From a6abdfc0fba0c1cd19572ab6dbf35b7404ac2d84 Mon Sep 17 00:00:00 2001 From: "codeflash-ai[bot]" <148906541+codeflash-ai[bot]@users.noreply.github.com> Date: Thu, 4 Dec 2025 09:39:48 +0000 Subject: [PATCH] Optimize KalmanFilterXYAH.project MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit The optimized code achieves a **17% speedup** through three key optimizations in the `project` method: **What was optimized:** 1. **Reduced redundant computations**: The original code calculated `self._std_weight_position * mean[3]` four times. The optimized version computes this once as `std_pos_h` and reuses it. 2. **Eliminated intermediate list creation**: Instead of creating a Python list `std` and then calling `np.square(std)`, the optimized version creates a NumPy array directly and uses element-wise multiplication (`std * std`) for squaring. 3. **Replaced multi_dot with @ operator**: Changed `np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))` to `self._update_mat @ covariance @ self._update_mat.T`, which is more efficient for this specific triple matrix multiplication. **Why it's faster:** - **Computation elimination**: Removing 3 redundant multiplications saves CPU cycles, especially important since this involves floating-point operations - **Memory efficiency**: Direct NumPy array creation avoids Python list overhead and the intermediate `np.square()` call - **Optimized matrix operations**: The `@` operator uses more efficient BLAS routines for consecutive matrix multiplications compared to the general-purpose `multi_dot` **Performance characteristics:** The line profiler shows the most significant improvements in: - Innovation covariance calculation: 25.6% → 40% of total time (but absolute time decreased) - Matrix multiplication: 54.3% → 27.1% of total time with substantial absolute time reduction **Test results indicate** the optimization performs consistently well across all scenarios: - Basic cases: 11-21% faster - Edge cases (zero/negative heights): 12-27% faster - Large scale operations: 16-17% faster This optimization is particularly valuable in object tracking scenarios where the `project` method is called frequently for each tracked object at every frame, making the 17% improvement compound significantly over time. --- ultralytics/trackers/utils/kalman_filter.py | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/ultralytics/trackers/utils/kalman_filter.py b/ultralytics/trackers/utils/kalman_filter.py index 75d6ac2cec1..163c50f85b4 100644 --- a/ultralytics/trackers/utils/kalman_filter.py +++ b/ultralytics/trackers/utils/kalman_filter.py @@ -150,16 +150,12 @@ def project(self, mean: np.ndarray, covariance: np.ndarray): >>> covariance = np.eye(8) >>> projected_mean, projected_covariance = kf.project(mean, covariance) """ - std = [ - self._std_weight_position * mean[3], - self._std_weight_position * mean[3], - 1e-1, - self._std_weight_position * mean[3], - ] - innovation_cov = np.diag(np.square(std)) + std_pos_h = self._std_weight_position * mean[3] + std = np.array([std_pos_h, std_pos_h, 1e-1, std_pos_h]) + innovation_cov = np.diag(std * std) mean = np.dot(self._update_mat, mean) - covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T)) + covariance = self._update_mat @ covariance @ self._update_mat.T return mean, covariance + innovation_cov def multi_predict(self, mean: np.ndarray, covariance: np.ndarray):