@@ -163,13 +163,10 @@ data_substitutions <- function(dataset, substitutions_path, forecast_generation_
163163 ) %> %
164164 filter(forecast_date == forecast_generation_date ) %> %
165165 select(- forecast_date ) %> %
166- rename(new_value = value ) %> %
167- select(- time_value )
166+ rename(new_value = value )
168167 # Replace the most recent values in the appropriate keys with the substitutions
169168 new_values <- dataset %> %
170- group_by(geo_value ) %> %
171- slice_max(time_value ) %> %
172- inner_join(substitutions , by = " geo_value" ) %> %
169+ inner_join(substitutions , by = join_by(geo_value , time_value )) %> %
173170 mutate(value = ifelse(! is.na(new_value ), new_value , value )) %> %
174171 select(- new_value )
175172 # Remove keys from dataset that have been substituted
@@ -383,8 +380,14 @@ update_site <- function(sync_to_s3 = TRUE) {
383380 slice_max(generation_date )
384381 # iterating over the diseases
385382 for (row_num in seq_along(used_files $ filename )) {
383+ file_name <- path_file(used_files $ filename [[row_num ]])
386384 scoring_index <- which(grepl(" ### Scoring this season" , report_md_content )) + 1
387- score_link <- sprintf(" - [%s Scoring, Rendered %s](%s)" , str_to_title(used_files $ disease [[row_num ]]), used_files $ generation_date [[row_num ]], used_files $ filename [[row_num ]])
385+ score_link <- sprintf(
386+ " - [%s Scoring, Rendered %s](%s)" ,
387+ str_to_title(used_files $ disease [[row_num ]]),
388+ used_files $ generation_date [[row_num ]],
389+ file_name
390+ )
388391 report_md_content <- append(report_md_content , score_link , after = scoring_index )
389392 }
390393 }
0 commit comments