@@ -153,7 +153,6 @@ extend_ahead <- function(epi_data, ahead) {
153153 return (list (epi_data , effective_ahead ))
154154}
155155
156-
157156# ' get the Taylor expansion coefficients for a vector of values
158157# ' @param values the vector of values to interpolate
159158# ' @param degree the degree of the polynomial
@@ -233,7 +232,6 @@ calculate_whitening_params <- function(
233232 return (learned_params )
234233}
235234
236-
237235# ' scale so that every data source has the same 95th quantile
238236data_whitening <- function (epi_data , colname , learned_params , nonlin_method = c(" quart_root" , " none" ), join_cols = NULL ) {
239237 if (is.null(learned_params )) {
@@ -273,7 +271,6 @@ data_coloring <- function(epi_data, colname, learned_params, nonlin_method = c("
273271 res %> % select(- ends_with(" _center" ), - ends_with(" _scale" ))
274272}
275273
276-
277274# ' the distance between two integers/dates, mod m e.g. mod_dist(1,9,10) = 2
278275mod_dist <- function (a , b , m ) {
279276 pmin(as.integer(a - b ) %% m , as.integer(b - a ) %% m )
@@ -354,7 +351,6 @@ climate_median <- function(epi_data, target, ahead, window_size = 3, recent_wind
354351 )
355352}
356353
357-
358354# ' add the first principal component for each season_week to epi_data, shifted
359355# ' by ahead
360356# ' @description
0 commit comments