|
1 | 1 | --- |
2 | | -title: "`r params$forecaster_family`: evaluation on 2023/24 in 2024/25" |
| 2 | +title: "`r params$forecaster_family`: evaluation on 2023/24 in 2024/25" |
3 | 3 | date: "compiled on `r format(Sys.time(), '%d %B %Y')`" |
4 | 4 | output: |
5 | 5 | html_document: |
@@ -116,12 +116,12 @@ param_table <- params$forecaster_parameters %>% |
116 | 116 | geomean_ae = round(GeoMean(ae), 2), |
117 | 117 | mean_wis = round(Mean(wis), 2), |
118 | 118 | geomean_wis = round(GeoMean(wis), 2), |
119 | | - mean_coverage_80 = round(Mean(coverage_80), 2), |
| 119 | + mean_coverage_90 = round(Mean(coverage_90), 2), |
120 | 120 | ) %>% |
121 | 121 | rename(id = forecaster) |
122 | 122 | ) %>% |
123 | 123 | arrange(mean_ae) %>% |
124 | | - relocate(id, mean_ae, geomean_ae, mean_wis, geomean_wis, mean_coverage_80) |
| 124 | + relocate(id, mean_ae, geomean_ae, mean_wis, geomean_wis, mean_coverage_90) |
125 | 125 | datatable(param_table) |
126 | 126 | ``` |
127 | 127 |
|
@@ -499,10 +499,10 @@ ggplotly(p, tooltip = "text", height = 800, width = 1000) %>% |
499 | 499 | layout(hoverlabel = list(bgcolor = "white")) |
500 | 500 | ``` |
501 | 501 |
|
502 | | -#### % Coverage by Forecast Date |
| 502 | +#### 90% Coverage by Forecast Date |
503 | 503 |
|
504 | 504 | ```{r} |
505 | | -var <- "coverage_80" |
| 505 | +var <- "coverage_90" |
506 | 506 | group_cols <- c("forecaster", "forecast_date", "ahead") |
507 | 507 |
|
508 | 508 | # Aggregate metric across groups |
@@ -539,16 +539,16 @@ p <- ggplot( |
539 | 539 | facet_wrap(~ahead, nrow = 4, labeller = labeller(ahead = facets.label)) + |
540 | 540 | scale_color_discrete() + |
541 | 541 | guides(color = guide_legend(ncol = 2)) + |
542 | | - labs(title = subtitle, x = "Forecast Dates", y = "Arithmetic Mean 80% Coverage") |
| 542 | + labs(title = subtitle, x = "Forecast Dates", y = "Arithmetic Mean 90% Coverage") |
543 | 543 |
|
544 | 544 | ggplotly(p, tooltip = "text", height = 800, width = 1000) %>% |
545 | 545 | layout(hoverlabel = list(bgcolor = "white")) |
546 | 546 | ``` |
547 | 547 |
|
548 | | -#### % Coverage by Ahead |
| 548 | +#### 90% Coverage by Ahead |
549 | 549 |
|
550 | 550 | ```{r} |
551 | | -var <- "coverage_80" |
| 551 | +var <- "coverage_90" |
552 | 552 | id_cols <- c("forecaster", "ahead") |
553 | 553 |
|
554 | 554 | # Aggregate metric across groups |
@@ -582,15 +582,15 @@ p <- ggplot( |
582 | 582 | geom_hline(yintercept = .8, linetype = 1, color = "black") + |
583 | 583 | scale_color_discrete() + |
584 | 584 | guides(color = guide_legend(ncol = 2)) + |
585 | | - labs(title = subtitle, x = "Days ahead", y = "Arithmetic Mean 80% Coverage") |
| 585 | + labs(title = subtitle, x = "Days ahead", y = "Arithmetic Mean 90% Coverage") |
586 | 586 |
|
587 | 587 | ggplotly(p, tooltip = "text", height = 800, width = 1000) %>% |
588 | 588 | layout(hoverlabel = list(bgcolor = "white")) |
589 | 589 | ``` |
590 | 590 |
|
591 | 591 | ### Fan plots {.tabset} |
592 | 592 |
|
593 | | -Fan plots showing the 80% prediction intervals for the forecasts made by the CMU forecasters and the outside forecasters. The black line is the truth data. |
| 593 | +Fan plots showing the 90% prediction intervals for the forecasts made by the CMU forecasters and the outside forecasters. The black line is the truth data. |
594 | 594 |
|
595 | 595 | ```{r} |
596 | 596 | if (params$disease == "flu") { |
|
0 commit comments