Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions inference/core/utils/drawing.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@

import numpy as np

from inference.core.models.utils.batching import create_batches
from inference.core.utils.preprocess import letterbox_image

MAX_COLUMNS_FOR_SINGLE_ROW_GRID = 3
Expand Down Expand Up @@ -101,16 +100,17 @@ def _generate_tiles(
tile_margin_color: Tuple[int, int, int],
) -> np.ndarray:
rows, columns = grid_size
tiles_elements = list(create_batches(sequence=images, batch_size=columns))
while len(tiles_elements[-1]) < columns:
tiles_elements[-1].append(
_generate_color_image(shape=single_tile_size, color=tile_padding_color)
)
while len(tiles_elements) < rows:
tiles_elements.append(
[_generate_color_image(shape=single_tile_size, color=tile_padding_color)]
* columns
# Compute number of image slots required
total_slots = rows * columns
n_images = len(images)
# Pad missing images (if any) in a single step, reducing repetitive list operations
if n_images < total_slots:
pad_img = _generate_color_image(
shape=single_tile_size, color=tile_padding_color
)
images = images + [pad_img] * (total_slots - n_images)
# Slice images into batches efficiently (no batching generator overhead)
tiles_elements = [images[i * columns : (i + 1) * columns] for i in range(rows)]
return _merge_tiles_elements(
tiles_elements=tiles_elements,
grid_size=grid_size,
Expand Down
11 changes: 4 additions & 7 deletions inference/core/utils/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,17 +5,14 @@
import numpy as np
from skimage.exposure import rescale_intensity

from inference.core.env import (
DISABLE_PREPROC_CONTRAST,
DISABLE_PREPROC_GRAYSCALE,
DISABLE_PREPROC_STATIC_CROP,
USE_PYTORCH_FOR_PREPROCESSING,
)
from inference.core.env import (DISABLE_PREPROC_CONTRAST,
DISABLE_PREPROC_GRAYSCALE,
DISABLE_PREPROC_STATIC_CROP,
USE_PYTORCH_FOR_PREPROCESSING)

if USE_PYTORCH_FOR_PREPROCESSING:
import torch


from inference.core.exceptions import PreProcessingError
from inference.core.utils.onnx import ImageMetaType

Expand Down
Loading