@@ -737,13 +737,13 @@ with estimated standard errors:
737737
738738$$
739739\begin{aligned}
740- \widehat{\mathrm{se}}(\hat{p}_w) &= 100 \cdot \sqrt{
741- \left(\frac{1}{1 + n_e}\right)^2 \left(\ frac12 - \frac{\hat{p}_w}{100}\right)^2 +
742- n_e \hat{s}_p^2
740+ \widehat{\mathrm{se}}(\hat{p}_w) &= 100 \cdot \frac{1}{1 + n_e} \ sqrt{
741+ \left(\frac12 - \frac{\hat{p}_w}{100}\right)^2 +
742+ n_e^2 \hat{s}_p^2
743743}\\
744- \widehat{\mathrm{se}}(\hat{q}_w) &= 100 \cdot \sqrt{
745- \left(\frac{1}{1 + n_e}\right)^2 \left(\ frac12 - \frac{\hat{q}_w}{100}\right)^2 +
746- n_e \hat{s}_q^2
744+ \widehat{\mathrm{se}}(\hat{q}_w) &= 100 \cdot \frac{1}{1 + n_e} \ sqrt{
745+ \left(\frac12 - \frac{\hat{q}_w}{100}\right)^2 +
746+ n_e^2 \hat{s}_q^2
747747},
748748\end{aligned}
749749$$
760760
761761which are the delta method estimates of variance associated with self-normalized
762762importance sampling estimators above, after combining with a pseudo-observation
763- of 1/2 with weight assigned to appear like a single effective observation
764- according to importance sampling diagnostics.
763+ of 1/2 with weight $$ \frac{1}{n_e} $$ , assigned to appear like a single effective
764+ observation according to importance sampling diagnostics.
765765
766766The sample size reported is calculated by rounding down $$\sum_ {i=1}^{m}
767767w^{\text{geodiv}}_ i$$ before adding the pseudo-observations. When ZIP codes do
@@ -788,28 +788,33 @@ and $$V_i$$ denote the indicators that the survey respondent knows someone in
788788their community with CLI, including and not including their household,
789789respectively, for survey $$ i $$ , out of $$ m $$ surveys collected. Also let
790790$$ w_i $$ be the self-normalized weight that accompanies survey $$ i $$ , as
791- above. Then our adjusted estimates of $$ a $$ and $$ b $$ are:
791+ above. Then our initial weighted estimates of $$ a $$ and $$ b $$ are:
792792
793793$$
794794\begin{aligned}
795- \hat{a}_w &= 100 \cdot \sum_{i=1}^m w_i U_i \\
796- \hat{b}_w &= 100 \cdot \sum_{i=1}^m w_i V_i.
795+ \hat{a}_{w, init} &= 100 \cdot \sum_{i=1}^m w_i U_i \\
796+ \hat{b}_{w, init} &= 100 \cdot \sum_{i=1}^m w_i V_i.
797+ \end{aligned}
798+ $$
799+
800+ After combining with a pseudo-observation, defined as before,
801+
802+ $$
803+ \begin{aligned}
804+ \hat{a}_w &= 100 \cdot \frac{n_e \frac{\hat{a}_{w, init}}{100} + \frac12}{1 + n_e} \\
805+ \hat{b}_w &= 100 \cdot \frac{n_e \frac{\hat{b}_{w, init}}{100} + \frac12}{1 + n_e}.
797806\end{aligned}
798807$$
799808
800809with estimated standard errors:
801810
802811$$
803812\begin{aligned}
804- \widehat{\mathrm{se}}(\hat{a}_w) &= 100 \cdot \sqrt{\sum_{i=1}^m
805- w_i^2 \left(U_i - \frac{\hat{a}_w}{100} \right)^2} \\
806- \widehat{\mathrm{se}}(\hat{b}_w) &= 100 \cdot \sqrt{\sum_{i=1}^m
807- w_i^2 \left(V_i - \frac{\hat{b}_w}{100} \right)^2},
813+ \widehat{\mathrm{se}}(\hat{a}_w) &= 100 \cdot \sqrt{\frac{\frac{\hat{a}_w}{100}(1-\frac{\hat{a}_w}{100})}{1 + n_e}} \\
814+ \widehat{\mathrm{se}}(\hat{b}_w) &= 100 \cdot \sqrt{\frac{\frac{\hat{b}_w}{100}(1-\frac{\hat{b}_w}{100})}{1 + n_e}}.
808815\end{aligned}
809816$$
810817
811- the delta method estimates of variance associated with self-normalized
812- importance sampling estimators.
813818
814819## Appendix
815820
0 commit comments