Skip to content

Commit efb75e9

Browse files
committed
Start/Search: Copy-edit the "Further reading" sections at page footers
1 parent bbb6c7e commit efb75e9

File tree

4 files changed

+131
-11
lines changed

4 files changed

+131
-11
lines changed

docs/start/query/search/fulltext.md

Lines changed: 36 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
(start-fulltext)=
12
# Full-text search
23

34
Unlike exact-match filters, full-text search allows **fuzzy, linguistic matching** on human language text. It tokenizes input, analyzes language, and searches for **tokens, stems, synonyms**, etc.
@@ -111,9 +112,38 @@ SELECT * FROM docs WHERE MATCH(text, 'power outage') USING 'english';
111112
| Use `MATCH()` not `LIKE` | Full-text is more performant and relevant |
112113
| Combine with filters | Boost performance using `WHERE` clauses |
113114

114-
## Further Learning & Resources
115-
116-
* Full-text Search Data Model
117-
* MATCH Clause Documentation
118-
* How CrateDB Differs from Elasticsearch
119-
* Tutorial: Full-text Search on Logs
115+
## Further reading
116+
117+
:::::{grid} 1 3 3 3
118+
:margin: 4 4 0 0
119+
:padding: 0
120+
:gutter: 2
121+
122+
::::{grid-item-card} {material-outlined}`article;1.5em` Reference
123+
:columns: 3
124+
- {ref}`crate-reference:sql_dql_fulltext_search`
125+
- {ref}`crate-reference:fulltext-indices`
126+
- {ref}`crate-reference:predicates_match`
127+
- {ref}`crate-reference:ref-create-analyzer`
128+
::::
129+
130+
::::{grid-item-card} {material-outlined}`link;1.5em` Related
131+
:columns: 3
132+
- {ref}`start-geospatial`
133+
- {ref}`start-vector`
134+
- {ref}`start-hybrid`
135+
::::
136+
137+
::::{grid-item-card} {material-outlined}`read_more;1.5em` Read more
138+
:columns: 6
139+
- [How CrateDB differs from Elasticsearch]
140+
- [Tutorial: Full-text search on logs]
141+
- {ref}`FTS feature details <fulltext-search>`
142+
- {ref}`Data modeling with FTS <model-fulltext>`
143+
::::
144+
145+
:::::
146+
147+
148+
[How CrateDB differs from Elasticsearch]: https://archive.fosdem.org/2018/schedule/event/cratedb/
149+
[Tutorial: Full-text search on logs]: https://community.cratedb.com/t/storing-server-logs-on-cratedb-for-fast-search-and-aggregations/1562

docs/start/query/search/geo.md

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
(start-geospatial)=
12
# Geospatial search
23

34
CrateDB enables geospatial search using **Lucene’s Prefix Tree** and **BKD Tree** indexing structures. With CrateDB, you can:
@@ -70,3 +71,32 @@ You can choose and configure the indexing method when defining your table schema
7071
While CrateDB can perform **exact computations** on complex geometries (e.g. large polygons, geometry collections), these can be computationally expensive. Choose your index strategy carefully based on your query patterns.
7172

7273
For full details, refer to the Geo Shape Column Definition section (!!! add link) in the reference.
74+
75+
## Further reading
76+
77+
:::::{grid} 1 3 3 3
78+
:margin: 4 4 0 0
79+
:padding: 0
80+
:gutter: 2
81+
82+
::::{grid-item-card} {material-outlined}`article;1.5em` Reference
83+
:columns: 3
84+
- {ref}`crate-reference:data-types-geo-point`
85+
- {ref}`crate-reference:data-types-geo-shape`
86+
- {ref}`crate-reference:sql_dql_geo_search`
87+
::::
88+
89+
::::{grid-item-card} {material-outlined}`link;1.5em` Related
90+
:columns: 3
91+
- {ref}`start-fulltext`
92+
- {ref}`start-vector`
93+
- {ref}`start-hybrid`
94+
::::
95+
96+
::::{grid-item-card} {material-outlined}`read_more;1.5em` Read more
97+
:columns: 6
98+
- {ref}`Geospatial feature details <geospatial-search>`
99+
- {ref}`Data modeling with geospatial data <model-geospatial>`
100+
::::
101+
102+
:::::

docs/start/query/search/hybrid.md

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
(start-hybrid)=
12
# Hybrid search
23

34
While **vector search** provides powerful semantic retrieval based on machine learning models, it's not always optimal, especially when models are not fine-tuned for a specific domain. On the other hand, **traditional full-text search** (e.g., BM25 scoring) offers high precision on exact or keyword-based queries, with strong performance out of the box. **Hybrid search** blends these approaches, combining semantic understanding with keyword relevance to deliver more accurate, robust, and context-aware search results.
@@ -74,3 +75,33 @@ You can adjust the weighting (`0.5`) depending on your desired balance between k
7475
| 0.03057 | 8 | 3 | Usage |
7576

7677
> RRF rewards documents that rank highly across multiple methods, regardless of exact score values.
78+
## Further reading
79+
80+
:::::{grid} 1 3 3 3
81+
:margin: 4 4 0 0
82+
:padding: 0
83+
:gutter: 2
84+
85+
::::{grid-item-card} {material-outlined}`article;1.5em` Reference
86+
:columns: 3
87+
- {ref}`crate-reference:sql_dql_fulltext_search`
88+
- {ref}`crate-reference:fulltext-indices`
89+
- {ref}`crate-reference:predicates_match`
90+
- {ref}`crate-reference:scalar_knn_match`
91+
- {ref}`crate-reference:scalar_vector_similarity`
92+
- {ref}`crate-reference:type-float_vector`
93+
::::
94+
95+
::::{grid-item-card} {material-outlined}`link;1.5em` Related
96+
:columns: 3
97+
- {ref}`start-fulltext`
98+
- {ref}`start-geospatial`
99+
- {ref}`start-vector`
100+
::::
101+
102+
::::{grid-item-card} {material-outlined}`read_more;1.5em` Read more
103+
:columns: 6
104+
- {ref}`Hybrid search feature details <hybrid-search>`
105+
::::
106+
107+
:::::

docs/start/query/search/vector.md

Lines changed: 34 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
(start-vector)=
12
# Vector search
23

34
Vector search retrieves the most semantically similar items to a query vector using **Approximate Nearest Neighbor (ANN)** algorithms (e.g., HNSW via Lucene).&#x20;
@@ -90,9 +91,37 @@ ORDER BY _score ASC
9091
LIMIT 1;
9192
```
9293

93-
## Further Learning & Resources
94+
## Further reading
9495

95-
* [Vector Search Guide](https://cratedb.com/docs/guide/feature/search/vector/index.html)&#x20;
96-
* `KNN_MATCH` & `VECTOR_SIMILARITY` reference
97-
* [Intro Blog: Vector support & KNN search in CrateDB](https://cratedb.com/blog/unlocking-the-power-of-vector-support-and-knn-search-in-cratedb)
98-
* [LangChain & Vector Store integration](https://cratedb.com/docs/guide/domain/ml/index.html)
96+
:::::{grid} 1 3 3 3
97+
:margin: 4 4 0 0
98+
:padding: 0
99+
:gutter: 2
100+
101+
::::{grid-item-card} {material-outlined}`article;1.5em` Reference
102+
:columns: 3
103+
- {ref}`crate-reference:type-float_vector`
104+
- {ref}`crate-reference:scalar_knn_match`
105+
- {ref}`crate-reference:scalar_vector_similarity`
106+
::::
107+
108+
::::{grid-item-card} {material-outlined}`link;1.5em` Related
109+
:columns: 3
110+
- {ref}`start-fulltext`
111+
- {ref}`start-geospatial`
112+
- {ref}`start-hybrid`
113+
::::
114+
115+
::::{grid-item-card} {material-outlined}`read_more;1.5em` Read more
116+
:columns: 6
117+
- [Intro Blog: Vector support & KNN search in CrateDB]
118+
- {ref}`Vector search feature details <vector-search>`
119+
- {ref}`Data modeling with vector data <model-vector>`
120+
- {ref}`machine-learning`
121+
- {ref}`Integration with LangChain <langchain>`
122+
::::
123+
124+
:::::
125+
126+
127+
[Intro Blog: Vector support & KNN search in CrateDB]: https://cratedb.com/blog/unlocking-the-power-of-vector-support-and-knn-search-in-cratedb

0 commit comments

Comments
 (0)