Skip to content

Commit 51cca3e

Browse files
committed
Getting started: Implement suggestions by CodeRabbit
1 parent 2903e1e commit 51cca3e

File tree

6 files changed

+36
-33
lines changed

6 files changed

+36
-33
lines changed

docs/start/connect.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
:::
66

77
:::{div} sd-text-muted
8-
Start to interact with the database for the first time.
8+
Start interacting with the database for the first time.
99
:::
1010

1111

docs/start/first-steps.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,8 +45,10 @@ or run them directly in the CrateDB Cloud Console.
4545
and memory usage, then enrich your time‑series data with JSON and text
4646
metadata to enable more comprehensive analysis.
4747

48-
**Congratulations!**\
49-
You’re now onboarded and ready to explore further. Check out the other sections
48+
49+
:::{rubric} Congratulations!
50+
:::
51+
You are now onboarded and ready to explore further. Check out the other sections
5052
in the menu to dive deeper into CrateDB’s capabilities.
5153
If you need assistance, also [check out our support plans].
5254

docs/start/going-further.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,8 @@ Explore ready-to-run sample projects that demonstrate how to build real-world so
9393
{ref}`Database management <administration>`
9494
```
9595
```{sd-item}
96-
Learn to manage your cluster with ease: configuration, sizing, performance tuning, cost optimization, monitoring and alerting, automation and REST API.
96+
Learn to manage your cluster with ease: configuration, sizing, performance tuning,
97+
and cost optimization. Explore monitoring, alerting, and automation.
9798
```
9899
:::
99100

docs/start/query/ad-hoc.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ Quick Filters
9797
:::
9898
:::{grid-item}
9999
```sql
100-
SELECT *
100+
SELECT timestamp, message, host
101101
FROM logs
102102
WHERE service = 'auth' AND log_level = 'error'
103103
ORDER BY timestamp DESC
@@ -137,7 +137,7 @@ Time-bound Query
137137
:::
138138
:::{grid-item}
139139
```sql
140-
SELECT *
140+
SELECT timestamp, device_id, value
141141
FROM sensor_data
142142
WHERE timestamp > now() - INTERVAL '15 minutes';
143143
```
@@ -226,7 +226,7 @@ Example via HTTP:
226226
```bash
227227
curl -sSf -u USERNAME:PASSWORD -X POST https://your.cratedb.cloud:4200/_sql \
228228
-H "Content-Type: application/json" \
229-
-d '{"stmt": "SELECT * FROM logs WHERE log_level = ? LIMIT 10", "args": ["error"]}'
229+
-d '{"stmt": "SELECT timestamp, message, host FROM logs WHERE log_level = ? LIMIT 10", "args": ["error"]}'
230230
```
231231

232232

docs/start/query/aggregations.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -21,21 +21,21 @@ Whether you are monitoring sensor networks, analyzing customer behavior, or powe
2121
:::{rubric} Use CrateDB when you need to
2222
:::
2323

24-
* Aggregate over **high-ingestion** datasets (millions of records per hour)
25-
* Analyze **real-time** metrics across structured, JSON, or time-series fields
26-
* Build **dynamic dashboards** and run **interactive ad-hoc analytics**
27-
* Combine aggregations with **full-text**, **geospatial**, or **vector** filters
24+
- Aggregate over **high-ingestion** datasets (millions of records per hour)
25+
- Analyze **real-time** metrics across structured, JSON, or time-series fields
26+
- Build **dynamic dashboards** and run **interactive ad-hoc analytics**
27+
- Combine aggregations with **full-text**, **geospatial**, or **vector** filters
2828

2929
:::{rubric} Benefits of using CrateDB for aggregations
3030
:::
3131

32-
| Feature | Benefit |
33-
| ----------------------------- | ----------------------------------------------------------------------- |
34-
| Distributed SQL engine | Parallel execution across nodes ensures linear scalability |
35-
| Columnar storage | Reads only relevant columns for faster aggregations |
36-
| Real-time ingestion | Query freshly ingested data without delay |
37-
| Aggregations on any data type | Structured, JSON, full-text, geospatial, or vector |
38-
| Smart indexing | Built-in indexing plus user-defined indexes can boost performance |
32+
| Feature | Benefit |
33+
| ----------------------------- |--------------------------------------------------------------------------|
34+
| Distributed SQL engine | Parallel execution across nodes ensures linear scalability |
35+
| Columnar storage | Reads only relevant columns for faster aggregations |
36+
| Real-time ingestion | Query freshly ingested data without delay |
37+
| Aggregations on any data type | Structured, JSON, full-text, geospatial, or vector |
38+
| Smart indexing | Built-in indexing and configuration options that can boost performance |
3939

4040
::::
4141

@@ -70,10 +70,10 @@ Whether you are monitoring sensor networks, analyzing customer behavior, or powe
7070

7171
CrateDB supports a rich set of **SQL92-compliant** and extended functions for aggregation, including:
7272

73-
* `COUNT()`, `SUM()`, `AVG()`, `MIN()`, `MAX()`
74-
* `STDDEV()`, `PERCENTILE()`, `VARIANCE()`, `TOPK()`
75-
* `HYPERLOGLOG_DISTINCT()`
76-
* Windowed and conditional aggregations via `OVER(...)` and `FILTER (WHERE ...)` clauses
73+
- `COUNT()`, `SUM()`, `AVG()`, `MIN()`, `MAX()`
74+
- `STDDEV()`, `PERCENTILE()`, `VARIANCE()`, `TOPK()`
75+
- `HYPERLOGLOG_DISTINCT()`
76+
- Windowed and conditional aggregations via `OVER(...)` and `FILTER (WHERE ...)` clauses
7777

7878
To learn about the full set of functions, please visit the reference
7979
documentation at {ref}`crate-reference:aggregation-functions`.
@@ -211,7 +211,7 @@ CrateDB integrates seamlessly with:
211211
:Apache Superset: Explore multidimensional data visually
212212
:Tableau, Power BI, Metabase: Connect via PostgreSQL wire protocol
213213

214-
These tools submit SQL queries to CrateDB, which returns pre-aggregate
214+
These tools submit SQL queries to CrateDB, which returns pre-aggregated
215215
or real-time data efficiently.
216216
To learn about the full set of integrations, please visit the
217217
documentation at {ref}`bi` and {ref}`visualization`.

docs/start/query/performance.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -2,18 +2,18 @@
22
# Performance considerations
33

44
:::{div} sd-text-muted
5-
Follow a few advises to use CrateDB optimally for maximum performance.
5+
Follow these tips to use CrateDB optimally for maximum performance.
66
:::
77

8-
| Optimization | Description | Documentation |
9-
|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
10-
| Leverage indexes | Important for frequently grouped or filtered fields. <br> Fields are indexed by default. | {ref}`performance-optimization` |
11-
| Avoid SELECT \* | Select only the fields you need. | {ref}`performance-optimization` |
12-
| Use targeted filters | Narrow your search using `WHERE` clauses. <br> Use time filters especially on time-series or partitioned tables. | {ref}`crate-reference:sql_dql_where_clause` <br> {ref}`crate-reference:comparison-operators` |
13-
| Pre-aggregate | Use views for common queries. | {ref}`crate-reference:ddl-views` |
14-
| Use `DATE_BIN` or `DATE_TRUNC` | Apply time-based bucketing on time-series data to reduce data volume. | [Optimizing storage for historic time-series data] <br> [Resampling time-series data with DATE_BIN] |
15-
| Profile queries | Use `EXPLAIN` and `ANALYZE` to inspect performance. | {ref}`EXPLAIN <crate-reference:ref-explain>` <br> {ref}`ANALYZE <crate-reference:analyze>` |
16-
| Sizing & sharding | Choose partitioning and shard size wisely (e.g., daily partitions for time-based data). | {ref}`sharding-partitioning` <br> {ref}`sharding-performance` |
8+
| Optimization | Description | Documentation |
9+
|--------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
10+
| Leverage indexes | Important for frequently grouped or filtered fields. <br> Fields are indexed by default. | {ref}`performance-optimization` |
11+
| Avoid SELECT \* | Select only the fields you need. | {ref}`performance-optimization` |
12+
| Use targeted filters | Narrow your search using `WHERE` clauses. <br> Use time filters especially on time-series or partitioned tables. | {ref}`crate-reference:sql_dql_where_clause` <br> {ref}`crate-reference:comparison-operators` |
13+
| Pre-aggregate | Use views for common queries. | {ref}`crate-reference:ddl-views` |
14+
| Use `DATE_BIN` or `DATE_TRUNC` | Apply time-based bucketing on time-series data to reduce data volume. | {ref}`DATE_BIN() <crate-reference:date-bin>` <br> {ref}`DATE_TRUNC() <crate-reference:scalar-date_trunc>` <br> [Optimizing storage for historic time-series data] <br> [Resampling time-series data with DATE_BIN] |
15+
| Profile queries | Use `EXPLAIN` and `ANALYZE` to inspect performance. | {ref}`EXPLAIN <crate-reference:ref-explain>` <br> {ref}`ANALYZE <crate-reference:analyze>` |
16+
| Sizing & sharding | Choose partitioning and shard size wisely (e.g., daily partitions for time-based data). | {ref}`sharding-partitioning` <br> {ref}`sharding-performance` |
1717

1818

1919
:::{important}

0 commit comments

Comments
 (0)