdClAWY-q}~XkT>PWI!d8Ro;?4ULmoz?hJz805htjVFQm642&h>4 z7Auc7-Iu+X4D_9g2@9e8nzblbw6@~sbC*E(<*bIaxv>Li>5u-lU~zD zrxKe5MKMzSaI-H9qgu+D6F)1!+Lo!m)z9!pU>r>vc7=l#ZD%Jp4pAiKANE&*e)I9B zV5b0yZ(C+8nd`3hK58mAS|-JqHqTA{l~Y&j6_qsD{-bhJ_Uh0 zC%PtTCo=3TG~6c$Co@>CYm!$m=jlNvJ5;kagW%lLLumf^?cNQI+69SITW#TPp8CzV zvRhu3-TiVKH4>-aa7AkiyOF0|F>>4!kSazMtYQJoX1?aSCMS^|2iv{XH$zQske0NR z^cak=jwtZP(#0RnAv>~&$e9HTaoyQ3Bv^j>+*B7$-r>r3*Pm8ShhIFL8cC5GXpqSJ z--8vC>jIGZ_h?+(pZtzi6VQh;PW<_@47r#csHV0}j|rCV$&d+sl{edMc{ftqoyO#$ z*8lj1S-~J?_DyUSx~J##Du)WzaECd$oiZg2^5T2S&slvKif)O&s)0|H#o}C4Q^`&L zKenziEUK*w!!R@oLxUjQAR!3S;s8T;r-&dREs_I_A`VD*qjX6~_n=5B9ZE|INOyk+ z<9^qB@AI4=!-Fzs@4ez(?}|;<^34Q7=A`3-nSu7~v`Fcz2roaX*O?994F?x$is>eA zm_@`BvGcmeI*JTw2^ExP#>yeWU=em=h2o3He2+Xx)na^m1Cjz;rtHUlAZCfn|HN+r z8%D$_ml>?7F*3mTxR~nqEP%iaO-N_3S8RxCPyI4<^sDhHlUwP&e~b(>7vn`_+jc4= zI%6pjZA6EE9gR0)KqDrLz(IU8Qcn+@k;vWa^8KDO_{xa+9qn1Gfm$TG zTZ+~m;ka#c5MIsbdNxV+jkFLvn4XN0T5>Pc?~7)=>ct(YI=5_Ion+pluw&J`wcoW| z{m6(jSKi!Ee`luB{6b6HNGDdiv;Bi7Hj_!>M@8$`u}n`hGT5xHt~_(|^=bFV5dRi! z(BblrI9C-kU9v)GOmQY3*V{SKE&w3^>mYJa`it^#zz}aLgC&cGn8-TUIktq1FVW%O z9!aKGcYKC|im|rTggn#~?`D8}84DrYCnc+^(E?1VHr(A?C6~w|8#PqIZf6(Bm8DZIC zIK4yJlT`*aU1lhIIHfMb+THz7KRF9m*RY#zisuC>lCma8uvN&}+UTd#Tm^US$5laU zsryR`ZmFx}1zU=Z88ohPUGX;BsLMo*4REJNT8RXFkEOX6yTAL4l@Wv3xs<`c$#nL~ zsr&uAY0Cq=edp0w2Qh*zQ4^nLR!&V?oI>(YGLoD*hr5+%c^meescOLFAOx>rdt*Wow&kKqdi z;vh?KpR0O#N&0^%TyYgZP_b4<3F(}~*zvuLtv!*$BX~YKyU5asj+Z?{g{E~6%uqOp0R=FyJtBAU`HO#cQZ0$5%e%- z-F<}aFEK)C8O}YTqw3Bt>)6og9(b5Gxp_0Bhjh1E2@u8 zGS-UO?VVIfLc(CpnUZqyTJC~6EZ_1RaNxTqL$!rX6>R4|?$XDZ7f-d!*dQPAuJUm; z`_ZF~JgwfBZ7za4&qBYae%H!fnKz;O+us$xmy=WAxejmYyK&&_U)SYi?gAP`2sqVTlkB(U{mAl5e3 zN9&pETeHRtdrsuYy&aZB3k!GN9o@I+k!M7LGbm3@vn;HPy{)k~Ff486J0L0>4boPu zEUcbL`!06*?=O#_>5RnM&H035c{fx$qLqcoT2XieWbTmH;W6<@cA9X(Sm?>>$}~R? z4-O&=SI&^(&B942cL~u#u;|bA6cOXNsWL1)WYZ&md8gsw6M2SVT17)C$<-XKJ-0$) zbb}YLLa7K=4_A#1ii|6A?A+rsEDtMjA{yAm30j$Kr|2a5K~_>hIj*+{fy>?2A4Z=` zR6Sj-`H>-(k7d!+Wk?YNDJ2qlK+!r3{6h~K(CPN39z60c-aJL&pS(3dGal-O@m`J8ePqiV3aE4Zb0C4m?>ScQo7fo!Wc z3rSNXR=fQ1v+1`P7YrFhjRo9U4Uf21NJ%sb+iZAZ89kH++iY(#T0}nm{DTv^758Y2_qTkrCO4>!Q z*sD0PCayXdmfV2dVt#u=lb++*N!h8ubBEg8yfDeWaLwj#u0wj3wUW6aVUKsq?!-}f z8aYsu=gwm{8XE9IQF+xTM0Ps3^g_qfvep$64B2tSY)zr7*A6agA>y0 zaUid>2NgA58M}{}9+?2Fe@TjbGt3p)2iwia^DBxT?OxJ49m3!EY~^%E@hc64ziQwX z4g|^4ZCJ_-d2Yu2exdH6=E$94oO_r@L^jWn{!m&=I(rkQ0BLAE4V4rBn-Ze0iUTh- zl>#e;cy<>#_hYXpG%Kakz-^^+ zxq7ybJU-?7+;q0xY6S5&6-vfDMELa9yeSP>mAO!;dr+0>2W{(>F^^-trjx;}m^6xL zdTj3?7Pjcn*ED`_zV?~%YBQJ0rT9uWM_e_ z@y|$LiXA-w3u`s<@G7%F#1t?YA1Wjo*MT}kPLRwUE|@pT&A!y|Go_r94_IYSWf-UD zOWAj|%+xH!_gPqcL~>1)Vu*WgK{Rro=vE58CRPTvMktX`SKX2pyDBuF0}-WG_F1(b zBA-gr9|V7&KVD!&k~O%GSCGev1E55r08X_PM_jauGQAb z??EW~rTY9B(blWHgRg!D21gKP66#b#-WnO>)`d8C(&b%Sr6(VtOV5L|z5Q;`9Q8q1 zCqZc0EMZpu_Oo6s^|o9g-}kqpWke2MKz; zPk0Kh@&A}_XUV`9@kfFK#Y8NPWjye?><4K72m;a@L!6%$OmiD`1=Rc{k{F0L`!vwd%`pdVSTUsvbBn0 z+Bfgl2UTk+cy3qlksW^YWU`{SbqbrqkuNJ158cMtN`6Z!;(ymnxz&RG9yl0w^-=gY zdD{gd>czL4h*vI+^jSlK&4!V!QPlYyxE3lPC9~1OlC!ry8k*fQh2;GpgQZkHeXN!Y^+mdwRD>4vTq=vtN%QCXV(_DV5Fhmx3*}W{wZz+CP8m?SlDc*T?~x zr9K#$aTcyss;1TbxwqBqk83hM-8jCoM`p4Id2~0X;i&db@!fvUrUFUrCBu<;JxZcI zLIiOn@l}?uE)t)D-?|Iae*ghKXt|KdtTO8TxJbg8r9kxso1^_UTVkhCjk>gQ1l{27lsWL8he>1 zmnHiB1%U_aorpV!+ycg7HD*m*FdJ)v;hX*?TPKI6DqUk+UIZ)6GI==63kE3ZTsHE= zYfDF!@9MIoEX7*G=B{!u@m@5xY?F1eafL=^&?-nrenUNeo?68tHOi=It^>i~vZ0K` z~MxNFNDYfQmUX}5W9oo|hZ zY_sB;zziY-oW^OZnbkh*6|eXX9QhfNdFn-ye|66^s`dF)xo@i|C%M|Ay_Kn`w#cV7 zD6y=7Q|j_L_<4)9>Y-sj_sG&T6_N=`1qFvZ433f&#Xo+}ytc!rqou{DXs2rN>N{># zZBsRjt|;&6&So4bKlK9Xt*k3O12cO(#ls)yehBU&E{r`{??llxf1f-kIe91hXZrRQC(FLx21nbpCH?W_H)perMVtkEqNVe4FD%dQ!+BrR(R{lJXOEBQ zeQ-P@3eUBwV@vV>R{eKE%$>2cOkYK+Xn3QdSPuyF_z=}lz-k-SB}oE1izp#J^vs0# z(W>rV{ntjTk5PJW*htg9{tAl>g*hL_12Nt$BC5@zT+(W4|7N%)+@iyzu&lksL)!0j z@zYGQh*9d`u$q~u0+A-N;`6nucku`yT5n-S12_Wo7Qq4_yXs*WlQBdIid@BXmR(8L zZE9-$q4X&5x{Uw+tuejENToNMF796njM)xS;n@wLc_qOFNH74;3%~h8amD+rk9AvH z-m*31OYk00mV5|q=wmaE1MYluoqkteBEX?aOapb&cF*q!$u^ckI@ILge~y5uRqJbA z=ojW~R6q{N9SGB({hvY>=Rz!4v79yZ`;6QN=9dBFI3Evqea|k^Cck3!-lft^%gn@o zvN~>86{{4&S@{!*I|iX?JV6=?_H`WB%6*PRC#*LBeYZuwjsbCB(P8X^-^hmd%&v$! z0;6NR;?lKhx>IO+Ve3y18R7IX^kyzsBB&NW)EBesJoLlUW-(YO?rJp&TX*{jT&^qn zH}R|4*0T(dyjfS@o-P}69NP-Z5@Plm7-h`+KxprJ(ZnQ=gg=xpd;jFX;$7FuwIc@& zt^rIY+$TeRY2T=6*oSXU8&F4KbT2>_wuJnhX#Wn1OjD!_Z>9SVCzSqlA)J>k#A^XQ z#me^{OzAO)KO4Ew7-0vn7eoJ|JXJpRkMdh2k1(Pk)J_$=fpS z+%xRmv|b+BtOcm3Ul0-X3`ctpn+=S-r~Dh@UYeA~ZAr&VlafWtk&QYnoS?#<{lh+c zkbn;zy3LQJWeoK&R2$(JCF}`KZ6p~r5m<35rvApnBKGq1v!(qjsVnrgBf>o#T z&7ijT;2}7Oq7A!Ek5QEO55;;xjM}RD5NYi^rE{YqJ?5K3jPH6h8>ul?qRF2<4{Wd9G@yti z)o+RFh7}4}F$1i2K9k?iHEPsi)I~`6-c_E*iH9 z?geVMC|^;yk|hSUtx>&rV7r|8^UPzw53BD7Kk+stHe?A+%B*;m_xS8(0prHo9O#A% zMziEqbbqYz?n!=p&$RQmqP!gH)A#4WKgx*yFEXh(e2eu}z|alV(uODi#3r-NjBI`~ zvq*mh{4k31h-a7)^J9DF)Tr*B%OB1w!4@=!c>Mee1LNd}JYoxaruC3ovn~SRkauc( ziH&Jp5327p>|ybfgrk=sRy9VsGB5@gDm^5Y7LzVt9%aNFaiSXZ(6;niFp-F+ww~uh z2GBs9{6&83goD)d@C!F8n|LWFr0*cb%+U@1aLfOvol7E6?p%AV2_-+zP8yJqKKG}W zI)FqoBgR%lFZUi3{s%==37$_T)A;5hLYpyog=~yn$u>TBfqzelJp62(bB+6)LBNT} zHj3IK){!{7;YQQ-a5!0m)a7z(#1Ip5)?Xb>S%OEs086_6SXU$< zp4ZAea)7tsCOHI*d+L+G@(|S051e#qp?*G_NN|LT%UEZBENM)uGt^0)k29vlL(20r zcm90Bv$9635GJCPM%s4@h6f&gm=i(@Vp2-D3WwBBlW-&CICt^n*7Px2p(k zFTZ2(GJvWuV;JoPGVot;31T$Y(#O|^)^~)z{t4YLZKgeVS1m*^reCG2Bv~J^cTIdNT{Ris10=Xp1}msuLUlmOA(3xaJA)?Yz)e zuZd`VBAMZQ&z%0XT~1~oj81PHe~BQUC5)WclJVY&O87dmIfH&z6l|D|9vWaWH}VOX zlcR|>z8qS9?d>ieBuo|OAwVe|zN>cnoS(B`#<${Q;lq19OJ5}PQpgjCda zu(;*MRNMdgg})A1d8Q0^bHlC8DTwIX&%JUI1KetL`4%yNw5ZrhKj&pNui`H>KM}jB z`YzY;x0L;qHQyq-Otpv`H5N-+-bheplcJkt?dRV}cN+!&;tiNDou3U*61m!*OvEVCEmaII?gLtoYT@^L5&YZjueWHveIW5Wf!f5|Uhm zs&eaI`=;(M!Tw9ae|!j6LZgb{H~t9#5xkehFApS50SN`dNnOBp@5tRebD!3n37N+G zXR7WdLSWJniWLLgz?tu87I~I{B>J4Evlst;SUVbCmGx~ttAOV&IIbU^m(&0#c}4om z=QdWjdZbkys1EM8*c7Q2jNkrVi5=U?_lPLEloa3B`1D>%#5!&5t3s-_SRT0L;=W_es4T|Tjfde zSOEpT2Zejc>t)`G+Jt`wC&1=(fQdfc7z7gzCT4)rA{g}rW=uC2b4YNXwkJ&&g%IZl z@V0$LcZ}+(kT*b380LqY=dBSD^fHsBrR?o)M7hk(9>!aJrM-cB(o{7jGBi_pe)`qe@I~r7`ZsgmXQu^zAuX@ z9)Z(QF;0~O7%=Q$qR(2?_XY;TI3Ec`u2)ZV?&(=pyi-Vyk2qjq3xCkz@U;YPBRf*3 z@VNV$X-P{qfyelEZ}nl|?YW!mYV$krSb>>0d$l%nAGJ74w_j`%ISrGJW}2VM`Yw$4 z3jHQ3{*pN0gNH514u81ybI~t^cm`DSH%Q%d1VSRfCis4NWJ_O?8YWcpZ=XOxJd8XZ zjU@2MurV9#k(M!ck9gASy{unSYo4tmGr`4D@u(oS$}qv<{wp86dn%4yqg(In92Mnn zoILWBavcTkxFN9Z-uCz&kZLym<&X(q|3GOqMDM&!m?SpA!`m&_EMJX5tnJGONj%Vl zA(ZoD)ND+JYMCK|UeZJ&OX}}l|1UftF7_kHE8sWyW#L``EdC*%!xT^fX5NN-S~skG zF|iKiETxkFle*zUBr^Ly4m1lS_)HZxV3UP=9STJ?RzamzUIY`sj%SK9Fmx?fbQb&3 zTsbiMO?ql+@7I1(v5NuGYk-%yc0}8Jl6b?ku0LCoiK;(!w$~GVxA&~IZXxc&yVX_W z@or&wgJ$)~sI@~zQv*-#>*6aMaSE6p6{4=zaHm`inWa{K$Emkj_@_SqL^Y^#68${A zfoUP~)t`K9@*^(;_WZ3cDKVvyR(l5;l7OJo#@JBo&KSQEW>ug+HVx`hMEnC zh`MFqu2jt&*5CGA8iNwOjEcR-w+rq3PI60VON@bXf)cH?n^9SbvMQ$ajdxa7M0byq z+K*aq$a$`Qp4mC`Iq~!${7*kb$k5lfAsB&v)EM|n?%o4(=OZHKX!AqvY{?W5csgfl z3JADts?$#^|CiJz(1M^z*PxGqOtcct_uawvK?fW}2Ld}uMwu&H^z3?aMYAld&JpWF zv-IJxNIf&7xr&T=xv2{No4PENV!?{5P=NG^rhWT`B~^1`9>(f~HtT4keQI)*_qT>^ zk80XNG0Gm*~wKD?j!%fv!2FY|v2!j28mK-*ifP5C3`zS76hrBHYmy-ZDgpcW1 zqEgFgXg6zaB0Kys-sqi^Fo;VVSf7d-wVZBe5#EF3S zY`kcZk*dTWp-tDJeA=t!P4^>j^nbMT)Bn!6f=*TDrpb`c%k+M!mm?dH$Q-Bgx;$i{ z)Tc~C<9J5*IGz#n&)^HFA-M-4?j$<%ib8L9Wky=RXa?sp%`o{xqz6{B_dB(8wVtE(5cQ`nWP&mjDQu zvxMiHi=ir-m?RQqnFmX2rYk`$PB5A~8r&k-$3`CBRsX3|J4EJ1vHZUm(ar!Y!db+N z_va$AIXKk)Dz`Tpd;Vp&QR6KBut1{Ekxoy>t_7eSZe=AuA!XQ<=6I$+rffCFC2F4F z-QoRp@p)^zSz|m2kas0+!mk>@NzoT(1nVvh%9O|5Vg{eHGi;t6%K#il40A`5Jn>iU zwL}gRlVnx*h#sM>^O>6H{qQ9g3{$YXNe26a;IE13b0q&^x)B`An=jk+sqB6^R1fh> z!w{Z*0ECdgk^_#Ja>w?~Vsp$s$A4(yW)%(;Z|vpEp=cbBqKB^X3>a6LLHh$~%qWr| zYuMAiL$-0}_I841@Unv5VQjFi;ZG^eHF z%Ozf3UE` zmlE{GSRox~O+gJ2c{CdE-vkm;JmIg28%W#Ya0+m-M=_53Ok|rweC2O2FxTv@ln( z2?(Nu?V=30@8U+>RY-zGwa}ZtpT)W^{4q(^O49m2?32e0(Da)jlKTa}jFZ}3z&H&$ z?V0`rVeW-{k6)wbt^K-#tQlF&*0CCSrB3nMu7aTYrC9}pX{%p#p+t_eOMTRG8Zq~~~g5QOu2T~=GV6;;LD z(loFg=&XnIzt6_2YVYtJJ23eGnrlQ;_t`taUjYHqIdpcjDT^}uhm`;NaYh!WsHz}{ zU+b5WFEQ|4h`-p3w#S_NQ6$)JgmFjcl$h8yYdmSf}Q<0 zm0?-;2miTEX(=d~#;EgRe$5Nr`A&@!w9D6bdJZsGTq36}m*G@en6&J(=cjw!%}>UH zMP!2c|9OP*to{>hgnR>N=?ce8Dt!HDN(>R~h)Hw-;BF%t-*n%XD%z-|rnynho%{m5 zEa}E9M2K|jodLXP1IpWd|LN|5uq;%%{8oBLMjPdCiP|9sB&wkSF8D*D)C)g;pqTdK z)HHWD2Z}KqvH$GMBqfp_y#^awRh;K~4nVaHcF`GxB?_(rJ!9fF&)@Gn!#^TqDCJ;? z*f@$k;>LP%mxe|WoT8Lj8+ifp#Val={OjEQ{$aBLOg+qvu`NdOTcj>A$Wh`6@`vAe zW$J@|p38{2&$RG41Y_%uuC4?WJ`rWtHj@`!|0$!2lRM@1beN?y5LB|OILZ69J|hs} z%s6ELMKLBcKU$&~=L)q|b~|%PMj}pIP88GxUfr@7Ka3TYsvxWi&Cr{A>-&*&iQ?ti zzqqoWvR9HQO-28FI<@9!aMC~kguA@&C*=W84x}g^ARjSe3h4hLkN#R8us9^%=jaOe zsb+O%>1b<6O0f5WKwnQA^}&$kjc}oj-Rt7sV642A`04Lr ziV`6-Fl8s7W*13K`gA4F($gY?f01QBziM*@chegHnK#LQn=zNmVnP~kx-UP>821nt zaNXyvFYW)V2~7(^n{EyonT#X)VZl26(|hV{mWtA^iYY(SSB)}nDu|z*YM7$OsM@7i z@7}XDbQ~Tyk;O#}*9!L09rL+W_AbY3l z$&pa1|LPCQ^bZ~0{02TW!3J>kt6xjvRRUaB_x3^mPuF$HxAy9CMN0n6O8j5VW^8bY zQm%anXP?Z*0TdTTQZ#x$8`ps_a9O6i94}$@Zqke`gvv=r1AP>@Zs`8&I7t}R!~j>+ zbZrJmV5@t>nInK>k)MH-Gr>HIwz%yi#mb|hX*vN#N+O*V%67Me;+SvtcK?ZwpDQod zl`3O>(_dV`|K9*mq;S-<&|>H3++T*d`_eFPkD`PCL;(mx_a_>TO+WYlpbFKL&=PT} zO2dgh)8^PK`1_?k9zvGySMhG)IC}NC5m%WBJ&kU1h2i5>-Wvl>9uS$C z1_#UaRY*x)re`IINT^<)+hwxr?++rE3Ft8;3-$cvpp~%!sUCEuHOBu*dyW<4T=rE> zd&hySPj&z7sT3DLIGrG^a)eEAl}*0*(#oPw#Di;GN1{nTN7IO?x1#Rhz+q}dFZ)O# zz1r!4mMGcmdIptEIj(Mh90U{(xT|yDdnB2VjBnNdh*@Ocl4B6F+{{v%7~d!*iFy8D zP}#pD5w1|8Y|>fYcut>%GOUa$P|P$LwKExb)R=Q}ZP;!5Ucw@Y>*U{0=I7_8AQUh4 zoMqAAPeW+#g;S%GmS*=g>5_sIK~z4sJ@y<@zL>234=@VBjTno`^SjMCLr<%CE;g_` zs=y1h2hvA^#)(rHyV5PC6*(}XSZi`@WM`+n3R$U2XU8WMF8V^ao%soAVuZhVi21CdQ{9Rt>lO>RM38;#!fZ40J1->4We7E{t_ za|wN)Q;g}{`uhO^pAp_fK%zf!M5yf-)6ZuDo)AzQ-E*=BRtr#VZ5BHHFzV&%XaA;0 zQFBD}A8bmHcu0an1r7AX{g@jbW`kvmk#ZjTPzZNsQshW=4joXV8@E|etFA=Hs8Sjr z-O4751*Htp&M&a-@Mp?a8ct4d$U7(FkGR6VV0S*B&dL`HuE{+KF7hm}UYw~(eG)!q zqc&K}XkQGAkOdi=*(l_sD)Gn;K*95068P@rZZ{Zn{3&*qt9n6lIPS&7U-f%YaPWkv z+O&{!=+8whYVw#MTj(z3PW2yh7lXD<9EqMN8hkDy>n=B@m3?xB zO>K3SH+I=4S<$bKc{$uhNnl1yLCr`OkU&|iN9?kkn4RJ2-=A%4jVU$cURB;=P?nx& zx6h34|G*a-2v^~@mLgNR!O8~*M?AoW_6@nZc#J93zp%DBnGs*3Ny}|~|0Il@ooe&2 zA#Kd7t!Ak(>S6qDk>K8UK^E*lijIHtoqP!4yEF2g{vkHMwT$gj%REhtxqfKbrmER1 zD%jCZU*vx%nLi3fZfXY7YK}lZAj5QOzKKH>A=vUF*mh)CV5H>>zMWbVu>b(^5|L=I zVDlVz2q2Fm$%>(z5TFYpM&SboR2tV0hJdm_AO_3|_jyo{Q$+;?OE>ZNA;eo52;R}GL( zi$IcoF5p7Tkz8dcBRove>$z;a_=hD0NB~<2{=nbzJP9~p)q_3fwV(3*BGwB^dh`&0 zRU6eu>&%Rxbr^Vl5B5&e$mS`wp+cdowgWQ@SSlkyhy_$E z$QgW9KQzz(wu%#vWOWQHr2!FS^JbZX*nK}>GK3&aci=G%KAv}}N9Rr{d7`nhc^8iH zx1(=YVpNTKyZUW};bUwnd;&8zV>&U?n%L>91}od#3Y6dXS!z~H<%lgkWqWb+1CKDO zJsZs;VB@yhsgfRD#pQ+f{~6sKuxzGUO1Itk84*~Kz&U>$Xs%=Ki|>7q z)?KtjfXc}A@?})n>`^$rJJ|Epb4<)OmqZqedGgkBfQH=*uSHEMj;L2@H+ih7AfgaZ z5M@o%fU?3MP>pphYb^h^w_fYN(jGIcAf$hY!7nXtxC+R#S-YDH&kw|c_O+U-VnVX) zKU@kq$j401azz0usuzIb1}}c|zf9r)EjAtgK4odUyGQ~c^`>n&$O5=fb-{8N2{(gN zrcS7K3)27gt(i~Q)_!>!-zBfMSaW8%%sq+MH7}Z@W97R74mP@#an1k+#)wO*T<9dt z+|9lsM=WknadCr(z#y&uWu&IL9X6Cee0Zmg>m`?0F?$xN=}>v>AT|^Dm?0t1Ze8>* zqW#wglnG9QSutB1=dV*W1%{I%N|p?3bAIaV3!wq*@PVEn8Qxzo_^&?z25R3KclKC7 z*P~f$#FS5nqpH-rx4bf72-;2s1E4t0R-C!kD@*7>0oV3)!9b#bJv(5QWig>(<2ck% z#K)M*Y~F4q?nawXaYFvm7>pe+*i%>0s_eX)fOCFKa0Gh2m#=7WhG)i5a~AG-g?rNZ z0F>H%(QTKT;doO2aXASjA`j6hh~w;}2f^Grzd?E@!mm55V)-ef!wq6Lt!8QqVlZ3+wF-d)*Bnf(j*tug|kikk`V=*Um9pk@RIbm_6={`6QOxbzrNST%#q zFzmHEV;lqEXwE}vix~qoo2QVdiYfi>=;o*gsG|z?WHq~B<9!E)T--&syYDoW-Vwj0 z9~po@j(3^dt{kG9E%)WqSJaka#X6PvCe;+OtGery`J1bUEeyxqn~ zV5Uj(W;2^Xgf^<0Y@ffcJkUpp`Of-Y81s7=Z3wvV;+Af5e!)^f;3F=MxI;wI(zXxy zx>nb_jiltcv`yKMdYebB44;{jmzJ#Sj-(bP;%_&frH>{y2Ckm&7kBMQ^g2E_`Eo-g zExdV2bpVJv07K}J3LH^)S?8!HR&nKzOy>~8e;ERCdl*FK!H5_4fujeyiHVr6! zv;BK;C`EvGA9XYZ0?!GBMsVH71xdWN?P-zWo>SL;@H+G znifBr+P1%PJK~7)GOXI9#(l(NfaMc9`pNAQKO&+4YaA6|cFD5MkUqU4gbxs&6MFhe01x|?lbcTY{6(X({UZlxI_@Ak_hzPAS>1_|BX*uTK6N6Bv7m( z#WZ@^O~dk}5wa_rjX+-(hrmpMWHmFcZW~7YwCVjo$;$c&^xM9bBEH!fo*jbRkNFW4 zjM76=n&{~qNsH}`6*;hD}G@bwcNxk9MjQ=HGMPqg&3nx~^v zKAduwPLhE}Y0!zN-sqO(%4J5bgj#*<-m%VA!Pmg?P4a3q<)hs_vEid+hd&7m^VBPL zH{g}>TWKFc4B75!zZu@v9=5Bb?wvE)-=SFrCo^csevlFOl8~iZ<9vNcf8os4ZSqjp zM&ITlB4;PYdSPE^QQ?(bgY4(R@aGeYlB|b zt+f3?783SxMhDZT?!^<~=C-%9rn1yal2@F?*XMi)%Y8l5x%B0YXMPl zBpx`(QSUWl*Pl>PxCy!H?(1zG_AfVM73RPDk_hBYY#hb{UjHVx#ik$+#hK8u zL}_JnuvBu$(D!#yKF*?_9u^e&()Wrv5`9_$=2g<+pZumS$I!5V%f*1elpJH%vt0ft z@j+`!K~2Wo>ILP{0ou3BnLX9(FtjflPz|92wJ~Cl+Mr{4*j)l~@#QQgm8?@9mL_hr z7)CpWo|Qxk&kn0o3>}hin%+rsz8F%W_^{na`+MS5EZ5t1^oL?AuT|QLV|$6P%t~%D zH+<2RJk0HH!v|>U9H&4WLQNW7xVF(QFp;c;g&TIL!!bmi8cR^>mD?yU2ZdeB313 zm%fRFK9AhR_KPG#@uIg5qq(!09=?sIkCeQ+!MZMW^{ix=H@Vfq zbSFE6LL@p1HY3K{lzVO?@Q<47VU2b^QfkzEp)JQQU+-V+Fxwz(sm z_=QGa;m+r2>$X9@Pn+(-s_cPPl?k0z^i#^ZLgYND2F?UJb zte1KhbO+ZC92kniHd?mMicW-%@s9~q_81HD*YB@SBCjLWDYfEEm+$NAN@6$sLZ#xo zh%1)Tp%TAAs_!L8y%5@^`bmAHzvNx~7eYZ@WAh)EZ2f28eA&_ag8Qu2n>zog`_-O71S4jg%~Q6_BMlDClN&2v3}T@5 zLqm2qb59C^hgY^Ze~!ty+^%p0*p3Q0^-$c4=++Z+87JyxxL9Se$N6Rti+S~ z+NG%_gUG-m(|9I+PWSNo8ny+sz)T`zg}vYD&9f!Hi$uxg%Dd3|Cq|HU)|-SrwY1Fd zw94;T)>$2&x2F%l4hG-NS{SO^N8Uw(_u}vw>E98N5YO~~^%b3%R;wSU8|>Lb6cs45sI>d{?6 zwY2fK`lXx-#_;SC>TLz?&zA4o7M?Y5*X0*a>&4?c`nF3rpLs8u ztY;@5>@U=onVorL+(J}I0?i>vri=VZ-t3`>ligZUG>BfUe0d*tel1aQ_t66}a)_Fn znkztvT7MDhMx+#NjPshg@LrlLL_4EDfqvL+$q~uMAI*?_hiicS@ zL&4h=yBcFsbMc@4WUn{(ap)=OF`i&&!f+c3*}wP!gD!zt^LY=g?!I~Uu(i&UfRsT! z(p}K$i~8g82eKe$&KY;$5?vxBB~T8JXLD3Br4^DKcfWD8qyyd_S>m|S%etu!%G#EQ zZICydQ6mQVO-m{?Z_wo4mr!fBo+JWok$Z%(;`g6MppWV$+1#&<9f?oQ=lC+eDVR$k z+2@kh0=x3jRis_j<#-04Hro0oi>$U5sTwQ!_V+FB2sv+sUM3rya^A0OmQiQbO>~ON zOm)MxnwWmahkD1OQs<7xy;2vihg#T{l_6`#XQnh3$`Vr{QXk%KJ4o{x>KiNK2W!d) z8&5S~oWCHFi5PJ?@pc<`d~+daZzg9Hzy?g(J=?QBK3v*Z?wvjdL}pFOMop96CNUA# zo|66gng^-$T(+_J(Z^+pawgl9np-i~Jyy@$mnUCrJZ?OWvP!af;3j0Ly3*>~HQB(- zTP!s&{~X$nOkppx)l)v-De=p>IJr1$jsjf>uSdRxbC_lJh$7mf=1aa)+*+A=w#Ph& zO`~S5cYIpgHQFR%Y}P~Zvc!a9B~bi1&W9Z#auCbCcw#aQ^t)GM^oL_MM`LiPqu22V zaq!k96&rZye&V|qR z)BUnZI^V=>?S%->sikj}Cb*7Y8bHq?I~RDfdo8x(n^PWqq&QVSdL+uNH|iZVhf`Wd z%X3u9#;B(D0vW<{c1owqGb8l|H&6D$!f=fv#a^1XNN)FtV4CDBjjNbGB z-y$!JL#HFmy{w`Dh7a8Vk__6$SbFa+F>q5Vs`r}8TGoAz&2fz%H7|cTS1lR;JK9j} zjH(FM!z}km)!4YlOFlqLHJQ^!Ly2I^v&U1tk?02L2=%rl2zsJnR7~8;ZI(^3PUS2d zIe^-3z|3ZUV;6B6cE2uNgX1{{V?IC1v`O_CE8SlEBNBbK``*I1?v4)$;Orm7NM>w7 zvcrLq2Ds;T8`>PtdIwsZ*`SipMxul5E7Z@ng|H6xXzXEVKFv)LQ;ytW&rxw1x;)FC zGK+SK#Se)5L};FCca$BU-C-c_`A|MFSl+eM;`JuNd1>w@AZ5Q?rt{Ez$5p9KqN#_B~H-h63?wm+9yeo+WtqRu^1(y;_{LWMRAh z`m-}*HL8!8vNb@s)}gCdmbB1kh(sWth9WEEsF%47Dv?7RiMARR^pVUEjH3yehA2K{ z$n(b?RUJm(qrE@9(`oYBqG^**Fv>rPtJ2iC(Hkq7pgkjgpl4X=E&jNAl4Rj@d_CK^ z{N#fBzS5zU#8)A(3_p+9qw<5PbuD{NwP$V*ig&NVKbP17aDHBQDE zRikD3*n$e4JEd&s`J_Z5j!;HTv{6CzTK2MsnK~-TQE^0|X<(`b)d0k%hg66!ka%y7 z;cl?AGFCWC8$AXw8c&w=@Etm;Ub>BgsiCHjocCN~=_$itvsWY{JjN9=W;W0Ovm|txWOts7@Inec-BM<9n^6%BxD3{94)d z1M!pF;)yTW1H|iPU!go$BQVL@Zw9oSF=ZDF-;HL%UR-(rmyN`(bj*OPKy=GU5AzPN zlwY>7kFlL~Tujcfk4YN#xR@=hN<7&b(`5;Lc=DZ_x$A5)wSsA@M43&oRhDrk)`eyE z+U$e%*zH8dCE!|E(ou$ynS0Odn%Ei8t%3?;Z%xA^aPkxwXHGVn)i#<>80;MywH~7? zk)Rjc&zx>Hl^#WCZQWGmUoY!+ed*2S^(gBO1&)(npIkVz>eXT2u-YIKGYbxz%*Yap zffHCK=MmmAUL+AiOvlr#@UX`%!F7S!&mUG+C|97!IuV67ItR)V!d|jfv)AwTC6&xS zo=%_4Ecfti>t%6lqqB-^)$2`^5=@B3k)+&XxhN=!Kkb$f%A-H{{X!$x zYhL`)+q6%hS3=n1d1TWTnm$=@4eYEOdl?#N8Oek1Om=hIu|I$}=66hu(S0~r)8mcR zyCkQ97Eyh`uEe1?<8^UeGIb~}W`M9FGZoYW(!zlKgU(PeVgi@1aoPs|WVC+Pr~>7E zRv?&LhpdS#m6#4Q>TKuUaiN6vW0bFG1gQr-M+9j$K@QWb#wG_*5D{pV_?(;!6R3Kc zRuW(opx=Ois1{kC&fI!u*MD-R9@ zF$>JliRCU!`O#))4w{PI-pIKrp(Y%wiNh=bu)Tht4HcVxs)<1}Z<$enX(cxsqn;)p z{a`$)Q_{Ve%;*Z*)?>@__B}2V15wz!4G%?E+3^OYK_S;k=h1bo(v|S9NW9AQh@(4? znR+Z&E=m}j$h@XO&K?}c(OdJVrs*kr)j&9rR50B4L9||@h$W9Kz8#k$W&Z^d>u~zw zEH}q5J2f@j#@$+s_WK4W@szrai`xcMCrbW8g?!(&zUH0QyW=s%Ya}X#EQxkH90;k? z&HKm8OU-u2Is)`EGY1e_K6wwVVAZr_;8Jc(e=wvc+$gj+n&x_Kg*nJK9j_nkR^|jqfl+&*pDL=F5;xKbr`w%x=)NE>SS;7h zhN~RFwbOQ88{!TM!m_K6w0z-Vnay$cTiwki-uq1JRQp!Om_04&X>34zE$}W@7E?9~ zOz3Jf3NFaX@;fk5jZ{tA{q*MGShat2>!I+FoTC4ygGUZp#dKZ2yLwg4;jfb{l(*KC zJyd?AIuLr7-N#&Y`o%w5875*;yveuWrP-)@;+;Q+bq+$&YSj>}nr4fAkw7oTO1Q~B zGq=4G*2L&z#@nTZLz$3Jwbi!GS6Gyg(|NRJq~V5){TLoy(rlFRY zV6Y8$cP%nphP%7N7%~{}b^E{fzW0(Q4ZpMr35Rp-+;bP1aiOgxD_Y3))Xa5Xy^HU> z;%BG|Ad0i6J>r19y3z{y$h|IcqFL#!y`lu{?;5BDc=W6LP76pS7cwmtOwx;ufV_92 zj-#oDe0j2iEZvwZL_iJw`U@p6Ir`&=9!pada??bYytXq&8_I2jsoDlFft8qO1(^?G z#Tc&?p05-DE?M5gy3y`)LXO2v(_nIPQhJ)pK^fHFN7ceJgThd6ZSz79jSIyIIO3!! z{_&%dwZ!`|CP@$8`j#m=6g5NY1#wW^vsay`bVsD5I zH_WZwknIyMB(-~wq;B_G0GB!8F7=em8_gl^#6wYKYrssmHIbEVFT#^)Nkjh?Vy5M4 zUoxt!mwcA3S}64QDZ*Ct!P03B5XYMJlfvN!SF>Z5#`&PK$GC2?eO{{>b7|!Xide_K z6H=+|aV5X7y@}Oteot{g4H&$$@blRB83_#YmW-5)J-cg9iub4J$>Q7rF4)=I-HDb$bz(TL&#^wN%L;(}>6c%u&_$*8JPsbPlOMT%IjDHO z`WYC+Jlrtq?ckyT+55Tkxc5_uV{^bp{+d|sPTGQ@v{As7t8+s8Mu2)24sb;jr<6@=FGmx#-wfS=e zNz(-;awKjpoPC(y>M?q|xT44pEjT}Szob7u?C>CKe&$rZrYZfII?=dr65cPSKl#M> z%AaRyF~h@QY+Kry%5{UPCQ+!KW(s2|EUE#r@p7M1)Ln=k#d?yhPwBu#q$n9+d$?3S zaQ*Gp@vFd`*J{(o%Kk>$o?%n>=vy9AM_Udotpkzs~&%^47gyC_B~Vjx8mz4OBElcgwtf08gYk&%X1_ ztzCC1Y!>-!7kL@4kFI41?R9nQ#6)G&b`_so_g8wimM-_UINk_;sea6$FAwo&b!+Dv zziiE`BRjpIw=t1tsL`IzE6}tMS(c_fUm5qf5G$eWHBsCDkoT%<(aShDbK{S86H-nA z6*fvE`r>Acr2PRknK5+Wi~@% zHmTr4S)>_KGE6fKtb;s?fR^_Z6>_kktU^Tw5)onD1hnpe)lZH{KjBlnL_!YIPtKap z(o}4ep&D!Bd8MEhtQ!Po_VH4O(7`197IKEZo^Z*))J@n>+~?ig}p^2#ug} zj2^eH4AYnf130HKwF#>fq?>*iy1FkDVJJy8n@@`EMgpE4!6a$KrHpJV6T)e-G;1#c zV{+pz)t6bd=cRrmJH(K9z8V7jc$4yo0}!@=)Tg90v_CQAl~TezKX1Gg2>U-O%LGeQ zz7-aX6MDZI8}Tz(BrV@~N?J8C+^w_b74|l6vax#7lGgmZ*a#TBi6Q*-$^ZAS1sQCG z-KKAQdy#0Ke!|btJ=3aHtzSk|HqOZglBb$xi0PIEK5=U5KfBxdAw_`lr#pUY+Y5fl zR|3;d>+!&hJ{hmhTt+MnDwM)=Ww7e;J7$kPZS0meK`l&1S*(e5rrQ%tymns>}euu<+_?(TUPIQE51WCMPk6jO~{dfy);3<~{j?!uDu{~2@8 z!VxFK2Fx%1do_OLkB;!n*!=T96X_x2Q)YyTd;87*vJeO=r2`$gbA1&2{-L1cT_m*m z71~6@LMmeeRTD~2gRoQ?^qkb7hwRax=Qu0D&$1L?qRno?Ko;er~b_=){pi#?h$xK)05zb>wY!g}uA?P}lY9^Fcy$?M-L>#1;zrn!v z1P1kdA)k6~Gn7PF-B@VIxb^Uuz8w^vDNYEGMf?5n_Gcz^8QGWy{Y2676RpnOgASlz zoYmn@EwmIr=~+(>v!kht?1(MugQip$*kxs4{;{E>E^DSm?z@YZ030W?@>;mS2>ZE# z?3%?6)M@tIhT#At$aa1+Ves~?fC_aF>e?M?;egP>LEq2w_KTTEjEzDMIpxmKP{!eC zoH@(c#vjj}Z5{y}L5_5gN};Z>!S+!PmRzPg`(nY2c(>2sQmhWZ@K{3v^$API?X*)Z zm801STl7E`{M6l+%L8?oDUJ366F{3!gtZrk4f#W1-sv}8sRf?7x&v?N4&+!XUP`DY zZ5V#U&r2cKf+(G<6bAj|1qD_B=khQ;7r#$m=j4(cLHTmXK|bTL@sbLaj2Vf|BU!wT3M>FQ zFei645+wl~`NvjrK7ZRFkvuiE(skfx0Hj^Nf1y3tH~{VmIjnRUJbyEHy6AsmcTP!- z<4F58-Rag@R~vJ}v)Twf#}_IBCiL(UB#KZMx%Hh3aLoERFCaaO|UL#CARBm4Xzmz?wloC<{hL5F$L6<&? zEqRxf2;=dy6PE!h$tq3`S;j(0LNrfQH@2&%FX*vB7L$SMlN`bUk!Ug>M0TNSn*|!W zT9z4kyjRBa@S=>zztE1Pu&%}@G$ zXP$)1S@u-LTdv#feUm;@GoM=LW^b-OBPF9V+g|MRms}lBkX2j z+mEAZorbv!X-gizRLC|*Sbp#sEg2l>YdNmY%iW6y(=1!I`;k=_4-R6w#dTQ}$c#Pt zvvz&aESGz;`o3Rd#%Fo6{2*ZO{j*aTWbcMPGp*VQ=g{^wS9OPu_O0tA#^*Eb71s`a zocU<|;~#^2T03DG^<6*Do90?EgsUgUZ4=8s^3;Db23Q+*v z>t8JhL#Hv@E|1jz&rK%B$ZYgbEgyLPlgz^kD^v}}D0x|BAp%Bd!ab`nmJx^EJ$@rm zQZA=trpKTLsAe*R7Ro&MHc4+=XnLadcoj1GwkAUgNFc9IMj=+Se8+;U)^Z`KSUHS! z`Og8j>ml9t1}p2~F>R~1%b#4&p8{T#e?FgQW-4Iam9Z@OFVu_5q^@GqB~`|Sf|21U zYHDEB2Bw#|zIwr3Q zbRLdj+-z5DMOiNiJ8RU_N#QV2T%g!rGwM*LS?!D%ia<5{A<7u~J7U~b7>Kzj>H{6qA+l=9L)K8}9yfk5IodPl63*c%9%p?i0cmXWo z#sQX9FAJ28cyz(|t#}^P9WJf`+qeZL08<=MpeH-x)aVl48JfPI0C$SCge^8xOndt+ z8NjesR(zD7S2U=1xCm9WC)Ve8A?|p`qDN_*6wy&na#-$L<6QL%@?1OFM(PE!dPn~mkONI3i*V$h+UrpO-m#ywJvvY9=vI*+nS*|i3RXvs(NkQ;> zqMdvJ&NfPbo^*zH&>IFHaHnh}n})gR@O!U+5B1K$QO)1^4hRiM$%1^qODEssTT7m^ z8`6BDecv^t5oP+dji;OmXmPE}-v$qV$D>;QmJ)H|93iNe^vk6li=IX6atmCErJJmQ z<`&$td?v$i`CH+Fdx}^IV^5^i(Et8tM3O#F^CNfhyhZc5&^_j-r#h-lV22lgy8!Lu zJmQA0d1p|3AoLM0oH>w}(h2RAurq)JR(kV{%7pd#foa6KZw;yYY5f-OE!@982Yq8( z1J+QyKR=PU@1eQ;8X0KJ+P!HVaNf)?(l{VJxfipv2!!*akQ~K(WmtnZR~1 z{5JTby{v;A{s&UAFU-Bq76fLE_av3!E~%Oex3hdn1o)CaWkN;tNuGyquD3UY-~<^i zxt0Z~roN)wC#(Vj`0PSsq!v~I&5}5=Bg&a^HUiFoB@CCf2bXV=fi1}E&;@y$P780DgB~|sTB*Cdg>ESv8R=;@(Pl>X3yQJO3+}{TI94+9c}TSi zC^g0e7>bunI*@`k$T@SuNo+*GL}jPMjnZ1J^E$k6F0F>y1ERm2$GAyu`nblQ1kjG7 z*QwHo<&BInIen{b=b9uoREmileJW_zRC)(AUaS3>R= z>Yb<3Y&MUsYD=rXjvzXmqSkGJN75b+Y;5^XF9ZSCi|m_Wd6i4mb_Ywc%(@EGwIXKz9w zQic`~E)Q%0al>;(w?A+*L4&0O#P@8`{l(ZABAhSmCI*AF63VBzS9ey~L(ZIzyPY&F!F>Xp)k?;Dc(=%lnFwF&s zk>JhvRM=*%axhZ5c%uQQ7`b&9oro{USlg6ELk^+dwenjz%ak9RHpS1czZY|<%cd6 zXX6%`=gZ21-6Pg*x6R}2x5(g1tr?)Imu1D*sG~sh@mrKW9sV7h6&{c7FtL)zU2S8% zS6udqupS!$K>iD%Q2SP-^>shTD(2C-=xNO~>2n>yRWTTWIGI8|R5Og-5wlV|hcx+R z*ElvQjp&>=vBUw>1F7r_5-)3Qk87AmMmu{-MTJam3g(R)h9yt!o+ZPr_xjk?=BU;w{9a%kvpc{nHQ+{^QX!ldY zfz`Dq9TR`S*+BrO1oUO6@1%f!zzJZ459f=yc~KORQH68g<~?D10;SS_GbMycT7=1q zKDbsC5K9d);>96kYef#HUlf;o-3%?rSQt)ez!c{}%?)2ck)xZ*zE@&6W?O7Y0DmIA z)ldYNB%J;IhL1i}G^ET*Hj+OlBt6TqZ$=pV+wW8GZ36VDIyM(#VU9CfR_&uD+F3a^ zoBQNT;f%ub-!ObO{2->j;6#IVq{Or{uOWmA9@E-GA@G2JU^g6@Gs{he0&Ue$Du(^o zM*LYNOTsjCSj613P_xTbt>buCQPjC+If!lgzR-vTsS=n~Zwj?6NMqJGo_$5`ueCbe zj3&VC0}Hh<VEt87Mz>1Ysm7_G5RjmlzZX%I^V8m^10!xSuGgdi8 zg(uXmRbrhXl1;aq6}fq@rlXEXE0o#6t|y+45;LvtReO8Q22OUQYzfr!YM3#W>BIQs z*c4cq&=e#ox5P+I+mt)KgP0a~FTvPP%iy~Bu6}Bmrih=F6pcj#H%;n_ioxPvBL&(iK)oPEwsOzuFo+Ok{d!02A{qbV&D~&QLt0LxZ zZdA&dm-q^}PQ+!tEcVTYzNgdTSqfUBz?SGPRoyE!8jiy9aT`#x+G&^pg+W@WZYYI+Va0o%oeDH5BYf z)*Dx0Tzrc{`U|#o3h1GLuuIdqG}sN31@9Cnb3#Fi_Xm)82Dyt+IFbZ4hlxChZ5BY9 z=c?C<{(kH4r!e@`hp&_&Uk76LWnFn%Ie-NBA zwgJ8_GRJ1S_welrn7c9>^#0gK?p{rzD8doS>E74;8C?oWI=JB##8j$cPxidXy(*7iYVhv;fcrD z;Sw&)zJAQX(L~cp%aj1=0gU5d>d=-JwGdShGNN_YQ1e0pDXa|Tnfs_rfRFJDa=^>4 zfUT8`$t@@40+A$Xz44+UCa`f-znKIbOj=~>U!05eal}jf=K++JTV(e$-Ot!U zHaniKK6G|=_O`Ea6c}EY!YQTmJFjF4aVbbvz|}vf3062d5T^5AtY>e7t3)d&)dH*o z+7J9mL%9Rcg*C9BB4p-Hq+H15Y=1iizIC;uW~5RXmTWu4fYa1>@Zn!}vR!lF5tsKd z$iqsu+5CRnqTSVlj6^FQKU47WIJHXOdWSsGMDJ zdaj9a=3~4E)6g_Qqxp)@u*m(g1H7L0cJ^T&^sPD9w^ zZ|c}cwP^uaSPwA@_=h21L1TLtNxD(;-|%0J1uGNuyL4}}?vC-~BF+8JSN;&`KUgLO ziu^R4!rtpfO?rl2#*AtBK>uS})(6D0H{UQW)_}FV{k(|cVK5W^MMK0{(t-jHmlECm zVPVU~-^5a!#Kg<7rN0>7Z1Yvp!Z!1{|5&(XVnp3`*%lisA49~g%0d?&ug~%#M#I#= zmY84^^J30S)CFnKg%r%=@o0`a22W3%(jq=)qWwjQ^+@1BT-7STR&_Pf{ZhiBxnD$YCi(#x zt;ZyZojHwRfYa@w)Nl4PL}$82E&Im#4QQ#BIDSHRcM>Q3eRi3?>e?unV_WDW>@gKf z!m}Oe%C)$A%8({$lDZRyZyvfO#PP+Kn}b3wsN@S5F}k{m_|*uI341cPgWWXWYekIG zUWrBYK(!}z8~;2YW0%a++?LKR`aVK`)36n|?sYdc+ml|1ro*DGP&=YAUw1HSck}&P z-}X9UNV6~*N1+hwV=6v0E#SBtQyovTy0{*F*5x}~)*z=^zHx3}PO!0Vg9xY2)U->q zi6Mi6O{66RhBQGx76*4^u=;aVg-*oCX5G}WX4%W^WE+{6YxSfM7JsC9RrFX)2_FN7 zW3E29e4uzFYqbjhgq(@K&_i!3rC+r9`_S`L%JH#nsbU{-_Q(m>z*rC2mN+{L-+fGz z7bRm6fp^{C>i60rTl#i*T`q%q(J$4D&W;F!EjWE=RdlvxD)*=}Gae}voJ?FZvIA?V zrgj#d5~mCeM^|&=rja`ppze9Bqtq0a!=!?^W9D$)E7RW+76I_g_kP3Tv=ke2yW7Oq zxl_FIu>KEo210Jt*gK4wyTXb*iT?#lBbYzvg^4r@{Rh3Iuw4|FJgHBpbO>FyT|XcA z{}b$?Wl<%tCJ-1@MFpNIHOM^Y@!kjD6NJ67XU6pR*7M{P%fZV>ZrQdB;;TfJvl!EW zqlEbimeF+;MNJ0dbK&L78SBNro8)Ja5CMk9ET<&2G{DGY*`X(`EUIxI$x7!U{79C0 zv@1^esH9kXD*|^~Mm8ICE2>74Zr%DiCV&@?H5k%(iaKqO&&*K?t(OGtLRpdUw=OG4 zl~|Uy)Tmdwm^Twr(3}i)(xTrPo(DG1m#HBb)S)-G6En@#XfS0mnQHL9IX;b<&cMJHWC!e7c7;UWbe2uL~u7WXv4&)RS?kt`8Y6l)rN!N zOm6op@+X@s5KZ=VU8Q@ub#$Or@u2C&sIck93BEeKfRF&tF2e;QHVbzbGg4QIQC^vN z{9-DemU3+J!dq#KITRsDCFWbQL1`87781voB$$l=Hnq(%gNmw3M*`$R4Hn`cW=4(H zIHf$FM*{-(^v12@dL2et`%1EOZSB7BR5(?r^Nx+-@!iU=Vyf^5NiN>;(K(<2#O{0t*ta=GFpX*ZJW|MQWAB#+H8)UW;#Sy7TszhA`qA7{d`K9LN7f7Mi2hcG zsk>0{DzcYG?&}G$elNGsAleXv7;RSg+l&`NYj#Zh8Lr6SmX7eih@6jlUl-Zm;C~)*|%hm-Y?7nr)@XJ<72!Hs?#B<=9dIPiztxst8HvHe2 z&i|yQ5M>bva*!~r2J7@+)Gt6iXL0TyN7h?Y;Ec^*ymCnYi;q9P1L%l^zFwG{$C*0N zhz|5o*E*a8 zy^p1m=&de_8vGjNI3QgM8ORXwiUEuXODR5O#UFaCC6xmXIC<;V`)XGh- z%aS-6LUri}>^G(KNr`KeDEX#%83YX4h-c|LctXWIYLmjUJ0uz)oH;RiSD$#kFYOR4 z36vnboQYor!~lVWHMC)Z#9|xTopgJ7zN<*m_`PacGmtVIe6Ia{$)V}{sa43ffK4Fi z#ZJKX(-dBnIA({Iz;Un%1WwqJgPU-`vJ_*U5rKHaNz*s!MRx56H2Vk|;b(0Stvr<*H0H-cSEKnr|WLAbnJ zq)-dM@9rw$QfLJ#5H9$lg~64ym<;~1V%dKw`7(IQo?8CZ$hfI1 z5U6i#lx`n$PrFdzu)>E^Z-w3RMGilz!WN9=7(LczU)ATeUfYScLaHl&8*i#9eS}4v zHoh#xfD}#e-l5Lt>lDbEi>j84e8i}b*UQBPhec_UGa@%D+RUnphCm`Q^b_;S8y&QX zDMNe4d87r0h_PHZO#G`v9Lm>u--p=cs&2g3WL6SmD3P|8b0|f<9NL>PZwUTmwSK@; z8$U|r)SRcJp?9!oC z*pyF+%s6U@s_y2ZGn;--di;Uh4UcxT>djE^32Z@xW;T)UuNkg0S3B;s7$uD zQcB{L4${!#)ZIN_Ud6Cn!$u8hW<$4M#jST3l}OT|H#*|iE1#an-*tKSJ;4q|??h6i zme9cJUju_l80{9`NlTVqX-W!x(`0RGZtNsxnNU(h#$Hh(E(=mjg>T#%;KD2jA2*%u zVBP&XmdtMSphjlL#S#~Ke>Q4Gr6F1otf7f5TBE^|skiC(&AUUeooH|4dtuuLz1+Qw1=Hd%4&@u@SF_OzvZt5lJ-d>;2r^lGFWZ>tVyHsP> z%FxTi_;G9xWD&Pm#tt#?gV(}XW^sc(h@{#<#9j1Ci(x#?T}3i4Uwk8(X3-w|=Jej} zw$HW}zq%M2_4)MFnER(P3V>{s)V^ml288R%?XPz1bK4)dC2l zy37YcV%}JaFpr3S3;}w6Inx<|wksVhcKKFMEmwrvQ6_$B+N-+Gm0vYP0|EUF_S!Jf+zRv;*>!=n4(#Yh`FWIbK~wfl z+Gi5AiQex#z!`gmdcPiY3!o{1vY5zut)zQfA_|2=P&f2O8Y9Ku9v$bNky_~6)axJp zdNLlCNwBK0s|Impf#gjYz3K4_dyJl~TCp~M0}@_pl18sF%~5;FLf0F*FhoHd6hVAj zr&!ums(ftm;K&}em#KSc(o3~7T1V+?86x9Pj#XL`TB1>)yPoJs_`7e%=Lm}Ua3!)g zK7Q&d{3$leT{7e)aAMCU0TgBwyCp?9@Xl1R56fu=pYx=`*7`H~>T4{RKE@eFF}%+7 zlfkXg0nT}kr%t)MZ$zx!kw-{~3yH-rTfjRb-^J~?rST}8ytvRey9?j2f} zM-JyceD(RAH}=b&z?$<*L$MbL!kbfdY`tX_rE;4P>c%=+1kP5;v*AW3b!tJoc4se^ zJ+4w{E`a`HX6rdODF^Bpyk|quJ}FFI5oN+4hJWz}(L{@K-8i!E-BPx^JtkbXi~N`% zN{l3xY8sOZ4{I|1?Rfa32?i!?h}!+P&h10_C;0cd>Y==Jpln$3{Nh{Jiu6+Z2Jy)& zuX;_vzNM32B!=jNg2$0X-VB9ZM%7fwHVctUi?ni8^hRW4zSzz_tR(rKrCzJKPjwev zX%Rv-a1i!I+%azSK{SP!MkeqpMx__Z8F!0E?KW0d_VeITmz7t@H3pS7B$Y8+ac^B3 zHcT=7|1|XDAxz?%Pc{s8thh$Hm7Q(>;?ZstD2+Zd7CZ_4eb500+{5*3=yZL03*8EJ z%hsOzcQN*-n@}nm$i<(|>-;r_-w@|#yd=!3qX_VHMDbFy1t$v04I)z(gX+EXb|dGE z4V;)PiZiWd(&S5|`R#{oX)U!{zlqP|_cR zpD-!l>U3W9yuyW`C%vd3t*(_s+_~U(G-)8;l*uU4_+9ihR_S_=J(dfVl8=N+!OXH# z8>FI9R(v<&mV`>{zKwG#6AX*E22QhKe0MO2Xb$TMjtos2D!-*CKM!G8i40nn-u_l? zle2MPMHQGMa?3UyiSu0rU?<~@!UYL;{Em(4JLux z>>+*n%kf|fZPhS0&F(;y@0B6^^jxD%h#|ulw_PQIy7lD&Q=JUrt-U=>hFi&P>|;B8 zD=Y5i?PXjuN^?4K<~4A$HnW;!ofS%z_V5C_y*f3(c6F1*`gO$!^R1bvd48b&s@^AC z^7r!RQjX8xO?HD)#k~0x4w??U1o5tpm88s-%Q{eYZf!6-DD{0^X5wvV0QRdU;y{CR zW_AxP39{Fb9TAvKSs7}DcA@e6wj-R{y{i-mPNU{oTkom0li*tMU4>U#HQ*9n-Htm@ z*0EGqWv#q(C4SvJkqD4Jli|7S{L7j%36O|JwZ$@iLZ=6x5!=JR2)z)8CZpXLKHc?y zKcgN8V@!QNb7Mt^pyVd(wfEn>fsfn(3ihac^UxeOPm!U!2|kzWEMlG?5% zTi`8kBIB|@FNl(j5#W!05Z#?>qi4*h-V#ZjFg|act8_Mw5%hbt^1kGpu6YHl&CFaG zS_q|bp5`&;%lUJM#nol5=1OAy6}8W0*^e4Sf!E-V0#`lhHd{W@n??W%M$v=X4gT+U`_r5sI5tv9f^vH zck!0aU25o$!t*`C|q`R0E*P9Mzx{Zs5bJ)mb6$!)$=pH0D` zz~#@8Br+rpp-T#y7r9NV?=jyZ3<(1CPiFG&oyI3$ZGTfe{+K>{#k%^MF zDfEghEhRE=)u-i^qpVYYaY#jrX;nq6fvP)0+92{^pCVGJVfuGrk|1ONMFSVb>QaD@|Kuz@={$Pp*+l}8&W`x z9OtW;AI55^7BvQ?e*HNkery2Qr)G8uAJxHL!MjcG31D)`H#bSKcLr131I&+dt)POr zBFgMYW@P4#ZXrNkrMQBa;jzZKDu#sn!;fFpmp5<90>KGGYt+PL)`=qCPevb18Tg4l zkM5AfYR2Xw|Ei_llZ#|j6YhJuXp;$8;lJ1g--~NfL$G>LL5 zS-rqwOW)2ep|q;wZ0*%7Yg8isTkIWG zS%1!U;I2InnYd9J<7aN1*YcL7crj?e+T~QOh34M|GB_ZM3X z5}OG(E;`kG-^@|k2g-N#%x0p!{n|LHhFX0tJ>xIF`Ze&TC1{y)U)4Ie;zLn)Sdrl59Q+)tyLN=pO zEtr`({l|WWhPt})UzYu;!iDk&zk;PCFwaTFE9k61veQ<2>0?-y?Wqy(mWwd(h{roi zxmb`Oo?61$q5y>(CDiqnF~N-EwJmG?Xef)Nic$Q@Ii;Xrqd4{~O72_a2qTSSj$?(+ zE47%^0I?3iOFP^xT1m+o$j!yWM8)tX1AW2Ap+$O{yMl0Tr#I5}62GFoEFG$>LSZgV zNu<)g5UZ<&637zGBI0wnF%IZ{Wg|bf;g=ZR&SSkLhEyMh2!%)XzhhK&!CZA{Lm4?C;=rhq77vuel#mt zvt<-8T|O@iryV}zO&%Ldh^inkGD>g@(m;BS0*Ba4fWmrM@R33A?PMEcUd5RW>jW8QvKX?yY=;r`Gv*864I<{2?Vh@Ri0=L<6>)Y(%jJ zI)~3~RG_IYwWUWABjMB^;}G)>Q5Xz|3V_DFJ)2cA^j)xHIVdbdfX-9vd2U5MN;70U zJ-A7Dr3Xc=;`3vaSmeh+vqWO-Wl@T))FFQFeI)(`MyD)6OmZwfCzxVxB@1=7Quj|#G}1Y_LYNdg2odu8gK3EOhwlO!oX z%kbcd?b`0aw>c?xE)x|&ACqO&(`+;yX#Vud`R(4Xtgc53~F4rBlKUdTzj>{regKbza=1S6FM*TL<_QLUt|nN?#WU~-llOCzGe#T zWDR(+MDZ_(SX{8aCM&S&>NG3%`t)h%`fZcL#f`Ug3m$_L#m*j|v+oCb@JVtK#>wbt zkxJzFasu)xO;8=Q>F_7)`2l}hsYhSn7P~7LPkP4v<)M#8fZwI;oqju9u75g$CS{<_ zn1L4u&E6N%#+{AX;xcz5!v7z?{0*q0FmOg6kjKOfL<^eB@V-#Or%UelXgZQwA4D^78eU2+VdHCcIlNUau>|8C&63-x1j(*U>e+YI&`2lK59M ziDc7hg?oJyRG5i7o@t%IIaWSI4x-kr)$vi7I8t!X#upxmE(|Gc9N}-*0Zfsb>Zoj! z)}b)a{oW;q@47Gs{+ABcx+O(XTRZX zeYLL#v@bPAAMbg}=LmY_|H??vq9QQb|u!d?Q1B_pu-}pWq zT-4m1$uGV`BgkbDXU}dCpLB~6;!}}5tK+Q!lY>-5i*inUnE}M3RR0&oOR6aQq z>D_`BJ|?|fHOuX@T!oV{09ACHM_Zs-k8OJ6;#b5fuOhrLg7#J<){QtD8*5#D_hWj( zz}h)0$z{0KHP_iS>ab+$Z%DQlhTF9@)S0Gu!H+yS3Jyk~;DH~*k48nlUuR3MTHw<9)+qd8H&{U>t%qcZygR9s+9O*8PTv_o^* z0{G_rR?A0dKNw!@FcYmG#LAM|X(c5_VNm>WUdVMR7N@|r1mvRdRwnpYVzU0S28(qX zZ~`!GYVqyCm!?2Wn*KOOO_qT@pjtct`yc`@R;sph{K&1j2@`1!$Qtk;? zDe|+>9sP3aRCbd=ja$JJf|RcvFBs~O1)VUvHsNs9jb zX6lgK&Z17=ZvWkulzRgw$pd<+YLh;CkT*6S#_iY~7ocZX$n%5kCE1d`!-KZKBx0xX z(7I}~g~BJYi%{34bDB^QLF{NXT27CJ5gEUK(HlDOat+B6(&kSMWzm1ni&@~FGhzNoWX~MfFrzJ*r~Oik2xE97_pmt_}#qgtiDb+)4GvVEQ2BfJNn)&(uD0Uj$a_5LfleWAV*Z z-LH#N-{xC$_!hwym3Zbyy+vFzSlO3&jVD^e`r}IrBOU&=vjE26n1POQ5QRFXvn8g^yEg=6)}Z%}2aCfq zTlbmf2R3Yp(dty3&;^yZyli)n$BkXG`%Qh`)fH?)Cu0Y4;;*HgiOCdjc^U%%!jm*E zYTN0Osc7yFP>tUQo`J6I*vFfW{9GLL!w3$6co!-6Yu#=VI+>FqEGII4cd!_)FSCZ<;@ zf6(fuU>+~vTHB1FYsCf5eWeq*&%+pn^HCX{kF_YRT$R~?c$ih5_@Yp<@03Cr7|I*z z{iTYnK(o>moa2F;^g^HP^&R4Uh_hXq@ZJKPt8G z>7&dhm{YY#oNn*==A|y)c>zQYooz=C?!5*V_2pTdCW#Ey0l&Q$fdOYZ5w1Br5}tiw zY)$>$voEt7v*(;c^AgW1M%a{2whX^*J-)4OvuMkIWfY@8U7oC~{k$+{l@a^HbhY3| zF}ue6{nn?eg$#}_XN47>OVKrp$-+C@DR5%WAT5GBdgN^f0_r@yw8OwcF&$)@Y^qJy zF{rsx=z=+A&$Z{spq%%^O^+ruAeW3h!ch(W_sPq1_vPK^7dozDDooyZg(N$+#Fh6{ z>|e7oQI}*-wdaJ0q&_7u>-us#!P1oE;mm4jE%e3%>ByldUPCH{^S`IElUGD{QPAr=F-|kIVsuoV0gxLF@-(p!8R`I`GmM=-&Ht)jwC2u; zFVbk%Ki!oUa~Yo?IWn~ z)2rof{6mYIl+b8=4|?lA{;!{n0QcbJRJfI=tHMd2H@^`6mlb&u0xR*$)2w0R5lpx3 zYG+@a?%=&jkuOd;=tCP3Vuky3AHJm*6B2W(yPrK|QoO`fd1hH4s2NgrS^82+%O39n zjsoUkI!A%trQl!Zu6E< zAL-(10$%g<47y;yP7_JJc)J#axs=DH#sjo>5oMkeo;}k#p=kwHg^}8~6W`Rd>ajzs zjb_QErSDxo#$VhNeQWur;`0VDRK@nyMwz@@(5%Oe>!Fm}o;2B?b)Z6} zV=*}QM$qyc#lRS&1?sL7nYFy?)J4{wvbG}Zj~4W(;KUmccXyt!W;fuv1IFdpoc>HRfIF z%tP%@$8+lJi1+xnB+7nOo~8cbLm2GDVz$yO)ym2VaYGSnxsy3WwUfD2eO7Q6haE^t z%S?W~T>hM2$dM2Ertw-Y#rk!I4(NNTnxMXt9sd4b4kWJ%vo`nsrgfKg0LF)0c*2^J zix2;axk2Qjn{ffekC^WTs{a&6XVuozS8?!DOA>kz3Y?zPYeHyEF6i0 zT6PD_45VgF6wkXfU(lk5E!!hNZByWlV7x~#di=KqOiLRMa@6`%(mSZFa#7?#DWGa) z(y-1qozmDNCZUvWw5#5t5Getnl$Pbas;g>0mj5n>Y8)F_aPcUFe7DA4hkW7#{0hB1 zfEO6F%$qw0Bd}>(AW!upFcgf7WQNB}!N~tK$3J9a=ob-ukED9GqDuAK)#=Z6%hpe@ zYZy}@>&rOCdld~>8?lVVeF{o#G5LWr3Th!SKroNNGaw6l*eEQPDH9}&D9*l+r#X{(A0 z+QxBZpgz&fRmOH_?aGKlZ$J9ln--a>%r+b$cV#PPqAKxY#9*#QXJs)Nr3lzm*^~rF zDVbUJxoSH&`wCZbz7E+Ht>=o@0BI)}w~=drfhAObyeJ8lP}=cr0g_x*(ydX1bNkf3 z%CBc}DnRs?PI~-{#GcwWK;I_^Ry1#L^5{BN#LYhKlYQ3R6Q|>MLaOY&K>=5AUdkXa zs7`m*iZa;aC&}?m`l+FG6$C%!Wr;CDIHB?VoNRz+rn5@Num1(z4(gNgz5XqB@~(>Ju>oRaP(rvJ zGuycoYKX_4&*iZWU;Zk4miKCszG@T8Crx6PkQPN@5;aUvcKAyJjCZA?K*`vRv)oNz zvkw=72;3X|DR6MDmaswfWZOO-xEbtkq)w?Tf+#UuHFX}A64R6fb64={e(#IvfnsaR zH>e_k`!q@!udtRf_4F7FUllXd)Jbb8LIsdJsxZ>>rEEifC(!>QTus?sW3ikA-D5$q zINcN?FgUc;faxi&-iene6Z!9Z0;A2rC?(@bZvge?pvXs_77-T|m%6!P5&;2G>4Js7dcVPI-VK>TDDC z82BP>z68Rf##cLon2@F=m5%;(eQ<9RM_9v7z8`T+EGv5+m@pBX`5xIrL^*Z5Pwg&L z$Iai}?7V|;6a`#y?pCC`W9Sy7L%Naf zlm{xrPwG9N!&sZ0vhYwNkM4pLI06?&9 zMVU(t(ntp|pUgMWRX?&N==&y%SJ9znmn%Cz;<-rol&|Y2Viwo>JjFUb4cEMq75Ug9 z4r}6QT*@9{XZGT`^G)~P{{!Dn$e5I|^T1^n{cFx$j<$;ap^bdTLXxPnlCv+}|HRfY z5rNJmEz!NUBJ4g{9qy$sR(t+urTXs>i{u1IqD?!m8#YsO?pQ`{9_CTATBhyB5e|(+ z&MSzrCKL!`sk-L#{Tgob?6UYy96#vjHi)#n}d@YlY+nyU+!>&pvT7yOuIq@ci%0K-WEi^5UB-|el! zCexXzXfDKhOLS4m&w5}*qACKdkrDc-$pGyulc&ooe%nZ5&D5Xps3d@s1J(~T#_><5 zXO=%t-a@%EmLGDmTq1_0hkjmfbogJ0qN#RBw>nrpS4@wsbaZwFr)bYXceT*EkaUe@ zPjh9!55JfBn`#8oYT%1;_j*%labh5ywq}K!%MRA#_>=yHjARsB+ubjCw_lO1UKj+C zcidL#)ls&C8kMx|tT2Hw9C(u;)I5qD;n;=c|Hvm%c?C9VRpBerLa!jj`e$QCc{Us$4 z7y#@rD*Rgn|B0V&4~XNs&}Fd9vnO8;wpz(aX#~e)w()2`3~miHlnO!zaxs|EpDN^w z2iYi~A9T=J60w*{i0oZrH(e@t6J=(yAIE0PNt!UAZ@x=)N!qk$l1S5edPm}@N``QS zHh25TjUDUS2VKQcZS2?C*gMd18I_5ZRdC2w#IXmZ%A6XIQh>>tk&-vb)-yc#;pW6kOrKVaJT*RfR)sZH4wPent{7WoTt|@P=VP?rG1h@L8=Pg7POy{V3cG>jp zbo9){<*_lV%(nQ-gNX~v%$i%U6JL=? z1^gAHM#~WA{vA*5UtA3tSnwhOM@hI6J!1Rs67wtQc)-%Xiz<%l_W#2v(j)Mk+D4FZ z?DOS=Emb9hS3-JMrgW8dv;pskx0vS2H+mL<7YF+eJQzGWQ1om=cS$ObT6Hz)=O-TQ z#~D!thqzN*7gIgfqr||gB0NvmIX<38h`^R^%l8>~K@G5x#eC44QRKEhi4syC*iPl7 zPexb8#NU$~15O>Lbf|k-FPkno8RVESsnG~c^{;ave!S~a6AXzSbHNEa7vB2l$!_9? z>y!Hef|Fkk8aLp67XvbNMJZfbgkXHDM5i_qEo|LUta?a?d9iIotl6FTRq7@BFXTS5 zJFMMABV%0U#q**ENNE&Zc<>y?(SeYjtCk({FzM&jBePP)lWHw}9?R}4+I!HEs4rGK zt*AWBac7y5gjNuH1l0y|))RGJ8ZFpl6as$42M`0*#IY}^=no!~E^v-dNGgRe55_;^ z;(dWPv@Y#-CemUvR(~s~R>e!cT&cx?uE;n!GgpY=?N;O@@@T*;!4=tBhy|fE=~mA6 zWyqJ>Ke8TcyYUBS)%GH$%9Eyy4+tPCy!fvpHx!rdl6#d9R8$S!BFBwQJO zOy0nxS6@ABH*ULAeJ_vtz!oAS9`WuGncd4RRQe?19@x{X)vuVDj;}7e5W(K&`ke2t zUg&M?Z4@EZuTjLFbKe(uiD@>BR0Z8@maq^X70bYHwu21N=6l=6+RBg?7MgwKE8BC@ z5o~#{Qz-hYZNI$7y$wxxN|7usU)?ewD@Xtw4N5>Sk}hh?Wg2cl@p+&zkbCzkMw}eo zdJyZHB0+V>WZ^&?d7Aq{;^~@|YCBImMQqsT>#!62W)V8`OYaxzR1Uq=o6bsAd!DluYtczVEiM6*Qjwj1{>?R~5<4xET5~ zLw}Ocg;k~SCMhgid*LL ztu$){;@JgBRD)HsddrreMg`aIQt}$0>XyQZEbHM8vT@-GLuwP~I*i?T;L!jC`kxd5 z2dzjV*)z?M6VTs@9+oN|$i>6{dEfBdC|`ia7HkO|$y386NM0^SFB>7GSO+u(=h0`2W=;I0wOl{?8T z<`&P z|H9)u!1}A_`=2H~CI5*KTA4tur|gBk&-U(KtNjNs`j-sjh;}HBGQFHUmnnlOy`&s{ zt(~5sz+I;?(tBD`xiu6_Omo#_^sM!DWyp^Pk75e0Z$snGSM6s;t$QoqwKAsM1SFjj z6-|msU!zILP{QQBKB;7=kqcAE1ndx?i6sHlSVBOa5X)|=afiy=ykafQ747DDd{UI(-qx|M zCC+uHWQ_qukzht#w8^4{yf(Gy{&3;pQGJ&N^qddl) z0sPOnO!b=#Y8%q&`zJttlj;}bTj+d6oz&qmnL+&jK#KoF2wV`fH5dPd&S#nMaoDNJ zU<4Q)@Vrg0DJM|~tG|>y43j}Q;cA~&Df6TM3xahTKke1iE1#PSI*}0|0oc}dieH;w zvA}iO`SayFz*T=sxlAnq4+Qz8u|$O&LSH5TGT&#*6V88IOH=IsS>XJLFas3O=sXn> zc+{NoS(DqM`(it41&!=E!9;`&VoOAlOZR?WgR}`R^0fGamj(*sPftatX&=5324VUb_lcGV8h;Eqd(z6(DZt;Hk4o?s18Q!dRK$X@ z617$((MIc+NIb5}Qz5@$>*h!Qp~^0#^1UH)X%l|1>hX=oGuG3NSut7qVb60!Rs_w~ z)v*tOymXe_Pf3~=>-f*lue5%Stv+L^nw3toG#8Pml3A=?@B1ppcRG#IP@AaYnw(eo zdM(D{6xc+d+cM_;#T zB+k$6rvnp6QhVoUyfMFq^GtCjx=m}+FE?U7cOUnG9#&B~yREi#fM{CV4@d2*nO|;6 z{cTA)7=Sr*N~Q(hEV@(sXGWd>sxy)2*dC#+y^S^gheGE`hjtxQpDVWX%WK6ekFfK% zZsXq_$M2Tbj=uYy<;vz}k=o!i)TL_IiG!#&bJ#&|l3~Hyk8@1uw0wnc^)fN-XF*o-n@0&1sZC6A@i`Qq)}t0&NUOn3kjZ+}IPBzU32o8-H1- z_AB2&mNeSZg{rmlOtj7RSUpq>A8BL6O4O~SyF`Ha}9_*J&D0)!4$Vco5> z8YYzQNSw84!;Y$`TR*?0mSo;jcwhBs`(v~f|9;NXBD@8h^)04rox>nHRN3CeWP-`> zj}AdVlP#pOngo(qoT2TAlCCBThWICHwpodK@S>YT9nPQ~bRKB~D)*ai z4kt#J`Cm-n{;B(dj_)u;`doA4uH9*VokqX*h)GV|ui# zO^=FPP=z5i+Vog5`2)#!e1Yxz>}hHx!WI|uCAx&fxeJgV9HY;-Mn?2>)|ar_kG3eU zZ^LU^JBj%CntM-A%ZUMM?(AhpWHaG0>C1LX&6l@FQt%V|6aSy-oli=<5}bfuP3lB2 zEyau$_+T>kR=Gaxak|?l!)GpTZj7PgtypAvdp%`%RJ87OC?(iAPuKDR};t=(YN%`o@wg$caQ&RwfY(cT(Y9IF;4RR&MoJ zdNjN~ENM^XCb%Qrn|e7?F^GRdoy{GL{qr3jgXl(QmwK%yF{-g&jcn1J&4l1r`q+e- z?>LtCUl+{F*J6wVu!9;4wS=Qe);^A(u5#JZF!#)ss! zZjT7zr5&|@aP%*+NX)&YJ)pz=&x;O0Bnu-EdGC*f`~TT|rx~IV&IS*B^Aw4p2;wQk zv9OuCVpqWb@-Zd2HpMwVYNUB--2MTQfU&ZUQP>~>>tQ3EjB>35-7u{`ma@p3(R^IUADVOCD4 zyR!a*D9kj4ATqPX&dNY9M>^Q6Q0t}t51(a7X81yQIiYm7)mNUZocH8Ej`nsYHul5< zGJW7FNvQgbju`EhH(a)mkdC|{T};g$a1;>Em&8AmWx~SmWdwdY?bRmwE!d3@B*~uj=NKGf>#{ zZ~x%S1+=_XeZT|p`7gwA^jmlQ5!LPEZ$X^^@JSqsabOIw=gfn#wJo#mnBcEtf9xav zX(3E7z$P?t1Lg)^Mv>G57-~`cQkPBf<@lv2*m|=>)kBxEapuWfcLB-rQ|>kurr=0< z6A9sg=k-km3+CAG)noO`j4_SUcN!op57l)lNy5lG6;b@%ivUEZZI2w&`)(}H1@ zj@>ejAJ=hH$zJ`|(0?;)V3}SY_)#VgE7{okt~wGZCrh|LV))$zVuoHt_60?LHEoE) z0~ZJhVbHjPu;g89Cu7Z|XrS=RV5}_74f^jG>KLwr8ubj_nB@px%05(X{v*s;d5dzS z8Lh4vj1~cW^acigbxC%{>rr)x+Yy*#`s?Qmf)di{?JRA&P zWnQY%NV05}#h8C$ZkkuUb4uS&Rc}}S#^>YaiTOmM(Tk9|&sG;7JVLu^5zvW!&}R`K z?=AE0dZu?1!YBN{xTgmlJfwR)v}1k#cUJ+UKtf-V_w9yw0Z8C!>dzPw{J&#}6$p^B z4w)5igMk(j3CZ-0hip*^)}>)Qb$HQJ=x|TNiIeMKb_z#GAQzwczleJ(|}Ohq;n(; zSVSzvwjs<%axo*cL7Du&{&h^ z(rCSxAn167Q141F2w~6>JEL(vtuRuN+U+kwug{Tm{vi;YHvHjPHfjg|Nr)HoR`uSZ zLsTu_?BQ*ghi@^Jj~;&+^^!+tM%F%kYR{+T+Y z0=cB`>op$)(0KG(+rUfzT?zj!N~UO##qRJR9R6;%5)}y0UAkjezO`bgHOca3$@7H; zksN1|bPEhT+{MmYHN6>|blwsMB)6Gizgg6~&?t~wer~92cVux8rh}#sW&^$}S4YWG zigJ9Tkq045Pc}g-Rh@Fs^XK=`*B-ueSePZhH5%|KuTcZE0=x(|Q;~7THMFb2E;eXMr96$J z)K;Bc0?>mGVQQ%8&b*YauSeSOi|K|AO3V{tYw&eX3#zWZ9^OTp z20#YI_kQCga=LlRfPr+bmB&x7Xw!XUqMj6C+)s^iS}2?4^jzu3n=k+sGIWM{bQui3SdZb>n4;`=$D#|Smi zr}B9TBDQ&xJFq1k6m%Z$Y@`r9ZAswuW~sbs4AbD)v4cB+s1V%@t;bsCE&4GmfyUuO zH`mxE1eigG7Fe32`os4oNq3J76kUdP?3Rs3+_ZGU5cNbZJQ2Is4ZX=u&Y53!S%HyP&|lR(#Sm#xaU4 zsouf~Rr{xIayJ#7xlYWROj~2r?ZiAL#xApCu?CXOKE=$hrBzy84?n=M^eoUwuoCP@ zgErC$9(|KOw{BkM!&3$BxfO*iT4%P)$P<@x;6?^oXhdkyy#28y^c6N*`cAX(QajlP zzMafVe=G5;?>YA&%!x##7%Pn>z3B1JBq!mvdRiokjRJ}p#GMc$D3vMYY2-a{8p2|k z9DIyl*B&(JAiDDX8Qz_S21X~3I`>cup_YWM`sLRjr(Y(p^M`8E%IW9ES#i+z1F_xbO^v?a9LsuL_)m25xY^ViM? znHrAUf5*m=vM4F39Zo<{j{v=Q6pvBuZYpTGI63Aa&t;nxT{$k~Yk%DFRjY)Up8TBYtF@XaF>`g9b67-ha z-)R%)T(%gv%R>l-mPObUR1oP7snE&y5111Gg`sGC!W&!pG>$|#bnyZpt8)i~xa|6E z3m23RSmy2EQAgaE(M^(rJt$hf#_N9RA}^KpLDro|=Ag*}>hJsHmoijxbjPu#WU|-7sHR zSV>ui$JR78JycXjV^3v+vL}ay;LFp}t0$7|(fO#Wdw*<-? zx>bR8BI}fsC$fEBLACD*g6M!5BN^X5QH|w24xqksaO?8L*v~%4BTmp>cHta!e@%0u z9Lf~dNdNociGb_kkGzTgqzO+pB$w^Mm4oqkn?sSp8s7g#i4`SaSQWK0UjjoU6*^xQ z5g3Ux>?GBnRY=HeuVUcZG}{iM!XErKsDeG695jR0SgP!ugu#+psK%>WNQmT6fMv7W zQ-AsUX*2MDiU(wtUs+zUW<`L!X7)pai-|{O@Lqy6q#(r-7=@?W^S@fHrVKy@?*yu4 zyw8Vp;$tfBF6`333Huud>^RFT!E0{E zZY@sQ(PU?&1!=es{J`T#2E&)uy)g9;gtTeVoGd;L%p;!&R~8>HYmbh>N;c2GMMLnCA8uJmR{q=mW>{O(H8Z z6itw4_a=SFPcDP_8rp{r`|6db_(t0$iirg@ntj>ZjgdnJEL{%XhxA3@*d_D*FJY18 zw-o*59Gwx(pRZ|!bovsgt@*7Qp3D2c7qG_&g71;kKo~wrH+`86jUolUBsHs7s`~t! zXq4G6y;M{TG;;^j@0@IZWf8dFK;lInPjegQN5|(`Lu;y(OBW!gjB=(;7y`I( z3FpE!I~MxvCd>^TPPwoC+_h%lMLS)F7uPuQjqT!}|65 z%*=)`9R(rz_uvnYkCU`I`3Z5ue?`Ds%Ab&vqqAa$=3kR?wEY)Gr{`y>b?BuwCWV~o5 z64_QVYvydXqT=xS*MwErH)*y~uIW{Tt;Xu<=yQgb-*o1Bg7RK8W)2|)W9J`*hrEAc z{N=mtT6U)Soz>d3{75&%kW%}HJM2V+b80)A7&=s*bU#;w)q=#n);jOWk?Ru>6;c++ z3Ylk})niT`QRguC&FvS^E%4p_L)co67SA>brE-x0#(>jZxHy_5;b8fkf-Ppe+3AuGD||B=@KmH6h#X0Wd1vFe48{n#SN8WrD>*hb^5h zLn3VRTYo7b*P{ju=SEgdi6kH$ru#rku&VZ?nMu*Ga}FscBQ<(5!UOY-OVPkUHf6XF zgnVEBXHgO}4`c^?5AvbIxXU_ObF$ND3{uqj;3%mtzjcI6g`O}BMeC@?i|Z@!+76zmW!D|6pp$fPaZxpMftX*PFZR! zxTW5Rmw%$4q)>-HkrjraE~!BJ9uK$k{IOt)Iy9DN@U2Ex)PR`|!S2y&iCFK@i+em; z(K~`Q8~yc#cxMxiqzX-XTuEh~fkz|3e{5=VuG1c&Z z)X}zEwcNFn>{Xf(aR_<2)|M~Hh+OiZ=%z_b3hp)=jyJ|q(3;!zlN}>H5O*7Sk=%s}V!!{K9Q^{Q6$sB^$=dg z%aD=W4~*anj?m1hsgj_=$)zpQw>vmUaeemRk?>CLq0^68QV1ZQ3GmgII>AxlTbU-tI{IdA(j5ViGQX?z4auy@~bgHJ}YFaE7Oq)N`44ald%Y3 zZ|=bzaMN^{R&Zg^QV>1?gtsj44p?djv@F$TwPRDSqIv{A#&s&so_*VCr-fY=xbInW z9;N6t)96GnyXjo!60QZLkT1a1m;b?@!n2RKr8VIHkfheZRUu|6LahUjeG{|wIJKrO zhmbWf+Ihahu7^0Gls)vhmUoBiKDL=oBMwZme_Vp&9U$7-v@#TGd)u*y%Mlw4vxQ16 zDjq8APP4b=c}JXwXKqx<2Wi*ggF@rSA(WCTKWE)V)<)*N2GbDOU*oYpY0{*}fX1mUJ(r~a>LOith}}(v z&nm}0-s5c^6$_`~C&sTUSq3FnZFyhpL$xXh+TOc=zw+6511917a@LJ>=yt*Jt~90v zoiJ6PKW#zDW z|7{@t?!1aA0U%xQh2sMpz_Bz#i&WWHUe}nPCd9{(H3lOEe_YN4vDYSg8TB%)8Ei?#+#Kgp1_w$J#y(3_dpCP!C0SOb~ zl?avGCj8>-ngOx)OR1wuxu_HmjGbsqRD9fStcyWBHCXLv|D1;5+gio>8A0**g(a>q zlQv0J0={AUcc4(hPqX}uTXnJGju9z1(Izz&dH-qHY~xc8KgSoxgQQUV{cw+Vw&(#h zxzid`eodAH1&|5=X#}reQS{wY&;6l<#sAlAao%xpwjztZxLwJZ$)i9qbOJi&a zXyNm_w|%s=faI#x(m$u-pRU6n4ovE)q@&W>%1H5jQ8wy1X7zJl@fOrW$lp_fG}|S5 zaD3Ex=E$IpRP|8A@Dwbz*Gy#MzDbA&*lg#6V9CcS7TscNl_6uviVI0X@F)Xee9cHJ zs?A4D*^dQ9<7=*3sTMzSy0zZ`AR*mWPh6!zTOI31RHpHFwQy8;q|S?gx({+W+EYg( z=N2;x{R_N z%oFWLw4DrEjV23ql{Qur$EcyLCR#m`%K4Vdb`XQIRlyBLJ+JL|vvgJ18_KrH$@&^= zQP27_H-UL)fyfNkyR*&gvk<}XzMBQ~8@kJK0nsoCjf3cPjrVG4EnaQ1hXi!-`nx%& z3A|S6!=;`|1)bY3%?@cIQwo-!Kg31aTXzHNOz`>Dy(@_Al}+Cr(R_1O@z`FIMIKT} zBic?By;!t}?Y2;P;CSZa@)D=ha?!8a$}))#M4F-X-rg81fs!a5P>F-E9|;WRp2u^x zUdFSWjl4;(FukDBQMFfN;Ps%jsDno?O%CDA&P%pUoHhm=kh zO921z0i@3chCbb4hER|T@)CC1srcr`U9C(Mlste542kK{J7Vnxi z^qY7Ne@eepjp~b%4c9t5Tzz&eu`GdGxfud!40I%b|hP@4wsZOTN?dx|2|z)!<% zemyvh1eRsmNvaH3SO_!LUCVzaztm6RFMg{dg`@E#yij}(<+S+c){)K036^ED+?&Wp4+tUuymrGp1+@rlI$ipC;Zm;{5L9i9>IhJ>9Wn_w0 z@qmHRde>I7@bIlrZrLAbh>$&9KJmbix!0c>8#ghbZ3O*TQVEJONl(C z*H3whms*7K+u;6)Z*R)5CXQdb0-;afN{4oO6sHn#Nvp|5x6PFKl;ox5@Mkl{HU*OY zVUC(teV68+6Gg*+)X$iEA*p4%d}XTNe4^i4EH{B*47*p}OKo{hP7hU7;(Esqe@@!+ z#SphNb()h!;5HeH%6jcvHmIh$9cY4k6K!D5e|p~tj@3n;lnN` zYT%r?XN8i_Hss;8(D5K|!WdUT8D~kt*(~IxJrdqB>5G42H#~5vD}%uT@^;&joMQ`iBrjUg4%0!f zDcNa~Dl^*Mu&lSI3GWGCd$6;lSVkUR*SIr33?fDQyoFFO=88%CBxoTDVueR6=^J07 zO(n+e@goGM;~%jM6zNaBV7{)ESSwg6y;W<@9t21~JvEY8nh}&1UsAcn6iW5XeedEh ztsX{zWr^J{fngE+ba?PqL>lcgMhGJ!keMwX=m~8cKy7_+=k3X2W-^)toRA^xuZqPf zJ(rawq;P!fGG;JOz7lU^0)o*N;`@5@N2)2a|h}pbk)KDp?*qf3Jag zJ1LBm$D~#RuSlJRI0`x(H4tgzx!0$Eb@dx-z2-!-^Guh$ztMndCkVYZvOVN^;ZDF5!i_x9tz?IgQI!?GXZGsobw3?mKio@mT#Alts#| zz(|GGFS=`yzfOV3`imqxo3Ibwx-8w&G++7r(QW~yHe;9{8Xjt6{H zKn}S(U_j68V175RFo9>wgD?x-K2qslQV+mn$h>D?IolgG0~~!98e<{8SNK?m1z*_o z&iYM<@tc*etgAEBmZ%F6cT}zXl&3nE>z?_8<|0<&mw7~aKyLCKKR}-b`Mcv&YoaOw z!=n5S4Xw{)PnKUaPm*eYzAI5?`q z)OEMS?U*sWJ>P?H4!*}B@T+4NztcQ;hL9nceEqb@bS8}6`uz{*r~Y3ey4+rJ>eR6x zSoD56(?{=^j_}Q_XG%NJ^I3mWP*Pa!>26R^B?8j+mZPlMO(hX|VP7cp{wSl}8(Kf3 zW}Xy5n>!g`dj=kVGVOJz#yX*zI=}DIQP16$mAaGvqAV9t?4w7F7JEm(@qPZ?jEYj<(x+S zinTx(Dwkmr*uB7s!L-x2du-nA-*TU@>G=W-&s!P7Q6VA*K|mHM^?*-}Q6KgrW((R% z$qoQOr#Bs{`YPLmpfuO&`m6_3(OLwEygQ}kX=j-+YqC+-I6EcbX+aOpBU_K+i4Rq- z9g6y59K=nIItGRd@g#vyazxf}wkoiWmss+A)OOR)zLDw-`n?#+B_MLb$qH|`)Q?|` zJU16>bF{O!B$QyULIsvpmwG#57aHTRr#dlep!2u!5y5L?BdHG}^wB@?>K?+p#Rydg z?<#RHsCOyX5D!0XYvz3O4keFL32p9IuszN6AE0n7+?z>!0^x?QKQinIeCC27(n%f$ zGgfoIs!FL-oft*u!AI)3zV=Q%0b-nCpGzlPddP8We}A7e{Id=>6ar7r zMip>&4)}WaU=CMfI!S9EczhnRZ4V zo7n4JcZ*$zk8gT~f7xc_bUOuhvsnRP^Uj%_qzuDd*NY8zH!BAbp%t7<7>D)gsCFSh zbI3aFy@%4-6*9Pvr%B-B_w)Xr?i`Pbt_GHm{>I#K6Nw|_*v>fMsPj+!ap?iFG)}{} zkJrx2?!V*$xr~46b(jP&=j25qz z=tIp-Srv#$0n(Xw&q8eGZZ+fP>o-q{AA~$X#X%dVF0Gu&S*op?$eKvvup0fLxFQzt zTyA_K{k_=wMecZE+in05+g5X%ophinT&3)zSC3n_uD~yVasIQ>u(d~WgB%z^m2eQR zOpE5YgLrb=APz=}jg;*dCWr)iZ+kA|&?%;}M7o(xxtzoHezT>0U?G0j+<-z2aH!Q)P=vA`SPB3%u9X8fAkIL=_ELk z1@PI>!Gj$fGP^c9u9Hg#xcf7P9l1=tG$u$h(^5i&5p z^6v3{oH&>GW^InV1Y-WA6dLY%1x>nM6PJC_2{ zE;?PEj*)ulYMqfGl_)_mJp}3*KpAVuQeb_|nB4kq!%^rx(BVzCO0T#o-1Di1(1yf! zUCIs9G!>?dA=6h5>v3hXR6&+!Z8@i=E^MuW96Xc_E)K{37`W#9=ha#p@E7;bbsQ{eR+@|#|D?=+9xtjZt|KggyjhytW56HMI5>(+zS4c+x>soia!F-U87wh(11S zHdddwY6n)!!Rqc%u*t#A4mp1+`0uJcpBsn@tKMMsru|#gzhWJu9t7ZzZ14-B8^u`^ zZ6yA05wGe_WI@^MfzTZ45QIg-hdxNekV^&mUJ+w&kiZ8K>YeaMPJTvW*6h4UV+`JM za!7815GDlUS}McDBo}*o#||6RD|oDjn!u-;J{z$^3)fLt*LT7|!w@Ndp!~&I8_%+1 z=zW|MCe7v8OX?c5w$?^x=4ks8=)qE{>lgDTH=|X9sTPi|oTKJOjRjj5_nDDkw|JU~ z@gI?AjkAevSytsBmn z;&V-TX9=3}yQah2#Jhfz?zpAi&ki%6o{u9&B`*hz;@PRqUD;IlUF+dl8qB1)z01M^ zI6pDv@_ZHvO6R9Pi}5>D0%_TgI-OwKvqFm9GX*7ZTm{*H+(4w8D`!EIbnOzo)J!{$SlD$sTDaisEgFzG>_-xNn}dt`dC1#|x69@ss#NxuERH5cE z;{KGV{74(xZj{$7&yPjR6qBn`&U->}M7(2aF$-ldQ!=N$i$m8+oL;2tzp9%l^X|K- zyJ`IFzUVK^XZPuHvDJDtuI)bb>nyawrR!I(V7Wl=dxA@8pR5}lJ#5~nQ9a7x=Qiw9 z@7FN}dz=FUk$tBiPrg{&*EI~B*VaMxU5>o5ia@i)AfAOoR9omYA zp*T@v=7yruu|%XBpIKbxL&U^C{U5U4Ix4ER{~n&EOS%L_kPbmw98jb~x*3D6p^=;c z1*BBEL1m=7Ll|0VDQO0fZb2G+$NTY#-}n8Cwaz)P7Hh6^&EEU7_r6MWcxxM={aYhMsn4nUotI>vG~_xtCY zp_#ez`o?MU;)6=$dq!o-I>K&|5V7!|IV6RI@v}j$<`{?jn=lW=tFL}Lmqd1r5@grX zqqUu}o1L%`F)5bQycVsW zcqf^8Y-eB$Iy2dGj~Mdhpw(;~X*42wx2>U}g~46b zL369-yH@XcxEhOqD@2Tvl0iF*wL{oBi5y&FIDA|ODpf?!+RI(I*PfU(EM5LxYe=Xy zo&ib5wHf~1O)Ww|7szMGofEg8Obtr`|9K358`sH$H7b?2#!6s0V1BoJB6o_I$gC00 zV_q>fs$lQl?wm?^_RWdVbHkTZz)DA4%JOF`Q|NKCZPR0COE(*81mwb75U^$@tfNlt zOX~}2M80dk+h>wWrU1gci>cwCa4@wqS20#An2P7ByU9?N2QxL@b!s)->N|_pfqk;G z`;H>BPmlWH__P&ZW05cdW9jdxWi)%_x1(wM#Tua0Q!VcBKsNDSVJX#gemCyRR#R1A zE%~ULer45YQ*aAlA60tNnB`FaqaXI-o3YivW=!Flg-(`gFeLy$k#mk_FPn86K){C~ zt7Gp*!}M00?q#{W_oMo$6Jf&o#f5z1y?~=qT(Vs9=ukwfvDONv0_JGIqezxJV&4R_ z*U|)k0|ds0EY1GXP*1YADRiCzCJ2u;5FaXirj{a!O=bR4d}FoUUIjd{QL9p6wq5u_ zDQNxJXdkYMTRI4oq$B+D^I`A!@{o?uQWL`nq`MA62+84JTioiQeM{5Yx2sHD#5s)u z){~oE>WBOW1e!Tyg6jY^5WCE;jC(ZR_|{G&NtDR7d-Jx&tc)>P|`z&wSQZ4~Sn?5BiPrZ``s$k2yKZ3LPc<}%$o=dj>SjJEM2e42q&VuC& zuQbH%k@O9|QTh_B1TWSGw1YBqGqe^rG=54S1`m+in~eQjRD>RUFE)9shk~Pj)Xg)g zlaCfSb(H*pnD`A>(*BELv$4-?#^D?uto|YDO~z0bLjTI7Ihmb5JPNz1k77fTc3qBL zZ<*8d9sD>r+btrG<_(~G;)q{c*r`j*#GI2u`0IGCDR!N>Yij65 zrKs&KR+}F2;YSE;s>eJPMA>)6d-yXKjwJUHPRV}giNmL&>{pkL3ul^lyrnao$&q!f z_|qZ57c<(Eqk~ua)WVjU?(d#SX*t~t5P0_eK_?xLGZ3s~@Ai9Qopp@FnKp6kS*;PR-JppBQJ7*e@iQU#?Lw3pC^Bm%vq zI)#!GW?x5n-?704vD|ID@-lYk6ysH7rOsmJN#EIsABMQMSgHoWvCsN#fw`5b%A!E9ULp1ec7dlj8X}%LsL62pkOMDJDpUi)062^y}?qt zP>je?;5OtPuhB~s!ZT?^2})jHmD-;(+gqBId7}5sGtu|%Y#tUxk#f_BlTg^*NKMe8 zuGC6mFw)snr$RWO@e>J8iRp`l$Fo*7-L8a1)pgEp@bFDud zKeG^oeGD*!BbP7G(_I7l4jv>tF+aa;=j<|wr&YD%4xUpa2X2i0#v!;`hw-}e=UI|W;y^mGE zVdELmZ1wz=sd<2XmtzXKn%ai-CyksitL(b;v?&*g52%I|Amm%piTdg%g%@nBn-GD5 z3`4hEQ3mZH>LDgko9G|1c9hxJmRrJhdyj%|Nr-cSN<2P~3Z2Q_xGYq8;s{N$`96>2CK2jUMC^NS&Z&qbXR{pxVX^;y?A$% z;Wn0nK$V)`5DRWaId)48mBe)n^QckpXX%83bG`JHOxMGKKrIzxeoAEacGa6_N$ER@ zs=lW#;eMa0p3magI;DB&fII-e>u=1!M~ON{g6RGgFI%y+;A24re6HxyLMS9gIVB*W zlY8;;&B(#slx32Taa9*yz{~rT?JG+b zGQjN%xH`ahlX&m)m7fi_w-&o8%0$P_-NjAlzW<`;C>sYMO_w=Y(%rPm(b>SkduA&4 ze?B388=6_Q50>hTp{cDK1z}8Qexm(%X_oG?w%OdzGFI$#D%YzR6a%!bIesnwhxI$? z;pY7?W#+Exi+3$dcmHxItQqikPMX7l!{4=Astybsy0j^D)W*esd+;Al_AgZ`unq** z&dKg{jTtS%TEUHSc1M3R3B}C!UX!E_n;b@@9hJ*`baNatVF6OL`|qSvWOuOz10W#( zcf2*(2k1cq1SiE#kQ}fO>Ks3{atJ zqR2K7On$&xf@ZmG9Jof4kZCCIX_rX z4OTZ@>zwCcCw@cu+huB?kx6$px7MXt1A=bFRQU&#J35qv!qhyG=a&|?wI*(4j<0sCOpyo) z$K9P*8MBw#E^DX!$ZzmREWLQK&KFi^x&Z(e+qDbcF)o~#lRmmo;A z2K$&8r(_C7s~1x8DG0$Wu&4x(aPkZg2)c{9J%aUofI23I(^heO%Ka=(56Ayks2HfN z=cDhbt^_pk7;uUdfhJ5@F!u~Sj8uj^l%Y)bL?BE&h;yQ`-1bLW8F_+V!xmv3d8}q> z1tlXjXm`nVC&nrUPa~N78po=Lxatc#iw)(1=TDx=3bno5XW4kOD#T)42v1ZfYl9GK znj&E=?|8qX;MLtdT5416>i22D!>o0#hI^b1Ev2-@E{8;4M2^m#qb*P8UOx8EyYaoY zio{R>t->3+r@60Xc8$subb2$r!Hi;?D?nIub&oAS#F$`@naFvGVJD@0yz?HT4>4ha z8Mw5X>Rwmyu+cR?N!T#?VYuDvZ};r0W`b9L$H-Ate_y-7P*&(i>5Zkv5M6ENI1He$ zD5qh_CL;S8*r@W#*;R;+W+d3n6($?Yhbs;9lmZ(-z=>qns(c;=WVm~O@YQ!JS30vd zQy7GT*^Woav4|PqwiLGdwuS_4u8uXIU3;&27s-?DTD4eDff6v`Qd@YX4v$`eem!48 z|C9VV+t5!aY=If5u=-J+p8X07tf+OLZr<%iq;}TR6s&oAg|AVc9K{yp=RA$N2f(1W zg4dGrqUSzg-&(AB3O(4o=!0Y5r+*A}i@7-_Jd5* zzO51t*aND+-4F($M@qd2qd@PT(spalNWS30)fo)=c@z3$fQK(7>3%jE54hp+X^|bTG(Cl*?g|i6!->1o2J05R2KAg;% zNBnmkyU63$@q8P8M$zzRY5!Tr1QstrO7BI@mf?F{(4RYv|6cNcZif>C?gN3bp*1(c znwv13&b1&0ALsl1|&D&520Tf2WIiJv|xCmntb9l8e0A@%qhSnI~509cr=7 zBT5tVwlo>{7ywLZ1ib|S1vJXwx8T`?pq^rKLwGd*1~P43)J_GBEgA&TGc6YvLq-tRtEQ2~i#%+R&kyegxKGpP_O?dP#z+U-Ivb~pm-%l+~-{4PS7ymONL3x!m7M0fcH0QUSt4)Yk0 zyIWCum%Dk?Fvg0Rl2t^N5gz=4aFSkJarJ?GeFMdyObC+ego0sDw~&4yp6f)%8GSgm zqu9vidJ2r{DA%;>r3Ih60cR3E?fxJwa*5%EHY4nMGu%qxbBS|H0tK1 zvxHgA^ui)eSj^k2{U`?BX=08G(;*^3K%PD|@fVzg1-U{k>Oqo_SZihk~)o0O5#0q)V)FYRg z*sGCsV^UuB9B8Z}U`ZwB?8=v`1~&f1`j2qt!%8gHE9DL|JF!2PmR|Y%A0cArF&2&W z>)1E{_uj1p3|zY$4CJ|ZAwq8Rd3|#|`MBfX6EXa6p=~~)q>hNXfLPGzCI~_t)m92V zt`(7`zJP7lB)uY^NH%5i=|$BvhS^EXZv!yI!L5C>n#eamv|AY8GO#0-Z%Sd3!U)O_ zQe`Hp0s-29TMzAmjY0X<%j93K>|mytn`jCZX0@}~&?!JNzA8f)mpKfP7!87pfJbbD zr1uHp2Tn6FR8TLo`AnVu0hHoV|?J2`_B_|a=7|kD;ab}TMBtJ$_@$Iiq=hj zR0LY(_D!AOX!WhC1*($Vb=lBe;hSk9?Ca6>`{mJMl`Id=i!yjQpT)=(GGWJX_d6-# zSWD%cc*>9(9Olm6>|q*q@GZp?o(2L?2aw1)k94D5gOUMXX0QG86Vop3PLj(w*5sGF zB?C6s@v=?1NRq^6;kD0Dpa6acWkCiw7tkyFWFwZygIc% zcNq3^yTVR`_lZZdyK!;cX#d??PLgFds*KKd!N2(HhGZ8^*4Se(Qy5guap`YPJEh+o zq{%!t%z*$`gEpeKzwC?Y>_L0>J(GEnFya7RESM+Yh3mjj^y`H;vft+jh;(Jl_}Sbl#8{|gD5HHJ{$UeJ$~Z73nvei zSh483T(Z0IcsRHA6JU>jz#gR!N9WAKD69Nb&J%Ne-gKY8xhMNz$%aCL(@(;4FfNff zsXA63eW15E(}3T3-(axSa-zuUrY!)(%LdN=wos1JK<}fIooH+F;^XNPIRGUgsZq(7 zb%Pze1rkPgJQzx=bH-(egYuSH_J&z{M+lWI&prP)&%>S5;3vN4hX<8^2fG%@po_hB z#UIaXezuwH^n3n~QjD|W1{gi+nd`qO#$RJma&o=dV#=->zt@GdZXv`WUlH!zWlfxV(6r6$-{Am)DHc(~FuU;?Bb zqMI?CJg}iLy}I;1Qh!*y>Tc}=Tykf|eOuO9v@ja@jV@#GTR=E<8Vh5$yEi;$$%ktS z#vit$-DXk@UjNG_7oy6QA%fU|B+Bl zlplYIyQJyVSOhbA3UJN^nnRN2w9JTl&D)lxVSw6G-B~hD#0)>ILD&0wZ&qff#Metm zlYfcxBcNAP)9ULC{6rn_q5qJ=2CLSJ%7Mz&uZ6u?y=Q9Sp%e_cEmB++v&s^3K6)S9 z9f8sg0WOpKRGAX(9=pP#G|`^&!M0fUjS^xy3*QCl*bk{gK2zj}W z`YQYCDyN+8yOwg}HN~La4eO`cpI)~{>}Z)2d?tj&_hN>H7aN|hKUijf(I}fN1eo75_LJL;a}PnS(%j=PaW)EnyDlqf#NC^;OF2|=#J^${U zPi>LT(5U%AABUTWrg7G;3hlHDNwY5Tb13ZA=X)aQc;#T%$zST|kEO<<3bdQ{3OUN% zv?ljoX9C(qAHQR}=no9K|25r|qRC0v42K zd!7SgycT06XgnmY>4o&t?U9vblMT)gNGV?Rv85}Fj62c=@1q8l1N=UET@wN%h4Pfx(csv2yhyd*)I!Dc ze>-wughPhSM&7}{zE1~EDs`TSn!o>8L;W#lWVyleW9ifH*=nq&kCTUQMjEqcQ)76*i)tEvGzoDT&^YNgBlMsk<}~ zqfwVMss>$kdI&L)K)lxb!85TSCkG@vmlV`wbkPOKVx3|i7Lb!2KQ(^UH={%bcrv$dh$5%d9c(g}=@pMe5fP&J8( zGL44xsz3D&afLJh*e&tW5?2)K%j<(b$>Hp-GAXUW>+ZP9w%v~GOA+)_770^!_>5x; z8DYn|!Mwnh=vHO0f5;yxnFe}QZ%W*#uXMwr=hsiKe{eO9Shg8-#dC6!>ihaH3K4<> z0}1KemiMMlzrYwR;c=h;ednJCnh2o`4qzWpa3S%~JFV1KQ*l_gT(Mb?Vzf%Tul(eV z_FpjM8z+;%Z{h=BOHd97#P{`-l=7`!69EW|44vi_D6J9rv}`VDdntpULSWwkK3XJl zoiIoU%i9THN}!a_@9!~TwNq^kRo|HD&ca`Z1yiGeb`&V~6=Y6PbbzwWRUL-R5fq*> zP(RTF(Koh_&@aH$S^mM?2B(0MVMYwVr zskGkI;pcei`>4;M*Kj*TV! zWvNNIzfiH4m7c$Qrks_&qa>)JDPd~t{LWMAVJuy;SgR!X`i@>Z8ikDjm}kpp-si&@ z-e~A2)6C2ziV?=WUi|scl~FfSiJ-kZvLuUphoYco(H7rfrmh2r$?8NZX7~H&=@r6= z$2R-RYJ<4hkxFnJUdgL%-|ueW547VQyak|m>LYG7h&qvrTzExdkG!_)xr-C@DWqwG zy?HBVlueCb7qoT4kUQ57Kw~|sikbhoC_>u3S77=EJ<9Bq1R$G&^Bz7ul;0~qh{V7< zEbp-WF$C(Cg=_K>(B2DexoLFQ>Nt5@M@oHPKj_vCL+xRxVc{=E%49WiG|6#6#t)$q ztRXLa=33>_>lsVh!hm}%Ld%pB^pu2KPJ;og)JyxBZIyM^yZvXu31C8+CX>hZej&zC zf)(1{70NYNzc+82due@|iTC{WE&bd+jl29;#zWT@;jI-eryG9r|KJfHytN`^FNlJJ zMsf(7@_#%&Z$83750M9jYnImmAGyB206POlls`te&mkHZy9|Squbp5v$kx830(aiu z^uWtgg`fgJt5=VdT5lT50+N)!Ks}oW(GjMOeF%U{4*i0%FTftDYR{}EyTZ2Y{Op7r+RGDf`r;~VdkvPdSJx2ohXev1lYt%Pe=ABoxosS-u*i{Xe z^eT`rrmy(0+EX%HEmDR*o1+0}cZ29ZJPYEcq|BIzDG7E!JDvxxCrgHow%T^RNE|lW ztb?p1j8ld0lzUc0wEXPcQCx@pARr7UVYfrSF}+0k&%GHy-NV4*MR5$>4_MWLH2BON zO1w4LaW&YX*+<59!G#O6c&9J<*m3sVbx$S0fS<^Nj#wQ_+nI5|^uU{@Cso|?eR~53-)e^}j>aJy2;AT8>2{tnw{Y+-om_J&G2i)_8SWh>Y zUeTkl?=c8$iQMg{GgB^va*!=|h3fLmr(TN7{^Se9YDI~!P3ys+;w8tgs|f*FO{*8Q zig?(KxBSA0^@!78;Gcdo|21e7|8cUJ;_J9t{sAK{X23v(tJSh=SA4nH7#76;HE75} z#l-o8;Mutv;AP}02nNA{Q#VQ4IL!I+R;d>L0O21QU1^MN*08`up$jz=H%U?z1$m+EtmdV*^)Fq5dmk}5Ip?+wgyPZSd_DP6GdYVL^JZ)lL(?D z!Lc=7mhj;itQbNlWZ3pMc>3q^xZDpy-gbE*gPy%GAlfd!|5*Gsv#iGI{hTfrDcCHv z&nqxTzL6G2>dYJB53~R_Q<1126@;z=$WW6IFGhR|QC9%oHJ}~>tR=mpc;I(_DiD3O zm97_Jq68i>ogxXiwH7Oflg!`QkbYJPJ_Pm+T>KDisC?cz=|enl5ZO0 zINJCv@VX_J=$@Wl#wI1Nl3*|!HhO$J^C(*2)Gv!Uh`}IxxKk2g|En4_`8j|9i6rFmqD2bWlr6VRLH~ZjcV@4sI$fNw_)pG%+u#+@ZS6NpY(}pbZsa z+{s7jqhD?+NJ7X@!(VcGx%g)$)5H%=J!_Xw2cBm9_&cNdBWkbB>zYIU!zzpUuq`D2 zh$Lgz!$wMA1OInL(?I()v_`4bb%KHDvt*Th5)TPVK$qLi53j450M9PY@6CUcB$#+} ze=(2nqMfm%1Z{iu_>;j4`Xs6Ywdt+w1fl(lgvRT3 z_%d>M_Q7Fa+@8vgi=>zr^x47}+XwY2JLABy=n|{?*}FM1lq)jpF-MYO;xzOqm;9DD zqoYD}ajD87qU+U6tbH9ROfwAU)TLqDy7^VKZxfoP_M65URw3Frej~lCeDGdzUbBwS zUb=kXu)El}3qu54QbQLb&?SZZFkwxthG-zOQ)cYAy=Lv)FJH;!B1lCwP%hDl8Jvj_OEmZ zynj5JXtsSdero4)tadx(1M*{&h%m(Vx$a;fY96zAY0>}^(gyCZVvVr8=|D2#(R)Li z=6En&E%)H*##rY-=Ps39@8SWa4IBZV0lJ#Bv%ZbTS+%0S-k@X{LSu6>gg`4qJ`@2%e8qU^;s^L ziE8ifvoENs4Ua8eDf$lSN(EQb>4bo8Gx^8Us>qB&Lh=BNuG}-UqztSZKVcHFJ;_JO zx(n^82g|Vg8&qN&YPjJ=%HK=+F*|04)?!*ioPv%yBr7Jk(Qq}>ri*gcl@GTyTnRd$ zl-~Cca6q4v02#p!rL@SC73XbJvpxmptUvo4fiKAGo%AtIF-cpk{ow+aY-rZW&by#+UC{D$ar(J;S;{#idLNS$9 z=#2T2wDEgy@00U$8fBEWrZc)uc>k)Q-pP)sR@t*yF9xIYVrA;(w2>uX9$sRdbNsnM zr^gbVgHluP2%9ykq@8A|oh%U4^V%nqp<_^HT4e4tbmP5cRR#?C=*mz~;+*@e#BN%q z5hekQz_CKW52YZ_s>J28)s`%D5gxj2Hdht2H1n1DTpg-}1?WnMzSs9e=3kraKhYr;6_sOC2O0vJxw`9f0sr28|9Cg9s{vszJDn$!_f}w( z@i;j&12s?+hO|go4g^yHrp#xs_Ht5Nf3f< z<>Qb(T1xJ>@!zl>R4{)8K=zT%PJDUZVQll1Jim)AhoCz%z;6nkMbjX@AWQ^rz??r( zD~b79zM@G>rwjLEW>&=(yP<(9mujj{5&`Z>pH)UvUr37yNi_ny_y0p~>?(>wc1 z65hd*3mYbVs@A5Qd02?O7Bt|&Cx8@WA$E2=j^|3IX-(BKp(2#sB_)IXU||0;5yC)? ziUtH>QA&;aY4h8i%NCU^J;ArXSs+d2 zq*CUY3{VGDX3TGMBAzolr<1mZN zj?0Ay+><|frx0inBhndNt&80shl{`JHm4YnN*}~aN z68-ChG_#;(0e2%TV#Dy z7BNv}4W=h3Ilz4uFl|M_13P`p?M*W+*tgsQ>O68o><>Xg%C>rxCkuhBVQiN{t;M+5 z6aC6&JLYW;F56oCmJ-uPyH^^ghEKM+P&_D}y07rZHy}GOp(1U2^iG@oH06jjZM)f-xUISFRpul2m(e_C zdBhBNas-E2mdGdG%4A@Q1bQ)=!t4X69P*Mc)f!8bR6ozoJ_R@#Hv9P72a`>xP2ZxQ zb{bcc<|2=@){YWu6X+klCG;jKuzbLi0DqXQ-a$$A@Z$=iB(X>j^ELug z6~e??4^=+kZYnz_cQvdWmiAoUrbN~nUn4b&lR*fuY;kLp)qsgVPz0na`8pPNCR=b* zO;FUTBH-z~DQMud{Rri34#D@Kfyc&QU&U{BUTXSn8NUa|`rTkq7&j^0Q(B|<`>9+y zUSGsNPCu`N4|07d6@mpwEHfnw(G(l^Z?jhKiqojNk;Ri3D+&gaIkj^Zcm~>&2R@TZ z<4h*~OHaR})PP$I%ea#4cICl23{l$j9T4_eD-(uy5IV|kv-A9GpTeTL>00Z{>I`y@t zs|#C)k{74vK?y5o&unW=-Q2brXL>}A!oc|-JO>d9MoHj2e>HbG%b``3SvjqmWlEzl zX}r2^aaJk&dR@&Bcgm|Ripcf4o0#s)v`B~4R zBuoY%gh%VOvdRbNP_8hXi@qg=Q+~g}t+AItm>oJZas&nL*a+iFX1)SIBvTZmM*`bt zI*lz3zk@Z$#pi?wlR|TWcK|83qNOIv`y^9$3o_#v)1gHXc+WzSkr z{J^L+%VApj9;D1&iIz2A#-+4p;k5!%Z-7LCW+fPtd+{1oZ7)fc zBN065u0RMWOq=u7-NE2Y1iWNWkI8t}0M1Xs{q{U#VpL&}1l?u7lrY{u9~)d*DBj}h z&0IeE;dbE1Ba<{cnA70YZ(5C&D7L$J{~BTlwh3eT%0r33XX9|uaauuNMYO*+8xdzj zCbp_eogZK>*=+k^@%{$3IHEM&lXMu;WUfkBUd{dhRmTt`R{rnG=t z`wVDB*Q+}1ZuMvocWa)`yX^+j`QKN?Bv}X^bKra%xO*>CwksWIcW0M5E@r=TqcQ>L zx`Kd1i7f)+|2WL#)SPyspq-OtwMbD+lzF&OABeX*x@NT-I`PN$$k_z_Fk`4*PrbiuTpR6A1tsncCJpt zT~huL>+m3DFY3?KoY9=rCE{O~um^f5w&Yhck4`31WCvlsh5wJ|A5A=gtFUmi+a4TW zVQwxoj3NvE1+ZNJOwezIfRiy$TEI(Pc434ix!t#IKJs8uB*Q|M2Hts8@1&HEK8AdH zS5foYGG2+j~qi4bafg3R8f)*JVcfM_l_``?IthlY$* zeddQBFsF&ftu-1_3N-H75_20oP6t3^AlIT5UjtL7ih9CJ^E^Fr+lwhyJDT9H)2+|Q zS-zZNY42o;<-(rFPc~I zYh_RoeXMaQ?nslV=HA5mZ*-2WG{jHVZGv7mq5obQlm`ad(un~Mr%%_U#JZ>dr@I3G z1o90CE{(lk=kqJqaN%j5R0wcznJ`q8VZc)o&1n?5NE*|2Lxb{KzMXepf?&hww#_EW zGRJf5H%zTRjAhquXmAP&$F%CfHdMN!;uw)ekbyhG!VZzq>uR?X*Pvou!!>y9ns}4!AWO7`42Ti28JVH zKoKs)w;3+z`8(elKK6>+hH~ma4iBbxKrrZ4VXUfDtyBtFmDj;HuJW)I{*K4hr9hC{ zsRlQd=$WpaBm6jEP1TG}z*CTWEfj?md2@~ zV8X!N=h+_~GN?u#46vtvWu#=-qZZCK15Sg0c5g8A`rx+-X(ZZIcmWI>P!G7nwr$Yv z*NO@=0fB}eEl!JlaQEioQ=9g=j=SpiY{mQ(bB8qzNuzj$v+MP(B>;+4N$^ywYV^4r z5RFYsvoAGQY85x|E?CpN96T=ewav(Rr6TDW9B35QJoD3IJn79vGso5oYiErJZ+Vu{ zwBBX12EMNg`CQ+zzMt)SNiYdpUedveQ!6ZYX&EFxr#40uwa93q2GEWzTUF4+Ey9Qh!B9yix;tgh^W}mna{%AHX2qs$!iw%Y z&z`!x@WapFp1M|a04c-NhKsLGr+<(9lmHj`M$DGad@q5tcKLCPoT|Aw{7%f~Ws&X; z2G&;6Ov(5WydSq^Ag#mr(Fq@oX?bVyY?O7D*qw0Ru>34-IV+!851*8En05=yzz|<; zw=BdVu$6JoFwVQrV-n8>+UUPKDmeK?<&xRih4sBzI_;}uQtJI2@*>qiXBbSf>W zb-7lm#=TcIDO^U|wF_!MI$=7vj_Wu!;OI)wuXT_6*<@5MQyENDoK5s{BeFMNavo^0 z03q~0&6f}{?1~XtsU^HdVqz|X=& zaeb$ zLQ08%D^a{Xc|t*y!=o3+V=|jx+|Ay{jgL6WE5)AhXFcw&Yp#phmj%N?E8K?mZa%zW zk3QP5TNIBICfMt{3#8M@tuu1uRt6fr%}>9RaF)b?8!%7xQES5Vn@r7ScnoQ}Ggh4| zuIoYbNzVh^3APHiB1u}qKokNQd&?LMRZV=M-iJFsgXyg9cFJTKaAQ5ADW@VbNYd(L z#iupv!$rci0v_?*@|cqC1K`QTrY`ZLM1# z-D{%0@R`}`=%{_?s(BbH;rXVARX8%B$G32VdFM>R(v3wRS9MJ8dNdd%LCGGI7<6^@ zyN`8m>qo~^CT?bLgUs#7kqz74m>%-Zue7Lh+^k=xBLuX0#t#&}eJQhpI-m&c91fWM zlj~9isxw_-NHz5@=YIaDng|JP*2KHHTQr64PyNfzii_sMQVjlPNo?O0kb*=#O|6s= zeC<8|ubcnkxHcbA46NX3e)D1kD~b;R#}CLu7D*>);~zB)Dt6aE259e2pdPS_{?q5; zmJcQ`!dqHto~OTEGNh1}qu?3VwzhZJunbP8GyN*e!w#65JX;(fDEWv(ecHqN) z!>rptVX}tU9RSi!b>|fp<+)Dc0rj`5%*M|P*yT%l-47T|Sk?#(AT%7#jym+cy7fCm zs;PukIBD*~t$^Txp(l>W=c8aU$r!hKi#qaaF8l|KL|;A4(*Xi*Te{VE>v``8lCy`6 zSgOW}p1IVqXRRRF z3dgdrD1~g}ZNh8Paf$1yQ#FoZF`TnvbOo^U@&cNKI>UG3$zp}n81AlDPGU@7r6}K8 zJzu{Kqym1jC2@jH%u+6&Cjxnb@AIa;wCTO4>$`@m({i9y9@J8!C}PlZl`?S5wWE!eC5PzJvrK0_m=88t&d@wsr-D>-_erex9=Pq7tc{@ zdm;{MhD$&Mv2w{`bJth7O#MaV>F3T1c!cr#=VV`Hf{k5^R_c-S$;m1ktn})#dw1a> zPl?dLVBhvN#9Nzs^t?*%VbPblTqW4B=)u;qA2gdcKNx8AW-frR(S(UK&&E^URV{Us z;lfzH`Hv_2wqdr#6!GsFf&M^>doMzofd7FsB)WJ=L+{nvRR8x9zBvZ`;P-Jh%hg+5 z+>4;hz_oSL6@mZQ!T;paw|TKBwmk|S2Ngp#-XRF)T?HM0kegfHh%`_XG{A6keiwPg zp}}Vtj1EE#A3?!8gsOaC%sK<>2lSp;-$_&Tr-Ul{w=r@|9eJGFS^@Cj?qs~Huc(cY z5=VRzJBfhH8)8u?SJ*heUigY4&^G5;wC~3k>a?URw(BVvnSd9Gy5quC{dQd%CD})y zeSLf*MD}xMcP8;1a5>NXok*D~g4DR@usp9H6G(o2_(-anf zU(Wb)(>^(P+3kEp-0Vm)Qk;A=^!>&=*KDrNW+ss_PiDgS5zhFL?5h;*ZXofUY2R%w zJr5y0NT)GrfWg5AnIuh&XUl>DAz?UkHiifW(`!J~yyIdxZi7IzuQ>^>$#twFON|q$ z+3|BpAj4aa*6CopKdkISs=ZUwG^lF%%HZ240aultJ-qVH@R_DgdKf4xx+X(?xsjUbK*2kx2=7{d(_M1maC9CPbE+ za7;I7e_Ktk(Ui+192eF)@tdYUGljIo~T1EyAOnjDMZGqet< z$5_M5%ye+&Xpxf?L2PI&BRwyUdYEYyA_AImb~?S^tt8U2oUnOqu$OLL=S!jVZMpkE zgI|}AP;4p|B@PYh3Pv6p#zT{8(TfPKzvEfiH!<9Rwbl0!-{G)dz^ zDVKF321{NP%{Mcc@{&h|1s5Dq%uV|0yISxk&@B1yG;I?>oh;&iI;mBR`YqCh-Cy*& zS=;gs;E?$~FG&$=1?U-ED4bReve)>l50d))(sV`w&{z~+VEEqod&dr|yQ_1*<4q^S zuxc@72Iw}ZXYKBOR}ef7^)9^VVI_>in7_i3$McjT@0w(^WIItb(f`NQS4KtsuF=j6 zLwARCceliVba%%H2$Iqr1A=sSBhuXs4oE2o(n!b%(k%!`dB=19=iGDeTEE2y*1O=# z`_z8+-Y+`*=W$lJlf|?Tv6-9e4sKaIe~FD54*Wr|;jbmFQZ zpJN+aig#Wb3f+`_*{&h+h)R9@TNA55)I2Keo^ zseC_h<(*t!MF+N09+)AK>o;ca2=yUYU?6Yzl%DP^RY7^zmFNo~zZax6v8TrZN@KfZ z+9;ss%?rTRDOm$l+LjlRSuD6&=6D%au44hh*WJbtSr6}Ym(veP@xoc!a~+yn^>nXJ z1GZ@|IXI!vOc`k)v-`L>x~0ifYWwxP#%Y9 zD-qA)R>xOY{`4mfS{8gB?_JzZIgbybo7lRrqTx=4h}sj?Xsh&$3-Q9n&t<`@Tyal} zK6cd;bpqDM>D{hx-JtLwu5;9y9J zW1Y$b6A*McRPS7P=9g0=1!%q|fv3gU|K@_ngr!{cneEj7163kP;#tT&|3Ka0cKttE z27i03vkw`ATN@ej{@*v=6`6ANOZ=xC{L9V33Kdp7yho9tB#CG!;X=q#ADHE-61(8} zLz(d`59M@`ypE_IjI7ePa0l+#dYx>g(CQ zu`mAmOgbeT3w;#BQqe(aws~_N1B&*8%rN_eD4ntd>+F>|f-VpR)WWRDm6Xth4w{zQ z-FG|m#~&X%MKS3+t}Q_8dpESn3*NyrA*GfOY{FS&XH!W;j<1Y766+nl5Vy4vK zqvnhqp^UK)Lh3K4Afg^-ygTIqb>!JHFv!*RJg+FeGAMT*&))fU2QV53JYy!o*}<+u zJWk-BB?Cas@^*!7mmVVePTK6ROK*Y52F~B_Z3cX@cnWDRT>Rxabl{RS~OkJ z6wDIqcV@!ma7zgw?Xlr!QUZ!5Q!dI3j53P5JSR)5S=j>Q<`k1cDtUq{egQZY<-~TZ z_`=>Malqp^X7C3A7IML%^65;o(9esjfVkdaL8;K;RmgTFM+zb_5%)2`e3~>|MZ<+J zP1K)@Z)u{mK!^(s-KfUUt7s_7i9cm7117Upt;dNlX9CrOx!4BW%jZP2j4iM0PcS>; zwndPC-T9e^hH00j?v)Ba{r!drM!ck|I%a}i{Q?dFxW?1nN$vo>el&l&;o)^s7!CT! zuJ=wAYYeAEEsI}!H8mHL!2+4Vf|1k01pwzIZ?5OKOJQNul;Xr13Q|+J`EAqeJRknP z${@jKbrh{%lb)N7w#=Ld8_b+^jfaQaz#`5H0c$ulL}e4L_uXN>V*`)N#zAIf%4pAP zcZsGkWTb9z0)C}$jy!HrI!>EPJCpWGamAV!JTm?e!|9(;N2vyyPHSlkhqc_GHl0`~ zI3RoKsd#{Mg%vAv@!iF)_u3e%omMfixUs08@6fl$=i*X*IzFaZGAvGU%?;u(*umhr^GlaH7j1-;qBn+@8CBVRBq2bCcjwWwhV>i-Qchz zf&3c>YdkxcBOJyuD3`E7g>yqRhC#m4=LElOjc;?mcep!oNm<)z63yt?OJJh+QU@5B zduc;ip=3>~E+s}xQgGPbCk;vaf+dxYal}kZKnGDh@%LqNractz)ZmfA;GI>ln|>H< z{RaOg;kRcU3RvCB5lT&+=vsj9Jq8hLq9Vw5B`+B+p~zbxNq$m>|Bb-0%Jnwv*nnV? zZGNEy2mZ7Ty!norzOTa<-@Dkv3`(Q=utr0?psDQtK64O;cH)Tg09dTumjsf{M)bOt zxO}46FG2xJ5rQ!=a$xX_B+Ma;LN&9T<^Ie9 zBda#|%ar%`JEcFeIyUd+bTZed4-C_gZSR?`e7u=#Hl|G|mJTn{R;O!a3FbY6qKTpk zzo5ki6li47ns_J$LM=G&ERpyOrwDdk&&xv7IzLo%TyTZwTIQgMu~AXG2gjws^yb~j zD#R7RbDf36v7*1LOu^8VPjRr;79U3X(fD5$ult77y%BqmuVX~bTjt(#v1JMk9q@e~ zLr%?}>!Hu`S+c3EynRuKNF~p~UE3q5+8bWhGWxOo-Lh-`oYTZC28t2!#mCRH;0KMq z5vb*I>9C*&2y21@n?*OGV%>0^%0J*N_*!{qBEivaes=M;RTU3FiuAX+_ zp4;WZJ!#%VW3`1il$oInAczoSEic>{5Dqhj7>kR5tonyJB*hhrB4jp29bjn?DGKaM zH3BL)RkaH)=Db$CHqf(-h<4Agwt^>(uu{OMg+MmbRME<6UB;Udot;H7ha;qQHT69Vh#o8@dOxui@)lPD1q8Yuoo=vN zdZPjp2YPzJ&o(5Q$lZLmY{~-OjOY19fIh%JV%X0Y2>L^bGz_NlMFoRmFQi5-7aP>M zhpdtE2t+K&%Pg-5VEk3@R%{+(;UBFK(s@nquf4?fi(gv*q2NS;a5DZ&$33~^$V2%2 z_w?Tyz)AvOCyKXEA>DUU)yBT}%PYqm<#1O~Ge9Hu;qF2uc8vHvg=QBOWUgi!|BMDN zoWqjm?$`TK+AR#GUFEaaB&mc)jD~KJeT-kqJJB-S@levCuJf7p7F%Q!ny<6l4reNt zU7V$Vor&@oFN`1@4>oEZ9G{q#a_qZ$m@$#omfMozsN~tNQK-h|!#lmLW(&M~UJkqi z7SohJ7jb~7k5SPqi=T{WvAVm+1`0B2_7P%qY0f%Sj2OhdB;A_#{Yo$D5lKulw|!&A zUov~+BrS=t+2!R-&jmA^buM(8M}29mAFQ3}gug4(@LX16#r>W}7`Lom>R&%383~Yo{HYuJ@LhxUQA7N#$BQKExg$r7_FYxQm=+KCl=d z%_9tu-gT-WWz?6z4)7x?j%c*bf~o~k<%?gddd7##zaLUXhN--?UoVQxcm5GZCHoF3 zAt_02u_*mSs#ml))UBt_s@y)~&hKTJKT^Fue!j9=n93`resX>(^DD+RPrUdttL(#( zFE6QsXSQ%OH8p4Zw`1(*s3LzB`uTIrGEcC26e0Zw<_H8!C(`M^w?Yjn>v7c5c)%LHA zOlumuOhJZT~X~64l#j7qht4-`DTHhME=AOa%z{ z>Tq-5cIq{7S|xvbAdea(Ex4gpj5LgJ2t3V?HK+EsokVJ|92od7 zOBzkpk))a(9CklAPSz+(%JPekt^S;BawqvCUG2$hs0?I`f&0C{<|prk_V6h#HR>0h zyj^)|GCA;Po9=sI0gs=mN1;U9PjpPb39G76PT&S-Lm&yR#qJkU`HS~42H(0+wWyiRLU0KhVy z5_$_8F{vn0AI73o9xZ(-4OfDjjo^rK+WY*ZA!K*cPtutYo67t3%!;#I{BFtencc?Lx z#Up;vz^w_kh|vDbV(^6lxnR%Wy;pHe4IrZ+sJhx;6!|QIiB#Y>EFQl7<`OwNr6n%?Xve{%YKp0X3iD|N&JzKR4&PaxP;~k}Ytr2wU5%<5 zXSIp)9*Pqxp?huTO@}ga34?-%FTwo)2Bcnop|eqV2x9d4*itU8i=6CPI6i0QslEaI zw|2AahL0XNoln)nYFX4g!dgxPG^8503iK|29u>$LMiQkItt5HTL6;Xu#sz?|Kt5PT zmq5xqR8MXp%U(p@5X~494SXN36)rHK()h_kU!p}Z(T4ixWgJ81X56;?QJ(wP4wsAj zUf66kw#f*pyR{ok`BWC8L2t#dyAIe6S|Y=`m2&rkm!Anyb}w?c9ZO;(>2nTCZzvE? zYd-rmj_B#i9^=wOorurEf@wK&E=iigrxaxS9B?9nOXxq{66cc*rVPT`I7jj!O*V38Q`Kkt_L}qKNbIU-9`{TcA-Y)0ap_ahW(q+N_+9ZX>Acy=%0@Hq- zfA)5r$cGi|C@pULMFi0^I~$^}|DUzRm=0vCM)ZfnS#r4J(hd#=jz2ef%T$c;TjS>` zgUW=EI2Y6sS}o`cT)-yU8`~%R^c>FN^QBA_XM`m>)Qn{^1So4?tB9kU!%LW8;#nW+ zaK(2l9qBW-#KneOpLkLbpD|}Qw+xW$vArNwjBTdd6<^7C_(SoNJ97}=1TLN@KO{CB z2`xu)y~&VSDUic)+#QR8Dpwv#+@#c(?ygY{XC;ENU?im zHG5xNKts)CO4~zGBx^SBXM53RW-A$6Ly#IB4#xO!(B`IE^V69Sd4&|R9D_lzh+LfD zEwjUZSN+w!X$80%ce0%CNXrV=S{wjL$B2$N{ekE2DS#1H?1PGiH}rd(zO9$3m(Qkq zIFhP-?j=4y)UvsW%K`pjUF~MOgw`Ex?N!zX-+q!`bKeVEoa9+WG}RQv$tjwo<3GoC zgF%Kw*)MtN1i0R8ra7}*v$?$;e&LN_uwv6~WYk6jOZPgGkXQ5#U8JXKudp4=a*m%>G$nlGP%De2DH8`e7PpBcx+hmT8#m;>`6Ds>v_R|Z^VxN^TCW14g zyM}FwY`82+ow(HIYwk zFNmW}*0}so>yhH;c;tG0q{OIWD^N8r;O{tu*e4l3On&`WuKp`+BVOB&w9o!O(f8LN z{ndBQAi95CMT!)Vu6;;>qm2$!yMg5Y+nERVf;I!}`AN@A%^kx}D==v_evE=C;PiDh zHd-*+YR$v0RL4gwyog<4hSr1bAm0XwpxjEbKqaX zYjFbW1SGkSpdgQbKuylQY@Roskt`|jT|M7unA~-!!EB~$X^LQbYrO{-l+&n4Ua4cv z_sR=*>Raj)KPRJ4%#~3lALZgRZ&fXUxnX5x@%l__#~9jnDzBW=$4`a+dXO3!7BOohuG^5Lsfne(IpHx5q} z-yw=z7fLvcbkNIkL|(hK982bu5@&fI6FL(hupq#*SSG1LobUnK&g`HS9yTcs8qlvn zyrwC~%z8$5tkLksS5NA$)z~KME~J#DI()Y}qVg&jA%ohbFu|@p9~)FC`)%{vFzFWv zgeP{QXEW`%468`B1~e(baj3+3+=}-5jYBQ`&047^Xe`b%p++nZjei?8fdrdH0)6pw zIX-$@&8&J_2NB!*aD?>hc9hAX0_T`!?}7*|%S%IbXQA_(9k?tB1+~^0{rbfGc41 zE4k{r!vQ}3VdCZj+z|yRqzvgemxjfM`Whul!yOcpXSsy+XVUpa^}~eg8rB@t5rP^=Ru4S5rm6I*D>3 zG{E)Wb$yXmc;3J(6qL=i|CnU{g{|*RkR;vv=G(x1x|UIo1T-;W5CW1YmoZ?@RX{zcI7Bi>{6L6aXQC89@*0E+ z&=VuDXk|xl5j=UC|6LSaZwO#t^NTRMhAvF#Rw3vm`MUXDsiFO`k;CV9E%j0JU+(1gukJPW_0^sIepARi8 z_P*9QR0AgblXL+HZynY*TUK^10=rkrj;w7dnowYeY* z>u{eZJsoAATnh_dj@3&<78M2yUQ0IE_PEvB?B};n@?LOHk$*tAy~Soo-TYJ(V0uJ_ zQ$N7ob<`VSHd$jMgaU9?JsK4kVJC=Qz|nhg$4%35$qx`5X~fFA4(onCOsc8=xwjFU zy8KmlAldkg-U)J~Vxk5#f1*suc^G^DN7)_G`{j$!0Q+*DEt2nmtcOTh=~af|KAjrz z(f>f}_tbx*RYEd|=YOJgPq69IFX(0Ldy=3^pQ+511%_$aEV0k5Z}hSN(K!jlf$(>0V33^!}-8s?Ew6C zFrFQnC`ijrv`T$<)(GwU_d7-cKU*CO4mN-H9v1R09u%DOJkVL!Ks(bmD@G6b_sTJ< z(ls6B$Uw&!VUXi|bL@700BAH6)MOI&3lwahB41JLSp5Nry3fT=pI59JR03I}yhBqg z?T!09^=@Mi(;w}Ak>DQHyPfUxHITpjDQ_$+tEvbqhvhuyegqeS);UTtEy^( zhNt_lfjh95s@<`zNedjWA>YiYv}jZUpFg%?l0zC^sR<+?)h}T|ahQ5&)|{@_QF>rM zbWgx$sKIjxD^4GZi0Of<1PT=ny93gQ|NV3U(C>*FWd#L8CcmrY9PVLQoF;6o0jdbK z1Q>3nQM`CEjn(#fXm%yh3YH3~Ao23)|5>m@k__}pQ>z<9hbSp>ap>?WY_qv6WbSyMPT&V;!Z)zstO0pCThuZ=twut zvAfwb?5Fnoo-lbHZB>EQDfN!<>2J~6&Yub`@rwc?(MpWLkM1Y7izpswvbxg6@5P&@ zpw-+1fJaz;Lxz_4pn({uCH;;LfcQ`$@?f@irva{xN?M~sdSyI!!vL?PJ8yp*)b(d; zifgMa!~T}_nuQ}$wYBi1HoAS+l}1tHXB{HYvoW2sfC3H7`|%+?qn$&mi&^75uD;vt zJO#afs#Lgl5ueleSks-OIcxKZHQv%^*yhS;!}1jg8=)18QaCU`RH-D>A-^23cy5%G zwMOD=9qen|aH17BFmqCdtIXR_DWs3H`SPO>jo(7Z$WgR)ChJY{AEUKLCjw`EB-zJ4 zNqxIgFnAwX`DC@j@sYOYCQEdd|6B89HIcArSl+x<>OX`Bb0p!RPZ4+M;TzQ|eARsE z!`(mcp#3eM4e)FdC}3tb!U;;lj=Rf;kV2UQvjMAF&e(=rICXdVMe&)V?kIJrnx>O1 z_5ri*s6Rp!AyiP(6de%AAQ4T$!v`qS*ZdQ>QH76)x%FU1kpb%n!=H_rMHo&QZtpOb z3)%(=Q`G%*7cHX$X!u$gjg=M5d4QznF%XI(4m@9evD9Z>F;PPz&|ZcUe0eSRnD|+I zk1qKI%=ZLtQ|X>(&$@zrq#}s`n=2xmZ1$Zs{Q&4si##Q;cO?fMAvqBZzNprvzhxXv z%O&`siY36MonKnl*E|uWk=1LA<>=>x44?J@T`XO$O$-$7RNoh?8tJ7h@f)I~?!hQp zJX%B)(FG8<9hb_DC)b@2#~{*|FBWhugb7VhzyKT*9m;~w?bHX~s5mtR@S?Jkw0Q<* z;WEe>2d@j`s+}%-Pykv*FO}pV3oprg8qad@&ZPi|w9I~wi(~Q`38pMpI}=#n!G76L z*C*rMCNS;(aX6KtSXFAN!xl*YG~?zseRR^WnBq z15)PR?Aq?^vMi)H?RMU*dlJ#VutN$lFA^NV@FaywElLS@bq+Swi{GZig!cqrrdW=n zj);mwwkhVms9bYUSG;!X8Gf&tP`ppY7|n368{-~LvfST=L3pOY5uZ%@`vkHp_4J|Q zGJ7>obfG~rHtzOXUjLWr&?hA?vICa*rBXJ5w-iF2RdN0+^!pO8k{;?ANl0Uw#W5BB=?P}OS~d+ZIb z)lTvc^R|3qA(yp}pIH~YJk$*Ot#oBSN4(-mL>*PYJUTE5khrhMqmF_NtwS755P8z8LYi`KkHuqsX6#Xt2LH z1!EztxRMFE5>E0nU`M7K#bq$s<;v<$1Bu= zMxlst6oaX;$g?*%NC=;so{`!^#;#0dmkQsqGCQTHwng*MfMee%=o#ZqYG9XM!9f8= z6m@=5c4R4f-nd0#3(tkNMy1cjD^*+sLqjB7L^=icdqQ*tX?Y{@le}zJW-u!)xYFmh zlm#1zDuT2wOjdK2)G;D<{0(`Mr+gI8oZiVD)T(4j=Khbdqte0o_tdh&9OuO|&-S_JK&(vT*f z5v|2qfhc2msNhQ1UlHSng#thU<9;8?WCzg$({ZXHdQQevh`9ygMDMFGUY}GmFNNxt zX`N_}vd%pHEd?R6E3S@Aae5u3fL&jiu~60&+SoS2k?2PRdbir(4CisZ)eY)*^}saX zOnXVXo$wN-kZ6|e-q{IOdMS@!!!hw}^T$7gyAx-o`ji%KB-WJ-4`gb{NxMNia|%PV=c`X`;|rD!T;Yn~=;<(Q~!Wp%!A zb>v747&T5<{1|M1v@=*KVJo}ANKN;`_o&IDXsh?(=i|1N@5G@2-$p(((rlQD$HX0zZ7d!<((l-=4v)xiT<~cA4DuG3l7QdUqe*{94ZaUd^6l~W{_xiht1yaUgV&!dx z9s7wqEPd(mSet?02}5Y36Ie=D7#;@GLlE)axlzVGjtV75)lXxsIDB3W(R}5>t~q;w z!+_iJ*fS*lMaX-EJ%fUsGFc$66qPkM**4|IB&?!YO%h@USs|#7^tq+rB0>v*)9R+o zf8*v5#K+9^eYuj6(Azr0dBuz}uxics?bMYdIt}PYLP%*HIE!=g)@ghDqv`E=Cl6*?bIvfLhY^*PFy(SWtU2z}OE|7;Z$rOT zCpCCB=UE1?><4B^k&I929(0aTnN~z{HDBFS$qeS(5`V=AMztw>_oypg#(OuWHKu}J zaSJqw#85n2?zx{R@p7jcEFv4guMWeg*|mfNj9NX0h1ZyPrTu+QY_z=;wYf7AEC_jc5Im^eSu$gpQ9+q78hQ zo8$JJ6wrdNzwf4iQ*HCrJ~~x9p>6TR2NdupH=CcxK6U#k(|YJueWjJ})qfQHzUP8| zK3ph1J>64V>)V=Z_ye1*m<)d9So0(AuWjcT4=#y3Svz`Eck>zUShJ7f4nmVnL$6s@x#>Rci!!0F&X{Dlsb-br1d8nEmm6CRQN={nlhu~ zRHSiBi&gnon*TV3A`@0Jfo_^c21A0LVb$R-kx#eW<-ulWtQqJtMG(9x^w~>S& z-`Hvf3R)DsO`v+`cQh55;>++Gn=;K=yV@i@CKd<7k8%BFCwn)i!uu@Rjt*uKM$j7= zrC>=Jm#WFQ$q^Gvvs9-;iONq0#Wc>NISR;+*Rv2B(5ct2=r?w8x8x5Q3UXkrNHH*^ zhY767Gk-}t!#|6TbP$+z<_^7r5?ORVxX+x4z-JAOdg-ka1JV?zPa?qG5Hd)Gs%-_#I2>G@#eT_rrXmuxw`b)vvX$2Q56 zVxMwc){(&0bzZYHpz2b*NlSNsy=(r+t~MR%$Z6~BZ76S#+Vj=Jt4ojC;{6GaVIDz_ zbRX^?JQpauiw9ml{5ooZn6TG_5L?rT!|fVI6-;tbb;XFl_WAxm{wK;**y`LCp`nA)gAD8ZVb)0B)(uBrQSCpL~F&#*{)N~@8eg7?vEZ@99G)$g;jiZ zUChswZg9)%D^B>BdoKBv0^9L&szq%=Xaj9WtL!u-!8~>~K+4Val(Xh=U=~b=l%~r5 zA@W*ubv-7lw^!b;cRrW4e_RW70I{ACfn{98;@kvtET#Eb3S?CF zFkpIMT*DR9-Av7syD$X%vL|w$K!3sSk~;$WTGGH;)=r`D8C!n}Np0ryq9&eo>?PwV zH&RRN(!-vU-u3z{W_aS}?gvdpv?B#?I8S*R-do+J;;~uHkWcG`mSiCL{-GwbrHJ8ln8)_z8KHW;E_RpnE zGj2gmNJCxok*RN?8W{fdT5Jk(qkiv;ADdoP-9>i&!FgW|6QNm})0GH&|HCiAe0^%f zL>H6_S|Y(b+dSg7gA8ZC8XF@bc>nUTTwL}k584V}B^RsBlVjRi>Fxo;ld-7ot9#Q7 zw2|a|5gPi02v6&sYUO~>&J&3O@nIrusTh&z(*vtA8WMV$BkxzsO`^`?>;m1(yld$~ zW2<0vp}%WOQBPEBRyagSQqvwTgjdn{^5L3bH>%E~X_L|)tIRyRx-v9(2@5y3H9_Ie zZp3I9kOexJmZ|oU88gM>4#_kKQpA)BzSf_~`mwU;ATs1EX((x3Fwcif#M4?ZSu943 zA>Y;8!PXB~nE#nC@WA(cKWXR#kO}?Yt&SGx9(Ld9m#M-KT%jWTcQX0sYl;IC6t*A~ zdR7_<-|{H}nGDaG7Yn&0DQpM?^+LVJpGB)6UA?W%)22J}RMDj9H%~tZ~YPujV21fg5Aggg!A}z_n zL_s}7_NGGWJpowt;;BKTESLv(EMSX;Q|-uBf5q0#mAcY4mdM20r)%`lI2KmM%$n)m zxWvVq(U8+N!WMlR*V;;~$Zvr4yuGr#BTXqM#zZ9|-l)R(v4`i~E2KqBnDy!GZFDh; zT0+69V%Ol800wb^eP@sKRX zHO@R1Pj7XO^`~kZT6XZy$AuJ)r{BWZlR|F^Y_pmteUY{9{!`*=ZOOwouvIv`ClpT^ z?Fas)#eW+Ove&RE_{bi5=g_}X^$6y_+*;b>!`Sr@l|q}?UH|RmbKp*d^s}bcjKmy{ z?^W;RRItyL1?l(Yv`OA3sD#8g-gry2VF*IsWzCi`{z)bBwieVQ0zKj2VYe}pvb!(h zz-Lt^l72(PM^KouF-5{az>pGSrwkCik;$SE6{UA6ffU>#^(ww$@|0AXl|9m*s}emTp~8h5qpUA zCzB23{q!)5-9^DxVM;+to$z}_DsWpr%3vYOLUFjA$%BoP9z-^~P;twsnuFgPVJI25 zYz3}ma^=${`~F!nkd7ni^6PGz;#eGaZWP4F{8H5~XK{h^;iLa^IveVG_&uYlyj7}g`(@Cke;N6iS78Q_(|vgdPQXO_CVs{%1{td zejvlat4_&ZNu-3awrY&^T+xfEUO=xTV>OBd)IIw#W$S9<`ba8*EyORKzTR2m@Yv?zaPpbSgT+(Ys2(# zd_t#?(f;t^-6n()adpxFo;yy_c#>A*bc<8ipEN&98c--7)`C5dwC!_PbPzdhdhO?$ z5T3jAlNFd?++X&2UqoiNE$7>|ZH|!r?>|)Q`w#DG7?Phhmi4Z+= z=cA6NhlHdld*RgDRQ~^J$yu5jWwGw!?I8cj=ltO#j8F#m=GzbT0{=?zCLW-Bgho$$ z7!4OSEdKuvv2_H%(qM)SAM~xw{2#K6uvD^36A*zQ!3^+gbo7Cg!Vd-}Pv9)&Pkcu? zKjwRCwR<^@)!1>U8qXVo@{llQ1wuks`erN!0!#u1Jl#{h7D7R?6D6tn$p?Xe51@M8 z+&cAF7hJ9yEXT@+A5dpj3C_Kf^b6xN>d1XQ1`vS)Ow=;kl{59wRAzvweQNgGzf%cb zs>kH?JYriuZQ0Hp7P6=&{%AA~8;>L5wH0)H+Yntp4$FTLxPv0VM#FXbx9abCih&YR zd#qx9WUD_5CcFzwv(vvtFxz`3^TYHuQaAG)DXu}%kzJI(RMQkQ6fsH~WAc>IwWd?1 zGj?2*cGQW9plNq81|Pfj(hkjbY4#qwzI3VB<{16h()Whg!4m}~5i?emH@{UJBm5*s z!dXjE^OT74d(qr6UH)L#%`Fd&Rd7Op8XIaZPRnnJzo z#zmEB2l+u$e+K0h1swHgK(}r;z zI3>E4DXkE?rrsK2`g5*EIP_D1MAqg;NJum!!AW$LK}{euwnm8xT2@0s%Ky$!wKP6-Pclp{BVtj@y!;>#9{_3BX$ezJ-ST)xb++VH!b(c0I|ax zH_+X}|GBS|gb4JPW$-_D!IZk5JEFIV|MwpE>4G@)iX)jYaTQdaMat*IV}ztJpE0Mf z`72F)a8rP=&Vo>ku=Ce^PG(5+jgvKQz=EdeERLR%U;c_JMjHGyH0_WUhDeh?{J?@muq;mWJCIMWdD%vI$I|DE7>a-gt1(1&piJ$Ue}euEu;r>%1H{ zKNWLYNTQOtB=4#*1HRK7+T zS%{Q%|GNKF^8zAp5Pi$#S zM1tzn!@CQnDo@Kbas|`}PRbi~N}81U?|p1>Y%R>!_{33%ih<0x2%}(Hq(^u#?b+9q zIk5JtP4BgXz9B9FCPvQ9Wu2c?gnJRs(E`ZnZHf-)>xJhul-IUzSk~BNv}1{?v^A0U zl|%t<_Dr^y$&BOIL2=k4?{}wO@yGjW@oaeXu(I9zaJzmLAdYR~jI*xu3yBPeJ$HQV zrCH-LTvk1L)T>=0uqwx-#QWe|p&vP}ilIz4^!p;QO^RimYAox$3LAkRhYUx$<|v*| zy5kZ`ryll`4NtTs>HpdD+T$=wolb2K3Zb1|F!wzz%dWJf`Lj3LN$#4!w6J{BnIBNJ z*;){`%OcNECMd(wSkVS2GF5L*9(O!^k}u%OF=VC^PK1(bp4-tjdF5M4yd@DfI^FJ5 z{_P8)WAM+fSu#u_)*NW~eajS;Yvwp>zXc{BMKryRlZ(vtYLD^Wi!m_O0k;nQKL1xjE^Pp3|TBcOL zZgvX1E6&@D@5(Ok`mYAd9LOcj1HKH7)->0@@-Dgy&KDf;5ZB;N|n>jrEg(q*WPe;VZ}^ZPoL3>p_X2k zupg@#OSSx+cOAxSYnd<{)x)-XIL*O@^dl}dBzUnRP1b8aT!mrcO`k4yz;rv2TjLUL zDiTnA8E!2T!aWdtuP=`n+q@W)jeG4UOByZvP{v-A9S3HMRcax>woDvvbqXpU3iga> zA)S62FCfN*B52=`#f>iGv)WKA)`+tIY&!d}YyYM%WF=Q@joKUanEe#qm#vh?Sa|*r zMOa#R8I}~P1a4!#tCS!jotZx%l2y%KnO8X2%aAur4Ou7!B-gK4!Drl)!;cWTb+A(2TePF35YN?34`z%(Nl zp;;;*m$ANmRJQoDq;A3C=vBaL%p7<+G2$z#Aibe#!Q98~_#%fBDR0`Wkr8f8$dbg*| zT(O`qRuKNhkKg?gca$pbJ0?V(4h`6Qnn9h;%G@n%$=22Mr)=tDgpo{%j;tQ3AbBbR zje&_Vgk^9CXsCtv)=?^kv7z-@t4f|^!Rqy#>|0;D11=?q5N9s}vWOgXJ z*s(YiGeA(9!wg5s3KnUV5QI>)D_ILGvQP(zz0$@fx!G#<7ci#?T&(^c2xG4!6+#DURT+kCDP zEbP8kR64Ct8yn^wF5D9Eo2D*(7TxaH&Oa!WKFRYc3;L1gr4+I~xSc4@bwA<}Og`(t z8!|4fTwGCIA+VG}F|zEO#bLB$JC$=(_v+1kG)~uGnNR9ZGp`?9V0i^dHYI2~Cnwm5 zah|DBH80^3;bps%_gGNvplq1T^o!&L~2}wMDG!V`Qh;Go{O$YDw8j z{b!a?yV0t1BOlI5Oy5iB7-9K;C)nb@6YMEd=a>IZuqdJ&k$=v+dpDVbfBzSwd6f$x zo9a?3E9#eHQs_QQV%C|gc&m6HD?CUPh8GKF6>wFaP(a^G=9Krg9g zuY3{w-qy-%DemI&cfhOAu=RrI&Yr1ia?kA74YeCyH)YQUv`x>32pvoIBl*!lp z#=eOO-(Q4@$~Fs_3b55PP*Tufo{Sl&2(c*20_Z`_8ENf;J_IVnFENv?W}(8z$GWoO%nLWV6ad4}2?MUPTMXTP&x7myI&U zFD62p-+I6!0WmoKW#cdfY`dq|BD?o9>ni!(w02`c<&2M<=cly?5BiMssX$fAU{*{* zN709Dr*|~t$r>s(3ZMj%#kAM>3j;Jipv-yVf9kVuEBwYw(QL3=R(inLdVGwA!puE5 zXb*c^5*XVQpAPrfMokO}b602->C=Y^{|{GJ9TnyGykS{nL6lv(VV6caq(j(+rKKb! z1xb-sxI2(DM3I$VpR|j6=|hGC8deVo@)P0(GaQJe6fzfBFw%rcNR&Bgfwwbj(=8na7CC;$Y%pA>9nz)R*7GekeBY8iCpf zwCAZnBAHM}2qmUI%C@#zufDxcT#gCaiM^twckP(w)63g>iS3sfws(O^q4SDiZx;il z+yeyW&WQ*fh_(ab3hEP1P*rSiAKrkOoGYO>-)G1@@Wx2*`Q zgyltQrSahJiw0lwaFysFjSaByPzq#z23Ix>Z)WoO~vl*2^a5)n+HRF zQgZ?;*`+eT5YQ*R^?dnnR8?=gO-jU#@l~koPno!<7~puAgia<0oz%*aNc(q}ukQzP zDY4qn@I1|aEthZZ#L{jkKmSPqVShC9^O%0kK-Sl^+bHjn+Xwk(lO1cLa@^-Z# zFXjgpQHdt#Lw#Gte2_Z$oznEi{eItNzfZ-@?W`5nbReNThK-Czm!UkAS9Tu_eUwJA zlMAL-_`wtPkPeCIp|s&$&+DEgg)2tVDHm!KgG-&=3gd`&)09}l68gW9*Ac6+C>zJ7jY-Asw~#{~&>HFbGB4-(j(r|9ZZQ7;mbo;uKQzM91MVe(Mn)sCac zS_Y6|YAr^nWIsc4`ff3yQZ(-Odnm24%+_$dN{xiDl)(wGIZE;evyAT;!)WGGyrDTi95YVC&Gk6bh81D^%jMJhwJ zIz+e9&*H#IbdP;*e*ZPCYz9Z-MxLCu0OR1c&gWC+?tTVu_xk&XnC47Hr^+SSk-T-K z0#Gc0%CRyCS+DdaTqc2DdA9kO(nx1ButU%%L?!7et=$t8 zv-wh*CQ@04$~}%d5S^2?WsM2Pj#MnkJCDoCa`L0_6iM0Jny9(w z0%~5$ustZjU5V?aDv*yyC9hXK$lQa;2C4fAlX!QLF30(hP~hEjH>U3+o;W5|s*op` zrbaLzR9Y{~v+VjtRyRE^E!aWUVZR=Ic^}oM1TY&t6%Q(MJTqpz{m9Je2zT%^Z(V6Kl}Hf5|<6ZI7?e5C>DamCMCE{s+0 z8uHfIC-h>Vpdj0XAZ^3*)}%ZM%SW!y5s-HZWVsag|_06&3WOA03 zUy8o`-2PFHG>KktATLmY4DO~UmDL6(;%}KF$tlN`UiHgeAF_AUu6q~w07ARy3?q2v zfEu-Wlg0idzLYj1vti29psRbYh`rhCKHiB%hkfDxBmUH^>oWAu_X7s)Ilk=89`dbz zZn*n7!()IJeZ9Eqnaz#u^yZ*D6PqOwg5Uf~XL7wexsu-SjhOV=GuWgp?h7Zs;p-E0 zrY}pXX6R(E7Vjw&wpgx+Cs_9GH!HKyiqU^_`&o{>!n5`L_2``hz>Di>SrzMFI_9PO z7;O7<(AGTf7d0cR0O0xF-cR4QM>cuVIK>-OwG$N_ydr1PQrY!eMt}oThvMyD z)ZJ7%P6`c=paey=668qeWumUZ4_S+0R8U=#jR>2%v6k~>^1gVQND9MC?oRBD%8OK6 zLShP=yY6+e-bX=k%fla5smAI+8v+Q1r5g<5T2ZZ62e!;krne^3?ylfBx;(aCS0P-j z6?_i+O!_&_3ugkB?Q#s`AmXHpCwk-FV40hNX9JT;s@5i%NALB}etR7F+12aj>h;Wf z$PpvSm(i0Y4JD3x1}`;;16MZCBCMtA-XjiqFJi^naj|-yo*$$^xvMX8W7<=1XQ$?G zBp`gu$6(iO%*Nf_Sc%}m2pJ0}gq#rK3x_Uri`hEfIkMiv`sQQ528bFRPrPu?QSz|A zgPq8o;unlQ@sb83_u9gFguzCgAs~Jgwa?dSRwj8wFP0<^_Xg#D= zC%sCB=;2V)468(By4-TP-yHc)xou*!+el{(oPcquy?1rGrn1ZZ&;%rLO z)a;SELdX0wA6s2s;?Tn}6N~CQVPr@5B)hT!tmbEHX{(4;oQ!~!w8nVf${JHG5M(d^ zVeAqu{nNK{eS2(;nDyu;JZYiWpS*C9Ku^&1(vbL$>(Xf$T6 z|LC)DEdZy|Oe3&%>sKW+`br2(yC;ct{`}d(PYne|^^2eNq*Ba)vRk_%B1C*MgfT-c z+K<&F9B{1ok%OI* z(NuNvgWsM8{4RV-e7Wfwajdu;X-*fYF;Vs1&%GbnPmFUl%(It`{NoMdd!=tEjSk7F zS*%eWtz1<)1+f${J}JjNM1IG&z=K>d6zM>@9!2zZ61@|C`9^Xwhailqyy~NWT2#f| zSjrOr1tq2FrlOe!@_h3|3pL4d>DxR=x^i{UEqFLD!YZ#TaNh(RS{FrHxZPp)u&H;~ z@P-Wvf`k}cA5zH&=ccZ3@Qc(~HBl5_z_#?;b1L!A7X>1qXSQ%u4(~nIWLsot5idmueLwM8JS(bm4Vb2VVCF zNw>EzP7r9|+9StLN_?~M<($((i2G{_LZOW!l_hN+DSd1MCBIO&Y@CdZbZ4AJ@lH_U z)e$PD>dMVBNGaApB?gNvxv%hKapl%MHR?iImQ9^G%A=yRYysLxGC1#qO;qjMnm5!x zEK`dlFLT}=HGW{&7`wA^xg}VJGVervc1pQgVAGrw4xPi2a$eZ|*5ND6%~m?s>VHh# zGD%mXNe{qNp>W)?yxgX%u+3%8?Sb(2CpP`*d9B5jv^mdgk~Okp=9>@wMpi_#LWnhq z*MExhggxIP^7&g5@6o`WBnrAtHGcaKy{ENCC&raS6Ixo}?6@qg_Hxu{_Z7{)nbZ?Np)Jwb)U93^tS@gzpRbjP8jI)3FYr6!W+ezti!R`G# z|9k#PXshOtk34IAFNV@|?iFF5cqwqvr5{-9uYB8YRHi=q|t*syO02#*+B9< zXj`D?iTNg5RSHa@D%99y%CkqwS zd~myW;ogPr=2uoO!rNX|+&>K4rpWL`HBh1vazVPqQS$F3Fmr}EqQth?B$o$|lE!v+ zDJCrl=9Ng4z{oqwskY6V68qAU^Z`}wcMs@j?#8_X!J`g1<$ZtJ>+NN{k@tOj(9s&h zp(R|T-WPRbmK%x}i05qhzTq1S8Y%hJv>lgVyKl%H(I~zMs&CdxS32hj7vM?2g(87iymdq&;^+?bTX7tKR-5 zB~LMeG@WF>rACsBhgupcD(7Z?lqkLa^1kvH*}Z^BD#H)MQHr28<6@frkNwQpHuF$P zt0nG^g1P1?;4LnqE_Z!{KwTl&z7<}lNeSEM(N{JW^DP51Qa~Cev10{{j(rM%)2Bp& z+4I?yxDqFt_MaCp7&O}$n#BiTwG#=LB!=@7ItT68EW|0Z|zKAtA! z+uX{GWjZvD)sM9_E=8@OSw%%4fnY?57Rza?Sef?9eZ0Oox|hsc)IIWAD%e~2|#!zEQ`Pfr@$9|2qlA2js!d%umJ+Mc1NUyJ_moU#u9Zm09(&+1xgTw|0Vr0(jV z3t@z%x+Ydqxt|9RE!G*{Mj93hpRZL~sRTR%&izATd3fzm0_mrV@TWz~MfE<7rYlTS zp5;Y8Leb?ZMay}eMVIomkbLY>X6h7Xmtuz*I%EKjd|Z#~>HBZrAkd@AOYn8gQr|d^ z=D=jq-Hm1=pg)v~!>weq>Gcg(-BqUmiTy0@5M-Y1E!ZOLaZ-?`l2sHrE!onVuaxgC z&Yf8I?Ok#YK2YA1F$V*7f?>oDID%EgmPXV=6RT)mI{fWf5hU#XwxO3|;hx>=t7EW$ z1Ok2bc1lMtkB?unUL=d#^4xn9k#4wqWlh729bu-t^GIbzBm4H_4+))&C#^*_ex%e- zl*iL$po*-b2^p#9fOn1;YQ^ z=Q6;He^L|Qi4#mq5OE&z-Q7RaV9^TpIgX}8v)6eRs!Jz3)yVS#4N@J=op4% z*N_4<-T6~2u)LD8pE^$EV}HM%_JgJO?`5}ruixx+G?}$@WNh{MtsT=p)kK!AZg%`<-R08wL2f5N z^$JOH*skyVC*M6SUCB@=`mym&qeEi^I9}zjfw#BHDE3fDXSRo>wQP&3`-11K)QK7Q zVT&O@rE}by(!a9bxj_sU%3oLegh;t0GF^$R@D4A8X1qOG8(&(!i;Ruxig2PF=|FCk z7rP4^MPrJF2gUDhMsU;;`hK5K5!HLQy0HIz@bc*Q=@28y`HObBX;t5U#6O4J4n#Gx z@iHs1!thT9clLXuF7BF$OiM(%V_~a~FYJ;iA7DaC^PnJSI9}pX#_{+_yYZK}2q@@t zT=i4#`_<@h^|^6|A@RZw!;HQucZ!ymRN0XgBzt7;iT-Zb4K3c=$d{qv6RnRN(xAMN z+~{^iW|vq>Xca%l82QRDu#r%@rpe9qszdJv0K5{UAD`r-u|Y3p|dPf z>v@(r{Y*8y{aQXqHXbn6~h$u=N;B@!iQX?586*Bhme&J~e| znFr}tzSdNdC8>@?2m0NMuj8?fMhCngUxn7iuhx{LkOdBA|9ot2% ztO2ezFma~es(=otbYsz8nwV@%h-!{Xb+J?*ek48Z4fB}j1MzH8_*7r3m|$F-w?5?) z>4$eeycGC$;IYPF|GlT0@~c7R{ew`?YG%ijuyNIyiGXCBJCcC1o*nE&^i^^DvD;K( zp^`2Lc9G&)&FH7j|7WS{;GoYg)I<#0ux9nZRp(#iiX4a zck{(V_ej2oh35k9p87VC8}}hT4U_SdpD@RTf}Y`BWj34joT9C;4X-7P8HQFv#xqi9YmV zQQ4oaF^}=C48=s(W^KP>`>OUZ`0Vw?r!eLK@dtJuN894OkG}uKx$E`B#*l!qqvbNu zKU9|02|#6`;fLP>p3aJ$sa9~V+kjvXHBEI>5Dt*Ad(>Fs$Fjm|-iDflE%#@M{vZR*k;l92eE^9oOQ2*g6i(9Zd7j~T&= zx{?)#UKjaesPIM$Si}~W%-KNg!j+iWvjYa57tGMf4Q^Y`8D=ft+VrSg2(|=Xsi0ts zLsOI+yadRla+NpA5Zh+muajB`0t7*S@BzJ1g!<8a(uT4fOx}eROu59^SA*9pRoq_4 z(SpFk1ei-REvbIEyg0JVMz(Z6+0WFbxxguMljzZsT%PDT^$P~ED#?WtUH*`Vka9>w zj12-$<(*O;K0F>o10#V8sY0=V6M8pnWwv6(<}N)k(#r9&Hkkf*t9@RB@5t1Jy;C}r zUHFqwtZ$!g^g-bFOaJKsPGwyoCoBj2h0s-+Hf9+>Tueq}+4={4l0nvu+2t4#!rAv6 z#^a&f?idG$TV-l0P8y$-t}4YuIXEUJd}8*~Yh=lUZLtb|+bqU@MU9T?0;*?zTYl_o zMy7S5_kJHazjA>)d=DMyzZXnTPS4VG*BGo@*pe1{;lU2@gBQ%|I3-8L@p#gKW z?^`mg6&1#xKJ4;`m-F;bM7|l4(8^=SBd1%BduGvWF9%{i%DAc6I>k1fu1hlpTH480A8gPry`QtO8?SVLDIZ~qQGRgb_u1&hz9|=v&NAJ>VBE>bu+Jo2!kw6; z!poCB8ww7Zj1@Fs#S0xjn2{lxBF@OU!N#)e0$Swes|KQ>YjZsL)=mt?k8>!~U&gMi zW4IsO9AoRa^ZncZ+iQQY{CBbF0nZMZB1j_eRS zv0tnQNmA+g113&;FzrAddr=Sid`&C-6RRC02b1jD#ge@aHCAr3x_0o zvFj4gKuV#GW#(B$p5J`H0=E495dAg%G^|3QsR=NJO9#n|RAgKn=gDMrjE>}tAT<`0 z-mk<6?QZh>EnPC3-p7-dnZToX8P|0uh9zG+NY80nhaB)0k)*q*0aQ#C`vs9!rFDbA zm<&d55#l0p89-_r#I9te`bDgexM zTlv-U)g4VkYy5=^G4s5iEZmhHUA%Uu`&mn|aBs%N)77d%FPUnXipF=cJEZ(I7XI|6%R<;o5lfyS>kX zHmZ^;hacYPU)NE3^oBZtI01j`W^(s6m(kUTY&n&DiyA1#N@MVSJpPutwCjhDOk}9S z`0vI3?p@?zw=?8@(9(8#jK%2CG*iVJq_IsVYAlSUEw3+YR>b@)Lbd&;75Z(O{p6qE zsHe7yt!qtxl8ka@fP5_*nQy)EKd2T;#f1~ZJJttE$R#^bmTlYDvL6Ue{pDUOxo~V0 zU*&D3zj12y#{&t$rTk-ZUS9{q{Ty)2Tw@CZhbu&Ng|WUq_w z=;qWgs%C(DqV!~O5cV*BA-tpH8Y#OL6Pl4towbi_1Q3I)VQPE6g@WhCB_;!U6YJo6 zYT)l`7Rpa$hLHxixG3oE-i=4ziCQU$bgx0=yz=b=&iw}^{xNx4YPU8yj_y9qMaUw& z5s-SZxrI0Bl7|T#k={e;-Av(& ze#*m6WJ9u789My6cz0l?3KdGQ{9?NUwA_J+#2+!jxz>lpqIIwW?>!NT_kFM=O0v9{l$c&gD9t{B^=Wnr z!`y}11)jWE!Nz@Jo{zhX{h65AP#}7ZBN0_pvcYXzV~!$5B9zY|nZ11R@Y|nCNySJ! z&Ax8(*8L0g2u-LNuEvf_7x3$#;SX;4?%aY{1I#}|Un9T@~E>dL}|JmblWBuO6t z4?NTvO-gz@nCjtMqrQ^KFHw;OJY_N z!$QLDvh&qdD1QwF2NjAaLo~8cGqvY__d)Y((GRdgj2(Lalbu$nZr%7b?5jR*^Ul<- z#V%S%p@8l?a$h*w0*1Vf8D+`woe5vj>Y14I(^@l-k4oACV^1jP)}KGS4M^_%g7Xbt zBF|+fX&7D*M>W}ZhaicN=h(G`7IT4a)OdrIuA)us_=kC(#!1<>*Cwmg%S=uhFQ6;U zqgUVBzARsQp1I`*>yw~cMp`024mo3OR-Mb|8K~fH+}kZzqR26%nB0U5Lo2`6UiRo2``M+A_W zg>S1Ur+w#0ek$ct&U2vfy?XHtJ|Yt=Rs?wLLsSBu8rk7#-tQd53yWXyhPd$TGIo+D z)R5;}n*U@%d5-J)&C6*KF?EMv{Zkn~l^QDRq0VJfeaaW^-A){psL0(JSk9>oZsn*H zM=h}@xWR*Xw1oRkGD+BsuP@US%N1Ux9!L(7BF@+(2Ndsd)|#7|>~GO~6MGp6ep5>%$(Ady<vVC>@fFcJkh!Yla4CqjPRwWXsQ3MoGJ||eYmrQN=k)0`e zeK>JlHFG+UI3ywpf;PaJ^Hb2pi@oHz;QjqrNqy3sy+4i4I8sNwn}0+En8S80V~a-}Mj9rw%}#E?^qhAonYtu1A4)J6=vrJy#|<^r#Fl z{Y!BJAJ9<6qa%?a^^R_^+e=drEO6v!s#F!Hjo?!Y=&~~nlQ~2&za(9ZSqSb5v824P zt`iy3mba}$B0JLLnc;-IsOjx?%K+xdyjr2L&qmIwH2q>r#l68I4k#Wx%(TUcgiRDw zPRkRev6W=IS0p`9759A|xD>G4iX-4@?KEaIPh6-_G9E~_nKPZkWRCxH3_tW7d zd0Mr2^XaJ(f5s0aB9FHVSTIn`)gI~gm)wjvN}3PjXHFkDcZ&$z?P6+?>8~%Amc?G% z|Cb2@g-GM8puM}V&X3AU^!$!~(}l$A=fh7vxl-lWwe6136hng?kL79^!$R4*^~^j)&A>9wyN@g0eRDuay{SQ2KM&L|KD(zR(aP>moUZ@dV*AjR)|b5Pk! z2HExi`P>|ZKW?MfG_71n%qcSc0I7%+Z+$j@x%`&uJ2RhHYDiD3B>d(u2hnB9hcNf` zT8XQf)4H0lNa22a4Qk30@hys@E7JCUNsusfxG9qo=VDz})L@CBu0hUcF3O-k>jIYM z!vRuQyBz)c0^m0|4&^IO-HBvY3&rnQ0KkuYga9hg=+nB5{pD+#W$}X^Kh-9&Rtu$( z>$hnHK6CafKu5927!$~&&N`L-EtiVsrY%k)G7A(`pjLp%}-vl#HEo zC9&92l;U+)17)zR9umja9U@axS#!Y``}LbDt$OEDxYT*OEnIq;a# zV0IB!iZE7+#4I4)L<9;ka^TJ4k>7;5dti^PZZL7|=vekoN!sElIj%?3Jv+iIZcc@Kn((3r6Tjia_9(m*jXgdbJM zMn2sN#@*A_rZE$|oMl)Dtwc&&i=GJMw=3im{z&&y*3{p(0>7*?)_L+xALWP@OyBL} z+=|cx#|=m24#&$kJUK?FvmT}N6FK`g#)x5hrH-n*^rqwdJFfpFQE^~qVAf5;VNj4x z-|N4yNprdqa7&XZ$vgj12SWctsf-xfU7bRx{K`e6e=(}2l_Bw?;P=$WRu2ZB!OXQq zOpIW7y$1!eWQD}X`V;-vX#>`)_&2$cl?uIZ6tfPnBB{rpI?ni@Rb?Qx33Twa{006_)AiYz;MmcQ zDog(kmMOn~1kL~BTh-XvF08A$LPhA5==$d6d9>DP3Q6r6WoRF`QLATKpsz$jjMK37 z7FER9zlJ5?3A`Ax&<2iVfSOZ0isCo-0(<>zQUlr7;34Aq{=5qH1 zY_(l%m=c&%Y$b!bgnsEL5;S;qr3k5r`XX=e1ZX1s5oEq>UocvM80)m~L}9<_FV*SY z!f*u|a&6V@hd4xUzAk0|p#Q!z5u^r-*;Q2_-$*!0kQzzeZY<98%_Nsxq=;pkwZQ-r zG(Uela~6Of$c<7opOT3rX{b=3^*D2wJlUp#txx#r zJBBf+Q)D9u>Zvkh21PHr`9krnFYXDR5AjCrf0?I|vrOSgN6LFEABO6a;R~@V?gR5G zk_K_2E29kC%HP>d*(f@b$musk&xc#X^s4@!;ZB?genu{i%i zgFuPeQuA=+O4;rgtmUEKxVbz1Ut!rP1wF(X&-`I#PmL`)`I&vkqXl(IHhR{@(1Z?* zNZL)suVOd)#WhM}yl@9m=X@TOgg`?1TvJ6@VOKoBFNUV~0*vV73TX(pFVW9hnv{X( zL-!vXE4~Z&ZpqY>v4rkbeV5oz6MG#f?kdKNvb?BL@F_27)j8vM=ysCG3t5vz!r!UU z|5z7b#xI%7`&ox)K@oB-XI49YI-O@Fruk1QhT{he52Xzccsj-xs^j)=N1rM_mizu|3MQ^qx$Qvv4$IoS)EOZ*vS5n7;U%^hz>GTvj<}A z?V+f9ci3!kJL(k8WeXt}T%5UMa_j_p74af?V)9UQ$jw`)4G`-7Qf!@?hcAeTVJjYgeq=xAFEo(NJuP91 zdR_Q+Ypg(`;2)Nvh;!spum8PwljNbxtuu&wT5PZ35#LHeP*`G4l+ZwEKLLwMrWJx< zSV_IC2ZW^7H2qAT07BxX?+@FH__n5xkb6Ax8HrX$o@abmi%s#BPUZ7?GWgQI%GAnADV??7Y7 ziW3wWPKg34pcAuW9adBVpGO>ipU&xjQU^oZg?c<@R*+E)s!pchXBZOWGHRKMrXo`$ zA-mRkD*}8cnVwV)X!s6H>xF32uvCth3q7B;%7qcKyp(g>#A?9tYrx?&%c+i+X8>ethr9)l_n z`*$He@`Ha+s~zZ2>B|XIZInXm)+wWNd$R9$W(XwA|K-f@pKNN^mteKqvr4W zWY3>!0mFt;{xDazpu;emmQsgMb$CFZ4q5+?%e`j-gQis9Rek8DD6a4}`$HpxKM-UX1gfNQASwsk$Ki+aDq>$|KCaz`j zO*;N`HQbXQrBJo#hgtP0M~6-|DOa#iDkBJ0Y8Cfe`M%wtC%b}h-T04z{BP%QU{3Jp zzB8*H_@}?enYiXd3L9BmXhlb zFK?`5rGLlD{OBHO$#iIDLy-mY{C8fxX=6BuN>WID7}Qgyed);QjNw{=j3A7+29?h> z*NnRU-Oy>1)8fIk=E^_Iv`WPbCRD>F2Q%M|ekr7&lr{0X=bw{&Y6gbB8fK3lvQ4W? z4oY2M8B4?`12~XP91_BgS})2cK!6Yzoazrb1Ogfb+3qT%nED5^{5Vjz=;D?WK}me* zdMkF^v&pBD%VZpc7ta%t@S!isW+_RI)Quy@{m%NBV#L(}mbAl~0lquZL5wE`n&xr8 zO$RqYyvxvaW-^;lC>L;d6#%5#&!jd zRhU*6I0A#KfE9?rc-)j{=Hh|ZJoCqDu?oCXTB6vuHxnC-L!L*jn=urlV>c(}ql0u? zG`m9&M8F4$VAW?T(_fv&UsF(8oN%{_rW-5`p6ONRHytx|J*hNb-9&j#9-=D^n1ab3g^b zT$i9MN;XZ8*t2E0;2XFf!v8WaRd<;4{hD)^0^QVUGWX{6kU@vo>Dj97#NeAdEeJ`4A_SqwvJYs4w6BgyTwMJPL1Sz z#$4akBI9y>wd~1$ML}1r@;4$oCdaS@<+`Tb;p>;Q{ZQ_Yg+gz!I4Lu;3?}dU-FaUd zB>3OB%m1QhvlfWqZPY!|Ps1!EXL3@UGcapxcT{fr=ijHDreQzv925vT7`+s90JMkw z8#kYZfIq&d*}l)JGN{nsg8(HWBmuUM$*slWmNQcVzH=%*%~P(mkL)q>-ag7l&mXs9 z^L*nVqaQVX*65Yr|0=~TKy}#-xqwrvhDctSIfGV=VW73=^c@E)Z=%d91P6Y5Wh=T< zlJ0?p2g9$sXGI8EKc9r5_8I3FpmO|w!OHS?5IpHfoy8yMcs7+JJRK1cD*amP7ZeUP1nL9Y$H%SuhZ;QL z3c1@xOc7OQ>I0fqa0q*2bh{dqOlu-zzv=hQTH1A&=?t_Vc_xLPBGR5rh_` z4}|mV$mY1RM4GVgaV+s$oPWKOu>dH5h@E#@yEE={TG{-#>F-<34>~TYF+Ex-`wcP* z;W$Bq%as3X`TanoF>qVrPq03{ek)ML@2^jk_LcCQmo6mCV$NYmcdeh%c}%B*U&iKl zsu9K<3lg{+}Q`{t&OtcrWfK zwH?>mjRA`7&u^3!7~ldVI1JbA3a&AFv4eS)Sb6S^0plPB z<-0=AR=v8r)bEUD4qYSz`I&VldvlXGKgJFw4;I-w4S#pEwDo<VzW~L240~deo#Zx{YLFlo=LRYCQ1sVC>O!nWeoN1%K$r%q; zK!DUC<%ZGqMS-Yu<7uP~#Xw{u9v{l)cGuJ=UR$h^j&?l^eV5Hhn`ku*P70_mdQk3| zl8L?ikON!MAsm-7lY9Jx`5GH|8ctSan~<*Q^kskRL75#h@S-|H+$I=W62_e{q%OYC z^nw53L+utpT_F?($$CM}U`)^1EB;J+laA9P2gZH?Hdf#;xNEm~hRo@?0%SfOn@QJy zllzx+LM$8pm(Kk}_JQJFTGiQbw`s$j&N7UIBB*6sccW)$srS+<-%G_c-a-Qs#< z0%cccb-bUH+`#v4Li_Cb@r35x&Fq*dDgbFm`gH#`Oe>R9pP8ELA@c{X0I6-r=Uax# zB(jZ+nZI4af7e`A3ZK0y(^de{w!+IVv`>3uA{L2rK@r|sj5Az{I=7R3(;zAs;+iG` z`Z<_HJTeqc8Npp_LTUOM`2ypF!K%nySGUZ%FCLcZ=8`<`5|}-!D+u395n&y9J4i*u zY3!w1kS{1o&g^SB=cTcv5b4)sRhi@a^keo4+OI1hj^7|ujCY}r2Ej6KQ_e~-7gX{z z?w^zFhfeSG0yEmu?wlbRZUT}nH#-0KE|&o)e~RW$tFbqZ4*(_bafQ+0fwSxX=NWR7 zL&o_J`4O$~garC@bO_o48@96W!XcJ)2Rolrs+ntv2|~NcMY`IzSi3)2ESKQ^!0|d~ zCj$QJ8zz)7%0tDgxqfuy+6%`^38WEUoP<*cFticeGzS|s(}d?BL6A61a2olEfY(Iv zgta^3A`Sf9MVk-uHW#m|!N_|IdT%@xU|zo9eif+-Zhe51LvZwW#&zK77&7Qtxl~Zk z&e%~%38C&{gRnUJJE~urj?P#tCqN1XjozkQtEbn|&u~7o3r0Z9Sx>DA&a+>40r{TsN~jX`KLj0G~mnS0|_ok%X)yvtmT+yA>sr2=yTUvWpvg2o{OEB?i3 z*NH3c`D-tV3!xa=ku+}fk`)4?=O95r4onXu|B@Ozk@%>d2Odk=xtyt2tJwe9X>C&> zLQr$YDgIzT42F2r-o}SSfO20cjogQ#u}H+ZL^0YswBg7v%D93ms}RP<&*92iorCSH z-HGMBH@LW&^(09fp|KC^*y+jX;^lRB!ashxYD25@&*MjHS(#5|0fCp2>3H^R&`-?< zTrkI)qQvjmdMyX9?a|&;!JUmP1mSTJCiI{G!wGD|?)4}xqjI>X+G?T^>ElW_5F#1@pGj+;&!#Gop-#xdbmI8yaNgf*YdF|^Tw9VbW=`FbP~zmGgJ8zY+` zSt5V&S}1-ZGim0Mf+VXl0-U&-fr;~1Cuk}9)>Pk37C>%ImKsCxpv$58T1=hhW2W+d z!z0q=}CKHohmPYYM<4lU=}XG}U4{F(#2^G#sV^FkK+ z%w=}MAfWejlzBM=6El)X8c|Yz&EmSj=37CtB&dU4lofI46gxpsDs=C_v1(VDFIMB6 zeN--O0?hH?0--RJF3!;$pp_AATTU=v=w+?%aw(bZUBwF~#(J(XX(hhMz+C>fOTYW($v>ob{K$$9eIwb)iMA zNC~}}An7%llWStlIy7A&_s~o+?ZAbO0H=`?E;~_BCAVLg40~?LZw8;pXSk>Km3U;r;CkM}Cmw$crndcJftz5FNZ_qhSWsvI2ntDX17zHrHBIG;*_IRVf?#eX$HUW**PVszjh5C!s5fXvolCdDaYdnb9%a(vl@plF5gu?mQ3Cd))-AE+*V!nOd%OBhU$!G+?&MFIi71}Q25 z2=H@2y`Ix`{fX)qbB8YPtg`#b*_fD}QRdgIHB{@xhn%BYpI=L&q_zH$-X3F0c=A5qZ*^k`6E7WFHJ%4D}2kK?wckA{a zc>l+Ig+iZS3E8YemLC*#`B-uk!wC?OZ7OLfi%?p5sg_Z--F~cX(=!ei6jW1>b)L>4 zqp3GJm4*ijb5maS%LG(379y<0xw%2xgFB|N$=z_iRF``Mziyplssj;{# z6pQig3b_^c>PI$cC(u7>*J#wW`oxQ6SdYqcvnkj1_0Lvtvv`iDi?LT-eZJSrt)?Gy zlh2WCKk2;Iv3+;TFxyb#>axo)D%d%FxCp_c%0&-ply61mx6SUo7^5kjVQ0%&!{O;0 zk8+>{y&TMdjH@hSoFFd7j5&G$ksk5QjS} zW;T`vE$_3%k?pq#o(+}8H&64m#+|^GU*~sPcI)_f!dw?UMa8o|MNV+0N_^@(3nAg@ zoD8?QiQ_hL5I0R^55xU>mD;Axdb>=tq!Efzwq2tAwZ%>2O@L|Sy?3L;lkL?+v02~B zs^@~OrDXh*=Q>$pTQiTO7>g=qGzab`-D7FMc`u2%Ya=KS1ap+{Q}J0KLlJ+Y8}1Ut zt{P$*ptR1gCioQGBYO^-VqbKW77$h*`Uv6uwO(K*eu)bku`9-x zpxc2!Effw?H_)Ir<9XeE&&H8=QY)>pj&P(#(&(+{yBbvq&k}70a%PWd2id6laieqZ zVrG*!^eQu?bSCFjJ;mVygw(=|a&3Zb+NIH66p6KO<+p#IYLZY{~`RKdYOmZWt$w!ew+ zr=;N6%ga&J#{5BsBr~ow_ij4WjQvyJ2?ww5^w(ZanK0gI9|@bL_MRhr|C7$fB3CqL zr?fYyGdjch^=5jRhedO7q>+RsS;ln|RgpEB#@gomac_@RAL7q@W=aDoO)oRHIT#~cVyKES&zn^-2KQapSvAx8Rrj^yV*Cou>JRJ zfYl0z#(x}+ii)XoLV0rXJE!u!yp(p?{WIrs71||f%h!4iQztUZ8WEE)*BaiR@r5Ce?`pkyAatn`O)en=*i9Ze{X7~G=lbTfw| zoj!Qf&Yu$(vD5|~fqeZT#`z=cGZ~X;bB&EovqWorui` z@uJ*X-bzUQgTq;108Pv$J^82J`t%2QmvA8X`}3%ZZPs?&vD@60*|!72XYML6S`iAN z(-K6UD|dWibP4tB4fb1W{yFm2+p+>GPXhK=M0wnjericz4M!C`pgMONfE4a|?hT5>RtL%`W94#22@z%N!xKpI1Nf5ZUS|dDi zJ@t9} znDc+Kg@J1TGkV}Gs7G8SdGTM`o{bpG9eBT8%vLPYt!9=!vERv5#h4+1+K49zMo@h7 zj&IYQ8p?wYUALsn*S&~Pua$Ai&0hixi9^5STd<&HFz@b8C1y$tRAzL%7);6kS*qn^ ztPEs@@oX>d>AH1!BW)Fjax#tUJ!7>dJ?-Q@)6BdcR zN(;PEe`b`!Df4?oJpBZo2LtAB`>gmGCLy-B*a@8`Xz8x@ZFqz%@zuH)u^c#k&)CLD zvlFV!1ehiV)Ba#Un3YwcL$^%(6d}os7>rL|V*k!k`sX(j#h{fQK;!#=bzONNRO|a^ z49421tci(ASt1I_GP;&FX)$D<%9bn>*=6P+-J7IaSxRcETV#nMOSXesDnz#|S;v*! zvW;Zle(%VcMc-e4O>@q9-)H?i+k3`Fp4Cs)1wxZ{KHt|}c=~<#_~8St5$B8j0%J6S z`)-|6Hbs5Dy-zCxhrxsJ$MT)4S_E&wk1g?*|scL-oA986~@y5_;Z18otofd;?4p`c6~D5!F0OCiB;BWxfQ&o*Q;zY8`+{gv73W5YnYm#2fKE~$+^X7>63 zOeQ8!I`V(NRM>e#xK&=Fd)u+kFCgI}sIGAPQD?t4w{6=~&g8B8t~aDD#=UE!>Bri~ zA^YM|OmyFnEKF<8DDOG(+gCq%>;?^)a|FK98No)nSPS*N9=b1e$FKoA(t3?d^8|DTsU8E_jz~JtC ze?&cuj$O@~)<*f);jN&fbKZ!f#}OfQL>{s&Bs80Ye+Gj~Bxr+;6?)c6@4Q#ISO zn>kP2l&ry>Tz}e6XWeR4$|cb)+vzEr-xfLV6|@r8-{;-yXDHtNe}inBKs`+H|cJW)&4R6LVau`zg<$u)I!!O zc9>}8uv+P=1|)lRQ^m8VW9|zP{M%G4{-ye3|G;wl9~jrl9=L6?o1IuRSt$wfpzAx*P4N_rJtx@I3fDO(2d9gcR*}fn&az=l{mn z;oA~hX03LV@4BAUK8;$+D)0x@EcA{P{MhVW+Ey^oo#y|KPg}9I*WPAD0eVQuqqT3x z7rVPsw-tH^c%uwtH+g=)F*-2w;zdTu$l?>dkn6fnvu~an5fM#HYrO`}vp4Vapx^{( zS=I8&)1zJ6Cqs6{dv=VqpDuPZ*`m=E8k88)SD)@wH0xRZ?02fOl730TX+Cx57~?){ zdme_*?ICOTy-ipg!yRLp+gFF+iaP`FVtV24#@34zmd?w@cnLBg) zAN@L``tdJ)Zko?z`zw)b=JSgW{oOhJUMpyfWcYnfIoXWcN#j(o4)Tn6t!PUBrHF>F4h= zMWaN1vPa>9Y9#5$ntN096o1O4(GQw4ZO%*g_->z%eP><8w=6Djr@DX(pIVfM^rhOw zV%w+N#sb8mGEaI>&osGMZ&Ruz60L>m%**ebT7SOwNB4|F?WJJp9fMEykmkRiLUWJ( z*);l2VQrx(kK5Gnz22U?b93TjPWKO=+!>#j{#i%PR8v#K&oCr=>};W+`4z?OyJC9@ zdo{V9rTUG>G@bsSnU+A{4*MztRb-)p^)VNFNxz$0WAx(=yU6r~2{U;~6MKC~rNS(h zHZryS$7!FB1css+yzi92VzNg6Ee`m3E0N6mUD9q*aUtQ1xNx}Ewxr%q3td^e6%iw7 zEykPu^X!si!NgFFwwC9-aGoh~$UDFGe3(`oz9UQUZ`T7o%4?;Jivn<@)YG+|DpA6y zSG_x`F4&5VOdIpj60`j>C5pugGVMN_8JCa5RS{Yoo%O{ldZVY`7tMc*KZp7A?M4-T zH}RLxD^2yHD>o|pS)MHUeZYOQhWUc*9r0BkGA59=!Y0*nt;lp`<_8Du>wCKM~A-Io4rRddsQ@&bkrwDUR%+`EJq1J34ct0~({% zA$g+6D>ke(-ZOYq@=1;YIw^sk!R0X6EmAqINKE=v!XH0J3WyxHHSFqItdssyyU)c$ zod=Re>0g?5FWO!mW*)Uq+Q~8_B(R!#o$tLl_`Pl?t0ZTu2-{Kh^@kLul25>rC$5U- z+~0FD2Bo$3W)pW(l708&{78!uqC|B0wyQ?ou2_27hb&%iCdc|0D0tejEhWpA+87Gm zy)XVM?}&OECcZW$^YnlL7xUh5<*Q`dwzy=wn08Hc(!C<#Y1h4^wcLg77xVlK;>`0` zIThB|?}w)E2n)GAEeQzrS!?{lt7KL+(pUPjJ>TF9!gyu4v(p)8^RD)1M~Q`kv#Bp- zHC2KT0yYJqEvl5g0ZTWlnre__$swnitYN3{xYeH0M{Du+eDi+0FI^%_N7mBYE%INN#SOU_s(;v9nau;) zimTiAx#2XT{DYz(+tccqt3(wAfb50W56}MhcX+7SkJ{rbaGLgf z{S6GG&9-T=&tbp?Y0A0dQ(A3NcCwyq~zfsTSW(ZBcQ>4*6?M zNkWCfi*dc%Z>nWz(01&Bitlcy$Wlmd8s!^xDUQQC%GFYdcXkvE__uI}op0E1c$ci& z3s*VEFPi9^@%#F6Zrm_0ZgfR`N^rS9j#q+A(*#>xN4`lUQ_zL3K|Fgn5N2 zoy$sP@APo3TgM{ug|94Tyd^iCsl^dL|C^y*Mc~`EkUr-8`b(L5#x9qs?I`l7et*-z z4+T}A2oIT3L9`o2v%kFKNfl+ZvSRC2xUrf^qaUbu#JwA#90wsqYwF4A?F|Fb>Z z_cLE6>>yW1a~KaTPkVK0R}E(BrRs!28&N;|%PAAo=%c51rlF8XEf$4HycPUg|#WCY5`4(eEV-4%Y!imDvjF zENd>`5l22d(XB4}cI>^TRPfGbv!bDHfiWcn;h7KOa(z*s#y3V$K5cGge%WdSR-3n9 z6J)|d(LV!2b(P6?+}HKA-;X8LR$w1lE*lB+F&v(_3jGXA%V`jO8=uz3Gg9eS#EZ}^ z$%{r+?CoX#-v@-CGXvUHWM@ys(spoyclkyx=s6{ZbVk5_`TzJZw3FOqrUs4LpH?}M z_2TBT!3KzfkT&qP*!SmsRB@p7g2idgHjMmu?Z^=|x~IPH%TkMLh;b4Z(Q{2B3)z3{ zR#+B-mp#p+RjtB=01mE0g%(3|%bp6Eufbx%ckEYU-e`#<_XGw8TP+-aF6N|K5Txb~ ze*a{7VfrTSd$9T&-Q|FT^+?1kMbKx*KjqGy)AMTnyDnz=#zqtns)XvZt;-D5i%o59 z!&Ln4300Urhbz?6>Tf3BWZLOq4*X62!DqMm=@Hap!ra4tZE%3*mWtaV2Ld;3XZr804LEG;<$xVR z%htrekdnoSvsmwFMX9MkhiyLYYLeT}Gi`K4JiUr?_S)-3Qz?xqve?u*6E2cOyfA88 zbB%(q?rROAY^=rj?~Y6dC&u$05)JK3N*7GFXMRbw1^TMDv&`G@Q^s}x9N<|aqqvOy zz$RY8U%i^zv-`HO9F0VV>VAwXh$I`sCk8Lil=*4?M`##pburAjvPw}cShmJ|-bcTI zNYgY4UR0SuFYB5D7x2!ER=4FG5z|oNVa22RwOEYTmlwChS<=4H726vzt(L*N5b`7r zIJqcu@8GNW0s%R*@rw7vBX{H{YEO!B!x+pJ_pxBrx96UwEAzPN(t}&obIhXrWGdlm z4BwaSrYQNphkrvfo-HsJthc4Yi~!H=YG6W!#}mA}*n{E^T3Sre4vd!0$u*(6oh(^d z9d^nM`Wk+OchTp;YFbmU^|s!#J8vfF--!>Iv)jI?xyznc-ULJcOm#k_D3uJsS!;u@ zK4i=BQ-$=`jn}Fl5hvYPd{NEXyp)0`_9nHW1(x0J0HkB{L0KwT>!#weN`QgT36Sud zMXz~H7Wz1W_p(xP+`klpl*Z!Cvl2;P&D3BogQRChpm@`i0Db0Ukz+@^>m@ zrsnp3DC*3PR6%^}juY^tul0_9B5ryNS~PhMXGtZKp)*VXz)oGmFBIv<%F8^EBHql- zKz-4UikxoK!zMqi$Xc6x4>r!1dM8V?7P-MccP*%DLVbJnF^HRuYY&zs~6S=WjVE# zb|SSS1)kt_TEFV8dP9sWcJVmdPHAAL-7TG2$W96H%b~0ciQuzZibzfYlI}dz&Dr+L zC6?v%pgL#W(p?vj{DM)A>FydN5V$QxL*vPQ?g;u|(-XkT*@?CFNWM~_NT2M>7v#H= zHa6q{+aepHJ=IA%LQ|tI(OgCnqqmnuOy7a3jwlpFmFo{1)$=-DKp>Pj0;1An#2+2F zWnZCvMMsczp4bT(b&5Owf!u~*J#bU#BF5zm&G}u-s_FCwrm}V%$K!G2#Mu-Z8{HJXJv2+y2m>O{ESU@7|K{ zpQKIKdzDD~1tPA3_&0;hazJA&$1k1U{uQ%TK#BOJx6&}*i3Bcbb> z&Z=^gf4?(hlNCZAtc2=3q!dYs`u^c7{d$Wm(*bcHctY&K6G#68K3BeFF=Y2PveQAs zka}bZ4o%3J(`v4RpJUHJO_Ze8?7El76l%U1(8JCH-uIWe0sXI{J9U{vTFSuJ-qepb z5vtjk&3B+pr#tgG{sTE~kx+7$&V@Ey5IyM=YG%tp>u> zTVN#ikG$?MNwx>Ie1~T42gF|5z`G78a(vCn_m6B-RDKm0G%IjUZ&M_tIzyQ@Z}_#7 zxe$865dcy5`O^J}&PbLFlzlF?Fc$9DU>Umme=PPz2*7xHBxT;`FBZUZqvBO@*s0gl zL*~d*xoeAVG6ZjAb8I7PN2Unu)am~+q`r#3v)P`D$#v@;kSqBunZp%?xjgh3mY6{{d%VYijOS($gCKiuI-&6xGO z?!TCD!KA2dlZH%SZ9`i1cYS5HAc?-S9|-C3Uyc_MlBlbL&u@RM%y-3INa25QCZnV= z7?5#^l5>bJE+s{P>0N^rfVG93KX)ULw&N(xXyg?^gS1Vu_4WA9t%#u^OyJwmFH(>4 za+3|$6?lL9asXjF*Bn@8SiY1Gf?|!@knLaGT2fOr(|>s%({Wz85EsNJ0CG`~u#_F- zWrcrq;1(RV=(q4BB%{L~7XXGpVK!Z45mY1 zF%gM3YRk&I`LF*YE-tm)eI~|M=(f$Iv%53x1VH84rX4WGq=02Xr=SnjPE9gXpQ(j4 zL0_8@iqLJqLR-Hy=>#pa1>X@WExVIw^iHWy6BWsf+K83`(mM*snsb3>i*bndw~=oW z4s3O;SrU1ol##GmqwR_y6C7T?BtdTN*8EH3aQmWfW(LcpnDaS`3W;T@oz9M7r>JIQ;4F zMB1~HR0rDR-WgSdVuU{GdDNdgS<0w|bJ|-vuWTXCmUFuuT$ZH=fC=JQ^T*4GcC*(e zo5_&Y3wv#%>_c!7xrWAc9KhN0xMOqgK4z=9@xP(bsCCb-J~BoWl)E;$PC+Wza2wf7 z<;4F$8@L8#FB}>tni$0Jdy=7 znS`1J=1A9!VPolulI)Zc0VdJ;<{*L@obi6N3@wngV8@e4D2JEFzIb8tFIE-&To5IP zLCt6~x6a3d1$bk+FN(%Gx2p;5QFY&%4PNn z8fBn?bg8NSVj}U3M289UzMtBHUJ1Ei=`|SC6)UvYoLveI5g44rXdig>iZhK-0)ycz zApU8AWYKI`gyX;>^zc?3HrP_bm)ZRActjx*wOX38SSGS0KIn@e2BjV3U5^ydcv=r5 z3n&~zx-S4q1y!S<>)$8){(|zfHX+m?Wa8&}o#a;C-$}=xq0Oj2WEq5)F=$H*r61ad zi1#oVN_kT{cXpf9@x_E4JS!HWZbju-8^hJcgG}B+R!E zvVCh#FI%;QXidKi&b*$Eky>R8rxhZ7M}TZI0KS@i>pQk1bi<-(pENPy%a5LvPU(kQrdSd84-^2w*1{AHtnct*DMddH;OPh55*>MhzWc3d{5CtE-lkdGAHi%FH!ywe_zum?cI?Qww?3~z-p&r_2ik4 zK=Dg8LUy#eue*HNzes}#F}o{J9I-6Sj(xNcE7V+%%i%-!HK|Ns$5Vbu2r(eYK2aL`-ZK4HY58p|tJ+_N zk&kw?rcvq~NpH&oqSPl}&gWPbHrQp!?MN=lq3FO`1s$n4i-rl~A{ zXj}~)O0)8Y@)T&f>X_DRt~wToPeTTv=hZRB>xZ<)xKTr5$@P*14UKB(`b`&Nn041d zmf{(#;>*x{Wrvz1bfYL`oLM+}0@Obw-^8jorbw{C>R0c<;Tp97HTOlxnBMNrDAT&{>Z@6#vUvjdNOjK?Rt0# zu&YA*5M1S?Gl zxCr$G?CzPU?_%~f5R%fc#|wGiNmR1C=J;xm&a{LUvn`qcpDQ@d$D^*aiNoWUWC2fN zeuSlduO6jlV3KD!7GmT@{V$5oAS&cWt%I_pru5`mju`xElO5*7wFEBbRMjZTN>cFq;pwU`0+zWZ0zlWb_NO%g@US7ORaF0#75SX?6(Xg@~vuhT3G znmSI@w6|Ka?sMf+Q?3mwwU&taQIcw5PczQ>aLqPlGvdC0ToC*V{5$KJ*hzIokxjSI z1FVEgP*%1kS_^w^R zt{n#djRzt32N7uQ**;Z{YeT>Uyjnt2)L0bmr@3i57p%FG0SR?RpI70OH-3m$@4Y~< zqX?bUm^~kkWS>i#xClb1VO@P1>xmtEh}zCTOwQ&9dfFccR>d8+y3T=6kTuBLAE?pa z0F!DRFjHo?6>1Z(g>0vY>nxt>PBaTZ84+}S2Iq}g@bFW^u#+Ie6mT?uZ)no*e8*ZA zPmX}J;r(3!EHw>2hR1{D2s}yz-NQOP296sGS-#D1^6a&*XUMgllqgLZPoa*t>JVEJ zJ#`5NQ{laDx0xt|##o_jw`zb{`Yw`;IC_OfL1!YuimPrv zMH*fAmcrqt1t2LevT*EY)vkD=BE6vr3@anF+GX=tMzloJt);G0v-nzbA}J3bPfGSI zDw)|k;(`pYV8JL;k`QabHs!0?(OOc$XEQyC_7yx|*y}K8GYEh#J7HIBuE5xKem1Rq zV{~%6pZoW-7LrjU833@csU=Y}pg3FWHSC!ONM^O0xZ?R-cUXz!zK`|xV?F1&5iIrK zrC%oNt2W$KaULz%;Ij`riR+r%Wm)cy#U0jxu2-k?No|0$Fdi%<$Ki?HK!cOsrX8!8 z0^~*|z~e4X3vUvuY(8kFs-?5vzZ9}TAjEJ_)W-Iv^XVQIA-N0nRI$jwgo8Ajo@vsB z6ktHU@DtvJKMoUPc)B0U6b(EiG3RECP4oBDR5Q5UFmzLnb^{vo5!6VzqM4uN*f>cC zb&2gx4SPY$THT2i)Nt#is%$2lDNP6WClb4lWr;mq||GSy?DS zBjT@>Dbu>^9`j9=B^oj-RlvqDSSQGRSAM7HK12J4Xl znkdI?noHTpPe;G{;IUP9C|U~_to8nAYfB_+X>OGFYF$~E12kcj=-b?!O{A3OE(eyX z@_`xTW~=yiv2nHqH0xA+6+rohSG!<8#jD}U<{fq$a(x8m^dl)s{C23qlkY8~iaBorRCup$JX&Ot>HUPYJ|^E7e}JZ)^=ua#zS4IBsLK%uVQX|jW0Y+wl8b`#a{lX9 zqEfdkOzQ8UsGH4S%Z4}|UNG*5|lvnK} zj;`~hIIf589`1U`CWG`$U=5Bo@6NL-Qyl#>>XVr+FehEQr>gAKXCYc7yYTnWJc@+5 z-Rx;ztGw8$roe@uZi^^M2x3zUKz9ZvSHi;lU5ENpdIQ<^#(~B-m^Te)tR_}m=Iflj z3oCJ4rGmWehbf!%DR7V=n29C!zyqgmnu!~8HtWi_HO7AK6WJMwy9Jj`=elH35xn~ z2TONO#p2opD&A0toLNr3Em0cfV9n!|7gfwAX*{tVQIr zacQVAqDsk_;rmCB2%g4B+?9Anu4I7_pK5>~3~6UW+)8+BIc-@$q|*o4EH=RsqX&%4@^me53R+F z`RYgp$cvOW7LBd*<6*n{aSyJV++YUI=~bwpkH?z&UuV0B{k0GPIISm8CkawNYhHA> zgGKHALpmc)Y?jiRfj3(Kr_5~`B6JwG6EH$I5jUS&v1KLKB`HbRoS zvcqi?yJv&q*QKu_3mq(xz~#?&P6GHMJ`W&kN?ExZbNt9Cmg7JYt|^twUD^IM+`of8 zmejA-{Vzy|8;r`G@;19`vvY}~=Kz`(-}aiaEEI(8W3*6xbzk3Sp|pI5m*s4oC43q0 zl^AK%V3PaAdCg1bIgzFfB)P5c0(96~1>l4-`V}~x)>#kM3gG~UZyQLVMP5AN6746f zcvp;=DR}A#yWugGaT_xg7p;2>`SyxgvPXsq6Kea`K3gkpM&gYc?BnJn3ey3MwlwMl zYn;Vc*l_LZOVCJ0b5)+-x&)3q{*E;br@WXN7b?azn6x6D1X3o0{_mX5`W$ADj$xr7 zthrswzL3_}IiBUv;i*;%J!K{Iv_HXFC(Xr=pSD|I0T3ZCCPFywQEO1S6jY-U^bm>F6 zJx+zsO@pqFiflQuuaOPVY2CbLN2W)1pcoFi=uQxD@YARfA7!shasH~fht+fG!H33ku(0!ne!w#{iS`sZ^ z5Yv?|_up=&!8IyC)mbR1o{A3`lpBVfYz9~DjH3Ysxnt};#?Xa!2ESV$+;__EO9sD> z7c0g1=uGnwhlNpc>8Rt2raL*N5FZZ$7&MeY&1GfR=&Y zrz!(mTVb^DHlWI&$0KbVjOB_+SxWZJ1%9%dQb0u>>*EmCggLc)=*IO75mG+N@V}%J z6?sNF{fF4`8c!Vu4w}6v$T~H^Ft`Xohc2@-J;5%zbOpAi4;bQt?quQyxK)nrK-5od z&w@OlC`YBYoMU+qEn__)X~DYYs^YTuPQj;6F(?1DQC`spBBU6uJYJGd*b(uS;tv3Y zV^+0tu{norOyOyPdO4Aht${`+=8${rDyPY4rYpne(KBU-@)sSgx$C%S#uZ_Ax!ej4F3YpuM#hkamSPFo=d)?(DoS8@7*v&JjUY!UP*AFY!%l;?fb)Ax#B{; z*Vr}S!5FX$Nqkz%p;>LnOQrOQT(C4-vlHs|;to#}#EEe*gljYbKCt;o#;z4UPn7FJ zX~`bHfL4@EZen2w^hL;}slsc~-as_$VTvpJjF~}JBMGb)qn`VfbG3`857YNun&5!F z^iT!d)V-_j%RE4#f|vO+xrou=T_X^vxQ;g@oNHm{4@Wm(M7{_8c^uy!4uig`Dr4O6 zr12s#Y}WiOq$}Ad3RMSikqErG-D|kKYTl+Wr{_y*no9v`cE#6Vj=+z$Q_}c@LL?Y# zpdyP2#<>B`+-sKemI*5yaP__lFYepz5Et#vlN;^Kffhq`kR#}d4j=7)&MtmDIEkjM z7GuL*nfX+rI;_IO=ju-z@rZ`s)2q3t5^&sc>+3&Nj|f5yWI#UBtzS770*6ZTrk_R9 zT+uvv^(1RCmQR*D6OYaNilYYuo^vfk5ZpNzD_~?F-Y@Gp!-5=v_;gF3U#T#ko32Jw zq_hm%a;lASx!rG+r;?08ahh}P^J2O17tV?UM~`D@0@LTsp$RNFco=fZUo^PV=uF_&*h7)#syoGznFDjC{{Spo`VO<^?@PSX)<6UMti&8H@Z`M8 z^IOw^1Z>z)P*zl7E~#nJ8YHOtD+iO%Jfj&EA3%~^AweDpy#J8^`aj9Wm04SKphNg(AqSgP4j0kBX?7xH%4dO}phh=^ zq9O_w919j5eRrp-mv^!?*_L1!F9L$$ncTfTE9Uy)nfL;ka(nQbLHf8jYhWocK zr$`=;V5($KMZiF}$8^eUNF9fZ01j@cgM@Bwr}l3v*!=^~hsvv`j|V$F$)r-R(v1_$# zo!a6pGyKyxcUaS?@=XiYl@(btNwZbtI7go~>=_gzIDm>d9GkL=15&{}22=Oty-$&# zfZL|ZN#n}Ex-Qiv>;R1}?aB&c^kNLi{c|#hMux5bPT)Wl3f=(dW#H+dVYV&}L#2ap z@W~^I8!9oFF0ZP{v1>g@%3gFAA2Zk7Q&F9@0KBg?&}DI$pZ)ORPi=3)VgHLo+!&Fz z{v}wqO~`#`B`8taz98AQDz7HJPliaV0qZ4;MK7QVtz3ud-cgv)Ic+tH<;P>IX61co!4FEfnfVTc^3vfxfC zZAf`zvN&JfKg&%hxdS+r+4WEMkokkE$dTmuO@sO?sVD&HTA|t?@*WJ6>Spw#BfIF@ zAa?4KiX9Cb8kd(W-+1*zMU=7C>_Cupdmnhyi%WY+tIPB)krTjp^K|T6F>>qBe-ZvSGS+vHd*peak6Djog&TNP6BZ> zkuhC7*JHsshQj0%s2R$~FYwrGsBD$D>8UimDIioZe&z&dOn$VYCfx%970LUzduIFV zQ=RwQoGm1qyg6}@8`TZWa>_B>kTvsKG6!(J08B!?svz4Vr1fj-&Y!5woGzkLEu5~?bNMbWn+;Wb z2j8y+Qq0wYvgkUONzT?2>&)oBW%a$v^Fv;?4lB~~5qiRjDu1Fvc&bxmme8O@w;{|A-0(5)@Ewu-N930stbyZ|3$Ab< zE+__L;zo~xK~p%BN{qprBEJw^{be*f$C!fG;?=Au6rCB@YL&cK5fQWS?^8p=Lp{+~?=hBd-ELM|Ig>m_by{}vU*6P-!wd09W0 z((pA7jZp;^dsr>eIc9bkJ*W9GNM}&#-~M&1lK!X3faFIFP~Lt2v%yN)fShCXYr*JR zv9FcPBVWdS z8?Po+@>AJAj=YoKr>SjZd0Kn)+>4QT*Qth;Zpm=L{|{e5zq%4d*h>-@&5Df7%%z1t z-7 Date: Mon, 17 Apr 2023 11:16:09 -0700 Subject: [PATCH 19/33] update the logo image --- images/logo.png | Bin 62601 -> 63645 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/images/logo.png b/images/logo.png index 36ac7e95d620a561233d56e1a871c804d1674466..4ef1a189e9bc180109e78a158e296d1e598a0da3 100644 GIT binary patch literal 63645 zcmZ^~1z20p);AhxC;xBQFH3CjRv6Iwr1OV`8I#{HPEJ zgxA5?lv_zu{NLj6J3gqnlan1cBcrRUD}yU5gRO%ZBQqBl7b6o3BMS>XoP*xc-Nwnl zjo!wQ;$KSsj~-DIM14CP9Cq5|j+0g&I{^h5Mo5g=D**N}tSnvTd zKKC#(GcYm!-^83OO#gqxo_qc!_RqNfWsdh*8MlIko5^Q&Q44E$sNt^hGjnmU^ZsM! z|I_s!PyZz z|I0(p|Mu{|y8cV_dC1&KCXTkBou5OlVq@XN&%(?2enz)@S4T7*_s3)T0#v!rm(x2hJ6^_HUlc?sszLhue zV8l+Hmv2n{u6%b~E|&lPWhOi*elhKRCq1aAvhy>pWXU{r00|Xj3_zsfW}zWkc+xD^ z2|J~f&VfEtfrtyQ6(bbFBE=ztp*V>CLj^`%RAb-1uGw$P$fjOv?Z#~G9H`G-FlI(j zeZy=cJ}JkHCZ>tbv#r=8BM=R%{3F4Y^*c#A(VhQd;g|=afCB;|DB-*f;iZN7F;8;R z1aa*RQc}o~;!^D(b;f@i)+YCrneuhiNnTd+-t(p8{Srw)Ew&&oA=aMP5^nYe1rvwz zi#!3=TTmQb8}Xi&K+S`m>c+h99`D@Erbdz5?IhQe)awLM-9fT-2t=V7#D+>;wrK4a z{I&T+Y@B3RKhhi(6dcgAy3zH`raJoOatDflg%ZNqP2ZQD;4X>?_}G#=!l@flM2mt> zGg(z^5;qc?9R`z#_W3PY^xO1oZhmW*Q)2b2$TdV?I?uRCMImJB6twdKaf=)blynCL z?WqI{#xEpwo$H4q$xxD@CjSt_#<)Sc-PCI5s(hM)LSM?|fHA7nZ9ks2%SZ-=)}||# z4ACl!3x64W>mGYu?x28sx0%v(oQ{dLC1DET1XKUeh|p>#PICwcI^Nn+Q)f|*d*Z}> zOH9kgj@a4BDji-mnR($~^XbEBK#)fd5}NQgjp#>*T5V z&*}1AEcuxHlh7?7qA(RA;~A@J&}A5w&gfq)=o?oRYP$XjgF4K9P(UwokoG|I)R`!x z+sr=H?^%n}{J-c$F3Pf~5 zB#*p7JIEJHkSt;w?yZE5`=Gk}Zy>o0Z5^{h6c`YN{Jx+mekaF6Ae5(_?wpKzhibsg zNX~Su*Rc%s#}a$D;K*J01|=AFfr_(N(tpn^S^oWx~|{{ z@*c8<%qf`r^;xD+v$z`^TF$Ty!=!Oi+c$nMy{m8Cyn=1|0pQ`qz7^60N~gyeCZ#nO zO^j-UYFLH^O?KIV3Ag`Hf8dPy=po)yELb1nhZ3Nko=p$^1nCM&m*KHkVOy%VNutt| zR*jpOb8e2pTueqrL;@Nn;reZl>>{r(=gUkGJR>tfpZTOYG8+5^D8|{)QKGzr zttfK*4|vD?b`?K}C=Lq(5(pmr%(?0kzB5@Eby143PV)VdRTZyUR|=+pV=|b-&SJ)B z8^ztAgP9+_E^>iIetk(lks~b_C8{UN2Y=|np9K@a%GA3jD2&6ATyl|Zydl;=@6738 zKo4y-^%)eYt9^q+i~91ZT!xtaDEy8-IXCR{P#|@{-vGXhYzP~aglMsFj;Vzy=LsSk zx@}1#6d)K@$ssk@PDEsiUfw3;$L5EBh1kIgEQw_Gn!QKla1_cZN8BMHMsUDH>`6hO zd4U9k0lX1&_4Kzln!{$(>k=Urt56B6k2T*v;{wAZpl9uYfWbBPk9Z{J#O^HeqhHoi zD9T@$aW>chk#S+-FI|IaD~R}B>V;iJVPQu?gx(vlO3I&iUib87VXmh7KM!Iuy4TVl z@|LJ8&ekYN_7f`st~xFrhf%n`z9+ddo&PZfL_rAXMJ61}^uoZlLh?O%`1^uHppcS~ z=-!;Qkl)YBOWOK65c*3yuZDi^sJ~~Z%b!z=kFD3hR}pssYj5#}>ou|bs8|iVl>4&Jo5M_B;DQ-YK^;^r&@RQ9AT3j zP1kEL$9hwNL5TU-`ZJg1CqjKo`=*k1vWb12%^wK!%}Ge?^s@Z~bwvF5rJv4AR~B4I zqwWv8F=LwSvv1?Jkv@9!$tyz zgO9rqYVn&nC?vtq49#t70_sIdNse33h)fI#XB2;k;I5KY{ue3+&hKn82Hz8QL`EG+N}nDff+b{| z(pz8xlCsSdHnZyTO-S6@W)bd}^=*$}KNOI+8ySkCmd?^|+IxU2h~)0a?w1Hk z5{pm<&Uqx))309ih;(ek)j^wixMpPoul2ePrg*MD|XY|ryMFg`CA!|r5>x5jg zj5;4+6eR}_R`oak^*N!L3?+`Tc=*~8aqxzK^qPx$Om~0Vk{+1|S*v(SwiJJupaui< z6A5@vi8{)w7JX?`?ub{PXw}s%U(r%kjJ9PhX#!6+z9tU?=jjD@p%gX=Yn=!KF3Iou z2?+VHhri(RfemjBR&(s*<&*mS6TUijYOBB$IZ;7$ zn27dp{5)KKp6mG~C9LVQOfTQGo*MqVIq0?1tZ3eN<93)UJk7nm#rVNFJ$n2?5W(NC zBb=hct!pq^d{rk-Gh@p%YDPkI$7Jh_S}YYtXjR%uH3j6c7U4_ zv#2$u47piJ|oH{GlwT%zEpKoRJzmQvd9o;3%Zy zyU~EbtR>^BWaXvYXM|j`U~SC04fsM+vq7kd>Lkm(l^gKQrmPO*7lx#H&e4F%7dc64 z2pC)hMEu1eoUh8rHNRx>fd@BhUj_QZ&I%Q7Egzt?kaZHxscefxQh2QWb7yU@h%SEp z(NFLK5_=wHUR5*97^k^^N=()~li;{rNCX@}t*burgY878r`lE~jwSZ~(S(FjDBk}pNdvw&i^%nfZTHWVAQpFI1ZtubE3^ya7R zvs;qvyx3q6=o2fVIYpVF#EVYGE@>C|zH;jYKPXmu1OLdJ)wqV}eZtI?eoYBw`1+-v z-~qWGd#k;mf+6*}VR&AVv(dKdXz&(FmgV({YLC@^WMfP3t;1hb>b z*W@&1fpx_cv1CWiW#64EIN|egn)2i|%2FJJH>Dn&D?@{Z3m?EwTi{6kx9SmM zu%|ik7n{WtEL7qAdlz)X{8y11T}EjQ(9YG)q3E*XnnD%@v}8oY3j&1PI_|mw7jKg( zRG+xhC1y~p5>xm%f1icH+V7TtDyAyjvaY{=f&~yisZznp1nQrzThXK1319n!aNgzF z2LhyCL=%vH9ts|`oDJv#=cd0bw4;T@hJoDLL8g{p_sY{uX&%1D&9UNGwR$XA5Yk%X-si z2cPYdIF2W=O31*HkPhRT2>dsfszr>rFiD_nAOS?z4iF-yX(9hUm$A!7RS_8_>lxw3 z4NxxuQFFW_baYL>9y6?#cB6n_Bm?i6TX!`{N{-*dp=>??x(1c2%GGMOkBvsE^|(ul z^b~ZW#=3RiG3lr#N!Zi|&*KSayg)?oKLs<9L*??_ZH(sHm23Y{sTdM{wGI6VL6X#V zi=6z}G+kGy0wzVTz6;?-2GYg=x&q#KryI+JO5#{7`pt#2aUx(7kmli8eDH3Ybu$jJ zmZBAi?7~6t503C7fWodZW5E^$t`R-%G9p3+LMY(X4lkSno&=--Avd-!ZKS)e!9_|y zFtiNMfI=JwVk|o4Es$m{=??oqh_FGN)QB9N)-*9X%QGB!T-43Sic1eszyu!)!v^GF zl4#cGNA7ZbZy!+!6qgW9`EOo|x!u2pNo;et6&VO-2ZQ|@kBO|@h9yt%@yRJZajt^j zZX$uur2;+H;~L+ZlcMJsg>b(FTB0Hti&2Vxl~dT^fRM*eBKDwRwlQmw^LDkVe)v!( z%nu(+pdSjBy>i32FpkArVM-&UPy$jX19q{V9W0nc_v?wA0tEjwaX@DGrNpnrYJL0d z^ja1rKPKXi&q!F-CQH>J=B1$6nLKSk_+UF@kUuUG2SUw@yj|@n?E8PZSX21+<}I5UxULo7(}VI%Qs_%uo2V`T_BW@(=(4!tbG6Js9Cv4 z@Yw+(c&LoW(%?IY)Wy_YhYEh>)~!ZeH!y9#CT1?l1pltP=g*xs+#ynUT)zau&G+AO zT97-|5xaT2mdt4(ARdE{&eb94F!AD}Dc%yr>sRoovb;u6CuqKko*mxDpFNw|y-@X= z=w z#1Z^oi39k92fgD|i(@`s+wK{;*|uUs{4fUGQA4_e&C@AN?P$sD3ys-asvp7H{H-(&i{u+Z~tBoYF&_2upi))dHQY3aK=RJ19y zf+1@byBV=2%psNf4>KQ}p}{Shw?HMEx^ zJt`MYzhf<*Tta-}gz?ChSJWx(r7hDd9ANqd!$q0ZsQoX_yIbeuu}S>46a zVLp+v=dlE|!wI@_e9DDLplrkqL~GGLQndp2pSUdKS$_YdCJ@wd#AI@U$m@a|at~~J z8KGEQwp#``=?bKer3h;onOW#kMLo51{0DWCG4M)&Q@?^TS>U|#Ma9g$Mh*U;bX2W> zGF2rfb^C}v_B%eL-FrQ8wdzz z!vQA+@4Ker8AD5u(Fwu{|HXocm{Of&u{{bTDJd^1BZ8yzPCdW1LY;~57lS%MlhIp| zXAozBJ1k!ueXX?%OJ{Gqyc{aAN7%?K1BtzV<*74M$WJ^(^z1Y_P&V|fQ=)4KWutfH z`sqv&Ag62M^8wQ!LjqSxivWSnzgEy^g^EC;h(H254b{3)DKWCL+&fEIKeuVT95ZvW zvKz^P1lkhme|Ci+5E~t^1)s&p$NzvLG^mi8X6pmBU`t&JZF@-hO%Z*ieD|(iPQ!Cp zgDKX6`Y2OtAdXdY3K>?Seh{qUPd@8POBFDx8=vdp372FfdI}8$5bQe{ z)bcTBLPqghz@pPWklvKV^ zI7(AlSGR_FRfaVqhg&CxT|zsTZb>%^`_OR-Oor97>U>(K@1GZxvNDihOdP1z+T?$B zd*s9(%FR`We+*qVb1SBz;&$~V9;TQ(^`4AVMRqpCh-U|tqxe<~L*2wg%v|0a~LD3c5xVUsl3WHT2bzkf6 z4z||mCH0wobcs%!N5k-$*dgqW+>?biQOVF82W1CAME?{!t(4@_;z4i;-z66>B4>aL z#CC`UTPv_!+6t%D zYa{G^V_c>SJ#3ik6aqN^V!arbHdDQ1U^Gmek#+sZgCdSzy=IeL2~(!-~HWsD!;hzk1)sX z)jCnLk@jP*ScS&fc7@fIZiQ|8Be%^u{+>3qHeO<{?+VD4Nsi|9@bJY6#LQ=FldhKS3v89QrZU|#nBzekX zAz9021@F~QV+-5saU7feU*5w%p>CO}(6qkxXr6&6Vm{iN`wy=C`yNN0v9KY-Z!rZ` zhLj@TEM9Z{_;I*%)b4Wi%PY$Bsa!3b>UMH`Q#%1;bcoKe8o4WmNUQ@E0($n2@=BQ@e|L}TxED@q1<}D$duefavjbuLyl6+ynB{od0(U)9m>7!yI>2AO* zgQh+oLzMunlyzgX-hTYjXa9$Ei882v&6(Zqg{szcz4^*4w@IU}_nVztbnO*y>TS3E zN1o>XqxNAKvg|nPI5yvRgiJp!*1f>lC1b}s8|cB9)8{*tu@LI_fiEkKILfOJgD1}{ zDQ*o^{*n&kf&%((3QfzA_c?oD5{;SO+7YVO;izgV6xDBg?LLWtm~5Co$Y*i)X84Tw zQ}Z^JJZ${Tapbt#t&M5c2`*cwmLuG8a1v;%kcARs5)lmY)s$HJf%0i51!El|DPA72 z(UbHPj{J~?F!GAW+;$(d^)9M@^ADVJK_eJ(Z8uj%E&uULyh7(L`f!e{T`qI4eOI5g zRNM39b%jZ(s!in!3=YQ#zSvWLeJL7k^PQAdQFQmrMwnr>ZRe)D;siyMAUAJQzKqpIZ~Z(*`URHSOLzKr`b|=hB<9p zqpRsgJx;b6boQ0yhsV9~Ls+1TV`*h;+ucQo?Xp%S?;eK0-r@Z-_}3r$L*fy& z_0+JLzoU+&AJK}j5e&;2Mt11v?Dm^v3|RgDz!n^uMn}^(ZQ3uDO0m0)0zMa=otic) zkF_paH%}i{c=vxajrYgGc)Ia)J!yY@XT3!*m*c25S0cybI{CN%$A|pXvYJIAYPXH; z#BV7LKL=aSbm)ZbN(L`{|0;bQQUvMJiX4wr@qQg{j^Xagew&ck2?HPW-0~5@bta&U`DvXlgJnew3ai|0ObD<{nxjvi2o~+Na+{e>D-Eqv9-GX_lvY#I(-^kJ8woc)V2E#@3djrzbT70-O7rWPgputi@BC>VB{DBE9% z_Nd*M4H{k8{9wSI>*# zYk;;t_opzxNl+?(rNT<`SixbV7q0q&Vj*I?;|fE^T#ZrGDhfP->u;W$H*%)&VpjDTC>#FbkDbX?^C~prisie zO5p6$J}ITLo;oqInQU-|{3z3k(Us~;kz8!khh57QT?M$G{VX`!=LbqfB+-}qW=~G& zZCDR>x0Uhp9U7b>;*6y8Ede!HFM_tu3F_0g#6G3KhK098USkF1FKN5ie_mKT&H1>s zL#5rLAcUa}0$I@c3og}vURm7LM|>w1dhPOgvF=BvwkZz%*J%(pH3j|8%D1fFHZLhqUJrju^mJv8p8JEEQ{R%$ z^UB$3kT>`TYylff0{r5z7IW2EZ}-RL8=hthWt!##mtWK6@3#B++BUm^tDa|gR}r#S zuW;Fl`7Q-|pdnz@5yIjfjx67O{--}WSIt8#)qBBF>Ar zPKn##m|XztA2^C7INUd`d(PsH_nJ=usb0a~<=9sj>n)akr6e$BsT4@_ zhjWuiTyp8t^{FoG?N4?wD>Qj-TCRN_3BaUaQ{aj?ATu?JLruZ)N+RU%q!A zuG;5x?bKE-{p2*wc@}AG$3Bmy34HQ7YL27uv3K0rPMy$j@1V6AP+e*sP1M_Ku$C)I zz&K3wPM*-~2mjGByfo18=oM+s1QUcf6~C6^`bW4<}ll z4;Nc!DZh1PBM+oDpIr7zv!HBPekTqEGVN^{M%qO`_Je#x2VJb*`x+@K)44jUs{36( zb~I2;ef_Y;B664Q$ok?d+oS8%<@<52ueKu!kd&9Q{;yqmVYP}BpCg7x3fd2Y)0?zN zz51r~@kK+7J38kHVar!jtT9b!ANiVo_T4F|WqR%-G(X;Zt_}g&=jpMP4H~$&E8`9y zmn!A?BeGBa-j2yX5k8(_!YLIpzc^&6ISw~7g-09gPgm_0xCZx50<+rhhFZ^d9S^rl z8SI|g9>^OvN$(aNeP~E>i!+hGwRQNsImu|aR@%=BUL=k=M zH5CYn9W(*|I?6=y47ICU_UPKn7ub?W+H<`AMKgS6?5wiYu?{a zSZTzD6|>#<+m0~H0@r%yR@QGr{johF^?$pkT)ZFWHH|56nDtnb*jI3!|0a4k?0^uCa4~Omyn!Z zNtbi7s`2C4T!e~$EYT?ed*_nM=w(Cf_v7Fk#94d?Y&ZsXgA2eCL|8uFho^6ZP z?!zY(>6`E-;SWQz!?HgGScCt-Hv1o~FAT)ltZqL^;C?)6d!O#!feCX9^6s~uZpd&R zC~sI@7}3StGb+78@N056Yr$lA=hjPS(bg-VA+ zUB|XKnucwg<}#dSsith2zWbC`*u2j%Zg^%aHfO=jFlyrgk!3! zs?^$$GvWDA8oj`6me$H#mT$h45Jh^}{927Z~j8Fxc%Yfjw{vAF}}Z&95QL)smh-l_OuHbR`yBx z7oGpW9})hL;*j2F#_Cs~;ScQRx)48@;ZFD;|EU-dFhAxdZd$qI=|Lx~3x3dbj&jb= z@LG#r_VnaXNt3g&QBH5Mi}S+_H5VH44F&?b0-Gk0c@+Ws)%fULjx$v;VjaK|VDhWNYLoqV4z3R8zBzE6NAo32(3lyOKinlI`; z&#f9ec9&^Y@?WMuJ{7R#$&B$TZr7(`nOcT~gAsA)Z9Z5`sx9A>T{R8~Ew!9%DBHx) z&)Pq=Ua8J0@k_({!_0Ik<$TqZ0vkP4DHA-LFv}L&>+PbiKh))JD%^IR;-p6OFLrez za+$MOEMc1-G3~xf=pz>V754p?czP-~riie5J_VyFs!3ZY&dzIC3h5ZviDYvR9h%2= z@73~c`m1W8Oe%CEwBkdF_ph$6^nBTqX)mOk!QOL*d9Db&~e-mF$@nUm7yDhFD#cfPX`p8-4`Jr)+#g~_|IPJ+cck# z_&O{?6Rv%J_ddN=7OTz4Oku=WwkS%^t!D)95lWvif_JvkC6$i#Meo`VN)TL~*F$;M{gM z+qUd8@a&1Ev)x~h?wA&Eon{p-l`S59?KmTOx*P`W$rI?g7LNX8erM3vve#F->}lI# z>?3gaAZ^n3MHea`j#9R>;uAuW(Nk7;VivX=*k)5;c+vYy^B83`ldF4?lzc^9bIUl9Sb|$I{yO2f z{Y!EM)h9gxwtWR&y8`%cGV+=#)WuXK{bIS6lCrVM7gRr`m8+|iTwBl3~-%sbU`p(8x zZVS`j&X^j}I%&yE>UGVhm-~OFDPtk3{vyBSZ|F9pXUOs;^U@DJr+}ojT>FFDvMPu3 zmsj&oOmhw1$S4hAHk;&HQk#V4E;e7c%=uq@xLY>=GkYkLDw`eT&?6D)faF>JP4xsb z0GJJbgc~75T2qY9Z1rs3{K(f2l>99^`&o~OW**!Ez>j3AW0z;5goWHVej=-QxL!#< zd~fl^s;oKgPNU!T{z|OzfT4M?r*MvQ_{;3aM;b4p>l9s&U95=fA7ZBM)-KDVvKsaY zq}~NlY%ngCL>>4ci%YYpDc(qMiktvJ(oxH8i%56Jd9Vd2f%X9LEKmE6#3|nkg`(`} zd?Jz4+^z2xxY^ofHx-3^!3BYmUoRo{yr zMyGYRi^P((4~ww=stgyb%ZOfOSSl0eaVXAmXqGQql)u!tccYG#QLa&P1^#{iKf>JPChR5SXmde5K{nj*MHV326_%BYHcRX^y z)e<8=^ZMjBPsRv+L%-RVSabmEx3&5dFJn?ryATW(YvuKt*&TYuFApf}lNhW`6*WLA zi@iAgUjrutko#ACPApC}FeY$MO?Ofu!p9rS)KClf7B>}uVB6Kg{P#Sz&wwu!fl64C zl~~~ROYO*ljPLQ75hA5e(m2478l5~p6?QB^OsAL)ESQqpax*=h{J36>Q+I$7L9Vtd zFhMOgyKr76CwbnQGb;)q+!-IPm4Y11<+sLm{%9s-M<}A6PIZQSoNiYp_F_C>dopo5pdouMDz8P{B(svV%2snN!Zy!|Pn&DtE zxR_XJ9QZmvGn)B9S@_(^Lc+T&s*_SVG;LzZ^sQymL-mk>fr+Z;52Vok1P+W_#Kcr( zzGg`pm^}+2ImtRW5SiQ$(;p?gzmuWB>-uAI#oj`s8i77A<<-1A8Zl$PX#E;5Y_Z`e ze~g3~jVJCpbYAXWwm1464lD0ado#2q)BD^feXs%F$ow1LMe;E7p2gJzM&gqZ4u^SE zy^erbk3JNEK#wuyjjYk^xrM1N#YPyDLK~K!t<^9AX!}z-tRrwDDT#I}aDm2o4bys@ zk#duiklFbZk$Ot_dpx9G1J|Lno~MMMpd+j8VTi$S$Z%yGou#>>16phLI~B^9yT)Xn z(YNJyvsvBuFFipPgW8rO~@^t05~S0?Lj zGR-;{uM~M_QWOO59yVIz6twVn16LD;^fS-AJo}68TDQ$y@23^ zsbAahd1}nu8#Xrf;EuOk69s+01Yc7fd~?$N+yM$KByCfxz3@V7rZTi@4~&Vw{iP>s z6sF^Qa8pPZZ@K#$g=#Gj;o_jZq>I&ecFjT$>QIy$N>iWIxg(y`w;Iq|IkP09xrt5F=B zB01W=uhRhJyffh0I=&rk#&;rgL~5LbdVZiV__xLO?dhyui$<^3&a$rmtg@+B$Ng8aja-y}ma%m6`jn&f z3Wh0z@CEbUdg<_|ED#-W`v)y~XX^y`{rQyx3OEZbPOZh0Bc$(~hV{3WN)1APuAq6v z%lC0m<*iRoBFtAs*D}2@gFgFQWupd2!D^-M)!dc9IU%um?YELuyWX2aq#$#ay+Du4 zzlEvGSnPXy6Ja{uo~Zy~Kd0D1im~M%0(iE>*YC_;%lcfRpS}AS_s*2Q_%H=Cn&*Hd z6tP;UA^O+ z4Yheu|EQYopI@qP?J}r|c!Vt5P!%>FfiKQHJ?JMW{X_G+qj`Gq?{og*p&XlwN4s>> zWoTSmhP$0^GmnE>#}N(~ET`4&KYb({K`^qZ^s&D_DNJKD3L6o5B*F%-2Zn{WsQ(Q0 zrPcYOOLwsm@`*WE<{paW7K=F{7+PSo{WXvDoGgpO8#`xShQCd*{lSumByCDa;$iyh zS$=A`Mh=sRp#SSdJ6h9|8fF&41S4@VVIl!cr!kYcL0DtB#eitdf%DpW^g$S@8X@c&45LcV>IohJ~zqemYU#V#NF?IY= z3#vidd>T;L>V8S_0!%}`M81VKd{a|SmH@7?!ff%lW=2_yuW=h zD**2DSW~2Fiq2?$yCQx_Q(h_P1`fC@&((67_ZDz%+Ss=*pir1^2yiuWdl^rgKhVGP zx7~p79FTbu_}aAhuoE0eQiG9uCy7HJQjb)oN&5XZ4Rw#iIAR=wcf-x|Fwj*u8NjKx z9a*rwZ_K!#w8t-$3l5Mlm3YZM#jVOScz}b&jwnepaaHfhLTQh-v(^ z2@txKv!=F?lLe3f0ZGQc* zV_RTR7yHAt_*R4MWzyRx>ceJ6fm$YA{61`6VHj~ik4oJZiod|ZdCT+>4$1pqKC|x8-2&FzdNad?gu~msq~TG$?ZHU z9V2MrqQ~3Oknvc&GoD4(0Sr%i9Ypm)k7q|IQ8`o1cfw~IrVx8*c-6WBbzE5&+%aDC z{cW7iyh{ZbnEotR({p^a>N))3a9(+wojgDq-996ARzkCLWTRQt@GY!a7{-C!DZF#B z;{`hO2@x%z|NI+VOP_0ES0n7BYAH|_r%?!w7?}#P*L>e0`z{=eW2F3pCW@@E9*8+_ zH1Z3w`z0Zr-t&m_s>X$!O4uS?HKz8X363KSe~}2(pfAK~P%s?84K0OS-f5N{aEee+1*ULSQg>N#`OOcGR~E*wVk7m0gQ?;0YCvhF*x&-V!1Hec=2 z7w~HwuusW;WpWoJhRdx!7I zK=WOCuuqAdo$38Gk5?7a4U1>H6b@Lm$kStINud15kl$NmFVy2gXF<5^?;d9*MFK&6 zjEhwPCXS|@C?5O|1I}?boY*Z`{QL)hcv!5~Q$kwS?!?lmuvN_WzJW`y=gXp3&1>mN z5P_O?Os9z#3Ou(+LBk=5RBAf{9pYzTt?m%OiMmR`S|UD#A7?~Oyw1RT=jAtu_>KX- z@TVz(`iVau7j89v$n1EFYJ$@13@SRl2CcrJp;-#JPF$H+=#P4wUhi2l|C59tgxxyH zFf<|22|hun*mvxKh=J}Q&HEuoEd`xZ!@5mhdNh$iwA=zcvosSI$(iK?>DE2xY6P_w z#&L{3>A@9z9_iz~HoryO^~JyM6qLpnKB{sVu!tUjEqVb)9k)!Tl}PngtCObFk3zNH zd&toa?nK>mIrIf1425a#+k1=nLPDP+$bi1_)yIHntd-6o#y0fxn+vHKMe~{lAW&#D9 z1eW;3!EQnd&z&SE;a{uf>yMk3;WZ?CEN>qWP8xhZZ=xG^LJ3O8mLu8$Q%$?IZ7=VZ^ma5jGa`4d3ix z`{qlFKRR;VN~*agml!cim92EI6}lEMeeSi?b42FaJI9kpFXR3laAyd%PB zKE}QnFpipeQp@m7qYuc>GJ0vO+*>QpD_byNW3!o~rSUYbP7eL55fx2UEQlZZ6=pF7 zC|#5I1_T{Q7aDH4Xa3BL)Vhm9BzhC#-%+*&p}!^KJ9Twr-%PQhLOyX#lRHh8ZZXQ1 zYj!!T6zv%aQd`Z{(Ber)*|zi+l6Ka~)YLcJ)JQYGzESw835pXJlG5RYZd|CpJ|#LCIOB4S53#>iISxOk&BAnNSD zBubt&0!48*&dP4U#!f+HQs(ozlDmw?X{cCr8a~+PVtbQY1F1w=v46lz>!fF6eY0g` zbthBrL1_3w$o&3~BDZN}#fD?_r?aRPZGTLGs#d#Nn9=yn-u&7y6!xvq>GII{wrP-T zNnL?2MW3m*9san4*Xa^Z|I27{=~p-ZG*LorZ){zGi0po`#N%e)aR2YQ-sPJ=5q+Oi zozye^pj}=G(YY>Klzrdhn{T5->cAIv=_B{&2gx>bIaW=|V?Shb=5*vjTcM*4FfU~h z+`)@MPunKqL+@qNTd{(yw~VV#Q(OI9F=YL}$@uW(O6K4B|0&%eZC-UD(ys}`v=+Fz z3DqXap?5lF1cL&O{pKst6L25$v--w=sQvo=Sl%|yfKoQmU*|c%OhcSU!+oL{L@ux5 zv=J=QkR*S|=UVx7EyX>I>FhusrJtWOrXf;q>$f9=bE8F0kzSVL(E1(at)2YUuA_Vk zd+RA}sf7cMSVP>a(j)s_vL9D2he22EiS8_m&Ohqz4K?PPMQ*Fsl$a)1k{j*9@bPJh zWOj00D%726sRX^^<9de55_j5cidUUTM$pUgGTr@wLgW12E562U0VxZ$xrqyCuQ)Wl zlC~aW`AE(X&wr<9rACoVV~+Tb$&K6uYr2KxHAx&Ln#ep3v+LF&8JyBFb!fM17j-&K7j?bPkJ@#y^l3sK(^;4_ zCaM~*PYYUkkvIj5{Skk$u_?dGp);g0mPf1Ck+giL{%|muJj1Fy{fhE@AvM*`iV&a8 z_mISO6L07FI9%VU0Kd|J!T1tAftp@Vwd+TYq?XK^A;Vw00!s%q$*Ky*dZ)JMEBQ**%q zd3ZjgzRENRNJhWO{0}{E(Q$|(aX`y|d_i+OmF>%8)hB<(p7dq9$hhf)$wHO{`ePbXGfBozAG!v-FSnEC!RL-nVxrh0wW`m zZ9XKoJFFX8QA5i}5%J}+mB!z~3v}_^CS1)}Sa;laB})Z~E>4mpLw_$Ntn3;H3c1BUd@sxS$GgHoqoi5$&WK7^aI>Ym<9x&a#OFH$;(Jt9hNe#mQS z+)u+KXsJD|s7_?a9@pl55W5u7<>rXuLjQ&%L|7a+cNpMDhgLy#eJi{$GNbvoKD#cu zC;v#);H4%ia}Z<#3?WcJL2J89WKINnzJ(UAT||cZbH&h>nKjEF`gSPl1Z}FsE+Ig5 zisKFB)#iix+xd`hePn#XW0(E9H-e?PF;&wbk++81it>i+s94zOsZV{;w3q&>$Q7;F z>F67g7hQ3blK zV9(OL(lgU-=5i=}XFaBIVhr)~oPkzK=(>0$15rR*S?OTpfD5(a>u^k_F@r}TVopJS z3{2ju2KMjEt2BE1o*C#I&W-%%Wjwq2tRtyW)CYT8qaPoB?*wcRrDXUO|H%#v;J^Lz zp;DB(+E9Ce1}0hey}A_NBDIFL8LvSb z74E$`l3vxpF#h5R#~bT!-u;K(yUrm@Z`~~?A zYb5I&>E4|aoR#~%L!fu8^XA9l{llI*0j>jn&Ht#dAMEicgxMYWK@I<#SPh*}uV+RE z?L}T3w|&sz4mCHPZQZSPO+K>#5#dcLdITUfPBu>2Dg5Q2HvMJz*RP{;4}BQR6%=g& zChX=)W(@c`&;;zZFDRRj>=JDKpEahWT=c(Aa-JO9ri6*e#+yy(-#3ta30h^sVINLs zGx%D3>Es0MxBKG|6=eR3nvmW?-yy*MjQ0iN8DV7l0&4_eUgG>D4<%?WD9mY!Y&-h; zF4vv3Anfvk!9L;HbjPx~z1)p`DE8lg^4D?*ufBiu>FYS>B}~&mGA*%M3qMP&8>ToE zA`U$i%L`)dPoAMoV`>Y zJ)Gi)6|ak|vvORFFh4ZBGwaJp$S76VADd-JaXqHDZ#Vl>Y(gbBEOM|hymhv|B!H%y z;s^>zsc4ySIO(m90tv@lQuyvFurQW;E9w;Cd5;q2R~kWMpk9M`_nP>njrE16n;Bem zxyF323TV1){+eaf7vx5$Moq64)iR2F(L^;3pHHVduqu$P4o=M^_sVFCw3F){DO8+o zjCwspLz4QPNqoZXEpnXk$`|$n#Fr8Ei6{?=C&Ak$KD-yi)X3*jF3<+B5#RsA(^-bK zwRMdaEAH;@PO;)na4lZExE6|gvEuIT?(SaP-KDq%3obY3yyv^W!jmV-T5E5z_MUT& zIg()|8HLNHbLiP*V`3wI42x4`KJ-b3a#ptCb~9)-;=qw1J=ly89H)l{K;N1h^~xOk zBmd;54J2ZLE=K8VoyS1NY9ga0&VkG~?){p^@wp)S{9!*Jz@~GWr1J?+|hy-lw32_7`t&a(|a^Y`-D?a{+vyKx5Otmn>2|Nx-ou z&5bM*h!HqwvBLtg6^G&)!&A7!UBg?{+h39Wnsk)x(>u8a9^&M>?Ys#U@bjH9?2C3W zlSV~~JWF=^lfHkb`jj~@kVeA34LuvT^8*+F4&8+)D-*FG`0N#)-!toT?6(g|po{TP zvIh9SrQQn}zGF3(zcjcQbXm9L)~23~TDLYl;k91Zr)tH+5z`ziRu(lAE5k zj3QxoSFoU%pyDZ2mitU zzJ8i?O!Q8?U6@h*)(YFeV%>LaFqHz(h{H3J)2bd@$hdhS$@fY7`_`MobRnQGvbR;w z&cssn^Qa8TV=#=rq`7G~?Xdgj%=Oq)Cy9#5bQy4*2c= z(eM=H{&5V-H66iYoL`a{L|+F+kD2`X<59`D10X8;5|DBW-!wF#6@=xDL5_9Xb%?1Z zI+JT=i4RU+DK)2Xgc?65s!flXbmW_r%}>LzpZ>i4sJgIGtkJbBP#9=t0+Dvv5=s!(~!d$VrX2UCthWx+qkoqcD8PXEmA1DTvsJYgZZ8$VTI)kcYgJP zbW@t(?f#ZqXR02l)mzKz=y8cUKI)W6>ZL@doPRW1^+)7NPerPVPWSnMItT&MJ;)t) zw-Y|LzVy7p(<$3PSkh!wF0qcR^clmbm+}j(O^U{ct{R%KT`y}vhC@T(1wCSdyqW!d zCr`=WDF05z#xhquDg4?nQh|jVLREtSM2YJs@263?W+K+3$93Cr!l#Zc^W`zu*@MMGCN%s~ea(U_Po@m>Az%#87<7r-w!04SB-JM4ltBG! zjuPV0AVQe9UtmfqG&6oVFaXn0DSHL$SS_Sz-YF3mx5CWR? z!nC;gxcm4cS}}uxt#?(X1`#As{haaIU@PmhNpp1E)M5A{KMFLxtB!R6b;EaPHK=Um z`0QE@Q`b0OJzMmwodMDUs_Fmw6Zm|9jy!c#W|5LFJzi`>&FKwckUk!Q`0hR;str2q;X! zU#4QOi#hb7E=u6%L)FHvm;GNbb5T0DU+@L#c&Wjy?sRBUXNWb34BV3;2v7I?%cAoo%7yniD8=fTX97KK41G|OxxXZyG>ZQ9-jUjt|^>v*etKY_iDwCm-RWDRioNkZs+NW*Te zsU@v8XR-LRxnK5bU5|9yo92V+DAQwF>A8uOx=QvbpYs}a%cZo$xuT0a`@F2YN%B-g zuDc>zQ0(X;Qn`KW`8O|;Gu#1Jx$cz_``8z;^fxViePz{Tc*C)vrH+=ZMm{Yc7C?W}duUjKO&N$>xms@~ zpxTSEg7`iA(ar1>!;h6%iw){0o^BFExhu<@awEN%CuBbk#+iuBAe}kg03eF0_wgI0 z9eR~No}kN;jYdiM?Az0eUzB~wk1~Q=oOe!Y;w9;>LKoOEEjdP!xxi$?{L?M ztfNUayk=s$k63-t^vpV2S_hT~<#(o7yZ+t&iqAnp+}=(rZ3#@4NrWDDyD`&g{}$`6 zs%AA&Pf24}@X$#mdN1@y--YSAeT?$c>B?*PeTAc7LlK;??|wR$nBS4PZ5t+YI+NYu zvRj&fk$k1m!Jvxr2JB4hVUz*xOln5}W-Ew(TpU|FT9vQm%a~84>=b<}5&H6Fu{~4k z@I+XNvAJ^wuTr|5GGX1&6oM4qdYyEcHi=0;GfFpxvpt*jAIR=He){qlMsE~*Qs^pN z%`V}T!PzNv-+yjAr?l|30$m*-Y;%V~c$3jUHRlz}js0>*m_tOj4>>&B9W?$)>Ai#r zHG9sUbMf8eZt{q%1BG{U1D_c=yy`w<%$wVMLFVBPl5+Vh(dx?z1}Vm(feq&5cUApU zRrYWAWq8PvrfCgZh6!b*Vffq!N8BBqhl$U9TtDnh69A8n(O!)5*}J>U0CLgd)nh$V zsZ>;#5<|x#0ml*wPn^@A%f&u)50__b?F4uR2c9(x(>NnN-)k%t6Y-4unT%y4wBTdj zZ{75#-Gp8$zt@-+`5tC!tzV_DlzF0jCNwh^%j0k~f3o|oX}g?P!0}aHpva)RdOyG@ zo$E*D_{1~p?+v|7K@R|kG-U}1+2_oAw#neL4(Y{Svw2(EKp*T9NnC2aQ)s= ztFN4y5h;OI0e%5yjHZfb#>x!sI zoq2lPnQ8R3cf#RyW!821HXR4(HZp6DD?V=o@%hn@>^(srxX=_TrH^7@0sS!kV7T63 zl~8k-03V^1~*^9wJEPGa`^si>RumYQ{56LaQQLil3`a@H6>M?zdwXX+6zOG!9o|5f@XC< zED5uud*(nne0zl2FrAq;f9|vW28ZfY;7hhUC2&BGMcae+v5JvcJNzEnI$Z?X^g83d zjEJGU0G9EJfV&5pvZKg?`d=KnPPg1obbNX!{}>3m`!}yyO}}lBzL1Lk50krKRBBsnb zW93`l!ciiK0oT#SZ|fVBz>Pmj&2H%hGzPwZH}AI```alTe~EZM99Uc)SdcnTzdne# zZuvDXc&$9}@31HRC0h!SNA&2C{1rp(2+)oqx=r!=J7lrJG%a)~9rHRVV!sW@d}M2x z76WLfVNk{n_xlFL5Q_P`n!6b^yYWKC(=Jnzd^w=(ho%sR(ac?wg5V}wb3fL!cjLgf zz4v*pGI>Xz&^8~N*$FacA9%Z&N4xNy_?BT?7q#vJgg$>zo7A)kUI@J!V%ANqv8-fM zsJP;EH*b4%ELKS05%vYzF>QevT;~=;ue6Sn@Y{s`0&vdjo4{o4wQ{EW73pPx+jgy^ z9*p&3e2~0CZ=pPq`SV%Kb~vPP)lC%ppO+IjU@O(b>QvOLU8|l~pyCBbBcX!i#7s^1 z6|(b459o%ICJ2r-lY0 zpr#`xxNdixT20*l&iy?s^zujOd2(LkTO^_l_}H=py0#g4i z*?x2So`)ivjN$zfD@q9jw%ZahKZIzs0gON`8f2sHi#0dLl*}K$Y_{tX)_s?|^xdR1 zNW3RTlmEQ67^d8Xx@djfvVS4{UfgOgouBV3#$_%yRwZL#fZ-}$N%3gnyUdhBy^dPHmHW=yg& zH9WlPf`Xs9dzQczl@jXnT?2sIkYC2ZH$jBg*g{MyRTRDau$BS1koWp+Jw(m7*2Lh+ zcek7GCb29uUvs-qzig1a#AHoUFL$fsIsa0|e`uLt(w~^hQ7DIkTlt`v@Vz~V*dekD zAP_-*IhzjcIAawWzU*TQp#6su*E5IJ0cJi{53 z(%Gl<{jBy=rQJo33|$f?4Brl*b!>%0!~&P=gOlN7qV?OyJwD>b$1|!L^;X8Ne)xSH zObK7JFDoke<(~>FFaMK`Yw4!NV%KQ=b>X%;p5^_xRjs)0%Bt7!3g#xqGT(_%R_E*( zS$@_Bp+dm~AkCApTh0LZwp(Xn$3XeAD zy<54-bAKGak!u$? zVK?^4M0xrpx^O`5vDJShJ&Cl2CIndHKxSsnWUe+uLe}!*L)M4Gp48}`1rSsKfWkKk z6V8S{HvyYS1t-NIGN#c5P#|tB!H}LXzj}#q+HOBF18slc>XrE9uUT~VZ4%FoGILVn zE=1L@4dzO0OKIa(3i)h*8-qz>%l4a&a@4+O1f`oRNuu>tmV~d0&ra~(Xc#R!Y}FTW z*ocgZ(|?}NVF%}u1v)yMYg+q2=!f!Vm&O~t=jh~kuP>UMEf^%r4Q__ZO%xHHqzrOg3Q^kL+z)5ntes%c`TqLpLs%D(6GFIB3b~adQ)SuU|KsR}2bnmRBVk z#_l+17HDf=?V9?B%5~jtC74#^(V%3Zi(}XPrJGLq&Ht8KfD?-XmZUVn40*H=h`1$2JfSbNlm`Y!$r7evxt%huNVy0N6`uTkBFLibC5FB~%Bwf{ z%5Xw?W@WbE-0LkWG<`!@U_DzNHKFA^$KOcBbI}+)s#HInv%^DL zpOjQkDyT~PSX{d}j~nz*pOQFvJftARlB7eE3Krt`<0P9{*4DJ}29bO!U9z}=+3 z*M=`Rj9@m2(mLpP4S zmiO0N2CWOQ+`*gg5RvI#b3jMLZHk%q>v~5m0Cx?yf1o5Vw;wnse<+BhW=+wJ;Bfzz za8s+-uljPapIo-Fdb$kHh?P1g>Q(B8^>n!0rjW+PF*l-ircx=s3vi+AEpAt_7GaAQ5$w!38&3z?TJd=DZKXUkcbhP%)FbJ8%?O5;%(SL&FW~i z-}E9_VmE$;nH7?PhAKt?9d9mcJ~f~Y=lm6nlV5q_;MnpQz`4B8%KrNkVNJfGXPB`v zDLA6436;`e3E8xLA;q#u1Uq?BGQjnZcVZH~jUdHM5$V%-cz+;+L#N>N3zIMLVwmqR zD?ALxL;{2r3vvUs5v8dVthr7;F?`53D{FWRV8p<7&_}39fm9`cA^%6g2lI0t z6%P)|S1))=11gk4OEKe4>LHllJ^qcdktlwQ-pe>JJ354sHq{+@NtS;W=*5q_*Q*;o z=>&Bs#a?(l_@MC&n>B{FT1tPLwO+x+n-e#N$Tqvl+UXm0W-lwJea@by%Wh@^yl&hO z^D0XgR8?`)tOMIig7E;L-^=WX9%gkU3UMOyqTxx*jAr{SGe0W*HzGoyZr4r6T`E(* ztPYP4-^2{Wq%74}Nfquc&^nzi*|2g${=y=Lgo3I(F)rQ$U?Ju90=(>1Q(D|UIav10Rz@j%^2f`F%JERiw6=$qSN=G0dEwX-@`}a5N$&Y32Vw#irC0!Le{eG8%ke!)6=X=!roF1S$2G$}GsdH)7-D)<`$VImMzXjj?~Te>3z4>AVCa$J3#J z-QMJ|(P;<`80)d#1t>f^8-VRpTEEdP-N=^b^s^OEesPpsxCin!+Qs-Srbx11C#)|d z`FdreJA(i0B-VQ(!K?wbDA?^jvP<@I^hMQ;>e_WBFzJ#LtzZNXhIMBL&TXzOCM z^~r0sj?o!4$1E^{vpNbex!`t_HQwn4qsHL=pyf?RPJ!h%n?_3@Q}C0?)L@?S(~noY zvAFjIs)u&GZ10iHADcy&RwOUEFkW9c_I712=`9kzc@W(mdr~I&4OKvVCn26e)_tT|WfL}bUAaWf9Y>p-kx})#76b-JSiKCO zl5WW9*?aQr_V*84IsBp;*{wA}hCeQ?nj4^=zy{59fT*I44b*iM(NH=?S%7<4JQ?vZ z_qO=KA-+xBU>7oN^NatV(YWwG476jM)=mIF%jwh4pFA(zb2M;X?qH^%58z*+kE_iHrP#fJOZ%d!K-dZyEuyq8sw@^1)KTwxZuz|7hm`t<5$C%ixjfS%!e%^HXXjlFS@|*bu-8NX^tvH z@H<3WVE^uOo}nzH$!Ulu7mSa1AgaHyZLFqr16A7B(g~{qRvkgxUfjUzYfa=z|&ZC`dE*BFvxch z?PMj}2TBHb@IJ40vIR~j9KC{5pHFgX-@E^I_DqXt-E1XthWVbSwLJtp;v6uzr95Fp z^^K1ve?Ak91Li%NS~^Q6)pbMv;v3+a<~wm*Hz=GQgO1esD8vCWUj@!EdQ~lKM=c@~ zgTUhn*rqe z;QnN57H&$RIx5I@>X|3MGSiXP!?monM~ycg;T+EHM?)ft+*6D-lB7$Cbcx-J=>gr2 zY{=M~=lafFCwv9gZf%`L#YfmgJhpK$>bD67t=*nk2wA!#h`$9amAVK}e zXVjn27mf3zFFJl&LKhbwM-DE{%w}*ZsWVW;8UBGrSiG2RLdJDhRQX;^MS5tu`^)2%PlL zk}|8ywJC4rJ*il&K|m`Cwt`p(ZNZV4nX}35PO?bRFnSEinZ1&)^mKU??(5GIRGU(+ zn&kxAPE+4I)wfWV+a?AI)w-^}i0X-kq!q`Q@0MAq(QYYs|IL0`Cxp(=&}K6!j>4z4 z8qZbeO~iRkwRL=rM?1vJe(({wXsAml?0d5m4ce*)eYvO)H-EzaCnF{B6gJmpT>7PaM6Er#~fty$39L9y$j<^q!uplg;BQ=&E7i0-|* z+IA?B%F=+bhA4*qB{;0GAMclnxVxyZes|X@n=ff7Z@)hZ?P_0&se&{7_a$?36b{~@ z9MH6Lw72moyKSTPB`=^ACZuN?6_czC|LLYKoY>fZ6+s=hJ0X+!bYZDUO=kvi61hZB zJxms5IuM0v<91)3Db_XYBz_cz?N!|Wi3D41JT~3nQJ)h&*9ZA{V*+eZw=?Bq5XD~} zL3$;lqGe%^5RE0{o~J)Ji05|)Yq3S}dgwM?iV@2$(mV|XqukdHNJ@&;*WSubGMK|; z6ET-fm%Yacfy7A$~Qy1B-1fB*Kjy&5_byBFZ;%22eD~X z}%6$=<1q_1#)JByy^3ibA}rl0(k5_+Ty9CAp%i$T&*4lEjHYnQ6(Urcu zoh}~VHjF62D~da=3`07(j1a*RVXZ*Eei;*4`Z8-2uC8<7FQx{dtX5+%*_WCS@)gog zZ}uIS3x5?Wdq|-bY>l~lgoXn?gikrM%wel>$Z5f5GxQMCaHD14O7iuAW5G9%?om$o zm@kw~e&=2SUetdWPM~-9O{~Zxk&SS$2uIOYDx}U1bfCAC3KeeJft32 z{EjLug|7wY$p(JU8!}uld!!`!=`5?wGqY7Kyr}!7fV}k?0M=;(z%_tBYfKX2&0Eh3 z7lq+ziGJhs)jtxx|6vZ4Fph;@BtbwEs34r<*q%OcX8d220<3wxg3ryO6m={nIvI!g ztp#Y+mYwYE3nYa2-&;{2A-_ZS2dWq-N4-%@Ib)HF{c^YMcLR&m{^3BV(M4yq<72T% z6OU=&pMzflQ)H5mAMaX1{^wfzS0XFpD+3+oeXtXI7m%AyZKsDqkf-wS-{ABC5Puk$ zHMPqHX+FWbvUpQ%k?lGBM^yYX!WBIAr{C0aaS(BLM#jou-}!&zCWb&%qk_F%GX5jg zID?_PnEz?uM02rW;t79O;~~Tb8N!rd(*HZle-1$zJUQ7_l9y?ct7C-ywYBUi^zQ#H z0tQC3SKNa}RQn#1rlm`c6%~OIESvkkPb9~I>^hRJrvf7#X1KrcKLLJ+{%2DJ8{&{5 z?~q*c@8!iN;C@Z?R^ueb;H&Mj|2Jqne5ySK1%;~WH)sm)l!X5*k^d;@2%+c+&WAJH zKeVxfgF%Q*)XbF3D9w(-|GiNZ!edvT)Vx3ZYdpmN2_C^NR{;5(C}nV92PN6>wAxzZ zPi!(LGr>&%(kJBP5KvnOap>f;v^rwmK~w*C;)^KBDU4asge6DmD+hsUIY@Z_)8&CD z0Rc6{g^nAX3L(}G@eY0Uooc~ zz5ZRFr8d0GFLxB`jP%=q97}DPM8kE2SY9V+Z-Zs_lAX|fAM$6wBGgpb62XFsIkI%xUD zd_*4&was1CD5MKtls~hMt;=a!6I3vY%rW#A*}j&4o{rT7|L_4o^lwlvJ7hopVUS;y z-J-cpkNWu36fRE`3X!93Jy^emD3AOF7C^O`k}ywQUK<8OcxUBQMywrTf#i=-NV5WXrerhI5z7qz0t469L0 zGRqfcv6ICd%*@QCz3RKk?I938i%i4_kiQTrs&N|b z$0aOsIK7hf8XW^*J(Kk)&6o3~n3nU+&bh-1i z=x}Pq_R_Nk(X*M2*sU$#{8pXJ;axtc=!B2Q^{lpPI9$pW%m}Z-p}vN!Y#itmY})i* zV?BkNyz{PDva5`W*sQrx%KEG-PITQgak|m$6Z*(9`d5duq+%Wa))@og2r?{BqN-)Q4S6!7s zy}x08D>?PMtNcpSu%I}VSevkQ9`xSwKGAVI@F;1A3|w-g0=%Bv`&{Yp+8%9g_J2aM zH6J$$ZG${>RuJ!QZ@%`<+mGA1eTKYU4gGMo$a4H`vz(WZ!ELIm zi?4awQx28@THAL;g|vdh={;~EdlH{Ml1v)T^!p6X@9Wo>U-O#+HNp-@#*JkQk_y!y zy^EVWO-oIUOW*{?a*-Dr#|Bi?lt2#7wDO8f)urJaj~(D z3vc45l(&5jwtQ~Q9^SNaItb=V2$L&N4aQMctp!@HXR5x1DrG6UKMAUHe4~vbZ;?WJ zI8)wk3v}Ju0G+Q-N0D)kk$B7zTo!V&G4>l={Bq1(k)X6VPaa{r)Snd8TKWtaE+Sd0r#=i1w5X988xY?A`>qCw&#BuJ4CWwTz7w zb#^GAJA5n!R>MLlxcc&gZ8a6T(aZ z9eUJ)%^1#&t4-P03gt!S)$p-k)J#70Czp8y#IKth^9&VHc2T-4moR~y-+v<^IXYTa zohbbj#8h6C^f!M_dUo6&XDx8C%l0En|Gs{E9$3CC3kBAB0Uv=8_P_CkZeS@+#=qmu zd*ef+!=?soc^>e&{rLfx(rS~5fBIrFH{&zidBQ_jUu5;EFy<$dIv9@p{mhiOQG)EV3-QerHY{TlF;s!Fw)HcWOZ{rak3XK`yj?FzOnwR!E_ zpKTy~wD*$uzFJk6aZ#jFA*UbZ_?(Nm4e`<8c}0^cz!-QOsxHg-`|}Xe?>1S^_QS6) zbSyHb9(mrKo@tV@kGyd^1#MoZ1yOk9>ysbP@SvZAJF(4{J5Jt%=aQwPABPlG-_p3q zsb}I_9i}SNXaxx?Q22VlIn-7q{dQ^dEXf>s7CDV~`%I0(S!t}?as?qD-5-i*itH+H z5)ez!4r0GWqp&(h%w9NWpRUqGb7i6*sq|;^EGqxemxAzeoba-IGxa=@#Q1v_C;YBX_s`W2a?l(9NIR;( z0J(UT*N|P$exKm65u=QqyWIrU$pPJX?eApdQ_?;YVm6r11u6-CN1HEa*Avy`5s>@n za|!CjBkQv0FVNb4uU78SklW~7(^Y*206PLx-_VNr$baI>s&`z@H7L4QvY^2KGPe8j zok`$wqbucX-7j}ec*N&vG&C6xSwO2*DJAT3f8d^Dw=SBi{tHW{$Z`{oda;4qremb{L7^+--oM*xL zYYZ(8qt!CYTQJB2^Ox86mjV8Q84`z2w9|!>(&-IFr+( zG6JxEMW@-geV)a``Sr~G95>hUCVhvog|wUqc<0`TsfL_b@v+C5L$j3?wO4&(j=h=MBHW zO$=Sf+ppCp0;o*T86{C4bi8D{E0Dp8sh-9A^^%CkWADpZlb7F%>#>FFdrnQ0M2zs( zIG3t*?XB{2*BiNPwR%g|c{NduQ`6UnEU(pt(S&m#)K7~$Q|T4RP%_ga!*{pItBkSe z`hH>0Bb0z~spk3Wjt=Zwuw-rhM@c5loOGjN5#082mEK>TGJ64#6X8O+{&LNH$-7Bb z;o9IMAg^Ezwl^vpa3TN7SdU{wL=}tX z+S*TyOK$@~wm0wl3b|tZ2k1lBbL}~Bxo<{Z^>s98Tc$BcMLJtu8e(=RN)~;{Jrmz=o9&n2M`P3SDoJ3**mW6Y>S!X5S;$7xArN8K0rQk zH(;=Ol&p$@JvRf|T3$Upi){|o9TGrwU-WDB@tU9Io^{9{Qi9*P8G z^zT$?j*AAeD}>bDi?F5ooPu(UVAG7-!-h-CNbSh2WJT_n$K|!(YFCTF8FZuZUvr+T zke+8`{0y0Be?}J>6K1;J83ABz;8!|6Pvt=6sJ3Y^`xdpkHa^{;IuN33!J*e5p)AB) zyf_I*v89qH@i;ID_h5uB67|xj!QoH9Sm%}Fz8Zi=<*B>KC2%rvYc`W(r!3^&(qz9p zYT$dQ`qBgG=R)-aZsI*IgCy;GzBC)o@r?B%YnhP|j9o=`zi+hNHk>g!{}qz&e-J-^?f;0aFqWHu!zb<$SM4l@DX2q{o(B zFa-6sWU3DB{h?fhilh*|A6!4MmY+5_mo~jL{&+OrZ+S;%sBqm>u-PhaN4X$?MmD@A(M?N=lD1~^1Lq+u!ED2*NPHM`Tgt=%SrV$3{ zc7PA1Q*Ezmu;9^T+C{nPm@;AC2}Sc{p_=gXrH{Uk2^EoyZW2n+TGVzV@XIIBozunn zi@y(BP0rCG3xwQOms#$0=KXGhcabEHE3!S>@QvoiJ!e{L=yZQ;rmY1e>el|!i$=fuj@ndii3OQserXu0`RM%2KL6 z?l<;Ry>+P*--pE`*W5z*&h2D2y+Z}{)p0Q+IOuP~vSZ{|Q|XImGyw{C+of=B+g^Tr zsEz3El~=9-hceO^Aba?UQxb~)C~qx%63`%I-f*>#-Q87<;Ge5J!%;{`VL4dO%K)kbw2m2+dt-TI;Us3AAXwR$|Eo^ZG+Mx zM%_x@52>Q%Ho6kN`fXa-QutYLwl*S;*ZL2KAzIzpyLb1+inCT=+m`!-#HG;v@f-BT zi66?%_xHCyB~Yu~VX`uEV|(-dh!=3`J_cBk6giy^ijo3jPESoAjXr3C%m|JJ0Plik zpFZKFyAUoCD3{?nNZGhii~!$bA0Ej$oZMMx#r~~2@MV9#`~9_GfBvtM@Vb)VUqKtT zBuB>Iv8X;Mqd=NZ&3TVAJN zYBh=^)W$NMj^wE4dx4y%rLyH-IO3gv=i^@Qon2WgM?74ageih*Z;Pdo$np^UX;r$+ z(;C=WuZ5QF*7Ts&GPJQl1{#j3 zB!*9CEX4}p_=68rAy3FCyxMpl8cXPoNi?~8l)W>!VR=};>UyNkc+y>;aV-SLUyo4Eu)=*q=%0PEmvq*K)eXdU_@*e!G|0_bDr zm&Ayo0oP!Cs;?D|lxTBoLB{V)cX1!j{40aA=N9h9#MMx*yrRq3*N&N zY~usbeM)H8arIC2{GeHxyrS@U%6I=+QZ(MZodtG}J@=P&8VdpU-fsvqXmMfu!M$2@ zxwbMZ(}MT@o34`w_rcWXDerHkS>E@-m$EVgV)BA}(IS@0FAoC`_7J3nfX$EFy8+iR z;6oGGvA_7@oTz*n1n?0*>3q+zI6oI5j)#d+;IMr+@IIvwFac(xV&75Ga?C^nsXqOI zyF2;bQtn;0BSu=P4D3F!7OMQRA3lwCPdR(|!iNS0nJNw;g`dhp*Bj>20Aa(FSjL__&#l*h$E#!#m zmQ0q4VtF#o{dI@Ka|P0nO4{{uLPGDtsK`rK?oAn$hT_5nC9E_dyK85RxKVL*78Gd9 z)X7guzwf-qV|+v2zmyd;0SAlE~&<9@s+f^i~qCuP_A#b$l?BYRo76_ArlCipSf zvyr{n;3h)EXZw4T>li~|uQj35@K#uD>m!R?RuZyCWFdC=?L;9*n;b;WEp$8Lvs5T$ z<1w8@{cx_jL_r~2`r}oITCH=XbX>ScVBz_^uBAoM@ft<#$bziXZaC-N@15{;XjCMs z1qq98uHWr`v3A(O{v}BCuZ>024F@%oHKDp6+=o`qt?Mm`grgDwS3D!{fem zRx^Y`cJBctj3v6rI`rI=z1;kD(_eh9qGd(f@`=#*cq7SI!~p`NqOg=(DZNV(Drg~K z{v^YoBU8Or>0~U|F+vH+=?)W@1*bk06jRIuq{-%sKZ%CiDO2B&IzG+{!^=1P$ux_=OuDf`{6N7K z(lbvnanyiZeYcIa7;gKy2{DiJV~lPk696AC1nC!)OwXyIOGi=fB{B+@O}}B3OP~AP zub;gTN>v!d$Jy0Gd=s!P|8$IaT{Pap$`sA7o`mYcZVGdrq1Tc@WI`};zTE2y?C<=T zE^vM1p!;$Ru_xo+=T!+{E4u-^^H2p2-P?kJMJ~c^_Flco(EbbJQbp{l38c?xV$^s3 zS&&Jzm&+xY&T(rc$!zB5Y@-9p}xVY?LVJ5Nwj4Ui}Ydf@C3P-83KFdk@12E3VS) zuxs*tVTIgTCIx2`>XRXOzrm92);B0S4lr{nz&gXvy@%8kwZ}u52wxV!bbq9acEA>6 z;48|`OH4;^LJhPKX$~P6(c-rQyPpVOj<(qn47zdxhrxjilh@EJRGA!NN0x`Ot(Va+n~w-15HRf6?;9P` z)3R*b3-MfB7WWEe^};uT70IF+kXKN)5Xwd~r8s$`l?3zgqi)+pF^ee?9KE8Ysuj^F zFE?0vk$pOU-oQ7!Q+5`D5{zX`8F*NU#!k58JD`xL9ejcp)oY5~>rljtR4iq;G8EaE zUI7SNQQ~J3>F?sse1t}Dd^@!T#E<-l_}XrRg^=W^ko;Zu{qwGq{tZ<+<2-7CZ##@S zz0mEmq=m}x9zka|Y_EDY9wFXhFui%d2EK5mKC_E8Rx$)K|WE4lZJPb{Rqb=>(qWdq{U2h zHNL7himv@R3uWlnSLvtD{~2@SG;_p@zLekS8#{1s&U7aj5(Xa9oPA5;;oMkR*geHd zg~K$M)UU%Mw_+u=j@H5!ff)gMg(>lo+yS{LDAQJ!R7Wu$_~}r2%U16fXa@zrZO_5=xj z0MYHPzKxsqznhE!Vnqkwkx>871rTcv-hE?4tXLOE;T*d5&NP0d$H7&O!JXH(yhM3*IcgFoKB-I+JT?z2hC#lbf&N3f z7UiZ&(;PScoC@s5opfv9HT0Bjc;9lpFgsdRN89|%I=2!W%c$36b%eY|$LyFbY4l27 zrIu3rCE2wwx{wS?06kV@C)hdxLJ?sl=2)PS<1J1QpACNtVIe6N#`S>gdEi%D!#RH0 zrX{q028SrwKmxP8HS6>6gjK@Zo2*Ebvt#(PQ*NzDxg*&EX{L-*c(`>d=Adt$xeBC;KGt^%i}DlOlbBj zGddwhz??&sI{ZJT-Z8M!m}?i_-L;J=cWq2L({^fWYTNGAwr$(CZQI7w?$mBipZ7WM zcfQ|A?p(=Aa<8nlvaWxLjIN}mZ0H+)mE150Sis9TFq}6LRH6lNC*i50R2K1l-#g`~o&L4aAq%MB_)vez`!1yk6A;5zFw9w(6a3;9bLv=IqrI z%POO%a^x_wMtBBECo6dLdwNy(8L{gET{2GQUfZ%p6=BYxps8X73}UoZrxKs^s2by9@yhscnL}g z`m6a~L2&fnd0-}4JK+z1jkiQS z{rnBui&~a(7emh?e);}j(+1*>`}m133eKcM|^>Ri=)1kt@qAH z9(Bzy2}x<5@IvT}jJUrL7A7YbiOxWSlIe>f3kaQ{Q&{yX9A#5yKlcIyuQ?L}-{er6 z;%B{Q@~78XY`l!UyYG3pjEHN-f$K{dUUyd;5Ao0w35NYOwxR4EgkF$q0S~=; zM*S#-nd-_}^@MOIT;4Dz2i?DQklDGi$WNMV(VlfG0o`mv@?b)&qi3~cUX1~!aouJ# z0Hd%tD{cMZJ9bJNY_WS39IyHhAa6$=SD*k8pZWniwHWI4P^g{nc;A$^#N6 z5sCg+Ewi@>QdK6^Jl4Y?>1Ejr%$1P5g-f7^jG z$GrjVbYB6)@fFd_XyJQ#p0+KzHsNen#NwD0D0&WRd%-V~x)Ey#-0tFR9fPVTyr293 zcB#gHkBm*^N0Q!Y#aXZZyoIca>t*-v#ZBvTa3w6|TzbNVyMdozH;2B&Af!Tn&Y=~3 zA!bG0k^2~xcSK=gFfkkCy3f~ifk9=)Gc-dV;~>xF$<*|(D@WL9K)frZ*>htN*CE!` zfs2?(#R*i&*(P6Peu;$eS4VX|+ZBYvmJ)&n!F6>}ns?8Wd%9`E_}V{evbxBzY4rR3QP6#N5xKGHSU{yY2(sM8u@>IWFhA5M(jlX? z7$evnGEkP5j9EbU?GA4)hqtuerTqrKG!%sl)iR_+AXm>N`DiBQW6-m>`sIt1c2s7N zxMr2&u5gIwvw4sS zu0S2}Hy+DG*(HsJ$QN^U!fpCvkNBhAOCO}|IKRmZV{zL>GMB$Gaay`OslN-cgucUn z+rv^ViTj$qKpm;Y7)A;2%`{N62yO0X&`1@5`4XU#<=Hn+B9n%r669kx;oQIZtrt6q z8cD;S4>^VBfY9Uhekx%&>SJlDWe3jvr4jkSbzYJ+CQOWBu(4oFR|`&?mq`#yFR!0s zA*l`WQGbD`WiyU~cGawXc3U`0770HLenr>;k#0PGAqa~=6VU)*(R=)O zZTpKiGz5|Fl`qm1y6XHmtUMo0fH|Nc5!{SFs;B}n)9S07o$nX{!cZe zr%8*f^0a?(rN8XC#5|sPlWM)u=FwjLy9&Vfq#3EQpFlH6fLT$Kn{;~iRND7Na<`YC z7dWn|!d1)sdHS_9@)Q?H=SmBFlPBL#V6nB2g-7fMXOL$gNnxjH7)n8s+F~=*uKqGO zI6tKnM#Fk1nPLYBdsEeZVD~gKmDfc6s+|pb#Sj2c-woR zYR}+Z{SWyb8gZ#NWE{=2gl@43kHO#XtmZpcM}x6PM3eQ6k< zEa)*tQ~I^d;`qyKzU!{{SN%EPl5$zwtE#+6wRom|dyCo6$rg%N3(CH!%OoAENsN+d z{X=eUUjBQbF4Y5cDEIe`OOocPO~ZZTLeFyc3rLX7O8?_lRU@2W0BZk9g)+Pm=? zj4Ux&9xASbLZbWi*XAxO1OzPXJ!~@m9m4UXSBQnkuLs@2%t}ixJBMM05Eo+5YRrcbww}L7OGy?&#WCdxUQ0G#r!71Mdf9m^K6|SYi*5}8zSRvpXKUjh(~pJe zWcQ4;YbPuf0*~))Xn}B3-+pudX}*eG;)@53O{wRKUUv2y*pl@lNP8Ur_A!~_1S?$Y z%nLS0W0v;^4_O-l7jgKoTblV(I!kl;IAhj_uxe64?U^lul;0!z2~RJee^s1y>fkUJ zF2gnS!C_d@q0GtoBY?g^%?RoCMe)eIfWZ`A(fCnwL4H(+7lE?u$BK1$wj9^zBZ95P^_yB z3vy(ns)_^xV~A%R)MmZZLtJZaBxK#}c9gRFTmiKa<}U!3+x`j)^tte%%-_cJ39U zRjH$%nEcGnFX>@Fhd@{`Io=^r#KVd2kC@PqheXhbi1^eqlpAdwMnhF?al8vHR+~4b z|I%%7ob?!4Qm`j9=oaS<2m@E$#KHN-BM2LNjFvaf>*s!xA)?5RUW>xGi-5&>lKJ*D z$i7D6JS6fGv0;p^IF3)+@_ym!&ehQw08N#rXqs4&uYPd-AqK7FXO)U#lY4 z{-C|jqnCvw(IcVX)h7V*?Z+W-;0OXYu`1V|46vYsW*T2*WbjfLF8J1OL|;J%H922* z`qC>~n>g;)st&yz0&*p-0xwkAQqA67aJTdC5+nwzUU$kuBC$i$U64ZN&|euic*?dw%0@TFJ*sA7O-V zDWyJgFbC!to@$|_y5$M#iK2o+Xji-q_{rXSiG4f=r)LU+uL+?p1g>KDXTNw? z;LrN$5-B`qy9Htw+gw}$5?u;WwQz9c8$BNuuFf6C&k*j?1dlD<=&-mK@oOs5^{$2Z zwvb1;Rm0KuZ$VQZLN2tCuU-u-=uXYT!O^0M*y7?7KCm6jts2f;M|0h+R-|p+wwnT5 z3y^!%EQTiRKv&bR^#8x2pZXV*8gWZnV_=+?l!-0-eJxmb{!Y-%aFA*CB);&U-Q6K@ zsj{e8QdXGoRf>3$Ft(0ZC9qO+1*sN5E*XHR>%ulK2=t?fV;F2x3$y>cxN3J1uT`G~ z%aM9`Q}l#5Vs18&-dxJFR((j>Xpwb@M{&P)_qz_ z%X2I!REjW{Y5FC<$;aQnAqf~EL8#pk(&W({I)l3?eu zN>ffI*)O!?vj%v_LngLURgEUW7m}e*S)Lw01Nf=V^Q$b%GPYg)o+2Wkb%AHK4CK2A z=%>`h*aJ_AuNgEu?x0m$b;syRQ@~RJ!3vHeJh5Q7@~U59;}8U;a^5MV&k3HT;JkM? z_-0q=f=*m5+T5mgbqvylVvTP|1tCpniHs6Y>rWfCs`om+c0V{V`Qy&cxxy8P0C~aSl@J~o*N;b-f&Q7Zb>|WV78f|Uf!s+`zG+5s z`6on;p3DT=ydMa;4d8xnw{w!CWZNoNVxe_0zj10jf>C9o5^vJ_pdb|Z8-3d#NgY&4 z(Ne^{+JZR`$C<^s7_&L)Tv7A59g*5CsQ?tNK#Z2oyrRF+9o#xvf?dz^jHk|CFX+uX zpDf^GtaM~^Gbr!d)eQ_*5%o@3$+%+ z4Nedjr%shnH8^74(3TA;klMF$};dRXa%=_7Lx?6wlKOmmHBKqOB zmsz!&XA`h^y;2GgR}7!Yz8Tc0tEvV2c@uFQ>JT0*3&7Iraq+lj;rvPntFEYi34|jJAjSX^c4X_I(a=dN!tlf>MoE7|fkeFPyP-Me zag~Sqlb~i4q=>*oJ|?8477SpKDAX`J)^^D%&xB=~HO0Yid zjGN2uRm7<&C>nMigVECbUENe&XeGOWm17bMf1|EJ9ux|ZCc(Jn=mwV}i58Z}cp|?g zao3xG^737!$Ja%yC3QuIs(BaqVy7CWBfxJYHJSZ`ct2W0m3#NLBCf~ZIYvMb`R*E~ z6E0H`L=cS6Q6Rjvd8}c3kc;rV_m3+9Z|%lC|AFiot;tM`w$bwWmX1osbUE@S$eIUL zT>ASJS2zWpG20>opk9-N!s;VsAb_Vd8}-LgCzdz5^s&mf6Ii~&XjhYoqapZ0zbuPI zTq|UH^P;<9IPnob&OdSiR5V_4(_s?zH74m?ot3f3MhxPul4!*>H;3IibKJMxDjQdG z3AL=Yf?Xd-cW@kGodWCnq^<#R3B@fx{<^kcCEJVdCX&gF1h#h50?NB z2VfFo6SGn|{qx=Ok66L^>fy}90wP*`+ak4hV&r|j%yH(*#XT|UZ(!y2ETnw@TThV;PM2h@$0w`$ z1`i;HBFmHl3iM(BAEclnJ}KWYQLuji0Dleu84eC_6Hx{hN1A(pN*-l%_kSj10Ar<# zdgmefer>C)j*rYQ3}hG(W&;8G%a3@{fug1V27?h={U1C77$vG0KA#4kR1;X*R6d3y z=tF$D$2I5D~a43VxUum29Gi5CvU3gX_0Oy?FV1BmDG0but_)aciSxZa}vFNzRq z+3!?7&p;CzEEEzU3?HJd^~IqDv4MRfMKyks)gSsEl>Zs_e_%Cnz(G_h(8Hnf=)LckfA1q6V)APo`-W9z>lrvckSsmzxsfEH#m{6Ek^ zMLiGvU;#m=>Yu1cv2asL&lW0FJ`jP}BoWon)ItHH*}89B|J&~vBV-IF3hvH3Koo@n zu1qc$fChnt6d*>VZXYsG2?k*?;`|6Ra*a5-JO8zpOV?5)u#f|ra z@c)CC4&?VdXul$1O~~OS2gdBU4qkRF9>ii+OE7{N?NR-AEmKiq@YN3_DZ#)N!jc0~ z&=AZk+!pgEF(v(E3aQ2LIsR9aO^A>r_ew_epa>8#4B}v7(EtE#KedfbpH10TC^GxM zizBB)7NF-NyemeO7=RB0PmV|q6$7%(8QLvbZ>;4|7B|Bm4*#!AQwx2{s{uiuIjFq#ZDMD7uiIKD_wp1Vp-)K?{6p8h2Nl1_$)X<(}0MYiN11r#xUC zx)0EFAq`syL}7*jrvxdN5?d%peCtM6(500F{L_^!un@Oi97{ys3Qn{Xe=x`6whFDX zAQ3dk+e44$J(MfV?6fMR8C)H}po#&Ol&!RNRt10|A(AC16H>AH1mK%XMkW%A2LKb; z=YbaJ+Y!_?k<-QKdhyE>qLA3gyZ(h zYwdeSt23+P6;Tmk!49Un?TuAenO?O6o_B*Ic;)1;-p}I#?w`rR46*n#6!R~Qr8Z`` zApCUnUKzD=Bh9Q7AS&c>w$z7(7!1|uY-8YT?k5ge-d1#-YRNiN@gJ$#_r0 zL|(~L*Ku;%vgIHqrXj?0DSSD%H|&lF%{e{OdR`qc4RG20Civu>{OjQoIN^Do&L z->}537NrO}s*H`L8*4X6#K~yu?Kc{~uTI{3lv}ou zN+~ii2ub+@seBS5u&C=r3c6@O5~0>sXg)D^Gs$cvN{i6CbalxgTebzvB4ALl>kJFI zC;bF?OAQs~X6)vJ=C5K*(|?b=ovq<1ChDL*T9x~J5a%dNFe73=>3Go~?{ZH$B1 zDmAp?OC7C=#QRgwzK%Pi7~q{$)WJ>!Wz;bUBDcpoVK;w)JtoF!B!-RnTip%|-n{C6 zjw?H1-=DO0tTA&HBI=m;e;t>ayb#;Xm$4r9HjLt`<}Hhj9a%@_3K-eT3qK;$;6u5} zmD@5~?OD!P>_hR^+*vCPQgPuS=F~boBH7APyGFt5HBrAaShnT^KKfqi^CM_&0D zMCk~itXiI#Y_^hA<9Y1y6b5+x7%2(4pdaQ^zE%QYFP9GES)`8f6K|zdP7yv zWswK${alv|%yj0!-ZR0UpS3PvV*%ZRW&_d+}In z@cG7KxM~I`@}qI=o~=w<)1F!A(NE)smfp4tQtkpLcL~<5tOq%!&wK8x0tC0b`++~c z)C35)nwyR^R^impMxyQ{olkRs9MK~n&o;~YsT0;QTql%TmIO{WM<#jFkN4cV^o@=F zJBj=iW)jsy#9~^MV?yOF74Q3Fk0&(pph53n z^lh1Dv~!XFoPQYKxc z78YHjw9m~2I~3@oNu4UM^SO>Ht;P02M6DDnWTbRsmZZZcEOM~S<7Hlx>iZ9Zxl$T{ z!QhKv*ym`Ul9TimmPB#Z0Y;*&i`ud*lyz+qL^~YVzmX($%l!!Qhrxnpb_=tn0s@IN zY`8q>t@$SnDc?xy9ES5ED2mqrG^hDUbcxp6axk(+5Td^lFS-BImp&(*3z)zpZEniH ziJG#^-ku+nx+372w8s58&hTd3*2$%p4+iVLpZCDyv8q+#$5#er`U%i*1zC}X zp3f9CZPsW=rZ>?nUw&g>RHaKPasWgR-L&B@)Q7t3#Qsi$V>gISSq(}h2?q3n66x`V5c7?n&j}8v(+BT|gl?=6uE?&+ z%U_zDu1Yn!v&80}+%gd5N4nzesC{)X0@-X13?q903tUBCG^@-?eT3|PmTT&;h zaZ;tean{bwIc{2|Sj%{oY=*f2?uHGl#d76+RC4aD-Q&nNb~|IT(0>UI@bCy#3rOKv zE{PxN7KscN8D-|eFN_jrSth|N)AQJ;&BnI7yY%HMN*#_2KVwAXTmw3OMUki^65B_R zMRRp$5~F-IQ-mHu^wsiVxoeic*QiV%$IN!S#o^pP{`g|4X~Gu9JBCV%+u!^ct0|fX50FBJ0#T+Ly7OKC*q8m>IU@;7IX?OePG|U)2NM|xC z%r1|2LB%#7D{a1tpLv;3rjBjQYRZLtN|F(;GLTF(t@vSEg;T-LQ`TSTYhp9F7|okLM1MLIIQ=CNc$)Y z3?PpEV+7FMFUaYp8wth6g6bPsMpNi1guD_pb`K5R%E!YVMdI7$6bOH>5zbhtZ@uWI z(`ehEk*78y3xICjR2Hu_4elNe-KWJrGBnc6DCJaF8c%y39K|AXk;NI3ED zd&V~9tAv&(uf@^f5_5e~k3sF`zY**vRi{`ko0Z`#?<>*vm%q~&MfI;5#me^=2)+|L zf9Ed<-`|ZMmy{)qNIKtoua0@l%df~?H7o5diZ6bD1%v9@z!}R@Z2=(;L%&&o`Q5lsQ92wNPr64%?6}+8}+4|%x1CgDsdw>8;(iT z#%rZ=^cJO^#m73cX_2PksJu>2ol&^58R$;ddfmxZyEl3)mJ1Vw)+m%#CUc=tr3~hd z1>n1y(Ujfk){=t-)0>5XjW&wwy?aT+-8I#RRSgz07beh`i-R8?W0&ko?mAkpBS#PO z3xP{jUlHUc$%oeQJDweN=Cr?VLhQmA5*_l(PSJgbS=SYIY|X2&miWw>3X<4f!m;Q{ zO08e=F4rN#)Bq=#F7u8bluzpUy;C{AF~irR7wO8d!jz z9M4^Y7_q#T=sY#ye+Car4Nx#t*_cf$olaU_%t|w}0g%Kor)2Dhtcnuv=1ery-49p6 zw7Mz(Mk1iRv(yVVS*!uONwP~1Sx_5*a(EI{V%G@=WaIssrx<~Jvip8N6?xWDxtIOh z!z_DR+iY5EVcY3^Wx&qPu2Qm{&VB!_(`wAlcO*YsGP99Ssw)cdcyYsPcIk3@)Vf~i zL=GD0%0%Qu&8#((dy%^``WzAlltzUgw0E8-@Abe}LbMjmY& zyKn1^EKUeqY>n#?fy2O-V1{#jmb?~~@`Zpr_FI{W;b9+cB8NnEss|SvAxjbflJ8oG zQv<4vZhVjCbxY%*B_5)Gh3Q8c!te@D zytu5&RK@qEbyoZFXC1kidor9Dv|%A@7u-1~lv&K(2_No!HwpaZ+^da5Xt7jrZK+(X zZJ@QrUgw>;ylo68^l^QRjYPu5UT%VY{N5`6Gg3tzfPR8LVi3Wu)uDa=vqcV(D_=#@ z8M^3vAvevEKum^T|ETdFor*0<yOTi*yX`4h$EC+uz0GO*WrS?6qcf_7M^()hJ}HmZl%Fhj=K6D@=PL^j z$>EotcGtq0f%JYnV_YrMS@Zd!7jt!8(n-yWlkys#JQ_Q;UJ!&nLF14NN~W12K%q;n z=I%+er4JzN)MBm$STdch5@;&RKldeFrCU#C7Nf>u+(f}*BGy+$S1J^_UjtzG4_{M zEejGO%5d%~EI__ltq^fQlR~t_=C)Zie@u)XJXahW*oH6gaqC=Z^%tg3ss5oat@V=! z%h8nFcY@FgZ$;O4;8|S^#`4W;m?Ft{l7HF`!z@Wr<+p|0R=IxNiGB%_Qh{%q{=Vek zQ}Jm;^tfS9mz+<7#+g(!lbCrf4|Ch^w5FLVZ@M~HZfCE8rZMp7k^uy%8$^&@GvB@+ zG*5l^+Zju{QqVn*7491Sm_ezmZ<`10;fJ&DFx>YKsPeLvc{@h!ypGu}FdXKS6_R)D zJQfjE1%aFnF;$zfL)%V-L+4TtcQZsdq?B`xVD-GVBCi=}&TB$5FjXl|1AN~wOs*0x z7hbVMp5yj(E>o$v#Y1FmFiaQUfwxikx=j`DaKnb@aKhr2NGiT;y=}@R(G7YZ)q-y? zoZ`?bBc>hgQ{+07AU%>gZEryb!sloGiR9)|6H)QD66!|G`e&lXY|QJLXaJ`V+>qIl z%*>*zcVMx`DAMW74Dw=WVyw0OkvRR`zAPSxP2i^EL)KEK0y;EokRCty^lROmf%Hf; z?{s6gc%qVyySbMA8sSodt(FD_-joDbKNtGZy1K9Eg?Z?`94>l=mhUR*x4(K5>gdW- z&WXMF?IUntn|Qoajp+wv?#X2NA8{Q3WWKyQZ5&RcSi~2vrghOD^Dl6&evZlMj1O^s zV{MUXEK^Q+a)68;!jS!0;_??P`avx47+G_uHJ5KBDn&S0{q;{@_fsY~sYC+9wh!FJ zG79IVH1(^V310bV5+#tj2gxC~u!aZza%U+K+~C`h6 zm7jXKb1m1i)90P2_UECr-WHwh%?*}OwV3r3<$XZ2Kb(3ZB5bb@!6!~PRzz!rnRqLa zN9R^*scaC6%thrHZ`a8GZt5t}5GHt-(+N+G$kER!fvBYM_?8i^7?n-Oe+LQbORD=b zD)H(xp-5C1d}n6Gc3mX^jDzT-u}@Bu-$L9;>S;L+4I6eLUZ|3jw$Mr&4Gkv5KJ z^2wp=`LkN8NB>F6bH`7!UK7L}Dkz)}@C0C*2+|k+`8RV#4@o%V6b=-la`}~s*+-!r zesCBPZiGXH0Ydr?DNhZsub^{8nwV3|6M?`(Vurh68EKUNT?h*?^v=8u)qRs$0QIeC zuq71xdUu2ZW$uXQjNV+*s6i^|q5k2@uzRyJUun_*{o&XW91<&e>*vB_A?Hbmwm1sE z-w06*79fY56YcS2xvMcaD_i%oL!aYyGfRsMGPJbZ@(MXscN+Owc=$kh$%$?uSpJ|8 z(=%LR%>3D0oo-HZZmD(nuBoUk4%(GA-SFQ^nV>^qmK~~c&_JZTgh*t!A|Kogv}`nc zDPHC4${g8B9zfu4DGGRDDNTbA0L>p-F;vhCZss=t`JqMMfFA(ftc>%W9f6lXw)@(8 zm**&IIX+=VndKUP@KbEAztl5btz9{_NrdI|Z9O}lC^v zaE$X+dRxY6`5@7hHxm{)q`d*F3L&)q}ymih{^4Y5o-(ABgx?YK+GSI=f5mY*%yHuJ`S zQlJd%ho({SqXmr73OWMkP_Di_pO%29V<#JW^<<0{-M=k*@kn|k&@A1!N3yn)Uj}V; z#og2S9sO$20gF{ic?#X`qsH2p$A(`bkG&3YsD2d=&ly<^q4JqTF#$beu?6QsGdnPb zM!)3i^~?KfLwy%lGipwS6I6OO%5k9FPkPk7PuXH%eDo} z9xXx7UGR_vaj;kbVK^8v8FJ5F+$KIZjievoD^?W%IJw$ppGR7+Za1nK3_Zmf5~RZO z&oEP7EK{n~zOa4RUATJhlpujx@6h>Wopm2~*Cl}(o3Qc<=UWi#DG~8)d9e+tLZSRO?K|Om$zQaD;|3b)c?#(zk?LcvQ*J;9 z<=fMkDXa;vHpNii)`GbD7oF*(GRTlCIQD&)bkgawa^JhumnQ%4NiD@T?8)j;@p1Ic z`c8lvc*uXGs3c14uE6^34i?|6RyTZ~yo_ zW%Qn1iy@z~uul!N$eV%)Xe31KFY?pxcH@Y^t17_!h$Gt(K_xD!Co2{@tq6Zv^JkQ) z!T#jvqbNt1?tadEKU;-$I`i3#i-X>&tu?IGqmZi#ot9+~9(6}nQoln=26gJ990UlM z3gDD0T`YV46oyBf?9C7C@i+Oa6^-GoNCg)V3f+YK0*0O-q_Vc_uwo7n2rR*=?=ZeE zYkkqRP_heG_&)XZq``;BFSetUZ+}BeLtUj3vQ^<#Ogg1`!wSc2?tU*dke>jsy25+5 zj7jMuRv19W{O>C)VhfpaUFYh3=JHdw&Rs)~>9>-`dmH|})2Z&vqvKdQz1p0b1665w zXD7udgG2K}w|QCWVIXIBr|_mZLn43m4@D`snHw>pdyArHrwgCarE??=L_X6k+3y=} zXJ^R%W-Y_FUuHF!FYlipnO%|7h!rW`KqWBN_BN>%8x0=5AB%9xqo0+IOm^3zmk~%3 z+ev&gh3hg_#qK84wCOg+a9M`eV<7q6hC%~i7(}B^-&yufmp**4Cig>O==L+-t=cuy z9JWyjfsow#^nxi5LhfrtEpL%c54`S^WC7)gS1gWV7KUp4~*_?w=DyTu1&6Q4&tor2FO$K^#y)!T@{eQuxoZBpr| z^4BpjqT2hrwX~xS1PBQEy1@BS`F!QagXrfxis8+%TBT$dbAk#p>S;#?p}jLwrFOVG z@B|K!zsL;~`-h~knHR`Z;Wd@kw*pc@g&~cPnT44Z-{nR#Y{=WMYhoF;K#EZ#YX|+ zIDF{US>tJp9T=e!)8#+uqjtt6zhqB`yNeS}=4Mxd*3+>PB$tE~V>$UO?YG)@S)Y$6 z6K!;H!j?-Y?KXPz7HL30m;eM#6hvHM>cM$o>rD;y^Uey^K-ld@2Zm2~?Mp`iH+M;V z+H#e#NqA{jwH2={Wh;R+G}rr4C((I%timQsX^t8vp+*Ig=>24j+Unmc0B2$(Sj*C zl8{o{3sLYz1h67;cVV*VzG=!!ML5&a5iPPW4FS@-VGRX~labKd^FC%gVlCrn-dB%d*gZ#9ErJ zT#rDwu$i1wUyd>9Ni6{@n?B8WjhL&lW{|TOVupqW;1YQ%zGgblmo7eLrSh7HU-hz> z{J2UpBV=@kA%CLK^C*kQ7cyL!m=;E3@K#|d>k}##K4H$2o5M>PG|f)EfyIkl(4r0r zq)X(~@7qwiOjX+8y1xDL{E~sOLuwWXCT}f=oocRPt>DB!+9DuvO!U6X1IuU@_`5#9 zO9i*Ri!o2>8_YAU#8-T3)rGBt-@kxV==*aaC zC*+3WnQ?)d#$;RdlXVfBJnxF|E2k1V%%2QegakgzlwX$>_9{l}F@vjJI!iiEmX>Ob zES9lIN`89mWjg&!33EMCayQC#?oR3V{uf*5i&Q+DA#`5Mf9YDOmt!k~`y1BaK{oGR zQT`T0vow-BeNbUYi6p3s0xhK!`1=U=df`cHc1CXHiXO8cs<0>IzD%e};fyl)`Id4$ z>uP(zMI{z-A|rB3dw@7OgoR*|kv+`siZO}8@rQo|A0wLGVLpH+=sjclL2J&k2c*cT zbkT`AhWo{(Z(eBqCNj2 z-@y3{j+GGi*Z3(+Ow`;^m^5UDm{y9AOY%z{)ng{n(Mq$V-8s9jXm!&42G4+8tG1}H z5L)O?0a;<#UIIBBlb7jP(tZBDy$9p|n)U&mp{aUn^G~F;A9C0xF>Hni zDY>L3M6XV1lXF;?M`v$WnQ6=OQ7x@rSi|pEzw5-~B(NsbO}Uz;>s}nmLrp1=6bg|s zA5}D0y(e#XZ;+-(!T+WF8|QvKBNg-jAB`5Bsy%F^(P&RXEWBE(ZRE6h_g27OC$l=5 z6HliyKH+FEC`X@rw%p}@U4MFZ>YS3j$|s1B3$7J8Ob(>Ax|<;9H1VuljQ<50NiY%e z9Xt4jA54{4TP3nF8YD@C^V=x!R}w5B_Zu-xfZnjS+taR+h39zK&Fp|JHGIAg3vEjx zuFJ?iq*EhVWHkiIwy8o7!&($L8-_+ra~xb*W!gvBcYCYgh_NM3g`=GCb?F%_LT3-s zX&Q2e&?SNMnT9ACu!+W_hSI+~-qH2#j9Z&B8_n^X4^uzVSsb(Ok5^Wh&lHn6%RT6t z1kogy_2khhrt8r!Ul%x!CoJCm&imLvD zkK-7SIGj=)=BDuJPLXA=hQ7cdfIJ@yWZpuYwa3pgy5~-4Ef=uaJ⪤OQGqck&rs zWb*J-BOB*=X?PP^DnoH7r};l?Y4dg-ofSQ+)8z&V&hou6q9Zk;=N86gWx{3;mPy=k zkVjWfzCpe^s!PZBzDrNrj!h>uo!7{y0;}1AsEaE9^h*~Tze&sx2kejqT4>Pj4l!~a zEN9%~e+)wpaWo%ZhgnNs0j(CBb-qSREbZ65s7qyLZT@2DVAdR9Jyc-*!Sh%elwe~8 zkhJF>zBi7Ucr7oC8D8z`@Tl8aOxqOVZf9klIy7cbl6ZHP@+z+uW>#T7lo8E0Gm$iI z-`3%|>XpG1bsPSM}uUBJX0+M@MR%s0~t-hU5rE4Q>{Lc5xFB6w;RLv-lORv1~w*KhZ!5V=i@ zBLughlQd#rp{d}*2!YBilV~2_7FZQrarlmO5D#pi4APjoKWyNS_=~Pbo3(1&4#j2_tEq}-HuHx+0DoS5-NUEvgv+iwl--;b-0-<7Ro(E!5ogE>t#G(1-R%=OYrMZ3nO zb;Rh1hNZ}P@>JG_ps;PZyL8(1-zMVZ!xsx1=3z}f&<+tpzl|R4G-wzb)qpEWY~^dQ zne`0>5Ov~`;rGVOyM9O?t>qq`ub}2hh(qB? zWN^hTjvC(hK`Qy;-eVy6yKsaHetmfNd~r%B-4s5WTs`EmV?o(J>s@ZAmtV$phd&J> zJ5zkFG*9ilgvewq`|@=H$x>yS;nx>I*wk3;OA+gqTGlbv6O4KJb^PJ#H-Fwnr#jcS zy^4>eCf6b`!dxChf~B&GIGU?MXOY#5=;&HJ##1ZkhpSUQE@$B=Nxb|0!oioAx3|C- zhPbjnTXmKkIUI4&ctehB0UkHQ+rY)h_zeiS83wU^sf>2k(!bgvTgK@zOG#dZ6TlD_ z2)Ve_6_?UF)yVWB8D!!;Sud)d2Rt5H<=AgHZ$YlT_-5;oDL7VDsVc0J)w}G-nvPfR z%{_Z?Q8Ab~lD zL=cb1Hf-N^-#AhzRTSwi|4Z{Xh?X&z);q<3D|GhYlu$&+lEejGNdX+3c7)hN8QY(r z?APqaD*5;tM}--$bgGGe7NLbG(M;dV<=m7Na8+Ko7Ewaam#6=wQ$qgkYNa*x-L|^P z>2^?Ook1&YE%x=Q1=SQYY3i^886BEi_3g2nkz(ypXS$xHdVP4U+1&K!>QC*WJQs+o zs-(>l>q+ya?%$&BN9oi~_mbNMqI<0X04syI5Wk{Evy615LV6IpJi~0WjHd1;I&0B6 zs!=1SmMf_XUoyhG(sFWcoblzX#D_7^d}$9O@$s-gFhhA3BPY^tlhn0O_nS=yGrjLV zKcesJR)I8xt09>R_Cf=&ocKlSVt zmfze9-tUjAoCZFA?ITxrW~ox)pxr6n^4zthGP zNm;b+V~=l06Lo=Pf-jn=Fcmfc4Q5ozxc=X6dnR^o%O~Zxx97I0iNc|Z;f1VS&*5JkUYOlQs)m1Y zazye88Ew~ypym`w5;XHUxZm+^ugnuk)xI)p_CIViW?K58R=Pl|TmHcRb5v=0d(gln zDsm?^o90MHjK&I8u_x<9#pmuYR#rPX{X~T*JeGlH!yjnkGqe2dt+8-Qy}>RrB?3zN zV^(=){JPUh0*qrxA47$@E4^#Qnuw==E3Hm-J(aGWUH{YtC3o%GMc-VET#5B(N{epc z*?s!hMMI|IFZ#N{tU!WFLV2p*y+n@c#+OF*nZV0*?#t{?g7o zxSgE=c*x@`SKyH!aJDvKC?7^|R?7G6)Y#@snQOOe@#CJ_RTvlKb#!V$h@yE&N*)0` zKAmQR0gqno+>v1H+~w}A)WN<`916Aby`Dwm=qHSY3h~D#MfM3l@bZrGw7FRR}`c$+ld@Wbt!9G{P?!mqC z5(>9Qmcbf8SU`lW-!ZCVa4JW%E`t=^8bylQ2L**EkoZ?;BoD+Y4)wQ?O;*eA^UW->;A8o-S*@dd->hbhHER}M88N%9(R0c zrwcqzIjXn7BVDuYZ7+F5HO%`&63P`b$1CizQ}(d^+tjra@BPe1jhks{QgN-9TCXZL z4}r(SsI5McPz=P=J05535_filmQdv0!;?o^m6Bgf@rh1U$3Q<1W>nSx6;uD5DfmgE1&L=m?YT zkohZZuIw5uG-EzeE74J@Fo>8H&(rqo4~rSjm5uA7-YtEr_a%}>22Wh5Su`5~*0c^% zXEkq>ZZ|zXN{i#xY2PT+SykN2=hG@#dI4Z1s@%=4J0XP<$ zB(n2DN7+5xh6VPQGgema0EA|RAwg#r*{l>Z;;*2ERK$(Lwxs~=6xyq))Hc1em($Mr zJ4kx}HrkGZNdPnFC1P?`l?3v)J}s@S_P(kvD{*Hn0Ia0Fq5iI|%DZT=wUv8s zr`8RvS%a!}v$pqWTEDW*k*n|}gTJ!Vf7e#vQFd$|#Zi6(b(S`OoIPcZ-T&#&)-9{1 zz4!S9d;I-hZ18|RY_DD0icah7Q@QG1pgqF=uVr2PLyu;bDX`$IkWNzZJw0imEtQv6 z7XeERfyZjaXUmhF8`ZS#+PU}8w)Jg?#&vw$tXHFyGd@)uDa+M!XpbaF`*+l0L8NOJ z9Lr&&lnXDcf_g_FIJ2z@tW?(qe6eR%L6j;R_W%*}r4IB+C2By!ugw96 z&Rb!Bk>t^}aczG_8{^KnTy6XIkF)K`$&2j&IyJQYI%PR3z5dY;_K#;qnyp%AXCB(Y zPC2qynU_2YY7IA*YggWx^W@_D%vbi-kQrtTtJ~ny`dI(o?ff*t4}Y3x4+=z2YggY6 z?AloSidBwOxMDh}@y22kky>l7#x?D@9?czm0q01?r%2FSzXO;TRF3%G)}sJz!w$Rk zwAWSOWm_-z&6iWTlt8FHq8@~YA=Q?VF!s#ae4S!Tq!cDss83*+(eArC2VLLa96Q^d zo4UkK(HY*TSQcyVt7Vc%R>)4USbI4EG!3+fZoS-pUy!<{4uemU$PVpvtZfamj?Jac z0X$?gDT_9b;^-M9k<7Z)t!ul6wrbT%JNLk@wr}4Kni#FI_r}k)N3}Kkf!g|hPXP$~ zhb@%45Bfl-rJ_p>0Z?6m?ZcB6S*C0#9LfbaV@!wM`tM^Vv_o-ail1*83P68Uwyhde zvj*DAraXfO6e_n8NNC>B0GuB(VeU$a=6P;^H%ou!V+ z)WWvqy2nX+tW*!PWmd4)5i{hS*;+I=PFp=(*0!D<-K~iX#H{dME8lr-C@7#|Vo~x? zw)zTE84?2rX4TS0lPl$V{L&Az?XF)I`$>%rMI&gkRP{_piqm(h8|YP21X?7=f|0Tz z{i91m?RG5tknRyL4%?mrv=ts#&FZFGb2$Np_S^O)+w>BYdjO&80YnzbwfAT3-pigq zaVWbKpuLbBmuSb`@j9Y4_&^}m6C4Cmxt^MncL;1_f+B`9z&mM{jh>$u{9j3Z3KMBz zS73HtmI5FWZPl{g=E$>(1EV;$7O0@Sgd}~qP4PFNPXriLtBdSMb#OM(ccR8&+fjfv zV~?vwwbHDO)RWsw*e(Es#t0xXcUi7YS&$R&nN<#YC`^s*Jv<~DFqP3Icw@3A{D#4X ztvM!Z6TyaBc(qE~nori65!u*F7$Roes%fTWX$?iRAhCq6ZiQ&n5tc8kOn`}g7C@i; zMd7U^qUakESsb=K1ptrL0uS7EJ2sZiRUv=h-u9*3v=Wr*%@j*hB^rrF$g+#BsMK1!x-fwep7ZjEin8Bo6=vHP6>_XMKC>QoFowE1NWBzMXa37iO7N z@r_K3&QvHO@kH8OSQIfY$L_s+4{Oq>gZfLf7ZtI}Lck_MpzoH3K6z!2>Y7LBE#(lKp;+F8BMhfG9D+hm&O|}Zi!B_In(qu3k_F9 z!mvaRz(w^na^_MSIC_rts+W=QGSWkV$6Y7wtn<<9McbBWORel=avPs! z2vy2=V9*iRBWuKrC3e@ynVOle)q00$6}mV2Ivs`Es)2QB*TiyiS4aC^DDd6CtNi6m&z#}X%;Qsa$wmSf!eFBKIX{hrKG~yTN zT=iI;RX)3|Gi%-IvF zG<$lu-9-io&r1cujW(#6N=wzqzLEDz$7hY$yxv*YFxhBfIM!e=2~Ybdxs+6lNFSgFu_V1w0`A#VSkE~)OQwBIY5VfsTONX^tV4B zZwr^K^ex!~7!~vSMvo~|Wn7XIfV5GBd^cdw?2W}w9FK_c^3GbR@AxY) zsN(}TA&=s&q>-k*#4<9prA9Svap~_T22Oz)q}(KKqAtbdLp(yrE4{RNrDR)HztZgh z54;3XTXFc=_6#1h!*-{_O6^=~$7BPxSA$NRyULcVS{tjgQi)Uszx$w5xv+VRlFj2X zNghW?@;I?)bDbZOX4%^Mguz-}%pC?BsjxP0MUvp5Rq>C#{Ea<2WSX6OS$BKjqseZ6 zIqSIHtiBG#D*0CNfI$`e=F87)#PFfc;CJ6^U+cN+ZVm=P5}+25)FH_yT^@yN*4Xf` zKDUv>zjig=(j|+nQRAj|;9*Buz4{H^gDf!pw6v-=^_QRRy*FM-N-PmopjH5dyzji1 zo?gxBW@cKWtftnYbsKBkw7CGQst&j+{I~?l2M|p8d7{1d)~iX$$m@`oyzXl%2Kgm-4)ygJXB^X8yXh7WA~4(l5I>Fk!S28PdM|797Okyk z@4m@dKXI7J1B&SakNNZF+B^S!$^QBGOOtgw`J79vU;p1)?Yi|8H|2yy<-v}wix$kc zd;WP%GJa{kbn4dA4mt8TJLrgGtx5A1g);Ua87*8e&+gsCyt?eTvmJW$@pj-5M_X2t zW`*Wen(}X}xbT=%$)lox2lU?V0fb8C2a%rzB8y{51k#kL0Cr%WV4Vjxk9$YWvcsCx zv}3h7V13y-R$q$tU`Z1#?G;7(`nzw3W-FocofP^zi zvc}L%K(%tk3W3xd`|g{ews^rDoAAR(|NG+O_wDbu+-+?-bSj*&E3+z9Qu1oq+Pdwu zi|6I-;ib@r@>(arU$t_D&6_*NhJN<3Wv^UnoJx3=U2CP%RQ1pffKxdbM*- zHGA{>*%j&hGhD{WnG-zWEr&?ctbq~e{BaIjwu{R8W2L|({ zQd>Rw+Aw?Qji2qF0sX9hpAIDItBH|}_R%JX120`~m)z2%T~_Nb91vrg90kZ8xTNY z=CsN7n*$EDvo5+qwhg(oYq4bNJE;9QLN_~GlPTpn{)aL4%%k_)qzU6}*q0yMT{mB2 z*W7xKHE7sK$MEtlt+QbWszdVH@8Bcs%nOy5>HuJ*#!t-)32EF9qwVQ`-D?xa|7b%# zdCvylexrj(rqo+&1dJHm%R>m@!TJusqaxTm^0!Nc0T3!4K!nbXO{DU?RW=_NUonM^ z*-3s<#lN>G1=IlWjpbs(i?w0m<=Syw%C>W`M;LM2TrAb^`GtTOZ(Ygy#*d(`aB05 zNP}|zrf)|Zc)8i70|g>V-$A6bXRnjJ(#A!ZKKbMKqwU$pAGBAVdDIKO+g|(G>E{oy zUXnVhNpi`_1~~98D;a|&-E@HmOdYjfDpU6ilvb_UwcRGsv2#~RD?M%CjaS=u!-m?& z@BG*H-v1!`{U83c@p}ofre0j_Cdmj8EHbaGCf2cQHqe32l>4Mg5n6~pF{pY#<9K&U(o&m@g&TX|mAMPZ&2_z!Qh>9GK)g&GJz1qKsXr^VVn2U#5kG ziFF|1nWqxHhga2no%Y8ofl1LHxF3PXFnjpTpKXx9qko_F+O9eRj}VuugNPCUMDDt@ zk`1_fsQ0NekVK@;S}prbh@Z&1kc+&$#B`S|USyxX|F+%!kE?9KJe>uiFyQK&?V#Tu zYfYQAbm<{CCr7|lGT;cAt)uJ$4j4Md`1~{bND_-;Q{MIhkuxs5+&(_EztySNz}|f6 zdD~;3{j7-$>qQyWNrAN1Ny_oO3IMCTyrM?w)OANY`{KXYpAO&03-I0>uNqDT4YC?* zJ&&XiIz$-_6b)Nkx+XDzM@Bh55bD>GxWWMl1fv545NXpO!*_%AZBJql`L+FNv%HTT z1YW5X6Vflkz_E*H<{hzp|8(^U_Z5-7&ur#OJL}P*wuTqc5(WMPzw)3jd=HI3W~r?{ zE&_)%F#^<97|b7jOOnSW{oK~!E~@G%`I#BNT_RB)`v^qtyja`IV-r#GXB^wd>Piw> zQvwjdUh#`OnVx?5K6~!5!CuP#`yFB@pL3DzEaN(c^kC~KEqIWaQ%q&0ym{*|JRAQ= ztrt>Tt{8Xwj-Bo36VJ4lpLxWF5BvKB>qhRtwzx(-EP@@ldw7N&Y~68Y?Q}FQ_W+N_Uy--fdy{1I*u(agwsIAdPD);89X_RchLs@||)5nAL04w9ehSCzF^ndxq$+=_~J( z38j3YP5>4T1?>b_Aw^eD0TwwtOLcu%& zh%~KR&6(2Fg;Eu$r!dptSsb2hptw$P`#m^z>_Q%3rZbu;Xgoto;vrd%B@TFp*9 za#yK&D%lmc4YgY?TW1IK@8W=uURVQN3-g%Kqb= zW!6#0?xyyy4bu4k_Ra;$uByD_A9>AWCXadLIWw6&AOr}HOb~noG1Nv-k)X9uN?X(x zQE0J>fZFO>YDBA|JOpcf)VhjxxqK95Rl8cD^%W?T2;mhhuLQ#6HA6C!naNC~|KE4+ zzH{d0-gzWvcA3R+UR1#bnt1>K^b%0)-(Dn+G^g+salG*+?yD|Bk8FL z4;N7c zp4wx#2msDnTAN%{ClXxou9gmarPi8mm{qR)i7ll}Kr};9cpu-h-@fogR(+n*IiE~9HMV^|+&MDr{m@*Uy1BS(4j@Qaz1VRHu;$Rv1A%eaeJ4Zv+ zbbEuOjcrmfJ)yO|&r{^xrfNAls0sVk7k5hX2;i}1Ndg|IsQ{cZx#!l%sCmwk8vB#g zjrIqcfcUnR_4ZZ;Up!XJyS^Y7-E-Kd;Z0-HQoHoe-)mp`)(>svX=ixGJHB?SUHqoCcGnNSV}vbX4hPIM{iR;G#3Q)k z&n4+jlM6R*dLUcS-1!T<{_y!c;`_; z(%(xYb!5RqH=wN=hK)ba!|8 z%=6d&-WzO*W_{oJ-8<~dH-6H3_P5)I|MH!-{^HB*;>#|#6(^mde2GWaaJ{jR=NQie zF=eh%?o`F9dg9T|cGvgsu<4qldFm_9w8q6t#YBf-L{}L}UDQ|jP2t)xva?Ll^E~pK z2kqYkl%#XcTW|FZi@dG^ZZN0#O3#qeb>8fCx;3 zsG9R<5k@0t|cD4Cr-Y%rI&Hqa?$|lW z91yi2-5cV}tv1y6D>#7g9G;-|9Q~b^!e&-+U;&WeZ-~aYEt#!{X zpAZPL@dZDW#PdxSv*v3*`Ja+Ko+1M_!50bGh?GNHkUVbt+y*!7cXsYmtg4HxZq7XS z2&1flQeRztb%c8R*HtEIQK4!cxYus`{00SYZ1iH+z4=0`Vb=R72Ug@US-%`N-4*(P zbnsB$5B&54QD%H!ixNnI{$(KXA;lgyUnUD}ZS7X>L^nUcM^=FnGUO+GUXM@d?4NtVMYd+`I&WK{^3xBAJp=U@VNVG1 z=r0a8iogf;yGQ4{rLx+s0Fl3W;68;-xm}WoS~%>2JSY<^UcT%-1Zf zv&}EG*|#6xY5N2$ubwx<-n3$_&5{c)5(jE44DEcM|8`f0gGW8!A)Chn!i;3VBi%Ga z@D6oyx%%_G6Xsi+>@I($Ada`|_bV6II*6clx$avJ+B=@!ZQt0q&8}E~oL%~sW~)+} z8=u)@*KXQwS2xZ!)L#cQfv`gjNLXNCOMNv?k~9z!F0%}O zR-a+F-*|&P_R#&Bss0oD>7C!T4{i8@{r(%*d)W0}pZTpB=9$_km$Ifzsj&K{Mz=5A z@^>Hi>!_E~`MSD04Y%3tTesR{58oe}E`a>4W!Nf}nd| z)>lolg;mj5-mjAe_z?kQ0OD{dVFbxLfjGNjeqtBd+og3y0FgoNkC%r>0q6-|!UgwE z)K+rKy=B!xJ6m7&d)m9~U!K@y&+P5C`BHP;EMs-Ofc-2P)13+HtGZU_AKtm&?%CRA z^;(JY3P~P-2dXM0kC4I<^(nHy*EhR-lD&210>$0>oqhhH?e<}*z*aR>NuAZ~_LUoN z+GJNVy?-Bvo+jQRyePFa`9*K5&6Ln!Y4hbfn9bh^czPt%rLJX_5 z>)zxu!@qaOH|^_R`mEn}!$NFLHDPg{u+gIf4l4vZ?SnYo)5^-RT=KmqFlDF|K0fCgVqr;G@p5v>bl6* zp8IC4MWXN}qX-_@JNRH(CaI&kQY&35(O0SA;^*S#PzpoKl8E0S=G-a!MV<81<>LB_dbR$A)L9sL zCm*AUcVYrFb?vt2+Uyd!&|bEx-WFtR9%=B%Z6$rjbtFp`ta|$?3$112v-W941pdUd zsdj=q!7f~PvK`x0YbPBy-xrcXJ@y4%UrPQ{7b@JmmQ4nvK)-y0LFX7Jgzvcg>JO{U z2W`>fWuDg!%PDS!Jt9aWO-qmSFLc%odGw(N<>^)7Ahhup_h|k|jjdD&bx$fBDXhA- z&fa^?N5%ZK1g_M00hE$VnJsNm9jri@Eb>(2wvPHmi>*$~oDeGmF?7lVv})_>w8+-q zs-7emB<(&VsV>?9AQGCTT8m&&N4+8o*D0_fQdlWx+^5?|f1t9OQ8vjI%UC{L$j>`Y zS8y$+!6_g|7DyJ;P$>`w82NX%_ZTzR-C&C}5-B-UG7g%L7x-mosv>HJu1F<6kSEsd zvWF}bvqE)s&FXqvKBv;{9^Lx-{^|oS*iMBvx#|^*`q@14RfreXPvpM)A1}!3>D5ii znj@;?f1Yc#zkj5~)~MVIC0W!6Bv6aJET&9wMc8DkCL{i$!=5 zhFMNnXi!qW{wWJ%H+$|$Y#0Dx9x%wQNWYW1bl@FU;05q!Rb8SVYlyh&>oDrdQ~hC` zQgigqVw-u{>NIC)Q4NOuRQ3k;!FgAZ?wXLd`++s!QLWb_qy zjfPp%#Ln(C%rL*?SYA+K_~#uzS8A&=+bfV*K4*s14i(M_k{4fIbG4PWUW^}at1j6i z29i7ig~e{A#**<}72W;YU3QHO>DMi(whQD=T&b^8nEbPvg!rQ;ciDQ?zo@F*!R8{( zFR2uuz30L0_E~v~yKHF#Vx?yTQnvNz=xDV38SXc|5Wla0)db=R9oy zG}39P;K4mZtt<3rZ*Nb!sv!eaznhNW2jc{l72~2wz=3U(#8Bf}Ov9r<1d!p;%X5cu z#-N)no%`{!i)@u7LRffoshN+t!zel4l8*vTZ*7<`I9pQ3Yh@3C@$roum^FPtjI6bq zL|860V?Kj`U)3!4bC)Kz z6u_xc^<1D(Dl8=Q!OaS-B4*y)SmPm6lHxO!cujp9q>AL3eA{=Sz)_G=e4#Ae!d(Le zICSYmRXanZ2|3m9?8j(z#c&~%U!eK{PkUXNk~pTUP%?WsbGrQW@qh)7z(vS_%Bm8T zl{_meG+~(J?aiT)Ux=GQDG&iQ%JTU!zr=2d1(*BhK~*6SvBOStU`N>TkFIqEdt09 z_A~EC@Bb8RAn9Q?#y6h#bxgHJdM@ZZ}w+H42IH%oGLsl5YPaPu_%(qu%X1Ei=29QYHUjdPqty6{5*CD|$$%p20ttK}TcK%C}MD|EpIcL)BetE+^ zabH>r01nvBco&)5k@d0~#yBZ$i^o=NL$j2Pt!FBEYXifAxex*cFRcdolVe=xt0!D9 zdBetWg@wKv3!Tp;1vuc$MJlQuF_-I_7usv2{(|e%Z+P1YTU`7Im?3LOwip0~M0DU_ z6b5{*ZLXIW(_~kD#eUC{tK^quua?h65~`FP1RKR^^;PysUEiblX_OyR=_$bb=Z121CLUIEXZ1Ifr~9+? zts7r8MgS>te=>MUFb|LFt1qAJZ3i@GV1s?EE7b~0Hzpd4Nt~n>1Tf4YgYnCXVB$`te%(5^Wi2?-GB$`V%|5Tj(NFK2N_~2 zIt3zt6rH4f1v-diekNg1Cc8A!B6nY09#N6Nkzh(OjSdBH=t}x2@tSK95HzV<7D)X# zTT;pMT5M`>N2k266p@*Z0xfjIE=?F@R(z8t8N#$4?$qK)ojqE+L<=w}n=mAP@s^-V z={x$6fSR+lR(XTma{+HsrmITOiiulA1dtK#dzcA{!5pNKD#d8pCTWCtTBx*e4dr@F zrKbQ4$P>7r1J)l=r`V$ck|%ZUGObHeJ9~z0ZR@gfGUx`tzd=jl5~y+0-YyUI-mJ-m zb7z*j0iKewvRC2 zmsrDNfxzN&MF_r6K^wXEOc~+lD0Wx$x*PevgWk;bK}9%6uJa4!@rc(PiT5kKYa`#1 zSVIJm5|04}cNpY&haio-AS3&(jvh%U(yuE+1d$SVN~$__fjp^Z+li7quyxQI00#Z0 zh*25lgcNenjuqH6)g&q_BuSsZm?|qC7MB9_4O2*2@QK;v_40I_Emb2ayi*Z8oE#r zLH$-h!dEXTtXF?!Ajd#^ttrCh#m=wUH*!9Np2B$!b#ydET zMl=VED0vN%7h&hV#O1eJUs*nP#2ML$HX#fu=z%SR#Cs2q0(8M-Ng~9*qOW2aSqdOrpc2HJjX50)W>53=$*DE{u8eFe zV(EiXAOgr>6e{uc^vkjTz(IRaMs{X310jg-q{zRV3?4lP3KVd3^wx|h_ zI#?tDirp6So?9fj?W zO^Os44h4LiYa`*#L-v=+u*5{bIz`Tnc8=jtvh;Z)fRvu*L#~mpUVphVceKh=t3}J` zwo5YMyiY{bJ_1RGKyf$bD8RRn1BWDzX`0W$3W0Mq^FKSb^+f4+V9Y(>IB#$SkTKA~ zX|bK-Jpz&)GPV<>5s8GCErQ4x=*ZZ_ECm8^psI4(*kg`i<9?1C5SD{-f+MVspkZ1;W@v zO~v?Qt@>I`n5`qau|R|r#$_1Cell*x3$6* zv%N6=;+5i3fU(G!WbBbxY^!d@6kicA>x!N;W{cZ`SX!wl5CNoAlrBL%xj?dClE`iu z+?hv0)Y4!lp()9$U4ll%DkcmCkRpgxbx^u0K!i9|wE_C5bs zAOgtP?Ylu+o(m*s6i{ygB-lw%G2jNw*P*}Ix}JH@2Q52hn79-O zV}=hPn8QMor?O~Dx-Uw z0EJ_&?Og!-&anIU@|54=R$JO$TL2|^|+sS6o>#a@%ns7PwdP>o4{zoO&HwUyRnxXR1B_zc0fM=e7T|< zkKSB?N=N73`%--cSYXqj-w4E6AxQ(!;2-r=KhRJfQtmiN&c^LTr$7Xdi9P~`@cb|u zQZ5t0W`abrPm;+#0ZNyCV`$~0HGoO@e$5n-6co23PJuMtp*^apmzm|K3&f(r5Ds9l zFP95$x^F{&lQ)zz;th@!j7bVa02!0rHad-V5GVj9FevOM7~k6^nREzPdW0r??ZSkP z5r+a;oFN6Sq-&YtM(2UXNv&C$X6Ok3IAB0`{o_%GJtF`HQbt&BBap!RfsJkm-4m|G zeWXAk3Pb=YM45PgPzpHHQLcOp2RjMsF4SB^3GNiQ^vFdR)d`7vvQkQ_fb7?==Zc$L z3OK0(y+lfc3YOXhs7YKRP$7T;P#|GU*V3>dT)JnLI9L*fe7ooqxJ$&x~1~!l?|m&O34E%Dlag)P}W4*=Yj=v2wqYEEp*0S z!4j|mFaQf&ZqxHK0=*oZb&r=DPR4ztz!6X&0>}{%FWy?10?za^oIf9+02-*c02ROl zX$2cf8dNBqdlS`HCfo|=Qq^XvNSzsbhxwid`XE{Gd;u&_MFr^skl-KS04&mm??3?u zjLeUGeGu}+eWbwQQXm4z;ZiQ%H!KPag_)5DP{FecV8NyWs9>z`(K+q1OqI%Eya{6z zxMWTQW*qjM_QZ(+&}M*3nF0>o9a2ZglD?2BI9-0A1@ORe`WnxJdo)0Su^ZJBAQ6Cq za|FW7m%N-zVG%I$Q7E1(HU%Pp6q};4ydhB_%`~|oKTAxCg30zO)GHzB0T%$p|8<-I z3t={rXt0Xvq(h!9Q~q$uh^-!3i!uyyx6|&v)1T zXV$FUQ(e+k^>lSl?>!L;a^i^axbOe~08vsxL)H?|D!z@_+OF`ak-HH(|+Rv2r3IpO1@o{jU7!*?VK#^oiS-x zBHsvbUnDf0002z#_YZ`m64^Nb010cUqT#F|E5l`MZ%c1zVsB(h?{53$T@QfAo$IY> zYwBzWcDJ>$bK-L6CHaSg>#hAxW*`Co!{ThsOQIpG02a1)GzGKKGtx7X@WF$@U>-*k zGcF|&v44xded8suaCZK}#lYa^=0@+vLT~SA&cMXU$;rUT%)rb{_r^iznuc48>i!(0?$-ANde*J5lrtX&iW693x-)_A*$nf67 zz(mi;@PCOpTbljzh;m2>mDZe@kfm zpA!E`{ofMuj+So`H+&!3dkp@u@Sn7Q^YbvgL*+l9^DkWfLwy4#A3P7ke}kM4zKGWH z0{|cZkQ5PAafkSm1?{iXurM_1>UMl8MX&-K(EWNO~vD zkwOi6APIC_RSgYX&sxiO+(=tgiIJSSa*q4?ivP-5#xN&YlK8 z`!Yn7XLeR6%S*b2Z32Ox!vs*kpTk^+sX_%3sFJ%;4DasIP(Wd8fu{8Gel5_iOWcbn z_z-peRJP})I9wL1u_9vw=$Zfr2b z4~;$zjX8Q&0#P~<%QSVYj&bCi3aqdTf`U-mjSGbm%q>{1!NQcjOm6+tZc48$1Zfx` zmiH>g*xei_VHzH>nxAoeXKl4!jP&=ampmq7Q3HjV?s}1@EW*0dtv-d7ncNE2G>$%& z3rU;Omrei-iqo0`{mlbq=lw8N0l`8I?5q_|1cySwq=&%a@cJVFgq4-PgHg#3X3LT9 zRO*pR+ymi&1NbiyBB<1k)R%X#ktj+A(6AAlNb&-RAe}x!v9JW7{^WWfcO~{N zM}ultfY3LIh~*I0_?0T2TW`0}A1uXUN#n3>Z=0WT*Fa6BB2l16iUK9kVYe}=K7k#X za4|OWBV5u-(Jnw6oEKn8EiVKmg@OIz@v7rq#R*kDejUgdf$(vmgmuz}%rLDA!9*TGFB9@vT(?-e%FeY z4+Dt>X+8QkkxJ7Mzrd0*S)tsmxLD;kHLSh+96&+;{%MQuoal=_1)daCOhz1U>?>5< z2U0C~vtD3Jv*u{FZTHgre5tl}*#!!j*{PDK#(B8dOr=Mt^=x~DsN4O6CigM`*)G95{r6ebWo!MpPOu`S zxlwTLO~<{R-i?wr#Du@O7|xjT-*y(2T2DPji5Lw4G{tzbR{c_qX%XDVM!kz~T$&e) zeO}K(Z|HuQ&mLJRn1Gq4XOtgL-ZBUvlIeDhl8y54^J5M;Ck873fzEgjAL89#C3uMw z5TXl$f+bNaMA!#DF_4qt_?8B}Pdr$>iUN`!6Hn*1xwZyHMxq>$oArntuz8AT3ENGz zB>w)46(S54XN3+1lqZCo`yip`8JCX+~bI z>7aELeNX@D82mUva$gT-xK0H7+{77&rm(&usWN6{oecw9Hp1VmrC6<^8IXgFU^kl;*%Y##VRmm?i! zelI<^HsB3w4ednz(6BiUQKTGG9E{3L8COA-$?D`E8NhKO-3XwrlP7F2JWiOqZI%d^HsU(y_=3MEp=i8I>p)XOhsS!PJ>oO6 zfx*fcd3R8w^uZ}w@71KCloM?wSWKli$q)}$E-Pgp^RS!3=qRY9H2JdzrCbsi1&b_t zZj!q(3JMO^P*5;V1#V0=TjDJ$NR|WWQOIbGcxhbx@~hDwMJ61UOYeB!{NsD~uZWKI zg#PQ&5ebnbb15TROX(!XTv97Egc5=lH9f~=y%v6tpfko|BIFOuZ!90*;HM1A4VZo9 zq;Dy~By+Xz<4U0YxiR@2g)Kmh_APVe0#Cmn1JGZ;#QfSnuVdiH(+&{*pa~15MhOHZ zn66kyGWB3m@vfL2=9Yb+QTEnf{z9$S8g2@fm?T?Nx~IGR?b^RO?D#{&c{sz->sVBtYf zP|4zeX#7$6JMq?^?16s$8Ex*!Ds}G@BglOyWXL(K^xP#k-3iGh4)6043UL`%G{75@!9xK2rM3<+_WbWD>9caqq-`~Iq^MAfIk*mYQuTN zbwXlCM`K*r(~>ocKzXhd41|(w_Yn74ZzhmkP)po3yO9V^OZ+o2VS?>2h>?m^D-s<| zGkB@Yhh_GBTC6?Ja`;X~efDDtiA2DM1AI3*bU2HNFZ< zA`1B;sJOgGN>szMBItLKg)A(pn)AZeaWRR%Ff&AeBgs|+syC?*7pseHAF$t%MC0K^ z(EnSEVu_pkIH|aHd2CLW@z6*ps7%QafgK8}lpvs)ZAR8w%+m^jWN`<*(~3cacjB$i zNwM0sqfacj9;5$0+xlREzx#wq2}VIFCIF?f<-3sL7p^uLD=+fY=z5<}>aNp?qJS}M zxEXl9e5?kx>82pxLcKluaFVOR62A4;2Kw6f}5p)QSEV7@Ax)q;QpK-nW% zHECzDp=M1^y9gO|!_OYj{vTqYpscVVSWyQV%9b>}m&8{<`+uN_m1;uYB=DO(dU{CB zY7_SIPSyjzx8q}nYC{4WARy{dgC!7bF*d7|Sy(KgiIrZG;eZ8EsrM5hC~1`9oYvfL z%u!n*t3Y4_NX ztr&lHONTG2>;zi#($->Ne#7$J0sZX(1Yp58igPoXMp8ldscE5as#LilIgmh?4-in2 z*@LdDd$KyOa^s1{_;ln77w_r%z^3=*{Aw)3qcH_zf^Fhtt4ZKJwa-ET!yYImX#`~0 zVTKtY;x0jSs+Q;=fMk$-`>f2AD;fUh$PsD<0Wesh3pMOvqjeAc+RWxyiF~le)3O(N9PshgfY zJkNd5U*xw6K>~$BawoD>Ymxh&*Fo%H3CIP3_65P)t*4j~t|}f8EofI%6cFfR7ywV}ONj]G?BWQ_Olvqmn}UU)$S zHxm$nfb2SxRpP`WlxpYDN3Qd3_^YtL!fPi%MoY}snXgw#JEv8#i+JAv7tv#n*rHnF zx=LHjeYmj?OI5;IZ{Q9D_{Q^{WVF(AolIS&;EpsWo6HzMg{!l8yjl;UvFjs11)Ud@ zcQAe=1uKN18ff2bppmSvn9Xl%sgxf?)7)sRds5T$yok70XV^{g9I26p&cHxfQ33Dd zKOJ!#ms~knTf&u9Y2eJKIG;!?BOu3QKTDgHLHp9UUXT9+Ac5QjP`4BcN#fq#G9l&q zs;G933iC48g?q<>z!*hIHQa&}%(mjE2V+VTfm}I~xQ`@SNQ|mKfw`fK;uTH6{$SYX zVq`y<@jfnRcepqAOOXReghcjeg?x{>=cOUgun0NEf|g4=-F_)_`3sx~fT=`GCeqpT zDdk^s**IhU1odD(Z(#^4 z7{V_J=cxDtT4|jr6XJw?V}uC+L}BU;c-FTEn*J3FpR;^-wsc#gB)s@*z`G`Y0b5}} zP`LL|j87d3$)DfWeDN!4Q;x|$Cg4#RcpNWNsC3xH#i!m9FwuzI1Pk>Bm~em)nXr;c z#6`KyPn=5Cl!_AgAe0iUml4yabPx^hjN1__+M5g%!xIz;BIG`=2m-jg? z09+_#gao$KeqxKiF8-<1j(K~lQ134wkoy&tkvM<7+nic!?riI4L#xEQ(rb5wNNp=> zLtW@Dde>Biy?4e-P)z)*6}57JQuk@d#*t&PE0@f~B3bjY%i%t&tk%bAkqYoI(iUhYU@drQ*uycrTMiNfbRH~* z(GFMon3pcXLjWZ#h^`tY=Repw;LE5ZdX5E;zGIdNYDy$MTrehuzdy$W`_UuBS7#dt z^#z5{hK$WO=B8x^s}lNsQ}=Ed6fn3mCsMGZ5@v-E`^H8VIMfp1DYqG&25oqw>k;jI&Ap za39|kypL{xw7VZq8W9r@X)(yQQle}e9u>Ud3=LSi9&=XZG22dgL-qSwApu5VH?24* zF2^7dVANG~Sny^=QdBoI_?L%{#9QBM)vkekxL9Dl^>i-&$z4j?3d!h{T%D7Tc1ZtN zYCwXxqb!>@LYq7H|5dZRDahneT1O|c0 zCbi3Ga&~4a6d?lpU~8THRE=MGTXFT?OVRs;;{knf1$mj)cyX%CqF>^ogFB7t3Os1z zMnfJ#=05zFml(o;&d~+=W~j^GXpG8g0|}*5%AY9&im_LdWE4f;RwD)Nkg)eu`FA^l z3`VxE7pSgC=uBGhN-u<>K`2!|GFe0m-YUl0p#}fcz;HlvriHCUr*^7xowabOu0NP( ziZA&$T>~j@(9JZ!%e~m~y2lgi>t-Twn-xFdHhNH^6)RD{3&o04>m} zAl)~=G^aUY`}-P(`D>*LV86OQ#{QKvw$v0~X$gjK?LVj#2M_~e2lDikY39mQ{d0Z5 zB1OZud7dG~WiXoqkbrj{7ZL-SxvP|x!_OZVv~7X?)ehM(1fr zi`I_T&8+hUV%smaDu17mKH@|<7SeLD)7wpaphgE%tf*+o4GTRM+wW&;?<;$mezrBM zXtdY{vioi5G?|Q$pyO-GX0)=|uCz9ua5tNcYd1f&>%b)zeibOwBCoopM?WpLf_k|Z zKTc(4)-8I0PX!n2^7iFLL(cm`p?pkB(`38&Iia`XcpV0|tgKln_i$2=%Q;KNv>@&E zWYbI33U>weV9nH8q9a(9mbTa?!J)thp9T479A(@DoC~0sgaENHO3!!IY(jLp zVNJeR>VlWi0Hz##{;Pf2L~ygTndLkoT4{ckq+=&1he85pf&v&%|LoTF{M4~(T;`JK zj;Ld*dVBEmtYwc*D|JsT6R_oB7HuEvIi2Obq&KpEf4-N})kfHhXQ;GxB}z!Six367 z&1Aac?zWTX)xz(4pEr!IZPyjqws#Z8S~Dz>P8Yd`(pmlm%BGiin@P;rX@pptx}`ACy?HMTFqrD{2Z9gp8y#AmyvVDftULfcL|9#{5DQE-zLcA&=t zBYOO*+Qx!mJzSI@z4G;;N;^P|zAVfv>+LOd>r~=@tf2{5on5>(9VQ{yT-*NG=7d#t zHa_mvA+Osm>g`;bc-ob_Rt0*vQ~+TNi6;YFuuE$VlGqGAPK{9W-(NT5p48 z;FL#5-8Oe%kTl0-bGVjeb9j1I41RPVIhR$|G%l-sioyFu*!=9t?ls7|*r|-Q*tRLa zuDDnE^VO-e?KDPwY~pJNPtwS=V&rl8T81Y-&X2aP+S@`|Wsjr*3Y{7*>|nc*oq-!- zeukAmu2!u}nxLK(cJ0Z@EMDstSQ|9q{iyh%a7{~UkAS_ZU;D!eB{oqqwha8w;S?W& zY-JU_MBQ$TsH=5;L2L5)?j+?j|M<+g z?T?H9eXW|d6M@@_sCf%#S2|k*&y7Plaj-=)?JBIK4nUpvY<%HOFE1U8<^p}WdP8R>R>Cazjld7{L zJC7|Km-=n9ovG@^gR%}JuHJRmadNvk1bMA}yy{EF+iC8qwl~+iZ5!4nYUddwU8V5) zkG96*(pg8Uk3}3s$rS$LA!%oNl>`lwbpKZ0KD96tgj%|s(3!CxML}?NB@?vI^h;ra#AT|f5L$X%T(IM=V>E(HIiXO;V2%u$ zwA#cq0!}t$Iw&}uz4k#-KKshF-zK8Utmmmk%_NYl+xYew*~#mVU-61A(%+}T8M(Sd z)k}AinIg}P#9d-1?4r--@&gGxJ(Ep|U*n_pB4|k&lup6w zwHIad(~^B|8w-WJ8%|pB?LZHKTY&sXW$7nP9Ecz*hC^K`nz!mG@+?RY0&+Co={8OL zl*J^xHSk{Gmj5bL+jM@L-fP6j7~WNp!N;_f>$diIJ<3vfZBZ#=wcgg8|M@IheO)ZW zKFeLNPk1a?Q0613Zr@UwqJ^{0taTs~b0wIbDoL%Ta8%BD}Jy7gatXI^`+M8X;@mS;}uxW3+Zo8Yjjg>u#vpwco&f30;p zTo5)rNcsR1&H~8(@ig{!8|Byia-A9FB(z!=CY^T64FT8k6#=&krf`%{=3&38;6M>6 z$RJ&0nHIH=F)En77ZB#7XBYGMYcXf-H{36sO1>tw-}t_XdNhAouFA|^uYR-Y7u@9P zg0XQ#+Qw742A)_Md9q;UoDm&N7g#OwK2(ZtA0_a_#Md{uz5yxEg+;edP^&-8<>nwc`Rh_fp1gEs#q zdfFVb#`lj`Lif0q!1;Dj>9!y~z_!d8Roy2`radsj`Om~oUX3ulEu?aUG*WBDMK(=( zc5(Go zfBNPY&ryQ}yE|V7XHTcSUXFcVUXJVG7#Sy<&#lrvAhCvu;m%8ni1$!-J{~!_EfKCZ z=k+bRc6q->x9!D*t+(RY?%B0Jz0MWI(yIrP%5!OBXWNXi%G)|0f5vLtC+wJf(p>uk zNtW&N$Cv%#cyc|*u{g)?udQ8ve2MitL~W!rBZQ7h4OX`b&sNSrGK&U0{; zXWcz}+S}|8^D?p=Vx#&CvVu6XztvYwbAr|f7T34=p3imN<~CM8C32j7%~R$l{q@jBrH5t3j)+ zoubg2u=!G<4H5!o{dE&>O|@yGYP~n5HSDZ&zEY8}*!q?b)6iW1XdA)PBwOe06j8x; za)?H0{o2zKN9po|dB9Gj=5F{^J0EJEx8L(kq-u%f>>iRCLPgzn5gVw+XD9@=tA`d9 z#k#U7&+8&+`gAwex4J8Z?@n&4uEG*c6PMA6wT$Pa7;HyOQtKd9l)1{Z%6V zcEbm@b)U$u`-IJi?zRjHBOR%CBs&GA^(Mh-t>qKGSubRlJoSZl-5woXES?EW|5{&N z=Tph8`heRef)61``rtOl&p9RAM+tR%+J1_9uMBwXW#6*0?se><#xFKECyB~}|9VSQ z*-}sS<>$9J4GNg3bN{J@X1R=sh4LF4!+>tH3WdiQ(Ti@VhdE)l76NunS=YO&sI)-x z-=^&8RKYj5)2|zh+k#xj;U2;kMXBxvy)ry8yawjzgj@JOUW`(MQ;Awv7fu_nvXdA3 zd6?oOH@y7>+{;_{T2DC}9CX}S?Uz>&HB3{FTa^6R<)5#@d7E6i$|gFWJ+k2z-geGw zh5MN%KF+PI3P;#Ke1k$$&-t!WA=f`+W!t)IJ|267UtA7KPqz9rtquo^Zw8e06R~%p zuka)mdfBxM9z~;E?=m<#r88J~c+7;tl+b(Oe`$smQW$i@=y98@SS*z>Uxq^61lf8H zGyO=%fI$4}eMB0-V|KEfevO`_s@W(zS&B_AMt#G|Z$Xo+aN-3oHZFsR*e`*h1CBQQ zMc4Fs7R~i}CoYVN6>Ap1Krj=#Hd#cF&voyhWk1_}%IAK>%Wgedyt#_cW3!@j0_LdPuyvL7w4Qw9rCsa)e);E0FM80WW-Z4NqLA6VRe&SSM4pLx!W zX@7Wf+jL*%y*lSr3v=*$wXB=9KJ%U%V;z(0dfh`noMQRzAJ}Q#YEIO$c+&jXX_tk_ z*1&~LIsbt6S4u`cO>=zBr%Bhk#pQ5A`lUFFOrUO;)n}@5nX*8TwU2NKpH91UPo^}-oQt+=Dt!A?V2y#sGp%AVOUU(XpwOq;gQ_(tG$~jj zpL|QQc62Mq+x7 z7CD`dR{EZ)$G=?)X}?;tFX~eKn6^60`E4U6d^qpspFy^{S&WsV=A+*5Aok0+gz2w3 z#tNSZF8!fGQ&1tCaU<^Ik5S?PN$hJtbci`&i+Jh>=P-Pq+I!Zi0!{glFNgf@;TfDh z>6RXk1iqPR<7OitUC$~OHCjTE^oQ0Ro=wfH)@(O}#y?nM)aXb0<-tz91pDNCSqQNT zQZJ7R-rV$=O}a5S^9>rS>1?1gxm$NMn4L%VnJpu?~L}TIr+WZ)Qx{z`5GaxRDt&yH(x$P zB83h8$_;Y^i!%a8Wo($(OnWN+Q|5N#x`()>7N^xDh27tV1=Xo;?AyJclS^k%kYLJi ztsXtUjfk*S7yU4=9N%@@)_GU6bi?zC(nm9yoFl?HnU?Q?NMLU|$x?$bSw8)vu;QE4 z`s$&{oWx&9JVzpBpV<6@k2c^vm;AzHO}|=N?QtdqUm#+B@Bh6}t15lF9QMirF;l4R zh7O*4&GpLxSTk)xpFBsHJ$~17r^eZZMCaL?b24o^vnX79%q3k%H#%b1@vIbme0u0> zn)#6J97g1p9<8$}w{(wc791*!@Y#~{>@vfoRA+rGrktwR&uRWOi$Zy!l&x+5Ikb(4 zB|y~gdj-2PH@@GLU1h})+`2;_#%a-Gwlm#tgke*8GLFz`{>z94HmB8f`3|!^`X}!@ zQo`0NvyA?FtJ%TRr#nA;O^=I)n*7HM2EO?2j%maM{XKh84nbs|*G8y$ikmdYtz16O zE`s%)5CmO*xQJtVzE#`0Uv`yEPqHlY>~j1M{=>+Wbg+q=L6cp-7Bt)-jd!-b=5AR3 zen6Aklybjz+0SwOrtSA@Ty}WcJ`yiT4bZ`uCTyM02jUoWaM~^FX`0u3;WbF*xRGb6 zAxT}aAZDCoHI6#=INI{j=No^xoH);DphN=)w)UzJL+qrHSWPJfWR{@a(Q9re%q74c zvNB>pfhG*Ytre8-F;Y9|v@u1KmIhcEod1v!b~@mS?vdh8VvTf0|3dWxAay1^AWzY{ zN-DKkOy?(!??|LS67yTvGbDNE@qM5M;jvxci@!PrHBfvHst2c%?s7dp{ak+uBlwkW zVzwl3L?-Be57oMp{1_dOfEi?WaAchx0gw0Dbnw%ZY$qv5oLgnZzbT{iE~Jq)TJaDq zUs3@e2x6sbgU0uIxKCf#!xc3z?U)Z#cSOr{nK;=tW?MTTf&MaAmDTub*&+5>#((R{ZnpD#njhmbQ=Z_I z&-nzUG^7p)9?a?*B->Q~(*Jq1X?st*g_oRXnvWM1h0$ONY}ufn4rh~EkMLx^xN#r8 zYI9s+vNsw%7_(wtfwnEb-*=j+^EGCzPpK*3#P@w17Use&FrSb@{hosI@05fpka5NeuQjw53b;&O=WRVF)yuZm>1xe@L zVKG^2*|7L#EaOo!sUeA1s*0*;;MAD&2Jf%8)vMwo$+u4`+uSv);TyeF@fU&09d(k%~7ajq=CDp@m3|LE@>$C}9xq9An^q)$#9 zr4ul4kD~fx&I$eZlQVlvhG?oq_oLuJRtEZ@6+t)*mYlK-DP!0!)n$&zc8+4%7ly|_ zOGUO3f>KMr&iG%qUJ@Q+OTrnK;Eab3R@_1)j~w_>5Eznwp+~C*lWY%_<6iYX+Q-)R z4A9Yfn`~`+UG#fm-FV_MIl`vZFVqR*F>MywrKLgzA`b?)M03exF)NPQXWpxL6A@Z3hLF;bPH|*ZVquc=bF%D`>)-2^w7S;4(jt?x#H90};9q zdxJy+QxWsT>viS20%$U>US%zVMVMcn*3}y|+|lnjPznEVbf2Q#*`<;NC_CI2>}jia z&R)vAC<0rXR24*^g*|`L33wCrd8;n1AHmz0(tIL-F$usnn`s`KdTbT{PYqr>crc|=rOxL?D&N8HCHW~WX$b^Kh-7iH(;&oZle`yKG#n8@ zyY=kCc@YS&P0y7Bk+l_LZ7$+|{#p+n#3-U0ggZ_JuP$rYDx*cq-f1-NKeOxC3{!iv z&r~IQ(c-qH?b)~8+V8 zz`R&I<8MRW^ihuIC(^*=V9=IcT616aV7~qEIY4;$NOOq5XqrY?ZT63x+{9ng*A2~8 zVS^hIT@r`tdr|?dMx*K~3t$qf%GfTe8)l11ESz*zPjw*Pc1=rt!!r`M+KQwJy^JH# zwrtt`xqYv+0|nMF?eEn|Ye9?Bl7Ssdvw0L5EGLwebqw}R>qH22dL}v8EA|uNMHJRM z!zdL{j=XbTsycj}7D$&7CX4a*etwmsXnYy}=jM;m=P07f-zP1f!$d=-V!$X2cOE`;|?k`W%_CB_&Ppn`RUA~A@(n(vLGOt>{XK1NIrgb{VEPb zGBI(<7{$>KfT2L0MeIo{`?{5vEyQ!Hkd+rUmpT6Ui~4bMC;V&y%Zwo}YWi?%%;Sq! zhi>m$$T=8>Ks6iU{O>-|s=Z#t;E4Mmw7M1)C@5Q#gaALRP?7feK!_9pao4FofrJPW zax^6btw&)hICr?R3OV8?2x2>B%lEQ>p*^9o;q(XNwrt_xna{Z*1(bcu5y@>x<}t61 ze!?{75z$YJY&BP;g+R&bDU{3IT86*7qCQZ2d!!ZZ z)n?Ft#a3|f#r8jg%DM&->&_^lc#L)!rLn89z=XKj(&UV`8O%=P5TU8)Rk}pgU7#z3=L6k@+h;7Wy$bL z_+jy=sq1USvn%$kq7;BLMlql@fHUC1 zrs&PI{w+wL>`)hs#^7t?eubBaeQrn#?#E)#vxtwqwNj5Dy#SKHko@M?Dc4!e6um~ zifS8I&Xydfqdo$<_!J`!jS%BK_V-T=6d)U9VH0$yy3n`VoVv#>GVa5XU>NK>H?5xz ze*)UlD_+le#agHJeXLI4St_Sglsz=F$b-ZCSJYx`hOJYGB&`QNiG(u*V~XZ@pVq*d zz&|f{T+j7USa4YsZHnMkq9GyPJDewv^+jTuW>gQ4C<;W>!!q_axh~X%H6yr0^)fx4 z{b6iM|Dwh(BmOO(RWlNri6Vmv8)lQxYZ=uebV0)ZgE3+|IGAP${AEeesHfe-ELqrK z-aJ2J`g!l@qvrSPYD@&dH0W^qst~Q)c)CYFDzl$PEaf!(Qyy^gI`R(tZ^s2+d%=Ee zbu!#1iXk}Gw{(j!jRWp`Ot%lxlazKZm`)aGyz`1)08|EkHMWBjxAoPEilsY?jDx{= zO+m1G(L-XRgF)_ejUmd1Q?~|HNwVNp^0cm@=$?S?0EKC8=c6OvMe2)vLcb|&G~!Y} z%FOG^jLKRsP!H=>V5cUi76#F@&pXsgK6u=#mIi&j&jy(eKH6j>^L}OET3Wg<+IP^B7^Nda$_FF%s#@9ATmCcKZrat<4cJpNlZTc z#SZoREoFjQ2D38mS+Tk;FRA>*>-T6$0LloxPiw z47s1+uVPm4FHISX(i8G@XL<2rmj+Kwk;{{hSl&?BOczI*4o4xu|9ClzypHN+do~<- zKF?4;FG&O~set*jEGm_(Mq-0ukJe6@Ul2Wn63Zu!z*c`&3)_{$V1`9J>T&w<#d?K1 z#>xWEc4StcqR=LU9sOGmF4_Y<1pe)&YnCgo`&53#)Xb8^H{Yn76IFs}0ZPVX|9};x zAp|&S)^UWuEV_`XrwBsQT12j^X5oh3S6QcimX?;sy|M;9Gj&U%EE}CbA|TR=ZDhkA zeC+&gnS+)2hg%``s|jZc=7>s-y|2mZ!AaQ9PRZZ?G}AauxNM2Rzy`ga)Uy%wXjk!A z*U8kQnyr-U$QANwEq_H^I16$)@}sX?#;#LrZ0?qU>M1}K8;e@Pvc6lvTXN~uC+a+= zc$B%LH3NX?0;9Jtovy~%el{Zi`Uw9OE+7#Fr~B#tx#kaXNB2}3q7X>*=G9OTC-Pup z+6Ko-L~Ib?Hk0SIBE&7k#gyV*YC!};&kfIl5WKKy671_Vf?{B1{%5n_bstm`-Ly1# zZY0d7h9tanlF<-;X&!1LqvSK+%J# z0!i(upO+TQqO0U54t8>8YTmka-wEKhak+C#KRK&A3AN+RavnMbf)c5iqpJ_>C;n&} zRnD&E4P_g#7|IBBmXGZ*Jx)_d`qM5J>wsWoew6nJeyR5Kt)YOV#VyE!LDp4G45vC> zo#d}o{oQ9`^{k2hjr(nSdb^J`jvydHlWg@3vx{BJR>famz7TARJ;@LiFd!*@TUt)h zIjdaYvzjYwA^EAHIw9o^WL%2J-CG5(j$^?TP-f0onXU$voO9d#M6QhG-3a$u@aT0f&;AC^!(#$G80;=(=n zBB*!Dduedj-clAT$0Z->gV&U|Klv_>d=*S+gz8&RIZ2MxXL+j{w}yOvW4eM-ORHCDfV$ zxvF^00A)m{222CUrp;|5HZEhRqvao6J~x{!3z{#<^Yv(%C?aetL1wZ!^f$%ctkS*2 zo~MP2%ha1Cmrid-I~%EREIw@N!LCa_{Hr|Y`7ALFXYE_R2gU%T`tmZd1NvB&XB6QI zqvB^R^L&q3N3na*>sND>_rWlh+dB1c|3~1^tLmuEC7hAb^Ll}MtV4)MIq3&&#JP(7 z;bnE15qW!7I`XEDE2onw?VF|>Nm{-A7T{iW)mto=e28bwjZLISTu7Kjj?9yBK!6=~K2(o{yi-YPLW*(|HEI*>HIf#liPeLeC4` z$a7(hyDUWa&@1Cy^2nv>R7D&8$aVvy$3;6YJoMWi#yiM{y*oA6k-L;vh3xCb+=8>P zs4;g!m}FzcU1SSJB1nhsW)J00aA_e+`A}caqfbe*I*|Ehyx}{Ea>r}w;Qef#g$TT} z?EU_bAJ4L3vX*RR@%}pX-obDi^W|>waO@94y)JtA@cWqugxqMgEUbO_T{KB-4xM;t zXJM7lb0aHmiLAC{Obd#hv8W}?f`)vFPwv(4jzjU$Ih%{vZ*OC94{X@)0$=< zA{Og24wW0RsT$C@&wS$Ws8oGAqS@-qpSpMXQW32sP}mB-{xd_J|mX>ZnL{8HngeW>mGQ5OsfswSv`@Q8P-f=cSor zLNqA4Bi^ps)-)S;Jr3q1_E?P|!X(pSiE4;XZ^De_2V6>L;DT=k@d1)()&^*{}37(WuKt;eo8 z#O~CVUM(J;P(oidF!Snv`k8E=aqE~B@v<0Yqb)EzqBf0EcD0n$0{nmvY9L}kf&7{! zMVBtQ$mEijjGhz(iEQ>WR}3%^;fxJ(mRo?>;t?kW>!#xDF_|5VvHE25*cTxc?!qDm z=9aL*^>52@qOfrQJhJCcza>K)ov9lQK0UkTG|r3fny8KT3UGrZgYb$1B@1O&8>NDD zWf3NWwlt4I`o8UJkVo;uB#P5;-Z|7>;!TR&E8wOQ?WGqZT^yHYJ)iz8VklIa-ftl= z(+hW*-i(y*s(+MvT*vzM_yHXn>6{9;qJF@dp;P*;2055Cit9A_wI<@-N9sqZR=17l<2n=A`ND{p(I39%V^j zSpAa|A7=(MNt96*-Yc{WG&Q~7E6>|QN(F-1FF2PZbQ#MOFiKCHzWd1dHjOrr^ir|r z5>2!&;XgDN`MqR{*_-cBW=J%OK&_*5%PTSMtT;^N+rUnuQsg*$D?Am7uAS_^wzfW$ zY=YgaW{Sa<5Ar;8!Qotb1s)}Q-i@9Xy#Y5L3*~q3X!vpDq-F=p2Q$bSGXFoO-Z?Om zX7AsQZQI-!n`~@rgAF&fZQHi9aW=MX+qP{@esiC5pXYu5ot~bmuAZ6hs_*r=It?bn z1&fY2?UiN6QJVAV!}jrz(1@$DM*ALtGf(EAo?d2C8k+e!g1g9n1km2mlVj{ zEW5C^_~~^)L6HmpmsXprj0kNU1`eCx*nNjWqEmi@WXYa+oDMHxSE_0bnR6Hs%_FW& z`E}A7)j~5nJzYe2qfkDRYBBLIcHghx#^Z{c-eq-%_m36T*9Ia~`Jpaq6eds-@DgBz zx9cGPx&XFi{@RxD$CZk3b1EQVeYF-s;E&l3A?Ph7m)Z^d)O$&m6pc-gH%?FV-Re$l z6rKG{t`^a_FQSSEDrfcxCt- zmtvD}@c*#wQg4_%=9*I)t;`yu0(zBvkXy8{n@tklF)-5>>i+=23)&DUFln{wDlogb z4B^rkB)nl1nuVLL@v=pQzm)iQoBsvCOUYsEwh|R-Gel~^24r%?5=7}4X`hC;!6a!+ z{zHiW2S}F&^E70bvnMpR*TP`JMoWN>^#X=k{?cWAiNzAY)&yRf291P_2{G7MZcJ-JE)|vhu$A&DRxt-KKFP`dsFjTdR_il zV)2J67>3zkR@koazLf%y>qGj7uL#0nRh3*bdZbA3SFE5{Iqde&4he+HhmXB!^lza@ zX4Yc;gCpC+*BdHJ4~9}nuLY(Zia9BU>ABj9oK&~rn9I$fOo`Rl*YwhnSY5BW=U+Tp z^=@us^AhI*tdG?pS!=-Z4XK2*=zYbWT2TomiOsoNq-TTn?@*bz85l3LcFK z2Ng+{2j~8jgJ1Siq|Cd5qsf{^c@QO!3B&9+eF{7{D4KKB;XLq?-@>3!KFy*Ze6x8d zRDOYJShq%+6qsStav{)Ucse)GM~I}F!Qr03bD9--F_ZJ+a>K8iMtCe~7j;tb3{W#Q zs5WYU?i;~5xCru?Tg6_D@5rED_y5JIZSS9UptN4;oZocAFS>5$*rwg~;LU&N9g13e zf9jO2e|Jbtyyo&8iN(k+)W=1`bJ0~DWN?W}wlh*yk$XPS^={L?)$}_yCik&ofgHu# zwB32Ci5Q5Z@F=uv#p*QO(?3>~3kTJaU$Cvh3Cw9nYrGh`y%PF!sSU$#I2}T&Drnbr z4d|Qi^osteTH0>5bJHaP_25%2m9J!5>>B@?N!;j?*6yW#xGV`AzV#ON%ys&Xvb z43S^2Psr43BCf~xeG!}e)=VEAH3nkE<6Yaz^>+~cV?J`{%|M`-^e{y*taRR6CJ!3M#PDh+mLl(#_XKfbWPiL|`jdBRkg_1A5?Bm)Qem4BydG~|5?oakSN#XM- zs}5^y)bso^IzzGb1xB8yFF)nURJ3HYtPF+&pRU#w68aPBv2zY9Oyv#sgG8tPOrh+D zJ}>^d|H-4f~icmL|0@b9Rq6TjERlIGX!8pEt$lLBa3CmMHNK9_IT_;vW%2NbMm5e7^ z0=TuOpE-kaurp304svh1Up*rW)ui!wE#0Zs{O8e3Wln_N2|OAIO9xjOB~2lAo^^fo zB@W0AxQ2_i^GL6R31K_dGR{vbt`;W2{Q!AW)K%2320Ra48@_77&z6_h5 z9e~^Ic>&^AA1{rNimsIR$57i#r>;IHr`U-YIb*EPZaUl9!ca%^q&gkuuiN!IE6Ow7 zGHX%yxzs>irSLj2v!oK;!eX>8H3Cp)uEy&6&RP_bQwm8`P+`Ye^%sFUO6Q;YV2cP~ zA)Plz6AsrEA4m7Gn>Wr&OnpDd?tjI+?b)>$jEHy2hW@~;+s>e^pAIgN=lbgk z*jROerRILPR-Q^;wIF_vf`#ZkO3!1#W+7!KZNMhq23>@oZG(eLTV$I4AqC#v5#L5* z{u&rMk_nz72`8)f!9RWCzo&a?S3NK-QGTJ_=FCY9J)H<$vg8ez^}I^ze_kr{wN5Dc z^u7b|aC5l*8iy7#&oItsgdsVLnepFU15qZ*T06$24}iR6ktu*AI9IwE;D}|a&F2t(nP^R@ToMFG1?mdR_;qj|d zf&~y#f*FJ5(<+sPfz zm>M^tcOw1!d;n}se*q|aDq)xMvQ5>r^r!all=kJqkF=6p%KjgEf(L`9bAjfLSB zY$bBezMp_d{f0BV^A=D#WDWVi`o845fckBAuuOf476+AE$?RP3h^%2wZGdl;p>XEA z{ezkd6^|wkRn70$5*ntcn#Pzq>q*ri|2KgA(kqV(Cag>qR?X`0~)CvTqCK?UrQ`&8pC6`ccRbqPU1(qewS^RfuvI8DQ~=yk!mqNVl$ zOC)cbmF>GG@yJ4D%xu6^NiIWYl>q|!5Ww6AajM{m{wjlPOh)6T`?uXt?bZDA7Fz$c z$?6va)KpIwa3y<#hU=|_=InfphuE3tqA7ODPPb69=E!C?AM$E4HP=y1*RFU@J*jEs z%XN{#=3V>Aftf!5N)kQfyZ4z<^Q8wJb?)kWT*0PqRm*JW``h@{LI0DqPWMYl`$Pl8 zdVFjXS#y8f;4U*UMxOvFV7w`wIBgQaPiOw&#P(e2J{nboX=g z8sqfY>)O2n#rRWiEV`UsUit?K=)=ILYfEabJNv8WS?FZ*YA>PloJMi{&^b8zA;H5c zt76y70{PX@_>_$ILRWRulE>8u`jlO!Rcj@Sdp=#R=Le|k`XaW5MyvT*;jPQ{J23qt z?)#W-o|GB8F}vwDy>GMo@oICx9eCmTb$4~bQYEuYq$(hVoJtyPJen_twPAmoKK!~K z(cyZ!HJEkLS6h654R$ zLM)Xu*_A0mor!aFk3eCVLRK;w8=IUlxa`V&!O@1PUX1WF742VAUnlgo7y$XOx+qr= zsB>Jx{XKzqKM>Ud#h}?D_@~W!vn!Oy@HjQIvrAK^&1)}B3-CdCH$0I-T;e{y0sL;syf1k;-`W)NpjCP{JI^Fy*drO zZW4-N^O&z}Qe&T%A5wpNAl5@jdAIqeo(IURHp`C8Y7+1{ANshB%$`I5}&(`}IO3vs2e)o)3+m8UHisWI)tgh`8&%t^GNr{P4tjcj)Ug^wU0j2ZFgA zrgtNKm#l&w@o=?6tk`7lej~G*-&RTq+w4%kycG)#huP^Wl)1OTW?4x1?nk4B(c1e} zxxyuU<_bAvVk)er24qkcb^Q*HL)c}DFpp|iqj=Xgm zQq>gls*xd?#<0Yl375_w$Z6Z>^eQE z*4hOQMeA^Z(!At>-)aMAr%od7^WK=+qRN`epvgRqs3h0})FD&b;bCM|Ko#LyZ&a{_)T#yym$r#pQ_^dejel_amNk@f^My+4c zYw9JCv_5cUHtApCbbQ`eIHlJhCa_4sD=Q_r2zKl<`Pue^?-ahH?T0)G?77kTTAI_r za6k-|5O)}M_tN~iG~VMmD`Z12PWO6s%E;V?0S$)j z(IbRR&fb@+Jjbh9MzC^$g}JKYQ4)GM47rz)@$2=2FrUD5%W~h#3m5#_l=s*6>d67m zRW537FDY*dNi$mr?YzHYez#%dd_21E29!pkyrDp)0=D9>3vunRm5eXS4mE19G?28_ zT~U)Ba=|**@8DQKP8)it@I}@LD@Y0kkHf3-;Fv6M!>2MG+hmVf7KbrN3Ou0q*j(@Z zgm~=Z3cp&koARm^a5cP{ac)DC3$qrG^Q)x))qDO^p&cD*YmyzG$n8G)7!eyifdxvu z5Jd>$lH184w(BFuq)|j}q{m6`gx_G8mEq7>;{s>eyJ@p#r5#v^{7X}zYIBj>y~fv| zHed!%+?#dsNph^~T|RlDzvNQ~;&@$TcPV4rF`V@Ull-T=+B^d~&D}(D2lQYvQ4d0L zXHqk1S=VdL=Xq^L?wM~lL=wGs7-F_sJj~vd>$@i~e^a}<`72^c_#i7}O7s5Ik*|g;@yv9Q9ByUeF5-vl#0_#Z z_Q``UzaeQuf`+kgSMRo6H60;Ro6X=MpJU?=NL z0^bn_yMj_Jg#0)r8D56HNafgO#NpdT{($^3jJRo`=8OKYO2c=5L-sH|g4y-T z;W2IU6rn<@+Jy;4!MdP@v?rtri3MdtWPhsO{*6Dmr|bR1;(Eu0t;L>d+V`;~6|b3S zbk%;+w%&+hm$v#yi;OY(8=Y{yD(McbJ(&c`NIowZD3|eJ)n$qMR=X#AK zJSe*D72Mdt|H|QWEau8s2YSIKn3WNe-DxDI11a4}2T(cGHXL$yrTJ#0Z}9(MW?&uO zN@Eb=@Vaz$bm@p~{X+S`y2tFfoo%;WQGjq1w6v`WFS-tfzD^1j1UVn~K>8!OBjn;z z^?q3*87UekeDJ=1axEA4U8x2v5seDIix=LADA4EQi4K1125gxzB=wt^AE2j-!m1(+ zBwQx05M-B%+oS#EA8#?cF)$$hhBR_0N$A{!R2?jP<)I8aY(l<~?<0oR43>v5OcYQ%-PM=Uc zo%^E+l>r4F8F<7BR_|q725`sDyC!IQ-|Kc#885I(Bc-#o&d@%!_RRYq3TtT7udEuq z4}0UiYoRLsL!G|^d-?BgI4LBS5<$M2f)~>V2{H{s3RoPSR}kHppAJf%X6tkVcy}VqgRyyUq zntr|jE$PK(Md}S{&X2U=Z~0Nl>uGv=7)jwBHO}aL+;8Iwzj;{Z%2-cPNP~(&11mTp zoIOmQS7i?LQt~8?Wxbj$i6$H{Xbe1N@uH}S+s1Q5$A#QB04Fjwk?}kf1tlnHkrWst zK};sR5IE#X8lIk&U7_ltVO+=2sW~pDI!?*yf~)9=h=@bdK`ZmI8pNSv#(h#(Bmg zREH@vWN_m3i%&f3wlClFp11LgoqMb#_%F%^D-yngqR2bktT=B67C0)SxUod{*!&H_ zhTsBVH6$!_-|Z;=Sb&2cy?+tatDCXXN36|(_8+vkG7CKvZ&D4~o~h#{ZARg?x~!eo zfo>aw>l`eE^1hvYHvuy?L2jJslfP@d6DWybQK*SKA%Gp0*JLw72S<}ZiNYZZN@ryi z(q9Jg7JAgoaY{d7TT8gy{)2UAE_7}FoyR-TB^ZThAu{=m;&E%e;DQ^#pVYF5Aq)Bn z_y8vB{>CzLfcg(b2uc{@2|U^U$L`?RpmX4tE#8uf`MXzLXb18yKg0>8dP$9v5Ro-d zSOb5!^A+}K<{FY}Awkl3&*nCZ0A+T_7$ap;f{Ux+B8V|H$A`q*XP-9fU;-u(_Tib4 zP_KsJbgMDkZoPzi;j-c8{9GNa%5c}b2_>>g+HP~%q+U>s(`#8=mLvl&l_=nBB;Ik@ z#G?U73z-qNX?ghlyn&9q_D7959CD3y|FDEO+58y8Tz@k$%D<6R5yxtmVtD^(n_*YF zL$v-~nnEv@Dnu0wTwq2?S&YV=>N@z8SaVikg<%4#gn8;A^r~Z(NSlUqH?bK&iWqdy zfHy0c&Dl3tRN9bZ=ZP>zX`Qe2WG*m^E1@;-jn}V@n)n(tWOf zL7j|c_fg6lQh+Oqey2Qvwy%VoxG}8N!w|mzqis98tIWjvSQFI48(Bx5f6?1+({yjC zE}2$NQx9BE(9aNmN+5_F(sJyK#*F^H=ECKp0&kYbldMAp9?Z#nLR~yOhA_RxDR{Cj>@j-1`EL;h>8vnB+G@CF zqfI5~3}0<#<&j?7)Xq@&gm6bD<5z6(IV%r!gt_viX;A+{)~R&BJ1Lpn%G$v2%DR|m z_!M~WM}GyYKzHS<22R@PT6??)9GhLi-VZ(fy-@`nwwosRv_fi=duIP$O=GWFXV(=D zs!yoOy%mpx0Oc=h4j-(8Px|8TBBWhbTK=?=c8B$hT}z08rzh^jl7ej&kUhk+N<90j zNu@c%u^RkZ#uJGe(XDo3Bg^SxesKys=_zY)AyHhm{gX{Ki%VW1NZXEul_aLIY)gYR z&6w-u{R>jDm-;u!H@vTY(7SaK*Oov`(3_$x!%QBg)X(t99{5&)Q)-Wz0^Lv+EudJ{(-5#xEL%R%yPc{ z-c$)M9NYHW8*uv6T$VpR6VxqN;g8of6@o^T+j?KsGAi7RnndI(^W&e>R)d@G6phwT z-VYU5bs*(d6AjA=`PT=+Z*}_M2GXtXH~9S?VX}8NB4=&xkU3uv^^#=THTkUi7CmHr zFhI|kV?G$7m*T^n%qKTt!J$$Kv@cow$Jpp>C2e@pII|D!?+e6PbPJ zkaMGdx>gh+Af1wKT%(jzQ5J&xJmGwUADWobQAUMWmcXa?V8DKs5B_+%_F+s@UgpQG za9IcXnw`w==SvjY^HJ#mV!3;bn4tj;dI2ANeU!>;TCc62DBx2`x&foThTI8hUK-bd z;j!tSSuPufzMPtD*4>Shx!oUn=+Ga;kZ0s_8Ah$-jf5~J0!uJLR_b9p`ss$$)-EHv z>fPqa+z$(xxue^8$?J1Z%;EWiXun+EAk|vWnYf0pb|L=^N_)h}gzz3+WFD5GkjrX7 zHj#t!qdqYQu4snZS+k$G5H1YKV6}Gpe2)6GAD1b*&@&6i)g2$1Wa6ItA8)yYUe-nj zL(XGsS|;2m8pP*U!}smCuuZwPUwVe6&(QbYC{@C^aqY^fcS%SMx`-1l!jr$e4&c;6$ z;-&7^Tr%O7X4ey4myt`8qQ*L}#J{ozaVXK+ZlOzKH@JJf{%2xN`BiU9Uwb6RlSmH` zPHT|!mk%+U%l9q4d4>k(VaBFk!{yU_r#>?# zVOGQfzYwwpJ^0=qzF&rfb(*kh6FQ!?wz*n9H*t^-FzvwZ)^@3m*_MA7A#bQ>G|d_? zz35`Ppw?e%xAhGk>?#M&0oV2q=G8u9UBC^IR_|IcF3W>2BWj4N&=I$B9}_$;gG&;e z$u>M18<(1`Et*t2M)|3Z@9W~R$4m-}7EM=}skyt&R`%apS4(mD%@*IQ(7{k|*$PQyP<96$Rp zFR>Q2^5Q)D#Xw9z_eDJY{M~oM%#rI8OsyVqNzd@~dt9hc4J8CgR6Z^;w#S8a+5=D5 zBfR-SpTd3$r_qp)(`jq!UEV$&?(qBaZL$q&-(N=T2(8~;Mwm!sCzWb5UAf;GabPSK zNIi6P1!7LWdtg0#wdnA{%)o~a-~m;!mh)L7oEn^7%LD#b0%{6Rq>FxniV(a70j;RN z5%zB;5?sGpPm~|eGj#(+)EQ+Hg-*|}ZfPx}KR?UNZ#$+-S{l4^K5S(9?G44&@@fds zG;6uz3yahu1f%Yv0uX6r7ML!~J-14xlLfy=g5+<$3yrKgDPP>a2Hmh4maX0eZGeHH zDx)G{>Z?9N@=vqN>{c58wK1Om``4xPuY<}j_b~{amNFFxm=@NAA$@K(c~lpziijyK zi>uv`{{bb5FnUFIcrdwges+FIeW!u2>3^m<1TZraQG;9PbP$$gic;c1K`h39Y>mLp zei9&-n3^z2?E0_7{ht46L`W_?oLn_Nx~Q%O7jpqzgU!T)SD76oYzO|OX~`&Ziv9Fw1_5C>ceX*F@g z`lyl`_VCaD$n${C*H{od7{L7yX;5?Tb1=w%c^(=zuoL_fLYVlW@c{JBiJoBm|9Sj` zd%Q?i>cIZHFR%kZN#hQ`Z4@5bZ<0fQh7J6G+y9buO9O%Z`G5WV=WU;61PJPf{`CL% zCO3XEYVPX)Uk`~OD7Y^q*Y9}IuMqz`9R5&If_>&OXR|8-H38V2pwA&cAOG_m`-uc$ zAYQ%$P77_byY!z|fI}pj$HGGg_5XdJ(ow=jqeh_7l%>X!1Y2nTJ^Ogp6md5J>G|`tUA1zORmWNHeG3Cymb{s$NYY2#iokhk}p{j^e0& z2=B2iv$3&h_s$hjMZO{_)6>w@@Q?wYbs>3Q!-z}1;JHsF_Z$85yT!r^1H*{x>+9tFoXy~ttn%n#4oIS=? z1!`o`;4c78hQGSw*TfHhaj`DQ%i(d>Uh63l@hY)AyARwyI)^!=?##uWUMc&dcav_& z5}kD!tCqNVEIy^nqN`Zpej@&QygILVu%Ms*`^{65Ivm71b2j8e5)Ng1H_`R`4Ki~8 zP<=7|`F8(YW!;Ws^OhuK^AF{0SyAslJ~=AIN(ALSZ!)zw>%a*U+)~N3{$IyAm)45filA7T1Pcby_;_~GvE4uhstN8Bh=9t z`jhhA_GH^kIBHG z3hV%}gzu%#tA0Z!6|ZEu@-d^$&X~w%&8}r@Om-V%D!*}X_;e0e|Lp}ZoWFN8k#h?}1Awa$<(n?g9NSQ-qZ**{=pu>J zftz>U9Q6OQOm26{FUR0IexL12n*?Sdlz9ato+lMK zq>N0z*k++$2a?(8dYyj&U%TzL>i83xJi}+}1<%q;P`|QGeX%=-+LOC( zY^H&4o62UM>3Cn+^QVNjJziW+wY_L^8f5z7vWa@u2o(<*P<;Xuw$dbg%Eb*W<^xSU zt-iTVDO%o@&T=%#&OHfgs;bJImPbym&y#BHKxs_p3h%Z1n{%^&+TZ0YlqwCNdgg>l zz!CbAH-F`Ls`bI6`Pg3~O-~R4H|sXJnRIP3UZpTBs|LI>xb@_ulNTSR|H6OVmyYSXT)XKoiUrWgYc^c z@@MDg4TtEt5zc66lcO@Z_NS*>g|FT!t!aLML;N%2m?`GuoafW&^%i#hKf;wwp6YHZ zOkRp56^J;Qkv$(*E%w(WjdAgnuArQ(G`rhB7z zK4Y3ZejUDY4ZUb;%mga!U`beeCY+C>)iQ2y3hy{9Xa7oefvXZxS^o*<+1=UPTrbdJ zN35mbO_4&W${N{D-7mTBvR{qFPPgOCDl9URG5chHqZ@}W1`6+frgj?D$`PIL@FTzV z2iY55bbVi1U)gE~WXYpUE(3kFoEb`AW0jsFKP?d!;|2#5sx_iq#ID zl*S~x%+6+Jb}iT2If*^4_HS#6#~=4Be^rIfZT$XqS}4_)qis+@>s`5)sA*kjZhfZ!7_1|^VgcUt~t{3%5|FC2g&WU0U(3l zINzi?vwhLH>((a`=qXGOKWNVFs_)=-J=Z@<;Hm1KPyqlVHDe4iFK{jXtMo~kiPopq z?e{ro7~XPv@yi`t_0~5YLd#Xag^jEc*!=v5td4*am9Y?~L%Q z-*2rR-;09)g)p>|cY{d#U0O!F%+tagztZb#yY<@ro=R@65U;gllJ1%BdBkzr9dI0f zpXH+It?PZidFI;T4X8%G9RK>5UvoLB`1NS;e#xZJz%)GFh?TCK|!Lk2B{wg_R$!vH1-cIqr zqi*QR=eWZkou>Xi)rjn8lV?oNA$Ufa%e1`tb10H2lK<7^mkOuY3&;B&*c(I^Q=S~j zt7@^2uDG_RtD!P@fxc1gv5I=$=#gC8ShaqHlAn|^*(q4a?*-L)D!H2a7{VQ&tC`kJ zr%Uw9mE2tY=FP95B1vt3?m@(vk;2x? z;&SV&3iFh9{Xj$EXTYvB%allEA_e+bkw%xfBpJw@M)zCgf`rJ%w=@rZl;usA+~}7# znfAjm_+LvNpi(4_ygu93PaF8xJUpT*-;eNd+)eBB?R09r!Z&@-zo#txSOkepNwCoQ zSRY;jDs4Gukp-SipB_XmFD6rSnmQ@?Vm~!O{J9ZB z)?9b=UCvNDv*jqczHjDqd~xs`R@^fbn6vq>L04g)tZK=Oxu2vjR{-I~7<*&_hopM= zO}A6`D(x906L~GTbg-NnRPGzAJVnDt-fm;sIZ=z#l+aZtVRtq;@t=mUm?BlD@n&VhI*z`%E?9u>XE~*`)p9+piUH7sh zYHOf=o*+(R%MzUYA7D_l;Bk5vKZjJyR7$)*Z9d>I%%GP$>cMl%pl6Io1IOxWm=%`s z+PY@Mtu&G19xIxpQSrbDBuySE5a*hN8O+RxU6_tEG@3}xsA_-GNaenu~e%6lkVGVrz0f4BF5K<|C<_Ka4qKMcXGRzsYFKpbt_CLcwssqp$*(hY~Fv|{CG1hS-nK&Gp1#gWSz|iuf|Xe+^q(C^cR}62<@oY`I(N$ zdqFe25qrJ8$zcW=OPU=N-&GJbS!jmKvQ0zx6dN9{_>SG((Ids0n&X&2_1oK$spegO zq1lGgrzY)YD7w{#tS#R_hX$Ui)(pVwidg`N-Hxrnzw(%w`Krc7r$B~MCx8S&>9){m za*H3^wAxR~4Z;g`+L%^wogiioTqUv2de1C(x>jE5Ft+qOOqaOWh-7M(^%id<-(3~s zK83Lzhyy20{cRRceVWMrFqI$PbFF$eK$*Jq|Oai%aH%y(CRKsst zS%8m_&(s88IF)`GnMzKIjqj$V1#) z36RrE2&>CSf){$L>VB)r5f{j)*dG+h`vU z^%u0?et&9}jDuIcX2>rpbagFkyWdQg#m5YTW5-4mSanSxT4vt1e9 z_MWkEk^RDy`YsY6m0z4j63A+vL-nrcKr>>t)K_^1f}93=4gGLN2g0)YOLHZnC^D;A zRrwIe(CJ@ot1%U4}pbjzr2xtT8~s z0R<;T!a{@hZ$5YkD+=8&&`up=Kd2=l18|2#=F>Qrdx)LQysm;OW$E*v+2okFM+Q zFCP5YN9-bLnpfwO_OIlUwLgj|w<4IZQS7EqPVdLywrjrpAD*N5=eBgAK36R*P`}+O{7>ZQT!1lk`XZo7tw&=wS zkW6Clh31oF^8fKV2P8ELF#eF~e!_W#ET|xhQkiMt5*<%uSwLH&ZGVo`%kyDK60Jia zM>sdckp4iRe=$TJpHR6zts z=9zm8k&?_{F-~w4qC`e0t$;{0&&sd}9WS`Jh-6H~u*)&@_+8?qf|4}(EheedCBg18 zxE7#LHI9oK$Yaq3Q3)uE^wgf?=@GgksnK+SR3cuLlIM9g-~lAnXH7!vkk|{jg9eW} zq*J~ggOe-RCg?A3c*SbFy*fX=^AJ1HDK)E!KI?n-JiY=;koM1i@W?Oc_d%MODApKV z8()IYHzMJ0;tUn)2H}sw7*C&WJ$;>5|EgPVn(JE25s=q&|wJw7ZNj4#hX`ykDUAOps!b1CPXSsJEew{g%IQUb2^vh)~ zblvMLUB{7Imr`(B36<6~CI95w)r`i*-I)a%Wi9DZhU7jHcN4STxg!ZE`bvnq*8M|W z@m_;}XV|vflg{$i$n4StY@X%M$J!@gJb>PO+DRk~Lph(WQd>h3%^?4xfmL%ZS-S5R zTi$Ye)qp0N8ICnRNz6f&Jd<2OT+}`3CkuiUN#c(WMsi_0!GR~@^LTQ0z7y^?k;^m^ zz;DP^X_3iZ5X05~RxFs6D%gTi%|z-R5w85ETs81$wEF$3{q);2dLY3gjCs-m7_*D5 zt{t}P&LE4)sqef|wHb9>hJa~`3h1TvXdj{y{()#3lft;d@R&;RVjC5G_^6C9BuJvd z;sKPAG<6yw9RM_x$ovzTi|mcIDSwipKUcD}W-ck65#Jd2v79hrb$2O7G zDOh~*I-hAxR8j18>v0hho@AHt)G?zrk078&5_l3l*5Q>u!<(aLkbFYlx0q!eXFymn z4e%#sDxwvL0ZN$8EStxQL;etnk6o+j*!^`3qoI*>sM_xznsRxbH&qa!Scun!Mk9E9 z;5o3vClTz$%rrepYt5-v_~EisJVBIFA4_a>Dwk=wG3g}Wd$(!S45!=8C;=Ztkx3T{ z^4ng&???1+&voL)&;#z~G(Y*_ET_NO?y|nR4URo6zhlr5)TRwVJP42^k$FG=5|$o= z;6xDtk~e)OZL@;Ly+qJn7K@h6gyxi{YyG_i_VCN-ZIiz#KBP0N{w)T$+1AL@p4~} z%_P10XTy;Tz)HojyFSsgxF-Jjl6dy^$6-R#GEprrHHs(Ge#4%tFIWO60ma;?mO6P` zErlETd=C^%POPW8nP@w%J=VroL@k!8>$}~%P2FC4(K>N@+(4dp{-%6nd!T5eYIwUx z&UZ6W{`4Ya%e9V{<7lPiJoFIeBtpcIDUYS+-oAzB-m`o5agC}>=$4lQ{-NmY{+Os6 zRxv(mKY>#MGvtfBO0uHsIBm$Z(iz)*@L{OShDf2S9>OM+1Ezqay9G$59k8)p--*bm`++Rm*Rcw zg{0>g!-5Eb?Y@ST8NiY3vAHYmVqhM%YtOb=_^@3lzaR71av!PM!zRBk3Q!;u02oW! zpLD;yUJ;eU1>Gj_77PVr7Vl6y8%L~nxErb%->nW`uit{Vt;3YT&O9r8=qG9CMeCQC z8|q$6z4#eR_W6yga$_QkL(>@W&Je}cln`~ySF+A3?!z`(&3bw6+I}Tul!VSVf)n_` z_yTm&_(CiQ2y5zV?xro)g_K4+IZ8e0+!ZEa7ckmNIu6Eu5wDGuM-EJR%+dQ($s%PY zDB#519^7&y(&L82C)mm9bXnDor;sg@l(nngUFeyHer|u=K64hxT>7JLxVXsKcvF zOdXO0UL{r0NYOu3w&mAi9)ikrqAA9@WEId zUI2t+pLW9HS(8#v7)uQmPx7LOD`2at^+dK=`f%%Xt-$_WWO^mpw`Cj@Apwo0PSU4n z>_FUEiL4C2v|m!*V5S}XyDO!hIF4x~lqd7(w?bvX8=ufUY!+Z!eP5jVE}-#*oy4sVbJI5d~kD3i$s3;t~e ziV<$lHjoh5|^bd{}?1CB1H_5u6X2}%yGJF-CuP-79e@5 zAMO;$?KeXWZ}ioZ7A`r>hb+{V{O@vcQcUY?Ll!Bz1Yh|~#@o&foHiSeQmi|b5oEB5(=!g2_Pog5^ zyImE@EV>FqG@5~b;RJ5lPg>j!YGy}OU{pi6^FF?-m``=QP1jNX&Ub<~b5Fb!hMDBO zBHw1J!LW-(NF?kjD@-WAcX|dk@KkrJ5NOl;J`f$Mly{tCaSn5y9+vJZN_I1xKp@K` zLZA$NM-jb8R>ncsHzGQjz`L^dw23~%<|9n@%?Nh;z9#~lV0s>zoNa?W!U>pE7=ee# zi->^S-F~SWKLciFis*^`L4OhSU1O&Fg|$f~d~YI_tI@;kIia<&mpdMdu@|IPEeEf|QzXJ}nAUR4uv)pmP>c)Yi|YHv_LQ)n?`k&xy^ z2Zz>zu*fVzw+2+v6(;GL)W+{6{@obv!2$)tpq^%Z0SIS4omXQRhTtoumVivPQMFzD z<;t6poC6YTch`A-J!W5g0E=?C-u^jMjF~QpU27bF0>D&Z0kgUgiE3s<#83$1It>3r z??Qc$$be-{F!H6&%zF=@C?SNOuYkq=%RyZ%R4=~I+kvFW(uWG?&zw!R$M`xpal?Ji zgm7FL$IfQayfu+Gs#U!F7sL%rBlrzzj{5v5Fc2D)Gf9h$c8j_(*w`?CJMPF(u@Atwz+rV&CV_KpYXstcpwyTR!sm;vW2s6af&>OdVoC6D@@K8D1{f3@9r zIcd80y~H0pI?&x&UCP@v4-nUfCS8f~r2LF34K{nN{z0U4Hv>rtx=i8NvVkX`X;gz; z-A=>kJk4U{kE)OlRK%0vo45~3#4sggMtmw==CZ_kL||GAi_qYwRg>&8@HWKy8I8{- zcFub1rJ~NpCKc^Q>j(Uo4C5r&8+EqtUQU)NT^vXz;P^&L)-yWAucvyS1B+}V?BiUm z0+c{MUer+Rt?G;DZ9jdo?S-ne0gZ?he%vR#KB4)?*QxDRx2Q~E9{wmJKjl6#Tx$Jy zbX&JWCLJo@HLU-b#g4Jw=-06d#WX}4fxN2pVu&R$j zu~#7cXPt<*AQZAlq56i;Yz5(o+lI0oqnALL&Sndlnejf#>!$B_Z<#|rjBT@fXo9B{ z7Z}gD_@`Xry@Z6)U(#N)BJ0rLmqIavMNN3#JaTx5t&ceV=oMbUHV@#O?Phsg*&yG) z)wfh?RT|h0-gcJeKy7}o+?4=v8*0l5pSX8k=q`ALlMw43{#O9s-eFTpVAihb#Qs#2KsJ@@| z=3=l$^wx47L3>&{pnXz7Tn`mj%rxRq8bD4W(#4PpR9sbjP2RA9#)ja^6zN;U5KYbZ zKVEV`mPxpJ$2iLSv-!iIN6tIeKpMewf#iTvpiZO`%S0|n`xWm zoQ?B59WBRUULIQ&PnJ)6#QGrXdJq}zu$1M2LlAYKPX3<-2X*wglV8VZx!;<0*u>u9 z8-be)6BQ#DxXri_wNCB;Q+%0Giavy`nR>XTCsnbdn4p?wSOw67OX40ht>a*b^ z4a$uH0GOktXGiCb_yM^llgxAfMopvSZ~jLz0spP@Qo`j`Iqrtq9G1Ud;A?zwWpm_j zPv;w>qVXki(K|&plKTwGoQx7xb76f&Ws<8^6R!6!X^*?nY4d#f@_~iOkft}Hw=HCk zXfGjYrN|2`C-kCLrZBup*zim$LHyI{rg7UoNq22SGb6c}B)p_Jsp)Su!5uG&C~8xz zxZqV&8IbL_q2<L;5r53J!; zc+15262p*a5Z_-<_`Rf4>9Vg>l$q3kpd!*H$+%lUu$!*myiQO8RC(@}&pt*XehKZi zs#7zgJw?7P1z+Vs>*q(z47qskB+;8QQ=Dtv)to9u?Bj?*~4FNC{KZn!8ycx z6OuR*DI12aOE4%GwY<1w){uZ)7`j$UK@V&~CceH<1x67tqC~LD6Y%!o&p+qzTS)G; zaWHGK+%L{vdpBuZ@Kw9p&IH2+jTa{xgA6rwpnBjl%zjoR*^7#rJ{MIFDoQr(YE<>?oD1_>M^ac>*p;vUi- z9AcRkb8pm+Jf?@XPP71jZyv_i2&@9>VO5x&Nza(^{n0-+lz9e>d^i41C!!|dI&}GQ zLX8s5;$!Jwg>ANMx`O$BY2}mmy-jhuC}2D$FWr|sE+6Glq2439zItFu@@|Us_4E+{ z^(23BpuAlKO4m5*|K-_gqN)KZcv3H5>_-*E5(cb$nlqJ4@*%KMjIAy6M+XHA z$L?3!^{nPDt)rbY>)ZSNW+h(h6Mg=ko&!Vd+%BUI%(kAo4dt2$_4u9!dxeQwktf~+ z8a0|g*4OKWL1q6_FC~0+>H02~{_UXtHVkZ5RbOo3>#!qJ`K+~d$Vcg;!bEHizYyal zZ-Qz>R7^J!B9x)t$S0W$(ySj^jt5f30L%kQupz4n5u?k9{8t_e5i zmM5ksa6e?DHC-_S);b9S)^>#j* z!Vo>*Lgcp1ZhyQ@Y7^+@)9OcF{)6*~MdW+OhB5ra5oJw%5=0L8Kqmv%*n9y=XAuT@ z-mu;+mxB;p<6HHb0ng6JNI20rOWvRDEEFA7hBwL$)H)B9i`wgDBCuv?S>N)4R`DX* zfMu=#KHxvy1z}AhQHLQP+Lu7tz+kf+w)VC6da3ADzBclVFcRQOh z?ze#*oUkw*pGhAEcXFZt$nmej8I6)G@)Z+|bgH?=l?_-Ow_EOL_P5sY`V#jWvC^1$25SM(ztLMk2wUJ*}H0Rew} zcfnkcu&BvzT#`+0zT2vyF5B)duQC|_f#rMY96}*OHk>T|O*jfdukq9g(wHGjd{b!U zA@bY8TE8aoX003yJ?l(Td1}(5c2+k^BUF^&m<&~S_H&pj;7=*^Qr-CHedp<<6O;(|^z$aS;88^XGfKIhb9G_h&cK#O^B5x2Vb=Ysm~G{U$NHxIW_1e>Sr26>~}uc{`Zt$!cqp-n*O(} zj(qwr-0`Ka*Mk074}YPWLXbo7I5w8ZK?;Mz9dhLo|JKnltc4bEK$?PVYGd$19%-iR zObpnpmB!#F9u67aGWZl+iG8^1FxTixk1S|OkUG4ty61#T5zjiB)dL@E3hDT^%NnL0 z!wh*6+!BgRRA#|yyeX1vc9=6+csh!2s)imZb^=qvCf>PN5 z{mn8z-aw+pL~e&MGGt@VA43`14t{GA4n zl3FwhE|hDLHWAHww?8;Cf}wlBY;Mi?Yz<+Ln&iw;v}Nxj!XPFM+c#=9t8#a?KY9w} zBe5TF*8Y+tNnX_)MWuwZ=Z&9(8HgZCG2|~m&Tym?csPDjkjZ0X_d0ZbAk9bi;>?t| z6^B}tOF*$-*-h6!jKvH3ee(4V$oOf3HhN8iwM51q9&ZHfruP^Io`T)oRfVp;hKmNr zlgU(SmS29f<9_CRjS5my+S*)4Q-n-Hr?M30j~G*}a++=3J4p!EPVBe}UPJ^R--Nn; zEbbgrX#MfAyE-9p=thB0Q?2C-79%{&2j2Bve z&Xi*QQ3etrKERQ*WH*wpVs;6m^DN`4j8TCxAwT6TOUg84oWW|z{*!}(VVijaoX#!C zPq7;>D)0k6`Qj}9gGr$0jxnF|F@hvOJU^2vZlvetc@peKG16vAB3Q&#zplrfZ|v+!0u3{rlJTYNdjIm@yB#x%%3WCQ{wdHrj-ddF6I` zswcv}0_zapgmglU@v zYfhI|MSFVn^ax`fY2nwm5iEc2p~tnW{9KqNYWZCAGSDw0Hd6NR7#Hr;e+T$!jBi!) z)JIqqkE)Bh48__Uqr!{zXfGMnkEe}t!}`;}yFbV9)ZZT&itt;JjRgsk} zp%b|0xt16ohj%ImTgcB9n~l64Za`ku6F=2k;1XpkNh%n7D&o-BDziQD4%7fy%lo-L z@TTBw)B_YSc`HC86Mt)E2tZ2f-t`v@p*6dfeUCr+APIVExt+X+R&*Bm#fb)fGjx3y zN>LyA*l)n*d_|^!3F?4Nz?wyS0 z1R# zc-kKU9A9MR|Lq(a6!;)_EVKI=)Kzo2UuOj)5@T?qq=Vpnpn7dGmH+cZ5^77wUq84V zVYp!QZ(p6tk5vQ!`kVH6>kLg=44cBWWzi?v8U;_W69z6r|4$2|qP`V$A^=qhq92l{ zbu5*?yGp+-t)RJbMxmS$JRE=6|F#mi_zh_DhYWbZRhf>2x9cEF{iGPpq31Y8g-OljJR+e_BK)BkN!wuKHrW-=jC z&<6?NQs+nkzVUk|kV|qgBAgJYNbO+z{;x|U0zmQsBd`e{geF8|K)@dZiekkBq`UHu zzwlnz|M^TJphFytQbyul;t`+}`m>(RUxdX0O&lp1jLRi1(ID=BEU7R`QtSd&5C*g4|L+htIsj((BjzAs^5|AypB4}xVtlBs<*Zlm12Qt0`aePO z;4X3C)G;JCu9JfCEMP-}UmHKBkpFAnt>1m7E@^Y*zVbx6>L$fsznh7HTa+OZANb2_ z9E7a?XPE!vQfTGA^4g-_0Ur*z4Ne*b)={?j)CMKm#}sa|csO*j}_$X6}PGPwVV z=B<1{tTH~`*gQcI+;ySx&u#VF=d5qPMGeq#|DV>~=>AuQJwkWE^xj(5z22}QP@Kyt zaFVJ9=%<3kkBN-u8vpBf1}GG?-8+kjl)Jua6agN?qKY~cp3}>GI4^?#-0&q#2!eao z=Na`XK}+|F77_&+7ky;reh#OShb46Nf4$I14d~q=gLH7UBOYy8QoC;v0uV!l)Y0Y$ zQEvvp^@jYfnZMMBf$Dmt;bm@k>q6ZEQTRWzEF>AL%wy5O{_ju{f?HyMBcijnS20;u zyZ6lk{BhAQz^!yeOs(VipCG(OzdognKEgN9!g;`WvPBaZ`@5_j&Te2YN`?Br`hR@_ zKw_R*kw^nYw0-@(qP{{1#AIjl8&I(^Q8Qtw+&kE_gb1gDG@mETt+*Hmls0r!Tc1o(^%t42eiIq^9t2T}uw8})qH62cob z>V0|3o&*0I0L>ZTcyJsWneV@kdCI1J5Z{2URQ}HNjpFsM6>wAC3xGf0A(Acg53o~0 zzwBXC1c)l8_jHJ&@Tn$$z853&RQAy5~bMgW6D~dYbdva8u z-pjJT^R_6sQkPV)&{Ru_)|l)`O9bEw1cYi54YMK441AYq8(w$~lx_LdTIRk9FL(_k zCWN{AFUDny0HkRl3SvX+h^mElI!968$h*3sHzQYvU7FeWtx+bj)# zZla^v{2X7L>1TsIxD001cdi^ueuBnEZ_T@ z7PsWV1R!G;9!qE-!a2MZsF@o`oGiW0kgwpW>%^&1Odc~O0T8qeVnS%2 zlV1$@Ai7dMg(4t`bKk9T#38XLqW@ySCdhQby1edGT9&)cCzMS}0;SG6)%m-k!AZAT zrHWM!zFp%j2Z&_LtLRdCQG`rSSdw;w6~_v7YoKMt8V=HEyUIf3^*SoA;?c6x7>mXz z@MqGcwe0pt#R|?L@_!omLk9fypRg=IILu*5%>FqIz0PN|ctHR*82JE|ngSXF6;pD( z!Jy4h@}O`VlYtO@Hb7m=?Wqh}lBFf%Na47rOeZ0nFEd(|I-0+2R5I$HURnMd1zw5Z zxC5As`yQ{ZxU)VRm2?62g?c&;b1I3>!@3;j@Q7avl8O~v9bkdqf7ebq6?ENR841(u zd$vNi4((!X`2&jXxbi(Pg3p6VpVg+aNsL|LrNgX5U04<_`s~g`#qaekq{Uk&fTuY* zE9*bQ;VSwwN58^xvojoXvxv093*Cu;u-bMM+@(g`*sOQRaj{6jH(9P4ZH>C6O2_|#8x*WZk- zW_+f9loHJg(r6U5dz+;H7%!i^SS+8cQc#ie30spfX&sQ86KK~d-C-d8-I)4?(IWR^lMh?^WqdAQi6eeZTQ2p3vE;|L}3vKR>7aSI1Wuw{h& zRYJqp(PN+F8Uf?Q*1=|Ftz%M4)bFQee)Q|H4M+{^*tn&w6i8J{p5@G|tM4FDTJl&m z(PsFrL~8%1{LMszOIJ0y&=1N}k4C@X$2%DC=Oy>LyzPfWL{7r`+6-r1Giwhc@=v{k zC3WwN&wv0Ayw$p$C*3vn>C(|Q7W9LgUl9gfq!wX-;0~OzaG?{Hvf7EQ;~_u(Hn$>!y>6E*@M!vTIEj{MN@K(ump9{A zM=#??nlrKzJ-->t&Tch4vmsOQ1u3vGZdTyB9kRJa^om zMf?w9FrgZ2JhO|PiOg~75OxIXJX;v!V)frk%}l;sm7)Kd7A|wUrWh=(Z4db?kNpb|u@OfSfBFY2VzeDQCunIEy+m7%-@-jAFK{Jkv05Y>Ss{Op z--;Qdkz8y7Q{FH8gk5~ujY76qeL_xLQ)m@bj4-P~`ul1}8uAYgcGc+X-~S~c+=t`c z!=$W$-epqd{WOi0)y~}SapD!6;+D;JZB~&iE5o!9%QuBfKgK-bOd+>$4}Em)x*rtM zB0=dFQ_E20lEFTl-HsQvx}#H-=_obS|9)iISmVd;9m@NjwwGGH11NEI+~XzY?Z>Q| zbQ8po#@?iL53Jw4(UVl3h2`;tLxEqyx(ZL+q?$n`GpNQAI6PxiJ18cD1e4i!&QYLc zoY*+?k>n={NtzKtDfd6#lb2f_H`OSLo1k-~k#6__jY4Cn6whLk4h!Qb5OwXsO-*Eq zIA{j3<9{#aI{Fl)ZLF<8A{+fsR3lsMvJW}AczTlUYOzu(+d%yroLg*;J>5iypIYmZObTfx z>SoJ&y}71o&^Kxzc*m%|{T`ppjXj;LGbLU;cEggb>*sHsuT$OC(r<^Z2T`O@_J!vS zjj!w5AOUyb+LgzAcBCGP65n#y63Q}Oyrs_tgl;l-y4EZxf~Tv+so3+Cfo+`DIpAd9 zAe=*#KWhH3BIVGF4HnU+H9E#ocQ@S!xE%4@(9;)BlbWq^Ph|5HOt5JiMYi{D24(;H zaH(Ik^n4`KS3H1qYSeGYVX#6IGBI&gFhN)U?K~Q43D3RLZp1N=&gU(h$_RB)F|i`+z`(OS~O!5kg6A(>}iW9k}sY z&y{9{hqWzd6b#K9TxM&`Ud{HlUH+pFv(ZgE*_+F9{GS5c=eskHN0TsXorP&@cURHL zWQkV14GZU*U|XvV8s1D65!Fi8RWi-AEI+jAzk-g{W%Uh3aeiB7tOZT+LLXBjjEOCYJ8s zy;oylInYEsiufK;=z*Q;ebBB&9$%Ag1UQqBw)&mPj=s@0vZIl#f`G7qvHc=hr&IKj zhP316Ev!Xg#P?`!gw=Dnw47j!u1`1{Y8gs$<;*>!9loVvx0$c4-t^Uwg|X6$>$ zuls~1C8Fn&zJ0$$9zYyH;(%$5y4?<=HtDKK$QQ_I_5evw2o7D@zaZEN=8ez3=UTYx z*J!K{$O0h5>b)N?l)h;INBvc__Lo@Yl!s&9hrq~Qr`Q*ILjiFdduGO7;IBf!*j5L- zAQ3o9ykQuQZ6}kFz$k>M+r?~KwI26i)`TQUF~V7}p|~eD88@UC|8>JF{`kIzBmsEb zo&2Rq`M85E|2OmIFO1olpMaOwXNBP7Q$iGecojwLwwbVWO#|ulEIA$GHmNCPo-;Z__!Ru^}C# zae+8lUX6}2XiXH#=_VTM)1)8Myl}*BSd}-C;~JW7=5#UoOYgEdj8hWQ1sJQP_;M2h zIS|?1LxGUs>;M+}!mxTIQy##u#y<&^=njrz>;+>f!uQb0p^ERv;9w)3;Um<=<@xi& z9q?_bS+ri>{^`OmU*PYAV4?`-x>KSEux7mZt1L?^JeiJ+^MWD@>M-7+UUq^F#~8M6 z-D9S8{2P6uaLXs=q*0YXpcrq;c&aF>4;asN%Po7HmhmWOnM=o`CdPW*ixr*5%f=YF zQwhmGUq;F4@>?EeZR$N~ol?Lc7{R8H7M*LzJ(!PM2_R`QoKCcC_2gwB;clW=j1+<3-Sq6IJs0 z2ODD+sS}w?b1DQJJ3jSI_6O9pyVIs29>aB)>~4K8{x_zwGj=ySfZ5zPfx@)^g81tU zaJeF}KNCiO1OJ}b?s~4pTkVRS)JZmt>R*+TMM@K{0~}|t@K8U#ECK98_{O;{?@%(- ze~}L2;uuJnHspNqZ%Ri=H2Ipu3cdtk;GH|*Oguq|G@a&AuC7?yup5hDMM^@@l{KeJ zoR{i@@6``OcYQIhuuHHblSLJ^g+BTfny$MDkFJpmbFFzOX%&wTPD=hfnBqDuqcpD6 z>kaVXu&vSIaxThQW}Rf1bD1TU#yN1vzZSPtG1GgZKH;g$n^+_Qyk@zs3o4mFN=Bg5-qdNK_ggg6Gh zytQFEj+%C@e!+F5e7l9p0rOy#tk(ohrOy+XrM7^djm55B;y!1z<%MZo)m?x4FW&3# zd~5nlWOWOg6CguMR~WQm7KWIXnc(Wo2fiTCKznsijpZi;7z*y>y?)*7_>6M&?-;mc z6e;34av2O|KuJ{rs>wFfJAemUHo9ULBQ#nn(xF)}8a;IObTfjGLCwJznxuk&p8^c6 zhaqcK+BNCl!@k4gAGf=Ua(K^;UA~-R_NcaHU|o@$e#x8Jw4Q~0FWbUl6@Am2 z@7C<&#lnK5NYf;gQFQ9}fcktqOA~9n<(_Z5MdXwc&BNb2Afu2ki78)vHhhA0kD>a8 zD%Q1Eu8U`s{ObockC&(w=jIQ`PL&6WcOdlr8+&fc}cbHuz&#s%Ch!Bdh2%zZ= zOZtw3ub$N^&0wZPj!Qpv_YVb~hiA9P=Vh&?qr#|3dF~0r86=*fS8yI%KZ`cm#HH)j zN#uG09W9V)`SdM3+(n3AbaTBEumdsnfWQWidMC%6iq+E&=MN)ib8E5VQW;27?@iO& zQGtY%&j)sFkP@60$e>qU@B?5l~rjSz@ zpz|D7H*xEJuGj#*-)@C%c4{(!>Qq^I)&zewn&?KksC8F%gFqV;I1`hWNqHy_Cde;` zVJ|K2!(6Mzr`ajpg2Wn;o0qNv0~>PJKnU}f85dKGmL!0;kr%#iO%%F*cH>$0&=D>y z(a&uT9_5_=kN9Q6zW*|U#ngQQVPG?fw*PEwMx+-6z$6;T4Xc8(PW^~IoPS)EpfgXw zyf(Wy6jE6c;w;4RHg&S4nqd$rd*(xJOMxg!#`oVM?#^HAFvZ9*N|Dgg>rTxUiHy)u zJY=qf@x#$88x8ySYYKKiBr#`ZejIB7FnEX`>Ef0J-4GonpxM}CMLz#I_k&7CqNxP* zyR9Y@K^)5=waDkUChg28-TE+ma6ewnY- zG>;pmMz)KbIyGX(vHPa#(wYfsxE)h;K+uMkrPE%QDqKDN1K8@o*P#y*>gQ_$m#4Y> zNP=OJy!oiBJd`X?rQOTea$z!v=03E1615 zFI`)%Vx7z-u8#!wl|7Lejs*2>7Asug(1kfMyi+fURq$ap8FU(()|2qJem+1PS&{(E zov9@XhJ%oUnmz4bl#1#hp4%QS!ec_4TU1XrDfLt~eY| z>=MO@h$L`(o`{OryV?p}|ClMZ(U^Tr$07|PTra^vcT6hB%0G)D2jMFxtPaOSk`C}6 z`VMCt{xh)BviDu+Y$qURL$FB)lgR20&bpYz4&8|%VY3cSie}PwkETrD=TbmKrX!f_ z_m2|^lCXyhl52CK>#-KEP^8un@VFx~kD);Eh?Zmc57>NKmTk66(!5Q^t~MU1^@3Ly?jW!%>=fWz?*mm9VJ#REV^>@!BLiA$ZEnS^?j33=)eZ8PkYA@WppR zp% zfO`09za+6pL`(^S6wa2`bIrlZ<`8fM9BaZ07Sv6WAW`{h@c1>DWlbfCSa$5o>~aDv z$LIDI1tLt5c#-Sy4j{20AV%4%N$Hz&$iKN@Y7kYSOVi?T-tRQmUE%*aCF*%MYVruW zf(GL7R4gG7f8*^>1y|Nj^X%FTp*%4jc_a70CmRpyOOzlWc2|jLXl7}IiCY?i=KiQF zn?SK{l_2^_mX7|NS(>&Ts!}+}(}X}lXIdFmBoms5#h{!#s=(EDTfHB1*ceYj+YQ3X zY@C3+95KA^dwdklVXE<>s4ZJAWwj!`5BAl_h;NR+CCu zZM+D<;*pt&Iw2W^V;~=v=mBy`j9K@6>J|ADJ}0np^8F90qc1tCfFhaLw#c4P=4rAp zpBg5Qc1}f5YCFjN28)!?hgOOs>?+2DF1w}&DXVwIlcsB;mfQm+gene-QJ&$NA-{?+yFvmP+9jS-6Jh!g&cr@bVH7oQR+Z-E-ZH?1kfn8+O6BW_&Ky zsVIo%xHnzz`HvYjzletSql&4YfI%DmDsXoJL;fBgJnxTBZjW~}UsBHKc`W}(Mm=gz zJ1d)^ZYIOKGO9i!1)*n6HL85-U7nhT1-IHgp46UBRqz5s3OF=c(X7I6tXi`#q+UeAF|6}7xr*R|Z;@IyGbrCfeE}tDU9f%zm}b%Tiqq7%s0KQz#~DQ_1m)tXC;7H#nqG^yeka zrrk$8>a_f>k|B1{V1JoXzA1mwzW&1XjY`EtHPp13diFTP%K35>8tYrUtkW9K!~z|& z9FMYTDc4a*lU<_m#|E3j>8v(5)9>v)Q~t6ElH`A~SKiiS0EegK6gQY!Mc)8$T9)-f zTsA#^le8P0P-HnWYF(^ozZPrW!J}%&T(ixA5y{$#eJ^W6!4ckbm7Stxi>~O3Fe^gY z$nA$_o&yc*?|VnM0$_cC3KuyT72V?uNXxo7j_1sZF)+3+!?!u3NTAM)2)Dq@*Mg0nE+aPI(@> zo4!tczqS*X&A_Qprvrw(1H^7#`*27WUADbq`F3iR;gZ0RnX~det?BxC_pGLi0JF%; zs*8U^!Q4f1|K*-f6Ql?nx9M?K&tE#1PM|)OoqKO21;d}!;6k~VWV3&>zs89G1E^OG zX6G*A9MrYLAC!QU^mlncl9D3ulIWx`4o~`|Kl-f z|FPXr|Iy_o-HJyj_QxEpKrvyPKci!bFMje$7CeqmDMZld_y@K|P)vlXm!-kwsR-Ce zQc1MStW;_d&Q#$<%)QQP6to-lMaQ339hM~Q0Te*AWPOc(65jnr59^eoGFATQS)Y-K zZGo&thn#plCiSMX{TkxvvTGvQZ3f9?%^c33w`Q4U3Kj&%2~kp;-@@dqN=LRlKP@tH zHYt|n&gK^~EnN649vwT6manX{u@C(y7#lCA(W-?vN)!{BYFZw!rn{o}tSf#0aW6v< zpp`JzSLzWMIHgs$#x0lTR^w`Iq@Jt*@5jI7omQ!?2$bSq7RMyViqQbPkbb_Jy0-8# zIi+lM=t-Zg5|iQ{n#_Z|vlvPPz^AL5#K5NA6x{|5-H4$8a7g55Yjlc<7rEiGJt>Ln-_v()IL+)ip6ewfwGKg)p~KdsIY zMr2KRE-Q3agogpEl0J*F2o3d1j2@bTeqRY-9e#rhoptI#-+5ALvmZknOPuSjAMiWs znSrCcRpD(J4p|r5YJN>V+(qhdD>x)+e{q)2Mpa!(2*tdS366MPntyCF3}3dJ$CLj( z1btk|HR$GK{X(%Qm5tUZzVmfFl$zAYveIEmbUD=)-YA>-uzQs1^!>xqS?lG*t(_3f z+-0A*r*c8;p+5!wW;oCFW_hD|Rwf%>4J9_ifR^F3oWX9e0S?C$Tkq90=SwsLG!z8t zjJP%fP{xLWNAokt22CG5FPLi>(BX0oo;$YC<10jI|0*g8I`|IvB=RV+5tkgItLIIj zORu`A0O^Z5K$L9#1UVTt<1CS_wu$C?7OFmz$r!Fz+tcV0^&!PnS3d(rWx@dXTkJMQ*uX{f!4W+BjQ&KEyUwug{JL&C-27~jFU4Fb_F>g( zwT$6?pI13sCf))y$ut7XW6lL~9I}Rxqc#^fN~eGT~hY6)Wg~BXXXJy&x36h*(A-<#{bT z09+S95=<5?ZruFKk)anD+t-ZIY|U^JAL>nHFp0z9z4CF+b3QI7y12TYsc@U@(EaeK{BcKvl?8(Yj#dPhMV>E*wRSir zOfKDYu}HCH14IBTI-H`-H95kJh~+pnYEIzG*KhtxAMAh88JmQyGb zt)(Q;{qU8Gy}xl>ompn(t#k^#s9m;aBEFAyiJ2`^*9`yuX|u=m_R*8UE>cq#p|mWM z*STPu`nTV`?O!W+oU5$PFPA=8`NF?L?i-zr0!0FeV;f0TVPpwN%L+MA`>|34%)2*U zeWa|*IMXL+44vg52=MT~01`s^=IulgO<0jk+P3}e#5pm#iTaO+Pw5=^fsA9+za-F3 z9wxA5?d+m8eUoG!WT$s0i3)Y4!8BEw%z64gYausE(`C>MohFJlab5-~w#j-p-%AW9 z5;ql=7-aKtAAcx(-5=QHFE`jtC!LaOhzUG8*i%G1b-S>b#m6nPzUoHz+7#9FV_;sl z9Sqmz7;H%se16lAN1Eubv}(4duYEU)?*8<z@HZ3w<>#8|mT<4A zqudOE@(rU(s(3_cXj_B!c5tw?;_P@`tTP=F5Vo)K$6~FGCukGh;8c+TdR7^j%NxCT zfI&1B4>}Fym$o5)8ip}px>~5wXouk}fZMMtUv@-vCAxjl_If=9bCt-Op;61auIT3@ z1%k@kRX%y zp@{oUgw)J!lA9cmK82QhD*1~S?%BPKnY40kR8^4sUrP`ZMb(FJaTt$-gk*o~qpHk~ z{%D~|1+OEI@tI6RZ&#<)CuA6^r+q@@*;wVC|jt_b`1 zdp7Jk{?n{-SJztkyKeZnL3wi6boYcgXvHTv*!MR$ME?);Z?gOHTR<5aG5bL+Ok zUspY?}jRV#2W;YIXbukYo_tHBVy5 z9QXnW%OuE_!b>LHQn>I^$Pr5TNCl-Z>6-F4L8^+Dmn>JuMP?aOz%YW%$D*b>O%~E^ z&c1I{sl?OQw6D=JlaXx+k@QfbhR0t)4Wqn0-N!oBc^81-2y zpFDAqR^{)tax4puELsc`YWy$7vfAlJes6;bu6^6|^lEQhxGD|uk}-b{Bn=m3zVoC+*ktzfCuPHb8!`p;Bg&WR0PL7#-V4@SL_i zT}(iD=k|jNY1KPuLK|G6NC2%4rorC?l1kDxm zF1$a13RU)3XUiZ-%qAq*z6+7nAkkjDEcY52OkX>)>xj6x#=F=H+kJGRo21$jPL36J zdT>%FjS2!i%qiRxa&ZIso@dw07`?XsPxs4!2Iis@GC?TKO$dl^t^)B6b^%=nCFHk@ zImO45Rb_hRH~q{~N*j~6YoD8|8hOX3Y275NyptYPkF1LuR!?=O3#h&Gds1%p`kq8{ z9-9xJF47dD7Xe$4z?0&4)S~(F-g{n|3m0)Zp%vv<>S1^1S|Z#;CbHBn4lX58}=-kVFq zuAhxNYY7+17q53Pnpv3C2Q1py^ak^HWYs-)+T~Se7C>e{h+u73xhj6+5MAAzwTZ%@KJR6-TIFyT9q} zpGUNou6?LM?JDXWIo6%VPWN_}9|)lO(i{190%gyMF3#MqKgLrlrvtZ|aah=>^F^)k zPL#7145vGUykyOCx^7?ay#|89;Ie6P3jzl!5o<+V6#MEpX||@-%+m|_=^BttO*Y6v z;w`H6qfbEcL8F+m1+oSeeCT~z^;RX1UdI`%=~uki000xNq==x3Sw-hP*g*xa|D1&U z*a)1qp-XWfDg!t|B_E_0|JAnHI>Gt^3_NhEg$>Ie+SpfEi2 z>vXoN>)o2@3NQ-#kv`w|wDwsp&WCd{by@=x>U%o*i%~zs_+Y^3fzSDx@S|de7Xi;Z znjya3x{w!#Ru)}A_@fKYeSml$7MQ9tgcS~BDmRvm-u zyl3A4e3@IDE6f-j$S?tNj5+(H)90sqjK>0YycSI1OcIoe()PyQKt&V3l~*P> z;L9qpvUsXqg&r1~HX9@wud%%E-9h0p>6T{i8-q5mm9_X#eJ}$L99S@-B9x)ao);ct zN6`)+BNNiz+b5^ur|(f%kUxVCA|B3{4jy+-Ch7Go(}Nx@Oltqx#v?954~p+R&tOgn z%mgU-f3vLA4nR#D-IpL(M&aQp<_Wh3?!5h&o6+sEtm}UJKz+O0C`6ZGSzWg~M$7LM z^U~B!0-dJJLK37sMFoCcWei3-EUSMI)G9n*$!Z(6gTpMTgM~|=CM4H?LE>#734Y}n zM;=<;MrFrtHTQE+dG8dW?`oiA5J&AJpr2KgND$RCfxdd*zMG6nH@jRQM_u5HZtEWDhYVjG26#;5 zv#GA!w#!Mip~rZuhzeBra}nx8+EXwi{@v(RLBCOSmqi%VuP24^{{@CEdD2KEUpJ3R zH!A$T+bO^}z-XQ!qj`Hd3Xy6WKdVsy;wGLz0~-j@T35>dJyvJD+ebiH;WjA{sF=*s zWi;BPHtgH!_UN0F?EWkIRy(y-c?60Dk+!ml^c09Z^!^mvw0@nn zY>{Rkem2ow`ee2}er10L9+WdmN8{cmo5tbIlI{GSoShPHnX(7%D;vno0@@B@NS*Z? zpp4YlQs8oc0x-4`?N1l*_7PxvSNL$W1mO@?Duf1*^9*40 znuOLs62r*xbM2B>Mp-Lul3BcdlRbKVFFT^Y4$9K+-^^KQkBA1RDsbYd0@!rf1EG-w z4itd)f3sHDZIhSVefzes!@4M>JCj7o(OmE7s&OR1O`)bSDK)v)B_0pkfA(&fRHKaM zr5{9%l0bapy(GfHDolpeVdP#6r$ZHD!1n`R&XxY%w#dEXid9y~0@F8~mz zv(zW;=Xh)UVteeDJ?*Fg-JFf*{}k5#CE0^cXq9Fs>O{gMty-fr5{RI(%967|GpVs& zoxRFBI_WLR0S}Vx1ct)&@7c1Pz(^6Y~DRHWEnBe7k|)s^?P)kg zYMKiV%u;Z`L|eEl$C_y~UV{)8q-6JYFOIS6EFlVOoA{!74dpTgVs z(Ae%Kbyczmkt-VENySiyMu2U+ZU%6t$SZ55uHM%(%X%wxdzh*p1y~eymd&F{HI1-a z6^hjg0HMQdGF+?8hA!|}2qIM(1A8Pdk7%q6!gCd!7d4mSSIhzi_Q32{ibPGtPaU((U%w zp$8I4oM?Jz$EKD7u-q$E*4YdV9X=d~g69Efq1r6XxM z-@`wpn%=h>4c*}!NjZSk0@-vrvQu^NITl`KEnaNwbZ zZMyb))Hd*dFtq|e=!gdq&Qu3PW-QBd-agU*gpvpZs=+A$4~)fT!)C6q7qwHphwK8x zi9&Kvw0PUAT@yRzkiDIag#2YCB$znuJwa>ruUTuXUKIvMP$out4X7}M6sQCRJb0wa z<+^k8;8a0|W^Ecl)lUIji3d|&77rr0#&HZJ4@-hbm})QuqTr!Ed@k^Ke#QzLl9}v$ z=UEzftk@_Q){R9Q6|!CL8+kA1PiR9PC#U$Ew?Q9(r-8&-!izZj#5VGWKZg{67r8)} z5nkkZQ*8ndo^q`M5IW=^RAU)eyEJbUPI!n?LsKkxd^t1QZkoKzF5j!U9ox0J<*84E z?I@m*`ozO`DF`Ttw6OJGOtwhwir#R}0611Evh8#ouiKzO1DCy$*t1p908sEJ2&03Q zNU`||#8}aNCG+~aw)GyASy8!VH8ZGdTVpZ^_+tkLcUKx2pi^hM)KgXT0sq8RZzn>#xJusE*oSADzIabq@67Q zR23_V(@BDG67Jh1scEy@U0HS^o}o9?J%P6xx9Uz22MNpn9(y+c$6w{3DY%oiP*!Yv zDx<2aUte_zT&tYaxJ{eYclDoCnYyZ6#~!+Y#{+n9{6yExq#$&R`pfm&m}(_}@Sq~| z%+h4MLjO2B1d$puem!`ge#Br7c-$lKI9A}nhPfi`b4b^FTtpfu&Bb@dT=n2VMBJBj z4*45n7u$XrjqJSVzqL0M71)DFRX77+G2w?XwtAJe`e}gfweNn`yhWB6_eS?U_5rao zy?z7?=KeIx=FgdB4I9Q=L4iW|2v82_)z^}eQv^W45xoEaz_DWaQky<`g6um1W8W4n z;^N}1acZhHY0}i1G;3ywNjl|F;6z)?W9+`JwQE+}lnLVk5LACEstZ7iQ@EDolvGPs zT^UWAS#sl`{Qy^ab;Z)8x_^e}03Mv@(M^(v-;>7m+L~%DfbhV0a4;i0AVLtS8ACW0 zJcc28D8AF3-I_Y^VD~kLAr*nRyQA%mVe{a*VVq$-qx%C06XM}W3BIiL#?qu zWus_NUR_nLU=Q5Dp00Lonu*}I2M0RAD?4En|n4E`{Q(MXA z@q+#y?$KOot4t?(xEVozDpO%vdXs3jK>efE#()P*6!2KMV4nTs z%~$QEryh*vzvEBO*^$Tn+?qCPF5p6aM^AlXpo@MDf+^i~pZ%Ols=mHEX~JcLDnWgy zj~36LFNtQo`(@U&3C7=BL!Y%vuDRLHz4&rVYm!kuh^QDqu~}vtNfL?xEQzNfb?Mmz z)c0*8ywGM_v2>ZO%gJ_i&HHJZfNq+-|JPUSwDW#rmt1wDwQSX<#)3!`JfybTOKPjS zAbGe4sh3(0AapbqM7p5P%Fc7E9Xts9FehJ__8bLx4zM@kIej7EctkOv1}GePBdI+m zEWqU!qj`ND-`dcYDVU2ZWV~!H}qRO2N1cuB#3NXYspr4y}!E}X$(NXAL=Al;@^G!r9JcTJvL$N zNSE!HlTNn_es{HX->;|JnVz4Y=a_fNlJ(719uzur>O?#9SHH9Ke{-eF>%b#1DCr~E`mo59+0T7|#Kb+b$XufXFl7ND>)bDM=)Te+L9*?70q^B}gT;eCcBQ=-s#M ziTiJj68yFYpSGh;IN3=Zg_1fpZwyxc(F_%QNJ&YvHtjn&+X&!TTz}+~-k{X}J$u{W z!;g_l=@`4^%HLSWuKU=_Pd#M&9oXB39D8D5<0z*dZ$xh-l~-2Vc9xo!E~&-aG(44E zMXvrH2lTQ*Lyoo~N1tF1-u`>Fue1H@y*I5_zkznjndiBMT{%@%yUQLt@U{XxdWpRSrC2~{V5)Elqk zaiiezg(Q!w2H4;}f#eZe94qTs5V_Y$BH!3sQfKYgt)=^|#Oix10u+xlR7;!#Qcs}t z!|3nqg(n`i;s5ukyW@mY&ygDGGTW!e0j|9T1qFfBL7OX?Ft8UE7CKKUf-`R2F13Z` zsLXh&%?>^CSiAeNXYJ}=pDtr}x_$8WU+lo%2V1%f-Wb-mzP}g%>C47K9hs~8$~KDo zx`JobyZ<1&>E1ut`9B|G%`;ou8!tX<{Ra=RR&Com$*8QlD%tJbl8xa-=%f_33uw<7 zK|W*0$!=*xHK?Rc0SNTw!SkRSYj-G~5;L`9o!Cl#091o#Qm31cC_4i#tAM(AUcle< zS^py`_yR-ZVvf`>#IpKSXJ}Zxk>#$ImD?3Y@Wd%PoT*STvtW9R1rHuCy*tYO^0~m{ z8o;BoQ(KkA6ku*1L~fTP0*IXb{#DRCxXR` zsj$K=o($E#3$?O=FnJhHfdC;}=YH^xtN}o<+6(?Ri}`PIppQE*XQ>~kjfDqyY@*G6 zxwb-Qi)3rl9~=LO(z`11w?^-4b^gd|T-wh11VACNG)_&k-u(v2W|8lTUNCQt1Ja#U z59QDw=o25G;6TKeJ!kfeYHvvAc@R}MBe|j5=TVozgXdP~BoIGX83-^4j9-Ar%;mWX z1;07!LE-a-@4JTrJPV}2?A${8boz3exhCJbq$@z8_I@-^ig$paN9Gt0E|RPBi|hmK zOz+t;#m+eH00%N$cg!i$WLULlBsU(ov@)4(!>^{`2@q`))s{P0UKUpjI-E8-K3UTS+W6K=RT*TH?te> ze87%4{v>Oxy%89kN!urNxLddD1zNGkq^TqhpVsHBbt=B{K+N~Y=da2;5)1o5d|JIS z+x49`;LU}7raC2B19)Vn#96zh!3I|PU-}tWr#A2Ew$xbwfv_G#aJ$=EMld!TuGR6l zaqzl2oc9uUS zo5xkpkF>1!$Jnn<>uc$a6M{2FXjmDE@c~oCp7QmW*>?LoKiav!=xS#le}L3QW@{ut zrODQ|)i{cbD>e_3TD9#c{=y?A?%X$QZ*9`!b$oC_b#3C#?QkVZtJ44iec%tw z5muXo9+;b*FD9hpaRn-oxn2n}hFNxm0?-*{j0QY|LRsNG!;X32&^sj?JT zh+u|*hnWB0bPoEb%huZ~ecISTt<#+Pkut_C%&`Y_{ObT66$%^T9?DIYq>-f03v-KX z_=X}oF(b)NkYvM|F@M)NA}2@%c0~WK_Jr!Y=7|x`1^B{K`&e2zAi{WI+yEZK$Ih`U zo*7}k9Mr}xIlZr?>5P(pOk8a3(~_*O019faHfY(kw@vj*2(ueX#*+!q#cMvE)ui9wN@GE+rzYbD8NL7 z+SsD@YMNxDrAk~Sp!i-=L^rwfCW!g#zXOlABj9nTY#4wC6Ptu8Dp~5tJ+x2(bA)V~_Zp~dC=VUgvtNOOpN-_wqJzrAJYbrB)eZCzj5P9<20rslY zS+Be|#@4PYaCQ>63U{>xi;Y2saM{%V}E|8E1j?)zd7SLd*!*uZP9}HZeIv$tmvvd(uQ5}hOG&vT`1%B z+}SguRWy@2t0Glei9VM25-pq?8VAr%B38%Oix67MK*8 z28?-^kN~M4GL|FRvMgDWZRr2E=d670_0`ptbgv{!yCdCm?>T#R_k6qO`|tPIZ=2?7 zu_jX6FbnbpGAf6L(wcCvn#3LLig?RApJXXoR$pFfRWpjMPEy1MfyDRar8Qr+luM49YYnqBL6GW-G)s~W(#$`;(cemm{B z7Q5$~69gjf$*?XEkxI;mad%^Zx?;)0fyc@7?JB9fss$d;{HDzw{Pk8_!7}+AMh%RT zcvxS*fgBZB0pF(Z zBtLuPVXZK4c6ZKSxJ1Xn3re|?@*{J_QC(6KOS0L%twW(&p44K+SuXS9mP1`QmdtmK z?ODJB#~SQvOXaPJ>%Z^+v2Dr3t}OsahW=roFx$Y*SG+4S;O6jhWGE_}%8>$)7oo3Q z>Z^}QrSwOu=G*BlwE}@6YnROf$>XsYJXQ%j_Tr(X{H|N{g_(VcT!8xo`h5Ziw@s}& z@Adb)?8g7uU~>f?SFD<6jev*l^(qoPxlWZ=){E^u_G5v_PPxsVdfXDb=gTMBg9>Bv zfIwusBoVy5kdu<&agijCE2Xxoku>w%d%w58QP9U_v$c9&d7046=2pA<;&bf&yKht2kKdS!$Sd0fuE)714?2S#9RXDsajjSgxU*}A zJ^JuJ*{1dHXmxq3UHrvswa{;oXdT&WGSy2TxTG(*RwFG9TAwl^&6LiV;hr0n-E;r> zgj99?_OZ`=))uuK;(#nJaoi4o2X4A-39(ELHZwIQ-B=4eV81>I0J0xR#FR8p7%;QN zyq0PJ%@AWkrN#M>3P%CRD<0$+5SnHt@*OdFJSydM+ zuHGk!Y?m#jxVXsv>&18NPwtDq18w8A@cDy}Xc4t=M*5q&UXc@SZX+@(#CalO5JPcW_zMzB1chw%d5ytsHcD%r(Mv}!I-N1c#(;qRp09QbL^h}J@(~S-**#+GnO^lM~_`%-@V4{+Pj~33s09UsI%+-_E&bn zNs>HdWUrr7W-qsP+MVlK?aaC|J9~MPY$<)#CJ-AGK#~{Y?=VdM@xmg2;b%X8iCcmG z_xFF#o_yrTnyvTQbyt4gF1Y+^``ksBDPGl55lIqTdKh?}^QpLarb58KWB>8QqyALN zu}@|0>gloV?OUDA&XdIRw%vLEKibm6kI1?%gXW|9Dk&*b82K&s>{CD0 z`j$9$R-!hX0ebr6;kb3Hv99Fthkv3-!=26p?YD2eZhxsDkw+hQqUuU>I7pOH=&$Zs zL_h3Z2UnL`Lq&h46Pj~ z*R1*##nbxfI~`IdmDuG{TP49Gy;1N6$F@}F$%|_2c1a{(QwVw1hTBiXb*UCHV z!57T7y=`Ck)MC5*++(ako?NfXjrh*Bn;b}eVdXrj+ooGEz`h zzwheaWp}K3NP!s7h(gh1k#vSEY!n%I&#`wD>Ahy#2kad_1?=#Y$b8&Ksm#}>{8BH^9Z&~&gih${1!;$yT59F-FrI$`^$t#7b-2QPHdehDwqG*^3+ z=y?G<-=4HW^fTIjWKLC+lR{=!%u!6MCI^E1;1gH)NZrVuAFMpDYiLmU3vB7~6}J4y zqn(WfAj+mD+rRGoouTiYy+h!?SdKHOKGmEcb>v9m03bOK%CjB@7W;}UD=xElwO*vV zU*05|wWKqF9EuEC2B8293meBFwdHo#Neit`swbEWv-8G^8QRMBL#vXM(60YOq`s<{ zS?bgd1W7E`%fDHDaIY#Pcq=#4+ZYx`tTd0J>5W z&+Da&m8*}JU82S9WavWJE4CGCt@5&2alH|vMy1uV^e}tm7uu093t++_r>Tr0*>u=H z1dt(YJH~CsGGX3HgO%a>NTAi!JkS2&v8N)biu$-~WA zdBbt!6yU`Mn49F$rw5!FqUzAN`Zb^}yd5FBUAv_Ki{(+eGbHD4bn`H+%x4FVTC!5Bs5~Lb)uE0A5PAvj9qW>O0zsl~F z*mBEjo1N5i-il@?g}5~%42BGe_BCp)gEKsaMbIOS5Otl!q> z24qla4U?EzvhywO;(}4jlgNTy|`(IJtN?{O^XtB+E5goq%|rx z$yMyHUfyioyEodUQe|N~!4oW+<8n+*o^krKxiC=jAYCLhRsQz<7%-snfq-r#DVMe+ z%LPPm!5v8&Ze1g(Bhx+L11hVs(t~V~;#oNtU7h26z>Z85%YH5ZNOt;Uyy|BuFga!~ zfCwQ_y0q9Wgh0tivJsv1bmnGWZX^K-8qV_y=H+IQ`pvZnK=7Pl-*mu3Ux!HaALaE* zf_YjoxUQ4r!T#%?UfN)Um3Ouil}A4MwN?P;6O#z0^%(bWlM3tR7dKkbOB-#aq@)Iy z&1LY}2aY3UoVnhYYrcU7jq=M_*EiDUx-p`g*;^)3S(Q5Q^^?JomOIt&3ji{T5x}5i z0J@02a`oLLN#y+<^3oFbk~YL$8%6Qq)-(!uOh7ULHPS(X(-1xVd|EO4ek%WL8Izyc z&}r)xHs$ui>+N(cVgx5(G*0~$RpmfL6W4u7_4AVru8wG|u$zusVE3)tWN*B=#Y%H- zz`o+bx580??(kk#M3|_O;{z#x$LMLkZ%Q@#vZiDS3{Dt{4mPi<)Wys}C6enbcuEp& zln)Kfp?7-XT<*L(LIWh3cO^Mquka}!m)kCj7Xc4?m1~jaKE0;+w<|(w92xWvtt+?d zSI@Ubxq!Z_^&|(%%zTh1n-r)07-3;xg}khmX_5zcL_I&8u`(&hQILlS5=b7%>IW(_ z8bWw4Ybv)5azSn1xyKoIL1{l|^H5zVVzd;XGlVowhp*!|w3g(Ah1JfU!X@l0AA&^c zP$UcwBEFwp^~#9NOBQk0xwyS9l=s(F3c<4HrAcT*s z;#x@gp+EqT{Ls;r67w9#SQgc4LDG!fwoz&=X0$9)VmOC10Vp5_0w}N`^upzhwxFua zfd?&v=e(&9C|kOEZEocZTU1>x53T(<4t>2|yC1%%wJ4P{751WD0Rd$^$8+rJRdbyL z>KItyR%6=X^c3$IQpapb9jq#6=TQ>pLw7h*NZv>p734r9E)xSggLs2LWShdE z;A$GAkvtQ81jRWfBW_YE`^O@={le&xMp$F<{Qq^>U9Y`wCHj4kB$2ObAtS*XkuG6C zKHqP*cH7-+H`-Q(TiKxtUplnbJ|z_xhIiJkkZ|eUA9~!S@KFE?@a{!Yht$c*ji1y% zTnl}Xf1<zR4fGktra4opmLP!?u)Do9!uUlRshBz4sk8{n7(BHKNcdqC?fVF@ z$Los7%ew>sRr=kn;|xhDtO^HaJRjmnzHS{k-=~`^1srabxb9z?tyCe(QH{9O-pWh{WLDbWML$ex{cV|A68?AC7CtP~BnR3jZqVpN(yBA>FThqW88*8P+^TB z=^6Ya00W)-T#4LO(BPG^%dGr zBz{4-=K7=XO$jv&L4g1uLl9`JFDHRyr(!g1-ri@}M^K&M`pe4`()dsyFs{PVJqa9) z_1alQ)+nh1??qDb-6(8JLg~3uAOJ|Nlp4c)9whuMtFvd1lStUmh*=o#QlVTXjO z3Q7S#&XG6}EvmKaXJZB1M+e|2DB<%^cmR+*5V252q|bOUwB!2QqqPSINhBebp9h;l zwIP%nC{QR0qyUF1nWI3YNF401LkbdyBg2IL2mmsnyC-T~@jdoTnJ4*f^NzpsK1@n3!2w)8SKcO#5@;IPobE0A%9#(V#6% zzI4poFt)cTG)kAewnz?0;+NN*2p@q0V@Lsj17X9jX{wTOyiO~~{USh`k{rWh*tAep zo+uCiBu|7K&tlSF!Y=Jmu~iaD=dQh4EvX&17t!96euJGG|XIL+_8GRRC@&1 zC{|UiqEVN!*?gQBi$1SE7mf!W1pESC!|TNqTA6-QhD#@BTSzyT2^NeTcmNjft57#9LmrQVEL_$rHe25JHC20~GKez}WKA2AgYDE2=bM)n_Et zRB2;xppfuo(oi4($fW7Y><aISo7z@aq>|h0LbL))2vVAfnne4Zbr35PnLu=RdF`10cEZVww=aZ`-q3=$2h_?KRb0U4Fh)Mz%VC*Fv`^7n62+S@6m`sgv;Q_$gHTaEMiba38;rcKmo*L<6$e$0# zsX>7NAXB5Cvp%JlFg)`h^KSWI0wSonx+I}sFChgrmm|ZZ`tbHIK*LEIdOG$!sgyyy zQlK$Qv8jA0bsikh2+{_W2q^$a7y~I3$iy5xm|%GKk_k7#R8W0;;PF6|QegNo;V6*o zFK^QTL}p6TsE}QwLehoV2tja^5)tp2?d)8 zMpYQlfT~O1-Mtg{(WX?(9ANO_Bn)gC5!B<#odgZSr>967F_ql?Q;K5YVRNNG0FYcM zHO2G6a{!5CV)jZzV1NWQ7i&zss*B01a}VZ*n0W;WB}u))eRtiY5BiLM`iUd`hia<4 z6iFkJGLnXHTIBjD&Re(^hLR@>1p4eOzHDU8BR9;9Yy#f>@6wk0yY$)(FmE+3GSW`F&1sv?Y4-W$I_DTgZ;0hWeh(91+q{e07w?%giFJxfMZO$ zEfb&s9=*HwI#B5mpdg_TqsvJtFhOxMnBX+s3}Z`YZZV%6exnYsJ2E{tbakqz_*uwP zEMPz-1z-^2woFHUr%M>z5&$D6TsY*F0s%nsO3qMNk^)JFpUxD?2UF{p+N)1Mf-MC= zK}z8qpyFrN^mPQzhv*UYVj|;%FT7bzBLg>xQQ{P`%~KKE9D#=E-u<3RnY!Ljog1o-Zyg$Nj8aESL>0U-EijfF5F z`Yup#=XHaRew@7`xaiqldTj00000NkvXXu0mjf DudiES From a5288f10e2ae3ab390f1b2f6186e4014e1780f72 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Sat, 29 Apr 2023 20:30:35 -0700 Subject: [PATCH 20/33] add the submission portal link, invited talk abstracts and speaker bios --- .gitignore | 1 + README.md | 67 +++++++++++++++++++------------ _pages/cfp.md | 2 +- images/raif.png | Bin 0 -> 45626 bytes images/vasilis.png | Bin 0 -> 32789 bytes index.html | 96 +++++++++++++++++++++++++++++++++------------ 6 files changed, 114 insertions(+), 52 deletions(-) create mode 100644 images/raif.png create mode 100644 images/vasilis.png diff --git a/.gitignore b/.gitignore index 6cdd784..f0c1dce 100644 --- a/.gitignore +++ b/.gitignore @@ -11,4 +11,5 @@ _notebooks/.ipynb_checkpoints # Local Netlify folder .netlify .tweet-cache +.DS_Store __pycache__ diff --git a/README.md b/README.md index ae043a7..50459c8 100755 --- a/README.md +++ b/README.md @@ -25,56 +25,68 @@ This workshop aims to bring together researchers and practitioners from academia and insights on applying causal inference and machine learning techniques to real-world problems in the areas of product, brand, policy, and beyond. The workshop welcomes original research that covers machine learning theory, deep learning, causal inference, and online learning. Additionally, the workshop encourages topics that address scalable -system design, algorithm bias, and interpretablility. +system design, algorithm bias, and interpretability. Through keynote talks, panel discussions, and contributed talks and posters, the workshop will provide a forum for discussing the latest advances and challenges in applying causal inference and machine learning to real-world problems. The workshop will also offer opportunities for networking and collaboration among researchers and practitioners working in industry, government, and academia. -## **Call for Paper** +## **Paper Submission** -Please check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. +Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMTSRM/) site, and check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. ## **Outline** -| **Title** | **Duration** | Link | -|-----------|--------------|--------| -| Introduction | 10 minutes | | -| Invited Talk #1 by Raif Rustamov | 20 minutes | | -| Invited Talk #2 by Ruomeng Cui | 20 minutes | | -| Paper #1 | 15 minutes | | -| Paper #2 | 15 minutes | | -| Paper #3 | 15 minutes | | -| Paper #4 | 15 minutes | | -| Break & Poster Session | 30 minutes | | -| Invited Talk #3 by Ang Li | 20 minutes | | -| Invited Talk #4 by Vasilis Syrgkanis | 20 minutes | | -| Paper #1 | 15 minutes | | -| Paper #2 | 15 minutes | | -| Paper #3 | 15 minutes | | -| Paper #4 | 15 minutes | | +| **Title** | **Speaker** | **Duration** | Link | +|-----------|-------------|--------------|------| +| Introduction | Organizers | 10 minutes | | +| Invited Talk #1 | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | +| Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | +| Paper #1 | | 15 minutes | | +| Paper #2 | | 15 minutes | | +| Paper #3 | | 15 minutes | | +| Paper #4 | | 15 minutes | | +| Break & Poster Session | | 30 minutes | | +| Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | +| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| Paper #1 | | 15 minutes | | +| Paper #2 | | 15 minutes | | +| Paper #3 | | 15 minutes | | +| Paper #4 | | 15 minutes | | ## **Invited Speakers** ### Raif Rustamov, Amazon +#### Bio + +![Raif Rustamov](/images/raif.png) + +Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. + +#### Abstract + Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for brand advertising at Amazon. -### Ruomeng Cui, Emory University +### Ruomeng Cui, Emory University/Amazon + +#### Abstract -We will provide an overview of CausalML, an open source Python package that provides a suite of uplift modeling and -causal inference methods using machine learning algorithms based on recent research. We will introduce the main -components of CausalML: (1) inference with causal machine learning algorithms (e.g. meta-learners, uplift trees, CEVAE, -dragonnet), (2) validation/analysis methods (e.g. synthetic data generation, AUUC, sensitivity analysis, -interpretability), (3) optimization methods (e.g. policy optimization, value optimization, unit selection). +Last-mile delivery has become increasingly important in the online retail industry. In this study, we study the economic value of last-mile delivery. To do so, we conducted a quasi-experiment in collaboration with Cainiao, Alibaba's logistics subsidiary, where home delivery was launched at some pickup stations in 2021. This allowed us to comprehensively evaluate the causal impact of last-mile delivery. Using a difference-in-differences identification method, we found that last-mile delivery significantly increases sales and customer spending on the retail platform. To optimally prioritize limited delivery capacity, we employed causal machine learning to target the most responsive customers. Our findings suggest that online retailers should carefully weigh the costs and benefits of last-mile delivery and tailor their logistic strategies accordingly. ### Ang Li, University of California, Los Angeles +#### Bio + +Dr. Li is set to join the Florida State University Department of Computer Science as an assistant professor in August. He is currently a post-doctoral researcher in the Department of Computer Science at UCLA under the guidance of Prof. Judea Pearl. His primary research area is causal inference, artificial intelligence, and causality-based decision-making, with a focus on building causal models that estimate treatment effects (interventions) and evaluating what would have happened if an individual had taken a treatment (counterfactuals). He is also interested in decision-making modeling using knowledge of treatment effects and counterfactuals. Prior to his post-doc, Dr. Li obtained his Ph.D. at UCLA with Prof. Judea Pearl and his M.S. degree at the University of Minnesota Twin Cities. + +#### Abstract + The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, which is defined in counterfactual terms. A typical example is that of selecting individuals who would respond one way if encouraged and a @@ -89,6 +101,11 @@ demonstrate the superiority of this criterion over A/B-test-based approaches. ### Vasilis Syrgkanis, Stanford University/EconML +#### Bio + +![Vasilis Syrgkanis](/images/vasilis.png) + +Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until August 2022, he was a Principal Researcher at Microsoft Research, New England, where he was a member of the EconCS and StatsML groups. During his time at Microsoft, he co-led the project on Automated Learning and Intelligence for Causation and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He received his Ph.D. in Computer Science from Cornell University. ## **Accepted Papers** diff --git a/_pages/cfp.md b/_pages/cfp.md index 4d08a7c..e2c38c4 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -18,7 +18,7 @@ All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). ## **Submission Link** -CMT submission portal will open on April 30th. +* CMT submission portal: [https://cmt3.research.microsoft.com/CMTSRM/Submission](https://cmt3.research.microsoft.com/CMTSRM/Submission) ## **Aim and Scope** diff --git a/images/raif.png b/images/raif.png new file mode 100644 index 0000000000000000000000000000000000000000..e627f586a621b3453ee26f1f281afc47ac0ec31f GIT binary patch literal 45626 zcmZ^}1ymi+vM;3Z`Pl1E^dySd0WCQ>ZMXklfm1V@m zNt9h2Ev)U#0RZW!R4rI-wGpfw-Q+|ODM8EEMp_$%K~*oK4+k#?lYt++H@WPGlWV@PfQDUy zBpO%^SQ4!t%<-S@OA?f1i@)bU5GVuS8G>OVvZzfYCBh)J!&kb}Jr{vw_SH*r4e!ez zhA}V+xkJ!^s1TmG^r4BcM*zSJNsD3||g!|*gazx;Q@CZ$E*VbqSBGpJ6!@0;Ji=Jca ziQU-Vi!-=>k8GPEnm*~7NzjTUQjczrKMI4cy5t<<&4wc=f74~`B;tU78gDpQD1G{F zf*JYp%^EEU)mH3PwEO$Ac&sWLCFzxm?_5yUPzWz1A1ePf56~DDUxa{SJPJ z!qx8-mIs10W`D8^ z6DrpEftwD;3T<)&Au0ydUyjPZXFe28Yd45xQAZYT*Po1I{d#~pbQ#w3?&ANOM4#Yu zK@Ic71b!xSBdc0>yz-X+Q-(9?^{dgDUOYnp5B4d#;czVR?DkF0F8_Tj zb8Ldfkss>*%h2%9&Sw?HlwKn4{X-}@Z?#DMYj_h()2nZO%_RHJUad63bc#gO20sQq z#U&4gGQ(~MK|=rtrHvFI)kLsR-R?Q>dicGSP`3cA!vH^{YNK#Ticz0$mv{*9J-Mh? zq8pbyfnS-4Ka0Gdu+Vp{gt~oo47U5iNXeRrBZ5c@gJ$pKzXtoz+qXTBqDlQT*cWkPw@q;S z)32DzM5nlEg=WsL$`tRkqt1Ew$FQ_6N%y8qPI9H-=$G9MWkR}LzGk7CA^kjJs&fRv zHnFs#NZm}#XQh?EtR564abqbDih?~fGvT_sDRK>a4gCm>!j^Yd;cIPB_{{{~`O~uS zNyO=m5&r!j%0{@=gzO$gqr)0(p*)pvOxNq${3q0btoCwNAHU~@+?a1~+yCA0bb=pLPGH^dKy)*AE#F26qWj0@FPjEG!J?x1!*EIx-$7{{heg%>{f z3u6Y+jZP;Lt3Yl>wjOIeiYuRb8sUhu9^XG0*$ALE=*EIEPGoAtz<@3{ILpe)1xr6b zSEKVAXd68B1iuh>XH4u&rq~B=7S!t@^%9sIDA{qnr1Zknb|*wZm5?j=Qm?jEW6#j_dvd*s*tjDE^~_x|<%-F~JW z@*P0bms#@Vq;{Dk3S`<`buk^e6&V{!eX6@eAsSkGTzXzwXj)48PpQ!b&0y9cGsy~WvZf>q- zjp$B##`kgw~v%6+fewd^1bY7u4s<$ zSmxOO7*->*Jd{p1wS-TrL8n3GuI^Zlvo13XPt87A=a){{Nz{CFJj`(>njWDb*>_}YrZa9cIc(^e5(TIz9IUJ|#v#i(bqij0nZsVnk zKP*m78CVR=*KA&YRw-D{x*nz8diZoj1o}XA(I9=FUIB_`7IX2i02>mq>X~JOq z^Nz&p(RcigXXk1LG{L^6^pW@Bn?`NRb>aoULM2efo5n50#Ua+l z^b#KCpdl|6DivPh^s>0TLKTzN9*$1Lw-e_|*B?4ZaYxA}Tp=n($HLddyk}YC(j(Yl zLng%LbJ%ZgL&HMrjVzW%9f{Y&^=2NWv$2`mwlZ;3cXPk}{)3hEkI7{JtO@ndd89w~ zA#oGKxnjF}J4Gj>C?hH5FQ#pO6A=?{lZVHdUCV^7#KK$(X&XfIo2fe3P^`?Ul@1 zc}q=M|I%2exBd;pS&UHPIbM@p>oo}K&FkH?*kNyBU$w{>&lEoCu{$_ba82a3c3nBh zoM6mZWoP!Vo=EHO$u`V`{0Lw%rbwcqHq| zpB$KsS!8)6TL0=FH@nsVbdNU~=zD=UPXb3tc8(~io4Y3bEWt~ZUni#4EPwY;mr?qt!v z*M5D~w6STiWpVzDWvTWzQDyqv!@2yjx3yMx)d9>)xI&w|NBSAim%=yaLSfz4-*Bn3 z@h$cZ36=qQj-Zf`!Tt-LCC5FtIhQ*(HK!*byx`oz&b-TIP2aY?lzhB8@w`y$DbBw3 zRc+5g??Uiy{;oeYo1%bC)|$uR-s5+z)q+)irLb&1U%sQ;5%zKRO3RKZBHlyq^J(wF zr(y&LY&?EFe&qM_=a(MErpdvWbL=c;Z#^3@-m3d)-NinJ7DUz0&e2YvZJqvxs*|fl z#|`P08UOE|H_Mejb*mk)*WUdsH}regXMK+!=+5!is^9t!64uup)}@G{1dhCLUM?re z&kL{M*IzhHJ7Nq|5=uMQ-D4LX3sOQ=9TG55m^Iw|+7IovBXgE0AMG(G_7 z@WJKBIK(WnM|D(`*s)VrQrb3Ky(1)Ukdp51OV{>(Ep+V z09hdZf77Z!nt$s+000rz0H}ZK==`n!ITHVtzvzG0kjdcy*uQt^f6KQ#i2v5k%Y*zM z`mYQiswOTY^S4$rbul-0aJ6!DyU5P@2l>fK`l~AdfJOOF0m`USTmk?Pi`MGeZrTd+ ze5Q`}OvYx8Cgx0D_D=uU0SI{U{Uzh0iW?8WHdO8#F){y#fk%w0`gtexDf9UVyiv1@GN=J)(Es$+zrp`0{NKQT zx%~S7bon2W|3Lne0-vh6tD~L!KTW9NVC^RKH`4zb`+uXp{trxum4oBop#S9lZ-n;$ z74e_k|BX;`vHsf*#{YyS#QJX!|H=Eez5w$-UH>0L;lIY&zqo$~nh?AI^M4OoA$VA= zuyFuD1R(Q8RNV`B+VLs2XxV+!vtmQD`o5~FYU9D&!YBMsG`@5uS=n$31`wG{Dv1E7 z2t_Vt1Q$gJDT+n@DV9Mo5h~b}UK9Z7k%$Bg0emtE$)}B%jviB{usk^j`(GSa`B!V* z9q&KzKdc`g=ipjPI}hWoG`-BfY&@*r{rnI-TyssYE)kdhV0dMRe~qP4e#1?D0Wvjy z->8(kzrAfg^y$*=dRMvjnhNueB)@+JF#w5SM-q_Z5f@^|9*`BUt}U5g#A90tH9ksY zAa})XiNC0dIG`{j~!=)*vrQ)rg^g z8etgG)5lnQI}0%~PF`oo*}gh7aRa|1B;FPp0OqNx7E?E5rK=QjwCEF=$SKcK{D=Fu z{97z_L|0bnSt@{|79Yws_b4U7JxLrq9C({?ofavz7(DzZoj31Opu4Fe_yF#~$|{DE zfiQ4A3wP>)1#w|&kwoFD&I*JwDH<>e{ddF#yz1|UPNHrwBmo3h;0mBV&a46!dF708 zXC(pJAXuNeW*NZ`M4-RNb{J=4N-URdv1^d?IrA z#4=COWpQwzTBIXWP*7lPW=1i0!PjkLd`%i=&vnH1Z91}J3!`@Er%G%7+&u*nTC zJ~g3(+;nxb$~sywN$hV?if3v&to^2f>uv2Ita+7_2VDbC#~oj`BQAFi0YS2@@#~F9*(Y)>5F=d()ecEQNjEyPRTiyAyg*{0dxEg1Vs*(V+ z8&MtBMrJrhOeHT57bR+zlZB>I@qiQsig_zMJVJ_#IQ5H47y!2p=bqXyS{nu7Gh2_JT(3p^!^7v!R=s5co6eX(;Vlwkey zz#pB$^#DW|F)-PuS3!1v=JhsL#)*kFIYyD<35nRp`XrWl8%G_9QT-Md%899olDqvo zx0{7Zx2rYXr9gx-E}ow{XUOH=v~w)2yp^Q5D7ie8CbPty*EW2vMxK0bw_bdHw@!S{ z$2dXuMSZXjMWL_{rsQNQDiipOb3T?BHMd1D<@KeGC#5#b?g0ce*@}4_q*7|Im(ca4 zQ&i@qjakxz&Oyx|TPl3r{T|mS?5M(S06zjRw!`<1EbHq@%+uBvQu}A)&vjJlS$b@7 zjfzdgUP(y~JE3lN$bjh2v%fVlzBDko@|PY@04nJ`oU9TbPlDW8 z*RwND24$=-lx3-N{rCt4eK^iGyK>w4tW6%y-LChd>U|&J==5lRi0RuJM*lGo66`n_ zb$`!~2evr)x8OchkjB;GKz_?A4eVQb>~!1fS&_yuTqAS#J_5IWixhwjc6>}crB zq`ELrdT`KJytz>;TZWA^V=_|n_+5a<{m5Vpsi>e(GL~Llgm5@nB8P3Dl)8dCTRRAV z3bMB=WGq68Tv}T~lqvBqsTi=7WeA0g^6}g<#%*YINYjz#J`)t>b-fVP0dR!&Z?bRX zPX6?#%JzRAxjl6ymN9J`R26R2YtSqbi0NTEod`|D>D6}h4K_EXzhnn2eJ@vO;>wFZ z6j&9LaCE3*=QFhIu7f2JN<}8%BdQ_>T@-%r5+2?b2X<#e%`yi}Ummdedl32)^6dFR+)ZhZxmA>*JpyWvQ$`IkPI~&{>_8J! z(V~GbxqgQq{d&7kl4yU<+~THu1I(2ZRW%dqY-%uz{zH_=%9^?{JCDfHCy_Bu!=3|I zSail98XRb?+FhIV8Ap8U;%}ejg)n{>?^1gh5k)dEjF*(HelH95^4l&TR_eMQFjQm~ zc(BufEX|(o3HtF$2Z1UQabJ|W5)x9WRV%Y3rto4nHsh(4jxfn({~hKTQ%UH_j?ZiF z%iK^SPPAJbF>#(Su{PiwYV)m)dp6G2F<;S=lu#9}ZzIXh)}LIDTs8~S&(F~JDGNNo z%~XhRh&$0}7C;WbFaj7(D!T!4lT`zA$KyBIl*y4ef73CE7So=@u*-KtHMtnd1|{yZY#4On{&dVT5!I#FN# zENZ@9KmpzE#i@q{lhFJev~8Bq1a8gKFV6COGtjjya`fB92g3?K8vC#aMoc+i%Zp@t z%ohVVc)qI)l)y@{_ciNlnO`e4tlKz3Nr!F&7>VMFjK?(v70v*6*;Qu7GX|u zD2YXs;ghQ=VVi5HvjxGXX1}Q=b2n|JPXh0l{aO7Hqr7$=Klud~%ouZVKuc31R}cae zo_IWliDl$qzclWIe6a}?C~_=8hZ~>GWJ5ezA?W9IyLID>`%({y<1x$a@EZH!mj`%E zN~o?*Exu4H-o6rK!G-~* z?98QhN~C56YAz!x6By-Przn?eQRbg&zAE50OeuiF|NJIbMoGXKuT1DC-h>dJ2#kH{9pgbh zQvM>K95?;T3Nm)1LLN4F3}m&+SKznKZJFZ(e3)QWgGsc%fF<=K0sIK2=JlDqp7m?> zdw+SnJ~xqnfHw87LdD=<)qrt2jum4z>_~o(*nEKnFHHCvd)eL&jYAz*lqz&-6hMe6 zr@j~kLufF5G2-O{WNynEh`}!5F!ZUVJ`?!sN5lF5@xqc@8R| z_{d)ofHhq80Tp0pB;F!xx&qNk1T0FnqS8-)T2Cu7ob2ew2TQDg0{}y88pMNxp(xxAsu#e5!Oc9%g9=@H+o|;ZG&a*6^60yy=tT?lSGq6%0(- zRf|8kLG(83j={>76qWU-j$HZgT~E4Q8IuCuAp-2P`Bgm4jQllNk?huK?fgKTxV5Vx zo{*Yq)|4E-=YsLy1hFOj;4boKrL${G`0iP+qRD*(VL(v2_^}K_9&8ff)fLL1ecrp6 z0>tFz$D6Qp;7ix*3wUl@e4B4(Lv<84))p?Rr%A-++p)b=jnKnxN=7mz00CrPwHP3) zQvlZR%HySSoJ8O4HWx$ZFz5P|l(0|QQhPT(^_-DwkNK?wpa!PNOO4&w z)OM7RIOLtrHGIA?l%5i}k>{%k3_){kJQ<(TOq=IjAYFl8hWa%(roPoX{r2lQ zU6YBI-{aVh@2%f;#sFlId3Yo|(Iw0dNRzB^+4R}vx3)HhDT}Ct)uu3hPi9%JF|<_P z&TMz|KUoDoy#MLS8dS_tjFCe?#ioMzMm7MY#}fL|s=m`iu+;?k++SpeYpo*;lVRky zJ7|@5xWOKPS;o#XjgrW6;2gz+?m<%DU!M)O_49GQ<011f!cZM!bH4hqQI}FjxkRg8 zoyN|=gNoh=;Y09v#AK70UjEXvKEhFFtM&X?Vj%so#_Ugu1QwbCR#FBoB!<@()@w@OV}ygP)t5heDo|&;1io7g2j4SGAAZt} z`FC=@j=vz2n@Pf6X~Ve#Sx8nJOHRTua0|{bNCZb14vLKMQOZgoBj0lf-T!;TCF29Gn84ne2xP4;wVsubCo7T$lHSf#q(2pS@f~ovn&)uQ8hpQ08LMw4})WP~fZ0vu)t6W6^h5p36Obv%t*9#a4BgNqlpWu+lC3?h+XiURSbT-$P!xjZCb;F4az8fqMX1jS0JFM8l`ptRqo6VA{|YX#-< z-4KvpP?Jq61`NbKfTxt8gNj%K47)dcogV1!4TP)a*Z6%;TTlmb=xhrP#fF4V^N8Os zU%*Wt6Ca7dp&p~Z>&Eb4oMdVW5sMmfgr#8-4oq*?5*a@g5Xtr zrb?SZX+uEP$J(o3W{z&8dr;fZ5QqWc@79X*bN`5Tu&b|2az@_%+@@AfcAfCwr#`V9 zv%rTQp6PsCV{TBLK}NW~we*v$bZ+fl$g?u}dj<4wT@80e!b0KAir-lR&es`k$8(_9 z(KCj;IQ)yg+|j@VmXit}cM?1s zOja79RAl=j>rgUAFA7A_$@EzZ2lnWS6f5ZN9&WE4EZvY&()u{)P%lZ^Vq~UiKKUKs z#TS{1`GvFlTs}foU9Fo0_4o}@okk73*dL(LtASI$r2LRu8g9!FZ~rGUzgj3UJTZL! zSh=*flMekSn`MdRENa0f?E>LFr&cJ}t~~386rmCb?eGBK?O;{<_jhnvNv?E-6-+So z8yO%If&@IhT9kS=N5)Zg#%AU7xH_p*anE`YKnkO&l;iKrpYVY2?E)Ww@Mw1YwD=wg zuJbLMyzl?+)wzq`~4`PGy5Gm#M|tmOg-Z9dDE=x%PjXnGQFt9D-Ml_2vITK z6Bqqge=@6H2iH7Ok(4|}b^FK5tt8bnMPl^N$Y0hJewcQeJE3#s$Et)_y_A)!-@US1 zt$wBM!Io=L2J?;Z3o<0+6ZwWqff>HKl=)N$*iOqx!oZpekK&PU=}QyJCivKEEP_x$ zPUO>IqHbL?RJL&=Gh<`c!o2<1goL8t1rfX;#ff)GpQrtFQ{V2#oGZH!5lB*;yCVHe z*pL#y@Utv;-@Rb2IQ9FWe^b(iNlVrlQ)lmy`}!donELk6zZPh3WWCn1*p)iZ6bIiH z)o2SoLzL)kemUjed<%Ha-h6uil^FT}qgoQNwCSo>Fj$zJwOnM?VbNLzegg3EP7%t$ zKCL=Il#nBAnk)yEQ&=DaSu)IWP))0VoA~4SNMMF8EQeykClOdeRxw2P*i0>V1Pef^ zY~234v@#{Bu=q9Yj-<95U+hUC@Y2Lh-cNK+WZ<5)i(iOu{4~p<$O4a|DxiyzFWi24 zsh2d4?*O)=WU@Cp!|jdBR~JhQ%nGcS`_;}#u%JOvR4ks_JSFg={(NdFoJDn?U|Cmg zQ-sk4)k(XX=^Nfl+!crI2mB$_=s!E+Kf&b7?{Yih_B<{{w*GQ;=${k>?U%ms9MCH4 zP3XjNBO)S``eIpMw5v*fAp&Pfx#6{|_nZ}UfiWfASL%p~4fVotJfDb+cUInn+;80j zz?A8jmDz<1wPwcuX3{k@%GW(kzM}!KLGjqo400q{7sK2=ULsQz_E?*qmL?K}-7)tNd2`;}tdt3@S0{-scm8!za`PSR|_021fFC?tK>~%)`tX-~`tr;MaeQVzy(> zoh@BaHwMck=W0JjLDt+>;V(|s+B}hcBNFj3hqdO&DR#W@Pn6`4c(F>NJTv@w=KiW9 zgchW$qnA%D23MGJ(_1bi8hwYODz9tJ+%|h38*6fCJ?5^u$SFJFK4YB%96r4zCNqGl`qZgAF);-MK414;liFzjB>DJy2Y)qt*J1fbM@&k7>#%_OjREhg@Y_D}SRv?$u{~%EqKswDCS%mtA z?p4SZ@YwNMa6b<>m1Hbv2h#8oAZ7@`Xe;omp@1Cwf>LI9DmteCvv^EDE1IZ4diJ!8 z>~W1S%4bV4F^oSK{OdWHT^^6MI!6O`)~%UchcX$vUgY4`gHzNBypvuS~>HYgn z4HjnBsT%c(j97YuMEz0KdmEPfcMaBA;UY1yS6TFtH!VndHYg;grD=nqWw~V3%)25< z8uZyb5%YLaY@K8@Fahy#h~K`sIjW=rg9oh%8~6k`2vn8I^gPYt;a!oJtp#AZ_R8YI zR-j>4oN{8f*fpHzvf0E})Y38eW}qMwB$@BQn&cfV0ldFbK-%scjR~z0UOqlp#;NmX z6p(3u7ls(m)?c8H5Gu67Emo1&{$4Qk_dyp18Xd!u}|rrDBuHiuU^kO-IAxSZlZ0o;Ia{@T)sA z<8uU}{Ut6!oqY#A$y;io5`7?SLy>kB>`KI61_6D_cp=i{)-sUp7nu+^z^3)qLmMI-L9pyP_19M9AcjI-~=P#Qxs&o`69uhbV!IOBZacO*|=1E6W6WMtc{ zZ54cyazrD8P*cK%0IiAi8`RZazebLZ_ z>7*`?_0`a0?S`1xZ^Bt_Y?&f2S2)wS))v!@F#dCOu(Xvr!hz?o;3sS$ToFdUK;Mmv zw@D?apnE9#n}sJWlT?Y+r*(TUw)=?SKo?h?fLa&_;NS#%Lw3{uiMS-`%@UFV64GB< z2+@H;y(0=L_!Hz(GUSpTtct?h-3CX0x8x_<@9P&8YE9Lm0u;)B=cv?&Uri+t9q^R| zaH?vNt6P%NzEZZUMqIMei0uzs+4D=Kq8ifHM(xcIFN+hJenX_Gc$b9dJwelDFpdT@ z^aV6Vt<(PaNj9ELA)GEGs|FqJeF0UxrTj*(5{DY^U{x2T9nS||2)3FuzgT8Zi)T8w zG=|_m$9X(mZ9-x0Q7va+m8FWW2rFEEel_vg_pL5uK7YzD4Y1_sjsRerxBeP2dK-pQ z=yCb;xY#iQ3CpSxbPiNZXYP2yz{mZ_0BZXLj~!YTUx?`W`RjvCUH4*;zQyZb8kL?cqcJZc8+1{c6?=<7^j^3Lo%QWdO5V zne3|)EP;X@E4dX&(@H9MLgMw+5$Mor7fRlbtHN@h&;zC!4;U z9havF)|=aJqU6|2OOjxsa*SQA%v98eN8@K@Wq~iK7?=2XO4rKV3Q=vIRl7PXsrTpn zpS{!S2j5ltazFi@01&;qo(w|M9nz`-isjtsF%*h{JOob?F(GhkclZ_t9RcM2FZ;|T zeM;>?g`mk$(pbQd^A6wLw|wcgB?Yb^C>-}97Q~ajDX!k%K@L9%w67I2bjNFL)b^2h zR(JsZF>0Smzl+IIH_d89VRM|-Am+jfO5?%;A^P0?2avyS52A^CR(Ur z$2s5!iE)lsN2e_0VxJvK0^)esXx8xcUSbV@>4Z8LpUnu&picsjN@^ONN5&-i9130q zf7WkFK7&&m+|DKyU=$${U3l6fTf=j|-;cYVPf%r_t<2k6o7q7ziVd+sLdcLy2lhDF zpAs}K`=+&6x5W)hfr;*@b4WvLdctd5fnq3%bUcx8!aKRd_(4U={ua+K*J$P$&2xTj zc;>N}~cNVs#1a_$e?14!EaC^K4Xpoxm*`oW{x`h)6~R9RWo$LT^<# z2YaEqQPH!I^D(4S@yNZ8FNPOq%IQ)+9-y*r+B5|j?I*I z#OrSqU-b}#A2_jqRw5YTd$WgR9-d=T2We$Ehkf(NcQLasJk_Z|9?glUdur)PL3F#Y z8geCD&U4GYOgdKDO!n?Y(WE#i{_3_1`rUjq2((go7ry#)RqU(~z43(TsREJcU^krv zk(j3e^Eu(p!5KUfJw%y~{@abCBe*M{+5H%7(2(#`ZT-b?Pd$V(x04%pnb!E8awlOA zSJWU4`HHk)O5~bHVm?>2hX}$A$7k9j+!)UbJ*5{Ef;hj?o5)+Dk5_E~!>pr)PqIHj zI@@E2cS}f-9sOrr7|NPl2UAxGe(=tIjC99WNgIcTFQcM7MRC45FZHlV!ixH5xG-L% zzb>n1PVUN}rH!Ck?+vLI!6Or)HZ=P{WZ>>pIvy&BuUBsh0+F-f5YZ?^6q=4OF)~h=(y^ zB-@^VqSzf1O0n7<=aHuyj=-1L0}h#JOKVJ|HdVHkEc>+sJm|4fsg}L~+o#@E`?2(l zCN=-t4a1~3VgIF2Hb-1)Nu1`fA}LO zgH+Km^T3Eo>UKefR? zRUG2{(^bgj$VvW5Um%c3H<6Za_R}@`@9N}r*p-%$8ItwA+O4Mb#)y?YpKAfWa(7no zoq6X8d8JKr|DAPd!%H;bjlNuB8Hj`ET5msZAmHyhPq6J(?}qA-5LO7Srkhk`lxH`K z_Y0ThVH{-rJ4ajQ)QZ}(OgkP|j>8YCxU6nc!N|?({M>O8;~zfC61b;lwE+pa<-UmR z^4e!2A;-|?(A!W9w_nhIz#e~lqY7wC6!9Grr%XaBED<g>jH^HifJyeL+YV7AOJ+>Uzr?5Cf4RCYSjFCsX7m}}dd9SrzUZrqwg zK1beoMZ&xM@w@PIn9A70iF2*?=ay`~=a^UhO-5BMT9|#B=55;cqdg+eR=%2-E>+}t z^)v~XeAF}hiG;?xRlctMXlBonaLnJges;!aJ%!ys4`Bcs>K$?F}n=JK+$Blzk)1sMNwvi*6M77KYT2pG?#z=Xl>EcbWj*nTa)aZG0A zn%|SA$t>BOw)h>~2N&aYsVB*?&X#)7d;5Dq_{ zjCfvKO3FKKioeFfYL=diL}WqRZv_8<6y^FgxRq?ZG~p`WKUOmJI3)BEb&g?e;AqP7 zz-Vm7!ct;w`g07qc1!+lt7_5N=ao>+CA&WgL5}un;s?~5a}^zmFSioCC>=PQRSiYp zXi-ys&tLA~pJuV@#Xvu(l0OuGUm!6P>d-$_rgN{Un@*LY_I4r4vlteULt+SNafqws zhCA|u^41tPtM)@pmb?qj;LVv`fL7#rM z+WfKM;}9503?*sPFK8kwJ#X{V4rSL)bV;W$=8b%h)D_YA&@Fc;QL{TNvk7lc;n2Ch zVvGjXmHY?uR4T#tAPGOW$S>ku=SE0ljuwvee~+cnd!p zsR-wrXOUC-nT8_6dC)6#7rM?vid6L66-l%HFIYTGp#z3W=3CXoQX7?ua+8zkF~K%^ zrGnoO?NX1e>v}5)`tC!2|Lx(ld?Whkqy}JxkGm9S{~>B9Z)-bUM8Ew7HEeD{cE-?! zs@QoP;zavYjPb#u?<-wmODykZb^xGQ87F=Vf|y064kmN==~Z;C#QTHKGFryn(u~A1 zA4ObPDpz@we|6Qee`qb%XjMR7D5)_+ef{?nyzp733cywbGVCq+`a zfdta2@V!<)=(VwEkX&9&R#g(IZOQ|I;wD{afw?Pb#61?J$ji9>jxDZB;|@X~E$f#; zdkNH97+uaF^ls!LUmKDr^&0{CHdm$u`}$OYs4pH79qk#*oYH*43JD%z=*v}mmNZ_c z8XWB~;7rJ7sY%}4r%P^+5VxHgkeRW~MZP&sRFs&mK06g(vo4MIM_&NDTs#-N%kO!v z(1H)e>G&pN@>PaRoZxNrvy_i)sJS91(g;RS1j%Ea-eA1fm{Bd=9yxhEt^zSq3_M)- zDa~Y1GMJ4RAZPTRdF~uSd(=CL5PrCBS58A&PJP*gQ`?p@=F=?ydtyB34^6VHQM&C- zBO@D^oGE|l2B0aF&p(_sh+^ywF3(e6d=QAXnvx26KuO71kXt4q)e&L)#CNT$;VT&eUf(+VyNOWyoIneF$TC5T3!+2qx){ngS! z=yxFHlL6lAutRW=dcVrzKCgi!rrH>!_?8-lR!F%h zTew`7;dXd1F_(~uiOObB;)t0w00Pz1oAefgP@?sDci!%5$Au{A8u@0&j z=QWE#=+wv7VIQj4RLPU3S&!w10rFT!77fHEw^J}bqtCZ<4r}--4nEAP(7ECHhuH7f ze&a`}%C_okq;F&Y4N2H{J6DuG6IhMxa6~QLj0iKfr-1ciMWhWOK^j&KEMH5CkcjKz ztG{26xgo+|bDX*8|25~P%i~;)T4@Joa>(wsMH+Htd}1mr3Z0HP@0(5$A}iAinddQ0 zNALSxh*3<_5mYe?RCeps4oo1t(C;i!t@+Rw&y7Efk0lT_W_}O%^Jl$wHKabY6yG?m zR`C$(uWN6Xob5`dI41S0o5CxnLlt@}j|SNKc^A+u1l8rnYNNdw(=z|i@<0WDDYa>1 zbze9!QHeFcuf}8ZI>TiQS#yy++7FN4ck)NI%!*^=C(pt$(unXmLH99f-kpwmQUIk!5}8XK)Rg zUH5$;i?2_^%@O+Lm=kW6DW-My6_#FBgLs4(TS#Dzea(yEvtNoMe??Zux#wF*f<)lz zlrUNl^g6w~$IAg}5piW?j+LSivvZ+KS%077FB$ekqAzh<(Qy*R2`MQvH(wd@R&HCq zscSTMt3j?P78U3er{>`9f7P6fw_MU?SxYi%*1NP$MV^gApY8Q6sv1lfhYnkW$_*PN zH-#0!d)&5&wrp_#0_OBvm}?up7C6*{JfONm%K$a}ku`|=+~ImC>WpqIoyY84qQF?y zApm1nOzZcYB83ostZtpJ$H$0?j?Q?Se_$8KoLXJAB5LUWoH+l?3c@!w%HL$O8+IV) z{8VTh#ArogXpVkX!=#5vHWuLtzcAJaE7*qCez-LfT2iRh)5~AHgPWY?O&e5krbpCL{Ro;Qt)e$luNMEgXAri1o-|Lp)}NMSq`9QPi>^y`RPVql zND<0aQ(G7PO4boxqMOl-Ev`kElZzl;^dQlpW@07!>7*{&Ji=E z$!LQI6iJ4(a$3o^E-@hpJa~3;OOTHTtXerjzFec)W=S^F09CMIgS`D@9K*?mc;mO9s7@qwy?kbZ($Ke zB)=}X55AzEWwt!J@f>ScA3l7_17n*I<+!Xs%phn?C%t0BP_{OyfI<7R%gRVx5*r-b)5`H}O-l znUD5wPf&fNU`T20O~GS#a|CP!R={8$Xx0m*=ZN5IKX9Ie#gsw_{;ua z9R7?4xNvh0Nyp~1sCK0j9`@T@JmGm36H-2-o?Mc_L+K^TsB#r&{-j<+acEEv|2fRW z5l$zuM2WAnd#a-K`;7B61*hf-Lycy4Q!1YPi{iFEP@By6xg7zWRBjFaR_!F>K5B|6 ze60|%GaJ$@W)WE>417U{$wr((S&IbyCFi-2cv>O{zZ6X>b%sBxAPjvAStFx|5(I(6 zp?(`%9kq zDN$3c$BkEbtU*Y6hpEBeLQi;Mq>)}9GU)Z*ARvc7hJ#hHUT)BI@UgY33|7riq8=Zd zb711ub^exI)m&AVefsiLhsPD;39p~r{+1Nxn|3)q-jOJTetFj8n-K*B(Et39qHHjR ziWaG-t%|?5PpzfddKx&u_s!ma5;DlZD1oU7)O?VMDLTaEDkp~lm=&hX+y(3P zhJUxhSz6Ky;OFy5$FV~UHz&@*%!|NZj5ni7vCK$2l%l!`LP<;NK7*KKjO4`fZ|$CI z(MZ^y&p4l@)#62Pxp{&Js6;N5KC!W!#qIKwP6oM)V#n@zPqXiM z@MC?hM?B1NUr7+H5Tej4HKNF^es6Vt!^&>!%Lk-cXGFMvYxXz@1{xxzjpZllrMMJT zY)wIufsK|Sn(!Gr$561B>g1DQ${E|eXo6Da!g9PtG|h{~J4!?Eyh}(1HnHF{4-YN1 zv)kdsDYdJn$(KKu7(Qg|F=JUZH%BY?y!9XraoyTI{{r0W0)9|)72*5w?O_Bk05F|p%p;uI3IU%+gp%@1aOQ79l}wMJ>4M?U`@BZy-Gn7$EHE5XF&QFgp> zRo=(zKwSB4Gt#b$ax9HYdUY!YfsB8&rEqP9L0`t8mRnZwNAR#X9$Y7xo%Vy@5u{By zgSx5}g#&V}ij6Y8+Jn?s{X!K^f_!9M`iB{ zzS4sTGr$%}ysaK}-~SH)RzRu0mqWlI=m0C8SJ+nA%jkEQV<84`rh3p%K87OCj|vn= zsznvL<4bhn5@U6>%!3Gky);;&gg*gP*$hClV>66SdNHZDfe60RG zs!f}uw-Ol;BS~$Ops|xW6EcGHUNgWG8TL%>mAUU@4I8D67-xMiDy~0P z#N4@!K~3)*cJmQiDXYCo8kj+^?qts?jnY{Q3ndC4WF^GN;A-=G73s2ss@G5tw+>~O zsV}F$l!}=2NCD$Jxaq3@%lNf11{!xIrh5kV(zs~TBV*J?N3S}E7(oBuHtshrNU5P zY4%uFIK5Hro;72-7_7ncT`bF&f1VdprLJyu(9V`t73x%hj&1{$L0HyNmY}p#n@?_o z9Zn|7XWCCa{g}>A2pZxG0XvcqFi3CJO@}E|?Nr;MCJik|`HzRLQrmIcoQSuyI3MCu zu*7k0twuazSQ$UnVO-dXb>oeA3AJ$BA74 z$G2_P;Mf-R5s<1p!xm@ZtgW-Gp0s_8R)rfwr2v7t#HD}unCC-Y68W)U{^27fuDr59C8a!! zXOV|y40KjY@eE0UiLe-lt%n^-I?E{G?EvgPS-|~La9uLbDve)Zd|I1_8I_9Dks=5X z@5z`Vn#*tBd(q@rjb?v6Tn3(kP^s!ZP;I(}l5_NSvm^^fTSP85=c6POHrkjSB;CBr z_*tyrMx1$OY*aU%wcjY^c3x;3&&BR4qNzUI82l8)!0)~Q?g>HvZB#Hw6R!*X$iZYA?s24wm; z_2;z#u)Ell66-wo6j*(p>i}#FK-rEsv5M!O@M>F1U6eeoR2gQU^Dt)1%=CO3VX)!( z(ih%*J(gx^GS~^Vy|ZKm9DrC{P_+P1#7oQ64K!(~GYi_Yb8H!8Z31{v@iWEp;+lDA6`^OIqYd9)o{A==q+GrN#3-MpXf zv7dN$b~cQEC6#Z_oMB0N1j=BBEC*% z^HH7XKa+r4kA<|30SI_F~s@q_JQItnTFV92eL1^-`{`6@(VY zkyO&^h7uRmPX4ZnUL=1@hVwz4t5W+xS5Q=b7f_cAa7FD~FTiW~2t`|ES@!=ZB z8LX&q+~-Pc`VYFv!^qpT5szox@)j3o<0OSgFhb-<09XoiqFV=I01!&L3@M}Ny}&T) z5Vl5KX*+P?UnN2SksB38scWlDVc`Vrqi5(wv2jNZGN*|Pri5aXNa%HdHv{vOf^#da z^n-I3IYW6VwHyE-;-&%JEQEK&=?SEg#?uTsxK3t}l9Ma*Y3uHE`r-L2>G;w8=@>_t z9pJRABm2hL)C2gao_3z=*@ilveAPW?#>zlRr}=cR%wgnf&sFfBA+v*s0?}j5Kr9lq zlh(067m;+jDtsf-6jJy;8^t}kdV#ZCoUKqb`;tPzDPy*T5gAbniVh}}3j4EM7gSq;fV^KuH;xer#_^+S^T7l?{LSy5XI}`X`EhE& z;><#tnAjcrK*D~a;@VbD?btYhxQL3LTUrNvi|N}xyZ|6I#Lc$@F=B7=g zj}mQ}Z_~Q>*ASbim_NPFJnB7`DGl^oO;0~@EIobvaN5O^sf>WnL z6F}U4MwM;^Z!mHtZ*5l@woVyJ$4$-%k|_*1(j13IE+c`~R@><=&e&y6wx3~(!2^y@ zo0`S7MMZrnp-05|4mg*e)$tR$|AnKj(jt2-ZgFnT&AYeLAr7ZJb>twxoWML8g5kCV z$%O>e{&LUn!F~JFxrPCiICChq}07BjGf%T6++lmpnV0G?noj<4~WLwYPO&!=@x z`_$<10Q2mbLM0=H+=4Fi+hl0Xh1kjbvQ`NNuE$FO$|4 zRB2)O>yrbd3rNBmYTc7eE993r8f1evNvzOmmLd4;;u_1KX47>*ba#?zDb(W{w7j6RJS=zo|bI$!yjYY`&YsSj68gjlwY z+NXfXD1J)NH)K86mobb{Su3m!bY=v8;?v?FbAZ&+JwuO@u`8=c;|?2?mNwI!`ySXm zAIr=K0hJ?0{a+L8%nx@7wvmH?tnMAvsg`FEC<|!@m3Wt9-1Mr(q2%n(2h zY>FRpCm0LAtb>9@z878=fW}BT?q^q>Cp8FWwUD92%fGT{EY8y04hQ)s30{A zN=g@$?pllGH%Ow4diVqYytdL&F(n@t8sDX|rKebu`5V_O2Ncge_e{EY={(YQ1tT8! z3`8Ft9!tHvhHFFBLPItfOl)$3)f&@F(@3<$UX&5eLD9o+JvXtL9PXSA9oXd5?S{5o~?bo*tbuK)6QaX8*fgDoL1qZIs zW)T#JHjSj!>o=q0j_;n}@b(Ek^I@~~QjR>>i9q?LnPW!_4$)3Kt%DnY{XuOxB; zN^lvnU%QTR-r|kn_fU7p zC8lrIAWR3zxCF>%V5ZJuxBfXLxXg5uo4N&GlVL!s;v!K9gY?@#2e$C32|TxSZXrDb zsMKMA0fI9Y?*8h>mRs4xoq`TtMjF@I{Jsv*?`+JaCCXl+Y@4~lG}19#LJlP6c|EMg zy@y2(?H)_FZ?jj0xoV}~ox3yXKGJUvTW{V$9QSsQ4O2&13%MXplfh9xC%Fo~0jA~p zX@f?&>-+3DuARMGhH@%pyo&QGqe;N4?A>DR!O4it(v2cz{ zGmqqG0I0qD_ApXsF)G;{J#;wro;;MQY8X0N%*@CfSp{7LL3VFhW~nd2M|r_-w-4yR zjuCq#QJ82i@*`S@10A4d|0~@L+S?AnL-}@X002M$Nkl^&Zz2w2f#A$(0eV#OvA(J~xQVsq5F%?78zujg@rE zYe$Vk*n9B+&?`W%({O zkJ)jxOPpS6nG~n(s06ouEHeljX#nwmP%r` z91O93&r=xs`MsM(4u0$F^Eh7X?Vb^(4Qz8FnsRWh0KnKPNt<*5IeTR1a?_DhZj+Pu z)77gtQ)QqUo43s9?329j?aAlU)Xi(@m`k+iSRG#Rz`Q0vkUKd2jF0;3W3l;}EEwZJe}HUki*(We*h-DcxCBO!c%`?n6J_O+Yo(xuC(2h~9h zahY(UJW}C_LnqlA!4b6d?B||56%Cli4w}c_a_}%vA4*LI7Y%GLM}oNUQWaI@!dChQ ztw!yrqOr+3_{e(3F$07-qa%Ndtq;36RdyIjxwN{3j^rgdtPjjY3RY1zwl>-) zf`H<8$Q#;cy_Iya^)+~$0cBjpj9}wG0V(RhjZR~I4MlD1+VYlCRA;*0m4U(Gh~uBP z0dN)d_efBvSQ-8W$oMPx3|1g|M6QLU<|xMRKI_&{Z5EE?>#x6&PXEG7sKZ7Y$4F*u zk?x_!RvFnYAZeUlikSlr<9_n=OV|>)FJ`7ft@@_OA$l?B!bao_XFwaLn^M*y(o9vj z48UcOzDw;$2Sb_(!@JmHjE`&`f1@^214dM;jLL=q#a77rp;9KO4tn-d)C_N=AFB!;ORKv{LHZFum1LLrSn&=rhoE{SCBfp(wP&-(-`2`z@F1a@^D2B@F9GLbpRxwl@POw zE4VuDF^va9kxc8T*%huA$yWlb^U<@vhnbHi&nq~-t>P}ELT7`wuG0aUO;kD05(kib zoUe7SR}ZF1oZM5`pRb?0n$9^;Km|J3@o*v~!!Aa#94gPuB!0O4M*-PpdivC{w8+SN z5s>OC@x?OI!E%;x>C7)^Gg5OZvF?!=j7*y@yr6C4ytRCYkvHUP6e$N7uuiwY6Rgfdzb>;2}Z|F@AIAON7IEkO_($2sAs znAhH;M^y1oxnX4iqEs2d`9`2s0Kb3lu5^T#G4CEa3nLoo%YXO^s^vha&CMkw9qE0g zK^;f4bG1zvqd`8!n+!_M-M;P8b!n%q+^z&p?sMIpPE`%>y^OAV z(KRQJAE18pd{42*)_kxq7w-UGVr0Jx<6Xco`GA!nP}DViPB1z5yFp%``q(GZCZpXO zcW$NQM~qDQFwvJ4D*aplAwaCd#NK`B=#j(e7hd>C z+J{};fC=Zm|7P05)Mt$jx2owRW4in*0;Je`<#c@AX#!PSSHQtNKESri=8%Rk8c!`B z#eiCoheQbA0$`^MO=a-gc;c!6uwZ5zfJW4ZW8<>^&SKNlCXPalB;Z68g@yXHFu>)< zo)uuTE=1WWmQCtb$1rp`Q`wcytV~T)*mY+nu=8-xR*+W5m=+tsP}l9@0X}OChM>jv zAj5TLt_JbUlPQ>~%3egOUcP!c&69^m`Ht^9m^J|4e)dd6-6^}tbks2K`j`cveW zdiAx->GJ&D^vl?S{kw;;wZ@`z-Q)#>4;ZD+p?(+0dys>|k21@1|G{J|g=!+fmYo|0 zkh|G3If1SC%u`P@(q7}-<%{Xd|Ih!O&c5_~dXZOd-Me{{_s?BRM^9t#GH7w?&Po22 z6<6rEMZm!#Y)1rbA)#Nuy|riWp43^yEp+ovntX-#ul)9}r%j#R0GNn;a*%)WEqr%^ z2j<0K0m31TCiVh@uSST_t*_t`(@{a%YwsYR$jFM7xK`Yt8%B4BQ*W`XiL@H2E`ehU6sY~!B=pe6Wpdh3QMmo=RNobshZ9zT`=fhM0Ad4DAZIrMDPOyH?Ht$2xADd8WA5d1I0Xi|=C&xIt5AkfL@LnbV^3s>TII z;)D1c-HN)vY)TK?E`RlNUr0|JU?ok=vogJf8SwdE{B!9`|K#g2=ejw@D`Ftu18p4mzTA7Szgc+E!$4$% z`YP4(${kuO@A!nr0MJNlzQ~)=z7H7qz+BnT%^hAMpg>eevH&1MOQ)?ofy}sWNmUSL zyD{(=g@g*{e%O*|uI!8_E#VOfsJ;#rWoGf%d?O{lL9H;LmcVfPc{f_1+UtUBug#;R z=L*KaRE=@=1@~h=UA=WH-g@NRWo)OU9llvy8)wjw5@k8!bjCwfC$Sav&MQg`>(LKD z&tP}?CL}@1ltZcjwlk=rix95jHLhg-~A8LFh;)bw{t(s zC?n7}UVW3p!+Cikqh1dTvcrxbg=aRW*%!kUo)QW5K6(EE!0JmUP8>@o0o%=MSK?UW zU-=jRQW)&wV8C+{0fhsFCbZHXlMaqJi*$-ZB>}7hmN;C~<@ikb4W8VW8e>B&fF&3| zWGu=lzTs4U8KM}o<=RgS z48fTWG7AU*7Lh3UWUPqYmSmQ(BLtwjpbUp5xo$Ux(!4GbF$y&<|8;aW7{OJM26bj7 zRxzk&SaWz_nAdIbuk9*Z%Ia&tL>3FU5s2o7!5=Fxc;+@hC94Lm(!kwZiiI81OQ3f3fLuB9_ioJfD+w|*o2<1c?Ledd#&OlxdK+*s#T ztB3alL)x5hDiam~+6a4j4^8YtJ-gV~_suadqn^L`nNOunrtJRkD_^0!DPA;qFdaCs zFYIwi9}8=7C%LUa=|Mk4`thm?=%~i3F}m=4Me8=mAjSm^^GLw``wyjom6NH18_6K= zVmUqa5grZ-tb?7OTcRUYGWXB{OOT&xJwxGZ?f`HHhN*UyY|aOJ{Bh>LgO;p<%~v=( zV6p7j!y`cmemx=q3y{h~5o)ktck2iG^Q~x%mrBKm6O!>^W#gvLy8r|qsm?6I@Bxf# zmL+wtHC^^p^TjJX3_FGzxdEy{4_d^4pExjvTZ9oR(qa{fW$)SofleK{GNn#~taB4< zUe`^Xyv6{u(qIMEiMC27S#@I^RgLv;&9F`m)4=)N0i>5|4517F%}WO=OY6zkCGr<8 zT}hw9raF1-AX8xgAL%14T!pN~D_{DVzy0OUeLnrC|L7m0<{cd1V`RqW03FSfz1A2E z*|9en25(_H_@3eu?A=i1IVkZ|`xRV1Z{5C;Mkn^CvrnJJ2Ia(4)V>nm#TG6~fM6jU zlzfiF<&7%WDLa2JBfVXWFwn=byttayR_~)}2GjV-Q&e30FM}oc0v+UwJmFF%MIBvZ z7##fpZ==6(Rq=Q)`OjbI&cgrz=4yiJ%qr@s-<+ISBT(tqPS%W9ow+KmdH z$6l(`4~Ardf2bdO7Z;Ro*#h4YwIi!|*&cZeDjKMdJ$85NUUFZYAB|y=ec|GpA8|j6kEeyIlb1H6KUGE^=)H{DTMg zrr-V-el?xD@K*ZxN6vC&E@~X2xUhAo$y_edZ5@fA|FI1?D%!e$Y9IEYZlAsT$1pnv z(ip2;`kLKp3E|@D!okA8Fqd*?luf~UI6E}ad!R=o=_)2YUha# zD!;g=X%|CO^7LfcXbkxo9syv!l^L9`bA@vysHC;@6KL|1W`ua=N@Hbb*zwcKxj{!Y z*uasje{6b@Nq(oI_{5=(rX`;4mAx!2f0Yrc`#R#JEAn#1if=QwIHiz2F^L#biK&n( zbGZ`FV$E+i1DW1l_QFzboD_<5(hL{?U~8-^w2Qat5C-QlgD5e0RG1D1yOe&2X|-Se#m}W*|9Ad+dgAZ_((J|#>t&RFAJ9>EmY%h@ z`e{!#^p&(Om~b_WwwEuq)~#aW;uL-)7X2#DbMYWerTaQ6R=T&@$D)1UW+m+rPrq_X z?#897>7$>1o{pLUC>aO*&w?pO7L$T!@?ENS zvC#c4fQz`~D;i?s7&lxGs0ucH?40AdIruUAo#7DxnyDe{b!9M>pyz8tnRx&%GRTd| zQqi828B)?m!X1B%r+BxrO$Ha9@27g|N4@CRlll1wS?5H1nLZj$>u+3u@C+aza21K! z(@~AkFqn=fjB7#UKtzVvzwn2tI+3C}!`+dkJ2f_{Q+^+yksuA!c@ru)I%gGMNJpk3 z0!+RVbr9$HgN3E^or_n}zwxV|WhJtsaLdVRS5+<(oeR*A*0$M1(mi$JWcqWb&ae~h zZaVbhb4Wq$L{@Hdz9GY?c+W{Nfj>^`xvZ-~2TGOwsk%&ZS@b^}qYSD^ zWJM682hg`wOW2;Ps5Vz2hw-iYq0D}m)W8AV!ToaM^6j*b8Na7a977^OILeMaDLQd! zQ-B=lEFo26ZO-Y_b@Xe$_7~Id{pWutz4YAE>}+eIqM;TN%k81Mm!zmv(pGZaqVFQs z(cM$yoM$`)H3kc+Pl2VBTW27#f-StrD(cu6ZywawPV2UVT9wX0hrD|ITH5y%i)mQ_ zv!SFU^kZ-PQb+A(0iZZ}lta`e+Aau@T1ZqkEM;eOH!eW1+u3n#>q9W|oEv#CVqCz+ zZ|}K@%6Bd+>J$QEGq8dN3k;Y^hE~)wqbM%<(=8z*HQ)3)|28N7cUz(ARb-dXW37wC z+r7j*A_5rzoC(e{_T?%wED+^UwAL~L$PnJ1fBK2j=?{MYOKFYkIs*$=yT~}*Ce8o^ z!;l=#o!SVuT?$H%<*=e5rRd%sfTUWB)iD_U8tldkpBSKb|I zKS-bd#7pVG?or|aB0j1#+iJdQg2)egb?8i6O#Ag%4kXB63(2-tjNZ-IIgk`ZCm)4l$U1k(KdE;7qrf%J0fHIx>pwR$!v8zZNkZ4O{^Pn~Q zcnQs1dgYJ4pFaNSm*@n%09z7MNB8v@T#3_VS+qND?)YPyqNsYz~v4+kVi*VsoQ^4?>vi0+@Vv&=^AFfBRtHNn-*jUPz7k>W@Ko?3|7og z;>M3Z;g6N^Be*s}uWvJViIb|!Ct!lV^iLu=()I<>zA^I%Ziqpq%l_zF-=$1cl&9(g zE*TIL^b9Bl8ZZSToU93M@No|Y`$+JA=}>LqMpki&DS2Rah;o8TW;rjsO0@Hn8dHHKN*r(D*UwjE?K6C_p&Ne-`&jJqfqz&$-d#6x< zCBM}`Wpt~MQDej~xtq|qSr9=vuwf_mLrng`Pb8oFpEG1~`k4gd0N#YmA-{*@{F5 z9!*BLfBv(dPygpX`ajbD#UjkleCpFMllSq`$O^-IeRe$nsZ{}BLz!oWA?&x%AERm(%b5^S_dgumPyU6d!br zc1Dk;tqv|^lv2@wP=gVvQo?^5IG8{C{0r${|J)bT-~I3YoAj4|<1eSD&KzeNa3GD2 zbCPPE1qDn!D($R~8_}IwQ$>Yzhk4qBnhvg%uJjI|mQl}ijtVA=Z%c9^!|e1@a>>{? zzW()ekF|im^Vk0xo4J_npfku0{eiw~FV4W>x4hg5pu*#wJhJ|_M|ub=s<$1&p4;0$v6^#M6%Ck6bD^d!C1n@ip!_jf%ZUZphU8*%R%hIZ)sj$!P z74*>quTtaFEEVWeG0;oaXy0 zzws|oUORp3D=(*SeB~=?_o0K~+w+Z<{fyRq)r6*lATh1d&A|jnw1VLyRAV?$dN)mR#BMtpWoDx`9 z;L{vjEcnWIzD5*@Ze$Ykk+?b)vv-^OJo90I%nR(YQeks4O9^X;e8|L6ozkN(n__1L|9&CN((3QEHfR`GoGH$tOqJcufM)E zPav>9+CQNlNE5v}%x~&MUbaWZ8()X6_L273pnf%;jN!vHFW;M_$?UZC|P5E8b9RCn>SGR8%WnF{E}=$XHMD`-!0=(A6Fjf zVrj&2b95Zbz$THF{Vv8p3i=}I369`(udq^X7YiGPM^NpI)}8Xw)CjW~Id126R)YS^ zLf>m>gx+-GnKP-zDHL|-!joVOf8>)iE^RapdL#2U;%iS!&kRKAYFyLhV@0HB#(~e2 zpdkV2OfBZo^C6ZQLjf~zP=#h^pZ|s6sZSo2fMg=G-58T!R7~#TlXAjnCqeWAq=UDk zw@^9ZQiAtOuuzHVE$s>~YB)Pv*gO?>ad{#^3?2k9y)G(Q5`$d#7!A*2jaql;(x*)*<*L41qDQ)Ei3d=sXL9MXir%+07?q%eubgD9!>fj;lIKb166}4TX z8Ol~+h->g%ycuO6fvjw7h@m{)05;s9bP|7^@cW@80fVzBH5Pz+UQIu4jyU)S8c3u7 zt`dp1#wrr>2#2lp#YVNW=9M4Xn=rr+6xBbdI`e(U4ct4vLThaW$+v+!h8YeW8`V)8|6l zp|r8h@Dd|`2fb~d|A^zjAp(ub?DcQ{$QSA8N1hix<&8?+v`jZjQ%$pcf&;iv0Fi|` z>y$1UD$3!{BLGxH$A%GAME6Old-&*VYVH~(eSAMe^uya4>E2gz<~GXVqytx+!)2V!v1u;UM2_B3u32iSnzTk3A;`V7&be13tOpmE02})I*)2&jz zwp6Ubfbr351r8qxaee)^F)WCPHuF!%rF_qN0h31vwH?} zgFK>RF|ps+V)OYj_F3D7w9t@`haB0dXja$7M4h-NW6Q}}akMZ!C^P}~oi)mWOb|#< zC`ukm8tGwu3{H=FWgC2+8Q_yggLRMcx-_-^wl9`r+4vwp&a>Ep!RyG=_6dD?$2WA= ztnnxk-%}z1Y<~nHfC)$M#Vy7b2O z@7O0oovPS#s(p_D$?BE*0}$;rI~M4R{FMaWH#j9$H4U)QpQa@yU1D_!0Ce`Jx6Sra z02Z6Dm~Qh7n^+}H9>Fj2u`b$SK^6epMQhL@3fl3+KIzC5=bm5_?k zG}AuMjAeKPE~0b?Rhm$lrlK!n%rfXUN3gE zyD2_@_h7~1le5{5sIa%-1|Ir4`$M)FNzcg@?)EC;NX%d^4Oi6(IPETbxptecMO8&r zRb%Q^G6-)z&y{R>J`xF~>qW4DQURs$?9Q;#`^|d|6|d@OG8zpdn!Hr40!BdE7R&IN zK1hGZ)&+XHOtUPdQvd-vDWwxrhgtGsHsF^e2~4H##N{G`1g1qN4RQ+jJn(Y0kBb!q zb&E80%g1i@Frz-4*K|*=S$)FhB~Lq$v4T13NkI8a=X4%$p0ySlM_Lduq$7MZqQ7mMaTIVn!#e^n(sfHP zF{lZnK70_M*<-=7bjVo=3V%o3k~@Z||Gc+-pZeI(eH;29qq-H2Zq+3c_5x+NDn`(m zU-_;gHmhuV6iBvP*F~9olz{dw-}vnjw)R$j2EjUAfYOP{*H2!OWt{|#wwz0dROfLh zrFoFn=U_fMA7l&F*2ceR`vhP1l_B{cG%-VMtGabFS&-~@6L;8%ocOT9Kxqm0&L&H- zq#IUDbRMOn{y>*o)mf;jeWwbvUaDuou5{NYx<$o22WNeqa|N+qV{0YFiRG}+!)y>J z3{F_KC2Y3XoE1`zJYx`IWeHJd(n?F)r;sVUwD#V03QZzrHyiaZ_=o`Yb0+yGe|=!b zdDsb}T=?0APQ-Chh|cOi6@caCCK-e>A_IwwD01ihZD3i_y9Co4w&U_!73Zpx^#yt_ z*D^5M50tedz7lPVkzUz{teZlwaPlUN=wkiWg$*6C{nRR8*ywCu6Jd za)IeIN8Sz^JQld8X5FZq|EXk{7kujmiGdewq1wVfB%yV-zWNI_Bb0Ea%VvfkQnD+t zh#CLk2OZDpL-!?9D{>%+o$kjU`Zo(-{8r0EK1K|lDr{^AzuzHbns(a>J*$|&z#SMHh##PXXuc)Ggt@rF`(_eXrar$02tt&%IOIN3s_ z^yt6akzbTY<+J_72-#;a%VTYQ?SU(wokR89J6GXWaWyos2?bd%jjOP?w#I$=tJoF< z5=C};L|ccMgf{LF*YPQV{3s%N6cc(@7<~Z=K;Z(1?1NMd3vAyI-p>?R9bcB4bzF55 z4tvIOy+~;Ztm@Xe-l4ZEg&WkbR_RMq?E7fpv-DN7o-5tKfR#zER?)@bTiIoFm=`e6 zygX>q7bIE_r(`_)#kX`46L%K2Ix{{_=Mfct(76DgbdY8nc3k!`d)T`)EkTS%y}cD6 z%e<6EnNHlNowhaH_q<6S&PVb`cpi5i{xPl3%Xi_UG0OcKb=R+JD8S!V!R1Dt@a~Tz zRf~~q28NLIT<+`-`Lgs328EDy6>Do zHA$#Ew`e1?t0HU-01)L1bKIPMa`B*K(0~ zQMS*ij4D0Ku};+0cE_?bfE9xv8D%s1AP1sM2MpRey%5_I8``xsj!N4P0Izf24acta z08Y*|bXirzqg*=@C& zE;~b4p56Vdre{_B1JgqHOLLgChh+>jW61@Uf!RAc64BXv_`SB3E`S7D}ABts=$CUDfry3-yR6N_U} z(RqQZqi8;)bueKhR};HhS~aO))W(e27Iv}atqHzULv>@BA|jm3oj1DiWlXS=t`8MpwoAsDP^E;cu@k z+fRv8;>B<3Vw@%t-B8kc{RjZPVHn0mVsD5V#hrX*rNYdJ9$T3Fuu|Qq(Tec@b#t&l z+7=&bnHvdltgs_BC1$uel!o0#ge2lxDQ0Id2nZYI;KAoyVh;j_ZjbZZ_ux7uWqE}t z@lD<#ZT$vdj;NgmQ~K2?-}nJ|%8WcImkgqVc;v3LAibzPUz*dy42bUt31(9d{a)ta zLWvqvbRIZlBV8?Hoon>`ewJoAE$8A-Nn1<|vW|SLqaarG>aM~JBp~frKr8s{sQF|8 zIftxB-zzVImJo zS?0SFgpc3%chD9MG5`%850B>Ded>E>^RPN2+S^eGRJG1Nqkh}LikFW!jis&Vw>cO! zzNrbFDh3P^(ff`nT}G6>i0De)q8fH4QnG3M#@odKVyRF`yB(K` zJF466K$e8s5Ns7T{d73K4ANv3#JzP14`IUYq~c1wBKcImQqbmDPDlyj$hidiu9uV8j%b}{C4*3f@$zgPy8y|lF`2E~$b;3n z6>Slmz?HUYqbas%3!`yWHGe`1x?sQ+*xIKtHK{v>kM-BTXQhIEl&ci?t@74I(8hvS z3X8dU;wjyNq11;G$wL78p#jjyV4G^}GikHJy9LeTz76+^uNZ`I9i~c9$tvVJ1l4jj z+>9iT{3-n2dDBi~DATFA6G?093!mVh3qN9aAMti#53h(;SV2SSw#4y4rD|KHx3 z2I+ZK`Th33N-e3?+E;6_t<9Tk6N4ET#vT&}DuIM?AT@=<%%`}DsxX8PsZ>oWAs<2k zlbU>(VIY}=nhI1IGPsCgjF*v@u`wQjEy~xE?}}FS_YD{^rWL4N&`~PkiWPgua{#Dqum>3WP*4y0|Y16vD7#* zBiI3(h*}^>%|klavBC~Xx-q9q9&$U^J$sm^*B!*{7=okFC1xymMowd0EsvcyL?=fM zJY~l5@{z-tm+$$I>6?y+AoqGnQ~KnG<97V94An;gPkFE0vmE8{nUbb7ljFMtRxa)J z>cehy!BJkEJ*SJ{K8JDvDMaZM7O-S)Kpr#8jYGqmTh%e`XWY>S=<2lDOO~>w0<2I}6FhUAhTF7`9muT&A9vkUY4UBkAccwg>Lh?rz;8qe zLb5erW^kwQt&jYK$W~XSu0<#G>)E4uKQQ! zB-GPvISh!@(oWb9fGZt6q=^cLN4DAF8G}=RVSgJ~fe3XdvN=>VY|f(n_%;PU(zw*$ zPT~EWeg>z%%Q5}jHV<))Hi+m9fXoh@$8Ty9+6)0Z@eIGzaUQnQ?sgDpr!>3`6R0MW zTx2Vo!BJhHoP^Khk3G%GUHlByCe3AQR;CUD2$`not8ggS1xPDwJ@SPBrs2n4Zr(vT z($~ewVNBzv`IfxoOs3OQ6YK{PheP6|--!#_hM969q7Is(I{^U1@62;Rv~MfDSKS(an=0!o8jHlYDF zvm&rrE~p4X8M0_WIVh*;2_VZYxAV6$rjc3Y?2blqVmly}jCTZ$^|eeMK`Xv%adm6N zi#lox_*~QMJJS!_)jSLMyl)!(uN?WL(6n6jcl9;jiBXd4dSMr>+-LIe%gmQSNH1|* z!~spr!)=vXSbN}}A$g-{5~GJwyy&vo)|Xj$d57ZjW)-F>Kmmn?$(7?7ALCXtT2beM zMd>hGBpA9j54~_MG{qLyKA4xnIB+3ZiR`<+EIlCt=h~L+asHN&9yW++NZ<(tecsoA zO+OE12bMuPd?l19Ta17(Ao-E^VUN|9BVscwu z=_RzCp$$aW0OT6HUWR%{)6(T@(&VD0k*DG3T8Ok|xCstUUSTk)EAE-aAnl)W1<~+4S{>1={HX%iU z?qO%W@F{;~ddCA*e|%T^1`&gY=SMBKK8xp+$9YB?wYSe=;^6#dIaSGA=#Euxl*BuU zvfjs*UBLQ!9P7@U6F|BjTsLm4bjAkaLYPe^tLWWUnk`v4;OAl$5 zhq|n73PMK>F{HGpxZy)~H%&*5fLaBnj@$$mDQFcxt$#EIPtj4Om*w(1u5($smiC)U zt8!v)rWZ;l&lT}NIBS)dJ%?!h9KK)DtGs$?0G69`=PpS5_x&mwHvm9_Q4ok1@`f4n z-=ICYLS_=pd{IUhWX$6{2;q=*m}){Y53lB|P*4*NC)LkEIl&*l>Do59L#~?+s!RwT zk_o`YIS(pWo0q*>&C?KT_CmS0+qeq;7CE3}Am1+bc25wwT2mWZqvfL2y1? z=0_fiH)MIK*F;|59D5IsqR22@`K0om zYnmr&8M@(y0!~H9u}9!IuPR;g=GIw+ZMh671S?;b&7aWBVYkSIE*_JXDpq-o^LZdClV+LD zlr9|de8+3$C~a9pqH;Za0?n8tszKxP(zoQD-{%=Pvz^%AA(xVc?Q1(L#(8+}Qis{R z>M?)*qHy}u7@IS$$P4inAOiJvl|X!@eu5ziN@Y3aBU=Y}7Q({u+fm!z8oqoqygR6S z&t19YKw%%_c?n>89%Z&5%RPGGnzmC@*$(D?(~(n*_A~+xH;cyv;ldD3XM@1oc40xj!D9S)bg3Z(#KkcOZ8p{%F{&UKg$Zg6Rdt4W+=7+ zbknM5t%uWMvBFI5q`1OwJ%H3`wa?)r07pgU6XdLZQ@PMfTjpe46&su-am}%tVk=`# z@}WS{dF%nGFIUhs(b*`gbS*TB`Do}B@>@{M_90Q|>JjIn%7bg>6>U}FeE9~qctqvR z4pnIHz5G7!(Jo#$rJ$MJBn;zR;lKWbdO0=Y2{e0lS0wARmpWb%fF(24=Q*I*-6v(& zC82_7pYuFE=D-7<1J@W{qVhoiZj_gOhDW1voEwbC3+@wQZw!_WC`!6=E%Wi7AA7mO zlUz;XW^fkH4bmtG%|~uw3}vU^M5>Vq1Zn`0^11npeul=1F^G>u53XB?OMY@QpNkE) zSx7a*g-bJMvDr5Bx+n=MKbA+1sdn3gvf{_^xXOTr57B1lEGIiQ> zQcoayq_afIo*J2R6j%VuwV)g2Gs-I$a>wOcF~v{rkeXXa7kUJ3Z2{i#;K}$dZ5r38 zXZam;wQYI7&>ZMi@^Q$|?|ZK(7&%>v6YqdO+RpQs`2d`D{8^n{F)!|W+>A0z|MQ9f zEQR!Y0ZaTUI%E{36w=BIqFg*4BoEbpJ$ob5lCk-Fn{O+lfbB9#dP$O_l*FxvvRL-Yqgkcro(zKN*UB7D(ALX)9u7{>Z7AiD)u8hEr zs26*~c>E!lXi-!opDQLDK*_ zv^bw0BOaqx9Z|d7S2(=Ix!u{du=3U`e_c`uDUX*P(uFILQ*&Od@|l7)v;* z?9@>?kN0U@{)g~PiF2V#Z?G5hsizTR7$>bzLm;TawnSAvQqEBm^bnAOMd~^u;ZQ#T z7gIaV<)u?V42KX8?O@R>;VNe9N7KOI09*>kQgVsLv=JK+CmI1z9S)$Okuy{po~=e3 zCD(^}XB7KiOxFS22{zFgWtz>{e)Z&OY-x8>x594w)ylgr9uEV%bb_Pm18GQI%}EYl zHZ^<;u&Fq)?gOAHq8QyEI;`~rfa7eCBTy#rERfr1lose3=1V&XN=-KcC%l5Fzhjo* z${4IP4A%o>Tz8+6klVaQUV=-?Ne|PtY#t>KUg5~J%@5j{^2n(8V%yM-Liw24k!L^3 zyS_R7D1Br4^{L;P`_!i;OIHTbyb)Y4mn0XGdX)-Iy~v5gl@n!dhX7lC^RCZZIm#SX z`+62CxjUv+(Rv=XFw!W)qChlX0Vv0EZdb|k9P*M47sC)5s33AK)#uAcq21k+Ts7C< zJCFvt`(vvHLGC6v638J@n_H`k!qJ*rkrUeik9%#jFlE<-Ow)zT*2c3A=tyAW+KIGl4l&&)kVnzb4MsFVn7Y{4*!ogN z%cDz~+)VR|F>hS(u5D0wNQcrf3tgiAnyz?H`=7LTr-QJN$pi`~JdZ(gBS~l-wpKcj zZ4zJwU-2Hfkz76;)uw)k0qKdjL#vWi9J-C!$)xjwh0EfaX};R=svNNT#f6KOr9Hb} zfFKS9St$@49swo_cd5)IrXK}bO#;Fu_c6JXa**;Xjsb))JIj7>tpLH$x95kF3|0wU z($B6=G!|)jZW@{*Y;e6(1iC|<;dc$@0}Bk9(VdRuj_xcJp5H8O^ljCJbDXEoV zm<&Q59Dx>t1ThMCtBGt{sSTxq?xaQ^dFFkIoly|ewV+2nq_JC0FZC^>H1T_Ck{_eL zG_uKq?t+;g!AS*D0aLk8S-dFN1mOhv$<0i|YniXb!;xm00+rspLBm^;U<2W$?TnF} z*%>r_2|O&vs~xWiKohV)+MJd##kBLqt#BWDGL0$$ye}XHV>vIGmUn$$&`Ai|ta8{> z?R6HCP-$#!aQXm4Q9P6hE=wPRyG7)v3SrF4Rdf!$I*uy*H#_l8!r>n%P!WJ-?P~6f zMSxUpQcH03GjJXa**HcLhRqcr3Ms#^vb5 zt3$IxPCxhlbL`ACrZ8&AE^LN_XvU3%=CCob@Wsa%(Tyk@?m@DHJxrRQS10?|sp-b5 zKpP5f)Ffy3oI_bER{K?k*%0)}M$tszMW^9BW@LCCNtR(68p`dYd4<^4Q3SH01EGAg9sge1xX(84b;6x`)_{cwahsU|(>#fwKc?<)X!SoY+Wc zvE=JNhe@Z;TyvqUCJ~KF(93d2BY&#db`br(9i_oGHJ+bgGaQBlQ7yANnx&ivtsy}A zIKXK_&J4}~n0wgmeaE()>G@}VsYN9%TsAK)Su&sPzj9#mCi1c|rGsG8me@`V#9BJ4 zV#fqQw)u*(m3FZl(b2i#A}IF(;pqUJ&)6o}Bqpu|)rE(2mAwWhb+iCj{GDoB%Of4F zSLDNQzg5U6Bx&Y$*COEt-0ttvIaddh{9K&8%Ad;uU}Q{1oHkm%a&6lF{4>Z)cw1O| z4)5C{@m-af_v2lkk+l4dS3KofOlR@UAj&it+twpj4W2%Z>WC#aUgo#GN@w~tN zcrP4l>D3{B2?!n`vAE}HFbl9(+QVxl&1j!MwO4JYe2>5J3^_-KAg9V*lg^`_%Q{s` zrMHLev~bbVXrt=9;^r&-xhw!yzq@?-s`T=n7o%~j*{sCyce&;}79xaMWsv}Bmie@K z#eFJnuT&m#PIyMw;xv5XboB7yO2BI?RS4~O=AMv4*)ND=&m>>c*KX%PIWdf@6g25) zZ;=zH9d-xU%x_lef^)UAL~;_Nvc_lkfoouRR-v&(4&gc+sIc_09abMxka{+|6w^or zJ~z(LjV=)88RGJW4H3~TKw*7nF@5PKIW>p|;o-y7+6YR_4AN+0|6@0^Ue>TEhN_dN zjs`bJKma5Fi1b5gqmnLRY{0QW?quf;-UxR?mIy!#Dz##J1q>2{J{+7OKH$guE@PEe z^vO(niU_1G03nwm?J`vR+dAZr@8x#l#5-|4loUa3dqelUb|iyO7rxG}%jbUPci8}p zoMtfH@uk7Dm2}MZ9!~1dY(_S=lZf80Q!N>8f z^9hF{57~Qt1&9uhR^DW!utQaN2MbQPmz=M*4!aq$p1YvCQmunwp&jls8-<|-0M;@7 z#aaxvrX6OeBfl^f)0<7-$$ZP$i9C1?j;H4BwQ#{g^BZ9&q#=gi7Po5!D2-^#PTe&# zjn@Kq(|B#i8YcY-qO{J$iL@E-YbL(&07q^eN1i5qx(R8sKALm2{xE0*LKUQ#%45!@ z6(hHt(%BSgYoifh)!e)thGHp?s_gE^0y2?h0+l$D|2~NffnU?pSC?rn{S6?rz_>2 zn!!4|7BFLWd73XtO&z&gO#OWA6AK}@uD$lUAbJ61`SyOPRQWE*o7xzKy35_C?vrf@ z&VXX>qNTB`kX3X$1fK~FTW-j?q?Hp0%-H2f;aEZlEN*HKlbfh0IXBwUgnUKx_y(Sd zr~`n+p~Z9OWpP|iZA`7rVtXu|OQ=8oS^Jvhkj9Q6@=oa`_ZmYUaOl;8M)fTZ)=~*_@z0K$-!q3O zc6>`$uR9askw>oFc8*5oA_FMmkF?i>(UihO{E(rm-*+{24Kl_9s>P} ztFDe5l%6DEQu0UJibUZr)bIi=S3$aVdMQLm+%%Q_q9%nBULe@r_ z)JG1Y%w}901En{Um+oSr%>!a>l|!Vf#|^b4U%X{>tf07x8g>rNGZ6+3Q_&7l4(K$ludHwvFj}IJA4jdnDi}T>iI}Hl`pdAr0yi2I0*9=^kSWIuA42ku zkY?V~)Iwj!^1?hZLlBMUFz?#k`W8wm*OgnU4m-?KjzI{XWkj??6(u-`plGgTmnEZ- zBDakVq4Dy&sg9+QG5@TuAtBc&uiI1v2PbD^LpKo_tE~-yPa+G_f#l{&z()7i&sEWl z{+VgZcZek18zH)ctN%13)i4vIRX~439^vEPOs6T@$CaE;w2!~3Upx;zZ9lKuhQJQ+ z$xFo;Y1-Q*g?Vur>yUXyreG-HMN3zh+6CjGddR962tY}}ll{rQ#`z1ZW=`_x~C5zLZ?JNw^tAqwo>5y11pRB>jPHVe8JHP@U#!)&n%?v8{ zshIGw_clRP=Smx#qXk$-=`@P|1hSSB>`ucujJspHL-!b=tlT(zybgmZ>1)&_Dct4Z zM0M5?RO5p>E|Dn*J0u9UO+ z9gc1M7UaYj`lzd&ZK$58_dG9mjLyyQXMLrd&KD|ZAp;_-PEbF500KC<4eaEX24JCi z7?cGYpi+(vU{gl#TTa_3o)vfj!nh*3vmD41P$8{cb#=5wNjK+z`F~#*08PGtM$PBM zi8bla!I#mBTc@~SbrCFFISQAoE->V>c2N-njW;7REnBxS?R@MpqQU3b$tn+evN)wD z;dL@~lRmjqo(IhwOl{0Y7Jxj4QlPV>Ly0AD$N^Zo)Vo#%5NgAlqyZ)XFe(RyK(>R! z)G(I$j?Sx=RpTS6s@_U4nz_7pP$z{80wd5iBHTx=}ur zBm4%PIjBd@a}L`34sUvPhu1a$A4Q8+R@51z9vh+YX#}#*+A$4QEi%Hkk6OfDM)hM>-L=#6ZL7=yS0 zOgK>-fVv;e*kRuL0(}f_2b>uaTL2(hFZU+L9Rf#F&scW=z7NnF>bQCT-c0!k5b8Rc)#MNIJk!pW(5EsjEe zzb(Jq?Sg}6?eTIjpE2)h#^5~)A=cu4QGmQ)`SlH*$vR&hR3fF4as2xA{=6Xo=ANSb z(3mz|cT0Ne$%iOl<{YIM)x@x3u{Ut#W+`_elD4#C$B(CN+qS2@yML8hCP&gd6oYfP zE-Ak$a1Y=T<$D538ALz7OyF!M6U5=71h@2h4P%o%Tq1iYyvxP}ee`UI>fCWQ>Jr&N z6AHvXrv}VW@9aY(X|)qlxPc*7@8mkRfmI<;JC)1k=m`J?k-@bjV?^uk+xUh8qK-QH|5AWwg&;+{5 zg#i83kLnZ3t+?Zs87}aj;$S2eG9R5samKQlVm9M&uQCFyxn_O5V}4WbR;PcN=Whsr z=21YX@Bg*yZb;j={XEtbJ1kafU=Bq&PDma?tQ3qVI9M}7pqlHJ$DT-E`IG;^+-piJ z*t28KjGFYJoBt8B7jD%s$UI{Q24K0H`R3l~yK;yc1527HM6*oD<314F#d1hUIhvDh zZtE)ezN z&;rhT;i##6Mt&ZaLqICXTORF(YQ8?_Y>ToWrC<@$Xliiyr$bvUaV00RY@^7T?HIOW z18nW9)W^e4bST)hcW+vK_-xv|W?AZHg_}D-IxQ9^5G=PyQ2~UQ4Iq61O;f`aI5;o_$K_plQvhgI8DKSO)25qoIqGJpBpwQcR_Jy}6eP|*=$&Gmyu*k0 zr(L`Du%*;X>Ba3k)1FtpQ!bG({h>t$A{@GJ+)iV2O0$;I^{jc#>d*_G$ij7eEgdd;Cx&;_74 zcNu^j&6v{4jP1y&nqVAG8xZ8Rl?kL4WJKB!F6kUI0AxnT_|n<+AFpe`9FCpj*%k^0 zbwaGr$SW6(jzPICuN`fYJo-bnre1^}u5ovD)}~Nm6e-I|ZLMeSeKy6^QQD+j@VB2l zB3R4ZZZXxV-BX(RDKAvM1*o>qIc(s#a@E?n`r06$mdGpoeA56}dWy2t&9~m3o_PFk z$?_cFkz)a-Grj2;VJ>z9xNW#3ZF&6hC{k-(S6a4eR+_(T5qqkgVHqg9R6>C;JkuyP zx{cO|?AFgP?BRyZp-@14LEVd&vw#U-I2tBa$pLg_sR;H1Cl;I~a;cp_8BMT>HhmED zObQv(KpJ|T@z4k@Al$@8g@r8Q95su3fD-Dt4uzz-ZUlYoeaM&2mmAblWx>es4x@6x zpb_PdMNr=7#c*pPuUZ0^8w)!$Qocu=eQ^lJ*i6j=z-?Wvshv%!V^26huAw|YMg7Vl zxGr`0TvjIRn?lS{AcHVuX0FK*BR$EGNf8~{PH1q+wOA%ReC8boKns>ZNURhJd&{jK zN)JDDe>!sb<@DTh+tM$$KA*O3+va0)+Lfob2-;(!~hrV*t6wu5HERPlDC_wVO z8W`2*`I+3I%5z?`6UwguNINVh4qk`JAq8~dW0a#*N0utz& z)0vK)Imx(#MhRCnI#tZ83S4_E+ya_`TY~(sQZ0sDWUUcgsPr@rcP$z@l#PU}2he~8 z;HT%qIZP`z1j+^ZhD_w}3_EB-3pTWdQ)JF)D933l%QFa=T}W3>X@gl88_l6nmk$hW&Hq+B7>A&9ZXy@1a z@+-ZUWsGxa^UXJ>EnBvv?JwedskRD{d)S+I6qXJ;qT*`5wtxi5jh}mTKF1jAj041Q zIBEhEvoQJ&ptQ&xl$mVs0c6Tv-06Gz2JzuTo`Up-S&N`PXr|*#nb{ACBEUDi2@W}&a*uq*3ef1|uJM2GCd0YV2_xt^vS45Dd>4)BvlpGcp-_ur)d z_?54xM;?7Fb@%ompE7UFIuyu8x$RWh%p~0cP;>&n%W)n!nbuzST|<~mr@h?Ubt?K? zuG@6e8#XqVGF|-B8LD_`7)*Fqc7Hrl!50oQogAf%? zK(nVk`%k93e|K}b{n|BfH+no%T=vagR+V+LwnA4U!H)kZ4LVF12t1q_uAC2^gUP0Y zdDdnW7`5KmlNSKFJLV+I95qze$IuBj;Eut$$WyN6Y=pYBO4KC7sS1>wCb)&*qw}=l zeIjR+dumFt93Un@sn%MLsGxAKm$LW5Es7_cSrFiPyVhL)-hs0r^9}&Kam0~E06Sw= z7xT`O>AoL7kRJT|7t^Mzm!uQNj;EuiPo@oPH>6Me)4S3QH*89a7A-=9&NCC%L3;ZU zd?Di&;#Pe-N>PX@Ztb&{F@|F9XlVC|4cFg_;xRwk={$g|5_%I(uNVL=Tfw%4|Iv?r zls^9PkEeC()&&6Nd=khZ*yqZ#YMyZpR~RJJ?V`^1^app|p4tFb3_GMH*XhA6z6Uob z(=gmw%%cJ>8(odCgNOsOiDJ-(IjE+Vp^x{R_jTqZv`vW)$nxxnS{~C~04X;D_rQsY zi<<(vLy_Z|L%vFa^5Im2QFdbrYGRR_wqQ&*ri{)60R-QpykRO*K46MZCkX4^3nx2$ z`ZSyn4lTfOUPYu$v*#{KCkg%W=l|=wX%C9q+7-*GUqv3KOalztyZ7vh=Kt(x?oPk` z;oH;IYt~?*!k)_T9G$5OfCW6#)$`n0ME={)ej=?}z_#>o z2h-E}R8vkLJyp|8Y=8on8f8cu8p0a|nMv7EW9e+XHCRi@(#dS()xXZzC3+fTQf4?r zyVblw`2=Phq-9VeokGpe2J@rx;d+m7lqG#NaNi5NAkVt7v{Psf*`qPrg0h6|tZ*U? z%>xX*a$f;>^2903NPUrIJ6_aG^ibwG>DZ~B^k4q#pQffc^U@3q&V5V;dbBz33!OC2 zI3?+H;PcOC#qJaT`1jK9-u2;h%{6QBBEs^3tg5U{0i#})v$REYGU*7|>>Q3pmQfki zXV!1n96^OV_q{85TyX$e_)>8z^W>9HrVo7J18M&J`Dpu z9_)ZNq#Brwpe$7nD3mn?q&o!EA%CfeG@#6QOf>{tBc{XXB-$i3zqnbn<8_7{Bwcs?#x!^CT!wV)mgE;SwlhJy z!s%?6l7{ue8kN>sU1FgD1G^}pGvE{2-wJCAp=A@%nCf{7Q%ZU!A2O0aNJ$uqM*RD(d@-zP|-E_l7>fRY( zcW90IX5QBlAfU@+K^wGLxBe!E@fmL!_@rgspKy3`rH|-gP{~Tm{XX}(&!uOcc_wY$ zx-|*HW5MsXAqo6NH24N2{@O2bWVR6RYAqT zJnij%4?CM6Fi3xZ$ONV@N}PjLw$$(&eUbDvsi z+i55CIqixL^O|W)-zZ)hr(H;-vSS=-sz=&6UFA%qvb1K^YFt_C(*0Yurup;cq*JF( zlP5AIz_X)K@K8{cOJY_BFe|>urDY-JVW(4GU4}#N5Ze5G-@lI~v^xMXVbWNe(t!s{ za6)KC37|nO&kdwmvpUnp>)v<8Of9d5t+xz-r4Tl%oJEfG$xnVVIK=(;-yb0Kx2Q3-Ofldj6NqbtO!y?2LNT%h`hTsSH;97tU z1%ZYi#~h+xp$+8BvMs5bmP5I+QOw-}JVgVaa|%tFvmdVJvdb~WfdHRVdRdHcv5+g} z-1}}2B}s!fnV}r8Jd@$j4kLgBviq>f9TzaSIu|Z=`pnt%#Ir9TpTfzI4P7L!kELZX zUX6zCaN&}BK`WIA9Vrx90$9}FYkpkUyl~;dG(cIu|AW6t&mk)|;5og3ed`QO;`0Lp zpkKUrW!k{7tKCw1+dgmQ@s-)TUU8!Bi2Fi50rw5zgvqU0m!PL}8fcU=XNZJ-NM`wzT4oVgPCNJGo ziIJXmSh>0%0V@bS?4(PUEWuT5GJPM8c5--4!lOS)?Hx}eqD0Y1x@Dd*W+ zd=wB$uzT*gCq41R6X8&>bLY;qdiCllkUCUIONX^?W;*`v7cZthWhP2)UsYDqH!x4g zGYyFLsw$$N_T)aZgh>NCMv5e+Dtthvh9e$;pkkA*dBvhQ%(V6Tt(}yT-l8Sh@3jh zb$J#iXb0$3SZ1Q3fB3^6Nsn%MJpJ^Mr$gCTykuph^LBwx$h~aABte3Eb@*Eb!CQn)0~boKkbcjOy9#4K*KQ)3oxAJh;M-6>`NcPD7$<5;&TK!RfmbQ zG&88ZKsP&T`XEL=crE4~JHVQ~bbfB3_6@ZiDp!V52?<;$0c zaaV<804_6+^}F{y^my8TqKB5l0PTPWC)0DKtsO9-S?WB{jJ($h7lF#Lu-%|V8i9?9 z&}d{*?bUF}Wd z-S=+R%m8!;_P5qH)6X185c!VWUioi=#p&(%I%*y%GHxs`!c$_5`t9C-D0LueXs9-L zrUq`oRAgiGj37y9)RtcWx?DhxDjn@ug3fo&5}`{`L{9togjavz5kjr z=CwPP>+L??5T(e}pE>dw~mFFt-pn!y5aq_e3k z)I$52PgN;6uW+CsI9}68Mmul?9Sn#0U7Q^%oJN7)29z7s(ePR!ZFn2kGHL6J0Oys4 zmXkIxWI6;k0v6L2RI$J)0GhRPM|>3zhkoz56KQa3xS$G!#%z_Q(+uDL`D=fX2F6Ga zAIPDhzI5Qg0l<_aze<~Milw{)Pmoz&M*%sY-(K^%n93vg`7_Tv6?FO9*S?OJ^SR)J zzT+Wa-wDS%3V;$s0{OAg{dV@`OJDjDE?v)sFx`%;S09nC4j(_3KKj1R>CRi$!^PAr zHAiR8Q-55ow?%=s_Z~x!7p9fE)fdmzN63cU^?)0en&Ue0(4jnp_cJ6#pp((9rPWi`A zKby9q8N)|VG8~HKHYz18X%=!%I2OR|{5DO2;D{|(^I^4F_mGQyL}cZ+lyQ97*@xcVGI#7rqd`*Q{Oz=c-8`+_Wa$ zxE3Qdk*9*tfX=BjhooK<2u&rlcveJcusj=3@ldv&xafpMd?6UqUL z8AV_SssdE=RW5U8A$vaqAiQP_aOpKS>yt}PG89`Kv(+ox1xgP;`gr=*Uq6r*U9+0s z20e0Cs6Xx9yBC0?Oi|`+Kp%*5*$K3HnvUf@jnVqR!M$nKs@3T$U-?hW3ExGSxV$^% zI~90AbpE`f0ayw-9fILD)W{8WtFetlOsTqcL z3n1lo%6QuUY#fmwhzy4oGaYa#mm@l@C2-sw-XYE*RISHs*~k&9tebiHc_$z53IG-YPA94yLSMss z@4Yu3`P2t*NWb;ITZn4UunM4*3FT6PL}ys%V09KXqJV&*c^HvVJOC4?$ZeWD;EalB z@;v0edbH+P6$b$QosGa5aD^LY4wpl4=r`y_-gOc2z|C>;P;R=VBYDjQ?E4QKNk9I- z52a^zy_6a{Iv>v2i_^{{7v*lUA%)1*ozMmD{1Zj@QY1 zjkSdnnO?|;+|xbZsWH8rY30ybon`SOh~*>#Cp2Lc4Q+T%lL-*892`-@H>Y81G;D_) zQO@i8np_>;jdtZ!-I-H;>A{B{PEY^C&eX$iH`HN3Eg-mtj=XhMdX8L=NG_d?J@6 zVp6!ayJR3tEFdyK%eO&;mG<5b5>oag^nlYOl%+VNm*@aE6y>NK*XhBg>F>p9`A7PEoE&+8|on%;5 zD^<2^0L;pbaz(ERSOFKBDL;zb<-*EEKmDn6+ikbS%*AX1T9#va=PTFWZQt(+02ZQO3W(l2dkTSm z|I6vXt{v&{&gWA9$pbjY49AMI+6MM$LopdbL2#oP6$-(`ARNF^1J=G4av`#%GZBI` zIHt-804t6Y0!`-y*Cm5V91&1R3=Shl1*l_8IB(thTzdHLewL08IPHd}d*TF9`%gs` zW;9%tKKf7Imu~;yZRutfbgfylI=qJBCVxu(%%_07+vVwb$DOuKE&tbku=bADuN0bXIV}ZS~O;tdH`t9%qHBMG*qi8JI||PU>Fa9 z;53~aNgHB-Lrw{ZV;B~>0MM0gPyhYX>CeCZt+caJ(9PG~nl|0EF>T(wnUKfVgrR-$ z;za@YQkPPX_Y&wz-TZ#f0SFbokh*wD-(F z>R^@G%Bxm|*4l+DmI_A5mQ@9QuY<0ts=pZktgdhYBXG>z3Q%6^Fcx$ye#dk(%16yq z1x6spyS~JEd0P%8w+*ct?x(3ojaes9omRPd5ztD$1#td;uX4Il*XiHC5gc%OrK^7j zAiW@m^r!$*AiUW}$*X*um$_Vtyx#1xU#awd;{o_;gq;FPJOn^17@cB!aa{+0&Nwbt%lD@sX05&;$$761SsNK1*S{H+WADbSFA&oR@M^Z)?7u(hbDlC-EOv673U zg|(eI03a2WstKi~I*OU6`y)}v3IzOT=oWYqu8<5gec(N5q>L13D5@!O*-DZ)#By*n z^vaAn$`E2Cg!lzrbQdG0T8ewUk>=LVz?!$Qr=z!{semu;yL{H;sSRH!K+`^c5*3s> z6tQLoV?4}bX@a86ujD*Xd?f%ZT@YkMHl>M#co>*g_*zf8=Q0SXeeH^D)931!VGLwK z{xAd}Dwr!SeRwkL836D?(EK(96-aeB`Rg#|C$>fbc{qqjr&KiSL90ac{DD`(1O-Dl zgflNdh6X>L3kIo`E)Zj6JR$sV6H(BbH`b@Y#2kZ8 zVFmLLFBe>q?j#0-({QosD|YCLQOeIEc=JPazk&tFQO4h8{5I3ghFLLQYgu3H!UTTl zWZ#Z88{|D9t!}K=vdn@tbt5-XfAdLbcr9s9JOx%y* z5JsroKnPF(fs~Ovn5qyavfCs3Lm#iVBJvJ^c?9s?sMaW4;@g-{=nXC$Y+pX|t?Dwpum~#Q%85Ffk(xWMZlWf^(^xOWH5&_LVPpd%Puzmp%#T6WXhe%pU zq;3|*tKwQfb{~?WsIjESx8eg7Gr@+3X)<+tb^QqSpKYJaf`7E;!|x_>uU=LK&m%7G zjPM>C$(y0q6LR|$jE?Kbw9pDntF>5{f(TOgb{8MCn%l!Wheq~B!+C-Op7DGd=H!mJ zmv|p}{F9yz?@DF2X9L;A*+l6^MkY#Gcd>#LE#cY_i%%5d6{Y}EJ&b>rm$R)_J;7#A zpQq@b!2s7weSLic+if!%fXDWM%YYMJ%gMleM03Ct;hxMOgbQN20rU-hA*5#(Arq)Y zFYeSZOe+ZE4iu;`RV27GF^pXBtYyDD1LS-!9TQPXAWI#76{NZm*b01eh`te#6{ut{ zj1#UNAibB}392TK@CNig#B+x=nD|?0^b9ipAa=db1u|u5&@*w66c=j9HLV0C5m#gIMHGmS6B!OL{{T+K4aoA9;MIkjltdR$3F26kC~(7pg=n+z zZZtZPn8mWQGQTl5qd1BvXW&lQf8+TDAsPWxfo@D_6NIKlbabe)z&U1S4k+3onmU~- z5Zj>X7ucn^2V){MBxkxDiSs1W>iE}g}$x@Q7_4FsP2&(VxFy7$&uQFnS4jB1#6Pp=oIRNt@$^_*!Z29xy!nz@ksi``!v0h zJm8&y;j+as<0j#@;mWdkSmn%n{gR&hy#T*(V2x?(u*6sX5*a=_VMT|V-W=E*<`KPA zEWXe%XJTt^ooanKceZf0ytLpkt1y#SqhIZ()}aeEU%y~{esDrJzgp_5e>@L8fHHyd zjuIou7Te0V*L5YOFR0(`P=4jGY1^KEf8rD5v+6^8pLKtAy8qhzI{P|*zkHrQca2xh zK4<&Q)9iG_kIWIT0J0g98Il!&1J4Z`9vc@25-%El88?sZf_0Ah59=6Z-( zg()4Af%%5bdrpnK<(%tD>b-|gPgIa}WYnNpvUKUFr7G>b*F5R`=C7v-Dhv2Vw?=gf zdy9`F;L-ksW#)4Bb~CXq6CDfvl2%T=m!q|Lrd8Wa!|0#P)EbQSikXV7vl{lrwPl|Q z_v#0Ayds1Figk$h2d=%_+4)JDnH3rttayON&bo|UhHFW)puTaI%t046fN67CF684fm)7KWGL z2pbhynLwG~3cHuZ%`LKsl-5XeBA%TnN4oy-6_PtrF2Ne%FH}rC4U9*o4Gum0Efz!q zEFOo$)(#X*l>W$HQplt6dN|&UV>C843%gb(Zfb7s_sJQ|%#9{fgL5X7!&i}hSjR*y zbXN+U?w#Md>4oV@$O{>E{Y->RyiJ~-XZI}=dJ=!;f0MFNpdhFG<|t2?fy`z65SoX+ zobn^(9Icu{A>Yg4$LG%+X-UdT`6Icld>JWuxy_{4FtpL~L-?Qd^EPv@ZFE<-S8#bm zju^G+*OQFLg7QxajEVtiySeo&#hmk;jiil=y{Kw12IgUA_9H&|1esm*zD$(NmYy{# z4mMXLg}<0|R|JNv#_p;0NqLo{%6u!17Zz3DhK%>By`{DWJCDB8Ka*{f)Th0ZdMoXy zD(T-C>-7Krm}mb5SL!)Yms{@zobNB_-?rFeZDU=x$ehR$JnyqRx{!BG`79|57n5(jjGNtDmvm4HthV?JJrZ znu=Lw_|zDqFZ~>(%t+K z`+)#Ohq!?MlYq`%4A+wFk<*;Ros*K?lK_@~VQFvC<)&_6*IrUCUX5r`p#1{-Q0un7 zZ>fJNXuoLRkCH`!&nA1r_VyX?3n z)i&#w?0L6ZougapfVJ`Y-EvF6e{;_F?1|_D*}eNZi&hhNsQrrxK!j0lTk}XRjmGz0%VBQa=*E@^_oNrbFG8 zmX46NkPy=N46-+jUL*1Oc@VEI1b_`HfXz#wSS~UD%M2nZU)vn|osv$FY%CfNfN=B0 z-;VUTxdAYm#`Jm*ezl8Isb`GvQUi_s0(%|_^|HEb^CH|L+n=L=7 zmb?&q) zvi35!(-O0`|2x%xhbF+r&B6CCGygxy{|xlMkm|1HE~1Y1e}QfS{}Zc!ga1?bzk&ZU zsr~;n`5%)1K>p(bkBYggqn-OdQ>gA>?Iys&$M}C^|8JD`|G)&8+1UOK`cLlvMri$C z5&y~k-v~t)>%a40{Ljz?nE!3zKY9Pw=VSaQ^#73x|CML|;{HuE0a!l9|4v!~*tSj) zbO1mIAT1`W<^^)mWnE`~>b?DNaeBczeZ1j%{PK9&rdyp>m1aKLFM9FKgJx$11PWSw z2TYATlu?f8PY{g&GAs>7g^IM4GWZW<%5Om6N*cL#vi;J7kk9Ku@)q+R zKffdo?)O3m-1YYn3}0otm#eis)oFJfnh(K%fYQZ}OP}q{fCT+7ua0Z~Yx|d*o-ZlT zn=juM4>E9Bk&;14f$I>Bn@jhP%ZTL%qeBn=jW+x1Mc(F_Pi1hu>sQ}v!5@GN_wNZX zzMRGAfcTPLYyhn~s!^^26yQ?4NhK}-C$|J@!y))b@iDJtI;6fAt$_D;!H;qLq3~Bn zVOWfojxU9euP>Y)*V8wy#7R^?Z&|S+0oTg`Q&(61rR8N)OJ7<@o5eEq@!3lcZ+8=0 zQ!SP1uA4Z-r=AS52htZPwi~rcEWXfc-EBC#KeS@;`r#ro&qTb zol(r&qz3(vrFIME1G@8T1hfvS-=l+|q{|`2sL;lqc!_hVxV{O5M#p*o?9l7OcRO;q z`(a4SP(QY0=m8ryJFe|zpuVjhbDh@~(2A?OK4~_dG<%zoml?HrN_Id|JX zdRVUyZoL%JFGkyEW>T6Kt)gR;Xq*idu4EPvKxqmJ!Y06r%B_AV(>M?0Q$Z)v;X>^I z+#L$OHf3)I{!Q{inpy9XYXQ%_Jso}O?_?Qavk|4 zjLJvLt=CpXkv3%X9g&zj8au%1Xl8AitR0!zw6Z2W;1{5jZ!4HtxiQImb-`|`Jz|<8 z_6|<>SBNIHbakN)&H&9qzr1d|@V09){RFtFubSQbCbSj>3^GU;_)fP22pL9 zsNqF_d%S=6hoJ>)`|b8x6jtap+h8r^1zn$>Zr(CcJo_P0ZNI;N?Y8TgKUaeFFYiCDuPVIrkCHmISy8Cy4Uk$DAWA8V;&_;{9Y zXYfW0p9j`T=!3S_PcSV#-30r#E5xd1PJ&?E+sA^21La{KZ62ok=ux4{bt24E($vL= zX3RIP)%D?NZ>B9jCg6kdL-O{(RS+^6(Wy$|igD!cT?)i+0bEy6lLpX=6}MU4>iS{R zdHXtk8&~@-AkpX3`EfL^98z7;DvR5(9=S>4)E`5FjB#dL1Ll$_>AjYuGf8h7j_NbmmgQInuF z!K>$sEF&b?3#(^Q!jp(~1fy9<=WPUs?p5aP8#8`f3`+DcJJ+KQg`_-?H}H)B-OG z$#RGw(MYw2TbCNXUj4kwu$4Y4p@h6eJYGW>zx==NdivAWbpDCU$jFMTo}4Tr(fROm zvcjIFMFyY{tl4;&nz^xEZTlv+8~T}{d&-cfrD>YLhM4#}Fl1HR$HvThoyXBSKU|JG zAN6Nq*DTlj*eVxKDs@w3@2kiL7p>5o@}nJ zDtM?JIPP0+*tnbG0`jyn;uTye(;WOLrveTXhil(`1IQWpUXrZtj4o0unOqJ<0fc3x zNMq;3uXA${axIPqaoZmc0jT+3)n5d;j_fo|g=%M|ze-Kr-Eji#0nN_6Ou^2~QHwe; zlk!>&fQ>npbr0)(4>`H%Ju$*~jKKqNlc$xafzd#utIZfF+4I{qSw|qNqTmnM)%Sa@ z;q5q&7Svk*YjOD4uICrS*VT+{e0e1fl+~7W4pVpl64J#kBR(~@d;}Y(tFI*|&&V?U zl&6mi4I;@8T6KSG$30w~sDP)Q=j_`kML!CjNHgs^P`t+ubG;W^Iw)AFFI3861vB)4 zl`7>3;FQAqtKeruy~`U>ehH6&>(3c1j>{pC^HX7{JZ?5Qic2|9$<{!_1rY^g)d+Y2FPO8BU1w2SUn{8B^e<2dAj{t zyT_q%^!P}zbWV}m4fm|WmDqA(r$tm zPgC^}fuCkIzm-Z+jCs2L7 zzT1oc>~}|V*i@u28y`y$p_XKX-5=i&TkQUkRmk^7Z$gasSaT77JgqBNSIT`P!6zh; zFDLwAtMY*@vGQd8J4d35P(K8rKF!W{n6kL0)Mws+yPl|?2hGp<48IGL*Hs>S_)rBH zly-bgg8+K;+;-LW%eaN6g@LTdeQNAV*g!v&U2!5^c}+R6{bIc{ib@Xx>@&J-2%Jf4NK!d#1 zBM!1q*jO1_Q;XF63tm-6X160=+7B=c|d=)|h3{i^58H^=g6EgC_vQ zt(VpEjLb}-_e%gs3R_@_IS+s}cn+I@0yVg=AYKbhj7-#B#L^w04fYc+vL9p`RI~^@ z*#WG+GO~29vYS$$%CrF`*#W7up(Yw16Y_ z32DdA#fOV@#b8VqSAZ1{vV*WU0(T3nWCX(36z@|iSU}JE&L$LPbZiXAz_$kMGj=^# z=)HW}Mh+nGu`ONfTQ9MR2%=%C4mYcXwVd&V zE>I3vz)wy*a?VNRxVW@p+C(Evovjf92PR^kOpUB~t~NQ!3sEDEEcTBUD^Fr*oexfC z(TB|mi&_l4VQvE0j&8_sX&E?aZ%ej61o!Vx@0=fRDXk3Y3!s-D(2(D71Gi3SOl*_> z?sM(SY>46uw7z-daDTB0G|BX-kv+d^I5+l6kOw}TWV$+Ej2Qb@4lW#UDeRgHv0~os zbH(aLietN@C3W&LhdMJ$$a$elx{x6R(`&)6MN?PpF$`~QStoi0?goYFXXOHus%1-X zC+m%OwxSDp3Rz>LGf$;^JM;X3>S7m#VWQ0JAdU9hvb4UY2+oECv3QR9aj-)Cv8-<# z%f%}MhZ_qxwhxWBJlzw0mV)8!Oi_+5fYiMquaBW?;3*tdva)+;$9L%7PK4_Zq6fhb z%X7D#zvnM5gZIZ{Q;#F?qPnPh;hd(~etQ>En^L0zU(Nlf7|Z?HyJ1rkFD7w|YJ+Gp zO9hh0nOi4;0oD4pMjTuA*r?1?vwlcwP2LU+_}ED9!6srgF+^h2q-^K?C3XOF5Qr#+ zYzsu4^Aj5odLXWF+TEE?5pc%8lKw4(Va*)OLtlHSATwss1*$$CMC2eW&IB2=!}Hun zPLUr0dK!3n?ug>Y9aqm9=;{*;Ez4~H7OE(4%l3M%CO0uLOy8_|Fpb|ocZC0De`*VP zv3X&vN90?#J~2@~!K1Bh7$>`2Bc|Kjf6Ni>|2VOKyti6PC>q*F2(+)a^Ne-4sTJT0 z^oLXh-7xl_KVuKC^jeOrH*GiLC4soa=sthcWF9<8J z&y9+J@66B_8?NKKbTnI~B{3yFUt75=dfh0=jd0F;gVa1O1h*~N>u#T; zcb5C`B=rzLMKP6>rpdp5iZ$6Mbrbp zb=?m9_bi2f5yxGLc0Qz$MqymkJL3=)7NqRT)mH2QsTaqUhXbveV2PWIw+q+4?R|&t zLV@y(@$~a&+K69z0CE&;6d|~LEbunzfy8EV{2Xu4XC*?8D^&2LS#s8@wdW`Tk>GAB z+k3oKyE6vqT$cX%k^l7=fG7C5Du~nbO#5XKt4P$pxUkjJ4I0^H%N=?B_bEu^{C%)q zcF$)2$fbMdv)xmjF7jNXh`7~*jZiRs-joY3~HKz*a;x*ELbD+z=TSHOoe zvJt7rQ)cbBH@3w6%4Iuu0JOQdKOS?eXot#Xl=u(a=6ax?6{PVNh)58w00OE>L>sWy z?`pZY@5%7_Fo5>x!ILzvK50&hH?sFUSJe=#uJo>KTHoSi2u4H)P1XI~xp=m)IKsFm zc{pJhbZVRDK4YZ_iuNrD9%ljZ!#Ed)xR`?oGPL@>%~+ZVoL!6rr`W zb~7xaRFImzd9`ZvKY`RV6ho+BHSnOAZUP_i7qYBxCM)m+_zOAd_AR4wGf@ot4yeUj zyRWzaTcljp%#3M*X8rAx#APmw?a#Gi=5XNN^n06O+}Vy*o~pBf!AqYWqJZSrjGyW= zx-1FLc&k+NKErN>qCh}AGX}(r+d!--6?`8mnHVah5ypVoL0+HMZxXGA4=?U;(Li-6 zXO<%!)SNM%88f{WG1Bs)xlolS=@f6=-?O@GLUIW|Ud+@$YS7x@8yBrw`aAY~pf%+P zm>uxjqs94qZ}0JrEZ@^Y-VH#^GCO4<A%?js;@7t%}6(;8s*wIh`d9$*=XR&IrWb zVKY}Mu(#j$90zr4d%#u4#|$K|>5z_m4MCJ<%2|bRUuw!;2N?ZGK0gCqmQAnjwR8Hj z-Lx{}sgk685)$!}Ao}fmqse^ZOPJ`uBZ1(IfyK(Z$Ec8zjN*+ZUWP)Y3T4he$d)b^ zKFC4f6Ya*ay!uB#i~<#FN!LgjlfS_#!Kwv0P!L%rUQ&OK1C}*GHy#A=gVAqoIhwy$ z4d^G;lCZ!Joad{>3To-aa)igowRbiP!>%?xuVMKkiQ2KQ-|`^-nd1bgrF^48#q+QU zV_M36zWll*8XTJDBZ$E!5`6~4!aQQ_QEVBiHyzf}l+DlAo(gL>jFfTyMiHh;63uQ^ z6)Kb=I}0z?i+CNFVh_7R#!z42Thzlvk`XUK^SKLRy!^q}RrJ9hhk!_N6MGlD0B(yI zj~WgbPp3Pd;z%y!5TfFR6&vb2)-H(ysWztj6IV@8b%x1MI`S@orrV;$$>U4f{aCUc z?HI6so>RKSj^!Mf{t0TdB?YKw{H)RQ;l0xL&BmtYcBR^}clqF<;eCqKSDbaPWeekt3t!?8^eQuH-+L~dAL>MO8!(gY7=a~9cM2UFTM0hO{vTWl5yGfh9 zB{B1n!6g<#65S&_!xzE5x%Kov8_{=E@TGdrfuHvX0N*FNw>$;M!ob>%HjI5qB4JGt zZOZ7`(2x7lCaIV#a4g2Rl%zwoQG&4M;NgAW49ngte_WbYpDWD=PikM$%YP z%)k+>vNaL69GRwqIek}$$EM|gXU_P%;@pl-@4l<%BeZP#%9G?$3V4MLbiyR4a;!mb zao8#_1E#yUWgoI}L~^;II0LOCVB`^!?l=_`wwR)z%!jNWDTP#v14?V3#E<>cN0=lu z9=+T_Hn$8|O`G(;`>~7@O2b9Z8R*)LSO!_#gBLg%1TzR{1?~yy3|x?Ap90eT;t0-{ zoO9P@ta5xv@>aE)Wev%PWiXGv^Hm)Rfd3wVZ9fTmc*XV?LO>G<3qALca$QDGi7j7B#{9AK@=uiz&y+4x#wv|zq3nD$}%%;Y6k$!(RL9j9M@ z>tMn05`>_gXfFYDVnyMxgXN2_>kBNEkeyXD8C?4?bIN8{$VGyFDtszv{R}a9g$rDz zmVjAv{y4)Rg*o}|_G4<_9h>^r-!tW5`uGW^`dP#)-m@%=7r(*=W)o* zk|y8)=hw9vbAyNxU|4ox_JL#eYmF(4CsE^uZuBRzghM4_T04Q~I-LbCaK$!$RLU0B zuTsJS76ziGvNwmuTtrd`#}C zhQ~RyI(eNZ3eq6LSK5l{)rKOuCp_ns6cq<$*}1koEBZjKVJsYxmL*`pJ22Q@&AmcW zzgQ&6)7&EU-RhLeE$O8-cu)9_fiO0VcTq4#t^lQOlxh52lOYL2v>7^+3B!$2H7kp1 zuXq?M5OfbyT+rAITH&N@CWcff$Oz0y9Mz@)RrhR-D)oZSpia3T0VYRb@4H-+1xAq@ zLEvw&rd9|@WDkr8$k_8sxF!ny*jcD@fg_0zX>z6WPQi%x}Xaau4UM`~h ziD?WzzYp3(FRB~O2Y_OCcIH%~DWuc?y0dtjG;^ex7z;7C`dPe;;FnxgsJtH#F9a6vkBVt(02V+yWYEN8I^ptDdK zC4smK&Lo|4TO#S!BM7x(@xol(!?<)ZSFmXHD9t#i$f-tqCi;f$r&B;m&+rpU#^aB2 zY=5Y3BzyJ*)aAc|22wZt5%9i)eg>;C9?P~j_WBJm*NeRYo_tv|G|~$XQx-APbn@M_ z5KtEFUyAL@+_hPk8WLTxU`efvRCnSr{HSx)?}W7zEU))Fg%`nex|6kk(si~UGg16q zBe8J4FRh#R717LD4<6)!Z_szWPYQn0PQ|Bs{MnHHp@GmDCN)w5W+&BndjZCJg;jn( zn!^`350Hjo$-9F=>k*Mqdi7h-Lp(_6v#hc(TvS z+8Il33W@0XZxFs8GkAk(yNQp4ccZ)0oKqNUjO)Ui{@fu$)Lo5Rm$O8___@_8U*3$F zYbXqU{bQ=;K>fE49x#Pcp9#a|0Uw!dLMs6kQVN0tm$<%G)Px!n!cS_cK}GvWB^}+3 z0(HdX%;hFU=!fv#kmV+~Kf}E|;#fDq;CCNJ2hcifR^FGw8(rS48aUq_3Z;q> z&s$w^+nKC{<}fED z3xX%C^hmj);tVqQc0!cORhGj*WCX+{RC>{nP=(}>+iTB3*x+GalTjjI=n?xrY1O9B z5_c-Ru1UxI0E^7S8L<6#ta!Lud*DwQeDrkXcZa1R52cJCRI+8h)g&(A&O=nVoM~5s z6V%}>CZSe*BOD%~?%Fi1-!S9xhgO`P57;VHQk^#Gifnmn^oKH(ZQAL{CLxWc8Fr{i zXez}B4q_OL82Oe%)yBlvt%=wzfbDDq@bG>lv5q=T%@;6V%UIkILOdU#;-}rE`(b;)f zAo%TcGvg-!xELf86gXUWPCq}<;$%PsO<82C>CX#YO^Xm~Y>K7=l+un!<~wMp*~*2s z`+94!5h-h`0=8djVh33fmM03cR0Y?3UP96D9(q0gWLxb(D}F%1{(6*+8>TNJX4yvZ zOi9Q}eWc5Kq_LQIK<*u?*jcTCW4jsG3P2Q=?x&il+quK3(&hLgTenwCm;Ru8v?(DX zaKLMV1u4nB+;tR7mSAJLSp=O1Gb(ahk@IC4Nk2uKKs$)rGr1@eu?sZb1_`l_L2%LH{M6-`UIlM-Yg z0*`+(_5~zTs9>6rL4bgB4V87)~?sSnPWQZ!B#~!W8 zB*%{M4yWm&BX&eJ;O~cuB6ymtYlWc=kEP!#?Z2!I47R4nnD~B@>kOt zNP1|4p|F`r0);GgTIG(zs=+X}F>*&iM`I_-6X)83MjIHOhtjIF(TP$@L$w1(KfDCx z{=$o^GdN21$nukhC|#*44rk0``F@gbCOux{uKFOoGZIf1u4MQu`>G}SxsOBe>s-ot zVDzkDeXnPNkvF5NU{=Z}LX>nh@C;akxGgM|vo8p}F3%@Qeu& zAvrB%r#qV-V4kUpbK;u7g@hKqHy^tYc6ox%ha^1e%MAv<_n%O1vbO!4nCyD$VjRXb z75;Ve!tZ@l@8z03Yhfn9%R5VlA!iO(tt9z-QTdFXK^vIcAfi6M-r_Lm*I-q%u^mnR zYrNg17G*l%b^bOX;4)v#{aAzV>q6BTUB3#hk$$TaRd>9FxPd5P-*VcNU-73@wFmX2 z?CU%ScVtJ3wJr%wV_11dJYw^hXWzk&>qjChnbxk>Vbk2K**r{8tPVh+yo@OgEWWuV zBM64WJ>wVHN|63SI0#RL5OroYTm%lg*FA!cv>`?1Y_~LYc6J#uwo+)I_lRCXP}tPp zSK9c=5l1MSTyyhAJW`!cSIIM2fCc5MGV5OdYF@`d_^IVE)4Tfnez@Dzo;S~O^j9^O z3Gi1{nC5$paZHM$G+f)1p^^fw9bH3%xQ^vopyKDy*SECt#Xq)R_bq#~!}+mE+wYgH zpO6Yi3Dd)?3I1$rNHwZXN4OiIO)yOOnZKset@Q!IixXuLD4C1uLeRumAe-td_j9`G zT+<42jQBCb38r>C8(Xbigy~lfzys(37H5p|Qfl1Ab2dA(QI-;3{Am^0{GxDhAOuq4 zg}T;;0onk9Q7;J@jlD`W7v)1Q$1zC=VxeONQS&T0ZEMk#fJ;(W+%GREq@%x&UADm# zlhB?r4QsWOlgL$5$^A@AfvmK%_l-jAzL6DCOBT5&daIoO~lx;fwgjllTF* z``dZTy=vCdy`E3oFYOKgeV@)7wCSPJfLB)MtHJLZw)Viu@meKgV?sk>2Q-{eSEix9 zY3jR^X^x$ZzUdXQi1ihR!NqKVAI4?^>5rqgCZGb4V4**|1#7h$J>b4%JHc{V5qwPq zKUa4IGzBgKi;0g4Nlvakd_ea>8Is7Y0K+C^%6=7JI~#C-Saww6s6wF0@mry(bjjom z1u!i=)Ry4Sf|$>jT_#(~jdUQa_X-xc!S{-GjtFM_$`n}q2p9d>%z(O5E+>i4-H-_4 zn?l7ir8`N)!)UY5%oU=ww|_I?{0I>?j#Q^Y=Ktr#(iFVwPv2ZMmv0cLgel;3tz@Ou z7p^O@4hvG41FU1j2N41};3bTRg&sDIo{WJ#6#rd-hdn&H4xcQ=ocC!k+4%uj%@vwz z?{;)&2>QEefZ2b~D#fU)*8i^3+0KJzDmQ@bmsA)`EEm?Sa_k&B$du0FyCcAk) zrDphsp^M=fKb33%Aknw%$L0Lq^~z zZ@d&_=V8MrBomHjk6acyJ6W-Og-qjGWYikptty@DfHjjgj72v0cQy$pJKMIUlkZ<` z0fneLLJ|p;Da**Yk43-5y+cQTGKS9;Q|J3< zZ#@Zo%R>)0jx_1K+%Z>uopz`g>$a)BH1R)Tjw69k^7_d5g)jvPpj=wo0i`glAt%1} zZo*`oWCNiGd3uqo#|%zIKYg8vLJhYd%{gP@UqeXK-arF=`T8ufQ#>=qqT|nYaF*Km zSh)JW;|!zd2lmk=a@=(b`&o=UA6WWf0@5A~q-2CLWsd(46LUn7#KCQFxi^@2P{~k_ zR0dAlXdbPo8_Bp!`#D8RW{%Wlrg3>VgPgHm{R*E%*fJyX*kR91|bZwteV_y zRnx`ZCzTRHyhxbZIDcKH3n_#7#Tgezl$(i{Ia+3$q_*07aDeEP{kSlN}#d{RmE(iO$tJ1i<`HXPbjkAg4n_q zpya$paU#gXGR3iA0P>9t{?v^peB!Bb`_u{P^wzFaYTm>!NTETPz-h7=(ryYRzQd1K zXV4!nbX`fqn@cJ?3meikbVTN7EJ&RUL@p9WA9&~#;Z^48>c>X+N3*f(G2N(~Rn6qN zD%2!f4PRXFsK##=_ygwmW1OE6r7gC<_i28Em$n8U;17^hD$QNT+JEAw42rH}DGm!%I^1s9w;czeC!7L>MsD9|YEcXEA7!s= z0;bTU+EBeGlk1`vsWW{)W!xpio7@30eF8uOkQ6!U^*XHGwBk!JQhpY50qhrgOO`AAXAjLdCAd z2)O_Yn;{G0+TZ3k{!<6@~^6puNM0W#veSaoR}aUKB8pjORQWpG#Ej&fjma=ks&oJO~jxel`5v z&v?Yz!~r9xNH^%gr8j9qi`<*!zNg|LsYEOLJx@)XVjtrk7T?SmJo~^CJFaw;I?^Xv zY--pGXgo9`eVko$`-!Wc3Shtvo(?2$>NArSV;pt?w8qX2-BzpXsLky0^4qagsbjCD zAl&ZG*t1A=`UowFV4?G!)z1Ck_G|FK0@^j^WBwjKGcm#tpM^ji#&UcA!IpCe;aa2h zJHnE31g#4AnA?Q^_Ad+Qpojvu$~%oWq=b|#Vq+6(5 zn+TocmG9aut;W#eixd6|QErbVXf~`C)v7#sXZZP61Gc7JYp8Lj-;Aul>AtQeobsK1*b2PMD{8VNWD1^7+YWsFTszn3G%FO!f%8hE{7drvzG zXh?Ux#PnR0^!qxR%RIBo#Mrk?xdRVhDV}7IQ*E`b;s9hzOR^QA6!>cm`8d6qDGJN! zM!U0S6Hr(u5u-ultC9|+U{ig&nvj|W#bP20MLguBUiiC`uhzNX5Ix}>hxTl5G?{lZIMc1%K zTwXoZmM_*N+#n1CMZJ94)wT?Qt_KJHrydUx(9dKI#z^9s-$en6@wC{a= zj2yQwmB#f(G^!|H2YiK1GDf3&06hoRa;w3w7hK$gTgp5kvFtR8jKAw8BKXL?glH_^ z39z}ga5OCBl*dRtBW+lCl(fBQUp=NmIx1m|*kl5FWan%lZYP{2igG;y+f!ztu6U82 zi0&2fDqLqL_$ZRr@S#Y+Dk0eF(}k35;Lfq=l(SF}^$9m5F;ABSp2ImPvM>ELBVe4e07WTvtA`-BtB=C)0K z=`W5R8CcgEYC2@~7|(>qIO}{LnHd7!vt29lxu{O#Jt{XKIi6h8M#wNj;xCUC{Xbgel50C4|0l;iIKo@{g8}JehzYj>dKmy@G*MJAAet3i zAy8uphi`HnorJ0bBf^jx6fzV4(uhDORCMb4aBgAL{-~JmN8Gf;;C7wP?u)=jB)1sz zv4u`YA_3`DB_j)1ysmFF$f5xt4Gf~qU8ZGaOovvmWpoG0;d9Pm=Py|R0Q%}1UvE=^XfDALjEtb@H*pNPs1 z4;JULTkYoL*`thishv3&Rh;00+T$M7r7r*|BM7lQm}d~nuYLC_-hSL6RJAG;>is(` z+bK2eQuI6BF8oPlU+`tutG@{V(yc}q-f7BJC(B>ZMT%D#ZfKNYnK_!wwhGppGo;AToQ|5^I)m)1dN!(xOhL z?7FhPz(`42t!z>FI^{W zE3ll>$~1d*v{7;iyXtimBhnp$@|V4nQ+6TZbod%2u_&c+=r(O^F`RR0WiiKqtWpkb z8y#{R0Jb;>Ycp>Vf3;+qAxfsMb(tvBYdF>Jj2TWwm@XzWr$*{vDA{?2)6~vIvg_CjY^hNgZ zMzG%jUit!na#lvsV2lb1_{if=$NHOZN1K5_I$r5fSj>AZU!i9SJlG^F-^*dF*EeU` zvJ`0;9bK5uZPokK3k~PFsl|bGV;H{T2Y~PF=UWtdyo13)qAAP>-cd=>;lN9)wFNjS z9!V0x2yU00ZHawNlPW8Mk?Xq{32RuYgC?1B5SduLwZl+O%YXu&GL612>27j?Ji(`aW~`aO#2^JB_S(wT;+b-(YM; z>WhTM@FSY$Wo?>*|71BTRT1{HoZ2X%L$8C@VM!7!FdzgvXNHx|qn1pr3c<;8RbH2i z=kJ3E;?XHg8q1m{j85T$93ZQu&2J6}pFw}zphVmR;DIC40#;<=vEyZYnPaoB z21N^Ya=IEI2GWB}(9gAD%EjVyXUjR_;uXhurUcxTRIe+P-J;QE_FWeOp!ybBxwPW=s%)>5v4#FrX}xv7KQ-cn@PK9oDpAexB;VPGg&j1tX+y z$%sZ;iqdZ~ranX&uLTfu3^396(FL$76z~*^SjiLF`8i(P8lE$@t`=Ey-6FR zPyKkD`iY<9d=%$A7_gs_mf~t?;s7pv0l@#;`zAtItQJ+R6QYBSOkd)TCpPIh7{A6G*pe_W=G@Z0CaZ0PHyAJHJrZ_X4-&*8pcUm zw&6EgWGo0{fyvU@LL}qbE*=h;uu53ZV`m6W(&jg72Uan9a_R)oA=r$%?2^6Qz=%=& zTU^PpDqcqhc>(L5`X(aXoWV`lZW4WSphi7xN`bUEsXEtRIWis>|Lm`3#<+u%^f$gM z!1Goe$UprHK%VQ=*JM9BT;A%1v1Ca7gZ{2XSrDdNq6n9joGT~%eq>(U43>O!}zXh zqyl)9Ixx!C4k14TY>L}Gj3)HQ^iOo|q*EyXO^%Ht!)dBJ=*o(Ey#8q8=p z-zNJzMMT?Ip)qjYSo#iP;-S(jT^J)er76I9{A_eNpYjemF6UFOPeo&svB=MSB91;q zO&gA1@xoa&ymYJ|^rf!>m?8!@ik09uR<7s0_QsoRppq^Nh(i9;BXT4n4u^1^lrDXQ zvWhbsojQv$p+wE-k`(gubwrJAh^tvDw0j zz07Vj zZ$8NR2Ycyj04iR@RtZ+YM99HES=yExFZR;)qE2W(fJOl)16nCHYplRTx@Ee6a*Qa# z@OUdW7S|J`Mi`EqIunPF9DyP4MxENyhp;Z2xJsII^wtiYT&JW5dfCL};aHvCh;1C! zP2DO~S{P+q@$B?O*7DP7Zsev$xm z`Wk@ZNiplBg;jF*n$!XmXr|rU0V?k)g%Fpn$l$)tW|bp;bD|mjZi-ti-Zp(#qHarx z;hxh2^Rdh5yUoQVhDz3>S#D+>=nA!0%HtRWTZHrwuXTWr@)Z?hza$4Z*j;yz2Dz53 z8Oo{G@$OjOEX|8c$ILJd4u3OE%u>KkKx1B^C!OaGm^|lUe2xpp-UXb-Rbgf9s~6sg zK3)16fH^7+_Nk%MO)Z>^dzW6}vj!(tDV?GdSU%7S@ z9RMRRFk#!IxR)oGL6a!Q$PgpX($!Or*{NY_3<5}XO^Q=C$&lG0+~#pp%q#XeFMg&; z3=ecU`7P6~2nnjHSrJv^!*dz{#AaGsBgW$5R?^RLEwE+-7tQhG3_+lDhf86U-2~U4w&SAyg(V5%Us&5GE9?tJ ztm7z#$?KarasodX>(tdu*AjqSOZo%TJyD3q9*g*^005QBXGE_N6D>&eH};Erw*(SQI8mbFdRnjN!EEO>o$2eu@C z#|=1A4S?Bhn~`?1Uqyq$NC&?fhhD(QSU7epzq9J0TOI-ir2k|dUh_v!#PXeMbmk`B z2$NW4J3HDJOOHJO7pUZW@rzcfpPbg7UGlT8oITR0D(Gt(F^W*ZY2is()!6MAhRlvs zW}*UNI^)P-k~RbsiT^nT6U8R6Zge4fQ=kWLX;tp26jBQeRJESY9P0!Bpz3zk9(V7HA=52nM&u=2bHhenH~IqIyhbiCj>N{STjgEDoQ#2;@jH zd&q#-yPSstfL@H2r{FrYa14LlS;Qb64{PlrlN~o=Ni@1Wfw(W20fAvO*B4CWoEw5q z-7sstC?*A~mMz#o8pBpFp^Pa*Vb#`1xi@5|zGohx#mRT6hVJ(i{X7IZtsAgk>Ugx- ztDayvU>|_Yg5fNT8>d>pj8$@*001xPNkl1JJ&q zgVgI3!(GzQC+FxmEZ1EaM-NO3ovJOf!8$n(mo1Zpgc_`6iM0m6G45)J%(^d5zhz2R zS)U<5OY0esD<7SG-E8MJNduONYvAh>$h!fk9Ff*D zSW4(yXbk= zlV*ajd>BlUaIkrfL#91FJz3%2W90$-UFH;gRL}x!lel<}96OrPk_^oy@VqKd=;2%X zn*sOx#WzVJtyelq#<0+jQ+O4S)T(rxueuq`WEwowqYj4LE5O2jvQh=BwnoanfZWB} zwQ#rz24riI5lvBYq9wl4id8NH&TUfU*BKtL%SI+7bV#*w$f##zhz!>spe_uYoZ3}) zkKpzN=;}JsIgY~sPMkQ&_CT2Z<_|4+hKW7)EZ#P%0(92%1AM4&id;3nLN^46fU5y}bzq|s$qAP5EfFIoG?8rTgws_-x(@3>@()e1 zufbSg9EKIh47tR35O^|U3m_|IEmq_RIMsj#=hMU(axBRn;1*7fEiUVH7UXOIW9xjMV(x}9p`UT)Uxd! z<3LP>su5ewba%{L6G3I9CVH8E<7yR_19&Ej>R!?9Qsnm)#*S4;8=z+!e>jYf$Ti*8vZ}kfo0OYoLY8lY$mPh;u2-c;_9-Y zhv-j#1CWl$4x;mc0N+F-tiszKvD-c71u3EUkJNEYw-A-olxbKMfih;9Elu?+oxW|1 zhr0ef>Mv`Y2ml*4xZ%9Mrqe5uhY*!pgyVE3Z;}DMjlr-%WMiGrifzMpAWib6|abj_aOyMQ%1p+ng*B3)v#icPC1 z=$2^$&?aKH)uomU28SYc4<_4noH4s~0eXYEf)%Sk3y^7K0BBHUTsJ`tsEoK2quT(U zE*{tu9OA=deh{X9Eu7hak$t1)Z?N$}WgdD(pg1;-tAUI*D_Wf{2P5&jwynj9td5`)+X#w&Lv>00eg%thQh>`xMcpnR8_v;4 zjTKp)dt``77;jy=9H0N(SEEiY;FC{36VE^Yd=@%S7Zck*EK7d_P~j^Jrg>VhA1akH z3tVXN7Gh3yt4NK~TIQ08Tx4BAbv1P~YP5_~DXXL&S0y%#E2UCmHgd9^bxvyyJJiuO z%z4>ycqaffdQrj1(Ql{QM1#Q;dckdWOb)Mf9ZqqpV_A%-$QR`NJar=}ihlfy*g!0{ zuiA>9N+QH7-~5Ak{#wIv|!JcH7Dc7&*FnPz7`9Iz^?-ih>6yX%AzoN2+N3r{>6Cr_S=8#ivph4Uw=KZE}Wt9s=xf?K;i+ zd=XTFOJHqcK&-4RXCkQ`m8{5b_OWmI#~om-Ugi9Z0gD0lw_<75enITkVM9UHK<6_$ zVMdF^g-kqX%8IyRhKGTp#!C}@kYjreSpXA&3Xm$Un_Sm>3}8anTQkOU$+EfZljpz> z@}F~&Xeh0(@5J=6M;MHB0syj}wrXsSd@hR_pl++2=F&aE;($V7rzF!%e?*8u#%n=eRqNeD0%A0@9K zJ2prl3PU<;UlW9J{6YVnY(u9j3hB)>5@5b6DP1{82|cpTaLsz1d_sVi#*KnqYuMvB zC!B-E_1R$s?~t@A*!95dX$9|x=43RF?<9x$(9niw<1u~fomcUj4~= zMu}Zxz`%lQ>y5a2?RLz~GAT_ydF-5!=B-bcLPhG+lg|zmI{?UJ1I6R6K0x&})>#5A zE1tqKGMvi0i|cdWG#*S$U>(~V^R-_sI=+XYQmK-7kVyu_iCJ$gm#P^sFrbqfItICp zi^kj+^+ls7aGD2zMd3B}@uiiXC4)Jx4}_wZ-3sslW`XDV zwV+DH1W1u>D)H9kYq)>NRrK8V*_>bccIj^bdfV+gI$i%8PCS?k29d4koT30YcrZPR znu1Q$0`#)O-(`>=?7Kp1G_s+d=b~j@`1LSc0BFvT4#hc3`mTT{nv$tq04bftygRiQ z1~1Htc;%Hz5Wut$$=-5)%->mOo2mo+6NvZMx8myk^;kG_k=f1#Aju0nK*f;FO5A_2 z5!bHXrHw+J5QGU}Pqq)2{stf&mST(dZR+NA@!btjGx-jc3$iR4+?F7O{w&ySCW?wz zj{w2I4=uK3D!y6J6+$xDrC7M|(HNRO65CyjBDTwMD`az<(j_Cl z{MzMYdv|u2>4yN!+xY(f5kOj*xbRX0chI#a=4NB9JruWY-$PvTI|fA=f11;2IeYp$ z;#V;3|9j`mMJ7vjD4^p5|BDXJA(M1|8NE9 zX2wW&9LpqwOvS>eaDv1V)^&;Dm~9;3i;Jsq^WH{Wc=nSqGk2V}EahtvB*Vp~fB|hp zyR{2%Fh$wD`-=dX2a2}$Pn*yExAZjw3KtECjde<)K}EVV%vL^p>dE-d_uh#6OUnhs za3s@>U;v~d@?;|cA$WcHIbVsnf>rHRMXHsoI0Qe-ihzbrH8d80e(CZ1fY;)G{NS+@{%vV=TaaoElfMSx4jmzZWk+*?vSKl22F!OOXm6s zDjBF4_6cD3&rORue-Oy5OAh37Zp%+%()9f;k{OoQTXFIE&&CYkTi&KiV81p1Y!RE* zuyTJBWj#;p2`YxK-n^gH@(as)|NM)q=&Qed2SCBs(|L@&K6tPKOF3><%d+SQ!uoOM z(T~QVv!9IL{+-{8yNIkNHT$e+P|TJDlK_H!jg1b|Ux+clyAuYw6FA~U3HEv~|vOKYhTc;5ZGd_ZR|AN=6!|Lyh_ zpi5A=Cmo}%wX(|WkQ4_p9ZE(~A-7%My48_*{!>34v&SEeFZ}L5i#xY($L1Pk)yQae zN><0{0=E>ex@^qhlW7D^Z@#zU3}wwC9xMpkfKXAd5m6(2HbkPqFd;ni4GTR{z09l| zj26z*0qC~VV?(dOhrk(?j4Ypg;$v}yS&deANlInll1^)xwqR5N$C#27zv_CPqdaH@ z)>d4*b;p+XVV@s==uaN^ht?dtFYmJ>y0|4h2J77ppK5PwZ=sJ^WD|ks!>_p2+g99s z*}w?I;?gP%WI~nVbU*IPMrk-mCXBgw;b(s-zVy2z@r5saH9r2_ql}ab=Fpvwx#=@l zt<;w$rrV*OUy;IvK8K=@8JsPaN#&>PXjV9IzPJ);{_2>6jN9EKG{)30BsCOzUT4qq zVDucUh-StMk%{i972fF*50=?*atmgetW_S4lNX+g@xvG5&N6BJn>3|T? zt1GDPIXP66rwXk=3)|nTOipwA)+)mVn3!-sUr>O$^xpl`;>NXCqE3p{OqYMvunvM?c0yi*pzfi%ed_O2sbL>@a0MJlZCMo^*zHFhKV9EX~1M{&%pR^)+g6 zDej$@3D{R5731 zp_m^WkD00Yxbo&#LrIq+vsWKRi&lRg-JeE^Q*4x9(Rk*mM=9ws&at@y z?y1tjfBtv*A$BZQec*rJ7XZEsKCjpA1!9OW?lXQY5JryZBIi>+8Q4rx(^@oY~mNr>A0ynk>WAXt6yRmA?sUFwQZl7YLhn$q#f;lj;~q z%-_}7+{bH`1)U4HGT^I5L}M_HoqaZDk31F|%xZoIr*oO>t8<;(TvOHt$_~~#ML*O+v{ivX`+1Xj&j4Npu(Y$Gz=CF@65y@!c=~ zy*PR9xtJpjUN_4)74b)?sNj&w4Eoc)4~!*vdzGzJJ$nfUCXX6+GZo*50kb0+R3_SK zmgDgG=VI#U)3MF)&8xR=lGVbbg@Y7Bhb7J8k--P3xWMF@xOxf@dmX)jP$oy1Y@uYR zc@3Ng@FHH_WoGxqnCIbXP}*&AZ8u*1{?#~oWI84R=Ll_jUtB!zfRFRu?qa50RuM#N%~oV~k>)on|Y@f4%bI|Zth>oa3Sg`a(#5s3bT4Y3T-i8gRM ztP&YGO#KxVbsA(leRteQjSdcD(ts`wcieN3ICvi%^qtiEEG(3VESN`zp@x~js z;@|(}pNa2(KJ{IKPNR*F0Km*dvGdrnIdb8~YsJ3AB8QxlXZ zp{7mxNxfs}mp-^$hoq1ar06WWs(6U=(|iBtJprJnT^Iw1BkpYjZ~x6358~FHWlES4 z`{XHKV|vlCiIEtk;ylkX9mlD_f{+_GAGYFypb=2cG6ZSFTi?GGbMxadJ7I(Ae5b27#JN=_4m*Bj z{4Ccsp5;oc4xx3OK;#~(dlvr%>HD+1CjeA@BrCysn>?8}Z#{?y%NxQhtAu7+6gLnQ z@n1Is-I_5?7>{)h=vEIb^tnRc8-^(-u_WJq>ry;&^5c24@&+ne_@M_EtV19gG~4TgS$m z7&61j#Im4miE@9l99w4xHDQOMM6hvf_gah|Jr|qPAB}4p)wuE2+i~;u{kVk%{~!E2 zM`6ekvs+rJflO{P1)fKf=T}GgI7ij*<7@ zqz!>bTkq5Io&Zp?u;WcHx^($|mbq{^<0?^zHS|8+3w89cO`NY|V`i(MnX$d%SW%+H3&8 z*IqY@Fc`1BaV4I5^k|%Y>c`?2|KeYc-~ONeJGQ+CfEoJ%Lya;G*Cd4^hhbqmwM?6k z25f^K3-h(R&Nad`Tsya8=biVd{2v9TW4uHT50CyuA8;3KH_ASdAA zK5~ga06;2x@lXr$0W!A@CEvQc&Hl?6RF~uU(dl^X(No;pLu}^&cy~@B+`pUe?b~|- zz~U*27#kgCrpRHQNUS;(bHhwqFyaoZF*YK|7<;j?i^9*8t3K`MN#?%Qu^d6){*?nr z8e}4&m>3;O#(ewQE%cswGM>Cy1w)z{QcTBSxXL@I1Dj?rcn0vVWoIIuhMc>Nj#WqW zPH)kfOKU4}^w4a4?1j(paO}qa`nUfE&gKeJx^5xw>gkO>Cuzfo| zIT1D+N8hVn_;h^x>Pl2ruEpk!@5h^WTk*!-t$6mtB+RB-0ZE}Fws#rCL{TH7J9VsT z%ed`eY$-X^Ih&kc6Sl4Dib*#QYz*6aUrn}s`PJ8AYI2h4z(%>p%waNuwBUT!(Xova zE1uasQRFaFJpx1A1NBtJt;0ymu(}TIOPA3ZZ!O1}Q}glUqi5m}294V&Nm7z|(D!h8 z&$w0=REN88?l3nBcLU=!?7T^))e;!jZ{1t+aon{^CMB`^k?nQ|3&J@w+4CoFA@gqAUBTrs&`QCMMA1xW73+95+<3jAFSrVdiaIIo@MMwnIXF zaAd)({LlSqaz7QhhV>>UM;YWa&G~iW>)-l51E21{13cS&ub1}>fS!AHI#1vuXBT3O znTEF3NR{W#sKX5M1g`SL-nq9($FB0!;h)nD0~4y-6#;neqCloYhNwdC(>y&r85{V? z-gx6p@WnyAM;t5z|9~vVbBKNx!D$B;&TaXMP3ed>Y_x zEHTx?sd(X2pJhnonYc@)%^DBR78dxxIGkluWy@yN7d5u?$oud+M zp;k1EF&jQ)K>qLuAjY*bhHao-5+AAURd16ywLaP&wBod?<2cHtY)wL82SnaPC?v*osPx8TU6Kp)yoLiLS;YM~=sfuil9} ztJHD^tlEIi6>P!DLU|Xr>VXJIZmQeZmTaSrRe}XCoS)|mYw_h5@5M`(S0WI#ckkbz z_RCHjVL0Sxe&OGUwH2Jgn^eexZLJHqg`Tyg4-;l_Lc=zh(3SBcQ5l($@UTeUY?k-U^; zRQK-PCic6G&UTp4+XxdQj^(}c9w)PNeeUD^9>TEk9QB`?Ah89rE7BF&gB-UCU}eNH zz*^^lcm8DEP7SQ+k3Rco&h**qKi}WWH0Uq%wUk-_4Hl*%LT+obgXkgZM%$^ZgL62gTN_uV0~Ni(-wjAh4%N0A7%VAk)9a z4g%P7P_K~*b)igBjOdBS&U%Env0ROt=xXysDV~1nDSjvC4aQ8U_ai z$YGQXe0Hfe@ZRAV)(#vToy9d$f$bKv*0Zjm3rDBo;<4$tx3U{2o}Q=Z_z`rs-FyJ7 zCoO3kw{;OTUYh{q3SmaCoX3ZAa34W>|G{EhC!Os0(S-!wB;t2SAmNu$tQYs#d!0@4 z5GqBgxSG~bRhS(f{n8mb1)hf*#qBe})Ukt*#?{cKVs0prapQzzyu7Xz`|iG(Kwy7yc~!z?YqnqL|MPvD*ibl7Q2Wu;>5OX9q8)l zM4bP~CtP`* zWV>}(&v%U#+tz_U!VI1cA4L$u*1WS`cGSqz+hCo-4)@jK=%4u5g*bj}miAcrJ}&PI z0KJ|b2nE8Yf9!nxZ;WP=&VUP z!V5mwL* zcL2#?eLNm}`V%oYc_LPqH_@ZeVK*tui#T=+#|pEnYdj53%m)#$7{cPW;%W_NwnIRz zqzV$__~}!rR>))yAK)bOUdZ-3vjv;?#`R{zB%>j6eK#z4>GGABCz>%kGYg;waB9~x z#O8fe^cIGdOp101u(bH4Ios5UJxn5m_LkQzz*TuX+Gxhq1#mk){qgg76|AV9*Lj&ex z&l)I&L7|wT1{*GtrI^M?c;?j6WR)7FcujavywfdttYV5S_Jti&M3V)5{_sS6@5Xu@ znVZ6~Jx$bu4w5~aOjKQN#rWhxRGVkw4}Wusb3#cT9)B(7l+lAdkTmpyhIU6VEDhO9`wBLVlCk`E& zhN(s~-%rLG1#2H^p;*`IFDAEEg21XYQ2Z;L_}o2oy?W|=!&tgXf(_!)7f#Q_ zN1i(M4k_3#AH?#$GGOllz1Dns>6~MPg#PV+?Z@Nf(HTlo6f+SiD%gUj8JNn7oTd7U zxpU^YnRVj+2K9%i-7-Nk!&PFbHGV)K8s6>6pft9B!Db%j)+#V zR}Z^#<8J)e(`Vu^(FMiowyqBzF2P+4GIF4kj0JKop^^MC|`S(pl) zk9hRRNF5L|Np@y}lZVK)dmYK{eAXD!>PLmk8 z#&b`f{=mT}9zGBN_JFA9kpV^tbN%U`el|Y-%t@HS&Tue}>{moHvbq6J`yR1W;Zvs` zpP4fnE|4Ok$#ELPap~G!tUjEtBoD}-(us)=iWfV0Vw{d3m#<8Ip*qnl`G2v3UdOz= z8)WC0nc|eJyNom0Az@$##(L_JN8*KF_*q;aYncw#X1m+3ei@fcGmf2qDwbfuF;oF( zZEr9p^bU^bOLrDw_KD1GG_s?buuTZEOB_ri$+5hp%f z;iAsV6L!lsdj0W1yua@v_>W(tAnfTMk6t(uhYwB08&@7=5Z!4DDu`bV6f2FY z`{;f!ftB4@r%0}4s?qeoNUR{bzW3sb@v-NhAW|?)XB*0bAyD*9XzJ{�nWCqm;eS zCs=oc5}nj&ZQ}^W7uU96r7T;xLoz-MyZ-c__>=MKZ~R6qQ#tkjYVX{7qq@#8yuha! z&%rZee8R>jf^BSLxgu1dDp8e4RisqC=|!VdQ7@|gg#NK!RO&@<+R{crIhBOc6i5vQ zd$3__W^BgBK%Qp}yI6+YRdkHK=-X5&KX9I2(+hV@;*H`If2MXN^{ z6U&t)>B!^GTNw*2dy3ds(QXQhrnF1>R@5MBm_?(1Tnj>He61sRSYNA#^Yf$O?A*zC z;(5|L?#;0M-vQ_#IACr9u>f$+%?-oNtue<-Em}FolFbYlU|9Q&QBI?D)kdR_*>ScL zYmzDg%9il=OIN~=PzHCT6p6w);-=T{EkoHXU;$gG+d>0j^%iMzO3i1GC>28qVpl@; zi9H+u&^StZ!U>4RCQgT+eDtfZLLK}3+wVmSxdJ8gpo&k%jXnavTJ23FT#HPZF@LIu z5*L9!(G#~eF(M0rImWjoopA#+me;!R zQ>^SezxXJ8b#){IDj8xvU9v0K^IZ?A5qHG09U%lKVWe>YV5D^z50{T{GIL9g6%@a2D8A&cz_lc&Z)Uw1q1jsi8H zXeB#7iWQUg0n5~=Qz&=tgo~fhQ%o~B>OX*~WhCGS7-rBr&>vDOUHNRZTnY;WPaC{j z8(z9vTML<(;yLIR31Sz#DHZ8*<2#a7 z*sYaIYMVLhiunrK9AFRNHqT7-LnlSP_zN&t^+}E}1jmrT9Q0#SXEeR?n&E%zS5I4Q3(p2m8B|p^D&3!kGU)*u*#X z1pt%rdk#cSXx+AO0AA^Xm_o z(m6i$xk@6yHhfOxTk>=afp0@GOz zM2Fd@6%N}Av_wu;RH;Iu~Zs|xkL$^?#ln2~^k2Kk0Sto{KCrrQ5hpMQD<|6u+pKT@?CL#L?eD3~aj8@`Aam>Raabr^U79I0s#v5!ns2_jwh%u3;tC7D42O$fl*8|S z`>rVl??+<@pd_7-_w|$gHkL?m>W|j+lQ;pAjXilXawiYBBq#Vx2BLBs5b2Ul5UT4n zfS1BT4?(&2gbT~%aB^%2OG$4CNo|36kq-jA9lR$E8J{LG;`0HK-FQ*8 z!)=AB63RV;dBP8@Bv#(v?3TD%$0Krp@zMSDZ(jn?A!f`a6~qFEv2pg7iW!3T3=|Hk zY06G2TdYK=Vwszn4S)XIC9KW0@XPnl(KB0$i_mld2xE8R#u>5s`aaus121`Ozg|E8 zRr~Z8BtUfc8wZBEE*8Rs#fz%o`&h=+H3XqY&xVVieG7(!4VH^Hw?R60lCh@9LbsUz zPvO80$Sxn#6Q8gd$TUQe3uFfmzLNf39XIMlk|0d77P4l&#U)0plVbJ?;vsjL|8zl z5>b6(!UDO$#a7QPELINXN|^;@Zifr!&xU@w>vWJ#5_I!cIrhC+GL+*hVF9I2w2Xd& zR;`b0Si;>**!v1-cLOXrI(vW1?%%baZ@-oR+sQyp`)^H$5lCo3l%a%{rIc1- zlJqK#K%*!6p^n-CU?(90ln-&DEeTrcC@I^s!{4{RdtUZh+&vHgOpa8;niw%Q;>W#! zOkSq|)+sO^AUv&7|FwtL?zJr{9acxAXl&q?64DA<^zWumWe3?+l)}?&rG+!OX@{y& z0v}rgo|V*+?@6u`!0{&k4%Bv_0Qj;ao49LJncc4MWv~5TJoY@|X`t<(0dDUY9(Vxm z9gyUH1DFkK8BJ#L#7nPvwdS;8T3@tcJa^E6_R?YF!9xIk-^d(3{z^umq4RkqUv>B; oha>Rf2pj_N#W6X2 Date: Sat, 29 Apr 2023 20:39:39 -0700 Subject: [PATCH 21/33] fix broken link/images --- README.md | 4 ---- index.html | 7 +------ 2 files changed, 1 insertion(+), 10 deletions(-) diff --git a/README.md b/README.md index 50459c8..0e0ff5c 100755 --- a/README.md +++ b/README.md @@ -61,8 +61,6 @@ Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com #### Bio -![Raif Rustamov](/images/raif.png) - Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. #### Abstract @@ -103,8 +101,6 @@ demonstrate the superiority of this criterion over A/B-test-based approaches. #### Bio -![Vasilis Syrgkanis](/images/vasilis.png) - Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until August 2022, he was a Principal Researcher at Microsoft Research, New England, where he was a member of the EconCS and StatsML groups. During his time at Microsoft, he co-led the project on Automated Learning and Intelligence for Causation and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He received his Ph.D. in Computer Science from Cornell University. ## **Accepted Papers** diff --git a/index.html b/index.html index 746df3d..08cdaa8 100644 --- a/index.html +++ b/index.html @@ -52,8 +52,7 @@ | Paper #4 | | 15 minutes | | | Break & Poster Session | | 30 minutes | | | Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis -Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | | Paper #1 | | 15 minutes | | | Paper #2 | | 15 minutes | | | Paper #3 | | 15 minutes | | @@ -65,8 +64,6 @@ #### Bio -![Raif Rustamov](/images/raif.png) - Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for @@ -125,8 +122,6 @@ #### Bio -![Vasilis Syrgkanis](/images/vasilis.png) - Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until From aace389de9ca8549bdf82a9e9ecf382e92f72e31 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Mon, 1 May 2023 10:15:30 -0700 Subject: [PATCH 22/33] fix the submission link --- README.md | 8 ++++++-- _pages/cfp.md | 3 ++- index.html | 2 +- 3 files changed, 9 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 0e0ff5c..0d7106b 100755 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ in industry, government, and academia. ## **Paper Submission** -Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMTSRM/) site, and check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. +Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMLKDD2023) site, and check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. ## **Outline** @@ -49,7 +49,7 @@ Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com | Paper #4 | | 15 minutes | | | Break & Poster Session | | 30 minutes | | | Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis | 20 minutes | | | Paper #1 | | 15 minutes | | | Paper #2 | | 15 minutes | | | Paper #3 | | 15 minutes | | @@ -61,6 +61,8 @@ Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com #### Bio +![Raif Rustamov](/images/raif.png) + Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. #### Abstract @@ -101,6 +103,8 @@ demonstrate the superiority of this criterion over A/B-test-based approaches. #### Bio +![Vasilis Syrgkanis](/images/vasilis.png) + Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until August 2022, he was a Principal Researcher at Microsoft Research, New England, where he was a member of the EconCS and StatsML groups. During his time at Microsoft, he co-led the project on Automated Learning and Intelligence for Causation and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He received his Ph.D. in Computer Science from Cornell University. ## **Accepted Papers** diff --git a/_pages/cfp.md b/_pages/cfp.md index e2c38c4..fbdd494 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -11,6 +11,7 @@ search_exclude: true All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). * April 30th, 2023: CMT submission portal opens +* May 23rd, 2023: Abstract submission deadline * June 9th, 2023: Workshop paper submission deadline * July 10th, 2023: Paper decision notifications * July 24th, 2023: Camera-ready deadline @@ -18,7 +19,7 @@ All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). ## **Submission Link** -* CMT submission portal: [https://cmt3.research.microsoft.com/CMTSRM/Submission](https://cmt3.research.microsoft.com/CMTSRM/Submission) +* CMT submission portal: [https://cmt3.research.microsoft.com/CMLKDD2023/](https://cmt3.research.microsoft.com/CMLKDD2023/) ## **Aim and Scope** diff --git a/index.html b/index.html index 08cdaa8..225aa07 100644 --- a/index.html +++ b/index.html @@ -34,7 +34,7 @@ ## **Paper Submission** -Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMTSRM/) site, and check the [Call for +Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMLKDD2023) site, and check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. From 3917f8e87a86b5945e01182e089df3830e3eef42 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 24 May 2023 12:22:19 -0700 Subject: [PATCH 23/33] extend the abstract submission deadline by a week --- _pages/cfp.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/_pages/cfp.md b/_pages/cfp.md index fbdd494..444425c 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -10,8 +10,8 @@ search_exclude: true ## **Important Dates** All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). -* April 30th, 2023: CMT submission portal opens -* May 23rd, 2023: Abstract submission deadline +* ~~April 30th, 2023: CMT submission portal opens~~ +* ~~May 23rd, 2023~~ **May 30th, 2023**: Abstract submission deadline **(extended)** * June 9th, 2023: Workshop paper submission deadline * July 10th, 2023: Paper decision notifications * July 24th, 2023: Camera-ready deadline From 69e5a600edf0d7b895faf3fd0978d2bf0fbde517 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Mon, 12 Jun 2023 12:04:31 -0700 Subject: [PATCH 24/33] extended the paper submission deadline by a week --- _pages/cfp.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/_pages/cfp.md b/_pages/cfp.md index 444425c..d8f09e8 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -11,8 +11,8 @@ search_exclude: true All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). * ~~April 30th, 2023: CMT submission portal opens~~ -* ~~May 23rd, 2023~~ **May 30th, 2023**: Abstract submission deadline **(extended)** -* June 9th, 2023: Workshop paper submission deadline +* ~~May 23rd, 2023 **May 30th, 2023**: Abstract submission deadline **(extended)**~~ +* ~~June 9th, 2023~~ **June 16th, 2023**: Workshop paper submission deadline **(extended)** * July 10th, 2023: Paper decision notifications * July 24th, 2023: Camera-ready deadline * August 7th, 2023: Workshop From 93478eef526d768ad8bc5165a362705bb9c79920 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Sat, 8 Jul 2023 01:17:32 -0700 Subject: [PATCH 25/33] update cfp. remove Raif's abstract per his request --- README.md | 8 -------- _pages/cfp.md | 2 +- index.html | 11 +---------- 3 files changed, 2 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index 0d7106b..1bd5a25 100755 --- a/README.md +++ b/README.md @@ -65,14 +65,6 @@ Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. -#### Abstract - -Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on -shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel -metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video -creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for -brand advertising at Amazon. - ### Ruomeng Cui, Emory University/Amazon #### Abstract diff --git a/_pages/cfp.md b/_pages/cfp.md index d8f09e8..d117bc7 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -12,7 +12,7 @@ search_exclude: true All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). * ~~April 30th, 2023: CMT submission portal opens~~ * ~~May 23rd, 2023 **May 30th, 2023**: Abstract submission deadline **(extended)**~~ -* ~~June 9th, 2023~~ **June 16th, 2023**: Workshop paper submission deadline **(extended)** +* ~~June 9th, 2023 **June 16th, 2023**: Workshop paper submission deadline **(extended)**~~ * July 10th, 2023: Paper decision notifications * July 24th, 2023: Camera-ready deadline * August 7th, 2023: Workshop diff --git a/index.html b/index.html index 225aa07..f7735e9 100644 --- a/index.html +++ b/index.html @@ -44,8 +44,7 @@ |-----------|-------------|--------------|------| | Introduction | Organizers | 10 minutes | | | Invited Talk #1 | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | -20 minutes | | +| Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | | Paper #1 | | 15 minutes | | | Paper #2 | | 15 minutes | | | Paper #3 | | 15 minutes | | @@ -71,14 +70,6 @@ University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. -#### Abstract - -Video creatives have a substantial impact on consumer experiences and brand perceptions, but evaluating their effect on -shopper behavior remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), a novel -metric developed using causal-inferential machine learning methodologies to quantify the relative optimality of video -creatives. We provide an example application of this approach in assessing the effectiveness of video creatives for -brand advertising at Amazon. - ### Ruomeng Cui, Emory University/Amazon #### Abstract From f47c0fb9968b1e912a734bf54dfb9c00f0e50071 Mon Sep 17 00:00:00 2001 From: Totte Harinen <23464531+t-tte@users.noreply.github.com> Date: Tue, 18 Jul 2023 13:11:45 -0700 Subject: [PATCH 26/33] Update README.md --- README.md | 26 ++++++++++---------------- 1 file changed, 10 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 1bd5a25..ffaa3ec 100755 --- a/README.md +++ b/README.md @@ -109,19 +109,13 @@ To be updated * Yingfei Wang, University of Washington * Xinwei Ma, UC San Diego * [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact - -### [CausalML](https://github.com/uber/causalml) Team - -* Jing Pan, Snap, CausalML -* Yifeng Wu, Uber, CausalML -* Huigang Chen, Meta, CausalML -* Totte Harinen, AirBnB, CausalML -* Paul Lo, Snap, CausalML -* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact -* Zhenyu Zhao, Tencent, CausalML - -### [EconML](https://github.com/py-why/EconML) Team - -* Fabio Vera, Microsoft Research, EconML -* Eleanor Dillon, Microsoft Research, EconML -* Keith Battocchi, Microsoft Research, EconML +* Jing Pan, Snap, [CausalML](https://github.com/uber/causalml) +* Yifeng Wu, Uber, [CausalML](https://github.com/uber/causalml) +* Huigang Chen, Meta, [CausalML](https://github.com/uber/causalml) +* Totte Harinen, AirBnB, [CausalML](https://github.com/uber/causalml) +* Paul Lo, Snap, [CausalML](https://github.com/uber/causalml) +* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, [CausalML](https://github.com/uber/causalml) - main contact +* Zhenyu Zhao, Tencent, [CausalML](https://github.com/uber/causalml) +* Fabio Vera, Microsoft Research, [EconML](https://github.com/py-why/EconML) +* Eleanor Dillon, Microsoft Research, [EconML](https://github.com/py-why/EconML) +* Keith Battocchi, Microsoft Research, [EconML](https://github.com/py-why/EconML) From cb0c7fac8c1ce30a0f14484ae502aa44082a0b45 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 26 Jul 2023 10:19:03 -0700 Subject: [PATCH 27/33] update accepted papers and invited talks --- README.md | 131 +++++++++++++++++++++++++++++++++++++++----------- _pages/cfp.md | 4 +- index.html | 61 ++++++++++++++++++----- 3 files changed, 154 insertions(+), 42 deletions(-) diff --git a/README.md b/README.md index ffaa3ec..0808fe8 100755 --- a/README.md +++ b/README.md @@ -4,6 +4,12 @@ ![](https://github.com/causal-machine-learning/kdd2023-workshop/workflows/GH-Pages%20Status/badge.svg) [![](https://img.shields.io/static/v1?label=fastai&message=fastpages&color=57aeac&labelColor=black&style=flat&logo=)](https://github.com/fastai/fastpages) +--- +layout: home +search_exclude: true +image: images/logo.png +--- + # **Causal Inference and Machine Learning in Practice**: Use cases for Product, Brand, Policy and Beyond ## **Schedule** @@ -34,48 +40,85 @@ in industry, government, and academia. ## **Paper Submission** -Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMLKDD2023) site, and check the [Call for Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and submission guidelines. +Please submit your paper to the [CMT portal](https://cmt3.research.microsoft.com/CMLKDD2023) site, and check the [Call for +Paper](https://causal-machine-learning.github.io/kdd2023-workshop/cfp/) page for details on important dates and +submission guidelines. ## **Outline** | **Title** | **Speaker** | **Duration** | Link | |-----------|-------------|--------------|------| | Introduction | Organizers | 10 minutes | | -| Invited Talk #1 | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | +| Invited Talk: COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | | Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | -| Paper #1 | | 15 minutes | | -| Paper #2 | | 15 minutes | | -| Paper #3 | | 15 minutes | | -| Paper #4 | | 15 minutes | | -| Break & Poster Session | | 30 minutes | | +| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | +| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | +| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | +| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | +| Break & Poster Session | | 30 minutes | | | Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis | 20 minutes | | -| Paper #1 | | 15 minutes | | -| Paper #2 | | 15 minutes | | -| Paper #3 | | 15 minutes | | -| Paper #4 | | 15 minutes | | +| Invited Talk: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | +| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | +| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | ## **Invited Speakers** ### Raif Rustamov, Amazon +#### Title: COG: Creative Optimality Gap for Video Advertising + #### Bio -![Raif Rustamov](/images/raif.png) +Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance +modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI +and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for +cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton +University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford +University. -Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance modeling, representation learning, and causal inference. He previously worked as a Principal Inventive Scientist in AI and Data Science at AT&T Labs conducting research on recommender systems, customer segmentation, identity for cross-device advertising, and location analytics. Raif has a PhD in Applied and Computational Mathematics from Princeton University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. +#### Abstract + +Video creatives play a crucial role in shaping consumer experiences and brand perceptions, but quantifying their impact +on shopper experience remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), +a metric developed to assess the relative optimality of video creatives using causal-inferential machine learning +methodology. Our main contributions include the development of the COG metric through the use of conditional individual +treatment effects projected on interpretable video features, the introduction of a meta-learner for its computation, +and the incorporation of model uncertainty to avoid false positives. Our work advances the understanding of video +creative effectiveness and provides a valuable tool for optimizing ad performance. ### Ruomeng Cui, Emory University/Amazon +#### Title: The Value of Last-Mile Delivery in Online Retail + +#### Bio + +Ruomeng Cui is an Associate Professor of Operations Management at the Goizueta Business School, Emory University (on leave). She currently is a full-time Amazon Visiting Academic at Amazon, working in the supply chain domain. Her research focuses on causal inference, machine learning and data-driven modeling, with applications in retail, supply chains, and platforms. She currently serves as an associate editor for Manufacturing & Service Operations Management and Production and Operations Management. She received her Ph.D. in Operations Management from the Kellogg School of Management, Northwestern University and B.Sc in Industrial Engineering from Tsinghua University. + #### Abstract -Last-mile delivery has become increasingly important in the online retail industry. In this study, we study the economic value of last-mile delivery. To do so, we conducted a quasi-experiment in collaboration with Cainiao, Alibaba's logistics subsidiary, where home delivery was launched at some pickup stations in 2021. This allowed us to comprehensively evaluate the causal impact of last-mile delivery. Using a difference-in-differences identification method, we found that last-mile delivery significantly increases sales and customer spending on the retail platform. To optimally prioritize limited delivery capacity, we employed causal machine learning to target the most responsive customers. Our findings suggest that online retailers should carefully weigh the costs and benefits of last-mile delivery and tailor their logistic strategies accordingly. +Last-mile delivery has become increasingly important in the online retail industry. In this study, we study the economic +value of last-mile delivery. To do so, we conducted a quasi-experiment in collaboration with Cainiao, Alibaba's +logistics subsidiary, where home delivery was launched at some pickup stations in 2021. This allowed us to +comprehensively evaluate the causal impact of last-mile delivery. Using a difference-in-differences identification +method, we found that last-mile delivery significantly increases sales and customer spending on the retail platform. To +optimally prioritize limited delivery capacity, we employed causal machine learning to target the most responsive +customers. Our findings suggest that online retailers should carefully weigh the costs and benefits of last-mile +delivery and tailor their logistic strategies accordingly. ### Ang Li, University of California, Los Angeles +#### Title: + #### Bio -Dr. Li is set to join the Florida State University Department of Computer Science as an assistant professor in August. He is currently a post-doctoral researcher in the Department of Computer Science at UCLA under the guidance of Prof. Judea Pearl. His primary research area is causal inference, artificial intelligence, and causality-based decision-making, with a focus on building causal models that estimate treatment effects (interventions) and evaluating what would have happened if an individual had taken a treatment (counterfactuals). He is also interested in decision-making modeling using knowledge of treatment effects and counterfactuals. Prior to his post-doc, Dr. Li obtained his Ph.D. at UCLA with Prof. Judea Pearl and his M.S. degree at the University of Minnesota Twin Cities. +Dr. Li is set to join the Florida State University Department of Computer Science as an assistant professor in August. +He is currently a post-doctoral researcher in the Department of Computer Science at UCLA under the guidance of Prof. +Judea Pearl. His primary research area is causal inference, artificial intelligence, and causality-based +decision-making, with a focus on building causal models that estimate treatment effects (interventions) and evaluating +what would have happened if an individual had taken a treatment (counterfactuals). He is also interested in +decision-making modeling using knowledge of treatment effects and counterfactuals. Prior to his post-doc, Dr. Li +obtained his Ph.D. at UCLA with Prof. Judea Pearl and his M.S. degree at the University of Minnesota Twin Cities. #### Abstract @@ -93,15 +136,39 @@ demonstrate the superiority of this criterion over A/B-test-based approaches. ### Vasilis Syrgkanis, Stanford University/EconML +#### Title: Towards Automating the Causal Machine Learning Pipeline + #### Bio -![Vasilis Syrgkanis](/images/vasilis.png) +Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, +in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal +inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until +August 2022, he was a Principal Researcher at Microsoft Research, New England, where he was a member of the EconCS and +StatsML groups. During his time at Microsoft, he co-led the project on Automated Learning and Intelligence for Causation +and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He +received his Ph.D. in Computer Science from Cornell University. -Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, in the School of Engineering at Stanford University. His research interests are in the areas of machine learning, causal inference, econometrics, online and reinforcement learning, game theory/mechanism design and algorithm design. Until August 2022, he was a Principal Researcher at Microsoft Research, New England, where he was a member of the EconCS and StatsML groups. During his time at Microsoft, he co-led the project on Automated Learning and Intelligence for Causation and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He received his Ph.D. in Computer Science from Cornell University. +#### Abstract ## **Accepted Papers** -To be updated +### For Oral Presentation +1. Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation, Dmitri Goldenberg (Booking.com)*; Javier Albert (Booking.com) +2. Ensemble Method for Estimating Individualized Treatment Effects, Kevin Wu Han (Stanford University)*; Han Wu (Stanford University) +3. A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization, Nicolò Cosimo Albanese (AWS)*; Fabian Furrer (AWS); Marco Guerriero (AWS) +4. An IPW-based Unbiased Ranking Metric in Two-sided Markets, Keisho Oh (Recruit Co., Ltd.)*; Naoki Nishimura (Recruit Co., Ltd.); Minje Sung (Tokyo Institute of Technology); Ken Kobayashi (Tokyo Institute of Technology); Kazuhide Nakata (Department of Industrial Engineering and Economics, Tokyo Institute of Technology.) +5. Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments, Ali O Polat (Shipt Inc.)* +6. Dynamic Causal Structure Discovery and Causal Effect Estimation, Jianian Wang (North Carolina State Unicersity)*; Rui Song (North Carolina State Unicersity) +7. Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference, Yufei Wu (Airbnb)*; Zhiying Gu (Airbnb); Alex Deng (Airbnb); Jacob Zhu (Airbnb) + +### For Poster Presentation +8. Community Detection-Enhanced Causal Structural Learning, Yuhe Gao (North Carolina State University)*; Hengrui Cai (University of California Irvine); Sheng Zhang (North Carolina State University); Rui Song (North Carolina State University) +9. ACE: Active Learning for Causal Inference with Expensive Experiments, Difan Song (Georgia Institute of Technology)*; Simon Mak (Duke University); C.F. Jeff Wu (Georgia Institute of Technology) +10. Extracting Causal Insights from Microsoft Feedback Hub using LLMs and In-context Learning, Sara Abdali (University of California, Riverside )*; Anjali Parikh (Microsoft); Steve Lim (Microsoft) +11. Evaluate the Impact of Similar Products Ad Group Recommendations with Causal Inference, Jamie Chen (Amazon)*; Zuqi Shang (AmaOn); Raif Rustamov (Amazon) +12. Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing, Shahin Boluki (Pros Inc)*; Ravi Kumar (PROS) +13. OpportunityFinder: A Framework for Automated Causal Inference, Huy Nguyen (Amazon)*; Prince Grover (Amazon); Devashish Khatwani (Amazon) + ## **Organizers** @@ -109,13 +176,19 @@ To be updated * Yingfei Wang, University of Washington * Xinwei Ma, UC San Diego * [Zeyu Zheng](mailto:zyzheng@berkeley.edu), UC Berkeley, Amazon - main contact -* Jing Pan, Snap, [CausalML](https://github.com/uber/causalml) -* Yifeng Wu, Uber, [CausalML](https://github.com/uber/causalml) -* Huigang Chen, Meta, [CausalML](https://github.com/uber/causalml) -* Totte Harinen, AirBnB, [CausalML](https://github.com/uber/causalml) -* Paul Lo, Snap, [CausalML](https://github.com/uber/causalml) -* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, [CausalML](https://github.com/uber/causalml) - main contact -* Zhenyu Zhao, Tencent, [CausalML](https://github.com/uber/causalml) -* Fabio Vera, Microsoft Research, [EconML](https://github.com/py-why/EconML) -* Eleanor Dillon, Microsoft Research, [EconML](https://github.com/py-why/EconML) -* Keith Battocchi, Microsoft Research, [EconML](https://github.com/py-why/EconML) + +### [CausalML](https://github.com/uber/causalml) Team + +* Jing Pan, Snap, CausalML +* Yifeng Wu, Uber, CausalML +* Huigang Chen, Meta, CausalML +* Totte Harinen, AirBnB, CausalML +* Paul Lo, Snap, CausalML +* [Jeong-Yoon Lee](mailto:jeong@uber.com), Uber, CausalML - main contact +* Zhenyu Zhao, Tencent, CausalML + +### [EconML](https://github.com/py-why/EconML) Team + +* Fabio Vera, Microsoft Research, EconML +* Eleanor Dillon, Microsoft Research, EconML +* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file diff --git a/_pages/cfp.md b/_pages/cfp.md index d117bc7..451a37e 100644 --- a/_pages/cfp.md +++ b/_pages/cfp.md @@ -13,8 +13,8 @@ All deadlines are at 11:59 PM [AoE](https://www.timeanddate.com/time/zones/aoe). * ~~April 30th, 2023: CMT submission portal opens~~ * ~~May 23rd, 2023 **May 30th, 2023**: Abstract submission deadline **(extended)**~~ * ~~June 9th, 2023 **June 16th, 2023**: Workshop paper submission deadline **(extended)**~~ -* July 10th, 2023: Paper decision notifications -* July 24th, 2023: Camera-ready deadline +* ~~July 10th, 2023: Paper decision notifications~~ +* ~~July 24th, 2023: Camera-ready deadline~~ * August 7th, 2023: Workshop ## **Submission Link** diff --git a/index.html b/index.html index f7735e9..9515400 100644 --- a/index.html +++ b/index.html @@ -43,24 +43,25 @@ | **Title** | **Speaker** | **Duration** | Link | |-----------|-------------|--------------|------| | Introduction | Organizers | 10 minutes | | -| Invited Talk #1 | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | +| Invited Talk: COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | | Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | -| Paper #1 | | 15 minutes | | -| Paper #2 | | 15 minutes | | -| Paper #3 | | 15 minutes | | -| Paper #4 | | 15 minutes | | +| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | +| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | +| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | +| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | | Break & Poster Session | | 30 minutes | | | Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk #4: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | -| Paper #1 | | 15 minutes | | -| Paper #2 | | 15 minutes | | -| Paper #3 | | 15 minutes | | -| Paper #4 | | 15 minutes | | +| Invited Talk: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | +| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | +| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | ## **Invited Speakers** ### Raif Rustamov, Amazon +#### Title: COG: Creative Optimality Gap for Video Advertising + #### Bio Raif Rustamov is a Senior Applied Scientist at Amazon where he focuses on brand advertising science including relevance @@ -70,8 +71,24 @@ University and has taught at Purdue and Drew Universities, as well as worked as a research associate at Stanford University. +#### Abstract + +Video creatives play a crucial role in shaping consumer experiences and brand perceptions, but quantifying their impact +on shopper experience remains a complex challenge. In this talk, we introduce the Creative Optimality Gap (COG), +a metric developed to assess the relative optimality of video creatives using causal-inferential machine learning +methodology. Our main contributions include the development of the COG metric through the use of conditional individual +treatment effects projected on interpretable video features, the introduction of a meta-learner for its computation, +and the incorporation of model uncertainty to avoid false positives. Our work advances the understanding of video +creative effectiveness and provides a valuable tool for optimizing ad performance. + ### Ruomeng Cui, Emory University/Amazon +#### Title: The Value of Last-Mile Delivery in Online Retail + +#### Bio + +Ruomeng Cui is an Associate Professor of Operations Management at the Goizueta Business School, Emory University (on leave). She currently is a full-time Amazon Visiting Academic at Amazon, working in the supply chain domain. Her research focuses on causal inference, machine learning and data-driven modeling, with applications in retail, supply chains, and platforms. She currently serves as an associate editor for Manufacturing & Service Operations Management and Production and Operations Management. She received her Ph.D. in Operations Management from the Kellogg School of Management, Northwestern University and B.Sc in Industrial Engineering from Tsinghua University. + #### Abstract Last-mile delivery has become increasingly important in the online retail industry. In this study, we study the economic @@ -85,6 +102,8 @@ ### Ang Li, University of California, Los Angeles +#### Title: + #### Bio Dr. Li is set to join the Florida State University Department of Computer Science as an assistant professor in August. @@ -111,6 +130,8 @@ ### Vasilis Syrgkanis, Stanford University/EconML +#### Title: Towards Automating the Causal Machine Learning Pipeline + #### Bio Vasilis Syrgkanis is an Assistant Professor in Management Science and Engineering and (by courtesy) in Computer Science, @@ -121,9 +142,27 @@ and Economics (ALICE) and was a co-founder of EconML, an open-source python package for causal machine learning. He received his Ph.D. in Computer Science from Cornell University. +#### Abstract + ## **Accepted Papers** -To be updated +### For Oral Presentation +1. Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation, Dmitri Goldenberg (Booking.com)*; Javier Albert (Booking.com) +2. Ensemble Method for Estimating Individualized Treatment Effects, Kevin Wu Han (Stanford University)*; Han Wu (Stanford University) +3. A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization, Nicolò Cosimo Albanese (AWS)*; Fabian Furrer (AWS); Marco Guerriero (AWS) +4. An IPW-based Unbiased Ranking Metric in Two-sided Markets, Keisho Oh (Recruit Co., Ltd.)*; Naoki Nishimura (Recruit Co., Ltd.); Minje Sung (Tokyo Institute of Technology); Ken Kobayashi (Tokyo Institute of Technology); Kazuhide Nakata (Department of Industrial Engineering and Economics, Tokyo Institute of Technology.) +5. Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments, Ali O Polat (Shipt Inc.)* +6. Dynamic Causal Structure Discovery and Causal Effect Estimation, Jianian Wang (North Carolina State Unicersity)*; Rui Song (North Carolina State Unicersity) +7. Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference, Yufei Wu (Airbnb)*; Zhiying Gu (Airbnb); Alex Deng (Airbnb); Jacob Zhu (Airbnb) + +### For Poster Presentation +8. Community Detection-Enhanced Causal Structural Learning, Yuhe Gao (North Carolina State University)*; Hengrui Cai (University of California Irvine); Sheng Zhang (North Carolina State University); Rui Song (North Carolina State University) +9. ACE: Active Learning for Causal Inference with Expensive Experiments, Difan Song (Georgia Institute of Technology)*; Simon Mak (Duke University); C.F. Jeff Wu (Georgia Institute of Technology) +10. Extracting Causal Insights from Microsoft Feedback Hub using LLMs and In-context Learning, Sara Abdali (University of California, Riverside )*; Anjali Parikh (Microsoft); Steve Lim (Microsoft) +11. Evaluate the Impact of Similar Products Ad Group Recommendations with Causal Inference, Jamie Chen (Amazon)*; Zuqi Shang (AmaOn); Raif Rustamov (Amazon) +12. Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing, Shahin Boluki (Pros Inc)*; Ravi Kumar (PROS) +13. OpportunityFinder: A Framework for Automated Causal Inference, Huy Nguyen (Amazon)*; Prince Grover (Amazon); Devashish Khatwani (Amazon) + ## **Organizers** From dde7313e2acbf3b5f98fda3a5c036abc58bee227 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 26 Jul 2023 10:24:48 -0700 Subject: [PATCH 28/33] fix formatting --- README.md | 16 ++++++++-------- index.html | 16 ++++++++-------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 0808fe8..d83c84a 100755 --- a/README.md +++ b/README.md @@ -16,8 +16,8 @@ image: images/logo.png * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) -* Date: August 7, 2023 -* Time: TBD +* Date: August 7, 2023 (Monday) +* Time: TBD (PM) ## **Abstract** @@ -48,16 +48,16 @@ submission guidelines. | **Title** | **Speaker** | **Duration** | Link | |-----------|-------------|--------------|------| -| Introduction | Organizers | 10 minutes | | -| Invited Talk: COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | +| **Introduction** | Organizers | 10 minutes | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | -| Break & Poster Session | | 30 minutes | | -| Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| **Break & Poster Session** | | 30 minutes | | +| **Invited Talk:** | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | | Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | diff --git a/index.html b/index.html index 9515400..3127650 100644 --- a/index.html +++ b/index.html @@ -10,8 +10,8 @@ * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) -* Date: August 7, 2023 -* Time: TBD +* Date: August 7, 2023 (Monday) +* Time: TBD (PM) ## **Abstract** @@ -42,16 +42,16 @@ | **Title** | **Speaker** | **Duration** | Link | |-----------|-------------|--------------|------| -| Introduction | Organizers | 10 minutes | | -| Invited Talk: COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| Invited Talk: The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | +| **Introduction** | Organizers | 10 minutes | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | -| Break & Poster Session | | 30 minutes | | -| Invited Talk #3 | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| Invited Talk: Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | +| **Break & Poster Session** | | 30 minutes | | +| **Invited Talk:** | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | | Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | From 27a311b7013e2efffb9387c0394a12ebae7006c7 Mon Sep 17 00:00:00 2001 From: paullo0106 Date: Mon, 31 Jul 2023 16:06:25 -0700 Subject: [PATCH 29/33] Update author's bio --- README.md | 6 +++--- index.html | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index d83c84a..e9a0e31 100755 --- a/README.md +++ b/README.md @@ -50,7 +50,7 @@ submission guidelines. |-----------|-------------|--------------|------| | **Introduction** | Organizers | 10 minutes | | | **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 20 minutes | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | @@ -87,7 +87,7 @@ treatment effects projected on interpretable video features, the introduction of and the incorporation of model uncertainty to avoid false positives. Our work advances the understanding of video creative effectiveness and provides a valuable tool for optimizing ad performance. -### Ruomeng Cui, Emory University/Amazon +### Ruomeng Cui, Emory University #### Title: The Value of Last-Mile Delivery in Online Retail @@ -191,4 +191,4 @@ received his Ph.D. in Computer Science from Cornell University. * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML -* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file +* Keith Battocchi, Microsoft Research, EconML diff --git a/index.html b/index.html index 3127650..5d6d998 100644 --- a/index.html +++ b/index.html @@ -44,7 +44,7 @@ |-----------|-------------|--------------|------| | **Introduction** | Organizers | 10 minutes | | | **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-universityamazon) | 20 minutes | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 20 minutes | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | @@ -81,7 +81,7 @@ and the incorporation of model uncertainty to avoid false positives. Our work advances the understanding of video creative effectiveness and provides a valuable tool for optimizing ad performance. -### Ruomeng Cui, Emory University/Amazon +### Ruomeng Cui, Emory University #### Title: The Value of Last-Mile Delivery in Online Retail @@ -185,4 +185,4 @@ * Fabio Vera, Microsoft Research, EconML * Eleanor Dillon, Microsoft Research, EconML -* Keith Battocchi, Microsoft Research, EconML \ No newline at end of file +* Keith Battocchi, Microsoft Research, EconML From 67a85c25c5acc7675aa1d3224e39ac3215da42e3 Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Wed, 2 Aug 2023 15:26:28 -0700 Subject: [PATCH 30/33] add the title for Ang Li's invited talk --- README.md | 4 ++-- index.html | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index e9a0e31..f3bda66 100755 --- a/README.md +++ b/README.md @@ -56,7 +56,7 @@ submission guidelines. | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | | **Break & Poster Session** | | 30 minutes | | -| **Invited Talk:** | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | | **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | @@ -108,7 +108,7 @@ delivery and tailor their logistic strategies accordingly. ### Ang Li, University of California, Los Angeles -#### Title: +#### Title: Unit Selection Based on Counterfactual Logic #### Bio diff --git a/index.html b/index.html index 5d6d998..bba5356 100644 --- a/index.html +++ b/index.html @@ -50,7 +50,7 @@ | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | | **Break & Poster Session** | | 30 minutes | | -| **Invited Talk:** | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | | **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | @@ -102,7 +102,7 @@ ### Ang Li, University of California, Los Angeles -#### Title: +#### Title: Unit Selection Based on Counterfactual Logic #### Bio From 427fc82442bcb14c34a9c6ff78c52e2ac96476da Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 4 Aug 2023 09:54:54 -0700 Subject: [PATCH 31/33] update time and schedule --- README.md | 30 +++++++++++++++--------------- index.html | 30 +++++++++++++++--------------- 2 files changed, 30 insertions(+), 30 deletions(-) diff --git a/README.md b/README.md index f3bda66..995b304 100755 --- a/README.md +++ b/README.md @@ -17,7 +17,7 @@ image: images/logo.png * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) * Date: August 7, 2023 (Monday) -* Time: TBD (PM) +* Time: 1:00 - 5:00 PM Pacific Time ## **Abstract** @@ -46,21 +46,21 @@ submission guidelines. ## **Outline** -| **Title** | **Speaker** | **Duration** | Link | +| **Title** | **Speaker** | **Time (Duration)** | Link | |-----------|-------------|--------------|------| -| **Introduction** | Organizers | 10 minutes | | -| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 20 minutes | | -| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | -| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | -| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | -| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | -| **Break & Poster Session** | | 30 minutes | | -| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | -| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | -| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | -| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | +| **Introduction** | Organizers | 1:00 - 1:10 PM (10 minutes) | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 1:10 - 1:30 PM (20 minutes) | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 1:30 - 1:50 PM (20 minutes) | | +| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | | +| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | | +| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | | +| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | | +| **Break & Poster Session** | | 3:00 - 3:30 PM (30 minutes) | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 3:30 - 3:50 PM (20 minutes) | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 3:50 - 4:10 PM (20 minutes) | | +| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | | +| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | | +| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | | ## **Invited Speakers** diff --git a/index.html b/index.html index bba5356..a54eb91 100644 --- a/index.html +++ b/index.html @@ -11,7 +11,7 @@ * Long Beach Convention & Entertainment Center, 300 E Ocean Blvd, Long Beach, CA 90802 ([Map](https://goo.gl/maps/1N3XGEovGgJqXAV98)) * Date: August 7, 2023 (Monday) -* Time: TBD (PM) +* Time: 1:00 - 5:00 PM Pacific Time ## **Abstract** @@ -40,21 +40,21 @@ ## **Outline** -| **Title** | **Speaker** | **Duration** | Link | +| **Title** | **Speaker** | **Time (Duration)** | Link | |-----------|-------------|--------------|------| -| **Introduction** | Organizers | 10 minutes | | -| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 20 minutes | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 20 minutes | | -| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 15 minutes | | -| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 15 minutes | | -| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 15 minutes | | -| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 15 minutes | | -| **Break & Poster Session** | | 30 minutes | | -| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 20 minutes | | -| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 20 minutes | | -| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 15 minutes | | -| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 15 minutes | | -| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 15 minutes | | +| **Introduction** | Organizers | 1:00 - 1:10 PM (10 minutes) | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 1:10 - 1:30 PM (20 minutes) | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 1:30 - 1:50 PM (20 minutes) | | +| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | | +| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | | +| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | | +| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | | +| **Break & Poster Session** | | 3:00 - 3:30 PM (30 minutes) | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 3:30 - 3:50 PM (20 minutes) | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 3:50 - 4:10 PM (20 minutes) | | +| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | | +| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | | +| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | | ## **Invited Speakers** From bc4de829f4e03798f0a939779ec07c331082a1fa Mon Sep 17 00:00:00 2001 From: Jeong-Yoon Lee Date: Fri, 4 Aug 2023 10:15:04 -0700 Subject: [PATCH 32/33] add speakers' affiliation to the schedule --- README.md | 8 ++++---- index.html | 8 ++++---- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 995b304..2202ce7 100755 --- a/README.md +++ b/README.md @@ -49,15 +49,15 @@ submission guidelines. | **Title** | **Speaker** | **Time (Duration)** | Link | |-----------|-------------|--------------|------| | **Introduction** | Organizers | 1:00 - 1:10 PM (10 minutes) | | -| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 1:10 - 1:30 PM (20 minutes) | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 1:30 - 1:50 PM (20 minutes) | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) (Amazon) | 1:10 - 1:30 PM (20 minutes) | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) (Emory) | 1:30 - 1:50 PM (20 minutes) | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | | | **Break & Poster Session** | | 3:00 - 3:30 PM (30 minutes) | | -| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 3:30 - 3:50 PM (20 minutes) | | -| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 3:50 - 4:10 PM (20 minutes) | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) (UCLA) | 3:30 - 3:50 PM (20 minutes) | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) (Stanford/EconML) | 3:50 - 4:10 PM (20 minutes) | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | | | Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | | diff --git a/index.html b/index.html index a54eb91..14bd462 100644 --- a/index.html +++ b/index.html @@ -43,15 +43,15 @@ | **Title** | **Speaker** | **Time (Duration)** | Link | |-----------|-------------|--------------|------| | **Introduction** | Organizers | 1:00 - 1:10 PM (10 minutes) | | -| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) | 1:10 - 1:30 PM (20 minutes) | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) | 1:30 - 1:50 PM (20 minutes) | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) (Amazon) | 1:10 - 1:30 PM (20 minutes) | | +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) (Emory) | 1:30 - 1:50 PM (20 minutes) | | | Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | | | Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | | | A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | | | An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | | | **Break & Poster Session** | | 3:00 - 3:30 PM (30 minutes) | | -| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) | 3:30 - 3:50 PM (20 minutes) | | -| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) | 3:50 - 4:10 PM (20 minutes) | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) (UCLA) | 3:30 - 3:50 PM (20 minutes) | | +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) (Stanford/EconML) | 3:50 - 4:10 PM (20 minutes) | | | Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | | | Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | | | Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | | From ab4b212743e87e501f8611e03df5586477af6010 Mon Sep 17 00:00:00 2001 From: jpansnap <99832397+jpansnap@users.noreply.github.com> Date: Tue, 22 Aug 2023 21:42:25 -0700 Subject: [PATCH 33/33] Update README.md update slides and paper links --- README.md | 47 +++++++++++++++++++++++------------------------ 1 file changed, 23 insertions(+), 24 deletions(-) diff --git a/README.md b/README.md index 2202ce7..f8a9359 100755 --- a/README.md +++ b/README.md @@ -49,18 +49,18 @@ submission guidelines. | **Title** | **Speaker** | **Time (Duration)** | Link | |-----------|-------------|--------------|------| | **Introduction** | Organizers | 1:00 - 1:10 PM (10 minutes) | | -| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) (Amazon) | 1:10 - 1:30 PM (20 minutes) | | -| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) (Emory) | 1:30 - 1:50 PM (20 minutes) | | -| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | | -| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | | -| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | | -| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | | +| **Invited Talk:** COG: Creative Optimality Gap for Video Advertising | [Raif Rustamov](#raif-rustamov-amazon) (Amazon) | 1:10 - 1:30 PM (20 minutes) | [Slides](https://drive.google.com/file/d/1ehHzNj-EDlhpQzCOhlJ9oE7Lnmf2Fpmc/view?usp=sharing)| +| **Invited Talk:** The Value of Last-Mile Delivery in Online Retail | [Ruomeng Cui](#ruomeng-cui-emory-university) (Emory) | 1:30 - 1:50 PM (20 minutes) | [Slides](https://drive.google.com/file/d/19w3ay80K1xBqceZj6DgBtyJgPx2OrYe6/view?usp=drive_link)| +| Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation | Dmitri Goldenberg, Javier Albert (Booking.com) | 1:50 - 2:05 PM (15 minutes) | [Slides](https://docs.google.com/presentation/d/1Fz720lBj8DDsviLYNAIyBLVE7TN8qFoVtxPzbfAvo_I/edit?usp=drive_link)| +| Ensemble Method for Estimating Individualized Treatment Effects | Kevin Wu Han, Han Wu (Stanford) | 2:05 - 2:20 PM (15 minutes) | [Slides](https://drive.google.com/file/d/1KLAFpKYw5mlJQ7cNyLamS1LkuGScABSb/view?usp=sharing), [Paper](https://drive.google.com/file/d/1dzsIGgQ4cF2ltetH16A4Zz-L-pZ6tHBK/view?usp=drive_link) | +| A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization | Nicolò Cosimo Albanese, Fabian Furrer, Marco Guerriero (Amazon AWS) | 2:20 - 2:35 PM (15 minutes) | [Slides](https://drive.google.com/file/d/1uSqpV51qxNcEyCrgzhYo2nr44tfn717z/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1VlW-zgrCfaKi5CtGYkQbkhWw7JVXhPtw/view?usp=drive_link) | +| An IPW-based Unbiased Ranking Metric in Two-sided Markets | Keisho Oh, Naoki Nishimura (Recruit Co), Minje Sung, Ken Kobayashi, Kazuhide Nakata (Tokyo Institute of Technology) | 2:35 - 2:50 PM (15 minutes) | [Slides](https://drive.google.com/file/d/1XLQCMUNy79jmYb0y1AB7ImRflq4csh6Y/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1Bshr6dwFB-E2H2K64g9OfERNUQcfP0eb/view?usp=drive_link)| | **Break & Poster Session** | | 3:00 - 3:30 PM (30 minutes) | | -| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) (UCLA) | 3:30 - 3:50 PM (20 minutes) | | -| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) (Stanford/EconML) | 3:50 - 4:10 PM (20 minutes) | | -| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | | -| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | | -| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | | +| **Invited Talk:** Unit Selection Based on Counterfactual Logic | [Ang Li](#ang-li-university-of-california-los-angeles) (UCLA) | 3:30 - 3:50 PM (20 minutes) | [Slides](https://drive.google.com/file/d/1P-it4MNrYbnWNUgodagU69oubVtpo_WV/view?usp=drive_link)| +| **Invited Talk:** Towards Automating the Causal Machine Learning Pipeline | [Vasilis Syrgkanis](#vasilis-syrgkanis-stanford-universityeconml) (Stanford/EconML) | 3:50 - 4:10 PM (20 minutes) | [Slides](https://www.dropbox.com/scl/fi/w2p1cnghhqp1qc377o4yu/auto_debiased.pptx?rlkey=8k4bdcrastqmzlao8n5bng258&dl=0)| +| Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments | Ali O Polat (Shipt) | 4:10 - 4:25 PM (15 minutes) | [Slides](https://drive.google.com/file/d/1F9bCmoCYg7AeNxKXekCze7a4ELXs2Ohv/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1rDsCmwl23HELiD-P_Qq9TUZZ_3opbEji/view?usp=drive_link)| +| Dynamic Causal Structure Discovery and Causal Effect Estimation | Jianian Wang, Rui Song (NCSU) | 4:25 - 4:40 PM (15 minutes) | [Slides](https://drive.google.com/file/d/13MzjyZLGxfGNoAg3TMRF0Es-TqtnRVSH/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1928QcX3PdFan_gkeJl-mxEgl7kQ9KupN/view?usp=drive_link)| +| Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference | Yufei Wu, Zhiying Gu, Alex Deng, Jacob Zhu (Airbnb) | 4:40 - 4:55 PM (15 minutes) | [Slides](https://drive.google.com/file/d/1r0xXFFflSVDFNtGEypUGh845CeycF51q/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1HQekrFF1vNNrO7TF4aX43850-Dc6UHgo/view?usp=drive_link)| ## **Invited Speakers** @@ -153,21 +153,20 @@ received his Ph.D. in Computer Science from Cornell University. ## **Accepted Papers** ### For Oral Presentation -1. Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation, Dmitri Goldenberg (Booking.com)*; Javier Albert (Booking.com) -2. Ensemble Method for Estimating Individualized Treatment Effects, Kevin Wu Han (Stanford University)*; Han Wu (Stanford University) -3. A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization, Nicolò Cosimo Albanese (AWS)*; Fabian Furrer (AWS); Marco Guerriero (AWS) -4. An IPW-based Unbiased Ranking Metric in Two-sided Markets, Keisho Oh (Recruit Co., Ltd.)*; Naoki Nishimura (Recruit Co., Ltd.); Minje Sung (Tokyo Institute of Technology); Ken Kobayashi (Tokyo Institute of Technology); Kazuhide Nakata (Department of Industrial Engineering and Economics, Tokyo Institute of Technology.) -5. Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments, Ali O Polat (Shipt Inc.)* -6. Dynamic Causal Structure Discovery and Causal Effect Estimation, Jianian Wang (North Carolina State Unicersity)*; Rui Song (North Carolina State Unicersity) -7. Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference, Yufei Wu (Airbnb)*; Zhiying Gu (Airbnb); Alex Deng (Airbnb); Jacob Zhu (Airbnb) +1. Leveraging Causal Uplift Modeling for Budget Constrained Benefits Allocation, Dmitri Goldenberg (Booking.com)*; Javier Albert (Booking.com); [Slides](https://docs.google.com/presentation/d/1Fz720lBj8DDsviLYNAIyBLVE7TN8qFoVtxPzbfAvo_I/edit?usp=drive_link) +2. Ensemble Method for Estimating Individualized Treatment Effects, Kevin Wu Han (Stanford University)*; Han Wu (Stanford University); [Slides](https://drive.google.com/file/d/1KLAFpKYw5mlJQ7cNyLamS1LkuGScABSb/view?usp=sharing), [Paper](https://drive.google.com/file/d/1dzsIGgQ4cF2ltetH16A4Zz-L-pZ6tHBK/view?usp=drive_link) +3. A Scalable and Debiased Approach to Dynamic Pricing with Causal Machine Learning and Optimization, Nicolò Cosimo Albanese (AWS)*; Fabian Furrer (AWS); Marco Guerriero (AWS); [Slides](https://drive.google.com/file/d/1uSqpV51qxNcEyCrgzhYo2nr44tfn717z/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1VlW-zgrCfaKi5CtGYkQbkhWw7JVXhPtw/view?usp=drive_link) +4. An IPW-based Unbiased Ranking Metric in Two-sided Markets, Keisho Oh (Recruit Co., Ltd.)*; Naoki Nishimura (Recruit Co., Ltd.); Minje Sung (Tokyo Institute of Technology); Ken Kobayashi (Tokyo Institute of Technology); Kazuhide Nakata (Department of Industrial Engineering and Economics, Tokyo Institute of Technology.); [Slides](https://drive.google.com/file/d/1XLQCMUNy79jmYb0y1AB7ImRflq4csh6Y/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1Bshr6dwFB-E2H2K64g9OfERNUQcfP0eb/view?usp=drive_link) +5. Power and Pre-treatment Fit: Optimizing Synthetic Control Method for Quasi-experiments, Ali O Polat (Shipt Inc.)*; [Slides](https://drive.google.com/file/d/1F9bCmoCYg7AeNxKXekCze7a4ELXs2Ohv/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1rDsCmwl23HELiD-P_Qq9TUZZ_3opbEji/view?usp=drive_link) +6. Dynamic Causal Structure Discovery and Causal Effect Estimation, Jianian Wang (North Carolina State Unicersity)*; Rui Song (North Carolina State Unicersity); [Slides](https://drive.google.com/file/d/13MzjyZLGxfGNoAg3TMRF0Es-TqtnRVSH/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1928QcX3PdFan_gkeJl-mxEgl7kQ9KupN/view?usp=drive_link) +7. Hierarchical Clustering As a Novel Solution to the Notorious Multicollinearity Problem in Observational Causal Inference, Yufei Wu (Airbnb)*; Zhiying Gu (Airbnb); Alex Deng (Airbnb); Jacob Zhu (Airbnb); [Slides](https://drive.google.com/file/d/1r0xXFFflSVDFNtGEypUGh845CeycF51q/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1HQekrFF1vNNrO7TF4aX43850-Dc6UHgo/view?usp=drive_link) ### For Poster Presentation -8. Community Detection-Enhanced Causal Structural Learning, Yuhe Gao (North Carolina State University)*; Hengrui Cai (University of California Irvine); Sheng Zhang (North Carolina State University); Rui Song (North Carolina State University) -9. ACE: Active Learning for Causal Inference with Expensive Experiments, Difan Song (Georgia Institute of Technology)*; Simon Mak (Duke University); C.F. Jeff Wu (Georgia Institute of Technology) -10. Extracting Causal Insights from Microsoft Feedback Hub using LLMs and In-context Learning, Sara Abdali (University of California, Riverside )*; Anjali Parikh (Microsoft); Steve Lim (Microsoft) -11. Evaluate the Impact of Similar Products Ad Group Recommendations with Causal Inference, Jamie Chen (Amazon)*; Zuqi Shang (AmaOn); Raif Rustamov (Amazon) -12. Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing, Shahin Boluki (Pros Inc)*; Ravi Kumar (PROS) -13. OpportunityFinder: A Framework for Automated Causal Inference, Huy Nguyen (Amazon)*; Prince Grover (Amazon); Devashish Khatwani (Amazon) +8. Community Detection-Enhanced Causal Structural Learning, Yuhe Gao (North Carolina State University)*; Hengrui Cai (University of California Irvine); Sheng Zhang (North Carolina State University); Rui Song (North Carolina State University); [Poster](https://drive.google.com/file/d/1dC_WLUhOJletn-kDJd1GPUJDyHwpMblG/view?usp=drive_link), [Paper](https://drive.google.com/file/d/11vnSFYDQZ1ZjztaM_eW7J9jd5tKH7y6Y/view?usp=drive_link) +9. ACE: Active Learning for Causal Inference with Expensive Experiments, Difan Song (Georgia Institute of Technology)*; Simon Mak (Duke University); C.F. Jeff Wu (Georgia Institute of Technology); [Paper](https://drive.google.com/file/d/1-fCLcT4RYAHJlsSBUuuAwsuqHDf9B4Qt/view?usp=drive_link) +10. Evaluate the Impact of Similar Products Ad Group Recommendations with Causal Inference, Jamie Chen (Amazon)*; Zuqi Shang (AmaOn); Raif Rustamov (Amazon); [Poster](https://drive.google.com/file/d/13UTLTuJKBA5hIFZ0g1HolLHQpAXhqcX4/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1ahjN_fNvDjmdwD0btW4UvgxaKgCB32kP/view?usp=drive_link) +11. Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing, Shahin Boluki (Pros Inc)*; Ravi Kumar (PROS); [Poster](https://drive.google.com/file/d/1AcRtI5NtovYWMEOLnQ7dE_IRgyHVukqf/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1n5mL1quGS5jWVZXXqUrL349CJH-I2BOW/view?usp=drive_link) +12. OpportunityFinder: A Framework for Automated Causal Inference, Huy Nguyen (Amazon)*; Prince Grover (Amazon); Devashish Khatwani (Amazon); [Poster](https://drive.google.com/file/d/1MH_vV5MDafqAOVLnQRIgmG1IFGXZx05r/view?usp=drive_link), [Paper](https://drive.google.com/file/d/1_yAoohM0jG0uPi7om9_6igVQJI1JM-Ce/view?usp=drive_link) ## **Organizers**

Vwdf&O*e7aL|wWQ?&l*5#>s4c5j(D8%s9<2 zt2RSNFC%Hm=9qu1h8iXMmxG3%ohmJB%2H!Fh})#saMNU)y6>)vrCoe-kg2oX>V_LD z54-5%r#YZ{%xA;l60jMaZUsIA?5SWh7^MdTYqW+_>>a6(% z<46PHE=#QM9^Ot)U!6(oDzsjDW1;f78s2PyPwEaik*6U2Uc0s zP2k7hzPj3iUeK-Cm2ux{O#p4EsHr*own=D1?+WA4lWSv?j&xn`ozA{$6D%4$wd-))OXBj&e~K%5<|l&- zU5tBC&omP3r_v48b8JOiT5uiLQ}1tH($g1)&NG*HTlF**jLjFqC|X^Qhc~#xCula( zLy5humSDfEW4$YWoHpEDkI3X_-V1q|kb&>^+d3|J<$F%Hx31SRal0kX8oW_q&}Hz9 z7p0rjz7G>|+1h|EzUzIEnQ#4RA!F}RQvD#Gw=mH_eEez`4VL38;u#{AsmzDwnZ`6r zZnep#Q#AJQoZW!h$F%D2=ZcrqG(SG#El3*f$UG>`u&v0DHlA21w!YD1P?XCuVl7tc zX@AehP;YIw^b*C?3pM%6D_>sw>Z(dT$v+43^s{Ua1{(&BbfObti6}(6&EzK3AQxq_ z<*#Rs)#ym6Qj}>$L)@-CHcgjEk0S{-5pmG&>=_-!r&S#!ey6u9L?97st`4Df%PZGI zRH|ws23&_>!D3~s8RBZpj%PG!Hw4EWo=|&k35SdzQu*a?B7^fySaH%Xsvikr4Y|8c zNKzBioOK?Uv>ev)rW(y3qMf~CWH0uaL-*w)#N3eDg7COfR2RWZN3WX%wIvd?6>h^F z5l@p9yZosWz0P{Aiyd7VS9IpV4#qq}uI?r$FTvmLKu(w6Ykdh*zg^OmbA(OybjD3=JQAQc$&+GuO}CDKfS|q5fcinnhYPRge}M@riJC>$ZrT)HR=*U-dpi9I3C zLXn*ut{UyqGYl2&&NSrF&v|aC8dOE_L5=9^h~{>|m-dO8>@(+Fs{7Pu5-2F552`{x zJ<6RwShXJZ+7WiBwkq?yU>;P$WnjfxIiWFyC*%%E&I*IweHfGFzY6u!pe<>Tjc7EF zhnB|@r9I@r3f_J65sIPTl(rsiM3FO!;H(_$@fo|P*7o3b9>*D}(NR<07j4946V?GW zIH806qf6pe+q_t*-KpkNmGZ2mPNR?Jd+k+uc2(1ISGVR=7IW&W%dXjk^HLWNxQ*&T z8KOKGg_S9LM((hCoG#pM&30dCKgw+|m`LrvGr0f0M;$q)qCPay?6n~Dc}UEu`_tLU z)Z^Y>E0|dOY#$gk)>AvKp%3^P3Hf^LV}w@^{54n2Z53Xmdu4Kb0f3v!6+uECZppE0ku z%(@&zuF8JlmO+j`Ln$9SY{1%$FckO^eDL%6FeuWF96iySJG_xnu)T42SC6=)l))`1 zNXS#r9}AVo0?=y1C1)u|d=-K(m&w{&JWqK4T2*1@2+w9VEaTIf7N zjx(bkcE5ntEs-%&KG&sp_8}z5B##pr-B^7Q zrbgLop^(@vL~f!UrOK8^uQTE%J0VG#&YCQ&Of_I>ETcXN zPxlPVd;r1zcDa0h*L$t^&ZPNa>XU-@<|!-*+i(1=)XfitE3-#*ZH3OAPf**5eZ%6K zS21%=Z0C)TnpX$&M6-5&^Ov8VVEq_D>TT2N1pSO@W#>Q8F4sI zY5}!$`ol1n1bO=-JuxD;{=0R*DQ|I6KtUaae3RHy$y&L)AJ&X^I{gT1;F#ork2IEL zcUy3GHfodKP)nsK+|Aiqtw^mkov{l!VZRQW}PeoAGw`EQp~K#wC7hF)UV5QIQR& z8+_j6(4z{DhBcm$)s#aLL&w4v_Ki7`xS#VEn7b#>ic zufI#kkFR~O*0Fh*(8oE{_{?EIy8GA<0dwhe_QgqWIgj~R^Puaz?0i$h@&3h{7KDr%H;?pXFDa$7PVQ7s?{Hnqup0^&Fg`{^572I}Zpl^dFETwk3EwZQtspO_0R6;Z z4dZ!;WR*PsW^3I7p2>pds|j_ES5-{rwreiN5I}T0ErLE|XPG)oLn__aRL*HY8eH|e zh(9?Cs}+{_S~xn04jNRnOgJ2l%@n=b#}3A5nxs5K9glw_Dm2 zj%YXZ6%KMh+vJvAy-g;~X`V|PynlhmpeJ&E_W_LyL0cz}`G1%?>$oP{_Kg!FiV{A8 zASo(JNQrcVf=b62HB!1`j1Co0DIbxLMx-{_=ol~%q&vo_Q3D1ehII4W^S;mX{NBI! z$L{;{x$f&aujBk4$2pw1F}zL!AlEu0>GbJ4EBE)y5!E^s!(!&07`rU_C3PSsTJZcs z83(21`L+%*)4l@4Ug^K&^#{e)DEsa8e-_OWO`{eVk)Q&p>BuIXRJAs*{(DjhH7Nzw zc799MuYJh>wdZF@va$53%tJ(CXtH}J!d5|gr=!aN_~wyqJ%5zJAH~4jTv7KB+kzb3 z5m5c{%2(C-qZ=WDdb;ASq4xa6R{-q@fmb0Z{IGOuX>jvKXUSVd;D_WY^H)s8RB;07 z=+p|T5DTLTGebKMBgr9BFm6*cy$T4|V`SKbMAhFl-QqOKE&uWcz*MAwsYKr8gzotc zp>NTF`Nn}790y3@HUF_dLpB>s>x=dgcn?~t5l*%RHTBB@W8vcm@f{pn(Ua}%A`qOB zBkvFx?4sjiW{r1WHYsx2m`$4sIe#o!oz7<6TrBjN4Gex)Qtkt?D}kqjdxdJ|ruUYh z^I9IAw#!>v?N;Z#if5vv6wF#{ods7n`$tiYG8E!K$pOQk8=j3#!k8MBdA@{p*!B#* z<7fR_j|3;V&o~hyqlbWB^i>0A)o5Ld)awG-VXOskc+^yD#?sQ19GcY& zHHY^LMxHyQ?+mfDPx(94-W{)9x7NV1r!aa4mDofNCKcZWJXy~W>Q=_85@9E`4Md#V z`lBC$;-e>5xnsbP*L6m1#QD zMwZt78h)V;#Qobc^6a2+T3s)zEt++rp&~68W(ky#!rBse8msNNdeRf&td2&(3(!jJ z$Y8eP;h9$u&$NACS5?d1hB!h%0i5f`);bCGxyZ7w$ZNAW4bXmPNijECR3Y^D;$?sA zxkZAhWbtDEXt49TEqp-Do-Yvgla5zJft^^umu|MTxp$HK3~kl#+DCQHSsD!D_0rv! z8Yj$Wbk5pQ8WQ5mHq59`ON_fAfrg9S4sJtr`6^8WdO;qX;5u9=pWU_ zd{7M=KrcUSUrNE(pcNGdOAwvQj0u;&8WW21hGg+u&ub;NJ}f0Q4e4tv$aurznXC*;7%KoVtqqT|jqW$XzmI)H&ylR(*w|PJy!e z7=!NOnI`Uxad-Xd=>i1I9uSo-?|tL z96P@XACk!iyo8?y@$YEGzu5G~bW;IjUGjdX?#gr&#D^8#tE;ZOTO%&vRXuIED$7*> zOj$D0V}U^(c;?TOk&WZW&aTAQ{Dn$Dysfjgn|}C)NvGuA(a$L(L^-o56eYy}UYIXj zc-7oayu%BOVk}5zR@K8QF*98wy2GOj=Vq^)Kx9jYLY=KezxtviITeTN0TY7FN7&J0 z?Rc$dsN`bMiCpop1TefLVh3F--%HroA!y{ zfcNbm)uJYsMT4**#F@q5RQ7$zlO2mCVo^}2D9mF(3D9~58_EIND(7m*-IzTW~mkPx~s!H#2 z3|2v{PGt&0`VV%0A21$lK?u-Pz&6xsnj35fz4KZI)mq{#!rnr-YOIme2#*5bRF#wJ z+|@0u2`GNsY!8q2G7Lx=_Slib;g4&bJ~_5S93@4nZCf7@Dvvj>e`(l2AOFoTjX#w60LZ|V|Y?!tY!fSuuLwDoL1q&9#0>&%C z(PoP0PsYXsAMYburG-vkH=H$I>ScBBj*I6~?bir{ZFk27f|=mNJ(z zet7sdSO_W{wa0WX2!l+}7j!#1VZFJAek!+ZQs!4AD z9H7^)WXN!q6m+K8l(T#|-hEiLAM#~lt#S?%<6HfVao5NkyZ&rU8D991S6hO;Hq-Ta zw!fQTKASwJ2L>e8S*1k;g5Rw;gdO*Kl2ZK23O$Jfhli?7XaIu@Oz0h&sSFwz^3G8w ziHwte+_nqZGe&Numg`~XC(+j@99f|^D50QT&^ zPDzL#xS@)+J}`By6pA0f`R!#llU3T?8?Q4Z%#r8C%MQq(9@hDlL7j15rVu@bz`ZRG zH-S`e^_HgGK?d}h9Qfd{wWG4StO%ajOH-Oo8(j)l8IS(%xjjWJGBv_Z><6oAPxC>0 zamSI%y2Zu44sqm-mhdR~NCd~+nGai)jrO|qTla<&RcrSe<3Hm%B*#Vf4tTugobreZSMvl1C5ek9Lbm@*jaG$w^}t;1(bi8(L0HYNInLF@;cmEvjJB|m#@xcKe?$T)A9Bm- zlfVv)v6Jx{8L6q*;Q1E{ci=ZMCSIAXQy(~iDWv&2hi42r)H`KYX+R#X?c%LLm}Xkq zYVW^#P@@Ekx3i;;{~nvM4?N)!2#@#^`^6}C&;KXjJFiQP?Zz=c@;0_dlJW-LGz4;V zPJ!!Sd{>=O(mycgEZ6wS&{{<*dLZ6YpCBCUAK~U#>TwO9bZ)LC%lWCXCHu-1hz9bcb?L z@W-`w_Fg=igM*#nm8DQj=3|%KT<8RbL+w%Vk`d@oFVR}(`S7?+{U6i&GQZI8(AsumRBh1H6666 z8&>e!A8;-suLvvu;9~8hjhlt0FOh6NUZG4Q&Lv`Q79i_sqlIEMyLIW3EvSS^gd;nC z9Nk0{2smIL?AB#MOIPO^>rz$lyPZNk{qAk-uB6BDQ;y>~iN@FsCq?PVE)%eDropP* z=jGj?L)?LjxJiibgJ)>0k1FmesgU<`QFPsOb$YUFnmPip(UIIjIy;ms9x(SNHZwnc zQanvq%Rkml2kgVYU{1qMe2%uV!w~0v@6p+p`dH1B{mi2G;#8~C6BJEfJn73At(@e%!;qw5UN^l81BTrVD^nw1nN!Pm{e180De!XR6P)DpjO_Daamhot7mHM;K=%}@6Tc&>)QS9cvcp>GQ zeF^Df(D9}B0m;`tJ8SDO&{TNTkRO3i-QAO#I~2`cEHh^Md%-_4Y%wVjo2>mdi$pLz z?rA>X^q8~fdh!pbl495rk>U|v7c>)(+}~gNG`bY^5el>g|I}4ZQ?XV&?0-y^N_R_^ zpf7dR&PitFwejP+0kk>a+FqaV`IMwNV~g~U{f*xc7n*aMA$HhJ!%djoRVY6e;CTF| zfoY4M@%&`kqxE)VEu63+!899~t*t4}#H2RP7&UH4P6*i&@ZW$Ut6?-F$w*JXm$HWG zHj=++1W%!IoBR(q$HlWsNH@|C>!M!hKDf$K(}rJH5o{rrVvsPBfixC!WH)OnwDt3c zYPHiC&;9VO%LJGdzuJLryTP2l=baGAtIvAPZf}@@N>jVRu?_fFThfRL=alO?> zMqlSo*vup9 zwhK=G5^O~yD}l2iZ!7;)Fmj5&g@t$9k9nGjY9DUD#p_7q)kGK;0;*v`baa*{<&)eL|LIWH5vU?4I!_@oS+ z61?op6nlc;E_H=d2eF~^Qh6;TF$&Qi(tn~*0H0bR3)FJk*&xiiHM#fVsuHmq4j59d zVr0POJ;TIH**5ej=Nu;2ll4lrU)aBTdSTU9NjI*=x;vUg7EbxytiZ9fnGV)B7>#c7 z1E>X_7~Lf**^=&elw}ylPNB~?2v=p(Q;Mh7gwiws;O3I^XAp>r<9cxY$b{Q1r3|n( zcCrTM6vB>-E5dXif5HtrgMc(a2u@Z>82eOiDQO1o_kr|I)p+y({N`5R6Hpvw;d~8r zD>Fu>nJRNM${kMoG^ELr4w=b|lXnxlzPd|eE3fAD%9iQSuy|$-`bjmn6S9~I!zesoVP^47z^Z10XhmSL%$_WO&M+JbA z8F1=q(zEtuMjBby{$lUiC3t{1GcHd>xhVyW2Vr9;r>6n6y$z<__1Q>;@tR$ly^C|0 zV&v4GCVOQKB4@0)v<*jS)lAiENja>cr@*P%D!M9I0vVus7Pdh)KGj;0p$bCPrN#!b z&iQ5Kr~;wzMBO?BS#@5za;3p&t{GH-7aPY^Ny~xLO)4w@ZkX%rX8kIgPuCTu5158b zko-{SS_LDnyf$ETXH&9@edOepqSW>1+w@#HmJooQ9!ARf*qi%_1&9{CRxD+)?P+OC z1CxIdH@YqgriL1A3h2gXmG?+I<^sIk2x!FGm+%TfT~@!m9sk0qD*7P3zK+>OZojKb+?ujU zBO!m;LWW#)EY$=3AcI+FbGNf_VVH@Ce~oJX8YIVO?G;p&e6*X z<~j5;O|^ewIh~?`=;e!v#7J1jwX=j8%Iz=Wl(-w=EK!b+L$@4$W12U&>cM^9~mn#DKox(i~G;Mkdof zMeBnnGziiLsUS3`q(6)^~3< zC9am&9GuQxDA`_Xkj2*^3l97~(ZstDw){h_xqUrmKXlgAqV5s~YYoo{pQ36gHr~En z(J!g1c{QnAP6)1qwhTaDPm&`NFWxG!b(O-DAUT;0pQa*eC{N(f9B~o&RM97sL|#V@ zsDNwq4o9_}B@+^sJ#%n>XI<@7K=D$}71sK_#J#pD7zB9IbRNhHD@C{4fr;j$qI_il zbTuotD)uHI-`y4A-umkP-k8EP-J*Y6cbo>9Z#9~>_z1aN! z@u>)XQfdq}umzQ`Pg=tp?pgr5)@Td|=^n{9j9{3W;o4x4yI~(7SE&hH`)>TYO{Yh% zHbw$o$>(dXA$`33BnIjsEJx#Dj*U+^BDfL4cyMugI2ZjGDdflF-S|j$`S(H|~`v zG;et*YiyWYq@-D&t)hsv8*u^NaSRrYEFX}Irg@n8j%ke6+eGpsO}joXlx7q})7b-} zilU5!Y{l0Wr<;Nk1__p<0t~+Q(yn%VbLCbb!qUVoy(CdnjZ?b1{-*H$_nG~hQuZEd z+;(p67QK(SEgwtXOz;~AEX%UJzCm+elH`{_UL9~gGfg0_GYtLAp?|niK*Mm}8&W%m zRe_ix0}52P9XJ42Jml)Q;H<fwzo2(+r8u2GFN&?+;pRKNRZ&nBWJg78&%L(2hiO z9MZTOM%GwFnEy0&dKOJ>s@^M0J%-{q3goYIZmEGz>_^iLHT7pvEN1qXic~f-!m=9( zgehB+fbpUsqb9VjSJDRWXI{#LcbHzXekd(v>#F(-)!2nM}=Oti3&w?Dn5>Qhlf+lp^$!lDU)zD;gm6KO~)Je z;>9DKxnK@^U-yf}U7gmkYP9F(?jU0yecMF`a(wv0{)QJev{OAlDt>lstel?!IOTY@ zehMF)$%pK?%YFOf^yM>+RSpwyuHAt!=AFGS15AR2!FPF2X`N){3p?mQ+L@E1rEU+A+#Pn>Rs3DC5h z&)v@o{vVbz_QAF`g{5VSc~hYHMW9=TTKUbtrFV0Ea_r!Tq(YkduL12M0x)vXB(%qZ_%jK$wJE(WRIkC>T+7;dS{>O?d9b69V8SzGAyK%D zq{A}povn1Z+a>$M&NUqP{WtDJp~?OPj}Wu zd@n>75=7&>4xM*%IhT*aZ=45tGmqLucDw*^)b34QjH?~tHVhq$(+($ht3QuA^m2uj zw3wXk#-aA{Q+}%MQ_%wv7LKR0Uz(%Wetd>3**oat*_dB5O9g8Vs8sk>%q*z?KauYn zlITn7K)eT;q#32i%!B7o&kyH1CzXHTk?`q8*D0poCRdvB3V%+!6!)Mv154JwE3S7& zT#$n-F@;R$pFK?#|0r2a8zkQj(40*;B2VN0_Lpzy z!H^@lMtv4^u^^|@j0x-o291lyQ=K0Ul!O`*KFz%iWncTYeONL;GyPw`zXOGB)Ix8N8g-Em|Ey=*TX0AY8^5TrLC#&(S3w>8uOnT02HCeyM8AE3 zM{txN(-&P)KWGNO^S?T@VPS3fVpQ)|Y<`0S@~xyCWX9TCUA`vjA0+BIfG<=jhk6b9 z87{L*ZsbT7n}b=t>G3%7S(30e!|LBzcZPpU-;6i0^zP#TFJuVg(SjAN_K~fxL^g#Y zn*4!8C)e4UaRaW7{BLO#t9;dHEIFx&7x?Vj{@Tn<>vX&!EkrJhee5Kg#b3bDkGY3Z z_zj=30M*%W{|SV>~*Mt7DzQIv(y#9Qe1KkVo8t?Z)I*R~GYI#334+ z*qU!&3@kHRNiq?VnRWurt%3d?a-;oiU!WOiyV|txyFWZF$U^|OXUY7d*6Oz7^)4>a z=n(0(cn9B+c;9>7-1X~@(e(J^MvbtnoMFfHpD@a{> z!kyLNc|rV3vD-c88cW($W7jw;fqqM1J*tzJUiC|Lw>6X9+uwj!Hy^L0dy?ihvK-B# zLS&83PO2OHwL1^xksynIEopZ=uLgZtdmceVgq^Q%(_e1WKc3`T|HlNxbIbGP|zOVlb>VA&}gBM_g#gf}VEjmLNR@>T= zd-cVl??4OdQEv?G*1O9+jkxWaP^Dh}0#oihzJ9e}gRX1`RTN^g=>C{OzgC=BiF$jr zD4Fmep&+%@6Vkuoo6J`(u^1kfmZ}(b~|fY09|?C zbJdNQ+AbVCt8q8zoYd!OJKJZo{=LE^m~sOM=pF)oXfT@@Q**;@#ezc_^&MzvJkc=H zcpf{!(Hog0RE__`fHUvR(F5|kNG4Sd4Ydf5^6%vl)d?AIcazdFINEAFYf5R88GTHx zA{`IFM-p-E$0J4jEnpVQ3W+xHq@5 zIDQ3vLeDF_nsN{H5eaSK`nQkH67lTEzAftvGSF8&2}bWLxJSxdc~2To_0;G9i6nVP z1+?X}fkVg8l|V}rVba?UhSZ%!Z+Hdc3kq%SrD4Q#8vOj0J!F#Ib}FSxm$+C_&Uxyy zyJ0}~v-KNLmZ!3g2dPb*g@;+K?vRBu^~e&4xSyBV0<3L*HzU}B{V4EYDIANbP@qrX zl&1mE8sP5DGRcGv=9ZP3m*P6Vzz;djIMXItn~mT6?WK><5T3tz@No1a_4F7 ze90AGv6j0@g}_on*Z{%T=XrAm ziH)6^(G@8qyz($h%C%6$!NW-9!Ywur=61Y=dPJG~k2ip%G{YRIjX_eS+a^q|Q0OZ& z^I~ds5Y6*+n&fC!$#L7xz@QgYC9-BZXt39VC*~&CW1yP4RqO}8VtiNqWULbIW*9KH zeG+A&fNIpL8RY(e8KXH9VqjL1X1tLcU^Y2RRGRPI%^ve}m>Gz>a1hG_){<-^(C~oH z)4SKK08Qq94v)1uJGyTC5{h+OBp6T^i+)D?1=76%2UA8im;@{_{UBU>+u*nb1;`7| zc^s;MK+-|MlaomT*1xCr%Z`t}O^ts}IUA!br<-sPjw(ON!^5BN*Bcnft#d%~v3j*# zFMzKE${^uuL3(g9zmyp&swp}m$7(~vTH3(e$fEv47>YxJse}l{hJd{`OYN%XRFped zf&PAA9=X$l&brX}9^L0UG1lLRY=eM*gEG>FSqAex z@iD?}@f|Fo!Nkys;G>tya3ocNT`yfR+K8&^?(rV@COmY&@#Y*K;1O|y&vCq8DZ4k9 zTGVf%l#BJIxnSu#1W?0zYg`=QDBy|tD6n=a%U-160={lBH*E+RL>3p*;3AXIB85Fk zn}XoXx{D_p&=^PH*@-&&)~9Jno@$`t^Xb^^)o+i1s-5K_i7CJ3!&VNfM*dvOkBkqN z*ztbTZ)iUXt)9Hk`qnO)lo*WFrEZ!BvsQzfSd^6#*5Qb zb2KTk=#a5B^t|ny1&K_@SNE6xmHW{8CGfyxgr02|`Dk$MWQe=$GM#(Cd3zyDhy9s? zMg5V?>&n_qb&t8ux=o=(CK1KqFvS_YqCot`yY0;f^!*iiT%RBPBs55TxXjGSoSIv3 zH~p9ywGBsU!$Lh~8}Awcfw&EL7Pj3-4}-plc;mbSpB}vUo2IbxCUvGC!OY%zz-NsueO6`;{>__Hd{n2;ZhNFUewmkPTEOOg1r`&0b_($)v`u- z{Mzs+UB_i~xMaq6!k_7b?z^xdmGfk10C!XkD)#~=7ea?W z*kp5puEC5z!1NrTpDJ8SNA`>=I~X<32=n{KqRR=d19+$XQG4_0%I0N^1xgt0`q{~H-a08QW%zSVTvCA z9cDSDZzRc!gFKfNn3%mxAAZFKWtG10=;cNZxZKP|XGn3>@eJ-`s8`qKxh2l#JDIzw zPrC3%!XuY2oDnDL#Mq0==SY!+zX@v*Q3{mNVMbIG-3^ieN}O$CxpVQKM6-~6z|9aW zi3R=yCL_4?_<|Hs3Egf7C{kHc?i;2{&+Br+Jrh5*+A}xkKKlW8lDwDK{ry7LW|d$B z!bmOc?e{O_YfT-E-QOSb^4qhO9~>lcc73xRjKN{Qv5+)k$2qCvdvO+`wN}q29|qq7 znVH4lJzgn3Bn8Cjv^ivl+zCCX%zhz!SsMe3*!*mChC&=v{^K%Ey%_;vJ^E`_u(g_P z_3`(_e-zZ&d)vq$AyKQqexy3l|ICri;vVQFm(2F7xlcNlB{`|Oy@ZuNJ$@XCHTk|M zX&^uN8l@u5^9Fh&PLh*-=VUg{g$tH{boS%vWNpChqK}w%*nh%CH(?eE9)C6*ha)Opy zubw|ToLmTPnFw^DW-+Da|6`~2_26necYJU7+;yRmP-?8_toyi7em=O@T8~DgbiFdR z61>e)r2cY#Xf#qHT-a`;Nzd(_*;B1*`{FZTL6ljYcWV7O5>^%MO0wIsQm+1ugw za#Cl?VGYwu-!>^rt~cLgxoOXAyI^zA>UP(p@qNb|;lK&Aylom=(W?vzMbqr{O*lI4 z5{&*NdmY)HXg#_>wdLu;XK-!uFsRV;?qR8t;h}e2r*vXVVLi-jx=#8o%`krT#rtvP*)Z06Sd9K(#tJXFY~ zhwm0DAi$OiC~VuFy5C(H)T2etVcys}-7&>4v>8{Wc~MEZlSdl}^1g=9zv_9%n0>&i zHjCm$Flxj~jrG zNJV3Hr|hP98L~y~D=zsyV>?buzn@x8pKS$L_zEffCY!!Z)W299Zf2hI;gXJW4`5TB zt)MW8C{Z%HC-9lczmk!c%$nSdsu2Vi2k#SR&`i$m7Nm-s?U8Y(#{zpuV&I#w4UKG< z5pv9j!+IkarQfMJkSinW{R2n{I4S)a@cxERVmf6CtGOk)Jniwueo;D5Fd4U1ZNvo% zG}p-dqkFk(`W5}^rTjet=wOdTt;hd;@UxG^B>eG&1?=VPDujFl;}B z(1-u;&;NO?9EzCzSdZ~VNQnVsaG{j+xVY5gPgm}rANXcf&VRSXc(%RmGJY8$8(I08 z@~1|)%EgY@MJ(SF7R1bTie;|eB!G!XiD*W)Pum_GZO}H<%WjoUSRy!sCb%E&UTtyD z%zyz$s1=W2A#dzCS9T4zlbb#=aiN``-Z zdM3-V@S5t5(4VJ}AVEPK0~S@6hRm3jbuQ%A_4#v@dG#ePmJe?5b8bh%ilIfi9eZ~n zczBUvdnVxQVUE4+vI?2U?xvA*i)0H-H$^SV-8OtFR-`@3au&IB$I44Sjy#7p{NQtY zokEOwM2obCO}r(dWQe&yWm}_k_kI(k%B(<>z z*X`(}=E~Y1giAdC(66>p?X90z5MDc!cNUF&MLREH9|@J-2_>4}M1vZ0xWbI(3EKIIcj z@J!8XT4-R7ckcb6+oAJ8QN5R2IwJkOh~@N*X3DiuV4)U7;Y131-XC3j`jzc=(Wt1T zo##i_hT}wEAB_%zUGpGt7c-J=oZlWdC)`OEtn0*gWn`!XA46 zUc#g`I^S>5;_@*(&763R9K4}G^@SB>(sC-j1!$9GCNjZi?+5RuWAa|aPy~8!Lf+pv zzTK)z%w#VV=91TBzP29hZrOBt5q5$!qBJHxGb%aB4Udp1CcWkt3A z>FL8vg}^kUapC6^^PWc?6p3(+`3E7-ZkDwSXOtAiwT(@olq}{nmP$Yx+2<*juT7RX z>~rDdjGGC_Dvr3;_K&k)tz{oMzLozbyAL!_T-$jgN)y*)rkL|2XGphsl$`8~&->*( z1@040c{PNxDO|X)KW4i4YVd}9DOrdYe&ir2f7uY*_&I*Kz^5#F>pkD2ui{-9FZ9~#x9^b1G2o_#1zM{ZvP=<#zMgZ_VGOOmb-QdLq&d`tlV{= z5`vsUPHC`O!;4SkT;Fb2UJtRoLN&c&C!i`090#)GT`ij|!?etZ6Yjsk{;&;_%T9jk zBv4nhE>#PGqmo!1{Z+OWbS}0ebDMOLefM+V?)c6vS;+v9RwuH34QgGDf5N&rng7hH z$R{lzPfWh`PqCD5&x_w`hf4YiSq2g9WeC}ejO5=ByE^5H3u-UlB>rYF7why~*B-Y0 zD6%*p_Q)!5eY4iU1M-+-Q<3MZ54C#vLQ9H4siDqorQnpvJ|VIORqa*h+n$#WCpY{AP;AKC8tS|5^6F|`n%(yek2ww18W*#T_K7imu( zbrocb)`b2tP_&d2Iw3j?yglklIG6MI_b}|DX}m>qEnx7S#X{-5LzWN4d6=0-73JNg z(7j=G@?fgSEpq+24;E)zYFFl$R=Vj<6+(il!dmuS#6SxttNiZcF-rY{>`&4+EMg?; zyR}mg%svWkXra*;=*rH>) zf3g5@PsSv_Rw~Vv4aQ&YuVdPdT|zB$iC6X9-lJqfV>}0MQKTyb?K=MNL4LHrcQ5E1 zHGOy$HK_Wn*~4}>;NSN;Qs&)0y^y$+Q1iL!f8TZc*fy9G!CZ!ElT+JX!)_UHTw%|V zHH3p__hB%=2Ny>Rjv_HKizMBC9`--KKNx5Y=sFIc=D%@UVCK)}9*Xy;pG6u%tZdkZ zSn&o4LUXLvfzdKd;rT&J+g}C%CS|cwpw#|A15*IQ)Nsik7C-@bXRRB376t@!!H z+|C~hzFz5XSHnS7w83aa4kr{<>@6AA&r(0_ZwO=Vv)K*Y8Ph;W+Jbi);ogt?(HVsSQ9{impG9#zjsSSn?PV zy9}g&)a{#!4(=9I81mR>F^#p3#*e;wQ=LbJTkbQQ3>bCsG$NCYJ8()r3Q;V~RVU7+ zQKH^ny;PaA-Q+@ZLef@2YqO8D^ZVI=U5brbsjloD$ap?T&rkU*hzXgPZ*>b$-EYZ3 z?cua(MRrw_{^KX?0|wYa!8_`cT*4$(QDGQv`wc2f*sJ-eoE>YDNpv?ROAd9-0QRq|ii!6x>r?eH+d?5npQlF_Cx_?F7>iqYugnZxZ=k5DN=th6fRVX-p)E*>C^09X;y@W&sOs}5(I8$yCt|&~uWh#5 zPi8XgkA=!_3{IOpRIPf59|vunPR_=TD_|`LkzAz9R|6-Z7w{$WUE!T)ose&B6LM*j zjG&#Md7tJ=Jl#iI_J&267Jmi{jS$LoK&l{ zk1adiZ@8o%JW;IYH)PuvSLiLvd<^d9lg6Sr+R7SB9(7MsFc({1(IWakE% zlxvuVkEaU&$-VpiY3{0e*vpVLYIU3qCcztl_lYVW!j( zAk*}C&!zCXd*@o64sJVaE8OxaiI`#O`|^7pviEPt9bo{j@l1aWEY z@*vL4A1h=Kp?w-JaI4V_dE-9M$*;WJcn-Bwk%v$AKC+5LiO-*2k%S+=jehcwHSI2} zoFndc1mCD6Gcy%NE~j~Zx~!A%poQu4`b`PVx-zuiyrmkosuulxMvKm#MSWdjU=X#a zk=Vd6w~O{XkN3V1?j}a`$r)GKke&ZlcgqkaIYxxnxjA{rBXOo#=P>Ka6TjfsE6q$a zKCxh+XH;zc@A>ug4`Yf-)+f(8;!ck+mSnzOS_t7`qAB5z#h|yix)G@bsh^^Dx&3k+ zdceo1$7|QEOYUA4&NO-keyWuHvtd%&`lbDoY3Dby4yx{$Zb|w3jXuoGJ#~d_)X}20 z!}BZeY33rxt?CBxiF9yA?C?h3qCK@K!=22^2g%sZ*VT*97J~gamVBxo#Sksi+kVZoJ=FmsonpY2!bG4tF;f;Y!fYA*XWyXNdynzs^>T}B zWWW~JqJ2Z#WDhuzJ5AOcb~jntU2~uH%X%_DW&;^?BiufiyE-&;0&5 zch8qAsDojzaqQ`Gie(fGlHMgA6(9l0&dowtG_eMRLLiX5Y;kzZjm(RCvRQ2Ze|IZs zf$(peh7$)v55#7~mOjWfY@ZF>S)s4|=RUgK32%|UcU%7~em@OCcUglop8p`&GB7#3 zV7~;itPo~Mk#j0%S!@ljw~NfY*Wu52;vB`^X0QxRI$6~A%FJZisz`Z;HV!YQWT8EG zQ83_My~4Vx0?5X0w~hmNetA-M)u||qN$C2%G+yM-_3HPLb!EE~aP5t`R>S*I4ssLO z1hNlHBBdi&Q_An;ItSb*qg?5~x}=f0Gs!X(bE@wTeNfRFWZSaF!Yj#qG_0vApKe>D z>^>#4`O7b3Yw?7gBkRX#;rk1oCkQ&tTsu$&?W*{nQ0tG;Qd9&f9T%yW_$Mm;UK^&( z*=tqLZ&_vSucqcZo>b~wOkTAL;8>OIq@9-KDG|Zf6P|a+v_B?Dmh6UyCX8PPYaJmY zN0Vfvp0yqi$2+S|Y4}@KnLfzyap1!2X59-&OJ;e;ee6Q{B#{{sdfhX4J#ebAB0bq* zy|_Y8tDiO({#l<{2zT`eU0P}YP;vp~kqf!*a6lqI?={eUovRDxY1v90RErX{XY`d; zr}w=|nNEd@s<9YSt@`}_s#3@B>kF#{T8Glsy6IC23Rwjo3QfxQwQvg+)sD0a5hQu2 z*}BD@COJXbRXlU4B^aQaW%~xy+|6z$Vopmq^uWjkxXB zjrAO~FrbOp{og<3LQy;gPOcwf&AZQM(|;U$T&#GY4v&w2{m*R-)!`T_&`C6%l%kZ4 zY0Hw9DhY82j!rOt$#Cs;w4Bzb4v>Jz7!?fX zHL^wS5oz{y`U+=dD)-))G=B=+PWJ=FVqwCC1QsMJQ zrJqk>Q^xn-Y&#RmrFMGh6<>!9)&mi9SDvLMrbrAeUwIzE#4sKJU4+@zz z3IFBg!MH_A$pMNawCe8Gy1RN5$Tpua0C}y`!Oui&-g+`ON1eONG|p+{y^`FV4Hm!# zUcU2{sY}k9r!o0H7{A4GBzGl;&Pxk&{hQn>`4TzSAg3HB{-CN{B$X$BtbNifSCOEv ztTC;xmgu=j5sa6C-WBsfkI>GG)3#HA%qU`YuGea1NB$CxAL@P~<#Bq2rGwku(XBIB z`vY!2-9ufT;3$N>8l!JJ0GjnXCy>^kKz9l)+Dpjq+_rkcu{>r-*sU8ab-8=V^hQhxp=4^FeXHwuz zOgy$hhOXNqcPH^Ao#O0Q&7a3(Ru)?F@$7vokGF;rM*P#9@BB*DROi*^-3;g(7E_nv z5=01jC0_9%`>Zh3enS)CE!LV5pm;yQ*JJJ3=7zy=0ZAEU1U1YAMe9OyZq#c zY2z+(5_cs;@!7;_!_r}3N4nvlNBjQZ@nPud;CbnChUoj+ZQulq(!48ZZ6x3GlyD?y z-n?=Q!bPc&VmhLi6@4?kFaH%Vw^af20W(d`JLWBzrJr|?E_4fxw*GmBMsKQtaj7La zyyWo+M#3td;o8@BOVrV3p=D{}uOPg_Ze8VeotPEi?6)A^^TVJPo?V?6t^O`A zN%ivTr|TNmfsMc3J}0hmfA-)~cN2F*g>dIbOIdj-tFhS4PwMKv4gys%sIUqFSD%o% zkc~Pj9D9+c8qDOCHQM{|xNZH>8sKvKp8QMoI(}*?HSl_J_l-M3npXJ>VKAxG_9C2~ z;?&$jB9Vm`DvQDObR-(-62z-!VlfUS8MR)rK82vjn!RhPn8#eMF+;=YrTbO=_xn=I z#wZ%32j28`-C*eCI6=lmOX+vMueDHvEjVS%FiUqr!*zD=1Jk6GymZzda#CCdGv*wS z7ZCI%*{lAKs;>--s^Pkx8M?bmL;(c`knR#uX;HdInt>T$=opkxNd@Uf0coU%ZjjEQ z8A7_d`FO7Dd++;s{?DH?*V$+9z1G@mQ34D|I*c>tgCL8%glisM!3RPbg!Qsx}bM~0I5!tPPM{h3+acj;r1YT+YQiM96 zpOuo@A92PrA*~LHG)X#Svi*dNc>w4)1i6Aq1da&Yu2vT4Gp<9zfvsM#;-6G5Vr;Yi z(HbNR;SLiisDbawp4P(IgCPG<`CP~E%vLjcU|>Z&U6=c>7=PYwPRO!a&Mi=&zHB1A zanq9SeDnEP*t2Xh*Nl^t0~UheMRfAY8gw+2bO$-`!gj5{K&pa8ob1O5ZctAO6SZVt zuQvZ`glkq`vo4^U<5I>(%_f#%G3DcvW!5eR-$3Jrw_j1m>NSIpEKLEQ4C+&b;vko> zbb;Z5l@F#I=#v4ddqro;ISWU7ZEA9mLs~AO1wVtcRhhAv&4ve5GC2%-aO{z)&78{i z&%hH+bKXdJzK1ZrgRyXxQq9wNc_U8#BV2L^rj??78Py9=Rg;ck zb&;d-4Z-gGb>EzyEG#f9-z}fvl`Kz(HPT^jj5PcfosH7#j=E|g{tHxDGwb*s3kwTT zT}!w?lP0O>6w{NFpJwloKfX>uEDW8jbZzrL?WEof=Y8>DxeVRDpXv0qG|AxFKeHqT z?^kojjzFkvTE6j5`wlCWsA9>p^QSOU`fozfkM0l}7(?m=U2 z`0%(eOx>fgK6MrO8w|)-nMb$m_rVEYQH8%&2zFDarJLXftt9o@1u-3xW27+W5~O{< zEdm2gI20!~e;1YrzoF`KUWo449{>K@a1My=4-=BPS<%7JXKr=>m2BxKprY9m>|faf zjM)olVks~MY%8)v*M3%Y@hVbIe!8*JGm0N029)*xZWbq9&ZUA!@y&bdk23ODXBzkX zF?NNdTA&vyln&YVO`9=;yMkEH8EI6?L_S@&7TmzXOb=3Dv_3n3r1+-9sbb{xZ|}yZ z>))erF?l#rbTf&7#h@nfH@{A&9Z7crt|0FRN7opUz`qD{`!(v9_%Gih_&SLQeyNyG z;?;m-j%aH%0@xNB($hv3wB=_7A9(SRpyX{8^|!d+-F=on>?^Xbu@~T71{xQSo}I!a zy{`pC#HvSMJ4BrI7lbjhe`4Tp9H{p zvT+!<4n@`w5s>(rCz(E;eGz0UMb@_jCu=JgCuAMZYplBzCS?|ftAz2D8e97Ty}f*$ zWyz8H*x-%l)pPDIRD`&$Qo#JTW)>EMjsp^R>E_DUey8Z#E}O_f{{N~ZPdFhyK|`cF z-N42?%_gA-QS+7qds?$bG}k&JVBGv*$~4)@@;>k;Yl=EU3$uRv6uDQv_4Gua%*Yb6rt{6|-9zD=^UK7x@b|NkA-;y{DF z#_3yTcWXu0WU8C9)Bl!~C(ehd6f-4^SC9~7G1Fe(n3W5zCzGMFk2{-$U+SqTmM^!G z+dTXWL-0puHQ`s61DraAz~)JeC9PBmVpUgv>{of-aP!wZhw?8UM@__M@Cp$#Ce0kX z&u2Onl`1|z3wEH0qvN(Mo)u|jNESn28%uY*lX^H-zL-Q;`yNg(ltxkfW=7k@Fo;Z+ zz5OV9xf825`KOgU=JJH6#`;X>4ij4pL~JPGJhXYO(@?rfEJ|iiFr?2F?wXoX91?8` z`al?3$D2?K69xX+-~`j=2f2665(In=jwVq|OI<2XSbvL~_~dJ5r0UqHLpn$&9$u|G zq%*W8o{{MDDISnr1gPF=`{+sS&iLg#p^Cs7QC7U@RyEsF*k%jZ0*Q|J(;jNzoB94t z^?*l-T0ZPhB>j#ruD2d#zE7`G=>*CDd!szps@`(F8Qec+xDZ~}bl0<%SqsS|azFZG zMP?nC|22ok#s7qWO>KQAQA7I=LubuK_+QW2#`cyRGI`Th0y5hpLQ=y#{?c-#iy8*} zWL{6PzN$-n-{AGf%{inyz{M;QgT7b`XqUuKRR@cd; zJ2vUG4Vt~bP5;bL_ayKlp(m7Udxxq>x%6ryH@)+A$|fBrh37$uMRKqQN_-)8X4xhnXoBIq@ef5W!s`EU3QPz0etn+^)&iXnX>II3r6U~=GSBG1 zEu={3@xZPJhQru5Pd@Gh#k|wYD(;{JD=D1}0Dn+r6QGj`eRpq zK7{*&RHHwQ(2e7{(@H9idvF~bDfJyT@XnfMB zOJJ{fRoD42HPdR~NK$KPUygMKmw5*&r}d8yfitEp$+>MZO<2~afj>w$a%-)Wj95c= zv?VFezkc-i-a*%smX7y;rf>ug=opWa)EO0^$i4OO_#lfVPKWEb!uu>LQjzM!opMN+ z`RDi;s^(+NB?wTTM9M1ts>=g`Oj`S{S}S2CC&O8?7g2$F#Ri+bzm~+ZRbJb`&*cZ` z6!DFg@nHqed5fzNix|(<%6o2}2xru@XNVsXw}tjr1OWBmB(5&0l68Ou)(m|-_~$Z$ z-&-j>45;LbmRX)UJTx<6@$B#~;F5OHGZubN zT7E1EuJZ`4AH@6B^$;EH@2S%&e262(PcOGx4_TpFz zHajBR77xFV?WVubU(dftw<{Mj&#S#jFrp=OWN8Wv*x=gh43LFMDb??}YDDm{X0eB% zFZTXxjI~^wzC?c=6rnT%6$Q z)~u7QPo6&KHUCeXW~}V>e%pEs27MD+@hcEk-JzZuaL5(#Z9d@c2APMm&zCY4qV0}0 zxsp_9a8)PYu{I*qt09H2r41~!o@{w0o#_cU*4SJ<#Rhkth6+d4^8d^Kus_*13@q_z z^xJR2g9Fc%C`Ha5--|!~KhUlU4Af;n7ZlG64h^xLO3Gd!B3+};GG$hQG!IE}KKp`= zk6qgs2LX+@>>Jz{E_zrfzS)B7$%U!bU=(ewC12Cv(pb;D1tWt7>6+CqV>7^GeqMQ8#~lNIYL83Tblw}#V|1P-Hyb+cgwp?J|U ztzQU~_BKg1$PjmRlNk5)rfj6_o3oU&`mgeIZpgPUcZeStT6*06dRP0FXmU#(f1qo; zKLVyJce&(_)E5zUJ2~-KP){d6oh%*BCWR>7@r*(JL@ErX<}4$3a+eHT;t zB=TVy{f}${Q@QMYe{)h|+-r&@b^5qV_1OgQgi3bp*EEw$M<)9)#{@?y6MbQ23ZRv1ljri%l) zHi}7XU6Tfc5Omiu7i;$=-46nJpBl2u=Df5;I08i&6>Qe|ljIybyw%-~e)UO)svd-4 z@@Jg~$g>zYDjI0q%Tr({Ke-kIK?)KnNV;Yk5e;E?AJ!s^#~vIDN$3Z|vSq>Qo9Q5- zojOise43$z*#-#hgOGRf3)a)#Yu=LQ*Y5IF+H^4d+5E-VjezHTSPG%yN>a_O^FSoc zkkn(j{E%_V9bRB$aMg4s^vL)@&k>Mx21o=g8m~kqDIxC}+b9#q z1!@3RoAwC{kQ9bgQF6w-ZmpM$**C3iPoj%dWEUtbzVuqPc=MQCY^3KX8E2tVdn+tJ zfbB{GqAujSz%Iz)oZG%{x;RSz*;TzqC3{H$AvRvM4yA-uw9pq-;XCv-ClKl3GkL`&3P4uP z!+)LNcV9r}j*zDznXI`qPNeHX8UsD}d*P>|G#>>S`5RTh-*C47`n{0DROndDVoiQC z@`RFbVK0v?-3O-%cIDDA_p$cR!VZhSX?mGA1ewm~6+Uy`+*l`&C=6^_{8G$_O0I7N zpefcoKL+j+vYeFZho1VgLV$(pi0RJR5e2#BJ1mtb)@9+wZ~m8~>A3;7VF78Z^R>yh zgLgX%KL`Df*pn!nlJ;z9Lj7ubQUm%LD8+~ql4thn4BJUK`~!aVc>RxHs4*SXD(az- z!5&G3{}g|`hiCidu$Mn(F?kMgO+I{5n!&jD^{gg$(W42v-1Gz^ zOAPTpA^=29GNyDzK8q9XV9y2`w6UpLV|!7;M_uhcuEp{pw3lah|0h%x;tnO{-$76K zVQwds)cVS7T|4|t)zKR)`CkRPpcJ@ICO9;xHla^93nOe(PsadA#Ue z6(sNR{RJ_%WTTe`C1_xW6-#Nq4+s5gG`70@Ldnh`lF4zH5c1AS)eK)=9Yd!I-jQU0P)~=0A&hDQAEzWR=01I3h5! z*BQ&t*+iAgBaIxF@j-qYooykcLWLn!XH%wAc?wvl(8NUj<|lz9XK*xV9uOO+$>tae zs|+>rDymG=1%8=K;;1iWRDBY>m_}6_(UU7BEkn9ih%Ek+1DasXjO0Q>6qvYvxQtb= zf81k`opRA|;EL7Jm}#D%IB_Sn`~Dy;r3i0joyK}|e`guDOv9vPeC$*HMsZ{#ZS7_;Zs#r_Y&B%HCoK?UO~Uv z{_@*T%xyvV*5EPxEoj;Tfj||B@wmtw_CQJb12;9VfkYUKP|Nl*akBwLgP<(< z>~f!OMK-_Rgf-44&lX?=de3UVC(@y+lB1ViA=>HFT#f*K?T7)#m#JMfac~GfMUD>? z!UULA3)SrZu6B{4!#-R6y}brh$YN*fft-B?$$N!PX``Z@i$i9-Tb&D%jbkx-BD}NT z87!W@tXj7I=gJ?Lg5?w|_wzSkp)xLNQdX{#DE8=1_v{_%|DZLMHdh>rLJxr;J1 zSo{=VvzjmF&78HEa9Xl-Zn7qom+afEIG;7u$6!$gcBIQBcnrPW@+SGTouF;wHoUv~ z-<>C*0`x)jj)m?w&0;di!PUiDdKZ`&A?8><)New*W*RhiqoQ}2!bL4GxIk+<=zZgV zu+%Z>JX=En9;#mOmoh=QJ!vkRs98L0C%f6MO;~GxYY0WI@_d@V@Z@2+mLYRr-Z{w6octV%K2EFuW3aT(4J4 zEsDz1ZhZyHY*yhzLEYJ8U$qk((1kx*I_!YI1!+?)?EV;+>q;-r{y^ONC;sY`Gms11YO%}>DI`z$>$_nB_Gm{0t?DvuED-W2+ z@`s5V_2hN!b!H?P3GtTkPtp)(Jf7xnsIFsGfQFaQA>Q^W=qi zwUj1lLR9Qt1eT!PKqn#01hk^bJsPZ6a9U?sJSVtZPPl&}J;Roq-X$m;Zy^+ZHg-Yq zG6!FDe&vh!W>&c%&&FCy8<*V~-{D*SO4uvcw&zIm(R-YYGS5ztiETR*sLz3lk`KGJ7Ce?te>HsG5orC)f zijy)<(z*uzx)%4r&3;$T``cx+EU?5JeO*a~`4z48avY=L|Bm}Lw58q`L`&Jt*jamz zp3sqT@;bfUT;ax%-vu1}0pyRWsC?C{3|AeVb5WIlv1Ksq^_tB(X#NCF;Vm94HBz7R zO}XXwu@=7A-x5!f=fXqfyQ90yI-Alj_imyB(k?%a9`DDq{ z;{m&I!p6rrGmGQ%64-I3qte2$2;)CX)nDDth^y+2emaq;QzRYvZ}U9xn{j#^gashYum*q z*kpMH@lg6GSc#u#!o#B{w;uI%y4R#NoZon+RlDtx7_w7R7x8#&KjPxcCo5WjLocHF zG3nQSzLbX0ATcK)JOV^0C&GoP;HxWqqU|%`n2hzUlUYMbabp0_4n^yv7caBi)X^$n z6%VpHiR$Pl_2o*r`x++JszdcV`L@$`G@wnJNag)YH69{;964Au=uh+_xHZjTe!;|_ZX?=w4Bg3V3Hnie@F)(Eq2vKnjn3sC z-6+Q?-v*RG;B$(!1juIdzyxV+fj)kj!Ih6@ckotgAWUC>v$i7nl(5=Y&bS3ogbRLg z^m*6MORBj{p#K&>XQk}jgDRvK?{i0Bt*uAIep^whs@+lRU$=b>{3-w9+eh~v&!EQA z>`UUIJlP2;LDpjOD7w|alYWLBI_F@a?-1yll)*Bkw%0mMnI$T~2R^ivU3u97tvbS(GVc)Jz*;E9$at?1O-Nmk%8c1G>pzTh&pbjM%fwIdEi zB@dln1_T23rbek#k{Ubc)xTkOXMf(&QnTeOUqwBPEnj=iYTn7^1OV(ZqN;i3crk zhXkuNtyf?vBh$jh!f{NNmr;$+QV1DOeBu)5>-Sf=aYSEK+jKn z1Sm$9B6p%=^oCGI4RPT6E4zfHZ7-CjQTI48Jy`Io9)6v)lIz@VtL_%**@<38(l>oa zN6IWO7X7;3v#Q^-FHIU%SS|xbBpz3skgkoti5J-LxvH*}z&u%Sb&Ae_hUlVGoo%7L zVo^s=t~M_Xr%`TS_qyIlzRxTpW3I{`pqOi3J&m}{{&*85#cOGuulPSAdrlleEzV{U z-ePtik_AUo)66NT;^pQp&Hl!=aD0Keru;QZJ{PTQN=2|4v_GMCluDqSCb!vn1 zOPj^C%w(C{`tl9gD^5UXVYT9@~SYq0#-*GH5hl2Z${VrM#~{!Trspf z`m{^#7JiBONH+4FM-TLgX})%SORREqkXI8^P}SzXZf3M>IkpL)7}fY@B&H10Ls`S+0^N}X}etD1JJrmEKddl!f=L59DZxU8RX zmGXrmS0u0&)>yvy`v0Tl!8~i#r^S090$|E~3ZoWqzqqV)J8Cdm-1XVVuoLlMDdNQt zRfc6F*$!I8GiR~aslD7T0tfhy0WUuM=^%4IOuB4KP06YU0w6$;fDsPt-Gewq@KJ^S4qx!-IoGW*!oVUCn7;NQz(AZaKa@DAz^vXNe#Q z|Mx>;5k6P;)>EPsI<0TFhsL(A;%#e@0;J*oh%{!LM+GH?Kx9uH&!goi4Yj#k9XByK zhyD&y+Um{~xim`FDZ$Kxm(_q@v>S?%@&klpPWg@XX5U410@Ca2eDMX$kd1!Eg;djK z%bFkSHsWECRb*sCs5o%_k*LRH^~h*lRBNTgCWbnbS;Y04lVkH|`T#|0%Gf{xFyJEl z-8*#kiq~rO&HEfzB(!0Ip2(7X2=c`1HtsezpiyjE0n_;UBi!{ zjqNpykJ!qPM#X%B9=YO0>78fRN1KmjOMdLeARMSo-uQcx)A9qhr`TV_fafQh|a<7UO+%ry1rgOizQwngPvN`sz*|>26M?z8(vcs4J*FFEIdXqpnu~d_UUUN9^ zk|H<_n(4A6H9WI!=wXAE%?JmIk{Ppu`#8a+9I>oUm^ybo%`xqTb+C7=*ax&elxBARb*J zI!&UNK1ZwlE5)3O8ds+#V4E4}Mcj^QO)%fW?bbJ1P(gvKQeH9Dtn`4&wbL6i3kSFk z^0Gr@U3H?}-6(1qQ%p3&ME^x_BoSJdvSkmcYj`EEKFhMz%3^YC!ty^Tc&|1_xyA=N zMTFIOce-#p6F)j?Z2wOQ-+rQoQOG}kLQFZI$fRrQcCxdzVRN^#RzvJz;F$OG{=R0^ z?R=j*mGYTh_vTVaq~;K*+%BCm_UGRTupPtV=5Jz1WlH`pQE0{XXZyt#FD;F$o|E8S z^DVxZZEdJwL>A%gZ&7A>5aKV}4qzR6u_Ak)1v|MOuEf1=Rx?Je=FvRg=%zN^7!WQj zdGH6-Mxo{>f-z_5Hkh{DrU5g&B!kmHde55)X%O3~=@RHs~Q}0YmElK-nTWIYUmJ}7To-eQD*%+^#gmzM6);OE$uF0 zUoS5yUs2VF#TBd9hj@LD-Skowb-8nJ#q)>< zphqA^Iq{xz=b^k3uA#93pfoRgv*WIW4kE{D@g?nIx&WV}4_@8RjZ#3sNW zLj3vmfODE-jiJ+o()K7;IgmfwGu@+#_JqMi^s?#WO8w@-NO%{mv%HV1<2tx*=hDg+p`=R$0qTy4aZ{5d^Q+u?SLerUWP7FZ-_2 z*u zynpwJwi(@+a(MTFLL(qhIF#08wf?`CUYKbh=o3L(keQ-@M{3e8NLmTAIZchJr5jSy zx|S5ZcL!@Yr8^|##Yy_0K3Cl;{0cd&HDoZE-1avwKh#}SiHIx*f)*dxgv zglvrt4V?ZWCN8A3tWsdrJ37-a*glv9op*XM3uUW|{=j`?)a1r4;vsgQ`#C9P4qVD$ zsWl5m#7OQ7Zcy+12wU;y8^!ybltZD>yB4fj{>fWBVzO=%pXQ|@a+S}!_FbPNv#C(| zSM7qGbHu#D+ZE<+6gm2saG$pi@PD{nb9nq_+)tDAW(&-0!Ko6N-b~q;De)H@N7u%r zOH}#q>>N|u>@wHz=dl6P52}8sE2^P^U%tvs;Ye-L&NB|w1d&!jt*#UeAG7U53yROl zg^Oy`5M;FLugAK}qVH6)YQ9tt`O>>Ob(aaM zLmu7aWZ;d|)X**S4%tNFOjeZ;e{Fsj%Gdw748i;$x87WZuE~#^Vb>oh!F&~{w%ChQbck;vs=y(-9dKJcb-TEi`3 zKMj0rWm;xmo0p>f=rV!HeE zNzu&CHDs8L4W~GmGnln%P;^6oyyrjN70}dbzYstXIo^6>7&KUACYg#jBWx;CDdoL4 zxFV!4<{Wr@rWoeD<>PjZbMtO&(X)o=FAGVI{)7pwbV< z)475pB1jkW&$=#Wk7G&=x$&?5EyHoc?|%?xGvD*y(nD_Qgk@nw*wAkz7sG%rvC|S> zd4}zF>RxjVq1LaUE$y@XTHAdA}0+rW_X{&$)K{3Ep?`I zwP9K#7wk_lL7!*yef27KAAbP!091kfV(IsJszz!RZ_2mkqA5@EMW5s#xG64kKkQ2y z2uCVtq>^~ClvI&06B<^xp@KD^`)rH$^*e<*E<8Zyph(=T2x>SmPTH0`yPVP;|@B zpNvRn4(KGAaWR>`)>h1*Te#2|ISM3+_OKoWdVPk^=4eZ{E7t|KO9Z#?8z$y$%Kv%kV^}rbZP&Ds$yfs1&@)rC|Q%BFSxex^zjT9 z-*`mK=iP-)G=OC_n*Ga99g_R;(M01B_4#>XIuPMuyQey_SCr=BDN`TxfCXR;@0e-v z=Pc0j}%rCsaf}`dUK#tBdMawV0~kM z3cd-tx)=KgJu=PIQgn}T*0m{?pVGoiaP-YJc=3=RmspsICnRtm&D?eVv7a_){~a7= z^eg96UN&asi3XnHOQvE&zs)hh-Q&Rd6={gSChoG^#*N3a54=x5bv~f=iYvUW)l0R* zR%5OLa&WSg1M;lN{5t;QOYiLUgp#aqE~31XUNB%e2Y@|#P!vnG8hVaSW?^2=ScNMJ7KyoF!gN0y z#*jMe#%g`7qfVkVyQVN9`n6tq8CwbR*}bo>Q+tHp4{9b;^nJOml>#8ke9i)xJLUtI z4-V%)n&KsS+jo9XUeOY{-K*(ym1s?(@PTqGxCCL@=ky+$hAFk4CSxmCcXRHineY5@ z{JjoR*RDN+SH%8N5bj^na08OTs+n