@@ -4,6 +4,9 @@ date: "Rendered: `r format(Sys.time(), '%Y-%m-%d %H:%M:%S')`"
44output :
55 html_document :
66 code_folding : hide
7+ toc : True
8+ # self_contained: False
9+ # lib_dir: libs
710editor_options :
811 chunk_output_type : console
912---
@@ -40,7 +43,7 @@ if (wday(Sys.Date()) < 6 & wday(Sys.Date()) > 3) {
4043most_recent_result %<>% process_nhsn_data()
4144df <- most_recent_result %>%
4245 filter(disease == "nhsn_flu")
43- df %>%
46+ p <- df %>%
4447 filter(geo_value %in% c("ca", "fl", "tx", "ny", "pa", "mn", "nm")) %>%
4548 ggplot(aes(x = time_value, y = value, color = geo_value)) +
4649 geom_line() +
@@ -51,14 +54,15 @@ df %>%
5154 y = "Total Confirmed Flu Admissions"
5255 ) +
5356 theme(axis.text.x = element_text(angle = 90, hjust = 1))
57+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
5458```
5559
5660# State Season Comparison {.tabset}
5761
5862## California
5963
6064``` {r}
61- df %>%
65+ p <- df %>%
6266 filter(geo_value == "ca") %>%
6367 ggplot(aes(x = season_week, y = value, color = season)) +
6468 geom_line() +
@@ -69,12 +73,13 @@ df %>%
6973 y = "Total Confirmed Flu Admissions"
7074 ) +
7175 theme(axis.text.x = element_text(angle = 90, hjust = 1))
76+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
7277```
7378
7479## Florida
7580
7681``` {r}
77- df %>%
82+ p <- df %>%
7883 filter(geo_value == "fl") %>%
7984 ggplot(aes(x = season_week, y = value, color = season)) +
8085 geom_line() +
@@ -85,12 +90,13 @@ df %>%
8590 y = "Total Confirmed Flu Admissions"
8691 ) +
8792 theme(axis.text.x = element_text(angle = 90, hjust = 1))
93+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
8894```
8995
9096## Texas
9197
9298``` {r}
93- df %>%
99+ p <- df %>%
94100 filter(geo_value == "tx") %>%
95101 ggplot(aes(x = season_week, y = value, color = season)) +
96102 geom_line() +
@@ -101,12 +107,13 @@ df %>%
101107 y = "Total Confirmed Flu Admissions"
102108 ) +
103109 theme(axis.text.x = element_text(angle = 90, hjust = 1))
110+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
104111```
105112
106113## New York
107114
108115``` {r}
109- df %>%
116+ p <- df %>%
110117 filter(geo_value == "ny") %>%
111118 ggplot(aes(x = season_week, y = value, color = season)) +
112119 geom_line() +
@@ -117,12 +124,13 @@ df %>%
117124 y = "Total Confirmed Flu Admissions"
118125 ) +
119126 theme(axis.text.x = element_text(angle = 90, hjust = 1))
127+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
120128```
121129
122130## Pennsylvania
123131
124132``` {r}
125- df %>%
133+ p <- df %>%
126134 filter(geo_value == "pa") %>%
127135 ggplot(aes(x = season_week, y = value, color = season)) +
128136 geom_line() +
@@ -133,12 +141,13 @@ df %>%
133141 y = "Total Confirmed Flu Admissions"
134142 ) +
135143 theme(axis.text.x = element_text(angle = 90, hjust = 1))
144+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
136145```
137146
138147## Minnesota
139148
140149``` {r}
141- df %>%
150+ p <- df %>%
142151 filter(geo_value == "mn") %>%
143152 ggplot(aes(x = season_week, y = value, color = season)) +
144153 geom_line() +
@@ -149,12 +158,13 @@ df %>%
149158 y = "Total Confirmed Flu Admissions"
150159 ) +
151160 theme(axis.text.x = element_text(angle = 90, hjust = 1))
161+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
152162```
153163
154164## New Mexico
155165
156166``` {r}
157- df %>%
167+ p <- df %>%
158168 filter(geo_value == "nm") %>%
159169 ggplot(aes(x = season_week, y = value, color = season)) +
160170 geom_line() +
@@ -165,6 +175,7 @@ df %>%
165175 y = "Total Confirmed Flu Admissions"
166176 ) +
167177 theme(axis.text.x = element_text(angle = 90, hjust = 1))
178+ ggplotly(p, tooltip = "text", height = 800, width = 1000)
168179```
169180
170181# Comparing with Old NHSN Data
0 commit comments