|
| 1 | +test_that("return expected number of rows", { |
| 2 | + r <- epi_recipe(case_death_rate_subset) %>% |
| 3 | + step_epi_ahead(death_rate, ahead = 7) %>% |
| 4 | + step_epi_lag(death_rate, lag = c(0, 7, 14, 21, 28)) %>% |
| 5 | + step_epi_lag(case_rate, lag = c(0, 7, 14)) %>% |
| 6 | + step_naomit(all_predictors()) %>% |
| 7 | + step_naomit(all_outcomes(), skip = TRUE) |
| 8 | + |
| 9 | + test <- get_test_data(recipe = r, x = case_death_rate_subset) |
| 10 | + |
| 11 | + expect_equal(nrow(test), |
| 12 | + dplyr::n_distinct(case_death_rate_subset$geo_value)* 29) |
| 13 | +}) |
| 14 | + |
| 15 | + |
| 16 | +test_that("expect insufficient training data error", { |
| 17 | + r <- epi_recipe(case_death_rate_subset) %>% |
| 18 | + step_epi_ahead(death_rate, ahead = 7) %>% |
| 19 | + step_epi_lag(death_rate, lag = c(0, 367)) %>% |
| 20 | + step_naomit(all_predictors()) %>% |
| 21 | + step_naomit(all_outcomes(), skip = TRUE) |
| 22 | + |
| 23 | + expect_error(get_test_data(recipe = r, x = case_death_rate_subset)) |
| 24 | +}) |
| 25 | + |
| 26 | +test_that("expect error that geo_value or time_value does not exist", { |
| 27 | + r <- epi_recipe(case_death_rate_subset) %>% |
| 28 | + step_epi_ahead(death_rate, ahead = 7) %>% |
| 29 | + step_epi_lag(death_rate, lag = c(0, 7, 14)) %>% |
| 30 | + step_epi_lag(case_rate, lag = c(0, 7, 14)) %>% |
| 31 | + step_naomit(all_predictors()) %>% |
| 32 | + step_naomit(all_outcomes(), skip = TRUE) |
| 33 | + |
| 34 | + wrong_epi_df <- case_death_rate_subset %>% dplyr::select(-geo_value) |
| 35 | + |
| 36 | + expect_error(get_test_data(recipe = r, x = wrong_epi_df)) |
| 37 | +}) |
0 commit comments