@@ -240,18 +240,21 @@ aheads and some variations we will use later.
240240``` {r arx-kweek-preliminaries, warning = FALSE}
241241forecast_wrapper <- function(
242242 epi_data, aheads, outcome, predictors,
243- process_data = identity
244- ) {
245- map(aheads,
246- \(ahead) {
247- arx_forecaster(
248- process_data(epi_data), outcome, predictors,
249- args_list = arx_args_list(
250- ahead = ahead,
251- lags = c(0:7, 14, 21),
252- adjust_latency = "extend_ahead")
253- )$predictions %>%
254- pivot_quantiles_wider(.pred_distn)}) %>%
243+ process_data = identity) {
244+ map(
245+ aheads,
246+ \(ahead) {
247+ arx_forecaster(
248+ process_data(epi_data), outcome, predictors,
249+ args_list = arx_args_list(
250+ ahead = ahead,
251+ lags = c(0:7, 14, 21),
252+ adjust_latency = "extend_ahead"
253+ )
254+ )$predictions %>%
255+ pivot_quantiles_wider(.pred_distn)
256+ }
257+ ) %>%
255258 bind_rows()
256259}
257260```
@@ -269,24 +272,25 @@ archives, and bind the results together.
269272forecast_dates <- seq(
270273 from = as.Date("2020-09-01"),
271274 to = as.Date("2021-11-01"),
272- by = "1 month")
275+ by = "1 month"
276+ )
273277aheads <- c(1, 7, 14, 21, 28)
274278
275279version_faithless <- archive_cases_dv_subset_faux %>%
276- epix_slide(
277- ~ forecast_wrapper(.x, aheads, "percent_cli", "percent_cli"),
278- .before = 120,
279- .versions = forecast_dates
280- ) %>%
281- mutate(version_faithful = FALSE)
280+ epix_slide(
281+ ~ forecast_wrapper(.x, aheads, "percent_cli", "percent_cli"),
282+ .before = 120,
283+ .versions = forecast_dates
284+ ) %>%
285+ mutate(version_faithful = FALSE)
282286
283287version_faithful <- doctor_visits %>%
284- epix_slide(
285- ~ forecast_wrapper(.x, aheads, "percent_cli", "percent_cli"),
286- .before = 120,
287- .versions = forecast_dates
288- ) %>%
289- mutate(version_faithful = TRUE)
288+ epix_slide(
289+ ~ forecast_wrapper(.x, aheads, "percent_cli", "percent_cli"),
290+ .before = 120,
291+ .versions = forecast_dates
292+ ) %>%
293+ mutate(version_faithful = TRUE)
290294
291295forecasts <-
292296 bind_rows(
@@ -349,7 +353,8 @@ p2 <-
349353 geom_point(aes(y = .pred, color = factor(time_value)), size = 0.75) +
350354 geom_vline(
351355 data = percent_cli_data %>% filter(geo_value == geo_choose) %>% select(-version_faithful),
352- aes(color = factor(version), xintercept = version), lty = 2) +
356+ aes(color = factor(version), xintercept = version), lty = 2
357+ ) +
353358 geom_line(
354359 data = percent_cli_data %>% filter(geo_value == geo_choose),
355360 aes(x = time_value, y = percent_cli, color = factor(version)),
0 commit comments