@@ -274,7 +274,7 @@ files, and corresponding technical backgrounds about their implementations.
274274::::
275275
276276
277- :::{rubric} Guides
277+ :::{rubric} Tutorials
278278:::
279279
280280::::{info-card}
@@ -298,7 +298,7 @@ by exploring how to manage a dataset of Netflix titles.
298298::::
299299
300300
301- :::{rubric} Articles
301+ :::{rubric} Explanations
302302:::
303303
304304::::{info-card}
@@ -338,34 +338,26 @@ Inverted Indexes for text values, BKD-Trees for numeric values, and Doc Values.
338338::::
339339
340340
341- ::::{info-card}
342- :::{grid-item}
343- :columns: auto 9 9 9
344- ** Indexing Text for Both Effective Search and Accurate Analysis**
345-
346- This article explores how Qualtrics uses CrateDB in Text iQ to provide text
347- analysis services for everything from sentiment analysis to
348- identifying key topics, and powerful search-based data exploration.
341+ :::{card} Indexing Text for Both Effective Search and Accurate Analysis
342+ :link : effective-fulltext-search
343+ :link-type: ref
349344
350- {hyper-navigate}`Indexing Text for Both Effective Search and Accurate Analysis
351- <[ Indexing Text for Both Effective Search and Accurate Analysis] >`
345+ This article explores how Qualtrics uses CrateDB in their Text iQ product
346+ to provide text analysis services for everything from sentiment analysis
347+ to identifying key topics, and powerful search-based data exploration.
352348
349+ It explains integral parts of an FTS text processing pipeline,
350+ including analyzers, optionally using tokenizers or character filters,
351+ and how they can be customized to specific needs, using plugins for CrateDB.
352+ +++
353353CrateDB uses Elasticsearch technology under the hood to manage cluster
354354creation and communication, and also exposes an Elasticsearch API that provides
355355access to all the indexing capabilities in Elasticsearch that Qualtrics needed.
356356
357- The articles explains integral parts of an FTS text processing pipeline,
358- including analyzers, optionally using tokenizers or character filters,
359- and how they can be customized to specific needs, using plugins for CrateDB.
360-
361- :::
362- :::{grid-item}
363- :columns: auto 3 3 3
364- {tags-primary}` Introduction ` \
365- {tags-secondary}` Analyzer, Tokenizer ` \
357+ {tags-primary}` Introduction `
358+ {tags-secondary}` Analyzer, Tokenizer `
366359{tags-secondary}` Plugin `
367360:::
368- ::::
369361
370362
371363:::{toctree}
@@ -383,7 +375,6 @@ effective-search
383375[ BM25 vs. Lucene Default Similarity ] : https://www.elastic.co/blog/found-bm-vs-lucene-default-similarity
384376[ full-text search ] : https://en.wikipedia.org/wiki/Full_text_search
385377[ Indexing and Storage in CrateDB ] : https://cratedb.com/blog/indexing-and-storage-in-cratedb
386- [ Indexing Text for Both Effective Search and Accurate Analysis ] : https://web.archive.org/web/20250210021928/https://www.qualtrics.com/eng/indexing-text-for-both-effective-search-and-accurate-analysis/
387378[ MATCH predicate ] : inv:crate-reference#predicates_match
388379[ Okapi BM25 ] : https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/okapi_trec3.pdf
389380[ search engine ] : https://en.wikipedia.org/wiki/Search_engine
0 commit comments