Skip to content

Commit 155d02e

Browse files
committed
PyCaret: Refactor section to dedicated page
1 parent 9d5089e commit 155d02e

File tree

3 files changed

+108
-72
lines changed

3 files changed

+108
-72
lines changed

docs/integrate/index.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -58,6 +58,7 @@ plotly/index
5858
postgresql/index
5959
Power BI <powerbi/index>
6060
prometheus/index
61+
pycaret/index
6162
pyviz/index
6263
queryzen/index
6364
rill/index

docs/integrate/pycaret/index.md

Lines changed: 105 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
(pycaret)=
2+
# PyCaret
3+
4+
```{div}
5+
:style: "float: right; margin-left: 1em"
6+
[![](https://github.com/crate/crate-clients-tools/assets/453543/b17a59e2-6801-4f53-892f-ff472491095f){w=180px}](https://pycaret.org/)
7+
```
8+
```{div}
9+
:style: "clear: both"
10+
```
11+
12+
:::{rubric} About
13+
:::
14+
15+
[PyCaret] is an open-source, low-code machine learning library for Python that
16+
automates machine learning workflows.
17+
18+
It is a high-level interface and AutoML wrapper on top of your loved machine learning
19+
libraries like scikit-learn, xgboost, ray, lightgbm, and many more. PyCaret provides a
20+
universal interface to utilize these libraries without needing to know the details
21+
of the underlying model architectures and parameters.
22+
23+
:::{rubric} Concept
24+
:::
25+
26+
The general concept of PyCaret - and for the matter of fact for AutoML in general -
27+
is rather simple: One takes the raw data, splits it into a training and a test set
28+
and then trains a number of different models on the training set. The models are
29+
then evaluated on the test set and the best performing model is selected.
30+
31+
:::{rubric} Hyperparameter tuning
32+
:::
33+
34+
This process gets repeated for tuning the hyperparameters of the best models.
35+
Again, this process is highly empirical. The parameters are changed, the model is
36+
retrained and evaluated again. This process is repeated until the best performing
37+
parameters are found.
38+
39+
Modern algorithms for executing all these experiments are - amongst others -
40+
GridSearch, RandomSearch and BayesianSearch. For a quick introduction into
41+
these methods, see [Introduction to hyperparameter tuning].
42+
43+
:::{rubric} Benefits
44+
:::
45+
46+
In the past, all these trial-and-error experiments had to be done manually,
47+
which is a tedious and time-consuming task. PyCaret automates this process
48+
and provides a simple interface to execute all these experiments in a
49+
straight-forward way. The notebooks referenced below demonstrate how this works.
50+
51+
:::{rubric} Learn
52+
:::
53+
54+
Tutorials and Notebooks about using [PyCaret] together with CrateDB.
55+
56+
::::{info-card}
57+
:::{grid-item}
58+
:columns: 9
59+
**Notebook: AutoML classification with PyCaret**
60+
61+
Explore the PyCaret framework and show how to use it to train different
62+
classification models.
63+
64+
[![README](https://img.shields.io/badge/Open-README-darkblue?logo=GitHub)][AutoML with PyCaret and CrateDB]
65+
[![Notebook on GitHub](https://img.shields.io/badge/Open-Notebook%20on%20GitHub-darkgreen?logo=GitHub)][automl-classify-github]
66+
[![Notebook on Colab](https://img.shields.io/badge/Open-Notebook%20on%20Colab-blue?logo=Google%20Colab)][automl-classify-colab]
67+
:::
68+
:::{grid-item}
69+
:columns: 3
70+
{tags-primary}`Fundamentals` \
71+
{tags-secondary}`Time Series` \
72+
{tags-secondary}`Anomaly Detection` \
73+
{tags-secondary}`Prediction / Forecasting`
74+
:::
75+
::::
76+
77+
::::{info-card}
78+
:::{grid-item}
79+
:columns: 9
80+
**Notebook: Train time series forecasting models**
81+
82+
How to train time series forecasting models using PyCaret and CrateDB.
83+
84+
[![README](https://img.shields.io/badge/Open-README-darkblue?logo=GitHub)][AutoML with PyCaret and CrateDB]
85+
[![Notebook on GitHub](https://img.shields.io/badge/Open-Notebook%20on%20GitHub-darkgreen?logo=GitHub)][automl-forecasting-github]
86+
[![Notebook on Colab](https://img.shields.io/badge/Open-Notebook%20on%20Colab-blue?logo=Google%20Colab)][automl-forecasting-colab]
87+
:::
88+
:::{grid-item}
89+
:columns: 3
90+
{tags-primary}`Fundamentals` \
91+
{tags-secondary}`Time Series` \
92+
{tags-secondary}`Training` \
93+
{tags-secondary}`Classification` \
94+
{tags-secondary}`Forecasting`
95+
:::
96+
::::
97+
98+
99+
[AutoML with PyCaret and CrateDB]: https://github.com/crate/cratedb-examples/tree/main/topic/machine-learning/pycaret
100+
[automl-classify-github]: https://github.com/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_classification_with_pycaret.py
101+
[automl-classify-colab]: https://colab.research.google.com/github/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_classification_with_pycaret.ipynb
102+
[automl-forecasting-github]: https://github.com/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_timeseries_forecasting_with_pycaret.ipynb
103+
[automl-forecasting-colab]: https://colab.research.google.com/github/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_timeseries_forecasting_with_pycaret.ipynb
104+
[Introduction to hyperparameter tuning]: https://medium.com/analytics-vidhya/comparison-of-hyperparameter-tuning-algorithms-grid-search-random-search-bayesian-optimization-5326aaef1bd1
105+
[PyCaret]: https://www.pycaret.org

docs/topic/ml/index.md

Lines changed: 2 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -128,74 +128,10 @@ prediction using NumPy, Salesforce Merlion, and Matplotlib.
128128
::::
129129

130130

131-
(pycaret)=
132131
### PyCaret
133-
134-
:::{rubric} About
135-
:::
136-
```{div}
137-
:style: "float: right; margin-left: 1em"
138-
[![](https://github.com/crate/crate-clients-tools/assets/453543/b17a59e2-6801-4f53-892f-ff472491095f){w=180px}](https://pycaret.org/)
139-
```
140-
141-
[PyCaret] is an open-source, low-code machine learning library for Python that
142-
automates machine learning workflows.
143-
144-
It is a high-level interface and AutoML wrapper on top of your loved machine learning
145-
libraries like scikit-learn, xgboost, ray, lightgbm, and many more. PyCaret provides a
146-
universal interface to utilize these libraries without needing to know the details
147-
of the underlying model architectures and parameters.
148-
149-
```{div}
150-
:style: "clear: both"
151-
```
152-
153-
:::{rubric} Learn
154-
:::
155-
156-
Tutorials and Notebooks about using [PyCaret] together with CrateDB.
157-
158-
::::{info-card}
159-
:::{grid-item}
160-
:columns: 9
161-
**Notebook: AutoML classification with PyCaret**
162-
163-
Explore the PyCaret framework and show how to use it to train different
164-
classification models.
165-
166-
[![README](https://img.shields.io/badge/Open-README-darkblue?logo=GitHub)][AutoML with PyCaret and CrateDB]
167-
[![Notebook on GitHub](https://img.shields.io/badge/Open-Notebook%20on%20GitHub-darkgreen?logo=GitHub)][automl-classify-github]
168-
[![Notebook on Colab](https://img.shields.io/badge/Open-Notebook%20on%20Colab-blue?logo=Google%20Colab)][automl-classify-colab]
132+
:::{seealso}
133+
Please navigate to the dedicated page about {ref}`pycaret`.
169134
:::
170-
:::{grid-item}
171-
:columns: 3
172-
{tags-primary}`Fundamentals` \
173-
{tags-secondary}`Time Series` \
174-
{tags-secondary}`Anomaly Detection` \
175-
{tags-secondary}`Prediction / Forecasting`
176-
:::
177-
::::
178-
179-
::::{info-card}
180-
:::{grid-item}
181-
:columns: 9
182-
**Notebook: Train time series forecasting models**
183-
184-
How to train time series forecasting models using PyCaret and CrateDB.
185-
186-
[![README](https://img.shields.io/badge/Open-README-darkblue?logo=GitHub)][AutoML with PyCaret and CrateDB]
187-
[![Notebook on GitHub](https://img.shields.io/badge/Open-Notebook%20on%20GitHub-darkgreen?logo=GitHub)][automl-forecasting-github]
188-
[![Notebook on Colab](https://img.shields.io/badge/Open-Notebook%20on%20Colab-blue?logo=Google%20Colab)][automl-forecasting-colab]
189-
:::
190-
:::{grid-item}
191-
:columns: 3
192-
{tags-primary}`Fundamentals` \
193-
{tags-secondary}`Time Series` \
194-
{tags-secondary}`Training` \
195-
{tags-secondary}`Classification` \
196-
{tags-secondary}`Forecasting`
197-
:::
198-
::::
199135

200136

201137
(iris-r)=
@@ -365,11 +301,6 @@ tensorflow
365301
```
366302

367303

368-
[AutoML with PyCaret and CrateDB]: https://github.com/crate/cratedb-examples/tree/main/topic/machine-learning/pycaret
369-
[automl-classify-github]: https://github.com/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_classification_with_pycaret.py
370-
[automl-classify-colab]: https://colab.research.google.com/github/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_classification_with_pycaret.ipynb
371-
[automl-forecasting-github]: https://github.com/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_timeseries_forecasting_with_pycaret.ipynb
372-
[automl-forecasting-colab]: https://colab.research.google.com/github/crate/cratedb-examples/blob/main/topic/machine-learning/pycaret/automl_timeseries_forecasting_with_pycaret.ipynb
373304
[End-to-End RAG with CrateDB and LangChain]: https://speakerdeck.com/cratedb/how-to-use-private-data-in-generative-ai-end-to-end-solution-for-rag-with-cratedb-and-langchain
374305
[How to set up LangChain with CrateDB]: https://community.cratedb.com/t/how-to-set-up-langchain-with-cratedb/1576
375306
[How to Use Private Data in Generative AI]: https://youtu.be/icquKckM4o0?feature=shared
@@ -384,7 +315,6 @@ tensorflow
384315
[MLflow Tracking]: https://mlflow.org/docs/latest/tracking.html
385316
[MLOps]: https://en.wikipedia.org/wiki/MLOps
386317
[pandas]: https://pandas.pydata.org/
387-
[PyCaret]: https://www.pycaret.org
388318
[scikit-learn]: https://scikit-learn.org/
389319
[TensorFlow]: https://www.tensorflow.org/
390320
[Time Series Modeling using Machine Learning]: https://cratedb.com/blog/introduction-to-time-series-modeling-with-cratedb-machine-learning-time-series-data

0 commit comments

Comments
 (0)