|
| 1 | +""" |
| 2 | +Load CHC data. |
| 3 | +
|
| 4 | +Author: Aaron Rumack |
| 5 | +Created: 2020-10-14 |
| 6 | +""" |
| 7 | + |
| 8 | +# third party |
| 9 | +import pandas as pd |
| 10 | + |
| 11 | +# first party |
| 12 | +from .config import Config |
| 13 | + |
| 14 | + |
| 15 | +def load_denom_data(denom_filepath, dropdate, base_geo): |
| 16 | + """Load in and set up denominator data. |
| 17 | +
|
| 18 | + Args: |
| 19 | + denom_filepath: path to the aggregated denominator data |
| 20 | + dropdate: data drop date (datetime object) |
| 21 | + base_geo: base geographic unit before aggregation ('fips') |
| 22 | +
|
| 23 | + Returns: |
| 24 | + cleaned denominator dataframe |
| 25 | + """ |
| 26 | + assert base_geo == "fips", "base unit must be 'fips'" |
| 27 | + |
| 28 | + denom_suffix = denom_filepath.split("/")[-1].split(".")[0][9:] |
| 29 | + assert denom_suffix == "All_Outpatients_By_County" |
| 30 | + denom_filetype = denom_filepath.split("/")[-1].split(".")[1] |
| 31 | + assert denom_filetype == "dat" |
| 32 | + |
| 33 | + denom_data = pd.read_csv( |
| 34 | + denom_filepath, |
| 35 | + sep="|", |
| 36 | + header=None, |
| 37 | + names=Config.DENOM_COLS, |
| 38 | + dtype=Config.DENOM_DTYPES, |
| 39 | + ) |
| 40 | + |
| 41 | + denom_data[Config.DATE_COL] = \ |
| 42 | + pd.to_datetime(denom_data[Config.DATE_COL],errors="coerce") |
| 43 | + |
| 44 | + # restrict to start and end date |
| 45 | + denom_data = denom_data[ |
| 46 | + (denom_data[Config.DATE_COL] >= Config.FIRST_DATA_DATE) & |
| 47 | + (denom_data[Config.DATE_COL] < dropdate) |
| 48 | + ] |
| 49 | + |
| 50 | + # counts between 1 and 3 are coded as "3 or less", we convert to 1 |
| 51 | + denom_data[Config.DENOM_COL][ |
| 52 | + denom_data[Config.DENOM_COL] == "3 or less" |
| 53 | + ] = "1" |
| 54 | + denom_data[Config.DENOM_COL] = denom_data[Config.DENOM_COL].astype(int) |
| 55 | + |
| 56 | + assert ( |
| 57 | + (denom_data[Config.DENOM_COL] >= 0).all().all() |
| 58 | + ), "Denominator counts must be nonnegative" |
| 59 | + |
| 60 | + # aggregate age groups (so data is unique by date and base geography) |
| 61 | + denom_data = denom_data.groupby([base_geo, Config.DATE_COL]).sum() |
| 62 | + denom_data.dropna(inplace=True) # drop rows with any missing entries |
| 63 | + |
| 64 | + return denom_data |
| 65 | + |
| 66 | +def load_covid_data(covid_filepath, dropdate, base_geo): |
| 67 | + """Load in and set up denominator data. |
| 68 | +
|
| 69 | + Args: |
| 70 | + covid_filepath: path to the aggregated covid data |
| 71 | + dropdate: data drop date (datetime object) |
| 72 | + base_geo: base geographic unit before aggregation ('fips') |
| 73 | +
|
| 74 | + Returns: |
| 75 | + cleaned denominator dataframe |
| 76 | + """ |
| 77 | + assert base_geo == "fips", "base unit must be 'fips'" |
| 78 | + |
| 79 | + covid_suffix = covid_filepath.split("/")[-1].split(".")[0][9:] |
| 80 | + assert covid_suffix == "Covid_Outpatients_By_County" |
| 81 | + covid_filetype = covid_filepath.split("/")[-1].split(".")[1] |
| 82 | + assert covid_filetype == "dat" |
| 83 | + |
| 84 | + covid_data = pd.read_csv( |
| 85 | + covid_filepath, |
| 86 | + sep="|", |
| 87 | + header=None, |
| 88 | + names=Config.COVID_COLS, |
| 89 | + dtype=Config.COVID_DTYPES, |
| 90 | + parse_dates=[Config.DATE_COL] |
| 91 | + ) |
| 92 | + |
| 93 | + covid_data[Config.DATE_COL] = \ |
| 94 | + pd.to_datetime(covid_data[Config.DATE_COL],errors="coerce") |
| 95 | + |
| 96 | + # restrict to start and end date |
| 97 | + covid_data = covid_data[ |
| 98 | + (covid_data[Config.DATE_COL] >= Config.FIRST_DATA_DATE) & |
| 99 | + (covid_data[Config.DATE_COL] < dropdate) |
| 100 | + ] |
| 101 | + |
| 102 | + # counts between 1 and 3 are coded as "3 or less", we convert to 1 |
| 103 | + covid_data[Config.COVID_COL][ |
| 104 | + covid_data[Config.COVID_COL] == "3 or less" |
| 105 | + ] = "1" |
| 106 | + covid_data[Config.COVID_COL] = covid_data[Config.COVID_COL].astype(int) |
| 107 | + |
| 108 | + assert ( |
| 109 | + (covid_data[Config.COVID_COL] >= 0).all().all() |
| 110 | + ), "COVID counts must be nonnegative" |
| 111 | + |
| 112 | + # aggregate age groups (so data is unique by date and base geography) |
| 113 | + covid_data = covid_data.groupby([base_geo, Config.DATE_COL]).sum() |
| 114 | + covid_data.dropna(inplace=True) # drop rows with any missing entries |
| 115 | + |
| 116 | + return covid_data |
| 117 | + |
| 118 | + |
| 119 | +def load_combined_data(denom_filepath, covid_filepath, dropdate, base_geo): |
| 120 | + """Load in denominator and covid data, and combine them. |
| 121 | +
|
| 122 | + Args: |
| 123 | + denom_filepath: path to the aggregated denominator data |
| 124 | + covid_filepath: path to the aggregated covid data |
| 125 | + dropdate: data drop date (datetime object) |
| 126 | + base_geo: base geographic unit before aggregation ('fips') |
| 127 | +
|
| 128 | + Returns: |
| 129 | + combined multiindexed dataframe, index 0 is geo_base, index 1 is date |
| 130 | + """ |
| 131 | + assert base_geo == "fips", "base unit must be 'fips'" |
| 132 | + |
| 133 | + # load each data stream |
| 134 | + denom_data = load_denom_data(denom_filepath, dropdate, base_geo) |
| 135 | + covid_data = load_covid_data(covid_filepath, dropdate, base_geo) |
| 136 | + |
| 137 | + # merge data |
| 138 | + data = denom_data.merge(covid_data, how="outer", left_index=True, right_index=True) |
| 139 | + assert data.isna().all(axis=1).sum() == 0, "entire row is NA after merge" |
| 140 | + |
| 141 | + # calculate combined numerator and denominator |
| 142 | + data.fillna(0, inplace=True) |
| 143 | + data["num"] = data[Config.COVID_COL] |
| 144 | + data["den"] = data[Config.DENOM_COL] |
| 145 | + data = data[["num", "den"]] |
| 146 | + |
| 147 | + return data |
0 commit comments