From 7f15f4fa59a9af4267913560935422496a537689 Mon Sep 17 00:00:00 2001 From: Carlos Ortiz <67929766+cortizbon@users.noreply.github.com> Date: Fri, 21 Jul 2023 11:40:00 -0500 Subject: [PATCH] add plt.show() in tree ploting Better not to see all of the info associated to the object --- .../2_introduction_to_machine_learning.ipynb | 10035 ++++++++-------- 1 file changed, 5018 insertions(+), 5017 deletions(-) diff --git a/notebooks/2_introduction_to_machine_learning.ipynb b/notebooks/2_introduction_to_machine_learning.ipynb index f2f35da..3b8beb9 100644 --- a/notebooks/2_introduction_to_machine_learning.ipynb +++ b/notebooks/2_introduction_to_machine_learning.ipynb @@ -1,5017 +1,5018 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction to Machine Learning" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this chapter, we’ll briefly review machine learning concepts that will be relevant later. We’ll focus in particular on the problem of **prediction**, that is, to model some output variable as a function of observed input covariates." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# importing the packages\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import random\n", - "import math\n", - "import warnings\n", - "from sklearn.metrics import mean_squared_error\n", - "from SyncRNG import SyncRNG\n", - "warnings.filterwarnings('ignore')\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we will use simulated data. In the next section we’ll load a real dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 501, - "metadata": {}, - "outputs": [], - "source": [ - "# Simulating data\n", - "\n", - "# Sample size\n", - "n = 500\n", - "\n", - "# Generating covariate X ~ Unif[-4, 4]\n", - "x = np.linspace(-4,4, n) #with linspace we can generate a vector of \"n\" numbers between a range of numbers\n", - "\n", - "random.shuffle(x) \n", - "mu = np.where(x<0, np.cos(2*x), 1 - np.sin(x) )\n", - "y = mu + 1*np.random.normal(size =n)\n", - "\n", - "# collecting observations in a data.frame object\n", - "data = pd.DataFrame(np.array([x,y]).T, columns=['x','y'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following shows how the two variables `x` and `y` relate. Note that the relationship is nonlinear." - ] - }, - { - "cell_type": "code", - "execution_count": 502, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Outcome y')" - ] - }, - "execution_count": 502, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFzCAYAAACdPfApAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB4eUlEQVR4nO3deXgURf4/8HflDoccAoIEuQUP7qyii6Cs7qrrgfcJuqzr4q0rXiBe+xNRQPC7HqvroqIg4AqKoKsgiYiuQDhFAgEUlEsBuQkQMp/fH50JyWSO7pm++/16nnkgyUxPdXdVdX2qq6uUiICIiIiIiIi8Lc3pBBAREREREVHqGNwRERERERH5AIM7IiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEPZDidACMaNWokrVq1cjoZREREREREjli0aNF2EWkc7W+eCu5atWqFoqIip5NBRERERETkCKXUhlh/47BMIiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEPMLgjIiIiIiLyAQZ3REREREREPsDgjoiIiIiIyAcY3BEREREREfmApxYxJyIiIiIiG4VCwJo1wJYtQLNmQPv2QBrvD7kVzwwREREREdUUCgFTpwLdugHnnKP9O3Wq9ntyJQZ3RERERERU05o1wIABQGmp9nNpqfbzmjXOpotiYnBHREREREQ1bdlyNLALKy3Vfk+uxOCOiIiIiIhqatYMyM2t/rvcXO335EoM7oiIiIiIqKb27YHx448GeLm52s/t2zubLoqJs2USEREREVFNaWnA5ZcDnTpxtkyPYHBHRERERETRpaUBHTpoL68J4DIO/t47IiIiIiIKnoAu48DgjoiIiIiI/CWgyzgwuCMiIiIiIn8J6DIODO6IiIiIiMhfArqMA4M7IiIiIiLyvlAIWL0aKCzUJk4J4DIOnC2TiIiIiIi8LTyBSvg5u9xcYPJkYPFiYOtWzpZJRERERETkCdEmULnmGkAp4OyztaUcfB7YAQzuiIiIiIjI6wI6gUokDsskIiIiIvKzICzmHZ5ApWqAF4AJVCL57KwSEREREVGloCzm3b599QlU2rUDPvgA2LxZm2TFb/sbg2N37pRSOQDmAsiuSMd/RORxp9JDREREROQ7sRbz7tRJew7NL9LSgMsv1/Zr+3ZgwwagX7+jk6uMH6/93W93LCM4uXeHAPQVkS4AugI4XynV08H0EBERERH5S5CeRUtL0wLWRo2AW26pGdCuWeNs+mzgWHAnmn0VP2ZWvMSp9BARERER+U4QF/MOUkAbwdH7kkqpdKXUUgC/AJglIvOdTA8RERERka9EPosWhMW8gxjQVnA0uBORchHpCiAPwGlKqVMj36OUulUpVaSUKtq2bZvtaSQiIiIi8qzws2hLlgAFBdq/fn/2LIgBbQUl4o6RkEqpxwHsF5FRsd6Tn58vRUVFNqaKiIiIiIg8x8fLPyilFolIfrS/OTlbZmMAZSKySymVC+BcAM86lR6ykY8LGxERERFFcKLtF55cxU8zgurgZIu6GYACpdRyAAuhPXM3w8H0kB2CstYKEREREbHtZzPXDMvUg8MyfWD1aq1QV53BKDdXG/8dsJ4VIiIiIt9j28908YZlciwc2SvAU9MSERERBQ7bfrZicEf2CvDUtERERESBw7afrRjckb0CPDUtERERUeCw7Wcrx2bLpIAKr7XSqRNnyyQiIiLyO7b9bMXgjuwX0KlpiYiIiAKJbT/bMLgjIiJv49qZREREAPjMHREReRnXTyIiIqrE4I6IiLxrzRpgwICj02yXlmo/r1njbLqIiIgcwOCOiIi8i+snERERVWJwR0RE3sX1k4iIiCoxuCMiIu/i+klERP4QCgGrVwOFhdq/dj077dT3WoSzZRIRkXdx/SQiIu8LT44VfoY63FF3+eXW1udOfa+FlIg4nQbd8vPzpaioyOlkEBERERGRWVav1mY7rvoMdW4usGSJtWvjOfW9KVJKLRKR/Gh/82ZISkREREREzjFzOKNTk2P5cFIuBndERERV+ez5CyIi05m9xqhTk2P5cFIuBndexgYIEZG5uCi6M3g9I/IWs9cYdWpyLB9OysUJVbzKhw+AEhE5LlaDpVMnVz9/4Wm8nhEdFQpp9ZDbJ4iKN5wxmbrSqcmxfDgpl3dTHnRm95gQEZEvn79wPV7PiDReGjlgxXDGtDQtMDz7bO1fuwIsp77XIt5OfZCxAUJEZD4fPn/heryeEWm81NHhw+GMfsHgzqvYACEiMh8bLPbj9YxI46WOjvBwxiVLgIIC7V8OpXYFngGvYgOEiMh8bLDYj9czIo3XOjp8NpzRL7iIuZd55aFbIiKieHg9I+LkQqkIWB0SbxFzBndEREReFrBGDZGvub08uzF9AQyK4wV3/txjIiKiIPDS7HpElJibhzq6tb7x0kQ0NnBRjiEiosCKtYg1F7eOj40aIrKLW+sbL01EYwMGd0RE5KxYvcFHjrizl9hN2KghclaQOqDcWt94bSIaizG4s1KQCjwRUbJi9QYvWeLOXmI3YaOGyDluHaZoFbfWN3pn3A1Iu5zBnVWCVuApvoBUKERJidUbvHGjPb3EXi6fXEaAyDluHaZoFbfWN3qWsAlQuzzD6QT4VqwC36mT9oAsBUcAZ3EiMiTcG1w1kMvNBfLyov/ezF5ir5fPcKOmUyd3zV5HFATxhin6sa3n5vomPBFNrOMeoHa5C86GT7l1XDLZL2g9e0RGxeoN7tbN+l5iP5RPN8+uR+Rnbh2maCWv1jcBapfzzp1VYvVE+7nAW8mN66roFbSePSKj4vUGW91LzPJJVJ2Xr7d2C3dMRd75d3qYYhAYzacBapeztFrFreOSvcjr46SD2LNHZFSs3mCre4lZPomO8vr11m56nvUi8yWTTwPULlci4nQadMvPz5eioiKnk6Efe7/MsXq1VnAje1uWLPFGz7rXn+kh8jOzyyfrffIyr19vKRiSzac+qp+VUotEJD/a3xwblqmUagFgPICmAEIAXhORF5xKjyUSPdxJ+gqa14dNufkBZKKgM7N8siOHvM7r11sKhmTzaUDa5U4+c3cEwP0islgpVRfAIqXULBFZ6WCayE56G0J+GCcdkAqFyJPMKp8Bmo2NfMoP11vyP+bTuBzrShSRLSKyuOL/ewEUA2juVHqogp3rPemdpS5A46RN5+X1u4i8JkCzsZFP8XpLXsB8GpcrZstUSrUC0A3AfIeTEmx2DynSe1udwxqTwyFi5AQfPdNgGHuTyev8eL21sk4Kcn3npET5NODnxfEJVZRSdQB8AeBpEZka5e+3ArgVAE444YQeGzZssDmFAWL3g9R8cNtaPL5kNz93KOhpLPh5/4m8yMoyyfJenZMBVdXvbt4cWLbM9+cl3oQqju6lUioTwPsAJkQL7ABARF4TkXwRyW/cuLG9CQwau4cU6b2tzqGFyeEQMbKbHxYEj0bvtNucFp3IXaysk/xa3yXDySU0Ir/77bcDf14cu+IopRSAfwMoFpHnnUoHVWH3ek96GkJccyd5XL+L7ObXDgUjjTir1+UjIv2srJP8Wt8lw8lAN/K7Q6HAnxcnrzq/BdAfQF+l1NKK14UOpoeceEA1UUOIPWPJ4wPHZDe/dii4uRHHkQ3W4bH1PivrJL/Wd3pElo3Nm52rI6PVz0E9LxWcnC1znogoEeksIl0rXh87lR6CO4cUublR5XZuPJ/kb37tUHBrI44jG6zDY+sPVtZJXqnvzO6kiFY2jhxJvo5MNX2R9fNbbwGPPeb+82IhxydUMSI/P1+KioqcTgbZiZOCEHmLH2cpc+vECawfrcNj6x9unS3TjrrSzLornN61a4EFC4Bx44CNG7W/tWsHPPkkcMstNb8HiL2fZqQv2jYmT9a+Z+tW/1yHIsSbUIXBHbmbWxtVVvFjw5jILkFrxBUWaj3nkQoKtKHulDweW7KSXW0bszopoqV32DDg5ZePBnjz5gGNGmn1XNOmQHq69rcjR4Dbb9eCwsj9NDN9AWs7uXa2TKKEgjS0kMOAyKvc8GyS1eVHz0Qp0Y6Dlely63BRP+CxJSvZNZ+AWY+2REvv3/+u/Q7QykajRlrd2Ls3sGIF0KUL0LcvcOmlwMCBQF5ezf00K32cyKqaYO89eUOiQut0w9Ks7+fkMeRFbumUcLr8xDoOJSXWpcsrz/xU5XR9rZcXjy15h13zCZjVSRErvUrVLBuJAsGq++nyThQRQWnkfnsAgzvyNqcblmZ+PyePIS9yOqgKc7r8xDoO69ZZly6vjWxwur42wmvHlrzFrqDGrE6KWOk977yaZSNeIBj+XHg/XdiJcvjwYXz66ae444470KZNG9xzzz2OpSVZGU4ngCglsRpUnTrZ89C7md8frjwjx567pAeLKKp4QZWdE084XX5iHYe6dZNPl57nSMIjG7wwyYfT9bVRXjq25C3hoCbymTuzg5pwJ0WnTqk9jxYrvWedVXNbsepikZr7aVb6UrRr1y588skn+OCDD/DJJ59g7969qFWrFs4991z07dvX1rSYgcEdeZvTDUszv9+uyp7ITE4HVWFOl594xyGZdPlxMimn62sit7AyqInWKRSvk0JvJ5Le9Eari19/HWjZUvtd5Occ6kT56aefMH36dHzwwQcoLCzEkSNHcNxxx+Gaa65Bv3798Lvf/Q45OTm2psksnC2TvM3p6arN/v4AzvhEHuemIMTJ8hPvOADG0+V03WYFP+4TkZsYrY+tqr9d2pZZt24dpkyZgvfffx+LFi0CAHTo0AGXXnop+vXrh9NPPx1pLkinHlwKgfzL6Yal099P5AYuvZDbzszj4Mep+K1YcyvoeY6c4db8Z7QDJdH73bqfBqxfvx5TpkzBlClTKgO6nj174rLLLsOll16KDh7tWIoX3HFYJnlT1QqnSxdg8eLEi1VaUUmZMbTCB5UnBVyqw2r8UgbMHF7kluGuZjJrKBo71chJbs5/Roc+x3t/+/bu3c8EfvrpJ7z33nuYPHkyFixYAAA47bTTMHr0aFx55ZU44YQTHE6htXjnLij80ngCkqtY3VoZuzVdRHbRWwb8VIfpwbohNg7vdJ6fy2OifXNz/jPzzh3g3v2MYvv27Zg0aRLeffddfP311wCA7t2745prrsFVV12F1q1bO5xCc8W7cwcR8cyrR48e4jvl5SKrVokUFGj/lpdb8x3vvSeSmysCaP++954132WHVauO7kv4lZur/d7Mz9jBrekisoueMuC3OkwvO64PXlRQUD2/hF8FBU6nLBj8XB717Jub85/RcxPv/W7ezwqlpaXy3nvvycUXXywZGRkCQDp16iRPP/20lJSUVH+zz+pTAEUSI17isEwn2dUza/f002b06MXbRjIzrrl1lja3povILrHKwMqV2v/bt/feFPpm4VT80flxyGo0br075ufyqGff3Jz/jA59jvd+l+6niOCrr77C+PHjMWXKFOzevRvHH3887rvvPvTv3x+dOnWq+SEjE161bautT+q2cmeAt1LrN3Yt/mvn4r7xFqkNhbQhAIWF2r+xFq5NtNBtMot/2rVgqFFuTReRXWKVgaKio2V/82ZnFygnZ8S6Zrhw4WPTuXHB9/D5WLkS+NvfgLy8o3/zS3nU016Klf/attXXxrFauFPo7LO1fxMFJrHe77JytnbtWjz22GNo27YtzjrrLEycOBGXXHIJPvvsM/z444947rnnogd2QOz29rp11cvZRRcB77zjrnKXjFi39Nz48t2wTDNvece73Wzn0L9Y31VcrH+oQKL0JjMkxK3DSNyaLiK7RCsDw4eL5OUd/XnBAg5fDppEdaPPhljV4LYh+3rKqR/Ko97jHpn/ysr8eS13uJwdOHBA3n77benTp48AkLS0NDnvvPNk/PjxsnfvXv0bitXeLiysfr6HDIl+/hcscN25RJxhmY4HbEZevgvuzKq89VwE7ap0YhWgmTP176ueoDeZCsfKSiqVbfu9kUKUSLgMTJ2qXVzDDcbwa9489zWcWG6t5bbgxqhU84fbnneKdT7CjWGny6NZkm0veT2/usyiRYvktttuk3r16gkAadu2rQwfPlw2btyY3AZjnZ8ZM6r/bujQ6OVu2DDX5fF4wR2fuXNS+JZ35Bhgo7e8E40RN2v6aT1ijdGuXVv/s2V6xnkn8yxKtM+Y9XxgKs9O8rkaCrpwGQCAG26oWfYbNQLOOMOeOkwPzmRpPS8/j2xG/nDb806xzkd+vjZ7ogefS4oq2faSl/OrS+zcuRMTJkzAv//9byxduhQ5OTm48sorccstt6B3795QSiW/8Vjt7bZto5ezyJ/Ly731XGmsqM+NL9/duRMxp/c3mR4+q3qdY/V6lZTo79Wy605j+HvatdN6H4cNE/nsM214hRHssSMyh1eGKbPMW8/Lx9iMtLutLHj5fNjBT8fHxlEJ5eXlMmfOHLn++uslOztbAEj37t3l5Zdflp07d5qblmjbiixn7dqJvPFG7OHHLpopFByW6XNGKxWrLxp6CpCe6XmtrlxWrdIK8vDh1dM1YYKx73Pb8BkiL/PCcMcglXmnzofbghsjzMofbioLXj4fdvDL8bFpP7Zv3y6jRo2S9u3bCwCpX7++3HnnnbJkyRLb01KtnBUXi6xdK/LFF1qHf9XHBFwWrMcL7riIuR8YHQJi5wKcVYc9Nm+u3dreutX5YVWANqPVrFnAmDGpHQs3L2hK/uTWKdKDwuwyb/R8xnu/mXnDieGnVdPftCmQng5s2uStfO7XawLrnfjMPj5OHG8L866IYP78+XjllVcwefJkHDp0CL/97W8xaNAgXHHFFciNnDXZ7nJUtb479ljgjjuAp55y7dB7LmIeBEZ6+OzqdXZ7T9aqVVrPTKrHwu37Sf7C/OY8M8+BmYsOm503qo4Kycs7Onzdqpnj/JK33bQfbrr7Z5SX054qp/KQ2e3D8nLZt3ixvHb//dLt5JMFgNSpU0duu+02Wb58ub1pSSRyFFxenlbfzZzpyvwHDsv0KKsqtmSGcSZKR7T3uH0Menm59oydWTOWBvUiRPZye7kKCrPKvNHzGe/9sRonM2akNmNjXl7N4etWNDT9lLfdcE1wU5BpVLS0T5+uDZsLwnXWqbJg4veuWL5c7jz/fDkGEADSWSl55S9/kT27dtmeFl08NtyewZ0XWVkpG9m2nvfGes+8ec4XlEQX2LIy7Rk7Oy9+brjok/dUXS7A6XJF5qkaQA0Zok3FPXSoVn/Ge3+081/1b2YEZOHGVay1nxKt/eX16f/j8UI97uVgOVpHxTPPeDNQTYZTZSHFtuehQ4fk3Xffld69ewsAyQLkRkC+AiRkNP/Z3TnhsfLC4M6LrM5kei9MetIR6z1OLzyst2LQeyzMuJh7uSfVy7zQEIunar4ZOtRTFyBKwOjETnrv3OkNyOIJ5zs9w9fNqNu80rjySj3ulmA5mfo3Mu1m5GcvSaYsmHWdS2I7P//8szz11FPStGlTASCtW7eWZ2+9VX5JNf/Zee32SrmuwODOi9ww21Z5ec0FHqOlI15anSwoZjYUzCr0Xmm8+InHKuyoIp99smOIHNmjvFzk00/11wt6n7mLtRhvMtcQPR11ZtRtXimrXqnH3ZDOZM9pZNrNys9eYeazuBZaunSp/OlPf6pcxuD888+Xjz/+WMq98GhONB7qCGZw50VOXyjDn33ssdQu6k4WFDN7Lc2qpNwQtAeNFy8wkSLzTXgI39SpwTr/Xs738dI+Z46xeiHetsJ/++ILezu3glS3ueWOWCJuCJaTrX8j066nLeI3RsqCjde5I0eOyAcffCDnnHOOAJBatWrJbbfdJsXFxTXT73T+8zEGd17k9BCX8Gf13CVwawE2s7Iz62LudNAeRF5piMXjhwC1qmQa8F7O94nSbsX5Nft4JTpnfsuj8XhpX50OllOpf6umvaTEu+XfDjZc53bv3i1jx46VNm3aCABp0aKFPPvss7Jjx47YH3I6//kYgzs3SLYx49TD6ZEP5ocf9C8sjD3xitsKcKp3LqvuT3GxORdzp4P2IPLD8fJqYBOtXjBrmJabzmOqgY9V59fO645X82gygrSvqTL78Qi3tTPcwsL6ce3atXLPPfdI3bp1BYCceeaZMmXKFCkrKzMh4Q7yeH5icOc0py4EZty5i/dZJwqG0e806w7B9OnmrmvlVNAeRH5piHntQhTruJeUJFcvuTXfmzVk0Q3nN9Wy4oZ9sEuQ9jUVfql/3c7k4xwKhaSgoEAuvfRSUUpJRkaG3HDDDbJgwQKTE+4QH+RLBndOc6rH2Yxn7mJ91omCYdd3xjpfJSXuuJi7+Q6GW7EhZr9Y+bSwMLkgzYl8ryff6EmXkbQ7mVdZt1CqYt2tZ/1rPROOc2lpqYwbN046d+4sAKRRo0YydOhQ2bRpk/npdZIP6joGd05zssc5lcIe77NOFAy7vlPv+bLrghX5PWVlnu9xogCIVY5mzjRnggWr7yrp/T69d+X0LsviZNl2691R8gan8y8lbcuWLfLYY49J48aNBYCceuqp8vrrr8uBAwes+UKnA34f1HUM7pxmdVDiRCFxomDY9Z16h6TacRGL9T1lZewJJWuYVZ/EKkfFxeY9C2vl82B662297zPrLqCVnP5+Sh3v/JIBRUVF0r9/f8nMzBSllFx88cUye/ZsCYVC1n2pGzoBfJBXGdw5zcqMbGeQUfWCkexzM6mwK0ieN09bQDjeMbWrYvBBBUQeYmZ9Em9bVjZAo207mXJk5A6+WcfM6d5kNzS6KHlOnz+n868fWVBXlpWVyX/+8x/p1auXAJDatWvLXXfdJSUlJamnVw83tGucLismcG1wB2AcgF8ArNDzfs8GdyLWNWbsKCSxCsH06f555i5y2+3aaQsLxzpfdl3EeLEkO5ldn9h9FyFWHaFnHblUOrCsvttpd6OHowK8yen84/T3+43JbZ6dO3fKqFGjpGXLlgJAWrVqJaNHj5adO3eam+5E3NKu8Xhd5+bgrjeA7oEI7qxiRiFJlMHjDa+yu2C4JUjmnTvyI7dcdJMVq7wsWBC/HAWhA8urPN4As5XT5Zf511wmXf9Xr14td9xxh9SuXVsASO/evWXq1Kly5MgRixKeQKr7xTpBROIHdxlwkIjMVUq1cjINntesGZCbC5SWHv1dbq72ez1CIWDqVGDAAG0bubnA+PHA5ZcDaWnae7Zsqb59QPt561bg7LOBDh0MJ1tEUFpaiv379+PAgQMIhULIyMhAeno66tSpg7p160IpVfODaWna9yXxnXHF2sctW6J/V/v22nGKPG7t21d/XygErFmjbadZM+3v4eOqh97vIf9INc+kItX6xGmxyvHhw/HL0Zo1R/8W/syAAcDixQgtWoQD69fjQL16KG3WDMeXlyPTqvORlqbVvZ06OXP+3UbP9YmOcrr8Mv+ay2i7pAoRwezZs/HCCy9g5syZyMrKwnXXXYd77roL3erU0baxdq0z5yeVdg3rBF2UFvw5mAAtuJshIqcmem9+fr4UFRVZnygvSTWjr14NdOtW82KwZMnRykPPe6I4fPgwvv32WxQXF2NVcTFWL1qEjT/9hM27dmHLtm0oKyuL+dn09HQ0bNgQzZo1Q6tWrdC6dWuceOKJ6Ny5Mzp37oxjjjkm8b4Zkcw+JmqEm1UJOdnY9xqvHyunL1xOf3+q4pXj9u1j5o19n3yCZRdeiGIAqwCUANgEYHPDhvhl1y6EQqEqm8tFr169cPvtt+Piiy9GulLuzHNeLwtA0teewPJ6+Y3HaH62+v12SCL/l5aW4p133sELL7yA7777Dk2aNMFtt92GQYMGoWmTJtblD7uON+uESkqpRSKSH/Vvbg/ulFK3ArgVAE444YQeGzZssDF1HpFKpVRYCJxzTs3fFxRod+XC29dRIezZsweFhYWYM2cO5s+fjyVLluDQoUMAgPS0NLQRQUsRHJ+ejmYXXYQGPXuiVu3aqF27NtLS0lBeXo4jR45g3759+PXXX7Fjxw5s3rwZ69evxw8//IB9+/ZVflf79u3Rq1cvnHXWWTj77LPRunXr1I4XYH6lx0rIXn5o2CSbZ8xsmLixkaOXzjywdetWfP755ygoKMCCBQvw3XffVQZwOQDaA2iRloZml1+Oph06oF69eqhduzaysrKwYsUKTJs2DT/++CNat26Nu/v0wcBJk3DMwYPuyXN+KAuAvusTVefl8huL0fxs9fvtYiBdmzZtwksvvYTXXnsNO3bsQNeuXXHvvffi2muvRXZ2tvYmq9okdh4/1gmV4gV3jj5zVxFYtoLfnrnz0njgFKfxXrNmjTz77LNy5plnSnp6ugCQ3Nxc6d27twwePFgmT54sK2fOlEM5OSmNGw+FQvLTTz/JjBkz5Omnn5ZLLrlEGjZsKAAEgHTs2FHuv/9+KSwsjD+O3M4Z/Jx+/iFo/PB8YjJ5hs+5VBelHIdCIVm4cKEMGTJETj311Mp6o0GDBnLBBRfIY8OGyUcPPyzfZ2fLER3HsKysTN577z35bffuAkDqAnIPIGur5jlOSZ86v+xHUHj1mXg357MEx3T+/Ply3XXXSUZGhiilpF+/flJYWBh9KQOr2iR2TsTl5nNlM7h1QhXxY3DntYZWEundunWrjBo1Sjp37lzZSOrevbsMHTpUCgoK5ODBg9U/YFGFUl5eLitWrJCxY8fKeeedJ1lZWQJAjj/+eLn33ntl4cKFNSs4OysGv1VCbu+08EMwnUye8Vs+M1FJSYk88sgjcsIJJwgASU9Pl3POOUdGjBghixYtkvKqeThW/o6X7wsKZAEgNwCSAYgC5FJACv7v/yQ0ZQqnpE+V166nfmOkzrfyXBnNz1a/32GHDx+WSZMmSc+ePbXOpbp15b777pN169bF/6BV1wozj1+iDviSEpHx41kniIuDOwDvAtgCoAzARgB/jvd+TwR3Xmxo6ajAy8rKZPr06dKvXz/JyMgQANKzZ08ZM2aMrF+/Pv72bTome/fulUmTJkm/fv0qA73u3bvLa6+9Jnv37tXeZGclHmt5hTlz3BkcxeOFRpYXy16kZI6zxxompolRb+3bt0/eeOMNOeusswSApKWlyYUXXihvvPGGbN++Xdc2qv093vmokuc2ATIUkEYVHV5dlJI3ACl1Ii/6oSyEub1Tya+M1kVW5rnIbefliQwbJjJjhrEZvr14566KHTt2yIgRIyQvL08ASNu2beWFF16Q3bt369uAVddxM49fvNnZw2kPn//Jk7XfB7ROcG1wZ/TlieDOZw2tPXv2yOjRo6VFixYCQJo0aSIPPPCArFy5Uv9GHAgMdu3aJa+88krl3cW6devK7bffLqs+/tjeStzIwuhu5oWLnxcCUD2MNmatODdWNKjN3GaUc73p1VfloQcflHr16gkAOfHEE2XEiBGyadMm3duokV8SHdso2zjwzjvy+uDBcmpFkNcEkMcB2WLndcAvZYGcY7ResbLtUzU/5+WJPPNM/LxtNP9Hbt9lgcOKFSvk1ltvldzcXAEgffv2lenTpye3lIFVdbtZ9U2sfDRzpvvbIDZjcGcnOxrBNvRkbtmyRR555JHKhlKfPn1k2rRpcvjw4eQ26ETva3m5hIqL5esXX5T+l14q2dnZopSSq884Q5ZlZ9vb6PFCcBSPVzotgtjLb3ZD3orAwOxtVilP3wHyJ0AyK+7SXXXVVTJ37tzoz5zE2EbMMqkn30fLc6tWSSgnR2YDclFFkJcFyE39+snixYuT22ejgloWgrbPVjFa51t9jQuf28JCfd9jNC+4bMhfeXm5TJ8+XX73u98JAMnJyZE///nPsmzZMtvTootZZS9WPios9EYbxEYM7uxkdY+pxdvfunWr3HXXXZKVlSVpaWly5ZVXyvz5803ZdjVWX4SjHKefX39dHnn4Yalbt64AkIvPPFPmT5liT8VtVnDkVOPF68Gp35mZL/SeayPfaXb+KSiQYkCurAiccgG5A5C177xjaBsJy2Sy6Y6of1ZnZ8ud559fuYhwnz59nF1E2I94t9JcRvO+Xcffyo5GF1zndu/eLWPHjpW2bdsKAGnevLkMHz5ctm3bZlsaHBUrH5WUOH5u3IbBnd2sbIBbVPns2rVLHn30Ualdu7akp6fLLbfcImvWrDEp0RGsujNQ9ZgXF8c8Tr/++qs89dRTlbNtXn755VJSUmLa7kVlxnlzsvHChpP/hcvQ1KmJG09G84OJDbINGzbIwCuukDRA6gAyDJBtyZQnPWUylXwf5Tqwc+dOGTVqlLRs2VIASOvWreX555+XXbt2GT4OFMEFDXNP3zmMTHtZmfG8b8f+W3me9dZTFuxnSUmJ3HXXXVKnTh0BIGeccYZMmjQp+dFSXhbt+Maqi8vKvFvmUsTgzo2SrRxM7rU6dOiQjB49ujLQufrqq2X16tVJbUs3syvnaIV+8uSEx2nv3r3y1FNPSZ06dSQjI0PuvPNO+eWXX8zZRz1pNBocOd148XLDheKrmj+HDk2czxyYsGDnzp1y3333SVZWlmRlZcm9f/yj/BJeYiWZ8qS3TFqQ78vKyuQ///mP9OrVSwBInTp15O6777auQy0InB467uUOMC81nK08zlZ1+MSoQ0KhkHz22Wfyxz/+UZRSkpmZKTfeeKMsWLAg9X0xygvXdzM6IGJty437mwCDO7dJpXIysYE/a9Ys6dixowCQ3//+97Jo0aIkdiYJZl+Eox2Txx7TfZy2bt0qgwYNkvT0dKlbt648++yz1vSWpVqZON14If+qWoby8kSGD49fPxnNiynUeeXl5TJu3Dhp3LixpKWlyZ/+9CfZsGGDORdnF1zgFy5cKDfeeKNkZmaKUkouvvhi+fTTT6Xcg42NhDw4qsUz358Kr6Xdqnykp54yYbjqvrfflldeeklOOukkCU9U99hjj8nmzZvN2Q+jvNoxYdKwec/sbwQGd24TK0OWlCSusEzIlBs2bJArrrhCwlPpzpgxw/g+pFK5WvD8TY1GZl6e4QejV65cKRdddJEAkFNOOUXmzp2bXHqs4rULMHlHZBnKyxMZMkQbohmtfCeTF5OoMxYuXCinn366AJAzzzzTvslIHLB582Z59NFHpUmTJgJA2rdvL2PGjJGdO3c6nTRzePx59ITMXuvLzk4HKzoOXdBxkpRE6U5hopnvAXkAkAbQnhXu1q2bvPnmmzXXBrabV9sWyeZbr+5vBAZ3bpNqMJJkpVlWVibPPvus5ObmSm5urvy///f/pLS01Hj6U72Imn0R1hMsFxdrP+s4Zh9++GHlosc333yzdUM1jfLS0BnyFjsnT9BRf+3evVtuv/12UUrJcccdJ+PHj088+6VPHDx4UN555x0544wzBIDUqlVLbr31VvfOkqeXHQ0qJwMKs/bPiSDVjkclPHhnJCqDx6r8889lJiB/BEQBkg5tIqgv/+//3FOneXVUULL51qv7G4HBnZOiXWyiZchhwyy98C1fvlx69OghAKRfv37asKZkmTU5iFkX4UQXkiQuNPv27ZOHHnpIMjIypGHDhvLOO++4oyI2c8w5UZiJz5Gk+j2ffPKJtGjRQpRScs899wR6spFFixbJwIEDJScnRwDIWWedJZMmTZJDhw45nTTjfNKgismsgMaJuwplZSKffqq1Q4YOFWnXzpoOV4/dGTE0sUfEsdq+fbs899xz0rpiwfHjoE3+9JOejjO7Oyi8er6SLXNe3d8IDO6cEu9OSxITgCTj0KFD8vjjj0tmZqY0btxYpkyZknqQ4saLdLwKMYWCvGLFCunZs2dlULx161Zz0mQWt1dSXh2aE0QO59cdO3bITTfdJADkpJNOkv/973/60lpSot2Z93Ee27Fjh4waNUratGkjAKRp06by+OOPx16g3Y3cXleZwYwyZPf1NVo7ZcIErZ2SLDe2EYyKFzjEOc/z58+Xm266SbKzswWA9O7dWybde68c0jP5k1N3PL18p9WiTkYvYHDnlHgXs8gMGWfq/mQtW7ZMOnXqJADk+uuvN2+dFK9dpFO80Bw5ckRGjhwp2dnZcuyxx8rkyZMTf8iuysOqi6hZk1X4oAIlE8XIrx+PGCFNmzaV9PR0GTp06NFnUBL1nOfliTzzjLfyWAplq7y8XGbOnCkXXnihKKUkIyNDrrrqKvniiy/cMbIgnsj6oF077W7RnDm+DcrjipUP7Ly+lpeLLFhg/vd5rY0QjYF9OHDggIwbN07y8/MlPPvtbbfdJt9++632Br1l3snjFrSOWB/sL4M7pxhpeJvYEC4vL5fnn39esrKy5LjjjpMPP/ww5V1JmNYJE0TmzXNnITGpwly5cqX85je/kfCSEXEnOrCrkrbie7w8vIj0cerCFpEnDgByZ3q6AJBOnTpVnzAlVj6s2hE2ZIi38piJ9fzatWtl8ODB0qBBAwEgJ598sowdO1Z27NhhQcJNEs538+Zp1wyjx8EHDTIRSXxXyI5OsfD3DBtmfgehHzr2dLTfVq9eLffff3+1Mvjiiy/K7t27E28/Wl72wx1Psg2DO6ckM0lBtAuXgQvapk2b5LzzzhMAcskll1i7bls4TZ9+qvXCurUSN/FCU1ZWJk8//bRkZGRIy5YtZd68edHfaFclbcVF1KygjBcq96haXouLRaZPd6bhVSW/LgHkZKUEgNx37701J3eKlQ9nzDj689Ch3spjFnR47N+/X/79739XziqanZ0tN954o8ydO9e9d/OSOQ5+CBjCEu2/nUOk9axrGUlP+rweiMc4R6XLlsk777wjffr0EQCVd88LCwv1lzc9HVdmdtZ6+TxQTAzunGLGxcjANj788EM59thjJTc3V/75z3/ac2H3yt0Zkyu4+fPnS5s2bSQtLU2eeuopOXLkSPU32D20xqwLbXl59cZzKg1mr+QNv4tWhzzzjDak0YHzEjpyREY/9JBkZmRIs8aN5dNPPon+xlidA198cXRfkmmYOinWPs2caUqja+nSpXLHHXfIMcccIwCkY8eOMnr0aPOG5JslmY4fP9Unbuj4CqdBz7qWVaXSrvFSoBGxn99mZ8vdF1xQeZeuTZs28swzz8iWLVuMbztWXi4pMbcDw08dIlQDgzsnpVqZ6bigHT58WAYPHiwApHv37lJcXGzuPsRjxkXKSxV+Fbt375YbbrhBwg9Nb9y48egf3VSpxkpL5NIQ4fcZWAA+qe/1yPn1jVh1yJAh9jUsK8r4zo8+kn7nnisA5NJLL40fdOhpAHntmbtY+zRsmKnp3r9/v7z55pty5plnCgDJysqS6667TgoKCtxxNy+ZQM0NAZFZzA5Uk7mGVk1DeF3LYcO0Z/DifT7ZtBu5HrikTbBvzx7599NPS8+TT64sR9dcc43Mnj1bylNJU7y8bOa++6lDhGpgcOdlCS5oGzdulF69egkAuf322+1fDDPVysMHAcD48eOlTp060rhxY/n888+P/sElF6i4Dcqqxzw8JMRoT248bjkGRhlNt5v3M1YdUnVIYzLDxfWqKOOLsrOlDSAZgDx/000SirzbHeNzMZ9LCqfJS7NlRtun4cO1MmdRo+vbb7+Vu+++W+rXry/hxdGHDx8uP/30U8202ZWHk6n3/dRQNfO6l+y2kv2c1QtHO9wmCIVCUlRUJIMGDZK6detacwfcrrzspw4RqoHBnZfFqQRmz54tjRs3ltq1a8vEiROdSV+qFbFPLtgrV66Uk046SdLS0mTEiBHu6B0P09u4rzocM9yTO3SoSGGhuxvMZjOap93eQaE3uI/Vg57ivoWKi+XVzEzJBiQPkK+MlHE3B83JKi/XytTQoVoZqzo81sJG14EDB2T8+PFy1llnCQBRSsl5550nEyZMkP1799qfh5PpQHFrOUsmn5rVQZHKNTTVO35Gvk9voOFQm2DLli0ycuRIOfXUUwWA5OTkSP/+/eXLL79M7noe79jalZd90r6i6FIK7gAUAbgDQINE77X6FcjgLkolUD55sjz15JOilJKTTz5ZVq5c6Xwak22A+ahnae/evXLNNddIeMiZaxZf1jssr+qzTEG+EBi9ILr9Aqp3WG40Ke7bvn375MaKCZ7+AMg2j5dx0zicZ9auXSuPPfaYtGrVSgDIMXXqyF/S02UeICE35uEwNwb7qTbUU/28G9bFM3PhaBv3p7S0VKZMmSIXXnihpFfM2nv66afLyy+/LL/++mvyG451jMrKjubf4mJ9dXAq3NwhQilLNbhrB+BpAGsBTALwBwAq0eeseAUyuBOpdkHbuWCBXHD++QJAbrzxRtm3b19S20m6MjH74ur2hrFBoVBIxo4dKxkZGdKuXTtZtmyZ00nSP6FGsg9zu7HBlQqjz0N4oYMi2XOUwr6tXbtWTjnlFFFKyVMZGVLukzJuCpc0usrLy6WgoEBu+sMfpDYgAKQ9IP8PkA1uy8Nuleo1zKrPl5RYVy8ne6dST563uE0QCoXkf//7nwwaNKhyqHLz5s3l4YcfNm++gmj70K5dcst/pMpv12eqZMqwTABpAC4BsAnATwCeBNBQ7+fNeAU2uKtQXFws7du3l8zMTHnllVeMDRUwozFhRYPEJY0cs82bN0+OP/54yc3NTX7IrJmVctVtxZsK3w9DpVI9bnom8oi8A+ajDopqkmxoffbZZ9KgQQNp2LChfPbf/7ovj7iBmxpdq1bJ3pwceROQsyuCPAVI35495V//+lfNuxhefebRCql27qT6+bKymkHD9OnuLHN68rxF15SSkhJ58sknpUOHDgJAcnNz5YYbbpDPPvus5mzXqYp2Tr22Jie5XsrBHYDOAMYAWA3g/wCcDuB+AEv1fN6sV5CDuxnTp8sxdepI4/r15csJE8xrsBqpWKzqUXNTI8dEW7duld69ewsAeeSRR8TQ7FpWB01mHXO33Xm1shMj1hpExcX2NaTsLisGj2coFJLnn39e0tLS5NRTT5V169Y5k24/sePYRZzn77Oz5Ymrr5b27dsLAMnMzJSLL75YJk6cKPv27PHubKV6GTnmTt65C5+3du2Oznb56afWrJdmJ5Py/E8//SSjRo2SHj16SPg50z59+sjrr7+ub6HxZJWUaOdi6FDtlZcnliwWT4GW6rDMRQA+B3A9gOyIv01N9HkzX0EM7kKhkDwzfLgopaS7UtpQmWQuoGasr+SF4Wcuc+jQIbn11lsFgFx88cWyZ88efR80I2iyo1HotjxhVrBpdPilAw1wtw3rKS0tlQEDBggAueyyy2Tv3r3WpsvPwsd8zhyRzz7TGu8OdByEZw68//77pXnz5gJAauXmyrXp6fIhIIceesjbQUQ0RsuZk8/cxarvzFqr1IO2bdsmr7zyivTu3VuUUgJA8vPzZfTo0dWXK9KrallcsEBk3rz4dXysxyAKC9k5TqZKNbhrk+g9dr2CFtzt37+/coKOa9PTZb8Vd92MrK/ktrs0HhEKheQf//iHpKenyymnnHL0bkY8qQZNQZ2Ny8pg0+l9dfr749i4caOcdtppAkCeeOIJY3epqbpoZTe8XIKD57y8vFy++OILGXTJJXIstKGb9XNy5M+AfAzIQb8EEcmUs1Qb2GY/ExuwybG2bdsm//73v+WCCy6QjIwMASAnnXSSPPXUU1JSUpL8hmOVxXbtYl9PY+UfK0Z4uPGxCLINl0LwoE2bNkn37t1FKSUjbr316AxmyV5A4zUYjA4BcftQQZeaPXu2NGjQQI499lgp+Pzz+Pvq9EP6ernt4mLlfju9r267S1ph0cKF0qxxY6mdkyNT//EPc46HWXWBF+uUWHm46uy2U6c6tz+rVsnhnBz5GJD+nTpJ3YpA7xhArgPkvaws2btokf3pMovRcpZKHrP7+WAv5H+dfvrpJ/nHP/4h55xzjqSlpQkAadWqlTz00EOydOlSfXMSJDr+8cpirOuKnSM8XNzhR9ZjcOcxK1askBYtWkjt2rXlo48+MneoWarrK1nVWHK64WyTNWvWSMeOHSUjPV1ey8yMva+pHg87AwE3NaC90gGRzHZceCGf+dFHUjs7W1ooJcvd1hud7Haczs+J1qWs2rh0oo6selzz8uTg3/8uM7Oy5M+ANKoI9HJycuTSSy+Vt956S3bs2GFv+lJlpJylkletfD64vNz5fGyBkpISGTFihJx++umCirx28skny6OPPiqLFy82f5K5RGUx2vXUznrapR1+ZA8Gdx7y+eefS7169aRZs2ayKNz7aWaD1YUNRFenywK7Fi6UCyp6Gh8EtCnio+1rKhfnAB3PGtzeqNFTnqPtg8s6QP75z39Kenq6dFNKNkXms8LC5I+9WXk32eF1Th/jRHcLXDBEs1r+rDJbZtmKFVI4Z47cfffdkpeXJwAkPT1dfve738nYsWNTGyJnFyN5IJW8auXzwalwUf155MgR+eqrr2TIkCGVi4uHn6EbPnx4aksX6Dn+ydy5s7MOibcPLjqPZI1Un7mrBWAYgH9V/NwewEWJPmfFy+/B3VtvvSWZmZlyyimnyIYNG6r/0cw7Bk43XqIJUg9UQYGUAXJbxYXqCkAOmL2vbj3PiQThgpSoUeHy3vjy8nJ56KGHBIBcePrpsjdWz3ayec6suiCZ7bihUyTa+Z8wQeTjj0XefVfk2WePzsDn4joyFArJggUL5JFHHpGOHTtWNszbt2wp995zj8yaNUsOHjzobCJjlSe95SyVvOrGa54Lrhs7duyQCRMmyPXXXy8NGzas7CDo3bu3jB07tmbbKFl6jn8yz9yFP2dHPR3rfJWVOX4edTFynFxw7XObVIO7yQAeBLCi4udcu5dACL88H9zFyJyhUEiefPJJASB9+/aVnTt3Gt6GGelwlBsaVXap2NcQIKOhrSd1ulLy81dfmfs9bjzP8bigYWGLRI0KO8uCwTxSWloq1157rQCQv/71r1K2YkX858PsuuNm1nb0NritLluR24+2llm4ken2OrKiXK/LzpZ/AHJ+WppkZ2YKAKlTp47069dPXn3lFVk3a5a9dZUZ9Y0b7tyZyYE0HTlyRObPny9PP/20/Pa3v618fq5x48YyYMAAmTx5cs11FmMxUi717mvVbeqZLdNu0fbZjXkrkpHyF5S2gUGpBndFFf8uqfK7ZYk+Z8XL08FdjMx5+OBBufnmmwWADBgwQA4dOmR4G77I4H7et0gR+zo1K0tys7KkVatWsnLlSqdT5xwvXJDMkGg/7erRN1jmduzYIb169RIA8uyzz2rPt8Tq2U7med4k0xVTWZm25ld4valEve0i+vKgE3VVrHR9+qn768goad+XkyMfvfKKDBo0SFq0aFF5V681ILekp8uke++VX7ZutT1dhusbp5+5M5sNdU8oFJLi4mJ58cUXpV+/flK/fv3K89+9e3cZNmyYfPPNN2J4xl2jx9ONx98sbrwrHMlI+QtK28CgVIO7ryvu1i2u+LktgAWJPmfFy9PBXZTMuSsnR84980wBII8//njih4G9kMFT6dH22p2mVETs64JvvpHjjjtO6tevL3PmzEl5e548dl64IJkhUaPCrnJu4HvWrVsnHTp0kKysLHn33Xdr7s+qVdqamcOGVQ/skk13qvk51tDGsjLjn4ts8DlRD3u5bCRIe6i4WIqzs+VFQPoBUq+ioQ9AunTpIvfff79Mnz7d/IlZzDqmXrvmxftOC/J2KBSStWvXyptvvik33XRT5XqJAKRly5by5z//Wd599135+eefU9uvZJ+x9fp1MxovtBWNlD8v138WSjW4Ow/AFwC2AZgAYD2AsxN9zoqXp4O7iMz5IyCdAMlIT5c33ngjqW24LoP7uSfMBuvXr5dTTjlFMjIy9OcJEf8cdy9ckMwSr1Fh1/nUWZ/Mnz9fGjduLA0aNJC5c+fG3ye35MNU8lKiBp8T9bCXy4bBO9VlgMwH5Ok//1nOOeccycrKqgwGTjnlFPnrX/8qb7/9tvzwww/GZkc0mi4/SlRGTSjDZWVlsmjRInnhhRfkyiuvlKZNm1aev4YNG8pVV10lr776qqxduza18xcplXLptSAvUXrdVBfHwjt3KUt5tkwAxwL4I4CLADTS8xkrXp4O7qpkziWAHA9tXaBZ48YltQ1XZnA3pM9rlXSEXbt2ybnnnisAZNiwYfoufm447mbwwgXJLnbkYx355oMPPpDc3Fxp3bq1rDIjMLKLlQGYE+XNy2UjxTvVBw4ckLlz58rTTz8tF1xwgRxzzDGVwULz5s3l6quvlpEjR0phYaHs2bPHvHT5kd5hxwbK8MaNG+WDDz6QoUOHynnnnSd16tSpdmfuhhtukFdeeUW+/fZb40Mtzd63aLyWD/SmV08A6GRdzWfuUmZGcNcZwCUALg+/9HzO7Jeng7uKzPnfrCypA0ieUrJ81CjjQzjcnMGdvrPo9uOj0+HDh2XgwIECQPr37x//OUwR54+7mZy+4ARJgvLywgsviFJKTjvttNSHTNnNygDMqXrGi2UjnOY5c2JPRmHweB45ckSWLVsmL730klx33XXSsmXLymBCKSUdO3aU/v37ywsvvCBfffWV7Nu3L3H6vHRMU5HitWLr1q3y8ccfy5NPPikXX3yxNGvWrPLYp6enS5cuXeT222+XiRMnyo8//mjprtSQbLl0S+eo3rzo9LOiZjJS/oJWVnWIF9wp7e+xKaXGVQR33wEIVfxaRGRg3A9aID8/X4qKiuz+WtO8/tprGHT77Ti1VSvMHDcOzXv1AtLSjG0kFALWrAG2bAGaNQPatze+DausXg106waUlh79XW4usGQJ0KGD/7/fRCKCp59+GsOGDUPfvn3x/vvvo379+tHf7KP9JptFqU/KRTB48GCMHTsWl156KSZOnIhatWo5nVJjQiFg6lRgwACtXOTmAuPHA5dfbk596eZ62C2MnIMUj+e2bdtQVFRU+Vq4cCG2bNkCAFBKoU2bNjj11FOrvU488URkZWXpT4MZ59zpfKPzWrFnzx6sWLGixmvbtm0AtGPasWNH5Ofn4ze/+Q3y8/PRpUsX5+uJZI5vYSFwzjk1f19QAJx9tj1pMlJWzEgv2wy+oJRaJCL5Uf+mI7hbKSInW5Sw8wG8ACAdwOsiMiLe+70a3IkIHn30UQwfPhznn38+pkyZgrp161r/xXZfSKxuUEX7vqr7t3070KtXzfeZVUk74J133sHAgQNx4oknYubMmWjZsmXNN9l93Mm3Dhw4gBtvvBHTpk3D3Xffjeeffx7p6enJbczphqzT36+HF9KYLIcbkJs3b8bChQuxfPnyyuBk9erVKC8vBwBkZGTgxBNPxIknnoh2bdqgbVkZ2v36K9rWr48W//0vMkaMOFqHmlHHuqGerpKG0tJSfJ+djbX33IO1jRtj3fffY+3atVi9ejV+/PHHyo/Url27MiA+5ZRT0L17d3Tr1g3HHHNM6mlxQ963Mp/qPedG0mBGeq0OaMkW8YI7PUMy/w3g5ETvM/qCFtCtA9AGQBaAZYm+x4vDMg8ePCjXX3+9AJC//OUvcvjwYXu+2O9Dh2LNhteunfPDK0w2Z84cqVevnjRt2lQWvf9+7Ek4OGRBHx6r6iqOxy/TpsnpXbqIUkrGjh2b+jbdMOzHbGbmHb8eozAXDhc/ePCgLF++XCZOnChDhgyRSy65RE4++eTKdffCr8z0dGmfmSl/6NVLBg4cKMNuv13+mZkpHwGyGJCfASnPyTF2bbFx+N+hQ4dk/fr18tVXX8mUKVNkzJgxMnjwYLnuuuvkrLPOkubHHVdtfwFI/fr1JT8/X6677joZPny4TJ8+Xb7//ntrnpNzU963Mi3Rznm7dtoQ5ap1iJGyYkZ63TIUlVKCFIdl9gbwEYCtAA4BUFpMKJ1TjDjPAPCEiPyh4udHKoLNZ2J9xmt37nbu3InLLrsMX3zxBYYPH46HH34YSil7vtzvt91j7d8HHwD9+vnuDtbKFStwYd++2L5tG6YAuNBH+2YrN/Seu0nF8Si58UZceOgQNgGYOHgwLnv22dSGzvmx/jE77/jxGFXllf1bvRqhrl2x+eBBrAWwFsC6jAysbdcOP4RC2Lx3L7Zu3YrItlImgEbHHotjmzVDw4YNa7zq16+PWrVqITc3V3uVlCB38GDkQltbKhNaYwrvvAP07Flt2yKCQ4cOobS0FAcOHEBpaWm11/79+/Hrr79Gfe3YsQM7duyosZtZWVlo3rw5mjdvjjZt2qBdu3Zo164d2rZti3bt2qFhw4aWHN6o3JY3rLqLGHmHLC8PuP124O9/r16HdOmivfQej1TTy+ugL8S7c5eh4/PjAPQH8C2OPnNnhuYAfqry80YAp5u4fUf98MMPuPDCC/H9999jwoQJuP7664/+0Y7hCFu2VK8oAO3nLVvcdWFNVqz9y8rSKsREx9YtQ0J0OjkzE9/s3Ys/ArgYwEulpRg0YADQqZO3z6fd52HNmqMXNED71w/HMVlr1uCrG27AJYcPIw1AAYCeL70E3HJL9eNhtDHgx/rH7Lzjx2NUVfv2Wh6JzDPt2zudsuq2bEHawYPIA5AH4GwAOHIEuOoq4IYbgA4dcOS777A1Px+bDh7EZgCbAGzKyMD2vn3xa3k5fv31V3z//fcoKirCr7/+igMHDuj//htvTDrp9erVqxZQtmzZEg0bNkSTJk0qA7nw69hjj7WvczkRt+X9tDTte83+7mbNtHwf3tcBA44GdsDROmTxYmNlJdX0pqVpdXenTtZcez3WvvIjPcHdjyIy3YLvjlbL1LiNqJS6FcCtAHDCCSdYkAzzLVy4EBdddBEOHz6Mzz77DH369Dn6R7t6TCIrFUD7uVkz877DSfH2L1Gl58Veqy1b0PTgQXwB4FoAtwH4obQUz2zahDSvNgSdOA9ua1Q47L1330X/w4dxAoBPALQFoh8Po4GNH+sfs/OOH49RVVY3IM0S6zz06lXZuM446STkvf028nTWVQcPHsSuXbuq33Xbvx+ls2ej9LnnUHr4MMoyM4G//hXIz4+6jezsbOTm5la/+1fxql27NurXr4+MDD1NuBicbIB7Ne8bPWaRHRzp6dHrkK1b7S8rVgW0Xmxf+VGs8ZrhF4CXAUwEcB1MXAoBwBkAPq3y8yMAHon3GS88c/fhhx9KrVq1pFWrVrJy5cqab7BrrLObxrRbIZX9s3qadCue56qS5jJAbqt4TuKaCy+U0tJSc77Dbk6M++ezBiIiEgqF5LnnnhMA8tu0NNme6HgYfX7KzfVPsmXU7Lzj5mMUJLGe3y4rq/m+VOt2s5/ZTHZbTuc9p78/nAYjxy/ZNFf9ngUL/H/94TXWNkhlnTsAb0R5jUv0OR3bzQDwPYDWODqhyinxPuP24O7FF1+UtLQ0yc/Pl61bt0Z/k50Pmft94ohk90/vObCr8tcjYtuhnBx57sYbBYD06tVLtm/fnvp32M2JCRfc0KhwWFlZmdx2220CQK6+6iopnTAh8fFI5oLtxvonlfNvRd5x4zGKx2vp1ctr+2U0L0buX0mJ8w1wvcfcinOTTFm2cn25sjJv5b94XDiRkl+lFNxZ+QJwIYASaLNmDk30frcGd+Xl5XL//fcLALn44ovjL5rKXg3n6TkHTlX+8US5yE2ePFmys7PlxBNPlHXr1pnzPTq+1xROlQWvNeRMtG/fPrnooosEgDz44IPaTHh6jodfguJYea64WN/nA5x3HM8DQT72kYzUndHO2/jxInl57m+AW5Xnkrn2mBW0RObjsjJ/1K1hbOPaJtU7d3kApgH4BcDPAN4HkJfoc1a83BjcHThwQK688koBIHfeeaccOXIk/gecvkCSvnPgZOUfTqPOhsyXX34pDRs2lMaNG8s333xj/LsSpcOmu5EsC9basmWL9OjRQ9LS0uSVV14xvgE/NK5jldHJk725P3ZystHGuqI6I9eaWOdt2DD3N8CtynPJXKutSovfgiGWVdukGtzNAvCnimGUGQBuBjAr0eeseLktuAuFQnL22WcLABk9erSEQiF9H/RDI8nrEp0DJyv/JCrH1atXS5s2bSQ3N1emTZtm7PviceBuJOlk4NitWLFCWrZsKbVr15YZM2bYl0a3idfQ9WpjSq9Uy5qTw63sbAB7oU4ycjzidWi4vQFuVZ5Ldpi5FUGLH4cxeqEM+UCqwd1SPb+z4+W24E5E5O2335b33nvP6WSQ2Zys/JNsyPzyyy/Ss2dPcxahDvPjhccPDOS1WbNmyTHHHCPNmjWToqKi1L/Xyxft8nJtSFrV4zZ8uDZEzc952oy6yck7DInqIbPypR13HcyamEVvOuMNRXZ7WbYqz5kxOYpZx8xvd+7INqkGd7MB3AggveJ1I4DPE33OipcbgzvyKScr/xQCqgMHDshll10mAOSee+5JPEw4EV543EnneXn99dclIyNDOnXqJD/++GNq3+mX4TYlJdqduqFDRYYM0QI7v+fpWPllwQL958/J8x8vv5uZLjtGKpiVViMTkni13Fr9WIAbglsvn59kuOW4+0Cqwd0JAKYD2Fbx3N0HAFom+pwVLwZ3ZLmqFU9Jida7aXcllGID48iRI3LvvfcKALnssstk//79yaclaBcer4jXAVBeLuUrV8rD118vAOQPv/+97N69O/Xv9EugH8Q8HSu/DBtmbN+daphFO2cTJojMm2fu9PJWj1TgJFLGeTntegVhH0WCWfdaKF5wl3AFTBH5EcAlid4XeE4uCGoWP+xDKtyy+GbkwqfhdFQsqJtIeno6xowZg9atW+Pee+9F3759MX36dDRp0sR4WtywELGf82Wy+xZrEeCmTVE6fjxuvuUWTCkvx1/T0/GPG25A5rffAo0apXbs/LIAvBvytN1i5Zfy8viL0UcysvCxmeU28pwdPgzccQewdi0wbJh5+dLqxbWdKkNWLVhtBy+nXS89++iH6+CaNUfbNYD2r5H6h/SLFfWFXwDeAlC/ys8NYMI6d8m8XHvnzg+9EX7Yh1QZnV7ayp42k7Y/bdo0yc3NlTZt2sjq1avNTWOyjOxbqvnSzT2iqexbjM/+Mm2anJGWJgBkJCCh8N+GDEm9TPvlzl0QRcsv4WcNAe0OmJnlxMrrSWQ+HDrUvHxp9XWQZYiS4Zf2GZ/hNxVSHJa5RM/v7Hi5NrjzQ4Xth31IlZHFzT1U0c6fP18aN24sDRs2lC+//NLYh80Ojoweu1TypVvPU/iYzpgh8thj1debMlLmIs5N8SefSJsGDSQHkP9E5uGhQ1Mv0249nqRPebk2hHHYsKPPGgIi7dppQxzNPK9WXk8i6+m8PC1QNSv9VnYIBbEMubmDzSv80j7zy364RKrB3TIADar83BDAt4k+Z8XLtcGdH3oj/LAPqdJb8Xiwglq3bp106NBBsrOzZdKkSfo+ZEVDxOixSyVfuvE8JbqDkmSZ++STT6Re7drSpHZt+SY7u+Y+DxliTplmQ83bouW/Tz81v5xYeT2JVq7btdMCVy/kyyCVoSAGs1bwS/uM+cFU8YI7PQN2RwP4Win1d6XUUwC+BjDSvIGhPhAep19VsuP0QyFg9WqgsFD7NxQyJYkJmbkPYU7tS7LfG37WLXwcYj3rFu+5CZdq06YNvv76a5x22mm49tpr8cQTTyCU6LjEGh+/Zk3yCTF67FLJl248T9GO6d//rv0OMFzmRATPP/88/vjHP6JVixZY2KgRTn/88ep5eNgwLR8nsf0aws+GnH229q/XnvkIuvCza0uWAAUF2r+ZmeaXEyuuJ2HR6ulnngF69PBGvgxSGbLiGhJEVpanSFa226LVP3bPaRAUsaK+qi8AJwO4E8BdAE7W8xkrXq69c2dWb4QZ20m2V9DsHhWnemisfkar6tCmoUOP3nFx+o6QTgcPHpQ//elPAkD69esne/bsif1mK3oLjd5NS+V8uvHOXaxjGn5uyEBePXjwoNx8880CQK644grZt2eP9vl27bQ7dU8/rQ39bNeOvaRBuVuSzH5aUU6srv+Dcj6N0nP9svO4+eWOk9Psak/xzpqnIMVhmW/r+Z0dL9cGdyLmVJqpXmTdNPmEUw1rK7831pC6du3cVQEmOI+hUEjGjh0r6enpcsopp8jatWujb8ctjT63dFiYIdYxLSw0tG9bt26VM888UwDIE088IeXhz0Ueq7IyNoLdmA+skOx+WnV8GIDZK9F5dKIcuLGDzavsKE88X56SanC3OOLndAArE33OipergzszpNrL5aaC6VSPnd3PeuTmGlsI2GoGLuCzZs2SBg0aSIMGDWTWrFkpbctwGu1q9LmtgRnvmOpM66JFi6RFixaSm5sr7733nr3p9yI31YtWSmY/w3luzhytHgvPmul0OaHo4tURic6/E+UgKB0rfsE7rZ4SL7iLOdBVKfWIUmovgM5KqT1Kqb0VP/8C4ENLxogGXarjqt30jJGdY8Tt+t5Yx3f/fveMGTfwjMO5556LhQsX4vjjj8f555+PsWPHhjtwNFaNj7fzmRO3Pd8S65gC2hqL3boB55yj/Tt1ao3nHcaNG4czzzwTAPDVV1/hyiuvtHsPvMdN9aKZIp+N2bzZ2H6G1/Xs1g3o2xfo00d7rxfXzwqCqucrWh2RKJ87UQ74jJW3ONVuI/PFivrCLwDPJHqPXS/f37lLtZcrVs9ccbG16Y7Gq8/cxeOFOwBJ9Lzt2bNH+vXrJwDk2muvjf8cXpBZeRcwQd4qLS2VW265RQDIueeeK7/88ot53+13Xii3RkWr5z77zNh++vG4eFmi+qW4OLU7czzflAjvtHoKUhyW2TvaK9HnrHj5PrgTSa0BGa1gPvOMyPTpsbdj9Zo+TgyJs+p7vVDxJXkBLy8vl+HDh0taWpp06NBBvv32W5sS7BFWn/s4QfkPP/wgPXr0EAAydOhQOXLkiDnfGRReKLdGxVoOwMh6dRyC5R56npebPDn++XLjM3fkPW57lIFiihfcKe3vsSmlPqryYw6A0wAsEpG+5t5DTCw/P1+Kiors/lpvWbMGePttbaiGiDZl9I4d2nCIDh2qvzc8zCM8jC889T+HTcQWCmnHeMsWbaiCmUOYzNh2Mue0yvcWbNiA6x56CHv27MGrr76K/v37p75ffrB6tTYMquqwptzc6OWqKr3nNMb2P3nhBdzw0EMIhUJ4++23cfHFF5u3T0FiZbl1QmGhNjQv0rx5QKNG+vYz2TztFWadczvyTqJzsXo1MHEiMHJk/POVKK1+KwdEAaaUWiQi+VH/GCvqi/UC0ALAu0Y/Z8YrEHfuUmWkN5bDNNzDzF5VIz1vUb5382uvSZ8+fQSA/OUvf5HS0tKkd8s3krnLYeScRry3LCdHhl1xhSilpEuXLrFnNKVgMqPu9vOdHLP2za5jlKh+KSjQlt0ZPrx6WsaP98f5IiLDkMqduyiRogKwXEQ6pRZzGsc7dzoY6Y2N1ftbUKBNQEH2caoXPcb3Hlm4EMPeeQcjRoxAt27dMGnSJJx44onWpcPtkjk/Rj9T0au+YckS3DByJL5avBg333wzXnrpJdSqVcvc/SFvM3qHPtYdG7/eyTGrPrWrXtZz565bN+DYY7VzrpR2nvr3186ZV/k1/xHZIN6du4SlSCn1D6XU/1W8XgTwJYBlZieSTNK+vXaRD894FL7oR7sAcGYk54VnvFu50pkZ/WLMoJaxbRueeeYZfPTRR9iwYQO6deuGf/3rXzDaGaRL5Kx/ETNEuoKRchVmdHa6tDS8t3w5ugwahOVr1mDChAl44403GNhRTUZmIYw3y6LbZpM1i56yp6fesWuGyUT1S/jvO3YAw4cDzz8PdO4MtG1rbjrslGj2T3KeF67NFF2sW3rhF4CbqrxuAPDbRJ+x6sVhmTrpHZbn52E5XlD1+A8d6tpF3zdu3CjnnnuuAJB+/frJtm3bzPt+L+VBow+aGxg6t3fv3srZME877TRZt26dNftAwRPE4feJ9llvvWPnsUtUv/htoguzjq3fjotbeOnaHFBIcbbMHACnAjgFQE6i91v58m1w52TlxIrROVUvbtGep3DR0hHl5eUyevRoycrKkmaNG8t/n33WnPzi5wu8zmP7xRdfSJs2bUQpJQ8//LAcPnzYoQSTLwVxVsxEZU9vvcMGrnXMyJc8P9YJYqeQxyQV3AHIAPAcgO0AFgFYAmBbxe8yY33OypcvgztWTsEVeXHLyxMZMkRk6lR3Lh1RXi5LR46Uk5USADIwPV12vvlmaun0+wW+6rEtLhYpKak8zvv37pV77rlHAEibNm3kiy++iP95twSt5C1ubqQ5tRSPkXqHZTCxZI6RGfnSzXnb64LYKeQxyQZ3YwC8DqBuld8dA+A1AC/E+pyVL18Gd6ycqgvShdRr574ivaWAPAxIOiDNAPnw5ZdT3qbvL/ARAeiXWVnSrmlTASB33nmn7Nu3L+FnXBW0kne4NR85mS4v1BluoWe4aDLn0YzzbzQACVL7Qo94x4NlxPWSDe7WANpsmhG/TwewJtbnrHz5Mrhj78hRbm2EWMVr+xuRV4sA6QwIALn22mvl559/Nr5NJy7wTqi4UG4H5JaKY9ZKKZnz5psJP8OLK6XMjY1aJ/O31+pep+g5Tqmcx3C+nDdPZMECkTlzjOVPI9/Nc16dFxa9d2O95SLJBnclyfzNypcvgzs24I4K4rHwUuUV5fwcysmRp+6+WzIzM6VevXrywgsvSFlZmbHtpnoMPJBvQnPmyDhAGlXc8RwMyN5EAajZQauX8hr5n9OdMiwPiempW1M9j6kEEUY+64HrhK30HA+n54NwOrh0uXjBXbx5j1cqpQZE/lIpdSOAVTon46REkpli3Q5OTIFr17TTbuKlqcij5NWst9/GsDFjsHz5cpx22mm455570L17d8ydO1f/dqMdAyP5z61lqMKyZcvQ58EHMRDAiQAWAxgJoE6iZUfMXKrErdOOc6ptd7LjvDi9FI+X6l6n6Lkmp3oe16w5ul5jePsDBmi/T8TIkiBBbF/Eo+d4OFlGUskXFPfOXXMA8wEUAhgNYBSALwAsANA81uesfPnyzp2I+3oQneoxYc+a+8XJq6FQSKZOnSonnHCCAJDrrrsuuSn9k8l/bitDIvLjjz/KgAEDRCklDRs2lNcHDZLynBxj+2RWOXRj2WLPrDvZdV54/t1P792dVM6jXXdw3VgHOsntx8PpO/segBSXQugL4C4AdwP4XaL3W/nybXDnNk4Vel7sfWH//v3y6KOPSk5OjmRmZsodd9whWzZt0h98uf2ik8CuXbvk4YcflpycHMnOzpYHHnhAdu7cmVwAalbQ6sYLpcfPs2/ZeV5c2ClDVei9JqdyHu3Kb35rX6Radtx+PHh9SCil4M5NL9cGd367QDnZEPTbsQywTZs2yaBBgyQjI0NqZWfLIxkZskPPRcSj+W/nzp3y1FNPScOGDQWA3HDDDbJ+/Xrr0mqEGy+Ubgw4gyRWXud5cT87r5NWf5edQYZf2hdmHTM3Hw+3B58uwODOSn7MgG5pCLq54gk6A+dmzaefynXp6QJAagNyLyDrs7Nj5yeP3Tn+5Zdf5JFHHpG6desKAPnjH/8oRUVF1qbVKDfWU26pZ4IoXn7geXE3N5blVPkpWLVDUMqoH86VhRjcWcmPhcwNFw83pIGiM3puKu4ELAekPyAZ0GaMvP53v5PFixenvn2zGCzLy5Ytk0GDBklubq4opeSqq66SJUuWWJvGVKQ67Xi0baVy0WUZd068vM7z4m5+bHNYqWpdVVLij7zNu+skDO6s5ddC5nSPCS9g7hXt3LRrpwUMOhZD/RGQv2VkSJ1atQSA/OY3v5F//vOfsmvXrqOfcSL/6SjLpaWlMn78eDnjjDMEgGRnZ8vNN98sxcXF1qfPDGY03M1s/DtdzwRVorzul/Pil/2oyq9tDitE1lXDhvmjXcH2EUn84I5z/6bK6emcreL0NNGctti9Is9NXh4wcCDQp0/0afYjlipokZuL0e++i59++gljxoxBaWkpBg0ahGbNmqF///6YNWsWysrLrc1/0aZ6j1GWy5s0QUFBAf7617+iefPmGDBgALZv347Ro0dj06ZNeOONN9CxY0dz02cVM6aXNnOKaqfrmaBKdN1y+ryYsRSDW5f/SJXb2hxuWM4kVhoi66pQyB/tCpcv/0MuECvqs/IF4CoA3wEIAcjX+zlX3rnjEBZrsGcqOXp6qlPtzY48N0OGpLQYaigUkoULF8ptt90m9erVEwBSv3596d+/v7z33nuyffv2ZI5EbLHKbFlZ5e/3ADI1K0v+3LevNG3aVHtesHZtue6662T27NlS7tXybUavP+8ceJ+V1y23zOLn12uIm9ocbkhLtDRMny5SXCwydarI0KEieXna34YO9XaeqFq2iou1YaZ+uitNhsBtwzIBnASgA7Q19Lwd3In4c+iH09xw0UiWU/lBzzGL9p4JE7TnsIxMzx851MWkxv6BAwfkww8/lJtvvrly1kmllHTv3l3+9re/yaRJk+SHH36QUChkeNuVIhp9IUB+ysmRD19+WR4YPFh6dukimRkZAkCOOeYYueqqq2Ty5Mmyb9++5L/TLcxo8Pq10Rw0VtRTZtTbZuUvP3dCuKXN4Ya6IDINeXkizzxTPQ8OH679PtrfvNSu8GqbiCwRL7hT2t+doZQqBDBYRIr0vD8/P1+KinS9lfwgFNKGVWzZog05ad/e/cO2wkOBwkNBwsMlLr/c+rSvXq0NPao67CQ3F1iyRBtaFe89990HjBmjP61Vz03t2tqQzHjfm4QjR45g4cKFmD17NmbPno358+fj0KFDAIAGDRqgY8eO6NixI9q2bYvjjz8exx9/PJo0aYLatWujdu3ayM7ORnl5OcrLy3Hw4EHs3LEDv377LX5Zvhzrly7F+qIirN2/H8sB/FrxnVlZWfjNb36Ds846C+effz7OPPNMZGZmJr0PrmNG/nQyj3uNF+uwVOipgxIpLNSGUUYqKNCGidqZForPrHNlZhqGDNGuZbGucZMna+Vw61ZvlUnmZ4qglFokIvnR/pZhd2KIdAs/9+GliivW80idOlm/H/GeUwx/d6z3KGUsrVXPTSikNe4jG/spjv/PyMjAGWecgTPOOAPDhg3D4cOHsWLFCsyfPx/Lly/HqlWr8Mknn2Dr1q1Jbf+4OnXQOisLVxw+jC6Zmejy5pvocdllyI18nsVP0tK0IKxTp+QDDjO2EQRBDIL11EGJhJ8pi2zEGn2mLPxcksn1ElVh1rkyMw3ha1lVpaVAfr4WCIXrKq88Jx1mRtmiwLAsuFNKzQbQNMqfhorIhwa2cyuAWwHghBNOMCl1RBaxswKOvCvQvHniC22si3H4Dn4yabWpsZ+VlYXu3buje/fu1X5fWlqKLVu2YMuWLdi2bRv279+P/fv349ChQ8jIyEB6ejqyduxAwyeeQMPDh9EIwAkAapWXA4MHG7tj6QdmdJp4sePFbk529DjFjMa+WUFZrHoJ0O6CsGMidW4IoCPTkJ4ePQ+efLK3y50bAmnyDA7LJDKTXUMnYt0VyM4Grrkm9p2CaJ8bNgx4+WVg40b/DvOINXxo6lTtos8GHpnNDUPW7GbW3UqrhrM6dTfVz8Nzje5brPencoyqfrZ5c2DZMv/dMU+Ud/2cxyiqeMMyGdwRmcmuxkOsIHLxYm1YSrwKvupF4PBh4I47gLVr/XMRjIbPK5Ddgprn3NzIdOKcBHF4biyxjkW/fsAHHxg7RvHymZvzYCriBcbMY4HjuuBOKXUZgH8AaAxgF4ClIvKHRJ9jcEeeYMeFxay7Aman1a0XVSsufm7dV3IHvze43JL/jaTDibupQQ3yo4l1LL74wtikXH4vW0YxjwWS6yZUEZFpAKY58d1ElrPjeSSzxt+bmVY3X3DNfi7Q6L66pSFM9vHzxDNuKetG0+HEc0ucCOOoWMdi40ZjxyiIz7PGwzxGEXxwlSEKoPBD5OGZHd0wE1ysC+6aNfo+HwppPZCFhdq/oZC56QsHsmefrf2bSiPUyL6GG6Dduml3Dbp10342e//IfczMc26Salm3Oh2LFkWvR5yoN8MBZVVBnQgj1rHIyzN2jOIFM0HEPEYRfHKlIQqY8F2BJUu0IUVLljh/hyyVC67XAiAj+2p1Q9jqoJgoklsa17HS8dFH0esRJ+pNN3bEOSXWsejWrebvX3316PNkkRjMVMc8RhG4zl0qog21Ajj8iuzhtunoEw15ijc00WvDbKrua16eltb0dG1B91Coepm3csiMW4bHUbC4ZVr2WOkoL9f+H60esbve9PPwXKPiHYvLLwdOPRVYvhxYsUJbjHzHjuj1mRuWYHAT5jGKJCKeefXo0UNco7xc5L33RHJzRQDt3/feE5k+vebvysudTi2R9WKVifLy+H8TESko0H4f+SoosCfdq1Zp37Vqlb7yGt6fdu1Ehg+PX+ZXrTr69/ArN1f7faqs3DZRLInKs5PpGD5cJC/P/nqEUmekPkum3ibyEQBFEiNecnQpBKNcNVtmrNmJBg8G/v736r/jjEUUFLHuziWazcup2b703PmKdYd+3Trtd+efHz/dVt5dC+JaauQObpkkqGo6atcGrr9eW9oljNdg72B9RqRbvNkyec82WbGGWkWODw/yQ74UPLEmkEj0jI5TzwyUlMR/Hi7as4AzZ2q/69IF+OyzxM8eWfmcj9XPnvB5PorFLZPFVE1Hjx7AM8/w2SOv4rN0RKZgcJesWJVQ5AWOFRNR4ou2ExMdhELa8x3xgrNozwIuXFj9d3oaI1Y1hK0Mir02yQ2RGyeaSlWQOlg4MQiRKTihSrJiPdCbnX30AW9WTEQaPQ/AG5nowIwhYWvWAN99F39iiGh3HEOho7976y1g2DBtKLYTZd7KB+m9NskNEeC+iaZSEbQJkzgxCJEpGNwlK1YlBGi9hayYiI4y86JtVoNnyxZg3Liawdmrrx4ty9Fm40tPP/q7jRuBl1/WnrXt2RNo29b+Mm9VY5YL4xI5K4gdLH4KzokcwuAuFbEqIVZMFARG756ZddE2q8HTrJk21fbLLwP33QcopaWxZ8+j+xHtjmN+fvXf7dgBdO6sTazip44ct0x3TxRU7GChoHDLBE0+weCOiIxzcriQWQ2eqoHb8OFH96Ft26PviXeH3u9Dh7iWFJGz2MFCQRC04cc24FIIRGSck0sXLFoE9OljzneztzA+Hh8i57DRS0HgVHvC4+IthcA7d0RkXLy7Z+3bWxMQhBs6jzxi3iQmfL4jPh4fIudwghEKAg4/Nh2DOyIyLtZwoaZNretprvqsXfg5ufR04OKLtfWt2OAhoni8eCeaHSzkdxx+bDqX12pE5Eqx1iNKT4+/KHgqqvbubdyoPSf3978D+/e7q4EWpHWpiLzCzHUbWcaJzMP1DU3HO3dEZFys4UJz51o3vMILvXt8RobIncyaZZdlnMhcHH5sOh45IkpOeLjQ2Wdr/6alHQ3AqjIrAPNC716sBqQZdy6JKHnxnusxwuoyzruCFETR2hOUNB49oqCwo9FgZQAW7t1bsgQoKND+dVtvuVkNSCIyl1kdT1aWcTOHjhJRYHFYJlEQ2DWUyOrhFUYmF3Bi8gQvDB0l0suLE5DEYta6jVaWcbOGjhJRoHm0liYiQ+wcLuiG4RVO9YB7YegokR5+u4tk1p1/K8s47/wTkQm4iDlREBQWag20SAUFWhDmN04uiuqnux0UXFxYODaryjiPORHpFG8Rc7Y43IoPVZOZrJzoxI2c7AF3w51LolTxLlJsVpVx3vknIhOw1eFGfhsOQ84LWqMhaMEskdlYhuznhUmjiMj1OCzTjTg0g6wQpOGCXIsqWOebzMcyZA6WQyKyQLxhmZwt043iDYdhcEfJMjLTpFsk2zAK+qKobJhTqoJehszAckhEDuCdOzfinTsiNoxSwTqEyHksh0RkEU6o4jVBez6KKBo7l2/wG06GQeQ8lkMicgCHZboRh8O4C5+ZcAaHJyePi6kTOY/lkIgcwBaqW3E6dXfgzKXO4Wx9yePdfyLnsRwSkQP4zB1RPHxmwjl85i41vONM5DyWQyKyAGfLJEoWhwY6h8OTU+PF2VGJ/IblkIhsxuCOKB4+M+EsNoyIiIiIdGMXOFE8fGaCrBYKacN/Cwu1f/k8JxERESXJkTt3SqmRAC4GcBjAOgB/EpFdTqSFKC4ODSQr8blCIn/hM3ZE5DCnapxZAE4Vkc4ASgA84lA6iBLjzKVkFa7lR+QfnF2ZiFzAkVaqiHwmIkcqfvwGQJ4T6SAichQXOSbyD3bWEJELuOEWxEAAnzidCCKyEZ8z03AtPyL/YGcNEbmAZcGdUmq2UmpFlNelVd4zFMARABPibOdWpVSRUqpo27ZtViWXiOzCoUtHccIeIv9gZw0RuYBji5grpW4CMAjA70TkgJ7PcBFzIh/gwvDVcQIGIn/gBElEZBPXLWKulDofwEMA+ugN7IjIJ7gwfHVcy4/IWnZ1oHB2ZSJyAacWMX8RQDaAWUopAPhGRAY5lBYishMXhiciu9h9N42dNUTkMKdmy2wnIi1EpGvFi4EdUVDwOTMisgtnsCSigHHqzh0RBZVZQ5fc+KyaG9NEFGQcBm4O1m1EnsGSSUT2S3VheDfOuOnGNBEFnZkzWAZ1CRfWbUSewuCOiLzHjUOt3JgmoqAzaxh4kAMc1m1EnsLgjoi8x4rFglPtlecCxkTuEx4GvmQJUFCg/ZvMZCpBDnBYtxF5CoM7IvIesxcLNqNXngsYE7lTqsPAgWAHOKzbiDyFwR0ReY/ZM26a0SvPWUCJ/CvIAQ7rNiJP4WyZROQ9Zi8WbMaMelzAmMi/wgFO5Hp5QQhwWLcReYoSEafToFt+fr4UFRU5nQwi8pvVq7WhmJELqy9ZwunSiUjD5QCIyCWUUotEJD/a33jnjois4aWGkJt75b10HIn8LPzsHjt8iMjFGNwRkfnCE5REBkvJzFJnB7cOO/LacaRgYgcEEZFrcFgmEZmPwxzNweNIbscOCCIi28Ublsmal4g0qa7zVlWQpw03E48juV2Q138jInIhBndEZM46b1UFedpwM/E4ktuxA4KIyFUY3BGR+b3vXBfJHDyO5HbsgCAichVOqEJE5qzzVpVbJyjxGh5Hcjs3zzRLRBRADO6I6Gjve+TEHan0vnPacHPwOJKbsQOCiMhVWPsSEYf/EVHywh0QZ5+t/cvAjojIMbxzR0Te6H3nWlpEREREcTG4IyKNm4f/ObWWFgNKIiIi8hC2UojI/ZxYS8vs5SGIiIiILMbgjojcz4m1tLg4MxEREXkMgzsicj8n1tLi4sxERETkMQzuiMj9nJjNk4szExERkcdwQhUicj8nZvPk4sxERETkMQzuiMgb7J7N0wvLQxARERFVweCOiCgWNy8PQURERBSBwR0ReRvXoiMiIiICwAlViMjLuBYdERERUSUGd0TkXVyLjoiIiKgSgzsi8i6uRUdERERUicEdEXkX16IjIiIiqsTgjoi8y4nFzYmIiIhcirNlEpF3cS06IiIiokqOBHdKqb8DuBRACMAvAG4Wkc1OpIWIPI5r0REREREBcG5Y5kgR6SwiXQHMAPCYQ+kgIiIiIiLyBUfu3InInio/1gYgTqSDiMgyXFydiIiIbOZYS0Mp9bRS6icAN4B37ojIT7i4OhERETlAiVhz00wpNRtA0yh/GioiH1Z53yMAckTk8RjbuRXArQBwwgkn9NiwYYMVySUiMs/q1VpAV3UNvtxcYMkSPhtIREREKVFKLRKR/Gh/s2xYpoicq/OtEwHMBBA1uBOR1wC8BgD5+fkcvklE7hdvcXUGd0RERGQRR4ZlKqWqLkJ1CYBVTqSDiMgSXFydiIiIHODUOncjlFIdoC2FsAHAoGQ3VFZWho0bN+LgwYOmJY6CKScnB3l5ecjMzHQ6KeR14cXVBwzQ7thxcXUiIiKygVOzZV5h1rY2btyIunXrolWrVlBKmbVZChgRwY4dO7Bx40a0bt3a6eSQ13FxdSIiInKAU3fuTHPw4EEGdpQypRSOPfZYbNu2zemkkF9wcXUiIiKymS+6kRnYkRmYj4iIiIjIy3wR3BEREREREQUdgzsTpKeno2vXrjjllFPQpUsXPP/88wglWKx4/fr1mDhxok0pJCIiIiIiv2NwZ4Lc3FwsXboU3333HWbNmoWPP/4YTz75ZNzPMLgjIiIiIiIzBS+4C4WA1auBwkLt3wR32Ixq0qQJXnvtNbz44osQEaxfvx5nnXUWunfvju7du+Prr78GADz88MP48ssv0bVrV4wZMybm+4iIiIiIiPTw/GyZhoRCwNSpNdeeuvxyU6cob9OmDUKhEH755Rc0adIEs2bNQk5ODtasWYPrrrsORUVFGDFiBEaNGoUZM2YAAA4cOBD1fURERERERHoEK7hbs+ZoYAdo/w4YoK1FZfJ05SICQFtk/c4778TSpUuRnp6OkpKSqO/X+z4iIiIiIqJoghXcbdlyNLALKy3Vfm9icPf9998jPT0dTZo0wZNPPonjjjsOy5YtQygUQk5OTtTPjBkzRtf7iIiIiIiIognWM3fNmmlDMavKzdV+b5Jt27Zh0KBBuPPOO6GUwu7du9GsWTOkpaXh7bffRnl5OQCgbt262Lt3b+XnYr2PiIiIiIhIj2AFd+3ba8/YhQO88DN37duntNnS0tLKpRDOPfdc/P73v8fjjz8OALj99tvx1ltvoWfPnigpKUHt2rUBAJ07d0ZGRga6dOmCMWPGxHwfERERERGRHir8bJgX5OfnS+QkI8XFxTjppJP0byQU0p6927JFu2PXvr2pk6mQtxnOT0RERERENlJKLRKR/Gh/C9Yzd4AWyHXoYPoEKkRERERERE7iLSsiIiIiIiIfYHBHRERERETkAwzuiIiIiIiIfIDBHRERERERkQ8wuCMiIiIiIvIBBncm+Pnnn3H99dejTZs26NGjB8444wxMmzbN1jSsX78ep556atTfT5w4Maltjh07FgcOHKj8uU6dOgk/8+abb6Jx48bo2rVr5WvlypUoLCxEvXr1cOGFF+LgwYPo2LEjvv3228rPPffccxg0aBAAoFWrVgCA8vJy9OjRA3Pnzq183+9//3u89957Se1P2AMPPICmTZti1KhRKW2HiIiIiMhNGNylSETQr18/9O7dG99//z0WLVqESZMmYePGjTXee+TIEdvTFy+4S5SeyOBOr2uuuQZLly6tfJ188skAgLPOOgsff/wxcnJyMHbsWNx+++0QEWzatAmvvvoqnnnmmWrbSU9Px8svv4w77rgDZWVlePfdd6GUwlVXXWU4TVWNHDmyMpAkIiIiIvKL4K1zZ7I5c+YgKyurWrDQsmVL3HXXXQC0O1kzZ87EwYMHsX//fvznP//BwIED8f3336NWrVp47bXX0LlzZzzxxBOoU6cOBg8eDAA49dRTMWPGDADABRdcgF69euHrr79G8+bN8eGHHyI3NxeLFi3CwIEDUatWLfTq1Stq+h5++GEUFxeja9euuOmmm9CgQYNq6XnssccwatSoyu+68847kZ+fjz179mDz5s0455xz0KhRIxQUFAAAhg4dihkzZiA3NxcffvghjjvuuKSO2/nnn49x48Zh/PjxmDlzJp544gk0aNCgxvtOP/10nHnmmXjiiScwceJEzJo1S/d3XHrppbjiiiswYMAAvPrqq5g7dy4mTJiQVHqJiIiIiNzOV8Hdvffei6VLl5q6za5du2Ls2LEx//7dd9+he/fucbfxv//9D8uXL0fDhg1x1113oVu3bvjggw8wZ84cDBgwIGGa16xZg3fffRf/+te/cPXVV+P999/HjTfeiD/96U/4xz/+gT59+uCBBx6I+tkRI0ZUC97efPPNaukpLCyM+rm7774bzz//PAoKCtCoUSMAwP79+9GzZ088/fTTePDBB/Gvf/0Ljz76aI3PTp48GfPmzau2/9GMHTsWp512Gtq3b4/+/fvH3P9nnnkGLVq0wL333ot27dpV/v6aa67B6tWra7z/b3/7GwYMGIDXXnsNv/3tb9G6dWuMHj0a33zzTczvICIiIiLyOl8Fd25wxx13YN68ecjKysLChQsBAOeddx4aNmwIAJg3bx7ef/99AEDfvn2xY8cO7N69O+42W7duja5duwIAevTogfXr12P37t3YtWsX+vTpAwDo378/PvnkE11prJoeI7KysnDRRRdVpiPWXbRrrrkGL774YsLtHX/88ejbt2/lNmOZO3cu6tWrhxUrVlT7/eTJk+N+7rjjjsNTTz2Fc845B9OmTUtqn4mIiIiIvMJXwV28O2xWOeWUUyqDNQB46aWXsH37duTn51f+rnbt2pX/F5Ea21BKISMjA6FQqPJ3Bw8erPx/dnZ25f/T09NRWloKEYFSKqk0V01PvO+NlJmZWfmd6enppjxDmJaWhrS02I9+7t+/Hw8++CDmzJmDgQMH4uOPP8aFF14IIPGdOwD49ttvceyxx2Lz5s0pp5WIiIiIyM04oUqK+vbti4MHD+KVV16p/F28SUh69+5d+dxXYWEhGjVqhGOOOQatWrXC4sWLAQCLFy/GDz/8EPd769evj3r16lUOf4z1LFndunWxd+/emNtp2bIlVq5ciUOHDmH37t34/PPPdX/WDk899RSuvvpqdOzYES+//DLuu+++ygB08uTJ1SZuCb/Cgd2CBQvwySefYMmSJRg1alTCY0pERERE5GUM7lKklMIHH3yAL774Aq1bt8Zpp52Gm266Cc8++2zU9z/xxBMoKipC586d8fDDD+Ott94CAFxxxRX49ddf0bVrV7zyyis48cQTE373G2+8gTvuuANnnHEGcnNzo76nc+fOyMjIQJcuXTBmzJgaf2/RogWuvvpqdO7cGTfccAO6detW+bdbb70VF1xwAc455xw9h6LS5MmTqy2F8PXXXxv6fNjKlSsxbdo0DB06FID2/OMf/vCHmMe2qkOHDuEvf/kLxo0bh+OPPx6jR4/GwIEDo945JSIiIiLyA+Wlxm5+fr4UFRVV+11xcTFOOukkh1JEehUWFlab2CWeVq1aYf369ZamJ3J20jDmJyIiIiJyM6XUIhHJj/Y33rkjW2RlZWHFihWVz8s56YEHHsA777xT7dlDIiIiIiKv89WEKuReZ555pu67cffee6+laRk5ciRGjhxp6XcQEREREdmNd+7IdawO7oiIiIiI/MgXwZ2Xnhsk92I+IiIiIiIv83xwl5OTgx07drBhTikREezYsQM5OTlOJ4WIiIiIKCmef+YuLy8PGzduxLZt25xOCnlcTk4O8vLynE4GEREREVFSHA3ulFKDAYwE0FhEtiezjczMTLRu3drchBEREREREXmMY8MylVItAJwH4Een0kBEREREROQXTj5zNwbAgwD4sBwREREREVGKHAnulFKXANgkIsuc+H4iIiIiIiK/seyZO6XUbABNo/xpKIAhAH6vczu3Ari14sd9SqnV5qTQVI0AJPXMIKWMx945PPbO4bF3Do+9s3j8ncNj7xwee+e49di3jPUHZfcSAkqpTgA+B3Cg4ld5ADYDOE1EttqaGJMopYpEJN/pdAQRj71zeOydw2PvHB57Z/H4O4fH3jk89s7x4rG3fbZMEfkWQJPwz0qp9QDyk50tk4iIiIiIiHywiDkRERERERG5YBFzEWnldBpM8JrTCQgwHnvn8Ng7h8feOTz2zuLxdw6PvXN47J3juWNv+zN3REREREREZD4OyyQiIiIiIvIBBncmU0oNVkqJUqqR02kJCqXU35VSy5VSS5VSnymljnc6TUGhlBqplFpVcfynKaXqO52moFBKXaWU+k4pFVJKeWomL69SSp2vlFqtlFqrlHrY6fQEiVJqnFLqF6XUCqfTEiRKqRZKqQKlVHFFfXOP02kKCqVUjlJqgVJqWcWxf9LpNAWNUipdKbVEKTXD6bQYweDOREqpFgDOA/Cj02kJmJEi0llEugKYAeAxh9MTJLMAnCoinQGUAHjE4fQEyQoAlwOY63RCgkAplQ7gJQAXADgZwHVKqZOdTVWgvAngfKcTEUBHANwvIicB6AngDuZ72xwC0FdEugDoCuB8pVRPZ5MUOPcAKHY6EUYxuDPXGAAPAuCDjDYSkT1VfqwNHn/biMhnInKk4sdvoK1bSTYQkWIRWe10OgLkNABrReR7ETkMYBKASx1OU2CIyFwAvzqdjqARkS0isrji/3uhNXSbO5uqYBDNvoofMytebN/YRCmVB+CPAF53Oi1GMbgziVLqEgCbRGSZ02kJIqXU00qpnwDcAN65c8pAAJ84nQgiizQH8FOVnzeCjVwKEKVUKwDdAMx3OCmBUTEscCmAXwDMEhEee/uMhXbDJuRwOgxzfCkEL1FKzQbQNMqfhgIYAuD39qYoOOIdexH5UESGAhiqlHoEwJ0AHrc1gT6W6NhXvGcotOE7E+xMm9/pOfZkGxXld+xFp0BQStUB8D6AeyNGy5CFRKQcQNeK59mnKaVOFRE+d2oxpdRFAH4RkUVKqbMdTo5hDO4MEJFzo/1eKdUJQGsAy5RSgDY0bbFS6jQR2WpjEn0r1rGPYiKAmWBwZ5pEx14pdROAiwD8Tri2iqkM5Huy3kYALar8nAdgs0NpIbKNUioTWmA3QUSmOp2eIBKRXUqpQmjPnTK4s95vAVyilLoQQA6AY5RS74jIjQ6nSxcOyzSBiHwrIk1EpFXFouwbAXRnYGcPpVT7Kj9eAmCVU2kJGqXU+QAeAnCJiBxwOj1EFloIoL1SqrVSKgvAtQCmO5wmIksprcf63wCKReR5p9MTJEqpxuEZqJVSuQDOBds3thCRR0Qkr6JNfy2AOV4J7AAGd+QPI5RSK5RSy6ENjeVUzfZ5EUBdALMqlqL4p9MJCgql1GVKqY0AzgAwUyn1qdNp8rOKiYPuBPAptEklpojId86mKjiUUu8C+B+ADkqpjUqpPzudpoD4LYD+APpW1PFLK+5mkPWaASioaNsshPbMnaem5CdnKI6iIiIiIiIi8j7euSMiIiIiIvIBBndEREREREQ+wOCOiIiIiIjIBxjcERERERER+QCDOyIiIiIiIh9gcEdERBSHUqqFUuoHpVTDip8bVPzc0um0ERERVcXgjoiIKA4R+QnAKwBGVPxqBIDXRGSDc6kiIiKqievcERERJaCUygSwCMA4AH8B0E1EDjubKiIiouoynE4AERGR24lImVLqAQD/BfB7BnZERORGHJZJRESkzwUAtgA41emEEBERRcPgjoiIKAGlVFcA5wHoCeA+pVQzZ1NERERUE4M7IiKiOJRSCtqEKveKyI8ARgIY5WyqiIiIamJwR0REFN9fAPwoIrMqfn4ZQEelVB8H00RERFQDZ8skIiIiIiLyAd65IyIiIiIi8gEGd0RERERERD7A4I6IiIiIiMgHGNwRERERERH5AIM7IiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEP/H94IGcrP9nYNAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(15,6))\n", - "sns.scatterplot(x,y, color = 'red', label = 'Data')\n", - "sns.lineplot(x,mu, color = 'black', label = \"Ground truth E[Y|X=x]\")\n", - "plt.yticks(np.arange(-4,4,1))\n", - "plt.legend()\n", - "plt.xlabel(\"X\")\n", - "plt.ylabel(\"Outcome y\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note: If you’d like to run the code below on a different dataset, you can replace the dataset above with another `data.frame` of your choice, and redefine the key variable identifiers (`outcome`, `covariates`) accordingly. Although we try to make the code as general as possible, you may also need to make a few minor changes to the code below; read the comments carefully." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Key concepts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The prediction problem is to accurately guess the value of some output variable $Y_i$ from input variables $X_i$. For example, we might want to predict “house prices given house characteristics such as the number of rooms, age of the building, and so on. The relationship between input and output is modeled in very general terms by some function\n", - "\n", - "$$\n", - " Y_i = f(X_i) + \\epsilon_i\n", - "$$ (true-model)\n", - "\n", - "where $\\epsilon_i$ represents all that is not captured by information obtained from $X_i$ via the mapping $f$. We say that error $\\epsilon_i$ is irreducible.\n", - "\n", - "We highlight that {eq}`true-model` is **not modeling a causal relationship** between inputs and outputs. For an extreme example, consider taking $Y_i$ to be “distance from the equator” and $X_i$ to be “average temperature.” We can still think of the problem of guessing (“predicting”) “distance from the equator” given some information about “average temperature,” even though one would expect the former to cause the latter.\n", - "\n", - "In general, we can’t know the “ground truth” $f$, so we will approximate it from data. Given $n$ data points $\\{(X_1, Y_1), \\cdots, (X_n, Y_n)\\}$, our goal is to obtain an estimated model $\\hat{f}$ such that our predictions $\\widehat{Y}_i := \\hat{f}(X_i)$ are “close” to the true outcome values $Y_i$ given some criterion. To formalize this, we’ll follow these three steps:\n", - "\n", - "+ **Modeling:** Decide on some suitable class of functions that our estimated model may belong to. In machine learning applications the class of functions can be very large and complex (e.g., deep decision trees, forests, high-dimensional linear models, etc). Also, we must decide on a loss function that serves as our criterion to evaluate the quality of our predictions (e.g., mean-squared error).\n", - "\n", - "+ **Fitting:** Find the estimate $\\hat{f}$ that optimizes the loss function chosen in the previous step (e.g., the tree that minimizes the squared deviation between $\\hat{f}(X_i)$ and $Y_i$ in our data).\n", - "\n", - "+ **Evaluation:** Evaluate our fitted model $\\hat{f}$. That is, if we were given a new, yet unseen, input and output pair $(X',Y')$, we'd like to know if $Y' \\approx \\hat{f}(X_i)$ by some metric.\n", - "\n", - "For concreteness, let’s work through an example. Let’s say that, given the data simulated above, we’d like to predict $Y_i$ from the first covariate $X_{i1}$ only. Also, let’s say that our model class will be polynomials of degree $q$ in $X_{i1}$, and we’ll evaluate fit based on mean squared error. That is, $\\hat{f}(X_{i1}) = \\hat{b}_0 + X_{i1}\\hat{b}_1 + \\cdots + X_{i1}^q \\hat{b}_q$, where the coefficients are obtained by solving the following problem:\n", - "\n", - "$$\n", - " \\hat{b} = \\arg\\min_b \\sum_{i=1}^m\n", - " \\left(Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{iq}^q b_q \\right)^2\n", - "$$\n", - "\n", - "An important question is what is $q$, the degree of the polynomial. It controls the complexity of the model. One may imagine that more complex models are better, but that is not always true, because a very flexible model may try to simply interpolate over the data at hand, but fail to generalize well for new data points. We call this **overfitting**. The main feature of overfitting is **high variance**, in the sense that, if we were given a different data set of the same size, we'd likely get a very different model.\n", - "\n", - "To illustrate, in the figure below we let the degree be $q=10$ but use only the first few data points. The fitted model is shown in green, and the original data points are in red." - ] - }, - { - "cell_type": "code", - "execution_count": 503, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Outcome y')" - ] - }, - "execution_count": 503, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAGDCAYAAACMZtMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABoTklEQVR4nO3dd3hUVf7H8c9JgSSQBEgCBEKoIXQIoIiA9KJioQm6CqiIXX/q6urqruuqrG3taxcEFUGKgg0FpdgAQXoJoQWCgUCAkEAgZc7vj0kQFZCSyZ3yfj3PPMO9c2fmkwxJ5n7nnO8x1loBAAAAAAB4QpDTAQAAAAAAgP+i8AAAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAD4A2PMSGPMdx54XGOMGWeM2WeMWVzWj3+aWcKNMZ8YY3KMMVOMMX8xxnx1mo/xd2PMW57KCACAPwhxOgAAAIHGGLNVUg1Jxcfsfsdae5szicpVZ0m9JSVYaw86nGWw3K9DjLW2qGTf+6U3GmOspCRr7caS7W6S3rPWJpQeY60dU25pAQDwURQeAABwxiXW2jlOh3BAXUlbnS46GGOCS7JsOKboAAAAPICpFgAAeBFjzKvGmKnHbD9pjPm6ZIpCVWPMp8aY3SVTFT41xiQcc+w8Y8xjxpgfjDF5JdMIYowx7xtjDhhjfjLG1DvmeGuMucMYs9kYs8cY87Qx5rjvDYwxTYwxs40xe40xqcaYK07yNdQyxswsOXajMeaGkv3XS3pLUseSfI8c575BxpiHjDHpxpgsY8wEY0x0yW2zjDG3/e74FcaYgX+W0RjzTsn39nNjzEFJCyT9U9LQkizXHzu9xBizoOSuK0puHyHpC0m1SrbzSr7Ofxlj3iu5T72S7+kIY8y2ku/pg8dkCDfGjC957dYZY+4zxmSc6PsIAIC/oPAAAIB3uUdSq5KT4C6Srpc0wlpr5f67PU7uT+oTJeVLevl39x8m6RpJtSU1lPRjyX2qSVon6eHfHT9AUntJbSVdJum63wcyxlSSNFvSREnVJV0p6RVjTPMTfA0fSMqQVEvu6QxjjDE9rbVvS7pJ0o/W2srW2t9nkaSRJZfukhpIqnzM1zix5LlLczUr+V58dooZr5L0uKRIST0ljZE0uSTL28eGsNZeUPLP1iW3j5d0oaRfSrYrW2t/OcHX31lScslz/NMY07Rk/8OS6pV8Xb0lXX2C+wMA4FcoPAAA4IyPjTH7j7ncIEnW2kNyn5A+K+k9SbdbazNKbsu21k6z1h6y1ubKfRLd9XePO85au8lamyP3J/SbrLVzSqYTTJGU8rvjn7TW7rXWbpP0vI45sT9Gf7mnR4yz1hZZa3+WNE3uosJvGGPqyH3i/Tdr7WFr7XK5Rzlcc4rfl79IetZau9lamyfpAUnDjDEhkj6S1MYYU/eYY6dba4+cYsYZ1trvrbUua+3hU8xzJh6x1uZba1dIWiGpdcn+KySNsdbuK3lNX/RgBgAAvAY9HgAAcMblJ+rxYK1dbIzZLPcn9x+W7jfGREh6TlI/SVVLdkcaY4KttaWNKncd81D5x9mu/Lun237Mv9PlHqXwe3UldTDG7D9mX4ikd49zbC1Je0sKI8c+bvvjHHs8tUqOP/a+IZJqWGt3GGM+k3tUx5Ml16NPI+OxX6sn7Tzm34f06/e81u8ylFceAAAcxYgHAAC8jDHmVkkVJf0i6b5jbrpH7iH8Hay1UZJKpwOYs3i6Osf8O7HkOX9vu6T51toqx1wqW2tvPs6xv0iqZoyJ/N3j7jjFPL/IXUQ49r5F+rWA8oGkK40xHSWFS5p7GhntKWY4kbO9f6akhGO265zoQAAA/AmFBwAAvIgxprGkx+SebnGNpPuMMW1Kbo6Ue9TCfmNMNf2xX8OZuLekaWUdSXdKmnycYz6V1NgYc40xJrTkcs4xvQuOstZul/SDpP8YY8KMMa3k7lPx/u+PPYEPJN1ljKlvjKmsX/swlK488bnchYl/l+x3nW7G07BL7n4Mx27HlDa7PAMfSnqg5PtdW1IgLJ8KAACFBwAAHPLJMasj5BljPirpY/Ce3H0XVlhr0yT9XdK7xpiKcvdgCJe0R9JCSbPKIMcMSUslLZf0maS3f39AybSJPnJPbfhF7qkET8o9KuN4rpS7ieIvcvdleNhaO/sU84yVe3rEAklbJB2WdPsxWY5Imi6pl9yNJM8046n4l6TxJT04rrDWrpe7MLK5ZN/xpqWczL/lbrq5RdIcSVMlHTmLfAAA+ATjbpINAAACjTHGSkqy1m50OksgMsbcLGmYtfb3DUIBAPArjHgAAAAoB8aYeGNMJ2NMkDEmWe6eHR85nQsAAE9jVQsAAIDyUUHS65LqS9ovaZKkV5wMBABAeWCqBQAAAAAA8BimWgAAAAAAAI+h8AAAAAAAADzGp3o8xMbG2nr16jkdAwAAAAAAHGPp0qV7rLVxx7vNpwoP9erV05IlS5yOAQAAAAAAjmGMST/RbUy1AAAAAAAAHkPhAQAAAAAAeAyFBwAAAAAA4DE+1ePheAoLC5WRkaHDhw87HcXjwsLClJCQoNDQUKejAAAAAABwSny+8JCRkaHIyEjVq1dPxhin43iMtVbZ2dnKyMhQ/fr1nY4DAAAAAMAp8fmpFocPH1ZMTIxfFx0kyRijmJiYgBjZAQAAAADwHz5feJDk90WHUoHydQIAAAAA/IdfFB6cFhwcrDZt2qh58+Zq3bq1nn32WblcrpPeZ+vWrZo4cWI5JQQAAAAAwBkUHspAeHi4li9frjVr1mj27Nn6/PPP9cgjj5z0PhQeAAAAAACBIPAKDy6XlJoqzZvnvv6TkQmnq3r16nrjjTf08ssvy1qrrVu3qkuXLmrbtq3atm2rH374QZJ0//3369tvv1WbNm303HPPnfA4AAAAAAB8mc+vanFaXC5p+nRp+HApP18KD5cmTJAGDpSCyq4G06BBA7lcLmVlZal69eqaPXu2wsLClJaWpiuvvFJLlizRE088oWeeeUaffvqpJOnQoUPHPQ4AAAAAAF8WWIWHtLRfiw6S+3r4cKllSyk5uUyfylorSSosLNRtt92m5cuXKzg4WBs2bDju8ad6HAAAAADA84pdxVqdtVp7Du1R3Sp11ahao19vdLnc55eZmVJ8vJSUVKYfZvubwCo8ZGb+WnQolZ/v3l+GhYfNmzcrODhY1atX1yOPPKIaNWpoxYoVcrlcCgsLO+59nnvuuVM6DgAAAADgOYXFhXph0Qv674//1c68nUf3p9RM0TN9nlGPut3KZSS9Pwms70p8vPs/xbHCw937y8ju3bt100036bbbbpMxRjk5OYqPj1dQUJDeffddFRcXS5IiIyOVm5t79H4nOg4AAAAAUD6yDmap87jOunf2vWpVo5XeG/Ce5o2Yp5cufEk5R3LUa0Iv/feTB44/kj4tzdnwXiywRjwkJbkrUb+vTCUlndXD5ufnq02bNiosLFRISIiuueYa3X333ZKkW265RYMGDdKUKVPUvXt3VapUSZLUqlUrhYSEqHXr1ho5cuQJjwMAAAAAeN6OAzvU691eSt+frilDpmhws8FHb+tar6uuS7lOIz8eqb8uf0oRzaWbj23J54GR9P7ElPYi8AXt27e3v2+4uG7dOjVt2vTUH8TH5+Kc9tcLAAAAADip/Yf3q8NbHZSZm6nPrvpMXep2Oe5xRa4iXf52L325fb6+Gyt12FFyQ3i4tGxZQBcejDFLrbXtj3eb75xxl5WgIPd/hm7d3Nc+VHQAAAAAAJQtl3Xpmo+u0eZ9m09adJCkkKAQvXvVNNUKi9XIgUYFwSqzkfT+jLNuAAAAAEDA+s+3/9GnGz7V832fP2nRoVTVSjF6ddA4rY+xem7saGnFCqlFC2nBAik11T3KHr9B4QEAAAAAEJBW7Vqlf83/l4a1GKZbzrnllO93UXJ/XZx0sZ7I/FD7f/5BattW6t5dSklxr3hB8eE3HCs8GGPCjDGLjTErjDFrjDGPnOlj+VKfirMRKF8nAAAAAHhasatYoz4ZpSphVfTShS/JGHNa93+8x+Paf3i/XnhrFCtc/AknRzwckdTDWttaUhtJ/Ywx553ug4SFhSk7O9vvT8qttcrOzlZYWJjTUQAAAADA573y0ytavGOxXuz3omIjYk/7/q1rtlb/ah31v5Qi5R+7XmTpChc4yrHlNK27UpBXshlacjnt6kFCQoIyMjK0e/fusoznlcLCwpSQkOB0DAAAAADwafvy9+lf8/+l3g16a1iLYWf8OPe0vknd9/6oD1pK1y0r2Rke7l5BEUc5VniQJGNMsKSlkhpJ+p+1dtHpPkZoaKjq169f5tkAAAAAAP7p8W8f1778fXqmzzOnPcXiWF07/UVNf/i73jjnF123zLLCxQk42lzSWltsrW0jKUHSucaYFr8/xhgz2hizxBizJBBGNQAAAAAAPGfLvi16afFLGtlmpFrVaHVWj2WCg3XDBXdrUS2r1Z+OlZYtkwYOlIJYx+FYXvHdsNbulzRPUr/j3PaGtba9tbZ9XFxceUcDAAAAAPiRxxY8piATpEe7P1omj/eX1lcryATpw4gtUnIyRYfjcHJVizhjTJWSf4dL6iVpvVN5AAAAAAD+bcu+LZqwcoJGtx2t2lG1y+Qxq1eqrq51u2rK2il+v+jBmXKyFBMvaa4xZqWknyTNttZ+6mAeAAAAAIAfG/PtGAWZIN3X6b4yfdzBzQZr/Z71Wrt7bZk+rr9wrPBgrV1prU2x1ray1raw1v7bqSwAAAAAAB/jckmpqdK8ee5rl+ukh2/L2aZ3VryjG9reUGajHUoNbDpQRkZT104t08f1F0w+AQAAAAD4FpdLmj5dSkmRund3X0+fftLiw0uLXpK1Vveef2+Zx6lZuaa61O2iqesoPBwPhQcAAAAAgG9JS5OGD5fy893b+fnu7bS04x6eeyRXb/78pgY3G6y6Vep6JNKgpoO0Omu1Nu3d5JHH92UUHgAAAAAAviUz89eiQ6n8fPf+4xi3fJxyjuTorvPu8likvg37SpLmbJ7jsefwVRQeAAAAAAC+JT5eCg//7b7wcPf+3yl2FeuFRS+oY0JHdUjo4LFIjWMaKyEqQXO2UHj4PQoPAAAAAADfkpQkTZjwa/EhPNy9nZT0h0M/2fCJNu/brLs73u3RSMYY9W7QW99s+UbFrmKPPpevofAAAAAAAPAtQUHSwIHSsmXS3Lnu64ED3ft/57mFz6ludF1d3uRyj8fq1aCX9ubv1fKdyz3+XL6EwgMAAAAAwPcEBUnJyVK3bu7r4xQd1mSt0YL0Bbr1nFsVEhTi8Ug96/eUJM3ePNvjz+VLKDwAAAAAAPzS60tfV4XgCro25dpyeb4alWuoZfWWNJj8HQoPAAAAAAC/c6jwkN5d+a4GNR2k2IjYcnvenvV76vvt36uwuLDcntPbUXgAAAAAAPidKWumaP/h/bqx3Y3l+rwd63TU4aLDWrFrRbk+rzej8AAAAAAA8DuvL31dyTHJuqDuBeX6vB0TOkqSFmYsLNfn9WYUHgAAAAAAfmXVrlX6MeNHjW43WsaYcn3uhKgE1YqsReHhGBQeAAAAAAB+5Y2lb6hCcAWNaD2i3J/bGKPzEs7Tjxk/lvtzeysKDwAAAAAAv3Gk6Igmrp6oAU0GKCYixpEMHRM6avO+zco6mOXI83sbCg8AAAAAAL/xWdpn2pu/VyPbjHQsw3kJ50miz0MpCg8AAAAAAL8xfsV41axcU70a9HIsQ7v4dgoJCqHwUILCAwAAAADAL+w+uFufp32uq1terZCgEMdyhIeGq03NNlq0Y5FjGbwJhQcAAAAAgF+YuGqiilxFGtGm/JtK/l5KzRQt37lc1lqnoziOwgMAAAAAwC9MWDlBbePbqkX1Fk5HUZuabbQ3f68yDmQ4HcVxFB4AAAAAAD5vddZq/Zz5syNLaB5Pm5ptJEkrdq1wNogXoPAAAAAAAPB545ePV0hQiK5scaXTUSRJLau3lCQt37nc2SBegMIDAAAAAMCnFbmK9N6q93RR0kWKqxTndBxJUmTFSDWq1ogRD6LwAAAAAADwcXM2z9HOvJ1eM82iVJuabRjxIAoPAAAAAAAfN2n1JEVXjNbFSRc7HeU3WtdorY17Nyr3SK7TURxF4QEAAAAA4LOOFB3Rx+s/1uVNLlfFkIpOx/mN0gaTq7JWORvEYRQeAAAAAAA+68tNXyrnSI6GNh/qdJQ/KC08BPp0CwoPAAAAAACfNXnNZFULr6ZeDXo5HeUPakfWVrXwalq5a6XTURxF4QEAAAAA4JPyC/M1M3WmBjYZqNDgUKfj/IExRk1jm2rdnnVOR3EUhQcAAAAAgE/6PO1z5RXkaWgL75tmUapJbBOt203hAQAAAAAAnzN5zWTFRcSpW71uTkc5oaaxTbX70G5lH8p2OopjKDwAAAAAAHxOXkGePt3wqQY3G6yQoBCn45xQ07imkqT1e9Y7nMQ5FB4AAAAAAD7n0w2fKr8o3ytXszhW01h34SGQ+zxQeAAAAAAA+JzJayYrvnK8Oid2djrKSSVGJyosJCyg+zxQeAAAAAAA+JQDRw7oi7QvNKTZEAUHBTsd56SCg4KVHJPMiAcAAAAAAHzFjPUzdKT4iFevZnGspnGBvaQmhQcAAAAAgE+ZvGay6kTV0XkJ5zkd5ZQ0jW2q9P3pOlR4yOkojqDwAAAAAADwGfvy9+mrTV/piuZXKMj4xiltk9gmsrLakL3B6SiO8I1XCQAAAAAASR+t/0iFrkKvX83iWEdXtgjQBpMUHgAAAAAAPmPymslqULWB2tdq73SUU9aoWiNJ0sa9Gx1O4gwKDwAAAAAAn7D74G59vflrXdHsChljnI5zysJDw1U7srY27qPwAAAAAACA15q+brqKbbGGtRjmdJTT1qhaI23au8npGI6g8AAAAAAA8AmT1kxSckyyWtVo5XSU09awakNt2kfhAQAAAAAAr5SZm6n5W+draPOhPjXNolTDag21M2+n8grynI5S7ig8AAAAAAC83tS1U2VlNbSF76xmcazSBpOb9212OEn5o/AAAAAAAPB6k9dMVovqLdQsrpnTUc5Iw6oNJQXmyhYUHgAAAAAAXm17znZ9v/17DW3um6MdJPdUC0kB2WDSscKDMaaOMWauMWadMWaNMeZOp7IAAAAAALzXlLVTJMmnCw9VwqooJjwmIBtMhjj43EWS7rHW/myMiZS01Bgz21q71sFMAAAAAAAvM3nNZKXUTFFSTJLTUc5Kw2oNmWpRnqy1mdban0v+nStpnaTaTuUBAAAAAHifLfu2aPGOxT492qFUoC6p6RU9Howx9SSlSFrkcBQATnC5pNRUad4897XL5XQiAAAAeIkP13woSbqi+RUOJzl7jao10racbSooLnA6SrlyvPBgjKksaZqk/7PWHjjO7aONMUuMMUt2795d/gEBeJbLJU2fLqWkSN27u6+nT6f4AAAAAEnuaRbn1j5X9avWdzrKWWtYtaFc1qWt+7c6HaVcOVp4MMaEyl10eN9aO/14x1hr37DWtrfWto+LiyvfgAA8Ly1NGj5cys93b+fnu7fT0pzNBQAAAMelZadp2c5lfjHNQpIaVG0gyT19JJA4uaqFkfS2pHXW2medygHAYZmZvxYdSuXnu/cDAAAgoE1eM1mSNKTZEIeTlI26VepKktJz0h1OUr6cHPHQSdI1knoYY5aXXC5yMA8AJ8THS+Hhv90XHu7eDwAAgIA2ec1kdarTSXWi6zgdpUzUiqylYBOsbTnbnI5Srpxc1eI7a62x1ray1rYpuXzuVB4ADklKkiZM+LX4EB7u3k7y7aWSAAAAcHbW7l6r1Vmr/WaahSSFBIWodlTtgBvxEOJ0AAABLihIGjhQatnSPb0iPt5ddAhyvPctAAAAHDR59WQZGQ1uNtjpKGWqbnRdpe+n8AAA5SsoSEpOdl8AAAAQ8Ky1mrxmsrrW66r4yDOYgutyuZuVe+EHW3Wr1NWC9AVOxyhX3vGdBwAAAACgxMpdK5WanXpm0yy8fLn2utF1tePADhW5ipyOUm4oPAAAAAAAvMrkNZMVbII1qOmg07+zly/XXje6roptsXYc2OF0lHJD4QEAAAAA4DVKp1n0qN9DcZXiTv8BvHy59sToREkKqJUtKDwAAAAAALzG0syl2rxv85mvZuHly7XXrVJXkgJqZQsKDwAAAAAArzF59WSFBIVoQNMBZ/YAXr5ce+mIh0Ba2YJVLQAAAAKRF3d8BxC4rLX6cO2H6tOwj6qFVzuzB/Hy5dojQiMUFxHHiAcAAAD4MS/v+A4gcC3MWKhtOdvOfJpFqdLl2rt1c197SdGhVN0qdSk8AAAAwI95ecd3AIFr0upJqhhcUZc3udzpKB5VN7puQE21oPAAAAAQaLy84zuAwFTsKtaHaz/UxY0vVlTFKKfjeFRidKK25WyTtdbpKOWCwgMAAECg8fKO7wAC04L0BdqZt1PDmg9zOorH1Y2uq/yifGXnZzsdpVxQeAAAAAg0Xt7xHUBgmrR6kiqFVtLFjS92OorH1Y6qLUnacWCHw0nKB6taAAAABBov7/gOIPAUFhdq6rqpuqzJZYoIjXA6jsfVjiwpPOTuUOuarR1O43kUHgAAAAJRacf35GSnkwCA5myeo735ewNimoX064iHjAMZDicpH5S1AQAAAACOmrRmkqqEVVGfhn2cjlIu4ivHy8gEzFQLCg8AAAAAAMccLjqsj9Z9pIFNBqpiSEWn45SL0OBQ1ahcQztyKTwAAAAAAOBRX6R9odyCXA1rERjTLErVjqxN4QEAAAAAAE+btGaS4iLi1L1+d6ejlKvaUbWZagEAAAAAgCflFeTpk9RPNKTZEIUEBdbaB4x4AAAAAADAwz5J/UT5RfkBN81Cchce9ubvVX5hvtNRPI7CAwAAAADAEZPWTFLtyNrqlNjJ6SjlLiEqQZICYtQDhQcAAAAAQLnbl79PX6R9oaHNhyrIBN6pae2o2pIUEH0eAu/VBQAAAAA47qP1H6nQVRiQ0ywk91QLiREPAAAAAAB4xPur3lfDqg3VvlZ7p6M4ghEPAAAAAAB4SMaBDM3dMldXt7paxhin4zgiqmKUKleoHBAjHgJrvRIAAAAAgGe5XFJampSZKcXHS0lJUtBvP/P+YNUHsrK6utXVDoX0DglRCco4kOF0DI9jxAMAAAAAoGy4XNL06VJKitS9u/t6+nT3/mO8t+o9nZdwnhpVa+RQUO9QO7J2QIx4oPAAAAAAACgbaWnS8OFSfr57Oz/fvZ2WdvSQlbtWauWulbq6ZWCPdpDcfR7o8QAAAAAAwKnKzPy16FAqP9+9v8R7K99TSFCIhrYYWs7hvE985XjtOrhL1lqno3gUhQcAAAAAQNmIj5fCw3+7LzzcvV9SsatYE1dN1IWNLlRsRKwDAb1Lzco1VVBcoP2H9zsdxaMoPAAAAAAAykZSkjRhwq/Fh/Bw93ZSkiRp3tZ52pG7I+CbSpaqWbmmJCkzL/NPjvRtrGoBBLpT6DoMAAAAnJKgIGngQKlly+O+v3xv1XuKqhilSxpf4nBQ71BaeNiZt1PN4po5nMZzKDwAgay063BpA6DSivTAgRQfAAAAcGaCgqTkZPflGIcKD2na2mka0myIwkPDT3DnwHJs4cGfcWYBBLJT6DoMAAAAlIVPUj9RbkEu0yyOQeEBgP87ha7DAAAAQFl4d+W7SohKUNd6XZ2O4jWiK0arYnBFvy88MNXCjyzfuVwfrvlQy3YuU87hHNWKrKWW1VtqYNOBalmjpdPx4I1Kuw4fW3w4puswAAAAUBayDmZp1sZZuqfjPQoyfP5dyhij+Mh4vy888Ir7ga37t6r/xP5KeT1FT//wtHbl7VJEaIRW7FqhR+Y/olavtVLHtztq/tb5TkeFt/mTrsMAHOZySamp0rx57muXy+lEAACckfdWvqdiW6wRbUY4HcXr1Kxc0+8LD4x48HFzNs/RkClDVOQq0pgeY3Rj+xtVLbza0duzD2XrvZXv6bmFz6nb+G76S8u/6H8X/U/RYdHOhYb3+JOuwwAcRPNXAICfsNZq7LKx6lC7g1+v3HCmalauqU17Nzkdw6N45+LDvtr0lS6eeLHqRNXRiptW6IEuD/ym6CBJMRExuvO8O7X21rX65wX/1KTVk9T+zfZasXOFQ6nhdUq7Dnfr5r7mhAbwDjR/BQD4iSW/LNGa3Wt0bZtrnY7ilWpW8v8RD5xh+KjUPam6YsoVahLbRPNHzleDqg1OenxEaIQe6f6I5o2cp0OFh9RpbCfN2TynnNICAE4bzV8BAH5i3PJxCgsJ07AWw5yO4pVqVq6p3Yd2q7C40OkoHkPhwQflHsnVZZMuU2hwqGYOm6mq4VVP+b6dEztryQ1L1KBqA130/kWavm66B5MCAM5YafPXY9H8FQDgY/IL8/XB6g80qOkgpnufQOmSmlkHsxxO4jkUHnzQP+b+QxuyN2jKkCmqW6Xuad8/PjJe80fO1zm1z9HQqUP12YbPPJASAHBWaP4KAPADH6//WPsP79d1Kdc5HcVrlRYe/Hm6BYUHH/Nz5s96afFLuqn9TepWr9sZP07V8Kr6/KrP1aZmGw36cJDmbZ1XZhkBAGWgtPnrsmXS3LnuaxpLAgB8zLjl41SvSr2zOnfxdxQe4FVc1qWbP7tZsRGxGtNzzFk/XnRYtGb9ZZYaVG2ggZMHakP2hjJICQAoMzR/BQD4sG052zRn8xyNbD1SQYa/YScSH+meRknhAV7hk9RPtHjHYj3Z60lVCatSJo8ZExGjT6/6VMFBweo/sb/25u8tk8cFAAAAENjGLx8vK6sRbUY4HcWr1ahUQxKFB48xxow1xmQZY1Y7mcMXWGv16IJH1bBqQ13d6uoyfewGVRvoo6EfKT0nXYM+HKSC4oIyfXwAAAAAgaXYVayxy8eqZ/2eqlelntNxvFrFkIqqGlaVwoMHvSOpn8MZfMKXm77U0syleqDzAwoJCinzx++c2FlvXfKW5m2dp/vn3H9mD+JySamp0rx57muXq0wzAgAAAPANX236Slv3b9XodqOdjuITalauqcw8/10y29HCg7V2gSTG9p+CMd+OUZ2oOrqm9TUee45rWl+j2865Tc8tfE7T1k47vTu7XNL06VJKitS9u/t6+nSKDwAAAEAAen3p66peqboub3K501F8QvVK1VlOE85ak7VG3277Vnd2uFMVgit49Lme6fOMzql1jq6beZ027t146ndMS5OGD5fy893b+fnu7bQ0zwQFAAAA4JUyDmTokw2f6Lo213n8/MVfVK9UXbsP7XY6hsd4feHBGDPaGLPEGLNk927/fSFO5q2f31JoUKiGtx7u8eeqGFJRU4ZMUbAJ1uAPB+tw0eFTu2Nm5q9Fh1L5+e79AAAAAALG2z+/LWutbmh3g9NRfAYjHhxmrX3DWtveWts+Li7O6Tjl7kjREU1YOUEDmg5QXKXy+frrVqmrCQMmaMWuFXrw6wdP7U7x8VJ4+G/3hYe79wMAAAAICEWuIr3585vq07CPGlRt4HQcnxEXEae9+XtV5CpyOopH/GnhoWS0wa3GmKrlEQi/9fH6j7U3f69GpYwq1+ft37i/bm5/s55d+KzmbJ7z53dISpImTPi1+BAe7t5OSvJsUAAAAABe4/O0z7Ujd4duan+T01F8SvVK1SVJew7tcTiJZ5zKiIdhkmpJ+skYM8kY09cYY8riyY0xH0j6UVKyMSbDGHN9WTyuP3lnxTuqG11XPRv0LPfnfqbPM2oS20QjPh6h7EPZJz84KEgaOFBatkyaO9d9PXCgez8AAACAgPDaktdUK7KW+jfu73QUn1I6un33Qf9sL/CnZ4XW2o3W2gclNZY0UdJYSduMMY8YY6qdzZNba6+01sZba0OttQnW2rfP5vH8zb78fZqzeY6GNh+qIFP+J/ARoRGaOHCidh/crRs/vVHW2pPfIShISk6WunVzX1N0AAAAAALG1v1bNWvjLI1KGaWQoBCn4/iU0hEP/trn4ZTODI0xrST9V9LTkqZJGizpgKRvPBcNM1NnqshVpMHNBjuWISU+RY/1eEzT1k3TuOXjHMsBAAAAwLu9tuQ1GWM0qm35ThP3B3ERJSMe/HRli1Pp8bBU0nOSfpLUylp7h7V2kbX2v5I2ezpgIJu2bpoSoxPVvlZ7R3P89fy/qlu9bvq/Wf+nbTnbHM0CAAAAwPscKjykN5a+oQFNBqhOdB2n4/gcRjxIQ6y1Pa21E621R469wVo70EO5Al7ukVx9tekrDWwyUGXUUuOMBZkgjb10rFzWpetnXv/nUy4AAAAABJT3Vr6nfYf36c4OdzodxSdVDa+qYBMc0D0eGNXggM/SPtOR4iMa1GyQ01EkSfWr1tczfZ7RnM1z9MbSN5yOAwAAAMBLWGv14qIXlVIzRZ0TOzsdxycFmSDFRsQG9IgHOODTDZ8qLiJO59c53+koR93Y7kb1atBL93x1j7bs2+J0HAAAAABe4OstX2vN7jW6o8Mdjo/W9mVxleICt8cDyp/LujR782z1adjHkdUsTsQYo7cueUtBJkjXz7xeLutyOhIAAAAAh7246EXFRcRpWIthTkfxadUrVQ/cEQ/GmAhjzD+MMW+WbCcZY1iU1YNW7FyhrINZ6tOwj9NR/qBulbp6tu+zmrt1rl796VWn4wAAAABw0Ka9m/Tphk91U/ubFBYS5nQcnxYXEdgjHsZJOiKpY8l2hqTHPJYI+mrTV5Kk3g16O5zk+K5PuV59G/bVfXPu06a9m5yOAwAAAMAhLy1+SSFBIbq5/c1OR/F5AT3iQVJDa+1TkgolyVqbL4mJOx701eav1LJ6S8VHxjsd5biMMXrr0rcUGhSq62Zex5QLAAAAIADlHM7R2GVjdUXzK7z23MWXxEXEaf/h/SooLnA6Spk7lcJDgTEmXJKVJGNMQ7lHQMADDhYc1HfbvlPfhn2djnJSCVEJer7f81qQvkAvL37Z6TgAAAAAytnrS19XbkGu7jrvLqej+IXqlapLkvYc2uNwkrJ3KoWHhyXNklTHGPO+pK8l3efRVAFsQfoCFRQXeGV/h98b0XqELk66WPfPuV9p2WlOxwEAAPAeLpeUmirNm+e+djFCFP7lcNFhPbfwOfVu0FvtarVzOo5fiKsUJ0l+Od3iTwsP1trZkgZKGinpA0ntrbXzPBsrcC1IX6CQoBB1SuzkdJQ/ZYzRG5e8oYohFTVyxkgVu4qdjgQAAOA8l0uaPl1KSZG6d3dfT59O8QF+ZcKKCdqZt1P3d77f6Sh+o3TEw+6D/tdg8lTXaqwtKVhSBUkXGGMGei5SYPtu+3dqF99OEaERTkc5JbUia+mlC1/SD9t/0H9//K/TcQAAAJyXliYNHy7l57u38/Pd22mMEIV/KHYV66nvn9I5tc5R93rdnY7jN+Ii/HfEQ8ifHWCMGSuplaQ1kkrLtFbSdA/mCkiHiw5r8Y7Fuv3c252Oclr+0vIv+mj9R/rH3H/owkYXqmWNlk5HAgD4qMLiQu0+tFv7D+/XocJDRy+SFGyCFRwUrArBFRRVMUrRFaNVJayKoipGyRj6XsOLZGb+WnQolZ/v3p+c7EwmoAxNWzdNm/Zt0lO9n+L3bxk6OuLBD5fU/NPCg6TzrLXNPJ4EWvrLUhUUF6hzYmeno5wWY4xeu/g1tdjWQsM/Hq5FoxapQnAFp2MBALzU7oO7tXzncm3I3qCNezdq476N2rJvi3bm7VR2fvZpP17F4IpKiEpQYnSi6kTXUd3oumoa21Qta7RUckyyQoNDPfBVACcRHy+Fh/+2+BAe7t4P+DhrrZ78/kk1jmmsy5IvczqOX6kSVkUhQSGBOeJB0o/GmGbW2rUeTxPgvt/+vSSpUx3v7+/we3GV4vRG/zd0+eTL9ej8R/Voj0edjgQAgcXlcg/jzsx0n9wkJUlBpzqj0nOOFB3RT7/8pHlb52nRjkValrlMO3J3HL29UmglNarWSEkxSbqg7gWqUamGalSuoaphVVWpQiVFhEYoLCRMRkbFtljFrmIVFBco50iOcg7naP/h/dp1cJe25WzT9gPbNXfLXO3I3XF0qefQoFAlxyYrpWaKzq9zvjrV6aTm1ZsryDj/vYEfS0qSJkz4dbpFeLh7OynJ6WTAWZuzeY5+zvxZb13yloKDgp2O41eMMYqNiFX2odMvwnu7Uyk8jJe7+LBT7mU0jSRrrW3l0WQB6Ltt3yk5JvloN1Nfc1mTyzSyzUiN+W6M+jfurw4JHZyOBACBobSR3e9PcgYOLPfig7VWy3cu12dpn2ne1nn6YfsPyi9yf+rbNLaputXrppSaKUqJT1HT2KaqWblmmQ/TLSguUOqeVK3KWqXVWau1KmuVvtr0ld5d+a4kKbpitDrW6ahe9XvpwqQL1TS2KUOFUbaCgtw/fy1bel0xEDhbj3/7uGpF1tLVra52OopfigmP0Z58/1tO01hrT36AMRsl3S1plX7t8SBrbbpno/1R+/bt7ZIlS8r7acuFy7oU93ScBjQZoLcufcvpOGcs53COWr3WSmEhYVp24zKfaZIJAD4tNdXdNf/3w7qXLSuX+eSFxYVakL5AM1JnaEbqDG3L2SYjo9Y1W6tr3a7qVq+buiR2UUxEjMeznIi1Vpv3bdb327/X99u+17fbvtW6PeskSYnRierXsJ8ubnyx+jTso7CQMMdyAoA3m7tlrnpM6KEX+r2gOzrc4XQcv9TtnW6yspo/cr7TUU6bMWaptbb98W47lREP26y1M8s4E34ndU+q9ubv9clpFseKDovWuMvGqeeEnnpgzgN64cIXnI4EAP7PgUZ21lotzVyqCSsm6IPVH2jPoT0KCwlTn4Z99HDXh9W/cf+jTbK8gTFGDas1VMNqDTW89XBJ0racbZq1cZa+2PiFJq6eqDd+fkORFSJ1afKluqL5FRQhAOAY1lo9PO9h1YqspdHtRjsdx2/FRsQeLYz7k1MpPKw3xkyU9IncUy0kSdZaVrUoQz/98pMk+cX0hB71e+iOc+/Qi4tf1GVNLlOP+j2cjgQA/q0cG9llHczSO8vf0fgV47V291pVDK6oy5pcpmHNh6lPwz6qVKFSmT+npyRGJ2p0u9Ea3W60CooLNHfLXE1ZO0Ufrf9I7696X5EVIjW42WBd2+ZadU7szHQM4HR4ad8ZnLmvt3ytb7d9q5cvfJmirAfFRsRqz6HAnGox7ji7rbX2Os9EOjF/nmpx5xd36u1lbyvn/hy/aNJyqPCQUl5PUX5hvlbdvErRYdFORwIA/1UOPR6W/rJULy5+UZNWT1JBcYE6JnTUiNYjdEXzK1Q1vGqZPIe3KCwu1DdbvtHkNZM1Ze0U5RXkKalakq5tc62Gtx6u2lG1nY4IeDcv6juDsmGtVedxnbUtZ5s23r5RFUMqOh3Jbz30zUN64rsnVPiPQp8reJ9sqsWfFh68iT8XHjqN7aQgE6Rvr/3W6ShlZlHGInUa20lDmg/RxIETfe4HBwB8igc+XSx2FWvauml6YdEL+mH7D6pcobJGtB6hW8+5VU3jmpZRcO92sOCgpq6dqrHLx2pB+gIFmSANaDJAd3S4Q10Su/C3DTgeh/vOoOx9ufFL9Xu/n1656BXdfM7NTsfxa8/9+Jzu/upu7fvbPlUJq+J0nNNyssLDn74jMcYkGGM+MsZkGWN2GWOmGWMSyj5m4CpyFWlZ5jK1jz/ua+SzOiR00L+7/1uTVk/SuOXHGzgDACgzQUHuN/Tdurmvz6LoUFhcqHHLxqnp/5pq6NSh2pW3S8/3fV4Zd2Xo5YteDpiigyRVqlBJI9qM0PyR87Xx9o36a8e/au7Wuer6Tle1eb2N3v75beUX5v/5AwGB5GR9Z+BzXNalB75+QHWj6+q6lHIf9B5wYiNiJcnvplucyruScZJmSqolqbbcvR44iyxD63avU35RvtrX8q/CgyT9rdPf1LN+T932+W1at9v/mqQAgD85XHRYr/70qhq91EjXzbxOlStU1tQhU7Xh9g2687w7A37aXMNqDfVk7ye1/a7teusS9wpUoz4ZpYTnEvTQNw8p62CWwwkBL1Had+ZYHuo7A8/7YNUHWrZzmR7v8ThTLMpBIBce4qy146y1RSWXdyTFeThXQFmauVSS/LLwEBwUrHcHvKvKFSpr6NShfCoEAF6o2FWsccvGqfFLjXXL57eoVmQtfXbVZ1o6eqkGNRukIMOc7GNFhEbo+rbXa/mNyzVvxDx1rdtVY74do3rP19Ptn9+u9P3lvuI44F2Sktw9HUqLD6U9HpKSnM2F03ak6Ige/OZBpdRM0ZUtr3Q6TkAI5MLDHmPM1caY4JLL1ZKyPR0skCz5ZYkiK0QqKcY/fxnHR8ZrwoAJWpW1Svd8dY/TcQAAJay1mrF+hlq91krXzbxONSrX0FdXf6UfrvtBFyVdRP+CP2GMUdd6XTV96HStvXWtrmxxpV5f+roavthQwz8arrW71zodEXBGUJC7keSyZdLcue5rGkv6pP/99D+l56TryV5PUoQuJzERMZICs/BwnaQrJO2UlClpcMk+lJElvyxR2/i2fv3D3K9RP917/r16dcmrmrZ2mtNxACDgLfllibqM66LLJ1+uIleRpgyZosWjFqt3w94UHM5Ak9gmevuyt7Xpjk26/dzbNW3dNLV4pYWGTR2m9XvWOx0PKH9l2HcGzth/eL8e//Zx9W7QW70b9nY6TsAI2BEP1tpt1tpLrbVx1trq1trLrbWMISwjRa4iLd+5XO3i2zkdxeMe6/GYzq19rq6beZ3SstOcjgMAASnrYJZGzRylc988Vxv3btTr/V/X6ptXa3CzwRQcykCd6Dp6rt9zSv+/dN3f+X59uuFTNX+luUZ8PEKb9m5yOh4AnLJ/zfuX9uXv01O9n3I6SkCJrBCpZTcu06i2o5yOUqZOZVWL8caYKsdsVzXGjPVoqgCSlp2mI8VH1KZmG6ejeFyF4Ar6cPCHCg0K1eWTL1fukVynIwFAwCgsLtSLi15U45caa/yK8bq7493acPsGjW43WqHBoU7H8zuxEbEa03OMNt+5WXedd5c+XPOhkl9O1g0zb9C2nG1OxwOAk1qTtUYvL35Zo9uNDojzFG9ijFGbmm18binNP3MqY55aWWv3l25Ya/dJSvFYogCzctdKSVLLGi0dTlI+6lapqw+HfKj1e9brupnXyVrrdCQA8Hvzt85XyuspunPWnTq39rlaedNKPdPnGUVVjHI6mt+rXqm6nunzjDbdsUk3t79ZE1ZOUKMXG+nOL+70u2G0APyDtVZ3zrpTURWj9FiPx5yOAz9xKoWHIGNM1dINY0w1SSGeixRYVmWtUrAJVtPYwFkTvUf9Hnqy15OaunaqnvqeoVsA4Cn78vfphpk3qNv4bjpYeFAfDf1IX179pZrGBc7fHG9RK7KWXrroJaXdnqYRrUfo5Z9eVsMXG+qJ755gxScAXuWj9R/p6y1f69Hujx7tNwCcrVMpPPxX0g/GmEeNMf+W9IOkpz0bK3CsylqlxjGNA25N3Hs63qOhzYfqga8f0KyNs5yOAwB+xVqraWunqdkrzTR2+Vjde/69WnPLGl3e5HL6ODgsMTpRb176plbetFIX1L1AD3z9gBq/3Fjjl49XsavY6XgAAtzBgoO6+8u71bJ6S93Y/kan48CPnEpzyQmSBknaJWm3pIEl+1AGVu1aFTDTLI5ljNHbl76tVjVa6YopVxydcgIAODs7DuzQwA8HavCUwYqvHK+fbvhJT/V+ShGhEU5HwzGaV2+uT678RHNHzFXNyjU1csZItXujnb7a9JXT0QAEsH/O/afSc9L1ysWvKCSIQe4oO6fSXPJda+1aa+3L1tqXrLVrjTHvlkc4f5d7JFdb9m9Ry+qBV3iQpEoVKunTqz5VVMUoXfT+RdpxYIfTkQDAZ1lrNX75eDV7pZlmbZylp3o9pcU3LFbb+LZOR8NJdKvXTYtGLdIHgz7QgSMH1Pe9vur3Xj+t3b3W6WgAAsySX5bo+UXP66Z2N6lzYmen48DPnMpUi+bHbhhjgiX5/9qP5WDN7jWSFLCFB0lKiErQZ1d9pgNHDujiiRfrwJEDTkcCAJ+TdTBLAz8cqJEzRqp1jdZaffNq3dvpXj6t8hFBJkjDWgzTulvX6dk+z2rRjkVq9Wor3fHFHdqbv9fpeAACQGFxoW745AbVrFxTT9S9Xpo3T0pNlVwup6PBT5yw8GCMecAYkyuplTHmgDEmt2Q7S9KMckvox1btWiUpcFa0OJHWNVtrypApWp21WldMuUKFxYVORwIAnzFj/Qy1eKWFPk/7XM/0fkZzR8xVw2oNnY6FM1AxpKLu6niX0m5P0+h2o/W/n/6npJeS9PLil1XkKnI6HgA/9t8f/6vlO5fr5SpXKbrDBVL37lJKijR9OsUHlIkTFh6stf+x1kZKetpaG2WtjSy5xFhrHyjHjH5rVdYqVQqtpHpV6jkdxXF9G/XV6/1f15ebvtQ1H11Dgy0A+BM5h3N07Yxrdfnky5UQlaClo5fqnvPvUXBQsNPRcJZiI2L1ysWvaPmNy9WmZhvd/sXtav1aa83eNNvpaAD80MpdK/XwvIc1KKGPBtz2Pym/ZKWd/Hxp+HApLc3ZgPALpzLV4gtjzAW/v3g8WQBYleVuLBlkTuVl8H/Xt71eT/V6SpPXTNYNn9wgl6W6CgDHM3/rfLV6rZXeXfGuHurykBaOWqgW1Vs4HQtlrGWNlppzzRx9NPQjHS46rD7v9dGlH1yqtGxOAgCUjcNFh3X19KtVNayqXku85deiQ6n8fCkz05lw8CunMvnz3mP+HSbpXElLJfXwSKIAsnb3Wl3S+BKnY3iVezvdq4OFB/XI/EcUHhKuly96maXfAKBEkatIjy14TI8ueFQNqzbU99d9rw4JHZyOBQ8yxujyJpfrwkYX6vmFz+uxbx9T81ea684Od+qhCx5SdFi00xEB+LCHvnlIq7JW6bOrPlOsq6EUHv7b4kN4uBQf71xA+I1TWU7zkmMuvSW1kHtpTZyFffn7lHUwS01imzgdxes83PVh3Xv+vXplySsa/clopl0AgKTtOdvVY3wPPTL/EV3T6hr9fOPPFB0CSMWQivpb578p7fY0Xd3qav33x/+q8cuN9fbPb/N3EsAZ+WbLN3r2x2d1c/ubdVHSRVJSkjRhgrvYILmvJ0xw7wfO0pmM8c+Qu/iAs5CanSpJSo5JdjiJ9zHG6MleT+qhLg/prWVvafjHw2k4CSCgzUydqTavt9Gyncv07oB39c7l76hyhcpOx4IDalauqbGXjdXiGxarUbVGGvXJKJ371rn6btt3TkeDk1wu9woErESAU/RL7i+6ctqVSo5N1tO9n3bvDAqSBg6Uli2T5s51Xw8c6N4PnKU/nWphjHlJki3ZDJLURtIKD2YKCOv3rJckRjycgDFGj/Z4VJUrVNb9X9+vA0cO6INBH/BG+ywUu4qVcSDjN5cduTu0N3+vDhw5oJwjOcoryJPLuuSyLllrFRIUosoVKh+9xEXEKT4yXvGV41U7qraSqiWpTnQd+pQAHnK46LDum32fXlr8ktrGt9WkQZOUFMMnT5Da12qv7679TpNWT9J9c+5Tl3FdNKzFMD3V6ynVia7jdDyUJ5fLvfLA8OHuIfKln1JzwogTKCwu1NCpQ5VXkKdvhn+jShUq/XpjUJCUnOy+AGXoVHo8LDnm30WSPrDWfu+hPAEjdU+qQoNCVb9qfaejeLW/df6bosOidevnt+qCcRfokys/Ue2o2k7H8mrWWqXnpGvJL0u0JmuN1u5Zq3W71yk1O1UFxQW/OTYiNEKxEbGKqhilqIpRqhJWRSFBITIyMsaoyFWkgwUHlXEgQ7kFuco6mKUDRw785jHCQ8LVOKaxWlRvofa12qt9rfZKqZny2z9iAE5b6p5UDZ06VCt2rdBd592l//T8jyqGVHQ6FryIMUZXtrxSlyZfqqe+f0pP/fCUZqyfofs736+/nv9XRYRGOB0R5SEt7deig/TrSgQtW3LyiOP6+9d/13fbvtP7A99X8+rNnY6DAGGstSc/wJgwSY3kHvWwyVp7uDyCHU/79u3tkiVL/vxAHzBg8gCl7knV2lvXOh3FJ3yR9oWumHqFoitGa8awGWpXq53TkbzGkaIj+n779/o2/Vst/mWxftrxk3Yf2i1JMjKqX7W+msY2VbO4Zmoc01gJUQlHL9EVo0+7eefBgoPKzMvU9pzt2pC9QanZqUrNTtWKnSu0I3eHJCnIBKldfDv1qN9D3et1V+fEzhQigNMwde1UXTvjWoWFhOmdy97RxY0vdjoSfMDW/Vt13+z7NGXtFCVGJ+rp3k9rSLMhNGn2d/PmSd27/3H/3LlSt27lnQZe7oNVH+iq6Vfp5vY365WLX3E6DvyMMWaptbb9cW87UeHBGBMiaYyk6ySlyz3NIkHSOEkPWmvLfdK9PxUemv6vqZrENtFHQz9yOorPWLFzhS754BLtOrhLL/R7QTe2uzFg30xt2rtJszbO0qxNszR3y1wdLDwoI6OmcU11bu1zdW6tc3VO7XPULK5ZuX7ilZmbqSW/LNHiHYs1P32+FmYsVKGrUBWCK6hn/Z4a0GSALk2+VDUq1yi3TIAvKSwu1P1z7tezC59Vx4SOmjJkCqO8cNrmb52vO2fdqRW7VqhLYhe90O8FpcSnOB0LnpKaKqWk/HElgmXLGPGA3/hh+w/qMb6Hzq19rmZfM5tRdChzZ1p4eE5SpKS7rLW5JfuiJD0jKd9ae6eH8p6QvxQeCosLVWlMJd3T8R79p9d/nI7jU/Yc2qNrPrpGszbO0lUtr9IrF70SEEuJHSw4qHlb5x0tNmzcu1GSVL9KfV3Y6EL1a9RPXet1VVTFKIeT/tbBgoP6fvv3+nLjl/o49WNt3rdZRkYd63TUkGZDdFXLq1S9UnWnYwJeYWfeTl0x5Qp9u+1b3X7u7XqmzzOqEFzB6VjwUcWuYr297G09+M2Dyj6UrVFtR+nxHo8rrlKc09FQ1ujxgFOwZd8WdXirg6IqRmnhqIWKjYh1OhL80JkWHtIkNba/O8AYEyxpvbX2rLtbGWP6SXpBUrCkt6y1T5zseH8pPGzI3qDkl5P1zmXvaESbEU7H8Tku69J/vv2P/jnvn6oVWUtvXfKW+jbq63SsMmWt1Zrda9yFho2z9O22b1VQXKDwkHB1r99d/Rr2U79G/dSoWiOfGfVhrdXqrNX6eP3Hmr5+upbvXK6QoBBdnHSxRrQeoYsbX8xJFgLWd9u+05ApQ3TgyAG9ecmbuqrlVU5Hgp/Yf3i//j3/33pp8UuqFFpJD3d9WLeeeyu/b/2Ny+Xu9ZCZKcXHu5c/pOiAEnsO7dEF4y5QZl6mFl6/UMmxjISBZ5xp4WGDtbbx6d52GqGCJW2Q1FvuJTp/knSltfaETQ/8pfDwSeonunTSpfrx+h91XsJ5TsfxWYt3LNbIj0dq3Z51urbNtfpPz//49BD+/Yf3a87mOUeLDaX9EprHNVe/Ru5CQ+fEzgoLCXM4adlYk7VG41eM17sr39XOvJ2KCY/RqLajdMs5tygxOtHpeEC5sNbqhUUv6N7Z96p+lfqaPnS6WlRnxWqUvfV71uuuL+/SrI2zlByTrOf6PqcLky50OhYAD8s5nKMeE3po7e61mvWXWepar6vTkeDHzrTw8LGk6dbaCb/bf7WkK6y1l55lqI6S/mWt7Vuy/YAkWWtPOPfAXwoPT3//tO6bc5/23rdXVcOrOh3Hpx0uOqxH5j2iZ358RuEh4frHBf/QHR3u8Ik5ay7r0tJflmrWxln6ctOXWpixUMW2WNEVo9WrQS/1a9RPfRv29ftl0YpcRfpq01d66+e3NCN1hoyMBjQdoNvPvV1dErv4zIgO4HTlFeRp1MxRmrxmsi5vcrneueydgJg6BudYa/V52ue668u7lLY3TRclXaTn+j6nxjFn9VkSAC91sOCg+r7XV4t3LNbHwz7WRUkXOR0Jfu5MCw+1JU2XlC9pqdyrWpwjKVzSAGvtjrMMNVhSP2vtqJLtayR1sNbedqL7+EvhYdTMUfpkwyfa9dddTkfxGxuyN+ier+7Rpxs+VZ2oOrr3/Hs1qu0ohYeGOx3tN3bm7dTsTbM1a9MsfbXpK+05tEeSez320ukTHRI6KCToVFa69T/p+9P16pJX9ebPb2pv/l61jW+rBzo/oAFNBig4KNjpeECZWb9nvQZOHqjU7FSN6TFG93W6jyIbyk1BcYFeWvSS/r3g3zpUeEg3tbtJ/+j6D3ruAH4k90iuLp10qRakL9DkwZM1uNlgpyMhAJxR4eGYO/eQ1FySkbTGWvt1GYUaIqnv7woP51prb//dcaMljZakxMTEdunp6WXx9I7q+k5XFbuK9d113zkdxe/M2TxHj8x/RN9t+07VK1XX6LajdX3b61WvSj1H8uQV5GlB+gLN2TxHszfP1uqs1ZKkuIg49W3UV/0a9lPvhr15s/c7hwoP6f2V7+uZH5/RhuwNahLbRPd3ul9XtbxKocGhTscDzsq0tdM0csZIhYeEa9LgSepRv4fTkRCgduXt0sPzHtZbP7+liNAI3dfpPt113l0sfwz4uOxD2brw/Qv1c+bPmjBgAn2DUG7OqvDgKYE81SLh2QT1bNBT4y8f73QUv7UgfYGe/P5JfZH2hSSpV4NeGtR0kC5NvlTxkfEee96sg1n6cfuP+jHjR32//XstzFioIleRKgZXVJe6XdSrfi/1atBLKfEpCjI0ffozxa5iTVs3TWO+HaMVu1aoXpV6eqjLQxrRZkTAjgqB7ypyFemBOQ/omR+f0XkJ52nKkClKiEpwOhag9XvW6+9f/10frf9I8ZXj9a9u/9J1Kdfxe9YX0WQy4GUcyFDf9/pq095NmjJkii5JvsTpSAgg3lp4CJG7uWRPSTvkbi55lbV2zYnu4w+Fh/zCfEWMidAj3R7RP7v+0+k4fm9bzjaNXTZW7658V5v3bZYkpdRMUefEzupUp5PaxrdV/ar1T/vN1ZGiI0rPSdearDVanbVaq3ev1pJflhx9jtCgUKXEp6h7ve7q1aCXOtXp5HXTPnyJtVafpX2mRxc8qsU7Fis5JlmPdn9Ug5oNooADn7Azb6eGTR2m+enzdes5t+rZvs+yqgC8zvfbvtd9c+7TD9t/UJPYJvpPz//osuTLmAbkK1hWM+AtzFioAZMHKK8gTzOHzVT3+t2djoQA45WFB0kyxlwk6Xm5l9Mca619/GTH+0PhYe3utWr+SnO9N+A9/aXVX5yOEzBKl6ecsX6G5myZo8U7FutQ4SFJ7iJBw2oNVSuylqpXqq5qYdVUIbiCQoNDZa1VbkGu8grylFuQq8zcTG3L2aZdB3/tz2Fk1KBqA7Wp2UYdEzqqY52Oahvf1m9Wn/Am1lrNSJ2hB795UGt3r1Xb+LYa02OM+jTswxtjeK3vt32vIVOGaP/h/Xrzkjf53Q+vVvp79v459ys1O1Wd6nTSf3r+R13qdnE6mn8ri5EKqalSSoq76FAqPFxatkxKZvlEf/fuind1wyc3qHZUbc0cNlPNqzd3OhICkNcWHk6XPxQeWErTOxQWF2rlrpValbVKqXtStWHvBu3K26Wsg1nam79XBcUFKnQVysgosmKkKleorMoVKqtm5ZpKjEpUYrT70rx6czWNbcp82HJW7CrW+6ve1z/n/lPpOenqXq+7nu37rNrUbON0NOAoa61eXPSi/jr7r6pXpZ6mXzFdLWu0dDoWcEqKXEUau2ys/jXvX8rMy1TP+j31SLdH1Cmxk9PR/E9ZjVSYN0/qfpxPuOfOlbp1K6u08DJ5BXn6v1n/p7eXva1u9bpp6pCpiomIcToWAhSFBy/y/MLnddeXdynrr1mKqxTndBzApx0pOqI3lr6hR+Y/or35e3VD2xv0aI9HadYJx+UV5OmGT27QpNWTdFnyZRp/+XiWyoRPyi/M12tLXtMT3z+hrINZ6tOwjx7p9ggfnpSlshqpwIiHgLPklyW6atpV2rh3o+7vfL8e6fYITbjhqJMVHpjwVc427d2kyAqRio2IdToK4PMqhlTU7R1uV9rtabqjwx0au3yskl5K0n9/+K8KigucjocAlbonVR3e6qAP13yoMT3GaPrQ6RQd4LPCQ8N1V8e7tPmOzXq699NalrlMHd/uqAvfv1CLMhY5Hc8/ZGb+tlggubczM0/vcZKS3CMlwkt6SpWOnEhKKpuc8Bq5R3J116y71OGtDsovytc3I77RmJ5jKDrAqzHioZxd9P5FyszL1LIblzkdBfA76/es191f3q0vNn6hpGpJerbvs7o46WL6P6DcTF83XSM/HqmKIRU1adAk9WzQ0+lIQJnKK8jT/xb/T0//8LSy87PVvV53/a3T3+i1czbKcqRCOa5qcajwkLbnbFfGgQztOrhL2YeytefQHvclf4/2H96vQ4WHdKjwkPIL893XRflyWZeMjIJMkIwxMjIKCQpRpQqVjk5trRTq/ne18GqqXqm64iLiFFcpTtUrVVeNSjWUGJ0YkNNcXdalD1Z9oL/N+Zt+yf1FN7a7UWN6jlHV8KpORwMkMdXCqyS/nKxWNVppypApTkcB/NYXaV/ori/vUmp2qvo37q+XLnxJ9arUczoW/FiRq0h///rvevqHp9WhdgdNGTJFdaLrOB0L8JjcI7l68+c39eyPz2pH7g61qdlGf+v0Nw1uNphlOE+Xl65GYa1VZl6mNmRvcPfDyt6gjfs2alvONm3P2a7s/Ow/3MfIqGp4VcVGxKpqWFVFhEYoIjRC4aHh7uuQcAWZIFlrZWXlsi5Za1Vki3Sw4KDyCvJ0sNB9nVeQp+xD2dqbv1dWfzxfiQmPOdpzq250XSVGJyopJkmNYxqrQdUGfrVyUGnT13/M/YdWZ61WSs0UvXrxq+qQ0MHpaMBvUHjwEsWuYoU/Hq67O96tJ3o94XQcwK8VFhfqxUUv6uF5D8tlXfrHBf/QPeff41dvROAdduXt0rBpwzRv6zzd0v4WPdv3WVUMqeh0LKBcFBQX6P2V7+upH57S+j3rVb9Kfd3R4Q5d2+ZaphidjnIcqXA8WQeztGLnCq3Y5b6s271OG7I3KLcg9+gxYSFhalStkftkPypRdaLrqE5UHdWJrqOalWseLTYEBwWXabYiV5GyD2Vr96HdyjqYpczcTG0/sF3p+9O17cA2pe9PV3pOuvIK8o7eJ9gEq37V+kqOSVbjmMZqHNNYyTHJSo5NVnzleJ8ZnXOw4KAmrJiglxa/pHV71impWpIe7f6ohjQfwnLi8EoUHrxE+v501Xuhnt7o/4ZuaHeD03GAgLA9Z7v+78v/0/R109U0tqlevfhVda3X1elY8BPfbftOV0y5QvsP79fr/V/XNa2vcToS4AiXdWlm6kw99f1T+jHjR1UKraThrYfrtnNvU7O4Zk7HQwlrrbbs36LFOxZr+c7lWrFrhZbvXK6deTuPHlM7sraaV29+9KS99IQ9ISrBa092rbXad3if0rLTtCF7g3uURnbq0X/nF/06jSWyQqSSY5PVJLaJkmN+vU6KSfKKpdCLXcWat3WeJq6aqGnrpinnSI7axbfTnR3u1JUtr2REEbwahQcv8c2Wb9RzQk99Pfxr9ajfw+k4QED5PO1z3fb5bdqyf4uGtx6up3s/zeoXOGPWWj2/8HndO/teNajaQNOumMZSmUCJpb8s1cs/vawPVn2gI8VH1KN+D916zq3q37g/o87K2YEjB/TTjp+0MGOhFu5YqEUZi7T70G5JUmhQqJrFNVPrmq3VukbJpWZrv2uA7rIu7Tiw42ghYv2e9Vq/Z71Ss1O1LWfb0eOMzNFREr8pSsQmq0alGh4bJVFaDFqQvkBfbfpKszfP1p5DexRZIVIDmg7Q6LajdX6d831mlAYCG4UHL/Hm0jc1+tPR2nrnVtWtUtfpOPBGDg+19HeHCg/p8QWP6+kfnlblCpX1RK8nNKrtKK/9BAfe6cCRA7p+5vWaunaqBjQZoHGXjWNIOXAcuw/u1tvL3tYrP72i7Qe2KzYiVn9p+Rdd2+Zata7Z2ul4fqfYVaw1u9doUcYiLcxYqEU7Fmnt7rVH+yM0iW2iDrU76LyE89Shdgc1r9484AtBBwsOKm1v2m+KEev3rFfqntTfjJKIrhitxjGNlRCVoNqRtVU7qvbR69iIWEVVjFJUxShFVoj8w8oSLutSXkGe9h/er335+5Sek67N+zZr877NSs1O1ZJflmhv/l5JUo1KNdSnYR9d0vgS9W/cX+Gh4eX6/QDOFoUHb+By6YGpN+mZ9WN1eMhKBSc34YQSv+WlzaX80brd63TL57do3tZ5Or/O+Xq9/+tqUb2F07HgA1ZnrdagDwdp095NerLXk7q74918CgX8iSJXkWZvmq2xy8dqZupMFRQXqG18W41sPVJXNL9CNSrXcDqiT9qZt/NokWHhjoVa8suSo30OqoVXO1pkOC/hPJ1T6xxWPjgNLutSxoGMo0WI9XvWK21vmnbk7tCOAzuUcyTnhPetGFzxN38XCooL5LKuPxwXWSFSjao1Urv4djqn9jk6L+E8tazekr8p8GkUHpxWckJ51ZRhWhhfrM1vcEKJ4yjL5bTwp6y1mrBigu756h7lHMnRfeffp4cueIhPF3BC7698X6M/Ha2oilGaPHiyLqh7gdORAJ+TfShbE1dN1Ljl47Rs5zIFmSBdUPcCDW46WAObDlR8ZLzTEb1SfmG+fs78WYt2LHJfMhYpPSddkhQSFKI2Ndv8ZjRDo2qNOIH1oLyCPP2S+4t2HNihvfl7deDIgaOXY5tcSlKF4AqqGl5VVcKqqEpYFSVEJahB1QaKCY/hNYLfofDgtJITyk5X5qtCsTR3vDihxB/Nmyd17/7H/XPnSt26lXeagLHn0B7dO/tevbP8HTWo2kCvXfyaejfs7XQseJEjRUd015d36dUlr+qCuhdo8uDJqlm5ptOxAJ+3Omu1pqyZoilrp2jdnnUyMuqc2FkDmgzQhUkXKjkmOSBPzFzWpdQ9qUcLDIt2LNKqrFUqchVJkhKjE39TZGgb35aiOQCvQOHBaSUnlAl3S703SeNmlOznhBLHYsSDo+ZumaubPrtJG7I36KqWV+m5vs/RfBLasm+Lhk4dqp9++Un3nn+vxvQcQ0dxwAPW7l6rqWunasraKVqdtVqSVDe6rvo16qd+jfrpgroXqFp4NYdTlj1rrbbu36rlO5draeZSLdqxSD/t+OnoUP7ICpE6p/Y56lC7gzrU7qBza5/LqBAAXovCg9NSU1XQro3C/npY/5wv/WueOKHEH9HjwXGHiw7rie+e0H+++48qhVbSU72f0nUp19F8MkBNWTNFoz4ZJSOjcZeN04CmA5yOBASErfu36suNX2rWplmas3nO0aHrLaq3UJfELuqS2EXn1zlfidGJPjUi4kjREa3dvVbLdy53X3Yt14qdK44WGYJNsFrWaHm0yNAhoYOaxDbhbxAAn0HhwWkulzZNekWN0m7X2I+la1M5ocQJsKqFV1i/Z71u+vQmzU+fr86JnfV6/9dZhz6A5Bfm664v79LrS1/XeQnn6YNBH6helXpOxwICUkFxgRZmLNSC9AX6btt3+mH7D8otyJXkbqDYpmYbpdRMUUrNFDWLa6akmCRVrlDZsbzWWu06uOvoso2pe1K1Ptt9vWX/lqNNBiNCI9S6Rmu1qdnm6KVF9RaKCI1wLDsAnC0KD17gm01z1PO93vq61X/Vo9nFnFACXs5aq3eWv6O/zv6rco/k6m+d/qa/d/k782j93NrdazV06lCtzlqt+86/T4/1eOwPS6MBcE6Rq0irdq3SwoyFWrZzmZbtXKZVu1bpSPGRo8fEV45X45jGali1oWpH1VZ85XjViqyl+Mj4o0sfRleMPuWfbWutCooLtDd/r7Lzs7Xn0B5lH3JfZ+ZlalvOtqOX7Qe263DR4aP3DQsJU+OYxkqOSVaT2CZqHtdcKfEpali1oYKDgsv8+wMATqLw4AXGLRun62Zep423b1TDag2djgPgFO0+uFt/nf1XTVgxQY2qNdKrF7+qXg16OR0LZcxaq3HLx+m2z29T5QqVNWHABPVr1M/pWN6BkVjwcoXFhe7RBdmpSstO04a9G5SWnaZN+zYp62DWcZcylNxFgcgKkQoNDlWwCVZIUIiCg4JlrdXhosM6XHRY+UX5Olx0+ISPYWRUK7KW6kTXUWJ0ohKjEpUYneguNsQmKzE60bNTJfj5BOBFTlZ4oENWOUnPSZeRUZ3oOk5HAXAa4irFafzl4zWi9Qjd9OlN6v1ub13d6mo92+dZxVWKczoeykDO4Rzd8vktmrhqorrX6673Br6nWpG1nI7lHeg9Ax8QGhyqljVaqmWNln+4rchVpKyDWcrMzdQvub8cXfow50iODhw5oNwjuSpyFanIFqnYVawiV5GMMQoPCVdYSNjR67CQMMVExCgmPEaxEbGKiXBfx0bEqkJwBQe+avHzCcCnMOKhnFw741p9tekr7bh7h9NRAJyhw0WHNebbMXriuycUWTFST/d+Wte2udanmpvht+Zvna/hHw9XxoEM/avrv/T3Ln9n+POxWG0H8F78fALwMicb8UA5tJyk70+nORng48JCwvTv7v/WiptWqHlcc10/83p1G99N6/esdzoaTtPhosO696t71X18d1UIrqDvrv1O/+j6D4oOv5eZ+duTGsm9nZnpTB4Av+LnE4APofBQTtJz0lU3uq7TMQCUgaZxTTVv5Dy9dclbWrVrlVq92koPz334Nw3F4L1W7Fyhc948R8/8+IxGtxutZTcuU8c6HZ2O5Z3i492foB4rPNy9H4Cz+PkE4EMoPJQDl3Vpe852Cg+AHwkyQbq+7fVaf9t6DW0xVP9e8G+1fq215m6Z63Q0nECxq1hPff+UznnzHO0+uFufXvmpXuv/mqNL73m9pCT3nPHSk5vSOeRJSc7mAsDPJwCfQnPJcpCZm6lCV6HqVqHwAPib6pWq690B7x5tPtljQg+NaD1Cz/R5RrERsU7HQ4l1u9dp1Cej9MP2HzSo6SC91v81Xp9TERTkblTXsiVd8wFvw88nAB/Cb6ZykJ6TLkmMeAD8WK8GvbTq5lV6sMuDmrhqopq83ETvLH9HvtTA1x8VFBfo0fmPqs3rbbR+z3pNuHyCpgyZQtHhdAQFuRvVdevmvuakBt7M5XI3XZw3z33tOv4ymH6Dn08APoLfTuVgW842SVJidKLDSQB4UnhouB7r8ZiW3bhMTWKb6NoZ16rHhB5K3ZPqdLSAtHjHYrV/o73+Oe+fGtBkgNbeslbXtL6GVUgAf1W6vGRKitS9u/t6+nT/Lz4AgA+g8FAOMg5kSJLqRNdxOAmA8tC8enMtuHaB3rzkTS3fuVytXmulf837lw4VHnI6WkDIPZKru7+8Wx3f7qi9+Xs1Y9gMTRo8STUq13A6GgBPSkuThg//daWH/Hz3dlqas7kAABQeykPGgQxFVohUVMUop6MAKCdBJkij2o7S+lvXa3CzwXpk/iNq/FJjjV8+Xi7Lp2+eYK3VB6s+UJP/NdFzC5/TDW1v0Jpb1ujS5EudjgagPLC8JAB4LQoP5SDjQIYSohKcjgHAATUq19D7A9/Xt9d+q9pRtTVyxki1e6OdvtnyjdPR/MrqrNXqMaGHrpp+lWpWrqkfr/9Rr/V/TdFh0U5HA1BeWF4SALwWhYdykHEgQ7WjajsdA/hzgdaUqxx1TuysH6//URMHTtS+/H3qOaGn+k/sr9VZq52O5tP2HNqjO7+4U21ea6OVu1bqtYtf0+JRi3VewnlORwNQ3lheEgC8FoWHcrAjdwcjHuD9aMrlcUEmSFe2vFLrb1uvJ3s9qW+3fatWr7bSldOupAHlacovzNcT3z2hhi821Ms/vaxRbUdpw20bdGP7GxUcFOx0PABOKF1ectkyae5c9/XAgaz0AABegN/EHlbkKlJmbqYSIik8wMvRlKvchIWE6b5O92nLnVt0f+f79UnqJ2r2SjON+HiENu3d5HQ8r1bsKtb45ePV+OXGeuDrB9S1bletunmVXuv/mmIiYpyOB8BpLC8JAF6J38Yetitvl4ptMSMe4P1oylXuqoVX05ieY7Tlzi26+7y7NWXNFCW/nKzrZ1zvPyMgymj6TpGrSO+ueFfNXmmmkTNGKr5yvOaNmKeZV85Us7hmZZsZAAAAZYrCg4eVLqVJ4QFej6ZcjomrFKen+zytTXds0q3n3KqJqyeq6f+aasDkAfpx+49OxztzZTB9p7C4UOOWjVOTl5to+MfDFRYSpqlDpmrhqIXqWq+rB8MDAYg+PwAAD6Hw4GGlhQeaS3oR3lgdH025HBcfGa8XLnxB6f+XrocueEjzt87X+WPPV5dxXTRt7TQVFhc6HfH0nMX0nX35+/TMD88o6aUkXTfzOkVVjNJHQz/SshuXaVCzQQoy/PkCyhR9fgAAHsQ7Nw/bkbtDEiMevAZvrE6Mplxeo3ql6vp3939r213b9EK/F7Q9Z7sGTxmsei/U08NzHz5a0PR6ZzB9Z/2e9brls1uU8FyC7p19r+pVqaeZw2Zq6eilurzJ5RQcAE+hzw8AwIN4B+dhGQcyVDG4omLCaXrmFXhjdXI05fIqlStU1h0d7tCmOzZp5rCZal2jtR5d8KjqPV9Pl0+6XNPXTdfhosNOxzyxU5y+k1eQp/HLx6v7+O5q+r+menvZ27qi+RVaduMyzRs5T5ckXyJjTDkGBwIQfX4AAB4U4nQAf5dxIEMJUQm8afYWJ3tjlZzsTCbgTwQHBeuS5Et0SfIl2rJvi95Y+obGLR+nGakzFF0xWoOaDtJVLa9St3rdvGspydLpO6XFvmOm7xS5irQgfYEmrJigqWun6mDhQTWs2lCPdn9UN7S9QTUq13A6PRBYSguFx/6NpM8PAKCMGGut0xlOWfv27e2SJUucjnFaLhh3gYwxmj9yvtNRILl7OqSk/PGN1bJlFB7gU4pcRZq7Za7eX/W+pq+brtyCXMVGxOrCRhfq4qSL1bdRX1UJq+J0TPc0prQ0KTNTh+KqaE7QVn20YYY+Sf1E2fnZiqwQqaHNh2pkm5E6v875FGkBp5RORfx9oZApdwCAU2SMWWqtbX/c2yg8eFaDFxqoY52Oen/g+05HgcQbK/il/MJ8fbrhU81InaEvNn6hvfl7FWyC1Smxk7rV7aYudbvovITzVLlC5XLNdaToiH7O/Flfb/laX2/5Wj9s/0EFxQWKrhit/o376/Iml+uipIsUERpRrrkAnMAxhULFx7tHLfG3EQBwiig8OMRaq7DHw/R/Hf5PT/Z+0uk4KMUbK/ixYlexFu1YpM82fKZZm2Zp+c7lclmXgk2wWtVopdY1W6t1DfelSWwT1axc86xHGVhrtefQHqVmp2r9nvX6OfNn/fTLT1qxc4UKXe6VONrUbKOe9Xuqb8O+6lqvqyoEVyiLLxcAAABegsKDQ3Yf3K3qz1TXi/1e1O0dbnc6DoAAdODIAf24/Ud9t+07LdqxSCt3rdSug7uO3h4WEqZ6VeqpXpV6iouIU0x4jKqFV1NUxSiFBocqNChUocGhKigu0KHCQzpUeEh5BXnalbdLmXmZ2pm3U+k56dqbv/foY0ZWiFT7Wu11Tq1zdG7tc9W1XlfFRsQ68eUDAACgnJys8EBzSQ/ad3if6kTVUWJ0otNRAASoqIpR6tuor/o26nt03668XVqxa4U27t2oLfu2aPP+zUrfn651u9cpOz9beQV5J33MkKAQ1ahUQzUr11StyFrqULuDkmOTlRyTrOTYZNWrUo9lLwEAAHAUIx4AAL9RUFyg3CO5KnIVqdBVqMLiQlUIrqCI0AhFhEaoQnAFmkACAADgNxjxAAA4ZRWCKygmIsbpGAAAAPATjIUFAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMY4UHowxQ4wxa4wxLmPMcZtPAAAAAAAA3+fUiIfVkgZKWuDQ8wMAAAAAgHLgyKoW1tp1kliODQAAAAAAP0ePBwAAAAAA4DEeG/FgjJkjqeZxbnrQWjvjNB5ntKTRkpSYmFhG6QAAAAAAQHnwWOHBWturjB7nDUlvSFL79u1tWTwmAAAAAAAoH0y1AAAAAAAAHuPUcpoDjDEZkjpK+swY86UTOQAAAAAAgGc5tarFR5I+cuK5AQAAAABA+XGk8AAAXsflktLSpMxMKT5eSkqSgpiNBsCL8XsLAOAj+OsEAC6XNH26lJIide/uvp4+3b0fALwRv7cAAD6EwgMApKVJw4dL+fnu7fx893ZamrO5AOBE+L0FAPAhFB4AIDPz1zfvpfLz3fsBwBvxewsA4EMoPABAfLwUHv7bfeHh7v0A4I34vQUA8CEUHgAgKUmaMOHXN/Hh4e7tpCRncwHAifB7CwDgQ1jVAgCCgqSBA6WWLekOD8A38HsLAOBDKDwAgOR+s56c7L4AgC/g9xYAwEdQFgcAAAAAAB5D4QEAAAAAAHgMhQcAAAAAAOAxFB4AAAAAAIDHUHgAAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMRQeAAAAAACAx1B4AAAAAAAAHkPhAQAAAAAAeEyI0wEAwGu4XFJampSZKcXHS0lJUhD1WQAAAOBs8I4aACR30WH6dCklRere3X09fbp7PwAAAIAzRuEBACT3SIfhw6X8fPd2fr57Oy3N2VwAAACAj6PwAACSe3pFadGhVH6+ez8AAACAM0bhAQAkd0+H8PDf7gsPd+8HAAAAcMYoPACA5G4kOWHCr8WH8HD3dlKSs7kAAAAAH8eqFgAguVevGDhQatmSVS0AAACAMkThAQBKBQVJycnuCwAAAIAywUd5AAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAAAAADwGAoPAAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAAAAADyGwgMAAAAAAPAYRwoPxpinjTHrjTErjTEfGWOqOJEDAAAAAAB4llMjHmZLamGtbSVpg6QHHMoBAAAAAAA8yJHCg7X2K2ttUcnmQkkJTuQAAAAAAACe5Q09Hq6T9IXTIQAAAAAAQNkL8dQDG2PmSKp5nJsetNbOKDnmQUlFkt4/yeOMljRakhITEz2QFAAAAAAAeIrHCg/W2l4nu90YM0JSf0k9rbX2JI/zhqQ3JKl9+/YnPA4AAAAAAHgfjxUeTsYY00/S3yR1tdYeciIDAAAAAADwPKd6PLwsKVLSbGPMcmPMaw7lAAAAAAAAHuTIiAdrbSMnnhcAAAAAAJQvb1jVAgAAAAAA+CkKDwAAAAAAwGMoPAAAAAAAAI9xpMcDAAAAAC/icklpaVJmphQfLyUlSUF8RgmgbPDbBAAAAAhkLpc0fbqUkiJ17+6+nj7dvR8AygCFBwAAACCQpaVJw4dL+fnu7fx893ZamrO5APgNCg8AAABAIMvM/LXoUCo/370fAMoAhQcAAAAgkMXHS+Hhv90XHu7eDwBlgMIDAAAAEMiSkqQJE34tPoSHu7eTkpzNBcBvsKoFAAAAEMiCgqSBA6WWLVnVAoBHUHgAAAAAAl1QkJSc7L4AQBmjjAkAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAAAAADwGAoPAAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BhjrXU6wykzxuyWlO50jjMQK2mP0yFw1ngd/QOvo3/gdfQPvI7+gdfRP/A6+g9eS//gi69jXWtt3PFu8KnCg68yxiyx1rZ3OgfODq+jf+B19A+8jv6B19E/8Dr6B15H/8Fr6R/87XVkqgUAAAAAAPAYCg8AAAAAAMBjKDyUjzecDoAywevoH3gd/QOvo3/gdfQPvI7+gdfRf/Ba+ge/eh3p8QAAAAAAADyGEQ8AAAAAAMBjKDyUI2PMX40x1hgT63QWnD5jzKPGmJXGmOXGmK+MMbWczoQzY4x52hizvuT1/MgYU8XpTDh9xpghxpg1xhiXMcZvuj4HCmNMP2NMqjFmozHmfqfz4PQZY8YaY7KMMaudzoIzZ4ypY4yZa4xZV/I79U6nM+H0GWPCjDGLjTErSl7HR5zOhDNnjAk2xiwzxnzqdJayQuGhnBhj6kjqLWmb01lwxp621ray1raR9KmkfzqcB2dutqQW1tpWkjZIesDhPDgzqyUNlLTA6SA4PcaYYEn/k3ShpGaSrjTGNHM2Fc7AO5L6OR0CZ61I0j3W2qaSzpN0Kz+PPumIpB7W2taS2kjqZ4w5z9lIOAt3SlrndIiyROGh/Dwn6T5JNNXwUdbaA8dsVhKvpc+y1n5lrS0q2VwoKcHJPDgz1tp11tpUp3PgjJwraaO1drO1tkDSJEmXOZwJp8lau0DSXqdz4OxYazOttT+X/DtX7pOd2s6mwumybnklm6ElF96r+iBjTIKkiyW95XSWskThoRwYYy6VtMNau8LpLDg7xpjHjTHbJf1FjHjwF9dJ+sLpEECAqS1p+zHbGeJEB3CcMaaepBRJixyOgjNQMjx/uaQsSbOttbyOvul5uT+wdjmco0yFOB3AXxhj5kiqeZybHpT0d0l9yjcRzsTJXkdr7Qxr7YOSHjTGPCDpNkkPl2tAnLI/ey1LjnlQ7iGm75dnNpy6U3kd4ZPMcfbxyRzgIGNMZUnTJP3f70Z5wkdYa4sltSnpXfWRMaaFtZYeLD7EGNNfUpa1dqkxppvDccoUhYcyYq3tdbz9xpiWkupLWmGMkdxDun82xpxrrd1ZjhFxCk70Oh7HREmficKD1/qz19IYM0JSf0k9LesKe63T+JmEb8mQVOeY7QRJvziUBQh4xphQuYsO71trpzudB2fHWrvfGDNP7h4sFB58SydJlxpjLpIUJinKGPOetfZqh3OdNaZaeJi1dpW1trq1tp61tp7cb7baUnTwPcaYpGM2L5W03qksODvGmH6S/ibpUmvtIafzAAHoJ0lJxpj6xpgKkoZJmulwJiAgGfcnY29LWmetfdbpPDgzxpi40lW6jDHhknqJ96o+x1r7gLU2oeS8cZikb/yh6CBReABOxxPGmNXGmJVyT51huSnf9bKkSEmzS5ZHfc3pQDh9xpgBxpgMSR0lfWaM+dLpTDg1Jc1db5P0pdyN7D601q5xNhVOlzHmA0k/Sko2xmQYY653OhPOSCdJ10jqUfI3cXnJp63wLfGS5pa8T/1J7h4PfrMUI3yfYYQxAAAAAADwFEY8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAMqNMaaOMWaLMaZayXbVku26TmcDAACeQeEBAACUG2vtdkmvSnqiZNcTkt6w1qY7lwoAAHiSsdY6nQEAAAQQY0yopKWSxkq6QVKKtbbA2VQAAMBTQpwOAAAAAou1ttAYc6+kWZL6UHQAAMC/MdUCAAA44UJJmZJaOB0EAAB4FoUHAABQrowxbST1lnSepLuMMfHOJgIAAJ5E4QEAAJQbY4yRu7nk/1lrt0l6WtIzzqYCAACeROEBAACUpxskbbPWzi7ZfkVSE2NMVwczAQAAD2JVCwAAAAAA4DGMeAAAAAAAAB5D4QEAAAAAAHgMhQcAAAAAAOAxFB4AAAAAAIDHUHgAAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMRQeAAAAAACAx/w/hT/2brQdymkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X = data.loc[:,'x'].values.reshape(-1, 1)\n", - "Y = data.loc[:,'y'].values.reshape(-1, 1)\n", - "\n", - "# Note: this code assumes that the first covariate is continuous.\n", - "# Fitting a flexible model on very little data\n", - "\n", - "# selecting only a few data points\n", - "subset = np.arange(0,30)\n", - "from sklearn.metrics import mean_squared_error\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "\n", - "poly = PolynomialFeatures(degree = 10)\n", - "X_poly = poly.fit_transform(X)\n", - "\n", - "poly.fit(X_poly, Y)\n", - "lin2 = LinearRegression()\n", - "lin2.fit(X_poly[0:30], Y[0:30])\n", - "\n", - "x = data['x']\n", - "xgrid = np.linspace(min(x),max(x), 1000)\n", - "\n", - "new_data = pd.DataFrame(xgrid, columns=['x'])\n", - "\n", - "yhat = lin2.predict(poly.fit_transform(new_data))\n", - "\n", - "# Visualising the Polynomial Regression results\n", - "plt.figure(figsize=(18,6))\n", - "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", - "plt.plot(xgrid, yhat, color = 'green', label = 'Estimate')\n", - "plt.title('Example of overfitting')\n", - "plt.xlabel('X')\n", - "plt.ylabel('Outcome y')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "On the other hand, when $q$ is too small relative to our data, we permit only very simple models and may suffer from misspecification bias. We call this **underfitting**. The main feature of underfitting is **high bias** -- the selected model just isn't complex enough to accurately capture the relationship between input and output variables.\n", - "\n", - "To illustrate underfitting, in the figure below we set $q=1$ (a linear fit)." - ] - }, - { - "cell_type": "code", - "execution_count": 504, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Outcome y')" - ] - }, - "execution_count": 504, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAGDCAYAAACMZtMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA500lEQVR4nO3de3zcd33n+/dndB1LI9uxLWs0Y8dOItxc5FhBuTUJwUlIAw03P2CX7IK7pUuW02aXnu0Nmsc5NGdLSxdKtrvQ9pFHIcUU2NIiTmmAQtiShS7lYpOEJQRHwAkgaXy/6OKRLGk+54/fSJY0Y2lsz0+/ubyej4ceo99v5jvz+Wl0mXnr9/18zd0FAAAAAAAQhljUBQAAAAAAgNpF8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAGRm/8bM/imE+zUze9zMTprZt8p9/0Ue70Uzu+cSxr/ezH5mZuNm1mdmz5nZyy/wPsbN7IqLrQEAgFpD8AAAQMjyb4az+Tekcx8fjLquVXK7pFdISrv7TVEXU4L3S3rI3dvd/Wl3v9bdn5IkM/s9M/urhTc2s6fM7N8u3Jcf++PVKxkAgMrWGHUBAADUiVe7+5ejLiICl0t60d0noi5kOWbW6O4zCup9Lup6AACoJZzxAABAhMzsz8zsbxds/5GZ/Y/8FIX1ZvaEmR3NT1V4wszSC277lJn9vpl9PX8Wxd+b2QYz+7iZjZrZt81s24Lbu5n9BzP7sZkdM7P3mVnR1wJm9nNm9qSZnTCzg2b2L5Y5hm4z+2z+tj80s7fl9/+KpL+QdGu+vkeKjF10FoGZbcvX2bjgGP+Tmf0vMxszsy+Z2cYFt3+Lmf3EzI6b2cNL7jtmZu80sx/lr/+UmV225HF+xcx+KulrZjYuqUHSs2b2o/ztXjSze8zsPkm/K+lf5o/lWTN7j6Q7JH1w4Vks+fu9Kv/5X5rZh8zsc/n6v2lmVy6o8d781/e0mf2pmf3PpWdQAABQ7QgeAACI1m9I2mlBj4U7JP2KpF9yd1fwd/pxBf+F3yopK2npFI03SXqLpJSkKyX9c37MZZKel/TuJbd/vaR+STdIeq2kty4tyMzaJD0p6ROSOiU9IOlPzeza8xzDJyUNSeqW9AZJf2Bmd7v7hyW9XdI/56cfLK2lVP9K0i/na2mW9Jv5Oq+R9GcKjr9b0gZJ6QXj/oOk10m6M3/9SUkfWnLfd0q6WtJd7t6e33e9u1+58Ebu/g+S/kDSX+eP5Xp3f1jS13RuasZD56n/AUmPSFov6YeS3pOvf6Okv5X0rnztByX9fGlfEgAAqgfBAwAAq+P/NbNTCz7eJknufkbSmyV9QNJfSfr37j6Uv+64u3/a3c+4+5iCN6x3Lrnfx939R+5+WtIXJP3I3b+cnzbwN5L6ltz+j9z9hLv/VNJ/UfCmeKn7FUyPeNzdZ9z9O5I+rSBUWMTMtijo4/A77j7p7s8oOMvhLRf6BVrG4+7+grtnJX1K0q78/jdIesLdv+ruU5L+L0m5BeP+naSH3X0of/3vSXrD3NkUeb/n7hP5+w7LgLt/K/+cfHxB/a+S9Jy7D+Sv+6+SDoVYBwAAkaDHAwAAq+N15+vx4O7fMrMfK/iP/qfm9pvZGkmPSrpPwX/LJSlhZg3uPpvfPrzgrrJFttu12M8WfP4TBWcCLHW5pJvN7NSCfY2SPlbktt2STuSDkYX321/kthdr4ZvxMzp3TN1acDzuPmFmxxfc9nJJnzGzhWHErKTNC7YXfj3CUmr9bmZDq1APAACrijMeAACImJn9mqQWSSOSfnvBVb8haYekm929Q9LL5oZcwsNtWfD51vxjLvUzSf/T3dct+Gh39/+jyG1HJF1mZokl9ztcYj0TktYs2O4qcZwkZbTgePJBzYYF1/9M0iuXHEeruy+szS/g8Yrd9kLGL5XRgqkhZmZaPFUEAICaQPAAAECEzOwlkn5fwXSLt0j6bTPblb86oeCshVP5pogX2yNhod/KN63cIukdkv66yG2ekPSSfOPGpvzHjWZ29dIbuvvPJH1d0h+aWauZ7VTQp+LjJdbzjKSXmdlWM1uroN9Bqf5W0v1mdruZNUv6f7T4tc2fS3qPmV0uSWa2ycxeewH3v9RhSduWNOQ8LOmKi7y/z0nqNbPX5ad//JouLHgBAKAqEDwAALA6/j6/8sHcx2fybzb/SkHfhWfdfVDBygkfM7MWBT0Y4pKOSfqGpH8oQx1/J+mAgjf8n5P04aU3yE+buFdB48oRBVMF/kjBWRnFPCBpW/62n5H0bnd/spRi8rf7a0nfzdf1RKkH4u7PKXiz/gkFZw+cVNDkcs6fSPqspC+Z2ZiCr+HNpd5/EX+TvzxuZt9Z8BhvsGDVkf96IXfm7sckvVHSf5Z0XNI1kvZLmrqEGgEAqDgWNM0GAAC1zsxcUo+7/zDqWlAofybFkKR/7e5fiboeAADKhTMeAAAAImJmv2Bm6/JnuPyugv4d34i4LAAAyorgAQAAIDq3SvqRguk0r1aw+kmYS3sCALDqmGoBAAAAAABCwxkPAAAAAAAgNAQPAAAAAAAgNI1RF3AhNm7c6Nu2bYu6DAAAAAAAsMCBAweOufumYtdVVfCwbds27d+/P+oyAAAAAADAAmb2k/Ndx1QLAAAAAAAQGoIHAAAAAAAQGoIHAAAAAAAQmqrq8VDM9PS0hoaGNDk5GXUpoWttbVU6nVZTU1PUpQAAAAAAUJKqDx6GhoaUSCS0bds2mVnU5YTG3XX8+HENDQ1p+/btUZcDAAAAAEBJqn6qxeTkpDZs2FDToYMkmZk2bNhQF2d2AAAAAABqR9UHD5JqPnSYUy/HCQAAAACoHTURPEStoaFBu3bt0rXXXqvrr79eH/jAB5TL5ZYd8+KLL+oTn/jEKlUIAAAAAEA0CB7KIB6P65lnntFzzz2nJ598Up///Of1yCOPLDuG4AEAAAAAUA/qL3jI5aSDB6WnngouVzgz4UJ1dnbqscce0wc/+EG5u1588UXdcccduuGGG3TDDTfo61//uiTpne98p772ta9p165devTRR897OwAAAABAhQn5fWWtqfpVLS5ILicNDEh790rZrBSPS/v2SXv2SLHyZTBXXHGFcrmcjhw5os7OTj355JNqbW3V4OCgHnjgAe3fv1/vfe979f73v19PPPGEJOnMmTNFbwcAAAAAqCCr9L6yltRX8DA4eO6bQwou9+6VenulHTvK+lDuLkmanp7WQw89pGeeeUYNDQ164YUXit6+1NsBAAAAACK0iu8ra0V9BQ+ZzLlvjjnZbLC/jN8gP/7xj9XQ0KDOzk498sgj2rx5s5599lnlcjm1trYWHfPoo4+WdDsAAAAAQIRW6X1lLamv80CSyeA0mIXi8WB/mRw9elRvf/vb9dBDD8nMdPr0aSWTScViMX3sYx/T7OysJCmRSGhsbGx+3PluBwAAAACoIKvwvrLW1Ffw0NMTzL2Z+yaZm4vT03NJd5vNZueX07znnnt077336t3vfrck6Vd/9Vf10Y9+VLfccoteeOEFtbW1SZJ27typxsZGXX/99Xr00UfPezsAAAAAQAUJ6X1lLbO5XgTVoL+/35c2XHz++ed19dVXl34nuVwwJyeTCRKpnp6qagBywccLAAAAACivKn9fGQYzO+Du/cWuq68eD1LwzbBjB3NvAAAAAAAXZ+H7SkKIFfHVAAAAAADgYswtrdnXJ+3eHVwODAT7MS+y4MHMWs3sW2b2rJk9Z2aPRFULAAAAAAAX7HxLaw4ORltXhYnyjIcpSXe5+/WSdkm6z8xuuZg7qqY+FZeiXo4TAAAAAKrCcktrYl5kwYMHxvObTfmPC35n3draquPHj9f8m3J31/Hjx9Xa2hp1KQAAAAAAiaU1SxRpc0kza5B0QNJVkj7k7t8scpsHJT0oSVu3bi24j3Q6raGhIR09ejTkaqPX2tqqdDoddRkAAAAAAOnc0ppz0y1YWrOoilhO08zWSfqMpH/v7t873+2KLacJAAAAAEBkWNVCUhUsp+nup8zsKUn3STpv8AAAAAAAQEVZuLQmiopyVYtN+TMdZGZxSfdI+kFU9QAAAAAAgPKL8oyHpKSP5vs8xCR9yt2fiLAeAAAAAABQZpEFD+7+XUl9UT0+AAAAAKCK0VuhavCsAAAAAACqSy4nDQxIfX3S7t3B5cBAsB8Vh+ABAAAAAFBdBgfPLWEpBZd79wb7UXEIHgAAAAAA1SWTORc6zMlmg/2oOAQPAAAAAIDqkkxK8fjiffF4sB8Vh+ABAAAAAFBdenqkffvOhQ/xeLDd0xNtXSgqyuU0AQAAAAC4cLGYtGeP1NvLqhZVgOABAAAAAFB9YjFpx47gAxWNOAgAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAIQmsuDBzLaY2VfM7Hkze87M3hFVLQAAAAAAIByNET72jKTfcPfvmFlC0gEze9Ldvx9hTQAAAAAAoIwiO+PB3TPu/p3852OSnpeUiqoeAAAAAABQflGe8TDPzLZJ6pP0zYhLARCFXE4aHJQyGSmZlHp6pBgtaAAAAIBaEPkrezNrl/RpSb/u7qNFrn/QzPab2f6jR4+ufoEAwpXLSQMDUl+ftHt3cDkwEOwHAAAAUPXM3aN7cLMmSU9I+qK7f2Cl2/f39/v+/fvDLwzA6jl4MAgbstlz++Jx6emnpR07oqsLAAAAQMnM7IC79xe7LspVLUzShyU9X0roAKBGZTKLQwcp2M5koqkHAAAAQFlFOdXiNklvkXSXmT2T/3hVhPUAiEIyGZzhsFA8HuwHAAAAUPUiay7p7v8kyaJ6fAAVoqdH2rdP2rs3ONMhHg+2e3qirgwAAABAGVTEqhYA6lgsJu3ZI/X2sqoFAAAAUIMIHgBELxYLGknSTBIAAADlwHLtFYWvPAAAAACgdrBce8UheAAAAAAA1I7BwXP9w6Tgcu/eYD8iQfAAAAAAAKgdLNdecQgeAAAAAAC1g+XaKw7BAwAAAACgdswt1z4XPrBce+RY1QIAAKAe0fEdQK1iufaKQ/AAAABQb+Y6vs81X5v7b+CePbwwB1AbWK69ovCXBQAAoN7Q8R0AsIoIHgAAAOoNHd8BAKuI4AEAAKDe0PEdALCKCB4AAADqDR3fAQCriOaSAAAA9YaO7wCAVUTwAAAAUI/o+A4AWCXE2gAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDSNURcAAAAAAKghuZw0OChlMlIyKfX0SDH+513PePYBAAAAAOWRy0kDA1Jfn7R7d3A5MBDsR90ieAAAAAAAlMfgoLR3r5TNBtvZbLA9OBhtXYgUwQMAAAAAoDwymXOhw5xsNtiPukXwAAAAAAAoj2RSiscX74vHg/2oWwQPAAAAAIDy6OmR9u07Fz7E48F2T0+0dSFSrGoB1Du6DgMAAKBcYjFpzx6pt5fXl5hH8ADUs7muw3MNgOYS6T17+OMAAACAixOLSTt2BB+AmGoB1De6DgMAAAAIGcEDUM/oOgwAAAAgZAQPQD2j6zAAAACAkBE8APWMrsNAZcvlpIMHpaeeCi5zuagrAgAAuGA0lwTqGV2HgcpF81cAAFAjzN2jrqFk/f39vn///qjLAAAgfAcPSn19i/uwxOPS00/TJRwAAFQcMzvg7v3FruNfJgAAVCKavwIAUFdyntPh8cP6TuY7GhkbibqcsmKqBQAAlWiu+evSMx5o/goAQNWZmpnSyNiIhseGNTQ6pOHR4XOfjw1reHRYI2Mjms5NS5L++N4/1n+89T9GXHX5EDwAAFCJ5pq/Lu3xQPNXAAAqhrvr9NTpxUFCkVDh6JmjBWPXNK1RuiOtVCKlOy6/Q+lEWqmOlFKJlG5I3hDB0YSH4AEAgEpE81cAACI1m5vV4YnDK4YKE9MTBWM3rtk4Hyrc1H1T8Hk+VJj7fG3LWplZBEe2+ggeAACoVLFY0EiSZpIAAJRVdjo7HxycL1TIjGU067OLxjXGGtWd6Fa6I63rN1+vV131qoJQoTvRrZbGloiOrDIRPAAAAAAAaoK76+TkycIgYUmocCJ7omBsojmhVEcQHty98e5FZyfMfb6pbZNixtmHFyrS4MHMPiLpfklH3P26KGsBAAAAAFSumdyMDo0fOu+Uh7nPJ2cmF40zmTrbOpXqSGn7+u26fevtBaFCqiOljpaOiI6s9kV9xsNfSvqgpH0R14FyyOWkwUHmIgMAAAC4IBNnJ5btozA0OqTDE4eV89yicc0NzfPBwY2pG/W6xOsKQoVkIqnmhuaIjgxSxMGDu3/VzLZFWQPKJJeTBgYKu6/v2UP4AAAAANQpd9exM8dWDBVOT50uGLuudd18qNDb2VvQnDGVSGnjmo1106CxmkV9xgNqxeDgudBBCi737g26sdMUDQAAAKg5Z2fPKjOWWTZUGB4b1tnZs4vGxSymrvYupRIp9Wzo0e5tu4uGCm3NbREdGcqt4oMHM3tQ0oOStHXr1oirwXllMudChznZbLCf4AEAAACoKqNToysuI3l44nDBuNbG1vllJG/dcqvSicJlJLvau9QYq/i3oiijin+23f0xSY9JUn9/v0dcDs4nmQymVywMH+LxYD8AAACAipDznI5MHFkxVBg7O1Yw9rL4ZfOhwg1dNxSs+JDqSGl963qmPqBAxQcPqBI9PUFPh6U9Hnp6oq4MAAAAqAuTM5MaGRtZNlQYGRvRTG5m0bgGa1AykVS6I61rN12re6+4tyBU6E50K94Uj+jIUO1WDB7MbL+kxyV9wt1PlvPBzeyTkl4uaaOZDUl6t7t/uJyPgVUSiwWNJHt7WdUCAAAAKCN31+mp04VBwpJQ4diZYwVj25ralOoIwoM7L7+zoI9CuiOtzrZONcQaIjgy1ItSznh4k6RflvTtBSHEl9z9kqc9uPsDl3ofqCCxWNDPgZ4OAAAAQElmc7M6PHF42RUfhseGdWb6TMHYTWs2KdWR0pa1W3RL+paioUJHSwdTHxA5KzU/MLOYpPsl/ZmknKSPSPoTdz8RXnmL9ff3+/79+1fr4QAAAADgomWnsysuI3lo/JBmfXbRuKZYk7oT3fNnKqQShSs+dCe61dLYEtGRAYXM7IC79xe7rqQeD2a2U8FZD6+S9GlJH5d0u6R/lLSrPGUCAAAAQOVzd53InlgxVDg5WThTvaOlIwgSOlJ6xZWvKBoqbGrbpJgxZRm1o5QeDwcknZL0YUnvdPep/FXfNLPbQqwNAAAAAFbV9Oy0Do0fWjZUGB4b1uTM5KJxJtPm9s1KJVLavn677th6R8GKD6lESomWRERHBkSnlDMe3ujuPy52hbvvKXM9AAAAABCK8bPjKy4jeWj8kFyLp6O3NLTMBwc3pm7U6xOvLwgVku1JNTU0RXRkQGVbMXg4X+gAAAAAAJUg5zkdO3NsxVDh9NTpgrHrWtfN91HY2bmzoDljqiOlDfENNGgELkFJPR4AAAAAIApnZ89qZGxk2VBhZGxEZ2fPLhoXs5i62ruU7khrx4YdumvbXUVDhTVNayI6MqB+EDwAAAAAiMTo1GhhkLAkVDgycaRgXLwxPr/iw21bbiu6jOTm9s1qjPF2B6gEpTSXXCPpNyRtdfe3mVmPpB3u/kTo1QEAAACoOjnP6cjEkWVXfBgeG9b42fGCsRviG+ZDhf7u/qKhwrrWdUx9AKpIKRHg45IOSLo1vz0k6W8kETwAAAAAdWZyZlIjYyPLhgqZ8YxmcjOLxjXGGpVsTyrVkVLv5l7dd9V9BaFCd6Jb8aZ4REcGICylBA9Xuvu/NLMHJMnds0a8CAAAANQUd9epyVPLNmccGh3S8ezxgrHtze3zIcLu7bvPBQqJ1PzZC5vWbFJDrCGCIwMQtVKCh7NmFpeCNWXM7EpJU6FWBQAAAFSzXE4aHJQyGSmZlHp6pFgssnJmc7M6NH5oxVAhO5MtGNvZ1qlUIqUta7fo1vSt80HCwlCho6UjgqMCUC1KCR7eLekfJG0xs49Luk3SvwmzKAAAAKBq5XLSwIC0d6+UzUrxuLRvn7RnTyjhw5npMysuI5kZzyjnuUXjmmJN81Mc+pJ9evVLXl2w4kOyPamWxpay1wygvpi7r3wjsw2SbpFkkr7h7sfCLqyY/v5+379/fxQPDQAAAJTm4EGpry8IHebE49LTT0s7dpR8N+6u49njK4YKJydPFoxd27J2cYiw4OyEuc83rtmomEV3FgaA2mJmB9y9v9h1pa4vk5LUkL/9y8xM7j5QrgIBAACAmpHJLA4dpGA7k5kPHqZnp5UZz6wYKkzNLp7hbDJtbt+sdEdaV66/UndefmfRUKG9uX21jhYAVlTKcpofkbRT0nOS5s7PckkEDwAAAMASYxsTGk61aLh5SsMd0lCHNLy+QcM//H0NvfCbGh4b1uHxw3ItPvO4paFlforDzamblfq5wmUku9q71NTQFNGRAcDFKeWMh1vc/ZrQKwEAABevwhrZAbUo5zkdnTg6fzZCseaMw2PDGp0ald62eOz6hlalp48o1ZHSrq5dRac/XBa/TCweB6AWlRI8/LOZXePu3w+9GgAAcOFWuZEdUIumZqY0MjZSECIsnAYxMjai6dz0onExiynZnlS6I62rN12te664JwgS2pNKnXalJxrUvfVarbl6Jz+PAOpWKcHDRxWED4cULKNpktzdd4ZaGQAAKM3g4LnQQQou9+6VensvqJEdUIvcXaNTo4sChGKhwtEzRwvGrmlaMz/F4Y7L7yjaqHFz22Y1xBoiODIAqB6lBA8fkfQWSf9b53o8AACASlFCIzugFs3mZnVk4sii6Q7Fpj9MTE8UjN24ZuN8kHBT900FzRnTHWmtbVnL1AcAKINSgoefuvtnQ68EAABcnGQymF6xdOm+ZDK6moBLNDkzufjshCJnKmTGMpr12UXjGmON6k50K5VIaefmnXrlVa8sCBW6E91qbWyN6MjqBH1nACxQSvDwAzP7hKS/VzDVQpJYThMAgErR0xP0dFja46GnJ+rKgALurpOTJ1cMFU5kTxSMbW9unw8Q7t5+d9FlJDvbOhUz3uBGir4zAJYwd1/+BmaPF9nt7v7WcEo6v/7+ft+/f/9qPywAAJWP/y6iAszkZnRo/FBhqDA2ND8NYnh0WNmZbMHYzW2bFy0bWSxU6GjpiOCocMEOHpT6+grPwnr6aaZ/ATXMzA64e3+x61Y848Hdf7n8JQEAgLKKxYIX9LyoR0gmzk4Unp2wJFQ4NH5IOV/cEqy5oXk+OHhp8qV67Y7XFoQKyURSzQ3NER0Zyo6+MwCWWDF4MLO0pP8m6TZJLumfJL3D3YdCrg0AAAAhc3cdO3NsxVDh1OSpgrFrW9YG4UFHStd1Xlf0TIWNazbSoLHe0HcGwBKl9Hh4XNInJL0xv/3m/L5XhFUUAAAALt307LRGxkbO20dheHRYI2MjmpqdWjTOZOpq71K6I62eDT16+baXFw0V2prbIjoyVDT6zgBYopTgYZO7L+zz8Jdm9ush1QMAAIASjE2NLduccXh0WEcmjsi1uJ9Xa2PrfB+FW7fcWrSnQld7lxpjpbxMBIqIxYJGkr299J0BIKm04OGYmb1Z0ifz2w9IOh5eSQAAAPUr5zkdnTi6YqgwdnasYOxl8cvmg4Qbum4oaM6Y7khrfet6pj4gfPSdAbBAKcHDWyV9UNKjCno8fD2/DwAAABdgamZKI2Mjy4YKmbGMpnPTi8Y1WIOSiaRSiZSu3XSt7r3i3oJQIZVIKd4Uj+jIAAA4v1JWtfippNesQi0AAABVyd11eup0YXPGJaHCsTPHCsauaVozHyDcefmdRZeR3Ny2WQ2xhgiODACAS1fKqhYfVbCKxan89npJf+zunPUAAABq3mxuVocnDi+74sPQ6JDOTJ8pGLtpzab5sxFuTt1cNFRY27KWqQ8AgJpWylSLnXOhgyS5+0kz6wuvJAAAgNWRnc6uuIxkZiyjWZ9dNK4x1jgfHFy/+Xr9Ys8vFoQK3YlutTS2RHRkAABUjlKCh5iZrXf3k5JkZpeVOA4AACAS7q4T2RMrhgonsicKxiaaE0F40JHS3RvvLrqM5Ka2TYoZHfoBAChFKQHCH0v6upn9rYLmkv9C0h+EWhUAAMB5zORmlBnLLLviw/DYsCZnJheNM5k62zqV7khr+/rtun3r7UVDhURLIqIjAwCgNpXSXHKfme2XdJckk7TH3b8femUAAKDujJ8dnw8OzhcqHJ44rJznFo1rbmieX0byxtSNel3idQWhQrI9qaaGpoiODACA+lVKc8mPuftbJH2/yD4AAIAVubuOnTm27IoPw6PDOj11umDsutZ186HCzs6dBc0Z0x1pbYhvoEEjAFyqXE4aHJQyGSmZlHp6pBjTynDpSplqce3CDTNrkPTScMoBAADV5uzsWWXGMsuGCiNjIzo7e3bRuJjF1NXepVQipR0bduiubXcVhAqpREptzW0RHRkA1JFcThoYkPbulbJZKR6X9u2T9uwhfMAlO2/wYGbvkvS7kuJmNqpgmoUknZX02CrUBgAAIjY6NVrYnHFJqHBk4kjBuHhjfD44uG3LbUWXkexq71JjjH7VAFARBgfPhQ5ScLl3r9TbK+3YEW1tqHrn/Wvv7n8o6Q/N7A/d/V2rWBMAAAhZznM6MnFk2RUfhkaHNH52vGDshviG+VDhpcmXFg0V1reuZ+oDAFSTTOZc6DAnmw32EzzgEpXyb4YvmNnLlu5096+GUA8AALhEkzOTGhkbWTZUGBkb0UxuZtG4BmtQd6JbqY6Urt10rX7hyl8oCBW6E92KN8UjOjIAQGiSyWB6xcLwIR4P9gOXqJTg4bcWfN4q6SZJBxSscgEAAFaJu+vU5KnCKQ9LQoVjZ44VjG1ragvCg46U7rz8zqLLSHa2daoh1hDBkQEAItfTE/R0WNrjoacn6spQA0pZTvPVC7fNbIuk/xxaRQAA1KHZ3KwOjR9adsWH4bFhnZk+UzB205pNSnektWXtFt2SvqVoqNDR0sHUB6BWsRIByiEWCxpJ9vbyvYSyu5iOTkOSrit3IQAA1Koz02fmg4PzhQqHxg9p1mcXjWuKNak70a10R1p9yT7d/5L7C0KFZHtSLY0tER0ZgMixEgHKKRYL+jnQ0wFltmLwYGb/TZLnN2OSdkl6NsSaAACoCu6uE9kTy674MDw6rJOTJwvGdrR0KJUIwoNrrrxm/vOFocLGNRsVM944AFgGKxEAqAKlnPGwf8HnM5I+6e7/K6R6AACoCNOz0zo0fmjZUGFkbESTM5OLxplMm9s3K5VI6cr1V+plW19WsOJDKpFSoiUR0ZEBqCmsRACgCpQSPPy1pKsUnPXwI3efXOH2AABUtPGz44XNGZeECofHD8vnT/gLtDS0zAcHN6duLrqMZLI9qaaGpoiODEDdYSUCAFXgvMGDmTVK+gNJb5X0EwXTLNJm9rikh919enVKBACgNDnP6diZY8uu+DA0OqTRqdGCsetb18+HCtdvvr5oqLAhvoEGjQAqCysRAKgCy53x8D5JCUnb3X1MksysQ9L78x/vCL88AAACZ2fPamRsZNlQYXh0WNO5xbl4zGJKtieV6khpx4Ydunv73UVDhTVNayI6MgC4BKxEAKAKmLsXv8JsUNJLfMkNzKxB0g/c/ZJjVDO7T9KfSGqQ9Bfu/t7lbt/f3+/79+9f7iYAgCrj7hqdGi2c8rAkVDgycaRgbLwxHoQH+TMVii0jubl9sxpjF7OIEwAAAEplZgfcvb/Ydcu9EvOloUN+56yZFU8rLqyoBkkfkvQKBUt0ftvMPuvu37/U+wYAVIbZ3KyOTBxZdsWH4bFhjZ8dLxi7Ib5hPlTo7+4vGiqsa13H1AcAAIAKt1zw8H0z2+vu+xbuNLM3S/pBGR77Jkk/dPcf5+/3v0t6rSSCBwCoApMzk4umOBQLFTLjGc3kZhaNa4w1KtmeVLojrd7NvbrvqvsKQoXuRLdaG1sjOjIAAACU03LBw69JGjCzt0o6oGBVixslxSW9vgyPnZL0swXbQ5JuXnojM3tQ0oOStHXr1jI8LABgOe6uU5Onll3xYXh0WMezxwvGtje3z0952L19d9HpD51tnYoZc48BAADqxXmDB3cflnSzmd0l6VpJJukL7v4/yvTYxc6NLTa14zFJj0lBj4cyPTYA1KWZ3IwOjx9eMVTIzmQLxna2dSqVSOnytZfr59M/X9CcMd2RVkdLRwRHBQAAgEq2Yrctd/9HSf8YwmMPSdqyYDstaSSExwGAunBm+kxhc8YlocKh8UPKeW7RuOaGZnUnupVKpPTS5Ev1mpe8piBU6E50q7mhOaIjAwCUJJeTBgdZ3QJAxYmyzfe3JfWY2XZJw5LeJOlfRVgPAFQkd9fx7PEVQ4VTk6cKxq5tWTu/4sO1V15bdBnJjWs2MvUBAKJUjsAgl5MGBqS9e6VsVorHpX37gqU2CR8ARCyy4MHdZ8zsIUlfVLCc5kfc/bmo6gGAKEzPTisznll2Gcnh0WFNzU4tGmcydbV3KdWR0pXrr9Sdl99ZNFRob26P6MgAACUpV2AwOHjuPqTgcu9eqbdX2rEjnNoBoESRLmzu7p+X9PkoawCAsIxNjRWenbAkVDg8fli+pL1NS0PL/DKSN6duVvrqwmUku9q71NTQFNGRAQDKplyBQSZz7j7mZLPBfoIHABGLNHgAgGqU85yOThxdtjnj8NiwRqdGC8aub10/Hyrs6tpV0JwxlUjpsvhlMivWfxcAUHPKFRgkk8HZEgvvKx4P9gNAxAgeAGCBqZkpjYyNLBsqjIyNaDo3vWhcgzWoq71L6Y60rt50te654p6CUKE70a01TWsiOjIAQEUqV2DQ0xNM0Vg6ZaOnp7z1AsBFIHgAUBfcXaNToysuI3n0zNGCsWua1iiVCMKDOy6/Y/7zhaHC5rbNaog1RHBkAICqVq7AIBYL+kL09rKqBYCKQ/AAoOrN5mZ1ZOLIiqHCxPREwdiNazbOBwk3dd9U0Jwx3ZHW2pa1TH0AAISjnIFBLBZMz6CnA4AKQ/AAoKJlp7PzYcLSHgpz4UJmLKNZn100rjHWqO5Et1KJlK7ffL1eddWrCkKF7kS3WhtbIzoyAADyCAwA1DiCBwCRcHednDxZuOJD/vO5yxPZEwVjE80JpTpSSiVSunv73UWXkexs61TMOL0UAAAAiBrBA4Cym8nN6ND4oWWXkRwaHdLkzGTB2M1tm5XqSGnbum26fevtRUOFjpaOCI4KAAAAwMUgeFgtuVywTjPNfrCcKvg+mTg7cd4pD3NBw+GJw8p5btG45obm+eDgpcmX6rU7XlsQKiQTSTU3NEd0ZAAAAADCQPCwGnI5aWCgsFvxnj0V96YSEYr4+8TddezMsfNOeZjbd3rqdMHYtS1rg/CgI6XrOq8raM6YSqS0cc1GGjQCAAAAdcjcPeoaStbf3+/79++PuowLd/Cg1NdXuD7z00/TRAjnhPh9cnb2rDJjmWVXfBgZG9HU7NSicSZTV3vXfKhQbBnJVCKltua2S6oPAAAAQHUzswPu3l/sOs54WA2ZzOI3k1KwnckQPOCci/w+GZ0aXXbFh+HRYR2ZOCLX4pCxtbF1Pki4dcutRUOFrvYuNcb4NQEAAADg4vGOYjUkk8F/rpf+JzuZjK4mVJ4l3yc5k45saNVwy3ENH/zseUOFsbNjBXd1Wfyy+SDhhq4bCpozpjvSWt+6nqkPAAAAAEJH8LAaenqCufpL5+739ERdGSIyNTM1HxycO1NhSMPv2aWh57+p4bacMglpumFS+tIb5sc1WIOSiaTSHWldu+la3XvFvQXTILoT3Yo3xSM8OgAAAAA4h+BhNcRiQYPA3t6KXq0Al87ddXrqdOHZCUvOVDh25ljB2LamtuCMhL4bdad1KHXZNqUv36nU2vR8qNDZ1qmGWEMERwYAAAAAF4fgYbXEYsE8fXo6VK3Z3KwOTxxedhnJ4bFhnZk+UzB205pN81McbknfUtCcMdWR0tqWtUx9AFB5qmCZX6Bu8fMJoEoQPACSstPZZZszDo0O6dD4Ic367KJxTbEmdSe6lepIqS/Zp/tfcv+5Jo356Q/diW61NLZEdGQAcAlYDhqoXPx8AqgiLKeJmubuOpE9sWKocHLyZMHYRHNiPkCYPzNhSaiwqW2TYsYfdwA1iuWggcrFzyeACsNymqhJM7kZZcYyy4YKw2PDmpyZXDTOZNrcvlmpRErb12/X7VtvL1jxIZVIKdGSiOjIAKBCsBw0ULn4+QRQRQgeUJHGz44v25xxeHRYh8YPybX4jJ3mhub54ODG1I16feL1i1Z8SHWklGxPqqmhKaIjA4AqwnLQQOXi5xNAFSF4wKrKeU7HzhxbMVQ4PXW6YOy61nXzocLOzp0Fy0imOlLaEN9Ag0YAKBeWgwYqFz+fAKoIPR5QNmdnz2pkbGTZUGFkbERnZ88uGhezmLrau87bRyHdkVZ3olttzW0RHRkA1DG65gOVi59PABWEHg+4ZKNTo4VBwpJQ4cjEkYJx8cb4fN+E27bcVjRU2Ny+WY0xvhUBoCKxHDRQufj5BFAleLdX53Ke05GJI8uu+DA8Nqzxs+MFYzfEN8yHCv3d/UVDhXWt65j6AAAAVgdnAABARSJ4qGGTM5MaGRtZNlTIjGc0k5tZNK7BGtSd6FaqI6Xezb2676r7CkKF7kS34k3xiI4MAABgiVxOGhgo7HmwZw/hAwBEjOChCrm7Tk2eWrY549DokI5njxeMbWtqmw8Qdm/fXbSnQmdbpxpiDREcGQAAwEUaHDwXOkjB5d69Um8vUxEAIGIEDxVmNjerQ+OHVgwVsjPZgrGdbZ1KJVLasnaLbk3fWrDiQyqRUkdLB1MfAABA7clkFi8tKQXbmQzBAwBEjOBhFZ2ZPrPiMpKZ8Yxynls0rinWNB8c9CX79OqXvLogVEi2J9XS2BLRkaFmMDcWAFCtkslgesXC8CEeD/YDACJF8BCiF0+9qLc/8fb5UOHk5MmC23S0dMwvI3nNldconUgXhAob12xUzHjzh5AxNxYAUM16eoK/W0v/jvX0RF0ZANQ9gocQtTa26nj2uK5cf6VetvVlBSs+pDpSam9uj7pMIMDcWABANYvFgrC8t5cz9wCgwhA8hKirvUvfftu3oy4DKA1zYxEGpu8AWE2xWPA3i79bAFBRePUHIDA3N3Yh5sbiUsxN3+nrk3bvDi4HBoL9ACpPLicdPCg99VRwyc8qAKBMCB5Qf3hhVdzc3Ni58IG5sbhU55u+MzgYbV0AChEUAgBCRPCA+sILq/Obmxv79NPSV74SXNJYEpdiuek7ACoLQSEAIES8o0B94YXV8ubmxr785cEloQMuBdN3gOpBUAgACBHvKlBfeGEFrB6m7wDVg6AQABAiVrVAfZl7YbUwfOCFFRAOlrYDqsdcUDh3ViBBIQCgjAgeUF94YQWsLpa2A6oDQSEAIEQED6gvvLACAKA4gkIAQEgIHlB/eGEFAAAAAKuGf/MCAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQRBI8mNkbzew5M8uZWX8UNQAAAAAAgPBFdcbD9yTtkfTViB4fAAAAAACsgsYoHtTdn5ckM4vi4QEAAAAAwCqhxwMAAAAAAAhNaGc8mNmXJXUVuephd/+7C7ifByU9KElbt24tU3UAAAAAAGA1hBY8uPs9ZbqfxyQ9Jkn9/f1ejvsEAAAAAACrg6kWAAAAAAAgNFEtp/l6MxuSdKukz5nZF6OoAwAAAAAAhCuqVS0+I+kzUTw2AAAAAABYPZEEDwBQcXI5aXBQymSkZFLq6ZFizEYDUMH4vQUAqBL8dQKAXE4aGJD6+qTdu4PLgYFgPwBUIn5vAQCqCMEDAAwOSnv3StlssJ3NBtuDg9HWBQDnw+8tAEAVIXgAgEzm3Iv3OdlssB8AKhG/twAAVYTgAQCSSSkeX7wvHg/2A0Al4vcWAKCKEDwAQE+PtG/fuRfx8Xiw3dMTbV0AcD783gIAVBFWtQCAWEzas0fq7aU7PIDqwO8tAEAVIXgAACl4sb5jR/ABANWA31sAgCpBLA4AAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAELTGHUBAFAxcjlpcFDKZKRkUurpkWLkswAAAMCl4BU1AEhB6DAwIPX1Sbt3B5cDA8F+AAAAABeN4AEApOBMh717pWw22M5mg+3BwWjrAgAAAKocwQMASMH0irnQYU42G+wHAAAAcNEIHgBACno6xOOL98XjwX4AAAAAF43gAQCkoJHkvn3nwod4PNju6Ym2LgAAAKDKsaoFAEjB6hV79ki9vaxqAQAAAJQRwQMAzInFpB07gg8AAAAAZcG/8gAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgiCR7M7H1m9gMz+66ZfcbM1kVRBwAAAAAACFdUZzw8Kek6d98p6QVJ74qoDgAAAAAAEKJIggd3/5K7z+Q3vyEpHUUdAAAAAAAgXJXQ4+Gtkr4QdREAAAAAAKD8GsO6YzP7sqSuIlc97O5/l7/Nw5JmJH18mft5UNKDkrR169YQKgUAAAAAAGEJLXhw93uWu97MfknS/ZLudndf5n4ek/SYJPX395/3dgAAAAAAoPKEFjwsx8zuk/Q7ku509zNR1AAAAAAAAMIXVY+HD0pKSHrSzJ4xsz+PqA4AAAAAABCiSM54cPeronhcAAAAAACwuiphVQsAAAAAAFCjCB4AAAAAAEBoCB4AAAAAAEBoIunxAAAAAKCC5HLS4KCUyUjJpNTTI8X4HyWA8uC3CQAAAFDPcjlpYEDq65N27w4uBwaC/QBQBgQPAAAAQD0bHJT27pWy2WA7mw22BwejrQtAzSB4AAAAAOpZJnMudJiTzQb7AaAMCB4AAACAepZMSvH44n3xeLAfAMqA4AEAAACoZz090r5958KHeDzY7umJti4ANYNVLQAAAIB6FotJe/ZIvb2sagEgFAQPAAAAQL2LxaQdO4IPACgzYkwAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAac/eoayiZmR2V9JOo67gIGyUdi7oIXDKex9rA81gbeB5rA89jbeB5rA08j7WD57I2VOPzeLm7byp2RVUFD9XKzPa7e3/UdeDS8DzWBp7H2sDzWBt4HmsDz2Nt4HmsHTyXtaHWnkemWgAAAAAAgNAQPAAAAAAAgNAQPKyOx6IuAGXB81gbeB5rA89jbeB5rA08j7WB57F28FzWhpp6HunxAAAAAAAAQsMZDwAAAAAAIDQED6vIzH7TzNzMNkZdCy6cmf0nM/uumT1jZl8ys+6oa8LFMbP3mdkP8s/nZ8xsXdQ14cKZ2RvN7Dkzy5lZzXR9rhdmdp+ZHTSzH5rZO6OuBxfOzD5iZkfM7HtR14KLZ2ZbzOwrZvZ8/nfqO6KuCRfOzFrN7Ftm9mz+eXwk6ppw8cyswcyeNrMnoq6lXAgeVomZbZH0Ckk/jboWXLT3uftOd98l6QlJ/3fE9eDiPSnpOnffKekFSe+KuB5cnO9J2iPpq1EXggtjZg2SPiTplZKukfSAmV0TbVW4CH8p6b6oi8Alm5H0G+5+taRbJP0aP49VaUrSXe5+vaRdku4zs1uiLQmX4B2Sno+6iHIieFg9j0r6bUk01ahS7j66YLNNPJdVy92/5O4z+c1vSEpHWQ8ujrs/7+4Ho64DF+UmST909x+7+1lJ/13SayOuCRfI3b8q6UTUdeDSuHvG3b+T/3xMwZudVLRV4UJ5YDy/2ZT/4LVqFTKztKRflPQXUddSTgQPq8DMXiNp2N2fjboWXBoze4+Z/UzSvxZnPNSKt0r6QtRFAHUmJelnC7aHxBsdIHJmtk1Sn6RvRlwKLkL+9PxnJB2R9KS78zxWp/+i4B/WuYjrKKvGqAuoFWb2ZUldRa56WNLvSrp3dSvCxVjueXT3v3P3hyU9bGbvkvSQpHevaoEo2UrPZf42Dys4xfTjq1kbSlfK84iqZEX28Z85IEJm1i7p05J+fclZnqgS7j4raVe+d9VnzOw6d6cHSxUxs/slHXH3A2b28ojLKSuChzJx93uK7TezXknbJT1rZlJwSvd3zOwmdz+0iiWiBOd7Hov4hKTPieChYq30XJrZL0m6X9LdzrrCFesCfiZRXYYkbVmwnZY0ElEtQN0zsyYFocPH3X0g6npwadz9lJk9paAHC8FDdblN0mvM7FWSWiV1mNlfufubI67rkjHVImTu/r/dvdPdt7n7NgUvtm4gdKg+ZtazYPM1kn4QVS24NGZ2n6TfkfQadz8TdT1AHfq2pB4z225mzZLeJOmzEdcE1CUL/jP2YUnPu/sHoq4HF8fMNs2t0mVmcUn3iNeqVcfd3+Xu6fz7xjdJ+sdaCB0kggfgQrzXzL5nZt9VMHWG5aaq1wclJSQ9mV8e9c+jLggXzsxeb2ZDkm6V9Dkz+2LUNaE0+eauD0n6ooJGdp9y9+eirQoXysw+KemfJe0wsyEz+5Woa8JFuU3SWyTdlf+b+Ez+v62oLklJX8m/Tv22gh4PNbMUI6qfcYYxAAAAAAAIC2c8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AACAVWNmW8zs/zOzy/Lb6/Pbl0ddGwAACAfBAwAAWDXu/jNJfybpvfld75X0mLv/JLqqAABAmMzdo64BAADUETNrknRA0kckvU1Sn7ufjbYqAAAQlsaoCwAAAPXF3afN7Lck/YOkewkdAACobUy1AAAAUXilpIyk66IuBAAAhIvgAQAArCoz2yXpFZJukfR/mlky2ooAAECYCB4AAMCqMTNT0Fzy1939p5LeJ+n90VYFAADCRPAAAABW09sk/dTdn8xv/6mknzOzOyOsCQAAhIhVLQAAAAAAQGg44wEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAITm/wc777VfP4XMhAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "lin = LinearRegression()\n", - "\n", - "lin.fit(X[0:30], Y[0:30])\n", - "\n", - "\n", - "x = data['x']\n", - "xgrid = np.linspace(min(x),max(x), 1000)\n", - "\n", - "new_data = pd.DataFrame(xgrid, columns=['x'])\n", - "\n", - "yhat = lin.predict(new_data)\n", - "\n", - "plt.figure(figsize=(18,6))\n", - "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", - "plt.plot(xgrid, yhat, color = 'green',label = 'Estimate')\n", - "plt.title('Example of underfitting')\n", - "plt.xlabel('X')\n", - "plt.ylabel('Outcome y')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "This tension is called the **bias-variance trade-off**: simpler models underfit and have more bias, more complex models overfit and have more variance.\n", - "\n", - "One data-driven way of deciding an appropriate level of complexity is to divide the available data into a training set (where the model is fit) and the validation set (where the model is evaluated). The next snippet of code uses the first half of the data to fit a polynomial of order $q$, and then evaluates that polynomial on the second half. The training MSE estimate decreases monotonically with the polynomial degree, because the model is better able to fit on the training data; the test MSE estimate starts increasing after a while reflecting that the model no longer generalizes well." - ] - }, - { - "cell_type": "code", - "execution_count": 560, - "metadata": {}, - "outputs": [], - "source": [ - "degrees =np.arange(3,21)\n", - "train_mse =[]\n", - "test_mse =[]\n", - "for d in degrees:\n", - " poly =PolynomialFeatures(degree = d, include_bias =False )\n", - " poly_features = poly.fit_transform(X)\n", - " X_train, X_test, y_train, y_test = train_test_split(poly_features,y, train_size=0.5 , random_state= 0)\n", - "\n", - "# Now since we want the valid and test size to be equal (10% each of overall data). \n", - "# we have to define valid_size=0.5 (that is 50% of remaining data)\n", - "\n", - " poly_reg_model = LinearRegression()\n", - " poly_reg_model.fit(X_train, y_train)\n", - " \n", - " \n", - " y_train_pred = poly_reg_model.predict(X_train)\n", - " y_test_pred = poly_reg_model.predict(X_test)\n", - "\n", - " mse_train= mean_squared_error(y_train, y_train_pred)\n", - " mse_test= mean_squared_error(y_test, y_test_pred)\n", - " \n", - " train_mse.append(mse_train)\n", - " test_mse.append(mse_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 606, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(7, 1.3, 'High bias \\n Low Variance')" - ] - }, - "execution_count": 606, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAGECAYAAAAfhUDJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABwh0lEQVR4nO3dd3zT1f7H8ddp2XsJsrfIKJS9ZIkiKksRFRUFVFx49frz6nWAXNziAheC4EBFxS0iCipDKKNAGSqK7CVLdlltz++Pk5a2dAFJvmnzfj4eeST5zk+SJs0n55zPMdZaREREREREwkGE1wGIiIiIiIgEixIgEREREREJG0qAREREREQkbCgBEhERERGRsKEESEREREREwoYSIBERERERCRtKgEREwpAxZpYx5lWv4/AnY0x+Y8yfxpiOATp+DWOMNca0CMTxcwvfc3BVZvcz2ed5Y8yYwEcnIpI9JUAiIhkwxrzj+2L3VgbrnvOtm5pqWRFjzFPGmL+MMUeNMbuNMfOMMf0zOGb6y4Is4hiYyT7WGFMoB49joDHmUAarrgQeyv6ZODu+xzw1+y39Ygiw1Vo7x3dufycsm4GKQNzZHMQYs8EYc79fIjp5zMxe52CoCHzjiyOz5/xZYKAxplbQoxMRSSef1wGIiISwzcA1xph7rLWHAYwx+YABwKZ0244F2gP3AKuAMkBr33VqM337p3Y8mzjigdrpF1prj+bgMWTIWvvPme4bwu4GnjjdnYwxBay12b0GWGsTgb/PJLC8zFqb7XNird1ljPkBuAP4T+CjEhHJnFqAREQytwJYA1ydatnlwFFgVrptewFPW2unWms3WGuXWmvfsNa+lm67Y9bav9NdsktGbAb7pHzpNMZ0NMYsMMYcMsbsN8YsNMY0MsZ0Bt4GiqZqNRrh2ydNFzhfq8RwX4vNQWPMZmPMNcaYUsaYj3zHXmOM6ZZqn0hjzARjzHpjzBHf+geMMRG+9SOAm4DLU52/s29dZd9x9/ou3xpj6qY6dlVjzFfGmH+MMfHGmNXGmGsze4J8LQ7nAalbm9b7rhf7zj3Lt+07xpipxpgHjTFbgC2+5TcYYxb7Hv9OY8wUY0zlVOdI07phjOnsu9/V95zHG2NijTHNsohzFlAdGJX8nKRa184YM9t3nK3GmDeMMSXO5nXO4PwljTGTfI/vqDFmnTHm3lTrrTFmqO/1iDfGbDTG3JDZ40m1T3IXuAyfc5+vgf6IiHhMCZCISNYmAINT3R+M+7Jp0233N9DdGFMyWIFBSovUV8AvQBNcq9NoIBGYD9yLa0Gq6Ls8n8Xh7gUWAc2AT4B3gQ+BaUA0MAd435zsehcBbMUliPWBR4CHgUG+9c/7jjMz1fnnG2OKAD/jEslOQFtgOzDTtw7gdaAI0AVo6IttXxaxdwD+stam3qaV77q779xXplrXCWjsW9fVt6wA8BjueewBlAMmZ3HOZE8D/8U9b3uAD4wxJpNtr8QlXCM5+ZxgjIkCfsAlCU1820UDE33r/fU6PwFE+R7f+bi/563ptvmfL45oYBzwXgZd2jKT1XO+CKhsjDmlNVNEJJjUBU5EJGsfAs/7WicO4r7Y3Y37ApvaEOADYLcxZiXuS+lX1toZ6bbrbk4dq/GatfbBLGIomsE+K6y17YASQCngG2vtWt+61ckbGWP242tByupB+nxvrX3dt99jwH24pOI937LHcV+YGwGx1toTwPBU+2/wtX70ByZYaw8ZY47ga/VKFdMNgAEGWWutb9ltwE7cF/NPcK0kn1lrl/t2W0/WquOSqNR2+a73ZPD4jwKDrbXHkhdYayemWr/OGHMH8Lsxpoq1dksW5x5mrf3Z9zhG4pKUyvhallKz1v5jjEkEDqaL6T/Ax9baF5IX+M6/zBhTHkjAP69zdWCZtXaR7/6GDLb53Fr7pu/2k8aYLrgEK8uWIJ+snvNtvusawFpERDyiBEhEJAvW2r3GmC9wX/z3AbOstZvS/8BvrZ1j3ADvNrixQBcCPxhjxllrb0u16RxcspTavmzCiMf9Gp/aMd95/zHGvAN8b4z5EfgRmGKt3ZyjB5jWiuQbvuQlHliZav0O33X55AXGmNuBW3BfrAsD+YGN2ZynOVATOJjueSzCybFOo4GxxpjuuMf0hbV2SRbHLIxLanJqVerkB8CXvD2Ge67L4JI0gGpkkMyksiLV7eQv+eWz2Se95kAdY8w1qUPyXde21sb46XV+A/jU91hn4BKq2em2icng/uWneZ6MHPFdF/bDsUREzpi6wImIZG8icCMuCZqY2UbW2hPW2rnW2mestd2AYcAQY0yNVJvFW2v/SnfZnc35bQb7bE61chCuS9Qc3FikP40xl5zB4zyR/rzpliV3+0se43MN8DLwDnAJLnF4HdeVLCsRuEpq0eku5wFvAlhrJ+CSpLd9y+dnNq7FZzdQOpvzpnY49R1jTFHge1yyOQBoiWvtg+wfT6bP0WmIAN4i7fPRBKiLr+qcP15na+13uGT1eVwXv2+NMW+fZqxnKrkgyK4stxIRCTAlQCIi2fsRV6mtHPDlaez3m++6mL8DSs9au9xa+6y1tjOuQMNNvlXHgcgAnfYCYKG19lVf0Ye/OLVaXUbnXwrUAXZnkNilFISw1m6x1o6z1l6N62qXvuUstWVAPeMrwJDq3GRw/oycj3t9H7bWzrHWriZVS5efZfacNMzg+fjLWpvccuKX19lau9taO8laOxC4GbjJGFMw1SZt0u3SBvj9NB4bmcTSCJcsrsxgnYhI0CgBEhHJhm+cSmOgZvpuU8mMq6p2mzGmua9a2GXAU8AfpP3yWNAYc266yznZhGAy2Odc46qw1TTGPOOrIFbdN16jMSeTrw1AIWPMxcaYcqmKDPjDn0AzY8ylxpi6xphhuOICqW0AGhlj6vnOnx83VmoH8JUxppPvMXQ0xrzgG2uFMWa0Maa7MaaWMSYa1xrzG5n7GSiEe+zJduK6XV1ijKmQTYGKTbhuhUN957wceDyHz8Pp2gB0MK4SXjnfsmeBVsaYscaYpsaYOsaYHsaYNwH89TobY0YaY/r4Xq/6uCIF69L9XV9pjLnVt81DuCIRL+fwsWX1nHcA5lpr43N4LBGRgFACJCKSA9bag9baA1ls8j2u69T3uMHprwNzgYt988ckuwg3WD/1ZVk2py+SwT7bcV3E4nFdxKbgEpJ3cQnGs7645+PmKJqM63r0QI4ecM68iStY8CGwGDe4/YV024zHJYCxvvO3930B7gis88W92hd3aWCvb78I4BXcF/wZuITpJjJhrd0DfA5cn2pZAvAv3Bilbbgqapntv8t3/D6+cyYXgQiE4UBVXCGAXb7zr8A9JzWA2cByXHW55HFX/nqdjwFP+o4/DygO9Ey3zQigL25s0x24YhWLc/LAsnnO++P+HkREPGV8BXhERERyNWNMQ1xLUJ1sklXJhHHzEvWz1n7q5+NeDowCGvuSJBERz6gFSERE8gRr7a/A/biWMQktRXEtSUp+RMRzagESERERIHAtQCIioUQJkIiIiIiIhI2AdYEzxkw0xuw0xqzKZruWxphEY8xVgYpFREREREQEAjsG6B1OTiKXIWNMJK6CzfcBjENERERERASAfIE6sLV2TrrZzzNyN/AZbsbtHClXrpytUSO7w4qIiIiISLhasmTJbmtthvPsBSwByo4xpjJwBXAhp5EA1ahRg9jY2IDFJSIiIiIiuZsxZmNm67wsg/0y8GC6CQIzZIwZYoyJNcbE7tq1K/CRiYiIiIhInuRZCxDQAvjIGANQDrjMGJNgrf0y/YbW2nHAOIAWLVqobJ2IiIiIiJwRzxIga23KRHXGmHeAqRklPyIiIiIiIv4SsATIGDMZ6AyUM8ZsAR4D8gNYa8cG6rwiIiIiIiKZCWQVuP6nse3AQMUhIiIiIiKSzMsiCCIiIiIiIkGlBEhERERERMKGEiAREREREQkbSoBERERERCRsKAESEREREZGwoQRIRERERETChhIgEREREZFQtXcv/PWX11HkKUqARERERERC0ZEj0KkT1KsH//oX7N/vdUR5ghIgEREREZFQdPfdsHIlXHEFvPoqfPCB1xHlCUqARERERERCzbZt8MUX8PDD8OmnsHQpDBni1s2cCX/+6W18uVg+rwMQEREREZF0KlWCFSugQgV3PzraXSclwV13wYYN8OCD8NBDULiwV1HmSmoBEhERERH/stbrCHKvw4fhzTddolO5MuRL114REQGzZ0O/fvD449CoEXz3nTex5lJKgERERETEfzZuhDJlYNIkryPJnYYOhTvucF3eMnPuufD++/DTT1CgAFx2GSxYELwYczklQCIiIiLiPzNnwr59cMstEBfndTS5y9tvwzvvwLBh0KJF9tt36QLLl8PkydC6tVu2YAEkJAQ0zNxOCZCIiIiI+E9MDJQu7QbvN2zodTS5x6pVbmzPhRfC8OE5369AAbj2WjDGFU7o3BmaN4d58wIWam6nBEhERERE/CcmBtq1g8ceg/z5YccOOHjQ66hCW2Ii9O8PJUq4UteRkWd2nIoV4aOP3OSpF1wAN98Mu3f7N9Y8wNhcNkitRYsWNjY21uswRERERCQju3e7LnB16sDRo64VqFEjV9I5Qr+9Z2rOHFc8olOnsz/WoUMwciS89JJrjfvrL5dchRFjzBJrbYb9CPVXKCIiIiL+U66cS34AChWCe++Fr792XeLkVNu3u+uOHf2T/AAUKwbPPQfLlrmWuOTkZ+tW/xw/l1MCJCIiIiL+MXkyPP982mVDh8Jtt8Gzz8J773kTV6havhxq14Z33w3M8Rs1cuOKAH75BWrUgP/7v7DvkqgESERERET8Y8IElwSlZgy88oob3H/rrSrXnOzAATeXT+nScOmlgT9f/fowaBC8+KK7/emnYTtfkxIgERERETl7iYmwcCG0bXvquvz5YcoUuP56qFs3+LGFGmthyBBYu9YljOXLB/6cZcvCuHGuSEW5ci75uuaawJ83BOXLfhMRERERkWysWuUG37drl/H6MmVg4kR3+9gxN1dN0aLBiy+UjB0LH38MTz3lxv4EU5s2EBsLr74KBQu6ZdbC8eMn7+dxagESERERkbM3f767zqgFKLWkJOje3bUGJSUFPq5QFBEBffrAgw96c/58+VxxijvucPc//BCiotwktmFACZCIiIiInL1du6B6dTfQPisREXDFFfDVV/DII0EJLeTcdht8/nnolAWvVMm1Al18sZuPKLkyXR4VIs+6iIiIiORqw4e7MS3GZL/t3Xe7JOCZZ2DSpMDHFgqshcGD4ZNP3P2cPE/B0qULrFwJI0a4+Zrq1cvTFfuUAImIiIiIf0RG5my75MpwXbrALbec7D6Xl736Krz9Nmzc6HUkGStUyM0ZtGqVG8dVvLhbngcrxSkBEhEREZGz8+230L49bNqU832SK8N17gwlSwYstJCweLGbf6dHD3cdyurUge++c2OUAJ5+Gm6/Hfbu9TQsf1ICJCIiIiJnZ84cV1nsdMs5ly0L338PDRuerESW1+zdC1dfDRUruglPQ2XcT1aMOdlF79AhGD/edYt799080SKUC14BEREREQlp8+dDs2auG9WZuusuNy9NXqsMN2UKbNniyl6XKeN1NKfvqadgyRKoXRsGDnQtdn/84XVUZ0UJkIiIiIicuePHXetPZvP/5NT558OXX8Kjj/olrJAxZIgbV9OmjdeRnLnoaJg3z02k+ttvrlUoF1MCJCIiIiJnLi4Ojh7Nfv6f7Nx9t0sWnn4a3n/fL6F5KjYWli93t+vV8zYWf4iIgFtvdeO8mjd3yx591JUzz2WUAImIiIjImTMGevY8+xYgY1yltM6d4eabISbGL+F54p9/oG9fN6dOXuvSV7iwuz5yBL75xhVL6NULNmzwMqrTogRIRERERM5cy5bw9dduMs2zlT8/fPopNGiQe6uOJSXBTTfB33+7uXRyQ9GDM1G4sGvlGjUKfvoJGjWCHTu8jipH8nkdgIiIiIjkYv/849/B/WXLukH3yYmDtaE1aWh2XngBpk518xy1aOF1NIGVPz/cf78rXjFtGlSo4HVEOZJHU1IRERERCbjNm13C8s47/j1ucvLz+uuuhHRu6Ua2ZAk89BBcdZWrahcuqlaF227zOoocUwIkkocVK1Yszf133nmHoUOHAjB27Fjee++9LPdPvX1WatSowe7du09ZnpNziIhILpY8TicqKjDHP3HCdYkbNiwwx/e3xo1h5Eh4663c1WoVZtQFTiRM3X777XniHCIi4qH5891YkMaNA3P8f/0Lfv3VzUVTvz7ccENgznO2kpJg/34oXRoeftjraCQbagESCVMjRozg+eefB2Dx4sU0btyYtm3b8p///IdGjRqlbLdt2za6d+9O3bp1eeCBBzI93qhRo2jVqhWtWrXir7/+OuUc48ePp2XLljRp0oS+ffsSHx8PwJQpU2jUqBFNmjShY8eOgXq4IiISCDEx0KqVGwsSCMmV4Tp1gltugQULAnOes/XMMy4J/PtvryORHFACJJKHHTlyhOjo6JTL8OHDM9xu0KBBjB07lpiYGCIjI9Osi4uL4+OPP2blypV8/PHHbN68OcNjlChRgkWLFjF06FDuvffeU9ZfeeWVLF68mOXLl1O/fn0mTJgAwMiRI/n+++9Zvnw5X3/99dk9YBERCZ4jR2Dp0rMvf52dAgXgs8+gWjVYvDiw5zoTs2e7LnoXXJBrigCEOyVAInlY4cKFiYuLS7mMHDnylG327dvHwYMHaef7B3bdddelWd+1a1dKlixJoUKFaNCgARs3bszwXP3790+5jslg7oZVq1bRoUMHoqKi+OCDD/j1118BaN++PQMHDmT8+PEkJiae1eMVEZEgSkpyRQr69Qv8ucqWdROu3n134M91OnbscHP91K4N48Zp3E8uoQRIJMxZa7NcX7BgwZTbkZGRJCQkZLidSfWhbzL4BzBw4EBeffVVVq5cyWOPPcbRo0cBVyjhiSeeYPPmzURHR7Nnz54zeRgiIhJsRYvCrbdC06bBOV+RIu76p5/cRKleV4ZLTHRjkvbuhSlToHhxb+ORHFMCJBLmSpcuTfHixVng61f90UcfndFxPv7445Trtm3bnrL+4MGDVKxYkRMnTvDBBx+kLF+7di2tW7dm5MiRlCtXLtMudiIiEmJ+/BHWrQv+eVeuhIkTva8Md/iwK9c9Zgw0aeJtLHJaVAVORJgwYQK33norRYsWpXPnzpQsWfK0j3Hs2DFat25NUlISkydPPmX9448/TuvWralevTpRUVEcPHgQgP/85z+sWbMGay1du3alif6JiIiEPmtd16/LLvP/HEDZSV0ZrkEDuP764J4/WYkS8N136vaWC5nsur+EmhYtWtjY2FivwxDJUw4dOpQyZ9AzzzzD9u3bGT16tMdRiYhIyFq7FurUgTffhCFDgn/+48ehWzdXFW72bGjdOnjn/vtvN8np6NFQpUrwziunxRizxFrbIqN16gInInz77bdER0fTqFEj5s6dy6OPPup1SCIiEsrmz3fXGXR5DorkynCVK8P77wfvvImJcN11ruVn377gnVf8Sl3gRIRrrrmGa665xuswREQkt4iJcV3AGjTwLoayZV0iVr588M45ciT8/DO8/TakmjNPche1AImIiIjI6Zk/H9q0gXRzxwVdhQpuDM7atfCf/wS2MtyMGfD44zBwoLtIrqUESCQPyMlYvho1arB7926/nvfw4cOULVuW/fv3p1nep08fPvnkkxwf57LLLmOfuhKIiOQe06e7MTChYvp0eP55yGTC77NmLYwY4Vq8XnstMOeQoFEXOJEQlJiYyJ49e9i5cye7du1i165dWd4+dOgQS5YsoWHDhkGNs2jRonTr1o0vv/ySm266CYD9+/fzyy+/8OGHH2a7v7UWay3Tpk0LdKgiIuJP557rLqHizjvdRKlPPumSlHSTep81Y2DaNPjnn5PzEUmupQRIJAiSE5rsEpnk23v37qV06dKcc845nHPOOZQvXz7ldsOGDencuXOa5WXLliXyDLohbNy4kcGDB7Nr1y7OOecc3n77bSpXrkzdunVZu3Yt+/fvp0yZMsyaNYuOHTvSoUMH3n77berUqZNyjP79+/PGG2+kJEBffPEF3bt3Jykpia5du7J3715OnDjBE088Qe/evdmwYQOXXnopXbp0ISYmhi+//JJOnToRGxtLuXLl6NOnD5s3b+bo0aPcc889DPFVFypWrBj33HMPU6dOpXDhwnz11VdUqFCBHTt2cPvtt7PONxfFG2+8Qbt27Xj//fcZM2YMx48fp3Xr1rz++utn9ByJiEg6n34KmzfDvfeGTgloY1zLzJo1MHgw1K7tv8pwX30Fl1wCJUu6i+R6KoMtcgb8mdBkdPtME5qs1KhRIyXJSNazZ0+uuuoqbrrpJiZOnMjXX3/Nl19+Sffu3XnhhRdYv349//vf/+jTpw/3338/559/PuvXr09z3OPHj1OlShV+//13ypYtS/fu3bn77ru55JJLiI+Pp0SJEuzevZs2bdqwZs0aNm7cSK1atZg/fz5t2rQ5JbZ//vmHMmXKcOTIEVq2bMns2bMpW7Ysxhi+/vprevbsyQMPPECJEiV49NFHueaaa2jbti333nsviYmJHDp0iG3btvHAAw/w+eefkz9/fu68807atGnDjTfe6NfnVEQkLF16KWzZ4iYkDTW7d7vEp359mDr17I/33XdurqORI72feFVOS1ZlsAPWAmSMmQj0AHZaa08pk2GM6Q08DiQBCcC91tpfAhWPhAdrLe+99x7Dhg0jNjaW8jmsDHO2CU3q5KVhw4ZBSWj8ISYmhs8//xyAAQMG8MADDwDQoUMH5syZw/r163nooYcYP348nTp1omXLlqcco0CBAvTq1YtPP/2Uvn37EhcXR7du3bDW8vDDDzNnzhwiIiLYunUrO3bsAKB69eopyU96Y8aM4YsvvgBg8+bNrFmzhrJly1KgQAF69OgBQPPmzZkxYwYAP/30E++99x4AkZGRlCxZkkmTJrFkyZKUeI8cOZLjvwUREclCUpKbe+fqq72OJGPlyrliBf7onrd5MwwYAI0bw/33n/3xJGQEsgvcO8CrwHuZrP8R+Npaa40xjYFPgPMDGI/kcatWreLOO+/kyJEjTJkyBYBff/3VL13OcktCc7aMrytDhw4dGDt2LNu2bWPkyJGMGjUqpRtcRvr3788TTzyBtZbevXuTP39+3nnnHXbt2sWSJUvInz8/NWrU4OjRo4AbO5SRWbNmMXPmTGJiYihSpAidO3dO2Sd//vwp8UVGRpKQkJDp47DWctNNN/H000+f8XMhIiIZWL3azX/Trp3XkWSuVi13ffAgvPGGS14iTrPu14kTcO21cOwYTJkChQv7P07xTMASIGvtHGNMjSzWH0p1tyiQu/riSUi59957GT16NGXLlgWgffv2lCpVKsPuZQ0aNDhleZkyZciXL/yGxLVr146PPvqIAQMG8MEHH3DBBRcA0Lp1a2688UZq1apFoUKFiI6O5s0332RqJt0JunTpwk033cRrr73GK6+8ArhiCOXLlyd//vz8/PPPbNy4Mdt49u/fT+nSpSlSpAirV69mwYIF2e7TtWtX3njjjZQucIcPH6Zr16707t2bf//735QvX55//vmHgwcPUr169dN4dkRE5BQxMe7aqwlQT8dnn8GDD8KBA/DEE6e374gRrtT35Mlw3nkBCU+84+k3PmPMFcDTQHng8iy2GwIMAahWrVpwgpNcpX///mzYsIFZs2bRqlUr7rzzTnr06BGWSU1WGjduTITvV7Crr76aMWPGMHjwYEaNGpVSBAGgYMGCVK1aNaWbWocOHZg8eTJRUVEZHjciIoK+ffsyZcqUlFai66+/np49e9KiRQuio6M5//zsG3i7d+/O2LFjady4MfXq1cu0m1xqo0ePZsiQIUyYMIHIyEjeeOMN2rZtyxNPPEG3bt1ISkoif/78vPbaa0qARETO1tatULEi1K3rdSTZu+km+OWXM6sMd+ONbqLXa68NXHzimYAWQfC1AE3NaAxQuu06AsOttRdld0wVQZCsHD58mE8++YRx48Zx2223MVATlYmIiPjXiROQP7/XUeTM8eNw8cWwcCHMnp19ZbiDB6FYsdCpbidnLKsiCCGRAPm2XQ+0tNZmOVOjEiARERERybHkynAlSsDSpZknN8ePQ4cO0LQpjB0b3BjF77JKgE5zRJj/GGPqGN+IZmNMM6AAsMereEREREQkCzNmQOfOsGGD15GcnnLl4Ntv3Xw+WbXs/Pe/sGgRXJRthyTJ5QJZBnsy0BkoZ4zZAjwG5Aew1o4F+gI3GmNOAEeAa2xum5RIREREJFzMnu3G1JxzjteRnL7kcahJSfDhh248UOrKcF9+CS+9BEOHwlVXeRKiBE8gq8D1z2b9s8CzgTq/iIiIiPhRTAxER0MmUxnkCl9/7eb2+eMPePxxt2z9ehg4EFq0gOef9zQ8CQ7PusCJiIiISC6RkOAKCeSG8tdZ6d0bbr7ZlcX+8EO3bNMmKFsWPvkEChb0Nj4JCtUIFhEREZGsrVwJhw+H9gSoOWEMvP46rFkDgwdD7drQqZNrEdLUGWFDLUAiIiIikrXEROjePfcnQAAFCrhJUkuWhPvuc+OClPyEFb3aIiIiIpK1Fi3gu++8jsJ/ypWDuXNdt7eEBJcUSdhQC5CIiIiIZO3AAa8j8L/zzoNHH1XyE4aUAImIiIhI5v7+G0qVggkTvI5ExC+UAImIiIhI5mJiwFpo0MDrSET8QgmQiIiIiGQuJsZ1E2vWzOtIRPxCCZCIiIiIZG7+fGjeXHPkSJ6hBEhEREREMnb8OMTG5o3y1yI+KoMtIiIiIhlLSIAXX3RlsEXyCCVAIiIiIpKxIkXgzju9jkLEr9QFTkREREQyNncubNzodRQifqUESEREREROZS1cey089JDXkYj4lRIgERERETnV5s2wbRu0bet1JCJ+pQRIRERERE4VE+OuVQFO8hglQCIiIiJyqvnzXRGExo29jkTEr5QAiYiISMAVK1YsIMcdMWIEzz///CnLt23bxlVXXRWQc4aN+fOhZUvIn9/rSET8SmWwRUREJM+pVKkSn376qddh5G6ffw779nkdhYjfqQVIREREPBEXF0ebNm1o3LgxV1xxBXv37mXnzp00b94cgOXLl2OMYdOmTQDUrl2b+Pj4U46zfPlyLrzwQurWrcv48eMB2LBhA40aNUq53aFDB5o1a0azZs2YP38+ANu3b6djx45ER0fTqFEj5s6dG4yHnXtUrQpRUV5HIeJ3SoBERETEEzfeeCPPPvssK1asICoqiv/973+UL1+eo0ePcuDAAebOnUuLFi2YO3cuGzdupHz58hQpUuSU46xYsYJvv/2WmJgYRo4cybZt29KsL1++PDNmzGDp0qV8/PHH/Otf/wLgww8/5JJLLiEuLo7ly5cTHR0djIedO3z9NYwZ40phi+Qx6gInIiIiQbd//3727dtHp06dALjpppvo168fAO3atWPevHnMmTOHhx9+mOnTp2OtpUOHDhkeq3fv3hQuXJjChQvTpUsXFi1alCaZOXHiBEOHDiUuLo7IyEj+/PNPAFq2bMngwYM5ceIEffr0UQKU2oQJsHo1+JJFkbxELUAiIiISUjp06JDS6tO7d2+WL1/OL7/8QseOHTPc3hiT5f2XXnqJChUqsHz5cmJjYzl+/DgAHTt2ZM6cOVSuXJkBAwbw3nvvBeYB5TbWugIIKn8teZQSIBEREQm6kiVLUrp06ZRxN5MmTUppDerYsSPvv/8+devWJSIigjJlyjBt2jTat2+f4bG++uorjh49yp49e5g1axYtW7ZMs37//v1UrFiRiIgIJk2aRGJiIkBKt7pbb72Vm2++maVLlwbwEecia9fC7t2aAFXyLHWBExERkYCLj4+nSpUqKffvu+8+3n33XW6//Xbi4+OpVasWb7/9NgA1atQASGnxueCCC9iyZQulS5fO8NitWrXi8ssvZ9OmTQwbNoxKlSqxYcOGlPV33nknffv2ZcqUKXTp0oWiRYsCMGvWLEaNGkX+/PkpVqyYWoCS+YpEqAVI8ipjc9ngthYtWtjY2FivwxARERHJmx5/HF56ybUCRaizkOROxpgl1toWGa3TX7WIiIiInDRsGGzfruRH8iz9ZYuIiIhIWgULeh2BSMAoARIREZGgqlGjBrt37065P2vWLHr06AHA119/zTPPPJPl/qm3z8w777xD//790yzbvXs355xzDseOHctRnLGxsSlzBoWN2bPh4oth3TqvIxEJGCVAZ2H+/PmcOHHC6zBERETyjF69evHf//73rI9z5ZVXMmPGDOLj41OWffrpp/Tq1YuCOWjdSEhIoEWLFowZM+asY8lVZs+GH3+EsmW9jkQkYJQAnaHt27fTqVMnqlevzogRI06ZdVpERERO3zvvvMPQoUMBWLt2LW3atKFly5YMHz6cYsWKpWx36NAhrrrqKs4//3yuv/560hd1KlGiBB07duSbb75JWfbRRx/Rv39/vvnmG1q3bk3Tpk256KKL2LFjBwAjRoxgyJAhdOvWjRtvvDFNS9OiRYto164dTZs2pV27dvzxxx8p8V555ZV0796dunXr8sADD6Scb/r06TRr1owmTZrQtWtXAA4fPszgwYNp2bIlTZs25auvvgrAs3gW5s+Hhg2hZEmvIxEJGCVAZ6h8+fJ8+eWXREdHM3LkSKpVq0a/fv2YNWvWKR/CIiIiklaXLl2Ijo4mOjqaW265JcNt7rnnHu655x4WL15MpUqV0qxbtmwZL7/8Mr/99hvr1q1j3rx5p+zfv39/PvroIwC2bdvGn3/+SZcuXbjgggtYsGABy5Yt49prr+W5555L2WfJkiV89dVXfPjhh2mOdf755zNnzhyWLVvGyJEjefjhh1PWxcXF8fHHH7Ny5Uo+/vhjNm/ezK5du7j11lv57LPPWL58OVOmTAHgySef5MILL2Tx4sX8/PPP/Oc//+Hw4cNpzpWYmJim5SpokpJgwQKVv5Y8TwnQGYqMjOTyyy9n2rRprFmzhn//+9/89NNPdOnShaioKF5//XUOHjzodZgiIiIh6eeffyYuLo64uDjeeuutDLeJiYmhX79+AFx33XVp1rVq1YoqVaoQERFBdHR0mnl/kvXo0YNffvmFAwcO8Mknn3DVVVcRGRnJli1buOSSS4iKimLUqFH8+uuvKfv06tWLwoULn3Ks/fv3069fPxo1asS///3vNPt07dqVkiVLUqhQIRo0aMDGjRtZsGABHTt2pGbNmgCUKVMGgB9++IFnnnmG6OhoOnfuzNGjR9m0aVOac61cuZLatWvzww8/5OCZ9KPff4f9+5UASZ6nBMgPateuzahRo9iyZQsTJ06kUKFC3HXXXVSuXJmhQ4fy22+/eR2iiIhInpJ6HE9kZCQJCQmnbFO4cGG6d+/OF198kdL9DeDuu+9m6NChrFy5kjfffJOjR4+m7JM8SWp6w4YNo0uXLqxatYpvvvkmzT4ZxWKtxRhzynGstXz22Wcpyd+mTZuoX79+mm3q16/PuHHjGDRoEI899hiJiYk5fFbO0tGj0LUrtG8fnPOJeEQJkB8VLlyYQYMGsXjxYhYsWECfPn0YP348DRs2pEuXLnz66acqmiAiIpJDbdq04bPPPgNI6cp2uvr378+LL77Ijh07aNOmDeBacypXrgzAu+++m6PjpN7nnXfeyXb7tm3bMnv2bNavXw/AP//8A8All1zCK6+8ktJdftmyZafs++mnn3LdddcRERHB6NGjqVu3Lnv27MlRnGeleXOYORPq1An8uUQ8pAQoAIwxtG7dmvfee48tW7bwzDPPsH79evr160eNGjUYOXIk27dv9zpMERGRkPbyyy/z4osv0qpVK7Zv307JMxiY361bN7Zt28Y111yT0iIzYsQI+vXrR4cOHShXrlyOjvPAAw/w0EMP0b59+xy1yJxzzjmMGzeOK6+8kiZNmnDNNdcAriXpxIkTNG7cmEaNGjFs2LBT9q1evTpDhgyhUKFCWGspWbIkR44cOY1HfYa8GHck4gGT2wbst2jRwsbGxnodxmlLTExk2rRpvPbaa3z//ffky5ePvn37cuedd9KhQ4cMm8lFRETCWXx8PIULF8YYw0cffcTkyZNDr2qanyUlJdG3b1+io6O57LLLaN68ORERQfi9es8eqFABxo6FTIpSiOQmxpgl1toWGa5TAhR8f/31F2+88QYTJ05k3759REVFceedd3LDDTekKfEpIiISzubOncvQoUOx1lKqVCkmTpxIHXXPCoxvv4UePWDWLOjUyetoRM6aEqAQFR8fz+TJk3nttddYtmwZJUqU4KabbuKOO+44ZUCkiIiISMA88gg8+ywcOABFingdjchZyyoB0hggDxUpUoSbb76ZJUuWMH/+fHr16sWbb75JgwYN6Nq1K59//nmGVW1ERERE/Gr+fIiOVvIjYUEJUAgwxtC2bVsmTZrE5s2beeqpp/jrr7/o27cvNWvW5IknnuDvv//2OkwRERHJixISYNEizf8jYUMJUIgpX748Dz30EOvWrePLL7+kQYMGDBs2jGrVqtG/f39++eUXclu3RREREQlhJ07AU0+Br1KdSF6nMUC5wJ9//skbb7zB22+/zf79+2ncuDF33XUX119/faYTtomIiIiIhCuNAcrlzjvvPF566SW2bt3KuHHjMMZw2223UalSJe655x7++OMPr0MUERGR3GrBAti61esoRIJGCVAuUrRoUW699VaWLVvGvHnz6NGjB2+88Qbnn38+F198MV9++aWKJoiIiMjp6d8f7rnH6yhEgkYJUC5kjKFdu3Z88MEHbN68mSeeeILVq1dzxRVXUKtWLZ566il27tzpdZgiIiIS6rZvhw0bVABBwooSoFyuQoUKPPLII6xfv57PP/+cevXq8cgjj1ClShWuv/565s+fr6IJIiIikrGYGHetBEjCiBKgPCJfvnxcccUVzJgxg99//5077riDqVOn0r59e5o2bcqTTz7J8uXLlQyJiIjISfPnQ4EC0LSp15GIBI2qwOVhhw4d4oMPPmDixIksWrQIgGrVqtGjRw969uxJly5dKFiwoMdRioiIiGfat3fX8+Z5G4eIn2VVBU4JUJjYvn073377LVOnTmXGjBnEx8dTtGhRunXrRs+ePbn88sspX76812GKiIhIMK1fD3v3QrNmXkci4leeJEDGmIlAD2CntbZRBuuvBx703T0E3GGtXZ7dcZUAnb0jR47w888/88033zB16lS2bNmCMYZWrVrRs2dPevbsSVRUFMYYr0MVERERETltXiVAHXGJzXuZJEDtgN+ttXuNMZcCI6y1rbM7rhIg/7LWEhcXx9SpU/nmm29YvHgx4LrKJSdDnTt3Vlc5ERGRvGb6dNcCdNttEKFh4ZK3eNYFzhhTA5iaUQKUbrvSwCprbeXsjqkEKLCSu8p98803zJgxgyNHjqirnIiISF501VWwdCmsW+d1JCJ+lxsSoPuB8621t2SyfggwBKBatWrNN27c6O9QJQOpu8p98803bN26FWMMrVu3pmfPnvTo0UNd5URERHIja6FKFejcGT74wOtoRPwupBMgY0wX4HXgAmvtnuyOqRYgbyR3lUseN5TcVa569eopVeXUVU5ERCSX2LgRatSAV1+Fu+7yOhoRv8sqAfK0w6cxpjHwFtA7J8mPeMcYQ9OmTRk+fDiLFi1i27ZtjB8/niZNmjBx4kS6d+9OuXLl6Nu3L2+//TY7d+70OmQRERHJzPz57rptW2/jEPGAZwmQMaYa8DkwwFr7p1dxnJUVK6BPHxg3DrZs8TqaoKpYsSK33HILX331FXv27GHq1KnccMMNLFy4kMGDB3PuuefStm1bnnrqKVauXKkJWEVERELJ2rVQrBg0bux1JCJBF8gqcJOBzkA5YAfwGJAfwFo71hjzFtAXSB7Qk5BZM1VqIdUFbvp0Vzll0yZ3v3FjuPxy+L//g7JlvY3NI6m7yn3zzTckv1bqKiciIhJi4uOhSBGvoxAJCE2EGkjWwm+/wbRp8O23EBsLO3ZA0aLwxRdw+DB07w7lynkdqSe2bduWUlVu5syZHDlyhGLFiqVUlbvssstUVU5ERERE/EoJUDAdOQKFC7vbl10G330HxkDr1q51qEcPiI72NESvHDlyhJ9++imlkEL6qnL9+vWjbt26XocpIiKSt8XEwOOPw5gxUKeO19GIBIQSIK8kJcGSJSdbhxYvdknRt9+69TNnusSoeHFv4/SAtZZly5alJEOxsbEUKlSIJUuW0KBBA6/DExERybuefhoefhh27w7bLvuS9ykBChU7dsDevXD++e72uedC/vzQoYNrHbr8cjjvPNdiFGbWr19Py5YtqV27NvPmzSNfvnxehyQiIpI39ewJa9bA6tVeRyISMCFbBjvsVKjgkh9wv7jMng3//rdLhv7v/9y6995z648cgaNHvYs1yGrWrMlrr73GokWLeOGFF7wOR0REJG+y1nWBa9fO60hEPJNtAmScG4wxw333qxljWgU+tDwuXz7o2BGefRZWrYING+D11+Gii9z6Dz90SVKvXjB27MlKc3nY1VdfTd++fRk+fDi//fab1+GIiIjkPWvWwJ49mv9HwlpOWoBeB9oC/X33DwKvBSyicFW9OtxxB1Su7O5HR8PgwS45uuMOt75xY1eyMo8yxvDaa69RvHhxBg0aREJCgtchiYiI5C2HDrkfYNu39zoSEc/kJAFqba29CzgKYK3dCxQIaFQCzZvDK6+4icp++w2ef94VTEiu1z9oEFx7resyt2uXt7H6UYUKFVK6wr344otehyMiIpK3NGvmuuCr4JCEsZwkQCeMMZGABTDGnAMkBTQqOckYqF/fjREaP/7k8hIl3AfYTTe5sUWtW8PEid7F6UdXX301V155JcOHD+f333/3OhwREZG849gxryMQ8VxOEqAxwBdAeWPMk8AvwNMBjUqyN3o0bN3qymz/738uUdq40a07ehRuvRU+/RT27/c2zjNgjOH111+nWLFiDBw4UF3hRERE/GH/fihZEsaN8zoSEU9lmwBZaz8AHsAlPduBPtbaTwIdmORARIRryh42DBYsgBEj3PI//nDJT79+UK6cK6yQy4oKVKhQgVdffVVd4URERPxl4ULXAlSrlteRiHgqJ1XgJllrV1trX7PWvmqt/d0YMykYwclpSp4/qEkTNy5ozhy4/35YsQLatDnZQpRLXHPNNeoKJyIi4i/z57vvCq1UzFfCW066wDVMfcc3Hqh5YMIRv8mXz02w+vTTrpvco49CtWpeR3Va1BVORETEj2JiICrKjSMWCWOZJkDGmIeMMQeBxsaYA8aYg777O4GvghahnL2qVeGBB9yvPitXwm235ZpJVtUVTkRExA+Sklx3eU2AKpJ5AmStfdpaWxwYZa0tYa0t7ruUtdY+FMQYxZ/mznWDHzt1gu3bvY4mR6655hquuOIKdYUTERE5U8ePuzHD11zjdSQinjPW2uw3MqY0UBcolLzMWjsngHFlqkWLFjY2NtaLU+cdn38OAwZAqVLw1VfQooXXEWVrx44dNGjQgLp16zJv3jwiIyO9DklEREREQpQxZom1NsMvuTkpgnALMAf4Hvif73qEPwOUILvySjcQMn9+N05o4UKvI8pWcle4hQsXqiuciIjI6Vq6FHbs8DoKkZCQkyII9wAtgY3W2i5AU2BXQKOSwGvSBBYtgjvvhKZNvY4mR6699lquuOIKhg0bpq5wIiIip+Paa2HIEK+jEAkJOUmAjlprjwIYYwpaa1cD9QIblgRF+fLwwgtQoADs3g133AEHD3odVaaSq8IVLVqUQYMGkZiY6HVIIiIioW/3blizRgUQRHxykgBtMcaUAr4EZhhjvgK2BTIo8cDcuTB+PLRtC+vWeR1Nps4991x1hRMRETkdMTHuum1bb+MQCRHZJkDW2iustfustSOAYcAEoE+A45Jgu+IK+P572LbNTZA2a5bXEWXq2muvpU+fPgwbNozVq1d7HY6IiEhoi4lx8wPmgqJHIsGQkxYgjDGljTGNgYPAFqBRQKMSb3Tt6sYFlS8PF18MX37pdUQZMsbwxhtvqCuciIhITsyf78b7FinidSQiISEnVeAeB1YArwAv+C7PBzgu8UqdOu6XokGDoH17r6PJ1Lnnnssrr7zCggULeOmll7wOR0REJHSNHw+vvOJ1FCIhI9t5gIwxfwBR1trjwQkpa5oHKMhOnIBHHoEHHoBy5byOJg1rLVdeeSXfffcdcXFxnH/++V6HJCIiIiIh4KzmAQJWAaX8GpHkHkuXwpgxblzQqlVeR5OGusKJiIhk48cf4a23QP8jRVLkJAF6GlhmjPneGPN18iXQgUmIaN0aZs+Go0dd9ZivvvI6ojTUFU5ERCQLEybAiBEQGel1JCIhIydd4H4F3gRWAknJy621swMbWsbUBc4jW7dCnz6wZAm89pqbMyhEqCuciIhIJmrUcL04PvnE60hEgupsu8DtttaOsdb+bK2dnXzxc4wS6ipXhjlzYPDgkJtITV3hREREMrBtG2zcqPl/RNLJSQK0xBjztDGmrTGmWfIl4JFJ6Clc2PUjbtLE3X/xRdcyFALUFU5ERCSd5AlQQ+yHSxGv5aQL3M8ZLLbW2gsDE1LW1AUuRGzcCI0aQbFibr6g1q29jghrLVdccQXTp09XVzgREZEnn4QnnoD9+6FAAa+jEQmqrLrAZZsAhRolQCFk1Sro1cs1sY8fDwMGeB0Rf//9Nw0aNOD8889n7ty5RGrQp4iIhLMDB6BECa+jEAm6MxoDZIy5wXd9X0aXQAUruUijRrB4sWtav/FGeOwxryNK6QoXExPDyy+/7HU4IiIi3lLyI3KKrMYAFfVdF8/gUizAcUluUbYsfP893HUXNG7sdTQAXHfddfTu3ZtHH32UP/74w+twREREgi82Fnr3hjVrvI5EJOTkZAxQe2vtvOyWBYu6wOUCn3wCzZpBnTqehbB9+3YaNmyornAiIhKenn8e/vMf+PtvqFDB62hEgu5sy2C/ksNlInD4MNxzj5tz4McfPQujYsWK6gonIiLhKyYGatVS8iOSgazGALU1xvwfcE668T8jAP2cLhkrWhTmzXPzBl1yCbzyCnhUaOO6666jV69e6gonIiLhxVqYP1/z/4hkIqsWoAK4sT75SDv+5wBwVeBDk1yrVi33wXv55fCvf8Htt3uSBBljGDt2LIULF9YEqSIiEj42bHBd3zT/j0iG8mW2wlo7G5htjHnHWrsRwBgTARSz1h4IVoCSSxUvDl98AcOHQ/78YIwnYVSsWJExY8YwYMAARo8ezX33qYChiIjkcfv2udaf9u29jkQkJOWkCMKHwO1AIrAEKAm8aK0dFfjwTqUiCLnYvHlu4tQmTYJ6Wmstffr04YcffiAuLo569eoF9fwiIiIiElxnWwShga/Fpw8wDagGeD/jpeQu1sLQoe7XqC++COqpU3eFGzx4sLrCiYhI3paQ4HUEIiEtJwlQfmNMflwC9JW19gTgzah2yb2MgWnT3OSpV14Jjz8e1HFByV3h5s+fz+jRo4N2XhERkaA6dAhKlYI33/Q6EpGQlZME6E1gA25i1DnGmOq4Qggip6diRZg1CwYMcGODrrkGjh4N2umvv/56evbsySOPPKKqcCIikjctXuympKha1etIREJWtgmQtXaMtbaytfYy62wEugQhNsmLChWCd9+FUb4hZAUKBO3UxhjefPNNChUqpK5wIiKSN8XEuOs2bbyNQySEZZsAGWMqGGMmGGO+891vANwU8Mgk7zIG7r8fPv4YIiJg40ZXNjsI1BVORETytPnzoX59KFPG60hEQlZOusC9A3wPVPLd/xO4N0DxSDhJLo19333QuTO8805QTnvDDTekdIX7888/g3JOERGRgLPWtQBpAlSRLOUkASpnrf0ESAKw1ibgSmKL+Mdbb0HHjjB4MAShxHlyVbhChQppglQREck7jh93PSyuvdbrSERCWk4SoMPGmLL4Kr8ZY9oA+wMalYSX0qXh88+hfHlXKjspKeCnrFSpUkpXuDFjxgT8fCIiIgFXsCA89BBcfLHXkYiEtJwkQPcBXwO1jTHzgPeAuwMalYSfEiXguedg4UL44IOgnPKGG26gR48ePPzww+oKJyIiud/KlbBnj9dRiIQ8Y3MwF4sxJh9QDzDAH765gDzRokULGxuEblLigaQkeOUVGDTIJURBsG3bNho2bEjDhg2ZPXs2kZGRQTmviIiI3zVq5Mpff/ed15GIeM4Ys8Ra2yKjdTlpAcJam2Ct/dVau8rL5EfyuIgIuOcel/wEaZLUSpUqMXr0aObNm6eucCIiknvt2we//grt2nkdiUjIy1ECJBJUv/4KTZvCqlVBOd2AAQNSusKtWbMmKOcUERHxq4UL3bUSIJFsBSwBMsZMNMbsNMZk+C3WGHO+MSbGGHPMGHN/oOKQXOjcc2HzZrj77qC0BKWeIFVV4UREJFeaP9/1pGjVyutIREJepgmQMeaGVLfbp1s3NAfHfgfonsX6f4B/Ac/n4FgSTsqWhSefhFmzYMqUoJwydVe4V155JSjnFBER8Zv58yEqCooX9zoSkZCXaREEY8xSa22z9Lczup/pwY2pAUy11jbKYpsRwCFrbY4SIRVBCBOJidCyJezaBatXQ9GiAT+ltZaePXvy008/sXz5curWrRvwc4qIiPjFb7/BP//ABRd4HYlISDjTIggmk9sZ3Rfxr8hIVxFuyxYYNy4opzTGMG7cOAoWLKiucCIikrs0aKDkRySHskqAbCa3M7ofUMaYIcaYWGNM7K5du4J5avFS+/bw/fduLFCQVKpUiZdfflld4UQkNM2fDy+/DIMHQ/PmUKOGSh4LzJkD774LCQleRyKSK2TVBS4e+AvX2lPbdxvf/VrW2mz7JKkLnPjNoUNQrFhQTqWucCLiqYQE+PNPWLECli+HAwfgtdfcui5d3PjIChWgSRPXSn7ZZTBqlKchi8duugmmT4e//wajTjoikHUXuHxZ7Fc/QPGInJ5Vq+DCC2HiROjRI+CnS64K17BhQwYNGqQJUkUkcP75B1auhI4d3RfXRx6BF16AY8fc+nz5XKKTlOQqfL35JpQs6RIgcD8OJY+RPHw4KOMlJQTNnw9t2yr5EcmhTLvAWWs3pr4Ah4BmQDnf/SwZYyYDMUA9Y8wWY8zNxpjbjTG3+9afa4zZAtwHPOrbpoRfHpXkLfXqQblycO+9cPRoUE5ZuXJlVYUTEf+Li4OHH4bLL4eqVV3Vy86dYft2tz46GoYOhffec9sePgyxsS75ATjvvJPJD7iWcWNg40b3WTl+fHAfj3hv1y746y/N/yNyGrLqAjcV+K+1dpUxpiKwFIjFdYcbZ619OWhRpqIucGFq5ky4+GJ44gn3C2kQqCuciJyRf/5x3deSu7AtX+4Sk6ZNYdIkN36nfn1o3Ni17jRpAh06QOHCZ37OI0fgqqtg2jR46SX3g5GEh6+/ht69Ye5cFUEQSeVMu8DVtNYmT2I6CJhhrb3RGFMcmAe87N8wRbJw0UXQt6+bH2jAAKhWLeCnTN0VbvDgwcyePZuIiIDNHSwiuU1iIqxZ4xKcqChXhWvOHOjU6eQ255zjEpzjx939fv3g6quhYEH/xlK4MHzxBVx3Hfz7365r3COPqEtUOFi1CvLnd0UxRCRHsvo2dyLV7a7ANABr7UEgKZBBiWTohRfc9UcfBe2UlStX5uWXX+aXX35RVziRcJZcFn//frjlFjdPWbFiriXn2mvhs8/c+qgoePZZNyB92zbYsQNmzIDWrd36QoX8n/wkK1DAfT4OGADDhsGECYE5j4SWhx92XSjPpgVRJMxk1QXuG+AHYAswEdcitM8YUxiItdY2DF6YJ6kLXJhbtw5q1QrqKa219OjRg59//lld4UTCxY8/wk8/nezG1rOnq8SWkAC1a0Pdumm7sNWvH7jE5nQlJcGLL8Jtt0Hx4l5HIyLiiay6wGWVAJUHRgIVgdestT/4lncBmue0bLW/KQESwCVCVau6Zv8g2Lp1Kw0bNiQqKkpd4UTyuhkzoFs3NyHz+ee7BOfyy133stzm0CGXuN1/v3s8krcsXw6PPw5PPeUKZIhIiqwSoKyqwO201t5ure2dnPz4lv/sVfIjArj5MerXh1dfDdopU3eFu//++1mxYgWJyV1iRCRvWbfOte7s3+/GV3zwQe5MfsB1zfvvf+GGG+DEiey3l9xl9mz3Ghcp4nUkIrlKVi1AX2e1o7W2V0AiyoZagARr3XxAc+e6ZOjcc4N0WsvVV1/Np59+CkCJEiVo27Yt7du3p3379rRu3ZqimoNDJG9ISHBz8OQFo0bBAw9Ar17w8cduHJLkDddeC/PmwebNXkciEnLOtAvcLmAzMBlYCKQpJWOtne3nOHNECZAArvJSo0bQvz+8807QTmutZf369cybNy/lsmqVK5YYGRlJdHR0SkLUvn17KleuHLTYROQsrVjhWn/69PE6Ev97/XW46y43ncCXX6rFIK+oXh3atHGJrYikcaYJUCRwMdAfaAx8C0y21v4aqEBzQgmQpHj4YXj6affrl4cTwO3du5cFCxakJEQLFy7kyJEjAFSvXj1NQtSoUSMi1Q9fJPQkJkLbtrBhA6xdmzeLB7z7riuNPXcu1KzpdTRytrZscWNhX34Z7rnH62hEQs4ZJUDpDlAQlwiNAkZaaz2rB6wESFIcOuRage69N6Qm/Ttx4gRxcXFpWom2+2Z5L1GiBG3atEnTba5YsWIeRywivPIK/Otf8OGHrmU5rzp8GIoWdV2JDx3Km4leuIiLcyXZx46FFhl+xxMJa2ecAPkSn8txyU8N4GtgorV2awDizBElQJJGfHzId+Ww1rJhw4ZTus1Za4mMjKRJkyZpWomqVKnidcgi4WXzZjeJafv28N134TF56H//C9OmuYp3FSp4HY2IiN+daRe4d4FGwHfAR9baVYELMeeUAEmG5s51X2DKlvU6khzZt2/fKd3m4uPjAahWrVqahCgqKkrd5kQCxVo35mfGDPj11/DpGjZzJvTuDVWquDmP9MNL7pOUBJqSQSRTZ5oAJQGHfXdTb2QAa60t4dcoc0gJkJxiyxb3peXWW91A31zoxIkTLF++PE0r0bZt2wAoXrz4Kd3miqvbioh/WOu6vR08CLff7nU0wfXLL3DZZe6Hox9/DPok03IWjh6FihXdONhw+7sVyaGzHgMUSpQASYbuvRfGjIHYWGjWzOtozpq1lo0bN6ZJiFauXIm1loiIiFO6zVWtWtXrkEUkN4qNhUsugZIl4fffoWBBryOSnJg3Dy64wFX0693b62hEQpISIMn79u1zs2DXret+1cyDffj3799/Sre5w4ddI23VqlVP6TaXL6/MYSISKA884Kpo3X2315F4a+VKV/5bX6Rzj+S5nXbsgPLlvY5GJCQpAZLw8PbbMHgwvPceDBjgdTQBl5CQcEq3ua1bXX2SYsWK8cILLzBkyBCPoxQJUfPnu6IH994LL73kdTSh45NP3NwyrVt7HYlk5YorXOL6119eRyISspQASXhISoJLL4VrrnGJUJix1rJp0ybmzZvHm2++SUxMDIsXL6ZJkyZehyYSWo4fd11lDx50hQ9Uit45fhwaN4atW+Hbb6FjR68jkoxY68b/dOvmfvATkQxllQCpj4zkHRERMH16nuz+lhPGGKpXr0716tXp1q0bUVFRXH/99cTGxlKoUCGvwxMJHaNGucRn6lQlP6kVKAA//QQXXQTdu8MXX7jxQRJaTpyAO+/U3D8iZ0H1EyVvMcb9OjZpEvz2m9fReKZcuXK8/fbb/Prrrzz00ENehyMSOnbtgiefhH794PLLvY4m9FSqBLNnQ7160KsXfPWV1xFJegUKwPDhroKfiJwRJUCS9+zd62Z0/9e/XDIUprp3785dd93Fyy+/zMyZM70ORyQ0nHOOaykePdrrSELXOee4lqCmTV2VOAktq1fD/v1eRyGSq2kMkORNr70GQ4fCp59C375eR+OZ+Ph4mjdvzsGDB1mxYgVlypTxOiQR7xw4ACU8mcIudzpyBAoVci3r+/ZBqVJeRxTerHWlyq+80lUvnDHD64hEQlpWY4DUAiR50223ucG8990H8fFeR+OZIkWK8P7777Njxw7uvPNOctsPHp44fhw2bXLXAAsXwquvuokHJffatQvq1IE33vA6ktyjcGGX/Kxb57rEjRnjdUTh6Y8/oH9/V/igYUN3X903Rc6KEiDJm/Llc19aN22CZ57xOhpPNW/enBEjRvDxxx/z4Ycfeh2OdxIT4e+/YelSN/h91y63/Jdf3JeJ6Gg3n0bBgq4McPIYsrg4N09M+/bui6DkTvfd51oxOnXyOpLcp3Jl9/d/zz3w9NNeR5O3bdniKrsNGgRTprhlBQq4cVkXXQRvvQVr17ry7SJyxlQFTvKuDh3cRHEtW3odiecefPBBpk2bxl133UWHDh2oVq2a1yH5j7Vu3Ne2bScvW7dCjx7QpAnExLgB73//7ZKgZN9847Y5ccKtq1oV2rRxg8CTL+BKqlesCDfd5Eonv/uuJozMbWbMgPffdwPHGzTwOprcp2BBNz/QwIHw8MNw6BA88UTYVtz0u8RE12X7xx9hzRq3rGxZ9/kFULOm+0zT8y3iNxoDJBIm1q1bR5MmTWjRogU//vgjERG5pAH4+HE3aWVyYpOc5Fx7rZsMcNUqiIo6db9x4+DWW12rzRNPpE1sKlWC888/vfEg69e7RGrJEvjoIzfflIS++Hj395EvHyxf7sa0yJlJTIQ77oDx40++v+T07NvnWnN++sklNC+/7Ja3bw9lysCFF7pLVJSb2kFEzpjmAZLwduwYPPsstGrl5rYIU7Vq1WL06NHcfPPNvPjii9x///1eh+QkJcErr6Rtwdm2zfV5Hz7cDcTu0uXk9kWLui45F13k7teoAS++6JKaypXddcWKbvwCQK1aMHHi2cdZs6brLvfcc67lSHKHBQvc39P06Up+zlZkJLz5pusuesMNXkeTu4wdCxMmuC64SUnu8yl1GetfflELj0gQqQVI8r7k2c0TE11rQcGCXkfkGWstffv25dtvv2Xx4sU0btw4+EEkJLjqfHv2wF13uWXFi7vXKXULTe/e7kuWtfDzzyeXh0oVr8OH3Twpjz6aNkGT0LNzpxvfJf61fz+89BI88gjkz+91NKHh6FGXdP/0E8yZA99955Kd//3PdXFLbuFp3Tqs/xeJBENWLUBKgCQ8/PCDm9H86afhv//1OhpP7d69m6ioKMqVK8fixYspFKxfxePjXUvMCy/Ahg2uRW7BAver5969rsRubvoFdMMGuPRS+PNPePxx93elLiuhIzHRfQm9+GKvI8m73n8fBgyAPn1ct9Bw/kI/f75rsZ43zyVBERHQogVMnuxaoUUk6FQGW6RbNzde5PHHXZWdMFauXDkmTpzIqlWreOSRR4Jz0i++gGrVXDW1ihXhyy9dcYLkhKd06dyV/IDrerd4sRsL9Mgj0LOna9WS0PD66+59P2uW15HkXTfc4Epjf/mla7ENhykHkpJg2TL3Q87ll7uuleDGmO3e7cZIff01/POPK6Gv5EckJKkFSMLHhg1Qv777tXLyZK+j8dxdd93F66+/zo8//siFF17o/xOsX++Smho1XCnp4cPhwQfdYN+8xFrXv//ee90Xos8/9zoi2bzZVXu74AKYNi33Jde5zcSJcMstrvLm1KmuS2tec+CAK009a5ZLbsDNjfT44644ioiEHHWBE0n23nvQqJErZxzm4uPjadasGYcPH2bFihWULl3aPwdetswVCvjkE/cL8bvv+ue4oS421pWurVnTdYEpWFBfvL1grWuNmDkTfv3VvR4SeB995Epkz5rlWntzK2td5ciffnJjD6tUcZ9n1kLbtm4i0gsvdOP+kkvli0hIUgIkIhmKjY2lbdu29OvX7+wnSZ01C556ys25Urw43H67mzixcmW/xJprWAtXXukSoPHj8+av4aHss8/gqqtg1CgIlUqH4eLYMfd3n5TkCiT460cVfztxwlUG3LzZtewkV2N75BE3rmnTJne/YkW4/nr3tyQiuY7GAImkduyYm9BvzBivI/FcixYteOyxx5g8eTKTz6RbYEKC+8IP8NVXsHIlPPOM+2Lx3HPhl/yAez5at3azuLds6SoPSvBERLixP/fe63Uk4Se5CML//R+0a+fm7Qq2hAT3+TN/Pnz8cdrP+Ucfda02BQu6rrkdOqQt5338uHvPvvYa/P67i1/Jj0iepBYgCT/WuupdMTGugleFCl5H5KmEhAQ6duzIb7/9xsqVK6latWr2O8XHw9tvu4HA48dD167uF99ChcK7ElRqs2a5yVoPHHBzpwwY4HVEIsExd64bD1eunCv97K9uiAkJsH27K2SzebO73rLFjcMpWtRdjxjhWqBSO3gQihVzn1UxMVC1qrtUqeKuGzb0T3wiElLUBU4kvT/+cDNt33CDfybJzOXWrl1LdHQ0LVu2ZObMmURkVs55zx736+grr7iKR23auF9IL7gguAHnFtu3uyRo9WqXbJcs6XVEeVdMjKu6dffdbsJO8daiRW7i6aJF3XisevWy3+fAAfjtt5PJzebNJ1uTa9Z0rTn33JN2n6JFYflyqF3bnWfOnLTJTZUq7n2n8XgiYUcJkEhGHnzQ/WNdsMB1WQpzEyZM4JZbbuGFF17gvvvuO3UDa+G88+Cvv6BHD3jgAZf46ItF1hIS3KDq885zc9Ns2+a+mIn/HD/uCpscPOgKHxQr5nVEArBihZuHqXBh96PT4cOusEByYpOc5Dz3nPss+eILN34uWeHC7r3y4YfQvLlLjn755WRyU7WqkhsRyZQSIJGMHDzofpWsV8/9Uw5z1lquvPJKpk2bRmxsLFFRUa589YQJ8OKLbqb3adOgenV1GTlTTz7pWszefddVKhP/ePJJN75j6lTX9UpCxx9/uCkILrnEzZvVqpVbXrjwyUTmscegY0fYscNVU0xenhvnBxORkKEESCQzv/ziulaE42D9DOzatYuoRo3oWbQoY2vXJnLmTFfFbPZsaNrU6/Byv/Xr3ZwhS5bAf/7jqubly+d1VLnbn39C48bQq5crvS6h68gR93pVqQJlyii5EZGAUhU4kcxccIFLfqx11eHC3DmJiawuUYLx69dzeP58ePppVxJWyY9/1Kzpku477nAtQRde6LrEyZmx1j2XhQrB6NFeRyPZKVwYmjRx82Up+RERDykBEklIgIsuCt85Q+Lj3eBxgPLlKdWwIe937EiF+Hh+bt0aSpXyNLw8p1AheP11+OADVyJ782avI8q9jHFVv8aPd3O2iIiI5IC6wImAqxz1+uuwdKn7hTIc7NnjHvOYMS4J3LLFVVQCDh8+TNOmTTl69CgrVqyglJKgwDhwAEqUcLdnzHDlxDOrwCdpWatWBBERyZS6wIlkZ+RI1yf97rtPTuyZV23d6krJVqsGw4e7UtZffw1FiqRsUrRoUd5//322bdvGXXfd5WGweVxy8rNwoZu8s0cPl5hK9gYNcpUcRURETpMSIBFw1YaeftpN4Dd5stfRBEZCgrvessW1/PTrBytXwjffuBnR0/2a3qpVKx577DE+/PBDPvroIw8CDiOtWsEbb7hJI5s1O9klUTL2ww+ukp4m3RURkTOgLnAiyZKS3HxAkZFuUsW80L3GWlfi+9lnXYvP+PFu+c6dUL58trsnJCTQoUMHVq9ezYoVK6iq+WsCKzbWJaZbt7rJZm+7zeuIQk98PDRq5MqyL1/uxlSJiIikoy5wIjkREeHK6P74Y+5PfhIT3WNp2dKNK1m+HM4//+T6HCQ/APny5eP999/nxIkTDBw4kKSkpAAFLAC0aOFKZF9yiVo3MvO//7ly4uPGKfkREZEzogRIJLWaNV0hgGPH3KR8ucnOnSdLeT/3HFxzjRtkP26cm4jw//7vjA5bu3ZtXn75ZX766SdGq9Rw4JUp48ZkDRzo7n/xhasWJ/DPP6775s03Q6dOXkcjIiK5lLrAiaRnrRuTUaYMTJ8euq1Bhw/DnDkwc6a7rFjh4r3kEvj1V1i9Gvr0cV36zpK1lj59+vD9998TGxtLo0aNzj5+yd6JE67lbvt2ePNNGDDA64i8t2aNm0emTBmvIxERkRCmLnAip8MY90Xzhx/gq6+8juakhATYt8/d/vNPV7jhssvg1VehXDlXxKFePbe+YUPo29cvyQ+AMYbx48dTsmRJrr/+eo5p0tjgyJ/fTZzaqhXceCMMGQJHj3odlTfWr3fXdesq+RERkbOiBEgkI3fe6QZa33svHDniTQzWwh9/wGuvwRVXuCTn4Yfdujp14IEHXJK2d68bt/Tf/0KNGgELp3z58kycOJEVK1YwbNiwgJ1H0qlY0bXwPfSQK2LRrp13f5Ne2bwZGjeGp57yOhIREckDlACJZCRfPteysnGjq6AWLIcPn7zdrp3r/jR0KMTFwdVXQ69ebl1EBDzxBFx8cZr5ewLt8ssv57bbbuP5559n9uzZQTtv2MuXz335/+YbN1dQ4cJeRxQ81sJdd7kqjf37ex2NiIjkARoDJJKV/v3d+IuffnJJh78dOnRyHM+MGa6L26ZNrhve66+7L74XXQS1avn/3Gfo8OHDNG3alGPHjrFixQpKlizpdUjhadEi+Owzlwjnz+91NIHz2Wdw1VUwahTcf7/X0YiISC6R1RggJUAiWTl40FWF81fyk5DgjhURAc8/77o1JSS4kscdOrhk59//hgIF/HO+AFm0aBHt2rWjf//+TJo0yetwwtPIkfDYY3DBBfDRR1C5stcR+d/+/VC/PlSoAIsXux8EREREcsCTIgjGmInGmJ3GmAzrtxpnjDHmL2PMCmNMs0DFInLGihd3ycquXW4undNlravG9uqr0Lu3q14VF+fWNW/uSlPPmOHG8cyYAQ8+GPLJD0CrVq0YNmwY77//Pp988onX4YSn4cPhgw9g2TJo2tSNA8trfv/dvYfGj1fyIyIifhOwFiBjTEfgEPCetfaUmrnGmMuAu4HLgNbAaGtt6+yOqxYg8UTr1q572sqV2ScoSUkuaVq5Ei69FLZudctr1XItPPfe637VzuUSEhK44IIL+PPPP1m5ciWV82ILRG7w+++u4t/q1a6rZufOXkfkX0ePasJTERE5bZ60AFlr5wD/ZLFJb1xyZK21C4BSxpiKgYpH5KyMGOFKT2c0EejBg/Dtt67rWlSU65oELuFp397N37J2rbu8+WaeSH4A8uXLx6RJkzh27BgDBw4kKSnJ65DCU/36bjzQ00+7bpQA777rSrgnJHgb25k6fhwmTHDxK/kRERE/87IKXGVgc6r7W3zLTmGMGWKMiTXGxO7atSsowYmkcemlrgLbyJEnW3Sshe7d3ZwkPXrA2LGuZHHyXDxFi8LHH7u5W0KoiIE/1a1bl5deeomZM2cyZswYr8MJX8WKue6TkZHu7/Kll9wkuNWqudLpa9d6HeHpee45uOUWVyBERETEz7xMgEwGyzLsj2etHWetbWGtbXHOOecEOCyRTLz0Ehw7Bg0auPvGuNv33++quO3d6+blCbNSvbfeeis9evTgv//9L6tWZTjkT4LJGIiNdS1ALVq4Mu516uSeOXT+/NNVtrv6arjwQq+jERGRPMjLUaVbgKqp7lcBtnkUi0j2atWCt95y3Y2Sx/m8+KLXUXnOGMNbb71FVFQUN9xwAwsXLqRgwYJehxXe8uVzLZa9erkWy3feOZlMrFrligrccovrshlKrIXbbnPd3jLqbioiIuIHXrYAfQ3c6KsG1wbYb63d7mE8Itm78UZX0S0QcwLlYhUqVGDChAksX76c4cOHex2OpFa5MjzyCLRp4+7Hxrrumo0bu+Ieb73lxrGFgnfegVmzXBe4c8/1OhoREcmjAlkGezIQA9QzxmwxxtxsjLndGHO7b5NpwDrgL2A8cGegYhGRwOvZsydDhgxh1KhRzJ492+twJDMDB7pWoZdegsOH4dZboW5dOHHC68jgvPNg8GDXOiUiIhIgmghVRPzm0KFDNG3alOPHj7NixQpKlizpdUiSFWtdl87ff3eJkbVuDFubNjBggJu3SkREJBfypAy2iISfYsWK8f7777N161buvvtur8OR7BjjusENHOju798PGza4ku6VKrlk6Mcf3Zi3QPrhBzc/Vnx8YM8jIiKCEiAR8bPWrVvz6KOPMmnSJKZMmeJ1OHI6SpWCBQtg+XK4/Xb4/ns3ee8nnwTunPHx7lzTp2tsnYiIBIX+24iI3z3yyCO0atWK2267ja3J8yZJ7tG4savCtm0bfPihqyYHblnPnv6dZPV//4P1690kwZr0VEREgkAJkIj4Xf78+Xn//fc5duwYgwYNIinQXagkMAoVct3gihRx9yMjXRU5f02yGhcHL7wAN98MnTr5I2IREZFsKQESkYCoW7cuL774IjNmzODVV1/1Ohzxh6FDYfPmtJOs3n77yfWn2yp0zz2u0MJzz/k3ThERkSyoCpyIBIy1ll69ejFz5kyWLFlCgwYNvA5J/GnrVti3Dxo2dLebNnUtRjmdZHXNGti0Cbp2DXioIiISXlQFTkQ8YYzhrbfeonjx4lx//fUcP37c65DEnypXdskPwLFjLpFJP8nq4cOn7nfkiLuuW1fJj4iIBJ0SIBEJqAoVKvDWW28RFxfHY4895nU4Eii1asHkya5wwssvu8TntttcCxG4EtvWusvVV8P113sZrYiIhDElQCIScL169eKWW27h2WefZe7cuV6HI4FUtqwb27NyJfz6q2slAujXz3WLu/NOmDoVmjXzNk4REQlbGgMkIkFx6NAhoqOjSUhIYMWKFZQoUcLrkCSYJkyA8eNh4UI3VmjRIsiXz+uoREQkj9IYIBHxXLFixZg0aRKbN2/mX//6l9fhSLDdfLObZHX1apgxQ8mPiIh4RgmQiARN27ZteeSRR3j33Xf57LPPvA5HvFCvnusmJyIi4hElQCISVMOGDaNly5YMGTKEbdu2eR2OiIiIhBklQCISVPnz52fSpEkcOXKEQYMGcSS5JLKIiIhIEKgTtogEXb169XjxxRe54447KFKkCJUqVaJmzZrUqlWLWrVqpbldsWJFIiL0W42IiIj4h6rAiYgnrLVMnTqVuLg41q9fz7p161i3bh1btmwh9edSwYIFqVGjRqYJkqrJiYiISHpZVYFTAiQiIeXYsWNs2rSJdevWpUmM1q9fz9q1a9m/f3+a7cuUKZNhYlSzZk2qVatG/vz5PXokIiIi4hUlQCKSZ+zdu/eUxCj5esOGDZw4cSJl24iICKpVq5Zp61G5cuUwxnj4aERERCQQskqANAZIRHKV0qVLU7p0aZo1a3bKusTERLZu3ZphgjR16lR27NiRZvuiRYtm2npUs2ZNChcuHKyHJSIiIkGiFiARCRuHDx9mw4YNGXavW7duHfHx8Wm2r1ixYkoyVK1aNapWrUrVqlVTbpcqVUotSCIiIiFILUAiIrgWn4YNG9KwYcNT1llr2blzZ5oudckJ0i+//MLWrVtJSEg45XipE6PUyVHypUiRIsF6eCIiIpIDSoBERABjDBUqVKBChQq0adPmlPWJiYns2LGDTZs2sXnz5pRL8v0VK1bw999/n7Jf2bJlM02OqlWrRqVKlVSoQUREJIjUBU5ExE+OHTvG1q1bT0mOUt/ft29fmn2MMVSsWDHLlqTy5ctrLiQREZHToC5wIiJBULBgwZRCCpk5dOhQpsnR8uXLmTp1KkeOHEmzT4ECBahSpUqGyVHy7ZIlS2o8koiISA4oARIRCaJixYpRv3596tevn+F6ay179uzJsJvd5s2bmTNnDlu3biUxMfGU45533nl07NiRTp060bFjR8qUKROMhyQiIpKrqAuciEguk5iYyN9//31KcrRixQpiYmI4evQoAFFRUXTu3DklITrnnHM8jlxERCQ4NBGqiEiYOHbsGIsWLWL27NnMnj2b+fPnp5T3btCgAZ06dUq5nHvuuR5HKyIiEhhKgEREwtTx48dZsmQJs2bNYvbs2cybN49Dhw4BUK9evTQJUeXKlT2OVkRExD+UAImICAAJCQksXbo0pYVo7ty5HDhwAIA6deqkSYiqVavmcbQiIiJnRgmQiIhkKDExkbi4uDQJ0d69ewGoUaMGnTp1ShlHVKNGDVWaExGRXEEJkIiI5EhSUhIrV65k9uzZzJo1izlz5rBnzx4AqlatmtI61LlzZ2rXrq2ESEREQpISIBEROSNJSUn89ttvKS1Es2fPZufOnQBUqlQpTZe5evXqKSESEZGQoARIRET8wlrL6tWr0yRE27dvB6BChQp07NgxpctcgwYNlBCJiIgnlACJiEhAWGv566+/UqrMzZ49my1btgBQrly5lIlZO3fuTKNGjYiIiPA4YhERCQdKgEREJCistaxfvz4lGZo1axYbN24EoEyZMnTo0IGuXbvSvXt36tat63G0IiKSVykBEhERz2zcuDFNQrRu3ToAateuzaWXXkr37t3p0qULRYoU8ThSERHJK5QAiYhIyFi7di3Tp0/nu+++46effuLIkSMULFiQjh07cumll3LppZeqoIKIiJwVJUAiIhKSjh49yty5c/nuu++YPn06v//+OwDVq1dPaR268MILKV68uMeRiohIbqIESEREcoUNGzbw/fff89133/Hjjz9y6NAh8ufPzwUXXJDSOtSwYUO1DomISJaUAImISK5z/Phx5s2bl9I6tHLlSgCqVKlC9+7dufTSS+natSslS5b0OFIREQk1SoBERCTX27JlS0rr0IwZMzhw4AD58uWjXbt2KQlRkyZN1DokIiJKgEREJG85ceIECxYsSGkdWrZsGQDnnntuSjJ08cUXU7p0aY8jFRERLygBEhGRPG379u388MMPfPfdd/zwww/s3buXiIgI2rRpk5IQNWvWTBOxioiECSVAIiISNhITE1m0aFFKqe3Y2FistZxzzjlccsklXHrppXTr1o1y5cp5HaqIiASIEiAREQlbu3btSmkd+v7779m9ezfGGFq2bJnSOtSyZUsiIyO9DlVERPxECZCIiAiQlJTEkiVLUlqHFi5cSFJSEmXKlKFbt25ceumlXHLJJVSoUMHrUEVE5CwoARIREcnAP//8w4wZM1KKKezYsQOA6OhoKlasSEREBJGRkUREROTo9uls649jFCpUiKioKGrVqqXqdyIiqSgBEhERyUZSUhLLly9n+vTp/Pjjj+zfv5+kpCSSkpJITEzM8e2cbOvv/72lSpWiefPmtGjRIuVSvXp1JUUiEraUAImIiIQQa61fEqpDhw4RFxfHkiVLiI2NZcWKFZw4cQKAsmXLpkmImjdvTpUqVZQUiUhYUAIkIiISBo4dO8bKlSuJjY1NuaxatYrExEQAypcvnyYpatGiBRUrVvQ4ahER/8sqAcoX4BN3B0YDkcBb1tpn0q0vDUwEagNHgcHW2lWBjElERCSvKliwYEpik+zIkSOsWLEiTVI0ffp0kpKSAKhUqVKaVqIWLVpQvnx5rx6CiEjABawFyBgTCfwJXAxsARYD/a21v6XaZhRwyFr7P2PM+cBr1tquWR1XLUAiIiJn5/Dhw8TFxaVJiv7444+UsUlVq1Y9pftc2bJlPY5aRCTnvGoBagX8Za1d5wviI6A38FuqbRoATwNYa1cbY2oYYypYa3cEMC4REZGwVrRoUdq3b0/79u1Tlh08eJBly5alSYq++OKLlPU1a9ZM00rUvHlzSpUq5UH0IiJnJ5AJUGVgc6r7W4DW6bZZDlwJ/GKMaQVUB6oASoBERESCqHjx4nTs2JGOHTumLNu3bx9Lly5NkxRNmTIlZX2dOnXStBQ1bdqUEiVKeBG+iEiOBTIByqjMTPr+ds8Ao40xccBKYBmQcMqBjBkCDAGoVq2af6MUERGRDJUqVYoLL7yQCy+8MGXZnj170iRF8+fP56OPPgLAGEO9evXSlORu2rQpRYsW9eohiIicIpBjgNoCI6y1l/juPwRgrX06k+0NsB5obK09kNlxNQZIREQktOzcuTOlFHdsbCxLlixh69atAERERFC1alXy5cuHMYaIiAiMMTm6fbbrz2TbrCak9feyMz1OnTp1VNJcJBuelME2xuTDFUHoCmzFFUG4zlr7a6ptSgHx1trjxphbgQ7W2huzOq4SIBERkdC3ffv2lKRo7dq1KRPAJs+BlNVtr7Y93fmYAjm5bXYqVapEmzZtUi7NmzenSJEiQY1BJJR5Ng+QMeYy4GVcGeyJ1tonjTG3A1hrx/paid4DEnHFEW621u7N6phKgERERCTUJCdQZ5I8nc6yEydO8Ntvv7FgwQIWLFjA2rVrAYiMjKRJkyZpkqI6deqolUjCliZCFREREcmDdu3axcKFC1MSokWLFnHw4EEAypQpk5IMtW7dmlatWqlyn4QNJUAiIiIiYSAxMZHff/89JSFasGABv/32W0oXvfr166dpJWrYsCGRkZEeRy3if0qARERERMLUgQMHWLx4cZqkaPfu3QAUK1aMli1bpmkpqlChgscRi5w9JUAiIiIiArjxSuvWrUuTEMXFxZGQ4GYiqVmzJq1bt05JiqKjoylYsKDHUYucHiVAIiIiIpKpI0eOsHTp0jRJ0ZYtWwAoUKAAzZo1S9N1rlq1aiqwICFNCZCIiIiInJYtW7akKbAQGxvL0aNHATj33HPTJEQtWrTQhLcSUpQAiYiIiMhZOXHiBCtXrkzTSrRmzRrATXgbFRWVkhC1bNmSYsWKpUwym37S2YwuZ7teLVKSmhIgEREREfG73bt3s2jRopSEaOHChRw4cMCzeM42gUqdSAVzXU73zepxh8K6Sy65hBEjRmS6XzBllQDlC3YwIiIiIpI3lCtXjssuu4zLLrsMgKSkJFavXs2yZcs4duwY1to0l6SkpFOWhdL65IaBYK7L6b6ZCaV1hQsXznRdKFECJCIiIiJ+ERERQYMGDWjQoIHXoYhkKsLrAERERERERIJFCZCIiIiIiIQNJUAiIiIiIhI2lACJiIiIiEjYUAIkIiIiIiJhQwmQiIiIiIiEDSVAIiIiIiISNpQAiYiIiIhI2FACJCIiIiIiYUMJkIiIiIiIhA0lQCIiIiIiEjaUAImIiIiISNhQAiQiIiIiImHDWGu9juG0GGN2ARvPcPdywG4/hiP+pdcn9Ok1Cm16fUKfXqPQptcntOn1CX2h9BpVt9aek9GKXJcAnQ1jTKy1toXXcUjG9PqEPr1GoU2vT+jTaxTa9PqENr0+oS+3vEbqAiciIiIiImFDCZCIiIiIiISNcEuAxnkdgGRJr0/o02sU2vT6hD69RqFNr09o0+sT+nLFaxRWY4BERERERCS8hVsLkIiIiIiIhLE8lwAZY6oaY342xvxujPnVGHNPBtt0NsbsN8bE+S7DvYg1XBljNhhjVvqe+9gM1htjzBhjzF/GmBXGmGZexBmujDH1Ur034owxB4wx96bbRu+hIDLGTDTG7DTGrEq1rIwxZoYxZo3vunQm+3Y3xvzhez/9N3hRh5dMXqNRxpjVvs+xL4wxpTLZN8vPRDl7mbw+I4wxW1N9jl2Wyb56DwVYJq/Px6lemw3GmLhM9tX7J8Ay+26dm/8P5bkucMaYikBFa+1SY0xxYAnQx1r7W6ptOgP3W2t7eBNleDPGbABaWGszrBPv+yd0N3AZ0BoYba1tHbwIJZkxJhLYCrS21m5Mtbwzeg8FjTGmI3AIeM9a28i37DngH2vtM75/KKWttQ+m2y8S+BO4GNgCLAb6p/48FP/I5DXqBvxkrU0wxjwLkP418m23gSw+E+XsZfL6jAAOWWufz2I/vYeCIKPXJ936F4D91tqRGazbgN4/AZXZd2tgILn0/1CeawGy1m631i713T4I/A5U9jYqOU29cR+C1lq7ACjle/NJ8HUF1qZOfiT4rLVzgH/SLe4NvOu7/S7un1F6rYC/rLXrrLXHgY98+4mfZfQaWWt/sNYm+O4uAKoEPTABMn0P5YTeQ0GQ1etjjDHA1cDkoAYlKbL4bp1r/w/luQQoNWNMDaApsDCD1W2NMcuNMd8ZYxoGN7KwZ4EfjDFLjDFDMlhfGdic6v4WlMR65Voy/6ej95C3Klhrt4P75wSUz2AbvZdCx2Dgu0zWZfeZKIEz1NdFcWIm3Xf0HvJeB2CHtXZNJuv1/gmidN+tc+3/oTybABljigGfAfdaaw+kW70UqG6tbQK8AnwZ5PDCXXtrbTPgUuAuX9N3aiaDffJWX81cwBhTAOgFTMlgtd5DuYPeSyHAGPMIkAB8kMkm2X0mSmC8AdQGooHtwAsZbKP3kPf6k3Xrj94/QZLNd+tMd8tgmefvoTyZABlj8uNeoA+stZ+nX2+tPWCtPeS7PQ3Ib4wpF+Qww5a1dpvveifwBa55NLUtQNVU96sA24ITnaRyKbDUWrsj/Qq9h0LCjuSuob7rnRlso/eSx4wxNwE9gOttJoNuc/CZKAFgrd1hrU201iYB48n4edd7yEPGmHzAlcDHmW2j909wZPLdOtf+H8pzCZCvr+gE4Hdr7YuZbHOubzuMMa1wz8Oe4EUZvowxRX0D6DDGFAW6AavSbfY1cKNx2uAGPm4PcqiSxa9ueg+FhK+Bm3y3bwK+ymCbxUBdY0xNX4vetb79JAiMMd2BB4Fe1tr4TLbJyWeiBEC6saVXkPHzrveQty4CVltrt2S0Uu+f4Mjiu3Wu/T+Uz+sAAqA9MABYmapk4sNANQBr7VjgKuAOY0wCcAS4NrNf5sTvKgBf+L475wM+tNZON8bcDimvzzRcBbi/gHhgkEexhi1jTBFcxZbbUi1L/RrpPRRExpjJQGegnDFmC/AY8AzwiTHmZmAT0M+3bSXgLWvtZb7qY0OB74FIYKK19lcvHkNel8lr9BBQEJjh+8xbYK29PfVrRCafiR48hDwtk9enszEmGtcdZwO+zzu9h4Ivo9fHWjuBDMah6v3jicy+W+fa/0N5rgy2iIiIiIhIZvJcFzgREREREZHMKAESEREREZGwoQRIRERERETChhIgEREREREJG0qAREREREQkbCgBEhGRNIwxicaYOGPMKmPMFF9Z9My2HWiMeTWY8aU690hjzEXZbPOOMeaqbLapYYzR3CEiImFCCZCIiKR3xFobba1tBBwHbvc6oIxYa4dba2d6HUdqxphIr2MQEZGsKQESEZGszAXqGGPKGGO+NMasMMYsMMY0Tr2RMaa4MWa9MSa/734JY8wGY0x+Y8wsY8yzxphFxpg/jTEdfNsUMsa8bYxZaYxZZozp4ls+0Heub3zHHGqMuc+3zQJjTBnfdimtO8aY4caYxb5Wq3G+mcszZYxpboxZboyJAe5KtTzSGDPKd6wVxpjkyTEjjDGvG2N+NcZMNcZMS3XuDb7z/wL0M8Z0M8bEGGOW+lrQiqU652xjzBJjzPfGmIp+eYVEROS0KAESEZEMGWPyAZcCK4H/AcustY1xM4C/l3pba+1BYBZwuW/RtcBn1toTvvv5rLWtgHuBx3zL7vLtGwX0B941xhTyrWsEXAe0Ap4E4q21TYEY4MYMwn3VWtvS12pVGOiRzcN7G/iXtbZtuuU3A/uttS2BlsCtxpiawJVADSAKuAVIv99Ra+0FwEzgUeAia20zIBa4z5cYvgJcZa1tDkz0PS4REQmyfF4HICIiIaewMSbOd3suMAFYCPQFsNb+ZIwpa4wpmW6/t4AHgC+BQcCtqdZ97rtegkskAC7AJQVYa1cbYzYC5/nW/exLqg4aY/YD3/iWrwTStD75dDHGPAAUAcoAv6baJw1f3KWstbN9iybhEj2AbkDjVOOGSgJ1fbFOsdYmAX8bY35Od9iPfddtgAbAPF8jVAFc0lYPl9TN8C2PBLZnFJ+IiASWEiAREUnviLU2OvWCTLqU2TR3rJ3nKyjQCYi01qYuLHDMd53Iyf89WXVTO5bqdlKq+0mk+9/lazV6HWhhrd1sjBkBFCJzJn3s6dbdba39Pt05Ls9k+2SHU+0/w1rbP93+UcCvGbQ4iYhIkKkLnIiI5MQc4HoAY0xnYLe19kAG270HTMZ1MTudY54HVAP+OIPYkpOd3b7xNllWfbPW7gP2G2Mu8C26PtXq74E7Uo1lOs8YUxT4BejrGwtUAeicyeEXAO2NMXV8+xfxPbY/gHOMMW19y/MbYxqe5uMUERE/UAuQiIjkxAjgbWPMCiAeuCmT7T4AnsAlQdl5HRhrjFkJJAADrbXHsqlfcApr7T5jzHhc97gNwOIc7DYImGiMicclPcnewnXRW+pr9doF9AE+A7oCq4A/cV0C92cQyy5jzEBgsjGmoG/xo9baP33d6sb4uuDlA17GddUTEZEgMtZm1gtARETk9Pi+5Pe21g7wOhZ/M8YUs9YeMsaUBRYB7a21f3sdl4iInB61AImIiF8YY17BFRO4zOtYAmSqMaYUrrDB40p+RERyJ7UAiYiIiIhI2FARBBERERERCRtKgEREREREJGwoARIRERERkbChBEhERERERMKGEiAREREREQkbSoBERERERCRs/D//UWvzb0idnwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(14,6))\n", - "\n", - "ax.plot(degrees, train_mse,color =\"black\", label = \"Training\")\n", - "ax.plot(degrees, test_mse,\"r--\", label = \"Validation\")\n", - "\n", - "ax.set_title(\"MSE Estimates (train test split)\", fontsize =14)\n", - "ax.set(xlabel = \"Polynomial degree\", ylabel = \"MSE estimate\")\n", - " \n", - "ax.annotate(\"Low bias \\n High Variance\", xy=(16, 1.23), xycoords='data', xytext=(14, 1.23), textcoords='data',\n", - " arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\"),)\n", - "ax.annotate(\"High bias \\n Low Variance\", xy=(5.3, 1.30), xycoords='data', xytext=(7, 1.30), textcoords='data',\n", - " arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\"),)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To make better use of the data we will often divide the data into $K$ subsets, or _folds_. Then one fits $K$ models, each using $K-1$ folds and then evaluation the fitted model on the remaining fold. This is called **k-fold cross-validation**." - ] - }, - { - "cell_type": "code", - "execution_count": 607, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import GridSearchCV\n", - "from sklearn.metrics import make_scorer\n", - "from sklearn.model_selection import cross_val_score\n", - "from sklearn.model_selection import KFold\n", - "#cv = KFold(n_splits=10, random_state=1, shuffle=True)\n", - "scorer = make_scorer\n", - "mse =[]\n", - "\n", - "for d in degrees: \n", - " \n", - " poly =PolynomialFeatures(degree = d, include_bias =False )\n", - " poly_features = poly.fit_transform(X)\n", - " ols = LinearRegression()\n", - " scorer = make_scorer(mean_squared_error)\n", - " mse_test= cross_val_score(ols, poly_features, y, scoring=scorer, cv =5).mean()\n", - " mse.append(mse_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 608, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'MSE estimate (K-fold cross validation)')" - ] - }, - "execution_count": 608, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAGJCAYAAABb3v/JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLP0lEQVR4nO3deXxcZdn/8c+VvVmaNEub7m1K6U4XamkA2YWWfdFHEVQefX6AyqbiAj4KKojro6CCoCIqAoqAbKUsBSloC7TQ0pa2dKfpljTpkibNfv/+OCdlOs0yaTNzJpPv+/WaVzLnnDnnmsk0/eae69zHnHOIiIiIiEj3Swq6ABERERGRRKWwLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIiIiIlGisC0iIiIiEiUK2yIiIiIiUaKwLdJDmdkVZub829FtrD8lZP0ZIcuTzOy/zexNM6sysxozW2dmj5jZjHb2H37bHaPnOMLMbjWzkjbWbTSzB2JRR9hxbzWz06K076fN7Fch908J//n5y0v857+xrdfG3ybJzH5pZtvMrMXM/tmFOlp/9iM62W6Ev90Vke67NzOzB8xsY8j9iF+/w32/m9mFZvbVNpa3vrdO6eo+u3DsJ83sN9Hav0hPkRJ0ASJyxKqBzwDfCVv+WX9dTtjynwHXAb8EbgUagaOBi4DjgDfDtv8EUBa2rOkIa47UCOAW4HVgfdi6i4C9Maoj1C3A7cDL3blTMzsJ+BgwqpPtxgDzgDrgNOfcB+1s+nHgeuBrwAKgsvuqlW6yDSgF1kXxGBcCZwD/F7b8bf/Y70Xx2LcCb5jZnc6596N4HJG4prAt0vM9DlxuZt91/iVhzawPcAnwGHBF64b+8i8Dv3LO3RiyjxeB35hZW592LXHOrY1W8YfLOfdO0DV0s68DTzvntrS3gZlNwAvau4DTnXNbO9jfOP/rL51zLd1XZuyYWbpzrj7oOqLFf24LAzr23mgf2zn3jpktAW4AvhTNY4nEM7WRiPR8fwGGAyeGLLsISMYL26GygDRge1s76s5QZmaFZnaPmW0xs3ozW2VmV4ZtU2xmfzKzrf4228zsGTPr73+8/Yq/6YshLSyn+I896GP1kNaH483s72ZWbWY7zOwmf/0sM3vHb5t5y8yODavlTDOb49dQa2bLzexrZpYcso3zv/12SD23hqw/2czm+ceuMbPnzWxiBK/VIGA28FAH20wB/gWUAyd3FLT9VoXWuppDWxXMbKCZ/dnMdvqv+btmdnkENWaa2d1mVmlm+8zsKWBIZ48LefxkM3vCf/x+M1vd+rPx1//LzF43s/P8n1M9fkAzsxlm9pJ/3Br/NZ4Rtv+PmNmL/v5rzWy9md0dsr7d91oHNa8ws/B/Q5jZcf5reqF//ygz+4uZbfCf23r/vd+vk9ekzTYSM7vef3/XmdkiM/toG48tMrN7zex9//luNrOHzGxwyDYPAJ8DBoe8Xzf66w5pIzHPV/yfTYP/Gv3azPqGHduZ2W1mdp3/nKvN7FXz/hgM9whwmXl/6Iv0ShrZFun5NgHz8VpJXvOXfRZ4AtgXuqFzbqeZbQBuNLM9wJwO2hBaJZtZ+O+Klo6Cuf+f87+BPnihbwNwFnCPeaOVrX3JrX8ofB3YDAwATgcy8T7m/jLwG7y2l7f8x3T2sfefgD8D9+G1wPzQzPKAs/HaP/YBPwH+aWajnHMN/uNK8EaNf4XXojHdr70I+Ja/TSleS8YDwL3+sjL/OZ8DPAk8C7SG128Cr5nZMc65zR3U/DG8P45eb2f9R/Beo43Ax5xznbWEXIT3ml3h1wywzsyygFeBfsDNeK/55cBfzCzTOXdfB/u8F/gk8D28n8XH6OCPg1B+MP4XsBb4Ct5rNho4JmzTo4G7gB/gtQ1Vmdkxfs3v+c/H4f08XjWzmc65pWaWDTyP1wJ1BV771Ajg+JB9d/Rea89fgO+ZWT/n3K6Q5ZcDVcAc//4g/zndgPepQwne6zuHD1//iJjZF/BavB4A/gYcBTzMoe1g+Xjv05uACr+GrwH/NrOxzrk6vNexCO/9c77/uI4+Kbjd399vgKeB8f4+JpvZyWH/5i8HVuO1KqUBPwWe9I8d2mY2H+iL9zp0a+uVSI/hnNNNN9164I0Pg8dRwOfx/pPPAAbi9VR/DDjF3+aMkMfNxAttzr9tAf4AzGhn/23dnumktu/gBYHRYct/B+wEUvz7+4DrOtjPIfWHrNsIPNBGvd8NWZaCNxLcCIwMWX6+v+3J7RzX/Md+239dk0LWOeC2Nh6zFpgXtqyv/3x/2cnrdQ+wpYPn74DdQEEX3h+3eb/iD1p2jb+vU8KWv+S/Tslhr+UI//4YoBn4Vht1O+CKTmqZjxdwMzvY5l9ACzAlbPk//OeeF/a6VgGP+/en+3Uc08H+O3yvtfOYof7zvipkWSpeuL27g8el4H3S5ICpIcsfADaG3B8R+vrhfdq8GZgbtr9P+ts90MExk/16HXBR2DHLOnhvneLfbw3vD4Rtd7m/3flh/wbWAKkhyz7uLz8+7PGp/mt4c1dee910S6Sb2khEEsOjQDpwHnAZXpvIvLY2dM4txAtPs4Gf44XWzwELzOyzbTzkIryRsdDbDZ3UMwt4A9hgZimtN7zRxwK8ETPwRki/7n9sPsnMLKJn27HnWr9x3gjbWuB959yGkG1W+V+Hti7w2yvuNbNNQANeQL8NyAPabTXwHzsa78TGv4Y931q8kfCTOql5EF6Aa8+zQC7w09DXyP/YPyXsmB05CS/U/yts+YN4I6DjD3mE5zi8IPj3sOWPdHI8zCwTOAH4q3OutpPNNzrnlrRR8zPOud2tC5zXb/wUcLK/aA1eIL/XzC43s6EcqsvvNed9GvEq3qdGrWYBhXifngBgZmlmdrN5rVL78d47rZ8yjensOCGG+Lfw1/kx2jgp2cy+aGZLzWyfv771U6quHLPVTLzfIQ+GLX/E3/fJYctfdM41htxf5n8dFrqRv80evPe4SK+ksC2SAJxz1cA/8ULBZ/GCTbttHs65eufcXOfcjc65E/BC1nYOnbEAYLlzblHYrbMTJvvjhaTGsNuj/voC/+sn8ULTN4B3gS1m9l1r+0TNSO0Ku9/QzjLwPgnAP95TwLl4Afs0vD8qbg/drgOtYfwPHPqcz+XD59ueDDr+eP+XeLOg/Ddwd8jyk9s4Xkfy8WbACLc9ZH1bBvpfd4QtD7/fln54/9eEz2jTlrZq66jmfgDOuT3AqcBWvNfnA/N67i8J2f5w32t/Bk4ws5H+/c8Aa/0/Wlvdgddy9CBwDjADuNhf19l7J1Sbr7P/R+NBrUNmdi3ec33JP9YMvMDc1WO2av3ZH/Rahxw7/L1RFXa/9f3b1rH347WUifRK6tkWSRx/xhsBTQIu7coDnXPvm9nfgK+YWX/nXPkR1lKJ15ZwfTvrV/vHLcfry/6yeVPafQ6vJ7gCr0UhVkbhtSJ8xjl3YGTPzM6L8PGtQegmvPATrqGNZeGPH9nRBs6575tZOnCzmdU5574CLMb7oyBSVbQ96lkcUkdbWgPYAA6egnFABMfchdceMrizDfHaEMJVhdQXqpiQwOePiF/ij+5Px/tZ/N3MJjvnlh/Be+0xvB7my83sTrxPj+4I2+ZTwJ+dc7e1LvD7yLsq9HU+wH9O4X+wfQqvbelrIdt1+B7qROtrWQysaOPYRzJ1ZD5eO5VIr6SRbZHE8SLex8+/dc6taGsDM0s1s/YC0li8Eag93VDLXH9/H7QxKr7IH4k/iHNutXPuZrxw1jqDR+toWbRHxVpPkjswMmxmqXgtOeEa2qhnNV47zoR2nu+7nRx/FTC0szYQ59y38T59uMHM7nDOVYcfq5PjvAoMMbMTwpZ/Gu+Po5XtPO4NvMD8X2HLP9XJ8fBbR17HC6uH83N8FTjHzA6cIOh/f56/Lvx4Tf6o83fw/o8b18Y2bb3X2qu/Gu/E18/gnXCbgXfiZKhMDv1U4b87flptKsPr2Q5/nS/h0MGxSI9ZT2T/fhb624b/TD/pH/uQ1zoSZlaM95qtPpzHiyQCjWyLJAjnXDOdj2jn4n3E/ne8mRLK8EatPoXXw/0Td+i8xlPMrLCNfS1yB886EOoXeP9Jv2Zmv8D7jzYLL4B/1Dl3gZnl4o0C/xUvbDYCF+C1Brzg7+d9vH7Rz5tZFV4YWN1WWD9CK/FmdbndzJr9Wr7Szrbv4YW/uXhhbatzbquZfRlvNoY0vD96duKNUB6P90dHWy06rebjjbIegzcLS7ucc1/zR7i/ZWb1zrlbI32SeCfLXQ88bmbfxvv5X4Z3Mu1V/nuorWOuNrOHgO/7bRets5GcHeFxb8QLawvM7Of+cUvwToa8tpPH/gCvFWeemf0Yb/T7m3hh8/sAZnYucCVeK9UGvPfadXizkiyI8L3WkT/j/dv6HvB6WP8/eH9cfs7MluGdI3AxB8+EEhHnXIuZfQ/4vZn9Ea9f+ii8UfrwCzjNBb5pZjfjzcJyGt5JiuHeA/LN7IvAIqDOObcsfCPnXJWZ/R9wk5nV4P1+GIfXVvU63qdmh+M4/+v8w3y8SI+nsC3Su+wF/hcvKP0Ur9e4Du9j46vwZgsJ92gby8A7oa7Nj4adc3vM7Hjgu3jBaDDeCWyr+XDu7zq8YPn/8KZka/HXX+ace9LfT6WZXePv41W8GRdOxZu5ots45xrMmzP513jBqgq4H++Es/DX5Bq86emexjuh7HvArc65OeZdBfLbwO/xRhO3440Y/q2TEl7D6zc+j07Ctu9a/9i3mNl+59yPI3gMzrkaMzsZb+rDH+FNJ7easPaZdlyFN6PHjXhTvb2MNyLe3nSFocd9yx9N/z7e1IrpeH/c/DGCx75r3lzQt+NN62h4r+nJzrml/mZr8D6V+Q5e33M1/h8Ezrky/4+TDt9rnXgR72c52H8O4a7162rt8Z+DF87Dr8baKefcH/wWlK/6+1iO98dw+M/n+3gn734Fb+T4VbzpNcOvtPp7vF7uH/rbb8KbBaUt38Zrq7kab47zSrx/Dzd1dA5IJ84FFkdwnodIwjLn2mqRExGRWDLv4jiXAUc7/WKWBGBmGXh96Dc65/4QdD0iQVHPtohIfPgF3sjjJZ1sJ9JTXIV3LsCfgi5EJEgK2yIiccCfvu4zeC0aIomgHu+CPe2d2yHSK6iNREREREQkSjSyLSIiIiISJQk9G0lhYaEbMWJE0GWIiIiISAJbvHjxTudcUVvrEjpsjxgxgkWLOrvGg4iIiIjI4TOzTe2tUxuJiIiIiEiUKGyLiIiIiESJwraIiIiISJQobIuIiIiIRInCtoiIiIhIlChsi4iIiIhEicK2iIiIiEiUKGyLiIiIiESJwraIiIiISJQobIuIiIiIRInCtoiIiIhIlChsd7NFG6tYW14ddBkiIiIiEgdSgi4g0Xz/mfd4t2wPk4fm8fFpgzlv8iDyMtOCLktEREREAmDOuaBriJrp06e7RYsWxfSY5dV1PLVkK/9YXMaq7dWkJSdx+rj+XDJtCCePKSI1WR8miIiIiCQSM1vsnJve5jqF7ehwzrFi614ee7uMp5ZspbKmgcLsNM6fPJiPHzuE8YP6BlKXiIiIiHQvhe2ANTa38K/VFTy2uIx5q3bQ2OwYN7Avl0wbzAVTBlOUkx50iSIiIiJymBS248iumgaefncrjy0uY2nZHpKTjFOOLuKSY4dw+rj+pKckB12iiIiIiHSBwnacWrOjmn+8XcY/39nCjr315PZJ5bzJA7lk2hCmDM3DzIIuUUREREQ6obAd55pbHK+v3clji8t4fsV26ptaGFWUxcXThnDxtMEMzO0TdIkiIiIi0g6F7R5kb10jc97dxmNvl/HWxl2YwYlHFXLJtCGcNaGYPmlqMxERERGJJwrbPdSmyhoee3sLj79dRtmu/WSnp3D2pGIumTaEGSPz1WYiIiIiEgcUtnu4lhbHmxur+MfiMp5bto2ahmaG5vfh4qlDuGTaEIYVZAZdooiIiEivpbCdQGobmpi7fDuPvV3Gf9ZV4hzMGJnPx6cNYfakYnIyUoMuUURERKRXUdhOUFt27+ef72zhscVlrN9ZQ0ZqErMmFHPJsUM4flQhyUlqMxERERGJNoXtBOec453Nu/nH4jKeWbqVvXVNDMzN4MKpg7lk2hCO6p8ddIkiIiIiCUthuxepa2zmpZU7eGxxGfPX7KS5xXHVSSXcdPa4oEsTERERSUgdhe2UWBcj0ZWRmsy5xwzi3GMGUV5dx0/nrube+esZOzCHi6YOCbo8ERERkV4lKegCJHr652Tww4sncdzIfG56fBnLt+wJuiQRERGRXkVhO8GlJifxm8um0S8zjasfXMyumoagSxIRERHpNRS2e4HC7HTuufxYyvfWc90j79Dckrh9+iIiIiLxRGG7l5gyNI8fXDiB19bs5KfPrw66HBEREZFeQWG7F/nkR4bx6eOG8dtX1zFn2bagyxERERFJeArbvcwt541n6rA8bnx0Ke/vqA66HBEREZGEprDdy6SnJPPby48lMy2Fq/6ymD37G4MuSURERCRhKWz3QgP6ZnDP5dPYXFXLV/+2hBadMCkiIiISFQrbvdRHRuTznXPHM29VOXe9vCbockREREQSksJ2L/bZ0uFcPG0wv3xpDfNW7gi6HBEREZGEo7Ddi5kZP7xoEhMH9+WGvy1hw86aoEsSERERSSgK271cRqp3wmRKknHlnxdRU98UdEkiIiIiCUNhWxjSL5NfXTqNdRX7+Po/luKcTpgUERER6Q4xC9tmdr+ZlZvZ8nbWX2Zm7/q3/5jZ5JB1s8xstZmtNbNvxarm3uTE0YV8c9ZY5izbzr3z1wddjoiIiEhCiOXI9gPArA7WbwBOds4dA/wAuA/AzJKB3wCzgfHApWY2Prql9k5XnlTCOccM5CdzV/HamoqgyxERERHp8WIWtp1z84GqDtb/xzm3y7+7EBjifz8DWOucW++cawAeAS6IarG9lJnxk0uOYXT/HK59+B02V9UGXZKIiIhIjxavPdtfAJ7zvx8MbA5ZV+Yva5OZXWlmi8xsUUWFRme7Kis9hXs/cyzNLY6rH1xMXWNz0CWJiIiI9FhxF7bN7FS8sP3N1kVtbNbuGXzOufucc9Odc9OLioqiUWLCG1GYxZ2fmsJ72/Zy8+PLdMKkiIiIyGGKq7BtZscAvwcucM5V+ovLgKEhmw0Btsa6tt7mtLEDuOH0o3n8nS386T8bgy5HREREpEeKm7BtZsOAx4HPOOfeD1n1FjDazEaaWRrwKeCpIGrsba497SjOGDeA255dyZsb2m23FxEREZF2xHLqv4eBBcAYMyszsy+Y2dVmdrW/yXeBAuBuM1tiZosAnHNNwDXA88BK4O/OuRWxqrs3S0oy/u+TkxmWn8mX/rqY7Xvqgi5JREREpEexRO7HnT59ulu0aFHQZfR4a3ZUc+Fv/s3oATn87aqZpKckB12SiIiISNwws8XOueltrYubNhKJX6MH5PCzT0xmyebd3PrUe0GXIyIiItJjKGxLRGZPGsgXTxnFw29+wCNvfhB0OSIiIiI9gsK2ROzGM8fw0dGFfPfJFbzzwa7OHyAiIiLSyylsS8SSk4y7PjWV/n3T+eKDb1NRXR90SSIiIiJxTWFbuqRfVhr3fuZYdu9v4MsPvU1jc0vQJYmIiIjELYVt6bIJg3L50cXH8OaGKn44Z2XQ5YiIiIjErZSgC5Ce6cKpg1latps//nsjxwzJ5aKpQ4IuSURERCTuaGRbDtvNZ4/juJH53PT4MlZs3RN0OSIiIiJxR2FbDltqchK//vQ08vqkcdVfFrOrpiHokkRERETiisK2HJGinHR++5ljKd9bz3WPvENzS+JekVRERESkqxS25YhNGZrH9y+YwGtrdvKzF1YHXY6IiIhI3FDYlm7xqRnDuHTGMO751zqeW7Yt6HJERERE4oLCtnSbW88fz9Rhedz46FLW7KgOuhwRERGRwClsS7dJT0nmnsuOpU9aClf+ZTF76xqDLklEREQkUArb0q2KczO4+7JpbK6q5at/W0KLTpgUERGRXkxhW7rdjJH5/O8543hpZTm/enlt0OWIiIiIBEZhW6Lic8eP4OKpg/nlvPd5edWOoMsRERERCYTCtkSFmfHDiycxfmBfrn9kCRt21gRdkoiIiEjMKWxL1GSkJvPby48lJcm46i+LqKlvCrokERERkZhS2JaoGpqfya8uncba8n1847F3cU4nTIqIiEjvobAtUXfi6EK+MWssz767jfvmrw+6HBEREZGYUdiWmLjqpBLOmTSQH89dxTsf7Aq6HBEREZGYUNiWmDAzfvzxY0hJSmKOLucuIiIivYTCtsRMdnoKU4flsXB9VdCliIiIiMSEwrbE1MySAlZs3cOe/bqUu4iIiCQ+hW2JqdJRBbQ4eHODRrdFREQk8SlsS0xNHZZHekoSC9ZVBl2KiIiISNQpbEtMpackc+zwfixYr7AtIiIiiU9hW2KutKSAVdv3sru2IehSRERERKJKYVtibuaoApxDs5KIiIhIwlPYlpibPCSPPqnJLFQriYiIiCQ4hW2JubSUJKaP6KeTJEVERCThKWxLIGaWFLB6RzWV++qDLkVEREQkahS2JRClowoAeEPzbYuIiEgCU9iWQEwanEtWWrJaSURERCShKWxLIFKTk5g+Il/zbYuIiEhCU9iWwJSOKmBt+T7Kq+uCLkVEREQkKhS2JTClJV7ftubbFhERkUSlsC2BmTCoLznpKerbFhERkYSlsC2BSUlOYsbIfN5Q37aIiIgkKIVtCdTMkgLW76xhx171bYuIiEjiUdiWQLXOt61WEhEREUlECtsSqHED+9I3Q33bIiIikpgUtiVQyUnGcSUFmm9bREREEpLCtgSutKSAD6pq2bJ7f9CliIiIiHQrhW0JXGvf9kK1koiIiEiCUdiWwI0ZkEO/zFS1koiIiEjCUdiWwCUlGceNLNBJkiIiIpJwFLYlLpSOKmDL7v1srqoNuhQRERGRbqOwLXFB822LiIhIIlLYlrgwun82BVlpLFTftoiIiCQQhW2JC2bGTH++bedc0OWIiIiIdIuYhW0zu9/Mys1seTvrx5rZAjOrN7Mbw9ZtNLNlZrbEzBbFpmKJtZmjCti2p45NlerbFhERkcQQy5HtB4BZHayvAq4DftbO+lOdc1Occ9O7uzCJD6Ulft+2WklEREQkQcQsbDvn5uMF6vbWlzvn3gIaY1WTxJdRRVkU5aTrJEkRERFJGD2lZ9sBL5jZYjO7MuhiJDrMjNKSAhaqb1tEREQSRE8J2yc456YBs4Evm9lJ7W1oZlea2SIzW1RRURG7CqVbzCwpoLy6nvU7a4IuRUREROSI9Yiw7Zzb6n8tB54AZnSw7X3OuenOuelFRUWxKlG6iebbFhERkUQS92HbzLLMLKf1e+BMoM0ZTaTnG1GQSXHfDJ0kKSIiIgkhJVYHMrOHgVOAQjMrA24BUgGcc781s2JgEdAXaDGzG4DxQCHwhJm11vuQc25urOqW2DIzSkcV8NqaCpxz+D93ERERkR4pZmHbOXdpJ+u3A0PaWLUXmByVoiQulZYU8MQ7W1hbvo/RA3KCLkdERETksMV9G4n0Pgf6ttVKIiIiIj2cwrbEnSH9+jA4r49OkhQREZEeT2Fb4o6ZMdOfb7ulRfNti4iISM+lsC1xqXRUAbtqG1m9ozroUkREREQOW5fCtplNN7NP+lPwtU7LF7OTLKX30HzbIiIikggiCttmNsDM3gDeBB4CBvir/g/4eZRqk15scF4fhuVnslAnSYqIiEgPFunI9i+A7UABUBuy/FG8i8yIdLuZJfm8saFKfdsiIiLSY0Uatk8Hvu2c2xW2fB0wrHtLEvGUjipgz/5G3tu2N+hSRERERA5LpGG7D9DQxvIioK77yhH5UGlJIYBaSURERKTHijRszweuCLnvzCwZ+CYwr7uLEgEozs1gZGGWTpIUERGRHivSmUS+AbxqZh8B0vFOipwA5AInRKk2EWaWFPDM0q00tziSkyzockRERES6JKKRbefce8Ak4D/AC0AG3smRU51z66JXnvR2M0vyqa5vYsXWPUGXIiIiItJlEY1sm9kwYLNz7pa21jnnPuj2ykSA0pIP59s+ZkhesMWIiIiIdFGkPdsb8E6GPIiZFfjrRKKif98MRhVlsUAnSYqIiEgPFGnYNqCtyY6z0WwkEmWlowp4a0MVjc0tQZciIiIi0iUdtpGY2V3+tw64w8xCL2iTDMwAlkSnNBFPaUkhDy78gGVb9jBtWL+gyxERERGJWGc925P8rwaM4+C5thuAt4GfRaEukQOOK8kHvPm2FbZFRESkJ+kwbDvnTgUwsz8C1zvndCk/ibnC7HSOHpDNgnWVfOmUo4IuR0RERCRikU79998K2hKk0pICFm3cRUOT+rZFRESk54j0BEnM7FQzu8/M5prZy6G3aBYoAt5Jkvsbm3m3bHfQpYiIiIhELKKwbWZXAM8BOcApQAXQD5gGvBel2kQOOG5kAWbo0u0iIiLSo0Q6sn0jcI1z7lKgEbjJOTcVeBDYF63iRFr1y0pjbHFfFm5Q2BYREZGeI9KwXQK85H9fjze/NsCvgSu6uSaRNs0syWfRxl3UNzUHXYqIiIhIRCIN25V4LSQAW4CJ/vcFQJ/uLkqkLaUlBdQ3tbDkg91BlyIiIiISkUjD9mvAmf73fwfu8qcDfBh4MRqFiYQ70LetS7eLiIhIDxFp2L4GL1gD3AH8FG9U++/A/0ShLpFD5GamMmFQX50kKSIiIj1GZ1eQBMA5VxXyfQvw46hVJNKB0pIC/rRgE3WNzWSkJgddjoiIiEiHIp5nG8DM8s1srJmND71FqziRcKWjCmhoauHtD3YFXYqIiIhIpyIa2TazqcAfgUmtiwAX8lVDjBIT00fkk2SwcF0lx48qDLocERERkQ5FFLaB+/FmIbke2IEXsEVirm9GKpMG5+okSREREekRIg3bo4FPOOfWRrMYkUjMHFXA/a9vYH9DM33S9KGKiIiIxK9Ie7ZfB8ZFsxCRSJWWFNDY7Fi0qarzjUVEREQCFOnI9heA35tZCbAc75LtBzjn5nd3YSLt+ciIfJKTjIXrK/no6KKgyxERERFpV1faSKYAZ7WxTidISkxlpadwzJBczbctIiIicS/SNpJ7gXl4s5H0B4pCbv2jU5pI+0pLCni3bA819U1BlyIiIiLSrkjD9hDgFufcCufcTudcZegtmgWKtKV0VAFNLY63NqpvW0REROJXpGH7ReDYaBYi0hXTh+eTmmyaAlBERETiWqQ923OBn5vZMcAyDj1B8vHuLkykI33SkpkyNI+F6zWyLSIiIvEr0rB9t//15jbW6QRJCcTMkgLu/tc6qusayclIDbocERERkUNE1EbinEvq4KagLYEoLSmgWX3bIiIiEsci7dkWiTvThvcjLTlJUwCKiIhI3Gq3jcTMvgrc7Zyr879vl3Pu/7q9MpFOZKQmM3VYnk6SFBERkbjVUc/2tcCfgDr/+/Y4QGFbAlE6qoA7561hT20juZnq2xYREZH40m4biXNuZOsc2v737d1KYleuyMFKSwpwDt5U37aIiIjEoYh6ts3ss2aW3sbyNDP7bPeXJRKZKcPySE9R37aIiIjEp0hPkPwjkNvG8hx/nUgg0lOSOXZ4P/Vti4iISFyKNGwbXm92uGHAnu4rR6TrSksKWLltL7tqGoIuRUREROQgHV7UxsyW4YVsB7xqZk0hq5OB4cCc6JUn0rnSUQXwIryxoZJZEwcGXY6IiIjIAZ1dQfIf/teJwLPAvpB1DcBG4LHuL0skcscMyaNPajIL11cpbIuIiEhc6TBsO+e+B2BmG4FHnHP1sShKpCvSUpKYPqKfTpIUERGRuBNpz/YcoG/rHTObZGa3mdml0SlLpGtmlhSwekc1lfv096CIiIjEj0jD9t+B8wDMrBCYD1wE/NbMvhal2kQiVjqqAICF6zXftoiIiMSPSMP2McBC//uPA2udcxOAzwJXRaMwka6YNDiXrLRkFqzfGXQpIiIiIgdEGrb78OHJkWcAT/nfvw0MjWQHZna/mZWb2fJ21o81swVmVm9mN4atm2Vmq81srZl9K8KapRdJTU7iIyPz1bctIiIicSXSsL0GuNjMhgJnAi/4ywcAuyPcxwPArA7WVwHXAT8LXWhmycBvgNnAeOBSMxsf4TGlF5lZUsC6ihrKq+uCLkVEREQEiDxsfw/4Md5Ufwudc2/4y88C3olkB865+XiBur315c65t4DGsFUz8NpW1jvnGoBHgAsirFt6kdIS9W2LiIhIfIkobDvnHse7WuR0Dh6dfgn4ahTqCjUY2Bxyv8xf1iYzu9LMFpnZooqKiiiXJvFkwqC+5KSnqJVERERE4kakI9s453Y4594BiswsyV/2hnNuVdSq81hb5bS3sXPuPufcdOfc9KKioiiWJfEmJTmJGSPzWbheYVtERETiQ0Rh28xSzewnZlYNbAFG+Mt/bGZfimJ94I1kh56EOQTYGuVjSg9VOqqADTtr2L5HfdsiIiISvEhHtm/Bm2f7ciD0qiFvAld0c03h3gJGm9lIM0sDPsWHs6GIHGTmgb5tjW6LiIhI8Dq8XHuIS4HPO+deNbOWkOXLgaMj2YGZPQycAhSaWRlegE8FcM791syKgUV4V6psMbMbgPHOub1mdg3wPJAM3O+cWxFh3dLLjBvYl74ZXt/2hVPbbe0XERERiYlIw/YgYFM7j49oH865Di/t7pzbjtci0ta6OXiXjBfpUHKScVxJAQs0si0iIiJxINI2khXASW0s/y9gcfeVI3LkSksK+KCqli279wddioiIiPRykY5sfw940L+oTTLwCTMbC3waOCdaxYkcjtJRXt/2gnWVfPzYNj8sEREREYmJSOfZfhpvFPtMoAWv33o0cJ5z7qXolSfSdWMG5NAvM1UnSYqIiEjgIh3Zxjn3PN5JiiJxLSnJOG5kgS5uIyIiIoGL+KI2Ij1J6agCtuzez+aq2qBLERERkV5MYVsSUmjftoiIiEhQFLYlIY3un01hdpqmABQREZFAKWxLQjLz59teV4lzLuhyREREpJdS2JaEVVpSwPa9dWyqVN+2iIiIBKPDsG1m/zGzvJD7d5hZfsj9QjP7IIr1iRy2mSV+37ZaSURERCQgnY1szwTSQu5/GcgLuZ8MDO7mmkS6xaiiLIpy0nWSpIiIiASmq20kFpUqRKLAzCgtKWDBevVti4iISDDUsy0JrXRUARXV9ayrqAm6FBEREemFOgvbzr+FLxPpEUr9vm1dul1ERESC0Nnl2g140Mzq/fsZwO/MrHV6h/SoVSbSDYYXZFLcN4MF6yu5fObwoMsRERGRXqazsP2nsPsPtrHNn7upFpFuZ2aUjirgtTUVOOcw02kHIiIiEjsdhm3n3H/HqhCRaCktKeCJd7awpnwfRw/ICbocERER6UUO6wRJMxtmZuNNw4TSA5SO8ufb1hSAIiIiEmOdXdTmk2b2xbBl9wAbgGXAcjPTPNsS14bmZzI4r4/CtoiIiMRcZyPb1wItrXfM7AzgKuC7wCf8x38natWJdJOZJQW8saGSlhZNpiMiIiKx01nYHgO8EXL/AuAF59ztzrnHga8BZ0arOJHuUjqqgF21jazeUR10KSIiItKLdBa2s4GqkPvHAy+H3F8BFHd3USLdTX3bIiIiEoTOwnYZMAHAzPoCk4B/h6wvAPZFpzSR7jM4rw/D8jNZoIvbiIiISAx1FrYfBe4ys88Dvwe2AQtD1k8HVkWpNpFuVVpSwBvrK2lW37aIiIjESGdh+wfAAuDneKPalzvnmkPWXwo8G6XaRLpV6agC9tY1sXLb3qBLERERkV6is4va7Ac+28H6U7u9IpEomVni9W0vXF/JxMG5AVcjIiIivcFhXdRGpCcqzs1gZGGWTpIUERGRmOlwZNvMnopkJ86587unHJHomllSwDNLt9LU3EJKsv7WFBERkejqLG2ci9erXdnJTaRHKB1VQHV9Eyu2qm9bREREoq/DkW3gZ8DlwEnAH4EHnHNlUa9KJEpmluQDXt/25KF5wRYjIiIiCa/DkW3n3DeAocBX8Kb5W2Nmz5nZx80sNRYFinSn/jkZjCrK0nzbIiIiEhOdNq0655qdc0855y4ERgKvALcBW8wsO8r1iXS70lEFvLWhisbmlqBLERERkQTX1TPEsoA8vMu47wN0dRDpcUpLCqlpaGbZlj1BlyIiIiIJrtOwbWZ9zOxzZjYfWAYMBz7nnCtxztVEvUKRbtbat60pAEVERCTaOgzbZnYfsB24FngYGOScu8w5Ny8WxYlEQ0F2OmMG5LBQfdsiIiISZZ3NRvI/wAfANmA2MNvMDtlI82xLTzOzJJ+/LyqjoamFtBTNty0iIiLR0VnY/jPqy5YEVDqqgD8t2MS7ZbuZPiI/Zseta2xm5756Kqr92756dlY3ULGvjorqevL6pHH7RRN1wR0REZEE0WHYds5dEaM6RGLquJEFmHl920catptbHFU1DQfC84EgfeB+3YH7e+ua2txHflYaeZmprK+o4ejiHL5w4sgjqklERETiQ2cj2yIJqV9WGmOL+7JgfSXXnj76kPXOOarrmw4Ozu2E6cp99bS08flPdnoKRTnpFGWnM6Y4hxOPKvTut96yMyjKSacgO43U5CScc3z+gbf4+QurmTWxmMF5fWLwSoiIiEg0KWxLr1VaUsBf39jEL196v80wXd906DzcqclGUbYXlgflZTB5aO6B+6EhujAnjcy0rv3zMjO+f8FEzvzFfG55cjm/++x02jpHQkRERHoOhW3ptc4Y15/7/72BO+etIT8z7UBYHlmQFRaeP/w+t09qVAPw0PxMvvqxo7l9zkrmLt/O7EkDo3YsERERiT5zLnHPf5w+fbpbtGhR0GVIHNtb10if1GRS4+iExKbmFi74zb+pqK7npa+dTN+M1KBLEhERkQ6Y2WLn3PS21sVPwhAJQN+M1LgK2gApyUnccfEkdu6r56dzVwddjoiIiByB+EoZIgLAMUPy+NzxI3jwjU0s3rQr6HJERETkMClsi8Spr505huK+Gdz8+DIamw89WVNERETin8K2SJzKTk/h+xdMZPWOan732vqgyxEREZHDoLAtEsc+Nn4AsyYUc+dLa9hUWRN0OSIiItJFCtsice7W8yeQmpzE//5zOYk8e5CIiEgiUtgWiXPFuRl8Y9YYXluzkyeXbA26HBEREekChW2RHuCy44YzZWgeP3jmPXbXNgRdjoiIiERIYVukB0hOMu64eBJ79jfywzkrgy5HREREIqSwLdJDjBvYl//5aAl/X1TGwvWVQZcjIiIiEVDYFulBrj99NEPz+3DzE8uob2oOuhwRERHpRMzCtpndb2blZra8nfVmZneZ2Voze9fMpoWs22hmy8xsiZktilXNIvGmT1oyt184ifUVNdz9yrqgyxEREZFOxHJk+wFgVgfrZwOj/duVwD1h6091zk1xzk2PTnkiPcNJRxdxwZRB3POvdawt3xd0OSIiItKBmIVt59x8oKqDTS4A/uw8C4E8MxsYm+pEepbvnDuePmnJ3PzEMlpaNPe2iIhIvIqnnu3BwOaQ+2X+MgAHvGBmi83syo52YmZXmtkiM1tUUVERpVJFglWYnc7NZ4/lzQ1VPLp4c+cPEBERkUDEU9i2Npa1Dtmd4Jybhtdq8mUzO6m9nTjn7nPOTXfOTS8qKopGnSJx4b+mD2XGyHx+OGcVO/fVB12OiIiItCGewnYZMDTk/hBgK4BzrvVrOfAEMCPm1YnEGTPjhxdNYn9DMz945r2gyxEREZE2xFPYfgr4rD8ryUxgj3Num5llmVkOgJllAWcCbc5oItLbHNU/my+eMoonl2zl1ffVNiUiIhJvYjn138PAAmCMmZWZ2RfM7Gozu9rfZA6wHlgL/A74kr98APC6mS0F3gSedc7NjVXdIvHuS6eOoqQoi//95zL2N2jubRERkXhiziXuTAbTp093ixZpWm5JfAvXV/Kp+xZy9cmj+NbssUGXIyIi0quY2eL2pqeOpzYSETlMM0sK+K/pQ/jda+tZuW1v0OWIiIiIT2FbJEHcfPY48vqkctPjy2jW3NsiIiJxQWFbJEHkZabxnXPHs2Tzbv76xqagyxEREREUtkUSygVTBvHR0YX8ZO5qtu+pC7ocERGRXk9hWySBmBm3XTiRxuYWbnlKM2SKiIgETWFbJMEML8ji+jNG8/yKHbywYnvQ5YiIiPRqCtsiCej/fbSEscU53PLUCvbVNwVdjoiISK+lsC2SgFKTk7jj4kls31vHz55fHXQ5IiIivZbCtkiCmjqsH5+ZOZw/LdjI0s27gy5HRESkV1LYFklgXz9rDP1z0rnp8WU0NbcEXY6IiEivo7AtksByMlL53vkTeG/bXu7/94agyxEREel1FLZFEtxZE4o5Y9wAfvHiGjZX1QZdjoiISK+isC2S4MyM718wgSSD7zy5HOd0KXcREZFYUdgW6QUG5fXha2eO4V+rK3jm3W1BlyMiItJrKGyL9BKfO34ExwzJ5XtPv8ee2sagyxEREekVFLZFeonkJOOHF01iV20DP5q7KuhyREREegWFbZFeZOLgXD5/wggefvMD3tpYFXQ5IiIiCU9hW6SX+crHjmZwXh9ufnwZDU2ae1tERCSaFLZFepnMtBRuu3Aia8r3ce+r64IuR0REJKEpbIv0QqeO7c85xwzkV6+sZX3FvqDLERERSVgK2yK91C3njSc9JYlvP6G5t0VERKJFYVukl+qfk8G3Zo9lwfpKHnt7S9DliIiIJCSFbZFe7NKPDGP68H7c/ux7VNU0BF2OiIhIwlHYFunFkpKMH148iX31Tdz27HtBlyMiIpJwFLZFermjB+Rw1UmjePztLfx77c6gyxEREUkoCtsiwjWnHcWIgky+/cQy6hqbgy5HREQkYShsiwgZqcncftEkNlbW8uuX1wZdjoiISMJQ2BYRAE44qpCLpw3mt6+u4/0d1UGXIyIikhBSgi5AROLH/54znldWlXPT48t49KpSkpIsZsduam5h9/5GdtU0UFnTwK6aBqpqG6ja533dXdvIqWP7c/7kQTGrSURE5EgpbIvIAflZaXz7nPHc+OhSHn7rAy47bvhh7cc5R01D88HBufUWEqB3hSzbs7+R9q6tk52eQnpKEk+8s4U3N1TynXPHk56SfATPVEREJDYUtkXkIJdMG8zjb5fxo+dW8bFxA+jfN4PG5hZ21X4YmHfVNFJVU09VTSO7aj8M1KEj0g1NLW3uPzXZ6JeZRn6Wdxs3qC/5Iff7ZaVRkJVGv8w0CrLTyMtMJT0lmabmFn76/Grunb+e5Vv2cs/l0xiY2yfGr46IiEjXWCJfpnn69Olu0aJFQZch0uNs2FnDWb+cT1ZaMs0tjr11Te1u2zcj5UBQzvdDcn52GvmZIcE55GtOegpmh9+eMmfZNr7+6FIyUpP51aencvyowsPel4iISHcws8XOueltrlPYFpG2PPFOGS+vqjgwypyflUp+Vjr9slIp8L/2y0wjNTn251mvLa/mqr8sZsPOGr45ayxXnlRyRAFeRETkSChsi0jC2VffxNcfXcpzy7cze2IxP/3EZLLT1RknIiKx11HY1tR/ItIjZaencPdl07j57LE8v2I7F/z6ddaWa8pCERGJLwrbItJjmRlXnjSKB//nOHbXNnLBr//NnGXbgi5LREQCEo8dGwrbItLjHT+qkGeuO5Gji3P40l/f5o45K2lqbns2FBERSRxNzS28uaGKHz23ilm/nM9Db34QdEmHUIOjiCSEgbl9eOTKmdz2zErunb+epWW7+fWnp1GYnR50aSIi0o127qvn1dUVvLK6nPnvV7C3romUJGP6iH5x+TtfYVtEEkZ6SjI/uHAiU4bmcfMTyzj3rte5+/JpTBvWL+jSRETkMLW0OJZv3cPLq8p5ZXUF75btxjkozE7nrAnFnDa2PyeMLqRvRmrQpbZJs5GISEJasXUPVz+4mO176vjuueO5fOZwTQ8oItJD7NnfyOtrdvLK6nL+tbqCnfvqMYMpQ/M4dUx/Th3TnwmD+pKUFB+/1zuajUQj2yKSkCYMyuWZaz7KDX97h+88uYJ3Nu/m9gsn0SdNl3kXEYk3zjnWlO/zRq9XlbNo0y6aWxy5fVI56egiThtbxEmjiyiIwzaRzihsi0jCys1M5Q+f+wh3vbyGO+etYeW2au69/FiGFWQGXZqISK+3v6GZ/6zzRq9fWVXBlt37ARg3sC9XnVTCqWP7M3VoHikBXDytO6mNRER6hVdWlXP9I+8AcOenpnLq2P4BVyQi0vt8UFnLy6t28MrqChasr6ShqYXMtGROOKqQ08b255QxRQzM7RN0mV2mK0iKiOD9kr/6wcWs3L6X604bzfWnj46bfj8RkUTU0NTCWxureGVVOS+vLmd9RQ0AJYVZnDKmP6eOLWLGyHzSU3p2i596tkVEgGEFmTz2xeP59j+Xcee8NbxbtptffHIKeZlpQZcmIpIwduyt45VV5byyupzX1+ykpqGZtOQkjivJ5zMzh3PqmP6MKMwKusyYUdgWkV6lT1oyP//EZKYO68f3n17Beb9+nd9efiwTBuUGXZqISI/U3OJYsnmXf3JjBe9t2wvAwNwMLpg6mNPG9Of4owrITOudsVNtJCLSa739wS6+9ODb7Kpt4IcXTeKSY4cEXZKISI9Q29DEvJXlvLRyB6++X8Hu2kaSk4xjh/Xj1LFee8iYATm9ZspVtZGIiLRh2rB+PHPdiVz70Dt87dGlLNm8m++cO560lJ595ruISDQ0NLXw2poKnlq6lRff20FtQzMFWWmcNrY/p43tz0ePKiI3Mz4vLBMkhW0R6dUKs9P5yxdm8NMXVnPvq+tZvnUPd182rUeeDS8i0t1aWhxvbqziySVbeW75NnbXNpLbJ5ULpgzm/MmDmDEyn2SdaN4hhW0R6fVSkpO4afY4pgzJ48ZHl3LuXa/zq09P5fhRhUGXJiISc845lm/Zy1NLt/D00m1s31tHn9RkzpwwgPMnD+Kjo4v0CWAXKGyLiPhmTxrI6AE5XPWXRVz++zf45qyxXHlSSa/pORSR3m1dxT6eWrKVp5ZuZcPOGlKTjZOPLuLmc8Zxxrj+vfYExyOlV01EJMRR/bN58poT+cY/lnLHc6tYsnk3P/3EZLLT9etSRBLPtj37eXqpF7CXb9mLGcwcWcCVJ5Uwe2KxpkbtBjH738PM7gfOBcqdcxPbWG/AncDZQC1whXPubX/dLH9dMvB759yPYlW3iPQ+2ekp/ObT0/jda+v50XOreH9HNfd+5liO6p8TdGkiIkdsV00Dc5Zv48klW3lrYxXOweQhufzvOeM495hBFOdmBF1iQonZ1H9mdhKwD/hzO2H7bOBavLB9HHCnc+44M0sG3gc+BpQBbwGXOufe6+yYmvpPRI7Uf9bt5LqH32F/QzM//cRkzp40MOiSRES6rKa+iRff28GTS7bw2pqdNLU4RhVlccGUwZw3eRAje9FFZqIhLqb+c87NN7MRHWxyAV4Qd8BCM8szs4HACGCtc249gJk94m/badgWETlSx48q5OlrT+RLf32bL/31ba46qYSvnzWGlGSdHCQi8a2+qZlXV3tT9b20cgd1jS0Mys3gCyeO5Pwpgxg/sK/OSYmBeGpCHAxsDrlf5i9ra/lxMaxLRHq5gbl9+NuVpdz27HvcO389S8t28+tPT6MwOz3o0kSOSE19E2W79tMvM5WinHQFrwTQ3OJ4Y33lgan69tY1kZ+VxsePHcL5kwczfXg/kjRVX0zFU9hu6yfvOlje9k7MrgSuBBg2bFj3VCYivV5aShLfv2Aik4fkcfMTyzj3rte59fwJnDl+gP7jkri2t66RTTtr2VhZw6bKGjZW1h74WlFdf2C7zLRkhhdkMbIwkxEFWYwozGJkYRYjCrIozE5TEI9jzjmWlu3hySVbePbdbZRX15OVlsxZE4o5b8ogTjyqkFR9GheYeArbZcDQkPtDgK1AWjvL2+Scuw+4D7ye7e4vU0R6s0uOHcLYgTlc9/A7XP3gYsYN7Mv1p49W6JbAOOfYXdvoh+naQ75W1TQctP2AvukML8ji1DFFDC/IYki/PuzZ38iGnTVs3FnDym3VvLBiB00tH/4Xmp2ewvCCTC+AHwjiXijPz1IQD8qaHdU85c8ksqmylrTkJE4ZU8QFUwZz2tj+9ElLDrpEIYYnSAL4PdvPtHOC5DnANXx4guRdzrkZZpaCd4Lk6cAWvBMkP+2cW9HZ8XSCpIhES1NzC0+/u5W75q1lw84axhbncMMZozlzfLFCd5xpbnHsb2wmMzW5x/5snHPs3NdwyMj0pkovIO+tazqwrRkMyu3D8IJMhhdkMaL1a2Emw/IzI5orubG5hS279rPB3/+mylovjFfWULZrP80hQTwnI+XDkXA/kI/wR8T7ZaYqiHezsl21PL10G08u2cKq7dUkmXduyfmTB3HWxGJy++hy6UHo6ATJWM5G8jBwClAI7ABuAVIBnHO/9af++zUwC2/qv/92zi3yH3s28Eu8qf/ud87dHskxFbZFJNpaQ/ev5q1lvUJ33GhoamHB+krmLt/GCyt2UOmP7manp5CVnkx2egrZGalk+99npaeQk55CdkbY92ne15z0VO9xGSlkp6fQJzW520NkS4ujvLr+0HaPnd7XmobmA9smGQzpl+mNNhdkHfg6ojCTIf0yyUiN3ohmQ1MLZbu8kfMNfm2tQXzLrv2E5HD6ZqR4rSh++P7w+8y4nr/ZOUdjs6OhuYWGphYaQ782t9DY5K1rbA5f52gM2c5b7g7a7sDjmlzYdi0HjtkYvixkn7trGwGYOiyP8ycP4pxjBtI/R1P1BS0uwnYQFLZFJFaaWxxPL93KXfPWHAjd158+mrMmKHTHSl1jM6++X8Hzy7fz0sod7K1rIistmVPH9mfi4Fxq65vYV9/MvvpG9rV+X9dITX0z++qbqK5rpKah+aBR2/YkmRfcs/1QfiCwHxTQvWWt61tvWekp7Nkf0vbhjxxvqqqhrrHlwDFSkoxh+ZkHj1D7oXVwXp+4vFx2fVMzm6v2s9EP3xv9PxY27Kxh6579hEaOvMzUDwO4/4fCiIIshuZn4tyHQbe+6cOv9U3NXmANWf7hdgevq/fX1Te2btN8yOM+XOc9PnRdd8cjM0hLTvJuKUmkJieRmmKkhi9LbmtZEmn+tgNz+3DOpIEMK8js3gLliChsi4jEiEJ3bFXXNfLK6grmLt/GK6sq2N/YTG6fVM4YN4DZE4s5cXRhl0Z5nXPUNbZQXe+H8LomP5g3+SG9dZm3vrquiRp/fXW9/33rsoamTgNbWkoSw/PDw7QXOgfmZiTUFJN1jc1srvqwHWWj/4fGxp01bN1T163HSktJIt2/pSUnkZ6afCC8pqd4Xz/8/uB16Slh2yV726QmW1j49YJxWvLBy9JCQnRqsref1OQkkvXvP6EpbIuIxFhzi+OZd7dy57w1rK+oYcyAHK4/YzSzFLqP2K6aBl5cuYPnl2/ntTU7aWhuoTA7nbMmDGDWxGJmlhTExcwLLS2O2sZmauqbqPZDe+v3fTNSGFGYRXHfDL0f8IJ4a1/4lt37STY6DMjpKckHgm16alLIdl4oVp+4xJrCtohIQBS6u0d5dR3Pr/AC9oL1lTS3OAbn9eGsCcXMnlTMtGH9NHIoIoFR2BYRCVhr6L5r3hrW+aH7utNHM3uiQnd7NlfV8vyK7cxdvp3FH+zCORhZmMWsicXMnljMpMG5GsEUkbigsC0iEifCQ/fRA7K5/vSjFbp96yr2MXe5F7CXbdkDwNjiHGZPHMisicUcPSBbAVtE4o7CtohInGlucTy7bBt3zVvD2vJ9HD0gm+tOH83ZEwf2qtDtnGPltmrmLt/G3BXbeX/HPgAmD81j9sRiZk0oZkRhVsBVioh0TGFbRCRO9cbQ3dLiWFK2m+eXb2fuiu1sqqwlyeAjI/KZNbGYsyYUMyivT9BliohETGFbRCTONbc45izbxp1+6B7d3w/dkwYmxIl/zS2ONzdUMXf5Np5fsYPte+tISTKOP6qQ2ROL+dj4ARRmpwddpojIYVHYFhHpIVpD913z1rCmh4fuhqYW/rNuJ3OXb+fF97yrOKanJHHy0UXMmljM6WMHkJupS0uLSM+nsC0i0sO0tDjmLN/GnS/Ff+iua2xmx946tu+pY0d1PTv21PHetr28tHIH1f5VHE8bN4BZE4o5ZUwRWekpQZcsItKtFLZFRHqolhbHc8u3c+e893l/xz6O8kP3OTEI3S0tjsqaBnbsrfPC9N46duzxvm7fW0+5v2x3beMhj+2Xmcrp/lUcTziqa1dxFBHpaRS2RUR6uO4O3bUNTd5I9N76A0Hau996q6e8uo7G5oP/j0gyKMxOpzg3gwF9MxjQN53ivt73Hy7LoG9GiqboE5FeQ2FbRCRBtLQ45q7Yzp0vrWH1jmpGFWVx3emjOfeYQSQnGc0tjsp99QeF5+17Q0K1PzJdXdd0yL6z01O88JybwYCcDAbkZoQF6XSKstNJiYNLoYuIxBOFbRGRBBMeugfmZuAcVOyrp7nl4N/ryUlG/5x0LzT7o9GtQbq4rxeqB/TNIFu91CIih6WjsK3frCIiPVBSknH2pIHMmlDM8yu2888lW+ibkeq1cRwUpNMpyEqPu5MqRUR6C4VtEZEeLCnJmD1pILMnDQy6FBERaYMa70REREREokRhW0REREQkShS2RURERESiRGFbRERERCRKFLZFRERERKJEYVtEREREJEoUtkVEREREokRhW0REREQkShS2RURERESiRGFbRERERCRKFLZFRERERKJEYVtEREREJEoUtkVEREREosScc0HXEDVmVgFsCroOOUQhsDPoIkS6gd7Lkij0XpZEEdR7ebhzrqitFQkdtiU+mdki59z0oOsQOVJ6L0ui0HtZEkU8vpfVRiIiIiIiEiUK2yIiIiIiUaKwLUG4L+gCRLqJ3suSKPRelkQRd+9l9WyLiIiIiESJRrZFRERERKJEYVtixsw2mtkyM1tiZouCrkckUmZ2v5mVm9nykGX5Zvaima3xv/YLskaRSLTzXr7VzLb4v5uXmNnZQdYoEgkzG2pmr5jZSjNbYWbX+8vj7nezwrbE2qnOuSnxNi2PSCceAGaFLfsWMM85NxqY598XiXcPcOh7GeAX/u/mKc65OTGuSeRwNAFfc86NA2YCXzaz8cTh72aFbRGRTjjn5gNVYYsvAP7kf/8n4MJY1iRyONp5L4v0OM65bc65t/3vq4GVwGDi8HezwrbEkgNeMLPFZnZl0MWIHKEBzrlt4P3SB/oHXI/IkbjGzN7120wC/9hdpCvMbAQwFXiDOPzdrLAtsXSCc24aMBvv456Tgi5IRES4BxgFTAG2AT8PtBqRLjCzbOAx4Abn3N6g62mLwrbEjHNuq/+1HHgCmBFsRSJHZIeZDQTwv5YHXI/IYXHO7XDONTvnWoDfod/N0kOYWSpe0P6rc+5xf3Hc/W5W2JaYMLMsM8tp/R44E1je8aNE4tpTwOf87z8HPBlgLSKHrTWY+C5Cv5ulBzAzA/4ArHTO/V/Iqrj73ayL2khMmFkJ3mg2QArwkHPu9gBLEomYmT0MnAIUAjuAW4B/An8HhgEfAJ9wzunEM4lr7byXT8FrIXHARuCq1p5XkXhlZicCrwHLgBZ/8c14fdtx9btZYVtEREREJErURiIiIiIiEiUK2yIiIiIiUaKwLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIt3IzEaYmTOz6UHXEgkz22hmN3Zh+1P851fYxeMsN7Nbu1ygiEgPp7AtIhLCzB7ww6Qzs0YzW29mP/MvxpSIPgLcHXQRIiKJKiXoAkRE4tBLwGeAVOCjwO+BLOCLQRYVDc65iqBr6C5mlgI0O11AQkTiiEa2RUQOVe+c2+6c2+ycewj4K3AhgJmlm9kvzWyHmdWZ2UL/SmaHMM/a8DYNMxvtj5xP8+87M7vSzB41sxp/NP3ysMdMMrOXzGy/mVX5I/C5IesfMLNnzOybZrbdzPaY2Y/MLMnMbjWzcn/5N8P2e1AbiZl91cze9evYYma/N7O8rrx4ZtbfzJ70a91kZp9vY5tcM7vPr6vazF4Nb70xs8+b2QdmVmtmT5vZl8zMhay/1W9PucLM1gH1QFaE+z7eX17rP897zKxvV56niEgkFLZFRDq3H2+UG+AnwCeBzwNT8S4VPNfMBoY/yB9h/YO/bajPA0ucc2+HLPsu8CQwGfgbcL+ZDQcws0xgLrAPmAFcBBwP3B+235OAkXiX374a+AYwB0gHTgRuBX5kZsd28FxbgBuACcCn/eP9qoPt2/IAcBRwBt4fKZ8FRrSuNDMDngUGA+fivY7zgZdbX0czK8X7ROE3eJcSfwr4XhvHGunX+Qm8164+gn1PAl7w9zkZuNg/RvjrKSJy5Jxzuummm266+Te8oPhMyP0ZwE68AJwFNACfDVmfDKwDbvPvjwAcMN2/Xww0AjNDtt8CXBOyDwfcEXI/BagFLvfv/z9gD5ATss0p/uOOCql7M5Acss0i4N2w57cRuLG9+228HrPwAmxS2HEL29n+aH/9CSHLhgPNwK3+/dPw/nDoE/bYJcA3/O8fBuaGrb8P/28Y//6t/ms7IGRZJPv+M/CHsPVT/Lr7B/0e1E033RLrpp5tEZFDzTKzfXihNxVvxPlaYJR//9+tGzrnms1sATC+rR0557ab2TN4o9kL8cJrAV5rSqh3Qx7TZGYVQH9/0Ti80Fwdsv1/8EahxwNr/WXvOeeaQ7bZAewOO86OkP0ewsxOA27yj5mL98dBGt4fDVvbe1yIcX5db4Y8n01mFvrYY4FMoMIb5D4gA+81BhgLPB227zfw/vAIVeac29HFfR8LHGVmnwxZ37rxKKC8vScnItJVCtsiIoeaD1yJN2q61TnXCBDSKtLWCXgdnZT3e+AhM7sBL3Q/7pzbFbZNYxv7a231sw72H7q8rX10tN+D+G0rzwK/w2trqQSm4Y0yp7Vz/EN2E8E2SXih/6NtrNsbsp9ITnSsOYx9J+H9TH7RxjZbIjimiEjEFLZFRA5V65xb28bytXhtJCcC6wHMLBkoBR7qYH9z8YLe1cB5wNldrOc94PNmlhMyun08Xmhc2cV9dWQ6Xqj+SusIuZmd28V9rPTr+gje6DtmNgwYFLLN28AAoMU5t76D/cwIWxZ+vy2R7PttYEI7P2MRkW6lEyRFRCLknKsB7sE7yfBsMxvn3x9AB3NV+8H1fuAOvJHTeV089F/xRnD/7M9KchJwL94IeXcGxjV4/y/cYGYjzexSvJMlI+acW433x8W9ZlZqZlPw+sn3h2z2El4rzpNmNts/VqmZfc/MWkek7wLONLOv+7O3fAHvxNDORLLvHwMzzOy3ZjbVzI4ys3PN7N6uPFcRkUgobIuIdM03gb8Df8Q76e4YYJZzblsnj7sfb9T4j865Ls0D7ZyrBc4C+uL1Qj8JLODQWU6OiHPuXeB64Kt4o+n/A0R8dckQVwAbgJfx+q4fwjsRs/U4Dm90/2W8lpXVeK/pGPy+cOfcArz+7Ovw+tkvxAvJdZ08h0j2/S7ezC0jgFeBpXh/CO04dI8iIkfGuvg7X0REDoOZHYc34lrinPsg6Hp6IjP7BXCGc25S0LWIiERKPdsiIlFkZunAUOA24AkF7ciZ2deBF/Gm8jsDr+f95kCLEhHpIrWRiIhE16V4rQwFeO0ZErnpwPPAcrz2lpuAXwZZkIhIV6mNREREREQkSjSyLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIiIiIlGisC0iIiIiEiUK2yIiIiIiUfL/Ad9pYeMhjWauAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(12,6))\n", - "plt.plot(degrees, mse)\n", - "plt.xlabel('Polynomial degree', fontsize = 14)\n", - "plt.xticks(np.arange(5,21,5))\n", - "plt.ylabel('MSE estimate', fontsize = 14)\n", - "plt.title('MSE estimate (K-fold cross validation)', fontsize =16)\n", - "#different to r, the models in python got a better performance with more training cause by the\n", - "#cross validation and the kfold" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A final remark is that, in machine learning applications, the complexity of the model often is allowed to increase with the available data. In the example above, even though we weren’t very successful when fitting a high-dimensional model on very little data, if we had much more data perhaps such a model would be appropriate. The next figure again fits a high order polynomial model, but this time on many data points. Note how, at least in data-rich regions, the model is much better behaved, and tracks the average outcome reasonably well without trying to interpolate wildly of the data points. " - ] - }, - { - "cell_type": "code", - "execution_count": 609, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Outcome')" - ] - }, - "execution_count": 609, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAFzCAYAAACZ9MoQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACnaUlEQVR4nOzdd3gU1dcH8O9seiEQINTQQ+8QBCyANEURKQqiFFFAf+prL0iRAFIEFEREBQTpvQrShIQiNSG0JEAINRBCAiSQnuye948lIQm7my0zOzO75+OzTwzZnb1zZ+beO2duEYgIjDHGGGOMMcYYY1LQyJ0AxhhjjDHGGGOMOS4OPDDGGGOMMcYYY0wyHHhgjDHGGGOMMcaYZDjwwBhjjDHGGGOMMclw4IExxhhjjDHGGGOS4cADY4wxxhhjjDHGJOMqdwIsUb58eapZs6bcyWCMMcYYY4wxxlghERERyUQUYOhvqgo81KxZE+Hh4XIngzHGGGOMMcYYY4UIgnDN2N94qAVjjDHGGGOMMcYkw4EHxhhjjDHGGGOMSYYDD4wxxhhjjDHGGJOMquZ4MCQ3Nxfx8fHIysqSOylOz9PTE4GBgXBzc5M7KYwxxhhjjDHGFEL1gYf4+HiUKlUKNWvWhCAIcifHaRER7t69i/j4eNSqVUvu5DDGGGOMMcYYUwjVD7XIyspCuXLlOOggM0EQUK5cOe55whhjjDHGGGOsCNUHHgBw0EEh+DgwxhhjjDHGGCvOIQIPcnNxcUGLFi3QuHFjNG/eHD/99BN0Op3Jz1y9ehUrV660UwoZY4wxxhhjjDF5cOBBBF5eXjh16hSioqKwZ88e/PPPP5gwYYLJz3DggTHGGGOMMcaYM3C+wINOB1y4AISF6X+W0DPBUhUqVMD8+fMxd+5cEBGuXr2K5557Dq1atUKrVq1w+PBhAMCoUaNw8OBBtGjRArNmzTL6PsYYY4wxxhhzCBLfizHlUv2qFhbR6YCNG4EhQ4DMTMDLC1i6FOjbF9CIF4OpXbs2dDod7ty5gwoVKmDPnj3w9PREbGwsBg4ciPDwcEybNg0zZ87Etm3bAAAZGRkG38cYY4wxxhhjqmenezGmTM4VeIiNfXyiA/qfQ4YATZsC9euL+lVEBADIzc3FRx99hFOnTsHFxQUXL140+H5z38cYY4wxxhhjqmPHezGmPM4VeEhIeHyi58vM1P+7iCf75cuX4eLiggoVKmDChAmoWLEiTp8+DZ1OB09PT4OfmTVrllnvY4wxxhhjjDHVsdO9GFMm5+rTUrmyvktPYV5e+n8XSVJSEt5//3189NFHEAQBqampqFy5MjQaDZYtWwatVgsAKFWqFB4+fFjwOWPvY4wxxhhjjDHVs8O9GFMu5wo81K2rH0eUf8LnjyuqW9emzWZmZhYsp9m1a1d0794d48ePBwB88MEHWLJkCdq1a4eLFy/Cx8cHANCsWTO4urqiefPmmDVrltH3McYYY4wxxpjqSXQvxtRByJ+LQA2Cg4Op+ISLMTExaNiwofkb0en044sSEvTRtbp1eTITEVl8PBhjjDHGGGPOge/FHJogCBFEFGzob841xwOgP7Hr1+dxRIwxxhhjjDFmT45+L8aBFaM4FxhjjDHGGGOMMVvkLxfasiXw/PP6nxs36v+dceCBMcYYY4wxxhizibHlQmNj5U2XQnDggTHGGGOMMcYYs4Wp5UIZBx4YY4wxxhhjjDGb8HKhJnHggTHGGGOMMcYYswUvF2oSBx5E4OLighYtWhS8pk2bZvS9mzdvRnR0dMHv3333Hf7991+b05CSkoJ58+bZvB3GGGOMMcYYYyXQ6YALF4CwMP1PAOjbF4iMBEJD9T/79uVVLR5xvuU0JeDl5YVTp06Z9d7NmzejZ8+eaNSoEQBg4sSJoqQhP/DwwQcfiLI9xhhjjDHGGGMG5K9gkT+ZZH7vhr59HXu5UBtw+EVCo0aNQqNGjdCsWTN8+eWXOHz4MLZu3YqvvvoKLVq0QFxcHN5++22sX78eAFCzZk2MHj0a7du3R3BwME6ePIkXXngBderUwe+//w4ASEtLQ5cuXdCqVSs0bdoUW7ZsKfiuuLg4tGjRAl999RUAYMaMGWjTpg2aNWuG8ePHy5MJjDHGGGOMMeZIeAULizlUj4dPd36KU7dPibrNFpVaYPaLs02+JzMzEy1atCj4/dtvv0W3bt2wadMmnD9/HoIgICUlBWXKlEGvXr3Qs2dPvPbaawa3Va1aNRw5cgSfffYZ3n77bfz333/IyspC48aN8f7778PT0xObNm2Cn58fkpOT0a5dO/Tq1QvTpk3DuXPnCnpe7N69G7GxsTh+/DiICL169cKBAwfQoUMHkXKGMcYYY4wxxpyQqRUsuLeDQQ4VeJCLoaEWeXl58PT0xPDhw/Hyyy+jZ8+eZm2rV69eAICmTZsiLS0NpUqVQqlSpeDp6YmUlBT4+Phg9OjROHDgADQaDW7evInExMQntrN7927s3r0bLVu2BKDvKREbG8uBB8YYY4wxxhizRf4KFoWDD7yChUkOFXgoqWeCPbm6uuL48ePYu3cvVq9ejblz52Lfvn0lfs7DwwMAoNFoCv4///e8vDysWLECSUlJiIiIgJubG2rWrImsrKwntkNE+Pbbb/Hee++Jt1OMMcYYY4wx56LT6YcQJCTob6zr1uUJE/NXsMgfbhEUBPz6K3Dr1uO/O3seFeNQgQclSUtLQ0ZGBl566SW0a9cOQUFBAIBSpUrh4cOHVm83NTUVFSpUgJubG0JDQ3Ht2jWD233hhRcwbtw4vPXWW/D19cXNmzfh5uaGChUq2LZjjDHGGGOMMedgahJFZ76x1mj0edC0KZCcDFy7BvTuzXlkgmyBB0EQPAEcAODxKB3riUiVMyAWn+PhxRdfxCeffIJXX30VWVlZICLMmjULAPDGG29gxIgRmDNnTsGkkpZ466238MorryA4OBgtWrRAgwYNAADlypXDM888gyZNmqBHjx6YMWMGYmJi0L59ewCAr68vli9fzoEHxhhjjDHGmHmMTaLYtCnPZaDRPM6Dbt04j0ogEJE8XywIAgAfIkoTBMENwCEAnxDRUWOfCQ4OpvDw8CL/FhMTg4YNG0qbWGY2Ph6MMcYYY4w5iLAw4Pnnn/z30FCgUyd7p0aZOI8KCIIQQUTBhv4mW98P0kt79Kvbo5c8URDGGGOMMcYYY0XlT6JYGE+iWBTnkVlkHXQiCIKLIAinANwBsIeIjhl4z0hBEMIFQQhPSkqyexoZY4wxxhhjzCnlT6KYf2OdP39B3brypktJOI/MIuvkkkSkBdBCEIQyADYJgtCEiM4Ve898APMB/VAL+6eSMcYYY4wxxpxQ4UkUeVULwziPzKKIVS2IKEUQhDAALwI4V8LbGWOMMcYYY4zZQ/4kijxRonGcRyWSLQwjCELAo54OEATBC0BXAOflSg9zEDodcOGCfpKXCxf0vzPGGGOMMcYcD7f9VUPO/h+VAYQKgnAGwAno53jYJmN6mNrlrzPcsqV+ZtmWLfW/cwHEGGOMMcaYY+G2v6rIuarFGSJqSUTNiKgJEU2UKy22SkxMxJtvvonatWujdevWaN++PTZt2mTXNFy9ehVNmjQx+O8rV660apuzZ89GRkZGwe++vr5Wp88ujK0zHBsrb7oYY4wxxhhj4uK2v6rwjBc2IiL07t0bHTp0wOXLlxEREYHVq1cjPj7+iffm5eXZPX2mAg8lpad44EHxEhIeFzz5MjP1/84YY4wxxhhzHNz2VxVFTC6pZvv27YO7uzvef//9gn+rUaMG/u///g8A8Ndff2H79u3IyspCeno61q9fj3feeQeXL1+Gt7c35s+fj2bNmiEkJAS+vr748ssvAQBNmjTBtm36kSc9evTAs88+i8OHD6Nq1arYsmULvLy8EBERgXfeeQfe3t549tlnDaZv1KhRiImJQYsWLTB06FD4+/sXSc93332HmTNnFnzXRx99hODgYDx48AC3bt3C888/j/LlyyM0NBQAMGbMGGzbtg1eXl7YsmULKlasKFneWix/Dd3CBRCvocsYY4wxxpjj4ba/qjhU4OHTTz/FqVOnRN1mixYtMHv2bKN/j4qKQqtWrUxu48iRIzhz5gzKli2L//u//0PLli2xefNm7Nu3D0OGDCkxzbGxsVi1ahUWLFiA/v37Y8OGDRg0aBCGDRuGX375BR07dsRXX31l8LPTpk0rElj466+/iqQnLCzM4Oc+/vhj/PTTTwgNDUX58uUBAOnp6WjXrh0mT56Mr7/+GgsWLMDYsWNNpt2u8tfQze9yxWvoMsYYY4wx5pi47a8qDhV4UIIPP/wQhw4dgru7O06cOAEA6NatG8qWLQsAOHToEDZs2AAA6Ny5M+7evYvU1FST26xVqxZatGgBAGjdujWuXr2K1NRUpKSkoGPHjgCAwYMHY8eOHWalsXB6LOHu7o6ePXsWpGPPnj0Wb0NSvIYuY4wxxhhjzoHb/qriUIEHUz0TpNK4ceOCQAIA/Prrr0hOTkZwcHDBv/n4+BT8PxE9sQ1BEODq6gpdoRlYs7KyCv7fw8Oj4P9dXFyQmZkJIoIgCFaluXB6TH1vcW5ubgXf6eLiIsucFSXiNXQZY4wxxhhzDtz2Vw0OB9moc+fOyMrKwm+//Vbwb6YmZOzQoQNWrFgBAAgLC0P58uXh5+eHmjVr4uTJkwCAkydP4sqVKya/t0yZMihdujQOHToEAAXbLK5UqVJ4+PCh0e3UqFED0dHRyM7ORmpqKvbu3Wv2ZxljjDHGGGOMsZI4VI8HOQiCgM2bN+Ozzz7D9OnTERAQAB8fH/zwww8G3x8SEoJhw4ahWbNm8Pb2xpIlSwAA/fr1w9KlS9GiRQu0adMG9erVK/G7Fy9eXDC55AsvvGDwPc2aNYOrqyuaN2+Ot99+G/7+/kX+Xq1aNfTv3x/NmjVD3bp10bJly4K/jRw5Ej169EDlypULJpdkjDHmQHQ6/bJj3EWVMcYYYxISDHX9V6rg4GAKDw8v8m8xMTFo2LChTClixfHxYIwxldDpgI0bn5yUq29fDj4wxhhjzGKCIEQQUbChv3HLgjHGGHNGsbGPgw6A/ueQIfp/Z4wxxhgTEQceGGOMMWeUkFB07XNA/3tCgjzpYYwxxpjD4sADY4wx5owqV9YPryjMy0v/74wxxhhjInKIwIOa5qlwZHwcGGNMRerW1c/pkB98yJ/joW5dedPFGGOMSUGnAy5cAMLC9D91Ok6PHak+8ODp6Ym7d+/yTa/MiAh3796Fp6en3ElhjDFmDo1GP5FkZCQQGqr/yRNLMsYYc0T5Eyq3bAk8/7z+58aN8t3sKy09dqD6VS1yc3MRHx+PrKwsmVLF8nl6eiIwMBBubm5yJ4UxxhhjjDHG9C5c0N/cF57byMtLH3SvX5/TIxJTq1q42jsxYnNzc0OtWrXkTgZjjDHGGGOMMWvpdPqVlRIS9PMN1a0rXi88UxMqy3Gjr7T02AH3p2SMMcYYY4wxJh+phx4obUJlpaXHDjjwwBhjjDFpONnEWYwxxqwUGwsMGfK4F0Bmpv732Fhxtq+0CZWVlh47UP1QC2YFKbsxMcYYY8Djp1f5Dcn8RhVPYKkO3FZgjNmT1EMP8idUbtpUGeWa0tJjB467Z8wwJ5xBlTHGmAykfnrFpMNtBcaYvdlj6IFGow9idOqk/yn3Tb7S0iMxx9479iRuCDLGGLMHU0+vmLJxW4Ex9XCUIW1OOPTA2XDgwdlwQ5Axxpg9OOHEWQ6D2wqMqYMj9U7KH3oQGQmEhup/8tA8h8JH0tlwQ5Axxpg98NMr9eK2AmPq4Gi9k5xs6IGz4aPpbLghyBhjzB746ZV6cVuBMXXg3klMRXhVC2fjhDOoMsYYk0n+0ysxZiRn9sNtBcbUIb93UuHgA/dOkh6v+mMVDjw4I24IMsYYY9ZxlgYntxUYU7783knFly1WS+8kNZanvFS01Th3GGOMMcbM4UgTuTHG1E/NQ9rUWp462rwadqSCs5IxxhhjTAG4wckYUxq1Tsio1vKU59WwmkrOTMYYY4wVMLVuu6Os6a5E3OBkjFmKy2TD1Fqe8qo/VuPAA2OMMaYmprqnqrXrqlpwg5MxZgkuk41Ta3lq6ao/HHgqIBCR3GkwW3BwMIWHh8udDHGpcVIVxhhj8rlwQd94LT6LeWSk/v+N/Y0nCbQdTyrGGLOEqfLa2ctkNZen5t6/qXkfrSQIQgQRBRv6G69qIScnPBmZAnCwizF1K6l7qrG/SdnIdZZyhZeZZIxZwlR57eyBBzWXp+au+mNsHoumTZ3y+KvgyDowtU6qwtSLu/wxpn6muqfK0XXV2coVtU7kxhizP7UOJ7AXRy9P1TqPhUQc7OiqDJ+MzN442MWY+pkaX2rp2FMxcLnCGGOGyVEmM+XgwFMRPNRCTvknY/FxX056MiqCo3cX5i5/jKlfSd1T7d11lcsVxtTF0ds6SqLm4QTMdvmBp+LD6p008MSBBznxyagszjDnBge7GHMMpsaXmjv2VCxcrjCmHs7Q1lEae5fJTDy2Buk48FQEr2ohN446K4czzDzMDQ7GmNjsUa5wXcmYOJyhrcOYGLjNbBVe1ULJOAqqHM7QXZgjr4wxsUldrnDjjzHxOENbhzEx8IoUopMt8CAIQjUASwFUAqADMJ+IfpYrPcxBWfKUzFm6C3OwizEmNinLFW78MSYeZ2nrMGYrDtKJTs5HBXkAviCihgDaAfhQEIRGMqaHORpLl3jjmYcZY0x5eAUoxsTDbR3GzMMrUohOth4PRJQAIOHR/z8UBCEGQFUA0XKliYlM7jG5lj4l42EI8pH7XGHMnvh8tww/oWVMPNzWsR8u69XNkkUA+FibRRE5IghCTQAtARwz8LeRgiCEC4IQnpSUZPe0MStZ2ttACtY8JcvvLtypk/4nFxrSU8K5wpi98PluOX5Cy5i4nLmto9PpJ9gMC9P/lKrs5bJe/fKDdJGRQGio/qehuYX4WJtN9lUtBEHwBbAfwGQi2mjqvQ65qoWjUsKsyUpIAysZHyfmTPh8t+7JED9NYozZyp4T1XJZbzsllvuG0hQby8e6EFOrWsh69ARBcAOwAcCKkoIOTGWUMCbX0qdk9oqCs6KUcK4wZi/Ofr5b+2TImZ/QMsbEYWwIbmys+N/l7GW9rZTYi8BYmm7d4mNtJtlqbkEQBAB/Aoghop/kSgeTiBImZDG3ixSgzALOWSjhXGHMXpz9fLdnw58xxgqzZzDA2ct6WymxrjCWJl9fPtZmkvORwTMABgPoLAjCqUevl2RMDxOTUsbkmvuUTIkFnLNQyrnCmD04+/nOTwGZVLjXIiuJPYMBzl7WW6r49avEXgTG6q+cHD7WZpJzVYtDAAS5vp9JTG2zJvNavfJR27nCmC2c/XxX8woVShxvzPTsOXafqZclqxTYylHKenuUe4au3y1bxKkrxEy/sfqrfHmgfXv1H2s7kH1ySUvw5JJMMjwJEGOMSU+tN4hqTbez4DqcmUuNAUS50ixluVd4n3x8gDffBC5devz3oCBgwgRg+HDrv1vs9NuwvZSsFJxPPo+M3AxU9q2M+uXrQyMo/LyzkqnJJTnwwBjAjUrGGLMXMRvR9mqQ842tsoWF6ednKi40VD/UkjG1krN9KlW5Z2ifxo0D5s0D4uMfv+/QIX1vgvzyvU4dIC7O+O/Fy38p0m9BnZOdl42lp5di+dnl+O/6f9CStuBvAd4BeLflu/jm2W9QxrOMdWlRKFOBB9mGWjCmKI7SJU4qanxCwJiSKP0asmf68ufeMafhZypd9myQ83A8ZVPzEB7GTDE2B1nTptKXPVKVe4b2adIk4LPPgClT9P+WP4Qhv64wVN7PmwdMnqzvKWGo/Jci/WbUX0SEJaeXYOy+sbj58CaaVGiCUc+OQrvAdvB198XVlKv4++LfmH54OpacXoJ1r6/DM9WfsS49KqOgVg9jMjNnIkqlTl4lZbp4xQ/GbKP0a0ip6SspXfacFJhnqFc2nsiPOSo5J+SVqtwztk8uLo+/o/j1a6i8/+ADoH//x78XL/9lKLevp15Ht2XdMGzLMFQrXQ17Bu/BmffP4PvO36NnvZ7oVLMT3m7xNjb034Djw4/D190XnZd2xo7YHZKlSUk48MCYudTaOLcVr/jBmG2Ufg0pNX0lpcueDXJHvbFVajDdUpYsn82YmsgZ9JSq3DO2T6+8Yvz6NVbeC0LR3wuX/3Yut7df3I6Wf7TE8ZvH8dvLv+G/d/5D19pdIQiG11JoXaU1jg4/isYBjdF3bV9EJkQC0PeYOH/+PObMmYPTp09Lkla5cInMmLnU2ji3FS9/x5htlH4NKTV9JaXLng1yR7yxVWow3VrmLp/NmJrIGfSUqtwztk+tWxu/fo2V94XnKixe/tup3CYi/HDoB/Rc1RPVS1fHyfdO4v3g982aPLKsV1nseGsHylJZvDj6RQx9Zyhq1KiBhg0b4pNPPsGOHY7VE4LneGDMXEod4yt1unjsLGO2Ufo1pNT0lZQuMZbGs2RuC0vmplADOceOM8bMY885yIyVh2KXe9bsk6HyPn+OB8B4+S9xuZ2rzcWH/3yIBScX4I0mb2Dxq4vh6epZ8udyc3Hs2DHs3r0bu3btQsKJBBARVvusRs8XemLMmDHo1q0bateuLUm65cKBB8bMpdbGua3sue41Y45I6deQUtNXUrpsbZA7+2pGSg2mM8aKskfQ09by0NIJii3dJ0PlfZ06QPv2sk3anJGbgdfWvoYdl3Zg9LOjManzJJO9HO7cuYMdO3Zg27Zt2L17Nx48eACNRoO2bdviu+++Q7RfNNanrsd3//sOzSs1t9t+2BMvp8mYuZTaSLVHupQ+Iz9jSqf0a0ip6ZMyXc6+RKaz7z9j7DFbygOlto8llJ6TjldWvYKwq2H4o+cfGNF6xBPvISKcOXMG27Ztw7Zt23Ds2DEQESpXroyXX34ZPXr0QOfOnVGmTBkAwP3M+6j7S120qtwKuwfvtvMeicfUcpoceGDMEs7YOGeMMUcUFqaf26C40FD9OGNHJ+XNAtdJzJmp8fy3pTx0siDmw+yHeHnly/jvxn9Y0nsJBjUbVPC3rKws7N27tyDYEB8fDwBo06YNevbsiZ49e6Jly5ZGJ5yceXgmvtrzFQ6/cxjtq7W3y/6IzVTggYdaMGYJa7q72aMCErsbnhorTcacAV+b4lHq8Dl7kWrsuBM+/WSsgFrPf1vKQ3OHbTlA/ZWalYoeK3rg+M3jWNl3JQY0GYAHDx7gn3/+wcaNG/HPP/8gPT0dvr6+6N69OyZOnIgePXqgUqVKZm3/f8H/ww///YBp/03Dlje2SLw39qeuo83k4yhLblnK1v1W46zhakwzY86Ar01xOeoSmZaQYiUIpa4AxZgtzG0PqvX8t6U8NGeFIQeov+5n3kf35d1x4tYJLOiyAGnH0vDyyy8jICAAAwcOxIEDBzBo0CDs3LkTycnJ2LBhA4YNG2Z20AEAfNx98L/g/+HvC38j7l6chHsjDx5qwUqm1uitrcTYbzV2P1NjmhlzBpZemw7wdElynEfic/YhLI6GrxHL2oNqPv+tPdbm5I/K25Z3M+6i05xOiDkYg4ZJDREdEQ2dToeaNWuib9++6Nu3L9q1awcXF5fHH7IyP289vIUas2vgk7afYGb3mRLulTR4qIWjkKvwV8qSW2Lvf0nbE2O/1ThruBrTzJgzMHZtRkfr/79wGeasAWNLOdoSmUrg7ENYDFHrzTuXI3qWtAfVfP5bWx6aM2xLpW3La9euYdHyRZixYAYyr+nTT40JY8aMQd++fdG8eXPD8zWUdO2YKBOqlKqCnvV6YtmZZZjaZSrcXNzsucuScqJSQ+Xk7KJkqrCwF7H335ztibHf5nQ/Uxo1ppkxZ2Ds2gwPf7IMU2t3X6Z8JXU55yEsRam5izmXI3qWtAed9fwvadiWitqWt27dws8//4z27dujZs2amDh2IrLysvDuV+/iwoULOHfuHCZOnIgWLVoYnSTS5LVjqkx4VL4OcwnGnfQ72HFxu/123A448KAWchb+SigsStp/S+diMCc/xdhvNVZAakwzY87A0LU5bpz+34qXYUoIGDPHY85NdP7Tz8hIfffyyEjne0JemBpv3vPbVNHRwOefA4GBj//mjOWIJe1BU+e/s86XBii+bXnnzh389ttv6NixIwIDA/Hpp5/iQfoDBLwSAM8vPLH34F4snL4Q9erVM2+DpupgY2VCXFxB+dpjwFi0uSUg4/B+xzpPiEg1r9atW5PTCg0lAp58hYbavm2tluj8ef22zp/X/1787+vWEXl56b/Ty0v/e/H3ScnU/luTPnPyU6z9Lil/lUiNaWbMGeRfmxs3Eo0eTRQYaLgMO3/+cdmV//Ly0v+7UnG5o3xqPK/kJmX7TQqG2j5Tpjwua5zxeIvRHlRCW1puCivj7969SwsXLqSuXbuSRqMhANSwYUOaMGEC7T2+l+r8XId8p/jSgasHLN+4qbLSWJkQFmb4M8ePy55XlgAQTkbu5WUPJljycurAg1SVvbkFodyFhan9tyZvzP2M3PttKbWllzFmnZLKMLU1ctWWXmeltptoa4lZl6otWGMsvaNHO/d1aes5obbzwEFlZmbSunXrqFevXuTm5kYAKCgoiMaMGUNnzpwhnU5HsXdjqfqs6lRmWhk6euOodV9kqk4zdi5s22a4fB03TlXXHQceHIFUjTK1FISm9t+ahpDcjVwpAgRy7xNjzH7Mud7VFIhUS13k7JzhOIldl6qtbjbWptq4UfnliJI5S9BOgbRaLYWFhdG7775LpUuXJgBUpUoV+uKLLyg8PJx0Ol3Be6PuRFHlmZWp/PTyFJkQaesXG66DjZUJMTGmg34qKWdNBR54OU01kWJWZFuW/bH3LM3Gvs/aJXrkmmW68Ey35coBw4YBTZoAzZoB9epZnwaVL1XEGLOQWmfKN0TNS9BJSWnH2BlWOZCiLlXacTSF2xLScMZ8lfm8j46OxvLly7FixQpcv34dvr6+6NevHwYNGoTnn3/+8dKXj9J5OvYgup77Gq5uHvh38L9oXKGxdIkzlDfAk+XruHHAvHlAfLxq6kNeTtNRSLHsl7XL/sjR+DC2//kT1hRPS0kT1si1jFr+pDLlygEffABMmiROHqp0qSLGmJUcaSlINS9BJxUl3uSbs2ye2klRl6rpWrW2TcVMc7Z8lan8un37NlatWoXly5fj5MmTcHFxQffu3TFt2jT06tULPj4+BtMZOvYt9O6TA78cAfta/Yy65RtKlkYAT5YJ+YGIypWBPXuAXbsArfZx0MFB6kPu8eDsrC0Y5I7cFo8U1qmjnw1WDQ2h/Cd7o0cDs2aJl4dyHxPG7ElNTxBZyaRspFp7rpjzOSnPQ6WU6c52rSkl3+XkbMfcXqTMV6UdMzteRxkZGdi4cSOWL1+OPXv2QKfTITg4GIMGDcIbb7yBihUrmkzn6jebYuhLuQi6B+xcDlTLtfP1Xrz+CwoCxozRP5xUStDZAtzjgRln7dMLOZ+um2qgqqFRkP9kTxDEzUNni6Yz56XEJ8HMNlI9Sbf2XDHnc1Kfh4Xr2cBA/fcIApCYKM/QQGe51rguVVcPDTWRKl+VeJ1KeZ+g04EuXsTRvXuxaP9+rNm5Ew8fPkSNGjXw7bffYtCgQWjQoIFZm/rp+M/4olcunrsGbFkF+GcBgJ17CxdfXvPSJWDyZGD/fiA9XRmBJJFwjwdHY6+Ipz3mVRB7TgelyK8gzp4FZsxw3nGkjFlL7WUAsx9rzxVzPmfoPUFBwMqV4jQW87cv9rA8a9LgbNea0utSpadPDM6wj2JR4nUqUZpuxcdj2ahRWLxyJS4QwRvA6x07Ytj48XiuY0dozDxHcrQ5+HTnp/gt/De8dl6DZet18MwTL50WcbA5jkz1eOAr2JHk39C2bKk/gVu21P+u04n/XflPBLy89L+b80TAkvSZeq+pKKoa5D/ZGzQI+OMPy/LQnG3Xr68vqOrX50qaOSa1lwHMfqw9V8z5XPH3BAYC77wDdOwoTh2cX88OG/Y46JCfjiFD9DdlUnO0a02n098QhYXpfxo7NkquS+3Z1pOLsX3MyzPv+DkbJV6n1twnGJGdnY3169fj5ZdfRrUaNTBqxQoEEOFPALcB/HX8ODpWqWJ20CExLRFdlnbBb+G/4ev2X2F135XwdBOxLW6p/J7QhTnInA7F8VALR1K8q05+46RpU/GjdtZ0i7Ukfabeq/RJyMyJ0ms0+n+vUwd46il5I/r8VEG9nOnYFd5XHx9llwFMOQrXF/nDFVxc9OeQTmf8ejGnnin+niFDDAcIrK2D8+vZ4unI37axrsBilgtKr28tocTu6NawZ1vPWraeg4b28dtvgZwcYPhwdR8/KSjxOhVh+FxkZCQWL16MFStW4N69e6hatSpGDRyIt1esQJGwgAVDOMJvhaPPmj64m3EXq/qtwhtN3tCfr81ayNeWcqbhXcbW2VTiq3Xr1iKuMuqApFgjWKx14LVaom3bzE+fqX1R8prYUqZNrGNRfJtKzUtmmjMdu+L7GhREtHixc+w7s03+uRMURDRlivnnjDnXV/H3jBsnfh1MpC/vDa3tbmhNd7HLBUcqZyzJRyWToq0nJjHOGUP7OHq0Yxw/Kdia51K0L62UlJREs2fPpubNmxMA8vDwoAEDBtDOnTspLy/P6utYq9PSrCOzyH2SO9WYVYMiEyLts0PmUtAxsBWAcDJyLy97MMGSFwceSiB2pSpWgyN/O999Z376StoXpV6gUjVspGr8OUpDzBk507EztK9BQUTHjyuvDFAipZaXYilp/7Ra/bli6fViTr4Vfo8132Hu/plb/ktRLjjK+aP0G3ZzKb3sFyN9hrYhVWDPUVh7nSoguKjVamnXrl302muvkZubGwGg1q1b09y5c+nu3bs2p/fWg1v0wrIXCCGgV1a+QknpSRLvkXPjwIOzELvwEKtyy99OYKD5T5wUUBBaRaqGjVQNDSX3kmGmOUoj2hzOtK9iU2tZai5z988e55ASerzxtWKc0m/YzaX0a1qMc9DQPu7e7RjHT2lkvC5u3bpFkydPplq1ahEAKleuHH322Wd05swZ0x+0oJ25MXojlZ9enjy/96R5x+eRTqcTdyfYE0wFHniOB0ci9nJkYi2Fk7+d+Hhg3jzgs8/0S4J16wY895zh9Em1tJrUpBpnJ9WyRGKn11HG0KqBEsd0SsXR99XUeGgpxkorbTy4LczdP3ucQ7bWW6aOtbnL8Dn6tWILRxlHrfT2kRjnoKF9rFPHMY6f0ki57KUBWq0Wu3fvxvz58/H3339Dq9Wic+fOmDJlCvr06QMPD4+SN2JGeXg99Tr+b8f/YeuFrWhRqQVW9l2JhgENRdwTZhVjEQklvhy+x4PSnhSL3eOhpO0obf+tIcaTCEP5oJYhHI7yREkNlP7US0yOvK+m9k2qsdJqeAIu9hN+pZ9DYg9tVOp+ys0R2hlKp4SeP8x8dmq3xcfH08SJE6l69eoEgAICAujrr7+mixcvivo9OXk5NPO/meQz2Ye8J3vT9EPTKScvR9TvsJmDn8fgoRYqoMTGgj0bQkrbf1sKBVs/aygfcnPVUZGr9SZHrRy88irCUffVVKNPqrHScgQDLTl+Us1poORzSMzjpOT9ZM6Bz0H1kLD9nZubS1u3bqVXXnmFNBoNAaBu3brRunXrKDs7W4TEP6bVaWnlmZVU5+c6hBBQz5U96er9q6J+hyiUdr8jAVOBB0H/d3UIDg6m8PBwuZMhjQsX9OsUF++aFhkpb3dYsZblKmk7Stp/OYcLmMqHunWVv3Siko4jY2oQFqZfp7640FD9T2N/69TJvO0rYfiTpWmwpByxdNtKXYLW1Hlg7rFmTA5KvaaY+UQ+htevX8eff/6JP//8Ezdv3kSlSpUwbNgwDB8+HLVr1xYx4foH6P/E/oMx+8bgdOJpNKvYDFO7TEWPoB4QBEHU7xKFE7STBUGIIKJgQ3/jOR6Uws5jrMxm7rhSW7ejpP2Xc0x0SflQPA/lrPANfbejjKFlzF5KGg8txVhpqQLIxlhaplpSH1iyf0oIwhjDczMwNVLyNcXMJ0JbPzc3F9u3b8eCBQuwY8cOAMALL7yAX375BT179oSbm5tYqQUAZOdlY8XZFfjpyE+ISopCbf/aWNF3Bd5o1B+aS3HA/v3KDIQp6X5HBgo6Ek4uv9FRmNSNDp1OH3kLC9P/1Omk+66SyLH/xpgqFKRmST7kV/gtW+qflLVsqf/dHsfR2HcD+gZHZKT+SV1kJDdAGDMlP1iXf90XDtaZ+psl8huVnTrpf1obdLC2vLG0TLW0PjB3/4wFQGJjS94HqYl1rJljUlJ7rTAlX1PMLq5cuYKxY8eiRo0a6NOnD06dOoWxY8fi8uXL2LFjB/r06SNq0OHK/SsYHzoeNX+uiXe3vgsXjQuW9F6CmA9j8GbjN6DZtFmedrG5lHS/IwMeaqEU9o4ayx2lLv7krE4dYPNmZUTN5egGlZ8fycnAtWvA8OEl54Oc3bWcoKsYYwWk7lkk5aoWYiXxfAzuPNcKN9yzcKsU8NADSPNxw8OvP0VuuTJw1bgWvEp7lEZ57/Io510OFXwqoNrtDLi1fsr88kKq+knpwxkUcqyZwsjdXjNF6deUM7JDOZKbm4utW7di/vz52LNnDwRBwEsvvYQRI0bgpZdegquruB3qU7NSseXCFiw+tRhhV8MgQMCLQS/i8/afo0utLo+HVKihbark61kkpoZacOBBSezZ6JDz4jR20fXuDcTFyd/okjsIFBQE/Por4O5uOh/krPC5scGchRM0EgojrRbXToXhxOWDOCsk4WzeTZxLisK1+1eRS3lWbdNFcEEN1/KoczEJDe7o0CrZDa0+noqGAz6Cm5uRpdOkqA/V0ChlrDgln7dKTpszkri+iouLw8KFC7F48WIkJiYiMDAQw4cPxzvvvINq1aqJsAOP3Xp4C1svbMXm85ux78o+5OpyUce/Doa1GIYhzYegWmkD36eWtqmDB5kVG3gQBGERgJ4A7hBRk5Le7/CBB3uS4uI090JSQ0WlhiAQ93hgTHpOcK7fSL2BHZd24MDV/ThwYRdu5N4FAGh0QD3PqmhSpx3qoCyq/fwXqt3NRZWHQOksoJTGE76h/8GtQWNoSYs8XR5yc7ORcv4U7t66hORSLrhdWoPLKVcRd+8SLiVEISblEtJ1WQAADxcPtA1si041OqFTzU5oF9gOXm5eppJqGycLIknOwRvPiqHkmym+ppRFgvoqJycHmzdvxvz587F37164uLigZ8+eGDlyJF544QW4uLiIkvSM3Az8d/0/7LuyD3uv7MWJWycAAEFlg9CnQR/0btAb7QPbm54w0gnqazVQ8uSSfwGYC2CpzOlwPmJPZGVJ5aOGiVXEmlTTHNbmh6UTOYrZSORJJJkUlHgjo4byykJEhNOJp7H5/GZsvbAVkbcjAQCVPAPQ4UwKvrkMtIsHGiUBXm73gMjJj45F9yev+UYtig4L+Xs3yg0ZgjpF6oGJBe/R6rSIvReLyIRIhN8Kx4HrB/D9we8x8cBEeLp6okutLuhVvxd61uuJKqWqiLvjYk606ez4htN+lDzxKF9TyiJifXXx4kUsWLAAS5YsQVJSEmrUqIFJkyZh2NChqJqRod/mpUtWH+/EtEQcu3kMx+KP4XD8YRy+cRg52hy4alzRLrAdJj0/CX0a9EGjgEbmr04hdttUiW0SlZN9qIUgCDUBbOMeD3YmdqPBkiijSBFJIsLdu3dx6dIlXL16Fbdv30ZiYiISExORmpqKjIwMZGRkIDMzE4IgwMXFBS4uLnB3d0eZMmUKXhUrVkS1atVQvXp1VK9eHVWrVoXGngWLLflhbqEoRSORC2T7cJZ8VuqNjAM9QUl4mIAVZ1dgyeklOHfnHDSCBk9Xexq96vXCK/VfQf2zCRA6d37yg/lPVs1cFjk7MxPXAFwHcMPNDTfefx93BQEpKSlISUlBamoqsrKy4OnpiRYtWqDN023g09gH+67vw98X/8bVlKsAgHaB7TCo6SAMaDIA5b3L2yGHmNkc6LpQPKWWjUx5bLwus7KysHHjRixYsABhYWFwdXVFr169MHLkSHTt2hUugmDVuZiZm4nI25E4Fn9MH2y4eaygnHcRXNCsYjN0rtUZXWp1wXM1noOvu6/1bR+x2kx83VlNsUMtgJIDD4IgjAQwEgCqV6/e+tq1a3ZMnYMT84bGkq6AVlzMmZmZOH36NCIjIxEZGYlTp04hNjYWKSkpRd7n6uqKihUrwt/fH97e3vD29oanpyeICFqtFlqtFtnZ2UhNTUVKSgru37+PjIyMItvw8fFBw4YN0ahRIzRt2hRPPfUUWrduDR8fH+vypiT2KNy4kahOzlTxiXGOShGkUfkxICLsu7IPc47PwbaL26AjHdoFtsPQ5kPRr2E/BPgEPH6zFccgMTERx44dQ3h4OKLCwhB18CAuAdAWe1/p0qVRpkwZ+Pv7w8/PD56ennjw4AHOnDmDjIwMVKxYEcOGDcO7776LLN8MbDm8GKsvb8G59Ctw1bjixaAXMbjZYLxa/1V4uBqZF0JOzhIgzKfk7v+OyNnOr+Js2X+5b2Dtycr6KiYmpqB3w71791C7dm2MGDECb7/9NipVqvT4jWbUETrSIfZubEFvhmM3j+F04mnk6fRzBFXzq4a2gW3Rtqr+1bpKa3i7eYuyH6LidrPVVB14KIx7PCiYpRdoCQV6WloaDh48iAMHDuDAgQM4ceIEcnNzAQD+/v5o2bIlGtSvj6CMDNRdtQq1cnJQydMT/kuWQPPaaxYVTA8ePMCNGzdw48YNXLt2DefPn0dUVBSio6Nx8+ZNAIBGo0GTJk3w3HPPoWvXrujUqRPKlCljfv6UVIFJXcFxI1GdnKnis/UclbKhosIGaFZeFpacWoI5x+cgOikaAd4BGNFqBIa2GIp65eoZ/pAZeXjt2jX8+++/2Lt3L44cOYKrV68C0JeRQdWro9H162is06EugBoAqnt4oOqJE/Bo2tTgV+bl5WHnzp1YsGABtm3bBp1Ohy5Nm2Lk+fPonZuL89U9sPyrF7AyJwI3H95Eee/yGN5yON4Lfg81y9QUPd+sooRGsr05U9nE5GXL9WXtZ9V8TZtZX2VmZmL9+vWYP38+Dh06BDc3N/Tu3RsjR45E586dDff8NVBP3/UCji+bhqNlM3Ds5jEcv3kc97PuAwB83X3RpkobfZDhUbChcikzhggpoXzhdrPVTAUeQESyvgDUBHDOnPe2bt2aHIZWS3T+PFFoqP6nVit3imyj1RKtW0fk5UUE6H+uW2fRfsXGxtLs2bOpW7du5O7uTgDI1dWV2rVrR19//TVt3LiRrl69SjqdTv+B8+cff1/+y8tL/+8iuXPnDm3bto3GjRtH3bt3Jx8fHwJAGo2GnnrqKZo4cSKdOXPmcZoMESFvbGaHvGISCA0teszyX6GhcqdMfLaeo3yOExFRek46/XT4J6o0sxIhBNTqj1a05NQSysrNMm8DxeqmnKws+vfff+mjjz6ioKAgAkAAqFKlSvT666/TzJkz6eDBg5Senm5zWXfjxg2a+PHHVF0QCAAFAPQlQBc8PCgvOop2XdpFvVe9SpoJGhJCBHpl/vO06+IO0+WvPTjjuaeEeo3Jy17tWFuuL2s/68DX9NmzZ+njjz+mMmXKEAAKCgqi6dOnU2JiYomf1cXEUExVD/otGDSoD6ju/4EQon9pJmio6bymNHzLcFoQsYDO3D5Dedo86xIpddvHnHPXgc8BqQEIJyP38tzjQQ5qjqSaYsVTwbi4OKxduxZr1qzB6dOnAQANGzbESy+9hBdffBHt27c3PsTBymjkw+yHuHD3Aq6lXENCWgISHiYgIS0BiemJeJj9EOm56UjPSUe2NhsCBGgEDTSCBl5uXvBz9YPuhg5p59OQfDYZCecTQEQIrBGI1/q9hqGDh6J58+ZFJ8JRQuTWUc+5kqjwSXURSjh37MXWc9TJn05k5WXhl2O/YMbhGUjKSELnWp0xrsM4dKzR0fyJuR7Jy8vDnj17sGrVKmzbtg3379+Hp6cnunbtim7duqFr165o2LCh4e2auubMuR7DwqB9/nnsATAfwFboh210bN4cI7/8En01GiR99g7+aJKNBa2BOz5A84rN8c0z3+D1xq/DVSPDnNnOeu6pvXxltg1DsFebwpbry9rPOtg1nZ6ejjVr1mDBggU4evQo3N3d0a9fP4wcORIdOxqvI4gIF+5eQNjVsIJXYnoiAKDSQ6BdggZtn30D7V54F62rtkEpj1LiJFjKto85565OB8TFAUePAu+951ztZhEodqiFIAirAHQCUB5AIoDxRPSnsfc7TODBmW4mDEhNTcXq1auxaNEiHD9+HADQvn179O/fH6+++ipq1apl3oZKyMdcbS6ikqIQfisckQmROH/3PM4nn8eth7eKbMZFcEFF34qo5FsJfh5+8HHzgY+7DzxcPEDQR+i0pEVGbgZSs1KRmp2Ke5n3kPAwAbmpucAFAOcBXAGgBUoFlkKbF9tgyOAheDn4ZZQ/fk4ZFVjxBkadOvqC1VEbjY4QbHGEfbCELTcyTlqu6kiH1edW49u93+J66nV0q90N33X8Ds9Wf9bIB4zncUREBJYuXYpVq1YhKSkJ/v7+6NWrF3r37o1u3boZDgKLPcFtseOYAOAvV1csrFwZl2/cQFkAQwCMAFDHBVjZ2g0/DAjEhYdXUKtMLXz59JcY1mKYtMtyFuek5x5TOVvqF3ue84a+KygIWLkSSE+XZvl2B7mmT548iQULFmDFihV4+PAhGjRogJEjR2Lw4MEoX97whL0pWSnYE7cH/1z6Bzsv7cTttNsAgKqlqqJTzU7oVKMDOlFN1HnoBqFKFWnajlK2fUo6toW/u1w5YNgwoEkToFkzoF49x2x7iUzRQy0seTnMUAtn6j79iE6no//++48GDRpEnp6eBICaNm1KM2fOpGvXrlm30WJdPe/6e9LGP7+kT/75mNotbEee33sWdAHzm+pHbRe0paGbhtKUA1NoY/RGikyIpNsPb1vdFUyr09Lth7fpxM0TtObcGvp689fUakQr8q7tre+OLIBQH1Tp3QB691UNrW0EuuulkO5aztBN1lG6yTnasCyp2OOcttexMPN79l/dT23mtyGEgFr+3pL2Xt5b8naL5VHG8uW0+M8/KTg4mACQh4cHvfbaa7R582bKzs62eHtG89zc69HINrW5ubRn5kx6HSC3R8M9ngFoCUBpO/6hTTGbqO2CtoQQUNUfq9K84/MoO6+E9IvFGcpT5nhsqSPt2Y4tfn0FBREtXmze9WbttVn4c4GBROPGEa1ZQxQTo/jrOjU1lX7//Xdq1aoVASBPT08aMmQIHTx40OiwtJikGJp2cBp1WNyBXCa4EEJA/tP8acC6AbQwYiFdunvJ/kPapKpvSzp3HaXtKCOYGGohezDBkpfDBB7kOqlluIHJycmhFStWUJs2bQgAlS5dmv73v/9ReHi4zYVYalYqbY7eSJ+uHErNZ9QhIUQghIC8vvei5xY9R5/v/JxWnllJsXdj7VNgFsrfM/9sobf+9yb5+vsSABLKCITuIIwCtRkp0PhfX6ezCaflG5vsDAWrEwb4nJ6UZZy9bi7N+J5bD27RgHUDCm6yl5xaQlqdGekodN1fejR/QtlHN/ENGzakuXPn0v37981PqyXliCXXo7Hj+Oj7EgGaDlDdR2kv4+dHH330EZ0+fZr2Xd5Hz/z5DCEEVHN2TVp0chHlanPN3ydrcYCwZJxHymJLHWnvNkThc+f4ccu+29rzTqsluniRaOlSxQcVdTodHT16lN555x3y9tY//GrWrBn98ssvdO/ePYPvP3P7DH237ztq9Gujgod0LX5vQaP/HU2Hrh2yT7kph5LOXW472owDD0ojx9MRO39ncnIyTZkyhapUqUIAqF69ejRv3jxKS0uzabsXki/Qj4d/pM5LOpPbRDdCCMjze0/qsqQLTdo/iQ5eO6ifRM3eDRwj+ZudmUlr166l5557Tv800cuNqnSrQPhCX8g3mNuAxu0bR2dun5E2fcVJUbAqrVHpDMEVZj+Wnk/WXg8mvker09K84/PIb6ofeUzyoAlhEyg9J938fQgNpRMA9QFIAMgFoNcACp01y7ogqCXliBjXY7FyVufpSaEhITTwjTcKJiRu27YtLVy4kDad3kSt/2hNCAHVnVOXVp5ZaV5whkmDe4Uojy3XpJzH0543hgpvR9y7d4/mzJlDTZs2JQDk4+ND7777Lh07dsxgmR6TFENj9o6her/UI4SAhBCBOi7uSL8c+4XiU+Nl2AMZlHTuKvyYqwEHHpTI3jdpdrqQ7ty5Q998803B6g/dunWj7du3k9bK/cvKzaLdl3bTJzs+oaA5QQVR2ca/Nqavd39NYVfCnpytXY4u1zExJebvsWPH6LXXXiONRkPu7u7U/pX29NTUp0gzQVPQVfrX47/S/cz74qXTGLHPByU2KpWYJqZelj6xt/bcM/I9p/9eSO0WtiOEgLos6UIXky9alPz9+/dT92ee0fcQAGgsQPG2XveWlCNiXY9G6s6kpCT66aefqGHDhgSASpUqRe+99x79tOEnajqvKSEE9NSCp+jQtUPW7SuzDTfm5Vf82snNte2alOthgz3PJUuDHHbIE51ORwcOHKDBgwcXDF0ODg6mP/74g1JTU594f3J6Ms09NpeeWvBUweoTXZZ0od9P/E63H94WPX2qYOo4cdvRZhx4UDsxCjKJI8RJSUkFAQdBEOjNN9+ks2fPWret9CRacmoJ9V3Tl3yn+BJCQB6TPKjH8h706/Ff6cr9K6Y3IHWlZKhQWrPG7Py9dOkSffDBB+Tl5UUajYb6v9mfxm8aTy1+b1HQg2PwxsF08Jrx8XiS7IMtBatSG5VK64XB1MXa7r0iLv+WqwFN6uxKrhNcqfz08rTs9DKzywWdTkc7d+6kZ599lgBQhQoVaNpbb1Gqp6c4172l5YidGuUHDx58olH+9ti3qdJk/RKjr619jeLuxYn+3cwEpXdfdvS6wti1mpurvv22542hHMFVI5KSkmjmzJnUoEEDAkB+fn70v//9j06ePPnEe7Pzsmlj9Ebqvbp3Qe/g5r81px8P/0gJDxNESY9BjnIdGdoPMfbNUfKnBBx4UDOxCjKJbgzv3r1Lo0aNKhJwiI6Otng7sXdjaeZ/M6nD4g4FPQCq/FiF3vv7Pfr7wt8WdyeWtIFjKC+/+87i/E1MTKTPP/+cPDw8yNXVld5//33aEbGD/rftf+Q31Y8QAmr9R2tacWYF5eTliJP2wsQsAJXeqGTMUrZMaGbL9VDoe8+XAz01Uj93zcB1b1ByerLZyT927Bh16tSJAFC1atVozpw5lJ6eLn7DR8ENqfxuyE2aNCnohtzq5Vbk8Z4HuU10oy93fWmfHmZK5KC9Lq3iDE84lZz/1rDnRL9iT6Br6ruK7ZNWq6Xdu3fTgAEDCoaTtW/fnhYvXmxw6PLV+1dpzN4xVHFGRUIIqNLMSvTFri/oVMIp2/LB3PQ76nUkxr45cv4Uw4EHNROrshD5hM/KyqIff/yRypQpQ4Ig0MCBAy0KOGh1Wjpy4wiN2jOqyMQ2zX5rRmP3jqUTN09YPx5X6grW0E1FYKDVExDFx8fT+++/T66uruTp6Umff/453bh9g/4I/4Pq/1KfEAIK/CmQph+aTimZKeLsg9gcrVHDmKFzOihI3/OhpMaujdeDNi+Xftk6lrwmepD/lNK0+sxKs5N94cIFeu211wgABQQE0C+//FLy6hQOTqfT0ZEjR4pMvFY6sDShG8h/rD/9Ef6H1asbqZITzDNlEWeov6R+OKDgAKTNzN03kQLOBFCchweN69ePqlevTgDI39+fPvnkE4M9ifO0ebTtwjbqubInaSZoSDNBQ6+sfIW2Xdhm3wkiHfk6EmPfHDl/iuHAg5oZK8gOHbK8kBehYtDpdLRu3TqqXbs2AaDu3bvTmTPmTYyYnJ5Mq8+upmGbhxVEY10muFDnJZ1p9uFZdDn8X3EqLakbOMYKj4sXnxw/aUF+X758mYYOHUoajYbKli1Lc+fOpeycbNp+cTt1WdKFEAIqM60MhYSGKO8pnak8d+QGCXNcIjYiLSmD7qTdoReXv0gIAfX4owPd3LnOrOvm9u3b9P7775OLiwv5+PhQSEgIPXjwwLx9dSKpqam0YMECevrppwkAQaNf9rjO/+rQ4SuH5U6efcjVAFZqXSDlTblS9lnKY67koJI92TjELt3Tk5YC9Dz0q/UIAL3w7LO0Zs0ayszMfOIjtx/epskHJlONWTUKejeM3TuWrqVYuUS9rRy556sY++bI+VMMBx7UwFjlZOyp24oVdi/kjx07Rs88mpyscePGtGPHDpPvz8rNooPXDtK4fePoqQVPFSx3WWZaGXp97eu0/PRyupdxT5pKS8rK3pz02rBPp0+fps6dOxfk8+7du4mIKOJWBPVe3ZsQAio9tTSNDx2vrACEsTFx3CBhaiRBt9mS7L+6n6r8WIU8JnnQr38MJ51XyXMx5Obm0uzZs8nPz49cXV3po48+otu3nXTCMAvFxMTQV199RWXKl9EHIXxAzXo3o0MnHHwCSidqAJtFqptypdR/Wq1+Auw1a/TDQgMDxU2LEz3JNcmK453fG2tkz57k9yjgUBug7wG6buSaPHP7DA3bPIzcJ7kXTDa8LmqdNENyLeHI5wH3eLAIBx6UrqSnxcX/tmuXXU/eu3fv0siRI0kQBKpYsSLNnz+fcnOf7L6VnJ5M2y9up2///ZaeW/QceUzyKJhBt/3C9jQ+dDwdvn74ya5farwYS7qpsHGfdDodbdq0qaBnSa9evSg2NpaIiCITIqnP6j4FAYhpB6dRRk6GyDsoEjUeW8aI7HrToNVp6fv935NmgobqzqlLkUc2mXXdhIaGFsxf0L17dzrP15VVcnNzac3GNRT0TJC+BwRANRvXpF9//ZXu378vd/LEx+VyUVJd60rIZ0P7tnSpvoemWGWZswWyTLX/zAw43759m2bMmFGwCo+3lxcNdXGhMIC0Bs4VrU5L2y5sK+j96j3Zmz7Y9gGdT4xWRo8aIuUE2qTAczxYhAMPSldS5VS8INu3zy6FvE6no8WLF1P58uXJxcWFPv/8c0pNTaW7GXcp/GY4rT67mkb/O5peXvEyVf2xasE8Da4TXempBU/R5zs/p43RG/W9GkxxxEpLpH3KzMykqVOnkq+vL3l4eNCkSZMKxmufSjhFPVf2LJgDYnHkYsPjlOXs6qn2Y6uUbrJMHnY4/nfS7lC3pd0IIaA3N7xJD7IelHjdxMfH0xtvvEEAqEaNGrRp06aSV7oovi9qnM2+JCIcr/1R+6nOG3UIFfQBCA9PD3rrrbfo33//JWuXhVYcQw3grVv1T8Ud6XywhBTXuhLqP3sEP5QQYLEXG24ec3JyaPPmzdSrVy9ycXEhAPT000/TwoUL6UFKisHtpmU+oHnH5xXM91X1x6o07eA0uptxV5k3so7cZhJj3xw5fwrhwIPSWVo5mVnI63Q6updxj2LvxtLZxLMUfjOc/rv+H4VeCaVdl3bR9ovbaXPMZloftZ5WnV1Fy04vo0UnF9H88Pk0asUoqt5UP6lN+frl6ZnJz1DTeU2p1JRSBQGG/CBDk3lNaNDGQTTjvxm07/I+y1agsGB/VEXkfbp58yb179+fAFDDhg3p4MGDBX8LuxJGbea3IYSAms5rSrsv7X78QbkrJnsdWykKc7nzjjm8k7dOUo1ZNchjkgctiFjwOHhg5LrRRkfTL7/8UhCIHD9+PGVkFOrtZOw6KH4uW7JCh1qIeL3qdDpafno5lfukHKENyN3HvSDIM2bMGMfoWVL4XLl4kcs6a0jc81GU9G3bJn3ww5nqSguPqU6no/DwcPr4448pICCAAFClSpXom2++oZiYmKJvLnQ+xZ/cT9/uGUX+0/wJIaDg+cG08szKosMp5D6/GDPC5sADAG8A4wAsePR7XQA9zfmsmC+HDTxYWngYKOSTVy2iNWdW0Ze7vqQey3tQjVk1Ctbuteg1FoTnHk245QXy6utFNX+qSa3+aEWvrHyFPv7nY/rp8E+0KWYTnUo4RVm5Wbbvv6FKa8WKxxNoqrHykqgi3r59O9WoUYMA0PDhw+nePX1vEp1OR2vOraE6P9chhID6rulLV+9flb9iskeDxJG7yTL7sfOTiJVnVpLX914U+FMgnbh54sm0FDuno2fNKpgQsVu3bhQXF1fiZwqug+Ln8ujRjnduS3C9pmSm0IfbPySMAfm/5U8tn21JGo2GAFCbNm1ozpw5dOfOHRF3QiZi5J2TPMkrIPFcT6Klz4qlvq3+Pmc4/mY+KLx27RpNmTKlYCiFh4cHvfbaa/T3338bHKqcL+JWBL214S1ynehKmgka6ru6Dx08uIJ0+/Y9ma9K6FHDmAFiBB7WAPgawLlHv3sBOGXOZ8V8OWzgwZrKSaulzKjTtGTVKOo07/HEjR6TPKj5b83pzQ1v0rf/fks/Hf6Jlp5aSuui1tHW81tpZ+xOCr0SSoeuHaJj8cco4lYEnbl9hqLvRNO6XesoqH4QAaABbw2ghMQE++ZBfqW1a5f+iZzaI+cSVcRpaWn05ZdfkouLC1WoUIHWr19f8Les3CyacmAKeU/2Js/vPWniX8Mo01XmiknqBolUAQKu1B2TzJOg5mpz6YtdXxBCQM8teo5uPzQyEeSjdGbv3k0T/u//yN3dncqWLUtLliwxPKzC1HVQ/FweM8bxzm0Jr9cjN45Qs9+aEUJAL8x7gcZ9P45atGhBAMjV1ZVeeeUVWrt2rcGZ51XB1rxzpife+cytd+S6Ic9PX2Ag0ZQp1h0bZwkmWMLEcU9NTaU///yTOnXqRIB+qNZzzz1H8+fPNzlXjFanpa3nt1LHxR0JIaBSU0rRpzs+pcvJl0xfV/Z4OMLnALOCGIGH8Ec/Iwv922lzPivmy2EDD0QWXdx52jz6/cTvFPhTICEEFDQniL7b9x0duXHk8cSNFmwvIyODvvjiC9JoNBQYGFjiahWS4qfMZouMjKRWrVoRABo4cCAlJycX/O16ynXqv64/IQRU+xOBttZTSX5aU8lJdcPB56LjMXaDdPGiXY51cnoydV3alRAC+nD7hyXOQn7ixImCySPfeOMNSkxMNP5mU9dB8XN5zBjHO7eNXa/Hj4vSWM7Jy6Hph6aT1/de5DvFl2YfmU2RpyLpq6++oipVqhAAKl26NA0fPpwOHDigrvkgbC3rnLGsVHpgunD6AgP1vZzGjCEKCzM/6CBGMMnRblyL5Uuupydt//ZbemPAAPL09CQAVLduXZo4cSJdvnzZ5KYycjLo9xO/F8zfUO2najTzv5mUkpmif4M5879JGfBzxoAiE4UYgYfDj3o5nHz0ex0Ax835rJgvhw48mCkmKYbaLWxHCAE9/efTtCduz5NPvywoLA4ePEh169YlAPTee+9RamqqnfbECCkqc0er+ArJycmhSZMmkZubG1WsWJE2b95c5O97L+2hRlP1Aaq+/UG3ynsqt+Iwdt6amgRPq9XfWEjR6OVK1/EYa8iFhUl+E3Eh+QIFzQki90nu9OfJP02+Nycnh8aPH08uLi5UtWpV+vvvv0v+AlONVGed42HKFP2+irhvl+9dpheXv1gw7jriVgTl5eXRnj17aPDgweTj40MAqGbNmjR27Fh1zAdha1mn9JtwKSj9abMSgknWnlcKb7Pp8vLoxLp19Em/flShXDkCQGXLlqUPP/yQjh49WuJEv4lpifTdvu+o/PTyhBBQ6z9aPzl/A5F515WUeeWMAUUmCjECD90A7AeQBGAFgKsAOpnzWTFfzh542Byzmby+96KyP5SllWdWGi/czCgssrOz6ZtvviFBEKhmzZr077//2mkvSiB2QeckN4+nTp0q6Po7aNAgunv3bsHfcnKyaOrGz8ljghuVnlyKFoT/UfIM+HIwduwLLx9b+PjlH9ugIOu7kpZE4Q0gm9iyb2rNF2MNue3brSt3zMyHsCth5D/NnwKmB9Dh64dNbi96+3ZqXa8eAaDBgwaZv5xjSWVd8bQ66qoWx48TjRunf8IbGChJY1mn09Hqs6up4oyKpJmgoc93fk4Psx8SkX4o3LJly6h79+4F80G0aNGCfvjhB7p69apoaRCdnDe5aqT0p81KCCZZc14ouM127tw5Gjt2LAUF6Ycku7u7U79+/Wjz5s0Fq42ZEn0nmoZvGV6w1PwrK1+hsCthNrXlJeWMAUUmClFWtQBQDsDLAHoCKG/u58R8OXPg4Zdjv5AQItBTC56iWw9umX5zCYXFuXPnCm5Shw8fTg8fPpQ8/WYTu9KRu+C2o+zsbBo/fjy5urpS1apVad++fUX+fjH5YsEYwk5/daKLyRdlSqkRxs7bceMMH7/Cxza/K+m4caJ1rXZotlxnCm4YlshYeRATY9U8O+Z8ZumppeQ20Y0azG1AcffijGyMSJubSz8NHUoeAJUDaL27u3XrhDtaMMFSdmws38+8T+/9/R4hBFR9VnX6+0LRnik3b96k2bNnU7t27Sh/zHf79u3p559/plu3CtXjaj9uai4TbFH4uF28KO5ypHJP+CnG91tzLSqszXbp0iWaPHlywZA3jUZDXbt2pYULFxZM7m2KTqejvZf30ksrXiKEgDy/96T3/n6PzieZsT9yX1cKOxZMPcQKPDQD0AtA3/yXuZ8V6+WsgYc/T/5JCAG9uupV85aqNFJYaKOjafbs2eTh4UEBAQG0ZcsW6RNvDTEbYU4YsY2IiKD69euTIAg0atSoIpF4rU5LCyIWUOmppcnze0+afmg65WnzZExtIcYqudGjDR8/Jzy2orGlQaHmxoiphpyl5U4J+aDT6ei7fd8RQkCdl3SmexnGG6k3btygTk89RQDoFYBuqy1flUSG8/O/6/9R418bE0JA/db0o/jU+Cfec/nyZZo6dSo1b96cAJAgCPT888/TH7/9RsmLFqn/pl2twRMx0i3FDaLc9ZsY+2TNtSj3fhNRfHw8/fTTT9SmTZuCgOEzzzxDc+fOpdu3b5u1jfScdJofPr9gUtoKMyrQxLCJdCet0Co45px7cl5Xcgc+mGqJMdRiEYBwAEsALH70WmTOZ8V8OWPgYev5raSZoKEXlr1A2Xkld+UiIoOFxc0//qBuXbsSAHr55ZfNLjwNblvMQlDqQlXNN0k2SEtLoxEjRhAACg4OposXi/ZuuPXgFvVe3ZsQAnp20bN06e4lmVJaiKFKbsWKxyucmOrx4ETHVhQlNe5MXZcKaBjaRKwyx0Q+ZOVm0Zsb3iSEgN7Z/I7Jsnvz5s1UtmxZ8vH0pD8B0qk1X5VCpsZydl42TTkwhTy/96RSU0rRz0d/fjzZczHR0dE0fvx4qvdoSI0rQC8B9BdA97gcsx+xzhUp6iIl1G+2lpXW5K9M+33r1i369ddfqUOHDiQIAgGg1q1b04wZM+jatWtmbyfuXhx9sesLKjOtDCEE1Py35rQwYiFl5hZb8UbMILiUlJQWphpiBB6izXmf1C9nCzxcvneZ/Kb6UfD84ILxo2YrVFjsWLCAypcvT97e3vT7779bP75f7AadPRqITh6x3bBhA/n7+5OPjw8tWrSoyLHX6XS09NRS8pvqRz6Tfej3EzacG2IxNA7dVOVs6xhYZ61QLZmIsHi+KqFBrARG8iH1bDh1XtKZEAKacmCK0WsqMzOTPvroIwJALVu2pAs7dnC+ikXGa/vS3UsFk0+2+qMVHY8/bvS9Op2OIhcsoK8Bqv7oyaorQN0B+v2zz6x/QMDMI1ZZJtWk2JZOtqxEll6LdmyzXblyhX788Ud6+umnC4INDRs2pIkTJ9KFCxfM3o5Op6Ndl3bRKytfISFEIJcJLtR/XX86cPWA5fM3XLzo1G1W5hjECDz8CaCROe+V8uVMgYecvBxqu6AtlZ5amq7cv2LdNnJy6KuvviIA1LRpU4qOjrYtUWLfcNjrBsaZbzBJ3437+eefJwD0+uuvPzEu8XrK9YIl/l5c/iLdfHCz5I3aM09NfZe16VBjQErMPDe1/yVdl2rMOykYyIeElfOp5e8tyXWiKy07vczoR6Ojo6lZs2YEgD7//HPKysrifHUgOp2O1p5bS5VnViYhRKAPtn1A9zPvG37zo+tNB9BxgL4BKOjRTZAgCNShQweaPXs2Xb9+vejnpJxfQG2sLRvFChiI3ZbJ359Dh/RzFpkTiHckErYvzp8/T5MnT6bWrVsXDKNo0aIFTZo0iaKioiza1u2Ht2n6oelU75d6BcMpxu0bZ3CoVRFarX4lpTFj9K/8SXAB/b9zAJqpnBiBhw4AUgFcAHAGwFkAZ8z5rJgvZwo8hISGEEJAa8+tterzV65cobZt2xIAev+NNyhj507lzZeg9i7bKpKXl0fTpk0jV1dXqlatGh0+XHRmfa1OS3OPzSWv773If5o/rTq7yvjGxLxBkisopLan9lLclBrLe7mX8LI23XIolJbYE7uo9s+1yXuyN+2I3WHw7TqdjhYsWEBeXl4UEBBA27dvN7o92ffN2UiQ96lZqfTxPx+TZoKGKs2sRKvOrjJr+Wvd2rV05tQpGj9+fMGkdgDoqaeeomnTplHshQuPPxMYSDR1quPfjBpjS9koVj0gdp1obVCYPUGn09Hp06fpu+++o8aNGxdcS+3ataPp06fTpUuWDTPN0+bRjtgd1G9NP3Kd6FowXHXZ6WWUlZtV8gYMHd8pU/TXsZcX0bZt3C5mqidG4OHSo4klawGokf8y57Nivpwl8BB3L448JnnQG+vfsOrz69evp9KlS5Ofnx+t/fxz8Rokxiq9mBhxt8eVqGSOHz9OtWrVIldXV/rpp5+eaARfSL5AbRe0JYSAhm4aaniIjxIba5ZSW9DLnteKkq9LhfYKiLgVQRVmVKByP5SjozeOGnxPamoq9e/fnwBQly5diq5qwOyvcKAhJoZo61bJzquIWxEUPD+YEALqtrTbkysKlRD0uHDhAk2dOpWCg4MLbpyaCAKNAui/IUMoz9NTmderPdhSXikxiG5qf9RWb8kkOzub/v33X/rkk0+odu3alL8aRceOHWnOnDl048YNi7d56e4lCgkNoeqzqhNCQOWnl6cvdn5OMcf/Idq3T98z5dChko+9seM7bpz+3IuJ4Z7ATPXECDzsM+d9Ur+cJfDw6qpXyWeyT8ndtYrJzMykDz74gABQmzZtKG7PHvG7/xWvpKdO1TfYxI7sM8ncv3+fevfuTQCod+/edP/+/SJ/z9Xm0rh940gIEajunLoUcSui6AaU2j1VLd9tDXs2OJV8XSrwuO2J20O+U3ypxqwaRpdIi4qKonr16pGLiwtNnTqVtErIS2dmrC4r3OVZ5PMqT5tHvx7/lfym+pHHJA+aEDbBvCekxVy9epV++uADeh4gl0dBiPIADQFoLUCpznYzamvZqLQbMFP7o8DyTymSk5Np2bJl1L9/f/Lz8yMA5OnpSS+//DL98ccflJiYaPE2bz+8TXOOzil4GCOECNR9WXdae24tZedkGu65EBRkur40dny3bxdn7ipzKLmOZw5BjMDDPAArAQzk5TSl9W/cv4QQ0NSDUy363JUrV6hly5YEgL744gv9EopS3KxcvKiPzI4Zo1/mML97mK1jGeWeK8DJ6HQ6mjVrFrm6ulKtWrXoxIkTT+RPaNxeqvpjVXKb6EY/HS7UO0LJE3KZS20Vr70bnEq9VhT2xG/V2VXkNtGNms5ranRulPXr15Ovry9VqFCBwsLCpEmIVMdLqeeBrYxdT8WX7t24UfT9vvXgFg1cP5AQAqo7py7tjN1pdfrvA7S6Tx96y8WF/B8FIdwA6qrR0OzRoykuLk60dCuWtWWj2HPmiLUtWyb+dSI6nY6io6Np+vTp9Nxzz5FGoyEAVKlSJRo+fDht2bKF0tLSLN5uasZ9WrJjGr3wcxtymeBSsDLFD4d+oOspheZZMVWGmDr/zDlfpS53OYDFJCZG4GGxgRcvpymB5xY9R4E/BVr0JGT37t1Urlw5Kl26NG3duvXxH6QoXBTW8DcbV9gGHTlyhKpVq0bu7u409913SZffZfdR/iQ/vEOvrnqVEAJ6acVLlJiWKF5eyl35qemmylHOX1vzXO5zppC5x+YSQkDPLXrO4MSBubm59PXXXxMAate8OcWvXSvNeSbVuWHrdpV8fRmrx8aMMXwTIcG1tvvSbqo7py4hBPTKyleeHH5hSuFj82iOh1xPTzoA0NeurtSwalXKH5LRsGFD+uKLL2jXrl2UkZEh6j4ogjXnqb3mZJBif5R8XUksJSWFNmzYQCNGjKDq1asXnOPNmzensWPH0rFjx6zqTZbwMIH+CP+Deix/kdwn6OdtqPkJaHR3Vzq37CfDeVxSGWKsTayEulyt7XimGjYHHpTycvTAw/6r+wkhoDlH55j1fp1OR9OmTSONRkNNmjSh2NjYom+QooBTUMPfImpNtx0kJyfTyx07EgDqD9CDYvmj0+lo7rG55DHJgyrNrER74vaI0/hRQgWsJmpvcJp7vE3tp0LOmSkHphBCQL1W9aKMnCdv5pKSkqhLly4EgN7v1o2yCgf0VqwwbyywuaQq25Qydl4KpsZZ5/9//oRvEtYVWblZNP3QdCo1pRS5TXSjr3d/TalZqeZ9uPB1YmBVi0uXLtHs2bOpa9eu5O7uTvldz7t3704zZ86kM2fOyL98slgsLRvFvGakuP7UXtaLRKvV0okTJ2jSpEn07LPPkouLCwGgUqVKUZ8+fej333+na9euWbxdnU5HpxJO0bSD06j9wvYkhAiEEFDtGdXoi5dc6b9qIF1Jx9LaHg/6HZP3+Cqh1wVzaGL0eAgEsAnAHQCJADYACDTns2K+HD3w0G1pN6o4o6LBhmxxDx48oH79+ulvFvv3p4cPDUwCSCR+4aH0BqUxHOE1Sbt3L/0A/ZjhBgDFGMif07dPU8O5DUkIEWjs3rGUp80T4YsduHJz5H2zhrmNnZLKFxnzVafT0ag9owghoDc3vEk5eTlPvCc8PJyqV69OHh4e9OfkyaYbp2KUnVKVbbZsV+mBXmPn2cWLRJs2Ea1aRfTDD0WXupOwrkh4mEDDNg8jhIAqzqhIi04uIq1OvPM6LS2N/vnnH/r000+pUaNGBU+KKwcE0NAhQ2jFihV0+/Zt0b5PEmJe92JeM2prWyi4XtLpdHTp0iVasGABDRw4kMqXL19wrrZu3ZpGjx5NBw4coJycJ8vdkiQ8TKClp5bSoI2DqOKMioQQEEJArf5oRZP2T6KziWdJt2+f+cfSUBlizhwPSmBOrxo1tvOZYogReNgDYBgA10evtwHsMeezYr4cOfBw8tZJQgho+qHpJVYM58+fp4YNG5JGo6GZM2fa/6mFgisuo5TeEJbbo/wJBSgAoFIAbXR3fyJ/0rLTChrIXZZ00Q+9YE/iivtJ5jTQlXCdGinftDotfbj9Q0II6L2/3zN4Y7ho0SLy8PCg6tWr6+dNKak7rtw9E6TarqU3Y3LUKYa+U6vV90gxdDNhh3PwePxxar+wPSEEFDw/mP67/p+4X/CoXLru4UF/AjTAxYXK+voW3Nw1atSIPvjgA1q7di0lJiQop54XuzxVeo8HqSiwXrp+/Tr99ddfNHTo0CLDJypWrEiDBg2i5cuXWzwxpC4vj+LC99CSVaNoxNLXqeHchgWBhoDpAfTmhjdpceTiJydwt/RYFi5DzF3VQilMlblqOqdNsaZeUeP9jQKJEXg4Zc6/Sf1y5MDDe3+/R17fe9H99LsmK4YtW7aQn58flS9fnvbu3WvexvlCUmSFqyiF8ucGQE8JAgGgb0eNory8J3s2/HnyT/L83pOq/FiFDl47KEOCFc5RKm4xmZMncj89NFJO5OZm09BNQwkhoC92ffFEsDcrK4vef/99yl8q886dO6b3ufAkhrbumxLneLDk/FdS2Wws3bt22S09Op2Olp1eRlV+rEIIAfVe3Zui70SLs3ED+5fn6UnH162jadOm0Ysvvkg+Pj6PAxGCQB8AtNbdnRIXLpSvvhS7PFXyHA9SUkC9dO3aNVq5ciWNGDGC6tSpU3CulStXjvr160e//vorRUdHW/RA7U7aHdoZu5OmHJhC/Vb3pUrflykINJQZBXppZkuadmAqnbx10nRPIjUdSynJXQ+LQe65X5ycGIGHfwEMAuDy6DUIwF5zPivmy1EDDw+yHpDvFF96e/PbRiuGvKgoGjduHAGg4OBg88e18YX0GAdgTCuUP1lnztDIESMIAHXr1o2Sk5OfePuphFMUNCeIXCa40Iz/ZjjOeGExOELFLTZzyiK5G8YGvj/bx5P6LexOCAFNDJv4xHkeHx9P7dq1IwD09ddfU25urul9lmLuACmG1J0/b9n69MU/b269I/cxL0xB121adhp9v/978pvqR5oJGnp3y7t0I/WGbRs1Y/9ycnLo6Jo1NM3VlV4EyOfRjSEAalC7Nr3zzju0cOFCioqKsmoiP6nSbTExrxm1tC3sfH7n5uZSeHg4/fzzzzRgwAAKDAwsOJdKly5NvXr1olmzZtHp06fNOpdSs1LpePxxWnpqKY3+dzT1WtWLAn8KLAgy5M/TMOg1F/otGHS2AkgrWFieqOVYSklJZbK1rNkHR9hvhRAj8FAdwFYASY/medgMoIY5nxXz5aiBhz/C/yCEgI7cOGKwYrgHUI+2bQkADRs2jDIzM83fuCNcSFwRyGbBggXk7u5ONWrUoIiIiCf+npKZQv3W9Ct4Mmdodn8icr5j6AjXnRRKOg/kDpQWK3/T3UAvvqVv0M46MuuJt+/fv58qVKhAPj4+tG7dOsPbLLzPu3bpu+0rOQgs1jEw95pX0M2+Eq/bpPQk+mznZ+Q+yZ08v/ekr3d/Tfcy7lm3MXP3r9AxyQHoKEDTAHq5XTsqW7Zswc1jmTJl6MUXX6QJEybQ7t27KTXVzIkxpUq3syvpmpM4H5OTk2nHjh00duxY6ty5c5HeM4GBgTRgwACaM2cORUREGOxJmafNo+sp1+nQtUO04swKmnJgCr3393vUeUnngh5A+S+XCS7UcG5DemvDW/Tj4R8p9Eqovv0hVnnibG2WwuSuh8VgzXmgpLpI5UwFHgT939UhODiYwsPD5U6G6ILnByNHm4PT75+GcPEi0LIlkJkJADgDoI8g4IarK3755ReMHDkSgiCYv/GwMOD555/899BQoFMnMZIvLZ0O2LgRGDJEnydeXsDSpUDfvoBGI3fqnMKJEyfQr18/JCUl4ffff8fQoUOL/J2I8POxn/HVnq9QvXR1rHt9HVpVbvX4Dc54DJ1xn8Wi0wGxsUBCAlC5MlC3rv3y7MKFgvL3gQfwykDgYA1g/lOTMPylsQVvIyLMmTMHX3zxBerUqYNNmzahUaNGJW9fzn0zV6E8KODlBURGAvXrq//7TFHwdXs15SrGh43HstPLUNqzND5t+yk+bvsx/L38zd+Iuftn4phQvXq4ePEijhw5giNHjuDw4cOIiorSNygFAU2aNEHr1q3RqlUrtGrVCi1atICPj49tO6/g46IY5uSRiPmYkpKCiIgIhIeHIzw8HBEREbhy5QoAQKPRoHnz5nj66afR4qkWaNyqMXwDfHEv8x4S0xORmJaIO+l39P+frv//hIcJiH8QDy1pi3xPWa+yqFu2LhqUb1DkVdu/Ntxd3J9MmBjliaOeb5bUP+a8V8n1mTXngZLqIpUTBCGCiIIN/s2cwIMgCEsAfEJEKY9+9wfwIxG9I2ZCS+KIgYeYpBg0mtcIs1+YjU/afVKkwFuVmYnhAMr4+2P933+j/TPPWP4Far+QlJx+JRe6IktKSsIbb7yBffv24YMPPsCsWbPg7l600j984zAGrB+ApPQkzH1pLoa3Gq7/g5KPoZSc6PxwGI/K37sjB6PHa1mIrAQsr/EpBgz7seDYpaenY+TIkVi5ciVeffVVLFmyBKVLl5Y54SKyd7BaaY18hV+3ZxLP4LvQ77Dlwhb4efjh46c+xqftPkU573LmbcDcGwoLjklqaiqOHz+OI0eO4OjRozh58iQSExMBAIIgoEGDBgWBiNatW6NFixaWXzMKPy6yM7eeNSMfc7Q5eJD9AA+yHyA1KxVX468iKioKMedicPHsRVyJvoK78XcL3u9dwRu+NXzhXs0dqALkVspFmpCG9Nx0o8nVCBoEeAeggk8FVPStiEq+lVDdrzqql66OGmVqoHpp/f/7uvtalg9ilCdqaLNYej2IXc4qrdwWI31K3ycVESPwEElELUv6N6k5YuBh4v6JCAkLQfzn8ahSqgoAIDc7G9+89x5mLVmC54KDsXbLFlSqUsW6L1D7haTUHhtqz1cr5OXlYfTo0ZgxYwbat2+P9evXo0qx8zIpPQlvbXwLey7vwchWIzGnxxx4HDqizGPImAG3H9xCt0WdEPvgKtY9+zNe6fRewTUdFxeHvn374uzZs5g0aRK+/fZbaBztepej0c03lRY7ffs0vj/4PTZEb4CPuw8+bPMhPm//OSr4VDD+IbGfeBpBREhISEBERAROnjyJkydPIiIiAjdv3ix4T/Xq1dG4ceMir4YNG8LX18IbTaZXqK1EAFI8gWRvIGnRL0iqXw33Mu8hNTsVqVmpRX8W+v/7KfeReiMVOQk5QCL0A6vvAMgo9D2lAVQBhCoCfGr6oEytMvAv6w8/D78SX/6e/qjoWxEVfSqirFdZuGhcpMkLW8sTpbY781nT/hS7XHfE4Iy1n2FPECPwcBpAJyK6/+j3sgD2E1FTUVNaAkcMPDSZ1wRlvcriwLADAIA7d+6gf//+2L9/Pz7++GPMnDkTbm5utn2Jmi8kpRZuSk2XHaxbtw7Dhg2Dr68v1q9fj2effbbI37U6LcaFjsPUQ1PxVNWnsKH1dAQ+08Mp84qpy/XU6+iytAsSHiZg68Ct6Fyrc8Hf/vnnH7z11lsQBAGrVq3CCy+8IGNKJeSEQVU1i7oThckHJ2P1udVwd3HHoGaD8Gm7T9GkQpOib1TAcU1MTERkZCROnjyJqKgoREVF4fz588jOzi54T82aNQsCEfXq1UOdOnUQFBSEKlWqFA3yydEVXOa2VGZuJm49vIX4B/G4+fCm/ueDm7idfhvJSdeRdO4YkrwIyd5AnrF7ei3gneENrwdecEtxA+4Cecl5yEzIRHrS4x4K7l7uCAwKRO36tVGvYT00adIELZu3RM2qNeHn4QcvVy/Lhv2qib3bd5aeV9akT+xgitKDM0xWYgQehgD4FsB66IOp/QFMIaKlNibsRQA/Q79SxkIimmbq/Y4WeIhOikbjeY3xS49f8NFTH+H48ePo168fkpOTsWDBAgwaNEi+xCklWKGAxlJBOgrnR3IyUOyGG4DTFLpRUVHo06cPrly5gtmzZ+ODDz54ohGyMWYjhm4eCm83b6wN+AAd//cD38gwxYq9G4suS7vgQfYD7HhrB9pXaw8A0Ol0+P777xESEoLmzZtj48aNqFWrljhfqpRyVi3pspSj7IcZLiRfwOyjs7Hk9BJk5mWie53u+KzdZ3ihzgv6slmhwfK8vDxcvny5IBBx7tw5REVF4cKFC8jNzS14n6enJ2rXro06tWsjqFw51HFxQZ2sLNTcuxeBqanwXbZMsvkMJNmeARm5Gbhy/wri7sfh8v3LBa8bD24g/kE87mXee+Izvu6+qOxbGQHeAQhIzUX5gxHwvaeDS5oLdO1fRHbZakhJSMXt67dx48oNXLt6rUi++vr6om7duqhfvz6aNm2KJk2aoGnTpqhRo4Y0vbnUcE3as91pzXdZc9PvjD0emGxsDjw82kgjAJ0BCNAvpRltY6JcAFwE0A1APIATAAaa2q6jBR4mhE3AhP0TcPPzm9i+Zjs+/PBDVKlSBRs3bkTLlnYdxVKUUm72C6dHzorKUH4sXAiMHw9cuvT4fU5W6KakpGDw4MHYtm0bhg4dit9++w1eXl5F3hOTFIM+a/rg0r1LmNnia3xSqhuEKlWU2dhgTivqThS6LuuKPF0e9gzegxYVmgGxsUiJjcXgH3/EtrAwDB48GL///ju8vb3F+VKllbNykLJsd9L8vZtxF39E/IG5x+ciIS0BDcs3xHut38Pgh7VQtvurT35AocHyvLw83LhxA5cuXUJcXJz+56VLiIuMxKXr15FZ7P2lAVSrWxeBdeqgWrVqCPT0RJXff0fF3FxUAPQvT0/4nDol641WrjYXl+5dwrk75xCdFF0QZIi7H4fbabeLvNfX3Re1/WujRukaqFqqKgJcA+CT4wP3THdo0jXIe5iHlOQU3L59Gzdu3MD169dx/do1pGdkFNmOl5cX6tata/BVsWJF+/VcUNM1aa92p6nzqm5dw2mw5lxUYSCOqZcYPR6WEdHgkv7NwkS1BxBCRC88+v1bACCiqcY+42iBh2a/NUNp19JoeKIhFixYgO7du2PlypUoV87MSaKkwpHMoozlx+bNQO/eTl3o6nQ6TJo4ESETJqB1vXrY8NtvqNGpU5E8eJD9AEM2DcGWC1vwZtM3seCVBfB2E+nmjRUld5BOhU4mnET3Zd3h7uKOvUP2omG5+sDGjTg3aBD6ZGfjKoBZ77yDD+fPh+BioP+ytXnu7OWs1A1XJ8/fHG0O1pxbg1+O/4ITt07AQ+OO185qMeK4Fh2u6Z8gqS4/Hh1TyszEbQCXANxwc8ONZ59FfGgo4p99FjcyMxEfH18wuWVx3p6eqFCpEgICAlCmTBmULl3a4E9vb294e3vDy8tL/zp3Dl7Dh8MLgDv03XQ1AFy2bYOmY0e4uLhAo9FAEARotVpkZWchNjkWUbejEHMnBjGJMbiQdAFX7lxBXnYekAMgFyjnWg7lXMuhrEtZ+MIXHjke0GRroMvUIS01Dffv38f9+/dx9+5dZBQLKAD6FSQCAgJQrVo1VK9e3eArICBAGXPROPk1aZCx3guHDunrFEPlI2Bd2elgQ4+YcpkKPLiauY3GxTboAqC1jemqCuBGod/jAbS1cZuqEf8gHmdjz6Larmo4FH0I3377LSZNmgQXQw1be0tIKFoxAPrfExKcs3Iwlh/u7voK04knrtEAGN+kCVq5u2PQxYsI7tIFa777Dp3Hjy/YLz8PP2wcsBHTDk3D2H1jce7OOWwasAm1/WvLm3ixKOWY8hMIix2+cRg9VvSAv6c/9g7Zizpl6wAXLmDNm2/indxc+AEIBfDsqlXA118/Wf7ZkufOXs7Gxj7ON0D/c8gQoGlTcfbfyfPX3cUdg5sPxuDmg3H69mksiJiP5fgLKxpnoPY9YOB5V7w5eDIa1a0rd1LN9+iYCgAqP3ohNxd4+mng6FF9T8RHxzb77FncbtMGSdnZBXMk3nF1xZ2BA3EnLw937txBamoqbty4gdTUVKSkpCCz+Plijp49bdqlu4/+y+fl5QV/f3+ULVsW/v7+qFmzJlq2bIly5cqhYsWKqFSpEipVqlTw/+XLl1dGu9EcTn5NGlS5sr7eKB6McXc3XT727av/f0vaHRqN/rNi5bXY2zNFKe0sZjOTgYdHvRBGA/ASBOEBHgXJoY/Vzrfxuw317Xqi+4UgCCMBjAT0syA7ijlr5gDz9ZXOhg0b0Dc/ilmYXBeasYKwcmXpv1uJTOWHJYWuI94YPrp5eCUnBycA9AbQbeJEzMjOxmdTpxZ04dQIGox+bjRaV26NgRsGovX81ljZdyV61O0hZ+ptp6RjKvWNnIPZe3kveq3uhUC/QPw7+F9UK10NeXl5GPXdd/gxNxdPA1gHoApgvHFsS547ezkr9U2Is+dvIc0rNcfcl3/F9K4/YH3or1h+cT2mljuJyXGfo9n8vzCwyUD0adAH9csrvJwwdkw1Gn25WyiI4tG4MWosX44aFpTNOTk5SE1NRWpqKtLT05GZmVnwykhPR3zodlzevBw3PLW45SfgVrWySNQ+QG5err71qgNKe5RGRb+KqOxXGVXKVEG1MtVQtUxV+Hr6wtXVFV5eXvDx8YGPjw+8vb2L/CxVqhQ8PT1tzyel3qTxNfmkunX152Xx8zQtzXT5aM+bfrkpqZ3FbEdEJb4ATDXnfZa8ALQHsKvQ798C+NbUZ1q3bk1qp9PpaNasWSRoBHINcKWoqCjDb9RqidatI/LyIgL0P9et0/+71OT8biUSKz/On3+8jfyXl5f+36VI8/nzRKGh+p9SHbvQ0CL78wCgvvomGL3xxhuUlpb2xEfi7sVR89+akxAi0KT9k0irU/F5Zc9jWpJix6LgFRpq/7Qo3LYL28hjkgc1mdeEbj+8TUREiYmJ1KlTJwJAH7q4ULY5x9SWPHf2clbqa8fZ87cECQ8TaM7ROdRuYTtCCAghoLpz6tIXu76gsCthlKvNlTuJTzJ0TJcuJbp40fBxtaIe1Ol0FJ8aT7su7aKfDv9E72x+h9ouaEulppQqyCeEgCpPC6CuS7rQJzs+oQURC+jw9cOUkpki/j5bSsnnvdLTZkubyZbPG/qsktoWcuO8UB0A4WTkXt7cOR46GAlaHLA24CEIgiv0k0t2AXAT+skl3ySiKGOfUfscDxkZGRgxYgRWrlwJ10auGDhuIJa+YWRhELnHwik1Yi4XMfLDXssP2TM6bOA8JU9P/PDBBxg9axaaNm2KTZs2oXbtosMqMnIzMPLvkVhxdgVerf8qlvRegtKepcVNmz0oaUkpucsMlVgXtQ5vbnwTLSq1wM63dqKcd7kiKwr9Pm8ehpYqZd71Y2ueq7WcFSPd9iin1Jq/pkiwT9dSrmHbxW34++Lf2HdlH3J1ufDz8EOHGh3wfM3n8XzN59G8UnNoBAXknUj7ryMdbqTeQExyDKKTohGTFIPo5GhEJ0UjJSul4H0B3gFoUqEJGgc0RuMKjQt+lvUqK+JO5SfKin0r/hmNBmjeXLn1gKX7aI9r2NaySIqyzNg2e/cG4uIcq0wriZLaWcwspuZ4MLd3wt+FXnsApALYZ85nS9juS9AHH+IAjCnp/Wru8RAXF0fNmjUjQRBo5NcjCd+B1p5ba/wD/PTS8VgatbU2gm7vnhVGnmDs3LmT/P39yd/fn3bu3PnER3U6Hc05OodcJ7pSvV/qUdQdI71/lExJkXglP01SiL8i/yLNBA09u+jZgqeT8+fPJ3d3d6pZsyadPHlS/0Zzrz1nzHMx99lePbMchR3OtwdZD2h91HoauXUk1Z1Tt+AJv/80f3ph2Qs0du9Y2hyzmW4+uFk0XQo9jg+yHtCphFO0IXoDTT04lQZvHEzB84PJZ7JPkR4MAdMDqOPijvT+3+/T3GNzKfRKKN1Ju2O/hFpzbI31AAkMdIy2o73KV1vrcanaAcWvq9xc56tviJTVzmJmga09HgxEMqoBmE5EAy2Pg1hPrT0edu7ciYEDB0IQBKxatQr/uf+HyQcnI/mrZPh7+Rv+ED+9dDyWRMVtiaDbOzps4onE5cuX0adPH5w9exaTJ0/GqFGjnli668C1A+i/rj/SctKw+NXFeL3x65KmSVRKG3voiE94RTLvxDx8+M+H6Fa7GzYN2ARXcsVHH32EhQsX2raikLPlubG6af9+oHVrx953ucnQLoh/EI+wq2EIuxqGE7dOIOpOFLSkBQBU9KmIhuUbouEDdzRcG4oGCbmolemBwNmL4PnaG5KfC0SEe5n3cOvhLdx6eAs3H97E1ZSriLsfh7h7+mUqkzKSinwm0C8QjQIaoWH5hgU/GwY0RHnv8pKmtUTWHFtjn/nyS2DSJPO3o1T2Ot9tbTPZq83lrPcFSmtnsRKJsapFcfEAmlifJOeg0+kwdepUjBs3Ds2aNcPGjRtRu3ZtTFw0EW2qtDEedACMTzijphmoWVEajfkzESt10jpjN1lGJjmqXbs2Dh8+jBEjRmD06NEIDw/HX3/9hVKlShW8p0ONDogYGYHX1r2G/uv746tbX2FKlylw1VhZPNmzkrLkmNqDM004ZYGZh2fiqz1foVf9Xljz2hokJSShX79+OHHihO0rCjlbnhubFPLvv4Fr17gxKCUZVgUI9AvEoGaDMKjZIAD6YXKnbp/CiZsncCrxFM7fiMTKhNNI7Zb/iWwg5i0ETP8/VCtbE1VLVUVZr7Lw9/SHv5c//D394evuCzcXN7i7uMPdxR1uGje4alyRq8tFjjan4JWdl42HOQ+RkpWC+5n3kZKt/3k38y4SHiYgIS0BOdqcIunVCBpUL10ddfzroE+DPqjtXxt1ytZBHf86qFO2Dvw8/CTJJ5tZc2yNfaZJk8dtADW3He11vtvaZrLXpJnOuiqI0tpZzCZmtewFQfgFj1ec0ABoCeC0VIlyFCdPnsS4ceMwcOBALFiwAN7e3sjMzcSJmyfwabtPTX+YLzTHZO5Nii0VjFRBKytv6H18fLBixQq0adMGX331Fdq2bYtNmzahfqH9qOpXFfvf3o/Pdn6GGYdnICIhAqv7rUaAT4Dl6bT36g7OduOpJCX0NiAiTNg/ARP2T8CAxgOwrM8yHDpwCAMGDEBWVhY2btyIPn362CUtDsNYI1ur5VVUDBHzvFDAqgDebt54utrTeLra0/p/CAsD/d/zSPQFYsoD18oA8X7Ajbeexg0fLa6nXsfpxNO4l3kPaTlpVn2nAAGlPUujjGeZggDGczWeQxXfKqjiWxlV0gRUydCgSmAjBDZ7Fm5uHuLtsL1Yc2yNfaZZM8uX+lYie53vtraZ7PWgUAHXv2y4neU4jI3BKPwC8D8AHwH4EMAgAM+Y8zmxX2qc4+H48eOk0+kKft9/dT8hBLT1/FYZU8UUz9YxbVKMuRVhnN2+ffuofPny5OfnR1u3Gr4GFkcuJo9JHlTtp2p0PP645enk+VGcQwnjf7U6LX2641NCCGjY5mGUm5dLM2bMIBcXF2rQoAHFxMTYLS0OxdC+TpnyeFw5X2ePiX1eKPE8M7de0GopJ/os3dm1ia5G7KWLd85T1J0oikyIpGPxx+i/6//RiZsn6PTt0xSTFENx9+Loesp1up953/jKR3LlhxT1q1hzPMh9PojJnvsn56oWlnyHIx9v5jBgYo6HkgIOrgCmA0gGcBJA5KP/nw7AzdRnpXipMfBQ3Pf7vyeEgO5m3JU7KUzJlFjBiHRDf+3aNWrdujUBoPHjx5PWwD5F3IqgGrNqkPskd1oYsdCydPJERM7BxHHOycuhwRsHE0JAn+z4hO7dv0d9+vQhANSvXz968OCB3dLikLRaouPHicaNIxo9+nHQwZH32RrGzovjx20LPihpIkdz6iqp6jM5rjsp62Zrjq3SzgexOfr+WYrzwzjOG8WwJfAwC8BCAKUK/ZsfgPkAfjb1WSlejhB4eGHZC9T418ZyJ4OpgdIKUREbeRkZGfT2228TAOrZsyelpKQ88Z7k9GTqtrQbIQQ0cutIysrNMm/jSgzaMPEZCYRl/LuTXln5CiEE9H3YJDqzZQvVDQwkFxcXmjljRpEeaFKnxaGf/vN1VjJj58W4cY6VV4XrqpgYoosXi9ZbUgUI5LjunC3IyJgacH2kKKYCDyUN+uoJYAQRPSw0NOPBo6EXL9k4ysO56HTQxkTj8NWDeK50U/24T0el0+ln3w0L0/905H0VW+G8i43VjxHs1Ek/rk3uMZr54xi9vPS/2zCO0cvLC4sWLcKvv/6KnTt3ok2bNoiKiirynnLe5bDjrR349tlvMf/kfHT4qwPiH8SXvPH8+VEiI/WzSkdGKmfCO742xJM/3rWQ1NKeeOHCWGy7uA2/vfQram5MQrtXX8XD+Hjsc3HBF1WqQDh8WPy8N5AWhx97q+TrTCmMnRf582HExtonHVKXO/njrzt0AM6dA5o318/y37Klfl6gW7eMz1lkCzmuO1PzLzGmJM7U3jA2t5e9ylhmPmMRCX3AAhet+ZtUL9X2eHgUiYuo6UEIAa1o5ea4kTiOOlrPkryTqzeEBN978OBBqlixIvn4+NCaNWsMvmdD9AbyneJLAdMDKPRKqM3fKQspxnsrqUeMJcRIe7H8vF3Ok5pPq0FuE91oRcQy+vD11wkAPQfQrcJPJkePFr9c4nKPGVLSfBiHDjnWuHBTQ0uk6CUgx3XHPR6YGjhbneSMvQ4VDDYMtdgMYIiBfx8EYKupz0rxUm3g4VFF9XNbEEJA1/0cuKLiStl6FkzS5WgVys2bN+npp58mAPTRRx9RVtaTwypikmKowdwG5DLBhX48/KPhLvP2uhm35nvEvDbUfA6ImfZHx+HyPyspaGYN8p7sTcv2L6G2desSAPoSoJziDZExY6Qpl9QcCGLSMTYfRlAQ0YoV0l/D9qyTjTX+Dx1S1rwItn6fWste5jycrS3ubPurcLYEHqoCOAYgDMCPAGYC2A/gOICqpj4rxUu1gYdHlfFbfUFVPnfwSBxHHa1nbt45aAGbk5NDX3zxBQGg4OBgunz58hPveZD1gPqu6UsIAQ1YN4DSstMe/9FeDUJrv0fMa0Nt50Dhm4Pjx/U3XSKl/WziWao8szL5T/Onn1f+TOX9/akUQOv79TOcR6NHc7nE7MtQmbFrl32uYXvWyabKJUcKzDnSvoiN80YZnK0tzgFBRTEVeDA5GJOIbhJRWwATAVwFcB3ARCJ6iohuijTaw/E9GocYXgVoc+vRv4k1DlFpY7iccayzWMzNOwcdY+rm5oaZM2di8+bNuHTpElq2bIktW7YUeU8pj1JY//p6TOsyDeui16Hdn+0Qe/fRGD57jfGz9nvEvDbUdA7odPpx3i1b6sd9d+wIvPMOEBj4+D1Wpj30SiieXfQsQMCb997EZ4M+QwU/P5wA0O/YMWDcuKJzkowbp5+XJP93LpeYPRiaD8PNzT7XsD3rZFPzAOXPA6GUOYts4Uj7IqbiZX3+HB9yt0udkbO1xXnOIfUwFpFQ4ku1PR60WkpdvYSE8aCJHUSMxClxzLg9oo5Ki6iLlR5z8+7iRX233TFj9K/AQGU/7bbC5cuXKTg4mADQ559/Tjk5OU+8Z/el3VTuh3LkN9WP1kett1+E39rvEfPaUFOPB2NpLdzzwIq0Lz+9nNwmulG9yfWo/XPtCQC99dZb9DAi4vH3BQbqv2fyZKIdOx73tOCnIUxu9rqG7f0kUGn1s9qpKT/VVC85Orl7AKjpvGWig7VDLZT2Um3ggYjCLu8jhID+WT9NvItQqWPGpSxw5C5MpU5PSXln6PumTiXaulVdBbsZ50hWVhZ99NFHBIDat29P165de+I9V+9fpacWPEUIAf3fikGU5espfaPHluvO3kEqJTC1pKAVadfpdDT5wGRCCKjp502pfEB58vb2pkWLFunn/TCWN7m53BCyFjciDbMlX+x5DfPxUydzzxGlHF9n696vdHJOQq6W9gmTBAceFGDmfzMJIaDEtETxNuqMY8aVlk57p8fY98XESPN9UrCwUlq7di2VKlWK/P39af369U/8PTsvmz7f+TkhBNR6Wm2Kq+QhbWWnlEpVKY3Nkpia6d7CtOdqc2nk1pGEcaCGrzYkANS0aVOKjo4u+ka15I0aKOV8Vxox8oXPU2aKOe0LJV2fSmufMXnweeD0TAUeePCLnYQnhKN66eqo4FNBvI0645hxpaXT3ukx9n23b0vzfVKwcI6E119/HSdPnkSdOnXw2muvYcSIEUhPTy/4u7uLO3584UdsHrAZcbiHlv/nhg1rQ6Qb46eUsYRqGWdsbNx369aP0w6UOFdNWk4aXl39KubvnY8q66ogZksM3n//fRw7dgwNGzYs+ma15I0a8ProhtmSL/lzMx04oP+9Qwc+T51RSXN0mdO+UNL1aWqOD+Y8lNZOZ4rCtZydRNyKQHCVYHE3KmYhr5aJaJSWTnunR2n7bw0rKqWgoCD8999/GDVqFP7880+0atUKJ0+eLPKeVxu8isj3ItGgQiO8Fh2CTy7PQ7YuV4o94BtbS5QUqDFjQrKbD26i418dsWPLDnj96YW0W2lYu3YtfvvtN3gVvx6YuLgRafgG0dp84Qn4GGDeeWBOfa+k61MpQXkmL0dopzLpGOsKocSXWoda3M+8TwgBTT4wWfyNSzlmfMUK/bhoJVFSt0I50qO0/beGjd3w9u3bR1WrViU3NzeaMWMGaYvte3ZeNn228zNCCCh4fjDF3YuTYi8cl727f5dwPhyLP0YVv69Irq1cCQC1adOG4uL4mNqNs3ebNVbmxsRYly/Onp+OzpzyU6vVDzUTYxgFn09MaRyhncpsAp7jQV57L+8lhIB2Xdold1JMy83Vry0+bpx+JvigIPMKC3vfqChtXKyz77+lRKiUkpOTqW/fvgSAunbtSjdv3nziPZtiNlGZaWWo9NTStOrsKjH3wHHJ0WAwMVfN8tPLye1dN3LxdyGNRkNjx441uMIJk5CzNyKN3dhdvGhdvvAEfI7LnGsl/z35k+uWdB5YM+G0M12fTJnU3k5lNjEVeBD0f1eH4OBgCg8PlzsZFpt9dDY+2/UZEr9MFHeOB7FduKDv7le4256Xl767XP447OLyuwvmjzHMH+7B3escg06nHyuakKDvJpe/Hruc2330Wbp1CwsPHcKn06bBy8sLv/32G15//fUib72achUDNwzE0fijGNxsMOa+NBd+Hn62p99RWVMGFGfpsTXwnTovT4xa+CZmzFsEHAZq1qqJlctXon379lbuGLOJVOWAGoSF6bvCFxcaqp+bwdJ8EeMacxRKrF9sYc6xzX/P558DP/0kznngzNcnY0xxBEGIICLD8wsYi0go8aXWHg/vbnmXKsyoIHcySmbNkxju5ue4lPgkxUCaYmbPpjZt2hAA6t+/PyUlJRX5SK42l0JCQ0gzQUM1Z9ekQ9cOyZR4FbD1aaw150yxzzwo7Ukdv2xEqAQCQO+8+w49fPhQjL1jzHJi13FKLFflIFU+yJm/5pSf+e8JDCSaMoXPA8aYwwGvaiGvs3fOokmFJnIno2TWTAijpImNmLiUNFu2iTQ1+PZbHF68GJMnT8amTZvQuHFjbNq0qeAjrhpXjO80HoeGHYIAAR3+6oDvQr9DrlaiiSfVzNZJoaw5ZwpNSHZq0wLUbueF/bOi4Zvti02bNuHPhX/C19fXuv1hzFZiz9TPE/DpSVW/yFlvmVN+5r8nPh6YNw/47DNg3Dhg/37nOQ9KWs2DMeawnKCEk5eOdIi6E4UmASoIPFjTwOLZax2XEoNKRtLkmpSE0aNHIyIiAlWrVkXfvn0xaNAg3Lt3r+Bt7au1x6n3T2Fws8GYdGASnl38LGLvOvmSgMXZepNl7Tmj0WDyqfVo/b/3kLzrPrr07IIrF6+gd+/eFu8CY6KyNlBg6uaKV8Uxv6yw9CZVznrLnPKz8Hvi44FZs4BmzfTLCzvDecCrujDm1JyglJPXtZRrSM9NR9OKTeVOSsmsaWDxus2OpXAjz8dHeUGlEgJdTZs2xbFjxzBhwgSsWbMGDRo0wIoVK0CP5rLx8/DDX73/wprX1uDi3Yto/ntzzD46GzoSodHjCE9xbH0aa0Ug8kH6AwQPCMbYgWPhmumKxasX49/N/6J8+fI27AhjIrI0UMA3VyUzp6ywJh/lfBhiTvnp7D1epOqR4gj1ryPj48PyGRuDocSXGud42Hp+KyEEdOTGEbmTIh2evdYxFB8bGxREtHixssagWjB+99SpU/TUU08RAOrerRtd2r27yDkanxpPL694mRACenbRs3Qx+aJd0uXQLMyHZZuWkWclTwJAjbs3pjvJd+ycYMYkwHMflUyqpSK5LFY2KVZ14WOubHx8nA54VQv5TDk4BWP2jUHqqFTxZtPnGYyZFAzNyB0UBKxcCaSnK+dcs+D812q1+P233/Dt118jNzMT3wH40tMTbsuWAX37ggQBy84swyc7P0FWXhamdJ6Cj9t+DBeNi2VpkmKmerVe58XTXacOEBdXZD8SEhPR791+OLLjCISyAkZPHY3vR34vd8oZE4eplTA6dbJ3apSrpDLO2nxUa9mpFrbkrxR1Ja8Uo2x8fJyOqVUtuCSW2Lk751CjdA1xgw7chZNJwdDY2EuX9EEHJY1FtqDbs4uLCz7s1g0xRHgZwGgALbOysO+tt4DYWAiCgCHNhyDqgyh0rd0Vn+/+HM8tfg7n7pyzLE1ijytW83Ve+PjUrQts3lywH3ktWmDGu0NRI6gGjuw+gmq9qiEmKsZw0IG7ZjK1UvPcR/a87koqy63NR55DQzq21k1SDM9V4nxU7DE+PqwQLo0ldu7OOXHnd1DiSgNqwzc0hqm5sWxKQgKqZmVhPYAtANIBdMnJQd8RI3D58mUAQJVSVbD1ja1Y1mcZLt69iJZ/tMQ3e75Bek66ed8hdt45ynVeaD8OAmiszcLXfy1HbpVcfLzkY1zedBn1Kxl44qHmwAtjap37SGnXnVrzUY3MbRfZWjdJMceFNfUvtwPFU1JeOmrbklmFAw8SytXm4nzyeXFXtODIoW2U1rBSEkdt5BWq9HoBiAEw2dUVuyMi0LBhQ3z77bd4+PAhBEHAoGaDcP6j8xjSbAimH56ORvMaYeuFrSV/h9h55yjXeUICLmZmopcAdABw0QsIeAk4NGMOfn7rZ7hqXA1/zlECL8w5qXUCQaVdd2rNR7WxpF0kRt2U3yOlQwf97wcO2Hbzb2n9y+1A8ZiTl0puW3IAyv6MTf6gxJfaJpc8l3iOEAJafnq5eBvlSatsw/lnmiNOFGpkYqObN27QkCFDCABVqlSJ5s+fTzk5OQUfO3jtIDX+tTEhBNRrVS+6cv9Kyd8jVt45wHmanJxMHw8eTC4ACW4gdAa99wLoQWnPkvdDignIinPEc50xW9jjumPKY0l9I1bdJPaEg5aU5w5QvyqGuXmpxPqWJ72UDExMLil7MMGSl9oCD9l52RSZEEnJ6cnibVRtF4rSChtuWDknE+fh0aNHqX379gSAgoKCaMWKFaR99PecvByafmg6eU/2Jo9JHvTNnm8oNStVtO82+Rk1XeeFpKWl0bRp08ivtB8JGoHQGlRzOGh/DQv2Q+qGoYrzlzkBuepNviFzTpa0i8QqO+U817gdKB415yWXd5LhwIOjUdrNvDFKbNxzQcMM0Ol0tHXrVmrWrBkBoCZNmtCmTZtIp9MREdGN1Bs0eONgQggoYHoA/X7id8rV5pa8YVuuAbVc54+kpaXR9OnTqXz58gSA3Bu4k/ChQF/s/JzSz0UqK/CixnJAZecDs5Kc9aYS62wmPUvLQzHKIjlvWNVY/iuVmvNSzUEThePAA5OHEgskblgxE7RaLa1evZrq1atHACg4OJjWr19PeTk5ROfP04mtv1OHX4MJIaDGvzamDdEbCoITBinxGhBZ8YCDX2M/wrugZ/58hk7eOmn9hqW80VZbg4PLLechd5nBAS7nI0f5Iud57uzlqZjXuJrzUu6y1oGZCjwI+r+rQ3BwMIWHh8udDGYupa5lzmt8sxLk5eVh6dKlmDJlCuLi4hBUqRK+uHsXQ3Nz4enlic1zP8Ko9K24eO8iWlZqiYnPT8TLdV+GIAhFN6TUa0AEt2/fxm+//YZ58+YhOTkZVVtWxc1WN1GpYSXM6DYDbzV968n8UAq1rSuutvQyw8ypexy4zGAKZu92Uf6khPmTmeZPOGivyUOdtR0oRb6rNS/lPgcdmCAIEUQUbPBvHHiQmFovSDFwY5mpnFarxaa5c/HDZ58hnAgBAD4G8L6nJ8qcDMfKnAhM2D8Bl+9fxlNVn8J3Hb5Dj7o9oBEeXeNKvAZsLJNOnjyJn3/+GatWrUJeXh5qPlUTN5rfgEs1F3zc9mOM7TAWfh5+Eu6ACNTW4OCbUfUz95xTYpnBpOWs7UQl7LcS0mBPXL4U5WzH305MBR44d6Xk7Ev2KHkJncJ4OR3nYMVxdnFxwWvNm+M4EUIBBAMYB6BqVhbe/vhT1H5YGzEfxGDBKwtwO+02eq7qiaa/NcWiyEXIzstW3jVgZZmUnZ2NdevWoWPHjmjdujXWb1iPZi83g+ennrj20jUMfXkoYv8vFtO7TVd+0AEoukzfoUPA/v1AuXL6Boit178U5Qmvg65+5i5VqbQyg0nLmduJ+ctqduqk/yn1DV/xsjkvz/ny3lGW6haLvc9BxnM8SIrHDyl/vKiax6cx89lynItdx+cA+sjFhfx8fQkANWrUiH744QeKuxpHS08tpWa/NSOEgCrNrESTD0ymxAcJyrkGLCyTTp06RR9//DGVLVuWAFDValWp/bvtyX20O2kmaGjAugF0PknF5ZkUS7pJUZ5wOaV+lq4coJQywx6cbX8L43aifRgqQ3ftcr685/ON2QF4jgeZcPdY5eNuZ87B1HGuW9d0VzsjXaTTX3gBq9euxcKFC3H06FEIgoDnn38eAwcOROlmpbHw4kLsjtsNV40rXq3/Koa3Go5utbvBReNi//3PZ0aZFBMTg7Vr12Lt2rWIjo6Gu7s72nZti6ymWTjhcQLubu4Y1mIYvnz6SwSVDbJr8kUn9vUvZXnCXULVjesaw9Q27Els3E60D0PX37hxwKRJT77XkfPe2a83Zhemhlq42jsxTiW/e2zxhgZ3j1UOU93OnLkxKBW5bp6MHefkZODsWdOVcH63/KZNi6TbR6PBu+++i3fffReXLl3CihUrsHz5cowYMQIajQbPPPMMvu76Ne5UvoO/r/6NDTEbUM2vGoY2H4r+jfujSYUm0k2+aCyfDZRJuZ6eOHzjBv755hts374dUVFREAQBbdq3wcufvoxT5U/hYN5BVPatjLEtx+KDNh+gcikHKcPEvv6lLE/yu4RyuaRO+UMoipc1ahpCIUX5bWwIStOmznGuq6mdqPTgp6n0GSqbdTr15L1YjLRnFHUcmWMz1hVCyheA1wFEAdABCDb3c6obasHdY5WPu53Zj6XXg5jdb40d5+PHRT3+Op2OIiMjafz48dSsWTMCoB+iULUqdXy1IzV5rwkJHwuE8aD6v9SnsXvH0vH445SnzbN+34ozlc9aLeWuXk0nPDzoR4B6azTk5+VFAMjV1ZXaPtuWXv30VWryQxNCCEgIEajLki60Pmo95eTliJdGpRD7+ufyhJli7yEFalg2T21L24pNLe1EpafTUPq2biWKidGfS8ePEwUFFT3HgoKIVqxQ7j6JxZmHMjFZQGlDLQRBaPgo6PAHgC+JyKzxE6obagEoP0Ls7By925mSzj9LuhobOy7NmwM3b1q+L8a2V64c0Lnzk+8XqavllStXsGfPHvz777/Yu3cv7t27BwDwKe0Dz5qeuFvmLhAAlK5WGt3adEOPBj3wTLVnULdc3ccrY1iqUD4/AHAJwGk3N0QOGIDIq1dx6tQppKWlAQBqBlZF3bYN4VrfDedLn8eVzCsAgDZV2uCNJm9gQOMBqOpX1eZ8UCyxr39HL0+Yeoh9Lko1VISHoCirnjZG6cepePoCA4EPPwQmTnx8/s+bB0yeDFy69Ph66N0biItTdt7bguskJgPFLqcpCEIYHD3wwJRPDZW+NZRW4VgyltVYI+fLL/VjMq3ZF0PHOTbWbo0pnU6Hs2fP4tixYzh69CiOHj2K8+fPo6AM1gDwA1AacC/rjqqBVVGrci3UqlwL9arWQ71K9eDj6QNXV1e4uLggJycHGRkZyMzMxMPUVNyJiUHi9etITEnBjUOHcCknB3cKfb+3pwdqNqqDcrXLATWAm/43cTnvsn6XXb3QuVZn9AjqgR51e6C2f21R913RxL7+HbU8URrOZ9PEvlGUai4CpdVTzDClz0VRPH2jRwOzZj15/u/fD6SnO0+ZofSAEXNIPMcDY6Y46thppY2dtWQsq7Gx8vnLXFmzL4aOsx3HXWs0GjRv3hzNmzfHyJEjH+1GJi5cuICoqChERUXhzIUzuHjlIhJuJuDK6Su4orti0Xe4uwLeHoB31VLwdtWiRmktsgOA+zWAjArZiNZEAwACvAPQvlp7jAgcgXaB7dAusB08XT1F32dVEPv6d9TyREn4ZrVkYs83ItVcBDzmXB2UPhdF8fQJguHzPz1dGYESe+F5zJjCSBZ4EAThXwCVDPxpDBFtsWA7IwGMBIDq1auLlDrGnIDcFU7xJ5J16ph/k2+skVO4h5YY+yJzo9fLywstWrRAixYtnvgbEeFe6j1EXonE6auncSHhAhIfJiI5PRl30+4iJS8F2UI2cpCFLCELOl99pwnSAnnahyjtXR6VriajYqYLqjTugfrtXkb98g3RoHwDVPCpIN3EloxJTWlBVSUS+0ZRyiCtoWAd92hRFqVPjlo8fS4uyg6U2IvSA0bM6fBQC8YclZxd7Iw9kTR3PKWhz3/3HfDrr0B8vH33RekedTElAEVCCdu3A97e3Ghnjkfp3b6VQIpeIfYKBnCPFmWy5fib+qxY51Xh7VStCpw+zecQX0tMBjzHA2POSM4KR4ygR+FGRKVK+v8fMIArz+J4DCdzNnzOm0etvQaUdnzVmo9KYaotAtjWTrFHQEPtOI+YnSku8CAIQh8AvwAIAJAC4BQRvVDS5zjwwJiF5KpUpHgiyRWkYfYIMHHeMyXhp3iOTUk9Wvhcs52pQBJgfZCJj41tOP+YRBQXeLAWBx4YUwmlPbEyh5pvrqVMu7WNEzXnJ1M+Pr/0lJ4P1qRPSfWHktKiVqYCSYD1QSY+Nrbh/GMSMRV4UFDtxBhzGPkTPXl56X9X2kRUxeXfXLdsqW8EtWyp/z1/FQ2ly5+crVMn/U8xbzyMTeQXG2v8M2rPT6Z8Up7zaqH068xY+vLy9Dc9YWH6n8XTq6T6w9Qkzcw8+RMcFpY/waGpv5WEj41tOP+YDJywpmaMSS5/tYjISP2Ti8hIZXffs+bm2hidznSjWm2saZyImZ+MMcOUfp0ZS9++faaDJUqqP2y5MWZ6pgJJtgSZ+NjYhvOPyUChdwGMMdVT0xNJsSL/Sn8CaQ1rGif2fpLiaMEexsyh9CeWxtJ36FDJwRKl1B9K6n2hVqYCScX/tn+/vm6JjS25HOdjYxvOPyYDV7kT4NAMjW0ElD0ekzFnZO5a1yWNVzb2hK9pU/WOmSy8Pnq5csCwYUCTJgCRPj8MlV/2XDucJ8hizsqe15k1jKVPqy36vvxgiRLLyPwb46ZNud1mi/xAkqFjrNHo8/TsWeCll8wvx/nY2Ibzj8mAzy6pGHvyuX27Yz0NZcwRmBP5N6c3g1KfQNrSIyC/cXL6NDBlCjBzpn5Z01atjJdf9nySovTu5oxJRelPLA2lb+FCYO3aou9TUrDEEKX0vnBk1pbjfGxsw/nH7Ix7PEjFWCH65ZeO9TSUMUdgTuTfnN4MSnwCaW6PgJJ6aPn4AO+9Z175Zc8nKaaCPVyuMkem9CeWhtJXpw7g7v5keaSUYAmTB5fjjDkFDjxIxVghWvzpIBesjCmDqa6ggHkNo8LDEpTQqNbpgIiIkgMmhoITa9YA2dmP/23cOMsahiXlp1jkCPYofQlD5jzsdZ1Zy1D6lBwsYfJQYtCeMSY6LumlYmxCtuKVKxesjKmDOZMsKmk29vxgwt9/lzz8w1BvjhMniv6bTqfMGbDt3d3cEScQZcyenLl7N0+Ea5jShw0xxkThRKW9nRkrRNu04YKVMTUyt2FkTaNaisZofjDBnICBod4cOl3Rf1uyRN/rQWnll72DPTynBGPMGhy0NE5JQXvGmGR4qIVUjI29BPQFKncxZExdpBpPLdWqDPnBhPyAwaRJxod/GOrm6uJS9N/i44FFi/TLnaWnK6v8smd3cx6LzBizhiOueiQmpQ8bYozZTCAiudNgtuDgYAoPD5c7GYwxJp4LF/RPvoqPbY2MtK0BVni7gYH6Bq6LC/DKK0Dr1k9OLFnSHA+8TKWeVMeLMebYwsL0PR2KCw3V95BjjDEHIAhCBBEFG/ob93hgjDkXpU0MKNUT9MITXcbHA7Nm6X8vHnQATPfQ4kngilLaBKKMMXXgCRQZk4/S2n5OigMPjDHnIdWwBlvS4+MjTWPU0qEhxrq5ctfXopS+hCFjTJk4aMmYPJTW9nNiPNSCMeY8Suomb8+IeH5F+O23wDvvPDkHA1eIjDHmWPipK2P2x0Mk7YqHWjDGGGB6WEPduvaNiBeeaGzePOCzz4zPwcAYY0z9eAJFxuyPJ4VWDA48MMach6kxtvaecbxwRRgfD0yZov//zp056MAYc17cK4AxJiaeX0UxuCRnjDmP/DG2Xl763wuPsTUVEZdCfkVYmBorQp1O340xLEz/k9ekZ4xZK38IWsuW+hUgWrbU/y5GucJlFWPOyVTbj9kVBx4YY84jf2LAyEj9EmaRkY+HUtg7EOAIFaGUNwmMMedjrOdZbKxt2+WyijHnZartx+yKJ5dkjDFAnlmP1d6lmCdsYoyJKSxMHxgoLjQU6NTJ+u3au6xSe9nOGGNW4sklGWPqIVeDTY5lEtU+0RhP2MQYE5NUY7HtWVbx0n2MMWYQl4CMMeWQuztsfiCgUyf9TyU2EpU0TtlR5qlgTGmUdJ3bk1RD0OxZVkk1XIQxxlROga1qxpjT4gabaXIHZopzhHkqGFMapV3n9iTVWGx7llX2nqiYMcZUgud4YIwph1Tjex2FEudU4LHMjIlLide5I7BXWcXHjzHmxEzN8cCtQ8aYcnDXfdOU+CRNDcNTGFMTJV7njsBeZRX3BGOMMYN4cklHwU8dmSPIb7AVn5SLG2x6Uk28xhhTDr7O1U2OiYoZY0wFuBR0BM48HpQ5Fl5r2TR+ksaY4+PrXP24JxhjjD2B53hwBDyekDFlE7NHEvdushznGVMbPmflx8eAMcYsxnM8ODoeD8qYcondI4mfpFmGe4QxNeLrXF5cbjDGmOi4JnMEPCEfY8rFS4TKi/OfMWYpLjcYY0x0HHhwBDwelDHl4h5J8uL8Z4xZissNxhgTHa9q4Qh4BmXHxuNM1Y1nqJcX5z9jzFJcbjDGmOj47sVR8HhQx8TjTNWPeyTJi/OfMWYpLjcYY0x0vKoFY0rGK5Y4Bu61Ii/Of8aYpbjcYIwxi5la1YKHWjCmZKbGmXLgQT3yeyTxMZMH5z9jzFJcbjDGmKg4dMuYkvGKJYwxxhhjjDGV48ADY0rG40wZY4wxxhhjKsdDLRhTMl6xhDkyHkPNGGOMMeYUZAk8CIIwA8ArAHIAxAEYRkQpcqSFMcXjcabMEeWv2DJkiH7ekvzePH37cvCBMSYPDoYyxphk5CpN9wBoQkTNAFwE8K1M6WCMMSaH2NjHQQdA/3PIEP2/M8aYvfHy1YwxJilZAg9EtJuI8h79ehRAoBzpYIwxJhNTK7Ywxpi9cTCUMcYkpYT+Y+8A2GHsj4IgjBQEIVwQhPCkpCQ7JosxxkzQ6YALF4CwMP1PfipmGV6xhTGmJBwMZYwxSUkWeBAE4V9BEM4ZeL1a6D1jAOQBWGFsO0Q0n4iCiSg4ICBAquQyxpj5uEuu7XjFFsaYknAwlDHGJCUQkTxfLAhDAbwPoAsRZZjzmeDgYAoPD5c2YYwxVpILF/TBhsJPx7y8gMhIngTUEjyRG2NMKXjCW8YYs5kgCBFEFGzob3KtavEigG8AdDQ36MAYY4phqksuBx7Mxyu2MMbyyR2I5OWrGWNMUrIEHgDMBeABYI8gCABwlIjelyktjDFmmfwuucV7PHCXXMYYs5xSehtwMJQxxiQj16oWQURUjYhaPHpx0IExph48PwFjjImHV5RgjDGHJ1ePB8YYUy/ukssYY+Lh4WuMMebwOPDAGGPWkKJLrtxjnC2ltvQyxpRJyuFrXE6Zj/OKMSYhLk0YY0wJ1LZEp9rSyxhTLqmGr3E5ZT7OK8aYxGRbTtMavJwmY8xhqW2JTrWllzGmbFI8bedyynycV4wxEZhaTpN7PDDGmBKYGuMsBp1O37AMC9P/tPUpltTpZYw5l/zha5066X+K0cWfyynzcV4xxiTGgQfGGFOC/DHOhYk5xlnsLrRSppcxxsTA5ZT5OK8YYxLjwANjjCmBlEt0SrFUHS8pyhhTOi6nzMd5xRiTGK9qwRhjSiDlEp1SLFXHS4oyxpSOyynzcV4xxiTGgQfGGFMKKZboBKRbqk6q9DLGmFi4nDIf5xVjTEIcxmSMseLEnohRbtyFljHGGGOMyYh7PDDGWGH5EzHmz4mQf5Pet696u5yquQutFEvsMeaI+Fph7P/bu7tQy+6zDODPO20kh6qotNJpE5peHKIlE2dkKJFeaGoaUi0jjhQq1QpKvbGQip9xoEVKIRBRL/yiaJFgqwieUknQJsVIb/zopJPElCROUZpERxIRqWKw1vN6sfcwp+mYnK+1117r/H4wnFnrnJl54GXN2edZa///wBrzHQlgpyEWYlwHQ2xVN7QhduOAOXKtALDmJvDKE+Aqhno7hL3M18dcSyA4bK4VANac4gGYniHv7tnLfH0ogWB3XCsArDnFAzA9Q97dsxDj+lACwe64VgBYc4oHYHqGvLt3eSHGCxeShx5afJzywpJTpgSC3XGtALDm7GoBTM/lu3s7y4fDvLtnL/P1MOXdOGCVXCsArDnFAzA9l+/uvXjLS3f35kcJBLvjWgFgjSkegOmZ+t297e3FehRTzA4AAHukeACmaap39y7vyPHipzXGWkdCCQIAwMC8ugRYpSF35NirIbclBQCAJcUDwCoNuSPHXq1TCQIAwGwpHgBW6fKOHDsd5o4ce7FOJQgAALOleABYpcs7clwuH8bckWOdShAAAGbL4pIAq7ROO3LYlhQAgBVQPACs2rrsyLFOJQgAALOleAA4ytalBAEAYLbc1gIAAAAGo3gAAAAABuOtFgDrZHs7uXjRmgsAAMyGV7MA62J7O9naSk6dSm69dfFxa2txHgAAJkrxALAuLl68srVlsvj4nvcszgMAwEQpHgDWxaVLV0qHy154YXEeAAAmSvEAsC6OH082Nr763MbG4jwAAEyU4gFgXWxuJvfee6V82NhYHG9ujpsLAAAOwK4WAOvi2LHk7NnkxAm7WgAAMBuKB4B1cuxYcuONi18AADADo9xGq6oPVdVjVfVIVT1QVa8bIwcAAAAwrLGe372nu2/u7pNJ7kvygZFyAAAAAAMa5a0W3f2lHYevStJj5ADgkGxvJxcvWpsCAICvMdqrwqr6cFU9k+TdeYknHqrqJ6vqfFWdf/7551cXEIDd2d5OtraSU6eSW29dfNzaWpwHAODIq+5hHjaoqk8nee1VPnWuuz+54+vuSnJtd3/w5f7O06dP9/nz5w8xJQAH9tRTi7LhhReunNvYSC5csEgmAMARUVUPd/fpq31usLdadPdtu/zSjye5P8nLFg8ArKFLl766dEgWx5cuKR4AABhtV4vNHYdnkjw5Rg4ADsHx44snHHba2FicBwDgyBtrjYe7q+rxqnosye1J7hwpBwAHtbmZ3HvvlfJhY2NxvLn50n8OAIAjYaxdLX5ojH8XgAEcO5acPZucOGFXCwAAvsYoxQMAM3Ps2GI9B2s6AADwIm5HAQAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAIOp7h47w65V1fNJvjh2jn14dZJ/HTsEB2aO82CO82CO82CO82CO82CO82GW8zDFOb6hu19ztU9MqniYqqo6392nx87BwZjjPJjjPJjjPJjjPJjjPJjjfJjlPMxtjt5qAQAAAAxG8QAAAAAMRvGwGh8ZOwCHwhznwRznwRznwRznwRznwRznwyznYVZztMYDAAAAMBhPPAAAAACDUTysUFX9bFV1Vb167CzsXVV9qKoeq6pHquqBqnrd2JnYn6q6p6qeXM7zE1X1TWNnYu+q6p1V9fmq2q6q2az6fFRU1R1V9VRVfaGqfnHsPOxdVX20qp6rqsfHzsL+VdX1VfVQVT2x/D/1zrEzsXdVdW1V/W1VPbqc4y+PnYn9q6pXVNWFqrpv7CyHRfGwIlV1fZK3JXl67Czs2z3dfXN3n0xyX5IPjJyH/XswyU3dfXOSv09y18h52J/Hk5xN8pmxg7A3VfWKJL+Z5O1J3pTkh6vqTeOmYh9+P8kdY4fgwL6S5Ge6+9uT3JLkp1yPk/TfSd7a3d+R5GSSO6rqlnEjcQB3Jnli7BCHSfGwOr+W5OeTWFRjorr7SzsOXxWznKzufqC7v7I8/Osk142Zh/3p7ie6+6mxc7Avb07yhe7+h+7+cpI/SvIDI2dij7r7M0n+bewcHEx3X+ruzy1//x9Z/LDz+nFTsVe98J/Lw2uWv7xWnaCqui7J9yf53bGzHCbFwwpU1Zkk/9Tdj46dhYOpqg9X1TNJ3h1PPMzFjyf5s7FDwBHz+iTP7Dh+Nn7QgdFV1Q1JTiX5m5GjsA/Lx/MfSfJckge72xyn6dezuGG9PXKOQ/XKsQPMRVV9Oslrr/Kpc0l+Kcntq03EfrzUHLv7k919Lsm5qroryfuSfHClAdm1l5vl8mvOZfGI6cdWmY3d280cmaS6yjl35mBEVfX1Sf4kyftf9JQnE9Hd/5vk5HLtqk9U1U3dbQ2WCamqdyR5rrsfrqrvGTnOoVI8HJLuvu1q56vqRJI3Jnm0qpLFI92fq6o3d/e/rDAiu/D/zfEqPp7k/ige1tbLzbKqfizJO5J8b9tXeG3t4ZpkWp5Ncv2O4+uS/PNIWeDIq6prsigdPtbdW2Pn4WC6+9+r6i+zWINF8TAtb0lypqq+L8m1Sb6xqv6gu39k5FwH5q0WA+vuv+vub+3uG7r7hixebH2n0mF6qmpzx+GZJE+OlYWDqao7kvxCkjPd/V9j54Ej6LNJNqvqjVX1dUneleRPR84ER1It7oz9XpInuvtXx87D/lTVay7v0lVVG0lui9eqk9Pdd3X3dcufG9+V5C/mUDokigfYi7ur6vGqeiyLt87Ybmq6fiPJNyR5cLk96u+MHYi9q6ofrKpnk3xXkvur6lNjZ2J3lou7vi/Jp7JYyO6Pu/vz46Zir6rqD5P8VZIbq+rZqvqJsTOxL29J8qNJ3rr8nvjI8m4r03I8yUPL16mfzWKNh9lsxcj0lSeMAQAAgKF44gEAAAAYjOIBAAAAGIziAQAAABiM4gEAAAAYjOIBAAAAGIziAQBYmaq6vqr+saq+ZXn8zcvjN4ydDQAYhuIBAFiZ7n4myW8nuXt56u4kH+nuL46XCgAYUnX32BkAgCOkqq5J8nCSjyZ5b5JT3f3lcVMBAEN55dgBAICjpbv/p6p+LsmfJ7ld6QAA8+atFgDAGN6e5FKSm8YOAgAMS/EAAKxUVZ1M8rYktyT56ao6Pm4iAGBIigcAYGWqqrJYXPL93f10knuS/Mq4qQCAISkeAIBVem+Sp7v7weXxbyX5tqr67hEzAQADsqsFAAAAMBhPPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg/k/qazBgvCzyzQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X = data.loc[:,'x'].values.reshape(-1, 1)\n", - "Y = data.loc[:,'y'].values.reshape(-1, 1)\n", - "\n", - "\n", - "subset = np.arange(0,500)\n", - "\n", - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.preprocessing import PolynomialFeatures\n", - "\n", - "\n", - "poly = PolynomialFeatures(degree = 15)\n", - "X_poly = poly.fit_transform(X)\n", - "\n", - "poly.fit(X_poly, Y)\n", - "lin2 = LinearRegression()\n", - "lin2.fit(X_poly[0:500], Y[0:500])\n", - "\n", - "x = data['x']\n", - "xgrid = np.linspace(min(x),max(x), 1000)\n", - "\n", - "new_data = pd.DataFrame(xgrid, columns=['x'])\n", - "\n", - "yhat = lin2.predict(poly.fit_transform(new_data))\n", - "\n", - "# Visualising the Polynomial Regression results\n", - "plt.figure(figsize=(18,6))\n", - "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", - "plt.plot(xgrid, yhat, color = 'green', label = 'Estimate')\n", - "sns.lineplot(x,mu, color = 'black', label = \"Ground truth\")\n", - "\n", - "plt.xlabel('X')\n", - "plt.ylabel('Outcome')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is one of the benefits of using machine learning-based models: more data implies more flexible modeling, and therefore potentially better predictive power -- provided that we carefully avoid overfitting.\n", - "\n", - "The example above based on polynomial regression was used mostly for illustration. In practice, there are often better-performing algorithms. We’ll see some of them next." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Common machine learning algorithms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Next, we’ll introduce three machine learning algorithms: (regularized) linear models, trees, and forests. Although this isn't an exhaustive list, these algorithms are common enough that every machine learning practitioner should know about them. They also have convenient `R` packages that allow for easy coding.\n", - "\n", - "In this tutorial, we'll focus heavily on how to **interpret** the output of machine learning models -- or, at least, how not to _mis_-interpret it. However, in this chapter we won’t be making any causal claims about the relationships between variables yet. But please hang tight, as estimating causal effects will be one of the main topics presented in the next chapters.\n", - "\n", - "For the remainder of the chapter we will use a real dataset. Each row in this data set represents the characteristics of a owner-occupied housing unit. Our goal is to predict the (log) price of the housing unit (`LOGVALUE`, our outcome variable) from features such as the size of the lot (`LOT`) and square feet area (`UNITSF`), number of bedrooms (`BEDRMS`) and bathrooms (`BATHS`), year in which it was built (`BUILT`) etc. This dataset comes from the American Housing Survey and was used in [Mullainathan and Spiess (2017, JEP)](https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87). In addition, we will append to this data columns that are pure noise. Ideally, our fitted model should not take them into acccount." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "import io\n", - "\n", - "url = 'https://docs.google.com/uc?id=1qHr-6nN7pCbU8JUtbRDtMzUKqS9ZlZcR&export=download'\n", - "urlData = requests.get(url).content\n", - "data = pd.read_csv(io.StringIO(urlData.decode('utf-8')))\n", - "data.drop(['Unnamed: 0'], axis=1, inplace=True)\n", - "\n", - "# outcome variable name\n", - "outcome = 'LOGVALUE'\n", - "\n", - "# covariates\n", - "true_covariates = ['LOT','UNITSF','BUILT','BATHS','BEDRMS','DINING','METRO','CRACKS','REGION','METRO3','PHONE','KITCHEN','MOBILTYP','WINTEROVEN','WINTERKESP','WINTERELSP','WINTERWOOD','WINTERNONE','NEWC','DISH','WASH','DRY','NUNIT2','BURNER','COOK','OVEN','REFR','DENS','FAMRM','HALFB','KITCH','LIVING','OTHFN','RECRM','CLIMB','ELEV','DIRAC','PORCH','AIRSYS','WELL','WELDUS','STEAM','OARSYS']\n", - "p_true = len(true_covariates)\n", - "\n", - "# noise covariates added for didactic reasons\n", - "\n", - "p_noise = 20\n", - "\n", - "noise_covariates = []\n", - "for x in range(1, p_noise+1):\n", - " noise_covariates.append('noise{0}'.format(x))\n", - "\n", - "covariates = true_covariates + noise_covariates\n", - "\n", - "x_noise = np.random.rand(data.shape[0] * p_noise).reshape(28727,20)\n", - "x_noise = pd.DataFrame(x_noise, columns=noise_covariates)\n", - "data = pd.concat([data, x_noise], axis=1)\n", - "\n", - "# sample size\n", - "n = data.shape[0]\n", - "\n", - "# total number of covariates\n", - "p = len(covariates)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's the correlation between the first few covariates. Note how, most variables are positively correlated, which is expected since houses with more bedrooms will usually also have more bathrooms, larger area, etc." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
LOTUNITSFBUILTBATHSBEDRMSDININGMETROCRACKS
LOT1.0000000.0648410.0446390.0573250.009626-0.0153480.1362580.016851
UNITSF0.0648411.0000000.1432010.4287230.3611650.2140300.0574410.033548
BUILT0.0446390.1432011.0000000.4345190.2151090.0374680.3237030.092390
BATHS0.0573250.4287230.4345191.0000000.5402300.2594570.1898120.062819
BEDRMS0.0096260.3611650.2151090.5402301.0000000.2818460.1213310.026779
DINING-0.0153480.2140300.0374680.2594570.2818461.0000000.0220260.021270
METRO0.1362580.0574410.3237030.1898120.1213310.0220261.0000000.057545
CRACKS0.0168510.0335480.0923900.0628190.0267790.0212700.0575451.000000
\n", - "
" - ], - "text/plain": [ - " LOT UNITSF BUILT BATHS BEDRMS DINING METRO \\\n", - "LOT 1.000000 0.064841 0.044639 0.057325 0.009626 -0.015348 0.136258 \n", - "UNITSF 0.064841 1.000000 0.143201 0.428723 0.361165 0.214030 0.057441 \n", - "BUILT 0.044639 0.143201 1.000000 0.434519 0.215109 0.037468 0.323703 \n", - "BATHS 0.057325 0.428723 0.434519 1.000000 0.540230 0.259457 0.189812 \n", - "BEDRMS 0.009626 0.361165 0.215109 0.540230 1.000000 0.281846 0.121331 \n", - "DINING -0.015348 0.214030 0.037468 0.259457 0.281846 1.000000 0.022026 \n", - "METRO 0.136258 0.057441 0.323703 0.189812 0.121331 0.022026 1.000000 \n", - "CRACKS 0.016851 0.033548 0.092390 0.062819 0.026779 0.021270 0.057545 \n", - "\n", - " CRACKS \n", - "LOT 0.016851 \n", - "UNITSF 0.033548 \n", - "BUILT 0.092390 \n", - "BATHS 0.062819 \n", - "BEDRMS 0.026779 \n", - "DINING 0.021270 \n", - "METRO 0.057545 \n", - "CRACKS 1.000000 " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.loc[:,covariates[0:8]].corr()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Generalized linear models" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This class of models extends common methods such as linear and logistic regression by adding a penalty to the magnitude of the coefficients. **Lasso** penalizes the absolute value of slope coefficients. For regression problems, it becomes\n", - "\n", - "$$\n", - " \\hat{b}_{Lasso} = \\arg\\min_b \\sum_{i=1}^m\n", - " \\left( Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{ip}b_p \\right)^2\n", - " - \\lambda \\sum_{j=1}^p |b_j|\n", - "$$ (lasso)\n", - "\n", - "\n", - "Similarly, in a regression problem **Ridge** penalizes the sum of squares of the slope coefficients,\n", - "\n", - "$$\n", - " \\hat{b}_{Ridge} = \\arg\\min_b \\sum_{i=1}^m\n", - " \\left( Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{ip}b_p \\right)^2\n", - " - \\lambda \\sum_{j=1}^p b_j^2\n", - "$$ (ridge)\n", - "\n", - "Also, there exists the **Elastic Net** penalization which consists of a convex combination between the other two. In all cases, the scalar parameter\n", - "$\\lambda$ controls the complexity of the model. For $\\lambda=0$, the problem reduces to the “usual” linear regression. As $\\lambda$ increases, we favor simpler models. As we’ll see below, the optimal parameter $\\lambda$ is selected via cross-validation.\n", - "\n", - "An important feature of Lasso-type penalization is that it promotes **sparsity** – that is, it forces many coefficients to be exactly zero. This is different from Ridge-type penalization, which forces coefficients to be small.\n", - "\n", - "Another interesting property of these models is that, even though they are called “linear” models, this should actually be understood as **linear in transformations** of the covariates. For example, we could use polynomials or splines (continuous piecewise polynomials) of the covariates and allow for much more flexible models.\n", - "\n", - "In fact, because of the penalization term, problems {eq}`lasso` and {eq}`ridge` remain well-defined and have a unique solution even in **high-dimensional** problems in which the number of coefficients $p$ is larger than the sample size $n$ – that is, our data is “fat” with more columns than rows. These situations can arise either naturally (e.g. genomics problems in which we have hundreds of thousands of gene expression information for a few individuals) or because we are including many transformations of a smaller set of covariates.\n", - "\n", - "Finally, although here we are focusing on regression problems, other generalized linear models such as logistic regression can also be similarly modified by adding a Lasso, Ridge, or Elastic Net-type penalty to similar consequences.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "X = data.loc[:,covariates]\n", - "Y = data.loc[:,outcome]" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.linear_model import Lasso\n", - "\n", - "lasso = Lasso()\n", - "alphas = np.logspace(np.log10(1e-8), np.log10(1e-1), 100)\n", - "\n", - "tuned_parameters = [{\"alpha\": alphas}]\n", - "n_folds = 10\n", - "\n", - "scorer = make_scorer(mean_squared_error)\n", - "\n", - "clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False, scoring=scorer)\n", - "clf.fit(X, Y)\n", - "scores = clf.cv_results_[\"mean_test_score\"]\n", - "scores_std = clf.cv_results_[\"std_test_score\"]\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The next figure plots the average estimated MSE for each lambda. The red dots are the averages across all folds, and the error bars are based on the variability of mse estimates across folds. The vertical dashed lines show the (log) lambda with smallest estimated MSE (left) and the one whose mse is at most one standard error from the first (right)." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "data_lasso = pd.DataFrame([pd.Series(alphas, name= \"alphas\"), pd.Series(scores, name = \"scores\")]).T\n", - "best = data_lasso[data_lasso[\"scores\"] == np.min(data_lasso[\"scores\"])]" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1e-08, 0.1)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAF3CAYAAADElWPXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLyUlEQVR4nO3dd5hU5fn/8fc9swV2KVIFAQUViIAUKYqgoFjQqIgxijGWaKwxiUn0G2NiSfLNz3ztSSxEjSVGg0YloMEexYAosIgIGhXBghQBEZQFtsz9++PMymxlFmbmzOx+Xte118yc5znn3Gdndvfepx1zd0RERETqEgk7ABEREcleShRERESkXkoUREREpF5KFERERKReShRERESkXkoUREREpF55YQeQCR07dvSePXuGHYaIyE6rmspuZiFHIrmgpKRknbt3SsWxmkWi0LNnT+bPnx92GCIiIhlhZh+l6ljqehARyQHz5s1j3rx5YYchzVBaEwUzG29m75rZUjO7oo7yy81sYfxrsZlVmll7M+ubsH2hmW0ys0vj+1xrZp8mlB2bzmsQEckGS5YsYcmSJWGHIc1Q2roezCwK3A4cCawA5pnZdHd/u6qOu98A3BCvfzzwE3f/HPgcGJxwnE+BqQmHv8Xdb0xX7CIiIhJIZ4vCCGCpuy9z9zJgCjChgfqnAX+vY/s44AN3T1l/i4iIiCQnnYlCN+CThNcr4ttqMbMiYDzweB3Fk6idQFxiZovM7F4za5eKYEVERKS2dCYKdc3hqe9WlccDs+PdDtsPYFYAnAD8I2HzncA+BF0Tq4Cb6jy52flmNt/M5q9du7aRoYuIiAikd3rkCqBHwuvuwMp66tbVagBwDLDA3ddUbUh8bmZ3A0/VdUB3vwu4C2DYsGG6l7aI5LSzzz477BCkmUpni8I8oLeZ9Yq3DEwCptesZGZtgTHAtDqOUWvcgpl1TXg5EVicsohFRESkmrS1KLh7hZldAjwLRIF73X2JmV0YL58crzoReM7dNyfuHx+3cCRwQY1DX29mgwm6MT6so1xEpMl59dVXATj44INDjkSam7SuzOjuM4AZNbZNrvH6fuD+OvYtBTrUsf2MlAYpIpID3nvvPUCJgmSeVmYUERGReilREBERkXopURAREZF6NYu7R4qI5Lr8/PywQ5Ackeqlg5QoiIjkgNNPPz3sECRHjB6d2qWD1PUgIiLSRKxdC++9V9fCyDtPiYKISA6YOXMmM2fODDsMyXLx5TZSSomCiEgOWL58OcuXLw87DMlys2dDfr66HkRERKQOs2c7/QZWpvSYShRERESaiJ9cFuP7l2xL6TE160FERKSJGHNEBas3VqT0mEoURERyQFFRUdghSJabNw9WfB5j3/6pPa4SBRGRHHDKKaeEHYJkud/9Dt54s4Cn/lOW0uNqjIKIiEiOc4dXX3UGD0vtQEZQoiAikhNeeOEFXnjhhbDDkCz1/vuwdq0xeHhqxyeAuh5ERHLCihUrwg5Bstjs2cHjELUoiIiISE2vvgptd3N67RtL+bHVoiAiIpLjbro5xvhTNhNJw7//alEQERHJdfmV9Nkv9a0JoERBRCQntGnThjZt2oQdhmShV1+FX/3S2PRFeo6vrgcRkRxw0kknhR2CZKknn4Q7/xjluxem5/hqURAREclhs2c7+w2opGXL9BxfiYKISA545plneOaZZ8IOQ7JMeXmwdPOgoamfFllFXQ8iIjlg9erVYYcgWWjRIti61Rh4QPoSBbUoiIiI5KhPP4U2bZyBB6R+RcYqalEQERHJUSecAK+98xXllZ62c6hFQUREJEdVVMaoiMUwS985lCiIiOSADh060KFDh7DDkCyyYQMMHmz859/p7RxQ14OISA44/vjjww5BsszcubBksVFQmL5uB1CLgoiISE567TUwcwYMSt+MB0hzomBm483sXTNbamZX1FF+uZktjH8tNrNKM2sfL/vQzN6Kl81P2Ke9mT1vZu/HH9ul8xpERLLBk08+yZNPPhl2GJJFXn8d9u0bo7hVes+TtkTBzKLA7cAxQD/gNDPrl1jH3W9w98HuPhj4BTDT3T9PqHJYvHxYwrYrgBfdvTfwYvy1iEiTtn79etavXx92GJIl3OH1150Bg9PbmgDpbVEYASx192XuXgZMASY0UP804O9JHHcC8ED8+QPAibsSpIiISK7ZvBnGHRlj1NjytJ8rnYlCN+CThNcr4ttqMbMiYDzweMJmB54zsxIzOz9h++7uvgog/ti5nmOeb2bzzWz+2rVrd+EyREREskurVnDL5DKO+mb6Flqqks5Eoa5ZnfUNzTwemF2j22GUux9A0HXxAzM7tDEnd/e73H2Yuw/r1KlTY3YVERHJahs3Qum29CcJkN5EYQXQI+F1d2BlPXUnUaPbwd1Xxh8/A6YSdGUArDGzrgDxx89SGLOISFbq0qULXbp0CTsMyRJHHOFcdHaLjJwrnYnCPKC3mfUyswKCZGB6zUpm1hYYA0xL2FZsZq2rngNHAYvjxdOBs+LPz0rcT0SkqRo/fjzjx48POwzJAlu3wptvwl57p38gI6RxwSV3rzCzS4BngShwr7svMbML4+WT41UnAs+5++aE3XcHplqwJmUe8LC7V91f9ffAo2Z2LvAx8O10XYOIiEi2eeMNKC839s/AjAdI88qM7j4DmFFj2+Qar+8H7q+xbRkwqJ5jrgfGpTJOEZFs98QTTwBw0kknhRyJhO3114PH/Yc0gURBRERSY9OmTWGHIFni9deh6x4xOndJ79LNVZQoiIiI5JDTvhOj//CtGTufEgUREZEcMuaISnoNSf9CS1V0UygREZEcsXw5zHk9RmVmhicAShRERHJC9+7d6d69e9hhSMjuuw++Oa6AsrLMnVNdDyIiOeCII44IOwTJAgsWwD59YrRsmblzqkVBREQkR5SUON8YkMF+B5QoiIjkhEcffZRHH3007DAkRKtWwerVxn4ZThTU9SAikgNKS0vDDkFCVlISPPbbX4mCiIiI1DBmDDw0dQv79leiICIiIjW0bg2DR5RTGcvseTVGQUREJAf8/voYby20jJ9XiYKISA7o1asXvXr1CjsMCcnatfCLn0eY+2rmOwLU9SAikgPGjBkTdggSogULgsd+AzM7PgHUoiAiIpL1qhKFb2R4ICMoURARyQkPPfQQDz30UNhhSEgWLIAee8Vo0zbz51bXg4hIDigvz9zdAiX7vP2Os9/+FaGcW4mCiIhIlpv1egVvL98SyrnV9SAiIpLlyisrabNbOOdWoiAiIpLFHn4YfvrjKBXh9DwoURARyQV9+vShT58+YYchIXjySfj381HyQhosoDEKIiI54OCDDw47BAlJSYln/EZQidSiICIikqU2bYL338/8raUTKVEQEckB999/P/fff3/YYUiGLVwYPO6nFgURERGpaeNG6L5nLNQWBY1REBERyVLHHw99hm+mrMJDi0EtCiIiIlmqvCJGWUUs1BiUKIiIiGShtWthrz2Nl54Nt/FfXQ8iIjmgf//+YYcgGfbii7BqldGxc3jdDpDmFgUzG29m75rZUjO7oo7yy81sYfxrsZlVmll7M+thZi+Z2TtmtsTMfpywz7Vm9mnCfsem8xpERLLB8OHDGT58eNhhSAY99xy03c3pN7BxAxmLSubSDbqkKo60tSiYWRS4HTgSWAHMM7Pp7v52VR13vwG4IV7/eOAn7v65mRUCP3P3BWbWGigxs+cT9r3F3W9MV+wiItmm6u6R+fn5IUcimeAOzz/vjBhVQTSa/H5FJXPpNWkCXaBbqmJJZ4vCCGCpuy9z9zJgCjChgfqnAX8HcPdV7r4g/vxL4B1SeNEiIrnmoYce4qGHHgo7DMmQ//4XVqwwRh7auNuLF8+ZhZWXpTSWdCYK3YBPEl6voJ4/9mZWBIwHHq+jrCcwBHg9YfMlZrbIzO41s3Ypi1hERCQLFBTA2d8vZ9SYxt0JavPI0Xh+AQ4pG9iQzkTB6thWX+DHA7Pd/fNqBzBrRZA8XOrum+Kb7wT2AQYDq4Cb6jy52flmNt/M5q9du3YnwhcREQnHPvvA5b/eQtdujft7Xzp0BMunTGMNrExVLOlMFFYAPRJed6f+wCcR73aoYmb5BEnCQ+7+RNV2d1/j7pXuHgPuJujiqMXd73L3Ye4+rFOnTrtwGSIiIplTVgavzK6krHznGgVKh47gU1idqnjSmSjMA3qbWS8zKyBIBqbXrGRmbYExwLSEbQb8BXjH3W+uUb9rwsuJwOI0xC4iIhKKOXNgzOgor7yQHSsYpC0Kd68ws0uAZ4EocK+7LzGzC+Plk+NVJwLPufvmhN1HAWcAb5nZwvi2K919BnC9mQ0m6Mb4ELggXdcgIpItBg8eHHYIkiHPPw/RqDNsZOPGJ6SLuYe7kEMmDBs2zOfPnx92GCIiIjs0YoRTQSUPPLF5x5XrMbDHbiXuPiwV8WgJZxGRHFBaWkppaWnYYUiarV8P8+fDQYdkR2sCKFEQEckJjz76KI8++mjYYUia/fvf4G4cfKgSBREREanhuOPgvkdK6T+occs2p1N2DKkUERER8gpiDD24casxpptaFERERLLA8uXwi184a1bVtV5heJQoiIiIZIGnnoKbboiybWt2JQrqehARyQHDhqVkpptksSefdHrtE2PPXrGwQ6lGiYKISA4YMGBA2CFIGm3cCC+/DN/9fvbMdqiirgcRkRywceNGNm7cGHYYkiZPPw3l5cbYI7NrICMoURARyQlTp05l6tSpYYchabJ6NfTYK8bAA7JnWmQVJQoiIiIhu/AHlTz5ypdEo43ft6hkLp1uu5mikrmpDwyNURAREQlVRQVs2lJOZCf+dS8qmUuvSROw8jI8v4DlU6ZROnRESuNTi4KIiEiIfvpTOOqwfGI7MdmheM4srLwMq6zEyssonjMr5fEpURAREQmJO0yf7uzWPrZTLQqbR47G8wvwaBTPL2DzyNEpj1FdDyIiOWDkyJFhhyBpsGgRfPSR8b1Ldm62Q+nQESyfMo3iObPYPHJ0yrsdQImCiEhO6Nu3b9ghSBpMmwZmzphxO79+QunQEWlJEKqo60FEJAesW7eOdevWhR2GpNj06c7AAyrp0MnDDqVealEQEckBTz31FABnn312uIFIyrjDuRdUso1tYYfSICUKIiIiITCD475Vxhel2bdscyJ1PYiIiIRg6lTnvQ+ybyXGmpQoiIiIZNimTTBpEvz1noKwQ9mhBhMFM4uY2eJMBSMiItIczJgBZWXGuPHZdxOomhoco+DuMTN708z2dPePMxWUiIhUd+ihh4YdgqTQ1KnQsVOMQUOzv+shmcGMXYElZjYX2Fy10d1PSFtUIiJSzd577x12CJIiW7fCjBnO+Ak7d3+HTEsmUfh12qMQEZEGrV69GoAuXbqEHInsqpIS2LwZDjs6u2c7VNlhouDuM81sd2B4fNNcd/8svWGJiEiiZ555BtA6Ck3BqFEw683NtCjO/m4HSGLWg5mdAswFvg2cArxuZienOzAREZGmaFtFJa3bVZKf/RMegOSmR/4SGO7uZ7n7mcAI4Kr0hiUiItL0vPoqjD/aWPGRhR1K0pJJFCI1uhrWJ7mfiIiIJHjsMZg9y9itffbe26GmZP7gP2Nmz5rZ2WZ2NvAvYEYyBzez8Wb2rpktNbMr6ii/3MwWxr8Wm1mlmbVvaF8za29mz5vZ+/HHdsldqoiISHjc4Z//dA4aXUGr1mFHk7wdLbhkwB+BPwMDgUHAXe7+8x0d2MyiwO3AMUA/4DQz65dYx91vcPfB7j4Y+AUw090/38G+VwAvuntv4MX4axGRJm3cuHGMGzcu7DBkFyxaBMuXG4fnwCJLiXa04JKb2T/dfSjwRCOPPQJY6u7LAMxsCjABeLue+qcBf09i3wnA2Hi9B4CXgR0mLiIiuaxHjx5hhyC7aOpUMHPGHrnz0yKLSuZSPGcWm0eOpnToiBRGV79k1lF4zcyGu/u8Rh67G/BJwusVwIF1VTSzImA8cEkS++7u7qsA3H2VmXVuZFwiIjnnk0+CX4lKGHLXXns53/5uGR067tz4hKKSufSaNAErL8PzC1g+ZVpGkoVkxigcBswxsw/MbJGZvWVmi5LYr64hnfV9d44HZrv75zuxb90nNzvfzOab2fy1a9c2ZlcRkazz4osv8uKLL4YdhuyCiaeW86v/t3Wn9y+eMwsrL8MqK7HyMornzEphdPVrsEUhPkbhQuCjnTj2CiAx9e0OrKyn7iS2dzvsaN81ZtY13prQFahz8Sd3vwu4C2DYsGG5M7xURESanCVLINKqAqI7f4zNI0fj+QVA0KKweeTolMXXkGTGKNwSH6PQWPOA3mbWC/iUIBn4Ts1KZtYWGAN8N8l9pwNnAb+PP07bidhEREQywh1OPdUpblvAPY/s/EDG0qEjWD5lWtMZo+DuFWZ2CfAsQQ51r7svMbML4+WT41UnAs+5++Yd7Rsv/j3wqJmdC3xMsGKkiIhIVpo/H5YsMa7+fdkuH6t06IiMJQhVkkkUDgMuNLMPCe4eaQSNDQN3tKO7z6DGmgsJCULV6/uB+5PZN759PaA5QiIikhPuvx8KWzhHH59b0yKrJJMoHJP2KEREpEHjx48POwTZCVu3wsMPO+PGl9O6TdjR7Jwdznpw948IBhYeHn9emsx+IiKSOl26dNEtpnPQv/8NX3xhnHjKrnc7hGWHLQpmdg0wDOgL3AfkA38DRqU3NBERqbJs2TIA9t5775AjkcY45hhn6gub6dU7N24pXZdkuh4mAkOABQDuvtLMcmiVahGR3PfKK68AShRyzZfbKtinb+4mCZBcF0KZuzvxBY/MrDi9IYmIiOS+P/wBzjnbqNj5FZuzQjItCo+a2Z+B3czsPOAc4O70hiUiIpK73OGOO5zW7SAvmb+0WWyH4bv7jWZ2JLCJYJzC1e7+fNojExERyVFz5sB77xm/uTF3BzFWSSrPiScGSg5ERESScN99UFTkHHVcbq6dkCjHG0RERJqH4447LuwQJEkbNsCUKc4Rx5ZT1ARG9SlREBHJAR07dgw7BEmSO5x6egXHfGtb2KGkhBIFEZEc8O677wLQt2/fkCORHSlqXcmPf1UadhgpU2+iYGZvEZ8SWZdk7vUgIiKpMWfOHECJQra77z5osVsZA4aHHUnqNNSiUNUh9oP444Pxx9MJlnEWERGRuPXr4Uc/ckaNjXJDc0gU4vd1wMxGuXvics1XmNls4DfpDk5ERCRX3HwzbN4MF1zaNMYmVElmZcZiMxtd9cLMDgaawDhOERGR1Fi3Dv74R+fo48rZt28s7HBSKpnBjOcC95pZW4IxCxsJVmcUERER4Kab0tOaUFQyl+I5s9g8cjSlQ0ek9NjJSiZR+NzdB5lZG8DcfaOZ9Up3YCIist3EiRPDDkEa0GWPGKedXc4+fVLXmlBUMpdekyZg5WV4fgHLp0wLJVlIpuvhcQB33+TuG+PbHktfSCIiUlPbtm1p27Zt2GFIPSactoUrfrM1pccsnjMLKy/DKiux8jKK58xK6fGT1dD0yG8A/YG2ZnZSQlEboEW6AxMRke0WL14MwIABA0KORBK99RbMnF3BIcdWEEnmX+9G2DxyNJ5fAAQtCptHjt7hPunQUNdDX4IpkrsBxyds/xI4L40xiYhIDfPnzweUKGQTd7j4YmfxkghPjYY2u6X2+KVDR7B8yrTsHaPg7tOAaWY20t3nZDAmERGRrPe3v8GsWca1N2xJeZJQpXToiNAShCrJNJRMNLM2ZpZvZi+a2Toz+27aIxMREclSX3wBl13mDBxSwYmn5P4dIhuSTKJwlLtvIuiGWAH0AS5Pa1QiIiJZ7JprYO1auPJ3W1I+NmFX3fWHwpQeL5npkfnxx2OBv7v752aW0iBERERyyaGHVxArrKDf/tm3uNLrs1N7v8dkjvakmf0X2AJcbGadgNTOARERkQadcsopYYcgcbGYM+DALfQZmn1JQtk2WPRGNKXH3GGDibtfAYwEhrl7OcENoSakNAoREWlQUVERRUVFYYfR7D30EPzs55VsLs2+JAFg8ZtRtm1Nbat/Uj0r7r7B3Svjzze7++qURiEiIg1auHAhCxcuDDuMZm3DBvjJT5yXXoJoalv3U2bZ0gjRqKf0mFk2BENEROqiRCF8v/pVcCvpX2bhAMYqJ3+nnPWfp/aYWXqpIiIi2aOkBO6805l0Vhnf6J+d3Q4ALQsitG0TQtdDFTO7tpH1x5vZu2a21MyuqKfOWDNbaGZLzGxmfFvf+Laqr01mdmlVDGb2aULZsY2JSUREpDHc4Uc/cjp0dH5wWfaO5X97UYRzTi3i7bdTe9zG9rKcAFybTEUziwK3A0cSrL8wz8ymu/vbCXV2A+4Axrv7x2bWGcDd3wUGJxznU2BqwuFvcfcbGxm7iIhIo5nBb68v473lFbRuE3Y09Xv91Tz+83KU9u1Te9zGJgqNac8YASx192UAZjaFYLZEYq7zHeAJd/8YwN0/q+M444AP3P2jRsYqIiKySyoroTxWSeeeW+m0V3rPVVQyd5fu61Dyeh59+jhduqS266Ghu0eeBjzn7usTNg9txLG7AZ8kvF4BHFijTh8g38xeBloDf3D3v9aoMwn4e41tl5jZmcB84GfuvqERcYmI5JzTTz897BCaHXc4/XQoJ8Y1NwQtC+lSVDKXXpMmYOXBnSKXT5nWqGShshLemJvHqaekPsiGxijsBfzDzP4THxdwINCYORd1RVtz/zyC5OObwNHAVWbW5+sDmBUQdHf8I2GfO4F9CLomVgE31Xlys/PNbL6ZzV+7dm0jwhYRyT75+fnk5+fvuKKkzF/+Ao88At17VqY1SQAonjMLKy/DKiux8jKK58xq1P7v/zfCl5uMMWNSH1u9iYK7/97dDydYuvlN4BxggZk9bGZnmtnuOzj2CqBHwuvuwMo66jwTX5thHfAKMCih/BhggbuvSYhrjbtXunsMuJugi6Ou+O9y92HuPqxTp047CFVEJLvNmzePefPmhR1Gs7FkSTCA8aBDyjnn4m1pP9/mkaPx/AI8GsXzC9g8cnSj9i8vMw4dE+PQQ1Mf2w7HKLj7lwQDCacCmFk/gj/gfyVoBajPPKC3mfUiGIw4iWBMQqJpwG1mlgcUEHRN3JJQfho1uh3MrKu7r4q/nAgs3tE1iIjkuiVLlgAwfPjwkCNp+kpL4dRTnaJi5//dmpk1E0qHjmD5lGk7PUZh/yGVvPAi5Kd29WagEYMZzaxdfIXGtwkGJNbZ5F/F3SvM7BLgWSAK3OvuS8zswnj5ZHd/x8yeARYBMeAed18cP18RwYyJC2oc+nozG0zQjfFhHeUiIiI77e234dOV8Ps/baFj59SuctiQ0qEjdmoQozuUb4uQH01PRtOYWQ8vAgc05uDuPgOYUWPb5BqvbwBuqGPfUqBDHdvPaEwMIiIijdHrG9uYMXsrrVqHHUlylr0f4VtHtuLxx+HEE1N//MakH7q3tIiINFlvvgnX/V+MlV/kTpIAMP+1PGIxY//903P8BlsU4lMQIUgS2iW8po5pjCIiIjlp2TI4+mjHInDoN6HNbmFHlLyS16PssYez997p+X9+R10PvRKeFwI9CZKGzHXaiIgIZ599dtghNFlr1sBRRzlby+CBxzfnVJLgDgvm5nH4WEvbFM4GEwV3/3XVczOb4O6/SU8YIiIimbdpExxzjLNyJdw1ZTN7987eGz7VZfVK47PVEUaNSt85GjOYUWMURERC8uqrrwJw8MEHhxxJ0zJzprPkbbj17lIGHVAZdjiN1qIl/O76CsaPb+wdGZLXmCNrtoGISEjee+89QIlCqlRUQDTqDDp4CzNmVdC5S272qLdr71z6YygqSN85kp71ULW+gYiISC57/30YNMh54B9b2bilPGeTBIDXZkXZsDYNqywlyMB6UyIiItnh5ZfhwAOdlascy8u9roZEZdvgB2cV84c/pHdkgBIFERFp8tzhrrvgyCOddh1jPPzkVxwwItxEoahkLp1uu5mikrk7tf87S6KUlxkHHZTiwGpozBLOxe6+OZ3BiIhI3XTnyF3z7LPOBRcYo8ZUcP0dpbRuE248u3pbaYBFJUGXw8iR6Yhwux0mCmZ2MHAP0ArY08wGARe4+8XpDU1ERKqcfvrpYYeQc8rKgtUW+w+qYO/BW7jxzgjjjqkgmt4u/aQk3lYagttKNzZReHNBlL32crp2Db/r4RaCu0SuB3D3N4E03MhSRERk17nDjBkwZIhz+Din5N1StlXEOOq47EgSYNdvKw3w1oI8Djoo/SsXJNX14O6fWPUln3J7BIiISI6ZOXMmAGPGjAk5kuxVXg6PPALXX++89ZbRrYdz3R+3sFu77JvVsKu3lQZ4dPo2OrVqmYboqksmUfgk3v3gZlYA/Ah4J71hiYhIouXLlwNKFOoSi0EkAm8tiXHGGRH27Rvjf2/ZxjETysnmoR07e1vpKn37ROiUgZtXJZMoXAj8AegGrACeA36QzqBEREQa8uWXMG0aPPywU9TKuWXyVgo6lfPgtCj7D64k0sTn9D09LZ9W0TwuvjD959rR3SOjwK3urlE0IiISuhdfhLvvhunTnS1bjK7dnBNPLeOL0nKAnFyGeWdMeaCAFnmR8BMFd680s05mVuDuZekPR0REZLuKCnjhBTj8cIhZJU8+4zz3fITjTy7n2BPLGTys6bce1FReBm+/FeXiizJzC6Zkuh4+BGab2XTg63UU3P3mdAUlIiLVFRUVhR1CRi1ZAg88AA8+6Kxebfz5wVJGji1n0rlw1g8gL333QMp6774dZdtWS/v6CVWS+VavjH9FgAwMmxARkZpOOeWUsEPIiM8+g+OOc+bNM/LynEMOr+Dnvylj6MgKAIpbhRxgFlj0RjDHM90rMlbZYaLg7r8GMLPWwUv/Ku1RiYhIs7BxI0ydCqWlzhnnVLAlUk6L1vlcfk0Fx55YToeO2Te1MWyrPo3QvbvTo0dmuh7MveE3wcwGAA8C7eOb1gFnuvuSNMeWMsOGDfP58+eHHYaIyE574YUXADjiiCNCjmTXvfkmPPkkPP+8M2cOlJcbgw6o4MFpuktAMvKiRq92bWjRov46Zlbi7sNScr4k6twF/NTdX4qffCxwN6CboouIZMiKFSvCDqHR3OHTT6GkBBYsgKuuggqv5JY/wgP3RtlvQIzvfr+CcceUs//g5jFbIRWKCqINJgmplkyiUFyVJAC4+8tmVpzGmEREJEd8+SWsXAmrVsEBB0CbNsHyyb/9rbN0KaxbFzSPRyLOgUd+RY+eMU6/0Pjej6B9h+bTrVBUMneXVmGsMvvlPP7xQAv+ej9065a6+BqSTKKwzMyuIuh+APgusDx9IYmISJi2boUPPoB164Kv9euDQYYTJ0L//vDKK8655wbJwebN2/vJH3p8KwcdUsHqr4xYtJBDj4zRt18l/favpE+/SlrGVxvu0rX5JAiQmjtFVil5PcorL0do337HdVMlmUThHODXwBPx168A30tbRGmwahX89rfVtx16KIwZE2TDt95ae58jjghu3bl+PdxxR+3yb34zyJ5XrYJ77qldPnEiDBgAH34IDz5Yu/zUU6FPH3jvvWBt8prOOAN69oTFi4OBPjV9//vQtWvQnPevf9Uuv/hi6NAB5swJ5iDXdOml0Lo1zJwJr7xSu/x//gcKC+H55+G112qXX3VV8PjUU/DGG9XLCgrg5z8Pnj/xRDDNKVGrVvCTnwTPp0yB99+vXt6+PfwgvvbnX/8KH31UvbxLFzjvvOD53XfD6tXVy/faC848M3h+++3w+efVy3v3hkmTgue33gpf1Rie279/8P4BXH99cAe6REOGBO8/wP/+7/btVbdDOfDA4POzbRvceGP1fc3gkEOCry+/hNtuo5Zx42DEiCDump8tMzjqKBg0CNasgb/9rXb5scfCN74BK1bAY49t314V3/HHQ69ewWez6rNTVW4WlHfrBkuXwksvbS+PRLaXd+wYfHZff736vmbB96ZNm6D8rbeq7xuJwJFHQosWwfGXLw+2JX6NHBlMffv44+CPUyQC0WjwFYnAfvsFx1q3DjZv3r69qk7HjkHMW7ZsX9o38StbbgqUChUV8MUXsGFD8NixY/DelpbCXXfBpk3B87Ky4Ov44+Hoo4OfmfPPD75HW7Y4X30F6z+Hq69xJp1eyYISGDu69trHLdptwdqV83mFsW+/QkaOdTruHqNTZ6dj5xh79o6xeZsz/GAYfnBFxr8f2SoVd4qs8vaiKAMG8HXSlQnJzHrYQHB/h5y1ciVcfXX1bT+6rIwe/cpYs9q4+uraPSlbYtvYfd9yln9Qd3mkaCu79ajgrSURrr669vzm1p22UrR7Ba8tjHL11bXf0S69tpDXrpKZc+su32f/LcSKK3lhVh5XX127M2rgyFL2z4vx9Et1lx985GZ6xZwnn8vnumsLa5UfceJmdu/iPPFUAX+8saBW+YTvfkWrVvDIEwX8ZXLt8tMvDP66/u3RQh55sPovlOJi59vnBIOS7n+okCefqF7eefcYE75bCsDd97Xg389V/xj23DvGMacE5Xf8uSWvv1r9N3v/gZWMO3ELAH+4rSVLFlUvP/DgSkYfE5TfeHMRHy6rvhrL4UdVMGLcVgCu+30Rn62pXn78SeUMGr0NgN/8prjaf0wAp55Rzn4jgvKrrqo9V+vci8rZZ3AZX30Fv/pV7c/Ojy4vo/t+5axZbVx5Ze3PzpW/3kanvStYttT4+c9rl5dHt9G2WwVvLY5w2WW1Pzt5rbbSomMlr5VE+MlPape36riVSJtKXpwd5ZJLan922nXdysEtYzz97yg/uqD2Z+epF7cwcLDz+FN5XPmz2p+NV+ZtZe99nQcfyeN/r679x+aN/26hSxfjzrvzuPn62r+Cln26leLW8P+uz+PPt9cuX7tpG5GI8dPLozx4f/X3vlUrZ8VnwR+oc8+K8vg/qr+3Xbo67y8P+sJP+3aEZ562rxMIM+jdB16bGwPgpBMjzHl1e5kZDBoM/3o6KD92fIQli6snYQeNhL8/EsMMDhsT4aMPt5/bgXHjnLv/Evw3PXRwhDVrgmSm6mvit5w7/xwcf889omzdGiRN0SgcfXQbevZytpRVUlHpdGgbpby8+mfz4h9VcOWvy9mwwfnJT4LPTn6BU1AQPLbuVMZeg4Lfe+99UERhC6ewBezWyenZx7FWZXy4rpL8dnDDHfm0bRejXXtnt3bBV2ELqIzBPn2c62/fUuu9kbpV3SkSynb6TpEQjPl4+608Tv5WZmY7VElm1sPzwLfd/Yv463bAFHc/Ov3hpUa/gUP84Sdfrrat6r8b9+AHtKZ0l1f98tlReSwW1Mm28qr/yna1vLKe8UuZKq+o458es8aXJ15j1X+t7jX2j9exSPDL3z1YYS2RO0TzgvJYLGiVSCwDyM8PviorYeuW2uWFhZBfEJy7dHNwXvftv1iKip38AijbBl99ZcF+vn3/Nm2dgsLgv81NX1gQtm//rHbqHJR/uQk2rI/g8XNXHaf7njHyC2DD58baNfb1flXlvfeLkZ8Pqz41Vq+MBGWx4A+QOwwfWUk0Ch+8F2HFxxFilUFZLAaxSmP8CcFSvW/Mi/LhBxFiHmyPxSAadU4+PSif+UIey5ZGiFVuj6FlS+eM84Jv+vTH8lm+NEgkKuN12rWPcc7FQfnD9xXw8YcRPLb9+rrs4Zz7g+BNuftPhaxeaV9/39yNvXpVcvaFwf5/ur6Q9esiuG9PJPrsV8l3vheU33pdIaWbg0QFg2gE9tu/kuNOCuK/7YZCtm4xKmNQWRG83weMqOSbE8txhz/+XyEFhcH7VfXVc58Ye/WK4Q5fboSiVs17YaJskooxCis+No4d1YbJk+GCCxqum8pZD8kkCm+4+5Adbctm/QcO8SkzXg47DBERkZ323jsRbv5NMbf/KcLgwQ3XzfT0yJiZ7enuH8dPvhdf/28kIiKZ8OZrLwMw6KCxocYh4emzX4znXohRXJjZm1skkyj8EphlZjPjrw8Fzk9fSCIiUtPG9WvDDkFCVlEBLfMzPxp3h2mJuz8DHAA8AjwKDHX3Z5M5uJmNN7N3zWypmV1RT52xZrbQzJYkJCOY2Ydm9la8bH7C9vZm9ryZvR9/bJdMLCIiIrkqFoMjhrXmuusyO5ARkkgUzGwUsMXdnwLaAlfGux92tF8UuB04BugHnGZm/WrU2Q24AzjB3fsD365xmMPcfXCNfpYrgBfdvTfwYvy1iIhIk/XJRxE+Xx+hS5fMnzuZjo47gVIzGwRcDnwE/DWJ/UYAS919mbuXAVOACTXqfAd4omr8g7t/lsRxJwAPxJ8/AJyYxD4iIiI5a8mbQZfDsJQMT2ycZBKFCg+mRkwA/ujufyC52013Az5JeL0ivi1RH6Cdmb1sZiVmdmZCmQPPxbcnjonY3d1XAcQfO9d1cjM738zmm9n8DZ+vTyJcEZHs1aptO1q1VU9rrigqmUun226mqGRuSo739qIoLVo4/frtuG6qJTOY8Usz+wXB0s2HxrsUaq+iUltdHSk1Z0vkAUOBcUBLYI6Zvebu7wGj3H2lmXUGnjez/7p7HWsI1s3d7yK4oRX9Bw7RLA0RyWkHjM79u0Y2F6lcsrnK229FGTw4WEMl05JpUTgV2Aac6+6rCVoFbkhivxVAj4TX3YGVddR5xt03u/s6guWhBwG4+8r442fAVIKuDIA1ZtYVIP6YTHeFiIhIRiQu2WzlwZLNu+rYEyo4//zMD2SE5GY9rHb3m939P/HXH7t7MmMU5gG9zayXmRUAk4DpNepMAw4xszwzKwIOBN4xs2Izaw0Qv1PlUcDi+D7TgbPiz8+KH0NEpElbMOsFFsyq48YtknWqlmz2aHSXlmxOdN6FMb4X0l2W0ra4p7tXmNklwLNAFLjX3ZeY2YXx8snu/o6ZPQMsAmLAPe6+2Mz2BqZasO5pHvBwfJomwO+BR83sXOBjas+UEBFpcr7auCHsECRJpUNHsHzKtJTcVhpgzSoj0i5K95CGqKR1FXB3nwHMqLFtco3XN1CjK8PdlxHvgqjjmOsJxjSIiIhkpdKhI3Y5Qahy3+RC/jmlgE2bwrn7ab1dD2Z2mZn1qK9cRERE0u/tRVGGDAnvFukNjVHoBrxqZq+Y2UVm1jFTQYmIiEiwbPN/l0QZPjycgYzQQKLg7j8B9gSuAgYCi8zsaTM7s2qgoYiIZEbbDp1o26FT2GFIhi1fGmHrFgtloaUqDY5RiC+0NBOYGR+YeATBYMLJQFH6wxMREdBdI7NZUcnclA1crOntReGtyFglqcGMZrY/wfTGU4H1wJXpDEpERCQXpGNxpUQHHVLBPffG6N07s7eWTlRvomBmvYHTCBKESoJ7NRwVn5EgIiIZNO/lYIb48LHjQ45EEiUurgTB4kqpTBS67OGMG2ZYeEMUGmxReBb4O3Cqu7+VoXhERKQOWzZ/GXYIUoeqxZWgLGWLK1UpLYXnphXS6Uxj991TdthGayhROJrgBkzVkgQzOwRY6e4fpDUyERGRLJfqxZUSzXs1j6v/pwWjhpK1icIt1D0WYQtwK3B8OgISERHJJalcXCnRrJfyKC52Ro0Ksd+BhtdR6Onui2pudPf5QM+0RSQiItLMucPsl/M5/HCjsDDcWBpKFFo0UNYy1YGIiEj92nfuSvvOXcMOQwhmOnS67WaKSuam7RwffxhhxccRxmfB2NWGuh7mmdl57n534sb4zZhK0huWiIgkGjA8dYPkZOelezpklcULg/UTsj1RuJTgDo6nsz0xGAYUABPTHJeIiEjWSfd0yCrfnFjO2afE6LJ7eOsnVKk3UXD3NcDBZnYYMCC++V/u/u+MRCYiIl977cWnADho3HEhR9K8pXM6ZKKWBVG6dA4/SYAkVmZ095eAlzIQi4iI1KNs65awQxDSOx2yytxXozx8T0vuuwf23DPlh2+0pJZwFhERkUC6pkNWmfl8PrNfidAxS+7ZnB3tGiIiIgLA7Jl5jBkDRVly60UlCiIiIvXIxFTIRCtXGMvejzJ+fLiLLCVS14OISA7otEcWdFY3M5maCpno1ZnBn+VjjknraRpFiYKISA7Yb8iBYYfQ7GRqKmSiNm2dCSc6fftmT4uCuh5ERETqUDUV0qPRtE6FTHTCxBj/nBrubaVrUouCiEgOmP3sVABGHa317jIlE1MhE32xwdijfX5az7EzlCiIiOSAyoqKsENoltI9FTLRX24v5PGHCli7Flo0dLelDFPXg4iISFymZzlUcYeXns1j1KjsShJALQoiIiJAOLMcqix7P8LHH0b5xc8zcrpGUYuCiIgI1Wc5WHkwyyFT/v1sMDbhhBMydsqkqUVBRCQHdNlz77BDaPIydcOnurz0bB4jRjh77JFF0x3ilCiIiOSAPvsPDTuEJqeoZG61GQ2ZnuWQ6IY/ltEqkiVrNtegREFERJqd+sYjZHKWQ6IDh+bRrjjjp01KWscomNl4M3vXzJaa2RX11BlrZgvNbImZzYxv62FmL5nZO/HtP06of62ZfRrfZ6GZHZvOaxARyQav/OsfvPKvf4QdRpMR5niEmu6fXMD8V7P3//a0RWZmUeB24EhgBTDPzKa7+9sJdXYD7gDGu/vHZtY5XlQB/MzdF5hZa6DEzJ5P2PcWd78xXbGLiEjTFuZ4hERfboI/Xd+CaJlx5JGhhLBD6UxhRgBL3X0ZgJlNASYAbyfU+Q7whLt/DODun8UfVwGr4s+/NLN3gG419hUREUlazTEJYY1HSDTrpXzKy40TTwzl9ElJZ6LQDfgk4fUKoOZdTfoA+Wb2MtAa+IO7/zWxgpn1BIYArydsvsTMzgTmE7Q8bEht6CIi0pQ0NCYhTC89m0fnzs6BB2bfbIcq6RyjUNdVe43XecBQ4JvA0cBVZtbn6wOYtQIeBy51903xzXcC+wCDCVodbqrz5Gbnm9l8M5u/4fP1u3IdIiKSY2qusJhNYxKqlG2D/7yUzwknGNFo2NHUL50tCiuAHgmvuwMr66izzt03A5vN7BVgEPCemeUTJAkPufsTVTu4+5qq52Z2N/BUXSd397uAuwD6DxxSM0EREckp3Xr12XElAepuPciWMQmJPv0kwm67kdXdDpDeRGEe0NvMegGfApMIxiQkmgbcZmZ5QAFB18QtZmbAX4B33P3mxB3MrGt8DAPARGBxGq9BRCQr7NNvUNghZLXE8QeJrQcQtB6sveSnWTEmIVGvfWO8tzRGi/wsbk4gjYmCu1eY2SXAs0AUuNfdl5jZhfHyye7+jpk9AywCYsA97r7YzEYDZwBvmdnC+CGvdPcZwPVmNpigG+ND4IJ0XYOISLaoqCgHIC8v+25DnGk1ByXWbEFYee11dbYeZMOYhCqxGORFjaLC7E4SIM0LLsX/sM+osW1yjdc3ADfU2DaLusc44O5npDhMEZGs9+qz/wTg0G9+O9xAQlZXt0LNFoS8DZ9nXetBTW/Mi3L5RcU8PQOGDQs7moZl7woPIiIi7Lhboa7xB9nUelCX557K56svoW/fsCPZMSUKIiKSNXamWyFb1kRIVmUlvPB0Pscea7RuHXY0O6ZEQUREssKudCtkewtCojfmRVm7JsIpp4QdSXKUKIiISGiaYrfCjjz3VD4tWjjf/Gb2LrKUSImCiEgO2Kt3v7BD2GXNoVshGcdNrGDMQYW0ahV2JMlRoiAikgP26tM/7BCqqeuPfs0/5onbgGbRrZCMw8dG6No27CiS1ywShby1aygqmZvUhzmVddJ5bNVRHdVJrk5TsW3rFgAKW7RM6XF35vtaV0vAHtf+oloSANUTgw0nT2oW3Qo78sLTeQwfkE/XkWFHkrxmkSjkr15Fr0kTkvowp6pOOo+tOqqjOsnVqe+PXC7+IzDvn38numkj44aOStm5dvb3Vs2WgLYzptdKAoBq24Bm0a3QkMpK+N2VLTn8sAijlShkHytP7sOcqjrpPLbqqI7qJF+nqfwj0PKdxRCL0euG61N2rrr+y0/m+1qzJWDjsSdQPHfO16+rkpDEOl+cfBpfnHxak+9WaEjJ61HWr8ud2Q5Vmk2ikOyHOVV10nls1VEd1Umuzs7855ut/wgQi31dN1Xnqvk9TPb7WldLwLZv9KuVBNQ33qC5eu6pfIqKnGOPzY3ZDlWaRaJQ3qUryyc/kPSHOVV10nls1VEd1UmuTlP5R4DpUyAWS+m56vsvP5nva82WgLpaBppTa8GOVFTAi0/nc9xxRlFR2NE0jrk3/Tsw9x84xKfMeDnsMEQkBE1ljMKsKfemfIyC/ohnzgfvRfjuhFY8cL/xrW+l/3xmVuLuKbmLhBIFEZEcsGLZuwB03zsHbg4gderephXFLaIUFKT/XKlMFJpF14OISK5TgpC7ysuhTXGUdm2y/5bSdYmEHYCIiOxY6VdfUvrVl2GHITvhb38p4PixRWzaFHYkO0eJgohIDpg/8xnmz3wm7DCkkWIxeOyhQjp2MNq0CTuanaNEQUREJE1e+08en3wY4aKLcmtKZCIlCiIiImny6IMFdOrkGZnpkC5KFERERNJg9Spj5gt5nHOOUVgYdjQ7T7MeRERE0qB9e+fPf6nkiLG5/ac2t6MXEWkmeu8/NOwQpJGKi41zzoxiuTs8AVDXg4hITui659503XPvsMOQJL06M48H72zJ1q05niWgREFEJCd8+cXnfPnF52GHIUm6/88FPHhfXkZWYUw3JQoiIjngjdkv8sbsF8MOQ5KwYG6U1/6Tz8UXG9HcXIyxGiUKIiIiKeION/22BXvs4fzwh2FHkxoazCgiIpIiz0zP562Fedx7LxQXhx1NaqhFQUREJEX23jfG97/vnHlm2JGkjloUREREUuSwUfmcfHTuz3RIpBYFEZEc8I3BB/KNwQeGHYbUY8Pnxu+vaknZl01gmkMNaU0UzGy8mb1rZkvN7Ip66ow1s4VmtsTMZu5oXzNrb2bPm9n78cd26bwGEZFs0LnbnnTutmfYYUg9/nxrIVP+ms+GDU2rNQHSmCiYWRS4HTgG6AecZmb9atTZDbgDOMHd+wPfTmLfK4AX3b038GL8tYhIk/bF+s/4Yv1nYYchdfhwWYRHHyzgvPOMfv12XD/XpLNFYQSw1N2XuXsZMAWYUKPOd4An3P1jAHf/LIl9JwAPxJ8/AJyYvksQEckOi16byaLXZu64omRULAa/+XlLWraEX/867GjSI52JQjfgk4TXK+LbEvUB2pnZy2ZWYmZnJrHv7u6+CiD+2DnlkYuIiCThkb8WMP+1PG691dh997CjSY90znqoq6PG6zj/UGAc0BKYY2avJblvwyc3Ox84H6Brtx6N2VVERCQpJ5wYo1XE+d73mt7YhCrpTBRWAIl/obsDK+uos87dNwObzewVYNAO9l1jZl3dfZWZdQXq7LRz97uAuwD6DxzSqCRDRESkIZWVYAaD+7bgoCubbpIA6e16mAf0NrNeZlYATAKm16gzDTjEzPLMrAg4EHhnB/tOB86KPz8rfgwREZGMufeOQi6Y1JrKsiZwM4cdSFuLgrtXmNklwLNAFLjX3ZeY2YXx8snu/o6ZPQMsAmLAPe6+GKCufeOH/j3wqJmdC3xMfKaEiEhT1n/YqLBDkLh3344w+ZZCTjrJmswyzQ0x96bfKt9/4BCfMuPlsMMQEZEcV7YNvnN8KzZ+HmHJEqNDh7AjqpuZlbj7sFQcS0s4i4jkgPVrgmFaHXbfI+RImrc//l8L3nsnypNPkrVJQqppCWcRkRywZP5slsyfHXYYzVppKfznxXwuvhiOOy7saDJHLQoiIiJJaNvGWLDAKMgPO5LMUouCiIhIA9zhsYfy6dCiiN3aGkVFYUeUWUoUREREGvD4w/n85ooipj/ePBvhlSiIiIjUY/nSCNf/uiVHHeV873thRxOO5pkeiYjkmIEHjQk7hGbn8/XGJd8rplUx3H+/EWmm/1orURARyQG7ddD97zLt6p+1ZO1q46WXjK5dw44mPEoURERywGeffgxA5257hhxJ83HzzbBmhXHQQWFHEi4lCiIiOeC/C18HlChkwuyX8/jWhDw6dc+HgWFHE75m2uMiIiJS24N3F3DRGcX8e0Zh2KFkDbUoiIiIAPdNLuCW37XkW9+Cb+t2g19ToiAiIs2aO9x6XQvuu7OQb38bHnyQZjvDoS76VoiISLP2/n8jPHh3ARdeCH//OxSq16EatSiIiOSAIaPGhR1Ck+MOZjB2ZAElJcb++wevpTq1KIiI5IDWu7Wn9W7tww6jyfjvkginjG9FyUvFdGhVyMCBShLqo0RBRCQHrPp4Gas+XhZ2GDmvogLu+kMh3zmuFRs/j9CpvRrWd0TfIRGRHPD+WyUAdN1z75AjyV3Ll0b45aUtWfxmHpMmwW23QYcOYUeV/ZQoiIhIs7Dsv/msWhHlkUfglFPCjiZ3KFEQEZEm6cNlEe75UyG9e8Ovr4kw4II8zjoV2rULO7LcokRBRESajNJSeOnZfGb8M5/ZL+dRWAhD/scojk95VJLQeEoUREQkp5VuhpZFwayF/7uqiKmP5tOjh3PFFcaPfwyddePNXaJEQUQkBwwbMz7sELJGeRkseiPK67PzeH1WHm+9EeWF/5Rx4NA8rrkyyqU/gNGjTasrpogSBRGRHFDUqnXYIYTGPUgOCgrhzQVRLjitmNJSIxJxhg6Fyy83enYtpEU+DBoUdrRNjxIFEZEcsGLZuwB037tvyJFkRnk5lLwW5fkZ+bz8fD5nf7+CX15p7DE6ytlnG0ccAWPHmsYcZIASBRGRHLDsnUVA008U3OG3v2jBCzMK+GKDUVTkHHOMcfjoAtoWAUVw++1hR9m8KFEQEZHQfLbaeOXfeXy8PMovf11Om5Z5WHk+xx9nnHQSHH200bJl2FE2b0oUREQko+a8kse0f+SzaEEeKz4ORhzuvbdzx82FtGwJjz4ScoBSjRIFERFJqfXrjMULo3y2OsJHyyJ8GP+67+9b+UbfCF+szueN16OMHGn8+Idw9NEwYIDppkxZqlkkCm+/FWXQnm2qbfvhZWX86PJy1qw2Rg8qqrXPz68p4/sXl7P8A+Oog2uX//aGbUw6s4LFb0aYeFTtdrGb7tjGCd+q4LXZUc44qUWt8sl/3cq4oyt58dkoF55Zu/zBJ7Zy0KhKpj+ex88urn1z9KnPbWHAoBhT/prHVZfXLn/u1VJ67ePcc0c+//frglrls94sZfcuzh9vyOdPN9Yuf+ODzbRqBdddU8C9k/Nrlb+/ZjMAv/pZIY/8rfrHqKgY3lwWlP/0wkKenFq9vPPuzuxFpQCcf0YLXnouWq28597O83OC8tMntmDuq9XLBwyKMfW5LQBMPKolSxZVnwM14uBK/vbEVgCOOriID5dV/+1z2FGV/PmvQfmoQUWsXVO9/LiJFdx85zYAhuxbTOnm6td+yukV/PbGoLxv1+Kvt1f9kjv7/HKuuLaMr76C4X2Lqenin5ZxyU/L+WyNcdjw2p+ty39Vxtnnl/PhMuOEw6uXm8GvfreVb3+ngiVvRTj9xKJq5wb43U1bOeaECua/HuWis1puLzcH4Mbbt3LIYZXMejnK/1zS4uvyoA784e4tHDA8xgtP5/G7XxVCvCwSCR5vu6+U3t+I8fS0PG67sTDYN7L9GLfdv5luPZzpj+Xzt78UEKnaNxI83npPKe3aB+VPPZFPJL5/NBrsf/0dpbRsCU8+ns9//p1HNAqRKEQjweM1/7cFM3j2yXzeeiMalEWdaBQKW8B5Pwzem5efz+OjZZF4eXDu4lbO8d8qB2DenChr10TIy/Ovz9GqtTN8ZCUA774doXSzEc2DvKgTzYPiYqf7XsH3cd1nRmUl5OVDXhSieU5+fhBDrqq67XLZNvjkowhffWV8tcnY/BVs2mQMO6iSnnvH+OC9CH++tZBNGy342hQ83jp5G4cd7sxbHOWH3wt+L7Vo4fTpAwcOM7q3K2aP3eCnP4LLf6K7NeaKtCYKZjYe+AMQBe5x99/XKB8LTAOWxzc94e6/MbO+QGLj097A1e5+q5ldC5wHrI2XXenuMxqKo2tX+P73a/yxOKyQfToV0qkQfvWr2vscfURQ3tbqKR/Tgn06Qct+dZePOzgojwyqu/zQYS3ZpxOUD6u7/OBBLenVCcYdXHf58H5F7NEJjh4D2+ooH7xvMR07wnFHQH5l7fIBexXTpg2ceAy0reMX2zf2aEVhIZx8AuzRsXb5Pp1aATDpW9C7Z/WygoLt5d+dBIP6Vy9v3dq+Lj/nDBg1onp5hw7by88/B446vHp5167Rr8svOh9Wrqxe3rNn3tflP/wBrF9fvbxv3+3lP70Uvvyyevn+++ezT6cgObrsZ1BWVr182LDt5VdcEWxz314+alQB+3QqYFsbuOwyajn88EL27VxI5xbwk0url7nDUYcG5W2AH/ygehnA2ANbsm9nKOwD559X/dwAo4e2pPfuwH5w5hlBeVAn+BkY0b+IPrvD1v3g2ydvL6/6OqBPMX27wIb94OijqpfFYrB/z1b06gqf7gsjhgXbqsrcYUCPNuyxB7zbHXr1CLZXVm6v079bGzp0gLmtIVLpX5dX1dmvaxtatnSmb4al7wR/jGOVUFEZ7N+nS5A43rnYePxh+3rfigpo1Qp+9+ug/OUZUZ54rHoS2bWrc9H3g197P/tLHs8/W718394xZpeUgcP5vyngtdnVywcOjvGvfwdJ5ne+14LFNZLUg0ZV8vA/t+LuHDWqiE8+NvKiQTIRjTqHHl7J//1pK45z2nFFbNpoXycy0TznkMMquOTybbjDD79XhHswJbCgwGnZ8mSGDK8Agu/DdVe1IBaDbVuNsm2wbZtx+NHlTDilnC83wbmntKJsW/B9cw/e+7PO28bp55SzZpVx2vHFX78nZWVQutn4xbVlfO+8Ct5dHmHiuNr/AN02uYLDD4TNK42l/43Qvh1062IM2C9Y8XDgvi3ZswOceCwMeB322AP22KP2egZ5zeJf1KbDvOZvmVQd2CwKvAccCawA5gGnufvbCXXGApe5+3E7OM6nwIHu/lE8UfjK3W9MNpZhw4b5/Pnzd+YyRCSHxGJ8/Udp69bgD2BVIlGViHTpEpR/+mmQJFZUBF+VlZCfDwMHBuUlJUGSWVVeXg5t28IRRwTlU6fC2rXbyysqoFs3OPXUoPymm4Ly8vLt5QMGwEUXBeUXXggbNlQ//5gxcPnlQflhhzmbNsG2bbBla/B42nec3/6vU1EBPXtEiESgRUto0QKKWsLZZ8OllxqlpTBpUrA9L297a8/JJ8OJJwbXddllwfcqEgmuu3VrOOEEGDUKNm2Cp58OrrdNm+2PnTtDYe0GTMlCZlbi7sNScqw0JgojgWvd/ej4618AuPt1CXXGsuNE4SjgGncfFX99LUoURKSZWbhwIQCDBw8ONQ7JDalMFNK5wGU34JOE1yvi22oaaWZvmtnTZta/jvJJwN9rbLvEzBaZ2b1mVudyG2Z2vpnNN7P5a9eurauKiEjOWLhw4dfJgkgmpTNRqGuYSs3miwXAXu4+CPgT8M9qBzArAE4A/pGw+U5gH2AwsAq4qa6Tu/td7j7M3Yd16tRpZ+IXERFp9tKZKKwAeiS87g5UG3bm7pvc/av48xlAvpklDp07Bljg7msS9lnj7pXuHgPuBmoMhRMREZFUSWeiMA/obWa94i0Dk4DpiRXMrItZMEHGzEbE40kco34aNbodzKxrwsuJwOI0xC4iIiKkcXqku1eY2SXAswTTI+919yVmdmG8fDJwMnCRmVUAW4BJHh9daWZFBDMmLqhx6OvNbDBBN8aHdZSLiIhIiqRt1kM20awHEcl15eXBQlH5+bUXQBOpKZWzHrTshYhIDlCCIGFJ5xgFERFJkXnz5jFv3ryww5BmSImCiEgOWLJkCUuWLAk7DGmGlCiIiIhIvZQoiIiISL2UKIiIiEi9lCiIiIhIvZrFOgpm9iXwbooO1xbYmKK6DZXXVVZzW0OvE593BNYlEW8yMnH9yVx7zW31fS9See31xbGzdXfl+rP9vU+mflO+fv3sh/+zD03z+pN97/u6e+sk422Yuzf5L2B+Co91V6rqNlReV1nNbQ29rvE8p64/mWtv6HoTX6fy2rPp+rP9vW/u16+f/fB/9pvq9Yfx3qvrofGeTGHdhsrrKqu5raHXjYmzMTJx/clce81tO/repEq2XH+2v/fJ1G/K16+f/Z0r18/+jrdl/L1vLl0P8z1FS1nmouZ8/c352kHXr+vX9TfX60/ltTeXFoW7wg4gZM35+pvztYOuX9ffvDXn60/ZtTeLFgURERHZOc2lRUFERER2ghIFERERqZcSBREREalXs08UzGxPM5tuZvea2RVhx5NJZnaImU02s3vM7NWw48k0M4uY2e/M7E9mdlbY8WSamY01s//EPwNjw44nDGZWbGYlZnZc2LFkkpntF3/fHzOzi8KOJ9PM7EQzu9vMppnZUWHHk2lmtreZ/cXMHkumfk4nCvE/7p+Z2eIa28eb2btmtjSJP/59gH+5+zlAv7QFm2KpuHZ3/4+7Xwg8BTyQznhTLUXv/QSgG1AOrEhXrOmQout34CugBc3z+gF+DjyanijTI0U/++/Ef/ZPAXJq+mCKrv+f7n4ecDZwahrDTbkUXf8ydz836XPm8qwHMzuU4BfdX919QHxbFHgPOJLgl9884DQgClxX4xDnAJXAYwS/NB909/syE/2uScW1u/tn8f0eBb7v7psyFP4uS9F7fw6wwd3/bGaPufvJmYp/V6Xo+te5e8zMdgdudvfTMxX/rkrR9Q8kWOK3BcH34qnMRL9rUvWzb2YnAFcAt7n7w5mKf1el+HffTcBD7r4gQ+HvshRff1K/9/JSF37mufsrZtazxuYRwFJ3XwZgZlOACe5+HVCredHMLgOuiR/rMSAnEoVUXHu8zp7AxlxKEiBl7/0KoCz+sjKN4aZcqt7/uA1AYVoCTZMUvf+HAcUELYlbzGyGu8fSG/muS9V77+7Tgelm9i8gZxKFFL33BvweeDqXkgRI+c9+UnI6UahHN+CThNcrgAMbqP8McK2ZfQf4MI1xZUJjrx3gXHIkOUpCY6//CeBPZnYI8Eo6A8uQRl2/mZ0EHA3sBtyW1sgyo1HX7+6/BDCzs4m3rqQ1uvRq7Hs/FjiJIEGckc7AMqSxP/s/BI4A2prZvu4+OZ3BZUBj3/8OwO+AIWb2i3hCUa+mmChYHdvq7V9x98VAzjQ570Cjrh3A3a9JUyxhaOx7X0qQKDUVjb3+JwiSpaai0Z9/AHe/P/WhZFxj3/uXgZfTFUwIGnv9fwT+mL5wMq6x178euDDZg+f0YMZ6rAB6JLzuDqwMKZZMa87XDrp+XX/zvf7mfO2g60/r9TfFRGEe0NvMeplZATAJmB5yTJnSnK8ddP26/uZ7/c352kHXn9brz+lEwcz+DswB+prZCjM7190rgEuAZ4F3gEfdfUmYcaZDc7520PXr+pvv9TfnawddfxjXn9PTI0VERCS9crpFQURERNJLiYKIiIjUS4mCiIiI1EuJgoiIiNRLiYKIiIjUS4mCiIiI1EuJgojsEjP70Mw67modEclOShRERESkXkoURCRpZvZPMysxsyVmdn6Nsp5m9l8ze8DMFpnZY2ZWlFDlh2a2wMzeMrNvxPcZYWavmtkb8ce+Gb0gEdkhJQoi0hjnuPtQYBjwo/jtahP1Be5y94HAJuDihLJ17n4AcCdwWXzbf4FD3X0IcDXw/9IavYg0mhIFEWmMH5nZm8BrBHer612j/BN3nx1//jdgdEJZ1S2tS4Ce8edtgX+Y2WLgFqB/OoIWkZ2nREFEkmJmY4EjgJHuPgh4A2hRo1rNm8ckvt4Wf6wE8uLPfwu85O4DgOPrOJ6IhEyJgogkqy2wwd1L42MMDqqjzp5mNjL+/DRgVhLH/DT+/OyURCkiKaVEQUSS9QyQZ2aLCFoCXqujzjvAWfE67QnGIzTkeuA6M5sNRFMZrIikhm4zLSIpYWY9gafi3Qgi0kSoRUFERETqpRYFERERqZdaFERERKReShRERESkXkoUREREpF5KFERERKReShRERESkXkoUREREpF7/H46FhIJmr0CqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure().set_size_inches(8, 6)\n", - "plt.semilogx(alphas, scores, \".\", color = \"red\")\n", - "\n", - "# plot error lines showing +/- std. errors of the scores\n", - "std_error = scores_std / np.sqrt(n_folds)\n", - "\n", - "plt.semilogx(alphas, scores + std_error, \"b--\")\n", - "plt.semilogx(alphas, scores - std_error, \"b--\")\n", - "\n", - "# alpha=0.2 controls the translucency of the fill color\n", - "plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)\n", - "\n", - "plt.ylabel(\"CV score +/- std error\")\n", - "plt.xlabel(\"alpha\")\n", - "plt.axvline(best.iloc[0,0], linestyle=\"--\", color=\".5\")\n", - "plt.xlim([alphas[0], alphas[-1]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here are the first few estimated coefficients at the $\\lambda$ value that minimizes cross-validated MSE. Note that many estimated coefficients them are exactly zero." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
(Intercept)LOTUNITSFBUILTBATHS
Coef.11.6434213.494443e-070.0000230.0002290.246402
\n", - "
" - ], - "text/plain": [ - " (Intercept) LOT UNITSF BUILT BATHS\n", - "Coef. 11.643421 3.494443e-07 0.000023 0.000229 0.246402" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lasso = Lasso(alpha=best.iloc[0,0])\n", - "lasso.fit(X,Y)\n", - "table = np.zeros((1,5))\n", - "table[0,0] = lasso.intercept_\n", - "table[0,1] = lasso.coef_[0]\n", - "table[0,2] = lasso.coef_[1]\n", - "table[0,3] = lasso.coef_[2]\n", - "table[0,4] = lasso.coef_[3]\n", - "pd.DataFrame(table, columns=['(Intercept)','LOT','UNITSF','BUILT','BATHS'], index=['Coef.'])" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of nonzero coefficients at optimal lambda: 46 out of 63\n" - ] - } - ], - "source": [ - "print(\"Number of nonzero coefficients at optimal lambda:\", len(lasso.coef_[lasso.coef_ != 0]), \"out of \" , len(lasso.coef_)) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Predictions and estimated MSE for the selected model are retrieved as follows.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "glmnet MSE estimate (k-fold cross-validation): 0.6156670911339063\n" - ] - } - ], - "source": [ - "# Retrieve predictions at best lambda regularization parameter\n", - "y_hat = lasso.predict(X)\n", - "\n", - "# Get k-fold cross validation\n", - "mse_lasso = best.iloc[0,1]\n", - "\n", - "print(\"glmnet MSE estimate (k-fold cross-validation):\", mse_lasso)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The next command plots estimated coefficients as a function of the regularization parameter $\\lambda$.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "coefs = []\n", - "for a in alphas:\n", - " lasso.set_params(alpha=a)\n", - " lasso.fit(X, Y)\n", - " coefs.append(lasso.coef_)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCgAAAGHCAYAAAByGmNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADReUlEQVR4nOzdd5wc2Vno/d9zKnSYrJlRjrurzcG7q11HHNbGXgM2BmyDbTA2wRiuwfASDFzANplLMgYM5gIXMME42zjnnHbXm6OkVQ4raXLoUOG8f1R1d3VPz2gkzUxrpOe7n9o6derUqdM9LWnq6RPEWotSSimllFJKKaVUJ5lON0AppZRSSimllFJKAxRKKaWUUkoppZTqOA1QKKWUUkoppZRSquM0QKGUUkoppZRSSqmO0wCFUkoppZRSSimlOk4DFEoppZRSSimllOo4DVAopZRSq4iIrBORL4vIlIj8uST+n4iMici3ReS7ROTRRdTzKhH59Eq0+XwjIleIyN3pe/gLK3jfrSIyLSLOSt0zvW/TZ+YMr90uIlZE3KUsq5RSSrWj/4AopZRa9URkP/BT1trPdrotK+B1wCmg11prReS7gO8GNltrZ9IyV5yuEmvtfwD/sRQNEhEL7LTW7lmK+lbArwFftNbeuJw3af1cWmsPAt3Lec95NH1mOnB/pZRSalG0B4VSSim1umwDHso8aG4D9meCE+r0tgEPdroRK6j1M6OUUkqdlzRAoZRS6oIlIgMi8lEROZkOgfioiGzOnH+NiDyedn3fJyKvSvMvE5EviciEiJwSkf/OXPM0EbkjPXeHiDxtgftvEZEPpPcfEZG/SfONiPyWiBwQkRMi8m8i0pe57iki8nURGReRe0Xk2Wn+vwA/DvxaOlTgZ4B/BJ6aHr9VRJ4tIocX0YbXiMhXM+WuFJHPiMioiDwqIi/PnPsXEflbEflY+l59S0QuTc99OS12b9qGHxaRofS9Hk/r+4qItP2dQ0T+SkQOicikiNyV9gipnbtVRO5Mzz0hIn9xNj/nlrKfB54D/E3a3stF5Isi8lOZMq3vjRWR14vI7rT+vxURyZz/aRF5OH1vHhKRm0TkXcBW4H/S+/xa6xAIEdkoIh9J36M9IvLTmTrfIiLvST8bUyLyoIjsavea0vJtP5dtPjPPa3Pt90oy5GUy/Vm8ZYH7fFFE/kiS4UQTIvJhEVnTUuxVInJQkj87/ztz7a0i8o30c3FMRP5GRPz57qWUUuriowEKpZRSFzID/D+Sb5C3AiWg9oDeBbwdeKG1tgd4GnBPet3vAZ8GBoDNwF+n16wBPpZeNwj8BfAxERlsvbEk8wx8FDgAbAc2Ae9OT78m3Z4DXELS7b/Wrk3pPX4fWAP8CvB+ERm21r6GZFjG/7HWdltr3wm8HvhGevzmM2hDtlwX8BngP4G1wCuAd4jINZlirwDemr4ne4A/ALDWPjM9f0Pahv8Gfhk4DAwD64DfBOb79v4O4Enpa/1P4L0ikk/P/RXwV9baXuBS4D3z1DHvz7mVtfY24CvAG9L2PjZPna2+D7gFuAF4OfACABF5GfAW4NVAL/BiYMRa+2PAQeBF6X3+T5s6/4vkfdoIvBT4QxF5bub8i0l+Xv3AR+Z7TQt9Ltt8ZtoNg5pJ298PfC/wsyLykgXei1cDP5G2O0zvm/UMkmFGzwV+R0SuSvMj4JeAIeCp6fmfW+A+SimlLjIaoFBKKXXBstaOWGvfb62dtdZOkTxUPytTJAauFZGCtfaYtbbW7T8gedjdaK0tW2tr36Z/L7DbWvsua21orf0v4BHgRW1ufyvJA9yvWmtnWup5FfAX1trHrbXTwG8AP5J+s/6jwMettR+31sbW2s8AdwLfcxZvwUJtyPo+kmEi/y99Xd8B3k/y0FzzAWvtt621IckD75MWuG8AbAC2WWsDa+1X5hteYK399/TnFFpr/xzI0ZhDIwAuE5Eha+20tfab89Rxup/zUvhja+14Oo/EF2i8/p8iefi/wyb2WGsPnK4yEdlC8iD/pvTncg9Jb5gfyxT7avo5iIB3kQRH2jmTz+Uc1tovWmvvTz9v95EEThZ6/95lrX0gHVb028DLpXniz7daa0vW2nuBe2vtttbeZa39ZtrG/cA7T3MfpZRSFxkNUCillLpgiUhRRN4pyVCKSeDLQL+IOOnD1Q+T9EA4lg5fuDK99NcAAb6ddq3/iTR/I0lvhKwDJD0TWm0BDqQP9K1a6zlAMnH1OpLAyMvSbvDjIjJO8iC74cxe/WnbkLUNeHLLPV8FrM+UOZ5Jz7LwZI9/StLL4tOSDKH59fkKisgvp8MjJtL79pF8ww7wk8DlwCPpsIXvm6eOeX/OC73oMzTf698C7D2L+jYCo2lApab1s9R6z7y0XyHjTD6Xc4jIk0XkC+kQmQmSPxNDC1xyqOU+Xkv5tu9VOpzmoyJyPP05/eFp7qOUUuoiowEKpZRSF7JfJvk2/snpMIHacAQBsNZ+ylr73SQP/48A/zfNP26t/Wlr7UbgZ0iGO1wGHCV5mM/aChxpc+9DwNZ5Hihb69lK0lX+ifS6d1lr+zNbl7X2j8/0xZ+mDa3lvtRyz25r7c+exT2x1k5Za3/ZWnsJybf4/1/L0AUAJJlv4k0kQyYGrLX9wASNn89ua+0rSIad/AnwvnQ4SqsFf86LMAMUM8fr5yvYxiGS4SftLDQp5VFgjYj0ZPLm+yydzpl8Ltv5T5IhJFustX3A37Pwe7el5T4BySohp/N3JH/OdqY/p988zX2UUkpdZDRAoZRS6kLhiUg+s7lAD8l8BOPpOP36HA0isk5EXpw+8FaAaZIx8ojIy6QxyeIYyYNmBHwcuFxEXikiroj8MHA1yTwPrb4NHAP+WES60jY9PT33X8AvicgOEekm+Sb5v9OeDv8OvEhEXiAiTnrds2WeSR9PY6E2ZH00fV0/JiJeut2SmTvgdJ4gmUsDABH5PkkmGhVgkuS9i9pc10MSmDkJuCLyOyTzONTq+dF07o0YGE+z56un7c95ke4BfjDtiXEZSc+NxfpH4FdE5GZJXCYitWBB0/uSZa09BHwd+KP053J9et+zWfr1TD6X7fSQ9OYoi8itwCtPU/5HReRqESkCvwu8Lx2Gspj7TALTaW+lswqAKaWUunBpgEIppdSF4uMkD6m17S3A24ACybe73wQ+mSlvSL55PwqMkoyFr03YdwvwLRGZJvlm+Y3W2n3W2hGS+Rp+GRghGQryfdbaOd8epw9sLwIuI5ks8TDJkBKAfyaZU+DLwD6gDPx8et0h4PtJvl0+SfIN/a9yFv9mn6YN2XJTwPOBH0nfj+MkPRZyi7zVW4B/TYeHvBzYCXyWJOjzDeAd1tovtrnuU8AngMdIhgqUaR4+cDvwYPpz+CvgR6y15Tb1vI35f86L8ZdAlSSg8K+cQZDAWvtekjkv/hOYAj5EMuEnwB8Bv5W+L7/S5vJXkExeehT4IPDmdM6RM3Imn8t5/BzwuyIyBfwO809GWvMu4F9IPid54BcWeZ9fIQl+TJH0VvrvhYsrpZS62Mg8c1YppZRSSinVRES+CPy7tfYfO90WpZRSFx7tQaGUUkoppZRSSqmO0wCFUkoppZRSSimlOk6HeCillFJKKaWUUqrjtAeFUkoppZRSSimlOk4DFEoppZRSSimllOo4t9MNWA5DQ0N2+/btnW6GUkoppZRSSimlMu66665T1trhducuyADF9u3bufPOOzvdDKWUUkoppZRSSmWIyIH5zukQD6WUUkoppZRSSnWcBiiUUkoppZRSSinVcRqgUEoppZRSSimlVMdpgEIppZRSSimllFIdpwEKpZRSSimllFJKdVxHAxQicruIPCoie0Tk19uc7xOR/xGRe0XkQRF5bSfaqZRSSimllFJKqeXVsQCFiDjA3wIvBK4GXiEiV7cU+1/AQ9baG4BnA38uIv6KNlQppZRSSimllFLLrpM9KG4F9lhrH7fWVoF3A9/fUsYCPSIiQDcwCoQr20yllFJKKaWUUkott04GKDYBhzLHh9O8rL8BrgKOAvcDb7TWxivTPKWUUkoppZRSSq2UTgYopE2ebTl+AXAPsBF4EvA3ItLbtjKR14nInSJy58mTJ5eynUoppZRSSimllFpmnQxQHAa2ZI43k/SUyHot8AGb2APsA65sV5m19h+stbustbuGh4eXpcFKKaWUUkoppZRaHm4H730HsFNEdgBHgB8BXtlS5iDwXOArIrIOuAJ4fEVbuQKq5ZAoiBEREBAjiIBIY48BUzsv7TqfKKWUUkoppZRSq1fHAhTW2lBE3gB8CnCAf7bWPigir0/P/z3we8C/iMj9JENC3mStPdWpNi+Xuz55gO988sDiL5A0WGHSIEY2oJHJM7VgR7qZWrnssRGMoeU4c42Tya+l031T2hGMYzLpTF6admpp16TH2bTBuMne8dI816Rb7TVqYEYppZRSSimlLlSd7EGBtfbjwMdb8v4+kz4KPH+l27XSdlw/RHd/DmstNibZ22RPurexJY6B2rk4u89cl+bHtXScnIvr5VqOI1tPx5HFho10HDfqyB5n01GU1hHF2NYZRJaS0AhYeEnQwvWcegDD8Qyu1zjveg6On+S5noPrN/Jd3ySb5+DlHFzfwctljnNpeaeTI6CUUkoppZRS6uLS0QCFSqy/pI/1l/R1uhnnLAmipAGMKM6k0+PIEoXZdPO+lo7CmDiMicLMcWSJgrh+HAUxYbqvHQeViNJ0kJyrxoRBRBjERNWkLWfKOIKXS4IWXt7Fyzn4+dqxg5dz8dO0X3DJFVz8goufHifpJN/xNNihlFJKKaWUUgvRAIVaMmIExwiOC8monfNHHMWEmcBFLYgRVCLCakRQjQgrEUE1To5r+ZWYoBwSVCKqlYigHFGaqibH5eQ4Ck+/8q3jGXJFl1zRI9+V7HNFl3zRI9fl1s8Vuj0KPT75bo98t4fnn1/vo1JKKaWUUkotFw1QqIuCcQy+Y/DzS193FMZUyyHVUkS1FCZbOdlXSlGSng2pzAaU0/3UaJlThwMqsyFBOZq3btc35Ls9Ct1+uvco9PoUe326en2KvTmKfclxvstDjM7ToZRSSimllFqdNECh1DlyXEOh26fQfXbXR1FMdTakPBNQng4oTdf21ZbjgIkTs8xOVAmDub02xAjFHo9iX46u/hzd/Tm6BnJ0DyTp7oE8XQM57ZWhlFJKKaWUOi9pgEKpDnMcQ6HHp9DjL6q8tZagEjE7UWV2srZV6sczE1WmRssc2ztOZSacc32u6CZBizV5egcL9A7l6R1K94MF/IL+taCUUkoppZRaefokotQqIyL4+WQCzv51xQXLBtWImbEK0+MVZsbKTI9XmB5LtqmRMkd3j88ZYpLrcukbKtAzWKBvOE//uiL967oYWFck3+0t50tTSimllFJKXcQ0QKHUBczznTTA0D6QYa2lMhMyOVJi8lSZyVMlJkeS/anDU+y79yRx1FgBJd/lJfWtLzKwrkj/2iTdv7aA0WVZlVJKKaWUUudAAxRKXcREpL5iyNptvXPOx1HM5EiZ8SdmGX9ilrEnZhk/PsvBB0Z45OvH6uUc1zCwocjQpm4GN3czuCnZir2LG7ailFJKKaWUUhqgUErNyzgm6SWxtgjXNZ+rlMIkaHF8hpEjM4wcmebgQ6M88s3j9TKFXp+hTV0MbupmeFsP67b30jtUQERXG1FKKaWUUko10wCFUuqs5Aou67b3sm57c8+L0lSVkSPTjByZ4dSRaUYOT3P/F48QhcnKI7mu5Lq16bXrtvcueoJQpZRSSiml1IVLAxRKqSVV6PHZfOUaNl+5pp4XRTGjR2c4sX+SJ/ZPcmL/JHd9fD82nd6iZzDPuu29rL+kj01X9DO4sRsx2stCKaWUUkqpi4kGKJRSy85xDMNbehje0sM137UJgGo55NShKZ7YN8UT+yc5vm+CPXedAJKlUDfu7Gfjzn42XT7A4OZujAYslFJKKaWUuqBpgEIp1RF+3mXjzgE27hyo502Nljn62BhHHhvnyO5x9t17KilbaAQsNl8xwNCWbp3HQimllFJKqQuMBiiUUueNnjV5rnjKBq54ygYApsfKHHlsnKO7k23/fUnAotjns+3aQbZfO8Tmqwbw8/pXmVJKKaWUUqud/lavlDpvdQ/kueLJ67niyesBmBmvcOjhUfbfP8Leu07w8NeOYRxh487+JGBx3RD964odbrVSSimllFLqbIitzVJ3Adm1a5e98847O90MpdQyiqKY43snOHD/CPsfGGHs2AwAfcMFtl83xGW71rJuR68OBVFKKaWUUuo8IiJ3WWt3tT2nAQql1IVg8lSJAw+MsP/+EY48OkYUxvSsyXPZrrXs3LVO561QSimllFLqPKABCqXURaVaCtl370l233mCQw+NEseW/nXFerBizYauTjdRKaWUUkqpi5IGKJRSF63ydMDeu0+w+84THHlsDCwMbupm5y1rueLJG+geyHW6iUoppZRSSl00NEChlFLAzESFvd85we47TnD88QnECNuvG+SaZ25i61VrEKNDQJRSSimllFpOCwUodBUPpdRFo6svx/XP2cL1z9nCxMlZHvrqUR7++jH23XuKnsE813zXRq562kaKvX6nm6qUUkoppdRFR3tQKKUualEY8/g9J3nwK0c48ug4xgg7njTMNc/cyObLB7RXhVJKKaWUUktIe1AopdQ8HNewc9c6du5ax9jxGR786lEe+cYx9n7nBH3DBa6/bTNXPX0jnu90uqlKKaWUUkpd0LQHhVJKtQiDiL3fOckDXzrM8ccnKfR43PDcLVz7rM3kChrXVUoppZRS6mzpJJlKKXWWju4e565P7ufgg6P4eYfrnr2Z62/bovNUKKWUUkopdRZ0iIdSSp2ljTv72bjzSZw8OMVdnzzAXZ86wL2fO8RVz9jIjd+9lZ41+U43USmllFJKqQuC9qBQSqkzMHZ8hu98+iCPffM4AJc/ZT03v2Ab/euKHW6ZUkoppZRS5z8d4qGUUktsarTM3Z85yENfPYqNLNc8axO3fO92Ct069EMppZRSSqn5aIBCKaWWyexklW9/dB8PfeUIXt5l1wu3c/1zNuN4ptNNU0oppZRS6ryjAQqllFpmI0en+fr793LwwRF6h/I89Qcu49KbhhGRTjdNKaWUUkqp84YGKJRSaoUcemiUr71/NyNHZlh/SR9Pf+llrL+kr9PNUkoppZRS6rygAQqllFpBcWx55BvH+NaHH2d2ssplu9by1JdcSu9QodNNU0oppZRSqqN0mVGllFpBxghXP30jl928lrs/fZB7PnOQffee4skvvoQbnrsFY3TYh1JKKaWUUq06OoubiNwuIo+KyB4R+fV5yjxbRO4RkQdF5Esr3UallDpbft7lyS++hFf97lPYctUavv7+PXzgT+9i9OhMp5umlFJKKaXUeadjQzxExAEeA74bOAzcAbzCWvtQpkw/8HXgdmvtQRFZa609cbq6dYiHUup8Y61l951P8JV376ZaCbnle3dw4/O34ji62odSSimllLp4nK9DPG4F9lhrHwcQkXcD3w88lCnzSuAD1tqDAIsJTiil1PlIRLj8lvVsvmINX373Y3zrw4+z9zsneO6PX8XQ5p5ON08ppZRSSqmO6+RXd5uAQ5njw2le1uXAgIh8UUTuEpFXr1jrlFJqGRR7fW5/3bXc/rprmRmv8N4/vJNv/c/jRGHc6aYppZRSSinVUZ3sQdFulrjW8SYucDPwXKAAfENEvmmtfWxOZSKvA14HsHXr1iVuqlJKLa1Lb1rLpssH+Mp7H+POj+3n8btP8twfv4q123o73TSllFJKKaU6opM9KA4DWzLHm4Gjbcp80lo7Y609BXwZuKFdZdbaf7DW7rLW7hoeHl6WBiul1FLKd3t892uv4Xt/7noqMwHv+5O7+M6nDnAhLv+slFJKKaXU6XQyQHEHsFNEdoiID/wI8JGWMh8GvktEXBEpAk8GHl7hdiql1LLafv0Qr3jzk7nkScN844N7+cTf30+lFHa6WUoppZRSSq2ojgUorLUh8AbgUyRBh/dYax8UkdeLyOvTMg8DnwTuA74N/KO19oFOtVkppZZLrujxgp++hme8bCcH7h/hvX94B6cOT3e6WUoppZRSSq2Yji0zupx0mVGl1Gp2dM84n/q/D1CdDXn2q67giqds6HSTlFJKKaWUWhILLTPaySEeSiml2th4WT8v/81bWLejl8/+y8N88T8fJQp0lQ+llFJKKXVh0wCFUkqdh7r6crz4jU/ixudv5cEvH+EDf3YXU6PlTjdLKaWUUkqpZaMBCqWUOk8Zx/C0H7yMF/7MdYw/Mct7/uAODj440ulmKaWUUkoptSw0QKGUUue5S24c5mW/cQtd/T7/8zf3cs9nD3a6SUoppZRSSi05DVAopdQq0L+uyA+9aReX3jjM1963h6+/fw8X4iTHSimllFLq4qUBCqWUWiU83+H5P3Ut1z5rE3d/5iCf/9eHiSKdPFMppZRSSl0Y3E43QCml1OIZIzzzRy6n2Ovz7f/ZR2km4AU/fS2e73S6aUoppZRSSp0T7UGhlFKrjIhwy/fu4FmvvIKDD4zwkbfdQ3km6HSzlFJKKaWUOicaoFBKqVXq2mdu4gWvu5YTByf5wJ99h+kxXYZUKaWUUkqtXhqgUEqpVezSG9fy4p9/EjNjZd7/f+5i7PhMp5uklFJKKaXUWdEAhVJKrXKbrhjgJb98E1Fk+cCffofj+yY63SSllFJKKaXOmAYolFLqAjC8pYcf+tWb8YsuH/7Luzn40Einm6SUUkoppdQZ0QCFUkpdIPqGC/zQr95M/7oiH/+7+zm6e6zTTVJKKaWUUmrRNEChlFIXkGKvz4vf+CR6B/N87G/v4+TBqU43SSmllFJKqUXRAIVSSl1gCt1JkCJX9PjI2+/RiTOVUkoppdSqoAEKpZS6AHUP5HnxLz4JMcJH/uoeJkdKnW6SUkoppZRSC9IAhVJKXaD61xZ58S88iaAS8ZG33cPsZLXTTVJKKaWUUmpeGqBQSqkL2NDmbr7vDTcwM1HhI2+/h/JM0OkmKaWUUkop1ZYGKJRS6gK3/pI+vuf11zN2fIaP/e29BJWo001SSimllFJqDg1QKKXURWDL1Wt4/k9ewxP7JvnEO+8nCuJON0kppZRSSqkmGqBQSqmLxKU3ruU5P3Ylhx4a5TP//CBxpEEKpZRSSil1/tAAhVJKXUSuetpGnv7Sy9h790m+9J+PYq3tdJOUUkoppZQCwO10A5RSSq2sJz1vK+WZgLs+cYDBzd1c/5wtnW6SUkoppZRS2oNCKaUuRk9+0SVsv36Ir713D0d3j3W6OUoppZRSSmmAQimlLkZihOe99mp6hwt88h8eYHqs3OkmKaWUUkqpi5wGKJRS6iKVK7i88PXXEVZjPvHOB3RlD6WUUkop1VEaoFBKqYvYmg1dPPc1V3Fi/yRffvejnW6OUkoppZS6iGmAQimlLnKX3riWm2/fxkNfO8aDXznS6eYopZRSSqmLlAYolFJKceuLL2HrNWv48rsf4/jjE51ujlJKKaWUughpgEIppRTGCN/9E9fQPZDjE++8n5mJSqebpJRSSimlLjIaoFBKKQVAvsvjha+/nmop5FP/8ABRqJNmKqWUUkqplaMBCqWUUnVDm7u57ceu4tjeCb723t2dbo5SSimllLqIuJ1ugFJKqfPLzlvWceLgFPd85iDD23q56mkbOt0kpZRSSil1EehoDwoRuV1EHhWRPSLy6wuUu0VEIhF56Uq2TymlLlZPfcklbL5ygC/956OMHJnudHOUUkoppdRFoGMBChFxgL8FXghcDbxCRK6ep9yfAJ9a2RYqpdTFyziG7/6Ja/ALDp/714eJIp2PQimllFJKLa9O9qC4FdhjrX3cWlsF3g18f5tyPw+8Hzixko1TSqmLXbHX51mvvIKTB6e46xMHOt0cpZRSSil1getkgGITcChzfDjNqxORTcAPAH+/gu1SSimVuvTGtVx+6zru+vh+Th6c6nRzlFJKKaXUBayTAQppk2dbjt8GvMlaG522MpHXicidInLnyZMnl6J9SimlgO/64cvJ93h89l8eIgp0qIdSSimllFoenQxQHAa2ZI43A0dbyuwC3i0i+4GXAu8QkZe0q8xa+w/W2l3W2l3Dw8PL0FyllLo45bs8nvOjVzJ6dIZvf3Rfp5ujlFJKKaUuUJ0MUNwB7BSRHSLiAz8CfCRbwFq7w1q73Vq7HXgf8HPW2g+teEuVUuoit/26Ia56+gbu/vQBjj8+0enmKKWUUkqpC1DHAhTW2hB4A8nqHA8D77HWPigirxeR13eqXUoppdp7xkt30jWQ43P/+jBB9bQj75RSSimllDojYm3rtA+r365du+ydd97Z6WYopdQF5/Ajo3z4bfdw/W2b+a6XX97p5iillFJKqVVGRO6y1u5qd+60PShE5GUi0pOmf0tEPiAiNy11I5VSSp3/Nl+5huuevZn7Pn+YI4+Odbo5SimllFLqArKYIR6/ba2dEpFnAC8A/hX4u+VtllJKqfPVU3/gUvqGC3zu3x6mWg473RyllFJKKXWBWEyAojbQ+HuBv7PWfhjwl69JSimlzmdezuG5P34VU6Nlvvb+PZ1ujlJKKaWUukAsJkBxRETeCbwc+LiI5BZ5nVJKqQvUhsv6edLztvLQV45y8MGRTjdHKaWUUkpdABYTaHg5yUobt1trx4E1wK8uZ6OUUkqd/5784h0MrC/y+Xc9Qnkm6HRzlFJKKaXUKreYAMU7rbUfsNbuBrDWHgN+bHmbpZRS6nzneg7Pe+3VzE5U+PZH93W6OUoppZRSapVbTIDimuyBiDjAzcvTHKWUUqvJ2m29XPNdm3jgS0cYOTrd6eYopZRSSqlVbN4AhYj8hohMAdeLyGS6TQEngA+vWAuVUkqd12598Q78vMPX3rsba22nm6OUUkoppVapeQMU1to/stb2AH9qre1Ntx5r7aC19jdWsI1KKaXOY4Vun1u+dweHHh5j//06YaZSSimllDo7px3iYa39DRHZJCJPE5Fn1raVaJxSSqnV4dpnb2JgfZGvvXc3URB3ujlKKaWUUmoVOm2AQkT+GPga8Fskq3f8KvAry9wupZRSq4jjGJ7xsp1MnCxx7xcOdbo5SimllFJqFXIXUeYHgCustZXlboxSSqnVa+s1g2y/bpA7P76fK5+ygWKv3+kmKaWUUkqpVWQxq3g8DnjL3RCllFKr39NfupMoiPnmh/d2uilKKaWUUmqVWUwPilngHhH5HFDvRWGt/YVla5VSSqlVqX9dketv28I9nz3Itc/cxNptvZ1uklJKKaWUWiUW04PiI8DvAV8H7spsSiml1By7vmc7hW6Pr75Hlx1VSimllFKLd9oeFNbafxWRArDVWvvoCrRJKaXUKpYruDzlJZfyhXc9wp47T7DzlnWdbpJSSimllFoFFrOKx4uAe4BPpsdPEpGPLHO7lFJKrWJXPnUDQ1u6+foH9hBUo043RymllFJKrQKLGeLxFuBWYBzAWnsPsGPZWqSUUmrVM0b4rpdfzvRYhbs/fbDTzVFKKaWUUqvAYgIUobV2oiVPBxUrpZRa0Mad/Vy2ay13f+oAU6PlTjdHKaWUUkqd5xYToHhARF4JOCKyU0T+mmTCTKWUUmpBT/vBy7DANz6wp9NNUUoppZRS57nFBCh+HriGZInR/wImgV9cxjYppZS6QPSsyXPT87ey+84THN0z3unmKKWUUkqp89hpAxTW2llr7f+21t5ird2VprWvrlJKqUW58QXb6OrP8c0P7dVlR5VSSiml1LzmXWZURN5mrf1FEfkf2sw5Ya198bK2TCml1AXB8x1uvn0bX373Yxx5bJzNVwx0uklKKaWUUuo8NG+AAnhXuv+zlWiIUkqpC9dVT9/AXZ/Yzx0f3acBCqWUUmqJWWshDLHZLQggirBB0LKFmXQ12VcDbLWabEGaDqrNeUGIjSJsFEIYYaMIohBbS4ch1sZJg0SSHVJPI2naCOJ5GN9HfB/xfMTzknRty/mYri6cnh5MVzdOTzempwfT3Y3T3Y0Ui0itXnVBmTdAYa29K03eCZRs+mkTEQfIrUDblFJKXSBcz+HGF2zjq+/ZzZHHxth0uQYplFJKnf+stckDeqWCrVSIK1VsNUnbapW4UsFm8uJKWrZaaZyrHZfT68IwfcivPdxn0xE2DOYPAIRhIx1F9WAEYbhs70ESRPAQzwPXRRwHcZxG2nXASdIYA7XhnNbW0xbb6JNfC5pUGwGQOA2YEASLa5TjJMGK3t5k6+vD9CV7p68/yevvw/T24q1bh79jB05Pz9K/OWrJLdSDouZzwPOA6fS4AHwaeNpyNUoppdSF55pnbOQ7nzzAHR/brwEKpZRSAPWH7Lnf/ocQpt/yZ3oE1L/9DxsPtHN7CARND8Bx/UE481BcqWCD2rmgEYCoZoIKlUpyj3Mknofkcsnm+4jvIbUHes+tp8V1k54F+Tziuu0DAK6TlHddcAziesl1rot46TW1PM9NHuTTAANp/fUeC/XNbfRcqPVk8HyM74HnrWhPBRvHyc+uUiGemSGamiKeniaenk7SU9PEM410NDlJNDlBPD5BcPRocjwxAVE0p25naIjc9u34O3ak23ZyO3bgbd6cvJ/qvLCYn0TeWlsLTmCtnRaR4jK2SSml1AXI9R1ufP5Wvva+PRzdM87Gy/o73SSl1EXCWpt8axvHyYNwZm/DMDnX9K10+s117eG5dm0cJ+Xq6RjixrnaN8bWpt8WWwvY5vy0fhvWut+Hc79Rrz+MV5P7t+uaH0eNe2Q2W/uaOnsujhvfYGfL2nhOOUjbGS9QbqG81ns3tY2kLdlv/Zd58uSmYQP1LXkIN34SMDC9BSSfS4ccpIGEnI/J5RrHfho48JNz4mfP19I+ks83ztXyzGIWTlQAYgySy0Euh9Pbi7dhwxnXYa0lnpklnhgnmpggOHaM6r59VPbto7pvP1Of/SzR2FjjAs8jd8klFJ98K11PeSrFW2/B6e5ewlelzsRiAhQzInKTtfY7ACJyM1Ba3mZdXKqHDxMcPdrpZiilWumCE0sn/QV0R95yV1745n/cwwteUFjOGy5j3e1ut4j7LaLMkq5y0lpV27qXpt3tysx5Le3qaVt1JtO2T9t58pvqa7rfGdRp25SrPWBm8uctX3sgbVvWtpS3zWWaHmqbyzQ98La9du65pjqzD55tytu49WEzbtSbPngnD6SNB9fWY2yMraXjuPEAG8eNc7UHexsn19XSUS0/zYuj5HwU1R/qsbWAQJy0txY0aN235tUCCqtF/Vtur/6NumTy8NK0cRpj+qUx1l/ENI35FyNQmwcgW75WLjsvgKRljZm/3Dx57e7dyM+0wZi53/g7bY5r3+ynr73eMyCb77f2BGjecF2dp+AiJCI43V043V14mzaRv/rqOWWi8fF6wKK6bx/lBx9g/L/fw9i/vQsch8K111J86lPoespTKdz4JExOZzhYKXK6X4ZE5Bbg3UDtCXoD8MOZOSrOO7t27bJ33nlnp5uxaCf+8m2MvPOdnW6GUkqtiIObn8uey36Qm7/zZ/RN7ut0c5S6uEjrg2r68DjfcfqgKqc5rj+0GpM+6JrGw6gRaDpuKVdLm3T8upCkHZOcd5ym87XrxTFQK5fd18rUxsk7BnHc+l4ck3aXT65PHpbTLvRu7ZpantO4xqTtSMfZi+OApO1wnLbvZRo5aMpPuul7yb1cN7mXl3bfdxx9oFaqQ+JKhdLd9zDzzW8w+41vUnrgAYgiJJejePNNdD3tafT9wA/gDg52uqmrnojcZa3d1fbcYr6tEREPuIIkDvqItfbcB2Mto9UWoKgeOkRwRHtQKHVe0l8Ul076VgaB5f3vnWXNoOH5y9iLYsV/yV/M/ZaqzKLJgofJ7Zax3XPyFlOmuVhT+xaTbrr4bOuRpl39+uw3w+326QUiC5SpPbSmxefUmz3O3rfloXfOPbIPwK15xuhDr1JKnaFoeprZb99RD1hUdu9GfJ++l7yENa95DblLdnS6iavWQgGKeYd4iMht1trPi8gPtpzaKSJYaz+wpK28iPlbtuBv2dLpZiil1Iq5cfoA3/jgXqaGr2D9jr5ON0cppZRSqonT3U3Pbc+h57bnAFB5/HFG/+VfmfjQhxh/z3vovu02Bn/itRRuvlmDwEtooRlbnpnuX9Rm+75lbpdSSqkL2LXP2kS+y+POj+3vdFOUUkoppU4rd8klbPjdt3LZ5z/H0M/9LKW77uLAj/4Y+3/4R5j85CeT+W7UOVtoksza1Kb/ZK396ko0Riml1MXBz7s86bu38M0PPc4T+ydZt723001SSimllDotd2iI4V/4BQZ/+qcZ/+AHGf2Xf+XIL/4S3ubNrPnxH6f/pT+EKSznROAXtoV6ULw23b99JRqilFLq4nLdszeT63K582M6UaZSSimlVhdTKLDmla/k0k98nE1v/yvcoSGe+IM/YO8Lbmfsv9+TLKWrzthCAYqHRWQ/cKWI3JfZ7heR+5bi5iJyu4g8KiJ7ROTX25x/Vea+XxeRG5bivkoppTrPz7s86blb2H//CCcPTnW6OUoppZRSZ0wch97nP5/t7/4vtv7bv+Jt3MjxN7+Zx7/vRcnQj6VcQvwiMG+Awlr7CuApwG7mzj/xonO9sYg4wN8CLwSuBl4hIq2L1O4DnmWtvR74PeAfzvW+Simlzh/XPWcLuaLLHdqLQimllFKrXNett7Ltv/6Tze/4W8RzOfKLv8T+l76Mma9/vdNNWzXmDVCIyOestceBT1lrD7RuS3DvW4E91trHrbVV4N3A92cLWGu/bq2tzYXxTWDzEtxXKaXUeSJXcLn+ti3su/cUJw9pLwqllFJKrW4iQs9tt7HjQx9iwx/9EeHYKAd/4ic58NrXUrr//k4377y30BCPDSLyLOBFInKjiNyU3Zbg3puAQ5njw2nefH4S+MR8J0XkdSJyp4jcefLkySVonlJKqZVww22b8Qsud358f6ebopRSSim1JMRx6P+Bl3DpJz/Jut/8DSqPPMr+l72cw2/8RaoHluL7/gvTQgGK3wF+naTXwl8Af57Z/mwJ7t1usdi2A3RE5DkkAYo3zVeZtfYfrLW7rLW7hoeHl6B5SimlVkKu6HH9bZt5/O6TnDo83enmKKWUUkotGeP7rHn1q7n0M59m6H/9L2a+8hUef9GLOfX378QGQaebd95ZaA6K91lrXwj8H2vtc1q225bg3oeBLZnjzcDR1kIicj3wj8D3W2tHluC+SimlzjM33LYFL+9oLwqllFJKXZCc7m6Gf/4NXPLJT9D9nOdw8m1vY98PvZTSvfd2umnnFTndrKIiYoBXApdYa39XRLYC66213z6nG4u4wGPAc4EjwB3AK621D2bKbAU+D7zaWrvomUV27dpl77zzznNp3or6wsgkXx/Xbw2VUqvTUs1NfeSxMZ7YN8m1z9yEX3CXqNaVsZLzcy/lZOB2iVq+mFqW9D1aRGWLa9PcUu2uW8x73lqkbT1t67anLXPae9nsOdu2XFPazs1vd13r67Zzztu5eS3X1kq03j97Xzsnr3bcfG2jzrnX1fOayjTqqR3HmWPSa+P0utYy1NPN92uqv9bGM/iAN+5jm9oZZ+qKM+djGu91nJaL29xPMn2Ts92UJT2SBcrJnJxGudYyrfVk65c0X9JcI7V8qadr15q0jGTKZI8BjEij3pbryKRNLS2Nb1+NCGbOuUY7WvMdmXtNLU8ARwRXkn2STs67adqQpo3gSbLV0m567KXHeSMUHEPRMRRMuncMvgiS/QGpC9rU5z/P8bf+LuGJEwy86lUM/+Iv4nR3dbpZK0JE7rLW7mp3bjG/Af4tyd+NtwG/C0wB7wduOZdGWWtDEXkD8CnAAf7ZWvugiLw+Pf/3JMNMBoF3pH9Yw/leyGr27YkZ3nlI581QSq1eS/H7lC1AdHmeO06MYpzV9wvaSrZ4ae+1NLUt5jOwlO1eTF2LKtOmkLS58mzut9g/F633a3dZa11z7jVPffM/tC58jzkPtS1lJFNuvnNz6sqcF5rrrD+cZhooNLcj++Baf6CVhesSUztOHkzbXdv6EF0rM/fhuKWNc9q0uB946z2zr6F2j9YH61p7TEu7auYPRrUEedqUaw0mtS1vW/PnBo8aQZtGQKU1EJMNEDVdkw3W1M+1lmscx23K1AI3taBTbC0hYGOIievBnXYBoNja+vkoU1dTnrVEWEILkbWENslfSo5QD1h0OYZux0n2rkN37dg19XSP69DrOvS6Jt079LkOPY5D3lloJL86H/TcdhvFW2/l5F/8JWP/8R9Mfe5zrP+d36bnOc/pdNM6ajE9KL5jrb1JRO621t6Y5t1rrb1hRVp4FlZbDwqllFKJj//dfRzbM8GP/9HTcH2n081RSiml5mWtJQbCTMAiiJN0kObVjqvWEsZJfjmOKUUxs1HMbCZdii2zUZTkRzHTUcxUGDETxUxHEdNRzHQYU4rj07YtZ4QeJwlY9HsO/a7LgNecHvBc+tPzg57LoOfS5RjtxdEBs3ffzfHf+R0qu/fQ88LbWf+bv4l7Ac+reK49KAIRcUiDpCIyTBJsVEoppZZUbcnR3Xc+wVVP29jp5iillFLzEhEckmEfuRW8b2QtM1HMZBgxFUZMZrcoZjKImIySc+NhxEQQcTII2D1bZjwMmQznf5TLG6kHKwb9xn7Ic1nre2zINbZuV79IWCrFG29kx/vfz8g//ROn3vF37P3a11n3a79K3w/90EUXMFpMgOLtwAeBdSLyB8BLgd9a1lYppZS6KG26vJ81G7u47wuHufKpGy66f5SVUkqp03FE6kM6zkYYW8bDiPEwZDyIGA1CRoOQU9WQkSDdqhGn0qDGSDWk1Gbikx7HsD7nsTHnp3uPTXmfbXmf7cUcG3Mejv47vmji+wz97M/S84LbOf7mN3Pst36bif/5KBt+963427Z1unkr5rRDPABE5EqSySwBPm+tfXhZW3WOdIiHUkqtXg98+Qhf+s9H+cFfuYkNl/V3ujlKKaXURW8mijhRCTlaqXK8EnC0EnC8EnAss52oBk3d7D0RtuZ9thV8thdybE/3O9LNNRq8mI+NY8bf9z5O/OmfYatVht7wvxh8zWsQz+t005bEuQ7xAMjRmIvHX5JWKaWUUm1c8eT1fPNDe7nvi4c1QKGUUkqdB7ochx1Fhx3F+QezhLHlaKXKgVKV/eUK+0tV9pcqHChV+fbEDNNRI3yRM8IVxTxXdRe4ujvP1V0FruzOM+xfGA/g50qMYeDlL6f7Wc/mid//fU7++V8w+fFPsOH3fo/Ctdd0unnLajGTZL4R+GmSlTsE+AHgH6y1f738zTs72oNCKaVWt6++bzf3f/4wr/7Dp9HVv5Ije5VSSim11Ky1jAQRB0oV9pYqPDxd4uHpMg/NlDhRDevlhn2Xq7sKXNWdZ1dvF7f2dbE2p0GLyU9/mid+7/cJR0ZY85rXMPzzb8AUCp1u1llbqAfFYgIU9wFPtdbOpMddwDestdcveUuXiAYolFJqdZs4WeLff+cb7Hrhdp784ks63RyllFJKLZOT1YBH0mBFLWjx6EyZSjrvxba8z639SbDi1r5udhZzmItwbotocpITf/bnjL/nPXhbtrDhrW+h62lP63Szzsq5BijuB26x1pbT4zxwh7X2uiVv6RLRAIVSSq1+H/vbe3li/yQ//odPx/F0PXellFLqYlGNYx6YKvGtiRnumJjhWxMzjARJT4t+1+GWviRg8fSBbm7oKV5Uk3HOfPvbHP/t36F64AB9P/ADrPv1N+H09XW6WWfkXOeg+H/At0Tkg+nxS4B/WqK2KaWUUm1d95zN7H/7vey56wmueMqGTjdHKaWUUivEN4ab+rq4qa+LnyUZIrKvVOXbE9N8Ow1afGZkEkgCFt810MOz1/TwrDU9bM5f2FMmdt16Kzs+8mFOvePvmPjgB7Hx/MvGrkaLXcXjJuAZJHNQfNlae/dyN+xcaA8KpZRa/Wxs+c+3fgs/7/Cy37il081RSiml1HnkVDXkq2NTfHF0ii+NTXGsEgBwWTHHswaSYMXT+7vpOsvlWFeDeHYWUyx2uhln7KyGeIjILcCQtfYTLfkvBo5Ya+9a8pYukdUWoHjssd/n5MlPd7oZSqlldPpQsGqnPJVjZqRI34ZJ3Fy05PVfRD1Cz9FKv1HLeb/5627+PGQP7ILXLf6eC9cjCHaeMo22ySLb0+68tOQ27rfgnwXLaf6wtG9T690azTrzumrH2XeyVlZa29Z0ubTsm+9SP85UbOt5kikk9YKCpBc06pZ6vgEcRAxgMGJAHAQnuVZM+/elqfm26WghggExab21ewkiTibfyRw7CCY9dhrnjVMv19jc5Ly4IAYjXia/VsZLrk3zkjIuIi7GeIh4GOOmeV7mWv3LVy0tay2PzVb40ugkXxyd4hvj05RiiyfCdw1082MbB/nuwT5d2vQ8cbZDPP4UeE2b/IeAfwBuO/emKYBHH91NGJU73QyllDoPlaFrgrHJpa95xX9FkfMzTHXa92GF2y2LCect6oe3uHY3nmMX/zrbtrGpTaeb32v+8011z3mdzdc1nvFa67Mt55vLJDGCdm2Y/7okb+59sm3QZ87TS74XFKytBThqaVqOm/NAwAo2GxRB0mK1iIyt/5wEm/6M4zTfIhKlxzGdDZsLxvgY4yPiY4yXHucw4iPpuXpefZ9sjskhxscxOYzJY5w8Tn1fSMo4BYzJ4zh5jFPAMcU0T1eDuFCJCFd05bmiK8/rtqylEsfcMTHD50em+OCJMV77wH7W+x6v2LCGV20cvOCHgaxmC/WguH++iTBF5F5r7Q3L2rJzsNp6UOzdu5cDBw50uhlKKXVeOvjQKCcPTHL9bVvwchduN81OWMwwz5W2km1aynudbV1nc91C15ztuYXOn0l+I88CNj22mfONh+NsuqmsAPOUszZuBFfS/MY9ag/kjWsscT3o06gnU0biNGrQKJvUF6WtSvOI0/vFSZo4ud7WHvjTY2IsUXNZG6X3aZSFGJE4CVaJraelliaTNnEjPWefbMbEmWNbPzZmacemWysILogLpD0j8ECctKdEoweGMUkPDiMGMe16nmTrTX8uNnkfLTHWRlgbYm1IHAdYGxDHAXFcwdrqWbVfxMNxkmBFfW+KOG4XjtOF63bjOt049X0XrtON66Z5bi+e24fr9uI4+XN6L9XKCWPLZ0cm+bejp/jC6BQCPHewlx/bOMhzB3svqgk2zxdn24NioYVVu86tSSrr0ksv5dJLL+10M5RS6rw0fs0s//Hmb7Im3sEtt+3odHOUUmpJWJsEQ+I4btq3y4vjeE5eFEXEcUwURfNuYRgShlWiqEIYVojiClFYIYqSvDhO9lFcIY6qxHGSF9sqNq6mQYEqlirYECTASIwxEWIijIkxEmFMhDEhYqpNARNTD7BEGFMLnCTlF+pJdHqS9qZIek7UelokPTJqQ0rc+pCW5sBI7X1Ogh9RXCEoTxLHZcJwhiiaIY5Lp22BMT5uGqzw3F5crxfX7cPz+vDcATyvH8+r7Rtpx+nWIS4rzDXC7cN93D7cx8FShf84Nsp/HRvhM/dPsinn8aqNg7xywyDrc9rD5nywUA+KvwdGgN+ymUIi8lZgg7X2dSvTxDO32npQKKWUWtj//PU9nDo8zav/4Gk4ri45qpRSnRDHMUEQEIZh075d3kLnqtUqQVAmCEqEYZkwLBGGpSRYEpWxVHFMLfCRBD+M00jXzrlujOdbPDfGdSMcN8JxIowJEAkQqQIVIFjU6xNxcJy094RTbAp+GPEQ4wImnS8mTnt3hMRxmSiaIQymCaMJwnD+cYkiLq7bh++vwXP72wQy1iR7fw2+N4jvD2pQYxkEseVTpyZ419ERvjQ2hS/CqzcN8sZt6xj2NVCx3M52kswu4B+BW4F70uwbgDuBn7LWTi99U5fGagtQfOMb3+Cuu87bOUeVumDpP/Yr61zebzvZBfu3wNYjSP/UedGm5aprMfWc7b1Od91855czfzF5pyuznOmF8hbaL/bcYtML5Z3J+dqWdL+fP69dut2+Nd3uOJuv1GJEUUS1WqVSqcy7r23lcrntViqViNPlF5NeHSGOG+Cke9+LKRYd8nnI5yGXt+T8GM+LknJOFZEKQonYloiiKcJwEmvnD3aIuGmAYQDP7cVxu3FMHjHJBKGQDC1KeqZUCMMpgmCMIBgnCMbnHbpiTA7fG8TzB/H9IXx/MAle5IbJ+WvJ5daRy63D99fiOLml/4Fc4PbNVvibg0/w7uOj+GL4qc1D/NzWtQx4Cw02UOfirAIUmYsvAa5JDx+01j6+xO1bcqstQPH2L7ydTx/WVTyUUitrpecfOKeHEwvBpIsYcLvDpWvUaW97JhMnLs/DV7s2LOpei2i6xbatq/Wep111wLavZ6H7tmQsqFb3vD+Pxf6YTldu3urT12ebj20jY/H3ytRxuusWel8Xer+bztl58uerwy6urNj5z9fTtiU/XelCRJJ5CU6zN8bU9yKCk67+UMt3jDMn7Rinfo1jnGRzGnvXuM3HjovneLiOi+u6ybGbHNfqqrXHkbTudKsdZ/e1a1xJrnfEqec7kt5fGvWq5WOtJQgCyuUys7OzlEolSqVSPZ3Nm5mZYXZ2lpmZGSqVStv6XNelu7uL3t48vb0O3d2GYtGSz8f4foDnVXGcMrGdTIIO1RGqwQjV6ihR1P57XdftTYIL/lp8fxjPH8B1ujGmNqGnEMdVgnCUanWEavUUQXU0rXekbbDE8waS+nJryeXWk8utI5/fSD6/iUJ+E7ncRg1izOPx2Qp/tv84H3xijG7H8Pota/mZLcN0X8DLlHbK2c5BAUAakDjvgxKrmRdUcMOzm+xHKaVWg6UIhVgvJqj6SDXEOEs78du5W8GJHVfsTrX7nf6OZ/qYtfCKlrbleBGvue1z9ulW2lh8AKrNVJAL5sxX7/z57Y8y00fOW8/cdTVazzX/3857rvXa+etZsF5pzpmvxqZ7LuYDlP0gLP2Kwx1hrGAwJAuENu8dTP28k82rpW2ScnFwxcHFwcFpOk72Lq64ePXNq6fdTJ5vfHzjkTM+vnjknRxemuc6yXKj1HrP1HrEGIMYB+Ok+1q+42AcB+O4GMeke6e+OY6LOAbHcZvLuOmyp0vYG833fXzfp7e3d9HXhWHIzMxM221qaoqpqSmOH59mamqqbTDD93vp69tCf38/fX199PX1sWagi65uS7EQ4nplwuAUlcoJKtUTVConqFaeYHziDiqVE3OCDiIe+dyGNMiwkd7eG9JAwwY8rxdwCYKRpL7K8bTOJ6hWTjAz/RiV6klqE8M22jhEPr8p3TaSz2+mWNhKobCdfH4TxlycPQcuKeZ4x9Xb+Pmta/k/+47zp/uP809HTvKGret47aYhCo4OMV0Jp+1BsRqtth4U3/rge/jOJz7S6WYopdR5zeJh5UeA/Rj7lU43Ry2jC/qb5RV+bYu621K1aZH1zNf7oymoIdlgR3peWkI1JhtcqZ1PerZYEWqrdcZp2kqynkcsyYZIss6GGKxAbEiul3QhTtO4Nk6vs+m1kdh6Opuf3Nsm635IXD+Oiev5yT5ZpSK5IiK9gvoKIRLXj+vnJCZOr43FEoslqu1NXE/HJsmPTJI+VyYCJxbcyOBGktlM+3Ro8CLBDZN8rymveW/s3M9CLVjhpIENx3UxrpvsnTTtOBjXw0nzHc/DcZK9cV3cdO+4Hq7n4Xh+uk/Tvp+c8xvnvFwe1/dx/Ryu7+Plcrh+DuPM/+15tVqtBy1q28TEBBMTE4yPjzMxMUGp1DzhpjGG/v5+BgcH52zd3d1E0UQSZCgfo1w+SrlylHL5SJIuH6FSOUE24CDikM9tolDYSqG4jWJhG4XCNgrFbRTyWxFxqFSeSOs43FRXqXyESuUocVzN1OcmAYvidgqFbRSL2ykWtlMsJsELkYunN8Hdk7P8yePH+OLYFOt8l1/avp4f3TCIay7gf6NWyDkN8ViNVluA4uv/+Hfc//UvdboZSq0i+g/DSjqfnhWr5YgoiMl3ecgK/YKwpHdZ3NPi0t3uLO7X/ppFVLSYuTMW05yzrWuxD8eLKbfIuTJaW9JcZJ787JwWSKZYppDMc14yD/dN9TT9r7mtrXNpSFpD69wabcpl65P0gb6WX8+rLR1ZmwOj1sb68dx9c55J6jGmni9pflKN1O8hp7lHPQ2IMUk7Tba96WaSb0GlNi9G5j2pt6epvuZ65twv3ay1RLEliiOiMCKKI8IoIgzCZB+FRGFEEIbJZJFhSDWdRDIIQoIwSCeQDKgGwdzPRvZnaAz5fJ58oUCx2EWhUKBQLFIsFil0dVEsFunq7qZYLJLrKuAXfCKJCIkIbEg5LBNEVSpRhXJYohJUKEdlKmFyXA4rlMMy1SjZl6Nysg/LlKL0fFSiHCXX1faVuEJgFz8Mz8cjLz45/HTvkbPJlrceudgjF7vkYod85OGFhlzk4AWCHwh+1eAEljiMiIKAOAyJwpAoDJItCImCIF0C9uwYx60HLPxCAS9XSPb5PH6+gJdPjv18Hi9fIFcs4he7yBWK+MUi4vlUo4jZSpXZcpmJiUlGR0cZGRlhZGSEMGy8X67rsmbNGgYHBxkaGmLdunWsXbuWwcFBnDRQEsdBGnA4Sql8kFLpIKXZA5RKB5kt7W+ZoFPI5dbT1XUZXV070/1ldBV3pr0vkjkxqtWTzJYOUprdz2zpQLrfT6l0gCiabbwXxqdYvIRi8dK0vkvpKl5GsbgdY/yzfo/Pd98Yn+aPHz/GtyZmuLIrzx9dvpmn9nd3ulmr2tlOkrlmoUqttaNL0LZlsdoCFHf81m+w91tf63QzlFolzqOnZdURKxpWX+GPW8e/MmjzEL7yQ0qWyCICLWd7rzZf+i6qIbZ9dnPdi6hrofu3vV6y5xf4GUubvEa0pG39tnay7bXZtrZ5H2TufbKvzUrLNemxbRRvej22pY2ZJehQLdIgh0g6ZMNx0l4J6XCMdMiGOHOHbiRDPBpDNmpDPmrXYYTYUO/lkfT0iAmJCNN9QFjfKjagQkDVBpRthbKtUrYVZuMSM3GJClWiWn1pr5DacWQs4jp0FXrozffSnx+gz++jN9dLX66P/lw//bl+Bvx++txeek0XvU4PeesRBwFRGBJWq8kWVAgqlSRdqRBWKwTVSv18UCkTlMtUS7PJvlyiWi4TlEtUSyWCcnlRgRC/UCBX7Cbf3U2u2I3T1U3s5wldlypCOYyZqVSZLpXqc0UZY5oCFrWtv79/TvA0CMbTIMOBdL+Pmdk9zMzsJY7L9XI5fx1dXZdR7LqM7q6ddPdcTXfXFThOvl7GWpsEL2b3UyrtZ2Z2LzMze5mZ2UO5fJj63wDiUChsqwdCuruvpLvrSorFbRdMjwtrLZ88NcFv7znC4XLAD64b4Hcu3ahLk56lsw1Q7CP51AmwFRhL0/3AQWvtjmVp7RJYbQGKcGyMeHL+5YiUUuq8tsI98Xbf+QTf+sg+nvKSS7jsprXLeq8V72W4pLdbzCyZK1dm0e/lnGJtrmutq13dbfLmtKHpSdrOc6Ll3DzpprqbLm9TvmVvbWbCzHo9Z1g2U85mr7EtdbU7b237OlrP1fJj25TfNi+OG9fbeG45G2eO4+Zr4qhxLo6B9Fx6bG27dJQpE2FjC1FUP2+jkDiKk2tq5+OIOIqxUe3aKFn1IartQ2xsk/PpFochhGFSXxBioyh5LQBIY3hK7ScjzQEUmwn4JO+WNAV/rOsinguul+w9D+t6UM/PbJ4Lvo/kcuB54CdlY8cQIIRAgKVqLZU4phJHVMKISrVCtVIlqFaS103zz9p1HHzPw3UdPMfFdR0cY5KJQx2DI4KNY+I4Jo7T9yWOidP3MY5C4igiSt+zKH3f4jgiDiPiaHkmOraAdZKhOpGxhCYmlJjISQIZtX3oWKwDju/j+3k8P08+X6RY7Ka70EdvVz+9XQP0dw8y2LuWnmIfXj6P6+fw8jm8XB4vl8dxm+dpsNYSVipUSrNUZmeolmapzM5SnZ1J9ml+ZXaWysw05ZlpytNTlKcb6ShozD9hRYj9PHGuQJwrYIvdxLkCkdO4r2OE/q4uhtcMsHHDBjZv286GLVvId81dltTaiHL5CDMze5iZ2c3MzB6mZ3YzO7u33ktCxKFYvJSenmvS7Vp6uq/Cdef2FoiiErOzj6f17UmDIHsolQ6kw5fAmDxdXTvp6b6K7u4rksBF95V4Xv8S/dRX3mwU89cHnuAdh07givAr29fzU5uH8XTYxxk511U8/h74iLX24+nxC4HnWWt/eclbukRWW4DCxh3/zkwppVYNG1s+/La7GTkywyt+51aKfTobeaet2n/FVjgAtWR3W2xFi4ktLa7QUhRpW/C0gat54z62XXKBa9tXNDfW1T6ItVAzbRwnQYsgwAZVbLUK1Qq2WsVWK5Dm2UqaF1STstUAwiDNq+1DbFCBakAcVKEaYKuVer02CLCVCgQBtlwmLs1iSyVsaTYN5pyGCFLswnR3Y7q6oFgkzucJc3kC36PieZQch1kRprFMRhFTWALPo5LLEbouYgw9Pb309/fR39dPX38/A/399Pf3M7BmgL6+PoyZfzJBmwajoiisByyiMEwCG2GU5idBjjAIiMMgHbaR5IdhOpQjSIZxhEFQT0dBQBhUk+MgpFotUy7PUK7MUqmUqFbKBEGFqFpNAkxhBGGMCc9sJSIAcRzcnI+fLyRDPdLARXYeCzed76K+1ea/aJ0XI50rwwrpsJRGr41qqUR1dpby7DTl6WlmpqaYnJlhulKlFEOYBjCovedhiFstUSCmx/cZ6O1mzdAwPYNDybZmiJ6hIboGBpN72phy+QhT0w8xNfVgfatWT9ZeKcXidnq6r6G393r6+m6mp+fqeYd0RFGFmdndTE8/wvT0o+n+EYKg0fk+l9tAX9+N9PXeSF/fTQvWd77aN1vht3Yf4XOjk1xezPOHl2/iGQM9nW7WqnGuAYq7rLU3t+TdOV+F54PVFqD45of2ctcnD3S6GUoppZRSajWyFhMHOFEFNyrjRJVkC8u4URk3LOOEpXrajUrJubCEG5WSfTCLG5YwzB/oiMVQ9QtU/DzVnE8l51HJuVRyucxWoOr3ErkDRO4aHLpxbBEvLuKQw2TnO5HMCJz6XCC1KVVqc5805mOpzw9SK5eZH0Vqx4Z6/SIgpnGOTBnJXGMBKwGz8QQzdoRpxpiNx5iNJyjHk5TjKSrRNJVohiCaxUQkk32mE4T6oUMhypGLkjkz3NjBjQwmBonipMdNHCxBUFSSiUAdD9fzMZ6froriENuYIIoI44iqtYQI1hgQA9YiQRUTVDDVMhKFCJDv7qF7YA09g0P0rdvAwIZN9K1dR/+69eT6hHJlTxKwmH6QqckHKFeOAmBMjt6e6+nru4m+/pvp670R359/doBkqMipJFgx8whTkw8wMXk35fKRtD6fnp7rkqBF30309d5ELjd8ju/V8rPW8umRSX5r9xEOlat8/9p+3nzpRjbmV1ewpRPONUDxKeArwL+TxJF/FHimtfYFS93QpbLaAhSHHxnl2N6JTjdDKaVWlaOPjXP40TF23rKWgfVdnW6OWqVWfnqCJbrhIqtZugU6lvCNktbDNnXPnedz8W2a91qZJ78lr+Xkubz0Ob9mW9u2wtasxmSl85WrJWpDf1rvU7vdPD1NrG0zWskmvXorJZiZRmansLPTyOw0zE7B9CTMTCIz6X46k56dRObpwVHxfcr5POV8nmo+T9jVi+0Zgr61OP0bcAe24PZtwOaL9aEmtZFJFpIhOvVj2xiNlJazcTZtW87Vytt0lJJNRxS15Mdzz9frqZ+vlYmZNpNMuqNMuaNMuWNMemNMeWNMuaNM+COUvKmm9yAXFugtD9FXHqSvPED/7CC9s2voK63BjzywERBhbQhE6XGYDpUIwSabraXTvW1KB2k6SPMDsAHnti6vQYyPcfM4XgG/kCPXG5Prn8HtPonTdQw3X8XxYxxnHb5zJZ7cgGtvwjNrESPp/CSCcZLJZmtpY4SIUwTxg1Ti+6mED1AJH0naDXjOJroKt9JdeCo9xSfjeX2ZwFIjyFSrt5FuzjciGFeW9u+wFqUo5m8OPsHfHDyBI8JvXbKB124aWtZ7rnbnGqBYA7wZeCbJ3xNfBn5XJ8lcOt/+8Pu4W5cZVeer1fqX6wq3+0y7hi5Q0emLnPVrO/0vxfPccBE1L/yAkVTTrp6FnhLmLQEiWCuUy88DfAqFTyMSthRp/5TS/Lwyt0xjlYR27Zbmy5rqzUwUmM78X09nHiqyDx6tKzI0rYqQuXe7FRia8tKvGZvuY6S+0kG76+asRtC0UgE0raKQrmzQyKutdGAavyzW6zP1Xxbr7aiVM5ny9RUUTEuZxuR9xmSuq20iiHGSX0Az+Y2005zv1I6d+kR+kt0bB+PUJgNMJ/1brX/vKdUh1lriqSmi0VHCkRHCkRGikRGCUyOUjh2jdPw4wcgp7OgYMjmJW6nMqSP0feK+PszwELkNG+m5ZAeFbdvwNm7E27QJd8MGjL86vpmeCWY4PHWYw9OHOTx1mENTh+rpI9NHCOPGv1dr8mvY0XsJ23u3s717O9vSbW1+HWKFOE4CR3FkG+lMXvZcXMurHUcxURARVCpUS7OMT5zk1OgRxiaeYHLqFEF1BuIYB6HoFPCtgwkj4soMYXWWKCwTh5Uk4LHIlVCMG+PkQxzfAEVsNEBUHQbbC5JHTAGkgJguRIpJXu3fJROQGzhIcXAvhaHdFNc+iuOXsLFQGr2EmeNXM3P8GspjO8DOP4xoDgEv5+DnHLy8i5938PIOXi5N5xz8gku+26PQ7ZHv9pN9l0e+2yNXcBe1ctiBUoVff+wwXxid4jlrevjLK7fqJJrzWJJlRkWk21o7vaQtWyarLUBx3z//Xx6/4xudboY6DyzZQ+4SWdTYZGDJvhFcrNPdzi6izJLdbGWrqk3Etjz3Ov23ke3MebtFMp8dmacQrSUy1y1wQ8nWJVSjAUaD51J09tLj3T1/+TntyhaYm2Xnvqg5Lba0lqGRv8DxfHnzX1trTKb1tnHUyLONlQ6yEyHS8u0jjW9LyXwjWD8fpxP+2do3hrZRXyav+Thue261EjFzghaNzcVxHcRkVj0wDsZ1cFwX43rJigiui5NJG9fDcZx0vHl6znVxPS855yV5jpuMSXe9pAu3k45Rd30/Gaeejl+vnbtYgynW2vrcBVF2DoLMcZjOSVCfl6BaTfKqjXkKwnSsf5TmR2FQPw4z19ooorbixZygm2kJwNWCZC3BtfYBNVMPoDXlS3Mwbb4gmzGm/hmUdCWO+ufWTfbJ589NV+pwk3zHTfLTYyetY6XEMzNMHTzIyO7dTDy+j5nDh6geO048corc9DSF2RKFUgmT/XtEBGdoCH/z5nrQwt+2FX/bNvzt23EGB1fFn4cojjg6fZTHJx5n38Q+9k3uY9/EPh6feJyJSqNHddEtcsWaK7h84HKuWHMFVw5cyWUDl1FwC0vWlvHxcQ4cOMD+/fvZs2cPU1NJz49169Zx2WWXcdlll7F161YcxyEKQ8afOMapA/s5cWAfI0cOMn78KJMnThBUaquDWNwC5HsFcZKlX8OKISw7xNX2ny/jOOR7+sl391Ho7iPf3UeuK9kKPb2Y/Cg29yiBcxfV+BHAIvSQd3eRN7eSM09F7GDSy6UevCEJ1NgkYBOFMdVySFCOCCoR1XJEUAmTfTkkqERUSiFx2P7fLRHIpwGLQo9Pocen2OtT6PHSfS0vCWj8x8g4v7f3KHlj+NMrtvB9a/uX7Gd2oTjXHhRPA/4R6LbWbhWRG4Cfsdb+3NI3dWmstgDF4be/k5Pv+VCnm6E6bbX+Mr/SzV7MagEreK9F3/EsVx1Y1J3adSFeVN0LzBS3iuzf+gKOb3gqVz/4T/ROH+pcQ5boPZSV+kMlAunDFmmPBBynfoyTPChhDOK4YAScZII80gckXINI8kCE4yCOAddBTFredZK6HQfrpA9hrsEaJ1mFwDH1e5HWgXHAc5IJ3xwH6yTnramdr5VN2oNxsEawTtJWm7YZI/XJ+OJ0hYfkF9hkxYFaPtYSR1Gyxcme9FxtZYK4toJDnKxGENVWLojSFQtq+VGUrmBQm+QvJMpOAhgGxGFEGAbzfBt5uvCWbU6LzJ2Ez8/h1Sbo833cXO04l6RzueSaNO24ybd7jUBTErCyscXWuvzbuB7Iqr2n9QBVmk6uiTPvbZy+57V0bYWH5D2rr+yQrvhQ2+oTJ4ZBvUwyQWKQnE/fxyhcupUgsoGgbPAnCQh59UCTnfN6bdNrz37GrLWN98DO9560phufzU4QMY1ghuumgbRGIMOpBdLS98ZxM+k0qNaY+LE2KWQjnQTacknwLfO59HK5+rHjeczMznL8+HGOHT7MyUcfZWrPXjh5guLMLF0zM/RXq3SXZvEmJpGoMXzBdHXhb99eD1j427cl6UsvxemeuwrF+cZay1hlrB6s2D22m0dHH+WxsceYDpLviI0YtvZs5co1VyZBizVXct3QdfTl+pbk/idOnGD37t3s2bOHgwcPEscxvu9zySWXsHPnTi6//HJ6enrmXFeammT0yCFGjx5m5PAhTh3cx8mDByhPj1NcV6Jn0zS9Wyq4XWWiikNUyuNxJXn3SiQcpjJVZmZinJnxMWbHx5idmKB1yVbX8+laM0C+18EtzmL9Y5j8OLnegMGNl7Pl0ttZt/6FFAqbzvr1B5WI8nRAeSagNB0k6ezxVJXZqSqlqYDSVJXKbPu/h7y8w8yGPO++1udAUXhO4PHGXC/r1xTo6s/RPZAjX/QW1SvjQnWuAYpvAS8lWcnjxjTvAWvttUve0iWy2gIUOkmmUkoppZaOnZu2trXPTSZt55Q9bZl59y1psZleUumu3T4zFCo7vrwxEWJmYkMj9b1JhwQ17Z1aTwRJe70YHMekPQcMjuukPVvS4T3GYLJ1G0mOW+5TH9NeK+O0Safj6x0nbU9mvH2SbuQ5rknLmnrd9XcwEySzTUt4Ro1zUe04CdzUzkdR2BRAqwXOaqtgxPXjTCAoDapFma0WCIqjaN4eKrXVNLK9VaKgek4BJMfzkuBFPp+ujJHDuB6xCEEUUa6GlCoVgmpAPgjoqQQMi2EwjOkulciNj2NPnmpa1cTduIHczp3kd+4kl27+JZdg8vmzbudKsdZyZPoIj44+yqNjj/LI6CM8NvYYR6aP1Mts793O9cPXc8PwDVw/fD2X9V+Ga9wFaj29SqXC448/zp49e9i9ezeTk5MAbNu2jauvvpqrr756TrCi1cz4GCcP7udUbTu6m2r8CF0bJ+jdNo3fFWKt4IRb6O99Blsvexlrhq7D2pjS5CRTI6eYGjnJ1KmTTI6cahyPnGJmdLQ5iCEWvzugMJBjYN1m1m69geFNV9G3bj0D6zeRX4YgVRTGlNKAxexUldJkldnJKjMTFWbGKkxMVPjImpjP7/DoLcV8/7dm2HYy+bMhAn7BJVd0yRW9ZJ8e++lxV1+Ooc3drNnQheOdwZCWVeCcAxTW2ieLyN2ZAMW91toblqGtS2K1BSge3zPGkUNTpy+olFIsct6I89ByNnv02AwPfvkoW68eYNt1Q0t7v8W84dYu6n6LGp20VA23c4eNtdZt7eLep7YTCjZd2a7XDnMqb61GSCerq31Ln852L1EMaa8F4jjZRxFk8m2cLBEoUYgNLURhci5svycMIf3GnjDJr20EycNYsk/KNS1jueCrSBmDeD6S8xHfB8/H5HzEz4HnJWPn/RyS8zF+Dsnl0rJp2s8cO6Zx++y4HppjB40ytrVYmp1OBFjPr034F6cPpRFxmJ1AT1r2mWtl7rmmIVzpvjF6qDEJY2NCwkxbs2XqQ41q6dbjbB1tJjXMlmua7LDNxIdxS7lat/BamQ4u/S4CJhu0cJMgRj2Qkdk7mXOOl2xuLZ3N8wyu5yRpP0m7nsGppTN7L+fguEvzEGTjOBk+EwTJ0Jo0cBFWqwTVCmE1SYeVcuO4UiGoVAiDKkG5TFApJ8eVMkG5TLWel+QHpRJRGLS9v4kthWpAVyWgu1ylN4joLVcplsqY9GdsRQj7+4jXrcVu2gjbtmIu3YE7NNzo2ZFZMtTL5fBqy4nmcys6JKadyeokD408xP0n7+e+k/dx36n7GC0nUwQW3ALXDF7DdcPXccPwDexat+ucelnUelc8/PDDPPjgg5w8mSxBum3bNq655hquuuqq0wYrauIoYvTIIY7ueZTjh77CTPkO3IHDFIeSYSLBdAFTuZyBvmey46qXMLh5W9uhO3EUMT02wuSJE4yfOM6pI49w4tD9TDxxlNmxgLDUHKDp6h9gcPMW1mzayuDmrQxu2szg5q0UevuWfWjQHWNT/K+HDnKoGvCKXBevKOeIp0MqsyGV2YBKKaQyk0nPhkRBI/hijNC/vsjQ5m4GN3cztLmboc09FHtXx5ws7ZxrgOJ9wF8AfwM8BfgFYJe19keWuqFLZbUFKN7yv9/Gf0fbOt0Mpc4Dq/TJexVbvQM7Tu/8fG2n/4wvZbsXV1dzm87k/ot6cF9k3Yupa57Rwae9b9ur0t9/WofU1I7FMue8YOfkJ3m1dNLK5jLNx9n7SvpEn6Rpc5ymhcZxUzrpdWDSCVcb52xTWdNyrcnUYSQ9n9knaUnKpflGJB05k86KL5l0bab8WtoYnNrs/cbgGIORtFeBCI5JH8CN4KRlXddJyjkmPe8kD9yOg5v2fnAdB8dJH7gdB9dz8FwXx3eTvWvwnOR+rknu4zqCZwxOuncdwa1P4tpeI2DRCFpkJyesT0zYMnlhY8LCOMmLms8158dEkSUObTqUqDFWPg6z52OisCWdng+DJB0FEVGaDsOYqBqd9YgzYyQJWuQcXN/B8x28nEnSuXTLu410y+bnk8kG/byb7AtJ0GO5HgCjMKRaLhGUSkxPTnDk4AGOHjrE8SNHGD15gjgMkDiiO5+np1ik4DoUJydxTpzCGxklPzFJcWqGYiWo/01S8hwmCjkminkmCz4ThRxVb25vBNfz8fL5ZMslez+fx8sX8POF5LhQxMvl8QtpXrrPFYr4xSK5Yhe5Yhd+sXDOAY9aT4tasOK+k/fx8OjDhHGIIFy55kpuXX8rt264lZvX3UyXd/arX504cYKHHnqobbDi6quvpvsMeytUS7MceuybHDv8MWaqd2C6j2IcSzDrMHNkmC7vKWy+5Ha2XX8jPWuGTltfuXyUo4c/xqE9n2bk6G4q4x7R9HqCqQGmTswSlMv1svmeXtZs2sSaLVtZu+NShndcQv+mzSAQ2WS4VmQjLJY402MjG6Rv/XzXzklmwuxSFPMn+5/gPcdGuaIrz59esZUruwvp390y55oojJkZrTJ2pMTokVlGDk9z6vA0M+ONCWYLvT5Dm7t53muuXnXBinMNUAwBfwU8j+Tfsk8Db7TWjix1Q5fKagtQ/NsfvYXH505mrJRSSqmzcZrfbey8B2dyj7Ove062nScfklBDm/NNYZM552uhkVphwdYmf82EXGwjhDLnOJsfN8Ip6V7SvORbaIsQ1csIsTTKxJLuMW3rr6Wb7mEz9bfcr17O1uolcz6zt5k20FwWBMdGuDZONpK9h8UlxhOLh8UTcA14Ap4RPEfwHdPY3OzmkPMccr5L3nfJ5TxyeZ98ziOf98kVcuQLOQqFHPl8jkLOJe8a8p5D3nNwlngseiOAERNWY6IgJgwiwmpMWI0Ig1p+RJCeDyoRYTUiqCblasdhNSKoxATVZILB2qSCYXWRqzo4kgYsGsGLpFt7pmt7fd9IF7o9cl0e5izfmyiKOHbsGHv37mXv3r0cOnQIay2+77Njxw4uvfRSLr30UgYHBwkmxpm5/wFK999P+aGHCB5+hOjw4XpddnCAeOtWgh1bqW7ZSKm/j2pYpVopUU17dVSrJaqlMtVqmWqlRFCtUC2XkklWASu1nhvJVq873bu5NOBRaAQ3/DSQ4ReLSZCjUMArFvHzBfxiEa+Qxy92IbU5d7BN+2pcZd/4Ph4efZhHRh9hz/geIhthMGzr28YVA8kknNt7t+M5HrGN69dm07WH81penM5HE9uYickJjh47ytGjR5mangIDw2uH2bhpIwODA1gsURwRk1wfxcnDfmSTIUy1h/8ojpJ7EBNGFaYmDzA9s5/AjmGxhKGhMuNiwy78wiC5nm78ri6soX5taMN6nZGNiOKIMK5SDSephNNEcUBkhRiX2Boia4lsTCydmfflTDji4IiDEYNYg7EGYoFY+MQPf4yBrv5ON/GMnGuAYou19lBL3npr7fElbOOSWm0Bivv+6xM88cB4p5uhVEed0TPCovqkL9H30G3v1abu+dq02N+rFrx+ntfSpqf16eu1C1w3T39/aS3Xpm3t6pnvPkLzzyf7i1q9F3m2LZl0di+Z+6T5pSmH8aM+vesrdK0J06+EbWOfva72tbLJ1GNsy/lM+hwtdtWs09ezJNWcVV3zvYazadN81yzmfbK1IQdtyrYOdWg9bs6z85ZpaosF21JB45zNlG8kmuu0c8/VL7dz7tWcn7m/JZlwsTbUJUwnn4yiZHhMnObH6WSOUdyY+JKk20Q9GCHpZKLpPjkvSX4aYKjtG/07sv1GqA/DqKdJggu14Ii1ZK4/j9jsz6P5dcRp++NaAMQKEYYYQ4QQYohwCDEEku6NS4hDRFI2whDZTBohsoY4PR9iiGy6T897cUTOhvg2Ik9ETiLyElEwMXnHUnRj8i7kXUskFWaZoiolnFyEyUVIPsYUYiQf4XkRjhPiuiHGNEJVNn3tyc+v8RlNshqft+yfivrPtZ6bfg6hPiymsbxlMu1DHNukx0ds68dx63GaF9UmGiXThuwdxYKxGCf5qGIskk0bkHSPaQQBYpLPfUz6IE0ymWkQhoRhSBiFSftJ/n2orZ6SPooT1x7QbUx8Zr+hqNMwYjAYjBgc4zSOjak/gDcdI9i4TBROQVxKRpvFQlwx2LKL53bT1d1HV28/uVwBxzj1h/la/a5xccTBRjNUy4eolPZjoxlc49HbdSm9PVfRld9CMFtiZnSEmdFRpk+NMDMykgwDRPA9n96htQxs2MTAho30Dq/DOI1eL/W/szN/VlrzauWmw4hPnhrn3qlZhn2XFw/3sSnvNQWEoBF4iWxjH8VR87GN+LVbfm1JV3dZCQsFKBYze8o+EXkv8BPW2lKa93HgpqVq4MXuvuOPsa+8uj5UZ+w8+91kMZa3ye3+sZMzuunZ9ZbM3nehweG1B0KZp3RzPXPPtXZ1a3/Ltte0lml3zQLP0fXEYt7iRQU6Mrt2PyJpm0zTQqZvd7uzLQ/eMqfofD+Bpjw7z5tm251rPp88dpjm/Na0TY/tnBkNqP/862Waz9XSgmRiEpkXbbOvQeqlm89B0uEcauue18u0e18cGDkJoyfbvPQWi/1jlPyyEGElxpo4SZsYKxFIbZ9sSX6YpiOspJuJQUIwEdaEWMLkfHqMRMQSgQmSY9OYZG7u525xvzDPXRFk7nXNf5fYefLnfru00Goj0tQ+O09+y7m2904eVKT+UWg86jbqyjwy1/+8xgvcr1ZfrUzm/mKb07UPt6SP51K7vlGPEGfua+v3lWzbMsfJH3WLaWpLbUhGpm9B7Z4t92nNy15Xa5fJvI7zZc6aeu8N29gaxyY5to3eEbV8Wo6bzmXyYmsyeUl+Lc/Ggo2Tc9TTBhsn54jTsnGtfLIl1zvE1hDHhriedohqaRyiRf06fZr3pz5fRhIciazUgxhB5FCNHKaqLiPiURaPgOHknHUIcAgy6dCaNM/BiUPyUZlcXMa3ZTwp4VDGMWWMUwanDF4Z688S5mYJCiWi3CyOW8JxSoiJMn9G5u4bfx7bnxOx4IC4c8871B5EJPm7PXaSn4t1IHaQ2MHGLth0H7hgXWzkQuwh6edDbNo9Pv03ypgIcUKMCTBOiOMEGKeK44Y4ThXjV3DcaubPSWNrGv6Uvq5aeA7St2tEcE9Jsp9I/6oQiNcI8bAQrzfYYQfjmuTfvvSBW0QwkrTZpA/iiMmcN0j64J4sY+ukecmemGTIUZSuThQmKxDZMBniE1dDoiAkqoSE1YCwEqTBSkHi9M9cDIKLnyuSy3UhhQKn8hFH3Vn22pOMRslqIVu7N3HL+pu5Zd0uLhu4As/JJ8OzxKm/jtprEiRtcyPfxpa9e/Zyz933cGD/AQyGyy+7nJtuuonLL78cxzm74SxBMMmpU5/h+PGPMjr2NSAimIp44r6Qsd0hA+su5bJbnsJlu57C2h2Xzju0yNqYsfFvcfz4hzhx4pNEpfvJxxvZsOGH2HDTz1IobAGSeS5Gjhzi+N7HeGLvbo7ufpST33qYKfsQJc9n4xVXsvnq69hy9XWsv+wKXM9b9Gt5PfCZUxO86bHD/O1UwOv6hnnTJRsoOhfWZJhnYzE9KO4G/i/wk8DLrbV7sxNmntPNRW4nGT7iAP9orf3jlvOSnv8eYBZ4jbX2O6erd7X1oPiZ//0uPhWt6XQzlFJKKXWBkXQm1Po8FGQfwGzLceYhLX3oSjoY2WQeirS8sUmAJemcZJPj+han55NzTlo2OQdOLU+SlWJrc1nU0k46j4VjpD4fhXHTVTicZD4D4znpEpcOJufh+B7Gc3DdZG4M1zXp6rUGxwXXqU0qKcnKt67BcyVdpVZw/dqEkyTL57Y1f3CtvpxtFKdzR9SWm43TJVOTyVdttYStlrHVMnGljA0qxNUKcRAQB8kKGWEQMBFUmAgDpqKIUixI7ODGDrnYxbUui/t+MW1bOo9GZIXAGoLYoYJLGY9Z4zMrOQIcKjbJr1qXCi4V61DFJReHdNsqPRLS64T0+ZbegtBXdOjv9ejr9+lbU6RvMEd/0dCbb8xd0hSkqwXeEGr9arCNAF39s5oUbpyvBQjr6UaXnahqqc4I5WnSvaUyLVSmhfJMup8WylOGOGp5UBVLrium0BuR74nIdVeJnHFK4XGmKoex3jiFLmHt2mHWrltLX18PtQBnsuxuMizBTpaIHzqOfeA49qETsGcEIgsFF64fhpvWYW8cwg75aW+mGEt6fX0LwcbE6d7aMK2/uUyyfG1yLq6VsWHTdq6eCIQHSw4PlB32VZI/8b0m5ppCzDV5y868Q9HN4Th5HDePMbl08zPpHE4t7eSZnfHZu1fYu7dKqRRTLLpcfvkatmwZZMPGdRSLPTimiOMU0q2IMQXMaVYhCYIxnjjxCY4dfS+TU/eBdSmf2Mjhbxumj+bpGVzLpbuezGW3PIXNV11TX1K5VRSVOHnqsxw/9gFGRr8CWAb6n8KGjS9j7fALcJzmL5HL09McfuRBDj14H4ceup+TB/aBtbh+jo2XX8mWq69j4xVXsf7SnfiF4mnf86kw4vf2HuXfjo6wLe/z51du4RkDi5twdDU71yEe37HW3iQiTycJVLwJeKu19px6UIiIAzwGfDdwGLgDeIW19qFMme8Bfp4kQPFk4K+stU8+Xd2rLUDxjj95NdZ/otPNUOrCob0xF+W863adWop2Zcftr5TT3+70r6v9P8nNr6X9febWbefk2zb1S+ZsLSFz8xe4Lq0527ehXt4ueE22QLt5FEi7ks/tKVP7+db6XtX7J2R68mT7ZjTqqT9iZG4mTfXVvyut1VVvq5CdHm3uvUy93thm3z+pl2/qR2HBYubkWyvtjy3JfA+169I21edxsNTTtfy4/r5kyjWVb50XQtqWjdPQRVw7nxn6MTedtC0W05RfnztCkqEOtbJx/RqpXxNnzsWycisliLW4WBxI5qOwliQckOT7WFwhnZ/C4kF9vgpXwJdk/gpXIlyJ8STClSjpY2EiHAlxJEzyTACmyqwzzbg3yYg7zglnnJPeFGVToSohvTbHhqiPDVEf6+I+ijZfn0vEIpgYvDjEjSPcKJlTw0QxJrbpaLXk2/Okh0nS6yPEpWJ9yuQokyOUhb/xTYZjCEFsqMQOJXymJceUKVDGpWw9ymlQo2w9qlboDst0x2XyEuC5EY5niQsOYZdHubdAnHeJfUNskuFFkThEYojEEItDLOnwGHGIjEMoDhHpkKT6D4uWtLTNr/WC6KpCz2xMbynZemZjekox3em+ZybGD5v/xip7MFEUJovCVNEw0+NS6jKUu10qPR5hl4vjOOkksiAIhVKJKx66j6vu+w5X3fsdBkaSrnxPbNrCnifdzJ4n7eLwVddgPR+nFpCTpI9g9thpOhbcNK8WxHPTcq5IvawLuCbGJcIlwpGokSZM0yGOTY6TLcCxIRJXiKbHiabHCGfGCWYnmJg+xYOV4zwUjbPHKVFN39uBGNbFwgYxbPF9thZyDKYTpxpPECcCQixV4rhMFFWwtkocC6Ojmzl+bCdjYxtIfjqWYtc4vb0n6e09QW/vSfL56SQ4anwcpwvH6cJ1unDcWro7k+7CdXsIw2kmp+5jfPxO4riEYZDS0c3s+2pAeSzGOB6DmzYztG0Hw1u3M7R1O4NbtpLv7yM7p0apfJQTT3yYU098mGrlCMbpon/w+fQPfy+54hVYqa0ylM7zgaUyPc2J3bs59chuTj62h8nD6fKvIvRsWEffjq30b99C7/YtFNcNQTpfSOucHvfNwDuOexwLDM/trfKjgyXyJq4PU2qd+6N+jOX27bfjOxfXJJnZ5UU3AP9NsorH6UNCC9f7VOAt1toXpMe/AWCt/aNMmXcCX7TW/ld6/CjwbGvtsYXqXm0Bio+945ls7t/f6WYopS4YGqFZqtDLQsMYOuXsX9tShFDOoQ0tt19MHXKa31HmlD+j0upcJMMRmgMuteEYyflaoCfTQb4W5LFpwKU+zIM0qEJTmvrDNZlhG5I+dDfScTqsI44FrJMemzQAlAZK0n0yWWeSH0ujXIypT+YZp+cjGtdEmHQ+CqmXTeaVMJn5JRplz4ZgcYhxJU4eLiXGI8I16UASiZPgB2ngIzOEqfXvqkZY7/R/hiIsFRNTFUu1tpeYshHKAhUHylL7sTXmIUl2jTlH5r6eeV6nPU0hO98JpVQ7O2eu45d+/Y9PX/A8cq5zUHxPLWGtPSYitwFPW4J2bQKyk28eJuklcboym4A5AQoReR3wOoCtW7cuQfNWTs+JIjecmOh0M5RSSimlLg7Ssp/v/PmkNsIAqAqUxDBjhFkxzBphVoRZU0sn+xkxTBvDtJF0n6RnxDCVpivzDmtRSq0GG09t63QTltS8AQoR+VFr7b8Dr5hngpEvn+O9542ZnmGZJNPafwD+AZIeFOfWtJU1m7+V4xOv6nQzlFJqma30b/xL149i6Syq38CS3W1xw2Vay5xlP4q2E7Iu/l7zDweZL72Y8moppJ2MsRITJQM4sGLTZTstsdTXPkjTybJ9Fksk6QoK9WvSI6nVmq60UDuu1SVR5lxyHVKrJ70uvYeVpG21DRqT2SadGWw6pMSmH1MLcQhRBQnLSDqfQNlElIxlxo2ZMiHTToWyCZOVUwQMhqLNU8CnaD1yNo8f58hbHx8PRzxiIoL0fQokIiImICKSmJCYUCIAAokJ0nNVE1EWS1UiKhJRJSIwEVWJCCQkkCitIyQi2RYrWY0lB1IAybdsOVw8cjh4GHwr+EDOCvkICrFQjIXuQOgJDX4oSJzMS2Li2qJHBmKDhC4SGSQEGwFROtFo7BCJSyx+skJM+vOstc6EFfyohBOVEVvFEIDExE6Q9NZw0mFGRogNRCLYZI5TIiPpJzAjO9IjfX6p9SZpep6pl2sEZ2z6aQ+tJcqsxCM0hlrMF8pZ8G8dazG2jMQxiKTvxemGLtnFdH5Z6Op0n/Raimqr01CbwsMQ1csJIRBb6sPCWhlsMuSEljlpxNbnrnHE4iyy0fPP6LJcTneH9v2ALMnKPbEkPX/c+oLHS9ccS5j2LGsMW0yGJy1+rplnfdft596m88hCr7wr3S/XLB2HgS2Z483A0bMos/oNbORz0cFOt0Kptqysqnjfea11DYzzwWr96Z5/7+QSWswPZUnfgNbKFtlZe4F21kq3xizmrvlj2/65qA0/XXCNoDnNlpaS7Qq1a2X7trVWJUj9FpL5FVUy907ybf18/fFIsnVJ5rxkrheQ5laIFWgqmaZt9mGrsZKO0GiHkAyXMLU8kbS+zEOWrbU3SQsQS/ozsbVflJOHeqmvoNP+vWx6iZmcRpDMhTSYkIYV0iBFY2/TfZQGK2oBjzgNeMTEyTmJiYiT4RQSpcfJ3BVROt9FJKTLfsZEaaAgSh/4p5xZps0s006ZWafMrKlQMUG97QaDi4NjkxUJahOkJPVMEZOuuLMEkgCCjxUfKx5WfBAPK8U0L4c1flomhxUfRwyOGFwxeGLIiZATg4/BMwZPHIy4xMYjctx03g8HYpeeisOaksuaKY81Ez6Dkzm6ZtP5EIzFkSh5yLRRshxnEBAFEWEYEUYQxobIekTiETp5rLR/lHCDaXLVSfzqJG4wjcSjGEpYqRC5Fap+TNDjEPT1EA0NQM8wnu/jeR6e5+H7/qK2XC5HLpcjn8/j+/6iV4eI45hTp05x+PBhDh8+zIEDBxgZGQGgUCiwfft2duzYwY4dOxgaGpp3NYiFf7gWHvowfPLXYeo47HoNPO/NUBhoWzyKLbPVkFI1YqYaMVMJma6E9X0jHTFdbuRPlgMmSwFT5Vo6pBrNXXmpxgj0FTwGij59xWTfX/AY6vYZ7M4x2OUz1J1jTZfPYLfPYFeOgr9yc8GcD8LY8s7DJ/mzfccwIvzGJRt47aYhnCVYFslaywd2f4AP7fkQ9568F4tlU/cmbtt6G7dtuY0b196IYy6u97vVvAEKa+070/1bl+nedwA7RWQHcAT4EeCVLWU+ArxBRN5NMvxj4nTzT6xGj/ZN883g7k43QymlOq72nZUTRXhBgBcEOFHyIBA6LoHvEXheMrnaeaTlO7yzr2cJA4Jn06bFXjOn3KLiFwvVnj7OL6YzR5sytv4QnzzrN75XTb/2yjzeN19v029Zm1vWqCM53foNbe2hvrU+W3+qr11jM9fUS6R5Nv3OrnGmPvmatemykzb59r4+IVtarvafqbU3CSLUPj+23X92bt6FSYBk+cb0e1+Q2t5p7MUBfKwUgNpxtoxbz7PigiSLYibpZNrMWhkrHoJpmtjQre0hnVgTXCSZYNOCby05C76N8eIINw5xoyTtxBFeGOGGMU66xbFDWXLEfSXM+nF2j93AYbuFSb+PKVPEi8APLH5o6S5X6Z8p0T9doms6IDcT4pbADYSchZyFvCRtKUnIrEgSBKm9d204YQkvmMYPpslXp/FsGVeqeG6ElwOvYJhxDI9U4J6Kw0Shh6tv2sTtT3sSV+9Yi+d5uK6L67p4nofjOGf30H+WZmdn68GIw4cPc+TIESqVCgD5fJ4tW7Zw8803s2PHDtatW4eIUI1igsgyPhtQjWKqYUwljKmEUbIPMukwphIk6XIQUZ48RemRz1IePUKp8CrK255GebKf0rt3UwoiStWI2foWMltNrl0MEejyXbpyDt05l96CR3/RZ+tgFz15l968R2/BpSfv0ZtPz6cBiYGiT0/exZgLOsx/Tu6enOVXHj3Ig9NlXjDUyx/u3Mym/NJMQDkbzPKWr7+FT+z/BJcPXM7PPulnuW3LbVw+cPmK/nk43y00xOPtC11orf2Fc7mxtTYUkTcAnyLpMfTP1toHReT16fm/Bz5OMgfGHpJlRl97Lvc8X90/PMpD8Uinm6GUWk6Lfha42P+BqnVrzXw/XftHWwIgWOL7nY/DTpamTY3H8sbx4pxlG0/3y5VtLjN3SMd8M+fNP6yjcYVpKSZN+/bDR9rfo/6Nv7SrI5vX2kOgcZ2dU661jmQVi+y5pnTm3nPrqp1vvra+2om0u7fUr7Fz8iG7CKnNlG2+ZzKZZHN9puXemXrSAEEjYFCr32TKpkEEkfrSpLUu48nKCOkSpaTLkdb2ttblvFY2Su8SYyQm6ZQdITbpQ2FsiGPjZFWOOMa14MbgxSRpqK/E4SF4UtsMvhF84+LWeihg8MXgYvDFwRMHX5LQA7EPsQc2B9ZDrEOysqQkvVUigfTYRmCDGFuNCKoRs9WYcjWiGsRUg5iwaonCmDiwyUiVCHqtYOKkV8cm6yDikvydOMFchkZnaHDCMk5Uxg1LuOneicp4hHhOjO9ZcjlDruCQ6/bI9+TI9xXJ93chfV1ExW7Cvs3Q10/c20/sOFhriWLYe3Kav/vK43zn4Dj96zxecPV6Xn31OnryLnFseXTCEtuQOA6I4mT4RJzuo7ixxdYSxum5OE2neVHUKB/GzdcFUVzPD6OYSjVgerbETKlMqVxhtlyhEoTENuld43g9GPc6jOeBSSZVDfdbqnumCaJ7CdLAxLkyXEfRvY48efInhII3TcF3yLsO/UWfTQMOBS8JNBR8h2I27TsUfZeenEtXzqU779KdpoueowGGZTAdRvzR48f45yOnWOd7/NO12/meob4lCxwcmjrEG7/wRvaM7eGNN72Rn7z2JzUoMY95V/EQkR9Pk08HriZZvQPgZcBd1tpfWv7mnZ3VtorHOx76GB85Vel0M5RSq8Ti/jk7/74dndtuiw0jbBhiw2T9dwBxXMR1Ec87/UPvGd1veStazLjUlQtPJMxi2jTnhnNb0O61LdTOpkd/aZ/fWu9CnSWaQwnNoYL68/MC17W+xtawQH0vzefa3U9IuugKpIO24ySuFsXpcZqXpm2mTOP12ka7as/rQrpWoa0fW0iWirRJfRYLae8KbAxx0ruCOG7kpdck++Rekrl39lwjXRvmkYYbaufqHUIsEmfKx+n7lCzlgcRJKRMnD+DJe5PMV4AFYwWJ0nBZDBInw1RMLDgYHHERcTHGxZjkz33VhFScgIpUKZsyZalQtmXKtkKJMkEcIBiMNYg15GKX3tChNzL0xj697gC9+bX0dW+n21+DSVcOkTgNgiZTVRCHEXFoiaM4CQhEMXFkM3ub/DhjSxSlP9oYkh+31Dd7lit3ZJmoiolDTFzFiQNMVMWJq/W9EwWYuIqRCCNgiQhsRDmOqMQxgUDVQK7o091XYGiwi/Xr+9iyZQ1xVxdTTo5xk2MMn1N4nAwMp2ZDRmeqTUMIZqtRU/p8YgQcI8kmgmNqn98YG0fYKAJbW38FPMeQ812K+RxdhTxdhTw5z8E1BtcRPMfgGsF1DDnX4KV5vmuSvZPmpcd5zyHnJmV915Bzk+O8Z8ideojcp99EfuwR8le/EO/230f6NnX6LVOL8NWxKX7h4YMcqwS8ZtMQv3HJBnrdpRtm8bUjX+PXvvxrAPzJM/+EZ2x6xpLVvVqd1Soe1tp/TS9+DfAca22QHv898OllaOdF6/bpG7h2n/agUOp8c/494i/S+dhwm3Q7j6emCI4fJzx+nPDUqeQ3fcfBW7cOd/16vA3rMfmFV7Fe0a7pi1zmclHFFlXV6QudbnnwRrklud3i7temzJyslozmQ9s+aefLb39tU76t7Wxzsczkd/VT1kJksZHFxnGSjpNjYouN4uRcVCuXBgTavU4AR8AIku5xBDGNNMYk5yW9d6bjUKMDka3XbVvbbpvvW3ufknhBel36Z87GteEjtevsnHtlw0RJVa29Q2heUrS+X75v/zyy3/+fndl0gxkAJE57VdgIsXF9b2xUP2dq5+PsuRDHJsMwasfGRogkE+bZJKKTzJchllAsgcSEBkIjhI4QORA4QugYTM7BzXvkCz6FQo6u7jw93QX6u4v0dxdZ0zVEsbuLiuOzbzpiz1TII2MVrur5daZjy5u/8SZqs4tsGiiwqT/PYHeO7pyL6ximyiHjs1XGZquMTQeM3FmhHJSA0pz3qCfnMtCVdPvvyrms683TlXPp8p1kn3PpziXf5vuOwRihGkZ84dETfPHRk1gLz75imO+5bgO9eQ8n/VzXAggmDSYkH/9aOtm7Jj2fHjum+XytjI1CJsbHGBk5xejICKdOnapvYRiCgDGG4fXDrF+/nvXrN7Fu3TrWr19PsbjwvydLIo7h62+Hz/8e9GyAH/t3uOx5y39ftSQ+8MQYb3z4INsLPh+9aSc3953r3zwN1lr+6YF/4u3feTs7B3bytue8jS09W05/4UVuMdODbiSZKHM0Pe5O89QSOfjhL/PIE32dboZSqo0lma35YnBGb1MBZAcM72hkRSSzER0ZARYTsF3Jn8vi7rWoR7VFBhcWUdGiSp1dm86ujW3/rMzJmr/upuvnfZ/m6XHRLjLRVKZdoMO2L9Ny7/btss3XZepszm969J9TT1OPCpu93s4tY2shgSTSkO0VkRzbpteQrae5DpvJby7TqKOWjjO9MJKH8Hob6j1X0uBIrbsE6Uob9akwI2Ibk6xrka77Iel5Se9lTPJgahxcx+A4Lp7j4BGTiyr4wSxuMIGJSskgEccgxV5M9yCmZy3SswbjuBjPYBwnOZ+mHS/JF8cldB0qYigbQ8kYShhmxWVGfKaMYQphUgyTCBMYxoAxDONWGEWoui6h61J103lw0q45OSOs8VzWeA7DnseQ7zLsuwz7XrpP0gPGkLNCOYiYKgdMl0OmKiEnpyrcfWqGw6OzHDtQ5uRUhZGZk0xXGr0Xck4V4RcpR/nsJ4zDYyUOjyWBBxHozXsMFJM5CYa7c1y+toehnmTiw8HuHIPdPkNdyX5Nl0/eW/y3xEEU85/fOshffW43ozNVvv9JG/mV51/BljXnHgSIooiJiQnGRsYYHR1ldHS0HoQYGxtrKtvf38/Q0BA7duxg7dq1rF+/nuHhYVx38aseLJmpJ+BDr4e9n4erXgwvfvu8k2Cq88/fHTzBW/ce5an9XfzLtTvo85buMzQTzPDbX/ttPnPgM7xw+wt5y9PeQtFbgYDZBWAxP4U/Bu4WkS+kx88C3rJsLboIPfnl13DDww93uhlKqQtKZ8Y1RpMTVPcfoLp/P9UDB4jSWdHF8/AvuYTczp3kdl6G078Cv8At1VuwhGNEFzXedFH3W+y4k7O5X5tr2mXNGTeReTRPhzZIDDaOsWHaEyEGouQ4GRJBI13vodA4n+wthDE2bH+88OtJ00YwvoP4BvEcxE824ztIzkX85FttybnN+7yTlDfZeRnSe9ST0rhnrUz9uM35epnMe1jLz16fvbbddcY059WOM2WTYSMm2ZD66wiJKUVlSlGZ2bDEdDjDdDTLTDjDVDjNVDDDdDjDVDCd7KvTTIZTTFQmmKhOMFGZIIjnnw+my+tiIDfAmvwaBvIDDOSHGMgPsCa3hjWFNQwVhhguDDNUGKIv14exwOjjcPRuOPodOHIX1WP3M4th1hQoDVzK7MZdzK67jtnhayj1bGI2hukoZjqMmIliZqKY6ShJT4cxM1HEdBQzFUZMRRGTYUS7j0vjQ2txY0uvOPQaoRtDEaFHDMNA3goFwLfJ/BVuCCZOetQEQUw5CCkFFWarEaeqIQfTVRhqKzLMVsNFz2sgAjnXMNSdTGq4rjeHU/0KRa/ClTteRm/Bp6/g0ZdOjjiQrsTQW0h6MCy1OLZ88sHj/OmnHmXfqRmecskafvN7ruL6zf1nUEfM7OwsExMTjI+PMzY2Vt9GR0eZmJho6jHlOA5DQ0Ns3LiR66+/nqGhIYaHh1mzZg2+vzQTFp6zPZ+FD74eKlPwfX8JN792Sf+9UMsntpa37jnKOw+f5EXD/fz1VVvJO0s3+faByQO88fNvZN/kPn5l16/w6qtfrfNNnIF556AAEBEDPAV4nGQVDYBvWWuPr0Dbztpqm4NCKaVWIxvHVPfvp3TvfczecQezd9xBcOgQAKanh+LNN1O85RaKt95C/qqrkE58u7XKJPMJ2HQiveSbbRul36bXHvCb5jZos48yx7WH/jhuDE/IlqsNV8ik2+XZMA0cRDYJDNSCBLVztXSQnCc+h54iRpJAwv/f3p0HRnLUd/9/V/dcuo/Vai/tZe/tY30sGDCHiSEEc4YACYQAAUIOzhxPAiGQ8OQhIU8OSMhBCDwJ/EhCgJCAwRBjEttgwMY29tretb3rvU+ttLpGozm6u35/dM9oZjTand2VNDo+L9Kp6qrqmq+07ZHmq+7qYgIh7kQJhTC54ER9JumGSYTyenVbKoaTimHi8+upL+djrSXn58j5ObJeNiz97GTdy5L1s0x4E0wUJsLSm2DCr9zPeBkyhQwZL8N4YZzxwjiZQoasnz1vDI5xaIm30hxtLfF2WhLtNMXbaIq1k4q3kYy3kYi1E4+1EnNbiMc6MLE2AuLkAks2CMgFAVk/2ryACc9nIpshmxkjm8swUciHTz6wLjmTIE+cnEkQWKd03odrRtjJNSTK26JEWByI23Bzo82JShPY0nFB9N+E71t8P6DgR4tSXuQ5m4w5pYUP466JbnEw4aKN0decyXtkC5VPaGhOuKzuSLGuu5nLelvZsqKN7ava2NLbRrLqqobT/d/k0UffyRU7PsbKlS+/qDgvRsEP+OpDJ/jkXU+xvz/NlhWtvP/F27lp6/KKD1vWWjKZDOl0mtHRUUZGRhgZGZlS9/3K9Syam5vp6uoqbd3d3aV6W1sbzjx7WlOJl4f//t/w/U/A8u3wmn+E3u2NjkrqlAsC3r33CF/tH+ZtfT38701rcGYweXDX0bt4/3ffj+u4/Nnz/owbVt1w/oOWoHOtQXHOBEV08A+stc+clchmyUJLUAweGWHk9Hijw1g85uUV+XMY1Bx//TN2xXpdl4df/FSz+Xp1XcV+/ivWK9dWqGN82U32Fz6m2Fa8d32alyu7IR5/+CyFY0+RP3KAwtH9FI4fxOYmsBhMcwuJDVtJbNhGYuM2Yr1rMcXneJfdHz85b9Urll0iX36lOhX14jx2al/ZZfY2mLzHHlvWXqpPthHYsqv2bemY0jBb2V5e2vLxQXHfTsZggeJV79go+VAcX36snZxzun+HWt+qC2w739zW1FgzwXXCRRzdsD7Z70RPZHQwjsG6BhOL+ovj3LA9HDs5xsYMxBys40AsanfDduM6WGfy2+xH38/Jb5eNPpdOnlNBtB9+Cyf7i583i9/egOjpAPj41scLfALr4wUF/MCnYD086+NH+z4efuDh2+L4Ar71JktbiPo9AuuVtRXwbXHzCKJ6cUxg89F+ccsTENZtWXlRb0g2BiSBBJDE2CTWJsEmsYR1a1PYIIG1SYIgFZVJbNCE76ei/iZMEIdo3YnJc7+8HiUMbB39s8wYSEQLG5bKaFHD4oKGyZhLMh72J6sWOkzFwwRDKh7V48XFEMMnKjgGxnMeY1mP0WyBwXSes+N5zoxlOTWa4+RIlrPj+YqYYo5hdWcTfV3htrarmb7usNzY00J3S6Kuv6haG3DffS8lsB7PuOGbGDNzC/dNZyLv84X7DvOP393P0OgYW5clePmVPWxfFmd8PM3Y2BjpdJp0erIeBJUJGGMMbW1tdHR00NHRQXt7e6ne0dFBV1cXqVRqmgjmsbMH4MtvDa/02fUWeNEfQbyp0VFJnUY9n1985CD3DKf54OWr+bW1y2fkygZrLfefvp9P7f4UPzz5Q7Z3b+fjz/84q1u1KsJ0LmqRzDK3G2N+BviKrXdlLrkgv3zbgzxw9Eyjw7hIOiVkrs3Dc24ufgMvmdWszfmPMxba+mBHH+y4qfYhh0/C4ROXHtM039fp1wWp0V5zDltVVrWb6nHnGFvjdcyU48rmjZ7QEF7TXjam+AiFWq9b6rOV85vq8XaauUqfIkttxlT1l+azVcdEY6zFRFdUVM43dT+cO5g6rliPFhYMH+dQ3hdU9pvJ/eLYyna/bHxQMa5YN6U2PxxnKj9EzRYbuGBdrI2FSQMbw9qwDRvHBsX2JqxtgyCGtfHJsUEsGhevLG0cgqgkjg2SGJvA2gTGJsA40d0dZvKpJCZcoNAYE939MblgoYlKp7iIYXGRQre4eCG4jhPmmBwTPvkgWrgw5hjixSchGEusME6iMEoiN0RyYpDERD+JiQFi+MRMgOs4xFqX4bb1Eu/sI9bdR6xjDbF4ouppCuHrhE9SKLZP1uNu+JqJsictxKKrFi5EtuAzlAkTDYPpPP1jOc6M5Tg8mKF/LFwH4kw6x5nRHGM5b8rxHU1xVnWkWNWRYufaTla1p1jZkWJtdzNru5tZ0ZYkNgOXjJ85czvp8Se4YsfHLjo5EQQB2WyWiYmJiq3YlslkwtsvxtIcPzNMenychC3wE8aG+a40HPhheDk1QFNTE21tbbS2ttLT00Nra2tpv5iIaG1txXVnP5kyp3Z/Cb7+6+EtU6/9HOx4RaMjkgtwKlfg9Q8/xZOZLH+9fR2vXtl9yXNaa/nu8e/yqd2f4uEzD7MstYxfv/7Xef2215OKLcAE3DxRT4LiNwgXUvaMMVkoPmHLts9qZEtIsu+7tDZ9qdFhiIiIXAQT/X8HcMIPwtGzMw1O9GHZRH1OVT3cD+8oNWVtUb9xMMQxxsHBCT+A4+AYB2NcHNywzzgY3Mn2aLzjxHBwcYyLa2I4xsVxXFwTtjk4uE6MmInhOjEcEyNW2g+PcY1LzIkTc2LEnTgJd7IedxLEnBgJNzwmFUuScBKTTyCIkgBxEz2ZwBhiDrjGwTXhX9nDNkOsmAyA0gdbpyqZ0NB7mAMfRo7B4H4YfCoq90P/fhg5SvERpxgHlm2Ctduh9wpYsQN6d0DXBnBm/gNrzvM5k84zOlFgpHzLFBiZ8MInWUSJiOFMgbPj4f50j89sTcZY3pZkeWuS7avaee7mJMvbkvS2JVnd2cTKKCnRnJj9W9aCwOfAwb8ildpAPP5MTp48ST6fJ5fLlcpsNlsqy+vlbdnsuW/pSSSSFEyMgawhE7h0tvdyxcYVXL6qm5aWFpqbm2lpaaGlpYXW1tbGLEbZSMNH4b9+F/Z+DdY+A37mH6BzXaOjkgvw5HiW1z38FMOez+evvoybui/tY6wf+Hz7yLf59O5P88TQE6xuWc0HbvgAr9z0SiUmZsB5b/FYiBbaLR4P9T/EnsE9jQ7jomnRl8XNNGixxXOZy5jm+vyu5/Xq+frLx1gswfg4wcAghYEB/DMDeAMDeGf68c8OlW5LMIkE8ZUria1cSWzlCuIrVxJfsRKn6jLcWjHWiql6XL3/buXHlR9TUZ9mTGXVTOkvHjelz9Q+xpQ+XE//9ZTPWT5fzTkwleOr6uc6xhQXQyz+r2yMY5ya46rbjTE4URKhOHf4od5MHV82tthXHFverp8Bi4S1MDEEw0dg+HBUHoGhw+H+2YPg5ybHJ1rDRERpuxyWb4WerRA/9y/o1lpyXkA65zGe8xjP+YznPdI5j0wuXFxyNFtgLBu2jWULUVncwr6RiQI579xXxbSlYnS3hItNdjXH6WpJ0N2cCMuofVlrgt62MBFRT+LBWksQBHieN2UrFApTyuq2fD5PoVA4Z5nP52lt3cf2HXfy+OM3cqb/smnjMcaQTCZJpVJTylQqRVNT05QtlUrxxGCOf3+on288ehrPD7jlqlX86k2Xc8XqjvN+D5YELxc+PvTuPw/3n/tbcON7wV1iCZoF7r7hNG965CCuMfzLzsu4uu3in6RRCAp848A3+Mwjn+HQ6CE2tG/gbVe9jVsuu4W4E5/BqBe/S1qDIpqgC9gMlH7iWGvvnrEIZ9hCS1CIiFwqay3+8DCFY8cpHD8WPknj4EFyhw6SP3iIYHS0NNbE4yQ2rCdx2eUkt24htXUrya1bia9eHT4JQEQWn1waxk7C6IlwGzsxWY8SETY3RgGXHAlyxMklusi1bSDX2ke2bR0TrWvJNa9momklWbeNCc8nWwjIFnyyBZ+JvE+mWOY9MvmwPlFqCxMRmbyPX1qUcvLRpQ42Kif3WxKGtmSMloRDa9KhOe7QmnBpjjm0JB1a4g5NcUNzVKZihpQLCdeQcMFYi+/7+L6P53mlevVW7Ksuq9uK26X8gc91XRKJBPF4nEQiUVGfbIuRSP4pxni0NP8ZqVQTyWSSRCJRUaZSKRKJ+tazABjJFPj3B4/xr/cdYV9/mrZkjFdeu4a3PHsjG3taLvprWnT2fRu++dvhmhPbXxauNaGrJhYU31o+cfg0f3roFOtSCb6w83LWNyUvaq5jY8f4+oGv85V9X+Hk+Em2dW/jl676JW5edzPuLFwZthRc6iKZbwPeA/QBDxE+1eMH1tqfmOE4Z8xCS1CMj48zMTHR6DBEZB6z1hJkMnj9/RT6+/FOncY7dZLC6X68U6fwTp8iyFS+j7jLlhHv6yPet4bEmjVRvY94b2/02MGFaS6v/JvJ17rYuWbzuOnGnO/Yc/VfyJz1tF3omHr7atXr7T/XeGstfhD+hd2P6jaw+DZapDOIShvgB0HZfrE/KJWlvopxYX+pvZAn8PIEXgHfL4Rl4BH4AYHvRfMF0cNhnGgzZXUHaxwCO7l6iilLGgA4ZeufONEaJyZqLx8Tra9KuJZqlGgwk+OK84YLaEZriczxlbyu69bcYrHYlHp1GY/HicViFe3VW3FMrbJYr+fpFGfO3M7uR36VHTv+nFUrX3lJX7O1lgePDPHP9x7hG7tPkvMCdq7t5Oefvo6X7lw1J7erLBhDh+Fb74cnvhFeGfTi/wubbm50VHKBjmXzvHPPYX44Ms7Lezv5v1v66Ixf2Hk+mh/l9kO3c+tTt/Jg/4MYDE9f+XTeeMUbec6a5+jqwUt0qYtkvgd4GvBDa+3zjTHbgA/PZIBL3V3fu4f7fvD9RochIgtRd1e47TjPI86OHw+3e++dm7hEZNYVL0KwFbd0hXcsuYCLIW4gyiqUFhA1xgkXHY0WDjXF23yKt/ZEi06Ga3aEa4O4bnibj+s60cKZhpjrlvZjbnT7j+PgOJP1Wm0XurmuO+1+sV5eVtfL2xbChwprLQcOfoKmpg2s6H3pRc8zNJ7nqw8d51/vO8oTp8doTcZ4za4+Xvf0dbqNo1ohC/f8JXzvL8J1VG7+fXjmOyB2cX9xl8b5z9ND/PaTR/Et/OW2dbx2ZVfd/90XggLfP/59bj1wK/9z5H/IB3k2dmzkPde9h5dsfAmrWlfNcvQC9SUostbabPRDK2mtfdwYs3XWI1tCdo+3cVd++nsLRWThMTagycvT7GVp8nI0e1la81lavAlaCllaChPRlqXFy+JU/RUxAMbjzYwlmhhLNDMWbynVRxKtDCdbyZznPu/5Zmb/TjozHzLmehWm+l6vjkcPXvTr1/99q+MG0LrG12oPHzRRfNJEuABkqZ3wA3LUNfnBueyYyadRFNfgMGVjJ9f/cEsftCfnCetOqS18isVkm+uEUbjFp1s44ZyuU1zoMny0qmtMaf6YG75izHo4toBr87hBnpifxwnyuEGWmJ/D8bPE/QkcL0PMGydWSON6aWL5NDFvjLj1cPGIGz98+gUeCTxi+CSSzcSa2og3tRNv7iDR1kmsdTnxtuW4bcuhdQW09ELrckh1wgL4IC61DQzcQTq9hx3b/xTHubC/+o5MFLj9sVN8ffdJ7tk/gBdYdvZ18NFXXcXLdq6mJamrJSpYC3tvhW9/EIYOwY5Xwos+Ah19jY5MLlDa83n/vmN86dQQ17U387c71rOhjls6/MBn98Bubj90O7cdvI2z2bN0Jbt49ZZX8/LLX86OZTsWRGJzMannXeqYMaYT+E/g28aYIaCe58dJnV7y9B1ctlZvhIveEn9vm+svf6Z+mJggwJkYxx1P446P4abHcMfTOONhGe6PEhsbwR0bwR0dITY2ijs+VnM+6zh4HV34nd14HV14K1fhdXbhd3TjdXbhdffiLevB6+gmHovRDVQ/CGsmf05OXfix1piq/ZoLYtY47pxjzDTtlcdVLoZZe66K+rQLZl7gnNPEZ6oqtcaZ0v65+speaZrjTMVxpubXXGyfsl8xbrKt4gN++Wubsg/55XNU7ZePwZQdVzVn9TzF1y0mHhomCMCbCP9aWiwLmcktX10fh8IE5Mchnw7XcciPw0S6cj+fDo85H+NCU2eYQGiOyqZOSF0WlR1R37Jo6w7LVKcW5lsirA2f3NHUtJ4VK15e1zHjOY879p7m1odPcveTZ8j7AX1dTbztOZfxsp2rdLVELdbCE9+EO/8YTu2Gni3wC/8Jlz+/0ZHJRXhgZJxf23OYo9k8v75+Bb+xYSXxc/y8yRQyfP/E97nz6J3cfexuhnJDxJ04z1/7fF52+cu4cc2NWvSygc77085a+9NR9Q+MMf8DdADfmtWolpir+jq4qk8/PERmks3n8cfHsZlMRRlkMuETLTIZgrE0QXoMP50O62NRPV1WHxs75z3SJpHA7ejA7e7G7e4itmk9bmdXuN/VSayrWO8itnw5bmenFqKUxc1a8AsQFKLSL6sXwPfAz4dbUKyX9+fBi/r9XNjuRaWfK+vPhe1eNirL6sW+wkTYVkxI+PkL/3qMC4mW8KkVydbJentf5X6iFVLtkGyPyjZIdpTV2yHepCsb5JyOHvsc6fQerrzir8559cRE3ufOJ/q5dfcJ/vvxfrKFgJXtKX7hmet52c7V7Ozr0F99a7EW9t0O//NHcPIh6NoIr/wkXPUaJQEXIN9a/vLwaf780ClWJeP8x7WbuKGztebYU+OnuOvoXdx57E7uPXkvhaBAW6KN5/Y9l5v6buLGNTfSlmib469Aapn2v0RjTPUf7QAeicpW4OysRCQii5INAmw+H265HEEuj83nyvZz2Fwem8sSZHNRmcVmi2WOIBeVExMEExnsRDaqT2CjsrhRKNQXWDyO29qK09YWlq2txPv6cFtbcFrbcNrbwgREewduRztuRwdOe1i6HR1THsEpsiAE/uRVAvk05MbCMj8+Wc9FVwkU24tXFNSsZ8KEQOCB9Wc3djcZ3hceS5bVU5NtiWaIdYObCBMCsdS5y3gTxJvDLdE8te4mlFSQOZHNnuDAgY+xbNnz6O29paLPWsu+/jR3PXGGu/ed4d6DZ8l7AT2tCV67ay0vvXo1u9Z3Nf4qpfnKWtj/Hbjzj+D4A+ETOV7xN3D1z4Krv5QvRHvTE/zOk8e4b2Scn+7t5KNb+ugoWwgzsAF7B/dy57E7uevoXew9uxeAtW1red2213HT2pu4pvcaXSkxD50rVfgAk2strQOGononcATYONvBiSwl1lrwfWwQhKUfQOBjfR+CoFQWx1jPC9s9PxxXLH0/Oj5q872o7oXtno/1o3rBw3oe1itMv18ohG2FAtYrYAsF8Dxsvqw9nz9nGRQK9ScMphOP4ySTmFQKp6mptJmmJuIdHThNKUxTE05TM05TCqelBae5BaelOapHZbHe3IzT1oaT1AJY0mDWRlcFFK8WyIabny+7OqD8KoFcdHvCRNkVAsUyU3b7wkTVbQpldS9bf3yxVHSVQAvEozLRHN5+EG+e7HMT4MTCX/adWFk9Do47WXeLW2LqfnFMLBm1RWUsOTm/kgWySD3x5Iex1mfrlg9jjGEkU+B7+we4+8kwKXFyJPzvdnNvK298xnqev62XGzZ2E3N1Vd60rIWn/ju8lePYj6BjLbzsr+Ca1ysxsUCNeT5/dugUnz52hnbX5a+3r+PVK8O/q2cKGX5w8gfcfexu7j52NwMTAxgMO5fv5Nev/3Vu6ruJjR0bdXXRPDdtgsJauxHAGPNJ4GvW2tui/RcDL5ib8JaG8XvvY+LHP472qi4ln+7RaRX1GuMrLkmvehxarWOnO676UWq1xltb+Rr2fP22cp6ovyI+W9ZXfXxgpx5XY7wtHxcE2OLXU9ZubRAeGwTT7wfR8eV9xf3yvnPVfT+KPZisV7XNK46DicUgFsPE4+FWrFeVxGM4zU0Qb8dJJKLxCUwiKuPxsJ5IYpJJnGQCk0iU9k0yER6XSGCSKZxUlIRIJsOEQzIaF9Oll0tOEIR/jQ/8qrK63YvqQXQ7gTfZXz0m8KJxZftT6lXblNsUvMmyeMtCsc+PblEIyurl7RW3LOQnt0vlJiDWBPHi1QHFeku4eGIxkVC6MqAlHJdohkRbdKtCa9ltDGW3LuiyZ5FZd+bM7QwM3EGs85383fcm+N6+e3jo6DCBhbZUjOds7uE9m5fz3C3LWd3Z1Ohw5z+/EC5++cO/g2P3QfsaeOnH4Jo3QCzR6OjkIlhr+c/+Yf5g/3H68x5vWL2M91+2ioncaf5l779w97G7ue/UfRSCAq3xVm5ccyPP63sez17zbLpSXY0OXy5APb91PM1a+yvFHWvtN40xfziLMS0547f/B4P//J+z+yJTV3Yr66taJG/KinDTru42Ob56XMXicKbyuMmV10rtxZXcp8RVthhbxWpu07WX4in2RfMXx0Srs4eLu5WPKz5erThPVHcccAwmVna8MdEj2txwHqe0UtzknOX14us7Ze0VYx1M6WHx4erwk2X0Wo4J1y1wCEs37DfF+Fyn8hjHmWxzi2NMRZsxBmJRvdgWcyfnAc6VMDunKeOK+wGQDbdaY/KE28h0x1fPfZ72UlutcdOMsefqO8d+3fWqY2v1X3BZfXxQOcYG0/QzWS+NOcd+qazayscVEwVTtuKYskRCad9W7heTCvOOKbsKILpCoHgFgBObvAKg/OqARGtVe/kVAVVXB5SXpVsWUlFbqvI2hvLbE2Kp8AoFEVlQzo7n+dGhszx48Bg74r/LUHY1f/jtywnYx9VrOnjn8zfxvK3L2dnXqask6jU+AA/8E/zoMzB2Aro2wC1/Bte9UY8MXcCeGM/yu08e457hNFe0JHhHzwgDw7fxlm/cx1MjTwGwoX0Dr9v2Op7X9zyuXXGtbt1YwOpJUAwYY34P+Dzhr8FvAAZnNaolZvkNSZbnyx6MUu9VR9OM01VLi0QQbTLPlSfI6qyX/iM10/RX9V1wCVHWK0qSTVMn2jfVfU6N/TC5hYlP7hfHYcIPyKXj3Kox5e3lY6PSqRrvuGFfqXSq9suOc2JT+0r12DT7sbLj45XtFZtbdZuCPiCIyMUJAsvBwXEePjrMjw4N8aNDZ9nfnwbg57d/hZa+YY41/R6fefMzuG59F+0pfbi6ICcfhns/BY98KbxS7bLnh1dMbH6hErgL2Ljn88cHjvKPx4eI4bEpewf9R77AJwhoijVxbe+1vGrzq3hu33PZ0LGh0eHKDKknQfE64PeB/4j2747aZIaYZ78bnvbmRocxjXmY7ZixDMwMzVN3PHP5ejXG1DyujrmmHHeRc9cTd8WYcx1vLqDdTD9u2jFm+j5lAEVE5BystZwYybL76DAPHxth97FhHjk+wljWA6AtGeP6DV389LVruH7VScZP3EXfmjfwgq2vbGzgC43vweNfh3v/Ho58P7yF7do3wNPfDr3bGh2dXKSR3AgP9T/MPx8/wn+NryfntJFK30Xn6H+wtWcTT7vmV7lh1Q1cuexK4lpHZFGq5zGjZ4H3zEEsS1dzd7iJiIiIyILhB5ajZzM8cXqMvSdH2R0lJAbS4doycdewbWU7L9+5mp19nVy9toPNvW24jiEIPH50/6+TTPRy+eW/2eCvZAHpfxx2fwEe/rfwNo7O9fCTHwmTE02djY5OLtDJ9Eke7H+QH/f/mPtPP8CebDOZjp/BS15JG6d5XesBXrXtWezs/VWSrm7TWQrOm6AwxmwBfgvYUD7eWvsTsxeWiIiIiMj8YK3l9GiOJ06P8eSpMR4/NcaTp8fY1z9GthDej2kMbFreyvO29LJzbQdX93WybWUbqXjtWwyOHvsn0uk9XHXl3xKLtc3ll7PwpM/Ao1+Gh78AJx8Kb9vbdDO85M9hy4t0G8cCUQgK7B/az+4zu3mw/0Ee7H+QU+OnsIDbcj2F7l9mtH0lvXHLb25YyRvW7MTVlatLTj23eHwJ+CTwaWA+rlomIiIiInLJRjIFDg2Oh9tAplR/qj/NaHSLBkBvW5KtK9v4+RvWs3VFG1tWtrG5t5WWZH1PvZmYOMaBAx+np+dmli//ydn6cha2wgQ8cVt4pcT+O8LFk1fthBf9MVz1amjtbXSEcg7WWo6NHeORgUd4ZOARHh14lL1n95LzcwAsb1rOdSuu49mbfo178pexe9yyJhnnTzes4GdXdpPQuk9LVj3vop619u9mPRIRERERkVmU83xODmc5PjzB8aEJjg1PcPRshoMD4xweHGcoU6gYv7ojxYaeFl62czXbVraxZUW4dbVc/KMqrbU88eTvY4xh65Y/qHx62lLn5eDgd2HPf8Ker0JuFNpWw7PeBTt/Dnq3NzpCmUZ/pp89g3t4dODRcBt8lJHcCAApN8X2Zdt57dbXclXPVVzZcyUn/C7+9OApvjeUZmUixh9t7uXnVy8jqcTEkldPguJWY8yvES6SmSs2RmtTiIiIiIg0XMEPGEjnOD2a4/RoltOjk4mIYtk/lqs4xhhY1R4mIV581So2LGtmw7IWNvS0sK67edrbMy5F/5lvMjh4J5s3fYBUavWMz7/gTAzDvm/DE9+AfXdAfgziLbDjFbDzZ2HDc3QLxzxzJnOGPYN7eGzwMfYM7mHP4B7OTJwBwDEOmzo38YJ1L+DKniu5qucqLu+8nJgTw1rLPcNp/tdT/dw5tJ/liRh/uGkNb1i9jCY9Slci9SQo3hSV/6uszQKXzXw4IiIiIiIhay3pnMdAOs9gOsdAOs9AOsdAOkf/WI7TI1lOj2U5PRq2WVt5fMJ1WN2ZYk1XEzdtXc6azubSfl9nMys7UiRic/fByPPGePLJ/01b2xX09b1xzl533hk+Gt6+8fg34PA9EHjQ0gtXvgq2vQQ2Pg/iqUZHueT5gc+RsSPsH97PvqF97B3cy57BPfRP9ANgMFzWcRnPWPUMrui5gh3LdrC1ayvN8eaKeTJ+wBdODPLpY2d4fDxLd9zlQ5ev5s1remhWYkKq1PMUj41zEYiIiIiILG4TeZ+hTJ6hTJ7hTCGqFxiJyqFMnqHxPIPjeQbGcgyM58l7Qc25eloT9LalWNGe5MrVHaxoT0VbkhXtKXrbk/S0JHGcubmFwvezBEEOa30sAdZ6YMPSWh9rA44c+TT5/CA7r/4HHKe+9SoWBS8HR++FA3fBvtvh1O6wfdlmeOY7w6TEml2gy/sbwlrL6cxp9g3tKyUj9g/v56nhp8gH4RNpDIYNHRt4+qqnc8WyMBmxrXvblGREuaPZPP90fIB/PjHIsOdzRWuKj21byyt7u3TFhEyrrndGY8yVwA6glMq01n5utoISERERkfkl5/mksx7pXLSV1cey4TaaLTA6UWA06zEyUawXGJ0I+6ZLNgC0JFw6mxN0tcTpaU2yubeNnrYEPS1JlrUm6GmdLLtbEsTnyQccay0HD/4lBw/9DTD911e0tu/NtLdfNfuBNVIQhEmIA3fCwbvg8A/AmwifvtG3C17w4TAp0bO50ZEuKeOFcQ6PHubw6GEOjR4K6yPh/lhhrDSut7mXzZ2buWH7DWzq3MTmrs1c1nEZqdj5r2qx1vKD4XE+c/wM3zwzgjHw4p4O3ta3nBs6WrTmipxXPY8Z/X3gJsIExW3Ai4HvAUpQiIiIiMwD1lpyXkCuEJDzfHJeQLbgM1HwmciHZbbgky0EFW0TeZ9M3mei4DGe88nkPTJ5n/G8TyYX1jP5sC/vn//Dd8wxdDTFaW+K056K0d4UZ01nE+1NMdpTYXtXc4Ku5jhdLYlSvaM5TjK28NYZCII8jz/+AU6e+gq9vS+ho+NajHExuBjjYEysVGIcYm4L3d3PbXTYM89aGHwKDt0dJSW+CxPRcnXLt8H1bwpv29hwI6Q6GhrqYmatZTA7yPH0cU6kT3A8fZxjY8dKSYniOhEQXhGxqmUV69vXc8tlt5QSEZs6N9GRvPB/o6GCx1f7h/nc8QH2jGfpirm8Y10vb1rTQ1/q4heVlaWnnisoXg3sBH5srf1FY8wKwkeOioiIiCxK1loCC14Q4AcWL7D4vqVQ3PejtiDAi/YLfkDBt3h+QCGIyqjdCybrBS+qBwEFr3hcQN4PyHvRVlXPeeEWtoXJgmwhIFfwyUbtF8MYaEnEaE640RajJenS0RRndUeK5qivNRWjNTm5tSRjtKUm663JGO1NMZri7pL5C6nnjfHII+/g7NA9bNz4HjZueNeS+drJj8PxB+DofeF27EeTCYn2NbD1xWFCYuNzoX1VY2NdRHJ+jv7xfk5lTtGf6efU+KkwETF+nONjxzk5frL0GM+i7lQ369vXc+OaG1nfvp4N7RtY376etW1r67oi4pzxBAF3DI7y5VND3DE4SsFadrSk+Iuta/npFbqNQy5OPQmKCWttYIzxjDHtQD9aIHNGnR3PM5zJNzoMWQDs+YcsetULoM3yq83cTDM0VT3T1Ptato7Z6pmr1pjqueuOqWpcrRinjqk1j63ZX3msndJuq/drzDM5tmyyaY4vH2dteX/Z0WXzWVsZS/m4sN1W9U+dvyJmWzlvxZxlfUH5uOjAwE6ODcdMvk4QtQd2Mp4gsKV5Ajs5R/XY8nHFuYKy1wsC8KM2a8EPJuuBtdF+ed1Wtgc2PD4q/WBqm+fbiuOLyQe/WI+2ueI6hrhriLsOcdch4Tok42GZiEWb69CeipGMuSRjTrjFnXC/WMYcUvHJ/lTcpSnu0pRwK+pNcZdUfHLskvlQPYOyuVM8/PBbGR/fz/Ztf8Lq1a9udEizw/cgOwKZATj5cJSQuBdOPwbWD8f0bIFtt0Df02H9s2DZpjDzJXXL+3kGJwYZmBhgMDvI4MQg/RP9nB4/TX+mn9OZsBzODU85tjPZyerW1Wzu2szz+p7HmrY1rGldw+qW1axuXX3ONSIuhrWW+0czfOnUWb7WP8yw57M8EeMtfT28ZkUXV7Q26T1FLkk9CYr7jTGdwD8ADwBp4L7ZDGqp+czd+/mbuw42OgwREZEZYwDHgDGG4hqFrmNwjMGY8POLE/UV2xxjMGXjnPIxTuVY15iKca5jcBxDzDW4xuA4TlSasrEQcx0cY3CdaA7XKfXHnLAsbuX7Mdcp7cddJ+p3prTHY+F+WDrEXEPCnRyXiDlRImIyIeHO0SKOMjPS6Sd46OG34Hlj7Lz60yxb9pzZezFrIfDDZEBFGYSln4egECYSSvXiFu17+bDuF8DPhfVSWz5cwDI7DJmzMDEUbVE9O1IZT6IV1lwHz/mNMCHRtwuau2fv61+gAhswlh/jbPYsQ9khzmbPlrah7FApCVFMSIzlx2rO053qZkXzCla3rOaa5dewomUFvc299Db3srJ5JStaVtASb5mTr+mpTJavnB7i308PcWgiT5NjePHyTl69oovndrUR0/uYzJB6nuLxa1H1k8aYbwHt1trdsxvW0vKS3DfYEv/vRochC4auo5jLH4FmBr/fMzVXPV9/va9Vz7j6vt9T56k+rtZr1W678ONqx2jL+svrtecp1s2U/elf35ip81bPM91cBlvzNcOt/Dh7zv6p4ytLUzWuNKcJ606przhPedvkGKI2p6osvo5LMNle73+kliX4llb2zTHmPO3mHPvn6ptmv/QS5xt7iWPqOa6uWOqs12yjsu+cZZWal3xZsAFnUxM8svIMjjVcf7ybtj3vD5MFUX+4lder9ovjikmGiv6ytmIyYk6YcF2Ipq5wa+6GZZdDU3dl2/Jt0LsD3CX09JGItZZ0IV2RYJgu+XA2e5bh7DCe9WrO1RZvY1nTMpY1LWNL1xaWNS2jp6mHZamobFrGslTYn3Abt3aDby0Pjmb4r4ER/mtghH2ZHAZ4dlcrv75+JS9Z3kHrAlw3Rua/ehbJ/I619mYAa+2h6raLYYzpBv4N2AAcAl5rrR2qGrOWcCHOlYRLIn/KWvuXF/ua89mOa57Fjp54o8MQkflAl0XOsQX6/Z7R82Suvge17gWa5oPgeaeqHnORc9f7+tPcGlR5/Ay3l9pq7E/bVz1feX8d857z+HrHlLdV7V9ILHXXbeVrV7TVWdb872lq26nmEfZ0naHZS3LN0GZSyRSkHEqXBGHAONNsZWMcN2pza4yJ6o4b9jvu9G1ODNw4OHFwE2HiwE1E+2X1WCLqT4bj3QTEivWoXCI/ewpBgXQ+zVh+jLH8GCP5kbDMjTCaH2U4O8xwbpiR/AgjuZGwnhthNDc6bcKhNd5Kd6qb7lQ3a1rXcFXPVXSnuulKdVWU3aluupJdxN35+zt/xg+4++wY/zU4wrcHRhkoeMQMPKuzlTet6eGWng5Wa8FLmWXTJiiMMSmgGegxxnQx+U7dDqy+xNd9H/Ada+1HjTHvi/Z/p2qMB/ymtfZBY0wb8IAx5tvW2j2X+Nrzz4Ybw01ERERE5hVrLYcPf5KnDvwZnZ03cPVVf0c83tHosJaMQlBgwpsgU8gw4U2Utkwhw7g3znh+nPFCuKUL6Yp6ppBhND9aSkhkvMw5XyvlpuhIdtCZ7KQj2VF6okVnspPOZOdkoqEs6dDIqxxmwpGJHHcPpbl9YIS7h8bIBpY21+HmZe38VE8Hz+9uoyO+9K6akcY519n2y8B7CZMRDzCZoBgF/uYSX/cVhI8uBfgscCdVCQpr7UngZFQfM8bsBdYAiy9BISIiIiLz0sFDf83Bgx9nxYqXsWP7n+A4yUaH1FDWWvJBnqyXJe/nyfqTZc7Llcqcn6ts83Nkvcky62en3Z/wJsh4YULCC2pfuVBLU6yJ1ngrLfGW0ra+fT1tiTbaE+20JdpK9er9jmTHJT/VYiE4ky9wz1Ca7w6N8d2hNEey4UL9a5Jxfn7VMn6qp4MbOltIOHoChzSGsdWXBVYPMOZd1tpPzOiLGjNsre0s2x+y1nadY/wG4G7gSmvt6DRj3g68HWDdunXXHz58eCZDFhEREZElZmTkIe5/4DWsXPEyduz4M4yZnQ9t4WNtA3zr4wUenvXCMvDwg7CtYAsV+8UxBb+AZz0KQaF0THU97+cpBIXJzZ+s5/385Bbkyfk5Cn6BnJ8jH0z25fxcabtYjnFIukmaYk0k3SSpWIqUmyIVS03Zb4o10RxrpinWFNbjU+vlyYjmWDOuozURqo16Pj8YTvO9KCHx+HgWgPaYw7M6W3l2VxvP7mpla3NKT9+QOWOMecBau6tm33QJCmPM04Cj1tpT0f4bgZ8BDgN/YK09e54XvYNw/YhqHwA+W2+CwhjTCtwFfMRa+5VzvWbRrl277P3331/P0HlhODs87eq9IiIyO+p5zOpcm8mYzvcHiLrnqSOmuuKuM5z6Hn9bOabm42hrtdXxPannuPO+nq3dXvnY2mnqNWKcfJSsPed+9RylcdipY0uFrZiv1tzFdosNl20o/q9We1lb9ddb6qsui/Wy/cAGpTgCG0wZX+wPbBD228n28vEBQWmOYnv5MeX9vvWx1pZKbIEbg//GxeM7PIe8dUvH+tYPyyAsAwKCIGwv9nmBVxrrW7+i3w98PBsmG4ptc8FgSLgJ4k6chJsg5sRK9aSbJOEkSLhlmxO1R/1JN0kylpysV2+xJCk3NVlGSYekG+7HnJg+BM8iay0HJnLcP5LhgdFxHhgdZ286SwA0OYand7Ty7K4wKXFVa5OevCENc64Exblu8fh74AXRBM8FPgq8C7gG+BRwzgc+W2tfcI6AThtjVllrTxpjVgH904yLA/8O/HO9yYmF6HN7Psc/PPIPjQ5DREREZEEzmPDRtjhgwDUujnEwmLA0YekQ1g0G17iT7dHmGpfnpk7Tmkzz1YnLOOEPlNorxjkucRMvzREzMRzjEHNipTHFNtdxS/sxJ4ZrXFzHrSiLxxXHVGzVbdF+3I1P6Ys78VK9mJAotsniMer5/Hg0TEbcPzLOj0czDHlhsqvNdbiuvYX3bujg2Z1tXN/RTFK3bcgCcK53KbfsKomfJXyKxr8D/26MeegSX/drwJsIkx5vAr5aPcCE6dXPAHuttX9xia83r71w/QvZ2LGx0WGIiMg8MJN/XTQz9ISOeuapJ+6646ljWPVcteauFVM9x9VuurDXK++f7nsz3ZiK9tLjMyv3i+NL+1Xt1ccXP4zXOra6rfghv/y1a7UX6xXtNcZWz1NMGBRfs3q/ekwx4VCaLypLCYeqvpkwNHQvD/7451mz5g381dYPz8icIpeiP1fg0fQEj6UnSuVTmRyW8O1hS0uKFy/vYFd7C9d1NLOlOYWjq1VkATpngsIYE7PWesDNROs71HFcPT4KfNEY81bgCPAaAGPMauDT1tpbgBuBXwAeKUuI/K619rZLfO15Z/uy7Wxftr3RYYiIiIgseZ6XZs/e36GpaS2bLv/tRocjS0w+CDgwkePxdLYiIXEmP7lY6NpUgitbm/jp3i6u72jmuvYW2mNaf0MWh3MlGv4VuMsYMwBMAN8FMMZsAkYu5UWttYOESY/q9hPALVH9eyzYB9SLiIiIyEK0f/9HyWaPcf11XyAWa2l0OLJIjXk++zJZ9o3nwjKTZf94jkPZHH60fEvcGLa2pPiJ7naubG3iitYmrmhN6bGfsqhNe3Zbaz9ijPkOsAq43U6udOQQrkUhIiIiIrJoDA7ezfET/8q6dW+js7Pm+m0i5zTu+QwUPAbyHmfyXlQvMFAI98/kPQ5O5DiZK5SOiRvDxqYk21pTvLy3k80tKba2pNjcnNTjPmXJOWf6zVr7wxptT85eOCIiIiIic69QGGHv4++nuXkTl238jUaHI5fItxbPWrzAko/q+WCyLNhoC8L9vA3IBTbaAvJRmYv6s0HAuB+Q9n3SfkDa88n4QVj3/bDP85kIaj8tqD3m0BOP05OI8eyuVrY0p9jcnGJTS5L1qSRxPVFDBLj0tSRkBnytf5jbBy7prhkREVlCFvu6Z/Pxy5upBUfre60ZnGuGJpuf/ybl9fIFP2uPmfbY6IArzn6Elbkz/Kj3w3z1qTMXHVNpM+VtUYT1fCNrfL6t9ZF3Lh+VXP5K5U/CtVVjLMXH1YaC0mNpi3UIsAQ2TCD4xZLJerHPs5YA8KwtjS2vF8cUiokIaykEYXvBzvx3xwAtrkOr69Iac2iO6quTcVpjqajPYVk8Rk8ixvJEmIzoifb1BA2R+ihBMQ8cy+a5b2S80WGIiMgCMHcfSRpjLj901cvOv5DqMlNhz8cvv/JDsi2rU7s+7YfqcO/q4Ie80Ludbzo/y23DK4Chi46r+EG9OH95W/GJC+dTa0zNtjnMHFU+XYba9bKnzThmMlnjGFORuHExuMbgGiZLDE5VW9IYmnFK+zFTeVzMGOLRftwJ94ttpboT7k8py+oJx5AwhqTrkDCGlOOEbU5Z3czcU2JEZHrGLtSfuuewa9cue//99zc6DBERERGZ5/L5QX5470+RSq5i164v4ziJRockIrKoGWMesNbWXOhH1xqJiIiIyJJkreXxJz6I56XZseNPlZwQEWkwJShEREREZEk6ffpWzpz5Ly677L20tm5tdDgiIkueEhQiIiIisuSMjz/F4098kI72a1m/7m2NDkdERFCCQkRERESWGM8bY/cjv4LjJLjyyr/CGLfRIYmIXJB0Ps2tT93a6DBmnJ7iISIiIiJLhrUBj+35TSYmjnDtNZ8jlVrd6JBERC7ID078gA99/0OcyZxh5/KdrGtf1+iQZowSFCIiIiKyZBw8+AkGBr7Dls0foqvrhkaHIyJSt/HCOH9+/5/zpSe/xIb2DXz2xZ9dVMkJUIJCRERERJaIM2fu4OChv2Llyp+mr++NjQ5HRKRu9568lw/d8yFOjp/kTTvexDuvfSepWKrRYc04JShEREREZNEbH3+Kx/b8Jm1tV7Jt6//BGNPokEREzitTyPCxBz7GF574Auvb1/PZF3+Wa3uvbXRYs0YJChERERFZ1MoXxbz6qr/DdRffXx1FZPG5/9T9fPCeD3I8fZw3bH8D777u3TTFmhod1qxSgkJEREREFi0tiikiC02mkOETP/4En9/7efpa+/h/L/p/7Fq5q9FhzQklKERERERk0dKimCKyEAQ24MHTD/L1A1/n9kO3M1YY43XbXsd7r3svzfHmRoc3Z5SgEBEREZFFqbgo5qqVr9KimCIyLx0aOcStB27lGwe+wfH0cZpiTbxg3Qt47dbXck3vNY0Ob84pQSEiIiIii87kophXsVWLYorIPDKUHeJbh77F15/6OrsHduMYh2esegbvuOYd3Lzu5iV1xUQ1JShEREREZFHJ58+WLYr5t7hustEhicgSVQgKHBo5xBNDT/Dk2SfZe3Yv95+6H896bO7azG9e/5vcctkt9Db3NjrUeUEJChERERFZNDxvjIce/kWy2eNcc81ntSimiMyZ4ewwjw89zhNnn+DJoSd5cuhJnhp+ikJQACDuxLm883Jev/31vPzyl7O1e2uDI55/lKAQERERkUXB9yd4ePfbSacf5+qrPklX59MaHZKILHIn0if4zpHvcMfhO/hx/4+xWAB6mnrY2rWVZ25/Jlu6t7C1aysbOjYQd+INjnh+U4JCRERERBa8IMjzyKPvYHj4R1x5xcfp6Xl+o0MSkUXq0Mgh7jhyB3ccvoPHBh8DYHPXZn5l569wTe81bO3ayrKmZQ2OcmFSgkJEREREFjRrfR7b85sMDt7Ftq0fYcWKlzY6JBFZRKy1PDn0ZCkpsX94PwBX9VzFe697Ly9Y/wLWt69vcJSLgxIUIiIiIrJgWWt5/PHfo7//NjZtej9r1vxco0MSkUVgODvMD0/+kHtO3MP3T3yf/kw/BsN1K67jfU9/Hzevu5mVLSsbHeaiowSFiIiIiCxI1lr27/9jTpz8Ihs2vJP1697W6JBEZIHyAo/dZ3aHCYnj3+exwcewWNoSbTxj1TO4cfWNPG/t8+hp6ml0qIuaEhQiIiIisiAdPPTXHDn6Gfr63shlG9/b6HBEZAHJFDI8fvZxHh14lAf7H+Tek/eSLqRxjMPVPVfzqzt/lWeteRZXLrsS13EbHe6SoQSFiIiIiCw4R47+IwcPfpxVK3+GLZs/iDGm0SGJyDyV83M8efZJHh18lMcGHuOxwcc4MHKAwAYArGldw4s2vIgb19zIDatuoD3R3uCIly4lKERERERkQTlx4svs2/d/WL78p9i27Y8wxml0SCLSYFkvy6nxU5wYP8HJ9ElOjofbvqF97Bvehxd4AHSnurmy50peuP6FXNlzJTuW7dBtG/OIEhTzwL/s/Rf+Y/9/NDoMERGZZYaF+RfemfrLdL1ffz3j6omprter80urnqvW3NUx1f311nHcucaU6uYcfVVzVLxG1XEGUxpb3lb32KrXqTmXqRxf+l+NY8tLgJX+fjYVfsiws5ofpnu59b4/mTKufE7HOGDAwZnS7xintO8YJxwLYb1svGOcyTHFdmNwcCr6imNLbdSuu8YtjStu1W3F/YrSqRw3ZYxTuS+yWIwXxunP9HMmc4b+iX4GMgP0T/SHCYn0CU6On+Rs9mzFMY5x6G3uZUP7Bt58xZu5YtkVXNlzJSuaV+iKq3lMCYp5oC3RphVgRUQWOzvXLzczLzhj89j65qnn9eqKqa4hdcZUFXut46a01Zi6nuNqfZ8stqJ9ujHVfeVzV7xORbXyOBv9r9br1Dv2vP1lX0+xXhGrtaVjS30WLAHPahphc8sIT+WTfHEE8vY7WCyBDcrG2VJbcb5if/ncxf7FrJioiDmxUuLCNW4pkREzsVJ/sb18jGvcyWMdl5iZHBczsYoxU16rxlw1X9+ZjKP6mJiJhXNH7XEnPtnnhH1xEy/VY06MuDO57xpXH0TnGT/wyXgZRvOjjOXHGM2NMpqPtrL6SG6EgYkBzkycoT/Tz4Q3MWWuplgTK5pXsLp1Ndu6t7GqZRWrW1ezqmUVq1pX0dvcS9yJN+CrlEth6v2FYSHZtWuXvf/++xsdhoiIiIjMAGsDntz3hxw79jlWrngF27d/FMdJzMC8k4mQgGBKMqNYD2xQGlOsT2kPJseWz1U+R/XmW/+c7VPKoHZ7PWO8wCvt+9bHD/xSPQgCPOuV2jzrEQThWC/wKvbLj/UCr7TvWa9irmIsnvVm4Ay4OAZDzImRcBPEnXhpS7iJUjKjvK9inDu1rVZ/MSFS3J/uSphivTxhUitRV56wm5JQixJwpYQcVJxjpXOOcGz5uVhxvpa3l53X025Rf+nfuezfv/ocKPgFJryJKVvWzzJRmCAf5M/5b+YYh/ZEO+2JdnqaeljevJzlTcvpbe4t1Zc3L6e3qZeWeIsSUAuUMeYBa+2uWn26gkJERERE5q0gyPHYnt+iv/821q19K5s2vW/G1pwo3TpiwEWr9M+W4ofbUoKjPEESJVSqkxrFpErxA7AXeKW+8vZCUCjtF+vVbYWgQMEv1K4HBfJ+noyXYTg3XDEmH+RL/QW/0NBky3xQcXWLE5tyFU0x6dMUa6Ip1sTy5uU0xZpIuamwLd5Ek9tEc7yZtkRbKRHRnmwv1ZV0ECUoRERERGRe8rwxdj/yqwwN/YBNm97H+nW/1OiQ5CI4xsFxHeIs7MvtrbWVSY+qZEfez097dYxvfay1+NYHqFibpXxdllprspSvlTJljRXHqVhPpaI8xxoq1XMW1zgprpVSvVWvESMyWxqSoDDGdAP/BmwADgGvtdYOTTPWBe4HjltrXzpXMYqIiIhI4+RyZ3j44beSHn+cHdv/lFWrXtXokGSJM8aEt3K4CzvRIjKfNWp53/cB37HWbga+E+1P5z3A3jmJSkREREQaLpM5xAMPvJbxzAGuvvpTSk6IiCwRjUpQvAL4bFT/LPDKWoOMMX3AS4BPz01YIiIiItJIo2OPcv8Dr8Xzx7ju2s/Ts+ymRockIiJzpFEJihXW2pMAUdk7zbiPA78NLP7nQImIiIgscQMD/8ODD74e10ly/XVfpKPjmkaHJCIic2jW1qAwxtwBrKzR9YE6j38p0G+tfcAYc1Md498OvB1g3bp19QcqIiIiIg1lrc+BAx/n0OG/pbV1Ozt3fppUstavkSIispjNWoLCWvuC6fqMMaeNMaustSeNMauA/hrDbgReboy5BUgB7caYz1tr3zDN630K+BTArl277KV/BSIiIiIy2/L5QR597L0MDX2fVatezdYtH8Z1U40OS0REGqBRt3h8DXhTVH8T8NXqAdba91tr+6y1G4CfA/57uuSEiIiIiCw8wyMPcN+PXs7IyANs3/ZRdmz/EyUnRESWsEYlKD4KvNAYsw94YbSPMWa1Mea2BsUkIiIiInPAWsuRo//Igw++Hsck2HX9l1m9+jWNDktERBps1m7xOBdr7SBwc432E8AtNdrvBO6c9cBEREREZFZ53hh7H/9d+vtvo6fnBezY/qfE4+2NDktEROaBhiQoRERERGTpSaef4JFH30Emc5hNl/8269a9HWNMo8MSEZF5QgkKEREREZlV1lpOnvwyTzz5YWKxFq679vN0dd3Q6LBERGSeUYJCRERERGZNNnuCvY//LmfPfpfOzhu48oqPk0z2NjosERGZh5SgEBEREZEZZ23A8eP/yv6n/gSwbNny+/SteQPGNGqNdhERme+UoBARERGRGZXJHGLv4+9nePg+urtuZNu2P6Kpqa/RYYmIyDynBIWIiIiIzAhrfY4c/UcOHPgYjhNn+7aPsmrVq7UQpoiI1EUJChERERG5ZOn0k+x9/H2Mjj5MT8/NbNv6hySTKxodloiILCBKUIiIiIjIRfP9CQ4f+QcOHfpbYrE2rtjxMVaseJmumhARkQumBIWIiIiIXDBrA06d+g+eOvAX5HKnWNH7UrZs+RCJxLJGhyYiIguUEhQiIiIickHOnr2Hffs/Sjq9h/a2q7niio/T1fm0RoclIiILnBIUIiIiIlKX9Pg+9u//KIODd5JKreGKKz7Oit6X6NGhIiIyI5SgEBEREZFzyuUHOHjg4xw/8W/EYi1suvx36Ot7E66bbHRoIiKyiChBISIiIiI1ed4YR4/+E4eP/ANBkKOv7xfYuOGdJBLdjQ5NREQWISUoRERERKRCPj/AkaP/xPHjn8fzxli+/CfZdPlv09y8sdGhiYjIIqYEhYiIiIgAMDFxjCNHPs2Jk18kCPL0Lv8p1q//Zdrbr2p0aCIisgQoQSEiIiKyxKXTT3L4yN9z+vStgMPKla9k/bq309JyWaNDExGRJUQJChEREZElamTkIQ4d/jsGBu7AcZro63sj69a+hVRqdaNDExGRJUgJChEREZElxPcznD79dY6f+AKjow8Ti3WwccO76ev7BS1+KSIiDaUEhYiIiMgSMDa2h+MnvsCpU1/F99O0tGxm8+bfY/Wq1xCLtTY6PBERESUoRERERBYrzxunv/8bpaslHCdJb+8trFn9c3R0XI8xptEhioiIlChBISIiIrKIWGsZHdvNyZP/XnG1xJbNH2TlylcSj3c2OkQREZGalKAQERERWeCstYylH6P/9Dc43X8b2ewxXS0hIiILjhIUIiIiIguQtZb0+BP0n/46p/tvY2LiMMbE6O6+kY0b38Xynp8kHm9vdJgiIiJ1U4JCREREZIGw1jI+/iT9/d/idP83yGSeAhy6u57J+vW/TO/ynyQe72p0mCIiIhdFCQoRERGReczzxhka+j4Dg3cyOHgnudwpwNDZ+XTW9r2J3t4XkUj0NDpMERGRS6YEhYiIiMg8Yq0lkznA4OCdDAzeyfDw/Vibx3Vb6e5+FsuWvZueZc8nmextdKgiIiIzSgkKERERkQbL5c4wPHwfQ8P3Mjh4N9nsUQBaWjazdu0bWbbsJjo7rsdxEg2OVEREZPYoQSEiIiIyx7LZEwwN38fw0L0Mj/yITOYgAK7bTFfXM1m//u0s634eTU1rGhypiIjI3FGCQkRERGQWWesznjnA6MhD0VUS95HNHgMgFmujs+NprF79s3R2Pp221itwHP16JiIiS5N+AoqIiIjMEGst2ewJRsceZnR0N6OjuxkbexTfHwcgHu+is/NprF37Zro6b6C1dSvGuA2OWkREZH5QgkJERETkIlgbkM0eI51+grH0XkZHw6REoXAWAGMStLVuY9XKV9HefhVt7VfT0nw5xjgNjlxERGR+UoJCRERE5DwKhSHS6SfCbTwsx8f3la6MAENLyyZ6lj2f9varaW+/mtbWrThOsqFxi4iILCRKUIiIiIgQrhWRzZ4gkzlIJnOA8cxBJjIHSY/vI5/vL42Lx7toadnCqlU/Q2vLVlpbt9LSsoVYrKWB0YuIiCx8DUlQGGO6gX8DNgCHgNdaa4dqjOsEPg1cCVjgLdbaH8xZoCIiIrKoBIFHLneKiexRshPHyEwcKiUkJiYOEwT50ljXbaWl+TK6u2+ktXVrKRmRSPRijGngVyEiIrI4NeoKivcB37HWftQY875o/3dqjPtL4FvW2lcbYxJA81wGKSIiIgtLEOTJ5c6Qy51kInuM7MSxqDzKRPYYudxJrPVL442J09S0jubmjSxbdhPNzRtpbr6M5uaNJOLLlIgQERGZQ41KULwCuCmqfxa4k6oEhTGmHXgu8GYAa20eyCMiIiJLjrUWzxslnx8gl+8nlz1FLneaXO4U2dxJcrlT5HKnyOcHCS+6nJRI9NKUWkNHx3U0pfpoalpLKrWGpqa1JJOr9VhPERGReaJRP5FXWGtPAlhrTxpjemuMuQw4A/yjMWYn8ADwHmvteI2xIiIissAEQY5CYZh8YYhC/iyFwhD5wlny+TPk8wPhljsTJSUGCP9WUSkW6yCVXEkytZK21h0kU6vC/eQKUqk+Uqk1uG6qAV+diIiIXKhZS1AYY+4AVtbo+kCdU8SA64B3WWvvNcb8JeGtIB+c5vXeDrwdYN26dRcesIiIiFwway1BkMPzRigURvC8UQqF4XDfG8UrjFDwRvAKoxS8IQr5oTAhURjC99PTzOqQSCwjkVhOIrGMlpZNJBI90X4PieTyUhLCdXX3p4iIyGIxawkKa+0Lpuszxpw2xqyKrp5YBfTXGHYMOGatvTfa/zJhgmK61/sU8CmAXbt22enGiYiILHXW+vj+RLSN4/vjeH4mrHvj+H4Gz0/j+xl8bzyse2k8bwzPj0ovjR/VrfXO+XqxWBuxWAfxeBeJeBfNzZcRT3QRj3dFbd2lejzRTSLehTHuHH03REREZL5o1C0eXwPeBHw0Kr9aPcBae8oYc9QYs9Va+wRwM7BnbsMUERGZPdb6BEEBawsEQY4gKJb5sLR5Aj9XWS+1ZfGDLIGfJQhyNet+ECYhgmCilJAIgomKJ1WcjzGxMMHgtuHGWonF2kilVlfsx9xWYvF24rEOYvEO4rH2KCHRQSzWpmSDiIiI1KVRCYqPAl80xrwVOAK8BsAYsxr4tLX2lmjcu4B/jp7gcQD4xUYEKyIil85aC1isDYAg2g9K++EYH2sDLAHYIHragi21h+PLx/hl+z7Y4li/qn9yjA28ir7AetFredE4L2ov1qMt8Aiq9q0tbytEyQavlHSwQSHsDwphYqGUjMiH/WVPk7h4BsdJ4bopHCdZVk/huk3E451RvRnXTeE6zThuE67bhOs04cZaiLnNuG5LtIX1WCwsHScxAzGKiIiInF9DEhTW2kHCKyKq208At5TtPwTsmrvIGuPMwHc4e/a7MzPZIr+5xc7pFziTr1XHXPb8Y+r7+uuMu47Xq2uamq9X1VbztWzVXh3zTGmyZTVbe5CtY0zV2MlxNcZPGXO+/rKy1rHRh/bJ9sl5psRbarNVbcXXqR5jo/+z0/QTfegvTxyUHxNUjrc2/GCPLSUbyo+rLMvHBWWvs9AYjIljjIvjxDCmcitvc0wc48QwJk7MbcE4cRwTi8p4ND6BcRI4ThzHRHUTj9rjUT2J4yZxTCJKONQqJxMSYXx6FKaIiIgsfHqu1jyQHtvLqVO3zth8i/8X1YX69Z0/7vr+7WZqDJh6xl30+WSq9mrMM2XuWq81ta1iLlPZU6te+X2tVZ9ubFVfsW6mHhf2mqrmynEGU3Wsmeyt2V4cH23G4FS0FWOanLf6GFNrfHm/caJ2p9RePiasOxX1irbSOKesb3K/fD6DWxoTvq4THl8aF8ZgjFs2nxPeHhAdb0zUHo0J992ycZPHlG9he3lbcUwxweDWKN3S90dEREREZp8SFPPAxo3vZOPGdzY6DBEREREREZGG0Z+GRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThjLW20THMOGPMGeBwja4OYKSOKeoZd74x0/VP194DDNQRWyPU+31r1NwXOseFjL/Yf+d6+nUuzOzcF3P8XL0n6DyY27n1njB35vO5oPeEuTOfz4OLmUO/L168+Xwu6D1h7ug8uPgxS+U9Yb21dnnNI6y1S2YDPjVT4843Zrr+c7Tf3+jvz6V+3xo194XOcSHjL/bfuZ5+nQszO/fFHD9X7wk6D+Z2br0n6Fy42OP1nrD4zoOLmUO/Ly7Oc0HvCToP5vt5cJ5/7wV3Hlzs93up3eJx6wyOO9+Y6frrjWE+mc2YZ2LuC53jQsZf7L9zPf06F2Z27os5fq7eE3QezO3cek+YO/P5XNB7wtyZz+fBxcyh3xcv3nw+F/SeMHd0Hlz8mCX/nrAob/FYiIwx91trdzU6Dmk8nQsCOg9kks4FAZ0HEtJ5IEU6FwQW53mw1K6gmM8+1egAZN7QuSCg80Am6VwQ0HkgIZ0HUqRzQWARnge6gkJEREREREREGk5XUIiIiIiIiIhIwylBISIiIiIiIiINpwSFiIiIiIiIiDScEhQLgDFmnTHma8aY/2eMeV+j45HGMMY8xxjzSWPMp40x3290PNI4xhjHGPMRY8wnjDFvanQ80hjGmJuMMd+N3hduanQ80ljGmBZjzAPGmJc2OhZpDGPM9uj94MvGmF9tdDzSOMaYVxpj/sEY81VjzE82Oh5pDGPMZcaYzxhjvtzoWC6EEhSzLEoq9BtjHq1q/yljzBPGmP11JB22AN+w1r4F2DFrwcqsmYnzwFr7XWvtrwBfBz47m/HK7Jmh94RXAGuAAnBstmKV2TND54EF0kAKnQcL1gydCwC/A3xxdqKU2TZDvyfsjX5PeC2wqB47uJTM0Lnwn9baXwLeDPzsLIYrs2SGzoMD1tq3zm6kM09P8ZhlxpjnEv4C+Tlr7ZVRmws8CbyQ8JfKHwGvA1zgj6umeAvgA18m/GX0/7PW/uPcRC8zZSbOA2ttf3TcF4G3WWtH5yh8mUEz9J7wFmDIWvv3xpgvW2tfPVfxy8yYofNgwFobGGNWAH9hrf35uYpfZs4MnQtXAz2EyaoBa+3X5yZ6mSkz9XuCMeblwPuAv7bW/stcxS8zZ4Z/Z/xz4J+ttQ/OUfgyQ2b4PFhQvyvGGh3AYmetvdsYs6Gq+enAfmvtAQBjzBeAV1hr/xiYcmmmMea3gN+P5voyoATFAjMT50E0Zh0wouTEwjVD7wnHgHy0689iuDJLZuo9ITIEJGclUJl1M/Se8HyghfAqywljzG3W2mB2I5eZNFPvCdbarwFfM8Z8A1CCYgGaofcEA3wU+KaSEwvTDP+esKAoQdEYa4CjZfvHgBvOMf5bwB8YY14PHJrFuGRuXeh5APBWlKBajC70XPgK8AljzHOAu2czMJlTF3QeGGNeBbwI6AT+elYjk7l2QeeCtfYDAMaYNxNdWTOr0clcudD3hJuAVxEmLG+bzcBkzl3o7wnvAl4AdBhjNllrPzmbwcmcudD3hGXAR4BrjTHvjxIZ854SFI1harRNe6+NtfZRYMFcliN1u6DzAMBa+/uzFIs01oW+J2QIk1WyuFzoefAVwmSVLD4X/PMBwFr7TzMfijTQhb4n3AncOVvBSENd6LnwV8BfzV440iAXeh4MAr8ye+HMDi2S2RjHgLVl+33AiQbFIo2j80CKdC4I6DyQSToXBHQeyCSdCwJL5DxQgqIxfgRsNsZsNMYkgJ8DvtbgmGTu6TyQIp0LAjoPZJLOBQGdBzJJ54LAEjkPlKCYZcaYfwV+AGw1xhwzxrzVWusB7wT+C9gLfNFa+1gj45TZpfNAinQuCOg8kEk6FwR0HsgknQsCS/s80GNGRURERERERKThdAWFiIiIiIiIiDScEhQiIiIiIiIi0nBKUIiIiIiIiIhIwylBISIiIiIiIiINpwSFiIiIiIiIiDScEhQiIiIiIiIi0nBKUIiIiEjDGWMOGWN6LnWMiIiILFxKUIiIiIiIiIhIwylBISIiInPKGPOfxpgHjDGPGWPeXtW3wRjzuDHms8aY3caYLxtjmsuGvMsY86Ax5hFjzLbomKcbY75vjPlxVG6d0y9IREREZoQSFCIiIjLX3mKtvR7YBbzbGLOsqn8r8Clr7dXAKPBrZX0D1trrgL8Dfitqexx4rrX2WuBDwB/NavQiIiIyK5SgEBERkbn2bmPMw8APgbXA5qr+o9bae6L654Fnl/V9JSofADZE9Q7gS8aYR4GPAVfMRtAiIiIyu5SgEBERkTljjLkJeAHwTGvtTuDHQKpqmD3Hfi4qfSAW1f8Q+B9r7ZXAy2rMJyIiIguAEhQiIiIylzqAIWttJlpD4hk1xqwzxjwzqr8O+F4dcx6P6m+ekShFRERkzilBISIiInPpW0DMGLOb8MqHH9YYsxd4UzSmm3C9iXP5v8AfG2PuAdyZDFZERETmjrG2+ipKERERkcYwxmwAvh7driEiIiJLiK6gEBEREREREZGG0xUUIiIiIiIiItJwuoJCRERERERERBpOCQoRERERERERaTglKERERERERESk4ZSgEBEREREREZGGU4JCRERERERERBpOCQoRERERERERabj/Hz+8lhPiwwjzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from matplotlib.pyplot import figure\n", - "\n", - "plt.figure(figsize=(18,6))\n", - "plt.gca().plot(alphas, coefs)\n", - "plt.gca().set_xscale('log')\n", - "plt.axis('tight')\n", - "plt.xlabel('alpha')\n", - "plt.ylabel('Standardized Coefficients')\n", - "plt.title('Lasso coefficients as a function of alpha');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "It's tempting to try to interpret the coefficients obtained via Lasso. Unfortunately, that can be very difficult, because by dropping covariates Lasso introduces a form of **omitted variable bias** ([wikipedia](https://en.wikipedia.org/wiki/Omitted-variable_bias)). To understand this form of bias, consider the following toy example. We have two positively correlated independent variables, `x.1` and `x.2`, that are linearly related to the outcome `y`. Linear regression of `y` on `x1` and `x2` gives us the correct coefficients. However, if we _omit_ `x2` from the estimation model, the coefficient on `x1` increases. This is because `x1` is now \"picking up\" the effect of the variable that was left out. In other words, the effect of `x1` seems stronger because we aren't controlling for some other confounding variable. Note that the second model this still works for prediction, but we cannot interpret the coefficient as a measure of strength of the causal relationship between `x1` and `y`." - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Correct Model\n" - ] - } - ], - "source": [ - "mean = [0.0,0.0]\n", - "cov = [[1.5,1],[1,1.5]]\n", - "\n", - "x1, x2 = np.random.multivariate_normal(mean, cov, 100000).T\n", - "y = 1 + 2*x1 + 3*x2 + np.random.rand(100000)\n", - "data_sim = pd.DataFrame(np.array([x1,x2,y]).T,columns=['x1','x2','y'] )\n", - "\n", - "print('Correct Model')" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " OLS Regression Results \n", - "==============================================================================\n", - "Dep. Variable: y R-squared: 0.997\n", - "Model: OLS Adj. R-squared: 0.997\n", - "Method: Least Squares F-statistic: 1.897e+07\n", - "Date: Wed, 22 Jun 2022 Prob (F-statistic): 0.00\n", - "Time: 20:59:12 Log-Likelihood: -17706.\n", - "No. Observations: 100000 AIC: 3.542e+04\n", - "Df Residuals: 99997 BIC: 3.545e+04\n", - "Df Model: 2 \n", - "Covariance Type: nonrobust \n", - "==============================================================================\n", - " coef std err t P>|t| [0.025 0.975]\n", - "------------------------------------------------------------------------------\n", - "Intercept 1.5012 0.001 1643.500 0.000 1.499 1.503\n", - "x1 1.9998 0.001 1996.643 0.000 1.998 2.002\n", - "x2 3.0011 0.001 3002.007 0.000 2.999 3.003\n", - "==============================================================================\n", - "Omnibus: 90005.976 Durbin-Watson: 2.010\n", - "Prob(Omnibus): 0.000 Jarque-Bera (JB): 6016.746\n", - "Skew: -0.006 Prob(JB): 0.00\n", - "Kurtosis: 1.798 Cond. No. 2.24\n", - "==============================================================================\n", - "\n", - "Notes:\n", - "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" - ] - } - ], - "source": [ - "import statsmodels.formula.api as smf\n", - "\n", - "result = smf.ols('y ~ x1 + x2', data = data_sim).fit()\n", - "print(result.summary())" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model with omitted variable bias\n", - " OLS Regression Results \n", - "==============================================================================\n", - "Dep. Variable: y R-squared: 0.760\n", - "Model: OLS Adj. R-squared: 0.760\n", - "Method: Least Squares F-statistic: 3.174e+05\n", - "Date: Wed, 22 Jun 2022 Prob (F-statistic): 0.00\n", - "Time: 20:59:21 Log-Likelihood: -2.4332e+05\n", - "No. Observations: 100000 AIC: 4.866e+05\n", - "Df Residuals: 99998 BIC: 4.867e+05\n", - "Df Model: 1 \n", - "Covariance Type: nonrobust \n", - "==============================================================================\n", - " coef std err t P>|t| [0.025 0.975]\n", - "------------------------------------------------------------------------------\n", - "Intercept 1.5107 0.009 173.262 0.000 1.494 1.528\n", - "x1 4.0084 0.007 563.401 0.000 3.994 4.022\n", - "==============================================================================\n", - "Omnibus: 0.159 Durbin-Watson: 2.003\n", - "Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.158\n", - "Skew: -0.003 Prob(JB): 0.924\n", - "Kurtosis: 3.001 Cond. No. 1.23\n", - "==============================================================================\n", - "\n", - "Notes:\n", - "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" - ] - } - ], - "source": [ - "print(\"Model with omitted variable bias\")\n", - "\n", - "result = smf.ols('y ~ x1', data = data_sim).fit()\n", - "print(result.summary())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "The phenomenon above occurs in Lasso and in any other sparsity-promoting method when correlated covariates are present since, by forcing coefficients to be zero, Lasso is effectively dropping them from the model. And as we have seen, as a variable gets dropped, a different variable that is correlated with it can \"pick up\" its effect, which in turn can cause bias. Once $\\lambda$ grows sufficiently large, the penalization term overwhelms any benefit of having that variable in the model, so that variable finally decreases to zero too.\n", - "\n", - "One may instead consider using Lasso to select a subset of variables, and then regressing the outcome on the subset of selected variables via OLS (without any penalization). This method is often called **post-lasso**. Although it has desirable properties in terms of model fit (see e.g., [Belloni and Chernozhukov, 2013](https://arxiv.org/pdf/1001.0188.pdf)), this procedure does not solve the omitted variable issue we mentioned above.\n", - "\n", - "We illustrate this next. We observe the path of the estimated coefficient on the number of bathroooms (`BATHS`) as we increase $\\lambda$." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'lambda')" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCYAAAFNCAYAAADcoG4BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACNHUlEQVR4nOzdd3hURRfH8e8kIQmh956E3pv0DiJVEFBRFFFQQUTEXnkVFLEgFlREEMFCFCuIoqJ0EBCC9F5D7zWEkDbvH5NsEhIgICEQfp/nuU927rn37uxlgezZmTPGWouIiIiIiIiISEbwyugOiIiIiIiIiMj1S4kJEREREREREckwSkyIiIiIiIiISIZRYkJEREREREREMowSEyIiIiIiIiKSYZSYEBEREREREZEMo8SEiIjIVcYYU94Ys8wYc9IYM8AYk9UY84sx5rgx5ntjTHdjzJ9puM6LxpixV6LPl5MxJtwYUyqj+3EtMcYEG2OsMcYno/siIiJysZSYEBERuUTGmLuNMaHxH6T3GmN+N8Y0vgyXfhaYba3NYa39ALgdKATks9Z2tdaGWGtbX+gi1trXrbUP/tfOpOeHXmPMbGNMsj5aa7Nba7emw3P1NMbMv9zXvRTGmM+NMVHx752TxpilxphmF3H+dmPMTenZRxERkStFiQkREZFLYIx5EngfeB2XNAgEPgY6XYbLBwFrzmpvtNbGXIZry9VjmLU2O5ALGAX8ZIzxzuA+iYiIXHFKTIiIiFwkY0wu4FXgEWvtT9baU9baaGvtL9baZ+KP8TPGvG+M2RO/vW+M8UtyjQ7GmOXGmGPGmAXGmGrx+2cCLYCP4r9N/wZ4Gbgzvv3A2d/8G2MqG2P+MsYcMcbsN8a8GL9/sDFmQpLj6sc/1zFjzApjTPMksdnGmCHGmL/jv8H/0xiTPz48N/7nsfg+NEjlnngZY543xmwxxhw2xnxnjMkbH/M3xkyI33/MGLPEGFPIGDMUaJLktX4Uf7w1xpSJf/y5Mebj+NEo4fH9Kxx/P48aY9YbY2om6UdCH04aY9YaY7rE768IfAI0iL/OsSR/TsONMTvi790nxpis5/hz9zLG/M8YE2aMOWCM+TL+vZB0VMl98dc6ZIwZeJ63kYe1Ng74GsiLS3JhjCltjJkZf88OGWNCjDG542Nf4RJhv8S/lmeTXK57as9vjKlr3OieE/Gv89209E1ERORKUGJCRETk4jUA/IFJ5zlmIFAfqAFUB+oC/wMwxtwAjAMeAvIBo4Epxhg/a+2NwDygf/yUhrtwozK+jW9/lvRJjDE5gOnAH0BRoAww4+zOGGOKAVOB13AfgJ8GfjTGFEhy2N1AL6Ag4Bt/DEDT+J+54/uwMJXXOwDoDDSL78dRYGR87D7cqIAS8a+3L3DaWjvwrNfaP9U7CXfE37v8wBlgIfBvfPsHIOmH7C24ZEcu4BVggjGmiLV2XfzzLox/rtzxx78FlMP9OZUBiuESQanpGb+1AEoB2YGPzjqmMVAeaAm8HJ8QOa/4URL3AtuA/Qm7gTdw97Ii7t4NBrDW9gB2AB3jX8uwNDz/CGCEtTYnUBr47kL9EhERuVKUmBAREbl4+YBDF5ha0R141Vp7wFp7EPchuUd8rDcw2lr7j7U21lr7Be4Dd/1L6EsHYJ+19h1rbaS19qS19p9UjrsH+M1a+5u1Ns5a+xcQCrRPcsx4a+1Ga+1p3AfXGhfRj4eAgdbaXdbaM7gP0bcbV5ciGnfPysS/3qXW2hMXce1J8edE4pJBkdbaL621scC3gGfEhLX2e2vtnvjX+C2wCZcUSsEYY3B/Fk9Ya49Ya0/ikkDdztGP7sC71tqt1tpw4AWgm0lee+MVa+1pa+0KYAUuKXUuT8eP3DiFmxb0Uvxrwlq72Vr7l7X2TPz7511c0udCzvX80UAZY0x+a224tXZRGq4lIiJyRSgxISIicvEOA/nN+YtBFgXCkrTD4veBqxnxVPy0hmPxH05LJIlfjBK4UQIXEgR0Pes5GwNFkhyzL8njCNyIgLQKAiYlufY6IBY3NeErYBow0bhpLcOMMVku4tr7kzw+nUrb009jzL0mcYrMMaAKbmRFagoAAcDSJMf/Eb8/Nan9mfoQP/0i3sXcw+HxIzeyArWBt40x7eJfR0FjzERjzG5jzAlgwnleR1Lnev4HcCND1sdPpemQhmuJiIhcEUpMiIiIXLyFQCRu6sK57MF9WE8QGL8PYCcw1FqbO8kWYK395hL6shM3ND8tx3111nNms9a+mYZzbRqv3+6s6/tba3fH1994xVpbCWiIG+Vx70VcO02MMUHAp0B/3AomuYHVuGkRqT3XIVxio3KSPueKL0iZmtT+TGNInii5aNZZDfwN3By/+434/laLn35xT5LXkdprudBzbIqfFlQQN33lB2NMtv/SbxERkctFiQkREZGLZK09jqtDMNIY09kYE2CMyWKMaWeMSZjv/w3wP2NMgfgiki/jvvUG9+G5rzGmnnGyGWNujq8XcbF+BQobYx6PL+SYwxhTL5XjJgAdjTFtjDHe8QUpmxtjiqfhOQ4Ccbi6CufyCTA0PjlA/OvuFP+4hTGmanwthRO4aQWx8eftv8B1L0Y23Af2g/HP2ws3YiLBfqC4McYXPEUnPwXeM8YUjD+nmDGmzTmu/w3whDGmpDEmO4m1P/7zainGmAq4ESwJq7HkAMJxBUeLAc+cdcpF3TdjzD3GmALxr/lY/O7Y85wiIiJyxSgxISIicgmste8CT+KKMh7EjRjoD0yOP+Q1XA2HlcAqXLHG1+LPDcXVNvgIVyRyM66o4qX04yTQCuiIG8a/CVec8ezjduKWMn0xSX+fIQ2/C1hrI4ChwN/xUx5Sq4UxApgC/GmMOQksAhISJIVxRSpP4KZ4zCExSTMCV4viqDHmg7S85vP0cy3wDm5Ey36gKm4UQoKZuA/++4wxh+L3PYe7/4vip0xMxxWPTM043LSUubhClZHAo/+hy8/Gr6pxCvgTGI8rhAquJskNwHFc0dKfzjr3DVzi65gx5mkurC2wxhgTjrvn3eJrdoiIiGQ4Y+1lG0EpIiIiIiIiInJRNGJCRERERERERDKMEhMiIiIiIiIikmGUmBARERERERGRDKPEhIiIiIiIiIhkGCUmRERERERERCTD+GR0By6n/Pnz2+Dg4IzuhoiIiIiIiIgksXTp0kPW2gKpxTJVYiI4OJjQ0NCM7oaIiIiIiIiIJGGMCTtXTFM5RERERERERCTDKDEhIiIiIiIiIhlGiQkRERERERERyTCZqsZEaqKjo9m1axeRkZEZ3ZVrlr+/P8WLFydLliwZ3RURERERERHJZDJ9YmLXrl3kyJGD4OBgjDEZ3Z1rjrWWw4cPs2vXLkqWLJnR3REREREREZFMJtNP5YiMjCRfvnxKSlwiYwz58uXTiBMRERERERFJF5k+MQEoKfEf6f6JiIiIiIhIerkuEhMZzdvbmxo1alClShU6duzIsWPHANizZw+33357quc0b96c0NDQK9hLERERERERuRghISEEBwfj5eVFcHAwISEhGd2la5ISE1dA1qxZWb58OatXryZv3ryMHDkSgKJFi/LDDz9kcO9ERERERETkYoWEhNCnTx/CwsKw1hIWFkafPn2UnLgEmb745aUaPHswg5sPvuzXbdCgAStXrgRg+/btdOjQgdWrV3P69Gl69erF2rVrqVixIqdPn/ac89lnn/HWW29RtGhRypYti5+fHx999BEHDx6kb9++7NixA4D333+fRo0aXfY+i4iIiIiInMvSpUv5999/U+zv2bMnWbJkYdGiRaxatSpFvHfv3gDMmzeP9evXJ4tlyZKFnj17AjBz5ky2bNmSLB4QEED37t0B+OOPP9i5c2eyeK5cubjjjjsA+OWXX9i3b1+yeP78+enSpQsAkyZN4tChQ8niRYoUoUOHDgB8++23nDhxIlk8MDCQgQMHEhERkWx/REQEAwYMoEiRItx4440AjB8/npiYmGTHVahQgSZNmmCtZezYsSnuTdWqValfvz5RUVF88cUXyWI33XRT5luYwFqbabZatWrZs61duzbFvrRgMJd0XmqyZctmrbU2JibG3n777fb333+31lq7bds2W7lyZWutte+8847t1auXtdbaFStWWG9vb7tkyRK7e/duGxQUZA8fPmyjoqJs48aN7SOPPGKttfauu+6y8+bNs9ZaGxYWZitUqHDZ+ny2S72PIiIiIiKSub388ssWSLGdPHnSWmvtk08+mWo8Qe/evVPEsmfP7ol369YtRbxIkSKe+M0335wiXq5cOU+8adOmKeJJPzvecMMNKeLNmzf3xMuWLZsi3qFDB2uMSfV1Afauu+7ynJ8tW7YU8T59+lhrrY2Li0v1/Keeespaa+2JEydSxH788cfL9Ud3RQGh9hyf5Y2LZw61a9e2Z9dlWLduHRUrVvS0m3/enJ41etKzRk+iY6Np9VUrHrzhQe6pdg8R0RG0D2nPw7UfptuP3Tj23DE6TezEgHoDuLXirRyKOMTt393OUw2eomP5juwL30fh7IUv2C9vb2+qVq3K9u3bqVWrFn/++Sfe3t7JRkx07tyZAQMGeLJqN9xwA2PGjGHXrl1MmjTJkyX74IMP2LhxIx999BEFCxakaNGinuc5ePAg69evJ0eOHJfjdiZz9n0UEREREZHr28mTJ8mRIwcnTpzg5MmTKeJFihTBy8uL48ePEx4eniJerFgxAI4ePZpi5IExxvNZ58iRI8lGlAN4eXlRpEgRAA4fPpxiFUEfHx8KFSoEuM9JUVFRyeJZsmShYMGCABw4cIDo6OhkcV9fXwoUKADA/v37U4x48Pf3p1atWoSFhaX6ulauXEnevHkBV1vw7M/dAQEB5MmTB2ste/bsSXGN7NmzkytXLuLi4ti7d2+yWN68ecmaNWuKc652xpil1traqcXSdSqHMaYtMALwBsZaa988x3F1gEXAndbaHy7m3Mtp6NyhzAmbw5ywOQDkfis3AIWyFeLWirde8nUTakwcP36cDh06MHLkSAYMGJDiuNRWvzhf4iguLo6FCxdek29KERERERG5dsXFxdGkSRMaNmzIxx9/TM6cOc95bK5cuciVK9c543ny5CFPnjznjCd8wD+XfPnynTeekGA4l4QExbkkJDjONnToUPr06ZMsqRIQEMBbb72VrM9Jv0w+mzHGk6BJjZeX13njmUW6Fb80xngDI4F2QCXgLmNMpXMc9xYw7WLPvRSze86mZ42eAGTxzsLsnrO5p9o9AAxtORQ7yGIHuWRAwuNvu34LQP6A/MzuOZuO5TsCpGm0RFK5cuXigw8+YPjw4Skyck2bNvUUSVm9erWnDkXdunWZM2cOR48eJSYmhh9//NFzTuvWrfnoo4887eXLl19Uf0RERERERC7FlClTWLFiBfXr18/ormSY7t27M2bMGIKCgjDGEBQUxJgxYzy1LyTt0nNVjrrAZmvtVmttFDAR6JTKcY8CPwIHLuHca07NmjWpXr06EydOTLb/4YcfJjw8nGrVqjFs2DDq1q0LuGFAL774IvXq1eOmm26iUqVKnmzjBx98QGhoKNWqVaNSpUp88sknV/z1iIiIiIjI9cVay6uvvkqZMmW4++67M7o7Gap79+5s376duLg4tm/frqTEJUrPqRzFgKSlUXcB9ZIeYIwpBnQBbgTqXMy56W1Qs0GX7Vpnz6f65ZdfPI9Xr14NuOkeZycrEtx999306dOHmJgYunTpQuvWrQFXSfbbb7+9bP0UERERERG5kF9++YVly5Yxfvx4fHy00KP8d+k5YiJlwQRXRTSp94HnrLWxl3CuO9CYPsaYUGNM6MGDBy++l+eQHkuFXqrBgwdTo0YNqlSpQsmSJencuXNGd0lERERERK5TI0aMoFSpUtxzzz0Z3RXJJNIzvbULKJGkXRw4u9xobWBifNHH/EB7Y0xMGs8FwFo7BhgDblWOy9Lzq8zw4cMzugsiIiIiIiIA/PTTT2zdulWjJeSySc930hKgrDGmJLAb6AYkm4BkrS2Z8NgY8znwq7V2sjHG50LnioiIiIiIyJVjrcVaS65cuahZs2ZGd0cykXSbymGtjQH641bbWAd8Z61dY4zpa4zpeynnpldfRURERERE5Px+//13qlevzrZt2zK6K5LJpOvYG2vtb8BvZ+1LdekIa23PC50rIiIiIiIiV561lldeeYWTJ09SrFixjO6OZDKaFCQiIiIiIiLnNW3aNBYvXszo0aPx9fXN6O5IJpOeq3JIvOzZs2d0F0RERESuaSEhIQQHB+Pl5UVwcDAhISEZ3SWR60bCaInAwEB69uyZ0d2RTEgjJkRERETkqhYSEkKfPn2IiIgAICwsjD59+gDQvXv3jOyayHVh1qxZLFq0iFGjRmm0hKQLJSZSs3cvdOsG334LhQuny1P88ssvvPbaa0RFRZEvXz5CQkIoVKgQc+bM4bHHHgPAGMPcuXMJDw/nzjvv5MSJE8TExDBq1CiaNGnCN998w+uvv461lptvvpm33norXfoqIiIici4TJkzg5ZdfTrF/5syZBAcHM3r06FR/R1m8eDH58+fn3Xff5aOPPkoRX7NmDVmzZmXIkCG88sorxMbGJotHREQwcOBAVq1axXfffZcsliNHDlasWAHAo48+ytSpU5PFCxcuzIIFCwC4//77mT17drJ46dKl+euvvwC44447CA0NTRavVq0akydPBuDmm29m3bp1yeINGzZkwoQJALRo0YKwsLBk8VatWjF69GgA6tSpw+HDh5PFO3XqxHvvvQdApUqViIyM9MRKlSrFc889R6tWrRC5Upo0acJXX31F165dM7orkkkpMZGaIUNg/nz3c+TIdHmKxo0bs2jRIowxjB07lmHDhvHOO+8wfPhwRo4cSaNGjQgPD8ff358xY8bQpk0bBg4cSGxsLBEREezZs4fnnnuOpUuXkidPHlq3bs3kyZPp3LlzuvRXREREJDVFihShcePGKfZnzZoVgOLFi6caz5IlCwBBQUGpxr283IzjkiVLpkhKJNixYwdly5ZNcX5AQIDncYUKFTh+/HiyeJ48eTyPK1WqRExMTIrXlKBatWr4+/sni5cqVcrzuGbNmuTLly9ZvFKlSp7HtWrVokSJEsniFStW9DyuV68eJ06cSBYvX76853HDhg2JiooC3HD6uXPnsnz5clq1akVUVBRnzpwhR44ciKSnLFmycM8992R0NyQzS1iLNjNstWrVsmdbu3Zt8h3NmqXcRo50sVOnrK1f31ovL2vB/WzQwNrx41384MGU56ZBtmzZUuxbuXKlbdWqla1SpYotV66cbdOmjbXW2jfeeMPWrVvXjhgxwu7cudNaa+2cOXNs6dKl7aBBg+yyZcustdZOnjzZ9ujRw3O9sWPH2ieeeCJN/bkUKe6jiIiIXNfmzJljX375ZXv8+PF0f66goCALpNiCgoLS/bmvNtHR0fb06dPWWmu/+OILmytXLvvUU0/Z7du32wkTJtigoCBrjLFBQUF2woQJGdzbq5PuU9pMmDDBBgYGWsDmy5dP90n+MyDUnuOzvIpfni0sDKx1j6117XTw6KOP0r9/f1atWsXo0aM9Q/Sef/55xo4dy+nTp6lfvz7r16+nadOmzJ07l2LFitGjRw++/PJLbEIfRURERDLADz/8wPDhwz0jI9LT0KFDk42CADcqYujQoen+3FcbHx8fzwiOatWq0bZtW95//31KlizJfffdR1hYGNZaTx0OFQlNLqFeie7T+SXcpx07dgBw+PBh3SdJVyYzfcCtXbu2PXsO4Lp165INlzuvvXuhVClIMo+PrFlh69b/VGsie/bshIeHJ9tXs2ZNxo4dS61atejVqxfbtm1j9uzZbNmyhdKlSwPQuXNnevbsSc2aNSlWrBg+Pj68//77bN++neeee4769et7pnK0adOGRx99lE6dOl1yP8/nou6jiIiIZHrVq1enYMGCnloM6S0kJISBAweyY8cOAgMDGTp0qApfxtuxYwdVq1ZNMSUE3BD8qlWreto333wzr776KgANGjTwTBNJ0LVrV55//nmio6OpX79+iuv17NmTRx99lOPHj3PjjTemiPfr148HHniAvXv30qFDhxTxp59+mrvuuostW7Zwxx13pIi//PLLdOrUiVWrVqW6+sObb75Jq1atWLRoEY888kiK+IcffkjDhg2ZOXMmzzzzTIr43r172bt3b4r9Cfdp4sSJlC1blu+++y7V2ig///wzxYsXZ/z48anWRpk+fTp58uRh5MiRjBs3LkV8wYIF+Pn58fbbbzNx4sRkMR8fH/755x8AXnnlFaZMmZIsnjNnTmbNmgXAc889x/Tp05PFCxcu7Kmn0r9/fxYuXJgsXqpUKb7//nvA1VZJqMOSoEqVKnzxxRcAZMuWzVNsNqmgoCC2b9+eYr9IWhhjllpra6cWU42JpIYMgbi45PtiY/9zrYmIiAiKFy/uaT/55JMMHjyYrl27UqxYMerXr8+2bdsAeP/995k1axbe3t5UqlSJdu3aMXHiRN5++22yZMlC9uzZ+fLLLylSpAhvvPEGLVq0wFpL+/bt0y0pISIiIpLUkSNHWLVqFa+88soVe87u3bsrEXEOgYGBnDx5MtVYdHQ0RYsW9bRz587teVykSBGio6OTHZ8rVy7AFWFPel6ChHoWXl5eqcazZ88OuA/ZlxJPGBmTJUuWVOMJI3T8/PxSjfv5+QHg7++fanzZsmUp9kHiffLxcR+PsmXLlur5CfEcOXKkGk+ojZIzZ85U48aYc8a9vb09j3Pnzp0innDvwNVJOTueP39+z+N8+fKliBcsWDDZsWfHCxQo4HmcWlIC8IygELncNGIiqZo1YfnylPtr1IBz/CN2vdCICREREUkwZcoUOnXqxJw5c2jatGlGd0eA4ODgFKt/gL7hPpvuU9roPkl6ON+ICdWYSGrZMldX4uztOk9KiIiIiCS1d+9e8uXLR926dTO6KxJPdTjSRvcpbXSf5EpTYkJERERELspDDz3EgQMHUiyjKRmne/fujBkzhqCgIIwxBAUFMWbMGE1/OYvuU9roPsmVpqkckia6jyIiIiIiInKpNJVDRERERC6Lv/76i5o1a7Jx48aM7oqIiGQSSkyIiIiISJrNnj2b1atXU6xYsYzuioiIZBJKTIiIiIhIms2ZM4datWqRLVu2jO6KiIhkEkpMXAG7du2iU6dOlC1bltKlS/PYY48RFRXF7Nmz6dChQ4rjf/31V2rWrEn16tWpVKkSo0ePzoBei4iIiCR3+vRpFi9erCVCRUTkslJiIp1Za7n11lvp3LkzmzZtYuPGjYSHhzNw4MBUj4+OjqZPnz788ssvrFixgmXLltG8efMr22kRERGRVCxatIjo6GiaNWuW0V0REZFMRImJJIYNg1mzku+bNcvtv1QzZ87E39+fXr16AeDt7c17773HuHHjiIiISHH8yZMniYmJIV++fAD4+flRvnz5S++AiIiIyGWSLVs2unbtSqNGjTK6KyIikokoMZFEnTpwxx2JyYlZs1y7Tp1Lv+aaNWuoVatWsn05c+YkMDCQzZs3pzg+b9683HLLLQQFBXHXXXcREhJCXFzcpXdARERE5DKpW7cu3333Hblz587oroiISCbik9EduNJSmxVxxx3Qrx/UqwdFi0KbNlCkCOzdCxUrQliYO+7QIbj99uTnzp59/uez1mKMSfN+gLFjx7Jq1SqmT5/O8OHD+euvv/j8888v+NpERERE0kt0dDT79u2jRIkSGd0VERHJZDRi4ix58rikxI4d7meePP/tepUrVyY0NDTZvhMnTrBz505Kly59zvOqVq3KE088wV9//cWPP/743zohIiIi8h8tWbKEwMBApk6dmtFdERGRTCZdExPGmLbGmA3GmM3GmOdTiXcyxqw0xiw3xoQaYxoniW03xqxKiF2uPs2enXLr18/FAgJg0CCIiICXXnI/Bw2Cnj1dPH/+lOdeSMuWLYmIiODLL78EIDY2lqeeeoqePXsSEBCQ4vjw8HBmJ7nw8uXLCQoKurQXKyIiInKZzJ07F3DTOURERC6ndEtMGGO8gZFAO6AScJcxptJZh80AqltrawD3A2PPirew1taw1tZOr34mlVBT4rvv4NVX3c+kNScuhTGGSZMm8f3331O2bFnKlSuHv78/r7/+OgAzZsygePHinm3ZsmUMGzaM8uXLU6NGDQYNGqRpHCIiIpLh5syZQ6VKlShQoEBGd0VERDKZ9KwxURfYbK3dCmCMmQh0AtYmHGCtDU9yfDbApmN/LmjJEpeMaNHCtVu0cO0lSxL3XYoSJUrwyy+/pNjfvHlzTp8+nWJ/kyZNLv3JRERERC6zmJgY/v77b7p3757RXRERkUwoPRMTxYCdSdq7gHpnH2SM6QK8ARQEbk4SssCfxhgLjLbWjknHvgLw7LMp97Vo8d+SEiIiIiLXuhUrVnDy5EmaNWuW0V0REZFMKD1rTKS25ESKERHW2knW2gpAZ2BIklAja+0NuKkgjxhjmqb6JMb0ia9PEXrw4MHL0G0RERERSapUqVJMmDCBli1bZnRXREQkE0rPxMQuIOl6UsWBPec62Fo7FyhtjMkf394T//MAMAk3NSS188ZYa2tba2trzqOIiIjI5ZcnTx66d++u+hIiIpIu0jMxsQQoa4wpaYzxBboBU5IeYIwpY4wx8Y9vAHyBw8aYbMaYHPH7swGtgdXp2FcRERERSUVcXByffPIJYWFhGd0VERHJpNItMWGtjQH6A9OAdcB31to1xpi+xpi+8YfdBqw2xizHreBxp7XWAoWA+caYFcBiYKq19o/06quIiIiIpG7NmjU8/PDDzJkzJ6O7IiIimVR6Fr/EWvsb8NtZ+z5J8vgt4K1UztsKVE/PvomIiIjIhc2dOxeApk1TLfclIiLyn6XnVA65TCZPnszatZ5VVunZsyc//PBDBvZIRERErhdz5syhRIkSBAUFZXRXREQkk1Ji4hpwdmJCRERE5Eqw1jJ37lyaNWtGfFkwERGRy06JibOEhIQQHByMl5cXwcHBhISE/Kfrbd++nQoVKnDfffdRrVo1br/9diIiIpgxYwY1a9akatWq3H///Zw5cwaA559/nkqVKlGtWjWefvppFixYwJQpU3jmmWeoUaMGW7ZsSXb9V199lTp16lClShX69OmDK9EBH3zwgec63bp1A9w3HjVq1KBGjRrUrFmTkydPYq3lmWeeoUqVKlStWpVvv/32P71eERERyTzCwsI4cOCApnGIiEi6StcaE9eakJAQ+vTpQ0REBOD+M+7Tpw8A3bt3v+Trbtiwgc8++4xGjRpx//338+677zJ69GhmzJhBuXLluPfeexk1ahT33nsvkyZNYv369RhjOHbsGLlz5+aWW26hQ4cO3H777Smu3b9/f15++WUAevTowa+//krHjh1588032bZtG35+fhw7dgyA4cOHM3LkSBo1akR4eDj+/v789NNPLF++nBUrVnDo0CHq1KlD06ZNKVKkyCW/XhEREckcgoODOXz4MD4++pVRRETSz3U3YqJ58+Ypto8//hiAF154wZOUSBAREcFjjz0GwKFDh1KcmxYlSpSgUaNGANxzzz3MmDGDkiVLUq5cOQDuu+8+5s6dS86cOfH39+fBBx/kp59+IiAg4ILXnjVrFvXq1aNq1arMnDmTNWvWAFCtWjW6d+/OhAkTPL9MNGrUiCeffJIPPviAY8eO4ePjw/z587nrrrvw9vamUKFCNGvWjCVLlqTpdYmIiEjmlydPHnLkyJHR3RARkUzsuktMnM+uXbtS3X/48OH/dN20zsn08fFh8eLF3HbbbUyePJm2bdue9/jIyEj69evHDz/8wKpVq+jduzeRkZEATJ06lUceeYSlS5dSq1YtYmJieP755xk7diynT5+mfv36rF+/3jP1Q0RERCQpay3du3dn0qRJGd0VERHJ5K67cXmzZ88+ZywwMJCwsLAU+xOqUOfPn/+855/Ljh07WLhwIQ0aNOCbb77hpptuYvTo0WzevJkyZcrw1Vdf0axZM8LDw4mIiKB9+/bUr1+fMmXKAJAjRw5OnjyZ4roJSYj8+fMTHh7ODz/8wO23305cXBw7d+6kRYsWNG7cmK+//prw8HAOHz5M1apVqVq1KgsXLmT9+vU0bdqU0aNHc99993HkyBHmzp3L22+/fdGvUURERDKXsLAwvv76axo2bJjRXRERkUzuuktMnM/QoUOT1ZgACAgIYOjQof/puhUrVuSLL77goYceomzZsowYMYL69evTtWtXYmJiqFOnDn379uXIkSN06tSJyMhIrLW89957AHTr1o3evXvzwQcfJFsmNHfu3PTu3ZuqVasSHBxMnTp1AIiNjeWee+7h+PHjWGt54oknyJ07Ny+99BKzZs3C29ubSpUq0a5dO3x9fVm4cCHVq1fHGMOwYcMoXLjwf3q9IiIicu2bO3cugApfiohIujOZaSh/7dq1bWhoaLJ969ato2LFimm+RkhICAMHDmTHjh0EBgYydOjQ/1T4cvv27XTo0IHVq1df8jWuBhd7H0VERCRtLvfvHpfLAw88wOTJkzl48CBeXpr9KyIi/40xZqm1tnZqMY2YOEv37t2vil8GREREJPM734pgd999N7GxsSnO8fLywsvLi7i4OOLi4i467u3tjTHmgvE5c+bQpEkTJSVERCTd6X+adBYcHHzNj5YQERGR9DFw4MBUVwQbOHAgCxcuJEuWLCm2hGKU06dPTzU+ffp0ACZNmpRqfOHChQB8+eWXqcZXr15NVFQUN998s6ZxiIjIFaEREyIiIiIZZMeOHefcX6JECYYMGZIiVqlSJQDKlCmTajyheHalSpVSjZcoUQKAmjVrphovVKgQvr6+3H///Z4C4CIiIunpuqgxUaFChTQv2SkpWWtZv369akyIiIhcZsHBwedcEWz79u1XvkMiIiLp5Hw1JjL9VA5/f38OHz5MZkrAXEnWWg4fPoy/v39Gd0VERCTTGTp0KL6+vsn2XY4VwURERK4lmX4qR/Hixdm1axcHDx7M6K5cs/z9/SlevHhGd0NERCTTSSi4fTWuyiEiInKlZPrERJYsWShZsmRGd0NEREQkhQ0bNtCsWTNN2xARketapp/KISIiInK1GjhwIA0aNNCUUxERua4pMSEiIiKSAWJiYpg+fTpt2rRRkW4REbmuKTEhIiIikgH++ecfjh8/Ttu2bTO6KyIiIhlKiQkRERGRDPDHH3/g5eVFy5YtM7orIiIiGUqJCREREZEMMG3aNOrXr0+ePHkyuisiIiIZKtOvyiEiIiJyNZo8ebKWMxcRESGdR0wYY9oaYzYYYzYbY55PJd7JGLPSGLPcGBNqjGmc1nNFRERErmVFixalevXqGd0NERGRDJduiQljjDcwEmgHVALuMsZUOuuwGUB1a20N4H5g7EWcKyIiInJN+uCDD/jqq68yuhsiIiJXhfQcMVEX2Gyt3WqtjQImAp2SHmCtDbeJC3dnA2xazxURERG5FsXFxfH666/z+++/Z3RXRERErgrpmZgoBuxM0t4Vvy8ZY0wXY8x6YCpu1ESazxURERG51qxcuZL9+/fTpk2bjO6KiIjIVSE9ExMmlX02xQ5rJ1lrKwCdgSEXcy6AMaZPfH2KUBWQEhERkavdH3/8AUDr1q0zuCciIiJXh/RMTOwCSiRpFwf2nOtga+1coLQxJv/FnGutHWOtrW2trV2gQIH/3msRERGRdDRt2jSqV69OkSJFMrorIiIiV4X0TEwsAcoaY0oaY3yBbsCUpAcYY8oYY0z84xsAX+BwWs4VERERudbExcURFRVF+/btM7orIiIiVw2f9LqwtTbGGNMfmAZ4A+OstWuMMX3j458AtwH3GmOigdPAnfHFMFM9N736KiIiInIleHl58ffff5NY+1tERETSc8QE1trfrLXlrLWlrbVD4/d9Ep+UwFr7lrW2srW2hrW2gbV2/vnOFRGR9BUSEkJwcDBeXl4EBwcTEhKS0V26Kuk+pY3uU0pxcXEAxA8YFREREdI5MSEiIteOkJAQ+vTpQ1hYGNZawsLC6NOnjz5MnkX3KW10n1Ky1lK1alVeeeWVjO6KiIjIVcVkpqGEtWvXtqGhoRndDRGRa1JwcDBhYWEp9ufIkYPevXt72tWqVeO+++4D4KWXXiIiIiLZ8bVr1+auu+4C4NlnnyU2NjZZvHHjxnTp0oWYmBiee+65FM/XsmVL2rdvT3h4OIMGDUoRb9++PS1btuTIkSMMHZpyQF2XLl1o3Lgxe/fuZfjw4Sni3bp1o06dOmzfvp0PP/wwRfy+++6jWrVqrF+/nk8//TRFfOLEiezZk7Iec8J9evTRRwkODmbJkiVMnDgxxXFPP/00RYoUYd68eUyePDlFfODAgeTNm5fp06fz+++/p4i/+uqrZMuWjalTpzJz5swU8bfeegsfHx9++ukn/v7772Qxb29vhg0bBsA333zD2f9nZsuWjVdffRWAzz//nFWrViWL58mTh//9738AjB49mo0bNyaLFy5cmGeeeQaAvHnzcvTo0RT9CwoKYvv27Sn2Xw82btxI+fLl+fjjj3n44YczujsiIiJXlDFmqbW2dmqxdKsxISIi15YdO3akuv/kyZOMGTPG0+7UqZMnMfHll19y5MiRZMefOnXKk5gYO3Ys0dHRyeLGGLp06UJsbGyy6ybIkSMH7du358yZM6nGixYtSsuWLVP0K0G5cuVo3LgxR44cSTVes2ZN6tSpw759+1KNN23alGrVqrFr165U46dOnUqxDxLv0x133EFwcDAbNmxI9fwHHniAIkWKsGbNmlTjAwYMIG/evCxfvjzV+Isvvki2bNlYvHhxqvE33ngDgL///jtF3NfX15OYmDNnTorRC3nz5vUkJv766y+mTEledzowMNCTmPjtt99SJEYqVarkSUyklpSAc7/PrgfTpk0DoE2bNhncExERkauLRkyIiAhw7hET1/M33KnRfUob3aeUbr75ZjZt2pRipImIiMj14HwjJlRjQkREAPdN/NkCAgJSnS5xPRs6dCgBAQHJ9uk+paT7lFxkZCSzZs2ibdu2Gd0VERGRq44SEyIiAsDSpUsBVyfAGENQUBBjxoyhe/fuGdyzq0v37t0ZM2YMQUFBuk/nca771LJlS8LDwzO6e1fcmTNneOGFF+jWrVtGd0VEROSqo6kcIiLC/PnzadKkCU899VSqBSNFLofIyEiqVKlC+fLl+fnnn/HxUakrERGR64WmcoiIyHkVL16cXr16aRlDSVf+/v4888wz/PbbbzzyyCNkpi9HLmTGjBnX5UgRERGRtFBiQkRECA4OZty4cWTLli2juyKZ3EMPPcQLL7zAmDFjPCuIZHa7du3ipptuYtSoURndFRERkauSEhMiItexjRs30qVLF3bt2pXRXZHryNChQ+nevTsDBw7kp59+yujupLuEZULbtWuXwT0RERG5Omlyp4jIdcpaS9++ffn3338111+uKGMM48aNo0iRIjRv3jyju5Pupk2bRrFixahcuXJGd0VEROSqpN9ERUSuU1988QWzZs3ik08+oXDhwhndHbnO+Pr68vbbbwNuxYoNGzYQFBTkiRtjyJkzJwCnTp0iJiYm2fkXint5eZEjRw4AwsPDiY2NTRb39vYme/bsAJw8eZK4uLhkcR8fH8/UphMnTqSoh3GheJYsWQgICCAmJoZff/2Vu+66C2NMWm6NiIjIdUdTOURErkMHDx7kqaeeolGjRvTu3TujuyPXuV69elG9enVy587t2UqWLOmJ33fffcliuXPnplq1ap74rbfemiLeoEEDT7x169Yp4q1atfLEGzZsmCLepUsXT7xatWop4vfee68nXqpUqRTxfv36AS5pcvr0adq2bZsu905ERCQz0IgJEZHr0KuvvsrJkycZPXo0Xl7KUUvGGjp0KHXr1k026sDf39/zuGfPnjRq1CjZOQmjJcAV1Dz7g3++fPk8jwcMGEDXrl2TxYsUKeJ5/Mwzz3D48OFk8cDAQM/jl156iRMnTiSLlylTxvN4yJAhREZGJotXqlQJgFy5cvHpp5/SuXNnREREJHUmMy3VVbt2bRsaGprR3RARueodO3aMefPm0bFjx4zuioiIiIhcB4wxS621tVOLacSEiMh15MyZM3h5eZE7d24lJURERETkqqDxuyIi8ay1TJkyhbp16zJv3jwAfvnlF4oVK5Zi+/fffwGYOHFiqvENGzYAMHbs2FTju3fvBmDEiBGpxo8dOwa4Ie6pxRMK/b344ospYqVLl/a8psceeyxZLCAggFq1anHq1KkrdVtFRERERM5LIyZERIC5c+fy/PPPs3DhQsqUKUPevHkBNw+9ffv2KY7PnTs3AMWLF081nlDtPzg4ONV4wvz50qVLpxrPkiULABUqVEg1nlDdv3LlyiniCeeCK9oXERGRLN6gQQPPagIiIiIiIhlNNSZE5LpmreXWW29l8uTJFC1alMGDB9OzZ89kH+5FREREROS/OV+NCU3lEJHrRkhICMHBwXh5eVG8eHFCQkIwxlCjRg3efvttNm/eTO/evZWUEBERERG5gjSVQ0Qyjbi4uBT7vLy8sNYSEhLCQw895JnWsHv3bh544AEABg0adEX7KSIiIiIiiTRiQkSueadPn+bmm2/Gx8cHb29vz/boo48CEBMTQ48ePVLUWjhz5gwDBw7MiC6LiIiIiEi8dB0xYYxpC4wAvIGx1to3z4p3B56Lb4YDD1trV8THtgMngVgg5lxzUUTk+nTy5En++ecfbrrpJrJmzUpAQABPPPEEuXLl8hxTu7b7Z8PL69w52B07dqR7X0VERERE5NzSLTFhjPEGRgKtgF3AEmPMFGvt2iSHbQOaWWuPGmPaAWOAekniLay1h9KrjyJy7dm8eTMfffQR48ePJzIykj179pAvXz6+//77c57j7e1NUFAQYWFhKWKBgYHp2V0REREREbmA9JzKURfYbK3daq2NAiYCnZIeYK1dYK09Gt9cBBRPx/6IyDVs3bp1dOjQgXLlyvHxxx/TsWNH5s6dS758+dJ0/tChQwkICEi2LyAggKFDh6ZHd0VEREREJI3SMzFRDNiZpL0rft+5PAD8nqRtgT+NMUuNMX3SoX8icg3x9fXl33//5eWXXyYsLIwJEyZQr169C58Yr3v37owZM4agoCCMMQQFBTFmzBi6d++ejr0WEREREZELSc8aEyaVfTbVA41pgUtMNE6yu5G1do8xpiDwlzFmvbV2birn9gH6gIZki2Q2U6ZMYfLkyXz22WeULl2aHTt24ONz6f9sde/eXYkIEREREZGrTHqOmNgFlEjSLg7sOfsgY0w1YCzQyVp7OGG/tXZP/M8DwCTc1JAUrLVjrLW1rbW1CxQocBm7LyIZ5cyZMzz22GN06tSJ5cuXc/Som/H1X5ISIiIiIiJydUrPxMQSoKwxpqQxxhfoBkxJeoAxJhD4Cehhrd2YZH82Y0yOhMdAa2B1OvZVRK4SGzdupEGDBnzwwQc89thjLFy4kLx582Z0t0REREREJJ2k29eP1toYY0x/YBpuudBx1to1xpi+8fFPgJeBfMDHxhhIXBa0EDApfp8P8LW19o/06quIXB1iY2Np3749R48e5eeff+aWW27J6C6JiIiIiEg6M9amWvbhmlS7dm0bGhqa0d0QkYsUHh5O1qxZ8fb2ZuHChZQoUYLixbVIj4iIiIhIZmGMWRo/ECEFTdgWkYsWExPD3LlziYyM9OwLCAigefPmAPzzzz8cPnw42Tk5c+akcWNX3/bvv//m+PHjAJw6dYqBAwfSvXt3Bg0aRIMGDa7MixARERERkauCEhMictF69OjBxIkTk+0rU6YMmzZtAuCFF15g1qxZyeI1a9bk33//BeDxxx8n6eimYsWK0aJFi3TutYiIiIiIXI2UmBCRNImNjSUmJgY/Pz/69etHmzZtqFSpkifu5+fneTxy5EhOnjyZ7PyAgADP488//5xTp0552hUrViRHjhzp2HsREREREblaqcaEiFzQxo0b6dWrFw0aNGD48OEZ3R0REREREbnGnK/GRHouFyoi17i4uDhGjBhBjRo1WLt2LTVr1szoLomIiIiISCajxIRIZrF3LzRrBvv2XZbLbdu2jebNm/P4449z4403smbNGrp3735Zri0iIiIiIpJANSZErlUxMXDiROL2xhswfz4MGQINGsD+/XD8eGK8Rg0YMMCd26oVHDvmrpGwdekCr7/u4iVKEBkby8YDBxhfuDD3hYVhJkyAZ5+FqCho2xayZAFfX/DzA39/6NwZbr8dTp1yfUjY7+fntkaNXB9OnYLp05PHsmWDwEDInTv979vevdCtG3z7LRQunP7PJyIiIiIi56XEhEhGOHYMjhxJnljw8oL27V38k09gzZrk8ZIlYexYF69dG5YuTX5NLy+Ii4Px4+GXX2DnTjAGcuSAnDkhSfFJcud2SQUfn8QtMJDY2Fh++uknbm/fnopnzrA9MhL/uDiIjoa8ed25cXEukRER4ZIUkZFw5gzccIOLnzwJ773nYkkNG+YSE3v2uCTG2UaOhH79YMUKaNzY9TlXLvczZ054/nm48Ub3ur7/HvLlS74FBrpkx4UMGZKYwBk58sLHi4iIiIhIulJiQiStYmLcB3iA7dth27bkiYPISHjqKRf/6CP480/3IT1h1ELWrLBqlYv36AG//pr8+qVKJSYmJk+GxYsTP5TnyOESCQnuuw9uuSUx/u23MGuWSxrExkLLlvDBB24kglcqM7a+/z7FrtjYWO69916+/vprZs+eTbNmzUj1Y76/P8yde+77VLiwS1TExbnkxJkzbktIjJQoAaGhifvPnHGjKGrUcPE8eaBPn8T7lvAzoVDv6tWJ9zmp336Ddu3gjz/gsccgf36XsEj42b+/u4fjxrm+jRsHTz4JpUuf+7WIiIiIiEi606occv1IeK8b4761X7cOjh5Nvv3vf+7D/Lhx8Omn7kPxsWPuZ0QEnD7tPpg/9pj74J+UMS4pYAwMHOg+KOfIkfitf4EC8P777tg//3S1IBKSDrlyuQ/kl/Ihee9el9SIjEzclzUrbN2a5qkKSZMSr7/+Oi+88MLF9+NKiYtzfx6HD7tRJ4cPu+2mm9zrXbAARoyAQ4fc/kOH3LZ4sRuJMmaM+3NKEBAABQu6xE5wMMyc6R4XKgRFiritcGEICgJv7wx72SIiIiIi17Lzrcpx3hETxpivrLU9jDGPWWtHpE/3RC4gLTUBYmPdB/28ed2H8hUr4JtvYPdu2LXL/dy9G/79F8qXh+++gyeeSH4NHx/o29clJry9XcKgeHGXNMid2/1MSG48/LCryZAwYiFhSzB0qNvOpXXr/3RLkhkyxH1YTyo2Ns1TFa6ppAS4ESB58rgtNQ0bui0pa937aPz45EkJHx83eiU8PPF6Cxe6Whtn39Pjx92f8TvvuNEuhQsnT1zcc49LSkVGuroZxly+1ywiIiIikoldaCpHLWNMEHC/MeZLINlv2tbaI+nWM5EECTUBHn/cfdDOl8/VX3jzTQgLgx07XNIhJsYVVWzZEjZvhnffhaJFXXKhZk3o0MElLQBuvdXtS/iAmyePS0gkfJi87z63nUuFCm67GixcmLKeQ1SUGzmQBosWLWLixInXRlLiUhkDr72WMtng5eWSUBMmJO4bONDVszh40CW79u51hURz5HBxX19Xc2PxYhePiHAJix49XPz+++HHH12yIiF5UbYsvP22iy9d6vpRpIgbqZF0io6IiIiIyHXovFM5jDEDgIeBUsBukicmrLW2VPp27+JoKsc1KibGffjbscMlEkqWdAmH/v1dgmH9+sRj33/fTaMIDYWuXV3Bw4StRAm4+Wb3MybGfehMrb6CpLBu3ToqVqyY0d1IXzVrwvLlKffXqAHLll3aNa11oy0OHXLvW3BJiSVL3Hs6YcudG+bNc/GmTRMfg6uB0awZ/PCDa3/8sau7kXQ0RtGiiYkREREREZFr0PmmcqSpxoQxZpS19uHL3rPLTImJq9yxY26Ye+HC7nH37q7Ow44dicPrX30VXnrJfRPdrp07bscO9w2zjw/cdRd8+WUGvojMITY2lj59+tCpUyduueWWjO7O9WXVKlc8de/exBEZhQvDoEEuXr48bNyY/Jx27VzNEoDbbnMjQJImLqpXh1q1XDwuTgk5EREREbnqXHKNiQTW2oeNMY2Bstba8caY/EAOa+22y9lRyWQ++cStoLBuHaxd6z6EPfigKyqZM6f7lrlePZegSBj1UKWKO7dwYfdBrFSpxOH3MTHuW+Vhw9Jc1PF6ERISwsCBA9mxYweBgYEMHTqU7t27p3psbGwsPXv2ZMKECZQrV06JiSutalW3ncv69a4Qa8Joi3373KiKBBERLrExY4ZL3AH07u2KesbFuWKeefMmTiMpXBg6dXKruMTGwqJFbgRGsWLnnkaSlrouIiIiIiKXSZoSE8aYQUBtoDwwHvAFJgCN0q9rctWLinIfolatctvKle5DzLhxLv7OO25ufsWK0Lat+9ko/i3j5QX//HP+6//Hoo7Xi5CQEPr06UNERAQAYWFh9OnTByBFciJpUmLo0KE899xzV7y/cgHGuMRC3rxQuXLK+O+/Jz4+fdr9HUtYxjY6Gp55JvlojGXLXILvllvgwAFo3DjxeQoXdlOfnnkGbr/dLcs6bZorHDtvnhvB9PHH6f+aRUREROS6ltapHMuBmsC/1tqa8ftWWmurpW/3Lo6mcqSjAwfc/Pzdu6FXL7fvxhvdsooAWbK4xEPLlq7oJLilHPPkufTVCdKjJkAa7N+/n507d3Lo0CHP1q9fP3x9fRk/fjxffPEFhw4d4syZM55z1qxZg6+vL6+++ipfffVVsutlyZKFtWvXAvDcc8/x008/JYvnzp2bJUuWANC/f3+mTZuWLF6sWDFmz54NQM+ePfn777+TxXft2kVk0qVC4/n4+BAcHEzNmjX57rvvAGjZsiUzZ87ktddeY+DAgZdwd+Sadvo0zJnj/h7v3Jm49esHnTu7ZGH9+snPqVjRLY17001ulNOaNa6YZ5EiWnlERERERNLsP0/lAKKstdYYY+MvmO2y9U6uLrGxbpUCgIkT4Ysv3NKbe/e6fb6+blnELFnccpu9e0O1alCunNuXVN68/60v6Zh8OJePP/6Y/v37c3bCrmvXrhQrVoyoqCistZQrV46sCSt8AF7xc/qDgoKoW7dusnO9E+4nULJkyRTx7Nmzex6XKVOGo0ePJovnTzKMv0KFCkRHRyeLb968OdXXEhMTQ926dSlbtqxnX506dbjrrrt48MEHUz1HMrmsWd3opXOpXt0VlZ00yU2d8vZOXHUEYPZsFwc3ZaRMGbe98Yb7N+DwYVdHpkgR1bkQERERkTRL64iJp4GyQCvgDeB+4Gtr7Yfp272LoxETF+nYMbd0YcI0jFWr3LehW7e6Id7vvOMKTdao4bbq1d2WL18Gd/zyiYyMZOLEidSoUYMaNWqwdu1aQkJCqFevHvnz5/dsefLkwVyl3w4HBwcTFhaWYn9QUBDbt2+/8h2Sa9fevW7aR9IROFmzJv6bcOSI+zdj06bEbfPmxHow770HTz7pzklIWpQtCy++CLlyuev6+WmkhYiIiMh16D+vyhF/kVZAa9ySodOstX9dvi5eHkpMnMOpU64A5erVLvnQp4+r/P/FF9CzpzumYEFXkK9aNXj6aVccLxPbt28fo0aN4pNPPuHAgQM89dRTDB8+PKO7dUnOrjEBEBAQwJgxY85ZAFMkVf36wWefufoxCXx9XdHatNR1WbvWjapISFhs2uQKdR47Bv7+LmnxySfJkxZlyrjrK1khIiIikqldjqkcACsBv/jHK/5zr+Tyi4qCDRvcFIpixdwoiC5dYNs2SEhA+ftD06YuMdGmDfz1l0tIFCqUsX2/gh5//HE+/vhjoqOj6dChA48//jg33nhjRnfrkiUkH9K6KofIOS1cmDwpAa69YEHazq9UyW1JJZ0e1qqV+7lpk0uWTp0KuXO7KWEA990H//7rEhYJSYtKlRKL5oqIiIhIppTWqRx3AG8Ds3EjJpoAz1hrf0jX3l2ka27ExKUsyRcV5QrY5coF4eHwv//Bli3u28nNm9288NdfhxdecAUr+/d3S3AmbKVLJ35IuAZczDKYqTly5AgzZsxg9uzZjBgxAh8fH4YMGcKBAwd49NFHKVeuXDr2XkTOKzbW/TtVpIhrv/eeK6i7ebP7dy0qCm64wU0fAejRw40ASzraokKFxPNFRERE5Kr1n6dyGGNWAK2stQfi2wWA6dba6hc4ry0wAvAGxlpr3zwr3h1IWK8wHHjYWrsiLeem5ppLTPTrB6NHQ9++yYdJx8QkLv83fDhs3Oh+Sd+yxVXQ79MHRo1yxxUo4Jb7K13afbNYpQo0aADBwRnyki6nS52isGXLFsaPH8+ff/5JaGgo1lpy5szJP//8Q4UKFa5E10Xkv4qNhV273BKmVau6fffdB0uWJCYtADp1gsmT3eMHHnA1cJImLooVUyFOERERkavA5UhMrLLWVk3S9gJWJN2XyjnewEZcwcxdwBLgLmvt2iTHNATWWWuPGmPaAYOttfXScm5qrqnERNIicz4+cOutbgm/LVugTh2YMsUdFxTkRkiULp24NWnilu4DN0XjGp2bfeDAAT7++GP27NkDQNu2bbn11ls5deoUTzzxBN988w3h4eEpzitevDjt2rVLsf/hhx+mZs2azJw5k9atW1OvXj1atWpF69atqVu3Lj4+FzNzSUSuWglJi82b3eogDRpAdLQr0rt5c/LpKAMGwIgRLv7ii8mTFsWLK2khIiIicoVcjhoTfxhjpgHfxLfvBH67wDl1gc3W2q3xnZgIdAI8yQVrbdKJy4uA4mk995o3ZAjExbnHMTFurnWtWtC+vfslO8H69a7C/blcg0kJay3/+9//GDFiBKdPn6ZQfH2L4PhRHlFRUfz666+pJiUAdu/eza+//ppif7ly5ahZsyZNmjTh8OHD5MqVK91eg4hkIG9vl7QNCkrclyWLW1UoadJi0yaoXNnF9+yBDz+EM2cSz/H3d/sefNAtdfrjj4mFOdOStLiU6XgiIiIiksJ5ExPGmDJAIWvtM8aYW4HGuBoTC4GQC1y7GLAzSXsXUO88xz8A/H6J515b9u4l5NNPGRgTww4gEBgaFUX31H65PV9S4hpz5swZ/Pz8MMawfv16OnbsyKBBg1JMr8iTJw979uw55zKYgYGB510GM0uWLEpKiFyvkiYtWrZM3B8UBBERLmmRdNWQhMTFihXw0EOJx/v5uRFqo0a5gsF797qCnUmTFkOGwPz57mdaVi0RERERkVRdaMTE+8CLANban4CfAIwxteNjHc9zbmpf5ac6b8QY0wKXmGh8Cef2AfqA+8B6LQjp0YM+MTEkVE4IA/pERxN3zz3c+vPPxMXFkSNHDgC2bt1KdHQ0ZcqUwfsaKlqZVHh4OB9++CHvvfcec+fOpUKFCnz77bcXnFoxdOjQVGtMDB06NL27LCKZkZcXBAa6LWnSAqB5cwgLS0xYbNrkptblzevif/6ZuLyyn5+7xpYtbuTb+PHw8MOQI4er+aPpISIiIiIX5UKJiWBr7cqzd1prQ40xwRc4dxdQIkm7OLDn7IOMMdWAsUA7a+3hizk3vi9jgDHgakxcoE9XhYFz5xJx1r4I4N4ZM7g3e3YaNGjAgvjl+W655RbWrFlDrly5aNy4Mc2aNaN169ZUr37euqPJHDlyhDVr1rB27Vpy5cpFmzZtyJMnz+V7Qedw+vRpRo0axZtvvsnBgwdp3749Jn7qSVrqPWgZTBG5YpImLVJbPrhjR5gxIzFx8cMPidPxYmNd4c3Fi13SolSpxCVPX3kFsmVzq4lkzaqkhYiIiEgqLvQbkv95YheaY7AEKGuMKWmM8QW6AVOSHmCMCcSNwuhhrd14Medey8KiY84ZGzZsGAMGDPC0hw8fzvjx47njjjvYvHkzzz77LO+99x7gajW88847/P3330RFRXH06FHmz5/Pvn37AJg+fTpFihQhX758NG3alL59+3LXXXexefNmABYsWMB7773HP//8Q1TSYnFpFBUVRVhYGAsWLOD777/nvffe49NPP/XEGzRowFNPPUX16tVZsGABU6dOpXz58mm+/rBhULRod7Zv305cXBzbt2+naNHuDBt20V3N1IYNcyssJjVrFrpPZ9F9ujDdo/PIm9clLPr0YZjfS8zanWSp4agoZi3LzbD2s12xzfLlYetWGDvW1bEAeOopV6izUiW3kshTT8GYMRnyUq4UvZ/SRvcpbXSfLkz3KG10n9JG9yltdJ8uI2vtOTdcscveqex/APj2fOfGH9cet7rGFmBg/L6+QN/4x2OBo8Dy+C30fOdeaKtVq5a9FhQsGGRxU1OSbQULBl3w3L1799pt27ZZa63dsmWL59wsWbJ4Hn/22WfWWmvXr19ve/XqZd9++23722+/2e3bt9t///3XRkVFWWutfemllzzn+Pv728aNG9tnn33WRkZGWmut/eqrr+xjjz1me/XqZW+77TZ700032dtuu83Tl8aNG6d4DbVr1/bEX3vtNTt79uxLvk8zZ1qbP7/7mVpbHN2ntNF9ujDdo7SZect7Nj8H7EyaWwt2Js1du9N7yQ+Mi0t8/Ouv1j7zjLVdulhbpYq1/v7WBgcnxm+91dqKFa295RZrn3zS2lGjrJ0374q8nvSi91Pa6D6lje7ThekepY3uU9roPqWN7tPFSfp5/+ztvMuFGmMKAZOAKGBp/O7agC/QxVq779LSIenjWlkuNCQkhAce6MOZM4kTOowJoHz5MRQq1J077oB+/VydtvbtU57fs6fbDh2CW245yPHj8zhxYhFZsuQnW7bKDBhQl969C7BzJ/TokfL8p55yo5I3bICePXdz4sRCjh9fwIkTC4iK2sMvv4TRqpWhXbu7+euvqfj45MTbOyc+Prnw8wti8uRvaNgQXnvte7766jh+fsXx9S2Gn19xfHxyM2KEoUYNmD4dXnst5fOPHu2+UPzlF3jnnZTxr75y07S//RZef93VmytSxNWeq1jRjabOnx8+/9xtZ/vtN/fF5Mcfw3ffpYzPnu1+Dh8OZy/ukTUr/B5fgnXIEPdcSeXL5wr3A7zwAixcmDxevDhMmOAeP/44LF+ePF6uXOKXpH36wMaNyeM1asD777vH99zj6vQl1aABvPGGe3zbbW4hAYCjR919atjQLUzw3XcuU3v6dPLzO3SAp592j5s3J4WLee/dfnvK+MMPw513kqb3XtI6gwn+9z+3Eu7y5e7+ne31191rXLDArfx4tvff57zvvV693Otv2RJ++sm9n5LOakr63hs1KuX5P/yQ+d97s2ZBu3ZQqFDi37k8ec793kvQsiW89JJ73K5dJn/vtQ7l6Ckf1lGJIuxhL0UZST9611jK9LeXpfHfPQvRMW41EeCrJmMoseYPvg0txahdt4CNg1y5oEZNAH4IuJf83kf5POpuPt/W1L1hArK5qSNcve+9o0fde+2ZZ9zfqXr14OwFly71370EmeG95+3tVg3PmTP53zv47//uXcz/uVf7v3u//Zb8d4KmTd3rhiv7f26Cq/G9l/D7QJEicOwYTJ4MRYtmzP+5V/N7LyICtm1z9/Cdd1xd46S/D1ytv+8luFLvvcmT3bFJfw/Pk+fq/33vSr/3kv6927sXpk2DFi3S///ca9ElLxdqrd0PNIwvTlklfvdUa+3My9zH60pCjYRHHhnI8eM7MF7FKF/uTQoV6s7+8H2s3H8AqAZARHQEPl7e+Hr7pXotX98CFChwKwUK3OrZlzNn2vvi51eMAgVup0AB9z+etbGeOhCvvx7C6dPnXo70xhu7en4hSC958ri/5Dt2uKnfV6A0xjUp4T7NmeP+o2rRQkPIUlO/vvvPdMgQvZ/OpUULVxph9Wrdo3OqXZs8QJFtsGNHMIGBUOfnsVADSPO/icaTlADcb64l+sC3wCgLZ6Jc7YoEAQGwYRlsmAXRRdy+ggWhYiX3+N57ITA/7OkER6u633z8/DN8Sek8edwvskOGuH+b9u1L+Qu6uL93XbvCp5/q7935nP07gVbpTSnpPbrzTvfe2rAho3t19cmXD9q2df82NWuW0b25ejVurN/D0+Lsf5tatMjoHl2jzjWU4lrcrpWpHINmDbLc19wScMDS9BX3877mdtCsQbbKx1Vsl4ldPMdW+KiC7fpdV0+73qf17OO/P+5pP/HHE/arFV952pPXTbar9q/ytE9EnrBxSYcTX2MShkO99JKGRZ2P7lPa6D5dmO5R2mTYfYqLs3bXLmtnzbI2NNTtCw+3tmpVa7NmtRYSt+eec/GTJ619/HFrR4609s8/rd261dqYmCvSXb2f0kb3KW10ny5M9yhtdJ/SRvcpbXSf0o7zTOXI8GTC5dyulcRE0rlHDCZZOzI60h6PPO459s/Nf9oFOxZ42s/++awd9+84T7vaqGr2+b+e97QDhgbYJ/940lprbVxcnPUd4muf++s5T7vJuCb2y+VfWmutjYmNsUPnDrWLdy32tJftXWaPnj6abq/9YmjOVtroPqWN7tOF6R6lzVV7nxKSFrNnW/vpp9b+84/bv26dtQEByZMWWbJY+8UXLr5nj0taTJt2WZMWV+19usroPqWN7tOF6R6lje5T2ug+pY3u08U5X2JC65ZlgCVL3HykhGE+LVq49pIl4OfjR06/xLkYrUq3okGJBp72W63eolfNXp72ir4reOOmNzzt0N6hPNHgCQDibByv3/g67cu6yWORMZH4eCXO3jl+5jgDZw5kwU63NOnh04epObomIStDANh7ci9F3ynKt6u/BeDAqQM88PMDLN692J0feZwf1v7AnpNuJdeYuBhORZ1yGa/LfJ8Gzx6c7D5JovO9nySR7tOF6R6lzVV7n4yBYsXcuOQHH4S6dd3+ChVcYYfdu92k608/hSeegKpVXXzpUnjkEWjTxi11mjWrOydhYuvOnfDnn26lkaTTSy7gqr1PVxndp7TRfbow3aO00X1KG92ntNF9unzOW/zyWnOtFL9MavDswQxuPjjDnj8yJhIAfx9/IqIjmLZ5GtUKVaN03tLsD9/PwJkDub/m/TQs0ZD1h9Zz05c3MermUXQs35HQPaHU+bQOP3f7mVvK38I/u/6h/mf1mXr3VNqXbc+/e/9lwO8D+LDdh9QsUpPNRzbzzapv6FWzF8VzFudwxGG2HN1ClYJVCMgScN5+mlcMdlDmea+KiFw1rHXVujZtgs2b3bZpE7z5pqsIN2qUq5IGri5GqVJu/+jRLhGyZw9ERrqJtT6plK7auxe6dXNVxlQUQERE5Lp1vuKXGjGRwTIyKQEuIeHv4w9AQJYAulTsQum8pQEolL0QY28ZS8MSDQGokL8Cu57cRcfyHQGoXKAyK/uupFmQqxpUNEdR3rrpLSoXqAy4ERt+Pn74evsCsObAGl6e/TKHIg4BMHPbTOqNrcfWo1sBmLh6IrnfzM2WI1sAmL51Ond8fwcHTx0EYNX+VXy69FMiot1qJocjDrPt6DbibFz63iQRkczMGFe2v1kzeOABVwr+hx9c8gFcBb05c2DsWFdqvUoVN4oie3YX/+gjKF3aFegsXx5uvtmVWY+KcvH//Q/mz3dV5kRERERSoRETckVFxUbhbbzx9vJmX/g+QveE0iK4Bdl8s7F492ImrJzAqy1eJbd/brp+15Uf1v2Q4hrPNXqON296k7fmv8XzM54n/IVwsvlm472F7/HRko9Y/8h6snhn4Ye1PzB963RG3TwKYwxLdi8h7HgYt1dyK5AcjjiMxZI/IP+Vvg0iIpnH2rWwaFHiiItNm+DgQbf+3b59bk222FiXAGnQwE0TqVgxcS27EydcksNL35WIiIhkZpe8XKjI5ZYwegKgcPbCdCjXwdOuW6wudYvV9bS/v+N7z2PziuH0wNMcijhEsRzFAOhQrgOFshfyTAMJzh1Mk8AmZPF2S/BtPLyRGdtmeJY//Xz550xcM9GTmHhxxotM3jCZ/U/vB+DZv57l373/Mv1et97f6NDR7Avfx6DmgwCYvX02UbFRtC7dGnA1N3y9fcntn/vy3SARkWtNpUpuS8pal4gYMiRxyVJjYMsWV6vin38SExO33OISG0FBbjpIUBDUrg19+7r4/v2QN2/y5VVFREQkU9GICbkmXI4aE0dOH+FwxGHK5isLwLyweWw/tp0e1XsAMHLxSDYc3sAH7T4A4MEpD7LpyCbm9JwDQPuQ9hyMOMiS3q6aTauvWhEeFc7CB1yBuG4/dMPfx5/PO38OwJA5Q8jtn5tH6z0KwOT1k8mbNS9Ng5oCsP3YdnL65SRv1rz/6XUlldE1S0REPPbudfUoIiMT92XN6hIT+fMn1qP4+mtYvhy2b4ewMLcQfPXq8McfLl66tIsVLeqSFkFB0LIl3H+/i2/e7BaQz5btCr44ERERuVjnGzGhxIRcE66GD9x7T+4lIjrCU4Nj6sapRMdF07lCZ8D10dfblxebvAhAu5B2FMxWkC86fwFAhY8qUL1wdb693a1yUuaDMtQrXo+QW90qKLXG1KJlyZYMazUMgAd+foDGgY09q7CMWjKK6oWre2p+LN2zlOI5i1MoeyFPH1UkVESuGv36wWefJdaaAPD1dSuGjBx5/nPj4hKndnz5pUs+7NjhEhdhYW4FkVGj3HFZs7rnyJcvccTFHXfAXXe5kRtLl7p9+fMnjt4QERGRK05TOeSal9FJCYAiOYoka99c7uZk7bP7+Hv335O1Z903C0ti0mBYq2HJ6lu0CG7hKRwKsPrgakrmKelpPz7tcZ6o/wQNSzTEWkvdsXV5sfGLDLlxCDFxMWR/Pbvn2DMxZ2gb0pZ+tfvRtXJXTkef5rW5r9GpQifqFqvLmZgzTN86nRqFa1AsZzFi42I5fuY4Of1yJltSVkTkki1cmDwpAa69YMGFz01ab+Lee899XFwcfP55YsIiLAw2bnT1LQAOHIA6ddzjrFkTExePPOKmkEREuMRFYKBbYSS1VUVEREQk3el/YJEr5OzExq0Vb03WHt56eLL2Pw/+k6y9/+n9eBn3y7rF8nO3nymVpxSDZw/mlTmveI4zr7hvBANzBnpWLDkaeZS3/n6LwFyB1C1Wl33h++jwTQfG3TKOXjV7se3YNsp+WJYvO39Jj+o92HR4Ex2+6cCH7T6kdenWbD+2ncGzB/NE/SeoXrg6e0/uZfL6yXQs35HiOYtz4swJthzZQrl85cjmm42EkVhG306KXL+WLUv/5/DxcSMjziV7dpg0Kfloix074PRpF1+7Fpq66XV4e7vkRGCgq43RvLkr4vnvv4n1LwLOv7S1iIiIXBolJkSuEUmLbHoZL0/h0MHNE6e5nGsqR9EcRYl+KdqTqCiUvRD/PPgPwbmDAcjjn4f327zvKT7q4+VDzcI1yeOfB3D1OWZvn02vGm5ayfpD6+n3Wz8qFqhI8ZzFWbRrEW0mtGF+r/k0CmzEb5t+o8u3XVj4wEJqFa3FrG2zeHn2y3ze6XNK5y1N6J5Qvln1Dc81fo6C2Qqy+chmlu5ZSodyHcjmm42jp49yNPIoQbmC8Pbyvuz38mqYGiQiV0C2bNC587nj5crBtGkpExcJIyfmz4dbkySR8+d3SYqxY6FGDVfMc+XKxNoXefNquoiIiMgl0NpcItcJY4znQ76/jz91i9WlYLaCAOQLyMdj9R+jfP7yAJTMU5KJt0+kTjE3BPqGIjew/fHtNAtuBkDjwMbseXIP9YvXB6BG4RpMunMSFQtU9Jz/VIOnKJqjqOe5fb19PauybDq8idFLRxMZ44riTd86nW4/duP4meMAhKwKofQHpTly+ggAHy3+iHzD8nHizAkXXxlC2wltiYp1w8T/3PIn/5v5P0/iZcW+Ffy8/mfPaz946iC7TuzytJOOMBGR61jOnNC6tat7MWSIq2cxezY0buziN94I8+bBhAkwdKhLUuTP784DmDrV7atVy+3PkcOtULJjh4svXQohIfD333D06Pn7sncvNGvmllgVERG5zqj4pUgmcq2OBDgeeZzdJ3dTLl85fLx82HBoA4t2LeLuqneTxTsLM7bOYNL6Sbzf9n18vHwYv2w8Y/4dw4L7F2CMYdCsQQxfOJxTL54C4MlpT/Lpv59y8oWTADz626OErArhyHMu0WFeMVQqUIk1/dYA8Nb8t1h9cDVfdfkKgAkrJ7A/fD9PNXwKgLlhc4mMifQsFbvj+A68jBfFcxa/ovdJRK4yJ07Apk3JR1yEhbkER/bs8MwzMDzJNL3AQKhWDb7/Hvz9XbIiRw43QqNfPxg92i2TeqHioCIiItcgrcohIpmetdZT02J/+H4OnDpA1UJVAfhn1z8M+3sYP63/KcV5g5oNwst4serAKr7v+j0A3X/qzrqD6/j3oX8B6PB1B/aG72Vpn6UAtP6qNSfOnGDRg4s8bW8vb0/B0wenPEhOv5y82+ZdAF6f9zr5subjodoPAfDt6m8pkK0AN5a8EYBle5eRJ2sez9Sa09Gn8ffxz9AaHddqkkvkqhIR4RIVW7fC6tVu2sfu3W5UBsCdd8LPP7spJWvXQmws+Pm55VELF87InouIiFx2SkyIiCRxscuq7jm5h9PRpz1Lxc7ePpszMWdoU6YNAJ+EfgJA39p9ATdCI4dfDl5v+ToAzT9vTmCuQL7s8iUAZT8sS52idfj6tq8BKDmiJE2DmnqWli32bjHalWnH2FvGAlBvbD1uKXcLA5sOBODeSffSunRr7ql2D+ASH41KNPJMtfl5/c9UKlCJsvnKYq1l27FtFAgoQA6/HOl2j0TkEvzyC8ydCxMnJq4kYgw8/LAbNfHss64oZ/XqbqRFuXJaOURERK5Z50tMqMaEiMgFFM1R1JOUAGge3NyTlACXkEhISgB82P5DT1ICYHbP2Z6kBMCC+xfwQbsPPO1xt4zjifpPeNrPNXqO2yre5mlXLlCZYjmLedqrDqxiX7ibhx5n4xg4cyCzts8CICo2is7fdua7Nd8BEBEdQekPSnuSJ0dPHyX769kZHToagMMRh2nwWQNPTY7DEYfp80sfz3MdPX2UD/75gE2HNwEQHhXOrG2zOBRxyPN8B08dJDo2Oi23UkSS6tgRnnwSDh1K3GctjB/vak388w+8845beaRyZTft44nEfytYsACOHLny/RYREbnMlHYXkevOoGaDMvT5C2QrkKzdomSLZO0B9QYka4/rNC5Ze9lDicswehkvYl6KIdbGAuBtvPm3z78Uyl4IcCusfNH5C24ocoOLe3nzUK2HqFywMgCxNpacfjnx9fY959KzAEVuL0LZfGXZeHgjN355I5PvnEynCp1YtncZ9T+rz9S7p9K+bHsW7lxI52878+MdP9I4sDGhe0J59q9n+aDdB1QpWIXVB1YzOnQ0zzR6hsBcgWw5soXpW6fTtXJX8mbNy/7w/Ww8vJHaRWuTNUtWIqIjOB19mjxZ83iWy72aaMqL/GdDhkBcXPJ9sbFu/5w5EBUF69fDihVuq+qmqHHyJDRq5B4XL544qqJLF6hT58q+BhERkf/o6vstT0QknWW2D5LeXt6eFU+8vbypWaSmZ0UUPx8/7q1+L1UKVgEgp19O3mnzDo0D3aoDBbMVZNo902hXth2Dmw/GDrKeKRx2kCXmpRgOPXOIjuU7AlA2b1lm3TeLhiUaAhCYK5AP233ouX7erHnpUqELhbK5xEhMXAzRcdGepMKO4zuYsGoCxyPdCixL9iyh79S+7A/fD8C0LdNo+nlT9pzcA8A3q74h/9v5PauqjFs2jsLDC3Pw1EEAvlvzHTd+cSMnz7hCp39s/oP+v/XnTMwZABbtWsTIxSM9K7ZsPLyRWdtmee7dkdNH2Hty7yXfe63wIv/ZwoUu+ZBUVJQbDQHg6+sSDj16uEKa992XuP+PP2DYMLeax44d8PbbsGSJi2/Z4hIUDzwAH3zgkhwXWhlEREQkgygxISIi5+Tt5U2+gHz4+/gDkMMvB82Dm3tGfRTJUYT+dfsTmCsQgPL5y/NJh08om68sAPWL12der3lUKlAJgPZl23P0uaOewqRdKnRhz5N7KJO3DACtS7fmrx5/eRIr9YvX5/0275Mvaz4ASuUpRafyncjmmw1wRU9j4mLI4p0FgPWH1vPN6m88S+P+uvFXBvwxAIMb/fHZv5/R/uv2ntc3ZM4Qyn9U3tN+/I/HKTWilKf96pxX6fB1B0/74yUf8/SfTye7R2OWjvE8nr9jPjO2zvC0txzZwraj2zztyJhIYuNiL3DX5bqybJmbvnH2tmzZ+c/z84M2bdzKHxMmuMKa4eHQs6eLnzoFuXLBlCnw2GPQvDnkzeuWOAVXkPO772DDBjdCQ0REJAOp+KWIiKSQWaYoRMZEcvLMSU8iJexYGLtO7KJRoBsCv2jXIjYc2sB9Ndy30D+u/ZGV+1fySgs3EuL9Re+zYv8KxncaD7ilaCevn8y2Y9tSPNegZoNYsmcJB04dYElv9611q69acSrqFAsecN9+N/+8ORbLnJ5zAOg0sRN5/PPweefPAXj414cplL2Q596/Nvc1iuUoRq+avQD4fPnnFMtRjFalWwEwa9ssCmYr6Jmas+3oNnL55yJv1rxA8tVqMlJmeT9dk6yFvXtd4mLFCjfyomhRN4riscfcMVmzQpUqbjrI0KFQsKCbXuKl769EROTyybBVOYwxbYERgDcw1lr75lnxCsB44AZgoLV2eJLYduAkEAvEnOsFJKXEhIiIXEnmFUPkwEj8fPwA2Hl8J5ExkZ4RI/N3zCc6NtpTR2TCygkYDN2rdQfgldmvkM03G083dKMw7p10L0WyF+GtVm8BUH9sfSoXqMxnnT4DIOj9IFoEt/AkMoq+U5Sby97Mp7d8CkD+Yfm5s/KdjLx5JAC538xN7xt683brtwGoOqoq99e4nycaPIG1lo7fdOSeavfQrUo3YuNieerPp7il/C3cWPJGomOjGbN0DE2CmlCtUDWiYqOYtW0WlQtWpnjO4sTExbDj+A4KZitIdt/sJPw+kVoiRKu8XIUiI2HdusTaFStWuCVNt22DbNng+efdaiH167taFo0bu/oWWhVEREQu0fkSE+n2v4sxxhsYCbQCdgFLjDFTrLVrkxx2BBgAdD7HZVpYaw+dIyYiIpLhEpISACVylUgWS6jlkSBhidcEg5onL8SadPUWgEUPLkrWXtl3ZbIP/r/e/Ss5/XJ62iPbjyQod5Cn/WSDJ6lT1BVCtNZStWBViuQoArjCp/vC93nqc0TGRDJ++XiCcgVxY8kbORl1kv6/9+f9Nu9TrVA1jpw+QtuQtnzc/mMervMwe0/upfQHpRnbcSwP3PAAW49upeyHZfmqy1d0r9adzUc20z6kPSPajgDctJb+v/dnULNB1C9en21Ht/HuwnfpV6cfFQtUZNeJXfyw9gduq3gbJXKV4MCpA/yz6x8aBzYmT9Y8nDhzgl0ndlEqTyn8ffyJiYshNi4WX2/fq2JUyOVwRUeW+PtDzZpuS2CtW64UoFYtl6T4+2/49lu3r3hxV8vCGNi40Y28yJ79yvRXREQytfQco1cX2Gyt3WqtjQImAp2SHmCtPWCtXQJonTkREbnmXOkVXnL550qWiLihyA2e+hwAd1a5k/rF63vaLzd7mXZl2wFuJMPXt31NtyrdALdiS2ifUHrX6g1ANt9sHH/+OE80cMtR5vbPzYGnD/DADQ8ArrDp3/f/TecKnT3xzzt9TtOgpoArrDqwyUBPIdSRi0ey6cgmT02PMh+W4Y/Nf3hqchw4dYCQVSHsP+UKn244tIEnpj3B9mPbAVi6Zym3TLyFDYc3AG7aSuWPK7P2oPt+Y9K6SfgP9Wf1gdWAm4ZT7N1ibD26FXD1RZqOb+pZWnfG1hn0nNyTY5HHAFi4cyGvznmV09GnAVi1fxUTVk7wLH0bdiyMBTsXeAqnHos85rlWesnwYqpJEzxdu7qExM6dEBYGX3/tRlEkHHPbbZA7tyuw+eST8PPPWrpUREQuWXomJooBO5O0d8XvSysL/GmMWWqM6XOug4wxfYwxocaY0IMHD15iV0VERC5eZq6b4GW8KJCtANl93Tfivt6+NCzR0DPiIodfDu6rcZ9n2kqBbAUYcuMQqheuDsB7bd9LscqLHWQ9y9/WK16PI88doXlwcwCaBTfjyLNHPImVRoGNWNJ7iSfRUbtobSbeNpFSeVxx0soFKzP0xqGeQqlFcxSlbem2nsSNweDt5Y2PlxscuvvkbmZtn+WZcrJg5wIGzR7kWWp3yoYp9JjUw5OIGL98PI3GNfLcj2F/D6PEe4kjYp7961nyD8vvab8651Xqj01MCr2/6H26/9Td0/58+ef8b+b/PO2f1//MZ/9+5mnPC5uX7P6vP7Tek4QBOBxx2JNUueICA+Guu+CRRxL3DR/uEhXZssHHH0PnztC/v4tZC7/+CocPZ0h3RUTk2pNuNSaMMV2BNtbaB+PbPYC61tpHUzl2MBB+Vo2JotbaPcaYgsBfwKPW2rnne07VmBAREbn6XK01JmLiYvA23hhjOBZ5jEMRhyidpzTGGLYe3crmI5tpXbo1AIt3L2bl/pU8eMODAEzdOJUle5Z4klPjlo1j0a5FjOnoRoS8Pu91Fu5ayC93/QJA/9/6s3j3Yhb3XgxA1++7svbgWrpW6prqSInSeUqTLyAf/zz4DwAtv2xJVGwU83q5BEaLL1qQLUs2fr37VwBu/+528gfk55MOnwDQ99e+FM9ZnP81dcmQl2e9TFCuIM8ImI+XfExQriBuLnczAD+t+4niOYtTt1hdwI0oKZy9MCXzlATcUr+5/HKRyz8XcFZh1TNnYPFil6S44Qa34kfp0i5WtapbzrR5c7jxRsiT55L/vBKomKqIyLXpfDUm0nPExC4g6WTb4sCetJ5srd0T//MAMAk3NURERESuMVd6ykta+Xj5eD5c5/bPTZm8ZTztUnlKeZISAHWL1fUkJQBuLndzsg/H99e835OUAHixyYuepATAR+0/8iQlAL657RuW9HaJDTvIsvMJN8g0YWTJxNsn8m7rdz3HD6g7gCfrP+lp317xdjqVT5whWzZvWUrmLulpnzhzgvCocE97xrYZhO5J/PLmzflv8uO6Hz3tflP7MW7ZOE+7/dfteW/Re552xZEVGTJ3iKft95ofL818CYA43ywELb2HD6LnAxBVtBD9XqjGiv5doXBh7LhxcPvtLP9yGAARG9cS8lInli77DYDwqHBGLRnF+kPrATgVdYqpG6ey56T7tTEyJpKV+1dyPPI44Ka8HIs8RkxcDCIikjmkZ2JiCVDWGFPSGOMLdAOmpOVEY0w2Y0yOhMdAa2B1uvVURERE0o2+3U7Jx8uHgCwBnnbxnMWTxWsXre1Z1hagU4VOdKnYxdN+pO4jnvogAG/c9AbPNX7O0/76tq9586bExdD+vv9vRnUY5WlvfWwro25ObC98YGGyP6dJd06iX51+nvbI9iPpWqkr4EZLvNjkRZoFNwMgzsZxY8kbCcrlCq/GeBs2VMjPuoduhT//5PjebXR9ohhrb3DfV0VP+pHur02h1g03Q8WK2IceYs5b/ViyyS2ju/vkbjp804HZ22cDsPnIZqp/Up0/t/zp6U+et/IwdeNUwI1myfFGDqZvne5pV/64Mot3u0TQ0j1LaTuhrWdqzIp9K+g9pbennsnag2t5dc6r7A939U62HNnCuGXjPImQ3Sd289eWvzz1SI6cPsL6Q+s9iZEzMWcIjwonPVe6u1iDZw/O6C6IiFyUdEtMWGtjgP7ANGAd8J21do0xpq8xpi+AMaawMWYX8CTwP2PMLmNMTqAQMN8YswJYDEy11v6RXn0VERERyWhXcmSJj5dPshVlSuYpSeHshT3t5sHNqZC/gqfds0ZP6hWvB7hCqoObD+amUjd5rjW+03g6VXAjOAKyBDDj3hmeQqu5cxbk+3d3cXcTl+jI9dQL8M8/8NZbUKoU2X/8hW8me3Nr2VsACJq3is35XqVt1qoAlMhZgq6VunLHD3dQ5GnD7PFQ6CR0/rYzg2cPJn9Afnrf0JsSOV3iI6tPVirmr+ipjxIVG8XRyKOexMG+8H1M3TTVM6Jk9YHVDJo9iMOnXU2MBTsX8MCUBzgY4WqX/bH5D1pPaM2hCLdQ3Lerv6XiyIqe9iehn5DjjRyeGiDvL3qf3G/m5lTUKQBGLRlFlY+reAqrfr78c9qFtPP057s13/Hwrw977vVvm37jjXlveNpzw+by1YqvPO3l+5Yzc9tMT3vb0W2e0SbgCrVmeCFVEZGLlG41JjKCakyIiIiIXGNiYmDDBqhc2bU7dICpbjQEpUu7GhVt2sAdd0C/fsR+Mgrvh/vByJGXrQuxcbF4GS+MMURER3Dw1EGK5ihKFu8sHDh1gE2HN1G7aG38fPzYfGQzoXtC6VKhC34+fizds5SZ22byWP3H8PX2ZcbWGUzZMIV32ryDj5cP36/5nolrJvJD1x8wxjA6dDRfrfyK+fe7qS+vzX2Nr1Z+xYb+bgWax35/jJBVIRx61iU+ek/pzdRNU9nzlJva0nNyT2Ztn0XY42EA3PXjXSzds5SNj24E4LbvbuOndT956rp0ntiZfeH7PMsP95jUg4joCH68w03leWTqI3gZLz5s/yEAL854kWxZsjGw6UAAhi8YTh7/PJ76JJ/9+xn5A/J7ElE/r/+ZAtkK0LBEQwD+3vE3+QLyeRJbGw9vJJdfLgplLwS4aUb+Pv74evtetj+/S6V6JSJX1vlqTCgxISIiIiJXj9hYWLkSZs+GOXNg7lyoVQu+/BJKlYLISMiSBf7+2y1XmgklLS564swJTkWd8qyIs/3Ydo5FHqNG4RoAhO4J5ejpo/y98+9UR0p0Lt+Zm0rdxCN13aoqb//9NpExkbzUzNUIeeKPJ/AyXrzT5h0Auv3QjZx+OT01U5qOb0qxnMX45rZvAFdvpGrBqnzX9TsASo0oRaPARnzVxY3qKP5ucdqUbsNnndyqM4WGF+LWCrd6phLlfjM391W/jxHtRgBQ4O0CPFz7YV5t8SoAFT6qwMO1H+ax+o8RZ+No/nlzet/Qmx7VexAVG8W9k+6le9XudCzfkdPRp3lxxovcWvFWmgQ14VTUKT5e8jGtS7emeuHqnIo6xaT1k2hQvAGl85YmIjqChTsXUqVgFQplL4R5xbCm3xpK5CxBDr8cxMTFEB4VTnbf7J4VfUQJHLl8zpeYwFqbabZatWpZEREREclEYmOtPXjQ2ocfttbX11q3IKnbgoKsvfdea2fMyOheXlUYTLpd+3T0aRsRFeFpbz+63e45scfTXrhzoV13cJ2n/dPan+ziXYs97Q//+dDO3DrT0372z2ftLxt+sdZaGxcXZ+/+8W773ervrLXWnok5Y1t83sJ+ufxLa621J8+ctOU+LGfHLh1rrbX20KlDNsfrOezHiz+21lq7+8Ruy2Ds6NDR1lprtx7ZahmM/XzZ59Zaa9cfXG8ZjA1ZGWKtdfeJwdjv13xvrbU2dHeoZTB2yvopntfiN8TP/rXlL087+P1gu3DnQmuttYt2LrINxjawK/ettNZau3jXYttlYhe7+fBma621S/cstf1+7Wd3Hd9lrbV25b6VdsicIfbQqUOe/ny69FN7IvKEtdbabUe32V82/GJPR5+21lq79+Reu2T3EhsdG22ttfbY6WN25/GdNjYu1lprbVRMlI2KibJxcXFp+JO7dOn5fpLrCxBqz/FZPj2LX4qIiIiI/DdeXhAdDePHQ1RU4v4sWaBKFfjtN1izxu3bswd69ICxY2HzZpe+kMvK38efrFmyetpBuYM8ozkA6hevn6w+SZeKXahTLHFkS/+6/WlRsoWn/Vart+hQrgPg6peE3BpC18qu0Kqvty8z75tJj+o9AMjum50N/Td4ppXkC8jHiRdO8HAdV6OjSPYihL8QTs8aPQFXVHbTo5voXKEzACVylaBn9Z50/6k75hXj6UPX77syePZgiuUsxntt3qNyQTetqHD2wgyoN8BT2DWnX06aBjUlj79b9tbLeCUbXREeFc7mI5uJjnP1RHYe38l3a7/z1DNZtm8ZL816yVOPZN6OefT+pTfHz7hCq79v+p2O33T0FF6duHoidT6t4zl/9NLRlHivBJExke7e/f0Wvq/5EmtjARg6dyj5h+X31C8ZvmA4tcbU8rzOjxZ/xC3f3OJpj/13LA/98pCn/fWqr3llduKomykbpjA6dLSnPWPrDCatm+RpL9m9hPk75nvaGw5tSFbvZH/4fg6eOuhpn4k5k6lX01HR2f9GUzlERERE5OrWrx989lnyxISvLzz4IHz0kUtc+PrC/Plw++2w362wQdGirkbFK69A2bIZ0/cMoKH3aWNeMZ5aHFeCtZZYG4u38fbUMzly+giFsxfGx8uHg6cOEnY8jOqFqpPFOwvbjm5jzcE1tC3TFh8vH1buX8ni3YvpVaMX3l7ezN8xn9nbZzOwyUCMMfy68Vf+2vKXZ5rMVyu+4s+tf3qm2XzwzwdM2zKNqXe7Gi6DZg1i+rbp/H3/34CrNzInbA6r+61m8OzBqU4NKhBQgAPPHACg4zcd2XNyD0v7LAWg9VetORl1koUPLASgxRctiLNxzOnpVtxp+FlDsvtm588eboWdZp83o0j2Iky8fSIAHb7uQMncJT31Tu7+8W7K5yvPoOauMHDfX/tStWBVz7Sk56c/T7VC1bi76t0AvDX/LaoVqka7su0A+HTpp1QpWIUGJRoA8NO6nyifr7wn8TRn+xxK5ilJYK5ArLWsP7SeQtkLkTdrXqy1HDl9hOy+2ZMVCj6fK/1+uhZpKoeIiIiIXLtq1Eg+hSNhq1Ej5bFxcdauW2ftqFHWdutmbeHC1m7f7mITJlh7550utnatO1auW5qicH4xsTH2dPRpz306eOqgZ1qKtdZuPLTRrtq/ytNetHORnRc2z9OeunGq/XXDr572F8u/sN+s+sbTfvvvtz3Tbqy19ulpT9t3F7zraff4qYcdMmeIp33TlzfZgTMGetqVRlayT017ytPO/WZuO+C3AZ62/2v+9pk/n/G0vV/x9pwfExtjGYx9ZfYr1lprI6IiLIOxb85701rrps0wGPvOgnestdYeCD9gvV7xsqOWjLLWWrvnxB5b6O1CnmlBO4/vtAzGMy0p7FiYbflFSztr2yxrrZvydNcPd9klu5d42gN+G2DXHFjjOX7InCF265Gt1lprdx3fZUeHjrZ7T+611rppPT+t/ckeiThir2WcZyqHqrqIiIiIyNVt2bK0H2sMVKjgtr59XQojvpAkR4+6URXffuvaBQtCixYQEgLe3pe/33JVu5JL9F6LvL288fZK/HuRPyB/snjZfMlHISUsKZygfdn2ydr3Vr83Wfvphk8na7/d+u1k7S+7fJms/VePv5K11/Rbk6x95NkjWBJHLOx4fEey0Q7L+y73vAZjDDPunUFw7mDALXv8zW3fUK1QNQD8fPwY0XYETQKbAG4K04uNX6Rm4ZqAm2bUqXwnpm+dTvefunueo+M3HQEYUHcAkTGRxNk4AE5FnyJ0T6hnGs+BUwf4YsUXdCzfkUoFKrH16FZemvUSjUo0omSekqw5uIaHfn2IygUqUzh7YUL3hHLrd7ey+MHFyaZGZSaayiEiIiIi1w9rYcsWt+LHnDlw+HDi8qQ9ekBEBDRv7rbKlV2NC5HrmKYGpc1/mcphrSUmLgZvL2+8jBdnYs5wKOIQ+QPy4+fjx4kzJ9h6dCvl8pUjIEvAZe75laPlQkVERERELqR/f/j1VwgLc+18+eDhh2HIENdOOvpCRCQJ1Zi4sPMlJpQCFhEREREBV0hz+3a3ffEF3HKLm+4BcOoUFC4MnTrBu+/Cv/9CbGxG9lZEriKaGvTfaMSEiIiIiMiF7N8P//sfzJ7tliIFyJULxo2DW291K4MYAz4q4SYikprzjZjQv5wiIiIiIhdSqBB8+ql7vHt3Yo2KhGVIp0yBXr2gcWNXn6JZM7jhBsiSJcO6LCJyrdCICRERERGR/2rpUhg71iUr1q1z+7Jnhw0boGhROHQIcuYEX9+M7aeISAbRiAkRERERkfRUq5bbwE37mDsXliyBIkXcviefhB9/hIYNE0dU1K2rRIWICBoxISIiIiKS/qZNc8uSzp4Nq1a5fTVqwLJl7vHatVCqFPj7Z1QPRUTSlUZMiIiIiIhkpDZt3AZw+LAbUREd7dpxca42RUQE1K+fOKKifn3ImjXDuiwicqVouVARERERkSspXz7o0gXuuMO14+Jg/Hjo1w9OnoQhQ+DGG2HwYBc/cwZmzHCJCxGRTEgjJkREREREMpKPD3Tq5DaAY8dg/nw3tQPgn3/gppvcCh9160LTpm5r0gSyZUt+rb17oVs3+PZbKFz4ir4MEZFLpRETIiIiIiJXk9y5oUMHqFTJtW+4wdWneOIJiI2Ft9+Gdu1g+XIXX73aLVd69KgbbTF/vvspInKNUPFLEREREZFryalTsHChGzHh5wfPPuuSFQDGgLVutY8tW6B48Yztq4hIvPMVv9SICRERERGRa0m2bG5qh5+fa7/6KsyZA3XqJB4TFQWvv+4ef/EFfPklbN/ukhYiIlcZJSZERERERK5l/v5QtqxbhjRp4uHzz2HfPhg5Eu67D0qWhKAg6N4dvvsuw7orInI2Fb8UEREREbnWDRniVvdIKjbW7V+0yNWhmDvXbTNmuKked9zhEhm9ekHNmq6gZrVq4O2dMa9BRK5b6TpiwhjT1hizwRiz2RjzfCrxCsaYhcaYM8aYpy/mXBERERERibdwoZu+kVRUFCxYAF5eLuHQv78bKbF3L3z0kTvm4EE3DeTxx12Rzbx54eabXfJCROQKSbcRE8YYb2Ak0ArYBSwxxkyx1q5NctgRYADQ+RLOFRERERERgGXL0n6sMYnLjBYsCNu2wY4dMG9e4qiKEydcPDQUnnsucYnSevUgIODy919ErmvpOZWjLrDZWrsVwBgzEegEeJIL1toDwAFjzM0Xe66IiIiIiFwmgYGu9kT37q6dUKvixAm3DOkrr7h9WbK4IpsTJriaFda6RIeIyH+QnlM5igE7k7R3xe+7rOcaY/oYY0KNMaEHDx68pI6KiIiIiEgSCcmGG2+Ef/+FI0dg6lR48kk3NaRQIRd/+WU3BeTxx+HHH+HAgQzrsohcu9JzxERqqdO0rk+U5nOttWOAMQC1a9fW+kciIiIiIpdb7tzQvr3bkipTBvLkgTFjYMQIt69ePVfzwhg4eRJy5Lji3RWRa0t6JiZ2ASWStIsDe67AuSIiIiIiciXcd5/boqJg6VJXp+L06cQRFw0bQnh4Yo2KJk3c0qaa/iEiSaRnYmIJUNYYUxLYDXQD7r4C54qIiIiIyJXk6wsNGrgtgbXw0EMwezb8/jt8+aXb36cPjB7t4mvWQKVKbnqIiFy30i0xYa2NMcb0B6YB3sA4a+0aY0zf+PgnxpjCQCiQE4gzxjwOVLLWnkjt3PTqq4iIiIiIXGbGuCVK+/d3SYgNG9yIitKlXXz7dqha1U0TadIkcUTFDTe4Ipsict0w1maesgy1a9e2oaGhGd0NERERERG5kOPHYcqUxCVKN250+ydOhDvvhN27YfNmqFsXsmbN2L6KyH9mjFlqra2dWiw9p3KIiIiIiIikLlcu6NHDbQD79rkRFS1auPYPP7jVPnx9XXIiYVTFjTe6fSKSaWjEhIiIiIiIXH2OHYP58xNHVISGuikhx465lT7+/BMiIqBxY8ifP6N7KyIXoBETIiIiIiJybcmdGzp0cBu41T1WrUpcfvSdd1xyAqByZTeaolUr6NIlQ7orIpdO5W9FREREROTqlz178lU/pkxxIypefx1KlIAJE+DjjxPjgwbB+PGwZYsbaZHU3r3QrJmbPiIiGU5TOURERERE5NoXEwOHD0OhQnDmDAQGwoEDLla0qBtR0asXtG4N/fq5JUv79oWRIzO23yLXifNN5dCICRERERERufb5+LikBICfnxsVsWYNjBrlRkfMmwfr17v948ZBXBx8+in88YdLaohIhlGNCRERERERyXy8vKBSJbf17eumc8TGwoABLikBEB0N7dq5aSKNGsHw4VClSsb2W+Q6pBETIiIiIiKS+RkDBw+6uhPR0Yn7fX3h9tth926XoAA3oqJ5c3j5ZfjrL1d4U0TSjUZMiIiIiIjI9WHIkMTREkkFBLgVPxL4+sKpUzB0qDve2xvq1HHLlmbJ4qZ++OijlMjlor9NIiIiIiJyfVi4EKKiku+LioIFC5Lvu+cet5086WJz57oRFVmyuHinTrBrlyuo2bQpNGkChQtfmdcgkglpVQ4REREREZGL8d578PvvLmlx6pTbd/fdEBLiHu/d6xIVxmRcH0WuMudblUMjJkRERERERC7GE0+4LToa/v3XrfhRtKiLnTrlliotUsSNpEgYVVGhghIVIuegxISIiIiIiMilyJIF6tVzW4K4OHj/fTf9Y+ZM+Pprt//99+Gxx+DECdiyBapVc7UrRESJCRERERERkcsmRw545BG3WQubN8OcOW6VD4Dp0+G22yBnTmjcOHFURZ06iTUsRK4zSkyIiIiIiIikB2OgbFm3JWjSxNWimDvXbb/95vZv2ADlysGyZXD0KNSv71YLEbkOKDEhIiIiIiJypRQo4Apl3n23ax886IpoJiQvRoyAL75woydq106sUdGunWpUSKalVTlERERERESuFsePw99/u9EU8+bBkiVQqhSsX+/in34KefO6kRcFC2ZsX0UuwvlW5VBiQkRERERE5GoVEQE7d0L58q5mRWAg7NrlYhUquNEUt90GrVtnbD9FLuB8iQmvK90ZERERERERSaOAAJeUADeVY8sWWLgQ3noLSpeGb7+FGTNcPDISevWCsWNh40aXyBC5BmjEhIiIiIiIyLUqNhZOn4bs2WHdOmjWzNWtAChUyI2oePZZV69CJAOdb8SEil+KiIiIiIhcq7y9XVICoGJF2L/frfAxb56rUzFnDpw54+J//QUffOCSFc2aQc2aWqJUrgrpOpXDGNPWGLPBGLPZGPN8KnFjjPkgPr7SGHNDkth2Y8wqY8xyY4yGQYiIiIiIiFyIMa72RO/e8NVXsGMHNGzoYseOuSkezz4L9epB7tzQqhUcOZL6tfbudQmMffuuVO/lOpVuIyaMMd7ASKAVsAtYYoyZYq1dm+SwdkDZ+K0eMCr+Z4IW1tpD6dVHERERERGRTC9hmdGuXd22b1/iqh8rV7oEBcCjj8Ly5YlLlH7/PcyfD0OGwMiRGdV7uQ6k54iJusBma+1Wa20UMBHodNYxnYAvrbMIyG2MKZKOfRIREREREbm+FS4Md9wBH37opnp4xX8sLFUKoqNdYc22beGzzyAuDsaPd8mMhCkhIpdZeiYmigE7k7R3xe9L6zEW+NMYs9QY0yfdeikiIiIiIiLwxBOwaJGb8tGxo6tfAa7A5quvusRFrVrw5JMwZQocPZqh3ZXMIz0TEyaVfWcvAXK+YxpZa2/ATfd4xBjTNNUnMaaPMSbUGBN6MKH6rIiIiIiIiFyakyddoczYWNeOioLPP4e77oJcuWDUKOjUCfLlgzffdMfExrrzRC5BeiYmdgElkrSLA3vSeoy1NuHnAWASbmpICtbaMdba2tba2gUKFLhMXRcREREREblODRnipnAklbAs6cyZbkTF3LnwyivQuLGLL10KefO69qBBrn5FVNQV77pcm9IzMbEEKGuMKWmM8QW6AVPOOmYKcG/86hz1gePW2r3GmGzGmBwAxphsQGtgdTr2VURERERERAAWLkyZVIiKggUL3GM/P2jSBF56KTExUaCAW+0jOhpee80Vz8ybF5Ytc/GIiJTJDpF46bYqh7U2xhjTH5gGeAPjrLVrjDF94+OfAL8B7YHNQATQK/70QsAk46rH+gBfW2v/SK++ioiIiIiISLyEZMLFKFkShg5127FjMHs2zJjhli4Ft//TT+HGG6FlS7jpJneOCGCsPbvsw7Wrdu3aNjQ0NKO7ISIiIiIiIkn9/jt88w1Mnw5797p91au7JIgxbsUPP7+M7aOkK2PMUmtt7dRi6TZiQkRERERERASAdu3cZi2sX+8SFCdOuKQE/2/v/mP9qus7jj9fFJFRBoW2/FgRCogDsoHCBfmhCEtDhGE7ska66TCyiIZIgpEMAgkSG0hMXALoAJmYpYZJVMZWBAYTCEZ+X7ADOkG6rgs/qi3KStRCC/3sj/NteimXcr732+/3nPu9z0dy0vs953zO/Xzzyufeft/3fD4HOOaY6ikg8+ZVd1R89KMwfXqzfdbA9HONCUmSJEmStkjgsMPg/PPh0kurfaXAokUwYwZcc01VwNhjj2pxzc3eeKOR7mowLExIkiRJkpqTwCWXwH33wSuvwF13wZe+BB/6UHV85cqqUPGJT8DVV8Py5VUxQ0PDqRySJEmSpHbYZRc49dRqG+vTn66mf/zoR9XrffaBW26BE06onvaxg39zn8xMT5IkSZLUXgcdBNddB889B6tWwY03Vk/3OPjg6vg3vgEf+ACcd15VrPjNbxrtrrpnYUKSJEmSNDkccACccw7cdBPsvXe178ADq8LEd78LCxfCrFlw3HFb1qVw2kfrOZVDkiRJkjR5zZ9fbRs3wqOPVlM+fvlL2LHzcfeMM2D9+i1P/Dj66C3H1AreMSFJkiRJmvze8x448UT4yleqqR+bffCD1fSOSy+t7qSYNQsuv7ypXmocFiYkSZIkScPriitg2TJYswZuvhk++UmYM6c6tm5dNT3kM5+BJUvgxRcb7epU5f0rkiRJkqThN3s2nHVWtW22bh0cfzzccUdVmAA49NDqjouTT26km1ORd0xIkiRJkqam/fev7qL41a/gZz+Dr38d5s7dsrDm978PH/5wNQ3kvvvgtdfefo3Vq+FjH6vWtdCEWJiQJEmSJE1tO+xQrUXx5S/DnXfCYYdV+9/73mqhzK99rXpE6R57wKmnwu9+t6Xt4sXw059W/2pCLExIkiRJkjSeBQvggQeqxTNvuw0+//lqkc3p06vjZ58N3/oWbNoEN95Y3T2hrlmYkCRJkiRpW3bbrXrs6FVXwe23b9n/5JNVUQLg9dfhkEPgq19tpIuTmYUJSZIkSZK6tXo1PPvsW/e99hq8+mr19caN1foUF1xQ3W2xeb/exsKEJEmSJEndWrx4y90Sm02bBuvXV1+//DLsvns11WP+fNhzTzjxRLjnnsH3teUsTEiSJEmS1K2HHoING966b8MGePDB6ut994W774ZXXqmKERddBG++WS2mCXD//XDaadWTQJYte3uRYwpJKaXpPmw3IyMjZXR0tOluSJIkSZK0bUuXwsUXw89/Xr2eNat68se118LMmc32rQ+SPF5KGRnv2I6D7owkSZIkSVPe/PnV9uKL1R0VP/4xPPEEzJhRHb/iCli1CubNqwoWs2c32du+ciqHJEmSJElNmTOneuzokiXw9NPVOhUAa9fCD34AixbBXnvBkUfClVc229c+sTAhSZIkSVLbXHVVtYDmI49Ud0/MnAkrVzbdq75wjQlJkiRJkiaDUiBpuhcTsq01Jvp6x0SSjyd5NsmKJBePczxJrukcfzLJUXXbSpIkSZI0pUzSosS76VthIsk04B+A04DDgb9KcvhWp50GHNLZzgWu66KtJEmSJEma5Pp5x8SxwIpSyspSygbgZmDBVucsAJaUysPAjCT71mwrSZIkSZImuX4WJuYAz495/UJnX51z6rSVJEmSJEmTXD8LE+NNftl6pc13OqdO2+oCyblJRpOMrl27tssuSpIkSZKkJvWzMPEC8L4xr/cDXqp5Tp22AJRSbiiljJRSRmbPnt1zpyVJkiRJ0uD0szDxGHBIkgOT7AQsApZudc5S4OzO0zmOA9aVUlbXbCtJkiRJkia5Hft14VLKG0m+CNwFTAO+U0pZnuQLnePXA3cApwMrgN8Dn91W2371VZIkSZIkNSOljLt0w6Q0MjJSRkdHm+6GJEmSJEkaI8njpZSR8Y71cyqHJEmSJEnSNlmYkCRJkiRJjRmqqRxJ1gL/24dLzwJe7sN11RwzHT5mOnzMdPiY6fAx0+FjpsPHTIfPZM30gFLKuI/SHKrCRL8kGX2nuTCanMx0+Jjp8DHT4WOmw8dMh4+ZDh8zHT7DmKlTOSRJkiRJUmMsTEiSJEmSpMZYmKjnhqY7oO3OTIePmQ4fMx0+Zjp8zHT4mOnwMdPhM3SZusaEJEmSJElqjHdMSJIkSZKkxkzpwkSSjyd5NsmKJBePczxJrukcfzLJUXXbqhk9ZroqyVNJliUZHWzP9U5qZHpokoeSvJ7kwm7aqhk9Zuo4bakauX6q83P3ySQPJjmybls1o8dMHastVCPTBZ08lyUZTfKRum3VjB4zdZy2UN2xluSYJG8mWdht21YqpUzJDZgG/DdwELAT8J/A4VudczpwJxDgOOCRum3dJlemnWOrgFlNvw+3rjPdCzgGuAK4sJu2bpMr084xx2kLt5q5ngDs0fn6NH+ntnvrJdPOa8dqy7aame7KlqneRwDP1G3rNrky7bx2nLZsqzvWOufdC9wBLOymbVu3qXzHxLHAilLKylLKBuBmYMFW5ywAlpTKw8CMJPvWbKvB6yVTtdO7ZlpKWVNKeQzY2G1bNaKXTNVedXJ9sJTySuflw8B+dduqEb1kqnaqk+lvS+cTDjAdKHXbqhG9ZKp2qjvWzgduAdZMoG0rTeXCxBzg+TGvX+jsq3NOnbYavF4yheoH9d1JHk9ybt96qW70MtYcp+3Uay6O03bqNte/pbp7bSJtNRi9ZAqO1TaqlWmSM5M8A9wOnNNNWw1cL5mC47SN3jXTJHOAM4Hru23bZjs23YEGZZx9W1cQ3+mcOm01eL1kCnBiKeWlJHsB/5HkmVLKT7ZrD9WtXsaa47Sdes3FcdpOtXNNcgrVh9jN85wdq+3US6bgWG2jWpmWUm4Fbk1yErAYmFe3rQaul0zBcdpGdTK9CriolPJm8pbTJ/U4ncp3TLwAvG/M6/2Al2qeU6etBq+XTCmlbP53DXAr1e1QalYvY81x2k495eI4ba1auSY5Avg2sKCU8utu2mrgesnUsdpOXY21zgfUg5PM6ratBqaXTB2n7VQn0xHg5iSrgIXAtUn+ombb1prKhYnHgEOSHJhkJ2ARsHSrc5YCZ6dyHLCulLK6ZlsN3oQzTTI9yR8CJJkOnAo8PcjOa1y9jDXHaTtNOBfHaau9a65J9gf+BfibUsovummrRkw4U8dqa9XJ9P3p/Ak21ZPLdgJ+XaetGjHhTB2nrfWumZZSDiylzC2lzAV+CJxXSvnXOm3bbMpO5SilvJHki8BdVCuYfqeUsjzJFzrHr6da5fR0YAXwe+Cz22rbwNvQGL1kCuxNdYsbVOPin0sp/z7gt6Ct1Mk0yT7AKLAbsCnJBVQrEL/qOG2fXjIFZuE4baWaP38vA2ZS/WUH4I1Syoi/U9upl0zxd2or1cz0L6n+gLMRWA+c1Vk40XHaQr1kmsRx2kI1M+2q7SD6vT1sfnSMJEmSJEnSwE3lqRySJEmSJKlhFiYkSZIkSVJjLExIkiRJkqTGWJiQJEmSJEmNsTAhSZIkSZIaY2FCkiRtV0l+u52uc3mSC2uc909JFm6P7ylJkgbPwoQkSZIkSWqMhQlJktQXSXZNck+SJ5I8lWRBZ//cJM8k+XaSp5PclGRekgeSPJfk2DGXOTLJvZ39n+u0T5JvJvmvJLcDe435npcleaxz3RuSZLDvWpIkdcvChCRJ6pfXgDNLKUcBpwB/P6ZQ8H7gauAI4FDgr4GPABcCl4y5xhHAnwPHA5cl+SPgTOCPgT8FPgecMOb8b5ZSjiml/AnwB8AZfXpvkiRpO9mx6Q5IkqShFeDKJCcBm4A5wN6dY/9TSnkKIMly4J5SSknyFDB3zDX+rZSyHlif5D7gWOAk4HullDeBl5LcO+b8U5L8HbALsCewHLitb+9QkiT1zMKEJEnql08Bs4GjSykbk6wCdu4ce33MeZvGvN7EW/9/Ura6ZnmH/STZGbgWGCmlPJ/k8jHfT5IktZRTOSRJUr/sDqzpFCVOAQ6YwDUWJNk5yUzgZOAx4CfAoiTTkuxLNU0EthQhXk6yK+CTOiRJmgS8Y0KSJPXLTcBtSUaBZcAzE7jGo8DtwP7A4lLKS0luBf4MeAr4BXA/QCnl/5L8Y2f/KqoihiRJarmU8rY7ISVJkiRJkgbCqRySJEmSJKkxFiYkSZIkSVJjLExIkiRJkqTGWJiQJEmSJEmNsTAhSZIkSZIaY2FCkiRJkiQ1xsKEJEmSJElqjIUJSZIkSZLUmP8H+6pSHXRTKu8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.linear_model import Ridge\n", - "\n", - "scale_X = StandardScaler().fit(X).transform(X)\n", - "ols = LinearRegression()\n", - "ols.fit(scale_X,Y)\n", - "ols_coef = ols.coef_[3]\n", - "lamdas = np.linspace(0.01,0.4, 100)\n", - "\n", - "\n", - "coef_ols = np.repeat(ols_coef,100)\n", - "###############################################\n", - "\n", - "lasso_bath_coef = []\n", - "lasso_coefs=[]\n", - "for a in lamdas:\n", - " lasso.set_params(alpha=a,normalize = False)\n", - " lasso.fit(scale_X, Y)\n", - " lasso_bath_coef.append(lasso.coef_[3])\n", - " lasso_coefs.append(lasso.coef_)\n", - "################################################# \n", - "\n", - "ridge_bath_coef = []\n", - "for a in lamdas:\n", - " ridge = Ridge(alpha=a,normalize = True)\n", - " ridge.fit(scale_X, Y)\n", - " ridge_bath_coef.append(ridge.coef_[3])\n", - "####################################################\n", - "\n", - "poslasso_coef = [ ]\n", - "for a in range(100):\n", - " scale_X = StandardScaler().fit(X.iloc[:, (lasso_coefs[a] != 0)]).transform(X.iloc[:, (lasso_coefs[a] != 0)])\n", - " ols = LinearRegression()\n", - " ols.fit(scale_X,Y) \n", - " post_coef = ols.coef_[X.iloc[:, (lasso_coefs[a] != 0)].columns.get_loc('BATHS')] \n", - " poslasso_coef.append(post_coef ) \n", - " \n", - " \n", - "#################################################\n", - "plt.figure(figsize=(18,5))\n", - "plt.plot(lamdas, ridge_bath_coef, label = 'Ridge', color = 'g', marker='+', linestyle = ':',markevery=8)\n", - "plt.plot(lamdas, lasso_bath_coef, label = 'Lasso', color = 'r', marker = '^',linestyle = 'dashed',markevery=8)\n", - "plt.plot(lamdas, coef_ols, label = 'OLS', color = 'b',marker = 'x',linestyle = 'dashed',markevery=8)\n", - "plt.plot(lamdas, poslasso_coef, label = 'postlasso',color='black',marker = 'o',linestyle = 'dashed',markevery=8 )\n", - "plt.legend()\n", - "plt.title(\"Coefficient estimate on Baths\")\n", - "plt.ylabel('Coef')\n", - "plt.xlabel('lambda')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The OLS coefficients are not penalized, so they remain constant. Ridge estimates decrease monotonically as $\\lambda$ grows. Also, for this dataset, Lasso estimates first increase and then decrease. Meanwhile, the post-lasso coefficient estimates seem to behave somewhat erratically with $lambda$. To understand this behavior, let's see what happens to the magnitude of other selected variables that are correlated with `BATHS`. " - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "scale_X = StandardScaler().fit(X).transform(X)\n", - "UNITSF_coef = []\n", - "BEDRMS_coef = []\n", - "DINING_coef = []\n", - "for a in lamdas:\n", - " lasso.set_params(alpha=a,normalize = False)\n", - " lasso.fit(scale_X, Y)\n", - " UNITSF_coef.append(lasso.coef_[1])\n", - " BEDRMS_coef.append(lasso.coef_[4])\n", - " DINING_coef.append(lasso.coef_[5])" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'lambda')" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCYAAAE9CAYAAADXgmPAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABpgUlEQVR4nO3dd3RUVdvG4d9OTwiE3nvvBAxFihRRqhRBwIaAyIsdFBUbop+IBQWxgqKIKKAIAtJFkCIt9N6r9F4Cqfv74wyIiBgg4WQm97XWLLJPmbmTcyaaZ3Yx1lpERERERERERNzg53YAEREREREREUm/VJgQEREREREREdeoMCEiIiIiIiIirlFhQkRERERERERco8KEiIiIiIiIiLhGhQkRERERERERcU2A2wFSUvbs2W3hwoXdjiEiIiIiIiIil1i2bNkRa22OK+3zqcJE4cKFiY6OdjuGiIiIiIiIiFzCGLPr3/ZpKIeIiIiIiIiIuEaFCRERERERERFxjQoTIiIiIiIiIuIan5pjQkRERERERCQlxMfHs3fvXs6fP+92FK8SEhJC/vz5CQwMTPY5KkyIiIiIiIiIXGbv3r1kzJiRwoULY4xxO45XsNZy9OhR9u7dS5EiRZJ9noZyiIiIiIiIiFzm/PnzZMuWTUWJa2CMIVu2bNfcy0SFCREREREREZErUFHi2l3Pz0yFCREREREREZE0aOfOnZQvX/5v2/r27cuAAQPo1KkT+fLlIzY2FoAjR45QuHDhv503ffp0IiMjiYyMJDw8nFKlShEZGUnHjh2JiYnh/vvvp0KFCpQvX57atWtz5swZAPz9/S+eFxkZyc6dO1P1+9QcEyIiIiIiIiJeyN/fn6+++opHH330ivsbNWpEo0aNAKhXrx4DBgwgKioKgP79+5MrVy7WrFkDwKZNmy5OWBkaGsrKlStT/xvwUI8Jt23fDvHxbqcQERERERERL9OjRw8GDhxIQkLCNZ+7f/9+8uXLd7FdqlQpgoODUzJesqkw4SZroXlzKFIE+veHo0fdTiQiIiIiIiJeomDBgtSuXZtvv/32ms/t0qUL77zzDrfeeiuvvPIKW7Zsubjv3LlzF4dxtG7dOiUjX5GGcrhtwAAYNAheegneeAMefBCefRZKlXI7mYiIiIiIiOD0TEjpoQ2RkZEMGjToqsf820SSl25/6aWXaNGiBc2aNbvm19++fTszZszg119/pWrVqixcuJAyZcrc9KEcKky4yRho2tR5rF0LgwfDt99C/fpOYSI2FgIDwU8dW0RERERERNKbbNmycfz48b9tO3bsGEWKFLnYLl68OJGRkfzwww/X/Pzh4eHcfffd3H333fj5+TFlyhTKlClzw7mvlQoTaUX58jB0KLz1FkREONs++AC+/hqefNLpSZE5s6sRRURERERE0qP/6tmQWsLDw8mTJw+zZs3i9ttv59ixY0ybNo2nn36a2bNnXzzu5ZdfvuYeEwsWLKBs2bJkyZKFuLg41q9fT7169VL4O0gefRSf1mTP7vSSAKhQAbJlg6eegjx5nOLE3Lnu5hMREREREZGbZsSIEbz55ptERkbSoEEDXnvtNYoVK/a3Y8qVK0eVKlWu6Xm3bdtG3bp1qVChApUrVyYqKoo2bdqkZPRkM9ZaV144NURFRdno6Gi3Y6S8Zctg2DD4/nuoXRt++cXZfuwYZM3qbjYREREREREftGHDBleGNfiCK/3sjDHLrLVRVzpePSa8wS23wKefwr598NlnzrZduyB3brjrLvj5Zy05KiIiIiIiIl5JhQlvEhYGBQo4X4eEQK9eTm+K1q2d7Q895BQsRERERERERLyEChPeKlcuZ6LM3bth4kSoUwemTXMKFgCffw7NmjnH/P47nDvnbl4RERERERGRK9CqHN4uIMAZznHXXWCtswQpOF/v2AFTpjjtwECoUQPmzNHyoyIiIiIiIpJm6C9UX3KhKAHw6KOwfj0cOQKTJsGzz0K5cn8VJT75BNaudSeniIiIiIiIiId6TPi6bNmgeXPnccHx4/DCC3D2LNx+O/ToAU2bqieFiIiIiIiI3HT6SzQ9ypLFmSSzf3/YuNEZBlKqFCxe7HYyERERERER8fD39ycyMpJKlSpRpUoV/vjjDwB27txJaGgokZGRFx8jRowAoHDhwlSoUIEKFSpQtmxZXnnlFWJjY/9xXtmyZenYsSPxnhUe58yZgzGGYcOGXXz9FStWYIxhwIABACxatIjq1asTGRlJmTJl6Nu3b4p8nypMpFfZskHv3s48FKNHQ968ULiws2/LFjhxws10IiIiIiIi6V5oaCgrV65k1apV9O/fnxdffPHivmLFirFy5cqLj44dO17cN3v2bNasWcOSJUvYvn073bp1+8d5a9asYe/evfzwww8X91WoUIExY8ZcbI8ePZpKlSpdbD/00EMMHTqUlStXsnbtWtq1a5ci36cKE+ldYCC0b++s3JErlzNp5gMPQMmSMHQoJCa6nVBERERERCTdO3XqFFmyZLmmc8LDw/n888/5+eefOXbs2N/2+fv7U61aNf7888+L2woWLMj58+c5ePAg1lqmTZtGkyZNLu4/dOgQefLkuXh+2bJlb+A7+kuqFiaMMY2NMZuMMVuNMb2vsN8YYwZ79q82xlS5ZN9OY8waY8xKY0x0auaUSxjjLDVaujT8739wyy1O0UJERERERERuqnPnzhEZGUnp0qXp2rUrr7766sV927Zt+9tQjnnz5l3xOTJlykSRIkXYsmXL37afP3+exYsX07hx479tb9u2LT/++CN//PEHVapUITg4+OK+nj17UqpUKVq3bs2QIUM4f/58inyfqTb5pTHGH/gEuAPYCyw1xky01q6/5LAmQAnPozrwmeffC+pba4+kVkb5F5UrO8WIH3+E556DevVg/Hho1crtZCIiIiIiIu6oV++f29q1g8ceg5gYZ0GBy3Xq5DyOHIG2bf++b86c/3zJC0M5ABYuXEjHjh1Z61ld8cKQjOSw1l78+kJBY8uWLbRt25aKFSte9i21o3379mzcuJF777334rwWAH369OH+++9nxowZfP/994waNYo5yfg+/ktq9pioBmy11m631sYBo4GWlx3TEhhhHYuAzMaYPKmYSZLLGOdNtnEjDBz415ts5Uo4c8bVaCIiIiIiIunNrbfeypEjRzh8+PA1nXf69Gl27txJyZIlgb8KGlu3bmXRokVMnDjxb8fnzp2bwMBAZs6cye233/6P5ytWrBiPPvoos2bNYtWqVRw9evT6vymP1FwuNB+w55L2Xv7eG+LfjskH7AcsMMMYY4Eh1tqhV3oRY0w3oBs442EkhYWGOsuJAsTFOSt4JCXB22/DffeBv7+r8URERERERG6Kq/UMCAu7+v7s2ZPVQ+JqNm7cSGJiItmyZSMmJiZZ55w5c4bHHnuMVq1akSVLFk6ePHlxX548eXj77bfp378/LVq0+Nt5b7zxBocOHcL/sr/3Jk+eTNOmTTHGsGXLFvz9/cmcOfMNfV+Quj0mzBW22Ws4ppa1tgrOcI/HjTG3XelFrLVDrbVR1tqoHDlyXH9a+W9BQTBmjLOCR8eOUKkS/PSTU6gQERERERGRFHVhjonIyEjat2/PN998c7FYcPkcE4MHD754Xv369SlfvjzVqlWjYMGCDBky5IrP36pVK2JiYv4xP0XNmjVpdYWh/N9++y2lSpUiMjKSBx98kO++++4fxYvrYS4da5KSjDG3An2ttY087RcBrLX9LzlmCDDHWjvK094E1LPW7r/sufoCZ6y1A672mlFRUTY6WvNkprqkJBg7Fl57zRnqMXMmNGzodioREREREZEUs2HDBsqUKeN2DK90pZ+dMWaZtTbqSsenZo+JpUAJY0wRY0wQ0AGYeNkxE4GOntU5agAnrbX7jTEZjDEZPeEzAHcCa1Mxq1wLPz9n/om1a2HCBLgw7ujLL2HaNGfJUREREREREZFkSLXChLU2AXgCmA5sAH6w1q4zxnQ3xnT3HDYF2A5sBb4AHvNszwXMN8asApYAk62101Irq1wnf39o0cKZKDMpCT78EJo0gTp1YPZst9OJiIiIiIiIF0jNyS+x1k7BKT5cuu3zS762wONXOG87UCk1s0kK8/ODZctg2DDo1w8aNID69Z0VPSrpUoqIiIiIiMiVpeZQDklvgoLg0Udh61YYNAg2bPhrWEdMjIZ4iIiIiIiIyD+oMCEpLyQEnn4adu2CyEhn2//+BzVqwKRJKlCIiIiIiIjIRSpMSOoJCvrr6/r14fBhZ06KypWdVT20zKiIiIiIiEi6p8KE3BxdusCmTTB8OJw7B/fc48xFISIiIiIiIlfk7+9PZGQk5cqVo1KlSnzwwQckeT7gnTNnDs2bNwdg+PDh+Pn5sXr16ovnli9fnp07dwJQuHBhjhw5AoAxhmefffbicQMGDKBv374X2yNHjqRixYoXX7Nr166cOHEiVb9PFSbk5gkMhIcegvXrYdQo6NzZ2b54MYwcCYmJ7uYTERERERFJQ0JDQ1m5ciXr1q1j5syZTJkyhddff/2Kx+bPn59+yfjwNzg4mHHjxl0sVFxq2rRpDBw4kKlTp7Ju3TqWL19OzZo1OXjw4A1/L1ejwoTcfP7+0KED5M/vtIcNgwcfhHLl4PvvVaAQERERERG5TM6cORk6dCgff/wx9grz9jVv3px169axadOmqz5PQEAA3bp1Y+DAgf/Y169fPwYMGEC+fPkAp8dGly5dKFWqVMp8E/9ChQlx3+efO3NOBAbC/fdDhQowYYLbqURERERERNKUokWLkpSUxKFDh/6xz8/Pj+eff5633nrrP5/n8ccf57vvvuPkyZN/275u3TqqVKmSYnmTS4UJcZ+fH7RpA6tWwQ8/OO0LVb7ERE2SKSIiIiIirqs3vB7DVw4HID4xnnrD6zFy9UgAYuJjqDe8HmPWjgHg5PmT1Btej3EbxgFwJOYI9YbXY9KmSQAcOHPgunNcqbfEBffddx+LFi1ix44dV32OTJky0bFjRwYPHvyvx6xZs4bIyEiKFSvGmDFjrjtvcqgwIWmHn58zKebq1dCjh7Nt1CioWBF+/FEFChERERERSde2b9+Ov78/OXPmvOL+gIAAnn32Wd55553/fK4ePXowbNgwzp49e3FbuXLlWL58OQAVKlRg5cqVNGnShHPnzqXMN/AvAlL12UWuh5/fX0uNZsvm9Jpo184Z4vHaa9C6tXOMiIiIiIjITTKn05yLXwf6B/6tHRYY9rd2REjE39rZw7L/rZ07PPc1v/7hw4fp3r07TzzxBMaYfz2uU6dOvPvuu5w+ffqqz5c1a1batWvHsGHD6NKlCwAvvvgivXr1YsKECeT3zAmY2kUJUI8JSeuaNIG1a+G77yAuDtq2dSbOFBERERER8XHnzp27uFxow4YNufPOO3nttdeuek5QUBBPPfXUFeehuNyzzz77t9U5mjZtylNPPUWTJk0oW7YsNWvWxN/fn0aNGt3w93I15mrjU7xNVFSUjY6OdjuGpJbERBg9GrJkgaZN4fRp+O03aNECrlIxFBERERERuVYbNmygTJkybsfwSlf62Rljlllro650vHpMiPfw93dW7Wja1GkPHw6tWsEtt8DEieBDRTYREREREZH0QoUJF+3fv589e/a4HcN7PfqoU5w4dQpatoSoKGfZURUoREREREREvIYKEy4aNGgQBQsWpE6dOnzyySccPHjQ7UjeJSAAHnoINmyAr75yhnYMGfLXsA6t4iEiIiIiIpLmqTDhom7duvHmm29y4sQJnnjiCfLmzcsdd9zBl19+ybFjx9yO5z0CA6FzZ6dA8d13zrY9e6BoURgwwClYiIiIiIiIXCNfmpPxZrmen5kKEy4qVqwYL7/8MmvWrGHNmjW89NJL7Ny5k0ceeYRcuXLRvHlzRo4cyalTp9yO6h38/eHCer5nzkDx4vDcc1CwILzyChw+7G4+ERERERHxGiEhIRw9elTFiWtgreXo0aOEhIRc03lalSONsdayYsUKRo8ezZgxY9i9ezfBwcE0bdqU9u3b07x5czJkyOB2TO+xdCm88w6MGwfh4U5PiogIt1OJiIiIiEgaFx8fz969ezl//rzbUbxKSEgI+fPnJzAw8G/br7YqhwoTaVhSUhKLFy9m9OjR/Pjjj+zfv5+wsDCaN29O+/btadKkCaGhoW7H9A6bNsG8edC1q9Pu0sUZ6nH//VCkiLvZREREREREfJwKEz4gMTGR+fPnM2bMGMaOHcvhw4cJDw+nRYsWtG/fnkaNGhEcHOx2TO8QGwt33glz5zrtmjWdAkW7dpA9u7vZREREREREfJAKEz4mISGBOXPmMGbMGMaNG8exY8eIiIigSZMmNGvWjMaNG5Ndf2D/t127YNQoZ8LMtWvho4/giSfg3DlnRQ8NmREREREREUkRKkykYQv3LKRS7kqEBYZd1/nx8fHMmjWLH374gcmTJ3Po0CH8/PyoXr06zZo1o1mzZlSqVAlzYQlNubLVqyF/fsiaFb78Ep5+Glq0gPbtoXFjuMbJW0REREREROQvKkykUYfPHqbIh0XoWKkjnzb79IafLykpiWXLljF58mQmT57MhZ9Fvnz5aNq0Kc2aNaNhw4aaPPO/rFgBQ4fC2LFw5AhkygStWjkFi8smcBEREREREZH/psJEGvbL5l+okb8G2cNSfujFgQMHmDp1KpMnT2bGjBmcPn2asLAw7rrrrouTZ17rMi7pSnw8/PYbjBnjrOYxc6az/fPPoWRJqFvXWaJURERERERErkqFCS+QZJN4fc7rdI/qTp6MeVL8+ePi4pg3bx5jx45l7NixHDlyhIwZM9KyZUs6dOjAHXfcQVBQUIq/rs+wFoxxihX58sHhw5AnD9x3HzzwAFSq5OwXERERERGRf7haYcLvZoeRK9t8dDMfLPqAsevHpsrzBwUFcfvtt/PZZ5+xf/9+ZsyYwT333MMvv/xC8+bNyZ07Nw8//DAzZswgISEhVTJ4tQtFh8BA2LkTfvgBqlWDwYOhcmUYONDVeCIiIiIiIt5KPSbSkF0ndlEwoiDGGKy1N2XCyri4OGbOnMmYMWP4+eefOX36NDlz5qRjx448/PDDlC5dOtUzeLWjR50iRcOGUKIETJ0KAwY4vSjatHHmpxAREREREUnn1GPCSxTKXAhjDLtO7KLqF1VZeWBlqr9mUFAQzZo1Y8SIERw6dIjx48dTs2ZNBg0aRJkyZahduzZff/01Z8+eTfUsXilbNnj0UacoAc5So7t2QZcukDs33HsvTJ4MiYnu5hQREREREUmjVJhIg2ITY4lPir/prxsSEkKrVq0YP348e/fu5d133+Xw4cN06dKFPHny0K1bNxYvXowv9bJJcXffDVu2wB9/QKdOzoSZjz7611CQP/905qsQERERERERQEM50qwkm4SfcepG+07vI2/GvK7ksNayYMEChg0bxg8//EBMTAzlypWja9euPPTQQ2TJksWVXF4jLg62b4fSpSEhAfLnh8yZnaEe998PRYq4nVBERERERCTVaSiHF7pQlPhp/U8UG1yMhXsWupLDGHNxOMf+/fsZOnQoGTJkoGfPnuTNm5fOnTuzdOlSV7J5haAgpygBznCON990hni8+ioULQp16sCcOa5GFBERERERcZMKE2lc/SL1eSzqMarkqeJ2FDJlysQjjzzC4sWLWblyJQ899BA//vgj1apVIyoqimHDhmkuiqsJDoauXZ1CxM6d8NZbzuSZSUnO/s2bYfx4iI11M6WIiIiIiMhNpaEcXiQmPoYpW6bQtmxbt6NcdOrUKUaOHMlnn33G2rVriYiI4KGHHqJ79+6UKVPG7Xhp34X3nzHw8stOsSJLFmjXDh58EGrW/Gt+ChERERERES+loRw+4sNFH9J+bHvWH17vdpSLMmXKxGOPPcbq1auZN28eTZs25bPPPqNs2bLUr1+fn3/+mUStSPHvjPmr8PD6685yo02bwrffQu3aEBn5V48KERERERERH6QeE14kISmBubvm0qBIA7ejXNWhQ4f46quv+Pzzz9m1axfFixenR48edOrUiQwZMrgdzzucPg0//wyHDsGzzzo9Kzp2hOrVoX17yJHD7YQiIiIiIiLJdrUeEypMeKmlfy7l29XfMrDRQPz9/N2Oc0UJCQmMHz+e999/n8WLF5MlSxa6d+/OE088Qd687qwy4rWOH4f69WHVKggIgMaNnZU9WrSA0FC304mIiIiIiFyVa0M5jDGNjTGbjDFbjTG9r7DfGGMGe/avNsZUuWy/vzFmhTHml9TM6Y1+2/Ebv2z+hWPnjrkd5V8FBARwzz33sHDhQhYsWED9+vV5++23KVy4MB07dmTlypVuR/QeWbLAypWwejU88wysWAEdOsBPPzn7z5/XkA8REREREfFKqdZjwhjjD2wG7gD2AkuBe6216y85pinwJNAUqA58aK2tfsn+Z4AoIJO1tvl/vWZ66jEBcPL8SSJCIrDWEpcYR3BAsNuR/tO2bdv48MMP+eqrrzh79iwNGjSgT58+1K1b1+1o3iUxEX7/HapVg/BweO89GDwY7rvPmTSzfHm3E4qIiIiIiFzkVo+JasBWa+12a20cMBpoedkxLYER1rEIyGyMyeMJnR9oBnyZihm9WkRIBAB9Zvfh9hG3ExMf43Ki/1asWDEGDx7Mnj17ePvtt9m4cSP16tWjVatWbN682e143sPfHxo0cIoSAJUqOY/334cKFZxJMwcN+mvVDxERERERkTQqNQsT+YA9l7T3erYl95hBwPOA+qf/h0q5K1EpVyVCA7xnroEsWbLwwgsvsHXrVvr168esWbMoV64cTz/9NEePHnU7nve580745RfYt8/pOREcDFOm/LXix4wZcOaMuxlFRERERESuIDULE+YK2y7/+PaKxxhjmgOHrLXL/vNFjOlmjIk2xkQfPnz4enJ6vbZl2/JJs08wxrD/9H7WHVrndqRkCw0N5aWXXmLr1q106dKFjz/+mOLFi/P+++8TGxvrdjzvkzMnPPkkLF4MEyY42/bvhyZNIFcuuP9+mDwZ9LMVEREREZE0IjULE3uBApe08wP7knlMLaCFMWYnzhCQBsaYkVd6EWvtUGttlLU2KoeWUKTrpK40/q4xsQne9Ydnrly5GDJkCKtWraJGjRr06tWLsmXLMnbsWHxp5Zib6sJqHblzw9y5znKjU6dC8+bOcqNTp7qbT0REREREhNQtTCwFShhjihhjgoAOwMTLjpkIdPSszlEDOGmt3W+tfdFam99aW9hz3m/W2gdSMavP+LTpp4xoNcIrJsK8kvLlyzN16lSmT59OWFgY99xzD3Xq1GHx4sVuR/NexkCtWvDZZ07viSlToF07KFfO2T9mDLRqBd9+6yxLKiIiIiIichOlWmHCWpsAPAFMBzYAP1hr1xljuhtjunsOmwJsB7YCXwCPpVae9KJQ5kLUL1IfgLHrx/Lhog9dTnR97rzzTlauXMnQoUPZunUrNWrU4L777mPXrl1uR/NuwcHOsI4vv4SCBZ1tp09DdLTToyJnTmjUCD7/XBNnioiIiIjITZFqy4W6Ib0tF/pf7vvpPnad3MWch+YQ6B/odpzrdvr0ad59913ef/99kpKS6NGjBy+++CIRERFuR/MdSUmwdCmMG+c8QkNh9Wpn3+DBkD073H67M0+FiIiIiIjINbracqEqTPiwxKREzsafJVNwJmITYjHGEOQf5Has67Znzx5efvllvv32W3LkyMHrr7/OI488QkBAgNvRfIu1zpCOrFmdr4sUgQs9VcqXh4YNoW1bZ3iIiIiIiIhIMlytMJGac0yIy/z9/MkUnAlrLQ/9/BDNvm9GYlKi27GuW4ECBRgxYgTR0dGULVuWxx57jIoVKzJlyhRNkJmSjHGKEhe+3rbN6U3Rv78zkeZnn/01cWZMDLzwgrPSx8mT7mUWERERERGvpR4T6cS3q77lcMxhnrn1GbejpAhrLRMnTuS5555jy5YtNGzYkPfff5+KFSu6Hc33nT/vPDJnduamqFkT4uPBzw8iI6FuXXj0UShRwu2kIiIiIiKSRqjHhPBgpQcvFiU2HtnIsXPHXE50Y4wxtGzZkrVr1/Lhhx+yfPlyKleuzDPPPMPp06fdjufbQkKcogRAVJTTU+K33+DVVyFTJqdHxYXVPX77DZ58EsaOhUOHXIssIiIiIiJpl3pMpDOxCbGU/Lgk5XOWZ/J9k92Ok2KOHz/Oyy+/zOeff06+fPkYPHgwrVq1whjjdrT0JzYWAgLA3x8+/RSee84Z8gFQurTTo+KDDyAszN2cIiIiIiJy02jyS/mbGdtmUDCiIKWzl3Y7SopbtGgR3bt3Z9WqVdx111189NFHFCpUyO1Y6Vt8PCxbBr//7jy2bYONG535K15+GQ4ccIaDVK0KZcs6RQ0REREREfEpKkzIv/pm5Tc0K9mM7GHZ3Y6SYhISEvjwww/p06cPAH379qVHjx4EBnrvkqk+xVqnKAHw+OMwatRfQz9CQ6FdOxg+3Gn/+SfkyePMXyEiIiIiIl5Lc0zIFe05uYfuk7vzwcIP3I6SogICAnj22WfZsGEDDRs25PnnnycqKoqFCxe6HU3gr6IEwCefwJEjsGkTjBwJ//sflCnj7LPWWZ40a1a4/XZnDoslSyApyZ3cIiIiIiKSKtRjIp1bsX8FFXJVIMDPd7vPT5gwgSeffJK9e/fSrVs3BgwYQHh4uNux5L/Ex8O33zorfyxdCitWQGKiM/zjzTedr+PinF4WIiIiIiKSpqnHhPyrynkqE+AXwKnYU3Se0JlDZ31v5YSWLVuyfv16evbsyRdffEGNGjXYvHmz27HkvwQGQpcuzgSaS5fCwYNOoaJ9e2f/ggWQPTu0bu0M/Th82NW4IiIiIiJyfVSYEAA2HN7A+A3jWb5/udtRUkV4eDjvv/8+M2bM4ODBg1StWpUJEya4HUuuRbZs8MADUKGC086RAzp1cnpUdO4MuXNDnTqwd6+rMUVERERE5NpoKIdcdOL8CTKHZHY7RqrbvXs3bdq0ITo6mpdeeok33ngDf39/t2PJ9bLWGeYxcSLMng2//ur0tvjsMzh5Etq0gRIl3E4pIiIiIpKuaSiHJMuFosSv23+l5eiWxCbEuhsolRQsWJB58+bRtWtX3nrrLZo2bcrRo0fdjiXXyxioUgX69nWWI72w+sqcOfDii1CyJFSsCK+/DuvXu5lURERERESuQIUJ+YfDZw+z88ROTpw/4XaUVBMSEsIXX3zB0KFDmTNnDrfccgvLl/vmMJZ0a8wY2LULBg6EiAinMPF///fX/v373csmIiIiIiIXaSiHXFF8YjyB/oFux7gplixZQtu2bTl06BCfffYZnTt3djuSpIYDB+DsWShWDDZuhLJloX59Z56Ku++GDBncTigiIiIi4rM0lEOuWaB/IAlJCTw2+TE+WfKJ23FSVbVq1Vi2bBm1atWiS5cudO/endhY3xzGkq7lzu0UJQCyZHGGfuzcCR07Ovu6dIE//3QzoYiIiIhIuqTChFzV3lN7+fO07/+xliNHDqZPn87zzz/PkCFDqF+/Pvv27XM7lqSWXLmgTx/YuhXmznWWIJ08+a9eE0uXOsNAREREREQk1Wkoh1xVQlICAX4BAFhrMca4nCj1jR07lk6dOpEpUybGjRtHjRo13I4kN0NCAgQ49zo1asCSJdCkCXTrBs2a/bVPRERERESumYZyyHW7UJTYdmwbtb+uzdZjW11OlPratm3LwoULCQkJoW7dugwbNsztSHIzXFp4GDMGXnnFWYa0VSsoXBi++sqtZCIiIiIiPk2FCUmWJJvE0ZijHI1JH8tqVqhQgejoaOrWrUvXrl15/PHHiYuLczuW3CyFCsEbb8Du3TB+PFSoAH6eX5fHj8Mvv0BiorsZRURERER8hIZySLIlJiXi7+cPpJ9hHQkJCbz00ku899571KlThx9//JFcuXK5HUvc9Omn8PjjUKAAdO0KDz8M+fK5nUpEREREJE3TUA5JEReKEkOXDaXd2HYkJvn+J8YBAQG8++67fP/990RHRxMVFYWKX+ncI4/A2LFQujS89hoULOgM91CPGhERERGR66LChFyz8wnnORt3lrjE9POH2L333ssff/yBv78/tWvXZsSIEW5HErcEBkKbNjBjhrOqx3PPQXAwBAU5+8eOhf373c0oIiIiIuJFNJRDrsuFYR2XDu9ID44cOUK7du2YPXs2Tz31FAMGDCAwMNDtWJJWHD/uLEWalAQtWsD//gd33PHX/BQiIiIiIumUhnJIivP38ycmPoYm3zXh/T/edzvOTZM9e3ZmzJhBjx49GDx4MA0aNGC/Ph2XC7JkgXXr4JlnYN48aNwYihWDuXPdTiYiIiIikmapMCHXLdg/mOxh2ckWls3tKDdVQEAAAwcOZNSoUSxfvpwqVaowf/58t2NJWlGiBLz7LuzdC6NGQZEiziofAEuWwK+/Oj0qREREREQE0FAOuUGXrs5xLv4coYGhLie6udauXcvdd9/Njh07eP/993nyySfTxWolcp3at4cffnB6UTzyCHTuDDlzup1KRERERCTVaSiHpJoLf4Qv27eMooOLMm/XPJcT3Vzly5dn6dKlNGvWjKeffpoHHniAs2fPuh1L0qpvvoHvvnOWF+3dG/Lnh1693E4lIiIiIuIqFSYkRRTOXJjq+apTMKKg21FuuoiICMaNG0e/fv0YNWoUNWrUYMuWLW7HkrQoJATuuw9+/x3Wr4fHH3eGegDExsKgQXDkiKsRRURERERuNg3lkBRnreX4+eNkDc3qdpSbbsaMGdx3333Ex8fz7bff0qJFC7cjibeYPt2ZLDMoyFmO9H//g9tuAw0NEhEREREfoKEcclP939z/o8qQKhw+e9jtKDfdnXfeybJlyyhRogQtW7bklVdeITEx0e1Y4g0aNYK1a52CxJQpUK8elCkDBw+6nUxEREREJFWpMCEprlmJZrQr1y7drdZxQaFChZg/fz4PP/ww/fr1o2nTphw9etTtWOINypWDwYNh3z4YPhyqVv1rcsxvvnGWIPWhXm4iIiIiIqChHJLKjsQcIdAvkIiQCLejuOLLL7/k8ccfJ0+ePPz000/ccsstbkcSb5SY6MxFsWeP04uiWzfo2BGypr/hUiIiIiLinTSUQ1yRmJTIHd/ewT0/3oMvFcCuRdeuXZk/fz7WWmrVqsWwYcPcjiTeyN8fNmyAYcMgY0bo2dNZ2ePrr91OJiIiIiJyw1SYkFTj7+fPy3Ve5qU6L11cVjQ9qlq1KsuWLaNOnTp07dqVbt26cf78ebdjibfJkAG6dIHFi2HFCujcGSIjnX0rV8JHH8GJEy4GFBERERG5PipMSKpqW7Yt9QrXA2DhnoXEJca5G8gl2bNnZ9q0abz44ot88cUX1KlTh927d7sdS7xVZCR8+ilUruy0f/4ZnnoK8uZ1ChaLFmkuChERERHxGipMyE2x4/gO6g6vy//9/n9uR3GNv78/b731FuPHj2fTpk1UqVKFX3/91e1Y4gv69oVly+DBB2HsWLj1VmjQQMUJEREREfEKqVqYMMY0NsZsMsZsNcb0vsJ+Y4wZ7Nm/2hhTxbM9xBizxBizyhizzhjzemrmlNRXJEsRRrQewXO1nnM7iutatWpFdHQ0uXLlolGjRvTv3z/dzsEhKahKFRgyxFnR4/PPoVUrMAaSkqB3b1i6VIUKEREREUmTUm1VDmOMP7AZuAPYCywF7rXWrr/kmKbAk0BToDrwobW2unEmJMhgrT1jjAkE5gNPW2sXXe01tSqHd0hISuC71d/RsVLHdD33xJkzZ+jatStjxoyhVatWDB8+nIiI9Ll6iaSiTZucokVMjDP043//g/vucybRFBERERG5SdxalaMasNVau91aGweMBlpedkxLYIR1LAIyG2PyeNpnPMcEeh76qM9HjFk7hk4TOjFrxyy3o7gqPDycUaNGMXDgQCZNmkS1atVYt26d27HE15QqBfv3O3NSJCVB9+7Oih4rVridTEREREQESN3CRD5gzyXtvZ5tyTrGGONvjFkJHAJmWmsXp15UuZnuq3Afsx+aTcOiDd2O4jpjDD169OC3337j5MmTVKtWjTFjxrgdS3xNpkzw6KNOMWLRIujYEcqXd/b9/LOzTURERETEJalZmLhSH/3Lez386zHW2kRrbSSQH6hmjCl/xRcxppsxJtoYE3348OEbySs3iTHm4kodm45sYvDiwe4GSgNuu+02li9fTmRkJB06dOCZZ54hPj7e7Vjia4yB6tXh448hMNCZc+Lll53JMmvWdCbOTEhwO6WIiIiIpDOpWZjYCxS4pJ0f2Hetx1hrTwBzgMZXehFr7VBrbZS1NipHjhw3GFlutk+Xfkq/ef04EnPE7Siuy5s3L7Nnz+bJJ59k4MCB3H777Rw4cMDtWOLLjIHFi2HwYDh0CO65B0qUgAkT3E4mIiIiIulIahYmlgIljDFFjDFBQAdg4mXHTAQ6elbnqAGctNbuN8bkMMZkBjDGhAINgY2pmFVc8kGjD1jSdQnZw7K7HSVNCAoKYvDgwYwcOZLo6GiqVKnCggUL3I4lviw8HJ580pkkc/x4KFAAwsKcfcePw6lT7uYTEREREZ+XaoUJa20C8AQwHdgA/GCtXWeM6W6M6e45bAqwHdgKfAE85tmeB5htjFmNU+CYaa39JbWyinv8/fwplLkQAB8u+pB35r/jcqK04f7772fRokWEhYVRr149PvroIy0pKqnL399ZYnTuXLjjDmfb669DkSLwzjtw9qyr8URERETEd121MGGM+dbz79PX8+TW2inW2pLW2mLW2n6ebZ9baz/3fG2ttY979lew1kZ7tq+21la21la01pa31r5xPa8v3sNay5J9S1iybwlJNsntOGlCxYoViY6OpkmTJjz11FM8+OCDnNUfh3IzPfgg1KgBvXtD0aLw4Ydw/rzbqURERETEx5irfQprjFkPNMEZclGPyyartNYeS81w1yoqKspGR0e7HUOuU0JSAtZaAv0DiU+MJ9A/0O1IaUJSUhJvvfUWffr0oXz58owbN47ixYu7HUvSkz/+gFdegdmzndU9Pv3U7UQiIiIi4mWMMcustVFX2vdfQzk+B6YBpYFllz1UAZAUFeAXQKB/IGfjztJgRAPe/+N9tyOlCX5+frzyyitMnTqVP//8k6ioKCZNmuR2LElPataE336DWbPg2WedbevWwfDhWsVDRERERG7YVQsT1trB1toywFfW2qLW2iKXPIrepIySzgQHBFMoohAFIwq6HSVNadSoEcuWLaNo0aK0aNGCV199lcTERLdjSXrSoAEUK+Z8/fXX0LkzlCsHo0dDkoZgiYiIiMj1Sdbkl9baR40xtY0xnQGMMdmNMUVSN5qkVwF+AYy8eyT3lLsHgP2n97ucKO0oXLgwCxYsoHPnzrz55ps0a9aMo0ePuh1L0qP33oNx4yAoCO69FypVgl80R7GIiIiIXLtkFSaMMa8BLwAvejYFASNTK5TIBWsOrqHkxyX5esXXbkdJM0JDQxk2bBhDhgxh9uzZREVFsXz5crdjSXpjDLRuDatWwahREBcH8+c7+6x1HiIiIiIiyZDc5UJbAy2AswDW2n1AxtQKJXJB6eyl6X5LdxoXb+x2lDTFGEO3bt2YN28eCQkJ1KxZk6+/VvFGXODnBx06OHNO9OnjbJs2DWrXdibLFBERERH5D8ktTMRZZ/kOC2CMyZB6kUT+EugfyHt3vkeejHmw1vL7zt/djpSmVKtWjeXLl1OrVi26dOnC//73P2JjY92OJelRQACEhTlfx8bCrl3OnBQNGsCCBe5mExEREZE0LbmFiR+MMUOAzMaYR4BfgS9SL5bIPw1fOZx639Rj7q65bkdJU3LkyMH06dN54YUXGDp0KHXq1GHPnj1ux5L0rFUr2LoVBg1yelLUrg1duridSkRERETSKGOTOQ7YGHMHcCdggOnW2pmpGex6REVF2ehorWLqq+IT4/l+zfd0rNQRY4zbcdKkcePG0alTJ4KDgxk9ejS3336725EkvTt7Fj7+GHLnhocecuai2LLFWc1DRERERNINY8wya23UlfYlt8cEwGrgd2AOsCoFcolck0D/QB6KfAhjDPtO72PEqhFuR0pz7r77bpYsWUKOHDm48847eeedd0hu8VEkVWTIAC+84BQlAIYPhwoV4L77YPNmV6OJiIiISNqQ3FU52gFLgHuAdsBiY0zb1AwmcjXvLniXJ6Y8wYEzB9yOkuaULl2aJUuW0KZNG3r37k2bNm04deqU27FEHG3bQu/eMGEClCkDnTvDjh1upxIRERERFyVrKIcxZhVwh7X2kKedA/jVWlsplfNdEw3lSD/iEuPYdGQTFXJVcDtKmmWtZeDAgTz//PMUK1aM8ePHU7ZsWbdjiTgOHYK334ZPP4VKlWDxYrcTiYiIiEgqSomhHH4XihIeR6/hXJEUF+QfdLEoMWbtGD5d+qnLidIeYwzPPPMMs2bN4sSJE1SrVo0ffvjB7Vgijpw54YMPYNs2GDrU2XbsGDz3HBxQTygRERGR9CS5xYVpxpjpxphOxphOwGRgSurFEkkeay0/rP+BMevGkJiU6HacNKlu3bosX76cihUr0r59e3r27ElcXJzbsUQc+fI5PSYA5syBgQOhWDFnXoqjR12NJiIiIiI3x1WHchhjigO5rLULjDF3A7VxVuU4Dnxnrd12c2Imj4ZypE9xiXHEJcYRHhROkk3Cz6gzz5XExcXRq1cvPvroI2655RZGjx5N8eLF3Y4l8ndbtsDrr8P330N4OPTsCa+9Bn56X4uIiIh4sxsZyjEIOA1grR1nrX3GWtsTp7fEoJQMKXK9gvyDCA8KJz4xnjY/tOH9P953O1KaFBQUxODBgxk3bhzbt2+ncuXKfPfdd27HEvm7EiVg5EhYswbuvBNWrvyrKBEf72o0EREREUkd/1WYKGytXX35RmttNFA4VRKJ3IAg/yCC/IPcjpGmtW7dmpUrVxIZGckDDzxAp06dOHPmjNuxRP6uXDkYO9Z5gNOTonBhZ6jHuXOuRhMRERGRlPVfhYmQq+wLTckgIjcq0D+Q0W1G82T1JwE4eOYgyVl1Jj0qWLAgs2fPpk+fPowYMYJbbrmFlStXuh1L5J8CA51/ExKgbFl45hkoXtxZzSM21t1sIiIiIpIi/qswsdQY88jlG40xDwPLUieSyPUzxgCw5+QeKnxWgff+eM/lRGlXQEAAr7/+OrNmzeLMmTNUr16djz76SMUcSZvKlIGZM2H2bChaFB5/HCpWBE3kKiIiIuL1/qsw0QPobIyZY4x53/P4HegKPJ3q6USuU75M+Xi48sO0Kt3K7ShpXv369Vm1ahV33HEHTz31FK1ateKoVkOQtKpePZg7F6ZNg0cfhSDP0K2ZMyFRK/OIiIiIeKOrrspx8SBj6gPlPc111trfUjXVddKqHPJvZmybQcOiDbVix1VYa/nwww95/vnnyZUrF+PGjaNq1apuxxL5b4sWwa23OkM93ngDWrfWKh4iIiIiacyNrMoBgLV2trX2I88jTRYlRP7N7zt/p9HIRnyz8hu3o6Rpxhh69OjBwoUL8ff3p06dOowYMcLtWCL/rVo1GDMGkpKgbVuIioLJk0HDkkRERES8gj5SEp93W6HbGNVmFA9WetDtKF7hlltuITo6mpo1a/LQQw/Rs2dPEhIS3I4l8u/8/KBdO1i7Fr75Bk6ehIceAq02IyIiIuIVVJgQn2eMoUP5DgT4BXDy/En6zulLfGK827HStOzZszN9+nSefvppBg0aRKNGjThy5IjbsUSuzt8fOnaEjRvht98gY0Zn3okuXWDePLfTiYiIiMi/UGFC0pVfNv/CW/PeYvn+5W5HSfMCAwMZNGgQX3/9NQsWLKBq1aqsWrXK7Vgi/y0w0FmxA2DbNpg6FW67DRo3hqVL3c0mIiIiIv+gwoSkK/dXvJ+NT2ykev7qbkfxGp06dWLu3LnEx8dz6623MmbMGLcjiSRfyZJOceK99yA62pmPomVL0MozIiIiImmGChOS7hTNUhSA2Ttm0/z75pyNO+tyorSvWrVqREdHU6VKFTp06EDv3r1J1NKM4i3CwqBXL9ixA/7v/+DQIYiIcPadPu1uNhERERFRYULSr32n97H31F7OJZxzO4pXyJ07N7/99hvdu3fnnXfeoXnz5pw4ccLtWCLJlzEjvPIK/PEHBAQ4k2OWLOnMS7Ftm9vpRERERNItFSYk3bq/4v1Ed4sme1h2kmwSp2JPuR0pzQsKCuKzzz5jyJAhzJo1i1tvvZVt+oNOvI0xzr+JifDggzB2LJQqBd26we7d7mYTERERSYdUmJB0LcAvAIBnpj/DbV/fpmEdydStWzdmzpzJoUOHqF69OnPnznU7ksi1i4iAd991eks89piz1GiJErB1q9vJRERERNIVFSZEgGYlmnFXybsICwxzO4rXqFu3LosXLyZHjhw0bNiQr7/+2u1IItcnTx4YPBi2bIF+/aB4cWf7hAlw+LC72URERETSAWOtdTtDiomKirLR0dFuxxAvt+vELowxFIwo6HYUr3DixAnatWvHzJkzee655+jfvz/+/v5uxxK5MSdOQN684O8PPXrAs89C5swuhxIRERHxXsaYZdbaqCvtU48JkUtYa2nzQxtajGpBkk1yO45XyJw5M5MnT+axxx7jvffeo02bNpw5c8btWCI3JnNmWLYMmjaFN9+EwoWdf7WKh4iIiEiKU48Jkcss37+c+MR4quev7nYUr/Pxxx/z9NNPU6FCBSZNmkSBAgXcjiRy41atgj59YPJkWL/eWclDRERERK6JekyIXIMqeapcLEqMWjOKdYfWuZzIezzxxBNMnjyZHTt2UK1aNZYsWeJ2JJEbV6mSM9/E1q1/FSUefRQ+/hhiY93NJiIiIuIDVJgQ+Rcx8TE8/+vzvDnvTbejeJXGjRuzcOFCQkNDqVu3LmPGjHE7kkjKKFzY+ff8ediwAZ580lnF48svIT7e1WgiIiIi3kyFCZF/ERYYxtxOcxnWYpjbUbxO2bJlWbx4MVFRUXTo0IE33ngDXxo2JulcSAjMng0zZzoTZD7yCJQp48xJISIiIiLXLFULE8aYxsaYTcaYrcaY3lfYb4wxgz37Vxtjqni2FzDGzDbGbDDGrDPGPJ2aOUX+TZEsRQgLDCM2IZb2Y9uzYPcCtyN5jRw5cvDrr7/SsWNHXnvtNe6//37OnTvndiyRlGEMNGwICxfCL79Avnx/9ag4cACSNHmuiIiISHKlWmHCGOMPfAI0AcoC9xpjyl52WBOghOfRDfjMsz0BeNZaWwaoATx+hXNFbprj54+z6sAqNh3d5HYUrxIcHMzw4cPp378/o0aNon79+hw4cMDtWCIpxxho1gx+/x2yZQNroXlzqFwZJk502iIiIiJyVanZY6IasNVau91aGweMBlpedkxLYIR1LAIyG2PyWGv3W2uXA1hrTwMbgHypmFXkqnKH52Zl95V0qdwFgHPx+uQ/uYwx9O7dm3HjxrFmzRqqVavG6tWr3Y4lkjqshWeegZgYaNkSqleH6dNVoBARERG5itQsTOQD9lzS3ss/iwv/eYwxpjBQGVic8hFFki8kIASAtYfWUmxwMaZtneZyIu/SunVr5s2bR1JSEjVr1mTSpEluRxJJeX5+cN99zuSYw4bBwYPQuDGMHet2MhEREZE0KzULE+YK2y7/yOiqxxhjwoGfgB7W2lNXfBFjuhljoo0x0YcPH77usCLJlTdjXmrkr0GpbKXcjuJ1qlSpwpIlSyhTpgwtW7bk/fff16SY4psCAqBLF9i8Gb74Alq0cLZPmQKLFrmbTURERCSNSc3CxF6gwCXt/MC+5B5jjAnEKUp8Z60d928vYq0daq2NstZG5ciRI0WCi1xN1tCsjGs/jiJZigCw6sAqlxN5l7x58/L777/Tpk0bevXqxSOPPEJcXJzbsURSR3AwdO3q/GstvPIK3Hor3HUXrFjhdjoRERGRNCE1CxNLgRLGmCLGmCCgAzDxsmMmAh09q3PUAE5aa/cbYwwwDNhgrf0gFTOK3JCRq0dSeUhl5u6a63YUrxIWFsaYMWN45ZVXGDZsGA0bNuTgwYNuxxJJXcbA3LnQrx/Mnw9VqsA998AmTaorIiIi6VuqFSastQnAE8B0nMkrf7DWrjPGdDfGdPccNgXYDmwFvgAe82yvBTwINDDGrPQ8mqZWVpHr1aZMG96/831qF6ztdhSv4+fnx//93//x/fffEx0dTVRUFEuXLnU7lkjqCg+Hl16CHTugTx9nYswtW9xOJSIiIuIq40vju6Oiomx0dLTbMSSdOnbuGBM2TqBz5c5uR/E6K1asoHXr1hw4cIDPP/+cTp06uR1J5OY4fhwyZ3Z6U7z2GuzdC6++CoULu51MREREJEUZY5ZZa6OutC81h3KIpCsfLvqQRyc/yo7jO9yO4nUqV65MdHQ0tWvXpnPnzjzxxBPEx8e7HUsk9WXJ4hQlABISYORIKFkSHn8c9l0+LZOIiIiIb1JhQiSF9Knbhz8e/uPipJhybbJnz860adPo1asXn3zyCbfffrvmnZD0pV8/2LrVWc1j6FAoVgyGD3c7lYiIiEiqU2FCJIX4+/lTJU8VAKZtnUavGb20FOY1CggI4L333rs478Qtt9zCkiVL3I4lcvMUKACff+5MiNm+PURGOtsPHHCGfYiIiIj4IBUmRFLBnJ1z+G3Hb5yNP+t2FK9077338scffxAYGEidOnX46quv3I4kcnMVLer0lrhQmHjuOWfeiTfegFOnXAwmIiIikvJUmBBJBf1v78/cznMJDwonMSmRhKQEtyN5ncjISKKjo7ntttt4+OGHefzxx0lI0M9R0qnnn4cGDZwJMosUgXffhbMqfIqIiIhvUGFCJBUYYwgPCsdaS9dJXbl/3P0k2SS3Y3mdbNmyMXXqVHr16sWnn35K8+bNOaVPiyU9qlABxo+HpUuhenV44QV4/XW3U4mIiIikCBUmRFKRMYbyOcpTNntZ/IzebtfjwrwTX3zxBbNmzaJWrVrs2rXL7Vgi7oiKgilTYMEC6NnT2bZwIQwZAnFx7mYTERERuU7Glybni4qKstHR0W7HEPlXu07sIkeGHIQFhrkdxSv9+uuvtG3blpCQECZNmkTVqlXdjiTivqeego8+coZ49OkDDzwAAQFupxIRERH5G2PMMmtt1JX26SNckZvkfMJ56n1Tj4d+fsjtKF6rYcOG/PHHH4SGhlK3bl3GjRvndiQR9334odOLIksW6NwZypWDn392O5WIiIhIsqkwIXKThASE0P/2/rxU+yW3o3i1smXLsmjRIipWrEjbtm0ZMGCAlmWV9M0YaNIEoqPhp58gKAg2b3b2JSWB3h8iIiKSxqkwIXITdSjfgcp5KgPw47ofORpz1OVE3ilXrlzMnj2btm3b8txzz9G9e3fi4+PdjiXiLmPg7rth1Sro0cPZNmoUVKsGU6eqQCEiIiJplgoTIi7Yd3ofHX/uyFvz3nI7itcKDQ1l9OjRvPjiiwwdOpRmzZpx8uRJt2OJuM/Pz+k1AZAhAxw5Ak2bQu3aMHu2u9lERERErkCFCREX5M2Yl987/U6/2/u5HcWr+fn58dZbb/HVV18xe/Zsatasyc6dO92OJZJ2tGoFmzbBZ5/Brl3QoAF06+Z2KhEREZG/UWFCxCXV8lUjJCCEc/Hn6DKhC7tOaAnM69W5c2emT5/On3/+SY0aNdDqPCKXCAqC7t1h61YYNAiaN3e2nzkDy5a5Gk1EREQEVJgQcd3WY1uZsGkCS/ctdTuKV2vQoAF//PEHISEh1K1bl0mTJrkdSSRtCQmBp5+GFi2c9qefQlSUMy/FmjXuZhMREZF0TYUJEZdVyFWBbU9to23ZtgAkJCW4nMh7XVixo2zZsrRq1YqPPvrI7UgiaVf37vD66zBrFlSqBPfd99dqHiIiIiI3kQoTImlA5pDMAETvi6bsJ2VZc1CfXl6v3LlzM2fOHO666y6eeuopevbsSWJiotuxRNKeTJmgTx/YsQN694aJE+Hxx91OJSIiIumQChMiaUim4EzkyZiHLKFZ3I7i1TJkyMBPP/3E008/zaBBg2jbti0xMTFuxxJJm7Jmhbfegu3bneEdAHv3OkWKvXvdzSYiIiLpggoTImlIyWwlmfPQHPJnyo+1lh3Hd7gdyWv5+/szaNAgBg0axIQJE6hfvz4HDx50O5ZI2pUzJ5Qo4Xw9fz588QUULw49e4LeOyIiIpKKVJgQSWOMMQAMWjSICp9VYNORTS4n8m5PP/0048ePZ82aNdSoUYMNGza4HUkk7evQwZlv4v774aOPoGhReOUVsNbtZCIiIuKDVJgQSaM6lO/AC7VeoGS2km5H8XotW7bk999/59y5c9SsWZO5c+e6HUkk7StcGIYNgw0boHVr2L8fPIVTzp1zNZqIiIj4FhUmRNKoPBnz8GrdVzHGcOjsIWZsm+F2JK9WtWpVFi1aRO7cubnzzjuZMGGC25FEvEOJEjBypDO0A2DZMsifH95+G86ccTebiIiI+AQVJkS8wAu/vkC7H9tx/Nxxt6N4tcKFCzNv3jwiIyO5++67+fLLL92OJOI9/Dz/y5AhA9SsCS++6Azx+OAD9aAQERGRG6LChIgX+LDxh0y9f6pW60gB2bNnZ9asWdx555088sgjvPXWW1iNmxdJvtKlYdIkWLgQKlaEZ5+FypVBy/KKiIjIdVJhQsQLZArOxK0FbgVg/IbxfLHsC5cTebcMGTIwceJE7r//fl5++WV69OhBUlKS27FEvEuNGvDrrzBnjtN7wt/fmRzzxx8hPt7tdCIiIuJFVJgQ8SLWWkasHsHXK78mISnB7TheLTAwkBEjRtCzZ08GDx7MAw88QFxcnNuxRLxP3brw0EPO17NmQbt2UKYMjBihXhQiIiKSLCpMiHgRYwxj2o5h6v1TCfALIMnqU/4b4efnx/vvv8/bb7/NqFGjuOuuuzijyfxErt/ttzvDPDJmdIoV5crBmDGgHkkiIiJyFSpMiHiZIP8gIkIiSExK5P5x99N3Tl+3I3k1YwwvvPACX331FbNmzaJBgwYcPnzY7Vgi3skYaN7cWblj7FgICIDnn9fQDhEREbkqFSZEvFhoQCjhQeFux/AJnTt3Zvz48axZs4batWuza9cutyOJeC8/P2jTBlatgtmzITgY4uIgOtrtZCIiIpIGqTAh4qX8/fwZ1mIYvWr2AmDf6X0a2nGD7rrrLmbOnMmhQ4eoVasWGzZscDuSiHfz93eWFAXo3x9uvRUGD3YmyRQRERHxUGFCxIsZYwA4fPYwUUOjePHXF11O5P1q167N77//TkJCArfddhvLly93O5KIb+jRA5o1g6efhgcegLNn3U4kIiIiaYQKEyI+IHtYdp6o9gQdK3V0O4pPqFixIvPnzydDhgzUr1+fuXPnuh1JxPtFRMC4cdCvH4wa5fSe2LrV7VQiIiKSBqgwIeIDjDG8VOclyuUsB8Avm38hPlGTzd2I4sWLM3/+fPLmzUujRo2YMmWK25FEvJ+fH7z0EkybBidPwvnzbicSERGRNECFCREfs/rgau4adReDFw92O4rXy58/P3PnzqVcuXK0bNmS0aNHux1JxDfceSds2QLlyzvtn3+GxERXI4mIiIh7VJgQ8TEVc1Xkl3t/4cnqT7odxSfkyJGD3377jZo1a3LfffcxZMgQtyOJ+IagIOffOXOgdWto2VLzToiIiKRTKkyI+KBmJZsR5B/Embgz9JzWk9Oxp92O5NUyZcrEtGnTaNq0Kd27d+ftt992O5KI76hbFz79FKZOhTvugGPH3E4kIiIiN5kKEyI+bOGehXwW/RmL9i5yO4rXCw0NZfz48dx77728+OKL9O7dG6slD0VunDHw6KMwdiwsW+YUKvbtczuViIiI3ESpWpgwxjQ2xmwyxmw1xvS+wn5jjBns2b/aGFPlkn1fGWMOGWPWpmZGEV92R7E72P70du4odgeA/pC+QYGBgXz77bd0796dd955h0cffZREjYsXSRmtWzu9JvbsgaVL3U4jIiIiN1GqFSaMMf7AJ0AToCxwrzGm7GWHNQFKeB7dgM8u2TccaJxa+UTSi7wZ8wIwf/d8an1Vi4NnDrqcyLv5+/vz6aef0rt3b4YMGcIDDzxAfLxWQBFJEQ0awPbtznwTAGfOuJtHREREborU7DFRDdhqrd1urY0DRgMtLzumJTDCOhYBmY0xeQCstXMBDTQVSSGxCbGcTziPRb0mbpQxhv79+/POO+8wevRoWrVqRUxMjNuxRHxD1qzOvzNmQJEiMG+eu3lEREQk1aVmYSIfsOeS9l7Ptms9RkRSwO1Fbye6WzS5w3NjreXAmQNuR/J6zz//PEOGDGHq1Kk0btyYkydPuh1JxHeULg3ZsjlLi06e7HYaERERSUWpWZgwV9h2+Ue1yTnm6i9iTDdjTLQxJvrw4cPXcqpIuuNnnLd83zl9qTykMvtP73c5kffr1q0b33//PQsXLqRBgwbo95BICilY0OktUa6cM7Tju+/cTiQiIiKpJDULE3uBApe08wOXT7OdnGOuylo71FobZa2NypEjx3UFFUlvOpTvwP9u+R+5w3O7HcUndOjQgQkTJrB+/Xpuu+029u7d63YkEd+QIwf89hvcdhs88AD88YfbiURERCQVpGZhYilQwhhTxBgTBHQAJl52zESgo2d1jhrASWutPsIVSWVlcpShb72+GGP489SfzNulMdw3qmnTpsyYMYN9+/ZRu3ZttmzZ4nYkEd+QKRNMmQKffw633up2GhEREUkFqVaYsNYmAE8A04ENwA/W2nXGmO7GmO6ew6YA24GtwBfAYxfON8aMAhYCpYwxe40xD6dWVpH07KlpT9H2x7acjTvrdhSvV6dOHWbPns3Zs2epU6cOq1atcjuSiG8ICYH//Q+Mgc2b4eWXISnJ7VQiIiKSQoy1vjNDf1RUlI2OjnY7hohXORJzhG3HtlE9f3W3o/iMjRs3cscdd3DmzBkmT55MzZo13Y4k4jv694eXXoJ774VvvoHAQLcTiYiISDIYY5ZZa6OutC81h3KIiBfIHpb9YlFi1JpRfLXiK5cTeb/SpUszf/58cuTIwR133MHMmTPdjiTiO3r3hrfeglGjnEkxtVSviIiI11NhQkQAsNby/drv+Xb1tyQmJbodx+sVKlSIefPmUaJECZo1a8ZPP/3kdiQR32AMvPgiDBkC06Y5y4meOOF2KhEREbkBKkyICADGGMbeM5aJHSbi7+ev4kQKyJUrF3PmzKFq1aq0a9eOr7/+2u1IIr6jWzcYMwaCgyEoyO00IiIicgNUmBCRi4IDgskYnJH4xHja/NCGt+a95XYkr5c5c2ZmzJhBw4YN6dKlCwMHDnQ7kojvuOce+PVXCAuDU6dg5063E4mIiMh1UGFCRP7BGEOm4ExEBEe4HcUnZMiQgYkTJ9K2bVueeeYZ+vTpgy9NPCziKmOcfzt3hpo1Yc0ad/OIiIjINdOqHCJyRdZajOd/+A+cOUCuDLkutuX6JCYm0q1bN7766iuefPJJBg0ahJ+f6sMiKWLdOme+iZgYmDIFbr3V7UQiIiJyCa3KISLX7EIRYs/JPVT8rCLv/fGey4m8n7+/P19++SXPPPMMH330EZ07dyYhIcHtWCK+oVw5WLAAsmeHhg1h+nS3E4mIiEgyBbgdQETStnyZ8tG1Sldal27tdhSfYIxhwIABZMmShVdffZVTp04xatQoQkJC3I4m4v0KF4b586FxY3j0Udi4URNjioiIeAEN5RCRazJr+ywaFGmgYR0p4OOPP+bJJ5+kQYMG/Pzzz2TMmNHtSCK+4eRJOHQISpQAa/+ah0JERERco6EcIpIiftvxGw2/bcjI1SPdjuITnnjiCUaMGMHvv/9Ow4YNOXbsmNuRRHxDRMRfRYmnnoI333S+FhERkTRJhQkRSbb6hevzbetvubfCvW5H8RkPPvggP/30EytXrqRu3brs37/f7UgiviMpyek98eqr8MwzTltERETSHBUmRCTZjDE8UPEBAvwCOHn+JO//8T5JVv+jf6NatmzJ1KlT2bFjB7Vr12bHjh1uRxLxDf7+MHw4PP00DBrkLCkaH+92KhEREbmMChMicl2+W/MdL856kdUHV7sdxSc0aNCAWbNmcfz4cWrVqsW6devcjiTiG/z8YOBAeOMNGDECHnjA7UQiIiJyGU1+KSLXxVrL+sPrKZeznNtRfMratWu58847iY2NZdq0aVStWtXtSCK+49NPIX9+aNHC7SQiIiLpjia/FJEUZ4y5WJSYtX0Wz0x/Bl8qdLqlfPnyzJs3j4iICBo0aMDs2bPdjiTiOx577K+ixM8/Oyt3iIiIiOtUmBCRGzZ752xmbp/JqdhTbkfxCcWKFWP+/PkULFiQJk2aMGnSJLcjifiWo0ehY0eoXRt27nQ7jYiISLqnwoSI3LD/q/9//NHlDyJCIkiySeo5kQLy5s3L3LlzqVixIq1bt2bkSC3RKpJismWDadPg8GGnOLF+vduJRERE0jUVJkTkhhljyBickSSbxGOTH+OpqU+pOJECsmXLxqxZs7jtttt48MEH+eSTT9yOJOI7ataE33+HxESoUwcWL3Y7kYiISLqlwoSIpBiDITwonIzBGd2O4jMyZszIlClTaNGiBU888QT9+vVT0UckpVSsCAsWQObMMGuW22lERETSLa3KISIp6sLvFGMMR2OOkjU0K8YYl1N5v/j4eLp06cLIkSPp1asX7777rn6uIinl5EnIlAmMgVOnnK9FREQkRWlVDhG5aYwxGGM4du4Y1b6sxsu/vex2JJ8QGBjIN998w+OPP86AAQPo1q0biYmJbscS8Q0REU5RYvNmKF4cvvjC7UQiIiLpSoDbAUTEN2UJycK95e+lRakWbkfxGX5+fnz00UdkyZKFN998k5MnTzJy5EiCgoLcjibiG/Llg1tugW7d4NgxeOEFtxOJiIikCypMiEiqMMbwZoM3L7aX/LmEqnmravjBDTLG8H//939kzpyZXr16cerUKX766ScyZMjgdjQR75chA0yYAJ06Qe/ecOQIvPuu05tCREREUo2GcohIqlvy5xJqfFmDocuGuh3FZzz77LN8+eWXzJw5k0aNGnHixAm3I4n4hqAgGDkSHn8cBgyAzz93O5GIiIjPU48JEUl1VfNW5dNmn/JgpQfdjuJTHn74YSIiIrjvvvuoX78+06ZNI1euXG7HEvF+fn7w0UfOsI5773U7jYiIiM9TjwkRSXXGGLpHdScsMIzzCecZtnyYlrxMIW3btmXSpEls2rSJOnXqsHv3brcjifgGY6BzZwgJgePH4dFH4fRpt1OJiIj4JBUmROSmGrFqBF0ndWXR3kVuR/EZjRo1YubMmRw6dIjatWuzadMmtyOJ+JZFi5yVOho0gMOH3U4jIiLic1SYEJGb6pEqjzC/83xuLXCr21F8Sq1atZgzZw6xsbHUqVOHFStWuB1JxHc0aQI//wxr10KdOrBnj9uJREREfIoKEyJyUxljqFWwFgAr9q+g75y+GtaRQiIjI5k3bx4hISHUq1ePefPmuR1JxHc0bw7Tp8P+/VCrFqhnkoiISIpRYUJEXPPj+h/5euXXHD131O0oPqNkyZIsWLCAPHny0KhRI6ZOnep2JBHfcdtt8PvvkDcvhIe7nUZERMRnGF/6pDIqKspGR0e7HUNEkslay+GYw+TMkPNi2xjjcirfcOjQIRo3bsyaNWsYOXIk7du3dzuSiO+w1pkcMzHRGd5RqZLbiURERNI8Y8wya23Ulfapx4SIuMYYc7Eo8fqc1+k5vaeGdaSQnDlzMnv2bGrUqMG9997LF1984XYkEd9xoYDarx9Uq+bMPyEiIiLXTYUJEXGdtZYT509w4vwJLCpMpJSIiAimT59O48aN6datG++++67bkUR8yxNPQJUq0KYNfP2122lERES8VoDbAUREjDF80OgDLBY/48fp2NOEB4VrWEcKCAsL4+eff+bBBx/khRde4MSJE/Tr108/W5GUkDUr/Por3H03dOkCx47Bs8+6nUpERMTrqMeEiKQJxhj8jB9n485Sd3hdek7v6XYknxEUFMT333/PI488Qv/+/Xn44Yc5ceKE27FEfEOGDDBpErRrB6++Crt3u51IRETE66gwISJpSlhgGE1LNKVRsUZuR/Ep/v7+DBkyhJdeeonhw4dTsmRJvvjiCxITE92OJuL9goLg++9h8WIoWNDZpvlyREREkk2FCRFJU4wxvNngTZqUaALA6oOrSbJJLqfyDcYY+vXrR3R0NKVKlaJbt25ERUUxd+5ct6OJeD9/f6hQwfn688+hfXuIjXU3k4iIiJdI1cKEMaaxMWaTMWarMab3FfYbY8xgz/7VxpgqyT1XRHzflqNbqPZFNd6e/7bbUXxKlSpVmDt3LqNHj+bo0aPUrVuX9u3bs2vXLrejifiGc+fgxx/hrrvgzBm304iIiKR5qVaYMMb4A58ATYCywL3GmLKXHdYEKOF5dAM+u4ZzRcTHFc9anIGNBtI9qjsAU7ZMYdKmSS6n8g3GGNq3b8/GjRvp27cvkyZNonTp0rz22mucPXvW7Xgi3q1nT2eVjt9+g4YN4ehRtxOJiIikacam0hhIY8ytQF9rbSNP+0UAa23/S44ZAsyx1o7ytDcB9YDC/3XulURFRdno6OgU/15EJG24fcTtxMTHsPDhhQA89PNDhAWE8VnzzwBYsHsBwQHBROWNAuDX7b+SNTQrVfI4nbFmbJtBzgw5icwdCcD0rdPJHZ6bSrkrAU7ho2BEQcrnLA/A5M2TKZy5MOVylgNg4qaJlMxWktLZS2OtZdLmSZTKVopS2UuRmJTI5C2TKZO9DCWylSA+MZ6pW6dSLkc5imUtRmxCLNO3TadCzgoUyVKEc/HnmLl9JpVyVaJQ5kKcjTvLrB2zqJy7MgUiCnA69jSzd87mljy3kC9TPk6eP8nvu36nat6q5MmYh+PnjjNv9zyq56tOrvBcHI05yoI9C7g1/63kyJCDw2cPs3DvQmoVqEW2sGwcPHOQxX8upk7BOmQJzcL+0/tZum8pdQvVJSIkgiUbltDrg17MGzGP/Dnz89iLj3Em4xkqhVcixD+EQ3GH2HFuB5EZIwn2C+Zg7EF2nt9J5YyVCfILYn/sfnaf380tmW4hwARcbEdlisLf+LP3/F7+jP2TapmqYYy52K4eUR2A3ed2czDuIFUjqgKw69wuDscdJirCuZY7z+3kWPwxqmRyruX2mO2cTDhJ5UyVAdgWs43TCaeJzORc2y0xWziXeI6KGSsCsPnsZmKTYqmQ0elqv+nsJhJsAuXCnWu74cwGLJay4U4NfP2Z9RgMZcLLALDuzDoCTAClMpQCYM3pNQT7BVMyQ0kAVp9eTah/KCXCSgCw8tRKMgZkpFhYMQBWnFpBREAERcOKArD81HKyBGShSFgRAKJPRpMjKAeFQgtdbOcMyknBUGe+gsUnF5MvOB/5Q/JjrWXJqSUX24k2kehT0RQILkDekLwk2ASWnVpGwZCC5AnOQ3xSPMtPL6dwSGFyBeciNimWladXUiS0CDmDcnI+8TyrzqyiaGhRcgTlICYxhjVn1lA8tDjZgrJxNvEsa8+spURYCbIGZuVMwhnWnV1HqbBSZA7MzKmEU2w4u4HSYaWJCIzgZPxJNsZspEyGMmQKyMSJ+BNsitlEuQzlCA8I51j8MbbEbKF8eHky+GfgaNxRtp7bSoXwCoT5h3E47jDbz233iXsv9+LFJH73DgdKFMH/iQFgDKenfkFS3DmqJOYnMTiY5WFHicmWlfwVmwOwf9l4/BKTqGjzO/eO2U1S5mzkL9kAgL1LfyTEBlDO5nXuFbMT/6x5yFv8NkhMZNeyH8lEKKVtbufeMdsJyVGY3EVuxcTHs33FWLKRgRI2FwB/mK1kzF2SnAWr4h8by6ZVY8lDBEVtDgDmms1ky1uB7Pkj8T97lvXrxlHIZqMQ2UgkiQVmKznyVyZr3vKYU8fZuPEXitoc5CcLcSSwyGwnZ6GqZMlVGnvsEJu3TqeEzUUeIjhHHEvNTnIXrUlE9mIkHt7L1h2zKW3zkJOMnOE8y81u8paoS8YsBUk4uJNtu+ZRzuYlG+GcJIZVZi/5S99Bhky5iftzCzv+XEQlm58IwjjKGdaZfRQs35TQsGyc372eXQeWUcUWJJwQDnGajWY/BSu2JDQkEzE7VrHn8Gqq2sKEEsR+TrLFHKRwlbYEB4Rydtsy9h5dT3VblGAC2Mtxtvsfpdgt7QkwAZzesph9xzdT0xYnAD92cZRdAScoWeVejDGc3LSAAye3c5t1fm/s4DB7g85SsnJ7AI6vn8OxM39S0xZ37iVziIPBcZSo1AaAo2tmcvrcEapb5/fIRnOA46FQtEJLAA6vmsr52FNE2cLO7y2zjzMZgihcrhkAB1dMIjH+PJWt83tltdlLbKaMFCx9p+493Xu697zw3mvTrhNBQUF4E2PMMmtt1BV3WmtT5QG0Bb68pP0g8PFlx/wC1L6kPQuISs65l+zrBkQD0QULFrQi4rvOxJ6xu0/svth+bsZz9rXZr11sl/yopL3nh3sutot+WNQ+MO6Bi+38H+S3XX7ucrGd872ctvuk7hfbEf0j7NNTn77YDn0z1D4347mLbb/X/ewrs16x1lqbkJhg6Yt9Y84b1lprY+JiLH2xb89721pr7fFzxy19sQMXDrTWWnvwzEFLX+wnSz6x1lq7+8RuS1/sl8u+tNZau/XoVktf7IiVI6y11q4/tN7SFzt6zWhrrbUr9q+w9MWO3zDeWmvt4r2LLX2xkzdPttZaO3fnXEtf7K/bfrXWWvvrtl8tfbFzd8611lo7ZfMUS1/soj2LrLXWjt8w3tIXu2L/CmuttWPWjnFef+oIW6VKFUtFLH2xZMEClsqediZPO8rTzuBp1/C0QzztWp52oKd9m6dtPO36WPp4vgZLQywvX9JujKX3Je1mWJ67pN0CS89L2q2xPHVJuy2Wxy9pd8DS/ZL2/VgeuaTdEUvnS9qdPdsutLt6zrnQ7u55zgvtx7Hcc0n7KU+mC+2enswX2r0839OFdm/P93yh/TKWOy5p9/H8zPD8DPt6fqZgCfC0a3naIZ52DU87g6dd1dPO5GlX9rSzeNoVPe3snnY5Tzu3p13a087naZfwtAt62kU87SKedkFPu7innc/TLu1p5/a0y3naOTxtH7v3snXA5rvk3qt7P7bqI1jrTI9pG3TElr7k3qvR2dl2YX+1rtgKl9x7FbtjW3b4a3+Zx7GRnnsvCGzRp7APtP5rf/6e2Fs8915WsDl7Ybs3+2t/RG9slOfeKwQ29GXsc3f8td+vDzbKc++V89x7b9zm7Ivx3HtVPPdeVc+9N7CGs/+g596r5Ln3bvPce19WdvZv9dx75Tz3XkPPvTe6nLN/hefeK+m595p67r3JJZz9cz33XmHPvdfSc+/NLejsn+K593J77r02nntvRW5n/xjPvRfhuffu8dx7W7M4+7/03HsBnnvvHs+9dyCDs3/gZffePZ5772ygs/+Ny+69NvWdn+eFn+3zDbHBl9x7rRo71+PC/kebYbNccu81b+Fczwv7H2iNzXvJvdeoLbb043/tb9kBW/SSe6+e7j3de7r3fOreO3r06FX+rzltAqLtv9QPUrPHxD1AI2ttV0/7QaCatfbJS46ZDPS31s73tGcBzwNF/+vcK1GPCZH0bfXB1YQHhVM0i1PRX3toLeFB4RTOXBiANQfXkCk4E4UyF7p4fOaQzBSMcCr4qw6sImtoVgpEFABgxf4V5MyQk3yZ8gGwfP9ycofnJm/GvFhrWXFgBXnC85AnYx6SbBIrD6wkb8a85A7PTUJSAqsPriZ/pvzkzJCT+MR41hxaQ4FMBciRIQdxiXGsPbSWghEFyR6WndiEWNYdXkehiEJkC8vGufhzbDiygSKZi5AlNAsx8TFsPLKRolmKkjkkM2fjzrLp6CaKZSlGREgEZ+LOsPnoZopnLU6m4Eycij3F1mNbKZmtJOFB4Zw8f5Jtx7dRKlspMgRl4MT5E2w/vp3S2UsTFhjG8XPH2XFiB2WylyHIL4gFyxew5/QeimUsRpB/EMdjj3Pg3AGKZypOoF/gP9rHYo9x8NxBSmQqQYBfAEfOH+Hw+cOUiiiFn/Hj8PnDHDl/hNIRpTHGXGyXyez0SDh07hDH4o5ROqI0AAfOHeBU3ClKRjif7uyP2c+ZhDOUyFTiiu19MfuISYiheCbn0569Z/cSlxRH0YzOvbDn7B4SkhIokrHIFdu7z+wmiSQKhzv3ys4zO/HDj4Lhzr2x4/QOAvwCKJChwBXb209vJ8gviPwZnE97tp7aSlhAGHnDnE93tpzaQnhAOHnC8lyxvfnkZjIFZSJ3qPNpz8aTG8kalJWcoTkB2HBiA9lDspMjJAfWWjae3HixnWST2HRyEzlCcpA9JDsJSQlsObWFXKG5yBqclfikeLae2kru0NxkCc7yj3ZcYhzbTm8jT1geMgdl5nzieXac3kG+sHxkCsrEuYRz7Dyzk/wZ8pMxMOM/2jEJMew6s4sCGQoQHhjOmfgz7Dm7h0LhhQgLCON0/Gn2nt1L4fDChAaE/qN9Ku4Uf8b8SZGMRQjxD+FE3An2x+z37XsvPpZiQXnxi41l94ltJPn7kb+g0yPjwNo5mERL4SDnXtgetw+TMYLcRZ0PmPatnkUg/hQMdD752xr3JwER2chVuDIkJbF39a+E+YWQL9D55G9z7B5CsuUhR4EKkJDA7rWzyOgXRt7A7M69FruLDDkKkj1fWUxcHNvXzyKbfyZyBWQFYP35HUTkLk7WPCXh3Dl2bJxNjoDM5AjIQpJNYmPsLjLnK02WnEVJOnOKXVvmkysgK9kCIoi3CWyJ3UPWAuWJyF6QxFPH2b1tIXkCs5PFPyNxNp6tsXvJVrgSmbLkI/74YfbuXEq+wJxE+GfgXFIsO+L2kbPoLWSIyEXc0f38uXsFBQJzkdE/jLNJ59kVt5+cJaqTITwb5w/tYf+faygUlIcMfiGcToxhT/xB8pSqRUhYBDEHdnJw/3qKBOUl1C+Yk4ln+TP+EHnK3kZIcDhn/9zKoUObKR6cnyATyPHE0+yPP0L+CrcTGBDM6T2bOHJkGyWCCxBoAjiacJKDiccpUPEOAvwCOLVrHUeP7aJ0cCHn3ks4zmF7msIV7sQYw4kdqzh+4k/Khjj3wsGEYxw1MRQpfwcAx7Yu5/SZQ5QOdv4btS/+CKcCEihUtj4ARzcvISbmBCWDnd87f8Yf5kwQFCx9GwCHNy4kLvYsxYOc/2btjj9IbEgg+UvWcl5v/XyS4mMpGuT8XtoZd4CEDKHkK15D957uPd17Xnjv3VqzPgEBAXiTq/WY0FAOEREREREREUlVVytMpOaqHEuBEsaYIsaYIKADMPGyYyYCHT2rc9QATlpr9yfzXBERERERERHxcqnW98Nam2CMeQKYDvgDX1lr1xljunv2fw5MAZoCW4EYoPPVzk2trCIiIiIiIiLijlQbyuEGDeUQERERERERSXvcGsohIiIiIiIiInJVKkyIiIiIiIiIiGtUmBARERERERER16gwISIiIiIiIiKuUWFCRERERERERFyjwoSIiIiIiIiIuEaFCRERERERERFxjbHWup0hxRhjDgO7UuGpswNHUuF5xT26pr5H19T36Jr6Hl1T36Nr6nt0TX2Prqnv8dZrWsham+NKO3yqMJFajDHR1toot3NIytE19T26pr5H19T36Jr6Hl1T36Nr6nt0TX2PL15TDeUQEREREREREdeoMCEiIiIiIiIirlFhInmGuh1AUpyuqe/RNfU9uqa+R9fU9+ia+h5dU9+ja+p7fO6aao4JEREREREREXGNekyIiIiIiIiIiGvSdWHCGNPYGLPJGLPVGNP7CvuNMWawZ/9qY0yV5J4r7rjBa7rTGLPGGLPSGBN9c5PLv0nGNS1tjFlojIk1xvS6lnPFHTd4TfU+TaOScV3v9/zeXW2M+cMYUym554o7bvCa6r2aBiXjmrb0XM+VxphoY0zt5J4r7rjBa6r3aRqU3PeaMaaqMSbRGNP2Ws9Nk6y16fIB+APbgKJAELAKKHvZMU2BqYABagCLk3uuHt51TT37dgLZ3f4+9Ljma5oTqAr0A3pdy7l6eNc19ezT+zQNPpJ5XWsCWTxfN9F/U9P240auqaet92oaeyTzmobz11DvisDG5J6rh3ddU09b79M09kjue81z3G/AFKDttZybVh/pucdENWCrtXa7tTYOGA20vOyYlsAI61gEZDbG5EnmuXLz3cg1lbTpP6+ptfaQtXYpEH+t54orbuSaStqVnOv6h7X2uKe5CMif3HPFFTdyTSVtSs41PWM9f+EAGQCb3HPFFTdyTSVtSu577UngJ+DQdZybJqXnwkQ+YM8l7b2ebck5Jjnnys13I9cUnF/UM4wxy4wx3VItpVyLG3mv6X2aNt3oddH7NG261uv6ME7vtes5V26OG7mmoPdqWpSsa2qMaW2M2QhMBrpcy7ly093INQW9T9Oi/7ymxph8QGvg82s9Ny0LcDuAi8wVtl1eQfy3Y5Jzrtx8N3JNAWpZa/cZY3ICM40xG621c1M0oVyrG3mv6X2aNt3oddH7NG1K9nU1xtTH+SP2wjhnvVfTphu5pqD3alqUrGtqrR0PjDfG3Ab8H9AwuefKTXcj1xT0Pk2LknNNBwEvWGsTjfnb4V79Pk3PPSb2AgUuaecH9iXzmOScKzffjVxTrLUX/j0EjMfpDiXuupH3mt6nadMNXRe9T9OsZF1XY0xF4EugpbX26LWcKzfdjVxTvVfTpmt6r3n+QC1mjMl+refKTXMj11Tv07QpOdc0ChhtjNkJtAU+Nca0Sua5aVZ6LkwsBUoYY4oYY4KADsDEy46ZCHQ0jhrASWvt/mSeKzffdV9TY0wGY0xGAGNMBuBOYO3NDC9XdCPvNb1P06brvi56n6Zp/3ldjTEFgXHAg9bazddyrrjiuq+p3qtpVnKuaXHj+QjWOCuXBQFHk3OuuOK6r6nep2nWf15Ta20Ra21ha21hYCzwmLX25+Scm5al26Ec1toEY8wTwHScGUy/stauM8Z09+z/HGeW06bAViAG6Hy1c134NuQSN3JNgVw4XdzAeV98b62ddpO/BblMcq6pMSY3EA1kApKMMT1wZiA+pfdp2nMj1xTIjt6naVIyf//2AbLhfLIDkGCtjdJ/U9OmG7mm6L+paVIyr2kbnA9w4oFzQHvPxIl6n6ZBN3JNjTF6n6ZBybym13TuzcidEi4sHSMiIiIiIiIictOl56EcIiIiIiIiIuIyFSZERERERERExDUqTIiIiIiIiIiIa1SYEBERERERERHXqDAhIiIiIiIiIq5RYUJERERSlDHmTAo9T19jTK9kHDfcGNM2JV5TREREbj4VJkRERERERETENSpMiIiISKowxoQbY2YZY5YbY9YYY1p6thc2xmw0xnxpjFlrjPnOGNPQGLPAGLPFGFPtkqepZIz5zbP9Ec/5xhjzsTFmvTFmMpDzktfsY4xZ6nneocYYc3O/axEREblWKkyIiIhIajkPtLbWVgHqA+9fUigoDnwIVARKA/cBtYFewEuXPEdFoBlwK9DHGJMXaA2UAioAjwA1Lzn+Y2ttVWtteSAUaJ5K35uIiIikkAC3A4iIiIjPMsBbxpjbgCQgH5DLs2+HtXYNgDFmHTDLWmuNMWuAwpc8xwRr7TngnDFmNlANuA0YZa1NBPYZY3675Pj6xpjngTAgK7AOmJRq36GIiIjcMBUmREREJLXcD+QAbrHWxhtjdgIhnn2xlxyXdEk7ib///4m97Dntv2zHGBMCfApEWWv3GGP6XvJ6IiIikkZpKIeIiIiklgjgkKcoUR8odB3P0dIYE2KMyQbUA5YCc4EOxhh/Y0wenGEi8FcR4ogxJhzQSh0iIiJeQD0mREREJLV8B0wyxkQDK4GN1/EcS4DJQEHg/6y1+4wx44EGwBpgM/A7gLX2hDHmC8/2nThFDBEREUnjjLX/6AkpIiIiIiIiInJTaCiHiIiIiIiIiLhGhQkRERERERERcY0KEyIiIiIiIiLiGhUmRERERERERMQ1KkyIiIiIiIiIiGtUmBARERERERER16gwISIiIiIiIiKuUWFCRERERERERFzz/zdpK4yIdyr+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(18,5))\n", - "plt.plot(lamdas, UNITSF_coef,label = 'UNITSF', color = 'black' )\n", - "plt.plot(lamdas, BEDRMS_coef,label = 'BEDRMS', color = 'red', linestyle = '--')\n", - "plt.plot(lamdas, DINING_coef,label = 'DINING', color = 'g',linestyle = 'dotted')\n", - "plt.legend()\n", - "plt.ylabel('Coef')\n", - "plt.xlabel('lambda')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note how the discrete jumps in magnitude for the `BATHS` coefficient in the first coincide with, for example, variables `DINING` and `BEDRMS` being exactly zero. As these variables got dropped from the model, the coefficient on `BATHS` increased to pick up their effect. \n", - "\n", - "Another problem with Lasso coefficients is their instability. When multiple variables are highly correlated we may spuriously drop several of them. To get a sense of the amount of variability, in the next snippet we fix $\\lambda$ and then look at the lasso coefficients estimated during cross-validation. We see that by simply removing one fold we can get a very different set of coefficients (nonzero coefficients are in black in the heatmap below). This is because there may be many choices of coefficients with similar predictive power, so the set of nonzero coefficients we end up with can be quite unstable." - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "import itertools\n", - "nobs = X.shape[0]\n", - "\n", - "nfold = 10\n", - " # Define folds indices \n", - "list_1 = [*range(0, nfold, 1)]*nobs\n", - "sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", - "foldid = [list_1[index] for index in sample]\n", - "\n", - " # Create split function(similar to R)\n", - "def split(x, f):\n", - " count = max(f) + 1\n", - " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", - "\n", - " # Split observation indices into folds \n", - "list_2 = [*range(0, nobs, 1)]\n", - "I = split(list_2, foldid)" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.linear_model import LassoCV\n", - "\n", - "scale_X = StandardScaler().fit(X).transform(X)\n", - "lasso_coef_fold=[]\n", - "for b in range(0,len(I)):\n", - " \n", - " # Split data - index to keep are in mask as booleans\n", - " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", - " mask = np.array([(i in include_idx) for i in range(len(X))])\n", - "\n", - " # Lasso regression, excluding folds selected \n", - " \n", - " lassocv = LassoCV(random_state=0)\n", - " lassocv.fit(scale_X[~mask], Y[~mask])\n", - " lasso_coef_fold.append(lassocv.coef_)\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 Fold-1Fold-2Fold-3Fold-4Fold-5Fold-6Fold-7Fold-8Fold-9Fold-10
LOT0.0410500.0407890.0391050.0373000.0411480.0431500.0371040.0353920.0373000.037464
UNITSF0.0447460.0460550.0470950.0452910.0495400.0438390.0430770.0515350.0471320.046415
BUILT0.0011110.0048450.0033850.0035640.0047570.0032200.0034490.0029870.0009290.004401
BATHS0.2005780.1896230.1958280.2004890.1924900.1980820.2036240.2000810.1980070.198827
BEDRMS0.0556050.0574720.0559820.0553940.0549810.0563350.0544750.0490820.0559940.052763
DINING0.0477360.0467480.0472690.0448500.0447510.0465150.0449340.0481290.0464150.046481
METRO0.0000000.0003560.0000000.0010810.0011900.0008810.0000000.0031890.0012220.002415
CRACKS0.0203320.0209370.0178480.0159320.0199170.0196770.0183950.0237930.0203140.019614
REGION0.0838640.0833370.0804640.0818840.0810640.0821500.0784200.0822370.0824660.082625
METRO30.0071520.0067380.0093950.0090170.0104760.0106920.0072170.0081430.0083730.007819
PHONE0.0032230.0041450.0000000.0000000.0036440.0019840.0013310.0032000.0017960.001127
KITCHEN-0.003205-0.000000-0.000955-0.002583-0.007191-0.002836-0.000000-0.003221-0.005402-0.000577
MOBILTYP-0.119085-0.103709-0.118946-0.111606-0.106277-0.113575-0.109086-0.103446-0.114251-0.115418
WINTEROVEN0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
WINTERKESP0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.0000000.0000000.000000
WINTERELSP0.0267930.0217030.0256190.0266380.0268660.0249990.0249330.0301210.0266970.027365
WINTERWOOD0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.0000000.0000000.000000
WINTERNONE-0.006475-0.007696-0.001862-0.000594-0.003744-0.001674-0.002170-0.004903-0.008437-0.001137
NEWC0.0292230.0271750.0279140.0266260.0279920.0295490.0312110.0274830.0282210.028651
DISH-0.096273-0.098615-0.095563-0.093536-0.095071-0.097641-0.094371-0.098233-0.095227-0.096898
WASH-0.001606-0.008013-0.012339-0.002369-0.016570-0.002033-0.011885-0.004852-0.007794-0.010408
DRY-0.034784-0.032210-0.029772-0.031367-0.027754-0.035728-0.029114-0.029364-0.032434-0.026725
NUNIT2-0.216673-0.229393-0.213668-0.219420-0.230576-0.219189-0.224386-0.228164-0.217753-0.218393
BURNER-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
COOK-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
OVEN-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
REFR-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000
DENS0.0482460.0493590.0465880.0477670.0511900.0469280.0464550.0474230.0491790.048865
FAMRM0.0578220.0570130.0572380.0592080.0585180.0551230.0578170.0586040.0598950.057424
HALFB0.1039280.1027910.1051830.1043790.1036710.1068060.1127080.1043320.1044810.108234
KITCH-0.016848-0.015641-0.015128-0.014620-0.015921-0.015672-0.016561-0.013676-0.016945-0.017092
LIVING0.0051980.0023240.0039510.0048390.0061060.0056300.0034940.0039930.0045320.004339
OTHFN0.0383550.0361140.0398430.0350120.0380770.0374920.0343210.0375250.0377210.035186
RECRM0.0214840.0219370.0199650.0235020.0241590.0206790.0193800.0204460.0222420.020969
CLIMB0.0123170.0063840.0110590.0117210.0163320.0165910.0112850.0135260.0131060.010781
ELEV0.0760950.0839370.0787830.0794320.0894030.0784550.0840760.0834520.0820640.078135
DIRAC-0.003499-0.003454-0.002993-0.004058-0.003754-0.002351-0.001929-0.002463-0.001677-0.001690
PORCH-0.018848-0.015829-0.016723-0.014969-0.013677-0.014311-0.015005-0.015080-0.016535-0.013887
AIRSYS-0.049124-0.052072-0.052840-0.053260-0.051097-0.050265-0.053449-0.053212-0.052109-0.051032
WELL-0.0000000.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000
WELDUS-0.024269-0.024428-0.025118-0.022449-0.024388-0.023465-0.022414-0.023391-0.023995-0.026031
STEAM0.0022140.0032920.0000000.0000000.0022700.0022770.0000000.0047520.0028120.000000
OARSYS0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
noise10.0054240.0028490.0066100.0036140.0067090.0038010.0025190.0052970.0025660.005736
noise20.000000-0.000000-0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.000000
noise30.000000-0.000000-0.0000000.0000000.000000-0.000000-0.000000-0.000000-0.000000-0.000000
noise40.0000000.0000000.0000000.0000000.0000000.0016880.0000000.0034420.0000000.000000
noise50.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000172
noise6-0.000805-0.001709-0.002072-0.004038-0.001111-0.003315-0.000000-0.004309-0.002370-0.000000
noise7-0.000000-0.000000-0.000000-0.0000000.0000000.000000-0.000000-0.000000-0.0000000.000000
noise80.0034410.0091920.0041160.0024520.0062970.0047240.0052670.0036110.0053800.002053
noise9-0.0000000.000000-0.000000-0.000000-0.000258-0.000000-0.000000-0.000000-0.000000-0.000000
noise10-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000021-0.000000
noise11-0.008055-0.004641-0.005265-0.002612-0.007669-0.005447-0.007216-0.006012-0.007707-0.003743
noise12-0.006468-0.007073-0.003561-0.002931-0.006589-0.003944-0.005517-0.002839-0.007282-0.005623
noise130.0000000.0000000.0000000.0000000.0002120.0000000.0000000.0000000.0020190.000000
noise14-0.000124-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.000000-0.0000000.000000
noise150.0023320.0045050.0045890.0023730.0045350.0030800.0014900.0041660.0045090.002482
noise160.0000000.0000000.0000000.0000000.0000000.000000-0.0000000.0000000.0000000.000000
noise17-0.002321-0.001854-0.003085-0.001049-0.004635-0.000000-0.000465-0.001222-0.002072-0.002135
noise180.0002740.0000000.0000000.0007040.0000000.0000000.0000000.0000000.0012720.000000
noise190.0000000.000000-0.000000-0.000000-0.000000-0.0000000.000000-0.000000-0.0000000.000000
noise20-0.000904-0.002203-0.001322-0.000250-0.000000-0.000180-0.001053-0.001291-0.005082-0.000000
ranking-0.002614-0.003632-0.000309-0.001322-0.002222-0.000030-0.001472-0.002578-0.000000-0.000000
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "index_val = ['Fold-1','Fold-2','Fold-3','Fold-4','Fold-5','Fold-6','Fold-7','Fold-8','Fold-9','Fold-10']\n", - "df = pd.DataFrame(data= lasso_coef_fold, columns=X.columns, index = index_val).T\n", - "df.style.applymap(lambda x: \"background-color: white\" if x==0 else \"background-color: black\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As we have seen above, any interpretation needs to take into account the joint distribution of covariates. One possible heuristic is to consider **data-driven subgroups**. For example, we can analyze what differentiates observations whose predictions are high from those whose predictions are low. The following code estimates a flexible Lasso model with splines, ranks the observations into a few subgroups according to their predicted outcomes, and then estimates the average covariate value for each subgroup. " - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "import itertools\n", - "nobs = X.shape[0]\n", - "\n", - "nfold = 5\n", - " # Define folds indices \n", - "list_1 = [*range(0, nfold, 1)]*nobs\n", - "sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", - "foldid = [list_1[index] for index in sample]\n", - "\n", - " # Create split function(similar to R)\n", - "def split(x, f):\n", - " count = max(f) + 1\n", - " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", - "\n", - " # Split observation indices into folds \n", - "list_2 = [*range(0, nobs, 1)]\n", - "I = split(list_2, foldid)\n", - "\n", - "\n", - "lasso_coef_rank=[]\n", - "lasso_pred = []\n", - "for b in range(0,len(I)):\n", - " # Split data - index to keep are in mask as booleans\n", - " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", - " mask = np.array([(i in include_idx) for i in range(len(X))])\n", - "\n", - " # Lasso regression, excluding folds selected \n", - " \n", - " lassocv = LassoCV(random_state=0)\n", - " lassocv.fit(scale_X[~mask], Y[~mask])\n", - " lasso_coef_rank.append(lassocv.coef_)\n", - " lasso_pred.append(lassocv.predict(scale_X[mask]))" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "y_hat = lasso_pred\n", - "\n", - "df_1 = pd.DataFrame()\n", - "for i in [0,1,2,3,4]:\n", - " df_2 = pd.DataFrame(y_hat[i])\n", - " \n", - " b =pd.cut(df_2[0], bins =[np.percentile(df_2,0),np.percentile(df_2,25),np.percentile(df_2,50),\n", - " np.percentile(df_2,75),np.percentile(df_2,100)], labels = [1,2,3,4])\n", - " \n", - " df_1 = pd.concat([df_1, b])\n", - "df_1 =df_1.apply(lambda x: pd.factorize(x)[0])\n", - "df_1.rename(columns={0:'ranking'}, inplace=True)\n", - "df_1 =df_1.reset_index().drop(columns=['index'])" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [], - "source": [ - "import statsmodels.api as sm\n", - "from scipy.stats import norm\n", - "import statsmodels.formula.api as smf" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [], - "source": [ - "y = X\n", - "x = df_1\n", - "y = pd.DataFrame(y)\n", - "x = pd.DataFrame(x)\n", - "y['ranking'] = x\n", - "data = y" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [], - "source": [ - "data_frame = pd.DataFrame()\n", - "for var_name in covariates:\n", - " form = var_name + \" ~ \" + \"0\" + \"+\" + \"C(ranking)\"\n", - " df1 = smf.ols(formula=form, data=data).fit(cov_type = 'HC2').summary2().tables[1].iloc[1:5, :2] #iloc to stay with rankings 0,1,2,3\n", - " df1.insert(0, 'covariate', var_name)\n", - " df1.insert(3, 'ranking', ['G1','G2','G3','G4'])\n", - " df1.insert(4, 'scaling',\n", - " pd.DataFrame(norm.cdf((df1['Coef.'] - np.mean(df1['Coef.']))/np.std(df1['Coef.']))))\n", - " df1.insert(5, 'variation',\n", - " np.std(df1['Coef.'])/np.std(data[var_name]))\n", - " label = []\n", - " for j in range(0,4):\n", - " label += [str(round(df1['Coef.'][j],3)) + \" (\" \n", - " + str(round(df1['Std.Err.'][j],3)) + \")\"]\n", - " df1.insert(6, 'labels', label)\n", - " df1.reset_index().drop(columns=['index'])\n", - " index = []\n", - " for m in range(0,4):\n", - " index += [str(df1['covariate'][m]) + \"_\" + \"ranking\" + str(m+1)]\n", - " idx = pd.Index(index)\n", - " df1 = df1.set_index(idx)\n", - " data_frame = data_frame.append(df1)\n", - "data_frame;" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ranking1ranking2ranking3ranking4
LOT49713.31 (1473.048)46479.968 (1390.394)47806.63 (1427.658)47612.513 (1393.569)
UNITSF2415.869 (24.944)2434.834 (24.249)2397.706 (23.467)2471.907 (26.208)
BUILT1972.286 (0.301)1974.925 (0.294)1973.672 (0.299)1973.017 (0.299)
BATHS1.918 (0.009)1.975 (0.009)1.946 (0.009)1.928 (0.009)
BEDRMS3.218 (0.01)3.258 (0.01)3.251 (0.01)3.243 (0.01)
...............
noise160.499 (0.003)0.502 (0.003)0.498 (0.003)0.505 (0.003)
noise170.501 (0.003)0.498 (0.003)0.502 (0.003)0.498 (0.003)
noise180.502 (0.003)0.499 (0.003)0.5 (0.003)0.5 (0.003)
noise190.504 (0.003)0.502 (0.003)0.498 (0.003)0.497 (0.003)
noise200.502 (0.003)0.496 (0.003)0.501 (0.003)0.5 (0.003)
\n", - "

63 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " ranking1 ranking2 ranking3 \\\n", - "LOT 49713.31 (1473.048) 46479.968 (1390.394) 47806.63 (1427.658) \n", - "UNITSF 2415.869 (24.944) 2434.834 (24.249) 2397.706 (23.467) \n", - "BUILT 1972.286 (0.301) 1974.925 (0.294) 1973.672 (0.299) \n", - "BATHS 1.918 (0.009) 1.975 (0.009) 1.946 (0.009) \n", - "BEDRMS 3.218 (0.01) 3.258 (0.01) 3.251 (0.01) \n", - "... ... ... ... \n", - "noise16 0.499 (0.003) 0.502 (0.003) 0.498 (0.003) \n", - "noise17 0.501 (0.003) 0.498 (0.003) 0.502 (0.003) \n", - "noise18 0.502 (0.003) 0.499 (0.003) 0.5 (0.003) \n", - "noise19 0.504 (0.003) 0.502 (0.003) 0.498 (0.003) \n", - "noise20 0.502 (0.003) 0.496 (0.003) 0.501 (0.003) \n", - "\n", - " ranking4 \n", - "LOT 47612.513 (1393.569) \n", - "UNITSF 2471.907 (26.208) \n", - "BUILT 1973.017 (0.299) \n", - "BATHS 1.928 (0.009) \n", - "BEDRMS 3.243 (0.01) \n", - "... ... \n", - "noise16 0.505 (0.003) \n", - "noise17 0.498 (0.003) \n", - "noise18 0.5 (0.003) \n", - "noise19 0.497 (0.003) \n", - "noise20 0.5 (0.003) \n", - "\n", - "[63 rows x 4 columns]" - ] - }, - "execution_count": 129, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "labels_data = pd.DataFrame()\n", - "for i in range(1,5):\n", - " df_mask = data_frame['ranking']==f\"G{i}\"\n", - " filtered_df = data_frame[df_mask].reset_index().drop(columns=['index'])\n", - " labels_data[f\"ranking{i}\"] = filtered_df[['labels']]\n", - "labels_data = labels_data.set_index(pd.Index(covariates))\n", - "labels_data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The next heatmap visualizes the results. Note how observations ranked higher (i.e., were predicted to have higher prices) have more bedrooms and baths, were built more recently, have fewer cracks, and so on. The next snippet of code displays the average covariate per group along with each standard errors. The rows are ordered according to $Var(E[X_{ij} | G_i) / Var(X_i)$, where $G_i$ denotes the ranking. This is a rough normalized measure of how much variation is \"explained\" by group membership $G_i$. Brighter colors indicate larger values." - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "new_data = pd.DataFrame()\n", - "for i in range(0,4):\n", - " df_mask = data_frame['ranking']==f\"G{i+1}\"\n", - " filtered_df = data_frame[df_mask]\n", - " new_data.insert(i,f\"G{i+1}\",filtered_df[['scaling']])\n", - "new_data;" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAQwCAYAAACqmZVzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3gUVReA37slvfcKIYReQu9NQDqIhSKIFLGAFdAPu9jFgh0VEBGUqoB0kY703jskAUJ678nufD/uZrPJbhJQisC8z5MnM3PvuWVmdubMOefeKxRFQUVFRUVFRUVFReVGoLnVDVBRUVFRUVFRUblzUZVNFRUVFRUVFRWVG4aqbKqoqKioqKioqNwwVGVTRUVFRUVFRUXlhqEqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKporKDUAIUUUIkSWE0N7qtlSEEGKWEOK9W92OslzN+RNCKEKIiHLShgoh1t64Ft46hBBPCiG+MG2Hmc6D7ha3qdxrcTth2Q8hxPdCiDf+YTlZQojw69u6648QYpMQYnQ5aauFEMOvQx3+QogTQgj7f1uWyu2LqmyqAOaHTqr6QLg+KIoSoyiKi6IohsryCiE6CSEu3Yx23S6UPX8VvRTLkf9VUZRuN66FtwYhhB3wOvDJrW7LnY6iKE8pivJuZfls3Zume/f8jWvdjUdRlJ6Kovx8HcqJBzYCT/z7VqncrqjKpgpCiDCgPaAA/W5A+bfU6nKzudv6ezdzC671fcBJRVEu3+R6bzvu9N/hbda/X4Enb3UjVG4dqrKpAvAosBOYBQwHEELYCyHShBD1izMJIXyFELlCCD/Tfh8hxEFTvu1CiIYWeaOEEBOFEIeBbCGETgjxshDinBAiUwhxXAhxv0V+rRDiMyFEkhDighDiGUv3oBDCXQjxoxDiihDishDivfJcrKayXrWoa58QItSU1kYIsUcIkW7638Z0fLAQYm+ZcsYJIZaZtnsLIQ4IITKEEBeFEJMs8hW7Mh8TQsQAG8q6N4UQI02upEwhxHkhxJOm487AaiDI5HrLEkIECSE0FucrWQixUAjhVU5/Twgh+ljs60znsYlpf5EQIs7U5y1CiHrllDNCCPF3mWOWbkV7IcSnQogYIUS8yc3oaErzEUKsMN0LKUKIrUIIq+eLEOJtIcTXpm29ECJbCPGxad9RCJEnhPC0PH9CiPeRH0PfmM7PNxZFdhVCnBHSKv+tEELY6ouprKds5bXRRkchxM+mfCeEEP8TFpZnYfve7ieEOGbq/yYhRB1b59C0bw5dECartul+TTKVPdRWu0z0BDbbOD5KCBEr5O9jgkVdLYQQO0ztuiKE+EZI6yhC8rkQIsF0bxwWpt97RdfalP6SqbxYIcSoCtqL6X5eZrovzgohHrdIm2S6t2cL+ds4JoRoVkFZihDiOSF/Q0lCiE+K7zPTNd9m6lMKMOnf9EOUCTERQtwn5PMuQ8jfZY/y7k1R+nfjbupfohAiWgjxepk2/21qY6qQz76eFfT/Wp+rV12+ECLQdA+8aNo3W2wrK0cIUU3IZ0umEGKdkL+vXyyK3wWECyGqltc3lTscRVHUv7v8DzgLjAWaAoWAv+n4TOB9i3xPA2tM202ABKAloEUqqVGAvSk9CjgIhAKOpmMDgCDkR84gIBsINKU9BRwHQgBPYB3S0qozpS8FfgCcAT9gN/BkOf15CTgC1AIEEAl4A15AKjAM0AEPm/a9AScgE6hhUc4eYLBpuxPQwNT2hkA80N+UFmZq62xT+xwtjhW3vzdQ3dSejkAO0MSi7Etl+vAC8gMgBLA39X1eOf19E/jVYr830vpVvD8KcDWV8wVw0CJtFvCeaXsE8HeZshUgwrT9BbDMdB5dgeXAh6a0D4HvAb3prz0gbLS1M3DEtN0GOAfsskg7VOacFp+/TcBoG21bAXgAVYBEoIetvlSU10YbP0IqdJ6m83/Y8vpQ5t4GaiLv5XtNff8f8jdlV/Yc2jjnnYAiYIrp+nQ0lVWrnLbtAQZY7Befp3nIe6+BqW9dTelNgVbI+z0MOAG8YErrDuwznRMB1KHk91jRte6BvP/rm+qcW7aPZdq8GZgKOACNTO3rYkqbBOQBvZDPkQ+BnRU8qxSkS9bLdB1PF98XpmteBDxr6q/jv+lHmevUAkg3XWMNEAzUruTeLC5nNvCHqf4wU5sfs2hzIfC4qf9jgFhs/Hb+4XO1wvKL227Rrics6jL36yrK2QF8CtgB7YAM4JcybT8M9Pu37yv17/b8u+UNUP9u8Q0gHwyFgI9p/yQwzrTdFThvkXcb8Khp+zvg3TJlnQI6mrajgFGV1H0QuM+0vQEL5dFUt4J8afgD+cUPV1P6w8DGcso9VVxumePDgN1lju0ARpi2fwHeNG3XQCqfTuXU8QXwuWk7zNTWcIv04mO6cuSXAs+btjthrWyewPRCNu0Hmq6TVXlAhGVbkS6rN8up18PULnfT/iyuQtlEKiPZQHWLtNbABdP2O8gXqk2Fw0LGEalceAMvA68ClwAX4G3gK1vnj/Jf6O0s9hcCL9vqS0V5bbTxPNDdYn801srmKIv9N4CFFvsa4DLQyfIcWqRbnvNOSAXJuUzb3iinbWewUJItzlNti2MfAz+WI/8CsMS03RmpYLQCNBZ5KrvWM4GPLNJqlu2jRVooYABcLY59CMwybU8C1lmk1QVyK7h/lDL9Hwust7jmMderH2Wu0w+Yfu822rSJcpRNpGKWD9S1SHsS2GTR5rMWaU4m2YBy6ip175WT5yAlz9UKyze1fYqp3IfL61dF5SCV/iIsnpXIZ2lZZdP8/lD/7r4/1Y2uMhxYqyhKkml/rukYSAXQUQjR0uT+aAQsMaVVBSaY3HNpQog05IslyKLsi5YVCSEeFSVu9zSkRcHHlBxUJr/ldlWkxeiKhewPSAunLUKRFrOyBAHRZY5FI60UIPv+sGl7CLBUUZQcU9tbCiE2mlxh6UhLrE+Zsi5SDkKInkKInSZXYhrSklNW3pKqwBKL/p5AvrT9y2ZUFOWsKb2vEMIJGXc711SvVgjxkcnNloF8qVBJ3bbwRb5g9lm0aY3pOMgBK2eBtSYX58u2ClEUJRfYi7TgdUBavbYDbU3HbLmIKyLOYjsHqbT+27wV3Yu2jpW6rxRFMZrSg8sKlUOqoijZFvvRlP4dlcqLtJBV1B6zvBCippDhDXGm6/8BpmuvKMoG4BvgWyBeCDFNCOFG5de67Pkp+5uyJAhIURQls0x+y3NT9ro4iIrjEW321Uba9exHec+UyvBBWvssyy63/8XPGyq+j6/luXo15Q9Ffhz9VmFPyi+n+BrnWOS19ZtxBdIqqUPlDkVVNu9iTLFLA4GOppdRHDAOiBRCRJpemguRCtgQYIXFS+Mi0sXuYfHnpCjKPIsqFIu6qgLTgWcAb0VRPICjSOsDwBWky7KYUIvti0jrgI9FXW6KotiMPTTlr27jeCxSibOkCvJBC7AW8BFCNDL1ea5FvrlId1yooijuSJdx2Zg/BRsIOcL/d6Sbyd/U91UW8rbkLgI9y5xfB6X8gSHzTG2+DzhuUkBBXrf7kJZid6QlDBttB2kFcrJod4BFWhKQC9SzaI+7oiguAIqiZCqKMkFRlHCgLzBeCNGlnLZuRlrVGiPdwpuRLt0WwJZyZGye2xtERfdiMZbtKXVfCSGESab4WuVgcV6R1iBLPIWM3S2miqlMWxxGWuDKYtlGS/nvkN6KGoqiuCEtyeZrryjKV4qiNAXqmcp9iUquNfL8lK2vPGIBLyGEpYJs+Zv7J5TXVyh9Xa5nP8p7ppStsyxJSI+E5XPn3/b/Wp6rV8MkUzvnin82VdsV5DW2vMdL/WZMHw8RwKF/UL7KHYCqbN7d9Eday+oirZaNkHFbW5GDhkAqWYOQX7+Wytd04CmTxU8IIZyFHERjy+oCMiZKQcZrIYQYifwCL2Yh8LwQIlgI4QFMLE5QFOUKUhH8TAjhJuTgmepCiI7l1DUDeFcIUcPUtoZCCG+kgldTCDHEFFg/yNT3FaZ6ipBf958gY7z+sijTFfn1nieEaIFU4q4WO2Q8XiJQZAqst5yWJx7wFkK4Wxz7Hni/OKBeyMFZ91VQx3xTmWMofZ1ckYp6MlLh+aCCMg4B9YQQjYQQDsiXEGC21k0HPhclA8SChRDdTdt9hBARJkUrA3lflTft02bk/XVcUZQCSuLGLiiKkliOTDxws+YtXAi8IuRApWDki7yy/L2FEF2EEHpgAvKcbzelHwSGmKzMPZAW3LK8LYSwE0K0B/oAi8qpa1U58m8IIZyEHPw1ElhgOu6KvB5ZQojayPsDACFEc9PvV4/80MgDDJVda1N/Rwgh6poUjLfKOzGKolw0nYcPhRAOQg4ifAwZ6vFPecl0bUKB5y36Wrbu69YP4EdgpOkaa0zl1DallXtvKnLqroXI37Kr6fc8Hulmvh5U9ly9GgqRcZ/OwBxhY2BfRSiKEo30Vkwy3cOtkR+clrQAokx5Ve5CVGXz7mY48JMi5zSMK/5DutaGCiF0iqLsQr6IgpCjpgFQFGUvMlj8G6Rr7ywyrscmiqIcBz5DxkjGIwcybLPIMh2pUB4GDiBfqkWUKCyPIpW246b6fkPGMdpiCvIBvxb5ov0RGe+ZjHyRT0AqX/8D+liEEIBU1LoCi0zKZzFjgXeEEJnIATkLy+urjb5nAs+ZZFKRiuoyi/STSMvkeZMrLAj40pRnranOncjBWOXVcQV5bttQ+uU7G+m2u4w8dzsrKOM0MvZyHTI28O8yWSYir/NOk0t2HXIQFsgY13VAlqkdUxVF2VROVduRsZvFVszjSEWnPKsmyPPxkJAjYb+qIN/14B1kHOkFZJ9+QyqPNlEU5RTwCPA10kLUF+hrUqRBKkR9kS7Eoch4XUvikPdFLFIJe8p0T9hiOVDbdI9Yshl5bdYDnyqKUjyh/YvI+y0T+RuzvDfcTMdSkfdIMtL6DhVca0VRViNjljeY8mwop63FPIy0qMciw3DeUhTlrwolKuYP5MCmg8BK5O+7PK5LPxRF2Y1U4j9HDhTaTIm1srJ781nkM/Q88jc1Fxkv+q+5iufq1ZZTADyADE2aea0KJ/K+bo28h95D3mf5ZdK/v9Z2qdw5FI8kU1H5T2Gy/n2vKEpZt7eKyk1FCDEGOStBeZb0f1N2J+RAipBKslrKPIEccPLC9W7Pfx0hhIIMCThbaWaVW4YQYgFyRoy3TFblzUBjRVHybnHTVG4RqmVT5T+BkHMb9jK5t4ORLq0llcmpqFxvhJxvsK3JXVoLaQn/z9yLiqJMuxsVTZX/LqaQjOqm30wPZJz4UgBFURIURamjKpp3N7fTCgQqdzYCOfXNAmRQ/0qku1pF5WZjh5ztoBrS9T0fOU+kioqKbQKAxcgpzS4BYxRFOXBrm6TyX0J1o6uoqKioqKioqNwwVDe6ioqKioqKiorKDUN1o98gTIHsKncJTWtYzbWucgeTmpZTeSaVOwadVrXL3E2cjktPUhTFt/KcKleLqmzeQHTaa5lXV+V2Zu83j1aeSeWOYeEyNRztbsLPzfFWN0HlJnLPh8vV+UCvM+rnmoqKioqKioqKyg1DVTZVVFRUVFRUVFRuGKqyqaKioqKioqKicsO4K2M2hRBZiqK4lDnmjlxurq3p0DbkMmNVgDmmY1WQS5WlA0mKonS9Hu3RaDTs2rWHy7GX6X9fPwAaNmzIt1O/w8XZhajoKB4d9giZmZk8/PAQJkx40SzboGFDWjRvyqFDh3jn3fd45JFheHp64unhZs7zxBNPMmbMWAwGA1nZWYx56klOnDhh1Y4VK1cRGBCIVqdj299/8+yzT2M0GmnXvj1TPvucBg0bMnTIwyxe/LvNfjg4OLBy1Wru7doFo9HIipWraNmyFdu2/W3ulyVffPEVw0eMMLd1/IQXGfKwXHJcq9NRp04dAgP8yMnJYeOmzdjb2aPV6Vi8+HfeeXuSzTZ8/vmX9OjZk9ycHB57bCQHDpTE1tk6z5GRkXw79Tsc7B0oKiri2WefZs+ePdSvX59x48bz2GOjKrp014CAVs9BfgYc+KnkcGgbqNIWFAMknoQzq0rSHDygzQQ49xdEbwGtPTQfY5HuDlf2w6nlMm+9AWDnAoU5cGQ+5KdbN8M/EsI7gxDW9fk3hOr3AgpkXoEj8+TxGr3At7bsQ/IZOLXMulyAWn0h4SikXpD9qtoOnHxg4yTZJgDfuhDRHRQFFKMsKy1KplVpCyGmFTkv7YYY02qZOkeIHAoOXpCXAod+haLc0nVrdND8KflfaCD+iDxvAC6BUPcB0NpBXiocngcGi5X0yp5ngKaPw6FfrOv5Bwihoev/viU3PYm/v38DgFYjX8PVPxQAO0dnCnKz+eujpxAaLc2HjscjtAYajZao3X9xcu18ADxDa9B82Eto9XbEHdvNgd9Kpv4MadyBer0eBRTSLp9n16wPrdqh0epoPPAZ/GpEohiNHFnxE5cP/k31dn2o3qEfitFIUX4u++Z9TkZcjJW8Vm9H+7Efsvmrl1AUI+3HfoB3WB2Szh8198uSxgOeJqxVd5ZMkL+1Ks06U/veQQCyngVfkX75PK5+IbQa9bpZzsU7gKMrf+bMJut59H1rNKTRg2PRaLXkZ2Ww6csJAPR+ew6F+bkoRiOK0cC6j58GwCO4Ok0HP49Gb4diNLB/wVekRJ/CPSiMmp0HsOeXTyq/gJUhNDR9egoFGckcmf0uAHUHv4STTzAAOkdninKz2fvNCwA4B4RRs/9YdPZOKIqR/VMnYCwqpNq9j+Df+B70ji5sfXuQufiQtvcR2PxeFIORwpx0Tv7+FflpiVbNaDT6fexcPTEWylVSD/30FoXZ6biH1SOi92hcAsI4vuATEo9uB8Dew5f6Q19BCA1Cq+PyjhXE7l5js4sRvUeTeGwH6VHHCG7Vm5C2/XD0DmTbe0MpzMkEwLtOS6p1HQqKvAZnV84gPVq+Z4Lb9CWoeTdAcGXPWi5tl8+QsK5D8anTEhQjBdnpnPztSwoyU6zqb/XSdIryc8F0ffdNnWBOC27dm+BWvVGMRpJP7eX8mlkIrY6a/cfiGhwBisLZFdNJu3AUgMhR73Bs7mSK8rKv7vqqXBfuSmWzHH4EjiqK8iiAEOJtYIaiKAOARqZjs4AViqL8dj0rfu655zlx8gRubiUK4g8/TOd/E19i65YtjBgxkgkvvsSkt95k3ry5zJs3F4D69evz++KlHDp0CICVK5Yz9dtvOHHydKny582by7RpPwDQp09fPvn0M/r07mXVjocHDyIzUz44FixcxEMPDWDhwgVcjInhscdGMn78BCsZS0aOHMXSJUswGo0AfPbZpzg5OfH4409Y5W3atCkeHu6ljk357FOmfCaXZu7dpw/PP/8CqampANzbtQvZ2dnodDo2b9nKn2tWs2vXrlLyPXr2JKJGBHVq16Rly5Z88+1U2rZpXeF5/vCjybz77jv8uWYNPXr25MOPJtO1S2eOHj1KcEgIoaGhXLx4scJ+XxVV20F2AugcSo55Vge/erB9ilQ27ZxLy9TqC0mnSvYN+bDzi5L9Vs9J5Q6gZh+peMbuA6/qUKMHHF1Qqjj0TlCzF+z8Cgqzof5A8IqAlLNSKax2D+yeKhWs4ra4VwWPMNj+udxvMRY8wyH1fOmydY7gXkUqviAVyMQT0PzJ0vlSzsKO43LbJQAiH4Ftn4KLv1Q0d34tz0WTxyDpJOQkyXYln4WoTRDWCap1gjOrS5drLIK908BQIJXNFmPluUuPgXoPwemVss1BzSCsI5xbWyJb9jyDPJehreFCZct+V06Ne+4nIz4GvYOT+djOn943b0fe/ySFufLFF9qkAxqdnrUfPIFWb0+P12cQs3cjOSnxNBn0HPvmfU7yhRO0H/M+AXWbE3d8Dy6+wdTp9jAbprxAYW4W9i4eNttRp/sQ8jPTWP3OSBACOydXAKL3buDc3ysACGrQmsgHnmLr1Fet5Ku17sHlQ3+jKPL3fWrdIrR29lRv19sqr2eVmugdS33Pk50cx8YvJlCYm0VA3eY0e/gF1n/6HJkJl/jro6cAqZj3eX8elw9ZL++td3SmycDn2Dr1FXJSE636uenLFynIzih1rGH/xzm2eg5xx/cQULcFDfs/zqYvXyQ9NgonDx+cPH3JSbVW3K6FkDZ9yUm8iM6+5Poen1+ixFbvOYqifHl9hUZDnQHjObFoCtlxUegcXTEaDAAkn9zD5Z0raTm+9BLiWVfOs+/b8RgLCwhq2ZPqPUaUKt+SEwunkHm59Eqe+WmJnPz9S0Lb9S91vCAzlf3f/w/FUITWzoHmz39N0ondVsqeztEFt9BanF05A4D06BMkn9xDo8ffL5Uv7dwh9p6Qz2TngDDqPfw/dn8+Fmf/KgQ178a+qRNQDEU0HDGJ5FN7yE2+wsWti4la9ysAwa37ENZ5EKf/+M5m3w7NeM2s2BbjEd4Anzot2fPVcyiGIvTO8p0S2LwbAHu/eg69szsNR7wlFVRFIe7AJoJa9SJm0yKb9ajcGFQ3OiCEiACaAu9aHH4HaCaEqH4j6w4ODqZnr17MnPljqeM1a9Vi6xZpZVm37i/uv/8BK9lBgx9mwYL55v1du3YRFxdnla9YgQRwdnamvIn8i/PpdDrs7OzM+aKjozly5IhZiSyPh4cMYdmyP8z7GzdsKFV3MRqNho8mf8zLL08st6xBgwazYH5J37Kz5cNar9ej1+lt9qFf3/v4ZY40Qu/atQt3dw8CAgKA8s+zoii4uUrl093NndjYWHPayhUrGDhocIV9virs3cGnNlzeXfp4aCu4sFEqVwAFFl/avvUgNwWy422X6eQjrZipF+S+i59UyABSzkkltiyOXlJ5KzTVk3wW/OvL7eAWcHFHiSXP3BYFtDrQaE1WQy0UZFmX7d8Qki0+cjJjpRWxLIaCkm2tnbRwAjj7QVoMGAulxTP1fEkf/OpJJRrkf7/6ts9JcdlCK/8oLtu3RDlOPgP+DUpkyjvPCcchsJHteq4BRw8fAuu15ML21eXmCW3SgZh9GwF5OnR2DgiNBq2dHUZDEUV5OTi4eaF3cCL5grQURe1eR3DDNgCEt+nJ2S3LKMyV1yU/K81mPdVad+eEyUqKopgVs6K8kmmctHYOJdekDFWadeby4e3m/YTTByjKt54CSggNkf0f5/DS6aWOJ184bm5j8oUTOHpYzyzjV6sx2YlXyElNsF3/ob/NymF5/SyNYlby9Y7O5KYnm1Nij+4ktOk9V1FG+di7eeNduxlX9vxVbh7fBm1JOCSf5Z4RjcmOiyI7LgqAotxMeb8DGRdPUZBp/ZtJO3/EbK3MiDmFvbvPNbUxLy1B1lfmuiqGIhRDEQBCq5cfabbaX78tKWf2m/ezrpwnL836+hgKSlaj1Ortzc9oJ99QMmJOYSwsQDEaSbtwDJ+60ghgyC/xHGjtHLB955VPUMuexGz+3dyPwmzpzXH2CyXt3GHzsaK8bGnlBJJP7MI/ssM11qTyb1Etm5K6wEFFKX7rg6IoBiHEQaAecO5GVfzZlM955eWJuLi6ljp+7NhR+vbtx/Lly3jooQGEhoZayQ4YMJAHH+h/VfWMGTOW518Yh52dHd3u7VJuvpWrVtO8eQvWrFnN779fvQFXr9dTrVo40dGVzxjx9NPPsGL5cpuKMYCjoyPdu/fg+eeeNR/TaDTs3r2X6hERfPfdVHbv3m0lFxQcxKVLJVbIy5cvERwcTFxcXLnnecL4caxctYbJH3+CRqOhQ/u25rR9+/by0v8m8tmn/9LVVrsvnF4FOvvSx518wbOatEIaiuD0Csi4BFq9tN7tmy6tcLYIaARxh0r2M69IxTFmm1TGdA7SkllooQzkJEvFy8FTutj96kklEsDZ9AJrPla62M/9JZXH9BipvHY0uUkvbpcW2rJ4VpWu66vBrx7U6CmV5f0z5bGseIjoIdtsKJTKecYlmWbnAgWmj5aCTGsLsBkBrZ4HJ2/ZznTTvZAVJ933icchoKF0m0PF57koF4TO+hxeI40eHMPhpdPROdieOsenegPyMtPISrwMwKUDWwhu2Jq+7y9AZ2fPwcXfU5CTiWeVmuSmJZnlctMScfSQ18zVLwSAzuO+QGg0HFs1m7gTe0vVo3eU56x+n+H41YgkK/EK+xd9TX5mGgARHfpR854H0eh0bPrqf1bt1Gh1OPsEkpNSzsePBREd7yP2yA7yMqzdocWEt+lB3PE9VserNO1kVrzL4uoXgkaro9Pzn6Kzd+TMpiVE714HyI/Gjs98hKIonN+2kvPbZHjIgd++o8PTHxJ5/xMgNGz47HlzeSkxp6lz7yBOrVtYaZ/K7Wuf0ZxbPQudve3r6x5Wj8KsNHKTrwDg5BOMgkLDEZPQO7uTcHgrF7cuvur6ApvdS8rpfeWm13rwOTAaSTy2g+iNC8rNV4y9uw8NHn0TR+9Azq35yaYL271qHRKPWluabeFTtxXh3R9F7+zOkZ/fASA7Pppq3R6RVtyifLxqNS1lfS0OHzDk53Bwxms2y1UUaDjyHUAhdvefXNnzJwBO3kG4h9WlWrdHMBYVcm7VTDIvnyXrShTedVqScHgL9u6+uAZVx97dh8xLZyjKy0Zo9egcXaWyr3JTUC2bEgE2P6rKO267ECGeEELsFULsrTw39Ordm8SERPbv32+V9vjoxxgzdiy7du3BxdWVgoKCUuktWrQgNyeHY8eOXVXbvvtuKrVr1eDVV17m1Vdt/6ABevfqSWhIEPb29tzTufNVlQ3g4+NDWlpapfkCAwN58KGH+Oabr8vN06dPX7Zv32Z2oQMYjUaaNWtCWNVQmjdvTr161pY7IaznNVUUpcLz/OSTY3hxwnjCq1XlxQnjmTZ9hjktISGBoMCgSvtUIT51pCUw87J1mkYj3c+7vpFu3shH5PHq3SB6a2krYFkCIuHKwZL90yule7vV8/J/XprZYmKmKBdOLJHxj83HQG4qFFurhVZaS/d+D0fmStezzgEcvaXVccv78s8rQirIZbFzK22ZrYiEY9J1fvBnGb8JUoGN2iRjJZs+JpXnsu2vFEWGGWx5X7r0XUwT7R9dJGNIWz0n416N0gpS6XkuyAJ7N9tpV0Fg/ZbkZ6aRevFMuXmqNLuHmL0lypVXWG0Uo5Hlrw1m5VuPUrPzQzh7B9gWNlmOhFaLi18wG7+cwM5ZH9BsyHizclmM0Ghx8vQj6fwx/po8luSo40TeXxLicHbLMla9PZzDf8ygbo8hVlXZubhTmGPDol0GB3dvQhp34MzmpeXm8a0RSbXWPTn8R2nLp0arI6hBay4e2GxTTmi0eIbWYOt3r7Pl21eo2+MRXPxkXOSGz8fx1+SxbJ36GhHt++FTXVqvI9r34eDi71jxxlAO/v4dzYeWhALlZ6bh4O5daZ/Kw7tWMwqy0smKLd8W4RfZgfjDWy36oMG9al1OLPyMA9Mm4lOvFR7VG15Vff6NOuEaHEHMFtvK6fGFn7H3q+c4MO0V3MPq4t+4cqttfnoSe79+jl2fPUlA487obYRg2Ll6UlgmPKE8ko7vZPfnYzn6ywdUu3coADmJl4jZvJjIUe/QcMTbZF+5gGIw23W48Ncv7Pz4MeIPbia4lXVIBsCBHyay79txHJ71NsGteuEeJp//QqtF5+jC/u9e4tzqn6j7sPSWxe37i/z0JJqOnUJE79Gkx5xEsfDMFWanY+/mdVV9Urk+qMqm5BjQWIgSP4JpOxKwHklTDoqiTFMUpZmiKM2uJn+bNm3p07cvZ86e59df53HPPZ35+efZAJw6dYpePXvQsmVzFsyfx/nzpR9oAwcNZr6FC/1qWbBgPv3u619hnvz8fFYsX06/vvdddbm5ubk4ODhUmq9R48ZUrx7ByVNnOHP2PE5OTlYxpgMHDSrlQrckPT2dzZs30617D6u0y5cuExJSYgEODg4hNja2wvM87NFHWbJEPrx/+20RzZu3MMs7ODiQm/cvB4h4VJVWtfYvQ8OhMp6yvsk1n5deEnOZcVEqD3pnqSjV7CVlqrSTA3pC25SU6RIoXV6WCmx+BhyaAzu/hLOmIP+iEreWmcQTUrnd/S1kJ0q3enFbEo9JBS83VaY5+UhraXqMVMgMBTK20b2KdbnGQulmvxZSL0grpN4U63Z5j2z/nu+lNbG4bQVZYGeySNu5Vq7UFuVJa6x3Lbmfkwj7Z8hY1biDkGtypVZ2nrU6aWX9h/iE1yOoQWt6vz2HViNfw69mI1o+WhI6IjQaQiLbcXH/JvOxqs06E3d8L4rRQH5WGsnnj5mtmsWWTABHD1+zSzg3LYnYwztQjAayk+PITLiEi29wqbYUZGdQlJ9rjoW8uH8LnqERVm2O2beJoIZtrY4bCvLR6u0q7bNnSHVcfIPo9dbP9H57Djq9PT3fmmVOdw+qRvMh4/l72psUZJe2KgXUbU7qxbNma2tZctMSiTuxB0NBHgXZGSSePYxHsIxyyjOdi/ysNC4f3oZ3mLz2VVt24/JBOdDs0oEteFWtZS5Pq9djKKzgg64S3KrWxadOC1q9NJ26g1/CI7whdQaMN6cLjQbfeq1JtFA28zOSSb9wlMKcTIyFBaSc2odrUOWRWp7VI6nSaQBH5rxndhmXpcBkSTYU5JJwaDNuITWvui8FmSlkJ8TgEVbXKs1YWIBGp7/qsgDSo47h4BWI3hQXHLfvL/Z9O46D01+hMDeL3ORYK5n4Q5vxrd/G6nhx+0AqiUnHd+IWUgOA/PRkko7tACDz0hlQjOid3VCMRs6t+pG937zA0V/eR+fgXKpOjU5vDk1QuTmoyiagKMpZ4ADwusXh14H9prQbwuuvvUq1sCrUiAhn6NCH2bhxA8OHy5VofH1lPJMQgldffY1pP/xglhNC8OCDD7HwKpXNiIiSl0qv3r05e8ba0uLs7GyOb9RqtfTo2ZNTp05edV/S0tLQarXY29tXmG/1qlWEhgRRIyKcGhHh5OTkUKd2yUPRzc2NDh06lor99PHxwd1dBn47ODjQpUsXm21bvmIZjwwbBkDLli3JyEgnLi6uwvMcGxtLh47ShXpP586lzk2NGjU5dvTqLMflcnYNbPkAtn4Eh3+VStBR03VLOCYthSAVO41WxlPu+U7m3/qRHJF9foN0CxcT2EgqTZbonZCGeOSAmsvlGNeLXdA6RzkApjiONOGoVISLy3L2lbGMuWnSUio08s+zmm03enaC7ENlOFpYklyDpUW12E1d3DYHD6nkFltuE49DUFO5HdRUnrey6J1LBl9pdOBdQyrMluUiILwLXNwpdys7z3autuNOr5Ijy2ay4o0hrHxrGDt/ep+E0wfZNXuyOd2/VhMy4i+Wco/npCTgV6sRIGPYvMLqkBl/kbyMFIryc/EKqwNAWIuuXD4sX7KXD23Dr2akqatuuPoFk21y21oSe3QnfjUiTXU3JuOKHHFuqZgG1mtpdulbUpibhdBoKlU6rhzbzfJXB7HyrWGsfGsYRYX5rH57BABOnr60efwtds2eTFaCdR1Vmt1Trgsd4PLhHfhUbyDjWfX2eIfVJiMuBq2dg9mNrbVzwL92U9JjowCphPrWkJZDv5qNybTom4tfCBlXoirsT0VcWDubHZNHsfOTxzk+/xPSzh/mxKIp5nTP6o3ISbxEfkZJnGjK6f04B4Sh0dshNBo8qtUjO6HiAYgugeHU7D+Wo3PeM8cklkVoNGbFTmi0eNduTnZ8xSFN9m7eaHTyA0Ln4Ix71Trk2Lj2OYkXcfQOrLAsAEevkjwuQeFotDrzgJ7igTv27j741mttjmG1LNenTgtyEi9ZlavR26O1czRve0Y0Ijte3rtJx3eaLcOO3kEIrY7C7Aw0ejs0evku8oxohGI0kmNxnu1cPMlLqzwkROX6cbfGbDoJISzv6inAY8DXQoizyLf2DtOxW8LgwQ/z1JixACxduoRZs0qmy2nfoQOXL1/iwoULpWQ+/Ggygwc/jJOTExeiYpg580fefedtxo59hs5dulBUWEhqWiqjRo0wy+zdu59mzZrg7OzMkiV/YG9vj0arZdPGjfzwgxwV2axZMxb9thhPT0969+nLm29NolFkA8qy7q+/aNuuHRvWrwdg46bN1KpVGxcXFy5ExfDEE6P5a+1aKzlL+ve/n7/+WktOTkmcXGBgIDNnzkKr1SI0Gn77bRGrVq4E5LROANOm/cDqVavo2aMXJ0+dITcnh9GjK5+2aMxTTzBlyhfodDry8vMYM6bEtdip0z2sWr2y0jL+MZf3yOmK2owHo8F69Hh5+DcsiXUsxqs6RPQEFGkxPGExbUyrF0pGsde6D1xND/jz60qsh8mnwbumnAJIMUq3fGEOxB+WZbceJ/MlnZLW0bIknoCQViXKa5W2Mg7SzhVaj5cjy4//JgfnBDWR7ntjoVTAi4l8VCq6igFOLC0ZrHRho7QKB7eQyt+hX+Rxezeo+xAcmAn2rlB/kEkpFhB3GJJM7QxoVGKxTDgKsVcR5eIWIi261+zKv3pCm97DxTLK1dktf9D8kZfo/tp0QBC180/SY+XvfN+Cr2jxyIto9fZcOb6HuOPyXMed2It/naZ0f20GimLk0NLpZqvhvS9/bx7pfXjpDFoOn0ijB8eQn5VunvYnosN9+NdujNFgoDAnk92zP7bZ3rgT+/CpXp+EU3I6sXtemIKrfyg6e0f6vDuXPXOnEH+i/HNbt+cw7J3daDLoOYBSUxRp9fb4127KvnlflJKp3q4PAOf+XkFmfAxxx/fQ7ZVpoBg5v301GVeicPYOoO3jkwDpVo3Zu9Ecs7p37hQaPTQWjUaLoaigVPl+NRoRe7T0jBbXE7+G7c1KVTFFedlc2vYHTcdOARSST+0j5ZRsa3iPEfhHdkCjt6f1xJlc2fsXUevnUb3nCLT2jtQzuYjz0hM5OkeOBG/2zBfs/eYFhFZPw5FvIzQ6hEZD6rmDxO6Rz1rX4AjqP/IqOkcXvOs0J6zLEPZ8+QxOfqFU7zkKGSkmuLh1qU0FNfnUXoKa9+DKXjkIKrh1H6p0eAA7F0+aPfcVKaf2cWrJN/jUb01A484ohiIMRQUcn19yH9Ub+jJ6J1cUg4HTy743TzsU3n04Tr7BKEaFvLQETv8hp/Oyc/Wi1gPPcOTnd7Bz8aD+I3J2BKHREn9os3nA0pV966j9wHM0f/5rjEVFnPztSynv7EHDkZNQFIWCjORSHwGuwRFkXDxVyq2ucuMR5Y1MVvl3CCGUu21t9EaNGvHCC+MYMWL4rW7Kv8bOzo4NGzfRsUN7DBbxReVRuOrFSvPc8TQfI+cQteW+v92o1U9aVFNsOzbuxrXRPUKqU7PzQ+y2sM7ermh0eu55/jM2fP7CVSkdd/va6I2f+Igjs9+9I+amjOgzmqQTu82j1W1xz4fL911tOJzK1aG60VWuGwcPHmTTpk1oNLf/bVWlShVeffWVq1I0VUycXlEy0vt2JyuuXEXzbiXt0jkSTx9ElDNFzu2Ek6cfh5fNUK1bV8nZVTOxtzFV1e1IdlxMhYqmyo1BtWzeIO5Gy+bdjGrZvLu4Gy2bdzN3u2XzbkO1bF5/7taYzRtOgxAvVo7veauboXKT+GD6plvdBJWbyKujypn/VOWOxL7vlMozqaiolMvt7w9RUVFRUVFRUVH5z6IqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKpoqKioqKioqKyg1DHSD0H0Tr4oVXj6fQOrkDCllHNpJ14M9SeVyb9sKjwxAuf/cUxrwsNA4uePd5Djv/cLKPbyFt42xzXt+HXkPr7IFSJJfnSlw8GWNumbVuNVq87h2N3i8MITRkn/ibzD3LzWmenYdjH1IHFIX0bYvIPbsHras3Xt2eQOPoijEvm5Q132HISrHqj9Dq8XngfyT+9gF6n1A8O49EY++IYjSSsfsPck+XnljZo9OjONfrwOVvR9s8P+7tBuFYrREA6buWXrW8nX84foMnkbzqa3LP7AGNFt8HXyHxtw9u6OTdleHq7Ue/Zybh7OGNoigcXLeEPatKT/Desu9Qujz6PJ+PupfczHQCI+rS68lXTamCrYumc3r3plIyD038FE+/YKZPeNiqTo1WS6+nXicgvBYajZYjm1exY+nPAAx67UtcPHzQaLVcPHGQP3/8uNQUMbVbdeaBCR8xc+Jw4s5bT/Cus7Nn8Gtf8uvbY/GtUp0ej7+MvaMzitHAtsU/cWL7ulL5u416kYb39OHTYZ2syvILq3HN8g7OrvQe+wae/sEUFRawcuq7JF48j0anY8gb3/Lr22NRjLdwSisHd2g4WE5EryhwcRdEyyUVqdEd/OoBilym8/ACuRSp0EL9B8E9RMqc+ANSzsu13luNLV127H44sax0nUGNoVqnkn3XANj2JWTGglswNBwEGj0knpRlFxPQEGp0k3VmXoFDc637o9FB89Gw6we5YEC9B0BnL2XOrYe4QzJf/QGy/Qi5hOjhBeWvS6+zh/YvQfxROL605HiNHhDYUP5eY3ZA9Dao1lEuFAByUn8XP1g/CYoKoMUTsPuHW/r7DgkJ4cdZswjwD8BoNPLjjOl88/XXpfKMGz+ejz7+hCB/P5KTkxn88BDGTyhZx71Bw4a0bN6Mw4cO8fa77zL0kWF4enri7eFus069Xs+3331P06ZNMRqNTBg/ji2b5ZrzjZs0YcaPM3F0dGTN6tWMH/cCAJ989hkdO3YCwMnJCV8/P/x9rNeOd3BwYPmqVXTv2pX6DRrw9bff4ubqhsFg4KMPP+S3RQvNed9+910efPAhDAYD0374nm+/+aZUWQ0jI8uVDwsLY87cuXh5enHgwAFGDn+UwsJC3NzcmDV7DqGhoeh0Oj6fMoXZP89Cr9ezeu1aunftqk5Z9x/ktlM2hRBhwApFUepbHJsEZAH1gXuBcEVR8oUQPsBeRVHCiuWACUDxrMQRwGUgFzgMPAVMBxoiVxFKA3ooipIlhDAARyya0l9RlKgb0UdFMZK2ZS6FCVEIvQP+Q98lL/oIRSlybVetixf2VepTlFGyzJ1SVEj69t/Q+4Sg9w6xKjN5zVQK4y9YHS/GqUYLhFZH/JxXEDo7Ah6dTM6pHRgyknBreR+GnAziZr0ECDQOcvk/jw5DyD7xNznHt2IfWhf3dgNJWfO9VdnO9TuSe3YvKApKYQEpf35PUVo8GmcPAoa+R170EZR8uWKQ3r8aGgenctvpUK0Rdn5hxP3yGkKrx2/ga+RFHUYpyK1YXgjc2w0iL9pifjWjgfyLx3Cq1Yqck9utZW4SRoOBdbO/JP7CKewcnBg5eTYXDu8m6ZK8Xq7eflRr2JL0xJIlCBNjzjFz4nAUowFnD29Gf/orZ/ZuNStRtVp0orCCdd1rt+6KTq9nxoQh6OzseeLzBRzftpb0xCssmfIqBbly8uYHJnxEnVZdOL5drh5i5+BEs56DuHz6SLllR97Tl1O7NqIYjRTl57P860mkxl3ExdOHUZNnc/7gTvJzsgAICK+DvbNLuWX9E/k2D4wg/sJpfv/kf3gHVaX76P8x952nMRYVEXVkD3XbdOXY33/aqu7moBjh5ArIuCyVxbbPyxWcshLgwiY4Y2pb1bYQ0RWOLYbQlvLY31Pk8pvNRsP2r8CQD9s+Lym7zfMQZ+PaxB6QfwAuAdB0hFQ0QSqHR3+HtGho9hj41JIrRTn5QPXOsONbuZqTednPMoS0gLijgCKVx8Pz5cpU9m6yPUmn5ET/J5dBUb6Uqd1X9u98OctT1ugulWlLgpuBowds+UTWVdyeC5vlH4BfHQjrAIWmez/5LARGlvT9FlBUVMTEl17i4IEDuLi4sHP3HtatW8fJE/JDLSQkhC5d7yU6umT1nvnz5jJ/nlTs69Wvz++Ll3D4kFTaV65YwXfffsuxk6fKrfOx0fJDu2njRvj6+rJsxUratGqJoih8/e23jB3zFLt27mTZipV079GDP9es4SUL5Xbs008T2aixzbJHjBzJH0uWYDQayc3J4bERIzh79iyBgYHs2L2Hv9b+SXp6Oo8OH0FISCgN6tVFURTzEsyWVCT//ocf8dUXX7Jo4QK++XYqI0c9xrQfvuepsWM5ceI4D/S/Dx8fH44cP8G8ub9SWFjIxg0bGDBwkPncqfx3uBPd6Aag3HUKFUX5U1GURoqiNAL2AkNN+48CzwPxiqI0MCmzjwGFJtHcYjnTX9SN6oAxO43CBFm8UphHUUosWhcvc7pHp0dI3zpfWg6K+1WUT0HsaZSiwrLFXTVCbw9Cg9DZoRiLUPLlA9u5Xkcydy8vrgljnnzR672DyY+R61TnXzyOY3hTm+U61W5D7rl9ABSlxVFkWpPWmJ2GIScdraOrqQECj/YPk7a1/DXf9V7B5F86CYpR9jkxBoewhpXKuzTqRu7ZPRhzSlt0c8/uw6l2m8pPzg0kOy2Z+AvyxVGQl0Py5Qu4eJU8mO8dMY4Nv3yN5Zy4RQX5ZsVSZ2df6l7QOzjSou8Qtv1eZklLSxQFvb0jQqNFb+eAoaiIfJOCWaxoarRatDo9CiVldxj8JDv/mENRYTkWKaBe+x6c3iOX6Uu5EkNqnFyTOCs1iez0VJzcPAG5nnOXYc+yYc7X5Zb1T+R9QqoRdXQPAMmx0bj7BuLsLn8/p/dspl77HuWfl5tBfqZUNEEqi1kJYG+yUBUrYwBau5JtF3+pOAEUZEtlyr3MR6WTD9i5yOVKKyKoEcQelNv2rnJN+TSTonN5n1yXHqSCG729ZNnQgnJWjwlqXLJefU5SyRKo+RnSOmvnYqNverC4r0rhFiyXOU06Xfp4ldZw9q8SOVvtCWxcWrGMPyqP3ULi4uI4eEC2KSsri5MnTxIcXLIe/SefTeGVlydS3pzXgwYPZsGCkmfa7l27iIuLq7DOOnXqsnHDBgASExNJT0+jabNmBAQE4Obqxq6dOwH4Zc4c+vW7z0p+4ODBLFxg+zk8eMgQli+TlvMzZ85w9qy8L69cuUJiQoJZqXziqSf54L13zf1KTEy0Kqsi+U733MPi338DYM6c2fS7T7ZTURRcXeQ7w8XFhdSUFIqKigBY9scfPDxkSIXnRuXWcCcqm18A44QQ/8RqG4i0dAKgKMopRVHyK8h/w9G6+aD3rUpB3DkAHMKbYMhKpTAp5prK8er2BP5D38etZX+b6TlndqMU5hP0xDcEjv6CzH2rMOZnI+ylldC9zUP4D3kP797PonFyA6AgMQbHGs0BcIxohsbeEY1DGSuVRovO3Q+DhRW2GDv/cIRGR1FaAmBSCM/tx5idVm4/ChKjcagWidDZoXFwwSG0LjqTIl6evNbZE8eIZmQdXm9VXmHyRez8w8ut72bj7huIf7VaxJ6RL+8azdqTmZJIQvQZq7xBEfV4fMp8Hv9sLqunTzYrnx0HPcWu5XMpzC9/2ciTO9dTmJ/L89NX8fR3y9i1/BfyskoU8cGvfcXzM/6kIC+HkzvlS8s/rCZu3v6c3f93ueVqdDo8/INLWWGLCYyoi1anIzX+EgDNegzg9N6tZKclX8WZuXr5+Kgz1Gp5j1nG3TcAV28/ABIvniMoou5V1XdTcPQEtyC5DnsxNXpAp9eka7jYypkZC351pZvY0VMqmmVXawpqBFcOVV5nYCO4YlLI7N0hL70kLS8dHOTvG2cfcPaFVk9D62ekxbMsQgtO3pCbap3mHgoaLeRYXJ8GA6Hzm7LcqG02Giek1fPUCuskJ29ppWzznLTAOvmUTtfoZRvjLSy7mXHgEWrrLNwSqlatSmSjRuzeJUN/+vTpS+zlyxw5XP6KNgMGDGTB/PI/wG1x+PBh+vbrh1arJSwsjMZNmhISEkpQcDCXL18y57t8+RJBFoovyNXTwsKqmZVVS/R6PdWqhZeywhbTrHlz7OzsOHdOvqvCw6vz0MCBbN+5i2UrVhIREVFhmy3lvb29SU9LM7vDL1+6RFBQEADfffstterUJuriJfYdPMSE8ePMCu2xo0dp2kydi/2/yJ2obMYAfwPD/oHsTGCiEGKHEOI9IUQNizRHIcRB098SW8JCiCeEEHuFEHtTsv/9+tBCb49Pn+dJ2/wLSkEuQmeHW4t+pG//7ZrKSVk9lfg5r5Cw8F3sg2vhVKedVR67gHAUo5HY6c9y5cfxuDbphdbdFyE06Fy9yY89Tfzc18m/chaPDvLLMW3LXOyDa+M/9D3sQ+pQlJliFQuncXTFaHKRlzru7IFXjzGkrJ0GKGicPXCq0YKsg2sr7Et+zFFyLxzEb9BbePd6mvzYMyiKsUJ5W5ZgM4qCYixC6B0qrPdmoHdw5IEXP2LdT1MoyM1GZ2dPmwdGsmXBDzbzx549xvTxg/np5RG0uX84Wr0dfmE18AwIsYrfLEtQRD2MRiNfPdGLqU/3p2XfoXj4BZnT57//HF890QutTk/V+s1ACLqOGMf62V9WWK6Tqwf52ZlWx509vOn37NusmPouKAounj7Ubt2FvasX2ijFmmuR37F0Ng7Orjz2yS806zmQuAunMZpeWorRiKGoELsKQjVuGlo7aPyojK+0tPqdWQOb3pexl1XaymOX9khFsM3zUOc+SI2yjkO0VCLLwz1UurqzpHeBihY5Exqp0O36Dg7+Cg0eklZQS+ycS1zWlti7yrjUIwspZcE8shA2vCutuYGR1nJVWsu4UUsFuBiNDgxFMnzg4i5oMKB0ul9dSIsq0x4FjAYZrnCLcXZ2Zv7CRbw4fjyZmZk4Ojoy8dVXeHvSW+XKNG/RgpycHI4fO3ZNdc36aSaXL19ix67dfDrlc3bu2IGhqAghrC94WYvqgEGDWPL77xhtLOXp4+NDelqa1fGAgAB+mvUzj49+zFyevb09+Xl5tGnVkh9nzOCHGTPKbW9Z+YraeW+37hw+dIiw0BBaNG3CF19+haurtHQajUYKCgpwcSk/NEfl1nDbxWxSru+l1PEPgGXAymsqWFEOCiHCgW5AV2CPEKK1oignMLnRK5GfBkwDaBjq/e/WAdVo8e7zPNknt8t4R0Dn7ofO3ZeARz4AQOvqhf/Q94if9xbGHBsPZxOGbGl1UArzyD65HbuAcHJOlLZOOdVqI+MZjQaMuRnkx57Gzj+c3NO7MBbmmduQe3oXLvXl6inG7DSSV0jlQ+jtcYxobo6dNJ+TogKEVl/qmLBzxPe+F0nfvshssbXzC0Pn4U/gyM9M5dkRMPIz4n6aQFkydy8jc7d043j1HEtRalyF8nb+1fDu9Yw8rY6uOFSLBKPR7NoXWj2K4Z+HH1wPNFotD06YzLGtf3LKpCh6BoTg4RfEY5/8CoCbtx+jPp7DrFdGlrLmJV+OojAvF9/Q6gRF1CUgvDZjv12KRqvF2d2LoZO+49dJY0rVV69dd84f3IHRYCAnI5VLJw8RWL0uaQmx5jyGwgLO7N1KzeYduHL2GL6h1Rk66TsAXDy8GTDxUxZNfrHUIKGigny0ertSddk5OjPolc/ZPO97Ys8cBcC/Wi08A0IZ8/XvAOjtHHjq69/5/tkHrc7NtcoX5Gazcuq7Zvmx3y4t1S+tzo6iwlvqsJCKXONHpcs3/qjtPLEHpAXv7FpTnOfykrRWT8tBNsW4BsoyMy5bl2NJYKMSFzqYLJkWg0wc3CEvoyQtLUbWnZsKWYnS2pleYhnDUCiVQEt09tB0lLTKptnywChy0FC1jnB5b+kkz6rgWU0qnTp7aRktyofTq2V7iq2W8UelldSqbzaUbY0OjLf2963T6Viw6Dfmz5vLH0ulrSK8enXCwqqxZ79sc0hICDv37KVd61bEx8uPgYGDBpVyoV8tBoOhVAzmpq1bOXP2DGmpqQQHl4RfBAeHcCU2tpTswIGDeP65Z22Wm5ubi71D6Q8OV1dXli5bzltvvmm22IK0Ri5ZvBiAP5YuYfqPP9os05Z8UlIS7h4eaLVaDAYDwSEhXLkivSXDR4zgk4/lsItz585xIeoCtWrXZu8eGTpjb29PXt6/N/aoXF9uR2UzGfAsc8wLMAcqKYpyVghxECjzNKocRVGygMXAYiGEEegFWA+5vcF43TuaopRYsvavNh8rTL5E7A9Pm/cDR31O/Nw3zDGUNhEaNPZOMo9Gi2N4Y/JirF9uhsxkHELrkXNiG0Jnj31gBFkH1gCQd/4A9qF1yL94HPsq9ShMli80jYMLxrxsQMGteT+yj222KlfJzwGNRsZoGQpBo8Wn7wtkn9hK7pnd5nx5Fw4SO+0Z837w0zNsKpoIgcbeGWNeFnqfUOx8QkmJPgKKsVz5KzPHl5zXbk+Qe+GAWdHUOLjIOM5bOToZ6D3mDZIuX2D3ipLA9sSYc3w5uiS+cOy3S/np5eHkZqbj7hdERlI8itGAm08AXkFVSU+MJe78CfavlQqYu28gA1+eYqVoAqQnxVO1fjOOblmN3t6B4Jr12b1yPnoHR+wcnMhOS0ZotFRv0oaLJw6Sn5PNF491M8sPnfQd62d/ZTUaPS87E41Gi1Zvh6GwAI1Ox0MvfcyRzas4ubMkjOHc/m189XjJcq4vztlkU9H8J/L2Ti4UFuRhLCqiUZf7uHjioDkO1dHFnZyMVLOl85bRYCBkJ0DUltLHnXxKYh7968k8IF3EAvkb8q4hFcCshBK5skqkTYQcyb3zu5JD+ZlSmfOoIhXD4KZyhDdA/DFZ7uW9oHeSru+cMrNNFOVKJVejA2ORdKs3Hg6x+yCujGvYybvEpe5bVyqvZTk0r2Q7uJkMFzhtegbGHwXvCGnl9QqHbIvQHJ2DPHa4zMAQvZOMG72Fo9EBfpg+g5MnTvDlF1+Yjx07epTQoEDz/qmz52jTsgXJyfIcCSF44MGH6HpPp2uuz9HRESEEOTk5dOnalaKiIvOApMzMTFq0bMnuXbt4ZNgwpn5bMkK8Zs2aeHh6snPHDpvlpqWlodVqpdUyPx+9Xs+i33/n11/mmOMri1m27A863dOZn2f9RIeOHTlz+rRVeRXJb960iQcefIhFCxcwbNijLF8mZ0m4GBPDPZ07s+3vv/Hz86NmzVpcOC8Hk3l5eZGUmGiO4VT573DbKZumkeFXhBBdFEVZL4TwAnoAXwL3WGR9n2u0bAoh2gLHFUVJFULYAXWBTdep6VeNXVBNnOu2pyAxBv+h7wOQvm0heVEVx2MFjvocYe+I0OhwrN6MxMUfYchIxveBiaDRIjQa8mKOkX1EjgB1CG+CnX81Mnb8Ttahv/Dq9gQBj34ECLKPbaEwSQ7MSNs6H68eY9B0fARjbqbJ9Q32oXVwbzsIUMi/dIrUjbNstisv+gj2wTXJjzmGU81W2AfXQuPggnPdDgCkrP2BwsTyY1D1/tVwadCF1HUzQKPDb+AbABgLckle892/epHYh9ap9LzeaEJqR9KgYy8Sos/w2Ce/ALBp7lTOHSh/hHxo7Uha9x+O0VCEYjTy54yPyc0s37oNMv4zsHodtiyYxr4/F9Fn7Js8PmU+QsChjStIjDmLs7sXAyZ+hk6vR2i0RB/dy/61i6+pP+cP7yK0diRRR/ZQp3VXQus0xtHVnYb39AFg+bdvkxBlHYNaTEB4HZp0e4BV37//j+R9QqrR95m3UIxGki5dYOV375nTqtZvWuF5vSl4hkmlLuMKtB0nj51eLd3HtXpJpU5RIC9VjhIHsHeRI9BRpOXRUikD6ZLeW8Zy5FdXKmtnTKElXtWkdTC3jMJ4bLGc+khrmvoo8aQ8nnQKfGpC+xflb+zUCii0Dokh6bS0Riafke3wCpfu9WAZz83hBXLapIaDpbUSIWNQj5nuK7cQqNIKjlYSHnR+I0QOgbD2clqjo4tK0vzry3aU9VB4Vy/pzy2iTdu2PDJsGEcOH2b3XvmR++Ybr7Nm9eoK5dp36MDly5e4cKH0gK8PPvqIQYMfxsnJiXNR0fw080fee+cd+vTpS5NmTXln0iT8/PxYsWo1RqOR2NjLjBo+3Cz/7DNPm6c++nPNmlLtGDh4MIsWlp52rSzr/vqLtu3asWH9eh4aMJB27Tvg5eXNsEdlHaMfG8XhQ4f4ZPJkfp7zC889/zxZ2Vk89eQTADRp2pTHn3iSMU8+UaH8a6+8zJy5c3n7nXc4ePAgP82UAx4/eP89Zsz8iX0HDiKE4LVXXjEr6B073cOaNRWfV5VbgyhvBNx/GSFEXeBbSiycnyiK8qsQYhZyWqTfTPkWA00spz4qM2XSJuBFRVH2mvYfBV5E2hA0SGV1oqIoihAiS1GUqw4EaRjqrawc37PyjHcBet+quDbtaXNapFuNd5/nSd+2kKJU6wEt18Kc7dZf7Xcr/mE1adF3CMu/nnSrm2LFgy9OZuPcb0mJvbYBdmV5dVTH69SiOwC3IDnd0OFrd/fecBo/KhX5bBtW1GvAvu+U69Sg25/IRo14/oVxjBoxvPLMN5kFi37jjdde5bQNK+q1UGAw7lMURR1pdB257SybAIqiHKe0FbP4+Igy+w9YbEch5+G0TO9UZn82MBsbXIuiqVKawsRo8i8eByFsD9K5VWi05J7b968VTZXSxEedJvroPoRGU2oy+FuNRqfj1O7N/1rRVClDRiyknEN+o/+Hft9CK0MB/qWiqVKaQwcPsnnTJjQajc1BRLcKvV7Psj/++NeKpsqN4ba0bN4OqJbNuwvVsnl3oVo27y5Uy+bdhWrZvP7ciVMfqaioqKioqKio/Ee4Ld3otwN2jnpC6wVVnlHljuDdif/BeDWVG0aRUfUI3U0c++iaJzZRuY2p8ZL6PL/eqJZNFRUVFRUVFRWVG4aqbKqoqKioqKioqNwwVGVTRUVFRUVFRUXlhqHGbN4u1BsAvnXkahjbLUZGugRC3QfkOst5qXB4HhjyIaAxhFmMmHUNgJ1fylU3Ih+Rq3koRkg8AWdsTILrVQNq9pTThygGOL3SNL0JENAIqplmnsrPgCPzSiZ79m8I1e8FFDmR85F51mVrdNBkNOz9QeYLagrVusi0C+vl6iNlCWkFoa3l1EmGfDj+e8nqKuXJh7aBqu3kqiwbJ5W00aeOnOz63F8Vn/NbxPfTptOzV28SExNo1riR+XiDhg35+pupOLs4Ex0dzchHh5GZmcnghx/mhfElqy01aNCQ1i2bc/hQyWT1ixYvoVq1aqXKK0av1/PN1O9o0rQpRqORF8ePZ+uWzTg6OvLrvAWEVw/HYDCwauVK3njtVQAeGfYoH3w0mdhYuZrU91OnMuunmVZlOzg4sGzFKnp064rRaGTosGG8/LIs46OPPuDXOXOsZJ57/gVGjBpFUVERSYlJPPXEaGJi5HRF733wIT16ylkePvrgfX5btKiU7JTPv2DY8BH4enkA0LNXb5o2a8Z777xd2Wm/ZfQd+wY1m7UjOz2V78cNNh/3r1qD3k++jN7BifTEKyz+4g0KcrOp374Hbe4bZpEvgmkvDSM+6jRDXv8KF09vNFodMccPsHrGxzann/KrGkGfJ1/BzskFxWhkxsThaLU6Rrw33ZzHzduPw1tWs/anKbTqO4TGXe7DaDSQk57GsqnvkJ4YZ1Wuzs6eoa9/xexJY1CMRhp26k37h0YBsPW3mRzeZL3ORkVld3nkGWo0bQfAlkU/cny7/M2G1W/GvcOfR6vTc+XcCZZNfQ/FaKBG03YERdRl84Jp/+RS3BT8uj+JU/XGGHIyuDjrf+bjdr5V8Lv3MYTegaKMROJWfotSkItLnbZ4Nu9TKt/F2a9SkBhN4IMvo3P2AI2WvEsnSVw/0+b0cp4t7sO1QSdQjCRt+JmcKLm6k1e7gbjW7YDWwZnzX4005/fpNAzHKnUBEDp7tE5uXPhmtFW5Qqcn6MFXuLzwXVAUXOt1wLNVfwBSdy4l89gWKxmPpr1wa3gPitGIISeDhD9/oChDrgbl3eFhnMIbS/kdi8k6tRMAx9B6eHcaitDqyI+/QMKaH0Ax4hTeGIeA6qRsr2RBAJVbzh2pbAohDMARTAu8Ac8oirJdCNEJOYl7H4u8szBNBG85ybsQIgpopihKkhBiCVANcAF8KVkac6yiKDdnOZLYvRCzHRoMKn283kNSEUw9D0HNpIJ5bi3EHZB/AC4B0Gi4VP40erlEXuo5qUg2ewJ8asnVQiwpzIYDs6Qy6eIvlcMt78ul6Wr3g22fSuWtRi+o0lYqbk4+UgndPVUuY2fnbLsvwc0h4QiggM4RwrvCzq9kWqvnIOG4lLfkygG4JB88+NaFWn1h/48Vy6dFSWW6+ZOly0o6ARHd4MKmW75msi3mzJ7N91OnMuOnn0od/+77H3h54kT+3rqFR4ePYNyEF3ln0lvMnzeP+fOkUl+vfn0W/ba4lKJ5X//+ZGeVv6TpqMfkS6R5k8b4+vqydPkK2rVuBcAXn09hy+ZN6PV6Vv/5F92692Dtn3IZ098XLWTcC89X2JfhI0byx9IlGI1GPD09ee21N2jbuiWKorB9525WLl9OWlpaKZmDBw/StlVLcnNzefyJJ3n/w48YNnQIPXr2olGjxrRs1hR7e3vWrt/An2vWkJmZCUCTJk1x9/AoVdbqVSt5c9IkPvvkY3Jzy9xT/xEObVrBntUL6f9caYW4z9jXWffzl0Qf30+jzn1pc98wNs3/nqNb13B0q7wGflWqM+jlz4iPklNv/fbZK+alOQe8NJm6rbtwbFvpjyqh0XL/8++w9Mu3iI8+g6OLO0ZDEYbCAqa9ONScb/THszm5S642FnfhFNP/9yhFBfk07f4gXYc9x+9TXrXqS6PO/TixayOK0YiDixsdBz7O9P89CorC45/M4fSeLeRlZ5aSKa/sGk3aEhhemx8mDEWn1zP8nR84e2A7BXk53PfsJOZMGkvKlRg6DX6SyHt6c3D9Ms7s+5tOg59i25KfKSrI/5dX5saQcWwz6Qf+xK/X2FLH/bo/QdKmX8m7dALX+p3wbN6HlG2LyDqxjawTcglRO59QAvtPoCAxGoC45V+iFMj7OqDfC7jUbEXWqdJLTeq9g3Gp3ZqYWS+hc/EkeMBrRP84DhSF7HP7ST+wlqqPfV5KJmlTyUege+Pu2PuF2eyLW/1OZJ3ZDYqCxsEZr9YPcPGX10CB0GHvk312H8b87FIy+QlRXJzzGkpRAW6RXfHuMIT4FV/hFN4Ye79qXPz5ZYROT/CgN8m+cAilIA+/nmOIXfQehalxeLV9CNd6Hcg8uomc8wfwbjuQ1N3LUIoKrv1iqNw07lQ3eq6iKI0URYkEXgE+/DeFKYpyv6IojYDRwFZT2Y1umqIJkHrB9lJxzr5S0QS5XJx/A+s8AY0g7qDcNhZKRROkxTLjMti7W8tkxkpFEyArXlojhbYkXWsn/+sc5PJ5AMEt4OKOEkWxoPRDxkxgY6kQglR0k89ImaJcue1Ty1rGYPHi0Nphnjy6IvnMWGnttUXqeWkp/g+y7e+tpKSmWB2vUbMWf2+VloIN69fR//77rfIMHDSYhRbLzTk7O/Pc8+P46MMPyq2vdp06bNy4AYDExETS09Jp2rQZubm5bNm8CYDCwkIOHthPcHDwNfVl8MNDWL58GQD3duvG+vXrSE1NJS0tjfXr19Gte3crmS2bN5kVw927dxEcHAJAnTp12Lp1CwaDgZycHI4cPmyW12g0fPDRZF575WWr8rZu3kKv3r2vqd03k5jjB8jNyrA67hNUhejj+wE4f2g3dVpZrWNB/XbdOfr3n+b9YkVTo9Wi1eltrqFQvVFL4qPOEh8tl/zMzUq3sn56BYbi7O5FzHH5wRp1dJ9Zebt8+ghu3n42+9KgfQ9O7d5sqqcV5w/tIi8rg7zsTM4f2kX1xq2tZMor2ye0GtHH9qMYDRTm5xEffYaIxq1xcnXHUFhAypUY07nZRZ1Wnc3lRR/bR81m7W22779A3qWTGPKsP/7sPAPJuyTXL8+NPoxLzRZWeVxqtyHzZMlrp1jRRKNFaHXYmlTfpXozsk7uAEMRRemJFKbG4RAQAUD+lbMYstMqbG/ZOkul1WlH9tm9ADiFRZITfQRjXjbG/Gxyoo/gVC3SSib34nGzYph35Sw6Vy/Zf+9gci+dAMWIUphPQWI0ztUi0Ti6oBgKKUyV1u6cqCOlzk3uxeM4V29SYR9Ubj13qrJpiRtQjsZxB5AVJy19AAENwcHDOk9AZImyaYnOQSpcKWcrrsO/gVTcFIN0vZ9YAm3GQ8fXwcUPLu+W+Zx9pHWz+Vho8TR417QuS2jB0btECbR3g7y0kvT8dHnMFqGtod1EqNkLTi67dnlL0i/J9ZxvI44fO0afvn0BeODBhwgJCbXK89BDA1i4oGTajrcmvcOXX0whJ8fGh4qJI4cP07dvP7RaLVXDwmjcpAkhoSGl8ri7u9Ordx+zUgpw3/0PsHvffubOX0BISEjZYtHr9YRVq0ZMtLTCBAUFc+nSJXP65cuXCQqqWHkdMWIkf5osqYcPH6Z79x44Ojri7e1Nx46dzOdgzNinWbliOXFx1q7d/fv30rZtuwrr+S+SEHOems07AFC3TRfcfPyt8tRtey9Ht64tdWzoG18xYeZa8nOzObFzvZWMd2BVQGHoG1/x+CdzSrnki6nfrjvHt9kOM2nU5T7O7rdWPjQ6HZ7+waQnyhW53Lz8yEiKN6dnJCfg5mVbSbVVdnzUGSKatEFnZ4+jqzth9Zvh5u1PTkYaGp2OwOryY7FO6y64eZecm9hzJ6hSp1GF9fwXyU+6hHP1pgC41GyFztXbKo9r7dZklVH8gh58mWpjv8dYkEfW6V1WMlpXTwozk837RVkpaF09rfLZQufmg97dl9yYo9aJGi16Dz+zC1zn4klRZslHclFmCjqXiutxa9CJnAvSC5OfEI1TtUiEzg6NoyuOoXXRuXpjzM1EaLXY+4cD4FKzZalzkxd/Hofg2lfVH5Vbx52qbDoKIQ4KIU4CM4B3b0alQognhBB7hRB7E9Nvksvu6CIZm9jqOdDag7GodLp7KBgKpHWyVGM10HAIxGyDXGsrmhlnf+kqP/57iVxIK9jxBWx+T7rmi+M3hVYqm3u/hyNzpYtf51C6PDvn0i5yIa6+rxd3wN+T4fQqCO987fKWFGRdnVL6H+LJJ0bz5FNj2bZzFy6urhQUlHYbNW/egpzcHI4fOwZAw8hIwiOqs+yPPyos9+dZP3H50mW27dzFJ59NYeeOHRQVldxHWq2Wn+f8ytRvvyHqgowgWbVyBbVrVKdF0yZsWL+e6T/+ZFWuj48P6elp5n1h41pVtILZ4CFDaNK0GZ9/9ikA69f9xZo1q9m4ZSs/z/mVXbt2UlRURGBgIA88+BBTv/3GZjkJCYkEBt1+c94um/oOzXsMYPTHs7FzcMJQVDrkI7hGPQrz80i8eK7U8V/ffY4po3ui09tRrb71IigarZbQ2pEs/uINfnptNLVbdqJag+al8tRre28pi2kxDTr0JKh6Hbb/YR1r6+TqQV6OhYvcxk+zoutdtuzzh3ZxZv82Rn0wkwfHvc+lU0cwGg0ALJ7yGt1HjOOxj2ZRkJuN0WAwl5OTnoKrl2+59fxXSfjzB9wbdyPkkfcRdo4ohtLPcvuA6hgL8ylIulTqeOzvHxH13ViEVodjlVIrMpuwdSGurk0utVuTdXq3zThQraMbxjwL79U1Potd6rTDwT+c1D3LAciNPkLO+YOEDHmbgN7Pkhd7BsV0veOXf43PPcMIGfouxoI8sLDEG3Iy0Ll4XFPdKjefOzJmE5MbHUAI0RqYLYSoT/k/sesyQ7OiKNOAaQDNagbcnFmfcxJh/wy57eQDvmW+8Cxd6JbUfVAOFor5u/yy7d2h0aNwdH6JQupqemkX78cfhjCTspmXDunR0vqZmyrXJHbygQyLh6OhULrki8lLB8/w0nUWhwWUR9whqHP/P5cH0OpkW24jTp86Rd/ecnBMRI0a9OzZq1T6gIGDWLigxIXesmUrmjRuwsnTZ9HpdPj6+fHnX+vpfm+XUnIGg4H/vVQywGjj5q2cPVti7f72u+85d/YM33z9lflYSkrJB8rMH2fw3gfWkSq5ubk42Jd8bFy+fIn2HUoGrQUHB7N1y2abfb2ncxcmvvwK3bp0LqVUf/zRh3z8kaxr1uw5nD17lshGjQmvXp1jJ2TcsZOTE0ePn6R+XflbcHBw+M/Ga1ZE8uVofn33WQC8AquYB8oUU69tN47ZUAgBDIUFnNqzhZotOnL+8O5SaRnJ8UQfP0BuZjoAZ/ZvJyC8FheO7AHkwCSNVsuV8ydLyVVr2IJ2D47k5zeetFJ8AYoK8tHp7SzqSSCsXlPzvpu3H1HHbAz+q6Dsv3//ib9/lx8y97/wrtl1fun0EWa98QQA4ZEt8QqqYpbR2dlTmP/fjNesiMKUWGJ/k/e23jMA5/BGpdJda7exsmoWoxgKyT63H+eIpuRGHymVZshMQW9hCdS5eGHIujpnn2utNnLQka06iwoQupLrXZSZgmNoSWiSztWL3IsnbMo6VqmPV6v+XF7wDlgo1am7lpK6aykA/r2fMbvO866c4fJ8GdPsWLUBeq9As4zQ6lFs3I8q/y3uVMumGUVRdgA+yIE9yUBZu74XkHSz23XdMA/CERDeBS7utEgU0gUed6i0TER3aXE8tbz8cnUO0GSkHKmeFl1yvHjAkN5Ur1eNklHhCUfBq7rc1jvJeNKyVtOiXGkdLVY4k06BT0050EfnKLfLDlYCqbQW41sbcpKvTd6qPF8ZgnAb4esrrTVCCF5+5VWmT/vBnCaE4IEHH2SRRbzm9Gk/EB5Whdo1I+h8T0fOnDltpWgCODo64uTkBEDnLl0pKiri5An5knjr7Xdwd3fnxQnjS8kEBASYt/v07cupk6UVE4C0tDS0Wi329vYA/LV2LV273ouHhwceHh507Xovf61dayUX2agR33w7lYceuJ/ExETzcY1Gg5eXjO+q36AB9Rs0YN1fa1mzehXVqoRQu2YEtWtGkJOTY1Y0AWrUqGG29t5OOLmZHlVC0P6hUexb+3tJohDUbdOFoxaubr2DIy4eUqkQGi01mrQl+XKUVbnnDu7Ev2oEOjt7hEZL1XpNSLp4wZxev313jv5d+roEVKtJ7ydfYcFHE8jJsK2o5GVnIjRatCaF89zBnYRHtsTB2RUHZ1fCI1ty7uBOK7nyyhYaDY4uMp7cr2oE/lVrcO7grlLnRqvT07b/cPb9udgs5xVYxcraezugdSr2tAg8W91P+iHLEAiBS62WZJ4sGfwj9PZonT1MOxqcqjWiMCXWqtzsc/twqd0atDp07r7oPQPIi6skdArQewaicXAmL/aMzXRjfjYIDUKrByAn6hBOYQ3R2DujsXfGKawhOVGHrOTs/MLw6zaaK0s+xZBjEassBBoHF5nHpwp2vlXMo+bN50arw7NFPzIOrispzyuQ/KSLlfZH5dZyp1o2zQghagNapKKZDgQJIeooinJCCFEViAQO3sImXh0NhoBXuFTyOrwqR39f3iMtl6FtZJ6Eo3LUejGe1aTlz1Lhs3eXSmlWPLQyjSS+uF3GXfrWBbcQOZo9tI1U8MK7yj+A/dOlsnluHTR/Slow81Lh6EKZnnxaxmm2mSDTTq+0Pagp6TR4hMlY0aJcWV4racHh3LoSN3v1btIqmnhctsc7QrpPinLhqEmpqki+Sls5Ot/OFVqPh6STcNw0RYZXddtTPv0H+HnOL7Tv0BEfHx/Ono/i3Xfe5udZPzFw0GCeHDMGgD+WLmX2z7PMMu3ad+Dy5ctmN3dl9O7ThyZNm/Hu25Pw9fNj+cpVGI1GYi/H8tjI4YC0PL78yqucPHmCHbul1at4iqOxzzxL7z59KCoqIjUllcdHj7JZz7p1f9GmbTs2blhPamoqH37wPn9vlwrHB++/R2qqVC7eeGsS+/ftZeWKFXzw4WScXVz4dZ6MPb148SIDHrgfvV7Puo2bAMjMyGTUiOEYLNyn5dGhYyfefOO1qzovt4IHxr1H1XpNcXL14IVpK9i0YBoH1y+jfvvuNO/xEAAnd23i4IaSj8OqdRuTkZxAWvxl8zE7e0cGvTIFnV6P0GiJOrKHvSYlrGazDgRF1GHT/B/Iy85k5/K5jP54NigKZ/dv48z+beZy6rbpytz3S88y0PXR57FzcOShCR8BkJ4Ux4KPJlCW84d2UqVOIy4c3k1eVgZbf/uR0ZN/BuTURXmmgVCdBj9J7NkTnN67pdyyNVodI96TUxjl52az5Ms3zW7VNv2HUaNpO4TQsO/P34k6WvLcC6vflA2/fvtPLsVNwb/3sziG1kHr6ErYk9+QvO03Mo9uwqV2G9wbdQMg+8xuMo9uMss4htamKDOFovQE8zGN3oHA+1+Uyp7QkBtzjHSTEuZUvSkOAdVI2fYbBcmXyDq1k6ojP0UxGkhc/5PZLe7dYQiuddog9HaEPfkNGUc2krJdftS41infklpMbvRhHIJrkRtzFGNeNik7lhDyyHsApOxYbHaze7V9iLy4C+Sc24dPxyEIvQMB/eQ9VpSRzJWlnyI0OkIefgsAY34u8Su/le8RwKN5H5zDm4AQpB9cR+7Fko9Hx9C6JG9Vl5f8ryMqiqG5XbGY+ghkwMqriqKsNKW1BT4DHIBCU9pfprRNlJ76yA4oDg5ZCCyjzNRJ5dGsZoCy95tHr1uf7ihcg6Bq+xKF8WZj5wINHoZ90yvPe5U49plSeaa7kMhGjXju+Rd4bOSIW1K/n58fs2b/Qq8e3a5rua/0bXxdy7tTCKhWk1Z9h7L0q7duSf3O7l488MJ7zHl7bOWZr4EhrSOua3l3CnZ+YXg07UXC6qm3pH6tkzv+vZ8hdtH717XcGi/N36coinXAs8o/5o60bCqKoq0gbRvQqpy0ThbbYeUUselfNE0F5Mj2lHPI74Bb8LHj4AGnV9z8eu9CDh08yOZNm9BoNBhtTC5+owkNrcLLE1+66fXercRdOE3U0b0IjcbmZPI3GnefANb+/MVNr/dupSAhityLx+XgoFtguNK5eZO06ZebXq/KtXNHKpsqtwGW7v6bTcalyvOoXDcs3f03m337buF9dpdi6e6/2cSeO37L6r5bsXT332zy465iMKjKf4I7foCQioqKioqKiorKrUO1bN4oFAXyiyrPp3JHYDTeebHPKuWj0/zD+V1Vbkt8XBwqz6SiolIuqmVTRUVFRUVFRUXlhqEqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKpoqKioqKioqKyg3jth8gZDGBuwAMwDOKomy3SB8HfAj4I/tbvAZYgCl/8Xp4LYAURVFcLGRHAM0URXlGCFEL+AHwAOyBrYqiPHHjevYPiBwE/nUhPws2f2I7j94RIgeDs7dck/bQfMiMq1jeLQgaDpBLTCpGOPI7pMVYl23vCpEDYfePcj+iC1RpKWWOLoFEG8tI6p2g6TBw9JIrHe2bDYW5FcsHNYIaXeWyl/HH4YRpzsywdmDIh4t7rvnU3Y78MH0GvXr3JjEhgSaNIm3m8fDwYNqMHwkPDycvP48nRo/m+LFj1KxZk1/mzjPnqxYezjuT3uLrr77i9TffZNRjo0kyLRX55huvs2a19WpLAQEBfPfDNO6/rx8AL02cyMiRozAYDIwf94LNpSg9PT35dd58qlatSnR0NEMGDyItLa1C+YcGDOTlV15Bq9WyevUqXn35ZQDGjB1LdnbOLZ1a6WbSe8zrRDRtR056KtMnPGwzj4OzK73HvoGnfzBFhQWsnPouiRdLpocRGg0jP/qZzJREFn1UsgRpsx4DadpzAEaDgbP7t7Hxl6+tynb28KbXU6+Z5Vr3H05kl34oRiNrZ37GhUPWS1E6uLhx/7j3cfcNJD3xCkumvEpedmaF8nXadKXtAyMRGm2ptjTtMYDCvFwOb7o75sh17DQKfdVIlNwMMhe+YTOPsHPC8Z5RaN38UAyF5GyciTH1MsLZC6fOo9E4uYOikH9iMwVH5NKmWu9QHDsMl2uKGw3k/j0HQ4L1ymPCyR2njiPIXv0lAPaNe2NXuz0oRnL/nkvRpaPWMvbOON07Bo2rD8bMJHLWTkUpyKlQXl+9BQ5N+oDQUBhziLydiwCwq9cFivIpOPX3vz+ZKrecO8GymasoSiNFUSKBV5CKpSUPA3uA+xVFSTblbQR8D3xevK8oSkEl9Xxlkb8OYP00vtVc3AO7plWcJ6IrZFyGzZ/CwblQr3/l8nX7wuk/YctncGoN1ClnAaXwThBteuG4+ENQY9g0GXZOgwYPIr8HyranMySdgY0fyv8RXSqW1zvJ9uz4DjZ9LBVcnxqm9u+Cau0r7v8dxJzZP9O3d68K80x85RUOHTpIsyaNeWzECKZ8/jkAp0+fpkWzprRo1pRWLZqTk5PDH0uXmuW+/vILc7otRRPg+XHjmDljBgC169Rh4MBBNGrYgL69e/HV19+g0Vg/Xl6aOJENG9ZTr05tNmxYz0sTJ1Yo7+XlxYeTJ9Oj2700jmyIn58/93TuDMCsn37i6WeeuebzdrtyeNNK5pdZRrIsbR4YQfyF08x4cSjLv57EvSNLLynZvNdgq/XSq9ZrSo3mHZgxYQjTxw9m1zLbk2S37DuEg+uWAuATUo26bbsxfdxg5r//PD1G/w9h43q37j+cqCN7+P65h4g6sofW/YdXKO/o4k7nYc8x952nmT5+MM7uXoTVbw7AoQ3LaNZr0NWcqjuCglN/k72y4pXJ7Jv0wZB0kcxFb5KzYTqObYfIBMVA3o4FZC54jcwl72FfrzMazyAAHFoNJG/vH2T+9hZ5e5fi2Gqg7bIbdif/xBYANJ5B2FVvQeaC18leOQXH9sPkRO5lZRr3oujScTLnvUzRpePYN+5dobywd8ax1UCyln9C5sLX0Ti6owuuY+r/VuwadP1H507lv8edoGxa4gakFu8IIaoDLsDrSKXz3xAImGcDVxTlSAV5bw0p56HAxlrklrj6S6UOICsBnLzk8o0VySsK6ExTf+gcIC/DdtmBDSHxpNwOqA+xB8BokBbL7CTwrGItE1C/xBJ5cY/cr0jeyRuyEqFArrlL0mlZL4ChEHJSwcNGPXcgf2/dSmpKSoV56tSpy8YNGwA4deoUVauG4efnVypP5y5dOH/+HDExNqzVFXD//Q/w559rAOjbrx8LFy6goKCAqKgozp07R/MWLaxk+vbtxy+zZwPwy+zZ9Ot3X4Xy1cLDOXvmNElJSQBsWL+e++9/AIDc3Fyio6Np1rz5NbX7duXiiQPmtcXLwyekGlFH5e8pOTYad99AnN29AHD18iOiSVsOrv+jlEyTbg+yY+nPGIoKAcjJSMUWtVp25vzBHQDUaNaB49vWYigqJD0hltS4SwRF1LOSqdm8A4c3rQSkslyzRccK5T38g0iJjSEnIw2AqCO7qdXqHgCKCvJJT7xCYETdSs/VnYDhymmU/KwK82g9gyi6LCeyN6bFoXH1QTi6oeSkY0iKlpkK8zCmXkHj7GGWE3aO5v/G7DSbZevDm1IUI19z+rDGFJzbDcYijJlJGDMS0PqFW8uENabg9DYACk5vQ1+tcYXyGjc/DOlxKHnS2l146Rj6cNMqkUUFGDOT0PpVq/xkqfznuROUTUchxEEhxElgBvCuRdrDwDxgK1BLCOFnqwAbZR0UQhwE3rFI+xzYIIRYLYQYJ4TwKCsshHhCCLFXCLE3MT333/TpxpERCwEN5LZHFXD0BEePimWOLZXWxK5vQN1+cHKldR5HLyjMkcohgIM75KaVpOely2NlsXeFfPmgIT+zRPEtTz4nCVz8ZLuFRvbFwaL96RfBS304FXP48CH6338/AM2aN6dK1aoEh4SUyjNg4CAWzp9f6thTY59m7/4D/DB9Bh4eHlblhoWFkZqaSkGBdAgEBwVz6WLJykyXLl0iKCjYSs7P35+4OBm2ERcXh69J8S1P/tzZs9SsVZuqVaui1Wrpd999hISGmvPt27eXdu3aXcspuaOJjzpDrZZSOQuMqIu7bwCu3vIc3ztyHBt++dpqGUmvoCqE1mnE8A9m8sjb3xNYvY5Vue5+QeRlZ5gVUldvXzKS483pGSkJuHr5Wsk5u3uRnZYMQHZaMk5unhXKp8Zdwju4Ku6+gQiNlprNO+Lm7W/Od+XcCUJrN/onp+aOxJB8EX21pgBo/aqhcfVG4+xZKo/G1RutTxWK4mU4Re62uTi2GojbI5/h2HoQubt+sypX4+qDkp8DRjlXtMbZE2NWyYetMSvFqh4AjaM7Sk46AEpOOsLRrUJ5Y3o8Wo9ANK7eIDToqzVB4+xV0r/EKHQBNf/RuVH5b3EnKJvFbvTaQA9gthBm+/5gYL6iKEZgMTDgKssqdrW/WZygKMpPQB1gEdAJ2CmEsLcUVhRlmqIozRRFaebr7ng9+nb9ObteuqI7TIBq7aRLXalkDeOqbeHYH7DuXal4RtpwZTm4lVgbbySFuXDkN2j6KLR5BnJSSrc/P8u2UnuX8snkyXh4eLJ77z7GPv0MBw8coKioZLEBvV5Pn759+f23khfOtO+/p07NGjRv2oS4uCtM/uRTq3IDAgPN1kYAYcOlplzDWsnlyaelpfHcM0/zy7x5bNi8mejoqFLtT0xIJDAo6KrrudPZsXQ2Ds6uPPbJLzTrOZC4C6cxGgxENGlHdnoqcedPWsloNFocnN34+dVRrJ/zFfePLxuJBC4e3mZrI4CwERJzTde7HPm87EzWTJ9M/3HvM+zdaaQnXsFY/AEL5KSn2FRq71byDqxE2Dvh+tDb2NfviiEpBsXyeaizx6nbM+RunweFeQDY17uH3O3zyPhlArnb5+HUaaRVucLJAyU3s+LK/+1a6IqCUpBDztbZOHUdg8t9r2DMTEJRSq63kpuBsLDIqty+3PYDhCxRFGWHEMIH8BVCBAA1gL9MLzI74Dzw7b8oPxaYCcwUQhwF6gP7/nXDbyZF+XJQUDFdXoec5IplQpvBsSVy+8oh28qmoVAOIComL720xdTBXR4rS35miXXT3hUKsiqXjz8u/wCqtCqtbGp0si0qAGRmZvLE6MfM+6fOniPqQslggB49enLwwAESEhLMxyy3Z86YwZI/llmVm5ubi71DybfWpcuXCAktsZiGhIRw5UqslVxCfDwBAQHExcUREBBAoqmuiuRXrljByhVyUMhjox/HYCh5GTk42JOb+x/1ItwCCnKzWTm1xLkz9tulpCXEUrftvdRo1p7qjdugs7PH3tGZfs++zbKv3yIjJYFTuzYCcOXscRSjESc3j1LKZVFBPjq9nXk/IzmhlMXRzcuPrNSSj49istNTcPbwJjstGWcPb7OLviL5s/v+5uw+OSikUdf+GC0ssTq9PUUF+f/mFN1ZFOaRu2mmeddt6CcYM0xjXjVanLs/Q+GZHRReKHlN2dVsS+62uVL83B6cOlormxQVIHR6864xOxWNS4nFUePihTEnzUrMmJuOcJLWTeHkjpKbUal8UfQhsqIPybbV6Vj6ea7VQ5H6PL8TuBMsm2aEELUBLZCMdKFPUhQlzPQXBAQLIar+w7J7CCH0pu0AwBu4fJ2afvPQOYDQyu0qrSD5nFRAKyIvA7yry22fGpCdaJ0nO1HGfxYTd1QO8NFopYvd2RdSbcQExh2DUFPMXWhzKVeZfLGrXe8IYW0hZldJeS6+kHml4v7cRbi7u6PXy5fGqMdG8/fWrWRmllgsBg4ezIIyLvSAgADz9n39+3Ps2DGrcs+cPk3VqmHm/RXLlzNw4CDs7OwICwsjIiKCPbt3W8mtWLGcRx59FIBHHn2U5cuXVSrv6ystWR4eHjz51FP89OOP5vJq1KjJsaPW7btbsXdyQaOTH32NutzHxRMHKcjNZtPcqXzzVF+mPt2fpZ+/RtTRvSz7+i0ATu/eTFgDGSfnFVgFrU5fStEESLkSg7tvoHn/zN6t1G3bDa1Oj7tfEJ6BocSetXGf7N1Cw05ykEjDTr05vWdLpfLFrnYHZ1eadn+IQxYxpl5BVUiMOXc9TtUdgbBzlM9IwK5OB4piT5ktmE4dR2JMjSX/cOlZIYw5aeiCagGgC66DIT2eshjSZfxnMYVRB7Cr3gI0OjSuPmjc/TAknLeSK4w6iF3NtrI9NdtSGHWgUnnh4GrqixP29TpTYBqUBKB1D8CQcgmV2587wbLpaIqvBDncebiiKAYhxGCgZ5m8S5Cu9cn/oJ5uwJdCiDzT/kuKosT9kwbfMJo8At4RYOcMXd+EU3/KEdpVW8v06B1ygFCjIYARMuPh0ILK5Q8vlKPWhRaMhXB4kXXdhgI5iMfJR8ZVZsXDlYPQaaJp6qLfAZPbpeFAiN4O6ZekW7/poxDaEnJT5dRHULF8/f5yOiaA02tLK79e1eSxu4DZv/xKh44d8fHx4VxUNO++/TazfprJ4088CcD0aT9Qu04dZv40C4PBwIkTJ3jy8dFmeUdHR7p07crTY54qVe4HH00mMjISRVGIjo62SgfIycnhwvlzVK9enXPnznHi+HF++20Rh44cpaioiOefe9Zskfruh2lMn/YD+/ft45PJk5k7fz4jR47i4sUYHh4kreQVyX/2+Rc0bCgHgb3/3nucOXPG3I7Wbdrw3rvvcDdw3/PvUrVeUxxdPXjm++VsXTidQxuW0fheOWDqwF+L8QmpRt9n3kIxGkm6dIGV371XabmHNi6jz5g3ePyzeRiKCln+7dtWeQrz80iLv4xnQAipcZdIunSeEzvW8cTnCzAaDfw542NzLGivp15j/9rFxJ0/wY4ls7l//AdEdu5HRlI8i6e8AlCh/L0jx+MfJmeY+HvRj6RcKflIDanVkK2Lpv+7E3mb4NTlSXRBtREOLrg98hl5e5dScHIrdnU7AVBwfBMazyCcOj8ORiOG1FizlVMbUAO7Wm0xJF/E9SF5PXN3/05RzGFyNs/Cse0QhNCgGArJ3TzLuvKiAgzpCWjc/DBmJGBMjaXg/B5cB70PioHcrb+Y3eiOHUdScHwjhsQo8g+sxOnesdjV6YAxM5mcv6YCVCzfdghabxmHnbdvGUYL5VcbUIO8fX+gcvsjriXORuXqaVbDX9k7ZeitbsbNJaABuIfAKdtT5dxw3IKhekc4MPemV21//5c3vc5bTb/7+tOkaRMmvflm5ZlvAJGNGvH8C+MYNWL4Ta/7rfub3vQ6bzU1W3QiMLw2m+d/f0vq9w+rSYu+Q1j+9aSbXvfYLtYj7e909GFN0PqGkbdn8S2pX+tdBfvI7uRsuPkfF55jZu1TFKXZTa/4DuZOsGyq/FeIOwJ2TreufjtnOHmLFN27kGV/LMXb2/uW1e/j48Pbb90aRfdu5PTuTTi63LrBd45uHmyZ/8Mtq/9uozBqP8LBpfKMNwjh6HLLFF2V64+qbKpcXyzjJ282SadvXd13KT/N/LHyTDeI9evW3bK671YObbh1Ls2ow9YxwCo3loKTWyrPdIMounT8ltWtcv1Rlc0bhVYL3rfuq1Dl5hKqXuu7iv3R1iOvVe5cfttjPRhGRUXl6rmjRqOrqKioqKioqKj8t1CVTRUVFRUVFRUVlRuGqmyqqKioqKioqKjcMFRlU0VFRUVFRUVF5Ybxnx0gJIQwAEeQE7UbgGcURdkuhAgDTgCnLLJPURRlthAiCiheHkWLXA/9XUVR8svI2QF7gccURSkUQnQCNgKjFUX50VR/Y2A/cvL2T4UQrYAvAXvT3wJFUSbdmN7/S4QO6o+SSzcKDSQfg4sbrfP5NITgdnLbUADnl0OOaULd6v3BqyYUZsNBixU+nQKgel9ZtmKE8ysgy8ZCSnoXqH4fnPxV7ge3B78mgAIXVkHaWWsZnSPUHAj2HpCfBqcWgCFPHq81GFyCIOEgXFhZIlN3eEm+uxQ7e3vm/bEaOzs7dFoda1b8wZefWK9v3e/BATzxzAsA5GRn8+b/xnPyuFyxadOew2RnZ2EwGDAUGbi/eycA6tRrwLuffI6dvT2GIgNvvTyewwf2W5Xt6+fP+1O+4olH5CTtTz03ngFDhmEwGHj3tYls3bTeSsbdw5Mvp/1ESGgVLl2M4bnHR5CRnoaHpyff/DibBo2asHj+XN5+9SWzzM+L/uDZ0cPJSE/7l2ft9kVvZ8c7PyxAb2eHVqtlx/o1LJz+hVW+9t3vo/+jcoL/vNxspk1+g+gzcm30qUu3kJuTjdFowGgwMHH4fQC07tKTgY8/T3BYBK+MvJ9zJ47YbIOHty9jXvuQD8fLRQLuHz6Gzv0GYDQamfnZ2xzaudVKxsXNnXHvf41fYAgJVy4x5dVnyM7MwMXdgxc//JbqdRuyacXv/PjpJLPMm9/M4bNXniY7M+PfnLLbGq3Ojt4Tv0Kr16PRaLmwbzP7//jJKl/1ll2J7DkEgML8XLbNmULKpZLVloTQcN+b08hJTWTtV3Jy/ab9R1G1UTsUxUhuZhpbZn5ITpr18sWO7l60H/6SWS6y11BqtuuFohjZMfcrLh/bYyVj7+xK5ycn4eITQFZSHOu/f4uCnCzsnd3oMvYdfMNqcXrbGnbMLZmjuOeEz1j/ncyncmfxX7Zs5iqK0khRlEjgFcDy7XnOlFb8N9si7R5FURoALYBwYFpZOaABEAIMtEg7Algu+j0YOGSx/zPwhEm+PrDwX/XuRqIUwbFZcGiq/POoAS4h1vnyU+HoTJnn0mapHBaTeACOz7GWCesGFzfBoe8gZgNU7Wa7DUFtIN60Hq+jL/g0gIPfwPHZEN4H+Q1RhuD2kH4eDnwp/4e0l8eNRRCzHqL+tJZJPAQBLco/F3cBBfn5DHugL307t6Nvl3a079yVRk2t5yO+GB3NkP696XNPW76Z8jHvfVZ6IvpHHuhDvy7tzYomwMQ33+GrTz+iX5f2fPHx+0x8w/ZqPaOeeoaFv/wMQETNWvTu/wA9O7Rk1MMP8vbkz9BorB81Tz47jh1bN9O1dRN2bN3Mk8+OAyA/P5/PP3qfjya9YSWzdNF8ho4cbXX8bqKwoIC3xw7lxaG9eXFoHxq37kCN+o2s8iXEXuTNpwYzYWgvfvvxG5565YNS6ZPGDOGlR/qYFU2AmHOn+eR/YzhxoOJphvoOeYx1S+UypyHVImjbrQ/jBvfg/edH8Pj/3rF5vfsPf4oje7bz7EOdObJnO/cPHyP7k5/P/B8+Z85X1h9Im1cvoftDj1R6Tu5kDEUFrPp0HEsmPcbitx8jpH4LfMPrWuXLTLrCio+fY/GkURxYPpt2w18slV7v3odIi40udezwmvksnjSKJW+P5uKhHTTua3uBhAbdBnJyywoAPAKrEt6iM7+/OYI1n79E20fGIYT19Y7sOZTLJ/ax6FX5P7KXXOTEUFjAviU/smvhd1YyZ3espe49/a/qvKjcXvyXlU1L3IDUaxFQFCULeAroL4TwKpNmAHYDwRaHYwAHIYS/EEIAPQDLGcL9gCvF8oqi/LcnATMWyP9CK62btsi8WGIRzLwIdm4laRnRUJRrLaMAWnu5rXOAgkzrPADedSHNtKygV21IOgKKQVosc1NsK79etSFBrqVLwgHwqmPqSyFkxkilsywpJ8G3ge023EXk5GQDoNPr0ev02FoZ7MDe3WaL4MF9ewkIDKq0XEVRcHGV94Wrmxvx8bZXaO3epx9bNsh5L7v26M3KpYspKCjgUkw00RfOE9nEesWdrj16sXiBXO1p8YK53NtTrqGdm5PDvt07yc+3tlav/3M1fe9/sNJ23+nk5eYAoNXp0Op05qX/LDl1ZL/ZInj66AG8/AKs8pTlctQ5YmMuVJqvVeceHNgh52Bs3uFetq1dQVFhAQmxl4i7FE1EvUgrmeYd7mXTyt8B2LTyd5p3vBeA/LxcTh7aS0F+vpXM3i3raNetb6XtudMpypfPYo1Wh0Zr+3onnDtmtggmnD+Gs6evOc3J05fQhq04tXVFKZnCvBzzts7ewbwicFnCmnbk0lH5AVK1cTvO796AsaiQrKQ4MhIu4xtex0qmSuO2nNm+BoAz29dQtbH0ohUV5BF/9giGogIrmeiD2whv2aXc86By+/KfdaNTsua5AxAIdLZIq26xHjrAs4qiWPltFEXJEEJcAGoA5gVXhRAOQEvg+TIivwEDgANIF7rl0+9z4JQQYhOwBvhZUZT/sO9WQORT4OAFcbsh61LF2f2bliiHFRG1Cuo+CmHdZR1HbSwlZu8BRXlSuQSpxGZeLEkvSAd7VyjrKdE7Q6HpYGGW3K8MQ54MG9A52laO7xI0Gg1L/9pM1Wrh/DJzBof276sw/4Ahw8zKIch3zKwFS1EUhXlzfmLBnFkAvPfGy/w0fzGvvPUuQqNhYB9rS3ZIlapkpKVRUCBfHv4BgRzcV+JWi7sSi3+AtWLr4+tLYoL8WSYmxOPt42uVpywZ6WnY2dnj4elJWuo1fX/eUWg0GibPXkZASFX+/O0Xzhw7VGH+Lv0GcmDHZvO+gsIbX/+Moij8tWSe2Up5NfgFhZCVkU5RobzeXr7+nD56wJyenBCHl6+1Yuvh5UNaciIAacmJuHtWvvpUdmYGer09Lu4eZN3FoRNCaOj/5jTc/II5vnEpiRdOVJi/VvveXDpSssBG68HPsHvR99g5WK/w1uz+0US06U5BbharPn7BKt3FJ4CC7EyMRYUAOHn4kHi+xNaSnZqIk4ePlZyjmye56SkA5Kan4OjqWWk/C3Ky0OrssHd2Iz/77g2duBP5L1s2i93otZFWxtkmiyNYu9GtA4RKsPTXFiupyUCMoiiHy+RdiFQ2HwbmWSYoivIO0AxYCwxBKpylKxLiCSHEXiHE3sS0nLLJNxlFurr3fiatiE5+5Wd1qybjKaPXVl5sQAu4sAb2fQZRq2VsZ1nsXGWsZyXNu24UZss672KMRiP9urSnXaO6RDZpQo3a1paGYlq1bc+AIcP4+N2SpR4H9enGffd2YNSQB3lk5Giat2oDwJARj/H+m6/Svkk9PnjzVT78/Bur8nz9/ElJLpnkvORnWoItS+s/JTkpEb+AwOtW3u2I0WjkpUf68GSfNkTUbUhoeM1y89Zr2orO/QbyyzeTzcdeHz2A/z3aj/dfGEWPAcOo07j5Vdft6e1HRlqKef9GX+/01CS8fPyvW3m3I4piZMnbo5n34gB8q9XBM7hauXkDazWmVrve7P5NLu0Z2rA1uZlpJEfbXmFt75IZzH9pAOd2rqNulwes0p3cvcnNTDPv27re1/OBnpeRalN5Vbm9+S8rm2YURdkB+ACVmz4sEEK4AmFA8a+sOGYzAmglhOhXpp44oBC4F7Aa0aAoyjlFUb4DugCRQgjvMunTFEVppihKM1+PW7hGuCWGPEi/IOM2beHkDxH3wcm5V2cZ9G0EKaav2uRj4BJsncdYKAcQFVOQAfYWayrbudt2vxdmy4FFIP9XprAWo9HZdrHfhWRmpLNr2990uKerzfRadevxwZSveWr4w6Usgwkm93hKUhJ/rVpBw8bS7f3AwIf5c+UyAFYtW0Jk4yZWZebn5WFvb2/ej7sSS2BwSZhEQGAQCfFXrOSSEhPx9ZNKhK+fP8lJiVfVR3t7B/Jz/8NOhZtITlYmx/bvonHrDjbTq0bUZsxrHzL5pSdLWQZTkxIAyEhNZvemtdSoa+32Lo+C/Dzs7Equd3JCHD7+JZZrb78AUpPireTSUpLw8JaPcA9vX9JTrQei2EJvZ0+BjZCKu5GC3CyunDpASH3bcepeIeG0H/ESa7951WwZ9I+oT9XINgyaPJ97nnyToNpN6DT6NSvZc7vWEdbU+j4yFBag09uZ97NTE3H2KjFeOHv62hxUlJuRiqO7jGBzdPciN/PqPBFavR2GQuuQCpXbm9tC2RRC1EaOLr+6p5OUcQGmAksVRSl1lyuKcgV4GTnwqCxvAhNNcZ2W5fW2sKzWQI6QT7va9txUdE6gdZDbGh14VIdcGy9yO3c5yvvM75B3lae2IBPcwuS2ezjkpVjnyU2WrvRiUk7KAUJCK487etl266ecBL/Gctuvsdy/GvQukJd2dXnvQLy8vXF1k8q8vYMDbTp04vxZaytGYHAIU2f+woSnnyDqfMkoVUcnJ5ydXczb7Tp15sxJ+UERHxdHyzYy1qp1+45Enbdetu/C+bMEh1Yx76//cxW9+z+AnZ0dIVWqUjW8uk23/vo/V/PAIDl69oFBQ1i3ZtVV9dfHz49LF6Mrz3iH4ubhhZOLtOTb2dvTsEVbLkdbXxcf/yBenDyVr9+awBWLOEx7B0ccnJzN25Et2xFzzrbVyxaxMRfwDSz5mNizdR1tu/VBp7fDLyiEwNAwztpw6+/dso5OvWW8bafeD7Jny19XVZ+Hty8JVyoJA7qDcXBxx85R/j61ejuC6zQj7UqMVT5nLz+6jH2XTTPeJyO+5HztXTydeS8NYMHEwWz84R1iT+5n04z3AXDzKzEWVIlsS7qNctPjLuLiUxIWEX1wG+EtOqPR6XHxCcDNP4TE89Zu/ZiD26jRpgcANdr0IObAtqvqr6O7F5lJtmPDVW5fboeYTZCu8OGKohhM+l7ZmM2ZiqJ8ZdreaFIKNcAS4N1yyl8KTBJCtLc8qCjK9nLyDwM+F0LkAEXA0LIK6X8GO1eIeACEkH9JxyDV9DLxN41Sjt8LoZ1A72QaHY6cyuiwdL1Q4yFwryYV16YT5NRJCfvh3B9QrZccdGQskvtlMRZCXqqMF81LkYpu0lFo/KxpuqSVmN0u1e+DuD2QHQuXt0LNQdKln58OpxeUlNlknByYpNHKgUTHZ8tynYMg6yJgvAEn8vbA1z+AT776Ho1Wg0ajYdUfS9j4lxy5//CjowCYN3smz06YiIenF29P/gzAPMWRj68fU3/6BQCdVseyJb+xZaM07L824TneeG8yWp2W/Px8XnuxbJizHNATEx1F1bBwoqPOc+bUSVYtW8qarbspKipi0ssTMBrl9flgytfM/XkmRw8d4Ievp/DV9J8ZMGQYsZcv8ezokpGwm/YcxsXVDb2dnnt79mbEoPs5e/oU9SMbc3DfXgyG/+ZP72bg6ePHM299gkajRWgE29etYt/fGwDo9oBU3tcunstDo5/F1d2T0RPlDALFUxy5e/nwv0++B0Cr1bL1z2Uc3CkH+7To1I3HJryFm6cXr0z5kagzx3nvuRGl6s/PyyX+cgwBIVWJuxTNpfNn2L5uJV8s+BODwcCMj98yX++nXvuQvxbP5dyJIyyZ/T0TPviGLv0GkhQfy2evPG0uc+rSLTg6u6DT62nR8V7efW44ly6cpXqdBpw5ehDjXXy9nTy86fDYq2iEBjSCC3s2cfHwDgBqd5TOuZObl9Gk7//ZO+/4KIovgH/37tJ7DwmB0HvvvSO9CQKKSFGQYi8g6k9ULAh2sYs0EQSR3nvvvUNIIL33XMrdze+PvVzKXRJQICTZ7+dzZGf2vZm5XWbv7ZvynsHW0YUOY+RdHQwGPes+nFxs2a2GT8bFNwAMgrT4aA4u/dxMRpedSUpsBM7e/qTEhJMUEULwiT0M/3AxBoOew8u+Qgj5fnd65g2u7F1P3O1rnNu8nO5TZlOnU3/SEqLZ/cN7pjJHzl2BlZ0DarWGwGYd2fLF6yRF3sazah1ibl1GGCru/S6vSPdzbo1CHi3r+omTCyvwFi3u9WRDMNR8f8X7SmBfSLwmb5VUitQc+nXJQuWYXn0H0LBJU778dM4DreedOZ+ya9sWjhzYV7LwA6Rp1ZIXt5RnWnftTfW6DVnx4xcPtJ7xr77LyQO7uHCiKB/Aw6FPo4BSrb+0qdqsE56BtTn1z28PtJ62o1/gztlDRFwx38v3YfLcwv2nhBDm+8cp/GseZc+mQlkm4Yq8QvxBkxFT6oamAuzYshE3d/eSBf8jN65eKXVDUwGO792Ok4vrA68nNOh6qRuaCnD7zAFsHZ1LFvyPJIYHl7qhqfBgUDybD4gK79msYFR0z2ZFo6J7NisaFd2zWdFQPJv3H8Wz+YBITEhj9Z9HS7sZCg+JjGxlNXxFwt5aeXRWJJ4db3m1v0L55LmF+0u7CeWOMrEaXUFBQUFBQUFBoWyiGJsKCgoKCgoKCgoPDMXYVFBQUFBQUFBQeGAoxqaCgoKCgoKCgsIDQ5nlXo7wqdeSpo9PQVKpCD6ylWs7VlqU86rZmCaPT0FSq8lOS2HfN68DYGXnQIvRr+LsFwhCcPKPz0kIuYJ/007U7/c0zj5V2D3/BRJDb1gs19bZnRajX+bQT3LM7Tq9RlGt3WMIg4Gzq78n+qp5FBkreyfajn8be3cfMhKiObpwDjnatGL1JbWGZiOm41WrMUIILm34nfBzB6nReRC6rExuH7uLGO/lgK49evHhJ5+hUqv5c+livvvKfENmgHYdOvHBJ5+h0WhISIjn8QFyVA9nZxfmf7OAuvXqI4Tg1RemcOrEcX78bTE1asmxtp1dXEhJTqZX53Zm5Xr7+DLv6+94ZtRwAKa/8jqjx4zFoNfzzsw32Ld7p5mOq6sbPy5cQuUqVQi7c4fJ458m2RhGsSh9KysrPvrsC9p17IQwGPh0zvts3rCO8c9NJiM9g5XLl/7na1kWaNSmE2NeehuVSs2+javYuOxni3J1m7XmqRffRq3RkJaUyMcvjAHA3tGJCTM+onL12iAEv37yFjcvnTXp9R09gdHTZjK1fxvSks1DC7p4eDHxzTl8MUPeKHzAmMl0GTAcg0HPsq/mcOH4QTMdBycXpn3wFZ6+/sRFhfPd/14iIzWlWH21xoqxr/6Pes1aYzAIVv/8BSf3bafnsDFkZWZwYPOa/3QdywyuNaF6fzkwR/QpCDtgWc4l0BhoQw26dLiwUM5v+Sros+VAGsIA534sqOffAar1gaOfgC7DvFwrR6g1BC7LAR+o3Bl8moMQcmCOpJvmOho7qPME2LrJgT2urpRDJhenL6mhRn85iIgQcHsnxF+GSm3k9secudcrp/AIUuaMTUmS9MAFwAo5ks9i4CshhEGSpK7A60KIAZIkjQMWAk2FEOeNuheBAUKIEEmSQoCWQog4SZIE8IUQ4jWj3OuAoxBitjE9BngTOWSmDjhhrCfpoXzpu0FS0WzEdA4smElGUhw93viWiAtHSI0qGH7Mys6BZk+8wIEfZqFNjMXG0dV0rsnjU4m6coKjCz9EUmvQGOMfp0SGcOTXD2gxyjx6TH5qdXucW4e3AODkW4WAFl3Y/vEkbF086DztU7Z+OEF+6OWjbq+RxFw/w7UdK6nTayR1e43kwvrfitWv99hoslKT2PbhBJAkrO3l0H0hR7bR9ZUvK4SxqVKp+HjeF4waOpDIiHA27z7Ati2buHGtYIhPZ2cXPpn/JU+NGEJ4WBgenl6mcx98Oo+9u3YwadwYrKyssLOzB+D5iXmRfP734SekpiRbbMPkaS+wfPHvANSqU5fBw4bTrV1LfHwrsXLtRjq2bGKKJJPL9Fde4+D+vXz31edMf/k1pr/yGh/NfrdY/Zdee5O4uFg6tWqKJEm4ucn7ea5YtoR1W3dVCGNTUqkY++p7fPbKeBJionj/1785fXAXESFBBeTsHZ145tXZzH99IvHRkTi55u19Ouald7hw7ADfvfsiao0VNra2pnPu3r40bNmBuKjwItvQd+R49m74CwC/wBq07dmft57uh6unDzO+WsSbo3sjCt3vAWMmcfnUETYu+5kBYyYxYMwk/vphfrH6g8ZOISUxnjdHP4YkSTg4uwKwf9Nq3v1hRQUxNiWoMRAuLoLsFGj6PMRfNQ87rLaV5S4tkaOuWTkUPH9hoWVD0tpZDmNcXJhf/w4QdVI+tvMCr0Zw+ls5Ql3D8XDqK0yR4HKp3Ene9/jSAfk4oDOEbC9eP6ALZKfDqa/l7527P3P0aWj8nGJslhPK4jC6VgjRVAjRAOgF9APeK0I2DHj7LsrMAoZJkuRZ+IQkSX2AV4C+xjqbA4cBn3/T+AeFe9U6pMVFkB4fhdDrCD21D79G7c3kAlp2J/zcIbSJ8kMrKy0JAI2tPV41GxFyZCsAQq8jR5sOQGp0KGkxJccm9m/akegr8sPJr1F7Qk/tw6DLISM+irS4CNyr1jHT8WvUjtvH5BjJt4/twK9x+xL1A9v24eqOFXIBQpCdLntK9DlZZCRE42ahnvJGsxYtCbl1izu3Q8jJyWHdmtU81m+AmdzQEU+weeN6wsPk+xcfJ993Rycn2rbvwPKliwHIyckhxYJROWjoMNb+vcpiG/oNHMyeXfK9e6zfANatWU12djahd24TcusWzVqYb1P3WN/+/PXnHwD89ecf9DG2uTj9UWPG8u2X8wEQQpCQEA+AVqsl9M5tmjZvcZdXrexSo15jYsJuExsRil6Xw9Gdm2jesaeZXLteAzm5fzvx0ZEApCYlAGBr70CdJi3Zt1G+l3pdDhlpqSa9J1+YxYof5lHcvsstuz7G+WPyljDNO/bk6M5N6HJyiIsMIybsNjXqNTbTad6pBwe2/APAgS3/0KJTzxL1O/d/nA1L5bC5QgiTlzU7K5PYqHCqW6in3OFUGTLjISsRhB5iL4BHPXM5r8YQd1k2NAFy0u+u/Or9ZCOwsLGYH8/6kGgcxfKoJ7dB6CErSW6bU2VzHfd6EG00DqPPyOmS9H2aQ1juVkMizzg25Mjf39EfhbJPWTQ2TQghYoBJwHRjPPTCbAQaSJJUkvWhA35GNioL8zayFzPcWKdeCLFQCHHtPzT9vmPn6mkyIAG0SbHYuZpvPO3k5Y+VvSNdXpxHjzcWUKW1/PB38PAlKy2JlmNep8eb39Ni9CuorW3N9IvC3sOXnIw0DLocY3s8CrUnDjtXM1seGyc3MlPkH8TMlARsnFyL1beyk9/cG/R/hh5vLqDthHdMOgCJd67jWaPhXbe7rOJbyY+I8LwXgMiIcCpVqmQmV71GLVxdXVm9YQtb9xxk+Eg5dnbVqtWIj4vjywU/sX3fYeZ/vQA7e/sCum3adyA2JobgW0Fm5QZUqUpyUhLZ2dkAVKpUyaw9vpX8zPQ8vb2JiY4CICY6Cg8vr2L1nZ1dAHhz1v/YtvcQP/2+FE8vb5PcubOnadOuQwlXq+zj5uVDfEyUKZ0QG4Wbl/n7rm9AIA5OLrz17VLe/20NHfoMAcDbrwopSYk8N+tTPly4lgkzPsLaVvYgNevQncS4aEJvXjUrLxfPSpVJT01Gl5Njak9CTGSJ7XF28yQ5Xu7HyfGxOLt5FKtv7yiPUgx/9mU++O0fpn/4tUkHIPjqBWo3qQB7bVs75xmQIB9bO5nL2XnInsBGE2Tvp3fTgucbPiPn++S7Zu51ZW9pehRFYuMKOq1sHIJcd4H2pMhtNGu3A+TI06DISZPTxemrjb8xVXtA0ylQd2RB72xqBLhULbqdCmWGMm1sAgghbiF/D28Lpw3AZ8CsuyhqAfCUJEkuhfIbAHcVP0uSpEmSJJ2UJOlkijbnblQeLBa8FJJajVtALQ7++C4Hvn+Leo89haOXPyqVGtfKtbh1YCO7PpuKLjuTur1G3nVVds7uJi+psaa7ak/RWNaXVGrs3byIv3WJXZ9NIz74Co2HTDKJZKUlYedS/qO7WHq3suSV0mjUNGrSjKdHPs6Tjw/m5TdmUL1GTdQaNY2aNGXJwl/o3aU9GRkZTH/5tQK6Qx4fUaRX08fXl/i4uHtuz71+H41Gg59/ZU4cO8JjXTtw6sRx/vfhxyaZuNhYfHzNjexyh6V3aQvXV6XWEFinAZ+/MYl5r05k8DNT8Q0IRK1WE1i7PrvWLufdCUPIysxg4JhJWNvYMuiZKaz5tfgIWK4eXiYvqdycB3O/VWoNHj6VuH7hFP+bOJSbF88yetpMk0xqYgJunpYe9RUUSQWOfnBpKVxcAgFdwdb4/Dv/C5z9QT7n1wacq4LKSh7avr2r+HKtnSAn//C7JV/Of3yeI+T227hAyh25rSmh8jzSXHLSLBu1CmWOMm9sGrH0PzmX5UBbSZKqFVeAECIFWAK8WGQlktRIkqSzkiQFSZJkZokJIX4WQrQUQrR0trO627bfF7RJcdi55c3Hs3P1QpucYFEu+spJ9NmZZKenEBd0ARf/6mQkxaFNiiXhtuzdCD97ANeAmnddvz4nC7WVdTHt8USbHG+ml5WaiK2zPK/M1tmdrNSkYvWz01PQZWUSfv4QAGFn9hdop0pjjd7obSvPREaE4+efN4xVyc+fqChzT0VkRAR7d+1Am5FBQkI8xw4fon7DRkRGRBAZEc6ZU/K0h43r/6FRk6YmPbVaTb8Bg1n/z2qL9WdqM7GxtTGlIyIizNoTHRVpphcXE4O3jy8gLzCKj40tVj8hIZ6M9HS2bFwvt3PdGho1bmKSs7WxJTNTW/SFKickxkTh4e1rSrt7+ZIYF2MuFxvFhWMHyM7UkpacyLVzJwioWZeE2CgSYqO4dfk8ACf2bKNq7QZ4+1fBq1Jl5ixaz+erduPu5cuHC//Bxb3gKEROViZW1nn3OyEmCnfvPCPf3cuXJAvtSUmMw8VD7scuHl6kJMYXq5+WnEiWNoNT++XpGcf3bKFqnfomOStrG7KzMu/+wpVVslNkIywXGxfITrUsl3RDHnLWZUByCDgY/5/kyuekywtunCqDrTvYuEGzafICIhtn2aNo5ViwXIMOVJqC9RRoj3MR7UnPK8vKUU4Xp6/LkBcBxV+R8+MugkO+ERGVBvSPgONG4T9T5o1NSZKqA3rA/EkHCCF0wOfAjLso7itgIpB/lvUl5HmaCCEuCCGaAlsAu3/d6AdA4p1rOHr5Y+/hi6TWENCiC5EXjpjJRZw/jGeNhkgqFWorG9yr1iU1OpSs1ES0SbE4ess/+N61m5ESecdMvyhSY8Kxd88bRou8cISAFl1Qaayw9/DF0cufhNvmMw8iLhylapteAFRt04sIY5uL04+8eBSvWrLB4V2naYFFUE7e/iRHhtx1u8sqZ0+folqNGgRUqYqVlRWDhw1n+5ZNZnJbN2+kdbsOqNVq7OzsaNayFTeuXyM2JpqI8DBq1KwFQKfOXQssLurUtTs3b1wjMiLCYv1BQTcIqJI3vLV9yyYGDxuOtbU1AVWqUq1GDZMhm5/tWzfzxOinAHhi9FNsM7a5OP0d2zbTvqMcLrBj525cz9fO6jVrcu3K5Xu6dmWRW1cv4BMQiGelyqg1VrTt2Z8zh8y9U6cP7KJ245ao1GqsbWypUb8JESFBJCfEkRAThW+A/M7doGU7IkJuEnbrOtMHtuO1Ed15bUR3EmKjeHfCUJIT4gqUGxkagqdv3ty5M4d20bZnfzRWVnhWqoxPQCBBV86btefMwd106jsUgE59h3L6wK4S9c8c2kPdZm0AqN9CbmcuvgGBhN2yvBtGuSI1XB4it3GVV2t7NYIEC9Mc4q/KHktUstfSqbK8iEhlBWrjy7/KSl7Znh4NGdFwfC6c/EL+ZKXIHsXcoe9ctHFy3bkkXJXbIKnlfDsPSLUwjz/hKvg0k499mkHClZL1E67JK+pBXrSkzfdTbucJGRZ/2hXKGGVuNXp+JEnyAn4EvhNCCMvTNgFYhLya3MKklzyEEAmSJP2FbHAa94/gE2C+JEmDhRC5veuRMjQBeXugVd/RaerHSJKKkKPbSIm6DUD1Dv0BuHVoE6nRoURdOUmvmT8hhCD4yBZSjMbZmVULaP3MTFRqDenxUZxcJi/K8GvcgabDp2Lj6EKH5+eQFB7Ewe8LzkzQZ2eSHheJg6cf6XERpETdJuz0fnrP+gVh0HN21XemlegtRr/CrYMbSQy9wbUdK2g74R0C2/ZBmxjDkYVzAIrVv7DuV1qNnYHVsOfJTkvmxB/zTe3wqN6Ay1uWPbgL/Yig1+t5+83XWP73OtRqNSv+WML1q/KD/enxEwFY+vtv3Lx+jb27drDr4DEMQrB8ySKTcfbOm6/z3c8LsbK25k5IMK9Me95U/uBhw4scQgfQZmQQEhxMYLXqhATf4vrVK2xY+zd7j55Cr9Mx641XTSvR53+9gCW//8r5s2f47svP+fH3pYwaM5bwsDAmj5O35SlOf87sd/n2x195/5PPiI+L49Xpk03taNWmHV/M/eQ+XtlHE4Nez5IvPuDNL35DUqnZv2k14cGyEdZt8CgA9qxbQcTtIC4c289HizYghIF9G1YRHiwbZ0u//JAp781HrbEiNiKMXz6ZWWR9hcnO1BITHoq3fxViwu8QHnyTY7s388myLRj0OpZ88b5pJfqEGR+xZ+2fBF+7yMZlPzPtg6/p3H848dGRfPeuPHBUnP7KH+Yx+d15PPXiLFKTEvk1XztrNWrOP79/998v6COPAYI2ynMuUckrs3ONLt9W8t+oE7JhmXgDmk+Tp1VEn5LlbNyg/pPGslQQe97yVkVFVp8DmQmyJzQzQS4z9iI0f1F+DgdtxDSMXnOw3Ja0CHmhT92R4NNCXgh01bj9XnH6Idug9nDQ2Mpe2Bv/5LXDuQrc2fOvrqDCo4V0L/NsHgUsbH20FHnbIktbH7UUQkw36r0IfA1Us7D1UZoQwtEo5wMEA5/l2/roGeB15K2PkoCLwHtCCPNxQiM1vJ3F3JFt7/O3f7Txa9wBt4BaXNq0qFTqd61cg1rdHufE0s8eet0vLjv00Ossbfr0H0jjps347KMPSqX+ho2aMGnaC7z4/LMPve6eDSreCtkWnXsRWKcBf//yVanUX7VWPfqMnMBPc9546HUv+fTu56+XGzzqyUPad0qY3/mgcKgE/u3h+t8PvWqp05xTQogKsBLt4VHmPJtCCHUx5/YCe43Hi5A9mrnnvgG+yZcOzHfsmO84GiiwLFcIsRh5P0+FYog4fwhrh2Kdxw8UawcXLm1SbtPDYuumDbi7u5cs+IBw9/AoNUO3InJq/w4cjXtelgaOLm78/etXpVZ/hSP+CmjsS5Z7UFjZl7yQSaHMUOaMTYVHm9x9OkuDmGt3tWmAwn0kd5/O0mD/3t2lVndFJXefztLg0snDpVZ3hSXaPOrbQyPJfMs1hbJLmV8gpKCgoKCgoKCg8OiieDYfEE621nSuUwH2/1MAICGtAmzHomCiupey91+FIrX8b6+loPAgUTybCgoKCgoKCgoKDwzF2FRQUFBQUFBQUHhgKMamgoKCgoKCgoLCA0OZs1lO8Rg7H5GTKW+ULAwk/jW7SFmNdzXchv+PlG0LyAqSo7ZI1vY4dZ+AxsMfBKTs/hVdVBAOrYdgW78rBm0KAOlHV5N92zxyiMreBafuE0je+CUA9i0GYFuvMwgDaQeWkX3nopmOZOOAy2NTUTl7YkiJI3nbAkRWBhrv6jh1G2cUkkg/vpbsW/IqSdfBb5K89TtEVoZZeeWdazeCSE1LRa/Xo9Pp6NC2jUW5zp27MO+LL7DSWBEfH0evHt0BcHFx4YeffqFBgwYIIZg86VmOHT3Kx5/OpX//AWTnZHMr6BaTnp1AcnKyWbm+vr58/+PPDBsyCIA33pzBuPET0Ov1vPrKy+zcsd1Mx83NjWXLV1C1alVu377NU6NHkpSURI8ePfnw44+xtrYmOzubWTNmsHevvJnz8BFPMOOtt1Cr1GzZspm335I3+X5+6lQy0jNYsnjR/bicZYqXf1pPljYDYdBj0Ov5+Y2xZjKBDVow6q3PSYoJB+DK0T3s++tX03lJpWLSvKWkJsSw/KNXAKjfvgddR07Cq3I1fnnzGSKCrlis39HNg0FT3zHpdRw2juY9B2MwGNjy6zyCzh4107FzdGb4a5/g6l2JpJhIVs2fSWZ6Kv61GjBwSm6QCIm9K3/m6rG9AIydvYC/5slyFY4us0CfJW+CLgxwuJj49S4B0O4FOLsMoozP40ZPgFd9yE6Dg3mBL/BtDDV7g6M3HP4GUixEAgKwcYKGI+CUMb5J9e5QubXclitrIe66uY6VHTR9GuzcQJsIZ5aCTiu3r+Fwo5AEN7dDtPE3oFYf8G8p6+54O6+sKh3kUJbhJ+7maik84pRJY1OSJAEsE0I8bUxrgEjgWL4N3ecB4fnUniFvr8wqQLLxEwc8C1wBrgHWwElgohAix1h+R+ALIHdVwBdCiJ8f2Be8TyT+8ykiM614IUnCsf0TZN+5UCDbsfNTZN+5QMrW70ClRtLkxUXOOLcN7ZktxRZr17QP2kt7AVC7+WFTqw0Jy2ehcnDFbcgM4pe9KUe8yId9i/5kh10m4/Qm7Jv3x775ANKP/IUuIUw2loUBlb0L7qPmEBd8BoSBzGuHsGvYg4xTG+76upQnHuvZg/h485jzubi4uPD1t98xaEA/QkND8fLKizf/+ZdfsWP7Np4c9QRWVlbY28t76u3euZN3356FXq9nzsef8MaMmbwz6y2zsl98+RUW/iYbL3Xr1WPEyJE0a9IIPz8/Nm/dTsP6dU1RgHJ5/c0Z7Nm9i/nzPuP1N97k9Tdn8M6st4iLj+PxIYOJjIykfoMGbNi0hRqBVXB3d+eTT+fSrk0r4uLi+HXh73Tr1p09e3az+Pff2bP/QIU0NgEWvzuZjFTzl4D83LlyxmQQFqbtgNHEhQVjY58XnTfmThAr576Zz/izTLtBT3Fqx1oAvCpXo2HH3ix48Qmc3L0Y+/73fDttmCkiUC4dh40j+MJxDq5ZTMdhz9Bx2Dh2Lv2WmNs3+fn1sRgMehzdPJjy5Z9cP3EAg0HPuX2badV3BAdWL7TQigrAsR8gp6QXaQnq9IfYQuGAw07C7UPQeHTB/NQoOLMYGgynWAK7QOgx+djRByo1hYPz5BjnrSfBvrmYogDlUr07xN+AW3ugejeo0R2ubZLrPPy1bKjaOEGH1yDmspyOvQx3DkHnQhGtwo5Du+mKsVlOKKvD6OlAQ0mScsNG9qKgYQmwUgjRNN/nXO4xsB54w5juaZQPMp5rBFQGngCQJMkXWA48L4SoC3QEJkuS1P9BfsGHhV3jXmQFnTR5KgEkK1us/eqQeXmfnGHQI7LvzXNoW6Ml2bdlA9amenOybhwDgw5Dahy65Gg0PtXNdGyqNSfz6kEAMq8exKZ6c/mELtsUqhK1FfkfcFnBZ7CtXbEiNd0LI0ePZt3afwgNDQUgNjYWACcnJzp27MTvC38DICcnx+S93LlzB3q9HoDjx45RuXJli2UPHTqM7dvkfVUHDhzEqpUryc7OJiQkhKCgIFq1bm2mM3DgIJYtXQLAsqVLGDRoMADnzp4lMlIOyHX50iVsbW2xtramWvXq3Lhxnbg4OVb37l27GDJsGABarZbbIbdp2arVf7xKFQ9nD29qtejA6Z1rC+THhYUQH3G7RP36bbtz87S872Wd1l24eHA7el0OSTERJESG4l+rgZlOndZdOLtnIwBn92ykbpuuAORkZ2EwyP/fNFY25I9qd+34fhp1euzffMWKQ2BH2ZuZXcixkHjLsqGaHgPpsSWX69sI4ozx2L0bQORZMOhBmwDp8eBaxVzHuwGEy6NjhJ+U0yCHv8x9hqsKPsNJugNZFjzXhhzISJC9ogplnrJqbAJsAXINvtHAn/ejUCGEHjgO5MajmwYsEkKcNp6PQ46zfveBhUsJ10Fv4PbE+9g26GrxvMrBDZvqLdBeLLg5ttrFG4M2Facez+I28gOcuk0AjbXpvH2jHriPmoNT94lINuYRJlROnhiyMsCgM9WjT00wnTekJaB2cDPXs3fGkCEbPIaMZFR2edvLaHyq4z76Y9xHf0TK3sWmB5fIygC1BsnWway88o4Qgo1btnL42HEmPvucRZlatWrj6ubG9p27OHzsOE+NeRqAatWrExsXyy+/LeToiZP88NPPJs9mfp4ZN55tW8036g8MDCQxKZHs7GwA/Pz9CQvLG44LDw/Dz888pKO3jw9RUVEAREVF4eXtbSYzdNjjnDt7huzsbIJu3qR2nbpUrVoVtVrNwEGDqVw578fn9KmTdOjQsbjLVC4RQvD0ewuYNH8pLXoNLVKucp1GPP/Fcp5692u8AvJe8PpMeI0di79BGO49XLGrtx/a9FT0uhxANlxT4qNN51PiY3B2N7+vjq7upCXKXvi0xHgcXPKeAf61GjD165VM/WoFG3/8xGR8ZqanotZYYefkcs/tLBe0mgTtX4YAy1NksHEGn4Zw58j9rdfOHXK0snEJYOsCmUl55zOT5Dyz9jjlGY5ZqWDjmHfOpQp0fB06vgaX/s4zPosjJQzczB0TCmWPMjmMbmQF8D9JkjYCjYGFQKd850cah79zaSeEKHGzNEmSbIE2wEvGrAaYh6o8acwvrDsJmARQ2a10jZ/Ev+dgSE9CsnPCdfCb6BMjyYkoOMzi2OlJ0g7/ZTacjUqFxqsqqfuXoou+hWOnp3BoMYD0Y2vIuLCb9BPrQIBD22E4dhhN6u7fCqo7uBbwlN4PdNG3SPhzFmq3Sjj3nCTPE9XLP3YGbaps0Gam39c6H3W6delEZGQkXl5ebNq6jWtXr3Lw4IECMhqNhmbNm9O3dy/s7OzYd+AQx44dlfObNefVl1/ixPHjzP/iS954cwbvz37PpDtj5lvodDr+XP6HWd2+lSoRFxtnSkuSZCYjCv+/ugvq1a/PRx9/woB+fQBISkrixenTWLr8TwwGA0ePHKFatbwfn9jYWGrXqXPP9ZR1Fr41kdTEOBxc3Hj6vQXEhYdw+/KZAjKRt67y1aSBZGdqqdW8A6NmzufbacOo3bIj6ckJRN66SmCDFvdct5ObJxnJiXkZ5rf+nu99+I1LfP/SSDwrBzL0xfe5efowuhz5RSY9OREnN0+0JUwZKHcc/Q6yUsDaUTY602Jlb2V+6g2Wh6kLD2f/V2yczD2lhbnX/p18R5476uANjUdB7FWTQ6JIstLkuaUKZZ4y69kUQpwHApG9mpstiBQeRi/J0KwhSdJZIB64Yywf5EeppV5llieE+FkI0VII0dLD0fZuv8oDwZCeJLdJm0r2rVMWh62tvKvh8tgUPMbOx6ZGK5y6PIN1teYY0hIxpCWgi5YfbFk3T6DxqmosL8X4kBFoL+3DykK56LKRNFb52pKI2ikvhrbK0R19eqKZmiEjBZW9/LassnexaLDqEyMROVnywiUjktpKHmqvYOQOO8fGxrJ+7VqLw8nhYWHs2LaNjIwM4uPjOXjwAI0bNyE8LIzwsDBOHD8OwD9//03TZs1NemOeHkvf/v0ZN3aMxbq1Wi22tnnzeMPDwgoMt/v7VyYyMsJMLyY6Gl9fX0BeYBQbE5NPx5+/Vv3NxAnjuHUr70d186aNdO7Qnq6dOnLj+nVu3rxhOmdja0OmtuJtuJ2aKBv66cmJXD221+KwdZY2nexM+drcOH0ItUaDvZMLAXWbUKdVZ17+aT3DX/uIao1aMezlu48xn5OdhcY6796nxMXg7OFjSjt7eJOaaD5Mm5aUgKObByAvMEpPNn8GxIWFkJ2pxbtKDVOextoaXXbWXbev3JBlfP5lp8mLaVwtDCe7BECTMfJiIt/GUH9Y3tD1f8GQYxzuNpKZDLaueWlb17z2FWhzqmyogtHLacFgTY+RF/44+pbcDrXG5FRQKNuUWWPTyHpgPvdnCD13zmZNoK0kSYOM+ZeAloVkWwCX70OdDwaNNZKVrenYOqAh+njzFYfxS143fbKCTpC6bzHZwacxZCSjT0tA7So/DKwD6qNLkA2HXGMQwKZ6C3QWytUlRaF28jSls4LPYFOrDag0qJw80bj4mAzZ/GQFn8G2ruyMtq3bkaxgOda5yskTJJXx2AO1my/6lDyvmsrepUC6ImBvb4+jo6PpuEevXly6dMlMbsOG9XTo2BG1Wo2dnR2tWrXm6tUrREdHExYWSq3atQHo1r07V67I/6V79X6M115/g+FDh6AtwpC7cf06VasGmtIbN25gxMiRWFtbExgYSM2aNU2GbH42btzAmKflldNjnh7Lhg3rAXkh0z/rN/DuO29z5HDBGNi5i5pcXV2Z9PzzpnmmIE8TsPS9yzNWNrZY29qbjms0bUPMHfM40o6uHqZj/1oNkCQVGanJ7Fq2gC+e689Xkwex+vO3Cb5wgjVf/e+u64+PuI2rd150tGsn9tOwY2/UGitcvf3wqBRA+A3ze3LtxD6adhsAQNNuA7h2XJ4T7urth0qlBsDFyxdP/6okxeS9qDi6epAUE3nX7SsXqK1BbZN37FlbXmRTmH0f532izsPlNRBzH/pDepy8ojyXmEvyAiGVWh5id/CU51oWJuayvLIc5L+5bbFzNz3DsXUDBy957mdJ2HtBmoXvrVDmKMvD6CAPnScLIS5IktT1fhQohIiUJGkm8BayMbsAOCZJ0hohxFlJkjyAucDduwIeMip7F1z6vQiAJKnJvH7EtNrctkE3ADIv7Sm2jLT9y3Du/TySSoM+JYaUXfKqY8f2I9F4VQEB+tQ4Uvf8bq6sy0afHIPaxRt9cgz6hHCybhzH46lPEAY9qfuWmoZgnLpNQHtpN7qYEDJOb8TlsWnY1u+MITWe5K0LALD2q4198wEIgw6EIHXvEtMqe413IDnRN+9u/k85wsfHh5Wr/wZAo9awcsWf7Ni+DYBnJ00G4Neff+La1ats37aNk6fPYjAY+P3337hsNM5eefklFi1ZirW1NcG3gpn07AQAvvr6G2xsbNi0VS7v+LFjvDBtaoH6MzIyuHUriOo1anArKIgrly/z96pVnD1/EZ1Ox0svvmBaif7DTz/zy88/cfrUKeZ/Npc//lzBuPETCA29w5OjRgIwZeo0atSoyVtvv81bb8vbnwzo24fY2Fg+/+IrGjVuDMDHH83h5o08z2a79u356MNHtis+EBxdPRg5Yx4AKrWaCwe2cfOMPGev5WOPA3By29/Ub9eDln0ex6DXo8vOYvXnxa8wB6jbpiv9nn0Dexc3nnznK6KCr7PsgxcKyORkZZIQFYa7b2USosKIDb3FpcM7mfbtKgx6PZt++cy0En3Q1Hc4ue1vIoKucHDNYka8/gnNegwmOS6KVfPkae9V6jWl47BnMOh1CINg00+fmlbZ+9WoR9j1i6Y5nBUGa0doPk4+llQQeQbijNOgAtrJf0NLmKfZ5ClwrwHWDtDtHbixXV7h7dMQ6g+R62g5EVIi4OQvBXX12ZARD/Ye8t+0aIg6B53eAIMBLv2DaXCv4Qh5zmhKGNzaLW99VLk1aJPgrLwYELdAeaW60MvP/ktr8hYv1ekPfs3kxZ/d3oHQ4/LWSLl6uccKZRrp38yrKm0kSUoTQjgWyusKvF7M1kdThRCHjbKLgI1CiNXGdKAx3dCYloCzwHQhxAFJkjoDnwNOyMPqXwkhfiiujU2reIrtb5aLBev/CuvqLbDyCiT92N8PtB7HTk+RFXyGnLDSdTRXeWVZqdZfGgwaPITmzZsz+72794rdT5o0bcpLL7/ChHHPPPS6Zw5o9tDrfJSo26YrfjXqsXt5sY/B/0yfia9x7fh+gi+U7vY3syd1LdX6SwWfhuBcGW6YLxB8KDj7ydsvnb8va3/vCanf56eEEIVHNBX+A2XSs1nY0DTm7QX2Go8XAYuK0R9XKB0CNMyXFkCTfOn9gLK/yj2QfesUKluz23Tf0cWHlbqhWVFZv24tHh4eJQs+IDw9PHm/lAzdis7VY3uxfwgrxGPuBJW6oVlhib4IVuY7VDw0rBxKz9BVuO+USWNToWxg2qezjNehUDT5508+bHbt2llqdSvA6Z3rHnwdxo3jFUqJMPN51w+N+BslyyiUGcr6AiEFBQUFBQUFBYVHGMWz+YDQC0FaprJlQ0Whlm8F3XS6gjL7pd6l3QSFh0ijp38s7SYoKJRpFM+mgoKCgoKCgoLCA0MxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQdGmVggJEmSL/AV8l6XWUAI8DJwDrgGWAMngYlCiByjjgaIAn4RQryVryxH5A3aewKZyLHQ3xBCHMu/WbwkSf2Ar4EegB3wE+AK2AAHhBCTHuR3/jd4PTYJ+xrN0GekELZohkUZlY0DXn0moXH1QehyiN32Ezlx+UJOShL+Yz5Cl5ZA9D/zAXBr/zhOjbqhN8YqTzjwF9rgs2Zlqx1c8ez9rEnPtfUgnBp1RQgD8buXoA05b6ajsnXAe8CLWLl4kZMcS8yGbzBkpRer7/v4DNQOrkgqNZlhV4nb9TsIgXOz3hhyski7WDG2Q/pg/rd07tGbhPg4hvXsYFHG2cWFD+Z/S0DVamRlZfK/11/k5rUrpvMqlYoVm3YTExXJ9PGjAahTvyHvfvIFNjY26PU65rz9BhfPnjYr29Pbh9lzvzLpTZz2MsNGjUGv1/Ppe29xeN9u8/a4ujJ/wUL8AgKICA3l9anjSUlOLlb/h6Wr8PL2Qa3WcPr4ET565w0MBgOjn3kWrTaDtX8t/28XsqxQZxh41IWcdDjxtWUZjS3UeVwOD2jQwbU1kB6dT0CCFtMgOwUuGKO7BPYEz3qAgOx0uLoaslPNy7Z2gjpD8/SqdIFKLeXoXTc2QqKFrWo0dlB/lByiMDMRLv8Juszi9RuPk+uSVJAcAtfXy23zbytHtoky/79YHlH6dwXr3+WcR96zaYzm8w+wVwhRQwhRH5gF+JAXz7wRUBl4Ip9qb2RD9AljGbn8CiQAtYQQDYBxgGe+80iS1AP4FugjhLgDfAN8KYRoKoSoZzz3yJF6aT+Rq+cWK+PadjBZMbcJXzyT2C0/4NltbIHzLs37kpMQbqaXfGoL4UtmEb5klkVDE8ClZT9Sz8thMK08/HGo247QRW8S9fdcPHuOhwK3wdie1oPQ3rlI6G+vor1zEdc2A0vUj97wDeFL3iJs0Zuo7Z1xqN1W/v4X9uLS7LFiv395Yt2q5Ux5ekSxMs9Of5Wrly7yeO9OvP3yVGbM/rjA+TETnyf45vUCea++/T4/fvkZI/p0YcH8T3h11myLZY99bip//ykbHtVr1aHvoGEM6dGeKU+P4J2P5qFSmT9eJk59mWOH9jGgcyuOHdrHxKkvl6j/+pQJDH+sM0N7tsfNw5PeA4YA8M/KP3hy/CP3zvfgiDoN5xcVL1OlK6RFwslvZaOx5oCC5yu3h4zYgnmhB2T5k99B/FUI7G657ModIMK4wbq9N3g3huNfyW2qPQg5uFrh9nSBpCA4/oX8t0qXkvUv/Sm358TX8sbe3o3k/MhT4N+++O9fjlD6dwXr3+WcR97YBLoBOUII094TQoizQGi+tB44Dvjn0xuN7Jm8A7QFkCSpBtAGeEcIOZi2EOKWEGJTrpIkSZ2AX4D+QoggY3YlwOT+E0JcuI/f776RGXYVgzFmeFFYe/ijvSPHxs5JiEDj4oXa3hkAtaM79tWbknK++LjpReFQqzUZIefk4xotSL96BPQ6dMmx5CRGY+Nb00zHvmYL0i4dACDt0gHsa7YsUV9ka2VllRrUGnJj9ApdNrqUWGx8a/yr9pc1Th07QnJSYrEyNWrV4dgh2dMbHHQD/4AqeHh6AeDj60en7r34+8+lBXSEEDg4OQHg6OxMbHSUxbJ79R3Iwb27AOjWuy9b1q8hJzub8NA73AkJplHTFmY63Xr3Zd3qFQCsW72Cbo/1K1E/PU32smk0GqysrMgNsZuZqSUi7A4NmzYv4UqVE5JDQJdRvIyDt2zUgWxU2rqClTGSl42z7BmNLBSRR5+Vd6y2NoW8NsOrISQYDRfPehBzXo51nZkI2ng5tGFhPOtB1Bn5OOoMeNYvWT+3PZIKJLUcSxvAkCPLOlmopxyi9O8K1r/LOWXB2GwInCpOQJIkW2QjcqsxbYc8/L0R+BPZ8ARoAJw1GqeWsAHWAUOEEFfz5X8J7JYkaYskSa9IkuRaRDsmSZJ0UpKkkwlpmXf15R42WTF3cKglR9608a2BxtkTtZMcctCj+9PE7/8TS782zs164//Mp3g9NgmVjYPZeY2LF4bMdNDrAFA7uaNLjTed16XFo3FyM9NT27ugT08CQJ+ehNre5a70fR+fSdWpPyKytaRfP5b3/aJuYVu5zt1ejnLPtSsX6dlX9hY3bNqcSv4B+FTyA+DN2R/z5cezMRgMBXTmzp7Fa2+/z45jF3jtnQ/46tMPzMr1D6hCSnISOdnZAPj4ViI6Is8jHh0ZgbdvJTM9D09v4mLkYd24mGg8PLzuSv/HZavZd+Y6Gelp7NiUF7nm0vmzNG/d7t4uSnkmLQo8G8jHTpVlY9NGfpmk5gAI2oJFa7JaL2j7Jvg0hRALkZls3UCnlY1DkMvMSs47n5UCNhb2mrV2zBuSz04taPgWp994HLR/Wx42j72Yl58aDi6BRX79iobSvxXKCmXB2CyOGpIknUWed3lHCJE7KXAAsEcIkQH8DQyVJEl9F+XlAIeBifkzhRC/A/WAVUBX4KgkSTaFlYUQPwshWgohWro72v7Lr/RgSTq+HrWtA/5jP8a5WW+yYkLAoMe+ujzXMzs62Ewn5ewOQn99mfDFb6FLT8Kj61NmMmoHV9OcziIRRblM7pJ8+lF/f8qdH6Yiqa2wq9LAlK/PSEHtaG7UVlR+W/A1zi6urNq6jyfHPcfVS+fR6XTGuWCxXL5wzkxn5NPj+ez9t+nVphHz3n+HD+Z9Yybj6e1LQkLey4BkYYqEuIf7XZL+82OG061lPaysbWjTobMpPyEuDm8f37uup9xzZ588T7LldPBvB6mR8pxIjzqQnQZpEZb1gnfA0c8g+qw8N7Iw1k7yXFETFobM76l/l6B/fhEc+UQevXDLN1KRkwY2TvdQT/lG6d8KZYWyYGxeAsz99TK5czZrAm0lSRpkzB8N9JQkKQTZK+qBPBx/CWgiSVJR39uAPO+zlSRJs/KfEEJECCEWCiEGAzpkj2uZQ2Rrid36E+FLZhG75QfUds7kJMdi418bhxrNCXjua7wHvIBdlQZ49ZsKyAac/EMgSD2/G5tK5sPUQpeNpLEypfWpCWiMHlMAjaMHurQkMz19RjJqB1fAaLBmJN+1vtDnkB50yjT0DiBprBA52fd6Wcot6WmpvPvadEb06cKsl6fg5u5JeOgdmrVsQ7defdl6+CzzFvxK6w6d+ORreabKoOGj2bllAwDbNq6loYXhsqxMLTY2ee9bUZER+PjlzWLxqeRncXguPi4GT28fQF6AEB8fe9f62VlZ7N2xhW69+5rybGxsyMrU3vN1Kbfos+Da3/L8y6urwNpBHnp2rioPXbd9Q16w41od6lmYDxh9Th4uL4whB1T51pNmJRf0RNo4y4uOCpOdJhuqYDRY0+5e36CDuCvGxUtGVFZyvgKg9G+FskNZMDZ3AzaSJD2XmyFJUiugam5aCBEJzATekiTJGegIVBFCBAohAoFpwGjjHMyTwPu5i4YkSaolSdLgfGVlIHtGn5IkaaJRpo8kSVbGY19k49V8FU0ZQGVjL3sLAKdG3cgMu4rI1pJ4YCV3fnqB0F9eImbjt2jvXCJ28/cAJmMQwKFWK7Lzr143kpMYhcbZy5RODzqFQ912oNagcfHCys2XrKibZnoZQadxbNAJAMcGnci4eapYfcnKJq89kgr7ak3JScjz1li5VbLYvoqKk7MzGiv5JeDx0WM5deww6WmpfD33Q3q2bkif9k15Y9qzHD90gLdeeh6A2OgoWraVV7+26dCZO8FBZuXevhWEX+UqpvTeHVvpO2gYVtbW+AdUoWpgdS6cNZ/9snfHVgYPHwXA4OGj2LN9S7H6dvYOph8vtVpNp+69CL6Zt+q5avUa3Lh21ayeCovGVp7nCPJK76Rg2QAN3g5H5sLReXB5BSTdgiurZDm7vJc6POuZLyACyIiTh9JzibsiL/CR1HK+nSekWOh3cVfAt5l87NtMThenr7bOM04lleyRzd8eO89Cq+srNkr/VigrPPJbHwkhhCRJQ4GvJEmaibxdUQjy1kf5WQvMBl4Cdgsh8s16Zx3wmXHo+1nkrY9uSpKUgXHro0J1JkiS1AfYL0lSHNAF+FqSpNyJmG8IISzPqi5FvPtPxzagHmo7J6pM/pbEQ3+TenEvTk16AJB6bhdW7v5495uCMBjIiQ8jdtsvJZbr3nk0Nt5VEYAuOZa4Hb+ZyYicLHRJ0WhcfdAlRZMTH076taMEjJ+HMOhN2xMBePZ+jpRzO8mODibp2Hp8Br6Ic6Nu6FLiiN4gb+lSlL7Kygafoa8hqa2QJBXaO5dIOZs3x8zWvzaJR9bch6v56DP3u19o1bYDru4e7Dx+kQWff8o/K5cxYsw4AFYtW0T1mnX46KvvMej1BN24xntvvFhiubNnvMTM2Z+g1mjIysri/ZmvmMlotRmE3g4mILAaoSHBBF2/yraNa1m3+wg6nY6P3nnTNFds9mdf89ey37l8/iy/LfiK+T8sZOioMUSGh/HalPEARerb29vz7cI/sLa2QaVSc/zwfv5a9rupHU1btuGHLz+7D1ezDFBvJLhWk1dot5sBwTsh6hT4tZbPRxwHey+oOwIQkB4jezlLovpjsp4wQGYSXF9nLmPIAW2CvKWSNgEyYiDmArR+2bh1kXF7IpC3R4o4Ls+vvLMPGjwJvi1lb+Yl4zY2RemrrKHh0/ILsaSCxFtyWbm4VIHbu/7tFSxTKP27gvXvco50L/MuFO6eRgEeYt1LFWcbHgD7mi2x8alG4qFVpVK/tXdVXFr0I3bLDw+97sFfb33odZY23fv0p0GjJnw77+OShR8AdRs0YuxzU5n18pSHXveFpc8/9DpLHc/64OQvz+8sDRwrQeWO8vSAh0yjp38sWaicUZH798WwxFNCiJYlSyrcLY+8Z1Oh7JBx8yRqO8dSq19t51Rqhm5FZPfWTbi6upda/W7uHnw3v3R+CCskcZfByr706rdygJBSMnQrIEr/VrifKMamwn0l9cLeUqtbe/tiyUIK95U1K5aWLPSAOHJgb6nVXWGJPFl6dSeaz/lWeLAo/VvhfqEYmw+Im9HJFXJotaIytUeDkoUUyg82ViXLKJQbqriX3oiNwsPnYljxm+kr3DtlYTW6goKCgoKCgoJCGUUxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQeGskConOBTyZ+Pv/oeTy8fDAYDq5cv5o+FP5nJjZv8Av2HDgdArdFQvWZtOjetRUpSEh/M/9YYUzeOYT07mHSmvz6Lbr37YjAYSIiP451Xp1kMVebp7cPsuV8xffxoACZOe5lho8ag1+v59L23OLxvt5mOs6sr8xcsxC8ggIjQUF6fOp6U5ORi9fsOHsZz019FCEFMdBRvvTiZpMQERj/zLFptBmv/Wv7fL+gjjoO7Nz2eext7F3eEEFzeu54LO1abyTXtO5pa7XoBoFKpcfWryqIXBpKVnkpAo9Z0fPIlJJWKK/s3cmbTHya9hj0fp1GPYRgMem6fO8LRv8z3LrV38aDL+DfZ8tUMAJr1H0O9zv0RBgMH//ia0IvHzXRsHJzoNeV9nDx9SY2LYvv3/yM7I61Y/ZptetB8wNMApCfFseunD8lMS6Zhj2HkZGVy7eDm/3g1ywDWzlBzGFg5AgKiT0HUUcuyzoEQ2EeOzqPLgEvGTbJ924JPc0AqqF+1N7jVBoMeshLh5lrQZ5qXa+UINQbBVWP/8usEPs3kYA3BmyHZPBINGjuoNQJsXCErCa7/lVd2UfoeDaFyZzk/JxVurJG/h29r0GdD7Nl/cQHLLp4+lXjtoy9x8/DCIARbVy9n/fKFZnLDnplMt35DAFBpNARUq8mTXZuSlpLMS+/Po3XnHiQlxDPt8V5F1jX4qYmkJiexe+PfODq7MPOz7/H2q0xMRBifvjGVtNRkM50W7bswacZsVCo12/9ZwaqFcuS5ovTVGg0vvvcZNes1RK1Ws2vDGlYtXADARz8t55PXp1isR6FsUyY8m5Ik6SVJOitJ0kVJkjZIkuRqzA+UJElrPJf7GWs85yhJ0g+SJAVJknRGkqRTuSEvjXoX85XfUZKk45IkXTV+JuU7N1uSpAxJkrzz5aU9tC9/l+j1OuZ/+C6Du7flqcG9GfXMRKrXqmMmt+inbxnRpwsj+nTh608/4OTRQ6QkJQGwbtVypjxtHi/59x+/5fHenRjRpwv7dm7j+ZfeMJMBGPvcVP7+cwkA1WvVoe+gYQzp0Z4pT4/gnY/moVKZ/3ebOPVljh3ax4DOrTh2aB8Tp75crL5arWbG7E+Y8MQgHu/dietXLjF6nBzJ9J+Vf/Dk+ElmdZRHhF7P4RULWDHradZ8OJmGPYbh5hdoJnd2y5+s+t8EVv1vAkdX/0Tk1bNkpaciSSo6Pf0qG794nRWznqZmm54mfb+6zajWrCMr3x3HyrfHcm7Lnxbb0KTPSK7sk2Msu/kFUrNND1a8PZaNn79Op7GvIknm97tZ/zGEXznFnzOfJPzKKZr3H1OsvqRS0/Gpl1g/9yX+encc8aFBNOw5DICrBzbRqNfj9+FqlgGEAW5vg3PfwYVfwLcV2HmZy6ltoVp/uPonnFsA1/6S8+28ZUPzwi9w7gfZuLQ17qGYFARnv4fzP4A2Hvw7WW6DX3vZSAW5bs+GcHYBXFkK1QcAkgWdjpB8C85+I//NLbtIfRVU6wuXFsntSY+WjUyAmDNQqe2/u35lGL1ez6/z5/D80B68NmYwA0aNJaB6LTO5NYt/4oWRfXlhZF8WfzOXi6eOkpYiG207163if1PGFluPSq2m15An2LtlLQAjJkzj3PFDTBrUhXPHDzFi4lRzHZWKKbPm8N7UZ5gytAed+wwyta0o/Y69+mNlbc204b15aXR/+g5/Em+/ygDs3riG/iOf/tfXSuHRpUwYm4BWCNFUCNEQSECOdZ5LkPFc7meJMf9XIBGoJYRoBvQBzHaoNcY6Xw48L4SoixxXfbIkSf3zicUBr93/r3X/iIuJ5srF8wBkpKcRfPM6Pr6VitXpN/hxtqzLC+146tgRkpPMt3xIT0s1HdvZ2yOwHHWqV9+BHNwrh5Lr1rsvW9avISc7m/DQO9wJCaZR0xZmOt1692Xd6hUArFu9gm6P9StWX5IkJEnCzl7eXNrR0cnkZc3M1BIRdoeGTZsX+73LAxnJ8cTdvg5ATqaWxIgQHNw8i9Wp1aYnN47J98e7ej2So8NJjY3EoNdx89guApt1BKBB9yGc3rQMgy4HAG1qksXyqrfowp0LxwAIbNaRm8d2YdDlkBoXSXJ0ON7V65npVGvWkWsH5S3Brh3cSrXmnYrVlyQACY2NLQDWdvakJ8YBoMvOIjUuCu9q5vWUO3LSID1SPjZkgzYuL4Z4fjwbQcIVyDZ6hnTp8l87T0gNk8NOYoCU2+BuvG7JQXIeQFqo7EW1hHs9SDLudelWF+IugtDLHsvMBHD0t6BTN88TGXtWThenb7zfqIxbS6ltINv4/DHkyLKW6inHJMbFEHRV9o1oM9IJvXUTD2/fYnW69BnEvi3rTelLp4+TmpJUrE6T1u0JunIRg14PQNtuvdi5Xh4t2bl+NW279TbTqd2wKRGhIUSF30Gny2H/1g207dq7eH0hsLWzR6VWY21ji06XQ4bxN+bY3h107ju4hCuiUBYpK8Zmfo4AxT5tJEmqAbQG3hFCGACEELFCiLkWxKcBi4QQp41yccCbwMx8MguBkZIklV44hXvAr3IAdRs05vyZU0XK2Nra0aFrD3bkeyAVxwtvvs2OYxfoP3QEC+Z/YnbeP6AKKclJ5GRnA+DjW4noiHDT+ejICLwtGL8ent7ExUQDssHs4eFVrL5Op2POrNdZs+MQu09epkbtOgU2Hr50/izNW7e7q+9UXnDy9MWzam2igy4XKaOxtiGgURtundwLgIObF+kJMabz6YmxJmPV1TcAv9pNGPbuTwye+S1e1epaqLMSWRmpJoPUwc2TtALlxeDgZu55s3NxIyM5HpANZjtnt2L1DXo9+5d8zsg5ixn71Vrc/AK5un+TSS425CqV6jQu8RqVK2xcwcEX0sLNz9l5yEPX9cdBo8ng2UTO18aAc1X5nMoK3GqBtYu5vldzSLphuU5dpmwcAtg45Rm0ANkplo1UKwfZUAb5r5VD8frCALc2QpOp0OJ1OWZ7zOk8ubQIcKpaxIUp/3j7VaZ63QZcu3CmSBkbW1tadOjKoZ33Nr2kftNW3LxywZR2dfckMU7uk4lxMbi6m7/Menj7EhcVYUrHxUTi4eNTrP7BnZvJ1GawbOdJFm07yprFP5s8sGmpyVhZWePk4npPbVd49ClTxqYkSWqgB5DfQqpRaBi9E9AAOJdraJZAA6CwVXbSmJ9LGrLB+VIJ7ZskSdJJSZJO6g2lE3Pezt6BL39azNzZswp4JAvTpVcfzpw4ZhpCL4lvP/uIXm0asemfVaZh6/x4evuSkBBvSkuS+ZCaEHd/TYrS12g0PPH0eEb07UL3lvW5fuUSz05/xSSTEBeHt0/xb/3lCY2NHY9Nn8Oh5d+Qk5lRpFzVph2IunmBrHTj/wkLI565qFRqrB2cWPPhZI6s/J7eU983k7F39Sjg8bR0vyjCA26JovRVajUNug9h1f8msOTlIcSHBtFswBiThDYlCXvX4j265QqVNdQeCSFbQZ9lfl5SgUMluPqHPDxduQvYesie0IhDUG8s1BsD6VGyYZcf/86AAeLOm5dr5ZTnJZUrstC4e3nmFaEvqeQpAud/hFPzISO64LB+Trplj24FwNbOnrc//4lf5r2PNr3omVytu/Ti8tmTJgPubnH39CY5Mb5kwXxY7LclPOdrN2yKQa/n6V6tmNCvA0PHPoevfxXT+eSEeNy9fO6pHQqPPmXF2LSTJOksEI88FJ4/QG7hYfQDhZUlSXrbaIhGFD6H/NSz1DsK530DPCNJUhFjTCCE+FkI0VII0VKtKubX/AGh0Wj48ufFbFq7ml1bNxYr23fQULas//ue69i8djU9+w00y8/K1GJjY2NKR0VG4OOX54D2qeRncVFRfFwMnt7yg8XT24f4+Nhi9es0aARA2O0QALZtXEvTFq1NcjY2NmRlau/5e5VFVGo1j02fw/UjOwg+tb9Y2ZptenDz6E5TOj0hFgd30zRk2dNpHJ5OS4wl+NQ+AGKCryCEwNbJtUB5+uws1FbWpnRaQiyOBcrzNpWXH21yIvYuHoC8wEibklisvkcVef5XSqzcdYOO78G3ZkOTnNrKGn22BaOrPCKpoM5I2RhMuGJZJitFHuo25MiLalJvg73xhzvmNFz4SV4wpNNCZj7DwquJPI/zRhHPBEMOSPnWk2alFPSMWjvnDXfnJyfduKgJ+W9OevH69sYXxSzjdJ64S+AUkCen0hinAlQs1BoNs774iT2b/+HwruIj03XuM5B9W9bdcx1ZWZlYW+c9w5MS4nDzlPukm6c3SQnm/TkuOhJPXz9T2tO7EvExMcXqd+07mFOH96HX6UhOiOfy2ZPUbJA3OmFtY0N2loUFagplmrJibGqFEE2BqoA1BedsWuIy0EQyrlAQQnxk1LdkKF4CWhbKa2Esw4QQIgl5bqf5LOlHhPfnfcOtG9dZ8sv3xco5OjnRsm0H9mzbclflVgmsbjru1qsvwTfNh9lu3wrCr3Le2+neHVvpO2gYVtbW+AdUoWpgdS6cNR/W37tjK4OHjwJg8PBR7Nm+pVj9mKhIatSqg5u7bLC069SNWzevm8qrWr0GN65dvavvVdbpOmEmSZEhnN+2slg5azsH/Oo0Jfj0QVNeTPBVXH0q4+RZCZVaQ802PQg5I58PPn0A/3ry/FoXnwDUag2ZheZtJkWF4uSZ50EOOXOQmm16oNJY4eRZCVefysTcMjeIQs4eok7HPgDU6diHYGOdRemnJ8bi5hdoMnYrN2xJYuRtU3muvgEkhAff5RUr49QYDNpYiDxStEziVXm4HJU8XO7oL3s1ATTGIWxrF/CoB3HGIVPXmvJCnqvLizbkMuPlofT89Xg2lFe827jKi40sDesnXgOvpvKxV1NIuFq8fnaqvHhIY29sW4289oPspc2IoaLx0ux5hN66ydqlvxYrZ+/oRKMWbTm6d/s91xEafJNKAYGm9LG9O+g5SN65pOeg4Rzds8NM5/qlc/hXqYaPfwAajRWd+wzk2L4dxerHRkXQpHV7AGzs7KjbqDlhwXlx7109vYiOCLvn9is82pSprY+EEMmSJL0IrJMkyXwvljy5m5IknQTmSJL0rhBCL0mSLZbHbhYAxyRJWiOEOCtJkgcwF/jAguwXwAkewevWrFUbBg0fxfUrl1i1VfZKfTP3Qw7s2cmIMeMAWLVsEQA9+gzg8P49aLUFh13nfvcLrdp2wNXdg53HL7Lg80/5Z+UyXn7rPQJr1EQYDESEhfLhLPO1UlptBqG3gwkIrEZoSDBB16+ybeNa1u0+gk6n46N33sRgkIftZn/2NX8t+53L58/y24KvmP/DQoaOGkNkeBivTRkPUKR+bHQUP3z1GYtWb0KnyyEiLJR3Xs1792jasg0/fPnZ/b68jxy+tRpRp0Mf4kODGPGBvA3KsdU/c+f8Uep3kyfYX94jezeqtehM6KUT6LLzvAXCoOfAsi8Z8PrnSCoVVw9sIjEiBICr+zfRbeJbjJyzGL1Ox+5fPzarX5edSUpMBM7e/qTEhJMYEULQid2M+ngpQq/nwNIvyJ3F0nX8DC7tWUtsyDVOb1xG72kfULdTf9ISYti+4F2AIvUzkuI5ue53hrz1LQa9ntT4KHb/ktce35qNOLn29/t/gR81nKrIxlp6FDR+Xs67s0ueX+ljfFeOPikbZkk3ockU5C2STsvzNUH2imrsjPMiN+VtQVStn+y1rG9crZwaBsGFRkYMObK30dZdXsyjjYX4S9B0ulxe8CZMg0HVB8ltSY+A8ANQ+wnwbi7P0bxuXB1flH5OKoTthQYTjIuHkiHon3zXIUA+X4Go36wVPQY+TvD1K3y7Un4ZX/ztZ5w8uIe+I+QpJVtWLQOgfffHOH1kP1nagqM7b376LY1atsPZ1Y3F24/xxw9fsP2fgi+pJw/u4fWPvjKlVy38npnzfqDXkJHERkXwyevy/zt3Lx9efG8us6ePw6DX88Mn7/LhD0tRqdTsWLuSO0HXi9XfuGIxr3zwOd+v2YmExI51fxFyQ34JqVm/MdfOnzYtUlIoP0j3Mo+utJAkKU0I4ZgvvQH4CzgAXAGu5RNfKIT4xjjcPQ/ojbyCXQusEEJ8J0lSILDRuLodSZI6A58DTsgG6VdCiB+M52YDaUKI+cb0F8ArQohix8ntrDWipk+RI+7lku59+tOgURO+nWdunDwM6jZoxNjnpjLr5SkPve6pPRqULFTOqNa8E16BdTi+pnhvy4PCs0otGvcZye6f5zz0uqdM7v7Q6yx13OuCgx+Emu+X+1Cw95W3X7q5pmTZ+0z/5yvACw3w9pc/8/uXHxNxJ6RU6p/05myO7d3BueOHSqX+XDafDz0lhCg84qnwH3jkPHSWyG9oGtP5Jw3aFaGTAkwu4lwI0DBfej/QqgjZ2YXSrwKv3kWzKxy7t27C1bX0Fuy7uXvw3fzSMXQrIsGnD2DraGFF80PC1smFE6Vk6FZIEq7mDW+XBlb2pWfoVhAWffUpbp7epWZs3r55rdQNTYUHQ5nwbJZFKqJnsyJTET2bFZkK6dmswFQUz6aCjOLZvP+UlQVCCgoKCgoKCgoKZZAyMYxeFmkQ4M7JT0eWdjMUHhL2Y4pcr6ZQDjl35972I1Qo22x6R4lqU5GQnviutJtQ7lA8mwoKCgoKCgoKCg8MxdhUUFBQUFBQUFB4YCjGpoKCgoKCgoKCwgNDmbNZnmj5JFRqCFmpsP0TyzJWdtDqKXDwBIMOTvwBKZFg5wqtnwZbZzm27a1DcFPeHJ4G/cGvESAgMxVOLIPMFPOybZ2hxWg49JOcrtsLqrWTN20+sxqiLUT2sbKHduPB3h0yEuDIQsjRgrU9tJsI7lUh5BicWZWn0+VFsHMGvTHayf4FkJUGNTrL8aJDjv3bK1im+PGnX+jTrz+xsTG0at7Uooyrqys//vwr1apXJyszi+cnPcvly5cAmDr9BcZPmIgkSfy+8DcWfPsNAP977336DxyIMBiIiY1l8rMTiIyMNCvb19eXBT/8xOND5flsr78xg2fGj0ev1/P6q6+wc4d5FBM3NzeW/PEnVatW5fbt2zz95CiSkpJwd3fnjz//okXLlixbuphXX37JpGNlZcWXX39Dp85dMBgMzP7fu6xb+w/PT5lKeno6S5cs/q+Xskzw9BtzaNS2C6lJCXw40fIcQntHZ8a+OQfPSgHocrJY8tk7RITI0VnsHJx4+vUP8KtWCyEES+a9Q/Dlcwyb/DqN23VFl5NDXGQoi+e+jTbdPPSks7snY177gO/floOoPTb6OTr0exyDQc9f337M5ZPmW9bYO7nw3Luf4+HrT3xUOL988CoZaSk4OLsw6b2vqFq3EUe3/cOKbz4y6ag1Vox68W1qN2mNEAbW/fY1Zw7soOuQJ8nK1HJk6z9m9ZRLHtTzPJfa3aHJUFg3E7LTzctWnucK95FH1rMpSZKQJGlpvrRGkqRYSZI2GtPjjOmz+T5N8h0nSJIUbDzeKUlSoCRJWmP6siRJSyRJsspXfkdJko5LknTV+JmU79zzkiRdMOoelCSp/sO9GndJyDE4UHyoSur1hqRw2PEpHF8KTR+X84UBzv0D2z6C3Z9Dzc7gZAxHeG2XLL9jLkRegvp9LZdduxsEH5aPnXwhoAVs+xj2/wDNn8BiAKe6vSD6Omz9UP5bt5ecr9fBxU1ymyxxbLHcnh1z5QcTQMgRqNml+O9fjli6dAlDBvYvVuaNGW9x/tw52rRszrMTxzHviy8BqF+/AeMnTKRzh3a0admcvv36U6NmTQC+/GI+bVo2p23rlmzZvIm33n7HYtkvvPQKvy+U97msW7cew594ghZNGzN4YH+++uZbVCrzx8trb8xg7+7dNG5Qj727d/PaGzMAyMzM5IP332PWzDfNdGbMnEVsTCxNGtaneZNGHDwgx4FfvOh3pk6bfpdXq+xzZNs/fDtzUrEyfZ6aROjNq8x5bii/f/IWT0yfZTr3xPS3uHTiILPHDWDOc8OIun0LgCunDvPBhMHMeW4o0aEh9HnyOYtl9xwxjkObVgNQqWoNWnXvywcTBvLtjEmMfvldJAv3u8/oZ7l65ij/G9uXq2eO8tjoZwHIyc5m/e/f8veP88x0+j41mdSkBN57ph/vjx/I9XMnADi0ZQ3dho65iytVTnhQz3OQjVGfupCeUHTZyvNc4T7yyBqbQDrQUJKk3E3bewGFg++uFEI0zfc5l3sMrAfeMKZ7GuWDjOcaAZWBJwAkSfJFjnv+vBCiLtARmCxJUu4v+XIhRCOj7mfIYSsfPeKCIDujeBnnShBtDLiUGg0O7mDjJHsqk4zxaHVZkBIFdsYNu3V5YQ7RWGMKS1cY/6YQZYyH7d8IQk/Jb9sZ8ZAWJ7/Vmuk0gtvGN9fbx8C/sXysz4b4W/JD6m7R58hv024W6imHHDp4gITEYn4sgHr16rFnj7wR9vVr16hatSre3t7UqVuXE8eOodVq0ev1HNy/n0GDhwCQmprn1XKwd6CovXiHDB3K9m3bABgwcBCr//qL7OxsboeEEBQURMtWrc10BgwcyB/LlgDwx7IlDBw0CICMjAyOHD5EZmammc7YZ8Yx77NPARBCEB8vrwTXarXcvn2bli0txmMod9w8f4qMlORiZSpVrcHV00cBiA4NxsPXDyc3D2ztHajVuCWHNv8NgF6XY/JeXjl5GINBDg8YfOUcbl6+Fstu1qkXl04cAKBx++6c2L0FXU4O8VHhxITfIbBuIzOdxh26c2TbWgCObFtLk449AMjO1BJ08TS67CwznfZ9h7J1+S+AfL/TU5IAyMnKJCE63GI95ZIH9TwHaDoMzq+jyGc5KM9zhfvKo2xsAmwBcg2+0cCf96NQIYQeOA74G7OmAYuEEKeN5+OAN4GZxnT+MWMHiu2hjzhJ4VC5iXzsVlUe7rBzLShj7w5ulSHhdl5ewwHQ/wOo0hIubjYv194DcjLkhxHIZWYk5p3XJpnXA3kPRpD/2jjd3fdoNQZ6zYB6jxXMT7gDXjXurowKwIXz5xk8ZCgALVu2okqVqvj7V+by5Ut06NQJd3d37OzseKxPXypXrmzSm/3+h1y/GczI0aP58P3ZZuVWDQwkKTGR7OxsAPz8/QgLCzWdjwgLw8/Pz0zP29uHqKgoAKKiovDy8i62/S4u8g/k/2Z/wOGjx1m2fAXe3nk6p0+don3Hjnd5Nco/YUHXaNZJfrcOrNsIdx8/3Dx98KwUQFpyAs+8+RGzfvqbMa99gLWtefC19n2HcfH4AbN8D19/MtJS0OXIQ51uXt4kxkaZzifFRuPm6WOm5+zmQUpCHAApCXE4lRBhzM5B7v+Dxr/ArJ9W89x7X+Lk5mE6f/vaJWo2alHSZag4/JvneaWGoE2G5MK+m/w6yvNc4f7yqBubK4BRkiTZAo2BwpM3RhYaRrcYurIwxvLaAFuNWQ2AU4XEThrzc3WmSZIUhOzZfLGIcidJknRSkqSTsSnau2nKw+fqDnleTa8ZUKuz/PYrDHnn1dbQfiKcXVPQo3lxI2z6H9w5KQ/JFMbOOW/4o0juk41+bLE8h2nPV+BZA6rm86BlpYFt6YVQfNSYP28ubq6uHD1+kuenTuPc2TPodDquXb3KF/PnsXHzVtZt2MyFC+fQ6fQmvdnvvUvtmtVY+eefPD9lmlm5vr6ViIuLM6UlyXxI7X5EJ9NoNFQOCODI4UO0b9uaY8eO8vGnn5nOx8bGUKmSuVFbUdn25y/YO7nw9s9r6Dr0KUJvXEGv16NSqwmoVZ9961fy8eTHyc7Umoa0c+n71GQMej3Hd24wK9fFw4u0pPxe9Adzv1VqNe7elQi6eIaPJw/n1qWzPP78G6bzqUnxuHgU/4JSobjX57naSjboLm4qvlzlea5wn3mkjU0hxHkgENmracGdZjaMXpKFV0OSpLNAPHDHWD7IT05LPceUJ4RYIISoAcwALE5iE0L8LIRoKYRo6eV8V3bvw0eXCSf/kOfGHF8KNo6QbtygWlJB+2fh9kkIP2dZ/87JvDfp/OhzQGWVl9Ymgb1bXtrOVX6bLkxWqjwRHeS/WeYLE8zINJajy4I7pwoO56g18pCNAiAPiU+e9CxtW7fk2Qnj8PT0IiQkGJDnPLZv25rePbuRmJBI0M0bZvorV/7J4KFDzfIztVpsbGxN6fCwcCpXDjCl/SpXtrioKCYmGl9feZjW19eX2NiYYtsfHx9Peno669etBWDN36tp2qyZ6byNrS2Z2kf0xa4UyMxIZ8lnb/PRpGEs+mQmTq7uxEeFkRQbTVJsNCFX5Ufe6f3bqVIrb+p5296DadS2C799ZD5nFiAnKwsraxtTOjE2usBwu6uXD0nx5vcyJTEeZ3dPQF5glJpU/LSP9JQksrQZnD24U27nvm0F2qmxtiEn23yqRYXlXp/nDp7g4AG9Z0K/2fJzudeb5h5I5XmucJ95pI1NI+uB+dyfIfTcOZs1gbaSJA0y5l8CCsdBbQFctlDGCmDIfWhL6WBlB5JaPq7WHmKD8jyYLZ+S5/bc2FNQx9Er79ivkTw3qDCpMfJ8oVwiLsgTylUaeUjG0avgsHx+uapt5OOqbSD8QvHtl1Rg7ZB37NcAkiPytdVbXo2pAMjD0FZW8o/G+AkTOXjwgGlOppeXfF8rBwQwaMgQ/lq5AsC0UAig/4CBXL92zazcGzeuU7Vq3o/Cpo0bGP7EE1hbW1M1MJCaNWty8sRxM71NGzfy1JixADw1ZiwbN5h70QqzedNGOnfpCkC3bt25euWK6VytWrW4dOliiWVUFOwcnFBr5Pvdsf9wbpw/SWZGOimJcSTEROETEAhA3eZtibwdBED9Vh15bNSzfP/ONHKyLBty0WEhePj6m9Lnj+yhVfe+aKys8PD1x9u/KiFXzfvu+cN7aPfYEADaPTaE84d2l/gdzh/ZS+2mrc3aCeBTOZCIYPOXogrLvT7PUyJhwyzYPFv+aJNgx2fmRqHyPFe4z5SFrY8WAslCiAuSJHW9HwUKISIlSZoJvIVszC4AjkmStEYIcVaSJA9gLvABgCRJtYQQuU+4/sCj+bRrMw68aspvt/0/gEubIeQoVO8gn791CJx85C0xhJAfRCf/kM95VIfA1vIcoF7yCmEubICoy9BoEDh5yzoZCXBqpXnd+mx50riDJ6THyWWHnobHZhm3yliFyVHcYjTcOgiJofIwUNsJUK2tPCfoyMK8MvvNBitb+QHn1wj2fy/X33mq/ICVVBBzDW4dztPxrA6Xt9znC/tosmjJMjp37oKHpyc3gkKY8+H7LF70O88+J69Y/vWXn6lTtx6/LvwdvV7P1StXmDI5b6Xx8hWrcPdwJycnh1deepGkpCQAPpzzMbVq18ZgMBB65w4vTp9qVndGRga3gm9RvUYNbgUFceXKZdasXs3pcxfQ6XS88tKLGAzycN73P/zEr7/8zOnTp/h83lyWLl/BM+PHExoaypjReSFdr1y7iZOzM9bW1gwcOJiB/fty9eoV3nn7LX5buJjP5n9OXFwck5+baNJp1649H8/58EFc3keOie/Mo3aT1ji6uPLJyt1sWPQdh7esodNA+Roe2LAS36rVGT/zUwwGPZG3g1g6712T/spvP2LCrM9Qa6yIiwxjyWdvAzDqxXfQWFnx0rzfAAi+fI7lX71foO7sTC2xEaF4+VUhNuIOkSE3ObV3G+/9vgG9Xs+Kb+YgjPd7zGsfsH/DSu5cv8S2P3/huf99SYe+j5MQE8nP779iKvOj5TuwtXdEbWVFkw49+ObN54i8HcQ/v3zB+Lc+ZcTUmaQlJ7LY2E6AGg2bsXHxggdzgR81HtTz/G5QnucK9xnpfsyzeRBIkpQmhHAslNcVeF0IMUCSpHHAPAquUJ8qhDhslF0EbBRCrDamA43phsa0BJwFpgshDkiS1Bn4HHBCHlb/Sgjxg1H2a6AnkAMkGnUuFdf+ljW8RYWLje7XGNwC4FIJ84EeFK6V5e06ji8tWfY+UxFjow8aNJhmzVvw/uz/lUr9TZo05YWXXubZCeMeet1jO9R+6HWWNk079qBK7QasX/hNqdQfULMePUY8w6JPZj70un+c0uOh11nqVODnufTEd6eEEIVHOxX+A4+sZ7OwoWnM2wvsNR4vAhYVoz+uUDoEaJgvLYAm+dL7AYt7qAghXrKUr1CIiPNg41B69Vs7lDzxXeG+sX79Otw9PEoWfEB4eHrywfvvlVr9FY2zB3fh4OxaavU7uriyoZQM3QqJ8jxXuI88ssamQhkl+Ejp1R1jPrdQ4cGy6PeFJQs9IHbv2llqdVdUcvfpLA2unCrFZ0tFRXmeK9wnysICIQUFBQUFBQUFhTKK4tl8UFipwUfZH6yi8MfzFXBOVwXm8I2okoUUyg0e438p7SYoKJRpFM+mgoKCgoKCgoLCA0MxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQdGmVwgJEmSHriA3P4rwDNCiIzCG8EbN35vKYSYbkxPAl41nk4BXhVCHDSe2ws45m7kKklSS2C+EKKrcTP5dUBwvma8LoR4tPZecasFNfrJkRiiTkHofnOZyh3B27i9qKQCey848gnotEXrezaAqt1l2TM/QlqEebkA1o5QawhcWianAzqDbws54kTQJki8aa6jsYN6I8HWFTKT4MoKOdyaxg7qjwYnf4g6A0Eb83S8GkOVznIAi+wUuLoadBng10aO6Rt9+t9dvzKGd92WNB72PJJKze2jW7i+8y8zmVrdh1O5RXcAVGo1Tj4BbHp7JDkZqTQf/Sq+DdqQlZbErk8nF9Cr3mkQ1TsNQhgMRF0+xqX1v5mVbePsTvNRL3PkZ3lT99o9R1K1bR+EQc/5NT8Qc/WUmY6VvROtx83C3t2HjIRojv/+ETnaNKztnWg94V3cqtTm9rEdnP87L0pM5eZdqd1rFCDITE7g5NK5ZKenUL3TIHTZmdw5tv2/XMYyQ50W7Rk0eQYqlYrj2/5hzyrzbae6PP4Mzbv2A0Cl1uAdUI3Zo7tibWvHqNc+wsnNAyEEx7au5uC65QA07tiLXk9NwTugGt++8hRhNyxHmXFy82T4S+/x++wXAOj2xARa9x6KwWBg3Y9zuX76sJmOnaMzY976DDdvPxJjIlj2yRto01Kxd3Lh6VmfE1C7ASd3rmftD5+YdJp26UP3kc+CEKTEx7J8/iwyUpJoP2AU2VlaTu5Y95+vZVmge89efPLZ56jUapYt/p2vv5hvJjP9pVcYPnIUABqNhtp16lI7sDLajAw2btuJtY0NGo2G9Wv/Ye5HcqSt2XM+pk+//mRnZxMSfIvpz08iJdk8zrmPjy9ffvc9T44YBsDLr73BU2PHYdDrmfnGq+yxsPWYq5sbvy1eRkCVqoTeuc2EsU+RnJSEm7s7vy/7k2bNW7Dij6XMeE2OJOXo6MjG7btM+n7+/qxa8Sdvz3iDZyc/T0Z6BsuXLfnvF1Oh1Cmrnk2tEKKpMRpQNvB8SQqSJA0AJgMdhRB1jTrLJUnyzSfmLUlS3yKKOGCsM/fzaBmaSFBzIFxcAie/Aa9GsnFYmLCDcHqB/AneDskhsqFZnH56DFz+E5ItxMLNj38HiDopH9t7yWWc/EYus+YguY7CBHSGpFtw4iv5b0BnOd+gg5BdcGtrIQWVbBCfWwinv4P0aPBvK5+KOp13XN6RVDQZMY3DP73Dzk+eo3Lzbjj5VDETu7F7NXvmTWXPvKlc2rCQuJsXyMmQ4yDfPr6dQz++babjWbMJlRq1Z/fcKez6dBI3dq+22IRaXYcRclgOJefkU4XKzbuy65NJHP7xbZqMmC6/tBSids8niL1+hh1zJhB7/Qy1e8pRtvS6bK5sXsyFdQVX/UoqFY2HTeHgd2+ye+4UkiNuUb3TILn9R7dRo/Pge7hoZRdJpWLo1Fn89r+pzH9+KE279ME7oLqZ3L6/F/PlCyP58oWRbF70DbcunkKbloJBr2fjr/OZ//xQvnt1DO0HjDLpR92+yZI5rxB80fzlID+dhz7N8a3yPpveAdVp2rkP858fxq/vTmXYtFlIKvP73f2JCdw8e5zPnhvEzbPH6TZCDjWak53NtqUL2PjbFwXkVSo1gyfP4MeZz/LFtBFEhlynw0DZmDqxYy0dBz157xevDKJSqfjsi695Ythg2rdsyrART1Cnbl0zue++/pKu7dvQtX0bPnzvXQ4fPEBSYiJZWVkM6d+HLu1a06Vda3r07EXLVnK8+b27d9OhVXM6t21F0I0bvPLaGxbbMOWFF1m6SH6hqVO3LkOHj6BDq2aMGDqIeV9+g8rC/X7p1dfZv3cPrZs2ZP/ePbz86usAZGVm8smH7/Pe2wWjP6WlpZna37V9G0Lv3GHjevll4o8li3luinmoXIWySVk1NvNzAKh5F3IzgDeEEHEAQojTwGJgWj6ZecA7972FDwOnyqCNh8xEEHqIvQAe9YrX8W4MMedL1tfGgjau5DZ4NoAEY9h4j3pyGUIvl6mNl+sojEfdPE9k9Om8Og05kHJbNjrzIxn/UVvLabUNZKXk6WQmyd7Qco571Tqkx0aQER+F0OsIO72XSo3aFatTuUU3wk7vNaXjgy6aDM/8VOs4gOs7V2LQ5wCQnWbu9QDwa9KR6Cvyy0WlRu0IO70Xgz6HjIRo0mMjcK9ax0ynUsN23D4uv6fdPr7T1GZ9dhbxty5hyMkupCEZb7ctAFa2DmQmx8s6OVlkJETjVsW8nvJGldoNiYsIJSEqHL1Ox9n9W2nQrmuxOs269uHMXvllIDUxjvCgqwBkaTOIuXMLF09vAGJCg4kNL+FFEmjUoSdXTx4CoEG7rpzdvxW9LofE6HDiIkKpUruhmU79tt04uXM9ACd3rqdBu24A5GRpCbl8Bl12VkEFSb7f1rZ2ANjYO5ISH2vUySQxOoIAC/WUN5q3bEXwrSBuhwSTk5PDP6tX0bf/wGJ1ho0Yyd+r8kY30tPTAbCyskJjZUVuaOq9u3ei1+sBOHniOJX8LTyXgYGDh7Jrhzxq0Lf/QP5ZvYrs7Gzu3A4h+FYQzVuaB9zr138gK/6QR7ZW/LGMfgPkF8OMjAyOHTlMVmaWmU4u1WvUwMvLmyOHDgKg1WoJvXOb5i2UqJHlgTJtbEqSpAH6Ig+pA9hJknQ29wN8kE+8AVD41f2kMT+XI0CWJEndLFTXKX/ZkiTVsNCeSZIknZQk6WRsUsa//Vr/DhtnyMpnFGSlgLVz0fIqK3nYPO7Sv9MvjK2b7CEV8kMM60LlZafIdRTG2hGy04wyaWBlFqW0IMIAN9dDi+nQZgY4eMtD/rmkhoNz4N23u4xi6+KBNinWlNYmxWHr4lmkvNrKBp+6LQk/d7DEsh29/PGo0ZAur3xNpxfm4VrFPA64vbsP2do0k0Fq6+JZsD3Jcdi6mIeytHFyIyslAYCslARsnFyLbYsw6Dn717f0mPkjfT9YjpNPFUKObjOdT7xzA48a5d/4cPbwJikub2/P5LgYXDx8ipS3srGlTosOXDhkPgDj5u2HX4263Ll6wYKmZdx8/NGmpaDXyffbxcOH5NjofO2JxtnD20zPydWd1ET5RTU1MQ5HF/di6zHodaz57iNe+3417y7biU+V6hzf/o/pfOiNS1Rr0Pyu211WqeTnR3hYmCkdER5OJT+/IuXt7Ozo0bMXG9blXSuVSsXew8e4GhzKvt27OHXyhJnek08/w67t28zyq1QNJCkpkezs7Htqj5e3N9HR8v/T6OgoPL0sjK4VwbARI/nn71UF8s6ePk3b9h3uugyFR5eyamzaGY3Jk8AdIHdCmTb/UDfwvxLKkZBn/uVnDpa9m4WH0YMKCwghfhZCtBRCtPRytb+X7/OAKPzV8uFRB1LuGIfQ/4V+YawdISc9L21hxPyeyisKSQWVWsPp7+HYXEiLgipd8s7npION03+v51FHsnSBi76+vg3bEh98yaInszAqtRprO0f2ffkSF9f9Sutx5kPtts4eBTyeFptzH5BUaqp1HMCez6ax5X9PkhwRTJ1eI03ns9OSLBq15Q3JwgXO9VRZon6bLoRcPos2LaVAvrWtHWPf/pz1P88jS5tehLY5zu6epCcn5muPJan/3r9Vag3t+j/BV9NH8uGYnkQG36D7ExNN59OSEnD2uHsDpqxyr/f7sX79OXb0CEmJeffIYDDQtX0bGtWpQbOWrahbv34BnVffmIFer2PVyj/NyvPx9SU+Lm80y1J7KKY9/4Zhw0ewZlXBeeexsbH4Vqp0X+tRKB3KqrGZ36h8QQhReOzNEpeBFoXymhvzTQghdgO2QNma/JeVAjb5IhbZOEN2MYaFV74h9H+jXxi9TvaWFlWetTNkWSgvO002VMFosKYVX4+D8cGTKXvHiLsIzgF551Ua86H3ckhmUhx2rnk/unaunqbhZUtUbt6lwBB6cWiT4og4Lw+XJt65hhAGrB0KRsPS52Sh0lgV0CnQHhfL7clKTcTGWfZu2Ti7k5WaVGxbXCrLAwjp8ZEAhJ/dh3u1vB9NlcYKfeGh2HJIclw0rp5508tdPL1JSYgpUr5p5z6c2belQJ5KrWHs219wZu9mLh7eVYSmZXKystBYW5vSSXHRuHjleVZdPH1Mw935SU1KwMlN9rg7uXmSlpxQbD1+1eUpEfFRshft3IFtVK3XxHTeytqGnOzMe2p7WSQiPBz/ynnD237+/kRFRhYpb8lQyyUlOZlDB/bTo2dvU96oJ8fQu09fJk8YZ1EnU6vFxta22PZEWmhPbEwMPj7y/1MfH1/iYs3/T1iiQcNGqNUazp09UyDf1taGzMzyf78rAmXV2Pw3fAbMlSTJA0CSpKbAOOB7C7IfAW8+tJbdD1LDwc5DHs6W1PLinPirlmXVNuASCPFX/p2+JbRx8oryXOKvymVIarlMOw9IDTPXi78KPsZhMZ/mJdeZnQL23mBl9By71oCMfA80Ow950VA5J/HONRy9/LF390FSa6jcvCuRF49alNXY2uNZozGRF8xXC1si4sJhvGo1BeQhdZXaiuz0gvM202LDsHfPMzYiLx6lcvOuqNRW2Lv74OjlT8Lta2ZlR108StXWPQGo2ronkRePFNuWzKQ4nH2qmIxd7zrNSY0ONZ139K5MSmTIXX2vskzo9Ut4+lXBzccftUZD0859uHx0n0VZW3tHqjdqwaUjewvkP/HybGJCb7H/n6X3XH9s+G3cfPKGTS8f3UfTzn1Qa6xw8/HH068Kd65fNNO7fHQvLXvK8/Za9hzE5aN7iq0nJT4GnyrVcXB2A6B2s3bEhOZtAuLpX5WoELNBpXLHmVMnqV6jJlWqBmJlZcXQ4SPYsnmjRVknZ2fad+jElk0bTHkenp44u8h9xtbWli7dunPjutwfu/fsxYuvvsZTI4ej1Voe2Qq6eYMqVaqa0ls2b2To8BFYW1tTpWog1WvU5LSFYfktmzcy6qkxAIx6agyb87WpOB4f8QRrVpsbyzVq1uLK5Ut3VYbCo02Z3Pro3yCEWC9Jkj9wWJIkAaQCY4QQZq9nQojNkiQVfiXrZBy6z2WOEMLyMt1SwQA3N0LDZ/K2Lsowej4qGSdyRxofDp715W2IDDl3p+9RD2oOACsHaDgW0iLh4uJC1eeANgFs3WWvY0YMxF6Eli/J8zhvbsA0zFZrCEQel7dQCt0P9UaBb3PITJa3Psql9WuyYaxSg2c9uLBINizv7IYmz4LBAFlJcO3vPB3nqnC7+B+08oAwGDj39wI6TPkYVCpuH91OapS8yCOwQ38AQg5tAsCvcQdirp0y8wC2HDsTr5qNsXZ0oc/7y7iyZSm3j27j9tFtNH/yVXrM/AmDLodTf8wzq1+fnUV6fCQOnn6kx0WQGnWbsDP76THrZ4Rez7nV38nza4Fmo14m+NAmkkJvcH3nSlqNf5uqbfuQkRjD8d8/MpXZ+3+LsbJ1QKXR4Ne4HYe+n0Vq9B2ubPuDzi/Ox2DQkZEQw+k/8raA8ahWn6tbl93fi/sIYjDoWfvDJzw35wd566Pta4m+IxtdbfuNAODoZnm+W8P23bl++gg5WXmGRGD9ZrToMZDI4Ou88u1KALYs/parJw/SsF13Bk+ZiaOLGxNmf0fErWv8+u6UAvXnZGmJjwzDo1IA8ZGhRN8J4tyB7bzx0z/o9Xr++eFjhEG+38Nfeo+jm1cRduMye1YtZMxb82jVewhJsVEs/fh1U5lv/b4ZW3tH1BorGrTrxi9vP09M6C12LP+JKZ8txKDXkRgTycov3s33PZqyY/mPD+AKP1ro9XpmvPYyq9ZuQK1Ws3zpYq5dkZ0D4yY+C8Ci334FYMDAwezZvZOMjLx1Aj4+viz4+VfUajUqlYq1a/5m+1bZ0z3386+wsbHh7/Xy8+HkieO8/tILBerPyMggJPgW1apXJ/jWLa5ducK6NX9z+ORZ9Dodb776Egbj/f7qux9Y9NsvnD1zmq+/mM/CJX/w1NhxhIeFMv7pvN0Dzly6hpOTE1bW1vQbMJDhgwdw7arsXBg8bDijHjffWaJ123Z89slHZvkKZQ+puHkgCv+elnUriZM/TyxZsDzhUU9eCR5SSrtCOVSCyh3g2sN/B/jnb/O3/PJOpcbtca1ciyubF5cs/ABw8a9BzW7DOLXM3Bh+0By+EVWyUDmjYbvu+Neqx7YlC0oWfgD4Va9L52FPs2K++RziB83C/eZe+vJO/4GDaNKsOR9/MLtU6m/UuAlTX3iJKc9NeOh1J6Rnncrdc1vh/lBhPJsKD4H4K3nD26WBlX3pGboVkMjzh7G2v4cdC+4z1o4uXNmsbPj8sLh4ZDf2zi4lCz4gHFxcS83QrYhs2rAeN/fSW3zn4eHJxx++X2r1K9xfFM/mA6JCejYrMBXRs1mRqYiezYpMRfRsVmQUz+b9R/FsPiC0qVlcPHi9tJuh8JDo1cDyxsgK5ZNh31SMEJkKMik/jS/tJig8RJwn/17aTSh3VKTV6AoKCgoKCgoKCg8ZxdhUUFBQUFBQUFB4YCjGpoKCgoKCgoKCwgNDMTYVFBQUFBQUFBQeGI/kAiFJktKEEI7G437A10APYAKQBlQDOgDWxuPcpYJzkGOlzwd8kHcRPwi8CDwBtBRCTM9Xz17gdSHESUmSQpA3etcbT+8XQrwoSdIioBdQXQiRJUmSJ3BSCBH4QL78f8C//xScajZHl5HMzV9eL1KuUq/xONZohtBlEbbhezKj5QgdjtWbUKnXeJBUJJ7bRdyRdQB4dxqBW9Me6DLkOMvRe/8kLeiMWbkaB1f8+k3mzqq5AHi2G4Jbk+4gDERu/5204HNmOmpbBwKGvoKVixc5ybHc+edLDJnpxep7dxmFW6POqGwduTJ/rKks9xaPYcjJIun83n9x9coeNl3Go67SGKFNRbv6f0XKWbcfjSagEUKXTdbehRji7wCgrtwQm/ajQZLIuXqAnHPyps/WLQahqdsZoZXDi2afWIM+9IJZuZKdCzadnyFz2zcAWDXth1WdjiAEWYeXow+zEPnDxgHbHpNROXliSI0jc+ePkJ1RrL51q6FoarVHsrEn/fdppqKsGnRH5GShu37oX1y9ssdvv/3GgAEDiImJoVGjRkXKff311/Tr14+MjAzGjRvHmTNyX33sscf4+uuvUavV/Prrr8ydO9ekM336dKZPn45Op2PTpk3MmDHDrFxfX19++eUXBg4cCMDMmTOZOHEier2eF198ke3bzRdNubm5sXLlSgIDAwkJCeGJJ54gKSmpWP05c+YwduxY3NzccHJyMpU1bdo00tPTWbRo0T1fu7KIbZfxqKs0QWhTyCimf9u0f9LUvzP3/lagf9u2f9LUv7PPbQbAusVgrPL176wTfxfZv207j0O77WtZr2k/rOp0AiHIPPxHkf3brsfzpv6t3fmDqX8XpW/dahhWxv6d9vtUU1Fy/85Gd/3gv7h6Co8aj7RnU5KkHsC3QB8hxJ3cfCHENCFEU6AfEJQbJx04AKwCZggh6gD1gK2AU+Gyi6BbvpjrL+bL1yMbuo80ief3ErLi42JlHGs0w9rdlxs/vkj45p/x6yNHo0CS8HtsIiErP+bmz6/gUr8DNp7+Jr2445sI+u1Ngn5706KhCeDRZgCJZ+WYyzae/rjUb8/NX14lZMVH+PWZCJJkpuPZbghpIRe48eNLpIVcwKvdkBL1U2+cIuj3Webf/9wePFr2LfE6lRdyrh0ic/OXxcqoAxqhcvYhY+Ussg4swabT0/IJScKm41Not3xJxqp30dRsg+RaKa/sCzvQrnkf7Zr3Lf4QAVg17k3O1f1yca6V0NRoTcaq/6Hd8iU2HcdYvN/WTfuiD79CxspZ6MOvYN20X4n6utvn0P4zx/z7Xz2IVcOeJV+ocsKiRYvo06dPsTJ9+/alVq1a1KpVi0mTJvHDDz8AoFKpWLBgAX379qV+/fqMHj2aevXqAdC1a1cGDx5M48aNadiwIfPnz7dY9quvvsovv/wCQL169Rg1ahQNGjSgT58+fP/996hU5j8nM2fOZNeuXdSuXZtdu3Yxc+bMEvU3bNhA69atzcpauHAhL774oll+eSXn2iG0m78oVia3f6evfIvMA4ux7WR8+ZYkbDuOIWPLl6SvegdNzTaoXPPCjWZf2E7GmtlkrJldZP+2btybnKtySFSVqx+aGm1IX/UuGVu+wLbj0xb7t03TfujDr5C+8q0C/bs4fd3ts2T886H59796EOuGPUq+UAplgkfW2JQkqRPwC9BfCHG3wXCnAYuFEEcAhMxqIcR/DZb9FfCKJEmPpCc4l4zQK+gz04qVca7dkqQLsoGgjbiB2tYBjYMrdn41yUqMIicpBmHQk3z5ME61Wt1T/S512pB26ywATrVakXz5MEKvIyc5lqzEKOz8alpoTyuSzssPtKTz+3Cu3apEfW3EDXTpSWZlCV02Ocmx2FWqcU/tLqsYoq4jstKLldEENkV3Q46Jboi5hWRtj2TngsqrOobkGERqHBj06IKOowlsdk/1a6q1QB960VhPM3RBx8GgQ6TGYUiOQeVV3VynajN01+X26K4fNtVZnL4h5hZCm2xWFvpsRGocKq9q99TussqBAwdISEgoVmbw4MEsWSJvdH/s2DFcXV3x9fWldevW3Lx5k+DgYHJyclixYgWDB8vhAadMmcKnn35KdnY2ALGxhSP1yjz++ONs3brVVM+KFSvIzs4mJCSEmzdvWjQQBw8ezOLFcoSpxYsXM2TIkBL1jx07RlSU+T6mWq2WkJAQWrW6t+dSWUV/V/27GTnF9u9YY/8+hiaw6T3Vr6nWEp2pfzdFF3Tsrvp3jnGkIef6IawCm5eoX1z/NqTGV5j+Xd55VI1NG2AdMEQIcfUe9BoCp4o5P1KSpLO5H6Dwpq178p1/JV/+HeTh+KfvoS2PJBpHd3JS4kzpnNR4NE7uWDm5k5MSb8rXpcZj5eRuSnu0eIyaz87Dv/8UVLYOZuVauXihz0xH6HVyunB5KQkFyjO1x8HFZDjq0pPQGCPS3K1+YbSRQdgH1CtRrqIg2bthSMszUAzpiUgOrkgOroj0vHxhzM/FqkF37B6fjU2X8WBtHhVKcvKUfwgN8v2WHFwRaUWXZ9Kzczb9sAhtMpKd0z3pF0YfF4Lat1aJchUFf39/QkNDTemwsDD8/f2LzAeoXbs2nTp14ujRo+zdu5eWLc33sg4MDCQxMdFkkBZXXn58fHxMhmNUVBTe3t73pF+YkydP0qlTpxLlKgoqe7cC/caQnoDk4IbKwRVDeuF+72ZKWzfogf3j72N71/3b/Dmiuqf+fXf6hTHEhaD2rV2inMKjz6PqqcsBDgMTgZfuY7krLczZzE83IUQclvkYWA9sKqpwSZImAZMAKrmUYtjGYpAsDH3IU1uLyof409uJObgaBHh3GUmlHmMJ3/RDAUmNo5tpTqexoqKKu9uG/it9XUYKNh5+JQtWFCzeb7B4v43XN+fyXrJPbwAB1q2GYNNuJFn7Cm5yLNm7IDJTiy/v3hr6r7SENhWVq+9/rLv8YKl/CyGKzAfQaDS4ubnRtm1bWrVqxV9//UX16gW9VpUqVSrg8SyuvP/SzpKIiYmhbt26d11PucditynieW68vjmX95B9er2xfw/Ftt1IMh/Z/p2CKt/0HoWyy6Pq2TQgL+hpJUmS+eS8orkEtHgQDRJC3ATOGttVlMzPQoiWQoiWbg42D6IZ/5mc1HisnD1NaSsnD3Spicb8vDi4GicPclITAdCnJxsfVILEs7uw8zMfpha6bFQaq7x6UgqV5+xOTpr5EKAuPRmN8Q1X4+BqMljvVr8wksYKgy67RLmKgkhPQOWY5xFWObgh0pOMnsO8fMnBDZGRJOtoU0z3O+fKfsvDWLocJHXe/RbpiUiOhcqzNNVBm4JkJ8fXluxcTIsU7la/MJJaA7qcEuUqCmFhYQQEBJjSlStXJiIiosj8XJ01a9YAcOLECQwGA56engXK1Wq12NrallhPYaKjo/H1lV8GfH19iYmJuSf9wtja2qLVakuUqygYCvUblYM7Ij3J6Dks1O8t9u99RfZvCvRv8+eI4Z76993pm6G2QijP83LBo2psIoTIAAYAT0mSdLdBxr8DnpEkqU1uhiRJYyRJul+uj4+Aopd5lwFSrp/EtVFnAOz8aqHPykCXnoQ2Iggbt0pYuXghqdS41G9P6o2TACZjEMC5dmsyY0PNys1KiMTKxcuUTr1xEpf67ZHUGqxcvLBxq4Q24qZ5e26cxLVxFwBcG3ch5fqJe9IvjI17JbIstK+iogs5h6ZWewBU3tUR2RkIbTKG2GBULj5ITp6gUqOp0Rr97bMAph8LAE215hgSw83KNSRHybpG9LfPoqnRGlQaJCdPVC4+GGJvmbfn9lk0teX2aGq3R3f7zD3pF0Zy8bXYvorK+vXrGTtWXiTSpk0bkpOTiYqK4sSJE9SqVYvAwECsrKwYNWoU69evB2Dt2rV0794dgFq1amFtbU1cXMEBnuvXrxMYumiVZgABAABJREFUGFignlGjRmFtbU1gYCC1atXi+PHjFtvzzDPPAPDMM8+wbt26e9IvTO3atbl48eK9X5hyii7kLFZ31b/boLvH/q3K1791t8+iqdHmLvr3GaxqdwDAqnYHU/++W/3CqFx8lP5dTnhUh9EBEEIkSJLUB9gvSVJRw9v55aMlSRoFzJckyRvZQ7ofWHOXVe6RJCl366PzQoix+U8KIS5JknQaaH733+LhUXnwSzhUrY/Gzok6038g5sBfJJ7bg1uzXgAkntlBWtAZnGo2p/aUbzDkZBO28XtZWRiI2L6QwFFvI6lUJJ7bQ1ZcGAC+3cdg6xMICLKTYonY8rNZ3SIni+ykaKzdfMhOjCYrLoyUK0eoNekLhMFAxLbfTMM4fv0mk3B6B5lRt4g7spaAoa/g1qQ7OSlxhK6RV18Wp+/T7SlcG3REZWVNnek/kHhuNzEHVgFgX7kOMQdWP8Cr/Ohg030Sar86SLaO2D85j+xT69BdO4imnmy8667sQx96HnWVRtiP+sS09REAwkDWoT+w6/sKqFTkXDuIIVH2LFm3HYHKIwCEQKTFk7V/iXnlumwMKbFIzt6IlBgMiRHobp3A/okPwWAg69Ay0/2y6fwMOZf3Yoi7TfbZzdj2nIJV3U4Y0hLI3ClPxyhO37rNcPmHSmON/ZPz0F07QPYp2VBS+9Y0HZd3li9fTteuXfH09CQ0NJT33nuPhQsXMnnyZAB++uknNm/eTL9+/bh58yYZGRmMHy/H9Nbr9UyfPp1t27ahVqtZuHAhly9fBuRV3gsXLuTChQtkZ2ebjMP8ZGRkEBQURI0aNQgKCuLy5cv89ddfXL58GZ1Ox7Rp0zAYDAD88ssv/Pjjj5w6dYpPP/2Uv/76i4kTJ3Lnzh1GjBgBUKz+3LlzefLJJ7G3tyc0NJRff/2V999/H4AOHTqYjss7tt0nm/q3w5PzyT61jpxrB7Cq1xWAnCt70Yeex1ClMQ6jPjVufZTXvzMPLcO+76tm/dum7QhUHlWM/TuOzCL7d4xZ/3Z4Yg4Y5LLz+vc4Y/8OIevsZux6TsGhbicMafHy1kdQvH6bEab+7fDkfHKuHSD7lPxSovatVWH6d3lHupd5Ngp3TwN/d7FyWsXZlgXAqXYr7CpVJ2bfylKp39YnEM/WAwjb8N1DrzvQ82531yo/qAObofYMJPvkP6VSv8qjClaNe5O159eHXrfT5IUPvc7SZsiQIbRo0YJ33323VOpv2rQpr776qslz+zBJ+Wn8Q6+ztNEENkflWbVU+7d1495klkL/dp78+ykhhPlKOYV/zSPt2VQoW6ReP4HGrvSMLrWdE9H7S8fQrYjoQ84g2TiWWv2SrSPZJ0rnh7AisnbtWjw8PEoWfEB4enqWmqFbEdGFnMbKxnznkYeFZOtIltK/yw2KsalwX0k8t7vU6k4Psbw5scKDQ3ftQKnVrQ+/XGp1V1R+++23Uqt7586dpVZ3RSVH6d8K9wnF2HxABMUkM+TrbaXdDIWHREN/t5KFFMoNy6cokU0qEk4NKpd2ExQUyjSP7Gp0BQUFBQUFBQWFso9ibCooKCgoKCgoKDwwFGNTQUFBQUFBQUHhgaEYmwoKCgoKCgoKCg8MZYFQOeTdj+bStUdvtNoMZrw4lUsXzpnJtO3Ymbfem4OVtRUXz53lrVemo9fri9UfP3kqTzw5FoHg2pXLzHhpKtlZWWZlj5s0haTERNauWoGLqxtf//w7lQOqEBZ6hxefG0dKcpKZTuduPXhnzlzUajV//bGEn779EqBY/Tr1GzBn3lc4OjphEAaGPtaN7KwsFq9axwvPPmOxnvLIs2+8R4uO3cjK1PLNe69z6+olM5lGrdox7uW30VhZEXTlIt998CYG4/0uSn/A6PH0GjoKSZLY8c8KNiy3vLfkwCcnkJqcxN5Na3B0duH1T7/D268yMRFhzJsxjfTUFDOdZu278Ozr/0P1f/bOOjyqo4vD72SjEHfDvbgUd3d32gItXmgLHzVKW1poC8XaUqBuQAUoDsXdNbgGCHF3z+Z+f8xms8luQmjR5L7Pk2f3zp3fzOy92dlzz8jRaNi1/i/W/SI3fy5MX65KdSa+9ymlStuiZGcz/cU+ZGak89HylXz+1iST9RRHGgx6Fe+ajdFmpnP8t8+JDTSOrOVRtR71+o/HzNyc2Hs3ObFyAUp2NnYeZWj64ps4lanMhc0/c223LhiCkxtNR76Ntb0TZCvcOrKVG/tMbztTrV1/0lMSuXtiF5al7GjxykxKu3iQHB3O4R9mk5maZKTxeu55GgyahBBm+B/9h6s7/wQoUF/a2YPuH/xEYriMBhZ19yqn//gSgHavfc7h7z82WU+xpEJ3cKoC2Zlwcz0khxrncagA5buA0EByCNzcCGSDjStU7ge2XhCwB0KO5Gq8moJHQxACws5A6DHT9Xs1g6wUiDwP5jZQbTBYOUJ6HFz7C7RpxhrHylCxOyAg/CwE61a1F6S3coT6UyBVF7slKQj8N8v3NUcWXI/KM8MT92wKIRQhxAqDY3MhRKQQYotBWl8hxAUhxDUhxEUhRF+Dc78IIe4IIfx05z80OLdfCNFI9/6uEMJV9369Lv8tIUS87r2fEGKvEGKegb6cEOK2EMJRV9Z1IcR5IcQRIUS1R3xp/hVtOnSifIVKdGhan5nTX+ejzxcZ5RFCMP+r5bw+fjTd2zQjOCiQ/kOGF6r38PTipTET6NulLd3bNENjpqFn3wFGZWs0GgYOe4HN6+SP2PgpUzl26AAdmzXg2KEDjJ8y1UhjZmbGrLkLeWX4QLq2akzPfgOoXLVaoXqNRsPCpd/x/ptT6damKSP69SArU8bI3rDmT0aMHvMQrubTT8MWbfEqW4GJfdqybM4MJrz7iVEeIQSvf7SQhe9O4fXBXYgMDaJ9zwGF6stWqkqnfkN586U+vDG0G41atcerTHmjss00Gjr0GcTB7TLix4DRE7lw8iiT+rbjwsmjDBg9yVhjZsb4tz/m4ymjmDKgE6269sa3QuVC9WYaDVPnLOabT97jtUGdmTluKFpdTPT9W9fTbfCL//1iPgN41WyMnbsPW2aN5OSqxTQa+rpxJiFoMvItjv40h3/mjCU5JpwKTTsDkJGcyJk1S7m2Z00eSbZWy7m/v2Hbx6+wc/4UqrTug71nWeOizcyo2LwrAaf2APBcl6GEXT/HllmjCLt+jue6DDXRHDMaDpnC/q9nsG32K5Rr1E5fdmH6pKgQtn82ge2fTdAbmgB3T+yiSpveD37xnkWcqoCNC5z9Em5tgkq9TGQSUKU/XF8DfkshPR7c68lTWalwZysEH8krKeUuDc0L38G5ZeBcFaydjUoGM/CoD5G6beV8WkHcbdmeuNvg28p0eyr2hMsr4NzX4FYbbNzur0+LgfPL5V+OoQkQcR68Ghfteqk8tTxxYxNIBmoJIWx0x50AfTBUIURdYAHQR1GU6kBvZDjKOgZlvKkoSj2gHjI2eoXCKlQUpZ8u/xjgkKIo9XTHPYA+QogauqxfAu8rihKnOx6hKEpd4Fdg/r/7uI+Wjl17sH7NHwD4nTmNvb0Dbu4eefI4OTuTkZHB3dv+ABw5sI8uPXrfV2+u0WBtbYNGo8G6lA0RYWFG9Tdr2YbLF87rvaQdu3Zn3V+/A7Dur9/p1K2HkaZug4YE3LlNYMBdMjMz2bphHR279ihU37Jte65fucy1KzJOclxsrD7c3Z4d/9Crn7EhXBxp3LYz+7fIaKw3Lp6jtJ0dTq5uefLYOTiRmZlByL07AJw/cZhmHboVqvetUJkbF8+RkZZGtlbL5TMnaNq+i1H9dZ5vzu2rl/Ve0sZtOrFviwwXum/LWpq07WSkqVKrHqFBAYQHB5KVlcnhHZtp0rZzofr6TVtx9+Y17t68CkBifJz+fp88sItWXUqG8eFbpzl3T+wCIPruVSxL2WJtn9dIsCptT3ZmJokRshsNu3qGMvXkj3p6UhwxAdf19yuHtIQYvYc0Kz2VhLB7lHJ0JT8e1eoTc+8miu7a+9Rpzp3jOwG4c3wnvnVbGGmcy1cjKTKE5OhQsrVZ3DuzX5+vKPr8BF04RrlG7e6br1jgXB0i/OT7pCAwtwaLfIEUzG0gOwvSouVxnD+4PCffZyZDUggo2Xk1Nm6yvOxMIBvi7+ZqDHGsAEmhMg+AS3WIkPHOiTgHLjWMNXa+0nBMjwVFKw1V5+pF1+cn5hq41r5/PpWnmqfB2AT4B2noAQwD/jA4Nx34VFGUOwC618+AN02UY617Tf43jVAUJRWYBiwTQnQD7BRFWWUi60Gg8r+p41Hj4eVFaLDeVicsNAQPL+88eWKiozE3N6dW3foAdO3VBy8fn0L14WGh/LB8CQfPXuLYhRskJiRw+IDxBu4NGzfh0gU//bGrmxuREeEAREaE45LPEALw8PQmNMSgzpBgPDy9CtVXqFQZRVH4+c91bNx1kLGv5np4EuLjsLS0wtGp+O996ezuQVR4iP44OiIMZzfPPHkS4mLQmJtTqYbssJt16I6rh1eh+nv+13muQWPsHByxtLamQct2eo0h1es1wv9q7mb6ji5uxEZFAhAbFYmDs7HB4uzmQVSYYZ2hOOseaArSe5erCIrCh0t/Y+GqLfQbOV6vT05MwMLSEjsHxyJcsWcbG0dXkmMj9ccpsZFGRmF6UjxmGnOcy1YFoEyD1pRyci9yHaWdPXAqU5mou9eMzrlWrElM4E39sbWdE2kJMYA0WK3tHI00pRxdSYmNyNNmGweX++ptXTzp+u43dJi6ELdKtfTpmalJaMwtsCxtX+TP9MxiaS89lTmkJ4BVvs+dlSKHz211/bzLc2DlUHi5KeFgX04aqmYW4FRV1pUfu7JyWD4Hi9KQqZu+kJkkj43abAcZBm3OMGhzYXprJ6g7EWq9LNuWgzYNzMxlW1WeWZ6WOZt/Ah/ohs7rAD8BOf71mkjPpiGngVcNjucLIWYiDcCvFEWJ4F+iKMo2IcQrwG9AywKy9QKMwtUIIcYB4wDMzcS/bcJ/QmBcr6IoRmlvTHiZ9z7+FEsrKw7v34s2S1uo3t7BkY5de9Du+TokxMez5Idf6TNgMBv/Xp0nr5uHJ7du3niwNgsTdWLcZkM0GnMaNmlG/y5tSU1NZcXaTVy64MexQwcAiI6KxN3Ti7jY2Adqy7OGqfuFiWu38N3XeGX6+5hbWOJ3/JDe81yQPuiOP+t/+YZZy1aSlprM3RtX9RpDnF3dCLptPGew0DabuN+Y+B81xEyjoUa955n+Ym/S01L5+Jvf8b96kQsnjwIQHxONs5sHicV9nq6p74qJa3fkpznUHzgRjbkFoVfPoGQb3ztTmFtZ03Lch5xdu4ystBSj8zYOLiSE3XvQRj9gfkhNiGHjzBFkJCfgVKYKrSZ8xLbZY/RtSkuMw8bBhYzk4j5Pt4jflRtroHw3MNNIz2Z+T2Z+UqMg6LCcD6nNgJQw9N5LQyztIDXSOP1htNmQjEQ4vVAO+5f2ghrD5RC8VrcmIDNZtiUr9QHbovK08FQYm4qiXBBClEd6NbflOy0w/vXMn/amoihrhRC2wB4hRHNFUY7+hyYtBWwURbmeL32VECIVuAtMyS9SFOU74DsAawvNfb5dD4cXRo9h8AsjARgzfBBhoSF6LyWAp5c3EWHGE8rPnT7FsD5yKLVlm/ZUqCgdtQXpW7RuS9C9AGKi5VDNjq2bafB8EyNjMy0tFSsrK/1xVGQkbu4eREaE4+buQXSUcccVFhqMl7dBnd4++iH6gvRhoSGcPHqY2BjpFdm/eyc1a9fVG5tWVtakpxa/CeXdBr9I537DAPh4yiiiI8Jw9cj1XLu4exITGW6ku37hLDNeGQxAvaat8CkrZ5oUpt+9cTW7N8r7+8LkN4kON/4/Sk9Lx9LgfsdFR+LkKr2TTq5uxMdEGWmiI8Jw9TSs04uYyIhC9dHhYVw+c4LEOPnwcPbwPipWr6U3Ni2trEhPL373u0rr3lRq0R2AA8veIzU2ktJObuRc1VJObqTGRxvpou9cZc8iOb/Zs0ZD7N3vHwFHmGloOXYWd0/uIcjvsMk82sx0NBaW+uO0xFis7Z2lV9LembTEOCNNSlxkHs+qYZsL0mdnZZKhm5MbG3iTpMhQ7N19ibknH2Q1FpZoM40XJz7zeDaWcykBrq6UHkIrB0jUnbeyl4ZZfhID4ZIulKhjJTnP835EnJV/AGU75vVG5pCdKb2KOWQmy2H8zCTdq4lBxIwEsDTwrFoatLkgvaLNNSSTQ+UwvI2LnAIAsg3ZWff/TCpPLU/LMDrAJqQH84986ZeBRvnSGgBGgVMVRUkC9lOwR7KoZGPyMY8RuvmdfRVFCfyPdTwUVv78A707tKJ3h1ZEhIexZ8c2+g2Sxki9ho1ITEzQD0Mb4uwqh94sLS0ZN+UNfv9NrjQuSB8SHEi9Bo2wtpFDGc1bteHWzfy2OPjfuEG5ChX1x3t2/KNffNR/yHB2b8//LAEXzp2lXMVK+JYth4WFBT369mfPjm2F6g/t20P152phbSPnkDZu3pJbN3KH/Vzd3QkKDHiQS/lM8M/qFUwd1p2pw7oTGxXByQO7aNuzPwBVa9cnOSlRPwxtiIOT/PExt7Ck/6gJbP9bzg4pTJ+jcfX0pmm7rhzcvsmo3KA7t/AskzvkdfLgbtr1HAhAu54DOXlgl5Hm5uXzeJUpj7u3L+bmFrTs0kufryD9uWMHKFelOpbW1phpNNRs2ITA27nDuY4ubkSEBBX5Oj4r3Dy4Sb9IJjU+muCLxyjfRM5jdSlfg8zUZP0wtCFWto4AmJlbUKPTEG4d2myUJz9NXpxOQlgA1/f+XWCehLB72LrlPhgGXzimX3xUoWlngi8YP+PHBFzHzt2H0i6emGnMKduwLUG6fAXprWwdEEL+PJV28cLO3YekqNyHHWt7Z5KjjeeMP/OEncxdJJORCDHXcxf72PpCVlruMLQhOcPRQiMX4YSdun9dORpLBzl3MtJosE56Na0NDNeYa+Aup1/hXh+ijadakBgMNs5yhbnQyAVCMdcK15uXQu8RtXKSdaYZjEpZ2EJa3P0/k8pTy1Ph2dTxExCvKMpFIURbg/QFwBohxF5FUe7qPKAzgIH5CxBCmANNgCWPvrlPJ/t376Rth87sPeEnty56PXe2wQ+r1jBj2hQiwsMYO+l12nXqgpmZGb//+iPHDx8sVH/+7Bm2b9nIxl0H0WqzuHLxAn+t+MWo/gN7d7Hg62/1x98uWcRX3//KoOEvEhIcxJQx0gvr7uHJp4uWMGbEILRaLR+9O52f/1yHRqNhzR8ruXn9WqH6hPg4fvrma9Zv34eCwv7du9i/Wy40qFW3Pn5nTpsc9i1unDm8j4Yt2/HNxgNy66JZuVOZ3//qZ77++G1ioyLoO3IcjVp1wEwItq9dxcVTx+6rf3vBcuwcnMjKyuK7ee+b3Fro7NH9vDE7d8eDdT8v5815S+nYdzBRYSF8/pZcTe7k6s7kD+Yx+7XRZGu1fD/vAz5c+hsaMw27N63WG44F6ZMTE9i06gcWrNiEoiicPbKPM4f3AVCpRm1uXDxntOilOBJy6QReNRvT86Pf0Gakc2JF7jrFNpM+4eSqRaTGR1Oj02C8azdBCDNuHdxM+A0/AKztnejy9jIsrEuhKArV2vVn6+xXcPSpSIUmnYgLvk3Xd78B4Pymnwi9fDJv/ZdP0mzkO/rjKzv/pMUrM6nUvCvJMREc+WE2IIfbG4+YxoFl76FkZ3P6ryW0nTwXYWbG7WPbSQgNKFTvVrkOdXqOJDtbi5Kdzak/viAjRXrHnMtWJfrOVf0ipWJN7A25Ir3BG9LLeMtgO6oaL4D/RmmU+rQAp2pymkXoKYiXiwGxsIW640FjBSjg3TR3eLraULCwkUPut7ea3loo9iZUMVhsGXQIqg0BjwZyLun1v2S6pR1U6iO9sejKq/kSYCa9pzlD8QXpHcpD2fayLUq2XI2e4+m09ZaeW5P+H5VnBWFqvs9jbYAQSYqi2OZLawtMVxSlp+64P/ARYAFkAh8qirJOd+4XoA0QD1gCe4DXFEVRhBD7deWcFkLc1Z3P+Y9djfSm6uspqH5dmr6sonwuawuN4utse/+MxZBlP69k3scfEHDn9hOpf+acuezZ8Y9+SP1xUMun+C9GKoh3FnzLr19+Rmjg3SdS/yvTP+TUwV36IfXHwZCmT+X6wMdCy3Gz8Fv/PUmRwffP/AhoMGgSwReOEX793GOrc9iI5o+trqeO6kPh7k45tP0kqNBNenjjH9/viWg5+4yiKPlHVFX+A0/cs5nf0NSl7UcOh+ccrwPWFaAfVUjZbQ3ely8g2/78Cfnrz1+WSuHMnzMLdw/PJ2Zs3rx29bEamiWd35bMw8nN/YkZm/f8rz9WQ7Okc37DD9g4OD8xYzM+5O5jNTRLPAG7pOfySRmbKRGP1dBUeTQ8cc9mcaUkezZLIiXZs1kSKcmezZJIifZslkBUz+bD52laIKSioqKioqKiolLMeOLD6MUVKwsNVTzvs7GuSrFB9WKXLIa9dP9INyrFh46v/Pikm6Ci8kyjejZVVFRUVFRUVFQeGaqxqaKioqKioqKi8shQjU0VFRUVFRUVFZVHhjpnsxgx9aP5NG7dgbiYaCYO6GQyj62dA1M/no+XbzkyMtJZ/OF0Am7JEHC/bDtCSkoy2VotWq2W14fLbUbf+XwpvuUq6vT2JCUmMHlIN6OynVzdef3DecyaMhqAwS+/Spd+Q8jO1rJ83oecPXrQuD32Drz7+TI8vH0JDwniszcnkZQYX6DeplRp5v+8Vq939fBi39b1fDv/I3oNHUlaagq7Nq75D1fx2WHE9NnUatKaxLgYPh3bz2QeG1t7Xpg+G1fvMmRmpLNqwfuE3pWxzD9auYP01GSytdlka7V8/uoQALq/NInm3QeQpAsNuemnL7ly8pBR2fbOrgyf9hHfzJQb/3ceNoZmXfuTna1l7dLPuHraeDuiUnb2vDxzIc4e3sSEh/Dj7P+RmpRQoN7KphRTF/+m1zu6eXBq9xb+Xj6P1n2GkZGWyvEdG/79RXyWqNgHnKrKEH8XlpnOo7GGSn1lFBYlS276nRphkEFA7fEypOD132WSb3u5ITiKLNt/A2SaCIloYQsVe+fqvFvJKDCKAne3Qby/ifbYQJVBMppMehzcXJ27eXhBepda4NNapmcmwq11kJUCHo0hOwMi/R7wwj2bTJ+9gCZtOhIXE8XYvh1N5rG1d2D67IV4l5H9+YKZ/+PuLRnZbeXOY6QmJ6PN1qLNyuLVIT0AmLlgGb4VKkm9rj+fMKCLUdnOru5M++hzZr46CoBhY16l64BhZGu1LP3sA04fMd5ezs7BkZkLluHhU4bw4EBm/28iSQnxBeptSpVm8YrcXQ3dPLzYvWUdy+fOos/wUaSlpLBjw2qjelSePR7YsymEWCyEeMPgeIcQ4geD44VCiGlCiEu647ZCCEUI0csgzxZd+nohhJ8Q4pYQIl733k8I0VwIsV8Icd0gba1OO0sIEaxLuyKEGGZQrhBCzBRC3BRC3BBC7BNC1NSd2y+EyPONEkK8IYRYJoQoL4RINajLTwjxki7PXSHE3waagbqN5J86dm1cw8yJLxWaZ8iYV/G/doVJg7qw4L2pTHjrozzn3xkzhMlDuukNTYC5b73K5CHdmDykG4f3/MPRvdtNlt3/xTFs/1v+EJWtWIU2XXsxoX9HZk56ickzPsHMzPjfbfDLr+J38ghjerfB7+QRBr8yqVB9akqyvi2Th3QjIjSYI3v+AWDnhr/oM3x00S/YM87xHRtY+u6EQvN0GT6WIP9rfDauPyvmzWDgpHfynP/yfy8zd8JAvaGZw76/VzB3wkDmThho0tAEaD9wJEe2ScPfs2xFGrTtxidj+rDs3QkMfu19hIn73WnoGK6fO87Ho3pw/dxxOg99pVB9emqKvh1zJwwkJjwEv8O7ATi2fT1t+o0o2sUqDkT66SK0FIJPa0gOg4vLZbSZ8vkeCj2b5kZzySH0iMx/8RuIuwG+bUyX7dUcIs7I9zZu0ig8vxSurYAKPdGHG8zTnpaQcBvOfyVffVrdR28m23zlF9mmlHAZLxwg8pxsfwlhx4Y1vDv+hULzDB87Bf9rlxnXvxPz3n2dSe/m7c//N3oQEwZ00RuaAHOmT2LCgC5MGNCFQ7u2cXj3PybLHjhyHNvW6vrzSlVo270PY3q3593xL/DaTNP9+dAxr3LuxBFGdW/FuRNHGDrm1UL1qSnJ+rZMGNCF8JAgDu+S7dm+7k/6vfBy0S+YylPNvxlGPwo0BxAyeK0rUNPgfHPgSD5NEPBe/oIURemnKEo9YAxwSBd3vJ6iKDkukREGaYbhKRfrdH2Ab4UQFrr0V3X111UUpSrwGbBJCGGNjLk+NF8ThpIbi93foK56iqL8ZpCvUY7R+jRz6exJEhPiCs1TtmIVzp+Utyforj8e3r44OrsWuY7WnXuy/5+NJs+16NidM7qn3aZtO3Ng+2YyMzMIDw4kJPAuVWvVM9I0a9eJ3ZukwbJ701qatetcZL132fI4Ortw6awMqZeelkZ4SBBVa9Ut8ud5lvG/eIYUnRe4IDzLVeL6ueMAhAfewdnTBztHl0I1RaVeq45cPXUYgDot2nN2/z9kZWYSHRZMVMg9ylerbaSp07wdJ3bK/58TOzdSp0X7IuvdfMpi5+iC/0Vp8GSmpxETFkK5arUeyud56kkMAG1q4Xls3KRRB5AWJT2K+hjY9tIzGnE2r0abnvvezLLgsp1rQJz0iuNUHaIvgaKVHsu0GLD1MdY4Vc/1REb6yePC9AJAgJmuS9dYyXCMIMM1psdBaRP1FEMunjlBYnxcoXnKVarCuRPyOxh4xx9Pb18cXYren7fp0ot9W0335606dePU4f0AtGjXmf3bNpKZmUGYrj+uVruekaZ5u87s3CBHlnZuWEOL9l2KrPcpWwFHZ1cunjkByP48LDjIZD0qzx7/xtg8gs7YRBqZl4BEIYSTEMIKqAHE5tOcB+KFEKbHdv8liqLcBFKAnB213wamKIqSoju/E2kcjwDWAj11bUQXY90bOFyEqhYg47E/89y+cZXmHboCULVWXdy9fHD18AJAQeGTb1by1R9b6TZguJG2VoPGxEZHEXLvrtE5D58yJCXEk5mZAYCLhweR4SH681Hhobi6exrpHJ1diY2Sw3yxURE46AzfoujbduvDwR2b86TdvHyBWg0a3/c6lBSC/a9Tr6UcgitXrRbOHl44unkAoCgKk+d9x1vL/qJFj4F5dK37DOPd79YxYvpsbGztjcp18fQhJTGBrMxMABxc3ImNCNOfj40Mx8HV3Uhn5+RCQkwUAAkxUdg5OhdZ37Bdd87uz+tVv3fjMpVqNyzaxSgJpIRJoxCkUWblII1MgHJd4d5OwEQgjzIdoP40cK0NgXuNz1s5QlaaNA5BRpTJMHjQyUjIrccQi9KQmSTfZyYZGL4F6JVsuLMF6kyCBtOl8WxoHCeFgH25olyJEoH/9Su07Ci919Vq18PD2xe3nP5cUZj3/e8sW72NHoOMRwBqN2xCbHQkwffuGJ3z9ClDYp7+3IuIsFD9+ciwMP3vhiFOLq7E6PrzmKgIHJ1diqxv16MP+7dvypN24/J5aqv9ebHggY1NRVFCgCwhRFmk0XkMOAE0AxoBF4AME9I5wMwHrG6VwbD2/PwnhRANgJuKokQIIeyB0oqi5J84dBqoqShKNHAS6KpLHwr8peSGUKqUbxi9lUEZq4EGQohCw4YIIcYJIU4LIU5nZGUXlvWJseanZdjaO/D1X//Qe9ho/K9dRqvNAuB/IwcwZWgP3n/1JXoOecnIaGvbrQ8Htpt+CnZ2dSc+Nlp/LEwMqT1ItKqi6Nt06c3+f/J2TnEx0TjrjCkV2PXnD5Syteedb9bSpu8Igm5dI1srDYbFb7zIvImDWTZjIq16D9MbbYc2/cWsl7oxd/wAEqIj6T/hTaNy7Z3dSIrPfaYUwsQQqimjpgCKom/Yrhun923Lk5YYF42Di1uR6yn2hByW8yRrTwDPJnJIXckGR91cz+RQ07rAPXBuEURdlLr8WNhBVrJBwn+73wXqhRl4PC+H9M8ukMPoPgZdcVaybIsKAH/+sBRbewe++XsHfYeP5ta1S/r+/I0X+jFxUDdmTHiR3sNGUrth3vvavnsf9m0roD93cyc+Njc8pemv54N8v++vb9ett1F74mKicXFX+/PiwL9dIJTj3WwOLAJ8dO/jkZ5EIxRFOSSEIJ8Rdz9GKIpy2kT6VCHEWKAiucZjQQhye8GcofSNulfDCSH+uqF5U2iB+cC7gOkJLoCiKN8B3wE4lLJ8KuOApiQnsfiD6frjX7YdITw4EICYyHAA4mOiObp3B9Vq1dMPUZtpNDTv0JXXhvYwLhTISE/D0tJKfxwVHoabh7f+2NXDi2hd+YbExUTh5OpObFQETq7uxOu8XvfTV6haAzNzDbeuXsxTnqWVFRlpaUW7GCWAtJRkVi54X3/80codRIcFARAfLefuJcXFcOHIHspXr43/xTMkxuU+NBzZtpYJc5YalZuZkYaFwf2OiwrHycDz7OTmQXxUpJEuMTYae2dXEmKisHd2JTEupkh6n4rV0Gg0BN68kqc8C0srMjPSUdGhTYfbG3KP678hh55dastFQE5VQJjL4elK/cF/XV591AWoPgKC9uVNz84EM4Ofi4wEsDQIWmFpnzvcbUhmslxYlJmke00uXF9K9z+QrnuQib4M3i1z8wlz2RYVQPbnC2b+T3+8cucxwoJkf57TX8bFRHNk93aq166nH6I202ho2bEbEwd3N1luRlq+/jwsFHfPXE+km6cnUQYjETnERkfh7OpOTFQEzq7uxMVEF0lfsVoNNBpzbl7J159bWpGRrvbnxYF/u/VRzrzN2shh9ONIz6ap+ZqGfIKJuZv/gsWKolQDhgC/CSGsFUVJAJKFEBXz5W0A5PxCbQA66DyiNoqi5Ju8VCgrgNZA2f/W9CdLaTt7zM3lfKiu/Ydx8exJUpKTsLKxwaaUHOKysrGhQbNW+lWNAPWbtCTojr/JDgYgKOA2Ht6++uPjB3bRpmsvLCws8fApg3fZCty45GekO75/Fx17yyHcjr0HcmzfriLp23brw4F8Xk0An3IVCPC/bpReUrEpbYfGXBoJzbsP4NbFM6SlJGNpbYOVTSkALK1tqN6wOSF3bwJylXkOdVt20K9eNyQiKABng4eBC0f30aBtN8wtLHDx9MHNpyx3r1800l08tp8mnfsA0KRzHy4c3VckfcP23Ti91/g5z923HKF3jNtXYtFYg9DI9+4NISFAGqCBu6Xn8twXcGstJNzJNTStnXP1TtUhNcq43LRoOZSeQ+w1ucBHaGS6tTMkBRvrYq+DWz353q2e1BWmz0iUQ+fm8n8Th0p522Pjkm91fcmmtJ095hayP+8+cDgXT58gJTkJa4P+3NrGhobNW+fpzxs2a8W9O/5EhZv2dAcF3MbDJ7c/P7pvF22798HCwhJPnzL4lK3A9Yt+Rrpj+3bRue8gADr3HcTRfTuLpG/fvS97TXhZfctX5M5NtT8vDvwXz+b/gNuKomiBGCGEI3IO51jAZOw+RVF2CiFmI+dK/mcURVknhBgJjAS+RXofvxJCDFIUJVUI0RFoCYzX5U8SQuwHfiJ3YVBR68oUQiwG3gFMTGp68rw9dwl1GjXD3tGJFTtPsGL5Inau/4vug+SKxm1rVlKmQmWmz1lMdraWe7dv8sWHbwHg5OzG+4u/A0Bjbs7+bRs4czR3a4s2XXsbzacxJD01ldCge3iVKUdoYAD3/G9waOcWvl2/B602i2WfziQ7W04teP3DeWxbs4qbVy6w+qdlzJi/nC59hxAZFsIn0+Xq6sL0AK069+SDV0cateO5eo1Y9c0X/+1CPiOMmvE5Veo+j62DI7P/2M22X5dxbPs6WvYcDMDhLavxLFuRF9/+lOxsLWEBt1m18ANAzp0cO+tLADQaDaf3buPqKfmc2Hfs//CtXA1FgZiwYP744iOjujPSUokKCcTVuwxRIYGEBfhz7sAO3vtxE9naLFZ/9QmK7n4Nn/YRh7es5t6Ny+z68wdenrmQZl37ExsRyo+zpwEUqgdo0KYLy2dMMmpHxZr12fbb8od4VZ9iKg8E+/LSEKs/DYL2Q+RZcG8kz0ecBhtX6bEkW6469zc9TJqHMp2kEacoch7l7c3GebIzIS0WrJwhPUaWHX0Z6k6Ww/R3t6IfQKrYG8JPQ3IIhByCKoPBrYEs+4ZuG5uC9JmJ8nPVfBmytVLjvz63HXZl5PkSwIz5X1P3+WY4ODrzx55T/Lp0IdvX/UnPwbI/37J6JWUrVubtz74kW6slwP8mC3WjVk4ubsz6Sm4So9Fo2Lt1g36xD0Dbbr3Zt21DgXWnpaYSEhiAd9nyhNy7S4D/DQ5s38yPm/ai1Wr5ak5ufzzto/lsWb2CG5cv8OcPXzNz0Td07T+UiNBgZk+T/XlheoA2XXoyw8ROKjXrN+K3ZYv+03VUeToQDzKPTi8SQoNcBPSVoigzdWm/AM0URammW3yzRVGUWkKItsB0RVF66vL1Rg5jt1MUZb8uLU8eXdp+wAvIWX4ZpShKRyHELCBJUZQFunwNgd+RC5MU4APgReTQdxgwWVGUiwbl9gPWATUURbmmSysPXAUMH6F+UhTlKyHEXaCRoihRusVFd4CdiqKMKuwaOZSyVJpXMV4QU5xp3r4LlWvU5relC55I/ZWq16Tfi2NZ8N4bj79uNxOLI4o5dVp0oGzV59jy85InUr9v5eq0HzCS3+a9+9jr/nrOgMde5xPHqTqU9oagJ/SsXcpTbr+Uf+j/MVASY6O36NCVqjVr8/NXRsslHguVq9dkwMhxzHv39cde954rwWcURWn02Csuxvwrz6bOm2mfL22Uwfu7QC3d+/3AfoNzm8g3Ozx/Hl1a2wLqnpXv+AxQzSDpI91fQW1fb6L+u4BNAfnLG7xP5yF5ZYsjR/fuwM7B6f4ZHxH2js5PzNAtiVw4sofS9o5PrH5beye2/PJkDN0SSey13OHtJ4FFqSdn6JZAjuzZjr3jE+zPnZz5ZcmTMXRVHj7/yrOpcn9KomezJFMSPZslmRLp2SzBlETPZklG9Ww+fNTY6CoqKioqKioqKo8MNTb6IyI9U4t/eOHRXVSKD+1rqLMrShTqgFCJwte59JNugorKM43q2VRRUVFRUVFRUXlkqMamioqKioqKiorKI0M1NlVUVFRUVFRUVB4ZqrGpoqKioqKioqLyyPhPC4R0EXUCFEX5Qne8AwhUFGWM7nghEAy8bLDB+z6gt6Iom3V5tgALgNeBCsjoQ27IzdMBJgGfkneD91uKogzUbfA+FogELIHZiqL8oSv3F+TG8muFEM7AHuArXf35N3BfpCjKb0KIl4GpyOn/ZsB7iqJs1JXVBhn7PRt4VVGUY//l2j1qPl38Ne06dSU6KpKebZuZzGPv4Mhni7+mTPkKZKSn8+7UV7l57SoAe09dIDkpiWytliytlgFd2posY+TYicTHxbJhzZ84ODrxxbc/41OmLMGB93h93CgS4uOMNK3adeC92fPQaDSsWfUb3329GKBAfa/+gxgz6TW9vtpztejXqTVXL1/kl9UbeW3sSJP1FHe6jn+Pig1akJIQyy9vjjCZx6q0Hd3Gv4ejhy9Zmels/+YTooJu688LYcaLn/5MUmwk6z6X0UeaDxxDnfa9SU2IA+Dgn8u542f8717a0YUu497V65r0eYna7XqhZGez55dF3L1wwkhjXdqeXq/PwcHNi/jIUDZ9+R7pyYkF6i2sSzF81jd6va2zO1cOb2ffb19Qv8tAMtNSuXRg67+7gM8alfqAU1UZX/z8MtN5NNZQuS9YOYGSBbc2yvCOwhxqjZavwgyir+SNf+7ZBDwby2g+sTfg3i7jsi1soVJvuPa7PPZuBR71ZeShO9sg3t9YY24DVQbJkJTpcTKCkDatcL1LLfBtLdMzE+HmOshKke3TZkCk37+7fs8YL7/zKfWatyUhNpqZI3uZzFPK1p5X3v0Ud5+yZKan8+PcGQTfuak/L8zMmPX938RGhfPF2zKaz8RZi/EqW0GntyMlKZEPXu5rVLaDixuj35qt1/V4YRytewwkOzubVV/O4dLJw0aa0nYOTPxoMa6ePkSFBbPsgzdISUooUG9tU5oZS1fp9U5unhzbuYnfl3xKh/4jSE9L5fC2x7+Jv8rD5796NnNipCOEMANckSErczAVKz0IE/HRFUXppyhKPWAMcEhRlHq6v6O6LCMM0gYaSBfrdH2Ab4UQFoblCiEcgB3Ad4qi/KxL9jcoq57O0PTVtauloih1gKbABYOi3tTV8w4yNOZTzbq/fueVYYXvBTjh9f9x9fJFerdvwVtTxjNz9rw8518a0JM+HVsVaGhqNBoGDHuBzevWADBuylSOHTpA5+YNOHboAOOmTDXSmJmZ8eFnCxk7fCDdWzemZ78BVKparVD95nVr6NOxFX06tuLNyeMJDrzH1csyKNTGtX8yfNSYB7o2xYVLB7ay9jPja2xI074jiQi4yS9vv8C2ZR/TflTe/A27DSE65K6R7sy2P/n1nZf49Z2XTBqaAI16DOPCHhkO0cWnPNWbd+Ln6cNZ+9kbdHrlTWSXkJcmfV4i4NIpfpg6iIBLp2jS56VC9ZlpKfp2/PrOSyREhXHz5H4ALu7bTIOug+93mYoPEX5wdWXheXxbQ3IYXFgON9dDhW4yXcmCy7/K9AvLwbEy2OpiX9uXB6dq0oA9vxRCjpou27s5hJ+R723cwLUW+C2FqyugYk/yxcrQaVpC/G3w+0q++rS6j95MtvnyL7KdyeHSyASIOAdeTYt6tZ55Dv+zjoXTC+/ber00gXs3r/L+qN58/8nbjHg9709r50EvERKQ9yFg+aypfPByXz54uS+nD+zk9EETDxZA1yGjObBZ9u3e5SvRpEMP3nupBwunj+GlaR8izIy/3z1eGMfVM8d4Z3gXrp45Ro8XxhWqT0tN1rflg5f7Eh0ezOmDMp76oa1/02nAi0W7WCpPPf/V2DyCzthEGpmXgEQhhJMutGMNZFhLQ84D8UKITv+x7jwoinITSAEMQx7YAv8AvyuKcr8Ayu5AIpCkKy9JUZQ7JvIdBCr/9xY/Wk4fP0p8XP5Ln5fKVatx7JCMf3771k18ypTFxdWtyHU0bdmGKxfPo9VqAejQpTvrV0uvx/rVv9Oxaw8jTZ36DQm4c5vAe3fJzMxk64Z1dOzSo8j6nv0GsmX9Wv3xnh3/0LNfydxgO+iaH2nJCYXmcfGpQMCl0wDEhATg4OZFKQdnAGyd3ajYoDkX9xYc874wqjZux53zxwGo3Kg1147uQpuVSXxkKLFhQXhVfs5IU7lRKy4f3AbA5YPbqNKodZH1jp5lKOXgRNA1PwCyMtJJiAzFs5JxPcWSxADISi08j42bNOoA0qKkR9FCt21PdoZ8FRrp3czZv8njeQg5DIr8HpOVbLps5xoQd0u+d6oOUZekJj0O0mLA1seEpnquJzLSTx4XphcAAsx0PgONFWQk6tqfKfOaqqcYcuP8aZITCt8+z7t8Ja6ckd/B0Hu3cfX0wd7JBQAnNw/qNmvLwS1rC9Q/364bJ3ZvMXmuYZvOXDxxEID6LTtwYs9WsjIziQoNIjw4gIo16hhp6rfswOHtGwA4vH0DDVp1LLLew7ccdo4u3Dgv+6uM9DSiwoKpUKN2oddA5dngPxmbiqKEAFlCiLJIo/MYcAJoBjRCegYzTEjnADMfsLpVQgg/3Z9RDCshRAPgpqIoEQbJi4DDiqIszpe9kkFZfkKIVkgjOBy4I4T4WQhhetwCegEXTZ0QQowTQpwWQpzWZj/9G/Fdu3yJzt3lx6xTvwHevmXw9JYduaLAT39uYN2OAwx5YZRJfcPGTbh8wU9/7OrmRmREOACREeEmDVcPL2/CQoL1x2GhwXh4eRVZ371Pf7ZsyO08E+LjsLS0wtHpyYVVe5qJvHeTqo3bAuBZ6TnsXT2xc5bXtf3IqRxY9TWmoojV7zKIUfNW0nX8e1iVtjM67+DmRVpyItqsTEAaronRuV+9xJgIbJ2N718pB2eS46IBSI6LppS9U5H1NZp34vqx3XnSwm5fw7d6vftdhpJDcpg0CkEaZVYOYJkT3UpAnQnQ6E1pkCbpvoc2LmBXDmqNhZqjZfzz/Fg5QlZarkFqZQcZBoZQRoJBPQZYlIbMJPk+MynX8C1Ir2TD7S1QdxI0nA6l3CDibG6+pBDZVhUA7t26RsM20m9ToUZtXDy8cXKTkeuGvzaDv5bNR8nONqmtWrcRCbHRhAcFGJ1z9fIlJTGerEz5/XZy9SAmIkx/PjYiHCc3DyOdg5ML8dGRAMRHR2Lv5FxkfZOOPTm5d1uetLvXLlGtjhrIpzjwMBYI5Xg3c4zNYwbHJsdjFEU5BKAz8oqK4TD6mwbpU4UQ15FG7qx8mr1AHyGEe770/MPoh3Tx3rsCA4EbwGLdnNAc5gsh/IBxwCsFfK7vFEVppChKI42ZiSGlp4xvlyzG3tGRjbsP8eLL47l66QLarCwAhvXqTL/OrRkzYgAjRo+hUdPmRno3d09ioqIfqE4hjK9LUUOm1qnfkNTUFP280hyioyJx9/B6oHaUFE5s/A2r0naMnPsbDboOIvzuDbK1WjnXMz6W8DvXjTR+u9bx/WsD+OWdF0mKi6bdC68Z5Snt5EpqQq7nXJgaQn2A562i6Ks378TVIzvzpKUkxGLr5Fr0ioo7IYflPMk6E+Q8zOQwacABoMCFb+DMImmI2ui6RWEG5tZw6XsI2AlVTUxNsLDL5/E01b89yAN2AXphBp7P69q5AFLCc4feQc5XtTR++CmpbF35HaXt7Pn4pw10GvAiATevkq3Nom7ztiTExhBw43KB2qYdexbo1XR0cSPRYGTMVL/NA4S6Loq+SYfuHN+dd/51Qlw0jq75f75VnkUeRgShnHmbtZHD6IHA/4AE4KdCdJ8g50hm/cf6FyuKskAI0R/4TQhRSVEU3Qx0/gQOA9uEEO0URUksrCBFWj0ngZNCiF3Az+QasG8qilLweMQzSHJSIu++8ar+eO+pCwTek0+5EeHyKTQmKopd/2yhTv2GnD6e99khLS0VS2sr/XFUZCRu7h5ERoTj5u5BdFSkUZ1hIcF67ymAp5cPEWFhRdL36DuArev/NirTysqatLQ0o3QVyEhNYfs3c/TH45asJz4yhOrNO1G5YSsq1m+OuYUlljal6fHqLLYunUVKfIw+/4W9G+n/1gKjcrMy0tFY5t77xJgI7FxyfxTsnN1JijW+/ynxMZR2dCE5LprSji6k6AzW++ndylbGTKMxMo41FpZkZaQ/yCUp3mjTwX9D7nH9N+TQc548aZBwV87bTI2QXsUY3QNcUjCggHkpuSgnh+xMubgoh/QEsHTIPba0zx3uNiQzWS4sykzSvSYXri/lqTuvM3SiLoNPy9x8ZuayLSoApKUk8+NnM/THC1bvITI0iCYde1C/RXvqNm2NhaUV1qVtGff+fL6bLf00ZhoNDVt3YtaY/ibLzUhPw8LSUn8cExmGs7un/tjJ3YPYqAgjXXxsNA4ubsRHR+Lg4kZCbEyR9GUqVUOj0RgZxxaWVmSkq9/v4sDD8mz2BGIURdEqihIDOCKH0gtcsa0oyk7k/Mq6D6ENKIqyDjgNjMyX/gVyJfp6IYSlCSkAQghv3VB8DvUA4/GFYoSdvQMWFnJu1OARIzl9/CjJSYnYlCpF6dK2ANiUKkWLNu25ee2Kkd7/5g3Kla+oP9678x/6DR4OQL/Bw9mzY5uR5qLfWcpXrIRv2XJYWFjQo29/9uzcdl+9EIJuvfqydYOxsenm7k5wYLG+Vf8aq1K2mGmkkVCnfR+Crp4jIzWFQ38u55tXe/PdlH5s/up97l0+zdalswC5yjyHKs+3ISrwtlG5saH3cHDL9SbfOnOI6s07oTG3wMHNCyfPMoTeMv6fuXXmEDVbdwegZuvu3Dp9qEj6Gi06cy2fVxPA2assUYEmVkGXVDTWck4mgHtDOc9Tmy6NR421TDczB4eKkBolj2OugYNcnYy1i9QbGpoAadFyKD2H2GtygY/QyHRr59xheUNir4NbPfnerZ6sqzB9RqKcd2peSuZzrJTbzpz2pRgbOSWVUrZ2aMxlH96m1yCunz9NWkoya79dxLQBbZg+uAPLZ03j6tnjekMToGbD5oTeu01sZLjJcsMC7+LqmesUOHd4L0069MDcwgJXL188fMtz++oFI53fkb207NoXgJZd+3Lu8J4i6Zt27Gnk1QTwLFOe4Ds3HvzCqDx1PAzP5kXkKvTf86XZKooSJYSwLUT7CbCxiPWsEkLkzI6PUhSlo4k8HwO/CyG+N0xUFOVtIcTPwArgXXRzNg2y/KRrxwIhhDeQhtxOaUIR2/bUsWj5jzRu3hInZxcOnr3CV/M/Y+0fKxj60ssA/PnbT1SqUpXPl3xLtlbLrRvXmTFtMgCuru4s/VmuetWYm7N53VoO7dtjVMfBvbuYvyR3Yf53Sxbx5Xe/MnD4i4QGB/HaWGn3u3t48smiJYwdMQitVsvHM6bz4x/r0Gg0rP1jJbeuXytUD/B8sxaEhYYQeO9unjbUqlsfvzOn9YuUShI9p3xMmecaYGPnyISlmziy9nsu7ttM3Y79ADi/ez0uPuXpPulDsrO1RAffZfu3n9y33DYjJuNergooEB8Zys4f5hrlyUxPIy48CEcPX+LCg4gOusP1Y3t4eeEfZGu17P55AYpu+LbLuBn47V5H+O1rnNj4G73f+IQ67XqTEB3GpsVy9WxheoBqTTvw97xpRu3wqVaHo3//8K+u3zNHlYFy5bh5KWgwDYL2y/mMHro5beGnwcYVKvcHsiElEvx13aulHVTuBwgQAqIvQ5zuRzzinNxWqe4kyNbCrfXGdWdnSm+jtbNczJMaKcuoN1kO09/Zin4YvWJv2ZbkEAg+JIfl3RvIOZo3Vss8BekzE+XnqvmybvFQPPgbtMeujDxfApjw4UKq12+MrYMTi/4+wIaflnBw61ra9RkKwL6Nf+JVrhJj35uHkp1N8N1b/DTXaKMXkzTp2J0TJoy7HDLSUokICcTdpywRwfcIuXuLU3v/4dMV29BqtaxY9LF+Lujot+ewb8Of3L1+iS0rv+PVj7+gVY+BxESEsvT91wEK1QM8374bi98cZ9SOyrUbsOHnpUW+ZipPL6Ko8+VUHgxrC41S1qUwO7t4sPSnlXw++wMC7hh7vx4H782ey94d/3Ds8IEnUn8OY9vWeKL1PwmqPN8GjwrVObz6yewE5l6+Ko16DGPb0o8ee91vvt7lsdf5xHGuLhcPBe59MvWX8pTbL916/Psujnrrz8de55OmQauOlK9Wi3U/fPFE6i9bpQZdh4zmuzlvPfa6fz1844yiKOrKpIeIGkFI5T+x4JNZuHl43j/jI+LmtatP3NAsqdw8dYD4yNAnVr+NnSOHV3/3xOovccRcM57/+TixKPXkDN0SyNlDu4kKC3pi9ds5OLHuhy+fWP0qDxfVs/mIKCmeTRVJSfRslmRKpGezBFMSPZslGdWz+fB5GHM2VUxgb2NJp1q+T7oZKo+JXw+rk9hLEqqxWbJwKm11/0wqKioFog6jq6ioqKioqKioPDJUY1NFRUVFRUVFReWRoRqbKioqKioqKioqjwzV2FRRUVFRUVFRUXlk/OcFQkKIxUCALlIPQogdQKCiKGN0xwuBYOBlRVFqCSHaAvuA3oqibNbl2QIsAF4HKgC2gBtwR1fNJOBTwAvI2dj9lqIoA3Xxy8ciN2G3BGYrivKHrtxfgDZAvE6ToihKcyHEKKCRoiiT832Wl4GpyN2JzYD3FEXZmK+cbOBVRVEKjI70pHhh+mxqNWlDYlwMn4ztazJPx8Gjeb59T0CGLPMsW5G3B7YiJTGetv1eoEX3gQghOLJtLfvWrQCg56gp1GneDiVbITEumhXz3yM+2jgUob2zK8OnfcQ3M2UIzM7DxtC86wCys7WsWfoZV08fMdKUsnPg5ZkLcPHwITo8mB9n/4/UpIRC9Q3bdafL8LGgKMRHR/LLZ2+TnBBHmz7DSU9L4fiODf/1Uj4TzF6whNYdOxMTFUW/ji1M5hk9YQo9+g0EQKMxp2KVqrSqW4WEuDheeGU8A4a9hBCCtb//xsofvwFgwbIfKV+pMiCjTCUmxDOwSxujsl3dPfjo8y94ddQwAMa8+gb9h72AVqvlsw/e5egB421q7B0dWbjsJ7zLlCEkMJD/TRxNQnx8ofpuffozdso0UBQiwsN4Z8p44mJjGDZqDKkpKWxY/btRPcWSSn3AqaoM+Xh+mek83i3AtbZ8L8xkNJ7Tn0NWKng1k5uro8goPLc2gJIFzs9BmXZyQ/iL38vN2E1hYQuVesM13fX2bgUe9WWM6zvbIN5EJCdzG6gySEYJSo+Tm7pr0wrXu9QEn9ay/bE34N4ume7ZGLQZEOn3wJfuWWTo1I94rkkbkuJi+HyC6bCS7QaOomE7GZHLTGOOR5kKvD+kDSlJCbTuM4Km3QYgBBz7Zx0HN8hAHd1eepVazdqhZGeTFBfD7wvfJyHGdH8++PUP+eHDKQB0GPIKTbr0Q8nOZt3yuVw/c9RIU8rWnpdmzMfZw5uY8BB+/XQ6qUmJherrt+1GxyFjANmfr/r8XZIT4mjZaygZaamc3FXUuC8qTzMPw7OZExsdIYQZMppQTYPzzZEhLQ0JQsZFz4OiKP0URakHjAEOKYpST/eX8189wiBtoIF0sU7XB/hWCGFhcO5NA03zgj6EEMJX16aWiqLUAZoChvG43tTV8Q7wZHaxvg/Hd2xg6bvjC82ze/XPfDZhAJ9NGMDGH7/g5oXTpCTG41W+Mi26D+TzyUP5dFx/ajVtg5tPWZ3mJz4d15/PJgzg0vEDdHthosmyOwwcydFtMny8Z9lKNGzbnTljerP03fEMeW0mwsz4363z0DFcP3eCj0Z15/q5E3QeOqZQvZmZhkGT3uHL/43m03H9Cb59gzZ9ZYjLo9vX0bbfC//6+j1rbFjzOxNeGFRonp+/WcLALm0Y2KUNX8z9mNPHj5AQF0flajUYMOwlhvXsyIDOrWjTsTNlK8jQo9MnvaLX7Nq2md3/bDFZ9shxk1j7+28AVKxSjW59+tOnfXMmvDCI9z+Zj5mJ+z3m1Tc4fuQAPVo9z/EjB3jl1TcK1Ws0Gt756DNeHtSb/p1acePqZYaPHgvA+j9XMeJl46gjxZYIP7i6svA8IUfgwjfy795uGQM9K1VGEPJsAhe/1RmqQoaLBBkf/fqfkHCfkK/ezSH8jHxv4yb1fkvh6gqo2FOWaaRpCfG3we8r+erTqnC9uQ2U6wxXfoXzS6WBa68LpRlxDryaFulSFQdO7trEdzNN97U57Fv7CwteHcyCVwez9ecv8b94hpSkBDzLVaZptwEsfn048ycOomaT1rh6y/5879pfmD9xIAteHczlkwfpMsL0b0ab/i9x/B8ZHtijbEXqt+nKvPH9+Pa9iQx89T2T/XmHIa9w0+8En77Si5t+J+gw+JVC9WZmGvpNeJtlb7/C/IkDCb1zg5a95cPriZ0baNVn+L++fipPFw8rNnqOEVcTuAQkCiGchBBWQA0gNp/mPBAvhOj0EOrXoyjKTSAFGXP9QXEHEoEkXVlJiqLcMZHvIFD5XzfyEXLr4hmSE+Pvn1FHo/bdOb1Pxh/3LFuRO1fPk5meRna2lpvnT1O3hYwImpaSrNdY2tigD0uXj3qtOnHl1GEA6rRox5n928jKzCQ6LJjIkEDKV6ttpKnTvB0ndm4AZOdSt0X7wvVChtuzsrYBwLpUab2XNTM9jeiwYMqZqKc4cubEMeLj8n+1CqZ73wFs2yijr1SsXJUL506TlpaKVqvl9PGjdOjaw0jTtVdftm00jkcP0LFbLw7vl2FM23fuxj8b15GZkUFw4D3u3b1D7XoNjTTtOndj4xq5Z+HGNX/Svkv3QvVCCIQQ2JSSsbJtbe2ICA8DIC0tlZCge9Sq16DI1+CZJjFAGo5FxbU2RF3KPRZmYGYBmIHGQsYhBxl7PC36/uU514C4W/K9U3VZtqKVHsu0GLD1MaGpnuuJjPSTx4XprZwgNTo3Nnu8P7g8J99nZ8q8puophty+9GD9ef223Ti7/x8APMpWIODaBX1/fuviaeo07wBAumF/bm1DQVtt123RkatnpJ+oVrN2nDuwHW1mJjHhwUSF3qNstVpGmlrN2nFq9yYATu3eRO3m7QvXC4HQtQNkf54QHQHI/jwmPISyVY3rUXn2+M/GpqIoIUCWEKIs0ug8BpwAmgGNkN7BDBPSOcDMB6xulRDCT/c3P/9JIUQD4KaiKBEGyfMNNKsKKfs8EA7cEUL8LIToVUC+XsjY7880FlbWPNeoJX6H5BBVyN1bVK7TiNL2DlhYWVOzSSuc3HMjA/Ua/Rpzft/N8+17suWXr43Kc/H0ISUxgazMTAAcXTyIjQjTn4+LDMPR1cNIZ+fkQkJMFAAJMVHYOToXqs/WZvHXl7OZ8f0GPv1rP17lKnH0n1xj6N6Ny1SuXUKMjwfA2tqGlm07sGub/CG4df0qDZs0w8HRCWtrG1q174Snd94f8YZNmhEdGcE9E6FIfcqUJSE+jswM+dV29/IiLDRYfz48LAR3Ly8jnYurO1ER4QBERYTj7OJWqD4rK4vZM6azfvcR9p25QsUq1Vj3xwp9vsvn/WjYuNm/vSzFFzMLcKwMMVfkcUYihByFBlOh0XTISjc97F0QVo6QlSaNQwArOxnrPIeMBLC0N9ZZlIbMJPk+M0keF6ZPi5HD+VaOgJk0cC0dcvMlhYBduaK3u4RgYWVN9UYtuHBY9uehd29RsVYDStnJ/vy551vh6Jbb/3YfOYUPVuykYbse/LPCOPa4s4cPKUkJaHX9uYOLO3GRBv1xVDiOLib6c0fnPP25rYNzofpsbRZrv/6Et5b/zUe/78GjbCWO71ivzxd48woVa6n9eXHgYS0QyvFu5hibxwyOjSd2AIqiHAIQQrR6gHoMh9HfNEifKoS4jjRyZ+XTGA6jjyioYEVRtEBXYCBwA1ismw+aw3whhB8wDnjFVBlCiHFCiNNCiNOpmdoH+FiPn9rN2nL78jlSdE/O4fdus+vPH5k87wcmf/Ytwf7XydbmfobNP3/FzOEdObV3C21MDG3YO7uRFG/gZRPGQ2pKAR5RkxSgN9OY06rXEOZOGMiMIW0Jvn2DLsPG6vMkxsXg4OJe9HpKCG07deXcqRMkxMUBcPvWDX5a9hXf/7GOb1au4caVS2iz8v7Pdu+T6wnNj5u7J7Exud4wYWII9UGikxWkNzc3Z8iLoxnUtQ3tGj7HjWuXGTN5qj5PdHTUEw2X+tTiVBUSAnM9oRprcK4GZ7+AMwukZ9O1TtHLs7CDrGSDBBND5g/y/S5Ir02DO1vkPM9aL+vCY2bnZslMllMCVPJQs0kb7l72I0U33z0i8A571/zMxM++Y/yc5YTcztufb/t1CR+/2Jkz+7bSqtcwo/LsnV3z9OfCVH/8IN/vAvRmGnOa9xjMgsmD+XB4B0Lu3KDjkNyf16S4GOx1D6QqzzYPy9jMmbdZGzmMfhzp2TQ1X9OQTzAxd/NfsFhRlGrAEOA3IYT1vylEkZxUFOUzYCgwwOB0jtHaSVGUSwXov1MUpZGiKI1sLDT/pgmPjYZtu+mH0HM4tn0d8yYOYvG0kaQkxhMRbDyH6/SerdRrZTz7ITMjDXNLS/1xXFRYHs+oo5sn8VERRrrE2GjsnV0B2cElxsUUqvetLIfhokIDATh7YDsVn6unz2dhaUlGRvp9P39Jo1uffkbD4ev+XMngbu0YNbAn8XGxBNzJ9XRpNBo6duvJ9s3r8xcFyCFsK6vcqCrhoSF4euV6Rj08vYkMCzPSRUdF4OouPSKu7h7E6KZAFKSvXlNOiQgMuAvAjs0bqNeosT6flZUV6WkPMLRcUnCtDdEGAzAOFaXhlpUCSjZEXwW7MkUvLzsThMF60vSEvB5HS/vcYXlDMpPlvEuQr5nJ99fH3oBL38OlH+QQf6rBEL+ZuWyLSh7qt+mqH0LP4cSO9SycPISv3xxNcmICkSH3jHRn922jTsuORumZGelY5OnPw3F0M+iPXT2IjzHRn8fF5OnPk+JjCtX7VKoGQHSojMHud3An5WvU0+ezsLQkU+3PiwUP07PZE4hRFEWrKEoM4Ig0OAtcta0oyk7k/Mq6D6MRiqKsA04DIx9UK4Tw1g3D51APuM+M+WcT69K2VKnzPBeO5l0tbKsbwnZy96Juy46c3iuN0ZyFQgC1m7cjPNB4KmtEUAAuHrnGwsWj+2jYtjvmFha4ePrg7lOWu9eNZx9cPLaPJp37AtCkc18uHN1XqD4+KhzPcpWwdZDTcqs3bE7YvdxhXnff8oTeuflvLkuxxdbOjkZNW7BvR94fI2cX+aPg6e1Dh249+cfAGG3aqi23/W8SHmp6ZXLAbX+8fXP/L/bt2k63Pv2xsLTEp0xZylaoyEW/M0a6/bu202fQUAD6DBrKvp3/FKoPDwulUpVqODm7ANCsVTtu38wNDVquYiVuXb/2by5L8UVjBfblIMbgumTEg62vbs4m0vhMjSp6mWnRuqFtHbHX5AIfoZHp1s6QFGysi70ObvXke7d6uW0qTG+uG2rXWIPn8xBxNrc8axe5kl5Fj3UpWyrVacSlY/vypOcMYTu6eVKnRQfO7pf9ec5CIYBaTdsSYaI/jwwKwNnDW398+fh+6rfpisbCAmcPH9y8y3HvurHP5dLx/TzfsTcAz3fsrW9TQfr4qAg8y1WktK4/r9agKeGBuf25m085wu7e+lfXReXp4mHFRr+IXIX+e740W0VRooQQtoVoPwGKurfBKiFEjhsjSlEU40cy+Bj4XQjxve54vhDCcG5ojltklBCir0F6C2CBEMIbSENupTShiO16Khg9Yz5V6j6PrYMjc/7Yw9Zfl3Js+zpa9hwMwOEtqwGop5v4nZHPIzT2wy8obe+INiuL1Uvm6Lcg6jNmGh6+5VGUbGLCQ/nji4+M6s5ISyUqJBA377JEhtwjNMCfswe2M/PHTWRrtfz11RyUbDkcNnzaRxzespp7Ny6z888feGXmIpp37U9sRCg/zJ4GUKA+PjqSbSuWMXXRr2i1WcSEh7Ji/gx9OyrWrM+23wrYFqaY8fnX3/N8sxY4Oruw+9Qlli2cK72VL4wCYPXKXwDo0LUnRw/sIzU1JY9+8Xe/4ujkTFZWJp+895Z+CyKAbr378c8G0wuDAFJTUwgMuEOZ8hUIvHsH/xvX2LF5A5v2HiNLm8UnM98iW3e/P5r/JatX/MzlC3788PUXLPzmJ/oPfYHQ4CCmTRgNUKA+MjyM5Ys/59e/t5KVlUlIUCDvTX1V3476jZqwfNHnD+NyPv1UGQj25cG8FDSYBkH7pSHm0UieDz8tX51rQJx/Xg9gUjBEX4E646VnMznMIH91KN9dzqesPgJSwuQKcUOyMyE9VhqFaTGQGgnRl6HeZFnena3oh9Er9pZlJ4dA8CGoOlhuuZQRL7c+gsL1FbpBKd18wKADeRcv2ZWRn7sE8OI783Tz6B35cMUutq9cxokd62neXe5AcXTbGgBqt2jP9TNHyUjP25+Pfn8Rpewc0Gqz+Hvpp/otiHq+/Abuuv48NjyUNUtmG9WdkZ5KVEgQrl5liAoNJCzAH7+DO3nn2w1kZ2tZu/RTfX8+5I1ZHN26msCbV9jz14+MnLGAJl36ERsRxq+f/A+gQH1CTCQ7Vn7DlPk/o9VmERseyu8Lc3+uK9Ssz45V3zz8i6vy2BEPMu9Cpei429sogxpXfNLNeKzUbdGBMlVrsuXnr55I/b6Vq9NhwEh+nffuY6/7wLXQx17nk6ZD1x48V7suS+Z/+kTqr16zNiPHTeLd1wvfHuZRcGnNlMde5xPHuTqU9oZA4/1THwulPOX2S7dMzyN+lEz9yPR0kuJM7ebt8a3yHP/8arwg9HHgU6k6bfu/yKr5D2Om3YPxxY6LZxRFafTYKy7GPCzPpooK54/sobS94xOr39beic2/LHli9Zc09mzfiqOT8xOr38nZ5YkZuiWSmGvSq/qksCj15AzdEsjFo3sp9QT789L2jmz7zXilvMqzierZfESURM9mSaYkejZLMiXSs1mCKYmezZKM6tl8+Kix0VVUVFRUVFRUVB4Z6jD6IyJTm01IbMr9M6oUC9rV8L5/JpXig6ltIlWKLWfuGscOV1FRKTqqZ1NFRUVFRUVFReWRoRqbKioqKioqKioqjwzV2FRRUVFRUVFRUXlkqHM2ixGTP5hHo1btiY+J5vUhXU3mKW1nz+QPP8fTtxyZ6el8/fFb3POXEVlK2drx6vvzKFu5KigKX3/0FtcvnmPIuNfp1G8oCbEy9NjKpfM5e2S/UdlOrm5MmvkZn7wxBoD+oyfSsc9gsrXZ/LDgI/yOHTTS2No78L/Pvsbd24eIkGAWvPMqyYkJBeqtS5Xm0x9W6/UuHp4c2LaBnxbOptvgl0hPTWHv5rX/6To+Kwz/32xqNWlNYlwMn43rZzKPja09I/43G1fvMmRlpLNq4fuE6iJy2JS2Y9i0j/AuXxkFWLXgfe5ePa/Xth84in7jp/POgJYkJ8QZlW3v7MqwqR/x7ftyk/VOQ8fQrGt/uWnzss+4dvqokaaUnT2j31uIs6c3MWEh/DTnf/rgAab0VjaleGPxb3q9o6sHp/ZsYd3yebTuM4z0tFRO7NjwL6/gM0bFPjLmeWYyXCggcIHGGir1BSsnULLAfyOk6iLu1H8DtBlyE3UlGy59l1fr1RzKdYHT82RYy/xY2MoN26/rYnd4twL3+qAocHcbxPsbazQ2Ms65laMMl3lztYx/XpjepRb4tJbpmYlyX82sFPBoDNkZEOn3QJftWeXtTxbRvG0nYqOjGNW7nck8tvYOvPPJYnzKliMjPZ25703lzs3r8pydPW/NWUiFKtVBUZj73lQu+51h9OT/0XPQCOJi5Gb53y/+jOMHjbeUcnFz583ZC3hnwksAjBg3hR4DhpGdreXLT97n1OH9Rho7B0dmLfoGL58yhAYH8uHU8SQlxBeotyldmq9XbtDr3Ty92bXpb5Z89gH9R4wmNTWFf9b99V8uo8pTwn09m0KIxUKINwyOdwghfjA4XiiEmCaEuKQ7biuEUIQQvQzybNGlrxdC+Akhbgkh4nXv/YQQzYUQ+4UQ1w3S1uq0s4QQwbq0K0KIYQ/SLt37mkKIvUKIG0KIm0KI94UQwiBvXyHEBSHENSHERcPIQkKIX4QQd4QQ53X634QQuXEZnyL2bv6bj6eMKjTPwJdf5c71K0wd2o0vP5zGK9M/0J8b8+aHnDt2gCkDOjJ1aHcC7+SGCdv8+09MG96DacN7mDQ0AXqPGMOu9bJj8K1QmZade/HaoC58PGUk49/5GDMz43+3/qMmcvHUEV7t156Lp47Qf9TEQvVpKcn6dkwb3oPI0GCO790BwJ5Nq+kxtPDPX5w4sXMDy2YUHuSq87CxBPtfY+74/qz4fAYDJr2jPzdg0jtcPX2EOa/0Zu74/oQbhP10dPOkesNmxISbDlcJ0G7ASI5uk4a9Z9mKNGzbjU/H9mH5jAkMnvI+wsT97jRkDDfOHWf2qB7cOHecTkNfKVSfnprCvAkD9X8x4SGcP7wbgGPb19Om74iiX7BnnUg/uLqy8Dw+rWV0oIvL4dZ6KN8t7/krv8DFb4wNTUt7cKgkDcKC8GoOEboQpDZu0ig8vxSurYAKPTG5asqnJSTchvNfyVefVvfRm8k2X/lFfoaUcPDUBX2LPAeeTQv//MWI7etX8+bY4YXmeXH8a9y6donRfTrwyduv8dqM3GhAr703mxOH9vFi91aM7tuBAP/cML5rfv2OV/p14pV+nUwamgCDR41ny+pVAJSrVJUO3fswsmdb3hwznGkffGayPx8xdjJnjx9meNcWnD1+mBfGTi5Un5qcrG/HK/06ER4SxMFdMqzm1r//ZMALrzzYRVN5ainKMPpRoDmAEMIMGZaypsH55sjY6IYEAUbb/iuK0k9RlHrAGOCQoij1dH85LpARBmkDDaSLdbo+wLdCCIuitksIYQNsAuYqilIVGYe9OTBJp60LLAD6KIpSHeiNDFtZx6CsNxVFqQtUA84B+4QQloVdtCfBlXMnSYyPKzSPb8XKXDwlL3fw3du4e/vi4OyKTWlbnqvfmN0bpLGYlZVJii68WVFp2r4rZ48eAKBx204c3rmZrMwMIkKCCA0MoErNukaaxm06sW+LDIu4b8vfNGnbuch6rzLlcXBy4cq5kwBkpKURERpksp7iiP/FM6Qkxheax6tcJa6fOw5AeOAdnD18sHN0wbpUaSrXbsixf+S112ZlkZqce7/7T3iLjd8vorB9eOu16sjV04cBGW3kzP5/yMrMJDosmKiQe5SrVttIU7t5O07sktFpT+zaSJ3m7Yusd/Mpi52jC/4XpcGTmZ5GTFgI5arVKvQaFBsSA0CbWngeGzdp1AGkRUmPokXp+5ddrivc24k+ZKQpnGtAnO4B1Kk6RF8CRSsN1LQYsDXxDO5UPdcTGeknjwvTCwCRG8NdYwUZuv/L7EyZt/RT+az/0Dl/+jgJ8bGF5ilfqSpnjsnv4L07t/D0KYOTiyulSttSt1FTtq6VXuiszEySdCNGRaVN5x6cOCRjm7fs0IU92zaSmZlBaHAgwffuUqNOfSNNyw5d2L5Bjjxt37Calh27FlnvW64CTs4unD8t+6v0tFTCgoOoUbveA7Vb5emkKMbmEXRGHdKYuwQkCiGchBBWQA0g/zfiPBAvhOj00FoKKIpyE0gBnIrYrnPAcOCIoig7dWWkAJOBHBfPdOBTRVHu6M7fAT4D3jRRv6IoymIgDOiW//yzwN0bV2nargsAVWrWxc3TBxd3Tzx8ypAQG8OUWfNZuGoLk96fi5W1jV7XffBLLP7zHyZ/MI/SdvZG5bp7+5KcGE9WZgYALm6eRIflbnQeHR6Ks7unkc7RxZXYKLmtSGxUJA7OLkXWt+rai8O7tuZJ879ykRr1n3+ga1KcCb59nbotOwJQrlotnD28cHTzwMXLl6T4WF54cw5vLV/DsGkfYam737WatSU+OoLg29cLLNfF04eUxASyMmX8bUdXd2Ijw/Tn4yLDcXR1N9LZObmQEBMFQEJMFHaOzkXWN2zXnbMHtudJu3fzMpVqNyzy9Sj2pIRJoxCkUWblIL2WIO3IGi9CrfHgbnDNnKpJgy4lvOByrRwhK00ahwCWdjLWeQ4ZCbn1GGJRGjKT5PvMpFzDtyC9kg13tkCdSdBgujSeI87m5ksKAftyRbkSJYJb16/QunN3AGrUroeHty9unt54lylHXEw07372BT+s28lbsxdgbZPbn/cb8TI/b9zD258swtbewahcL58yJCbEk6nrz908PIkIzR3liAwLwdXDuD93cnEjOlJO24iOjMDJ2bXI+g49+rL3n0150q5fOk+dRk0e6JqoPJ3c19hUFCUEyBJClEUad8eAE0AzoBFwAcgwIZ0DzHzA9qwyGEafn/+kEKIBcFNRlIiitEtRlAykIXom32fyB2yFEPamzgOnyeslzc9ZoLqJ9o0TQpwWQpxOz9IW8SM/Xtb98g2l7R1Y9PtWug8Zye3rl8nWatFozKlYvSbb167ifyN6kp6aQv/Rckh7+9pVTOzThmnDuhMbFcnoqcaxap1c3YnXzekEMJiloOdBolUVRd+ycy8Obc/bOcXHRuPs5lHkeoo7u/78gVJ29rz9zVpa9x1B0K1rZGu1mGnM8a1Sg0Ob/+LziYPISEul05BXsLCypsuwcWz9pfB4yPbObiQZel3+4/0uir5B226c2bctT1pSbDQOLm5Fr6e4E3JYzpOsPQE8m8ghdSVbnrv8I1z8Fq6tlPMf7cpJD6JPawi6TxhICzvISjZIMLXR6INEoytAL8zA43k51H92gTSAc4beQbbBwu4B6inerPpuCXb2Dvy4fhf9X3iFm1cvoc3KQmNuTpXnarPhj18Z078zaampjBgro15t+ONXhnVqyst9OxIdGcGrb39oVK6Lu4d+TieAMHW/HuTrXQR9h+592b11Q5602JgoXE04KVSePYq6QCjHi9gcWAT46N7HI4ezjVAU5ZAQAiFEK1PnC2CEoiinTaRPFUKMBSoChitfitIuQcFfC6WA84Vpcs4bF6Yo3wHfATiVtnoq44CmJifx9Udv6Y+/3XyI8JBArKytiY4I4+YlPwCO7v6H/qPlfMB4nScKYOf6P5j5xY9G5Wakp2FpaaU/jooIxcXTS3/s4uFFbKSx5yQuOgonVzdioyJxcnUjXtfB3U9fvkoNNBpzbl+7lKc8C0srMtLSinQtSgJpKcmsWvC+/njWih1EhwVhYWVNXGQ4AdcuAuB3cCedho7B1asMLp4+vPOtHF53dPPgreVrWDB5KImxuT8+melpWBjc77jIcJzccn8UHN08iI823gg7MTYae2dXEmKisHd2JTEupkh6n4rV0Gg0BN68kqc8c0srMtLT/9W1KZZo0+H2htzj+m/kzsPM1A1HZyVD7FU5bJ2VKr2WdeSDJZb2UHs8XPo+1yMJcgjbzODnIiMBLA08Ypb2ucPdhmQmy4VFmUm61+TC9aV0/wPpugeZ6Mvg3TI3nzCXbVEBICU5ibkzpuqP/9pzktCge1jb2BAZHsrVC+cA2L9jCyN08ydjo3P78y1rVjJ3+QqjctPT0rC0yv1+R4SH4u6VG7jCzdObqIgwI11sdCQubu5ER0bg4uZOrO634376StWeQ2Ou4cblC3nKs7SyIl3tz4sFRd36KGd+ZG3kcPVxpAfR1HxNQz7BxNzNf8FiRVGqAUOA34QQ1g/QrstIT6ceIURFIElRlERT54EGwBUKpj5w9V9/midIKVs7zM3lfKhO/YZy+exJUpOTiIuOIio8FO9yMp57ncbNCbot52c5ueZ6jpq260KAbvW6ISEBd3D39tUfnzqwm5ade2FuYYm7ty9eZcpz8/J5I92pg7tp13MAAO16DuDkgV1F0rfq2otDOzYZleddtgL3/Ase/i1p2JS2Q2MujYTm3Qbgf/EMaSnJJMZGExcZhrtveQCq1m9KaIA/oXdvMmNwG2a92IVZL3YhLjKczycOymNoAkQEB+DskfvjcfHYPhq27Ya5hQUunj64+ZQl4PpFo/ZcPLafJp36ANCkUx8uHt1XJH3Ddt04s+8fo/LcfcvpV9erIFejC418794QEgKkAWpmAWa6aeZmFnIxUEqEXKl+Zj6c+0L+ZSRI76ehoQmQFi2N0hxir8kFPkIj062dISnYuD2x18GtnnzvVk/qCtNnJMqhc/NSMp9DJUjNNY6wccldXa+CrZ095hayP+85aATnTx0nJTmJmKhIIkJDKFOhEgANm7Xkrq7fdnHLnZ7SqmN37ty8ZlRu4F1/PH3K6I+P7N1Bh+59sLCwxMunDL7lKugNWUOO7N1J176DAejadzCH9+wokr5jD2OvJkCZ8hW5baJ9Ks8eD+LZ/B9wW1EULRAjhHBEDjWPBWxNiRRF2SmEmA08lFh+iqKsE0KMBEYC3xahXQCrgBlCiI6KouzWLRj6Cvhcd34BsEYIsVdRlLtCiPLADMBwgRIAuhXsUwAvYHv+80+aaZ98Sc1GTbF3dOL7bUf589sv2LNxNV0GyBWNO/7+nTIVKvPaxwvJzs4m6PZNvv74bb3++88/ZOqcxZhbWBIefI8ls+S01Zdee5cK1WqgKBAREsQ3n84wqjs9LZWwoAA8fcsRFhRA4O2bHN21lSVrd6LN0vL9vA/IzpbDeZPen8uOtavwv3qRdb8sZ/rcr+nQZzBRYSHMf1tuo1OYHqB5xx7MeX20UTuq12vIX99/+fAu6lPMqBmfU7nO89g6OPLx77vZ9tsyjm9fR4uesrM/smU1HmUr8uLbn6JotYTdu82qhbm7D6xZ+ikj352HxtyC6NBAVhp4QO9HRloqUaGBuHqXISokkLAAf84e3MGMHzaRrc1izZJPUHT3a9i0jzi8ZTWBNy6z688fePn9hTTt1p/YiFB+mj0NoFA9QP02XfjmvUlG7ahYsz7/rFj+r67fM0flgWBfXhpi9adB0H6IPAvuumfliNNg4wqV+gPZkBoptz4C6VWsOlS+F2YQdRHiH8BIz86EtFiwcob0GFl29GWoO1kO09/din4wqGJvCD8NySEQcgiqDAa3BnKO5g3dtmUF6TMT5eeq+TJka6XGf31uO+zKyPMlgA8WLqP+881xcHJm7f4z/LxkAVv//oPeQ+RWRJv++o1ylarw3tyv0GZnE3DrBnNnTtPrv5zzHu/PX4qFhQUhgff4bMYbAEyY/j5VatREURTCggNZ8OFbRnWnpaYScu8uPmXLE3zvLndv3WDfP5v5besBtNosFn88Q98fvzV7ARv/WsH1S+dZ9f3XfLT4W3oMGEZ4aDAfvDEOoFA9QLtuvXlr3AtG7ahdvzG/fL3ooV1TlSeHKMq8KiGEBrkI6CtFUWbq0n4BmimKUk1noG1RFKWWEKItMF1RlJ66fL2BjUA7RVH269Ly5NGl7UcacTnLLaMURekohJiF9EIu0OVrCPyOXAAkCmuXQdm1gSW68jXACuBjRffhhRD9gY8ACyAT+FBRlHUG5bUBEoBSSO/pu4qiBBV2zZxKWyltq5eseNlN2nWmUvXa/L584ROpv0K15+g9YgxffjDt/pkfMr7ORVjxW8yo06IDZao8x9ZfljyR+n0rVafdwJGsmPfuY697yewBj73OJ45TdSjtff/5nY+KUp5y+yX/dY+96tajvrt/pmJGq47dqFazDj98Oe+J1F+lRi0GjxrPJ29Peex1H7oedkZRlPwjnir/gSJ5NnVeQ/t8aaMM3t8Faune7wf2G5zbRL45jvnz6NLaFlD3rHzHZ5BbEOVQYLsM0i4CJsvXnV8HmOzBTJWnYpoT+3Zi5+D0xOq3d3R+YoZuSeTCkT2Utnd8YvWXdnB6YoZuiST2Wu7w9pPAotSTM3RLIId2/4O945Przx2cnPnxqydj6Ko8fIrk2VR5cEqiZ7MkUxI9myWZEunZLMGURM9mSUb1bD581NjoKioqKioqKioqjww1NvojQgCW5qotX1JYMr79k26CyuMkqPDILirFC7+A6PtnUlFRKRDVGlJRUVFRUVFRUXlkqMamioqKioqKiorKI0M1NlVUVFRUVFRUVB4ZqrGpoqKioqKioqLyyHggY1MIsVgI8YbB8Q4hxA8GxwuFENOEEJd0x22FEIoQopdBni269PVCCD8hxC0hRLzuvZ8QorkQYr8Q4rpB2lqddpYQIliXdkUIMcyg3F9056x0x65CiLsG52sKIfYKIW4IIW4KId7XRQRCCDFKCJEthKhjkP+SbrN6hBB3hRAXDdrz1YNct8fFhJlz+e6fkyz43TisXw7e5Soy+4c1rDx0hZ4jxuQ5V8rWjqmffc2iv3ay6M8dVKlVP8/5niPG8NcJ/wL30nR0ceOthd/rj/uOnMCXa/eyePUu6jZpZVJT2t6B9776lS/W7uG9r36ltJ39ffXNO/di/qptfL5yK+9+8bO+PV0GvkjbniVoS5qGw6HnJ9DpnYLz2LlDu6nQbxFUzbeIqduHUtvxLWg/PTfdwVtqOr0DzceBuTUmsbaHFuNyj6t1gq7vQ5f3wKO6aY1FKWg1CbrMlK8WNvfXl2mga+fb0HIiWOq2marUCso1KfizFzdKyv32rS/vdad3oXbv3PQSdr+XfvMd/gFBHD9tHBYyhypVq7F7/0Ei4xKZ8sbUPOccHBz47fc/Oe13kVPnLtC4ibx2P69YxeHjpzh8/BQXr93g8PFTJsv28PRk9d+50ZumTX8Lv0tXOHP+Eh06djKpcXJyYsOWbZy7eJkNW7bh6Oh4X/3AwUM4duosR0+eYd3GzTi7uAAwbsJERrz4UuEXSeWZ4UE9mzmxyBFCmAGuyNCQOZiKlR6EifjoiqL0UxSlHjAGOKQoSj3d31FdlhEGaYahIxfrdH2Ab4UQFgbntMDL+evShajcBMxVFKUqUFfXVsP4dybbaUA7g/a8Vki+J8aBLX/z2RvGIRwNSUqI55eFH7N51Y9G50ZN+4Dzxw4ybUhn3nyhJ8EGMadd3L2o07gFkaEm4h/r6DH8FfZu/AsAnwqVad6pJ/8b1pVPXx/Ny299hDAz/nfr+9IELp0+yhsDO3Dp9FH6vDShUL2ZRsOoqe/z8aQRvPVCD+7dukaXQS8CsG/zGroOHnn/C1VcCDgBh+8TqjEjBfz+hht7TJ8/sAR2fw57F+SmNRwGFzfDrrkQcgGqFbDSvko7uH1MvrfzlEbhzs/g0HKoP5h8sRwk1TtCxA3YMUe+Vu9UuF6YQd0BunbOg/hgqNxaau4eh8ptCv/8xYmScL8tS0GdPnBwKez6DKzswL2q1JSw+71qxW/079Oz0DyxsTG89b+pfPXFYqNz8xYsYvfOHTSqV5vmjRty/ZqMMT76xRG0bPo8LZs+z6YN69m8cYPJsie/9jq//PwTANWq12DAoME0blCP/r17sujLrzAz0Z9Pnf4WB/bvo37tmhzYv4+p098qVK/RaJg3fyE9unaieeOGXLp0ifET5M/yil9/YcKkyUW+XipPNw9qbB5BZ2wijcxLQKIQwknnUayBDB9pyHkgXghh+lHoX6Ioyk0gBTB0s30BTBVC5N/SaThwRFGUnTptCjAZMHQRbAFqCiGq8Yxy1e8USQlxheZJiI3G/+pFtFmZedJtSttSo/7z7N0kYxdrszJJSUrUn39p6nus+noehQUBaNKuC37HDgLwfOuOHN21hazMDCJDgwgPCqDyc3WNNI1ad+TAVhm86cDWdTzfplOheoFACLCysdG3OzYqAoCM9DQiQ4Op9Fwdo3qKJVH+0rgojPQkiL0n408XFTsPiNI9aIRfA596pvP51IXwq/K9d20IPAvZWZASA0mR4FzOWONdGwJOyvcBJ+Xx/fRCgLmlfG9uDanx8r02E1Kiwals0T/bs0xJuN+lXSExEjKSZL6IG7JeKHH3++iRw8TGFL7FVlRkJGfPnCErM29/bmdnR/OWLfntl58ByMzMJD4+3kjfb8BA1q7+y2TZvfv2Y/fOHQD06NmLv9esJiMjg4CAu9z296fR888baXr07MXvK1cA8PvKFfTs1btQvRACIQSlS5fWtzs0NASA1NRU7t0LoGEjdW/14sADGZuKooQAWUKIskij8xhwAmgGNAIuABkmpHOAmQ/YtlUGw9bz858UQjQAbiqKEmGQfA84DLyYL3tN4Ey+z+IP2AohcsZts4HPgRkFtGefQXummsoghBgnhDgthDidnvUAnf1TgLt3GRJiY5j4/ufM/W0T42d8ipW1NOgatupATGQ4ATevFah38/IlOTGBrEx5+53cPIgKD9Wfj44Iw9ndw0jn4OxKXHQkAHHRkdg7uRSq12qz+OHzD5j/+za+2XoM3wqV9QYywO2rF6lRz7gTVCmAVpOgw5tQoXluWkIoeOmMAt/6YONorCvlDJmp0lgAsHGAVIMfxtQ40zorO0hLkO/TEuRxYXolG86ulkOqPWaDvSfcOZabLzYQXCs90Ecu0Tzt9zspUhq/pZylV9u7NtgY+BPU+10kyleoSHRUFMu/+4FDx06yZNk3lCqVN9Ro8xYtiQiPwN//lpG+XLnyxMXGkZEh+3NvH2+Cg4L054ODg/Hy9jHSubm7Ex4WBkB4WBiubm6F6rOyspj6+hSOnTrLjdsBVK9RQ28gA5w7c4ZmLVr+hyuh8rTwbxYI5Xg3c4zNYwbHR00JFEU5BCCEMD1xzzSGw+hvGqRPFUJcRxq5s0zoPgXeJO9nE0BBLjnD9N+BpkKICibyGQ6jG49ZAIqifKcoSiNFURpZPWMbums05lSoVpNd61bxzku9SUtLpc/ICVhaWdNv1CRWf2vyI+txcnUnITZGf6ybDpuHBwmNWpBeozGnU/8RvPNibyb0aEbArWv0GzlRnyc+NhonV/ci11Oi2bcY9syXQ7OVWuX+iJ9eBZVbSaPE3AqytcZaGwfpRdNjYgi1wK+cKQrQCzOo1EIO/W59H+JDcodiAdITZVtU7s+zcL8zU+Hcamg6Ctq+Lr2eikF71PtdJMzNNdStV58fv/+WVs0ak5KSzDTdkHYOAwcPYe0a015NDy9PoqMi9cfCxP16oP68AL25uTmvjB1Hq6aNqVqxHJcvXeR/b76tzxMZGYGXl1eR61F5evk3FlHOvM3ayGH040jPpqn5moZ8QuFzIovKYkVRqgFDgN+EEHlmsyuKcgvwAwYbJF9Gel71CCEqAkmKoiQaaLOAhcDblDCiI0KJjgjj1uXzAJzY+w8VqtXEw7cs7t5l+HzlVpasP4CLuydzf9uEg7NrHn1GehoWlpb645iIMFw9cjsJF3dPYiMjyE98TBSOLvLp19HFjYTY6EL15avWACA8+B4Ax3dvo2qdBvp8lpZWZKSn/6drUWLI8TilJ8m5ejnDoIkRcGiZNEwCz0BylLFWmwkag9kqqXF5PVA2jrnD3YakJ8qFJiBf0xML1zv6yuOcNgSdAxeDZ0EzC9kWlfvzLNxvgNBLsHeRNI4TI6S3Mwf1fheJ4OBggoODOH1KLv7ZsH4ddevV05/XaDT07tOXdWvXmNSnpaZhZZ370xocHIyPr6/+2MfHhzDdcLchkREReHh6AnKBUVRkZKH6OnXlFIk7d24DsG7tWpo0barPZ21tTVpq2gN9dpWnk3/r2ewJxCiKolUUJQZwRBqcxwoS6eZLOiEX5/xnFEVZB5wGTK0I+QQwWG7JKqClEKIj6BcMfYUcNs/PL0BHwO1htPNZIT4miuiIULzKyh/yWo2aE3TnFoH+NxjXrTFT+rVhSr82REeE8c5LvYmPyfuDFHrvDm5euZ3J6YN7aN6pJ+YWlrh5+eJZpjy3rpw3qvf0oT206dEfgDY9+nP64O5C9TGR4fhWqIydozMAtZu0JPhO7jCQV9kKBN6+8XAvTnFEYym9WDnvPapDvG7agpWtLpOAGl3gtolnyMQIOdSZQ+hFueDDzFym27pBTICxLuQSlGss35drDCEXC9enxsnFJJa6NnlUg8Tw3PLs3HLbrVIwz8r9NmyPhQ1Uapl32oR6v4tERHg4wUFBVK4iF1e1bduea9eu6s+3a9+BGzeuExJsesHnrZs3KFsudw7utq1bGDBoMJaWlpQrV56KlSvrDVlDtm3dzPAX5Cy24S+8yNYtmwvVh4SEUL16DVxcpfOifYeOXL+eO12rcpUqXLly+T9eDZWngX8TG/0ichX67/nSbBVFiRJC2JqWAdII3FjEelYJIVJ176MUReloIs/HwO9CiO8NExVFuSyEOAs00B2nCiH6AEuEEEsBDbAC+Dp/gYqiZOi2Nvoy36l9Qoic8ZwLiqI8dXsyvDb7C55r0AQ7RyeWbT7Mmu++ZN/mNXTsJ3eI2r3+DxycXfns1w3YlLZFyVboPnQU/xvaldTkJH5e8BFTPl6MubkFESGBLJ/91n1qzCU9LZXw4Ht4+JYjPCiAoDs3ObZ7Gwv/3E62VstP82ehZMt5rONnfMqudX9w+9pFNv76DW98uoR2vQcTFRbC4hly9WFB+tioCNb+8BUfffMHWVlZRIUFs+zj3HZWq9OAtT88lTtTPXwajwS3yvLHufvHcGWbXLFbsYU8f/uInCPX4U2wsJbzHyu3hZ2fglVpaKbb+kqYSY9WzuKPMg3lMCtA8HlZZn60GdIDVtpVviaESa9j5xly2NNvDfph1YbD4PZhOd/u+i5oOhrKN5Vz9o7p5mcVpE9LgKvboe1rcng3JRZOr8xth0tFuLL9IV/Yp5SScL9B7j7gqJsPeGV7Xs9mCbrfP/26gpatWuPi6srVW7f5dPbHrPj1F14eM1ae/+F73D08OHDkGHZ29mRnZzNp8hQa169LYmIib06byg8//4qlpSV3795h0rjcre4GDBpc4MIggJSUFO7cvk3FipW4fdufa1evsP7vtZw6d56sLC3T33idbF1/vmTZN/z0w3ecO3uWxQvm88vK33lp5CgCAwMZOUL+9hSkDwsNZe6nc9i+ay+ZmZkE3rvHxHGv6NvRpGlzPvtkzqO4vCqPGfEg8y5Uio5zaSulUy3f+2csRjzfpjMVq9fir28XPZH6y1d9jh7DX2bprOn3z/yQ+evNHo+9zieOdx1wKgOXtz6Z+h195XY8p1Y8mfpLGiX4ftu/+M1jr/NJ07N3H+rXb8Dsjz58IvXXqVuPya+9zrhXCt/O71GQmJZ5RlEUdRn8Q+TfeDZVVExy6sBO7Bwcn1j9do5O913IpPIQCbmQu8H6k8Cy9JMzfEoi6v0uUWzZtBFnZ+f7Z3xEuLi4MOejWU+sfpWHi+rZfESURM9mSaZEejZVVEoIJdGzWZJRPZsPH9Wz+Yhws7dhUoea98+oUjywKyDEn0qxZO0WvyfdBJXHSGpm1pNugorKM82ztRmkioqKioqKiorKM4VqbKqoqKioqKioqDwyVGNTRUVFRUVFRUXlkaEamyoqKioqKioqKo+MYrNASAihAIsURfmf7ng6cqP5WUKIWcBYwGB3YNoC+4DRiqL4CSHMgXhgvKIoK3VlnAHGKopyVgjRDZgNlEYG9t2iKMrj39DxAdBYlaLG4GlYObohzDQEHlpP+Nk9RvnqjfsMjaUNABa2DiQG3eTyyk+xcfOh+oDXsfWuxJ2dKwg6vAEAG1cfnhuaG67e2tmTu7t/J/joJqOyfZr3Jis1kfBz+zC3seW5oW9h5eROemwEV/6YR1ZaspHGqUoDKvccgzDTEHpqJ4EH/wagYtdRuNRoTHZWFmkxoVz7+yu0acmU9iiHb8u+XP87/z78JQBza6g9VIb7E2Zw5yCEnDbO13giaHQRZCxtIf4e+P2We97eF5pOhvOrIPwiWDvIci1tAQUCT8C9AqLRlmsJmSkQclZGfakzAmycITVGlpeVaqxxrQrV+4AQEHQS7uyX6R61oXInKO0Ox7+GhCCZLjRQs79sJwpc3QSxMsQdjcaC30rT9RRjzK1L0fildyjlLL/fN/asJeDETqN8bd9YiLlVKQCs7ByJCbjOse9nYedRhkYj/oejb2Uub/mFG3vXAmBmbkHbNxZiZm6BMNMQ7HeIK9tM721ZuW0/MlISuXdyNxal7Gg6+j1KOXuQEhPO8Z/mkJmaZKTxqNGIegMmIszMuHNsO9d3yc3Fa/cZi1ftpmRnZZIcFcrpVQvITE3G3qs8VTsM5PTKBQ/r0j0z2Nvb8+tvKyhbpiwac3MWL1rIr7/+YjLvx7PnMGDAQLRaLd99+w1ff70EgNZt2rBo4WLMLSyIjo6iQ/t2AEyZ8hovvzIGIQQ//fgDX31luv987bXXiYmJYeXKFTg5OfH7H39Srlx5AgLuMmzoEOLi4ow0nbt0YdGiL9BoNPz004/M/3weAHPnfU6PHj3JzMjA/7Y/Y155mfj4eJydnflr9RoaNXqe3379lddfn6Iva/uOnQwdMthkPSrPDsXJs5kO9BdCuBZwfrGiKPUM/uLIjfMOMozm9ZxjIURpoCJwXghRCxlt6AVFUWoAtYDbj+6jPBx8mvYgOSKQM0te5/wPM6jU/WWExvj5wu+7dznz9Ruc+foNEu5dJ+qyDA+XlZLErc3fEXhofZ78qVHB+vxnlk4jOzOdqCsmIpWameHZsCPh5w8AULbNQGL9z3Nq0QRi/c9Tps1AY40wo0rv8Vz85SNOffEq7nVbU8q9DACxt/w49eVkzix5jZSoEMrq9MnhAVg5uGDlUNCtL8aUaQbJ4XD0Czj5LVTvKQ2z/JxcDse+kH/xARBxyeCkgKrdIcogzGd2NlzbAkcWwvGlULa5NADzI8zA53kI9ZPHFdpBzC04/Ll8rdjWRKMF1OgHZ36EwwvBq15u2UnhcG4FxN7JK/HVhTw8uhhOfw/VespyQBq5ZZsVepmKI5Vb9yYxLIDdcydy4Ks3qdtvnMnv9/4v/sfueRPZPW8i0XeuEHz+MAAZyYn4rV2mNzJzyM7K5MBXb7F77kR2z52IZ43ncS5f3ahcYWZG+aZdCDy9F4DqnYYQceMcO2aPJuLGOap3GmLcaGFG/UGTObz8PXZ8MpYyDdti51kWgIjrZ9n16Vh2z51AUkQQ1TsNBSAh9C42jq7YOJWoCMIATJz0KlevXqVhw/p07NCOz+cvwMLCwijfyJGjKOPrS62aNahTuyZ//fUnAA4ODixZspR+/fpQr25thg4ZDEDNmjV5+ZUxNG/WhIYN6tG9Rw8qV65sVK5Go2HUqNH88YcMGPjW2++wd+9enqtRjb179/LW2+8YaczMzPjqq6/p1bM7dWrXZOiQodSoUQOA3bt3Ua9ubRo0qMfNmzd5+513AUhLS2PWhx/w9ltvGpW3auVKJkyc9C+voMrTQnEyNrOA74CpD6A5Qq6x2Rz4BqinO24MnFUURQu8BXyiKMo1AEVRshRFWfYwGv0oUVDQWEmPpcbShqzUJJRsbYH5NZY2OFaqQ9QVGa4uMzmexOBbhWqcKtUhNSaM9LhI43MV65AU4i8NF8ClRmPCz8kfpvBze3F9romRxt63CqnRoaTFhqNos4i4cAiXGjJf7C0/fVkJgdexcnDR66KvncK9TuvCLkfxJcdjaW4pPYxKduF5nStBuEG84XItpDczw8ALlZEIibq4ydp0SI6Q3s78OFeChODcOt1rQvAZ+T74DLjXMtY4lIGUKOn5VLQQel7qQNaTYvy/hK0HRN/StS1ZejEddPvYRlwBz3oFf+ZiiqJI7yaAuZUNGSmJhX5Xza1scK9aj5ALRwFIT4oj9t4NFK2xRpuRBoCZxhyh0egjSRriXrU+cUG39GFovWs3I+DELgACTuzCu05zI41zuWokRYWQHB2Gos0i8MwBvGvLfOHXzujLir57DRvHXOMy9OJxyjRoe79LUuxQFAU7WzsAbG1tiYmJISvLeBum8RMmMGfObHL2zY6MlN+hYcOGs2HDegIDA/OkV69eg5MnTpCamopWq+XgwYP06dvPqNx27dtz7txZtLr/kV69erPit18BWPHbr/Tu3cdI07hxY/z9b3Hnzh0yMzP5a/Vf9NLl271rl76sE8eP4+sjw5KmpKRw5MgR0tLSjMrbvHkTQ4YMLeolU3lKKU7GJsBSYIQQwsSvIlOFEH66v326NEPPZnPgIJAuhLDTHeeMG9YCzjzCdj8SQo5tpbS7L03f+YVGr33FrS3fy1+oAnCt2ZQ4//No04s+HOlWpzUR5w+aPGdfrgaJIbf0x5a2jmQkxgKQkRiLha2jkcbSwYX0+Cj9cXp8FFb2Lkb5vBp2JObGWf1xYtAtHMo/V+R2FxvuHZWGWNuZ0HyaHF42ZRnk4FFTGm3adHlsZS8NwkAT8bBzsHYCO2+Iu2d8zrF87lA3yGH3jET5PiPRdMQZawdIi889TosHa/uC6wdIDJUGqTADGyc5nJ5j/Galgpk5WJQqvIxihv/Bjdh5lKHHnD/o/O63+P29vNDvt3fdFkRc9yMrLeX+hQszOr69nF6frSbi2lliAq4ZZXGp+Byx927qj63snEhLiAEgLSEGKztHI42NoyupsbkPE6lxkdg4Gn+/yzftQtiVU/rj2Hs3cK1U+/7tLmYsW/o11WtU515gMOf8LjBt2huYCsRSsWIlBg0ewvHjJ9m8ZaveS1mlSlWcHJ3YvWcvJ06c4oUXXgTg8uVLtGzVCmdnZ2xsbOjWrRtlfMsYldu8eQvOns3tZz08PAgLCwMgLCwMd3fj0Q5vbx+CAnP7hOCgIHy8fYzyjRo9mu3b7x/nPi4uDisrqycazUjlv1OsjE1FURKA34DXTJw2HEZvp8t/F7AUQngC1ZHD6KeAJkhj8+iD1C+EGCeEOC2EOB2fkvEfPsnDwalqfZJC7nB87ihOL3mDyr3G6z2dpnAvxHA0hdCY41qjMZGXTM/ls7RzJjM54QFbLUyk5e1cy7YdhJKtJcJvvz4tMzkOS/sS2Bm5VoWEENg/Rw6R1+ib6+k0hWc9CPPLPa7eG25so0ADVWMJ9V6Ea5tzDVRDrOylp/G/cr9AZsGnpFHa9DXZ5rgAvZcbkF5Zq/sYrMUMjxqNiA++zdaZw9g1dyL1B03WezpNUbZhOwLP7CvwfB6UbHbPm8jW94fjVK4a9l7ljbJY27uQnhRvrH1Q8hlP1TsPQ8nWcu907vzy9KQ4bByMjdLiTufOXTh//jxly/jQqGF9vvxyCXZ2dkb5rKysSEtLo2nTxvz4ww98/8OPAJibm9OgYQN69+pJ9+5dmfHeTKpUqcK1a9dYMP9ztm/fydZt/3Dh/AWytMYeUy9PL703tKgIYdyH5zeQ33l3BllZWfz++6oilRkZGYG3t/cDtUPl6aJYGZs6vgBeQS7kKQrHgIFAqCK/EceBFshh9Bx3z2Wg4f0KUhTlO0VRGimK0sihlOWDtvs/4920Ow0nf0HDyV9gaeeMZ4MO+rmUaTFyaLqUm+kQmuY2dtiVqUL0dROLSwrAuWpDEkP8yUyKM3k+OysdM/Pc+UUZSXFY2jkBYGnnZFKXER+VZ+6llYMr6TpvCYBH/fa4VH+eq6sX5tGZmVuSnfnkDfxHTplm0OwN+WdlDz6N5BA4QEq0HJq2NTG3EqTnz6EMRBp4qex9oe5waP2OXJxTo1/ukLYwk4Zm6Ll8czwNyM6UXsUcMpLAUvdjaGln2hBNi887JG/tAOn3eShRsuH6ZmlQn/tVLoxKyfWAY2Yu21KMqdSqFx3fXk7Ht5djbe9M+aad9fMvk3VD03Yext4pAMtSdjiVq0bo5RMPVGdmajKRty7gWcM4cp82Mx2NwfzB9MRYrHUPfNb2zqQnxhlpUuOi8sy9tHF0IzU+9/tdrnEnvGo14eSvc/PozMwt0WaaeNgpZkycOInTp89y+vRZvLy8GDlqFOvXrwPA39+fu3fvUL268fzZoKAg1q+TCyk3bFhP7dp1ZHpwEDt27CAlJYXo6GgOHzpEnTp1Afj5559o3LgR7du1JSY2hls3bxqVm5qairV1bnS08PBwPD09AfD09CQiIsJIExwchG+Z3N8ZH19fQkJD9McvvvgSPXr04KUXXyjydbG2siY1tWQtACxuFDtjU1GUGGA10uAsCkeQ8zxzVrgcA14CwnSLiADmAzOEEFUBhBBmQohpD63RD4mQ49v0C3cyEmNIj4/CsZLsWCxsHSnl6kNqTJhJrVvtFkRfO42SVfQfbPe6rQr1hKZEBGHj4qU/jr56Eo/67QFpNEZfPWmkSQi+iY2rN9ZOHgiNOe51WhF9Vf5AOlVpQJk2/bm0Yo6RYWnj6k1yeECR2/7MEngsd6FPegKkxoFLFXnO0hZKu0mj0xQedSDyKmQbeDAOzYWDur/wi3B1PUTo5nPWHCTnUAYcKrg9SRFQymBhVsQV8NE9l/k0zC3LkIQgqbFxkouZvOpKXWGYWYBGZ9i4VJHGZ7LBD52VHaTGFl7GM47/oc36hT5pCTGkxETgXrU+IFeZ27n7khwValLrW781oZdOkF2E77elrQMWNvJZ3czCEo9q9UkMDzTKlxh2D1vX3OHRkIvHKdekEwDlmnQi5KLxosHYe9exdfOhlIsnQmNOmYZtCNXl86jRiGodB3Pkuw+NDEs7d1/iQ+/et+3POsuXL6NRowY0atSA0NBQAu8F0r59BwDc3d2pWrUat28br03dtGkj7drJvrV1mzbcvCEX+23etJGWLVui0WiwsbHh+caNuXbtKgBubtLoL1OmDH379uPPP/8wKvfatatUMlg4tGXLZl58aSQAL740ks2bjXcgOXXqFJUrV6F8+fJYWFgwZPAQtujyde7ShelvvkW/vn0eyHj08PTk7t27Rc6v8vRRbLY+ysdCYHK+tKlCCMNHqb66YfQjwGJ0xqaiKKFCCA0GQ+iKolwQQrwB/CGEKIUc9Nv66Jr/cAjY+xfVBr5Ow9e+QgjB7R2/kpUi59PVGvkBN9Z9TUai9Cq412nFvQN/59Fb2DrS8NVFaKxKgZKNb4venPriVbTpqZhZWOJUuR431he8TirmxhmqD8q1ye8d+Jvnhr+FZ6NOpMdHcuV3uR2GpZ0zVftP5tKvH0N2Nrc2fUvt0bMQwoywM7tJiZA/dFV6j0dozKkz+mNALhK6uXE5AI4V6xDzAF7ZYsPtPVBrMDSfCgg5JJ6pm5PX4GW4vDbXa+hVF+4UcRjVsbw0FhNDpRcV4OZ2iMo3dy/qmtwiKYc7+6DuCPBpDGmxcH6lTLeyh5oD4exP0lC8uhEajpHe0+BTckU9SK9qjT7ScG4wGhJD5Kp1S1toNEZq0xPg4p+5ddr7yq2cClsYVQy5un0Vz7/wJp3e/RYQXNz4Ixm6aSstJszhzO+L9HMoyzRsyzXdFkM5WNk50eHNr7GwLoWiKFRu24+dn47Fxt6ZRi+8iTAzQwgzgs4dMOkRDbtyiudfelt/fH3XnzR9eSblm3YlNTaCYz/NAaSXs+HwaRz5ZiZKdjZ+a76m1aRPEcKMu8d3kBAmHxLrD3oVM3NLWr8qvZrRd69y7q+vAHCrWpewy8YPp8WdTz6ZzY8//cy5c+dBCGa8+w7R0fJhctPmLYwfN5bQ0FA+nzeX31as5PXX3yApOYnx48cCcO3aNXbs2MHZc+fJzs7m559+5PJl+QC4es1anJ1dyMrM5LXXJpvcWuj/7J13mFPF94ffSbb33oGl9957kd57EQuKgh1F/H2x964gdsECqKggRbpSpfel94VdtvfeN7m/Pyab7G6yWVBhYfe+z5MnuffOZ2Zyk5uce87MnM2bN7F4iWmJtA/ef49ffv2NBx54kKioa8bZ7YGBgXyzcBEjRwxHp9Mxa9aTbNi4Ga1Wy+LFP3D2rLyZXLDgM+zt7dm8WS7RdfDgQR5//FEALl2+gpubG3Z2dowcNYqhQwYZZuK35+DBA8aJRSp3JsLSYGOVf0/jQA9l4QM1dHZ0KZpPfZ4rmxeTl2LZ4/JfILQ2tHn4XcIW/q/sOL5bSO/e5qGtGkOb+6SRWzqsfStpMlJ6RlMvV172P+L39cdvWVu3M10fepVTfywiOym28sL/EI2NLb2f+oidnzxjnK1+q5ny1dYqafd2YMXvK3l+7v+4fPnWXV+lmTfvE9atX8uO7dtvWZvFOuWooijmY0dU/jHVLoyucntx5c+l2Lne3Ik7Dh6+XPlzSZUZmjWei5tkGLuqyI6/pYamiolTa7/DwcJqEf8lTp6+nF77XZUZmjWdF194noDAwMoL3iTOnDl9Sw1NlZuD6tm8SaiezZpFjfZs1kBUz2bNoiZ7Nmsiqmfzv0c1Nm8SNlqN4u5462ekq1QNKRtv68ylKv8xa1fXwPHBNZid527eMAGV24/5f55Sjc3/GDWMrqKioqKioqKictNQjU0VFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmUV0Xda+RfPrlNwwcMoTkpCR6dLKcXXP8xMk8NftZAHKys5nz9FOcOS3THfbrP4B3P/gYjVbLT0t+YMG8jwB4/uVXGTJsOHq9nuSkJJ6Y+TDx8ebrZvr7BzD/8y+5e8JYAJ5+9jmm3jcNvU7H3Odms2Ob+YxOD09PvlvyE7Vq1yHqWiQP3jeVDMPiwhXp/9j0FwH+AeTlywwU40cNJzkpiYdmPkJuTi7Lflpq1k61pNEY8GoMRTlw9DPLZRx9oPFYcAmCiC0Qvde0v+kkUzkHT4jcBjGGrC9BXSCos1woPfUiXP3TvG47F2g4Gs4YFm6v1QsC2ktN+AZIs7AckY2jbNfBA/LT4dyvUJx/ffrmU8HBy/RegzqDrggSjl3HybrzaTP5GfybdaYgO52dHzxisYyLXwhtpjyLe0h9zm9YQvhOU6KGer3HULvLYFAUMuMiOP7Lx+iLi3ALqkurCU9hY+dAbloCx378gOKCXLO67d28aD1xFoe+fRWABndNok7nQSiKnlOrviLpwlEzja2TCx3uewFHL3/yUhM4suQdivKyreq7Pf4BDm5exixC+79+gcLsDEJ7jEBXmE/UoS3/7kTeIUx65nWade5NdnoqHz4y1mIZv5BQJj/7JiH1m7JxyWfsXLnEeKznqKl0GTIOIeDAplXsWiOv08H3PU6Lrn1R9Hqy01P55eOXyUw1z3/u6uXDxFmv8t2rTwJw16TpdB40Br1ez+qv3uPC0X1mGicXN+594UO8/INITYhl6TtzyMvOsqp/7IPvcPPypahA/g5888IjZGek0mPEZAry8zi85Y9/cRZVbheqvWdTCKETQhwXQpwRQpwQQswWQmgMx/oIIdYbXvsLIdYbypwVQmw07A8VQpwuV+drQojbbvrxLz//yMTRI62WiYyMYMTgAfTq0pGP3n+X+Z99AYBGo+GDeQuYOHYU3Tq0YeyEiTQ25OD9/JN59OrSkT7dOvPX5o3Mef4Fi3U/+uRT/Lj4ewAaN2nCmPET6N6xLRPGjOTD+Z+i0Zh/3WbNnsOunTvo1KYFu3bu4OnZc65LP3P6NPp060yfbp1JTpI/lD8vXcLDjz52g2ftDiYhDE4vsV6mOA8ub4DoPWX35yXDsS8Mjy9lXvFkmcYO97rg3RSOfi4Nu/LaEoK7Q7xhVraTL/i2hCOfwuml0GAkIMw1tXpB+hU4/Il8rtXr+vTezUBXNkUp8ccguIv191+NuHZoCwcWvmS1TGFuFqdXfUX4jrLZwBzcvanbcxS75j3Jzg8eQWg0BLftA0DrSc9wbv337PzwUeJO7qN+v/EW667feyzXDmwCwMW/NsFte7Pj/Zkc+OZFWo1/XGaDKkfDuyaRdOk429+ZTtKl4zS4a+J16Y/+9D5/f/Q4f3/0OIXZGQBEHfyLej1HXde5qg4c3rKWhS89arVMblYmq796jx0ry/4OBNRpQJch4/hk1t189OgEmnXuhU9QbQB2/L6Yjx4dz8ePT+TsoV0MnDrTYt19xt7HgU3ye+Rfux5tew/m/ZljWPjio4x7/EWEhd/zfpOmc+n4Qd6dPoJLxw9y18Tp16X/6f25fPz4RD5+fCLZGTLr1cG/1tBz1N3XebZUbneqvbEJ5CmK0kZRlObAAGAo8KqFcm8AWxRFaa0oSjNg7q3s5H/B/r17SEuznh/68MEDRs/hkcOHCAqWuY3bdejI1SvhREZcpaioiNW/r2DIsBEAZGVlGfVOTs5QwXJZI0aNYdsWmYZsyLARrP59BYWFhVyLjODqlXDadehophk6bAS//izvuH/9+SeGDh95Q/rS5OXlEXUtknbta8iKFRkRUFRJfuGiHMiOsZ7K0bM+5KVCQbrcDuoEUbtA0ZnqsIRPc0i9JF97N4WkU1KTnwZ5KeAaYq7xbmLyRCYck7rK9Bo7COkO13aWrUtfJL2jrsHUBFKvnKYwJ8tqmcLsDNKjLqJYSO2n0WjR2tohNBq0tvbkZ8q0hy5+waSEy+hG0sVjBLXqbrHuwNbdSTwnvY8BLboSE/Y3el0RuakJ5CTH4Vm7sZkmoEVXog7LiETU4a0Etux2Q/rS6IoKyE1NwKN2I6vlqgtXTh8lNyvDapnsjFSiLp5Brysus9+/dl0iz5+kqCAfvV5H+KkjtOwmc6wX5JquZzsHx4p+zmnVvT/nj8pISIuufQn7ezO6oiJSE2JIjrtG7cYtzDQtuvbl8FaZB/3w1rW06NbvhvSlKSrIJy0hltqNrJdTuTOoCcamEUVREoEZwBNCiPJul0AgulTZk7eyb1XBPfdNY+tf0jgMDAoiJtr49omNiSEwKMi4/eKrr3Py/GXGT5rMu2+9YVZX7TqhpKenUVhYeF31leDr50dCQjwACQnx+Pj6Xpf+s68XsnPfQZ793/Nl6jt+7Bhduln+s1SpAN+WkFTq6+7oA+51oM1MaDUdXCwYcw6e0mtaYpDauUFBqT/GwkyZD708di5QmG0okw22LpXrQ++S3lVdkXl9WTHgFnrdb7Wmkp+RwuWdvzPglR8Z+PoyivNzSLogjf6suEgCWkgPcVDrXjh6+Jrpnbz8KcrNRm/4DBzdvclPN4Ve89KTcfAwzyRk7+pBgSE/e0FmKnYu7telbzt5Nr3nfEGjAWU9W+lRl/CupxoflREXcZl6Ldrh5OqOrb0DTTv2xMPX33h8yP1P8vKPf9Gu7zA2//iFmd7LP5jc7Ex0RfLzdvf2Iz0p3ng8IzkBd29/M52rhxdZqTJtbVZqMi7uXtelnzL7TZ79YjkD7p5Rpr6oS2ep26LdPzkFKrcZNcrYBFAU5QryffuVO/QF8J0QYocQ4kUhRGnLqL4hFH9cCHEcsDhgSggxQwhxRAhx5HZfLL9Hr97cc/80Xn/lRQDMbW8o/R7efv1VWjVpwO+//cpDM81DO/4BAaQkm3JjW6qvwltoC1jTP/LgNHp27sDwgXfRtVt3Jk2ZaiySlJRUpanV7jiEVnobk0qNFBEaObby+DdwdTM0m2yus3Mp6/G08HHBDVwDFemdA8DRG1LOWdYV5VRtqsw7BFtHFwJadGXrm9P469WpaO0cCGkvvU7Hf51HaI8R9Jr9GTYOjmZeMpDjNUvC2QD8y+vbmv7YT++z88NH2fPZHLzqNyekw13GIgXZ6Tc9PWZ1IDHqKjtW/MAj7y5kxltfEXvlAvpS3u5NSz7jzXsHcmzHBnqMmGKmd/PyISejVJTsJn7eP7//PB8+Oo7P50yjXvN2dLhrhLFIdnoq7t7mNz8qdx41ztg0YPbNVxTlT6AesAhoAoQJIUq+5eGGUHwbRVHaAF9bqlRRlIWKonRQFKWDRWPpNqFZ8xZ88vlX3DNpPGmp0usQGxNDcIgp7BkUHEx8nPkkoN+X/8aIUaPN9ufn5WHv4GDctlRfnIX6khIT8fcPAOQEo5Lxl9b0cXEym0d2djYrl/9Guw6msLmDgz35+fmVnwQViVdDyI4razgWZEDyWfk6K0b+Kdg6ldXpikFjW0qTCfbupm07NyiwEPItzJaGKhgM1mzrerfacnJTp2ehzcPS8Gw13VROYwN6c+NIpSw+jdqSm5JAYU4Gil5H3Mm9eIbKIQzZidEc+PpFds17kphjO8lJNr9OdUWFaGxNGdGkJ9JkBDh6+JBvGGtXmoKsdOzdpHertMFqTZ+fIcP7uoI8Yo7uLBNe19raoSsqN3ZXxSIH/1zNvCcm8cVzD5CblUlS7DWzMsd2bKRVj/5m+4sKC7CxM33eGckJePgGGLfdffzJSE0002Wlp+Lq5QPICUYl4y+t6TNS5HNBXi7Hdm4sE163sbOjqLDght63yu1JjTM2hRD1AB1gdqUoipKqKMoyRVHuBQ4D1S65eXBILZYs+41HH36Q8Mum2b5hR49Qr34DatcJxdbWljHjJ7Bp43oA6tWvbyw3ZNgwLl28YFZv+OVL1K5dx7i9aeN6xoyfgJ2dHbXrhFKvfgOOHTlsptu0cT2Tp94DwOSp97Bxwzqreq1Wi5e39GzY2NgwcMgQzp09Y6yvfoOGZbZVKsG3FSSWGzGScg486snXjt6g0UJRudnJeclyRrlRc16G44VWhtgdvSErGjNSzoO/ISzm305uW9PHHYKDH8Chj+H4IjmW8+R3pvocvSEn4V+dgppAXloinqFN0NraA+DbqA3ZiVEAxtA2QtBowBQi9m0w0+ckRePkZQp7Jpw5QHDb3mi0tjh5+ePsG0TaNfPfhfjTB6jVURoztTr2J/70fqt6odFg5yyHTwiNFv/mnciMjzDW5+wbXGZbpWJKQtgevgG07H4XYTs3AhgnCgE079KHxKirZtqk6Ei8/E3BvdMHdtK292C0trZ4+QfjG1SHaxdOm+nOHNhJx/5y3H3H/iM5vX+HVb1Go8XZzQMAjdaGZp16Exdh+l/yDa5TZlvlzqVGLX1k8FR+DXyuKIpS2vsohOgHHFAUJVcI4QrUB8xvBW9jFv6wlO49e+Lt7cOpC5d57+23+HnpYqZNfwiAxd99y3NzX8DLy4sP5y8AQFdczF29uqPT6fjfs0+zYs06tFoty35cwoVzMnT5yhtv0aBhI/R6PVHXrjFn1pNmbefm5hJx9Qp169Xj6pUrXDh3jj9WrWTfkePoiov5v9mz0OvlJJVPPv+Kxd8t4njYMRbM+4jvl/7M1PumERMdxQP3yjFaFemdnJxYsWYdtra2aLVa/t6xnaU/fG/sR6cuXfng3bdv6nm+bWgyUc4ct3WCzs9B5HaIPwqBholUcYflmMh2j4LWHlAguJuc8a0rkJ5JzwZwqdzSIvHH5LJK7Z8EvQ4urDRrGn2RnFTk4AX5qZCbKEPxHWbJcZyX12EMozccLY3G7Fg58ajpZAhoB/kZcukjsK63hlsdiNzxz87fHUa7e+fi06AVds5uDHj1Ry5s/olrB/+kTrehAETu24i9qye9Zn+KjYMTKAr1eo9mx3szSb92gbgTu+n17Ocoeh0ZMeFE7pMzy4Pb9aFudxm6jDu1l6hDf5m1rSssICc5FmefQHKS48iKjyT2+C76zv0GRa/n1O9fGCehtZ70NBH7NpARdYlL236jw/0vULvzIPLSEjmyRF6bFek1tvZ0mfk2Gq0NaDQkXwwjcv9mYz+86jbn4p8/39TzfLtwz9z3adCqA85uHrzy4xb+/OlLDv65mq5DJwCwf+MKXD29eebTX3FwckZR9PQafQ/vzxxNQW4O016eh5OrO3pdMau+eMe4BNHwB5/GNyQURdGTlhDH75+9adZ2YUEeybHR+ATWIjkuioTIcI7v+ov/fbMGvV7Hyi/eQTH8nk98+jX2bVhO9KWzbPvtO+574SM6DxpDWmI8S9+Wy+xVpLe1d2TG21+jtbFBo9FwMewgBzabfm/qNm/LXz9bDCSq3GGI231s4b9FCKEDTgG2QDHwIzBPURS9EKIPMEdRlOFCiOeABwxlNMAPiqJ8LIQIBdYritKiVJ2vAdmKonxUUbs2Wo3i7mhX0eFqybARI2ndth3vvPFalbTfslVrHntyFo8+/OAtbztl4223EtbNx7upnAkeYb5+6i3BOVDOUr/w+y1veu3qI7e8zaomoGU3PEIacn5TJctt3STcgutTv89Ywn7+8Ja3vfNc7C1vs6pp2a0fIQ2bsWnJ51XSfnD9JvQeey/LPnzxlrc9/89TRxVFqSHLmtwaqr1nU1EUrZVjO4GdhtcfAma/YoqiRAAtyu177T/sYrVhw7q1eHpV3eB9b28f3nnz9Sprv8aRcs58LOetxNap6gzdGkj8qX3YOVlYYeAWYe/sxvmNNSRhw23AqX3bcTKEuKsCZzcPNi01nymvcmdS7T2bVUVN9GzWZGqkZ7MGUxM9mzWZmujZrMmons3/nho3QUhFRUVFRUVFReXWoXo2bxKNAz2Ur6f1rOpuqNwifF0dq7oLKreQVi+uqOouqNxC9KtnVXUXVG4hYswC1bP5H6N6NlVUVFRUVFRUVG4aqrGpoqKioqKioqJy01CNTRUVFRUVFRUVlZtGtV/6qKbSZNxTeDfpSGF2BocXPFFhuYYjZuDVuD36wgLO/b6A7Nhw7N19aDrhGexcPUFRiD20meh96yzqQ7qPpCg3i4SwHdg4utB8yv/h4OlPfloCZ5a9T3F+jpnGq1E7Gg5/GDQa4g5v4drfcp3EivSeDdpQf/D9CK0Niq6Yyxt/IP2KzHrTevqbnPn5PYvt1CSChz2Ka4N2FOdmcHlRxTPjAwc8gEv9tijFBUSv+5L8hKvYunoTPPJxbJw9QFFIO76VlMObLOq9Ow5Fl5dN+uldaB2cqTXmGWzdfSnKSOLa6vnoLXwOLvVaEzjgARAa0k5sI3m/XES+Ir1zaEsC+k41ft7x238kJ1JmhQqd8lKF7VR3vvvuO4YNH05iYiKtWrassNyCBQsYMnQoubm5PDBtGmFhYYSEhLBk6VICAgLQ6/UsWriQTz/9FIDx48fz6muv0bRpUzp36sTRo0ct1hsQEMDCRYsYOUIuAD937lwenD4dnU7HrKee4q+/zBeD9/T05NfffiM0NJSIiAgmTZxIenp6hXpHR0eWr1hB/fr10el0rF+3jueffx6Axx9/nJycHBYvXvwvzuIdRNspENAMCrJh+/sVl2s5Fvybgq4Iji2DjGjrercgaDMRtHYyMcORH6HYQkpIezdoOwkOLJLbDftDnc4yfe2pVZB43lxj6wQd7wcnL8hNhcOLoSivYr3WFjpOA2cfmRQg/gyclZnrqNsDdIVw7dCNnjmV25Bq49kUQswXQjxdavtPIcS3pbY/FkLMFkLYCCGShRDvltMPF0KECSFOCCHOCiFmGva/JoSYU65shBDC5ya/pX9F3NFtnPjhNatlvBq3x9E7iIMfzeTC6i9oPPpRABS9jssbv+fQ/Mc4+uUcgrsOw8mvlpleaDQEtu9P4om/AajTezxp4Sc5+PFM0sJPUrvPePNGhYZGIx/hxA+vcWj+4/i37mWsuyJ9UU4mJ5e8yeEFT3JuxXyaTZxtrC4hbAfBXYb9k1NUrUg7uZOIX9+xWsalflvsvAK49PVTxGxcSNBgmVlK0euI3/ojlxfO5sqSF/FqNwh7n2DzCoQGz9Z9ST+zBwCfrqPJjjjFpa9nkR1xCt+uoy1oBEGDphPx2ztcXvgM7s26G+uuSK/LyyJyxftc/nYO0eu/IGSkKWNV+undeLcbeOMnqBqwePFihgwebLXMkCFDaNCwIY0aNmTmjBl8+dVXABQXFzPn2Wdp3qwZXbt04bHHH6dpU5kb/fTp04wbO5Zdu3ZZrXv27Nl8u0gaHk2bNmXS5Mm0aN6cIYMH88WXX6LRmP+dzJ07l+3bttG4USO2b9vG3LlzK9V//NFHNGvalHZt29Kte3cGG97z999/z5NPPXUDZ+wO59pB2PeN9TL+TcHFF7a+Dcd/g9YTKte3nQxn1sGODyD2FDTsZ7nuBn0gQqYXxdUfQtrC9vdg/9fQejwgzDWN7oKki7I/SRelgVmZ/vIO2PYu7PgIvOqCX1NT/+tVu4zRNZZqY2wC+4BuAEIIDeADNC91vBuwFxgIXAAmCkO+SiGELbAQGKEoSmugLYbF3u9UMiLOUJybZbWMT9MuxIdtByAz6gI2Ds7YuXpSmJVGdmw4ALrCPHISo7B3M1+s3aN+a7JirxjTlvk060z8sW0AxB/bhm+zLmYat1oNyUuJIz8tAUVXTMKJXfg07WxVnx13hcKsVAByEq6hsbVFaKVTPvnsQfxaqz9IuVHn0OVnWy3j1qgD6aekQZEXewmtgzM2zh4U56STnyDzI+sL8ylIicHGxctM7xLagrz4q8a0hG6NOpJ+Ut5opJ/8G7dGHc00jkENKEiLpyg9UaZJPLsP14YdrerzEyIozk4DoCApCqE1fd6Zl47g3rz7jZ2casLu3btJTU21WmbUqFH8uFQufH7w4EE8PDwICAggPj6esLAwALKzszl37hzBwdLoP3/+PBcvXqy0/bHjxrF582ZjO7/9+iuFhYVERERw+fJlOnXqZKYZOWoUS5bIjENLlixh1OjRVvV5eXns3LkTgKKiIsKOHSMkJASAvLw8IiIi6NjR/HtWLUm5AkW51ssEtIRrh+XrtEiwdZQeSWt6Fz9Ikb/vJF2AwNaW6w5qBYnnTO1Eh8n0tbmpkJ0MnnWs9+faYQhsaV2vK4JkQ+5zRSe9so7ucltXJMt61DZvR+WOozoZm3sxGJtII/M0kCWE8BRC2ANNgTBgCrAAmfe8xBpyRQ4pSAFQFKVAUZQLt7DvVYK9uzcF6cnG7YKMFDOj0sHDD9eg+mRGmZ8O9zpNyYq5bNy2dfGgMEsaCYVZadi6eJi36eZNfkapNjNTsHf3vm69b4tu0sDVFQNQnJ+DxsYWGyfX63zXNRcbFy+KMk3nvigrBRvXskalrbsvDv51yYu9XF6OU0hj8uKvmOpzdqc4Jx2A4px0bCxkl7F19aIoM8W4XZyVgq2hzevRuzXpTH7CVePnrc/PQWht0Tq6XOe7rlkEBQcTFRVl3I6OjjYalSXUqVOHtm3bcvDgweuuNzQ0lLS0NAoLCwEILtdOjIV2APz9/YmPjwcgPj4ePz+/69a7u7szfMQItm3bZtx39MgRevZUl5Qz4ugOeWmm7fx0k7FWEZlxEGBIihfUBhw9zMs4ecnwt153Y+04uEJBpnxdkAn2Ltevt3WEgOaQdMm0Lz0KfOpZfz8qdwTVxthUFCUWKBZC1EYanfuBg0BXoANwEtACdwHrgV+QhieKoqQCa4FIIcQvQoipBu9oCc8IIY6XPIAgS30QQswQQhwRQhzJyC28Ke/zv8RCEITS665q7Rxocc/zXFq/CF1BnllZe1dPinIy/n2r17nWq5NfbeoPnsaF1WVTmBVlp2Pvau6JUymLwZFfDtO519jaU3vss8RvXYy+0PzztnHxRJebeaOtWm3TGvY+IQT0nUrspkVl9hfnZGDj4nmD/agZWPqMS1/Tzs7O/L5yJc88/TRZWdYjH6UJDAwkKSnputv5t/3UarUs++UXPvv0U65evWrcn5iYSFCQxZ9flRIq+xzCfoF6PaDPs2BjLz2K5XFwk2M9rTf0j7tophca6HAfXNkNuaabUwqywKES41nljqDaGJsGSrybJcbm/lLb+4DhwA5FUXKBlcAYIYQWQFGUh5CG6CFgDvB9qXrnK4rSpuQBWMxdpijKQkVROiiK0sHd6fZPVZmfkYK9h2noqb27tzFcLTRaWkx9noTjO0k+s9+iXldUiMbG9D6LstPlpCLAztWToux0M01BZjIO7qXadPOmIDO1Ur29mzct732Bcyvmk58aX6ZOja0d+uLb37ivaoqyUrB1M517W1dvig2eZDRaao17lvQzu8m8YHlAvr64EKG1NW4X52TISUUgw/EWDFHZpslbbuPqTZGhTWt6G1cvao+bQ/S6LyhMTyhTp8bGDkX9vC0SEx1NrVqm8dUhISHExsqfKxsbG35fuZJlP//M6tWrb6jevLw8HBwcjNvR5doJLtVOaRISEggICADkBKPExMTr0i9cuJDLly6xYMGCMvU5ODiQl2d+I1RjycsAx1I3Xg4ekF/JDWF2Iuz7GnZ+DNHHICfZvIyuSE7esdZOnoV28rNMYXz7UgZrZfo2kyA7CcL/Lluf1lb2ReWOp7oZmyXjNlsiw+gHkJ7NkvGaU4D+QogI4CjgDfQtESuKckpRlPnAAGDcLe15FZBy7iABbeXgcLdajSnOzzWGsZuMe4qcpCii9vxRoT43MQpH70DjdvK5QwS0uwuAgHZ3kXzWPEyXFX0JR58gHDz9EVob/Fv3IvncIat6GwdnWk17lSubl5IRec6sTjsXT/LTEsz2q5Ql8+IRPFrK8a2OQQ3RFeQaw9jBwx6hIDmGlEMbKtQXJMdg5xVgqu/SETxa9QbAo1VvMi8eNtPkxYZj7xmIrbsvQqPFvVk3si4dsarX2DtRZ+JcEnb+Qm60+fANGxcPCtOTzParwNq1a7n3vvsA6Ny5MxkZGcYw9rfffcf5c+eYP3/+Ddd78eJFQkNDy7QzafJk7OzsCA0NpWHDhhw6ZH6Tsm7tWu6//34A7r//ftb+8Uel+jfffBM3d3eefvpps/oaNWrE6dOnb7j/1Zb401DbMIbVsw4U55nC2BVhVzIERUDjgXB1n3mZ7CQZSi/dTkhb0GjlfhcfOUbUWn9qd4T4U5Xrmw4FWwc4ZeEGyMVXhv1V7niqm7G5F+m9TFUURWcIj3sgDc4TQA+gtqIooYqihAKPA1OEEC5CiD6l6mkDWLiS7hyaTZ5Du0c/xMk3mK5zfyCwwwAAgjoNJqiTnN2ZcuEIeanxdJmzkMZjn+DiH3LmqnudZgS064dnvVZ0eHIBHZ5cgFfj9mZtpFw8ikdd0xysyL9/x6tBGzo/+w1eDdoQaVjSyM7Vi1bTXgVA0eu5uPZrWj/4Op2f+ZLEk3vITbxmVR/cdRiO3oHU6TfJ2B9bZxlacQ1uQEbUBeMkpZpKyKhZ1Lv/Ley9gmj8xFd4tpb3UJ5tB+DZVn722eFhFKYn0ujRTwkeOpPYzXKxBqeQxni27I1LaAvqT/+A+tM/wKV+W7M2ssPDcK7V1LidvH8NLnVb0fCRBbjUbUXy/jWADLfXmShnHaPoif3re0Inv0jDmfPJPLefguRoq3rvDoOx9wzAt8c4Y3+0hvGcDgH1yI25ZJykVJP4edky9u3fT+PGjbkWFcWDDz4IwMyZM5k5cyYAGzdu5OqVK1y6fJmFixbx+GOPAdC9e3fuu+8++vbrx7GwMI6FhTFkyBAARo8ezbWoKLp27cr6DRvYZJgEVJrc3FzCw8OpX78+AGfPnmXF8uWcOXuWTZs388Tjj6M3XIOLFi2ifXv5e/Hee+/Rf8AALly8SP8BA3jvvfes6oODg3nxpZdo1qwZR48d41hYGNOnTzf2o1v37mzduvVmnN7bjw73Qa9ZckLPoNfkskEAod3kAyDhrPRMDnhJegdP/F65PqQd9H8B+j8P+Rly1nd5dIWyXmdDJCQrHmKOw13PQ9dH4MRKjGHwNpPAw+ClvrgV/BpD/xfl88Vt1vUO7tLgdQ2AvnOg73NQp9TEUq+6cla7yh1PtcqNbgiJpwGfKorykmHfYqSx+S4wWFGUyaXKeyFnpjdAjuGsD+QBOcAsRVGOCCFeA7IVRfmolC4C6KAoioX4g6Sm5EZvcc8LhG/6gbyUqrn7bDD8YVLOHSQt/GSVtF9CTcmNXnvcHOK3/0RhWnzlhW8CAQOmkXXpCDkRVevdqom50UePHk379u15+eWXq6T9Nm3a8Mzs2dxv8NzeSmpkbvTAltKIPLexatp3D5bLLx39+ZY3reZG/++pVou6K4qiA9zK7ZtWanNxuWOpgK9hc2gFdb5mYV/oP+9l9SJ88xLsXL2qzNjMSYisckOzJhG/42dsXDyrzNgsSIqqckOzprJmzRq8vc2XQLtV+Pj48EoVGbo1krhTYOdcde3bOcM5y8klVO48qpVn83aipng2VSQ1xbOpIqmJns2aTI30bNZgVM/mf091G7OpoqKioqKioqJyG6F6Nm8SQgj1xNYg0r6aVtVdULmFHLmqzoavSfRvZZ6uV6X6Iu75WvVs/seonk0VFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmoRqbKioqKioqKioqN41qtc7m9SCE0AGnAFugGFgCfKIoit6QRegP4ArgCKwHngN2A28rirLJUMdE4EFFUQbf8jdghe+++47hw4eTmJhIy5YtKyy3YMEChg4dSm5uLtOmTSMsLAx7e3t27dqFvb29zKH8+++89tprALzxxhuMGjUKvV5PYmIi06ZNIy7OfF3NgIAAFi1axIgRIwCYO3cu06dPR6fT8dRTT/HXX3+ZaTw9Pfntt98IDQ0lIiKCiRMnkp6eXqHe0dGRFStWUL9+fXQ6HevWreP5558H4PHHHycnJ4fFixf/uxN5B+LY50Fs67RGycska3nFaxE6dr8bm9qtoLiQ3B3foUuOBK0NLqOeR2hsQKOl6MoR8o+ssai3bzkAfUEORRf3IeydcRrwKBpXH/RZyeT+9SVKYa6ZxqZWCxy73w1CQ+G5XRQcl4tEV6S3CWmGQ+cJCI0Nir6Y/P3LKY6VaUqdh8+psJ3qTrPxs/Bp2pHC7AwOzH+8wnKNRs7Ap3EHdEUFnF3+CVmx4WhsbGn/yPtotLYIrYbEU3u5smUZAH4tu1NvwN04+9bi0OezyYq5bLFeO1dPmo57khOL3wAgtM8EgjoOQFH0XFi7kNSLx8w0No4utJz6Pxw9/clLS+DUz+9RnJdToV5ja0+rqXNx9A5AUfQknz3E5c1LAAjpOhxdUT5xR2pIBqHSdLkXglvK3OMb3qy4XPuJENwcigth/1JIiwKNDQx4FrQ2IDRwLQxOrbesb9wPCnPg6kGwc4IeD4GzN+SkwJ5vwdJ1F9gMOkwEIeDyXjhr+J2vSB/QBNqMAa0WdDoIWwUJhrS0/WbBnkWW21G5o6mJns08RVHaKIrSHJkDfSjwaqnjuxVFaQu0Raa+7AY8AswTQjgIIZyBt5GpLm8rFi9ezODB1u3fIUOG0LBhQxo2bMiMGTP46iuZorKgoIB+/frRpk0b2rRpw+DBg+ncWaY3+/DDD2ndujVt27Zl/fr1vPLKKxbrnj17NosWLQKgadOmTJ48mebNmzN48GC+/PJLNBrzr9vcuXPZtm0bjRo1Ytu2bcydO7dS/UcffUTTpk1p27Yt3bt3N77n77//nqeeeuofnLk7n8ILe8jZMM9qGZvardC4+5P1y1xy/16MY8975QFdMdlrPyDr91fJ+v1VbGq1QOtXz7wCocGuSU+KLh0AwL7tUIqjz5L1y1yKo89i33aYBY3Asce95GyYT9ZvL2LXoDMazyCreiUvm5xNC8ha8TK527/F6a6HTe/z4n7sWvT7B2fozif26FbCvnvVahnvxh1w8gli34czOLfqc5qMkekq9cVFHFv4AgcXPMnBT57Cu1F73Go3BiA7IZKTS98h/eoZq3XX7jma2EN/AuDsVwv/1r3YP+8xwr57lSajH5WGTDlC+0wg9fIJ9n04g9TLJwjtM6FSfeSuVez/+FEOLpiFe2gzvA2pcmOPbKF2txE3cMaqEVf2w/bPrJcJag5ufrD2VTi4DDpNkfv1xbDtE9j4tnwENQPvuuZ6oYH6XSHisNxuPgjiz8O6V+Vzs4EWNAI6ToYdn8P6NyC0I7gFWNcXZMPfX8KGt2D/Eug2zVTf1YPQsNeNnBmVO4SaaGwaURQlEZgBPCGEEOWO5QHHgWBFUU4D64D/IQ3TpYqihN/i7lbK7t27SU1NtVpm1KhRLF26FICDBw/i4eFBQID8ccjJkR4HW1tbbG1tKVkWKysry6h3dnamouWyxo0bx2ZDXuVRo0bx66+/UlhYSEREBJcvX6ZTp04W+7NkifRcLFmyhNGjR1vV5+XlsXPnTgCKioo4duwYISEhAOTl5REREUHHjh0rPVfVDV3cRZSCbKtlbEPbUnhxnyyfeAVh74RwkjnmKS6Qzxqt9IRYwCa4qfSEGvKSy/r2AlB4cS+2dc3zqWv96qHPTESflQR6HYXhh7ANbWtVr0u5hpKbDoA+LQa0tsY+FUeEYdeg8/WckmpH+tUzFOVlWS3j27wzcUe3A5B57QI2js7YuXoCoCvMB0BobRBaLRiu49zEaHKTYypt369Fd5IvHJXtNOtCwoldKLpi8tMSyEuJw71Wowr6I/Njxx3dhm/zLlb1+qIC0q6cAkDRFZMVE469u8zPrS8qIC8tEbcQ83aqPYmXpcfRGiGt4Yq8ESTlqvQsOhgS6pW5vrUY85qXxr8xpEYZr+8y9V05ALXamGu8QyErCbKTQa+DyCNQq7V1fVo05GXI1xmx0uNa8psTc1IarCrVjhptbAIoinIFeR78Su8XQngCDYFdhl2vA3cDQ4APLNUlhJghhDgihDhy83r87wgODiYqKsq4HR0dTXBwMAAajYawsDASExPZsmULhw4dMpZ76623uHbtGlOnTrXo2QwNDSUtLY3CwsJK2ymNv78/8fEy9WF8fDx+fn7XrXd3d2fEiBFs27bNuO/IkSP07KlmbrKExtkDfbbpZkSfnYbGWRoiCIHr+Ndxv38BxdFn0CVeMdPbBDSkOCnCVJ+jO0qu/NNQcjMQjm5mGo2zZ7k2U41tXo/etl4HaeDqi2W5wlzQ2iLsqzCN3m2MvZs3+RnJxu2CjBTs3QwpJoWGzrM+pdfLP5F66TiZURevu14HT3+K87JRdPJzsHf3Jj/DtNZofkYy9u7mqSztXDwozEoDoDArDTtnj+vW2zg449O0E2mXjxv3ZUZfwqNu8+vud43CyQNy00zbuWlyH0gP5JAXYNwHEHcOUiLM9b71IfWaadvBFfIz5ev8TLB3Ndc4WmjT0eP69bXaQmq08fqmMFcanlWZJlPlplDjjU0Dpb2aPYUQJ4F4YL2iKPEAiqLkAL8BPyqKUmCpEkVRFiqK0uF2Xgy2nAMXwOip1Ov1tG3blpCQEDp16kTz5qYf9ZdeeonatWvz888/88QTT5jVERgYSFKS6c/DWjv/tp8AWq2WX375hU8//ZSrV68a9ycmJhIUFHTd7dQszM9piXcLRSHr91fJ/HE2Wr+6aDzNbwyEkztKJZ616+I6vwcazyAcOk8gb9eSsvK8TESJkaxSBmHpMy7xYil6Di54ij3vTMOtViOc/etcd732bp4U5mRYL/RvE4SU0guNhhZ3P0fUvrXkpSYY9xfmZGDv5vXv2qmJKApsegdWvyC9ke4WfiMd3WSI+0aw8Dtt0WtqCfdAaDsGDv1cdn9BFpREXFSqDTXe2BRC1AN0QKJh125FUVoBLYFHhRBtShXXGx53LNHR0dSqZcqGERISQmxsbJkyGRkZ7Ny50+L4z2XLljFu3Diz/Xl5eTg4ONxQOwAJCQnGMH5AQACJiYnXpV+4cCGXLl1iwYIFZepzcHAgLy/P8puv4ehz0tC4mP6oNS6e6A3h6hKUwjyKYy9gW9vCBDNdEcLG1lRfXoYxDC8N0czraNPL2KY1vXD2xHnQk+TuWIQ+s1y2Hq2tnAChYkZ+ZjIOhrAzSA9iQWbZoTXF+TmkXTmFd+N2112vvqgQrY2dcbsgIwUHd1/jtoO7j1k7AIXZ6cYwvp2rJ4U56delbzr2SXKTY4nas7ZMfVobW/RFFu/1VXLTwanUTZiTp9xXmqI8SLwkx22WR1ckQ9ol5GeZwvAObtIINGszzbzNkhC5Nb2jB/SaCfsXyxB8aTS2UFxU8ftUuSOp0camEMIX+Br4XCnndlMU5SLwLnKcZrVh7dq13HfffQB07tyZjIwM4uPj8fHxwd1d/vE7ODjQv39/zp8/D0CDBg2M+pEjRxr3l+bixYuEhoaWaWfy5MnY2dkRGhpKw4YNy4TlS5e7//77Abj//vv5448/KtW/+eabuLu78/TTT5vV16hRI06fPv0Pzkz1pygiDLtG3QA5llIpzJPhawdXhJ2jLKS1xTakGbo089UGdGmxaNz8S9V3HLtG3QGwa9Sdoogwc03iVTTufmhcfUCjxa5+J2O5ivTCzhGXIU+Tf/B3dPHmM6M1Tu7os5LN9qtA0tmDBLaXE6jcajemOD+Xwqw0bJ3dsHGQoUmNjR1eDdqQmxh93fXmJMXg4GkaaZR07iD+rXshtDY4ePrj6B1EhoWwvOzPXQAEtr+LpDMHK9XXH3gPNg5OXFy3yKw+J59gshOume1XAaJPQj05JhbvulCYZwhfu4Ct6fomoAlkxpvrM+PB1c9yffW6QPQJc01KpNQ4e8uxoHU6SJ01va0j9H0cjv8BSebDdXB0k7PXVaoVNW7pI8BRCHEc09JHPwIVTeP9GpgjhKirKMrVCsrcNixbtow+ffrg4+NDVFQUr776Kt9//z0zZ84E4JtvvmHjxo0MHTqUy5cvk5ubywMPPADIMPiSJUvQarVoNBqWL1/Ohg0bAHjvvfdo3Lgxer2eyMhIHnnkEbO2c3NzCQ8Pp379+oSHh3P27FmWL1/O2bNnKS4u5vHHH0evl07hRYsW8fXXX3P06FHee+89li9fzvTp07l27RoTJsjZqhXpg4ODeemllzh37hzHjsmlVj7//HO+++47ALp3787rr79+c0/0bYjTXTOxCWqCcHDB7Z6PyT+yhsLzu7Fr1geAwrM7Kb52EtvarXCd8r5c+minPGfCyR2nfg8hhAaEoDD8MMXXzP9Yiq6dwrmfaWZ4QdgGnAY8hl3TXuizUsjd8qWhPg+c+jxAzsb5oOjJ2/MzzsOelUsfXdiNPi3Wqt6uRX807v44tB+JQ/uRAGSv/wglPwutbyjFCeGmSQw1iBZTnsOzXktsnd3o8cJirmz5mdjDWwjuPASAmIObSDl/BJ/GHej2f4vQFxZwZsUnANi7etF84jOg0SCEhoSTu0k+L2cd+zbvSuNRM7FzdqfNA6+SHXeVsO/KjsvWFxWQlxqPo3cgeSlx5CRcI+Hkbro++xWKXseFP74yfiZNxz1J9IFNZMVcJnLn77ScOpfgjgPJT0/i5E/vAlSot3f3pu5dk8lJjKLzUzJqEbVvPbGH5XI67qFNubL1l5t+rm87uj8I/o2k4TjmHTi5HsL3QUPD+PRLuyH2NAS3gJFvgM6w9BGAozt0vV+GvIUGIo9CjIUb8tgzZWeGn/kTej4E9btDbirsXmSqr/M9sPML+Zkf+RX6PSnrDt8HGXHW9Y37gKsvtBgiHyBn2hdkgVdtSL5aI6/v6o64kXF0KtePEKLGndjRo0fTvn17Xn654nUebyZt2rRh9uzZRs/trSTtq2m3vM2qwGnQE+QfWIE+I6HywjcBx+53UxQRRnHMuSppv4QjV5MqL1TN8G3eFbfg+oT/9VOVtO8aVI/aPUdz5jfrS3zdDPq3qlV5oepAr5ly3cusKvp+t58gPaIl625WEeKer4/eznMv7kRqdBhd5b9lzZo1REREVFn7Pj4+VWbo1hTyD/xuWi6pCtClRle5oVlTSTqzn7y0xMoL3iRsnd2qzNCtMYStkZ7LqiI9tsoNTZWbg+rZvEnURM9mTaameDZVJDXRs1mTqTGeTRVA9WzeDGrimM1bgo1G4O3iUHlBlWrBuM/MU3GqVF/WzBpU1V1QuZX4mq8Bq6Kicv2oYXQVFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmoRqbKioqKioqKioqN407ytgUQihCiI9Lbc8RQrxmeL1YCDG+XPlsw3OoQftkqWOfCyGmldYKIVYLIY4LIS4LITIMr48LIboJIX4WQlwQQpwWQnwvhLDlNmP+519z+nIEO/cfrrDM2AmT2L73INv3HmTdX9tp1qJlpfpmLVqyfssOduw7xNJff8fF1dVi3X7+Afz420rj9pOz57A/7BR7jhynz139LWo8PD35bc069h07yW9r1uHu4VGpfvS4CezYd4jtew+ybOUfeHl5A/Dgw48weeq9FZ+gasacNz/m910n+HbNtgrL3DVsDItWbWHRqi18+tMf1Gvc7Lr0o+9+gMXrd/HdH9uZ8eyLFuv28vHj7S9MecunPPQESzftYfH6XXTo3tuixtXdgw8W/cKSjXv4YNEvuLi5V6rvO3QUi1ZvZdGqLbz7zU+4ecj0eKPunsag0RMrfO/VDYfeD+B87yc4jX+jwjI2DbrgNO51+Rj5Ahov0yxqbUgLnCe+g/Okd7FrPdS4X+NdC6dRL+I09jWcxryCxreuxbqFozuOg2YZt+3aDMV50rs4T3wHbUhzyx2yd8Zx6LM4T3oXx6HPgp1TpXqb+p1xGv8GTuNex3HIMwh7FwBsm/fDplEPq+eoWtF8PPR5Gbo9U3GZgDbQ9Wn56PQYuASajnk3gu5zoMdzENrHXFunFwx8H2ydzI8B2LlC22mm7bp9ZF3d58i6LWHjCO0fgu7PyWcbx8r1Aa1N76Hdg6b+1OoKQeqE8OrCHWVsAgXAWCGET6UlzUkEZgkh7CoqoCjKGEVR2gAPIXOktzE89gE/A02QOdMdDWVuK35b9iNTxo22WuZaZARjhg2iX/fOzP/gPT5a8Hml+nmffcnbr71M326d2LR+LY89ZfnH75EnnuSnJT8A0KhxE0aPHU/vzu25e9wo3vv4EzQa86/bk888y+6/d9KtXSt2/72TJ5951qpeq9Xy1vsfMm74EPp178y5M6d4cIbMaPTLT0uY/shj13OqqgV/rlnO8zOnWi0TFxPFM9PG8/DYAfz09SfMfu39SvVtOnWjW79BPDymP9NH9WP5D19brHv8/TPY8PvPANSp35C+Q0cxfWQ/5s6cyqyX3rH4eU956HGOHdzD/UN7cOzgHqY89LhVvUar5fG5b/DsAxN4eOwArl48x+i7Zdarzat+Zcw906/vZFUDii7sJW+j9QXN9VlJ5K57n9yVr1IQtg6HXjIVLELg0OMecjfNJ2fFS9g06IzGIwgA+84TKDi2ltxVr1FwZDX2nSdYrNuu1UCKzv8NgMYjCJv6nclZ8TK5m+bh0ONemaGmHPZthqKLOUfOb8+jizmHXZuh1vVCg323KeSt+4Dcla+iT43GtoVMd1l0fg92htc1gtijcPQ762Xy0uDwN7D/E7iyDZqPNRwQ0HQ0HPse9s6DwNbgXCoVpb07eDeU+ooI7QnRhhTDzn7SKNw7D459J+vG/POmbh9IuQx7P5TPdftY1wsNNBkJRxbK95AVB7VlSl1ijpheq9zx3GnGZjGwELByq1chScA24P5/0rCiKBsVA8AhIOSf1HMzObBvL+lpqVbLHDl0kIz0dACOHjlEYFBwpfr6DRqyf+8eAP7esY3hI0dZrHvYyNHs2CqXABo0bDhrVv1OYWEh1yIjuXolnLbtze9SBw0dzvJl0mBZvuxnBg8bYVUvhEAIgZOzvPt1cXUjPl6mR8vLyyMqMpK27WrG3fCpowfJzEi3Wubs8SNkZ2bI1yeP4etv8nxUpB8x6T5+/fYLiooKAUhPtZynuOeAoRzesxOAbn0HsWPjHxQVFRIfE0VMVARNWrY103TrO4i/1qwA4K81K+jeb7BVfcnn7eAoP28nZ1dSkmT2ooL8fBJiomjcso3Vc1Bd0MVfRCnIsVpGnxAOhbmyfEI4wll6gTW+9dBnJKJkJYFeR3H4QWxC20iRAsJWLtMm7JxQctMt1m1TtwPFUTLNoU1oG4rDD4K+GCUrGX1GIhrfeuaaOm0purgXgKKLe7ENbVeJXsiHrb2swNYBJcfQH10h+qyUCj2v1Y60q1CUZ71MRiQUG8qkX5NGJIB7LchNgbxUUHQQfwL8TFENmoyAixsBK8tB+7WAZMMC637NZB2KThqouSmyDTNNc2kkg3z2a359eq3BB2TjIPO5A+iLZFm32+6vVuUfcKcZmwBfAFOFEP8kzcF7wLNCCO0/bdwQPr8X2PxP67hduPve+9m+tfL1Ic+fO8ugocMBGDF6LEHB5hd/7Tp1SE9Pp7BQGiiBgUHERkcbj8fFxhIYFGSm8/X1IzEhHoDEhHh8fH2t6ouLi/nf7Fns2HeYExeu0KhxE5YtXWwsd+L4MTp3U++GLTFk7GQO7d5RabmQ0Hq0bN+Jz39Zx7zFv9O4RWuzMgHBtcjOzDAapD7+ASTFxxqPJ8fH4eMfYKbz9PYhNVlmoUlNTsTDMASiIr2uuJgFbz7Pt2u2sXznMerUb8imlabc2BfOnKRVu87XeQZqFrZNelIcdQoAjbMH+hzTjaQ+J81oiBbs/wX7LhNxvvsj7LtMpODQSrO6hKuPNHT1xXLb2RN9dtn6NM4e5jpHN5Q8ebOj5GUgHF2t6xUdBXuW4jz+DZzvmYfGM4iiC7tM5ZIj0AZUEMKt6QR3NBmHDu6Qn246lp9hMkR9m8rt7LiK63L0lEasopPb9u5SU7o+Bwt/wXYuUJglXxdmgZ2zdb2ih3Nr5FCB3i+Cix/ElBrGlRkNnjXk5qKac8cZm4qiZAJLgafKH7JUvJz2KtIrefe/6MKXwC5FUXaXPyCEmCGEOCKEOKK/zfMHde/Ziyn33s9br7xUadlnHn+EBx6ewZ9/78XFxZVCg4FRGj//AFKSk43bwkJI7UayVVWkt7Gx4f7pD9O/V1daN67HuTOneWr2c8YyyUlJBAQEmmlrOm06dWPI2CksmvdOpWW1Wi0ubu48MWUE33z8Fi9/bB5G9/L1Jz3N5PG8WZ+31saGEZPuY+b4QUzs044rF88x5WHj0GvSU5Px9vO/7nZqCtrAJtg27knBwRWGPRZCnobPx7ZZXwr2/0rOsjkU7P8Vh14PmBUVTu4o+Vml9/zLHlagF1psm/UlZ+Vr5Pw0G31qNHZthpm6nJdp0ait8XjWk8bmpU1WCimgsYV6/SB8i/X67Nyg0LoXnX+bfVBRZBg9pAvsXwB/vw1Z8VC3r6lMYQ7YqwvqVwfuOGPTwCfAdMC51L4UwLNkQwjhBSRjzjvA//gH710I8SrgC8y2dFxRlIWKonRQFKWD5t/+Ft9EmjZvwceffcm0KRNJqyTsDnD50kUmjxnJoN7dWf37ciKvXjUrk5+fj4O9vXE7NjaGoBCTBzQwKIj4OPM76aSkRPwMHjA//wCSk5Ks6lu0kl62kj6sXb2Sjp27GMs52NuTl59f6XuqSdRr1JRnX/+QV558kMwMK2O0DCQlxLFnq/zTunDqOIpej7unV5kyhfl52NmZPu+k+Dh8A0yea5+AQFISE8zqTktJxstHjh3z8vEzhugr0jdoIsNwcVGRAOzcvI7mbdoby9nZ2VNQoH7epdF4heDQexp5f30GhrC79ByaPkONs6cxXG7bqBvFV2Xos/jKYbR+FjxJxUWgNc2JVHJS0biUrU9fEu4uhZKXiTDk2haO7ih5WVb1Gh8ZWlWy5O9AcfhhtP4NTBVqbVGKzW92azQuAXIy0fElUCSHUEjPoYepjIM7FGSCkzc4ekHXWdDzf9Lj2GWW9EiWRl8EmlIJBgvKeTJL6itPYbacWATyucRgrUjvarjm8wz/QwknwaOOqZzGRvZF5Y7njjQ2FUVJBZYjDc4SdgKTSk0AmgaYxQwVRTkPnAWG30ibQoiHgEHAFEVR9Dfe69uD4JAQvv/pF56YMZ0r4ZevS+PjI0PbQgieee5/LP3+W7MyVy5folZt04/EXxs3MHrseOzs7Khdpw716jcg7OgRM91fmzYw8W45SWXi3VP5c+N6q/q42FgaNW6Kt7ecI9ar711cunDeWF+9Bg05f+7MdZ6N6o9fYBCvLVjEu8/PIjryynVp9m77k7aduwMQUqceNrZ2ZJS7KYmOvEJAsGnM1b4df9F36Chsbe0ICK5FcO26nD8VZlb3vh1/MXC0nIAycPQE9u3406o+OSGeOvUbGo3d9t16ce2K6XsbElqPiEvnzdqpqQhnLxwHPE7ejkUoGSZjX590FY27P8LVBzRabOp3pjjyuDyWk442sDEA2qCm6DPMbxL0GfFoXE3zMosjj2NTvzNobBCuPmjc/dEnmX+/iiPDsG0kv0u2jbpTHBlmVa/kpKPxDEI4SINFG9IcfbrpJlXj7o8+LeZfnqVqhIMHtLkXTv0GuaV8K5nRBsPSE4RWTs5JPAfZ8bDzTdj9vnwUZMCBBdJILE1uktSWkHhO1iG0cr+TN2REmfcn6SwEGW4Gg9pD4hnr+oIMGTq3NfiNvBpCTqKpPmcfyDb/PqrcedzJudE/Bp4o2VAUZb0Qoj1wVAihA8KBRyrQvg2Y/xNa52sgEthvCPmtUhSl4jVIqoCvvltMtx698PL25tjZS3z47lv88uMS7ntQTpxf+v23zP7fC3h6efHexwsA0OmKGdSnh1X96PETeODhmQBsXPcHv/y01Kzt3NxcIiKuEFqvHhFXrnDh/DnWrlnFrkPHKC4u5vlnn0Gvlzb6x599ydLvv+VE2DE+m/cxC5f8yN333k9MdBQP338PQIX6hPg4Pn7/HVZv+ovioiKio6KY9egMYz86dunKx+9VHiquDrz44Re07tgVdw8vft12hCVffMSmVb8yfKJc/mn98h+595FncHP3ZNbL8pzoiot5bNJQq/rNq3/luTc/5ts12yguKuL9F582azs/L4/YqEiCaocSey2CyPCL7Ny8ju/X7kCn0/HZWy8aP+9nX/+Qdct/5OKZk/z67Re8PO9rhoydQmJcDG/Mlt+rivQpSQks/XI+85esQldcREJcDB+8YJof2KJtR5Z+aX2GdnXBod9MtEGNEQ4uON/9EYVH/6Dowm5sm/YBoOjcTuzaj0Q4uODQ3bAEmKInd/UboOjJ3/sTTkNmg0ZD0YU96NPkGNmCXUuw7zYFNFrQFZG/e4l548WF6DMTEW5+KJmJ6NNiKb5yGOeJb4Fe1l0SVrXvNY2iszvRJ0dQcHwjjv0fxblJT/TZKeRt/QqgQr2Sm07h0bU4jvgf6HUo2Snk7TTNyNYGNKTw6Nqbd5JvJ1pOAa960hDr9YIMfccchhDDGOXog1DvLrlUUNPRcp+ih4Ofyefzf0C76TJUHXMYcm7AaNMVQW4qOHpDXorUxp+E7s+a6i4ZpdZsHEQfgMwYuLoTWk2VIf38dDjxkyxTkb4gC8K3QsdH5PjQ/DQ4vcLUD49QeVzljkfcyLgqlevHVqtRvF0cqrobt5Qhw0fSqk1b3n/r9Sppv0Wr1sx8/EmenHnrV6VqHuJZeaFqRve7BtOoeSt++PSDKmm/QZPmjL9/Ju89X3749s1nzaxBt7zNqsYmtB0anzoUHlldJe1rvGtj12og+TvMIys3G9dQ31veZpXj1xzcguFy5ZNIbwquQVCnJ5z+7ZY3LQZ9cFRRlJqxrMkt4k72bKrcZmxavxZPL6/KC94kvLy9+eDt28rZXK3Zu20z7h5VZ2S7e3rxw2dVY+jWRIojjmFr71x5wZuEcHCh4HDVGLo1ksQzFS/4fiuwda46Q1flP0f1bN4kaqJnsyZTEz2bNZma6NmsydRIz2YNRvVs/vfckROEVFRUVFRUVFRU7gzUMPpNwtHOhhYhVRdSVrm1bP1wclV3QeUW4jv5i6rugsotJOnLf5R4TkVFxYDq2VRRUVFRUVFRUblpqMamioqKioqKiorKTUM1NlVUVFRUVFRUVG4a6pjNakbrjl1547PviIuR2R32bN3ET199YlauTeduzJzzMja2tlw6e4qPXp6DXqezqh9330MMGTcFRVG4euk8H774LEWFBWZ1j713OlkZ6WxZuxJXdw9e+uhL/INrkRATxZvPPkp2ZoaZpmOPPjw293U0Wi2bVv7Cr9/KMXEV6fsNG8PEB01r9tdr1JRHJwwm/PxZPvj2F96Y/YjFdqodXvWh/TRTurf403DZQt5j7wbQZLhM/5YRDaeWy8WVS+poNlJm9yjMgYNy4W1sHKDlRHANABQ4uRzSI83rDu0p0+TFHAVbR2h7r8wSkpcGx36E4jxzjU9jaDZKLjgddRCuGJJ9WdO7BkKLcbJfKLB3AeiLodOMitupZnTr0ZMff1nBtcgIANav+4OP33/XrFyPXr15/a13sbWz4+TxMGY9/gg6nc6q/uip82RnZ6HX6SguLmaAIdlDeWY+9gRpaaks/2UZHp6eLPrhR2rXqcO1yEgemnYPGenpZpp+/Qfw9vsfodVq+WnJYj6d/xFAhfpxEyfzxFNPG/XNWrTkrp5dOX3qJL//sYHp90+12E61w78R9H4Usg3ZgaLC4NRGC+UaQ/txcmH+lGtw4EfT9e3fCNpPkMcKsmFLqSQIQsCQ5yE3HXZ+abkPTfrJtKdXD4KdE/R8GJy9IScFdi+CwlxzTWAz6DhRXt+X98IZmSnMqt4jGDpPBVsHmSBg07vy+r5rVsXtqNwx3NaeTSGETghxXAhxQghxTAjRzbC/jxBifbmyi4UQ4w2vdwohLhh0h4UQbUqVixBCrCy1PV4IsdjwepoQIsnQZsmjmRAiVAiRZ9g+K4RYKoSw5Tbl1NFDPDJuEI+MG2TR0BRC8H9vf8Jbcx7j4dH9SYiNYeCoCVb13n4BjJ76II9NHMbDo/uj1WjpO3SkWd0arZbBYyazbcMaACY/9DhhB/cybWhPwg7uZfJDj5trNBqefPEtXnjkXqaP7EvfoaOoXb+hVf32DauNfXx/7iwSYqIIP38WgC3rVjJy8n3/5hTeWaRdhT3z5cOSoYmAVpPh+E+w+yNpxAUbVvWwcYDmY+HID/JY2I8mWbPRkHQedn0Au+dZThsnNBDSEWINCbnq9YPkS/D3+/K5fj/L/Wk+Bg5/C7s+hKC24OJvXS800HoKnF4p+3ngK9Dr5LGYY1Cn2z84cXcmB/bvpW+PLvTt0cWioSmE4POvv+XhB++jV5cOREVdY/Ld91yXfsywwfTt0aVCQ1Or1TLlnvtYuVwutP3UM3PY/fdOOrdtye6/d/LUM3PMNBqNhvc+/oTJ40bRvWNbxoyfQKPGTazqVy7/1djHx2ZM51pkJKdPnQRgxW/LePChGWbtVFsSL8HGt+XDkqGJgG73w+5vYf2bkJMK9brIQ7aO0HGKNCTXvwG7FpWVNukHGfEVty00UL8bRByW280HQ/x5WPuKfG5uYQkwIaDTFNj+Oax7HUI7gnugdb3QQPcH4ODPsp9b5smMQiCN3Ea9r/t0qdye3NbGJpCnKEobRVFaA88D5r+sFTPVoPsS+LDcsQ5CiOYV6H4ztFnyOGvYH64oShugJRACTLyBvtxWuHl4UlRUSEzkVQCO7ttFzwFDK9VptTbYOzig0Wqxd3AkJdHc+GjbuTuXzp1Cr5M/FN36DuSvNTL92F9rVtC9n/mPU+OWbYiNiiAu+hrFRUXs3PgH3fsOvG5936Gj2L7xD+P2/h1b6Dt0VKXvp8Zg5yQ9BDkG70jyRQhoKV8HtYOEUzK1HJhyJNvYy1R50YfktqKD4nzzur0byDR1Ri9Kc4g5Il/HHJHb5fGoDbkp0hur6CDuuKlcRXqfRpAVJx8gPakl6fISzkiDVQUALy9vCgsLuHJZ5pD/e/t2ho8a/Z/U3bN3H06dOI7OcH0PGTac35bJlIS/LfuJocNHmGnadehIxJVwIiMiKCoqYs3KFQwZNvy69WPHT2T178uN25s3bmDM+Dv25/e/x95ZXt9Zhpziceegdjv5um4n6Q3NTZPbBVkmnZMHBLWUnseKCGgMqVGm67tWK7iyX76+sh9qtTbXeIfKvmQnyxvCiMMQ0sq6PrAZpMfIB8gIS8ka4NEnIVRd8vJO53Y3NkvjBqT9A91+ILjcvo+AF/5JJxRF0QGHLNR529CsTXu+WfUX73z9I3XqNzI7npGWio2NDY2ayx+AXgOH4RcQZFWfkhjPisXfsGzrQZbvPEZOdhZH9+0yq7t5245cOnPKuO3p7UNqsvwRTE1OxMPL20zj4x9IYlyccTspIR5v/8Dr1vcZPIIdpYzN7MwMbO3scXP3qPgkVSc86kCP2dDhIZOHsDSFOTKE5h4itwNagaOHfO3sI70fnR+F7k9DcHu539FbGp6tJkH3Z6DlBNDamdftGSrD8iXYu5r+0AqywN7FXOPgbjJuAfLSwd7dut7ZsKh2x4dlP+v1MemL8+T7q8psJ7eQDp06s2PvQX5duYbGTZqaHU9JScbGxpbWbaXBMWL0GIKCQyrVK4rCijXr2Pr3Xu6d9qDFtjt16cqJ42HGbV9fPxISpGcsISEeHx/zxc8DA4OIiTZ9R2JjYwgMCr5u/ahx41lVytjMSE/H3t6+SrOV3VJ868Gwl6DvEyYPYWkKsuUQGK/acrtOO3AyJJlw9ZM3mwNmy3B53c4mXfuJELYK402bxbbrQ2qpoTMObpCXKV/nZcrrtTxOnibjFmSIvqQ/Fend/KRx2e9JGPoCNBto0hfmgsYW7Koue5XKv+d2H7PpKIQ4DjgAgYClmFxlDAbWlNu3HHhMCNHAQvlJQojSMaSupQ8KIRyAzsCs8kIhxAxgBoCDrfYfdPXfc+nsKe4e0Jn83Fw69ezH6599x7ShPc3KvTXnMR7936vY2tlzdN/f6HTFVvUubu506zeQewZ2JTsrk1fmfc1dw8eybf2qMvV6+/px7cqlG+qzsLTzOjNbNWnZloL8fCIuXyizPz01GW+/ADIz0m+oL3ccmdGw423QFYJvEzl+8+/3zcuF/QRNR8oxm8kXQW/wVAgtuIXAoW/ksW5PynGZGo3Mi3xmDWRcg6ajoF5fuPRn2Xrt3SA78T94I5V83kIDnnVh7yegK4LOM6WRmyK9dxRkyz+youo9ruvkieO0a96YnJwc+g8cxNJfltO5bUuzcjMevI+33v0AO3t7dm7fiq64uFL9sIH9SIiPw8fHlxV/rOfyxQvs31fW6+XvH8DFCxfM2rOGEOZX+PVmrmvXoSN5ubmcP3e2zP7kpCQCAgJJS029ob7ccaReg9UvQnEBBLWQ4zfXvmJebs+30GGCNMrizppC0BqDEbr1E7CxhUH/g+Sr4OYP+Vmyfn9zh4QRR3frYfbrpbLPW2jBr4Ecp1lcCP2fkUZuvOG7lp8FTu7yxlnljuR292yWhNGbII3GpUL+clX0zS29/2chRDTwP+CzcuV0yND68xbqKB9GL5l1UN9g+KYA1xRFOWnWuKIsVBSlg6IoHWy1t+bUjpxyP1+v/JOvV/6Jt68/uTnZ5OfKP9xDu7djY2ODm4X81edOHOOZ+8bxxOThnDxy0BhSr0jfrksP4qOjyEhLRVdczJ6tm2jetr1ZvQX5+djZ2xu301KS8fLxA8DLx4/01BQzTVJCHH6Bpjt2X/8AUhLjr0vfd+hItm9cY1annZ09BQUWwr53OnW6QY9n5MPeTf4J6QrlsaTz8kfbkocvPRIOfAn7PoXUK5BrCKnnp0PyBVlHUa485hoEeRmQnyENTYD4kybPaGl0RdJILaEgy+StsHeVRmB58jPAwcO07egBBZnW9fkZkBou+6gvku/VrVR/tLayL9WMBx+eyY49B9ix5wD+AYFkZ2WRkyP/cLf+9Sc2NrZ4WfD2Hzl0kBGD+zOob0/2793DlfBwAKv6hHgZXUhOTmLj+rW0bd/RrN78/HwcSl3fSUmJ+PsHANIQTU5OMtPExsYQHGL6rIKCgomPi70u/ZhxE8qE0Euwt7cnP78aTghr1BuGvigfju5QlC+vcYDY09J4tJSfPvkq/PUxbH5PjvHMMpzH3DRpfOoK5SSfxEvgGSI9liGtYPTb0GM6BDSRYybLoyuS11YJ+Zng6CZfO7qVDcuXkJtm8mSCDNfnpVvX56ZBwiXZR12RfK8lnloArQ0UV7/ruyZxuxubRhRF2Q/4AL5Ig6+8BeUFJJfangrUBZYBltJ9/Aj0AmpbOGaJkjGbDYAuQgjz2TFVwNpflhgnyqQkJeBZKgzVuGUbNBoNmenmow9KwtG2tnZMmv4Y65bLiSEV6RPjYmnaui32DjLfe9suPbgWftms3mtXLhFcO9S4vX/HFgaOlpOPBo6ewL4df5lpLpw+QXDtugQE18LG1pY+Q0exb8eWSvVCCHoNHM7OTWvN6vTy8SPeMKO+WhG5zzQZqCAT7EqFsdxrycH5lrx7doZwtEYrPZTXDOOmEs5Ij6HQSK+IRx3pqSzMkoZoSfjap6HlCUI5iTIUX0LiWdPko+AOsv7yZERJjaOXNI4D25jKVaRPuiBno2tsZV+96pXtj72rnPhUzfh+0TfGiTIJ8XH4+ZmGSbRt3wGNRkOqhRu4knC0nZ0dTz79LIu/lxNDKtI7OTnh7CK/I05OTvTp15/z58w/u4sXzlO3fn3j9uaNG5hkmHw06e572LRhvZkm7OgR6tZrQO06dbC1tWX0uAls3rihUr0QgpGjx7J65QqzOv38A7gWaWFlhDudi3+bJgPlZUhvfQneofL6LrDg3Su5QdPYQLNBcNEwxCnqBPg2kNeM1hZ8QqWn8vgaWP08rHkR9nwnJ+vs/cG83ow4cC01tCH6JNQzBPvqdYUoM58LpETK8L2zt/y9Ce0oddb0cWfBM1j2UWjAr6FsuwRHdzl7XeWO5XYPoxsRQjQBtEhDMwMIEkI0VRTlnBCiDtAaOF5aoyhKkRDiJSC8pGy5Y/OBucD26+2HoihxQoi5SK+ouZVTxfQaOIwRk+5Fp9NRmJ/PW3MeMx57+6ulzHvlOVKSEpj4wKN07n0XGo2Gdb8t5fjBfVb150+FseuvjXy1YjM6XTGXz51hw4qfzdo/tHsHc99bYNz+9dvPeWne1wweO5nEuBjenC2XK/L29Wf2Gx/y4qP3odfp+Oztl3lv4c9oNBo2r/6NyPCLVvUArTp0ITkhjrjoa2X60Kh5K86dPGacpFStCWwFtbvKAfy6IhkuL6HDdDi1Qhql9fqAX1NASEOzJPyckygNuR7PAopchijbEDY7swba3C0NwtxUOPmbefuJ56HNFNN2+Ha5dFGtTtKbEbZU7rd3k+M+j3wn+3pmNXR6WPYn+rDJcKxIX5wHV3dBd8PolcRzkGS4nN1DpOe2ZBJDNWbE6DFMm/4wxcXF5OfnM+MB06oLv/y+mqefeIyE+Dgen/UMAwcPQaPRsPi7RezZ9bdVva+fH4t/lp+vjY0Nq1b8xvat5isbbNvyF18u/M64/en8j/h28U9Mve9+oqOimH7/VAD8AwL55PMvmTJ+DDqdjuefe4blq9eh0Wr55cclXDh/zqoeoGv3HsTGxhAZEVGmD63btuPo4UPGSUrVmtrtoFEv+d0uLpQzzkvo+4Rc4igvA5oPgOCW0hi9uAsSDOHnzHiIOwPDXgb0cjJQRuz1tx97BrqV8nie/lMuXVS/u5z1vnuh3O/oDl3uhR2fy74e/g3uekoajuH7TIZjRfrCXDi3VY4rRYGYMxBzWh7zqg3JV2rE9V2dEdc7dqYqEELogJLZJgJ4QVGUDYZj3YGPkeM5iwzHthiO7QTmKIpyxLD9LNBMUZTpQogIoIOiKMlCCHvgKvCXoijThBDTkOH1mFLdeAyIBdYritLCUJ9AGrZPKIqy21Lf3RztlE71/P6T83Cn8dqCb1n08dvEXLtaJe0/Nvd19u/4i7CDVmZZ/sfU6Nzo7e6H8xtMoflbTdNRkHjGZEDfAmpybvTFP//GG6+8YAzN32refv8jNm9cz+6/d96yNmt0bvRej8iJRFn/xdjsf0CHiRB9wjR+8xYg7v3mqKIo6hT4/5Db2rOpKEqFs2wURdkLdKngWJ9y2x+Xeh1a6nUBEFRqezGwuIImW5QqpyA9qSoW+Hb+O3j5+lWZsRlx+cItNTRrPBc2Ss9lVRmb2fG31NCs6bz56kv4+wdUmbF57uyZW2po1niOr5bjK6vK2EyPvaWGpsrN4bb2bN7J1GTPZk2kRns2ayA12bNZE6nRns0aiOrZ/O+5YyYIqaioqKioqKio3Hnc1mH0OxmNELjYq6e3xqBTB6/XJHTq512z0Kh+GRWVf4N6BamoqKioqKioqNw0VGNTRUVFRUVFRUXlpqEamyoqKioqKioqKjcN1disRjzx6gcs3nqEBcv/tFruoede5as/dvLJb5uo16S5cX/bbr35YtU2vvpjJ2OnPWrcP3nm03y3+QDzf9nI/F820r57H4v1evr48uIC04LP4x54jK/+2MkXq7bRpmsvixoXN3de+/JHvlyzg9e+/BFnV7dK9VMfn8O3G/fxy56yGU6GTrqPfiMnWH3v1YrWk2Dg69D7Oevlmo+Bfi9A7zngHmza79sE+s6Vxxr0M9fV6wMj5oGdhfR4ILOWdJpu2m5wl6yr71zwbWxZY+sEXWZC3+fls61j5fomQ6D/yzDk3bJ1hfaAWuYpFasrn331DRcioth7+JjVcu9+OI8jJ8+y++ARWrVpY9x/14CBHAw7xZGTZ5n17JwymocfeYyDYafYdziM1956x2K9/gEB/PL7auP203Oe48jJsxwMO0W//gMsajw8PVm1biOHT5xh1bqNuHt4VKp/8dXXOXXhMtcSymaMeWjmo9x9733UGDrfA2Pfh6EvWS/XfgKMeA2GvAietUz7A5vB8FflsWYDTftbDoPR78gF1Ic8D0HNy9cocXCTudhLaDZI1jX8VQhsallj5wR9n5Tl+j5Z9vquSN9qJIx6GybMK1tXo95Qz+Lqhip3INXO2BRCBAghfhVChAshzgohNgohGgkhmgshtgshLgohLgkhXjYszl6iGy2EOCmEOC+EOCWEGF3q2GIhxHjDay8hRJgQwkIi2apl+7rfeeMJ60t0tO/eh8DadXl0VB++fOsFHnn+bQA0Gg0z//cGbzw5jSfHDaDn4JGE1G1g1K39+TuemTKUZ6YM5ejenRbrHnnPQ2xZ9SsAIXUb0GPQCJ4cP5DXn7ifR+a+icbCIPtxDzzKyUP7eGx0X04e2se4Bx6rVH941zaeu2+UWV1b/1jO8MnTKj1P1Yaow3BwofUyfk3BxQe2vwMnVkDL8YYDAlqOlfod70NQO3AxpTLEwQN8G8nMQRVRrw9EHpCvXfwhqC3sfB8OLISW42Qb5WnQD5IvwY535XODuyrXx5+F3Z9YeP8HoW5P6++/GrHspx+ZMHqE1TL9Bw2mfoMGdGjVjGeeeIyPP/kMkNf3B/MWMHHMSLq2b824CZNo3KQJAD169WbI8BH07Nyebh3b8vmC+RbrfuzJWSz94XsAGjdpwtjxE+nWoQ0TRo/gw/mfWry+n372Of7euZ2OrZvz987tPP3sc5Xq/9y4gf69e5jV9fPSxcx49PHrPFvVgCsHZEYeawQ1l6kh170Gh36GjoYl2ISADpOkfsObUKcDuAWYdOe3w6Z35SPWQkpZgCZ3yYxDILV12sOGt2SdHSbLNsrTbJDMXrTuNfncfFDl+piT8Of75nWF74NGfa2/f5U7hmplbBqMx9XATkVR6iuK0gx4AfBHppZ8T1GURsgF2bshswMhhGgNfASMUhSlCTAS+EgI0apc/e7An8BCRVEsJJKtWs4eO0R2RobVMp36DGTn+lUAXDwVhrOrK54+vjRs0Ya46EgSYqIoLi5iz5/r6NxnoNW6ytO13xCO7ZNp8Tr3GcieP9dRXFRIYmw0cdGRNGzRxrw/vQewY/3vAOxY/zud+wyoVH/xVBhpyUlmdRXm55MYG03D5jVkvf3UKzLNmzUCWkDUEfk6PVJ6GuxdwbM25CRLY1LRQWyYLFtC81FwzjzPdRkCW0HSeVM7sWGg10Feqqzbs3YF/TksX0cdNrVpTZ8eCQVZ5nXpiiA3DTwstFMN2b93D2mp1vO/Dx02gl+XyZSlRw4fws3dA/+AANp36MjVK+FERlylqKiIVb8vZ8hwabg++NAMFnz8IYWFhQAkJ5lfWwAjRo1h2xYZNRkyfASrfl9OYWEh1yIjuHolnPYdzL3MQ4aN4NefZX9+/fknhg4fWan+yOFDJMTHm9WVl5fHtchI2rWvIcsfJl2GQgt50EsT3AquHpSvUyKkZ9HBTeZRz06S+cT1Oog8CiE3+LtYu63MWQ5SG3kU9MWyzuwk2UZ5QlpJIxnkc0mb1vQpEZCfaV6XrkiW9a5zY/1WuS2pVsYm0BcoUhTl65IdiqIcBxoBexVF+cuwLxd4ApkXHWAO8I6iKFcNx68C7wKl45MuwCZgmaIoX93k93HT8PLzJznBlBs3JTEeL98AvHz9SY4vvT8OLz+Tp2vYpPv55LdNPPHqB2VC3SX4BYWQk5VBcVGh5XYS4vDy9TfTeXj7Gg3HtOQk3L18bkhfnsvnTtKsbc0JrVaKgxvkp5u289LBwV0+8krtzzfsB/BvDvkZkGklh7KjFxTlyj8ysFBfhqm+0ti7mgzHgiywc7kxfXkyosCrbuXlagiBQUHEREcbt2NjYwgMDDLsjzLtj4khMFAOqajfsCFdu3Vny87drNu8hbbt2pvVW7tOKOnpaUaDNDAwuGw7MdEEBgWZ6fz8/IyGY0J8PL6+vjekL8/xY0fp2t3c61ljcfKQN1wl5KbJfY4ekFN+f6nrqVFvGXbvfE/ZUHcJzt7yRlZfbGjHvVw76bKN8ji4mgzH/Ey5fSP68qReA98GlZdTue2pbsZmC+Cohf3Ny+9XFCUccBFCuFk6Dhwx7C9hHrBHURTLMSZACDFDCHFECHGksFj3T/p/0xGWQpsoCEshEUN2qU0rfuKRkb14ZvJQ0pITeWC2+RgiTx8/MtJMIVdr9V1XP/+hPiM15bqM0pqDpc+7ov0KaG2hYX+4sNl6tQ5ulXtdbgUF2ddnlNYQLF03imL5+i7JHmdjY4O7hycD+vTk1Ref5/sfl5mVDQgIICXZlI7UWn3/pp+VkZyUREBg4HW3U/25gd/Jkt2XdsG6V2DTO5CXCe3GmZd1dIf80tGECn4v/k0/r0efnyX7onLHU92MzYoQVPzNVio4Xn7fdmCUEKLCHJSKoixUFKWDoigd7GwqTOtepaQkxuPjb/IgePsFkJqUIPcHlN4fSGqSzIWbkZqMXq9HURS2rPrVYpi6sKAAOzt7UzsJ5drxDyQ12Ty3bnpKEp4+0tvh6eNLRmryDenLY2dnT0FBfqXlagz5GXL8ZQmOHnJffnpZz4KDh/REOPmAk5ecTHTXS9KQ6zVbeiRLoysCTamkBfkZ5epzl/vKU5BlqsveFQqzb0xfHo2N7IsKID2WwSEhxu2goGDi4+MM+02TR4KCg4k3RDJiY2JYv3YNAMeOHkGv1+Pt41Om3rz8POztTdd3bGx02XaCQ4iPizPrT2JiIv4Bcqygf0AASYYQ/fXqy2Pv4EBeXl6l5WoMuWng5GnadvKEvAwZJXC2sB+kAacogALheyyHw3WF8sbT2E56uXY8TPWVJj9L3oiCIaqSdWP68mht1eu7mlDdjM0zgHkMSO4vM9BHCFEPyFYUJcvScaAdcLbU9q/AV8BGIUS5f947h0N/b6HP8LEANGrZlpzsLNKSk7h05gSBtULxCwrBxsaWHoNGcOjvLQBGYxCgc79BXAu/aFZvbOQV/IJMfx6H/t5Cj0EjsLG1wy8ohMBaoVw6fdy8P7u20ne4nLTSd/h4Y5vXqy9PUJ26XLts3r8aS/xpqGX4anvUgaJ8afClR4GzrwyHC62cnBN/GrLi4K9XYdtb8pGfAbvmmY+ZzEmSRmnpdoLagkYr63T2hbRrFvpzxjSDvFZHqbsRfXlcfGWfVQDYtGE9k+++B4AOHTuRmZlBQnw8x44eoV79BtSuE4qtrS1jx09k8wY5JnfDurX06t0HgPoNGmJnZ1vGiwkQfukSteuYxs5t3rCeseMnYmdnR+06odSr34CjRw6b9WfzxvVMnir7M3nqPWzasO6G9OWp36Ah589WMKGlJhJzCup2lq+9Q6EoT940pkTKiUPO3vKaqtNeTsQBkzEIENIGMiwMl8lMlFpjOydlHRobud/VT461LE/0SdMM8npd5PaN6Mvj6me5fyp3HNUtn+J24B0hxMOKoiwCEEJ0BC4BLwgh+iuKslUI4Qh8Cnxg0H0ErBBCbFcUJUIIEYqcWDS+dOWKonwihAgEVgshhiqKUniL3td1MfudT2nRvgtuHp58u2k/v349n61/LGfQuKkA/LnyZ47u2UH7Hn35+o+/KcjP49PX5LBUvU7Hovdf4dUvlqLVaNm6djlRVy4BcP+s56nbqBkKComx0Xz19gtmbRfk5xEfHUlArTrER0USdeUSe7es5/Pft6DTFbPwvVfQ62WKv8dffo/Nv/9M+LlTrPrhK557/wv6j55IcnwsH/yfnI1uTX//rLn0HDwKewdHvt20n61rfuPXbz4BoEnrDvy6cMFNPc+3De3uAe8Gcmmi/q/AhT/lDO06XeXxyP2QeE7OSO/3gvQQHP9FHlP0cHoVdJkBQgNRhyA74frb1hXKSTxOPpCbLLVxx6HP/wx1r8QYGGg1ESL3QUY0XN4G7e+DWp0hLw2OLpVlrOmbDofgdtLL0f8VuHYQLhqW9/KqCxf/+nfn8Q5h0eKldO/ZC29vH05fDOe9t97kp6WLmTb9YQAWf7eILX9uYsCgwRw9dY68vFyemCmP6XQ6/u/Zp/n9j/VotVp+XrqY8+fOAXKW92dfL2Tv4WMUFhby2IyHzNrOzc3l6tWr1K1Xn6tXwjl/7hxrVv7O/qMnKC4u5v9mzzJenwu++Iofvl3E8bBjfPLxh3z/4zLuue8BoqOjeOCeKQBW9a+99Q7jJ07CycmJ0xfD+XHxD7z/zlsAdO7alQ/efevmnujbhW4PgH8jsHeB0W/DyQ1wZR80MKzAcHk3xJ6WM9JHvC6vyQM/ymOKHo78Bn2fkNf3lf2QYbgpazsGPEPk5ZWTAofMh02gK5STeFx85XNGHFw7BsNelnUf/tUUru80VfYl9Rqc/Qt6TIf63SAnFfZ8K8tY07cZA6EdwMZOvs/wfXBqgzzmWw9Ob7gpp1fl1iJuZJzNnYAQIgj4BOnhzAcigKcBB+AzIBDQAj8CbyiGEyCEGAu8DtgCRcCriqKsMhxbDKxXFOV3w/YPgBMwRVEUi0mSPZzslT5NatbYos59B1G/aQuWfflxlbRft3FzRt0znU9enn3L217z+thb3maVE9AS3EPgwqaqad8tGOr3hjALf5Y3Ga/JX9zyNquaYSNG0rptO95547Uqab9l69Y89uQsHn3owVveduqi6ZUXqm6EtAav2nByXdW07xkil1/av+SWNy2mfnVUUZQasuzBraG6eTZRFCUWmFjB4T5WdKuAVRUcm1Zu+7ZbY/N24OCOP3F196iy9t08PFn25bzKC6r8N8SfkkutVBV2znC+igzdGsiGdWvx8vKuvOBNwtvbh3feeL3K2q9xRJ8A+woSOtwK7F2qztBV+c+pdsamStWydc1vVdb2iYN7qqztGsu1g1XXdrI6NvdW8+OSqlteeOf2bVXWdo0lfF/VtR1/vuraVvnPqW4ThFRUVFRUVFRUVG4jVM/mTSIzv5A/T0dXXlCleuBkV9U9ULmFvDZWHc5Vk/hb/S1XUflXqJ5NFRUVFRUVFRWVm4ZqbKqoqKioqKioqNw0VGNTRUVFRUVFRUXlpqEamyoqKioqKioqtwFCCOU6H5uruq83QrWcICSECAG+AJohDer1hu3tQO3SC7ELIY4DM4ChwMNAUqmq+gBtgB3ASEVR1hk064GPFEXZeXPfyb+jZ6/erFi5ioiIqwD8sWYN775tnn2jd5++vPv++9jZ2RF27BiPzHgYnU7HM7OfZdIUmfHDxsaGJk2aUisogLS0NLM6Nv25hYnjx5KVlcWAgYP4aN48tBoti3/4no8+/MCsPMDH8+YzaPAQcvNymTF9OsePhwFUqH/x5Vd48MHpJCXLj+jVl1/mz82baN6iBbOefoYZD9XAhZc96kHr+yAvVW4nnYGrFpaI8awPDYbK1HVZMXBupczkUbsXBLSRZYQGnP1g15tQnAe1ekBQR0CB7Hg49zvoi83rrtVdpsmLPwY2jtDibnD0lBmCTi+TdZXHqxE0GgFCQOxhiPxb7q9I7+AJXWZDruHyzLgGF9bI122nw6kK2qlmBDdpy/Bn3iMzSWaDCT/yN4fWmC9HFNKsHT2mPIHWxpbEqxfY+u27KHod7YbeTeNuAwHQaLV4BtVh0WPDKMiR6UiF0DD5je/ITkti3bz/s9iHNoMmkp+dyfm9m7F3dmXIE2/i5hNAZnI8mz57mYLcLDNNnZad6XXv0wiNhjM713F0/U8AFepdfQK49/1lpMXJlKXxl8+wY/GHAIz+3ycVtlPdcK/bghb3vkh+qszulXx2P5HbzZeX86jXinpDHkBjY0NWTDgXVn0Kej0hPcfg37o3AEKrxck3hH1v30txXjadn1tEcUEe6PUoeh3HvnzWYh+Cu42kOC+LhLAd2Di60Gzy/2Hv6UdBWiJnf3mf4vwcM41nw3Y0GP4QQqMl7vBfRO1aCVCh3t7Dj47PfEFeUgwAmVEXuPTHVwC0evANzi6z3E51RaMRlZbR6xWfW9CV/4xqZ2wKIQRycfavFEUZJYTQAguRhmQU0BP421C2CeCqKMohIcRQYL6iKB+Vqw8gGngRuONWmN27Zw/jxoyq8LgQgm+/+54hgwdy+dIlXn71Ne659z6WLP6B+fM+Zv48mQ1o6LDhPPnULIuG5uAhQzl18iRZWVloNBo+WfApw4YOJiY6mj37D7B+/TpjarwSBg0eQv0GDWnRrAmdOnXm08+/oFePbpXqP/t0AZ/ML7tw+5nTpwkODqFWrVpERUX921N255F+FU5Yy7IhoNkEOPYt5CVDvQEQ0A7ijsC1XfIB4NNUGpjFeWDvBrW6wYF50sBscTf4t4a4o+Wq1kBgBzj8mdwO7QNpl+H431Cnt3yEl78BF9B4FIR9BwUZ0PEJSD4HOYnW9XkpcOhT87cXFwYhXSBix42fuzuQ2AsnKjQEARCCATNeYvV7s0iPj6Lz2Ido2nMIZ/9ez7GNyzi2UWZcqtu2O20GTzIamgBtBk0gNTYCO0fLi3kLjZZmvYbxy8syi0+HEfcSdeYIR9f/RPvh99B+xD3s++2rct3R0Of+Z1n9/tNkpyYy6Y1vuXpsD6mxEVb1GYkx/PLSNLM+nN/7Jy37j+HI2qU3ctruWDIiznJ66ZsVFxCCxuNncfK7l8lLiSW0/90EtL2L+KNbiN69mujdqwHwbtKR4O6jKM7LNkpPfPsixdaMdo2GgPb9OfrF0wDU7j2etPATRO1aSa1e46jVezxX/yz32yM0NBw5k5Pfv0JBZgrtHvuYlPOHyE2MsqrPT43n6OdPm3UhIWwnQV2Gcm3nius6X9WB6wk5W0xdeBtTHcPo/YB8RVF+AFAURQc8AzwI/AJMLlV2smFfZZwAMoQQA/7jvlY53t7eFBQUcPmSzIO+fetWRo8xT704cdIklv/2q8U6Jk+Zwrp1awHo2LET4eHhRFy9SlFRESuWL2f4iJFmmuEjRrDsZ5nH99Chg7h7uBMQEHDd+vJs3LCeCRMnXff7rlHYOkmDMS9ZbqdeAr8W5uX8W0PCcdO20IDGVj5rbaEg01zjWR+yYqWXFMCnGcQdk6/jjoFvc3ONWy1pOOangqKDhBNSd7368iSfk31XAcDRxR1dcRHp8fLGK+r0YRp07GNWrlGX/lzcv8W47eLpS2ibbpz5u+J76lrN2pMYeRFFrwOgXruenNstszid272J+u17mWn86zclPSGazKRY9LpiLh3YRr32Pa9bX56rx/bQuGu1+yn+x9g6uaLoislLiQUg7fJxfFp0NSvn27oXiSd23VDdnvVakR0bDoa89d5NO5EQth2AhLDt+DTrbKZxC2lIXkoc+WkJKLpiEk/uxrtp5+vWlyfl3EH8Wlf+vaguCKQTqLLHnUZ1NDabA2XcL4qiZALXgOPAaCFEiUd3ElDagnpGCHHc8CjvJnkLeMlaw0KIGUKII0KII7dLyvnOXbpw8MhR1qxdT9NmzcyOJycnY2trS7t27QEYM3YsIbVCypRxdHRkwMBBrFltMZsnXbt2I+yYPOVBwUFER5u8izEx0QQHBZlpgoKCiY4yrV0XEx1DUFBwpfpHHn2MQ0eP8fXCRXh4eBj3Hzt6lG49elg7FdUX99rQaRa0fkCGwctTlANCC67BctuvJTh4lC2jsQXvRpB4Wm4XZMK13dB9LvR4AYrzpZFq1nYdGZYvwc4FCg2eksIsuV0eBzfIzzBtF2RIT2plekcv6PQUtJsBHqGm/cV5oLEBmypMnXkLCWjQgilvL2bknI/wCq5rdjwvKx2N1ga/uk0AaNCpDy5eZb8XNnb21GnVhcuHdxr39bpnFnt+/RJFX/GPV2CjliRevWDcdnLzJDcjBYDcjBQc3TzMNC6evmSnJhq3s1MTcfb0rVTv5hvIlDd/YNyLnxPUyHQzUZCbhdbGFgcXtwr7WZ1wq92Y9k8uoOX9r+LkV8vseFFOJkKjxSW4AQA+Lbph7142wqqxtcOrYTuSz5gyAikKtHrgDdo9Po/AjoMst12nKVmxl43bdi4eFGbJ6FZhVhq2Lh5mGjt3bwoyko3bBRnJ2Lt5V6p38PSn3ROf0Prhd3APNf1XFefnILS22Di6WuxjtUPIMHpljzuNahdGR94YWPq1FEAacAa4SwiRABQpinK6VBmzMHoJiqLsNtxR9KyoYUVRFiJD9mg0osrNzeNhx2jcoB45OTkMGjyE5StW0rJ5U7Ny990zlQ8++hh7e3u2bt1CcXHZcXnDhg9n//59FkPoAJ5eXmRny9CMpTsuxYLlXVE5a/pF33zNu2+/haIovPr6G7z3wYc8MuNhABKTEgkMDLTYv2pNVgzsfR90heDdGFrdB/stfIVP/wKNhoOwkUajUi4I49MU0iNN4x5tHKWXcd8Hcl/LqXJsZ/zxsjp7V8hN5Mb4Bz+UBZmw5z0ozpVGc6t74cB80BXI44XZsi/FuTde9x1EUsQFFj8zjqKCPOq07srwp99l6XOTzcpt/uIVek59Cq2NLddOH0LR6cocr9u2B3GXThpD6KFtupGbmUZSxAWCm7StsH1nD29SYyNurNOWvDCV3I3npqfww9Njyc/OxDe0McOffpef595DYb78fHMz03D28CE/24K3vRqRHRvOgQ8eQl+Yj1ej9jS/50UOz3vErNy5Xz+kwbDpCK0taZfDUPRlr2/vJp3IjDxXJoR+/Jv/UZiViq2zO60efIPcpGgyIs6U0dm5epGbdKML2lu6vq1/3oVZqRx4fzrFeVm4BNWn+T0vcGTBE+gK5O9RUU4G9m5eFOdV/3G6UD29gNXR2DwDjCu9QwjhBtQCwjGF0hO4vhB6ad5Gjt20MEui6pn5yKM8MF1OkhkzcgRxcXHGY39u3sSCTz/D29ublJSUMrqDBw/Qv18fAO7qP4CGDRuWOT5h4iRWVBBCByguLkYIgaIoxETHEBJiuvsODg4htlQ/SoiJiS7jQQ0OCSYuLhY7O7sK9YmJJqPm++++ZdWaP4zbDg4O5OflV9jHakNIFwjqJF8f/8HkBQRIuQBitAybF5UzujKvwdFv5GuvhuBUbmx5+RC6VwMZ5i4yDMpPPCO9mOWNTX2x9IqWUJgNdq4Gr6Sr3C5PfgY4uJu27d1NIfqK9IrOZEhmxcgJUU4+Jq+qxsby5KU7nFb9x9K8jxxGsvajOeSkmzxGkSf2o7n/WRxc3MnPziiji798hpVvPQZA7Rad8Awo6xFr1OUuLuzfatwOatSKeu16ENq6K1pbO+wcnRn4yCv89fUbZXTFhQXY2Nobt3Mz03By9yY3IwUnd2/yMtPN3kN2amIZz6qLl5/xfVSk1xUXocsuAqSBnZEYg0dgbRKvynzZNrZ2FBcWVH4C7zCCugwlsIOcwHVqyRsUZqUaj6VePEpD7SPYOLmajbPMjLrA8YXPA+DZoA2OPsFljvu16kniybIh9JK6i3IySD57ANeQhmbGpr64AI2N6fouzE7HztWTwqw07Fw9KcpON3sPhRnJZTyr9u4+FGSmWtUrumKjIZkdG05+ajyOPsFkx0ivqsbGFl1RoZUzV30oCaNXN6qjAb0NcBJC3AdgmCD0MbBYUZRcYCVy5nn5EHqlKIryF+AJ3JYDxL75+iu6dOxAl44diIuLw9/f33isQ4eOaDQaM0MTwNdXhrTs7Ox4ds5zLFq40HjMzc2NHj17sW7t2grbvXTxInXr1QPgyJHDNGjQgDqhodja2jJh4kQ2rDcfA7Zh/XrunnovAJ06dSYzI5P4+Hir+oCAAKN+1KjRnD1j+mFs2LAhZ86cptoTfUBOkjn0qXmY2S1EepHKG5oAtoYJH0IrJ93EHDQd09qDZ11IOmval58ObrVNhqRXfcgpvVCDgZxEcPQ2bSefhcB28nVgO7ldnqxocPKWM8yFVhq6JeUq0ts6Y/SYOHjJNvNMf8TYuUK+Zc/7nczJrav45aVp/PLSNHLSk3Fy9zIe86/XFCGEmaEJGMPRWhtb2g+fyqnta4zH7BydCW7SlivHdhv37Vv+Nd/PGsPi2ePZ/MWrRJ89am6xFxkAAQAASURBVGZoAqTGRuLubzJkrhzbQ9OeQwBo2nNImTpLSLhyHo+AENx8A9FobWjY5S6uHNtjVe/o6oEQ8u/JzTcID/9aZCSahms4uXuTmRxv/eTdgcQe2MjRz5/m6OdPS69jqTCza0hDEBqLE3psneXNm9DaUKv3OOIOmiblae2dcK/bguSzpmteY2uP1s7R+NqzQRtyEq6Z1ZubGI2jtylilHLuEP5t+wHg37YfKecOmWkyYy7h6BOEg6c/QmuDX6uepJw7aFVv6+wmx4Yjw+mO3kHkp5o+XzsXT/LTE6ydumqFEJU/7jSqnWdTURRFCDEG+FII8TLSoN4IvGA4ni6EOAD4K4pytZz8GSHEPaW2R1to4m3gDwv7bzvGjB3HwzNnUlxcTH5ePvfdM9V4bPUf63jskRnExcXxzOw5DBk2FI1Gw6JvvuHvnabhqiNHjWbb1i3k5lYcnty0aSO9evXmSni4XDLp6Vms27ARrUbLkiWLOXdWGgwPPTwDgG8XLWTzpo0MGjyYM+cukJuXy8yHHgKwqn/73fdo1bo1iqIQGRnJk489auxD79592Lxp03938u4U/FpCcBcZFtcXyaWCSmg9TS5xVJgFdXrJUDkCYg5AWnipOlrI0Lq+yLQvMwoST0GnJ2XdWbFlDdQSUi5As1ITsyL+hpZ3yyWT8tPh1M9yv50rNB0HJxbL+i6shbYPAho5Kz4n0breo66cRa/oDfo1ppC/a7Dsb/mhAdWQBh370vKuMej1xegKC9n05avGYyPnfMS2b98jJz2ZdkOnUrdNN4RGw6ltq4k+e8xYrn6H3lw7fYjighuPBESe2M/AR14xbh9d/yNDnniT5r2Hk5WSwMbP5LB2Zw8f7npoLms/moOi17Fz6XxGPTcPjUbLmV3rSY25alUf1LgNXcY9hF5fjKLXs2Pxh8aQv1/dJsSHnzFOUqrO+LboTlDnISh6HfqiQs79+qHxWIv7X+Hiqs8pzEqlVs8xeDXpiBCC2IObSb9y0ljOp3kX0i6HoS8yeYLtXDxofs8LgFxhIPHE36RdMn1HSki9eJQmE2Ybt6/9vZJmd/8fAR0GUJCRxNll78v6XL1oNPYJTi95A/R6Lq/9hpYPvIYQGuKPbiU3Mcqq3j20OaH9p6LodSh6PZf++NIY8ncJbkBm1AXjJKXqj0B7B47JrAxhaTydyr9HoxGKvY22qrtxSwgICODb7xczfOjgKmnfzs6OLdt20K9PL3S6qvkDyts0p0ravS1oeS9c3ihnmFcFjUZIr2xpA/om8+licw9eTWHYrHfY8+uXZCTc6Fi+/4Ze98ziyrE9RJ89Wnnh/4jWtbwrL1RNaT71ea5sXkxeivlwqFtB/eEPkXLuEOnhJysv/B/R5911RxVF6XDLGiyFjUajuDjYVlouI6+wyvr4T6iOYXSVW0x8fDw/fP8trq5VM1uwVu3avPTiC1VmaNZ4wjeZZpNXBdnxt9TQrOns/e1rnD2qzvhKib5ySw3Nms6VP5di5+pVecGbRE78tVtqaFY51xFCvxPD6Kpn8yZRkzybKjXcs1kDqcmezZpITfZs1kSq1LOp1ShujnaVlkvLKbijPJvVbszm7YJWCK7HFa5STVBvLGoUh69YmCylUm1pH+pb1V1QqSEIpP1Q3VCNTRUVFRUVFRWV24RqaGuqxqaKioqKioqKyu1CdVxnUzU2VVRUVFRUVFRuB+7QCUCVoRqbKioqKioqKiq3AQKhjtlUub1Z8MXXDBg8hOSkJHp1qXiS2jsffEz/gYPIzc3lqUdncPLEcQD69R/A2+9/hFar5acli/l0vsyxPfelVxg8dDiKXk9SchJPPjKDhHjzNdf8/QOY99kXTJ0os4XOmj2HqfdNQ6fT8cL/PcuObVvNNB6eniz64Udq16nDtchIHpp2Dxnp6Vb1L7z8GhOnTMXDw4PQINPA/ekzHiE3J4dffv7xH52/O45GY2U+9KIcOPJpxeXqD5PldEVwYSVkx8r9ng2hwTCZuSPuCEQZ0tnVGwzeTUCvkykrz68EnYUFwO1codFoOG0437V6QWAHubj65fWQdtlcY+MIzSaDvQcUpMPZX6A437o+dAD4twFbR9hTKqtNUBeZEz7BfDHq6shDz79D2+59yUxL4fl7h1dY7t6nX6J1194U5Oex8O25RF6USRFadu7JvU+/iEajZee6Faz/SWYKG/fwLNr1uAtFUchMS2Hh23NJTzbPd+/u7cv0/73FvP+bCcCIe2fSe/h49HodP85/i1OH9phpnF3deeLNT/AJCCY5PobPXp5FblamVf34Gc/QY/BonF3deHiAKU97/3H3UJCXy+6Nq/7hGbyzaDD6CTwbd6AoJ4Pjn8+qsFzdoQ/h2ag9+qICLq36lJy4KwB4NGhLvWEPgdCQcHQLMbvleat91914NemEoigU5WRwedUCCrPMs2/ZunjSYPRjnPvpbQCCe43Dv11/UPRc2bCI9MvHzTQ2ji40njgHe08/CtISOf/bh+jyc6zqa/efil+bvtg4OHPgrSnGugI6D0VfmE9i2PZ/dP7uZKpjGL1ar7MphNAJIY4LIU4LIdYJITwM+0OFEHmGYyWPkvSWEUKIU6X2dytX/qwQYqkQ4rabav7rzz8yeewoq2X6DxxEvfr16dSmBc/OeoIP5ksjRaPR8N7HnzB53Ci6d2zLmPETaNS4CQCfL5hPn26d6NujC1s2b2LO/563WPcjTzzFj4t/AKBR4yaMHjeBHp3aMWnsSN6ftwCNxvzr9tQzc9j99046t23J7r938tQzcyrV/7l5I4P69jSra9mPS3j4kceu82xVAxKOwakl1st4NZI5xA/Ng4troOFIwwEBDUdI/eEF4NcKnAyGe9plOPwpHP0McpOhdm/LdYd0l0YqSK1fK1nXqSWGdiz8YNbuJdfEPDxfPtfqXbk+5TyEfW1eV/xRCO5q/f1XI3ZvXMUHs6dbLdO6a2/8Q0KZM2kA33/wMg/MeR0AodFw/7Ov8uGzD/O/qUPp2n84QaH1Adjw87e8eP9IXpo2iuN7dzD6gcct1j1k8gPsXLscgKDQ+nS5axhz7xnKh7Mf4v45ryEsXN8j7p3BmSP7eW7yQM4c2c+Ie2ZUqg/bu51XHx5vVteu9b8zcMJ913m27nwSw7Zzdql5ytDSeDZsj6N3IMc+eZTLf3xJ/RGPyANCQ70RMzmz9A3CPnsS31Y9cfQNASBmz2qOf/E0J758hrQLh6nVZ5LFuoO7jyThyBYAHH1D8G3Zg7DPnuTMktepN+IRY3rJMpqe40i/cpJjnzxG+pWThPQaV6k+9fxhTnz9nPn7P7aVwK4V31RVZ6rjOpvV2tgE8hRFaaMoSgsgFSj9KxpuOFbyWFrqWN9S+/eVLg+0BEKAibfkHdwA+/ftJS0t1WqZwUOH89svMqXh0cOHcHd3x98/gHYdOhJxJZzIiAiKiopYs3IFQ4bJCz07y5SL18nJiYrWZh0+cjTbt/4FwJBhw1mzcgWFhYVci4wk4ko47Tp0NNMMGTac35b9BMBvy35i6PARleqPHj5EQoJ5XuS8vDyuXbtG2/Z3zNJj/46MCMt50Evj3RTiw+TrrCiwcZAeSbcQmVs8Pw0UHSSelGXB4FE0pIbLjKp4wXaf5pB60dRO4klZV36arNstxHJ/Egz9SQgzpNCsRJ8VJVNulkdfJL2jrhbaqYZcOHGEnEzzPOiladfjLvZsXg1A+JkTOLm64u7tS/2mrUiIjiQpNgpdcREHtm2gfc/+AOTn5hj19o5OUMH13bH3IE4elN7v9j37c2DbBoqLikiKiyYhOpL6TVuZ96fnXezeJPuze9Nq2vfqX6k+/MwJMlLMl5YqLMgnOS6GehbaqY5kRp41pmysCK+mnUg8vhOA7OiL2Dg6Y+viiWtIQ/JT4ihIS0DRFZN0ag9eTTsDoCvIM+o1dg4oWP68vZt1Naaw9GramaRTe1B0xRSkJ5KfEidztZfXNO1EYphMd5wYtgNvQ5vW9NnRFynKNves6osKKUhLxCXYvJ3qjAA0QlT6uNOo7sZmafYDwf+2EkVRdMCh/6KuqiAwKIjYaFOaudiYGAKCgggMDCKm9P7YGAKDTG/xhZdf4/jZS4ybOJn3337TrN7adeqQkZ5GYWGhoZ1gYmLKthMYGGSm8/X1MxqOCQnx+Pj43pC+PCfCjtKla/dKy9UY7N2goJSBUpAJdm7yUX6/vbu5PrC9yaAsjYOnzE2uGLI22buXqy9DtlEeOxeT4ViYBbYuN6YvT1YMuNepvFwNwdPXn9RE041YamICXr7+FvbH4+nrb9weP+MZPln1N90GjmDltwvM6vUNDCEnK4P/Z+8sw6O4ugD83t24uweCu7tT3N0qFGpUoPq1hVKjbrRQd1qggru7FXd3Qtzdk818P+4mu8luNqEFQjb75pknO3fuuefM3J3ZM9dOQX5+sZ7EWN1QmuRS5RXh4u5V7DimJsbjoo08VFH50ty4eIYGLarJy2QFsHHxIDc1oXg/NzURWxcPbFw8yNNLz0tNxFYvClCNPg/S9uVf8G7enbDtfxuUa+vmQ0F2JoqmQO47lyovLREbF8OoQtaObsWOY35GMtaOrrckX5qMqKu41Gxcbj6zQliczSqLEEIN9AbW6CXXKdWNrt8vu1ObdshIWXZAB2CTkWNThBBHhRBHC+/RyEzGxoIoilJmehEfvjeLlo3rsXzJIh578imDvL6+/iQm6h4mxu6FW4lW9W/l4+Pj8fP3r7Ae88fYQ0kxka5HjZ5y/GTcKcOsNs5yrGhlk5dRMae0mvBv7+9lP83hhVE92L9lLX1HTzTI6+bpTXqKrtdEGPn+lNVCZtTOfymflpyEm5dPhfWYP8auo6l0Sdi2Pzk6+3HiT+/Bv+Mgg7w2zu7kZ+m9/Bl9IN+Kmf9OPj8jtUJOqblh6UavetgLIU4CiYAHsFXvWOludP34c0Xd6B300urolRWmKIpBsFZFUX5SFKWtoiht79U3j6jISAKCdN2OAYGBxEZHExUVSaB+ekAgMdFRBvLLly5hyLARBuk5OdnY2tqV0BMYWFJPjJFJRfHxcfj6+gFyglFCQvwtyZfGzs6OnJzscvNVG3JTS7ZY2rrIFsU8I+m5abp931ZyUtGFJcbLLcwHld78QgM9rpCXZiiXlyEdVdA6rBm3Jl8alZW0xQIgWyw9fPyK9z18fElOiDOS7md0EtD+LWtp17OfQXpebg7WNrY6PfExePrqXurcffxIiTcsLy05AVdP2Vvh6ulNWkriLcmXxtrWlvxcI5PVqil5aYnYunoV79u6epKXliRbDvXSbVw9yUs3HGKVcGoPno0Nxz0XFuShstKFTMwtXZ6L8fLyM1OwdnIH5ASj/MzUW5IvjcrKhsL83HLzmROWbvSqSbZ2nGVNwIaSYzZvlaIxm3WBjkKIYeXkvyfZvHE94+9/AIA27dqTlpZGbGwMJ44dpVbtutSoWRNra2tGjB7Lpg3rAahdp06x/IBBg7l62bBb9drVKwTX0HVnbtqwnhGjx2JjY0ONmjWpVbsux48eMZDbtGE94x94CIDxDzzExvXrbkm+NHXq1uPC+fO3cEXMnMSL4Ked0escDAW50tlMiwR7T9kdLtRyck7iRZnPvZ6cGX52YdmOXFaClNXX49NclmXnLstOizCUS7woHVmQ/xMv3Jp8aRy8IDO2YteiGnB83w66DhgJQJ0mLcjKyCA1MZ7rF8/gFxSCt38QaitrOvYezPF92wHwDdLdt6279Sbq5nWDcmPCQ/Hy1w2rOb5vOx17D8bK2hpv/yD8gkK4dsHg/Zvj+3bQbaC0p9vAkRzfu/2W5EvjFxxCxPUrt3BFzJuki4fxadkTAKeg+hTkZJKfkUx65BXsPf2xdfNBqK3wbtaVpIuHAbDz0Dn5Hg3bk50QaVBudkIUtm66FuSki4fxbtYVobbC1s0He09/0iMM6yHp4mF8Wt0HgE+r+0i8cPiW5Etj5xVAVlxYxS+ImWCOLZvVYukjRVFShRDPAauFEN//x7KihRAzgNco2S1f6fw4bz5dunbDw9OLUxeu8umH7/HnwvlMevRxAObP+4WtmzfRp19/Dp86R3ZWFs89I5cx0Wg0vPbKiyxZuRaVWs3fC+dz6aJ0BN6c9T516tWjsLCQiPAwXn7hOQPdWVlZhN64Tq3atblx/TqXLl5gzcrl7DtyAk1BATNefoHCQjnpZM7X3/H7vF84deI4X82ZzS+//8GDD08iIjycxyY9CGBS/q13P2D02PHYOzhw6sJV/ljwG599JJfnaN+hY/Fns6fROHCtDdYO0PFVCN0uZ2j7t5fHow9D0iU5I739S9qlj4qWjSmEq2uh2WT55Io5DlnalqV6Q6XT1/xRuZ8WDldWl9RdmC8n8dh5yOWRsuIg/iy0e167dNFaivvJ6o+EqMOQEQlhu6Hx/eDXRrZmnteOFzMlX7s/+LQAlbU8z+ijcFO7HIpLTQitHkujPDPrCxq1ao+TmztfrtzDil+/Yve6ZfQaMQGAHasWcerALlp26sHsJdvIy8nm5w/lyhGFGg0L5rzLK1/8ikqtZs+6ZUTekEtLjX/6Zfxr1KKwsJDEmCh+++xtA925OdnERYbjE1iDuMgwIm9c5dCODXz850YKNQXM/+IdFO39+diMD9ix6m9uXDzLuoU/Me29L+kxZAyJsdF8/YZ8dpiSn/DMK3TqOxQbO3u+XLmHXWuXsnLe1wDUb9aalfO+ubMX+h6h/tiXcK3VFCsHF9q+/AthOxYRd3wbfu36AxBzZDPJl4/hXr8NrV/8gcL8XK6u0C6BVljI9XU/02TS26BSE3d8G9lx4QDU7Pcw9l4BoCjkpsRzbY3hT2Jhfi45STHYefiRkxRDdlw4CWf/odVz30ChhmvrfpL3KVB3+FRijmwiI+oaEXtW0GD8K/i26UNuSgKXFn8KYFK+Zr9JeDfvhsralrYv/0LssW2E71wEgEuNhsWfqw9Vs+WyPMStjKOragghMhRFcdLbXwssAfYCF4BLetnnKYrylRAiFGirKEqCnlwIsE47qx0hB0CdBKaV6n4vxlqtUtwcbY0dMlsGDRlGi1at+Oi9dypFf7PmLXhq2nNMnWJ6eZg7Qfzal+66zkrHszE4B0Co4fqpdwUnf7n80sVld131xJlL77rOyqZN977UatCEZT/PrRT9Nes1YsCER/nxPcNlcu40T/WqZpNUkDPInQLqELb9r0rR7+hfi4DOw7myfO5d1931/dXHFEWplJlo9jZWSoiXc7n5LkanVJqN/wazbtnUdzS1+0P1du3LkAkxkhYKNNXbV4AWt8VIM2LDujV4eFTeYG4PT08+fr9yHN1qSeJ52apaWVg7wI1KcnSrIcf2bMXJ1a3S9Du7ubO8khzd6kjShUNYO5Tv9NwprBxcKs3RrWzMsGHTvJ1NC3efPxb8Xmm6d++sHt2p9xQxRytPd/K1ytNdTdm9tvJadM8e2V9+Jgu3ldhjlfcyl3rNyCoY1QRzjCBkcTYtWLBgwYIFCxbuEcxxzKbF2bxD2FmraRTgVtlmWLhLDH6umsRjtwDA+h8fqWwTLNxFXn1vdfmZLFi4DciljyrbituPxdm0YMGCBQsWLFi4FxCWbnQLFixYsGDBggULdxDzczXNf1F3CxYsWLBgwYKFKoFAoFaVv1WoLCEGCCEuCSGuatcHL33cVQixVghxSghxTghxx8YHWVo2zYj2Xe/judffRaVSs37ZX/z5s+HixzVq1WXGR3Oo37gZv8z9mEXzfig+Nmbi4wwZ+yBCCNYt/ZOlC34G4OlX3qTzff0oyM8jMuwmH898gYx0w1CCnt4+vPLebGY89TAAD055lsGj76ewUMOXH7zJkX27DGScXd2Y9cUP+AcGEx0ZztsvPklGWqpJ+S8XLMfT24fcHBm27n+PTSAlKZFRDz5CdnYWG1cs/k/XsarQpnMPpkyfhUqlZsvKRSyd951BnqCQOrzw7mzqNmrKgq8/Y8WCn4qPDXvgUfqPvh8hBJuX/83qP38F4NEXZ9K+Rx8K8vOJjrjJ3LdeJtNIfbt7+fDc25/wzrPy+TT20an0GzmewkINP37yNsf37zGQcXJxZcan3+ETEERcVAQfv/IMGempJuU/+mUxHt4+5Gnr+42nHyI1KZEhEyaRk53FttXVZM1L17oQMlCuixJ3HKL2Geax84I6I8DRH8K3Q7R2BredJ9Qbq8tn6w4ROyHmoEy385TpVnZQkANnfjAoGmsnqD0MLmmXownoBj6tQFEgdAOkGlkdQG0vy7d1g9wUuLIENDmm5RtPBmtnXfSqCwuhIBN820NhHsSfvKXLVlWp36Yzw6e8ilCpOLxlJbuW/maQxzsohHEvvENg3UZsWvANe1YsKD7WbcRDtOs3EhSFmJtXWDLnbQry8/CvVZ9RU1/Hxt6B5Ngo/v5sJrnZmQZlO7t7Mea5t/jtHbkQ/31jH6VdvxEohYWs/vETLh8/YCBj7+TCgzM+xcMngKS4KP78+BWyM9JNyj/50S+4eHiRnyfDUv78xlNkpibTech48nJyOLqt+o2XvR3d6EIINfAt0BeIAI4IIdYoiqIfYm8qcF5RlKFCCG/gkhDiT0VR8v6zAaUwy5ZNIYRGCHFS66mfEkK8JIRQaY/1FEKkao8XbX20xxQhxOd65bwshJil/dxACLFLm/+CEOIno8orCZVKxYtvfcgrTzzIw0N60HvwCGrWqW+QLy01ma/ef6OEkwlQq14Dhox9kCfHDeLREb3p1LMPQTVrAXB0/x4mD+3JI8N7ExF6jYemPGvUhnGTn2Tdkj8BqFmnPr0HDWfSkJ688vgDvPTWR6hUhl+3B5+YxvGD+3hgQBeOH9zHQ09Mq5D8e69M47GRfXlsZF9SkmS85fXLFzH6obu/oHtloFKpeHrm+7z9zCSeHtmb7gOGEVy7nkG+9LQUfvzkbVbML/l1rVm3Pv1H389LDw5l2tj+tO/em4AaIQCcOLiXZ0b3ZdrY/kTdvMG4x4xHeR058XE2L5eOR3DtenQfMJSnR/XhrWce5pmZHxit77GPTuXU4X+YMqwHpw7/w9jHnqmQ/GevPc+z4wfy7PiBpGrre+uqxQx7oLpM1BFQazBc/ANOfQuezcDe2zBbQbZ03KJLLROUkygdyDM/wJkfpSOXpA0VemWp7ljiBV16afw7Q9wx+dneGzybSlsuLoRaQzDa+RfYFdKuw6mv5P/AbhWTv7pcZ1OB1hGKPwF+HSt6wao0QqVi5NOv8evbU/n86VG07D4An+DaBvmy0lNZ/eOn7NZzMgFcPH3oMvR+vnrhAb6YOgahUtOixwAAxjz3Nht//4o5U8dy9sAOeoyeZNSG7iMncmizjDjmE1ybFt378/nTo/nlrWcY+cxMhJH7+76xj3L11CE+nTKMq6cO0XPsoxWS//uzmcx9djxznx1PZmoyAEe2rqbLsPv/xdWr+tymcJXtgauKolzXOo+LgOGl8iiAszZQjROQBBTcxlMpxiydTbQx0RVFaYL06gcB+jHY9mqPF21Fi4nlAqOEEF5GyvwKmKPN3wj4+o6ewS3SqHkrIsNCiY4IoyA/n+0bVtO1d3+DfClJiVw8ewpNQcmY1zVr1+P8qWPk5mSj0Wg4eeQg3foMBODIP7vRaDQAnDt1HG+/AKM29Og3mEN7dwLQtXd/tm9YTX5+HtGR4USGhdKoeSsDma69+7Np1RIANq1aQtc+A25JXp/cnGxiIiNo1KylyXzmQP2mLYkKDyUmMoyCgnz2bFpLx579DPKlJiVy5dxpCgpKPj+Ca9Xj0unj5ObkUKjRcObYQTr1ktf+xIG9FGrr++Lp43j6+Bm1oUufQRz9ZzcAHXv2Y8+mtRTk5xEbGU5UeCj1m7Y0kOl4X1+2rZERf7atWUbH+/rdkrw+uTk5xEZFUL9pNYiv4BQow4LmJoOigcSz4N7QMF9BJmRGyTxl4VpblpOXanjMswkknjEu59EIUmSIS9wbShsUjWyxzEmSNpbGvaGuJTL+pM7misrrU5gv8zqWk88MCK7flISocJJiItEUFHBqz2aadOxpkC8zNZmIK+coLDD0D1RqNdY2tqhUamxs7UhLjAfAO6gm18/Kl4YrJw7SrEtvozY07dKbS0f/AaBJx56c2rMZTUE+ybFRJESFE1y/qYFMk449ObZtLQDHtq2lacf7bklen/zcHJJjo8rNZ46ICvwBXkKIo3rblFLFBALhevsR2jR9vgEaAVHAGeB5RdHGEb3NmKuzWYyiKHHAFGCaKL9tugD4CXjRyDF/ZGUVlVvGE7ly8PL1Iy46sng/PiYab1/jToIxbly5RIt2HXFxc8fWzp6OPXrh42/oVA4aPYGDewwXT/cPDCY9LZX8fNn67u3rR1x0lJ49UXgZscfd05vEeBmTOzE+DncPrwrJv/bhHH5duZWHny5ZVZfOnqJ52w4VPu+qiqePHwkxuuuTEBeNp69vheVvXr1E0zYdcHZ1w9bOjrZd78Pbz98gX98R4zn2zy6DdN/AYDLSUinQ1renry8JsTp7EmOjjTqpbh5eJCfI+k5OiMNNW9/lyb/47my+XryRCVOeK1He1XOnadK6fYXPu8pi41LSOcxLBZt/Gd3FsykkGHl8OdeE/Azp+JXG1k12rxc5sTbOpexJkzaWxtpRlgnyv7VjxeTrjIBmT0Fgj5LlZUSBS83yzrDK4+rpQ2pCTPF+akIsLp4+FZZPS4xj94oFzPx9E2/8sZWczAyunJDd1jE3r9FY67g279oXNy8jz2XfALIz0oobJVw8fUjRtycxFlcj9ji5eZKeLCM9pycn4OjmUSH5sS++wwtfL6b3hCdKlBdx9Ty1mphuZDA3hKCiYzYTFEVpq7eV7m015u+Ujk/eHxl6OwBoCXwjhDByI/93qsWYTUVRrmu70Yu+3d2EECf1soxWFKVowNG3wGkhxKelipkD7BBC7Ae2AL8pipKin0H7ZjEFwNbq7vrxwsj36lbi3t+8foW/fv6WL35dTHZWJtcunkdTULJ1ZOKTz6Mp0LB17XIDeU8f3+Lu7LLsMfiam8CU/HsvTyUhLgZ7R0fe/+pX+g8fy2btuL3kpARq1q5bcUVVFKPvTbdQ3+E3rrLst+95/8c/ycnK4sblCwb1Pf7xaWg0Bexcv9JA3sPLh9Rk0/V9K98/U/KzZz5HYlws9g6OzPziR3oNGc2OdfI7mJKUSFCtOhXWU+0RanBvAOFGIsN4NZOtjcawdtZ1Z8uCjGS6hRvclPyV5ZCfDiobqD8evFpAgjaaTEGmHJdq7hhtF6n49bV3cqZJx558/OhgsjPTeei1z2h13yBO7NzA0rlvM/zJ6fS5fwrnD+6moFQvF4CLh3dxd7Y05z/e3ybk/549k7TEOGztHZg483Na9xrC8R3rAMhIScInKKTCesyF27TyUQQQrLcfhGzB1OcR4GNtCO6rQogbQEPg8G2xQA+zb9nUQ7/6SnejF49sVxQlDVgAlGhCURTlN2Rz81KgJ3BQCGFbKs9PRW8Z1uq7e2njY6Px8de1kHv7+ZMQF3tLZaxf/jePj+7HsxNHkpaaQsTN68XHBowYS6f7+vDeK8bH7+Xm5GBjq7sccbHRJVpGvf0CSIiLMZBLTozH01u+A3h6+5CclFCufNH/7MxMtq5bQaPmLYvz2djaFk8cMmcSYqPx0hvO4OXjT2Jc3C2VsWXlYp6fMJjpj44lPTWFqLAbxcd6Dx1Du+69mf3ac0Zlc3NzsLbR1XdCbAxevjp7PH39SYo3/P6lJCXg7iXr293LhxRtfZuST9R+j7OzMtm9YRX1m+m6zW1sbYsnDpk1eWlg46rbt3GFvPRbL8etLmRGQ37pCSEqcG9UtrNZmA8qvbYJA3tcjNuTnyknFoH8X6TXlHy+9n9hnuzS1+9eF1a6iUNmTGpCLK56LY6uXr7F3eAVoW7LjiTFRpKZlkyhpoCz+7dTs1FLAOIjQvnlzaf56vkHOLl7I4nREQby+bk5WFnr7u/UhNgSLaCunr6kJRnak5GSiLO7fBlwdvciMyWpXPm0RPncys3O4sTujSW6za1sbIonDlUnKtiNXh5HgHpCiFpCCBtgArCmVJ4woDeAEMIXaABc5w5QLZxNIURtQANU9Nd4LvAY4KifqChKlKIo8xRFGY7scr9nBpNcPHOSoJq18A8Mxsramt6DhvPPjs23VIabh5yR6uMfSPe+g9i2fhUgZ7k/8Pg0Xnt6Mrk52UZlw0Ov4Reoe4n6Z8dmeg8ajrW1Df6BwQTVrMWF0ycM5P7ZsYUBI8YBMGDEOPZt32xSXq1W46rtmlFbWdG5Z1+uX75UXF5wSG2uX7l4S+ddFbl87hSBNWrhGxiMlZU13QcM5dDurbdUhqu2vr39AujcewC7N8rnUJvOPRjzyNO8+/xjZTrukTev4xsQVLx/aPdWug8YipW1Db6BwQTWqMXlsycN5A7t2kqfYWMA6DNsDAd3bjUpr1KrcXFzB2R9t+veh5tXLxeXF1izFjevXTLQY3ZkRIGdh+zOFmrZFZ78L77nns2Mj8l0rQ05CdIJNEZOotRdRPJFaYNQy3Q7D8iINJRLvgTeLeVn75Y6m8uUV4GVg8wjVOBWH7L0Htv2npB9ay9VVZGIy+fwCqyBu28AaisrWnTvz/lDuyssnxIfTY0GzbG2tQOgbosOxIVLH8LRVd5PQgh6T3iCgxsNV3OIj7yJu97L3/lDu2nRvT9qK2vcfQPwCqxB+GXDF5Pzh3bTps9QANr0Gcq5g7tMyqtUahxc3ABQqa1o1K4bsTevFpfnHViTGL396kBRBKHytvJQFKUAmAZsBi4ASxRFOSeEeEoI8ZQ223tAZyHEGWA7MF1RlIQ7cV5m342unc7/A/CNoihKRZYUUBQlSQixBOlwztOWMwDYrihKvhDCD/AEjDxdKweNRsPc92Yy+9e/UanUbFi+iFDtj/Kw8XIpojWLF+Dh5c1Pyzbh6ORMYWEhYx5+gocH9yArM4P3vvoVVzd3CgrymfPua8VLEL3w5gfY2NjwxbxFAJw/dZzPZ00voT8nO5uosFACa4QQGRZK6NXL7Ny4lgXrd6PRFDDn3ZkUFspxx6++N5vVixdy6ewp/vz5G96Z8yODR99PbHQkb70gxziXJW9nb8/sX//GysoKlUrNsQN7Wbf0j2I7mrVqz+/ffHFnL/Y9QKFGw/cfvcl73y9EpVKzddViwq7J+h449iEANi79A3dPb+b+vQ4HRycKCwsZ/tBjPDWyN9mZGcz8/EdcXGV9f//hm8VLED312ntY29jwwQ9yZYGLZ07w7fszS+jPzc4mOiIM/+CaRIffJOzaZfZtWccPK7ej0RTw3YdvFNf3c29/woalf3L1/GmWzvuOGZ99T98R44mPieKjl+Uzryx5W3t73vv+D9RWVqjUak4e3Fc8Ax6gUcu2/PXD3Dt6re8NCuUs84YTpRMWdwKytS1LPm3l/7ijsvWw6RRQ2wKKnL19+lvQ5ILKGlzrwI21hsV7lTGOs1h9PuQkg60H5CZJ3YnnoMU0UAohdD3F3by1h0HsUTlRKWov1BsH3q3lGM3LcjJgmfIqK905ChWkXtfNgAdwDoaIXf/tUlYBCgs1rP7+Yx5/73tUKhVHtq4mNkx2wHUcKF/WDm5chpO7J8/N/Qs7B0eUQoWuwx/k86dGEX7pLGf+2cbzX/5NoUZD5PWLHNooh5607DGQzkPGA3B2/3aObjVcWig/N4fE6HA8/YNJjA4nNuwap/dt5eUfVlCo0bDqu49QtPf3mOfe4uCGZURcPc/OpfN4cMantO87kuT4aP746BWAMuWtbO14/L3vUKutECo1V08eKp4BDxDSqCVb//rxzl3oexEhUN2meJWKomwANpRK+0HvcxRgOLP0DiBuZdxFVUEIoUHOrLJGtkAuBL5QFKVQCNETWA3c0BN5X1GUZUKIDEVRnLRl+GrzfKooyiwhxBfAYKCoqeczRVH+oAyc7ayVViHVYGyRHt36DKRBk+b88uUnlaK/XqOmjJv8JB9MN740053E2db6ruusbDr16k/dRs1Y+O3sStFfu2ETRk58gs9ff+Gu666WsdHdG4JjAEQYThC8Kzj4yeWXrq0oP+9tpjrGRm/S6T6C6jZm88JvK0V/QO0GdBs5kcWfv3HXdX+24dQxRVHa3nXFgLO9jdK2lpFlzUqx60JUpdn4bzDLlk1FUdQmju0CXMs45qT3ORZw0Nt/CXjp9llpfuzdtrG4y7MycHX34NevKsfRrY4c2LEZZ9fKq28XN49Kc3SrJckXdV3clYG1Q+U5utWQcwd24ujsVmn6HV3c2bLQMFCFuSMwz3CVZulsWqg81i/7q/xMd4ijRiLWWLizbFm5qNJ0nzy4t9J0V1vij1ee7tQ7Mm/BggkObzFcieJuceXkwUrTXdmobtN09HsJi7NpwYIFCxYsWLBwj3C7xmzeS1iczTtEg2AP9nxWPUNtVUfqPPZLZZtg4W4Sllh+Hgtmw8bTYZVtgoVqwi2Eo6xSWJxNCxYsWLBgwYKFewSVGY7atDibFixYsGDBggUL9wiWlk0LFixYsGDBggULdwTB7Vtn817C4mxasGDBggULFizcI5hjN3qVC1cphNAIIU7qbSHa9BeFEDlCCFe9vD2FEIoQ4jG9tFbatJe1+78LIW5oyzolhOitl3eXECJM6IUdEkKsEkJk3JWTvVW8G8J9M6DXTKjby3iewNbQ42W5dXkWXHQhybCygzaT4L7p0HM6uNeU6fX7Q5+3ofv/5ObTyHjZts7Q/jHdft3e0pb7ZoB3A+My1g7Q8Um47zX539q+fHmhhuZjZfp908G/uUwP6QrB7UxfIzOi+3192Lr/GDsOneTJZ180mmfY6HGs37Wf9bv2s3T9Vho20UVYfeTJqWzcc4iNuw8y94d5xbHtBw4dwcY9h7gSk0KzFq3K1O/t48vPfywp3n/quZfYcegkW/cfo9t9vY3KuLq5M3/pKrYfPMH8patwcXUrV97a2poPZn/JtgPH2fLPUfoPGQbAxEenMHrCg+VfKHPBrxEMeBMGvg0N+xrPU6Mt9HtNbr1eAle9uOLW9tDpMRjwhtw8a+mO1e0hy+7/OjQfbrxsOxfo+pRuv2E/acuAN8G3jGeCjQN0nwYD35L/9e/vsuRVamhzv5QZ8AYEttTa2B1COpZ5ecyZLj17s2bXIdbvPcpjzzxvNM/gEWNYvmUvy7fsZeHKTdRv1KT42MTHn2bltv2s2PYPn3zzc/G9XpqHHnuKoaNldCEXNzd++nMF6/Yc4ac/V+DianR56jJtMyVfv2Fj/li1Wdq0dV+xPT//Vbae6kTRJCFTW1WjyjmbQLaiKC31tlBt+v3IwPMjS+U/A4zX258AnCqV5xVFUVoCLyBDW+qTAnQBEEK4Af7/zfw7hYBmo+DQT7DzEwhoDU6+htmykmD/t7B7NlzZKp22IpqOhPiLUn73bEiP1R27vhv2fC63uAvGTajdE25q10Zz8oWAVrDrEzj4EzQbjdGlauv2goQrsPMj+b9u7/Ll6/WB3AzY+THs/BQSZRg3wg9BrW63cM2qLiqVilmffM6j94+mf9d2DB01hrr1DR36iLBQ7h8+iME9O/PN55/yweyvAPD182fS408yol8PBvboiEqtYuiI0QBcvnieZx55kMMH/jFpw2NPT2PxH78DULd+A4aMHM2Abu15ZMIo3vnkC1Qqw8fLU8+9yP49u+ndsRX79+zmqedeLFf+mRdfITEhgT6dWtO/azsO798HwNK/FzLpiacMdJglQkDrcbD3O9j8PtRoAy5+hvkyE2HnXNjyEZzfBG31VsRoNQZizsOm9+XxtBiZ7l0PApvJtM0fwKXtxm2o3wuua78TLn5Qo7XMv/c7aDPO+C9gw74Qdwk2viv/N+pXvnyj/pCbLmU2fQDxV2T6jQNQr8ctX7qqjkql4vX3P+WZh8cxvFcnBg4fTe16Ru718DAeGTuE0f268eOXs3n7k7kA+Pj588AjU5gwpBej+nRBrVIzcNgoA3m1Ws3I8Q+yYdUyAB575gUO/bObId3bceif3Tz2zAu3ZFtZ8mq1mo+++pF3X3uJkX0688jYoRTk5wOwdsUSxj/8mIGeaoWQcevL26oaVdHZNEAIUQdwAt5AOp36hAF2QghfbQvlAGBjGUUdAAJLpS1COqgAo4C7HyutIrjXgMwE6UwqGog6AX5NDfMlh0J+tvbzTbBzk5+tbMGzNoQdkvuKBgpyDOVN4d9cOqsgdUedgEINZCdJ29xrGMr4NYXwI/Jz+BGdzabka7SHq0U/iArkZcqPmnzISgY3I3rMjBat23LzxnXCb4aSn5/PupXL6TNgsEG+40cOk5aaAsCJY0fwC9C1ZFtZWWFnZ49arcbe3oHYWOl8XLtymRvXrpZrQ/8hw9izYxsAfQYMZt3K5eTl5RERdpObN67TorVhJLU+AwazYrFc+H/F4r/oO3BIufJj73+I77/6HABFUUhOSgIgJzubyPAwmrdqU6FrVqXxCIGMBOlMFmog7DgENDfMl3hDd38n3gB7N/nZyg686kiHDWQZRfnqdoMLW6GwQO7nltFxE9QSYrQvmgHNpQ2FBdKmjARpY2kCmkOo9pkSekhnsyn5Wp3gwhZtAaXu78wk8Khp6kqZHc1atiEs9AYRYTcpyM9n45oV3NdvoEG+U8cOk5aaCsDpE0fw9de1i1hZWWFrZ4darcbO3p447b2uT/su3blw9hQajQaA+/oNZPUyGbRh9bJF3Nd/0C3ZVpZ85+73cfnCOS5fOAdAakoyhdo467u2bmTg8NH/7kKZCQJQq0S5W1WjKjqb9npd6EXhDe4H/gb2Ag2EED6lZJYBY4HOwHEgt4yyBwCrSqVtB7oLIdRIp3NxWYYJIaYIIY4KIY7Gp2bfyjn9d+xcITtFt5+TItNMEdxB10rp4Am5mdByAnR/CZqPA7WNLm+trrLrvcX4kl1hRdh7QH6W/BEzak+qcXtsnWUrBsj/Nk6m5a3s5H6DAdLONg/rZABSw8FDr3vQTPH18yc6MqJ4PyY6Cl//ABMSMO7BiezevhWA2Jhofvnua/aeOMeBM1dIT09j366KhwIMqlGTtJQU8vLypD3+AURHRersiYrE18+wE8DL25v4ONliHh8Xi6eXl0l5Zxf5nXlxxhus3raHr3+Zj6e3Lm7wmZMnaNexU4XtrrLYu8oXqSKyk2WaKWp3li2ZAE6e0ols9xD0nQ5tH9Dd304+4F0Her8MPZ83/lLo6Al5WTqHtLQ9WWXYY+cMOWnyc06a3DclX/RsaTpE2tnpUfmMKCI5TDrN1QgfP39i9O6N2Ogoo/eWPiMnTGTfTvlCHhcTze8/fsPWg6fZcewCGelpHNiz00CmVdsOnD+t6/Tz9PIhQXuvJsTF4ulpGK/blG1lydesXRdFUfjhj2Us3rCTR556tlg+LTUVGxsbXCsx7PG9gKjAVtWois6mfjd6UZf5BGCRoiiFyJbHsaVklmjTipzS0nwmhLgO/AF8WOqYBtiH7Iq31+u2N0BRlJ8URWmrKEpbb1cjDtkdxdjXTyk7u2ddqNEBLqzTiqvk+K7Q/bDnC9Dk6cZ9hv4D2z+A3Z9Dbho0HmZYnp2LrgXiTqJSg727bKHd84VsnW2iZ09uRvlOthlgtBtFKbu+O3bpxtgHHubT994GwMXVjT4DBtGzbTM6N6+Pg4MDw8eML1O+ND6+viQl6hY2N2aPYur7V4qy5K2s1PgHBnHs8EGG9+nOiaOHeW3WB8V5EhPi8Snnh9c8uMWfF+96soXw9GqtuBrcg+HaXtj6CRTkQiPtuE+VSo6t3D4bTq+SDl5p7FxKtnga/f7dgn1lyQsVOLhDwnVpZ2IotNAbGZWbXr6TbWYYvTdM3OvtOnVl1PiHmPPhLABcXF25r99ABnRuRe+2jbF3cGDIyNI/kXIMdlLSrQUruFXbANRWVrRq15EZz05h0qhB9B4whA5duhcfT0pIwMfPyBCRaoLA0o1+TyKEaA7UA7YKIUKRjmeJrnRFUWKAfKAvsqWyNK8AdZHd8PONHF8EfI10Wu9NclJ0XWYgu8eLWhRK4+wPLcbBkXmyNRJky2FOKqRoI2VEnwLXIPk5LwP5S6DIMZnGuqk1+aDSW9wgJ7WUPa4yrTS56bqWC1tnrS4T8nmZ8ocy+oxMj9KzE6QNmnzj521GxERH4R+oO28//wBiY6KN5m3QuAkfzvmGJx++n5Rk2QXdpXtPwsNukpSYSEFBAZvXr6V1uw4V1p+TnVNikkFMVCT+AboRKH4BgcTFGHbVJcTH4+0jxxJ7+/iSmJBgUj45KYmszEy2rF8LwMY1q2jSrEVxPltbO3Kzb3G4R1UkO0U6YUXYu0O2kfsJwDUA2j0A+37SvQBmJ8sykm7K/YiT4BYsP2elQIS2RSvpJqCArVPJMjX5oLbW7WeVssfB3fj9nZMuHVWQ/3PSTcsX3d+RWnvCj0snuQiVdbW4v/WJjY7CT+/e8PUPMNoNDnLizTuffclzjz1IaopsOe7YtSeR4WEkJ8l7fdvGdbRo295ANicnB1u9ezoxIQ4v7b3q5eNLYmL8LdlWlnxsdBTHDv1DSnISOTnZ7N25lUZN9e9pW3JyqsE9bQLLBKF7k/uBWYqihGi3ACBQCFF6YM9bwHRFUTTGCtG2in4JqIQQ/Usd3gt8hPFW0XuDlHBw9Jbd2UItJ9fEnDXMZ+8G7R6BE39Bpt7DIzdd/hg5artKvOrrJgjpd2P5N4N0Iw+6zHhw8NDtx5yVNqjU0iZHb9kFVpqYc7oZ5MHtdDabko89D57arjSveiXtcfKGdONOlzlx+sQxQmrXJqhGTaytrRkycjTbN28wyOcfGMT3v/3Jy1OfIPS6bhxmVGQELdu0w85etsB37taDa5cvVVj/jetXCQrWvXRs37yBISNHY2NjQ1CNmoTUrs2p40cN5LZv3sCo8Q8AMGr8A2zbtL5c+R1bNtGxS7diO69evlhcXq06dbl88XyF7a6yJN2U321HT3lP1GgNUacN8zm4Q+cn4NACyIjTpeeky65qZ+0II98GuglCUafBp7787OQjX9hKj9tMjwNHvfs76rS0QWUlbXLyhqRQQ3uizkCI9iUmpIPOZlPyUWfBp56enXr3s7MPpJr//a3P2VPHqRlSm8DgGlhZWzNw2Ch2bd1kkM8vIJA5Py/gteef5uaNa8Xp0ZERNG/VFjs7ea936NKdG1cuG8hfv3qJGiG6IUi7tm5i+Bg5XWH4mAns3GI41cGUbWXJ79+9nXoNmxSPF2/boTPXrujuaU8fH6LCq3F4UCFQV2CrapjDOpsTgNKjpVdq0w8VJSiKsr+8ghRFUYQQ7wOvApv104HZt8XaO4VSCGdXQMcpsisq/DBkaJ3FmtoxbTcPQL1+crmhZqN1cnvnyM9nV0Drh+SPWVYinJSDu2k8FFwCAUVOQDq91FC/Jk9O4nHwgqwEqTv6pFxCSSmEs8sp7mdrPg5u7ofUCDnRp83DcvxodjIcWyDzmJK/sA5aPQDWI+SP4qlFOjs8asHlLZg7Go2Gd2a8wu+LV6JSq1n210KuXJIP7PsnyW7Qv+fP49n/TcfN3Z13PvlCyhUUMKJfT04dP8qmdatZs20vmoICzp09zaKFvwHQb9AQ3vrwMzw8vfjlr6WcP3uGR8aXXOQhOyuLsNAb1KxVm5s3rnPl0kU2rF7Jpn1H0BQUMGv6y8WD/j/84mv+nj+PM6dO8MNXc/j6598Z9+DDREWEM+3xSQAm5T957y0+//Yn3nj/Y5ISEnj1+WeK7WjdvgNfzf7oDl7pewSlEI4vge5TZbPGjYM6Z7FOV/n/2j5oPBBsHaH1eJ3ctk/l5xNLocNkeX9nJsDhP2T6jQPQ7kHoP1OOuT680FC/Jk9O4nHykv/TYiD8BAx4HQq1thV1n7Z9QNqSHAYXt8pu+VqdpLN74FeZx5T86VXQYRK0HC3v7yN/6Ozwqg3nDF+qzBmNRsOHb77KD38sQ61Ws3Lxn1zTvnCNfWgyAEv/+J2nXngVNzcP3vjgM61cARMG9+bMyWNs3bCGJRt3UqDRcPHsaZb+ZdiBt2/nNj76UrcYy6/fzmX29/MYOeEhoiMj+N/TjwDg7evHO59+yTOTxpu0rSz5tNRUFv78HX+v246Cwt4dW9m7Q44lb9y8JaePHyuepFQdKepGNzdEeeMrLPw72tbzVY5+UY3WAATwaya7tC+VNdn/DuMSCHV6yFbbu0ydx3656zorm36DhtC0eSu++Pi9StHfuGlzHn16Gi9PnXLXdV/75uG7rrPSCWwuJw+dXVc5+t2C5PJLhxfcddXN/nf3nymVwdyfF/DFB7MIC71eKfqnz/qIXVs3cuifPZWiv4izEcnHFEUxXE7jLuDpZKcMaB5cbr6/DlytNBv/DebQjW7hXiHmjFymqLKwcYSLleToVkO2bFhHRPjNStPv7unJnI/frzT91Y7I03KZosrC1qnyHN1qwtyP3sXb18j6zHeJq5cuVLqjeS9gjhOEzKEb3cK9RNih8vPcKRIMxyFZuLMs+fPutzIV8c9uw+VbLNxhitbprAxiL5afx8J/IvT61RJju+82y/+uvOfJvYKAKjkmszwszuadQq0Gd8fKtsLCXSI7v/qOMaqOrDlQeT/IFu4+LWt4VbYJFu4iZyOSy890p6iis83Lw+JsWrBgwYIFCxYs3CNUxW7y8rA4mxYsWLBgwYIFC/cIVTAaZblYnE0LFixYsGDBgoV7AIFAZWnZtGDBggULFixYsHCnsHSj34MIITIURXHS258MtFUUZZpe2ingvKIo9+ul/Q6sUxRlmV5aCHAB0A+l0h54APgMiASstXkeVhQl6w6c0r/HrS7UHixHF8ceg4i9Zed1CoQWU+DiEkg8J9PUdlBvBDhoo4xcWQnp4RDSHzwagKKBnCS4vBI0RsKJWTtJ+fPaRZiDuoNva7lY8/X1kGJkUoWVPTQYB3bukJMMFxfryjYmr7aBZo/r5G1dIO4U3NgI/h3k4tNxJ271ylVJevbuy3sffYpKrebvhfP5Zu7nZeZt0ao167bu4qlHH2b9mlUAPPH0NB6YOAkFuHj+HC9OfZLc3NximaemPc9b731I0zo1jMZM9vH147Mvv2HShDEATHvxZe5/6GEKNRremPEKu3dsM5Bxc3Pnh3kLCKpRg4iwMJ58ZCKpqSllyjs6ObFqw9Zief+AAJYvWczbM1/lkSeeJCszi8V/GVmE3AzxbtiGZiOfRggVNw9t4ur2sqPnugXXp9sLczi64COiT+3D0TuItpNeKz7u4OnHpY0Lub5nFQ0GPox/004oSiG5GSmc+OtzctMMlzCzdfGgxbjnOfzL2wDU7T2emh36oyiFnFnxPfGXjhnIWDs40fbhmdh7+JKdFMvR+R+Sn51Rprza1p6uz+riZ9i5ehFxbAfnVv1ISNehaPJyCD+81UCPOdKsQzcmvvA6KpWaXWuXsu6Pn8rMW6thM2b9tIRv3nqBI7s241ejFtPenVt83CcgmOW/fMnmJfOpUa8Rj7zyDtY2tmg0Bcyf/Q7XLxhGo3L19Oax6e/zxatPAjB04pP0GDKGwkINC+e8z5nD+wxkHJ1dmfbeXLz8AkmIieTrN58nKz2tTHk7B0fe+E63hqmHtx//bFnNn19+SJ/RD5GbncXeDSv+7SWsmgjz7EY3+3U2hRCNkOfZXQhRkenh1xRFaam35WnTF2v3mwB5wPg7ZfO/Q0CdoXBuARz/Grybg7132XlD+kFyKeev9iBIvgLHv4IT30KWNpxlylU4/o1My06E4O7Giw3sAjHaEIX23uDdTNpybr60DSN3UFA3SL0Ox+bK/0VllyWvyYOT3+m23BRI1IYrjD0OAZ0qfMWqMiqVig8/+4IHx46kZ8c2DB89lnoNGpaZ9/VZ77NLz/nz8/fnsSefZmCvbvTq3A6VSsXwUWOLjwcEBtK9Zy8iTISNe3Lqs/w1X0YdqtegIcNHjeG+Tm15YMwIPpo9B5XK8PEy7cX/sW/PLrq2bcG+PbuY9uL/TMpnZmTQt3un4i0iPJwN61YDsOiPBTz25NO3fvGqIkJF89FTOfjTG+z4ZAqBrXri5FujzLyNhj5K3EWd85cZH8Hu2VPl9vmzaPJyiT4jg6pd27GMXZ89ze7ZU4k9d5gG/Y0Ho6jTYxRhB+U6tk6+NQhs1YOdnzzJwR9fp/mYqTJyWSnq9R5P/JWT7PjwMeKvnKRu73Em5TW52To7Z08lOzmO6NP/ABB+aAu1uw3/t1ewSiFUKib9720++98TTH9wEJ36DCEgpE6ZeSc883IJ5y8m7AZvTB7OG5OH8+ajI8nNyebobumkT3jmFVbO+4Y3Jg9nxS9fMeGZV4yWO3DCI+xaI19oAkLq0LH3YGY8NIjPXnqcSS/PQhi5v4dOnMK5owd4ZUI/zh09wNCHppiUz8nKLLbzjcnDSYiJ5OguGQFuz7pl9Btb/YInFEUQMrd1Ns3e2US2Si4EtgDD/mthQggrwBGoxLURjOAcBDmJkJssWyDjz4BnI+N5AzrK1sx8vfjHaltwDZEtoiDLKGphTLkGyNCBpIeDjYvxcr0aS2cVpO74M7Kc3BRpm3OQoYxHI4jVtkTGnpD7FZW385CtqWnahcUL8+X5OwUat8+MaNWmLaHXrxN2M5T8/HxWr1hG/0FDjOZ9dMrTbFi7ioT4+BLpVlZWxfGJ7R0ciI3RxZye9cEnvD/rDUxFGBs0dDg7t8sfsP6DhrB6xTLy8vIID7tJ6PXrtGpjGNyi/8DBLPn7TwCW/P0nA7Q2V0S+Vu06eHl7c2i/dD6ys7MJD7tJy9ZtyrtcVR73Gg3ITIgmKzEGRVNA5Ind+DU1/mJVu9swok/9Q25GqtHj3vVbkpUYTXayjJ1ekKvroFHb2OnCRpbCv0UX4i7I54Nf005EnthNoSafrKRYMhOica/RwEDGr2knwo/Il5zwI9vwb9a5wvKOXgHYOrmRdP0sAJr8XLKSYnGrUb/M62Qu1GnUnNiIm8RHhaMpyOfg9vW06dbHaN5+YyZyZNcW0pKNL7jfpG0n4iLDSIyNAkBRFOwdZWegvaMTyQlxRuXa9ejP6UNygfU23fpwcPt6CvLziY+OIDbiJnUaNTeQad2tN3s3rgRg78aVtOnep8LyvkE1cXH35NIp2WCRl5tDQnQktY3oMXdUQpS7VTXMwdm0F0KcLNqAd0sdHw8sBv4G7i8tbIQ6euV9q1+OtvxIwANY+99Nv43YuECu3o9LbirYOBvJ5ywduegjJdPt3CE/E+qNhJbPQN3hoLI2lPdtrXMo9bF1g4Js6RwW6SlhT5pxJ9XGUef05mfI/YrKezeXDqk+6VHgWtNQj5nh5x9AVGRE8X50VCT+/v5G8vkzcMhQFswrGU4zJjqa77/+kiNnLnLy4jXS09LYvXM7AP0GDiImOprzZ88YlFdEcI2apKakkJcnG/79/f0N7PHzDzCQ8/LxIS5WxvSOi43B09u7wvIjRo9lzYrlJdJOnTxOh05dyrTTXLBz8yQ7RfeykJOagL2rp2E+V0/8mnUmdP/6MssKbNWDiOO7SqQ1HDSJvm8tJKjNfVzcaDgswcHDl/ysDAo1+QDYu3qSo2dPdkoCdm6G9tg6uxV3yeemJWHj5Fph+cDWPYk8ubtEWkr4FTxrNy3z3MwFd29fkuJiiveT4mJw9zaM7OPu5Uvb7n3ZvurvMsvq2HswB7bpvg9/fvkhE555lbkrdnP/tBks+cFw+I23fxCZ6akU5OcX25MYq3sZTS7DHhd3L1ITZb2mJsbjoq3Tish36juEQ9tLxr2/cfEMDVpUmYiMtw0hyt+qGubgbGbrd3sDbxUdEEK0A+IVRbkJbAdaCyHcyylPvxt9ql76Ym35fsAZwKDvQQgxRQhxVAhxND4l8z+e1h2i9iAI3QKUar0QKnDyl07oye9kK2FQqe7yoB6gFEL8KcNybZwhX38Iq7G7oexWMkMqIO/dzNDZzM8ou+XVjDDWjWKsFfKdDz/lg1lvUlhYWCLd1dWN/oOG0KFlE1o1qouDgwOjxk3A3t6e5156lc8+Mh3v3NfPj8SEhFu2pywqIj981BhWLi85TjEhPh5fP0Mn2/wwcn2M3E9NRzzFhXXz5H1qrBS1Fb5NOhJ9suR47osb5rP13YlEHNtJrW5DDeRsXTzI028pNfZrdwv1XRH5wFY9iCzlFOdmpGDnYujUmhsVvZ8een4mi77/DKXQeH2rraxp3bU3h3fowvj2Hnk/f379IS+M6sGfX33I4699aCDn5ulNeopu3K6o4PevLCoiL53ikuFI05KTcPPyqbAec0Bgni2bVX6CUDncDzQUQoRq912A0cAvZUqUg6IoihBiLfAs8HGpYz8BPwG0bRhwK57VfycvDWxddfu2rpCXbpjPKVBOyAGwdgD3+vKHKT1cth5maFuXEs7J8ZRF+LQEj/pw9nfj+gsLQKX3dTKwx8W4PXmZsis8P0P+z8usmLyjn3SQM6NKlqeyAm3rizkTHRVJQKBuWIF/QCAxMTEG+Vq0as33v84HwMPDk959+6MpKMDK2prwm6EkJUqHccPaNbRt34HzZ89Qo2YI2/YeLC538+5/GNS7B/FxscXl5mTnYGtnW7wfFRVlYI9+t3wRCXFx+Pj6ERcbg4+vH4narv3y5Bs3bYbayoozp06WKM/O1o6cnOzyL1gVJyclAXs33RhsO1cvclINJ/G4BtejzcNyIpCNowu+jdqhaDTEnJVhJn0btSU18iq5GSlG9UQe30mHJ97l0qY/SqRr8vNQWdsU78uWSJ099m7G7clNT8HWxYPctKQSDmt58i4BtRAqNakRJceVq61t0OTnYe4kxcXg4eNXvO/h40eKke7uWg2bMvWdOQA4u7rTolMPCjUaju2VQxdadOxO6OVzJbrYuw4cycK57wNweMdGHp/xgUG5ebk5WNvo7u+k+Bg8fXUvde4+fqTEG9qTlpyAq6c3qYnxuHp6k5aSWCH5GnUbolKrCb10rkR51ra25OcamYxqzlTRlsvyMIeWTaMIIVTAWKC5oighiqKEAMOpWFd6eXQFrt2Gcm4f6ZFg7ym7s4VatvolGYklfPQL3ZZwDq6tg6QL0tnLTQV7bVg2t9q6CUJudaXjef5P2eJpjOwEqbuIpIvSBqGW6faekB5hKJd0EXxbyc++raQtFZH3MtKqCdL+LONjkMyJk8ePUatOHYJr1MTa2prho8awZaNh12nHlk3o0KIxHVo0Zt2aVbz28gts2rCOyIhwWrdth729PQBde/Tk6qVLXDx/jub1Q4ploqMi6d+jSwlHE+DatSsE19ANV9iycT3DR43BxsaG4Bo1qVWnDieOHTWwZ8umDYy7X05AGXf/g2zW2lye/IjRY1m9fKlBebXr1uXShfP/4gpWLVLCL+HoHYCDhy9CbUVgqx7EnjtokG/7+5PZ9t4ktr03iahT+zi9/JtiRxMgsFVPg9ZCRy/dcAW/ph3JiAs3KDczPgIHD123Z+y5gwS26oFKbY2Dhy+O3gEkh10ykIs5e5DgdnLcXnC7PsW2lCcf2LonkSd2GZTn6B1IWkyo0WtkTly/eAa/oBC8/YNQW1nTsfdgju/bbpDvpbG9eWlML14a04sjuzbz++xZxY4myK7pA1tLthYmJ8TRsFV7ABq36URMeKhBuTHhoXj568a+H9+3nY69B2NlbY23fxB+QSFcMzKD/fi+HXQbOBKAbgNHcnzv9grJd+wzhIPbDJ9ffsEhRFw3MmzLrCm/VdPSsnlv0R2IVBQlUi9tD9BYCFH0ivWjEGKu9nM4ph3R8UKIrkgHPQKYfHvN/a8USsex6SRAJWdmFzldfu3k/5gjZUoDcnmh+mNApZbLEF3WLjlRZ4hsMWw6We6nh8O1UkNWC/Plskh2HvJ/VhzEn4XWz8mW02vrKO4Grztc2pIRBRF7oOF48G0jJwJdXCzzmJIH8G4K54wseeNSA8J2VuiKVWU0Gg2vv/o//lq+GrVazaI/F3D5onTUJz7yGAALf/u1TPkTx46yfs0qNu/6hwKNhrOnT/HH/HkV1p+dlUXojRuE1KpN6I3rXL54gbWrlrPr4DE0BQXMfOWl4q772V9+y4LffuH0yRN8M+dzfvhtIRMeepjIiAienPwQgEl5gKEjRjFx3CgDO9p16MQXn3xUYburKkphIWeWf0fHJz9AqFSEHdpCeoycGFez8yAAbu7fYKoI1Na2eDdozamlX5VIbzTkUZx8gkBRyEqO5fTSrw1kNXm5ZCZE4ejlT2ZCNOkxN4k6uYf7ZvwobVv2bXHXfYvxLxC6fz2p4Ve4sn0xbSfNpEaH/mQnx3F0vmxFMyUPENCyO4d+etPADo9aTbi8+c9buHJVk0KNhgVz3uWVL35FpVazZ90yIm/IVt5eIyYAsGPVIpNl2Nja0aRdZ+Z9WvI6zvvkDR56/nXUaivy83INjgPk5mQTFxmOT2AN4iLDiLxxlUM7NvDxnxsp1BQw/4t3irvuH5vxATtW/c2Ni2dZt/Anpr33JT2GjCExNpqv33gOwKQ8QIdeA5n98hMGdtRv1pqV8765hStX9SnqRjc3xK2Mq7JQcdo2DFCO/vJYZZtxd/FsBI4BEGb4Bn5XcPSHwM5weXn5eW8zAUO/uOs6K5sBg4fSvGUrPv2g9Jy8u0PTZi2YMvVZnnvq8fIz32Z+mNyt/Exmhl+zzrgF1ePixvmVot8lsA51eo7ixJ+f3XXdSw9fv+s6K5s23ftSq0ETlv08t1L016zXiAETHuXH94wvzXQn+WP/lWOKolTKzCQ/VwfloS71ys33+cbTlWbjv8GcWzYt3G0SL4CVQ+Xpt3aAm5Xk6FZDNq1fi4eHR6Xp9/D0rDRHtzoSc2Y/Ng6VN/nO1tGFixsWVJr+6saxPVtxcnWrNP3Obu4sryRHt7IxNqGqqmNxNi3cXorW6awMUu6tYbTVgb8WVk4rF8CeXTsqTXd1JezQpkrTHX+5ekQGu5fYvdZwnPTd4uyR/ZWmuzIRAtS3KYSQEGIA8CWgBn5RFOVjI3l6AnOR0RETFEXpcVuUl8LibFqwYMGCBQsWLNwj3I4hm0IINfAt0Bc5z+SIEGKNoijn9fK4Ad8BAxRFCRNC3LF1pizO5h1Cyckn97Lh0i8WzJP4dPNffseCjmHdDaPlWDBfLkalVLYJFqoRtykcZXvgqqIo17VlLkKuyKO/fMcDwApFUcIAFEW5Y0u5mO3SRxYsWLBgwYIFC1UNUYGtAgQiV9kpIkKbpk99wF0IsUsIcUwIcceC0VtaNi1YsGDBggULFu4BBKKiYza9hBD6ixn/pA0soyvKkNLLD1kBbYDegD1wQAhxUFGUy7dic0WwOJsWLFiwYMGCBQv3AqLC3egJ5Sx9FAEE6+0HAVFG8iQoipIJZAoh9gAtgNvubFq60c0Iq66Tsbn/C6xHvmMyn7rD/diM+RDrEbMQnjXKlVe3Ho71iFlYD38L6/4vgr1r6SIl9q5Y9XlWJ9d8oNQz+n1EYBPjMjaOWPd/CevRH2Dd/yWwcShXXt1mJDbjPsVmYsnFflWN7kNVr4vJczcnfv75VyKjYjhx0jCShz5z5nzJhYuXOX78JK1ataqw/Isv/Y/8gkI8PY3Hovbz82PV6jXF+69On8GFi5c5e+4Cffv1Myrj7u7Oxk2bOX/hEhs3bcbNza1c+Xffe5/rN26SnJJWoqxnnpnKpEmTTZ67WdH6fhj0PvSeYTpf81HQ9w3oNR1cdSFAy5RvNEjmve8V6Pw02JWxvJGtC3Saotuv30fq6TMTfBoal7F2gC7PyHxdngFr+/LlGw+G/rNg6Kcly6rdDWp0MH3uZsSAp15n6k8beGS26UXse09+iSe+XMrkT//At5ZuLHF58u2GPMCriw9i72z8ee7o5snoV2cX73cY8TBPfLmUx+csJqSF8Xqwc3Rh3Otf8cTcpYx7/StsHZ3Lle82/ime+nY1L8wvubpEq/5jaNpzsMlzN1duUzf6EaCeEKKWEMIGmACsKZVnNdBNCGElhHAAOgAXbsMpGGBWzqYQIkPv8yAhxBUhRA0hxCwhxMtCiG+FECeFEOeFENnazyeFEGOEEO2FEHuEEJeEEBeFEL8IIRyEEJOFEN+U0rNLCHHPLaaqufIP+VvmmsyjCmqGytWHvGUzKfhnAVadHypXXnNmM/mrZpG/+l0Kw09j1Wqo0bLVTftSeHkvAMLNH1Xt9uSteIv8zXOx7vSg0Sl26uYDKYy+QP7y1ymMvoC6+cBy5QvDTpG31jCeb+Hlf1A37m3y/M2J+Qt+Z8jggSbzDBg4kLr16tKoYX2efvpJvvn2uwrJBwUF0adPH27evFlm2S+8+BK//vILAI0aNWL8uPG0aN6UIYMH8vXX36JSGT5eXp0+gx07dtC4UQN27NjBq9NnlCu/ft1aOncy/HH77bd5TJv2rEG62XLzMPzzg+k8vo3B0Ru2vg8nFkHLseXLX9kOOz6BnZ9BzDloOMB42fV6Qqh2ORpnXwhqDds/gv0/QIuxGP0JrN8H4i9Le+Ivy/3y5KPPwi4jQRJuHoQ63U2fvxlxdvd6ln30osk8tVt2wt0vmJ+fH8vmnz+i72OvVkje2dOHkObtSY0vexJru8H3c2rHagA8A0No1Lkv8/73AEs/fIG+j76CjAhdkg4jHubm2SP8/MJYbp49QsfhD5crf/X4Xha+/qhBWWd2rqXNgHEmz99cEUKUu5WHoigFwDRgM9KBXKIoyjkhxFNCiKe0eS4Am4DTwGHk8khn78Q5mZWzWYQQojfwNdrp/EXpiqJMVRSlJTAIuKYoSkvt/l5gKTBdUZQGQCNkBTiXLvteRom9gpKbaTKPqkZLNFdlfGIl/rpsSdS2VJYpn5+j+2xlYzjqQ4s6pA2FEWeL9RRePwyFBZCRgJIWh/CqZWhPzZZorsgfMM2V/ahqtipXXom/DtmphgZo8lAyEozqMUf27d1LUlKSyTzDhg7nj4UyrOehQ4dwdXXDz8+vXPnZn3/BazOmYyrC2MiRo9i8Wa67OHTYcBYvWUxeXh6hoaFcu3aV9u3bG8gMHTqMhQvk2pwLF8xn2LDh5cofOnSImJgYg7Kys7MJvRlKu3btTF4DsyHxGuRnmc7j3xTCtWFpk2/KlkRbF9PyBbm6z1Y2UFadB7SAWG2jh38ziDgOhRrISoLMePCoadyem4fl55uHpVx58sk3ITfNsCxNvszrXsPwmBkSceEk2RlGroMeddt159weGaY0+so57BydcHTzLFe+18MvsOvPb8p8lgPU73AfN04eLNZzYf9WNAX5pMZHkxIbgX/dxgYy9dp24+xuac/Z3Ruo1657ufLRV86RmZJoUFZBXi6p8dH41THUY84I5Dqb5W0VQVGUDYqi1FcUpY6iKB9o035QFOUHvTyfKYrSWFGUpoqizL0jJ4UZOptCiG7Az8BgRVEqusr3VGC+oigHABTJMkVRYu+UnZWGgxtKpp6DkZmMcHArV6yo61pVpyMFJ1YZZnDyQsnNks4hIBzcUTKTiw8rWckIR3cDMWHnonMcs1MRds63JF8aJeEmKr/yQ31VFwICA4iI0E1IjIyMIDCw9ITEkgwZMpSoyChOny67ez4kJISU5GTy8vIACAwIJCJcT09EJAEBhnp8fX2LHceYmBh8fHxuSb40x44do0vX6hc6skzs3SA7RbefnVr2sBd9irqug9vCBSMx1h08IC9bOocAdq6GeuyM6LF11jmOuWly/1bkS5McBp51ys9XTXB29yYtUbdaTXpiHM4e3iZl6rbpRnpSPPE3r5aZx9Xbn5zMdDQF+cV60hNK6nEyosfB1aPYccxMScTBxf2W5EsTc/0iwY1alpvPrBCyE6+8raphbs6mLXIMwghFUS7eglxTwFTom/F6Xe4nAaNd6EKIKUKIo0KIo/EZ9+i6i//yW6o5tpK8Ja9SeO0g6ka9DIt1cIWcdL0EI4WYaCUzLPDfySvZaVAB57m6YKy7xVRrpb29Pa/NnMmsWW+ZLNff35/4hPh/ree/2llEfFwcAQEBFdZTPalAPZxfD5tnQfhRqG2kq9rOBfIydPv/9dfu38rnZVTMKa0u3OJ9Y2VjS8eRk9m35Kcy8wA4unuRlaZ72TdaX7fwOP+38lmpyTi5e92CIvNAVOCvqmFuzmY+sB947DaXu7ioy13b7X7UWCZFUX5SFKWtoihtvZ3sjWWpfDKTEY568awd3VGyUiosrrl2CFVIG8MDBXmgti7eVTJLtkQKB+N6lJw0XcuLvSuK1mGtqLwBamtpiwVAthAGBekmJAYGBhEVVXpCoo46deoQElKLY8dPcuXqdYKCgjh85Bi+vr4l8mVnZ2NnZ1e8HxEZQVCwnp6gQKKjDfXExsYWd+P7+fkRFxd3S/KlsbOzIzv7Hn2xqwyyU2TrZhH2rpBtuiu2BOHHILCFYbomH1R6i5cY05NjZGhLbrquG9/WRe7finxpVFagsdzfRaQnxeHiqQv64uzpQ0ZyQpn53XyDcPXx55FP/+DJr1fi7OnNpI/n4+jqUSJfQV4uVta2JfQ4e5XWE09pslKTirvxHd08ix3WisqXxsrGhvy83HLzmRMCUInyt6qGuTmbhcA4oJ0QYuYtyJ1DrjVl9hSGnURdtxMAwru27BozNv5RD+Gie0ioarRESTEcVK6kxSKcdLOWC8NOoardXv44OHkhXH1REm4Yt6deZwDU9TpTePPkLcmXRuXqi5IcWW6+6sLadWt4aOJEADp06EBaWqrR8Y9FnD17lsAAP+rVrU29urWJiIigfbs2xMaWHFFy+fJlatYMKd5ft3YN48eNx8bGhpCQEOrWrcfhw4cNyl+3bi0TH54EwMSHJ7F27Zpbki9NvXr1OXf2joxnr5pEn4Vg7RhW95pyvLWx8Y/6OOp1Z/o3hXQjo4cy4mVXur6eoNagUst0J29IMjKZLOYs1NSO3a3ZXsrdinxpnHwgzRKZrYirR/fSpPsgAPzrNSE3K8Po+MciEsKv8e2UQfz47Eh+fHYk6YnxzJ8xiczUkmO3k6PDcPX2L6GnUee+qK2scfX2x90vmOir50sXz9Wje2naQ9rTtMcgrhzde0vypXH3r0FCeEVHw5kLApWq/K1SLBPiJSPbY0KIluXJmt06m4qiZAkhhgB7hRCxiqL8WgGxb4DDQoj1iqIcAhBCPARsu5O23m6sej6Byq8B2DlhM/5TCo6vofDKPlQNegBQeGk3hRFnUAU3w2bMhygFeRTs/a1ceXXb0QhXP1AUlIxECvYvNFRekIeSHg/OPpAeh5ISReGNo9iMehdFKaTgwJ/F3eBWXSahubgLJfEmmtMbsb7vKVT1ukJmEvk75LhlU/LqtmNQ12kPVjbYjP8UzeV9aE5Ip0X41KXwxNo7eZnvGRb+8Sc9evTEy8uLG6FhvPvOLH77bR5TpjwJwE8//cjGDRsYOGAQFy9dITsri8cff7Rc+YqQlZXF9evXqFOnDteuXeP8+fMsXbaU02fOUVBQwHPPTaOwsBCAH3/8mZ9++oFjx47x6Scf8/eixTzyyKOEh4cxYbycbWpK/qOPP2HChPtxcHDgRmgY8+b9ynvvyuW5OnfuzHvvmV7qy2xo+zB41wUbJxjwDlzYKGdoh2iX+wr9B2LPg19j6PumbAE8/lf58k2GyvtWUeQEnJNLDHVr8iAzERy9IDMB0mMg4gT0ngmKBk4to7hftNUEuPEPpITD5W3Q7hGo2RGykuGw9nljSr7JMAhuI3spBrwDoQfgopyIhmct3WczZ+hz7xLcuDX2zm48/d0a9i39mTM719Kyz0gATm5byfUT+6ndqjNPfLmMgrwcNn7/frnyFSE/N4eU2AjcfINIiY0gMeIGFw9s59HP/0Yp1LB13mwURd6fA56cycmtK4i5fpGDqxcw/IUPaH7fMNISYlg953UAk/I9HpxG4y79sLax4+nv1nB6xxr+WSZXuQhq0Jz92s/ViXu4m7ytdiv6Ig1GLrH0lBBiqaIon5YlKG5lXNW9jhAiQ1EUJ+3nYGAP8ALQCshQFGW29lgIsE5RlKZ6sp2ATwEfZAvpHuBFZEtpW0VRpunl3QW8rCiK0e50gDYh3sr+t4bfztO751HVbIXwrInm+KpK0S88glE37UfBnoq8X9xenKZUzEkzJ4YPH0HrNm14+603K0V/y5YteeGFF5k8edJd152/tBotuVSEf3NwCzI+gehu4BoIde+DY3/cddWfLjp013VWNvXa9cC3dkP2Lf6xUvT7hNSn3eD7Wf/t3X+ZnL7k0LFyFky/YwR7OCkv9G9Wbr6XFx286zYKITYDoxVFydDuOwHLgJHAMUVRylw6wKxaNoscTe3ncKBoDZzVpfKFIicF6acdAIxNa/1du+nn7flfbTVHCm+eQGXrVH7GO4WdMwWV5OhWR1avXlXmgu93A08vL95+2/REJgu3kejTJYIu3HVsnCrP0a2GXDmyu8wF3+8G9s5u7C1nIpNZUvEIQpVBDUB/0HQ+UFNRlGwhhMnBtWblbFqofIoWda8MlKjyxwBZuL3Mm3f3W5GL2L6tSo1yMQ9uHqw83fGXKk93NeX0jtIBZ+4eN8+UP2bbXKmsMZkV4C/goBCiqAFvKPC3EMIRMPkDbHE2LViwYMGCBQsW7gEE9+7MbUVR3hNCbAS6IE19Sm844YOmZC3O5h1CWKux9XerbDMs3CXq+ljW/qtONHxmfmWbYOEucnH2/ZVtgoW7yPQllTtG9x7uRgc4AUSh9R+FEDX0IzWWhcXZtGDBggULFixYuEe4V31NIcSzwNtALKBBtm4qQPPyZC3OpgULFixYsGDBwj2AEJW3jmYFeB5ooChK2Yu5loHF2bRgwYIFCxYsWLhHUN2762yGAxUI9WXIvToO1cK/odk46DULur5sOl+j4dB9BnR5CVwCdek9ZkLX/0GXF6Hz84ZytXrAwNlgXcbyJ7bO0Ea3aDi1e0k93V4Fr/rGZaztod0U6D5d/reyr7h860dKnmuNLhDYruzzNjPe/+Jr9p2+zJod+03mm/nex2z65xirtu2jcTNdb4eziwtzf/qd9XsOsW73QVq2kdfuuVdmsmrbPlZs3cMvfy/H29fPaLnePr58P39R8f4T015k0z/H2LD3MF169DIq4+rmxq+LVrBp31F+XbQCF1fXCst/+/tfJc71gUeeYOT4B0yeuznxwRff8M+ZK6zZabq+X3/vEzbvP87q7f/QuJku9KSziytf/jyfDXsPs37PIV19v/o6q7f/w8qte/l10Qp8TNT3Dwt09T3l2RfZvP84G/ceoWtPU/W9kk3/HOPXRStL1Hd58t/9/neJc33wkScYNd7kHATzouNEGP0pDC5nHds242DYOzDodXDXhXxl+Psw+A0YOBMGzNClNxsMIz+S6QNnQkAT4+XauUDPZ3T7TfpLPUNngX8j4zI2DtDrORj6jvyvv1RWefI9ni55rvV7QO1Ops/dTBGi/K2SuA7sEkK8ph9FqCKCVdrZFEJkGEmbJYR4WQgxWQjxd6ljXkKIeCGErRBilxCirTY9VAixXC/fGCHE73r7A4QQh4UQF4UQJ4UQi4UQNe7gqf07Io7C0Z9N5/FuKMPT7fkYzi2DJqNLHj/0PfwzB/Z/WTLdzhU860N2ctllh/SAcO3Aaidf8G8J+z6Do79Ak1Fg7G2tdi9IvAJ7PpH/6/SqmLxvU9CUWtYr4jCEdDV9/mbEqsV/M+XBMSbzdO/Vl5q16jCgSxvefvUF3vro8+JjM9/9mH27tjO4ewdG9unGtStyaZlfv/+aEX26Mqpvd3Zt28wzL75qtOxJT05l6V9yokydeg0YNHwUQ+/rxBMPjOGtj2ajUhk+Xp6Y9iIH9u1hQNe2HNi3hyemvVgh+b4Dh5CVmVmirBWL/uChx56swJUyD1Yu+YsnHqhAfdeuTf/OrXnrled5+2Ndfb/+3sfs3bmNQd3aM6J3V65duQzAr999xfDeXRjZtxu7tm7mmZeM1/fkJ6ey5M8FANSp34BBw0czpGdHHn9gDG999HmZ9X1w324GdGnDwX27dfVdjnzfQUPJyiz5eF9ezeqb6wdgx9em8wQ0ARcfWPM2HPoL2peayLRtDmz8EDZ9XDL94naZvvFDiDpnvOxGfeDqPvnZxQ9qtoV170mb2t1v3ONp0h9iLsLat+X/xv0qJh/cEgpKPc+v7YcG95k+fzNFCFHuVkmEAVsBG8BZbyuXKu1slsMKoK8QQr8ZbgywRlEUY4uPthVCGLziCSGaAl8DkxRFaagoSkvgTyDk9pv8H0m+DvlZpvP4NIFI7UoFKWFgZSdbJMuj0XC4tK44ZKRR/JpBwkWdnuiTUKiB7CQZ6s7NiH+ub0/kUblfnrzaRjq217aXLKswX4bbcw2mOnD00H5Skk04/0Cv/oNYvUy2Rp06fhQXV1e8fXxxdHKmbcfOLPtLhh7Nz88nPU3G0M7MSC+Wt7d3LLPO+w0ayt6d24v1bFi9gvy8PCLDwwgLvU7zVm2M2DOQ1UvkO+DqJX/Te8CgcuUdHByZ9ORUfpg7u0RZOdnZRIWH0axla9MXykw4enA/qeXUd+8Bg1i9VK++XUzVt+wNK1HfDg6UFVWu3+Bh7N0p1zbt3X8QG1Yv19bXzTLru3f/QazS1veqJX/TZ8DgcuUdHByZ/OQzfP+lYX1HRlSf+ibuKuRlms4T1AKua9c+TbwhWxLtXG6P/uBWULR2cXALuHkUCgvkszg9HjxDTNtz/aB0IsuTt7KFhr3hTKkF+zX5Mq9nzdtzPlUEAaiFKHerDBRFecfYVhFZs3U2FUVJQ4acHKqXPAH427gEs4GZRtKnAx8qinJBr+w1iqLsuV223lXsXCEnRbefkwq2esv2tJsCnV+A4A66NJ/GMl96dNnl2ntAfrZ0Do3qSZFppbF1hlztj11uOhRFIDIlX28AhO6W8ZpLkxYB7rXLtrOa4evnT0xUZPF+TFQUPn7+BNesSVJiAh/O+ZblW3bz3uwvsbfXvZc9P/0Ndhw9y9BRY/nqsw8Nyg0MrkFaagr5ebIOfP1L6omNlnpK4+nlQ3xcLADxcbF4eHqXK//cqzP5/YdvyM42fJE6e+okbTpUz642Y/j6+ROtX9/RUfj6+xNcM4SkxAQ+mvsdK7bs4b3ZX5Wo7xdmvMHOo2cZUmZ91yxZ36X1REXha6y+vUvVt5d3ufLPTX+d3374lpysbIPyzp46QdsOnW/pmpg1Dm4y5nwRWckyDQBFdmUPeA3qlurxqd9Tdrt3nGg8KpSjJ+RlSecQwN4NMkvpsXczlLNzhhz50kpOmq4hw5R886FwYZvx53niTfCua5huzlSgC/1u+5pCiLna/2uFEGtKbxUpw2ydTS1/Ix1MhBABQH1gZxl5lwCthRClv9lNgOMVUSaEmCKEOCqEOBqfVk4LY6Vh7Fuqbck4+A3snyu7rWt0kU6byhrq9IErm00Xa+sMeQajGkqpMdEqWhEUBZwDwNELYs8az5Obcfve7M0AY90tiqKgVlvRuFkLFi2Yx+h+PcjKyuKJaS8U5/nyk/fp1bYpa1cs5cFHnzAow9vXj6TEhHL1/Fc7GzZpSo1atdm2ab1RuaSE+DLHGFZLyriOVlZqGjdrwd/zf2VUv+5kZ2fxxLMvFueZ+/H73Ne2KetWLOWhR6YYlOHj61uivo3q+a92Ag2bNKNmSG22bVxnVCwpIR4fP0t9V4gts2HjR7DzGzn+0Uf703ZlD6x5EzZ8CNmp0Hq0oay9q64RAP67d1OWvHsQOHtDxCnjx3PS9Zzn6sM92I2+UPt/NvC5ka1czN3ZXAd0FUK4AOOAZYqiaMrIqwE+A14rqzAhhKd2zOZlIYTBLBxFUX5SFKWtoihtvV0qMYawKXJSwM5Nt2/nCrnaN9Gi/3kZ0plzCwYHT9lq2eUlOYHIzlVOILIp1fVemC8d02I9qaX0uOnK1yc3Xff2a+ssnUVT8u415aSmHjOh41TpeLZ/WpdPbSW7XywAsmXLL0A3CcwvIID42Bhio6OIjY7i9IljAGxZt6bEZJIi1q9cRr9BwwzSc3OysbW10+mJKqnH11/qKU1iQhzePr6AnHCSlBhvUr5lm/Y0adaCbYdO8eeqjdSsXYf5y9YW57OxsyU3J6fC18PciY2Owl+/vv0DiIuJISaqZH1vXre6xGSxItatXEbfwUMN0nNyckrUt4GegADiYgx7PhLjS9V3QrxJ+ZZt2tGkeQu2Hz7Nn6s3ElK7LguW6xxPW1s7cnIMWzyrLVkp4OCu23dwl2kgHUmQz9jwk7pu65x07Yu/IsdkGusO1+SBWu95npUMjqX0ZKcYyuWk61727Vx0DmtZ8l61waOGnMzU72Vw9oE+upcg1NbV7nkuuPdaNhVFOab9v9vYVpEyzNrZVBQlG9gEjMR0F3oRC4HuyGDzRZwDWmvLS9SO2fwJcLrd9t4V4s5DYFv52a0GFOTIB4LaBtS2Ml1tI2d/p8dARgzsmAW7P5RbTqqcQJSXXrLczASw13uYxJ2TE3xUaumsOnrJMaKm7AlsK+VMyYcdgJ3vSVsOfiv1Hv5eV56Dt7TZAgA7t2xk+JgJALRo3Zb0tDTi42JJiI8jOiqSkDqytaNjt+5c1U4QqllLNwzhvv4DuH71skG5odeuERisu012btnIoOGjsLaxITC4BjVr1Sl2bPTZsWUTw8fJSQzDx93Pjs0bTcovWjCPHq0b06dDCx4cMZCb168xaYzOGQqpXZcrly4Y6Kmu7Ni8keFj9eo7Xb++I6ilre9OXXtw7bJhfffqN5AbV68YlBt67WqJ+t6xeSODho/W1ldNE/W9kRHa+h4x7n62b95gUn7Rgnl0b9WI3u2b8+DwgYRev8rDo4cUlxdSuy5XLlrqu5iI01C7o/zsWQvysmX3tdpGjoUE+dm/EaREyX39np/glrp0fdLiZFe6vp6abUFlJdOdfSAx1LQ9tTvqWizLkr+yB1a+BqvfkC2x6XFyUlMRLj7G7TNrBCpR/nZXLRLijBDidFlbRcqoDuts/g18BLgAB01lVBQlXwgxB5gB7NAmfwqsFEIc1Bu3eW82W7Z4EDzqgI0j3PcGXNkiZ2gHa8e0hR+A+AtyRnqPGfKN8fRieczGCVpPlp+FCqJPQMKliuvW5EFWomwJzUqEjFiIOQXdXoHCQji3kuKOtqZjpdOYFgHXd0DLiRDUXr7pnpSzXU3Km8I9BK5uqbjdVZjZ3/1C+05dcPPwZOfRs3zz+ccs//sPxk98BIDFC39j9/YtdO/dl837j5OTnc3MF6cWy3/wxqt89s1PWFvbEB4WyuvaYy/NfJtadepRWFhIVGQ4s6YbrmyRnZ1FWOgNaoTUIiz0BlcvX2TT2lWs23UQjaaA92a+QmFhIQDvzf6SRQt+49zpk/zyzRy++OE3xkx4iKjICF58cjKASXlTtG7XgW+/+OS/Xsoqweff/UK7zl1x9/Bk17FzfD37Y5b/vZDxD2vre4GuvrccOEFOdlaJ+n7/9el89u3PxfU98wW5rM3/Xp9FSJ26KIUKURHhvD39RQPdxup749qVrN99CE1BAe/OfFmvvr9i8cJ5nD11kp+/mcOcH39n9P0TiY6M4IUpkwBMypuiVfsOfPPFx+XmMwu6PAq+9eU49pEfwul1coZ2vW7y+JW9EHUWApvCsHflM/iA9vlp7wLdtTP3hQpCj0C0drJP61Gy+1pRIDMJDv1pqFuTBxnx4OQt/6dGw81jMOQtUArh6CLdsKgOD0mnMSkMzm2Gbo9DnS5ysuZe7eoopuRN4V0HzhgfQmOuCLjrzmQFGFJ+FtOIWxlXda8hhChExugs4gukU5mhKMpsbR4rIBr4VVGUGXqyu4CXFUU5KoQIBdoqipIghLAFbgBbFEWZrM07GJiFnOKfiJz+/7aiKIZNPlra1vNTjn710G060yqCb1NwCYIrmypHv0uAnKV+urwG7NtPo8d+ves6K5s+AwbTpHlLvvz0g0rR36hpMyZPmcr0556667qr8nPz39Jn4BCaNG/Bl59UVn03Z/KTU5n+7N1f/qhaxkYPaiFngp+q0PyP2497kFx+af/vd121eOiHY4qitL3rioHaPi7Ke6PLXy/6oR92VJqN/4Yq3bKpKEq5wwAURSkAvI2k99T7HKL3ORcIKJV3PVC9Xq/+DbFny17w/W5g7Vh5jm41ZNum9bh5eFSafncPz0pzdKsj2zauw83dvfyMdwh3Dw++qiRHt1oScUq3OkhlYOtUeY5uJXMPtmwCIIToiFwKshFyrU01kKkoSrmzcqu0s2nhHiTicOXpTjQca2bhzlK0bmNlsH/PrkrTXV2x1Hc149o/lac75mLl6a5k7k1XE4BvkPNflgJtgYeBCq1NZXE2LViwYMGCBQsW7gEEoFLdu+6moihXhRBq7co+vwkhTMfP1WJxNu8QKWnZrN5cxlqQFsyOpdP6VrYJFu4iTZsFVbYJFu4i6uFzys9kwcJtohLDUZZHlhDCBjgphPgUOR/GsSKCZr30kQULFixYsGDBQpVBgKoCWyUxEek3TgMygWDASFQAQywtmxYsWLBgwYIFC/cAQvt3j5IA5CmKkgO8I4RQA7YVEbS0bFqwYMGCBQsWLNwjqFSi3K2S2E7JdcbtgW0VEbS0bFqwYMGCBQsWLNwj3MPzg+wURcko2lEUJUMIUaH1DqussymECAK+BRojW2jXARuAonAidYFIIBs4DcxDLuI+RK+M34F1iqIs0y7y7q/ND/C+Nl0BvlAU5X9amZcBJ0VRZt3RE/wX+DRsQ7NRT4NQEXZwE1e2LzHI4+QTRKsH/odrUB0urJ/PtZ3LAVBZWdP12dmorKwRKjVRp/ZyadMfAAS06EaDAQ/h7BvMnjnPkxJufIkhWxcPWo5/nkM/vw1AvT7jqdGhPyiFnF7xPfEXDcPZWTs40XbSTBw8fMlKiuXo7x+Sn51hUr7LtE+xc/FAk58LwP7vZ5KXkUqtrkPR5OUQdnjrf7ySVQ+n2i3w7/sICBXJp7aTcGC1QR4bzwCCBj+DnV8tYncvIvGQjDEu1NbUmvgOQm2FUKlJu3iQuL1LjerxbDcITXYGKWf3oLZzJHjki1i7epOfGk/YyjkU5mRW2Lay5K1dvak3ZQ65STJeQ3bkFaI2yUgkIfe/UaYes8e7ITQdISPChB2EqzsM8zj5QIsJ4BoEFzfA9V0y3c4NWj0Ats6AAjcPwI298phLADQbI8MbZiXBiT+gINewbFtnaDEODmsDGNTtDTU6yIgwZ1dCvJGIY9YO0GaiDDmbnQTHFkB+tmn5Ts/IkIpFMbEP/gh5GRDSFTS5EH7k312/Kkb//v2ZM/dL1Go1v/76C59+Yhgpq0GDBvw67zdat27NG2+8zheffw6Ara0tu3bvwdbWFisrK5YvX8Y7s2YVy02dNo2pU6dRUFDAhg3rmTF9ukHZfn5+/PTTzwwbJsPDTp8xg0cffQyNRsMLzz/Hli2Gkdrc3d1ZtGgxNUNCuBkayvjx40hJSTEpv33HTvz9/cnOlt+LAf37ER8fzzNTp5KVmcnvv//+Xy5jlUPAvdyNnimEaK0oynEAIURbdD6TSaqksynkVK0VwPeKogzXjhv4CeijjV1eIkKQdr9nBYp+sCi/HrnAKCHER4qiJNyeM7gDCBXNx0xl//czyU5JoMdLXxFz9iDpsSXjkedlpXNm+ff4N+tUIr2wIJ9/vp2OJi8HoVLT7fnPibtwlOSbF0mLCeXIb+/RYtxzJk2o03MUNw/IWNfOvjUIbNWDnR8/iZ2rB52f+YhtHzwuf1j0qNd7PAmXT3Jl+xLq9R5HvT7jOL92XrnyxxZ+YuD0hh3aQtfnP69+zqYQBPR/jBt/v09BWiK1H/mI9CtHyU2ILJFNk51B9NbfcK5fMjqFoskn9M93KMzPBZWa2hPfJf3aSbKjSr1UCBXuLe7j6q/yh8mr0wgyQs+QcGA1Xp2G491pBLE7S4W+M2GbKfm8lBiu/fqqwammnN2LZ+t+xO9f+R8vWlVDQLNRcPAHyE6Fbi9CzDkZ1lWfvCzpuPk3LZmuaOD8akiNBLUtdH8R4i9L+Rbj4PxaSLwGwe2hzn1wyUhwhNo94aY24q+TLwS0gl2fgK0rdHoKdnyEQUjZur0g4Yp0jOv2kg7mhXXlyx//A1IjSpYVfgi6PFstnE2VSsXX33xL/359iYiI4NDhI6xds4YLF0rGhU9KSuKF559j+IgRJdJzc3Pp07sXmZmZWFlZsWfvPjZt3MihQ4fo2bMnw4YNp2WL5uTl5eHtbRDzBIAXX3qJX36RL3mNGjVi/PgJNGvahICAALZs3UbDBvUNQoxOnzGD7Tu28+knn/Dq9OlMnzGD12bMKFd+4kMPcuxYycaI3+bNY+++f6qdswlw705G53lgqRAiCnmzBgDjKyJYVcds9gJyFEX5DUC73tOLwKMVbdK9BQqQjqxhwOB7CPeaDchMiCYrMQZFU0Dkid34lXIoAfIyUkkJv0xhocbgmCYvBwCV2gqhsqLowZ8RG05GXIRB/tIENO9C3AX5wPBr1onIE7sp1OSTlRRLZkI07jUbGMj4N+tE2BE55CPsyDb8m3W+JfkS9ufnkp0Ui1uN+uXaak7YB9QlNzmG/JQ4lEINqef341zPMNyZJiuN7OhrYKTuC7WtxEKlRqjVGItD7xTSlOyYG8UOv0v9dqSc3g1AyunduNQ31GnKtorIlybtylFcm3QpN5/Z4V4DMhNky6OigagT4NfUMF9eBqSGQ+k447np0tEE2TqYEQd2rnLf0Uc6miAdUP/mxm3wbw7x2oW2/ZpKGwo1ssUyM0HaWBq/pjrnMPyIzuaKyuujyYesZHArJ58Z0L59e65dvcqNGzfIz89n8eJFDBs+3CBffHw8R48eJT8/3+BYZqZs/be2tsba2ro4xOpTTz3Np598TF5eXnEZxhg1ajSbNsmXjmHDh7N48SLy8vIIDQ3l2tWrtG/f3kBm2LDhLJg/H4AF8+czfPiIW5LXJzs7m5uhobRrV/5zwawQoFaJcrdKohbQCnga2ApcwtiPhRGqqrPZBCjxGqQoShoyZrmp1ey7CSFOFm3AsFLH/9Q77qmX/i3woBDC1ZRRQogpQoijQoijadl5FT6Z24GdqyfZybqHRnZKAnauniYkjCBU9HzlWwa8v4j4y8dJvmmkW6wMHDx8yc/OoFDb9VVRe2yd3chNSwIgNy0JGyfXCsm3uv8ler7yLfX7PVCivJTwK3jWNvIjbMZYO3uQn5ZYvF+Qnoi18y2GkRSCOo99SsMXfiHjxhmyo64aZHEIakB2zPXifStHVwoyU6TOzBSsHAwjlpmyzZS8jasPdR79hFoPzcIhuGFxemFOJkJtjdq+EsPoVQZ2rpCdotvPSdE5i7eKvTu4BkLKTbmfHg2+TeTngBZg72ZExgPys3QvKgb2pBq3x9ZZOrog/9s4VUy+5f3Q/X9Qr9T6tanh4FGrgidadQkMDCQ8Irx4PzIigsDAwFsqQ6VScez4CWJi49i2bSuHD8vobvXq16drt27sP3CQHTt30batYXjtkJAQkpOTix3SwMBAIsJ19kREGrfH19eXmJgYAGJiYvDx8amQ/K/zfuPY8RO8/sYbJco7euwoXbt1u6XzruoI5Dqb5W2VxJtaX8sN6ItsiPu+IoJVshsdWR/GvOmy0ovYa2TMpj7GutFRFCVNCLEAeA4T4xMURfkJefGp6+taIW//dmF0jIdyiyYohez6bCpW9o60f/QtnP1qkh5zs0Kiti4e5Gak3jZ7TMkfW/gJOamJWNna0+6RNwhu15vwI9sByE1Pwck3uMJ6zANjD55brXuFa7++isrWgRpjXsbWO5jc+PASWayc3MlNjCyjgNtnW0FGMpe+fQZNdgZ2frWoOeYVrvz0Pwrz5K1XkJmKlZM7muwMk+WYF7ehjgHUNtB2MpxdpRuXeWoxNB0J9ftB7DmjLd/YuUDeXRone+JP6XyqbaHdZMhuCxHax3JuhhyXauYYcyaUW3yeFxYW0qZ1K1xdXVm+YiVNmjTh3LlzWFlZ4e7uTudOHWnXrh2LFi+hbp3aJWT9/f1J0Gvx/K/2mJKf+NCDREVF4eTkxLJly5k4cSILF8qwqPFxcTRo2NBA1ty5d3vRKXo4DAZ+UBRltRBiVkUEq2rL5jlkXM5ihBAuyAVGr90hnXOBx6jgavl3m+zUBOzddWNv7N28yNG2GN4qBdmZJF49jU8jwzfesijMz0NtbXPL9uSmp2DrIlu6bF08yNM6rKbkc1JlS1lBbjYRx3fhVkPXva6ytkGTf3dblSub/PRErF10rb5Wzp7kpyf/q7IKc7PIvHkep9otDY8V5CHU1sX7BZmpWDm6SZ2ObhRkpd2SbWXJK5qCYkcyJ+YGecmx2Hj4F5ehsrJBKahedUxOSskWRzs3yDG83iYRKuloRh6HmDO69Iw4OQln7xyIPAGZiYaymnxQ6bVN5KSWssdVppUmN107KQn5Py+jfPmi/5pciDhesttcZaWbOGTGREREEByke2kODAoiKirqX5WVmprK7t276D9gACBbSVeuWAHAkSNHKCwsxMvLq4RMdnY2tnZ2JewJCtbZExRo3J7Y2Fj8/PwAOcEoLi6uXPmi/xkZGfz991+00+tet7WzK544VH0ov1WzEls2I4UQPwLjgA1CCFsq6EdWVWdzO+AghHgYQDtB6HPgd0VRsu6EQkVRkoAlSIfzniMl7BKOXgE4ePgi1FYEtupBzNmDFZa3cXTFyl760SprG7zrtyIjNrwcKR0Z8RE4ePgW78ecPUhgqx6o1NY4ePji6BVgtFs++uxBarTrA0CNdn2IPnPApLxQqbBxlN2tQqXGr3F70qNDi8tz8g4ssV8dyI66hq27P9au3giVGtfGnUm/YtBAXyZqB2dUtnKos7CyxqlWM/KMtGDmJkRi4+FXvJ925ShuzXsA4Na8B2mXDSdumLKtLHm1g3PxCHlrNx9sPPzJT9FNhLFyciMvxfg4M7MlJRwcvWV3tlDLyTUxtxgOt8V46Vhe310yvahrGwH1+sBNI6GOM+PBQW9oRsxZaYNKLW1y9IbkMEO5mHMQrB1zF9xOZ3NZ8kIFNtr3eaEC38aym78IJ++S+2bKkSNHqFuvHiEhIVhbWzN+/ATWrllTYXkvLy9cXbVDkuzs6N27D5cuyvG2q1ev4r5evQCoV68eNjY2JCSUnPt6+fJlQkJCivfXrlnD+PETsLGxISQkhLr16hV3y+uzdu0aHp40CYCHJ01izZrVJuXVajWenvJl1MrKisGDh3DurO57Xb9+/RL71QFxG8dsCiEGCCEuCSGuCiFmmMjXTgihEUKMKafIccBmYICiKCmAB/BKRWypkt3oiqIoQoiRwHdCiDeRTvMGYOYdVv05MkzTPYdSWMjp5d/R6akPECoVYYe2FHeBh3QeBEDo/g3YOrvT439fYWXnAIpCnR4j2PHRk9i5eNDqwf/JCSJCEHlyD7Hn5cPEv1lnmo1+GhsnVzpMeZe0yOsc+OH1Evo1eblkJkTh6OVPZkI06TE3iTq5h16v/ai17dviiSUtx79A6P71pIRf4cq2xbSbPJMaHfuTnRzHkd8/AChTXmVtK89RbYUQKuIvnyD0gG7mrEetJlzaXGpGtLmjFBK1ZR4hE15HqFQkn9pJboKc0OXeSo55Sz6xFStHV+o88jEqW3tQFLzaDeLKTy9h5ehO0NCpCJUKhCD1wgHSrx43UJNx7QRBw3Rf/4QDqwge+SLuLXqRn5ZA+IovANndHjjoSW4u+dikbWXJOwY3xqf7OJRCjZTf+DMa7VJHdn61yYq8YrCqgdmjFMLZFdBxinTCwg/rZqLX1E4EvHlAth52exGs7AAFaneXM75dAqSzlxYlx0KCXBop7gIEtoIQ7aSr6DOy7NJo8uQkHgcvyEqQuqNPQs/pWtuWU9yt33ycdFhTI+DqdmjzMAR3gOxkufQRlC2vsoYOU6QTKlRywtJNvZdmj1pw2XDJHXNDo9Hw3LPT2LhpM2q1mt9+m8f58+cBePLJJwH48ccf8fX15fCRo7i4uFBYWMjzz79A0yaN8ff357ff56NWq1GpVCxduoT169cDMG/ePH79dR6nTp8hLy+PRyZPMtCflZXFtWvXqFOnDteuXeP8+fMsXbqEs+fOU1BQwLPTphbPJP/p55/58YcfOHbsGJ98/DGLFi/h0UcfIywsjPHjxgKUKe/g4MDGTZuxtrZGrVazffs2fv7552I7OnfuwrvvvHNHr/W9yO1ouNQ2wn2LHFsZARwRQqxRFOW8kXyfIJ1Ik2gb81bo7Ucj46OXb8+tjgOxUDHq+roqn99vOBvcnPFv1hnX4Hpc3DC/UvS7BtahTs9RHP/zs7uuu46P4eQYc6TG6JeJ2fEHeckxlaLfr+9k0q8cJTO0cls7mjYLqlT9lYJfM7l+56WNlaPfJRDq9IATf9111erhc+66zspmxIgRtG7ThrfefLNS9Lds2ZIXX3yJSZMevuu6CxWOKYpS8XFkt5EG/m7KD5O7l5uv18drTdoohOgEzFIUpb92/zUARVE+KpXvBSAfaId23fF/b33ZVNVudAv3INFn9pOVFFt+xjuEjaMLFzYuqDT91YGYnX9i5eReafpz48Mr3dGstsSckcsUVRY2jnCxkhzdasiqVau4GRpaafq9vLx4663KcXQrGyHK3ypAIKA/Fi5Cm6anRwQCI4EfbpftZVElu9Et3LuEHTSyGPRdIv7yiUrTXV3IS4omL6nyxswln9xeabotAGGHKk93wuXK011N+fXXXytN97ZtFQq5bXYIqOiYTC8hhP7g/J+0K+LoF1Wa0l3Zc4HpiqJo7vSkI4uzeYdwc3dk+DjTi9ZaMB9mfLi2sk2wcBdRHzRch9SC+VLDs5qt61rNCU2o3GXVKhiuMqGcrv4I5Ao9RQQBpZcQaAss0jqaXsAgIUSBoiirKm5txbA4mxYsWLBgwYIFC/cCFe8mL48jQD0hRC0gEpgAlIiCoihKcYQE7brj6+6EowkWZ9OCBQsWLFiwYOGeQCBQ3QZvU1GUAiHENOQsczUwT1GUc0KIp7TH7/g4TX0szqYFCxYsWLBgwcI9guo2xT5XFGUDcllI/TSjTqaiKJNvi9IysDibFixYsGDBggUL9wj3cLjKf02VdDaFEBrgDNL+G8BERVFShBAhwAVAP1TNF4qiLBBCOCEXZe8D5ACJwCuKohwqp7wbwPuKoryp1e2FXMT0R0VR7q0F3t3qQq1BgIC44xC513i+WoPArR4U5sPVlZAZDXae0GCcLo+tO4TvhOgD4OAHdYbKUHFKIVxfBxlGYmRbO0Gd4XBRu6h6YDfwaQ0ocGMDpBiZVGFlD/XHga0b5KbApcWgyTEt32gi2DjLRZ/Tbkp7UMCvvTynuOoxK71+684MnfIKQqXiyJZV7F72m9F8Q6e8SoO2XcjPzWHp3LeJuiYjiXQd/iDt+o1EQSEm9CrL5r5NQX4e97/6Md5BIQDYOzqTnZnOV89NMCjX2d2LUc++yfx3nweg59hHadt3OEphIWt++pQrxw8YyNg7ufDA9E9w9w0gOTaKvz5+lezMdJPyj7zzDS4e3qhUam6cP8Hq7z9CKSyk05Dx5OVkc2xbxSOrVGXqte7M4MdfRqVWc3TLSvYs/91ovsFPvEKDtl3Jz81h+dy3ibou67vzsAdp228EKAoxN6+y4stZFGhDu3YcPJ6Og8dTWKjh0tF9bP79S4Nynd29GDHtTRa+J+u7+5hHaNt3BIUaDet+/oyrJ4zX94RXP8bNJ4CUuCj+/mQ6Odr6Lkt+0qxvcHb3QqVWc/PcCdb8+DFKYSEdB8v6Pr69etS3Pt179eHtDz5FpVax+I8F/PDVF0bzvf3hp/Ts04+crGxefu4pzp0+BcDkKU8z4aHJCCFY9Mfv/Pbjd0blH3nyGVKTk1mx5G9c3dz55uffCaxRg8iwMKY+Pom01JQK21aWfItWbfjwi68A2WU897OP2LJBTrBcuGwNUx972Kie6oKA29KNfq9RVdfZzFYUpaWiKE2BJGCq3rFr2mNFW9HCi79o89ZTFKUJMBk5+6q88q4DQ/T2xyJjs99jCKg9BM4vhJPfgFczsPc2zOZWTzqWJ76Ea2ug9lCZnpMIp77Xbj9Ipy1JG2ggpB+E75LHwnZAzX7GTQjoDLHH5Gd7b2nDyW/g/AJpm7H3tcBukHpd2pN6HYK6lS9/eQmc+k4es3YAzyYyPe4E+HW89UtXBREqFcOfnsFvb09jzjOjadljAD7BtQ3yNWjbFa+AGsyeMpwV37zPiGdkkC0XT286D72fr198kLlTx6JSqWjRvT8Af386g6+em8BXz03g7P7tnNu/w6gNXUc8xJHNKwHwCa5Ni+79mfPMGOa9PZURT78mIxKVoufYR7h66jCzpwzn6qnD9Bj7SLnyf308nS+fHc+cqWNwcnGnWVcZFeno1tV0GXr/f7ySVQOhUjH0yenMf+dZvpw6mubdB+AdXMsgX/02XfAKqMEXTw5n1bfvM+zp1wBw8fCm09AJfPfSQ3z17DhUKhXNusn6rtWsLY069OTr58bz1bSx7FtpfK3aLsMf4ugWGTzEO7gWzbv158upY5j/zjSGPTXDaH13H/MI104dZs5TI7h26jA9xjxSrvyiT6bzzfMT+GraWBxc3WnaRYazPbZ1NZ2GGr70mDsqlYp3P/6cyRNG0a9LO4aNHEPd+g0M8vXs04+Q2nW4r31LXvvfc7z/qVyIvn7DRkx4aDIj+vdkUM9O9Oo7gJDadQzk1Wo14+6fyOrlSwB4+rmX+Gfvbnp1aMU/e3fz9HMv3ZJtZclfunieYX26M/i+LkyaMJIPZn+JWq0GYOXSRUx89PHbc+GqKhVYY7Mq+qJV1dnU5wClFiotjRCiDtABeENRZJw7RVGuK4qyvgLlZQMXhBBFSwyMR8ZIv7dwCpILLucmg6KBhDPg0dAwn0dDiD8pP2dEyLB21qWW9XCtDTnJkJsq9xVAbSs/W9lBXrpxGzwbQ8oVnZ6EM9KW3BRpm5ORqCseDXUtkXEnwKNR+fKaXPlfqEDoNc4X5svzdzL5dTALgus3JTE6nKTYSDQFBZzas5nGHXsa5GvcoQfHd6wDIPzSGewdnXF2l+9YKrUaaxtbVCo11rZ2pCUZxhtv1rUvJ/cYXzu1aZfeXDr2j9TTsSen9mxGU5BPcmwUidHhBNdvasSenhzfLlsxjm9fS5OO95Urn5udqbXXCrW1FWijnuXn5pAcF0VQ/SYVvm5VlaB6TUmKjiBZW9+n926mUYeeBvkadejJiZ26+rbTr2+Vfn3bk66t7w4Dx7Bn+W9oCvIByExNNmpDk869uHxsf7Ge03t19ZUUHUFQPcP6btS+Bye0378TO9YV22xKXr++raysi1cGzM/LISU2iqB65l/f+rRo3ZabodcJvxlKfn4+a1ctp+/AIQb5+g4YzIrFfwNw8tgRXFzd8Pb1pW79Bpw8doSc7Gw0Gg2H9++j/6ChBvKdu/Xg7JlTaDQaWd7AwSxfLHupli/+k36DDHWasq0s+SI7AGxt7YrvZ4BtmzYwdOTYf32tzAWVEOVuVY0q7WxqY3r2BvT7VeoIIU7qbd2AJsBJRVE0/6I8gEXABCFEEKDBcK2qysfWGfJSdft5aWBjJISijYvOiQTINZLPqxkknNbth26QrZtt/gc1+0PYViP63aAgRzqHxvTkpUobS2PtCPnaNc3yM+R+ReQbPQztpkvHM1GvoTkjClxqGuoxM1w8fUiN10VrSk2IxcXTsCXbxdOHlARdaMnUxFhcPH1IS4xn78oFzPhtIzMXbiUnK4MrJw6WkK3VpDUZKUkkRoUZlOvuG0B2Rlqxg+Li6U1KvJ6ehDhcPH0M5JzcPElPTgAgPTkBJzePCsk/+u63vPnndnKzsjjzj26x54gr56nVpHUZV8l8cPH0JlWvHtMS4nA1cn1Lfy/SEuNw8fQmLSmefasW8sqvG5gxfws5melcPSnr2yugJiGNW/PUZ/N5/MOfCazb2KBcWd/pxfXt6ulDaoLe9y/R+PevrPouT37yrG+ZuXAbudmZnN2vq+/Iqxeo2aRVOVfLvPDz9yc6UjdsKSYqEj9/f4N8vv4BREfp8kVHReLnF8ClCxdo36kLbu4e2Nnb07NPf/wDDV/I27TvyNlTuiFIXt7exMfKOoqPjcXTy8tAxpRtpuRbtm7L5r2H2bTnIK+/8kKx85mWmoKNrQ1u7h4VuzhmSNFsdIuzeW9gL4Q4iRx36QHoez+lu9HLGLhY4fIANiGD2d8PLC6rECHEFCHEUSHE0fiUrIqfzW2hIsECKKP9XS+fUINHg5IOnF97uLEJjn0OoRuhzgjDImycIT/TtIlGzLkl9OUvLIAjn4FKLVtii8jPlLaYOUYfNUar20hORcHe0ZnGHXry6WND+PDhftjY2tOy56AS2Vr0GMCpMlo1nd29S7SAGV2EWKl4hZcnP++tqXwwsS9W1jbUad6uOD0jNQkXDyPDRcwMY/WoGLm+Ru9uBewcnWnUoSeznxjCx5P7Y2NnTwttfavUauycnPnhlUls+m0uE6Z/YlCGs7sXmWn6LZ7/rb7Lk/991lQ+ntQPtbUNtathfetT4bovI9+1K5f44es5LFy2mvmLV3Lh3BkKCgoM8vr4+pGYkHBHbCvNyeNH6d+tPcP79uSZ51/Cxta2+FhiQgK+fn63ZIe5YelGv3fIVhSlJVATsKHkGEtjnANaCCHKOl+T5SmKkgccA/4HLC9LiaIoPymK0lZRlLbebg4VOY/bR24a2Ljq9m1cjHd356aCrV4+21L53OrJCUP6jqN3S934zcRzxrupC/PlBKIi8tJK6rFxNW5PfqauG9/aSae3IvJKASRdKjlcQGUFGsMHqbmRmhiHq7dv8b6rl6/RbvDUhFjcvHQPbldPma9uyw4kxUaRmZZMoaaAcwd2ULNRi+J8KpWaJp16cWrPZqP6C/JysLbR/UCkJsbh5q2nx8vHqD0ZKYnF3brO7l5kpCRVWL4gP4/zh3aXGC5gbW1Lfm6OURvNidSEOFz16tGljOtb+nvh4ulDura+k2MjyUpL0dV3w+bFMucPyHG5EVfOoRQW4uDiVqLc/LxcrKxt9PTE4uql9/3z9CUtydBRKbu+y5cvyM/j4uHdNNYbLmBlbUN+bq7xi2SmREdFlWiJ9AsIJDYmxiBfTFQk/gG6fP4BgcTGytCyS/5cwNDe3Rg/bAApKcmEXr9mIJ+Tk42tnV3xfkJ8PN6+so68fX2NOqKmbKuI/LUrl8jKyqJBQ11ruq2tLTk55n9Pm0IIUe5W1aiqziYAiqKkAs8BLwshrE3kuwYcBd4R2loSQtQTQgy/hfI+R8YQTbyd53DbyIgEew/ZnS3Usis86aJhvuRL0nkEOQayIEfXjQ3g3UyOldQnLx1cQuRn19qQk2RYbnai1F1E0kVpg1DLdHsPOUa0NEkXwUfbLebTSmdzWfIqG70xpipwrwfZej+69p6QFYu5E3H5HJ4BNXD3DUBtZUWL7v05f2iXQb7zh3bTupccKxXcoBk5WRmkJyeQEh9DjQbNsLaVPy51WrQnPvxGsVzdlh2IjwglLTHOqP74yJu4+wTo6dlFi+79UVtZ4+4bgGdADcIvnzVuT285Xqx176HFNpclb2NnX2LMYYO2XYiPCC0uzyuwJjFhhj+c5kbklXN4BgQX13fzbv25eGi3Qb6Lh3fT6j5dfefq1Xdwg2ZY2+jqO05b3xcO7ixuPfQMqIHaypqstJQS5SaUqu+Lh3bTvJt+fQUTccWwvi8e3kMr7fevVa8hXDi826R86fqu36arQX3HhlWvUKGnTxwjpFYdgmrUxNramqEjRrNtk+F0g22bNzBqvJww17JNO9LTUou7sYu6sAMCgxgweBhrViwzkL96+RIhtXS9RNs2bWD0+AcBGD3+QbZuNNRpyray5INq1CyeEBQYFEztuvWICNcN1fH28SUi7OYtXiUzQpjnmM0qufSRPoqinBBCnEKGYtqLdsymXpZ5iqJ8BTyOdBivCiGy0C59VIHyitLPcU/OQi+iEK6vh8YPy4kzscd1Tpivdm5T7FFIvixbL1u/ABrt0kdFqKzBtY6cpa7PtdVyuSShgsICuW+gPl9OKrLzkM5odjwknIVWz2qXS1pPcT9vneEQcwQyo+TyTPXHyyWOclPhsnaUQlnyamto9KB0QoVKzmCPOaqzw7mGnDlv5hQWaljzwyc8+u53qFQqjm5dTVzYdUBO+AA4tHEZl47uo2Hbrrzy8xrt0kezAAi/fJYz/2zj2bl/UVioIeraRQ5t0jXat+jev8wudJCTcxJjwvH0DyYxOpy4sOuc3ruFl75fTqFGw+rv5XI1AKOffYuDG5cRefU8u5f9xgMzPqFdvxGkxEfz50evApQpb2Nnz8NvzsXK2hqVSs2100c4tEH3Q1mzUQu2/f3jbb229yKFhRrW/vgJk2d9i1CpOL5tDXHhsr7bDxgNwOFNy7l0dB/12/yfvbMMj+LqAvB7d+PuHggECxrc3V1KsVIotKUtFCg1qLt9FKtTHFociru7uwRPiLvbJpv5fkzYTdhNAi0QSOZ9nn12584999yZ2Z09c86997Ti7dnrycnOYu1PnwMQdv0Slw/vZtzMv8nTaom4fY2T2+WZ5ad3rWfAhM+Z8PNKtLk5rJn1mYH+nOwsEqLCcPL0JSEylJjQ21w6tJOJv64mT6tl4x/6693/zU84sW014Tevsn/NAoa+/wMNO/cjOTaKZT/kX+8i5E0tLBn+8QxMTM0QKhW3L5zkxNbC13vPsj8f12l+KtFqtXz2wbssXrkOlUrFqmVLuHFNfigfNnI0AEsXzWfvzu2079SFfSfOk5mZyfsT3tC18fuCv3FwdCI3J4dPJ79tdGmh/bt3Mv23OXqZn6bzy9xFDHrhRSLCwhj38ghADrd/P/MXRg8dWGzfipJv3LQ5r094m9zcHPLy8vjk/bdJTJB9OHXq1efs6ZO6MZzlEXnpo9LuxaNHPMj4CoWHp1ENL+nU/HK2hINTAFh7Qeju0tFv7QGeLeDm2ieuesq3G5+4ztKmVvP2ePsHsOMv42v2PW68KlenVb/hrJz+yRPXrS6L/wYlULNZe7z8A9j1d+lcb8/K1WnZdzirZzz567306I0nrrM0+GPhUr7/8hOjYfYnwaff/MCubVs4ctDQa/8kCY5LOy1JUqOSaz56avs4SavHF7G8YAECpqwotT7+G57pMLrCU0bCVXnpodLCxBpCja8JqfDouXx0L4kxkaWm38rOgZ2lZOiWR64c20tSTOktxGFl51Bqhm554X9ffYabe+lNzrl+9WqpG5pPA2VxgtAzH0ZXeMqIOVN6upPL/ti9p42TO/4pudJj4ua546Wmu7xyaue6UtN9S7nej53bt25w+1bpeXGX/7Ww1HQ/LQhA/SxakyWgGJsKCgoKCgoKCk8Dz+hs85JQjM3HxJlrkZi3+aa0u6HwhNgwqVtpd0HhCdK1i2G2HIWySx3f8rvIeHlk6G+lNO8gnzJoayrGpoKCgoKCgoLC04Li2VRQUFBQUFBQUHgsKGM2FRQUFBQUFBQUHitl0NZUjM2ygo+PD/MWLsTD3YO8vDzmzZ3DLz//bFBvyNBhvPuevJZ9Wnoa48eN4+KFCwBMmDiRUaNfRpIkLl26xKsvjyY7O5vPvviC3r37kJeXR2xsLK+MHkVkpOGSNx4eHvw++0/69+0DwHuTJzNq1Gi0Wi1vT3qLnTt2GMg4Ojry97LlVKxYkZCQEIYNGUxSUlKR8jY2NuzZp18aw9vHh2V//82777zNG2PHkp6eweJFC//r6XzqsbB3oc6QdzCzdQQpj9Dj27h7aINBPc/67ajUXl7kPTc7i6trfyU18g5Wrt7UGz5FV8/KyYOb2/8i5NB6bL0qU3PAOFSmZkhaLVf/+Y3k0OsGbZvZOlJr4ATOLvgCgErtn8enSRekvDyurp9N/HXDlQlMLW2oO3wKlo5uZCbGcP6v78nNTCtWvvHr32Fu64Q2VwPA6T8/RpOeTIUWvcjVZBFxatd/O5nPAub2UHswmNkCEoQdh9DDhvU8AsGvnfxZq4Gr/0BaJFi5QN0X9PUsneDWTrh7CCp3Au8m+lSxN7dB3DXDts1soeZzcG6hvO3XDrwbyznNr22AeMPvCCaWsl5LR8hMhAt/Q27mg8kHjpT7eXSGvO3bXE5EEXGKso6VgytNR07Gws4RJIlbhzZzfZ/hyg8VG3cgoPMQAHKzMzm1fBZJ4bexdfOhxcsf6+rZOHtycfMiru9di4OPP42GvIXa1BRJq+XUip9ICDG83hZ2TjQe9jYH/5DbCegylMotuiHl5XFm1a9EXTW8DmZWtrQY/THWzu6kx0dzeN5X5OT/vouS7zBxGhb2Tmhz5DSk+36eQnZaElXb9iU3O4s7x4ynzC2ziLIZRi8z62wKITyEEMuFELeEEFeEEFuEENWEEAY51IQQC4UQA/M/7xNC3BUFrq4QYp0QIi3/s58QIlMIcU4IcV4IcUQIUf3JHdmDkZuby+T33qNendq0btmC198YS42AAIN6wcF36NShPY0a1Oe7b77htz/+AMDLy4txb46nedMmNAish1qtZtBg+SY2/ccfadSgPk0aNWTL5k189LHxRZUnTprE/LlzAagREMCgQYMJrFuH3j178NPPv6BSGX7d3ps8mT17dlMroAZ79uzmvcmTi5VPS0ujSaOGutfdkBDWrZNvwgsXLGDcm2/+95P5DJCXpyVo01wO//g6x355hwotemHt5mtQLzMhmhO/T+HI9De5vWsZNQeOByAjNpyjM8bLr5kT0eZkE33pCADVeo7i1s6lHJ0xnps7/qJaz1FG++DXpj9hJ+Q/Ams3XzwD23Doxzc4PfdTag4YK2d4uo9KHZ4n4eZ5Dv1vDAk3z1O5/fMPJH9h2VRdfzXpyQCEndxJxVZ9/sNZfIaQ8uD6Jjg6DU78Ihte1m6G9TIT4dRsODYTbu+GmgPk8ow4ODYr//WTbLTFFLg13j2k32/M0ASo2BrCT8ifrd3Aox4cmQ5n5kGNfsgBwPuo1A4SbsLhqfL7PUO4JHm3WpB7Xw708FPg26L481RGyMvTcm7tH2z96mV2Th1PlTZ9sfOoYFAvLS6K3TPeZtu3Y7i89S8aD5sEQGpMGNu/e53t373Oju/HkpuTTdj5QwAE9nuVy1sWs/2717m4eRGB/cYY7UP1jgO5fWQLAHYeFajQsB1bv36F/b9+QKPBExBGft8BXYYQfe0sm794iehrZ6nZZcgDyR9d+J2uv9lpSQDcPrKNau36//uT+IxyL4NQSa9njTJhbOYbiv8A+yRJ8pckqSbwIeD+gE0kAS3z23IAPO/bf0uSpEBJkuoBi/LbfqqIiori3NmzAKSlpREUFIS3t7dBvWNHj+o8h8ePHcPb20e3T21igqWlJWq1GisrKyIj5QWcU1NTdXWsrK0pKutU//4D2L5dTnHYu08fVq5cgUajITg4mFu3btG4SRMDmd69+/DX4sUA/LV4MX369H1g+SpVquDq5sahg3JW0czMTEJCQmjUuHHJJ+wZR5OaSGq4vK6oNjuT9JhQLOydDeolhVzVeQ6T7l4zWse5aj0y4iPJSspPbypJmFhYAWBiYU12SoLRPrjXaUlckOydcKvVjMhzB5C0uWQmRpMRF4F9hWoGMm41mxGe74kMP7ULt1rNHkq+IHk52WQmRmPvW3y9MoEmFVLzF1TXaiA9RvZ23k9yiN5zmHzXeB2nKpAZD1lJD9cHt9p6Q9S1JkSdB0krp6nNiAd7w4cdXGtBxGn5c8Rp2YgsSV5tBhVaw537EjTcS4lr50NZJyslgcRQOQd8bnYmKdF3sXRwMagXf+eKznMYd+cqlg6uBnXcq9cnLTaCjIQYQHYkm1hYA2BqYU1mcrzRPvgGtibyykkAvOu25O7pfeTl5pAeH0VqbAROfoY+F++6LbhzXI5g3Tm+A+96LR9KviDanGzS46NwqvjU+XYeO2UxN3qZMDaB9kCOJEl/3CuQJOkcEPqA8suRc6EDDACKy3doB5RimpySqVixIvUCAzlxvPhFkEeNHs32bbJxGBERwczp07h5J5iQsHCSk5PZtXOnru4XX33FzTvBDB06jC8+N8yd7OfnR2JiIhqNHOr09vImLDRMtz8sLAwvL0Pj183dnaioKEA2mF3d3B5YftCQIaxetbJQ2enTp2jVqlWxx13WsHB0w9arMkl3i/BI5ePTpAtxQacNyj3qtSHqrH5oQtCGOVTrOZo2Hy2keq/RXN+y0EDG0tGdnMw0JG2u3Ad7Z7KS43T7s5LjsbAzNGzNbB3QpMo/H01qImY2Dg8kX3vQJJpP+pnKnYYUai8l9CYOlWoVe9xlDgtHsPWWjcni8G4M8Ua+Ex71IOpc4TLf5tDsLag5UA59G9OZmykbhyAbsVnJ+v3ZycYNWzMb2VAG+d3MumR5/y4QclD2vt5PShg4VjJ2tGUWayd3HH2qEB8cVGy9yi26E3n5hEF5hUbtuXt6r2777OrfCOw/hj5fLyVwwGuc3zDXUKezB5qMVPJy5Wtg6eBMRmKMbn9mUqxR49fC1pGs/IfTrJQELGwdHki+6fD36PrBH9Tq9kKh9hLuXse1Sp1ij7vsIa+zWdLrWaOsGJu1AcN/0QdnN9BGCKFGNjpX3LffPz+Mfgt4G5hurBEhxBghxCkhxKnSyjhvbW3N8pWrePfttwt5JO+nbbt2vDRqNB99II/bc3BwoFefPlSv4o+frw/W1tYMHab/4X/2ySdUqeTHsmVLeWPcOIP2PDw9iYvTGwvGfgxFeUSN8SDygwYNZsXy5YXKYmNi8fTyemA9zzpqMwsCR3xE0IY5aLMzi6zn5F8X78ZduL5lQaFyoTbBrVZToi4c0pX5Nu/BtY1zOPDNSwRtmEPtQW8ZtGdu50ROegFjwejN7yF+BcXIX1j6I0emj+PEb+/jWKkWXg076Gpo0pKwsCtHayCqzaDecLi+AbTZRddzrAxejeHG1sLlQi17FaMv6svCjsGh/8kh9OxUqNbTsD1zO9CkF2jHmNKHud5FyNt4gpUzxF42LqdJl/tSTjAxt6Dlq59xdvVv5GZlFFnPrWo9Krfoxvn1hQ1HldoE7zrNuXtG/zBZpU1vzq75nQ0fD+Psmt9p8sK7Bu1Z2DmRnab/fQtjF+yhLnfR8kcXfsu2b19l9/RJuFapg1+TzroqWalJWBqJxpRlBGUzXWVZMTb/K1rgEDAYsJQkKfi+/ffC6P7AW8CfxhqRJOlPSZIaSZLUqDS+CyYmJqxYtZrly5ayfl3RaQRr16nDH7P/ZOCA/iQkyE+hHTp2IvhOMHFxceTm5rLun39o3ry5geyKZcvo33+AQXlmZibmFua67bDwMHx89eEuHx8fXVi+IDHR0Xh4yLl4PTw8iI2JeSD5OnXrYmJiwtkzhSehWFiYk5lZtNFVlhAqNYEjPiTy7F5i8sdbGsPG049az0/g7MIvycko/ADiUqMRKeG30OSPkwLwatiR6Itye9EXDhkNU2tzslGZmOq2s5LisLDXeyos7J11Ho6CaFKT5ElNyBOM7uktTj47RQ7zabMziTy7v1B/VKZmaHM0RR57mUKooO6LEHkOYoowxgBsPGQP5flFkHOfgeJSHVLDQZOmL9OkIf/zS/KYTGPh8LwcUBWYT5qVDBYFPJnm9pCdYiinScuf1IT8fs9gLUreoaIcJm81GRq/IU9salhgTKHKxLjHswwiVGpavvI5ISd368ZbGsPeqxJNXniHQ7M/RZNe+Bp41mpCYugNslOTdGV+TbsQdk4eehR6Zj/ORsLU2hwNahMz3XZGUhxWjvoxwpYOrmQWiETcIys1UffwZ2HnRFa+3uLk74Xxc7MzCTm1p1B4XW1qhlZTTn7fBVAhSnw9a5QVY/My0PA/trEc+BlYWUK9DUCb/6jrsTB7zlyCrl5l1syZRdbx9fVl5arVjHppJDdu6HPghobepWnTplhayiG09h06EBR0FZDHRt6jV+/eXLtmGJq7cf06FSv66bY3bdzIoEGDMTMzw8/PjypVqnDyhGGIZ9OmjQwfMQKA4SNGsHHjhgeSHzxkCCtWLDdor2rValy+VMwfcRmi1qCJpMeEEnJgXZF1LBxcqT/iIy4um0ZGnKGx7xnYhsgCIXSA7JQEHCvLoSunKvVINyKXERuOpaN+SHTMleN4BrZBqE2wdHTHysWb5LuGs5NjrhzHu1EnALwbdSLmyrFi5YVKhamV7MkSKjWuAY1JjQrRtWfl4k1age0yTc2B8ljNuweLrmPhAPVehEsr5ElB9+MRKI+VLMg9YxDkMZVp0YZy6bHyjPJ7xF6Vw/FCLYfYrZwh2ciopdgr4JV/a/ZqqPdYFiUfdgwOfAOHfoCTv8vHcLrAs72Vi/H+lUGaDH+XlKgQru1ZU2QdK0c3Wo35nKOLvic1Jtxgf4WG7Qk5tbdQWWZyHG5V6wHyeM7UWEO51JgwrJ31v+/wi0eo0LAdKhNTrJ09sHXzJiHY8H8g/OJRKjXtAkClpl0Iv3CkWHmhUmFmrf99e9VuRnJEsK49WzcfkiPvFHn8ZRIBKpUo8fWsUVaWPtoDfCuEeFWSpDkAQojGgNVDtHEQ+A5YVkK9VsCtf9XLx0iLli0Z/uKLXLxwgROn5BEFn37yMdu2buXVMa8BMOfP2Xz48Sc4OTvz08+/APIs9hbNmnLyxAnWrl3D8ZOnyM3N5dy5c8ydMweAr7/9jmrVqpGXl8fdu3d5c+wbBvozMjK4c/sW/v7+3Lp1i6tXrrB69SrOX7xEbm4uEyeMJy8vD4DfZ//JnD9nc+b0aab+8ANLly9n1KjRhIbeZejgwQDFygMMHPg8fXv3MuhH8xYt+PqrLx/hmX06cfCriXfDjqRG3qH5JHmJqxtbFxEXdAqfZt0BCDu2Ff9OQzG1siNgwFgAJK2WYz+9BYDK1BznqvW5suaXQm1fXv0TNfq+hkqlQpubw5XVhktoaXOyyYiPxMrZk4z4SNKj7xJ1/hCt3vtDt1wSkny9ag2cQOixLaSE3eTO3lXUGz4F78adyUqK5fyS7wCKlFeZmNPw1a9QqdUIoSL+xjnCjuuXQnH0C+DWzqWP9uQ+jTj4ycZaaiQ0myiX3VuiyKepvB12HCp3BFMrCOgnl0l5cDz/+qlM5clBV+8bkl61B9jmz4nMSoQrRoas5+VARgJYOsuTi9KjIfoCtHhH1hG0Hl1ctOZzstGYEg7B+6DOC/L40cwkuPCXXKc4+ZLOw+2yv9SVi39tKjXtTFL4bbp+IE9FuLBhPpGXT+DfSr7v3Tq0iVrdh2NubUejIRMA+fe943/yMCe1qTkeNRpyatnMQm2fXDqDBgPHIlRq8nI1nFw6w0C/VpNFWlwENq5epMVGkBIZQuiZ/fT4eB55eVpOr/gJKf/33XjY29w8tInEu9e5umM5LV/+mMotupGRGMPhuV8BFCmvNrWg3Zvfo1KbIFQqooLOcPvwFv15qFyLS1sWP9qT+5RzL4xe1hAPM47uaUYI4QXMRPZwZgHByCHvK0DBR+FJQE9gkyRJq4UQ+4B3JUkqtGiYECJNkiQbIYQfcBW4hvw90ABvSpJU7OwblRCSqbqsOI4fjD59+9GgYQM+//TTUtFfLzCQiW9NYvRLI5+47vKYG92tdnPsvKtwc/uSUtFv61UZvzb9ubh82hPXXS5zo7vWAjtvuGW4Xu4TwdZLnqV++f4h9Y+f5ev+y5SAZxPvei1x8q3GxU0LSq78GHDwqUKNjs9xbNEPT1z30N92n5YkqdETVwzUr+gi7fuw5CXdHF5fUGp9/DeUFc8mkiRFAIOM7DI1UraqgFy7ItqzyX8PBoxMz1S4nw3r1+HsXHqDuV1cXPjis9IxdMsjMZeOYmplW3LFx4SZtR03SsnQLZfEXgazhwkWPWJMrUvP0C2HhJ8/jLl16U3GMrex4+LGhaWmvzQpg47NsmNsKjwdLJg/r9R0795V9sNrTxvhJ0rvzz/+xrlS011uCT9ZeroTbpRcR+GRcvvI1pIrPSaigwwzkJUHRP6YzbKGYmwqKCgoKCgoKDwVPJuLtpeEYmw+Jqp7OjD/lXal3Q2FJ0TzTuVsYfFyjm+/maXdBYUnSF3fcrSWq0KpU/ZMTcXYVFBQUFBQUFB4KpBno5c9c1MxNhUUFBQUFBQUnhLK4kI2irGpoKCgoKCgoPA0IBTPpoKCgoKCgoKCwmNCoIzZfOYQQmiBiwWKlkuS9L2xhdyFEO2A9UDB3FjvAh8D30mStL1A3beAapIkjX1snf+X2PnVovqwD8hOlHOMJ1w9Rtg+wwyctV7+BrWZvHyoqbU9aeE3uLbse9TmVlQZ+Bbm9i4IlZqIw+uJPbsHALWFFf59x2HlVgEJuLXuF9JCDVOWeTTvRW5GGnHn92FiaUPVQe9g7uBGdlIM11f8iDYr3UDGoUp9/Hq8jBAqos/sIuKgnMXEqVYLfNsPxtLFh4t/vk96ROHkTWb2LgS++ROh+1YQeXg9AAEjP+f6iqlG9ZQ57CtBrRfkzC8AcVfg7l7DevVeAXV+7npTa0gNgytLwcQCqg0ACyfIy4XrayEjpoCggAZvyHmrL/9lvA/ezSEnE2LOgYklBAyW0yZmJcHV5ZCbZSjjWBX8e8j5vqNOQ+gBudylFlTsAFaucPYPSLsvVaa5PTSaACF7IOywXFZnFFxdZlxPGaNZy9bM+3s5oSFyis6tmzYwa+r3BvXWbN6BtY0NAC4urpw7c4pXXhzKa+Mn0n+gnKXLxMSEKtWqE1jVj6SkRI6cu0x6WhparRZtbi49OxrPyvvy62NJSkxkzYplODg48uv8Rfj6ViA09C5jR40gOTnJQKZdx058/u3/UKvVLFuyiN9mTQegZ9/+TJr8IVWrVad3p7ZcOHcWAB/fCuw9dppbN+Xljs6cOsmH78iZk5au3cgbo140qqesUadRMz6ZOZfocDkV6JE921g2e5ZBvR8WrMbKyhoAeycXrl86x9eTXmXAyNdo36MfACoTE3wrVWFYu0DSUpLpM2w0XZ8bihCC7WuWsf5v48vW9X3hZVKTk9izaQ02dvZM+d9vuHn5EBMRxvfvjSUtNdlApmGLtoyZ/DkqlZod/yxn1fzfAGjVuSfD3piEb6UqTHqhDzevXADAzcuHP/7ZQ3iwfH8PuniWX7/+EIBvZi/lu3ffMKqnrKJ4Np89MiVJCnyI+gclSSqUA1EI4Q8MAbYXKB4CvPffu/d4SA25StDf3xRb5/K8j3Sfqw1+n4QgOe+4R9PuZMaEcu3vbzGxsqP+hF+Iu3AASZuLX/dXSLpxlusrpiLUJqhMzQwbVqlwq9+RC3+8A4BX6wEk375IxMG1eLUegHfrAdzded9C3EJFpV5juLLoczQp8dR57X8kBp0gMzaMzOi7XFv2A5X7GKbIBPDrNpqkG2cLlcWd349Hk+6EH1hd0qkqGyQHF20I3uP8XP3ngKEQL+e9x7ctpEXKhqelC1TpDRcLZAzxbg4ZsXpD1QAVuDeEM7/lt9cGkm7LxqNvG/l15/61OIVeT3YK1H9d7k9GrJz7+8oyqNrXuLrKPQzXW4w5B55NIXS/UZGyxomjRxg19Pli6zzXs4vu8+xFf7Njyyb588+zmP2zbKx06tqdV954k6SkRF3dQX16kJgQX2S7arWawS+MoHu7lgCMfettDu/fx2+zpjN24tuMfettvvuicGIFlUrF1/+bzrABfYiMCGfT7gPs3LaFG9eCuHb1CmNGDOP76T8Z6AoJvkO3ti0MyteuXMaIl1/l5+lTiz0HZYXLZ0/yxfhRxdaZPGqg7vOH0/7g2N6dAKxdNJu1i2YD0KRtJ/oNf5m0lGQqVqlG1+eG8vYLvcnJyeGr35Zw8uBuIu4GF2pXpVbTud8gJgzpAcDzo8dx/sRhVs3/jedHj+X5l8eyYOZ3hWVUKt748Gs+fu0F4qIjmbF0I8f27ST09g1Cbl7jm0ljePOTwjIAkWEhjB/c3aB8z6a19Bz8Iivm/mKwr6xSFtfZLIPDUB85q4FeQghzgPz0lV7AodLs1KNCZWaBfeU6JAbJ2TclSUJtLns81WYW5GamIeVpUZtbYudXk5gz8sLpkjYXbVaGQXv2leqQHnkb8vOYO9VoQuxZ2dMWe3YvTgFNDWRsfKqSlRBJdmI0kjaXuIuHcKzRBIDMuDCy4iMMZAAcazQhOzGajNi7hcoTgk7gUqf1vzkdZR+1GThU1hubVm6ycQiQGQcWjrLnE8DMDpyqy57HonCsnO99zM9b71wDovMXY44+A84BhjK2PnJ+7axEkLQQe1FfLzNW7ocxnAMgK+E+zyvysbjVLfHQyyPWNja0aN2G7fnGZkH6Pvc869euMiJVNC3btOXS+XNotVoAunTvyerlfwOwevnfdO3Ry0AmsGEjgu/c5m5IMDk5OWxYu5ou3XsCcPP6NW7ffLjF2ndu3ULf54o3tssrllbW1GvSkqN7txvsa9utD/u3bgDAt1JVrl04Q3ZWFnlaLRdPH6N5B8OUu/WatODW1Uvk5V/vZu07s2uD/BC/a8NqmrXvYiBTrXYgEaHBRIXfJTc3hwPbNtKsnVwv9M5NwkNuP9QxHd+3kzbdi3j4VCgWIUQ3IcQ1IcRNIcQUI/tfEEJcyH8dEULUe1x9KevGpqUQ4lyB1+AS6re+r76/JEnxwAng3i9xCLBCMpJUXggxRghxSghxKjEj+xEfyoNj41udumOnU+PFT7B09S22rlNAM5JvX0CbnQlA1PEtWLr60PC9edQbN5M7W+eBJGHu6E5uegr+/cdT941pVO47FpWpobfLtkJAoVC3qbUDOWmy5yQnLRFTa3sDGTNbJ7KT9QaGJiUec7vi016qTM3xbj2A0H2GeZK1WekIExNMLEsvleITxa4CNBgHtUfIxmNxONeEpFugzf9+pkeBS035s603WNjLoWqQw9x3toPhV72w7oKhbjMb0KTJnzVpYGpjKGNuB9kFQmLZKbJhWxwqU/BtDSFGhgjkZoFKLYfwywENGzdh+4GjLF65lmo1jBjzBejWszeHD+wnLTW1ULmFpSXtOnZi64b1ujJJkvh7zXo27znIsJHGPWmNmjbnwvlzum0XNzdioqMBiImOxtnV1UDGw9OLiPAw3XZkRDgenl4lHqdvhYps3XeYVRu30aSZ3sOZnJyEmZkZDo7lY+3LGnUb8PPKbXzx6yIq+Fcrtm7zDt04d/wwmelphcrNLSxo2LIdh3dtASDk5jVqN2yKrb0D5hYWNGrVHlcPT4P2agY25uZV/Ug0BycXEuPkh73EuBgcnFwMZJzdPIiL0t8T4mIicXZ3L/E4Pbx9+WnFFr6ft5Ja9ZvoytNSkzE1NcPW3qHENsoEQjzYq8RmhBr4FegO1ASGCiFq3lftDtBWkqS6wFfAn4/4aHQoYfTCGITR81mGbGSuz38fbUxYkqQ/yb9YAV6OxfxDPz7SI29zZvoY8jRZOFRtQPVhUzg3a1yR9V3qtibm9E7dtkOV+qRH3uHKgk+xcPIgYOTnXAi5glCpsfaszJ0tc0gLu4Ff95dlY2/PskLtmdk6khkbdr+a4jHywzFiyxfCt8MQIo9sIE9jfJxeTnoyZraO5GamGt1fZkiLgOM/Qp4GHKtBrWFwcmbR9d3qQtQp/XboAfDvKRur6dFySF3Kkz2aOely+/aVim7PzFYOf/9nSvi5VOwIYUfk4zSGJl02WHMzH0Ffnl4uXThHs3o1yUhPp32nLsxdsow2jQOLrN/3uedZtmSRQXnnbj04efxYoRD6gO6diI6KwtnFlaVrN3Dr+nWOHz1cSM7N3YOb1w3HaReHsfFnJf2+Y6KjaFo3gKTEBOrUC2TuX8vp2KKxzmiOi4vFw8OTpMSEh+rLs8bNq5cY1a05WZkZNGrVno9nzGFMn7ZF1m/bvQ/b1y43KG/StjNXzp0iLUV+yAu9c5PVC37n69l/k5WRwZ3rV9Hmag3knFzcCL3zcJ5no+MNS7jeCbExvNS1GanJSVQJqMPHM+fwxoBOOqM5OSEeJ1d3UsvBOF3gUc0QagLclCTpNoAQYjnQF7hyr4IkSUcK1D8G+DwSzUYo657NR8U6oKMQogFgKUnSU5O01b1Jd+q+MZ26b0zH1NYRbXamzgBLunEGoTLBxMq4h8/E0hYb76okXteHSd0adCDh6jEAshKiyE6MwdLFB01KPNkp8aSFyTee+CtHsPaqbNBmXo4GlYmpbjsnPQlTG0cATG0cyUk3HOStSYnH3F7/hGxm54wmtfg/ERufalToMpL6k2bj2aw3Pq2fw6OJfryPysSMvNwiDJNnGc+msmHYYJxs6Gmz9QZY4nUQajCxMi5rYimHsOOv68u02fKkoDO/wrXVcgg9K1H2WDrXgCbvQMAgOfRefaBhm3k5oCrwzKpJk72bIL/npBnKZKfovacgezo1JTwU2PlA5a5yf7yby2NNvQoMyVCZyH0pY4x8eQzb9h9h2/4juHt4kJaaSka6PPFt764dmJia4uhkPArg4OhEYIOG7NmxzWBfn/4D2bCmcAg9OioKgPi4WLZt3khgw4YGcllZmZib6yMacTExuOV7rdzc3YmPNXzwiIwIx8tb/x/m6eVNdFRkscet0Wh0huTF8+cIuXOHyv5VdPvNzS3Iyip7DxY9B4/g5xVb+XnFVpxc3clMTyMrUx6udOrQXkxMTLBzcDQqa2vvQLXagZw8uMdgX5tuvdm/dX2hsh3/rGDikJ5MHv08qclJRNy9YyCXnZ2FmZn+eiclxOHoIkdPHF3cSEowHPISFx2Ji4fec+3i5kl8TIxBvYLk5mh0huTNqxeJDA3Bu6L+/8XM3BxNdtmfAKhDJUp+gcu9SGr+a8x9rXgDoQW2w/LLiuJlYOujPRA9Zd2z+UiQJCktfwb7fGQv51ND9ImtRJ/Qfz9MbRzISUsCwMa7KkIIcjOM/5E712pB4rVTSLn6P+nspDjsK9clNeQqptb2WLp4kZUYRW5GKpqUOCycvciKj8C+cl0yYww9mJmxYVg468MxiUEnca3fnoiDa3Gt3143EakgaeE3sHDyxNzBDU1qAi51WnFj1Yxij7vgBCef9oPRarKIKnAezGwcyEoq/gb3TBJ5XH7dw7SAQWfrDQjINRxLC4BrbUi4BlKuvkxtIRtpkhY8GsmTjbTZELxTfoHs2fRpKRuj95MRC5YFjJ34IHBvIHtM3RvI2/eTGi7LWDjKhqdrHQgqYexgwQlOFTvIfYwocB7MbOXZ72WMRfP+ZNE8fWTL1c2N2Pw/7sAGDVGpVEVO6OnVtz+7tm8jO7vwkB5bWzuatWzJhNdf1pVZWlmhUqlIT0vD0sqKNu07GJ3lfvPaNfwq+eu2d27bwsAhL/DbrOkMHPICO7ZuNpA5f+Y0fpX98a1QkajICPoMGMj4MUaDQzqcnF1ISkwgLy+PChX9qFTZn7vBwbr9bm7uhN4NKbaNZ5HNKxazecVi3bajsyuJ8bIBX612PYRKRUoBb3RBWnXpxYkDu8nRFL7eVja21GnYjB8/nFio3N7JmeSEeFw9vGjRsRvvvtjfoM3QOzfx9PXTbR/ft5NOfQayav5vdOozUDcRqSDXL5/Hu0Il3L19iY+Ook233kz9YEKxx23n6ERachJ5eXl4eFfAq2IlosL019fBxZXoiIeMmD3TPJBrM06SpEYP2YhRF7MQoj2ysdnqQRT/G8q6sWkphDhXYHubJEn3BsluFkLcs7KOIo9taH1f/a8lSbr3D7sMWIscRn9qca7ZHPcm3ZDytOTlaLi+appuX43hH3Nr/a/kpMo3K+c6rXRLDN0jbP9KqvSfQL1xMwFByI4lOmP1zuY5VB04CaE2ITsxmpv//GygP/HGGao+p7+phR9cS7XB7+LWoCOa5Diur5BnkJraOuLfdxxBf30NeXnc2TyHgBGfIVQqYs7sJjNWfiBzCmiKX49XMLW2p8bwj8mIusPVxV8Wew6svfxJDb2um6RUpnGtBZ5N5NB3Xi4EFRjDWvtFuL5O7zV0ratfYugeVq5Q4zk5zJURA9f/eTj9CTegRgGPZ+gBCBgCHg0gK1le+ghkY7BaP7i0BMiDm5ug9kj90kf3Jv04B0CVXrKHtfYIOax/yTAMXAgbL0gJRTdJqQzTo09/Xhz9CtrcXLKyMhn3yku6fYtWrOH9ieN0Hso+Awby26xpBm1069WbA3v3kJmhfyhxdXVjzhL5OVptYsL61SvZt3uXgezeXTuY9Yfe8P915nR+n7+YIcNHEB4WxhujXgTA3cOD/836lZGDn0Or1fLJ++/w1+p1qNVqVvy9hOtB8gS1bj178+UPP+Lk7MLC5Wu4cukCwwf2o2mLlrzzwcdoc3PRarV88M5EXci/bmB9zpw+qZukVJZp2bkHPQa9iDY3F012Fv+b/KZu3+e/LOSnLyaTECuPmW3TtTer85cYKkiLDl05c/QA2ZmFPcEfTpuNnb0jubk5/P7tJ0aXFjp1aC/vfjNTt71q/m9Mmfo7nfsNJjYqgu/efR0AJ1d3Jnz2A5+/+RJ5Wi2/f/cJX/2+BJVKzc51K7h7S46mNO/QldenfIm9oxOf/7KA29eu8OkbL1K7QVOGj3sHbW4ueXlafv36Q13Iv0rNuly7cEY3Salc8GjC6GFAwUkbPoDBbFshRF1gLtA9f47KY0GUNHZG4d8R4OUozX+lXWl3o1SoPmQyITsWk5VQfKjsceHX/WUSrp0g5fbFkis/Ipp3qvXEdD111BwGt7dD1mO7TxWPfw/Zg5r0cLNc/wu+/WY+MV1PG3MWL+Obzz8m+Patkis/Bj7/7n/s3LqFwwf2PTGddX3Lx2QkY3w0408WzPjWYFmkJ8WY9z/n+L6dnD9xuOTKj4gtF0JPl+A1fGw08neTTn07qMR6YsivxfZRCGECXAc6AuHASWCYJEmXC9SpAOwBRtw3fvORo4zZVHjkhOxcgqmt8XFFT4KMmLtP1NAs99zZAealOPM/PeaJGprlne++/BR3d49S03/t6pUnamiWdxbO/F43TrM0CLl57Ykamk8FDzZms1gkScoF3kReI/wqsFKSpMtCiNeFEK/nV/sUcAZ+y1+B51QRzf1nFM/mY6I8ezbLI+Xas1kOKc+ezfJIefZslkdK3bP5fUmrNIIY9Eup9fHfUNbHbJYaoQlpvLf8aGl3Q+EJMd+mqAw7CmWR0H8mllxJocxQ+XnD8ekKCo+HB1tH81lDMTYVFBQUFBQUFJ4Wyp6tqRibCgoKCgoKCgpPBQLFs6mgoKCgoKCgoPAYUYxNBQUFBQUFBQWFx0bZszXLztJHQght/tT9y0KI80KIt4UQqvx97YQQm/I/vySEiM2vGySEmHRfO/WFEJIQout95dWEEFuEEDeFEFeFECuFEO5P7ghL5oNvZ7Dx6CUWb9pXYt0adQLZfzWcdl31qeCbtm7P0m2HWL7zKMPH6BcPfmXi+yzcsIcF63cxff5ynN2MH7azqxs/zF6i2x7+2niW7zzK0m2HaNKqnVEZW3sHZixYwbIdR5ixYAW2dvYlyv+8ZC1Ltx1iwfpdLFi/CwcnOdXlgOGj6THgqV5z/5Hi3u01Ko+bTcVRU4usY12lIRVf+oEKI7+nwohvsPCurtvn0LA7FUdNpeLoqTg07F5IzqFBV/xemU7F0VNxaTvMaNtqawe8nntft+3YtC9+r87E75XpWPnVNSqjsrDGe9CH+L06A+9BH6Iyty5R3mfIp/i9Ml0+hpHfo7ayk/tYvyt2tYvOE13mqDYAmn8AjYrJxuIcAA3HQ8M3ocFYsKuo3+fdXJZtNAG8W+jLXWrLZW2+AptistmZ2cqJAu7h2waavA2N3wLHKsZlTCyh7ihoPEl+N7EoWb7ey3JZwzfll2n+d8SrmZyVqpzww8xfOXH5Flv3Hyuxbt3ABtyITKR7r766sjbtO7HryGn2HD/H6+MnGci8MnY8t2NScHQyPtPe1c2duX+t1G2/MeFt9hw/x64jp2ndvqNRGXsHRxavWseeY2dZvGoddvYOJcov/Wczu46cZtOeQ2zacwhnF/l+/uLoMQwc8kKJx14mEaLk1zNGmTE2gUxJkgIlSaoFdAZ6AJ8VUXeFJEmBQEvgIyFEwVX2hwKH8t8BEEJYAJuB3yVJqiJJUgDwO+D66A/j37Nl7QreeXloifVUKhVvvPsxJw7tK1T29mff8e6rwxjeow2devXHz78aAEvn/sZLfTowqm8njuzdyahxbxttd/Co19m48i8A/Pyr0alnP17s0ZZ3XhnGO59/j0pl+HUbPmY8p48eZGiXFpw+epDhY8Y/kPwX745jVN9OjOrbSZefd/PqZQwc8bKBjrJKyqX9hK/+rtg6GSGXCFk4mbuLphC1dTYe3eT0uWYuPtjX7cDdJR8RsmAy1v4NMHWU1060rFAT6yqNCFnwPiHz3yPx5CajbTs27kny+d1ye87e2AW0IGT+u4St+g63zi8bvSE6Ne1LRsglgudMIiPkEk7N+j6QfOSmX7i7aAp3F01Bm5ECQPLFvTg07PaQZ+0ZJvoMXCwhm1LiLTj9M5z+Ba6tger5KQit3MCzMZz5HU79As7V9WlGM6Lh8lI5VWlx+LSEyPxl+Kxcwa0unJwl96lqH4y6Yyq0kft0cob87tv2weSvrpKP4fQvkCPngifqtGwwlxNWL/+bUUMGlFhPpVLx/idfcHDv7kJlX/wwjVFDn6Nrq8b0HjCQKtX0D5qeXt60atuB8NC7Rbb78htvsvyvhQBUqVadXv2fo1vrJrw0ZABf/jDd6P389QmTOHJgPx2a1efIgf28MWHSA8lPeuMVenVoRa8OrYiPk+/nq5YtYeSrrxvoKBcoxuazgSRJMcAY4E0hir4q+amZbgKeAPl1BwIvAV3yjUyAYcBRSZI2FpDdK0nSpcdzBP+O86eOkZKcVGK95158mf07NpMYH6crC6hbn7CQO0SE3iU3J4ddm9fRqpPs3M1IT9PVs7CyoqilWdt17cnxA3sBaNWpK7s2ryMnR0Nk2F3CQu4QULe+gUzrjl3Z+o/89Lz1n5W07tTtoeQLkp2VSVR4aIn1ygqZYUFoM9OLrSPl6PMkq0zNdYlxzZy9yYq8gZSrASmPzNCr2FRtDIBDYGcSj69H0so51O8Zd/djU60JGXfOA2BdpREpV48gaXPJTY4lJykKC09Db5dN1UakXJJTZqZcOoBN1UYPJV/o2HI15CbHYuHhX2y9MkNyMOQUkff+Hnka/We1Gbofq5WbnNIzLwfIg6RgcKkp78uIhcy4+1syxKUWJMhpB3EOgJgLIGkhKxEyE8DOx1DGOQCiz8qfo8+CS8DDyRc6thzITgLbEuqVEU4eO6JL0VkcI195ne2bNxAXF6srq9egESF3bhMaEkxOTg6b/llD5249dfs//uo7vv/yE4pbZ7tbrz4c2COnLO3crSeb/lmDRqMh7G4IIXduU6+B4RKPnbv1ZM2KpQCsWbGUzt17PZR8QbIyMwkLvUvd+g1LPAdlCvGAr2eMMmlsAkiSdBv5+IpMfZCfqskCuJBf1BK4I0nSLWAfsncUoDZwuiSdQogxQohTQohTudqnM0+zi7sHbTr3YN2ywh4SV3dPYqL0aVNjoyJxdffUbY+ZNIU1+0/TpfdzzJv1P4N2PX0qkJqcRE6ORt9eZNHt3cPRxZX4WDkvdnxsDI7OLg8k/+F3M1mwfhcjxxYODwVdPE+9Rk1LPhHlCJuqjfF7eRrez00meusfAGhiQ7H0CUBlYYMwMcO6ciAmtrKny9TRE0ufGvgO/xqfoZ9i7lHZoE0Te1fystJ1BqmprRO5qfp0lbmpCZjYGIbn1Fb2aNOTANCmJ+lC4iXJe3R/nQojv8epeWFPT1bUbSx9a/yb01J2ca4ph6Frj4Dra+WyjGiw95PD2ipTcK4G5vbFtVIYC0fIzZSNQ5Blswvk0s5OBjM7QzkzG9Ckyp81qWBq82Dy1QfIIfQK7Qu3lxoO9hVRkHH38KRLj178vXBeoXIPD08iw8N025GREbh7egHQsWt3oiIjCbpctK/Ep0JFkpOS0Gjk+7m7pxcREeG6/VER4Xh4GN7PXVxdiY2Rc7XHxkTrQuIlyf9v1m9s2nOIN99+v1B7F8+dpXGz8uPNlnkAr6bi2XzqKOqKDBZCXAZuA7MkScrKLx8KLM//vJwCofQHQZKkPyVJaiRJUiMT9dN5aid++BV/TP2KvLzCxrAxB3DBp94/Z3zPc20bsmPjGga8ONqgrrOrG0kJemOhpPZKojj5L94dy8je7Rk7rC/1GjWlW7/ndXUSE+JwcSu9VHpPI2k3ThI87x0i/vkR51Zyzl1NQgQJxzfgM/gjvJ//gOzYEJDk74RQqVFZWBP618fE7f0brz5vGbRpYu1YpMdTz3/NTibLR236mZAF7xO67HMsfWpgW6u1roY2IwW1TemlRn0qib8CJ2fC5b/Br5NclhELoQeg7mioMxLSonTX+4Ews9WHsx83V1fJQwHO/Skblu6B+n2aNONGbTnlk6+/54evPjO4nxszRiRJwsLSknFvvcfMH74ptl03d3cS4ku4nz/E77s4+UlvvEL3ds0Z3LsbjZu1oP8g/d9ufFws7kaM2jJPGfRsltnZ6EKIyoAWiAEC7tu9QpKkN4UQzYHNQoitQCzwHNBHCPER8uV0FkLYApeBMjEToXrtenw+YzYA9o5ONG/bEa02l5ioCNw8vHT1XD08iYuJMpDfufEfpv75F/N/KjwpJTsrCzNz/eD/mKgI3DxLbi8xLhZnVzfiY2NwdnXThfaLk4+Llt8z09PZufEfAurWZ9u6VQCYmVuQnZX5cCelnJAZFoSZgzsqS1vyMlNJubiXlIvysAfn1kN0nsXc1HjSrp8EICvqFpIkoba0RZuZqmtLytUgTMx02zmpCTrPKICJrRO5aYYhQG1GMmprB9mrae2gM1iLk7/3LmmySL16GEvPKqRePgiAMDFFytGgYITkYLBwAhMryM2QxzxG5QdoKnWG7JIeFgqQlwOqAn8X2cmFPaPm9qAx0p4mTTZUNan5BmtayfL33rUaiDkPtr4QfU4uU5nkDwVQAKhTrz4/zZ4PgKOzM+06diFXm0tUZASe3vrhBp6eXsRERVLRrxI+FSqyea+ca9zDy5uNuw7Sr1t74mJidPWzMrMwN9dnRYuKCMfLSz95zMPLm+gow/t5XGwsrm7uxMZE4+rmrht/WZx8dFQkAOnpaWxYs5J69Rvyz8plAJibW5CVmUW54xn0XJbE0+l++48IIVyBP4BfpGLcaZIkHQWWABOBTsB5SZJ8JUnykySpIrAG6AcsBVoIIXSDXoQQ3YQQdR7jYTwWBnVswvMdGvN8h8bs276JaZ9P4eCubQRdPIevX2U8fSpgYmpKp579OLx7BwA+FSvp5Ft17ErI7ZsG7YYG38bDWz/P6vDuHXTq2Q9TUzM8fSrg61eZqxfOGsgd2rOD7v1lb1v3/oM4uHt7sfJqtRp7Rzm8qjYxoUX7zty+HqRrz9evMrdvBBnoKa+YOuhXDjB390OoTcjLNxrvhbBNbJ2xrdaY1KtHAEi7eQqrinKud1NHT4TapJChCaBJjMTUXj8/Lv3maewCWiDUJpjYu2Lq6EFWpOH3JO3maexqtwHArnYb0m6cKl5eqFBZ2srCKjXW/g3IjgvVH5+jJ5oC2+UeiwJDF2y8ZOMsN3+c571Z3eb28vjLmPMP3m5GnBxKv0d8kDzBR6jlcktnSAkzlIsPAvf8MdTu9SH+agnyKtk4BhAqcK4B6dH69qxcCm+Xc9o2rkubRnVo06gOWzeu57PJb7Nz62YunD2NX+XK+FSoiKmpKb36P8eu7Vu4dvUKTWr562SiIsLp3al1IUMT4M7tm/j4VtBt79q+hV79n8PMzAyfChXxq1yZ82dOGfRn1/YtPDdYXr3iucHD2Lltc7HyarVaNxvexMSEDl26cT3oiq69Sv5VCm2XG8pgGL0seTYthRDnAFMgF9mInP4Acj8AZ4BqwD/37VsDvCFJ0hIhRC9gphBiJpCDPM7zqUqQ/Pn03wls0gIHRyfWHjjDvJ+msnn1MvoOGQHA+uWLi5TVarVM//JDps9bhkqtZvPqZdy5eQ2A19/9iAqVqpCXl0d0RBhTP3vfQD4rM4Pw0GC8K/gRfjeYOzevsWfLBv7aegBtbi7Tv/hAF+qZ/M001i1bzLVL5/nrz5/5ctaf9Bw4jOjIcD6Z8CpAkfIWllZMn7cMtYkparWaU0cO6GbAA9Rp0JgFv0x7ZOf0acaj93isfGuitrSl0hu/En9oNSkX92IfKIdOk8/twqZaU+xqt0bSapFyNURsmKWT9+z7NmpLG8jTEr1zAXnZcpg0+cJePLq/TsVRU5Hycona8puBbiknm5ykaEwd3MlJikYTH0Zq0FEqjp4GkpaYnQt0k1Pcu40h6dwusqNuk3BsPV5938K+bntyU+KJWD8DoEh5YWqGz/MfIFRqUKnICL6kmwEPYOlTnfgjax7bOX6qCBgE9pXB1AqavQ/Bu2VPpWcTeX/kCXCtJRt1Up7sAbyyXC9fa5hsyElauLEBcvM9Rs41oWov2RitMwLSIuHiwsK683LkSTwWTpCVABkxEHsJGk+Udd3ciG7YRLX+EHEC0sLh7n6oORQ8GsrezCuyx6pIeZUJ1H1JNkKFkGewR57U98OuIgTvefTn9ilk1h/zadqyFY5Ozhw+d5VZ//uWlUuXMGykPIxp6aL5RcpqtVo+n/Iei1b8g0qtZtXSJdy49uAP4ZkZGdwNvkPFSpUJuXObG9eC2Lz+H7YfOok2N5fPJr+ru59/N/1nli6az8XzZ/njpxn8Mmchg14YQURYKONeGQlQpLyllRULV/yDqakpKpWawwf2sXzJQl0/GjZpyk8/Fr/iRpnjGQ2Tl4R4mHF0Cg+OjYWpFFjBueSKZYg2nbtTvVZd5sz8oVT0Vw2ozeDRr/H1e+OfuO75r7R74jpLG5uqjTF3r0T8oZUlV34MmLv54di4J1Gbf33iuqs1LScz4AviXBNsvSB4V+not/GUl18KWv3EVVd+/ucnrrO06dKjF7Xr1mf691+Viv6atevy8htv8s64MU9c953Y1NOSJBU/Xf4x0aiah3Tq5xEl1hPdppZaH/8NZcmzqVDKHNi5FTuH0pusYe/oxNyZhjPlFR4PaTdOorK0KTX9aktb4g6WjqFbLom/IntVSwtTK7hTSoZuOWTHlk04OBpf8P1J4OTszPTvvy41/aXKMxgmLwnF2FR4pGxatbTUdJ86cqDUdJdXUi7sLTXdGSEXS013uSXKcJzeEyPxVunpLqes/LvooVePm0P7S+/eUuqUPVtTMTYVFBQUFBQUFJ4Ons0JQCWhGJuPCT8X23I5jq+8EjBlRWl3QeEJ8s/ErqXdBYUnyO055ScNrgKIfjNLuwtlDsXYVFBQUFBQUFB4GhCASvFsKigoKCgoKCgoPC6UMLqCgoKCgoKCgsJjo+zZmoqxWZZw7/Ya1v4N0GakELLgvSLruXYciXXl+kg52URt/Z3s6GAAVOZWuHd7DXMXHyQgeusfZEXc0Mk5Nu6Fa/vh3Pz5VV0WmoKorR1w7zaGiDXy8kOOTftiX7c9SHnE7FpIRvAFAxmVhTWefSZiau9KTnIsketn6RYXL0ree+AUTGwcQaUiMyyImJ3zQZJwqN+VvJwsUi7t/7en8Jli7rx59OzZi5iYGOrVLTqZ1cxZs+jevQcZGRmMHvUSZ8/KmZzs7e2ZM2cutWrXRpIkXnl5NMeOHWPZsuVUq14dAAcHB5KSkmjYoL5Bux4eHvz55xz69OkNwOQpUxg9+mW0Wi1vTZzAjh07DGQcHR1ZvnwFFf38CAkOZvDgQSQlJRUrv2XLVjw8PTExMeHQoYO8OW4ceXl5jB03joz0dBYuXPhfTuMzQ+CQSbjXbEp2WhL7/vd6kfVq938D94DGaHOyObtsGslhciYnEwtrAoe8ha2HHyBxbtkMEkOu6uT82z1Hrb6vsu3jQWjSDVNPmts5UW/QRE7M/QyAKh0HU7FpVyQpj4trfyf22mkDGVMrGxqN+BBLJ3cyE6I5tehbcjLTipVvNuZrzO2cEGo1CbcvcWH1ryDl4deqN1pNFqEndv7bU/hsETgEPGpCdhrsLWZJtzr9wS0AtDlwdhkk52dyMrGA+kPA1kPePrsMEkOgZm/wqAV5Wjkz1Jll+gX+C2JuB4GD4PhcebtqR6jQFJDgwlqIvWYoY2oFjUaAlRNkJMCpRZCTWbx8szFgYScv5B9/Gy6slutUaiWnLL174l+cvGedsmdtPrPpKoUQWiHEOSHEJSHEKiGEVX65jxBivRDihhDilhBilhDCLH9fOyFEshDirBAiSAjxY4H2bIQQs/NlLgshDgghmubvS7tP90tCiF+e5PE+CCmX9hO+uvhsC9aVAzFz9CR4zltEb5+DW+dXdPtcO44k/c45gue9Q8iC99HEh+v2mdg6Y+VXh5zk2CLbdmzcU5fdxczZG7uAFoTMf5ewVd/h1vllo6EBp6Z9yQi5RPCcSWSEXMKpWd8S5SM3zCJk4WRC5r+H2tIO2+rNAEi+uBeHht0e8Gw9+yxauJAe3Ys/3u7du1O1SlWqV6vK66+N4dffftftmzlzFtu3b6NWzQDqB9bj6lXZ8Bg6dAgNG9SnYYP6rF27hn/+WWu07Ulvv83cuXMACAgIYPDgIdSpXYse3bvxy6+/oVIZ3l4mT5nC7j27qVG9Grv37GbylCklyg8ePIgG9QOpW6c2ri6uPP/88wAsmD+fN8dPeMiz9uxy98ROjv35cbF13AIaY+3qxe5vR3N+5SzqDnxTt6/OgNeJuXqavd+/yr6pY0mNvqvbZ+Hggmv1BmQkFJ0K0r/tAO4e2wqAjXsFvOu3Ze8Pr3Fs9kfUHThOTi95H1U7Dib2xjn2fPsysTfOUaXjoBLlTy36lv0/jmXfD69hZm2PV2BrAEKP76By674PeLbKAKEn4OifxddxCwBrV9j9LZxfCfUG6vfVGQDRV2HP97B3KqTmX9vY67Lxum8qpMVCtU7G2/ZvCyHH5M+27uBdH/b+AEdn5+sxYhBV7QhxN+T+xN2Qt0uSP7UI9v0o7zO3Bu9AufzucajU+gFOVBnj3pjNkl7PGM+ssQlkSpIUKElSbUADvC6EEMBaYJ0kSVWRU1DaAN8UkDsoSVJ9oD7QSwjRMr98LpAAVJUkqRbwEuDyZA7l0ZAZFoQ2M73YOtZVGpFyWV6PMivyJmoLK9TWDqjMLLHyCdCvm5inJS87Qyfn2mEEsfv+LrZtm2pNyLhzXq/n6hEkbS65ybHkJEVh4VnFUKZqI1Iuyf1JuXQAm6qNSpTP0+Q/KavUCLXJvSR5SLkacpNjsfAoH9ldDh48SEJCQrF1+vTty5Il8lp5x48fx8HBAQ8PD2xtbWndpg3z5s0DICcnh+TkZAP5558fxPJly4y2PWDAc2zbtk2nZ8WK5Wg0GoKDg7l18yZNmjQx7E+fvixetAiAxYsW0bdvvxLlU1NlL7qJiQlmZmbcy3qWmZlJSHAwjRs3LvYclBUSbl9Ck24YUSiIR+3mhJ2UH/gSQ4IwtbTB3M4JE3MrnCrX4e5x+XpJ2lxys/T3itr9XuPKxrnFtu1ZryUxV0/r9ISf3U+eNoeMhGjS4yJxrFDdaH9CT8oLsYee3IVnnRYlyufm33eESo3KxESX9lSbk01GQjQOFaoVf6LKCvG3QVP8/RzP2hCan84zMQRMLWWPpIk5OFeWDTaQU5Te817GXpNThN6TsXAw3rZXPYjJ93x71Ibws/ne0ARIjwPHCoYynrXhbn5/7p4Ezzoly+dmy+9CJacrvZfVUJufItXBiJ6yjniA1zPGs2xsFuQgUAXoAGRJkrQAQJIkLTAJGH3P83kPSZIygXOAtxDCH2gKfCxJ8q9QkqTbkiRtfnKH8GQwsXUiJyVet52bmoCJrROmDm5oM1Nw7/4GFUZ+h3u3MQhTcwCsqzQkNzUBTezdoprFxN6VvKx0JG0uAKa2TuSm3qfHxjAbhdrKHm16EgDa9CTUVnYPJO/9/Af4vzmbPE0WadeO6cqzom5j6VvjYU5Jmcbby5vQ0FDddlhYGN7e3lSuXJnY2Fjmz1/AqdNn+HPOHKysCmeHad26NdHR0dy8edOgXT8/PxITE9FoNLIeb2/CCuoJl/Xcj7u7O1FRUQBERUXh5ub2QPJbt24jKjqG1NRUVq/Wpys8dfoUrVqXQ+9HEVjYO5OZpI8+ZCbFYmHvjJWzB5q0ZAKHvkPbd36h3uC3UJvJv2/3Ws3ISo4nJeJOke1aObmTk5FGnjYHAEt7Z7IK6YnDwsEwPa+5rQPZKfIDUXZKAmY29g8k3+y1b+j61XJyszKJOH9IV54UegPnyrUf6pyUaSzsITNJv52ZBJb2YOUMmjSoPxTavgOBg0FtZihfoaneoCyIlRPkZMjGYVF6jBmp5raQnT8EIzsFzGweTL75a9DtK9kgjjivL08KlY3mckX+OpslvZ4xnnljUwhhAnQHLgK1gEIDhyRJSgHuIhujBeUcgarAgXy5c/nGqTEs80P254QQ54Avi+jLGCHEKSHEqcT07P9wVE8YSQKVGnP3SiSf28ndRR+Qp8nGqWlfhIkZTs36l5j/2sTaEW2G4Tiv+xT9147qPoWv+o7bv76BUJtgVUH/56PNSEFtU3opM582hJGbkiRJmJiY0KBBA/7443caNWxAenq6LqR9jyFDh7J8uXGvpqenJ3GxemOhKD3/tZ/36N69G95enpibm9OhQwddeWxMDF5eXg+sp6xj7DwiSQi1GnufKgQf3sT+aW+i1WRRpeNg1KbmVOs8hKCtxWeKMbdzQpNWwPNdhJ6H6Gix8sdmf8SOz4ahMjHFtWo9XXl2WhIWdoZGbfmliPOoUoO9DwQfhv3TIFejD2nfo1on2eMZZjjWFnM7eayoTo0x4+Y/Xu+C8kdnw/bPZM+ma1V9eXaaPJ5T4ZnnWTY2LfMNv1PIxuQ85F+esV9AwfLWQogLQBSwSZKkqAfQdS9kHyhJUiDwqbFKkiT9KUlSI0mSGjlamz/c0TwhclMTMC1wszaxdSI3LZHc1HhyUxPIipS9WGnXj2Pu7oepgzum9q5UHPU/Kr32Mya2TlQc+R1qa/tC7Uq5GoSJ/sk5JzUBE1tDPfejzUhGbe0AyBOM7hmsDyIvaXNIv3laF3oHECamSDmahz0tZZaw8DB8fX112z4+PkRERBAWFkZYWBgnTsiD79esXk2D+g109dRqNf37D2DlCuOL1WdmZmJuYaHXExaGT0E93rKe+4mOjsbDQ56w4OHhQUxMzAPLZ2dns3HjBvr01Y/bM7ewIDMzs+QTUU7ITIrD0sFVt23p4EpWSgJZSXFkJceRdFeelBFx/iAOPlWwcvHEysmDdu/9TqdPFmFh70Kbd37B3LbwA5s2R4PK1KyQHotCelzISjYc0pGdmoS5nRyRKGiwPoh8Xm4O0ZeP4VG7ua5MbWqGVvl968lKAksH/balA2SlyJ7DrGRIzI9GRZyXjc97+DYG91pw+i/j7eblgNpUv51pTI/hsBuyU2VDFeR3TdqDy+flQtRlOeR+D5WpHE4vbyhjNp8qChqA4yVJ0gCXgUYFKwkh7ABf4F5i3YOSJNUF6gBvCCEC8+XqCWFkhHsZI/3maexqtQHAwrMKedkZaNOT0KYnk5MSj6mTJwBWFWujiQ9HExfK7V9f487s8dyZPZ7c1ARCFn2ANr3wjUKTGImpvWthPQEtEGoTTOxdMXX00BmyBUm7eRq72nJ/7Gq3Ie3GqWLlham5zjhFqLD2r48mXm+UmDp6ookLvV9NuWXjhg28+OIIAJo2bUpycjJRUVFER0cTGhpKtWry+LcOHTty5eoVnVynTp0ICgoiPDzcaLvXr1/Hz8+vkJ7Bg4dgZmaGn58fVapW1RmyhfqzcQMjRo4EYMTIkWzYsL5YeWtra51xqlar6d69B0FBQbr2qlWrxuVLl/7DGSpbRF0+hk9j2YPlWLEGOZnpZKckkJ2aSGZSLNaussHhWrU+qVF3SY0MZvunQ9j11Uh2fTWSrOQ4Dkx7k+zUwg926bFhWDm567ajLx/Du35bVGpTrJzcsXb1IvGu4ezkqEvH8G0sT0DxbdyJqEtHi5VXm1nojFOhUuEW0JjUGP3v2drVm5So4Ed3wp51oi7LhiOAY0V55nd2imz0ZSaBTf492bUqpOb7VdxqQNUO8izzogy5tFg5lF5Qj3d92WNq5SRPSko0Mqwq8hJUyO9PhcbydnHyajO9cSpU4B4AaTH69mxc9f0uLwjKZBi9rC19tBv4XggxQpKkxUIINTANWChJUkbBEJMkSdeFEN8BkyVJGiqEOAV8IYT4VJIkSQhRFagpSdL6UjmSf4FH7/FY+dZEbWlLpTd+Jf7QalIu7sU+UL7ZJ5/bRfrts1hXDsTv1VlIudlEbf1DJx+7ewGevd5EqEzISY4hassfRakyQMrJJicpGlMHd3KSotHEh5EadJSKo6eBpCVm5wJdmMy92xiSzu0iO+o2CcfW49X3Lezrtic3JZ6I9TMAipRXmVrgPeA9hNoEVCoyQi6TdE6/FIqlT3Xij6x5FKfzqefvv5fStl07XFxcCLkbyheff8b8+fN57bXXAJg9ezZbtmyhe48eXL9xk4yMDF4ePUonP3HCeJb89TdmZmbcuX2b0QX2DR48hBVFhNABMjIyuHXrFv7+/ty6dYsrV66watVKLl2+Qm5uLuPflJcnAvhzzhxm//EHp0+f5ofvv2f5ipWMHv0yd+/eZfAgeWZ5UfLW1tasW78Bc3Nz1Go1e/fuYfYf+u9lixYt+fKLLx7peX1aafDiFFyq1MXM2o7Ony3h2ra/uHt8OxVb9AAg5MgWYq6cwD2gMR0/mo9Wk83Z5dN18hfX/EbDF99HpTYlPT6Sc8umF6XKAK0mm/S4CKxdPEmPiyQ1KoSIcwdoP2U2Ul4eF/OXJwKoN/gtgo9sJjn0Bjd2r6DRyA+p0LQrmYkxnFokz9UsSt7EzIImL3+O2sQUVCribpwj5Ih+6LxTpVpc3178RMUyQ8MXwaUKmFlDl88gaJs84cdPnmRF8BGIviIbaJ0+kpcJOrtcL39hjdyGUENGvLz0Eciz1NUm0OINeTshBC6sKqxbq5En8Vi7yO+pURBxDjpMka/zveWJQB4PGnxEHl95Yzc0HimPBc1MhJPyZMAi5U3MoOnLcvhcqOQZ7MFH9P1wqgTXtj/a86pQKoiHGVf1NCGESJMkycZIuS/wG1AD2XO7BXhXkqRsIUS7/M+98utaAjeBVkA8smHaAcjI335PkqST9+sSQrwENJIkSb+uyH3U9nGS1k7o8igO9ZnBpmpjzN0rlTi+83Fh7uaHY+OeRG3+9YnrLo+50fv160eDhg359JNPSkV/YGAgkya9zciRI5647vKYG92jTgscfKoStHVRqei38/bHv90Azv499Ynr7tMu4InrLHU868ih96CtpaPf3hv828GZJ/9wIfrNPC1JUqOSaz56GgV4SacWjCmxnmj+Ran18d/wzHo2jRma+eWhQO8i9u0D9hXYzgQKTpl99UF0SZK0EFj4EN0tF6TdOInK0uhleSKoLW2JO1g6hm55ZN26dTg7l95kDRcXFz79tHQM3fJI1MUjmFmV3mQNc2s7grYUP5FJ4RESeVFepL20MLOGq1tKT38pcToocrto/sWDLLsY99g78wh5Zo1NhacT3TqdpUBGyMVS011eubdOZ2mwa9euUtNdXrm3TmdpEHv9bKnpLrfcW6ezNIi9Xnq6SxFJkspkZpIyPyFGQUFBQUFBQUGh9FA8m4+JsIR03ll2tLS7ofCE0B5SwrnliT/n7CvtLig8QWqOXVjaXVBQeKZRPJsKCgoKCgoKCgqPDcXYVFBQUFBQUFBQeGwoxqaCgoKCgoKCgsJjQzE2yxATPpvKkt2n+WXVjiLr+Pj5M3XRP6w9fp3+L+rX8jI1M2fakvX8tGIrv67eybDXJ+n2vTD2HX5asY1Zy7fw5W9LcHJ1M9q2o4sbn86ar9seOHoss9fv5/d/9lC/eRujMjZ29nz5+1/MXr+PL3//C2tbuweW/3jm3ELH2nPwSDr2eb7IYy9z+PeDxu9D4Lii61i6QJ1Xodmn4NXyweR920PDd6HeG/LLoSpGMbWBGi/ot71bQ/2JUH8COFQxLmNiCTVHyvVqjgS1xYPL1xhWuK8eTcCtfpGHXtZoO3oyL85az8CvFhZZx96jAn0/+o2X/9xF3W5DdOXWTm70en8mz3+zhIFfL6J254G6fc6+Vej78e8M+GIe/T/9E9dKxteUtLR3puvE73XbgT1fYPD3Sxn07V/41G5sVMbc2pYe705j8PdL6fHuNMysbB5YvuuE7woda62OA6jWqnuRx17W+Hrazxw8f531u48UWaeSf1WWbtjOudtRjHpNv+yzmbk5yzftYu3Og2zYc4Q335mi2zfu7cnsPXWZtTsOsHbHAdp06Gy0bRc3d35bpF8k/tU3J7Ht0Gk2HzhBy7YdjMrYOzgwd9lath46xdxla7Gzt39g+V8WLC10rMNeepX+g4YVeewKzxbPrLEphOgvhJCEEDXyt/2EEJfyP7cTQiQLIc4KIYKEED8WkHMXQmwSQpwXQlwRQmwRQljk16tToN77Qog/hBAqIcRPQohLQoiLQoiTQohKT/6IS2b3xlV8Pm5ksXVSk5P484fP+GfxnELlOZpsPhozlAmDuzNhSHcatGhL9TryH/naRbOZMLgbE4f04OTB3QwZM9Fo2/2Gv8L2f+QsFb6Vq9Kma2/GDezM5+NG8sYHX6NSGX7dBo4ay4UTh3mtbzsunDjMwFFjH0i+eYduZGVkFGpr1/oV9B46inJD7Fm4sqT4OrmZcGczRBx+OPnIo3D+d/mVdMN4Ha8WEH1a/mzpCi514NwvcGUxVO6FnHftPrxbQ/JtODtLfvdp/WDyTgFyVpOCxJwFj2bFHX2Z4tqhbWyZ/l6xdbLTUziy9CcubFteqDxPq+Xoit9Y9dGLrP/6dWp26I+DV0UAmg56gzPrF7L2s5c5tW4+TQe9brTtul0HEXRgEwAOXhXxb9KRVR+PZOv092j14tsYy/Yb2OMFwq+cYcWUYYRfOUNgz+EPJO/XsA052YV/30EHN1O703MlnKWywz8rlzHmhYHF1klOSuTbT6awYPYvhco12dmMHtSXAZ1bM6BLG1q160jdBvr1vxfP+Z0BXdowoEsbDuzZeX+zALw0Zhyr/5YX8PevWp3ufQfQu0NzxrwwkE++/dHo/fyVcZM4dugA3Vs14tihA7wybtIDyXfq3ouM9PRCba1d/hfDX36t2ONXeHZ4Zo1NYChwCBhSxP6DkiTVB+oDvYQQ99w6XwI7JUmqJ0lSTWCKJElZwFvAb0LGG3gN+AAYDHgBdSVJqgP0B5Ie0zH9Jy6fOUFqclKxdZIT47lx5QK5uYY5cbMy5Zu7iYkJJiam3MsulZmepqtjbmlFUVmnWnTszunD+wFo2q4zB7ZvJDdHQ3REKJGhwVStHWgg07RdZ3ZvlNNL7t64hmbtu5Qob2FpRb/hr7Bi7s+F2srOyiImIpSqteoVew7KDCkhsjFZHDnpkBahSyX40PLF4VxTb4g61YC4iyBpITsJMhPAxsdQxqmGbCSC/O4UULK8ykw2bMP2F24rLweyE8HGm/JA1PXzZKelFFsnKzWJ2DtB5Gm1hcozk+OJD5HXLczJyiQpMgRrBzlvtoSEqaU1AGaW1mQkGV8rulLDtoRelNdd9KvfilsndpOXm0NqXCTJMeG4Vjb0iFas34rrh+W1Oa8f3oZf/VYlypuYW1K3yyDObCy8gLtWk01qXFSRnteyxunjR0hOSiy2TkJ8HJfOnyU3x/B+npEhG28mJqaYmJrq0gU/KJ179Obgvt0AdOjag63r15Kj0RAeepe7wbepU7+hgUyHrt1Zt0p2OKxbtYyO3XqUKG9lZc3IMeOYPevHQm1lZWUSHnqXOoENHqrfCk8nz6SxKYSwAVoCL1O0sQnosgSdQ58pyBMIK7D/Qv77NiASGAHMAD6XJCkxv36kJMn/1pIkheWXlzlUKhWzlm9hye4znD12kOuXzun2vTjuPeZvPUq77v34+3fDnMruXr6kpSSTmyN7n5xdPYiLitTtj4uJwtnNw0DOwdmFxLgYABLjYnBwcilRfvjYd/hnyRyyMw0NpZtXLlKrQZN/cfQKhfBoAvXGyqH2gqHue5g7QG6WbBwCmNlBdrJ+vyYZzG0N5UytISf/4SUnTd4uSb5CB4g4IhuX95MWAXYVH/boyjU2zh64VKhKzO0rABxd+jPNBr3BsGmraTZ4LCdW/2kgY+viSXZGKnn5D6nWjq6kJcTo9qcnxGLtaJj0xNLekczkeEA2eC3tHEuUb9z/ZS5sX0FudrZBe3HB1/CoVvffHnq5QqVSsXbHAQ5duM6RA/u4cPa0bt+wUa/yz85DfD3t50Kh7nt4+1YgJTmJHI18P3fz8CQqIly3PzoyAncPTwM5Zxc34mKiAYiLicbJ2bVE+fHvf8jC2b+QmZlh0N7lC+do2LT5vzl8haeMZ9LYBPoB2yRJug4kCCGKfPQRQjgCVYED+UW/AvOEEHuFEB8JIbwKVH8L+AZwlSTpXnxxJdBbCHFOCDFNCFHkIDEhxBghxCkhxClNrraoak8teXl5TBzSg1Fdm1GtdiAV/Kvp9i35dSqjuzdn39Z19BpsGKp3dHUjOTFety2EkRDqQzxZFyVfqVpNPH39OLZ3u1G5pIQ4nFzdH1iPghGiTsCZmXIIPScV/IwktDCzlb2mxfFwjhTj8lYeYOEMCVeN18lJl/ui8ECYmFvS+c2vOLLsZ3Ky5D/3mu37cnTZLyx9ZyBHl/1Cm1GTDeSsHJzJSk0qUGLs9/kwPTEu7+xbBTt3b4LPHDQqlZmSiLXDg2TyU8jLy2NAlza0b1SLOvUbUKW67BFevng+XVvUZ0CX1sTGRPP+p18byLq6e5AQr/dwG7sfFxXhMkZR8jVq1aaCX2V2b9tsVC4+LhY3d0MnhcKzx7NqbA4F7g1KWp6/fT+thRAXgChgkyRJUQCSJG0HKgNzgBrAWSGEa/6+CGAP8Pu9RiRJCgOqI4fU84DdQoiOxjolSdKfkiQ1kiSpkZmJ+r8fZSmRnpbCxVNHadiincG+/VvX06Kj4SB9TVYWZubmuu24mEhcCjz5urh5EB8bbSCXFB+Ho4s84cjRxY2khLhi5WvUa4B/zTrM3XyIHxasxqtiJb6dox+fZmZugSYr6+EPWkFPTjqy5SDJYzJtjYSp83JAVSAnhCYFzAt4SMzsQZNqvG3T/EkipjZ6g7UoeVtfsPGEBpOg9suy4VmrwLhclQloc//tkZYrhFpN5ze/4ubRnQSfPqArr9ayG3dOy0MUbp/ci5uRcHiuJhu1qZluOz0xBhsn/URBaydX0o2E3zOTE7G0dwbkCUaZKYnFyrtVqYVLxeoMnbqCPh/+gr2HL70mz9LVU5uakZtj6PFUKJrUlBROHjlE63by31Z8XCx5eXlIksSqvxdRJ9AwHJ6dmYm5uT6iER0ZgYeX/j7g7ulFTHSUgVx8XAwubvLDvoubOwnxscXK12vYhFp16rHz2Hn+WrcVv8r+LFy1UVfP3NycLOV+XiZ45oxNIYQz0AGYK4QIBt5DHld5/6PTQUmS6gJ1gDeEEIH3dkiSlCBJ0lJJkl4ETgIFpzrn5b8oUD9bkqStkiS9B3yL7FktU9g5OmFtI88ENzM3J7BpK8KCbwLgWcFPV69p286EBd8ykA8PuY2bl36M3ol9O2nTtTcmpma4e/niVaESNwqE5XX19u+iY2950H/H3s9xfN/OYuW3rvqLl7o04ZWerZg8aiARIXf48FX9SAqvipUIuXXtP5+Pco2pfsYwTgGQEWNYJzNeDqXfIyFInuAj1HK5pROkhRnKJQTpZ5C71Ze3i5OPPgmnfoQzM+DSPMiKh8sL9O1ZOkOG4UOMgiFtR00mKSKEiztWFipPT4rHs3ogAF4BDUiONrxuyVGh2LroPUwhZw/j36QjKhNTbF08sXfzIfa2ofc55NxhqrWUPePVWnYj5OyhYuWv7l3P328PYNl7g9nw7ZskR4Wy6Qf9hER7D18Sw27/53NR1nF0csbWTr6fm1tY0Lx1O27fksdX3zMGQZ6Yc+Oa4XULvn0Lb98Kuu29O7bSve8ATM3M8PatQMVK/lwsEJbX19tGv+dl30+/54eyZ/vWYuVXLJ5Pu4Y16dysHsP7dSf49i1eer63rj2/ylW4EVREVEPhmeJZTFc5EFgsSZJumpoQYj9gZDYCSJJ0XQjxHTAZGCqE6AAckyQpQwhhC/gDd4tSlh+ij5IkKULI0yXrAhce3eE8Ot797ifqNGyOnYMjC7YdY+kfM9i5bgXdBsrL02xb/TcOzq7M+HsjVtY25El59HlhNGOf64STixtvfTkdlUqFSqXi0M5NnDy4B4CXJkzBu2Jl8vLyiI0M59dvPjTQnZ2VSVToXTx9KxIZGsLd2zc4tGMzv63ZhVabyx/ff0JenmzDj//0B7au/oubVy6yesFvTP7hNzr3G0xsZATfv/8GQLHyxVGzXiOWz575iM7oU07VgWBfCUysoOE7ELoXYs6Ae/6s0+hTsuFY9zVQmwMSeDaTZ3xrs4uWr9gFrD3l+tlJcGuDoe68HMhKBAsnyEqAzFiIuwT1x8uTkW5vRhdX9e8LUSchPQLCD0K1weDWQB6jeX2FXKc4+eKwrQCh+/7jiXw26PDap3jVqI+FjT3Dpq3m9LoFXDu4mYB2fQC4um8DlnZO9P/sT8wsrZGkPGp3Hsiqj0bg5OtPtZbdiA+9xYAv5gFwcs0cQi8c48DC/9Fi2ARUKjXaHA0HF0410J2rySIlJgI7N29SYsJJjAjm9sm9DPpmMXlaLYf/mkH+sHbajHqfK3vXExd8jXOb/6bT2C+o0aYnafHR7PrtU4Bi5YvDo2odTq9f+IjO6NPN1F/n0qR5SxycnNlz6hK//Pg9a5f/xeAXZc/+iiULcHF1Y+XWPdjY2JKXJ/Hiq6/Tu11zXN09+G7mb6hUalQqFds2/sP+XfLQo3c//oIaNesgSRLhYXf5fPIkA92ZmRmEhtyhgl8l7gbf4eb1ILZvXMfGvcfQanP5+qP3dPfjL6fOYsWSBVy+cI45v85gxh8LeG7ocCLDw5j02ksAxcoXR/3GTfl1+g+P6IwqlCbiYcZdPA0IIfYB3+dP6LlXNgHoDvhKklRbCNEOeFeSpF75+y2Bm0ArZGN1FJCL7NldIEnStAJtLUQOu6/O3+6GPI7zXoz4BDA2fwZ7kThYmUutq5evsSbN2nelSkAd/vrtx5IrPwYqV69Fv+GvMP0Tw5vn42bjr8UvOVUmcQoAay8I3V06+q09wLMF3Fz7xFWXx9zofg1a4+JXnVNr55aKfucKVanbdRB753zzxHXP3HHxiessbTp260mtuoH89L8nf74BAmrVYeRr45gywfhSXI+TqxFJpyVJalRyTYUH5ZnzbEqS1M5I2U/ATwW29wH7Cmxnop+NPjX/VVT7L923vQ3YZry2QkGO7d2OnYNjqem3c3Dkr9+mlVxR4dGQcFVepL20MLGG0D2lp7+cEXzmIOY2diVXfExY2Nhzcu28UtNf3ti9bTMOjk6lpt/BybnUDF2FR88z59l8ViiPns3yTLn0bJZjyqNnszxTHj2b5RnFs/noeeYmCCkoKCgoKCgoKDw7PHNh9GeF9OwcTt6OLe1uKDwptCUPdlcoO1R0Udb2LE80quRa2l1QeIJcjUgq7S6UORTPpoKCgoKCgoKCwmNDMTYVFBQUFBQUFBQeG4qxqaCgoKCgoKCg8NhQjE0FBQUFBQUFBYXHRpmcICSEmAGESJI0M397OxAqSdIr+dvTgHDkxdoL5jacLknS4vw0mI0kSYor0OZL+WVvPpGD+A98/cOPdOzSlcyMDCaOfY2L588Z1GnVth2ffvUtKqEiPT2NiWPHEHxbTgPXolVrvvxuKqamJiTEx9O/Z1cAZvzyB527dSMuNpZ2zRsXqf/VN8aRlJjIquVLcXB0ZPaCxfhWqEjo3RDGvPQiyUlJBjLtO3bmqx+molar+XvxQn6ZIa+XWZx8QK3aTJ35M7a2tuTl5dGtfWuys7NZuX4Tr44cblRPmaRyT3CqJmf1ubYG0iMN6zhUhkrdAAFaDVxfI2f+UZtD9eflvORCBeGHIfqMLOPVAjzy8yanR8P1tSAZyUPu1RxyMyHmnLzuZo3BYOEAWUkQtBxyjeQ/cKwKlXvIOqNOQ1h+ru7i5K3coWpffTaks3/I/ak9CoKWGddTBqnR9zVcazRCm5PNxRUzSA03TB/rVKUe1XuOBpUKbXYml1bMICM+Er+2A/Bs0B4AoVJh4+bL3s+HkZOZRpsP5pObnYkk5SFptRz76S2j+iu26ktOZioRp/dgamlD3eFTsHR0IzMxhvN/fU9uZpqBjEv1htToMwahUhF2Ygd39q4CKFbextOPWs+9iYm5FZIkceynt8jLzaHRmG84t+Q7o3rKIsMnfky95m3JzspkzrdTCLl+xaBOzYbNGTL2fYRKRXZmBn9+M5mYcDkxXo36TXhhwkeoTUxIS0rk2/HDAeg66CXa9n4eJInQ29eZ++0UcjQag7a7Pj+StNRkDm9bh7WtPeO+nImLhzdxUeH88ulEMlJTDGTqNG3N8IkfoVKp2b9pFZv++hOgWHlf/+qMeu9LLKxtkPLy+PzV58jRaJg8cyE/fzLBqB6FZ4ey6tk8ArQAyE8x6QLUKrC/BXAYuCVJUmCB1+In39VHS8fOXansX4Xm9evw7sQ3+WH6LKP1fpg+i3GvjKJT62b8s3olk96dDICdvT3fT5vJyKEDadusEa+OHK6TWbF0CUOf61esfrVazdDhI1i7Sk5DOH7SOxzcv48WDepycP8+xk96x0BGpVLx3bQZDBvYjzZNGtD/ueepVr1GsfJqtZpf/5zH+5Mm0LZZIwb07EZOTg4Aq5cv46VXxjzciXtWcawm5wc/NQNurIMqfYzX8+8DQavg7K8Qex4qtJPLvZrJuc/P/goX58kGqVCDmS14N4dzv8OZn0EIcK1jpGGVbJDG5Gdw9WkDSbfh1Ez53aeNERkB/r3h8mI4/ZPcrpVrCfIqqPE83Nwg9+fCPJC08q6Yc+DZ9OHP3TOIS41GWLl4cfCHV7m8+mdqDhhntF7NAeO4sOxHjs4YT+TZ/VTuNASA4P1rOTpjPEdnjOfGlkUk3L5ETgGj7eQfH3B0xvgiDU2hUuHdpDORZ/cBUKnD8yTcPM+h/40h4eZ5Krd/3pgQAf3f4PS8zzj04xt4BrbB2s23WHmhUlF36LtcWfMrh6eN5eQfU8jTytc74vQeKjTv+W9O3zNH3WZtcff1470hnVkw9RNeevcLo/Veevdz/vjyXT4Z1ZejOzfSd+RYAKxsbBn59ufMnPI6H77Yk58/mQCAo4s7XQa+yGcvD+DDEb1QqVQ07Wh4TlVqNa17PsfRnRsB6DV8DFdOH+X9oV24cvoovYYb3meFSsWItz/jx3dfZcrwHjTr1AsvP/9i5VVqNa99MpUFP37Ghy/25LvxL5KbKz/YHt62no79h/23E6lQ6pRVY/Mw+cYmspF5CUgVQjgKIcyBACCxtDr3OOnasxcrl/0NwJlTJ7Gzt8fN3XBxeUmSsLGVs4HY2tkRFRUFwIDnB7N54wbCw8IAiIvTL9907MhhkhITitXfqm07Lp4/hzb/j6Frj16sXCr3Z+XSv+nWs7eBTP2Gjbhz+xZ3g4PJyclh3drVdO3Zq1j5dh06ceXyJa5ckhdbTkxM0OXa3b51M/2fM/KnVxZxDpCNLYDUMDCxkPOhGyCBSX7GVbUFZKfmF0v5nkJAZS57KO/lqBYqUJkC+e+aVMNmHSpDWgSQL+NcQ+8ZjT4j9+9+bH0gK17OrS5pIfainPqyOHnHKpAeJb9A7ue93OkJV8G1brGnqazgVqsZEaflrEnJd69hamGNma2RrF2ShIm5FQAmFlZkJ8cbVPGs35aos/sfSr9TlXqkhN9Cyv+tudVsRvipXQCEn9qFW61mBjL2FaqRERdBZkIUkjaXyHMHdPWKkneu1oDUyGBSI+8AkJORqvtexlw5jkd9Yw8xZY8GrTtyeNs/ANy6fB4rG1vsnQ2XYZIkCQtrawAsrW1JjIsBoHnn3pw6sIP4aDnakZqkv3+r1CaYmVugUqsxN7ckKV+mIDUbNCPk+hWdod+gdUcObpX7c3DrPzRs3clAxj+gLjFhIcRGhKLNzeHYrs00aNWpWPnajVsReusaoTeDAEhLSdJ9x84c3k3zTr0e6rwpPH2UyTC6JEkRQohcIUQFZKPzKHK6yuZAMnAB0AD+QohzBUTHS5J08N/qFUKMAcYAqIT4t838Jzw9vYgID9NtR0aE4+nlRUx0VKF674wfy9+r15KVmUVaago9OrUDoLJ/FUxNTVm7aRvWtrbM/f1XVi1f+sD6mzRtzoVzZ3Xbrq5uOt0x0VG4uBreKD29vIgID9f3OTycBo0aFytfuUoVJEli2dr1OLu4sn7NKn6dNQOA5KQkzMzNcXR0IrEE4/iZx8wWspP125oUMLeDnPtCjDfWQa0Rcqhdmw3nZsvlkceg5nBoOhnUZnB1BSDJhmXYIWjyLuTlQuJNSLppqN+uQr6xea8/NnrdOWnGDV9zO8M+2/oUL2/pLNuWtUeCqTXEXpD7B3L4XKWWQ/C5mQ9w0p5dzO2cyUrSPwBmJcdhYe+MJrXws/Ol1T/R4OXPycvRkJudwbGf3y60X2Vqjkv1hlz953ddmYREo1e/QgLCjm0l7Lhhll4Hv5qkhOm/B2a2DjrdmtREzGwcDGQs7JzJStKNSCIrOQ6HCtWLlbd28QZJouErX2JmbU/k+QME71sDQG5mGiq1KaZWtrIRWoZxcnEnIUZ/706IicbJxZ3k+MJrOM/7/mPenToHTXY2melpfPGa/LDt4euH2sSUD35egoWVNTtWLebwtnUkxkWzdfk8ZqzZhyY7m0snD3Hp5GED/VXrNCT42mXdtp2ji053cnwsdo7OBjKOru7EF+xzbBT+NesVK+/p6wcSvDdtHrYOThzbvZktS+cCkJGagompGTZ2DqSlJD3sKVR4Siirnk3QezfvGZtHC2wfya9zfxj9XxuaAJIk/SlJUiNJkhqpSsfWRBgxco2lJB0zbjwvDBxAg5pVWf73Er749gcATExMqBtYn+GDBjC0fx8mvT+Fyv5VHli/m4cHcfFxJVf8F30uiImJCU2bt2DcK6Pp27Uj3Xv1oVXbdrr9cbGxuHt6PlQ/nkke9KHGu4Uctj4xFaLOQOXucrljVXmM5/Ef4MyvUKW37Ok0sZAWaf00AAEAAElEQVS9iienyftUpuBaz7BdM1vISX8EB1JC2lyhAvuK8lCA83PAuabsVb2HJh3MSi9v95PC2G/F2Knza92PM/M+Z/83Iwk/uZMavV8ttN+tZhMSg68UCqGf+PU9js6ayJm5n1KhRU8cK9W6v1nMbZ3QpCUblJfQacMul3S51WocKtXkwtIfOf7b+7jXbo5TFf33T5OejLld6eXtfmIYO3dGLni3wS/x43uv8taANhzcsoZh4z8EZO+lX/VaTHtvDFPffpm+I8fi4euHla0dDVp15J1BHZjYrxXmFla06GI4BMfBxZWUpId8YDf6HS3+gqtM1FSr24Dfv3yXr8cOpVGbztRs2Fy3PyUxHgcXt4frh8JTRVk2Nu+N26yDHEY/huzZvDdes0ww6pXX2HXwGLsOHsPdw5OIiHC8vH10+z29vImKLDxhxNnZhVq163D29EkA1q9dTeMm8pi3iIhw9u7aSUZGBgkJ8Rw7cphadYyN1TNOVmYmFuYWuu3Y2BhdGN/N3YO4WMOsShHh4Xh5e+v77O1NVFRksfIREeEcPXSQhIR4MjMz2b1jO3XrBeraMLewICurDHq5PJtC/XHyy8wWslPkyT33MLOTywpiagXWnnKYHSDuouyRBHBvAHH5Ew6yEuTQtqULOPjLn3My5PBl/BW9TEHyckAUCJBoCngjTW0MPaxQRJ9Ti5fXpEDyHcjNkHUmXAdrL30bKhO5vIzh26InzSf9TPNJP2Nu5yR7Mh300QELexeyUgqHyE2t7bD1qkRyqDz3Mer8QRz8Cg9n8AhsYxBCz06RjQpNejLRl45in+99LEheTjYqUzPdtiY1SRfGN7N1RJOWZCAj99mlUJ+z8/tclHxWUhyJty+Rk5FCXk42sUGnsPP217WhMjEjL8dwMsuzTscBL/DVgvV8tWA9Ds5uJMRG4eSmHwbl5OauC5Hfw9bBEd8qNbh9RR43fXzPFqrWrg9AYmwUF48fRJOVSVpyItfOn8S3Sg1qNWpBbGQYqUmJaLW5nDqwg6p16hv0R5OdhamZ/nqnJMbpwvj2zq6kJBoOz0iMicK5YJ9dPXR9Lko+ISaaoHMnSUtORJOdxfmj+/GrVlPXhqm5OZrs8jEBsKxSlo3Nw0AvIEGSJK0kSQmAA7LBebQ0O/YoWTB3Np1aN6NT62ZER0WyY8tmBg19AYAGjRqTmpJiEEJPSkrE1s5O57Fs074j16/Lf0zbN2+iaYsWqNVqLC0tadCwETeuXeNBuXH9Gn6V9X8KO7ZuZtAwuT+Dhr3A9i2bDGTOnTlNZf8qVKhYEVNTU/oNGMiOLZuLld+3excBtetgaWmJWq2meatWXA8K0rXp5uZOaEjIA/f7mSHyuDyZ5+yvcqg7/iq4Bcr7bH3kEPn9Bl5Oljxe0zI/5OVQBTLyjf7sJNmwBDk8bekiG5nZyXJ7KtN8GX/INJJ+NSNW3y5AQpBswIL8Hh9kKJMaDhbOYO4oT0ZyrSPLFSefeAOsPfRjSO0ryROb7mFmK89eL2OEHtmsm9CTnZJAzOXjeDXsAIB9herkZqUbhNBzM9MwsbDCykU2xp2r1ic9JlS338TCCqfKdYi5fExXpjY1R21uqfvsXK0BaVGGv5+0mFCsnPURg5grx/FuJI+7827UiZgrxwxkUkKvY+XijaWjO0JtgmdgG2KuHC9WPu76GWw9/FCZmiNUKpwq1yEtWn8M5rYOZCZGP+hpfGbYvfZvPhnVl09G9SUpPoazh/bQslt/APxr1SMjLc0ghJ6emoKVtS0evn4A1GrUkogQeYWCMwd3U61uI1RqNWbmFvjXrEdE8C3ioyPwrxWIWb5joFbD5kQE3zboT0TwLdx9Kuq2zx7aQ+vucn9ad+/PmYO7DWRuB13E3dcPF08f1CamNOvUk7OHdxcrf/HEQXz9q+vGkNao34TwYP0qC/ZOrsRFhRvoUnh2KJNjNvO5iDwLfel9ZTaSJMUJIWwwHLM5X5Kkn/I/XxBC3Et4vRJ5nOdLQoh+Beo3kyQpjKeIXTu20bFLV46du0RmRgZvjXtdt+/vVf/w9vixREdF8u6EN5m3ZCl5eXkkJyXx1ptyvRvXr7F31072HjlBXl4efy9eSNBV2fP1+7yFtGjVBidnZ85cucHU775m2ZJFhfTv2bmdn2fP023/PH0afy5awrAXRxIeFqqb3e7u4cn0n3/jhef7o9Vq+fDdt1m2dgNqtZplfy3mWtDVYuWTk5KY/ctPbNt7EEmS2L1zO7t2yGPM6tVvwOlTJ3STlMo0idflZY8avQ15Gnl5onvUelEeq6lJld8DhsrhrNwsuJFf7+4+qPYcNHgTEHBnu+w9TM2AuMtQf6zs2UyLhMiTRvTfgOoD9duhByBgCHg0kA3Wq8vlcjNbqNoPLi8B8uDWJnn8pVBB9Gm94ViUfG4WhB2GwPzvc8J1+dgBbLwgNRTdJKUyTFzQSVwDGtF6yly0mmwurZyh29dg9OdcXv0T2SkJXF79M4EjPgIpj5zMNC6t1K9K4Va7BXHXz6DNydaVmdk6Un/kRwAIlZrIs/uJu3baiP5T1Bn6rm77zt5V1Bs+Be/GnclKiuX8ku8AMLdzotbACZyZ/zlSXh5X1/1Ow1e/QqhUhJ/YSXr03WLlczPTCD64juYTZiAhERd0irgg+ftn51OF5LvXdBNIyjLnj+6jXvO2TF2xC01WJnO//UC3752pc5j3/Uckxccw/38fM/7rn5EkifTUZOZ+J4fRI0JucfH4Ab5ZuBFJymP/xlWE37kBwMm92/ly/jrytLmEXL/K3g3LDfRfOHaA1z6Zqtve9NefjPtyFm16DiQ+OpJf8me3Ozi78fKUb5j23qvkabUsnv4l70+fh1CpObB5NeF3bhYrn5GawrYVC/h87hqQJM4f3c/5o/sAqFS9Nrcun9NNUlJ4NhEljY1T+HeYqlWSs41FyRXLIPP/Ws5Xn37EnduG6/89Cb76firbt27m0P59T0xn1Ka3S65UVgkYJhupWYYhtSdC5R6yRzTJ0DPzuNi+4WzJlcoogSM/4vrmBWTERZRc+TFQo88YYq4cJ+Hm+Sem8++jN56YrqeNCd/+yorf/kd0WOlEil6Y+BFnD+3hyuknF5BccvjGaUmSGj0xheWAshxGVyglvvn8E9w9DJdbelIEXb3yRA3Nck/wDtlzWVpkxDxRQ7O8c33LQsyNLbf0hEiLCnmihmZ5Z+XvP+JgZLmlJ0X47RtP1NBUeDwons3HRHn2bJZHyrVnsxxSnj2b5ZHy7NksjyiezUdPWR6zWarUq+zGqZkvlHY3FJ4QJu2+Le0uKDxBZo8qH4uKK8h82q9haXdB4Qmy5LDycPGoUcLoCgoKCgoKCgoKjw3F2FRQUFBQUFBQUHhsKMamgoKCgoKCgoLCY0MxNhUUFBQUFBQUFB4bT+UEISHEDCBEkqSZ+dvbgVBJkl7J354GhAPfAAXT20yXJGmxECIYaCRJUlyBNl8CpgJhgA1wG/hCkqQj+fv3Ae9KknQqf9sP2CRJUm0hhBUwB6gLCCAJ6CZJkpFcfKWNgFaTICsZTs0z3F25HXjlZ2hRqcDGHXZ+KufDDhwK5rbywt93j0HwQUPZgN6w41Pj+bDNbaHOIL1e/w7g21ReFPzyOogzkonI1BLqjwArR8hIhDOLITdTTrHYcCTY+0LYSbj8T36fTaHhCLBykduNvgLX5GxDVGwJWo1cv5ygUqk4fuIkERHh9O1jmNv4nXfeZeiwYYCcTz4gIAAPdzdcXV1Zuky/iHPlypX5/LPP+OmnWTw3cCCffvoZAQEBNG/WlNOnDRf3BvDw8GD2n3/q9E6ePIVRo0ej1WqZ9NZEduzYYSDj6OjIsuXLqVjRj5CQYIYMHkxSUhJOTk6sXLmKRo0bs2jRIiZOGK+T+eqrrxn+4os4OjriYK/Pfz527DjSM9JZtHDhvzp3zyJCqOj7yWzSE+PY+fMHBvvrdB2Mf9POAKjUauw9K/D3pH5o0lOLlG/QdzQV67dEypPISk3kwPzvyUg2XDPV0t6JViPe08nV7T6M6q17kpen5diynwm/bPi7M7O2pcNrn2Hj7EFafBR7/vgcTUYa5tZ2dHjjC1z9anDjyDaOLpUXnVebmdPx9c+xdfVGytNy98JRTq35E4CA9v3J1WRy4/C2R3AmnxGEwHf4t+SmJRD5z1SD3Q6Ne2Eb0FLeUKkxc/Lmzm9jkHI0eA/5FKE2BZWa9OvHSTiyGgCnFs9hV6cD2kw5rW38wRVk3Dln0Lba2gG3Lq/q9Do26YttnXYg5RG3ZxEZwRcMZFQW1nj0moiJvQu5yXFEbZxFXnY6KgsbPPq8hYWHPymX9xO3e6F8eCZmePR5C1N7NyRJIuPWaeIPyvcl+/pdyMvJJvXSfgM9Cs8eT6WxiZzX/HlgphBChZwJyK7A/hbAW8AtSZICH6LdFZIkvQkghGgPrBVCtJck6WoJchOBaEmS6uTLVgeezkTMlVpDWjSYFLHs0u198gvArSZUagM5mXJu6SsbICVcNjxbTYK463JbABYO4FINMhKK0d0WQvPT1dm4g1d9OPA/OQ9209dg3/fAfUtt+XeE+BtwYo9snFbpAEGbIS8Xrm0DWw/5df8xxN+SUx02ex1ca0BsEISegBbjy5WxOWHCRIKCrmJnZ2d0/7RpPzJt2o8A9OrVi4kT3yIxMZHExEQaNZQfOlQqFXdDw1i3TjboL1+6xPMDn+P33/8oVvekSW8zd+5cAAICAhg0eDB169TGy8uL7Tt2ElCjOnn3ZXmZPHkKe3bv4X//+4H335/M5MlT+OCDKWRlZfHZZ59Sq3ZtatWqXUhm06aN/PrrLwRdu16ofMGC+Rw4eKhcGZu1Oj1HUmQIphbWRvdf3L6Ci9tXAOBbrzm1Oz2vMzSLkr+4fTln1s8HoGbHAQT2HsmRv6YbtF278yCuHZTTxTp4VqRykw6s+fQlrByc6f72NFZ/9CKSVPh61+s+jIirZ7iwdSl1uw+jXvdhnFzzJ9ocDWfWzcfRuxKO3pUMjiHy2jlUahO6vzMdn9pNCLt0guuHt9B7yi/lyth0aNAdTUI4KjNLo/uTTm4i6aR8TawqN8ChUQ/ysmRHQPjKr5FyskGlxmfo56TfOUd2pJzJJ+n0FpJObS5ed6MepFzYA4Cpszc2NZpzd+F7mNg44v38R4TMmyQ7Jgrg2KQvGXcvkXRiAw5N+uDYtA/xB5YhaXNIOLwKMxdfzFx8DI4hM/QKqNR4D/oYq0r1yLhznpSL+/AZ+oVibJYRntYw+mFkgxKgFnAJSBVCOAohzIEAILEo4QdBkqS9wJ/AmAeo7onsSb0ne02SpOxi6pcOFvayARl6/MHqe9WHiPz1ArNTZUMT5PzaadFye/eo2Qeubiy+Pc+6stEH4F5LbjtPC5kJkBEPDhUMZdxr6Y3DsJPgnm9oaDWQeEc2OguSlyMbmgCSFpLD9P3My5F12fs+2PE/43h7e9OjRw/mzzPiwTbC4CFDWL7CMCVdx44duX3rFnfvyikEg4KCuH79ukG9++k/YADbt8l//H369GXlihVoNBqCg4O5desmTZo0MZDp3acPixfLKU4XL15En759AcjIyODw4cNkZWUZyBw/fpyoqCiD8szMTEJCgmncuHGJfS0LWDm64lu3GdcOFm8k3MO/SUdun9Dnri5KPicrQ/fZxMwCgwfCfPwatiHs0gkAKgS25PaJPeTl5pAWF0VKTDiulWoYyFQIbMmNI/J35MaRbVSo3wqAXE0W0Tcvos3RFKqv1WQTee0cAHnaXOLvXsfa0VW3LzUuChcjesoiahsnrCrXJ+XC3geqbxvQgrSrR3TbUn46UqFSg0ptYBiWhE3VJqQHy4vn2/g3Ii3oKGhzyU2OJScxCguPKgYy1lUaknr5AACplw9gXaWRri9Z4deQcgtfbylXIxuaAHlasqPvYGLjrNuXkxKLuYf/Q/Vb4enkqTQ2JUmKAHKFEBWQjc6jwHGgOdAIOU+5hvzc5gVerR9S1RngQe5c84HJQoijQoivhRBVH1LPk6FmX7i66cFuKipT2SMYZRgKwdIR7L0hKT89mVstOSyfGll0e5ZOkJMhG5cgG4BZSfr9WUmFjdd7mNvKhi7I7+Y2Jff9HiYWsrEaV2BNtORQcKr84G08w0yfMYMpUyYbeA+NYWlpSdeu3Vi7Zo3BvkGDh7B8uaERWhx+fn4kJiai0ch/Hl7e3oSGher2h4WF4+XtbSDn7u6uMxyjoqJwc3N7KL33c/rUaVq1etif/bNJs8FvcmL1bB4kEYfazByf2k24c+bAA8k37P8yg/+3kirNOnNm3XyD/TYuHmgyUsnLlQM61o6upCfG6vanJ8Zi5WiYZcbSzonMZDkakpmcgOVDZB4ys7TBt14LIq6e0ZXFhVzDo2rdB27jWca1wwjiDywFSv59CxMzrPzqkXajgKNBCHxHfEelsbPJDLlIdpQ+fbB9/a74jvwBt66voTI39JKb2LuizUoHrfywr7Z1JCdVP7QiNy0BtZFrqbayR5ueBIA2PQm1lfGIizFU5lZY+zcg4+4lXVl21G0sfcrHw0VZ56k0NvO55928Z2weLbB97/HtliRJgQVeB403VSSiwGdjd3AJQJKkc0Bl5DGfTsBJIUSAQWNCjBFCnBJCnIpNzrh/9+PFLQA0aZAS9mD13WvJnsOczMLlajN5rOSV9ZCbLRulVTrC9e3Ft2dhB9kFx3EKI5UeYbYqoYL6w+HOQdmbeY/sNLkvZZyePXsSExPLmTNnSq4M9OrdmyNHDpOYWDggYGpqSu/evVm9etVD6ff09CQuTm9sCGF4vZ9EdrKY2Bi8vLweu57Sxrduc7JSE4kPKdnjDFChXguib17ShdBLkj/9zzxWvD+Im8d2EtChv8F+K3tnslKTi1f6CK+3UKlpN+YTruxeS2qc/iE3KyURKwfnR6bnacWqcn20GSlkR995oPrW/g3IirimC6EDIEmELv6A4NnjMPfw14Wvk8/tImTuREIXTSE3PRGXdsMN2jOxdkCbmVqgxMj9/FH+vIUK917jSTqzndzkGF2xNiMFtU3ppUZVeHQ8rWM2QTYoWwB1kMPoocA7QAqyp/FRUB+4N14zHij4rXYCdBOM8icDrUUe55kH9Cgge6/On8iheRpV9XiyeUAdK8keyPYB8vhLUwsIHAbnlhqv7xWoD6HfQ6ig4UsQfgaiLspl1s5g5QSt35G3Leyh9SQ4PEvvkQTQ5oC6wNcpK0ke53kPCwfISjHsR3aq3rtpbisbiw9CnechPc5wEpPaVO5LGadFi5b07t2b7t27Y2FhgZ2dHYsWL2bkiBFG6w8ePNio97Jb9+6cPXuGmJgYI1JFk5mZiYW5flxweFgYvj764Qs+Pt5ERkQYyEVHR+Ph4UFUVBQeHh4Prfd+LMwtyMzMLLniM457ldpUqNcSnzrNUJuaYWZhRdtXPmL/3G+M1q/cuAO3ju9+aPnbx3fTZeL3nN2wsFC5VpON2tRMt52eGKsLb4Ps6cxIiuN+MlMSsLSXvZuW9k5kpj7Y6KdWI94hJSaMy7tWFypXm5qh1WiKkCo7WHpXx9q/AVaVAhEmpqjMLHHvMY7oLb8arW9TowWpBULoBcnLziAz9CpWfvXQxIWhzdA/NKRc2IPngPcNZXJzUJmY6ra1qQmY2uqNfBMbJ7RphtdSm5GM2tpB9mpaO6DNMHLPN4Jbl1fJSYwi+czWQuXCxBQpp+xf7/LA0+7Z7AUkSJKklSQpAXBADqUf/a+NCyHaIo/XnJNftA8YLvQumpHA3vy6LYUQjvmfzYCaQMh/7cMj5doW2PMV7P0Gzv4FcTeLNjRNLMDJH6IvFy6vO1geq3lHH3ojNQp2fS63u/cbOZx+cEZhQxP+z95Zh0d1fA34nd1s3N1IgjsEAsGtUFwLBVpaaGlLvaVuX93df22pARWkUCheKO4S3CFA3N2T3b3fH7NsArsRWiAkue/z5Nm9c8+ZOXc29+7ZM3KgIE0OpV8k5ZicE6rRynInb8iOtbQl5RgEm+bcBXe1tMkaLYbKazj+l+U5Jx9pcz3npZdeJCw0hGZNmzDl9tvYuHFDpY6mq6srffv2Y9lflv01efKVD6EDnD59mtCwMPPx8uXLmDhpEra2toSFhdGsWXP27Nljobdi+XKmTp0GwNSp01i+bNkVt12R5i1acPTY0eoF6zj7/vye+c/eysLnJ7Nx1hsknjxQqaOpc3AioGVHYg9ur5G+q2/5dIeQ8J5kJ1nepzkp8Th7lS/Uiz20gyaRN6Gx0eHs7Y+rXzBp509a6MUe3EHznkMBaN5z6CU2VUbE2HvQOTixa/5XFudc/RqRlVCzaF9dJmPrfC589wgx3z9GyoovKIo9VqmjqbF1wCG4NQXR5btGaBxc0Ng5AtJhcwxtR2mm/PGndXI3yzk170ppehyXU5aVhI1r+Y+JgugonFv1AK0NNm4+6Dz8KU4+a6FXEB2FS1uZytWlbV8KzlrfyaIinr0morFzIH3DXItzOo8Aq/ap1D1u5MjmEeQq9N8vK3NWFCVdCOGMac5mhfM/KYryhen9YVMEEmAhcp7nJCFEb8AROA+Mr7ASfRZy/uYhIYQC7AMu7i3SFPjG5IhqgJWA5eS3G5WQHvI11uSj+7eX2xAZKvxi9GgMwV0gNxF6PynLTq0qX/BTHYZSuQjI0Uu+5qdA0kHo+6zcoujon5jHXdpPhNgdcnFP9AboPBUaRUJRNuyfU17ngJekU6nRyoVDe2aBvhia3yzr7/2ElIvZXr4oyiMMTltuudOQmHH//QDM+u47AMaOG8e6dWspLLx0aoeDgwODBt3Mgw88cEn5mLFj+fzzL/Dx8WHZ8hUcOnSQ4cOGXSJTWFjIuehomjZtSnR0NMePH2fRH39w5Ogx9Ho9jz36iHku6XezvmfWd98SFRXF+++/x/z5C7h7+nTiYmOZNGmiuc6z0edwdXXF1taWMWPGMGzoEE6cOMF7773P5Ntuw9HRkQsxsfz044+88cbrAPTs2ZM3Te8bKq36ya2nTm6WjntYpz4kHNuHvtRysZU1uoyfgbt/CIpiJD8jhe2/WK5E15cWk5eWgItvEHmpCWQnXuD8vk2Mf2M2RqOBnb99Zl6J3nvaM5zctIz0mFMcXv07Nz3wKi16D6cgM4X1375mrnPie/OxdXBEo9URGt6bNZ8+TWlxIeEj7yQ7KYaxL8s4wPGNSzhtWtTk16wdB5bPsbCvIeHacRAAuYf+AaTDWBhz2LwgCMDGyQO/YQ/K7e2EIP/ULgrPyZEsr763Y+cbCoA+J43UdT9YtKGUlVCWnYLO3Y+y7BRKM+LJP7WL0Ls/QjEaSFv/s3nahM/g+8g9tJ6SlHNk7V6G/6jHcW3fH31uBsnLPzPXGXrfF2hsHRBaG5ybdSFh0bsYS4rw7DGO0owEGk19B4CcA2vJPSIXRdkHtSBzZ935qlWpHHE95lU1RLo091f2fTalts24vvi1A7dgOF1LW5O4BsmtnA7Nu+5N24z+9Lq3WduMGTuWiM4RvPLKy7XSfnh4ODOfeIK7pk277m1/d3ff695mbRPaqTfeoS2JWlqz3Q+uNl6NmtFu8EQ2//jOdW+7X6uA695mbePUrAt2fk3I3L6wVtq39Q3DPWI4qav/d93bbv7M/ChFUbpc94brMTdyZFOlrpFyFGyt7/93XbB1qj1HtwHy19KleHnV3mINb29vXn3llVprv6ERc2Abds5WdpS4Tti5uBFlZaW8yrWh4Ow+tA4utda+1sGl1hxdlauP6myqXF1qusfntSC9Zit1Va4eNd3j81rwzz//1FrbDZXTNdzj81qQeLz6+X8qV5eLw9m1QVHMkVprW+XqcyMvEFJRUVFRUVFRUanjqJHNa4SiN6BPy6teUKVeoF/0WG2boHIdsbv1y9o2QeU68uyI8No2QUWlTqNGNlVUVFRUVFRUVK4ZqrOpoqKioqKioqJyzVCdTRUVFRUVFRUVlWuGOmezHqKJnIQIbg/6UgzbZkOmlcw9zl5o+80AO0eUjFiMW38Co6F6fSHQjnwJpTAb43rLDB8Aos1AKClAid4Fto5o+s9AOHuh5Gdg3DQLSi3zxougtmgiJ4HQYDyzDeWI3MJIhEagCR8F7v4YVrwLGTJxk2gSiabdkPIKPIIwLH8LMuPRDH4C46bvrLZT7+lwC/i1lik7o36XG+dfjqMndJ0Gto6QHQ/7fgXFAM6+EHG73Cv1+Eo4W8VK1N4Pwa4fQV8Cvq1ku0JAzC44vd66TmW2db4N/NvIVKXr3y+X7zpN2gSgc4CyItj4IbgGQLMBsL+SDFn1lMFDhvDxJ5+i1Wr56acf+eiDD6zKffLpZwwdNozCwkLuvWc6Bw8cwM7OjvWbNmFna4eNjQ1//rmYN1+Xm+G379CBr/73P5ydnImJiWHanXeQl2c539zf359vvpvFuDFyE/lnnnuOu++ejsFg4MknZrJurWUyBQ8PD36bN5/Q0FBiYmK4ffIksrOz8fT0ZN7ChXTp0pVf5sxh5uNyzrOzszMbNm026wcFBzPvt994+qknefChhygoKGTunNn/tSvrBM069WDEfU8jNFqi1i1l6+LZVuWG3/cMLSJ6UVZSzJ+fv0bSOZmIY+yjr9CySx8KcjL56rFJFnq9xt7J0Ltn8u4dAynMy7Y47+zhzdiH/49f35oJQN/xd9P55jEoRgMrv/+IswcsE/k5OLsy8Zl38fANJCs1kQUfPE9xQR4OLm5Mfu4Dgpq14cCG5aycJf93bR0cufed8k3lXb39OLRpFat//JhuwydSWlLEgfXLr7DnVG5E6nRkUwjxkhDimBDisBDioBBio+n1rBAix/T+oBCipxBikxDiVIWyRZfVdUgIMe+ystlCiEIhhEuFss+FEIoQwvt6XeeVIILagasfhj//D8POX9D2sL6xvCZiPMbj/2D482UoLUQ0710jfdF6IEpOUhUGaNA064VyTqYq1LQfhpJ0EsOfL6MknUTTfqgVHYGm2+0Y1n2BYemraBp3BTe5ibKSnYBh4zeQcuYSFeXcHgzL3pR/W36C/AzIlM6LEr0L0ap/TbqrfuHXWqbrXPc2HFgA4bdal2s7Cs5uknJlhRDWXZaXFsKhxXB2QzXttIGcROloIqDjBNjxHfzzHgR3Bhe/K7MtZjds/85SZ+8c6Vxu/BASD0HiYVmemwQObuDgXk2H1B80Gg2ff/Elo0eOoGP7dkyaNJlWrVtbyA0dNoxmzZvTplVLHnrwAb78WqY4LCkpYcigQXSN6EzXiM4MHjKEyG7dAPj2u1n834svEtEpnL+WLuXJp5+2asPjTzzBTz9Ix6BV69ZMnDiJ8A7tGTViOF98+RUajeXXyTPPPceGDetp27oVGzas55nnngOguLiY1199leefvTQvd35+PpFdIsx/sTExLF26BIDZP//Mw4888i97sG4hNBpG3f88c19/jC8fmUCHPkPwadTYQq55RC+8Ahrx2QNj+evrtxj14AvmcwfWL2fu649ard/V24+m4d3ITq38Wd5rzBT2rZV979OoMe37DObLR25lzmuPMur+5xFWPu8+4+/i3OG9fPbgOM4d3kvf8XcBoC8tYf1v3/D37M8ukS8tKuR/T9xu/stOTeL4Tvn82f/PMnqMnFxlP6nUHeqssymE6IHMnd5ZUZQOwCBgiqIo4cC9wFZFUcJNfztMalMqlE2oUFdrZF/0FUJcviv5WWCMSU4DDAASruW1/RdESDhKtOkXZ9p5sHWQX8yXywW0Qrkg960znt2JCAmvXt/RHRHcHuX0tsrbD2iFkhkrU1QCIqQjyllZn1KhnUvwboySlwr56WA0YDy/FxHSUZ7LSYbclCqvWdOkK8q5veZjJe6QdFgbGgHtIc7UD1kxMhpo52op59NcOm8AsXulHkBpPmTHgdFoqVORRhGQZMpH7hkKBekyRaligPgD5fXV1LaMc9LprYqgcIivsM9i8jHp2DYQukZGEh0dzfnz5ykrK2PhwgWMGj3aQm7UqNH8+ssvAOzZvRt3N3f8/WVO84KCAgB0Oh06Gx0Xs8e1aNmSrVu2ALD+n3WMG3eLVRvGjbuFv/+WIw6jRo9m4cIFlJaWcuHCBaKjo+kaGWndnrky5/Wvc+cyevQYQKY73bF9O8XFlafUbNasGT6+vmzbuhWAoqIiYmJi6NK1/t/bwc3bkpEcR1ZKAga9niNb19I6sr+FXOvIfhzcKPc+jT99FAcnZ5w9ZBwk5vgBivJzrNY//J4nWTv7c6rKINimx02c2b/D1E5/jmxdi0FfRnZqIhnJcQQ3b2tpT7d+HNiwAoADG1bQuru0uaykmNgTB9GXllroXMQzoBHO7h7EHJdpNctKi8lKTSLISjsqdY8662wCAUC6oiglAIqipCuKkvgv67od+AVYC1z+BJ8HXByD6A9sB/T/sp1rj6M7SkGW+VApyAJH90tl7JxlFMvkEFKQhbgoU4W+JnISxqjFmHOcW0H4NkVJjykvcHCFItMDrygH7C0zUghHdyjILC8oyEY4elR9nRX1w7piPL+nvKC0ELQ2YFeL2YxqAwc3KCr/7CjKtvyhYeskh6MvfvbWZKrDq7F0SgHsrbRpb6W+mthWaXtNoCRPOrUXyYqT5Q2EwMAg4uLizMcJ8QkEBQZZygUFER9fQS4hnsAgKafRaNizL4r4pGTWr/+HvXvkPXPs2FFGjZKPvfETJhDcqJFFvWFhYWRlZVFqchaCAoOIjyufohEfH0+gFXt8/fxITk4GIDk5GR9f3xpf88TJk1n0x6UZZKKi9tG7d+8a11FXcfXyJSe9/Ed2TkYKLl4+1culp+JqRa4irSL7kpuRRvKFM5XKuPsGUpSfh0FfBoCLlw856cnm87npKbh6WX6WTm5e5GfJ+zQ/Kx0nN88qbalIh75DObJ13SVliWePE9qmU43rULlxqcvO5lqgkRDitBDif0KIfjXQ+a3CMPqHFconAQuQjuVtl+mcAXyEEB6mc/Mrq1wIMUMIsU8IsS89r/Jf7NcWYaWscuewpvoiuD0U50GGlfmfFXFwk3Pvroj/YLN3YzCUQvZlvzOK8hrUMGvl1KAfq4huWEXnaBpC/w9tXolccATE77+0rCTPulNbTxHC8h6xFpWqSs5oNBLZJYImoSF06dqVNm1lxOj+e+/lgYceYufuPTi7uJgdyor4BwSQnl7u7NfUnv/CxImTWDD/0sdtWmoaAYGBV7WdGxMrz0Rr/Wvlc6jqftbZ2tP31ntY//u3Vbbu4ulNYW75j8Pr8Xm37zOYI1svTTecn52Fq2fVzrNK3aDOLhBSFCVfCBEB9EEObS8QQjyvKMrsKtSmKIqyr2KBEKIrkKYoSowQIh74SQjhoShKhTAMfwKTgW7A/VXYNAuYBRDR2Ofq3omVIFr1R9OiDwCGdV9AYRbCycP8NS6cPKDwsqGUkny5OERoZITLyQOlMFueq0RfhEYgGnVEG9wOtDrQOaDpM10uLKqIoUxGFS9SlGuKauXI12LLhQdKYRbCqcIvYCf3cnuqQdO4K8ZzeyxPaHXSCa3PNO4NYT3k+53fmfrYAzgvyxzcZf9XpLRADmFf/Owd3KH4MpnqUIzIL0MFii+2SXmb1uqriW3WEBoI7AAbP7q0XKsDY9mV2V2HSUiIp1GFiGNQcBCJSZYDOQnx8QQHV5ALCiYp8VK5nJwctmzezJAhQzh+7BinTp1ixDA5l7p58+YMGz7cot6ioiLs7O3Mx/EJ8QQ3CjYfBwcHk2TFntSUFPz9/UlOTsbf35+01NQaXW/7Dh2wsbHhwP5Lf2TY29tRVFRUozrqMrkZKbh5l899dvPyIy8z3VIu/TI5b19yrchdxDMgGA/fQB7+TC5PcPX25cFPf+O7p6eSn51hltOXlGCjs63QTipu3v7mY1dvP/Iy0yzqL8jJwNnDm/ysdJw9vCnIybSQsYZ/WHM0Gi2J0ScvKbextaWstLYCNypXk7oc2URRFIOiKJsURXkVeAQY/y+quQ1oJYS4AEQDrlbqmQ+8CaxTFKWaCW3XF+XkJvNCGYpyUOIOIZqaHBCfxlBaVD6MXVEv+RQiLAIATbMeKLEHZXkl+sb9SzD88RyGRS9i3Pw9StJJS0cTUHKSEC7lwytK3CFEM1mfaNYDJfaQ5UWkX0C4+oKzF2i0aBp3RYmzImeBQIRFoJzfa3nKwVUuGqrPnN9WvoCmOFfOo2xkms/mESqHy0usOHTpZyHQNCc2pCskXWEO4vxUcPKS77NiwdlbrnAXWgjuVD6fsyI1te1yfFpAfop0aivi7CMXCjUQ9u3dS7NmzQgLC0On0zFx4iRWLLdcpbtixXLuuPNOACK7dSMnN4fk5GS8vb1xc5ORYHt7e24aOJBTp04B4OMjI0dCCJ5/8SW+/26WRb1nTp8mNDSsvJ3ly5k4cRK2traEhYXRrFkz87C8hT1TpwJwx9SpLF++rEbXO2nyZBYssBxEat68BceOHqtRHXWZhDPH8QpohLtvIFobG9r3GczJPZst5E7u2UL4gBEABLdoR3FBvnkY2xopMWd5f9rNfDJjFJ/MGEVueirfPDHlEkcTID0xBnff8gjyyT2bad9nMFobHe6+gXgFNCL+jOXncHLPFjrdNBKATjeN5MRuS5ut0b7vUI5s/dui3DswhNTY6BrVoXJjU2cjm0KIloBRUZSLE0/CgZjKNazWoQFuBTooipJgKhsA/B9g3o9BUZRYIcRLwD9XwfRrihJ/BBHUDu0tb4PBtHWRCc2gRzFunyudx32L0fa7DzqNQcmMQzmzvVr9mrV/FE2f6eZj45E1aPrNQNO8F0p+ptySCMDBDU2vqRj/+RIUI8Zd89DePFNufXR2O2RLR0KEhKPpdhvYO6Md9ChKZhzGdZ/Lc/7NoTBLLiyqiFcoStr58nmJDYWU4+DfGm7+PxnV3V9hc4UeM+DAfOmUHl0OXadCm+GQkyC3KwKwc4EBT4GNvRyKa9YP/nnXcsg8+Th4N5NzKBWjXMHe6wFAI1eW55nmdoX1lK8XdlRtW5ep4NMUbJ1h6GtwYrWsB+QioLjLhtABvJtLOxoIBoOBmY8/xopVq9Fqtcye/TMnjsvrv2+GHGz5ftZ3rF61iqFDh3Hi1GkKCwu57957ADkM/uNPP6PVatFoNCxa9AerVsqFJZMmT+aBBx8CYOnSJcyZ/bNF+4WFhZw/F03Tpk2Jjo7mxPHjLFr0B4eOHEWv1/P4Y49iNC0s++a7WXw/6zv2R0Xx4fvv8/v8+dx993Ti4mK5bVL5Fjynzkbj6uqKra0to8aMYcSwoZw8cQKACRNuZcyokRZ29OjZk7fefONqdesNi9FoYMWsD5j22ldoNFr2r/+L1LhzAHQdKmMhe9cs5nTUNlp06cUT3/4ltz768jVzHbc+9TaN23XB0dWdp39cxYZ537H/n79q1H5ZSTGZyfF4+geTmRxPatw5jm5fx2NfLcJo1LPiu/dRTJ/3mEdeZu+aRSSePcGWxbOZ9Mx7RAwaQ3ZaMgs+eM5c55OzlmPn6ITWRkfrbv2Z89rDpMXJkY52vQbxyxuPW9gR0jqcjfO//1d9qHJjIa72vIvrhWkI/UvAHblg5ywwQ1GUdCFEf+BpRVFGVpDfhFxUdHEMJh14C3hPUZTuFeS0QDzQGXgXWKEoyuXbJF0AuiiKUulPyIjGPsruV8f9p2usq2gGPIhx32LIq9mQ2VVvP3ISStwhlKST1QtfJWzcHK9bW7WOnSt0mQLbv6md9jVa6PMobPmi1n5QNMTc6KPHjKVzRGdee+WVWmm/Y3g4j898gul3TbvubTfE3Oituw8gsGkr1v9WO/d5QOOW9BwzhcWfXf//t7eW7Y9SFKXLdW+4HlNnI5uKokQBPSs5twnYdFlZ/0qq6n6ZnAHplALcVUn9YTW1syFijPoTHN1qzdlUshKuq6PZ4CjJhQs7wcaumoVC1wgHDzi2ouFFrmuZZX8txcvLq9ba9/b25vVXa8fRbYic2LURR5faW4Tn6OrO+t9r6QetylWnzjqbKjcwuSnV7o15LVHOVL4PqMpVIuFg7bVdkH7pNkgq142ff/qx1tpe/88NP4up3hG1bmmttR19aHetta1y9anTC4RUVFRUVFRUVFRubNTI5jVCbzCSVmt7bapcb4Knq5PYGxI/3zegtk1QuY5MHdahtk1QuY68tczKokSV/4Qa2VRRUVFRUVFRUblmqM6mioqKioqKiorKNUN1NlVUVFRUVFRUVK4Z6pzNeoRdSHtc+94BQkPh8c0URK2wkBG2DrgPfgCtixcIDQUHVlN0YitodXiNfxGh1YHQUBy9l/zdSwBw7jYe+yadQFEwFuWS/c/3GAuyLerWOLrhdtM9ZK34BACniJE4tukHipGcLb9SGmuZqUbYOeEx9GG0rt4YctPJWvMVSkkhOr8muA242yQkyNu9hJJzUWBji8ewR7Bx80UxGim5cJC8HQsBcOwwCKWsRF5PA2PIkCF8+tnnaLVafvzxBz54/30LGXd3d3788SeaNG1KcXEx994znWPHZBYQNzc3vv/+B9q2a4eiKNx7z3R27drFvHnzadGypVk/OzubiM6dLOr29/dn1qzvGT16FADPPf8806ffY96MfO3atRY6Hh4ezJ+/gNCwMGIuXGDSpIlkZ2fTtWtXvjVlsRFC8Mbrr7F06VIA/l67jkkTbyU7O/tqdFudIrBtV7pOfASh0XB22yqO/j3PQkZn70Tve17EycMXjVbLsXULid4h803rHJzoeefTuAc1RlEUdsz9kPRzx+k4chrNe4+gOD8bgANLfyThqOVKYAdXT3rc+RQbvn4JgHZDb6NZr+EoRiN7F3xJ4vF9Fjq2ji70ve9lnL38yc9IZsv3b1BamI9XWCt63PGkSUpwaMUc4g7KXSTCx0ynaffB2Dq6MO/xEea6WvYfi7602Hw99R7fVtD+Fpn/PGYXnFlvKWNjD13ukNuBCQ2c3Qixe2qm32wAtBsDq16SaWwvx84VOk2CXab56M0HQWg3mfDhyJ+QamV7OZ0jdJ0mM4oVZsLe2TJbmHuIrOsiJ9fIzGVaHXS9C5y85VZmycfguOl7q3FvmQAi1ko6YpU6R51wNoUQwcDXQBtkNHYF8IyiKKWm838Bvoqi9Kig8xpwH5AG2AJvKooyz3SuO/A5YGf6WwD8ASwBOiqKUmSSWwn8AmwEfgQaATrggqIolgmEaxMhcO0/lcylH2DIz8R70uuUnNuPPuvSfMWOHQahz0wga8WnaOxd8LnzfYpO7QBDGZlL3kMpKwGNFq/x/0fJhcOUpURTsH8l+bsXm/RvxrnrWHI3zbYwwanTMAqPbQLAxiMQhxbdSfvtBbTO7niOfY60X56VD6oKOEeMpCT+OAVRK3CKGIlzxEjydiykLCOe9AWvgmJE4+iG921vk3r+AAAF+1dTmnBC2jnueexCO1ASc5jC41vwnvByg3M2NRoNX371NUMG30x8fDy79+xl+bJlnDBlY7nICy++yMFDBxk//hZatmzJl199zeCbBwHw2Wef8/ffa5g48VZ0Oh2OjnKT+ttum2zW//Cjj8jJsUx9CvDEk0/yww/yS6l169ZMmjSZ9u3aEhgYyNp1/9CqZQtzhpmLPPf886zfsJ4P3n+fZ597jueef54Xnn+eo0ePEtm1CwaDAX9/fw4cPMTy5csxGAz89usvPPjQQ7z7zjtXrf/qAkJo6Hbb46z77BkKs9IY/sI3xB3eQU7SpUnTWg4YQ07SBTZ+/RJ2zm6MfWMO53f/g9GgJ3LSIyQc28vmWa+j0dqgtS3PdX58/SKOr1tYpQ1tbr6VM9tk1iG3gFDCutzEsten4+jmxc1PfMTSl6dyeTbfdkNvI/nkAY7+PY92Q26j3dDb2P/n92QnnGflOw+gGI04uHoy8uXviT+8A8VoJP7wTk5tXMrYN3+5pK6z21cz7NkvGoizKaDjBJk4oSgb+j8JyUch77It5Zr0ltvM7foBbJ1g0IsQFyUdt6r0HdzBp6V0CCujWX+5ny6Ai59MRbvhPbB3g14Pwbq3gcuSwrQYCGmnpWPbfKB0UI8vh7wk2PSxtMvOFW56RjqWIB3k9LMy3W2vh8C3NaSegNjd0Odx1dmsJ9zww+hCCAH8CSxVFKU50AJwBt42nXdHZvtxF0I0vkz9U0VRwoExwHdCCJ2pfA4y21A40A5YqCjKMVM7L5nqHQvoFEWZD7yBzIveUVGUNsDz1+Zq/z06v6YYslMx5KaB0UDR6V3YNelsKagoCJ0DAMLWDmNxAZicAKXMtEG3RovQaLn4IFHKylfVC50dFg8YE/ZNu1AScxgAuyadKTq9C4x6DLnpGLJT0fk1tdRp0tnsHBad2Ip9E5mvHX2pedNuYaMrb1NfKh1NAKOBstQLaJw9zecMuWno/JpU1131isjISKLPnuX8+fOUlZWxYMF8Ro8ZYyHXpnUbNqyX0Y1Tp04RFhaGr68vLi4u9Onblx9/lHsolpWVWXUqb711IvPnWUbTAG65ZTxr1kgnYPSYMSxYMJ/S0lIuXLhA9NmzREZGWuiMHj2GuXPmADB3zhzGjBkLQFFREQaDAZB5vCtmOVu2bBmTJ99W066pN3g1bkVeagL56UkYDXou7NtAo45WclooCjo7+UNBZ+dASUEeRqMBnb0jvs07cHb7KgCMBj1lRVaiWVUQ0qkPCcf2AtCoY08u7NuAUV9GfkYyeakJeDVuZaHTqGMvonfKnNfRO/+mUcfeABjKSszpDrU6Wyo+U9LPn6Ao19IJMpSVkJ+RgleYZTv1Do9QmYa3MAMUA8QfAP/2lnIKMrkCptfSQvncrE6/3Vg4Vk2e+sAO0ukDqRt/AIwG6aDmp8s2Lse/PcTK/xFi90KAqU1DWXkSBq1N+cdtKJOOJkg7c+LBwa38XGGmjIqq1HnqQmTzJqBYUZSfQWb4EUI8AZwXQrwKjAeWAynAZGSKyUtQFOWMEKIQ8ABSAV8g6WJ9wMUky28AB4QQi4D3gFGm8gBgbYX6Dl/ti/yvaJ08MORnmI+N+Zno/C2du8LD/+Axcia+079A6OzJ/vtrzHe+EHhPegOtmx+FR/6hLOWcWc+l+wQcWvXCWFpE5p8WXYzW1RulpACMenns7EFZcrT5vCE/E62TB2WX6WkcXTEWSsfGWJiDxsHVfE7n1wS3gfeidfEme913FhljhK0jdo07UXCofIi2LPU8toEtLrG9vhMUFERcfJz5OCE+nshu3SzkDh0+xLhbbmH79u107dqV0NBQgoODMRgMpKWl8dNPP9OhY0f2749i5uOPU1hYaNbt06cPKSkpnD171qLesLAwsrKyKC0tNduze9cu8/n4hHiCgoIs9Pz8/EhOlnnUk5OT8fX1NZ+LjIzkhx9/IjQ0lGlT7zQ7n9nZ2djZ2eHp6UlmZhVRmXqGo7s3BVnlGbkKs9LxbtzaQu7kxqXc9PBbTPjgD3R2jmz5/g1QFJy9AyjJy6HntGfxDG5KRuxp9i74Gn2p/CHZqv9Ymna/mYyY0+xb9A2lhfmX1Ovs5U9pYT5GfZnJHh/Szpfnpi/ISsPR3dvCHgdXD7PjWJSbib2Lu/mcd1grek57FidPP7b9/K7Z+ayKjJhT+DVrT8aFep4hzMENirLKj4uzrTt357dCt3th6OtySH3vHECpWt+/LRTnQG6iZX0XcfSUw99GQ7k9mRcurc/BDbIu07N3kRnGQL7aOZef8wiFTpNl3VG/WmYA0zlI26K3lJdlx4F3E8iOrdxWlTrBDR/ZBNoCURULFEXJBWKBZsBtwDzTn9WQhxCiM3BGUZSLT+tPgVNCiCVCiPuFEPameguBp4EtwHxFUc6Y5L8GfhRCbBRCvCSECKyknRlCiH1CiH0Z+dc5jZ+wUmYlAGkX0p6ytFhSf3qM9Pn/h2vfqQidvUleIX3+y6T+PBOdXxNsPMsdhLxdi0id/QRFp3bg2HGQRb0aR3cMRXlXblAVlKWcI/33F8lY+BrOXUbK+T3m6jW4D32QgkPrZDTXhKEoD42TxxW1U9eRwf9LURTLvn7/vffwcPcgav8BHnnkUQ4cOIBer8fGxobOnTvz7bff0CWiMwUFBTz3/KXB+8m33cb8+dajmgEBAaSnlX8GNbWnKvbs2UOH9u3oFtmV555/ATu78iHf1NRUAgOt3oL1FlHD+ymwbVcy46JZ9OytrHjrPiJvewydvSMarRbPkOac3ryMFW/fj76kmHZD5ePy1OZlLPm/O1j+1gwKczLoMuFBi3od3LzMczpNBlkx58o+4/QLJ1n2+nRWvfsg7YfejsZGV61OcV42Du61lzKzdrHSv76tICcB1rwKGz+EDuPLI53W9LU6aDEYTqyuuil7VyjJr1rmCp/nZMXAhvdh0yfQYhBoKsS6hAa6TIVzW2U09iIleXLYXqXOUxecTYH1/2qBjFQ2A7YpinIa0Ash2lWQeUIIcQrYDbx2sVBRlDeALsho5e3AmgrnlgPZwP8qlP0NNAG+B1oho58+lxukKMosRVG6KIrSxcu5shv+2mDIz0LrXP4Q1jh7Yii4/GcnOLTpQ/E5OZHfkCOH3W08L/3iVkoLKU04iV2o5UbGxad3Yt+0q0W5oi+Ti4vM9mSWD28DWmdPDFYWFRkLc9E4yoeJxtENY1GuhYw+KxGlrASdV7C5zO2m6RiyUyg89PclskKrQ9GXWtRRn4mPj6dRcCPzcVBwMImJllGLvLw87rlnOhGdOzFt2lR8fHw4f/488fHxxMfHs2ePnBu1eNEiOncqn4Kh1WoZN+4WFi5YYLX9oqIi7OztL7EnuFG5PcFB1u1JSUnB398fkAuMUlNTLWROnjxJQUEB7dqV39b29vYUFRVV2h/1kYLsNJw8yiO/jh7eFGZbpuxs1nMosQfktJS8tETy05Nx9Q+hICuNwqw00k0RwZj9W/AMaQ5AcV6WnGupKJzZttLqMLWhrAStja35uDArDSeP8kegk4cPhTkZFnpFuVk4uMrngIOrJ8V52RYyOcmx6EuL8Ai6fBaUJVqdLYayBnB/F+XIRT8XsXcHK89GQiIhyTTQVmAaNnf2q1zfyRucPOGmZ2HwK9KR6/802LlcWq+h7NIf9zW1pzhPzskE+WrNYc1PkdOkXAPKy8InQX4aRG++VFark7ao1HnqgrN5DOkYmhFCuCIX63REOpznhRAXgDDkUPpFPlUUpSUwCZh7MYIJoChKtKIo3wADgY5CiIo/l42mPyrIZyqK8ruiKHcCe4G+V+fyrg5lKefQuvuhdfUGjRaHFt0pMS2oqYghLwO74LYAaBxcsfHwR5+TisbeBWEr53qh1WHXqC36rCR56OZn1rdr3Nli0RGAITtJtm2i5PwBHFp0B40NWldvtO5+lKVEW+gVnz+AQ+s+ADi07kPxOZm5QevqLX/tAloXL2zcA9CbIpjO3ccjbB3I3fKbRX027v7oM+Kr77B6xN69e2nWvDlhYWHodDomTZrM8mWW87Hc3NzQ6eQXyL333svWLVvIy8sjJSWFuLg4WrRoAcBNAwdy/ET5EOmgQYM4efIkCQkJVts/ffo0YWFh5uPly5YxadJkbG1tCQsLo1nz5mZHtiLLly9j6rRpAEydNo1ly/4C5LC8VqsFICQkhJYtW3LhwgWznr+//yXHDYGMCydx8Q3C2csfjdaGsC43EXdop4VcQWYqAa3kDwV7Fw/c/BqRn5ZIcW4WBVmpuPrJHwEBrTqbFxdddAYBQsL7kJ143qLe3JR4nL38zcdxh3YS1uUmNDY6nL38cfENIuO85dB2/OEdNO0xBICmPYYQd2g7IIflhUbe306efrj6NSI/PbnafnD1CyY7wdK+ekd2LDh7yyFnoZWLc5KPWsoVZYOPvG+xcwZnX+lwVqafmwSrX4a1b8i/4hzY9JGMIFYkP03qXiT5qKxDo5Xlzt4yUnk5yUchxBSMCOkKyaYdSBw9zc9zHDxMdpqmwbQeDjp7OLLEsj5nH2mzSp2nLszZXA+8J4SYqijKXCGEFvgYmI0cNh+qKMpOANMCoXXA/1WsQFGUP4UQ04BpyIVCI4BVihzbaw4YkNFMqwghbgJ2KYpSKIRwAZoih/FvHBQjuZvn4jn6WdAIio5vQZ8pnQPHdjK1XuHRjeTv/Qv3QffhfdvbckuhHQtRivPRejXC/eYZcpsMoaH4zG5KLhwEwKXnRGw8AkAxYsjLIGfjbMvm9aUYclLRuvliyElFn5lA8Znd+NzxLhilbReH2dxumk7h0Y2UpZ4nP2oFHkMfxrFNXwx5GWSt/goA24AWOI0cKecMKQo5m+egFOejcfLApesY9JmJeE9+A4CCw/9QdHyzSa85eXusPLTqMQaDgccefYTVa/5Gq9Xy888/cfy4dBbvv/9+AL777jtat27N7DlzMRgMnDh+nHvvvcdcx+OPPcovv/6Gra0t58+dY/r0u83nJk2azIJKhtABCgsLiY6OpmnTpkRHR3P8+HH++GMhR48dR6/X8+gjD5tXos/6/nu++/ZboqKieP+995i/YCHTp99DbGwskybeCkDv3r159rnnKSsrw2g08sjDD5GRIaNmERER7N61yzyHs6GgGI3smf8lgx5/H6HRcnb7anKSLgDQoq+cWn56y3IOr/yFXnc9x6hXfgAEUUtmUVIgI1B75n9J73teRKu1IS89iR1zPgCg8/j78WzUFBSF/IwUdv36iUX7+tJi8tITcfEJJC8tkZykC8REbWLMaz9jNBjYPe8L80r0Hnc+xekty8mIOc3RNfPoO+MVmvUaRkFWKpu/ex0A32btaTf0NowGPYqisPv3z812dr5lBo0jB2Jja8f49xZwdtsqDq2QC8l8mrbj0PI516yfbxgUIxxeDD0fkE5azG7IMznjYaaFYRd2wKm/ofPtMOBZ+ew+trx8G6PK9GuCoVRGSp285WteMiQchIEvyAWlhxZjHnAMnyRtyY6D0/9A5F0Q2l3OGd0zW8p4NZGr0xWj6doWSTvt3aDlYLlKfsDTUvbcVrlVE4BnYzh56eiVSt1EXOlcqtpACNEIOazdChmNXQV8BWwAgpUKFyGE2A88CAwD8hVF+chUHgH8DrQ2vXYGCgE98JJpqPxiHReALoqipJuOnwHuNslqgJ8VRfm4Kps7hngpa54ZUZVIvcOuSQQ63zDydy2ulfZtvENx6jSUnHXfXfe2gx//pXqheszYsWPpHBHBKy+/fE3b+fSzz1i+bBkbNmy4pu1UR0PMjd4ovDdeoS04+NdPtdK+Z6NmtB50K9t/tlygeK1pkLnRA9qDeyM4sap22ncLktsvRVmOYF1rxLjPoxRF6VK9pEpNqQuRTRRFiaN8ZXhFLJa4KopycbLZ7svKo4CWpsPJVIGiKGGXHX8IfFhDcxssJeei0Ng7Vy94jdA4ONeao9vQWbp0KV5e137hxrGjR2vd0WyoxB3chp2Ta/WC1wg7ZzcOLqsdR7dBknRE7t1ZW9g6Vb+QSaXOUCecTZW6w8Xh7NqgNO5YrbWtgnmfzmvJDz/8cM3bUKmci/t01gZJJ6KqF1K5ulwczq4N0k7XXtsqV526sEBIRUVFRUVFRUWljqJGNq8RR+IyCXvi+s81UakdCr6/p3ohlXrD28ssd3pQqcdorG0sqqKiUlPUyKaKioqKioqKiso1Q3U2VVRUVFRUVFRUrhmqs6mioqKioqKionLNUJ1NFRUVFRUVFRWVa0aDWiAkhHgD2KIoyj9XqNcK+Bm5EfxLFzeKv9EYPGQIH3/yKVqtlp9++pGPPvjAQqZvv34s+nMJF87LlG9Lly7hnbfeqlL/19/nmVMZurm7k5OdTWSXCIu6/f39+ea7WYwbMxqAZ557jrvvno7BYODJJ2aybu1aCx0PDw9+mzef0NBQYmJiuH3yJLKzs6vUX75yFf7+/tjY2LB92zYee/QRjEYjDz70EAUFhcydM/u/dWQdQRPUFpvut4FGg+HUVgyHK9+TTniHYTvqRco2fofxgtxCRtt2INqWMuuq4dRWDMfkbSE8G6HrdYfMS2w0UrbjN5R0KykCHdzQ9Z5K2bovZX0dhqFt2QeMRvS75mFMsLIVla0TupvuRzh7oeRnULbhWygtrFJfN2QmwsENNBqMyWfQ7/wNFAVt6wGgL8VwZvu/7sO6RLNOPRhx39MIjZaodUvZuni2hUxYuwimvPgJWSkye9jxXRvZtOD7KvWH3PU4Lbv2xaAvIzM5niVfvEZxgWVOa2cPb8Y+/H/8+tZMAPqOv5vON49BMRpY+f1HnD1gmT7TwdmVic+8i4dvIFmpiSz44HmKC/Kq1J/66pe4eHij0Wq5cPwAK757H8VopNvwiZSWFHFg/fL/2JN1BJ9W0H6czAwUsxvOrq9c1r0R9JkJ++ZC0iFZ1rivzOSDgNidcG5LuXzjPtC4t8wGlHocjlvpUztX6DgR9pi2G2s2EEK7yUxwR/6EtFOWOjpH6DIVHDyhKBP2zYGyoqr1u8+QbQktZJ6T2YVQIKy3zGQUZ5nqVqXu0aAim4qivHKljqaJTOAx4IZ0MgE0Gg2ff/Elo0eOoGP7dkyaNJlWrVtbld2+bRuRXSKI7BJhdjSr0r/j9tvM8kuX/MnSpdbTQT7+xBP8ZNoHsVXr1kycOInwDu0ZNWI4X3z5FRqN5b/bM889x4YN62nbuhUbNqznmeeeq1b/9smT6BrRmU4dO+Dt48P4CTLN4eyff+bhRx75D71YhxACm55TKFv7GaWLX0bbJBLhHlC5bNfxlzh/wiMQbcu+lP71NqVLXkfTqAPC1RcAm8gJ6A8sp3TpG+j3/4UucoLVam3a3Yzh1FZZn3sA2iaRlC5+hbK/P8Om5xT5JXm5TsdhGBNPULroJYyJJ7DpOKxa/bIN31K69HVK/3wVYe+CprFM7GE4vR1t24H/rv/qGEKjYdT9zzP39cf48pEJdOgzBJ9Gja3Kxhw/wP+euJ3/PXG72dGsSv/swd189ehEvn58MhkJMfQdf7fVenuNmcK+tfLe92nUmPZ9BvPlI7cy57VHGXX/8+Zc5xXpM/4uzh3ey2cPjuPc4b30HX9XtfoLPnier2fexpePTsTJ1YN2vQYBsP+fZfQYWWU+jnqEgA7jYdcs2PA+BHUCZ7/KZVuPgtQKueld/KWjufVT2Pwh+LWVqScBvJqBfzvY9AFseh/ObrRebdN+EGvaZ9PZT9qw8X3Y9R10mCDbvZzmAyHtDGx4R742G1i9/r45sPkjaYutEwSGy/K43dCkT827TOWGpk47m0KIMCHECSHE90KIY0KItUIIByFEuBBilxDisBBiiRDCwyQ/WwgxwfT+PSHEcZPMxZSWPkKIxUKIvaa/XgCKoqQqirIXKKu1i62GrpGRREdHc/78ecrKyli4cAGjRo++6vrjJ9zKwvnzrdYxbtwt/P33GgBGjR7NwoULKC0t5cKFC0RHR9M1MtJCZ9So0fw6dy4Av86dy+jRY6rVz8uTkREbGxtsbW25mK20qKiImJgYunTtWuPrrqsIn8YouakoeelgNGA4twdNSLhVWW2bgRgv7Iei3HJ9twCMqedk5EAxYkw+jSbUlHxLUUDnIN/bOqAUZlutVxMWgTH+qHwfEo7h3B4w6lHy01FyUxE+ls6QJiQcw5kdABjO7EAT0ql6/bJik9Fa0NqYUzJjKEXJS0d4W3e66hPBzduSkRxHVkoCBr2eI1vX0jqy/1XRjz64C6NR5pqPO30UV2/rTk2bHjdxZr/87FpH9ufI1rUY9GVkpyaSkRxHcPO2Fjqtu/XjwIYVABzYsILW3ftXq19SJHN7a7Q2aG105vu7rLSYrNQkgqy0U+/wCJE5yQszQDFAwgHpIFqjSR8ZzSypEI129oOsGDCUyVzkGWchwJRyM6wXnFkPps+cUssoNgABHSH1hHzv307aYDRAYaa0zSPEUse/HcTtle/j9sqUl9Xp60vkq9CAxgbzDW4ok7LuVtpRqXPUaWfTRHPga0VR2gLZwHhgLvCcoigdgCPAqxUVhBCewDigrUnmLdOpz4FPFUXpaqrnitKVCCFmCCH2CSH2Xe+M84GBQcTFxZmPE+ITCAq0yOYJQLfu3dkbtZ9lK1bSuk2bGuv37tOH1JQUzp49a1FnWFgYWVlZlJaWAhAUGER8XLz5fHx8PIFW7PH18yM5ORmA5ORkfHx9a6S/YtVq4pOSycvL48/Fi8zlUVH76N27t9Xrrk8IRw+UgizzsVKYhXDysBR0dEcb2gnDyU2XFCtZiWj8m4OdE2ht0TZqb9bX71qALnICdpM+QBd5K2X7LFOACmdvOfxt1Mtjp8vsKchCOFraIxxcoShHHhTlIBxcaqSvGzITuymfQFkxxgv7zOXG9Bh5HfUcVy9fctJTzMc5GSm4ePlYlW3Usj0PfzaPO1/5At9GTa5Iv/PA0ZyJspyW4O4bSFF+Hga9/L3t4uVDTnqy+XxuegquXr4Wek5uXuRnpQOQn5WOk5tnjfSnvvYVz89dR2lRIcd2lA8fJ549TmibTlavu15h7w5F2eXHxTng4GZFzg3828OFHZeW5yWBVxM5rK3VgW8bWSeAs48812cm9HxYDsFfjqMnlBWWO6QOblBcwZ6i7PL6KmLnAiWmH7UluWDrXDP97vfDkDdBXwyJh8rLs+OkrSp1nvrgbJ5XFOWg6X0U0BRwVxTlYt7EOUDfy3RygWLgByHELUChqXwQ8JUQ4iCwDHAVQrjU1BBFUWYpitJFUZQu13sLYGFlyPJiRKAiB/bvp3mTxnSN6Mz/vv6KRYv/rLH+pEmTWbjAelTTPyCA9PT0K7anMqrTHzl8GKHBQdjZ2THgppvM5WmpaQQEBta4nXqFlf7VdZ9M2d7FFueUnCQMh9dgO/RJbIfOxJgRJyMggLZ1f8p2L6BkwbOU7V6Arvddlm05uqEU51Vn0L+8EEv9sr8/o2TeU6CxQRNQYXpIcS7C0f0/tlMXsPJEsfJ5J0Wf5OP7RvL1zNvYtXIBt7/4cY31+906HaPRwKHNlnN/XTy9Kcwt/zFwre/vua89wgd3DUGr09GkfflIRX52Fq6e1p3seo+17m03Fk6ssDyZnwpnN0CPB6Ujl5tovr8RGjlysfUzOVczYpplvXaul0U8rX2jXcn9XY3+ru9g7asysulT4cdjST7Yu15BOyo3KvXB2Syp8N4AuFenoCiKHogEFgNjgTWmUxqgh6Io4aa/IEVRqvtGvSFISIinUaPyX6hBwUEkJiVayOXl5VFQIIep1qxejY1Oh5eXV7X6Wq2WMePG8cfChVbbLyoqws7eznwcnxBPcKNg83FwcDBJVuxJTUnB398fkAuM0lJTa6xfUlLCiuXLGTWqfLjf3t6OoqIiqzbWJy6PZApHD6vD3cI7FNsBM7Cb+B6axhHoek5BExoOgOH0Nkr/epPSlR9ASQFKrox8aZv3kMPugPH8PjRWhsMxlCK0unJ7Ci6zx8m6PUpRbnmExsENpSiv5voGPYbYQ2b7pbE6ORWgnpObkYJbheFtNy8/8jLTLeRKigooLZb//2eitqPR2uDo4l6tfviAkbTo0odFH/+f1fb1JSXY6GzL7UlPxc3b33zs6u1HXmaahV5BTgbOHnKuoLOHNwU5mTXW15eVcnLPFlp162cus7G1pay02KqN9YribHBwLz+2d5PRzctxawQRU2HQyxDYUc7zvDjcHrsbtnwM27+C0gIoSCuvO+mwfJ8dCyhyrmRFDGWgKb+/LSKRDu7W7SnJk44qXOqw1kTfqIeUY5dOF9DqpC0qdZ764GxeTg6QJYS4OLP4TmBzRQEhhDPgpijKKmAmEG46tRZ4pIJcOHWEfXv30qxZM8LCwtDpdEycOIkVyy1XGPr5lX/hdOnaFY1GQ0ZGRrX6AwcN4tSpkyQkJFht/8zp04SGhpmPVyxfzsSJk7C1tSUsLIxmzZqxd4/lqsIVK5Zzx9SpANwxdSrLly+rUt/JycnsnGq1WoYOG8apU+UT45s3b8Gxo1ZWQdczlLQLCFc/OZyt0aJtEokx9pCFXOnCFyhZ+DwlC5/HeD6Ksh2/YYw5KE/am4L2Tp5owjpjiJafj1KYg8a/JQCagFYouamW7eekIJy9zMfG2ENom0SCxgbh7I1w9UNJs1zBbow9iLZ5TwC0zXtijD1Ytb6NXblzKjRoG7VHyU4y1ydc/TBmWf+frE8knDmOV0Aj3H0D0drY0L7PYE7u2Wwh5+xe/pkENW+L0GgozMuuUr9Zpx70GT+N395+olJHLj0xBnff8hGDk3s2077PYLQ2Otx9A/EKaET8Gcv77uSeLXS6aSQAnW4ayYndm6vUt7V3MDunGo2WFl16kR5/wVyfd2AIqbHRV9h7dZDsOHDykcPZQisX16RYea6tfwv+eVP+JR6Cw4shWc6jLh/CdpfzNRPkD0iSjoK3KXro5AMarXRGK1KQJtu+SMoxaYNGK8udfCAr1tKe5KPQyBSJbtS13JbK9LW25c6p0IBva8ir8Lxx8oHcZFTqPvV166NpwLdCCEfgHHD58koX4C8hhD0yvv+Eqfwx4GshxGFk32wBHhBC+AP7AFfAKISYCbRRFCWXGwSDwcDMxx9jxarVaLVaZs/+mRPHjwNw34z7Afh+1nfcMn48M+5/AL1eT1FxEXdOub1afYBbJ05i4fwFlbZfWFjI+XPRNG3alOjoaE4cP86iRX9w6MhR9Ho9jz/2KEajHMb55rtZfD/rO/ZHRfHh++/z+/z53H33dOLiYrlt0iSASvWdnJxYvGQpdnZ2aLVaNm3cyKzvvjPb0aNnT956842r27k3IooR/c7f0Q2dCUKD4fR2lGwZ+dW2kpEgw0lLZ6QitgMfBDtnMBrQ7/jNvAVR2bY56LrfJh/+hjLKts21VNaXYsxLQ7j4ouSlomQnYji/D9vxb8iti0zbEwHY9J6G4eQmlPQY9IdXo7vpAbQteqMUZFK2/lt5OZXp29hhe/MjMsIhBMbEk5dcl8avGfoD9X8rHKPRwIpZHzDtta/QaLTsX/8XqXHnAOg6dDwAe9cspm3PgUQOm4DRYKCstISFH71Qrf7I+5/DRqfjrtf/B0Dc6SMs/+bdS9ovKykmMzkeT/9gMpPjSY07x9Ht63jsq0UYjXrz9kQAYx55mb1rFpF49gRbFs9m0jPvETFoDNlpySz4QO42UZm+zs6BKS99go3OFo1Gw7nDe9m7pnzOcEjrcDbO//4a9vQNgmKEI4vlELjQyChlnsnpCpU/1ojZUbk+QNe7wdZRzrs8srh8C6LY3dBpMvR/Vp478LulrqFULuJx8pavecmQeBAGPG+yzbQ9EUDHSXLOaE6cXHjUZRqEdIOiLLnSHCrXt7GFyHvkwj80kH7m0uvybAyn//5XXahyYyGuZJ6NSs3RCKHotPUxcFw5o8eMpXNEZ1575ZVaab9jeDiPz3yC6XdZmYN0jcn5zvp2MfUZTWgnNN6h6KOW1kr7wqsRNu0GU7b5x+ve9tvLDlz3Nmub1t0HENi0Fet/+6ZW2g9o3JKeY6aw+LPr/3x5857Lp/03APzbg3swnKx8/95rimsQNO0PB3677k2LMZ9FKYrS5bo3XI+pr5FNlVpg2V9L8fLyql7wGuHt7c3rr9aOo9sQMcYcQNg511r7ws6l1hzdhsiJXRtxdLGyIvo64ejqzvrfa8fRbZAkH5GR0drCzglOrqq99lWuKmpk8xrRECObDZmGGNlsyDTEyGZDpkFGNhswamTz6qN6QyoqKioqKioqKtcMdRj9GtG5uR/7vppa22aoXCd6PWxlEY1KvSUmo07siKZylfi/MQ1gI3kVlWuIGtlUUVFRUVFRUVG5ZqjOpoqKioqKioqKyjVDdTZVVFRUVFRUVFSuGQ3K2RRCvCGEGPQv9KYIIQ6b/nYIITpeC/v+M14toNcz0PtZCOtftaxrMNz8Hvi1Ly8L6QU9n5R/Ib0tdUL7wuAPQFfJdhi2LtCpwqrsxgOkLb2ekbZZw8YBIu6FXs/KVxuH6vU73wM9Zko7W9+COe9uo54Q2HAWEHbrM4B5f29jwT87uWPGI1ZlOkX25O/9p5m97B9mL/uHux95slr9h597hd/XbGXO8g288/VPOLtYz03s5ePLB7N+MR/fef+jLPhnJ/P+3kZk7/5WdVzc3Pls9gLmr9vBZ7MX4OLqVq3+xz/+zuxl6/l11WaeeeN9NBr52Bp/x3SGj59cbT/VF/oPvJnNuw+wbd9hHn78KasyPXr14fiFRP7evJO/N+9k5jPPV6v/9Isvs27rbv7evJPfFi/Dz9/fWtX4+vkze94i8/HDM59m277DbN59gH43WX+surt78Pufy9m69xC//7kcNzf3avV//WMpa7fsYv2Ovbz78efmz/uue+9n4u13Vt9R9QQR1Bbd+LewnfAO2g7Dqpb1DsP2rllowiLMZdo2A9GNex3duNfRtrn089G0vgnd+LfkuS4TrFfq4IbNoEfL6+swDNsJ76Ab/xYiqK11HVsndEOeRDf+bXRDnrxk66TK9HWDZ6Ib+yq6ca9j0/MOEMJk4wA0zXtVed0qdYcG5WwqivKKoij//AvV80A/RVE6AG8Cs66uZVcDAa3Hwf4fYfvHEBAOTr6Vy7YYDumny4uc/SC4G+z6EnZ+Bj6twdG7/LydG3g1l1khKiOsL8Tvlu+dfMG/o7Rl/w/StotOYUUaD4CMs7D9A/nauH/1+od+lTbu+ETm9PXvIMsT9kqHuQGg0Wh46rV3eere25kyrC+DRo4jrJl1h/7Qvt3cNXoQd40exM9ffVKt/t7tm7lzRH+mjbqJuAvnuPOBx6zWO3n6Ayxb8CsAYc1aMHDEWO4Y3o8n77mdp19/z+wkVOTO+x9l346tTL65J/t2bOWO+x+tVv/lx2dw1+iB3DG8H+6eXgwYNgqAFYvmcevUe/5DL9YdNBoNb33wCXdOHMeAHhGMGX8rzVu2siq7Z+cOhvTrwZB+Pfjsw/eq1f/2y8+4uU83hvTrwfq/VzPzmRes1jvjoUf5fe7PADRv2Yoxt0zgpp5duOPWsbz94adWP++HZz7F9s2b6NO1I9s3b+LhmU9Vq//A9DsZ3Lc7A3t2xcvbm5FjbwFg/m9zmT7jwf/Qi3UIIdD1mELZ2s8o/fNlNE0iEe4BlcradBmPMaE8naVwD0TTsi9ly96mbOnraEI6IFzl94Hwb4k2NJyyJa9RtuRVDEetZ+jRtrsZ4+mtpvoC0DSJpPTPVyj7+zN0PaaYncJLdDoMw5h0grLFL2FMOmF2kqvSL9v4LWVLX6dsyatg74ImTAYMjKe3o20z8N/1n8oNR512NoUQYUKIE0KI74UQx4QQa4UQDkKIcCHELlMkcokQwsMkP1sIMcH0/j0hxHGTzEemMh8hxGIhxF7TXy8ARVF2KIpy0cvaBQTXxvVWiVsjKEyHokxQDJB8CHwr+fUZ0gtSjkBpfnmZky9kx4KxTKYTyzp3qX6rUXB6FeYUZdbwbQfpp0zv20obFIN0UAvTpY0WOm0hMUq+T4ySdVSnbyiRr0Ijc+1eNMlYJmVdrbRTz2jdoRPxMedJjItFX1bG+pVL6TNwyFXR37NtMwaDAYBjB6Pw9bf+JddvyAh2b90IQJ+BQ1i/cillpaUkxccSH3Oe1h0sV/D2GTiE1UsWArB6yUL6DhparX5hvvw/1drYYKOzNX/eJcVFJMXHWW2nvhEe0YUL588RG3OBsrIy/vpzEYOHjbwq+vl55SvrHRydqGzv5WGjxrBp/ToABg8byV9/LqK0tJS42BgunD9HeITlqMLgYSP4Y77MAPPH/N8YMnxktfoX7bGxsUGnszXbU1xURHxsDOGdIyzaqW8I78YouamQlw5GA8Zze9CEhFuV1bYeiCFmPxSXZ08W7gEoqedk2knFiDHpNJrQzib5/ugPrwajXgoXW99ZQRsWgTFe5jbXhIRjPLdH6uSno+SmIrwbW+hoQsMxnJHpJg1ndqAJ7VS9flmxyWgtaCpskGMoRclPt9qOSt2jTjubJpoDXyuK0hbIBsYDc4HnTJHII8CrFRWEEJ7AOKCtSeYt06nPgU8VRelqqucHK+3dA9RS/q4qsHeD4pzy4+IcsLMy/GnnKh26uF2XluengEdjOUSu0YF3K7B3l+d82sgHWX5S5e07eIC+SDqHF9spzr7UHnsr2UdsnaHU9LArzZORyprod74H+r8C+hJIOVxenhsvr6Oe4+MfQGpSovk4NTkJHz/rTmG78AhmL1vPRz/8TuNmLa9If8SE29i5eYNFeUBwCHk52ZSVlsr6/AJIubw+K06qh7cPGWmpAGSkpeLu5V0j/U9+mseKXUcpLMhn45ryXOgnjx6iY5duVq+7PhEQEEhSQrz5ODkxgYAA6593RNdI1m7ZxS8Ll9CiVesa6T/70qvsOXKKcbdO4qN337Kos1FIKDnZ2ZSaPu+AgAAr9QVa6Hn7+pKaInN6p6Yk4+XjUyP9Xxf9xcHTFyjIz2flX0vM5YcO7ieyR/0fvRBOHigF5aNISkEWwtHDUtDRHU1oJ4wnN11SrGQlIvybyyw8Wls0jdojnKS+cPVD49cc3agX0Q17BuEdZlmvszdKSaHZIRWOl9lTmGWu7xK77V2hyPQ9VJSDsHepkb5u8Exsb/8EyooxXthXLpceg8a/ufVOUqlT1Adn87yiKAdN76OApoC7oiibTWVzgMvTP+QCxcAPQohbgEJT+SDgKyHEQWAZ4CqEcLmoJIQYgHQ2n7NmiBBihhBinxBiX1pO0X++sGtCy9FwxkqEsiAVLmyCiPsg4h7IS5IRTo0OmtwE0WurrtfWFUoLKhRYGTK/omxV1ejv/xE2vyV/CXs2Ky8vzbfuZNczhJX+sRaROnX8MOP7d+Gu0QNZ/MuPvPvNzzXWn/rg4xj0etYuW2wh6+XjS3ZmRgWD/uPnXY3+k9NvY0zPjtja2hLRo3w+cVZGOt6+1ucY1ius9I+1z/vI4YN069iawX278/Osb/nxl/k10v/g7deJbN+SJX8s4O777reQ9fX3JzMj/YrtqZRq9O+YMIaI1k2xtbOlV9/+5vKM9DT8Kom0138s+9em22T0+xZb3GtKThKGw2vk/MkhM1Ey41CMRnlSowVbJ8qWv4N+7yJ0Ayw/b+HodmnE08rteWX3d9X6ZWs/o3T+U6C1QQS0LhcpygVH95q3o3LDUh+czZIK7w2Ae3UKiqLogUhgMTAWWGM6pQF6KIoSbvoLUhQlD0AI0QEZ6RyjKEqGlWpRFGWWoihdFEXp4uPmYE3k2nF55M/eDUpyLeXcgqHD7dDnebk4qPU48DENlyfshV2fw95voaxQDl07eoGDp1yQ0+d5OXez++MyIlkRY9mlQyAlOeWR0arsKc2XC4tAvl50WGuib9RD2nHwbVNeprGRttRzUpMT8a0QCfL1DyA9NdlCrjA/n6JC+Vtq5+b12NjocPPwrFZ/2LiJ9BpwM68/9bDV9ktKirG1szcfpyUn4ndZfWkplvZkpafh5SPnjnn5+JJtcmBqol9aWsK29WvpM3CouczOzp6Skhv0h91VJCkxgYCg8tk7/oFBJCdb9m9+Xh6FBfIe2vDP39jodHh4etVYf+miBQwbNdaivLioGDs7uwr2JFqpz3LkIz01FV8/+WPA18+fjLS0GuuXlJSwdvUqhgwbYS6zs7OnuKj+f95KwaWRP+HkgVKYbSGn8Q5F138Gtre+hyYsApseU8zD7cYz2yhb9iZlqz5AKSlAyU2RSgVZGGP2y3bSz0unz/6y57m+FLS6yu1xtG6PUpwLDqbvIQc3FJPDWiN9gx5j7CG0FacLaHXSFpU6T31wNi8nB8gSQvQxHd8JbK4oIIRwBtwURVkFzATCTafWAo9UkAs3vYYAfwJ3KopymhuR3Hi5oMfBQ8598e8Iqcct5ba+V/6XcgROLIE008Tyi0PY9u7g1w6SDkJ+Mmx6o1ynJEc6pBXnewIUpsm2L5J6XNogtLLc0Rty4iztSTsOgaY5WIERkHqsan2tbblzKjRyuL8grbw+Jx9pcz3n5JGDBIc1ISA4BBudjoEjxrJtvWX02dPbx/y+dYdOCI0gJyuzSv1ufQYwZcYjPPfANEqKrX+xx50/R0BQ+dzYbevXMnDEWHS2tgQEhxAc1oQThy3zh2/bsJZh4yYC0qHduv7vKvUdHB3NzqlWq6VHv4HEnDtrrq9RWBPOnT55pd1X5zi0P4rGTZrSKCQUnU7HmFsmsG7NSgs5H18/8/vwzhFoNBqyMjOq1G/cpKlZZ/CwEUSfOWVR77noMwSHhJqP161ZyZhbJmBra0ujkFAaN2nKwah9Fnrr1qzi1slTALh18hTWrl5Zpb6jk5PZOdVqtdx082DOnil/5DZp2oxTJ6081+oZSvoFhJsfOHuDRoumSSTG2EMWcqV/vEDpH89T+sfzGC9Eod/5G8bYg/KkaQgbJ080oZ3lnEnAEHMATYBcHCZc/eQP9OJLn+dKbgrC2ct8bIw9hKZJpJR19ka4+UlH9TKMsQfRNu8JgLZ5T4wxB6vWt7Erd06FBk1we4w55T86NG5+KFkJV9x/Kjce9TVd5TTgWyGEI3AOuPuy8y7AX0IIe2SA/wlT+WPA10KIw8i+2QI8ALwCeAH/E3L4R68oyo21x45ihJN/Qed7pROWsBcKTL9kg7vL1/hdlesDdJwq52wqBjixVM7BrCmGMijMAAcvKMqQbScfhl5Pm2xbinkYqM0EaUtuPJzfCB2mQFAkFGfJleZQub7WFjrdJR9aQkBm9KXX5R4G0etqbncdxWAw8OnrL/LJT/PQarWsWDSP82elkzD2Npkmdem8uQwYOopxt09Dr9dTWlLMqzMfqFb/yVffQWdry2ezFwBykdCHr1w6c6S4qJCE2AsEhYSREHuB82dPsWH1Mn5bvQWDXs8nr72A0TRs9/zbH7N03lxOHj3EL999yZufz2LkrbeTkpjA/z12H0Cl+vYOjrz/7Vx0trZotVqidm5j6bw5ZjvaR3Tlp68+voY9fWNgMBh4+dmn+G3RX2i0Whb8NpfTJ08AcMddckX+r7N/ZMTosdw5/V4MegPFxUU8dO+0avVfePUNmjRrgWI0Eh8XywtPWe4+UFRYSMz584Q1bsKF8+c4ffIEy5cuZsPOKAx6Pf/37JPmz/vDz7/ml59/4PDBA3z12cd8+9MvTL5jKgnx8Txw9x0Aleo7Ojrx028LsbOzQ6PVsGPLZn75uXzqfJduPfjkg3evXUffKChG9Dt/RzdkJkJoMJzZjpIt5zRrWvYDwHhqc1U1oLvpQbBzBsWAfudvUCpHOIxntmHT+250414Hg56yrT9ZKutLUfLSwMUX8lJRshMxnt+H7S1voChGWZ9pGNym1zQMJzehZMRgOLwa3YAH0DTvDQWZlG34Vl5OZfo2dugGPSIjmEKgJJ3EeLL8uoRvM4wHllvap1LnEFc0z0alxnRp4a80uNzovm3l/p1nrW+lcc1xCYTQPnB0wXVvuiHmRu978zBatuvA95++XyvtN2/Tjsl338+bzzxavfBVpiHmRh86YhTtO3biw3feqJX227bvyIyHHuXxB++97m1Hf3TbdW+zttGEdkJ4hWLYv7RW2heejdC2G4x+y4/XvW37e36MuuECSnWc+hrZVKkNUo+Bzqn22tc5wdlqFjKpXDW2rFuNm7uVFbLXCXcPT77/7INaa7+hsWblcjw8PWutfU8vr1pzdBsixpgDaOycqxe8Vti7oK8lR1fl6qM6mypXl4Q9tdd25pnaa7uBsvyP32ut7b3bt9Ra2w2Veb/MqV7oGrF1k+UWXCrXloubutcGSmL9n5vbkKiPC4RUVFRUVFRUVFRuENTI5rVCUaBEX9tWqFwntr8ytrZNULmOON93/eeRqdQeD87eVtsmqKjUadTIpoqKioqKioqKyjVDdTZVVFRUVFRUVFSuGaqzqaKioqKioqKics1Q52zWJ3xaQbuxclP32F1wtorVm26NoM/jEDUXkg7LssZ9IKS73Cw9ZhecN632dQ2E9hNktofCTDjwK+hLLOu0c4GOE2GPaT5bs4EQ0k1uyn50CaRZZiZB5wgRd8qUmEWZ0p6yoqr1u82Q+c81Gsg4B0cWAwqE9QZDCcTt/Te9V/cIbANdJsrP++x2OFbF/qZeoTD0Odj6A8TKVHW0ugma9wIEnNkGJ03/Lx5B0G2K/LwLMmDbT1BWbFmngyt0vwM2/k8etxsCTXvJz2vvQkiysprU1hH63gdOXrLuLd+bN5uuVP+mR2WWEY0GUs/CnnlyTnTL/vL/MHrnv+m9OsegmwfzwcefoNVqmfPzT3zy0YcWMn369mX+H38Sc+ECAMv+WsJ777xdI/3HZj7BO+99QGiQPxkZlhl5/fz9+ep/33LrLWMBeOqZZ5l6190YDAaeefIJ1v9jmUzBw8ODOb/+TkhoKLExMUydchvZ2dlV6i9ZtgJ//wBsbLTs2L6dJx5/FKPRyP0PPERBYQG/zq29FfHXk3aRvbn9sZcQGg1bVy5i1W/fW8i0DI/k0Xe+Jj0pHoCoLetYPud/Verf+uAzhPccgF5fRlpCLD++9yJF+Zb7xrp5+XDXM2/y+fMyEcTwKTPoM2I8itHIb5+/zbG9lvNYnVzceOC1T/AOCCI9KYFvXn2CwvzcKvWf+PB73L180Gi1nD4cxa+fvoFiNHLTLVMoLSpi2+o/r0JvqtQ2DSqyKYR4Qwgx6F/ojRFCHBZCHBRC7BNC9L4W9v03BLS/BXbPgo3vQ2BncParXLbNSEit4Py5+EtHc9tnsPkj8GsDTt7yXMeJcHIlbP4Qko9A0wHWq23SXzqpINsO7ASb3odds6D9eNnu5TS7CdLPwMZ35WuzgdXrR82BLR/Bpg9khozAjrI8brd0mBsCQkDkbbDhK1j+OoR1BbeAymU7j7vU+XMPlI7mqvdgxVsQ3F5mCwHofifsXwIr3oTYg9DmZuv1th4EZ7bL924BENoVlr8BG76EbrfJdi+n3VBIOgl/vSJf2w6pXn/r97DyLXnOzhlCTelNz26HVpX8L9YzNBoNn3z+BbeMGUWX8A7cOnEyrVq1tiq7Y/s2enbrQs9uXcyOZnX6QcHB3DRwELGxMZXa8OhjM5n9k/wh2apVaybcOomunToybvRIPv3iSzQay6+TJ59+lk0bNxDerg2bNm7gyaefrVZ/6pTb6BEZQdfO4Xh7e3PL+AkAzJ3zMw8+9IhFG/URodFwxxOv8Okz9/F/U0fSbeAIAkObWpU9cziK1+4Zx2v3jDM7mlXpH9+3g5fvGsWrd48hOf4CI+6YYbXewRPvYvOKhQAEhjal28DhvDxtJJ88cy93PvkKwsrnPXzKfZzYv4sXbh/Kif27GH7HfdXqf/PqTF6dPpaXp43Cxd2Trv2HArBt5WIGjr/jP/Siyo1Eg3I2FUV5RVGUf/6F6nqgo6Io4cB04IeqxWsBjxAoSJeRR8UAiQfAv5112cZ9ZDSztMKvWWc/yIqRaScVI2REg397ec7JVx4DpJ2GgA7W6w3oAGmmPNX+7aQNRoOMWBakSxsvx79deSQybm+5zVXpX4yqCo3MnX4RQxkUZoG7lXbqG15hkJcK+emyj2L2QqNKPpeWAyDmABRX+Lxd/SHtfPnnnXIGGoWbzvlBqmnP0qQTENLZer0hnSDRlMu+UQdpg1EP+RnSNq8wS53gDnDOFIk8txMadaxe/2JUVWhAa2NOk4ehDPIzrbdTz+jSNZJz0dFcOH+esrIyFv2xgBGjRl01/fc/+Ij/e/EFqsooN2bcONatldHzEaNGseiPBZSWlhJz4QLnoqPp0jXSQmfEqFH89usvAPz26y+MHD26Wv28PPl/amNjg87W1mxTUVERsTEXiOjStcbXXVdp0roDqQmxpCXFY9CXsXv9KsJ7D7wq+sf2bsdoMABw7tghPHz8rdbRpd9gju6W+2yG9x7I7vWr0JeVkZ6UQGpCLE1aWz5vOvUeyPY1SwHYvmYpnXsPqla/uLAAAK3WBhsbHYoprXFpSTEZyQk0bt2+xtetcuNSp51NIUSYEOKEEOJ7IcQxIcRaIYSDECJcCLHLFI1cIoTwMMnPFkJMML1/Twhx3CTzkanMRwixWAix1/TXC0BRlHyl/CnshDnJ9w2EvRsUZZcfF2fLMmtyAe3hwo5Ly/OSwKuJHNbW6sC3NTi4l5/zayvfB3YsL6+IgyeUFUrHx6o9OdbtsXOBEpMTVJIHts410+82Awa/IR3PxEPl5Tlx4NnYsp36hqMHFGSVHxdkg4OVbD4O7hASDmcu2wA9OxH8moOtk/y8g9qBk0f5uWCTExjauby8Is5ecvjbaNrey+EyewqzpY0W9rhCkRxWoygX7F1qpj/wUbj1Q+l4XpwGAJARA77NLNupZwQGBhIfH28+TkhIIDAwyKpsZLfu7NwTxZ9/Lad16zbV6g8fMZLExESOHjlcafuhYWFkZ2VTWlpqqi/ISn2BFnq+vn6kJCcDkJKcjI+Pb430ly5fyfm4RPLz81jy52Jz+f79UfTs1atSO+sL7t5+ZKYmmY+z0pLx8LE+UtW0bTiv/7SUJz6YRWBYsyvS7z18PEd2WSZH8A4IoiAvF31ZGQAePpb1uXtb1ufq4UVORhoAORlpuHh41kj/yY9+4LNl2ykuLGDfpvLpQBdOHaVFBzVrZH2gTjubJpoDXyuK0hbIBsYDc4HnFEXpABwBXq2oIITwBMYBbU0yb5lOfQ58qihKV1M9P1TQGSeEOAmsREY3LRBCzDANs+9Lyym6ipdYE6wMWVrziduOgeMrLM/lp8LZjdDjAenI5SbKiBfAoQXQuDf0eULO47voUFbE3hVKC/7rRdSc3bNg3Wsy0uXdvLy8JN+6U9sgsPJ5d71VDolfHrHKTZZzPAc9DgMfg6z48s9751xo2Q+GvwA6+3KHsiIOblCcX35s7d/vSn6TVae//ktY9BxobMC/VXl5cR441v/PW1iZkmAtCnnwwAHatGhKj8gIvv3f18z7Y1GV+g4ODjzz3Au89cZrVbbv7x9AenraFdtTGdXpjx01gmZhjbCztaPfgPKpEmlpaQQEWDq19Q1rM1Cs9W/M6WM8M/EmXp0+ln/+/JVH3/mqxvoj77wfo0HPrnXLLWTdvHzJy86s0p4rub+r0//k6Xt5YlwfbGxtad25u7k8NysTd2/fGrejcuNSHxYInVcU5aDpfRTQFHBXFGWzqWwO8MdlOrlAMfCDEGIlsMJUPghoU+FB6CqEcFEUJU9RlCXAEiFEX+BNk+wlKIoyC5gF0KW53/WNfhZnXxpxtHeH4lxLOfdGckEOyKiWb2vpZCQflXMe43bLc62Gl0cW81Nh13fyvZMP+LaxrNdQJh0Bsz05l9njJssupySvPLpp5wKl+TXXN+ql3f7tIP20LNPYSFvqO4VZl0YcndwvjQRfxCsU+twr39s5QVBbOc0i7hCc3SH/AMLHyGgiQG4KrP9CvnfxhSArw1j6MhkRrcweR/fy+ipSlFse3XRwLR/ar4m+UQ/xh2XUNemELNM2jM87ISGB4OBg83FQUBBJSYkWcheHoAHW/r2GT7/4Ei8vr0r1mzRpSlhYGDv3RpnKg9m2aw/9evckNSXFLF9UVIS9vX0Fe+Kt1FceubpIamoKfv7+pCQn4+fvT1paao31S0pKWLlyBSNHjmbj+vUA2NvZU1x8vX/IX3+y0lLw9C2fg+3h4092eqqF3MUhaIAju7agfeJVnN3cq9XvOXQsHXoM4KMn7rLafllJMTpbO/NxZmrN7MnNysDNy4ecjDTcvHzIy8qssb6+tJSD2zfQqfdAju+TzyWdrR2lJVYWJ6rUOepDZLPismgD4F6dgqIoeiASWAyMBdaYTmmAHoqihJv+ghRFybtMdwvQVAjhfRVsv3pkx0lH0MFTzmMM7CQdsctZ/zasf0v+JR2SK7kvyl0cwnZwl0PtiQcuLUdA80EQs+PyWqEgDRw9y4+Tj0obNFppk5MPZMVa6iUfg0amOViNupbbUpm+1lY6pSDn8Pm2ls7wRZx95LB/fScjRjqCzl6yj0K7QpyVYdAl/wdLXpJ/sQdg93zpaEL5ELajh5x/eWHvpeUIaD8cTlvJQZ6XItu+SNxhaYPGRpa7+ELGBUu9+MPQpId836SHPK5K38ZOOqUgP++gdjIqexFXPznsX8+J2reXps2aERoWhk6nY8Ktk1i1YoWFnK9f+dBkRJeuaDQaMjIyKtU/duwojUOCaNuyOW1bNichIZ7e3SMvcTQBzp45TUhoqPl41YoVTLh1Era2toSGhdG0WTP27d1jYc+qFSuYcof8cTvljjtZuXx5lfpOTk74+cs5hFqtliFDhnL6VPlCxmbNm3P82LH/0JN1g/Mnj+AXHIp3QBBaGx3dBg7n4HbL3UVcPcu/hhq3bo/QCPJzsqvUbxfZm+G338uXLzxYqSOXHHcBb//yaRoHt2+g28Dh2Oh0eAcE4RccyrkTls+bA9s30GvoWAB6DR3LgW3rq9S3c3DEzcsHAI1WS4fufUmKPWeuz69RGAnnzlxh76nciNSHyObl5ABZQog+iqJsBe4ENlcUEEI4A46KoqwSQuwCzppOrQUeAT40yYUrinJQCNEMiFYURRFCdAZsAcu9QWoTxQhH/4TuM+SXctweyDd9YYSavtxjqtkipstdcmsaoxGO/Fm+BVFQJwgzzZNKOiLrvhxDqVzE4+gNhemy7aSD0P85k22m7YkAOkyUDmtOPJxdDxFToVE3KMqSWx9B5fpaW4i8RzolQiNXsFd0fj0bw+m1V9x9dQ7FCHsWyCFwoZERyhyTk93ctCL/zNaq6+g7Q67uNhrkdkIXtyAK6yqH0UE6qNFWflzoSyEvDVx85GtOEsREwehXTfXNLx+6736HdFgzY+Ho33Lro2a9oCATtsySMpXp29hC/4dkBFNoIPnUpc6vT1M4bOl01TcMBgNPzXycpctXotVq+WXObE6ckLsL3HOvXE384w+zGDduPPfOmIFeb6CoqIi77ryjWv2aUFhYyPlz52jSpCnnzkVz4sRx/lz8B/sOHkav1/Pk449hNMppGF998x0/fj+LA/uj+OSjD5j72zym3nU38XFx3Hn7ZIBK9Z2cnFi4aAl2dnZotRo2b9rED99/Z7aje4+evPv2m1elT29kjAYDv372Jk9+9CMajYZtqxaTeEF+TfUfPQmATcsW0KX/EAaMmYzRYKC0pJhvX3+qWv0pM19GZ2vLU5/8BED08UP88vFrl7RfWlxEamIsvkEhpCbEknjhLHs3ruatuStl3abtiQDuevZNNv21gAunjrLqt+958PVP6TNiPBkpSXzzykyASvXt7B147J3/YWNri0aj4cT+3Wz6a77ZjubtO7Fs9lfXrJ9Vrh/iSubZ3GgIIcKAFYqitDMdPw04A0uBbwFH4Bxwt6IoWUKI2cgh8+3AX4A9crbYR4qizDFFK78GWiMd8S2KojwghHgOmAqUAUXAM4qiVJkst0tzP2XfJ1Ou7gXf6Pi3B7dgOLW6dtp3DYKm/eDA79e/7ezC699mbdMoHLxC4OCy2mnfoxG0GQjbZ1/3phtibvRRo8fQqXNn3njt1eqFrwEdOobz6OMzuW/6Xde97YmR1rcdqs907jOI0JZtWfLD57XSfkjz1gyeeBc/vP3cdW/7562nohRFUVcmXUXqdGRTUZQLQLsKxx9VON3divxdFQ4t9ulQFCUdmGSl/H3g/f9gasMg+YiMjNYWtk5wspYc3YZI3EE5D7S2sHeGg5aLG1SuDcuX/YWnl1f1gtcIL28v3ny9dhzdhsj+rf/g5Opea+07u3mw5Mcvaq19latLnY5s3sg0yMhmQ6YhRjYbMA0xstmQaYiRzYaMGtm8+tSHBUIqKioqKioqKio3KHV6GP1G5kRsJhGP/VLbZqhcJ6J+uq+2TVC5jgS61+J0EZXrzpvj63/WIpVyft56qnohlStCjWyqqKioqKioqKhcM1RnU0VFRUVFRUVF5ZqhOpsqKioqKioqKirXDNXZVFFRUVFRUVFRuWY0KGdTCPGGEMIip/kV6HcVQhiEEBOupl1Xix59b2Lx+p0s3biHux54zKpMRLeebD4Uze8rN/L7yo3c9+hTNda/876HiDqfhruHp8U5AG8fPz774Tfz8d0PPs7SjXtYvH4nPfoOsKrj6ubO17/8wZINu/n6lz9wcXWrVv/L2QuYt2ojC//eygtvfYhGI/+NJ069h1ETbquih+oZns2h2xPQ7SkI6Vu1rEsQ9H8LfNqVlwX3hK6PQ+Tj8n1FgnrIuiMfh6ZDrddp6wLtp5Yfh/STtnR7QtpmDRsH6Hg3dHtSvtrYV6/f4S7o+qi0pcUYZB4GIKg7+Heu+rrrEX0GDGTNtn2s23mAGY88YVUmsmdvok7H8tc/W/nrn608/OSzNdaf/uCjnE7OwcPT+v3t4+vHd78sMB/f/+iTrNt5gDXb9tG7/0CrOm7uHvy8YClrd+zn5wVLcXVzr1b/h98Xs2z9NlZu3sXr739qvr/vmH4ft0xuONvJ2YW2x3fqB/hN+wjnLiOrlNX5NSbw0TnYNytfyOQUPhjfKe/ie8e7OIUPMZfbeIfgM/EVfKe8g+eoJxG29taqROPohtfoJ83Hzl1G4TftI3ynfoBdSHurOsLOCa9xz+E37UO8xj2HsHOsVt9rzDP43v42vne8i/tNd4GQ97dTh0E4tulT5XWr1B0alLOpKMoriqL88290hRBa5Mbuf19dq64OGo2G5994j8fumsyEwb0YMnocjZu1sCp7YO8ubh8xgNtHDOD7Lz+ukb5fQCDdevcnKSGuUhum3PsASxbIFfiNm7Vg8Kix3DqkN49Om8Tzb7xv/tKoyF0PPsbe7VsZd1M39m7fyl0PPlat/vOP3MNtwwcwcUgfPDy9GTR8NADLFv7O5LsayqpwAS1Gw6HZsOcz8OsIjr6VyzYdCpkVcgw7+UFAV4j6H+z9ErxagYNpw273JuDdGvZ8AXs+h9hK0l426gVJpnzqjr7g10Hacmi2tO2iU1iR0H6QFQ27P5GvIf2q1z82T9q453PQOYGv6YsqKcrSSa6naDQaXn33Y+67fQLD+0Yyctx4mrZoaVV23+6djBnUhzGD+vD1Jx/USN8/MIhefQeQEB9bqQ13P/AIC3+dA0DTFi0ZMfYWhvfrxr23j+e19z62en/PePQJdm7dzOCendm5dTMzHn2iWv3HZ9zF6IG9GdGvO55e3gwbNQ6ARfN+Zeo9D/yL3quDCIF7/2lkLP2QlF+ew7FFD2w8AyuVdes1mZLYI+YiG69gnNoOIG3Bq6T+9hL2jcPRuvsB4DHoHnK2LyT1txcpjt6Hc+cRVqt17jyMgqObZH2egTi26E7Kr8+TsfRD3AdMMzuFFXHpMoqSuGOkzHmGkrhjuHQZVa1+5uovSf39JVJ/fQGNgysOzbsBUHh8C04dB/+r7lO58ajTzqYQIkwIcUII8b0Q4pgQYq0QwkEIES6E2CWEOCyEWCKE8DDJz74YlRRCvCeEOG6S+chU5iOEWCyE2Gv661WhuUeBxUDqdb/QGtC2Y2fiYi6QEBeDvqyMtcuX0v/mYVdN/8mX3+Lz916nqiQANw0dyY7NGwDof/Mw1i5fSllpKYnxscTFXKBtR8soVL+bh7FisYyWrFi8gP6Dh1erX5CfD4CNjQ06W505BXdxcRFJ8bG07dipxtddZ3ENhqIMKM4CxQAph6WDaI3gHpB2DErzy8scfSA3FoxlMs969nnwaSPPBXWD2M2yXoCyAuv1+rSDjNPyvXdraYNikDYVZUgbL8e7NSQfkO+TD5S3WZW+oUS+Cg1otIDpAzeWSVkXK+3UMzp0iiDm/DniYi9QVlbGyqV/MmiIdSfh3+i/+Ma7fPjmK1Xe30NGjGbLRvlbfdCQEaxc+idlpaXEx8YQc/4cHTpFWOgMHDKcJQtl+tglC39n0NAR1eoX5OcBFe5v0+ddXFREQlwMHTrV/2i2rV9T9DkpGHLTwGig8PQu7JtY9i+AU8fBFJ3di6Ew11xm4xFIafJZFH0pKEZKE07i0FTuUW7jHkBpwkkASmKP4tDM+rZODs26UhxzGAD7JhEUnt4FBj2G3DT0OSnY+lludG/ftDOFx+WP08LjW7FvGlGtvlJaLJU1WtDYcPGBruhLMeSmo/NrckV9p3JjUqedTRPNga8VRWkLZAPjgbnAc4qidACOAJfkOBNCeALjgLYmmbdMpz4HPlUUpaupnh9M8kEm+W+rMkQIMUMIsU8IsU9vMF6ly6sZvv4BpCQlmI9TkhPx8Q+wKtu+cxfmrdrIFz/Pp0nzltXq9x00hLTkJM6cOFZp+4HBIeTl5FBWWgqAj38AyRXrS0rE14o9Xt4+pKelAJCeloKnl3eN9L+as5B1+05QmJ/P+tXlubmPHzlEp64WmUrrH3ZuUJxTflySA3aulnK2ruDTFhJ2X1pekALujeWwtkYHXi3Bzl2ec/ACtzCIeBA63SeH4C/H3gP0ReUOqZ2rtOEixbnSxsvROUOpdCYozZPHNdHveBf0egkMpZB6tLw8LwHcwyzbqWf4BQSSnFh+PyQnJeAXYP3+Do+IZNn6bfzw+yKatWxVrf5Ng4eRkpTIyeNHrdYHEBwSSk52tvn+9gsIICkxvkJ9ifgFWEbevH18SEuV93daagpe3j410v9x3p/sPBpNQX4+a5YvNZcfOXSQLt3qfzRb4+yBIS/TfGzIz0Tr7GEp5+SBQ9MuFBxZf0m5PiMeu6CWaOydETa22Id1ROssp0eUZcRj30Q67A7NI9G6WE6b0Lr6YCwuAINeHjt7YMjLqGBPFhor9mgdXTEWyvvYWJiD1sG1RvpeY58h4L6vUcqKKDq7x1xemnoeu0DrEXyVukV9cDbPK4py0PQ+CmgKuCuKstlUNge4fEJbLlAM/CCEuAW4mGtwEPCVEOIgsAxwFUK4AJ8hnVdDVYYoijJLUZQuiqJ0sdFe364VVoY0rEUpTh47zMjenblt+AAWzPmBj7+bW6W+vb0D9zz8BN9++l6V7Xv7+pGVWf4wqak9lVGd/iPTJjIksh06Wzu69iyf15OVkYaPn3+N26n3NB8B0WswRwMvUpgmo5fh06Ujl59U7jgKLegcIOobOLsa2lqZB2vrAqUVI55Whswvb7NKqtE/NBt2vCtt86gQUSnNl7bUc2p6Px07fIgBXdoxemBvfvnxO/738+9V6ts7OPDgzKf5/IN3qmzfx9ePzIz0K7anMqrTv+e2W+jVsQW2tnZ0793PXJ6Znoavf0O4v63cD1b6173fHeRsn29xTp+VSF7USrzGPYfX2GcoS4+VIxhA9j/f49RhED6T30DYOpgdyopondwxFuVVbc9VvL8zln5I0g+PIrQ67Bq1NZcbC3PROLtfQTsqNyr1wdksqfDeALhXp6Aoih6IRA6LjwXWmE5pgB6KooSb/oIURckDugDzhRAXgAnA/4QQY6/WBVwNUpIS8Qsoj0D5+QeSnpJsIVeQn09RoXQStm/6BxudDe4enpXqB4eGERgcwrxVm1i+NQpf/0B+W74eL+9L5weWFBdja2dnPk5NSsS/Yn0BgaRZsScjPQ1vHzmXyNun/AutJvqlpSVs+WcN/SoM99va2VNcXFxFT9UTSnLAvkLkz84NSnIt5VyCoM1k6P6MHPZuMbp8uD0pCvZ9DQe+l1HKwozyutNMUey8eECRcyUrYiyTQ14V7akYibR3tW5PWQXn0NZFHtdU36iHjBOXThfQ6GR5PSc5MQH/wPL7wT8giNRka/d3HoWm+3vz+nXY6Gzw8PSsVD8ktDHBIaEs27CNDXsP4x8QxJK1W/D2ufT+Li4uxs6+/P5OTkwkIDC4Qn2BpCYnWdiTnpaGj6+8v318/chIT6uxfmlJCRvWrmLQ0OHmMjt7O4qL6v/9bczPvCTiqHX2xFCQbSGn822M57CH8bv7ExyadcV9wF3m4fbCY5tJm/cy6YvexlhcgD5b/r/os5LIWPoBafNfoejUTvQ5ljPDFH0pwkZnPjbkZ6J18apgjwfGfEt7DIW5aBzlfaxxdMNQlFtzfUMZxef2m6OuAMJGh6Ivq6SXVOoS9cHZvJwcIEsIcTHcdSewuaKAEMIZcFMUZRUwEwg3nVoLPFJBLhxAUZTGiqKEKYoSBiwCHlIUZek1u4J/wfHDB2gU1pjA4BBsdDoGjxrL5n/WWMhVdBLbduyERmjIzsqsVP/sqRPc3LUNo/pEMKpPBKnJiUwZNZCM9EsfUDHnowkMbmQ+3vzPGgaPGovO1pbA4BAahTXm2KH9FvZs+WcNI8dPAmDk+ElsXre6Sn0HRyezc6rVauk1YBAXossXvoQ0bkr0qRP/oSfrCHkJ4OAth7OFVi6uSbdy3bs+gl0fyr+0o3B6WbncRQfSzg2820LqIXmcfrw8eujgJeu/fN5mYbps+yLpJ6QNQivLHbwhNx4L0k+Av2lOrX+nclsq09faljunQgOeLWVU9iKO3nJKQD3nyMH9hDVpSnBIKDqdjhFjb2H92lUWchWdxA6dOqMRGrIyMyvVP33yOD3aNeOmrh24qWsHkpMSGDe4L+lpl97fF86dJahRiPl4/dpVjBh7CzpbW4JDQglr0pTDB6Is7NmwdjXjJt4OwLiJt7P+71VV6js6OpmdU61WS7+Bgzl39rS5vrAmzThzsv7f36Up57Bx90fr6gMaLY4tulN8zvL5mTL7SVJ+ln9FZ/eSvXE2xefk56C5OITt4oV90y4Untp5STkIXCLHUHBkg0W9+qxktK7e5uPic/txbNEdtDZoXX2wcfenNCXaQq/43H7zCnLHNn0ojt5fpb7Q2ZmdU4QGu7CO6DMTzfXZuPujz7DyHFGpc9TX3OjTgG+FEI7AOeDuy867AH8JIeyR8f2L+4A8BnwthDiM7JstQJ1Y/mgwGPjg1Rf4au5CtBoNf/0xj3NnZH7X8bdPA2Dx73MYOHwUE6bchcGgp6S4mBcem1Gtfk0oLiokPuYCwaGNiY85z7kzp1i3chmL1m5DbzDw/ivPYzTKYZyX3/uURb/N5sSRQ8z+5gve++oHxkycQnJiPM89fA9ApfoOjo588v0v2NrZotFo2btzG4t/m222Izwiku8///BqdOmNjWKUjmPHu+WqzqQoKDQ5CIGR8jVxT+X6AO2mgM5RDp+fWQZ6U8QoKQpa3SK3RVL0cGKRpa6xDIozwcETijJl26lHoNvMctsuDpO1HCdtyUuAmM3Q7nYI6CKjmUflMG+l+hpbaH+nXDwgNJB17tLrcguBC5fOV6uPGAwG3njxaX6c9ydarZZF837l7Cm5yGPy1OkAzJ/7E0NHjeG2afdg0OspLi7miQemV6tfE4oKC4m7cIGQsCbEXjjH2VMnWbVsKau37EGv1/P6C0+Z7++3P/6SeXN/4uihA8z68hM+nzWHCbffSVJCPI/dJ59Flek7ODry7dz56Gxt0Wq17Nq2hXlzfjLb0blrd776uOopPfUCxUj2prl4j30GhIaC41vQZ8o5t47tbwKg0IqTWBHPEY+hsXcGo4GcTXNQSuRsMYeW3XHuIHcALIreR+HxLZbN60vQ56SidfPFkJOKPjOBwjO78bvjPRTFSPbGOeahe/eB91BwZANlqefJ37cCj+GP4NS2H/q8DDJXfglQqb7Q2eE1+kmE1gaEhpK445c4v7aBLcjbveQ/dqbKjYC4knk2KjXHyU6ntAp0r20zrisDBg+nVfuOfPPxu7XSfss27Zly7wO88uTD173tqJ8aypZLFfBuI4fpz6+rnfadA6BRbzjxx3VvusVtX1/3Nmubm4eNpG2HcD57/63qha8Brdt1YPr9D/PMo/df97Y3vjD6urdZ29g3jUDn25i8nVZ+bF4HdD6hOHcaStba765728Ezf41SFKXLdW+4HlNfI5sqtcDGtatwq2TD9+uBu6cn3zSEqMeNQvpxGRmtLXROtefoNkDWrV5RaUKH64GHpxefffB2rbXf0CiOjpKR0VpC4+BC7s7Ftda+ytVFjWxeIxpiZLMh0yAjmw2YhhjZbMg0xMhmQ0aNbF591MjmNaJEb+B8qpXVuCr1kvmLqpkfqVKvmNBV3Wi6IRHUKbS2TVBRqdPUx9XoKioqKioqKioqNwiqs6mioqKioqKionLNUJ1NFRUVFRUVFRWVa4bqbKqoqKioqKioqFwzGtQCISHEG8AWRVH+uUK9/sBfwHlT0Z+Korxxda377wy8eTDvfPAxWq2WX+b8xOcff2Qh06tPX35bsIiYmAsArPhrKR++9061+vc98BD33v8gBr2etX+v5rX/e9Gibj9/fz776htumzAOgJlPP8MdU+/GYDDwwjNPsuEfy21q3D08+GnubzQKCSUuNoa777ydnOzsKvX/WLocP39/bLQ27NyxnWeeeAyj0ci99z9IYWEBv/8y9z/1Y13Bv01XOk94CKHRcG77ak6sm1+prGdISwY98wU7fnqL+ANbAWjRfxxNeg1HCEH09lWc3vgnAO7BTekyeSZanQ7FYGDfgi/IjLHc4N/e1ZOutz/J1m//D4DWg2+jSc+hKEYj+//4muQT+yx0bB1d6Dn9/3Dy8qMgI4XtP75JWVF+lfr9Hn4Xe1dPNFotaWePELXgSxTFSPN+Y9CXFHN+19//rSPrOM0792Tkfc+g0WjYu24pWxb9bCHTuF0Ed/7fp2SmyOwsx3duYMP8WVbru+et7/j17ScpKSqoUd0AI2c8S8uIXpSWFLP481dJjD5ZpW2DpjxE6279UBSFgpxMFn32KnmZafiFNqP3uDtZ/NmrV6Nr6g8ezaHpcJnYIDkK4iw3YjfjHASd7ocTCyDdlHY2sIdMpACQvA8SdlrXDeoBZUWQehBsHKD1JLB3h+JsODG/PPFDTWyrTN8lCJqPLdeP2SDT0AK0vxtOzLPejkqdpkFFNhVFeeVKHc0KbK2QM/2GczQ1Gg0ffPI5E8eNpkdER8bfOomWrVpZld25Yzv9ekTSr0ek2dGsSr93334MGzmKPt0i6Nm1E199/qnVeh969HHm/iyzfbRs1YpbJkykZ5dwbh07ig8//QKNxvLfbeZTz7B50wa6dmzL5k0bmPnUM9XqT7/zdvp270rPrp3w9vZm7C3jAfht7mxmPHj9N3SvDYTQ0GXio2z++kVWv3kPIV0G4OofUqlsx7H3XuL8uQWE0aTXcNZ98Ahr3plBYLvuOPvI3NnhY+/j2Kq5/P3uAxxZOYfwsTOs1tty4ATO7ZDpB139QwiJ6M/qt+5l89cv0GXSYwhh+Xm3HjyZlFMHWPn6XaScOkCbwZOr1d/+45v8/e79rH7rXuyc3WnUuS8A53asoUX/cf+yB+sHQqNh9APPM/u1R/js4fF07DsU30bWV8pfOH6Arx6fzFePT67U0WzZpTdJF05TUlRQ47pbRPTGKzCEj+8fw9Kv32LMgy9Wa9vWP+fw5WOT+OrxyZzcu5WbJsv/sZSYs7h5+eHm4381uqeeIKDZKDg6F/Z9AT7twdGnctkmQyCrPIUvjr7S0TzwLUR9DZ6twN7Liq4G/CIg9bA8bNQXss/B3s/ka6O+V2ZbZfoFqbD/G9j/NRydA83HYHZFUg9CQLcr7B+VukCddjaFEGFCiBNCiO+FEMeEEGuFEA5CiHAhxC4hxGEhxBIhhIdJfrYQYoLp/XtCiOMmmY9MZT5CiMVCiL2mv161eX1XQkSXrpw/F03MhfOUlZXx56KFDBs56qroT793Bp9//CGlpaUApKelWa1j1JhxrF8no0zDRo7iz0ULKS0tJTbmAufPRRPRpauFzrARo5j/268AzP/tV4aPHF2tfl5eHgA2NjbobG25uFdsUVERsTExdI6o/9ujeYa1JC8tkYKMJIwGPbFRmwjqYP3ftXn/scQd3EpJXra5zNU/hIzzJzCUlaAYjaSdOURwR6mvKGBjL/Om6+ydKMrJsFpvo/A+JB3fC0BQh17ERm3CqC+jICOZvLREPMNaWugEdejJ+d1rATi/ey1Bpjar0tcXyzR7QqNFY2NzMUsehrISCjKS8Qy1bKehENy8HRlJcWSlJGDQ6zm85W9ad+v/r+sL7z+cE7s2XVHdbbr348CGFQDEnTqCvZMLLh7eVeqXFBWY9W3tHMypDwFO7tlMhz5D/vU11DtcgqEoA4qzZGrZtCPg1dq6bFB3SDsGpeX9i6MP5MbJFLMYIec8eFvR92gC+YlSBsCrFaSY8rGn7LfeZlW2VaZ/0Q4Aje7S+jJOgG+HajpEpS5Sp51NE82BrxVFaQtkA+OBucBziqJ0AI4Al4zJCCE8gXFAW5PMxfxrnwOfKorS1VTPDxXUegghDgkhVgsh2l7LC/o3BAQGkhAfZz5OTEggICDIqmzXyG5s2bWXhUuW0ap162r1mzZvTo+evVi3aSvL16yjU+cIizpDQsPIzs4yO6QBAUEkxMdXqC+egMBACz1fX19SkpMBSElOxsfHp0b6i/5awekL8eTn5/HXkj/N5Qf3R9GjV+/Kuqne4ODuTWFWqvm4KDsNB3fLaIWDmxfBHXsRvXXFJeU5iRfwadYBWydXtDo7Atp2w9HDF4ADi/5H+LgZjH7rd8JvuZ9Dy36wqNfJy5/SwjyM+jKTPV5W7PG20LN38aA4NxOA4txM7F3ca6Tf7+H3GPf+IvTFRcQfKB9CzIw9jU+z9pV3VD3HzcuXnPQU83FORgquXtajXiEtO/DoFwuY9tpX+IZYj36GtA4nIfrEFdXt6uVLTnqy+Tg3IwVXL99q9W++82Ge/Wk14f2H8c9v35jL488eJ6xtp+ouveFg5wolOeXHJblg62opZ+sCXm0g6bI9fwtSwS1MDmtrdODZAuzcLPVdQ0zO5sX6nKFUTnGhNB90VrIJVWVbVfouwRDxKEQ8Amf+wux86otBo5W2qtQr6oOzeV5RlIOm91FAU8BdUZTNprI5wOXx/1ygGPhBCHELUGgqHwR8JYQ4CCwDXIUQLsB+IFRRlI7Al8BSa4YIIWYIIfYJIfZd78xMQgiLMms2HD54gI6tm9O3e1dmffs/fpm/qFp9Gxsb3Nw9uLl/H1596QV++uV3C1l/f38y0tOv2J5/ez0TxoykddNQ7Gzt6Nt/gLk8PS0N/4CAGrdTVxFY9g9WurfThIc4tPQHFMV4SXluSiwn182n/yPv0++Rd8lOiEYxGgBo1ncUBxZ/w7L/u50Di78hcsrTFvXau3pSkl/+JVNTe/7t9Wz++nmWvjARjY0O35bh5vLivGwc3KwNCTYQrHSbtX5PjD7JB/cM58vHJrFz+XzueMn6VBhHZ1dKiwqvqG5rgoqiVKu/7pev+WD6MA5uWk33kZPM5QXZWbh6VjZMrCKx8kE0HQHn/7Y8V5QG8VvlfMj20yA/GS57HgDSWS0rsCy/GrZdTl48RH0J+7+FRv1AVFg+Ulpg3ZlWqdPUB2ezpMJ7A+BenYKiKHogElgMjAXWmE5pgB4V5mYGKYqSpyhKrqIo+SbdVYBOCGERtlEUZZaiKF0URelizVm6liQmJBAU3Mh8HBgURHJyooVcXl4eBQXygfLP32vQ6Wzw9PKqUj8xIYEVy5YCsD9qH0ajES/vSy+/qLgIOzu7cnsS4wkKDq5QXzDJSUkW9qSmpuLnL+dn+fn7k2Yaoq+JfklJCatXrWDYiPLpAnb29hQVFVnronpFYXaaORIJ4ODuY3W42zOkBT2nv8SoN34luFNfukx6jKAOPQE4t3MNa99/kA2fPklpYR55qQkAhHUbTPxBuYgobv9mvKwMUxvKStHa2FawJ92KPekWesV5Wdi7yvza9q6eFJuG9muib9SXkXBkh9l+AK3OFoMpmt4QyUlPxc3bz3zs5uVHbqblNJeSogJKi+V9cTpqG1qtDY6u7hZyRqPB/EOvpnXnZqTg5l0+x9LVy4+8zLQa6x/avJp2PQeaj21sbSkrLbGQa7CU5F4aibRzhdI8SzmXILkgJ/Ip8Gkr51JeHLpOjoID/4NDP4C+SA59X46xDDQVnb58GZ0E+VqWf2W21US/KA2MpeBUfu+jsTENtavUJ+qDs3k5OUCWEKKP6fhOYHNFASGEM+BmchxnAuGmU2uBRyrIhZte/YXpCSyEiET2m/WJbLXE/qh9NGnajJDQMHQ6HbdMmMialSss5Hz9yh/+nSO6oNFoyMzIqFJ/5fJl9O3XH4CmzZpja6u7JIoJEH3mDCGh5Snd1qxcwS0TJmJra0tIaBhNmjYjat9eC3vWrFrB5Cl3ADB5yh2sXrm8Sn0nJyezc6rVarl58FDOnC5fKd20WXNOHj/2b7qwTpEZcwoX3yCcvPzRaG0IiehPwpEdFnIrXr2T5a/cwfJX7iD+wBb2LfiChMNSzs7ZHQBHD1+CO/YmZt8GAIpy0vFt3hEAv5adyEtLsKj3/9k76/imrvePv0+SurtCizsUdxvuOmzIYP4d88H2mzBhDhtjGxPGBkzYcJehw624W1ug7q5J7u+PmyYtSYVtUNre9+uVV3JPzuec594Tee5zLCM+EgcP02cp6twharbugUpjhYOHL07eASRHmM9gjzp3mFrt+wJQq31foy0l6TU2tkbnVKhU+DdpT0acabiHk3cgaTHhZvVUF6KuXcDTvyZuPv6oNRqad+vHpWN/m+VzLDLEIrBeE4RKkJ2eapYvITICN9/Auyr70tG9tHxoMAA1GjQjNzuTjJTEUvUefqbJbI3adychMsJ47BkQRNzNG3d/MaoqGVFg5wG2biDU8iScpMvm+Y59bnokXIDrG02zvK3kMdjYuIBnY0g4a67PTpDrKSTpMvi0kl/7tLJcZ2m2laS3dcPoeti4gp2nPFu9EGun4scKVYKquvTRFOB7IYQ9EAZMveN9J2C9EMIWubPnJUP688ACIcRZ5GuzD3gaGA08I4TQAjnAOOl+95OXgU6nY+YrL7Jq/SbUajW//7KEy5fkH5pHH3sCgCU//cjQ4SOZ9viTaHVacnNyeHzKpDL1v/+yhK+/X8jB4yfJz8/nf08+blZ/dnY24eHh1Kpdh/CwG1y+dIl1q1dx+MQZtFotM19+Ab1e7rqZv+A7Fi/6kdOnTvLl53P4+ddlTJw8lcjI20ydOB6gRL29gwO/r1iNjY0NapWafXv/ZvEi08za9h078tnHH5jZV9WQ9HpOrPia7s9+gkqlIuzwNtJjbgJQp4v8x3/jgPnNRlG6PPEO1g7O6HVaTqz42rgE0fFl8wxLKqnRa/M5vsy8y1WXn0tmYjSOXv5kJkSTHnOT2yf3MvCtn9DrdZxY/pWx677thJe5fmATKbeucmn7n3R+7C1qd+pPdko8BxfNBihRr7a2pevTs1FrrBAqFXFXTnN9/0ajHZ61m3B+S/VY6soSer2ODd9/ytT3vkWoVJzYuZ74W2EAtOs/GoBj21bRtHNv2g98GL1OR0FeLn9+9n8Wy7sSeoDazdqQHHO73GVfCT1AgzZdeGXhBgryclk9/90ybev36PN4BQSh1+tJTYhh/YIPjTbUbtaGK8f335PrVTnRw/VN0HSKaXmhbMP4Zj/DpMsY8xv5YjQeDxp7eRLP9Y2WlxZKvgYNR5uOb++DRuPAtxXkpslLF4HsDNYfDud/Ld22kvTOQdCkq9yVL0kGewxDNxz95clMWOjmV6jUiAfMZ6oyaNQqydnWquyMVYhBQ4bSomUrPnr/3Qqpv1mLFvzvuRd45vFp973ubx/tWnamKkZAi86416jPuU2W116817gG1qVhr1EcWfrpfa/77K0HqmPjP8PJzZPRL81m8axnKqR+tcaKJz5exMLXpqE3jCF+EPhoxqCKNuH+0HgChP0FuRX0+a4zUI6ApoZVTP0GRPcPT0iSVPWXNbmPVNXIpkIFsHnjBtzdK26yhoeHJx+9/16F1V/diDpzEBuHihvIb+PozLmNSyqs/qpIRkoiodvXYGPnUGx5ovuFq5cffy396oFyNKsV4dvBxqninM2s+Ap3NBXuDUpk8x5RHSOb1ZnqGNmszlTVyKaCZapNZFMBUCKb94KqOEFIQUFBQUFBQUHhAUHpRr9HhNT2JnTeIxVthsJ94tL5yLIzKVQZJn6/u6JNULiPNK9ZjddyVVD4D1AimwoKCgoKCgoKCvcMxdlUUFBQUFBQUFC4ZyjOpoKCgoKCgoKCwj1DGbNZlfBqAE2Gy4vr3joKN0oZV+ZSA7o8Dyd/hRjDbhK1ukKN9iAE3DoC4YaFlev3hZodIM+w3diVLRBvYTcJGydoPgaO/yQf13kIaraXF++9sA4SzHeUwcoOWk0GezfIToGTv0BBTun6dk+ArbN8nslhcG4NIEFwZ9DmQ2QZCxxXERxqtcCn96MIlYrUM7tJOrK+xLy2vnUInvwBUeu/JOPKUQDc2gzAtUUvBJByZjcpoVsACBj2Atbu/gCobO3R52YTvvg1szI1Dq74DniSyFWfAeDRYTiuLXoi6fXE7VxCVvgZM43K1oGAYS9i7eJFfloCUeu+RJ+XVaq+xpj/Q+PohhAqsiMvE7v9J5Ak3Fr1Q1+QR9q5v//pJaxU9OvXjy/mfYlarebnn37is8/M1xft3r07a9auIzxc3lVp3dq1fPDB7FL1n376GYMGDyY/P5+wsBs8Nm0aaWlpZmX7+vryw8KFDBs6FIDXXnudqdOmodPpeOnFF9i+fbuZxs3NjT/+/JOgoGBu3oxg3NixpKamlqrfvGULvr5+aDQaDhw4wHPTn0Wv1/O//z1LVnYWS5cs+dfXsjLg27itYXMFFWEHt3Jpx58l5nWv2YDeM77i0M8fEHlK/t2u32MEtTsPRAjBjYNbuLpnDQCugXVoM+5F1FZWSDodocu/Ivmm+W+zrbM7bSe8zP7v3wKgUd/x1O7UH0mv5+TKBcReCjXTWNs70WnaWzh4+JCVFMfBn2YbN4soSd/92Y+xdXZHpVaTcP0cJ5Z/jSTpqdd9GNq8XMKP/PXvLqTCA0G1imwKId4XQvT+h9oeQojTQogLQoi9ZSvuNwKajoRjP8Lfn0FAS3D0KTlvo0HFnT8nX9nRPDAf9n0O3o3Bocj+52H7YP8X8sOSowlQu7vspIJcd0BL2PsZHP1Rtg0L+8XX7QWJ12DPJ/JznYfK1p/8RbZx7xx5z11/eWtFbh2THebqgBD49p3G7RUfc+PHl3Fu3Blrj4AS83r3nFDM+bPxrIFri15ELH2DsJ9n4lS3FVZu8jagUevnE774NcIXv0bGlWNkXD1msVj3doNIPSPf0Fh7BODcuBNhi17h9oqP8O07Tb5puQPPDsPJvnmeGwtfJPvmeTw6DitTH7XuS8J/nknYT6+itnfGuWFHAFLP7sG9Tf9/dv0qGSqViq++/obBgwbSrGkTxo4bR6NGjSzmPXBgP21at6JN61ZGR7M0/c6dO2jRvBmtWoZw7eo1Xn/d8u5CL730MosWLQKgUaNGjBk7lubNmjJo4AC+/mYBKpX538lrr73O7l27adSwAbt37ea1114vUz9u7Fhat2pJi+bN8PLyZPTDDwOwePHPTJ/+3L+4ipUHIVS0GfMcexe8wdbZj1GzTU+cfWuWmLfF8MeLOX8ufsHU7jyQHZ9NZ9tHT+LftAOOXvLvQ8jwJ7iw5Rf++vhpzm1eSsjwJy2W26DXaMIOyTegzr41qdm6B1s/eJy9C/6PNmOfRwjz9m7UdxxxV06x+b1HibtyisZ9x5WpP/jTbP76+Cm2fvA4No6u1GjVDYCwQ9uo32PEP7yCCg8a1crZlCRpliRJO+9WJ4RwBb4FhkqS1AR4+L+27V/jWhOykiA7Wd6SLOoU+DSxnLdWF4g5Z4pUAjh6Q+ot0BfIkcTkG+Db7O5s8G0OCQZH1KeJbINeBznJsm2uFn4sfZqYIpGRx8G3adl6bZ78LFSgUkPhUrH6Ajmva427s7sSYudXl/yUOArS4kGvI/3iIZzqtbWY1631ADKuHEWbbYpWWXsEkBt9DUmbD5Ke7FsXcarfzkzr3LADaRcPWizXqUF7ssJOy6/rtSX94iEknZaCtATyU+Kw86trpnGs14a0c/K9Wtq5vUabS9Pr8w2RbpUaodZQuDawpM2nIC0BW7865bhilZt27dpx48Z1wsPDKSgoYMXy5QwdOuw/0e/YsQOdTl5E/cjRIwQEWr5pGTFyJH9t2wbA0KHDWLF8Ofn5+URERHDjxnXatTP//AwZOpRfflkKwC+/LGXosGFl6jMyMgDQaDRYW1sb2zsnJ4ebNyNo29by57wq4R7cgIyEaLKSYtDrtNw68TcBzTtbzFuvx3Bun95PXkaqMc3ZtyZJ4ZfQFeQh6fUkXDtDYAtZL0mgsZX3SreydSAnzfKasTVCuhJzUf5tDmjemVsn/kavLSArKZaMhGjcgxuYaQKadyL8qByhDj+6nQBDnaXptbnyVpVCpUal0VC49LeuII+spFjcg8zrUah8VGpnUwgRLIS4JIT40RBx3C6EsBNChAghjgghzgoh1goh3Az5lwghRhtefyKEuGjIM9eQ5iWEWC2EOG54FH67JwBrJEm6BSBJUnxFnG+p2LlAbqrpODdNTrsTW2fZibx5qHh6Riy41wYre1BZgXcjsHU1vR/cGbq9As3Hyl3fZvW7Q0G27BxatCfVsj02TpAn/7mQlyFHKsujb/ck9HlPdjxjinTXpt6Wz6OKo3FyR5th+pMoyEhC4+Rmns/RDaf6bUk5taNYel7ibexqNERt64jQWONQpyVWzsWXd7Gr0QhtVhoFKbFm5Vq5eKHLzULSaQ32uFGQkWh8X5uRhMbJ3dweBxe0WalynqxUNIYdiMrS1xjzBvWfX4g+L4eMK0eM6TkxYdjXsBzhq0r4BwRw+7Zpea3IqEj8Ayw7hR06dOTEyVNs2ryZxo0b35V+6tSpbDM4lEUJDg4mJSWF/Px8U3mRt03lRUZZLM/Hx4fYWPnzExsbi7e3d7n0W7ZuJSY2joyMDFavWmVMPxF6gi5dqn7vhZ2rJ9kppr+ZnNQE7FzNl1+yc/EgsEVnbuzfVCw9LToCr7rNsXZwRm1lg1+T9ti7ydf+1KpvCRnxJEM/WEbIyKc4s2GRWbkOHr7kZ2eg1xYY7PGwYI+nmc7WyY3c9GQActOTsXVyLZe++7OfMOLTVWhzc4g8tc+YnnzrKl517zLoofBAUqmdTQP1gAWGiGMqMAr4BXhNkqTmwDngnaICIYQ7MAJoYsjzgeGt+cA8SZLaGsop/BbWB9yEEH8LIU4IISZbMkQI8aQQIlQIEZqQlv2fnuQ/wtLmUI2Hw6VN5m9mxstjPDs8Be2fgPRoOUIKEHEIdn8E+76AvHRoNNS8XFtnyC+6vZ2FLvO72q2qDP2xhbDzPVBpwLOeKT0/E2wqbgvF+4eF62MBn96PEv/3MrNrn58URdKRDdQc9xY1x75BXvxNpDu2CHRp1In0S3fclBjQOLqhy04vw55/2d5F9LdXfMS1r59GaKxwCGpqTNdlp6FxNHeyqxrCwpAES7u/nTx5ktq1gmndqiULvvmG1WvWllv/f//3BlqtlmW//26W18/Pj8TEhLu2pyTK0g8cMIDAAH9sbGx46KGHjOnxCfH4+/uXu57KirD4+2ee1HL0/zizbhGSpC+Wnh53i8s7/qTH9E/pPv1jUqNuGL/fdbsN4dTq79jw1gROrf6Odo+8alaurbM7eZmmnpDy2vNPz2fvgtdZ939jUGms8G4QYkzPzUjFzkVZ47QqUBUmCIVLknTa8PoEUAdwlSSpcFzlUmDlHZp0IBdYJITYDBTeFvYGGhf5IXQWQjghX6fWQC/ADjgshDgiSdLVooVKkrQQWAjQpp7v/d0HNCeteCTS1kWObt6JayC0miS/tnYA74ag10Pcebh9TH4ANBhg0ucX6W6/dQTaPmZerq4A1EU+Tjmpd9jjCrnpmJGXYYpu2jiZ6iqPXq+FuAvg2wQSDU2hspK706s4cuTP9CNs5eSBNiPFLJ+tb20Chj0PgMbOGcfaLZH0OjKvhZJ2dg9pZ/cA4NVtHNqMZJNQqHBq0I7wJZbH7+m1+QiNaTtWbUYyVk6mSIWmBHu0WWloHFwNUU1XtFnp5dZLugIyr4XiWK8NWRHnZDM11kgF+ZYvUhUiKjKSGjUCjceBAYHEREeb5SvsggbYunUrX3+zAA8PjzL1kyZPZtCgQfTpY3lIe05ODrY2tsXtCTQNVwkMDLBoT1xcHL6+vsTGxuLr60t8fHy59Xl5eWzcuJEhQ4exc6c8+snWxpacnByLNlYlslMTjJFIADtXL4vd3e4169Np2psAWDu64NekHZJOR9TZQ4Qd3kbYYTlK3XzoNLJT5J6D4PZ9OblyAQC3T+6l3YSXzcrVFeSj1lgXsSfRgj2JZrrcjBRsnd3lqKazO7mGrv3y6PXaAqLOHSKgeSfiLp8EQG1ljS6/6n+/qwNVIbKZV+S1DnAtSyBJkhZoB6wGhgOF/UYqoKMkSSGGR4AkSRlAJLBNkqQsSZISgX1Ai//uFP4D0m7LE3rs3EGo5ck1cRfM8+3+CHZ/KD9izsL5NbKjCaYubFtX8GsO0afkYxsnk963mdzlfidZCXLdhcRdkG1QqeV0B095TOidxF2AQMMYrMC2JptL0qutTfYIldzdn1lkVIODl2X7qhg5MTewdvfFysULVGqcG3ci47r57NAb3z/Hje/kR/qVI8Ru/4nMa3I+tb2hC9vZA6cG7YqNzXQIbkZeUnRxB7QI+ckxct0GMq6H4ty4E0KtwcrFC2t3X3JirpvpMq+H4tKsOwAuzbobbSlJL6xs0Di4ymKhwrFOS/KTTE6JtbsfeYm376ymynH8+HHq1q1HcHAwVlZWjBk7lo0bN5jl8/ExTQps27YtKpWKpKSkUvX9+vVjxoyZDB8+rERH7urVqwQFBxuPN27cwJixY7G2tiY4OJi6detx7Jj5RLJNGzcyefIUACZPnsLGDRtK1Ts4OODrK09UU6vVDBgwgCuXTRMS69Wvz/kL5+/y6lU+km9ewck7AAcPX1RqDTVb9yDqnHkvw6Z3JrFx1kQ2zppI5Kl9hC7/iqizcj4bR1cA7N28CWzRhZuh8mS+nLREvOvJf18+DVqSkRBlVm5GfCQOHqbPUtS5Q9Rs3QOVxgoHD1+cvANIjjCfwR517jC12vcFoFb7vkZbStJrbGyxdZb/N4RKhX+T9mTEmb7PTt6BpMWE3/X1U3jwqAqRzTtJA1KEEF0lSdoPTAKKzR4XQjgC9pIkbRFCHAEK/xW3A9OBOYZ8IYao6XrgGyGEBrAG2gPz7sfJlBtJDxfWQPsn5Vm8t49BZpz8Xk159i63DpdeRuspYG0vl3VujWkJokaDwTkAkOTlic7dGSgGdPmQnQT2HvJzZhxEn4buM+XyzhuWJwJ5eaSbhyAtEq7vhtaToWY7OZp5Qp5MUKJebQ1tp8nd50IFidfhZpHzcg+Gq+ZLsFQ5JD2x23+mxtg3EEJF6tm/yU+Ux+S5hsjRqdTTpc+FCxzxMmo7JyS9jtjtPxuXIAJwbtyJ9BImBgFIBXkUpMRh5epDQWoc+YmRpF86TO3HP0fSy7YVdt37DXiKlFM7yI0NI+nwegKGv4hr854UpCcSuU7+GpWkV1nZEjh6JkKtQQgVWbcuFBt/ah/QgMQDqyzaWJXQ6XS88PxzbNm6DbVazZLFi7l48SIATz71FAALf/iBUaNG89TTT6PVasnNyeGRCePL1M//6mtsbGzY9pf8vTl69CjP/u+ZYvVnZ2cTduMGderU4caNG1y8eJFVK1dy7vwFtFotzz83Hb1e7sr9YeGPLPzhe06cOMGnn37Cn38uZ+q0ady+dYuxY8cAlKh3cHBg7br12NjYoFar2bNnDz/88L3Rjk6dOjH7/ffu4ZV+MJD0ek6s+Jruz36CSqUi7PA20mNuAlCny2AAbhzYVFoRdHniHawdnNHrtJxY8bVxCaLjy+YZllRSo9fmc3yZ+V+ZLj+XzMRoHL38yUyIJj3mJrdP7mXgWz+h1+s4sfwrY9d92wkvc/3AJlJuXeXS9j/p/Nhb1O7Un+yUeA4ukldDKEmvtral69OzUWusECoVcVdOc33/RqMdnrWbcH7LL//+gipUOOJuxtk8aAghgoFNkiQ1NRy/CjgC64DvAXsgDJgqSVKKEGIJcpf5QWQH0hZ5sNhcSZKWCiE8gQVAI2RHfJ8kSU8byp4BTAX0wCJJkr4szbY29Xylarc3um9TcAmEK+YTDO4LzgFQuxuc/uO+V10d90Z3qt8WW5/aJOxfXiH12/gE49F2ENGbFtz3upu9aeGGq4ozbPhwWrdqzaxZb1dI/SEhIbz40ks8OmXKfa/7t6cfKjtTFSOgRWfca9Tn3KbFFVK/a2BdGvYaxZGl5uvJ3mvGf7vrhCRJbe57xVWYSh3ZlCQpAmha5Hhukbc7WMj/aJFDs3U6DF3kY0uoaw6GiKdCCcSeByuHiqvf2qHiHN1qSMbV46htncrOeI/Q2DmRsH9FhdVf3Vi/bh0eHhU3WcPT05N3Zs2qsPqrG1FnDmLjUHGTLW0cnTm3cUmF1a/w31KpnU2FB5DbRyuu7sSrZedR+E9JPVvKLlX3mMJJQgr3j59/+qnC6i6cJKRw/wg7tLXC6i6cJKRQNagKE4QUFBQUFBQUFBQeUJTI5r1CANbqirZC4T7x3roTFW2Cwn0k4Zv7P25QoeKo/eqyijZBQaFSo0Q2FRQUFBQUFBQU7hmKs6mgoKCgoKCgoHDPUJxNBQUFBQUFBQWFe4bibFYlPOpD5xnQZSYE9yg9r3Mg9PkEfJqZ0mp2hk4vy4+aXUzpdfpAtzehw4vyw7Oh5TKtnaDlVNNxrZ6yLZ1nyLZZQmMHrR+HzjPlZ41d2fpWj0HHF2U7G43EuK92jU7gX32WRmvRoRtfLN/Olyt3MXTSU6Xmrd2oGcsOXqF9z/7GtAFjpjDn9y3MWbaVAWMfNabXrNuQ939cyWe/bWbG3IXY2TtaLNPVw4uZcxcaj4dNfpovV+7ii+Xbad6+q0WNg7MLb3y1hHkrd/LGV0twcHIuU//6vJ/59NeNzFm2lcdmvo9QyT9b/UZPovugUaWed1VCU6MpzuM/wnnCJ9i0HFhqXrVXLVyf+gmr2qbvg02zPjiPnY3z2A+wad6nWH6bpr3kssd+gF2Hhy2WKexdcBjwgvHYtuUgnCd8gvP4j9DUaGpZY+OA4+BXcR7/CY6DX0VY25epdxz0Mk4Pv4fz2A+w7zZZ3qTCYKN1gy5mdVRVevXpy7FT5zhx9iIvvmK+fzlA567duBkdz77Dx9h3+BgzXn+jTP2wESM5dPwUSRk5hLRsVWL9Pr6+/LlqrfH4pVdncOLsRY6dOsdDvftY1Li6ubFm4xZCz1xgzcYtuLi6lqlfuW4j+48c59DxU3wx/xtUhu/3E089w4RJk0u/SAqVhmrlbAoh3hdCWN78t3TdDCHEacPjvBBCJ4RwL1t5PxHQaASc/AkOfg5+IeDgXXLe+gOLLxXk6AOB7eHI13D4S/BqBPamvaq5uR+OfCk/Ei9jkeBuEGlY+sjBG3xbyLacXCTbhjDX1OoJSdfh4Gfyc60eZevP/CbbeOgLeW1N3+ZyetRx2WGuBgiVimmvvssnLz3GK+P707nvYAKC65aYd8KzMzlzdL8xLbB2PR4aNpY3p43ktUmDadWlJ741ggB46o2P+OPbOcycOIjjf29nyMTHLZY7aPw0dq2X17kMCK5Lpz6DeHXCAD5+cRqPzXjP6BQWZdjkpzh//DAvPdyb88cPM2zyU2Xq57/5PK9NGsKMCQNwdnOnw0MDANizcSX9x1STiTpCYN91Epmb5pH+55tY122Pys2/xLx2HR9Ge9u0raPKPQCbxt1IXz2b9BWzsApqgcpF3o5Q498Qq1otSV8+i/Tlb5F7xvJatbYt+pF/aZ9cnps/VnXbkf7nW2Ru+gL7rpOMTmExTcuBFERdJP2P1ymIuohtq0Fl6jO3f0vGyndIX/4Wws4JqzrydrZ5l/dj0+yuf74rJSqVijlfzOfhEUPp0LoFox4eS4OGlm/yDx86SLeO7ejWsR1zPvmoTP2lixeZPGEshw7st1heIc8+9wJLF/8MQIOGDRk5egwd24QwevgQ5s77yugUFuWlV2aw7+/dtGnRhH1/7+alV2aUqZ82aQJdO7SlU9uWeHh6MnykfAP52y9LeOqZZ//B1VN4EKlWzqYkSbMkSbrrxdokSZpTuF868H/AXkmSLG8aXVG41IDsRMhJBkkHsWfAu4nlvDU7Q9w5yM80pTl4y3uP6wvk7SFTwkrWl4R3U0g07Jfr3US2QdJBTopsm0sNC5omEG2YyR19Qi6jLL0uT34WKnnv9MJNsPQFcl5nC/VUMeo2bkFs5E3io2+j0xZwaMdm2nSz/Efc/+HJHNvzF+kpSca0gOC6XLtwmvy8XPQ6HZdOHqNtd3lPY7+g2lw6Je9zfe7YQdoViYYWpV3Pfpw5Ijsfbbr15tCOzWgL8kmIiSQ28iZ1G7cw07Tp2pt9W9YAsG/LGtp061OmPidb/pyq1Ro0VtYUNnh+Xi4JMZHUadz8rq5dZUTtXRt9Wjz6jATQ6yi4fgzr4JYW89o0603BjVD0Oekmvasf2rgw0OaDpEcbfQWrWnJUy6ZJT3JPbgG9FgApJ8NiuVa1W1NwS17b1Dq4JQXXj4Feiz4jEX1aPGrv2uaaWi3JvyJve5p/5SBWtVqWrS/IlZ9Vanlb2sLvtzYffUYiau9a5b9wlZTWbdoSFnaDmxHhFBQUsGbVCgYOHvKf6K9eucz1a2WvSTxk2Ah27fgLgIGDh7Bm1Qry8/O5dTOCsLAbtG7T1kwzYNAQ/vj9NwD++P03Bg4eWqY+I0P+vGk0GqytrSnc1TAnJ4dbN2/SqnX16a2qylRqZ1MIESyEuCSE+FEIcUEIsV0IYSeECBFCHBFCnBVCrBVCuBnyLxFCjDa8/kQIcdGQZ64hzUsIsVoIcdzwsBQmGw/c//0Qy8LWBXLTTMe5aWBjYfcHG2fZobt9pHh6Zhy41QIre1BZyV3ltq6m92t2go4vQZOHi3d1F2LnBtoc2TksrCc3tbg9ti7mOmtHyDf8ueVnyJHK8uhbPQY9ZoE2D+LOmtLTI+XzqOK4e/mQFB9jPE6Oj8Xdy8csn5uXD22792XH2uJLt9wOu0qjkLY4OrtibWNLSKceePj4ARB54yqtu8qOa/teA/Dw9jUr18svkKyMdLQF+Xdlj4u7J6lJCQCkJiXg7OZRLv3/fbmYH7YeJTcrkyO7TZG3sMvnaBhi/qdX1VA5uKHPMt3f6rOSEQ5uZvmEgytWtVqRd3FPsXRdchQav/oIGwfQWGNVszkqR7lzRuXqi8a/Pk4j38Jx2Guovcy/PyonT6S8bKNDKhzc0GcWt0dlyR47F6Rs+XdJyk5D2DmXS+846BVcHp0PBbkUhB03nUdCBBq/EobkVCH8/P2JirxtPI6OisLPL8Bi3rbt2rP/yHFWrt1Aw0aN7lpviZpBwaSmppCfL3+//fwCiIo0bckbHRWJn795ZN3b25u42FgA4mJj8fLyKpd+1fpNXIuIJDMzg/Vr1xjTT588QcfO1WfoRFWmUjubBuoBCyRJagKkAqOAX4DXJElqDpwD3ikqMHSBjwCaGPJ8YHhrPjBPkqS2hnIW3aGzB/oDqy0ZIoR4UggRKoQITUjL+Y9O7z+mwVC4tgVTuMBAVjxE/A2tn4DWj0FGjBzhBLh9GPZ/Kndd56VDg8Hm5Vo7Q35WkQQLXeaSZJ5WImXoT/4Eez+QIx/uRbqP8zMtO9lVDQtdltKdbQpMefEtli34DEmvL5YeHXGDDb8u5M2vl/J/X/7MzWuX0GvlG4XvP3ydfqMn8tGSddjZO6DVFpiV6+bpRXpKkeB+Oe35p+fz8YtTeWZwRzTW1jRt09GYnp6SjJtnScNFqjrm19e+8wRyjqw0+67pU2PIPbUFxyEzcBz0Mrqk26CX21uoVAhrezLWfEDO4RU49H3GrFxh71o84mnh62nJnhIpQ5+5+XPSlr4Iag2agEam88hJR2XvWv56KinC0vfBwu/n2dOnaN6oHl07tGXh99/y25+r7kpfEr6+viQmJt61PSVRln70sME0rBOEtbUN3Xr0NKYnJCTg6+dX7noUHlyqwqLu4ZIknTa8PgHUAVwlSdprSFsKrLxDkw7kAouEEJuBTYb03kDjIl8MZyGEkyRJhb+yQ4CDJXWhS5K0EFgI0Ka+7914Vv+eOyN/ti6yY3gnLoHQfIL82soBvBqCXg8JF+Qxj1GGKELd/pBniJQW7W6PPAatpmKGvkB2/ArJSyseGS3JnvxMeWJRfobhOav8er0WEi6Cd2NIvianqTSyLVWc5PhYPLxNP8Lu3r6kJMSb5avdqCkvfPAlAE4uboR07IFOpyV03072bFzJno3yV2Pc06+QlCBHJKJvhvHRC48C4FcjmJadepiVm5+Xh7WNzV3bk5aciKuHF6lJCbh6eBm79sujL8jP58T+XbTp2ptzx+SuWStra/Lzcku8TlUFfVYKKgfTMHGVgztSVqpZPrVXMA69ZWdRZeeIVVBzsvU6CiJOkX95P/mX5XF6tu1HIRkii/rMFArC5aEsuvhwkCSErRNSbhHnUpcPaivjoZSZYoyMFtqjt2CPlJOGsJejm8LeBcnQtV8uvU5LQcRprIJboY28CIBQWyHpqv73OzoqioBA03Ag/4AAYmOjzfIVdkED7PhrG3Pnzcfdw6Pc+pLIyc3Btsj3Ozo6koDAwCLlBRIbE2Omi4+Px8fXl7jYWHx8fUlISCi3Pi8vj61bNjFw0BD+3r0LABtbW3JzHtDAjcJdURUim3lFXusA17IEkiRpgXbIEcrhQGG/nAroWDg+U5KkgCKOJsA4HsQudJC7j+095e5soZYn18RfNM+3/xPTI+4cXForO5pg6sK2dQWfphBz2pDuZNJ7N4WMWPNysxPkuguJvyjbINRyur0npN021yVcBP/W8mv/1hB/oXS92tpkj1DJ3f1ZCabyHLwg04J9VYwbl87iWyMIL79A1BorOvUZxIn9u8zyPT+yJ8+N6MFzI3pwdM82fp7zDqH75GHLzm7yn72Hjx9te/Tl0PaNxdKFEIyY+iw715p/5GNuheNVpFvuxP5ddOozCI2VNV5+gfjWCOL6xTNmuhP7d9Ft4EgAug0cSej+naXqbezscfWQu+JUajUtO/Ug+maYsTy/mrW4faPs8WeVHV18OCpXb1ROnqBSY1W3HfkRp8zypf8+k/TfZ5D++wzyb4SSve9XCgz5hJ38vRGO7ljXak3+NXkyX374SWP0UOXig1BrijuagC41Vq7bQH7EKazqtgOVBpWTJypXb3TxYdxJQcRprBvIo5GsG3SmIPxU6XqNDcLecNMsVFjVbI4+1eSUqFx90SVHmtVT1Th5IpQ6depSMygYKysrRo4ew9bNm8zyefuYhpq0at0GlUpFclJSufUlcePaNWoGBRmPt27exMjRY7C2tqZmUDB16tTlROhxM922LZsY/8hEAMY/MpGtmzeWqndwcMDHVx6mo1ar6dO3P9euXjGWV7duPS5dvFBuuxUeXKpCZPNO0oAUIURXSZL2A5OAvUUzCCEcAXtJkrYIIY4A1w1vbQemA3MM+UIKo6ZCCBegOzDxvpzF3SLp4fJ6aPW47IRFHYesOPm9wA7yc+SRkvUALSbLYzYlHVxaJ4/BBHnmupNhfE1OCly0MIpAVwDZSWDnATlJct2xZ6Hzqwbb1mHsJms8WrYlPRLC90DzRyCgHeSmyDPNoWS92hpaPipHMIWA5BvFz8s1GG7suMuLV/nQ63Qsnvseb8xfjEqlZs+mlUSGy9Hd3iPGA1h0Eovy8scLcHRxQ6ctYPHcd8nKkKNOnfsMoe9o+WN+7O/t/L1plZk2LzeHuMhb+AQGERd5k8jwaxzetYXP/9iGTqdl8dx3jV33T77xETvXLCPs8nnW//IDL374FT2HPkxSbDTz3nwOoES9rZ0dM+b8gMbaGpVKzYUTh4uNP23QvDWrF339L69mJUDSk73/dxwHvwJCRf7l/ehT5EiVdeMeAORf/LvUIhz6TUdl44Ck15G9/1ek/GxZd3k/9j0fw3nsbCSdjqzdi8zF2nz06fGonL3Rp8ejT4mm4MZxnMd9CJKO7P2/Gbvu7XtMJe/CHnQJEeSe3IxD3/9h07Ab+swksrZ/C1CiXljZ4DjgBVBrEEJFQdQl8i6Yxp9qfOuRG7r+X17MBx+dTsfMV15k9fpNqNVqfv9lCZcvXQJg6mNPALD4px8ZNnwkUx9/Ep1OS05ODo9NmVSmftCQoXz6+Tw8Pb1YvmYd586eZfSw4kOjsrOzCQ8Pp1btOoSH3eDypUusW72KIyfOoNVqmfHyC+gN3+/5C75j8aIfOX3qJPM+n8PiX5cxcfJUIiNv8+hE+beoJL29gwPLVqzGxsYGlUrN/r1/8/Mi03Jq7Tt25NOPP0Ch8iPuZtzFg4YQIhjYJElSU8Pxq4AjsA74HrAHwoCpkiSlCCGWIHeZHwTWA7bIo4fmSpK0VAjhCSwAGiE74vskSXraUPajQH9JksaVx7Y29X2l0G+q2Rph3k3k9Tuv/1Ux9Tv5Q1BXOL/8vlc9btaasjNVMdp270Othk1Z8cO8Cqk/uH5jBo2fxoL3LK9BeC/5borldUSrMla1WqH2Cib3WMV81tWeNbFp3o/s3T/e97qr497og4YMJaRlKz58/90Kqb9ZixY8+9wLPP34tPted2p2/glJkpRp8P8hlTqyKUlSBNC0yPHcIm93sJD/0SKH7Sy8nwiMLaGuJcCSf2RodSH+gjwOtKKwcoDr2yuu/mrG8b07cHQxn4F8v3BydWPFwopxdKsjBeEnEbaWF/i/HwhbR3KPV7+buopi88YNuLt7VFj9Hh6efPj+exVWv8J/S6V2NhUeQKKOVVzdhZOEFO4bezasqLC6CycJKdw/Chd1rwgKJwkp3D9+Xbq4wuounCSkUDWoChOEFBQUFBQUFBQUHlCUyOY9IiwqhbFvW1yOU6EKEhqeUHYmhSrDmhPhFW2Cwn0kZftrFW2Cwn1EdJld0SZUOZTIpoKCgoKCgoKCwj1DcTYVFBQUFBQUFBTuGYqzqaCgoKCgoKCgcM9QnE0FBQUFBQUFBYV7RrVyNoUQ7wshev8DnYsQYqMQ4owQ4oIQwsLm4BVPiw7dmLdiB/NX7WbY5KdKzVunUTP+OHSV9g/1N6YNGPsoc5dtZe4fWxk47lFjelC9hsxetJI5v29h5tyF2DlYXmvP1cOLmZ+bFlwePuVp5q/azbwVO2jR3vIi2A7OLrz51VK+XLWLN79aioOTc5n6//tyMZ/9tom5f2zl8ddmI1Tyx7jf6En0GDyq1POuSnTr2Zsdh06w++hpnnruJYt52nfqwunrt9m4+wAbdx9g+iuvlakfMGQ4W/cd5VpsKs1atCyxfi9vH378zbT00dPPv8zuo6fZcegEXXv2sqhxcXVj6cp17DpyiqUr1+Hs4lqmfvGfa9i05yBb9x1l9px5qAztPWnak4wa90jpF6kKEdCkHaM++IWHP/qd5gMmlJrXM7gBUxfuIrh1d2Nak16jGPneYka+t5gmvUcb091r1GXI/33L8FmLGPrWD3jWamixTDsXd/o897HxuPmACTz80e+M+uAXApq0taixdnCi/8tzGf3hb/R/eS7W9o5l6vu9+BnD31nEyPcW02niywght3ejniOo17m/WR1VFte60Op5aPUCBJSxiYCjP3R6Fzwam9L8OkDIs9ByOvh1NKXXfAhC/gctnoHGk4tvR1wUK0doVOT7FdBVtqXV87JtltDYQZMpcr4mU0BtW7a+8STZnpbToc4Q5H1WAN924F3y749C5aJaOZuSJM2SJGnnP5A+C1yUJKkF0AP4XAhh/Z8a9y8RKhXTZrzLxy9O4+Vx/ejcdwgBtSz/IAiVignTX+PM0f3GtBq169Nr2FjemDqCmRMH06rzQ/jWCAbgqTc+ZtmCOcx4ZCDH9m5nyMQnLJY7aMJj7F4v794TUKsunfoM5pXx/fnohalMm/me0SksyvDJT3M+9BAvju7F+dBDDJv8dJn6L998jpkTB/Pq+AE4u7nTsddAAPZsXEn/MVP+2QWsZKhUKt799HOmjR9Fvy5tGTJyNHXrN7CY9/iRwwx5qAtDHurCN59/Wqb+6uWL/G/qIxw7XPo6lo89M53lvy0BoG79BgweMYr+XdsxddxI3vv0C6NTWJSnn3+JQ/v20qtDSw7t28vTz79Upv65x6cwuGdnBnRrj7uHJwOHjgBg5R+/MuWJp+/+4lVChFDR6ZEX2P7la6x+ewq12z2Eq19QiXnbjnqKqAumvavd/GvRoNtg1n/4NGvfe5wazTvi7C3vbd9u9FOc2riEde8/zsn1P9NutOVr2rTPGK7sl/fXdvULona7h1g961H++nImnR550egUFqXFgAlEXzrJqjcnEn3pJC0MTnJp+t3fv8u69x5nzTtTsXVyoVabHgBcPbiFJr2qy82kgNqD4cKvcOob8GoGdl4l5w3qCynXTUn23uDTGs4uhFPfgnt9sHWX34s6CKe/hTPfQcoVqNHDcrEBnSDuhPzazku24dQ3cOEX2bZCp7CYpiukhsHJ+fJzYNey9VdWyPac+gY09uDZRE6PPyU7zApVgkrtbAohgoUQl4QQPxoijtuFEHZCiBAhxBEhxFkhxFohhJsh/xIhxGjD60+EEBcNeeYa0ryEEKuFEMcNj86GqiTASQghkLfDTAa0FXDKJVK3cQviIm8SH30bnbaAQzs20bab5SDugDGTObpnG2nJSca0gOA6XDt/ivy8XPQ6HRdPHaNd974A+AXV4tIpebH2c0cP0r5nP4vltu/Zj9OH5UWf23brzaEdm9AW5JMQE0lc5E3qNm5hpmnTrTd7N8u7guzdvIa23fuUqc/JygRArdag0VhRuOVqfl4uCTFR1Gnc/O4uXiWkRas23AwP4/bNCAoKCti0djW9+w/6T/Q3rl0l/Mb1MkqAfoOHsm+3fO/Wu/8gNq1dTX5+PpG3bnIzPIwWrcx3e+vdfxBrlstb/61Zvow+AwaXqc/MzABAo9FgZWVtbO/cnByibt+iecvW5T7vyopXrYakx0eRkRiDXqcl7NhuaoZ0tpi3ca+RRJzcR056qjHNxa8m8WEX0eXnIel1xF49TVAr2RGQJAkrO3nnL2s7B7JTEy2WG9y6G5Hn5d+BmiGdCTu2G722gMzEWNLjo/CyEBGtGdKZa4e2AXDt0DZqtuxSpr4gV96zXajVqDVWSMjtrcvPIyMxtsTIa5XCKRBykyEvBSQdJJwD9xLO268DJF2EgixTmp0XZEaCvgDQQ1qEKeqpyzPlU1kb97Q3w6MxpBg2ynBvKNsg6SAvVbbNKdCCpqHsJIL87NGobH2hPUIFqiKrMeoL5PN3DLBsn0KlolI7mwbqAQskSWoCpAKjgF+A1yRJag6cA94pKhBCuAMjgCaGPB8Y3poPzJMkqa2hnEWG9G+Q90uPNpT3giRJ+jsNEUI8KYQIFUKE5mnN3r6nuHv7kBQXYzxOio/FzcvHLJ+blw9tu/dlx5rie/3eDrtKw5btcHR2xdrGlpaduuPh4ye/d+MabQyOa4deA/Dw9jMr18svkKyMdLQF+cZ6Eu+wx93b3B4Xd09Sk+Q1KlOTEnB28yiX/o35i1m47Rg52Vkc2b3VmB526RyNQix36VUlfHz9iImKNB7HxkTj4+dvMW/LNu3YtOcgP/+xmnoNGt613hKBNYNIT00lP19ubx8/f2Kio0zlRUfh42v+OfH08iIhPg6AhPg4PDw9y6VfvHwtxy7eICszk60b1xnTz50+RdsORboIqyj2bl5kpZjWcs1OScDBzTzSZe/qSVDLLlz+e0Ox9JTocHzrNcfGwRm1tQ01mnXAwc0bgCPLv6Hd6KcZ+9kK2j38DKGrzfced/T0JT87A722AACHO+zJSknA3oI9ds7u5KQlA5CTloydk1u59P1e/IxHvlhHQW42EaF7jemJN6/gW6/q30xi7QT5aabj/HSwcbacz6MRxB4vnp4dB85Bcre2ygrc6oN1EX3NXtDmFfBqDrd2m5dr4wraXNk5BLnuYvakWe5+t3KAAjkYQEGmafvisvSNJ0O712THM/GCKT0zWj4PhUpPVXA2wyVJOm14fQKoA7hKklT4C7UU6HaHJh3IBRYJIUYC2Yb03sA3QojTwAbAWQjhBPQDTgP+QIghj9k3X5KkhZIktZEkqY2N5v5eWmGpS8PCDeujL73FsgWfIemLO8NRETfY8MsPvPX1Ut6Yv5ib1y6j08nB2+8/eI2+oyfy8dL12Nk7oDX84RTFzdOb9JRkkz3C3B6ppDtoS+dThv6jF6by9KAOWFlb07SNydlIS0nCzdO73PVUVixdH0sRigtnz9CtdRMG9+zML4t+4Pulf9yVviS8fXxITjJFxi22l6UPYAmUpZ86dgQdmtXH2saajl1N4xCTEhPwtuDUVgcsfZ86jJvO8dULufNeOC3mFme3/UH/l+fS/8XPSLp9A0kvOxKNegzj6PIFLJ85hqPLF9Dl0Zlm5dq7eJCbkWaWfodB//xk7tD/9eVM/nhlFCqNFX6NTOP2ctNTsHetuP267x/l/H7WGgAR2zH7sc9JhMgD8rjJxpMgOxYo8pm4tQtCP4eEs+DX3rxca6fikdJ7zcVf4NgcEGpwqW1KL8gqeUypQqWiKuwgVKRPAB3gWpZAkiStEKId0AsYB0wHHkJ2vjtKkpRTNL9hQtAnkvzrfl0IEQ40BCpwI/DiJMXHGiORAB7evqQkxpnlq92oGc/Png+As6sbLTv1QKfVEbpvB3s2rmTPxpUAjHvmFZLjYwGIvhnGR88/CoBfjWBadu5pVm5+Xi5W1qZhrMnxsXjeaU9CvJkuLTkRVw8vUpMScPXwIj0lqdz6gvx8Qvftok233sZ9sq2tbcjPy6OqExsTjV+AqRvL18+fuNgYs3yFXdAAf+/aznuffo6bu3u59SWRm5OLtY2NyZ7oKPz8Td1dvv4BxMfGmukSExLw8vYhIT4OL28fkhITy63Pz8tj119b6d1/EAf37gHAxsaWvJzccttdWbkzkmnv5mWxu9szqAE9n5wFgK2jCzWatUfS6bh5+gBXD2zh6oEtALQe8TjZhshivY79OPLH1wCEh/5NlykzzMrV5eehtjJ9v7PusMehBHty0pOxc5Gjm3Yu7uRkpJRbr9Pmc+vMIYJCuhB9UR47qLayRmeIpldp8tPB2sV0bO0M+Rnm+RwDoMHD8msre3CrB5Ieki9D/En5AVCzd/HIYiGJZ6HRRLi9p3i6vqB4l3benfa4WLanIEueWFSQaXjOKr9e0kLyFbkrPu2GnKbSgP6BGrGm8A+pCpHNO0kDUoQQhdP3JgF7i2YQQjgCLpIkbQFeRI5WAmxHdjwL8xWm30J2TBFC+AANgLB7Yv0/5Mals/jWCMbLLxC1xopOfQYTum+XWb7nRvTguRHdeW5Ed47s3sZPc2YRum8HgLEL28PHj3Y9+nFw+8Zi6UIIRk6bzo61y8zKjbkVjpefyXkJ3beLTn0Go7GyxssvEN8awVy/eMZMF7p/F90HjQSg+6CRhO7bWarexs4eVw/5T0qlVtOyUw+iI0xN4VezFrfDrt719atsnD11guDatQmsGYSVlRWDR4xi119bzPJ5epuivM1btkalUpGSnFxufUmEh10nsEZN4/Guv7YweMQorK2tCawZRHDt2pw5GWqm2/XXFkaOlSeJjBw7gZ3bNpeqt3dwwMswfEKtVtOjVx/Crpnat1aduly9fLHcdldWEiKu4OwTiKOnLyq1htrtHuLWmUNm+Vb833hWvD6OFa+PI/zEXg79/iU3Tx8AwNbJFQAHd2+CW3XjxjH59yE7LQnfBiEA+DVsRXp8pFm5aXGROHr4Go9vnTlE7XYPodJY4ejpi7NPIAnhl810t04fol4neQZ5vU79uXX6YKl6jY0ddi7yRBahUlOjWXtSY24Zy3P2qUFKVDXYKjQjCuzc5e5soZYn1ySbX19OzDM9Ei9C2CZTvsIubGsXuas94Zx8XDhRCOSxlDkWxujmJMl1F5J8WbZBqOV0O3fIMP+ckHzZNIPcuyUkXS5dr7KWnVIAVOBeD7KLbP1r6yEPCVCo9FSFyKYlpgDfCyHskZ3CO5cqcgLWCyFskfsrCtd9eR5YIIQ4i3xt9gFPA7OBJUKIc4b8r0mSZHkUfQWh1+n4ee57vPHVElQqFX9vXEVkuDy4u/eI8QDsXPtHqWW8/MkCnFxc0Wm1/DznXbIy0gHo3HcIfUdPBODYnr/4e+MqM21ebg5xUbfwCQwiLvImkeHXOLxzC5//uU22bc67xq77p974iB1r/iDs8jnWL/2eFz/6mp5Dx5AYG828N2RfvyS9rZ0dM+cuRGNljUqt4kLokWLOb4PmrVi16Kt/eTUffHQ6He+9PoMly9eiUqtZtexXrl2Rf9jHT5kGwB9Lf2bA4OFMePQxdDotuTm5vPDU1DL1fQcOZtZHc3D38GTRspVcPH+OqWNHFKs/JzubWxHhBNWqzc3wMK5ducyW9WvZduA4Oq2Wd197Fb2hvT/64mv+WPoz586c4vuv5vH1j0sY88hkoiNvM/1xefWAkvR29vYs/HU51jbWqFRqjhzYx7KlPxntaNWuPV/N/ZiqjqTXcXjZfPq/OAehUnH14FZSoyMAaNh9KACX924opQTo9cz72Dg6o9dpOfT7l+Rny2PrDiydS4fx0xEqNbqCfA788rmZVpufS0ZCFE7eAWTER5EaHUF46N+Men8Jer2Ow79/aey67zJlBpf/3kDizSuc3bqMh55+h/pdBpKVHMeu798FKFGvsbGlz/SPUFtZIYSK6Munip2XT92mnNq49N9ezkqAHsI2Q5PJgEqOUOYYnDBfw8S7WPObuWI0GAdWdnKkM2wz6Aw9AEF9wM4TkCAvDW5Y+NzoCyA3RXZMc5PluhPPQ8vnZNtubMbYdV93mDxmNDMaIvdDg7Hg00ou+4q8OkmJerWVvLySSi1PEEoNK35ezjXh9t93f/kUHjjE3YyjUyg/7g42Up+mFmbrVWHadu9L7YZNWf7DFxVSf3D9xgyaMI0F77563+sODU8oO1MVo+/AwTRt3pIvPpldIfU3btqcac9M59Vnn7zvdb8xtNV9r7OiCWrZBc+gBpxY91PZme8BHjXq0rTvGPb+9NF9r/uxqXcO+68GuDeS1++8Zd5Ddl9w8AX/TnBtzX2vWnSZfUKSJPPlNBT+MVU1sqlQARzfux2nIot032+cXN1Y8cO8Cqu/urF9yyZc3dzLzniPcPPwYN4nH5SdUeE/4eapA9g4upSd8R5h4+TCiXU/V1j91Y7kS3JktKLQOFieKa9QKVEim/eI6hjZrM5Ux8hmdaY6RjarM9UyslmNUSKb/z1VcYKQgoKCgoKCgoLCA4LSjX6PSMspYOvZ2xVthsJ94tOxFtaqU6iy6HT3d9MGhQpGq6toCxQUKjVKZFNBQUFBQUFBQeGeoTibCgoKCgoKCgoK9wzF2VRQUFBQUFBQULhnVKsxm0KI94F9kiTtvEudG/Az8r7rucA0SZLO3wMT/xW9+/Tl07lfoFarWLpkMfPmzjHL06VrN/5YuZqbEREAbFy/jk8//rBUfbPmLfjy62+wsbFFq9XyyovPcSLUfEFhH19fvl7wHWNGyQuAv/zqTCY/+ig6nZ6Zr7zErp07zDRubm4s/vV3goKCuHnzJo9OnEBqamqp+jXrN+Lj64dGo+HQwQO88uLz6PV6nnz6GbKysvj911/+9bWsDNRo1o4uE15AqFRc2reJU5t/N8vj3zCE/s9/TEaivBVlWOg+TmxYUqq+49j/ERTSCb1WS1p8FHt++ti4AHhR7F086D51Jlu/fA2AloMm0qjbICS9ngO/z+f2efPdXG0cnOjzzHs4efqSkRjL9m9nGcsuST/olbnYu3igUquJuXqG/b/MQ5L0NO01koK8XK4cKP/OR5WZwKbt6DTheYRKxeV9mzmzxby9/RqE0O/5j0g3tHfEiX2c3LC0VH37Mc8QFNIJnVZLenwUe3/6hPwc8/a2c/Gg26Mz+Gv+6wCEDHqEBl3l9jq0bD6R54+baWwcnOj1zLs4efqRkRjDzm/fMbZ3SfoBL8/B3sUDoVYTe/UsB3+V27tJr5EU5OVw9cDW/+BqVgLc6kHdQfJi5zGhcHtfyXmdAqDl03DxT0i8IKcFdAS/tvLrmFCIMuw4FfSQnF64lWT4dki2sOuatRPUHw7nf5WPa3QDvzbyIvHXN0HKdXONxg4aj5N3CcpLhYt/gDa3dH2zKXJdQgVpN+HaBkAC/w6gy4e4k+W/ZgoPLNUqsilJ0qy7dTQNvAGcliSpOTAZmP/fWvbvUalUfP7lfEYNG0Lbli0Y/fBYGjRsZDHv4YMH6NKhLV06tDU6mqXpZ3/4EZ98+AFdOrTlo9nv8f6Hlndsmf78CyxZLK+D16BhI0Y9PIZ2rUIYOXQwX8z/CpXK/OP20qsz2fv3Hlo2a8Lev/fw0qszy9RPmTiBzu3b0L51CJ5eXowYNRqAX5cu4en/TTeroyoihIquk15m0xev8ucbk6jbvjdu/sEW88ZcPcvKWdNYOWua0dEsTX/7/HGWvzmFFW8/SlrsbVoNmmix3Bb9x3Jpr7ylqZt/MHXb9+LPNyez6fNX6Tr5ZYQwb++WgyYSdekEf7w+gahLJ4xll6bfvmAWK2dNZfmbk7FzcqVOu54AXN6/mWZ9Rv3TS1ipEEJFl0kvsXXeDFa+OZm67Xvh6h9kMW/M1bOseecx1rzzmNHRLE0feSGUlW89yupZU0mLiyRksOX2bt5vDJf3bQLA1T+IOu16sfKtKWz9YgZdJllu75CBjxB18STLX59A1MWThBjauzT9zm/fYfU701j11hTsnFyp3bYHILd3097Vo71BQL0hcG4pHJ8P3s3B3qvkvLX6QfI1U5K9t+xQnvwOQr8BjwZg52F6P/IgnPhGflhyNAECO8tOKsh1ezeXbTm3FOoNleu9k5rdIOUGHJ8nP9foXrb+4p+yHaFfyfu7ezWV02NPyA6zQpWgUjubQohgIcQlIcSPQogLQojtQgg7IUSIEOKIEOKsEGKtITKJEGKJEGK04fUnQoiLhjxzDWleQojVQojjhkdnQ1WNgV0AkiRdBoINe6Q/MLRp25awGzeIiAinoKCA1StXMGjwkP9EL0kSTs7OADi7uBAbE2OxjKHDR7Bz+18ADBo8hNUrV5Cfn8/NmxGE3bhBm7ZtzTSDBg9h2W/ynfOy335l8JChZeozMjIA0Gg0WFtZU7hWbE5ODrdu3aR1m6q/PJp37UakxUWRkRCDXqfl+tFdBLfs8p/oIy8cR9LLs2/jblzAwd3yn1zt1t25de4oAMEtu3D96C702gIyEmNIi4vCu7b5zU6tll24cmAbAFcObKNWq65l6gtyswFQqdWoNFbG9tbm55GRGIt3Lcs3VVUJr9qNSIs3tdeNY3fX3qXpo4q0d/yNCzi4WW7vWq27c7tIe984VqS94qPwstDeQS27cPWg3N5XD24z1lmavrC9hVqNSqMp3BQRnaG9vapBe+McCDnJ8paRkg7iz8r7m1sioKMczSyMVILsbKbflredRA+pEeDZ+O5s8GxickQ9Gsk2SDrZppxk2cY78WgEcafk13GnwLNR2XpdnvwsVKAq0tmqL5Cjo07KetVVgUrtbBqoByyQJKkJkAqMAn5B3r+8OXAOeKeoQAjhDowAmhjyFG5DMh+YJ0lSW0M5iwzpZ4CRBm07IAh4oL4Bfv4BREZGGo+jo6LwD/C3mLdd+w4cPBrK6nUbaNiocZn612a8yuyPPubitRt88PEnvDvrLbMyg4KCSU1JJT8/HwD/AH+iipQXFRWFn3+Amc7L25u42FgA4mJj8fTyKpd+7YZN3LgVRWZmBuvWrDamnzpxgo6dy/8nXFlxcPMiKzneeJyVkoCDm6fFvL51m/Dw+4sZ9PIcY/SyvPqG3QZx6+xRs3QnTz/ysjPQawsM5XmSWay8eItOi52LG9lpSQBkpyVh5+xWLv2gVz7n0a82UpCTTdjxv43pCRGX8WvQ3OJ5VyUc3DyLt1dyQolOoU/dJox672f6v/RZkfYun75B14HcPnfELN28vb2Kt1ey5c+PnYsbOYb2zinW3qXrB7wyl8nzN1CQm014kfZOjLiCb/2q395YO8t7ixeSlw42FnZvsnaWncjoO4asZMeBS7Dcra2yAo/6xfUBHaD1c1B/JGhszcu1dQNtjuwcgqwtZk+aXLeZPY6QLwcDyM8AK8fy6Zs9Ch3fAG0eJBQZoZYRBS6WI/gKlYuq4GyGS5J02vD6BPK4SldJkvYa0pYCd27/kI489nKREGIkkG1I7w18I4Q4DWwAnIUQTsAngJsh/TngFKC90xAhxJNCiFAhROj93plJCPMuDUs2nDl9iiYN6tK5fRt++O5b/lixskz9408+yf/NnEHjenX4v5kz+Oa7H8zy+vj5kpRo2kVHWOhiuZtrUpZ+xNDB1K9VE2sbG7r36GlMT0iIx8/Pr9z1VFos9GBZIiHiKr++8jArZ03l3M7V9H/+o3LrWw2ZhF6n49rh7Wbv2bt6kJORajLHwucH7qK9y9Bv/vwVlr44HLWVFQGNTbv35KSnYu9q2cmuWpTv+5R48yrLXh3D6nemcWHXGvoWtnc59C0Hy+19/bD52Gp7Vw9yi7S3xQ/QXf3kla7f+vmr/PbiCNQaa/wbFW3vFByqaXtbvMB1B0LYX+bvZSfIYzybT5PHRGbGymMlAaKPwtHP5a7r/AyoPdC8XGun4pHSe825JXD4E1Cpwa22KT0/07JTq1DpqArOZl6R1zrAtSyBJElaoB2wGhgObDO8pQI6SpIUYngESJKUIUlSuiRJUyVJCkEes+kFhFsod6EkSW0kSWpj+c/z3hEdFUlgoCnY6h8QQEy0eXd3RkYGWVnyj8j2v7ahsbLC3cOjVP34RyaxYd1aANauXkXrNubd4bk5udjYmu6Qo6KiCChSXkBAALEx0Wa6hPh4fHx9AXmCUWJCQrn1eXl5bN20iUFDTMMFbG1tyc3JNaunqpGVnICDu7fx2MHNi6yURLN8BbnZaPNyALh19ggqjQZbR5cy9Q069yeoRSd2/fC+xfp1+XmorayNx5nJCTgWK8/boj05aSnYu8hjx+xdPMhJTym3XleQT8Spg8W6j9VW1ujy86jqZKXc0V7uXmSnlt7et88eQaVWY+PoUqa+Xuf+1GzRkd0LZ1usX3tHe2elxBdvL3cvsizYk5OWgp2hve2KtHd59DptPhGnDxLcqnh7awuqfnuTn1Y8EmnjLEc378QxABqPhfavglcTeSxkYXd77Ak4uQDOLAJtNuTIEWbZiZTkR8xxy93h+oLiXdp5d9rjAvkW7MnPlB1VMDismeXXS1pIugweRbr7VRrDUACFyk5VcDbvJA1IEUJ0NRxPAvYWzSCEcARcJEnaArwIhBje2g5ML5IvxPDsKoQo/KV9HHlGu4VvWsVxIjSU2nXrEhQUjJWVFaMeHsOWzZvM8nn7mIaatm7TBpVKRXJSUqn62JgYunSVg8Pde/TkxnXzWYjXr12lZpCpu2PL5k2MengM1tbWBAUFU7tuXUKPm89W3bJ5IxMmTgJgwsRJbN60sVS9g4OD0TlVq9X06d+fq1euGMurW68eFy9euOvrV9mID7+Mq08gTp5+qNQa6rbvRcSpA2b57Fzcja+9azVCCBW5mWml6ms0a0fIwEfYOv//0JbgyKXG3sbJ09d4HHHqAHXb90KlscLJ0w9Xn0Diwy6Z6SJOH6RBl/4ANOjSn3BDnSXpNTZ2RudUqNTUbN6B1JhbxvJcfWuQHGV231flSAi/jIu3qb3qtOvFzVMHzfLZOZva28vQ3nmZaaXqA5u2I2TABP766v9KdNzT7mjvm6cOUqedqb1cvANJsNDeN08fpH5nub3rd+7PTUN7l6TX2NgZnVNL7e3iW4OUyLC7vXyVj/QoeUKPrRsItTy5Jumyeb5jn8PRufIj4YI8kzvJ0A5WDvKzjYs8/jL+jHxc6AyC3AWfFWdebnaiXHchSZdlG4RaTrfzgPRIc13SZfBpKb/2aWmypSS9yrqIPSpwry9HZQux97Rsn0Klo6oufTQF+F4IYQ+EAVPveN8JWC+EsEXur3jJkP48sEAIcRb52uwDngYaAb8IIXTAReCxe38Kd4dOp2PGSy+yduNm1GoVvy5dyuVLFwGY9vgTAPy86EeGjxjJY088hVarJTc3h6mTJ5apf+7Zp/l0zhdoNBry8nJ5YfozZvVnZ2cTHhZG7dp1CAu7weVLF1m7ehXHT51Bq9Xx6osvoNfL3Thff/s9Py9ayKmTJ5k3dw5LflvG5CmPcvv2baY8Mh6gRL29gwPLV63B2toGtVrNvr17+OnHhUY72nfoxMcffmBmX1VD0uvY/9s8Br/6ubyUzf7NpERHANC45zAALu5ZT502PWjy0HD0Oh26gjx2fPdumfquE19CrbFiyIwvAHmS0L6lnxerX5ufS3p8NM7eAaTHR5ESHcGN47sZ99GvSDod+3/9AsnQbddj6mtc2LOOhIgrnNz0G32ffZ+GXQeRmRzP9gVvA5Sot7KxZcALH6O2skaoVERdOsmFPeuNdvjWbUbousX36jI/MEh6HQd//5IBr8xFpVJxZf8WY3s16iFPqrv09wZqt+1Bo57DkHQ6tAV57Pr+vTL1nSe+iNrKmoGvyu0df+MiB34pu73Dju9hzIe/oNfpOPjbPGN7d5s6k4t71pMYcYXTm3+n9//eo2G3QWQmxbHz21kAJeqtbGzp98JHqDVye0dfOsnFou1drxkn1i+5V5f5AUIP1zfKYxmFgNiTkG0Y4+rXTn6OMV9arBhNJoDGXh53eW2DaQmi2v3AwTDUKDcFrq031+oL5Ek8tu6QmyzXnXAe2r5gWLpoI8au+/oj5DGjmVFway80Hg++reVo5sU/5Dwl6dVW0GSiHMEUAlLDio8/dQ6CiN3/4PopPGiI+z22sLqgVqkkB5uq6stbZvDQYbRs2YrZ771TduZ7QPMWIUx//gWefOzOe4t7T3XcG71Wq654BTfg2JpFZWe+B3jWrEfz/mPZvfD+31yo7/MwmQeB4FZd8QxuQGgFtbdHzXo07zeGPT9+eN/rfvLRrmVnqmp4NAYnf4j4J6sF/gc4+snLL11edd+rFj0+OiFJUtVf1uQ+Ur28IYV7yqYN63F3dy874z3Cw8ODD957t8Lqr26En9yPraOFGbL3CVsnF45XkONTHYk4uR8bx4qbrGHr6MLxNT9VWP3VjqSL8rqXFYWVPYRXkKOr8J+jRDbvEdUxslmdqY6RzepMdYxsVmeqZWSzGqNENv97quIEIQUFBQUFBQUFhQcEJfR2j3CytaJrA9+yMypUCVYcvVHRJijcR/YsfqKiTVC4jzw/a01Fm6CgUKlRIpsKCgoKCgoKCgr3DMXZVFBQUFBQUFBQuGcozqaCgoKCgoKCgsI9QxmzWYVo1ak7T8x4B5VKzY51f7Jq8XdmeZq27sBb834kLvo2AId3b+PPhV+VSz9i0pNMe/lNHukZQnpqilnZbp7ePPf2J7z/wjQARk/7H32GjUWv17Hws3c5dXifmcbR2YWZny7Axz+QuOhIPp35P7Iy0kvVv/vNUty9vFGrNVw4dYzvP34bvV7PoLFTyM3JZteGlf/iKlYe2nbpwfQ3ZqNWqdi86g/+WPSNWZ4WbTvywYLFxEbK7b1/5xZ++XZeufRjpj7NMzNnMaxjU9JTk83Kdvfy5tX35/DGM1MAmPDEdAaOGo9Or+ebD9/i+MG9ZhonF1dmffE9vgGBxEZF8t5LT5GZnlaq/tOFv+Ph5Y1ao+Fs6FHmz34DvV7P8AlTyc3JZtva5f/iKlYiXOpC8AB58ev4kxBtvmOUEQd/aPoEXFsJyfLmDPh2AO9WgID4ExB7RE4P7AHerU17Yd/eBanXzMu0coTaQ+HKMvnYvyt4twRJgogtkGZh3LLaDuo9DDaukJcK11aALrd0fcOJYOUEQgUZNyF8MyCBTzvQ50PC6bu5apWWRm06M/KZ11Cp1Bzetoady82XfarbvA1PvPcVSbFRAJw9sIttv39fqn7YEy/TtEMPtAUFJMbcZtnct8nJyjAr29ndk3EvvsvCWfKmen3GPUaHfiPR63Ws/vYTLp84ZKaxd3Lm0Tfn4u7jT3JcNIs/eJWczPRS9c98+B3O7l6o1GpunD/Jym8+RNLr6Tp0PPm5ORzdvu7fX0yFCqdKRjaFEO8LIXr/A11DIcRhIUSeEOLVO97rL4S4IoS4LoR4/b+z9r9BpVLx9OuzeXf6FJ4d1Ztu/YdSo3Y9i3kvnjrOC+MG8sK4gUZHsyy9p48fIR26EB9jYYsyA8MnPs5fa+UdI2rUrke3fkN4dnQf3n12Cs/83weoVOYft9FT/8fZYwd5algPzh47yOip/ytT/+lrz/L82AE8O7oPLm4edO4zCICd65czZPz9X9C9IlCpVLzw9ke8/uQjPDqkB70GDSOojuX2PnfiKE+M7MMTI/sYHc2y9F6+/rTp1I3Y6JLb++EpT7F5pex4BNWpx0MDhzF1SE9ee2ICL8z62GJ7T3hiOicPH2BS/y6cPHyACU9ML1P/3ktP8fiIPkwd0hNXdw+69x8CwNY1fzJy4gO3mdc9QkCtQXD5NzizADyagZ1XyXlr9oHUItvK2nnLjub5H+Hsd+BWX94dppCYw3Due/lhydEE8OskO6kg1+3RVLbl8q9Qa7Bc750EdIH0MDjzlfwc0LVs/bWVcO47OLsANA7g0UROTzglO8zVAKFS8fD0N/n+zf/x0RPDaN1jAL41a1vMe+PcST575mE+e+Zho6NZmv7KycN8/MQIPn16FAmRN+kz7nGL5fYcNZnDW1cD4FuzNq26D+DjJ4fz3ZvPMOa5txAWvt+9xz7G1VNH+WDqYK6eOkqfsY+VqV/84at8+sxoPn5yBI4ubrTs1heAI3+tpfvwCf/iKio8SFRJZ1OSpFmSJP2T1WCTkbesnFs0UQihBhYAA4DGwHghRON/beh/SL2mIcTcjiAu6jZabQH7/tpI+x59/jP946/OYvH8jyltXdZOvQZwwhCNat+jD/v+2oi2IJ+46NvE3I6gXtMQM037Hn3YtVH+Qdu1cTUdevYtU5+TlQmAWqNBo7Ey2pSXm0t89G3qNWlR7vOurDRs3pLoWxHERN5CW1DA7i3r6fxQv/9M/+zr7/LD3A/kqFMJdOs7kGP79wDQ+aF+7N6ynoKCfGKjbhN9K4KGzVuaaTo91I+/1q8A4K/1K+jcq3+Z+uyi7W1lbbQpLzeH2OjbNGwWUu7zrrQ4BsjbBualyNsPJp0Ht4aW8/q2h+RLoM0ypdl5QmakvA0heki/CW6N7s4G90YmB9atoWyDpJMjlrnJso134tbQFIlMOG2yuTS9zrA/u1CBSo1xW0R9gZzXwUI9VYygBs1IiL5FUmwkOq2Wk3u30qxTz/9Ef/nEYfR6HQARl8/g6uVjsYwWXfpwKVSOnjfr1JOTe7eiLSggOTaKhOhbBDVoZqZp1rEnx3bI218e27HeWGdp+txs+XOqUmvQWJl+zwvyckmKi6Zmg6blPm+FB5dK4WwKIYKFEJeEED8KIS4IIbYLIeyEECFCiCNCiLNCiLVCCDdD/iVCiNGG158IIS4a8sw1pHkJIVYLIY4bHp0BJEmKlyTpOFBwhwntgOuSJIVJkpQP/AkMu28XoBx4ePuSGBdjPE6Ki8HDy/LSSw2at+Kr5Vt595ul1DREL0vTt+vem6T4WCKuXiqxfh//GmSmp6EtyJfL8/IlMdZUXmJ8LB7e5va4eniSkijv+ZuSGI+ru2e59O8t+IXfdp0kJzuLQzu3GNOvXzxHk1btSrSzquDp7Ut8bLTxOCEuBk8fP4t5G4e0ZtHaHXzyw28E161fpr5Tz74kxsVy48rFEuv3DZDbu8DQ3p4+fublWWhvdw9PkhPk9k5OiMfN3aNc+s9+XMbaA2fJycpk71+bjOlXzp+hWetqsKC+tTPkp5mO89PA2sk8n5WT7BTGHS+enh0PTkGgsQOVFbjWA5siuz/5toNmz0DtYaC2NS/XxlXeW1vSGexxusOedNlGM3scoEC+WaAgUz4uj77hJGg9U3Y8k4p8DjOj5f2yqziunt6kJsQaj1MT4nDxsOwU1mrcgte+W8XTH36Hb1Cdu9J36DeCi8fNh2O4+waQk5mOtkD+K3Tx8CElIc5UXmIcrp7eZjonNw/SkxMBSE9OxMnVo1z6Zz76no9W7CU3O5vT+3cY029fvUCdpq0snrdC5aJSOJsG6gELJElqAqQCo4BfgNckSWoOnAOKbcothHAHRgBNDHkKN1GeD8yTJKmtoZyy9rwLAG4XOY40pBVDCPGkECJUCBGar9Xd5en9OyztZyJhHpW6cfk8jw3sxPNjB7DxzyW8Oe/HUvU2traMeWw6v3/3Ran1u3l5k5aSZLLH0g4rd7FbVVn6d56dzOQ+bbGytqZ5207G9NTkRNxLuFOvSli6PpaiztcunmNcr3Y8PqIPa3//mdnf/Fyq3sbWjolPPc/ir+eUWr+Hlw+pyfevvWc+MYFR3VpiZW1Nyw5djOmpyYl4elf99i43wQPg1g6487ufmwjRB6HRZHlMZHYsSHr5vbjjcGq+3IVekAlBFiLkVk7FI6Ul/GKUnzL0l3+FE3NBaMCllildmyXbUuUp3/c78vol3pnYl0+fGc2+dct4/N355db3Hf8EOp2O0F2bzPK6uHuSWWScdnl/b0qiLP13bzzNW+N6orGyon6I6eYxIzUZFw9zp1ah8lGZnM1wSZJOG16fAOoArpIkFc5CWAp0u0OTDuQCi4QQI4FsQ3pv4BshxGlgA+AshCjtF6xcv6ySJC2UJKmNJEltrDXqcpzSf0difGyxyJaHjx/JRe4kC8nJyiQ3R74MJw7sQa3R4OzqVqLeNzAIn4AafLV8K4s2H8DT248vl23G1aP4eLH83FysbWyK2BODp6+pPE9vX5Is2JOalIib4Q7XzdObVMNdcXn0Bfl5HN27g/Y9+hrTrG1syc/NLeVKVQ0S4mLw9vU3Hnv5+JEUH2uWLzsrk9xsub2P7tuNRmOFs6t7iXr/GkH4BtZk0bqd/LHzKF4+fixc/RdunsXbOy+veHsnxEablZdoob2TkxJx95Lb293LmxSDw1oefUF+Hod2by/W3W9tbUteXtVvbznyVyQSae0C+eaTOnDwh3qjoeWL4N5YHudZ2HWdcBLO/QAXF4M2B3INNwsFWcg/Z5I8JtNSd7i+AFRF5pOa2eNs2Z6CLHliEcjPhZOQyqOXtJByufhwAaExDAWo2qQmxuFapGfK1cuH9OR4s3y52Vnk5+YAcPH4ftRqDQ7OrmXq2/UZSpP23fnlE8vTDwry8tBYm77fqYmxuBW5iXf19CEtKcFMl5GShLOhd8rZ3ZOM1KRy67UF+Zw/8jfNOpqGC1hZ21CQn2fRRoXKRWVyNot+4nSAa1kCSZK0yF3gq4HhwDbDWyqgoyRJIYZHgCRJFn4pjUQCNYocBwLRJeStEK5dOIN/zVr4+NdAo7GiW78hHPt7h1m+ok5ivSYtUAkV6akpJepvXr/CpF6teXxQFx4f1IXE+BhenDCI1Dt+KKJuhuHtH2g8Pvb3Drr1G4LGyhof/xr416zFtfOnzew5tncnvYaMAqDXkFEcNdhckt7Wzt7onKrUatp07klkhGkWrH9QLW7euPLPL2Ql4fK50wQE1cI3oAYaKyseGjiMQ3u2m+Ur6iQ2bBaCECrSU5NL1Idfu8zILs0Z37s943u3JyEuhidH9SMlsXh7R0bcwDfA9JU4tGc7Dw0chpWVNb4BNQgIqsXls6fM7Dm0ezv9ho0BoN+wMRza/Vepelt7e6NzqlKrad+9F7fCTBNfAoNrE36t6rc3mdHyhB4bVxBqeXJNymXzfKe/hFOGR/JFeSZ3YT5NYRe2i9zVnnhOPi50BkEex5lt7tSQmyTXXUjKZdkGoZbTbd0hM8pcl3IFvELk114hJltK0qusi9ijkicy5SSayrPzgBwL9lUxbl05j1dAEO6+Aag1Glp1H8C5w3+b5XNy8zC+rtmgKUKlIis9tVR9ozad6T1mGj++8xwFJdyoxUfdxN3HdPN37vDftOo+AI2VFe6+AXgFBHHzyjkz3fkjf9OujzzCrF2fYZw7vKdUvbWtndE5VanUNG7blbjb4cbyvAKCiIkoYcKaQqWiMi99lAakCCG6SpK0H5gEFFtrRQjhCNhLkrRFCHEEKPyX2g5MB+YY8oUUiZpa4jhQTwhRC4gCxgEP1DQ5vU7H95/O4r1vf0GlUrNz/Qpuhclf0v6jHwFg26rf6dx7IAMfnohOpyUvN5fP/u+5MvXlIS83h9jbt/CrEUTM7ZvcCrvGge2b+Xb1TnQ6Ld9/Ii9PBPDcrE/Zuuo3rl88x6rF3/Lap9/SZ/hYEmKi+WTmMwAl6m3t7Hn7y0VorKxRq9WcOX6Irat+M9rRuEUb/vzhy//ikj7Q6HU6vvrgTT5btAyVSs3WNX8Scf0qAEPGTgJg4/Jf6d53MMPGT0an1ZKXl8vsV54pU18ecnNyiL4VgX/NYKJvRRBx/Sp7tm1k8aa/0el0xuWJAF6dPZcNf/7C1Qtn+WPRN7zzxfcMHD2O+Ogo3n3pKYAS9XZ29ny4YAlW1nJ7nzxykA3LfzHa0bRVW5YuKH2IR9VALy8P1HCSPHEm/hTkGG4AvNvIz/GhpRdRf6w8ZlPSy05o4RJENfuCg688bCEvFcI3Wqi+AHJTwMYd8pLlupMuQIvpcnkRhuWJQF4eKS4UsqIhej/UGwNereQxmlflyWEl6tVW0GCC7IQKFaSHy2UV4lQDIv/+Z5ewEqHX61j1zUf876PvUanUHPlrLbE35ZvqzoMeBuDg5pWEdO1Ll8Fj0Ot0FOTnsvSjGWXqRz/7Bhpra/73yUIAIi6dZcVXs4vVn5+bQ2LMbTz9a5AYfZvYmzc4te8v3vhxPTqd1rg8EcD4l97lwKYV3L52kR1//sTUt+bSof8IUuJjWPzBKwAl6m1s7Xniva/RWFmjUqm4evoYBzetMNpRu0kI234zX8JPofIh7mbcRUUhhAgGNkmS1NRw/CrgCKwDvgfsgTBgqiRJKUKIJcAm4CCwHrBF7gqfK0nSUiGEJ/Ls8kbIDvc+SZKeFkL4AqGAM6AHMoHGkiSlCyEGAl8CauBnSZI+LM1mV3sbqbrtjd6hZz/qNmrGb9/OLTvzPaB2gyYMn/g4X7z90n2vOzO36nft3UmX3v2p36Q5P8//rELqr9uoKQ8/+iQfv/b8fa+7Wu6N7tZQ7qaP3F0x9dv7yssv3bj/+5RXx73Rm3d+iBr1mrB5ydcVUn9gnYb0HDWZXz97477X/fWO8yckSWpz3yuuwlSKyKYkSRFA0yLHRb0Zs4XXJEl6tMih2dRkSZISgbEW0mORu8gt2bAF2GLpPQWZI3v+wtnVrcLqd3Z147dvP6+w+qsbB3Zuw9nVveyM9wgXN/cKc3SrJSmXQWNfcfVb2Veco1sNOXtwNw5OrhVWv4OLG5uXmm9UoVA5qRSRzcpIdYxsVmeqY2SzOlMtI5vVmOoY2azOKJHN/57KNEFIQUFBQUFBQUGhklEputErI3laHdfj0ivaDIX7xKXV93/coELFMemVPyraBIX7SH1fl7IzKSgolIgS2VRQUFBQUFBQULhnKM6mgoKCgoKCgoLCPUNxNhUUFBQUFBQUFO4ZypjNKkSXHr14Y/bHqFRqVv3xK4u++dIsT9uOnVmweBmRt28CsHPLRr6dN6dU/fMz3uChfgPRS3qSExP4vxefJSHOfGtEL28f3p8zn2emjAPgiekvMWr8RPR6HR++9ToH95ovW+Li6soX3/9MQGBNoiJv8dJTU0lPSytVv/D3lXh5+6LRqAk9eoTZb7yKXq9nwtQnyMnOYu3yZf/6WlYKXOvKe2ELAXEnIfpAyXkd/KHZE3B1pbyzDIBvB/BpBQiIOwGxR4pr/DpBcD84/ilos82KxMoR6gyFy4br7d8VfFrKi4OHb4G0G+YajR3Ue1jeNSYvVV7ku3Bx8ZL0jSbK+2ELFaTflBckRwLfdqDLh4TT5b5klZlm7bsy6cU3UanU/L1xJZt+W2iWp2HLdrz0yXckxEQCELp3O+sWLyhV365nf0Y89hz+QXV494nRhF8+b7F+Fw8vHnvtA76YKS/EP2TSU3QfPBq9Xsev8z7g3DHzz5+DkwvTZ3+Jp28AibFRfP32C2RnpJeqn/H5Ilw9vFFp1Fw5E8rSz99D0uvpPWoieTnZ7N9SvWeG1wnpSL9pryBUKk7tWs+htUvN8gQ1acWY1z4nNV7e6O7y0T3sX7nIYnkT3/2WFZ/OID8nq1xlA/Sb9gp1W3WmID+XDV+/R2z4lVJt6zHuaeq364akl8hKS2bDN++RmZKId806dBg6kQ3fvPdfXBqFB5gqGdkUQrwvhOj9D3QNhRCHhRB5hoXji773sxAiXghh+Ze4glGpVLz90RyefORhhvTowKBho6hTr4HFvCeOHmZkn26M7NPN6GiWpv/pu68Z3rsLI/t04++df/G/l2ZaLHfKU8+ycpn841KnXgMGDhvJkJ4deWLCaGZ9PBeVyvzj9sT0lzh8YB/9u7Th8IF9PDH9pTL1Lz01jRF9ujKkZyfcPTzoP2Q4AGv+/I2Jjz31zy9ipULI+15f+g1OLwDPZmDnVXLeoD6QatrmETtv2dE89yOc+U7eFtC2yJqZ1s7gWkd2CEvCv5PspIJct2dT2ZZLv0LtwXK9ZpoukBYGp7+SnwO6lq2/uhLOfgdnFoCVA3g0kdPjT4Gf2TK7VRKhUjHllXeY88oTvPbIQDr2Hox/cB2Lea+cCeWtR4fx1qPDjI5mafrIsGvMf2M6V04fL9WGAeOm8vcGeXcX/+A6dOg1iNcnDmTOy48z5dV3ERa+30MmPcmF0MPMGNeXC6GHGTLxyTL1X7/9Am8+OpT/mzgIZ1d32vccAMC+Tavo+/Dkf3D1qg5CpaL/EzNZ9uELfPfiGJp26YtnYC2LeW9dOsWPrz7Cj68+UqKjWbdVZ+IirpGfk1Xusuu26oS7X00WTB/J5u8+YuCTr5dp26H1v7Lw5Qn8+OojXDtxgG4PPw5A/K0bOHl44+zpY1aPQtWiSjqbkiTNkiRp5z+QJgPPA5a2wFkC9P83dt1Lmrdsza2IMCJv3aSgoIAt69fwUL+B/4k+K9O0bbydnYMcebJA34FD2L9nFwAP9RvIlvVrKMjPJ+r2LW5FhNG8ZWszzUP9BrB+hTyzd/2KP+jVf2CZ+kJ7NBoNVtbWFK4Vm5uTQ/TtWzQLaVXu8660OAZAbjLkpYCkg8Tz8g4vlvBtD0mXoCDLlGbnCRmR8jaE6OWIoXsj0/vB/eHm9hLbGpDzFzqwbg1lGySd7KDmJss2mmkamiKROCCsOAAAqwBJREFUCafl47L0ujz5WajkbQwLt0XUF8h5LdVTxajTqDlxkTdJiL6NTlvAkV2bad21/PfTpemjb94g9lZ4GSVA2+79OHt0HwCtu/bmyK7NaAsKSIiJJC7yJnUaNTfTtOrai/1b1wKwf+taWnfrXaY+N1v+nKrVGjQaKyRDe+fn5ZIYE0VtC/VUF/zrNiEl9japcVHotVouHNhBg7bd/3F5zbr15+rxvXdVdv223Tm7dzMAUdfOY+vghKOrR6n6/BzTb4+1jZ2xTQGuhe6nSee+//gcFCoHlcLZFEIECyEuCSF+FEJcEEJsF0LYCSFChBBHhBBnhRBrhRBuhvxLhBCjDa8/EUJcNOSZa0jzEkKsFkIcNzw6A0iSFC9J0nHAbIVuSZL2ITujDyTevn7ERkcZj+NiovHx87OYN6R1W9bu2M8Pv62kbv2G5dK/8Npb7A49z5CRD/PVnI/MygyoUZP0tFQK8vMB8PEzL8/b19weD09vEuLjAEiIj8Pdw6tc+h+XreLA2WtkZWby16b1xvTzZ07Tun1Hi+ddpbB2hrw003F+Gtg4WcjnBB6NIO6OqFVOPDgHyd3aKitwqwfWhuVd3BpAfgZkx5Vcv40raHNl5xDkuvOL2pMu23gnVg5QkCm/LsiUj8ujbzQJ2swEfR4kXTSlZ0aDU1DJdlYR3Lx8SI43DV1Jjo/FzctyNKhu0xA+XLKBV+cuIqBW3bvWW8LLL5CsjDS0BQXG8pLiYozvp5RQnrObJ2lJ8h7uaUkJOLt6lEs/44ufWLDpMDnZWRzbs82YHn75HA1aVN+1tp3dvUhPNH0v05PjcPKw3KMR2KAZT37+O+PfnI9XjdqW8zRsQcyNy3dVttOd+ZLi5ehkGfqeE57h+R820bRbf/b++YMxPfr6RWo2blnWqStUciqFs2mgHrBAkqQmQCowCvgFeE2SpObAOeCdogIhhDswAmhiyPOB4a35wDxJktoayrHcx3CXCCGeFEKECiFCtXr9f1Hk3dRtlmZpd6iL587Sq11zRvTpyu8/L+Sbn38rl37+px/wUJumbFyzkkemme+e4uXjS3JS4l3bUxJl6Z+YMJpuLRtibW1Nhy7djOnJiQl4+1TTnZssXd7gAXBzh/mbOYkQfRAaTZbHRGbFgqSXHc+AbnC7jG0BrZxAWyRSaqnL3KJBJVGG/tKvEDoXhAZcinTtFWTJDnUVp7zfp4grF3hpVE/efHQoO1b/yosff3tX+pJw9fAiI9V0ry0stJd0F+1dln7Oy4/x3LDOWFlb06S1aahEekoyrp7e5a6nylHOdowJu8JXTw9l4SuPcHzrch5+bY7F4uwcncnPzb6rskv8LJWh37PsO756ajDn922j7YAxxvTs9BSc3Dwt2qdQdahMzma4JEmnDa9PAHUAV0mS9hrSlgLd7tCkA7nAIiHESKBwlkNv4BshxGlgA+AshPjX/1iSJC2UJKmNJEltNBbGL91L4mKi8fU3dSf6+PkTH2s+iScrM4NsQzfVvt070FhZ4eruXm795rWr6DtwqFl6Xm4ONja2xuPYaPPyLE0qSkqMx8tbjmh4efuQbIiClEefn5fH7u1biw0XsLa1IS8316yeKkd+OtgUWWja2kWORt6Jgz/UGw0tXwSPxlB7kKm7Pf4knPsBLiwGbQ7kJoGtG9i6QvNnZI2NMzR/Sp4MVBR9gez4FZKXboqMghyVtGRPQZapLCtHU9d+efSSVt6f273IcAGVxjAUoGqTHB+Lu7fpJsrd25fUxHizfLnZWeTlyD9zZw7vRa3R4OjiVm59SeTn5WJlbWOyJyEWDx9TT4Obty+pCeblpack4mKIbrl4eJGemlRufUF+PicP7KZVkeECVjY2FORVg+93CaQnxRcb3+js7kNmcqJZvvycLApycwC4fvIQarUGOyfzhen1Op3RSSxv2Wb5PLzJTE4ot/78gW007PCQ8VhjZU1Bfl6p561Q+alMzmbRT6MOcC1LIEmSFmgHrAaGA4X9MSqgoyRJIYZHgCRJFv4ZKw/nTp8kqFYdAmrUxMrKioHDRrJn+1azfJ5epqhAs5BWCJWK1OTkUvVBtUxdMD379Sfs+lWzciNu3CCgRk3j8Z7tWxk4bCRW1tYE1KhJUK06nD11wky3e/s2ho0ZD8CwMePZ/dfWUvX29g5G51StVtO9Vx/Crl8zlhdcuy7Xrly6q2tXKcmMlif02LjK4xg9m8qO2J2c+tL0SLoIYZtN+TSGLmxrF7mrPfEcZMdD6ByTJi8dzv5g6vouJDdJrruQlMuyDUItp9u6Q2YUZqRcAa8Q+bVXCCRfLl2vsi7i6KrAtb4clS3E1kO2uYoTdvkcvoHBePkFotZY0aHXIE4e2GWWz8XdFCGq3ag5QqjITEspt74kYm9H4Olnuvk7eWAXHXoNQmNlhZdfIL6Bwdy4dNZMd/LAbroOGAFA1wEjOLl/V6l6Gzt7o3OqUqtp0bE70TfDjOX51ggmMuyaWT3VhejrF3H3q4mrtz8qjYYmXfpwNXSfWT4Hw3AFAP+6jRFCRU5Gmlm+pOibuPkE3FXZV4/vo3n3QQAE1GtKbnYmmalJperd/WoY9fXbdCMpKsJ47O5fk4RbFlauUKhSVOalj9KAFCFEV0mS9gOTgL1FMwghHAF7SZK2CCGOAIXTcbcD04E5hnwhRaKmlRKdTscHb85k0bLVqNRq1vz5O9evyn/kYydNBWD5r4vpO3gY4ydPRavVkZebwyvPPFam/uU33qFWnXro9Xqio27z7msvm9Wfk5PNrYhwagbX4lZEONevXmbbxnVs+vsIOp2W2W/MQG8YWjB77nz+/GUxF86eZtE38/ji+8WMHjeR6KhIXnrqUYAS9Xb29ixYsgxraxvUahVHDu5n+S8/G+1o1bY9C7749J5d5wcHvbw8UKNJ8sSZ+FOQI0eF8TGMaYsLLb2IBmPlMZuSXnZCdXcRMdIXyJOTbN3lyTw5CZB0AUKmy+UVLk8EUHuobEtWNETth/pjwLuVPEbzqjy7uUS92goaTpCdUKGCtHCILXJeTjUg8u/y211J0et0/DLvfWZ88RMqtZp9m1YRFS7/nD00XF5qbPe6P2nbsz+9RoxHr9WRn5/Lt++8VKa+dbc+TH7pbZxc3XllzkJuXrvEnJcfK1Z/Xm4O8VG38Q6oSXzULaLCr3N09xY++X0rep2WpV/IyxMBPPb6h+xe9wfhl8+z6deFTJ89n+6DR5MUF8PXb8nbupakt7G14+VPv0djZYVKrebiiSPsXmfaGrR+s1as/fmbe3uxH2AkvY5tiz5jwttfIVRqzuzeQMJt2Rlv1XckACe3r6FRx4do0280ep2Wgvw81sx702J5108cJKhJa1JiI8td9vWTB6nbqjPPLliLNi+XDQveL9O2hyZOx8M/CEnSk5YQy5YfPjbaENy0DddOHrw3F0zhgUHczbidikIIEQxskiSpqeH4VcARWAd8D9gDYcBUSZJShBBLgE3AQWA9YIs8KGyuJElLhRCewAKgEbLDvU+SpKeFEL5AKOAM6IFMoLEkSelCiD+AHoAnEAe8I0nSTyXZbGetkYI9q/5YsqL07j+IJs1DmP/ZhxVSf6OmzXj0yWd57fmn73vd1XJvdPeGcjd9WeM77xX2vvLyS9fv/7qLk16tfnujt+7Wh1oNmrDqxy8rpP6geo3oP24aP8yecd/rrqp7ozu6ejDs+ff4/f3pFVK/WmPF5Nk/sOTNJ5D0ugqxwRKz1oSekCSp+s5EuwdUisimJEkRQNMix0WXJjJbaE+SpEeLHLaz8H4iMNZCeiwQWIIN48ttcDVl57bNuLq7l53xHuHm7lFhjm61JPkyaOwrrn4r+4pzdKshJ/btwNHFtcLqd3J1Y3UFObpVlczUJE7tXIe1nUOx5YnuFy5evuz+7ZsHytFUuDdUishmZaQ6RjarM9UyslmNqY6RzepMVY1sKlhGiWz+91SmCUIKCgoKCgoKCgqVDCWyeY9oUdND2jZjUEWboXCfOBGeUNEmKNxHBneqW9EmKNxHVA9X30lJ1REJlMjmf4wS2VRQUFBQUFBQULhnKM6mgoKCgoKCgoLCPUNxNhUUFBQUFBQUFO4ZirOpoKCgoKCgoKBwz6gU62zeLUKI95EXat95l7qGwGKgFfBm4XqeQogawC+AL/Ji7wslSZr/31p977Cp2QznbhNBqMi+uJesE5vM8lgHNMRt0Ivo0uWJLrk3Qsk8vt5iee7DXydl85dIBbnlKhvAudtEbIJaIGnzSN35I9qEm6Xa5th+FLa1W4Ikoc9JJ3Xnj+izUtF4BOLQcgBpO3/8Ly5NpcarYWuaDH8aoVJx68g2buxeaZbHo04z2kx7h+xkeV/52HOHuLZ9Wal6vxZdqN9vIo7eNTjw5YukRVreHtDGyY3mY17g+E/vAlCn1xhqtu+HpNdzYe13JFw5aaaxsnek1aT/w97dh+zkOE7+8jEFOZml6ts9ORtbZ3eESk1y2HnOrf4WJD3BXYagzcsl8viOf3chKws+jSBklLyTUvhhuFLKebvVhIdegSOLIeq0nFa3O9TqBAgIPwTX/5bTXQKg1VjQ2EBWEhz7BbQWdpOydYbW4+HgD/Jxgz5Qq6O849PpVRBnYbtUK3voMBXs3SE7GY78DAU5peu7PAO2LvJ5Jt6AUysACep0A20e3Dx699euEtKvXz++nD8ftVrNT4sW8emn5jujde/enXXr1xMeHg7A2jVrmD17drn0r7zyCnPmzsXL05OkpCSzsn19fVn4448MHTIEgNdff51pjz2GTqfjheefZ/v27WYaNzc3/ly+nODgYCIiIhg7Zgypqaml6rds3Yqfnx8ajYYD+/fz7LPPotfrefbZZ8nKymLJkiX/+BoqPDhUycimJEmz7tbRNJAMPA/MvSNdC7wiSVIj5EXknxVCNP6XZt4fhMC5x2SSN8wl4ffXsavfAY2bv8Ws+dFXSfzzbRL/fLtER9MmuAUFibeQCnLLXbZNUHPUrj4k/DqDtN2LcenxaJm2ZZ3cTOIfb5H459vkhp/Gse1wALRJkagd3VE5epjVU60QKpqOfJZjC9/m70+fIqBVDxx9alrMmhx2nv2fT2f/59ONjmZp+oyYm4Qunk1y2PlSTajdYyS3jmwDwNGnJgEtu7P306c5uvAtmo6aLjsLd1D3oTEkXjvNno8fJ/Haaer0GlOm/uTSj9k391n2fvY01o4u+LfoCsCto9up1XXY3V+7SomAlg/Dge/grw+hRmtw8i05b7NhEHvJlOTsJzuau+fCzk/Aryk4ynuQ03o8nNsAOz6G6LPQoJflYuv1hLBD8msnX9mG7R/B/u+g5Ri53jtp2Afir8Jfs+Xnhn3K1h9ZLNu44yOwcYTAlnJ6xGHZYa4GqFQqvlmwgIEDBtCkcWPGjR9Po0aNLObdv38/rVq2pFXLlkZHsyx9YGAgvfv04ebNmyXa8PLLL7PoR/mmvlGjRowdN46mTZowoH9/Fnz7LSqV+ff79ddfZ/euXTSoX5/du3bx+uuvl6kfO2YMLUNCaNa0KZ5eXjz88MMA/Pzzzzz3vLJ+cVWhUjibQohgIcQlIcSPQogLQojtQgg7IUSIEOKIEOKsEGKtEMLNkH+JEGK04fUnQoiLhjyFkUovIcRqIcRxw6MzgCRJ8ZIkHQcKitYvSVKMJEknDa8zgEtAwH28BP8YK5866FLj5YilXkfO1SPY1G71j8uzq9+JvPCTd1W2Te1W5FyS974tiLuBysYelb1LqXqpwBRZEVY2GPfZBnLDT2FXv/0/PoeqgGvN+mQlRpOdHIuk0xJ1ai8+Tc020/pH+sz422QlRJVZhm/zziRcPgGAT9MORJ3ai15XQE5yHFmJ0bjWrG+m8Wnakcjj8n1g5PGd+DbtWKZem5cNgFCpUamtkAyfBX1BHjkpcRbrqXK4B0Fmohx5lHRw+wT4N7Oct253OZqZl2lKc/KB5AjQFciRxMRr4N/c8J43JMr7pBN3GQJaWC43IATiDA6sfzPZBr0WspNk29yDzDX+zUyRyJtHTXWWpi+MqgoVqNSmsnQFcnTUzUI9VYx27dpx/fp1wsPDKSgoYPmffzJsWPlvrMrSfzFvHq/NnElpSx+OHDWKbdvkm8lhw4ax/M8/yc/PJyIiguvXr9OundnmfAwdNoylS5cCsHTpUoYNH16mPiMjAwCNRoO1tbXRppycHCIiImjbtm25z1vhwaVSOJsG6gELJElqAqQCo5C7tl+TJKk5cA54p6hACOEOjACaGPJ8YHhrPjBPkqS2hnIWldcIwz7tLQGzvhwhxJNCiFAhRGhSZt7dnd09Qu3ghi7T1EWiz0xG7ehmMa+1b108x3+A29BX0Lhb9qWt/OpREB9xV2WrHdzRZSYbj3WZyagd3cvUO3UYjfej87Br0InMI6b9rwviw7H2b1DGmVdt7Fw8yU01re2Zm5qInYvlaK9bcCO6vbqAdk+8b4xe3o3eYv3uPhRkZ6LXFRjK8yheXloidi6eZjobJ1fyMlIAyMtIwdrRpVz6dk9+QJ/3/0Cbl03MmQPG9NTb13CvZdzJtupi5wo5KabjnFQ57U5sXSCgOdw4UDw9PQY864K1PaitwLcJ2LuZ3vMzOK6BLcHOwu+DvQcUZMvO4d3YY+MEueny69x0+bg8+i7/gyEfy93mkadM6Sm3wLOOeT1VjICAACJv3zYeR0ZGEhBg+Te5Y8eOnDp9ms1bttC4ceMy9UOGDCE6KoqzZ8+WWH9wcDApKSnk5+cby7tdpLyoEuzx8fEhNtYwZCc2Fm9v73Lpt27bRlx8PBkZGaxatcqYfiI0lK5du5Zop0LloTI5m+GSJJ02vD4B1AFcJUnaa0hbCnS7Q5MO5AKLhBAjgWxDem/gGyHEaWAD4CyEKHNvSSGEI7AaeFGSpPQ735ckaaEkSW0kSWrj4WhzVyd3z7DQs4WFm9mC+Ajil75E4h9vkX1mB26DXrBYnMrWwRR1LGfZlvJJklSmPuPIKuKXvETOlUPYt+htTNdnp6N2cLVoX7XB4jU1T0uLvMGu2VPYN/dZIg5spO20WXelLwlbZ3fys9JKNUiy+GEoidL1xxa+xc53H0GlscKzninylp+Zio2L+13UU5WwcH1DRsld4ne+lxEnj/HsOl125FKj5AgnQOgyqNsVes0AjS1Y2qfazrl4pLS89twVRfQHvoVNb4JKA95FItd5mWBX9beOFMLC98HCF/TkyZMEBwXRMiSEb77+mrXr1pWqt7Oz440332TWrFml1u/n50dCgunmr7z2lERZ+gH9++Pv54eNjQ0PPfSQMT0+Ph5/f8vDvhQqF5XJ2SwaKtQBrmUJJEnSAu2QHcThwDbDWyqgoyRJIYZHgKF7vESEEFaGcn6XJGlNaXkfJHSZKaiLjG9UObqjy0oxyycV5CIVyJc47+ZZUKkRto7mBer1FDoG5S27MJJZiNrRHX1WSrn1uVcPY1vH1JUiNFZI2gKzfNWJnNREbF29jMe2rp7kppsP8tfmZaPLl28O4i8dR6g1WDk4l1tfErqCfNQaa5M9aXeU5+JJbpp5eXkZqdg4yZEzGyc38jPTyq3XawuIO38U3yLDBVQaa/QF+eW2u9KSk1o84mjnCjlp5vncakL7R2HAuxAYIo+FLOy6jjgCuz6DvfPlKGWGwZnIiIP938KuOXA7FLISzcvVFcgR0bu1Jy9DnlgE8nNeRvn1ei3EnDPZD7Lzqav67R0ZGUlgjRrG48DAQKKjo83yZWRkkJWVBcDWrVuxsrLCw8OjRH2dOnWoVasWp8+cISw8nMDAQE6cPImPj0+xcnNycrC1tS1mT40i5QWUYE9cXBy+vvJYYl9fX+Lj48utz8vLY+OGDcW6+21tbcnJySnlSilUFiqTs3knaUCKEKIwxj4J2Fs0gyES6SJJ0hbgRSDE8NZ2YHqRfCGUgpBvy34CLkmS9MV/YPt9oyAuDLWrD2pnT1CpsavfgbzwU2b5VPamaIGVT22EUCHlmkcytKkxqF287qrsvPBT2DXqbCi7Dvr8bPTZaaXq1S6mHz+bWq3Qpph+mDSuvhQkRf7DK1I1SLt9FQcvf+zcfRBqDQEtuxN3/ohZvkLHDuRxmkIICrLSy60viayESOzcTW0Ud/4IAS27o1JbYefug4OXP6m3rprp4i4cIbCtHKUObNubuPOHS9WrrW2N5yBUKrwbtSEz3tT2Dl4BZMSUPMmhypByS57QY+8BQi1Prok5Z55v67umR+RpeSZ3tKG71MZw82jnBv4tZMeyaDoCGvWHsDu64AEy4uUZ5YXEnJNtUGlkmxy9INlCO0SfgyDD+Oqg9vJxaXq1tck5FSq5uz8jzlSekzekxZR5uSo7x48fp169egQHB2NlZcXYcePYsGGDWb6iTmLbtm1RqVQkJSWVqD9//jy+Pj7UrlWL2rVqERkZSetWrYiLiytW7tWrVwkODjYeb9iwgbHjxmFtbU1wcDD16tXj2LFjZvZs3LCBKVOmADBlyhQ2rF9fqt7BwcHonKrVagYMHMjly6ZVDerXr8/586VPVFSoHFT2pY+mAN8LIeyBMGDqHe87AeuFELbI4biXDOnPAwuEEGeRr8E+4GkhhC8QCjgDeiHEi0BjoDmyM3vO0PUO8IbBiX2wkfSk7/0F96EzQSXIubgPbbI8+cO+aU8Ass/vwbZuW+ybPgSSHkmbT8q2BRaLy4s4g3VAI3LS4stddl7EGWyCWuA1eQ5SQT5puxaVaZtTpzFo3PxA0qPLSCJtzxKjDdaBjciLOH0PLlblQdLrubDmO9o/+QFCpeb2se1kxt0CoGbHgQDcOrwFvxZdCOo0CEmvQ1eQz8lfPylT79usE01GPIO1owvtnniPtKgwji18q1j9uvw8shNjsPf0Izsxhsy4W0Sf3k/3135A0us4b1ieCKD5mBe4eWgLaZHXuL5rBa0nv0HN9v3ISUngxC8fApSoV1vb0vaxd1FprBAqFYnXznDz0GajHe61GnN1++/39mI/CEh6OL0Suv4PhJCjlOny2DhqyzdyhB0svYyOj8tjNvV6OL3CtARRjdbyskIAUWfksu9Ely9HPB085ef0WIg8CX3fMNlW2A3eerzssKbclrvuO0yD4A7yGM3DP8t5StJrbKDTk7ITKlSQcLW48+tRGy5u/SdXsFKh0+l4bvp0tv31F2q1msU//8zFixcBeOqppwD44YcfGD16NE8/8wxarZacnBzGjxtXpr48ZGdnc+PGDerUqcONGze4ePEiK1es4MLFi2i1WqYblicC+PHHH/n+++85ceIEn3zyCctXrGDaY49x69Ytxhhmlpekd3BwYP2GDdjY2KBWq9mzezfff/+90Y5OnTvz3nvv/SfXVKFiEXcz7kKh/LSo6SFtmzGoos34z1HZu+Da5ymS139WQQZo8Bj1BkmrPjCNOXsAOBGeUHamKoZvs064BNblytZfKqR+54A61O4+gtPL7lyp7N4zuFPd+15nhePfHNxqwIXNZee9F7gGyssvHf/1vletevib+15nRTN8+HBat27N22+/XSH1h4SE8NLLLzNl8uT7XrcEJyRJanPfK67CVPbIpsJ9Rp+dRvaFvxFWtsWWJ7pfqJ08yDi04oFyNKsrsecOYWVf5ry6e4a1g3OFObrVkuizYO1QcfVbO1Sco1sNWbduHR4eFbeesaenJ7MqyNFV+H/2zjs8quJrwO/spgfSewIJvUMooXdQekdAEQULdrCjn+0nVhTFXgAVsALSqyggvYTeexLSGwnpbTPfH7NkA7spIBCS3Pd58uzeuefMnDt3b/bsmXJuPlpk8xZRVSObGpapjpHN6ky1jGxWY6pjZLM6o0U2bz6VeYGQhoaGhoaGhobGHY42jH6LsNbr8HVxqGgzNG4TNlba77bqRFaqth1LdUIb/9PQ+G9o35AaGhoaGhoaGhq3DM3Z1NDQ0NDQ0NDQuGVozqaGhoaGhoaGhsYtQ5uzWZXwawrtxqjNkM/tgON/lSzrHgj9p8G2uXDxgCpr3BsadAEEnN0OpzapctcA6HCfSlcnC2HP75Acbl6nvRN0vB82f6OOm/eDel2UTugiiLWwqbCNA3R/FBzdITMZts6BvKzS9Xs/o/Ij63SQcA72/q4SezfqCQW5cH7XDXRe1cG9YVsaD5uMEDqi9m4g/N/FZjKudVsQ/OAbZKeozCEJx3Zy4Z/fLdbXbvL7HJz/Dobc7HLVDdBo6GN4Nm6HIT+XY4tmkR59vlTb6t19P17NOiKlJC8jleOLZpGbdokaPoEEdh/J8UWzbkbXVGp0Ac2w6XgvCB0Fp7dRcKTkzc11HkHYDv0/8jZ9jyF8PwBWzfpg1ag7CCg4tY2C4/8AINxqYdP1foTeGllYSP7OXylMDDOv1N4Z224PkLvhS1VfqwFYNewGspC8Xb9TGH3cXMfWEdvejyFquCMzksnd+F3R812Svm2/ZxEO6vk2xJ0lf+evICVWTXsh8/MwnC1j8/oqQr9+/fj888/R6/XMnTuXGTNmmMn06NGDFStWEBam7tfSpUt55513yqX/wgsvMHPmTDw8PEhONk8t6+Pjw5w5cxgyZAgAr7zyCg8//DAGg4EpU6awYcMGMx1XV1cWLlxIUFAQ4eHhjBkzhtTU1FL1161bh6+vL1ZWVmzbto2njBu+P/XUU2RmZjJv3rwb7kONO4cqGdkUQkwXQvS9Ab3GQohdQohcIcSLxcrthBB7hRCHhRDHhRB3XkoDIaD9vbDpK1j1NgSFgLNvybJtRlzt/Ln4KUdz7Yew+l0IaKFSwwG0GQlH1sCa9+DQKnVsiSZ94coXgbMvBIbAqumw6UvocK9q91qa94fYU7DiTfXarF/Z+tvmwJp31TnbGhDYVpWf2wGNe11fv1U1hI4mI57gwA9vseOTJ/AN7o6jVy2Loqnhx9n92TPs/uyZEh1Nj8YhpMeGYcjNLnfdHo3b4ejhx/aPHuXEki9pOuKpMm0L37KEXbOeZvdnz5B0ci91+94LQEZcBHbOHlflTa+WCIFN5/Hk/vUZOUvewKpee4RLyc+3dftRVzl/wtUPq0bdyVnxHjlL30ZfuyXCST3fNu1Hk39gFTnLppO/fwXW7UdbrNa6xV0UnNqm6nPxxapue3KWvEnu+s+w6TLe4vNt3WoAhuiT5Cx+DUP0SaxbDShTP3fTd+Qse5ucJW8h7Gqir6N2oCk4vQPrZn1urP8qGTqdjq+//poBAwbQtGlT7r33Xpo0aWJRdtu2bbRu3ZrWrVsXOZpl6QcEBHDXXXcREVFyqtfnn3+eOXPmANCkSRPGjRtHs2bN6N+/P9988w06nbn78Morr7Bx40YaNmzIxo0beeWVV8rUHzNmDMHBwTRv3hxPT0/uMWYd+vHHH5kyZcoN9J7GnUiVdDallG9KKf+5AdVLqFSW16YkyQV6SylbofKr9xdCdPxvVt5k3INU/uKMJCg0QEQo1GppWbZRL4g4CDnppjInH0gMA0O+iiTGn4VawcaTEqzt1FsbO8hOtVxv7dYQY/yCq9VS2VBYABnJyjb3IHOdgJZwwRiJvLALarUqW//KZvJCB3orFdUEZXvGJcvtVBOcazUkKymG7EtxSEMBcYe34tXsxj+qvq17knB893XV7dm0IzEHVFT88sXTWNk7YlPTtVR9Q65pdbfexs50T4HEE3vwadX9hq+hKqDzrINMS0Cmq+e74MJe9IHBFmWtmvbBEHYAmZ1m0nfxpTDxgko7KQsxxJ5BH9TGeFYibOwBEDb2yMxUi/Xqg9piiFJ5qvWBwRRc2AuFBciMJGRaAjrPOuY6tYMpOLsTgIKzO9EHti5bv+j51iP0xQbfDHkUZiRZbKeq0b59e86dO0dYWBj5+fn88ccfDBs27Kbpz5o1i5dffpnS9tkeNWoU69evB2DYsGH88ccf5OXlER4ezrlz52jfvr2ZzrBhw5g/fz4A8+fPZ/jw4WXqp6er7yErKytsbGyKbMrOziY8PJyQkJByX7fGnUulcDaFEEFCiJNCiDnGyOIGIYS9ECJYCLFbCHFECLFMCOFqlJ8nhBhtfP+hEOKEUWamscxTCLFECBFq/OsCIKVMkFKGAvnF25eKDOOhtfHvztoNw8EVMlNMx5mpYO9qLmfvArWD4ezWq8tTY8C7gcrSobcG/+bgaNQPXQxtR8HI96HtaDi43LzeGu5qeKywwNjONfZkpSobzexxgitfitlpYFezfPp9noF7PlZfTFemAQAkR4BX9d1w287ZnZzLSUXHOZeTsHWynAXEuXZjOj37JW0eehtH79oWZVyCmpIWfe666rZzdicn1bTJfU5qEnbO7mXq1+/3AN3/bx6+rXtybsMvReVpUWdxrdOsjCuv2ggHV2Sx50FmpiAsPE/CwQV9UGsKTv17VXlhSgw6nwZg6wh6G/S1WiCMz3fe7oVYtx+N3biPsO5wD/n7lpjXW8Pjque73PbYO0H2ZXWQfRlhX7Nc+rb9n8X+/k+ReTkYwvaZriMpQl1HFcff35/IyMii46ioKPz9/S3KdurUiUOHDrF27VqaNm1apv6QIUOIjo7myJEjJbYfFBRESkoKeXl512WPt7c3cXFxAMTFxeHl5VUu/fXr15OQkEB6ejp//vlnUfm+ffvo1q1biXZqVB4qhbNppAHwtZSyGZAKjAIWANOklC2Bo8BbxRWEEG7ACKCZUeZd46nPgVlSyhBjPXPLalwIoRdCHAISgL+llHssyEwWQuwTQuxLTL/9qRzNseAPh9wDB5ZdFTkCIC1OzfHsOxX6TIGUKFNKyEbdYd9iWPp/6rXTBPN67Z0hJ8N0bGHE/Lr887L0N34Jf04DnRX4NDaV56SDg3P526lyWOw4M9Kiz7Htg0ns+uwZLu5cRfCDr1uUs3aoUSzqWL66Lcmpj1vp+uf+WsDW9ycSe/BfanceUlSel3m5RIe52lDO58m64zjy9y4xe75laiz5h9djN+B5bPs/S+GlSChUz7dVk57k715Izh8vk797ITbdJpo37+CMzC42EnKLn+/c9Z+R/dsLoLdC52ca/pXZaQgHl/K3U0kRFqYkWIpCHjhwgMDAQIKDg/nyyy9Zvnx5qfr29va89tprvPnmm6W27+vrS2Ki6Qdjee0pibL0+/fvj6+vL7a2tvTu3buoPCEhAT8/v3K3o3HnUpmczTAp5SHj+/1APcBFSrnFWDYfuHasLQ3IAeYKIUYCxpUn9AW+MjqPKwEnIUSpSZ6llAYpZTAQALQXQjS3IDNbStlOStnOs6bd9V7ffyMrxRSJBHB0sTzc7R4I3R6BEe+pYe8O40xD1+d2wtr3YcMnkJsJaQmqvG4nuHhQvY/Yb3mYuiBfRURLssfBRUUnryU7TUU3Qb1eGdovj35hAUQdgYBWpjK9lRpOr6bkXE7Cztmj6NjO2YPcNPPJ/4bcbAx56gdR0ql96HRWWDs4mclJQ2HRXLry1p1zOemqOZZ2LkquvPqxB//Fu0XnomOdlTWG/NxSr7uqIzNTiiKRAMLRFWnhedJ5BmLTezJ2Yz9EX6ctNl3GFw23G85sJ2f5O+Su+QhyM5FpanGYVYNOGMLV6IAhbJ/FYWppyAMr0/NdXntkdpr6IQpgb3JYy6VvKMBw8TD62sEmOb01FOSZtVPViIqKolYt03zogIAAYmJizOTS09PJzMwE1EIba2tr3N3dS9SvV68ederU4fDhw4SFhREQEMCBAwfw9va+qt7s7Gzs7EzfYeW1Jz4+Hh8fH0AtMEpISCi3fm5uLitXrrxquN/Ozo7sbC2BQlWgMjmbxb9tDIBLWQpSygKgPbAEGA6sN57SAZ2klMHGP38pZXoJ1VxbZyrwL9C/vIbfFpIj1IKeGu6g06vFNZEWhkmWvQ7LXlN/Fw/Cnj8g8rA6d2UI28FVOaLhoeo4OxW8G6r3Po3U/MlrSY9XbV8h8oiyQWelymt6WV7BHnVEObOgXqOOlK5vZWtyToVODfenxZnqc/JWUwKqKWlRZ3Dw8Mfe1Ruht8KnVXcSTpgF4bGpYfqid6rVEIQgPyvNTC4zMQp7N5/rqjvxxB782qjohHPtRhRkZ5KXnlKqvoOHKXrh2bQjmQlRRccOHv5kxJe8kKE6UJgYjnDyVsPZOj1WddtjiDhsJpez8FVyFr5CzsJXMITtJ2/HrxgiDqmTxudbOLqhD2pDwfm9AMisy+h8GwGg82uMTDN/vuXleESx59sQcRiruu1BZ4Wo4YFw8ra4gt1w8RBWDdQPB6sGnTFcPFS6vpWtyTkVOvS1WiAvxxbVJ5y9KUyJvr7Oq4SEhobSoEEDgoKCsLa2Zty4caxcudJMrriTGBISgk6nIzk5uUT9Y8eO4e3tTZ06dahTpw5RUVG0adOG+Pj4q+o9c+YMQUFBRccrV65k3Lhx2NjYEBQURIMGDdi7d6+ZPStXruTBBx8E4MEHH2TFihWl6js6OhY5p3q9noEDB3Lq1Kmi+ho2bMixY8duvCM17hgq89ZHl4EUIUQ3KeU2YAKwpbiAEKIG4CClXCuE2A2cM57aADwNfGyUCy4WNTVDCOEJ5EspU4UQ9qjIqPk+FBWJLIS9C9UQuNCpKOWVf9INjHNezm4rvY7uk9Xq7kKD2k7oyhZEu36BkDEg9FCYD7t/NdctyIP0RKjpqV4vx6oo6NC3jPX9YRra63g/nNkKly7Csb/U1kf1u0DmJdg6W8mUpG9lAz2fVBFMoYO406quK3jWgyOrb7wfKzmysJBTK76lzSPvIHQ6okP/JjP+IgABHdVK4Kjd6/Bu2YVaHQciCw0Y8vM48ttHFutLOhWKW70WRCfHlrvupFOheDRuR9dpczHk5XJ88awybWswYCKOnv5IKclJSeDE0q+LbHCr15Kkk6G3psMqC7KQvJ2/YTvgWbX10ZkdSOOPKqvGPQAoOLWllArAtu8TCOPznbfz16LnO2/bfGw6qS2VpCGf3G0LzJUL8pBpiQgnL7VQKTWGgrB92I2eDoWFqj7j823T7UEKTv5LYVIE+YfXYdv7cawadUVmXCJ303fqckrSt7bF9u6nVQRTCAwxpyg4abouvXd98g+s+q+9ecdjMBh4+umn+euvv9Dr9fz444+cOKF2D3nssccA+P777xk9ejRPPPEEBQUFZGdnM27cuDL1y0NWVhbnz5+nXr16nD9/nhMnTrBo0SJOnDhBQUFB0fZEAHPmzOG7775j//79fPjhhyxatIiHH36YixcvFq0sL0nf0dGRlStXYmtri16vZ9OmTXz33XdFdnTp0oW3377zNn/RuH7E9cy7qCiEEEHAaillc+Pxi0ANYDnwHeAAXAAmSSlThBDzgNXADmAFYIeaJTRTSjlfCOEBfA00QTncW6WUjwshfIB9gBNQCGQATYEg1DC9HhUVXSSlnF6aze3qeMp900fdpB6oJNQKBvfacMj8F/htwbUWNO0DO+bd9qY3HI0sW6gSYlPTlRZjX2D/XMtzOm81Qm9FyOMzCP32JaTxy+1OoGvDErYdqsLoA1uj8wgkf//yCmlfuNfCuvnd5G354ba37fjo7W+zohk+fDht27bljTfeqJD2g4ODef7553nggQcqovn9Usp2FdFwVaVSRDallOFA82LHxbcmMtt7RUo5sdih2f4MUsokYKyF8jjUnMxrOQK0LrfB1ZXIQ2q1a0VhV0PtA6px08hLTyFq73r0tvZXbU90u7B39eLsunl3lKNZXTFEHFTPWAUh7GpWmKNbHVm+fDnu7hW3MM/Dw6PCHF2Nm0+liGxWRqplZLMaU1UjmxqWqY6RzepMdYxsVnO0yOZNpjItENLQ0NDQ0NDQ0KhkVIph9EqJjRX4W9jEXKNK8uqb5htha1RdLmdV/e13NEzEfWFhb2GNKovPlJ8r2oQqhxbZ1NDQ0NDQ0NDQuGVozqaGhoaGhoaGhsYtQ3M2NTQ0NDQ0NDQ0bhmas1mVcGsIHZ6Hji9CYI/SZWsGQK/3wLNY1s2AztB+KrR/FgK6mMpr+EDbJ9S5lg+A3tZynTY1oeWDpuPAHsqWDs+DWwPLOlb2EPwQdHxBvVrZla3fahKETFF2NhpOUaJl/07g27b0665CdOremyUbd7F8814mPj7FokzbDp3Zcvg8v63ZzG9rNvPoMy+Uqf/E86/wx7p/+W3NZr5esAgPL29LVePh6c1nc00b/E96YirLN+9lycZddOrey6KOk7MLX/+8mGWb9vD1z4up6eRcpv6X8xby+9rNLPprG6+++zE6nfq3NeaBhxky+t5y9FTVoHuvPmzYsY+Nuw/y2DPPWZTp0LkrB89eZOXGbazcuI2nn3+5TP1np73G6s07WLlxG/MWLsPL28di3Z5e3sz+ZWHR8eNTnmfj7oNs2LGPbj37WNRxdnFl3qLl/LPrAPMWLcfJ2aVM/R9/X8KqTdtZt2U30z+aVXS/Jzz0KKPGjS+7o6o4NrVb4H7/DNwnfIxD28EWZaz9G+M5+Tvcxr2D27h3cAwZZlEOwHX4Kwhru3LXDVCz+/24T/gYt3vfxcozsEzbHDuMwu3ed3Eb9w4uw15C5+gCgJV7AE59H72ey9eopFRJZ1MIMV0I0fcG9BoLIXYJIXKNG8dfe14vhDgohLgDU9QIaDQUDv8Ee2aBVytw8CpZtn5/SD5rKnL0Br8Q2PcNhH4BHo3B3rjHWuNRcH497P0cEo9D7WtT0Bup1RVijCnMHLyUDXtmKZsaDaPIKSxOYA9IOQ+7P1GvgT3L1j/2m7Jx72dg7QheLVR57D7lMFcDdDodr0z/kCkTxzH67i70GzqCOvUbWpQ9GLqb+wb14r5BvZjz5Sdl6i+Y/RXjBvTkvkG92Lbpbx6dYvYoADD+kcdZtlBNpK9TvyF3DxnOPf268syDY3ll+owiJ6E4E5+YQuiObYzo3YHQHduY+MSUMvVfefph7h3YizH9uuHq5kHfgUMBWLnoN8ZNrB5fVDqdjv99+AkP3zea/t3aM3jEKOo3bGRRNnTPLob26cbQPt346tOPytSf+/UXDO7VhaF9urHp7/U8/cI0i/U+9PjTLPplPgD1GzZi0PCRDOjegYfuHcXbMz6xeL8fe+Y5dm3bQt9Obdi1bUuRk1ua/pRHJzKkd1cG9OiIm7sHA4aOAGDx77/w4COP/4derAIIQc2eD5C6cibJv76CXcOO6F39LIrmx5zh0h9vcOmPN8gMXWFRxiaoFflJF5H5OeWu2yawJXoXb5J/fon0TT/h1HNimbZlHVjDpd9f59Ifb5AbdgjHkOEAFCRHoavhhq5Gxe3nqXF7qJLOppTyTSnlPzegegmYAsws4fxU4OQNG3YrcaoFWcmQkwLSAAmHwbOJZdmAzpBwDPIzTGUOnpAWqdJRykJIDQPPZsZzHuoY4NI58GpmuV6v5pB8Rr33bKJskAZlU1aysvFaPJpC7AH1PvaAOi5L35CrXoVO5YHHuFdsYb6SrWlpX/6qRbNWbYiMCCc6MoKC/Hw2rFpOz7sG3BT9zAzT58Le3sGUZvQaevcfzM4tmwDoedcANqxaTn5eHjFRF4mMCKdZqzZmOj3uGsDqJSo6tnrJQnrePbBM/Sv2WFlZYW1jXWROTk42sVEXadaq6udbaNWmLRFhF4iMCCc/P581y5fSt/+gm6KfkZFeJOfg4EhJey/3GzyUrZvUv9W+/QexZvlS8vLyiLoYQUTYBVq1MR9V6Nt/IEsX/gbA0oW/cdeAQWXqX7HHysoKGxvrIntysrOJioygZWvzz1V1wdq7HobUBAxpiVBoIOfMbmzr3nh/2DXsTG7Ygeuq27ZuG3JO7gAgP/48wtYBnYNzqfoyP6dIX1jbUvQ/G8gNO4hdww43fA0alYNK4WwKIYKEECeFEHOEEMeFEBuEEPZCiGAhxG4hxBEhxDIhhKtRfp4QYrTx/YdCiBNGmZnGMk8hxBIhRKjxrwuAlDJBShkK5FuwIQAYBMy9bRd+Pdg6Qe5l03FuGtg6m8vZOIFnU4jec3V5Zjy41AErB9BZg3sjk35mPHgYHVevFmDrYl6vnSvkZyvnEJRuTnF7LisbzeypAXnGL7u8dHVcHv1Wk6Dr61CQqxznK6RFgUuQeTtVDC8fX+Jjo4uO4+Ni8PSxvNF4izbt+H3tZr746Q/qNmhULv0nX/w/1uw4RP9ho/h21gyzOv0CapN++TL5eWoLIE8fX+KK1xcbg5cFe9w9PElKjAcgKTEeN3ePcul/NX8Rf+87SVZGBhvXmdKhnjh6mNYhZknEqhzePn7Expj6Jy4mGu8S7nfrtu1ZtWk7P/z2Jw0aNS6X/vOvvsG2A8cZOuoePv/oPbM6A2oHkpaaSp7xfnv7+BIbHWWqLzYGbx/zKJiHpyeJCep+JybE4+7hWS79n/5Yyp7j58nIyGD9quVF5UcPHyKkQ/UYvbCEztGVwozkouPCjEvoa1jeYs/apz5u976Ly9AX0Lv5W5Sx8W1AQUL4ddWtd3TDkHGp6NiQcUlFJ8vQd+w4Go+Js7Bv1JmM3UuLygsSwrDxsxyl16g6VApn00gD4GspZTMgFRgFLACmSSlbAkeBt4orCCHcgBFAM6PMu8ZTnwOzpJQhxnrK40B+BryMypluESHEZCHEPiHEvsTUrOu4tFuEpQhFw8FqSJxrzmUlQsQWaP0QBE+CjFgV4QQ4uQQCOkG7p9V8zSsOZXFsakJ+ZlkG3chVWNY//BPseB90VuBaz1Sen2nZqa1iCGE+JcFSROrU8SMM7tqGewf2YuH8uXzy/YJy6X8z830GdQlm/YoljH3gYTNZDy9vUi6ZvljKa09JlKX/9INj6Ne+OdY2toR07lZUnpKciGcJcwyrEhb7x8LzdPzIYXq0bc6Q3l1Z8MP3fDvvt3Lpf/rBO3Rr04yVSxYz4aHJZrKeXt5cSk4q3Z6beL8njRtJp5YNsbGxpVNX0/zzS0mJePlU/ftdIhZmIln6t1qQEE7S/Oe49PvrZB3+G5dBUy1XZ+doijqWs27LcrJM/czdf5I07zmyT+/EoZVpllthVlrRHE6NqktlcjbDpJSHjO/3A/UAFynlFmPZfODayYRpQA4wVwgxErjiAfYFvhJCHAJWAk5CiJolNSyEGAwkSCn3l2aglHK2lLKdlLKdp4tD+a/sZnBtJNPWCfLSzOVq+kOze6HTy2pxUKNhpqHr2H0Q+hUcmA35WZBtdCayEuHQj7DvK4g/bCovTmG+cvyK7LkMdsXtcYbcdHO9vAzlqIJ6zcsov35hASSdVJHaK+islC1VnPjYGLx9TdEKbx8/kuLjzOQyMzLIzlI/Anb8+w9W1la4uLqVW3/dyiX07m++UCA3JwcbW9NCsYTYGHyK1+frR6KF+pKTEvHwVAuOPDxNDkx59PPyctn6z3p6FJsuYGNrR05ODlWduNhofP1M/ePj509CnHn/ZmSkk2W831s2/o2VlRWubm7l1l+5dDH9Bg81K8/NycG22P2Oi43B1980XcXH14+E+FgzvaTERDyNC8w8vbxJTkost35ebi4b/1pL3/4Di8psbG2rxf0uicKMlKvmN+pquGHITDGTk/k5yHw13Sgv4ghCp0dYymtfWMgVL7G8dRsyLqGv4VZ0rK/hRmFmSrn1c87swq5eSNGxsLJGFlT9/9nVncrkbOYWe28AXMpSkFIWAO2BJcBwYL3xlA7oJKUMNv75SykteEJFdAGGCiHCgT+A3kKIX677Cm4l6VFqbqWdKwi9WlyTZGF66a6PYddH6i/xGJxeAUkn1DlrR/Vq66zma8YfurocAUG9zIfgAbKSVNtXSDqpbBB6Ve7goeaEXkvSSfA1zgvybWOypSR9vY3JORU6NdyfmWiqz94DMuLL02OVmhNHDlIrqA5+AbWxsrbm7iHD2fLPejM5dw/TIrFmrVqjEzpSUy6Vql8rqG6RTo++/Qm/cM6s3oiw8/gFmObgbvlnPXcPGY61jQ1+AbWpFVSH44cPmOlt/Wc9g0eNBWDwqLFs+Xtdqfr2Do5Fzqler6dLr76EnzctbKtdpx7nT9+Z06hvJkcOHiCwbj0CagdibW3NoOEj2fjXWjM5D0/T/W7Zug06nY6US5dK1Q+sY7rfffoN4MLZs2b1hl04h3+t2kXHG/9ay6DhI7GxsSGgdiCBdetx+ID5b/GNf61j5Nj7ABg59j7+Wb+2VH0HB8ci51Sv19Oz791cOHemqL469epz5lTVv98lkR9/Ab2LNzonD9DpsWvYkdywg2ZyOgfTD3Ur77ogdMicDDO5gtRY9M6e11V3bthB7Jqo3Uqsvesh87IozLpcqr7e2bSjhW2dNhSkxBQd6118KEiOQqNqU5nTVV4GUoQQ3aSU24AJwJbiAkKIGoCDlHKtEGI3cOVbcwPwNPCxUS64WNTUDCnlq8CrRtmewItSyvtv6tX8V2QhnFmptg8SAmL2QWaCOufXXr1eWSleEi3Gg7WD+rV7ZiUUGCMI3q3UMDooBzXWQoC3MF9FPO3d1WtmAiQcgY7PqfpOr6BoTKXxSOWwpkerofvm94JvO8hJVSvNoWR9nY3afkmnB3RqBXtMMefXJRDCN15//1UyDAYDH731Kl8tWIRep2PF4t+5cPY0AKPuU9tPLfltPn0GDmH0+IkYDAXk5uTw6pTJZeo/8/IbBNath5SFxEZH8f5r5qvRc7KziIoIJyCwDlERYVw4e5q/16zkzw3bKTAYmPHmKxQWqmkYb3w4iz9/ncfJo4eZ9+0XfPjVXIaNGU9cTBTTnlJD9CXp2zs48Omcn7GxtUGn0xO6aztLfp1XZEdw2/bM+fzjW9bPdwoGg4G3X32Rn/5Yil6vZ/Hvv3D29CkA7n3gIQB+X/AjA4YM474HH6bAeL+nPvZQmfovvf42devXp7CwkJioSN54yXxbpeysLC5GhBMYVJeI8AucPX2KtSuXs37bXgoKCvjfKy8U3e/3P/2S3+b/yLHDB/n+y0/5Ys587rlvAjHRUTzziPpslqRv7+jA9wv+wMbWBr1Oz64dW/lt/o9FdrQN6ciXMz+8dR19pyMLSd+yANehL4NOkHNiK4ZLai6ufXO1XVj2sc3Y1g/BoXlvpCxEFuRxef3XFqvLCz+MjX8Tsi8nlLvuvPDD2Aa2wv2Bj5H5eaRtnFumbTU6j8HK1RcpCylMTyZt87wiG2wCmpAbfugWdJbGnYS4nnk2FYUQIghYLaVsbjx+EagBLAe+AxyAC8AkKWWKEGIesBrYAawA7FBjBTOllPOFEB7A10ATlMO9VUr5uBDCB9gHOKHmZmYATaWURePRxZzNkjchA9o18pX7vp14E66+EuHRFJz84cLfFdN+DV+o3Q1OLLrtTbd9+M5cN3Yr6XX3QBq3aMW3n3xQIe03atqC8Y88zpvPP3Xb266OudHvGjCY5q2CmfXhu2UL3wKaNm/JQ48/xYtPP3bb297xesn7VFZmdA7OON31GKkrPqogA6xwHfV/pPz5rmmNwB2Az5Sf90sp21W0HVWJShHZlFKGA82LHRffmshsKaqUcmKxw/YWzicBYy2UxwGl7psjpfwX+Ld0i6spSSdUZLSisHaECxsqrv1qxuYNa3F2dStb8Bbh4ubGt59U4yjXbebvdatxdau4++3q5s6sGeYr5TVunMKsy2Qf/xdhbXfV9kS3C31NdzJ2LrqjHE2NW0OlcDY1KhGx+yqu7RTzuYUat5blCytu6vKe7VvKFtK4qSz6dUGFtb1j6+YKa7sqk3uujOlVtxDD5XgMl6v+HHuNyrVASENDQ0NDQ0NDo5KhRTZvEQfOxGHXr4LmwWjcdnLWvVTRJmjcRuYttLAjg0aV5dBFC9u9aWholBstsqmhoaGhoaGhoXHL0JxNDQ0NDQ0NDQ2NW4bmbGpoaGhoaGhoaNwyNGdTQ0NDQ0NDQ0PjllElFwgJIaajNmr/5zr1GgM/AW2A14rv52lMVZmOSpVZcCdu+HrX3f345NNZ6PV6fvrxB2Z+bL5AqXv3Hixeuozw8DAAVixbxvvvvVuqfstWrfjy62+ws7OjoKCAqc88zb7QULO6fXx8+Oa72YwcrnIrv/TyNCZOegiDwcDzzz3LP3+b74Hp6urKL7/9QWBgIBEREYy/dyypqaml6q9cvRYfXx+s9Fbs2LGdqc88TWFhIY8/+SRZmVksmD/vP/dlpcC9ITQcojJGRYeqbEwl4RQAIU/C0d8g4Zgqq9UF/EMAAdF7IXKHKq97lzHfvFS56o8vhjwL2VxtakKTkXB4vjoO6gl+7UBKOL0SLpmnPcTKHlrcB/aukJ2i7CnILl0/eBLYOqn0pKlhcMqYTSqgExjyLGe0qkb4Nwuh/binETo9Z7et4ej6381kfBq2ovdT75KRrPKhRxzYxuHVlrcx6vfCJ2z6+g3yc7LKVTdA+3HPENCiAwV5OWz/aQaXLp4t1bbWwyZRK7gLSEl2Wgrbf5pB9uVkXPzr0PzuMWz/acbN6JpKjUejtjQeOhmh0xG1dwNhmxeXKOsU0ICOz3zC4V9mEH9UPce1uw4loEM/BIKoPX8RsX0FADV969B01FPobezJTonnyG8fY8jNNqvTpqYrzUZP4eBPbwNQp9c9BLS/G1lYyMkV35N8xjwdrbV9DVre/wr2rl5kpyRw+JcPKcjOKFW/7SPTsa3pitDpSQk7zoll34IspHbnwRTk5RCz77q+xjXuUKpkZFNK+eb1OppGLgFTgJklnO9lzKV+xzmaOp2Oz7/4kmFDBhHcsjljxo2jcZMmFmV3bN9Oh3Zt6dCubZGjWZr++x/M4L133qFDu7ZM/9//eP8DyxtpT3n2OX78QWXSadykCfeMHUvrVi0YOnggX3z5FTqd+cftxZensXnTRpo3bczmTRt58eVpZeqPv3cs7du2oU1wSzw8PBk1+h4A5v/0E08+/fR/6MXKhIBGw+DQT7BrFvgEg6NXybL1B0CyKcc0jt7K0dz7Nez5HDwaq1SjABFbVdmeLyDpFNTtY7na2l0hxvijw9FLpTXdNQsO/giNh6t2ryWoJ1w6BztnqtegHmXrH/1N2bN7FtjUAO8WqjxmH9TuUs7+qpoIoaPDfVP5+/NXWP7mROq074Ozb6BF2fhzR1k5/VFWTn+0REczoEVHLkWeJz8nq9x1+zfvgJOXP0tfu59dP39Cp/HPlWnbsb8WsvLtR1g5/VGijuwmeMgDAKRGh+Hg4omjW0mf5WqC0NFkxBPs/+Etts98At/g7jh61SpRtuGgSSSdNjl/NbwDCejQj91fPM/OWU/j2bQ9Dh5+ADS7Zwpn1s5j56dPkXBsF3V6jrJYbVD3EUTt/QsAR69a+AZ3Z/vMJ9g/902ajnxS/fi7hjq97+HSucNs/2gyl84dpm6ve8rUP/TzB+yc9Qw7PnkSmxrO+LTsCkBU6N8Edh16Y/2nccdRKZxNIUSQEOKkEGKOEOK4EGKDEMJeCBEshNgthDgihFgmhHA1ys8TQow2vv9QCHHCKDPTWOYphFgihAg1/nUBkFImSClDgfwKu9gbJKR9e86fP09YWBj5+fksXriQIUPK/6CWpi+lxMnJCQBnZ2diY2It1jFixEg2/LUegCFDhrJ44ULy8vIIDw/n/PnzhLQ3S+bEkCFD+eVn9cX3y88LGDp0WJn66ekqymZlZYWNjQ1XUq5mZ2cTER5Bu5CQcl93pcW5lspBn30JpAHiDxujkRao1RkSjkJepqnM0QsuR6qc9rJQRQy9mqlzhlyTnN6mZBu8mkOSyqeOZ1NlgzRAToqyzdnCl6NnU4g1finGHgDPZmXrX7FH6EDoTXUV5qvoqFOpSb+qNB51GpOeGENGUiyFhgLCQjdRO/jGHfC6HfoSeWjHddVdO7gL53erUYfECyexcXDE3tmtVP38nKwifStbO4qnTY48sos6Ib1v+BqqAs61G5KVFEP2pTikoYDYQ1vxamaWLA+AwC5DiD+6g7zMy0Vljt61uBxxmsL8XGRhIZcuHMWreSd1zjOAlAtqdCP5zEG8W1j+vHi36ELSKZWkw6tZR2IPbUUaCshOiScrKQbn2g3NdLyadiTaGImM3vdPkc2l6V+JqgqdHqG3AtRnoTA/l+yUeJxrmbejUfmoFM6mkQbA11LKZkAqMApYAEyTUrYEjgJvFVcQQrgBI4BmRpkrSX0/B2ZJKUOM9ZQnsbUENggh9gshJlsSEEJMFkLsE0Lsu90Z5/38/ImKiiw6jo6Oxs/f36Jsh44d2bv/ACtWraFJ06Zl6r/4wnN88OEMzl0I54MZH/HG6/9nVmdQUBApqSnk5amc0X7+/kRFRRWrLwo/P3N7vLy9iYtTQ3txcXF4enmVS3/VmnVExsSRkZ7O0iV/FpUf2L+PLl26ltRNVQdbJ8gxfbmQc1mVWZLzagZR1+wLmREHLkEqvajOGtwbgZ2L6Xy9u6HrKypiet5Crns7VzX8LQ3F7Ekt2x6bGqYh+bx0dVwe/dYPQfc3lOMZf9RUnhYFLnXM26kmOLh4kHkpoeg4MyURBxcPi7KedZsy9M259J3yIS5+QRZlvOo3IynizHXV7eB6rVwSDi4eZeq3Hv4w98xYSN0OfTm44qei8uTw03g3aFHGlVdt7JzcyUlNKjrOuZyEnbO7mZytkztezTsRuWvdVeUZcRG41m2OtUNNdNa2eDZuh52zJwDpcRF4Gp1A71ZdsXM2v6f2rt7kZ2cgDQXKHmd3ci4XtycZOydze2xqupCXngJAXnoKNjVcyqXf9pHp9HrrNwy52cQd2VFUnhZ5Dpc6zUroJY3KRGVyNsOklIeM7/cD9QAXKeWViWrzge7X6KQBOcBcIcRI4MrP6b7AV0KIQ8BKwEkIUbOM9rtIKdsAA4CnhBDXtoWUcraUsp2Usp2FAcRbihDmLRaPFlzh4MEDNKxXh/Zt2/DN11+x+M+lZepPfuxxXnrxBerXDeLlF1/gu9lzzGR9fH1JSjT9MymvPTd6PUMGDSColj82trb06mWKgiQmJuLr51fudiov5fyENRwMZ9dxJVpQRFaimuPZ+mHlyGXEXp2f+PwG2P4hxB2CWp3M67WteXWktLz2lEgZ+gd/hG3vgc4K3OqZyvMyLDu11QULz4nZvQaSL57lz1fGsXL6I5zctIzeT75jsTpbRycKrszfK2fdFu+dLFv/4PIfWDxtLBf2/EOT3iOKyrPTU7AvwWGuNlj8/2cu1njoZM6s/ckst3hmQiRhm/+k3aPv0vaR6aTHhCEL1Q/D44s+o3bnQXSc+jlWtvYUGh3K4tg6uZFfLFJa/s9C+a+nuP7+uW/y7zv3o7Oyxr1+y6LyvIxU7Jzcyt+Oxh1LZXI2i43tYQBcylKQUhYA7YElwHBgvfGUDuhknH8ZLKX0l1JaWAFxVV0xxtcEYJmx3juG6OgoAgJMw5b+/v7ExsSYyaWnp5OZqZyEv9avw9raGnd391L175/wAMuXKad0yZ+LaRdifunZ2dnY2dma7ImKIiDANLzp7x9AbKy5PQnx8fj4+ABqgVFiQkK59XNzc1mzehWDh5qmC9ja2ZKTbT7ZvcqRexnsnE3Hds6Qm2Yu5xSgFuR0maaGvRsPNw23x+yDvV/C/u8hPxuyksz14w4pvWspLAC99TX2uJRtT16GWlgE6jUvo/z6hQWQeOLq6QJ6azWcXk3JSkm8an6jo6snWanm2W7yc7IoyM0BIPrYHnR6K2xrmDvphQZDkWNQ3rrN5TzIupxUbv0LezYS2Mb0211vbYMhL9dMrjqRczkJu2IOt52zB7lp5n3nVKs+rcZPo/urP+LdogtNRj5ZNHQdHbqBXZ9PJfTbaeRnpZOVpP5/ZiZGsX/OG+z+fCqxB7eQnWw+LcqQn4vOyvR856QmXRUBtXN2JyftkpleXnoqNjVdAbXAKC8jtdz6hQX5JBzfc9V0AZ21DYb8vJI7SqPSUJmczWu5DKQIIboZjycAVy3HFULUAJyllGuBZ4Fg46kNwNPF5IIpBSGE45XIpxDCEbgbOPafr+Amsi80lPr16xMUFIS1tTX3jB3L6tWrzOS8vb2L3rcLCUGn05GcnFyqfmxMDN27q4UcvXr15tw581XGZ8+cITAwqOh49epV3DN2LDY2NgQFBVG/fn1C9+4101u9ehX3T1CLA+6f8ACrVq0sVd/R0bHIOdXr9fTrP4DTp08V1degQUOOHz9+vd1X+UiLUgt67FzVPEbvVsoRu5YdH8GOGeov4RicWm6Ss3ZUr7bOaqg97rA6ti82PObZFDITzevNTFRtXyHxhLJB6FW5vbuaE3otiSfAt41679vGZEtJ+nobk3MqdGq4v7g9Dh5qSkA1JSn8FE5e/tTw8EGnt6JOSG8iD+80k7N3Mt0rj6DGIAS5GeY/BtLiI6np4XtddUce3km9jncD4Fm3CXnZmWRfvlSqfk0v05SYWsGduRx3sejY2bsWqTFhN9gjVYO0yDM4ePhj7+qN0FvhG9ydhBPmKVK3ffAwWz94iK0fPET80R2cXPoNCcd3A2DjqH6M2rl44tWiM7GHtlxVjhDU7TuOyN3rzOrNSozG3tX0XZFwYg++wd0ReivsXb1x8PDn8sUzZnoJJ/bg364vAP7t+pJwYnep+nobuyLnVOh0eDRuR2aCafqUg4c/GXER191/GncelX3roweB74QQDsAFYNI152sCK4QQdqixnueM5VOAr4UQR1B9sBV4XAjhA+wDnIBCIcSzQFPAA1hmHNq1An6TUq7nDsJgMPDs1CmsWrMOvV7P/Hk/cfKE+iJ/ZPJjAMyd/T0jRo1i8uTHKTAUkJ2dzYT77ytT/8knHmPmp7OwsrIiJyeHp5543Kz9rKwsLlw4T9169bhw/jwnT5xgyeLFHDpyTG2XNOUZCgvVUM+3389mzuzvObB/PzM/msGvv//BxEkPERl5kfvGjQUoUd/R0ZE/ly3H1tYWvU7Pv/9uZs733xfZ0alzZ957Z/qt6+g7BVmotgdq/ZBywmL2QaZxfpx/B/UaXUb+7pb3qzmbslBtJ3RlC6IGA5QTJ6WaR3lqmbluYb5axGPvrl4zEyD+CHR63mibcXsigCajIGo3pEerofsW96mV8DmpcORXJVOSvt4GWj2ghs+FDlLOX31dzoFwofpujSILC9n92xfc9exHCKHj3I51pMaEA9CoxxAATm9ZRWDbHjTqOQxpMGDIz2XLHMvD6JFHduPTKJj0xJhy1x11dDf+LTow8r1fMOTlsn3ejDJtaztyMs4+tZCykMzkeHb9MqvIBp9GwUQe2X0LeqvyIAsLObn8W9o++g5CpyN6799kxiuHPKDjAACiLDiJxQl+4P+wdnRCGgo4uezboi2IfFr3oHbnwQDEH91JdKj5nGxDfi5ZybE4uPuSlRxLZvxF4g5vp+tL3yENBk4u+6Zo6L7Z6ClE7l5LWtQ5wjYvptX9r+Afchc5qYkc/vkDgBL19TZ2tJn0Jjora4TQkXzuCJG71xbZ4RrUhPN///Yfe1PjTkBczzw6jfKjE0LaWFXmwPH1M3TYcNq0acP/3nqzQtpvFRzM1Gef46GJD972tnPWvXTb26xwPJuBk7+a31kR1PRT2y8dX3Tbm563sAxHvpJi7+xGt4deZcOsivk866ysGfDSZ6yd8QyysLBshduEr4tDRZtw2/Fq3gkn//qc++vnCmm/pl9dgrqP4Ogfn9z2tvvPXLv/TtzisDJT2SObGncQK1csx93dfIXi7cLD3YO3K8jRrZYkHleR0YrC2sHySnmNGyb78iXObFuDtZ3DVdsT3S4c3bzYv2T2HeVoVlcSju3C2qGsdbO3DhtHJ85WkKOrcfPRIpu3iOoY2azOVMvIZjWmqkY2NSxTHSOb1Rktsnnz0bwhDQ0NDQ0NDQ2NW4Y2jH6LaBPkwb7pltOAaVQ9Jr+3oqJN0LiNzH6uf0WboHEbcbjny4o2QUOjUqNFNjU0NDQ0NDQ0NG4ZmrOpoaGhoaGhoaFxy9CcTQ0NDQ0NDQ0NjVtGlZyzKYSYDmyVUl7Xbs9CiMbAT0Ab4DUp5cxi51yAuUBz1G7VD0kpd900o28Gfk2h3Ri1+fW5HXD8r5Jl3QOh/zTYNhcuHlBljXtDgy6AgLPb4dQmVe7qDx3Gg5UtZCbD9h8hP8e8Tnsn6Hg/bP5GHTfvB/W6qM1/QxdBrIUMNzYO0P1RcHRXdW+dA3lZpev3fgbsnUGng4RzsPd3tQF5o55QkAvn76zbcqtoFtKVsU//Hzq9ju1r/mT973PNZBq2CuGpd78mKU5l5Tiw7R/WLPimVP1Rj71Iq869KMjPJzEmknkz/o/sTPNsrs5unkx4cTpf/d8TAPS/71G6DhxFoaGQP756jxOhO8x0HGo6M/nNT3H38Sc5LprZbz9HljGTTUn6U2bMxtndE73eirNH9vHb5+8gCwvpNfw+cnOy2bnewqbzVRHPxtBihEonGbEHzm0sWdalFnR7FvYtgFhjZqg63SGwIyDg4i64sFWVO/lBy3tU6k9ZCEf+hNSL5nXaOkGrMbDX+Dmr3wcCO6hn7+hSSDxtrmPtAO0eAHs3yL4E++ar1Kil6XecrNoSerh0QdmDhKCuYMiDSPNMZFWRu+7ux8effIper2fejz/yycyPzGS6de/Boj+XEhGuMi6tWL6cD95/t1T9115/k0kPPUxSksrE9dabb/DXevMN4n18fPj62+8ZNWIYAC++NI0HJ03CYDDw4vPP8c/f5vvrurq6suDX3wkMDCQiIoIJ940jNTW1VP0Vq9bg7eODlZUVO3ds51ljAo/Hn3iSzMxMfl4w/z/2pMadQJWMbEop37xeR9PIJVR2oZkWzn0OrJdSNgZaASf/g4k3HyGg/b2w6StY9TYEhYCzb8mybUZc7fy5+ClHc+2HsPpdCGgBNY15jTtOgAPLYPU7cPEQNL3Lcr1N+sJZo4Ph7AuBIbBqOmz6EjrcW5Rz+Sqa94fYU7DiTfXarF/Z+tvmwJp31TnbGhDYVpWf2wGNe11Xt1VWhE7HfVPf4ItXJvPWxCGE9BmEb2A9i7Jnj+7nnUdH8s6jI4sczdL0T+7fyf8mDWX6I8OJjwpnwPjJFuvte8+DbFuzGADfwHqE9B7I/yYN4fNpjzJ+6psInfm/lwH3PcqpA7t4Y0J/Th3YRf/7Hi1Tf/bbz/HOIyP436Qh1HRxo10PtThnx7ql9B55/3/oxcqEgJajYPds2DQD/FtDDe+SZZsMgQRTGldq+ihHc9ss2PIxeDcDR2Ou6qZD4cxfsGUmnFoHTYdYrrZeD7hozOxTw1vZsHkG7P4eWo5W7V5Lgz6QeBY2va9e6/cpW3/ffGXLvzPAxhH8glV55B6o2828jSqITqdj1udfMHzoYNq0asE9Y8fSuHETi7I7d2ynY/t2dGzfrsjRLEv/yy8/L9Kx5GgCPDP1OX76Uf2waNy4CaPHjKFtcEuGDRnEZ198ic7C8/3CS9P4d9MmWjZrwr+bNvHCS9PK1L//vnF0DGlLu9at8PDwZOSo0QDMn/cTTz71tFkbGpWTSuFsCiGChBAnhRBzhBDHhRAbhBD2QohgIcRuIcQRIcQyIYSrUX6eEGK08f2HQogTRpmZxjJPIcQSIUSo8a8LgJQyQUoZCuRf074T0B34wSiXJ6VMvX09UA7cgyA9ATKSoNAAEaFQq6Vl2Ua9IOIg5BSLVjn5QGIYGPJVdCP+LNQKNp7zhgRjPvTYk1C7jeV6a7eGGGNe8lotlQ2FBZCRrGxzDzLXCWgJF4yRyAu7oFarsvWvRFWFDvRWKjICyvaMS5bbqWLUadyShJiLJMVGYSjIJ3TTWlp16X1T9E/s20lhoQGACycO4+pp2alp0/1uju/dBkCrLr0J3bSWgvx8kuOiSYi5SJ3G5p+/Vp17s+svtXJ/118rCO7Sp0z9nKxMAPR6K/RW1khjGsy83ByS42IIatyi3NddaXGtDZlJkJUM0gDRB8GnuWXZut1UNDM3w1RWwxtSIkzPd/I58L1yfyRY2am31naQc9lyvb6tIMH4G9unubKh0ABZl5RtrrXNdXyaQ2Soeh8ZCr4tytYvyFWvQqfSlFLs+c66BC4W2qlitAtpz/nz5wkPCyM/P58/Fy1i8JCht00fYPiIEWz4S42ODR4ylD8XLSIvL4+I8HDOnz9Pu5D2ZjqDhwzh118WAPDrLwsYMnRomfrp6ep7yMrKChsbG67s/Z2dnU1ERATt2oVcl90adyaVwtk00gD4WkrZDEgFRgELgGlSypbAUeCt4gpCCDdgBNDMKPOu8dTnwCwpZYixHvPxx6upCyQCPwkhDgoh5gohHG/OZd0kHFwhM8V0nJkK9q7mcvYuUDsYzm69ujw1BrwbqEiC3hr8m4Ojq+lcgNEJDGxjKi9ODXc1/F1YYGznGnuyUpWNZvY4QbYaRiU7Dexqlk+/zzNwz8fK8bwyDQAgOQK86pu3U8Vw8fDiUkJc0XFqYjyuHpadwrpNg3lj7jKmfPg9vkH1r0u/y4CRHNuzzazc3cefrIw0CvLV7zJXD29SitWXkhiPi4eXmZ6TmzuXL6nhu8uXEqnp6lYu/akfzWHmsu3kZGeyf4tpekjE6WM0aNHW4nVXKexcIDvVdJxzWU0lMZNzBp8WEL7z6vL0WHCvq4a19dbg1VTVCXBsmYpu3vWmej25xrxeBzfIz1LOIai2c4rZk51qqq84tjUh1/h856aBTY3y6Xd8DPq9AwU5EHPYVJ4aqa6jiuPn50d0ZGTRcXR0FH7+fhZl23foyO7Q/SxfuZomTZqWS//xx59kz74DfPf9HFxcXMzqDAwKIjUlhby8PFWfvx9RUab6YqKi8PMzt8fLy5u4OPUcx8XF4enpVS79FavXEhEVS3p6OsuWLikqP7B/P527drV43RqVi8rkbIZJKQ8Z3+8H6gEuUsotxrL5qOhjcdKAHGCuEGIkcCX/Wl/gKyHEIWAl4CSEKC0vlxVqHue3UsrWQCbwyrVCQojJQoh9Qoh9iekW5jTedixkhwq5Rw2JX5s5Ki1OzfHsOxX6TIGUKBUBAdi1ABr1gIGvqsjHFYeyOPbOkFMskmJhRM2iPSVRlv7GL+HPaSry4dPYVJ6TDg4WvoSrGMLClARL2cAunj3Bq+P68M4jI9i07FeefOercusPHP8YhQYDe/5ZZSbr7O5Jeuql4gZZsPJ67nfp+p+//CgvjeqOtbUNjVt3LCpPS72EswWntlpgqXubD4eTq81PZiTAuU3Q6QnlyKXFmJ7voC5wfDn8PR2Or4Dgceb12jpBXrHn2+IDej3Z6MrQ3/09bHhLPd+eDUzluRlg53Qd7VROyvt8Hzp4gMYN6tIxpC3ffvM1C/9cUqb+nNnf0axJQzqGtCUuLo4PZ3xsJuvj40tSUtJ123Oj1zNs8EDqBgZga2tLz16mEZrExAR8fS072RqVi8rkbOYWe28AXMpSkFIWAO2BJcBwYL3xlA7oJKUMNv75SynNV0CYiAKipJRXctT9iXI+r21vtpSynZSynWdNu7LMu7lkpVwdcXR0uToScgX3QOj2CIx4Tw17dxhnGro+txPWvg8bPoHcTEhLUOVp8bDxC1j7AYSFQnqSeb0F+SpiUpI9Di4qOnkt2Wkqugnq9crQfnn0Cwsg6ogp6gpqWN2QT1UnJTEeNy+fomMXT29SkxPM5HKyMsk15rg+tmcreisraji5lKnfqd8wWnTqyQ/vWU7DmZ+bi7WNbTF74nAtVp+rpzepxgUIxUm7lIyzmyegFhilp1wqt35Bfh6Hd24iuNh0AWsbG/Jzc6ny5KSqUYkr2DlbHu52rgVtH4C+b4BfKzXP88pw+8U9sPUT2PEV5GVCprF/a4VA7BH1PuaQ5WFqQz7oij3f10Yi7V0s25ObrhxVuNphLY9+YQHEH796uoDeulo839HR0fjXqlV07O8fQGxMrJlceno6mZlqmslf69dhbWWNu7t7qfoJCQkUFhYipeTHH+fSNsR8mDonOxtbW9N3WHRUNAEBpvr8AgKIjTW3JyEhHh8f9Rz7+PiQmJhQbv3c3FzWrF7F4CGmOcO2dnbkZGdb6iKNSkZlcjav5TKQIoS4MmN8ArCluIAQogbgLKVcCzwLBBtPbQCeLiYXTClIKeOASCFEI2NRH8DC0uoKJDlCLeip4Q46vVpcE3nEXG7Z67DsNfV38SDs+QMijcNUV4awHVyVIxoeenU5AloMhDNbzaolPV61fYXII8oGnZUqr+kFyeHmelFHoG4n9b5uJ3Vcmr6Vrck5FTo13J9mGn7FyVsN+1dxwk8dxcs/EHcff/RW1oT0HsjhnZvN5JxcPYreBzVugU4IMtJSS9VvFtKVfuMe4evXniQv13KEPj4qHHcf/6Ljwzs3E9J7IFbW1rj7+OPlH0jYKfPP3+Gdm+jUT61u7dRvGId3bipV39bOocg51en0NO/Qg7iLF4rq8w4IIibs7PV2X+UjNRIcPdVwttCrxTXxx83lNr4L/7yj/mIOw5ElEHdMnSsawnZR8zWjjdNPctLA3bi4zKOByQktTmaiavsK8ceVDTq9Knf0hBQLK9jjjilnFtTrFVtK0tfbmJxToQOvJmq+9hUcPa9+3qso+/eFUr9+fQKDgrC2tmb0mDGsWW0+wuDtbZr60q5dCDqdjuTk5FL1rziDAEOHDefEcfPP0dmzZwgMDCw6XrN6FaPHjMHGxobAoCDq16/PvlDzXQHWrF7N+PsfAGD8/Q+wetWqUvUdHR2L7NHr9fTrP4Azp027GjRo0IDjx49dV99p3JlU9q2PHgS+E0I4ABeASdecrwmsEELYocZtnjOWTwG+FkIcQfXBVuBxIYQPsA9wAgqFEM8CTaWUacAzwK9CCJsS2qpYZCHsXaiGwIVORSkvG385NjD642fN595dRffJanV3oUFtJ3RlC6KgEDWMDspBPb/TXLcgD9IToaaner0cCxH7Yehbxvr+MA3dd7xfOayXLsKxv9TWR/W7QOYl2DpbyZSkb2UDPZ9UEUyhg7jTVzu/nvXgyOob68NKRGGhgd+/eJdnP5qLTqdjx7qlxIafA6D7kLEAbF21kLY97qbHsHsxGArIz81l9jsvlKl/79TXsbK24bmZPwBqkdCvs96+qv28nGwSYy7i6VebxJiLxIafY//m9bz902oMBgO/G7cnApjw4jtsXfkHEWeOs/73uUx+61O6DBzNpYQYvv+feiRL0rext+ep977GytoGnV7PqQO72bJyYZEd9Zu3YfX8r29hT98hyEI4ukQNgQudilKmG52uwM7qNcLCc1mckElqq7FCg6rryhZEhxdC8xGq3sICOLzIXNeQpxbxOHqo1/Q4FQXt9YrRNuP2RACtxqo5o5cj4exGaPcg1O4A2SlqpTmUrG9lA+0fVs83Okg6e/V1udVRK+erOAaDgeefncrK1WvR6/UsmDePkydVfOORR9XuEHPnzGbEyFE8MvkxCgoKyMnO4YEJ48vUf/f9D2nZqhVSSi5GRPDMU0+YtZ+VlcWFsAvUrVePC+fPc/LkCZb++ScHDh+loKCA56ZOodD4fH/z7ffMnTObAwf288nHM/j5tz94cNIkIiMjuf9e9b+oJH1HR0cWL1mGja0ter2eLf9uZs7s74vs6NSpM++/+86t62iN24a4nnkXGuWnXR1PWe1yo9cKBvfacGhlxbTvWgua9oEd825705N/3FK2UBUjuGtfAhs2Y8WPn1dI+7XqN+Gueyby4wfTbnvb1TI3uk8LcAlQ2yNVBE7+UK8nHPz1tjddHXOjDx06jNZt2vL2/96skPZbtQrmmanP8shDE29729l5hv1Syna3veEqTGWPbGrcSUQeAtsKXKRvVwMOmQ81adwaDm3/hxpOLhXWfg1n1wpzdKslcUdVZLSisHWEU2srrv1qxsqVK3Bzdy9b8Bbh7uHB9LffKltQo1KgOZsaN5dz5lljbhuxd9Y++9WB7Wv/rLC2T+4vY9hY4+ZzcU/ZMreKxDMV13Y1Zd5PP1ZY25s23kheFo07lcq8QEhDQ0NDQ0NDQ+MOR5uzeYtwtLWWTfxcKtoMjdvEvs+qS9pEDYDaD82paBM0biMXv7+z1oNq3FrEPV9pczZvMlpkU0NDQ0NDQ0ND45ahOZsaGhoaGhoaGhq3DM3Z1NDQ0NDQ0NDQuGVozmYVolP33izZuItlm/fy4ONTLMq07dCZfw+f59c1m/l1zWYeeeaFMvX7DBzKwr+2sfd8PE1atLJULQDunt7MmmvaA2/iE1NZtnkvSzbuomP3XhZ1nJxd+PrnxSzdtIevf15MTSfnMvW/mLeQ39ZuZuFf23j13Y/R6dTHeMwDDzNk9L1l9FIVwqsx9HkV+vwfNOhTuqxLLRj6CfgWu391u0Ovl6HXNPX+Ck5+0G0q9HwRejxvOX0hqEwvHR4xHTfoo2zp8yp4NrKsY+0AnR5Xcp0eB2v7svU7Tla29JoGLe+hKK92na5Qu33p112F6NG7L5v3HGBr6GGenPq8RZmOXbpxLCyadf/uZN2/O5n64itl6v/f/95l0+4D/LV1N7MX/I5TsWewOF7e3vz02+Ki46eefYGtoYfZvOcA3XtZ/vw5u7jy65KVbNl7iF+XrMTZ2aVM/QWLlrF+yy7+2RHK+zM/L3q+H3zkMe65rxrNjfZuAv1eh/5vQqO7Spd1rQ2jPgf/YFNZ/R5w16tw1/9B/Z6mcmd/6PU89J0GvV8C18Bra1PYOUGXx0zHje5StvR7HbwbW9axdoBuT0G/N9Rr8ee7JP2uT0DfV5SdrcdS9HzX6w6BHUq/bo1KQ5V0NoUQ04UQfW9Ar7EQYpcQIlcI8WKx8kZCiEPF/tKM2YXuGHQ6HdOmf8iUieO45+4u9Bs6gjr1G1qUPRi6m/GDejF+UC/mfvlJmfrnT5/k5ScmcnDvrlJtGP/I4yxf+DMAdeo35O4hwxnTryvPPDiWV6bPKPrSKM7EJ6awd8c2RvbuwN4d25j4xJQy9V99+mHuG9iLsf264ermQd+BQwFYseg3xk189AZ6rzIiVN7rXbNh0wyV+q+md8myTYdAwilTUU0fCOwIW2fBvx+DTzOVHQag2VA4/Rf8OxNOroNmQyxXW68HROw21uetbNg8A3Z9D61GU/SlUZwGfVRWmI3vq9crTnJp+vvmK1s2z1B7LV75Qr24B+p0M2+jCqLT6Xj3o095cMxI+nRux9CR99CgkeUv/NBdOxnQszMDenbm85kflqm/7d9N3NUlhH7dOxJ2/ixPPfeCxXofeeIZfvt5HgANGjVmyIjR9O0SwgP3jOC9j2dZfL6fmvo8O7b+S4/2wezY+i9PPvt8mfpPPvwA/Xt0om+XENw8PBg0bCQAC39dwKRHzbPdVE0EtL4Htn8Lf70HtdqqZ7Yk2RbDIK7Y1m9OvlCnM2yaCf98CL7NoYZK+0rLYXByPfwzA06sUceWaNALLhi3F6vpo2zY8D5s+xZaj8Hi8934Lkg4A3+9o14b31W2/u6flI1/v68y2AW0VuXhu5TDrFElqJLOppTyTSnljWzSdQmVynLmNfWdllIGSymDgbZAFrDsPxt6E2nWqg2REeFER0ZQkJ/PhlXL6XHXgJuiH37+LBEXzpdZR+/+g9m5ReW67nHXADasWk5+Xh4xUReJjAinWas2Zjo97hrA6iUq/eDqJQvpeffAMvUzMzIA0FtZYWVjXZQFMzcnm5ioizRr1brc111pca2t0gZmJYM0QPRB8GluWbZuN4g9DLkZprKa3pASAYZ8lS4w6ZzKlw2otIF26q21HeRctlyvXytIMH7B+TRXNhQaIOuSss3VQkTUtzlcDFXvL4aCb4uy9Qty1avQgc7KlPbUkA/Zl0qOvFYhgtu0IzzsAhcjwsnPz2fVsj+5e8Cgm6K/7d9NGAwGAA7sC8XH199iHQOHDGPLxr8BuHvAIFYt+5O8vDwiL0YQHnaB4Dbmi3fvGjiIP/9Qox1//vErdw8cXKZ+Rno6AFZWVthYWxfd75zsbKIiL9KqTdtyX3elxS0QMpIg0/h8R+4HvxaWZev3gOhD5s/3pfBiz/dZ8DM+35Jiz7c9ZJfwfPsHQ7zx+fZroWwoLFD/czKSlI3X4tcCIox7sUbsMbVZmn5BjnoVOtDpTXUZ8tX/gpIirxqVikrhbAohgoQQJ4UQc4QQx4UQG4QQ9kKIYCHEbiHEESHEMiGEq1F+nhBitPH9h0KIE0aZmcYyTyHEEiFEqPGvC4CUMkFKGQrkl2JOH+C8lDLiFl/2deHl40t8bHTRcUJcDF4+vhZlW7Rpx29rN/P5T39Qt0Gj69a3hF9AbdIvXyY/L89yfbGW63Pz8CQ5MR6A5MR4XN09yqX/5fxF/L3vJFkZGWxcZ0qPefLoYYJDOpbb7kqLnQtkp5qOsy+DnYXhTztn5dCFXbMBelosuNdVw156a/BuCvYu6tzRZSq6efeb6vXEGvN6HdwgP0s5h1faucqeVGXjtdjWhNw09T43DWxqlE+/02PQ/x31xRRz2FSeGqmuo4rj4+tHTHRU0XFsTDTevn4WZduEtGf9ll3MX7iUho2aXJf+2Psm8O/GDWbltWoHcjk1lTzj8+1toT4fC/V5eHqREK+e74T4eDw8PMul//Pi5Rw8HUZGRgZrVpp+1x85dID2HTtbvO4qhb2LyiV/hexU0/NZHDtn8G8J57dfXZ4WCx71VcYnvbUauXBwVecOL1HRzIHToeVwOGYhvbCDu/H5Lrg+e2xrQo7x+c5JU8fl0e/6JAz5QP2wjDpoKk+5CB71zNvRqHRUCmfTSAPgayllMyAVGAUsAKZJKVsCR4GrclsJIdyAEUAzo8y7xlOfA7OklCHGeuZehx3jgN8tnRBCTBZC7BNC7CswFF5HlTcBYT6kYWkP1VPHjzCkaxvuG9iLRfPnMvP7BdelXxIeXt6kXEq+bntKpAz9Zx4cQ//2zbGxsSWks2ko9VJyIp7eJQ03VSEsjGBZpPlwOLEaFc4oRkYCnN0EnZ+Ajo/B5RgVAQGo0wWOLYcN0+HYCmg9zrxeW6erIykW7pdZm6VRlv6u7+Gvt1Rk07OBqTw3Q80tq+KIcj5Px44colNwU/r36MS8Od8x5+ffy63/9PMvUWAwsGzxQjNZL28fkpOTSrfnOu53WfoT7hlOu6b1sbG1pUt301BqcmIi3tfxI7hqYaF/g0fB0ZXm59Lj4fTf0O1p5cilRpue77pd4fBSWPumem073rxe+2ue7/Lac10U09/+Dax+TT3fXsWmf+VmgL3lOcQalYvK5GyGSSkPGd/vB+oBLlLKLcay+UD3a3TSgBxgrhBiJGr4G6Av8JUQ4hCwEnASQtQsywAhhA0wFFhs6byUcraUsp2Usp2V/vZ2bUJsDN7Fhr+8fPxIjI8zk8vMyCA7KxOAHf/+g5W1Fc6ubuXWL4ncnBxsbW1LtsfXcn2XkhJx91RzDd09vUkxfqGVRz8vL5ct/6y/arqAra0duTk55ba70nJtZMDe2fJwt0staPcA3PWGGvZuNco03H5xD2z5BHZ8BfmZkJGoymuFQOwR9T7mkOVh6sJ8FTEp0R4Xy/bkpitHFdRrXkb59QsLIO741dMFdNZquK2KExsTjZ9/QNGxr58/CXGxZnIZ6elkZarne/M/G7CytsbVzb1M/dHj7qPP3f2Z8thDFtvPycnG1tau6DjOQn3xseb2JCUm4OWtnm8vb2+SkhLLrZ+bm8s/69dw14DBRWW2dnbkVJvn29V0bO9iebjbtTZ0mAgD/gcBwWou5JWh6/DdsPEj2PK5ilKmG5/voA4QbRwdiDoIbhaeb4Ol57sc9uSmm3782Tmp4/LqFxZA7FGT/aCcT0OeeTsalY7K5GzmFntvAFzKUpBSFgDtgSXAcGC98ZQO6HRlHqaU0l9KmV4OGwYAB6SU8ddj+O3gxJGD1Aqqg19Abaysrbl7yHC2/rPeTM7dw6vofbNWrdEJHZdTLpVbvyQiws7jG1Cr6HjrP+u5e8hwrG1s8AuoTa2gOhw/fMBMb8s/6xk8aiwAg0eNZcvf60rVt3dwLHJO9Xo9XXr1Jfz82aL6atepx/nT1SBHemokOHqq4WyhV4tr4o6by/3zLvz9jvqLOayG0OKOqXNXhrDtXdR8zWjj/clJA3fj0JVHA8hMNK83I1G1fYW448oGnV6VO3qqIbBriT0GtUPU+9oh6rg0fb2NyTkVOrVCNyPBVF8NT0gv/4+iysrhg/upU7cetWoHYm1tzZARo/l73VozOU8v0/Pdqk1bdDodKZeSS9Xv0bsvT0x5nofHjyUnO9ti+xfOnyOgtskp+XvdWoaMGI2NjQ21agdSp249Dh3YZ6b397q1jB6nImejx43n77VrStV3cHQsck71ej29+vbj/FlTTvQ69epz+uSJ6+2+ykfKRfXZdnBXz3ettsoRu5Z1/zP9RR2Cg4sgxvhD0fbK8+2qfmhGGu9P9mXwrK/eezU0/cgsTnrC1c937FFlg85K2VTDEy5ZmEkWc9S0gjywgzouTV9vY3JOhU4N96cX+3qt6QWXzX/EaFQ+rCragP/AZSBFCNFNSrkNmABsKS4ghKgBOEgp1wohdgPnjKc2AE8DHxvlgotFTUvjXkoYQq9oDAYDH7/1Kl8uWIRep2Pl4t+5cPY0AKPuexCAJb/Np8/AIYwaPxGDoYDcnBz+b8rkMvV73j2Ql/73Aa5u7nz242+cOXGcZx4cc1X7OdlZREWEExBYh6iIMC6cPc0/a1ayeMN2DAYDH735CoWFahjn9Q9nseTXeZw8epj5337BB1/NZdiY8cTFRPHKUw8DlKhv7+DAp3N+xsbWBp1Oz75d21ny67wiO1q1bc/szz++pX19RyAL4cgSNZdR6FSU8orTFWSc0xa+s2R9gPaT1JyuQoOqK9/oaBxaCC1GqHoLC+DQInNdQ55axOPooV7T41QUtPcrRtv+pGiYLHissiU1Es5uhJAHoXYHNYcrdL6SKUnfygY6PKy+pIROLXQofl1uddTK+SqOwWDgjWkv8PPi5ej1ehb+9jNnjD+q7p+onplf5v3AwKEjmDDpEQoKCsjJyebpRyaWqf/OjE+wsbXl1yVq7t7BfaH834tTr2o/OyuLi+FhBNapS0TYBc6cPsnqFUvZuHMfBYYCXn/5+aLne8ZnX/HrvB84cugg33z+Kd/+uICx4x8gJjqKxydNAChR38HBkR9+XYSNjS16vZ4d27bwy0+mWU7t2nfks48+uHUdfacgC+HQYuj2pJpiEr4b0ozPd90u6vXCjtLr6PSI8fkuVM/wled7/+9q+F3o1QjF/j/Mda99vtPiIOoA3P1/JtuuPN9t74UL2yElUg3dd3wIgjqq53vXj0qmJH0rW+g82fR8J55RdV3BvS6cWHejvahxB1EpcqMLIYKA1VLK5sbjF4EawHLgO8ABuABMklKmCCHmAauBHcAKwA41y22mlHK+EMID+BpognK4t0opHxdC+AD7ACegEMgAmkop04QQDkAkUFdKWcLyPRPVMTd6z7sH0qRFK779pGK+DBo1bcH4Rx7nzeefuu1tV8vc6L4twDkATlXQl4GzP9TrCQd+LVP0ZlMdc6P3GzSEFq1aM/P96RXSfrMWLXn0yWd49onbv71ZtcyN7tcSXGvBcQsLBG8HLgFq+6XQn29701pu9JtPpYhsSinDgebFjotvTWS29FhKObHYodmuz1LKJGCshfI4IODacuO5LMC9vDZXR/7dsBZnV7eyBW8RLm5ufPvJhxXWfrUj9qhazV5R2DjCSfOhZI1bw19rVuFagc+3m7s7M99/p8Lar3bEHFHPWEVh41hxjq7GTadSRDYrI9UxslmdqZaRzWpMdYxsVmeqZWSzGqNFNm8+lWmBkIaGhoaGhoaGRiWjUgyjV0ay8wo4Gnmpos3QuF042FS0BRq3kQ/HaDmbqxN/7blQ0SZoaFRqtMimhoaGhoaGhobGLUNzNjU0NDQ0NDQ0NG4ZmrOpoaGhoaGhoaFxy9DmbFYh7u7Xj08+nYVer+fHH39g5kcfmcl079GDP5cuIzwsDIDly5fx/rvvlqr/wYwZDBo0mLy8PC5cuMCjDz/E5cvmW436+Pjw7fezGTFsKAAvTZvGpEkPYTAYeP65Z/l7wwYzHVdXV379/Q8CAwOJiIjgvnFjSU1NLVV/1Zq1+Pj4YGVlxY7t25nyzNMUFhbyxJNPkpmZxYL58/5zX1YK3BtCo6Fq0+foUAj/t2RZpwBo/xQc+Q0SjFk9anWBgPaAgOi9cNG4mXINX2gyQmX3yEmBo3+AIde8Tpua0HQUHJqnjoN6gn8ISAmnV0LyGXMdK3toOV5lNclOgSO/QkF26fqtHwLbmmoT6tQwOLkckFCrk0qrF2OeuaY64ds0hLZjnkIIHed3rOXEBvNNur0atKL7E9PJTFIbg0ce2s6xtZb3L+z97Ey2fvcmBTlZ5aoboO2Yp/Br1oGCvFx2L/iIlMizpdrWcshE/Ft2AVlITnoquxd8RPblZJz96tCk7z3sXmD+v0tD4dGoLY2HTkbodETt3UDYZvPsya51W9B64htkp6hsPAlHd3L+H8v5SNo99j4H572DITe7XHUDNB72GJ6N22HIz+XowlmkR58v1bb6/e7Hq1lHpJTkZaRybOEsctMuUcMnkKAeIzm2cNbN6BqNO5gqGdkUQkwXQvS9Ab3GQohdQohc48bxxc89J4Q4LoQ4JoT4XQhhV1I9FYFOp+PzL75k6OBBtGrRnLFjx9G4SROLsju2b6d9u7a0b9e2yNEsTX/jP//QulVL2rVpzdmzZ3j5lVcs1jv1uef4ca7K9tG4SRPGjBlLcMsWDBk0kC++/Aqdzvzj9tK0aWzatJFmTRqzadNGXpo2rUz9+8aNJaRtG1q3aomHpyejRt8DwLyffuKpp5/+D71YmRDQeDgc/BF2fgo+rcDRq2TZBgOudv4cvZWjuecr2P0ZeDRWaeRAOZDn1qnyhOMQ1MNytYHdlJMKqm2fVsqWAz8o2xDmOnV6wqVzsONj9RrUs2z9I7/C7s9h16dg7QjextzJ0fugVudy9FXVRQgd7cZNYfNXr7Jm+kMEhvTGySfQomziuWOse/8x1r3/WImOpl/zDqRGnacgJ6vcdfs1a09NrwBWvfUAe3/7lJB7p5Zp24m/F7HuvUdZ9/5jRB/bTfOBKrPQ5ZgwHFw9cHAt6bNczRE6mox4gv0/vMX2mU/gG9wdR69aFkVTwo6za9Yz7Jr1TImOpkfjENJjwjDkZpe7bo/G7XDw8GPbjEc5/ueXNB35VJm2hf27hJ2fPs2uWc+QeGIv9freC0BGXAR2zh7YuXjehM7RuJOpks6mlPJNKeU/N6B6CZgCFN80HiGEv7G8nTGLkR4Y958NvYmEtG/P+fPnCQsLIz8/n0WLFjJk6NCbov/P339jMBgA2LN7D/7+Fve9Z8SIkfz1l8qnPmToUBYtWkheXh7h4eGcP3+ekPZm++szZMhQflmwAIBfFixg6NBhZeqnp6s09lZWVtjY2HBlr9js7GwiIiJoFxJS7uuutDjXgqxkyL4E0gBxh8GzqWXZ2l0g/hjkZZjKHL3g8kWVrk4WQkoYeBrzJjh6qmOA5LPg1dy8TlDlSSqlKZ5NlQ3SoKKhWcnKxmvxbAYx+9X7mP3g1axs/StRVaFTudOvpMkrzFeyTpY/j9UB96DGZCRGk5kUS6GhgIh9mwlodeMOeFD7PkQd3nlddfu36kLYbjXqkBx2EhuHGtg5uZWqX5CTVaRvZWNH0T0Foo/sJrBdrxu+hqqMc+2GZCXFkH0pDmkoIPbQVryameU1KTd+bXqScHz3ddXt1awjMfs3AXD54mms7Ryxqelaqr4hN7tIX29jhyx2vxNO7MEnuPsNX4NG5aBSOJtCiCAhxEkhxBxjdHGDEMJeCBEshNgthDgihFgmhHA1ys8TQow2vv9QCHHCKDPTWOYphFgihAg1/nUBkFImSClDgXwLZlgB9kIIK1R6zJjbcvHlxM/Pn8jIyKLj6Kho/P38Lcp26NiR0P0HWLl6DU2aNr0u/YmTJvHX+vVm5UFBQaSkpJCXlweAv58/UZFRReejoqLws1Cfl7c3cXFqaC8uLg5PL69y6a9eu46o2DjS09NZuuTPovL9+/fRtWtXi9ddpbB1htxU03HuZVVmJuekHLqo3VeXZ8aDSx2VAUhnDR6NwM6onxFvcly9W4Kdi3m9dq5q+FsaTPbkFJtaUZI9NjUgT/1YIC/dlKGkLP3WD0OPN6AgF+KPmsrTosC1jnk71QR7Fw8yUxKLjrNSEnFw8bAo61GnKQNem03Ppz/A2ddy9NOzbnMuXTxzXXU7uHiQZUGuLP2WQx9i2Hu/E9S+D0dWzSsqT444jVf9FmVcefXEzsmdnNSkouOcy0nYOVtObOcS2JjOz31Jm4ffxtG7tmWZoKakRZ+7rrptndzJSU00kytLv37/B+j+2jx82/Tk3F+/FJWnRZ3FtU6zsi5do5JTKZxNIw2Ar6WUzYBUYBSwAJgmpWwJHAXeKq4ghHADRgDNjDLvGk99DsySUoYY65lbWsNSymhUtPMiEAtcllKaTUAUQkwWQuwTQuy73XmZhDAfsrSUHerggQM0qFuHkLZt+Obrr/hzydJy60979VUKCgr4/TfzXNQ+vr4kJZn+0ZTXnpIoS3/wwAEEBvhja2tLr969i8oTExLx9fMrdztVCwv922gInF1nfi4zAcK3QJtHoM1DkBGrIpwAxxer+ZAdngErWygsMK/X1gnyMk3HFkbMLdpTEmXpH/wBtr4HOitwq28qz8tUtlRXLPSbpefsUuRZVrx+L+vem8yZzcvo/rjl/OY2jjUpuBKFKmfdlpDIMvWPrPyRFa/dS/jejTTsObyoPDc9FXsXLTOwRSz+XzQXS4s+x9b3J7Fz1jNc3LGK1g++brE6a/sapqhjOeu29L8ZWbb+ufUL2PreRGIP/EvtLkOKyvMyLmPrpN3vqk5lcjbDpJSHjO/3A/UAFynlFmPZfODaWHwakAPMFUKMBK6M3fQFvhJCHAJWAk5CiJolNWyMmA4D6gB+gKMQwiw/oZRytpSynZSyncXvzltIdHQUtWqZhi39A/yJiTUPvqanp5OZqZyE9evWYWVtjbu7e5n69094gIGDBvHgBMtpGbOzs7G1sy06joqOIqCWaXgzICCAWAv2JMTH4+PjA6gFRokJCeXWz83NZfWqVQwZYpouYGdnS3Z2NlWe3Mtg62I6tnWG3DRzOacAaHEvdJ0GXi2gyXBT1DImFPZ8Afu+h/wsyDL+WMhKVPMm93wJcYfUUP21FOYrx+8KOZdNkdHS7MnLUAuLQL1ecVjLo19YAIknrp4uoLNSi4SqKdkpSTi6mua7Obh6kn052UyuICeLgtwcAGKO70XorbB1NHfSZaGhyGkob91ZqUk4XCuXmlxu/fDQjdRq3a3oWGdtQ0GehQVpGipaWCw6bOfsQW6aeZ8acrMx5Kn7nXRqHzq9FdYOlu53YdH9Lm/dSs7zKrmctORy68ce/BfvFqbpGDorawrztftd1alMzmbxT6MBcClLQUpZALQHlgDDgSvjvzqgk5Qy2PjnL6VML6WqvihnN1FKmQ8sBe6olQn7QkOpX78+QUFBWFtbM2bMWFavWmUm5+3tXfS+XUgIOp2O5OTkUvXv7tePF196iVHDh5foyJ09c4bAwKCi49WrVjFmzFhsbGwICgqifv36hO7da6a3evUq7n/gAQDuf+ABVq1aWaq+o6NjkXOq1+vpP2AAp0+fKqqvQYOGHD92/Dp7rxKSFqUW9Ni5qlXaPq0g8aS53PYZpr+Eo2old+IJdc7aOIRt56LmX8YdvrocAXV6mw/BA2QmqhXlV0g8qWwQemWTgztcjjTXSzwBfm3Ve7+2kHi8dH29jck5FTq1kCkrwVSfg4ca9q+mJEecoqaXP47uPuj0VgS260X0kZ1mcnZOpnvlHtgIIQS5meY/BtLiI6nh4XtddUcf2Umdjneruus0IT87k5y0S6Xq1/Q0TYkJaNmZtDjTZ8XJO4DLMeE31iFVnLTIMzh4+GPv6o3QW+Eb3J2EE3vM5Gxqmu63c62GIAT5Web3OzMxCgc3n+uqO+H4HvzaqtEk59qNKMjJJC89pVR9Bw/TaJNXs45kJpimSDl6+pMRF3GDPaJRWajMWx9dBlKEEN2klNuACcCW4gJCiBqAg5RyrRBiN3DOeGoD8DTwsVEuuFjU1BIXgY5CCAcgG+gD3FH7rRgMBp6dOoXVa9eh1+uZN+8nTp5QTsWjkx8DYM7s7xk5ahSTH3ucgoICsnOymTD+vjL1P/v8C2xsbVm7/i8A9u7Zw9NPPXlV+1lZWYRdOE+9evU4f/48J0+c4M8/F3P46DEKCgqYOuUZCgvVMO23389mzuzvObB/Px/PmMFvf/zBpEkPERl5kXvHjgUoUd/R0ZEly5Zja2uLXq/n382bmf3990V2dOrcmXffsTxEWKWQhXB6BbR5WDlhMaFqHiZAgDGVYpT5F8VVtJqg5mxKA5xabtqCyCdYDaMDJByzvLVQYT5kXQJ7d8hOVm3HH4HOLyjbTq2gaBi86SjlsKZFq+2ZWoxXWxxlp8IR49ytkvT1NhD8oIpgCp1awV78ulyC4MKNrAWsGsjCQvb98SW9npmB0Om4sHMdl2PVF3f9boMBOLdtNbVbd6d+96HIQgOG/Fx2/PCuxfpiju7Bu2EwGYkx5a475tge/Jp3YMj0nzHk5bB7wcdl2tZqxCM4eddCFkqyLsWz97fPimzwbhhMzLEyPrvVFFlYyMnl39L20XcQOh3Re/8mM/4iAAEdBwAQtXsdPi26UKvTQOP9zuPIr5a3kko8FYprvRZkJceWu+6kU6F4NmlHt1fmYsjL5diiWWXa1nDgRBw8/UFKslMSOLHk6yIb3Oq1JPFk6K3pMI07BnE98+gqCiFEELDauBIc47ZENYDlwHeoBTsXgElSyhQhxDxgNbADWAHYoWYQzZRSzhdCeABfA01QDvdWKeXjQggflBPpBBQCGUBTKWWaEOJtYCxQABwEHpFSlhj71wkhrfWVKXD83xk6bDht2rbhf2++WSHttwoOZuqzz/HQxAdve9u5614sW6iq4dkMnPzhvPn+qbeFmn5QuxscX3jbm/5t6R31W/OmYefkRqeJr7D5i5crpH2dlTV9n/+Uv2dOVUO8dwjuNe6one5uGjY1XWkx7gX2z7E8p/NWI/RWtH9iBnu/eemOut/9Z67dL6VsV9F2VCUqRWRTShkONC92XHxrIrO9GaSUE4sdmu23I6VMQjmO15bHARb3UZFSvsU1C5A0rmbliuW4u1fcRG8PDw/efqtiHN1qSeJxsHGouPatHSvO0a2i5KRd4vz2NVjZOVy1PdHtwtHVi0PL5t5RjkdVJi89hag969Hb2l+1PdHtwt7VizNr52n3uxpQKSKblZHqGNmszlTLyGY1pqpGNjUsU1UjmxqW0SKbNx/NG9LQ0NDQ0NDQ0LhlaJHNW4ReJ6S9TaWYpaBxE7gnpG5Fm6BxG/np0Z4VbYLG7cTVsWwZjSqDGDpLi2zeZLTIpoaGhoaGhoaGxi1DczY1NDQ0NDQ0NDRuGZqzqaGhoaGhoaGhccvQnE0NDQ0NDQ0NDY1bRpVcwSKEmI7aqP26UosIIRoDPwFtgNeK7+cphJgKPIraHH6OlPKzm2fxzaHvXXfz0Sefotfrmf/Tj3w682MzmW7du/PH4qVEhIcDsHLFMj58/71y6U959jne//AjAv19SE42z3nr7ePDV998xz0jhwPwwksv88DESRgMBl56/jk2/vO3mY6rqyvzf/mN2oGBXIyI4IHx95Kamlqq/rKVq/Hx8cXKSs/OHTt4bqrKLvTY40+SmZXJLwvm32gXViqat+/GfVNfQ6fTsXX1Ytb+OsdMplFwe6Z88A1JsSo93P6tf7Ny3tel6o958mWCO/eioCCfhOiL/PDBq2RnmGdzdXb3ZOLL7/D5tMcBGHT/ZLoNGk1hYSG/ff4ux/ZuN9NxrOnME2/PwsPHn6S4aL5581myMtJK1X9+5lyc3T3R6/WcObyfn2e9jSwspM/I8eTmZLN97dKb0JuVAL9mEDJGZVI6tx2O/VWyrHsgDHgFts6BiwdUWePe0KCryoV9djuc3KjKXQOg43jQW0NhIez5DZLDzeu0d4JOE2CTMftL8/5Qv4vK+BS6EGJOmOvYOED3R6GGO2QkK3vyskrX7zNFtaXTQ/xZ2Ps7SAmNekJBHpw3T5lZJfFsDM2Hq/t9cTec21SyrHMt6DYV9i+A2COqrE43qN1R3e+I3RC2VZW3mQA1vNR7a3vIz4atn5jXaVsTWo2BvT+o4/p9oHYHdb+OLYPE0+Y61g7QdgLYu0H2JWVPfnbp+h0mg60T6HSQfAGOLgEkBHUFQy5EatmFqgJVMrIppXzzeh1NI5eAKUDxTeMRQjRHOZrtgVbAYCFEg/9s6E1Ep9Px6edfMHLYENoFt+SeMeNo3LiJRdmdO7bTuUM7OndoV+RolqXvHxBA7z59uXix5By2z0x5lnk/qn9MjRs3YfQ9Ywlp3YoRQwcz64sv0enMP27Pv/gy/27eRHDzpvy7eRPPv/hymfoPjL+XTu3bEtImGA8PD0aOGg3Agvk/8cSTT99A71U+hE7HhOffZNaLj/DahEF06DsYv6B6FmXPHNnHWw8N562Hhhc5mqXpHw/dwesPDubNiUOJjwxn8P2PWay339hJbF21GAC/oHq07zOI1x8YxKcvPsKE599CWLjfA++fzIn9u3jlvn6c2L+LQfdPLlP/mzen8takYbz+wGBqurgS0qs/ANvWLKHvqAn/oRcrEUJAh3th45ew8n8QFALOviXLthkJMcdNZS5+ytFc+wGsegcCWkBNo8PRdhQcXg2r34XDK6HtSMv1Nr1LOamg2g5qByvfho1fQIf7VLvX0rw/xJ2C5W+q1+b9y9bfOlvZsvJtsKsJgW1V+bkd0KTX9fRaJUZAi5GwZzZsngF+baCGd8myTQdDQjHnr6aPcjS3fwZbZoJ3U3D0UOcO/Kycy62fKMc09qjlauv2VE4qqLb9WsO/M2D3bGgxSrV7LfV7Q9JZ2PyBeq3fp2z9/fNh60z49yOwrQF+rVR55B7lMGtUCSqFsymECBJCnBRCzBFCHBdCbBBC2AshgoUQu4UQR4QQy4QQrkb5eUKI0cb3HwohThhlZhrLPIUQS4QQoca/LgBSygQpZSiQf40JTYDdUsosKWUBKgf7iNvWAeWgXUh7Lpw/T3hYGPn5+fy5eCGDhgy5afozPprJ6//3KqVtlTVsxAj+3qCiLYOGDOHPxQvJy8sjIjycC+fP0y7ELJkTg4YM4ddffgbg119+ZvDQoWXqp6erKJuVlRXWNjZFNmVnZ3MxIpy27ULKfd2VlbpNWpIQHUFibBSGgnz2blxD6659bor+8dAdFBoMAJw/fghXTx+LdbTtcTdH96hoSeuufdi7cQ0F+fkkxUaREB1B3SYtzXRad+3DjvXLAdixfjmtu/UtUz8nKxMAvd4KK2trFeUC8nJzSIqLpk6TFuW+7kqLex1IT4CMJCg0QPg+qNXKsmzj3nDxIOQUi0Y7+0BSGBjyVWQp7gzUDjaelGBjr95a20P2Zcv11m4N0UYHtlYrZUNhgYpYpicoG6+lVis4v0u9P7/LZHNp+vk56lXoQFds8M2Qr2Tdg0rpqCqCa23ITIKsSyANEHMQfJpblq3TTTmNecXudw1vSIkw3e/k8+Bj4TnxawUxByzX69sSEk+p9z7NlQ2FBhWxzExSNl6LT3NTJDIy1GRzafoFxqzPQgdCb6rLkA9ZKeBioR2NSkelcDaNNAC+llI2A1KBUcACYJqUsiVwlGvSSQoh3FBOYTOjzLvGU58Ds6SUIcZ65pbR9jGguxDCXQjhAAwEal0rJISYLITYJ4TYd7u3L/Xz8yMqKqroODo6Gj8/f4uy7Tt0ZNfe/SxdsYomTZqWqT9w0GBiYmI4dvRIie0HBgWRmpJKXl6esT5/C/X5mel5eXkTHxcHQHxcHJ6eXuXSX75qDWGRMWRkpLNs6ZKi8gMH9tO5S5cS7awquHp6cykhruj4UmI8rh6WIx/1mwXz9k8reO7jOfgF1b8u/W6DRhU5lMXx8A0gK/0yBfnqd5mrxzX1JcTj6mlen7OrO5eTEwG4nJyIk6tbufRf+GQun6/aSU5WJqH/moaPw08do2HLarAdnoMLZKaYjrNSVNm12LtArWA4s+Xq8tQY8G4Ato5quDygBTiqvid0kYpujvoA2o2CA8vM663hroa/Cwss25NZkj1OkK2mSZCdpiKV5dHvOwXGzISCHIjYbypPjgDv+ubtVDXsnCE71XSck6rKLMn5toDwa6YWpMeCe101rK23Bq8m6rNRHLe6kJuhHL9rsXeD/CzlHFq057Jle2xrQq7R6c1NB5sa5dPvMBnunq4cz5jDpvLLkeBm4UeMRqWjMs3ZDJNSHjK+3w/UA1yklFf+q84HFl+jkwbkAHOFEGuA1cbyvkBTYRr2cRJC1JRSmk9MA6SUJ4UQM4C/gQzgMFBgQW42MBvUpu7XfYX/AWFhCMtSFPLQwYM0bViPzMxM7u7Xn98X/0lw86Yl6tvb2/PStFcZNnhAqe37+PiSlJR43faURFn6w4cMwtbWlh/nLaBHr15s3qjmnyUmJtKwYaNyt1N5sdA/mPdvxJnjvHhPb3Kzs2jZsTtT3v+aV+7rVy79wRMex2AwsGvDSjNZF3dP0lOLOQv/8X6Xpf/JC49gZWPDY2/MpEmbjpzYp75c01KT8a1dDTbUtzBiaZGQMXBgaVH0t4jLcWqOZ99n1Rf6pUiTI9Gwh3I4Lx5UQ9adH4C/P7ta394ZcjLKMOh6/uWVof/PFyqq2e1h8GkMsSdVeU46OFmOtFctytm/zYbBidXm5zIS4Nxm6PS4ut9pMSrCWRz/1hBdQlTTzgnyMm/E8Btjz2x1v9vcDx4NIOmMKs/NMM0v1ajUVKbIZm6x9wbApSwF45B3e2AJMBxYbzylAzpJKYONf/4lOZrF6vpBStlGStkdNbfz7PVfwq0jOjqagICAomN/f39iY2PM5NLT08nMVP9ENvy1Hmtra9zd3UvUr1u3HkFBQewK3c/x02fx9w9g++69eHlfHbXKzs7Gzs6UPzg6OspCfbFm9iQkxOPto748vH18SExMKLd+bm4ua9asZvDgoUVldrZ25ORkl9JTVYOUxDjcvExfum6e3qQmJZjJ5WRlkputFmQc2b0VvZUVNZxdy9Tv0n84rTr3ZPZ0yznf83JzsLaxKdkeL8v2XE5JxtndE1ALjNJSLpVbvyAvj0M7NtGm2HQBaxtb8nNzqfJkpoKjq+nYwRWyUs3l3AOh+yMw8j0IbKPmeV4Zuj63A9a8B3/NVFHKdGP/1uukHE1QUURLw9SGfNAXi01kpVxtj6MrZFkYfs9OU9FNUK9XhvbLo19YAJGHr54uoLdWtlR1clKvjkTauUBOmrmcSy21IKfP6+DbSs2FvDJ0HbkHtn4KO79WUcoMUzAAoVPD5DGHLLdvyL96CkPO5WvscVZl15KbrqKboF7zMsqvX1gAcceuni6gs6oe97saUJmczWu5DKQIIa7MIJ6AmktZhBCiBuAspVwLPAsEG09tAJ4uJhdMGQghvIyvtYGRwO//yfqbzP59odSrX5/AoCCsra0Zfc9Y1q5ebSZX3Els2y4EnU5HcnJyifrHjx+jTm1/mjVqQLNGDYiOjqJrx/YkxMdfVe+5s2eoHRhYdLx29WpG3zMWGxsbAoOCqFe/PvtC95rZs3b1asbfrxZ5jL9/AmtWrSpV39HRscg51ev19OvXnzOnTRPj6zdowInjx83aqWqEnTqKV0AQHr4B6K2sad9nEAe3m69WdXLzKHpfp0kLhE5HxuWUUvWbt+/GgPGP8sWrT5CXm2Ox/bjIcDx8TNM0Dm7fRPs+g7CytsbDNwCvgCAunDSfdnFoxya69B8OKIf24PaNperb2jsUOac6vZ6WHXsQe/FCUX0+tYKICjtznb1XCUkOVwt6arirVdpB7ZQjdi3LXoOlxr+IA7Dnd5PclSFsR1c1/zLMOLcuKxW8G6r3Po1NTmhx0uJV21eIPKxs0Fmp8ppekBxmrhd1RDmzoF6v2FKSvpWtyTkVOjXcf9k0vQInb0iNLk+PVW5SI8HRUw1nC71aXBN3zFxu43uw8V31F3tYreS+IndlCNveRQ21xxw06Xk0VNFPSw4jQGYiOLiZjuOOKRt0emWToyekXDTXizsOtYxz5muFmGwpSV9vY3JOhU4N92cU+/zV8FRTAjQqPZVpGN0SDwLfGedRXgAmXXO+JrBCCGGHGpd4zlg+BfhaCHEE1QdbgceFED7APsAJKBRCPAs0lVKmAUuEEO6oxUNPSSlTuIMwGAy88OxUlq9ag16v5+f58zh5Um0l8vAjasXvD3NnM2LEKB6ZPJmCAgPZ2dlMnHB/mfrlISsri7ALF6hbtx4XLpzn5MkTLF2ymH2HjlBQUMDzU6dQWKiGcb769nt+mDObgwf28+nMj1jw6+88MHESUZGRTLhvHECJ+o6Ojiz6cxm2trbo9Tq2/Psvc+d8X2RHx06d+eC9d25Kn97JFBoM/DprOi98MhedTs+2NUuICT8HQM9hqg//XfEHIT370Wv4vRgMBvJzc/juf8+XqX//c29gbW3Di5/+BMD544dZ8MlV06HJy8kmISYSL//aJERfJCb8HKGb1vHez2sxGAz88ul0pPF+T5r2LpuX/0H46WOs+WU2T07/jO6DRpOcEMs3b0wFKFHf1s6eqR98i5WNDTqdjpMHdrN5xR9FdjRo0YYVP319C3v6DkEWwt4/oO9U49ZHO+Cy8Uu4YXf1esZ8bu1V9HhMzdksNCgn9MoWRLt/hpCxql5DAez6xVy3IA/Sk6CmJ6QnqrYj9sOw/5nquzJ032mCsiU5Ao6th+6T1RZHmSmwxfislqRvZQO9nlJRVKGDuNNXX5dnPTi86kZ7sfIgC+HYUug4WfVD5F7IMP7ADzQ67xG7Sq+j3US19VRhIRxdatqCCMA/uOQhdABDnprL6eABWUmq7dhD0HOa0Tbj9kQALcdAxE64HAXnNkLbB6BWB8hOUVsfQcn6ehto/7D60SF0agV7RLH5p2514MyG8vaaxh2MuK55VRrlRq8T0t6msvvy18eQocNo3aYN0//3VtnCt4CWrYJ5ZuqzPPrQxNve9j0h1WDe4DW06daXoEbNWTr3swppv3aDJvQbO4k5775829v+6dGet73NCqdWsBqmP7SiYtp3qwVN+sKOn25/266Ot7/NisanBTgHwOl1FdO+kz/U6wEHf7vtTYuhs/ZLKavBysPbR/XyhjRuKatWrsDN3b1swVuEu4c777xdMY5udeTAtn+o4exSYe3XcHZl6dzPK6z9akfkIRUZrShsa8Ah88VqGreIuKMqMlpR2DjCqQpydDVuOlpk8xZRHSOb1ZnqGNmszlTLyGZ1pjpGNqsxWmTz5lOZFwhpaGhoaGhoaGjc4Wiht1uElV6Ht5N9RZuhcZv46cOxFW2Cxm1k1LMWFtFoVFlGttU2FtfQ+C9okU0NDQ0NDQ0NDY1bhuZsamhoaGhoaGho3DI0Z1NDQ0NDQ0NDQ+OWUSWdTSHEdCFE3xvQGy+EOGL82ymEaFXsXH8hxGkhxDkhxCs31+KbQ/deffl753427TnEY888Z1GmQ+euHDoXyapN21m1aTtPvzCtTP1X3nqHDTv2sebfnXw771dqOjlbrNvTy5s5vywqOn58yvNs2nOIv3fup1uvPhZ1nF1cmb94ORt3H2T+4uU4FdtKpyT9n/5YyurNO1i3dQ/vfDwLnU59jCc8NJlR48aX3VFVBZf60GYKtJkK/t1Kl63hB53/B+5NTWW+HSH4KWj9NPh2ulret4Oqu/XTEHi35Tqta0CTYv3t303Z0maKss0SVvbQ7EEl1+xB0NuVrd90AgQ/qWypN4SivNE+7cGrdenXXYUI7tSdL/78h6+WbmLEg49blGnWpgMLNh9m5q+rmfnrau555Jky9Tv1GcBnC9ezeM856jVpUWL7Lu6evPrp3KLjEROf4Kulm/jiz38I7mj581fDyZk3v1rAV0s28eZXC3Cs6VSm/utf/MQnv67hs4XrmfzKu0XP94B7JtBryOgyeqnq49s0hCH/m8fQ6Qto2m+cRRmvhq24Z9YKBrz2PQNe+57mAyeUWF+fZ2diZedQ7roB2o55iqHTFzDw9Tm41mpQpm0th0xk4OtzGPDa9/SeMgN7Z7VFnotfHTo+ePv3ydW4/VRJZ1NK+aaU8p8bUA0DekgpWwLvALMBhBB64GtgANAUuFcI0bTEWioAnU7H/2Z8wkP3jqJf1xCGjBxN/YaNLMqG7t7FkN5dGdK7K199MqNM/e1bNjOgewcG9exM2PlzPDH1eYv1PvzE0yz8ZR4A9Rs2YvCIUfTv1p5J40by9oxPi740ivP4lOfYuXULfTq2ZufWLTw+5bky9Z955EEG9+rCgO4dcHP3YODQEQAs/v1nHnzU8pdw1UNA3cFw/Gc4+BV4tgB7z5JlA++GlHOmIgcv8G4LR2bDwW/ArSHYGdPTOdcBt8Zw8GtVd8wOy9X6d4b4/eq9vaey4eBXcHyBsu2KU3iVTjdIvQAHPlevAd3K1j+9CA59o85ZOYBHM1WecFA5zNUAnU7Hoy+/zXtTJ/HsmH50vXsIAXUsO/QnD4by4vjBvDh+MIvnflmm/sXzZ/jo5Sc4cdA8nWxxho5/mH+Wq+xNAXXq0/WuwTw7tj/vTpnIo9OmW3y+Rzz4OEdDd/L0qN4cDd3JiAefKFP/k1ef4YXxg3h2bH+cXd3o1GcgABtXLmbg2AdvoPeqDkLoCLl3Cpu/epXVbz9EUEhvnHwDLcomnj3GuvceY917j3Fs7c8WZfyadyAl+jwFOVnlrtuveXucvAJY+eYD7Pn1U9rfN7VM2078vYi17z7KuvceI/robloMUs5vakwYDi4eOLh63Yzu0biDqRTOphAiSAhxUggxRwhxXAixQQhhL4QIFkLsNkYilwkhXI3y84QQo43vPxRCnDDKzDSWeQohlgghQo1/XQCklDuLpaHcDQQY37cHzkkpL0gp84A/gGG3sw/KolWbdkSEXSAyIpz8/HxWL1tC3/6Dbor+9n83YTAYADi0PxQfP3+LdfQbPJStm5SP37f/IFYvW0JeXh5RFyOICLtAqzbm25b17T+IpQtVhoilC3/jrgGDy9TPyEgHwMrKCmtrG67sFZuTnU105EVatm5b7uuutNQMgJxLkJsC0gCJR5WDaAnfjpB8AvIzTWX2npARBYX5QCFcDjdFPX1CIGqbqheu1iuOe1NIOaveuzVWNkgD5KYq22oGWNBprJxEUK/uTcrWN+SqV6FTae2uUJivrr+G5c9jVaJ+s1bERUYQHx1JQUE+2/9eTUiPu26KfnT4eWIiLOQ1v4aOvftzcJdKHRnS4y62/72agvw8EmKiiIuMoH6zVmY6IT3uYvPqJQBsXr2E9j3vKlM/OzMDAL3eCitra6QxLWJebg6JMVHUb9qy3Ndd1XAPakx6QjQZSbEUGgqICN1MrZadb7i+Ou37EHV453XVHdCyCxd2qxSSyWEnsbGvgZ2TW6n6BTlZRfpWNnYU3987+uhugkJ63fA1aFQOKoWzaaQB8LWUshmQCowCFgDTjJHIo8BV6WOEEG7ACKCZUeZd46nPgVlSyhBjPXMx52HgSvoCfyCy2LkoY9kdg7ePL7HRUUXHcbExePv6WZRt3a49qzfv4Mffl9CgUePr0h997wS2bPzbrDygdiBpqank5eWp+nz9iI2JNtUXE423j6+ZnoenJ4kJKudvYkI87h4e5dL/aeEy9p44T2ZGButWLS8qP3roICEdrxkSrorY1IS8y6bjvDSwdbIs594E4kKvLs+KB6dANaytswbXhmBj1LdzV+daTobmD6kh+GuxdYGCHJNDaut0jT2XVdvXYu0I+cqZID9DHZdHv+kD0H6acjyTjpvKM2KUrVUcN08fkuJji44vxcfi7ultUbZRi9Z88usaXvv8R2rVbXDd+pbw8gsgI+0yBfnq+Xb39CY5PqbofHJCHG6ePmZ6Lm4epCYnApCanIizq3u59N/4Yh4/bgglOzOT3RtNWWTOnzxKk9Yh5ba7qmHv6kFWSmLRcVZqIvauHhZlPeo2ZeDrs+n19Ac4lxD99KzXnEsRZ66rbgcXczkHF48y9VsNe4jh7/9OUPs+HFk1r6j8UsRpPOuXPH1Do2pQmZzNMCnlIeP7/UA9wEVKucVYNh/ofo1OGpADzBVCjASu/LzqC3wlhDgErASchBBF32xCiF4oZ/PKhEYL44GYpV4SQkwWQuwTQuwrLLy9mZmEsGCihexQx48cpnvbZgzu1YUFc7/nu/m/l1v/yWdfxGAoYMWfC81Evby9uZScXKo90rzLSqQs/UljR9CxRUNsbG3o1K1HUXlyUiJeFpzaqkf57jd1BkD4Bsw+rtlJELVdzZtsOgGy4oBCY9U65YQemQ3hf0EjC3uI2tQsOeJ5KzixAPZ+DEIPzsWyNeVnWnZqqxiWH0/z+33h9HEeH9qNF8YPYt3CBUz7+Pvr0i8JVw8v0lIvlWVQuesrS/+dKRN5ZEAHrG1saN7OFF27nJKM23U4yVUNS19Elvr90sWzLH/tXta+O5nT/y6j+xPTLdZn41iTgtzs66q7BMEy9Q+v+JHl/3cv4Xs30rDn8KLynPTUojmcGlWXyuRs5hZ7bwBcylKQUhaghsCXAMOB9cZTOqCTlDLY+OcvpUwHEEK0REU6h0kpr3hPUUCtYlUHADFcg5RytpSynZSynU5n8dG7ZcTFxuDrbxq29PH1Iz4u1kwuIyOdrEzlJPy7cQNWVla4urmVqT9y7H30urs/zz3xiMX2c7JzsLG1NdkTE41vseF2n/9v796Do6ruAI5/f7vJJiQCIYGER0wggihQyqNCa9UClrR2ogWxarW+HR8jRVtxxDpWrI6vUlDQThRlzDCDg3ZAOwKGAlVKscirvMMrhFcaSLI8k2wem9M/7iabsMkmyG5ukv19ZjLJZu+558f9sZvfPeeeu337cbKoKKBdSXExvZKtPx69klMoLSlpdfuqykpW565odLlATEwslRWeJmPsVKrOgqvBQi1XN6g6F7jdZf1g8K9g9O+g5xDrWsi66faTW2BbNuxcANUVUFHq33fpbuvn88etPxhRF3xGcm114yntygvj6d50PNVl1sIisL7XFaytaW9qwL3Xmoqv44iC2prAfjqZ0pNF9Ezxn0QlpvTBXXIyYLuKsvN4Kqxz6i3rv8IZFUXX7j1a3b45VR4P0S7/67v0ZBFJKf4R76Tk3rhLTgS0O+0uISHJupY4IakXZ06Vtrp9dVUVG9euYsxP/Gs9o10xVHki4PXdjPJTJcT18F+bHZfQi4rTpQHb1XjKqam0jlPhzm9xOKOIiQ+c+aj1eusL/9buu6ntyk+Xtrp9wcbVpI30LwhzRrnwVlcGbKc6l45UbF7oDHBKROr+194DfN1wAxG5DOhujFkOPAWM8D21EpjaYLsRvu9pwBLgHmPMvga72ggMEpEBIuIC7sQaEW03tm/dTP+MDFLT0omOjiZr8hRW5y4P2K5nsv9C7OEjR+NwODjldgdtf8P4n/LI1Kd49J478FRUNNn/ofwDpF6eVv94de5ysiZPweVykZqWTv+MDLZt2RTQbnXucm694y7AKmhXfbksaPu4+Pj64tTpdDLuxonk7/enasAVA9mXt/tiD1/Hc+44dEm0prPFaS2ucecFbrd5jv+rZDfkf+Hfrm4K29Xdmmov3mE9du+BBN/oYWwSOJxQU954vxWlVt913HlWDOK0ft8lEc4dI4A7z7+CPHkklOYFb+9w+YtTHJA4CMr9U3XEJlmXBHRyB3Zvp09af5L7phIVFc11E7PYtDZwDWRCkn/acuCQ4YjDwbkzp1rdvjmFRw6R3Md/Mrpp7Squm5hFVLSL5L6p9Enrz4Fd2wLabVq7ivFZUwAYnzWFjV//I2j72C5x9cWpw+lk1I/HcbzgYP3++qYN4MjBfQH9RIrSw3l0Te5HfFJvHM4o0q8Zz7Ht6wO2i+3Wo/7npP6DEREqy84GbHfuxFEu69nnovZ9bPt6Mn5o3aEiacDVVHnK8Jx1B23fNdk/cNBv+LWcPeG/Kq1rSipnCgu+2wFRHUZH/7jK+4BsEYkD8oEHLni+K/C5iMRiDf7X3c9nGvCuiGzHOgZrgceAPwJJwF9907g1vpHKGhGZCuQCTmCBMWYX7YjX6+WlGc/w0eKlOJxO/rZoIfv3Wn/If33fgwB8nLOAm7Imcdf9D+H11uCp8PDkow+02H7m67NwuVzkfPo5YC0SeuGZxrdWqigv50jBIdIHZHD4UD779+ax/POlfLluI96aGmY+O53aWmua9tXZ8/g4ZwE7tm0le+4c5s3/iNvvvpfCY0eZ+rC12rS59l3i4nh/4WJcMS4cDif/WbeWRTkf1scxasxY5s56LYxHur2ohfxlMPRewGGNUlb4irDevoVYRYHFfSOD74ToLmB8+/L6RoxObIWBk6zbIhkv7F/SRPfV4DllrWD3uK2+S3bCyN9asR1cRv3U/cBfWteMni+0Fh4NvgNSRkHlGdjruySjufbOaOv2Sg6nNb1/Or/xv6tbGhz96uIPXwdT6/XywZszeWFuDg6ngzV//5Sj+dbirMxbrZO1lUsW8aMJN/Gz2+7GW+OlqtLDnOentdh+zLhMHp7+It16JPKHOR9SsG83L0+7v1H/lZ4Kio4foXdqOkXHDnM0fz/rVy3j7U9y8Xq9zH/zxfrX9+PPv8bKJYs4uGcHS3Kyefq1d7jxltspPlHIX2Y8AdBs+5gucTw3ez7R0S4cTgc7Nn5D7pJF9XFc9f3RfDJ/bliPdXtmamvZtHgeE6a9gTgcHFy/gjP/OwzAoOutxZX7//UFaaNuYNANt2BqvXirKln3wStN7u/4zg2kXDmC88WFrd534c4N9Bs2llteXoi3ysM3OX9uMbYRkx6mW8rlGGMoc5/g20Vv1ceQMngEx3dsCMvxUu2HXMx1O6r1YqKdJrVHvN1htKnMX2QxbPhIZr/+si39Dxk2nAcfn8r0Jx5p874PLn2qzfu0XeLV1uKhI6vt6T++N/S9tuliOMwi8bPRx4zL5IqrhvFx9mxb+h9w5RBuvvsh5r74dJv33Vk/Gz22WyLXPjCDNW/bc69LR1Q0E38/m5WznsT4Tlbag9+8t2azMSbw9inqO+voI5uqHVm5/AsSeiTa1n+PpCTmvN70GbwKA/cea2TULlHxcGSNff1HmG+/WknXBh+60Na6JiTaVuh2Vp6zbg6sW0ZUbFyj2xO1lfjEZLZ+9kG7KjRVeOjIZphE4shmJIvIkc0IFokjm5Gss45sqqbpyGbodeQFQkoppZRSqp3Tkc0wEZFi4LDdcdigJ1BidxCqzWi+I4vmO7JEar7TjTHNff6v+g602FQhJSKbdPohcmi+I4vmO7JovlWo6DS6UkoppZQKGy02lVJKKaVU2GixqULtfbsDUG1K8x1ZNN+RRfOtQkKv2VRKKaWUUmGjI5tKKaWUUipstNhUSimllFJho8WmCkpEUkRkkYjki8hmEflGRCaLSJKI/FNEzovIO3bHqS5dkFxP9D3e4fs+we5Y1aULku8xIvJf39c2EZlsd6zq0jWX7wbPp/nez6fbGafqnLTYVM0SEQE+A9YaYzKMMaOBO4FUwAO8AOgbUyfQQq5LgJuNMd8D7gMW2haoCokW8r0T+IExZgTwc+A9EYmyK1Z16VrId505wAobwlMRQN9AVDATgCpjTHbdL4wxh4F5vofrRGSgLZGpUGsp13V2AbEiEmOMqWzLAFVItTbfsYCuIu34guZbRCYB+UCZLdGpTk9HNlUwQ4Etdgeh2kRrcz0F2KqFZocXNN8iMlZEdgE7gMeMMTVtFpkKh2bzLSLxwLPAS20akYooOrKpWk1E3gWuwzpDvsbueFT4NJVrERkKvAFk2hmbCr0L822M2QAMFZGrgRwRWWGM8dgbpQqVhvkGvgbmGGPOW7PtSoWeFpsqmF1YI1kAGGOeEJGewCb7QlJhEjTXIpIKLAXuNcYctCdEFUKtem0bY/aISBkw7MLnVIcSLN9jgdtE5E0gAagVEY8xRhd+qpDRaXQVzBqs6/Meb/C7OLuCUWHVbK5FJAFYBjxnjPm3DbGp0AuW7wF1C4JEJB0YDBS0eYQqlJrNtzHmemNMf2NMf+At4FUtNFWo6ScIqaBEpA/WKsWxQDHWBeTZxpjFIlIAdANcwGkg0xiz26ZQ1SVqLtfAIOA5YH+DzTONMSfbPEgVMkHy7QJmANVALfAnY8xnNoWpQiTYe3mDbWYC540xs2wJUnVaWmwqpZRSSqmw0Wl0pZRSSikVNlpsKqWUUkqpsNFiUymllFJKhY0Wm0oppZRSKmy02FRKKaWUUmGjxaZSSimllAobLTaVUkoppVTY/B/WhYPFPn3eLwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "features = covariates\n", - "ranks = ['G1','G2','G3','G4']\n", - "harvest = np.array(round(new_data,3))\n", - "labels_hm = np.array(round(labels_data))\n", - "\n", - "fig, ax = plt.subplots(figsize=(10,15))\n", - "\n", - "# getting the original colormap using cm.get_cmap() function\n", - "orig_map = plt.cm.get_cmap('copper')\n", - " \n", - "# reversing the original colormap using reversed() function\n", - "reversed_map = orig_map.reversed()\n", - "im = ax.imshow(harvest, cmap=reversed_map, aspect='auto')\n", - "\n", - "# make bar\n", - "bar = plt.colorbar(im, shrink=0.2)\n", - " \n", - "# show plot with labels\n", - "bar.set_label('scaling')\n", - "\n", - " \n", - "# Setting the labels\n", - "ax.set_xticks(np.arange(len(ranks)))\n", - "ax.set_yticks(np.arange(len(features)))\n", - "# labeling respective list entries\n", - "ax.set_xticklabels(ranks)\n", - "ax.set_yticklabels(features)\n", - "\n", - "# Rotate the tick labels and set their alignment.\n", - "plt.setp(ax.get_xticklabels(), ha=\"right\",\n", - " rotation_mode=\"anchor\")\n", - "\n", - "# Creating text annotations by using for loop\n", - "for i in range(len(features)):\n", - " for j in range(len(ranks)):\n", - " text = ax.text(j, i, labels_hm[i, j],\n", - " ha=\"center\", va=\"center\", color=\"w\")\n", - "\n", - "ax.set_title(\"Average covariate values within group (based on prediction ranking)\")\n", - "fig.tight_layout()\n", - "\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "As we just saw above, houses that have, e.g., been built more recently (`BUILT`), have more baths (`BATHS`) are associated with larger price predictions.\n", - "\n", - "This sort of interpretation exercise did not rely on reading any coefficients, and in fact it could also be done using any other flexible method, including decisions trees and forests." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Decision Tree" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "This next class of algorithms divides the covariate space into \"regions\" and estimates a constant prediction within each region.\n", - "\n", - "To estimate a decision tree, we following a recursive partition algorithm. At each stage, we select one variable $j$ and one split point\n", - "$s$, and divide the observations into “left” and “right” subsets, depending on whether $X_{ij} \\leq s$ or $X_{ij} > s$. For regression problems, the variable and split points are often selected so that the sum of the variances of the outcome variable in each “child” subset is smallest. For classification problems, we split to separate the classes. Then, for each child, we separately repeat the process of finding variables and split points. This continues until a minimum subset size is reached, or improvement falls below some threshold.\n", - "\n", - "At prediction time, to find the predictions for some point $x$, we just follow the tree we just built, going left or right according to the selected variables and split points, until we reach a terminal node. Then, for regression problems, the predicted value at some point $x$ is the average outcome of the observations in the same partition as the point $x$. For classification problems, we output the majority class in the node.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.tree import DecisionTreeRegressor\n", - "import graphviz\n", - "from sklearn import tree\n", - "from sklearn.tree import export_graphviz \n", - "from sklearn.metrics import accuracy_score\n", - "from pandas import Series\n", - "from simple_colors import *\n", - "import statsmodels.api as sm\n", - "import statsmodels.formula.api as smf\n", - "from scipy.stats import norm\n", - "from sklearn.metrics import accuracy_score\n", - "from sklearn import metrics\n", - "from sklearn.metrics import r2_score\n", - "import matplotlib.pyplot as plt\n", - "from sklearn import tree\n", - "from sklearn.model_selection import train_test_split" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "#Here we define our X and Y variable\n", - "Y = data.loc[:,outcome]\n", - "XX = data.loc[:,covariates]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# we split data in train and test\n", - "x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy(), Y, test_size=.3)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "dt = DecisionTreeRegressor( max_depth=15, random_state=0)\n", - "#x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy(), Y, test_size=.3)\n", - "tree1 = dt.fit(x_train,y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have not constrained the complexity of the tree in any way, so it's likely too deep and probably overfits. Here’s a plot of what we have so far (without bothering to label the splits to avoid clutter)." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[Text(0.6937715956946345, 0.96875, 'X[12] <= 0.0\\nsquared_error = 0.981\\nsamples = 20108\\nvalue = 11.814'),\n", - " Text(0.45393733459285945, 0.90625, 'X[1] <= 2436.5\\nsquared_error = 0.774\\nsamples = 19386\\nvalue = 11.889'),\n", - " Text(0.23878549020890355, 0.84375, 'X[3] <= 1.5\\nsquared_error = 0.631\\nsamples = 13895\\nvalue = 11.687'),\n", - " Text(0.11155233658026083, 0.78125, 'X[19] <= 1.5\\nsquared_error = 0.705\\nsamples = 5094\\nvalue = 11.392'),\n", - " Text(0.05217431774271454, 0.71875, 'X[29] <= 0.5\\nsquared_error = 0.677\\nsamples = 2626\\nvalue = 11.544'),\n", - " Text(0.02204757687972951, 0.65625, 'X[14] <= -3.0\\nsquared_error = 0.82\\nsamples = 1133\\nvalue = 11.421'),\n", - " Text(0.0019320560296248591, 0.59375, 'X[47] <= 0.904\\nsquared_error = 15.873\\nsamples = 7\\nvalue = 9.561'),\n", - " Text(0.0016100466913540493, 0.53125, 'X[30] <= 1.5\\nsquared_error = 0.743\\nsamples = 6\\nvalue = 11.155'),\n", - " Text(0.0012880373530832394, 0.46875, 'X[44] <= 0.392\\nsquared_error = 0.256\\nsamples = 5\\nvalue = 10.829'),\n", - " Text(0.0006440186765416197, 0.40625, 'X[1] <= 1536.402\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.234'),\n", - " Text(0.00032200933827080985, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.342'),\n", - " Text(0.0009660280148124296, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", - " Text(0.0019320560296248591, 0.40625, 'X[57] <= 0.52\\nsquared_error = 0.027\\nsamples = 3\\nvalue = 11.226'),\n", - " Text(0.0016100466913540493, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", - " Text(0.0022540653678956688, 0.34375, 'X[58] <= 0.333\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 11.337'),\n", - " Text(0.0019320560296248591, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.385'),\n", - " Text(0.002576074706166479, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.0019320560296248591, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.782'),\n", - " Text(0.0022540653678956688, 0.53125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.04216309772983416, 0.59375, 'X[1] <= 2431.402\\nsquared_error = 0.705\\nsamples = 1126\\nvalue = 11.432'),\n", - " Text(0.021499154725487038, 0.53125, 'X[15] <= 1.5\\nsquared_error = 0.461\\nsamples = 976\\nvalue = 11.488'),\n", - " Text(0.00612824021896635, 0.46875, 'X[49] <= 0.024\\nsquared_error = 1.171\\nsamples = 184\\nvalue = 11.304'),\n", - " Text(0.0038641120592497183, 0.40625, 'X[1] <= 1495.0\\nsquared_error = 21.608\\nsamples = 5\\nvalue = 9.292'),\n", - " Text(0.003542102720978908, 0.34375, 'X[1] <= 750.0\\nsquared_error = 0.028\\nsamples = 4\\nvalue = 11.615'),\n", - " Text(0.0032200933827080985, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.0038641120592497183, 0.28125, 'X[49] <= 0.003\\nsquared_error = 0.006\\nsamples = 3\\nvalue = 11.703'),\n", - " Text(0.003542102720978908, 0.21875, 'X[38] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.756'),\n", - " Text(0.0032200933827080985, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.0038641120592497183, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", - " Text(0.004186121397520528, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.599'),\n", - " Text(0.004186121397520528, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.008392368378682982, 0.40625, 'X[50] <= 0.067\\nsquared_error = 0.484\\nsamples = 179\\nvalue = 11.361'),\n", - " Text(0.0056351634197391726, 0.34375, 'X[48] <= 0.202\\nsquared_error = 4.939\\nsamples = 7\\nvalue = 10.455'),\n", - " Text(0.005313154081468363, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.075'),\n", - " Text(0.005957172758009982, 0.28125, 'X[61] <= 0.559\\nsquared_error = 0.136\\nsamples = 6\\nvalue = 11.351'),\n", - " Text(0.005152149412332958, 0.21875, 'X[2] <= 1945.0\\nsquared_error = 0.049\\nsamples = 4\\nvalue = 11.559'),\n", - " Text(0.0045081307357913375, 0.15625, 'X[55] <= 0.564\\nsquared_error = 0.019\\nsamples = 2\\nvalue = 11.364'),\n", - " Text(0.004186121397520528, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.503'),\n", - " Text(0.004830140074062148, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", - " Text(0.005796168088874577, 0.15625, 'X[6] <= 4.0\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 11.754'),\n", - " Text(0.005474158750603767, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.0061181774271453875, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.813'),\n", - " Text(0.006762196103687007, 0.21875, 'X[50] <= 0.045\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 10.935'),\n", - " Text(0.006440186765416197, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.007084205441957816, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.01114957333762679, 0.34375, 'X[1] <= 775.0\\nsquared_error = 0.268\\nsamples = 172\\nvalue = 11.397'),\n", - " Text(0.008211238125905651, 0.28125, 'X[46] <= 0.405\\nsquared_error = 0.917\\nsamples = 7\\nvalue = 10.553'),\n", - " Text(0.007889228787634841, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.412'),\n", - " Text(0.008533247464176462, 0.21875, 'X[50] <= 0.602\\nsquared_error = 0.178\\nsamples = 6\\nvalue = 10.91'),\n", - " Text(0.0077282241184994365, 0.15625, 'X[49] <= 0.622\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 10.362'),\n", - " Text(0.007406214780228627, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.008050233456770247, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.127'),\n", - " Text(0.009338270809853486, 0.15625, 'X[0] <= 6500.0\\nsquared_error = 0.014\\nsamples = 4\\nvalue = 11.184'),\n", - " Text(0.008694252133311866, 0.09375, 'X[46] <= 0.652\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 11.079'),\n", - " Text(0.008372242795041056, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", - " Text(0.009016261471582675, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.009982289486395105, 0.09375, 'X[24] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.29'),\n", - " Text(0.009660280148124296, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.010304298824665915, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.014087908549347931, 0.28125, 'X[57] <= 0.867\\nsquared_error = 0.208\\nsamples = 165\\nvalue = 11.433'),\n", - " Text(0.01175334084688456, 0.21875, 'X[52] <= 0.013\\nsquared_error = 0.195\\nsamples = 140\\nvalue = 11.481'),\n", - " Text(0.010948317501207535, 0.15625, 'X[47] <= 0.342\\nsquared_error = 0.12\\nsamples = 2\\nvalue = 10.473'),\n", - " Text(0.010626308162936726, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.011270326839478345, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", - " Text(0.012558364192561584, 0.15625, 'X[1] <= 912.5\\nsquared_error = 0.181\\nsamples = 138\\nvalue = 11.496'),\n", - " Text(0.011914345516019964, 0.09375, 'X[60] <= 0.831\\nsquared_error = 0.122\\nsamples = 14\\nvalue = 11.195'),\n", - " Text(0.011592336177749154, 0.03125, 'squared_error = 0.064\\nsamples = 12\\nvalue = 11.301'),\n", - " Text(0.012236354854290775, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 10.558'),\n", - " Text(0.013202382869103205, 0.09375, 'X[8] <= 3.5\\nsquared_error = 0.176\\nsamples = 124\\nvalue = 11.53'),\n", - " Text(0.012880373530832394, 0.03125, 'squared_error = 0.161\\nsamples = 114\\nvalue = 11.495'),\n", - " Text(0.013524392207374013, 0.03125, 'squared_error = 0.174\\nsamples = 10\\nvalue = 11.932'),\n", - " Text(0.016422476251811303, 0.21875, 'X[62] <= 0.43\\nsquared_error = 0.198\\nsamples = 25\\nvalue = 11.165'),\n", - " Text(0.015134438898728063, 0.15625, 'X[43] <= 0.366\\nsquared_error = 0.2\\nsamples = 10\\nvalue = 11.448'),\n", - " Text(0.014490420222186443, 0.09375, 'X[52] <= 0.181\\nsquared_error = 0.253\\nsamples = 4\\nvalue = 11.084'),\n", - " Text(0.014168410883915633, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.014812429560457254, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", - " Text(0.015778457575269682, 0.09375, 'X[48] <= 0.25\\nsquared_error = 0.019\\nsamples = 6\\nvalue = 11.69'),\n", - " Text(0.015456448236998873, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", - " Text(0.016100466913540494, 0.03125, 'squared_error = 0.005\\nsamples = 4\\nvalue = 11.779'),\n", - " Text(0.01771051360489454, 0.15625, 'X[60] <= 0.278\\nsquared_error = 0.108\\nsamples = 15\\nvalue = 10.976'),\n", - " Text(0.017066494928352924, 0.09375, 'X[0] <= 25034.602\\nsquared_error = 0.027\\nsamples = 3\\nvalue = 10.514'),\n", - " Text(0.01674448559008211, 0.03125, 'squared_error = 0.01\\nsamples = 2\\nvalue = 10.617'),\n", - " Text(0.017388504266623733, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.018354532281436162, 0.09375, 'X[47] <= 0.262\\nsquared_error = 0.062\\nsamples = 12\\nvalue = 11.091'),\n", - " Text(0.01803252294316535, 0.03125, 'squared_error = 0.011\\nsamples = 4\\nvalue = 11.388'),\n", - " Text(0.01867654161970697, 0.03125, 'squared_error = 0.021\\nsamples = 8\\nvalue = 10.943'),\n", - " Text(0.03687006923200773, 0.46875, 'X[34] <= 2.154\\nsquared_error = 0.286\\nsamples = 792\\nvalue = 11.53'),\n", - " Text(0.02849782643696667, 0.40625, 'X[47] <= 0.991\\nsquared_error = 0.347\\nsamples = 81\\nvalue = 11.265'),\n", - " Text(0.028175817098695863, 0.34375, 'X[46] <= 0.888\\nsquared_error = 0.282\\nsamples = 80\\nvalue = 11.295'),\n", - " Text(0.024150700370310738, 0.28125, 'X[46] <= 0.465\\nsquared_error = 0.247\\nsamples = 69\\nvalue = 11.216'),\n", - " Text(0.02157462566414426, 0.21875, 'X[60] <= 0.197\\nsquared_error = 0.203\\nsamples = 43\\nvalue = 11.374'),\n", - " Text(0.020286588311061022, 0.15625, 'X[8] <= 3.5\\nsquared_error = 0.137\\nsamples = 6\\nvalue = 10.849'),\n", - " Text(0.0196425696345194, 0.09375, 'X[51] <= 0.46\\nsquared_error = 0.013\\nsamples = 3\\nvalue = 11.196'),\n", - " Text(0.019320560296248592, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 11.119'),\n", - " Text(0.01996457897279021, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.02093060698760264, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 10.501'),\n", - " Text(0.02060859764933183, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.02125261632587345, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", - " Text(0.0228626630172275, 0.15625, 'X[47] <= 0.935\\nsquared_error = 0.162\\nsamples = 37\\nvalue = 11.459'),\n", - " Text(0.02221864434068588, 0.09375, 'X[44] <= 0.052\\nsquared_error = 0.126\\nsamples = 35\\nvalue = 11.506'),\n", - " Text(0.02189663500241507, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.463'),\n", - " Text(0.02254065367895669, 0.03125, 'squared_error = 0.097\\nsamples = 34\\nvalue = 11.537'),\n", - " Text(0.02350668169376912, 0.09375, 'X[34] <= 0.5\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 10.624'),\n", - " Text(0.023184672355498308, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.859'),\n", - " Text(0.02382869103203993, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.389'),\n", - " Text(0.026726775076477218, 0.21875, 'X[48] <= 0.556\\nsquared_error = 0.211\\nsamples = 26\\nvalue = 10.956'),\n", - " Text(0.02543873772339398, 0.15625, 'X[51] <= 0.711\\nsquared_error = 0.184\\nsamples = 16\\nvalue = 10.775'),\n", - " Text(0.02479471904685236, 0.09375, 'X[56] <= 0.506\\nsquared_error = 0.144\\nsamples = 13\\nvalue = 10.653'),\n", - " Text(0.02447270970858155, 0.03125, 'squared_error = 0.09\\nsamples = 6\\nvalue = 10.381'),\n", - " Text(0.025116728385123167, 0.03125, 'squared_error = 0.074\\nsamples = 7\\nvalue = 10.886'),\n", - " Text(0.026082756399935597, 0.09375, 'X[62] <= 0.298\\nsquared_error = 0.012\\nsamples = 3\\nvalue = 11.305'),\n", - " Text(0.02576074706166479, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 11.379'),\n", - " Text(0.02640476573820641, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.028014812429560457, 0.15625, 'X[62] <= 0.479\\nsquared_error = 0.118\\nsamples = 10\\nvalue = 11.245'),\n", - " Text(0.02737079375301884, 0.09375, 'X[54] <= 0.347\\nsquared_error = 0.045\\nsamples = 6\\nvalue = 11.44'),\n", - " Text(0.027048784414748027, 0.03125, 'squared_error = 0.004\\nsamples = 3\\nvalue = 11.245'),\n", - " Text(0.027692803091289648, 0.03125, 'squared_error = 0.011\\nsamples = 3\\nvalue = 11.634'),\n", - " Text(0.028658831106102078, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.086\\nsamples = 4\\nvalue = 10.954'),\n", - " Text(0.028336821767831265, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", - " Text(0.028980840444372886, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.396'),\n", - " Text(0.03220093382708099, 0.28125, 'X[2] <= 1970.0\\nsquared_error = 0.216\\nsamples = 11\\nvalue = 11.788'),\n", - " Text(0.030912896473997746, 0.21875, 'X[54] <= 0.653\\nsquared_error = 0.112\\nsamples = 6\\nvalue = 12.113'),\n", - " Text(0.030590887135726937, 0.15625, 'X[1] <= 1050.0\\nsquared_error = 0.032\\nsamples = 5\\nvalue = 12.244'),\n", - " Text(0.029946868459185316, 0.09375, 'X[50] <= 0.725\\nsquared_error = 0.007\\nsamples = 3\\nvalue = 12.371'),\n", - " Text(0.029624859120914507, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.429'),\n", - " Text(0.030268877797456125, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.255'),\n", - " Text(0.031234905812268555, 0.09375, 'X[43] <= 0.796\\nsquared_error = 0.01\\nsamples = 2\\nvalue = 12.053'),\n", - " Text(0.030912896473997746, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.155'),\n", - " Text(0.031556915150539364, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.951'),\n", - " Text(0.031234905812268555, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.462'),\n", - " Text(0.03348897118016422, 0.21875, 'X[49] <= 0.805\\nsquared_error = 0.06\\nsamples = 5\\nvalue = 11.397'),\n", - " Text(0.03316696184189342, 0.15625, 'X[48] <= 0.568\\nsquared_error = 0.018\\nsamples = 4\\nvalue = 11.504'),\n", - " Text(0.03252294316535179, 0.09375, 'X[2] <= 1990.0\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 11.628'),\n", - " Text(0.03220093382708099, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", - " Text(0.032844952503622606, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.033810980518435035, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.379'),\n", - " Text(0.03348897118016422, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.03413298985670585, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.408'),\n", - " Text(0.033810980518435035, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.968'),\n", - " Text(0.02881983577523748, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.923'),\n", - " Text(0.04524231202704879, 0.40625, 'X[8] <= 3.5\\nsquared_error = 0.27\\nsamples = 711\\nvalue = 11.56'),\n", - " Text(0.04053292545483819, 0.34375, 'X[42] <= 1.5\\nsquared_error = 0.261\\nsamples = 642\\nvalue = 11.533'),\n", - " Text(0.03823860891965867, 0.28125, 'X[62] <= 0.829\\nsquared_error = 0.356\\nsamples = 113\\nvalue = 11.317'),\n", - " Text(0.03687006923200773, 0.21875, 'X[2] <= 1919.5\\nsquared_error = 0.309\\nsamples = 94\\nvalue = 11.235'),\n", - " Text(0.035743036548059895, 0.15625, 'X[6] <= 4.0\\nsquared_error = 0.18\\nsamples = 6\\nvalue = 10.371'),\n", - " Text(0.03509901787151828, 0.09375, 'X[43] <= 0.405\\nsquared_error = 0.08\\nsamples = 3\\nvalue = 10.006'),\n", - " Text(0.034777008533247465, 0.03125, 'squared_error = 0.006\\nsamples = 2\\nvalue = 10.201'),\n", - " Text(0.03542102720978908, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.03638705522460151, 0.09375, 'X[48] <= 0.894\\nsquared_error = 0.014\\nsamples = 3\\nvalue = 10.737'),\n", - " Text(0.0360650458863307, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.82'),\n", - " Text(0.036709064562872325, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.571'),\n", - " Text(0.03799710191595556, 0.15625, 'X[5] <= 1.5\\nsquared_error = 0.263\\nsamples = 88\\nvalue = 11.294'),\n", - " Text(0.037675092577684755, 0.09375, 'X[59] <= 0.019\\nsquared_error = 0.234\\nsamples = 87\\nvalue = 11.314'),\n", - " Text(0.03735308323941394, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.03799710191595556, 0.03125, 'squared_error = 0.213\\nsamples = 86\\nvalue = 11.33'),\n", - " Text(0.03831911125422637, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.039607148607309614, 0.21875, 'X[0] <= 269841.5\\nsquared_error = 0.389\\nsamples = 19\\nvalue = 11.722'),\n", - " Text(0.0392851392690388, 0.15625, 'X[9] <= 5.5\\nsquared_error = 0.161\\nsamples = 18\\nvalue = 11.607'),\n", - " Text(0.03896312993076799, 0.09375, 'X[56] <= 0.846\\nsquared_error = 0.112\\nsamples = 17\\nvalue = 11.55'),\n", - " Text(0.038641120592497184, 0.03125, 'squared_error = 0.078\\nsamples = 14\\nvalue = 11.457'),\n", - " Text(0.0392851392690388, 0.03125, 'squared_error = 0.04\\nsamples = 3\\nvalue = 11.983'),\n", - " Text(0.039607148607309614, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.578'),\n", - " Text(0.03992915794558042, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.786'),\n", - " Text(0.04282724199001771, 0.28125, 'X[1] <= 1060.0\\nsquared_error = 0.229\\nsamples = 529\\nvalue = 11.579'),\n", - " Text(0.041539204636934474, 0.21875, 'X[52] <= 0.971\\nsquared_error = 0.178\\nsamples = 162\\nvalue = 11.447'),\n", - " Text(0.040573176622122044, 0.15625, 'X[56] <= 0.006\\nsquared_error = 0.161\\nsamples = 159\\nvalue = 11.465'),\n", - " Text(0.04025116728385123, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", - " Text(0.04089518596039285, 0.09375, 'X[2] <= 2000.0\\nsquared_error = 0.147\\nsamples = 158\\nvalue = 11.455'),\n", - " Text(0.040573176622122044, 0.03125, 'squared_error = 0.132\\nsamples = 152\\nvalue = 11.43'),\n", - " Text(0.04121719529866366, 0.03125, 'squared_error = 0.107\\nsamples = 6\\nvalue = 12.086'),\n", - " Text(0.0425052326517469, 0.15625, 'X[49] <= 0.168\\nsquared_error = 0.201\\nsamples = 3\\nvalue = 10.523'),\n", - " Text(0.04218322331347609, 0.09375, 'X[56] <= 0.292\\nsquared_error = 0.014\\nsamples = 2\\nvalue = 10.833'),\n", - " Text(0.04186121397520528, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.951'),\n", - " Text(0.0425052326517469, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.04282724199001771, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.04411527934310095, 0.21875, 'X[39] <= 1.5\\nsquared_error = 0.241\\nsamples = 367\\nvalue = 11.637'),\n", - " Text(0.04379327000483014, 0.15625, 'X[56] <= 0.999\\nsquared_error = 0.234\\nsamples = 366\\nvalue = 11.633'),\n", - " Text(0.04347126066655933, 0.09375, 'X[62] <= 0.053\\nsquared_error = 0.229\\nsamples = 365\\nvalue = 11.629'),\n", - " Text(0.04314925132828852, 0.03125, 'squared_error = 0.176\\nsamples = 14\\nvalue = 11.983'),\n", - " Text(0.04379327000483014, 0.03125, 'squared_error = 0.226\\nsamples = 351\\nvalue = 11.615'),\n", - " Text(0.04411527934310095, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.039'),\n", - " Text(0.04443728868137176, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.305'),\n", - " Text(0.04995169859925938, 0.34375, 'X[22] <= 1.5\\nsquared_error = 0.281\\nsamples = 69\\nvalue = 11.816'),\n", - " Text(0.047818386733215264, 0.28125, 'X[61] <= 0.94\\nsquared_error = 0.208\\nsamples = 54\\nvalue = 11.971'),\n", - " Text(0.04669135404926743, 0.21875, 'X[62] <= 0.646\\nsquared_error = 0.182\\nsamples = 52\\nvalue = 11.937'),\n", - " Text(0.04540331669618419, 0.15625, 'X[45] <= 0.63\\nsquared_error = 0.123\\nsamples = 26\\nvalue = 12.108'),\n", - " Text(0.04475929801964257, 0.09375, 'X[45] <= 0.186\\nsquared_error = 0.071\\nsamples = 15\\nvalue = 12.273'),\n", - " Text(0.04443728868137176, 0.03125, 'squared_error = 0.004\\nsamples = 4\\nvalue = 11.956'),\n", - " Text(0.04508130735791338, 0.03125, 'squared_error = 0.046\\nsamples = 11\\nvalue = 12.388'),\n", - " Text(0.04604733537272581, 0.09375, 'X[44] <= 0.637\\nsquared_error = 0.105\\nsamples = 11\\nvalue = 11.884'),\n", - " Text(0.045725326034455, 0.03125, 'squared_error = 0.007\\nsamples = 3\\nvalue = 12.236'),\n", - " Text(0.046369344710996616, 0.03125, 'squared_error = 0.078\\nsamples = 8\\nvalue = 11.752'),\n", - " Text(0.04797939140235067, 0.15625, 'X[1] <= 1310.0\\nsquared_error = 0.183\\nsamples = 26\\nvalue = 11.765'),\n", - " Text(0.047335372725809045, 0.09375, 'X[47] <= 0.536\\nsquared_error = 0.156\\nsamples = 14\\nvalue = 11.539'),\n", - " Text(0.04701336338753824, 0.03125, 'squared_error = 0.121\\nsamples = 7\\nvalue = 11.264'),\n", - " Text(0.04765738206407986, 0.03125, 'squared_error = 0.04\\nsamples = 7\\nvalue = 11.814'),\n", - " Text(0.04862341007889229, 0.09375, 'X[10] <= 1.5\\nsquared_error = 0.086\\nsamples = 12\\nvalue = 12.029'),\n", - " Text(0.048301400740621475, 0.03125, 'squared_error = 0.04\\nsamples = 11\\nvalue = 12.097'),\n", - " Text(0.0489454194171631, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.0489454194171631, 0.21875, 'X[59] <= 0.209\\nsquared_error = 0.061\\nsamples = 2\\nvalue = 12.859'),\n", - " Text(0.04862341007889229, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.106'),\n", - " Text(0.049267428755433905, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", - " Text(0.05208501046530349, 0.28125, 'X[58] <= 0.37\\nsquared_error = 0.144\\nsamples = 15\\nvalue = 11.257'),\n", - " Text(0.05055546610851715, 0.21875, 'X[45] <= 0.784\\nsquared_error = 0.022\\nsamples = 5\\nvalue = 10.835'),\n", - " Text(0.04991144743197553, 0.15625, 'X[60] <= 0.356\\nsquared_error = 0.005\\nsamples = 3\\nvalue = 10.936'),\n", - " Text(0.04958943809370472, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.035'),\n", - " Text(0.050233456770246335, 0.09375, 'X[18] <= -4.0\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 10.887'),\n", - " Text(0.04991144743197553, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", - " Text(0.05055546610851715, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.859'),\n", - " Text(0.051199484785058764, 0.15625, 'X[45] <= 0.898\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 10.683'),\n", - " Text(0.05087747544678796, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.768'),\n", - " Text(0.05152149412332958, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.05361455482208984, 0.21875, 'X[45] <= 0.849\\nsquared_error = 0.071\\nsamples = 10\\nvalue = 11.468'),\n", - " Text(0.05280953147641282, 0.15625, 'X[45] <= 0.41\\nsquared_error = 0.048\\nsamples = 8\\nvalue = 11.377'),\n", - " Text(0.052165512799871194, 0.09375, 'X[51] <= 0.308\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.694'),\n", - " Text(0.05184350346160039, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.613'),\n", - " Text(0.052487522138142007, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.053453550152954436, 0.09375, 'X[58] <= 0.812\\nsquared_error = 0.017\\nsamples = 6\\nvalue = 11.271'),\n", - " Text(0.053131540814683624, 0.03125, 'squared_error = 0.006\\nsamples = 5\\nvalue = 11.222'),\n", - " Text(0.05377555949122525, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.054419578167766866, 0.15625, 'X[46] <= 0.191\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.831'),\n", - " Text(0.054097568829496054, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", - " Text(0.05474158750603768, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.813'),\n", - " Text(0.06282704073418129, 0.53125, 'X[59] <= 0.013\\nsquared_error = 2.146\\nsamples = 150\\nvalue = 11.071'),\n", - " Text(0.06160441152793431, 0.46875, 'X[4] <= 2.5\\nsquared_error = 28.394\\nsamples = 2\\nvalue = 5.329'),\n", - " Text(0.0612824021896635, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.657'),\n", - " Text(0.06192642086620512, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.06404966994042827, 0.46875, 'X[11] <= 1.5\\nsquared_error = 1.339\\nsamples = 148\\nvalue = 11.148'),\n", - " Text(0.06257043954274674, 0.40625, 'X[50] <= 0.995\\nsquared_error = 0.5\\nsamples = 146\\nvalue = 11.223'),\n", - " Text(0.0605780067621961, 0.34375, 'X[62] <= 0.943\\nsquared_error = 0.389\\nsamples = 143\\nvalue = 11.253'),\n", - " Text(0.05820318789244888, 0.28125, 'X[49] <= 0.07\\nsquared_error = 0.359\\nsamples = 134\\nvalue = 11.304'),\n", - " Text(0.05683464820479794, 0.21875, 'X[61] <= 0.706\\nsquared_error = 1.462\\nsamples = 8\\nvalue = 10.542'),\n", - " Text(0.05602962485912091, 0.15625, 'X[0] <= 8250.0\\nsquared_error = 0.459\\nsamples = 6\\nvalue = 11.15'),\n", - " Text(0.055385606182579296, 0.09375, 'X[53] <= 0.44\\nsquared_error = 0.038\\nsamples = 3\\nvalue = 10.517'),\n", - " Text(0.055063596844308484, 0.03125, 'squared_error = 0.006\\nsamples = 2\\nvalue = 10.386'),\n", - " Text(0.05570761552085011, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.779'),\n", - " Text(0.05667364353566253, 0.09375, 'X[57] <= 0.517\\nsquared_error = 0.08\\nsamples = 3\\nvalue = 11.782'),\n", - " Text(0.056351634197391726, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.15'),\n", - " Text(0.05699565287393334, 0.03125, 'squared_error = 0.019\\nsamples = 2\\nvalue = 11.599'),\n", - " Text(0.05763967155047496, 0.15625, 'X[33] <= 0.5\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 8.72'),\n", - " Text(0.057317662212204155, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.923'),\n", - " Text(0.05796168088874577, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.05957172758009982, 0.21875, 'X[48] <= 0.996\\nsquared_error = 0.25\\nsamples = 126\\nvalue = 11.353'),\n", - " Text(0.059249718241829015, 0.15625, 'X[45] <= 0.924\\nsquared_error = 0.218\\nsamples = 125\\nvalue = 11.369'),\n", - " Text(0.05860569956528739, 0.09375, 'X[45] <= 0.844\\nsquared_error = 0.21\\nsamples = 119\\nvalue = 11.397'),\n", - " Text(0.058283690227016585, 0.03125, 'squared_error = 0.201\\nsamples = 111\\nvalue = 11.367'),\n", - " Text(0.0589277089035582, 0.03125, 'squared_error = 0.142\\nsamples = 8\\nvalue = 11.813'),\n", - " Text(0.05989373691837063, 0.09375, 'X[38] <= 1.5\\nsquared_error = 0.065\\nsamples = 6\\nvalue = 10.82'),\n", - " Text(0.05957172758009982, 0.03125, 'squared_error = 0.0\\nsamples = 4\\nvalue = 10.994'),\n", - " Text(0.060215746256641445, 0.03125, 'squared_error = 0.015\\nsamples = 2\\nvalue = 10.474'),\n", - " Text(0.05989373691837063, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.306'),\n", - " Text(0.06295282563194332, 0.28125, 'X[53] <= 0.76\\nsquared_error = 0.221\\nsamples = 9\\nvalue = 10.494'),\n", - " Text(0.06263081629367252, 0.21875, 'X[50] <= 0.901\\nsquared_error = 0.108\\nsamples = 8\\nvalue = 10.369'),\n", - " Text(0.06182579294799549, 0.15625, 'X[57] <= 0.575\\nsquared_error = 0.013\\nsamples = 6\\nvalue = 10.535'),\n", - " Text(0.061181774271453875, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.003\\nsamples = 3\\nvalue = 10.636'),\n", - " Text(0.06085976493318306, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", - " Text(0.06150378360972468, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.06246981162453711, 0.09375, 'X[52] <= 0.83\\nsquared_error = 0.002\\nsamples = 3\\nvalue = 10.433'),\n", - " Text(0.062147802286266304, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.463'),\n", - " Text(0.06279182096280791, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.373'),\n", - " Text(0.06343583963934954, 0.15625, 'X[54] <= 0.47\\nsquared_error = 0.065\\nsamples = 2\\nvalue = 9.871'),\n", - " Text(0.06311383030107873, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", - " Text(0.06375784897762035, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.06327483497021413, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.493'),\n", - " Text(0.06456287232329738, 0.34375, 'X[48] <= 0.548\\nsquared_error = 3.655\\nsamples = 3\\nvalue = 9.772'),\n", - " Text(0.06424086298502657, 0.28125, 'X[50] <= 0.997\\nsquared_error = 0.086\\nsamples = 2\\nvalue = 11.114'),\n", - " Text(0.06391885364675576, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.06456287232329738, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.408'),\n", - " Text(0.06488488166156818, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.09'),\n", - " Text(0.0655289003381098, 0.40625, 'X[52] <= 0.705\\nsquared_error = 32.469\\nsamples = 2\\nvalue = 5.698'),\n", - " Text(0.06520689099983899, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.396'),\n", - " Text(0.06585090967638062, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.08230105860569957, 0.65625, 'X[1] <= 524.5\\nsquared_error = 0.548\\nsamples = 1493\\nvalue = 11.638'),\n", - " Text(0.06919175656094027, 0.59375, 'X[35] <= -2.0\\nsquared_error = 16.388\\nsamples = 7\\nvalue = 9.87'),\n", - " Text(0.06886974722266946, 0.53125, 'X[53] <= 0.574\\nsquared_error = 0.176\\nsamples = 6\\nvalue = 11.515'),\n", - " Text(0.06806472387699243, 0.46875, 'X[1] <= 420.0\\nsquared_error = 0.058\\nsamples = 4\\nvalue = 11.765'),\n", - " Text(0.0674207052004508, 0.40625, 'X[60] <= 0.1\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 11.993'),\n", - " Text(0.06709869586218001, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.101'),\n", - " Text(0.06774271453872162, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.884'),\n", - " Text(0.06870874255353406, 0.40625, 'X[22] <= 1.5\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.537'),\n", - " Text(0.06838673321526324, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.06903075189180487, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", - " Text(0.06967477056834648, 0.46875, 'X[55] <= 0.597\\nsquared_error = 0.038\\nsamples = 2\\nvalue = 11.016'),\n", - " Text(0.06935276123007567, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.212'),\n", - " Text(0.06999677990661729, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.06951376589921107, 0.53125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.09541036065045887, 0.59375, 'X[8] <= 3.5\\nsquared_error = 0.458\\nsamples = 1486\\nvalue = 11.646'),\n", - " Text(0.07988850426662374, 0.53125, 'X[4] <= 2.5\\nsquared_error = 0.406\\nsamples = 1324\\nvalue = 11.619'),\n", - " Text(0.07288480115923361, 0.46875, 'X[49] <= 0.973\\nsquared_error = 0.444\\nsamples = 259\\nvalue = 11.473'),\n", - " Text(0.07138544517791016, 0.40625, 'X[46] <= 0.989\\nsquared_error = 0.245\\nsamples = 255\\nvalue = 11.499'),\n", - " Text(0.06967477056834648, 0.34375, 'X[10] <= 1.5\\nsquared_error = 0.234\\nsamples = 250\\nvalue = 11.483'),\n", - " Text(0.06818547737884399, 0.28125, 'X[34] <= 0.5\\nsquared_error = 0.22\\nsamples = 248\\nvalue = 11.493'),\n", - " Text(0.06617291901465143, 0.21875, 'X[43] <= 0.707\\nsquared_error = 0.42\\nsamples = 20\\nvalue = 11.141'),\n", - " Text(0.06504588633070359, 0.15625, 'X[62] <= 0.787\\nsquared_error = 0.127\\nsamples = 16\\nvalue = 11.39'),\n", - " Text(0.06440186765416198, 0.09375, 'X[61] <= 0.331\\nsquared_error = 0.067\\nsamples = 14\\nvalue = 11.487'),\n", - " Text(0.06407985831589116, 0.03125, 'squared_error = 0.038\\nsamples = 6\\nvalue = 11.301'),\n", - " Text(0.06472387699243277, 0.03125, 'squared_error = 0.043\\nsamples = 8\\nvalue = 11.627'),\n", - " Text(0.06568990500724521, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.708'),\n", - " Text(0.0653678956689744, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.06601191434551602, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.06729995169859926, 0.15625, 'X[61] <= 0.586\\nsquared_error = 0.355\\nsamples = 4\\nvalue = 10.145'),\n", - " Text(0.06697794236032845, 0.09375, 'X[45] <= 0.556\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 9.808'),\n", - " Text(0.06665593302205763, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.903'),\n", - " Text(0.06729995169859926, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.06762196103687007, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.07019803574303655, 0.21875, 'X[55] <= 0.776\\nsquared_error = 0.19\\nsamples = 228\\nvalue = 11.524'),\n", - " Text(0.0689099983899533, 0.15625, 'X[54] <= 0.991\\nsquared_error = 0.182\\nsamples = 184\\nvalue = 11.48'),\n", - " Text(0.0682659797134117, 0.09375, 'X[49] <= 0.844\\nsquared_error = 0.175\\nsamples = 181\\nvalue = 11.469'),\n", - " Text(0.06794397037514088, 0.03125, 'squared_error = 0.166\\nsamples = 149\\nvalue = 11.426'),\n", - " Text(0.0685879890516825, 0.03125, 'squared_error = 0.17\\nsamples = 32\\nvalue = 11.666'),\n", - " Text(0.06955401706649493, 0.09375, 'X[57] <= 0.353\\nsquared_error = 0.095\\nsamples = 3\\nvalue = 12.171'),\n", - " Text(0.06923200772822412, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", - " Text(0.06987602640476574, 0.03125, 'squared_error = -0.0\\nsamples = 2\\nvalue = 12.388'),\n", - " Text(0.07148607309611979, 0.15625, 'X[58] <= 0.953\\nsquared_error = 0.186\\nsamples = 44\\nvalue = 11.708'),\n", - " Text(0.07084205441957817, 0.09375, 'X[58] <= 0.29\\nsquared_error = 0.147\\nsamples = 42\\nvalue = 11.753'),\n", - " Text(0.07052004508130735, 0.03125, 'squared_error = 0.144\\nsamples = 12\\nvalue = 11.471'),\n", - " Text(0.07116406375784898, 0.03125, 'squared_error = 0.103\\nsamples = 30\\nvalue = 11.866'),\n", - " Text(0.0721300917726614, 0.09375, 'X[58] <= 0.961\\nsquared_error = 0.048\\nsamples = 2\\nvalue = 10.75'),\n", - " Text(0.0718080824343906, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.968'),\n", - " Text(0.07245210111093221, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.532'),\n", - " Text(0.07116406375784898, 0.28125, 'X[60] <= 0.31\\nsquared_error = 0.362\\nsamples = 2\\nvalue = 10.218'),\n", - " Text(0.07084205441957817, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.07148607309611979, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.07309611978747384, 0.34375, 'X[50] <= 0.751\\nsquared_error = 0.088\\nsamples = 5\\nvalue = 12.326'),\n", - " Text(0.07245210111093221, 0.28125, 'X[49] <= 0.373\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 12.635'),\n", - " Text(0.0721300917726614, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.692'),\n", - " Text(0.07277411044920302, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.578'),\n", - " Text(0.07374013846401546, 0.28125, 'X[0] <= 27684.602\\nsquared_error = 0.038\\nsamples = 3\\nvalue = 12.121'),\n", - " Text(0.07341812912574465, 0.21875, 'X[50] <= 0.797\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 12.256'),\n", - " Text(0.07309611978747384, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.211'),\n", - " Text(0.07374013846401546, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", - " Text(0.07406214780228626, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", - " Text(0.07438415714055707, 0.40625, 'X[2] <= 1962.5\\nsquared_error = 10.278\\nsamples = 4\\nvalue = 9.798'),\n", - " Text(0.07406214780228626, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.248'),\n", - " Text(0.07470616647882788, 0.34375, 'X[1] <= 1600.0\\nsquared_error = 0.015\\nsamples = 3\\nvalue = 11.648'),\n", - " Text(0.07438415714055707, 0.28125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.736'),\n", - " Text(0.0750281758170987, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.472'),\n", - " Text(0.08689220737401385, 0.46875, 'X[48] <= 0.923\\nsquared_error = 0.39\\nsamples = 1065\\nvalue = 11.654'),\n", - " Text(0.08168974400257607, 0.40625, 'X[6] <= 1.5\\nsquared_error = 0.261\\nsamples = 995\\nvalue = 11.675'),\n", - " Text(0.07748349702141362, 0.34375, 'X[59] <= 0.989\\nsquared_error = 0.414\\nsamples = 244\\nvalue = 11.542'),\n", - " Text(0.07623571083561423, 0.28125, 'X[29] <= 1.5\\nsquared_error = 0.255\\nsamples = 242\\nvalue = 11.57'),\n", - " Text(0.07470616647882788, 0.21875, 'X[10] <= 1.5\\nsquared_error = 0.239\\nsamples = 223\\nvalue = 11.538'),\n", - " Text(0.07438415714055707, 0.15625, 'X[1] <= 2250.0\\nsquared_error = 0.231\\nsamples = 221\\nvalue = 11.528'),\n", - " Text(0.07374013846401546, 0.09375, 'X[51] <= 0.039\\nsquared_error = 0.227\\nsamples = 174\\nvalue = 11.579'),\n", - " Text(0.07341812912574465, 0.03125, 'squared_error = 0.079\\nsamples = 3\\nvalue = 10.67'),\n", - " Text(0.07406214780228626, 0.03125, 'squared_error = 0.215\\nsamples = 171\\nvalue = 11.595'),\n", - " Text(0.0750281758170987, 0.09375, 'X[52] <= 0.04\\nsquared_error = 0.2\\nsamples = 47\\nvalue = 11.341'),\n", - " Text(0.07470616647882788, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.07535018515536951, 0.03125, 'squared_error = 0.16\\nsamples = 46\\nvalue = 11.31'),\n", - " Text(0.0750281758170987, 0.15625, 'squared_error = -0.0\\nsamples = 2\\nvalue = 12.612'),\n", - " Text(0.07776525519240057, 0.21875, 'X[0] <= 21000.0\\nsquared_error = 0.278\\nsamples = 19\\nvalue = 11.954'),\n", - " Text(0.07696023184672356, 0.15625, 'X[57] <= 0.187\\nsquared_error = 0.115\\nsamples = 13\\nvalue = 12.188'),\n", - " Text(0.07631621317018193, 0.09375, 'X[59] <= 0.893\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.585'),\n", - " Text(0.07599420383191112, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", - " Text(0.07663822250845274, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.608'),\n", - " Text(0.07760425052326518, 0.09375, 'X[56] <= 0.858\\nsquared_error = 0.057\\nsamples = 11\\nvalue = 12.298'),\n", - " Text(0.07728224118499437, 0.03125, 'squared_error = 0.023\\nsamples = 10\\nvalue = 12.358'),\n", - " Text(0.07792625986153598, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.0785702785380776, 0.15625, 'X[51] <= 0.414\\nsquared_error = 0.257\\nsamples = 6\\nvalue = 11.448'),\n", - " Text(0.07824826919980679, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.468'),\n", - " Text(0.07889228787634842, 0.09375, 'X[51] <= 0.632\\nsquared_error = 0.058\\nsamples = 5\\nvalue = 11.244'),\n", - " Text(0.0785702785380776, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.07921429721461923, 0.03125, 'squared_error = 0.016\\nsamples = 4\\nvalue = 11.35'),\n", - " Text(0.07873128320721301, 0.28125, 'X[55] <= 0.782\\nsquared_error = 8.133\\nsamples = 2\\nvalue = 8.15'),\n", - " Text(0.0784092738689422, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.298'),\n", - " Text(0.07905329254548382, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", - " Text(0.08589599098373853, 0.34375, 'X[9] <= 1.5\\nsquared_error = 0.204\\nsamples = 751\\nvalue = 11.719'),\n", - " Text(0.08372242795041056, 0.28125, 'X[1] <= 1650.0\\nsquared_error = 0.283\\nsamples = 50\\nvalue = 12.071'),\n", - " Text(0.08211238125905651, 0.21875, 'X[53] <= 0.291\\nsquared_error = 0.208\\nsamples = 28\\nvalue = 11.802'),\n", - " Text(0.08082434390597328, 0.15625, 'X[43] <= 0.598\\nsquared_error = 0.116\\nsamples = 7\\nvalue = 11.342'),\n", - " Text(0.08018032522943165, 0.09375, 'X[58] <= 0.359\\nsquared_error = 0.035\\nsamples = 4\\nvalue = 11.084'),\n", - " Text(0.07985831589116084, 0.03125, 'squared_error = 0.015\\nsamples = 3\\nvalue = 10.995'),\n", - " Text(0.08050233456770246, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.08146836258251489, 0.09375, 'X[53] <= 0.108\\nsquared_error = 0.017\\nsamples = 3\\nvalue = 11.687'),\n", - " Text(0.08114635324424409, 0.03125, 'squared_error = 0.005\\nsamples = 2\\nvalue = 11.606'),\n", - " Text(0.0817903719207857, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", - " Text(0.08340041861213975, 0.15625, 'X[61] <= 0.952\\nsquared_error = 0.145\\nsamples = 21\\nvalue = 11.956'),\n", - " Text(0.08275639993559814, 0.09375, 'X[57] <= 0.024\\nsquared_error = 0.096\\nsamples = 19\\nvalue = 12.029'),\n", - " Text(0.08243439059732732, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.794'),\n", - " Text(0.08307840927386895, 0.03125, 'squared_error = 0.067\\nsamples = 18\\nvalue = 11.987'),\n", - " Text(0.08404443728868137, 0.09375, 'X[6] <= 3.5\\nsquared_error = 0.065\\nsamples = 2\\nvalue = 11.258'),\n", - " Text(0.08372242795041056, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.08436644662695218, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", - " Text(0.0853324746417646, 0.21875, 'X[51] <= 0.121\\nsquared_error = 0.168\\nsamples = 22\\nvalue = 12.414'),\n", - " Text(0.0850104653034938, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.592'),\n", - " Text(0.08565448398003542, 0.15625, 'X[60] <= 0.89\\nsquared_error = 0.107\\nsamples = 21\\nvalue = 12.358'),\n", - " Text(0.0853324746417646, 0.09375, 'X[61] <= 0.932\\nsquared_error = 0.049\\nsamples = 20\\nvalue = 12.303'),\n", - " Text(0.0850104653034938, 0.03125, 'squared_error = 0.017\\nsamples = 19\\nvalue = 12.344'),\n", - " Text(0.08565448398003542, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.08597649331830623, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", - " Text(0.0880695540170665, 0.28125, 'X[1] <= 1306.5\\nsquared_error = 0.189\\nsamples = 701\\nvalue = 11.694'),\n", - " Text(0.08726453067138946, 0.21875, 'X[0] <= 445841.5\\nsquared_error = 0.122\\nsamples = 164\\nvalue = 11.561'),\n", - " Text(0.08694252133311867, 0.15625, 'X[34] <= 0.5\\nsquared_error = 0.098\\nsamples = 163\\nvalue = 11.573'),\n", - " Text(0.08662051199484785, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.08726453067138946, 0.09375, 'X[53] <= 0.24\\nsquared_error = 0.09\\nsamples = 162\\nvalue = 11.566'),\n", - " Text(0.08694252133311867, 0.03125, 'squared_error = 0.07\\nsamples = 38\\nvalue = 11.705'),\n", - " Text(0.08758654000966028, 0.03125, 'squared_error = 0.089\\nsamples = 124\\nvalue = 11.523'),\n", - " Text(0.08758654000966028, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.582'),\n", - " Text(0.08887457736274353, 0.21875, 'X[1] <= 1318.5\\nsquared_error = 0.202\\nsamples = 537\\nvalue = 11.734'),\n", - " Text(0.08855256802447271, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.872'),\n", - " Text(0.08919658670101432, 0.15625, 'X[16] <= -3.5\\nsquared_error = 0.194\\nsamples = 536\\nvalue = 11.73'),\n", - " Text(0.08855256802447271, 0.09375, 'X[55] <= 0.725\\nsquared_error = 1.046\\nsamples = 3\\nvalue = 10.653'),\n", - " Text(0.0882305586862019, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.08887457736274353, 0.03125, 'squared_error = 0.008\\nsamples = 2\\nvalue = 11.374'),\n", - " Text(0.08984060537755595, 0.09375, 'X[0] <= 11001.5\\nsquared_error = 0.183\\nsamples = 533\\nvalue = 11.736'),\n", - " Text(0.08951859603928514, 0.03125, 'squared_error = 0.2\\nsamples = 251\\nvalue = 11.654'),\n", - " Text(0.09016261471582676, 0.03125, 'squared_error = 0.156\\nsamples = 282\\nvalue = 11.809'),\n", - " Text(0.09209467074545162, 0.40625, 'X[58] <= 0.054\\nsquared_error = 2.127\\nsamples = 70\\nvalue = 11.357'),\n", - " Text(0.09112864273063918, 0.34375, 'X[6] <= 4.0\\nsquared_error = 14.257\\nsamples = 5\\nvalue = 9.141'),\n", - " Text(0.09080663339236839, 0.28125, 'X[52] <= 0.613\\nsquared_error = 0.093\\nsamples = 4\\nvalue = 11.025'),\n", - " Text(0.09016261471582676, 0.21875, 'X[48] <= 0.958\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 10.733'),\n", - " Text(0.08984060537755595, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.645'),\n", - " Text(0.09048462405409757, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.09145065206891, 0.21875, 'X[48] <= 0.954\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 11.316'),\n", - " Text(0.09112864273063918, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.225'),\n", - " Text(0.09177266140718081, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.408'),\n", - " Text(0.09145065206891, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 1.609'),\n", - " Text(0.09306069876026404, 0.34375, 'X[49] <= 0.04\\nsquared_error = 0.787\\nsamples = 65\\nvalue = 11.527'),\n", - " Text(0.09241668008372243, 0.28125, 'X[51] <= 0.683\\nsquared_error = 9.845\\nsamples = 2\\nvalue = 8.213'),\n", - " Text(0.09209467074545162, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.09273868942199323, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.075'),\n", - " Text(0.09370471743680567, 0.28125, 'X[44] <= 0.009\\nsquared_error = 0.14\\nsamples = 63\\nvalue = 11.632'),\n", - " Text(0.09338270809853486, 0.21875, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.612'),\n", - " Text(0.09402672677507648, 0.21875, 'X[47] <= 0.069\\nsquared_error = 0.112\\nsamples = 61\\nvalue = 11.6'),\n", - " Text(0.09273868942199323, 0.15625, 'X[0] <= 13125.0\\nsquared_error = 0.096\\nsamples = 7\\nvalue = 12.0'),\n", - " Text(0.09209467074545162, 0.09375, 'X[45] <= 0.36\\nsquared_error = 0.025\\nsamples = 5\\nvalue = 11.837'),\n", - " Text(0.09177266140718081, 0.03125, 'squared_error = 0.004\\nsamples = 2\\nvalue = 11.672'),\n", - " Text(0.09241668008372243, 0.03125, 'squared_error = 0.009\\nsamples = 3\\nvalue = 11.947'),\n", - " Text(0.09338270809853486, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 12.409'),\n", - " Text(0.09306069876026404, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", - " Text(0.09370471743680567, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.09531476412815972, 0.15625, 'X[59] <= 0.031\\nsquared_error = 0.091\\nsamples = 54\\nvalue = 11.548'),\n", - " Text(0.09467074545161809, 0.09375, 'X[42] <= -2.0\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 12.254'),\n", - " Text(0.09434873611334729, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", - " Text(0.0949927547898889, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.09595878280470134, 0.09375, 'X[58] <= 0.616\\nsquared_error = 0.074\\nsamples = 52\\nvalue = 11.521'),\n", - " Text(0.09563677346643053, 0.03125, 'squared_error = 0.044\\nsamples = 34\\nvalue = 11.408'),\n", - " Text(0.09628079214297215, 0.03125, 'squared_error = 0.061\\nsamples = 18\\nvalue = 11.735'),\n", - " Text(0.110932217034294, 0.53125, 'X[59] <= 0.829\\nsquared_error = 0.833\\nsamples = 162\\nvalue = 11.868'),\n", - " Text(0.10380776042505233, 0.46875, 'X[22] <= 1.5\\nsquared_error = 0.362\\nsamples = 137\\nvalue = 11.968'),\n", - " Text(0.09801159233617775, 0.40625, 'X[10] <= -3.0\\nsquared_error = 0.273\\nsamples = 103\\nvalue = 12.114'),\n", - " Text(0.09628079214297215, 0.34375, 'X[45] <= 0.451\\nsquared_error = 0.281\\nsamples = 3\\nvalue = 10.997'),\n", - " Text(0.09595878280470134, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.09660280148124295, 0.28125, 'X[59] <= 0.474\\nsquared_error = 0.067\\nsamples = 2\\nvalue = 11.341'),\n", - " Text(0.09628079214297215, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.599'),\n", - " Text(0.09692481081951376, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.082'),\n", - " Text(0.09974239252938336, 0.34375, 'X[2] <= 1935.0\\nsquared_error = 0.234\\nsamples = 100\\nvalue = 12.147'),\n", - " Text(0.0983738528417324, 0.28125, 'X[50] <= 0.73\\nsquared_error = 0.096\\nsamples = 9\\nvalue = 12.684'),\n", - " Text(0.09756882949605539, 0.21875, 'X[52] <= 0.701\\nsquared_error = 0.014\\nsamples = 7\\nvalue = 12.839'),\n", - " Text(0.09692481081951376, 0.15625, 'X[0] <= 2275.0\\nsquared_error = 0.004\\nsamples = 5\\nvalue = 12.9'),\n", - " Text(0.09660280148124295, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", - " Text(0.09724682015778457, 0.09375, 'X[47] <= 0.569\\nsquared_error = 0.001\\nsamples = 4\\nvalue = 12.87'),\n", - " Text(0.09692481081951376, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.899'),\n", - " Text(0.09756882949605539, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.841'),\n", - " Text(0.09821284817259701, 0.15625, 'X[51] <= 0.57\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 12.689'),\n", - " Text(0.0978908388343262, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.09853485751086781, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.612'),\n", - " Text(0.09917887618740943, 0.21875, 'X[50] <= 0.776\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 12.139'),\n", - " Text(0.09885686684913862, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.09950088552568025, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.073'),\n", - " Text(0.1011109322170343, 0.28125, 'X[1] <= 1050.0\\nsquared_error = 0.216\\nsamples = 91\\nvalue = 12.094'),\n", - " Text(0.10078892287876348, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.1014329415553051, 0.21875, 'X[0] <= 21780.0\\nsquared_error = 0.183\\nsamples = 90\\nvalue = 12.114'),\n", - " Text(0.10014490420222187, 0.15625, 'X[29] <= 1.5\\nsquared_error = 0.169\\nsamples = 79\\nvalue = 12.052'),\n", - " Text(0.09950088552568025, 0.09375, 'X[21] <= 1.5\\nsquared_error = 0.17\\nsamples = 66\\nvalue = 11.991'),\n", - " Text(0.09917887618740943, 0.03125, 'squared_error = 0.149\\nsamples = 65\\nvalue = 11.972'),\n", - " Text(0.09982289486395106, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.218'),\n", - " Text(0.10078892287876348, 0.09375, 'X[49] <= 0.233\\nsquared_error = 0.052\\nsamples = 13\\nvalue = 12.36'),\n", - " Text(0.10046691354049267, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.96'),\n", - " Text(0.1011109322170343, 0.03125, 'squared_error = 0.024\\nsamples = 12\\nvalue = 12.31'),\n", - " Text(0.10272097890838834, 0.15625, 'X[61] <= 0.597\\nsquared_error = 0.051\\nsamples = 11\\nvalue = 12.561'),\n", - " Text(0.10207696023184672, 0.09375, 'X[55] <= 0.805\\nsquared_error = 0.025\\nsamples = 5\\nvalue = 12.76'),\n", - " Text(0.10175495089357592, 0.03125, 'squared_error = 0.007\\nsamples = 3\\nvalue = 12.876'),\n", - " Text(0.10239896957011753, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 12.586'),\n", - " Text(0.10336499758492997, 0.09375, 'X[55] <= 0.389\\nsquared_error = 0.013\\nsamples = 6\\nvalue = 12.396'),\n", - " Text(0.10304298824665915, 0.03125, 'squared_error = 0.003\\nsamples = 4\\nvalue = 12.467'),\n", - " Text(0.10368700692320078, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 12.254'),\n", - " Text(0.1096039285139269, 0.40625, 'X[57] <= 0.303\\nsquared_error = 0.373\\nsamples = 34\\nvalue = 11.527'),\n", - " Text(0.10698760264047658, 0.34375, 'X[55] <= 0.598\\nsquared_error = 0.519\\nsamples = 10\\nvalue = 11.058'),\n", - " Text(0.10578006762196104, 0.28125, 'X[44] <= 0.865\\nsquared_error = 0.285\\nsamples = 7\\nvalue = 10.715'),\n", - " Text(0.10497504427628401, 0.21875, 'X[51] <= 0.386\\nsquared_error = 0.083\\nsamples = 5\\nvalue = 10.434'),\n", - " Text(0.10433102559974239, 0.15625, 'X[9] <= 1.5\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.756'),\n", - " Text(0.10400901626147158, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", - " Text(0.1046530349380132, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.10561906295282564, 0.15625, 'X[46] <= 0.275\\nsquared_error = 0.006\\nsamples = 3\\nvalue = 10.219'),\n", - " Text(0.10529705361455483, 0.09375, 'X[22] <= 2.5\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 10.265'),\n", - " Text(0.10497504427628401, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.222'),\n", - " Text(0.10561906295282564, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.10594107229109644, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.127'),\n", - " Text(0.10658509096763806, 0.21875, 'X[0] <= 24434.602\\nsquared_error = 0.102\\nsamples = 2\\nvalue = 11.417'),\n", - " Text(0.10626308162936725, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.097'),\n", - " Text(0.10690710030590887, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.736'),\n", - " Text(0.10819513765899211, 0.28125, 'X[47] <= 0.545\\nsquared_error = 0.148\\nsamples = 3\\nvalue = 11.86'),\n", - " Text(0.1078731283207213, 0.21875, 'X[44] <= 0.523\\nsquared_error = 0.027\\nsamples = 2\\nvalue = 12.115'),\n", - " Text(0.1075511189824505, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.278'),\n", - " Text(0.10819513765899211, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.951'),\n", - " Text(0.10851714699726292, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.11222025438737723, 0.34375, 'X[61] <= 0.992\\nsquared_error = 0.182\\nsamples = 24\\nvalue = 11.723'),\n", - " Text(0.11189824504910642, 0.28125, 'X[58] <= 0.692\\nsquared_error = 0.061\\nsamples = 23\\nvalue = 11.796'),\n", - " Text(0.11012719368861697, 0.21875, 'X[57] <= 0.599\\nsquared_error = 0.054\\nsamples = 16\\nvalue = 11.706'),\n", - " Text(0.10883915633553373, 0.15625, 'X[46] <= 0.167\\nsquared_error = 0.044\\nsamples = 8\\nvalue = 11.561'),\n", - " Text(0.10819513765899211, 0.09375, 'X[57] <= 0.438\\nsquared_error = 0.021\\nsamples = 2\\nvalue = 11.839'),\n", - " Text(0.1078731283207213, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.983'),\n", - " Text(0.10851714699726292, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.10948317501207536, 0.09375, 'X[38] <= 1.5\\nsquared_error = 0.017\\nsamples = 6\\nvalue = 11.468'),\n", - " Text(0.10916116567380454, 0.03125, 'squared_error = 0.004\\nsamples = 5\\nvalue = 11.415'),\n", - " Text(0.10980518435034615, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", - " Text(0.11141523104170022, 0.15625, 'X[48] <= 0.45\\nsquared_error = 0.022\\nsamples = 8\\nvalue = 11.852'),\n", - " Text(0.11077121236515859, 0.09375, 'X[55] <= 0.461\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 12.052'),\n", - " Text(0.11044920302688778, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.128'),\n", - " Text(0.1110932217034294, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.977'),\n", - " Text(0.11205924971824183, 0.09375, 'X[44] <= 0.655\\nsquared_error = 0.009\\nsamples = 6\\nvalue = 11.785'),\n", - " Text(0.11173724037997101, 0.03125, 'squared_error = 0.001\\nsamples = 4\\nvalue = 11.851'),\n", - " Text(0.11238125905651264, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.653'),\n", - " Text(0.11366929640959587, 0.21875, 'X[52] <= 0.39\\nsquared_error = 0.019\\nsamples = 7\\nvalue = 12.0'),\n", - " Text(0.11302527773305426, 0.15625, 'X[51] <= 0.094\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 12.18'),\n", - " Text(0.11270326839478345, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.155'),\n", - " Text(0.11334728707132506, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.1143133150861375, 0.15625, 'X[2] <= 1989.0\\nsquared_error = 0.007\\nsamples = 5\\nvalue = 11.928'),\n", - " Text(0.11399130574786669, 0.09375, 'X[28] <= 0.5\\nsquared_error = 0.002\\nsamples = 4\\nvalue = 11.966'),\n", - " Text(0.11366929640959587, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.925'),\n", - " Text(0.1143133150861375, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 12.007'),\n", - " Text(0.11463532442440831, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.11254226372564805, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.043'),\n", - " Text(0.11805667364353566, 0.46875, 'X[59] <= 0.836\\nsquared_error = 3.056\\nsamples = 25\\nvalue = 11.316'),\n", - " Text(0.11705039446143937, 0.40625, 'X[53] <= 0.732\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 5.569'),\n", - " Text(0.11672838512316858, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.521'),\n", - " Text(0.11737240379971019, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.617'),\n", - " Text(0.11906295282563194, 0.40625, 'X[53] <= 0.918\\nsquared_error = 0.2\\nsamples = 23\\nvalue = 11.816'),\n", - " Text(0.11801642247625181, 0.34375, 'X[61] <= 0.909\\nsquared_error = 0.128\\nsamples = 21\\nvalue = 11.729'),\n", - " Text(0.11688938979230398, 0.28125, 'X[54] <= 0.096\\nsquared_error = 0.079\\nsamples = 18\\nvalue = 11.815'),\n", - " Text(0.11656738045403317, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", - " Text(0.11721139913057478, 0.21875, 'X[51] <= 0.453\\nsquared_error = 0.051\\nsamples = 17\\nvalue = 11.858'),\n", - " Text(0.11592336177749155, 0.15625, 'X[27] <= 0.5\\nsquared_error = 0.043\\nsamples = 6\\nvalue = 12.061'),\n", - " Text(0.11527934310094992, 0.09375, 'X[52] <= 0.412\\nsquared_error = 0.009\\nsamples = 4\\nvalue = 11.932'),\n", - " Text(0.11495733376267912, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.783'),\n", - " Text(0.11560135243922073, 0.03125, 'squared_error = 0.003\\nsamples = 3\\nvalue = 11.982'),\n", - " Text(0.11656738045403317, 0.09375, 'X[62] <= 0.356\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 12.318'),\n", - " Text(0.11624537111576236, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.11688938979230398, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.429'),\n", - " Text(0.11849943648365803, 0.15625, 'X[52] <= 0.223\\nsquared_error = 0.02\\nsamples = 11\\nvalue = 11.747'),\n", - " Text(0.1178554178071164, 0.09375, 'X[47] <= 0.216\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 11.981'),\n", - " Text(0.1175334084688456, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.11817742714538722, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", - " Text(0.11914345516019964, 0.09375, 'X[51] <= 0.959\\nsquared_error = 0.009\\nsamples = 9\\nvalue = 11.695'),\n", - " Text(0.11882144582192884, 0.03125, 'squared_error = 0.005\\nsamples = 6\\nvalue = 11.747'),\n", - " Text(0.11946546449847045, 0.03125, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.593'),\n", - " Text(0.11914345516019964, 0.28125, 'X[51] <= 0.156\\nsquared_error = 0.112\\nsamples = 3\\nvalue = 11.216'),\n", - " Text(0.11882144582192884, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.653'),\n", - " Text(0.11946546449847045, 0.21875, 'X[45] <= 0.473\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.998'),\n", - " Text(0.11914345516019964, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.84'),\n", - " Text(0.11978747383674127, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.12010948317501208, 0.34375, 'X[58] <= 0.612\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 12.727'),\n", - " Text(0.11978747383674127, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.506'),\n", - " Text(0.12043149251328289, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.948'),\n", - " Text(0.17093035541780713, 0.71875, 'X[42] <= -2.5\\nsquared_error = 0.684\\nsamples = 2468\\nvalue = 11.231'),\n", - " Text(0.15910783287715344, 0.65625, 'X[8] <= 3.5\\nsquared_error = 0.913\\nsamples = 1001\\nvalue = 11.053'),\n", - " Text(0.14441112542263726, 0.59375, 'X[6] <= 1.5\\nsquared_error = 0.919\\nsamples = 947\\nvalue = 11.016'),\n", - " Text(0.13016221220415392, 0.53125, 'X[1] <= 686.0\\nsquared_error = 0.981\\nsamples = 484\\nvalue = 10.859'),\n", - " Text(0.12294719046852359, 0.46875, 'X[10] <= 1.5\\nsquared_error = 5.368\\nsamples = 25\\nvalue = 9.989'),\n", - " Text(0.12262518113025278, 0.40625, 'X[54] <= 0.08\\nsquared_error = 1.261\\nsamples = 24\\nvalue = 10.405'),\n", - " Text(0.12139752052809531, 0.34375, 'X[45] <= 0.171\\nsquared_error = 1.325\\nsamples = 2\\nvalue = 7.366'),\n", - " Text(0.1210755111898245, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.215'),\n", - " Text(0.12171952986636612, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.12385284173241023, 0.34375, 'X[8] <= 1.5\\nsquared_error = 0.339\\nsamples = 22\\nvalue = 10.681'),\n", - " Text(0.12236354854290775, 0.28125, 'X[47] <= 0.334\\nsquared_error = 0.045\\nsamples = 3\\nvalue = 9.915'),\n", - " Text(0.12204153920463694, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.12268555788117855, 0.21875, 'X[47] <= 0.477\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.065'),\n", - " Text(0.12236354854290775, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.043'),\n", - " Text(0.12300756721944936, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.086'),\n", - " Text(0.12534213492191273, 0.28125, 'X[53] <= 0.247\\nsquared_error = 0.278\\nsamples = 19\\nvalue = 10.802'),\n", - " Text(0.1239735952342618, 0.21875, 'X[59] <= 0.368\\nsquared_error = 0.067\\nsamples = 5\\nvalue = 10.295'),\n", - " Text(0.12365158589599098, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.12429560457253261, 0.15625, 'X[48] <= 0.644\\nsquared_error = 0.028\\nsamples = 4\\nvalue = 10.19'),\n", - " Text(0.1239735952342618, 0.09375, 'X[52] <= 0.635\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 10.286'),\n", - " Text(0.12365158589599098, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.309'),\n", - " Text(0.12429560457253261, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.24'),\n", - " Text(0.12461761391080341, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.12671067460956367, 0.21875, 'X[55] <= 0.796\\nsquared_error = 0.23\\nsamples = 14\\nvalue = 10.983'),\n", - " Text(0.12590565126388664, 0.15625, 'X[54] <= 0.417\\nsquared_error = 0.166\\nsamples = 11\\nvalue = 11.146'),\n", - " Text(0.12526163258734505, 0.09375, 'X[8] <= 2.5\\nsquared_error = 0.02\\nsamples = 4\\nvalue = 10.763'),\n", - " Text(0.12493962324907422, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", - " Text(0.12558364192561583, 0.03125, 'squared_error = 0.001\\nsamples = 3\\nvalue = 10.684'),\n", - " Text(0.12654966994042827, 0.09375, 'X[53] <= 0.614\\nsquared_error = 0.118\\nsamples = 7\\nvalue = 11.364'),\n", - " Text(0.12622766060215745, 0.03125, 'squared_error = 0.046\\nsamples = 3\\nvalue = 11.018'),\n", - " Text(0.12687167927869908, 0.03125, 'squared_error = 0.015\\nsamples = 4\\nvalue = 11.623'),\n", - " Text(0.1275156979552407, 0.15625, 'X[57] <= 0.32\\nsquared_error = 0.012\\nsamples = 3\\nvalue = 10.388'),\n", - " Text(0.1271936886169699, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.545'),\n", - " Text(0.12783770729351152, 0.09375, 'squared_error = -0.0\\nsamples = 2\\nvalue = 10.309'),\n", - " Text(0.12326919980679439, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.13737723393978427, 0.46875, 'X[48] <= 0.051\\nsquared_error = 0.698\\nsamples = 459\\nvalue = 10.906'),\n", - " Text(0.1312993076799227, 0.40625, 'X[62] <= 0.028\\nsquared_error = 2.904\\nsamples = 22\\nvalue = 10.172'),\n", - " Text(0.13097729834165192, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.248'),\n", - " Text(0.13162131701819352, 0.34375, 'X[49] <= 0.028\\nsquared_error = 1.292\\nsamples = 21\\nvalue = 10.454'),\n", - " Text(0.1312993076799227, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.908'),\n", - " Text(0.13194332635646433, 0.28125, 'X[56] <= 0.461\\nsquared_error = 0.696\\nsamples = 20\\nvalue = 10.632'),\n", - " Text(0.12960875865400096, 0.21875, 'X[47] <= 0.404\\nsquared_error = 0.711\\nsamples = 7\\nvalue = 9.85'),\n", - " Text(0.12880373530832395, 0.15625, 'X[26] <= 1.5\\nsquared_error = 0.206\\nsamples = 3\\nvalue = 9.019'),\n", - " Text(0.12848172597005314, 0.09375, 'X[60] <= 0.674\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 8.72'),\n", - " Text(0.12815971663178233, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.12880373530832395, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.923'),\n", - " Text(0.12912574464659476, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.13041378199967799, 0.15625, 'X[57] <= 0.364\\nsquared_error = 0.184\\nsamples = 4\\nvalue = 10.473'),\n", - " Text(0.12976976332313636, 0.09375, 'X[0] <= 5250.0\\nsquared_error = 0.059\\nsamples = 2\\nvalue = 10.839'),\n", - " Text(0.12944775398486555, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.13009177266140717, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.082'),\n", - " Text(0.1310578006762196, 0.09375, 'X[55] <= 0.9\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 10.106'),\n", - " Text(0.1307357913379488, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.13137981001449042, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.1342778940589277, 0.21875, 'X[47] <= 0.261\\nsquared_error = 0.182\\nsamples = 13\\nvalue = 11.053'),\n", - " Text(0.13298985670584446, 0.15625, 'X[20] <= 1.5\\nsquared_error = 0.072\\nsamples = 4\\nvalue = 11.526'),\n", - " Text(0.13234583802930286, 0.09375, 'X[45] <= 0.366\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.787'),\n", - " Text(0.13202382869103205, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.871'),\n", - " Text(0.13266784736757367, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.704'),\n", - " Text(0.13363387538238608, 0.09375, 'X[0] <= 6015.0\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.264'),\n", - " Text(0.13331186604411527, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.277'),\n", - " Text(0.1339558847206569, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.252'),\n", - " Text(0.13556593141201095, 0.15625, 'X[22] <= 1.5\\nsquared_error = 0.087\\nsamples = 9\\nvalue = 10.842'),\n", - " Text(0.13492191273546933, 0.09375, 'X[46] <= 0.199\\nsquared_error = 0.033\\nsamples = 6\\nvalue = 11.013'),\n", - " Text(0.13459990339719852, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.669'),\n", - " Text(0.13524392207374014, 0.03125, 'squared_error = 0.012\\nsamples = 5\\nvalue = 11.082'),\n", - " Text(0.13620995008855258, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 10.501'),\n", - " Text(0.13588794075028177, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", - " Text(0.1365319594268234, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.1434551601996458, 0.40625, 'X[15] <= -3.5\\nsquared_error = 0.559\\nsamples = 437\\nvalue = 10.943'),\n", - " Text(0.14313315086137499, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.226'),\n", - " Text(0.1437771695379166, 0.34375, 'X[8] <= 1.5\\nsquared_error = 0.535\\nsamples = 436\\nvalue = 10.935'),\n", - " Text(0.1405570761552085, 0.28125, 'X[35] <= -2.5\\nsquared_error = 0.764\\nsamples = 54\\nvalue = 10.562'),\n", - " Text(0.13830301078731283, 0.21875, 'X[52] <= 0.096\\nsquared_error = 0.422\\nsamples = 39\\nvalue = 10.789'),\n", - " Text(0.137175978103365, 0.15625, 'X[47] <= 0.602\\nsquared_error = 0.113\\nsamples = 4\\nvalue = 11.817'),\n", - " Text(0.13685396876509417, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", - " Text(0.1374979874416358, 0.09375, 'X[47] <= 0.806\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 12.121'),\n", - " Text(0.137175978103365, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.1378199967799066, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.324'),\n", - " Text(0.13943004347126067, 0.15625, 'X[52] <= 0.954\\nsquared_error = 0.323\\nsamples = 35\\nvalue = 10.671'),\n", - " Text(0.13878602479471905, 0.09375, 'X[47] <= 0.944\\nsquared_error = 0.241\\nsamples = 32\\nvalue = 10.765'),\n", - " Text(0.13846401545644824, 0.03125, 'squared_error = 0.186\\nsamples = 31\\nvalue = 10.809'),\n", - " Text(0.13910803413298986, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.393'),\n", - " Text(0.1400740621478023, 0.09375, 'X[58] <= 0.235\\nsquared_error = 0.107\\nsamples = 3\\nvalue = 9.672'),\n", - " Text(0.13975205280953149, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.1403960714860731, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.903'),\n", - " Text(0.14281114152310417, 0.21875, 'X[49] <= 0.718\\nsquared_error = 1.173\\nsamples = 15\\nvalue = 9.973'),\n", - " Text(0.14200611817742714, 0.15625, 'X[53] <= 0.844\\nsquared_error = 0.58\\nsamples = 11\\nvalue = 10.46'),\n", - " Text(0.14136209950088552, 0.09375, 'X[49] <= 0.435\\nsquared_error = 0.285\\nsamples = 9\\nvalue = 10.738'),\n", - " Text(0.1410400901626147, 0.03125, 'squared_error = 0.106\\nsamples = 6\\nvalue = 10.417'),\n", - " Text(0.14168410883915633, 0.03125, 'squared_error = 0.024\\nsamples = 3\\nvalue = 11.38'),\n", - " Text(0.14265013685396877, 0.09375, 'X[2] <= 1919.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 9.21'),\n", - " Text(0.14232812751569796, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.14297214619223958, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.1436161648687812, 0.15625, 'X[60] <= 0.215\\nsquared_error = 0.359\\nsamples = 4\\nvalue = 8.635'),\n", - " Text(0.1432941555305104, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.21'),\n", - " Text(0.14393817420705202, 0.09375, 'X[48] <= 0.396\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 8.059'),\n", - " Text(0.1436161648687812, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.824'),\n", - " Text(0.1442601835453228, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.294'),\n", - " Text(0.1469972629206247, 0.28125, 'X[4] <= 4.5\\nsquared_error = 0.48\\nsamples = 382\\nvalue = 10.988'),\n", - " Text(0.14619223957494767, 0.21875, 'X[61] <= 0.99\\nsquared_error = 0.454\\nsamples = 375\\nvalue = 10.97'),\n", - " Text(0.14587023023667686, 0.15625, 'X[7] <= 1.5\\nsquared_error = 0.439\\nsamples = 374\\nvalue = 10.976'),\n", - " Text(0.14522621156013524, 0.09375, 'X[48] <= 0.975\\nsquared_error = 0.52\\nsamples = 48\\nvalue = 10.683'),\n", - " Text(0.14490420222186443, 0.03125, 'squared_error = 0.366\\nsamples = 45\\nvalue = 10.777'),\n", - " Text(0.14554822089840605, 0.03125, 'squared_error = 0.721\\nsamples = 3\\nvalue = 9.278'),\n", - " Text(0.1465142489132185, 0.09375, 'X[62] <= 0.017\\nsquared_error = 0.413\\nsamples = 326\\nvalue = 11.02'),\n", - " Text(0.14619223957494767, 0.03125, 'squared_error = 0.431\\nsamples = 6\\nvalue = 11.807'),\n", - " Text(0.1468362582514893, 0.03125, 'squared_error = 0.401\\nsamples = 320\\nvalue = 11.005'),\n", - " Text(0.1465142489132185, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.14780228626630174, 0.21875, 'X[21] <= 1.5\\nsquared_error = 0.889\\nsamples = 7\\nvalue = 11.971'),\n", - " Text(0.14748027692803092, 0.15625, 'X[1] <= 1466.0\\nsquared_error = 0.209\\nsamples = 6\\nvalue = 11.627'),\n", - " Text(0.1471582675897601, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.14780228626630174, 0.09375, 'X[58] <= 0.559\\nsquared_error = 0.051\\nsamples = 5\\nvalue = 11.81'),\n", - " Text(0.14748027692803092, 0.03125, 'squared_error = 0.015\\nsamples = 3\\nvalue = 11.976'),\n", - " Text(0.14812429560457252, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.561'),\n", - " Text(0.14812429560457252, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.036'),\n", - " Text(0.1586600386411206, 0.53125, 'X[62] <= 1.0\\nsquared_error = 0.801\\nsamples = 463\\nvalue = 11.18'),\n", - " Text(0.1583380293028498, 0.46875, 'X[4] <= 2.5\\nsquared_error = 0.77\\nsamples = 462\\nvalue = 11.189'),\n", - " Text(0.15482611495733375, 0.40625, 'X[50] <= 0.991\\nsquared_error = 0.663\\nsamples = 188\\nvalue = 11.001'),\n", - " Text(0.15315569151505393, 0.34375, 'X[45] <= 0.97\\nsquared_error = 0.482\\nsamples = 186\\nvalue = 11.032'),\n", - " Text(0.1507808726453067, 0.28125, 'X[9] <= 1.5\\nsquared_error = 0.435\\nsamples = 180\\nvalue = 11.0'),\n", - " Text(0.14941233295765577, 0.21875, 'X[6] <= 2.5\\nsquared_error = 0.072\\nsamples = 7\\nvalue = 11.759'),\n", - " Text(0.14876831428111414, 0.15625, 'X[53] <= 0.818\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 12.153'),\n", - " Text(0.14844630494284333, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.14909032361938496, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.101'),\n", - " Text(0.1500563516341974, 0.15625, 'X[21] <= 1.5\\nsquared_error = 0.013\\nsamples = 5\\nvalue = 11.602'),\n", - " Text(0.14973434229592658, 0.09375, 'X[51] <= 0.691\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 11.735'),\n", - " Text(0.14941233295765577, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.1500563516341974, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.1503783609724682, 0.09375, 'squared_error = -0.0\\nsamples = 3\\nvalue = 11.513'),\n", - " Text(0.15214941233295765, 0.21875, 'X[59] <= 0.022\\nsquared_error = 0.426\\nsamples = 173\\nvalue = 10.969'),\n", - " Text(0.15134438898728064, 0.15625, 'X[47] <= 0.667\\nsquared_error = 0.378\\nsamples = 3\\nvalue = 12.089'),\n", - " Text(0.15102237964900983, 0.09375, 'X[49] <= 0.118\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 12.52'),\n", - " Text(0.15070037031073902, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", - " Text(0.15134438898728064, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.429'),\n", - " Text(0.15166639832555145, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", - " Text(0.15295443567863468, 0.15625, 'X[54] <= 0.994\\nsquared_error = 0.404\\nsamples = 170\\nvalue = 10.949'),\n", - " Text(0.15231041700209305, 0.09375, 'X[2] <= 1987.5\\nsquared_error = 0.383\\nsamples = 168\\nvalue = 10.933'),\n", - " Text(0.15198840766382224, 0.03125, 'squared_error = 0.355\\nsamples = 165\\nvalue = 10.953'),\n", - " Text(0.15263242634036386, 0.03125, 'squared_error = 0.67\\nsamples = 3\\nvalue = 9.821'),\n", - " Text(0.1535984543551763, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.179\\nsamples = 2\\nvalue = 12.342'),\n", - " Text(0.1532764450169055, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.1539204636934471, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.15553051038480115, 0.28125, 'X[2] <= 1955.0\\nsquared_error = 0.906\\nsamples = 6\\nvalue = 12.003'),\n", - " Text(0.15488649170825955, 0.21875, 'X[54] <= 0.745\\nsquared_error = 0.191\\nsamples = 4\\nvalue = 11.386'),\n", - " Text(0.15456448236998874, 0.15625, 'X[57] <= 0.891\\nsquared_error = 0.007\\nsamples = 3\\nvalue = 11.634'),\n", - " Text(0.15424247303171792, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.695'),\n", - " Text(0.15488649170825955, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.15520850104653036, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.641'),\n", - " Text(0.15617452906134277, 0.21875, 'X[59] <= 0.327\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 13.238'),\n", - " Text(0.15585251972307196, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", - " Text(0.15649653839961358, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", - " Text(0.15649653839961358, 0.34375, 'X[58] <= 0.555\\nsquared_error = 9.064\\nsamples = 2\\nvalue = 8.117'),\n", - " Text(0.15617452906134277, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.106'),\n", - " Text(0.1568185477378844, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.127'),\n", - " Text(0.1618499436483658, 0.40625, 'X[62] <= 0.034\\nsquared_error = 0.803\\nsamples = 274\\nvalue = 11.318'),\n", - " Text(0.15850909676380615, 0.34375, 'X[49] <= 0.166\\nsquared_error = 8.605\\nsamples = 14\\nvalue = 10.385'),\n", - " Text(0.15818708742553533, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.15883110610207696, 0.28125, 'X[1] <= 1650.0\\nsquared_error = 0.333\\nsamples = 13\\nvalue = 11.183'),\n", - " Text(0.15794558042183224, 0.21875, 'X[60] <= 0.356\\nsquared_error = 0.184\\nsamples = 10\\nvalue = 10.95'),\n", - " Text(0.1571405570761552, 0.15625, 'X[46] <= 0.591\\nsquared_error = 0.035\\nsamples = 4\\nvalue = 10.547'),\n", - " Text(0.15649653839961358, 0.09375, 'X[53] <= 0.674\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.708'),\n", - " Text(0.15617452906134277, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.1568185477378844, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.15778457575269683, 0.09375, 'X[62] <= 0.02\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 10.386'),\n", - " Text(0.15746256641442602, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.15810658509096764, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.463'),\n", - " Text(0.15875060376750927, 0.15625, 'X[46] <= 0.059\\nsquared_error = 0.103\\nsamples = 6\\nvalue = 11.219'),\n", - " Text(0.15842859442923846, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.15907261310578008, 0.09375, 'X[1] <= 1225.0\\nsquared_error = 0.007\\nsamples = 5\\nvalue = 11.079'),\n", - " Text(0.15875060376750927, 0.03125, 'squared_error = 0.002\\nsamples = 4\\nvalue = 11.042'),\n", - " Text(0.15939462244405087, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", - " Text(0.15971663178232168, 0.21875, 'X[43] <= 0.66\\nsquared_error = 0.044\\nsamples = 3\\nvalue = 11.961'),\n", - " Text(0.15939462244405087, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.1600386411205925, 0.15625, 'X[54] <= 0.711\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 12.095'),\n", - " Text(0.15971663178232168, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.983'),\n", - " Text(0.1603606504588633, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.16519079053292546, 0.34375, 'X[52] <= 0.995\\nsquared_error = 0.333\\nsamples = 260\\nvalue = 11.368'),\n", - " Text(0.16486878119465465, 0.28125, 'X[0] <= 90200.0\\nsquared_error = 0.303\\nsamples = 259\\nvalue = 11.357'),\n", - " Text(0.16293672516502977, 0.21875, 'X[54] <= 0.762\\nsquared_error = 0.235\\nsamples = 230\\nvalue = 11.309'),\n", - " Text(0.16164868781194655, 0.15625, 'X[60] <= 0.973\\nsquared_error = 0.225\\nsamples = 177\\nvalue = 11.362'),\n", - " Text(0.16100466913540493, 0.09375, 'X[60] <= 0.667\\nsquared_error = 0.214\\nsamples = 174\\nvalue = 11.376'),\n", - " Text(0.16068265979713411, 0.03125, 'squared_error = 0.2\\nsamples = 122\\nvalue = 11.3'),\n", - " Text(0.16132667847367574, 0.03125, 'squared_error = 0.204\\nsamples = 52\\nvalue = 11.554'),\n", - " Text(0.16229270648848818, 0.09375, 'X[15] <= 1.5\\nsquared_error = 0.231\\nsamples = 3\\nvalue = 10.575'),\n", - " Text(0.16197069715021736, 0.03125, 'squared_error = 0.008\\nsamples = 2\\nvalue = 10.911'),\n", - " Text(0.162614715826759, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.16422476251811302, 0.15625, 'X[48] <= 0.197\\nsquared_error = 0.225\\nsamples = 53\\nvalue = 11.132'),\n", - " Text(0.1635807438415714, 0.09375, 'X[50] <= 0.973\\nsquared_error = 0.15\\nsamples = 15\\nvalue = 11.433'),\n", - " Text(0.16325873450330058, 0.03125, 'squared_error = 0.064\\nsamples = 14\\nvalue = 11.513'),\n", - " Text(0.1639027531798422, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.16486878119465465, 0.09375, 'X[49] <= 0.885\\nsquared_error = 0.205\\nsamples = 38\\nvalue = 11.013'),\n", - " Text(0.16454677185638383, 0.03125, 'squared_error = 0.159\\nsamples = 34\\nvalue = 10.934'),\n", - " Text(0.16519079053292546, 0.03125, 'squared_error = 0.098\\nsamples = 4\\nvalue = 11.681'),\n", - " Text(0.1668008372242795, 0.21875, 'X[46] <= 0.99\\nsquared_error = 0.685\\nsamples = 29\\nvalue = 11.733'),\n", - " Text(0.1664788278860087, 0.15625, 'X[61] <= 0.937\\nsquared_error = 0.474\\nsamples = 28\\nvalue = 11.823'),\n", - " Text(0.1661568185477379, 0.09375, 'X[48] <= 0.6\\nsquared_error = 0.34\\nsamples = 27\\nvalue = 11.749'),\n", - " Text(0.16583480920946708, 0.03125, 'squared_error = 0.205\\nsamples = 19\\nvalue = 11.971'),\n", - " Text(0.1664788278860087, 0.03125, 'squared_error = 0.265\\nsamples = 8\\nvalue = 11.222'),\n", - " Text(0.1668008372242795, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.816'),\n", - " Text(0.1671228465625503, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.16551279987119627, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.226'),\n", - " Text(0.1589820479793914, 0.46875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 7.313'),\n", - " Text(0.17380454033166962, 0.59375, 'X[60] <= 0.881\\nsquared_error = 0.36\\nsamples = 54\\nvalue = 11.711'),\n", - " Text(0.1705039446143938, 0.53125, 'X[47] <= 0.2\\nsquared_error = 0.271\\nsamples = 50\\nvalue = 11.789'),\n", - " Text(0.16808887457736274, 0.46875, 'X[20] <= 1.5\\nsquared_error = 0.098\\nsamples = 7\\nvalue = 11.268'),\n", - " Text(0.16776686523909193, 0.40625, 'X[53] <= 0.085\\nsquared_error = 0.049\\nsamples = 6\\nvalue = 11.171'),\n", - " Text(0.16744485590082112, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", - " Text(0.16808887457736274, 0.34375, 'X[58] <= 0.552\\nsquared_error = 0.009\\nsamples = 5\\nvalue = 11.263'),\n", - " Text(0.16776686523909193, 0.28125, 'X[54] <= 0.382\\nsquared_error = 0.001\\nsamples = 4\\nvalue = 11.308'),\n", - " Text(0.16744485590082112, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.362'),\n", - " Text(0.16808887457736274, 0.21875, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.29'),\n", - " Text(0.16841088391563355, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", - " Text(0.16841088391563355, 0.40625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.849'),\n", - " Text(0.1729190146514249, 0.46875, 'X[55] <= 0.026\\nsquared_error = 0.248\\nsamples = 43\\nvalue = 11.874'),\n", - " Text(0.17259700531315408, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.434'),\n", - " Text(0.1732410239896957, 0.40625, 'X[44] <= 0.869\\nsquared_error = 0.204\\nsamples = 42\\nvalue = 11.908'),\n", - " Text(0.17034293994525843, 0.34375, 'X[57] <= 0.046\\nsquared_error = 0.129\\nsamples = 35\\nvalue = 12.008'),\n", - " Text(0.1700209306069876, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.947'),\n", - " Text(0.1706649492835292, 0.28125, 'X[62] <= 0.664\\nsquared_error = 0.099\\nsamples = 34\\nvalue = 12.04'),\n", - " Text(0.16873289325390436, 0.21875, 'X[51] <= 0.093\\nsquared_error = 0.091\\nsamples = 19\\nvalue = 12.16'),\n", - " Text(0.16792786990822733, 0.15625, 'X[51] <= 0.079\\nsquared_error = 0.002\\nsamples = 3\\nvalue = 12.554'),\n", - " Text(0.16760586056995652, 0.09375, 'X[55] <= 0.725\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 12.525'),\n", - " Text(0.1672838512316857, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.525'),\n", - " Text(0.16792786990822733, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.525'),\n", - " Text(0.16824987924649815, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.612'),\n", - " Text(0.1695379165995814, 0.15625, 'X[1] <= 1150.0\\nsquared_error = 0.074\\nsamples = 16\\nvalue = 12.087'),\n", - " Text(0.16889389792303977, 0.09375, 'X[43] <= 0.455\\nsquared_error = 0.02\\nsamples = 9\\nvalue = 12.235'),\n", - " Text(0.16857188858476896, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.977'),\n", - " Text(0.16921590726131058, 0.03125, 'squared_error = 0.002\\nsamples = 7\\nvalue = 12.309'),\n", - " Text(0.17018193527612302, 0.09375, 'X[47] <= 0.493\\nsquared_error = 0.077\\nsamples = 7\\nvalue = 11.896'),\n", - " Text(0.1698599259378522, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", - " Text(0.1705039446143938, 0.03125, 'squared_error = 0.026\\nsamples = 5\\nvalue = 12.049'),\n", - " Text(0.17259700531315408, 0.21875, 'X[0] <= 16500.0\\nsquared_error = 0.066\\nsamples = 15\\nvalue = 11.887'),\n", - " Text(0.17179198196747705, 0.15625, 'X[46] <= 0.916\\nsquared_error = 0.029\\nsamples = 11\\nvalue = 12.006'),\n", - " Text(0.17146997262920624, 0.09375, 'X[56] <= 0.445\\nsquared_error = 0.013\\nsamples = 10\\nvalue = 11.964'),\n", - " Text(0.17114796329093543, 0.03125, 'squared_error = 0.003\\nsamples = 4\\nvalue = 11.857'),\n", - " Text(0.17179198196747705, 0.03125, 'squared_error = 0.006\\nsamples = 6\\nvalue = 12.036'),\n", - " Text(0.17211399130574787, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.429'),\n", - " Text(0.17340202865883111, 0.15625, 'X[44] <= 0.502\\nsquared_error = 0.019\\nsamples = 4\\nvalue = 11.557'),\n", - " Text(0.1727580099822895, 0.09375, 'X[17] <= 1.5\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.432'),\n", - " Text(0.17243600064401868, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", - " Text(0.1730800193205603, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.17404604733537274, 0.09375, 'X[21] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.683'),\n", - " Text(0.17372403799710193, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.67'),\n", - " Text(0.17436805667364352, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", - " Text(0.176139108034133, 0.34375, 'X[0] <= 7275.0\\nsquared_error = 0.274\\nsamples = 7\\nvalue = 11.405'),\n", - " Text(0.17501207535018515, 0.28125, 'X[17] <= 1.5\\nsquared_error = 0.072\\nsamples = 4\\nvalue = 10.993'),\n", - " Text(0.17436805667364352, 0.21875, 'X[55] <= 0.66\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 11.231'),\n", - " Text(0.17404604733537274, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.17469006601191434, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.306'),\n", - " Text(0.17565609402672677, 0.21875, 'X[62] <= 0.215\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.756'),\n", - " Text(0.17533408468845596, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", - " Text(0.17597810336499758, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.17726614071808083, 0.28125, 'X[49] <= 0.531\\nsquared_error = 0.016\\nsamples = 3\\nvalue = 11.954'),\n", - " Text(0.17694413137981002, 0.21875, 'X[55] <= 0.62\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 12.044'),\n", - " Text(0.1766221220415392, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", - " Text(0.17726614071808083, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", - " Text(0.17758815005635165, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.17710513604894543, 0.53125, 'X[50] <= 0.287\\nsquared_error = 0.448\\nsamples = 4\\nvalue = 10.742'),\n", - " Text(0.17678312671067462, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.752'),\n", - " Text(0.17742714538721624, 0.46875, 'X[41] <= 0.5\\nsquared_error = 0.144\\nsamples = 3\\nvalue = 10.405'),\n", - " Text(0.17710513604894543, 0.40625, 'X[1] <= 860.0\\nsquared_error = 0.027\\nsamples = 2\\nvalue = 10.656'),\n", - " Text(0.17678312671067462, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", - " Text(0.17742714538721624, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.491'),\n", - " Text(0.17774915472548705, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", - " Text(0.1827528779584608, 0.65625, 'X[57] <= 0.999\\nsquared_error = 0.491\\nsamples = 1467\\nvalue = 11.352'),\n", - " Text(0.18243086862018998, 0.59375, 'X[54] <= 0.001\\nsquared_error = 0.465\\nsamples = 1466\\nvalue = 11.356'),\n", - " Text(0.17863468040573177, 0.53125, 'X[46] <= 0.496\\nsquared_error = 9.56\\nsamples = 2\\nvalue = 8.198'),\n", - " Text(0.17831267106746096, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.106'),\n", - " Text(0.17895668974400258, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.1862270568346482, 0.53125, 'X[1] <= 512.5\\nsquared_error = 0.438\\nsamples = 1464\\nvalue = 11.36'),\n", - " Text(0.1796007084205442, 0.46875, 'X[45] <= 0.977\\nsquared_error = 9.075\\nsamples = 13\\nvalue = 10.277'),\n", - " Text(0.1792786990822734, 0.40625, 'X[1] <= 122.0\\nsquared_error = 0.297\\nsamples = 12\\nvalue = 11.133'),\n", - " Text(0.17823216873289324, 0.34375, 'X[1] <= 99.5\\nsquared_error = 0.109\\nsamples = 2\\nvalue = 12.098'),\n", - " Text(0.17791015939462243, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.429'),\n", - " Text(0.17855417807116405, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.768'),\n", - " Text(0.18032522943165352, 0.34375, 'X[56] <= 0.449\\nsquared_error = 0.111\\nsamples = 10\\nvalue = 10.94'),\n", - " Text(0.17919819674770568, 0.28125, 'X[58] <= 0.595\\nsquared_error = 0.028\\nsamples = 7\\nvalue = 11.133'),\n", - " Text(0.17855417807116405, 0.21875, 'X[52] <= 0.519\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 11.318'),\n", - " Text(0.17823216873289324, 0.15625, 'X[47] <= 0.502\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.302'),\n", - " Text(0.17791015939462243, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.314'),\n", - " Text(0.17855417807116405, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.17887618740943487, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.1798422154242473, 0.21875, 'X[27] <= 0.5\\nsquared_error = 0.004\\nsamples = 4\\nvalue = 10.993'),\n", - " Text(0.1795202060859765, 0.15625, 'X[60] <= 0.421\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 10.964'),\n", - " Text(0.17919819674770568, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", - " Text(0.1798422154242473, 0.09375, 'X[46] <= 0.574\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.988'),\n", - " Text(0.1795202060859765, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.99'),\n", - " Text(0.18016422476251812, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.985'),\n", - " Text(0.18016422476251812, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", - " Text(0.18145226211560136, 0.28125, 'X[46] <= 0.713\\nsquared_error = 0.017\\nsamples = 3\\nvalue = 10.492'),\n", - " Text(0.18113025277733055, 0.21875, 'X[58] <= 0.406\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.584'),\n", - " Text(0.18080824343905974, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", - " Text(0.18145226211560136, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.571'),\n", - " Text(0.18177427145387215, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.179922717758815, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.19285340524875222, 0.46875, 'X[6] <= 1.5\\nsquared_error = 0.35\\nsamples = 1451\\nvalue = 11.37'),\n", - " Text(0.18630252777330542, 0.40625, 'X[43] <= 0.004\\nsquared_error = 0.342\\nsamples = 603\\nvalue = 11.246'),\n", - " Text(0.18402833682176784, 0.34375, 'X[58] <= 0.356\\nsquared_error = 1.332\\nsamples = 2\\nvalue = 13.072'),\n", - " Text(0.18370632748349702, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.18435034616003865, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 14.226'),\n", - " Text(0.18857671872484302, 0.34375, 'X[29] <= 0.5\\nsquared_error = 0.328\\nsamples = 601\\nvalue = 11.239'),\n", - " Text(0.18499436483658027, 0.28125, 'X[54] <= 0.64\\nsquared_error = 0.357\\nsamples = 403\\nvalue = 11.181'),\n", - " Text(0.18290130413782, 0.21875, 'X[62] <= 0.02\\nsquared_error = 0.315\\nsamples = 253\\nvalue = 11.281'),\n", - " Text(0.18209628079214296, 0.15625, 'X[53] <= 0.751\\nsquared_error = 2.213\\nsamples = 2\\nvalue = 10.005'),\n", - " Text(0.18177427145387215, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.493'),\n", - " Text(0.18241829013041377, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.18370632748349702, 0.15625, 'X[46] <= 0.386\\nsquared_error = 0.287\\nsamples = 251\\nvalue = 11.292'),\n", - " Text(0.1830623088069554, 0.09375, 'X[58] <= 0.068\\nsquared_error = 0.284\\nsamples = 98\\nvalue = 11.414'),\n", - " Text(0.18274029946868459, 0.03125, 'squared_error = 0.265\\nsamples = 2\\nvalue = 9.725'),\n", - " Text(0.1833843181452262, 0.03125, 'squared_error = 0.224\\nsamples = 96\\nvalue = 11.449'),\n", - " Text(0.18435034616003865, 0.09375, 'X[57] <= 0.016\\nsquared_error = 0.273\\nsamples = 153\\nvalue = 11.213'),\n", - " Text(0.18402833682176784, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.788'),\n", - " Text(0.18467235549830946, 0.03125, 'squared_error = 0.258\\nsamples = 152\\nvalue = 11.203'),\n", - " Text(0.18708742553534052, 0.21875, 'X[44] <= 0.992\\nsquared_error = 0.381\\nsamples = 150\\nvalue = 11.011'),\n", - " Text(0.1862824021896635, 0.15625, 'X[59] <= 0.101\\nsquared_error = 0.334\\nsamples = 148\\nvalue = 11.033'),\n", - " Text(0.18563838351312187, 0.09375, 'X[56] <= 0.228\\nsquared_error = 0.443\\nsamples = 7\\nvalue = 10.326'),\n", - " Text(0.18531637417485108, 0.03125, 'squared_error = 0.103\\nsamples = 4\\nvalue = 9.815'),\n", - " Text(0.18596039285139268, 0.03125, 'squared_error = 0.086\\nsamples = 3\\nvalue = 11.006'),\n", - " Text(0.18692642086620512, 0.09375, 'X[46] <= 0.73\\nsquared_error = 0.302\\nsamples = 141\\nvalue = 11.068'),\n", - " Text(0.1866044115279343, 0.03125, 'squared_error = 0.267\\nsamples = 100\\nvalue = 11.182'),\n", - " Text(0.18724843020447593, 0.03125, 'squared_error = 0.281\\nsamples = 41\\nvalue = 10.791'),\n", - " Text(0.18789244888101755, 0.15625, 'X[43] <= 0.454\\nsquared_error = 1.176\\nsamples = 2\\nvalue = 9.379'),\n", - " Text(0.18757043954274674, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.463'),\n", - " Text(0.18821445821928837, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.294'),\n", - " Text(0.19215907261310577, 0.28125, 'X[0] <= 1950.0\\nsquared_error = 0.247\\nsamples = 198\\nvalue = 11.359'),\n", - " Text(0.19030751891804862, 0.21875, 'X[0] <= 1775.0\\nsquared_error = 0.3\\nsamples = 17\\nvalue = 11.728'),\n", - " Text(0.1895024955723716, 0.15625, 'X[1] <= 1575.0\\nsquared_error = 0.157\\nsamples = 15\\nvalue = 11.581'),\n", - " Text(0.18885847689583, 0.09375, 'X[1] <= 1250.0\\nsquared_error = 0.014\\nsamples = 5\\nvalue = 11.181'),\n", - " Text(0.18853646755755918, 0.03125, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.273'),\n", - " Text(0.18918048623410078, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.042'),\n", - " Text(0.1901465142489132, 0.09375, 'X[55] <= 0.629\\nsquared_error = 0.109\\nsamples = 10\\nvalue = 11.782'),\n", - " Text(0.1898245049106424, 0.03125, 'squared_error = 0.07\\nsamples = 7\\nvalue = 11.622'),\n", - " Text(0.19046852358718402, 0.03125, 'squared_error = 0.002\\nsamples = 3\\nvalue = 12.154'),\n", - " Text(0.19111254226372565, 0.15625, 'X[32] <= 0.5\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 12.826'),\n", - " Text(0.19079053292545484, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.887'),\n", - " Text(0.19143455160199646, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.19401062630816293, 0.21875, 'X[50] <= 0.503\\nsquared_error = 0.228\\nsamples = 181\\nvalue = 11.325'),\n", - " Text(0.1927225889550797, 0.15625, 'X[50] <= 0.465\\nsquared_error = 0.166\\nsamples = 87\\nvalue = 11.207'),\n", - " Text(0.19207857027853809, 0.09375, 'X[46] <= 0.004\\nsquared_error = 0.129\\nsamples = 81\\nvalue = 11.254'),\n", - " Text(0.19175656094026727, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.405'),\n", - " Text(0.1924005796168089, 0.03125, 'squared_error = 0.114\\nsamples = 80\\nvalue = 11.24'),\n", - " Text(0.1933666076316213, 0.09375, 'X[54] <= 0.195\\nsquared_error = 0.248\\nsamples = 6\\nvalue = 10.579'),\n", - " Text(0.1930445982933505, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", - " Text(0.19368861696989212, 0.03125, 'squared_error = 0.075\\nsamples = 5\\nvalue = 10.772'),\n", - " Text(0.19529866366124618, 0.15625, 'X[48] <= 0.926\\nsquared_error = 0.261\\nsamples = 94\\nvalue = 11.433'),\n", - " Text(0.19465464498470456, 0.09375, 'X[60] <= 0.247\\nsquared_error = 0.24\\nsamples = 91\\nvalue = 11.404'),\n", - " Text(0.19433263564643374, 0.03125, 'squared_error = 0.19\\nsamples = 24\\nvalue = 11.151'),\n", - " Text(0.19497665432297537, 0.03125, 'squared_error = 0.227\\nsamples = 67\\nvalue = 11.495'),\n", - " Text(0.1959426823377878, 0.09375, 'X[47] <= 0.49\\nsquared_error = 0.103\\nsamples = 3\\nvalue = 12.313'),\n", - " Text(0.195620672999517, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.19626469167605862, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.087'),\n", - " Text(0.199404282724199, 0.40625, 'X[50] <= 0.005\\nsquared_error = 0.338\\nsamples = 848\\nvalue = 11.458'),\n", - " Text(0.19739172436000643, 0.34375, 'X[45] <= 0.431\\nsquared_error = 8.712\\nsamples = 4\\nvalue = 9.713'),\n", - " Text(0.19706971502173562, 0.28125, 'X[43] <= 0.513\\nsquared_error = 0.019\\nsamples = 3\\nvalue = 11.416'),\n", - " Text(0.1967477056834648, 0.21875, 'X[0] <= 28600.0\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.32'),\n", - " Text(0.19642569634519402, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", - " Text(0.19706971502173562, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", - " Text(0.19739172436000643, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.608'),\n", - " Text(0.19771373369827724, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 4.605'),\n", - " Text(0.20141684108839156, 0.34375, 'X[9] <= 1.5\\nsquared_error = 0.283\\nsamples = 844\\nvalue = 11.467'),\n", - " Text(0.19835775237481887, 0.28125, 'X[4] <= 1.5\\nsquared_error = 0.463\\nsamples = 60\\nvalue = 11.87'),\n", - " Text(0.19803574303654806, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.344'),\n", - " Text(0.19867976171308968, 0.21875, 'X[53] <= 0.938\\nsquared_error = 0.366\\nsamples = 59\\nvalue = 11.828'),\n", - " Text(0.19787473836741265, 0.15625, 'X[61] <= 0.122\\nsquared_error = 0.248\\nsamples = 57\\nvalue = 11.767'),\n", - " Text(0.19723071969087103, 0.09375, 'X[52] <= 0.503\\nsquared_error = 0.197\\nsamples = 4\\nvalue = 11.048'),\n", - " Text(0.1969087103526002, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", - " Text(0.19755272902914184, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", - " Text(0.19851875704395427, 0.09375, 'X[60] <= 0.696\\nsquared_error = 0.21\\nsamples = 53\\nvalue = 11.822'),\n", - " Text(0.19819674770568346, 0.03125, 'squared_error = 0.15\\nsamples = 38\\nvalue = 11.957'),\n", - " Text(0.1988407663822251, 0.03125, 'squared_error = 0.201\\nsamples = 15\\nvalue = 11.48'),\n", - " Text(0.1994847850587667, 0.15625, 'X[53] <= 0.968\\nsquared_error = 0.623\\nsamples = 2\\nvalue = 13.555'),\n", - " Text(0.1991627757204959, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.344'),\n", - " Text(0.19980679439703752, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", - " Text(0.20447592980196425, 0.28125, 'X[0] <= 80520.0\\nsquared_error = 0.256\\nsamples = 784\\nvalue = 11.436'),\n", - " Text(0.202382869103204, 0.21875, 'X[4] <= 2.5\\nsquared_error = 0.236\\nsamples = 701\\nvalue = 11.404'),\n", - " Text(0.20109483175012074, 0.15625, 'X[54] <= 0.839\\nsquared_error = 0.261\\nsamples = 243\\nvalue = 11.278'),\n", - " Text(0.20045081307357912, 0.09375, 'X[1] <= 1850.0\\nsquared_error = 0.196\\nsamples = 202\\nvalue = 11.334'),\n", - " Text(0.20012880373530834, 0.03125, 'squared_error = 0.192\\nsamples = 157\\nvalue = 11.39'),\n", - " Text(0.20077282241184993, 0.03125, 'squared_error = 0.158\\nsamples = 45\\nvalue = 11.138'),\n", - " Text(0.20173885042666237, 0.09375, 'X[47] <= 0.469\\nsquared_error = 0.493\\nsamples = 41\\nvalue = 11.002'),\n", - " Text(0.20141684108839156, 0.03125, 'squared_error = 0.61\\nsamples = 16\\nvalue = 10.514'),\n", - " Text(0.20206085976493318, 0.03125, 'squared_error = 0.169\\nsamples = 25\\nvalue = 11.314'),\n", - " Text(0.20367090645628724, 0.15625, 'X[1] <= 958.5\\nsquared_error = 0.209\\nsamples = 458\\nvalue = 11.472'),\n", - " Text(0.20302688777974562, 0.09375, 'X[0] <= 3700.0\\nsquared_error = 0.176\\nsamples = 27\\nvalue = 11.098'),\n", - " Text(0.2027048784414748, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", - " Text(0.20334889711801643, 0.03125, 'squared_error = 0.133\\nsamples = 26\\nvalue = 11.055'),\n", - " Text(0.20431492513282884, 0.09375, 'X[48] <= 0.957\\nsquared_error = 0.202\\nsamples = 431\\nvalue = 11.495'),\n", - " Text(0.20399291579455806, 0.03125, 'squared_error = 0.193\\nsamples = 413\\nvalue = 11.479'),\n", - " Text(0.20463693447109965, 0.03125, 'squared_error = 0.248\\nsamples = 18\\nvalue = 11.874'),\n", - " Text(0.20656899050072453, 0.21875, 'X[50] <= 0.928\\nsquared_error = 0.351\\nsamples = 83\\nvalue = 11.702'),\n", - " Text(0.2059249718241829, 0.15625, 'X[26] <= 1.5\\nsquared_error = 0.293\\nsamples = 79\\nvalue = 11.654'),\n", - " Text(0.2056029624859121, 0.09375, 'X[61] <= 0.951\\nsquared_error = 0.255\\nsamples = 78\\nvalue = 11.631'),\n", - " Text(0.20528095314764128, 0.03125, 'squared_error = 0.231\\nsamples = 75\\nvalue = 11.664'),\n", - " Text(0.2059249718241829, 0.03125, 'squared_error = 0.121\\nsamples = 3\\nvalue = 10.798'),\n", - " Text(0.2062469811624537, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", - " Text(0.20721300917726615, 0.15625, 'X[45] <= 0.841\\nsquared_error = 0.54\\nsamples = 4\\nvalue = 12.654'),\n", - " Text(0.20689099983899534, 0.09375, 'X[48] <= 0.393\\nsquared_error = 0.063\\nsamples = 3\\nvalue = 12.248'),\n", - " Text(0.20656899050072453, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", - " Text(0.20721300917726615, 0.03125, 'squared_error = 0.012\\nsamples = 2\\nvalue = 12.413'),\n", - " Text(0.20753501851553696, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.87'),\n", - " Text(0.1830748872967316, 0.59375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 5.106'),\n", - " Text(0.3660186438375463, 0.78125, 'X[1] <= 1581.0\\nsquared_error = 0.509\\nsamples = 8801\\nvalue = 11.858'),\n", - " Text(0.2880914405892771, 0.71875, 'X[19] <= 1.5\\nsquared_error = 0.59\\nsamples = 2586\\nvalue = 11.65'),\n", - " Text(0.2612602640476574, 0.65625, 'X[29] <= 0.5\\nsquared_error = 0.538\\nsamples = 2247\\nvalue = 11.685'),\n", - " Text(0.2408705321204315, 0.59375, 'X[21] <= 1.5\\nsquared_error = 0.557\\nsamples = 1847\\nvalue = 11.652'),\n", - " Text(0.22988951054580584, 0.53125, 'X[0] <= 301467.0\\nsquared_error = 0.534\\nsamples = 1817\\nvalue = 11.662'),\n", - " Text(0.21970093382708097, 0.46875, 'X[0] <= 1537.5\\nsquared_error = 0.53\\nsamples = 1788\\nvalue = 11.653'),\n", - " Text(0.21027209789083884, 0.40625, 'X[44] <= 0.033\\nsquared_error = 2.919\\nsamples = 53\\nvalue = 11.306'),\n", - " Text(0.2096280792142972, 0.34375, 'X[56] <= 0.728\\nsquared_error = 31.115\\nsamples = 2\\nvalue = 5.578'),\n", - " Text(0.2093060698760264, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.20995008855256803, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.21091611656738046, 0.34375, 'X[47] <= 0.036\\nsquared_error = 0.476\\nsamples = 51\\nvalue = 11.531'),\n", - " Text(0.21059410722910965, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", - " Text(0.21123812590565128, 0.28125, 'X[2] <= 1965.0\\nsquared_error = 0.301\\nsamples = 50\\nvalue = 11.591'),\n", - " Text(0.209145065206891, 0.21875, 'X[59] <= 0.558\\nsquared_error = 0.801\\nsamples = 7\\nvalue = 11.013'),\n", - " Text(0.20850104653034937, 0.15625, 'X[61] <= 0.223\\nsquared_error = 0.302\\nsamples = 2\\nvalue = 9.76'),\n", - " Text(0.20817903719207856, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", - " Text(0.20882305586862018, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.21'),\n", - " Text(0.20978908388343262, 0.15625, 'X[62] <= 0.133\\nsquared_error = 0.121\\nsamples = 5\\nvalue = 11.515'),\n", - " Text(0.2094670745451618, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.918'),\n", - " Text(0.21011109322170343, 0.09375, 'X[0] <= 1300.0\\nsquared_error = 0.02\\nsamples = 3\\nvalue = 11.246'),\n", - " Text(0.20978908388343262, 0.03125, 'squared_error = 0.005\\nsamples = 2\\nvalue = 11.154'),\n", - " Text(0.21043310255997424, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.43'),\n", - " Text(0.21333118660441153, 0.21875, 'X[53] <= 0.309\\nsquared_error = 0.156\\nsamples = 43\\nvalue = 11.685'),\n", - " Text(0.21204314925132828, 0.15625, 'X[59] <= 0.162\\nsquared_error = 0.1\\nsamples = 6\\nvalue = 11.21'),\n", - " Text(0.21139913057478668, 0.09375, 'X[48] <= 0.799\\nsquared_error = 0.021\\nsamples = 3\\nvalue = 11.489'),\n", - " Text(0.21107712123651587, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.39'),\n", - " Text(0.21172113991305747, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.687'),\n", - " Text(0.2126871679278699, 0.09375, 'X[60] <= 0.217\\nsquared_error = 0.025\\nsamples = 3\\nvalue = 10.932'),\n", - " Text(0.2123651585895991, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", - " Text(0.21300917726614071, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.82'),\n", - " Text(0.21461922395749478, 0.15625, 'X[47] <= 0.635\\nsquared_error = 0.122\\nsamples = 37\\nvalue = 11.762'),\n", - " Text(0.21397520528095315, 0.09375, 'X[27] <= 0.5\\nsquared_error = 0.083\\nsamples = 19\\nvalue = 11.959'),\n", - " Text(0.21365319594268234, 0.03125, 'squared_error = 0.062\\nsamples = 16\\nvalue = 11.885'),\n", - " Text(0.21429721461922396, 0.03125, 'squared_error = 0.011\\nsamples = 3\\nvalue = 12.355'),\n", - " Text(0.2152632426340364, 0.09375, 'X[61] <= 0.947\\nsquared_error = 0.079\\nsamples = 18\\nvalue = 11.555'),\n", - " Text(0.2149412332957656, 0.03125, 'squared_error = 0.049\\nsamples = 17\\nvalue = 11.511'),\n", - " Text(0.21558525197230718, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", - " Text(0.22912976976332314, 0.40625, 'X[28] <= 0.5\\nsquared_error = 0.453\\nsamples = 1735\\nvalue = 11.664'),\n", - " Text(0.22311222025438737, 0.34375, 'X[2] <= 1935.0\\nsquared_error = 0.478\\nsamples = 1559\\nvalue = 11.645'),\n", - " Text(0.22025438737723393, 0.28125, 'X[8] <= 3.5\\nsquared_error = 0.273\\nsamples = 76\\nvalue = 11.921'),\n", - " Text(0.2184833360167445, 0.21875, 'X[51] <= 0.689\\nsquared_error = 0.249\\nsamples = 69\\nvalue = 11.853'),\n", - " Text(0.21719529866366125, 0.15625, 'X[0] <= 4856.0\\nsquared_error = 0.186\\nsamples = 39\\nvalue = 12.018'),\n", - " ...]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABAQAAAEeCAYAAAAdEse1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gd1Zm43+9alkbFQrItWza2JcCNYgy4QYJt0hupS9omm55N2U02PZu2yaaXTdmUTSHZVPJL2Wx6L4tBTgEcCAQCxghjHCMRYcu2LF3JVzq/P86Zq7mjmbkz984tks/7PPeR7txTvvOd/p0yopTCYrFYLBaLxWKxWCwWy6lFptYCWCwWi8VisVgsFovFYqk+1iBgsVgsFovFYrFYLBbLKYg1CFgsFovFYrFYLBaLxXIKYg0CFovFYrFYLBaLxWKxnIJYg4DFYrFYLBaLxWKxWCynINYgYLFYLBaLxWKxWCwWyymINQhYLBaLxWKxWCwWi8VyCmINAhaLxWKxWCwWi8VisZyCWIOAxWKxWCwWi8VisVgspyDWIGCxWCwWi8VisVgsFsspiDUIWCwWi8VisVgsFovFcgpiDQIWi8VisVgsllOG5ubmARFRcT/Nzc0DtZbZYrFYKoUopWotg8VisVgsFovFUhVERLnj3927d5PJZJiammLBggUopRgbG2NiYoIdO3a47lFKSS1ltlgslkphDQIWi8VisVgsllMGr0HgyJEjdHZ25v+GuLcGAYvFMmdpqLUAFovFYrFYLBZLGoiIAG3AQt9nked/9uzZw8jICACtra10dXVx880309HRgVKK8fFxstksvb29brhvBQ6HfI4ppaaql0qLxWJJD2sQsFgsFovFYrHUFSKSAU5j5sQ+zidL+OR9EGDTpk309fUxODjIyMgIo6OjrF+/nlwuR39/P1NTen7f09PjiuQA5zHTuLAQaBWRYRP+AxFx+z/DSqnJNPVmsVgsSbFHBiwWi8VisVgsFUFEGoAOkk/qO4ARgifSUZPuI0qpiSIyqSTj32JHBkRkfolpPA04HpGWsDQfUUqdjJ0Ai8ViicAaBCwWi8VisVgskYhII9BJ8Umuf/W8DThKaavnuQqlRSml2LVrF729vRw8eJC2tjYcxyGbzTI8PAzAzp07XfcVuUNAROZR2i6ITmCM+LrMf5RS2bTTYbFYZjfWIGCxWCwWi8VyiiAiDvEm8v6PQwkTUOBovZ2vb25uHshms0vjunccZ3BsbKy7kjIlwdyTsID4eed1lyP+bgvvZzTRtgqLxTJrsAYBi8VisVgsllmEmRC2EH8i6P3MI9lKvet2xE4IZzeechN3d4e/3CQtM4eB47bcWCz1jTUIWCwWi8VisdQAM0Frp7SL8/wrvXHP2Y/ZCZolKSLSTLwjI37DggMcobSdJfbCRYulCliDgMVisVgsFksZlHAW3J0wdQKjJN++fcSeBbfMBhLcPeH/LACOUVrdqMjdExbLXMUaBCwWi8VisVjI34gfNXkJ21LdTuHkJe7H3hZvsQRg6uJpJD8W0wGcIPnRhiNKqfGqJM5iqTOsQcBisVgsFsucQkSaKG0bfivxtzcfYXpCYd8nb7HUASKSofAYziK0kS+OYWGc5Ea9B5RSY9VJncVSGaxBwGKxWCwWS91hztc3U9rEvpFkq4PeC9CmqpJAi8VSN5j2po3kx34WAVMkNyQcxl7UaakTrEHAYrFYLBZLxSgy0C62agfBE/di54lP2IG2xWKpNGUaLptIfkfCYeCYNVxa0sQaBCwWi8VisRTFbMVNcnGefytukgHvYeCw3YprsVjmKuZok//OkjhHG1qBYeLvfHI/9miTJRBrELBYLBaL5RTCXNbVQbIJ/SK0MWCE0i7Os5d1WSwWSwqIyHzit+FeA0M7cJzSLly0l5/OYaxBwGKxWCyWBDQ3Nw9ks9mlcd07jjM4NjbWnbYcEa/zKrbC1AYcJcGlWUyvLtnXeVksFssspITXo7qfTmCMEu5JqNTrUeulH54rWIOAxWKxWCwJEBGllGL37t10dnbS0dHB5OQkbW1t3H333UxOTjI1NcXatWvp7OxERFBKSUR4pZ4/dYi+ET9s6+hRe/7UYrFYLHEw9yQsINmxBtfdSUq7cHE06h4Ybz+cyWSYmppiwYIFKKVoamri6NGjbNu2zes+sh8+1bEGAYvFYrFYEuAORI4cOUJ7ezsnTpygvb09yn1+ICIinwJeANzJ9IApQ7IL89zPcXtxnsVisVjqEWNIaCH50YaFwDym+7pJYB3Q4t6B4O2HOzs7838jZLEGgQgaai2AxWKxWCz1hrnsaXHIhz179jAyMgJAa2srXV1d7N+/n46ODpRSNDc3k81maW5udsN7DTAE3AV8GfgB0A/cS5GVEIvFYrFYZhumXzthPvcm8Wt2zrlH4lYDD/JfiHjNNdfQ2toa2he7ZLMVObUwp7A7BCwWi8UypzHnJhcyc2LfFfDM/TjoCXzQ521KKfr6+hgcHMRxHBYsWMC6devI5XIcOHCAXC5HY2Mj27ZtQy+S8LGQeBoj4vlb0PNKncm0WCwWi2U24O4QcPvhrq4ujh8/zubNm8nlcgwNDZHL5di0aZPr3u4QiMAaBCwWi8UyazBbENuJnsz7J/unoV/RFDrJZuYkPHQ7vjsQSSBz6EBERJwi6QhKz8kAeaPSc9heBmixWCyWuYDZwZdNqx+2WIOAxWKxWGqIiLSQbOV+Efq24ySr6kfSfPeyaxDYtWsXvb29HDx4kLa2NhzHIZvNMjw8jOM4+QuN0hyIGINIG8l01ol+1VTsXQjYiwctFovFUkeYYwQvBt4AnB7UD09NTXHs2DEcx6G7u5uenh7XL8CLgK8qpSZqlog6xRoELBaLxZIK5t3Ii0i2ep9helIaZ7X7gVp35rPtdUcikkEbBZLsQmhFX+ZULE+8+WbvQrBYLBZLqohIG/BS4LXAH4B3OY7z44T98OFsNvtHYA3wfuCLSqnxigg8C7EGAYvFYrHMIGISGTXZb0XfkJ9kJdpOIusQEWlk5r0LxQw9GZLl/QN2QGaxWCyWIESkHfgn4FXALuDdSqmbywzzEuBtwPnAB4ErlVJjZYo667EGAYvFYpnj+LaZx1297wSOkeys+jG7zfzUJeT4RzGDknv8I+7dDqke/7BYLBZLfSEiHcArgVcAvwDeo5S6LeU4NqMNA1uADwOfUUqdSDOO2YQ1CFgsFsssI+IiuqjJ/gTJzt3bi+gsFcVzQWSSXQgdTF8QGWcXwhDaUGUHOxaLxVLHiMgi4NXAy4AfAu9VSu2tcJwbgbcCO4CPAp9SSh2vZJz1iDUIWCwWSw0RkQamt2bHXb2fT/zJ0BD2VXWWOYKpL8XuQ/DXo6hXSAbWI7uF1GKxWKqDiCxB3w/wIuA7wPuVUv1VluFc4C3AI4CPA59QSg1XU4ZaYg0CFovFkhLm3P1pxJ+oLEavkB4mxmV6TE9YRuyKp8USD/OKKveyy7iXXk6SbBfCA0qpk1VLlMViscxyRGQZ8HrgecD/Az6glDpQY5nWAW8GHgd8GviYUuqBWspUDaxBwGKxWAIw25m9Z6LjTCIWAidINpEYtmeiLZb6wdT9VpIdy1kIjBBzBwLTdd/euWGxWE4pRGQl+tWBzwK+AnxIKfXX2kpViIicBbwJeDJwJfBhpdTfaitV5bAGAYvFckpgbk1Pss14sfGa5JV4h2v9SjyLxVJ9PLuDogyH/t8WULg7KM4rHu3uIIvFMisRkV70JPupwBfQk+yBmgpVBBHpAd4IPAP4IvAfSqn7aitV+liDgMVimXWIyDxmniMutoLfQuG2+6IreEqp0aolymKxnFKIyHwKX+0Yx5gwj2S7EIbsqx0tFkutEZF+YBnwEeCjSqmhGouUCBFZgT7e8DLgOqXUpTUWKVWsQcBisdSUkJvGi62sdQBHiX9j/hBw1K6sWSyW2Yx5teMikr1hZJz4uxDcnU72GJPFYkkNEXkp8Cel1O9qLUs5iMgjgS6l1FW1liVNrEHAYpmDNDc3D2Sz2aVx3TuOMzg2NtadRtwi0kyywap/wFps0Po39LvIc2nIa7FYLHOV2WhwrWX/ZbFYwrF1M5i5oBdrELBY5iAikh+b7d69m4aGBlauXMnk5CQNDQ1MTOhj7j09Pa57lFISEI67pTXu6/AWAw3Em9R7b+e2r8SzWCyWOiDgSFacowzN6CNZcXchhB7Jiuq/2tra2Lt3L93d3UX7L4vFki5u3dy9ezednZ10dHTkx5V79+4FYP78+UxOTrJ9+/ZTpm569SIi9Pb2Mjk5SWNjI7fffjsiQmNjIxdffLHrvu70Yg0CFsscxDugOnLkCO3t7Zw4cYL29vYw9/nGSUR2AZegb8v3X3oVZ6XIXnplsVgspxCeVzvG3R3WBUyh38zQBTS6r20sp/+yWCyVw62bceqlcX9K1M25oJeGWgtgsVjSw2zXPwNgz549jIyMANDa2kpXVxc33ngjHR0dKKUYHx9nYmKCVatWuX4XKKWOA68GTgd2Y1+LZbFYLJYimIsLD5lPUTyvdT0D2OgaA1yuueYaWltbZ/Rh+/fvz/dhzc3NDA8Pp5oOi8USTbG6CZDNZslmT62Nn0FjblcnjuMAcOzYMRYvXhwVTM2wOwQsllmEGUR1A2f6PmeZvwuB/cA6pRR9fX0MDg7iOA4LFixg3bp15HI5Dhw4wMTEBI7jsG3bNnSwjJpPv+dzl+f/v9qLpiwWi8WSFiJyGnA+sBG4wPzd7O2/urq6OH78OJs3byaXy7Fv3z4Aent76enpcfuvnwB/Mp+bgH22v7JY0sVdCQ+rm0NDQziOw7p161z3dbcSXgn8evGPufv7+2lsbGTbtm2u+7rTizUIWCx1hrlF+gxmTvrPNM+PUThp934OKaWmvFsuY8YJkAGWhMR7Jnpb54GwuJVSx8pItsVisVjmKMaY3cv0pN81ACwBbqFwMr+7hP7ryQHh3uoJ80/AzWYXnMViKYFSxpb1NvGtBHNBL9YgYLFUGRHJoN/FGjbx7kCv8vsn3XcB+5VSIzHiUEopdu3aRW9vLwcPHqStrQ3HcchmswwPD9Pd3Z3IiisiDtATIK+7OyEbILP7OWjfCmCxWCxzH3N07TwKV/3PB45TOEH/EwEr+VH9l3tEYOHChaxZs8Z1P6P/EpF2E6cb/0bgXOA+T9yuLAfsvTcWS3G8E19//ZyamiKTyZDNZvOXftbjxLcSRLVZAwMDOI5DJpNhy5Ytrvu604s1CFgsFUBE2ghf5e8FhgmfPN9X7rn9ar8Cxaz+dBFu5FgK3Ev47oLhUuO2WCwWS/XxHGG7gOlJ90Z033cHhRPvPymlhuKEW6n+S0QagDUU7iTYiH5Dws0UGiputW+/sVgKmQuv16sEc0Ev1iBgsZSAWeU/nfAJ8ALgboInwPuVUidqIHbNMDdQB+0ucHcYnCTcQHKv/8Ipi8VisVQP8wra9RROpDeij5r5V/3/opSaqImgJSAiSyg0aGxEGw7uonAnwZ+UUoM1EtNiqUtE5FXAu5RSC2otS70gIq3AUeBZSqlv1lqeONi3DFgsIYjIAsIn/D3o1/F5t/P/zPN90N7OP425gXqv+RRgVpkWUajfrcAzzP/LROSvhO8uOFyNNFgsFsupgIgsZOYEeT36Dhl3gvxR8/fQbN9ur5S6H/il+QB5I/Y5TBtAHgNsFJEJZhpA7rBH4iynMBmgrra/1wEtQA5orbUgcbEGAcspi4jMI3qVv43CyecdwE+ZXuUfrYHYcw4zmBwyn+v8v4tII7CK6bsKzgS2mL9nicgk4bsLDtjdBRaLxTITs9PtLGZuoe9AX/R3E/A74DPAn0+lnW3GiH2j+QB54/UKpvX0ZODfgdNF5DYKdxPcbI/CWU4RBGsQ8NOC3vnaXGtB4mINApY5jblYKGzCvwo9CfVOIH9C4Sr/rF75mAuYraf7zKcAM0BbSGG+bgaeZv5fLiKHCDcYHLZ5bLFY5jrmXpsNFK76b0DvdLsJPZH9kvn/brvDbSamr7jXfH7oPvfo9gK0Xp8JbBCRIQp3EvwJq1vL3MPuEJhJMzCBNgzMCuwdApZZjbkkaAXhk36H8Mngfntp0NzGnHtdRfjdBUJ4+bhnNp2DtVgsFs8qtv+s/wrgL8x8Dd+Rmgg6xzE7EL27L9z8OA19gaF3N8Gf7Y5Dy2xFRK4BLlVKZWotS70gIi8D/gu4TSl1bq3liYM1CFjqHhHpIHzCvxIYJHxS9ze7AmwJQ0Q6CS9bK4ABwsvWkC1bFoulVvjOuXs/OQpXpm8C9trjU7VHRBYx83WI65i+n+EmpvNt1t/PYJn7iMhz0buL2pVSx2ssTl0gIkuB/wD+Ryn1/VrLEwdrELDUHLPKv5LwVdz5zJyM3cX0Ku54DcS2zHGKlMszgUZmlkfv7gJbLi0WSyqISBczz/qvQbc3BRNJpdRAbaS0lIK5J8d9g4M3j6HwuMFNwO1255qlnjC7kl6klLqy1rJYSscaBCxVwa7EWuYaZufKGRRedmh3rlgslpIxW83XMnNy2MLMyeGt9tjb3MRMspYx0wjUi77g2G8EeqAWcloslrmBNQhYUqHIWe0zgXnMXEW1Z7UtcxJ7t4XFYimGufT2fAonfOeiDeT+7eP3WCOiRURagPOYeUzkGDMvMNynlJqsjaQWi2U2YQ0Cc5Tm5uaBbDa7NK57x3EGx8bGusN+N9bqToJXQ88ElgP2NneLJQYichp6d0Hct194P0XffpF2/bdYTnWS1Cl/fTL9Zw+F58YvAJYCf6Zw1f8WpdSxNGW3zG3M6yN7mbmboIvp8nWT+XsLMKaUyrn+bX9hiYstKzNpbm4eUEotHR+Pf0q0HvViDQJzFBHJzxl2796NiHDy5Ek6OztRStHU1MTRo0fZtm2b6x6llJj/LwbeCNxJ4UQFwlf57fveLZYUMFuGTyd8d0ErhXVvKfBdpdS3PWEopRS7d++ms7OTjo4OJicnaWhoYO/evQB0d3fT0dHB0qVLC+q/xWKZibdONTQ0sHLlynydmpjQG9x6enpct97+9BCwCG3k86/632lXcC2Vwhxrc3egeF812QQ47j03Yf0FwKFDh8hmsziOQ29vr+0vTnFERPX09HDPPffEct/U1EQ2m53TZUVEFIC3f+ju7ubo0aMopRgbG0PbhPW4q6enpy7rkDUIzFG8BoEjR47Q2dmZ/xvi3juAeSPwOvQNmfmJh309kcVSe0RkAYW7C/4Z+I1S6kUeN0opxZEjR2hvb+fEiRO0t7dHhVl3nZPFUk8kqVO+/vQR6HtwbqymvBZLEKb/2KKU+o3nme0vLLFwJ7+7du2itbWVkZERAFpbW+nq6mL//v10dHSglGJ8fJyLL754zpcVr0EgznzL+Kk7vTTUWgBL5bjmmmuKVtjm5mYGBgovJFZKfQD4QA1EtlgsRTCv9bnZfAA+EuRuz549RTvrXC7H0qWxd/9ZLKc0xepUc3Mzo6OFr5NXSv2yFrJaLEGY/uM3/udxxovj4+Nks/Z6Gwvs2LGDvr4+hoaG6OrqYnBwkJUrV7J69WqOHz/O+vXray1i1YlbhxzHqbGkwdgdAnMQETkLfZkMfX19DA4O0tXVxfHjx9m8eTO5XI6BgQFGRkZYtmwZa9eudbeztCmlTtRYfIvFkhARaQU2ARcD24CneOu/4zgsWLCAdevWkc1mOXjwIFNTU6xatSq/fQ14KfB79M3lufDYLJZTDxFR1157bWB/2t/fz9TUFD09PfT29tbl6o/FEoa7QyBsvOiW79NPP53Vq1fb8n0K410Nj+l+zpcVr06i6pDjOGzZssX1U3d6sQaBOYCINAM7gceYzwKgO0nemgnBCPA74KfAz9Dvu7UFxGKpI8wFUmuZnvxfbL7fAvwBPan/egn1/0smrBXAHk9Yf1BKHUotARbLLMFc/vn3wIuBC5MMgoGHALtsH2qpZ8wroQ+X0F9kbNk+9fAbBHbt2kVvby8HDx6kra0tvwp+wQUX0NTUVJcT37RJaiQxfupOL9YgMEsRkTXAo9EGgEvRFxT91Hz+BEwqpWZUVsdxyGazZLNZMplMgbUKOA14GNOGhRzaMPBT9Bnlkeqm0mKxiMgi9MTfnfxvBY5gJuvm703uBVHGj4qq/8PDwwDs3LnTde8989xh4nDjuxg44Yvvj0qpsUqn3WKpNuaNAA9CGwGeBPwCuBL4xdVXXz2jPg0PD9PW1saJEyfYunWrGwbArejL2z4PfEkpNViD5FgsgYhIL/Bq4B+AzrD+wu0rstlsQX8BXI++Z+p/7Y6yuY+ILAHeDrw86aWC4+PjC+by/MFrEAiqQ95j2UFjrnrBGgRmCebds5cxPVlvYXqy/iv/hX/lvhrEDIrO9cS3BT0ZcI0Of7HWYYslXUSkEX0rtHf1fwl68OVdsb8/Kpw0Xw1k2oKzfDKdA/yFQiPBPtsmWGYrIrIYeA7wIiCDNgJ81a1rSV87mM1ml6Hry4uBp6DPbX8e+IV9s4ClVojIRcDrgUeiy+PHHcfZk7S/yGazLzHhLAc+Cvy3PXI69zBzj1ebz1WO4zwjm80uievfcZxsNps9Avw78IW5aDyyrx20VBQzCF/D9IT8wcCNeHYBVHPwbW6m9e4eUB5ZfmMuqrFYLDExdXwlhRPtjei3euQn/2jjW11NIMwxpQsplL2NQrmvs28msdQz5vjNQ9GT9kcB30dPkvrS7F9FpB14holnCfDfwBeVUgfSisNiCcP0NY9GT+DXAB8DrlRKHUsh7EvQb6XaAXwW+ITdDTP7Ma8/fg7wTnSf/ial1L4Sw9oMfAj9iuQ3Aj+a64sHIrIL6AZWKaWaay1PHKxBoI4wlriHMD3pdijcBTBcO+mmMZ3L2UzLuQ24jmlZb53rld1iSYqItAGbmZ5Ab0OvRHpX2W+YrcY1EXFXRN20bQb+ik6Xm8Zb5uIKgWV2ISLLgecDLwSOoXcDXFWNPlZELkDvQngmuk5ciR4gn6x03JZTC7Pj7O/RE/Yceov/NytR1swx1tegDV/fBj6ilLo97XgslUdEHomewJ8AXqeU+m0KYQrwOOCDwP3A65VS15cbbr0iItegDQI9SqmmWssTB2sQqCGmgqxj+i6AB6Ev83JX3m+ZDRNrM9F5KNMGggzTxoFfp2GFtlhmE2blcT2F5/BXo+/38K6i3zMb6ngpiEgD+miBm/5twCr0Tqe8EUQp9deaCWk5ZTDl8dHoVfrt6EnLlcCeWtRBswBwBdo4sAb4MvD5UlfhLBYXcw/MS4BXou+y+BB6Uani5VxEuoB/Al6OvqT6Q8DuudrPzSVEZCM6v84A/hV9P0Sq+Wba4RcA7wB2AW9WSt2dZhz1gIj0oXdE9CilGmstTxysQaDKmNeDeSfP85k2APxaKXW0huKVjTFyrGc6fRcDNzCdxj/bjsEy1zCDIO/Ff1uAIQon/3/yXvx3KmJubd9CoZFgnMJdBHuUUqOhgVgsCTCXp70QvSPgXvSRgG/W0yVXIrIebRh4DvBntIz/q5SyL323xEZEVgGvAp4H/Bj4D6XUn2okSwvwXOC1wN/QuxO+V2/H3ywgIiuAd6PH7O8CPlvpHUtmIfG1aKPVl4D3KKUOVzLOaiIiu5k2CMyvtTxxsAaBCnOqT5BNpfceg5hP4TGIWW0AsZx6mG2YF1C4PX4x+uI/d2J7nVLqb7WScbZg2sczKdTlecAdFB6luFMpNVUrOS2zC1NHn4jeDXARcBV69f2WmgpWBJ/cF6LlvlIpdWtNBbPUNeYYyuuAxwJfBD6mlLq3pkIZzFn0J6HvL1gMfAT91g1r9K0xxkD/RvRuks8CH6j2mNwcNXwH+uLV9wOfnAsLJyLyW/Tcr7Pe3iYQhjUIVAAzCXYv4Hs0MI/CXQCn5Bb6kCMSf2RaNzfPZeOIZfZhymwPhZfnnQ/cSeHq/+12wpoOIuKgDS7eXQSnoe8pcfX9h7m0mmBJBxFZx/RK+23oIwGzcqVdRM5Ab619AXAAnZZv2pvcLZDvmx6BnmifA/wn8Ll6uWvKj5H3wWh5LwH+C/iUNZxXHxGZjzYCvBW9QPe2WhuQROQc4APoBYE3o9u6WTumcl9FaFha7M1Q9YA1CKSAaejOYXoVfCt68PpTdGWzl+wFYI5PXEadX6JoOXUwb9PYQuGKtaJwS/sN9bTd+FRARJZSmCdbgAEKdxHcbC9mO/Uwb7y4Ar2qvha9/fQLSqk7aylXWpgzt49Bp+9Sanz3gaW2mF0kT0fvCMigt+L/P6XURE0FS4Ax3L0WeCrwDfQFhHOivtY7InIVeo7SD7yhVkdKwhCRy9Blej56HvDamgpUIiLybPRisCilvlRjcWJhDQIlYl/Dly5FXrP4M+AmO/ixpInZyng2hav/ZwA3Ubj6f68te/WFL+/c/HPzzmskOGjzbu5hVrjOZfq2/uvQk+QfzmWjkIicjj4f/iJgGJ3m/5kNq0+W8jBbqz+P3qG2F335289nc/tmDL3/DLwUOAq8VSn1jdpKNXcxxtNjwCuVUp+utTxhmEuZPwY8Sym1qMbinDJYg0BMjJX+bKa3u29BDzpdI8BfZnPDXG+YC2kuY9pA0IrnzQXAYatvSxI8q8zei/8GKJz83zybVlos05h3vW+m0MAzyczXOtot17McETmBztuPAP+tlDpQY5GqihkwPwxtGHga8F6l1FtqK5WlkojIi4FPAA9SSv2x1vKkidkt+jP0Ytrbay2PxXIqckoZBJqbmwey2ezSuO4dxxkcGxvrFpFLgN8C9wA/QU9K/89uG64eIrKaaePAI4D7lVKnu7+XmrfpS2pJkyT56s1TEelEv/N2EdOryB2Y8+dMX/z3QCXkttQe3/0PrpHAvf/BNRKMo7fbKrDtSDUpR9cicjGwTyk1VDEBZwlmfHKnq4ukegVbjquJbWPiYctxOKdqGarXdDc3Nw+g7wlgfDzefYiO40yNjY3Nq6xkyTilDAIiopRS7N69G8dxGBkZobOzE6UUY2NjiAjbtm3zukcpJWZ76hOA78/mSy7mCsY4sEgp9QfPs4K8zWazLFiwAKUUS5Ys4cCBA3R3d9PT0+O6Z7bc/Hkq481XEeHkyZP5OtvU1MTRo0fzddabpyLyFeAfgM8wPfnba+vvqY2INAEb0QaCS4BnAE9QSv3Q/J7feJS0zFmS4a/bvb29TE5O0tbWxt69e1FK5Z8vXbrU6jom/jKcZKxTK5lPJbzlvqGhgVwulx+ruHkDsHbtWjo7O0/ZvPGX44aGBlauXMnkpH5r4aFDhwrGdMbPKaErv26mpqaYmpqa8/2Ut+5kMhmWL1/O0aNHA9Ns3Fcl3d4LBOPOqesxT05Jg8CRI0fo7OzM/41wX3cZZgnG5u3cJEm++vNUvL2mxRKAv4x4v5ZS5izx8dbt9vZ2Tpw4QXt7e5R7q+sYJC3Dxo/VbZWwY5V4+MuxbSOmOVX7qXqtO16DwK5du2htbWVkRG8gb21tpauri/3799PR0YG7i+Diiy+uuzxpqLUA1WbPnj1FM6qjo4OWlpYaS2pJSpy8zWazLFu2rMaSWpIQJ1+DsMYASzGCysg111xTtEMXEbLZWfcmu7ojqm47jgPA4cOHWb58eS3FnHXEKcNuu9ndPet3Es864ubPqd7GxNFTc3Mz999/P0uWLKmxtNUlqO28+eab6ejoAMBxHIaGhlixYkUNpUyfYn1GNptleHiY3t7emsi3Y8cO+vr6GBoaoquri8HBQVauXMnq1as5fvw469evr4lccTjldghce+21DA4O0tXVxfHjx9m8eTO5XI7+/n4cx2Hx4sWcccYZrvu6s+BYgnEth319fQwODuI4DgsWLGDdunXkcjmGhoYYHh5m2bJlrF271ubtLKFYnZ2ammLVqlWcccYZNk8tZeNvR/xlbt++fQD09vbS09Njy1wZFGuz9+3bh+M4c27ba6UpVob7+/tpbGxk+fLlrFy50vVjdVsliuXPgQMHyOVyLFmyhHXr1p2yeeNdBQ9rIwYGBsjlcqdcG1Gs7XTr+FzTS5x0d3d3s2bNGte9PTKQgFPOIJAkvfWYYZZgbN7OTZLkq81TSymYG66fBDwbeHTSdgR4Pfpiwr9WQr65im2zK0MpJ6WsbquHLffxsOU4nFO1DNVruv0GgV27dtHb28vBgwdpa2tjYmKCqakpstlsXS8mnBJHBkRkDfBB97s/s7zbTJqbm9m6dWsNpbWUQ1jeHjt2jPb2djZu3FhrES0xEZEnuP+H5Ws2m/VfFjlPKTVZM6EtswLzGtmHo40AlwO7ga+iXysb2Ud4V60N64FbRORG4CrgO0qpo1VN0Cwmqm4vXbq0Zls/ZztBeh0eHmZqaoqJiQl27txZaxFPecLyCPC3MacU5iLvPFF6ymazp2xZ9utldHSUTCZDNpvN75yci/jTPTU1xbFjxwB9BGrdunVVlcdxnMFsNrvUnejHoampqcJSJWdOGwREZCHwb+hB34ccx7nEvIs8Fk1NTZMi8nPgdUqpWyolp6V8HMcZTJK3juMMVlIeS+mIyOnAx4ENjuMcMa8QLIrjOCez2ezvROTFSqk/VVZKy2zDvIZwM7o/eAZwN/A14DVKqfsBmpubP5K0HRkbG3uRiPwz+jWXzwY+avqNq4CfKqUmUk7KnMC22ekjImc4jnNSROYn8ec4zt8qJZOlEFvuoxGRTcBnSyzHORF5sFJqd4XEqwtO1TJUr+keGxvrbm5uHrjnnntiyyYidZcnmVoLUAlEpFFEXgXcDjQB5yilPjA2NtatlJK4n/Hx8Rbgx8CvReSzSQqipbqYd43uANz3gRbkJXABMAScoZSSufBO1rmGiGRE5OXATcCtwPljY2ML49bXbDbrAJ8FfikiHxQRezOoBRE5S0T+DbgD+DpwGLhUKXWxUuqTrjEAdDuSpI9w2xGlVFYp9R2l1JOBM4BfAa8BDonIZ0TkUhGZk/1tqbi6Bt4HfD2gzX4lcDWQsW12cUTkqcAfstnsG4F5ccovelHozdlsVnl3ZFkqRzabfRB6nPLYiHx5OnAvsOJUKfcicpqIfBw95v5ENpttStIWA5lsNvss4FsicqWILKptiipHNps9G92f/VOEPh6DLmer50oZMuloQs/tnuzPf3S/+2p//1wt2QLy4DrgV1Fjh3piTg1QRPMk9GTikcBDlFIv8w74kqCUmlBKfRxYB4wAt4rIm0WkOTWhLakgIu3AV4B/DMpvs2L8QeAr/u1oltojIhvQ27b/HtiplPo3pVSiK5aVUlNKqS8AG4AVwJ9F5FHpS2upd0SkS0T+WUR+B/wWWIxevV+rlPp3pdSdlYpbKXVYKfU5pdROYBNwD9pQ1S8i7xGRcyoV92xDRNYDLwZeF/Dzp4EO4JnVlGm2ISItIvI54L3AY5RSH1VKTcXxq5SaVEq9D3gy8HER+YSIOJWU91TG7Fr9CfBOpdRPw9wppb4F/BfwQxFpq5Z8tcCM258G3AY0A+cqpb6sVLILBJTmW8A5QBY9Xn+uxN3DPUsQkUbgf9C7z/4rzJ1S6mfAO4Efx91lOUt4NdAPfN/70JSXfwbeKiL18loaMZ9ZwZy5VNBsM/oIsBC9xf/nFYhjNfB+YAvwJuAbcTteS2URkS8CE0qpl0S4mQf8Gt2QfqBqwllCMca1t6EnBW8FrkyrTonIo9GDqt+jrcZ1t0XLkh5mR8gTgWcBl6JXmr6GttCfrLFsAmw0sv09MGhk+4ZS6lAtZasVRie/BH6klPpYiJtL0IPfs5VSx6oo3qxARM4DvgncCLy8HB2JSAfweWA18HSl1B2pCGkBQESagJ8DNyilggxgfvcCfA5YBjxJKZWrsIhVR0TOAj6FNuC/VCnVl2LYm9GG2OPAy5RSf0kr7FphysTn0Qbup6gY9yWJyEfQO2QfrWb58TURWQX8EdimlLorxM170TuBa25IFpHrgWNKqYfVWpY4zPodAiKyQkS+AvwIPcC6sBLGAACl1D6l1BXolaZXA78TkQdXIi5LfETkKegJwGuj3JnG87nAa0XkwmrIZglHRB4G3AKcBZyvlPpsmgY2YyHfABxEX/r2wrm2WnCqIyINIvJIEfky8Fd0/f4GsEIp9Syl1E9rbQyA/OrVTUqp1wOr0G8mOA+9ivVLs5LVXlspq85TgS7gk2EOlFK/A34GvKNKMs0KzKrqS4D/Q+98+4dyDSZKqWF0nnwa6JuLq6u1wujxSuAB4A1x/JgVz5cDjcDH5lJeiEiTiLwV+AN6kebCNI0BAEqpG4CtwHeAa8zurNl+jPCNwIXAs+IYAwyvRxtFPjMHytBHgU+EGQMM7wEuMePLWpNhFs2zZ+0OAbON6g3APwGfAd6vlDpexfgz6K2M70M3am9USvVXK36LRkS2A98FLldK/T6mn2cD70IfKdlfQfEsAYhIF/BhYCd6VevHVYjzAvSAbBR4iVLq9krHaakMZlBzEXq1/Znos7ZXAd9USg3UUrakmB0yl6ONzJcBP0Ubtn9eD4aMSmGOCF2LbrcjJwKmvbgT+Fel1GeqIV89U42VfN/Og5dVc2w11zBjxfeh6/dDlFKjCf2fBvSh8+M9SbfS1xsi8hC00Wkv8Aql1D1ViHM5ejK5GX3u/meVjjNtROTF6EvSL1YJX3Fr5kvXoPuXt87GMiQiH0Tvrltd7DipOTr+OeAipdTBKogXJscksE8pVd3XHpTIrLFcuIjIPBF5IboxORNtWXxLtTssc175KvQrp24CrhORD5nO2lI9Pgwcj2sMMFwFnA68uTIiWYIwZ11fAfwZfcHjudUwBgAopW4CLkavFvSJyLtFZEU14rakg4icISJvQZ81/Rb6XpfLlFJblVL/OduMAQBKqTGl1LeVUk9E92dXA/+KvozwUyJyyRxY1QniMcDJOKuCSqm/obeJPrniUtU5IvIu9NjnEHpiUJFt/UqpP6OPRp4A9onIGysRzynCa9GLV09IagwAUPoVpo9HL2I8N2XZqoaI9JrdvF9Gt3FPrIYxAEApdUgp9XT0AuKnRORb5gjwrMAYUD8HPCepMQBAKTUCPAE95v3HlMWrFo9DG8rj3C31A6AVbYSrJX8E1tRYhtjMqh0CIvIfwCPQ219eo5S6rsYi5RGRbvQFHk8C9qPPuMwe5c5SRERK0bM7yLZ5VD1E5NfAQ4AtSqk9NZRjJXpXT7NSai5dtjPnEH1T9NPQuwHWoQ0BXwN+P5frroicgV4NeTZ6y/BVwFX2XPepjYh8H20Af3YV4/wOkDMTKktCzOrscqXU3jLDORe4K+aEqK4wd3zdgL7T541mglorWZqBt6O33z+6UkeM08SMV881hrpywlkLHJiNZWg2YuaFF8yWHSmzxiAgIguAY2hr60frdTAoIo9Hb03utZXOYpnGPb9XyipJBWSZD7QppY7UWhZLIWbA9ni0EeAyTpFt9EEEHI84yPRlhPaSTIvFUveYC50fDFxbL2N3EbkUuG62X7RnsaTFrDEIWCwWi2XuYrZw3gScBK5Hr4p/194urxGRBvQOm2ejt39OAm9RSn22poJZLBaLxWKZ1dTkDoHm5uYBEVFxPs3NzbPuXKifJOmdK2kul0rrzOZJ6cxF3SVN02xJVy0oo3zMQ19idqFS6pFKv4vaGgMMSqmcUuqXSqnnou9A+TX6fdt56qFuVkKGuTZmqId8KpXZLHta1EoHta4Hcznvq522Wo056i0PK6GHWqSxubl5wHGcJHHGfUtE1ajJDgERfex79+7ddHR0MDQ0RGdnJ0opzjzzTG677TaWLl1Kb28vIoJSalZfquRNb2dnJx0dHUxOTtLY2Mjtt99Oc3MzSim2bdvmup/1aS4XV2cAu3fvJpfLsWbNGiYndR06dOgQ3d3d9PT0uO4T6cybJw0NDXR3d3P06FGUUoyNjSEiZLNZ1q9fz9KlS22eePDqznEcRkZG8vXX1Z1blo37utedN00iQm9vL5OTk2QyGR544AGOHNEnC5qbm2loaOCiiy6aFemqBV5dNjc3093dHVpvjXurx5Twt2srV65kcnKShoYGJib0zthK697fdnvLQJAccWQQEdXX1xfYVk9MTNDV1cXixYvp6uqaFeXJr6NMJsPy5cvz6WpqauLo0aN1OSbwljGAXC6Xb/+bmpq4//772bFjh9d93cieFmFjOoD+fv2yKcdxWLt2LZ2dnanpwBvv1NQUU1NTBbqvdJnxx5/JZFiwYAFKKXp7exkeHgaS1e16odJjzmLxNTQ0kMvl8vp027bm5ma2bNmSSpxuvH19feRyOYCCsdvExATz5s1jxYoVVcvDsLrU0NDA3r17Wbp0KUePHqW3t5elS5fGksk/njt58uSMMSqQal0REQUQd05dj3WjpgaBI0eO0NnZmf8b4rbulJYUb3rb29s5ceIE7e3hr5yeC2kuF29jGUdvpRoE4pTBUsKfy8xF3SWto8ZP3aerFtj2rnbUg+4r0XaLiDp8+PCca2+AWTcOmovtf1JqVc9qPXaey3lf6TFnsfiqpc8kbWlacRaTJ+2xVy3KqWsQuOGGGxgZ0Xdmtra20tXVxf79++no6KC3t5c77riDhoYGNm3aVHd1o6FWEe/ZsydUaUopjh49SktLS63ES51i6R0fHyeXy9HV1VVjSeuHIJ3deOONBTpraWmhsbExtfC9eSIiDA8P09vbm1aS5gxxyvPExETeojsbuOaaa2htbS3aLnV3d8+ptqkSxK1b3d3dNZZ07hGnbgIVrZtRbffo6CgTExNkMplEMvT398dK12yhWHvjOA4Ahw8frqWYgcSp3yMjI3N6PBOnvxgfHyebTfdu6Sjdu6v27upvJYjbvszGtr3YmLO5uZnDhw+zbNmyVOKL0wa4uy6WL1+eSpwQ3ZYCjI+P09TUlG+DKk0cPWSzWUZGRlixIt7boqPKqavXTCbD4sWLU03Lpk2b6OvrY3BwkJGREUZHR1m/fj25XI777ruPrVu3phpfmtRsh8C1117L4OAgXV1dHD9+nM2bN5PL5RgaGuLYsWMsWbKEdevWzSoLYxiutcotJI7jsGDBAtatW5dPszs4nitpLpdiOrv33nsZHx+nt7eXnp6ekncIROVJNptl+fLlrFy50uaJh2L116s3477udee11oeViYGBAXK5XF1u460nosrHwMAAIyMj9PT05A1tVo/pUaxdq0YZLibDgQMH2LJlCw0NDbFlKFampqamUt1WW2n8OvKn6dChQ3R0dLBmzRrXfd2kKSovDhw4wMTExJyv38Xy78CBA3mDV5pHX4vVrcHBQS666CLXbdXr9r59+3AcZ1b2kXHSlslk2L59u+s+tR0CUePQEydO8KAHPSiVOOOk0x3DVSsP4+ph/vz5nHPOObFk8ofZ39+fb4+8/dDmzZuZP3++PTJgqOmRgZhu605pSUmSXuN+1qe5XCqtM5snpTMXdZc0TcZP3aer2ohIB3BkrpWP2UI91M1KyDDXxgz1kE+lMptlT4ta6aDW9WAu532101arMUe95WEl9FCLNHoNArt27aK3t5eDBw/S1tbG1NQUExMT+V2za9eurcu6UbMjA36FuVtCcrkcra2trF+/vlaiVYywNLtbgnbu3FlbAeuQSussLHz3Y/MknKi88a4SzDZOxbapXETkNOBfgFe6z6Lq1sTERH6lxfg/Tyn15xqIPieph7oZJMPAgL7MuaWlJb+iX054s729mc1pCpLd7ZeBupY9LWqlg6AJx7Fjx3Acp2B3XqWISvdsHzdFpa2xsZELL7yw4nG6E0igYvnpj3N0dJRMJsPExAQrVqzgjDPOSD3OpDK5fUZjYyMTExOJy1VQGhcuXMjAwEB+d3GauLuV49DU1JRq3GlQdYOAiDyuqalJXXbZZbG05jjOUKVlqjSO4wyKSOzDko7jDFZSntlApXVm86Q0ROS8pqamSRGZF9fPbNBd0vLg+qmUPLMFEVkAvAJ4NfBT4BLHca5NWLeOZ7PZX4vI/wH/rpT6S4XEndOISLPjOOMiEnukUYkyXIm21XGcwcsuuyxWmLOhXs7m/mc2y54GItLtOM6EiMS+vMhxnBMiMk8pVdarxpLofrbU7Xqh2mmr1Zij3vKwEnqoRRodxxm85557YscpIvVXN5RSVfkAArwKOARcEtPPC4FB4GHVkrOCaf8mcGXI743A74E31lrWevkAPcBfgSdFuNkO3A9sSCnOIeBdtU57vX6Ay42+nxXT/TnAPuADwLxay58gneuBAaDJfBfgL8DOWstWLx+gFXiDaZ+/DqwvM7w24F9N+foasLbWaZxNH2AhcK3Ji8YibgV4E3B3ufmWQL4DwGfKDOMq4GMBzxuBPwHPq3U+lJCmBmCvf4wDfBd4da3lS5COk8CTay1HFdJ5mRmXvCNunwYsA3YBvwSWVEAmFXdMXSGd/Br4Xa3zJoV0XG76/dA2EVhl2rJnV0iG64HHA4NVSvNTgZ+Y/98PvLPGefBV4G2+Z28FvppC2D8C7qxyenLAY2qp0ySfDFVAROYDnwFegG64fhfHn1LqC8DTgatE5CUVFLHSvBJYjV5Jm4FSagJdMV8lIg+ppmD1iDmH/BPgQ0qp74W5U0pdi96m/CMRSeMKVoHq1InZhGheD3wWeLxS6qo4/pRStwHbgK3A98xq8mzgn9HGu3EApVv2TxJSf08lRKRFRF4D3AVsBh6qlPp7pdTt5YSrlBpRSr0f3U7eDvxWRL4kImeVL/XcRkRWoY0Bf0APVCei3CvN+9CTmqtF5JLKS4mYT2meRZ6Mbkfe7P/NpPe5wIdEJN4V1PXDs4H7gN/4nr8deKOItFZfpJKY032niGRE5E3A/wOer5R6h4q52q+Uug94GHqyt0dELk1RLrdO1VL3ZdXtesDkyX8DT4jqy5RSB4BHAx8WkcemLEMGOBvdljeJSLrX3wfzKODn5v+fm+81QUTORuv2P30/fRx4lPm9HOabTzWZVXWj4o2IiHQCPwNOBx6slLoniX+l1NXApcCrReRjSbYq1wMi8mD0IOYKpVTo+2eUUvcC/4A2fpxeLfnqDbMN7zvAr5RSHyvmXin1/9DGph+nMOGcVZW3GoiIA3wJeAawTSn1hyT+lVIPAI9Er6r8VkSqfzAtASLSDvw9ukx5+QrwUBGp7OHMOkVEHBF5JXrHx3bgkUqppymlbk0zHqXUMaXUu9GGgXuA60Tk8yLSm2Y8cwUR2QDsBj6vlHqdUmoqrl+l1JeB5wHfF5EnVEhEl5LbVjMw/hR6B8BokBul1E3AJ4ArPZOkusYslPwbekWs4AYspdTNwDXAP9VCthKYs32niCwEfoheQd6ilPpF0jCUUjml1JuBlwHfEZHXplRO56N3CFR7ouMlwyzOexE5Hz3mfLZS6rpi7s1CxxOBL4vIg1IUZRUwrJQaBm5D77CsGKb8PZJpg8BvgbNFZFEl443g34CPKqWOeR+a7x8xv5dDLQwCs6puVNQgICJr0FvhbwKeqJQ6Xko4Sql9wCXAucAPzKC97jFnWL6JtijfXcy9UupX6JXIbyc5nzZXMA3U54DjwGsSeH0/cAPwDREp516MOb3KkRQR6UavXLUAO5RSB0sJRyl1Ej0Q+izaKLAjPSlT53nAL5VSf/U+NG3X19DpOGUQkSYReTnaEPBw4HKl1JPNhKViKKWGlVJvB9agt3HuEZHPnKoGmSBE5DLgV8DrlFIfLSUMpdTPgMcCn6nwLrwMpbetnwS+rpTaXcTd+4ClwPNLjKfaPA+4Syl1Tcjv7wBeO0t2Vs2qgW9cRGQr8Ef0kbHLSu0DXZRSP0Lvmns68L9mN2Q51INBYNaOm8wCxU+AVyYx9Cilfo9ewPuuiJyXkjjnAq6B/VbzvZK4tyPfAWB2RF6D7uerioicCzwUbdQN4pPoBZlydF1Vg4DZ8QEwexaxK3UWAZ25g8CLUwxzPvBp4Bagt1KypyTrIuB36EuykvjLAD9ATz5mzbnrFPSVQZ81vw5oLbFs/Az4AkXO0EbEr4Av1loX9fABLkSv0L4DyKQY7iPQ58RfVOs0Bsi2AH3m67Ehv58HTAJn1FrWKuiiEXgJ+rzkj9ErY7WUZzF6wvcAenBweq11VGN9PN30rw9JKbyzgDuBd2JeR5yyvGPAoRL8fczI1RzT/QbgCPC4WudRETlXGZ08uIi7nwHX11reIjIuM33nS2stS4ppEvTRsfupwN0IQBN68nMXcFEZ4VxgdF+z+xvQxuLJWudZCXKfadqWfyojjL8H7gXOSUGeG4B95v9fUuF7BNA7y/b5nn0D89rgKuaDmL4s8v4CMxYdLLV/MvVEAS1VSlejie9L1dRnWTJXSBE/AUbSGqwEFJ5XAhPAy2utwAg5v2QKQ+JJPdBl/F5R63RUUV9vMGleWkYY7SaMz5Xo/whVvnSkHj/AlWaw+rQKhb8ObWy4v9Zp9cnVBuwJm3ygjUa/Bc6stawV1MF89GWud6O3El5ca5l88i0BPgQcRk8Wu2stUw108CvTv55fAd3eid62mrbMCr0dNKm/0WIDxQA/twH/V+t8KiLjNqC/2PgAvQp5Q63lLSKjoA2lP6i1LCmlZynwN/TOgLMqHNfTzbjj2hL9zzN16/M11JcCfl/rfCtR7p+kEM5nMFcNlRnOUzCGTPT9PP9Y4fS/FHi679kFwPurnA8CHKTIRcLoY4R/pXSDwGuA91UxXetNGdtUTX2W8xEjeKqIyAeBO5S+FLAiiMhHgRuVUl+pVBzlYO46yCi9XboU/81AVlUig+oQEWkDliml7iwznFXAqFIq8esqRWQjMKWUuqUcGWY7IvJOtA7fX8E4NqHf6JDqxTyW0jDnZB8PvA1trHm7UqqvtlKFY46zvBF9mdx/o42Ae2srVXUQkdehV3a+V4Gwz0av9P5LyuFeAXy/1P7QUt+IyE708YeyttTXA6Zv+jraGHqkCvE9B71Kva1E/48C/qiU+lu6ksWO/xHAn5RS99ci/lIxF3jvVkUuYY0Rzjz0cZJfpyOZZS5gjkA/TSn1zVrLEpeKGAQsFovFMnsQkUm0lf45SqldtZYnLubtIm8H/hH96jb/be0Wi8VisVgslgisQcBisVhOcURkLXCPMq9anG2IyDnA7SrBLfsWi8VisVgslhg3gzY3Nw+IiEryaW5uHqiG8KXKWKp81dRFtdJUSWqVhmLxOo6jHMdJmo+x3jlcb8yGclSv9deNZza0geWkD0AptXe2GgNAvwrKawyYDeW+FDmrKWsS2bwyNTc3TxZzX0L7GzvN9ZD3achQD+kISVvR/K2HumVkrUsdliJzieOWVNNTz3lfy7Y0SdxBeVipfI0jV6XLVLXbQjc91a4r9Vw34lJ0h4CIKKUUu3fvpqGhge7ubo4ePYpSirGxMUSEXC7HihUr6Onpcf2glKraK2hERPX19dHZ2UlHRweTk5O0tbVx9913c/LkSXp7e7n99ttZuHAhGzZsKFk+VxdAoD6WLFnCgQMHWLp0Kb29va6fVOLK5XKsWbOGyUk9Lz106BDd3d0103kcgvS1cuVKJicnaWhoYGJCH91KOw3+MpvL5ViwYEG+zF5yySUAJNkdU4/6jYM/DzKZDMuXL8+X2aamJo4ePcq2bdtc91VPpze/RISTJ0/S2dlZ0MYsXLiQjo4Ourq6yq5TbrnIZrMF8bjlccOGDXR2dubjCSrH/jKVyWQQEXp7e8uSsRyq1Q7OBqLanra2Nvbu3VsX7WdUOx/URlZTVm99yWQyTExMzKiXQe2G15/jOGSz2XxdcfvIiy++GNdNc3Mzx48fLwg7k8kwb948Fi9eTE9PT6I010Pf6dVBLpcDyKfP3+aGyeAPo7e3t2DsNTExQWtrK6tWrapqm+PVb0z3NWtn6qEsJMVtx/314oILLgBqO27x69NxHEZGRmK1C5Umqs659UUpxfr161m6dGmq8vnHML29vQVlDCCbzZLJZNixYwd+t6effjoqpL8qZ6xcbP7W0tLCxo0bi7bFACtXrmTZsmWJdZbGPKDYmF5EO1+1ahXLly/XF+TpcCLbz6VLl7JkyZKC8V7cdEXp2jsGa2hoYO/e6euN3PJXD22Nn9gGgSNHjtDZ2Zn/W8RP1Q0Chw8fpr29nRMnTtDe3l7MfdmT9Lj6SCuuYmmry8JVozQUK7Nu47Fr1y5aW1sZGRkBoLW1la6uLvbv309HRwe9vb3ccccdNDQ0sGnTprrTbxySltlaGgSqVaeSxlPNel8O1WoHZwOzpf1MKqfxU9WJX9J2I44/d7BWifpUD3mfRptWrXYxKSKiZkvfWQ9lISluO+7P83oYt9TzeKKWcxVv3DHLWIHb0047jUqU01q3xV4ZyklbCX1RxdMVls5668eT0BDH0Z49e0IbH8dxGB4ezlu/tm/fXlGBw+jv7w+VUSlFc3MzAwMD+ZX7UrnmmmsiG2NXHxMTE0xNlXecNUjvN954Yz5NIsLw8DDLli0rK55KUkxfSinGx8fJZrOpxhtVZl127NgBQF9fH4ODg4yMjDA6Osr69evJ5XLcd999bN26NVW5akGQLm6++eYC/QMsX768rmT0lhERYWRkhBUrVpQVT5zy6NarJP4AxsfHGRsbK0u+crnllltKSt9cpFj76Zb7RYsW1VLMRGWy2m19sXo5Pj6eX0FK4q+YG7cfBWhsbExFbn/feeLECZYsWZI47HJkCOr3ovI0jo46OjoYGKju7tPZ1HfGKQvZbLbm7YCXoPGsS611H3dM5zhOxWQoR7bm5maGhoYKdFqtuF2jjr9MxvHv7rZKOlaOakPa2tpixT01NZVfyS+FqDroTVfUGDRue+qmJ46f5uZmhoeHUxv7Fovv6NGjdHR0sHDhwlTiS5vYOwRAN0D9/f35SfW6devI5XJks1nOOussr5+q7xC49tprGRwcpKuri+PHj7N582ZyuRxDQ0NMTEywePFizjjjjLLk8+ticHAQx3FYsGBB6rpw4wqLZ2hoiOHhYVatWsUZZ5xRl9Ymfxr8ebNv3z66u7tZt26d6z5Va22Y7txJZbGy7wuz7vQbh2K6OHDgQP4YwcqVK2u6QyBMxrvuugulFDt37nTdp1Kn/OVxYGCAXC43Y7ujf4tsWDv4wAMPcP7555clYznESV9jYyPt7e2Jt2HPNuKW+0WLFrF69eq62CFQTNZqb8MtpsODBw/S3t7O2WefHbhDwE1TUF1ZsWIFxdyUWp+Kyb1v3z6AstuTcmQ4dOgQ4+PjXHrppaEyJB17VbtcJHBf8x0CQfmQzWY5ePAgp512Guedd17NZS0ms1tea6n7OGM6x3FqemQAwtvSu+66i6amptTlixP3wYMH2bp1K5lMBn/+Xn755RTzf+DAARYvXsyaNWsS7xBww41qi8PydGhoCMdxSh6nF2sLBwYGuOiii/LGklLawmw2y/79+9m+fTvz5s0r2CEQNYfasGFD3qCd1g6BsPj6+/tpbGys6fHcYiQyCMQOtAYGgWo0ktXUxWzqdMOoVRqKxes2PEopdu3aRW9vLwcPHqStrY2JiQna29u5//77WbFiRdlGpFozG8pRvdbfMINAJWUsh9mQ19VituiinstWEtnCDAJF3CeRpaQjA2mHnSDMsmWoh3SExKPC+s6pqSmmpqZYvnx5XZzLr1cdFpEhUOZi45Zq6L6e9VnLtrSEtrLosxhhJDIIJJEnjbiTyFAs/FL0W+l0Bfiv27oRl1hHBoAZDZC7hSSbzdLb21tw6VGt8MvobkUZHh4usFpWIq6pqSmOHTvG8uXLWbNmTcXiqWSaKkVYGkZHR5mYmMhbvqsVL5BfIY1LU1NTRWSsFmG6cD+VyoM0ZHS3DqclYzm68PsdHR2lpaWF4eHhgt0utaRaepwNBOlieHiYyclJTp48WVe6CMs3d7Bfq7Y+TK5MJsPhw4dDdRjkz7+1Pag+TUxMsHDhwvxOlmrLnSZRbc3ExESsI5ZhY6+JiQmWLFlS9TanqakpUd/pOM5gBcWJRVg7AHpgXi/HG7z4ZYbk45ZK6T5Mnx0dHdx///01OzocJZu70FPpeh9V1rzb/b3uovxPTU2RyWQYHh6mp6enpGPPQWXJL0+Qu9HRUTKZTP5o09q1axPHHZUu9xjCkiVL8otvScJw+5SWlhZGR0cD8zZKn+WmKYmM7hGaep6zFTUIOI4zKCJLkwRazQ5ARB7W1NQ0JSJFX6HoUqp81dRF0rjqodP1U6s0FIu3qamJe+65J1GYIlJ3+o3DbChH1ZKx1HjqvQ30xlnveV0NRGSj4ziTIjIvrh/HcY5VUqaIeOu2bCWRzStTHH+VnFTWQz1IQ4Z6SEcQpi+MXS7Gxsa6KyxSZPz1qMNiMgTJnHTckrbuRaTVcZysiMS+HMBxnGMlbbErgVq2pUniDmr7KtUe1rotjitDsfBL0W+1DZezsa2ZgVIq8Qf4D2CgFL9pfQABXgkMAJfF9LMOuB34ODA/RVlGgFeknL7HmbSdHeFmKXAn8PJa5kWRPPo68A3M8ZQAN+uB+4GdFZTj+8DfAT8Gnhjw+0ZTLgQ4BJxRa91VIB9+AfxrwG9nA0NAT63lNPJsAO4BMub7l4F/qWB8fwdMlOh3GHhTrXXmkef5wIGo8gtkgCuB/wOaay1zyukX4IXA34C/T+DvXOAvwH8DLTVOwzuBD5n/Xwx8o8bynG/02R1QjvqAl8UM50ogW8TNH4GfpFQO/hf4RMjvK0zfur0K+ptv4lrv+76uxPCuA35R4zKxBPgr8PCQ3//T6D+wz6+RzBcA9wGtvrzZBzyk1vJFyP0F4DXm/81mvCee318IjFVBjjXALaY/jtVGAmuBW00aqt7XmHp+v2kPDvvbsArH/T7gPeb/ZwPfL+J+BPgnz/flpt1dC+xPWba9wNcDngtwA/B3vmd9wLNSjP/xwE+AUaCtxDC+BLzUlMt7i7U1po9XwAngpRXK87WmbX9EhJsnmbazp1plMckn9qq6DzGfmiAijcDn0AOmS5RSV8fxp5S6A7gYXYh+JiJpXSubqj5E5MHAF9GT17+EuVNKDQKPAt4sIs9IK/4UeRtwFvB8ZWqDH6XU7cDfA98UkdUVkuMi4Eb0gHNTwO+XAL8zMv4OeFCF5KgVzwUWAx/2/2DK10eBz0oSc2rleCZ6EuS+ouP/octHpRCYne2gFxF5JvBu9CD97jB3Rq8vRXdK3xWR2X0WxiAiLeg28zXADqXU1+P6VUrdCmwBHOD3IpLuHsJkPBFtwAT4IfAo099VHbPD4nPAW5RSBXv9TTl6CfBOEYlzRXMz0FhkJ19a9emVwCrgdUE/KqUOoo1nXxeRyr1mQPN44E7Tz6GUOomeVL2oxPBqPfbKoAfjX1FK/SrE2RuAXnQ7Uy+8G3ifUuqE+8DkxduB99ZJ31eAiMxHTyD+xzzaA8xDGzfyzqhweRCRJwC7gf8CnqeUGo3jTym1F9gGtAJ9ItJbMSGD2QpcZ8Z11xtZqsWTmG7Hfww8RERaI9xnKMxHd8y6D1goImleSx9WZh4DNAHfdR8Y3f078LYkO+6KcAZwN7AfOLPEMHYA16L102DCjGI+MMVMPaeCiCxG5/NblFK/DHOnlPoeekH9xyJyWtpylEupA+GKKDUOZkvGb9ATnAdFDX6DUEoNA5ejJ4d/EJFz0xCLlPQhIhvQ1vVnK6X+UMy9UqofeCzwcRF5VBoypIGIPB1tvX6iUiryXWxmYPEO4EciEv3i2ORyLAEWoBugG4ELA5w9CPit+f+3aAPBnEBElgEfBF5gBkBBfBDoRluya4YZlD0TbQRw+TVwhoicFeyr/Ggpve7WhUFARJ6MNuo8ygzCIlFKTQLPQ69KfMMMPGctIrIO+AN6sLw1yogahlJqBHgW8Glgt4g8NV0pi2MGzMvQRknMJPx2oFYXHbwUyAGfD/rRGFI+i14RLsYCYBxoi3BTdn0Ska3AW4CnKaXGw9wppX4KfBX4apLjhiXwIvTuCC+fB55ToqGn1m3Oq4BO4N/CHBi9PwNtLNpQJblCEZEHoXeefTbg52+gy+bjqipUPB4G3KGUOgD5ydm3AG/bVLGxuIjME5F3A58CnqCU+nTYwk4Ypl19Jrqu/b7KY9Rt6H4B87cqF0WIyHp0mboBQCl1BL2z55FR3ijMxwuBPxrD658IHreWLKIvLnfs9XbgnZ7FGJdfoXdYPC2l+M8E+s2n+MUBPkRkJVq/t5nyeA1Q7NKK+egdAqm3n+YIzfeBbyulvhDDy8eAq4H/qbexVzkrY5XsRIMjFbkIXbF+jd7WcryUcJRSk0qp16MtX/9nLKDlkEqjLCJnAD8FXqmU+kVcf0qpm4GnAF8TkZrfWGFk+CS6E4n1gmSl1GeAnwHfSrmSuA2rQhuBLgpwcwlmEG7+zhmDADofrlRK3RTmwBgKXgD8R9IzeClzMTCG7gCBvGzfRg8wK0E5dbdmhlEXEXkM8BngsUqpP8f1p5TKoXdezAe+kqL1v6oYw2Mf8AngOd4VwKQozafRKyUfEJGPV3l1/gnAj43BxuUH5nlVMav+7wD+MWCA6OU9wAUicnmRINvR2zUXREVLGeMKY0z+JvASYygvxr+hdy68qdQ4i8izCj0p+R/vc6XUncBt6N0gSanlYswm4F/Rx3HCjMtAfnX49WiDY0s15AvCTHTeg57ozDAQmbr2VuDdFTYMlcLT0AYAL98GnubZ0VARA5HZPfsT4MHAJqXU70sNy7SrH0On54si8tYq6dpvEKjW2PiJ6CMC3nbze+hdA2H4274L0QtYEL6QVSpB7eyj0Mba7/gde3YJvDWlcUJZBgH07oBrPMapXRQ3mrsGgQwpzl09O6buRbcjRTFyvwptIP90Xe1OKuWcAXAXJZ67LfUDPB19puaKlMPdChxEryokPvOG3g6l0NvRypHjLMq8D4Dpewe2VDNvfDJsQW9HfnwJfueht918hZTueEBPLu8w/zeYvHqo5/cd5lmj+b7YfD+nVjpMMS8+YcqUE9P9+42+UrtfI6G8hwg4a4deEVGVkAu9CqqAZSX4nQT21DB/H4U+I3lxGWE4wC/R2+0ba5WWEuRuQhu79gEXViD8TrTV/w9U6byfKU9v8T17qCmfVbvbAD14+gvw7pjuH4ZeQTo3wo0yn3+IcHM/JZ6HBlrQqy4fS+jvdPTZ8tTv4QH+jB64Bv32xlLGUEbW8WqVBU+869B3uzwtgR8BrkJPLBuqLbOR4SOmXIXGb+S8i4Bz1bX6mHI5YxxiZD0JvMp8fzmQSznuTejt3B9MO9/QZ+N3o49DdVRQf0uN/taa7+eZ7wurkHfK356g76lSwJIQP1PALvO/O059rPl+FTCaonx3o1ez3e9N6N2CL4zwI8Zf2XXEpO256In8YAn+H8AzTkTPe1SROv52Tx/0m5T0OA+9O66PmGNsn/829CLle6mT+1ZKVcRbjWIzVRFSF8RB4IIKhb/cZMx4KQ0gelXzujJlUOjVoXLT8jYT1rxqFSJf/Dng12X4bzfyvz8leZ4OPNLz/d3AaZ7vnZhLvMx3QW+/TlzB6+2DNqB9IIH75Ub362sk7yeBSwOet6FXSlNvNE24uaRho1cWVVQnWmFdPdzEH3qBTYKwWoFjwJ9qkZYS5L0MfaHj/3rrcgXiEfQq5zHgs1VI1xeA033PmtDbmqvS15o4e9AD1NMT+HkAeGPE768C3gwsiHCjgB+UKPPr8Rh2E/r9MGbhJmU9fhp4cshvq4CflxCmAn5arbLgifeHwPES/C0zMl9WbZlN/F9E75Ar5u59wPdqIWOIPO5q7YxxHPAhzKIGekejAhanFO8vTXuX6sKbL45G9MXeIyS4/DVhHPNMHO7lxBn0AknF21H08YjFAfJ8A2gKcN9h8vApvjx2F6nWYi6WTEk+heeCV9P/300RYwl6p81XU4j/rSbOiyjhskLTj1zo+e4Anynip5tpg8ATU9Ljm8qte0wb/v6xUuUxyUeMUIkw2ySeqJT6bmLPJSAi7o3B/1fBOE5HW+IerZTKFnPv87sZOKzibVMMC2Mn+mK7iVLDMOFk0Lfm/rqccMqIfxVwUEVvMy0WxlLgmCpy94DFUi5ma/SZSqm+Evw+BfiuKqURLRMRWYCu5z9IKbwz0BPAxHqoNiLyfPQRlx3V0L2IfBC9g+QfKh3XqYyIPBroU/rccRJ/7pbLjCo8bpEkjHml+q0mRke/VUpV9TWZ5bw6rlqvnTsVEZEe4JlKqfenFN53gF8pfXSqoojIt9Gr4p+sdFz1TjXHEiLyAmCfUuqaSsdVT5i7ljLA/6ahZ3MUqksplewd5jPDOQP4a7lzvzQoySBgsVgsFovFUmvshNNisVgslvKwBgGLxWKxWCwWi8VisVhORYqdKXAcZ6Cpqck9e1H04zjOZLHw4oZlwhuo9jmKMBldPcTRRxKdVSKtaeq5FnmWJM4oXcfJs6R5VYsyWY38qHQ+lxD+ZNrylBpmJWSph3pWTvxpyFDrNFdTR2m1afVWx71hxu0jHcepqR7SyNNSdJnET1wdVTPt9RRHWuHWqg0qpT1IUiaqUX5q1a7GaVProQ0NksHNl2qMSU2bU3ZYabR1SdJUzG0x3TU1NZVU/mdDW5BmvP5P0R0CIqIAirnzuEcpFfoaBXd33+7du8nlcvT29nL06FGUUjQ1NXH06FG2bdsWO7xK4JWxoaGBbDZLZ2cnGzdu1ErTMhULI+9m9+7dNDc3093dzeTkJG1tbezdu5fu7m56enr8flJJa1galFKMjY0xPq7fwLN+/XqWLl0aGbc3rM7OTjo6OpicnMRxHG677TYcx0EpxcUXX5xaOvzy53I5FixYkC8n999/Pzt27PDGB5B3393dzdGjR2fkWVB4F1xwAUHpa2xs5Pbbb8dxHIB8uaxFmfQiIqqvrw8Robe3l8lJffS1v78/n7bu7m5OnDjBRRddFFveYmVmYmICpVSsMhMVPkzn08qVK0PrRFSejY2N0dnZycDAABdeeCHt7e2x5Akryw0NDezduzfv7vzzz6ezszMfptef4zgsW7aswJ9bRnp7e0vSTZRsbW1t3HHHHZw8eZKpqamS9R83fqhemxUnPxzHKUuvaRJVhgEOHToUqqOovm9sbAwRIZvNcv7557Nw4cJ82W9ubub48eOBdXHDhg0sXLiw5DrutpPecAHWrFnDsmXLEtepSy+9dEZ7C5DL5Qrkv+SSS/DqAij43b0W4OKLLyaOztauXRtb3ij5w3Td1NTEqlWrWLZsWT5PgYL2yd9eum5cf34/3va7sbGRvXv3MjWlr97JZDLs2LGjqI46Ojo488wzmT9/ftlpDyoPrn6TlrOwOLx1HHR9cUlax/11UUQ4efJkXkf+8WRYuFFjjbT0XIpeJiYm8u19d3d37LGnJ/zIOlhuf54m/rzM5XKsWbMmtF0NalOjxnVB+ToxMUFHRwcrV64s6OvjyuofC7j99Pj4OM3NzaxZs6agHXfbiMsuu2xGG+lvd4rJ3tLSwtjYWKyyDYTG463jUeUgTjvR3NxMV1dXYFvX0NCQb8vdPI4aXxQb+0X1HxdccEFebn+ZippvBsnsT6c75ky7zsTRbzXmxbENAjfccAMjI/qun9bWVrq6uti/fz8dHR309vZyxx130NDQwKZNm2IZBI4cOUJnZ2f+b4T7mhkE/DK6hVREIvWhlOLCCy/MF8YjR47Q3t7OiRMnaG9vj4o3dYNAGnr2hlWtdCSR39tJRuVZWHje36qdT6UgIurw4cOxZDXuE3V0laqb3k4/jq6j8qxUeUoty9WoA7WoZ0HxQ/XarFqnOSnl6KiUNi3tuliJOu4N0x0AF5M/bvoqpYcw+ePE4cYDJJbN66cW7V+An4qPxypVx/11MWadCjUIVHtMmkQv3nHMrl27aG1tjRx/jo+P5ydg9TzW9sRdytggsk2tRhtaSh2O00amJbvXIFBOWKXUEX+8/nF6lO7K6T/cuN343fjitA9p6KoU6mVe3BDX4aZNm+jr62NwcJCRkRFGR0dZv349uVyO++67j61bt8aOdM+ePZGNmYgwPDxMb29v4gSlxTXXXDOj0XWfQ7Q+jh8/HhpGWFpXrVqVehqK6fno0aNkMhmWLFlSdljj4+Nks9lU8yyu/BCuazecqPCi/AflVT3Q398fKz/cFa24FNOD4zhl6SCpnqPKAOjV44GBgUTpjNv+dHd3J/JXqs6TypbNZlm6dGnJcUQRN3+y2ewM/ZRKNfSaJnF0FNYexvUL8crCyMhIvp2LSxx9t7S00NjYmFgn7v/F4omri6T6LpU4cTQ3N3P//fcX1L2oNE5NTTExMcHExESBLpOUgST1sZJpFxHmz59fchxxynIul2PTpk1lh3vzzTcnbjuKydfc3Mzw8HDq7W7c9t51C7Bjxw76+voYGhqiq6uLwcFBVq5cyerVqzl+/Djr16+PHX49ta1Bst54440Fujhx4gSLFy8u6s8d18VJ/8TEROJ8jdteBMngPitHdndH4vDwMIsWLSpJt962OJvNFh2/xxmLDQ8Ps3z58kA/YWF487i5uZmBgYFY8UWN+aPi87YPQXPNOGNggKGhoaJ6T0LcuprWuCuImh0ZcCfTjuOwYMEC1q1bRy6XY2BggFwuV9Pt2X4Zu7q6OH78OJdffnmBZa9IGASFsXnzZnK5HAcOHGBiYoJly5axdu1ar59UdwiE6fnAgQM0NDSwZcuWonEXC2vfvn04jpNqnsWJs6WlhS1bthTkh9/9zp07C/IsKDx3O15YXg0NDTE8PJzPq3pZpYzK25aWFhYuXMjKlStLWnEJC3twcJBzzz2XpqamkncIhOl5//795HI5du7c6boPzTM3XzZs2JA3CiVZzYxqfyYnJ/MGTv9KhKub/v7+fCfi1c1FF10UW5ZSZHOPg3i21VVkh0CYDHfddRdNTU2p1fViae7v7yeTydDV1VVXdQ/CdRTWHsbxOzAwwKZNm4qW/QMHDpDJZBLnQxx9A2zfvj12uN50eVcyo+qL2+ZG6WJwcNDdcRjaZvT39+M4Tqx+LI78YbIcPHiQrVu35leRvKtJYWkMahNcP2Hp2bdvH93d3axbty6yX3PDv++++9i8eXPZaQ+TZ3h4mGPHjrFo0aKS61+c/qqtrY0NGzYkSkexcIeGhshms7GPDISFc++99zI+Pu7vl1JbFQyLd//+/SxZsoQ1a9YE1qsY4RftPx3HYd26dammqxTi9H0jIyMz8iCqX3bHflF9mVIqcb7GbcfPO++8/HFar7ugeURS2d0xaTHZvfO3KFnPP//8vMEvaodAWBgjIyP59sENwx/vFVdcUbS9dNvZTCYTKfOKFSsix/wuxXR4/vnnR7bpYf379u3byWQyVWsLqlVXY+8QANi1axe9vb0cPHiQtra2vNXiggsuoKmpKVHEk5OTbN68OR/W8PAw2WyW8fFxTp48mSisSuGVccWKFTN+j9JHWBhuOt2zmq4xoBpp8OrZXbkoNyzXmlfOCkXSOLPZLE1NTZx22mkFbt38EBHa2trylryo8NwBMMCll17Krl276Onp4eDBgwwMDOTDaGlpKWuFpBKE6SaTyTA1NcXKlStLCjdIj26H3NDQkLiuR8ntrRO5XI62trZY6XTz5vrrry84W1WKDF7d5XK5yLIcppvR0dG8YaJcwmQbGRlh2bJlBefTK0VUvatEXQ+Kb3h4uMAYUE8ElYP9+/fT0KC71KgyGeTXvavEr9uoOl4OYeE2NjaWnL+7du0KfBZUX4r9Pjo6WtA/hbUZU1NT+XP3aRBWDhsaGrjuuusC89WfhtHR0bxxM2z3Rlh6gBk7sMJ0lM1mU+uTguRx5ZiYmEil/kXVce8237TCzWazgWOApOGICC0tLSXLV2q8uVyOw4cPB/rxjz3d1dlMJsO8efPyRqio8EGXNXeSUQ9E5WVUmxc19gsLc9GiRWXVn7A+IJfLzRgneWUoFs7o6Gio7O7dEqXs6gga+2YyGbLZLHfffXesOh4kT0tLCwMDA4hIYBiun7D0Tk1N5XdFdHd3F7QFUXOOoLDijPkPHTpEJpNheHiYe+65J3BXRFgfnclkcBwntbFeMVnd9GYymfyusUoSa4dAT08P99xzT6wAzYCx6A6B2ALWcIdAiCz09vbG0keSdHrCT3WHQBpx1yLPksQZZTWPY1lPYnX3uK+LVcqY7hNbvtMMt8zwU5Wn1DRWow7Uum1MGn8aMtQ6zUkpR0dptWlRccRwl7q+i+0QiAg3bvypyhvgp6Q8hWR9fFI/9Zj2eoojrXBr1QaV0h60trYWTBiLMVva1kr0y/XQhgbJUM0xaXNz80A2m11ablil5A8Ulr9SdreU8ruI4M5ZK9k+e+SoaluQZrx+iu4QcBxn8J577ol9wEZEBouFJyKxw3McJzK8ShAmo7tNOg5J3HrjTeShSFhp6bkWeZYkzihdu7/FcZNEttiOK0Cl8qPS+VxC+FMiEtsUG0eeUtNYjTpQ67YxafxpyFDrNCelHB2l1aZFxRHHXdr69oYZp731uitGNdrmcvK0FF3Wugz4/czWdi2tcGvVBlWyPTDhp95/VopK9Mv10IYGyVDNMenY2Fh3c3PzQLnlu9T88fpJc/5UTHf33HNPyTqs97YgzXhnoFTydxUCB4DPlOj3TcDNQEeEm53A/cBFpcRRiQ/wPuAgsM33/KnAcWBdhN8NwF+B+ea7A/wNOKsKci8EjgBLPM9+DTyzxPB+4/UL/CPw/SqkQ9Dv4IxVJoycbwZ+EfDbF4G7gJPAEwLK3p+Z3j3zUFNepdZlMCAd7wK+EfD8+cB1QCaFON4D/K0Csj8S2OP5/lLg2zH8/RC4KYX4nwH0efMVeAPw9QRhfBP4S8p6Oc+0DasCfnsisA9orULZ2grsB+aZ7wLcAjysQvF9Gvio79l84A7gMZVObwnyPgK4G2jxPe8yfdfGmOFcAUyE9YfAJSYf5nuePRX4XRptEvAE4MfAHmBrivq5CfgO8DLgBcAY8F3glgg/LwVGi4T7BuCjwH8B/1LB/G0GpoCzE/q7GfheTLdnmrLSaL7/PfDTIn5eB+QAJ+X0PstfpoAmU8Z3pBhPBngAWA58FnhliuEeAtaY73uAnWWEd0eSvqBM2TuMTno8zx4C3E5EHw48HZiIGUczcAJoQY//HluNtCXUgwC/Al4T8NuzgBuBhhjhzJifABcB/UyP6z4PvC4luW8GHmz+/xbwwiLuR/z1HPiRaTN/6W8DjV4GgZXAH4GLy5T3VcAngL8AG0oMYz+wDj2GemgCf5PAo8z/rwf+E/gHAsaxPn9NwDh6zD4v4PeXA19Az3eO+csJ8DVgL3ANcGcCeR8EXA+cm8RfiTpdaPL5Qt/zFqPvh1QyfqUUpR6EEPNJ5knkBegJ5KOVUsNh7pRSu9CDgx+JyOoSZUybRcBR89dLG7qgLojw+3LgSqXUSQClVBY9KX1ZBeT083zgx0qp+z3PPgm8ImlAInIesB490HO5CniwiJxRlpTFcXezxD30tRo9wFkT8FvGfILK8YuBzytTE4Gr0RVySxJhK42IrEGXn9cG/PxldMP5ojSiooS6HoPno+uAyzeAR4hIsStzy5bHrJq8GXivJ58BPmNkCCozFZHFJ9d84EvAm5VSB/y/K6W+jy7T700rzgheAXxKKTVp4lbAx4F/STsiETkX+Du0gSuPaS9fB3xYRBLdd1NJRMQBPgW8QilVsH9XKfU34K3AZ2KuzjWjJ3itIb+/Gfig23cY/hfoBC5LKHoQa4A70YOlNA8Tr0JPaHqYrifF6kuc+rQR+JP5bCxfzFDmow3QSQ8ZJ2kTnoMeCLuXJXwP2CYiy8O9xBpvJEJEmtB171+97aFSahx4G/ABSbo8Hc464JhS6hDwW/SAOw02AUeVUnea799HG1BLpVL9XhAvBX6ilPKeQ70aPd58UoS/JDJuQhuvR9F9yCXJxaw4z0ZPij4e8NvXgSHi9T9Bevl74P95yvfXgWeWKOd0RHrcuxT4vXkUWe5Mn9CMrsdBMrcBjb7+zr0M6iBwA+WPRdej2+bbgbOTehaRLrQR684S5PHmzWbjP04Yy9CT5cNofft5MLBbKXUYuBc4PyTeRrRxIS6b0cbF24FuEelI4Dcp7wb+Ryl1o/ehqbOvBj5pxogVo2oGARF5Anq18VGmM4hEKfW/wDuAn4tI5d6zEJ+F6MK40Pd8AZBlZgUHQETa0Zbcz/l++izwXBFpTllOb9zz0MaIT/h++iGwQkQumukrklcAn/UMYFBKnUBPYl5ehqhxmI9esSlaIYxOl6AHHMtFxP/+LLf8ukYB118ncDnwVfeZUmoKbXlMY3KdCmZw9gngfUqpv/p/NzL/E/CuGBPsYhToKA2Mnh+D7pQBMAbCn6A77kjvlN5uuTwOPQn7qfehUuoYeuXxDTHDSVs3b0QPej4f4eZfgL8TkZ0pxluAaW8vD5DjKuASETkr5Sj/A3iP6cz9/Ai4D22oqxfeCPxZKfWjkN9dvcVpM1rQZXFGPyAiG9ED+f/2PjdGmvcDb4krcARr0caAOwk2niZGRBagB11/QRsGTjWDQNH2yUwMnoM23gL5gd930auhYbQRMd4okZegJ4u7An77OrqMPimluB4E7Db/70YP5NPgCejJmMsPgCeUYchIvd8LwhgX/wX4oPe5mbh+AHhjRBqSjMMvQY+HoA4NAmac8iHgJUqpnP93o4+XAW8SkZ5iwVE4rpuHnvxf5XGzCz3BW095PBH4kWs4R49hLhORMANvOzAKnBYicwd6B4H39y3A9UYH15OOQeAv5lOKEXgLenfnVAnyeNvHLcb/HcBiEfHPrbwsR+8AOoQ2Dvh5MNHtihuvQ3KDwA0mf29C7zRJHTMXewraABvE99CGjldWIn6XUgfW7gprLERkO3qQ9Hil1N64/pRSn0NPNn8mIv4KVG0WoQfr/kJbrIN+NvBrvxFEKXUXujI8LWU5vTwabcS4zhd3Dr1F95/iBmQmcU9DGzL8fAp4fkQjmAZJBmhnAvvNCse95rsX7+DUW46fhd7K9YDP/ZeAK0QkzUFYOTwZbTUOsqQDoJS6Cb2l/X1lxpXGBNzPM9BHOfwTwC+idw4Uk6fkgZoZXL2FmbsDXD6OnnDHeUVDaroRkfPRA8MXhcgFgNHZS4EvVrA8vgT4plLqiC/uUfTkNHa7UQwReTRwFro9moHRxWuBt9dBH4DZsfYKIlaqzEDppcC7RWRJkSBb0EcGgq4xfzPwEbOjzM9VwGoRSf6KjUJcg8Be838arEJv2z1AoUGg2LghchJmJk9nAbehj6+cXcEVE9cAnXRnStyJ5IPRE4M/+p5/Gb1QEBZG5AJEUozx5s3mMwNTlt8EvDelXToPZnpiehfQJCKrUgj3CWgjgMuf0KuBpU74KtHvBfFc9OTqloDfvo+eIIYZf5PIeAnaEAB6NXurmSjXCx9E9znXhzlQSu0DPgJ8qoihx9/ObAfuV0rd5glrEj0+KneXwJPQkzU33CPocf0jQtx3oHd+dPieu21kp/m90/ObO3GGdAwCZ1PGDgGfPNfFlcdT3uYZA9AiYK9pY/6InnyHsYwQg4CIrEDvsHPnlkEGAbdddswnLpvQOxhA7xSIkrEkjHH4k8BbQxZF3HHQK9EGsagdZOVR4lkHRZGzbh63D0Zv9XhEiXGJUdYuYHEpYaTxMWm+D985EvQZuyngWwF+HPPbU0LCfD76TE3Rc1ElypwF3hTy2xIj2yUxw/oD2lIW9vsdBJzXTzEtF5s8uDyG289jztahV98+7fv9/0xYCni6eeYaHJ4REmZ/3DJf4XJ4NrrDuCyG2w60QSiwDMSM76tGL2XfR2DCy5jwZpyzA+ahjzq8IsL/CWCojPg/jD6vGXU28+vAPTHCug7TVpepk2705On5Cfx8GX1+L5V88YR7ummTNoX8fpZpN85LIS73GNaTY7j9JhHnz6vxQa8sHADeENP9x9GT16iy9mdTH17ve/489Nbwtgi/b0Vvvy41PW6b91D06ptKSU8fN2XkESb8t5i/N0fFgd4RqIDTQn7/F6//sHYkpTSsNOG/LaG/B4ATMd19NeB5Bm0gem2IvzEjV8ltui+8G9FHCqPcuPeH/LDMuNy2/wrPs6MUOT8cI9wnm3Dn+Z7/GfhjiWEq4LeVKFueODpNf/fICDdvQPd5M+4LAf7HyBl5lwh695HCcxeE+f6ySqYvgR7eiZ4jtMdw24i+R+fKInn3U8/3oaAyBjzWuG0uUe5LjP8FvudXoY+vBPl5KdNjz3bP81+gJ+jub6/ypefd5v/TzPcLSpR5m5tmtOFflRBGDvhP87/bh+yM4c9Bjy3+Dm3YOen57Xb0rrswv32mjDwA/CpA38c93x9qZGryPPsW+hy+q9+uGPKea9x2mu9fBLIVKP/fRrevRcdy6N2U++K4LUmWEhNwkBgXjTHdAbylTIXNM4Wh6CC9Uh/0RRwPw2fYQF+O9hYCLh9Cry70EXIJGLpDuLZimavPofVE/P4jQgb+AW4/DTwn4veXAx+uoP7nmbL06RhuNwDPNf8/DzjX97t7zkiht3u5ZfXX+Bp3j5+XAG+vVfnzyPFCUxdiXSiGtl7/pIz47gQeSFF+QW+r6wz5/WNEXHiEGQSVEf97gI8XcfNw4NoYYZ0A7khBJy9HDwxjXxLn6awWpVy+Vpo2acbFPZ78+7W/TpUY12ZTlptiuH0McCDNtJYg7xq0kTWWYRptvBsn4gI4YAd6cLTI9/zFwHeKhH8GEYOomDK+w7Stbegz5GnoaS3a2N1g+sb/M3rIRsmL7ivHIn7vwTNRRk+Wllcor59k6leiRQjj55sx3H0R2BLy24cJMXyjVzTfSowBbUx5bybECO5z9ybgNynE9xFvfUCvkD+8zDDX4LuQ1Dx/PCVePIlebRypRNnyxNFt9B/a/gErCLnUmOlFkpVF4hH0RZwNnmdvAs6sZPoS6OEGkl3m+wGgP+L3gvkJeuw6o66hJ6jfD+vrYsixHPhcwPMNwH+E+DkN+Gd8RmX0JFuZNu1l3v4AvY18qef7+yjxUlG0Uftt5v829H1FScN4M7DC8/1dhBhxff7cMcv/AhfgMUih51ah7RB6YfnRpk77L3Z/KJ7FFLSR4j+9dQa9G0uhdxv+a1B9CtHV+1236P42lYsoPXEI+ujGv8V0v9akJdVLZd2Pm9BEmIs0TlN6W3Ixtw8CfqdKiagwnA7gdKXUreWEY5m9iMhD0Bb/o2WGcxHa0vh04MtKqZq+yqyeEZFzAJRnu10tEZEW4FKl1C/qQJatwCGl1MFay2Kx1CtmS+cytIHgHhVyh5DZOr5EKXVD0O/VxGzjfJxS6ocJ/T0KuEYpNVYZySzVwC2zKmILez0gIk9QSv2guMtThyTzk3pBRB6KNgJ8u9ayVApzzOONwBeUvny3mnFfDKxVSn2lmvHONkoyCFgsFovFYrFYLBaLxWKZ3VTj0hSLxWKxWCwWi8VisVgs9UbUeQLHcQYA1dTU5F7EUPB/nI/jOANpnW9w5alk3EFp9qa9HF14ZUqSlqB0JNVFsbhLzddK5YnjOJPFwgrLI198+efu/0lkrUaZq1T5LiG8kstzuekIK5NJymUa8ofJXmLYRctwqeWn1LJSThlL4jfNfqKa7X6acfjD9JbncvVTbl6U03dFpc+4K1pfoup20udplIOkddW0WaF+SpHVq880yklaZbqEcCJ1Wa5uUg57Mqk/x3Emq9Gm+MtDlIzF5E+jvtdDm+oN19vepFk+S9FbVBvr/807Fo1Tz9OqL0nCSUOeYmPuOP1S3HbQPy/z67fSafXqvtTy7/dfi7FQ5JEBEVFKKUQE1537/+7du2lubub48eN0dnailGJsbIyJiQlaW1tZvHgxPT09rvtU3ufqyrN7925yOf2qUjfuqakp5s2bx9jYGN3d3SXHHZTm3bt3s3DhQs455xyAfPovvfTSSF2ICBMTE6xevZply5Z59Sciovr6+hARTp48GekvKB2unK58LS0tjI6OsmDBApRSNDU1cfToUbZt2+b1k4/blbuhoYFsNstll12GV7cNDQ2JwwpKy8TEBE1NTVx00UXMnz8/dp540xfhpiCPGhoauPjii/Gmzf3uvqXG+1t3dzdHjx4t0DvA2WefTXt7e4EfbxwrV65kcnKShoYGJiYmAOjp6SnQS7H0RaXZ1WVvb28+nr179+I4Ds3NzaxcuZLOzs6icfnLSENDA7lcLp+vY2NjtLS0MDY2xrZt22bo01/HospBVLy5XI41a9YwOalf1Xvo0KF8HXXDCMqb3t7eAv3H0F9BGfbK7uZve3s7ixcvpqurK1D+oLrR2dnJxo0bC+Tz6zGTyaCUYtWqVf66ntfD1NQUU1NTifUZktYCHS9cuJCWlpZ8efaHHVb3g+pANptl7dq1M9qeqPbX9SsirFy5kuXLlxekvVj7FJVub7ydnZ10dHQwOTlJW1sbd999NydPniSbzbJ+/XqWLl1aVrsfFMfg4GC+HnZ0dMSOw6+vyy67DCDfHkWVp5aWFoaHh1mzZk1gHxBWTr150dHRwZlnnkljY2NBvejt7aW3txe3/3HbmUwmw8GDB+no6GBoaCgf7vbt28lkMkVlCGpr3fz3p/GCCy4AoK+vb0ZZuuCCC/LyOo7DyMjIjDropiOo7JZSDvxp8eeHiJDJZNiyZYvrPp/GoPrgTUPY2ABm9jV9fX04jsPmzZtnlBN/n3DgwIG8/L29vTPSHKeux2l74rYZGzZsYOHChYjIjLLl7cP8fXRUf+rXtVuempub6e7uztfRvXv35vuMOH282067+vW21THKSkltdNKxg1fvl156aYEOQmQqiMtf37y/ZzIZJiYmZpTJUvqiuOl3HIdsNltSH+APt6+vLz/+LjYnGR8fx3GcgroWli+NjY1ks/otr545RKBbbx76y10ulwuUL6wf8PcH3vbc25YE1amlS5dy9OjRgjbADT9Inqi60dzcTFdXV77/jlOW/Prbv3//jPFbWDhu+++25d42vrm5mU2bNsXqLy+55JKCeZlfv1Fp9rZHALlcLlD3YWOesD4nbEzh5ltnZydHjhzh/PPPp7OzM1YdiNNP+dviRHVYqXBrgf5ZKUDdcMMN6uqrr1bus8OHDxf8DcO4j4wn7qcacXvT7OLGg7G6uM+SyuOVCSgrHUHyxQ0nSO5SdVupPAHUrl278uXu6quvVtdff73av3+/uvrqq9VNN90UmkdB3/15F1dWfxy5XE4dPXq07PSFpTluPHHiSlpGyilTUfHG0VlYmfS2PUFl4MYbb1S///3vVTabLas++mX3h1FG2In8JakfScJOo74m8VuqfEGftOtFteIIaov8/Uup5aKUvPDXrbhpjStDUFsbJqPrJuy3IH+V7P/L6RuSpKFYeG6eBJWTpOUyLX2VEk6UvKWkKW6fUmKai/Yzw8PD6g9/+IPas2dPyW100rGDf6wZNSaKU9+ifo8jT9JPmn2AP1zvmLXUPHfdRuVLOeUuTL6gfiBuW5K0vpQ6xo8jTzGZ4rSRxdr4uHkcVFfi+Iub1nLHS3H72bhj+krV4QaKcM011wCwadMm+vr68s9aW1sZGRkBoLW1la6uLvbv309HRweO4wDkrWdpUixupbRVaHh4uOQ49uzZExiXX4Yk8oyMjORXJV36+/sj/Y2Pj5etCzeMpUuXzkij11/QM29YExMTTE1Nkc1m8yugSeVwLa9x2bFjB6BXTQYHBxkZGWF0dJT169fnrXXF0uHKF5Zur5xTU1P5Mtvd3V2SnsslblyZTLzrP5LWlyR56S8HXoL0fOONN86oEytWrAj14+K2PUFl4Pjx4/nVxqT6W7x4cWzZk+pm1apVifXvXRWLQ1x53BWDJP5cS3Mc3aRRltJKa9I2JmnastksixYtKilMb1rixHf06FEcxyloi5LI69VHUF92yy23xC4HYTL4w/W2tVF55hLUB4alLW6aW1paaGxsDMmRcIqF3dzczMDAQH7lKyqNccM7duxYwbjAqw9Xl3Hr6/z58xOnyW0L/WOTJOE4jsPw8DCZTIapqakZ6fC7j6sbgJaWlkgZvH2K2wcX05fbz7uy+se4Qf3Mfffdx9atWyN1FFdvfpmz2WxBmQrzD3pM1NfXx9DQEF1dXQwODrJy5cqi6Y6jF68OlyxZkjitQVSq3e7v78+HD9HlaXR0lEwmU6DnOOMTtx8r5tYtq0FtrDuXCOoHvPOMqDQUS5873xoZGSnom4LkiTN3i0p33LLkylQsHH87ERR22HwsTCZvWovpzkyyy9K9W3a9aY6r7yRtcDF9+uvw8uXLY4XnpeQjAzA9UXMchwULFrBu3TpyuRwHDhwgk8l4tyGnemTAjberq4vjx4+zefNmcrkcAwMDTE1NFWzrSxp3UJrd+K644gqARLro7++nsbExcOvutddeG5iOe++9FxGJPPrg3Y4VlQ+LFy9mzZo1M+L26tFxHC6//HL8z/zpuPTSS/OTi7Cw/GnZt28fjuOUtC0sqmwG6b+/v5/nPve5Bem44oor8g28m3dR+tqyZQsNDQ358P1+/OkbGhpieHiY3t7eso/IFNPl8PAwQ0NDLFu2jLVr1yY6MhCVrxdffLH3OEds9548CCybYWEMDAwAegAWpme3TLrPY+ovVtvU0NAQ2kaEyb5z586iYR8+fJgNGzbMkCcsP922YcmSJZxxxhmh+ozK27Cw7733XsbHxzn99NNZvXr1jPoalY79+/ezdevWGUd8iuXrvn37ANi5c2fRtO/fv59cLsfOnTuLprtYWoeGhjh27BgrVqzgjDPOKKvdjyqzo6OjbN++PXY++cP09h9+/fjjGxoaYsOGDXnDX9xy6vofHh6msbGRNWvWhPZlcer61NRUaB75y9L27dtntLVh4bsGhqi6VqwO9vf35wf4QXWwlCMDUWXbPTrhhh2VxrA0uOEdPHiQhoaG0DbQq8sk7U6S+jo8PMzw8DBLly4taCPCdBOl94GBgYK0RMW7YsWKyN8HBgY4//zzC/qYsLLi+hkZGWFqaopzzjmnqL68dasaRwai2tn29vbQ8urVu7+8hciU/+7Ppzj919DQENlsNvFYrVj6o+Lct28fbW1tbNq0KbFeg/IujfI5MDBALpcrOEYZ5Xbjxo3Mnz8/tI31hxHUD0SloVhb4s4XvPnmhh8kT1R+ZLNZzjrrrFjyRIUzNDSUX6gJk727uztwzBfWpxTrT4LqSrGy4RqJksjoH09u3rw5cDwcd47mzpX9/qPKflS/snXr1hnztPDaVEjRHQIuu3btKrBiut9FhLa2NhzHYWBggGw2mz8zXikuvfRSdu3aRU9PDwcPHmRgYADHcWhoaGB4eJg77riDdevWpRbf5OQkmzdvLni2a9eugv/DdAEUnMuKk47m5may2Sz79++PtWroynfw4EHa2toYHh4mm82SyWQ4dOhQ3iAQ5S8srEOHDuWt6XfddRerV68uGtaKFSsYHh7Op6ccXN268rS1tTE0NFSwcuDVv1+eYrK6+nJl/d3vfpcf9BdLXzabJZvNcuaZZ+at9GkQFRfA2rVrE4UXVD5d62djY2PgylJYmWpra+OWW26JVb/DwhgZGQktF0Fl0psGNywgrxPXQBIn7oaGhrz/JLL75fDq8vbbbwcIXTkOy093x41rDCiFoLC9u6PC6mtUm9XQ0BBYJoLi9Oq2paUlv+pWLO25XK6gDpeT1snJSRzHKUuPUWkbHh4ml8uVtOrsDTNufAMDA3R0dHD99deH9h1R/t065l9xCGonw8rB8PBwgSE3Cv/YICxOb/hRaSj23B/m1NRUPp/KXdkMy3/Hcbj22mvzxpFiaYwKz23H29vbQ2WIE8ftt99OS0tL3oCdNE1TU1M0NDSEthFxZfCuksWJN87vN910U95oGydM7+6EMFndct3d3R26w87fz7hjn6mpKZYvX554F1eUzLlcjrGxsaL+vWPNMDmD4ty5c2es/ssdC2Sz2cDyXS5hcWazWZYvXx46Pk0jHrdPW7hw4Qz3YfmSpCxPTEzkV7D9bsPCSJqGMBkOHTpEJpNhfHycM888MzTMoHj9YR04cID29vZ8XQqTJ6p/b2tro7+/n0wmM6N+Bcke9Js/3qj0BIUVVFfC0uGWwbBwo9oqd140MTHB3XffXXRMHjXnKIWofsU1pJRCrB0Cvb293HPPPfnncS2pJozUdwhUMu6gHQLe8CB4h0BSmZKkpdgOgTTiTpqWUtLh9VfMneM4Ks42/GLpcL+7ZTiprEFxFPNTanlPW5clhhfbfZgMpcQLwXnZ09NT0PYUo1z5w2QvQzdlyRPhrqSyUk4ZK6HNKimegN+q1u6nGYc/zLCVi1LiKzcv0iibQelz0wbRdTGqPQ6TLc0yFeA2lTbLF3fJ4ZWycu3xl7i++v36nqfaj5Srm3LiDnPvH+NG0dTURDabrVgbHeQ/Tl+Yps6D5ElKpdrtqB0CCeJJ1W1UG+v/zdv2xUlDWvUlrXTHDafYmDtOvxQ3j72/B+k3irR1X2r76/cf8ntFx0KRpmXHcQZFpODweVNTU8EKQzEcxxmM7ThGWH550o7bjSMonU1NTcB0hUuqC69MSdISlI6kuigWd6n5Wqk8EZFBIDLcsDzyPvN+LzWNlS5zXr9pxlVCeFMiEu9ygggZSk1HUJlMYgxIQ/4w2Uus66noM8xdKToup4wl8ZtmP1HNdj/NOPxhevuPcvVTbl6U03eFyeCG6e8nk8hVyvO48hZzm0ab5VJuX+PVZalpTqtMp92PVLIfLiHsxG20GZvECbss/Xv9F+sLi6U7jfqelEq12/4xeiXzPG7YUW1snN+i4kmrviQJJy15koYTNn5PWr6TlI1K6N79v9Q5WtTvFR0LKZX45tBzgFHgwZ5nNwD/AXwqaXilfIAMcBPweM8zAa4Fnl2B+L4C7AOeD/wReI953g2MA18DDptn7wL2AC9JEP6ngH81/78a+HwJMv4OeLT5/1HA7xP4FWAK+JLv+QngZQnCWQvcBzSY728G/isF/T8e+AVwPnBHEbffA272PbsN+B/P93Umva3m72Ux5fgE8A7P9/8GXl+B8vZu4Cu+Z/NMmb+ijHAdYAx4BHBtTD/vB34MfKKMvPuN+f9S4KaY/h4J3AF8xPNsBXAU+GTMMD7k5hfwFuBjCWX/F7dOAB3AMaDd8/tG9I2282KGt9CE0YRuQ1tTLDPfAp5n/r8V2JLA77VG15sTxnkD8CDgo8AbY7i/Hfgq8Koy0/o1t30Friw3vJA47gAuMG3avZjddGWG+W/A+4A+4CHm2QkT1x+AiVLrN/DPwGeA3wCPiOHebQPbzPdHANd48unCEmRYB9wFPBH4iXn2NJMuBbwdOA6cFeJfjLtNnmcPAa43/y8FhoEmz+9fAfZVIP+fBXwTOAj0JPD3KuC479kj3DSY73uAh8UI6x3At4H/Nd+3mnbjJxTpB33hLAMOA4s9z/4B0y6XqJ8fA3+M6fZa4GHAB4B/C/j9R8DTTdritqVvQo85P4wZO0W4fRyQS5C2m4Cdpm5mUipPrwG+6Pn+BUoYO5jy+EmPXncVcX8vvjEYuh89DLSY72cAQ4CTRloDZOgy4a/1PX8ycHPcPI8I/0Lgr8BHgE50u/Y14N4YfjPAgNFBBhgEzohw3wpkgQeAriJh/zNwPfBOz7P70P3lEW+bYH6708jyLqOvbwOjAeFeAPzZtA/vSqCnQeDnwJM8zx4K3A88tYhfQY8dfwD8XcDv7wKGYshwL3CmSefKgHw8DDzX9/wjRt9nmu/jwDOAjwF7CejvTD6NoudW/2KevRE9fhz01sUAvx9Ajxd/Blzu+60ZOAm8N4HeBbgaeIHv+QvM85LHFugxxXtNmWwupx4ppUhkGTW0ADnz1+VMdCd3VgnhlcIT0AOHH7kPlNbOvwNvFZF5Kccn5rME+BvTK9euLprM7xg3RVe38wFr89MT0BUN4PvA45OkQUR6gdXAr82j3wBnikj4waJC2tCDttP8QUOiMvIs4BtKqZz5/nXgaSJS2uHbabagG9bbgNNFpCPCrZtXUc/mo8vPfGKmUUSagWcCX/Q8/gLwQklqeo+OZwXwMnSDlEcpNQm8DviAiDSVGPx6oB894DkvptynA3ejBxGl8Him6+nvgRUisiqGvy505+A9CN2JnlB0lhD3j9D1KklePRXdKaOUGkYPwC73/O4tR3HYBNyolBpHd+gXJpAlFNNWPAxtNAPd6T86QRDd6IFK+GsjZsbZDJwN3IjO10uKuBegB53ukg/7i0gDOm0/No9+iM7n1BCRlWjjzc3oQZpCGwbK5Vy0seZW8z9Mt0vzmNmvJuEc4C/oNvLcIm5hZtndjjZUgC7npRxC3AjcAvzJ/A+FbW8rup9ZEOLf7fO89elJ6D4RpdQguvw81PN7UHufBmvQeX+n+T8uQfI8HW1ccPmmeVaMlSZ+t710xxsNAXFE8Urg60qpIc+zbwCrRWRTgnC8xNK7iMxHt3PXo9uJiwOcnYNuR+4nfttwAbqc3UTxdjR2GTHty1q0sXMIPbYtC9P2PQ/4kufxl4DnlzB28KYlTrqC3DwP+JZSahRAKXU3Wo9PSihLXN6OLn97fc+/h54YP7/M8BehJ3qL0G3HFLotiaPbTejFvLuVUlPAT4HHRrg/HW18OIiun1EsRU98va9ocfOjlZnt4Gnm47ppBpoCdjOci27n47b1iIhjwr4T3Q+7tKMn+v6xf1BaRtAG36A6mqGIvkWkC53mu9ELq/6LqMJk6TRxu+M+Vz9dGMNMQHSrTTx3mv+9/hqIHrOdj+7HbjH/+2XMBsgYxSPQY6uv+J5/BV02HpkgLD9r0UaRu5lOZ8mUYhBwLSTNACLSiVbwjZQx0IuLaUD/Dfh3YwTw8mt0AXla2tEybRA4xHQBbEYPcLwd9FLjJu7tRhehC9hfAJRS/eiOsfhtTtM8DfiOUuqkCeMk8B3i66EDXeGCDAJxO1IBno1eAcTIsR/daCWZnASxBbjOGBpuRDfiYQQ1TGEGgUaPn2I8Gb0i4t2391vz90Ex/MflPcBnlFL3+n9QSv0KvXr38hLD3gDcopT6G7rcnh7Dzwr0CmYctwWYjuxy9KQNk38/pXBSHUYXuh74DQJHiWEQEJE16Mb7j+bRzeh8Pzum7KejB6q/9Dz+NtpI4JLUILAZPTAGPeAsdTDuZwvwV6WUe7vOz0nWyXQDB4hpxDRsAm5VSo2hB/rbigxul6KNOXuB3gTx+LkEOKCUcm8g+jWwRUSSdNDFeBh69XTK9DG/Ns/K5Vz0hNZrEMiYTwOefrUEzjHh3mb+L0aQQeBa83+pBoHz0ZO0e4A2EVnEdHusmF5daw3x7w7m50O+T3kSeuLg8n30DgSXShkEVpOCQcAYw5+M3sHj8i3gKWayHMUq9KDUnXi0oMtIbIOAiLQDL0avpOcxY4SPAa+PE04ARScAhvOBu5VSx9C7YAraCRFpQQ+W+9FlN1b7jDYI3IieyG6MdJmsjKwGDimlTqDr6nkx/UVxEbrMX+t51ocef0TfMjcT7wJGhuJjl4J8Mn3yC4DP+9x9HnhhQlmKIiLr0cavd/p/M23ra4F3ikiYkTAOC9GLB65BQBHfIPA4po3LmP8fF+F+BXqV+yDFx0Tdxp23XxV0vufQ4279UNeJTnR+uQtVp6FXw/23Rrpt/a3Ea+tBtyUH0W2zd0HmNPROmOAbTqfpRU8691NoUMgngeL6vhC9IKLQ4zK/Ia8dvarvLwv+cZ9bpoPGiC5u+72P6fbblXE+0cflN6DHizeb//0yngiQMRCTr+8F3upZKAXy4+G3Ae8tY1FxLXp8vpdk/VQgpe4QOMn0SsaZ6MZ8P9BTgdV5P5ej5f6+/wdT0N4JvC1lOdyGdym6MfDuEDiJruCuLpeiK13cwfUTgO/7jBs/MM/j8gwKVyAw358R0/9p6K3M/kF13E4ftOV/HN1Je/ka2lBQEqaiuDsEMH9nXj/s8cLMch1kEJhC51/cCd0L0TsC8pg8+wIpdaQichF6Ivf+CGevB94kIjOvzS3OeegBJuZvnMHO6cZtYoMAeiB0TCl1p+dZ3BXdxehV68WeZ53oFYU4OwQeD/zIWP3dvEqymvx3wA+UUhOeZ98HHuoZvBRMYGKwCW0IwPxNOhgM41FM7w4AuAa4IM4kWUTa0IOneylcySjGxegBPmhjAhQONPz0ovuI/ZRnELicwp1hJ9CD63Ks7H4ezvRuK4BfmWclYyaGZ6ENet6JhneHgLdfTco5TK8axTUITAHzjWxbmDZwXgtsL2GQcj7wJ1PX3NUVtz1W6IFtlvDBlN9IsRGtk1s9br4HPMGzahZnUlQKa9CDyX0kW3nx9z8PQ2/vd+uIayjfR3Ej00r0oLTDrPC54435xE/zi4FfmlVgP1cCD0+wk9BL3LHBxWiDIcZgOUKhPtehj3zk0IsiRcuuabNWogfCtwOrRCTMyJSXNWZ5LqWPLMbzgC+7fRHk+6Mvmd+S4NV7KTsEHoIe6+3xufsecKGIpL2o9yHgA77dKXmUUjegd7S+oYw4FqF37i6kfIPAL4BLjaEqiNPRE+u/UnxMtBTd3/kNAs2YcYynTC5Ar44/YH7PoCefx5k5WXcNAnei51xxdoz2oOclB5i5QyAoDj+9RPffcdqDi5heoAnbITBCsEHAO+5z29igMaKLd4eX2964MjYyvRhYgBlXt6N1dTPBOwRGKK4vl6eYOL8T8rv7/O9ihpfHlJ01aGNAKgaBUs4sfAFd4X5qvn8VPRF0O/3HJw0zQdzuGeh/iHAj6Mz8RorxfhNdkRTwv+ZvBn1EQaEL5XGmV0L+H6bNLxKu6/65vud/Z543xAjjHzBbpHzP55nnz40RxptNfAryb55YYL6/O6aOBoHvBjxfYsJJfCbV+H+yT67PAycj3J/A3OfgeTaM51ynJ70PM3+fWUSGpxpdNgX8ttKEcX6ZZawJ3Rm8Iobbr5HgDKnH3xTwcfP/fmBPEfcdJm07zd8VCeO7HbjB92yZCeucIn6H0cYl5ZZt9IR+zFseIvwr4C2+Z6+NUy89/l8d8PxvwLfN/w9H77RYGiO8BhOme8/H0+Oko1RZ0Z3WF2P4vcL43wU8kCDOceALnu/HiWhz0VuUx5i+d2FBCel0+5in+55fhe/cdhm6dI2E2z3PzjfPFpUR7gvcsoeefLsTZGXK+r3m/1tLCPvBxm+TN+wYfsbRg7t/9dYLpvulyHbRF9484+cx5vtB9L02/8B03/KA+fvVkDAWmfrk1pHbCWij0Ktr7p0730TvGCk77wPKwBbgv4CpBH7fCGQ934eBrwW4uwoYjgin08hwtvn7NLRBUqHHN/tjyLIcmAQeFOHma+gV8aQ6uo0Ybalph77p08f3PN+/A4yY/7/r/l8kzDf5yqsi4h4B9NZcBTTGCHuvWweNbsbLLEsrTNznBfzm5m1PgvAU2tANekw6WcT9IJ47qdDtdOC9TmhDcuJxRUTcH0L3lzPGTT53q9B9wxNLjOdWk07FdH/2N289DPH3UOO2yff8BHqXZpCfW9Ar5begd74Uy6v/Nn8znmfuuEYBZ5vnT/Q8+ynaaON+f4EnTLdtvsIT3otj6Oinpu69yld3bkUbaQeK+P8Tesz43KB676ljoXduoPubr5j/3bF3o+f3q9EGzyMBehxFG+m7zPdXeXQ5HBDXUfRdK+54swe9s3zU1WuIjO90f0MvkCg8d96gd/CG+veFtdDEFzknRi9SjZJwfIHexef2+z8khTFQKZWvF/ggcK75fi5mgIa+OCW1i7IC4l6Atgq3F3H3DuDKFON1C9GLTSF5jXm+BH0BxSFPxrzaPH9pzLC/gG9wjB6QfDGm/03AR0N++zAxLhdDW9j+EXil7/kY8LuYcvwnsDXguaA71kSTSZ9sb/F8XwW8NsL9DGOMyZuveL67g62nmb8zBmw+/w8GPhfymwD/Q4JOPSScRZjtTzHcPpwinVGIv38Blpn/H4YZeEe4F/SOhPzfhPG9Bnh4QJifBU4r4vfJ6O1ar/I8OxdtLPvnGHF/Et9E3eg41iWX6NWbGXlh6slzzP+fMOXnUTHDfA/TF2424blsqMyy8zFgYYCcReUybc0r0CthT0kQ5+u9ZR69C2hHhPvz0YY1ocglYEXi/TzmMixfuYh9yU+R8AV9EVGD51nGPCv58iv0QObVnvDe4WmH3M8HgEtLCNvBtJGesIsZzN7taQPPwdemorcynp5Qjn/3lO9Hm8+vPOn7Odr4sDrE/07j7kpPGQu6MOptmEkupm9OI+99cbzV6HI5yS7WvcWkod18/zgBxmJTHz5epBy+wfx9BXrL+dnoSdZ4nDSj+8o/ELGwYHT+8xL0k6OIQdm4ezWwxvP96cBDPd+3AE8z/68BXhQjzDPw9AFGP70R7jfgmXwVCftJbh1Ej3Vj531IeJ3o1fcZbYcpX98lwUQAPdYcMP8rilwMadwc9Xz/OmbsHuD2McB/lpNeX3jfIP449vfAG0qMZwd6cv8KdL+q0AZuVcTfcjyXFnue/xMhfSd6h8V29AWfjykS/j+jF1Ve43k2gN5d8FJTN1xDgWPcv9T8rtCT3n/CZ9xFt02N5v9XEW9BYjN64rmAwjHVdvQulccW8f9w4DL07oUZ42/0SvzhImHk6ynagPwu3+8XosctTwjIjyehjwkJ2mjwM5P2c4EnB8T1HPSdWcJ0W77X6PVdmDFcgL/VTF9YLOi+dJ7n9270kd0XxtC5e49BMYNYk3G3tliYAf5cw/haYiz+Fvu4q66WCMzFO+uUUl8P+f0s9K3Bn6uuZJVFRC5AV/IDxdzWC2Zr5YOUUr/xPHs4+gbtCc+zR6O3h10C/EUpdbjqwlpmNWbr6suA/1C2IbWUgIg8BnNRnFLqp1WMtxk9QPsP5dnKXIF4lqIngX8E/qz05ZxhbgVtRLxS6TPnccKP7JurjYj0oAfXn65gHFvRN6H7jwlWDRG5GL3VP3AreL1h6tnPZns7bbb0tyilbhWR7eg3Kh2NcP9c9N1Ht4S5mWuIyMOA3ei3R/2s1vJ4MXOFJqXUbRFu1gA7lVL+ex7qFiPzPKXU7VWIazNwUCk1kNDfGcAjlVKfrYxksx9rELBYLBaLxWKxWCwWi+UUpBKX8VgsFovFYrFYLBaLxWKpd6LOEziOM9DU1KQA5f71foKeRX0cx4m8uMJxnIFyw0sSRpj/pqYm5U+3+8z7iaOHJDoKc5tGGP7fg+RPKx1Gt5NpuY/Si/83x3EC3QS5LaccJylnScN34yiljpSaxrjludS0xZErSZksV8ZS/PvLVlK5Sm0v45a1tPO4lLT4nydNc7nlqZr6TBJ2U1OTchyn4G9S2aPCjuE/lfQWy3fHcfJxFQsvjkze8KPa8Kg8STLeSNouJE1DnOdRY41SZQ3SR9x6UCyNcdqJUtrgUtIdt4ykMZ51dVrCuLXo2Mivt7j1N0l5LEP+kvyUO+73919p1pFi/VbcvjAs38LcePMsTv+ctM4EzWPK0YNX7qTyBeVfHFm9ZTqJfFH9bJLxaJptRSllP434i/WFse4QEBEFaIciKKXYvXs3nZ2ddHR0cPrpp+efNTQ0kMvlWLBgAUopxsbGmJiYoKmpibPPPpv29nY3jNBXU4iI8obX3d3N0aNH8+G5b+i46KKLmD9/fmB43jByuRxr1qxhcnISgEOHDtHd3U1PT4/rNtC/+39fXx+XXnppPv1+3HhcN7t378ZxHJYtW8bk5CQNDQ0sX77cvQAin66VK1fmf5+Y0Mfae3p6CnScy+lXVnZ2drJx48aC5w0NDXk9n3nmmdx2220sXbqU3t7egjCCdHjJJZfMyE9vGsPKgz/csLxetWoVy5YtKwjLlbu3tzcviyu3mx9R4V9wwQWBv23cuDGfD0FyAlx66aUz8iwqbV69e9M2b948VqxYkZfVm/9h+gDYsGEDCxcuLJApl8vNCF9EWL16NcuWLQstm2759Oo1k8kwMTGRD8+vKzf/vWUoSAa3XPjLc5A+xsfHcRyH7u5uent7Q8v+3r17cRwHgIsvvjjQ3apVqwLj9ZdJv9ze9ITpP5PJcNZZZ7F8+XL6+voKyqDffzabnZEnTU1NBWmMqh9h5c+rZzdv3LxbvHgxCxYsCGwLvGXAn+dh7Zorp+vO29a0tbUVlEOvroP0JyIFeeYvB95yFqbXqakpduzYEdkejY+P09zczPr16719RGjZc+telGxjY2O0tLRw5MgR1q9fz9KlSwP1GVV2lFJcdtll9PX1BZZrAMdxWLt2LZ2dnYFh+8urH9ediNDb28vk5CSZTIaDBw+ilGJ8fJxMJsP27dtntDlJ6oI/L8P6Vr9Oo8qYX263Hnvl9OZlc3Mzx48fD21zwuQGOPPMM1myZEmB3uIQd7zh1hcgXy/cZ1NTU0xNTeXlbmpq4ujRo2zbtq0gra77qDGHv09088Gr01wux2WXXRZYVkLSNyMv3DK6dOlSBgcHC8qQVx9x6oGI5OuwK3exPieo7/bX697e3oJ0R41VwsZDrjyO4zAyMlJQz5K000H5EFRe3fx267wbjhtfVB/Y3NzMypUrvW1FqHuAyy67rEBv/rw+efLkjD7ZLTdR/VrQGNrrJ6zNzWazXHjhhfk22h9PUHuybds2v74D66K3HLa0tDA6OpovP/765u2/ktaRoDKeyWRQSs1o+1z9u2XM31960+st//5xS1D+Bc0p/OOLOHOBOHUmqhwF5bXr359u97u3ferr64vURVBb0NfXh4jw4Ac/eEa5C5M1SHdu+P5+LZvNzmg/g+qad9zpn1N4ZYzTdgXpMZPJMDY2Fjj+CCr7rn79Y7a9e/eGpjGqHLjl2tf3FH8Np1KRtxgq7UTl/x4+fFjlcjl19OjRgmfev2EY95HxlRtekJxJ/bufw4cPF6Tf/3HjiYrT/S2OTGHpT6KXYm6D8tP77IYbblBXX321uvrqq9X111+v9u/fr66++upS8zoVuaP04pfZ79afZ7t27ZqRxlLSlmaeRPgJrSNh4ZVahsLKc5K0xS3bXndh8QaV0yTp8cedRp2Kqh833XSTGh4ejlWOg/QQEe+MPA/zV8xd0jwutU5GfY/bbhRzX06dShJHnHyKE3ZU/xE3/HLqQlI3xcpYWD0OGzMExZm0Dga19/46eOONN6rf//73KpvNxh5veONO0m9501pMb1FhF+uzwtJcShkKSn/cuhbmNk47EeSm1PIRJU+cMhLWTpfappSYD7HqmZuWuPW30mOZcvyoMsf9/v4raR2JG7b3uze+sHCixi1B5d/fVvrdBMlTyjiumBxR/v2y+sMMGlMVC9/bnwaVoSS6i9JHnH42Sr9eGaPiiNJjEEF1IE7/kUb8xfpC99NADPbs2ZP/OzIyAkBra2vgs66uLvbv309HRwdKaevK8PBwfuUzTlxR4Y2PjwOwfPnyksMQkfzKZRT9/f0F6Y+KJyxOgGuuuYbW1taiMoWFEzdNLlHxedPjunP/B9i0aRN9fX0MDg4yMjLC6Ogo69evLyoDQDabJZvN5vM6Trrd/CymwzC9+GUOitfLjh07AArSWIqsSf0Uc+vV3+mnnz5D7rjxhv0ex59Xx0nSFrdshuWhtxz661Qcf3Hi7u/vT9R2ufnR0tKSjwvC60cul+O+++6LDDfstxtvvJGOjg4cx2F4eJi2trYZZTdOWouFH6TfUsIrVs68fuLIPjo6ysKFCxkeHk6U1mLuXH1ms1m6u7tL0qe/3IT1b16i2qqkMrirc8XCjtO+xHETp0xEtS/etBWLM64O/O1uVB08fvw4F1xwQaC+4+RBKTIlaYfits1+gtKcRFY3Hj9xx1tJ+o6gPA5yU2q4Uf6i9FWsnU6SlydOnGDx4sWx9SgijIyMsGLFiljxePW2adOm2H7i5ql3nBZX/mw2m1/tTFJ2vLt7wkhaDoMIqyOljE+KfS82dvL+DRrH+OcUQW7i9K/F2vAgeZLUuSD3LkF9Y1T4fj9Bbr1zE78Og8YtQfrwk0SPfhmj5r5x24qRkZHQMUCccMLyIG78/vFJFImPDICeTPX39/Pc5z4XpVS+EjqOw4IFC1i3bh25XI7h4WFGRkbyW4fibuELCi+bzbJ//3527NiRr8BRWzDCZBoZGWFqaoqzzz676JGBa6+9lu3bt8+YcLu48bhuvLrp7e0FYOfOnQU66urq4vjx42zevJlcLsfAwAC5XK5gS5Rfdn8Y/jTde++9+S1a/nzyu+/u7i7IT6/8cY4MBKXRlWNoaIgNGzaQyWRmpMWf7n379rF8+XLWrFlTEH6UzEF6cfMhTM7t27fPyLOwtIXJet999zE5OVlQjr1hRZVXmN7+F+bWLQcbN26koaHBK1PokYEwWVesWBEY1+WXXx6rXASV5yB5+/v7ueSSS5g/f35k2Tx48CCZTIatW7dGlm1/3vm3i/nLnddfWNxDQ0Nks9n8lqsofQSV5wMHDrB582YaGxuL1o+wshSk46g4Dx8+zIYNGwrKQLE8v/fee/NbRqPCj8rjIFncshQnLX69us+uuOKKovk0ODjIRRddFKsu7t+/n8bGxnx5igr3wIEDNDQ0sGXLlkB9Fis77vbHqDrQ0NDAJZdcEppX/rbKSzEZ7r33Xi688EKampoK2pxi/UNQH7N58+ai8UXlt9sObtmyJTLfg44MFGtziumgs7Mzb5T26q0YSY4MJCmvbj83b968GXkSpPuRkRF27tw5o/0IG0ddccUVoWUlIH2hcbvtn+844YwjA1HpbGlpYe3atbH7jmLjjaB0xy0f/rY/KN2u4a+UdrpYH+nq5Pzzzy8Yg/rLQJCfqakpLrzwwoK4o+Jx62JYPxjmp5gs9913Hxs2bKCpqSm2/IcOHWLz5s2J0+w4DuvWrfOmOfLIQFQ7nslk8v24VwYvcepI0LhrYmKCBz3oQTPGjUHfi5XTsO3uYWMbr+xBbvz57e9fw8qNX+645chfl4PaQ7d9Kjaei+qn3HF5HFmD9OKXz6+joHIRR49+Gb3xp9FW+OtAnLFI0Jg+Tj/ljl/DjtcHEWuHgJddu3blOxeXyclJNm/ezMGDB2lra8uvykxMTNDe3p40itDwWlpauO666wrOJiUNI5vNxrJYumEkcePVTVtbG1NTUwXuXHlWrFiRlyeXyxWsAAXJHpWm4eFhTjvtNO6///6CMPyyOI7DwMDM13YGpdH168bjbWiDwr399tvp6Ojg2LFjZDKFL64ISrcrx+HDhwPl8aexmF688vqfhRHkJyyPxsfH8xP1IMLKmuM4BXkblieum6g4ouL0yhoWV5QMruHCDbeYvJOTkzQ2NhbIG6YDILQe+OUK+r+U9Lg6zWazBRMxb9zF/B87dozGxkbmz58fKoubBtePd9dRVDl2f9+5c2f+9/7+fjKZTGQZuPTSS9m1axc9PT0cPHgwH6eIFMjpT9Po6Ci33z79euBieXz77bezcOHCRGnx69V9Fuaura2NQ4cOMTExQTabZe/evaxdu7ZoWhsaGgr0HJZ/w8PDBQbHMMLaVK+OwtxE7TILK+d+ouTPZDL5gXucsMPaWm+bXKwNCktvNpvlxIkToeFEEacvCotzcnIysN/y18HR0VEymUx+h9Xq1asjZQqTr5hMw8PDTE1NsW/fvlC33vZ4ZGRkxu6UsDiD6kxUmqPiHh4ezp+LjeoHo9IJFJS/OH1HVDsRlu5i4YaVtaB0R+lrYmKCxsbG0LIeVyfXXHNNoIEvzI9/fBc33V53Sf2EyTIxMcHvf//7RPJnMhnuueeewHIUpSfXYBaXsLDcO7OC9OEnTh3xht3e3l6w6uofN/q/R5XxKLlKdROn7Lt9aVA7H4U/DG87G9V/R4UR57egOUecuZZXL35ZwupxmDylyhi3rchmszQ0NMSer4aNw8LcRPlzxw9A4Pg1ipJ2CHh+j22t97iPZbEvNbwkYQT5b25uHlBKLR0fH59hpQJ94dfAwADu755wouJIIk9FwvD/HmR16+3t5Z577gn1W0LepOI+Si89PT0zZPa69boJchvkJ46sSfwk1YXHT+Slgkniilsuksob120cuYrtECgl3jC3pfhvbW3Nb0OMIo22wONeiuV53PCT5nGpddJf/yrRbpRTp9LSZ5Kwvf2H2wal1eaUm5dpuPH3k1F1N0l8XrfevjcOjuMMjo2NzZyNT4c5I6+SyOT2l2n3794BX7E0lzNeqkS7EvZbKW1wKW1/2JggiHLHs66foLCK+Ylbz7xjsmJ+kpZHN544YafhJ2zsX0o59Len5Y7tivVbcftCf3mPGm97y2qYm2Jyxk1HsfFUknRHlbMkeoLg3b1xdBcVn78NSCJn3DFoWmP6OGU/jfij6l8BStnXDkbJ4n9FSFDa03rVWKVesRb0e5qvIAvRbVVeO1jsWZzXraT5CrA0wnfjKKWOpPG6mjTLWxK54r7yJQ0ZK5HGSpSzJG1a2nlcSlqSvK6pEuWpmvpMEra3/4j7ajR/+FFhp5GWctwEpa3U18qlkd9xXrMUpM9K9nNJ6kycMlKuTirRrkSVi7TCTaONTfNVYiWMW2O/djCNdFVA/pL8lDvuD3ttXSXKQxL9R41bosbbcdwkTU/cV/mVW+7KrZtB7Vspeomqx1FtaJLxaJptRSllvxpzb/dT1MEMD7APuBUYAL4E3OX57X+AZwFZoClp2CHx3QN8rkS/Dwd+Z/5/OfClEsNxgHHgT8CFwA+Bm4A9wG3AMaALeAA4AQjwR+DHAWG9A3g/+rjGMNAVEe9pJt4P+J4/E7gG+EkM2ecBo8A/AV8McXM/8D5gCvi6efavwN3AoyLC/jKwL4EenwpMJMi7PwLXBPz2c+DxJh/+zvfbceBVnu9rgP3Ai4Avm2dfBPqBd5k86A2I41bgw8BHEqTv08BXgK/EcPswYAw4s4y60QwcBpZ59PvLAHfrTd62eJ6JKbdvD0ujke955v/3AgeBLRHyXAT8xfz/QeDtEW5XAoPAnwN+e4uRtwH4raln3aYuPN7k5+cD/G3k/7N33vF2FNfh/+7T09NVRRUkBEj0ZqpEF9XGuIDjgo1tbGNjwL1BXBLbiZM4xWl2Etspjp24xb0T94JAwsb0DgJEEyBACAkJ6Ul6783vj3PO23PnzuzuvRJO8vu8+Xzu5+7Onjlz+jkze3evBMD+GrmN4or6n1SbO7aB7H+h9vH5CpjnAb9x5z8EXh3B3AJ8p0u9fwa4WI9fktK5g/018MvMtb8D/gm4Rs9XA39TgeuVwLeA9wD/lLg+WfW2v+tbCDyo9vAH2ndoEz0p7CS1w98DflwBdxRwk9r1Y8DuXcp0BjBc5Y/AW1Rf7+gC77uBTwEfB94XXXsKuF3t+0rgDmBTF7gXIznpb0y22t8ChuL5EuMfAl4H/DRzfZ7KZNcKHHPUb/4C+KOEvWxDcu9m1fl/ABsyuAokh85T2cyqsImngJl6vgx4fjf6ruDnX9VP/9j1/YXa1EENx78bmIDkohkNxqyL9HcZ8FyV2WRgmvrVo0heujeBY4rON9XJp3ZuN3534HHVwWeAd9bAnwKMZK69Hvgv4BwSsU1lM6L29++uvw+pn87Axc2Ez/x91HckcLPK/ZOJMbcBDzSQwTBRvQO8BqkVXt9QjqcAV+nxXwEfaTDmDNX5ALARmJqBOwSp5Y7R8z9W39u7AveNwNHAPwK/35CHP0LqwUtS8syMeT/w98CPgTOb2l0G118jNcB3gZfXwO6ntjRF9XwbsAapiz6VgP8R8FJgNrAeGF+Be5XCzNDzjwOP6PF7ld8bgEWJsb8BrnbH65C6YxiJcX8OfA+4UWE2AZ9G6u51SG5eDVwKrFcYi6dT3DwTkVpmEP3Fd0THJL32n8AF2vdhlU9LZXeS0jU/MX46EldWAAdo34e0bzcH90/Al0nUQ8B3gKuIanW9tgFYrsdDwKuVlj2075OqB6sZTAZXIzXYeOXBaouXAj/HrUu1fwQ4EfhT5b0tryFrqm+QiNnAw8Clevwoks+fRmuwyAd+AnxuO2z/s2jsVd7fn4F7H9FaCvH1HwGv7XX+9ge+m7XCfRfQhuMgpGC6D3HUHdV6oRMk0P5Ej38CnFH43+M1b7shRvEAsEDp8fwXwK7AI4ih7eT643YKcFkIYQhYDpxcMe80JFDsFPXvihTZ1a+jl7YHEoBuAg7MwBRIkt7i5pqFBMNZFbhj/dc1k1mTNg8JBG1/T6H6OxJZuF0LLKqh6VlIEXWLHns6piOOPT0xx56Kf6+G9ILYxh36XdcmIQFwUhf443YmcG0I4RE9vxRYVBRF/Jce45Fg6h8o2hnYithFzle9DTexh2cDv9TjX+h5rs1FgmvqJ71TlLYpyKbAeNrllbOjFJ+pZrhGX0lbFMUUxAfuRYrjurYXYoN7VsC8CviKO/+K9vnWjU9QFEU/sjj+jnb9BDi6KIo6P021PYHrKW08F7OsHY4knRv1OG4p+R8A3KmfAyrgcu1A4C7ETp9VAXccsvkbkE2Q4xvg9q0JTbORYiL/yuDOdhhC+0167FsRfaALW0Bkc7t+DnL95j9TU4MAiqKYhsS9ZeTzQhOZ7E+p3/2ja5OQfDiA8BUQH8vh2x0pch6h3HxPtecim1j2EprvIhtjO6LthtQvPrfOQBZqMxqMPw34VQhhC2KHJzUYM5qzNPccgixw70T0anqIbcW35yCL6A0hhE3IDYMzGsxt7WRk8z0AS6muS6A6VixCcmcqP0PJT4xjT2QxdzVwUKZW66fz3VeW428lHSMmIz5R11KybZL3fHs2kvtAFianNxhjsWsrEo9zDx3HNcN0pH5J2qXmtH2QRetvdJ4mbTHV+ku1g6nWQTftUCRe3khnzIybj1E+ho4nijNFUQwAJyD19xok1ydf2lEURR9SIz1KWYN6+8jFXk+XzT8Vsb/Y7guZqiiQGGkvpfHXJ+oHEnULUj+tRjYPU3awFxLP7kJswfNh9LTIx/k9kLWGrX1A1iWbaV+X7IFsGqRq33nI5l9cy/cpbz5PDUS0GK392j8VkcE47Y9z3e7K63zFbzHVr9f6EvzuDdyjn70j+r1u/Fopzq/zkRvYTdZlHU3pfQHw39p1KVLjp9p4YHwUI00HTerXZOt1Q6DNoGHU2fZCktht5IuMXmjsZREPcofuxwAhhHuQ4HloD3j2QBT9ACLsuJCzDYGHkI2DedCZXIqiaCEBdrl2XUZ14t1JaY7fzLgrYrhN/stxf2SRegewfybJ9iEG/xTtGwJrgZkJeGtdLWa6hJ+HBLJ5Ec27I0Xmw8iC7MjEHL4djBRXtwEHFEUxjtKmpiM7gvGGi92huo3O4FDVFiDJt8mGwERkp3NiHWBFOxfZlQUghLAZ2XV+ZQSXKuz3QwLnCuRXFKnm9TUTuRtRZQ+nURZDy4Aji6JI/0cQ7IJs+OxUFEWciKYgAXey0tyPyGmrftdtCNS9ndHjsrYbkvhW6XG2Kb27IkVWckOgKIqJwIuAr7vu7wInFUXhZditDy0BHgwh3Augxf/PkV9OpJolwFTbCym6xhdFMb0BLYch9n0jcKglXNdSdtYWfyrgcs0KzfuB6Upnqh2PLMDQ76bFr7UmtjMHKRBnV8DE7TDKTZQ498RFSre57kAkRt1Oe76dgtwVyvkelAv5+4CZuniImxVh27MhsA0poGxDYIC8jI9EFkTod25D4CWUG2Lo8Ys0tm9v2xWJifGGwHpqNgSKotgdySk3a9cvgVMbzOn9bi4ip9XIJvbBlHfB+hx83M5ECkhr/w28sMHc1k5CNgLQ75Nqbp5YsZ2KLbYhcA8wrSiKeAPN7CqONwcDt+pGz9OkC1vLB75Zjr8FeFaC7p2AqQ1uBqVucFjea7IZBLIx8zM9Xo7Eybo3azeNXeZPlremk65frC1G7kBvRXJV/dvNpJn+rkfob/K242ch8jeb3Z52KBIvb0I2x6qazyV+XZLaODoK+UWrbST+EqlZUs02AR9BahVot9eDKDcEUmsdP/8MJB7PoLR7KGO+LYJ9bWOfqciadgLpmnGe0ria9Hpgb+RX3X6ha3bedEPAr31A7G0j7euS3RGdpXx2HrL5EtNn6xvzrT46c47p1GidgsjAbwj4XLe7zrWRcuPe8kI/pexTGwJ36yeu+VuIjqDcENhE54bArkhNvWssgIbtSOBJXauCrA8PjepFT9Ow0uJvaP3ONwRMQd75QHafHgghDCJFSmrXrJfWbcEsg4piPqKYq133j+lu19zaHohDPKDHqUJuV2SR+rAep+g+Bkl4G/T8Mup/IbCR9C8EVgAzdCOmqtkdujVIUZG6u1UgyWY95d3ymTqmame82wK2anESt12RQGRB0doi5K54QHewo0Qf0/Qs5GfpTyE/idyTUnfTaefZ2t7IzwRXAns1+VWJwuyB2NuuDYrTSciitKdfCGiQOBX4dnTpy8hGgW9WUPoAuC8SvO4BFmSSvi+QZiG/NEnag999BwghPI0UFCdkWLCd7TXITrxvUygD7ngkGFsxZL8QSNlRis9UiwsrkCC6CtkUqAuouyNJ+D5gjm70xe2FtP96A/X7nwIvc3DdxreX0qnzb2l/qiXxq73uhdj4vbT7Ra4dDtwQQngC2TBbGF1Pyb/tFwI6b1M9gRSXt4QQRsjfjQEpoq/U4yvpfUOgiqY5iM02+oWAbhwdQLkhuY8WdtbijfU6+cftIMoNgQPc4mwKcgen6q7oAcAdKte76FzMQzM9+Q2B/aJYaRtvExC+Ruw4E2+OQDZ50e+ODQGV6ZnI5howutn/GHBsBZ1N23xkA8pvCDRdFJ6K3H20v1X5FfkFh29e788Cbtb8drOe+18IdORQ1fsLKe8socfP62KT5GR0QyCE8CCy0Ky6qZP0F9XrocD1ykNq097fKU39mg8SC0vlZRxaBEfjbkF8s8DlE5XNVMQOsxtkTk6xvJrUQYZjJ6Xl1zC6QX8VFb8SUfqOptwQqIpdPgeC1C3r6KxfrB2LbASAxPiBoijqNrvnIouN+0II65GbXJU391R2ByCxaLt+IaCbR5OQPJz6VVXcfIzyMXSAchFnzf96A6o3BKw+WU25IdBHeUff/0IgJR8//wwkfsyi3e79ot/idby+ssX3TnTqH8oNgUdIL0T3ofPOd7zIrtsQ8GsfIpo83HXAbn6TUGU1F8kx8YbAaFx1d/HjuOI3L0YofdkW95br/C8EHqS9jottpI/OvJb8hYDS1aKUeR8Sf1I3alO5o5vWtqmra+lfITe24xavH7qpX/Oth2ccHtBJAxIon9b+LwBb9PiLNHxWvMF8gYpnZCvGXQo8HvV9RFjuGtedyAL8S4hD/hQJfjcjO0qDSGC4GzGU7yGLz8EIz+24Z6aRgikAJ2Tm/Qe9HqL+gDwLE4AX1tD+JPALPy4Bsw5JRIHyLllQPT9egXtpN/JEniUNwNwGsFuBryr8q13/3UjBBOVPf85010fQ5w8p70qd53B+Fnm+8SG9thV9Psjh+D4S8Gzn9tQG9B5FuYMZgBfUwC9VuI5nsRvK8qcknotECpoR41n7ToptBVnM3uhkdHaEZ6b227NZASm6V2To+TDRM6VIMXJ/Bv5WpEgJRM+rIj8JC8gzoWaTf6Lf1yGbBY8lcD5PYU6ukd0oLtf3Q6QI/hIwVDP+r83uFc+5CZjBlG6RZwSDO19B4l0jmXknp+yR8q7ioYkxAViZ6D+O8q7ENuR9IGuBf8zMfbLCD+j5FqJ3kiCLkgCcGM3/UcpEfwryTHbTOBDQ51iVvtQ7Mp6LeycBUhgFKp6tTeDYV8dcXEPLr73+anCeH+k6AG935yPIhuQtyObmui5wm9+eQxkHX6TX3qfn2RyM+N5Nevw08O0EzBtydhXx8G+UOeO57tqd2vd15G7GVv0E4LAMrk/r8asVrohg/gqtM6L+pTR4TrxGpnvqnBZHJjq9bUTfR1Qx/ikvR8pC+8SaccPIRhvIAvIhPf5bHb8XEk+eRArrh6Px7ybxPD8SRz/YgO/TdJ7xru8R5NGH3Jh/1TFTov7Y5lcQvScGWZgFJIY85vo3A9/Q4weQDVU/7uDYrpF8F9B3SOjxx9z1RZQ5JPueCWThFHB5U/u3KC3bGsjxM0TvAEEK+kcqxlwQyetIpWNaAvaLeu37jtctwE8yuIeAf3bnm4Av1vDwKVz+Q+LTD2rGnEO5YbW3Hu9cJ68Mrr8yeVDWUkdWwP+BwizU782U9cNwBBuAD7vzPcy/Eng/RvlLnd9q36eRNc/p5i/II4CpOGU2t487/jOjC4mNm5CbLGc5mGuROPgpvWb9r6CMp+9281yhND1tdhHRsRa5SXOY2RUSr73Mvks+Jj+A1Infp1zrBaXxK3p+oPbZhsez3fhjtO/Tpld37V2Ov+NNP7g8iazjAvLOhYDEv4DY5RBwsZ5vc7T9gV77D+2bpv3/jNQ5NueFet1y13PQOtDRaHWB2eSTSL7OxaGz9Xv/WJYNbD8AF0V9/0HivUJKR0DfeYK8zyIAF8Zy7oqGHokeQRYHn3CCOhR4pXO0i3olKprvfuCJHsb9HvCqqG8O0Qv6GuJ6jhrsHshLmFJviX2BwpxFmbi+GeF5HdFiBSmWd8rMOx95Qc/5Uf9FyO7c26l5eSMSsA7U4/OBBdF1M+RHlb63O9hjqE6i64he3lFDy6XqqB0vP8nQvQfyIq/Jrv/lwPHu/APAdD2eqry81F1/H9ByOJ+FBM+gPL6C6GVRyJ2ps/T43XUyVrh+4D16/C6bswL+EGRhlH1hV834t5F5eQhSSB7lzm0B1u/6zgIWO3o7XmSEFO+/dDZ3IpniVvmJX7JyHPDmDPzJyK8HLqDzJS6vQF5otJPq/x3Iz7T/HPkZZAD+NoHTNtDG1cjOcHkZHYb48G4kFvjR+AUme2STK1W8fZp0obELbiGt9FZuQDjYPuTlQANRf4Ek+ZmJMZeTSBBIMWMvJnw5ZVLv2GhRmIm0v/js1cDhCR8IwF+4vrdTvvztEmSRtLPCPa8Bz29FNw6QHfQlCZjptBd6BRJXa19a6Ma8TmlKvtBLYc5DFmfnN8S5C+3F2ztQf6csdkfozCUdeszg/wDlBs0l6OIMuSN1CYmXOLmx3v9fQqLoptywflcFnosoX2p6MbqI1vMl6me/cbz9EHkZWl8C1zsdrgkkFrPIXfhLEv0nAB9oqu8ML33ICzP7Ir1diMSGxTXjL0FfvOX6Pormp8wY2zQ4T89PA56jx7PVZmxzZNReIhyHAR9K4H4/FS+BdXAziW4UIPXTiyrG2EJnUdQ/D5cHkDj/4ghmnOPnb13/G4E9nZ6fG43rQ154F79I+A8pNwPfAOwTzfV2JI9UvUDONti+HvWfjdxpP6eBHE8G3hj1LaLiBY1Ivvl9d96HvNAv9YK4hUgu39/x+grg4Azu36f9xW/nAsfV8HAI7gWKyC/P6ja0ppu/qBw/mKK/yQd5lPF8d/5BonwXwe9EuWC+Ddk4C2onr4hg/xyYHen84yn8SO39GsQfj9W+xxX3RMrcOQC8NzH+bWp3hX6fj8QWs/t3UN7wGkBix+tVR8HNZbbbooynU908RyHrk7NSdqD2e7DS8V7tuw2p3V+kc9gG+nsS41+oNrw3up5SGl+P1jeIj5k83u3lqdfeiay9Xh/h3knl8g6lbwS54RMoc9kjyM07qxkuodwc+KHiuAR9+STwZmQdcDawr/YdTbmxuoKy/vcv2b5Ead0XXcc6G3m34rWN9zWqk/gm2rsUx7tJ5LcGtv9JolpS6floAvYFyE1hi3sLkDwxEXhbL74XQhCn7aYVRfFyypeRPYAscH9ZPar3ps/lTQsh3FoL/DtqRVEcjyTrIcRRZ4YQ/j2CORF5y+jg/wCJXbWiKF6L3P24u8txhyCbNQ83hJ+DvD302h7IbErT6cDPQ4VhF0VxGJJUv56D+f+p6fPsR4UQLu9y3GHAoyGE1c8MZb21oihOo/2nudY/BVmkLvufoaz7VhTF7wGrQwhXPUP4d0I2BH/TAPY1yN2QFdsx30lI3NtcA/cc5JdL3SWgZ6jpzxxPDSH8ohZ4x815OuVLTYeQX2r0hxB+VjXud9mKojgVuCLIS3B7xTEPKT5bwGdDCBt3FH3/P7S6nKW2+S7kjuE6ZLP5fzx3Ncm1FWOXIIX7T+I4/j/ViqI4CrnBsbYWeKz9r2maS36J1OTzkUX/Do+hRVEcgGwKfqnH8f3IrzX7kEcXBpDNhqUOpkAW+PcDR/c6Vw0de+rcK5C7+T/fEXF+B9C1GPnl6qG2piyK4iDklwn3+5qhKIoTkF9VPd0Ab4Fssv6sKIq9Ed7n9bJu1bXSVdtTI/1vbl1vCIy1sTbWxtpYG2tjbayNtbE21sbaWBtrY+3/fuvlpYJjbayNtbE21sZaW2vy8s2xNtbG2lgba2NtrI21sfa/rFU9T9BqtVa3Wq0AhAkTJox+iJ55TPXVfVqt1up4rm5xGW1Vn27wxbCe5wkTJoRWq9Uxp/U3na9Ofk2Oe8GbojfWZ9UcTWS9vfqx4yo6/DXPRw425rcXmdXZSBP4bn2k1Wql3lPRCL7OHnN2XkdvEx6q5JO7Fs/vz6tsqKl9NaGhCS/bq89c/OxWxk30WMdDTnZVvlRnMznZ98rz9uqqRh+NcPVi86n+VqvVkUt2BO46+XaTF7YHT+yz3cTcFE9NdLg9dYfVG6l5t8fO6q5X5Swvv9hGticuNB1f58fd2GU8dntyUjc22FRH3eSp7ZVjr7Xb9ubkXq7t6DGpj64rVvcyv5eFxZlu4nWdbmL8dThyNYzy2VFrp+ocP1curjelOyWvOK506385++vGh1J8G03OLmpl04SWGL4q9lTFj1ye7sbeevGTJrroZX6VzeqqNX/lIwNFUQRAAN3NnxACy5cvpygKtm3bximnnGIvOmD58uXMmDGD6dOnMzw8zMDAACtWrGBgYIAQAscee6zhJoRQ+LlsnqaPMRjs8uXLabVaDA4OMnXqVEIITJgwgfXr13Pssce20TZp0iQ2bdrUAXfMMce04evv7x+lNW4e35IlS9pksmTJkjYcg4ODzJgxgxACmzdv5rjjjmsbb/NYn6fB4/LHrVaLefPmMTw8TH9/PytWrBjVgeGcO3cuCxcuHO0bGhpi4cKFLFy4cJRe02lqjqGhIfbdd9/ROXbdddfRaxMnTmTDhg1tfG3dupUJEyawxx57MG/evA5eYnxbt24FaKPR5vfj4rkOP/zwSnjjff369Rx22GFtOkvp19MHtMmx1WqxcePGpP5SurO+3XffvUNuORq9/CZOnMjChQuZM2dOh23H+m61WqPy22WXXRrZTX9/P0NDQx19ZueeTo8v9vMcD5MmTeKwww7Lyji2L8Pn7TCOM54OH1e8bFOynzJlCitWrGjjzduk998cT97WzA49zbFcLaaYLADmzJnDvHnzOviqi2lGX8oGi6KojFcef+yDZuM5OlLwM2bMaNPrjBkzOPjggzt0ZDSPjIzQ19c3Ght75dnbW1EUnHDCCZW6WrZsGUVRsHDhQoaHh+nr62PjRnlcfc2aNaPx+MQTT2TcuHFtc/r4tMceezSOu61Wq83G4/jj8aRaXa6L9bFw4cI23HEM9zCxDadinI8JVfQURcGyZcuS/Nl1bw+xbVTF3Di252wwzjVx7M3VAMccc0wbHyGEwuqNVB7x8wMMDQ0l80/K731+iHXhr+f8Mo6BKTmm8G7dupUQAocccgizZs0a1ZXRF8flVP45+eSTk7F2jz326LCNXPzzNhHbfcqnJk6cyNy5c5k/f342lvm+ZcuWZeNSqh6w3BXn8Cp+Yvpy9UeqvtuyZUtHPRznvdie45rQcmOs+yqbSdmj0erxpuSWi1k5/0zhWrZsWUd+XrFCHrOeOnUqTz/9NCeeeGJHrMjZT46fOMZU2VZO96l4FOsqptHbgfHrx6diXl1dE7fc2Kraafny5UybNo1DDz20jY/Zs2dzwAEHZOeM43xVLRHbXyyrlJ3X1Xox7pTsU7JJjYvlkcKTy+eLFy/Oxo/U+LqaFuio1QYHBznggAOYO3dum7ziOJxbs/rcXJVPU/bu53frhPwvOUOofOthEJDQtssQQghr164d/bY+Ox8aGgrr168PVU3HtM1l/ddcc0247LLLwmWXXRauvvrqcN9994XLLrss3HDDDWHdunXhqquuCtdee22Slsw8tXAe1q57nmP+Pe9+XB1NKVn5vhwuf5ySb5Ve4r5Yp03maCLruNXRnOO3aq5u4GOdpfTbRGY5ev15js8mPKVaE9nl4OvsMWfnS5curaS3G39LyTh3rSrONLHJKjnFPpvy3xxPVTLoRZ/2qYpvOyJeefxVMWDp0qUdtFT5kp1bzIptJjdPrzw38Vcvi6a+4nF5nmxcN3G3iq4YT+pTl+vqcOdychVt3drEfffdNyrfFA0xHd3G3JjWpr7Vja9EY0jpuNv8k5qv6fW62BLbSDfxpkpXTWN37A9N4orH4XlqUmfkYlncV+djTXhN2XpdzkzJqE6OTfCl4H189de7zclV/tEkZjXlvZfY2+v8PufU2VY8PoU/p6s6GutqmFRf7rxubJNcWGVDqTnjOF/lf/F3TFOKxhx9MQ05/83Jpkleycm8To45HTQZ0zQue3nl4HMxtI7vuvkdPLlPPw3a5Ze3v5z82muvHb3zMnny5FGYyZMnt/XPmTOH++67j+nTpxOC7G6sW7du9A5ybp5FixaxbNkyHn30UTZu3MimTZs44IADGBoa4pFHHuHoo4/O0hLP2Q1tMb4qeXh8vq+Opm7H++MqPnJ6SfVZf0qGOdqbyNHu0AwODrLLLrs01k/MY9VcKXpz8LHOUnBNZFanvzq92Nx1srDdvJ133rmRvL1Pefg6ncZ91k466aRKmTahKYXb05WSXayjOp3lbMH6r7/++jb7qqOhG5v38qnS55QpU9i4cSPr1q1jr732auOrKr7l8N50001tOk/BpvDneIBS356W3Pw5PIajzv/qeM6N70ZXN998c62/bNmyZfTXSTnbia91G8Ny9plqdbmuTjbWuvGRXJ/XZ0wTwMqVK2vjiM8rqbjXhNYmMt+yZUslrlSMtDvdntZU3ulWnnX5IZWnczqIYyCIjTTl1eSS0lW3sdvzbHT4uNJNnPD9VbzX5Zs6G2xiP9a8rdfRV1VnNak5m9QIKZn5XJyD66Vm60Z/TcbEeknZZavVYuLEiZV01/Hj9ebb9tTfqRxTR6Pn1/tsrK8YX+o87s/NX5ULU7RWzRnH+RQ+z0fO/qpoqsoNnoZUHI5bqk6s4j8l8yZyS+mgjs9u4nIT2BScp6mb2GI4J06cyJo1a5Ky9a3nRwZAjGnlypWcd955bX2PPvoorVaLqVOnsv/++zM0NMS6devYunUrRxxxhOEm7KBHBnJz3n333W0/38rBPfzwwxx++OGjjzUY3Nlnn52cNwVjc9TRtNtuu3XQc/bZZyfHn3jiiR39OT7s5yj+2plnnpnsi3XahHb/c5ccb2vWrOHQQw8dxduNfjy/VbzazxqbwBuvnl8P5+Ub23JT/cU4cnKL5165cuXo4xuGe9WqVRx99NEURdEhuzlz5rBhwwYWL17M0NAQK1euZGBggFmzZrHPPvu04U8dV9mFt+HUz8NSdlonnyrbjmXX5JGBOlvI2aP/mWEVDSm9xPjnzJkz2tdEn3fffTcnnngifX19XT8ykOJpcHCQVatWMTAwwFFHHdUBG8eiFL85uLr5Y1mkbCbWUex/dTynxqd01ST+xf6yZs0aBgcHR38+3jTW1cUws7EqmRmeVKvLdXWyiWN4Ex+J5Wpxr4qeujhiPwdO+XOVDr2e4lhZVUscdNBB9PX11cajBx54gNmzZ7Pvvvt6PkYfGUjlke2JOan8XpUPqnTqbaQuH6xevZqhoaHRR4muuOKKNrhY501it+c5to26OOH1Hdt6Fe/xuLgvx1dVPRDH5rlz52b5qeItVQfFuAcHB0cfg4xtvs4m4jwT675JTk7lr27seHvG5OzK1zUmX+Otbv6YHy+T2EfqdNekfkvVJDEtuRo0pa8UvSn6q8bG9pmKo2YHdfVvLC9rVbVEzv5ysquiL1ffpWSZkk1qXMx/Ck/OPlL1ae6RgSo+7VquRjjkkEPaHlPMwa5cuZKTTjopGwvrdJDCuXr16tFN5bpHBvpzF+ra0qVLWbhwYZvQfN+UKVNotVqsXr2awcFBZs6cOfrcaVPcq1atYsqUKWzatIm+vj62bt3KzjvvzP77798GPzw8zOLFi0fh161bx+DgYJZeT5vdXR0/fnwHvqqWglm6dGnH9SqaquYZHh5O4k3x4XdP/bxVfXGro71q/jvuuGP01wEpZ07hW716dQdMiqZ4rm7gq1os39iWm+qvjs8mPJkdTp8+vUN+Huduu+02SsfIiPx18z777NOBP3VcZRd1LYbL2aBPMqkx8fhuWp0tpHRld4Kb0BDjt7uiAEuWLGHp0qUsWLCgEV2rV69m48aNtFot+vrSf+QSxziglqd169YxMjIyqvsYNoU/RWcdHan5q+ZK0ZKKNfFcW7duZWBgIEmjnzPmpcrPcv5inyp6U7GuCs42uetk5vGkWiyXkZERtm7d2mG/TeJ4nd782KY2kbNL31fXqnRoeqrjxfv1dddd1xh28+bNlfKqo7mbmFNHUxWPVXSk4E1uNneVfKt4svydozslkyawdXZRZZMp2Cq+mtYPvlZKzbc9dVAd7jqcTWwhnruKnqp56/q7sf0q3tatW0er1erYHNqe+avkUkdLPHfVeY6WOvgd3eL84eeN83FTGzK8Fudz+HKtSnZV9DXF17Sl+M+1lH2krtXNl5srlxMGBwd58MEH2+aqi8EeLsdLVf3q69DZs2c34g2QXYfcx94EGqTSDwsWLGh7vsFaqq+uET3LYDhsjqafhvN0Q1Pb+YIFCzreVhnD+L66+erk1+S4F7zWvA67oX07dNwYxtO1I+Bjm03prluam+BIXe9WftsDX6fTnJ17e+jVz6vkk7sWz1tHR7f0NKGhKf7t0afFku2NaTn6Yj3m8AFh0qRJXc3fxGZSY3I09TpnU1nUtW5jTC+4Yjw+lzSVSx3uOptp6sdN6Knjz87NtlJzNaG1qS63IydRlUe2x862Jx94+aXecN207ajY7fubxJUUDj+2G/pSczSxwSo+mvKzI3JON2NyfDWxy15pbaq/7R2Tg+91/lyMakpLnW7sPLfWicek4nCuL1V7+5ogN7YbuuO+3Jx18b2J/VWd566laEjBxDTmaKqau2qOqnFV4+v4rGq95rWmfHeBm9wne8E+rejvAHv9S5v4E//9Qe5vSGpw1P412/b8LUQvf4/T61/MdHPcC95Ufze096jjrvTT5G+DuoHv9m9TepFzU/ge/h6k578drNNpN3+90q0NbM9f0fjjbm2hCqabv+9pah/PlD6f6XjVq0x7+eud3F8c7Yg5t0dudfro9m+FmtDf698FdRvDe9X/jshbTeJIE1q3VzY1ev8f/dvBXuPr9sSFpuOb+mE3sCl+e6mrmtpgrzrakXVQrzVCjv9nwma60fX2jEl9tudvB2P5dFPDNtFN07yWsrmUvnI6rIuX3dYtTWqVqlxR5X9NY3kTeqv4ytFbJc+6ubuRYy5W9WIj3dp2t7roZX6o/9vB2g2B5CCYBwwDa4E/B1YAX3HX+4CNwPHAbT3OcSRwqx5fDjy3wZhTgSuAu4H9K+B+Cfwz8IkafPsAK4FLgRdr3zdinoCfA/cBhwCTgCHgc8DTev0WYGPFPF8B/hH4VtS/DvgDYAR4q/bdAPxAjz8C3Aack8D5LOAR4B+i/uuAH0Z9M4Gngf9Qfm8FHgZeAtwI/HOG7gOVtkkNdXo7cBjwILB3BuYA4C7gR8CZKtOg/IwAUxJjPgWs0uPvATcp7dsSsN9T230PsAH4sMppsV7/NnCLHo8DngJmAb8GTs7QvKvinKfnD6lsNgH9mTFPqO4a+QcwRXX0EuC/G475Y7MPZ0vjlNbvOLiT1a6ucn0vAbYo758D7kX8YTNwisL0A4PA3wAfrKDjt8Aj7vxPVK67AS/X4wP12okqt5/qnCPANsSnb1PYjwGPRXNMRmLOROCvgI9U0HOt2uJTev4t05me/xi4NjP2fiTGnOH6tgCvQvz8aWBqA90sQPxgkAr/AV4DfA24hMiXE7AvBH6iNvxy7dsGnBXBLUJ8yt4h8yPg94DPAm9J4L0G+Emi/+24uAb8teqrD5imx/tGYx5H4sudNbzcprxfFfV/BFirx3uqPbwrMX6q6uL9wN830Mef6uca4NjE9X9HYvyBaotrKnAtVhvbivN/lcsgcBWSG0djjV5fASyrofMjwMf0eBkuLypdXwDuUJ1uyvDyFHBx1PdT4OGo7x4klh6XwHE84jPvd31nAr8CHtDzzcrT5c5HR5B4+2ntew6S3w8C7krMswqJ708Af1IjmzcBX9LjLwEX1endjT0XuBL4qp5/EPHrvwYeA05See4XjTsSyZFPo/6UwP0L4LXAg5nrX1OdjRD5H/AZ4OPAr6L+I1Q3NwGHV/B1jNriZcBzomvzkVwwNzP2aiQe/wvw7ujaVaZnPT8P+DrqmxHsTJ1nLz3/Q5Xtx1S25yMx4fejcW9Bayg9/xSwWuU0FfgiEo8XReP+C1ihxzcD31UbG0rpCMnfjwGnezkDb1AbXgg8SSL+qt18HXgH8C8VevgMcJ873x2JBWckYBcD1yMx/x9d/72UtdknkZx+DjASjX8CyS17JnB/F6l5roj6z1RZfSpD+4+BP0xcuxFYGfXtDqwhkTMysnk2GueBvVXHfe76b4GfZsbeonKYg+S0B1VGj6vNHYPEm89XzH8xEvffr+eHIb5+lOriIcqY+2UiG0fqjf8Efqbnz9W5h5AYeqnCbFRabtX+bcB7gaVILB9Bcsw3FM+/KD/fQ+ryOJ4+jPjQX+r5CO212TDwbUfnbO07WGH3RWrt24BHI55OAH6jc79M+/4byTFDSKzdBOyn3ycpzGuU1jcgtdgwcK5eewqXY3TcR9W27lJ5LFQZXa8wCxTHpSqbTcCd+hlUOf5Y+XkUt6ZTeV1AWTs/CcxQfI8Bfw/8EfCzaNwPldbZwFd1rhHgbXrd1r0jSN6ah9jg9/T6e3Su7BpU4fZC8tt8xF6T+cPJ9WE0XiC2fr/S92fKzyF67QvK+05N/M9/0g+41rd+JaiIPtYWqtCuBfYsiqL+AaDOdiLiJCAFeOcDSJ1tL8RA7kECS67tiQS/PWvw7aO47nb4Yl4BdkEUsgvlhsCAg5sOTCiKYjzpticSWGN6CmA8IuuW6zO8c5DgP4fONpNyMRvjjOmfgSyOZ7hrRcRXqhltOb7KSYtiMuLctyPJ7ogMaCxzm2NizVxFdNxHJ58gPG5G9FTo+Ub9tmZ+sT+y8HwCSUrHkG7mD+OLopiNBKA7EAfet4be/H+CtreDkMB0M7I50qR5+zC9T0eCqud3HmVgsmZ2bK+rLbRvm+tbiAThO8jzicL7B0yNhunavxUp8Py89n4TH1/6KHUTy+1Y4IYQwmak+Du5gh6PD0Q+a2n3ow69FEUxDpHVSqTo8bB9wM5IYM/5i2+7IzJ/CNkYybXDkNhwI3B4Dc4DEF3cgSxcPW2+mQ/1F/Ig6mKkILoGKYLilooZ1jzuqYgup+B8IoMra/caJ/dCNloPLNofcvdjpyFFwU4JNPsjRcbtiFzq2kHoBh1SMHWQpZ/5SJE2tSKv7aEwj9PuUzsjMfkBJBbGchgAJtTQ+RxELuj36e6axbwCkf8Q4k8pXmKbaCExVgBE5rsiRdh8OpvPGdZ2R+L23KIo+un0VYvlPjab7d0J7FIUhceX4quqnY4Ud+j36RWwcZuH+KL9BVK/0mvzxvHQ2u6IPrfRLgvfDkRqmFlFUUzNwPRR5jnf9kLy5V6J/nuRWFRV6+yL6OQuOmN0Nn+rbR+M3EC4is7cNymidU9ksTJQFEXsj3EsiGWbq2NSOi8cribj7HgGsgkxLeYVOBTJqzcDhybiTcrWrR2OxOYbyNc00FmPmD2l/PNZyKLxFtpzvY+dRtMUj1f1NoXOfG5tH2ShF9vCzsgiPpW75pOPA5Po9ImqujTVXgR8HyCEcI/ScbS7XuX7VqPOp4wtNiYoDeuQxV2uxXWu9/WZwHrKOnoCnTF6AZI3FkT0+s94xO597dFPuU7IraUslnt/KbSenoHY3T4O1vifjiyCvc2maulcHbof4s936nHMl53HcdHLa/RaURQDOu9s51/9lHWe+ccuSE1pujCaB2IZRLIZodPHDGau4pyI1Cg+B+2KxG9v27Mobcbz6/P9OEoZeniQemQz6brEt0VIfH0Y2aTYvQJ2OlozO/nFsWCm9qfWNI1arxsCpqScMR0C3BxC2IIkrP3pvp2IJFFoviGwN+WGQJxAhVApVHZFdr8X1uDbB0mkd5N2Oms7I8XEzojRbaN9Q2AWsmM0k3TbEwnSe8bkKp5tlMnXG/1sJJClgt1MZJETG0UquM5AnHiGu24LHOMr1cwOmryc8hDgjhDCVqTAOTwDF8vcnL1VMZeXiS8eU0nEePUbAsY70bijkWIIZEMgtViC9sLqUOCmIFt1N+l5qtUujKJmRcK9wJyKwtK3OZT24YOH5xfEH1YCOxdFYbZtwXwipUzNts0WU/6RatOASQ73TkjA2gkpXrZQJhTbdPALinhBkJLbychGAMByYLEmoVSLx89GEsaczHVrcxGfup/2Rbz5ywxkdzvnL77tjiwaH6Q6ERyOJP0b6SxW43YAsgC+gzLmpjbGzKf6kcXrthDCQ8jCLPUGoNycsZymIUlrKvnFRhO73wt4KISwGkms/n9q/dhp6C8yEjhsc+ROmuWfgxH/upX6DYGHED3vmsG1B1JkPEC7buP+WA4tKjYEiqKYhmwQ2Ub5z5C7azGNVih5X03x4lu8wLMF1AOk+UzFkT0Q31iD6CzWta8brO8o4OoQwjCSFxZF8/RF38mmm3Wn0b5Zcpr2N2nzkEXPXD2fQPsCw+JSLM9KP9bF8TREjisoi+s2MJ0nhX9PJPfMjeKZ3fxYSfWNjaoYXZW/D0d+xfM0kgOPjq7HC8GFSG66l866Kp7HZDuOckPgUTrrmNhOLZYZribj7DhXD4HUJjcprmHKeOPjemzr1g5H7PZG4OAKe4t5mYRsnqb881nIZsAttMci708zkM3FnQBcbt0VWWD4zS0czF5IrTktqiF2Jp+75iM2lNoQmEr7Zj+UdWnthoDmsxchd6KtfR84y4ORyBday09H+J1HGVu8ndhGR3xjzLe4zvW+HttNC7m55+lZgNjA7irjeNHah/jA+KhvSPGl6lfPt99MMBjbELwb2Nvp375TNmsbcxOR/B8vsH3bH8mdPmaleIvj4kzKO/ETKW18NqKHLYjtWY6KadgF0cUc5clvJlpN6HVsOOK84uU3D7HtR2m3E8vnd9Oe44zWWW4u76t9lBsC/Qr/OKWNWV2S2nz07Ujkl6gB2Rg4sgJ2OuLv0xP8xrqegWxQpOJVZdveDQG7Y2dCs3YIEsxAdl0P6Qa5GovfELgSKfDr7p7YhkDVrvl8JFjdDSysKbD3Ubh4Q2B0jCaAmUhBsDNloJ8A9BVFYTvAT5AISrrTNw0p5McVRTHdX1Y8Wyl3kv38c5BgmAq8s0gHwlhXIIZjTux1uovytd2/EEB2z6/X4xuo/oWAl7nf1bQgFjfPkw8WKfs2Xv2GgA/4PiAfgxRjUP0LgXhD4Ebtv5HqDYHcrxhS7WDk58XDiK0c1GCMtw+bK+YXJBiuovyZFLQHc6M1Dv5WbKbuPvk2HdkAsAC5E7KjaRsCtoi0ef2GgA98fdHHt5PQDYEQwnokkeVebxvjiP0ohR9kE2AVncV/n/K2DoktTTYEDNcqMr8Q0Nh0GHBjCOFxRE57pGC12SL4dso76yk/8PZ6FLIRAFIU7+Ni1igpCRzQab9Tad8QSPlrk7u9trGB8uPv8PuxVYl3fx27Ephf9Ss1zSt7IjZzK2nfMrptQ+Ah0gUyNN8QiO1sIu13IeJ2MvLTWntt/m+RYjDeyLJCyueNFC++TUZ+4WSLtjo+fc6wFi+OUxsC8Z0c+4UApH+h4uNklc0ciTyW9BCAfq+m+q6tb/MQ/dsiyvL4gM4fb4Zaq/Pj/ZGF9QidtmzNCsw2faku5iM2/BDtvr+X9q8kc/NDm4/RuQ2BVE49hnIz/A7kzp6vM6YhvwawsQuRBcp95DcEDNbL1jYEHqGzjon9w2zB4krVuCIak6uHIL+JX5UzLT4fgfy8+SnE3nJ5MPY5y6+5XwjcguSkgaIoLJ/4GmcGUlNOp122tiHwMJ0bebsC60MIG+j8Fe3OlDVs3HZF7oCn4sA0ZIHsN5VG82lNfQ3Ca0DirrXvI5sE1nL5eDYSgx5TGv2dX6sdbHOiakNgFyQmG+++9plFe+1ujz35tcgCZPG8UXHEv27EwfsYbfGkQPx/JBpjvAxQxiG7bmud+Je0ZgcpmzUYf3MtF1vtFwIr6Ly54GuxOC6an82krBcnITbxuH7mqDyGKW842WcXxI/sjrfRPIH2zQOjx35VF//yzMt6ruJcTaed7IrUGt5XZlHaTCo2m778LwS8jfn6tqotQn5Fj37XbQisp31DwGQW6zqVm5u1bp8x0GcUnoX8VHMYcYQNSKCx61vQdwogi8Dks3MV+F+Ne8bVPTORfU7ZwbwH+DdhLQnzpwo3Sb+PrsH3aSQ4mQJiXk/Ua7cgQeVter4GMaLnUb7U4SOJOd5gtCrM2/V4QM9/ot+Paf8TwKCDvwoYSuC9HjGSlBxvj2D/C9mtDEjhsULpH0KeGwoknosGTtFrz2+g03Xoc2DIXa0ADGRk/gngZXp8mtrTS/T8zMSYh4AtoXwuaS3y/GEAdnVwOzldLFUbDoij2XsD/hu429Fizw2ZE56WmP8CvXYIkhQu1f5PVtjhBiRAJa/n5KLH64EfNxxzlepxBNmI+Tsng2nOX7+lffauipv1/INIEN+E+EJAn7NEguCVyKI+AEckaNjNzfd7jq5h4JvIHcUR9P0ZyLPMAfGlhx3tDypsQIrgbW6OBdq/0PXdhRR5Obk8od97uvlud/J4LDHuC0rP35veKJ9d/KqzpV800M3jyHspVhL5o4N5juIcr+fbgH/PwNrPAI9HfqIcHG2vimCfj8SmWcr3dZFsPhjBBxLP/CMbtiGCC8DvI+8kCMDx0ZghxPbvrZDNjcD9erwG97wrUjgO6/E31I5S7wrZRvk8eQAuqJjvAqdPi9f9EcyXkMXHE8gd+q3A1zL4hhT+AW+DyIL3ETQ/Ic8q3qXXZjn55d47shq4LBFHLNc+iDyPfq/OHdBYlLCTj7u+fje3vUvlE3r+HTTfRHjuRIqOWP9/prL5uurmXsrngxcgvrUWeV/FSTpmgl7/LFEu0+s/UlzZ962ozaxI0JiMAZmY8Lf6fTDixwF5J0JAfnEQgH+LxlnsfDLWjV7/PvqeDbXdDrtHNmKfxuV57X8xZd0RcO/CoMyTo7Gogq/fR95hEGivBQ7TvvMT4zbj7Bux6U/p8UxnL8c6+s5C7sLF7/3YT6+/R89Ntia3gMTCEI37M9rz1ENqW1uQRXtA4vz90bgrDZfawBWO3r/LyOhCPb4fefQM5NnkgOSkwQR9FivG6fkm4OsZPfzCj0feuxOAX0dw5ounO9r+0uHfjOSOoHK4VnUzRWG+gsS+G5BfWXncH3Vy2YrGRz0fRN4zEXDvtEEWmwF4KS4X6bWFTq7HuP6rHI2H1PjdTei7wlyf2ZO9B+dG9Ln5CO4ihXuM8p0tj6lNrFeebkdsMgCTK3zkq042X9G+7yKbYY+7a8bvCZEMdtHv9yK1q720dot+rNbchtSIj+n5OsoaKCjd31fcj7hxwcFfpfw+TLm4P13t4MU69u/dmKna9yo9t/XM+5WWQTrfixCA1yP+HZC8cZvDuVy//1W/f+7i4YNKy5v12r3Iuw5s7AeQXxwFxJ69fGwTPwBvRN5TFOiUwb1OxkHHb6P9vSYWt69E6ohhJOYMqpz/RWFeo9+zkE3XgMTjHxPFZsqNAIsNpyLvpNug5/OU9yHgRxV2b+vP4/T8H6mO4xv08wCyKbBNx/9Wvzcg9YXFjxHgi1W+l5yn2wFKnC16A/BW/f5nd/18YA89PhJdCHSBfx7w3sSc+9WMewuyg7cLcF4F7tfo8TvQYJ6BPR/Z8RtHmcw+6xWn196C/HTsNJ3/I0giCkhRfhHijLMTc0xDX36k881019YjGw1/hC5EFae9+OiNSEA6O4H3KGTBfmHU/1u0oHZ9C5EC3gKsBadzkF3ht2Xk85e4hFijm9eiL9lQmSU3d4ALEcfsB95NGdhswdVRLCMvzwt6/GWF+z6Jlwiprs5BAk/Q+U5HExqSVAzXB3BJBAmgqZcaWlB+B/JypX20f2d0gR3B2+bCCO6lYg1se7YevwCXgCvGmH3YBtu5iG+8AvfyKuBspFg/n7L4Woy8/G86ZfEyT/sOUpgXAwfr8cUpO0B2U9+CLLpsYfsa1cFewBLgXZQvnDpA57CAF382Au/0dqf29Je0F7unoQVFgqarHC6j7xh08YpujiTG7aM8z8TFF6X1Zyq/06kpgnTMC5E70cegL+RJwEzCxUHglSbvDPzvU+58/z5ytyoQvYSSMomforaw2F27CLexon2/JnpxlfY/X/FMd3q9CNl4s8T0Jw7ekum2lHwj3S3R4+fgNhUQmw7IhuleSNHykgSO84D5evwmYEbFfLNQf1Aa35uAsYR/ptroWWTyEeJnuyIvZlri+o9DFsG7AK+L5aB2mH0RHpJrj0jMdaoeB6TACkgc+9MUjYjdXxf1XaTz9+n5bmobC0jnl+NVN+e6vvNV92cpr6N+q9df5vrWI/b9ATe+I9cgd96toL+wQjbnEm3Wqh2dmxsTwb4BiXVvQ3zoecjL1+5FCsEDkbw+Pxr3cqSIfDZwZALvEegmNhJTOzbPKTeIRvO89k90dvlKYEEk61n66VjQO7i3ITXJANHLN5G4G4BWxtYWuvPzgEPd+ZvVZvocrnFIgXxchOs8nccWrc9TXu1N8+eqnb0+Grcc2OzO/9jZzzmUddcpCV+9w/nEsNL7CvTFvxH8xcBEPT4JffkikpsC4scvJNpURDbCL3HnL8XF0gh2De0vFdwZyXOHJWDfS5nbzjM9KC2bKOuWMylv2CxSmH2RBd+hRC/iRnz6tY7WgyLaF9DpfwWyKOvLXHsLEl/9SwCPRH7N9Gbfn5HLRejmR9T/0YjvkICZivjBKZQ3gAJl/RqQGHgC8OYKGi5A7qZaHb5QdbMPEueWAG90+ni700+BvnBTr81BNqqD+3wDiYl/SLlJEIAPAWfo8dUOfpvisw2x17ix9lkCnKhw76BcYNvaYB6ddZ7dZPwv/bbn6W3B63X4LvRXzqiNI/X0k4g/naZjDqa9JnyJ0vJSJO78sdK6C+Kz5yL1U5/ydCbycl3v18eoXidTLpw/g9ycCtHng5T1TAD+QOmwDfZTkbh7qtJ2sYNdQxnv30H5i4K3qF4Ootw0+CPg2Yp7LeX67mMqg+fouEJ5fzVwQIXNFUh+sfi5C/DOCvgXIjZ0MmVuXae6Ow95keWRCvsm5XVhDl/uY2+Z7qrpz+TfjOy+/QpR+K9DCENdI/s/1vSnUceGEJbVwM1D3gj5n9sx177Ine8HXN/xyHMnW3rEOR1ZfF2Xuf5iJGBNDSF8vQZXCylQf90LLU2a/nz59chGzOIQwvIETIEsqpbqc5ZHI7a5ewjhhgze+YiDfyHqXwTsEkL4YZd0nghcGeQn/U3gz0XuNl4b5Ofgz2griuJU5A5W1w6vz3KdGEJYuuMpy865CLl7b3ej1lD+28CdyD8+XNYj7unIzvd9IYQ7EtcnIAXWlQ3xHYr8XPkZ12O3rSiKC4FvhhCedH2TkQXpvzSxB5XX3iGEaxPXTg0h/Coz7gTgGh+r1A6fRDaMv98DPwWyAEjO+Uy1oigORjY0v70DcfYUayrw/R7yM9I9kV/l3ZCBOwC5a71qR8xbQc/5SPG0NoRwuerurUjcuzGEcHslAsGxG1IY7kqP8Wt7WlEUeyObYfc+g3P0I4voK2qBd+y845DNtmd03lz+UNkeHUL4SmbcPOQGya16XiAbL/sj/1KRtAX11TUhhEeLongB8quLa1KwDWjPxrcu8RyI/LL04e3AcRKyiXK41Wb6jopXIr9c+Z36xu+qFUXxHGBTVT5W23gLElueQjb3ZiI3Kkd+F3Q6WnZCFrZ3ob/isBxYFMUpyC8O9gshfEf7jkLq1aOQWLcqhHBD7DeaO4eRGx+xLxXI5spXgzwymaNtCfovN1ovn4j8EmFRCOFrNXwdgSxCp4cQrt+BvjEB+fn8hBQ+tftlIYQRld8wsuCfGUL4nMrpLchNvl+aH6Toc7BrkdrkrhraOmKzxq0hJCddH0IY7I3z3prT9U+RTdabdxju/09jyFgba2NtrI21sTbWxtpYG2tjbayNtbE21ipa6kUdY22sjbWxNtbG2lgba2NtrI21sTbWxtpY+/+9NXmuoNVqDbdarQAE+54wYUL8LEdlf7dwVdfjaynYJjB1sBMmTGi7Fh+nPk3pSc0Tj0/Juoqv1LU63lqt1ug8dXLycDtaZzHPubliOcXjqvhMyauKp5zOdvSYOvl14yspXlN2mbLllF33as+57yofMluMeaiioxvZp/iv8pEUbFNfaWr33eq9CjZnY93Ya0oeOT1UydDmzV1rwl/O13ekPHMyyMWTpnaSkl2VP3ZrU7HfNPHHnO6a2mvVmJSuY1+ukn3Ox3qRTdPrVTmiG7l0o8uUvprqrlvbjvua2HSdnTShJ46RsXxzeFK+XyerGGeuPq2TW1XO6zaepOTcLT2pPJjit+64yp6a+HrT8U1sqe4T66CKNi+fOtuqojc1Zzex2tupt9UUjV5/cbyMdV0VO3P85niomjMnp9SYKv+oklmKzxz9cQzOyTCWS67mrbKP1Hesw5TccjbSre039dPc2rup/8WfVqu1erveIVAURQBkQFG0fS9fvpz+/n6GhoaYOnUqhx12WFv/3LlzWb9+PSEENm/ezJYtW2i1Whx77LHJ8QZ33HHHjV5vtVrMmzeP4eFh+vv72XXXXdvGelwzZsxg+vTpzJ8/f7RvaGiIU045xV7OMNoHMGPGjDaaJ06cyKJFi0Z5NL5VDqNwS5YsScoqJZu5c+eycOHCLI3+n1nsfNmyZSxZsqQDn/UZnoMPPjh5zeTi6fc8xP8Gk8LhZRRC4PDDD2+kM5Ox17/J2K6laM3Zl8lreHiYPfbYo01OOZl7fDndmA6b8FsUBQsXLmT+/PltMjWbmTt37ih9y5YtG4WPaU7Z84oVK9p8wtvovvvuO2onKduN6fQ8xbLM2VE8psqegTZ/MnoWLlw4auO5eb2+qnwonjv2i1RcmTRpUpsfezpzujcfy/lIzpZS8SBFU1EUHTr1ci+Kgm3btrXJMhdL45gR24LnM25VdMY+nYoZhqPKrqrG1NHlefGySNllFbyXRYrfODflcpaXQWqeVExPxTCvcy+HlD9Cp1+lYqzZVKrl6PP0VMWElDxjfeTGxHSk9F8Vu3K2VCXvnL/F8bevr4+NGzeybt26tlrB8xPrx9MMdPjtCSecMHo+MDDA0UcfnY2HXpexLaT8IK5BUjbmZbP77rszf/58li1bNjq32fuyZcuSNVFcN3l5tVotdt5559ockrPXVG6J7SCuM8yGjIeUTeXGxfZWJbec73sb8LVXqlbJ1TSxnVp/XGek6BkcHGyrRXN1S+zLXl5V9FbFgipfz8W2VA3heR4ZGWFkZKSjvo7933L3k08+2abzVC6pqxtyNmLzeTpyvp+zo9hHzedzdMR1VApfCj411mieMmUK06dPZ+HChR30pnTTZM66WqKOjyb5LcdbThe5eVOyStlnvHaqmq+JfHI4UrKwmi5Vm1fV7XHt0iRnp+pZH/99XtyyZQuHH34406ZNs3F5Add90J2FICdt32vXrm37zvXHrQ7OXx8aGgrr16/Pjk3B5mCa0Ox5BMI111wTLrvssjY4uxZ/crxV0Zga78fE83o8uWsp+j0PKbpTOLxemuqsSsZ1fABh6dKlWf17nuLjKh3mZNmUX6+zmJeYvhzNKfgq+cV20oTOKl/N6Tke0609x31V3018KEWP6bgqruRoyvHvr6d8JGdLVfPlaGoit6q4VGcLRtvSpUvbeLn66qu78umUPAxH7JuxXOK5vS5jfPfdd1/S3lP24X095r1XeVb1p+JCk3liucR8xLGqG9p9q/KXnD/GOSxHQ9V51ZiUrqto87zE31U23kQ2TWJszE8q5jSVS+q8ytdzcSSFLzeP9fm4kLLrJjVRVY3Vrb3kcksq9sd4PA/djPM0d0NnzJenoWrOupoy5/+90hP3W5yN5VVFbyo2NfH1KntMHVfxVOW3Mc9VOawu/jWJ8zk5+74U3zG+HB1V/Sleq8bGvFi/t4MUfwZTNWdKZ93wkYppOV5T8k7poqlsU7qN/bduvpxOqvqr6kr/3cu1Kj/Nfft6Np4j1XQcqU8/XbRrr5WXTF9++eWj35MnT2bjxo0ATJ48Ods/Z84c7rvvPqZPn47QVA1Xdd1osf4UbKqvW3zWFi1axLJly5JwVTKqo8fDx+crV65so8PPm+M9R5/R/+ijjybnrMIf6yR3bfr06UkevYzjazmZn3TSSdm5PE/xcYwv5jO22xTvdTboceX4XLlyZYdPVI2pk1/d2CreU9+xP+Tk5WUWy6iqz397mcdyqGuxD0KnbGP5pWjK8WE+Zvi9j6RsNUV/E52mdFMny5zP5Oa0Zr5jvDSJfak5vDx8v+H38szN7VuMb9OmTVlZxPbhfT0XQ5vKs0l/Cm+Tebw8cnnCx6puaI9zZ6rlZGnzWg6LddckLqf8O5cH/Vw52uLY5enKwTeVTTcxws9ZRUO357n4EM9VBZeTdc7/U3nH9zWhOc59MR1N+c7ZR1Udk6K3ybhcHmtS/3k+PQ1Vc1bFzip9NqUnVxP6+sj8y8urit6UXFKyTNUHcQ7M1RBN6+uU327Z0v6nWan8U1d75/jK0ZGqD3M1Q4q/Kjqq+uPrcX6LW66msXzraYxlFOfreM6qWqIJH3Edl5JZDl9sO3XzxtdyuTdeO6Xgq+iMeczRHMN1a/upcSmcKXpy9Wydj1kOzLXtfmQAygKw1Wpx5plnJvunTp3K/vvvz9DQEA888ADHH398JdzcuXOz108++WRCCKP9Z599dtv5nDlzRmFs/Iknntg1vtxPhA1fquVkYzhTfXU/D0v9fCSFN57XaPQ6rnpkIIVj5cqVoz9RiuUU63W33XbrWWdeFv47hcfLKZZZU9kar9ZfZYOxXXl51fFpPlE1pk5+5lOejg0bNrB48eK2cbHOm9hRLIeqRwa8TZx33nlJPqvmTflTVavTcU5+OdnnfoblafLXmsaDJjrN2X1KvzlbSsW1nI35VkVnKk6m8DyTjwzkZBHbssezI+RZFZviuSx/VM0Tx7BYpjn5GVzOr7w9rVmzhsMPP7xDljG9HleTnx/m+Ezll5R/pOiI9V8VY3O25HNQXf4x2TSNEcZr1c936+TSxA5je03Jqao2qJrHckHK5nP2WWXTVXppQk/Oh3M8p3wuN66JfcY+FvPqZRznrNgGcrTmYmdO7z6ONdVj00cGYrmk7KkuFqTsIZaX95VcDVGXY3I+uXLlSmbPns1BBx3UYSfWmtbeTfWV+zl4zo5yPpqjY0c/MmDzmi5T/KZkVDdnXS1Rx4eXV05mVY8MxPRXzZuSldEe22eO525gu7WRWI51tp9bXzTN2U1ilPnYI488wuLFiz1sUsD9Sal30ZYuXcrChQspioIpU6Zk+1utFqtXr2bdunW0Wq1aON+Gh4dZvHgxq1atapvD+lNwMf5e8MV8erimLcbp+a1qfr4cDTHeeI743Mulbs6UXuK5TX7r1q1r01mTsbnzuOV0FdPaFF9qTI6n1LWm9OXG5Ox9cHAwC2NtyZIlLF26lAULFrBq1SpWr17dIdsmLSe7JuNi262SzTPVUrry8qujKcdz7Dcm7x1JUxWN3dhSzkb8tZTP5PwyFSebxo0mY2KacvHE91W1HSXPuvgfy6Vqnpws4r4cXM6vvD15m0q1XH5J0dKEzyq6u+E7x1NTXqr0l5JNE39s0urk0k0Nksr5uZwbt6p5dtttt+z8KZxVNt1EL035zsm4Ll/nxvn+JvZp/alaKBU3m9JaF1dzc6fozumxKV0p/lJ0VfGVsocqHlLjU3M2qRvXrVvHwMAAjz32WAf+VA6r89um+moyPtea1pg7slXF9bh1sz7xY37XddyOaHV5LW69yKZbWprafupar/Pm5o/XFrUthGb/MkDm+YW45fq7hau6Hl9LwTaBqYMFwoIFCzqeIbFr9lmwYMHoWx6b0pObJ+6Px1bxlboW0x/PaW+urKKzybVux+bOJ02a1CHrKp78cQpfTrYhhLb+pvxU0ZYbUzdP1diq/tT1WMep77oxsUx7sefcd2pe85/4Tb05eprIoUoeMU05H0nBNvWVHExTWfYC632nip86+lLyqLKLujFVb8Ctoqcq/vYqoyb9KX9tMk/OX1Jy6Jb2HL4YZwpXSoZVtObOq8ZMmjSpg57Yl3O8pGitgq1q3cZK+45l041ccvNWxaO6ONJUP93M3xRXav5u6MnF+CqeU9eb1Cf+PJfnc3TGfOXGb288aWJPTemJY3wKX1N7auLrTcc3saW6VpcvPJzFm1SMaaKXnO/7vhzfdfR6HHU5s8nY1LwpO0j5T3w9lYdS+JvykZJh6rtO3im4XI4z3mOaU99mJ7n5UvPndFVnIzlZdnOtys+qbLKpjzlYUp9kZ+rTarVWQ/XfcFT1dwvXzd811P1NSa/46v6WJfVXFE3pScHXfTehqds563D8rnTWVF9N6W4iy174jXXeVAZN/KLXsXV/h9JE53V/FdNUNnXfuXm7tdNe9NWrr1bR361Om8pyR8D2cq0bv9veXFDHXxNb2REy6jV/9JI3urW9pjrbXh9twncvMbSp/TXxq+2JoXX8xHFiR+SrqnhUx2+3su7FhrvRSzf01OWWpuPqjqvOu5Vb01zZiy6a2FO3cu9GRk35anKtmzmbXOvWHruVRR1Mzh97kX8uhjTBVwdfZ19NdNONDTblI8d7SsZV8q6TU13M7CZO1c3RNCZU6ahXv6jSZS8xKvWp+tvBxhsCycHwn8A9wF8D24DdgWFg5wjuFuDPgM/U4LsGuAj4beb6i4EVwB9G/c8F7gQ+4fq+BKwG9nN9nwTWAbvr+VuB3wJ/HuE7FlgJfM717aW8rQfer30XAN8GbtfzTUrHCmAQOBC4H/g18EpgSzTP13X+l+r5VGAr8B7gFGAz8HOV8bDCvB3YCFwBrNC+NcCfObzPVjpPAO4Avub4/SnwzYiOYeCMCPZfgQf0+CrlbWo07veBf1I6x2V0diXwNyndA48B39bjJcDdwL+56yfpvPsBfcAI8NcRjtOA5cATer4BeLd+vgP8ysEuA65HbGwTYpObKO12F2Cu0nUTcHiC5puBy4Dfc31/r2OGgZkR/F8C/w4sTeD6OfAZ4G8rfOKTwI+AP4n6f6RzLkiMGad29LjytAa4FbgdCQpvVrv7KXA18KSOO17lcbDa2B2q+81Kxx2K53HEj/7Jzfkyxfn1iJZ7gPsQf7xL5bEeseMtSs9ngU0K/6jOcVeCrwlqAw+pTN+hPHw1I7tDlebVrm9v4CngbTr3Qzr/8Xr8PpXBRRGubyBx7Dl6/m3l63TV+xBwJvB6tbE/y9B0IBIffgk8V/vuB/41gnsIuDYx/i7gu8DrXd/z0Pjg+l4N/Ar4WYaOfwWuBc5JXPsXxBdPAqYhsf0VEcxJiD/dpzI9S2XwLcQuP2R25caYLX4zM+/ewMPAZVH/lylt9AHVxRTExj+iejzUwY8AJ0U4ngC+l6DncSTW7+P6D1M6/j5Bxwp3vo32ODBOZXBbpMev4OKp9t+g4yfo+edUbuuAP3BwrwG+qv2zMro8C/ihymZP7VuJ+NHDEewvkZj9z1GMekzhrwIWqUwLYI7qbCvQr/BHIz5yGOJLF+vc/6LXd1N6P5WhdxYSp3+UuHa60nAjMBvxrQVo/IhgTTZXA8dl5upX2u8F9srArAUeczgtLj2A2Oqw2s+twJ0KN171t0XlVKjd/b3DeyfwlWiuS5WWw1zfOuA22vP8PyJx4jkObg2SszYC73D996sc3uT6CuVhkev7LvBvpiftW43LP4jf3wAcn5DTPsrj91QWv0Ri/jbg5QozBckXq9y4w5W/hxxd9yP+9E/AQwq3CvihG3cmEu/+yPnwvzjZflWPh4Az3bgLgUeAk/X8YZX72cBWB3ez6vfNEZ+vVJ6uAS5HarnnAw8CnwaOQWxuPTAjGvunwJNEtobkq+8Af6HnN6lMnnQwbwWeTsh9uer8L5F49RmV35lK2zyF+wxwHXC2s5d/0+NliM/NdHgfBZYCH6O0/69Q2viHgP8ArtHzj6B1lp7fhsSZnziYF6tcDlHdPpng50tI/l2Pvscs45cvVNw/BV6QuD6C1Ml/pLb0i+j6AQozGbHJrWi8dTBXAzfp8Y1Ijr8Pse/VOn6a8vkLtYvb9PhAJA4u0fGnIj77ST2/Cqk/NiqehxXvKuBrOk9A7RKpz34axaUv69inFddvlc7LHdz5Ss+lrm8zcB5iiyu1788R+5mqdP8W+BNgrRv3AaX7A65vf7WdP1FatiFx4sfK761I/rhEr02mfS1k8fQoxDc3IXa2Svvb1k065+tUbp93etigMjBbe6vKZQQ4CIlHm4Epev2nSuc2Pd9brz8bqSWH0DWew/UgUl8sROL+OtXLSj1/PmK3/6jfFyjtF0U6/YBeXxDZ20SVxyPArgl7v5Jo/QscoThPVHpOA/ZQXr6iOl2icvwJYp+vVv4m5/wr9elj+1qBLNRa+j1RCR8/CiAPveyJON7eWUQCtx9i2PsX6YfsZyMCmR31z0GcZ04E+2QEOwMxqhl6vgsSFOc2wNevvPUhfIMUKncAC5Te+OPxF26ctblIkJin51bkTgUmIQrtj+a04wFE7iRwT0GMbqq7DjAfSSTzIzpiumOcKXmA6PNORM4xTmt7IYk1pfsBxDFzc5gMJlPKZlqEYw/EWScXRTGZ0ib3QIqJPRxsP6VtFno8nlK345FAcD/i2HsmaN5N59vd9Zms2mxf20IkYKZwLUQSUOqatflKSyzfnE5A7O5JxLbmO/psU2WSO58CTFX7NXlPot0eJujH9/XT/g6S2JatTaXdDqcjgdd0BaUOoLTvlP/HMDl7tjYfKepnFUVhepmGFFE7US56CiQmbNTv1PxxrIhtyT47I4XYLhma9kYK/7uRAtvz49sU/Yy2oij6ELu7HYk91lLj62Rj/KTonIMU33Notwnf9kL84B7lyfg3n07RtI/C30PJu2852fk4YXI3PU6n0+/Mtn2bSBkvrS1A7ON+2uU5E1nozorgY7uIz2fpuDhveDuxZv47O4KLcZq9mJxTLSXXOJ5b2xNZjPiYE/u5+Vk/Yj8PI/ZgeplIGZdN1n6uOM/GLZWbrXm79XEZOnW6P5J/7tTjVJurtK+iPWYDUBRFP2JLM9S/cHwUyCaPjxN2zWx1M8Kn+YnFOmsxzTtTbtSOkqFw3me8D8Zwo3RoXJuHFIFep+P02/vFQiQXLYxwGi6LqfeRjhumj3GOTtsEs1dv74IU8Du7Gs7i8BzEl4n4MLgJtPtoXO95XzLa23jQNh3JMdP13OLHaFxQ2hbQGUuh1OU4x5/PmQvJ1wjx3NZ2QzaCzAZT/pnLe1MRn4tlFsfmVI4yX07Z00Qd6+3O07CQ9tolpm8yZQywfrupNRWRXVwPgfjqdcjiMZcnDa7Kv00fOT2OR+x1FiKnx+is9b3NTdSPl7HFH+97JleLgyb/VE1m4yyGWF9ca/fpPANurJ2HaFxce6V8tg+R/1Qkn/nxMZ1ep6m6wNYTcV0Y8+PXL0TXUJoNZjzp2GqwNqf5bSw/j9t0lMorHqfX1060+6mXrV8TxP5pdLX03M/p59oJyQ070d4sn6byUa5mM1pmUMrXeBmgPRb0R+dx3VbZdsSGQKEEbkESa6DdWOchxcEtVGwIKNxgCOEehJFUoJiFJOG4UJuNGPGcCPaJCHYGuqur53MRxcRzzVF83rAsuHil26JzUOeJF+67OPypInUeYgAWpKYorimIIrdSKjh2gomURXIcqA2PL9hADO1unMG5jQwiHJ7WOUgwjQu4vRXf3SR0WxTFFMQmriG96G3RviEQzzEJSRoTFc8mOguu3ZFi40E9Llz/zcB8V+gN0B7cLSiZbvuRJHgfnYsE46dFJEOHL7Z9FN91wFy3KPWLu+vieaLWoTNts0nrxMY8pJ94Q2ArZdID8YUtlDa3jfak2EfnJoHJLvZzb8tmWzshujPfmI7EA7PNgOilP7GpFrfxyIaGXZ+P+F/VhsBDKifbqJiKBOrpistsw8eGlK/ORWzMYoXx7+ntQwr+R0hv1ED74s18po1XtY2ODQHF/RSyEPcbXSl51ckm5sc374veJnyzhepKxLdNv+bTKZoq44Xy9zCdspsITFD7MLmbHi3njAcoisIWQvZtdjghwcMeiM0+QLs8ZyEF08wIPt7kiG3EfHKGoyO2E6Mn9t8OOG11MsvBdGys6eJ3PnJnyMdjs13TnfnZeDpjCeTjhLU4z8YtlZutzUdsahpi/6bbVK3SZENgN8TOV5H2hZlIQbcRiQkmN9v8z20IzEP8fDXiS6n8lIphqfiQinup+B7HGpSnRxGZ+TxiOS3eELiazs1Ea1ZwPkBaVmYXtiHQR/kLDPOtuYhMnqbU/3xE/k8g+sgtAlq0L4jies/nnFzdApJzNlAW477O8AU7yF1J7/tQ2vc4nS+29YVkaoTE3NZ2QzZtTK6pPJfaRIVyg60VjYtjc1zPenmZPc2B0Rg0iTKvW/M0LURqqIla+8R+bjnKj/E1bFwj2LxN/JYqOFfT2c2fG4HdXL/xHyh99RE6NwS8bbQob27GNZ2Xu/EVy9/WDX6hbR+LJz4ux/hjefkNgZgv79epXF8gOlgPTNHa0+b2sSW2wdSaaCqiU1tc+jFeDwY32fHq46ltCAxS1uG+nvP2ZWvK8bTLL/Z7uzaezrwSxwevr9hPY92a7XhbMJkOUi7EfYzyvE5HYmB8A7MqH1mtv7PmamtGy06U8jVeTD4T9dxvCKTqtsq2ozYE7GdidtfNG6sVwA8gi6IJMRJt5vyQDxS28E/9QiBOsinYGUihZ4lqFySwpzYE4sLUG4jJbQFlQbmAdqMuFO/DOi4OvCDOt5L2Xwhs1u9YwVbs+uLNdjbjROLx+Gu7IklprgucVrjaLxH8XZK+oigsYK6ms1Cvu+O3J7Ir/gCwa7QgtoW4D6axzCdSFhv2M6fUhsCDlBsCxu/uStcGh9MCqcHYLpsvPBcgNnEfncneCptViGOPskN7YPJtgdKxmvYAMA+xxRWJeeI5b6UzeKTk5cdYEb8rJb/jKIOE6dr7hMnb3zUYT6ctWb/35bnKp0+4E5GAb4G9DwmU6ymThv1iYYjOXyHELfbB+Yg975r5RdGukRxA7Md2hj0uWxjMpNOfQHz5fspYMUC5weQL3J0RW8xtCPhfCPgNgbjQ2kTnXSYfb3wROw7aiiQok8uAFnNxi/nxzduWbUzmfiGwUo99kWobbbEM/d3u3C8EHgJ2ihLiZOTnehMo5W56nEa5eIX0QmgynXcuoJRnXNjPRJJ8dkPAbV7FG6eP074YNhvxsXWa0jNaoEdwXm51MTYHExdsIDFxNVI8LoiKaouHE2mXocUS+7URlDYR37U0fOZLJoO4zVY6qjYzH9Hj+A6db003BFIx25rp7HE9Nl6sULWi3ReGIHHObwiYPXob8zo3m9lZadnZwbXFPM2Nqfhu83s5LCSdr/ymDkVRTEd88ibKXzR6nFDGy4cp46VvcZFsOcVvCNgdRn+X0eejPSg3YkdrJaVnIu0FbFzDme9jcsj44XTEB6fr9RbttgqdtZtvlgdtQ8Din81TVSNMR37VMD3q3w2RvdlgbE/WchsCT9J599rna+isZweQ+N+P1Oa+RrYFw04RHXF9ex9lfPQ2WujYCbTHel97TtD54wXnlhDCWrZjQ4D2GLUAiWlP0e5X5gPzET81X/XN21z8iweLA+Pdud0MGaAzN8Y+2xfhaautKWOL4R9d6LvN7wHaY1Gfh9M2X2U0vSgK848CyTNrKDe3DccclYW/QWYttSYynU4mvUj2i2XTvcfp5WgwuYV+bEcDlHVi7Os+Po+nM174DQlo19d0NEZEuOK6LvZT+2WibRzZnLMo46FtCOQ2BnP5aD5SO/pf4+FomUYpX78h0EfnDeQ4NjRr3TxfkHiG5wkkCQb9fFi/X+dg/hvYqMdt1yJcv6R8TnQ9iWdfda47hey2/qeQHULbhZqqx48DNzi4gCxOfuzO/1O/xzm4R2weyudR3qPng8BHKA3xJUix+p/IouZeJCEEJJDersef8nQjz7wE5Nmy4J7Rsjl+Rfkco20q7Au8F1G0yXyOznunw30d4kDLFeZqx+8b9fsU90xLQJ7VeQrY4J6/CcjzyQFZoPy3m8N2+ucjiW5VQl//TunIAX3OUK8dajzo+WNOVhO17+d6/hnk+aRR+Ein/4Tc4fmxyu6D2n+6fr/bwQbksRTjKSDP0AXk2fknkefq/iMxl8F9NNLlfYhzBtyz0chCKSBBI+DeVeFotDucByfkN0+vnRXJZX89f4z0c+aXKx93Igu2p5CEuVrHPUppnyaTtyDvJQjIc2sBCU73OpinEP95Ss9HIj18zvPi5B+QZxgf0OMhShvdRvmM2TF6vjmWveKzBcIG5DnEALxBvzueIUbiyK8Q//yi9n1D592E+NEWJGmuoPTbbWYzOmZf7f8xsDmypS+44wv1+4f63fF8JGUseKPxiNjso9GzZIZzT9f/ZZXdOR6/k8He0Twf0u9XRzTspP1fi+WMFHEB2YRaQ+l3dyb4+APVwzDwKpWr0f1t/R7vxmxBnmM2u+iPcN5GaZOnRnN5fw7I87R2vJXy3Q6HaN8r3fjTHGzh+h8HfoPY/dOu/xYkt8Wy+bXTmf2M7yvu+hedDF6HFPI272rK5yPPdnR/M+JxBM1ZlHeHTkGegd6UsCeLra/ExSxk8fWg5wH4C5O7fp+h/Z9AfMVo+AfKuHU3EjueAJYr/Pf0+jf0+xOIDa/W6z+k9OmUD/yQMvbuGV3zceQfFe9i9C6+g5upMAcgz8p2xAuFuwqJk1finn921z/q+P4j4AeUMSAo797OLD/+DIlDWxBbf6fBRbz81p0frH23AQ9GOh5SfMZTQPLqOoWzesNszHTxA5Xls3H+hsTSALxYz9+s5+bfJ2v/NuBePf44pe9uScjq9x39RrPlAnvu/DLKOPrn2rcByeUjwH/pnI8i7xsxee/t5GxxzfJWQDazRuVrsnXy+3IUZ57Wsfs5vGavBfIuhQC8QL99/WdzjvoQ8suKgDyjG5AYfhXweMJ+t6I1pvY9S/vt3RwzkNz8FO7dL0jejmPOAke/ydbql+tMzpT+YDzu7sadRJk3f5GIiRarCyQObKCsWUwvn0bjCxI/DnXjR+MMsik5oZJxXgAAfzFJREFUgsSrYb3u3+P1UQd7DfBIxm9tEfRsItvW61MQ+3utzaHf73MwJ6otXIrY3Dra3ynVcjx4OT+qNrBRz/fU79sdTEDePRTQ5/6RhffN2md2uYayzrDzgMRQq8N+7vEqLptzxI0ddmPiOPMu/T5T+4aB7zu8b0BsbghZk22mtJcNEa7PRvi/rv1POHxPUa5DNiteo/PPHe2b3ZhPIHE8KC0mi7Z1k875mIPb6HA8CNzi4pHF6fMpfe9bLrZZfJqHvAcrIH72dw5ngdT8Xrdvdzw8RZkfb9O+lY43swuLEUbTsNHiZHmz8nA9ne/3sbgSgEtc/187/COI3/+N9j1Oe1wymd6j3+9M+Vfu0xgw47R/q5O+HHkpw3v1fMDBHEJZeJyPLrATuBYDz9bj04HFCZgXIC/yeE3U/zzkzsgbXd8FwHG0v1TnDQq7n56/Dtk8uDDCdwqSvC90fbY7FtCXGyFJdhzwe8CRkUEF7T+c8qUfAZjvEvxFSOA9R/tmqBxfgBQFH0KcxRvuDXr8VmQBYoHTv1DocL1+MFLcbnLyH9Bx46JkZQHVXtrzOLLQHa/jTqc9sBfA252On5vQ157AS/T4QmCSu2b8v84lqAOBCxzMfiqDecjC+Q3Aq6I5zkWS4enIS0sCsph5k85xLjBdYc9TuzhZ4V6BvERukp6/BVl874fs0MVzzUVsfSrtm16jmxW0J60CeKsen4O+/EfP5wDn6vFbgb6E/ArExgo6Xxh1AfIivCMT4w5THo9AXnRjgS0gi7iTkQV6UDznIva9j8p7PmXBbnKxRagF5/cCZ7k5z0Fs+SLjBfGN81VvFjzPBV6EFOiG/yeqB9tdHSRagCo+v1DeqLT365wdL7VE/Ghv1am9bG0h8uK/DztcH0MK6JMpE8s1kbwvQoqGsxy/b6csmEaQwupVqtsLYnpczJmF+OGbXCL4qIPpVxrfSPsCdh/lpR/3IiwkYY9EsOepTt+AbiRFdLTFnujaBcim07ORwuuDwFEJmMmIb76Ssvh4H+J7t6KLGTfm5ZS/4nlbYt7jKF885Av011D689spbe0NyEu8AvCPTlcB+IIbP05l+fpE3jhQbeIlUS46AXhDBP8UcIfTRQCe5a4vQF709TrKzbu3K99/RlnsTFD9Pg99+RjwUsr8+SqH822UdyVflrGpt6hN7EIZU8wmH3Zw8yhzzZsoF4+24XwRYv+2EXkq8rKiI5FFxeEurn9YadpAuTD5U72+L/KS2jdk6N0feI7aUBFdewVyl+8c5KWhAXg/UkyGyCffpd8DKXtyulyCxPTnJa7PVv2cg+QRyyEBKVBtkb4RLQp13MGIfzxP+Z2C2NirHe7baN9ospx3KLohr/3rKAtly/MXIDZ2hoN7AilEA/qSNaXjDMX91miugL6sFNkEfL0ev5nyzlIA3qP9uyJ2uDvOHxxOq4G2IjdgLtXz0fiA1AKnqh7naN+ZyOb4WSpr43OQ8nlai7HnufnOQG6cvE6vv4dyg+NWZNFvm+MHuXFnIi//OkbHvQmJh7ZZuBCx3ZciseEtEZ9HUW7YG3+HIJuVjyHxaJbS9rxo7KuQ/LZfpIs3KS1vcf5pC+aW9j1Xz6dHdv5G5CVhj1AW/fcief7D6IsCdY6dVfYF8mLll1Dm4dNMTq7vjYrrUe23BUmBxJ5C5bQAeV/WWsfT+foZAa7U/mOReGT6voT2vDQf9RHEds+M7czBvpPyLu87o2tWb38VibGF6cXB2MLUaurTgEMiPOejuRrxuQtor5cCkt/uplwAfxDZiJiP1Eu2njgdiTOG73KHIyDxYwRZEG5x/ba58ofAa53eL6bc4NmCbDgEJD96P3kDcmPvjUgsnKNwVyFx7bV6/U3af6DSej7lBvyAk8dk4Pwor72V8oaRfb6FLIYH9fwshZuO1HtrI/hdkZj5FtpvJMefucga7K2Um4vBzWMx+Fp37a9Vdz6n2kbXkMpzF2TT9yCV0dlojkLyUUDql3Mob5R6PzVbeBvljbJzkRj0cuXJ4vgfKp6Fkb0di8Slg9H1bhQ7ZirOGa5/Z8V5vsrkMCRvfUj1twbJQR9SGd2sc3yQLl8qaDuxPTX9yeGxIYQr9XwccHQI4dc9I/1f3IqiOAEJAstDCA8lrr8aMYgNACGEZe7aTCSJf6nLOY9AEvT9IYQbi6LYBTgthPAVB7NEaepQZlEUs4C5IYRbK+ZYEkJYVhTF8cBVIYThoij2Re7IPNINvf/TrSiKVyFvKa+k23h258cDvwkhjPQwZ4EsJgdDCL/pdvwz3YqiOBtZzBQhhJ9o31TkjvINmTH7IYX/phDCFdp3HFKULAohfKtLGg5CguMP9XwWUrQNIP9s8bT2L0ESyeMhhMcjHAWyUJuBvO39TnpsiusC5E7A5V7v6sc/DyE81hDXEiTZPxBCWN8DLVn/bTh+J0S2N/Yyfkc0peHFIYTP6/luSJGx8hmet0AS5ZdDCIPadwSyabtxB891EM4u4xjSgM7jQwjLa+C2yxYcnrOQIvK2EMKqGtgFyAb8t1xfIzo0TzyNLAC2m+4It/mo/WJgtNZ4Jpvyvh9y524Ksph+GFmYzGtKQ1EUs5F/XLqtBm4vZKGwN7Am58eqJ5B/Saq1u6IoFiH/gLSpAqYre1P4J5FfvGxCfg12TZOxOr5AFjBrkdi7Gfk1Qkc9VYNnFrBLCOG2Lv2wG9iTkV+E/VbP5yEF9t3d0JrBfTpSyE+O6pAsfeanSMH/VAhh9fbSoXgXIr/2e0Br+GNSNl4UxR7IRu29Uf9hyK9MntoR9DRtRVG8HrkDuyFzfQDZCPr3buKSxk57VnsN8kvbnZGF8QEhhC80xDMV+UeWnZE48lNk4XYbsvDbB6nrr8/p3fGwFInnO4cQrm4w97nAT0IIa1xfAZwQ2dseyJrtmw352QfZHHsIuak0DVlcz4zwHoD49hz00ebo+v7IwvxBJNbm1k37IDct1yCbcXsi8eIyWwshmzU3hRC2RPROQOrFx0MINzfgL7Um6EPy2yykvl+m13YFTgwhfM3BH4RsHJ8GfH4H58JknLacEEK4X88PRn6p90RP8+xAmsfaWBtrY22sjbWxNtbG2lgba2NtrI21sfZ/pTX9KUGr1Vo9YcKEAIT4Oz7e3r4c3tRxFS11dDY5bkJfN3LwNKWOu+ElhacpL1V4quCayKcJz1Vy3FF82Her1aqkoxcbbKrzJrLqdr5u7TIn2yqdd2ObVXZaB5OTRy+ybmJv3fpqTl7bQ1O3PPYSH5tcT/HadO5efampDdXFgzp+u40dO4rmbvzimYix3cBW0dAkTlTpplvba3ptR8iryXeOL8slvfBe5ztNxnSr+yZwTWXV1MbraKniram99aq/1HkTHnvhuZv4UoezymbqYmXd2BQd3ci5as6mPPcC2815U9vI9fVi+1W46mhqqtOmvtWNnabG+Bo6R2OdjLv13Tr/qMPXrd02jSPd8NdE3jkeq+itiglNPq1Wa3Vqnd94Q8AQ6U8W2r7j4+3ty+FNHVfRUkdn1fGCBQvakn9M36RJk9qUEOOZNGlSmwJStMXHCxYsGMUZQggLFiyo5CWFx4/Jwcf9NqZKhikcufO4L8VzCqYb+0rxWofHvr2Mm/CUso2mtt9EVnXz1c0R0xbbbU4mvt/s1V+rsosqOlN2G+OP6crJpBtZp2hJ+aOHi/20yiZTcuyFprr+7bHNKjrq8ORiXRW93YxpSn9O1il9eRttqp9nQubx3LHvVMmtG/tJ9XXjI7FvpnwsRWfdXNtreyG0+2gq9jThrwlMVazy81bJJYUvtsUm81bZVSqO1sH2EityskrZSpXvpOa2Osnn3Nx3ap4q/up8q05/Kdgqv2zKc3xsuOM5qmKX1YJxjZmSQVWcScklHhu3Kjl3axM52VT1pfp9/ZCDaaqvmJ9Wq9Vho3Ed1cT2zdbj+svX9TldNe1L8ZZbJ6RiW9WaJTWvX+ekrud8Ljevl2tV7A0htM3tx+fkkbLNlPxy/pb6TsWRJjbfxBZzcCkZNjnvpik88cf/tVPPbfny5W3H/f39DA0N9dTn/6Ekxhsf+75e6Kw6vv/++wEIIYzStHz58lF6N23KPpY3el3kTtv4qmZz5s5jXlKy8mPi+VLzL1++vGOelHxNX3Pnzu3oi89jnda1OpiYDsMf8+rnrWpbtpSPGqV48Me9yHjixM6//kzNY/TOmDEjO38KT8ynp7PKZqpayp5zdlFHZ4qGOn8xuW3YsIEZM2aM+k5O1k3ssWp+w+X9FJr7ahVNsf17/fr+lL2m8OXGVOmj1Woxb9687HVvo03srEq2VWNGRkbazlutVtt5FQ2pFsfV+++/P6m/HN4cr/445rOp3fs+oyump67lYmp87u2+ykeKomDhwoVJ2Nz4Kj2n5krJpCoH5GRouvV69f4Y852iN+czJoO6WOXPu80v3hbr4kiMuy7P+GupfJWytya2WhVfmuSSutjRJO7X4TJaYnuoa3X5qymvVTVCExjDHdtHVezqVfZNYVI+2aR+Mrqq5m66Hohzd1wP+VhidtS0xmyaW3Jy7kX+OVvvtSbLzRUfN+Uht6ZJ4bVW5791c8Z9uePUuc3t6c3FxNy1ps37aBWddf6Uqq2axuQdwYfNt23bttE6evPmzcyYMYO1a9eyzz77MGfOnDyC1C5B6kPFjsvatWvbjre3L4c3PvZ9JHZd6uisOrbP0qVLk/TFn9TcS5cuDddcc01ynlieKXx1Mh8aGhqFiemO50vNn+I3J9+m+qqSbU5WnoYmeotllupP4UnRkePB+DcZ18nKy9iPaSKrKl5zeOpk0sSOqmBSeJr4TwpvHQ0peaRwdWuPOZ5iXZqfXnbZZZU2meKhCU1N7KHO1nPnueOhoaGwfv36xnir/KmK3m7G5PwpPq6zIR9Xc/qr8s9uZF4n55g2L0sf+5v4Q1MZ5uZO0RfbQZWfp+arihPd5Ikm8jRdpuSXwut5bCqvOjtLfVJ4czrNxZGcTI2mujzTxHd9rVKnA5u3SlY52aTmz9GYkqX/rqq94r6qWqpKvjl51Om8TubdwHgezD5MZ6nYVUVTEzupoiMem9O9t5WYrjobrYsHVX3eNmKamuT91PWUDJrIuc4uesWVkmtVX10OqvKB+DznR1U1T5X86nis+9TN5XN9lR6qaGsqmzo6c/L2+SXuz9lMLi9W0Vd17ufzdXSqKTzxp+tfCFx++eUAXHvttaPfGzdu7DiePHlyz302j13LHa9cubKNFn/N91XRmcNt7aSTTkrSl5KLx2Njly1blpw/lmfcUjApmVu7+eb2l2imeIznT/Hrx5l84/EpGup0GvOT07vnMYUjpYNUfyyz+LyOB+O/au4qGcdz+2vxeUoWOVuO50j1peSQkkUVTApPUzpjvB5/Sg8pecS7mE1knZJ9jl9v9+bjKV/Nja+SSVVMa9pfZzN18Swnmzqbr5sr5r+bMSl+UscpWXt9mr7ic6+/Or7rdFjHU45mH4cXLVrURk9Kbt34dg4mhs/BxrEvblU+lKI7zhMpH6iL9Z43aNetya9p3KvSV1wzVMXAuFXZbqzbRYsWVeb81DxN8kzqWi6ONfW13LxxTdAk/uViW9xif45rjBjW93l/iu0mFSdiPFV+VEVnnc3Wyds3bx9Q1ohr1qzJ0u/nTtER05yLbbE84vNcHkjxYXqL565bDzTx25R9+nmr8lddzPbjcq0qFlStNbrBlauD4jF2nIqxsR5zMSamL+VHdTVPjq4mPNa1urmMXt/q1jAxnnhd0S2NqblSflYVy+tq6FQ8qstTuZxsNfR9993H9OnTCSGwZcsWBgcH23452tFSuwSpDxU7Lv74iiuuCN/85jfDpZde2nWf9afw5o6raKm6VkU/iR0YT7O/7uE87VW4rS8+Ts1bxYunNcaTkmUVfX5c1XzGfwqnnX/+85+v5Tkn89TcHkdKB6n+FJ4UHTFPqfMq20jx78fXySrlF1V6sDHx3aCYtiZ2VAWTwpPTSR3eOhpS8vB3CnM+W2ePVb6Rmj/FXx1fKd2k4lydPVTha2KbdbKpigUpu07BpPjoZkxu3pj+JjaUOo9h6+TZBKZbmlPHue+cTTSJsTEfTe2gys9T81XFiZy84xyQup6SZ6+yqfOR2CfreEvJJTV3Trf+uIq/nCyrapCc/GK4Knpz9MWyyskmhytFY4rXOrlV+XmdXKvkm4uBdXRWxdKmdl3FU0qOVTQ1sZOcfqpoSNVQObpy5/EYwxvXhLkapip/1vl4N7poKucqu+hWZ1W6atoX81M3vhtdVdU8VfKr47Hu081cVTxUjW0qmzo6c7ir9NOkfojlX6e7HK+G5/Of/3xYunRpWLp0aVi9enVYtWpVuOmmm+J5iT9d/0Ig1ZYuXTp6PDw8zOLFi1m1alXXfUuXLm173tHjzR33SmfueHh4ODveaK66XjVnFe5uWyyrJvTU0VfVZ+M9/yl9LVy4sO2ZmRzP3cjFX8/poE43Vbj9OH8e85eiMyXjFB0pfeX8wo+J25IlS1i6dCkLFiyoxP1MtJzOevXHuHl5TJkypXL+lK11I4eY5ia6rsNTFedS41K0pvBVnafG1flhU16b+F03Y6rm3RE2VBfLqnSRg+nVLnptKRqbxhjolEG3cXF7fMiPz707YXv8LIW3iY/EPtlL60aOveT8pmO68d06G0nh6lZWVTawI1ovdVoOT6pWadKq4m4OX50Oq8Y2bTs6FvVq41XXcrkoV/sXRdGW+3PxsMrnf1cxe0fVPd22Hb2OeCbw7shWJ+ffpR5yc+Viaje2uCPkH/tRq9Vi9erVbNq0ia1bt9YjSO0SpD5U7LjEx9vbl8ObOq6ipY7OquOxfxlIz1eFM9eX4jkF0419pXitw2PfY/8y0LnLOPYvA/U7wSk59kJTXf/22GYVHXV4crGuit5uxjSlPyfrlL7G/mVg7F8G6vDnaE3FqrF/GcjPX+dfqbnH/mVg7F8Guu1L9Y/9y0BevmP/MpC3zZT8cv6W+k7FkSY238QWc3D/k/8y0NGR+7RardXd/C/m9vQ1+c/Gbv+TshfcTenrRg51/9vZDS8pPE15qcJTBddEPk14rpLjjuLDvv1/qKbo6MUGm+q8iay6na9bu8zJtkrn3dhmlZ3WweTk0Yusm9hbt76ak9f20NQtj73ExybXU7w2nbtXX2pqQ3XxoI7fbmPHjqK5G794JmJsN7BVNDSJE1W66db2ml7bEfJq8p3jyxf73fJe5ztNxnSr+yZwTWXV1MbraKniram99aq/1HkTHnvhuZv4UoezymbqYmXd2BQd3ci5as6mPPcC2815U9vI9fVi+1W46mhqqtOmvtWNnabG+Bo6R2OdjLv13Tr/qMPXrd02jSPd8NdE3jkeq+itiglNPq1Wa/V2bQgkB8Ma4L+AQeBy4LfAZuBTen0ZsMLBHwg8Anze9RXAEHBdhPtGYBtQ6PkFwGY9vhf4nB7/E7AO2AP4JfBr4D7gGmAaMALsp/RtA45XoSy3OYEfAqv0+O3Kz0zgO8At2v9l4Ek93kd5/1s93w9YDXxJz38N3AE8recXAZuAuXp+GLAK+IyeXw9cCtwNfB0YBp4AblM8xwD3A/+k8H+sND4A/IvONwSM188w8O+qi6DjB4Ff6fgX6Pl8PV8HrAT+EFinfXup7J4C3gecCKwHTgXO1v6DnL6uUhrG6fkPlI4+PZ+hc75Dz78D3AJsAf5N6ewDfgXcozCPqQzu1ONv6RxnAeP0+CpHw5MqmyHgfdq3P7AB+Ijys03l/BOd8yGl42HtX+rwfcnp/LXARmBPPb/a+AUeBP5Zefm4Xj9fdfdmh28Ysa8LjV/tf6Py+CYHe7Tq/JN6/mFgUI8fAf4eOFj18DI37vN6/UAPq8ffB+5ROoZV5z8A/lZltBq4FbEr08cVwJXK2xcRW/m46mMEmA6sADbqHBcitj6g8lmu+r0f+IzK8DXAkMIP6FyrgM8hdvuQ4p6QiDkrEF98AvhX7fsIcBfwAgf3I+BBPV6scviw8vkJxJZPB/4K8eVhlfmjwJcdnp11jPnqE8BXlL4NwO069zbEph91/nCrw9Pm89r3SsXxWWC1639a5X45sEz7vgo8Duyl5/+A2PtCxOdHgPP02h3A1/T4HYhtvdbhfwr4rIul33HXHgdu0ONBlfedlLF3utrCO92YLyKx5o16bQXiXxZ7d1e5fcuNOQOxpWMiu5kHfEjHjkP8bhiJkbcr7SOqp8+p/F7j8P4L4o9HRrnkWp3vg9r3sOnKwTyq8hwGZiE28wMH83bFfbqe3wxc7WxsPRJb36jy+EPtG1a5Wr4YAi4BnqM0naUwaxH/ux1YotdOc/N/T3U+T88PUXm8JNLFaiTuzVe8c4E/VblZPn0+Eu/+xNnTw0rDbUrHN5TWAWA3pedTiH/eivPTCDYAR6n8vhj57+sQe3o78AXgbnftUeBhPZ6iuPd3PvGXevx3iN2e6Ma+XvG+1fV9HNji6oxB4GZ3fU8kHr0WyWlbkRrml3ptM/A1yviwDrHNv0Li6GmKNyAx82s6x1uBg1Q3Z7v5tirtU/X4PcAByudG4J3afxfwc5XlMPABpG7ZhMT8HyD2+h/AUw7/G1ROu+mYYcXxQjTeKtw5iI9eAvyr0m41wa4Ksx7Nw27c5UrfccqzxYc7lLb3qU2cAOyrfP0EuEvHP1vl9pcO5+5K56VIjtgEvAnJpw8Ai1QetyI+NKyyGJUt8Bvg53r8B4gdv0Rh/xupBzcj9nEF8J+IbR6kYz6muA/Q883K1xXADYg/mB8/huZThb0PWKvH71I9nu/0cAoS99/jYv4WJLcOAdemYq/rW68y+zDt9afPP9fpvJajVijN3m7/CDhWj5+rY36osv2hyv0oJL58Suc9y/nOiMppWOe/A6kLvktZU8xC7OMLkbw+oXhuBzZF/LXlNe37kNL1Itf3e9r3Qdd3ssr2Yj0/FalpPuZgDkdstV/hVwJ/o9f+mva65x7ELr6n1z+LxJkjTB5I/Bqk9Plbkbj1XtVnC7gMyQ1DwAsV1wyV4Ukql9nO1u7Uj9XrRyBxwuz9JO3fDHxaZWy4hoArFdeB2j8JicnDSu/7kPrE6r1NOkecE24GLtPjK4E79HijyiIgtvtayjWN1dDf0/P/pqwfrRb4FVJj/0xhvgU8pLg3OP1dh9SLFnu/SpnnVynO8ZH9vE918wASyy7ROc9RHG9TGb0asb/bkFpkA3Cxyuh7SH1hfj6CxPLHlYY7gZ8iNcSQ0rMRyQMbHR+fVxpfoHg/gsQBW/f9WOFmuhrk+67+uDzOkXr+A8Q2B5H6eAS4SeldR1lf3ILUJz42L/Xyqvv0sX2toCz8x7nzCXrdHwPMRgLObNe3E6K4WRHuWYhBTXVzFe7YaJ+BJIeZDmaSfsajRuTmtnls8RzTOQVxuKnRnB5mBmIQMx1f6xxfRfQ9JeJlVgLeeBpHuRiza7HcjPbCXV+v9ExC9DGBsliZE81nMJOLouhX+rz8bI7g+jwPMT8mgw0qG5CFw2ZEvyaDrXTqs1BahygD2QQHg8rC+m2M6cDbkuHy8xitk6I5Tc4xHd5eB5AA7/F4HW5UPm38eAffZhNFUZi+JupnWL8NNvaL2Ka8vZqtpPQwK8KV8pu4bxzt9mSyGe/Ordj38jKYGcBAURQT3Bzexr3OnqL0LePL7D2FO26Gv99dT8nP69JsZYaObzm5+fl2SeCJfb1f8ca2Uxf7Yp+HUn8mV9QfJyCbmcZviscZaHLB+bMbkxtnsjE79XJEZeLnrotlRstGnb9QnLYw9LE35j3lp1PdtSmIj/j80kcp+4EIR45fr4uikAdaZwIzivLhVuPb54xYh7EtxHkjtilvWwXQVxSFxfjxjs+d6LSnWD4p3nJx2GA8L5Opjzle1+avZmOxD6VigI/H/XTalp93FqU+UT1Mp8wfnnbDN1BBe87Ox6vMJyk+X2d4+ZkPmZ2Z3ZlvjuqQThmj/QNkcmRRFOOUhxbtuo3zrP9MdXDex3P5ys85lc76KSUrXzMNAZM0Bk2mtPN4nMkwptfbi9efj9PraNdRDOdrGoP19VFA7CSuJXw9aHWI4e2P6MzF0hkOn+fPcpPXk7WZwDTVb6pWimOGweyELI68PZreBLBTD3HO9PhSdVNMcxxTjK9+2m0rrqFaSOyYSmds9PLxPuPrV6NnJjCuKIryj9rTfhvXMDm4WG+pHNtPex7y1y0+edvwudHXWak1ga9ZvM5jvJ6OibTHNT93H+11VxGNif1tOlJP+RrRxpsuJtPuA17XcU6wvATtuW087bbl+Ta6xiObDv106t4+Nrfx52FMRp52s6NYNr7Fc3jbsRrB1hbxnBORNYpf+/ja18cNk4+treIa1Nc8Ns583NZAsV3HdVi/Hse27u0pXm+bXFI6iWNVbdsRGwJmCOMU3zBlYdqisyheQ3sQ7OjT4mAWspMTJ5/4eAayGJ5OKaDJiAGYE/ZH+AIiWFPmREfnVGR3xRfXo7y4YnI97YHI89BHqSDDucXhTMF7o4sVGssiXpj565MQffhCJp7PYCY6+U2mNDIo7zoabV4uFvz8/33ENHq9QKdccfS3HD3eZuJA7flO2ZLh8vNMoVOf3pF8gGtRFp3Yuerc8Ngbbzy/5gdbyevYy9wfp2SXGj8BcQ0fpFIyrbKtXKBOBT8Lihb4ttGZPEdUXjOQO4s+sHo6jAaziSluHvPRXGKMW0xzTn7ejmYghcAMSlsyufn5ZtNpU0az+boVrj4I+4LI5vTHRmOM22xqdEMA8ZcN+u11F483nqbTaU9Q6rpNNtHCxPNDURQtHTddr3l9+FgW21ysV4utqdgb8z7FnVtM8deMN19wW1yKfb2DX22mC5OJLQ5t08F46HfXbGPGx4PYFryNebmkNrd8EWK6sjFWaMcFppdPirc6//c6iONgjMvbMrT76ww6fcjGGH7LiXNcn/fRFA++WJmicqEoCr+Z36/xN/b3VB2RsjGzqdExbhPIy8TbWZ87t7jodejnsjxpdm86i3UzWWmZQrtucxuiOfomOpgWsuExTuGnRnMY716vsfxs3rgmWAdM1XyTkrGvDeL4Pl3lZvmhSm/G/wTac5CH9XVfQDbuUjkdR8NMyjrP4+0jHUu9X8e5yM89KseiKAZUXk/RHjNN9lMyuDto0NhbODwoD08ievW1mcnW20wfZfxP1TjQbneer34kFppt5Wooi1P9tMdUmy+uPY1GXN1cV+dYXwou7otlW2Vf/YnrfhPKZOFjvskojp19lD5v47zvpeopixN2M6HfjY1zRX903iK9yEvxY+O9P9sCu49yvTaRzhzjfdWvd2wDKObZ63i8zpGKl/YZR3sdifv2809ycH6uqg0B6PQr06e3bf+ZRGk/Ho/pKabT6Df7HqA9P/kNmQLZCHia8gZLbMN+veE3TmM4b6e2VvL1UCzr/9ENAbtLYzsc3sBatBeps5GfgMQ7f48jic2K1En6/biD9czFCeBJ2pXaotx9H9HvmTr3LNfnNwSMzinIrpEFTZOR7aa1ojlTfMXJxOOsg7cNAZ9sZyM/azJ4KyqteJnm8Nk1210b8fOp8U6kdBJbBD1JWTxA+hcCxkMbP3r3ezLy8zC/6+5lFMvAb5oM0B68JjoYm3887Xf5Z+t8k3V+g58QzePn9XIdh0tYlAnV2+tkJMi1BU8tBCY5fi3wVOnYy9wfG6zXb6rPjzG7SC0acrYF7TZpPJu/FLTbXPwLga2UgbDPwcxCFrBrdE7DYXRMd31mE1Nh9E5tvPFUFfw9DwO03zGM44rXpbfF2EY8L3MSeGI7tnktOcYF2YDekYxtKUWj6c8vVlPxLDXew8X21FcxbjKdRYDJ2XDupDzkFinezm3cWkp5+gLC7szE9h3jieOL3xDYSmcCtHliWlJzmS58PF2jn9nK6zTKu5/+LovXYWwLubzhbcLTa0XIVv22MdNI/0KgjrccjOnbFyipHORxxYs7768zSNul91O7PptS7962UvT5/NqmE9pzt9lSK4EjJxuTj9mR4d9Gu83ZdfMhszPTk22KWowy+7H5bUMztsecfU+OrtnizsdVH983RfT5wtbonxTNEc8/DkDtPJafL47NLn1NMFPHFrTXUH4zHf32NmK2Vxen41/kxPnD24nF6WlOLkR0GA22IRDfSIhx+zHm13Hc8znR26wV7nHu87LP4ba6d4L+si6OvSYvX5tZf1ybjaPd1nI0xzHKaLENf6uvcjWU/4VAi/a6AcpftKR+VWN3S01W1kwXs6K+unqIhGxz9uXzkJ/L/xLArx38xkostzimp2TrF3CxzuJfCOTqHj9Pi/b4Y/HI/HEn3RT0vmSL6km0rxf85k8co8wHTTYt7bN1j9en98c+h9f49jHNvv2vCHxNahuaNr/FogE6eU5tCPi4Gce2CbTbtv9MpjOnGU8Wt/z8cR1sMrEbKaYnk+E0pDa2DYF4HeZtLf4llbdjHxttvZ2qh2Kd+LqtWevm+YL4g+yMPqIEPIg8bxMod6ns2J6XuUkZDcBk7fuUgztD+17g+uy5+Z8LuQHtX+qOtyDPqtmzFDb2tfr9Rv0eBpYiBmIwhTveB9nRCcjzRZson6k3mCWKY5Oj53ok0AUkKF6P7DzZ9fURL3c4uU1AkspWPb9evzcjz3jehzxb9yCloo3GtcgzO0bb55F3Ldi1YcV7ueP5UOT9CgF5JuyP3PjvU7734FiV64jS9Bs9vlbpCeizx8izWYbjs8gi0M7tea2/0vNNer7JyeUp/T7PjZur36ucrOzzFeRZGjs/hTIY/la/7Rn1r+v5E8jiPiDPG93gxj+k8rLzcZHOT6K02y/ofHbtM3rtV9bnxt7uzl/i6Fitx+emYN2ziabzccjPDoOb+3vI83sjwH06xu5uPkb57outwAN6fEskxy36Mdtb72S9FXl+/hqVT1A+n0ae0zYbfJfD9xeonyLPMo/o8Y8cz0PI+xcsuJ/qaHlCaTe65idiTkBsMJb1XejztLT79F7K91Nunnspn8P6ByRoD1I+dxmAaYrrm5R2s0dCdiudnuxzpDuenvJ57TO52vgC+H039mHDod9PUj6zHpTmn1P6/INeRu74DmBYz5/j8Nsmmcnxde7aaZT+Z/RNB/5Sj+2dAuPdmOVO5/b5Q+RdMuv03HLBzQprcdyuf8rheBfiBwGx/yHK5zefRp6RC5TvbbCc8xDle0hGeUTi4U3IexWs72LkOWU7/2P9vsTLxslyreplmhszUfUwgvjxh7X/Fu0bVNrvR57nNl3eQBlfB5VH85Mr7ZrOvYv2b6B8zvP7CnOvnk9WmMeRZxIP1/PzHa0XuZx0t/GnuExGGxC7tjH/jOSZLQ7/XYi/BuBMB2vPmv5rLD+dZwSxx4DYhc3/HofjHci7HALyPLH50xZK376P9vduBDpjqOF7JfJMrp2/WK9/njJeGk0PIe/k+QSlD1p8CJR5ZyUSK45zMrmT0la/o8cWe1/t5v+I4+dDlPH2/Xq8TvXwXqeTH1HG1UHa89WzdQ7Tx2coY9b7KOsfe//IVsfvz2iPqX9Fe01wno4xHcQ11Hokntp86xC7er/DYT6yRuXmdXSkk21QvGYLDyn8RpWVPbNsND/g9LzSHa9H7GOLwzukfddR6vwWN2YT5bPYhuMaldNKh2vIzftGh/9DiN0Ep4d/0zmfNJ4p7eLTbuxzaa99jlTYj7g+X5u9j9J+VlLWYzbHBr1mdjuMPOu+FPG/m1UXlvct5/1Avx9UuBWK78JIl3/sjm92xx+P8G1RfT4IvMzBWU04nTIW/jby2xXGr/Y9jfqX67s3ku1j2udhLN6ejNQv9+p5QXvdczeuztSxv9LzH5s8KOvtbTrfRj02f/ig43MEeKXi2kfl8Qa99mrtN7tc78a9EIm5T6n+3qC0DlPGrG3AL9yY4ylrqRc4nT3gcK+hzOXfcGPfRHkjMtCe0w3nVsfj+5HcPKT9Hu+DlLXWCBIPRlS+BvMQsEb5H1SZ+ZrtHyljakDqfbPXeVE++QjluxcsLtyhtA4h9VtAnsEPlP4wiKyLghvzFJ31yw36vZSyXjNaLCa8gjI2BKVp2OH4AmU+G0Ri+QHuui3ize5Gc2SUx4ZRe0fqhKccLwGp1R6jtOtVwG/q1vFt8uwGOFKEFV+PIi+wMUG+kfJlL68FXu/GHIG8fOk81zcXKSheS7kQG6fnZwG7aN8Jin+2GteT2v8a5GU1+1AWNefpx4z8T/X8DOSFZAH4c8pk9xrE6QqkYL4Q2UX8nFPKOUhh1afKPJVyQXcY8kIWw+cNagZSXF8EzNHri5FE6OG/QvlyHh9QAlJ0HOrgn40UskGN4jzgechLbCYgCeMm2g3ydIUrkBcTfQDZYdwJeCnwKpVrQJK3D2wvQ16S9CbgWchLCi8EFig9faqvF1C+lOg84MXALD2fqWPshVyfoww0VyHFzwDOZihfXBdU9sbzgcCuOp+3myeRovAC4Pnat7vK/ieRXuyzzs3xetpfvnYOYs99yEbQRciLusw+X6h0mB4uAF6qY1+E2KSd9yv9JyK2/F6QF6QgL8zZ22C17zjkpWGv0/PTdHwfEphWAQtUpse4cedR2pcFWXtpy1baC8mAvDjxeZQL+xHKoOMXj++nLDzWuP7zgHNN1yqngNjJ8/S6JYjXIsWPBe79ccEQKUY/6s7PSsSd25BC5+2ULz16teJ6toPzPn2kyt02CO9SuR1Guei2OHEM7fFpARI3Xqu43o68SDVlS+9xc54X4Wnzee07XulYhS5ukAXsKygLxJ84vR4HHKLn56pN7Efp88fqtZspN97ORmzLZDUOsdNX6PlFwMv1eILK8jzViy+o7YWWM3B+7Gh7PrIhEBA7/bgeT0ZixxLac8FhisdeGneq0rILkg8u0rFHUxbAvmgKiC1fBCyJaDmMTp+w4v1VKuNzVM521+c85d3i3ngk5pzr8LwI8d0lDq/5575Ky5HIS6UGdQ5P77tV/pcgBeqhKoM/dTBWsB+IxFvTd4HEpxMpX362UMcfFfF6FLIZYD49oLRfCEx0OWQ/yhy2irLgscLmPCQHz0U21p6D+JXRaTT3OdgXad9c5OV6L4789yw0LiKx987I7s/R47MVj+nnXZQ3DF6D5LAlkW7iGPpS5Xk88uufFyF+Y3F3vl4/UfXmF7Gz9dzfYHgaiT+vUf2cTHv8GlR8zyaKzUrDRUrTTnrtDNo3rG53x9/VaxcieW4vpWc+ErMDZX6y/HeSzjFXx1ykOL5B5wsl91V5P4YsSKwmmKGflyL+0HI5/jwkfn+Rdrv2uWAJYn+2OfUJ4I2K4xSVm38JqG28/TPlRsDVOD92srd53qtysXh3GWWddrbS8A8K+2naN5uMzsWUC+9XIfHnIETvKd78x/JpC9lsepnq9Hl63WQ/V+k/AX3xp/IUEP8crXuJYq+LtaYH26BrOdn6z4WUMT1Q3kCwz2uQHHkh5Ubh1xCb24DofgGS++9CYs9ix+cFlJtqk5FYdB6SI6ymmIbE6jspF2lBdTyesk6YHcWr44Bnub5XIvbpc8zpSLx6lesz2b7U2f9BtNuX2UGfXj/YrtNZ9wRczEc2du5G4sqbEJtZHMnVcuTzVefTVF8f0H57ady5ev5jyvwyi7R9fZL2uPNzd/ykO/6Gznue8vcX2m/29F6V0amUtfMmpW13OnPCGxzvr3N434W89DMgC+2fIzW7p/lpxTtIJz+2iTKkMOsoY3sAbtM5X4/Y6Rwk1q1CFr7elkdfHK1jbGPzPqQufQWSXyz3/haxycXImsjTdztij+fRmdO+hLyQcCOymWbX3ufmfKnKptDv72q/bUK8G4lH8ylrwlOVvoJ2W/Oytxxp6+hXOP3dSPtGsdG7IaJ/9KZ3XENXfSxB9NSKojgLuYOxqiiKIxDDurJnhPXzHRNCuKooijnATiGEu6PrLaRYusH1LQJuCiHY84kTESV9KdQwrz/DOSKEcE2XdB5L+cb9qxrAL0KMdRqycJ6OJJMNiuMXmXHPRwqqlYlrs5AFwwTgmyGEwQZ0zAOODiF8T58dPBd502gtD902ky3icI+GEJ5MwOyGOEZ/COHn2ndMjp6iKBYA20IIDyeuTUYW3sNIQHoUccrHkIA/JYTwwx55yerhmWhFUeyKFLX3N4A9Btl9D0VRHET5jOcURBY3Ot94IaKPe5DA9SWkuAshhKvNPpBd02chAfi3sR/FOiqKYi9k4fcjPZ+KvH33q3p+BFJkLNchJyBvmu3wUbXrWSGEFU1klZDHS4HlIYRH9XwPpECaAXyhLibomPFIEbkRkWc/8kuAr/VI0x7IHfyHov5Dkbewb+oS3wxkI/WOXuhxePZHCoeA/PqgUuY67+khhK/rT+KO3lGxQ2PkasT+Hkbi5G1NfMDhyMYOB9NTzI9wjNqo+t/+SJH9m5R96U+EX4PY0jokX3XEwx7o6AMWhRCubgC7ANkw3AOx651DCL/KwD4fKQCnIv8KcL271ljvRVHsi2zsr0lc26H207Rp7h42mbn4MB29Mx7nl6IoDkc2hu8JIdzZw5zHIEXjcmTR/DASV7dk4McDh4YQrm2IfyqwRwjh1sS1vZA7sY92Qa/VUBYPpgAzQgjfjOBGc08FrnFInfFFzVEvQ34B84SDOQrJ04fo99Uep+b2PUMIt1TgPRtZTG0IIfy2hr9jKH/yPBFZFE1H7nCOJ+PHNrZBjKmFSYwZrc0cjbsi8WIohHCFgzV5HYbktTuI9BDVnKP5tKaG6vBJV1PMMPkXRTEXkdtJSNz7dZO8+ky01JogAWN1z0AI4Weufx9gfQjh8Qj+GGTDYi1SK01P6bMoilcBl4YQNqjsXofc+DvU8ova5TrkpkmBbDDcgWyMm/6+Brwc2WS5FsmB/cgvdDe5+QaQjZXrMnyejvya7O7U9armfP5qpHbuQ2rEiYhf3RFCuNvVDBuQDaZHdMyxwOMhhFuLoliI/MPHD+N6LJpzD8pHxfZDNlC+FNnxXGRD6UrkV+cr3bWzkX9We0LPZyBy3QmNt64OPBGx44lIXXxDCGFI+XlceZkUQliu68+TQgjfiuhtITeL78HVtzuqKT+/DCGsLYriFGTDahJSX/wKWcdMRDY1f4voYX2T/D86x/+Qn461sTbWxtpYG2tjbayNtbE21sbaWBtrY+1/sqV+NpD7tFqt1RMmTAhA8N9xX3z9meiL501d31HwufMq2qpg6vDUybcbXFXj40+drLrhNXdux03wb6+O/KfVajXiYUfoMsdrt3ib2F9O/zGepnaQkmHVuCZybXo9R0u38aCqvxuf69ZP6nB3Y+tV+JvaQVM7rNJTU5nnYKv8tFv/a6K3pn7cK2wVP3W2W+VvTXTaDUxTu2jy3dQeu9H/9vhzt/x0a1tNdNzE9qt0W+VrVcfdyL4Jvd2Mr9JtEz+t0kUT++pGx73YYK/22ZTGbmVeJfsqH21iT1W094KjF/669e+m/NfZVJ39NLGhHN4q3TXRde7TarWGm9pkN3GkTqc5nproM4cjNWdTWdTpshufrLPhXsZ0YzN1dlo1V5V91djR6qo1flebAYZ0wYIFAQj60422Y2vb2+fniOdLzZuiqw4+vp7jK3fuaauaO0eHH2sLqxx8nQwmTZpUO1/MqzcmP39OVjm5pnjNnXvjjPkzeqrojnWVm2fSpEmh1Wq1OVUspzobSX3X2UgKXxP5VY3L8ZobH49JydzLwY69PZg+rC9lf6njFJzhT133tl/1qZJVThd+XpOJt4Wm8s/ZUpW9pI6rdFjnR1V8eplWyaZu7kmTJmX5q5N5DjZ3rYq3nO010VuV3HYEbBU/Zstxks7JObb7HD9NdFHHS46PupyZ4qlOfr3SXifjJmO6kU1clJndeX7j8XHerKM1vuaLyiY5t84+m8ilG5ypPoujuTqlaRzwuGLbi2Vc5fd1OSaOY1V0eZ16nTSNqU1wN7XPmB7Dm7OXGL4be6qivRscxl9VXVXX18uY1LUm/MQ2bN9xvWQtjgc5eXj7g/YbJda8XXodx/r1tUar1UrSm5NFrJc6n6+yC5OLpyWOlzEvsSz9tVgmfs54vlRNGNcmXg5xrZea39tAit9U3EnV+3X+3K0/5ew0JWfPU7yu6XKDKbkx0NGR+6SQ5gxt2bJlARj99n0puFRfr8ZcpaQm+FIwnqYU3XVzp+BTY3vBX0VvU17r5FOlryr9pc5zcq7TeZ1MquZpovsm13qRTQqmiS9UyaxK7rEsqmRQRW/d+JiOnN9WySPFl29N5q3SRd18VfFpe22pSh+5+XLyzPFZx1MTvnN8xvPXyTyHv043OTqr7C8lpyYxrwkPdd9V8a3OZ+r4zOmvLv+kYLrxmTo+c/yk+Fq2bFn4zW9+0xPtObzdjEl91/lSne6axtMUXU3w5OwjdVwl+25so05WdXJK8VMlC28X3co4tuFudJniP44ZTfVfJfs6/VfZa5XNpHhropu64yrau8FRR1tOfr2sDew4t7649tprG/HTRI7x+Kby9XSm+KnCVSffOpnV6aSJDTfF2WSuOrtoIotYpk3kWkdD0/4meqr6bupPTdYuTWlr2hSW+NPRkft0Y2hr164NwOi370vBpfp6NeY646vDl4LxNKXorps7BZ8a2wv+Knqb8HrNNdeEyy67rJHhpvRVpb/UeRNHTNFQJ5OqeZrovsm1XmSTgmniC1Uyq5J7LIsqGfjza665JjsmZ385vafkEOOP6Vi6dOmoLV522WXh6quvbjRvlS7q+K6KT9trS1X6yM2Xk2eOzzqemvCd4zOev07mOfx1usnRWWV/KTk1iXlNeKj7ropvdT5Tx2dOf3X5JwXTjc/U8ZnjJ8XX2rVre6Y9h7ebManvOl+q013TeJqiqwmenH2kjqtkXyerJjjr4kcVP1Wy8HbRrYxjG+5Glyn+45jRVP9Vsq/Tf5W95sbEtVlTvpvYUxXt3eCooy0nv17WBnacW1805aeJHOPxTeTraxg7r8NlMLnznA019dMcvU3sok7XdXPFthzLpG5sXBOm6GtS6/XaXwWTsvMq2nLybmKn3dAW19D33XdfuOyyy8INN9wQ1q1bF6666qrRjbMQOtf5/WxHu/ba8iW3l19++Wjfxo0bAVi5cmVHn425/PLLmTx5crYvxuuPfZ+nIe5LwaeOYxwxjKcpRXdqbBWf8Rzx+Cr8MW9V9PrxdhzjXLRoEcuWLeuAa4K3itfcecxrqqXoNltKjambJ9Ufy6PKzlIwsZxi2cRyzvlFbnyOFw/r6fTjbZ46GfjzRYsWZcfEfKToiP02llmMP6bjpJNOAmDZsmU8+uijHTyk4ktOdzEtqflyMquTf6q/zudTvFTFhHhMUz5TfKT4aRKPzEZzY5rGH89HVXxPxbpUy+GPfcof5+JVE9h4TE4udTSnjut4S83RFCZ3PaW/VL/nM25VNrBy5cpRnXRLe04vTWuHFI6cbKr0EPNaFU/r8kDqWtxy9pGLDbkxdbLK4e/GTqr4aRoH4lZ3vW6+Kl2mYmkcM5rO22vt5edK2Wku98S1mechBR9fr6K1ivb4WpO6NUdbnc83jQm+z2SZWl804SdHa9X4+Frq2Ncw/rwKl8Hkzn2rWk9V5c9UnmtiF01jZGps3Kz+8zKpG3vSSSexbNky1qxZw5w5c5L0Nan1rOVk1ITPnIyq6oVUDRfjarp2aUqbxQyroTdt2sQBBxzA0NAQjzzyCEcffXQ1stQuQepDFztPV1xxRaO+1K5Kbicmhktdz8FV7c6kcMQwufOmczeluxf8VfQ25bVOPlX6qtJfFe46GTTRZdN5usVbx2fqOGXfdXpNya1ORrm5cjqokkGdXKvG181Zp7ecfHxrMm+VnTaZr1v5N7UlryM7rrKF3Phu+KyTTZO5c/zVybxOrk3tpIn95eTcRC/bC1vHT1NbacJbnQyrYKrssUrfTfRRJz8/Vze018m4yZhuZdONvTXRbZV8c3hS9DW1zyZy6QZnnZ1U8VMlC4+7WxnXzVennziWNhlXZ3+96L+pzOvk0kQ3dcdVtHeDo462nPy6uV6nB5PhN7/5zUb8NJFjTvZN9F9FexWuJrbcxCab0FslmyY4m8zVxP7rZBHLtIlcm8q6qU03kVHqO1XD5WymG1rq9NukKSzxZ7t+IZBrw8PDACxdurSjzzd/varv/3r7385TU/qawP1v5/WZain7jluVbLqR25IlS3qeZ0e2HT3P0qVLWbhwIatWrWLKlCnP+Lwez47mxdtDE9uoGp9rv8v42Q3eKrnuCPrq8srvsj0TPlDX18ucv0s5+bma0F7Hz/ba+fbq6P9STtteWXVjJ93ozWJ7r7iawqRazJPh2ZF1Ty+w1qpk/ru0vf+p3LEj8tjw8DCLFy/uakxd60UeOTv/XeSJ/x+brwlz1/+3tqax9Jmuo1utFoODgwwODjJ37lwWLFiQH5zaJUh9xv5lIL0LPPYvA/kdu9S5Haf4G/uXgfS4sX8ZqI8bKfmM/ctAMzv0fI79y0B3Y2K6x/5lICSPm9BeJ+MmY7qRzdi/DDST69i/DPQW+5r4VxU9hnfsXwbqfT5Ff4rusX8ZqLbhlFzG/mWgWkZ1dl/nTzk7TcnZ8/Q/+i8DIcimQJP/SoyvPxN9uf90rPruFT53XkVbFUwdnjr5doOranzO4XKy6obX3LkviOrwb6+OIgdoxMOO0GWO127xNrG/nP5jPE3tICXDqnFN5Nr0eo6WbuNBVX83Ptetn9Th7sbWq/A3tYOmdlilp6Yyz8FW+Wm3/tdEb039uFfYKn7qbLfK35rotBuYpnbR5LupPXaj/+3x52756da2mui4ie1X6bbK16qOu5F9E3q7GV+l2yZ+WqWLJvbVjY57scFe7bMpjd3KvEr2VT7axJ6qaO8FRy/8devfTfmvs6k6+2liQzm8Vbprouvcp9VqDTe1yW7iSJ1Oczw10WcOR2rOprKo02U3Pllnw72M6cZm6uy0aq4q+6qxo+RGQE8bAkkEsA64HbgRuAL4NbAF+KJeexT4HHAasAnYG7gcuAGYo7AvBv4W2KA4NwJ/BbxUr88CbgIuA/ZVPCcDnwdWA4uU4UFghcLdDNwKPAmsAT4DPAfYDLwSGAG2Af8GDOu4Hyru7wH3AVuBPwBeAwwB1wO/UhzPAR4CvqVj9tNrNysPtwI/Bw7U698GVgFn6Pjdgd8AVwNvA55Wmg4C1gKfUjwvVhnMUZldrrw+qPyvBT4JPF/5vxy4C9iq4/fR+U8F/kP1sR64TXU2DLwOeB+wLaHfbypsUFlt1ePPApucDfwDcKbSsAyxg7cDwwrziMpgGNhFefqM8jwE3I3Y0VMK+y2F3Vn1skLH3IXY2aDO9w86//6KawXwI+X5WOAJ4MsKv6vj6z3ABh2zn9Jyv87xQeDchM6/Cjym8vs4cJbinQtcCyxX2fwH8LTOsx74e+A7wErlaQi4B/hv4C+AjQr7FPB3wO8pHTvr/Fc4nf9AeVusfH+Rdvu4AvGxTYjPfQ54TPGfoHi2OnlvVBk8AvwzYn8jwCQnq6sN1vX9m5PXh4BXK1/XAktVXmcozieAL6nuXqbzz4z08HHl/zHgY5lYM0Fp+yzi08Mqj/uAccrbG4F367W7VMabgKOQWPAhPf+swkxQ3Cdp//6q71uAGUrr2YrrVuBxHTcnou0inf9WxF/WKt//TNrnd0Vs578UdhiYr3B/AvwUseVtKvufqm4sljxIu8/frbTupn3PAz4NrFX6BoE/An4GXKN4P0/pAwcg9vRPiM/fC4zo2J1Vzy9CbNhs8HDgUp37LNX/m/TaCBIfv6fnh6ku7gImKuznnMw3IT7/qI79mcKaz99O6VP3I/76OOKTg8ACJOZ42b5Q+VmnsLcCdyj+tymtQXF/Q2EtX9ym/SPAW4A3K+xk7TO9rQH+DPGj/1S5TlHY+4GvRv4yKluF/YzJWeGO0LGbgX9XuPE65ntIrtukcOuBL6iMZiM5cilljjxF5fk1xfdLJJ6cr3j7Ed/5DuIfm5yOfqHyerXiD8AxSJz4kqP3KZXTtYjvBcR3blNZDgO7K+yfAptdzviS0jFJx71J9TICFIj9/JfK7mHt/5Xinq7ye4XKf5OLt5+gzEXLgd8ivvFy4KMR7Bd17k3AncByvWY8mP/sR2mXKxA7GKI91q9W/Q47/iyO34DkRYvjl+qcPwBWRrHk9Ur7SiSXDSNx8VYkbwwhtjGM5PDLkTy/GbHjx/TajxR+Aok8j/jE1/Wa6fEGB/t+yjpijc55us6zJ2JPv47i+KGUNdRDKrNNiK8PIb5/F/BDx+++CrdB8fwasad5KocvU9Y5qyjjt/njEGKnH1J5z1UeTla8G4F36Vw3UObIzcr/aqQ+2qxyvBy4MdLJn6kM/oMynw4Bl6i+RhD/+7nS5/UwQ2EvVhu4Uun8PbTuRfz0bxB7uBtopfSg834GuN+d/xK4CvGHNhvX6/+F2Oywjt2GxDOL0w8jtrXayes/EZ+ZjvjBLyPYVSqvz1HWFHch8dXXsp9G7H0z4v+v1Pmn0ZnXjkfi+SrE/4PS+VY9LvTaV5BaZpOOfZrSvqYgfvxjx7+PzVOVxl/g6h6F+z7ic4OqU/P5DUiu3IbEkl843PcD31VafqznJo9XZuqYNcCfR32/Vbo2psYkcFiefz7wKdJ5/i7Kev1+J9tbKePpL1W/r3Swn1N9xbDPxeWqiJ6HFPY+pD65RfvPBbbo8QqFeSwx/sUq3xEk13XkjwpZzFC4rwGPa982JNYt1XkHKWPvFxRmBFmj/Joy3/l5n0BiXkBysMc1ydnPrfptvvNOxA+3Au/QvlVK3/HOVm5X3J+hfV1lOfJJyhz5tNK6DYkPP1F7+RqyFtgEHKHjTsnpqe7Tx/a3Qr8NVz/imAN6bbx+JiFCnhz1DWlfv/YZjoFoTH9izHj3MRqKxCce23LXBtzxeL0+3o0bcOPGOf4m63zjSfMwPhrbrzhT9BvdZng2LwkZDShcn5s/ptH4icfbfIUb76/1F0Vh46wZ7LCTGzpnjtdxOqYFFEVRDES0e70ZPq+v8RFsv4M1vaRswOQS62jAnXu+vMzjuT0vdXbh6SBxPEDeNj1sCq+Xm9mrXYvPvZ3HfmM8+29vd6Znk6ON8bKKbcNkPUC5yOtXmQ0pHbF/et48DeZbRkeq9btvo3sgmt90YbR6/zQeUjaRikXWN8mN60vIB8TWh2jXcypmxToeH+GMfTRlk3bd2yhRXyqm2lzjIjw5P0vFEO9fkzJjvJ3l7NPniJivoLD9tOvM24WXzTZKW4ttYRzt9JmsWwo37K6Nz8BOpCzQp0a68jzHNhXbcioGDABBYyTKs/mj2dQkx4fXhZ/TdNGfgDEfiHNQaoyPcT43QemjudgQx39vWzY+jnVBZTqs41uUfh3L2Mvd81AVQ729j+Y5hfV5xus85svweruMbTjG52OM9xObK84pvvn44fFZv4+VsTws16RkFed5X2f4OJyDHU+7b9k4T3PKlwtkUyKlA5Obz0G5OBHLBWQBGOM1fK0ILwncPpZaHIlt3PPXrzIxu5pAu93308n/gF4bcDh8TDRZWP5N2bevzbxPEuEchU/Qbvbic0uIrsd1ho+rMWxVLPB1lenU+43321TOsk0sH3snOFriGDeBvP5yeShlG7Eugju2GOpjuvdlq71xOHIt9nnrS/WnWq72NN/w8SLG7XNbvAYxHD73+pycoy/Oa7l5czz6az6mpGqtuFlsHqAztvm5R/VdFIXhnEhZW8Sw5uPelu26z9Nenrkcksqzfchif4LDHa8dJtDpd95/fcxtW98k1nK1rb8epLZ5BZsAt9G+IWCC2IYoINunTKSuD2TG2MfuKqQE1h+NneRot0AyztFuhm/KmpSAmehwx3yR4CFOPAbvF/DeQQ1PDO8Dc2oeG1dkxntH97xYom8hu4PWUjo1OsdpYoxpsAVKSldWYJsD2xxx0jLYfnfu9ZmyAb8h4HU03p1bM1wjEW6jy2jvxqZH6AxMsczjoDweGF9j90O0ByjP20BCFimdQ/vCPBX8DCbQHhtSgdwnOy8vK4pyNudp87g9XK6ZjP3CPBUXWqT91QdqLzei8RYvJtIu6+C+49jp+R9x9NbFvrhwNJvwPpHy8SJxnoov44uisCLG7Nfbc1wYGGwfQFEU4yKcuZhn9Nr3SAI21pXfEIhlEdtDnGesz/t2lbyNtj53ze7S2wLWYLc6eIMNlHeY/IJ1m8NrNjWN9iTu6fcbGz7/TNR5fRzzNpqy8yb+72GMz1RcnuhgUnHL68Tie8yX94FhStsyXxlAijG/6AsqL++jOdvyNEyM4OJcZNeN3jbfjha5ce1ApCMcraZ3wz/gYFOL/lTu9nE8FfNSedDL2S+Sfaza6mTtY6OXleX5CQ7/SITfw444PLH9xXmkcHNZDPMLTK8DX+R7m/e253XoY4uX804OrxXW5q8TaM9tNpfpz/ytj057iuN7TJvlmBbp3Gc024aX90dvjybbmLdYZ6aHLbTbqdE2Tvlps/Egtwy9Xie4uXzujxc1Vnd4fXlZGh+pDSvvqwZvm4EpOdetDYqIltT1CQkc1nJxMmcbXhex/caLfu/npscYb9xS14rou66l1k42f7x4jXVs1+I86+sQvy7xtRZFUfSFEKzGiemPNyJSMSLFYy5XpmqtuMWx2TYfW+RtPbYfo9W+Te+2IRDX8HFcjvH7XJ+LaX2Iz8abyn1ad8X5JJZdrqa2/NyH5OHGrcpou8HhGbfAZInS7uBN1v5Jrm+S9k2mVJ7t6raiMX5ncJteMwPwjusN0Bdqngb7SafNt5XSkXySsM2DybQHfKO5cGM8XzjajEeTR8yTD0BmeB5PLDef5FK8tRX0kbxMhmZI49y1eLPENzNcS7iB9l9bGM2eBjNUS1JG+wiSII2nuNjpi2CN5jhQexlakrDCxuvEgrmdW4sDjp0bnPHidW469PyazEwPI5Q72hMp7yL44OId25L9BAdrckvtznte4vPY5sxHzJZSxV+f6zPeRtwYL6s4GJn9xPKyGODntwTj7RmHd0Kkh1QzOdjCxv9CwMvMF2ixLdh8LdrpqItPsby8fIjmNL5ysc/ryPvUFCdPnwBiesyHY3/rI637ibTLYFw0t/183GwNR1NsT1Uxz8dd01Psqz6G2/zxhoD5g/lbXGTEsqnSm48dON4nOTjTmY0vMrC2ITDiYFObTLZpEOcif2wbWxNot0Pvo/5abDfe/7clYCyue31ZYRXHLY/XZOVlYfTGucnz5eO9rwn8HR5fuOTygefPz2WxM6XjqlwU5+xJlL9266dz0ej16WOR6cUW0rH/4nhKxWqj228WeN/1rY92v/f0+YWfzel17jf5vKxSeT6m1+PP6cLHsr5onLeBeHHk7+Aazda8zXvbM1z+F522IWK1g9nOZNptwm48eLw5eVksNfp8HLSWoi3OfZY/Yz14+/bxdzJl3s/Fes+XxYjUwiBl4xP0ut8wMHv1NaePp7nY423XfNsW6ak7mP5GS6pOqIrXsXzr7DAVB+MYFfuixZ7YNnzMS8Xi1K8ATPZ+Q7uqjjGZ+OZjZpOWkoktNk0msY59rLYbFz6PxbV9vJg2XXvf9TzFdaXvNx5j2435T9ljaj7f/IZAbDueJh9HTX4TaZeN0ew3BIwGv6nib075HOn593On1mnmFxPc+FSODBHOeM0dxweTR53cOlsvzxlEz29sQp67WYE8m7pKiXlMrwX9XK7fn3Z9f6zft6gQAvJMoN2NuVWPP+zG/It+X5boC8hzgXa8GQmMdr5cv3/s+jbq9+PI8yVBv9e66/fp8SMO5kr9XqPfn3E4J7jjz0VwV+n33zmYK9zxJ+xY5Xuznv+JgwnIM3//7c6vdrSbDAon78sd7GbE4Tcmxjwv0u/TTo9etlv1+xz9HgGu0+N1+v2Efr8uov0vHR021s5HHNwg8oyYH7uO0saud/r9ewdjsv5hRMdfOb4+SPls7AeRZ3W8zu/V44edzh9RuQed9wY9/nM39zY6bXlYebP57Lm0ba7Pw95UoXPj/Xv6vTYB+yk67Wou8syi/drgYeVxq9LwJPKcnPnkHk5Wt5juXd8XnVyfRmKA4TUaf+vmv1a/7bmpP3TPztl7JIzHf8rEmvlK78Mqu0GH/yKnI5PJ446WH+j352m30Tcr7l/o+Wcdzj/Q7zso7dHoPCiizf6F5VHEfnzcSfm8+cBqSv/6a0o/2Ea7v3naH6fT543PT0bXvI9uonxe2NtOQN7hYLb5tH6GkGLWbMvs0vzrG2781/T7V5Tx4QlH19cc7Duj+WO+ttDOt8UFe/b5EeS5Yk+L93+T7XWU8WQD8uzdY27co04umxzsRqXf9PK4G/dXEW32roqA+FCsR3s/yM8pfWUTpR1t0O+XK9wZlLHV9P9WN9+39PvbkQyrcuSaCPZh/X6LG/NdSlt60PX7HDOa45zdDzq9PULpA/cor1uAI12t4O0x1tdjDtcb3PXHFI+3i/fp9wrKPJLKRauQ51sD8mzxYAQ7rPIe0nEPK6336Mf0tySa/92RTPd01waVJrMvH5u30h6XHrQ5nUzfSnv82OLGGv1PRzCW5x/Wa16+b3NzmU29KoF/mLImeIAyTrzSwVoN9U/I+1BuUJotfpifr1LZmC2vi+TmbegDTm8+blleNfv9D0ofM7x/o9/3OtrNR89X3rYisbzP4f5khPsy2n0nAOMcjX9H6asBeWeB8WW69PXh4w72L2mXgX3fTBkHhijrzIA8Lxzr4blKy5eB1Y6235C28WP0+nco45fJ6NdOjt637Nvs2nQT3Ph7Ij1sc9efcDhPRZ7dN1ybKWPl+9wYi/++Ljf/97H3fHfdYC0PGD0XG4yTz1an5/c6HKN1j8J5Pn9Ku88bDw+h781wed/0b3OYPM7P1DFPAR+P+m5G67GG6y7LMVV5fh2lbQVkffYYkgefoD2efd/Rbv1PRrAXKK4pCXrWKOxq5N0ld2v/RZTvInpQYdYnxr8mkr/VloNo/qiQxb4RLxavnkJiiuUHi5/rgJdE89yL1LD3UOapzUi+3YrUzw9Qxsnddc61lP5gNPwGeXdAoL0GDiqboLKw/GD+7WUf58hAGXsfRNZzGxB//I72f1Pl8RLV09Su1/PbuRkwMUF0QF4Mc58evw15udM+yAtY5iiz5yLF5sXAs5CX1bwVWcS+FXlp3yF6fYoazDk6/mLkpTBnAhciL+3xjvjfyALEksbbgBcgLwm5GHmRjNF6JfAuSuO7hDJovgN5Mc1iykQ2ojD7IYFgtePrFcBrVDavRV4ssQvw+4gjPoC8vOsS5EUYr0QSy2mOnqnIy5Wep3iepfDTVGZ/6mA3IUXd8xTvxbTrYYHSdYnK/4WUxYEVBu9GXih1IpKE+iId/6uD88Z9qeLqQ178cgayeDcafoG8+OVdyE7YBZQv6BjQuX7q8K2lLHDe5mAvRF4u+U7aebtY5zsDsRe7Y/AAUhBdovw/gTj7xcD0aJFruCZROuXbVOeLEDs2nV9MmZjeGvG7k+rmI5T29zbElt+isJ+jnf6AvOzn2RHs6cDBkc59QblZr+2OBKEVEew5yEs4L3Y6v1B5tsQ7RCctZhP265mXOFl5mJ1cUguqx1OAI528gtJ0AGKbb1LctyMvnboYTSpKX0BeWGcLn0cz8cZgf+bm+RRSKIxHbO0YJJHHPr2HyutWleF1Sq+9VHAvhdsF8ePXIru5FyvNt9G+AXFBRNuxlDHC4tBbKX0z9vnpivthh7OltnAa8nIy6383EkvmKp7Hkfga+/w2ncPL/s2Ij74dKdAsebwH8QFLflMo/fhfHc7FiG1djNjlXSrHi5ENmpcC5yEvBgy0LzQCpS962JbydL3OvzMSIx+lLGL+jnaff1K/Z+j3BsQf71f8MxOy9fHB/DggtnE8cBylnfyrystgLQe8O4K1O2VfpVxQv0H5vFnl6vPip9U+HkPikF9wBKR4eBe6+KBcqGxFCrj3IBvMb0AS/e7K226IT91JPkfug+Snh/R8CFkIHK14xzu8eyiM2fjLER843NE6F4njZymtU9y1KxHfe3fEXwDeo/Cn0p4zbPE4oOOOU1lbzngjEhc+4nD9ldI1Sek9HPGXtytei7c+F4UKWO9nT8LoRrynf4Kj4e9ot+EbKF8qeAGyaLVxD1IfxzfZnC6WLKOsP/5Bj5+izNnvRF5wFZCFlen8Eto3+f5B9TuBRJ5HcqvlhE1u7HsQvz/Jwb6J9hpqls2jNF+D+OSutNdQASlyb1C8LeQGwUsdv5Mc7JmIH5+L5NWLkUL9CcoY8Dak/rCY+R4kX5+i9JqP/sThtZc9xznyISQGd9SnkU5sof8iZJEzTvVwosrVct+w4nnE6Wu8wi5xNFk8PZ2yJns7EiNNZx168Lk3kZ87bFyv24LonchCYgipcbyNb6CMvZuRPHkxkgNfS/tGqMXRt1EucALttheAjzmcltcOV74mUdbIltcWqnwvQO6gvhuJCRZ7x1PGhIU6Zi4Se29Seicq3rOVd3t86y7FZ/PaRlJAF6i015lHU/q8l8eozTvZb9BrT0cy+EXorGHs18wPRf1ebjs1WHvl8vw7kDj77QjnWsqNQn/T7WMqj0Nd3w8pN6Q87GX63bFAj2C3mYwobxDMjWDGReP9xvMTlC/oG80fFbI4V+E+j8Qpk8NJlDcF/edvKf33BOTFijGMfYyGM5wcA5IDYn8IDvZSlcOzte+tyA25Bao3W5u+m/KGkcUsi7lvRuoMu3YunfR9ClcTqDy+qNcWd7umLxRBz60oihcgAWoYCfyEEK4rimIXYFEI4YfbNUFzOhYhAXgOUmiOR95SOzWEcG0EOwkJKPsDPw8hbCiK4hTgwRDCPUVRLAQWhhAui8Ydg9wxuFXPd0EWFA80oG8B8vbIxyroJ6a1AnYq8EAIYWV07VD051A5XKqz64GdQwg31sw1DjgkhHBDURQ7IcHmLuTNyJszYw5OXdfnNg8PIVyv55MRB9kfKShnAJNDCNfq86DnIG/pDo5vgKEU3Xr9HmB2COFu7dsN+aeDRyLYOehbs3W+hcCeIYRfRXDHIAXfLYrr4BDCTyrk9XLg+yGELSk5IoFoAVKEXBNCGMrhSvDWpvOiKPZA3uD6aEMcE5GC60bEN0aQomsKssN7Vwjhfp3rOif3o5GkOGA2pfa8dwjhl9EcRyNvOL4l6t8beRPukyneHN4zgFtDCKsScAViE99GZLkfzj4S8KegPq3nu1P+NPHJFC25VhTFDGTROR0Jtten5i2KYgmyYJ/S0JfnIW/gfyyEcJ3rH0DeJD8vhPDdaMwCRMaP6/mhStvDIYQVNfMNAPuHEG4uimIWYlMzo7nHIYXo7iGEb0bjZwHTQgj3JnAvUl9ahBTYTwD3pGAVfiaySefteQgpsr8eQgiKawsi02NCCN8viuJUyl+3FCGEh6p4VtxnIIXbuBDCFdG1I4CbQgjDev48ZHG/s8WqCP5Q4LYQwpDjeSHyLzlPKMzBiGx/G0IYMZ0hBcViJIkPo/nH4Z6AFA7XAU9U2WhdTlGYecrzqqIoDkAK0Q0V8HsjhcVS15fNTUVRnIno+aYQwtPad4JenorE9K+FzmdO0Rc7HRhCuClHj8IVyKJrT9QuquCjsYcD/SGEazLXB5ANkc1IYTZHY/0SxM+nhhB+rM/nviyeP/YHl7fWA9fGsbkoilcgNrAyhLCyKIo9gQW+1tBYc1II4Xsu5l2O5I45Wl9NBs4IIXw7wr8b8s9GT5CJURH8OORfVH6D+NkudTWBG3s4KlvNp5NCCPfrtYXInbuZyF3MdSGEtRW4qmxsLuVPbPcNIfxcc9leVoslxhyB+PDLkIXQb0IIaxJwyfogAbcrcGgI4ccVMMchfN6uuWYIkecNDqaF5M1bo7FtObeGloW4WqWBjY/6dFEUU5F/W7pT59wX2XBZTRl7f4PLL4qjQDb9d0I2DSeGEH7hagrbbNwL2WyZhOTpXUnUCTuyxbE3cf1M5K7+E67P/Gq07nHXLKabz4/KQ2U2Wn8WRXEakuPuL4piH8TWliDy+GUIYX2CnjOQDaqHXd9RyObWTiGES7dHHopvANHXXGQtdDkSj/dA9DcZ8c3ReKa87QVcGkLYrLx52O8DL4xrAh37bIUdj9jSrBDCcl0znKKx7BQkZ0+Na2i1y2cjN7ieUDoeROwxW+Pp2AK5ifNNy+HuWgu5eWzf9yM52cfwiTqf3WyYimzgz0E23I9Gfg15EGIvx6oszlFan3YyulttZypSu63w9a2bc18kNiwrimIaslk23mTv4Pp13vGK9yVI/liLxMQbYtkoP0k91bXt3hAYa2NtrI21sTbWxtpYG2tjbayNtbE21sba/71W9/bGyjZx4sTVg4ODu0yYMGG0b8uWLVSdN4HpBkcd/hRct8d1593ymLoGNILP8ZYbX0eHb93O34TXOnpi/nvVR2qOFH+xrLbXFprKt9VqMTg42LNNdct/iudUq5OT7+tVLlX6rWuxPruVVxM64lZHY686amJ7TeKZx9F07tx8MY+9yLdubB09OTl5vL3Yf26c98U6m/p/7V17jB1ndf/N+rF3/Uhsg5W0crAj0jwJhMQlfSVuo6IUCLRVKaoKFahV1Rap6gOptEi0EkKV2orSFhXaimdbSqWmAQKEN9jOIkKJgTSxE+fhrMGJvdSx1971vry70z/mO77nnnvO952Ze+96HX8/6eremTnfeZ/zfTM7O5Oq25QfPfv6PUdaelu6e+YmS1+rPnrVv27M5TgrxjI3YvDERKO15mVLntduS75nbpG2x+yS++rkgNZTPXNJTE9vX43pGBsbmwObzvuWXVp+WjwsePpwbO5pOtd41hXemPVKQz4sy9LML69/rPkiZp91PIZWqzU+MzNzea1BqM6zyrK8jGR65h5vzXryrV92cPBzR6sGY/IBQPMJbQP2+YTlm9Q+Dd460uxMrYesnG3iL3e8yhr/X9BqtRaHh4dL+lTDy3O/aRvsfxzktoemDo8Uf/q9ffv2c/us33wc35/Sqa6NGm8vvbZf8rPs1vTm8NjXJJ4xfejYunXr3HZbfGgfz42yLMvt27d35Ksn5jHZMX9Ifq1Wq0N20xxJ5aNm97p1687VKulB36QTr12+zeVZ9Z3KLS2/pY+lfP5ptVpqXOv4y9JD85+Hb52YaDmb8mWqviyf1alBK0+99FxfmeMpeitfLT95a4fv4/ZYetB+6jsxm2Oyy7Ls0LEsO/uL5h8OT6y829JXnlxK5TuHRc97Sy/6p2qhrj2aH9atW9fVV3hfJDqtHjTfcH5SJ+q/Wl5rH56/devE6yupk8evFPtY79J8qOWQlqcavXf+5f5qtVrRHIzxSuW5p05icrX4xvhzXbhPrdildOc9kWhSuSDnBZnvNJ62+30ekIqXll9WXPhayBov4+rxvVb//KMdi9VK6mPlGcWKx1jKicVW6+OWXXIdqfVNj408D/l36mP1W802zV+ab0i2lu+0X1tHe/JWW3PE1luyPq15neD1W7BjsSz79FDBVIJq26Ojo7XH1GkUqWBoxz3FVkfnlA4e3tJPFr13v4eO5O7evbscGxtz2dfUVq9v69odo/X41cO3Tuyb5lBTG712p/xEkMeb2id/p8ZpaJJnKZ3IL3XjFNOrqX4eG/uRo6n4eHh4dGiqs0Ubk9+r7+rI9PqF51fK7tHR0fLBBx9sFAuvTv3IL9L1gQcecNP3qn+/Yp7KL0uGN9fr5paUIWWl+NW1oxd9Lb08ulg5tG/fvnL37t219alrW0xHixfpGMtzr//7YRfpk8pLqb83B7151PRYk3ysGy/pKx67OrGQvtNoPTmnQTum8Y6hbp41iV8sr2L6aD7y2JjytdcfdfIyZb/U37LHI7+unk304znvRaCF9enpXwY8uP766wct4nmBXv20b1/y+WWm3M2bN+PkyZM9yV+puFjzz2M35czevXuxfv16TE1NdR2X+wYBLmf9+vXYunUrxsbGBiKrST5Y/nm+oWkPGRT27t17vlWoDW9+Ud+9EFBH1wstZjLnl6PnyX53IWGlrjN43jXNwZVWk7yXePLyfK51znfd9xq7mO88vpdrBFrHaMc848bGxrBp0yZU53DLD4qnpp8G7iOZC9r6LiY35o8dO3b0ZFcM3GaOlbYuIvCc9+SR518Mer4gIJ0lnfnwww93jZE0dbf5vtgxTb8YYk0tplNKBw9vWWgWvbX/lltucdFJ31iFbtmn+bNOvFI61bVbA+moNfI6cfGMqRvnXnWJ0dI+76KWcub2228HAIyOjnYdl/uaxDGlD8kZHx/H1NQUpqence2110b5p3RJ6RHrC5Iv98/4uP1Ch7r6eWrJw8crO1XHsR5Sd1Kso7NFS37XaLx+svT29seUbM5f6+OWDD55N5k/PDp5feSZm3j9xugpZv2c4+vQAN32x3JX5rzW8yw0natkv/Py62VuqauvlePkr7pzlXXB2aOPxzbeK6wcjPHqda3g6ZV1a5jrY+WlpX/Tk5g6OcbB/a/R9qu+tZpOnXBrkGuVWN9O+R7oXiPQOkY7xnH77bdjdHQUx48fx9atWzE+Po4rrrgCV111FSYnJ7vWQYOek6U9mn4auI9kLmjru5RcbT24sLCAo0ePdo3xruVS9nObOb2cIzzy66xFvPrJeeDQoUPncr5uHpmI3T4gP3Dc5pDabjImxiPFP3UbRkqOR6cmNspjXnrvfg8d4f777y8/9rGPuexraqvXt3XtjtGSbU3j0iT2TXOoqY1eu1N+snKwqX1ansXGaWiSZymduM114hTTq6l+Hhv7kaOp+Hh4eHRoqrNFG5Pfq+/qyPT6JZUfko5qtG4svDr1I7+krh76XvXvV8xT+WXJ8MSwSW5JGVJWil9dO3rR19LLo0ssh+6+++7a+tS1Laajxcujn9f//bCL9EnlJdffo4MnVv041iQf68ZLyy+vztr4VP56eEhoxzTeMdTNsybxS+WVpY/mI4+NKV97/VEnL1P2S/0tezzy6+rZVD++hvD6rizP478MZPiwZ8+eNNGA5O7YsQPVqzyfXyDbLkYsLi4maXjOWb7qV17G+JDsI0eOYMOGDWi1WpiYmOiL3Dp6pMaRjhkZFrz5daH1Jk8/uRChxWvQc7HsdxcSevHN4uIidu7c2Udt+ouVph+vOU+/OF9ryJWCXnqUZ33i4SHXMdoxz9jp6Wls2bIFV199dW1b+g1vv6qzxqsjb2lpCfPz85ifn8e2bdsa2zEonO9zN7nN8292dhZDQ0OYnp7GrbfemmYau1ogP/ktA/4rTzF660nOHnptf+wJ3qmn4cqrRyn7msQzpg8dy28ZiOdIKh81u/NbBmw9NP95+NaJiZaz+S0Der5afspvGfBv57cMdPd/SZPfMpDfMmD5NpbnnjqJydXiG+PPdclvGYjXghY7SZ/fMhCPrdbH81sGLr63DBQV72bg75Ik9OP9o3V41H0HpHU89ju1XdfG2HszU/Sx92pq41N6cNSV77E1pY+0v2k8NBmxd4v2Kxe8/vW8K7pp/mn2azZrSPmJ72vqlzrv+bX08+RyKv8tPSS87yJu0ses8XX6GefhlW3JkzY28W9qbEofy0+cb5P8t8ZZ76jXbPa8LzzmR8++fs+Rlt6W7p65ydLXqo9e9a8bcznOirHMjRg8MdForXnZkue125LvmVuk7TG75L46OaD1VM9cEtPT21djOsbGxubApvO+ZZeWnxYPC54+HJt7ms41nnWFN2a90pAPy7L7YWl1/WPNFzH7rOMx1HofPMPIyMixsiwvI5meucdbs55865cdHPzc0arBmHwA0HxC24B9PmH5JrVPg7eONDtT6yErZ5v4yx2v2NWCJh8A3wLwGIApAO8GcALAYvg+AGAMwBKAswCeAPBooF0CcBTAIwCeDdtnAq/HAcyjuspxGMB+AM8FvicD30NhzK8DmDNoJwLt/kDzpjDmaQCfDLrtB/AMgP8I48tA+ziAr4XjB4LcxcB7v6B9P4DZsP39cPz/Av0ppu8igAUATwH4LIAnBe0Lg2/IB2eDvmMA/gvAewTfRwE8BOB+APeHeDwa5PE4vIv59gnh2/8U8SS+TwVdfxvAdKB/Jug7HnifFrSLwbcHgu8XARxX/PVGFgfu2ysAvDQcmwZwEMA3AHwnyDkd6H4YeD4deB4x9Pqukq9PA/hQ+P3xEK8yxO9xALsBPMz0eh+AY0GnycD3SRabO8M39w2nfTDIemuIwRKqfN/P+FLMnxAxvxvtnD6aoJUxf3eQ+yoA5lVCAP8K4Cll/0MA7hX7/g3AD4S/9gD4XyXmH0G7pg8C+Gbg8TCAz4Rj4wDe5+gxYwA+CODqSByeBvDfzF/k2zuCvvPBZ18NPH8YdJY1/xiq3KM4PQLgGUUnquPPBb68jieg1/wBAKfC+KNhzJEgfwbAbwF4C9q95Afo7iWPAngo8FgMMg6EY4uBdr8Sp4NBBtXLI8EHVC9/wmx7MMiZDH44FnjKPv1NAPsAfIGNpTp4Bu06fizIpz5NPfJ4kP+z6Kz5xwHMCn9v9/gW7f7w3jDu3nCc08pe8t7A91FGS759tIZv3wFgIsh9MfPt25kd1CM/xfb9NNo5+iQ658hjaDZHUn+kuZf4ypgeBrATdg+cCDxfxPS9I/Agf35eqY/V6OzNPNcOQJ8zuJ//BsAtip/lXHQMnT3/O6jmDKJdErRLAC4NOs4BeGOk77w0yOrIy7Dvn9Get7YF+kl09+bbwzHK+R8Ysn6fxXwXOtdQNM/9qoj5AVQ19E9Kfsh5nufHLtTLpQMA9gt9h4Vvnwn7fxx2P70x0HwI7TWYrGNem1cB+DDaPVKLA/l1XPHpr6BzjtyP7vUp+XYewBvE+B8VtGPoXMt+Kdgn+Xprj8eM7OJr2U9EclPL8Q+y459kOpBv7wvH/hrtOWVXwrf/HsZ8hMVhDZsDX6Po9lF0zmuSrzWvyd5bd157GdNhRjn+cnb8enTWwLeMmv+GYh+t3zr8McgPqvVYyh9vCbRrpD/C/puF7/YAWIt2n/7woO0Q+vwGywnqeVc5x16OzvOxMXSu874S6N4VaGSvea0S07/T+kdCj3vRuR7T1hf7w/7PUI4HemuOpHPG7wlZ70A1H1P9HO41BkPoP4hnwb5LsV0w2iFGM8Q+JaMdUsZLvpKG7yNaOd7iy4+D/R4StKWg12iH2D5JH/uUqAqZtlclaKXtlr80O6TuHJZfLNs1XlJPqcMQdJvWoP0mjCGFluvK9ZJxl3pK+yQfLk/KBKpYWLGkorZ0SOWQltNaTlo1IuurRLftmh/4MctPcr9lg2aPjA33wypBlwLRka8t2Zqv1yh86Ddg52Up9mk6WXWixdGqHU1WofCxap6Pk/mh5Ytml5YvsXzlfds7dhW65RENXTq3ah3Q60x+VjH+ssa1HJH8uA4xW6zeDvYtcxXiONdP5q0Wq7pzZOwjaVYrfGTuyTrSbOLQalXLc2kDzy+NB/cD0I55rH/z/OC2aHmm2cB7GNFTPkt+mi7ymAXi10J37XC+nN6bk9y/kn+MVh7nvuH03C+Sj+YnK16c1xp02ibptPrl0HJf+snqGWSjZy0r17R1as+KA881DVrf0tY1/FvOddR7rRyXPYbGpOpHsw3QfRRb/9Sd17QepeUf0N1bhsR+uW7R7JP+GCQ8/pA2SL3WoDvfuL2etVg/wXWmBzB4fUm2aOtLa1v2GksXuT8Fay7X+gGvKS0HYz1N62U9YRAPFbQKmAeAb4PRWI0RCh+tEICqoWuToSZTazzSBt6giJa+reARj6WITVKenBBLVPHhsq2kkvtovPRt7AKKtJPL1PyyhM6Y8m3pW6m7lMn50xhqYGvQ7UcuZ8ngCbQXfJ5FAv0mW2JxgqDhdtIVVutkTsqO+cTyveTL+ZEu9Fv6WNND6qQdt/S3dJbH+Ek/xLdc1KdAdJQb1gkF6U3bSwBGoMfDqnmrxjSdeG4Ctm9g0Gq+sHTS9JG/Yz21NPhwf2q+kXUv4yb9I2ta1q/WQ1uwa5CgLWY0P8g6lfI5vYcfBK22LeVo+qKonuSq2cdpPTJTMbcWSfRb1lCqrmhuIsgTBq0+pE2Wv+WHj5GLPjmv0f5Y/5b5vYTOk9kYumLIePJ1hzw55rzlCbIFWQ/axSS+PpCx9eSH5J9aV2j9m8Bzhh+36lTzk1Zz9KE48W2NZ925Xqtday7STjq0dSV9a+vTVM+R6wHv3CjzUdJzHaz+XqI9P2o5rsVHxtHSTa6XaX9sXpN2yTGaD3lP4D1Kxl0e13qu3B+zj+flcl0QoG/LHwSywXNBQNbxcoL7cASdvTkFbot2oUTK0HJZ6iKRWjtLGtmTY+sLaQPtk2OkjtzenjGIoA+xDykbOzHmk3jqBNM6AR9i22sMflowrL8wcp5L6LZJmwy4ndqFkNgEoe3jtqR8Z9kAdMrntmg8htg4iPHyW4uFpZe2UOP+klcl6RhdEPCccMp4WUUoIX1l5Yr0LY8t/+uQ9tcWabcmy9LfqgUt3ywf84axCgCKoqCFqeYPy09yP7dByyl+TLurAuwYz80UiLc2Cci+wH2rxUfWiaf3dPhBObHjsuvUvKxTqz679GHx1HIUyrYlKzaJarUh89cay23gx6SvlxD/iyVB9gVNN5kLEL8t/bjfeZ1oOablxypBy/XtqkWxT9Jyv8r+relbZ06y+p2n5/LFpVaHEnyhafUN3hO0vNdizv0Cg68WN067hm1ruksbNH+sRrdvpJ/5yYKsfwluG10g4zlJi2VrzpB+0OIv+Ut/SV/L/JO+0U7Iuc9kHDRfWHffEb2Ws1D2aXGU+aL1QPlHBM1Grf9pPVCrRTkvabKt/I7lpjX/ESx9gU5drIux2on6uZxmc6CWz9LPmo9i8yXEPu+8xnuU7DPyuNaf+P6YfVZeDxKpnqbVoHVBgPtG9vLlBM8BWgPUuUOAXwiTfuD+seY+qYu03+OTAkBRFIWUx3MdEHoFenkhnvcirf5lTvccr0HcIUAncUOobj8io1axY2Qkvx2caFaj8wRxDdoLrIWwvRadJxH8L8nrGO3qQMv588l6PdqFMsz4rArjpB7DYb/UeQ2jXYXq6tYQqv//WM2OL6HTD5TAXP4i8xnpTrrwRjYcPlzHtYGGP62C7OF0w4pvSVf5NBzu35LZRgsS4lEqtKTrAuw8WCXiQIucMujC/3pB8Vwr6ChnOM+16NZrCd0gXwKdMV+FzphTgfKcJr6Ux0sANjKdeF4QLeUPxWApQku5Svwo3pptMj84zSq0b8Fax2i09/RQHkqsRXduxGqEL1ypJnj+kx9oDOnZ/TSmbtAYmRukN/cB+ZH03IBOn5M8WceyQcuYcvBb8obZuFTN8wlCywH6v1yqT03HtYwfjyvvTxQnrgtf0Gk51X5nUtuPmh+I52pGx2PI90uded/h8jeiM65DAIaKoijK8M9zaMde9hMIWTKveHy43yQtrytOq/mWeEjfEh+uL/ctjxnVA9B5F8tqxo/PkVxvOUdKf8r8Ix5Ad0zXMPlWD6QFm9QX0OcQspXLseYMqqOz6Jzj1yp60Xgrh8lemksLdMbt3DzLTmi4XRI8hjzOi0E30pf/y4vs4yPMT1SXGih3SlTzo7Y+Wod2z+f8eL1b8zyPwQZhFy1A5XqL00jw+HK7eMyolvmin2ylPCPbiCevzRb0OQeBp1xvaT7l/tL6/Wp2XOYx9WNrLcv7pPQ/709aTVM8YjUdy01aF/Ec5/q3mA7Uy/haROu9Mse5DjxW3L51im4tdPqZ957YvCZ7Qt15jWoNzGYulx/X1plyv+zTBFmXWn30G3KtrPmDzzO89xD4PMPXLny9uZygnreIdk+K5bwca52P8TUJ5S23FejOW20t2gKqk/eyLLVzCeLPcze2ZhgWdLKH8os9XFcui68Hej+fH8CDIUr2OSK2l8S29mlCw7f/pwbtt9nvBXF8JiI/pc+JBjYtKrS/F6GfR/XQCZMni4eUL+PCP3MsluuU499rYFvKX9826P4Y1YMTm/BU9TLy9Uz47Yn5c4njuz06oHr4Wl0/nq1B2xXzIPeesH2DUb9nIn5aFPumHXrQZ8rwQ4l27ZUATjp7zBSAv2jgr68qdEMKXcqvBdPnauV4nbpYb4x5ANUDQj15cl2NXPDQHDR6uofnkhhbV/4XDZrLGd+31fBvCeB4GLfgoa3BN2bbU+F7BMCfSd8CeAnbt8Bs+2gPMi2aOmM+4KB9G9P3E1b8Gc3P19RFfsYdetXhy2l/DdVDqUoAuyN9528j/E6z33+I9omV/Hxc1oUh67tszBcMvR8wbDpV036r3qK5JPS9U6EvUD3g0OL7njB2MmyfTejxTijzSETfIaHjfR672OfLYvxbI7R1+DbN3blIbmr0U+z4vCYzHDvK9n0pocNMGMPjcCeAa8LvT1trij7YX3fM3wf5LzSO/yPT8S/l8bC/a/0pbCsUXe7s93mVM97SH6OB9pVh+x8Ej/crPHgdnxm0HUKf3Uw2rdPe6Rz7O6m8CHSHw7bsNZ9RYvqc0T+ujOhB6wvPeoyvRa6HY44Usp6Q9L3GYBB3CNyC6urGpahOHm8AsBnV02nPhGObgzMmgiGXoFoUn0D1VNURAJtQnXBMogrQJaiugpwK+zcA2BJ4TKK6WrIZwNcB/EygPR1kctozQeYLUD2ZdVfgeRTAZaga5wiqxNke9JgPvCaCnkXguSnoPI3q6hHRPgTgZcFW0nc902Eq6LcZVTAnUD0l9IVhPOl7D6pF5WlUJy2bUV0ROonqKbKzqE5GXhDkTKG6sEDNHwB+MuzbGMZPoHpK9U2ML/ft98M4lGU5XRTFK4N/1wT7RgH8RPD3KVQn0SNB38nAcw2q+A8Fmjnmr+eCPyjG8yIOnPYeVFe9RsOY0+GbrobxvJkN+8kX06guaGwJ4yah/0X8NlRP6QSqIuYxPxU+POYHAfxYoJkKfFcze7+CqqlOoB33Tajy7jSqvAeq4n9F8INFy2M+gepCzrZgK6c9FWh4fpAfqfYOBLlvAnBHWZb7FV8AVWO6Qtn/iqADx3UArgy2k79Oo/2Xq43h2AlUT1beiXZNzwQetwb9XhL4P2HoxXEbqjx9BtUbDWQcyF/PAvgRtH1xKaqm/gtgNV2W5VJRFD+H7rykhfUl6IzTCM0uAFCW5eNFUdwV6I+jyrkFpGv+LIBLyrI8UxTFriCT+sgsqqf2A1UNDwd9pwLfjpovy/LRoiheG/bNB50vQbve1oftObRPXi5Fu45lvXyX+fsWtGua6m0G7RykmE6jytlpNnYXOvOV6rgI/KhHnmF23QvgLklbluUxxve9qJ4kTL5dG/gvBX5ng70bgw+eCuOuQ3Xyt4nFYT7oQrRPBrpJxpdoFwKdx7f7ANxUluVMURR/hap3nEY1L6Isy0eKongdqvwfZ7b9Lqret4D2U6QvRRUfbY7U+nhsjqS3MyygO6YtVG8K+gLsHrgp6Ef4TVQXBeiJyMchUJblV4qi+CV0xppybQpV7W4KMk6iih/vHweDv7leS2GMnIs2o90TFsKnFXhp/fZTZVmWRVG8GtVcZOHtAPaiyudT6MzhfahOijYBuCfwuxPdffxLgRfVhfUXsDvQnh8+C+AXg1+m0I7j1wDcHnxHMd+IKn9fDH9+fBrAa6Gvt7Q1FJ0MnkNZll8siuKXw/EZAK3ggz8A8Hl0xozi8Lkw/AYAL0JVA1SbVMcLaM/zn0b1Fpwr0e6RpwKPTRC9pOz+K94bUPmdz5Ebw1jp27Oo1h0cHwg6WmvZk4HXArprby3a88IE2jUd66cyDodh4+XozvFD7PgN6PYt1ektaK8j7wXwGug5fgpVzyV+VwLYVJblFwEgzD9fV3S7Ht0xI9ti8xrNOUCzee0+ACjL8nhRFK8Kx8Hkfp7p+Oeo/jA1jfY6FAD+FNVFedKbz20IOb4LrCeTPwaMV6Bd05Y/vhl0/HLovfcJHn+E6mLguT5fluV+1qefHrgVnXgdqjfsrEXV51+NquY9+BdU+XwCVW3SOuos2uduQOW3l6BaP/J62E2MWEx5/QChf5RlGfPLdahygNZjE+hei8wEG3+I6pzz0rIsDwA4EHzP64HPkQvoxE+hOs+cR3wucaNg69qMjIyMjIyMjIyMjIyMjIyLBENpkoyMjIyMjIyMjIyMjIyMjOcbevqXgZGRkWMALivLEkVR0P81oHo+D6Dt5/vkN0GO135zePjNzs6i1WqdO07b8tvik/rt0UEeB9AhV7NJgo+fnZ3F8HD13Iu5uTkMDw+rx6Us+j08PIy5ublzvOkYyZ2bm+vYJ3W3/MHlyLHEU/KbnZ1VddBkWjKkLtw2AB2+0mIu/cNpNB/E8p3bxOOi+cuyN8Vf8wv5mMeU9JDg/uDQxvAc1XLXymfpB75P5l9MR81vqZ4gY0e2yjqh41btch25DbE+pOUNt1nmLtdL2uOtE86vTo+yeoBmj9aTaLysnVhPt/otrzuOWO+W+nJ9vL6QMeX+jMVD8tB8AaAj7imfE7T6knRWfLS+ovlc2q3FS+Z/rD64TZZOnvhpcrS1gPSBrG1tHUB2WLpzG6QM6TPS1fIbj3uqD1v1Fls78LFcV81fcv6VMjVfkxzNN7Inyf1ctjUHWPltrRO0uUbTT5tzYzWirRVifcPyk6azjIGnB8XyUpu/uA8s3eW6J7b+4f2M+4znu6fuY36QMeA+teb22NxKtmt8LP9Y+UuI5YUcG0Or1VqamZlZlabsxsjIyCKAIbnm5X5OrfmsdRRte+0I/MdnZmYub2BKB6RddXyJ8HwQQK/NVF/mqLMOtsZp51nWvMTXCLE+r607ub2ptTOzwx2vnv5loCiKC+b/DaxFhNa0zqdeTcdqfDwLSWty60W32DjrmLUQbyJD8iRYk7PGsx95UdemfkGbXDVoE641xoqZJ2c0P2j5F9OxCbz6efjU1Scmuxe9BpFTHvtSNc3HemszllOx/EvV5vmqO022tmjh+zmtxqvf/bBpPyfE/M2Rio/neBM9vXOC1fs4vPWYil+q1zX1QdNe1kv/I8h61PZrPKz5tomeMb/W9alnvkuhn2vIunlZp5941j/WPquHcdmDXkt71xjacY3Ge8xz3ELwSyOn0HmWNxbe9RtHnfPAXmwRfDrsquPLFJrUumcdbI2L1ZG2zfk3yVlN35ie3ngN4qGCKxJ79+5Vt+X3cqMXuXzsvn37krz5Nv3et28fpqamVP4az7p6eXnu3bsX69ev74sMLots47xJB49/eo1PHZv6BRlT0oP7YuvWrSo96SvHaNB8Y+2TftDyj/QaGxvDpk2bak1SGrRca5LTsRqxEPONdsyr1yByymNfqqZlvqVg0Vh5odFYPJrEq1+Qsvm27Ne9+LwJbdNeltJVq+GYPE/8msDrAzkXWP3Hg5iu2hoj1oeb2FIXTXyr6R07HuMh98XoPXp59PPwjPUbL/q5hrRyZWxszEWvQa57YusfOUbbrlv3/YKlp7dHafws36XyItY/duzYgYMHD2L16v6cZqXWq9wGTz5IXla+0Vpsbm6u1p0EXqT6o9TBg1ifi50XyP2e+UHKStWVtSaI6emxQ/PVTTfdZI7XkO8QyHcIYHR0FOPj43j961/fF91W0h0CZFur1cJdd93VMfb5fofA6Ogobrvttg4/bN26FZOTk9i5cycuv/zyc/TST5yHlhs0rh93CHDZGzduxDXXXIOFhQVMTk7iuuuu68kP/bpDIOaHurJX6h0ClC8WTaym+dh+3SGg1a6kWYl3CEhfkC6yv6RyaqXdIWDlh1bDu3btumDuELD6z7Zt23qSad0hoPmqqS3LeYdArB7peKx/AIO9Q8DSzyuPeBw6dAhvfvObo7Kb6lyHF+kjc5PmbYs+1cP7eYdAnbrvF5reIRBb5wK672LzkHac948TJ07gxhtvPKfXctwhwNd8tO1Zt8TybWFhAePj47j55pt7tiVmV0qHyclJXHvttX27Q0DWurUOTs0PTe4Q4HFqkrOavpqvgp/zHQIXG/bs2dN43I4dO87L4lnTpd/8yLYNGzYMTE5Kh/MBsp2wuLiInTt34siRI9i2bRsmJia6aDU/9Ss3LD9I2a1WC2NjYwO5Eh3TIzVmpdQIMJickvmyXGNj4DnbRKfzhcXFzrebarqstJxKIRZjrYZXMng8rP4zPz8/MNkXkq8I1hwhj6d4DBK99Atg5dWklZsp+n7rEAP3uZYXywmvrtZYzXepvOd8yQcTExOYmJjA0tIS9uzZo17wGwSkDU3yWbPl2LFjWLt2LQ4fPozt27cPQPM2pL+np6cxNjaGVquFLVu21OLjlWPJJkifPPvssx3zQ5O+JtcIXh2t49QfHnvssXPH6YJAHeQ7BPIdAueO9+Ovqalxy32HAEfqr//PtzsESLZV4/LqcmyM9y95Te4QiKEX3/XzDoG6+lyIdwjE+HquuMd6kZeflRex3p3SZzmh+YK2tb/ocFqN10q6QwDIzxCoI9O6Q8AjZyXeIcAh61Hbr/EY5B0Cln5eeanxKQziDgENqRqsk4+peHj+Ki11W6l3CHAdmxzzHLdQ56+0ytj8DAEhP4Umte5ZB1vjYnWkbXP+TXJW0zem57LcIdBqtcZxgbxloCiKjqc50rb8tvikfnt00Boxl6vZJMHHF0XR8dRe+QRUvo/LkvQsnh3+5fSa7pY/+DhtrOZn4ul9y4AmQ9OFg/tKi7n0D6fR7IjlO7dpud8yIGNqNRztCdXWGO3pzNJ/ch9tcz/wfTL/Yjpqfkv1BBk72l/3LQNcR+9bBrS84bK1+vC8ZSBWJ5Kft0dZPUCzJ7b4lrUT6+mxPhDLP613a/rKMSlfyJhK+aleLsdxXwDoiHvK51yO9y0DWt1xvS2fS7uteBFiT/+X8bJ08sSvyVsGtNrW1gFkh6U7t0HK0PLIepq1rHdPH07Vh+y1dd8yoMUk1fOs+MqeJPdz2dYcEMtvj/2WX7U5N1YjkkeTtwxYOmsxSPWgWF5q81esRmXs5bc1Z0mbaDtWO7G1tPSDjAH3ozW3a3pq+SX5WP6x8pfziPk+FifhlyUXoT12iNtNulnziaY3H2f1Rac+4w3M0Ph02FXTl9G3DKT6MkeddbA1TjvPis1LnH+qz3FZ0l6nv9zx6ukOgYyMjIyMjIyMjIyMjIyMjAsTQ+dbgYyMjIyMjIyMjIyMjIyMjOVHviCQkZGRkZGRkZGRkZGRkXERIl8QyMjIyMjIyMjIyMjIyMi4CJEvCGRkZGRkZGRkZGRkZGRkXITIFwQyMjIyMjIyMjIyMjIyMi5C5AsCGRkZGRkZGRkZGRkZGRkXIfIFgYyMjIyMjIyMjIyMjIyMixD5gkBGRkZGRkZGRkZGRkZGxkWIfEEgIyMjIyMjIyMjIyMjI+MiRL4gkJGRkZGRkZGRkZGRkZFxESJfEMjIyMjIyMjIyMjIyMjIuAjx/6wteNjwyhdbAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn import tree\n", - "plt.figure(figsize=(18,5))\n", - "tree.plot_tree(dt)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "To reduce the complexity of the tree, we **prune** the tree: we collapse its leaves, permitting bias to increase but forcing variance to decrease until the desired trade-off is achieved. In `rpart`, this is done by considering a modified loss function that takes into account the number of terminal nodes (i.e., the number of regions in which the original data was partitioned). Somewhat heuristically, if we denote tree predictions by $T(x)$ and its number of terminal nodes by $|T|$, the modified regression problem can be written as:\n", - "\n", - "$$\n", - " \\widehat{T} = \\arg\\min_{T} \\sum_{i=1}^m \\left( T(X_i) - Y_i \\right)^2 + c_p |T|\n", - "$$ (pruned-tree)\n", - "\n", - "The complexity of the tree is controlled by the scalar parameter $c_p$, denoted as `ccp_alpha` in `sklearn.tree.DecisionTreeRegressor`. For each value of $c_p$, we find the subtree that solves {eq}`pruned-tree`. Large values of $c_p$ lead to aggressively pruned trees, which have more bias and less variance. Small values of $c_p$ allow for deeper trees whose predictions can vary more wildly." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import itertools\n", - "path = dt.cost_complexity_pruning_path(x_train,y_train)\n", - "alphas_dt = pd.Series(path['ccp_alphas'], name = \"alphas\").unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "# A function with a manual cross validation\n", - "#This function can replicate cp_table that R's rplot package creates to get the best complexity parameter\n", - "#This function can be used to prune the tree but it is a lar process, so if you have the computational power, you can use this function\n", - "'''\n", - "def run_cross_validation_on_trees2(X, y, tree_ccp, nfold=10):\n", - "\n", - " cp_table_error = []\n", - " cp_table_std = []\n", - " cp_table_rel_error = []\n", - " cp_table_size = []\n", - " \n", - " # Num ob observations\n", - " nobs = y.shape[0]\n", - " \n", - " # Define folds indices \n", - " list_1 = [*range(0, nfold, 1)]*nobs\n", - " sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", - " foldid = [list_1[index] for index in sample]\n", - "\n", - " # Create split function(similar to R)\n", - " def split(x, f):\n", - " count = max(f) + 1\n", - " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", - "\n", - " # Split observation indices into folds \n", - " list_2 = [*range(0, nobs, 1)]\n", - " I = split(list_2, foldid)\n", - " \n", - " for i in tree_ccp:\n", - " cv_error_list = []\n", - " cv_rel_error_list = []\n", - " \n", - " dtree = DecisionTreeRegressor( ccp_alpha= i, random_state = 0)\n", - " \n", - " # loop to save results\n", - " for b in range(0,len(I)):\n", - " \n", - " # Split data - index to keep are in mask as booleans\n", - " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", - " mask = np.array([(a in include_idx) for a in range(len(y))])\n", - " \n", - " dtree.fit(X[~mask], Y[~mask])\n", - " pred = dtree.predict(X[mask])\n", - " xerror_fold = np.mean(np.power(pred - y[mask],2))\n", - " rel_error_fold = 1- r2_score(y[mask], pred)\n", - " \n", - " cv_error_list.append(xerror_fold)\n", - " cv_rel_error_list.append(rel_error_fold)\n", - " \n", - " rel_error = np.mean(cv_rel_error_list)\n", - " xerror = np.mean(cv_error_list)\n", - " xstd = np.std(cv_error_list)\n", - "\n", - " cp_table_rel_error.append(rel_error)\n", - " cp_table_error.append(xerror)\n", - " cp_table_std.append(xstd)\n", - " cp_table_size.append(dtree.tree_.node_count)\n", - " cp_table = pd.DataFrame([pd.Series(tree_ccp, name = \"cp\"), pd.Series(cp_table_size, name = \"size\")\n", - " , pd.Series(cp_table_rel_error, name = \"rel error\"),\n", - " pd.Series(cp_table_error, name = \"xerror\"),\n", - " pd.Series(cp_table_std, name = \"xstd\")]).T \n", - " return cp_table\n", - "'''" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "#Here we create a loop to get an arrange with all Mean Squared Errors for each cp_alpha\n", - "from sklearn.metrics import mean_squared_error\n", - "mse_gini = []\n", - "cp_table_size = []\n", - "for i in alphas_dt:\n", - " dtree = DecisionTreeRegressor( ccp_alpha=i, random_state = 0)\n", - " dtree.fit(x_train, y_train)\n", - " pred = dtree.predict(x_test)\n", - " mse_gini.append(mean_squared_error(y_test, pred))\n", - " cp_table_size.append(dtree.tree_.node_count)" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAFDCAYAAAAXoVT8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHSklEQVR4nO3deVhWdf7/8RcgCDcuIG6ZAU5kBJZm6TfT3EANyzRbXG4qTQerr41RY36LxmzBUqeZlhkta8ZmhuOuZaOYiYo17Tlj5cKUJmCWmQgoi7Lc5/dHP+6LXdB7xefjurjG+3PO577fR99DhxfnfI6PaZqmAAAAAAAA3MzX3QUAAAAAAABIhBQAAAAAAMBDEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAI7RydwHO0LFjR0VGRrq7jGYrLi5WcHCwu8uAB6EnUBs9gdroCVRHP6A2egK10ROozR09kZ2drePHj9e7rUWGFJGRkfriiy/cXUazZWZmaujQoe4uAx6EnkBt9ARqoydQHf2A2ugJ1EZPoDZ39MS1117b4DZu9wAAAAAAAB6BkAIAAAAAAHgEQgoAAAAAAOARWuSaFAAAAAAAeLry8nJ9//33On36tNtqaN++vfbv3++U9w4MDFT37t3l7+/f5DmEFAAAAAAAuMH333+vtm3bKjIyUj4+Pm6p4dSpU2rbtq3D39c0TeXl5en7779Xjx49mjyP2z0AAAAAAHCD06dPKywszG0BhTP5+PgoLCys2VeJEFIAAAAAAOAmLTGgqHIux8btHh6gvn840zTdUAkAAAAAAO7DlRRu1lCy1JLTNAAAAABA8xmGocjISPn6+ioyMlKGYbi7JIcjpAAAAAAAwMMZhqGkpCTl5OTINE3l5OQoKSnpvIOKnJwcRUdHa/r06erVq5esVqsyMjI0cOBAXXbZZfrss8+0c+dO9enTR3369NHVV1+tU6dOSZIWLVqkfv366aqrrtKTTz7piMPkdg8AAAAAANztoYce0u7duxvc/sknn+jMmTM1xkpKSjRt2jS9/vrr9c7p06ePXnzxxbN+9oEDB7RmzRotXbpU/fr10/Lly/Wvf/1L77zzjubPn6/Kykr9+c9/1sCBA1VUVKTAwEC99957+vbbb/XZZ5/JNE3dcsstev/99zV48ODmHHYdXEkBAAAAAICHqx1QnG28OXr06KErr7xSvr6+io2NVVxcnHx8fHTllVcqOztbAwcO1MMPP6yXX35ZBQUFatWqld577z299957uvrqq9W3b19lZWXp22+/Pe9auJICAAAAAAA3O9sVD5GRkcrJyakzHhERoczMzPP67NatW9v/7Ovra3/t6+uriooK/d///Z9uuukmpaen67rrrlNGRoZM09Rjjz2mGTNmnNdn18aVFAAAAAAAeLjU1FRZLJYaYxaLRampqU7/7IMHD+rKK6/UnDlzdO211yorK0ujRo3SX//6VxUVFUmSjhw5omPHjp33Z3ElBQAAAAAAHs5qtUqSUlJSlJubq/DwcKWmptrHnenFF1/Ujh075Ofnp5iYGCUkJKh169bav3+/BgwYIElq06aN0tLS1Llz5/P6LEIKAAAAAAC8gNVqdXgoERERoT179thfv/nmm/Y/R0ZG1thW26xZszRr1iyH1sPtHgAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAG5imqa7S3Caczk2QgoAAAAAANwgMDBQeXl5LTKoME1TeXl5CgwMbNY8nu4BAAAAAIAbdO/eXd9//71+/vlnt9Vw+vTpZgcJTRUYGKju3bs3a47LQ4oDBw5o0aJF+uSTT7Rnzx7dcMMNyszMbHTO559/rsWLF+uDDz7QDz/8oEsuuUSTJ0/WnDlznPaXCQAAAACAM/n7+6tHjx5urSEzM1NXX321W2uozuUhxd69e5Wenq7rrrtOZWVlTZqzatUqHTx4UHPmzNFll12mr776Sr/73e/01Vdfad26dU6uGAAAAAAAuILLQ4oxY8Zo7NixkqTbb79dx48fP+ucOXPmqFOnTvbXQ4cOVWBgoGbMmKGcnBxFREQ4rV4AAAAAAOAaLl8409e3+R9ZPaCoUnU5yrFjx867JgAAAAAA4H5e+3SPjz76SL6+vrr88svdXQoAAAAAAHAAr3y6x9GjR5Wamqq77rpL7dq1q7O9uLj4rItxeoOWcAw4P0VFRfQBaqAnUBs9geroB9RGT6A2egK1eVpPeF1IUVZWpjvvvFNt2rTRH//4x3r3CQ4O1tChQ11bmBO0hGPA+cnMzKQPUAM9gdroCVRHP6A2egK10ROozdN6wqtCCtM0dffdd2vv3r368MMPFRoa6u6SAAAAAACAg3hVSJGcnKwNGzZo69atio6Odnc5AAAAAADAgbwmpHjuuef0yiuvaPXq1Ro0aJC7ywEAAAAAAA7m8pCipKRE6enpkqQjR47o5MmTWrt2rSRp9OjRslgsioqK0pAhQ/SXv/xFkrR8+XI9/vjjmjJlii6++GJ98skn9ve79NJL631EKQAAAAAA8C4uDymOHTumO+64o8ZY1etDhw4pMjJSFRUVqqystG9/7733JElvvvmm3nzzzRpzly1bpilTpji1ZgAAAAAA4HwuDykiIyNlmmaj+2RnZ9d4XV84AQAAAAAAWhZfdxcAAAAAAAAgEVIAAAAAAAAPQUgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAjEFIAAAAAAACPQEjhwQzDcHcJAAAAAAC4DCGFB0tMTHR3CQAAAAAAuAwhBQAAAAAA8AiEFAAAAAAAwCMQUrhZTEyMu0sAAAAAAMAjEFK42d69e91dAgAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BFcHlIcOHBAM2bMUO/eveXn56ehQ4eedU5ZWZlmz56tG264QUFBQfLx8XF+oQAAAAAAwKVcHlLs3btX6enp6tmzp3r27NmkOSUlJXrjjTdksVh0/fXXO7lCAAAAAADgDi4PKcaMGaPDhw9rzZo1io2NbdKckJAQnThxQlu2bNGtt97q5AoBAAAAAIA7uDyk8PU9t4/kFg8AAAAAAFo2Fs4EAAAAAAAeoZW7C3CG4uJiZWZmursMh2gpx4FzU1RURA+gBnoCtdETqI5+QG30BGqjJ1Cbp/VEiwwpgoODm/TUEG/QUo4D5yYzM5MeQA30BGqjJ1Ad/YDa6AnURk+gNk/rCW73AAAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BFcviZFSUmJ0tPTJUlHjhzRyZMntXbtWknS6NGjZbFYFBUVpSFDhugvf/mLfd7mzZtVXFys3bt3S5J9Tr9+/RQREeHagwAAAAAAAA7n8pDi2LFjuuOOO2qMVb0+dOiQIiMjVVFRocrKyhr73H///crJyakzZ9myZZoyZYpziwYAAAAAAE7n8pAiMjJSpmk2uk92dnaTxgAAAAAAQMvBmhQAAAAAAMAjEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAjEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCO4PKQ4cOCAZsyYod69e8vPz09Dhw5t0rzCwkJNnTpVoaGhat++vaxWq/Ly8pxbLAAAAAAAcBmXhxR79+5Venq6evbsqZ49ezZ53oQJE5SZmak33nhDb775pj7//HONGzfOeYV6CIvF4u4SAAAAAABwiVau/sAxY8Zo7NixkqTbb79dx48fP+ucjz/+WFu2bNHOnTs1ePBgSdLFF1+s//mf/1FGRobi4+OdWrM7lZaWursEAAAAAABcwuVXUvj6Nv8jN2/erC5dutgDCknq37+/evTooc2bNzuyPAAAAAAA4CZesXBmVlaWoqOj64xfccUVysrKckNFAAAAAADA0bwipMjPz1dISEid8dDQUOXn57u+IAfr1q2bu0sAAAAAAMDtXL4mxbny8fGpM2aaZr3jxcXFyszMdEFVjmEYhoYNG9bgdm86FjhWUVER//6ogZ5AbfQEqqMfUBs9gdroCdTmaT3hFSFFaGiofv755zrjBQUF9V5hERwc3ORHm3qDlnQsaJ7MzEz+/VEDPYHa6AlURz+gNnoCtdETqM3TesIrbveIjo6ud+2JhtaqAAAAAAAA3scrQoqEhAQdPXpU//rXv+xjX3zxhb777jslJCS4sTIAAAAAAOAoLg8pSkpKtHbtWq1du1ZHjhzRzz//bH9dUlIiSYqKitK0adPscwYMGKBRo0bp7rvv1vr16/X222/LarVq0KBBio+Pd/UhuJxhGO4uAQAAAAAAp3P5mhTHjh3THXfcUWOs6vWhQ4cUGRmpiooKVVZW1thn5cqVSk5O1r333iubzaabb75ZL7/8ssvqdqdZs2bJarW6uwwAAAAAAJzK5SFFZGSkTNNsdJ/s7Ow6YyEhIVq2bJmWLVvmpMo8V15enrtLAAAAAADA6bxiTQoAAAAAANDyEVJ4iLi4OHeXAAAAAACAWxFSeIiMjAx3lwAAAAAAgFsRUngJnvABAAAAAGjpCCm8RGJiIkEFAAAAAKBFI6TwIikpKe4uAQAAAAAApyGk8CK5ubnuLgEAAAAAAKchpPAgPj4+jW4PDw93USUAAAAAALgeIYUHueWWWxrdPnr0aBdVAgAAAACA6xFSeJCHHnpIMTExDW5fvXq1C6sBAAAAAMC1CCk8zN69exvclpeX58JKAAAAAABwLUIKAAAAAADgEQgpPFBDC2iebWFNAAAAAAC8GSGFBzJNs1njAAAAAAC0BIQUXsYwDHeXAAAAAACAUxBSeJlZs2a5uwQAAAAAAJyCkMLL8IQPAAAAAEBLRUgBAAAAAAA8QrNDiq+++koTJkzQpZdeqtatW+vf//63JCklJUWbN292eIGoKSwszN0lAAAAAADgFM0KKTZv3qxrrrlGR48e1d13363y8nL7ttatW+uVV15xeIEXori4uAa33XnnnS6sBAAAAAAA12lWSPHYY49pypQp2rlzp1JSUmps69Onj3bv3u3I2i5YGRkZCgwMrHdbenq6i6sBAAAAAMA1mhVSZGVlacKECZIkHx+fGtvatWunEydOOK6yC9zp06frHc/JyXFxJQAAAAAAuEazQorOnTvru+++q3fb3r17FR4eftb32Ldvn+Li4mSxWNStWzfNnTtXlZWVZ523d+9ejRw5UhaLRR07dtT999+voqKi5pTvVfz8/Jo1DgAAAACAt2vVnJ0nTpyouXPnKiYmRgMGDJD0yxUV33zzjRYsWKBp06Y1Oj8/P1/x8fGKiYnRhg0bdPDgQT3yyCOy2Wx69tlnG5xXWFio4cOHq2fPnlq1apXy8vL06KOP6scff9Tbb7/dnEPwGg0FN00JdAAAAAAA8EbNCimeeeYZ7du3T0OGDFHXrl0lSWPHjtXRo0c1cuRIPf74443Of/XVV1VaWqr169erXbt2GjFihE6ePKl58+bp0UcfVbt27eqdt3jxYpWWluqf//ynQkJCJEkdOnTQ2LFj9cUXX+jaa69tzmF4hYiIiHpv7YiIiHBDNQAAAAAAOF+zbvdo3bq1Nm7cqPfee0/33HOPpk+frsmTJ2vTpk3auHGj/P39G52/efNmjRo1qkYYMXHiRJWWlmrnzp0Nztu9e7euvfZae0AhSSNHjpSPj482bdrUnEPwGqmpqbJYLDXGLBaLUlNT3VQRAAAAAADO1awrKarExcU1+pjMhmRlZWn48OE1xsLDw2WxWJSVlaUxY8bUO+/06dMKCAioMdaqVSv5+vpq//79za7DG1itVi1btkzbtm2zjw0YMEBWq9WNVQEAAAAA4DzNCin279+vwsJCXXfddZKk0tJS+y0gcXFxevDBBxudn5+fX+NqiCqhoaHKz89vcF5UVJSWL1+u8vJy+9Uau3btUmVlZb1PFCkuLlZmZmbTD8xDFBUV2et+8cUXawQUkrRt2zZFRkbqzTffdH1xcIvqPQFI9ATqoidQHf2A2ugJ1EZPoDZP64lmhRQPPPCArr/+entI8dvf/lZvvvmmbrjhBs2ZM0enT5/W7NmzG32P2o8ulSTTNOsdr/LrX/9aL730kh588EHNmzdPeXl5euCBB+Tn51fv0y6Cg4M1dOjQ5hyaR8jMzLTXHR8fX+8+OTk5Wr16tRYvXuzCyuAu1XsCkOgJ1EVPoDr6AbXRE6iNnkBtntYTzVqTYs+ePfanepSXlystLU0vvvii3n33Xc2fP19//etfG50fGhqqgoKCOuOFhYX1XmFRJTo6WkuXLtWKFSt00UUX6aqrrlL//v3Vp08fdenSpTmH4DUae4rHkiVLXFgJAAAAAACu0awrKYqLi+2LXn7yyScqLi7W+PHjJUl9+/at92kU1UVHRysrK6vG2OHDh1VcXKzo6OhG5957772aPHmyvv32W3Xu3FkdO3ZUWFiYpk+f3pxD8Bp+fn48bhQAAAAAcEFp1pUUv/rVr/TJJ59Ikt566y1dffXVCgsLkyQdP35cbdu2bXR+QkKCtmzZolOnTtnHVq1apaCgIA0ZMuSsnx8YGKgrr7xSXbp0UVpammw2m+68887mHILXSEpKcncJAAAAAAC4VLNCiuTkZD3xxBPq16+fXnrpJf3mN7+xb8vMzNRVV13V6Pz77rtPrVu31vjx45WRkaGlS5dq3rx5evjhh2s8ljQqKkrTpk2zvz558qTmzJmjTZs2acuWLfq///s/TZ8+XS+//LI6dOjQnEPwGqw5AQAAAAC40DQrpJg2bZoyMjI0ceJEvffee7rrrrvs2zp06KDk5ORG54eGhmrbtm2qrKzUmDFj9OSTTyo5OVlPPfVUjf0qKipq3Org5+en//znP7rrrrs0btw4bdu2TWvWrNGUKVOaU77XaWgx0cYWGQUAAAAAtGyGYSgyMlK+vr6KjIyUYRjuLslhmrUmhSQNHjxYXbp00ZEjR5Senm4f79+/f5Pmx8TEaPv27Y3uk52dXeN1cHCw3nvvveaW6vVM02zWOAAAAACgZTMMQ0lJSSopKZH0yxMgq5YLsFqt7izNIZoVUnz99deaNGmS9u/fX+8Pyj4+Piz2CAAAAACAk6SkpNgDiiolJSVKSUm58EKKe++9V/7+/tq4caOioqIUEBDgrLoAAAAAAEA1x48fb/Cpmrm5uS6uxjmaFVLs379f69at06hRo5xVDwAAAAAA+P9KSkq0YcMGGYahLVu2NLhfeHi4C6tynmYtnNm/f/8Wk854O19fXz3wwAPuLgMAAAAA4GAVFRXasmWL7r77bnXp0kWTJ0/W7t27lZycrPnz58tisdTY32KxKDU11U3VOlazrqRYunSpJk2aJIvFomHDhikkJKTOPrX/snDu/Pz8GlzjwzRNLVmyRBKPKwUAAAAAb2eapr744gulpaVp1apV+umnn9S+fXtNmDBBiYmJGjx4sHx9f7nOIDw8XCkpKcrNzVV4eLhSU1NbxHoUUjNDio4dOyoyMlJ33313g/uwcKbjJCUl2YOIhixdupSQAgAAAAC81IEDB2QYhgzD0LfffquAgADdfPPNslqtGj16tAIDA+vMsVqtLSaUqK1ZIUViYqI+/vhj/fa3v2XhTBdYvHix/vGPf6ioqKjBfQiFAAAAAMC7/PTTT1q1apUMw9Bnn30mHx8fDRkyRHPmzNFtt91W710LF4pmhRQ7duzQ66+/rsmTJzurHtRSXFzc6HY/Pz8XVQIAAAAAOFdFRUV6++23ZRiGtm7dqsrKSvXu3VsLFy7UpEmT1L17d3eX6BGaFVJERkay5oSLhYeHN/iIGemXW0IAAAAAAJ6nvLxcW7dulWEYevvtt1VSUqLw8HDNnj1bVqtVvXr1cneJHqdZIcWiRYv05JNPqk+fPoqMjHRSSaguNTVVSUlJKikpqbPt/vvvZz0KAAAAAPAgpmnqk08+kWEYWrVqlY4fP67Q0FDdddddslqtGjhwoH0BTNTVrJDiySefVG5urnr27KnIyMh675P57LPPHFUbJPtiKFUrt/r7++vyyy/XV1995ebKAAAAAABVsrKyZBiGli9fru+++06BgYEaM2aMEhMTdeONN7KmYxM1K6To1asXl6O4QfWVW2+++Wb98MMPbq4IAAAAAPDjjz9q5cqVMgxDu3btkq+vr4YPH67f/e53Gj9+vNq1a+fuEr1Os0KKZcuWOasONFGnTp305ZdfursMAAAAALggnTx5Um+99ZYMw9C2bdtks9nUt29fvfDCC5o4caK6devm7hK9WrNCCrhf586ddezYMZmmKR8fH3eXAwAAAAAtXllZmd59910ZhqF33nlHp0+fVo8ePfT444/LarUqOjra3SW2GIQUXqZTp04qKyvTqVOnuHQIAAAAAJzEZrPpo48+UlpamtasWaMTJ04oLCxM9957rxITE3Xdddfxi2MnIKTwMp07d5YkHTt2jJACAAAAABxs79699gUwc3JyFBQUpHHjxslqtWrkyJHy9/d3d4ktGiGFl+nUqZMk6eeff1ZUVJSbqwEAAAAA73fkyBGtWLFChmFo9+7d8vX11YgRI/Tss89q3LhxatOmjbtLvGAQUniZ6ldSAAAAAADOTUFBgdatWyfDMJSZmSnTNNW/f3+99NJLmjBhgrp06eLuEi9IhBRepvqVFAAAAACApjtz5ozS09OVlpamTZs26cyZM4qKitLcuXNltVp12WWXubvECx4hhZepCim4kgIAAAAAzs5ms+n999+XYRhau3atCgoK1LlzZ82YMUNWq1X9+vVjAUwPQkjhZYKCgtSmTRuupAAAAACARnz11VcyDEMrVqzQ4cOHFRwcrFtvvVWJiYmKi4tTq1b8OOyJfN1dAJrHMAydPn1aL774oiIjI2UYhrtLAgAAAACPkJubq+eff15XXnmlevfurT/84Q+66qqrtHz5cv3000/6xz/+oVGjRhFQeDCXhxT79u1TXFycLBaLunXrprlz56qysvKs87744guNHDlSYWFh6tChg+Lj4/Xpp5+6oGLPYRiGpk6dqoqKCklSTk6OEhMT9cADD7i5MgAAAABwjxMnTmjp0qUaMmSIIiIi9Nhjj6lt27b685//rB9++EEbN27UpEmTFBwc7O5S0QQujY/y8/MVHx+vmJgYbdiwQQcPHtQjjzwim82mZ599tsF5hw8fVnx8vPr27au///3vkqRFixZp5MiR+uqrrxQREeGqQ3CrWbNmqby8vM74kiVLNHDgQFmtVjdUBQAAAACuVVpaqo0bN8owDKWnp6u8vFzR0dF65plnNHnyZP3qV79yd4k4Ry4NKV599VWVlpZq/fr1ateunUaMGKGTJ09q3rx5evTRR9WuXbt6523atEmnTp3S+vXrFRISIkm6/vrr1bFjR6Wnp+v+++934VG4T15eXoPbUlJSCCkAAAAAtFiVlZXKzMyUYRhat26dTp48qYsuukgzZ85UYmKirr76ahbAbAFcervH5s2bNWrUqBphxMSJE1VaWqqdO3c2OK+8vFytWrVSmzZt7GNt2rRRq1atZJqmU2v2Frm5ue4uAQAAAAAcyjRN/fvf/9Yjjzyi8PBwxcfHa+3atRo/fry2bt2qw4cP6w9/+IP69u1LQNFCuDSkyMrKUnR0dI2x8PBwWSwWZWVlNTjvtttuk8Vi0SOPPKJjx47p2LFjSk5OVmhoqO644w5nl+0xwsLCGtwWHh7uwkoAAAAAwHkOHTqk1NRUxcbG6pprrtErr7yia6+9VqtXr9ZPP/2kZcuWKT4+Xn5+fu4uFQ7m8jUpqm7XqC40NFT5+fkNzuvWrZt27Nihm2++WS+//LIk6aKLLtKWLVvUqVOnOvsXFxcrMzPTUWW7TFFRUaN133fffZo/f36dq0datWqlxMRErzxmNO5sPYELDz2B2ugJVEc/oDZ6ArV5ck8UFhZqx44dysjI0N69eyVJV111lZKTkzVkyBC1b99eki64Byg4m6f1hMufu1LfJTimaTZ6ac6PP/6o22+/Xddcc43eeOMNSdKf//xn3XTTTfroo4/qXEUQHBysoUOHOrRuV8jMzGy07qFDh+qKK67QrFmz7OtTtGnTRq+++irrUbRQZ+sJXHjoCdRGT6A6+gG10ROozdN6oqSkRO+8844Mw9C7776riooKxcbGav78+Zo8efIF85AEd/K0nnDp7R6hoaEqKCioM15YWFjvFRZVFi1apIqKCq1du1Y33nijbrzxRq1bt05+fn76/e9/77yCPZDVatXx48ftIUVJSYkSExPVqlUrHkUKAAAAwONVVFRoy5Ytuvvuu9WlSxdNmjRJ//nPf5ScnKzdu3fr66+/1mOPPUZAcYFy6ZUU0dHRddaeOHz4sIqLi+usVVFdVlaWYmNj5e/vbx8LCAhQbGysDh486LR6PVlKSookyWazSfplpdslS5bom2++UUZGhjtLAwAAAIAaTNPUF198IcMwtHLlSv30009q3769JkyYoMTERA0ePFi+vi79HTo8lEu7ICEhQVu2bNGpU6fsY6tWrVJQUJCGDBnS4LyIiAjt2bNHZWVl9rEzZ85oz549ioyMdGbJHuu1116rd3zbtm0yDMPF1QAAAABAXQcOHNBTTz2l6Oho9e/fX0uWLNHAgQO1bt06HT16VG+88YaGDh1KQAE7l3bCfffdp9atW2v8+PHKyMjQ0qVLNW/ePD388MM1HksaFRWladOm2V9Pnz5dP/zwg2699VZt2rRJGzdu1Lhx4/Tjjz8qKSnJlYfgER544IFGH71adZUFAAAAALjasWPH9Morr+i6667TZZddpqeeekrdunXT66+/rqNHj2rdunUaP368AgMD3V0qPJBLb/cIDQ3Vtm3bNHPmTI0ZM0YhISFKTk7WvHnzauxXUVGhyspK++trrrlG7777rp566indddddkqQrr7xSW7duVe/evV15CB5h6dKljW7Pzc11USUAAAAA8MsTIt5++20ZhqGtW7eqsrJSvXv31sKFCzVp0iR1797d3SXCS7j86R4xMTHavn17o/tkZ2fXGYuLi1NcXJyTqvIu1QOc+tR+2gkAAAAAOFp5ebm2bt0qwzD09ttvq6SkROHh4Zo9e7asVqt69erl7hLhhVweUuD8+fn5NRpUjB492oXVAAAAALhQmKapTz/9VGlpaVq9erV+/vlnhYaG6q677pLVatXAgQNZXwLnhZDCCyUlJWnJkiUNbk9PT3dhNQAAAABauv/+978yDEPLly/XwYMHFRgYqDFjxshqtSohIUEBAQHuLhEtBCGFF1q8eLEkNRhUsCYFAAAAgPN19OhRrVy5Umlpadq1a5d8fX01fPhwPfHEExo/fnyNhx8AjkJI4aUWL16s9PR05eTk1NnGmhQAAAAAzsXJkyf11ltvyTAMbdu2TTabTX379tULL7ygiRMnqlu3bu4uES0cIYUXS01NVVJSkkpKSuxjPj4+rEkBAAAAoMnKysq0ZcsWpaWl6Z133tHp06fVo0cPPf7445o8ebKuuOIKd5eICwghhRezWq368MMPa9z2YZqmXnvtNQ0cOFBWq9WN1QEAAADwVDabTR999JEMw9Dq1at14sQJhYWF6d5775XVatWAAQPk4+Pj7jJxASKk8HJ///vf64zZbDbNmDGDkAIAAABADdnZ2UpJSZFhGMrJyVFQUJDGjRsnq9WqkSNHyt/f390l4gJHSOHliouLmzUOAAAA4MJy5MgRrVixQoZhaPfu3fL19dWIESP0zDPPaNy4cWrbtq27SwTsCCkAAAAAoIUpLCzUunXrlJaWpszMTJmmqf79+2vmzJl64okn1KVLF3eXCNSLkMLL+fr6ymaz1TsOAAAA4MJx5swZpaenyzAMbdy4UWfOnFFUVJTmzp0rq9Wqyy67TJmZmQQU8GiEFF5uxowZNRbOrD4OAAAAoGWz2Wz64IMPlJaWprVr16qgoECdO3e2r1HXr18/FsCEVyGk8HKLFy+WJHtQ4efnp6SkJPs4AAAAgJbnq6++kmEYWrFihQ4fPqzg4GDdeuutslqtio+PV6tW/KgH70TntgCLFy/W/v37VVlZqffff9/d5QAAAABwgtzcXK1YsUJpaWnas2eP/Pz8dOONN2rBggW65ZZbFBwc7O4SgfNGSNFC+Pv76/Tp0+4uAwAAAIADnThxQmvXrpVhGPZfSA4YMEB/+tOfdOedd6pTp05urhBwLEKKFsAwDO3YsUMVFRXy8fFRWFiYXnrpJVmtVneXBgAAAKCZTp8+rY0bNyotLU3p6ekqLy/X5ZdfrmeeeUaTJ0/Wr371K3eXCDgNIYWXMwxDU6dOVUVFhX0sLy9P9957ryQRVAAAAABeoLKyUpmZmTIMQ+vWrdPJkyfVtWtXzZw5U1arVX379mUBTFwQCCm8XEpKisrLy+uMl5WVKSUlhZACAAAA8FCmaWr37t32BTB/+OEHtW3bVrfddpusVquGDRsmPz8/d5cJuBQhhZfLzc09p20AAAAA3OPQoUNavny5DMPQ/v375e/vr4SEBFmtVo0ZM0ZBQUHuLhFwG0IKLxceHq6cnJwGtwEAAABwv+PHj2vNmjUyDEMffvihJGnQoEF69dVXdfvttyssLMzNFQKegZDCy6Wmpmrq1Kl1bvkICAhQamqqm6oCAAAAUFJSonfeeUeGYejdd99VRUWFYmNjNX/+fE2aNEmRkZHuLhHwOIQUXq5qzYlZs2YpLy/PPt62bVt3lQQAAABcsCoqKrR9+3alpaXprbfeUlFRkS6++GIlJyfLarXqqquuYgFMoBG+rv7Affv2KS4uThaLRd26ddPcuXNVWVnZ6Jx58+bJx8en3q/nnnvORZV7LqvVqpdeekkWi8U+lpeXp6SkJBmG4cbKAAAAgJbPNE19/vnneuihh9S9e3eNGjVK77zzjiZMmKDt27crJydHCxcuVO/evQkogLNw6ZUU+fn5io+PV0xMjDZs2KCDBw/qkUcekc1m07PPPtvgvOnTp+vGG2+sMfb2229rwYIFSkhIcHbZXiElJUUlJSU1xkpKSnjCBwAAAOAkBw8elGEYMgxD33zzjQICAnTTTTcpMTFRo0ePVmBgoLtLBLyOS0OKV199VaWlpVq/fr3atWunESNG6OTJk5o3b54effRRtWvXrt553bt3V/fu3WuMPfPMM4qOjlafPn1cULnna+hJHjzhAwAAAHCcY8eOadWqVTIMQ59++ql8fHw0ZMgQzZ49W7fddptCQ0PdXSLg1Vx6u8fmzZs1atSoGmHExIkTVVpaqp07dzb5fU6cOKGtW7dq0qRJzijTKzX0JI8OHTq4uBIAAACgZSkqKpJhGEpISFC3bt30m9/8RqWlpVq4cKFycnK0Y8cOTZ8+nYACcACXhhRZWVmKjo6uMRYeHi6LxaKsrKwmv8/atWtVXl6uiRMnOrpEr5Wamip/f/8646dOnWJdCgAAAKCZysvLlZ6eLqvVqi5duigxMVH79u3T7Nmz9fXXX+vLL7/U7Nmzdckll7i7VKBFcWlIkZ+fr5CQkDrjoaGhys/Pb/L7rFy5Un379lXPnj0dWJ13s1qt9d4uU1ZWppSUFDdUBAAAAHgX0zT1ySef6MEHH9TFF1+sm266SZs3b9Zdd92l999/X4cOHdJzzz2nXr16ubtUoMVy+SNI61vN1jTNJq9y++OPP2rnzp1asGBBg/sUFxcrMzPzXEt0m6KiovOqu/ojSKvLycnxyr8PnH9PoOWhJ1AbPYHq6AfURk80TW5urjIyMrRt2zb98MMPCggI0IABAxQfH6/+/fsrICBAlZWVev/9991d6nmjJ1Cbp/WES0OK0NBQFRQU1BkvLCys9wqL+qxevVqmaWrChAkN7hMcHKyhQ4eeW5FulJmZeV51+/n51fs4Vz8/P6/8+8D59wRaHnoCtdETqI5+QG30RMOOHj2qlStXKi0tTbt27ZKPj4+GDx+u1NRUjR8/vsFF/b0dPYHaPK0nXBpSREdH11l74vDhwyouLq6zVkVDVq5cqUGDBnHvVz3qCygaGwcAAAAuJKdOndL69etlGIa2bdsmm82mvn376oUXXtDEiRPVrVs3d5cIXPBcGlIkJCRo0aJFOnXqlNq2bStJWrVqlYKCgjRkyJCzzs/OztYnn3yixYsXO7tUrxQREaGcnJx6xwEAAIALUVlZmbZs2SLDMPTOO++otLRUPXr00OOPP67JkyfriiuucHeJAKpx6cKZ9913n1q3bq3x48crIyNDS5cu1bx58/Twww/XuJwqKipK06ZNqzN/5cqVatWqlW6//XZXlu01UlNTZbFYaoxZLBalpqa6qSIAAADA9Ww2m/71r3/p/vvv10UXXaRbbrlFGRkZmjp1qj788EMdPHhQzzzzDAEF4IFcvibFtm3bNHPmTI0ZM0YhISFKTk7WvHnzauxXUVFR7y0KK1euVFxcnDp16uSiir2L1WqVJE2ZMkUVFRWSpJKSEi1btsy+DQAAAGip9u3bJ8MwtHz5cmVnZysoKEhjx45VYmKiRo4cKX9/f3eXCOAsXP50j5iYGG3fvr3RfbKzs+sd3717t+MLamGWLVtmDyiqbNu2TfHx8crIyHBTVQAAAIBzHDlyRCtWrJBhGNq9e7d8fX01YsQIPf300xo3bpz9NnMA3sHlIQWca9u2bc0aBwAAALxNYWGh1q1bJ8MwtGPHDpmmqX79+umll17ShAkT1KVLF3eXCOAcEVIAAAAA8HhnzpxRenq6DMPQxo0bdebMGUVFRWnu3LmaPHmyevbs6e4SATgAIQUAAAAAj2Sz2fTBBx/IMAytWbNGBQUF6ty5s5KSkpSYmKh+/frJx8fH3WUCcCBCihYmLi6u3ls74uLi3FANAAAA0Hxff/210tLStGLFCh0+fFjBwcG69dZbZbVaFR8fr1at+DEGaKn4f3cLk5GRofj4+BpBRVxcHItmAgAAwKPl5ubaF8D8+uuv5efnp1GjRmnBggW65ZZbFBwc7O4SAbgAIUULlJGRoeeff16PPfaYSktLFRgY6O6SAAAAgDry8/O1Zs0aGYah999/X5I0YMAA/elPf9Kdd96pTp06ublCAK5GSNFCVV0CV/txpAAAAIA7nT59Whs3bpRhGEpPT1dZWZkuv/xyPf3005o8ebIuvfRSd5cIwI0IKVooQgoAAAB4isrKSu3cuVNpaWlat26dTp48qa5du+p///d/ZbVa1bdvXxbABCCJkKLFIqQAAACAO5mmqd27d8swDK1YsUI//PCD2rZtq/HjxysxMVHDhg2Tn5+fu8sE4GEIKVooQgoAAAC4w6FDh7R8+XIZhqH9+/fL399fCQkJslqtGjNmjIKCgtxdIgAPRkjRQhFSAAAAwFXy8vK0evVqGYahDz/8UJI0aNAgLVmyRHfccYfCwsLcXCEAb0FI0UIRUgAAAMCZSkpK9M9//lNpaWl69913VVFRoZiYGM2fP1+TJk1SZGSku0sE4IUIKVqoqpCivLzczZUAAACgpaioqND27dtlGIbWr1+voqIiXXzxxXrooYdktVrVu3dvFsAEcF4IKVoorqQAAACAI5imqV27dtkXwPzpp5/Uvn17TZgwQVarVYMHD2YBTAAO4+vuAuAchBQAAABoCsMwFBkZKV9fX0VGRsowDEnSwYMH9fTTTys6Olr9+vXT4sWLdf3112vt2rU6evSo3njjDZ7QAcDhuJKihSKkAAAAwNkYhqGkpCSVlJRIknJycjR16lQ9+eSTOnjwoCRp6NChmj17tm677TaFhoa6s1wAFwBCihaKkAIAAKDlstlsKisr0+nTp3XmzBn7V+3Xn332mfLz8xvcvmjRIntAUaW8vFy5ublasGCBJk2apEsuucRNRwngQkRI0UIRUgAAADhWRUVFo4GAs19XH3P24ugVFRV69NFHnfoZAFAfQooWipACAAB4O9M0VV5e7vQf+Jv6urKy0iHH1apVK7Vu3VqBgYFq3bq1/av667Zt26pTp04Nbm/K69atW2vv3r26/vrrG9wnKipKubm5dWoMDw93yLECQHMRUrRQhBQAAOBc2Gy2Zv8w78yrCByl9g/v9f2AHxYWdl6hQFNeBwQEuHShSdM01adPnwa3z58/v8aaFJJksViUmprqguoAoC5CihaKkAIAAO/hqNsIvvnmG/3zn/88r4DAUbcR+Pr6nvUH9qCgIIWEhDgtEKj6c0BAgHx8fBxyXC2N1WqVJKWkpCg3N1fh4eFKTU21jwOAqxFStFCEFAAANMyZtxGcy20HjrqNwM/PT4GBgU6/jaC+2wpqj7Vq1YpgwEtYrVZCCQAew+Uhxb59+/Tggw/q448/VkhIiKZPn64nn3yySZe9rV+/Xs8995z27Nkji8Wifv36ad26dQoODnZB5d6FkAIA4GnO5TYCZ64z4ChNuY2gTZs2zfoB/1xvI/jggw80dOhQhx0bAACu5tKQIj8/X/Hx8YqJidGGDRt08OBBPfLII7LZbHr22WcbnfvGG29o5syZevTRR7Vo0SLl5+dr+/bt/BDeAEIKAIBU8zYCVywsyG0EAADgfLg0pHj11VdVWlqq9evXq127dhoxYoROnjypefPm6dFHH1W7du3qnXf8+HElJyfrlVde0a9//Wv7+K233uqq0r0OIQUAuIerbyM4fvy4AgICGtxus9kcclyuehpBU24r4DYCAABaLpeGFJs3b9aoUaNqhBETJ07UnDlztHPnTo0ZM6beeatXr5Yk3XPPPS6psyXw9/eXREgB4MLgitsImvPaUZpyS0C7du100UUXOf02Alc+jQAAAFy4XBpSZGVlafjw4TXGwsPDZbFYlJWV1WBI8emnn+ryyy/XX/7yF6Wmpuqnn35S37599cc//lHXX3+9K0r3OlxJAbiGYRgX7Iro53MbgaPXHbiQbyPIzMxkDQIAANBiuHxNipCQkDrjoaGhys/Pb3De0aNH9d///lfPPvusFi5cqLCwMC1cuFA33nijvv32W3Xp0qXG/sXFxcrMzHRw9c5XVFTksLqPHj0qSdqzZ49X/l3gF47sCTheRkaGfv/739t/c56Tk6Np06Zp//79io+Pd/jnmaapgoICbdq0SeXl5SovL1dZWZnKysrsr+sbq/3ns+1ffU7t/62+3VG3Efj5+cnf318BAQEKCAiQv7+//XX1P1ssFrVv377O9tr/W317fe9X3/5V+7ryaoGqv/fzxfcJVEc/oDZ6ArXRE6jN03rC5U/3qO+3QqZpNvrbIpvNpqKiIq1Zs0Y33nijJOn6669XRESE/vSnP+mZZ56psX9wcLBX/lbJkb8NO3LkiCQpKirKK/8u8At+Q+p5KisrVVxcrKKiIlmt1jqX9p85c0avvvqqLrnkEq++jaBdu3bNXieA2wjcg+8TqI5+QG30BGqjJ1Cbp/WES0OK0NBQFRQU1BkvLCys9wqLKh06dJCkGn9x7dq10zXXXKN9+/Y5uMqWYcOGDZKkpKQkpaamXlCXoANVbDabiouLderUKRUVFdm/ar+ub6yhfUpLS8/6uXl5ebrvvvtqjDnqNoIffvhB0dHRPI0AAAAALZJLQ4ro6GhlZWXVGDt8+LCKi4sVHR3d4LwrrrhCPj4+Mk2zxrhpmvL19XVKrd7MMAz99re/tb/OyclRUlKSJBFUwGNVBQrnEhw09LqkpKTJnx8QEKA2bdrYv9q2bas2bdqoU6dOdcaqvp544gkdP368znt169ZNn3/+eY2AoGqdmPPlaUk3AAAA4EguDSkSEhK0aNEinTp1Sm3btpUkrVq1SkFBQRoyZEiD826++WY99dRT2rFjh0aPHi3pl6svdu3aVeOHcfwiJSWlzm97S0pKlJKSQkgBh7DZbCopKTnvqxKqvy4uLm7y57dq1Upt27atExqEhYXVGav9uqGxgICAZv89tGnTRklJSTXCEIvFooULF6pbt27Nfj8AAADgQufSkOK+++7Tyy+/rPHjx2vOnDn67rvvNG/ePD388MM1HksaFRWlIUOG6C9/+Ysk6dprr9XYsWM1bdo0Pf/88+rYsaMWLlwof39//e///q8rD8Er5ObmNmv8QuHqpzB4ylMfTNOsc4XC+V6lcC6BQu2QICIiollBQvXX5xIoOEPVv6cn/DsDAAAALYHL16TYtm2bZs6cqTFjxigkJETJycmaN29ejf0qKipUWVlZYywtLU2zZ8/Www8/rJKSEg0cOFDbt29XaGioC4/AO4SHhysnJ6fe8QuVYRg1fuPt7FtgzvXzTNO0X6FQVFSkAwcOqFWrVucVLhQXF9e5Vaohfn5+9jCgeihwySWXNDtIqPpq3br1+f+FejCr1UooAQAAADiIy5/uERMTo+3btze6T3Z2dp2xNm3aaMmSJVqyZImTKms5UlNT670EPTU11Y1Vudfjjz9eZ32CkpISPfjgg8rLy3P4582bN6/ez5sxY4beeeedBsOFoqKicwoUqn9179692bc7VL1mQUUAAAAA7uTykALOV/Vb3alTp6q8vFwREREXzCXo5eXl+uabb7R3717t3btXe/bs0d69exu81SU/P1+zZs1yWX3FxcX68ssv7aHAxRdf3GiQkJ2dreuuu67efVq3bk2gAAAAAKBFIaRooaxWq1577TX5+voqMzPT3eU4XEVFhQ4cOGAPI6oCiW+++UYVFRWSfnnkY1RUlGJjY3X06FEVFhbWeZ/u3bvryy+/dHh9vXv31vfff19nPCIios4TbhrDkxwAAAAAXEgIKVqwDh066LvvvnN3GeelsrJShw4dsl8RUfWVlZWlsrIySZKPj4969OihXr16aezYsYqNjVVsbKyio6MVGBgoqe4aEdIvt8A8//zz6tChg8Prfv7557nlBgAAAACaiZCiBevQoYN27drl7jKaxGazKScnp85tGvv379fp06ft+0VERCg2NlY33nijPYy44oorZLFYGn1/Vz+Fgac+AAAAAEDzEVK0YKGhoTpx4oRD37Ohx2o29XGbpmnq8OHDdW7T2L9/f43HWnbv3l2xsbEaNmyYevXqZQ8j2rZte861u/opDDz1AQAAAACah5CiBevQoYNKSkp05swZhzwGsqHHan744Yf629/+Vmc8Pz9fPXv2rBFI7Nu3TydPnrS/Z9euXdWrVy9Nnz7dfmVETEyMQkJCzrteAAAAAIB3IaRowUJDQyX98gSLrl27nvf7paSk1PtYzddee002m63O+IMPPmh/3alTJ8XGxuruu++2hxGxsbFOWQ8CAAAAAOCdCClasKoA4HxCiuq3cZimWe8+tQOK6nbs2KHY2Fh16tTpnD4fAAAAAHDhIKRowaqupDjXdSnqeyJGfXx9fesNKiIiInh8JgAAAACgyXzdXQCcp+pKioSEBPn4+MjHx0cdO3aUYRhNml/f7R31CQoKqvN0DR63CQAAAABoLkKKFuyll16SJJ06dco+lpeXp3vvvbdJQUVubm6TPqekpERLly5VRESEfHx8FBERoaVLl/JkCwAAAABAsxBStFCGYTQYRJSVlWnGjBnq2LFjnSssDMNQZGSkfH2b3hrh4eGyWq3Kzs6WzWZTdnY2AQUAAAAAoNlYk6KFSklJaXR7cXGxiouL7a/z8vJ0zz33yM/PT2VlZU3+HG7rAAAAAAA4CldStFBNvVWjusrKynoDCj8/P/ttHPfffz+3dQAAAAAAnIIrKVqo8PBw5eTkOOS9bDZbo48ZBQAAAADAEbiSooVKTU2Vv7+/Q94rPDzcIe8DAAAAAEBjCClaKKvVqmXLliksLKzJc/z8/BQQEFBjjDUnAAAAAACuQkjRglmtVh0/flymaSotLa3GWhL3339/jQAjLCxMf/vb3/TXv/6VNScAAAAAAG7BmhQXCKvVWidsWLx4cYP7AgAAAADgalxJAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAj+Jimabq7CEfr2LGjIiMj3V0GAAAAAACoJTs7W8ePH693W4sMKQAAAAAAgPfhdg8AAAAAAOARCCkAAAAAAIBHIKQAAAAAAAAegZDCwfbt26e4uDhZLBZ169ZNc+fOVWVl5VnnFRYWaurUqQoNDVX79u1ltVqVl5dXZ78NGzboyiuvVGBgoGJiYrRq1SpnHAYcyFk9UVlZqQULFuiGG25QWFiYwsLCNHLkSH3++efOPBw4gLO/T1R5++235ePjo2uvvdaR5cMJnN0TeXl5mjFjhrp27aqgoCBFR0fr73//uzMOBQ7izJ4oKyvT008/raioKAUFBSkqKkpPPvmkzpw546zDwXk6l34oKyvT7NmzdcMNNygoKEg+Pj4N7sv5pfdxVk9wfum9nP19oopLzi9NOMyJEyfMiy66yIyLizPfe+89c8mSJabFYjFTUlLOOnfUqFFmZGSkuXbtWnP9+vXmZZddZg4aNKjGPh988IHp5+dnPvjgg+b27dvN3/72t6aPj4+5ZcsWZx0SzpMze+LUqVNmSEiImZycbG7atMlMT083R48ebQYEBJhffPGFMw8L58HZ3yeqlJaWmj169DC7dOliXnPNNY4+DDiQs3uisLDQjImJMfv372+uXr3a3L59u/mnP/3JfP311511SDhPzu6J5ORkMygoyHzhhRfM7du3m7///e/NwMBA8ze/+Y2zDgnn4Vz7IT8/3wwJCTFHjhxpDh8+3GzotJ/zS+/jzJ7g/NI7Ofv7RBVXnV8SUjjQ/PnzzZCQELOwsNA+tmDBAjMoKKjGWG0fffSRKcncuXOnfezTTz81JZlbt261j40cOdIcNmxYjbkJCQnmwIEDHXgUcCRn9kRFRYV54sSJGvPOnDljRkREmFOmTHHwkcBRnP19osrTTz9tDho0yLznnnsIKTycs3tizpw55qWXXmqWlJQ45wDgcM7uiS5dupgPP/xwjbnJyclm586dHXgUcJRz7QfTNE2bzWaapmm+8sorDf7wwfml93FmT3B+6Z2c/X2iiqvOL7ndw4E2b96sUaNGqV27dvaxiRMnqrS0VDt37mx0XpcuXTR48GD7WP/+/dWjRw9t3rxZknTmzBnt2LFDd955Z425EydO1Mcff6zCwkIHHw0cwZk94efnp9DQ0BrzAgICFBsbq2PHjjn4SOAozuyJKrm5uVq4cKFeeuklxx8AHM7ZPbFs2TJNmzZNQUFBzjkAOJyze6K8vFzt27evMTckJEQmT6X3SOfaD5LOeuk255feyZk9wfmld3JmT1Rx5fklIYUDZWVlKTo6usZYeHi4LBaLsrKymjVPkq644gr7vIMHD6q8vLzOfldccYVsNpu++eYbBxwBHM2ZPVGfM2fOaNeuXYqJiTn3ouFUruiJRx55RHfeeaf69u3rmKLhVM7siUOHDunYsWMKCQnR6NGjFRAQoE6dOunhhx9WWVmZYw8EDuPs7xPTp0/Xa6+9pg8//FBFRUX64IMPtGTJEs2cOdNxBwGHOdd+aArOL72TM3uiPpxfej5X9IQrzy9bOf0TLiD5+fkKCQmpMx4aGqr8/Pxzmvfdd9/Z95FUZ7+qpLOx94f7OLMn6pOamqr8/HxNnz79XMqFCzi7J3bs2KEtW7ZwYulFnNkTR48elSQ9+uijmjhxot599119+eWXevzxx9WqVSstXLjQIccAx3L294nnn39epaWlGjRokH3sgQce0Ny5c8+rbjjHufZDU99b4vzS2zizJ+rD+aXnc3ZPuPr8kpDCweq7XMY0zbNeRtPUebVfV12a2dTLdOB6zu6JKps2bVJqaqpeeOEFXX755edWLFzCWT1RUVGh3/zmN3riiSfUtWtXxxQLl3BWT9hsNklSbGysXn/9dUnS8OHDderUKc2fP1/z5s2TxWI53/LhBM78b8eiRYuUlpamV155RVdddZW+/PJL/e53v1NYWJiefvrp8y8eDneu/XCu78/5pedzdk9U4fzSezirJ9xxfsntHg4UGhqqgoKCOuOFhYX1Jltnm1dQUGCfV5Vo196v6nVj7w/3cWZPVPf5559rwoQJmjFjhh566KFzrhfO58yeeP3111VQUKB77rlHBQUFKigoUFlZmSorK1VQUKDy8nLHHAQcypk90aFDB0nSsGHDauwzfPhwnTlzRgcPHjzXsuFEzuyJ48eP64knntCCBQs0c+ZMDR48WA8++KAWLFig5557jnvOPdC59kNT31vi/NLbOLMnquP80ns4syfccX5JSOFA0dHRde75OXz4sIqLi+u9R7SxeVLNe4suvfRS+fv719kvKytLvr6+6tmzpwOOAI7mzJ6o8s033+imm25SXFycXnnlFccUDqdxZk/897//1ffff6+uXbsqNDRUoaGhWrFihXbv3q3Q0FCee++hnP3fjoCAgDr7VP2W1NeX0wBP5Mye+O6771ReXq4+ffrU2Ofqq69WRUWFcnJyzv8A4FDn2g9Nwfmld3JmT1Th/NK7OLMn3HF+ydmJAyUkJGjLli06deqUfWzVqlUKCgrSkCFDGp139OhR/etf/7KPffHFF/ruu++UkJAgSWrdurWGDRumNWvW1Ji7atUqDRgwoM4q3fAMzuwJSfrxxx81atQoXXrppVqxYoX8/PyccyBwGGf2xMyZM7Vjx44aX6NGjVLPnj21Y8cOjRgxwnkHhnPmzJ4ICAjQiBEjtH379hpzt23bJovFoqioKAcfDRzBmT0REREhSfr3v/9dY+6uXbskSZGRkY46DDjIufZDU3B+6Z2c2RMS55feyJk94ZbzS6c93PQCdOLECbNr165mfHy8uXXrVvO1114zg4ODzZSUlBr7XXrppea9995bY2zUqFFmjx49zHXr1plvvfWW2bNnT3PQoEE19vnggw9MPz8/c9asWeaOHTvM2bNnmz4+PuaWLVucfmw4N87siZKSErN3795m+/btzY0bN5off/yx/evf//63S44Pzefs7xO1Ofs51jh/zu6JTz/91PT39zenTJlibtmyxVy0aJHZunVr89lnn3X6seHcOLsnxo0bZ7Zv39588cUXze3bt5t/+MMfzHbt2pl33HGH048NzXc+/ZCenm6uWbPGnDZtminJXLNmjblmzRozOzvbvg/nl97HmT3B+aV3cvb3idqcfX5JSOFge/fuNYcNG2YGBgaaXbt2NZ944gmzoqKixj4RERHmPffcU2MsPz/fnDJlitm+fXuzbdu25qRJk8yff/65zvu/9dZbZmxsrBkQEGBefvnl5ooVK5x5OHAAZ/XEoUOHTEn1fkVERLjgyHCunP19ojpCCu/g7J549913zauvvtoMCAgwu3fvbj799NNmZWWlMw8J58mZPVFYWGg+8sgj5q9+9SszMDDQvPTSS83Zs2ebJ0+edPZh4Rydaz9ERETUe56wbNmyGvtxful9nNUTnF96L2d/n6jO2eeXPqb5/29MBQAAAAAAcCPWpAAAAAAAAB6BkAIAAAAAAHgEQgoAAAAAAOARCCkAAAAAAIBHIKQAAAAAAAAegZACAAAAAAB4BEIKAAAAAADgEQgpAAAAAACARyCkAAAAAAAAHoGQAgAAeIz3339fw4YNU5s2bdS+fXsNHTpU//nPf/Tmm2/Kx8dHn3/+uW644QYFBQWpZ8+eeuutt9xdMgAAcCBCCgAA4BEyMzMVFxcnf39//e1vf9OqVat0ww036MiRI/Z9JkyYoLFjx2r9+vW68sordccdd+jLL790Y9UAAMCRfEzTNN1dBAAAwIABA1ReXq7PP/9cPj4+Nba9+eabmjp1qlJTU/X4449Lkmw2m2JiYtSnTx+tXLnSHSUDAAAH40oKAADgdsXFxfr00091zz331Akoqrv11lvtf/b19dXYsWP12WefuaJEAADgAoQUAADA7fLz82Wapi666KJG9+vcuXOd1z/++KMzSwMAAC5ESAEAANwuNDRUvr6+Zw0cjh07Vuf12YINAADgPQgpAACA2wUHB+t//ud/9Pe//12NLZdV/WkeNptNGzZsUP/+/V1RIgAAcIFW7i4AAABAkp5//nnFx8crISFBSUlJCg4O1scff6xrr73Wvs8bb7yhgIAA9erVS6+//roOHDigFStWuLFqAADgSFxJAQAAPMLgwYO1detWlZSUKDExURMmTNDOnTvVvXt3+z4rV67UW2+9pXHjxunLL7/UqlWrdPXVV7uxagAA4Eg8ghQAAHi8qkeQnjp1Sm3atHF3OQAAwEm4kgIAAAAAAHgEQgoAAAAAAOARuN0DAAAAAAB4BK6kAAAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BEIKQAAAAAAgEcgpAAAAAAAAB7h/wHP3ShZKlHiCAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "d2 = pd.DataFrame({'acc_gini':pd.Series(mse_gini),'ccp_alphas':pd.Series(alphas_dt)})\n", - "\n", - "#plt.style.context(\"dark_background\")\n", - "\n", - "# visualizing changes in parameters\n", - "plt.figure(figsize=(18,5), facecolor = \"white\")\n", - "plt.plot('ccp_alphas','acc_gini', data=d2, label='mse', marker=\"o\", color='black')\n", - "#plt.gca().invert_xaxis()\n", - "\n", - "\n", - "#plt.xticks(np.arange(0, 0.15, step=0.01)) # Set label locations.\n", - "#plt.yticks(np.arange(0.5, 1.5, step=0.1)) # Set label locations.\n", - "plt.tick_params( axis='x', labelsize=15, length=0, labelrotation=0)\n", - "plt.tick_params( axis='y', labelsize=15, length=0, labelrotation=0)\n", - "plt.grid()\n", - "\n", - "\n", - "plt.xlabel('cp', fontsize = 15)\n", - "plt.ylabel('mse', fontsize = 15)\n", - "plt.legend()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "#It is a function to get the best max_depth parametor with cross-validation\n", - "def prune_max_depth(X, y, nfold=10):\n", - " cv_mean_mse = []\n", - " max_depth = []\n", - " # Num ob observations\n", - " nobs = y.shape[0]\n", - " \n", - " # Define folds indices \n", - " list_1 = [*range(0, nfold, 1)]*nobs\n", - " sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", - " foldid = [list_1[index] for index in sample]\n", - "\n", - " # Create split function(similar to R)\n", - " def split(x, f):\n", - " count = max(f) + 1\n", - " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", - "\n", - " # Split observation indices into folds \n", - " list_2 = [*range(0, nobs, 1)]\n", - " I = split(list_2, foldid)\n", - " \n", - " for i in range(1,20):\n", - " max_depth.append(i)\n", - " mse_depth = []\n", - " dtree = DecisionTreeRegressor( max_depth=i, random_state = 0)\n", - " \n", - " for b in range(0,len(I)):\n", - " \n", - " # Split data - index to keep are in mask as booleans\n", - " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", - " mask = np.array([(a in include_idx) for a in range(len(y))])\n", - " \n", - " dtree.fit(X[~mask], y[~mask])\n", - " pred = dtree.predict(X[mask])\n", - " mse_depth.append(mean_squared_error(y[mask],pred))\n", - " \n", - " mse = np.mean(mse_depth)\n", - " cv_mean_mse.append(mse)\n", - " \n", - " d1 = pd.DataFrame({'acc_depth':pd.Series(cv_mean_mse),'max_depth':pd.Series(max_depth)})\n", - " return d1" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "d1 = prune_max_depth(x_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAE+CAYAAADF8LicAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABK0UlEQVR4nO3deXzV1YH//9fJRgKBhD1ACCAgyCZLxLXWboLWKtXaunS1aqdj+2s7M0zrdKadfjszXZxO22ltrbXWbtqp1tJNC+627iwqICA7JOyBsCYhy/n9kQuyJMh2+eQmr+fjwSO5n/vJzfsQyL1555zzCTFGJEmSJEmS0iUr6QCSJEmSJKl9s3yQJEmSJElpZfkgSZIkSZLSyvJBkiRJkiSlleWDJEmSJElKK8sHSZIkSZKUVjlJBzhWvXr1ioMHD046hiRJkiRJOsScOXO2xBh7H3o848qHwYMHM3v27KRjSJIkSZKkQ4QQVrd03GUXkiRJkiQprSwfJEmSJElSWlk+SJIkSZKktMq4PR9aUl9fT0VFBbW1tUlHSYv8/HxKS0vJzc1NOookSZIkScesXZQPFRUVdO3alcGDBxNCSDrOSRVjpKqqioqKCoYMGZJ0HEmSJEmSjlm7WHZRW1tLz549213xABBCoGfPnu12VockSZIkqf1rF+UD0C6Lh33a89gkSZIkSe1fu1h2IUmSJEnquGbMq+S2mUtYV11D/+ICpk8ZwbQJA5KOpQNYPkiSJEmSMtaMeZXc+uB8auobAaisruHWB+cDWEC0Ie1m2cWxmDGvkvO//jhDvvBnzv/648yYV3nCj7lq1SpGjhzJjTfeyJgxY7j++ut59NFHOf/88xk+fDgvvvgiTz31FOPHj2f8+PFMmDCBnTt3AnDbbbdx1llnMW7cOL785S+fcBZJkiRJ6ihum7lkf/GwT019I7fNXJJQIrWkw818SGcrtmzZMu6//37uvPNOzjrrLO69917+9re/8Yc//IH/+q//orGxkdtvv53zzz+fXbt2kZ+fz6xZs1i6dCkvvvgiMUYuv/xynn76aS688MITHqskSZIktRd79jawcstuVm3Zw6qq3azYvJtVVbuprK5p8fzK6hrmrN7KuNJicrM75O/d25R2Vz585Y8LeW3djlbvn7emmr2NTQcdq6lv5J8feJX7XlzT4seM6t+NL79n9Jt+7iFDhjB27FgARo8ezTve8Q5CCIwdO5ZVq1ZxzTXX8A//8A9cf/31XHnllZSWljJr1ixmzZrFhAkTANi1axdLly61fJAkSZLU4dQ1NLKmag8rt+xuLhoOKBk27qg76Ny+3ToxpFcXOudls2dvY4uPd9UPn6NzXjZnDe7BeUN7ct7QXozq343sLDf1P9XaXfnwZg4tHt7s+LHo1KnT/vezsrL2387KyqKhoYEvfOELvPvd7+ahhx7inHPO4dFHHyXGyK233sonPvGJE/78kiRJktTW1Tc2UbGthlWpgmFfybByS/MshhjfOLdnlzwG9+rCW4b3ZkivLgzu2aX5ba/OdM5r/nH20NntAAW52fzru8+gZ2Eezy6v4tnlVXzt4cUAdMvP4ezTenLe0J6cO7Qnp/fpSpZlRNq1u/LhzWYonP/1x1ucljOguID/+8S56YoFwPLlyxk7dixjx47lueeeY/HixUyZMoV/+7d/4/rrr6ewsJDKykpyc3Pp06dPWrNIkiRJUro0NUXWba9JLZPYzcote1i5ZRerqvawduseGpreaBi65udwWq8uTBrUnasmlnJa7+aSYXCvLhQV5L7p59q3fL61q11MHdMPgE07anluRRXPLa/iuRVVPPLaRqC54DhnaKqMOK0nQ3p1IQTLiJOt3ZUPb2b6lBEttmLTp4xI++f+zne+wxNPPEF2djajRo3ikksuoVOnTixatIhzz20uPgoLC/nlL39p+SBJkiSpTYsxsmln3QEFwxuzGFZV7WFvwxuzywtysxncqwtn9OvKpWNL9s9gGNKrCz265J3wD/vTJgx40z38+nTL54rxA7hifPN5Fdv2NBcRqZkRf351PQAl3fL3z4o4d2hPSrt3PqFsahbigXNaMkB5eXmcPXv2QccWLVrEGWeccdSPkYnXgD3WMUqSJEnSkRzNz0UxRrbtqX+jWDikZDhwr4W87CzKenbeXyocWDD07dapTc8miDGyqmoPzy7fwrPLq3h+eRVVu/cCUNaj80FlRJ+u+QmnbdtCCHNijOWHHe+I5UMm6ghjlCRJknRqtLRPQqecLN5fXkrPwk7NJUPVHlZu3sWO2ob952RnBQZ2L2BwqlzYt0RiSK8u9C8uaDcbOcYYeX3jrv1lxAsrqvb/PQzrU7h/icY5p/Wke5e8hNO2La2VDx1u2YUkSZIkdXS3zVxyUPEAUNfQxC+eX0MI0L+ogMG9OnP5+P4HlQwDe3TuEJetDCEwoqQrI0q68rHzh9DYFHlt3Q6eXb6F51ZU8cCcCn7+3GpCgDNKuu2fGTF5SA+65r/5PhUdkeWDJEmSJHUgW3bVtbgJP0AAFv2/qeTnZp/aUG1cdlZgbGkRY0uL+MRbh1Lf2MSrFdU8u6x5v4ifP7+au/62svm8AUWcm9rAsnxQDwry/LuEdlQ+xBjb9BqiE5FpS2MkSZIktT0bttdy59MruPfF1a2e07+4wOLhKORmZzFpUA8mDerBp98xnNr6Ruau2bZ/88ofP72CHz65nNzswISy7pyburTn+LJiOuV0zL/fdlE+5OfnU1VVRc+ePdtdARFjpKqqivx8NzWRJEmSdOwqtu3hjqeW85uXKmiMkWnjB3B6SSHfeWRpIlcBbI/yc7M5b2gvzhvai38Edtc18NKqrfvLiP99fCnffWwp+blZlA/qsX9mxNgBReQcsowlEy+QcDTaxYaT9fX1VFRUUFtbm1Cq9MrPz6e0tJTcXNcOSZIkSTo6q7bs5vYnlvG7eZWEAO+bNJBPvnUoZT2bLx3ZXn/IbYu276nnhZXNRcTzK6pYvGEnAIWdcpg8pMf+PSNeX7+Tf5mx4LBS6GtXjs2Yr027vtqFJEmSJKnZ0o07uf2JZfzhlXXkZmdx7eQybr7wNPoXFyQdTSlbdtXx/Iqq/Zf1XLFlNwAhQEs/og8oLuCZL7z9FKc8Pl7tQpIkSZLasYXrtnP7E8t4eMEGCnKzufEtp3HjW4bQp6tLuNuaXoWduGxcfy4b1x+A9dtreG55Ff/wm1daPH9dKxuEZhLLB0mSJEnKYC+vreb7jy/l0UWb6Noph1suGsYNFwyhR5e8pKPpKPUrKuDKiaV8a9brLV6JpD3MWrF8kCRJkqQM9OLKrXzv8aX8dekWijvn8g/vOp2PnDeYogL3istU06eM4NYH57fLjUAtHyRJkiQpQ8QYeWZZFd97fCkvrNxKr8I8vnDJSD54ziAKO/njXabbt6lke9wING3/OkMIdwOXAZtijGNauP8K4KtAE9AAfDbG+Ld05ZEkSZKkTBVj5Iklm/je48uYt6aavt068aXLRnHt5DIK8rKTjqeTaNqEAe2ibDhUOquxe4DvAz9v5f7HgD/EGGMIYRzwG2BkGvNIkiRJUkZpaorMem0D33t8GQvX7WBAcQH/MW0MV5eX0inH0kGZI23lQ4zx6RDC4CPcv+uAm12AzLrmpyRJkiSlSWNT5E+vruP2J5bx+sZdDO7ZmW++bxzvnTCA3OyspONJxyzRRUEhhPcCXwP6AO9OMoskSZIkJa2+sYkZ8yr5wZPLWbllN8P7FPLda8bz7rH9yLF0UAZLtHyIMf4O+F0I4UKa9394Z0vnhRBuBm4GKCsrO3UBJUmSJOkUqGto5IE5FfzwyeVUbKthVL9u/PD6iUwZXUJWVkg6nnTC2sR2qKklGkNDCL1ijFtauP9O4E6A8vJyl2dIkiRJahdq6xu578U1/OipFWzYUcuZA4v5yuWjefvIPoRg6aD2I7HyIYQwDFie2nByIpAHVCWVR5IkSZJOld11Dfzy+dX8+K8r2bKrjslDenDb1eO4YFgvSwe1S+m81OZ9wEVArxBCBfBlIBcgxngHcBXw4RBCPVADfCDG6KwGSZIkSe3Wjtp6fvbMKn7yzEqq99TzluG9+NTbJnD2aT2TjialVTqvdnHtm9z/DeAb6fr8kiRJktRWbNu9l7ufWck9z65iZ20D7xjZh1vePoyJZd2TjiadEm1izwdJkiRJao8276zjrr+u4BfPr2bP3kYuGVPCLW8bxpgBRUlHk04pywdJkiRJOsk2bK/ljqeWc9+La6hvbOI9Z/bnlrcN4/S+XZOOJiXC8kGSJEmSTpK1W/fww6eW88DsCppi5L0TBvDJi4ZyWu/CpKNJibJ8kCRJkqQTtHLLbm5/Yhkz5lWSFQJXl5fyd28dysAenZOOJrUJlg+SJEmSdAxmzKvktplLWFddQ++unSgtLuDlimpys7P40LmDuPnC0+hXVJB0TKlNsXyQJEmSpKNQW9/Ib2av4T//vJi6hiYANu2sY9POOt4+sjffuOpMenftlHBKqW2yfJAkSZLU7sUY2bO3kR219eysbWBHTT07auvZUdPAztp6dhxybEfq2M59x2ob2JsqHFqyZMMuiwfpCCwfJEmSJKXdgUsV+hcXMH3KCKZNGHDUH9/UFNm1N1UQpMqBQ0uE5mMHlgcHntNAY1M84ufolJNFt4JcuuXn0DU/l6KCXAZ2L6BbQS5d83Polp/LbTOXtPix66prjunvQ+poLB8kSZIkpdWMeZXc+uB8auobAaisruGfH3iVVyq2cUZJ0f6ZBUeajbCrroF45O6ALnnZBxUFfbrmM6x3c5HQraD52IH37ysa9h3rlJP9pmO594U1VLZQNPQvdo8H6UgsHyRJkiSlxYbttcxZvY0vznijeNhnb2MTP31m9f7bIUBhp4NLgdLuBXTt1/XgoqCVIqFrfg452VlpH9P0KSMOKlIACnKzmT5lRNo/t5TJLB8kSZIknbD6xiZeW7eDuWu2MWf1NuatqW5xhsCBAvDXz7+NbgW5FOblkJUVTk3YE7BvqciJLCGROiLLB0mSJEnHrGpXHXPXVDNn9TbmrtnGqxXV1NY3b8jYvyifCYO68/ELhjBpUHc++cs5rNtee9hj9C8uoLR751Md/YRNmzDAskE6RpYPkiRJko6osSny+sad+4uGuau3sapqDwC52YFR/Yu4bvIgJg3qzsRBxfQrOnj/g3+eOtKlClIHZ/kgSZIk6SDba+qZt2Ybc9dUM3f1Nl5eW82uugYAehXmMbGsO9dOLmPioO6MHVBEfu6RN2p0qYIkywdJkiSpA4sxsnzz7v0zGuau2cbSTbuIEbICjCzpxnsnDGDioGImlfVgYI8CQjj2vRlcqiB1bJYPkiRJUgeyu66BVyqqU0VDNXPXbKN6Tz0ARQW5TCwr5j3j+jNpUHfGDSymsJM/Mkg6cX4nkSRJktqpGCMV22r279UwZ/U2Fq3fQVNsvn94n0KmjCrZv1fDab0KM+KKE5Iyj+WDJEmS1E7U1jeyoHL7/qJhzupqtuyqA6BLXjbjy4r51NuGMWFQdyYO7E5R59yEE0vqKCwfJEmSpDZqxrzKI27SuGF77QFFwzYWrttOfWPztIZBPTtz4fBeTBjUnUll3RlR0pVsZzVISojlgyRJktQGzZhXedDlKSura/j8b1/l6dc3sbcxMm9NNZXVNQB0ysnizNJibrhgCJPKujNxUHd6FXZKMr4kHcTyQZIkSWqDbpu5eH/xsE9dQxMPzltH/6J8JgzqzscvGMKkQd05o1838nKyEkoqSW/O8kGSJElqI5qaIvPWVjPrtQ1UVte2eE4Anr31Hac2mCSdIMsHSZIkKUF1DY08u7yKWQs38shrG9myq46crECnnCzqGpoOO79/cUECKSXpxFg+SJIkSafYjtp6nli8iVmvbeTJxZvYvbeRLnnZXDSyDxeP6stFI/rwxOJNB+35AFCQm830KSMSTC5Jx8fyQZIkSToFNmyv5ZFFG5m1cAPPr6iivjHSq7ATl48fwMWj+3Le0J50ysnef/6+q1oc6WoXkpQpLB8kSZKkNIgxsnzzLmYu3Mis1zbyytpqAIb06sINFwzh4lElTBhYTNYRLn85bcIAywZJ7YLlgyRJknSSHLhh5CMLN7Jiy24AzhxYzPQpI5gyui9DexcSQuuFgyS1R5YPkiRJ0globcPIc4f25GMXDOFdZ/SlpCg/6ZiSlKi0lQ8hhLuBy4BNMcYxLdx/PfD51M1dwCdjjK+kK48kSZJ0shzNhpFFBblJx5SkNiOdMx/uAb4P/LyV+1cCb40xbgshXALcCZydxjySJEnScTvWDSMlSW9IW/kQY3w6hDD4CPc/e8DN54HSdGWRJEmSjseyTTtPaMNISVKztrLnw8eBh5MOIUmSpI6tqSnyckU1sxZuZNZrG1ix2Q0jJelkSLx8CCG8jeby4YIjnHMzcDNAWVnZKUomSZKkjqCuoZHnllcx67XmDSM37zxgw8jz3TBSkk6GRMuHEMI44C7gkhhjVWvnxRjvpHlPCMrLy+MpiidJkqR2akdtPU8u2cyshRt4cslmdtU1NG8YOaIPF492w0hJOtkSKx9CCGXAg8CHYoyvJ5VDkiRJ7c+MeZXcNnMJ66pr6F9cwPQpIzh3aE8eea15/4bnlm9JbRiZx3vO7MfFo0o4d2hP8nPdMFKS0iGdl9q8D7gI6BVCqAC+DOQCxBjvAL4E9AR+kFoz1xBjLE9XHkmSJHUMM+ZVcuuD86mpbwSgsrqGz/3mZWJq/uzgnp254fwhXDy6L+MHdifbDSMlKe3SebWLa9/k/huBG9P1+SVJktRx7G1oYnXVbl7fuIt/+/2C/cXDPjFCt/wcfvvJ8xjWxw0jJelUS3zDSUmSJOlo7W1oYlXVbpZu3MXrG3eydNNOlm7cxcotu2loOvLWYDtrGxjet+spSipJOpDlgyRJktqcfSXD6xuby4WWSoYQoKxHZ4b36cq7RvVleN9Chvfpys0/n8267bWHPWb/4oJTPQxJUorlgyRJkhLTUsnw+sZdrDqkZBjUozPDUiXD6X27MqxPIcP6FLa4QeQ/Tx150J4PAAW52UyfMuKUjUuSdDDLB0mSJKXdgSXD6xt3sewIJcPwvl25OFUyDO9byNDeLZcMrZk2YQDAYVe72HdcknTqWT5IkiTppNnb0MTKLbv3z2BYunEnSzcdXDJk7Vsu0bcrU0b3ZXif4ysZjmTahAGWDZLUhlg+SJIkCWi+ROXRzhbYVzK8nioXWisZBvXswrA+hUwZ/cZyiZNZMkiSMoPlgyRJkpgxr/KgfRIqq2u49cH5NDQ2Mba0+KCS4fWNO1lVtYfGQ0qG4QeUDMP7dOW03l0sGSRJgOWDJEmSaN4f4cANGgFq6hv5pwde3X/7wJLhkjH99l9dwpJBkvRmLB8kSZLEuuqaVu/77jXjLRkkSSfE8kGSJEkUd85l2576w44PKC7givFu3ChJOjFZSQeQJElSsmYu3ED1nnqywsHHC3KzmT5lRDKhJEntiuWDJElSB/bYoo186t65jC8r5r/eO5YBxQUEmmc8fO3KsV6uUpJ0UrjsQpIkqYN6cskmPvnLuYzq142f3TCZbvm5XDO5LOlYkqR2yJkPkiRJHdBfl27m5l/M4fSSQn5+w9l0y89NOpIkqR2zfJAkSepgnl2+hRt/NpuhvQv5xQ1nU9TZ4kGSlF6WD5IkSR3ICyuq+Pg9sxnUszO//PhkunfJSzqSJKkDsHyQJEnqIOas3srH7nmJ/sX5/OrGc+hZ2CnpSJKkDsLyQZIkqQOYt2YbH7n7JUq65XPfTefQu6vFgyTp1LF8kCRJauderajmw3e/SM/CPO696Rz6dMtPOpIkqYOxfJAkSWrHFlRu54N3vUBx51zuu+kcSoosHiRJp57lgyRJUju1aP0OPviTF+ian8u9N55D/+KCpCNJkjooywdJkqR26PWNO7n+rhcoyM3mvpvOYWCPzklHkiR1YJYPkiRJ7cyyTbu47scvkJMVuPemcyjrafEgSUqW5YMkSVI7snLLbq778fMA3HfzOQzp1SXhRJIkWT5IkiS1G6urdnPtnc/T2BS576azGdq7MOlIkiQBlg+SJEntwtqte7juxy9Q19DIr246m+F9uyYdSZKk/XKSDiBJkqQTU1ldw7U/fp5ddQ3ce9PZjCzplnQkSZIO4swHSZKkDLZhey3X/fh5ttfU88uPn83o/kVJR5Ik6TBpKx9CCHeHEDaFEBa0cv/IEMJzIYS6EMI/pSuHJElSe7VpRy3X/vh5qnbt5ec3TGZsqcWDJKltSufMh3uAqUe4fyvw/wH/ncYMkiRJ7dLmnXVc++Pn2bSjlp/dcBYTyronHUmSpFalrXyIMT5Nc8HQ2v2bYowvAfXpyiBJktQeVe2q4/q7nmdddS0//dhkJg3qkXQkSZKOyD0fJEmSMsi23Xu5/q4XWLN1Dz/5aDmTh1g8SJLavowoH0IIN4cQZocQZm/evDnpOJIkSYnYvqeeD/7kBVZu2c1dHz6L84b2SjqSJElHJSPKhxjjnTHG8hhjee/evZOOI0mSdMptr6nnQ3e/wNKNu7jzw+VcMNziQZKUOTKifJAkSerIdtbW85G7X2TR+h3c8aGJvPV0fxkjScosOel64BDCfcBFQK8QQgXwZSAXIMZ4RwihBJgNdAOaQgifBUbFGHekK5MkSVKm2V3XwMd++hILKrfzg+sn8vaRfZOOJEnSMUtb+RBjvPZN7t8AlKbr80uSJGW6PXsb+Ng9LzFvbTXfv3YCF48uSTqSJEnHxWUXkiRJbVDN3kZu/NlsZq/aync+MJ5LxvZLOpIkScctbTMfJEmSdHxq6xu5+RezeW5FFf/z/jN5z5n9k44kSdIJceaDJElSG1LX0Mjf/XIOf1u2hW9eNY73TnCVqiQp81k+SJIktRF7G5q45VdzeXLJZr723rFcXT4w6UiSJJ0Ulg+SJEltQH1jE5++by6PLtrEV6eN4ZrJZUlHkiTppLF8kCRJSlhDYxOf/fXLzFy4kX9/zyg+dM6gpCNJknRSWT5IkiQlqLEp8g+/eYU/z1/Pv777DD56/pCkI0mSdNJZPkiSJCWksSky/f5X+MMr6/j81JHc+JbTko4kSVJaWD5IkiQloKkp8oXfvsqD8yr5x3edzicvGpp0JEmS0sbyQZIk6RRraop8ccYC7p9TwWfeMZxPv2N40pEkSUorywdJkqRTKMbIl/+wkPteXMMtbxvKZ99p8SBJav8sHyRJkk6RGCP/70+v8YvnV/OJC0/jny4eQQgh6ViSJKWd5YMkSdIpEGPkaw8v5qfPrOKG84fwhUtGWjxIkjoMywdJkqQ0izFy28wl3Pn0Cj5y7iD+7bIzLB4kSR2K5YMkSVKaffvRpfzgyeVcd3YZ/375aIsHSVKHY/kgSZKURt97bCn/+9hSPlA+kP+4YozFgySpQzrq8iGEcEEI4WOp93uHEIakL5YkSVLm++GTy/nWI69z5cQBfO3KsWRlWTxIkjqmoyofQghfBj4P3Jo6lAv8Ml2hJEmSMt1df13BN/6ymCvG9+e2951p8SBJ6tCOdubDe4HLgd0AMcZ1QNd0hZIkScpkP31mJf/x50W8e1w/vnX1mWRbPEiSOrijLR/2xhgjEAFCCF3SF0mSJClz/eK5VXzlj68xdXQJ3/nAeHKy3WJLkqScozzvNyGEHwHFIYSbgBuAH6cvliRJUmaYMa+S22YuYV11DUUFuVTX1PPOM/rwv9dOINfiQZIk4CjLhxjjf4cQ3gXsAEYAX4oxPpLWZJIkSW3cjHmV3PrgfGrqGwGorqknK8DU0SXk5Vg8SJK0z9FuONkFeDzGOJ3mGQ8FIYTctCaTJElq426buWR/8bBPU4RvP7o0oUSSJLVNR1vJPw10CiEMAB4FPgbck65QkiRJbVlTU+SvSzdTWV3T4v3rWjkuSVJHdbR7PoQY454QwseB78UYvxlCmJfOYJIkSW3N5p113D9nLb9+cS1rtu4hKzTPdDhU/+KCUx9OkqQ27KjLhxDCucD1wMeP8WMlSZIyVlNT5LkVVdz7whpmvbaB+sbI2UN68I8Xn059QxP/9vuFBy29KMjNZvqUEQkmliSp7TnaAuEzwBeAB2OMC0MIQ4DH0xdLkiQpWVt21fHAnAp+/eIaVlXtobhzLh85dzDXTC5jWJ/C/eflZGftv9pF/+ICpk8ZwbQJAxJMLklS23O05cMeoAm4NoTwQSAALUwylCRJylwxvjHLYebC5lkOkwf34LPvPJ2pY0rIz80+7GOmTRhg2SBJ0ps42vLhV8A/AQtoLiHeVAjhbuAyYFOMcUwL9wfgu8ClNJcbH40xzj3KPJIkSSfN1t17eWDOWu57cS0rt+ymqCCXD50zmOvOHsiwPl2TjidJUsY72vJhc4zxj8f42PcA3wd+3sr9lwDDU3/OBn6YeitJkpR2MUaeX7GVe19cw8wFG9jb2MRZg7vz6bcP49Kx/Vqc5SBJko7P0ZYPXw4h3AU8BtTtOxhjfLC1D4gxPh1CGHyEx7wC+HmMMQLPhxCKQwj9YozrjzKTJEnSMdu6ey8Pzq3g3hfXsGLzbrrl53Dd2WVcd3YZp/d1loMkSelwtOXDx4CRQC5vLLuIQKvlw1EYAKw94HZF6pjlgyRJOqlijLy4snmWw8Pzm2c5TBrUnW9dPYx3j3OWgyRJ6Xa05cOZMcaxJ/lzhxaOtbiJZQjhZuBmgLKyspMcQ5IktVfVe/bywJwK7ntxDcs376Zrfg7XTh7ItWeXMbKkW9LxJEnqMI62fHg+hDAqxvjaSfzcFcDAA26XAutaOjHGeCdwJ0B5eblX2ZAkSa2KMfLSqm3c9+Ia/jx/PXsbmphQVsxt7xvHZeP6U5DnLAdJkk61oy0fLgA+EkJYSfOeDwGIMcZxJ/C5/wB8KoTwa5o3mtzufg+SJOl4bd9Tz2/nNs9yWLppF1075XDNWQO5dnIZZ/RzloMkSUk62vJh6rE+cAjhPuAioFcIoQL4Ms17RhBjvAN4iObLbC6j+VKbHzvWzyFJkjq2GCNzVm/j3heaZznUNTRx5sBivnnVOC47sx+d8472pY4kSUqno3pGjjGuPtYHjjFe+yb3R+CWY31cSZKk7XvqeXBe8yyH1zfuorBTDleXl3Lt5DJG9y9KOp4kSTqEvw6QJEkZIcbI3DXV3PvCGv706rrmWQ6lRXz9yrG858z+dOnkyxpJktoqn6UlSVKbtr2mnhnzKrnvxTUs3rCTLnnZXDWplOsmlzFmgLMcJEnKBJYPkiSpzYkx8vLa5lkOf3x1HbX1TYwdUMTXUrMcCp3lIElSRvGZW5IknXIz5lVy28wlrKuuoX9xAdOnjGDahAHsqK3n9/Mq+dULzbMcOudl894JA7hu8iDGljrLQZKkTBWa933MHOXl5XH27NlJx5AkScdpxrxKbn1wPjX1jfuPdcrJYvzAIl6t2EFNfSOj+3fjurPLuPzM/nTNz00wrSRJOhYhhDkxxvJDjzvzQZIknVK3zVxyUPEAUNfQxIsrt/H+8oFcd3YZ40qLCCEklFCSJJ1slg+SJOmUWldd0+p933jfuFOYRJIknSqWD5Ik6ZTYsquOu/+2stX7+xcXnMI0kiTpVLJ8kCRJabWuuoY7n17Br19aQ11DE2eWFrFow07qGpr2n1OQm830KSMSTClJktLJ8kGSJKXFyi27uePJ5Tw4r4IYYdqEAXzyoqEM7V3Y6tUuJElS+2T5IEmSTqpF63fwgyeX8+dX15GTncW1k8u4+cLTKO3eef850yYMsGyQJKkDsXyQJEknxdw12/jBE8t4dNEmuuRlc9OFp/HxC4bQp2t+0tEkSVLCLB8kSdJxizHy7PIqbn9iGc8ur6K4cy6fe+fpfPS8wRR1zk06niRJaiMsHyRJ0jFraoo8tngTtz+xjJfXVtOnaye+eOkZXHd2GV06+fJCkiQdzFcHkiTpqDU2Rf706jp++ORyFm/YSWn3Av5j2hjeN6mU/NzspONJkqQ2yvJBkiS9qb0NTTw4t4I7nlrOqqo9DOtTyP+8/0wuP7M/OdlZSceTJEltnOWDJElq1Z69Dfz6xbX8+K8rWL+9lrEDirjjgxO5eFQJWVkh6XiSJClDWD5IkqTDbK+p55fPr+Ynf1vJ1t17mTykB1+/ahwXDu9FCJYOkiTp2Fg+SJKk/ap21XH3Myv5+bOr2VnXwEUjenPL24Zx1uAeSUeTJEkZzPJBkiSxfnsNdz69gvteXENdQxOXjCnh7y8axpgBRUlHkyRJ7YDlgyRJHdiqLbu546nl/HZuBU0Rpo0fwCcvOo1hfbomHU2SJLUjlg+SJHVAizfs4AdPLOdPr64jJzuLa84q4+YLT2Ngj85JR5MkSe2Q5YMkSR3IvDXbuP2J5Ty6aCNd8rK56S2n8fELhtCnW37S0SRJUjtm+SBJUjsXY+S55VXc/uQynllWRVFBLp9953A+et5gijvnJR1PkiR1AJYPkiS1UzFGHlu0idufXMa8NdX07tqJf7l0JNedPYjCTr4EkCRJp46vPCRJamcamyJ/nr+eHzyxjMUbdjKguICvThvD1ZNKyc/NTjqeJEnqgCwfJElqJ/Y2NPG7eRX88MnlrKraw9DeXfjW1Wdy+fj+5GZnJR1PkiR1YJYPkiRluJq9jfz6pTXc+fQK1m+vZXT/bvzw+olMGV1CVlZIOp4kSVJ6y4cQwlTgu0A2cFeM8euH3N8duBsYCtQCN8QYF6QzkyRJmWzGvEpum7mEddU1lBTlM7GsmOdXbKVq917OGtydr105lree3psQLB0kSVLbkbbyIYSQDdwOvAuoAF4KIfwhxvjaAaf9C/ByjPG9IYSRqfPfka5MkiRlshnzKrn1wfnU1DcCsH57LX+ev4GRJV354QcnMXlIj4QTSpIktSydC0AnA8tijCtijHuBXwNXHHLOKOAxgBjjYmBwCKFvGjNJkpSRdtTW85U/LtxfPBxoZ22DxYMkSWrT0rnsYgCw9oDbFcDZh5zzCnAl8LcQwmRgEFAKbExjLkmSMsL2PfXMem0DDy/YwF+Xbqa+MbZ43rrqmlOcTJIk6diks3xoabHpoa+avg58N4TwMjAfmAc0HPZAIdwM3AxQVlZ2clNKktSGbNu9l1mvbeCh+Rt4ZtkWGpoiA4oL+Oh5g5kxbx2bd9Ud9jH9iwsSSCpJknT00lk+VAADD7hdCqw78IQY4w7gYwCheWeslak/HHLencCdAOXl5S3/2keSpAy1ZVcdsxZu5OEF63l2eRWNTZGBPQr4+FuGcOmYfowrLSKEwOj+RQft+QBQkJvN9CkjEkwvSZL05tJZPrwEDA8hDAEqgWuA6w48IYRQDOxJ7QlxI/B0qpCQJKld27SzlpkLN/Lw/PU8v6KKpgiDe3bmExeexqVj+zG6f7fDrlgxbcIAgP1Xu+hfXMD0KSP2H5ckSWqr0lY+xBgbQgifAmbSfKnNu2OMC0MIf5e6/w7gDODnIYRG4DXg4+nKI0lS0jbuqOUvCzbw5/nreWnVVmKE03p34Za3DeOSMf04o1/XN71E5rQJAywbJElSxgkxZtYqhvLy8jh79uykY0iSdFTWVdfw8IINPDx/PXPWbCNGOL1vIZeM6ce7x/VjeJ/CNy0cJEmSMkUIYU6MsfzQ4+lcdiFJUoe0duse/rJgAw8tWM+8NdUAjCzpyufeeTqXji1hWJ+uyQaUJEk6xSwfJEk6CdZU7eGhBet5eP56XqnYDsDo/t2YPmUEl4wp4bTehQknlCRJSo7lQ5rNmFfpxmCS1E6t3LKbh+av5+EF61lQ2bxf8rjSIr5wyUguGVPCoJ5dEk4oSZLUNlg+pNGMeZUHXRKtsrqGWx+cD2ABIUkZatmmXTw8fz1/nr+exRt2AjChrJgvXnoGU8eUMLBH54QTSpIktT2WD2l028wlB12LHaCmvpHbZi6xfJCkDBFjZOmmXTw0fz0PzV/P6xt3AVA+qDv/dtkopo4pYUBxQcIpJUmS2jbLhzRaV11zTMclSW1DjJHFG3buLxyWb95NCHDW4B78+3tGMXVMP0qK8pOOKUmSlDEsH9Kof3EBlS0UDf2KfcEqSW1NjJGF63ak9nDYwMotu8kKcPaQnnz0vMFMGVNCn65+/5YkSToelg9pNH3KiIP2fNind2EeNXsbKcjLTiiZJHUsrW3+G2Pk1YrtqatUbGDN1j1kZwXOPa0nN73lNC4e3ZdehZ2Sji9JkpTxQowx6QzHpLy8PM6ePTvpGEft4Be8+ZQP6sEfXl3H2AFF/PjD5fTt5m/RJCmdDt38F6BTThbnDe3B6xt3U1ldQ05W4LxhvXj32BLeNaqEHl3yEkwsSZKUuUIIc2KM5Ycdt3w49R59bSOf+fU8CvNzuOvDZzG2tCjpSJLUbp3/9cdbXAIH8PaRfbhkTAnvGtWX4s4WDpIkSSeqtfIhK4kwHd07R/XlgU+eR05WFlf/6Fkenr8+6UiS1G61tslvAO7+6FlcXT7Q4kGSJCnNLB8Scka/bsy45XxG9evGJ381l+8/vpRMm4UiSW3dnNVbyc4KLd7X38tjSpIknTKWDwnq3bUT9950DtPG9+e/Z73O5/7vZWoP2ZxSknTs9uxt4Ct/XMj77niOwk455GUf/HRXkJvN9CkjEkonSZLU8Xi1i4Tl52bz7Q+MZ1ifQv571uus2bqHH32onN5d3V1dko7Hs8u38IXfzmfN1j185NxB/PPUkTzy2sYWr3YhSZKkU8MNJ9uQh+ev53O/eZmeXTrxk4+WM7KkW9KRJClj7Kyt5+sPL+ZXL6xhcM/OfOOqcZx9Ws+kY0mSJHUobjiZAS4Z24/7P3EeDU1NXPWDZ3ls0cakI0lSRnjq9c1M+fbT3PviGm68YAgPf+ZCiwdJkqQ2xPKhjRlbWsTvb7mA03oXcuPPZ/Pjp1e4EaUktWL7nnqm3/8KH7n7RTp3yuG3nzyPf71sFAV52UlHkyRJ0gHc86ENKinK5zefOJd/vP9l/vOhRSzbtIuvThtDXo5dkSTt88hrG/ni7+ZTtXsvt7xtKJ9++3Dycy0dJEmS2iLLhzaqIC+b7187kW/3fp3vPb6MVVW7ueODk+jexWvRS+rYtu7ey1f+uJDfv7yOkSVd+clHzmJsaVHSsSRJknQElg9tWFZW4B8vHsGwPoVMf+BVpv3gGX7ykbMY1qcw6WiSlIiH5q/nS79fwPaaej73ztP55EVDnRUmSZKUAXzFlgGuGD+A+246h911Dbz3B8/w9Oubk44kSafU5p11fPKXc/j7X82lX1EBf/z0BXzmncMtHiRJkjKEr9oyxKRB3Zlxy/kMKC7gY/e8xM+fW5V0JElKuxgjv5tXwbu+/RSPLd7E56eO5Hd/f56XIpYkScowLrvIIKXdO/PAJ8/jM/fN40u/X8iyTbv40mWjyMm2Q5LU/mzYXssXfzefxxZvYmJZMd9835kuO5MkScpQlg8ZprBTDnd+uJxv/mUxP3p6BSu37Ob7102kqCA36WiSdFLEGPnN7LX8x58WUd/UxL9dNoqPnjeY7KyQdDRJkiQdJ8uHDJSdFbj10jMY2ruQL86Yz5WpjSgH9+qSdDRJOiEV2/Zw64Pz+evSLZw9pAffuGqc39skSZLaAefrZ7D3nzWQX3z8bKp272XaD57h+RVVSUeSpOPS1BT5xXOrmPLtp5m7ehtfnTaG+246x+JBkiSpnbB8yHDnnNaT399yPj275PHBu17g/15ak3QkSTomq7bs5tofP8+//X4hEwd1Z+bnLuRD5wwiy2UWkiRJ7YbLLtqBQT278LtbzueWX83l87+dz7JNu/jCJWe4PlpSm9bYFPnpMyv571lLyM3O4ptXjePq8lJC8HuXJElSe5PWmQ8hhKkhhCUhhGUhhC+0cH9RCOGPIYRXQggLQwgfS2ee9qxbfi4//ehZfOTcQfz4ryu5+eez2VXXkHQsSWrRsk27uPqOZ/mPPy/i/KG9eORzb+X9Zw20eJAkSWqn0lY+hBCygduBS4BRwLUhhFGHnHYL8FqM8UzgIuBbIYS8dGVq73Kys/jKFWP46hWjefL1zbzvh89SsW1P0rEkab+GxiZ+8OQyLv3fv7Jiy26+84Hx3PWRckqK8pOOJkmSpDRK58yHycCyGOOKGONe4NfAFYecE4GuoflXXYXAVsBf15+gD507mHs+dhaV1TVMu/0Z5qzemnQkSWLxhh289wfP8s2/LOEdI/vwyOfeyrQJA5ztIEmS1AGks3wYAKw94HZF6tiBvg+cAawD5gOfiTE2pTFTh/GW4b353d+fT5dOOVx75wv8bl5F0pEkdVB7G5r4zqOv857v/Y111TX84PqJ/PCDk+jdtVPS0SRJknSKpLN8aOlXWfGQ21OAl4H+wHjg+yGEboc9UAg3hxBmhxBmb968+WTnbLeG9Slkxt+fz8RBxXzu/17htpmLaWo69EsgSekzv2I7l3//b3zn0aW8e2w/HvmHt3Lp2H5Jx5IkSdIpls7yoQIYeMDtUppnOBzoY8CDsdkyYCUw8tAHijHeGWMsjzGW9+7dO22B26PuXfL4+Q1nc81ZA7n9ieXccu9c9ux1ZYuk9Kqtb+Sbf1nMtB88w9bde/nxh8v5zjUT6NHFbX0kSZI6onReavMlYHgIYQhQCVwDXHfIOWuAdwB/DSH0BUYAK9KYqUPKy8nia1eOZVifQv7zoUWs/dEe7vrwWW7wJikt5q7Zxj8/8GrzFS0mlfKvl42iqCA36ViSJElKUNrKhxhjQwjhU8BMIBu4O8a4MITwd6n77wC+CtwTQphP8zKNz8cYt6QrU0cWQuDGt5zGab278Ol753H59//GXR8pZ1xpcdLRJLUTNXsb+dasJfzkmZX065bPz26YzFtPd7aaJEmSIMSYWXsAlJeXx9mzZycdI6Mt2bCTG+55iarddfzP+8e7/lrSCXthRRWf/+2rrKrawwfPKePzU0fSNd/ZDpIkSR1NCGFOjLH80OPp3PNBbdSIkq78/lPnM7p/EX//q7l877GlZFoJJalt2F3XwJd+v4AP3Pk8TRHuvels/mPaWIsHSZIkHSSdez6oDetV2Ilf3Xg2//LgfL71yOss27yLb1w1jvzc7KSjScoQf1u6hc//9lXWba/hhvOH8E9TTqdznk8rkiRJOpyvEjuw/NxsvvX+Mxnap5DbZi5hddUe7vzwJPp0dSNKSa3bUVvPf/15Eb9+aS2n9erC/Z84l/LBPZKOJUmSpDbMZRcdXAiBW942jDs+OJElG3Yy7fvPsGj9jqRjSWqjHl+8kYv/52l+M3stf/fWoTz0mbdYPEiSJOlNOfNBAEwd04/S7p258WezueqHz/LdaybwrlF9k44lKUEz5lVy28wlrKuuoaQonwHF+cxeXc2Ivl350YcmcebA4qQjSpIkKUM480H7jRlQxO8/dT7D+hRy8y9m86OnlrsRpdRBzZhXya0PzqeyuoYIrN9ey+zV1UwZ1Zc/fPp8iwdJkiQdE8sHHaRvt3z+7+ZzuXRsP7728GL++YFX2dvQlHQsSafYfz20iJr6xsOOL1i3g045bkwrSZKkY+OyCx2mIC+b710zgWG9C/nuY0tZvXUPd3xwEj265CUdTVKaxBhZULmDvyxcz8yFG9m0s67F89ZV15ziZJIkSWoPLB/UoqyswOfedTpD+xTyT/e/wrTbn+G6yQP5xfNrWFddQ//iAqZPGcG0CQOSjirpODU2RWav2spfFm5g1sKNVFbXkJ0VOHtIDzbvrGN7Tf1hH9O/uCCBpJIkScp0lg86osvP7M/A7gV86Ccv8PW/LNl/vLK6hlsfnA9gASFlkLqGRp5dXsXMBRt45LWNVO3eS15OFhcO78Vn3jmcd57Rlx5d8vbv+XDg0ouC3GymTxmRYHpJkiRlKssHvakJZd3p0imHXXUHr/+uqW/ktplLLB+kNm53XQNPLtnMzIUbeHzxJnbVNVDYKYe3jezD1NElvHVEbwo7Hfx0sO//9b6rXTjbSZIkSSfC8kFHZdOOltd/V1bXsHzzLob2LjzFiSQdybbde3l00UZmLtzI00s3s7ehiR5d8nj32H5MHVPCecN6vunGkdMmDLBskCRJ0klh+aCj0r+4gMpWNpp7x7eeYmJZMVeXD+Sycf3omp97itNJAtiwvZZZr21g5sINPL9iK41Nkf5F+Vw3uYypY0ooH9SdnGwvciRJkqRTL8QYk85wTMrLy+Ps2bOTjtHhtLb++9ZLR1Bb38T9sytYumkX+blZXDqmH+8rL+WcIT3JygoJppbav5VbdjNz4Qb+smADL6+tBuC03l2YOrqEqWNKGDugiBD8fyhJkqRTI4QwJ8ZYfuhxZz7oqLzZ+u+b3nIar1Rs5/7Za/nDK+t4cF4lA3sUcNXEUq6aWMrAHp2TjC+1GzFGXlu/g5kLNzJzwQaWbNwJwNgBRUyfMoIpo/syrE/XhFNKkiRJB3Pmg0662vpGZi7cwP2zK3hm+RZihPOG9uT95QOZMrqEgrwjrzOXdLCmpsjcNduaZzgs3MDarTWEAGcN7sHU0SVcPLovpd0t+CRJkpS81mY+WD4orSq27eHBuZXcP2cta7fW0LVTDped2Z+ry0uZMLDY6eBSK/Y2NPH8iipmLtzArNc2snlnHbnZgfOH9WLq6BLeOaovvQo7JR1TkiRJOojlgxLV1BR5YeVW7p+zlofnb6CmvpFhfQq5elIp7504gD5d85OOKCWuZm8jT73efEnMxxZtZEdtA53zsrloRG+mjC7hbSP70M0NXSVJktSGWT6ozdhZW89D89fzm9kVzFm9jeyswEWn9+bq8lLePrIveTnuxq+OY3tNPY8v3shfFmzgqdc3U1vfRHHnXN55Rl+mjC7hLcN7kZ/rUiVJkiRlBssHtUnLN+/igTkVPDi3go076ujRJY8rxvfn6kkDGdW/W9LxpLTYtLOWR15rLhyeW15FQ1Okb7dOTBldwpTRJUwe0oNcL4kpSZKkDGT5oDatobGJvy7bwgOzK3jktY3sbWxizIBuXD1pIFeM709x57ykI0pHZca8yhavCrOmag8zF25g5sINzFmzjRhhcM/OTBlTwtTRJZxZWuylaSVJkpTxLB+UMbbt3svvX67k/jkVLFy3g7zsLN41qi/vKy/lwuG9yfYHNLVRM+ZVcuuD86mpb9x/LCcr0KdrJ9ZtrwXgjH7dmDq6hKljSji9b6GbrkqSJKldsXxQRnpt3Q7un7OWGfMq2bannpJu+Vw5cQDvm1TKab0Lk46nk6i1GQOnWoyRvY1N7KlrZPfeBvbsbWR3XfPb5j8N7K474G19w/5zH5q/ntr6psMeMy87i+lTRjBldAllPb0kpiRJktovywdltL0NTTy2aCP3z6ngySWbaIpQPqg77y8fyKXj+lHYKSfpiDoBLc0YKMjN5mtXjj1iAdHQ2MSe+sY3ioL9hUGqLGixQGhg995G9tQ1v63Ze+jHNtLYdPTfFzvlZNGlUw6d87Kp2FbT4jkBWPn1dx/1Y0qSJEmZyvJB7camHbU8OK+S38xey4rNuynIzebSsf24uryUs4f0cBp7Bjrva4/tX5ZwoILcbM4f1mt/YVBz4KyDvY3sbTh8lkFrsrMCXfKy9xcFnfOa3+673SUvh4K8bLp0ar6vS142nTvl0CVv3/kHnJt6W5CbTc4BG0Oe//XHqaw+vIAYUFzAM194+/H95UiSJEkZxPJB7U6Mkblrqnlgzlr++Mp6dtU1UNajM++bVMpVk0oZUFyQdES1YuOOWuau3sbcNduYu6aaOau3tXruGf26HVAEvFEadO6Uvb8YOLBQOOjcTjl0zm0+Ny87K+3F1PHO4JAkSZLaC8sHtWs1exv5y8L13D+7gmeXVxECXDCsF++bVMqU0SXk52YnHbHD2tvQxMJ125m7ppq5a7Yxb/W2/bMc8rKzGDOgG69v3MmuusbDPjYTZwy0lb0rJEmSpCRYPqjDWLt1Dw/MqeCBORVUVtfQNT+Hy8/sz9XlAzmztIjfv7zOHw7TaMP22uYZDau3MW9tNfMrt+9fHtG/KJ8Jg7ozsaw7E8uKGdW/G51ysp0xIEmSJLUTiZQPIYSpwHeBbOCuGOPXD7l/OnB96mYOcAbQO8a4tbXHtHzQ0Wpqijy/oor751Tw0Pz11DU0UdKtE1t27aXhgA0F/SH3+NU1NLJw3Y79RcNBsxpyshg7oIiJZcVMKGsuHEqK8lt9LGcMSJIkSZnvlJcPIYRs4HXgXUAF8BJwbYzxtVbOfw/wuRjjEedYWz7oeOyoredPr6zny39YQH3j4f/me3TJ41c3nk1p9wK65ucmkDAzrN9ew9zV1cxb07xfw4J1O/bPahhQXMCEsmImlnVnwgGzGiRJkiR1HK2VD+m8PuFkYFmMcUUqwK+BK4AWywfgWuC+NOZRB9YtP5frzi7ji7+b3+L9W3fv5ZLv/hWA4s65DOzemYE9Cijt3pmB3Qso7dGZgd07U9q9oMPsH3HQrIbUfg3rD5jVMG5AER85d1DzEopB3enbrfVZDZIkSZI6tnSWDwOAtQfcrgDObunEEEJnYCrwqTTmkehfXNDipRB7F3bi3y8fzdpte1i7dQ9rt9WweP1OHl206bDLOfbu2omB3QsYmCok3igpOtOvOJ/cAy69mEn2zWqYm5rVsLByB3sb35jVMGnfXg2DujOqXzfycjJznJIkSZJOvXSWDy1d0661NR7vAZ5pba+HEMLNwM0AZWVlJyedOqTpU0a0uLHhF999Bu8e1++w85uaIpt31aUKiT1UbK1JFRQ1zFm9jT+9up7GA/aPyArQr6jgoEJiYI/moqK0ewF9u+aTlZXeyz0ejbqGRhZU7ti/fGLemur9sxo6pfZq+Oj5g/fv1+CsBkmSJEknIp3lQwUw8IDbpcC6Vs69hiMsuYgx3gncCc17PpysgOp49m1geLQbG2ZlBfp2y6dvt3zKB/c47P6GxibWb689pJjYQ8W2Gv66dDMbd9QddH5edhYDuhdQ2v2NQqK5oGhe3tGjSx4hnPxyYl11TeoKFNXMW3v4rIbywT2YmNqv4QxnNUiSJEk6ydK54WQOzRtOvgOopHnDyetijAsPOa8IWAkMjDHufrPHdcNJZZLa+kYqq2uo2FZz2OyJim01bN2996DzO+dlH1RIlHZPzaBIzZ7odshmmC1dIWLqmBIWrtu+f5+Guaur2bDjjVkN40qLUptCNl/uso+zGiRJkiSdJEldavNS4Ds0X2rz7hjjf4YQ/g4gxnhH6pyPAlNjjNcczWNaPqg92VXXQEVqGce+GRMHzp7YVddw0PlFBbnNSzqKO1PX0MDfllUddPWOECAL2HeotHtB8z4NZcVMHNSdkSXOapAkSZKUPomUD+lg+aCOIsbI9pr65mJi/0aYe/bPoli+ueWJQoWdcvjW+89kQlkxfbo6q0GSJEnSqZPEpTYlnYAQAsWd8yjunMfY0qLD7h/yhT+3uIPr7roGpowuSX9ASZIkSTpKzr+WMlT/4oJjOi5JkiRJSbF8kDLU9CkjKMjNPuhYQW4206eMSCiRJEmSJLXMZRdShjrWy4ZKkiRJUlIsH6QMNm3CAMsGSZIkSW2eyy4kSZIkSVJaWT5IkiRJkqS0snyQJEmSJElpZfkgSZIkSZLSyvJBkiRJkiSlleWDJEmSJElKK8sHSZIkSZKUViHGmHSGYxJC2AysTjrHcegFbEk6xEnSXsbSXsYBjqUtai/jAMfSVrWXsbSXcYBjaavay1jayzjAsbRF7WUc4FjagkExxt6HHsy48iFThRBmxxjLk85xMrSXsbSXcYBjaYvayzjAsbRV7WUs7WUc4FjaqvYylvYyDnAsbVF7GQc4lrbMZReSJEmSJCmtLB8kSZIkSVJaWT6cOncmHeAkai9jaS/jAMfSFrWXcYBjaavay1jayzjAsbRV7WUs7WUc4FjaovYyDnAsbZZ7PkiSJEmSpLRy5oMkSZIkSUory4c0CyHcHULYFEJYkHSWExFCGBhCeCKEsCiEsDCE8JmkMx2vEEJ+COHFEMIrqbF8JelMJyKEkB1CmBdC+FPSWU5ECGFVCGF+COHlEMLspPOciBBCcQjhgRDC4tT/mXOTznQ8QggjUl+PfX92hBA+m3Su4xFC+Fzq//uCEMJ9IYT8pDMdrxDCZ1LjWJhpX4+WnhNDCD1CCI+EEJam3nZPMuPRamUsV6e+Lk0hhIzZnbyVsdyW+h72agjhdyGE4gQjHpVWxvHV1BheDiHMCiH0TzLj0TrS68cQwj+FEGIIoVcS2Y5VK1+Xfw8hVB7w/HJpkhmPVmtflxDCp0MIS1L//7+ZVL6j1crX5P8O+HqsCiG8nGDEo9bKWMaHEJ7f95oyhDA5yYxHq5WxnBlCeC71GvmPIYRuSWY8UZYP6XcPMDXpECdBA/CPMcYzgHOAW0IIoxLOdLzqgLfHGM8ExgNTQwjnJBvphHwGWJR0iJPkbTHG8e3gkkLfBf4SYxwJnEmGfn1ijEtSX4/xwCRgD/C7ZFMduxDCAOD/A8pjjGOAbOCaZFMdnxDCGOAmYDLN/7YuCyEMTzbVMbmHw58TvwA8FmMcDjyWup0J7uHwsSwArgSePuVpTsw9HD6WR4AxMcZxwOvArac61HG4h8PHcVuMcVzq+9ifgC+d6lDH6R5aeP0YQhgIvAtYc6oDnYB7aPm18Lf3PcfEGB86xZmO1z0cMpYQwtuAK4BxMcbRwH8nkOtY3cMh44gxfuCA5/zfAg8mkOt43MPh/76+CXwlNZYvpW5ngns4fCx3AV+IMY6l+TXY9FMd6mSyfEizGOPTwNakc5yoGOP6GOPc1Ps7af5hakCyqY5PbLYrdTM39ScjNz8JIZQC76b5G5PagFQjfSHwE4AY494YY3WioU6OdwDLY4yrkw5ynHKAghBCDtAZWJdwnuN1BvB8jHFPjLEBeAp4b8KZjlorz4lXAD9Lvf8zYNqpzHS8WhpLjHFRjHFJQpGOWytjmZX6NwbwPFB6yoMdo1bGseOAm13IkOf7I7x+/Dbwz2TIOKD9vBaGVsfySeDrMca61DmbTnmwY3Skr0kIIQDvB+47paGOUytjicC+GQJFZMhzfitjGcEbhfYjwFWnNNRJZvmgYxZCGAxMAF5IOMpxSy1VeBnYBDwSY8zUsXyH5hchTQnnOBkiMCuEMCeEcHPSYU7AacBm4Kep5TB3hRC6JB3qJLiGDHkhcqgYYyXNv4laA6wHtscYZyWb6rgtAC4MIfQMIXQGLgUGJpzpRPWNMa6H5qIb6JNwHh3uBuDhpEMcrxDCf4YQ1gLXkzkzHw4TQrgcqIwxvpJ0lpPkU6klMXdnynKrVpwOvCWE8EII4akQwllJBzpBbwE2xhiXJh3kBHwWuC31//6/yYyZW61ZAFyeev9qMvw53/JBxySEUEjzVKzPHvLbhIwSY2xMTcUqBSanpjJnlBDCZcCmGOOcpLOcJOfHGCcCl9C8rOfCpAMdpxxgIvDDGOMEYDeZM428RSGEPJqf+O5POsvxSL2ovQIYAvQHuoQQPphsquMTY1wEfIPm3378BXiF5mVxUlqEEL5I87+xXyWd5XjFGL8YYxxI8xg+lXSe45EqG79IBpcnh/ghMJTm5a/rgW8lmubE5ADdaV6WPB34TWr2QKa6lgz9ZcMBPgl8LvX//nOkZqNmqBtofl08B+gK7E04zwmxfNBRCyHk0lw8/CrGmCnrwI4oNR3+STJzX47zgctDCKuAXwNvDyH8MtlIxy/GuC71dhPNa9oyYnOgFlQAFQfMpnmA5jIik10CzI0xbkw6yHF6J7Ayxrg5xlhP8zrW8xLOdNxijD+JMU6MMV5I8/TMTP7tFMDGEEI/gNTbNj9luaMIIXwEuAy4PraPa7PfS+ZOWR5Kc4H6Sup5vxSYG0IoSTTVcYoxbkz9IqgJ+DGZ+5wPzc/7D6aW9b5I82zUjNgM9FCppYlXAv+XdJYT9BHe2LPifjL431eMcXGM8eIY4ySaS6HlSWc6EZYPOiqpBvcnwKIY4/8knedEhBB679u1O4RQQPMPJosTDXUcYoy3xhhLY4yDaZ4S/3iMMSN/mxtC6BJC6LrvfeBimqeZZZwY4wZgbQhhROrQO4DXEox0MmT6b0HWAOeEEDqnvpe9gwzdBBQghNAn9baM5heJmfy1AfgDzS8USb39fYJZlBJCmAp8Hrg8xrgn6TzH65ANWS8nA5/vAWKM82OMfWKMg1PP+xXAxNRzTsbZVzimvJcMfc5PmQG8HSCEcDqQB2xJMtAJeCewOMZYkXSQE7QOeGvq/beTwSX9Ac/5WcC/Anckm+jE5CQdoL0LIdwHXAT0CiFUAF+OMWbi1J/zgQ8B8w+49M6/ZNDuxAfqB/wshJBNcwH3mxhjRl+msh3oC/wuNUsxB7g3xviXZCOdkE8Dv0otV1gBfCzhPMctNdX3XcAnks5yvGKML4QQHgDm0jx9fB5wZ7KpTshvQwg9gXrglhjjtqQDHa2WnhOBr9M8TfnjNBdFVyeX8Oi1MpatwPeA3sCfQwgvxxinJJfy6LQylluBTsAjqe/Nz8cY/y6xkEehlXFcmiqDm4DVQJsewz7t6PVja1+Xi0II42ne72kVGfIc08pY7gbuTl0ecS/wkbY+U+gI/74ybn+nVr4mNwHfTc3kqAUyYi+xVsZSGEK4JXXKg8BPE4p3UoQ2/n9DkiRJkiRlOJddSJIkSZKktLJ8kCRJkiRJaWX5IEmSJEmS0sryQZIkSZIkpZXlgyRJkiRJSivLB0mSJEmSlFaWD5IkqU0IIawKIfQ6zo/9aAih/8l4LEmSdPJZPkiSpPbgo0D/NztJkiQlw/JBkiQdJIQwOISwOIRwVwhhQQjhVyGEd4YQngkhLA0hTE79eTaEMC/1dkTqY/8hhHB36v2xqY/v3Mrn6RlCmJV6jB8B4YD7PhhCeDGE8HII4UchhOzU8V0hhG+FEOaGEB4LIfQOIbwPKAd+lTq/IPUwn06dNz+EMDKdf2eSJOnILB8kSVJLhgHfBcYBI4HrgAuAfwL+BVgMXBhjnAB8Cfiv1Md9BxgWQngv8FPgEzHGPa18ji8Df0s9xh+AMoAQwhnAB4DzY4zjgUbg+tTHdAHmxhgnAk8BX44xPgDMBq6PMY6PMdakzt2SOu+HqdySJCkhOUkHkCRJbdLKGON8gBDCQuCxGGMMIcwHBgNFwM9CCMOBCOQCxBibQggfBV4FfhRjfOYIn+NC4MrUx/05hLAtdfwdwCTgpRACQAGwKXVfE/B/qfd/CTx4hMffd9+cfZ9HkiQlw/JBkiS1pO6A95sOuN1E8+uHrwJPxBjfG0IYDDx5wPnDgV0c3R4MsYVjAfhZjPHW4/z4ffZlbsTXPJIkJcplF5Ik6XgUAZWp9z+672AIoYjm5RoXAj1T+zG05mlSyylCCJcA3VPHHwPeF0Lok7qvRwhhUOq+LGDfY14H/C31/k6g6wmMR5IkpZHlgyRJOh7fBL4WQngGyD7g+LeBH8QYXwc+Dnx9X4nQgq8AF4YQ5gIXA2sAYoyvAf8KzAohvAo8AvRLfcxuYHQIYQ7wduD/pY7fA9xxyIaTkiSpjQgxHmm2oiRJUtsRQtgVYyxMOockSTo2znyQJEmSJElp5cwHSZKUViGEjwGfOeTwMzHGW5LII0mSTj3LB0mSJEmSlFYuu5AkSZIkSWll+SBJkiRJktLK8kGSJEmSJKWV5YMkSZIkSUorywdJkiRJkpRW/z89oVqxcgfqqAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# visualizing changes in parameters\n", - "plt.figure(figsize=(18,5))\n", - "plt.plot('max_depth','acc_depth', data=d1, label='mse', marker=\"o\")\n", - "plt.xticks(np.arange(1,20))\n", - "\n", - "plt.xlabel('max_depth')\n", - "plt.ylabel('mse')\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following code retrieves the optimal parameter and prunes the tree. Here, instead of choosing the parameter that minimizes the mean-squared-error, we're following another common heuristic: we will choose the most regularized model whose error is within one standard error of the minimum error." - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "# We get the best parameters\n", - "best_max_depth = d1[d1[\"acc_depth\"] == np.min(d1[\"acc_depth\"])].iloc[0,1]\n", - "best_ccp = d2[d2[\"acc_gini\"] == np.min(d2[\"acc_gini\"])].iloc[0,1]\n", - "\n", - "# Prune the tree\n", - "dt = DecisionTreeRegressor(max_depth=best_max_depth , ccp_alpha= best_ccp , random_state=0)\n", - "tree1 = dt.fit(x_train,y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Plotting the pruned tree. See also the package [rpart.plot](http://www.milbo.org/rpart-plot/prp.pdf) for more advanced plotting capabilities.\n", - "```{r}" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[Text(0.65, 0.9, 'NUNIT2 <= 3.5\\nsquared_error = 1.01\\nsamples = 20108\\nvalue = 11.812'),\n", - " Text(0.4, 0.7, 'UNITSF <= 2436.5\\nsquared_error = 0.823\\nsamples = 19378\\nvalue = 11.884'),\n", - " Text(0.2, 0.5, 'BATHS <= 1.5\\nsquared_error = 0.698\\nsamples = 13909\\nvalue = 11.68'),\n", - " Text(0.1, 0.3, 'KITCH <= 0.5\\nsquared_error = 0.782\\nsamples = 5112\\nvalue = 11.38'),\n", - " Text(0.05, 0.1, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.15, 0.1, 'squared_error = 0.757\\nsamples = 5111\\nvalue = 11.382'),\n", - " Text(0.3, 0.3, 'UNITSF <= 1692.0\\nsquared_error = 0.567\\nsamples = 8797\\nvalue = 11.854'),\n", - " Text(0.25, 0.1, 'squared_error = 0.533\\nsamples = 3227\\nvalue = 11.684'),\n", - " Text(0.35, 0.1, 'squared_error = 0.56\\nsamples = 5570\\nvalue = 11.953'),\n", - " Text(0.6, 0.5, 'BATHS <= 2.5\\nsquared_error = 0.768\\nsamples = 5469\\nvalue = 12.402'),\n", - " Text(0.5, 0.3, 'BATHS <= 1.5\\nsquared_error = 0.739\\nsamples = 2839\\nvalue = 12.156'),\n", - " Text(0.45, 0.1, 'squared_error = 1.112\\nsamples = 328\\nvalue = 11.625'),\n", - " Text(0.55, 0.1, 'squared_error = 0.649\\nsamples = 2511\\nvalue = 12.225'),\n", - " Text(0.7, 0.3, 'UNITSF <= 3999.0\\nsquared_error = 0.664\\nsamples = 2630\\nvalue = 12.667'),\n", - " Text(0.65, 0.1, 'squared_error = 0.538\\nsamples = 1645\\nvalue = 12.495'),\n", - " Text(0.75, 0.1, 'squared_error = 0.742\\nsamples = 985\\nvalue = 12.954'),\n", - " Text(0.9, 0.7, 'MOBILTYP <= 1.5\\nsquared_error = 2.186\\nsamples = 730\\nvalue = 9.901'),\n", - " Text(0.85, 0.5, 'UNITSF <= 15977.5\\nsquared_error = 2.4\\nsamples = 417\\nvalue = 9.372'),\n", - " Text(0.8, 0.3, 'squared_error = 2.194\\nsamples = 416\\nvalue = 9.394'),\n", - " Text(0.9, 0.3, 'squared_error = -0.0\\nsamples = 1\\nvalue = 0.0'),\n", - " Text(0.95, 0.5, 'squared_error = 1.031\\nsamples = 313\\nvalue = 10.606')]" - ] - }, - "execution_count": 121, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABYEAAAN0CAYAAADiQOclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3SUVf7H8c+d9F4paUAghN57BxWxIKAoVmzYde2igmVXxbWXdW1rL4gFFfnZC01Aeu8dAoSWBAjpmbm/PyYOhIReJuX9OsezM0+5z/cZ9xyffObO9xprrQAAAAAAAAAAVZPD2wUAAAAAAAAAAE4dQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqzNfbBQAAAABAZWGM6RYR5PfvnILiTsUu6+/tenD6+fmY/CA/n0l784sftNYu8nY9AAAcDWOt9XYNAAAAAFDhGWM6BPv7THr6wmbB/ZrVUkSQr4wx3i4Lp5G1Vhn7CjVuQbqe/nHl3rwiZ1tr7Vpv1wUAwJHQDgIAAAAAjkJYoO/9w/ulBl3aIVGRwX4EwNWQMUaxYQG6oUc9De2SFBTg67jJ2zUBAHA0CIEBAAAA4Oj06N0oluQXkqQzGtfwC/b36evtOgAAOBqEwAAAAABwFFwu6x/sz7IqcAvx95WVgrxdBwAAR4MnGAAAAADwsg6jJsrpspr+UC8F+vlIkl74ZZXS9+TrxSEtNX1Nhu77arH+erh3qfO6/HuSXrykhbqmxOiuzxfqq7lb9Ps93dU0PlySypzXYdRE/feKVvp67hZ9PW+rJKmw2CWHMfL1cU9yHtw2Xpd2SNQzP63S4i175OfjUN+mNfXEgKYKDTz9f0L+d8JaffTXJu3OLVJEkK+u6VpX/zijQbnHTl+ToYvfnqmgks9Qkj65vr26psSc9LroBgIAqEwIgQEAAACgAsgvcuqTGZt0Y4/k4x4jMshPz/+6Wh9c2+6wxz13cQs9d3ELSdJdny9UvdgQ3XNWimf/hBU7dW23uuqdGiuny+ofYxbqqR9W6JnBzY+pHpfLKiuvSDEh/sd+MyXOb1lb13Sto7BAP23bk69L/zdLTWqH6aymNcs9vm50cJmwHACA6o52EAAAAABQAdzcK1n/nbBOeUXO4x7jsg6JmrkuU4s27zmhWs5oXEPnt6itkABfhQf56cpOSZq7cfdRn78pI1fP/bxKHUZN1A+Ltp1QLcmxIQoL9PO8dxhpQ0buCY0JAEB1w0xgAAAAAKgAOteP1rQ1Gfpo2kbd0rv+cY0RFuSnG3sm64VfVuvjYe1PWm2zN2QptXboYY8pKHbqp8XbNWZWmhZv2asBreL03rVt1TopUpK0OStPZ7745yHP/3hYe3VKji5330fTN+qJ71cot9CpOtFBuqBV7UOOs3V3vpo//rvCAn11YZt43ds3Rb4+zH8CAFRvhMAAAAAAUEE80C9V1384V1d3qXPcY9zYvZ46TpmoBZt2n5SaZq7P1Kcz0vR//+hyyGOe+WmlPpmRpubxYbqsY5I+al7L09v4b4lRQVr51NnHVcM1Xevq6i51tDw9Wz8v2a6wgPL/lE2pGarf7+uuBrEhWrsrRzd/Ml+Bfg7deWZKuccDAFBd8HUoAAAAAFQQHepFqXlCuN6ftrHUdh8foyKnq8zxRU6XZ0G3v4UG+urW3vX13C+rT7ieZVv36oaP5un1K1srpeahZwKv3Zkja62axYeraVxYmQD4ZDDGqGl8uIL8ffTib2vKPaZmeIAa1gyVw2HUsGao7j0rRT8t2X7SawEAoLJhJjAAAAAAVCDD+6Xqqvfm6JJ2CZ5t8RFB2rWvUAXFTgX4ugPW/CKndmYXKiEqqMwYw7rV1f+mrNecjVnHXce6nTm64t3ZempQU53RuMZhj33n6rbalJGrMbM364p3ZqtGWIAu65CoQW3iFRns7ue7OStPvZ6fcsgxRt/QQZ3rl98O4kBOl9X6XTlHdQ/GYY58EAAA1QAhMAAAAABUIG3qRKptnQh9OWezzm1eS5KUFB2kZvHhevanVbq/X6ok6dmfV6plYrgSIsuGwMEBvrqtd329NmGtIoL8yuw/kq278zTk7Zm656wUDWwdf1Tn1IkJ1oPnpOqBsxtq4sqdGjNrs0b9uFIvXtJCA1rHKTEqSGuf7nfMtXw2M039mtdSdLCfFm3Zqw+mbdTtfcrvmTx9TYbqxgYrITJI63fl6JXf1ui8lofuHwwAQHVBCAwAAAAAFcwD/VLV75Vppba9PbSNHv1umTqOmihJ6pgcpbeGtjnkGNd2q6u3Jq8/ruuPmbVZW3bn64nvV+iJ71dIcvf0nfxAzyOe63AYndmkps5sUlO79hVob17xcdXwt+lrMzTqx5XKL3KqVniAhnapo+u61fXsbzDiF88s4kWb9+j2zxZoT16xYkP9dVHbeN1xiMAYAIDqxFhrvV0DAAAAAFR4oQG+uybe3zMmKbrszFtUP3M3Zumq9+asyMopbOLtWgAAOBIWhgMAAAAAAACAKowQGAAAAAAAAACqMEJgAAAAAAAAAKjCCIEBAAAAAAAAoAojBAYAAACAauK+LxfphV9WebsMAABwmvl6uwAAAAAAAE7U8vS9+uf45VqQtkfhQX6aPbLPYY+fuHKnRn67VNv2FKhbSrReuayVYkL8JUnjF6Tr7SnrtWTLXg1qE6dXL2t1Om4BAIBThpnAAAAAAFAJWWvldFmv1lDsdB3VtkNxuqysPTn34Ofj0IVt4vWvAU2OeOyu7ALd8sl8/WtAEy3511mKCvbXw18v8eyPDPbTrb2SNbRLnZNSGwAA3sZMYAAAAAA4Di6X1WPjl+mbeVvldFnViw3Wp8M6qEZYgBak7dZ9Xy7Wpsw8DWgdp427cnVJ+wRd2iFRL/yySul78vXikJaSpJnrM3XHZws9M1f/88cafTojTZm5hUqODdGoQU3VMTlaknTX5wsVGuCr1Tv2afaGLP14Z1c5jNGIb5dq6da9iosI1JMDm6p7w1hJ0oZdObrz80Valr5X3VNiFeR3dPOAPpmxSW9PXq+MfYXqlhKj5y9prqhgf6Vl5qrLM5P19IXN9PJvq9WubpQa1w7V2p05KnZZTVixU29e2Vp1Y4I1/OslWpGerToxwXpyYFN1ru++h4vemKFO9aM1ccVOLU/P1tJ/naXQwBP/0zSlZqhSaoZq5vrMIx7745LtapUUob5Na0mSHuiXqm7PTlJOQbFCAnzVM9X9+a3emaPs/KITrg0AAG8jBAYAAACA4zBp1S7N3pClmSN6K8TfV0vT9yrQz6HCYpeGfThPd57ZQFd0StInf23SF7M365L2CUc1bv0aIfrhzq6KDvHX+9M26JZPF2jmiN7y83EHuN/O36rPbuygFgkRyi0sVu/n/9RjFzRW/5ZxmrEuUzd+PE9/PthLMSH+um30AnVvGKuxt3TShBU7ddMn83TnGQ0Oe/0fFm/Tu39u0KfD2is+MkiPj1+mkd8u1RtXtpHknr27eMse/fVwb1lJr09Yq5+WbNcH17XT21e1UU5hsc56aapu6FFPY2/ppF+WbNc178/RXw/3VnRJu4VxJfcQHxkoP0fZYLrRI78esr5/X9RMF7U9us/yUFZt36cmcWGe90nRQQry89G6XTlqkRBxQmMDAFAREQIDAAAAwHHw8zHKKXBqzY4ctU6K8ISH09dmyMdhdE3XupKk67vX0xuT1h31uP1bxnle39gjWS/+ulobM3KVUjNUknRei9pqnRQpSZqwYqdSaoVqYOt4SVK3lBi1rROpSSt3qmO9aC1Lz9Y3t3WWv69D5zSvpbZ1Io94/dEz0nTXmQ1ULzZEknTf2Q3V7smJcl2+v23DfX0bKtDPx/O+U/1o9WlUQ5K0dGu2XNZduyT1bxWnd6Zu0B8rduqSdu7w9rKOiUouGb88K586+4h1nojcwmLFRwSW2hYW6KucAucpvS4AAN5CCAwAAAAAx6FHw1gN7VJHD4xdrB3ZBRrcNkEjzmukHXsLFBdZOmBMiAo66nHHzErT25PXa+uefBlJ2QXFyswp9OyPP2DszVl5mrE2s9TM2SKnVdcGMdqRna+YEP9SYW3iUdSxOStPw79eooe/WerZZoy0a5+7BoeRah8UoCYcUNP2vfmlavz7utv35B9wD0f/eZwKwf6+yi4oLrVtX0GxQgJ8DnEGAACVGyEwAAAAABynm3sm6+aeydqyO09XvTtbjWuHKSk6SOm780sdt/WA98H+vsor2j/jdGd2ged1WmauRn67TF/f2kmtEiPkcBg1fvRXHbh0mjHG8zouIlC9UmP18bD2ZWpLy8xTZk6h8oucniB4y+581YsJPuw9xUUGavg5DUvNSD6wvgOv76npgNe1wgNL3a8kbcnKU++SmcIHH1+eBiN+OeS+5y5ursEn2A4itVaofliU7nm/OStPuYVO1T/M7GQAACozQmAAAAAAOA4L0nZLVmqeEK7QAF/5+jjkcBi1rxulYpfVx39t0uUdEzV6RprSD5gF2zQ+TG9PWa9te/Ll5+vQO39u8OzLLXTKGCkmxF9Oa/XaH2uVnV9c9uIl+jatqVE/rtT3C9N1TvNaclqruRt3q15MsJKig9Sodphe+X2N7ju7oSau2Km5G7PUrUH0Ye/ryo5J+s8fa9UkLkwNaoQqI6dQczZkqV+zWkf1ubStEykj6f2pG3R1lzr6ZdkOLU/P1pmNaxzx3L+tfbrfUR/7N2utCopdKip2yVqr/CKnHMbI37dsz+HzmtfSqB9W6I/lO9Q1JUYv/LJK5zSrpZAA95/ITpdVkdMlp9Mlp8s9lq/DyNfn6BbWAwCgoiEEBgAAAIDjkJ1frMe+W6ZNmXkK9vfRgFZxuqhNvHwcRu9d01b3fbVYT3y/XANbx6tz8v7gtVdqrM5uVlM9n5+i2uGBurJzkt4tCYIb1Q7TdV3rqu/LUxXg59Cw7vUO2zohLNBPn93QQY+NX67hXy+RMUatEiP03MXNJUlvXNlad32+UO/8uUE9Gsbq/Ba1j3hfA1rHKbugWNd9ME9b9+QpOthfg9rEH3UI7O/r0IfXtdND3yzVMz+vUt3oYH1wbTvPonCnyuasPHV8epLnffLDv6hL/Wh9c1tnSVKv56fozjMbaHDbBMWGBejNq9po5LdLtW1vvro1iNErl7X0nDt27hbd/cUiz/uv523VfX1TdH+/1FN6DwAAnCrGWnvkowAAAACgmgsN8N018f6eMUnRx97PdsjbMzW4bYIu7ZB4CiqDN8zdmKWr3puzIiunsIm3awEA4Ej4LQsAAAAAAAAAVGG0gwAAAACAaub1iWv10m9rymy/olOSnhzY1AsVAQCAU4kQGAAAAABOsS9v7uTtEkq5vU8D3d6ngbfLAAAApwntIAAAAAAAAACgCiMEBgAAAIBq4K7PF+rl38u2gAAAAFUf7SAAAAAAAKfN6xPX6ovZW7R1T55qhQXorjNTNKRDomf/grTduv+rxVq7M0ctEiL0n8taql5siCRp2poMPf/LKi3avFetkyL0zW2dS419uHOzcgs1fOwSTVuTIR+HUf+WtfXkwKby9WFuFACg6uO/dgAAAACA08bI6M2rWmvlk2frzava6J//t1zzNu6WJBUUOzXsw3m6pmtdLX+ir7o0iNatoxd4zg3299HVXero7rPK9jM+0rkv/LJaeYVOzRnZRxPv76E5G3brkxmbTvHdAgBQMTATGAAAAABOMZfL6rHxy/TNvK1yuqzqxQbr02EdVCMsQP/5Y40+nZGmzNxCJceGaNSgpuqYHC3J3cIhLNBXK7ft07xNu9WlfrReuaylRnyzVBNX7lKLhHC9e01bRYf4Ky0zV12emaxRg5rqhV9Xy9/XoQf7pZaaZXugn5Zs0/O/rNbW3XlqlRihFy5pqaToIOUVOXXvF4s0ceVOGRk1rBWqcbd1lsNhTspncVuf+p7XLRMj1KVBtOZuylLbupGavjZT/r4ODe1cR5J091kpemfKBq3duU8NaoSqTZ1ItakTqbFzt5QZ90jnpmXm6ZzmtRQc4KvgAF/1aVxDq7bvOyn3BABARUcIDAAAAACn2KRVuzR7Q5ZmjuitEH9fLU3fq0A/9w8z69cI0Q93dlV0iL/en7ZBt3y6QDNH9JZfSZuC/1u4TV/e3FEJkUG64L/TNej1GXrhkhb67xWtNfT9OXpv6gY90C9VkuR0Wc3btFuzRvbRki17dfk7s9S2bqRSaoaWqmdB2m6N+GapPh7WXk1qh+nNyet1+2cLNP6OLvpy9mblFjo1/7Ez5ecwmrtpt0w5+e/mrDyd+eKfh7znj4e1V6eSMPtQCotdWpC2R9d0qStJWrV9n5rEhXn2B/n5qH6NYK3c5g5yD+dI5w7tkqRPZ6RpYOs45RW6NGHFDt13dsPDjgkAQFVBCAwAAAAAp5ifj1FOgVNrduSodVKEWiREePb1bxnneX1jj2S9+OtqbczI9QS3F7SqrUa13eHmmY1ravWOfepc3x2unte8liau3FXqWvef3VBBfj7qUC9K/ZrV0g+Lt+muM1NKHTNm1mZd262up47be9fXq3+sUfqefPn5OJSVW6RNGblqVDvskEFuYlSQVj519gl9Lo99t0wpNUPVo2GMJCmnoFhhgaX/TA0L9FNOofOIYx3p3Gbx4copcKrxo7/JZaWL2sbrnGa1Tqh+AAAqC0JgAAAAADjFejSM1dAudfTA2MXakV2gwW0TNOK8RvLzcWjMrDS9PXm9tu7Jl5GUXVCszJxCz7kxoQGe14F+DsWG+h/w3ke5hcWlrhUfGXTA60Dt2FtQpp7NWXn6as4WvTFxnWeb02mVvjtfF7dL0OasPF3/4VwVFLt0dZc6uvOgEPlkeOm31Zq1IUvf3tZZpmSqcUiAr7LzS9/Pvvxihfj7HHG8I5170yfz1bZOpD65ob0Kily6/6vFevrHlRp5fuOTdEcAAFRchMAAAAAAcBrc3DNZN/dM1pbdebrq3dlqXDtMXRtEa+S3y/T1rZ3UKjFCDodR40d/lT2B62zdnaek6OCS1/lqWLNsG4W4iEAN79dQt/SuX2afJA0/J1XDz0nV6h37NPjNGWpfN0pdU2JKHbM5K0+9np9yyDpG39DBM2P5YO/8uV5fzdmi727vooggP8/21Fqh+mj6Rs/7vCKn1u3KUaPah28FcTTnLtuarVcubakgPx8F+fno0g4JevbnVYTAAIBqgRAYAAAAAE6xBWm7JSs1TwhXaICvfH0ccjiMcgudMkaKCfGX01q99sfaMrNZj9VLv63Rvy9qpmVbs/XL0u1lWkFI0hUdk3TLp/PVNSVGLRLClZ1frCmrdql/qzhNW5Oh2FB/NawZqrAAX/k6HOUuCpcYFaS1T/c75vq+nL1Zb0xcp+9u76Ka4QGl9nVtEK2CIpc+m5mmwe3i9Z8/1iq1VqinH7DLZVXodKnY6ZLLWuUXOeXjMPLzcRzx3NZJERo9M00PnZuqomKrr+ZsUePaYWXqAwCgKiIEBgAAAIBTLDu/WI99t0ybMvMU7O+jAa3idFGbePk4jK7rWld9X56qAD+HhnWvV6qdw7HycRi1TopQh1ET5e/j0JMDmyq1VtlZtG3rRuqJgU1131eLtTEjV6EBvurZMEb9W8Vp+958PTB2sbbvLVB4oK+GdqlzyBm9x+OFX1crI6dQfQ5YVO7OMxvorjNTFODro/eubav7vlyskd8uVYvECL15ZWvPcTPWZWrwWzM975Mf/kVD2ifo1ctaHfHcly9tqRHfLlWbJyZIkro2iNE/L2hy0u4LAICKzFh7Ij80AgAAAIDqITTAd9fE+3vGJEUff0h7KqVl5qrLM5O1+blzvV1KtTB3Y5auem/OiqycQpJkAECF5/B2AQAAAAAAAACAU4cQGAAAAAAAAACqMEJgAAAAAKgCkqKDaQUBAADKRQgMAAAAAAAAAFUYITAAAAAAVFIXvTFDY+du8XYZAACggvP1dgEAAAAAgMqvsNilW0fP1/xNe5S+J1+zRvRWUnSwZ//4Bel6e8p6LdmyV4PaxOnVy1odcqyCYqdGfrtMPy/ZLpe16t0oVs8Obq6wQD9J0rM/r9IPi7Zpzc59enlIS13aIdFz7hezN+vdqRu0YVeuIoJ8dV23urq9T4NTd+MAAFQCzAQGAAAAAJwUnetH652r28jHYcrsiwz20629kjW0S50jjvPB1I1atHmPJg/vqdkj+2h3brFe/m2NZ39ybLCeGNhE7etGlTk3v8ippy9spmVPnKWxt3TSJzPSNH5B+ondGAAAlRwhMAAAAAB40Uu/rdYdny0otW3oe7P1wbQNkqRHxi1Vmyf+UOojv2rQ639p5bbscsd54ZdVuu/LRZ73M9dnqsOoiZ73W3fn6doP5qjpY7+p6zOTNG7+1pN6H/6+Dt3YI1ntyglmJalnaqz6t4pTTKj/EcdKy8pTn8Y1FBPir5AAX53bopZWbd/n2T+kfaJ6N6qhQL+yf9Je07WuOtSLkp+PQ/ViQ3ROs1qaszHr+G8MAIAqgHYQAAAAAOBFF7aJV79Xpim/yKlAPx/tzi3S1DUZemlIS0lS2zqReqBfqoL8fPT0jyt19xeL9NNd3Y7pGi6X1TXvz9XgtvF65+q2Wr19n4a8PUtN48OVWiu0zPFD35utWevLD04vbBOvZwY3P/YbPQaXtE/Qv/5vhXZmFyjA16EfFm3TmU1qHNdYszdk6YpOSSe5QgAAKhdCYAAAAADwouTYENWLCdaEFTt1Xova+mnJNnWsF6UaYQGSpIvaJniOvbdviho/9pvyipwK8vM56mssSNuj3MJi3dK7viSpaXy4LmhVWz8u3qbUWilljv9kWIcTvKsTkxwbohqh/mr5rz/kMFKX+jG6+ijaSBzs9YlrlVtYrMFt409BlQAAVB6EwAAAAADgZYNax2v8wnSd16K2vluQroGt94eW//ljjb6YvVk79xXKSLJW2p1bpKCIow+BN2flaVNmnho98qtnW7HL6tL2iYc5y3se+nqJjDFa+WRf+fo4NOqHFbrr80V666o2Rz3Gl3M26/1pG/Xd7V0UeAyBOQAAVREhMAAAAAB42cA2cXrp99VKy8zTrPVZnrBz+toMfTBto768pZNSaoQoO79YjR79TdbaMmME+/sqr8jpeb8zu8DzOi4yUCk1QzTx/p5HVc8V78zWzPWZ5e4b3DZez13c4lhu75gtS8/WPwc0UXiQnyRpaOc6Gvj6X0d9/g+Lt+mpH1Zo7C2dlRgVdKrKBACg0iAEBgAAAAAvS4gMUtO4cN375SJ1T4lRZLA7/MwtcMrHYRQd4q/8Ypee/XnVIcdoGh+mt6es17Y9+fLzdeidPzd49rVJipAxRu9P3aArOyfJYYyWbt2rYH/fcnsCf3bj8bWDKCh26u98uqDY5elzLElOl1WR0yWn0yWnyyq/yClfh5GvT9nF3VonReirOZvVsV6UfH2MRs9KU+O4MM/+opIxXC736/wip/x9HHI4jKas2qUHvlqsz27oUO69AQBQHRECAwAAAEAFMKh1nEaOW6b/XtHKs61P4xrq2iBGnZ+epPBAXz3Qr+Ehz++VGquzm9VUz+enqHZ4oK7snKR3S4JgXx+HPhnWXo9/t1wv/75GxU6rJnFhemJg05N6D92fnaLNWXmSpB7PTZEkpb9wniRp7NwtuvuLRZ5jv563Vff1TdH9/VK1OStPvZ6foskP9FRiVJAe7d9YI79dpo5PT5LT5VLrpEi9XLJQniTd/9VifTlniyRp2toMPTB2ib6+pZO6psTo1T/WaG9+sQa/NdNz/OmYvQwAQEVmyvsZEQAAAACgtNAA310T7+8ZkxRNewFIczdm6ar35qzIyils4u1aAAA4krK/uwEAAAAAAAAAVBmEwAAAAAAAAABQhRECAwAAAMBRMMYU5hYWe7sMVBA5BU4ZKd/bdQAAcDQIgQEAAADgKBij6VPXZLCoCiRJk1ftKsotdP7h7ToAADgahMAAAAAAcBSy84tfePrHlXnfzt+q3EKnt8uBl2TnF+mTGZv0wbSNBQXFrv95ux4AAI6GsZYvsgEAAADgcIwx/pKulfREWIBvYE5hcZgxhj+mqqkgP0fOvgJnpqQRkr601vKtAACgQiMEBgAAAIBDKAl/r5M77Fsu6V/W2r+MMQ5J/l4tDt5SUPK/Z0n6l6QoSU9K+oIwGABQURECAwAAAMBBjDEB2h/+LpU7/J3h3apQ0RhjjNxh8D8lxcgdBn9OGAwAqGgIgQEAAACgxEHh7xK5w9+Z3q0KFV1JGHym3GFwrAiDAQAVDCEwAAAAgGqvJPy9XtLDIvzFcSoJg8+Qu01EDe0Pg4u9WhgAoNojBAYAAABQbZWEv8MkPSRpsdzh7yzvVoXK7oAw+J+Sakp6StIYwmAAgLcQAgMAAACodg4Ifx+WtEiEvzgFSsLgPnKHwbXlnhlMGAwAOO0IgQEAAABUG8aYQO2f+btQ7vB3tnerQlVXEgb3lrtNRJzcYfBnhMEAgNOFEBgAAABAlXdQ+LtA0hOEvzjdDgiD/ykpXoTBAIDThBAYAAAAQJVVEv7eIHf4O1/umb9zvFsVIBljess9Mzhe7p7BowmDAQCnCiEwAAAAgCqnJPy9UdKDkubJPfOX8BcVTkkY/E9JiXKHwZ8SBgMATjZCYAAAAABVxgHh70OS5sgd/s71blXAkZWEwY9LShJhMADgJCMEBgAAAFDpGWOCtH/mL+EvKi1jTC+5w+C62h8GF3m3KgBAZUcIDAAAAKDSKgl/b5I0XNJsucPfed6tCjhxB4XBoyR9QhgMADheDm8XAAAAAADHyhgTZIy5S9JaSX0kXWCtHUQAjKrCWjvZWnuGpOskXSlppTHmemOMn5dLAwBUQoTAAAAAACqNkvD3brnD396Szif8RVVmrZ1irT1T0jWSrpA7DB5GGAwAOBaEwAAAAAAqvIPC356SzrPWXmitne/dyoDTw1r7p7X2LLnD4MtFGAwAOAaEwAAAAAAqLGNMsDHmHknrtD/8vchau8C7lQHecUAYfLWkyyStMsbcYIzx93JpAIAKjBAYAAAAQIVTEv7eK/fM3+6SziH8Bfaz1k611vaVNFTSpXKHwTcSBgMAykMIDAAAAKDCOCj87Sqpn7V2sLV2oZdLAyqkA8LgKyVdIsJgAEA5CIEBAAAAeJ0xJsQYc59Kh78XW2sXebk0oFKw1k6z1p4t9+JxF8sdBt9EGAwAkAiBAQAAAHhRSfh7v9zhb2cR/gInxFo73VrbT+4weLDcYfDNhMEAUL0RAgMAAAA47Q4KfztJ6mutvYTwFzg5DgiDL5d0oaTVhMEAUH0RAgMAAAA4bUrC3wfkDn87an/4u9jLpQFVkrX2L2vtOXIvHjdI0hpjzC3GmADvVgYAOJ0IgQEAAACccgeFv+0lnWWtHUL4C5we1toZ1tpzJQ2RNFDumcGEwQBQTRACAwAAADhljDGhxpjhktZpf/h7qbV2iZdLA6qlA8LgSyQNkDsMvpUwGACqNkJgAAAAACddSfj7oNwzf9tKOoPwF6g4rLUzrbXnyR0GXyB3m4jbCIMBoGoiBAYAAABw0hwU/raW1Mdae5m1dql3KwNQngPC4MGSzhdhMABUSYTAAAAAAE6YMSbMGPOQ3G0fWssd/l5urV3m3coAHA1r7Sxr7flyh8HnyR0G326MCfRyaQCAk4AQGAAAAMBxKwl/H5Z75m9LSb0Jf4HKqyQM7i/pIknnyh0G30EYDACVGyEwAAAAgGN2UPjbQlIva+0VhL9A1WCtnV0SBl8oqZ8IgwGgUiMEBgAAAHDUjDHhxpgRcoe/zbU//F3u5dIAnAIlYfAFkgZJOlvSWmPMPwiDAaByIQQGAAAAcEQHhL9rJDWV1NNaeyXhL1A9WGvnWGsHSBogqa8IgwGgUiEEBgAAAHBIJeHvSLln/v4d/l5lrV3h5dIAeIG1du4BYfBZcofBdxpjgrxcGgDgMAiBAQAAAJRREv4+Inf421hSd8JfAH8rCYMHyh0Gnyl3GHwXYTAAVEyEwAAAAAA8jDERB4S/qZK6WWuHWmtXerk0ABXQAWFwf0l9RBgMABUSITAAAACAv8PfR+Xu+ft3+Hu1tXaVl0sDUAlYa+dZawdJOl9Sb7nD4LsJgwGgYiAEBgAAAKqxg8LfFBH+AjgB1tr51toL5Q6De8kdBt9jjAn2cmkAUK0RAgMAAADVkDEm0hjzmPaHv12ttdcQ/gI4GQ4Ig8+T1EOEwQDgVYTAAAAAQDVSEv4+Lnf4W1/7w9/VXi4NQBVkrV1grb1I0jmSussdBt9LGAwApxchMAAAAFANHBT+1pPU2Vp7LeEvgNPBWrvQWjtY7jC4mwiDAeC0IgQGAAAAqrCS8PefKh3+XmetXePVwgBUSweEwf0kdZU7DL7PGBPi5dIAoEojBAYAAACqIGNMlDHmX3KHv3UkdSL8BVBRWGsXWWsvljsM7ix3GHw/YTAAnBqEwAAAAEAVckD4u1pSotzh7/XW2rVeLg0AyigJgy+R1FdSJxEGA8ApQQgMAAAAVAEl4e8T2h/+drTWDiP8BVAZWGsXHxAGd5Q7DH6AMBgATg5CYAAAAKASM8ZEG2OelDv8jdf+8Hedl0sDgGNWEgYPkTsM7iB3GDzcGBPq5dIAoFIjBAYAAAAqoYPC39qSOlhrbyD8BVAVHBAGnyWpnQiDAeCEEAIDAAAAlUhJ+PuU9oe/7a21N1pr13u5NAA46ay1S6y1l0o6Q1JbucPgBwmDAeDYEAIDAAAAlYAxJuaA8LempHaEvwCqC2vtUmvtZXKHwW1EGAwAx4QQGAAAAKjASsLfUZJWaX/4e5O1doN3KwOA0++AMLiPpNaS1hljHjLGhHm3MgCo2AiBAQAAgArIGBNrjHla7vA3VoS/AOBhrV1mrb1cUm9JLeWeGfwwYTAAlI8QGAAAAKhADgh/V0qKltTWWnsz4S8AlFUSBl8hqZekFiIMBoByEQIDAAAAFUBJ+PtvlQ5/b7HWbvRyaQBQ4Vlrlx8QBjeXOwweYYwJ93JpAFAhEAIDAAAAXmSMqWGMeUbu8DdSUhvCXwA4PiVh8JWSekpqKmmNMWYkYTCA6o4QGAAAAPCCA8LfFZLC5Q5/b7XWbvJyaQBQ6VlrV1hrr5I7DG4i98xgwmAA1RYhMAAAAHAalYS/z8o98/fv8Pc2wl8AOPkOCIO7S2osdxj8CGEwgOqGEBgAAAA4DYwxNY0xz8k98zdUUivCXwA4Pay1K621Q+UOgxvJHQY/aoyJ8HJpAHBaEAIDAAAAp9BB4W+IpNbW2tuttWleLg0Aqp0DwuBukhrK3TOYMBhAlUcIDAAAAJwCJeHv83KHv8GSWhL+AkDFYK1dZa29Wu4wOEXumcGPEQYDqKoIgQEAAICT6KDwN1Du8PcOa+1mL5cGADhISRh8jaQukhpofxgc6d3KAODkIgQGAAAATgJjTC1jzAsqHf7+g/AXACo+a+3qA8Lg+nK3iXicMBhAVUEIDAAAAJwAY0xtY8yLkpZL8pfUgvAXACqnkjD4WkmdJdWTOwz+J2EwgMqOEBgAAAA4DgeEv8sk+Upqbq2901q7xculAQBOkLV2jbX2OrnD4LoiDAZQyRECAwAAAMegJPx9SaXD37ustVu9XBoA4CQ7IAzuJKmO3GHwv4wxUV4uDQCOCSEwAAAAcBSMMXHGmJflDn8dIvwFgGrDWrvWWnu93GFwoqTVxpgnCIMBVBaEwAAAAMBhHBD+LpVk5A5/7yb8BYDqpyQMHiapo6QEuWcGP2GMifZyaQBwWITAAAAAQDlKwt9X5A5/JakZ4S8AQJKstetKwuAOkuLlnhn8JGEwgIqKEBgAAAA4wEHhr0vu8Pcea226dysDAFQ0JWHwDXKHwXEiDAZQQRECAwAAAJKMMfHGmFe1P/xtaq29l/AXAHAkB4TB7SXVljsMfsoYE+Pl0gBAEiEwAAAAqjljTIIx5j+Slkgq1v7wd5uXSwMAVDLW2vXW2hsltZNUU9IqY8wowmAA3kYIDAAAgGrpgPB3saRCSU2stfcR/gIATpS1doO19ia5w+AaIgwG4GWEwAAAAKhWSsLf11Q6/L3fWrvdy6UBAKqYg8LgWLnD4KeNMbFeLg1ANUMIDAAAgGrBGJNojPmv3OFvvgh/AQCnSUkYfLOktpKiJa00xvybMBjA6UIIDAAAgCrtgPB3kaQ8ucPfBwh/AQCnm7V2o7X2FrnD4CgRBgM4TQiBAQAAUCUZY5KMMa/LHf7mSmpM+AsAqAgOCIPbSIqUOwx+xhhTw7uVAaiqCIEBAABQpRwQ/i6QtE/u8He4tXaHdysDAKA0a+0ma+2tcofB4ZJWEAYDOBUIgQEAAFAllIS/b6h0+Psg4S8AoKIrCYNv0/4weKUx5lnCYAAnCyEwAAAAKjVjTB1jzJuSFkraq/3h704vlwYAwDE5IAxuJSlU7jD4OWNMTS+XBqCSIwQGAABApXRA+Dtf0m5Jqdbahwh/AQCVnbU2zVp7u9xhcIjcbSIIgwEcN0JgAAAAVCrGmLrGmLe0P/xtZK192Fq7y7uVAQBwch0QBreUFCx3GPw8YTCAY0UIDAAAgEqhJPx9W9I8SZki/AUAVBPW2s3W2jvkDoMD5Q6DXzDG1PJyaQAqCUJgAAAAVGgHhb+75G77MILwFwBQ3ZSEwf+QOwwOkLScMBjA0SAEBgAAQIVkjKlnjPmfSoe/I621GV4uDQAArzogDG4hyV/uMPhFY0xtL5cGoIIiBAYAAECFckD4O1fSDhH+AgBQLmvtFmvtnZKaS/KVtIwwGEB5CIEBAABQIRhjko0x76h0+PsI4S8AAIdnrd1qrb1LpcPglwiDAfyNEBgAAABeVRL+vitpjqRtkhoS/gIAcOwOCoMdcofBLxtj4rxcGgAvIwQGAACAVxhj6peEv7MlbZU7/H3UWpvp5dIAAKjUSsLguyU1K9m0lDAYqN4IgQEAAHBalYS/72l/+JtqrX2M8BcAgJPLWpturb1HpcPgVwiDgeqHEBgAAACnhTGmgTHmfUmzJG2WlEL4CwDAqXdQGOySOwx+1RgT7+XSAJwmhMAAAAA4pQ4If2dK2iR324fHrbVZXi4NAIBqpSQMvldSU0lOSUsIg4HqgRAYAAAAp4QxJsUY84FKh7//JPwFAMC7rLXbDgiDi+UOg/9jjEnwcmkAThFCYAAAAJxUJeHvh5JmSNogd9sHwl8AACqYkjD4PklNJBVKWmyMeY0wGKh6CIEBAABwUhwU/q6XO/z9l7V2t1cLAwAAh2Wt3W6tvV/uMLhAhMFAlUMIDAAAgBNijGlojPlI7vB3nQh/AQColA4Kg/PlDoP/a4xJ9HJpAE4QITAAAACOywHh73RJayQ1sNY+QfgLAEDlVhIGPyCpsaRcSYsIg4HKjRAYAAAAx8QYk2qM+Vj7w98Ua+2T1to9Xi4NAACcRNbaHdba4SodBr9ujEnycmkAjhEhMAAAAI6KMaaRMeYTSdMkrRLhLwAA1cJBYfA+SQuNMW8QBgOVByEwAAAADuuA8HeqpBVyt314ivAXAIDqpSQMflBSI0l7JS0gDAYqB0JgAAAAlKsk/P1UpcPfUdbavV4uDQAAeJG1dqe19iG5ZwbvlXtm8JvGmDpeLg3AIRACAwAAoBRjTGNjzGhJf0paJsJfAABQjgPC4FRJuyXNN8a8ZYyp693KAByMEBgAAACSSoW/UyQtlbvn79OEvwAA4HCstbustQ/L3SYiS9I8wmCgYiEEBgAAqOaMMU2MMZ/JHf4ukXvmL+EvAAA4JgeFwZlyh8FvEwYD3kcIDAAAUA0YYwLL2fZ3+DtZ0iK5w99/W2uzT3uBAACgyigJg0fI3SZilw4TBpf3jALg5CMEBgAAqOKMMTdI+uqA902NMWNUOvx9hvAXAACcTNbaDGvtSJUOg/9njKl3wGF/GmP6e6VAoBox1lpv1wAAAIBTxBjTUtIfknpI8pH0qKQ+kl6S9AbBLwAAOF2MMTGS7pF0q6RvJD0tKb7kdQdr7SYvlgdUaYTAAAAAVZQxJkzSHEnvSWord/j7otzh7z5v1gYAAKovY0y03GHwbXIHwLsk9ZLUy1pb5M3agKqKEBgAAKAKMsYYSd9LaiwpVIS/AACggjkoDM6R9LO19ibvVgVUTYTAAAAAVZAxZpCkbyUVSco7YNdMa+3ZXikKAACghDFmkaS/F4ozkoIk+UpqZq1d5rXCgCqKEBgAgEqqZKZnoNx9XoED5VlrnSXtIA5eCLjAWpvvjaIAAAD+ZowJluR30GantXafMcZX7udc4EDFPMceP19vFwAAAI6NMSY4JMDnpUA/x+VFThviY+Tydk2oOKwkl8s6IoP9Zkq6x1o7y9s1AQAAHMxam3vwNmPMWZEhgc87jGnp4zBOY7xRGSoqp8s6QgL9dkt6L7egeKS1ttjbNVUmzAQGAKCSCQ/ym9AjJabLI+c3CkyODfF2OaiAcgqKNX5hukaOW7Yvr8jV3lq70ts1AQAAHI4xpmtooN9vr17fO/js1nUV6Me8RZRmrdWKLVl68NM/c5dsyvh6b27B1d6uqTI5+OeBAACgAjPGpEjq/PZVrQmAcUghAb66vGOSru9WLzDQ13GLt+sBAAA4kvAg//tHDu4YNKBDAwJglMsYoyaJ0Rp917nBhUXOIcaYSG/XVJkQAgMAULl07JwcVezrw3/CcWS9UmN8g/x9enu7DgAAgCOx1nbp0SSBBhA4orAgfzWMi8yX1NrbtVQm/AUJAEDlEhAS4Mt/v3FUgv19ZFlUBQAAVAIuK7/ggIPXiQPKFxLoJ/Gce0yYXw8AQDUT98BPmjuyt+Ijgzzb7vtqseIiAnX/2Q31xezNuvvLxRo1qKmu71a33PPu+nyR6sUGq050kIZ/vVSS5HRZFbus/s6oE6OCNPn+Hvpx8Ta98OsapWXlKsDXR62SIvT2la0VGuiruz5fpHELturAmc1f3NhB7etFnaZPQyooduqhb5ZqyuoM7c0rUqNaYXpiYBO1rRNZ5tj7xy7R6JlppT6/Gz+ZrxnrMpVf5FRSVLAePjdVfZvW9JyzY2+BRoxbqsmrdsnPx6HLOyTq0f6Ny60l7oGfFOTno78XQbm9d33d2zflpN8zAABAVdf2/k+1c2+elr16jcKC/CVJTpdLLe/9VBnZedr23s2eY8fNWqNXvp+vddv3KDzYXwM7NNDIwR31dyh9x7sT9O3MNfL1ccjH4VDTxGg9N7SHmibFSJKeGzdbWzNz9Mr1vbVp1151fHCMZ/yxf63SfR9NcV/faVXscinAz0eSlBQTJn9fH13du4mu7dPMU89jn0/Xpl3Z+vCOfmp7/6falZ0vY6TQQH8N7FBfT1zWVaf7l4HjZq3RW78s0uJNu3RhpxT994YzDnnsmKkrdM8Hkz33KUmTnxiiejXDT0epOARCYAAAUEZUsJ/+M2GtruiYqMADHt4ONrhtgga3TZAkfTF7s76et1Vf3tzRs3/dzhzd+9VifXhtO3VKjtLe/GL9umxHqTHuPitF95x1/EFnTkGxjDEK9j90nYfjdFklRQXpu9s6Kz4iUGPnbdHQ9+do9og+pcacv2m31uzYV+b8+/umKDk2RP6+Ds3ftFuXvjNbMx7qpegQ9x8b1344V10bROuVR86Qn6/Rup1lFsIuZerwHqUCegAAAByf+OhQjZ+9Tlf2dH8BP3npFoUF+SkjO89zzJfTV2nE6Kl6bVgfndmyjrZk7tNd70/Sda//qs/vOU+m5Nv5ey9op/sGtJPT5dKL4+fqrvcn6bfHBx+xhou7pOriLqmS3OHo2L9W6+sHLvDsX7hhpy554Xud07qeakeFaNHGXfpi2ipNfuKS/TXed746p8Zp7bbdGvDMeDWMi9J1ZzQrc61DKSx2Kq+wWBHBAUd9zsGiQgJ12zmtNGNVuvbmFR7x+G6N40vdJ7yPn5MCAIAymseHK6VGiD76a9MJjbN06141qBGizvWjZYxRRJCfLmmXoNDAE/8eeu7GLN331WK1fWqi0rIOH6weTrC/r+7t21CJUUFyOIyGtE+UtdL6XTmeY1wuq5HjlumpgU3LnN+odpj8S2Y/G2NUVOzStj35kqQ/VuzUrn2FGnFuI4UG+irA10dN4sKOu1YAAAAcvUu6NNTYv1Z53n81fZUuKQlkJfcz3pNfzdDwQR10bttk+fv6KLlmhN65ta+mr9iqycs2lxnTx+HQwA4NtGbb7pNSY6t6NXRFj8Z6aPRUuVxW9304WSMHd1TtqLKLQDeoHanOqbW1YkvmUY29YkumHhkzTS3v+URz1m4/oTp7NUvUgA4NFBPGZIXKipnAAACgXA/0a6gbP56voZ3rHPcs2xYJ4Vq6NVtP/bBCZzapqdZJEQo6zMziI8nIKdTYuVs0ZtZm5Rc5NaR9oibc110JJTNnv5m/VQ9/s/SQ5698su8Rr7F6xz7lFTpVNzrYs+3jGZvUMjFCzRPK/wnbbZ8t0I+Lt6ug2KUzGtfwBL0LNu1W/RohumPMQk1atUsNa4Xq34Oaqmn8oX8Kd95rf0mSujWI0b8GNFZs6PHP2AAAAKjOujaO1+g/V2hr5j5FhARo8rLNuvP8Nnr+uzmSpLXbd2vb7lyd26ZeqfNqRQSrXYNa+nPZVvVullRqX1GxU9/OWqv2DWqdtDqHD2qvXo9+pWv/+4uCAnw1tFeTco9bk75bM1Zt00MXdjjkWPvyCvXtrLUaPWW50jL2aUjXhvq/EQPVMM7dbm3GqnRd+cpPhzx/8pOXKDHmxCctzFm7Xal3fKDY8CBd26eZburb4oTHxIkhBAYAAOXqlBytJnFh+nD6Rt3Wu/5xjVEvNkRf3tRRb01Zr9EfzlNBsUtXdErUP/s39vQx+88fa/XW5PWSpITIIE24r3uZcbLzi3T/2CWavGqXzmpSU6MGNVXXBtGen+f97aI28bqoTfxx1SpJuYVO/WPMIt11VgPPbOVd+wr09pQN+vHOLoc8740rWqvY6dLUNRlaszPHU1f63gJNXrVLr17aQq9c2lIfz9ik6z6ap6nDe8qvnD5u397aSe3qRmpvfrEeGbdMd4xZpM9vPPRDPgAAAA7NYYwu7JSir2esVq3IEPVulqiQA36RlpHt/vVWzYjgMufWCA9S5r79bSNe+X6e3vh5ofKLihXo56sP7jj7pNUZHOCnp6/spitf/UnTR11W5hn3spd/lI8xigoN0KXdUnVlj/LXl7jr/Un6cd56dW0Up3suaKuzWtaRj6P0M2fn1DitfeP6k1Z7ebo2itefTw1RYnSYFm7YqWv++4tiwwJ1UeeGp/S6ODxCYAAAqhkfh1Gxy5baVuS08vUxZY4d3q+hrvlgnq7pUue4r9cxOUodk6NkrdW0tZm68eP5algz1DPmnWc2OGJP4CKn1fL0bMWE+Kt5fLhSa4WWeTg+UYXFLt3w8Tyl1grVXWc08Gwf9eNK3dKznqKC/Q97vq+PQ70b1dB70zYqOSZYZzapqUA/h+pEB2lI+0RJ0g3d6+ml39Zo7c4cNa5ddoZF5/rRkqSYEH89NaipWvzrD+UWFivYn0c2AACA4zGka6pufut31YwI1q39WpXaFx0aKEnasSdXSbGln8127s1Tndj9v966u39b3Tegnay1mrl6m6585Sd999AANa8Te1LqbJQQJYcxSomLLLPv83vOU+fUuCOOsXxzhoL8fdU8KVZNEqPLBMCnS90a+z+3NvVr6ua+LfTDvPWEwF7GXxQAAFQz8RGB2pyVpzoHtDvYlJmrHg1jyhzbrm6UWiVF6L1pG0/4usYYdU+JUbeUaK3cln1M50aH+GvKAz01Z0OWxszerJ7P/6mOyVEa0j5BfZvU9PTk/XreFg3/+tDtINaOKn/GhtNldfuYhfL3ceilS5qXCpinrsnUb8t26sXf1ni2nf3KdL08pIX6Nq1Z7ljrM9w9ihvXDtPvBy2EJ0lHE187Sg6y9vDHAQAA4NAaJ0TL4TBasSVTvZolaEvm/oV+U2pHqlZksH6av6FUu4Ide3I1d+123XV+mzLjGWPUOTVO9WtFaPLSzSctBD4Zfn1ssJalZWj0nyvU74lv1DghWpd1b6T+7esrJMBPkvTXqnRd9tIPhxxj2qhLT0o7iAM5HCd38gaODyEwAADVzIBWtfXy72uVUiNU0SF++mnJdq3Ylq0+jcp/gH3g7Ia64t3Zx3WtmesztW5njs5uVksxIf5auHmPZqzL0mP9y/8J25G0rxel9vWi9MSAJhq/MF1vT16v4V8v0Y//6Kq6McEa3DZBg9smHPO4D4xdoox9hfrshvaeNhV/++nOLnK59r9v9eQEjbmxvVJrhWrH3gLN2pClMxrHyt/HoR+XbNf0tZkacW4jSdJ5zWvpie9X6Ot5WzSodbw+mbFJEUF+ql+j7EIfK7dlq9hl1bh2mPYVFOvR75are4MYhQTwuAYAAHAi3rmlrwqKnWVmxjocRiMHd9SjY6YrKSZUZ7asoy2Z+3TX+5PUqWFt9W6WWO54c9Zu16qtWWqUEH3Ia+YXFZd6H+B7/OtiHIumSTEadUU3PT6ks36ct16jp6zQiNHT9Nk956pTwzh1SY3TxrduOOZxnS6XipwuOV0uuVxW+UXF8nU4yjw7S9IfizepVd0aig0P0qKNu/T2r4s1cnDHk3F7OAH8VQEAQDVzb9+GeubnVTr3tenal1+shjVD9dF17Q65AFnrpAh1rBelX8qZ0XokEUF++mHxdj3140rlF7lUMyxAN/SoqyHtjz2oPVBIgK8u75ikyzsmafWOfQoPOv5HmrSsPI2ZvVmBvg41++cfnu2jh7VX5/rR5X4uMSH+JQ/yxXpn6gbd+9ViGUn1YoP1xhWtPAvIRYf464Nr2uqhb5fqwW+Wqll8uD64tq2nH/AV785Wp+Ro3XVmA+3cV6gHv16i9D0FCg3wUfeGMfrv5a3KXBsAAADHprwWC3+7vHtjBfj66JlvZ+umt35XWJC/BnZsoEcu7lTq12Ev/d9c/efH+ZKkmuHBGj6ovc5qWX7LNKfLKummd0ttm/nM5Sd+I8fA39dHgzqmaFDHFG3OyJY5qt+iHdqX01fpzvcmed5/9ddqPTCwnYYP6qDNGdnqNvILzyziyUs36453Jii3oFi1o0J0S7+WuqRr6gneEU6UsfzGEACASsMYc92g1nGvvXll67JTSYGDzN2Ypaven7siK6ew/CWmAQAAKojQQP9dfz41JObg3rxAefo/PW7PzNXbLrPW/uztWioL73SIBgAAAAAAAACcFoTAAAAAAAAAAFCFEQIDAAAAAAAAQBVGCAwAAAAAAAAAVRghMAAAOO3u+2qxXvh1tbfLAAAAAE6au9+fpOfGzfZ2GUC5fL1dAAAAQFXz34lr9dbkDSp2uTSkfaL+2b+xHA5T7rHvTt2gtyav1978YjWNC9OzFzVTo9ruVbH/+X/L9fOS7dqVU6i60cEacW6qzmxSU5K0ZMte3fPlIqVl5clhjDolR+uZi5qqVnjgabtPAAAAVA9jpq7QO78t0fodexQZEqDrz2imf5zXptxjC4uduumt3zVv3Q6lZ+Vo7vNXqE5suGf/pl17dd+HUzRv3Q4FBfjqml5N9cCg9p79+/IK9ciY6fph3nq5XFZntayjt28565TfY1VHCAwAAE6ItVYuK/kcIuQ8HYqdLvn6OI647VCcLiuHkYw58Xv4Y/kOvT9to/7vjs4KDfDVkP/N0sczNunarnXLHLsgbY+e+XmVxt/WWY1qh+ml39bori8W6+e7ukqSQgN8NfqGDkqOCdaU1bt006cLNOHe7kqMClJCVKDev7adEiMDVeS0ev7X1Xrku+V6Z2j5D+MAAAA4eu5nXCsfh/d+RH/iz7guOYw5Kc+4BUVOPXNVd7VJrqHNmfs05IUflBQbpkEdU8o9vktqnO44t7X6Pz2uzL6HP52mxJhQjb77XG3bnaP+T3+nVsk1dHYr9/Pyne9PUqCfj2Y9c7nCgvy1fEvmCdcPQmAAACo9l8vqsfHL9c38rXK6rOrFBuvT69urRliAFqTt0X1fLdamzFwNaBWnjRm5uqRdgi7tkKgXfl2t9D35evGSFpKkmeszdceYRZo9orck6T8T1urTGWnKzC1UcmyIRg1sqo7JUZKkuz5fpNBAX63evk+zN2bpx390lcNII8Yt09KtexUXEagnBzZV95QYSdKGXTm68/NFWrYtW91TYhTk53NU9/bJjE16e8oGZewrVLeUaD1/cXNFBfsrLTNXXZ6doqcHNdXLv69Ru7qRalw7TGt35qjYZTVhxU69eWUr1Y0O1vBvlmpFerbqxATryQFN1Ll+tCTpojdnqlNylCau3KXl6Xu19J9nKTTwxB+Nxs7bqqGd6yg5NkSSdGuvZH0yI63cEHhzVp6a1g5T03j3zIiL2sbrzcnrPfvvP7uh53XvRjVULyZYS7bsVWJUkKKC/RUV7N5n5ZIx0oaM3BOuHwAAoCJwuaxGjpmmb2asUbHTpeRaEfrs7nNVMyJYC9bv0N0fTNbGnXs1qGMDbdixV0O6pery7o313LjZ2pqZo1eu7y1JmrEqXbf97w/Ne+EqSdIr38/TJ5OXK2NfvurXjNC/r+qmTg3jJEl3vDtBoYH+Wp2epdlrtuvnRy6Uw2H00KdTtWTTLsVHhWrUFd3Uo2mCJGn9jj26/Z0JWrY5Uz2bJCjQ/+ieJT+etExv/LJQGdn56t4kQS9d01NRoYHatGuvOj44Rs9e1UMvjJ+j9im11SQhSmu27VGx06U/Fm/S/245S3VrhOv+j6Zo+eZM1a0RrlFXdlOXVPc9DHzmO3VOjdOExWlatjlDK/9zrUKD/E/438e1fZp5XifXjNC5betpztrt5YbA/r4+uvnsloccK21Xtm7s21z+vj6qExuuLqlxWrU1S2e3qquVWzI1cUmaFr801FN3izqxJ1w/CIEBAKj0Jq3apdkbszTz4V4K8ffV0vS9CvRzqLDYpWEfzdOdZ9TXFZ2S9MmMNH0xZ4suaZdwVOPWjw3RD//oougQf70/baNuGT1fMx/uLb+SmQffzt+qz27ooBYJ4cotLFbvF6bqsf6N1b9lbc1Yl6kbP5mvP4f3VEyIv277bKG6N4zR2Fs6acKKnbrp0/m684wGh73+D4u36d2pG/Xp9e0UHxmkx8cv18hvl+mNK1tLcs/eXbxlr/56qJespNcnrtNPS7brg2vb6u0rWyunsFhnvTxNN3Svp7E3d9QvS7frmg/m6q+Heik6xP1AOW5Buj67ob3iIwPlV84sj0aP/nbI+v59UTNd1Ca+zPZV2/dpUOs4z/umceFauX1fuWP0So3RaxPXatHmPWoaF6av5m5Rr9TyH3Kzcgu1dmeOUmuFerbtzStSh6cnKbugWD7G6OUhLQ5ZLwAAQGUycWmaZq/ZrjnPXaGQAD8tSctQkL+vCouduua1X3R3/7a6qmdjfTRpucZMXakh3VKPatwGtSP10yMXKiYsUO/+vkQ3vvm75j53hfx83ZMUvp25Rl/ce55a1I1VbkGxuo/8Qv+8tIsGdKivv1ama9gbv2n605cqJixIt7z9h3o0SdC4Bwfoj0WbNOyN33R3/8P/Kuv7Oev0v98Wa8w95ykhOlSPjJmuhz6d6ml34HRZLdq4U7Ofu0LWSq/9OF8/zl2vj+88R+/e2lc5BUXq8/hXuvGsFvp2+AX6af4GXfXKT5r93BWKDnW3Bftm5hp9ce/5SogO9Ty7l/oMbnv/kPU9N7SHBndpeMj9f5u1epuu7NnkiMeV5/ozm2nczLXqnBqn9KwczVqzTbf2c4fG89fvVJ3YMD39zSx9PWONEqJD9eTlXdSt8dH9DYNDIwQGAKCS8/Mxyilwas2OHLVOilCLhAhJ0vS1GfJxGF1TMgP1+m519cakdUc9bv+WtT2vb+xRTy/+tlobM3KVUtMdQp7XorZaJ7mvNWHFLqXUDNHAkvCzW0qM2taJ1KSVO9UxOVrL0rP1za2d5O/r0DnNa6ltncgjXn/0zDTddWYD1SuZUXvf2Slq99REuVzWc8x9fVMUeMCs4k7JUerTqIYkaenWbLmsu3b3/cTpnakb9ceKnZ4g/LIOiZ4Zu+VZ+WTfI9Z5sJyCYoUdMKM4PMhXOQXF5R4b4u+rc5rV0vmv/SUrqVZ4gL6+uWOZ45wuq7s+X6RBreNUv8b+esOD/LTyyb7ak1ekMbM2K6Xmoe8FAACgMvHzcWhffqFWp2epTXJNtazr/qJ82oqt8vVx6Loz3DNTbziruV7/ecFRj3tB+/qe1zef3VLPfzdHG3dmKyUuUpJ0frtktU52r8Hw+6JNSo2P0oWd3LNduzdJUNv6NTVxSZo6NYzT0k0Z+u6hAfL39dG5bZPVrkGtI17/kynLdU//tkqu6X6OHj6wvVrd90mpZ9wHBrZXoN/+58kujeJ0RoskSdKStAy5XNYz03ZAhwb632+L9fuiTRrS1R2EX9GjserXijhkDWvfuP6IdR7Oaz/OV25BsS7peuSwuDydU+P00aRlqnfLe3K6rO7u38bzmafvztGyzZka0KGBFr88VL8t3KRrXvtFs57dH3Lj+BACAwBQyfVoGKuhnZP0wNgl2pFdoMFtEzTivFTtyC5QXGTpB6WEqKCjHnfMrDS9PWWDtu7Jl5GUXVCszJwiz/74iP1jb87K04x1maVmzhY5rbo2iNaOvfmKCfEvFdYmHkUdm7PyNPzrJXr4m6WebcYY7dpXKElyGKl2xEH3F7l/3O17CxR/0P0nRgZp+978/fcQefIfJEMCfJWdvz/0zc4vVkhA+Y9cn85M07fzt2rq8J5KjArSdwvTNeR/szX5gR6lWmYM/3qJ8otc+veFzcodJyLIT5e0T9AZL07V/Ef6HHIROgAAgMqiZ9NEXdu7qe79cIp27MnVJV1S9cjFHbVjT67iokp/8Z0QHXqIUcoaPWWF3vp1obZk5rifcfMLlbEvTymKLDPW5oxsTV+5tdTM2WKnS90ax2v7nlzFhAWWCmuTYo5cx+aMfbrv4yka/smfnm1GRjuz8yRJDmNU+6D7iz+gpm1ZOaXeu68bpm1ZOZ73x/J5HKsvpq3Ue38s1fcjBpa696PldLl06Ys/6OazW+rGs5orY1++hr3xmz6cuFTX9mmmID8f+fk4dNf5beTr49D57ZL14vi5mrNmu85uXba9Go4eITAAAFXAzT2TdXPPZG3Znaer3pujxrVDlRQdpPTd+aWO23rA+2B/H+UVOj3vd2YXel6nZeZq5Ljl+vqWjmqVGCGHw6jxY7/Jav8MhQPXl4iLDFSv1Fh9fP3+VX09Y2XlKTOnUPlFTk8QvGV3nurFBB/2nuIiAjW8X2qpGckH1lfeAhcHbqoVHlDqfv++bu9G+9stHCkqbTDy10Pue25wMw1uW/Znaam1QrV8W7b6NXPPBFm6NVuNapX/IL483X1c3ZLP4qI28Xpk3DKt3ZGj5gnuPsGPj1+u5enZ+urmjvL3PfQiIC6X1Y7sAuUUFiss0O8IdwYAAFDx3dKvlW7p10pbMvbp8pd/VOPEKNWJDVf6AYGnJG3N3N96KzjAT3mF+7+Q37k3z/N60669GjF6qr598AK1rldTDodRyu3vy1qVKz4qVL2bJWn03eeW2Ze2K1uZ+/KVX1TsCUM3Z+5TvZrhh72n+KgQPXRhh1Izkg+sr7w13A7cVDsqpNT9/n3dPiUzhQ8+vjx1b3n3kPtevKanLu5SfmuN7+es07++nKFxDw5QYkzYEa5Svqx9BdqalaPrz2wmP18f1Y4M0YUdUzRhcZqu7dNMjROjZYzKfg7McThh3lviEAAAnBQL0vZoQdpuFTtdCg3wla+PQw6HUfu6USp2ufTxX5tU5HTpw+kblb5nfyjaNC5M09ZmatuefGXkFOqdqRs8+3ILnTJGign1l9NavfrH2lKzWw/Wt0kNLU3P1veL0lXsdKmg2KnpazO0dXeekqKC1Kh2mF75Y62KnC79umy75m7cfcT7urJTkv4zYa3W7nQ/5GfkFOqXpduP+nNpWydSRtL70zaq2OnSD4u3aXl6ts5sXOOox1g76uxD/lNeACxJg9vG65MZadqwK0c7swv09pT1Gty2bO9gSWqdFKFfl+3Q5qw8WWs1fmG6Cp0u1Y1xz2h+6bfVmrRql0bf0L7MbOJJK3dqeXq2nC6rrNxCPf5/y9UyMZwAGAAAVAkL1u/Q/HU73M+4QX7y9XHIx+FQh5RaKnK69NHEZSoqdur9CUu09YBQuFlSjKau2KptWTnKyM7T278u8uzLLSiWjBQTFiSny6WXv5+n7Lyi8i4vSTq7dV0tTcvQ+Nlr3c+4RU5NW7FVWzP3KSk2TI0TovXS+HkqKnbqlwUbNGfNkZ9Vr+zZWK98P09rt+2WJGVk5+nn+RuO+nNpV7+mjDF69/clKna69P2cdVqWlqGzWtY56jE2vnXDIf85VAA8eelm3ffRFI2+61ylxkcd8RoFRU7lF7n/figscnlex4YHqU5smD6cuExOl0u79ubpu9lr1STRvXhzt0bxqh0Zotd+XCCny6VfFmzQ5oxsdTiKVhs4PGYCAwBQyWXnF+mx8cu1KTNPwf4+GtAqThe1iZePw+i9q9vqvq+W6IkfVmhgqzh1Tt7/wNYrNVZnN62pni/8qdrhAbqyU5LenbpRktSodpiu61pHfV+epgBfh4Z1r6f4yEO3cAgL9NNnw9rrsfHLNfzrpTJGapUYoecGN5ckvXFFK931xSK98+cG9WgYo/NblJ3de7ABreKUnV+s6z6cq6178hUd7K9BbeI8M2yPxN/XoQ+vbauHvlmqZ35epbrRQfrg2raeReFOlbOa1NR1XbN1/n//UrHTakj7BF3def9Dea8X/tSdZ9TX4LYJGtI+QWt35WjA638pO79YdaOD9b+r2niC3Od/XSN/H6P2oyZ5zv97BvLuvCKNGLdM2/YUKCTAR13qR+vdq9ue0nsDAAA4XfbmFeqRz6Zr4669Cgnw04AODTS4c4p8HA59eMfZuueDyXr8y790YccG6pK6f1He3s0SdU7ruuo68gvFRYVoaM/G+t9viyVJjROiNeyM5jrj8bEK8PPRjX1bKCH60GsqhAX56/N7z9OjY6br/o+myGGMWiXX0IvX9JQkvXXzmfrHuxP19m+L1KtpovqXM7v3YIM6pig7r0hXv/aLtmTuU0xooC7slKJz2tQ7qs/F39dHH995jh74eIqe/maW6tYI08d39jvl/XJf/n6e9uQWaNBz4z3bLumSqhdKPovuI7/Q3f3beELkLg+PUVqGe8ZylxGfS5J2fnCLJOn928/WyM+m6flxcxTg56O+rerqrvPdC+r5ldzf3e9P0sv/N0/1a0fow3/0UxT9gE+YsYea8w4AACocY8x1g1rHvfbmla2PawWwIW/P0uC28bq0Q+LJLg0V0NyNWbrq/bkrsnIKj2/pZgAAgNMkNNB/159PDYlJij32NgODn/8/XdyloS7v3vgUVIaKqP/T4/bMXL3tMmvtz96upbKgHQQAAAAAAAAAVGG0gwAAAF7z+sR1eun3NWW2X9ExUU8ObOqFigAAAIAT89qP8/XC+Llltl/Vs4lGXdHNCxUBhMAAAFQrX97c0dsllHJ7n/q6vc+Re6cBAAAAh/L1Axd4u4RS/nFeG/3jvDbeLgMohXYQAAAAAAAAAFCFEQIDAACvuevzRXq5nHYQAAAAQFV1x7sT9GI57SKAU4l2EAAAoNqbtiZDz/+6Wos271XrpAh9c2unUvt/XLxN//55lbbuzle7OpF6+dIWSogMkiT9d+JaffRXmnbnFioiyE/XdKmjf5zRQJI0Y12mrnxvjmcca6W8Iqd+vqurWiVGKCu3UMO/XqppazLk4zDq36K2nhzYRL4+fE8PAACAU+vSl37QjFXpnveFxS6d0TxJo+8+V9uycnTtf3/R2u17ZK1Vq3o19MxV3dUwLkqS5HJZPf7FXxozdYX8fBy6tV8r3Xk+LTAqMkJgAABQ7QX7++jqLnW0OStPk1buKrVv7c4c3fPlYn1+Ywc1TwjXP/9vhW4dvVDjb+8sSTq/RW1d06WOwgL9tG1Pvi59Z7aaxIXprCY11bl+tNaOOtsz1ncL0jXqx5VqmRAuSXrh1zXKK3Rqzsjeyi106vJ3ZuuTGWm6rlvd03fzAAAAqJa+uPf8Uu+7jfxC/dsnS5LCg/31+o1nKLlmhKysPpiwTLf9b4J+e3ywJOnDSUv15/Itmv70ZcrOK9SgZ8erSWK0+rbiObaiIgQGAKCacrmsHhu/XN/M3yqny6pebLA+vb69aoQF6D8T1urTGWnKzC1UcmyIRg1sqo7J7m/97/p8kcICfbVy+z7N27RbXepH65VLW2jEt8s0ceVOtUiI0LtXt1F0iL/SMnPV5dkpGjWwiV74bY38fR16sF9DDWmfWG5NPy3Zrud/Wa2te/LUKjFCL1zSQklRQcorcureLxdr4sqdMjJqWCtU427tJIfDnJTPok2dSLWpE6mxc7eU2Td51S51T4lRmzqRkqQ7z6iv1k9O1PpdOUqODVFybEip4x1G2pCRW+51xs7bosFt42WMu+60zFyd07yWgv19Fezvqz6Na2jV9n0n5Z4AAABQlstlNXLMNH0zY42KnS4l14rQZ3efq5oRwXrl+3n6ZPJyZezLV/2aEfr3Vd3UqWGcJHcLh7Agf63ckqW567ara6N4vTasjx789E9NWJymlnVj9cEd/RQdGqhNu/aq44Nj9O8ru+v57+bI39dHD13YQZd1b1RuTT/OW69nv52tLZn71LpeDb18XW8lxYYpr7BYd70/SRMWb5IxRqnxUfq/hwaetGfgAy1Yv0Obd2XrgnbuRZuDA/zUoHakJMnpsvJxGG3Yuddz/FfTV+v2c1qpZkSwakYE6+peTTX2r9WEwBUYITAAANXUpFW7NHtjlmY+3Esh/r5amr5XgX7uNgT1Y0P0wz+6KDrEX+9P26hbRs/XzId7y6+kTcH/LdqmL2/qoITIIF3w+l8a9MZMvXBxc/338lYa+v4cvTd1ox7o11CS+6Fx3qY9mjWit5Zs2avL352ttnUilVIztFQ9C9L2aMS3S/Xx9e3UpHaY3py8XrePXqDxd3TRl3O2KLfQqfmPniE/h9HcTbtlynn23ZyVpzNfmnrIe/74+nbqlBx9TJ+Ty1rZUu/d/7ty2z5PAPzR9I164oeVyi10qk50kC5oWbvMOLv2FWjyql365wVNPNuGdq6jT2emaWCr2sordGnC8p267+yGx1QfAAAAjt7EpWmavWa75jx3hUIC/LQkLUNB/u54rEHtSP30yIWKCQvUu78v0Y1v/q65z10hP18fSdL42ev09QP9lRgdqvNGjVP/f4/Ty9f11ps3nakrX/lJ7/y2WA9e2EGS+xl47rrtmvv8lVq8cZeGvPSD2jeopZS4yFL1LFi/Qw9+8qdG332emiZG6/WfF+rmt3/XjyMv1BfTViq3oEiLX75afj4OzVm7vfxn4Ixs9Xr0q0Pe8+i7z1Xn1LjDfi5fTl+lc9vWU2iQf6ntbe7/VOlZOXJZqxEXdfRsX7k1S02TYjzvm9WJ0Q/z1h/2GvAuQmAAAKopPx+jnAKn1uzIUeukCLVIiPDs639AiHljj3p68bfV2piR6wluL2hZW41qh0mSzmxcQ6t35KhzfXe4el7zWpq4qnRLhfvPTlGQn4861ItSv6a19MPi7brrzNIh8JhZabq2a11PHbf3rq9XJ6xV+p58+fkYZeUUalNGrhrVDjtkkJsYFaSVT/Y9wU+mtB4NY/TMz6s0e0OWWiSE69U/1soYKbfI6Tnmmq51dXWXOlqenq2fl25XWGDZR6xxC9LVIiFcDWrsnzncLD5MOQXFavzY73JZ6aI28TqnWc2TWj8AAAD28/NxaF9+oVanZ6lNck21rBvr2XdB+/qe1zef3VLPfzdHG3dme4LbAR3qq3GC+zn0rJZ1tCo9S11KwtXz2iZr4pK0UtcaPqi9gvx91bFhbZ3bup7+b+463dO/baljRv+5Qtef2dxTxz/Oba2Xv5+n9Kx98vVxKHNfvjbu3KvGCdGHDHITY8K09o3rj/szKXa6NG7WWr12Q58y++a/cJVyC4o09q/VSojZ//yek1+ksCA/z/vwIH/l5Bcddw049QiBAQCopno0jNXQzkl6YOwS7cgu0OC2CRpxXqr8fBwaMytNb0/ZoK178mUkZRcUKzNn/0NdTOj+GQKBfj6KPeh9boHzwEspvmQRNffrQO3ILihTz+bd+fpq7la9MWmdZ5vTaZW+J18Xt03Q5qw8Xf/RPBUUu3R1lzq6s2TxtVOtUa0wPTe4ue79arGycop0Q4+6Cg3wVVxEYKnjjDFqGh+uyat26cVf1+jR/o1L7R87d6su65BQattNnyxQ27qR+mRYexUUuXT/2MV6+qdVGnle+T8VBAAAwInp2TRR1/Zuqns/nKIde3J1SZdUPXJxR/n5+mj0lBV669eF2pKZ434Gzi9Uxr48pShSkhQbtv+ZNtDfp8z7nILSIWhC9P7QND46VNt3l20ZlrYrW19OW6X//rjAs83pdGlrZo6GdE3V5ox9uua1X1RY7NQ1vZvq7oNC5JNhwpI0GWPUu1n5LduCA/w0tFcTNbv7Y00ddamiQwMVEuin7Lz995udV6iQQL9yz0fFQAgMAEA1dnPPZN3cM1lbdufpqvfmqHHtUHVtEK2R45br61s6qlVihBwOo8aP/abSTRGOzdbdeUqKDi55na+GtULKHBMXEajh/Rrqll7J5Y4xvF+qhvdL1eod+zT4zZlqXzdSXRvElDpmc1aeer3w5yHrGD2svWfG8rG4qE28LmoTL0lavytHr/6xVo1rh5Z7rNNarT+oJ/DqHfu0PH2vBrRqX2r7svRsvXJpCwX5+SjIz0eXtk/Usz8TAgMAAJxKt/RrpVv6tdKWjH26/OUf1TgxSt0ax2vE6Kn69sEL1LpeTTkcRim3vy97/I/A2pK5T3Vi3QsCb83cp4bxkWWOiY8O1YMXdtBt57Qqd4yHLuyghy7soNXpWRr4zHh1SKmlbo1LTyzYnJGtbiO/OGQdn997vmfGcnm+mr5KgzunyMfhOOQx1rpn/6Zn5Sg6NFCN4qO0fHOGmpW0hFialqFG8VGHPB/eRwgMAEA1tSBtjySr5vHhCg3wla+PQw6HUW6hU8a4Z/s6rdVrf6xTdn7xCV3rpd/X6N8XNtOy9Gz9smy77jqza5ljruiYqFs+XaCuDaLVIiFc2fnFmrJ6l/q3jNO0NRmKDfVXw5qhCgvwla+PkaOchmiJUUFaO+rsY67P5bIqdLpU7LJyWav8Iqd8HMbTA3nxlj1qFheu7dkFGv71Ug3rVldRwe7Zz5/NSlO/ZrUUHeynRVv26oNpm3R7n/qlxh87d6vOaFxT0SGle6y1TorQ6Jmb9dC5DVVUbPXV3C1qHBd2zPUDAADg6CxYv0PWSi3qxio0yE++Pg75OBzKLSiWjBQTFiSny6VXf1xYaqbr8Xjhu7l67uoeWropQz8t2KB7LriozDFX9mism976Xd0ax6tl3Vhl5xVq0tLNGtChgaYu36LY8CClxkUpLNC/5Hm9bFCbGBOmjW/dcFw1ZucV6pcFG/XjyEGlts9es02S1LpeDRUUu/T8uDkKD/ZXw5LWGBd3aajXf16oXs2SlJ1XqI8nL9eL1/Q8rhpwehACAwBQTWXnF+mx8cu1KTNPwf4+GtAqThe1iZePw+i6rnXU9+VpCvB1aFj3eqXaORwrH4dR68QIdXh6kvx9HHpyQBOl1io7i7ZtnUg9MaCJ7hu7RBszchUa4KOeDWPVv2WctmcX6IGvl2j73gKFB/pqaOc6xzWj91BmrM/U4Ldmed4nj/hVQ9ol6NXLWkqSRn67TEvTsxXk56Mh7RP00DmpnmOnr83UqB9XKr/IpVrhARraJUnXda3j2W+t1Tfzt+qfF5RuDyFJLw9poRHjlqnNkxMlSV0bRJd7HAAAAE6OvXmFeuSz6dq4a69CAvw0oEMDzyzYYWc01xmPj1WAn49u7NtCCdFlf712tHwcRm2Sa6rt/aPl5+PQqMu7KbWcmbLtGtTSU5d31T0fTNaGnXsVGuinXs0SNaBDA23fnat7P5ys7XtyFR7kr2v7NDvsjN7jMX72OiXXDFfzOrGltucXOjXis6natCtbgX6+ap1cQ5/fe778SxbJu65PM63fsUedHxojPx+Hbj2nlfq2qntSa8PJZeyJzGsHAACnlTHmukGt415788rWx/9EehqlZeaqy7NTtPnZc7xdSrU0d2OWrnp/7oqsnMIm3q4FAADgcEID/Xf9+dSQmKTYyv+rqE279qrjg2O07b2bvV1KldX/6XF7Zq7edpm19mdv11JZHLrZBwAAAAAAAACg0iMEBgAAAAAAAIAqjBAYAACcMknRwbSCAAAAQLVSJzacVhCocAiBAQAAAAAAAKAKIwQGAAAn1UVvztTYuVu8XQYAAABwygx85jt9NX2Vt8sAjpqvtwsAAAA4VQqLXbp19ALNT9ut9D0FmvVwLyVFB3v2j1+YrrenrNeSLXs1qHW8Xr2s5SHHKih2auS45fp5yXa5rFXv1Fg9O7iZwgL9JElT12Ton+OXa0NmruIiAjXi3EY6t3mtMuNc9s5sTV2TQZsMAAAAnDQfTlyq135coIx9+erTPEmvXNdLEcEB5R7716p0PfLZNK3ZtluN4qP0ynW91TQpxrP/Pz/M15u/LFSR06XLujfSE5d2lcNhJEn//maWvp+7XqvTs/Tq9b11effGp+P2cBIwExgAAFRpnetH652hbeRT8uB6oMggP93aK1lDu9Q54jgfTNukRZv3aPIDPTR7RG/tzivSy7+vlSQ5XVY3fDxPN/aop9VP9tWTA5ro9s8WKjOnsNQY3y9KV16R8+TcGAAAACBp6vItemH8XH153/la9srVsi6rhz6ZWu6xWfvydc1/ftbwQe217o3rNaBDA1392s8qKnY/o/62cKPe/WOJfhh5oaY/fZmmLN2iDyct9Zxfv1aEnrq8q9o3KDvZARUbITAAACjjpd/W6I4xC0ttG/r+HH0wbaMk6ZFxy9TmyQlKffQ3DXpjhlZuzy53nBd+Xa37vlrseT9zfaY6PD3J837r7jxd+8FcNX38d3V9drLGLdh6Uu/D39ehG3vUU7u6UeXu75kaq/4t4xQT4n/EsdKy8tSnUQ3FhPgrJMBX5zavpVXb90mS9uQVaU9esS5sEy9jjHo3qqHwIF9tysz1nJ9bWKznflmtR85rdHJuDgAAACfkxfFzddv//ii17YpXftR7fyyRJD08eqpa3POx6t/2vi7493dauSWz3HGeGzdbd78/yfN+xqp0tb3/U8/7rZn7NPTVn9XoHx+q44Of6duZa07qffy2cJMu6pSiBrUjFRzgp9vPbaXxc9Yqt6CozLGz12xXUmyY+rWuJx+HQ7f1a6Xtu3M1fWW6JOmrv1brmt5NVb9WhGpGBOu2c1pp7PTVnvMv7dZIfZonKcif5gKVDf/GAABAGRe2iVO/V6crv8ipQD8f7c4t0tQ1GXrpkhaSpLZ1I/VAv4YK8vPR0z+t1N1fLNZPd3Y9pmu4XFbXfDBXg9sm6J2r22j19n0a8r/ZahoXrtRaoWWOH/r+HM1an3WIeuP1zEXNjv1Gj8El7RL0r++Xa2d2gQJ8Hfph8Xad2biGJCk6xF8Xto7TV3O36LIOiZq0cqd8jFFqrTDP+S/+ukaXtk9U7fDyf5YHAACA0+vCTik6619fK7+oWIF+vtqdU6Cpy7fqlet6S5La16+lhy7soCB/Xz01dqb+8d5E/frY4GO6hstldeWrP+mSLql6//a+WpW+Wxc//39qlhSj1PiyExWueOVHzVy1rdyxBndO0XNX9yx7DWvLvC8sdmnd9j1qXie2zL4DD7dyv1+xJVO9miVq1dYsXdQpxbO/WZ0Yrdha/jM4KhdCYAAAUEZybIjqxQRrwoqdOq9Fbf20ZJs61otSjTB3gHlRm3jPsfeelaLGj/+uvCKngvx8jvoaCzbvUW6hU7f0SpYkNY0P1wUta+vHJduUWiulzPGfXN/+BO/qxCTHBqtGaIBaPjFBDiN1qR+tq7skefYPaBWn+8Yu1oPfLJWfw+itq1or2N/9eazavk9/rNipX+/upu178711CwAAADhA/VoRSq4Zrj8Wpen8dsn6Ye56dUyppZoR7jUkBndp6Dn2/gHtlHLHB8orLD6mWbDz1+9QbkGxbjunlSSpWVKMLujQQN/PXad749uVOf6zu8875vvo0zxJd7w7QUN7NVF8VIhe/8n9i77cguIyx7ZvUEsbdu7VD3PXq2+rOnrj54UqdDqVW+g+Nie/SGFBfp7jw4P8lZNfdkYxKh9CYAAAUK5BreM0fuE2ndeitr5buE0DW8d59v1nwlp9MXuzdu4rlJFkrbQ7t0hBEUcfAm/OytOmzDw1evQ3z7Zil9Wl7RNO5m2cNA99s1TGSCufOEu+Pg6N+nGl7vp8sd66qrVWbd+n28cs1CfXt1Pn5GgtTd+raz6Yq8SoIDWLD9eIb5fq0f6N5e9LJy4AAICK5MJOKRo3a43Ob5escbPWaNABs2Bf+X6exkxdqZ178/Y/8+bkK8i/7K/WDiUtI1ubdmWrwW3ve7YVu1y6rNvJaxF2Rosk/eO81rrylZ+UV1Ss2/q10k/zNyg+OqTMsbHhQXr/9r7615czdM8Hk3RR54ZqHB+t+Cj3sSGBfsrO2x/6ZucVKiTQr8w4qHwIgQEAQLkGto7TS7+vUVpWnmatz9JbV7aWJE1fm6EPpm3Ulzd3VEqNEGXnF6vRY7/LHvQzNEkK9vdRXuH+hdB2Zu9fKC0uIlApNUM08b4eR1XPFe/O1sxDtIMY3DZezw1ufgx3d+yWpWfrnxc0VnjJzIihnZM08PUZkqSV27LVpHaYujZwr6rcIiFCbetEatraDDWLD9e0tZme/sFOa+V0WbX81x8ac2MHNYsPP6V1AwAA4NAu7JiiF8bPVdqubM1avU3v3NpXkjRtxVa998cSfTP8AqXUjlR2XqEa3P6BynnkVXCAn/IK98+63bk3z/M6PipUDWtHaspTQ46qnktf+kEzVqWXu++SLql64Zqy7SAk6dZ+rXRrP/ds48lLN6t2ZLDio8oPq3s3S1Lvf7l/0bY3t0At7/tUbZJrSpJS46O0bHOGzmlTT5K0NC1DjctpW4HKhxAYAACUKyEySE1rh+neLxere0q0IoPd4WduoVM+DqPoEH/lF7v07C+rDzlG07gwvT1lg7btyZefr0PvTN3g2dcmKUJGRu9P26grOyXKYYyWbs1WsL9PuT2BP7uhw3HdR0Gx0/OwXlDs8vQ5liSny6rI6ZLTZeW0VvlFTvk6jHx9ys7YbZ0Yoa/mbFHHelHy9TEaPTNNjePcPX+bJ4Rr5fZszVyfqU7J0Vqenq0Z67J0TZc6kqSFj57hGWfrnjz1/+8M/X5Pd0WHMKsCAADAmxJiQtU0MVp3vT9J3ZskKDLE3f4sp6BIvj4ORYcGKr/Iqae/mX3IMZolxejNXxZpW1aO/HwdevvXRZ59bevXlDHSu78v0dBeTeQw7mA1OMCv3J7AX9x7/jHfQ35RsTbu2KvU+Cit275Hj3/xl+69oJ0cDlPu8Us27VLjhGhl5xXqoU+n6qwWdTy1XNyloYZ//Kcu7JSikAA/vfnLIl3du4nn3KJip5zWyuWyKna6lF9ULH8fn0NeCxUHITAAADikQW3iNXLcMv338paebX0a1VDXBjHq/O9JCg/00wP9Gh7y/F6psTq7aU31fOFP1Q4P0JWdkvTu1I2SJF8fhz4Z1k6Pj1+ul39fo2KnVZO4MD0xoMkhxzse3Z/7U5uz3LMxejz/pyQp/flzJUlj527R3V8u9hz79bytuq9viu4/u6E2Z+Wp1wt/avL9PZQYFaRH+zfSyHHL1PHfk+R0WbVOitTLJQvlJceG6LnBzfXA2CXauidfUcH+ur13sno0dC/EUfOAxeAKip1ltgEAAMB7LurUUA+Pnqo3b9r/xf2ZLZLUtVG82g//TOFB/nrwwkNPSOjdLFHntK6rriO/UFxUiIb2bKz//eZ+xvT1ceizu8/TI59P10v/N1dFTpeaJkbrqSu6nbT6C4qcuvHN37Vx515FhgRo2JnNdd0Z+xdNvv+jKZLkmUX86g/z9fuiTfJxGJ3frr5GXb5/geezW9XVijMyde6T36rI6dJl3Rvp2t77x7rnw8n6YtoqSdLUFVt174dTNO7BC9StccVs6Yb9THk/3QQAABWTMea6Qa3jXnvzytZlG3wBB5m7MUtXvT93RVZO4clN1gEAAE6y0ED/XX8+NSQmKTbM26WgEuj/9Lg9M1dvu8xa+7O3a6ksWJ0EAAAAAAAAAKowQmAAAIAqih98AQAAoCpy8aB7zAiBAQCoXPL25he7vF0EKoecQqeMlOvtOgAAAI7E4TAF+/KLvF0GKokc9/9XeM49BoTAAABULn/NXJfp9/fiYsDh/L58R1FOgfNXb9cBAABwZHbKhCWbmN6JI8rcl68123YHSprv7VoqExaGAwCgkgkP8vuuVWJE35HnpQY1rh0mX4fxdkmoQKykXfsKNW5Bun3+l1XZeUWuNtbadd6uCwAA4HCMMe2C/H2njLqia/A5bZIVGewvY3jOxX5FTpcWbNipRz6blrtu+54Ps/MKb/d2TZUJITAAAJWMMcY/wNfxmL+P45rcwuI4l3SsT8dG+8+xJf+g4jjhfz/+Po68AF/HhL35xQ9ba5ee1OoAAABOEWNM54jggCfzCou6FTldAd6u5xRw6PQ8f5+u65xWDmNcIQF+m/KLit8uLHa9YK2lTd4xIAQGAKCaMMYESXpE0k2SHpf0trWWvhIVlDGmtaS3JRVJupkwFwAAoPIyxpwr6QlrbYfTcK2bJJ1rrb3wVF8LlQc9gQEAqAaMMWdLWiwpRVIra+0bBMAVm7V2gaSukj6TNMkYM6okyAcAAEDlc7PcX/CfDmMk9TLGxJ+m66ESYCYwAABVmDGmtqSXJHWWdLu19icvl4TjUPIA/7Kk9pJus9b+4uWSAAAAcJSMMQlyT8ioY63dd5qu+ZakLdbaJ0/H9VDxMRMYAIAqyBjjMMbcLGmRpE2SmhMAV17W2q3W2ksl3SHpLWPMZyUBPwAAACq+6yV9cboC4BL/k3SDMcbnNF4TFRghMAAAVYwxpoWkqZKukXSmtfYha22ul8vCSVAS5DeTO9hfbIy5xRjD8xwAAEAFVRLC3qjT1wpCkmStnSdph6R+p/O6qLj4owEAgCrCGBNsjHlG0gRJH0nqbq1d7OWycJJZa3OttQ9JOkPS1ZKmlgT/AAAAqHj6SdpWst7D6fa23L2IAUJgAACqgpLVhpdIqiOphbX2bWuty8tl4RQqCfi7yx34TzDGPGuMCfFyWQAAACjtdC4Id7DPJfUo6UmMao4QGACASswYE2+M+VLSfyXdYq29wlq7zdt14fSw1rqstW9LaiEpSdISY8x5Xi4LAAAAkowxiZJ6yB3GnnYlPYi/kDTMG9dHxUIIDABAJWSM8THG3CZpoaTVci/89quXy4KXWGu3WWuvkHumyWvGmC+NMfHergsAAKCau17S59baHC/W8LZYIA4iBAYAoNIxxrSWNF3S5ZJ6W2tHWmvzvFsVKoKSLwKay/3FwEJjzO088AMAAJx+Jc9gN8h7rSAkSSW9iLdJOsebdcD7CIEBAKgkjDEhxpjnJf0q6X+Sellrl3q5LFQw1to8a+1ISb3l/qJgeskXBwAAADh9zpW01Vq70NuFiAXiIEJgAAAqBWNMf0lLJdWWu/XDeyz8hsMp+YKgp6R3JP1qjHnBGBPq5bIAAACqi5vknrhREXwhqXtJj2JUU4TAAABUYMaYBGPM15JelnSDtXaotXaHt+tC5VCycNy7creIqCVpqTHmAi+XBQAAUKUZY5IkdZc7fPW6kgXiPhcLxFVrhMAAAFRAJQu//UPuhd+WSmphrf3dy2WhkrLW7rDWDpX7wf8lY8zXxpgEb9cFAABQRQ2TNMbLC8Id7O8F4ny9XQi8gxAYAIAKxhjTVtIMSRdL6mGtfcxam+/lslAFlHyR0ELuLxYWGmPuZOE4AACAk6ckZB0mLy8Id7CS3sRbxQJx1RYhMAAAFYQxJtQY85KknyS9Lqm3tXa5l8tCFWOtzbfWPiaph6TBkmaUfPEAAACAE3eupM3W2kXeLqQcLBBXjRECAwBQARhjBkpaJila7oXfPrTWWi+XhSqs5AuG3pLekPSTMeZlY0yYd6sCAACo9G5WxVkQ7mBfSOpW0rMY1QwhMAAAXmSMSTLGjJP0nKRrrLXXWmt3erksVBPW7QO5F46LknvhuEHerQoAAKByMsbUkdRFFWRBuIOV9CgeIxaIq5YIgQEA8AJjjK8x5m5J80v+aWmtnejdqlBdWWt3WmuvlXSNpGeNMeOYIQIAAHDMhkn6zFqb6+1CDoMF4qopQmAAAE4zY0x7SbMkDZDUzVr7L2ttgZfLAlTyRURLlXw5YYy5hz8QAAAAjuyABeEqaisISVJJr+I0uXsXoxohBAYA4DQxxoQbY16V9L2klyWdaa1d6eWygFKstQXW2n9J6ibpAkmzSr64AAAAwKGdJ2mTtXaxtws5Cv8TC8RVO4TAAACcYsbtIklLJYVKamat/YSF31CRlXxBcaakVyR9b4z5jzEm3LtVAQAAVFg3y91qoTL4QlKXkh7GqCYIgQEAOIWMMXUljZc0StKV1tph1toML5cFHJWSheM+ltRMUoikZcaYwcYY4+XSAAAAKoySMLWzpK+8XcvRKOlZ/JlYIK5aIQQGAOAUKFn47T5JcyXNlNTaWjvFy2UBx8Vam2GtHSbpCklPSRpf8gUHAAAApBskja7gC8Id7H+ShrH+Q/VBCAwAwElmjOkkaY6kcyR1ttY+xcJvqApKvshoLfcXG3ONMfcbY/y8WxUAAID3VJYF4Q5W0rt4k6TzvV0LTg9CYAAAThJjTIQx5nVJ4yQ9J+lsa+0a71YFnFwlC8c9JfdPHvtJmmOM6ezlsgAAALzlfEkbrLVLvF3IcXhb0k3eLgKnByEwAAAnqGTht0skLZPkJ/fCb5+x8BuqspIvOM6W+wuPb40xrxtjIrxcFgAAwOlWmRaEO9hXkjrT5qt6IAQGAOAEGGOSJf0g6XFJQ6y1N1lrM71cFnBalCwcN1ruheP85F44bggLxwEAgOrAGFNPUkdVkgXhDlbSw3i03D2NUcURAgMAcByMMX7GmAclzZb0p6S21tppXi4L8Aprbaa19iZJl0p6TNIPJV+QAAAAVGXD5F4QLs/bhZyA/0m6ngXiqj5CYAAAjpExpoukuZL6SOporf23tbbQy2UBXmetnSqprdxfjMwxxjzIwnEAAKAqKnnGGabK2wpCklTSy3iDpP5eLgWnGCEwAABHyRgTZYx5S9LXkp6WdK61dp2XywIqFGttobX233L/NLKPpHnGmK5eLgsAAOBkO1/SWmvtMm8XchK8LXdvY1RhhMAAABxBycJvl0taKslKamqt/ZyF34BDs9aulXSupFGSxhpj3jLGRHm5LAAAgJPlZrlbKVQFX0nqWNLjGFUUITAAAIdhjGkg6WdJD0sabK291Vq727tVAZVDycJxn0tqKvcXKMuMMZezcBwAAKjMSsLS9pLGermUk6Kkp/GnYoG4Ko0QGACAchhj/I0xIyTNlPS7pHbW2r+8XBZQKVlrd1trb5V0kdxfqPxc8gULAABAZXSDpE8r+YJwB/t7gTjWc6iiCIEBADiIMaa7pPmSuklqb6193lpb5OWygEqv5IuUdpL+kDTLGDPCGOPv5bIAAACOWklIer2qTisISZK1dqmkdWKBuCqLEBgAgBLGmGhjzDuSvpD0uKT+1toN3q0KqFqstUXW2ufk/gllN0nzjTE9vFwWAADA0bpA0hpr7XJvF3IKsEBcFUYIDACo9koWfrtK7oXf8uVe+G0sC78Bp461dr3cM00el/S5MeZdY0y0l8sCAAA4kpvkDkv/n737Do+q6hY4/Nsz6b1BOiQhCaGH0DtSFFQ6YkOKotjFhr18XrtiwY7YQUQ6CopKk95r6C0QQiCk9zKz7x8TE0ISOkzKep/H5yZz2jq5fDN71t5nrZpoJtBaKRVq7UDElSdJYCGEELWaUioC+Bt4ChigtX5Ea51u5bCEqBWKG8fNxNI4Lg9L47jh0jhOCCGEEFVRcXK0FTDL2rFcDdIgrmZTsshJCCFEbaSUsgfGA48BbwITtdZF1o1KiNpNKdUWS32908ADWuv9Vg5JCCGEEKKEUupNwEFr/YS1Y7lalFKNgCVAPemLUrPISmAhhBC1jlKqG7AVaAO00lp/IAlgIaxPa70eS63ghcAapdRLxRM2QgghhBBWVdwQbjQ1rCHc2YprHe/HUvtY1CCSBBZCCFFrKKV8lFLfYnnE6Xks5R/irByWEOIMWusirfUHWB61bANsK564EUIIIYSwpv7APq31HmsHcg1MQhrE1TiSBBZCCFHjFTd+G4ml8VsGlsZvc6TxmxBVV/EEzQDgOWCKUuo7pZSPlcMSQgghRO01lprbEO5sM4EYpVSYtQMRV44kgYUQQtRoSqmGWGpaPQrcpLUep7XOtHJYQogLUNw4bg6WxnHpQKxSaqQ0jhNCCCHEtVScDG0JzLZ2LNeC1joP+AlpEFejSGM4IYQQNZJSygF4FngY+D/gM6n7K0T1ppRqjWUFTgZwv9Z6r5VDEkIIIUQtoJR6C7DTWj9p7ViuFWkQV/PISmAhhBA1jlLqOmAb0ByI1lp/LAlgIao/rfVGoB0wF1illHq1eMJHCCGEEOKqUErZUQsawp2tuEHcPizluUQNIElgIYQQNYZSqo5S6gfgB2C81nqw1jre2nEJIa6c4sZxH2N5JLMFsF0p1cPKYQkhhBCi5uoP7KmlTyB9Bdxn7SDElSFJYCGEENVeceO3u4GdwGksjd/mWTksIcRVpLU+prUeBDwNfK+U+lEpVcfacQkhhBCixqlNDeHONhtoqZRqYO1AxOWTJLAQQohqrbhW1TLgfqCP1vpJrXWWdaMSQlwrxRM+jYEkLI3j7lFKyRhXCCGEEJdNKRWO5cmjWtEQ7mzFDeJ+RBrE1QjSGE4IIUS1pJRyBJ4HHgBeBb7QWpusGpQQwqqUUjFYVurkYmkct8vKIQkhhBCiGlNKvQ3YaK2fsnYs1qKUisKy6Kae1rrAyuGIyyCrJIQQQlQ7SqlewHYgCmihtf5UEsBCCK31ZqA98Cvwr1Lq9eIJIyGEEEKIi1LcEG4Utawh3Nm01nuAPUiDuGpPksBCCCGqDaWUr1JqKjAZeFxrfYvW+ri14xJCVB1aa5PW+lMsj25GATuUUr2tHJYQQgghqp+BwC6t9T5rB1IFSIO4GkCSwEIIIao8pZRBKXUvsAM4DjTRWv9u5bCEEFWY1vq41nooMA74Wik1VSnla+WwhBBCCFF93EctXwV8htlAi+IayaKakiSwEEKIKk0p1RT4F7gH6K21Hq+1zrZyWEKIaqJ4wqgJlgmkHUqp+6RxnBBCCCHOpTjZ2QyYY+1YqgKtdT6WBnH3WjsWcemkMZwQQogqSSnlBLyIZaDxMjBJ6v4KIS6HUqoFlscZTcBYrfVOK4ckhBBCiCpIKfUugNZ6vLVjqSqUUpHACiBYGsRVT7IKQgghRJWjlOqDpfRDGNBca/2FJICFEJdLa70N6ARMAZYqpd4qnnASQgghhABAKWUPjAS+tnYsVUlxbeRdWGoli2pIksBCCCGqDKWUv1LqF+Bz4CGt9W1a6xPWjksIUXMUN477AmiOZaJpZ/HEkxBCCCEEWJKcO7XW+60dSBX0FTDW2kGISyNJYCGEEFZX3PjtfmA7cBhoqrX+08phCSFqMK31Ca31rcCDwOdKqV+UUv7WjksIIYQQVjcWaQhXmTlAM6VUhLUDERdPksBCCCGsSinVHFgF3AVcp7V+TmudY+WwhBC1RPGEU1MsE1DblVIPSOM4IYQQonYqrnvbBGkIV6HiBnE/IA3iqiVpDCeEEMIqlFLOWBq+jcbSAG6y1tps3aiEELWZUqoZ8CWWhRJjtdbbrRySEEIIIa4hpdR7gFlr/Yy1Y6mqilcBr8LSIC7f2vGICyerHIQQQlxzSqkbgZ1AENBMaz1JEsBCCGvTWu8AugDfAYuVUu8WT1gJIYQQooaThnAXprhW8g6kQVy1I0lgIYQQ14xSKkApNQOYiGWV3Z1a65PWjksIIf6jtTZrrSdhKRERiKVx3E1WDksIIYQQV98gYLvW+oC1A6kGJiEN4qodSQILIYS46pRSRqXUQ8A2YC+W1b9/WTksIYSolNb6pNb6TixfcD5WSs1QSgVYOy4hhBBCXDVjga+sHUQ1MQdoUlxDWVQTkgQWQghxVSmlooE1wG1AN631i1rrXOtGJYQQF6Z4wqoZlgms7Uqph5VSRiuHJYQQQogrSCnVEGgEzLN2LNWB1roA+B5pEFetSGM4IYQQV4VSygV4FRgBPAd8J3V/hRDVmVKqMZYVQvbAfVrrrdaNSAghhBBXglLqfaBIa/2stWOpLpRS4cBqpEFctSErgYUQQlxxSql+QCxQF2iqtf5GEsBCiOpOa70L6IYlEfyXUmpC8YSXEEIIIaoppZQDloUr0hDuIhTXTt6OpZayqAYkCSyEEOKKUUoFKaVmAxOAu7XWI7TWp6wdlxBCXCnFjeO+wdI4rg4Qq5Tqb+WwhBBCCHHpBgPbtNYHrR1INfQV0iCu2pAksBBCiMtW3PjtUWArsANorrVebN2ohBDi6tFan9JajwDuBt5XSs1WSgVZOy4hhBBCXLT7kIZwl2oe0Ki4prKo4iQJLIQQ4rIopVoB67DMoHfWWr+itc6zclhCCHFNFE94NccyAbZVKfWYNI4TQgghqgelVBQQhTSEuyTSIK56kcZwQgghLolSyhX4P+B24BngBy0fKkKIWqz4i+SXgAswVmu9ycohCSGEEOIclFIfAPla6+esHUt1pZRqAKwB6slioKpNVgILIYS4aEqpgcAuwB1oorX+XhLAQojaTmu9B7gO+BRYqJT6qHjCTAghhBBVTHFDuLuQhnCXpbiW8jYsT4aKKkySwEIIIS6YUqqeUmoe8DZwl9Z6tNb6tLXjEkKIqkJbfA80wTJRtkspNUgppawbmRBCCCHOMgTYorU+ZO1AaoCvsNRWFlWYJIGFEEKcl1LKRin1BLAZ2AS00Fovs25UQghRdWmtT2utR2NZYfQWMFcpVc/KYQkhhBCi1FikIdyVMg+IKi6NJaooSQILIYQ4J6VUG2ADcBPQUWv9mtY638phCSFEtVA8YdYCywTaZqXUE0opG+tGJYQQQtRuSqlGQAQw39qx1ARa60LgO2Q1cJUmjeGEEEJUSCnlBrwB3AI8DUyRur9CCHHplFKRwBeAF3Cf1nqDlUMSQgghaiWl1IdArtb6eWvHUlMopcKAdUCwNIirmmQlsBBCiDKUxVAsjd8csTR++0kSwEIIcXm01vuAXsAHwG9KqU+UUu5WDksIIYSoVZRSjkhDuCuuuLbyZiy1lkUVJElgIYQQJZRSIcBvwGvA7VrrMVrrZOtGJYQQNUdx47ifsDSOcwRilVJDpXGcEEIIcc0MATZqrQ9bO5AaaBKWWsuiCpIksBBCCJRStkqpp4GNwGogWmu9wsphCSFEjaW1TtZajwFuxzLx9lvxRJwQQgghrq6xWJKV4sqbD0QU11wWVYwkgYUQopZTSrXHkvztDbTXWr+ptS6wclhCCFErFE+4RQNrgI1KqaeVUrbWjUoIIYSomZRSTYAGWJ5+FFdYcYO4b5EGcVWSNIYTQohaSinlAbwJDAKeAH6Rur9CCGE9Sqlw4HPAFxirtV5r5ZCEEEKIGkUp9RGQpbV+0dqx1FRKqVBgA5YGcbnWjkeUkpXAQghRyxQ3frsViAWMQGOt9TRJAAshhHVprQ8ANwBvA3OUUp8XT9gJIYQQ4jIVN4QbDky2diw1WXGt5Y1Ig7gqR5LAQghRiyilwoCFwIvAMK31WK11qpXDEkIIUay4cdw0oDGWibpdSqlbpXGcEEIIcdluATZorY9YO5Ba4CukQVyVI0lgIYSoBYobvz0LrAeWATFa61XWjUoIIURltNapWuuxWL6wvgj8UTyRJ4QQQohLcx+W5KS4+n4HGiilGls7EFFKksBCCFHDKaU6ApuBbkBbrfU7xQX7hRBCVHHFE3YxwFJgg1LqWWkcJ4QQQlyc4oZwYcACa8dSG0iDuKpJGsMJIUQNpZTyxFJX8mbgcWCG1P0VQojqq3gl8GdAMJbGcfJEhxBCCHEBlFITgXSt9UvWjqW2UEqFYKkNLA3iqghZCSyEEDVMceO3O7A0fisCmmitf5UEsBBCVG9a60PAjcBrwAyl1FfFE35CCCGEqIRSygm4E2kId00V117eAAy1ciiimCSBhRCiBlFKhQOLgGeAwVrrh7TWadaNSgghxJVS3DjuVyyN40xYGsfdIY3jhBBCiErdAqzTWsdZO5BaSBrEVSGSBBZCiBpAKWWnlHoBWAv8BbTWWq+1clhCCCGuEq11mtb6QWAQlom/v4onAoUQQghR1likIZy1/A6EFtdkFlYmSWAhhKjmlFJdgK1AB6CV1vp9afwmhBC1Q/GEX2ssT4GsVUq9oJSys3JYQgghRJWglGoG1EcawlmF1roIaRBXZUhjOCGEqKaUUl7Au0Af4DFgttT9FUKI2qu4AcunWLqfj9Var7BuREIIIYR1KaU+AVK11i9bO5baSilVH9iENIizOlkJLIQQ1Uxx47e7gF1ADtBYaz1LEsBCCFG7FTdg6Qe8BExTSk1WSnlbNyohhBDCOoobwt2BNISzquJazOuAYdaOpbaTJLAQQlQjSqlI4B/gCaC/1vpRrXWGlcMSQghRRRQ3jpsFNAFygVil1AhpHCeEEKIWGgas1VoftXYggklISQirkySwEEJUA0ope6XUy8BqLMX122it11s5LCGEEFWU1jpda/0I0B94HPineCJRCCGEqC2kIVzVsQCor5Rqau1AajNJAgshRBWnlOoObANaATFa6w+LC+wLIYQQ51Q8YdgGywTiaqXUK0opeyuHJYQQQlxVSqnmQDCw0NqxiJIGcd9gScwLK5HGcEIIUUUppXyA94BewCNa67nWjUgIIUR1ppSqB3wCNATu11ovs25EQgghxNWhlPoUSNZav2LtWIRF8ThkC5YGcTnWjqc2kpXAQghRxRQ3fhsFxAJpWBq/zbVmTEIIIao/rfVRrfUA4FngJ6XU98UTjkIIIUSNoZRyRhrCVTnFtZnXIA3irEaSwEIIUYUopaKApcDDwI1a68e11plWDksIIUQNUjyx2BjLRGOsUmq0NI4TQghRg9wKrNJaH7N2IKKcr5AGcVYjSWAhhKgClFIOSqn/ASuB2UA7rfUmK4clhBCihtJaZ2qtxwE3Ag8BS4snIoUQQojq7j5gkrWDEBX6AwhWSjWzdiC1kSSBhRDCypRSPYHtQFMgWms9UWttsnJYQgghaoHiCcd2WCYgVyqlXlNKOVg5LCGEEOKSKKVaAIFYko2iipEGcdYljeGEEMJKlFJ1gAlAN+BhrfVvVg5JCCFELaaUCgImYpmUfEBrvdjKIQkhhBAXRSn1OXBSa/0/a8ciKqaUCga2Ig3irjlZCSyEENeYUsqglLoHS+O3U0ATSQALIYSwNq11vNZ6MPAU8K1S6ielVF1rxyWEEEKci1JqsFKqfXFDuNuwrDQVVVRxrebVWGo3i2tIksBCCHENKaUaA8ux1Km6Xmv9lNY6y8phCSGEECW01vOBJlgmKncqpcYopeR7gxBCiKqqLdADSwJ4pdY63srxiPP7CikJcc3JYE4IIa4CpZS9UurDM353VEq9jiUB/AvQUWu91VrxCSGEEOeitc7SWj8JXA/cCywvnsgEQCk1XCnVyWoBCiGEEKVOAXWwJBUnKaWeVkp9auWYxLn9CQQW13AW14gkgYUQ4uoYD4QBKKWuB3YAkUALrfVn0vhNCCFEdVA8YdkRywTmv0qpN5RSjkAK8L00kRNCCFEFJGH5ruUH3ACMAN62akTinIobxE3G8oSsuEYkCSyEEFeYUqoB8BjwmlJqKpZHXR7VWg/TWidYNzohhBDi4mitTVrrz4DmQASWic2i4v/7jDVjE0IIIbAkgVsCmViam3aRkhDVwjfA7cW1nMU1IElgIYS4gpRSCvgUS9mHP4B4oKnWeqFVAxNCCCEuk9Y6QWs9DMtE5yQs3yUeVUqFWzcyIYQQtVwm4A/sB/pordOsG464EMWJ+pVIg7hrRpLAQghxZT2CpX5iDDAb8ASmKaVutGpUQgghxGUqrm8/F7gdmAu4Aa7A3OJJUCGEEMIatgITgcFa63wrxyIujjSIu4aU1traMQghRI1RXP6hMbAWSDzjv3+11qnWjE0IIYS4HMWJ3i5ACJa6i75AFJZHbyO01gXWi04IIYQQ1Y1SyggcBvprrbcqpepqrU9ZO66aSpLAQlwDSikbwAswWjsWUeVkaK2zrR2EEEII8R8Zt4hzkHGLENdQ8eSbJ2Bv7VjEVZEHpOlanphTSr2MZXL5CeC41trbyiHVWJIEFuIqUkq5ujrYTMovMg+wNShlNCiztWMSVYcGlVtgsnW2N+5Ozy16RGu93NoxCSGEqL2UUq6u9sZJ+SbzAFuDQRkMyLhFlNKo3EKzrbOdcXd6noxbhLialFLK0c7mJaXUo1prF1ujwWTtmMSVl19ksrE1GpILTeY38gqKPrN2PNeaUsoPyxNF+7E0m+0ALNZaB1k1sBpMksBCXEWuDrZr+jb1bfnCTY3s/dwdrB2OqIIKisz8sTORcb9sy8ktNLXTWu+0dkxCCCFqJ1cHmzV9Gvu0fP6GBvZ+brLoTJRXUGTmz12neXzW7pzcQrOMW4S4Slwc7F6rV8ftia8e6uvcKMgbKbteM2mt2XLoJKM+/j0nKSPnsYJC02Rrx3QtKaVCsDSGewfoCWwH+mmtW1ozrppMGsMJcZUopaKMBtX849uiJQEsKmVnY2BAdAD3dwuzc7Q1SEF8IYQQVvHfuOWjIY0kASwqZWdjoH/zuoztHCzjFiGuEqWUwaz1I98+epNz42AfSQDXYEopYhr48dn9Nzg52tk8Y+14rjWt9RGgM/AgUATcCiRZM6aaTpLAQlw9rdqHeZkMBvnQFufXKcLbxsHW2MXacQghhKi1WrULcZdxi7ggncI8bRxsDDJuEeLq8LcxGuwjArysHYe4Rjo0DCQztyCsuElarVKcCO6EpSZwGJZksLhKJAksxNVj52hnlP+NiQviaGtES8MHIYQQ1mPnZCvjFnFhHGwNMm4R4uqxs7cxSg3gWsTGaMCglAZsrR2LNWitU4DewE5AatZeRTbWDkAIcWW1fn0xyVn5KKWwtzHQNbIO7w1thptj2c+Tu75Zz7pDKWx/tTcOtkZu/3od6w6lAJBXaMLWaMBYvBrosZ7h+Lo5MGvzcWbc377Mefye/J3NL/UkwMOR+NRcXpyzk3WHUzCZNfW9nXimb0N6NfK9Njd/hid/3cbKA8nEJecw64H2dAr3qXTfQZ+vZnNcWsn9tgnxZPrY9pXuL4QQQogro+27azidXYBBKeyNii7hXrw7qCFuDmW/poz4cTvrj6Sz9bmOONgaufP7baw7kg6UH7c82r0evq72zNp6kl/viS5znoDnl7LxmQ4EuDsQn5bHS7/tZ/2RNEwa6nk58EzvMHo2vLZNyQ8k5fDaHwfYfDQDDXQI9eCNfhH4VlKWY8jXW9h8LKPkflvXc+OXu6OvXcBCCKvwGf4R2z++hwBv15LXHvv6bwK8XHhmSAem/RvLI5P+5u0R3RlzfXSFxz381SJCfT2oV8edp75dDECR2UyRyYyDreV9N8jHlVXvjGDBhgO8M3stR5MycLAzEh3qy9cP34irox0Pf7WI2Wv2cebc4cxnB9EmIuDa/DGKTf5rK1OXx7Lr2GmeGNCWZ4Z0KNm2ctcxBr01Cye70u/BU5/sT+fGwQDsiU/mqe+WsDMuiQAvF94ddV3Jtg/nreej+RtKjisym7ExGoib/BAA9e8p28Mtp6CQV2/vwkM3tioX4zuz1vDh/A3Y25Qu8j309QMYDTLveiatda5SKkZL47KrSpLAQtRAv9zXnnZhXmTnF3Hvj5v48J/9vNKvccn25KwClu1NwsnOhkWxJxkQHcC0e9uVbB/0+WrubFePoa1Km3L+sv7Yea/7yLQtxNTz5Iu7YrAxKLYdS8dkvvj38KTMfOq4Xt7ikqaB7gxpFcSj07Ze0P4ThjUvc79CCCGEuDamjW5BuxAPsvOLGDstlo+WHuHlvuEl25OzC1i+PwUnWyN/7U6mf/O6TB3VomT7kK+3cEdrf4a09Ct5bfqmE+e97mMzdtMy2I3Pb2tsGbccz7zEcUsBdVztLvq4/2TmFXFjkzpMvKURDjYGXllwgCdn72HKGfd4tvcHNSxzv0IIAeDp4sCH8zcwvHtTHOwqT/fc0imKWzpFATDt31hmrNrD7OeGlGw/mJjKo1//zZQn+tO+YQAZOfks2nK4zDmeHNiWJwe241Jl5VkmAJ3sL33xq7+nJQH+68rdFW4PqePOhg9Gl3u9sMjEXR/M54G+Mcx7YQjz1+9nxEe/sXHCaLxcHXl8QFseH9C2ZP+nvltMXkFplYK4bx4q+TkxNZsWj03m5tbhVObWzo34+N7el3KLtYokgK8+SQILUYM529vQu7EvS/eUra0+d+txGvm70bGBN7M2HWdA9JWZsd16LJ13hzTH0dYyy9k6xPOCjy0ymflr10l+XneM2IQMtrzc67JiGd0pBAAbqW0ohBBCVAvO9jb0ivJh6b7kMq/P236KKF9nOoZ5MmtrIv2b170i19san8HbAyJLxy313C/42CKTmb/3JDNt4wliT2Sx6dmOlxxHy2A3Wga7lfw+qn0ggydtueTzCSFqr2b162DWmu8Wb+eBvjGXfJ6dcUmE+3vSISoQAHdnB4Z1bnRFYtx44ARTlsUyf/0+/njlVhoGXvrTFze1sSRe/9h08KKOO3AilbScfO7ubZlsG9S+IW/PXMuCjQe567qmZfYtKDIxb91+vnn4xgrPNXP1HtqE+1O/7oV/hlwKpZQXMNDZ3qad0aCcrurFRLVTZDJn5RSYVgDztdZZle0nSWAharCM3EL+ij1J+7CyTQVmbjrOwOgAOoV7c/Mnq0jOKsDb5dJXsPwnpp4H42dt5+5OIbQJ8cLP3eG8xxw4lcW09cf4dWM89bwcub1tMF8OLx2wPDNrB3M2H6/w2LahXkwZ07bCbRfr5Xm7eHneLhr5u/JKv8Y0D7q6H+JCCCGEKCsjr4i/dp+mfWjZz+BZWxIZ2MKXTmGe9PtyE8nZBXg7X4FxS7Abz87bx+j2gbSu745fJeUXznQgKYdfNp1gxuZE6nk6cFtrfz6/rfRpq+fm7WXOtlMVHtu2vjs/jmx+3mtsiEsn0tf5nPu8suAAryw4QCM/Z17qG07zQNdz7i+EqD2eHdKBuycuYGSPZpe8yrZ5SF12Hk3if7+soHd0KC3D/HA8x8ri80nOzOXXlbuZujyWvIIibuvSmBVv3UVgcWmLmav3MP77JZUef2jSg5d03eMpWUQ9+BWuDnYM7hjF04PaYWM0YK5gwalZa/YcTy73+t9bDuNoZ1NSKuJsM1bt5p7elT+5AfDbhv0s2HiAQG9XxvVvw6D2DS/qPpRSjRxtjas6NvS1va5RgIu9ba3rHyfOIzu/iL92xN+59Ujye0qpdlrr+Ir2kySwEDXQHZPXYVSKrPwiGtRx4ZbWpWUODiZlsfVYGpNHtCLQ05FgTyfmbU3g7s4h5z3vmoPJRL7wZ6Xbvx7RiomLD/D2H3s5dDqb1vU9+fDWFoTXdSm3b2xCBi/M2cnh09kMiQlk9gMdiPAtv987Q5rxzpBmF3bjl+ilmxvR0NcVg0Hxw+o47vh6HauevQ53x1pZl18IIYS4poZ/vx2jwTJuCfNxYmjL0i/HB0/nsPV4JpPuaEqghwPBHg7M336K0R3OX8Jp7eE0ol5bUen2r+5oyifL4nj770McTs6lVbAbHwxpRHid8gusYk9k8eJv+ziSnMvgaF9mjokmom75RO1bAxry1oCL+3J/poOnc3j378N8fUeTSvd5sU8DIus6YTAoflx3nOHfb2PFE+1k3CKEAKB9w0AaB/vwzd/beOTm1pd0jlBfD2Y/N4TPF25ixIe/UVBkYni3prx2Z1dsiusAfzhvPZ8t3ARAkLcb/741vNx5MnPyGffNPyzbcZTrW4by1ojudG4UhFJln9Yc2jGKoR2jLinWykQEeLH8zTtp4OfJwcRU7vlkIY52Rsb1b0tEgBfO9rZMWrSF0T2bM3fdfo6cSiMnv7DceX5dtZuhHaMwVPCE6a5jpzlwIpUBbSMqjWNg+0hG9WyOj5sjK3fFM+rj3wnwcqVd5IU/jevmaPv9cwOiPe7pHiWPuYpKPdi7sevrczY7fffvvo+AoRXtI5WohaiBfh7Tjn1v9CHunRsZ2bE+/T9dTW6hpcHszI3HaVPfk0BPRwAGtgxg5qYKJ4nK6dDAm31v9Cnz35m8nO14tX9jVj17HZte7ImLg02lNXnTcgo4cCqLsDrONAlwI8jL8dJv+DLF1PPE2d4GR1sj93cLw9vFng1HUqwWjxBCCFGbTBnVnD0vd+Hwa90Y0S6QgV9tKRm3zNqSSOt67gR6WJ4uGtDCl1lbT17QeduHerDn5S5l/juTl5Mtr9wYzson2rNhfAdcHWwYN7PiupLpuYUcTMohzMeJJv4uBHme/2mni5WQnscd323j+T5hdAirvKRWy2C3knHL2M718Ha2Y+PRjCsejxCiajEaFIUmc5nXikxmbG3Krwp9dmgHPlu4iay8gku+XrvIAH4Y14/9X97PlCcG8Ouq3fy0bGfJ9scHtOXQpAc5NOnBChPAAIUmM7uPJePt5kjT+nVoGOhVLgF8tfh6OBMR4IXBoIgI8OKpQe1YsNFSNsLOxsgP4/oxd+0+Gj/8NX9uPki3JvUI8Cq7KCktO4+/tx7h1i4Vl8KYvmI3fVqG4e5c+WdCw0BvfD2cMRoMdGtaj2GdG11U+QqllGteoSn6jo7hkgAW53VvjyhjfqGp4tolyEpgIWo0W6OB29sG8+LcWPYmZtIiyJ1Zm4+TlJVPs1f/BqCgyEx6biGHkrIIq1N+Je6lCvBwZHSnEO7/aXOF2zuF+7Dl5V78FXuSn9cf44U5sdzcwp9bWwfRJrS0fMX4mduZuanichDtwrzKNLS7UqSMsBBCCHHt2RoN3NHan5d/38++k9k0D3Rl9taTJGUV0OLNVUDxuCWviEOnLQnZKyXA3YFR7QN54JddFW7vGObJpmc78vfuZKZtSuDF3/ZzU9M6DIvxp0390vIVz8zdW2mSul2Ie5mGdmc6nVXArd9sY2S7QO5ofXG9GqTBvBC1Q6C3K8dOZ5SpPRuXlEG3pvXK7ds63J/oUF8m/7X1sq+rlKJrk2C6NA5mT3z5cgnn4uXqyOp3R7BhfwJTlsXScfyPtIsM5Paujbm+ZSh2xQnsGav28NS3iys9z5mN2C6V4azkc4vQuix85VYATGYzrZ/4rlwd5Tlr9xEV5F1h3WKzWTNrzR7eH93zsuK4AN4u9raFjnY2l18HSdR4vu5OFJm0vVLKXmudf/Z2SQILUYOZzJrpG+JxtDVQ39uJdYdTOJmRx5KnuuJqX/o//7u/38TMTccZ3+fSH18EeGPBboa1DqZBHWfS8wqZvuEYLet5VLq/rdHATc39uam5PyfSc5m+IZ5Hpm3F1cGGv5/oCsC7Q5vz7tDz1887W0GRGbPWaKDQpMkrNGFvYyg385yeW8jWo2m0b+CFQvHjmjhOZebTuv6FN7UTQgghxOUzmTXTN53AwdZAPS9H1h9J52RmAf882gZX+9KVbvdM3cmsrSd5ulfoZV3vzUUHuaWlHw18nEjPK+LXTYm0DKq8tq6t0cCNTetwY9M6nEjP59fNJ3hsxm5cHIz89XAbAN4Z2JB3Bl7ceCojr4jbv9tGn8Y+PNi1fDLnTOm5hWyNz6R9qAcK+HF9AqcyC2hVz+2cxwkhqr8B7SKYMHc9EQFeeLs6smDjAXYfO02P5vUr3P+ZIR249d05l3SttXuPczAxjT4xYXi7OrL18EnW7D3O/27vcv6DK9AmIoA2EQG8cVc35q3bz+cLN/Hkt4tZ9L/bCKnrzi2doril08WXgygymSkymTGbNSazJq+gCFsbA0aDgZW7jhHq60GgtyuHEtOYMHcdNxc3kgPYfew0YX4eFBSZeX/OOuq4O9GzRUiZ889YuZtbK2mI92/sUYpMZnqddczZ/th0kE6NgnBxsGP1nnimr9zFlCf6X8xtKqUoX8S4mnn8pzX4ezgxvt+56yeLy6cUGk2Fsw2SBBaiBrpt0lqUUigFDeq4MHlkazyd7Ji56Tg3N/enwVkrfkd1qs/7i/ZddhI4K7+Iu75Zz6nMfBztjHQI8+bj26Iv6Fh/d0fG9YrgsZ7hbDySellxANw6aS1rDlpKOtw2aR0A61/oQT0vJz7+Zz9rD6cw7d52FJrMvLFwDwdOZWFnNNA4wI2pY9ri4SQTrUIIIcS1cPt32zAohQLCfByZfEdTPJ1smbk1kZua1qHBWSt+R7ULZMLiI5edBM7KNzHyxx2cyirA0dZAh1APPhxa8Zf9s/m72/PYdSE82r3+ZZdi+HNXErEnsjicnMt3a0uffjrwqmVCfOKyI6w7ks7UUS0oMmne+usQB5JysDMqGvu5MGVkczykHrAQNd7Tg9rzxozVXP/KL2Tm5hMZ4MXUJ/vj41bxUxEtw3xpGxnAn5sPXfS13J3s+W39fl77ZSV5BUXUdXfivhtacmuXxuc/+BxcHOy4s1sT7uzWhP0JKbg7nb8h57lMmLuO9+asK/n9g3nr+eS+3tzetQnbjpzi/i/+JCMnHx83J4Z2jOLRM2okT1uxiynLdmI2Q/dm9fjp8bKJ2SOn0tl86CQ/jOtX4bV/XbWHQe0bltRI/s+aPce57b25JauXZ63ZyyOT/qLQZKaejxvvjupBx6jz17UX1ceu46m8PGMjW+OScXe0Y9Obg8+5/5LYBJ77ZT0n03Po1NCPiSM74u1iKSny4q8bmL8pjqz8Iuq6OfBYn6bc3tEyeVFQZGLsNyvZfPg0J9Jy2Pj6IOr5XNzT3EpX0BVRCHH5lFKjB7YM+OTL4THnbu8sBLApLpU7J6/fk5pdcGHfPoUQQogrSCk1emDzup98flsTGbeI89p0NJ27fti+JzWnUMYtQlxhSqlQH1fH7Xu+GHvlavWJKs93xMcmk1m7aK3zznxdKRXq7WK/fff7w6rMvwetNWatMV5EPaIrvRK4yGQul4Cv6LXKmMxmywT0FahRfSAxnQ2HkgB4//ft50wCJ2Xk0uGVeXw+ujOdo/wY//M68gpMTL7PMvG7PzGdIC9nHO1sOHgygwET/uLXx3rSONCTgiIT3y/fR0yoD/3eX8S61wZWmAT2f3BKhf+WQFYCCyGEEEIIIYQQQghRLZjNmhdnbGD2+iMUmc2E1nFl6sM9qOvmyNa4ZMb9uIajyVkMbFWfI6czGdauAbd1bMC7v23jRFoOH97VAYC1B07x0LcrS5KWH/+5g59W7Cc5K5+wum68eWsb2oXXBeCR71fh4mDLvsR0Nh5M4o9n+2JQiud+Wc/O+FQCPJx4fVhrukT5A3A4KZOHv1vFruOpdInyw9H2wtKPP67Yxxf/7CY5M4/ODf2YMLw9ns72HD2dRbuX5/L2bW2ZsGA7rcPqEBXgwcGTGRSZzSyOTeCrezpT38eVp39ex+7jqdT3ceWNYa1pH+ELwMAJf9E+oi5LYhPYdTyVPe8Pw8Xh8p+kCfdzJ9zPnbUHTp1334Vbj9GivjfXN7esBn+mXwvavzyPrLxCXBxsifArrfn9X3r66OksGgd6Ymdj5L6elzf3KklgIYQQQgghhBBCCCGqgWW7E9hwMIkNrw/E2d6W2PhUHG2NFBSZGPXlMh7r05ThnSP48d99TFtzkGHtGlzQecPqurHwmb54u9jzzdK93Dd5BRvfGIRt8eraORuO8MujPWkW7ElOfhFdXvuNV4e0ol9MPdbsP8WYSf+y6n/98XZx4IFvVtAlyp85T/Rm8c4Exnz9L4/1aXrO6/++5ShfL9nDzw/3INDTiZdmbOS5X9bz5T2WWtQms2b7sRTWvz4IrTWfLIpl4daj/PDAdXw9pivZ+YVc98YC7rsuitmP9+bPrccY/vlS1v/fILxcLKVHZm84wi+P9CDQ07nkvs4U/vgvlcb3zu3tGNL28kpR7TuRTuPA0v5Dwd4uONoZOXwqk2b1vAB4fc5mvl6yh9xCE83redG1kf9lXfNMkgQWQgghhBBCCCGEEKIasDEayMovYn9iBi1DvEuSh6v3ncTGoBjdzdLr557rovjs710XfN5+MaVNBu/r2Yj3FmwnLimT8OLVqTe1DCa6vjcAi2MTiPBzZ2DrEAA6N/QjJtSHpbEJtAuvS2x8KnOfvAE7GyN9o4NpFepz3utPWbmfcX2bEVrH0qT16ZtbEP3cLMzm0jK2T9/UHAfb0max7SN86dEkAIDY+FS0WZeslu3Xqj6Tlu7hn53HGdY+DIA7OjYgrG7lzVQPfHjbeeO8HNn5hQR4lq285eZoR3Z+YcnvLw6K4fkBLdl05DSr9yVid4ElLi6EJIGFEEIIIYQQQgghhKgGukb5M7JLBE9OXcupjFyGtg3jxUEtOZmeg/9ZCcZArwsv9f/zqgN8uXgXx1NyUAoy8wpJzsonvHj7mcnLY8nZrNl/sszK2SKTmY6RvpxMz8Xb1aFMsjbI+/xxxCdn89TUtTwzrbTZnwKSMi2lbQ1K4edRthFioGfp74npuQScdb9BXs4kpueU/H52AvZac7a3JTOvsMxrmXmFONuXLUthMCjahNVh1rrD/LhiP3d3b3hFri9JYCHEOT0xfRv+Hg48fcOVedMRQgghhLhanpy9B383e57qdXmPawohhLg8j339NwFeLjwzpIO1Q6mR7u/VmPt7NeZ4SjZ3fLqERgEe1PNx4URqdpn9ElJKf3eytyG3oKjk96SM3JKfj57O4vnp65n9+PVE1/fGYFBEPDEdfca5zuyhFuDpRPdG/kx5qEe52I4lZ5GSlU9eoakkEXw8JZsQH9dz3pO/pxPP9G9RZkXymfFV1MPtzMZufu6OZe73v+te1zigwnuoSMhj0yrd9v4d7RjaLuzcJziPSH93ftscV/J7fEo2OflFhNat+G9j0prDSZmXdc0zSRJYCFGrfbLkAF8uP0SRSXNrmyBe7dcYg6HiT4asvCJenhfLwh2JmLWmZ6O6fDE8BoDjqbk8M2sH6w+n4O5ky4s3NWJAdOmHzeQVh/li+SEycgtpEuDG20OaEeV37g9BIYQQQogzfbo8jq9WHqPIpBnWyo9X+oZXOG6ZvTWR8XP3lfxuNmvyTWa2P9cJbxc7ABbvTebNRQc5kpxLHRc7Ph7aiHahHgBMXh3PVyuPkpFbRGN/F94e0JCGvtZdPSWEEFXFtH9jmbRoK4dPpuPhbM/dvVvw6M2tz3vch/PW88aM1fz+0i20bxh4ydffGpeM1ppmwV64ONhiYzRgMChah/lQaNL88O8+7ugUzk8r9pOQVroKtkmQJ1/+s5vEtBxsbQxMWrKnZFtOQREohberPSatmfjHTjJzCyu6PADXNwvk9Tmb+W1THH2jgzGZNZsOnyakjgvB3i5EBXjw4cLtPHVzC5bEHmfjodN0ivQ7530N7xTOx3/upHGgJw183UjOymPDwST6tAi+oL9LTKgPSsE3S/cwsmskf26PZ9fxVHo1vfC/9ZGPb7/gff+jtSa/yExhkQkN5BWaMCiwszGW2/fG6GD+b85mFu88TsdIX979bRt9WwTj4mBLocnMr2sP0i+mPi72tqzal8is9Yf58u7OJcfnF5pKEvMFRaYyifYLIUlgIWoRrTVmDcZKkpzXQpHJjM1ZNW0qeq0yJrPGoMrO+F2qf3af5NuVR/j9kU642Ntwy5dr+WFNHKM7hVS4/7jp23CwNbDm+etwtbdhT2LpjNxDP2+hTYgn349uzYYjqdzx9Toa+7sR4evC1mNpvPXHHn57uBMN/VyZ8Nc+HvtlK4vGdbnsexBCCCFqKhm3lLV4bzLfrTnO/PtjcLGz4dZvt/Lj+gRGtS//5XZwtB+Do0u/bH+6PI6l+1JKEsCxJ7IYN3M3n93amE5hnpzOKuC/kovb4jN4569DzBsbQ0NfZz5YcoRxM3fzx0PnT3AIIWomy/uxxmi4crVJL9blvx+bMSh1Rd6P8wpNvDPyOlqG+RKfnMkt78yhno8bA9tHVnpM/OkM5qzdh6/H5U+oZeQW8NKvG4lLzsLJzoYBreozpG0IRoOB78Z24/Epa3h11iYGtQ6hQ0TdkuO6N/LnhhZBdHp1Pv4eTgzvHM7XxYngqAAP7u7WkJ5vLMDe1si910WVKbVwNldHO6Y90pOXZmzkqZ/XYlCKFvW9ef/O9gB8eXdnHv5hNV8tmU7XKD9ublnvvPc1oHUImXmFjPxiGcdTs/F2sWdQm9ALTgLb2Rj54YHrGP/zOt6ct5X6dVz44f7uJU3hrpZjydm0fnFOye/1HvmZjhG+zH3yegC6/G8+j/VpytB2YdRxc2TSmC48+8sGTqbl0KmhHxNHdgQspS/mbozj1VmbMZk1QV5OvDokhuubB5Wcu+Mr8zhWvNq546vzATj15V0XHKskgYW4hsxmzUvzYpmz+ThFZk2IjzNTx7Sljqs9W4+l8cT0bRxNyWVAtD9HknO4pVUQt7UN5r1FezmRlscHt7YAYN2hFB76eQsbX+wJwMTFB/hpbRwp2QWE+TjzxqCmtA21FId/dNpWXOxt2H8qi41HUlj4WGeUUjw/eyexCRn4uzvw+sAmdI6wFGo/cjqbR6ZtZdeJDLqE+1zwrNJPa+L4cvkhkrMK6BThzfu3NMfTyY6jKTl0eGspbw1uygd/7aNViCdRfq4cPJVNkVmzZM8pvhweQz1vJ56ZuYPdJzKo7+3E/w1sQvswS9H5QZ+vpn2oN0v2nmJ3Qia7XrseF4fLf/uaufE4IzrUJ9TH8kH8QPcwflpztMIk8N7ETJbtTWLry71Krt000FIgPzu/iHWHU/jpnjbYGA10aOBNu1BvZm2O59m+UcSn5tLY343GAZYC9ENaBfLF8kOXHb8QQghxNZnNmpcX7GfOtlOYzJoQb0d+GtGcOq52bIvP4MnZeziamkf/ZnWJS8llaEs/bm3lz/v/HOZERj4TBkcBsO5IGo/8upv14y2PBH+yLI4pGxJIyS4k1MeR1/tF0La+BwDjZu7G2c7I/qQcNh5NZ8EDrTAoxQvz9xF7Igt/d3teuzmCzg0snbWPJOfy6Ixd7E7MpnMDTxxsLywZMGV9Al+uPEpKdiGdwjx5d1BDPJ1sOZaaS8cJ63izXwQfLj1Cq2B3Gvo6c/B0DiazZsm+FD6/tTH1vRx5Zu5e9pzMpp6XA/93U0TJKtohX2+hXYg7S/elsDsxi50vdsbF/gqMW7YkclfbAEK9LV/K7+8SzE+VJIHPNmvLSe7tXPolcuKyOEa0C6RruGW86OtW+gU5Pi2PRn7ONPZ3AWBwtC9frjh62fELIS6d2ax5YcpyZq3eQ5HZTKivB9OeGkBdd2e2HDrJuMl/E3cqg4HtIzlyKo1bOzfi9q5NeGfWGhJSsvj43t4ArN17nAe++JMtH90DwEfz1/Pj0p0kZ+YS5uvB2yOvo12k5WnGh79ahIuDHfsSUtiw/wSL/ncbBqV45oel7IxLIsDLhTfu6k7XJpYE3eGTaTz05SJij52ma5NgHGwv7H3vhyU7+HzhZpIzc+jSOJgP7umFp4sDR5PSafPk97wz8jren7uONuH+RAV5c+BEKiazZvG2I3z1UF9C6rrz1LeL2RV/mvp13Hnzru50iLK8L/Z/fQYdGgayeHscu46dZu8XY3F1tLvs/3+M7tm85OdQXw/6tmrAhgMnzpkEfv6n5Tx/S0ee+3HpZV+/a5Q/y1/uV+G2mFAflr9Uum3IR3+X/KyUYsKd7ZlQnKgFS1mJ/7w8OIaXB8eU/D6ub7OSnz8Z1anctaICPJjxWK8K4wjzdWPh+D4XcDdlDe8cwfDOEeVer+fjwonPh5d5bXy/FuX2axLkyYJKrvtfUvZKq+fjcs5E7IpX+pf5vUeTQNb/X/nPbhujodK/5382vTn40oL87xqXdbQQ4qIs25fEhiOprHuhB852NsQmZOBga6CgyMzd323k0V7h3NmuHj+uieOXDfHc0iro/CcFwuo4s/DRzng52/HtysOM/Wkz61/ogW3xrOjcLcf5+b52NAt0J6egiG7vLuflfo3p18KfNYeSue+HTax45jq8Xex4YOoWukT4MOuBDizZc4p7f9zEoz3Dz3n9BdtP8PWKw0wd05YAD0denhfL87N3lpRKMJk1O+LTWft8DzTw6ZID/LEzke9Ht2bSXTFkFxTRc8IK7u0SwswH2vPnzkRGfLOBtc/3wMvZ8iE9Z8txpt3XjgAPB2wrmIGOfOHPSuN7e0gzBseUf5PddzKTQS1LSzY0CXBj78mK6+1sPZZGsJcjb/+5h9mbjhPo6cir/RvTKdwHs9ZoDfqMgklmrdlbvFK4W6QPExcfYHt8Oo39XZmxMZ7ukefvjiqEEEJY0/IDKWw8msHap9rjbGckNjGrdNwydSePdqvPHW38+Wl9AtM3JzK05bkf8/xPmI8jv9/fCi9nW75bE88D03ax9un2peOW7af4eVRzmga4klNgovvH63m5bwNublqXtYfTuG9aLP8+3hZvZzsemh5L5waezBzTkiX7khk7LZZHupWvJXimhTuTmLz6GFNGtiDA3Z5XFhzghfn7+Py2JkDxuCUhi9VPtkcDny0/yp+7TvPd8KZ8eVsTsgtM9P5kA2M6BjFjTDSLdp1m5E87WP1Ue7ycLI1d5m47xdTRzQlwd8C2gpXMUa+tqDS+N/tHMjjat9zr+09lM7BF6euN/VzYdzK73H5n25GQSVxKLv2alq4G2xqfQQMfR7p/tI703CJuaOTDKzeF42hrpGu4F58sP8r245k09nNm5uZEukV4nfc6QoirZ+mOONbvT2DTB6NxdrBj59EkHG1tKCgyMfKj3xjXvw13dW/KD0t2MO3fWG7t3OiCztvAz5M/X70Vb1dHJv+1jTGfLGTzh6OxLX6MffaavUwfP4jmIXXIySuk07M/8b87utC/bQSr9xznnokLWPPeSLxdHRn7+R90bVyPuS8M5Z9tR7hn4gLG9W9zzuv/vuEAkxZt4ZenBxDo7cqLU5bzzA9LmfRQX8Dyfrz9yCk2ThiNBib+toGFmw7y0+P9mPzwjWTnFdD9hancd0NL5jw/hD82H+LOD+axccJovFwdy9xDoLcLtsbyC5zC7vu80vjeHdWDoR2jzvt3XL8vgeHdm1a6/Z9thykoMtEnJuyKJIGFuFSSBBbiGrI1GMjOL2L/qSxaBnvQLMiyknT1wWSMRsWojiEA3NM5lM+XXfhK0Zub+5f8fG/XMN7/az9xyTmE17Ws4LixuT/RwR4ALN6dRISvCwOLk5+dw31oWd+TZXtP0TbUi10JGcx5sAN2Ngb6NPWjVX3P815/yrqjjOsVQUjxitqnbogk5rXFmM2lWdEnr48ss6q4fZgX10VZvozEJmRg1pp7u1qKrPdrEcDkFUdYvPsUt7S2JMJvbxtcsmK3IvveuPhZxuwCU5kVxa4OtmTnF1W4b2J6HrtPZNK/RQBbX+nNP7tPcvf3m1jz3HV4OdvRqr4HH/6zn2f7NmTD4VTWHkqhQwPLFyZnOxv6NvXjxo9XogE/N3tmPSANEoQQQlRtNgZFVn4RB5JyiA5ypVmApZb9mkOp2BgUI4tXoN7dIYgvLmKl6E1nJCPHdApmwuIjxKXkEV7HssL1xiY+tAiyPD2zZF8yEXWcGNDckvzs1MCTmGBXlu9PoW19D3YlZjPr3paWcUvjOsQEu533+lM3JvBo9xBCvC0Jgqd6htDqndVlxi1P9AwpM25pF+JO90jLE0q7TmRh1pbYAW5uVpfJq+NZsje5JBF+W2u/khW7Fdnz8sWXhMouMOFqXxqTm4MN2QWm8x43a0si1zfywfWMMU9iRj6zt55k+j3RuDvaMGbKTj5ZFsf43mE42xnp08iHm7/YhAZ8Xe2YOablRccrhLhybI0GsnIL2X8ilZZhvjQPsbyPrtodj43RwN29LCsix1wfzacLNl3wefu1LV1xObZPS96dvZYjp9KJCLB8j7mpTTgtwyzvv/9sP0JkgBeD2lsahndpHExMAz+WbI+jfcMAYo+eZv4Lt2BnY+TGVg1oFe5f/oJn+WnpDh4f0JZQXw8Axg9uT/NHvynzfvz04PY42JW+f3VoGEiP5iEA7Dx6GrPWjO1jeY/q3zaCSX9u4Z9tRxhWnAi/o1sTwvw8Ko3h0KQHzxvnuUz8fSM5+YXc0qniZHF+YREvT13Bj49XvHK3tvlkUSwTFm4v9/rwTuG8Puzckwbi8kkSWIhrqEukDyM61OfpGTs4lZnPkJhAXrgpilMZeQS4O5bZN8jDsZKzlPfzuqN89e9hEtJyUUBmfhEp2QUl2wM8HEp+jk/NYc3BlDIrZwvNmo4NvDmVmY+3s12ZLz1BnuePIz41l6dnbufZWTtKXlMKTmflA2BQ4OfuUOaYgDPuLzE9n8Cz7jfI05HEjLwK979SnO2MZOWVJn2z8otwruRxTQdbI7ZGxSM9GmBjNHBjM38+/Hs/G+NSub6xL5/f2ZJnZu6k5f/+oUmgOzc39yspBD9l3VFmbznOqme7E+TpxLytCdzy1Vr+Hd8dx4so4i6EEEJcS13CvRjRNpCn5+4lKbOAwdG+PH9DGCczC/B3K1tfL/Csz/lzmbbxBJNWHiMhPQ+llGXcklMAWJKmAWecKz4tj7WH08qsnC00mekQ6snJzHy8nG3Ljls8zh9HfGoez8zdy/PzSxunKaU4XTx2MijLhO2ZzowpMTOfAPey24M8HUjMyK9w/yvF2c5IZn5p0jcz34Sz3bnHESazZu72UyWlOf7jYGNgWIwf9b0s46t7Owfz4ZIjjO8dxtQNCczZdpIVT7QjyMOBedtPceu3W1k2rq2MW4Swkq5N6zGqZzOe+OYfTqXnMLRTFC8N68TJtGwCPF3K7BvkfeHNp6cuj+WLPzZzPDkTpSAzt4CUrNLvYIFepec6djqT1XuOl1k5W2Qy06lRECfTsvF2dSyTrA32OX8cx05n8uS3ixn//ZKS15SCpAxLMzODUvifdX+BZ9xfYlpWmRgBgnzcSEzNqnD/K236il188/c2Frx0S5l7P9PE3zdyQ0wo4f7nX1x1Ncwa19sq163MIzc04ZEbmlg7jFpLksBCXGNju4UxtlsYx1NzuXPyeqL8XKnn7URCem6Z/Y6nlf7uZGdDbmHpoD8pq/RLxtGUHF6YG8usB9oTHeSBwaBo+OKiMqUJFKWPIQZ4ONKtoQ8/3dO2XGzHUnJIyS4o02EyPjWX+udYyQKWLzrP9GlYZkXymfFVVHz/zFf83O3L3C9Y7r97wzql+5+nfn/Yc39Uuu29oc0YUkFpjUhfV3YnZnJDU8uqndiEDBr6VjxIiPJzRVG+kcB/v9X3duaXse1KXu//yaqSa+5KyKBPE1/qe1tWMg+OCeTFOTs5eCqrpK6wEEIIURXd1zmY+zoHczwtj7t+2E6UrzP1PB04cUbCEyAhvfR3JzsjuWesUD2dVToxfSw1lxd/28fMMS1pEeiKwaBo9NqKs8YtpfzdHOga4cWPI5pztvjUPFKzC8uMW46n5ZUkNivj727P+N6hZVYknxlfheOWM17yc7Uvc7//Xbf7GSUTztd2KPzVfyvd9u7AyDJN3f4TUdeZPYlZ3NDIUlJq14ksIn3P3WDo3wMpmM2abuFlkw8NfZ0rHdPsSszmhsY+JX/HwdG+vPT7fg4m5dA04OolU4QQ5/ZA3xge6BvD8eRMbntvLo2CvKlXx52EMxKeAMdTSsvbOdnbkltQuuglKT2n5OejSek89+NS5j4/lOhQXwwGRYP7vkCf8YZ85ttEgJcL3ZvV4+cnB5SL7djpDFIyc8krKCpJhsYnZxJS99zfdQK8XHhuaIcyK5LPjO983wH9PFzK3O9/1+3R/Nxlgc5U/57PKt32/t09K13h+/uGA/zvl5XMfX4oQT6VP4WyIvYYu+OTmb5iNwCnM3K568PfeG5oh5IV3EJcK5IEFuIa2nosDa2hWaAbLg422BoVRoOidX1PikyaH9fEcXvbYKasPcqJ9NIZ2CYBbny1/BCJ6XnYGg18/e/hkm05BSYU4O1sj0lrPvnnAJl5hZXG0LtxXd5YsJvftiXQt6kfJq3ZFJdGiLcTwV5ONPR35aN/9vPk9ZEs3ZPEprhUOoV7n/O+7mhXj4mLD9DI35UGdVxIzipg45GUkuTq+cTU80Qp+GblYUZ2qM+i2JPsSsigZ6PyX84qc+itvhe873+GtArk2Vk7GBgdgLO9DV8uO8hdHSoeMHQM98bX3Z7Plh7koesasHj3KeJTc2kdYvlStf9kFgEeDhgMiilr4jiensdtbS1J4OhgDz5fdpCRHUMI9HBg/rYT5JvM502uCyGEENa0LT4DDTT1d8HF3ohN8bilVT13ikyan9Yd57bW/kzdcKJMUrixvwuTVh0jMSMfW6Pi61XxJdtyCswopfB2tsWkNZ8uiyOzklJMAL2jvHlz0UF+33GKPo19MGnYfDSd+t6OBHk60NDXmY+XxvFEzxCW7kth07EMOoade7XVHa0DmLgsjig/Fxr4OJGcXcDGoxklydXzaRnshlLw7Zp4RrQN4K/dyexOzKZHw3OPl8504NWuF7zvf4ZE+/LsvH0MaO6Ls52Rr1YeZXjbczeFm7nlJIOifbExlu2ncGsrfz5dHsctMX64O9jwzapj9CyOPzrIlS9WHGVEu0AC3e35bUcSBUXm8ybXhRBXz5ZDJ9Fa0zykLi4OttgYDRgNBtpE+FNYZOb7xdu5s1sTflq6k4SU0qRw0/p1+OKPzZxIzcLOxshXf24p2ZaTX4RC4e3qiMls5uPfNpGZW1DR5QG4ITqU/5u+ivnr93NjqwaYzGY2HkgktK47wT5uRAX58MG89Tw9qB2Lt8excf8JOjc6d4+b4d2b8uH8DTQK9iHc35PkzFzW70ugb6sGF/R3aRXuh1KKyX9tZVTP5vy5+RC7jiXRq0XIBR0PEPfNQxe873+W7zzKE9/8wy9PDyQy8Nw1038Y14+CotKJ0d4vT+OdkdfRrWm9i75ubfDI96sIrevKEzeWn/wVl0+SwEJcQ5m5Rbw0L5ajKTk42Rnp3yKAwTGBGA2Kb0a14slft/O/33YxMDqA9mGlHybdIn24oYkvXd5dhp+7A8Pb1ePrFZZEcJSfK6M7hdD7g3+xtzUypnPIOUsnuDrYMvXedrwyL5bxM3eglKJFsDvvDbW8yX5xZ0senbaNSf8uomuEDzc1O38tpwHRAWTlFTHqu40kpOXi5WzHoJaBF5wEtrMx8MPoNjwzawdv/7GX+l5OfDe6dUlTuKuld2Nf9iRmcuPEVRSZzNzaJpiRZySBu767jMd6hjOkVRC2RkuMj/+6jQ//2U8DH2e+HdUaTydLjEv3nuKjv/eTV2SmdX1Ppt/XDvvichC3tgni0Ols+n2yisy8Iup7O/H1iFa4Othe1fsTQgghLkdGXhGvLDjA0dQ8nGwN9GtWl0EtfDEaFJPvbMpTc/bw2h8HGdC8Lu1DSld7dQv35PooH7p9uA4/N3vubBPA5NWWRHBDX2dGtQ/k+k83Ym9j4J6OgecsneDqYMPUUS14ZcF+npm71zJuCXLlnYGWmpSf3dqYx2bu5uvV8XRp4MmNTepUeq7/9G9el8z8Iu7+aQcJ6ZaSEgOb173gJLCdjYHvhjfj2Xl7eeevQ9TzcuTb4U1LmsJdLb2ifBh1Mpubv9hEkVkzLMaPEW1LG9x2/2gdj3avX7KKODu/iD93JTHnvphy57qjtT9HU3K5/pMN2BoN3NS0Dg93syQkhsX4ceh0DgO+3ExmfhH1vByZdEeTMjWFhRDXVmZOPi9MWc7RpAyc7G0Z0C6CIR0bYjQY+GHczYyb/A+vTFvBoPYN6RBVOjnUvWk9+sSE0XH8j/h7unDXdU2ZtMiSCI4K8ubu3s257sWpONjacO/10QR6u1QWAq5O9kx/eiAvTlnOk98uxqAU0aF1mXB3TwC+eqgPD3/1F1/9uYWuTYO5uc25m4sDDGwfSWZuASM+/I3jKZl4uzoyuH3DC04C29kY+enxfjz93RLemLGakLru/DiuX0lTuKvlg3nrSc/JZ9Cbs0peG9opquRv0emZHxnXvy23dIrC06XsZ5zRoPB0ccDJXr4LVmUTF+3kh+X7SM0pwMPJjlFdI3m0T2nzvyd+WsOKvYnEnc5izuO96dTQ74KPtSZ15lJ/IcSVo5QaPbBlwCdfDo8593N6lbjly7UMiQnktrbBVzo0UQVtikvlzsnr96RmF1xYK18hhBDiClJKjR7YvO4nn9/W5JLGLcO+2cqQaF9ubXX+yWNR/W06ms5dP2zfk5pTKOMWIa4wpVSoj6vj9j1fjK08I3sOg9+axS2dori9q9RdrU58R3xsMpm1i9Y678zXlVKh3i7223e/P+yS/j1UN1VlJfChUxnUcXXA1dGOxLQcbvn4H14eHEPvZpbV7d8u20tUgAePfL+KiSM7lkkCn+/Yq83/wSkV/lsCWQkshBBCCCGEEEIIIUStZjZrXpyxgdnrj1BkNhNax5WpD/egrpsjH/+5g59W7Cc5K5+wum68eWsb2oVbyjc+8v0qXB1t2ZuQzqYjp+kY4cvEkR15dtp6luxKoHmwF9+O7YaXiz1HT2fR7uW5vHlrG977fTv2Ngae6R/NbR0qXv29cOtR3vltGwmpObSo58WHd3Ug2NuF3IIixv24hiW7ElBApL8785+8AYPhfFX5L0xY3bJ1ng1KcSSptP703d0tTyQZzyq3dCHHWpMkgYUQF+TTJQf44O/95V6/s109/m+gzDILIYQQour47N84PlwSV+71O1r789rN5RsQCSGEuDom/r6RCXPWlXt9ePcmvHFX92sfkKjUst0JbDiYxIbXB+Jsb0tsfCqOxY1Xw+q6sfCZvni72PPN0r3cN3kFG98YhG1xEnT+pqPMHNeLIC9nbnr3T/q9v4gPh7fn87s7cednS/l66R6e6WdphGcyazYfPs2mNwax41gKt05cTOtQH8L9yjYS3BqXzLPT1jP1oR40CvTg8793cf83K1kwvg/T1x4ip6CI7W8PwdZoYOPh0xU2EoxPyab7//1W6T1PeagH7cMr7kX03fK9/G/2ZnLyi6jn40L/VhfecPByjr2aJAksRBU14/721g6hjId7hPNwj/PXdRJCCCFE7fPrPdHWDqGMh7rW56GuVeMLlxBCXEuznxti7RDKePTm1jx6c2trhyEugI3RQFZ+EfsTM2gZ4k2zeqV9ivrFlH6m3tezEe8t2E5cUmZJ4rZ/q3pEBXgA0LNpIPsT02kf4QvAjdHBLN2VUOZaT9/cAkc7G9o2qEufFsH8vuUo4/o2K7PP1FUHuLt7w5I4Hr6+CR/+sYMTqTnYGhUpWfnEnc4iKsCj0kRukJczBz687ZL+HqO7NWRU10h2HU/jj23HcLmInj6Xc+zVJElgIYQQQgghhBBCCCFqsa5R/ozsEsGTU9dyKiOXoW3DeHFQS2yNBn5edYAvF+/ieEoOSkFmXiHJWfn8t0zMx7W0AZ6DrbHM7462NmTnF5W5VqCXU+nPnk6cTM8tF098chYz1h7k079iS14zmTUJadnc0i6MY8nZjPpyGQVFZkZ2jeCxPs3KneNyKaVoEuTJsl0JvP/7dl4Z0uqaHHu1SBJYCHFBHp22lVAfZx7vLY9QCiGEEKJ6GTdzNyFejozrEWLtUIQQotZ5+KtFhPp68OTAdtYORZzH/b0ac3+vxhxPyeaOT5fQKMCDjpG+PD99PbMfv57o+t4YDIqIJ6ajL+M6x1NyqOdj6XV3PDWHyLNKQQAEeDoxvl80D/ZuXOE5nu0fzbP9o9mfmM7AD/6idWidMg3awFIOovP/5lcaxy8P9yhZsXwuJq05fIl1fS/n2CtNksBCiGpl5YHTvL9oH9vi04kOdmfOgx1LtiWm53H39xs5lJSNBpoHufPmoKZE+Fo+XNJyCnh+9k6W7U3C1sbAIz3CGdMltOT4rcfSePLX7RxKyqJZoDsTb48mxMf5go4VQgghhDif9/85zMRlcdjZlDaS2ftyF4xnNbKZvfUkD/+6i09uacSQlqVfaDcfS+eV3w+w+2Q27g42vHJjOP2bWx6B/SM2ibf+OkRCej4xwW58OCSKQA8HhBBClFVkMtP9hankFxSx4YPRJa+Pm/wPK3cd48ipdOY+P4TOjYNLtt367hzW7i0taZBfZKJH8/r8/OSAaxr71bQ1LhmtNc2CvXBxsMXGaMBgUOQUFIFSeLvaY9KaiX/sJDO38LKuNWHhdt65vR2x8Sn8ue0Yj/ctv4r3jk7hjJ28gs4NfWkW7EVmXiHLd52gX6v6rNybiI+rA5F+7rg62GJjMJT7LAVLOYgjH99+0fFNXbWfPi2C8XK2Z/vRFL5dtpdHri/thVRQZMKsQWtNgclMXqEJexsDSqnzHmtNkgQWQlQrTnZGRnSoT3xqLkv3niqzzc3Rlk/viCbE2xkNfL/6CA9P28KicV0AeGneLpRSbH65F0eScxj82WoifV3oGlmH/CITd3+3kcd7R3BL6yA+/Hs/90/ZzJ8XcKwQQgghxIW6JcaPCYOjKt2elV/ExGVHaFjXuczrpzLzueuHHbzZP4Ibm9QhK99Eeq7l8dqDp3N4fNYepo1uQdMAF15dcIAHp+9i3tiYq3ovQghRHX355xY8nOw5WVC2REHz+nW4pVMUD3+1qNwx08cPKvN7x/E/0q9NzeqZk5FbwEu/biQuOQsnOxsGtKrPkLYhGA0G7u7WkJ5vLMDe1si910UR6Ol0/hNWwmhQRNf3Jub52djZGHhjWBsi/cuvBG4VWof/u6UNj/+0liNJmbg42NKtkT/9WtXnZHouT05Zy8mMXNwcbBnZNfKCVvReqFX7TvL6nC3kFprwdXNkZJdI7u7esGT7sI8Xs3r/SQBunbgYgI2vD6Kej8t5j7UmSQILUQ2YzZqX5sUyZ/NxisyaEB9npo5pSx1XeyYuPsBPa+NIyS4gzMeZNwY1pW2opXD6o9O24upgw97ETDYfTaNDA28+vq0Fz83eydI9STQLcuObka3xcrbjaEoOHd5ayhuDmvD+on3Y2xgY36cht7YJrjCmP3Yk8u6ivSSk5dEiyJ0Jw5oT7OVEbqGJx3/ZxtK9SSgg0teFuQ91xFDBrNyliKnnSUw9T2Zuii+3zcnOSFgdy6pfk1ljNCjiTueUbF+86ySzHuyAg62RKD9Xbmruz/QN8XSNrMPqA8nY2Ri4q4Ol4P243hFMWnGYg0lZNKjjcs5jhRBCCFE5s1nz8oL9zNl2CpNZE+LtyE8jmlPH1Y5PlsUxZUMCKdmFhPo48nq/CNrW9wAsJRxc7I3sO5nN5vhMOoS689GQRjw/fx9L96fQLMCVr+9sipeTLcdSc+k4YR2v3xzBhMWHsbMxML53KMNi/CuM6Y9dSbz/z2ES0vJpHuTKhEFRBHk6kFto4olZe1i2LwWlIKKuM3PubXnFxjEX4r1/DnNX20AWxiaVeX3Sqnh6NfRmQHPLl1xPJwOeTpZGM8v3p9C5gSctg90AeLR7fVq+vZrDyTmEel/6F3UhRPVnNmtemLKcWav3UGQ2E+rrwbSnBlDX3ZmP5q/nx6U7Sc7MJczXg7dHXke7yADAUsLB1dGePfHJbD6YSIeoQD4dez3PfL+UxdvjaB5Sh+8fuxkvV0eOJqXT5snveWtEd96bvQ47WyPPDenAbV0rfox/4cYDvD1rLceTM4kO8+WjMb0I9nEjt6CIRyf9xZLtcSgFDQO9+e3FW67oe/CJlCx+Xh7L/+7owvM/Liuz7e7eLQCwMRgqOLLUlkMniU/O4OY2NatUYtcof5a/3K/CbS8PjuHlwaUTi2c2cftkVKcy+47v16LM77d1bMBtHRuUeW10t4aM7lY+MXr2ufpGB9M3unxOYkjbUIa0vXpP5n4+uvM5t8998vpLPtaaJAksRDWwbF8SG46ksu6FHjjb2RCbkIGDreWDKayOMwsf7YyXsx3frjzM2J82s/6FHtgaLdt/23aCX+9vT5CHIzd/sooBn65mwrDmfHZHS+76Zj2TVxxmfB/Lm6/JrNkcl8aGF3uyMz6d275eR6v6noTXdSkTz9ZjaTw3ewc/3dOWRv6ufLHsEA9O3cJvj3Ti1w3x5BSY2PpKL2wNik1xaagKPrPjU3Pp8f7ySu/5p3va0i7Mq9Lt59Lq9cUkpudh1prn+pautNGAPqNwkVlr9iZaavPsO5lF4wC3km2OtkbCfJzZm5hJgzou5zxWCCGEEJVbfiCFjUczWPtUe5ztjMQmZpWOY3wc+f3+Vng52/LdmngemLaLtU+3LxnH/L4ziel3RxPoYU//LzczYNJmJgyK4pNhjRnx43a+WR3P070sXwJNZs2W+AzWje/AzoQs7vhuGzHB7oTXKZsE3RafwQvz9/HDiOY08nXmi5XHeHB6LPPvb8WMzYnkFJjY/FxHyzjmWEbF45i0PHpN3FDpPf8wohntQjwq3LZgZxJ/xCYR4G7PI93rlyR1AXYnZrHmcBov9w0vlwTeeiyDRn4u3PT5Ro6l5tExzJO3BkTi6WRb8kjqf8zFP+49mS1JYCFquaU74li/P4FNH4zG2cGOnUeTcLS1pIIa+Hny56u34u3qyOS/tjHmk4Vs/nA0tjZGAOat28fs54YQ6O3Kjf+bzk2vzeCjMb344sE+3PH+PCb9tZVnh3QAir9LHkxk80d3s+PIKW55dw6twv2ICCj7nW7LoZOM/2EpPz85gMbBPny2YBNjP/uDha/cyi8rdpGTX8TOT+/F1mhg44ETFb8Hn86g6/NTKr3nn58cQPuGgRVue3HKcsYPbo+j3aWnw2as3E3fVg1wdbS75HMIYQ2SBBaiGrA1GMjOL2L/qSxaBnvQLKj0UYmbm5eucLm3axjv/7WfuOScksRtvxb+RPm5AtCzUV32n8yifZg3AH2b+bFsT9kvGE/dEImjrZE2oV70aeLHgu0neKxX2RnOn9cdY3SnkJI4HrquAR8t3s+J9FxsjYrUnALiknOI8nOtNJEb5OnIvjf6XOZfpmKbXuxJToGJWZviCfR0LHm9W2QdPllygAnDWnD4dDYLdyTi6WT54M4uKMLFvuxboquDDdn5pvMeK4QQQojK2RgUWflFHEjKITrIlWYBriXbbmpat+TnMZ2CmbD4CHEpeSWJ25ub1qGhr6UsQo+G3uw/lU27UA8A+jauw7L9KWWu9WTPEMs4pr47NzT2YWHsKR7tHlJmn2kbTzCqfWBJHA91qcfEpXGcSM/HxqhIzSnkaEoeDX2dK03kBnk4sOflLhf9t+jfrC4j2gXg7WzHqkOp3Dt1J/7u9iWrn5+fv49XbwyvsK5hYkY+sSey+HVMNA18nHhy9h5e/n0/nwxrTNcGnrzz1yE2xKXTLMCFicuOoBTkFJgvOkYhRM1iazSQlVvI/hOptAzzpXlI6ftuv7al3/PG9mnJu7PXcuRUeknidkC7SKKCLN8de0WHsO94Kh2iLMnVG1s3YOmOuDLX+i+52jYygL4xDfh9wwEeH9C2zD5Tl+/knl4tSuJ45ObWfDB/PSdSsrA1GkjNyiXuVDpRQd6VJnKDfNw4NOnBi/5bLN95lNOZuQxsH8nKXccu+niw1BOes3Yfn46tfCWoEFWVJIGFqAa6RPowokN9np6xg1OZ+QyJCeSFm6KwNRr4ed1Rvvr3MAlpuSggM7+IlOyCkmN9XOxLfnawNeDjUpq4dLAxkl1gKnOtQI/SpGmAhwMnM/LLxROfmsOMTfF8tvRgyWsmk+ZEWh5DWwVxLDWXu7/bSL7JzMgO9Xm057WvleRkZ2R4+3o0/98/LH+6G17Odrw+qAnPztpJmzcWE+TpyKCWgew9aVnN62xnQ1Z+2ZpQWXlFONtbZsHPdawQQgghKtcl3IsRbQN5eu5ekjILGBzty/M3hGFrNDBt4wkmrTxGQnoeSinLOCanALAkgX2czxy3nDWOsTWUG8cEuDuc8bM9JzMKOFt8Wh4ztiTy+b+lCQCTWXMiI4+h0X7Ep+Zxz5Qd5JvMjGgbyCPd61+pPwWRvqV1fruGezGkpR+Ldp2mbX0PZmxOpK6rPR3DPCs81sHWQJ8mPiXJ60e61eeWb7aWnPedgQ15cvYeUnMKGdMxCBc7IwHu9hWeSwhRe3RtWo9RPZvxxDf/cCo9h6GdonhpWCdsbYxMXR7LF39s5nhyJkpBZm4BKVl5Jcf6uJV+N3SwtSnzu6OdDdl5ZZuDBXq7nvGzCyfTssvFE386k19X7uaTBRtLXjOZzCSkZDKscyOOnc5kxEe/UVBoYlTPZozr37bcOS5FYZGJF6YsZ9JDfS/rPP+VqujerN4Viau2qefjwonPh1s7jFpLksBCVBNju4UxtlsYx1NzuXPyeqL8XOkY7s0Lc2OZ9UB7ooM8MBgUDV9cVKZswcU6npZLPS/LF6+EtDwifF3K7RPg4cj4GyJ5oHuDctsAnunTkGf6NGT/ySwGf7GGVvU96BTuU2af+NRcur67rNI4fr63bcmK5UultaW5SmJ6Hl7Odvi42DN5ZKuS7Q9N3ULLYA/AUrv4+9VHSrblFpo4dDqbhsWrqM91rBBCCCHO7b7OwdzXOZjjaXnc9cN2onyd6RjmwYu/7WPmmJa0CHTFYFA0em3FZY1jEtLzCC5+CighPZ+IOuVLIfi72/N0r1Du71LxF/jxvcMY3zuM/aeyGTp5K63quZVLzMan5dH9o/WVxjF1ZPOSFcvncuaC31WHUlm+P4UWb64CIC23kNgTWew7lc1zNzSgoa8LirIrhM/8bXC0L4OjLaUlDifn8PGyuJJV1EKI2u2BvjE80DeG48mZ3PbeXBoFedOpURDP/biUuc8PJTrUF4NB0eC+L8qUlrlYx5MzqVfHvfjnLCIDyz8V6u/lwjNDOvDQja3KbQN4bmgHnhvagf0JKQx4Yyatw/3p3LhsTdj40xl0euanSuP45emBJSuW/3MiNYv9CSkMfXs2AAVFJjJzC2j80CRWvTMCTxeHik5Vzq+rdjOkYxTG89QNFqIqkiSwENXA1mNpaA3NAt1wcbDB1qgwGhQ5BSYU4O1sj0lrPvnnAJlnzcZerA/+2s/bQ5qyKyGDP2MTeaxX+aLmd7QNZuyUzXQK96FZoBuZeUUs35dEvxYBrDxwGh8XeyLruuDqYIONQVX4SGOQpyOH3rr4WVizWVNgMlNo0mgNeYUmjAZlqRl1JBWAFsHuFBSZeW/RPtwdbEpKY8QlZ+PuaIuzvQ0Ltp9gyZ5T/Du+OwAdw73JLzTz87qjDGkVyMR/DhDp60KDOuc/VgghhBCV2xafgQaa+rvgYm/EpmQcY0YphbezLSat+XRZHJlnPZVzsT5YcoS3+keyKzGLRbtO89iD5ZMMt7f254FfdtExzJNmAS5k5pv4d38KNzery6qDqfi42BFRx6l0HFNBQcogDwcOvNr1ouNbtPs0HUI9cLEzsvZIGjO3nOT7uyzNdV67OYLnbwgr2feeqTsZ3MKXW2L8ABgW48cDv8Ryb6cgQr0d+XzFUXpFlU6Y70jIpImfCyczC3hmzl7u7hBU0jhOCFF7bTl0Eq01zUPq4uJgi43RgNFgICe/CIXC29URk9nMx79tIjO3/NMTF+P9Oet4d1QPYo8m8cfmgzwxoPwq3uHdmnDvZ3/QuVEwzUPqkJlbwLKdR+nfNoIVu45Rx82JyAAvXBztMBoMFSZbg3zciPvmoYuKLdDble0Tx5T8vmH/CV7++V/+eOVWPJwtT00UFJkwmzUaKDSZySsowt7WiCr+HMjMyWfR5kP88cqtF3Xtmm7ghL+4s3M4t7QLO//OwqokCSxENZCZW8RL82I5mpKDk52R/i0CGBwTiNGgGN0phN4f/Iu9rZExnUMIOKOcw8UyGhTR9dxp/fpi7IwG/m9AEyJ9XcvtF1Pfk/8b0IQnf93GkeQcXOxt6BrpQ78WAZzKyOfpGds5mZGPm4MNIzrWv+wVvWdacyiZIV+sLfk95Nk/GNY6iIm3R5NXaOKFubEcS8nBwcZAi3oe/HxvO+xsLAOHrcfSeWluLJn5RTTyc2XqmLbUcbV84NvbGPl2dGuemL6N52fvpFmQO18OL+1+eq5jhRBCCFG5jLwiXllwgKOpeTjZGujXrC6DWvhiNChGtQ/k+k83Ym9j4J6OgWXKOVwso0ERHehG23fXYGtj4LWbI4ioW34lbEywO/+7KZyn5uwhLjkXF3sbuoR7cnOzupzMLGD83L2czCzAzcHIXW0DL2hF74Was/Ukj8/cTaFJE+zpwJv9I2lffH43BxvcHEq/ntkZDbg52JT0LOgW4cUTPUO5/bttFBaZ6Rbhxav9Sut5vjB/H7sSs3G0NXBLjB/P9r56XdOFENVHZk4+L0xZztGkDJzsbRnQLoIhHRtiNBi4u3dzrntxKg62Ntx7fTSB3uWfAr1QRoMiOsyXluO+xdbGwJt3da9wJXCrcH9eH96NcZP/5sipdFwc7OjetB7920ZwMi2bJ75ZzKm0bFyd7BjVo3m5Fb2XHp8BX4/SzwQPZ3uMSpV5bejbs1m95zgAt7wzB4DNH44uWd08f8MBQn09aFq/zhWJSVx5BUUmxn6zks2HT3MiLYeNrw+ink/pv+vcgiKemrqOhVuP4u5kx7P9o7mtQ8VPOAMcPJnBs7+sZ8OhJJzsbBjXpyn39WwEwJGkTB75YTXb45IJrevGRyM6EF3f+4KOtRZ1OUv9hRCVU0qNHtgy4JMvh8dUi+fwjqbk0OGtpRx/7yZrh1IrbYpL5c7J6/ekZhdY91NBCCFEraSUGj2wed1PPr+tSbUYt5ztWGouHSes49jr3a0dSq2w6Wg6d/2wfU9qTqGMW4S4wpRSoT6ujtv3fDH20jOy19jRpHTaPPk9J398zNqhVFu+Iz42mczaRWudd+brSqlQbxf77bvfH1Zl/z1UpZXABUUmvl++j5hQH/q9v4h1rw0skwT+36xNxB5P5Zt7u7IvMZ1hHy/mt6dvoHFg+Xr8eYUmOrw8l4eub8KdncIt/QPScojws0wK3PDWQq5rEsC4vs34Zc1BPvpjB+teG4i9rfG8x15N/g9OqfDfEoAUMRFCCCGEEEIIIYQQopaasGA7D363ssxrd362hG+W7QXg+enraf7MTBqM+4X+7y9ib0Jahed597dtPP7TmpLf1x44RavnZ5f8npCazYjPlxL15K+0e2kuczYcvqL3YWdj5L6ejWgdVvFq7RnrDvPEjc1xdbSjVWgdbmpZjzkbjlS477TVB6jn48KY66JwtLPBxcG2JIl7IDGdvYnpPN63GQ62RkZ1jcTGaGD1/pPnPdaapByEEEIIIYQQQgghhBC11KA2IfR+cyF5hSYcbI2kZeezck8iH97VAYBWoXV4pl80jnZGXp+7hUd/WM2i5268qGuYzZrhny9laNswvhnbjX0n0rnl479pEuRFpH/5BOmdny1h3YFTFZ5rcJtQ3r2j3UVdPy07n1MZuTQJ9Ch5rUmQJ6v2Jla4/5YjyQR6OTNs4j/sOJpCi/revHdHO4K9Xdh7Ip0Gdd2wtzWW7N840IO9CWlc1zjgnMdakySBhRAA1PNyklIQQgghhKiWgj0dpRSEEEJYSb067lIKopoLq+tGaF1XFu88zk0t67Fw6zHaNKhDXTdLz6EhbUvrzD91U3MinphObkERjnYXnlbcEneanPwiHuzdGLAkYPvF1GfBlqNE+jcrt//Uh3pc5l2VlV3cfNbFobRpqpujbcnrZzuRlsOqvYlMe6Qn7cPr8tb8rTz43Sp+e+oGsvOLcHUo23zVzdGu5FznOtaaJAkshBBCCCGEEEIIIUQtNrB1CPM2HeGmlvWYu+kIg9qElGz7+M8dTFt9kKSMPJQCrSEtu+CiksDxydkcPZ1F+OO/lLxWZNbc1r7yxmxXknNxo9WsvEJcHe0AyMwtLHn9bI62RtpH1KVbI38AnryxGQ0en05WnuWYzLzCMvufea5zHetyVvL4WpIksBCixKDPV3Nnu3oMbRVk7VCEEEIIIcoY8vUW7mjtz5CWftYORQghapX+r89gePemDOssvSBrskGtQ5iwYDvHkrNYf+AUk+7pAsDqfSf5ZuleZj3em3BfNzLzCgl/fDoaXe4cTvY25BaUrqxNysgt+dnf04kIP3eWv9zvguK57ZPFrK2kHMTQtqG8f2f7i7k9PJztqevmyK7jabQLrwtA7PFUGgZ4VLh/VIAHmw6fLvOaUpb/29DfnUOnMsgvNJWUhNh1PJVR3SLPe6w1SRJYCFElFRSZeWDKZjYfTeNEeh7rX+hBPS+nku3ztibw1fJD7DyewcCWAUy8Pfqc5zuYlMXzs3ey4UgqTnZGHusZzr1dLd1LV+4/zSvzd3EkOZsAd0eevzGKvs3kC6YQQgghKlZQZObB6bvYciyDExn5rHu6PcGejiXb/7fwAH/uSuJ0ViH1vRx47oYG9Gzofd7z3v7dVlYeTCtT2iIuJZfHZuxme0ImYd6OTBgcRYsgNwCmbzrBN2viOZKci7ujDaPaB/JQ1/pX/H6FEKIq+W7xdj75fSPJmbn0aFafj8b0wt3Zodx+hUUmBr89m73xyRSazDQM9OL/7uxKm4gAAJ78djEzV+0p2b+gyES4vycr3r6LpPQcnvtpGat3x5NXWETLMD/eHtGdiACva3Wb11yglzONAz0Z9+MaOjf0w8PZHoDs/EJsjAa8XOzJKzTx1rytlZ6jSZAnX/6zm8S0HGxtDExaUvr3jQnxAQXfLN3D8M4RGAyK2PhUnOxsKqwJ/MsjPS/pPvILTSXp6YIiU0mdY4Ch7UL58I8dfD2mC/sTM1iw5SjzKynRMLRdGF8u3s2qvYm0C6/LR3/upEO4Ly4OtoT7uRPp585Hf+5kXJ+mTF97kEKTmY4Rvuc91poMVr26EEKcQ/swLyaPbIXRUH7KzNPJlge6hzGiY73zniev0MSwL9fSu7Evsa9dz7rne9C9oWXmz2TW3PPDJu7tEsqBN/rwfwOb8ODPW0jJLrji9yOEEEKImqN9iDuT7mhS4TjF2c7IlFEt2PtyF17sG86Dv8QSn5Z3zvP9vuMUuQXmcq8/8EssHcM82PViZ0a0C+TuqTvJL7Lsl19k5o1+kcS+2JkZ97RkyvoE5m+veNWUEELUBCt2HeP9OeuY8cwgdn92H2ateeaHZRXuazQYeHfkdez+/D4OTXqAx/q14a4Pf0NrS4pwwt09ifvmoZL/ujYJ5uY24YAl8dk63I/lbw5n3xf306FhICM/+v1a3abVDG4Twoq9iQxsHVLyWo8mAXSM9KXNi3Pp8Mo8mterPBHevZE/N7QIotOr8xnw/l/cFB1css3GaODnh3qwat9JWj4/myZPz+DVmZvILzJd0Xvo+Mo86j3yMyazpuOr86n3yM8l257p1wIvF3uaPTuLUV8u4/Vb2tA40BOA+JRsQh6bRnxKNgCR/u5MHNmRR39YTdRTv7L7eBqfje5Ucq4vx3RhxZ4TRDwxnW+W7eW7sd1KVgWf71hrkZXAQtQwH/y9j0NJ2Xx6R8uS14ZPXk+PqLrc3TmEF+bsZMH2E2QXmGgS4MY7Q5rR0M+13HneW7SXE2l5fHBrCwDWHUrhoZ+3sPFFy2xcQlouz83eyYbDKbg72fJMn4YMbBl4xe7DzsZQslK3Il0j6wBw4FQ2GbkVF3L/zy8bjhHs5cSYLqXF7CN8LV0503MLSc8tZHBMIEopujesg5uDDXHJOXg5212BOxFCCCHEfz5ccoRDp3P4ZFjjktdG/LCd6yK9GN0hiBd/28fC2CSy80009nfhnQENifR1Lnee9/85zImMfCYMjgJg3ZE0Hvl1N+vHW7qYJ6Tn8fz8/WyIS8fD0Yane4UysIXvFbsPOxsDYzoFV7r9qV6lY47uEV6EeDuyMyGTII/yK9UAcgpMvPfPYd4fHMXgr7eUvH4gKYd9p3KYc18M9jYGRrQL5PN/j7LmcBrdI7wY0a507BXi7UifxnXYdCyd/s3rXoG7FELUJO/PWcfBxFS+eKBPyWu3vz+PXi1CuKd3C577cRm/bdhPdl4hTerVYcLdPWgYWP4JhndmrSEhJYuP7+0NwNq9x3ngiz/Z8tE9ACQkZzL+h6Ws35eAu7MDzw3twOAODa/Yffy99TCDOzSkgZ8lcffwTa0Y8MYsPrinJ072ZVdZGgyKRsE+AGitMRoMnM7IJTO3ADcn+zL7nkrPZnnsMd4acR0AIXXdub9PTMn2sX1a8vasNWTk5Jc7tia557oo7rkuqsxrRoOBT0eVTWDe3jG85Oe5T15f8rNSigl3tmfCGaUa7u9V+pkf6OXMt2O7Xemwy9j05uBKtzna2fD56M4VbgvycubIx7eXeW1g65AyCfEzhdZx5fen+1S47XzHWoskgYWoYQa1DOT6D1eUPPKQllPAqgOn+bA4mduqvifj+zTE0dbIGwv38NgvW/lzXJeLuobZrBnxzQaGtApk8shW7D+ZxS1fraVxgBuRvuUTysMnr2f94ZSK440J5J0h5TuBXklbjqYR5OnIbV+tY/vxdFoEu/PukGYEeznh5WzHoJYBzNgYz21tg1m69xRGpSpMjAshhBDi8gxsUZc+n24sHafkFrLyUGpJMjcm2J2ne4XiaGvkrb8OMW7WbhY+2PqirmE2a0b+uIMh0b58fUcT9p/K4dZvt9LE34WIuuUTyiN+2M76uPQKzzWoRV3eGnB5yYvUnEIOns4lsoJr/2fC4sMMa+WHn1vZCej9p7IJ83HE3qb0Ac5Gfi7sO5lN94jyK7E2xKVze2v/y4pXCFEzDe7QkJ4v/UxeQREOdjakZeexctcxPr63FwCtwv14dkh7HO1t+b/pq3j4q7/4+7Xbz3PWssxmzZ0fzGdopyi+e/Qm9iWkMOTt2TStV4fIwPLvWbe/P491+45XeK4hHaJ4b3SPCq9R5ndteeT/UGIaTevXqfBcN7/2K5sOJlJoMjOqZ7MKk7izVu8lJsyXMD+PCs+xfl8C/p4uNToBLGo+SQILUcOE+jgT6uPMkj2nuLGZPwt3JNImxIs6rpYPq8ExpStGnuwdQcOXDpFbaMKx+LGFC7H1WBo5BSYe6G7p4tk4wI1+zS3XqigJPGVM28u8q8uTmJ7HqgPJ/HxvW9qFefH2H3t5+OetzHu4IwADogN44tftjJ+1A1uD4qu7YnCyu/C/hxBCCCEuTKi3EyHejizdl0LfJnX4I/Y0beq7U8fVkvwcHF26WvfxHiE0+r8VFz9OOZ5BboGJ+7tYSkY19nfh5qZ1WRibxGMVJGJ/HNn8Mu+qciaz5rGZuxnYvC5hPk4V7rP/VDZL9qaw6OHWnMzML7Mtu8CE61ldy90cbMguKP/o7Gf/xpFTYGJI9JVb8SyEqDnC/DwI9fVg8bYj3NQmnAUbD9I2MoC67pb3xaEdS1d/Pj2oHQ3GfkFuQRGOdheeNtpyKJHs/EIeurEVAE3q1aF/2wh+33iAJwLLfyec9tSAi76PHs3r8/BXfzHiumb4e7nw6YKNAOTkF1Z6zO8vDyO/sIg/Nx8iv7Di0gO/rtzNiB4VL05KSs/hqe8W8/JtFa8gvcrMZk0VaCkmqgOtNVprBVT4D12SwELUQAOiA5i39QQ3NvNn/tYTDGwZULJt4uID/LL+GElZ+ShAa0jLKcDR3bHyE57lWGouR1NyiHzhz5LXisyaW9sEXcnbuGIcbI20C/MqKSHxRO8IIl5YRHZ+EcfTcnlw6hZ+uqcNHcK8iU3IYMS3GwjycqJJgJuVIxdCCCFqngHNfZm3/RR9m9Rh/o6TDDijdMEny+KYvukESVkFKKWKxylFOLpfeBI4PjWfo6l5RL22ouS1IrNmWMy1b/o6fu5e8grNvNk/stJ9np+/j5f6NsDOpny7Fmc7I5n5ZcteZeYX4XzWZPWMzYl8t+Y4c8fGlDS/EUKIsw1qH8mcdfu4qU04c9fuZVD70vemj+av5+d/d5GUnoNSxd8Ts/Jw9HK54PMfO53J0aQMwu77vOQ1k0lzW9fG5zjq4vRoHsLDN7XmjgnzyC0o4sEbY/hj0yECzhOnva0NA9pF0vW5KTQPqUtUUGmpiz3xyew9nlLm7/GfjJx8hr07h2GdG3NLp6hy26+BU9n5hTZp2fkljdqEqMzhpEzsbYyZOQVFFc6KSBJYiBpoYHQAH/y9j2MpOaw7ksKXd1nqA68+mMy3Kw8z4/4OhNd1JjOviMgXF6F1+XM42dmQe8YsaVJW6cqUAHcHwuu6sOzpC6vlc/vX61h3qOJyEENbBfLu0Ku3Agcgys+VTXGpZV77b2CzJzGTRv6udAq31IpqFuROTH0PVh04LUlgIYQQ4ioY0LwuHy45QnxqHuuPpPPFbU0AWHMole/WxjP97mjC6ziRmW8i6rUVaMoPVJzsjOSesRr2dFZpQ1d/d3vC6zix5LELexLpzu+3se5IxeUghkT78s7ASysH8eqC/exJzOLXe6IrTPD+Z9WhNPadygEsK4dNZk2LN1fx8+gWRNR15vDpXPKLzCUlIXYnZpWpBbxwZxKv/3mQmWOiK605LIQQYCkJ8f7cdRw7ncG6fQl8/fCNAKzaHc/kv7cx57khhPt7kplbQNh9X5Q0UDuTk70tuQWlk1NJ6TklPwd4uRDh78mKt++6oHhufXcOa/cmVLhtaKcoJtzds8JtD94Yw4M3Wur1Lt95FD9PZwK8LqycX6HJxOGTaWWSwL+u3M31LUPxcC77HpqTX8gd78+jTYQ/zw3tcEHnv9K01rnuTnZLP/xjR89Xh7SyVUoWBYuKmc2ad+ZvyzcY1PTK9pEksBA1UKCnI4393Xh8+jY6h3vj4WR5xDI7vwij0YCXsx15RWbe/mNvpedoEuDGV8sPkZieh63RwNf/Hi7Z1rKeB0rBNysPM7x9PQxKEZuQgZOdscJyENPubXdJ95FfZCpJUBcUmUvqB4LlS1KhyUyR2YxZa/IKTdgYFDbG8l+yhrQK5Kvlh1h14DTtQr34+J8DtA/zwsXBhmaB7uxNzGLdoRTahXmx+0QGaw+lMKpDyCXFLIQQQohzC/RwoJGfM0/M2k2nBp54OFoa+WQXmDAaFF7OtuQVmXnnr0OVnqOxvwuTVh0jMSMfW6Pi61XxJdtaBrmiFHy7Jp472wRgULDrRBZOdsYKawJPHdXiku4jv8hckiDJL9JlxikfLD7Msv0pzLkvBmf7c3/l2vpcx5KfE9Lz6fflZv5+pDVeTrbYGA1E1HVi4rI4Hu1enxmbEykwaTqEegDw74EUnp67l6mjmld4b0IIcaZAb1eaBPvw6KS/6dw4uCTpmZ1XiI3BgJerI3mFJt6csbrSczStX4cv/tjMidQs7GyMfPVnaTPLmAZ+KKWY/NdW7rquKQal2Hn0NM72thXWBJ4+ftBF30NeQRFxSelEBnhxMDGNl3/+lycGtMVgKJ8c3Xs8mRMpWXSIskycfbd4OwkpWcQ0KH0yxGzWzFqzl7dGdC9zbGGRiVEf/Y6/lwvvjLzuouO8kjJyC0f+uGL/ivmbjwZ0aehndLK3kUc+RAmtNVl5hUXLdp3QuYWm2Oz8oicr21eSwELUUANbBvDCnFg+uyO65LUeUXXp2MCbdm8uwc3Bhqf7VL6ypVukDzc08aXLu8vwc3dgeLt6fL3Ckgi2MRqYck9bXp4fy4d/76fIpGkU4Mr/DWhyRe+h09vLiE/NBaDzO8sASJxwMwAzNsYzbvq2kn1nbjrOk9dH8PQNDYlPzaXru8v4d3x3gjwdifR15aPbonnsl21k5BbSJtSLT2+3rI4O9XHmvaHNeGrmdhLScvF0suOh7g3oEulzRe9FCCGEEKUGtvDlxd/28+mwRiWvXRfpTcdQTzq8vxZXBxue7hVa6fHdwj25PsqHbh+uw8/NnjvbBDB5tSURbGM08OOI5ry64AAfLTlCkVnTyM+F/90UXun5LkWXD9YRn5YHQNcP1wGQ8KYlUfD+4iPYGRVt3l1Tsv+7AyMZHO1HfFoe3T9az7JxbQnycKCua+njvflFZoAyr31+axMem7mbL/49SqiPI9/c2bRkVfDEpXFk5BUxdPLWkv0vZ/WyEKLmG9yhIc/+uIwvHuhT8lrPFvXp1CiIVo9/h5uTHc8OqXzVa/em9egTE0bH8T/i7+nCXdc1ZdIiSyLYxmhg2lMDeHHKcibMXU+hyUTjYB/euOvCniC9EPmFRYz5ZCFxSel4ODswpncL7u5VOpn35LeLAZhwd0/MZs3//bqKAydSsTUaiAry4ecnB+DrUTpptnJ3PLn5hfRuEVLmOuv3n2DJjjgc7WwIGVNa3mLVO3cR5HNtnxjVWp9SSjXKzi9q98uagy0Bu/MeJGqbPGAtsE1XtIS/mDrHNiHEZVBKjR7YMuCTL4fHyLIMcV6b4lK5c/L6PanZBY3Ov7cQQghxZSmlRg9sXveTz29rIuMWcV6bjqZz1w/b96TmFMq4RYgrTCkV6uPquH3PF2MvvBivqPZ8R3xsMpm1i9Y6z9qxiJqr8uJUQgghhBBCCCGEEEIIIao9SQILcRXJQntxoeTfihBCCGuTjyJxoeTfihBXlwbp/iWEuOIkCSzE1ZOTkVtotnYQonrIzCtEQba14xBCCFFr5aTnFsm4RVyQrLwilJJxixBXSU5uQaGNlO6sPfIKitAaBRRYOxZRs0kSWIirZ9W6wym2OQUma8chqoFFsScLsvNNf1g7DiGEELXWqvVH0mTcIi7Iot2nZdwixNVzyqBUyqaDidaOQ1wj/2w7gpuT3TattUzGiqtKGsMJcRW5OdpOi/R16f/cjVFOjfzcsDHKUz2ilNaa01kFzNly3Pz50kPpuYWmaK31UWvHJYQQonZyc7CZFlnXuf+z14c5Rfk5Y2OQcYsopYHTWYXM3XbS/MWKo+m5hWYZtwhxldjbGke7Otp/+s7I65zaNwzE0c5o7ZDEFaaBnLxClsce5fmfludm5hYM0VrL5Jq4qiQJLMRVpJSysTGoJ5ztjffkFZqDtK7Sq+9toUY9gmLAck/51g7kHLStUWUrpf7Myi/6n9b6gLUDEkIIUXuVjFvsjPfkFZmDtNYybrl2qsm4xZCtFH9m5Ztk3CLEVaaUGuThbP90XqGpmdmsbawdzyWwBczA1X7E5L+/TdFVvs4VZzSoAjsb44b0nPy3tNaLrR2PqPkkCSyEQCk1CngeaKu1TrNuNFeOUup1oAvQS2tdaO14hBBCCHH5ZNwihBBVm1KqLrAPCLna79NKqQbAWiBYa513Na8lRHVXlWf3hRDXgFKqDfAeMLAmfZEq9gqQBUywdiBCCCGEuHwybhFCiGphJDDnWrxPa60PAluAIVf7WkJUd5IEFqIWU0r5ArOAe7XWu6wdz5WmtTYBdwJ9ilcNCSGEEKKaknGLEEJUfUopA3Af8NU1vOxXxdcUQpyDJIGFqKWUUnbATOA7rfVcK4dz1RTPPg8E3itePSSEEEKIakbGLUIIUW1cB+QC667hNecDkUqpRtfwmkJUO5IEFqL2+hBIBf5n7UCutuLVQvcCs4pXEQkhhBCiepFxixBCVA/3AV/pa9iAqriO+nfIamAhzkkawwlRCyml7gGeBtpprdOtHc+1opR6DcvMdE+tdU3pJi6EEELUaDJukXGLEKJ6KG4ItxdLQ7hr+n6tlAoFNgBB0iBOiIrJSmAhahmlVHvgLSwNVWrNF6lirwJpWFYTCSGEEKKKk3GLjFuEENXKaCwN4a75+7XW+jCwCRh6ra8tRHUhSWAhahGllB8wAxijtd5j7XiuNa21GRgO9FRK3W3teIQQQghRORm3yLhFCFF9FDeEu5dr2xDubF8BY614fSGqNEkCC1FLFDdUmQVM1lrPt3Y81lI8Kz0QeFsp1c7K4QghhBCiAjJusZBxixCiGukBZAHrrRjDb0C4UqqxFWMQosqSJLAQtcdEIAn4P2sHYm3Fq4nGADOLVxkJIYQQomqRcUsxGbcIIaqJ+4BJ17Ih3NmKG8R9izSIE6JC0hhOiFpAKXUv8ASWhioZ1o6nqlBKvQL0BnpIwxUhhBCiapBxS8Vk3CKEqKqUUr7AHqzQEK6CWP5rEBestc61ZixCVDWyEliIGk4p1RF4A0tDFfkiVdb/AaeBj60diBBCCCFk3HIeMm4RQlRVo4HZ1k4AQ0mDuI1IgzghypEksBA1mFIqAEtDlbu11nutHU9VU9xwZQTQvXjVkRBCCCGsRMYt5ybjFiFEVVRFGsKdTRrECVEBSQILUUMppeyxNFT5Qmv9u7XjqaqKVxkNBN5QSnWwcjhCCCFErSTjlgsj4xYhRBXUE8jAUoKhqvgdCFNKNbF2IEJUJZIEFqLm+gQ4Abxp7UCquuLVRncDM4pXIQkhhBDi2pJxywWScYsQoooZi5Ubwp1NGsQJUTFpDCdEDaSUGgs8CrTXWmdaO57qQin1EtAXuE5rnW/teIQQQojaQMYtl0bGLUIIa1NK+QG7gfpVrY67Uqo+sAlpECdECUkCC1HDKKU6AXOATlrr/daOpzoprmc1EzittZZZYyGEEOIqk3HLpZNxixDC2pRSzwFhWusqWadcKbUQ+EVr/aO1YxGiKpByEELUIEqpQOBXYKR8kbp4xQ1XRgKdilclCSGEEOIqkXHL5ZFxixDCms5oCDfJ2rGcwySkQZwQJSQJLEQNoZRyAGYDn2mt/7B2PNVV8WOoA4H/K16dJIQQQogrTMYtV4aMW4QQVtQLSAM2WjmOc/kdCFFKNbV2IEJUBZIEFqIGUEop4DPgKPCWlcOp9opXI40Cfi1epSSEEEKIK0TGLVeWjFuEEFYyFviqKjWEO5vWugj4BmkQJwQgNYGFqBGUUg8CDwAdtNZZ1o6nplBKPQ/0B7pJwxUhhBDiypBxy9Uh4xYhxLXy/+zdd3QUZRfA4d9k03vvPSHUUELoXZoiHUREBKQjCiiKCvb+2btipypIExFE6UjvvYSSXiAJ6T073x8bUkgCoW7Kfc7xnOzuzOzdyL65c+ed9yqK4gacpBo2hLtWUYO4g+gaxGXpOx4h9EmKwELUcIqidELXFKS9qqrn9R1PbVI0U+l3IBUYX52vcgshhBA1geQtd4/kLUKIe6XoopNvTWlKqSjKX8Dvqqr+ou9YhNAnWQ5CiBpMURQvYAkwSk6k7ryik6cxQGt0M5aEEEIIcYskb7m7JG8RQtwLNaQh3LW+Q5aEEEKKwELUVEUNVZYDn6mqul7f8dRWRbepDgReLZq9JIQQQoibJHnLvSF5ixDiHugFJKuqWp0bwl3rL8BbUZRgfQcihD5JEViIGqjodr9vgIvA+3oOp9Yrmq00GliiKIqnvuMRQgghahLJW+4tyVuEEHfZRGCuvoO4GaUaxE3SdyxC6JOsCSxEDaQoypPo/vi2U1U1U9/x1BWKorwADAY6q6qao+94hBBCiJpA8hb9kLxFCHGnKYriDpwAvFVVTdd3PDdDURRv4DDgKQ3iRF0lRWAhahhFUboAS9GdSF3Qdzx1SdFMpiVAJjBWGq4IIYQQ1yd5i/5I3iKEuNMURXkJ8FJVtUbOqFUUZQ2wXFXVn/UdixD6IMtBCFGDFF29/A0YKSdS917RydPjQEtgqp7DEUIIIao1yVv0S/IWIcSdpCiKBhhPDVsK4hpzkQZxog6TIrAQNYSiKGbACuBjVVX/1Xc8dVXRbawDgZeLZjcJIYQQ4hqSt1QPkrcIIe6gXkCiqqoH9R3IbVgHeCqK0lTfgQihD7IchBA1QNHtfPMAI2CE3M6nf4qi9EL3/6SNqqqR+o5HCCGEqC4kb6l+JG8RQtwuRVFWAX+pqvq9vmO5HYqivAY4qaoqd0iIOkeKwELUAIqiTEd3O197WcS++lAU5TngYaCTqqrZ+o5HCCGEqA4kb6meJG8RQtwqRVE8gOPo1gPO0Hc8t0NRFC/gCLrPIs1KRZ0iRWAhqjlFUboBv6JrqHJR3/GIEkUznRYDecAYmekkhBCirpO8pfqSvEUIcasURXkZ8FBVdbK+Y7kTFEX5E1ipqupP+o5FiHtJ1gQWohpTFMUH3YnUo3IiVf0UnTyNB5oB0/QcjhBCCKFXkrdUb5K3CCFuRVFDuAnU7IZw15oLTNJ3EELca1IEFqKaUhTFHFgJvK+q6kZ9xyMqVnQL0SDgxaLZT0IIIUSdI3lLzSB5ixDiFvQG4lVVPaTvQO6gdYC7oijN9R2IEPeSLAchRDVUdLvegqKHj8ntetWfoig90P0/a6uqaoS+4xFCCCHuFclbah7JW4QQVaUoyh/An6qq/qDvWO4kRVFeBVxUVX1C37EIca9IEViIakhRlGeAkUBHaahSc8j/NyGEEHWR/P2rmeT/mxDiRhRF8QSOAt41vSHctWrzZxOiMlIEFqKaURSlO7AQmZlR48hMKCGEEHWN5C01l+QtQogbURTlFcBNVdUp+o7lblAUZTXwh6qqP+o7FiHuBVkTWIhqRFEUX2ARMEJOpGqeopOniUAjYIZ+oxFCCCHuLslbajbJW4QQ11PUEG48tash3LWkQZyoU6QILEQ1UdRQZRXwnqqqm/UcjrhFRbdTDgaeL5odJYQQQtQ6krfUDpK3CCGu434gTlXVw/oO5C76G3BVFKWFvgMR4l6Q5SCEqAaKbsdbDOQDo+V2vJpPUZT70P0/bauqariewxFCCCHuGMlbah/JW4QQ16orSyXU9iUvhChNisBCVAOKojwLDAc6qaqare94xJ2hKMoMYDTQQRquCCGEqC0kb6mdJG8RQlxVqmmal6qqmfqO525SFMUDOIY0iBN1gBSBhdAzRVF6AvOBNqqqRuo7HnHnFM2Umg9ogEdlppQQQoiaTvKW2kvyFiHEVYqivAq4qKr6hL5juRcURVkFrFFV9Qd9xyLE3SRrAguhR4qi+KPrqD1cTqRqn1INV+oDM/UcjhBCCHFbJG+p3SRvEUIAKIpiSO1vCHet75AGcaIOkCKwEHqiKIoFuoYqb6mqulXP4Yi7pOg22UHAzKLZU0IIIUSNI3lL3SB5ixACeACIUVX1iL4DuYfWA86KooToOxAh7iZZDkIIPSi63e43IBt4XG63q/0URekKLAHaqap6Qb/RCCGEEFUneUvdI3mLEHWXoih/AitUVf1Z37HcS4qivAR4qqo6Wd+xCHG3SBFYCD1QFOV5YAjQWVXVHH3HI+4NRVGeAiagO6Gq1Q0WhBBC1B6St9RNkrcIUfcoiuIFHEbXJK1Ofe8VRXEHTqD77On6jkeIu0GKwELcY4qi9AZ+Blqrqhqt73jEvVM0k+pnwAzdeooyAAshhKjWJG+puyRvEaLuURTldcBBVdUn9R2LPiiKshJYp6rqd/qORYi7QdYEFuIeUhQlAF3X5YflRKruKTp5mgz4A8/pORwhhBDiuiRvqdskbxGibilqCDeOutUQ7lpz0TXIFKJWkiKwEPeIoiiW6BqqvKGq6nY9hyP0pOg22sHAjKLZVUIIIUS1I3mLAMlbhKhj+gBRqqoe03cgevQv4KgoSkt9ByLE3SDLQQhxDxTdTrcUSAPGy+10QlGUzsDvQHtVVc/rOx4hhBDiKslbxLUkbxGi9lMU5S/gd1VVf9F3LPqkKMocwEdVVZkRLGodKQILcQ8oivIiMBDoIg1VxFWKokxFd5tlO1VVM/QdjxBCCAGSt4iKSd4iRO2lKIo3cAjwUlU1S9/x6JOiKG7ASaRBnKiFpAgsxF2mKMoDwA/oGqrE6DseUX0UzbT6EbAChslMKyGEEPomeYuojOQtQtReiqK8AdipqvqUvmOpDhRFWQGsV1W1Lq+PLGohWRNYiLtIUZR6wDx0ibKcSIkyik6engC8gRf0HI4QQog6TvIWcT2StwhRO5VqCPedvmOpRuYCk4oufglRa0gRWIi7RFEUK3QNVV5RVXWHnsMR1VSphitPFs2+EkIIIe45yVtEVUjeIkSt9CAQUccbwl3rX8AOkAZxolaR5SCEuAuKrhguA5KBiXK7nLgRRVE6AiuADqqqhuk7HiGEEHWH5C3iZkneIkTtoSjKWmCJqqrz9B1LdaIoymzAT1XVCfqORYg7RYrAQtwFRR1F+wJdVVXN1Xc8omZQFGUK8CTQVpoQCCGEuFckbxG3QvIWIWo+RVF8gIOAp6qq2fqOpzpRFMUVOAX4qKqapu94hLgTZDkIIe4wRVEeRLde2hA5kRI36VtgJ/CLrD8lhBDiXpC8RdwGyVuEqPnGA4ukAFyeqqrxwEZghL5jEeJOkZnAQtxBiqIEAf8BA1VV3anveETNoyiKCbAFWKOq6tt6DkcIIUQtJnmLuF2StwhRcymKYgREAD1VVT2h73iqI0VRegH/A0JkqSRRG8hMYCHuEEVRrNE1VHlJTqTErSqahTUEeKJodpYQQghxx0neIu4EyVuEqNEeBC5IAfi6NgDWQKi+AxHiTpCZwELcAYqiGKBrjhGvqupkXf3AMAABAABJREFUfccjaj5FUdqjOznvqKrqWT2HI4QQohaRvEXcaZK3CFHzKIqyDvhVVdX5+o6lOlMU5QUgUFXV8fqORYjbJUVgIe4ARVFeAXoD3VRVzdN3PKJ2UBRlIjADXcMVaUYghBDijpC8RdwNkrcIUXMoiuIL7Ae8ZD3g6yvVIM5XVdVUfccjxO2Q5SCEuE2KovQDJgJD5URK3Emqqn4HbAfmF83aEkIIIW6L5C3ibpG8RYgaZTywUArAN1bUIG4D0iBO1AIyE1iI26AoSgNgG9BfVdXd+o5H1D5FDVc2AetVVX1D3/EIIYSouSRvEXeb5C1CVH+lGsL1UFX1pL7jqQkURekBfAi0kAZxoiaTK7RC3CJFUWzQrX32opxIibulqOHKUGBi0ewtIYQQ4qZJ3iLuBclbhKgR+gHnpQB8UzYBVkBrfQcixO2QIrAQt6DoFrcFwCZVVX/UdzyidlNVNQ7dCdWPRbO4hBBCiCqTvEXcS5K3CFHtTQTm6juImkRVVS3wHbrfnRA1liwHIcQtUBTlNaA70F3W0xP3iqIo44FngTbSlEAIIURVSd4i9EHyFiGqH0VR/IB9SEO4m6YoijNwBmkQJ2owmQksxE1SFGUgMA54SE6kxL2kquoP6G5FWiANV4QQQlSF5C1CXyRvEaJamgAskALwzVNV9RLwLzBS37EIcatkJrAQN0FRlIboGqo8qKrqXn3HI+oeRVGMgY3ARlVVX9NzOEIIIaoxyVuEvkneIkT1UdQQLhK4T1XVU/qOpyZSFKU78AnQTBrEiZpIrsgKUUWKotiia6gyS06khL4UzeJ6CBhXNLtLCCGEKEfyFlEdSN4iRLXSHwiTAvBt2QyYA230HYgQt0JmAgtRBUW3sK0GLqqq+pS+4xFCUZTWwF9AZ0nkhBBClCZ5i6huJG8RQv8URfkHmKeq6iJ9x1KTKYoyC2ioqurj+o5FiJslRWAhqkBRlDeBzkAPVVXz9R2PEACKojwOvICu4UqKnsMRQghRTUjeIqojyVuE0B9FUfyBPegawuXoO56arKhB3Fl0DeJS9ByOEDdFloMQ4gYURRkMjEbXUEVOpES1oarqz+iaEyyUhitCCCFA8hZRfUneIoReXW0IJwXg21TUIG490iBO1EAyE1iI61AUpTGwBXhAVdX9eg5HiHKKGjxsBLaqqvqyvuMRQgihP5K3iOpO8hYh7r2iBo2RQFdVVU/rO57aQFGU+4BPkQZxooaRK7BCVEJRFDt0DVVmyomUqK6KZnk9BIwumv0lhBCiDpK8RdQEkrcIoRf9gTNSAL6jNgNmQFt9ByLEzZAisBAVUBRFAywC1qqqOl/f8QhxPaqqJgCDgblFs8CEEELUIZK3iJpE8hYh7rlJwFx9B1GbFM3+/Q7d71aIGkOWgxCiAoqivA10AHrKenqiplAUZTTwEtBaVdUr+o5HCCHEvSF5i6iJJG8R4u5TFCUA2I00hLvjFEVxAsIAPxnDRE0hM4GFuIaiKEOBR5GGKqKGUVV1HrAWWFQ0K0wIIUQtJ3mLqKkkbxHinpgAzJcC8J2nquplYB3SIE7UIDITWIhSFEVpgm59n96qqh7UdzxC3Kyihiv/AjtUVZ2j73iEEELcPZK3iJpO8hYh7p5SDeG6qKp6Rt/x1EaKonQDvgCCpUGcqAlkJrAQRUo1VHlaTqRETVU0C2wYMLJodpgQQohaSPIWURtI3iLEXTUAOCUF4LtqC2AEtNNzHEJUiRSBhaC4ocqvwGpVVRfqOx4hboeqqpfQNVz5pmiWmBBCiFpE8hZRm0jeIsRdMwld8zJxl0iDOFHTyHIQQgCKorwHtEJ3O2WBvuMR4k5QFGUk8Bq6hivJeg5HCCHEHSJ5i6iNJG8R4s5RFCUQ2ImuIVyuvuOpzRRFcQTOIQ3iRA0gM4FFnacoyjDgYeBhOZEStUnR7LA/gV+l4YoQQtQOkreI2kryFiHuqAnAPCkA332qqiaia3L5mL5jEeJGZCawqNMURWkKbAR6qap6SN/xCHGnKYpiCPwD7FVV9QV9xyOEEOLWSd4iajvJW4S4fUUN4aKATqqqntV3PHWBoihdgK+BJtIgTlRnMhNY1FmKojiga6gyXU6kRG1VNEvsYWB40ewxIYQQNZDkLaIukLxFiDtiEHBCCsD31DZAA3TQdyBCXI8UgUWdVDTL4Fdghaqqi/UdjxB3k6qql9Elg18pitJM3/EIIYS4OZK3iLpE8hYhbttEpCHcPVWqQdxEfccixPXIchCiTlIU5X0gBLhf1tMTdYWiKCOAt4BWqqom6TseIYQQVSN5i6iLJG8R4uYpilIP+A/wlvWA762iO3bOA/7S3FJUVzITWNQ5iqIMB4YiDVVEHVM0e2wFuoYrhvqORwghxI1J3iLqKslbhLgl0hBOT4ouVv2FNIgT1ZjMBBZ1iqIozYF/gR6qqh7RczhC3HNFJ1F/A4dUVX1O3/EIIYSonOQtoq6TvEWIqlMUxQRdQ7gOqqqG6TueukhRlM7At0BjaRAnqiOZCSzqjKLbM1YCT8mJlKirSjVcGaIoyiP6jkcIIUTFJG8RQvIWIW7SIOCYFID1ajugAB31HYgQFZEisKgTimYRLAGWqqr6m77jEUKfim5VGgR8XjTLTAghRDUieYsQJSRvEaLKJgJz9R1EXSYN4kR1J8tBiDpBUZSPgCZAH1VVC/UdjxDVQdE6k++ia7iSqO94hBBC6EjeIkR5krcIUTlFUYLQzUL1UlU1T9/x1GWKotijaxAXKE0tRXUjM4FFrVfUWXgg8IicSAlRomh22e/AEmm4IoQQ1YPkLUJUTPIWIa5rIvCLFID1T1XVZGANMErfsQhxLZkJLGo1RVFCgPXAfaqqHtN3PEJUN4qiaIB16NYPm6nveIQQoi6TvEWI65O8RYjySjWEa6+q6jl9xyNAUZRO6JaFaCQN4kR1IjOBRa2lKIoTsAJ4Qk6khKhY0Syz4cBARVEe1Xc8QghRV0neIsSNSd4iRIUGA0elAFyt/AeoQCd9ByJEaVIEFrVSqYYqv6qq+ru+4xGiOiu6ZWkg8GnRLDQhhBD3kOQtQlSd5C1ClDMJaQhXrRTN/p2L7v+NENWGLAchaiVFUT4BGgB9ZT09IapGUZRhwPvoGq5c1nc8QghRV0jeIsTNk7xFCFAUpT6wFfCW9YCrl6IGcReAAGkQJ6oLmQksah1FUR4D+gIj5ERKiKpTVXUp8Cu6hitG+o5HCCHqAslbhLg1krcIAUhDuGqr6K6F1cBofccixFUyE1jUKoqitAT+Brqpqnpc3/EIUdMUNVxZA5xRVXWGnsMRQohaTfIWIW6P5C2iLlMUxRRdQ7i2qqqe13c8ojxFUToAPwINpUGcqA5kJrCoNRRFcUbXUGWynEgJcWuKZqGNAPoWzU4TQghxF0jeIsTtk7xF1HGDgcNSAK7WdgKFQGd9ByIESBFY1GCKjkPRz0bAUmChqqrL9RuZEDWbqqpX0DVc+VhRlFDQfccURbHVZ1xCCFGTSd4ixN0heYuow6QhXDUnDeJEdSNFYFGTDQC+Lvr5IyATeEV/4QhRexTNSpsMLC+ardYJWKzfqIQQokaTvEWIu0TyFlHXKIrSEKgP/KHvWMQNLQD6KIriqO9AhJAisKjJOgDHFEUZA9wPPCoNVYS4c4pmpy0EfgfOAO0URZG/G0IIcWskbxHiLpK8RdQxE4CfVVXN13cg4vqK7lb4A2kQJ6oB+aMoarI2wBXgA3S3gNkoimKh14iEqEUURakPvIZuttrzQApQT48hCSFETSZ5ixB3keQtoq4oagj3GPC9vmMRVTYXmKgoiqLvQETdJkVgUSMpimIItAReAD4E3gb2AUH6jEuIWuYz4CTwL/AAcAldEUMIIcRNkLxFiHtC8hZRVwwBDqqqekHfgYgq2wXkAV30HYio26QILGqq5oAJoEW3yPpGwE9V1UP6DEqIWuYBYCxwH2ALhAD99BmQEELUUM2RvEWIu03yFlFXTAK+03cQouqKGsR9hzSIE3qm6P4tClGzKIoyBXgdmAYsU1W1QM8hCVGrKYrSCPgccFJVtZm+4xFCiJpE8hYh7i3JW0RtVfRveyPgLesB1yyKotgCF4EgVVUv6zkcUUdJEVgIIYQQQgghhBCiGipaA9hGVdUERVE+AbJUVZ2j77jEzVMU5WfghKqqHyqK4gnESZNYcS9JEfgWFS3o7QZIQw9xrUIgRlXVXH0HImoeGVvEdcjYIm6ZjC3iOmRsEbdMxhZxHTK23CGKovQDRqNrBhcFtFJV9aJ+oxK3QlGUdsA8oD6wA3hKVdUD+o1K1CWG+g6gJjLUGIywNDH8QFVVewsTwwIUpJIuihUWqgbpuQUaazOjFek5BeNVVc3Wd0yiZrg6tmiLxhYFGVtEiQKtapAhY4u4BYYGyghLE80HWhV7C2NNgSJ5iyilQKsaZOQUytgiblrJ2KLqxhbJW0QpBVp0eYup4Yr03EIZW25PKuAKDAX2A3GKooxSVXW+fsMSVVXUIPZRYCGQA3RD9/80RY9hiTpIZgLfJEVRetmaG62cP76deSs/e3QXv4Uo63J6Di8sO5K9/cylzanZ+Q/qOx5R/SmK0svWzGjlvLEtzVv52snYIip0OT2XF1ecyN4elihji6gS3dhiuHLemBbmrXxsZGwRFbqcnsuLq05nbz+XLGOLqJKrY8svIxuZt/K2lrFFVOhyRh6z/zyXvf18yubU7AIZW26RoigNgVXAJWAuMBGIUFX1MX3GJapOURQDYD2QAWwF2gIPAh6qqqbpMzZRt0gR+CbZmhuvfXVAkwdGtPXVdyiimsvOK6Th7DW5OQVaL1n4XdyIrbnR2lf6NnxgRBsvfYciqrns/EIavfyvjC2iSmzNjNa+8mDQAyNae+g7FFHNZecX0ui1LTK2iCqxNTNc+/L9/g+MCHXVdyiimsvOL6TR27tzc2VsuWWKojgC59HNIE0C1gHPqaqq1Wtg4qYoimIM/ATUQ7cchBlgqkpRTtxDBvoOoKYp1Kohrf0c9B2GqAHMjDUEuVrnAMH6jkVUf4VaQlr72ek7DFEDmBlpCHK1lLFFVEmhqoa09rPVdxiiBjAz0hDkYiFji6iSQpWQ1j7W+g5D1ABmRhrqO5vL2HJ7kgFLwBT4TlXVmVIArnlUVc0DRgGbASMgWwrA4l6TNYFvkgqGJkYafYchaghTIwMAY33HIao/VVUNTQxlbBFVY6r7tyJji7ghVcXQxFCu+YuqMTWSsUVUjapiaCpji6iior9DMrbcIlVVtYqipAAvq6r6tb7jEbeuqHj/QtESOo/oORxRB0kRuIYJfX09Xz3Wkjb+jgDM3XKOrzeFsXxqRxLScpi55BC7X+qF/6zVxftk5RViZqzh6kpdiye1p4GbNe+tPcnfx+JIzynA3caUIaHePHFfPeJTs2n39r/EfDywzHsP+mI7j7bzYWio9z36tCU2n0pg9vIjxKfl0CHQkc9GtMTB0qTCbUNfX09SRi5XlyYbGOLJx8ND7mG0QuiH27NrOfBSN9xtzYqfm7n0KG42pjzbO4gl+6KZseQobw9sxNiOvhXuN/23I/g6WuBtb8asZccBKNSqFGjVqwk8nnZmbH2uM2uPxfPhP2FEJWdjYmhAMy8b5o5sgaWpIdN/O8KqQ3EYakrWCFwysTWhvvd2tvNP/4Xz695oTsWnM6N7AM/2Dirz+qW0XGavPMHWs4kYaRQeae3Fy30bAHAmPp3nlx/nRGw6bjamvDe4Me0DdXeCbDh5ic82nuNMQgYWxhoGtnBnTp/6GGoqPiE+HJXCs78f4/zlTII9bPh8eFN8HaWRuqidWr23ncSMPAwUBRNDAzoH2vP+4IZYmxmV2W7UL4fYczGFIy91xtRIw4gfD7InPAWAnPxCjDQGaAx0Y8i0bn64Wpuw/FAcSye0LHMct+f/5cCLnXC3NSX6SjYvrT7D3vAUCrUq3vZmvNA7gO4NnO7JZy9t5rKT7DifTERyNssntqR9gH2l2w6eu5+DkanFnzfUx4Yl41tWur0QtYH7S9vZ/1xr3G1KcvqZK8/iZm3Cs919WHIwgadXnOWtvgGMbete4X4zlp/B194MbztTZq0OAyrIW2xN2TKtJetOJvLhxgiiUnJ1eYuHJd8+3ABLE0NmLD/DqqOXy+Qtv40JJtT73s52nvjrKXaHp5JToMXL1oQXevrSs4Eu91BVlY82RfLrgXgycgvp18SJd/oFYFz0Oc8kZPLC6nOciM/EzdqYd/sF0t7ftkr7XutITDozV4ZxISmbYDdLPhsShK+DWYXbintDVVW5HbkWUVX1BeAFfcch6h4pAtdg32wO47st51jxZEcCnK1ISMspfu3C+/2Lf3adsZIds3sWF4Zy8gt58JOtuNqasuLJTvg5WhCTks3n/54pc4w75XJ6Dk5Wprexfy6T5u3jy8da0rGeE8//fpgXlh3h+zGtK93ntyntiwvlQogSduZGfL7pPCPaeF2d8VWhISEeDAnRrSG6ZF80yw/GsHRSm+LXL1zO5JmlR/nl8VDa+NmRllPAPycvlTnGjJ6BPN0j8JZjzcwtQFEUzI1vfYa0q40pz/Wux+8HYip8fczP+2kf4MCnL9+HkaHChcuZAOQXahnz8wEmdfZj+RRv1hyN4/FfDrDrxa7YWxiTnlvAzF71aONvT0ZOAaN/2s/cbReZ2i2g3HvkFhQy7peDzOgZyEMtPfhkwzmmLDrMuukdbvlzCVHd/TYuhDZ+dmTmFjBx0VE+3XSRVx4suQiTlJnHlrNJmBtr+OfkZfo3c2XxuJILtoPn7mdEKw+GhrgVP7dkf+wN33fa0hOEeNnwzYhgDA0UjkSnUai9+TstL6fn4mRV8cXmqgr2sGJIiCvTl56o0vYfDmlU5vMKIcDOzJAvtkYxoqXr1TvsKjS4uTODmzsDsORgAssPX2Lp2JLVBy4kZvPMijB+GdmI1j7WpOUU8u/ppDLHmNHVmxndbn2yS2ZuIYrCbeUtM+/zxs/BDGNDAw5FpzP852PsmtkKe3MjlhxMYO3JRNZNaYGRRmHUghN8sjmS53v6kl+o5fFFJ5nYwYNl45qy5kQiYxefZOczN973WrkFWsYuOsnT3bwZ2tyFT7dE8sTS06yd0uKWP5cQQojqQYrANdRXm87y47YLuiKuk+VN7fv7vkguZ+SwZkYXzIqSFE87c94fpvvDHpmUedvxZecVsuZIDIt2h1NQqLJmRpdbPta6o7E087alV2PdidGsBxrR/u1/yMwtwMJE/gkLcTOaeFij1cK8XZFM6ux3y8c5EZtGgJMlbf11M9tszIx4qOWdaTx1IOIKi/dGs+ZIHKufbEd9V6tbPlafYF3DmvUnEsq9tvHUJRIz8pjdpz4GRbPvGrrpZvycv5RJanY+Yzr4ADCguTsfrA9j3fEEHm3jxaAWJTOSzIw0DGnpwX/nksq9B8DO88kYGxrwWFvdieWMHoF8vy2c85czCLjJ8VuImsbCxJCeDZ3YfCaxzPN/HImngaslHfztWX4ojv7N7kxzqcNRqfxvUEPMii5yhfrYVnnfgkIt/5xK5Nd9MZyITefgnM63FcuYdrpGn4YGyg22FEJUprGbJaqqMn9vHBM73HqecSI+gwBHM9r42gBgY2bI0BYudyTGA1Fp/Lo/gTUnLrN6YjOCnG/9Tp/6LiX7GiiQX6gSn5aHvbkRG88m82ioK85WulUVxrZ15631F3m+py/nE7NJzS5gTBtdfjIg2IkPNkaw7mQSj4a6Xnffa+26mIqJoQEjW+nOvaZ39eL7nTGcT8wiwNH8lj8b4GNipHnL3MSokaIochIniqmqquYXahMzc/LXAH8VrZ1bhqJbP6GTubn5EFNTUx+kv1WdUFhYmJGamvovsFxV1TR9x1MbyOBbA83dco4jkSmseLIjvo43X0DYfvYyXeu7FBeA76SjUSks2h3OH4eiaeppy+j2fjzQtKRYMvK7ney9kFzhvoNaevK/h5qXe/5sQjqN3EpuxfKyN8fMyJALlzMI9rSt8Fjjf96LqkKIjx1vDmqKj9x2LUSx5+6vx4T5B3msrfctz1YJ9rDmRGwab605TfeGzjT3tikuutyKpMw8lh2I4dc9UeQUaBkW6sGmZzvhUXQHw4qDMby4ovLZdGfe6nXT73k4KhV/Jwue/PUwW84kUs/FkncHNaaRuzXaCno0aFWVM/HpFR5rX/gV6rtUPB6fTcigoVtJIdvMSIO/kzln4qUILGq/tOx81p+8TNtrGl8uOxjHoGautA+wp9/Xe0nKzMPB4vaXiwzxtuH5lacY286LUF8bXK1vfCfSucuZ/LYvlqUHYvG2N2N4qDvfjCiZQfjCylOsPBxf4b6tfW1Z8PidmR336pozvLrmDA1dLXnlwSCaekjTLSEAnu3uw8TfTjGyleut5y1ulpyIz+Ct9RfpEWRPM0/L28xb8ll++BK/HognJ1/LsBAXNj7ZEg9b3R0EK45cYvaf5yrd//RL7St9berS06w9mUhugcp9QXY0dNEVXrUqlM5OVBXi0vJIyymgohseVFXl7KXMG+5rbVq2JHD2UhYNXUvOncyMNPg5mHH20q0XgRMz84wsTY0+G9m1iUETb0cjTSXLZ4m6SVUhKT2L37afGhZxKfWooijdVVUtvkVZURTF3Nz8cxsbm8cnTpxoGhAQoDEwkH9DtZ2qqqSnp7Ny5cp+O3fufENRlDaqqt74tjBxXVIEroG2nrlMn6Zut1QABriSlUczL9vrblOoVQl6YU2Z5zLzCni0nU+F2/939jKv/XGMtJx8Hm7lw4bn7sPTrnySsHBi5QlPZTJzC8qscQpgZWZIZm5Bhdt/MyqUYE9bCgq1fLDuFI/9sIvNs7oXr7MnRF3Xxs+ehm7W/LIjgie6+d/SMXwdLVg6qTXfbr3Iol8OkFugZUQbL17r16B4XdzPN5zj2y0XAPCwM2PTzE7ljpOek8+zvx9n69nL9GjozNuDGtM+wB5FKft9HRziweCQOzPT+Kq41By2nk3ks4eb8unDzZi/K5LHfznAf893IdDZEnNjDT9sD2d0e29WH4kjPCmLrLzCcsf543Asuy8k8/agxhW+T2ZuAVbXnGBZmRqRWcGxhKgtHv3pEBoDhYzcAvwdLXhoSMkyB+cvZ3I4Oo3vRzbDw9YULzszVh9J4PH2Xjc87q4LV6j/6uZKX//u0aZ8sTmc99af40JSFqHeNnz8UGMCncpfDD4Rm86c1acJT8xiSIgbyyeFUq+CGXzvDWrIe4MaVvGT35qX+9QjyNkCAwOFebuiefSnQ/z3bHtsrllHWYi6qI2vDQ1dLPhlTxxPdPK8pWP4Opix5PFg5u6IYezik7q8JdSVV+/3L14H+POtUXy7IxoADxsTNj5Vfl3u9JwCnl0VxrZzKfSob89bfQNo72dTPm9p5szgZs63FOtXwxpQUKjy34UUziVmFR+7a6AdP+6O5cHGjhhrFH7eo6uFZOUVEuhopstbdsUwurUbfx5LJDw5h6w87Q33vbYInJlXiJVJ2QK5tamGzNxby1uy8gqJTcs33/L2COq5V742uhATeze3HPj28ua7zsSOBuaWeqm5mZnZ2BMnTpjb2d3b/iJC/6ZMmWL59NNPm/7www9vAWP1HU9NJ0XgGuijh1vw9poTvLH6OK/0b3LT+9uZG3MpLfe622gMFM6+17fMc4O+2F7p9okZuUQmZdEu0IHGHta4VGHmTVVZmBiSkZNf5rmMnMqXgmjlV7RmvpGGVwcEs3j2Gs5dSqe+q8yoEbWbxkChoLDsVJD8QrXCZmWzetdj9E8HGN3+1te+a+1nT2s/e1RVZce5JCbMP0Q9ZwtGt9ddLJrW48ZrAucXqpyKS8fBwpgm7tYEuViWO5G6W0yNNHjbmzGsle6EcnwnXz7+N4zzlzJp4GbFT2Na8tKqk3z8bxid6jnSqZ4j7jZlx7ZtZxOZs/Ikv05sVeksRgsTQ9Jzyl60ysgpwOIu3I0hRHWxaGwL2vjZkV+oZd7uaAZ8u49tM9tjZqRh2cE4Qn1s8bDVfZ8GNnNl2cG4KhWB2/nbVdgY7ip7C2Ne7RvEq32DiE3J4dnlJ5m+5AR/PVm+j0Bqdj7nL2dRz9mCRm5WeNrdudzlZrXwsin+eXJnH37bH8P+iBS9NLQT4l7RGFAubykoVDHSlM8Dnuvhw5iFJxnd+tbXzW7tY0NrHxtd3nIhlYm/naKekzmjio45rYvXDdcEzteqnE7IxMHCiMZuFgQ5m9+VvMVQo9C1nh0/7Y7Fz96M7vXtGRHqSuSVHPp+exhDA4URoa4cjc3AydIYjYHCj4824qU15/lkUyQdA2zp5G+Lm7UuN7nevteyMNaQfk3BNz23EAuTW8tbdlxIobG3o1rP3V5m5Ijr0hgYMK5nM/NT0UnDKVUE1mg0fUeOHGksBeC6a8qUKYbff/99/xtvKW5EisA1kJutKcue6MiAL7ZhaWLIM70b3NT+nYKc+PDv02TnFd6xJSEGhnjSq4kraw7H8u2Wczy75DBDWnrycBsfGrmXnNg88u1O9lxIrPAYQ0O9itclLi3IxYo1R0qaOkVfySIrrwD/KtxGrSigIPmGqBvcbUyJvpKNt0PJLPzI5Cw6BZVvktjSx45mXjb8+F/4bb+voih0rOdIh0AHzsRn3NS+9hbGbJvVmf3hV/h1bxSd399Gaz87hrXypGdD5+Ku1csPxjBr2fFKj3P+nd43HXcDV0s2nLpU7vmr53JNPW1Y/WQ7QHd3RNt3t5RZR3lf+BWmLDrMD6NCCPawKXecq4JcLJm3M6L4cXZ+IRcSM6nvKktBiNrPSGPAiFYevLz6DGcSMmjmYc2Kw/FcTs+l6ZtbAcgr1JKaXcCFxEz87+DyTe62pjze3ovJi49V+Hr7AHsOzu7EP6cu8+u+WF764zQPBrvwcEt3WvnaFm83a8VJlh+qeDmINr62ZRra3SkG9+himBD65G5tQnRKDt72JRdgIq/k0CnAtty2Lb2saeZhyU+7b/9OYEVR6BhgSwd/G04n3FwvFHtzI7ZOD2V/ZBq/Hoiny2cHaOVjzcMtXOhR3744b1lx+BKzVodVepxzr1StOWyhVuVicjagu9g/p7cfc3rrcpFF++MJdrMsvtuxqbslqyc2K96v3cf7mFS0jvKN9i0tyNmceXtLfs/Z+YVcTMomyPnWloJIyszH0+HW+zuIusXd3hIFpcyC3SYmJu4+Pj5Su6rDPD09yc3NrfyES1SZfJFqKB9HC5ZO6cDAL7ZjZWrIhC7Xn21X2kOtvPn5vwtMmreX1wcG4+toQVxqDp9vOMPU+4JufIBKmBsbMqy1N8Nae3Phcga/7o7gkW930tLXjp/GtgXg18k3vxzEA03deevPE2w8GU/7QCc+WHeK+4PdK5wJHH0li/iUbJp562Yfffj3aZytTWTdTVEn9G/mxicbzhHobIm9hRHrjidwOj6dbvXLF4EBnutdjxHf77ul99pzMZkLlzPp1dgFBwtjjkSnsvtCMq/0u7mLUleF+toR6mvHGwMKWH0kjrlbLzJr2XHWTmuPj4M5Q0I8GHILy0EUFGop0KoUalUKtCo5+YUYaQzQGCj0CXbljTWnWX4whoHN3VmwKxIbMyP8i24bPx2Xjp+TOfkFKh//G4aTpTH3Fc3KOxmbxpifD/DJsGDaBVz/1sb2Afbk5mtZvCeKIS3d+XzjeYJcLGVcEnVCoVZlyf5YTI0M8LE3Z094CglpuWyc0bbMMinj5h9h+cF4nusVcFvv9/a6MIa1dCfA0ZzUnAKW7I+lhVfldwIZaQx4sIkLDzZxIS41hyUHYpm29DiWJob8O12Xu7w/uBHvD25007HkFWjRqiqqCnmFuvHHxNCg3KzB1Ox8Dkel0dbfDgWYvyeaS+m5tPS2ven3FKIm6RfsxKdbIgl0Msfe3Ih1pxI5nZBFt6CKZ/s9192HEfMqvyB8PXvCU7mQlE2vBg44WBhxNCad3eFpvHL/rTXJDfW2JtTbmjf6FLL6+GW+3RHDrD/C+Gtyc3zszRjc3JnBzW9uOYhL6Xnsi0yjWz07jDUGrD2ZyM6LKbzYyxeAK1n5ZOQW4mlrwtHYDD7ZHMn7A0rOAU8nZOLnYEZ+oZaPN0fiZGlMtyD7Ku1bWjs/G3LytSzeH8+Q5s58sTWKICfz22oKp7lXt3ndRdO/34C7vSXPD2mr71BqtaJmzUrZ5wyUmr4G8Pjx4/H09OS1117Tdyg1koGBAWoFPVvEzZMicA0W5GrNkikdGPrVf1iYGOLjULXZM6ZGGpZP7cR7a08y8IvtZOQW4G5jytBW3rhYmxKfmn3bsfk7WTKnX2NeeLARRyKv3NaxnKxM+HZ0K2YvP0JCag7t6zny2YiSW0FnLT0EwPvDWpCRU8CzSw8TkZSJmZGGlr72zJ/QrsLb4YWobZ7pVY/31p3hgc93kJFTQD0XS+aNDcXR0qTC7Zt72dLaz471J8rPhr0RG1Mj/joaz1t/nSEnvxBnKxPGd/JlWOitrdV3lYWJIY+09uKR1l6EXcrA2uz2/kx9uuEcH/1b0pjls43n+fThpjzcyhN7C2N+HtOSF1Yc5/nlx2nsbs3PY1piVDReLNkfzeI9UWhV6BzkwC+PhxYf57ttF0nJymPKosPFz7Xxs2fxhFYAjPh+H2387ZjePRATQw0/jglh5tJjzFl5gmBPG755tPltfS4hqrvhPx7EQNHdi+PvZM4PI5thZ27EsoNxPBjsTMA1a/SObufFRxvO33YRODO3kFG/HOJSeh5mRga087fj04cqXq/7Wm42psy4z5/p3fzYH5F6W3GA7new64IuB3rkx4MA7H2+I172Zny26SJ7Ll5h8bgQ8gtV3vk7jHOXszDWKDRys2Lh2BbYmst6wKJ2e6abN//bEE6fbw+TkVtAPSdzfhnZqNLllZp5WNHK25p/TlfcZPp6bMwMWXsikbfXXySnQIuzpTHj27nzUAuXG+98HRYmGh5p6cojLV0Ju5xVbn3dm/X9zhieWXEWRQFfezO+HtaAJm66i8bJWfmMWnCCuLQ8XK2Mea67D/cFlVyIXnIwgV8PxOvylgBbfn605OLVjfZ9dN5x2vhYM62rNyaGBvz0aCNmrgzjpTXnaeJuydfDbu0iv6gZft12ku/WH+ZiQiq2FiaM7dmUaX1DK9w2r6CQiV+t48C5BOKuZHDwk8fxdiq52BqTlM6zP29iz9lYbC1MeeXhDgxsW36i2Sd/7OXt33ex5uWhtK1/Z/t+CP3bv38/48eP5+zZs4SEhDBv3jwCAirO8RITExkzZgybN2/G3d2dL774gvvvv/8eR1x3KFJNvzmWpkaJW57v7uBlf+tXQkXd0f+zral7LyYPV1X1b33HIqo3SxPDxM3Pdnbwsje78caizhvw5a7UveFXZGwRN2RpYpi4+Zl2Dl52MraIGxvwzb7UveEpMraIG7I0MUzc/FSIgz7X0hY1w28H4tkeC98/1UffoRRTVRWtqqK5idmld3omcEGhttxEpYqeq0yhVqu72HoHJln/vPEojb0caeHvQnRSOg/9bxUvDWtfYfE2r6CQnzccpWWgKw++8Tv7PhpTpgjc761ltK7nxotD27E3LI6H31/FprceKdMUMDoxjREfrSYpPYcfn3qgTBF4/7k4Hvlg9enkjOzijqxWVlbfvvXWW5OmT59+25/1TlBVFa1Wi0ZT9aU17/RM4IKCAgwNDW/4XGUKCwsxMCh/d9KdkJubS2BgIC+//DKjRo3izTff5N9//2Xv3r0Vbj9s2DAsLS358ssv2bhxIyNHjiQsLAxn55K7KXJycrC0tCwoKCiQK+S3SaZHCiGEEEIIIYQQ4p7QalVenL+FoMlz8Z/4Dd1f/pVLqbr1mQ9dSKDL7EX4jv+GGT9sYOA7y/l120kA/rd8N9O/31B8nN1nYmgx46fix5+u3kfI0z/jM/5rus1ZzJ6zJWsbPzn3H16Yt4XB767Ae9zXnIlJ5nR0EgPeXk7AxG/p9MJCtp2IKt7+YkIKfV5fis/4r3nskz/Jyi3bqLwy8zYdo82z8wic9C2Pf/YXVzJyAIi8nIbLqM/5ZeMxmjz1AxO+XMf/lu9mwpfrGPv5X/iM+5oNR8I5HZ1E3zd+x3/iN3Sbs5hdp0t64/R/axnv/r6LHi//itfYr8s1T79Vj3dvSusgd4wMNfi52PJAS3/2nYurcFtjQw2T7m9BaGD5Jo0ZOXnsPhPDjH6hGGoMaN/Ag7b13fl9x+ky281esI3ZD7UvXkP7Zmm1WqZNm4ajoyO2traEhoaSkJAA6GagNmvWDGtrayZMmMB9993HL7/8AsBrr73G+PHji4/z33//4evrW/z43Xffxc/PDysrK0JCQtixY0fxa2PGjOGpp56iR48eWFhYcPLkSU6cOEG3bt2ws7MjODiYTZs2FW9//vx5OnTogJWVFQMHDiQzs2rrj3/33XfUr18fe3t7hg4dSnKy7s6H8PBwDA0NmTt3Lh4eHgwfPpzXXnuNRx55hIceeghLS0vWrVvHiRMn6NSpE7a2toSEhLB9+/biY3ft2pWXX36ZVq1aYW5uTkbGzfVyqaotW7ZgYmLCxIkTMTU15aWXXuLEiROcPXu23LYZGRmsWrWK119/HXNzc/r160dISAirVq26K7EJKQILIYQQQgghhBDiHtl8LIK9YXEc+HgM576dzCfjumNmZEheQSGjP13D6PuCCft2Ik28ncoUQW8kwNWWv18bxoXvJjO8U0PGf7GO/ILC4tdX7DrDyw93IPyHKXg5WDHs/VWM6R7M2W8n8s6oLoz/Yi1J6bqlESd9/TftG3gQ9u0kHunciDX7zlX2tsXW7DvHd+sP89tzAzj51QScbMx5ft7m4tcLtSpHwy+x/6MxfD1F19R47YHzjOzahIvfT6FDAw8e/Wg1/VoHcubriTw9oBWPfrya5PSS5RpX7DrDd1Mf4OL3k7EwKT8p0n/iN5X+t2zn6XLbV2Tv2TgaeDhUadvSVK1uHfzS95prVZXT0SVLuGw4Ek5eQQH3h/jf9PGv+ueff9i5cycXLlwgOTmZ77//HjMzM/Ly8hg0aBCTJ08mKSmJZs2asW3btiofNygoiN27d5OSksLo0aN5+OGHyc8vKbT/+uuvvPfee6Snp+Pj48P999/P5MmTSUxM5PPPP2fYsGEkJiYCMGLECLp06UJSUhKPP/44y5cvv+H7r1ixgs8++4y1a9cSHx+Pi4sLTz75ZPHrhYWFHDx4kPPnz7NgwQIAVq5cyfjx40lLS6NLly7069ePoUOHcvnyZWbPnk2/fv1ISkoq8xl+/fVX0tLSsLAov5yora1tpf8tXry4Sr/HkydP0rRp0+LHZmZm1KtXjxMnTpTbNiwsDEtLS7y8vIqfa9asWYXbijtDisBCCCGEEEIIIYS4J4w0BmRk5xEWdwVFgaa+zliZm7AvLA5DjQFjezTFyFDD+F7NcLOreiPdfq3r4WxjgcbAgEn3tyArN5/wS2nFrz/YKpAW/i5oDAzYcDSCIHd7BrUNQmNgQKdGXoQEuLLpaARRiWmciEzk2UFtMDbU0KdlAC0DXW/4/gs2H+fpAa3wc7HF2FDDrMFtWLPvPFptSVn0ucFtMDU2xMxYd9t+u/oe3NfUBwMDheORiWhVlUn3t8DIUEP/1vVo5OnIhiPhxfuP6NIIf1dbTIwMrzZRK+PCd1Mq/W9o+xuv7fz5mv1k5ebzUIebXwfaytyE0EBXPlq1l9z8AradiGLX6djiWdS5+QW8smg7b43sctPHLs3IyIj09HROnz6Noii0aNECa2trdu3ahaGhIVOmTMHIyIgnn3wSD4+qrzc8ZMgQXFxc0Gg0TJ8+nczMTC5cuFD8+uDBgwkNDUWj0bBu3ToaNmzIww8/jEajoVu3brRp04b169cTERHBkSNHeOWVVzA2NmbAgAG0bXvjZUS+//575syZQ0BAAMbGxrz22mssX74crVZbvM2rr76KqakpZma6Zb46d+5M7969MTAw4MiRI2i1WqZPn46RkRFDhw4lODiYtWvXFu8/duxYAgMDMTExoaJmeykpKZX+N2LEiCr9HjMyMrC2LtuU18bGpsKZxzezrbgzpDGcEEIIIYQQQggh7onOTbwZ0z2YZ37cyKXULIZ2aMDLw9qTkJKJ+zVFX08Hqyofd9HWE3yz7hAxSekoCqRn55GckQ3YAeBhX3LsqMQ0dp6OwX/iN8XPFRRq6dDQk4SUTByszDA1LimXeDmWLVRVJCoxnZk/bWLWLyWzfxUFLqdlAWCgKOWK2h4OJY/jUzLxsC/7eT0drYi/kllq+6r/Pm7Wku2n+PHfI/z18kNlPvvN+PaJ+3nu500EP/UjTXyc6Nda1yQZ4PM1B+gd4kegm91txdm9e3cmT57MxIkTiY+PZ+TIkbz77rvExcXh6Vm2SbW3t3eVj/vTTz/x8ccfExUVhaIopKWlkZiYSP369QHKzFaNiIhg69at2NraFj+Xn59P165diYuLw8nJCVPTkjXTfXx8bvj+ERERTJo0iSeeeKL4OUVRuHRJ18TbwMAAd3f3MvuUjik2NrbM46vvGxsbW+H2d4qlZcm/4ZMnT2JpaUlaWlqZbdLS0spsV3rfqm4r7gwpAtdBz/x2EDcbM557oOGNNxZCiCqaufQobjamPNu7fBMJIYS4VTOXndCNLT0r7iothBC3YubKs7hZm/Bs9xsXZ8SdN+WBEKY8EEJMUjrDP/iDhp4OeDtZE3ul7AzAmOT04p/NTYzIziu5Pf9yalbxz5GX03hx/hZWzR5Ccz8XDAwUAiZ+i6qWzMIt3QTL3d6SrsHeLJ7Zv1xsUYlpJKdnk5NXUFwMjU5Kx9fZ5rqfyd3ekheHtqVf63rlXou8nEbFPbhKnnS1tSjzea++731NfSrcviI+476u9LUPx95X6QzfNfvO8fpv/7Fq9hA8q1Dwroyvsw2/Pz+o+PGDbyxlaNF7bj8RxanoJJZsPwVAYlo2j32yhheHtmNsj6YVHq8yTz/9NE8//TRRUVH06dOHJk2a4OfnR3R0dJntoqJK1nm2sLAgK6vk38zVdYRBt+buU089xebNmwkNDcXAwAA7O7tK//14enrSq1cv/vzzz3KxRUREkJiYSE5OTnEhODIykoCA6+cxnp6evPnmmwwZMqTca+Hh4RU2cSvzb9rdvcznvfq+vXv3rnD7ilyv+Dp37lweffTRcs9fO2u3UaNGfP11yb/D7OxswsLCaNy4cbl969WrR0ZGBtHR0cUF/CNHjjB8+PDrxilunRSBRa3zxYazfLsljIJClYdbe/PagOAKb5VZvj+K55YeKn6sVVVyC7Qce7MPjpYmRCZlMmvpYQ5GXMHMWMNj7X159n5d4fxAeDLv/nWSY9EpGGkM6NnYlTcHBWNpKs0qhaitvtx0nm+3XqRAq2VYqCev9WtY4dgSlZxF63e2YG5c0jH43UGNGdaqZGbCxlOXeHvtGcITs3CyMuaz4c1o62/P8oMxzFp2vHg7rVYlt1DL0Ve742hpcnc/oBBCL77ccpFvt0VQoFUZ1tKd1x4MqjhvORTHrBWnih8Xjw8vdcHR0piXV59hzbEEMnILcLYy4amuvgxvVXIb7LzdUXy1JZzkzHy6Bjnw0dBG2JhJ3iJEbfXltijm7oihoFBlWIgzr97vX+HYApCRW8Cray+w7mQSWlXlviB7vh5WUizceCaZd/65SHhyDk6Wxnw2JIg2vmULop9vieS9DRGsHN+03GvXOnQhAVVVaerrjKWpMYYaAzQGCq3quZFfoOWXjcd4tEsjFmw+TmxySYGpiY8j36w7SNyVDIwNNcz9+3Dxa1m5+SgoOFiZUajV8tmfB0jPzqs0ht7N/XhzyQ5W7w2jT8sACrVa9p+Lx8/ZBi9Haxp4OvDxH3t5blAbNh6NYH9YHB0belZ6PICRXRvzyer9NPRyJNDNjqT0bPaejeOBllVb/7ZloCuKovDDP0cY0z2Yvw9e4GRUIj2a+VZpf4CIH5+48UbX2Ho8kmd+3Mhvzw0gyMP+htvn5hdwtTaam19YplgeFpuMu70VBgYK8zcdIyYpgxGdGwEwb0Zf8kqt0dzzld/43+hudGlyc7NT9+/fj6qqtGjRAisrK4yMjNBoNLRr1478/Hzmzp3L2LFj+f7778sUhZs1a8bHH39MbGwsxsbGfPrpp8WvZWZmoigKTk5OFBYW8t5775WboVpa3759eeGFF1i2bBkDBw6ksLCQ3bt3ExAQgI+PD02aNOGtt97i1Vdf5e+//2bXrl1069btup9r/PjxvPPOOwQHBxMUFERiYiI7d+6kf//yFyoq0qZNGxRF4csvv2Ty5MmsXr2ao0eP0qdPnyrtD+ULureia9eu5OTk8OOPPzJy5EjeeecdGjVqRFBQ+YlClpaWDBgwgFdffZUvvviCzZs3c+DAAX777bfbjkNUTIrANZyqqmhV0FTyB/1eKCjUYqgxuOFzlSnUqhgoN74qVRUbTsbz0/bzrJneBUtTQx76egfzdl7k8Y7l//AOCfViSGjJH5wvNpxl06mE4kLLnBVH8bAzY/6EdsSnZjPg820087KjZ2NXUrPzebyjH10buFCoVXly4X7e/PME/3uo+W1/BiGqAxlbytp46hI/7Yjgz6faYWliyLC5e5i/K5IxHSqePaQxUDj/Tu8KXzsRm8b0347y9aPN6RDoQGJGLleXihsS4sGQkJKizZebzrPp9GUpAItaQ8aWsjaevsxPO6L484nWWJpoGPbDQebviWZMu/InxENauDGkRUk39i+3XGTTmSQcLY0BGNXWk9kPBGJmpOH85UwGz91PM09rGrpZseN8Mp9suMCKyaG4Wpvy5G/Hmf3Hab4aHnzbn0GI6qB6jC0qhhrlhs9V5o6OLWeS+Xl3LKsnNsPSRMPDPx9j/r44xrRxr3D7Z1aEYWJowI6nQ7EyMeT0pZLlB07EZTBjxVm+eqg+HfxtSczMR6uqZfaPTsnhj2OXcbEyrlJ86Vm5zFm4jcjLaZibGDKgTRBD2tdHY2DAvBkPMuOHDbz663YGtQ2iXYOSvKhrE2/uD/Gn/awFuNlZ8li3xny3/jAADTwdGNuzKd1eWoypkSETejUrs9TCtazMTVjy3EBeWriNmT9twkBRaO7nzEdj7wNg7tT7eXLuv8z9+zCdm3jRt1XgDT/XwLZBpGfnMeqTNcQkp+NgZcbgtkFVLgIbG2pY8HRfnvt5M2//vhNfZxvmz+iHvZVZlfa/VR//sY/UrFwGvbOi+LmhHerz0djuAHR4fgEz+rcqnkXc9rn5RCXqZiy3mzUfgMSF0wHYeDSCj1ftJTe/kNB6rvz+/CBMjHRlJzvLkuURQPd9tbM0wbyCBnfXk5qayowZM7h48SIWFhYMGzaMESNGoNFoWLFiBePHj+fZZ59l+PDhdO7cuXi/nj170r9/fxo2bIiHhwcTJkzgs88+A6Bx48ZMnTqVFi1aYGpqyrRp0667dIK1tTXr1q3j6aefZtKkSRgYGBAaGsrcuXMBWLx4MaNHj+bTTz+lR48eFc7uvdawYcNIS0tj4MCBREVF4ejoyCOPPFLlIrCxsTF//PEHU6ZMYc6cOfj7+7Nq1SocHG6+yd/tMDExYeXKlYwbN44nn3ySkJAQfv311+LX33nnHbZv3866desA+Oabbxg9ejSOjo64u7vz22+/4ezsfE9jrksU9ZoBXFyfpalR4pbnuzt42ZsDulkYL688ysqD0RQUqvg6WbBoYjucrEw5HHmFZ347SGRSFgNaeBCelMlDod4Mb+PDB+tOEZeazcfDQwDYcyGRqQsOsP9VXdHg83/PsGBXOMmZefg7WfD24Ga09td9eactOoClqSFhCensv5jM2qe7oCgKs5cf4URMKm62Zrw1qCkdg5wACE/M4KlFBzgZm0anek6YGmkIcLa84XIQC3Ze5NvN50jKzKVDPSc+HNYCOwtjIpMyaff2v7w7pBkf/3Oalr72NHC15vylDAq0WjadSuDbUa3wdrDg+d8Pcyo2DR9Hc94c1JS2AY4ADPpiO20DHNh0KoFTsWmcfLvPHZlFO3nePuq7WfF0L90fqCV7I1iwM5w1M268+HyX9zYwqWsgI9r6AtD1fxt5fWAwXerrBqAp8/fRxNOGqfeVv4L1z/E43l93ig3P3Vfm+f6fbU3dezF5uKqqf9/mRxO1nKWJYeLmZzs7eNnrkjytVuWV1SdZcTCWQq2Kr6M5C8e1wsnKhMNRKcxceozI5Gz6N3cjIjGLh0I9eLiVJx+uP0tcag4fDdPdUrXnYjJPLj7Cvjm6K8+fbzzHwt1RJGfl4edowdsDG9HaT3fFf/pvR7A0MSTsUgb7wq+wdlp7DBSF2StPcCI2DTcbU94c0IiO9XTf4/DETKb9dpSTcWl0DHTEzMiAACeLGy4HsWB3JHO3XiQpI48OgQ588FAT7MyNiUrOot17W3lnUGM++TeMlj52NHC15PzlTAq0KptOX+abR5vj42DOrOXHOR2XjreDOW8OaERbf91nGPz1btr427P59GVOxaVz4vUeWJre/vXOKQsPEeRqxdM9dCcAS/dFs2B3JH8+1b7ctlc/R/T7D1R4rEkLDhHobMFzVVg2o+sH25jY2Y8RbcomoQO+3JW6N/yKjC3ihixNDBM3P9POwcuu1Njy5xlWHI7XjS0OZix8vIVubIlOZeayk7qxpakrEclZPBTizsOh7nz473nd2DJUdyvfnotXeHLJcfa90AmAzzdfZOGeaJIz8/FzNOftAQ1o7WsLwPSlx4vGlkz2RaSwdmpr3djyx2lOxKXrxpZ+9ekYqPsehydlMW3JcU7GZdAx0L5kbLnBchAL9kQzd1sESZl5dAiw54MhjbAzNyIqOZt2H+zgnQEN+GTjBVp625QdW84k8c0jwfjYmzFr5SlOx2fgbW/Gm/3r09ZPt27h4Ln7aeNry+azSbqx5dWuWJrcgbFl8VGCXCx5uruuQLD0QCwLdkfz59TWN9y368c7mdjRhxGtyze9uZCYyaBv9/P+4Ib0buTM62vOoqLyWl/duob7I1IYMnc/p17rVuauhQHf7EvdG54iY4u4IUsTw8TNT4U4eNrpijparcoray+w8ugl3dhib8aCUY1xsjTmSEw6M1eGEXklh/5NnIhIzmZoCxceDnHhw40RxKXl8tEg3d/EPeGpPLXsDHuf1X0HvtgaxcJ9cSRnFeDnYMpbfQNo7aObZTpj+RksTDSEXcpmf1Qaf01qjoECc9ac50RcJm42xrzRJ4COAbYAhCdlM235WU7FZ9IxwBZTQwMCHM1uuBzEwn1xfLsjhuTMfDr42/D+gHq6seVKDu0/2cc7fQP5ZHMkLb2tqO9swfnEbAq1KpvCkvl6WAN87Ex5fvU5Tidk4m1nypsPBhTPlB3yw1Ha+FqzOewKp+IzOT677Z0ZW5acpr6zOTO66dZDXXowgQX74vhzUvNy2569lEnfuUc4OKt1he896bdTBDqZ89x1fk9jF51keEsXXlpzni+G1i8zE/i3A/Fsj4Xvn6r6bMTSBr+7goc6NOCRotmkonbbfy6ORz5YfTo5I7u4WGFlZfXtW2+9NWn69Ok3fbwePXowcuRIxowZcyfDFPdYTk4OlpaWBQUFBXIL022SmcC3acuZS+wLT2bPy72wMDbkRGwqpkYa8gq0jP1pD9N6BPFoO1/m77zIb3sjeSi0aguT+ztbsvbpLthbmPDT9vNMmreXva/0xqholsqqg9EsntSeYE9bsvIK6PLeRl7p34R+zT3YdT6Rib/sZfuLPXCwNGHK/P10CnJi+dRObDoVz4Rf9jKtR/3rvv9fR2L4ftt5Fk1qh7utOa+sOsrs5Uf4ZlQrQHel+lh0Crtf6oWqwpcbz7LuWCy/jGvLd6Nbk5lXQPcPNjGhcwDLpnbk72NxjPp+N7tf7om9hW5G28qD0fw6qT3udmYYVdCZMuiFNZXG995DzRjcsvyVubMJaQxqWXKbTmN3G87EV34bx1XHolOISMqkX/OSE6nHO/rzx6Fo2vg7EJ+azd6LSUzqWvEV4L0Xk6jveutrJwlxrS1nE9kXfoU9s7vqxpa4NEyNDMgr0DLul4NM6x7AiDZeLNgVyZJ90TwUWrXOt/5OFvw1rT32Fsb8tCOcyQsPs2d21+KxZeWhWBZPaEWwhw1ZeQV0/WA7r/RrQN+mbuy+kMyE+QfZ/nwXHCyMeWLRYTrWc2TZ5DZsOn2ZiQsOMu2+6xdp/joWzw/bw1k4LhR3WzNeXX2SOStP8PWjLYCisSUmlV0vdkUFvtp0nnXHE/j58ZbMHdmCzLwCenz8H+M7+bJschvWH09g9E/72fViV+wtdLNPVhV9Bndb0wrHlvov/VNpfO8ObszgkPK/y7MJGQxsUTJ7ppG7NWcSKr9dqlCr0vyNjRgaKPRq5MKcB+tjUXRidSgyBX8nC7p8sI3U7Hx6N3bhtf4NMTPSlDnGsZhUIpKy6Nfsxt2ohaiqLWFJ7ItIYc/zHbEw1nAiLr04bxk3/wjTuvkxorUHC/ZEs+RALA+FVDxr7Fr+jub8NbW1bmzZGcXkRUfZ80LHkrHlcDyLx7Ug2N2arLxCun68k1ceDKJvsAu7L15hwsKjbH+2vW5s+fUYHQPtWTYxlE1nEpm46CjTuvld9/3/Op7AD/9FsnBsC9xtTHl1zRnm/HGarx/RzXTVjS1p7JrVQTe2bAln3YnL/DyqGXNHNCUzr5Aen+1mfAdvlk1syfoTlxn9y2F2zepQMrYciWfx2JCisaX8TL36r24u99xV7w5swOBSs3ivOnspk4HNS77jjdysOJOQWW67ax2LSSMiKZt+TV3KPP/2ujB+2BFJTr6WYA8rOgXqJhBcO2tPq0JeocrFxCwau9+9JkOi7th67gr7I9PY/Uwr3dgSn4mpoS5vGbvoJNO6eDEi1JUF++JZciieoS1cbnxQwN/RjDWTm2NvbsTPu2OZsuQ0u2e2KjknOnqZxaOb0MTNUje2fH6AVx7wp29jR3aHpzLxt1Nsmx6Kg4URU38/Q0d/W5aNDWZT2BUm/XaKpzpf/zb0tScS+WFXLAsfa4y7jQmvrrvAnDXni5dKKNTCsdgMdj7TChWVr7ZF8/epRH5+tDHfPtyAzLxCen51iPHt3Pl9bDDrTyUxeuEJdj7TCntzo+LPsGh0E9xtTCocWxq8tbPS+N7pF8jgZuVnzIVdzmJgU6fix43cLDh7KavcdgCHozPwsjXhfxsiWHHkEh42Jrz2gD/t/W2LXk8nwNGMrp8fIDW7gN4N7Xn1Af/ivGXT2WTyCrX0auDAS2vOX/f3KYQQQr+kCHybjDQKmTkFhCWk08LbjmBPWwB2nktEY6AwpmgZgnGdAvh6U1iVj9u3WUkRYkKXQD78+zQRiZkEuugS9T5N3WnurZudsvFkAvVcrBgYoit+dqznRAsfO7acvkRrfwdOxqay8qlOGBsacH+wOy19brzOz8JdEczoWR9fR90tNM/e35CQV/9Gqy05iZh5fwNMSxUt2gY40q2hLqE7EZOKVquLHaBfcw9+2HaejScTeKiVrhD+SBsf/Jwqv0Xn7Ht9b/yLukZmbmGZK9hWZkZk5hbccL9l+yLp3cQNq1Kzkdv4O7Bg50UCnv+TQq3K9J5Bxb/z0vZcSGThrnDWTL/xbGMhqspIo5CZW8i5S5k097Ih2EM3o2Ln+SQ0Bgqj2+tmY4zt6MvXWy5U+bh9m5YUISZ08uOjf8KISMoi0Fn3XewT7EpzL1sANp2+TKCLJQOa64pAHQIdCPG2ZcuZy7T2tedkXDornmirG1uauBDibXvD91+0O4rp3QPwdbQAYGaverR8czPaR0qNLT3rlRlb2vjb062+7kTmRGw6WlUXO0DfZm58/184G09f5qGWunFzeGtP/IqOX5Ezb/W6YZzXyswrxKrU2GJtaljp2GJvYcz6GR1o7G5NfFoOM347ymt/nuKDobpiVHxaDisOxrB0UhtszIwYN+8An288z/P3l50ZvOxADL2buJQZl4S4XcVjy+VMmntaE+yhu4C580KybmwpWoZgbHtvvt4aUeXj9g0uKehM6OjNRxvOE5GcTaCT7rvYp4kzzT1149imM4kEOlswoOgCR4cAe0K8bdhyNonWvracjMtgxaRQ3djS2JkQ7+uvLQmwaE8M0+/zw9dBd6fWzB4BtHxnG9qHmxRvM7Onf9mxxc+WbvV1dzaciEtHq6pM6KjLUfo2deH7HZFsPJNYXAgfHuqBn6N5pTGcef36a/1VJDO3grElrwp5y8E4ejdywuqaOx3mPFCPF3sHcjAqlZ0XrmBcdBt61yAHpi89waOtPXC3NeXrreEAZOUVXntoIW6JoUYhI6+Qc4nZNPewJNhdl1fsupiCoYHC6KJlCMa2deeb7dHXO1QZDzZ2LP55fHsPPtoUSURyDoFOuu9in0aONPPQnR9tCrtCPSdzBgTrcoYO/raEeFqxNewKrX2sORmfwfJxTXVjS0MHQjxvfAFk0f54pnXxwtdBdzfFs/d50/L9vWXOiZ65zxtTo5KLzm18bOhaT3fOcDI+E62qMr69Lkfp28SJH3bFsulMcnEhfHiIC34Old/uf/ql8ncd3YhubCkZ76xNDMms5Psen5bLqYQs+jVx4tCsNmw8m8y4xafY8Uwo9uZGxKfnseLIZZY83gQbM0PGLz7FF1ujmNXDl9wCLa+vu8BPj9adWbqfr9nPRyv3lnt+ZNfGvP2YnA+K63v//fd54403yj0/fvz4MmsUC3G3SBH4NnUKcmZUBz+eW3KYS+k5DAn1Yk7fxlxKy8Hdtuwfc0+7yk8crrV4dzhzt5wjNiUbBYX03HySM0sWti997OgrWew6l1hm5my+Vkv7QEcupeXgYGlS5qTH0/7GcURfyeK5pYd54fcjxc8pCiRm5AJgoICrTdnPVzqm+NQcPOzKf/741JwKt79TLEw0ZJQqzGTkFBTPvqtMoVZl5aHo4qU5rj43Yu5OJnQJYHznAJIz8pjwyx7m7bjI6A4ls5FOxqYy7qe9fP1Yq+ICvRB3Qqd6jjzWzpvnlh3jUnouQ0I8mN2nPpfScnGzLbue1rXftev5dW8Uc7deJDY1BwVIzy24ZmwpOXb0lWx2n08uM3M2v1ClfYADl9JzcLAwLju2VCGO6CvZzFp+nBdXnCh+Tje26GLQjS3XfL5SMSWk5ZSJ8er7JtztscVYQ3qpsSU9t/KxxcLEkKZFxS4PWzPmPFifkT/sLy4CmxppeDjUE5+iYtXEzn58/G9YmSJwoVZl1aE4Ph4m63WKO6tToAOPtfXkueUnuZSex5AWbsx+IJBLaXm4Xee7dyO/7oth7vYIYlNyUZSrY0s+FE1Ec7cpPbbksPvClTIzZ/MLtbT3t+NSWi4OFkZlx5YqfKejU3KYteIUL646XfycoigkZpYaW6yv+Xw2pceW3DIxAnjamZKQllv82N32zq/NbWFyzdiSU4CF8Y3zllVH4vl4aMVFFwMDhVAfW1Ycimfh3hjGtPOiW31Hnujiy6hfDpOTX8jkzj6sP3kZNxtZb1zcGZ0C7BjVyo3nVoVxOSOPwc2cmd3Ll4T0vHL/zjxu4rv064F4vtsRQ2zq1bGlkOSs/OLX3UsdOzolh93hqWVmzuYXqrTzsyUhIw97c6MyxVrPKoxx0Sk5PP/HOWb/ea74OUWBxExdDLqxpeznKR1TfHpemce69zUhPj2vwu3vFN3YUlL0Tc8twMJYU+G2pkYajDQKT3b2wlCj8EAjRz7ZHMmByDR6NnDA1NCAYS2c8SlasmxCew8+2RzJrB6+fLUtip4NHAi4zgWy27XixcF37di3YlrfUKb1DdV3GKKKNmzYoO8Qypg1axazZs3SdxiiDpMi8B0wqWsgk7oGEnMli0e/20UDV2u8HSyITckus13MlZLH5iYasktdjb2cXnKSEZmUyZwVR1k+tSPNvewwMFCo/+IaVEquOJfuF+Bua0aXBs4smNCuXGxRyVkkZ+aSk19YfEIVfSULH4fKZ8ldPebzfRqWmZFcOr6KGhaUfsrVxrTM5wWIuZJF1wbOFW5fEf9Zqyt97YNhLco0dbsqyMWaU7Fp9G6im+14Iib1hss0bD1zCa0WutYvie1KVh6xKdk83tEfI40BLjamDAjxZPOphOIi8IXLGTzy7U7eGtyU+xpW7ZY2IW7GpM5+TOrsR0xKNiN/2EcDVyu87M2IS8kps11sqcfmxoZk51c8tkQlZzFn5UmWT2lDM08bDAwUGrz8D6VvEi793XazMaVLkCPzx5VPdKOSs0nOzCsztsSk5BTPwquMm60ps+6vV2ZGcun4KhxbSv3sYm1a5vOCbmztWt+pwu0rEjB7faWvvT+0SZnGbFcFuVhyKi6d3o2L7naITaO+S+V3MpRmcM1nauBqVS5I5Zontp5NRKuqdAlyRIg7bVInHyZ18iEmJYeRPx+igaslXvamxKVeM7aklh5bNGTna4sfX84oKWBEJWcz54/TLJ8USjMPa93Y8tpmSvedKP01cLMxoUuQA/PHtCgXW9SVbJIz868ZW7KLZ+FVxs3GhFm9AsrMSC4d343yFhdrkzKfV/e+OXQNKmmmcu339FoBL2+q9LX3Bzcs09TtqiBnC07FZ9C7kS4HORGXTn2X6+doW8OS0KrQpd71G70UqrrlHq6a3NmHyZ11d5FsC0vC1dqkXOFbiNsxsYMHEzt4EJOSy2MLjtPAxQJvOxPiUnPLbBdb6vG1Y8vV4ipA1JUcXlpznmXjmtLM3RIDA4WGb+2i9Oompb+VbtYmdA60Y/5jjcvFFn0lhytZBeTka4sLwTGpOfjYX/874GZtwqwevmVmJJeOr6LzmTLnRFbGZT4vQExKLl0D7Uptf/2xJfCNHZW+9n7/egxuXn45iHpO5pxOyKR3Q904cTI+kyDninO0+i7mKJQ/N7saV30Xi3IxXn2440IqpxMy+f1QAgBJmfmMXXSSWT18imd/CyGEqD6kCHybDkdeQQWCPWywNDHESKOgMVAI9bWnoFDL/B0XeaStDwt3hROXWlIUbexuw9wt54hPzcZIY8D3W0vWT8rKK0QBHCxNKFRVvvj3LOk5+eXfvEjPxq68/ecJ/jwcwwPBbhSqKgfCr+DraIGXvTn1Xa359J8zzLy/AZtPJXAgPJkOgU6VHg9gRFsfPv/3LA3drAlwtiIpI5f94cnFxdUbCfGxR1Hgx+3nGd3ej/XH4zgZm0b3RlUvll54v2pdMEsbEurFC78fZmCIBxYmhny7JYzH2l9/HcFl+yMZ3NKzTFdwR0sTvOzNmb/jIuM6B3AlK48/D8XQLlCXAMamZPPQ1//xTO8GxctwCHEnHY5KARWaeFhjaWKIocagaHaXHQValfm7InmktSeLdkeVKdw0crdi7raLxKfmYGRowPfbw4tfy8orRFHAwcJYN7ZsPE96TuW3Hfds5Mzba8+w5kgc9zdx0Y0tESn4OpjjZW9GfVcrPt1wjpm96rH59GUORFyhQ8D1l5t5tLUXn288T0M3KwKcLEnKzGN/+JXi4uqNhHjbogA//RfOqHberD95iVNx6XRvcP0xrbTz7/Su8rZXDQnx4PkVxxnY3A0LE0Pmbr3IY20rXuP9UGQKNmZG+Dmacyk9l7fXnqF345ITtGGhHny5+QLDQj2xMTPkh+3h9GhYNv5lB2IY1MK9zLgkxJ1wODpVN7a4W2FposHQQMHAAEK9bSkoVJm/O5pHWrmzaG9MmcJNIzcr5m6PID4tR5e3/BdZ/JpubFFKxpZN4dcfWxo68fa6c6w5msD9jZ0oVOFAZAq+9uZ42ZlR39WSTzddZGYPfzafSeJAZOqNx5ZWHny++SINXS0JcLLQjS0RKcXF1RsJ8bLRjS07IxnVxpP1py5zKi6D7vWrfiHm/Jv33Xijawxp4cbzK08zsJkrFsYa5m6P4LE2188rlh2MY1Bz1zLjQ36hlt8PxNE32BlLE0N2XrjCikNxxWsi5+QXEpGcTZCzBRcSs3j9r7PMuM8PgwrWHxXiVhyJSUdVoYmbZfHYolGgpZc1BVqVBXvjGN7ShUX744krNcO+kasF3+2IJj4tVze27Iwpfq04bzE3olBV+XJLVJmZ89fqWd+ed/4JZ83xy9zf0JFCVeVgVBo+9mZ42plS38Wcz7ZE8sx93mwOu8KBqHTa+9le93ONCHXl861RNHAxJ8DRnKTMfPZHphUXV2+khaeVbmzZHcuoVm78czqJUwmZ3Ff/xsvzXXXulQ5V3vaqIc2deWH1OQYEO2FhomHujhhGtqq4x0B7PxtcrIz5ens0T3TyZOPZZGJScmnppbvL8eEWzny5LZqHWjhjY2rIj7ti6B6ki/+HEQ3JLyypyj/wzSHe6RdIp6JmfHXRk3P/wc/FlpkDb9zgU4jrGTNmDIGBgbz00kv6DkXUIlIEvk3pOfm8vPIYkUmZmBsb0r+FB4NbeqExUPhxbBtm/naI11cfZ2ALD9oGlCQLXeo707uxG53e3YCrjRkj2/kWF4IbuFnzeEd/en6wGRMjA8Z3DsDdtvLZdVamRiya1J5XVx1j1tJDKIpCMy87Pni4OQDfjGrFtEUH+G7rOToHOfNg0xs3kBrQwpOMnALG/LiH2JRs7C2MGRTiWeUisLGhAfPGt+X53w/z3l8n8XGw4OdxbYqbwt0tPRu7cjrOnz6fbKWgUOXh1t6MLlUE7vzeBqb3qF88izgzt4B1x+L446nO5Y714+NteHnlUT78+zTGhgb0bOzKUz10t2sv3h1OzJVsXv/jGK//cQzQLbOx7YUed/XzibojPaeAV/44SWRyNubGGvo3c2NwC3fd2DI6hJm/H+ONNacY0Nydtn4lJxJdghzp1diZzh9sw9XalEfbevFDUSG4vqsVj7f3oecn/2FiZMC4jr7XXTrBytSIxeNb8crqU8xaflw3tnja8P5Q3RqbXz/anOm/HeH77eF0qufIg8E3bmDWv7kb6bkFPP7zQWJTs7E3N2ZgC/cqF4GNDQ345fGWvLDiBO/9fRYfe3N+HtOyuHHT3dKjkTOPx/vw4Be7KCjUMqyVJ6PalRSBu3ywjWndAxgS4sHFxEzeXXeWpIw8bM2N6N3YmTl9GhRv+2gbLyKTs+n58X8YGSr0DXbjyVIN9TJzC/j7eAKrpra9q59J1E3pOQW88ufZkrGlqQuDm7vpxpZRzZi57CRv/HWWAc1caVuqONKlnj29GjrR+cNduNqY8GhrD37YoSsE13e15PF2XvT8bDcmhgaM6+BdbtmW0qxMDVk8tgWvrDnDrJWnUBRo5mHN+4N1jcC/fqQJ05ec4Pv/IukUaM+DTW5cyO3fzFU3tsw/QmxKDvYWRgxs7lrlIrCxoQG/jG7OCytP8d7f5/FxMOPnUc3u/tjS0InHEzJ48Ku9FBSqDGvpzqhSReAuH+1k2n1+xbOIM3ML+PvEJVZNaVXmOArwx9F43lh7lkKtioetKa88GETPogtMuQVaJi8+RkRSFnbmRjze3qt4/Wch7oS0nAJeXXuByCs5mBtp6BfsyKBmzmgMFH4Y0YhnV57ljb8vMiDYibY+Jet8dwm0pVcDB7p8dgBXa2MeDXXjh126QnB9FwvGtHGn19cHdWNLW/frLp1gZWrIolGNeXXtBZ7/41zR2GLF/wboepR89VADpi8/w/e7YugUYEefRje+yNM/2In03ELGLjpJbGoe9uaGDGzqXOUisLGhAT+PbMwLq8/xv3/D8bY35acRjYqbwt0tPerbM6aNG33nHqZAqzKshQujWpWcx3X9/ADTOnsxuLkzRhpdjDNXnuXTLZH4O5rx44hG2BXFOCLUlcgrufT66hBGGoUHGzvyZFFDPbtrPofGQMHWzBDzSpaeEPdeQaGWrnMWk5tXwL6PxxQ/P+OHDfx3MprwS6msmj2Ejo3KXoA8cC6eOQu3cioqCWtzE958tBMD2wYh6p7Nmzfz6quvcuDAAVq1asWWLVv0HZK4DYp6TbdgcX2WpkaJW57v7uBVhXV1r/XQ1/8xpKUXw9v43IXIRHXU/7OtqXsvJg9XVfVvfcciqjdLE8PEzc92dvCyv/n1bIfN3cOQEA8ebiWz0uuKAV/uSt0bfkXGFnFDliaGiZufaefgdRNrh1817PsDDGnhxsOhcktvXTHgm32pe8NTZGwRN2RpYpi4+akQB0+7m19SZNhPxxjS3JmHQ2Q5tbrgtwPxbI+F75/qo+9Q7onqNhP4y78O8PeBCySkZJYpAv/07xHqezrw5Nx/+GJirzJF4ISUTDq9sJD/jelG39AAMnLyScnMwc/F9q7Hu/9cHI98sPp0ckZ2w6vPWVlZffvWW29Nmj59+l1//+qkuswE3rt3L+fOnSMiIoL169frpQick5ODpaVlQUFBgXTMvk1yn6kQQgghhBBCCCFqNK1W5cX5WwiaPBf/id/Q/eVfuZSaCcCnq/cR8vTP+Iz/mm5zFrPnbGzxfk/O/YcX529h0DvL8Rn3NcM/+IPEtCzGfb4W3/Hf0P+tZSSn65Z2jLychsuoz/lpw1EaPvEdzab/yG/bTlYa09r95+n84kICJn7LkPdWEJWYBkB2XgETvlxHwMRvCZz0LQ++sRSt9s5O0ItLzmDx1pNM71++v8fYns3o0NATQ4PyJaFv/z5Ez+Z+DGobhJGhBjtL03tSAK5OtFot06ZNw9HREVtbW0JDQ0lI0K19/e677+Ln54eVlRUhISHs2FGybveYMWOYNm0a3bt3x9LSkgcffJDLly8zbNgwrK2t6dq1K0lJSQCEh4djaGjIN998g4uLC97e3sybN6/SmFatWkXTpk2xs7OjZ8+eREREAJCdnc0jjzyCnZ0d9vb2dOzYEa1WW+lxblbr1q0ZMWIEXl5yB1FtIMtB1GFfbjzLx+tPl3v+0ba+vDm4qR4iEkLUBl9tPs/H/54r9/yINl68OaDibvZCCHEjX20J5+ONF8o9P6KVB2/2r6+HiIQQtcFX26P4ZHNkuedHtHTljQcDKthDVFebj0WwNyyOAx+PwcLUmOORlzEz0pU8Alxt+fu1YThYmfHDP0cY/8U6Dn4yBiND3dIVf+wJY8WLg/FwsKLP60t58I3f+XR8D755ojcjPlzNd/8c5oUhukbshVqVg+fjOfjpWI6FX+Kh91fRMtCNeu52ZeI5dCGBWfM2s3hmfxp5OfLVXweY9NXfrH11GL9tP0lWbj7HvxyPkcaA/efiKmw0GJ2YRufZiyr9zItn9qdt/YqXe3xp4TZmDW6DmfHNTZ48eD6Bxl6O9Hr1N6Iup9GhkRcfjOmGnWXdaSb6zz//sHPnTi5cuIClpSVHjhzBzEx3V1VQUBC7d+/G0dGRL7/8kocffpiLFy9iZKT7Pf/+++9s2LABb29v2rdvT8eOHfnhhx9YuHAhffv25fPPP+f1118HoLCwkD179hAeHs6hQ4fo3bs3bdu2pX79snnN/v37mTp1KmvWrCE4OJgPP/yQESNGsGPHDubNm0dmZiaxsbEYGRmxe/fuChtORkZG0rRp5XWeNWvW0LFjxzv1KxTVlBSB76Hfn6heX6gnuwfxZHdZ10eImm7ppDb6DqGMqd0CmNpNTpqEqOmWTmip7xDKmNrVl6ldffUdhhDiNi0dG6zvEMqY2smLqZ1khlttYKQxICM7j7C4K7Twd6Gpb8m68P1a1yv+edL9LXh/xR7CL6UVF24HtKlHA0/dWs89mvtyNiaZdg10xdU+oQFsPhZR5r1mDW6LmbEhrYPceSDEnzX7wnh6QNklIBZtPcG4Hk2L43iqbygfr95HXHIGRhoDrmTkEHEplQaeDpUWcj0drbnw3ZSb/l1sPR5JYno2A9sG8d/J6JvaN+5KBscjLrNy9mAC3eyY/v0GZi/YyjdTbr65ck1lZGREeno6p0+fplWrVrRo0aL4tSFDhhT/PH36dF577TUuXLhQXLh96KGHaNy4MQB9+vTh1KlTdOrUCYBBgwaxfv36Mu/12muvYWZmRvv27RkwYADLly9n9uzZZbb58ccfmTp1anEcs2bN4u233yYmJgYjIyOSkpK4cOECjRs3rrSQ6+3tTUpKyu39YkSNJ0VgIYQQQgghhBBC1Gidm3gzpnswz/y4kUupWQzt0ICXh7XHyFDDoq0n+GbdIWKS0lEUSM/OIzkjG9AVgR2tS3r+mBoZlnlsZmxIZk5+mffycLAs9bMVCSlZ5eKJTkxj6X+n+OKvA8XPFRZqiU3OYFjHhkQlpjPq0zXk5RcypnswM/q3KneMW5FfUMichdv4bur9t7S/mbEhD4YGFBevZ/QPZdA7K+5IbDVF9+7dmTx5MhMnTiQ+Pp6RI0fy7rvvYmRkxE8//cTHH39MVFQUiqKQlpZGYmJicRHY2bnk4oOZmVm5xxkZGWXeq/QyC15eXsTFxZWLJyIigvnz5/P+++8XP1dQUEB0dDSPPfYYERERDBo0iNzcXCZPnsyLL754x34XonaRIrAoY9qiA/g5WfB0rwY33lgIIapo+m9H8HW04OkegfoORQhRi0xfehxfB3Oe7u6v71CEELXIjOVn8LU3Y0Y3b32HIm7SlAdCmPJACDFJ6Qz/4A8aejrQoaEnL87fwqrZQ2ju54KBgULAxG9R1VtfgzcmKQNvJ+uin9MJ8rAvt42bvRXPD2nH1D4hFR7jxaHteHFoO8Jikxnw9nJCA93KNGgDXSG5w/MLK43jt+cGFM9YviruSiZhsckMfW8lAHkFhaRn59Fo6vfs+N9jN1zWoYGnQ7mlKSpaXqC2e/rpp3n66aeJioqiT58+NGnShK5du/LUU0+xefNmQkNDMTAwwM7O7rb+LUVFReHr61v8c8OGDctt4+npyRtvvMHMmTMrPMYbb7zBG2+8wenTp+natSvt2rWja9euZbaJjIykUaPKl+Zbt25d8YxlUXtJEVhUSx+sO8Vn/57B2LBkofqw9/qhMdD98Zn520H+C0skIimT5VM70qGeU/F2/4Vd5sN1pzgSnUJzLztWPlUykJ1LSOf11cc5EJ4MQLsAR94Z0gwXm7qzvpEQddmVrDxmLTvOjnNJaAwU+jZ15c0BjTDUGLD7QjKP/rCveFtVhez8Qv6e0YFmnjakZOUze+UJtpy5jLGhAU92C2B8J1+AG+4rhKjdvtoSzpIDscSm5OBibcL0+/wY1tK9+PU/jsTzwT/nSUjPxdfBnLf616eNn2722ZdbLjJvdzQpWfnYmBkxuq0nT3XzK9537fFLvPv3OWJTc2jpbcMnDzXGw1byFiHqgq+2R7H0YAKxqXm4WBkzrYsXw0Jcil8vKFR5999wfj+UQE6BlkauFqya0AyAL7dFMX9vHCnZBdiYGjKqtRtPdSmZcXgkJp2ZK8O4kJRNsJslnw0JwtfB7J5/xjvp0IUEVFWlqa8zlqbGGGoM0BgoZOXmo6DgYGVGoVbLZ38eID0777be68OVe3h/TDdORCay7uAFnrlmKQiAkV0aM+GrdXRs6ElTXyfSs/PYcjyS/q3rsf1kFE7W5gS522NpZozGwKD4XLc0T0drIn584qZi83Cw5Ojn44of7wuL45XF21n36jBsLUwAXWFYq1VRgfzCQnLyCjAx0qAoCo90asj4L9cx6f4W+LvY8sWaA/Rs7ntTMdR0+/fvR1VVWrRogZWVFUZGRmg0GjIzM1EUBScnJwoLC3nvvfdIS0u7rfd64403+Prrrzly5Ah//PEHc+bMKbfNuHHjGD58ON26daNFixakpaXx77//MnToUDZv3oyzszMNGzbE2toaQ0NDNBpNuWN4e3uXm4VcFVqtlry8PPLz89FqteTk5KDRaIrXQBY1ixSBRbU1rLU3Hw+v+KppE09bhoR6M23RgXKvmRtrGNXBj+jkLDafvlTmtbScfPo0deeLR1tiaqThlZVHefq3gyye1P6ufAYhRPXy4fowsvMK2T+nG1n5hTzy3T4W7I7k8Q6+tPW35/w7JWud/XE4lrf/OkNTD90sj1f+OImiwMGX7yMiKYtBX+8myMWSzkGON9xXCFG7KQp880gwDVwtORGXzvAfDhLoZEGItw2X0nOZvvQECx5vTscAe37bH8v4hUc5+lJnFEXhwSYujG7rhZWpIfFpOTz8/UEaulrSo6ET5y9n8vTvJ/htfAhN3K14bc1Zpvx6jNVT7swtw0KI6k1B4ethDWjgYsGJ+Ewe+fkYgU5mhHjp8ot3/r3IibhM1k9tgYulMcfjM4v3fbCxI6NbuxWNLbkM/+U4DV0t6FHfntwCLWMXneTpbt4Mbe7Cp1sieWLpadZOaVFZKDVCelYucxZuI/JyGuYmhgxoE8SQ9vXRGBgwtmdTur20GFMjQyb0alZmOYebpTFQaO7vQosZP2FkqOGdx7pUOBO4ZaArb43szIwfNhB+KRVLU2O6NvGif+t6JKRk6patSMnCytyYMfcFl5vRe+vxGeBia1H82NbCFI2ilHlu6Hsr2Xk6BoCH/rcKgIOfPI63kzVdg32YNbgtQ99bSX6hlm7B3rw1svMdia2mSE1NZcaMGVy8eBELCwuGDRvGiBEj0Gg0xWvzmpqaMm3atDLLOdwsjUZDq1at8PHxwdjYmM8++6zCmcBt2rTh008/Zfz48Zw/fx4rKyt69uzJ0KFDiYuLY+LEicTFxWFjY8PkyZPv6Izebdu20a1bt+LHZmZmjB49ml9++eWOvYe4d6QIXI1otSovrzzKyoPRFBSq+DpZsGhiO5ysTPn83zMs2BVOcmYe/k4WvD24Ga39dQvXT1t0ACtTQ87Ep3MwIpl2gY58NqIlLy47wuZTCQR72vLj2NbYW5gQmZRJu7f/5e3BTfnw79OYGBowq09DHm7tU2FM647G8v66U8SmZNPMy5aPhofgZW9Odl4hT/96kM2nE1AUCHKxYtVTnTGo4Orl3fB4R91tn4aa8u8X4mNPiI89y/aX7/J79bXSxxn4xfa7F6gQ1YBWq/LK6pOsOBhLoVbF19GcheNa4WRlwucbz7FwdxTJWXn4OVrw9sBGtPbTfUem/3akaGzJ4GBkCu387fl0eFNmrzjB5jOJBHtY88PoEOwtjIlKzqLde1t5e2AjPvwnDGNDA57vHcSwVp4VxrTueDwfrA/TjS2eNnz4UFO87M3Izi/kmSVH2XzmMgoK9VwsWfVE2zs2tkQlZ3N/ExfMTQwxNzGkWwMnziZUfEV82YEYhrT0KL79bcOpSyyf0gZTIw31Xa14sKkrS/ZH0znI8Yb7ClEbabUqr/x5hhWH43Vji4MZCx9voRtbNl9k4Z5okjPz8XM05+0BDWjtawvolnCwMjHkTEImB6NSaedvx6cPNWb2qtNsPls0toxsWjS2ZNPugx283b8+H264gLHGgOd7B5SZZVvauhOX+OCf88Sm5tDMw5oPhzbCy65obPn9BJvPJqGAbmyZFHrHxpYnuvgW/9zUw5p2/nYciEwlxNuGuNRc7MyN6BSoy9sGt3DjmWUnScrMx9HSGD9H8zLHMjBQCE/OBmBrWBIdA+1p4aW7o2BaNz+av72Ni4lZ5fYTorbQalVeWXuBlUcv6cYWezMWjGqMk6UxX2yNYuG+OJKzCvBzMOWtvgG09tF9P2YsP4OliSFnL2VyMDqddr42fDokiNl/nmdz2BWC3Sz5fkRD7M2NiLqSQ/tP9vHWgwF8tCkSY0MDZnX3KTPLtrR1JxP5cGMEsal5NPWw5KOB9fC0M9WNLSvC2BJ2BUWBek7mrBzf9M6NLZ1K8qim7pa087PhYFQ6IV7WXMnK55c9cWx5qiVu1ibF21zld82sXgOF4rFl18VUTAwNGNnKDYDpXb34fmcM5xOzCKjBY0vnJt5sf29kha+9Orwjrw4vaZhVuonbl5N6ldn2+SFtyzx+pHMjHulc9jb6sT2aMrZH03Lvc+2x+rQMoE/L8g2Th7ZvwND292YJxo6NPNn38Zgyz61+aeh195nYuzkTeze/e0FVc927d+fYsWMVvva///2P//3vf8WPSzdxu7Yw+tprr5V5PGbMGMaMGVPmuSlTpjBlSvnmf9cea8CAAQwYMKDcdiNGjGDEiBEVxnondO3a9baWuxDVixSBq5EtZy6xLzyZPS/3wsLYkBOxqZga6abx+ztbsvbpLthbmPDT9vNMmreXva/0xkijWy7hzyMxLJ3SEU87M/p+to0Bn23jo+Et+GpkKI99v4sftl1g1gO6K0qFWpWDEVfY90pvjsekMPzbnbT0sSfQxapMPIcjr/Di8iMsmNCOhm7WfLM5jCcW7OPP6V1Yui+SrLwCDr/+AEYahQMRyeXWDQKIvpLFff/bVOlnXjCxLW38yxdQANYcjmXt0Vjcbc2Y1qM+A0MqLibdjr0Xk6nvanXjDYWowbacTWRf+BX2zO6qG1vi0jA10o0d/k4W/DWtPfYWxvy0I5zJCw+zZ3bXUmNLPEsntcbD1ox+X+5k4Fe7+fChYL4c0ZzHftrPj/+F81zvIKBobIlMYe+cbhyPSeOR7/cS4mNLoHPZmRaHo1KYveIE88eF0tDVim+2XmTq4sOsfrIdS/dFk5VXyKFXumNkoHAgMqWSsSWb7h9VfgFn/rhQ2viVn5HxWDsvFu6OYkBzN7LztGw6fYmZveqV2y4xI5etZxN5rX/ZK/Gl8x+tCmfjyxeQK9tXiNpmS1gS+yJS2PN8RyyMNZyISy/JWxzN+Wtqa93YsjOKyYuOsueFjiVjy7EElo5viYedKf2+3sfAb/bx4dBGfDm8CY/9cogfd0TxXC/dSXOhVuVgVCp7X+jI8Zh0HvnxICHeNgQ6WZSJ53B0KrNXnWb+mOY0dLXkm20RTP31GKufaM3SA7G6sWVO56KxJbXyseXT3ZV+5vljmhcv41CZvAIth6PSGN1Wl7c0cbfCz9GczWcS6VzPgaUHYmniboWDRcltlPN2RfHG2jCy8grxtjejX7CuEKVVrx13dA/OJGRIEVjUWlvPXWF/ZBq7n2mlG1viMzEtWiLO39GMNZObY29uxM+7Y5my5DS7Z7YqHlvWHL/MkseD8bA1of93Rxjw/VE+GliPL4bWZ9SCE/y4K5bnuusmvxRq4VB0OnuebcXxuExG/HKcEC8rAp3KfreOxKQz58/zzHusMQ1dLPjmv2ie+P0Mqyc24/dDl8jKL+Tg860xMjDgQFRaxWNLSg49vjxY6WeeN7IxbXyvv3xUXoGWwzEZjGqtK9yeTsjERGPAH8cu8/3OGOzMDZl5nw/9g0uWyZu3J5Y3118kK0+Lt50p/ZroXjt7KYuGriVjqJmRBj8HM85eqtlFYCGEENcnReBqxEijkJlTQFhCOi287Qj2tC1+rW+zkltDJnQJ5MO/TxORmFlcuO3XzIMGbrrbgro3dCEsIZ22Abri6gPBbmy5ZlmEZ+9vgJmxhlZ+DtzfxI2/jsYyvWf9Mtss3h3B4x39i+OYel8Qn/57lriUbIw0Cley8ohIyqSBm3WlhVxPO3POvtf3pn8X/Vt4MLqDHw6WJuwIu8y4n/fgbmtWPPv5Tjh/KZ3/rT3JD4+3uWPHFKI6MtIoZOYWcu5SJs29bAj2KDnJ6NvUrfjnCZ38+OifMCKSsooLt/2auRZfKOnewJmwSxm09dcVV/s0cWHzmcQy7/Vsr3qYGWlo5WtH78Yu/HUsnundyzaD+3VvNGM6+BTHMbWrP59tPEdcag5GGgOuZOUTmZRFfVerCgu5AJ52Zpx5q1eFr11PY3drMnMLafDyv2hVGBzizv2Ny8/6WXUojmAPGwKcSgrYXYIc+XLzeT58qCkXEzNZdyweO/Pya2FVtK8QtVHx2HI5k+ae1gSXWv6kb3DJ92pCR28+2nCeiOTs4sJtv2AX6rvqviPd6zvqxpai4mqfxs5sPptU5r2e7RFQNLbY0ruxE38du8T0+/zKbPPrvljGtPMqjmNqF18+23RRN7YYXB1bsqnvallpIdfTzowzr3er8LWqeuXPMwQ6m9MpUDd+aQwUBjd3ZdyCI+QVqliZaFg0NqTMnQKj23kxqq0np+Iz+PvEJaxMdSl6p0B73vv7HPvCUwj2sOKzTRdRFMjKK7ytGIWozgw1Chl5hZxLzKa5hyXBpWa3Pti45JxjfHsPPtoUSURyTnHhtm8TJ+q76MaZ+4LsCbucVVxcfaCRA1vOpZR5r5n3+ejGFm9reje0Z+2JRKZ1LdsM7tcD8Yxp41Ycx9ROnny+NYq4tFwMDRSuZBUQmZxDfReLSgu5nramnH7p9pafe3XtBQIdzegUYAtAXFoeqTkFRF3JYe+zrTkWl8Gj83RLPtQr+n2MbuPOqNZunErI4u+TiViZ6C7UZeYVFv98lbWphsxcGVuEEKI2kyJwNdIpyJlRHfx4bslhLqXnMCTUizl9G2OkMWDx7nDmbjlHbEo2CgrpufkkZ5YsZu9oZVL8s6mRptzjzLyCMu/lYVdyhdfd1oyEtJxy8URfyeL3/ZF8tTGs+LlCrZa4lGyGhnoTlZzF2J92k1ugZXR7P6ZdU0S+HfVdS04kO9d3ZmioN38fj7tjReDYlGyGf7uTl/o1pn1gxQVsIWqLTvUceaydN88tO8al9FyGhHgwu099jDQG/Lo3irlbLxKbmoMCpOcWlBlbHCxLjyUGOFoal3qsIeuascXd1qzUz6ZcSsstF0/0lWx+3x/D15svFD9XWKgSl5LD0JYeRF/JZuwvB8gt0DKqnTfTriki346JCw4R4m3LgvGh5OZrefb3Y7yz9gxzHix7O96yAzEMv2YpizcHNuLFFSdo/fZmPO3MGNTCnTMVzASuaF8haqNOgQ481taT55af5FJ6HkNauDH7gUDd2LIvhrnbI4hNyUVRro4t+VA0Qc2hzFhS0dhSthDhXqoRmruNKZfSKxlbDsTy9dbw4ucKtSpxqbkMDXEjOiWbsQuO6MaWtp5M6+ZX7hi36+MNF9gbnsLKyaHFRd7NZxL53z/n+fOJ1jR0tWTHhWTGzDvMhhltcS6VrymKQiM3K7aeTeKjDed5uU8Q9V0seX9wQ55ZdpIrWXmM7+iNpbEhbtLQVtRinQLsGNXKjedWhXE5I4/BzZyZ3ctXN7YciOe7HTHEpl4dWwpJzsov3tex1Ax7U0ODso+Nyhc53W1MyvyckFG+WVh0Si6/H7rE1/9FFz9XPLY0dyY6JYdxi0/pxpZrmq/dKZ9sjmRvRCorxjcrHlvMiu7qmtbVC1MjA1p5W9MpwJbt51OKi8BQNLa4WrD13BU+2hTJy/f7YWGsIf2a30V6biEWJuWbSYmyvJ2sSZg/Td9hiFrA19eXgoKCG28oxB0kReBqZlLXQCZ1DSTmShaPfreLBq7WtA90ZM6Koyyf2pHmXnYYGCjUf3ENul6etybmShbeDrqr5LEp2dRzKb8kgrutGbMeaMiUbuVvlQZ4vk8jnu/TiLCEdAZ/uZ2WvvZ0qOdUZpvoK1l0fndDpXEsntS+eMby9dzJpYYvp+cy7Ov/GNPRjxFtfe/cgYWoxiZ19mNSZz9iUrIZ+cM+Grha0T7AnjkrT7J8ShuaedpgYKDQ4OV/bmNk0Y0nXvbmRT/nUM+5/GxYNxtTZvWux+Su/hUeY9b9Qcy6P4iwSxkM+WY3oT52tA8sewEo+ko2XT7YVmkci8a3Kp6xXNrJ2HQ+fbgpZkYazIw0PNzKg//9fbZMETjsUgan4tLp39ytzL6OliZ8P6qkWeXUxYdp4V12xk9l+wpRW03q5MOkTj7EpOQw8udDNHC1pL2/HXP+OM3ySaE087DWjS2vbb6t9eRiU3LwstddZIpNzaGes0W5bdxsTJnVK4DJnX0rPMasXoHM6hVI2KVMhszdT6i3De0Dyo4T0Vey6fLxrkrjWDS2RfGM5Wt9/18kvx+M5Y8prbAxKyk8nYrPoGOAHY3ddblWp0AH3GxMOBCZygONncsdp1BVuZiYXfx4cAs3BrfQjSkXE7P4bNNFGrjKnQaidpvYwYOJHTyIScnlsQXHaeBiQXs/G15ac55l45rSzN0SAwOFhm/t4naWqoxNzcXLzrT453pO5ZdCcLM24bnuPkzuWPEF3lk9fJnVw5ewy1kM/fEoLb2saO9vW2ab6JQcun5evqH1VYtGNal0FvEPO2P4/VACqyY0w8as5PS9ftE4qFD2RKmy06ZCrVq8JnCQsznz9sYWv5adX8jFpGyCnGUpCCGEqM2kCFyNHI68ggoEe9hgaWKIkUZBY6CQlVeIgm5GXqGq8sW/Z0nPyb/R4a7r4/Wnee+h5pyMSeXv43FM7xlUbpsRbXyYNH8fHQKdCPa0IT2ngK1nLtGvuQf/hV3G0dKEIBcrrEwNMTTQxXotTztzLrzf/6bjW388jnYBjliaGLLrfCK/74ti3oSSBfrzCrRoVRVVhfxCLTn5hZgYGqAoClqtSl6hlvxCFVVVyckvRGOgYKQxIC07n0e+3cH9wW5Mva/8ZxaiNjoclQIqNPGwxtLEEEONAQZXxxYFHCyMdWPLxvOk59ze1eiP/z3Hu4MbczI2nfUnEsotBQEworUXkxceon2gA8Ee1qTnFLDtbCJ9m7mx41wSjpbG1HO2xMrEEEMDgwqbq3jamXH+nd43HV9zLxsW7YnihQeCyC9Q+X1/DA2uWRd82YEY7mvohL2FcZnnI5KysDEzwsJEw19H49l8+jJbn+tcpX2FqI0OR6fqxhZ3KyxNNBgaKBgYUDS2KCVjy6bw2x9bNl7g3YENOBmXwfoTl5lewSzeEa08mLz4KO0D7Al2t9KNLWHJ9G3qwo7zyThaGFPP2QIr06uxVjK2vHnfTce3tGgG8h9TWpWZ3QvQ3NOab7dFcCY+g/quluy8kMy5y1kEFRVwFu+NoXdjJ+zNjTgak87PO6OY2tW3eP9jMWk0drMiIT2XWStOMa69d4VL0QhRWxyJSUdVoYmbZfHYolEoyVvMjShUVb7cEkV67m2OLZsjebdfICfjM1h/KpnpXbzLbfNISxemLDlNe39bgt0sSM8tZNu5K/Rt4sSOCyk4WhhRz8kcq6uxVjS22Jpy7pUONx3f0oMJfL09mlUTmuFsVTa38Hc0I9Tbmi+3RfF6H39OxGey40IKL/b0BWDx/nh6N3TA3tyQY7EZ/Lw7lqmddbOU2/nZkJOvZfH+eIY0d+aLrVEEOZnLesBF+r+1jJFdmzCs471p3CZqr65duzJ+/HhGjqy4YaEQ95oUgauR9Jx8Xl55jMikTMyNDenfwoPBLb3QGCg83tGfnh9sxsTIgPGdA3C3vfU/0BoDhebedoS+vh5jQwPeHBRMUKnlF64K8bXnzUHBzFxykPDETCxNDOlc35l+zT24lJbDc0sOkZCWg7WZEaPa+1VpRm9VrTgQxfTFB/7P3n1HR1G1cRz/zqb3CqQSCCnUQAKE3lUsIFVAQEQFEQvYfQUVewUrFhBFBTtVkab03nuogTQSQkJ6LzvvHxM3CUlIwIRNeT7ncE6yM7t7Z/Pw29m7d+4lv1DF29mad+9pT7cSjz/6yx3sCtfmIh3z1U4A9r58G01dbNgVnsiIz7cb9m323B+M6tyUT8d1ZM2xWI5fTOV8Qgbfbiu+FP1GOqqFqCvScwp4ZWUYUUnZWJubcHd7d4YHe2jZ0t2HWz/ajoWZjod6Nis1ncP1MtEpdPB2oPNbmzA30fHGkNYENCk7Wi3Ex5HXh7Tmmd+PEXklS8sWfxcGtXcnPi2H55YcIz4tF3tLU+7r1rTcEb036qPRQcxYfoLg17UFK7u3cOHVwcULuKmqyrKDseUu6nYkOpWXV4aRnlNAK3c7Fj/UmUYlOnuudV8h6qP0nAJe+fNMcbYENWF4B3ctW7p5c+snu7Ew1fFQj6alpnO4XiY6hQ5e9nR+dzvmJgpv3B1YfrY0deD1wYE8sySMyCvZ2FqYaNkS1IT4tFyeWxpGfHqeli1dvCoc0XsjZv8dzpXMPPp9VDyKeFq/5kzv35zuLZx5ol9zJnx/mCsZebg5WPDusJa0KJofeef5ZN5ae5acfD1N7My5r6sXD3Qrvpx85spTnIjLwMpMx6iOHvxvYNlV5oWoT9JyCpi1+jxRyTlYm5kwuJ0rw9o3xkSnMLGLB7d9cVDLlq4epaZzuF4mOujgaUvo7L2YmSi8fpcv/uWMhA3xtue1u1rw7PIzRCblYGthQq8WTgxq24j49DyeX3lWyxYLU+4Lda90gbfrMWdjJFey8uk/t3gU8bTe3oZ5i78YFcjTy87Q6q1deDhY8OGwAMP8yLsupPL2+gvkFGjZMiHUnQe6aFcVWJjq+HZca55ZfpaXVoXT1sOWL0ZJh2dttXDDUT5bdYAr6dn0b+fDx5NuwcGmbO3nFxQy/N3lnI65Qn6hnkBPZ94Y15vO/trfPSevgFd/3s4fe8+SX6jn/n5tmTmqe6k56gH2nonlrjd+538juvHM0NCbcozi5li3bh2PP/44sbGx9OvXj++++w5X1/L7cc6fP8/999/PgQMH8Pf355tvvqFTp043ucWiuin/5dK8hsjW0ixx8wsDXP693LmuibqSSbe3/ubih0ON3ZQG4e5PtqTuvZA0RlXVtcZui6jdbC1MEzc929vl38ud65ropCy6vbuFmPfvMHZTGoQhc3el7o1IlmwRlbK1ME3c9HQ3F2+nupot2XT7YAcx79xi7KY0CEO+3Je6NyJFskVUytbCNHHTEyEuXk51c37q6OQcun+0j+jXexm7KfXeLwcusS0Wvn7iTmM3pcpq00jgbWHRPPLFOv54aQTuTrZM/XIdVuamfPXo7WX21etVTl+8QoCnMzpFYe3BCzz1zT+c/HwyiqLw7tJd7Dkdy/dPDiI9O4+hby9l2qBO3NevreExCvV6Bs76FZ1OYWCw703vBN5/Lo57P/jjVFJGtmFUhZ2d3VdvvvnmlOnTp9/UtlSH2jQS+PLlywQEBLB48WL69+/P1KlTyc7O5rfffit3/9DQUAYOHMjMmTP57rvveOuttzh37hwWFjf+5duNysnJwdbWtqCgoEAuhfqPdMZugBBCCCGEEEIIIUR1mb18D1O/XFfqtntnr+Sbv48A8OIPm2n7xAKaT/6SQW/8zumLV8p9nPeW7mb618Vr3Ow+fZHgJ781/B57JZ3xH/5JwCPz6PzMdyzbdbpaj+PvwxEM7xZACzcnrC3MePyujvyx9xxZuWWnh9TpFFp5u2Ki07p5THQKiWnZpGfnGR5ryu3B2Ftb4Olix7g+bfhlW1ipx1iw/gjdWnoS4FF9V+LVdW+88Qb33XdfqdsGDRrE559/DsC0adPw9PTEwcGB3r17ExYWVt7D8OqrrzJp0iTD79u3b6dZs2aG32NiYhgyZAiurq74+/vzyy+/VOtxLF++nE6dOjFo0CCsra15/fXXWbFiBRkZZRe6Pn36NGFhYbz00ktYWlryyCOPYGZmxpYtW6q1TeLmk05gIYQQQgghhBBC1BvDuwWy9uB5cvK0eaNTMnPYHhbD4FBtvYqOfm7sePc+Tn/5MMG+TXh83t/X/Rx6vcq4D/+kW0tPTsydxHfT72LGoi2cuZhU7v73zl6J78NflvvvuYUbK3yOkhdv61WVvIJCzl9KqbBdg17/HY+Jcxk75w8mDmiHvbVFhY91Kqa4rfEpmXz7z1GeH9al6i9CA3Dvvffyxx9/kJOTA0BycjIbN25k5MiRAHTt2pUTJ06QkJBA586dmThx4nU/h16vZ/DgwfTu3Zu4uDiWLl3KtGnTOHnyZLn7Dxo0CEdHx3L/Pfroo+XeJywsjKCgIMPvPj4+WFtbc/bs2XL3DQgIKDXqNygoiBMnTlz3sYnaReYEbmCautjIVBBCiGrn7WwtU0EIIaqdt7OVTAUhhKh23k6WMhVEPefr5kjzJo5sOBLBXZ39+Gt/OKEB7jR20OZjH9m9eKqH54Z1ocWUr8jOK8DKvOpdJIfOx5OZm89jd4YA0KZpI+4O9WfV/nM87Vl2GoWfnx1y3cfRP8iHx+etZ0K/trg72zL3L21+6PJGAv9r1Sv3kJtfwNqDF8jNL148sX+QD1+tPUS3lh6kZuby85awUo8z66dtPHl3Z+ysb/7l/rWZn58ffn5+rFmzhmHDhrF8+XJ69OhBkyZNABg7dqxh31deeQUnJyeys7Oxsqr6VFz79u0jMzOTZ555BtA6XO+55x6WLVvGzJkzy+y/atWq6z6OjIwMvL29S93m4OBQ7kjgjIwM7O3tq7SvqFukE1gIIYQQQgghhBD1yrCuASzfc5a7OvuxYvcZhnUNMGz7+I99/LQ1jITULBQFVBVSMnKwci678GhFohPTiEpIw/fhLw23FRaqjOldfYsE9w/y4fG7OjJ2zh9k5xXw6J0hrDlwHo9K2mlhZsqQLv70fnExQc0a09LLhaeHhPLSj1vp/vwiHGwsGNo1wDB9xc5TF4m4nMqXvWSB4/KMGTOGX3/9lWHDhvHrr78yZswYw7Z33nmHhQsXEh8fj6IoqKpKUlISnp6eVX78yMhILly4gKOjo+G2goKCGxpVXBFbW1vS0tJK3ZaWloatbdlaup59Rd0incD13LDPtjGumw8jOzU1dlOEEHXY8C92M7aLNyM7Vv1kRgghKjN83n7GdvZkZIi7sZsihKhHRiw4ythObozo0NjYTRFGNLxbALNX7CE6MY09Z2L5+nHtqrUdJ2NY8PcRlr84HD93J9Kz8/B9+CvUknMlFLG2MCM7r3i0bEJqluFnD2db/N2d2PZu1Rb9Gv3+Cnafji1328gegcx5cEC52x69M4RHi0YbbzkehZuTDR7OdlV6zvxCPRfiU2np5YKNpRkfPTQAHtKe5+3fdxLcwg2AbSeiORlzhTaPLwAgLSsXExMd5+KS+XLqwCo9V302ZswYXn/9dSIjI9m+fbthvt4tW7Ywd+5cNmzYQGBgIGlpaTg6OpZbSzY2NmRlFddPfHy84WcvLy9atmzJsWPHqtSeO+64g23btpW7bfz48Xz11Vdlbm/dujVLliwx/B4VFUVmZib+/v7l7nv27Flyc3MNU0IcPXqUqVOnVql9ovaSTmBx0+QV6Jn6wz4ORiYRl5rD3pdvo6mLjWH7ykMxzNt8juMxqQwN8eLTcR0rfKzf9kbx0fpTJGbkYmVuwrBgL14Z0g4TnQLA9jMJzFpxjIgrmXg4WDJjUBvuCPKo8WMUQtS8vAI9U388xKGoVC1LZvTF29nasP2Pw3HM23qB4xfTGBrszidj2lf4WLkFhcxcHsba4/HoVZW+ga68N6ItdpbawrOd39pEYkYuOkXLlqEd3JkzKqjM44yZv5ft567IlBhC1GF5BXqm/nxMy5a0XPa+0BNv5+JLOV9ddZq1JxJIzMjDx8WKGbf7MaBlo3If62RcOq+uOsPhmDTsrUzZ97/Sl513fncbiRl5xdnSvglzRrYxbA9PyGTGylPsj0zF2tyEaf2aM7mnfKEvRF2UV6Dn0d9OcSgmnbi0PPY80xlvJ0vD9tfWnGdt2BUSM/PxcbbkxVubMSCw4kW5whOzmPlnOPuj07A2M2FaH28mdS/+kv7zbdF8uyuW1JwCmjlbsfShIBysTHlh5VmWHrls2C+/UKWFqxUbn6j4M1dd5+liRxtvV6bN/5uerb1xtNFe98ycfEx1OpztrMjJL+Tt33dV+BhtfVz5cs1B4pIzMDc1Yd7aw4ZtIS3cUBRtMbX7+rVBpygcj0rExsKMAM+yf8Nfnx963ceQk1dAZEIqAR7OhF9K4ZWftvH0kFB0RZ97Szp98QpxSRl0a6nVw8INx4hNyiCkhTZtQVxSBjqdgqu9FdtORPP9xuMsnzEcgMfuCmHigHaGx5qxaAs+jeyZPrjzdbe5PvL29iYoKIgHH3yQ/v374+TkBGjTJpiamuLq6kpOTg4vvfRShY/Rvn17PvzwQ2JjYzE3N+fjjz82bAsNDUVRFObOncvkyZPR6XQcOXIEGxsbWrUqOzp7zZo1130Mw4YN44UXXmDNmjX07duXWbNmMXTo0HJH9wYGBtKqVSvefvttZsyYwffff09eXh59+vS57ucVtYt0AoubqmsLFx7t78/dn24ts83J2pyp/fzZc/4KadkVz3EE0N3flVva9MHZxoLkzDwmf7eX73dc4MFevhTqVR5auIfXhrZjdGhTtpy+zAPf7uHArIE428j8RkLUB119nXm0ry9DPt9dZpujtRlT+zRn94Vk0nOunSULt0dyNCaVLc/3xtJUx+QfDvHR3+d4ZXDxydYvD4fSpXnFH8ZWHYkjO7/wxg9GCFFrdG3uxKO9fRjy1f4y22wtTPnxwWCau1iz9VwSDy8+ysanuuLlVHbOPzNTHcM6uDGsgxtzNpwv97l+eSiELs2dytyek1/IqK8P8mgfH767vwN6vUpsau5/PzghhNF0bebA1F5eDP36SJltNuYmLL6/Dc2drdgansKUX06y4YkQvBwty+ybk69n9MLjTO3pycLxrdHrITatOB8W7o5lxdEEfnuwHb4uVpy5nIWFqbYW/HtD/HlvSPGIv3HfHyfYq2qjSeuy4d0C+d8Pm0uNZh3Q3ocerbzo+NR32Fub878RXSu8f9+2Tbk9xJfuzy/C3cmW+/q1Yf66wwCYmuj4+dkhvLR4K3NW7CG/UE9rb1feuq/6Ospy8wuZ9NkaIhNScbSxZNKt7XnwluIBCc98uwGAOQ8OQK9XeeO3nZyLS8bMREdLLxd+euZumjhqA68uXE7l0S/XcSU9m2aNHfjs4Vtp7e0KgK2lObaW5obHtTI3xcbSHAf5/Gxw77338sQTT7B48WLDbbfffjt9+/bF19cXBwcHXn/99Qrvf+utt3L33XfTqlUrPD09mTx5Mp988gkApqam/PXXXzz11FO88cYb5OfnExQUVKqj+L9q3Lgxv/zyC48//jixsbH069eP7777zrD9kUceATCMIv7555+5//77ef/99/H392fZsmWlFooTdZN0AtcBH647xfmEDOaO72S4bfz8nfRv5caDvXyZufQIfx2NJTO3gDYeDrw3qgOBbvZlHueDNSeJS83mwzHapSR7zify2KID7J+lvSHGpmTz4pLD7LuQhIOVGS/c2ZqhIV7Vdhzmpjom9/GrcHvvQO1yrXOX0yvtBPZysi71u06ByERtkvLU7DxSs/MZ3tEbRVHo27IJ9pZmRF7Jkk5g0aB9+PdZzidkMndsB8Nt932zj/4tG/FAj2a8tOIEfx29RGZeIa3d7XhvRFsC3cp+OJi97gxxqTmGEbF7LiTx+E9H2DezH6BlyYzlJ9h7IRlHazOeHxjA0ODqG4lvbqpjcq/mFW7vHaCdzJ5NyKy0Ezg6OZt+LRvhYqOd9N7Rrgnrjsdf8z4lZeUW8P66s8wZ1Y5hX5TtkBaiIfjwn/OcT8xi7pi2htvuW3iI/oGuPNDdm5dWnuKv45fJzC2ktYct7w1rRWCTsqNOZv8drmVL0YjYPReSefzX44ZRtLEpOcxYeYq9ESk4Wpny/G1+DO3gVm3HYW6qu+Zo22dvbWH4uW+AC81crTgem15uJ7BfIxv8Gtmw50Lydbfj1/2xNHW25KEexW3xbyyn7KLh+WhTFOcTs/nsnkDDbRMWnaCfvxMPdPXgpVXhrD6RqJ23uNnw3hA/AhrblHmc2RsiiUvLZc4wbT7YPRGpPLHkNHuf1Rbuik3NZcaf59gXlYajlSnPDfBhaFD1TSNhbqorNVL3as8O8DH83NffiWYuVhyPyyy3E/jXg5do6mTBQ92KH8+/kfa5qFCv8umWaObeE0gLV+22wCZlXw+AhIw8toWn8OagFuVur08m3daeSbeVvirMRKfj80du4/MSt43tU3w1xh8vjTT8rCgKHz40gA8fKp6qYeodIYafPV3sWDj9rupveBEHG4trTjdRcgqJVt6ubHjj3gr37d7Sk8OfPFil55075baqN7KBePzxx3n88cdL3WZiYsL333/P999/b7jtgQceMPy8efNmw8+KojBv3jzmzZtnuO2pp54y/Ozt7V1quoaacPvtt3Pu3Llyt109hUSLFi3Yvn17jbZH3HxyRlkHDAvx4rY5m8jJL8TSzISUrDx2nE3ko3u1N5+OzZx5/o5WWJmb8taqE0z/6SBrn+57Xc+h16tM+HoXIzp5s+CBLpyNT+eeL7bT2sOegHI6lMfP38ne80nlt7ejF+/d0+F6D/O6/X3iElN/2EdGbgHONua8NkzrkHK2sWBYiBe/74tiTBcfNp2Kx0SnlNuZJURDMizYg4Ef7yiRJflsP3eFD4s6c0OaOvLcwACszEx4e/Vpnvz1KGum97iu59DrVe7/9gAjQjz4ekIIZ+MzGDVvr5Yl5XT63PfNPvZW0EkyLNiDd0e0LXdbdbmnkyev/XmKhPRcLEx1/HX0EgNalb68e/IPB1FV7fV5fUhrfFyKv4Sa8/c5Rnf2xM1evmASDdewDm4M/HRP6WwJT+LDka0BCGnqwHO3tdCyZe1ZnvztBGue6HJdz6HXq9z//WFGBLvx9fggzl7OZNTXB2jtblt+tiw8xN6IlArb++6w/7bwTXJWPuEJWQRU0MFSFZMXH0UFQrzteX1woCFbDkWn4eloxZgFBzkWm0Z7T3veG94K73I6m4Woz4YGNeL2Lw6Rk6/H0kxHSnY+28+nMGeYNpo1xNuO5wb4YGWm452/I3hy6RlWTw2+rufQ61XuX3yCEe0b8/W9rTibkM3ohcdo42aLf2PrMvtPWHSCvZGp5T7WsKDGvHN3xQNeqiI5K5/wxCwCGpV9boBDMRl4Olhy73fHOBabQXtPO9672w8vJ0viUnOJT88j7FIm05acxsJUx0PdPEp1GP9r+ZEEOnjZ0dxFckUIIRoS6QSuA5o3sqW5qy0bT8ZzZ5AHq4/G0rm5M43stG+Hh3f0Nuz7zMCWBM5YRXZeIVbmJlV+jsNRyWTlFTC1n3ZS1drDgcEdPFl9NK7cTuDFD3f/j0f1393axo1z7w0mIjGD3/dF42pb3AkzJNiTp385xPO/H8bMRGHe/aFYm0u5i4atuasNzVys2XgqgTvbubHm+CVCmznRyE77vzM8pPhDwtO3+tHylb/Jzi/Eyuw6siQ6lay8Ah7p6wtAaw97Brd3Y/WxSwQ0KfvBaNFDxp1nrLmrDY1szQl6bQM6Bbr5ujChW/Houy/GdaCdpz0FhSofrD/DhG/3s/GZXpjoFM7EZ7Dh5GXWP9WT+LQcIx6FEMbV3NWaZq5WbDx9hTvbNmbNicuE+jgWZ0tw8aJvTw/wpeVrm68/W2LSyMor5JHezQBo7W7H4KAmrD5xudxO4EUPXF9H0PUo1KtM/+04Q9u74et6Y53AX4xpRztPOwr0Kh+sD2fCd4fZ+FQ3THQKcWk57AxP5scHg+nS3In31p3j8V+Os3KqzMsoGpbmLlY0c7Fi09kk7mjtypqwK3Ruak8jW+3qneHti0frPtWvKa3e2nX92XIxnew8PY/01K5+bO1mw6C2rqwOS2R647JXBvxwX5syt1WXQr3K9KVnGNquMb6u5XfOXkrLZeeFVBZPaEOXZg68908Ejy85zYrJ7YlLzwNg+/kUtkzvSFxqHiO/PUpAY2t6tSg99cySw/GM73xzFuTUKQr5hYUqUHYSWyGuUlCoB4VS86wVFhYWFBQUGKtJohYoKChAp9Ppjd2O+kB6xeqIISGerDwUw51BHvxx6GKpaRo+/fs0v+yNJCE9FwUFVYWUrDyszKv+zW50chZRV7II+N8qw20Fej2jQ32uca/aoZmrLS3d7Zmx9AhfTwzlzKU0Hl20n0WTu9GthSsnYlOZ8PUuvJysaePpYOzmCmFUQzt48MeROO5s58bKw3EM6VA8TcOnG87x674YEjLyUKAoS/Kxcqj6h6mY5GyikrIJfGm94bYCvcroTtU3tUx1+t/S4yiKwuk3bsXURMdbf51i+i9H+Wq81oHUuVnRhyYzmDWoFT/v/ZtzlzMIdLNjxrITvDyoJeZFc+0J0ZANbe/GH0cucWfbxqw8Es+Q9sXTNHy66QK/7o8lIT0PRfmP2TJrk+G2Ar3K6I43f9HX55eFkZOv552hLW/4MTo3czT8POuuAH7et5lzCZkENrHFysyELs0d6e3vAsBTA3wJmLWJzNwCbCzk1F00LEPaNWLlsQTuaO3KH8cSGNKu+Gqdz7ZE8+vBeO285d9syS64rk7gmJRcopJzaPnmTsNtBXqVUcFNqvU4quL5lWfJydfz9uCKp2iwNNPRxcee3n7a+clTfZsS+OYuMnMLsSw6H5nawwtbC1P8G5syLKgxG88kl+oEPh2fyZnLWdzdzrVmD6hIUydLTu6MlA5gUSUnY65QqNefKXlbTk7OmYMHD2YDMnS9gTp+/DhWVlaXjN2O+kDOJOuIocFefLjuNNFJWey5cIWv7tdGg+w8l8i328/z+6M98WtsS3pOAQEvrkIt5zGsLUzIziv+Ui0hvXgRAQ9HK/ya2LH5hQHl3LOse7/ayZ7zieVuG9nJm/dH1dwInPIU6lUiiuYEPnUpnVbu9vTw104S23k5EtLMmR1nE6QTWDR4Q4Ld+fCfs0QnZbP3QrKhs3Nn+BUW7ojkt0e64NfIhvScAgJf/htVLZsm1uampRZCK5kl7o6W+DW2YdOzvavUnrFf72PPhfKnlhkR4sH7I9uVu626hMWl8+rdrbC3MgPgvq5NGfJ5+StEK0rpISw7wq9w5nI6AIV6LYeCXvuHnyeH0saj7BUUQtRnQ9q78eE/54lOzmZvRDJfjdX+7+48n8TCndH8Nrkjfo2stWx5dTPlRAvW5iZk5xcP8kjIyDP87O5QlC1PdatSe8Z+c5A9FUwHMSLYjfeHt676wZUw68/TnLyUwe+TO1bbF0CKov37V2ATWw5GpZbZp7xzOyHquyHtGvHRpihiknPYG5nGl6O1L192XUhh4e5Yfn2wHX6uVqTnFtLyzV1VypbEzOL1AtwdLPBrZMXGJzpWqT3jvj/OngqmgxjRvnGphdeux6urz3MqPovfHmh3zWxp2cSGg9FppW7T8kGlhasV5iZKqTz5d3tJSw5f5pZAZxyLzn1qWmcfe+KTM9UVu88wtGuAdAaLCiWkZvHRyn2ZaVl535a8XVXVZcuXL3/34MGDhISEVHR3UU/l5uby4osvZufm5n5b+d6iMtIJXEd4OlnT2sOep34+SE//Rjhaa5dBZeYWYKJTcLYxJydfz7urwyp8jDYeDszbfI5LqdmYmej4eku4YVtwUycU4Jtt4Yzv1gydonDiYirW5iblTgfx8yM3Nh1EbkGh4eQsr0BvmD8QtA6U/EI9BYUqelUlJ78QU52CqUnZE6Gl+6Pp7ueKu6MV4ZfT+eyfM/QKLOr09XTg9KV09pxPpIuvKydjU9kdnsjEHhUvJCVEQ+HpaEVrd3ue/u0oPf1ccLTWPgBk5RYWZ0mBnvfWnqnwMVp72DFv6wUupeZgZqrj620Rhm3B3g4oisK32yMY19Vby5LYNKzNTcu9ZPunyTd2eXPJLMmtIEsKC/UU6q+dJR28Hfh9fwyhzZwwNVH4cW80Ld21+cNjkrO5lJpDe28H8gtV5qw/SyM7C1o00i7/PvJK8ZdmsSnZDJq7i3+e6oWzzc35UCVEbeLpaElrd1ue/j2Mnn7O5WSLmZYt68MrfIzW7nbM2xbJpbQc7Txle5RhW7C3PQrw7c4oxoV6oVPgRFw61mYm5WfLQzf2ITG3QG/48iu3sHS2fPhPOJvPXGHF1M6VjshVVZXcAj35hSqqCjn5hegUBXNTnZYtabm097LXsuWfcBrZmRsWchoR7Mb8bZHsDE8itJkjn266QNfmTtjKKGDRAHk6WtDKzYanl5+hh6+joeMyM0+vZYt1Ubb8E1HhY7R2s2H+jhgupeVq2bLzomFbsKedli27YxnXyQ2dAmGXMrE2Myl3TuAf77+xtQq0bCn++d95jgE+3BjJ5nPJLJ8UhI3FtUcxj2jfmPk7LrLzfAqhPg58uiWarj4Ohny4q40rX+24SDsPWy6l5bHyWAJzSyysp9erLD+acFMXhDPRKTR1ssh4fN7fvLNklxrUrLGJqYlOOoOFgaqqanxKZuHes3EWJoryEfDXVdtjFEUZ17179x/btWuX7+/vb2JiYiI1VM+pqqqmpqbqN2/ebKbT6dbn5ua+bew21QdyNlmHDA3xYubSo3w+vpPhtv6tmtDdz5Uub6zH3sqM5+6oeKGTPoGNGdjGnV7v/IObgxXjuzUzdASbmuhY/HA3XllxjI/WnaZAr6eVuwNvDKveUXg93vqHmOQsAHq+8w8Alz4eBsDv+6J48ueDhn2X7I/mmYEtee6OVsQkZ9H7nX/Y+uIteDlZExabyut/HCctJx9nG3MGd/Dkf3dqo3qaN7Llg1EdePbXw8SmZONkbc5j/QPoFVB9q/wKUZcN7eDOzBVhzB1bvFJyv5aN6N7Cha5vb8be0pTnBlY8kqVPgCu3tWlM7w+24mZvybiu3iwo6gg2NdGx6KFOzFp5ko/+OUdBoUordzteH3Jjo+4q0vO9rcQkZwPQ6/2tAMTNvhOAJQcu8uSvRw37Lj0YyzO3+vHswABikrPp88FWtjzXGy8nK14e1JKZy8MIfXszhXo9Hbwd+ahoobzM3AKeW3KMyCvZWJrp6OTjxA8PdjJ0JjcusRhcbkFhmduEaGiGdnBj5srTzB1T3EnSL9CV7r5OdH1vu5Ytt1bc8dDH35nbWjWi9+xduDlYMC7UkwU7tI5gUxMdix4IZtafp/lowwUKCvVatgwOrPDxbkTP2TuISdbm+O41W7s8PO69WwH44O/zmJsodHpnm2H/94e3YkSwu5YtH+5iy9Pd8HKyIiY5h9D3ilfUbv7SRrr5OrFsSicycwt5btlJIq9kYWlmQicfB36Y2MGQLQFNbPl4VBum/36CtOwCOjdz5LPRNbtIphC12dCgRry0Kpy5I4v/v/fzd6J7cwe6fbgPOwsTnhtQ8RR2ffwcua2lC30+OYCbvTnjOrmzYJfWEWxqovDDfW15dU04H2+KokCv0qqJDa/d5Vutx9Dr4/3EpGhXTvX+5AAAsW/2AmD2xijMTRQ6z95r2P/9u/0Z3qExMSk59P30AJundcTL0RL/xtZ8NCKAJ5edIS2ngM5N7fm0xOvy9mA/nll+hqB3d+NibcaTfb3p4eto2L7zQirZ+YUMCCg9R3BNszE30efkF4wNv5SSGX4pxReo+pwdoqFIATapqnqlvI2qqi5XFMVl//79/fbv3+8GyHxsDUMWsFNV1QhjN6S+UMq71FdUzNbSLHHzCwNcvJ3LX7FViJLu/mRL6t4LSWNUVV1r7LaI2s3WwjRx07O9XbydZaorUbkhc3el7o1IlmwRlbK1ME3c9HQ3F28nyRZRuSFf7kvdG5Ei2SIqZWthmrjpiRAXLydLYzdF1AFD5h9J3ReVJtkihBBGJt+eCCGEEEIIIYQQQgghRD0mncDXTS13oSQhyiOVIq6PVIyoGqkUcV2kYEQVyTmuqDpVokVUmdSKEELUDtIJfJ10ipKdlp1f+Y5CAClZ+QqQYex2iNpPp1OyU7MLjN0MUUekZOVJtogq0emU7NQcyRZRNSnZBZItokp0imSLqLrUbPlMJIQQtYF0Al8nvcr6tcfj9MZuh6j9YlOyibySaQ4cMHZbRO2n16vr152Il2wRlYpNySYyKVuyRVSJli2XJVtEpWJTciRbRJXpVdavO3lFskVUKjY1l8ikHMkWIYSoBUyN3YC6JjO34IPPN5wdCdjeGeShc7AyQ1EUYzdL1CL5hXqORKfw5h/HM011yge5qppt7DaJ2i8zr/CDzzeFjwRs72jbROdgbYYkiyipoFDlSEwqb/51SrJFVFlmXuEHn2+JKMqWxtp5i7EbJWqVAr3KkZg03lx9RrJFVFlmXuEHX2yL0bKltavOwdIU+UgkSiooVDkSm86b6y5o2VKgl2wRQggjU2Tur+unKEpLGwuT53WKcluhXrU2dnuqmaKCgwLpQGENP5cdkAvk1fDz3FSKohSamShnUrLyPwd+VuU/magiRVFa2pibPK/T1dNsUXFQlJrPFhXslPqYLVBoZqI7k5It2SKuT/3PFtVBUZSazxZVtVMUpZ5mi3ImJbtAskVcFy1bdMWfiepXJ7B23gLpKDWdLUXnLUp9yxZFskUIIWoZ6QQWpSiKMhJ4QlXVPjfhucYD96mqOrCmn0sIYVySLUKImiDZIoSoCZItQggh6iOZE1hc7WFg3k16riVAR0VRfG/S8wkhjEeyRQhREyRbhBA1QbJFCCFEvSOdwMJAUZQWQDCw7GY8n6qqOcAiYNLNeD4hhHFItgghaoJkixCiJki2CCGEqK9kOghhoCjKu4CZqqrP3MTnbAVsBJqqqpp/s55XCHHzSLYIIWqCZIsQoiZItgghhKivZCSwAEBRFHNgIjD/Zj6vqqongTPAkJv5vEKIm0OyRQhREyRbhBA1QbJFCCFEfSadwOJfQ4BTqqqeNsJzz0ebd0sIUf9ItgghaoJkixCiJki2CCGEqLekE1j8awo3b/GDqy0Fgovm3xJC1C+SLUKImiDZIoSoCZItQggh6i3pBBYoiuIHBHGTFj+4WtFiCD8Ak43x/EKImiHZIoSoCZItQoiaINkihBCivpOF4QSKorwHmKiq+qwR29AS2Iy2GEKesdohhKg+ki1CiJog2SKEqAmSLUIIIeo7GQncwBlr8YOrqap6CjiFLIYgRL0g2SKEqAmSLUKImiDZIoQQoiGQTmAxFDihquoZYzcEbf6tKcZuhBCiWgxFskUIUf2GItkihKh+Q5FsEUIIUc9JJ7CYgpG/8S5hGdC+aD4uIUTdJtkihKgJki1CiJog2SKEEKLek07gBkxRFH+gLbDc2G0BUFU1F/geWQxBiDpNskUIURMkW4QQNUGyRQghREMhC8M1YIqivA+gqurzxm7LvxRFCQC2Ad6yGIIQdZNkixCiJki2CCFqgmSLEEKIhkJGAjdQiqJYoC1+8LWRm1JK0TxcYWjzcgkh6hjJFiFETZBsEULUBMkWIYQQDYl0AjdcQ4FjqqqeNXZDyiGLIQhRdw1FskUIUf2GItkihKh+Q5FsEUII0UBIJ3DDVZsWP7jacqBd0fxcQoi6RbJFCFETJFuEEDVBskUIIUSDIZ3ADVDRHFNtqCWLH1xNFkMQom6SbBFC1ATJFiFETZBsEUII0dDIwnANkKIoHwB6VVVfMHZbKlJ0UrYdbTGEXGO3RwhROckWIURNkGwRQtQEyRYhhBANjYwEbmCKFj+4n1q2+MHVihZDOI4shiBEnSDZIoSoCZItQoiaINkihBCiIZJO4IZnOHBUVdVzxm5IFchiCELUHZItQoiaINkihKgJki1CCCEaHOkEbngeRjuRqAuWA22KLoMSQtRuki1CiJog2SKEqAmSLUIIIRoc6QRuQBRFCQRaASuN3ZaqUFU1D1kMQYhaT7JFCFETJFuEEDVBskUIIURDJQvDNSCKoswB8lVV/Z+x21JViqL4ATuRxRCEqLUkW4QQNUGyRQhREyRbhBBCNFQyEriBUBTFEphALV/84GpF83QdRZu3SwhRy0i2CCFqgmSLEKImSLYIIYRoyKQTuOEYDhxWVTXc2A25AfPR5u0SQtQ+ki1CiJog2SKEqAmSLUIIIRos6QRuOKZQdxY/uNoKoFXR/F1CiNpFskUIURMkW4QQNUGyRQghRIMlncANgKIoLYFA6sjiB1crWgzhO+SbbyFqFckWIURNkGwRQtQEyRYhhBANnSwM1wAoivIhkKuq6ovGbsuNKloMYRfaYgg5xm6PEEKyRQhRMyRbhBA1QbJFCCFEQycjgeu5urr4wdWKFkM4jCyGIEStINkihKgJki1CiJog2SKEEEJIJ3BDMAI4qKrqeWM3pBrMR5vHSwhhfJItQoiaINkihKgJki1CCCEaPOkErv/q8uIHV1sJBBbN5yWEMC7JFiFETZBsEULUBMkWIYQQDZ50AtdjiqK0BvyBP4zdlupQtBjCQmQxBCGMSrJFCFETJFuEEDVBskUIIYTQyMJw9ZiiKB8B2aqqzjB2W6qLoigtgN3IYghCGI1kixCiJki2CCFqgmSLEEIIoZGRwPWUoihWwH3U8cUPrqaqajhwCG1eLyHETSbZIoSoCZItQoiaINkihBBCFJNO4PprJLBfVdULxm5IDZiHLIYghLFItgghaoJkixCiJki2CCGEEEWkE7j+ehht5dj66A/AX1GUVsZuiBANkGSLEKImSLYIIWqCZIsQQghRRDqB6yFFUdoALYA/jd2WmqCqaj6yGIIQN51kixCiJki2CCFqgmSLEEIIUZosDFcPKYryCZCuqupLxm5LTVEUpTmwD20xhGxjt0eIhkCyRQhREyRbhBA1QbJFCCGEKE1GAtczRYsfjAcWGLstNaloXq8DyGIIQtwUki1CiJog2SKEqAmSLUIIIURZ0glc/9wD7FVVNcLYDbkJZDEEIW4eyRYhRE2QbBFC1ATJFiGEEOIq0glc/0yh/i5+cLU/Ab+i+b6EEDVLskUIURMkW4QQNUGyRQghhLiKdALXI4qitAWaA6uM3ZaboWgxhG+BycZuixD1mWSLEKImSLYIIWqCZIsQQghRPlkYrh5RFOVTIFVV1ZeN3ZabRRZDEKLmSbZItghREyRbJFuEqAmSLZItQgghyicjgesJRVGsgXHU88UPrla0GMJ+tHm/hBDVTLJFskWImiDZItkiRE2QbJFsEUIIUTHpBK4/7gH2qKoaaeyGGME84GFjN0KIekqyRQhREyRbhBA1QbJFCCGEqIB0AtcfU9De+BuiVYCvLIYgRI2QbJFsEaImSLZItghREyRbJFuEEEJUQDqB6wFFUdoBPsBfxm6LMZRYDGGKsdsiRH0i2SLZIkRNkGyRbBGiJki2SLYIIYS4NlkYrh5QFOUzIFlV1VeM3RZjURTFBziIthhClrHbI0R9INki2SJETZBskWwRoiZItki2CCGEuDYZCVzHFS1+MJYGtvjB1Yrm/dqDLIYgRLWQbNFItghRvSRbNJItQlQvyRaNZIsQQohrkU7gum8UsFtV1ShjN6QWmI8shiBEdZFsKSbZIkT1kWwpJtkiRPWRbCkm2SKEEKJc0glc9zXkxQ+utgpopihKW2M3RIh6QLKlmGSLENVHsqWYZIsQ1UeypZhkixBCiHJJJ3AdpihKEOANrDZ2W2oDVVULgG+QxRCE+E8kW0qTbBGieki2lCbZIkT1kGwpTbJFCCFERWRhuDpMUZS5wBVVVWcZuy21hSyGIMR/J9lSlmSLEP+dZEtZki1C/HeSLWVJtgghhCiPjASuoxRFsUEWPyijaDGE3WjzggkhrpNkS/kkW4T4byRbyifZIsR/I9lSPskWIYQQ5ZFO4LprNLBDVdVoYzekFpqHXP4kxI2SbKmYZIsQN06ypWKSLULcOMmWikm2CCGEKEU6geuuh9FWfhVlrQa8i+YHE0JcH8mWikm2CHHjJFsqJtkixI2TbKmYZIsQQohSpBO4DlIUpT3gCawxdltqoxKLITxs7LYIUZdItlybZIsQN0ay5dokW4S4MZIt1ybZIoQQ4mqyMFwdpCjKF8BlVVVfNXZbaitFUZoCh9EWQ8g0cnOEqBMkWyon2SLE9ZNsqZxkixDXT7KlcpItQgghSpKRwHVM0eIHY5DFD65JVdUoYCeyGIIQVSLZUjWSLUJcH8mWqpFsEeL6SLZUjWSLEEKIkqQTuO4ZA2xXVTXG2A2pA2QxBCGqTrKl6iRbhKg6yZaqk2wRouokW6pOskUIIQQgncB10RRk8YOqWgN4Fs0XJoS4NsmWqpNsEaLqJFuqTrJFiKqTbKk6yRYhhBCAdALXKYqiBANuyOIHVSKLIQhRNZIt10eyRYiqkWy5PpItQlSNZMv1kWwRQgjxL1kYrg5RFOVLIE5V1deN3Za6QlEUL+AoshiCEBWSbLl+ki1CVE6y5fpJtghROcmW6yfZIoQQAmQkcJ2hKIotMBr41thtqUuK5gnbjvbaCSGuItlyYyRbhLg2yZYbI9kixLVJttwYyRYhhBAgncB1yRhgmyx+cEPmI4shCFERyZYbJ9kiRMUkW26cZIsQFZNsuXGSLUII0cBJJ3DdMQVtZVdx/dYA7oqidDB2Q4SohSRbbpxkixAVk2y5cZItQlRMsuXGSbYIIUQDJ53AdYCiKCFAY2CdsdtSF6mqWggsQBZDEKIUyZb/RrJFiPJJtvw3ki1ClE+y5b+RbBFCCCELw9UBiqJ8BVxUVfUNY7elriqxGEJTVVUzjN0eIWoDyZb/TrJFiLIkW/47yRYhypJs+e8kW4QQomGTkcC1nKIodsjiB/9Z0bxh29DmEROiwZNsqR6SLUKUJtlSPSRbhChNsqV6SLYIIUTDJp3Atd8YYIuqqheN3ZB6YB5y+ZMQ/5JsqT6SLUIUk2ypPpItQhSTbKk+ki1CCNFASSdw7SeLH1SfdUATRVGCjd0QIWoByZbqI9kiRDHJluoj2SJEMcmW6iPZIoQQDZR0AtdiiqJ0BFyB9cZuS31QYjGEKcZuixDGJNlSvSRbhNBItlQvyRYhNJIt1UuyRQghGi5ZGK4WUxRlHhCtquqbxm5LfaEoiidwHPCWxRBEQyXZUv0kW4SQbKkJki1CSLbUBMkWIYRomKQTuJYqWvwgCmijqmqssdtTnyiKsgL4S1XVr43dFiFuNsmWmiPZIhoyyZaaI9kiGjLJlpoj2SKEEA2PTAdRe40FNsvJTo2Yh1z+JBouyZaaI9kiGjLJlpoj2SIaMsmWmiPZIoQQDYx0AtdeDyOLH9SU9YBr0fxiQjQ0ki01R7JFNGSSLTVHskU0ZJItNUeyRQghGhjpBK6FFEXpBLggix/UiBKLITxs7LYIcTNJttQsyRbRUEm21CzJFtFQSbbULMkWIYRoeGRO4FpIUZSvgQhVVd8ydlvqK0VRPIATQFNVVdON3R4hbgbJlpon2SIaIsmWmifZIhoiyZaaJ9kihBANi3QC1zKKotgDkUBrVVXjjN2e+kxRlGXAWlVV5xu7LULUNMmWm0eyRTQkki03j2SLaEgkW24eyRYhhGg4ZDqI2mcssFFOdm6K+chiCKLhkGy5eSRbREMi2XLzSLaIhkSy5eaRbBFCiAZCOoFrEUVRFLQ3YPkW9uZYDzjLYgiivpNsuekkW0SDINly00m2iAZBsuWmk2wRQogGQjqBa5dOgAPwt7Eb0hCoqqoHvka++Rb1n2TLTSTZIhoQyZabSLJFNCCSLTeRZIsQQjQcMidwLaIoygIgXFXVd4zdloZCURR3IAzwUVU1zdjtEaImSLbcfJItoiGQbLn5JFtEQyDZcvNJtgghRMMgncC1RInFD1qpqnrJ2O1pSBRFWQqsV1V1nrHbIkR1k2wxHskWUZ9JthiPZIuozyRbjEeyRQgh6j+ZDqL2GAdskJMdo5gHTCmaf0yI+kayxXgkW0R9JtliPJItoj6TbDEeyRYhhKjnpBO4Fiix+IF862oc/wCOaPOPCVFvSLYYnWSLqJckW4xOskXUS5ItRifZIoQQ9Zx0AtcOnQE7YIOxG9IQlVgM4WFjt0WIaibZYkSSLaIek2wxIskWUY9JthiRZIsQQtR/MidwLaAoyjfAWVVV3zV2WxoqRVHcgJPIYgiiHpFsMT7JFlEfSbYYn2SLqI8kW4xPskUIIeo36QQ2MkVRHNAWP2gpc18Zl6IoS9DmIPvS2G0R4r+SbKk9JFtEfSLZUntItoj6RLKl9pBsEUKI+kumgzC+ccDfcrJTK8hiCKI+kWypPSRbRH0i2VJ7SLaI+kSypfaQbBFCiHpKOoGNSBY/qHU2oM1D1tnYDRHiv5BsqXUkW0S9INlS60i2iHpBsqXWkWwRQoh6SjqBjasLYAtsNHZDRKnFEKYYuy1C/EeSLbWIZIuoRyRbahHJFlGPSLbUIpItQghRf8mcwEakKMq3wGlVVd8zdluERlGUJsBptMUQUo3dHiFuhGRL7SPZIuoDyZbaR7JF1AeSLbWPZIsQQtRP0glsJIqiOAIRQICqqpeN2xpRkqIovwObVFX9wthtEeJ6SbbUXpItoi6TbKm9JFtEXSbZUntJtgghRP0j00EYz3hgvZzs1EqyGIKoyyRbai/JFlGXSbbUXpItoi6TbKm9JFuEEKKekU5gIyh6I30YWfygttoI2AChxm6IENdDsqXWk2wRdZJkS60n2SLqJMmWWk+yRQgh6hnpBDaOroAVsMnYDRFlyWIIog6TbKnFJFtEHSbZUotJtog6TLKlFpNsEUKI+kfmBDYCRVEWAidVVX3f2G0R5VMUpTHaYgjNZDEEUVdIttR+ki2iLpJsqf0kW0RdJNlS+0m2CCFE/SKdwDeZLH5QdyiK8iuwVVXVz43dFiEqI9lSd0i2iLpEsqXukGwRdYlkS90h2SKEEPWHTAdx890HrJWTnTphPrIYgqg7JFvqDskWUZdIttQdki2iLpFsqTskW4QQop6QTuCbqMTiB/ON3RZRJZvQ5inrYuyGCHEtki11jmSLqBMkW+ocyRZRJ0i21DmSLUIIUU9IJ/DN1Q2wQBY/qBOKFkOYjyyGIGo/yZY6RLJF1CGSLXWIZIuoQyRb6hDJFiGEqD9kTuCbSFGU74FjqqrONnZbRNUULYZwBm0xhBQjN0eIckm21D2SLaIukGypeyRbRF0g2VL3SLYIIUT9IJ3AN4miKE7ABcBfVdUEY7dHVJ2iKL8A21VVnWvstghxNcmWukuyRdRmki11l2SLqM0kW+ouyRYhhKj7ZDqIm+c+YI2c7NRJ85DFEETtJdlSd0m2iNpMsqXukmwRtZlkS90l2SKEEHWcdALXIEVRPBRFsS96o5yCLH5QV21Gm7esG4CiKC2N2hrR4Em21BubkWwRtYhkS72xGckWUYtIttQbm5FsEUKIOs3U2A2o554FIoADaK/1ZmM2RtwYVVVVRVHmAw8rinIY2AvYG7dVooGTbKkHJFtELSTZUg9ItohaSLKlHpBsEUKIuk9GAtesZKAJxd94t1AUZbhxmySuh6IozRRFGQV8BwwFWgApRmySECDZUudJtohaSrKljpNsEbWUZEsdJ9kihBD1g3QC16wEwAu4GzgGbAOsjdoicb1ygDeBp4E1wAS0v6sQxiTZUvdJtojaSLKl7pNsEbWRZEvdJ9kihBD1gEwHUbMuA8HAYeBH4AFVVVcZtUXiuqiqeklRlO7AKiAV6A6cNG6rhJBsqeskW0QtJdlSx0m2iFpKsqWOk2wRQoj6QUYC16wEoA3QDrhLTnbqJlVVE4H+aN+Aexq5OUKAZEu9INkiaiHJlnpAskXUQpIt9YBkixBC1H0yErhmJaB9U9pFVdVzxm6MuHGqqmYpijIC7fKnZGO3RzR4ki31hGSLqGUkW+oJyRZRy0i21BOSLUIIUbcpqqoauw1CCCGEEEIIIYQQQgghaohMByGEEEIIIYQQQgghhBD12H+aDkJRlGZmZmb32dvb91AUxbK6GiVqD71en52SkvKPXq//UVXVS9faV1GUZqY65T47S7MeioLUgyhFr6rZadn5/+hVfkS7LHCwnYXpPaYmiruiyBdSopiqos8r0Edk5hX+AvytXnXJiqIoXazMTMZbmulaKTKtUYOjQkFWXuGh3AL9D6qqHiu5TVEUE2CwnaXpPaY6xV1RFMkWYaCqaqlsAXy08xbTHgpy3iJK06tqdlpOwVXnLSbaeQuSLaKYiqrPK1DLZouFiXwmEmXoVQzZUtnnayGEqG43PB2EoihdrKys/pkwYYJZv379LCwt5f2tPsrMzGTNmjXZy5Yty8nKyuqmqurp8vYr6pT5Z2Rnb7Mefo0sLM3k3FiUlpVXyMaT8dmrDl/MMdEpB9wdrbpO7O5j6+FoiU5RjN08UYsU6lUir2Sp32yPyErJyvs+I7fgsX+3WZjqHrM2N33/oZ4+Fi3dbE1MdVI7DU2BXuVQdGr+97ui8rPyCifo9epSAEVRdLYWpkvdHCxvmdijma2HgyU6qQ9RgpYtmeo32yKyEjNy1ygKt48Mdjfr0cLJwsJUzltEaVn5ejadTsz+61h8jolOd8DdwaLr/V08bD3sLVDkvEWUoFdVIpOy1W93XcxKyMxfo1O4fWT7Rmbdm9tbWEq2iKtk5RWy6WxK9uqTSTnZ+foKP18LIURNuOFOYCcnp6Off/55u7Fjx1Zzk0Rt9MEHH6hvv/322uTk5DvL2+5gbX703ZHt2w3v6H2zmybqmGd+OaRuO3NZv/X5PiaWZibGbo6oxVKz8+ny1saslOz8UFVVTyiKYm9uqru87bmeFk2drY3dPGFkh6NTGfblnrScfL2zqqqFiqLc6uNivWzL831tJVvEtaRm5xP6xj/6t4a21A3v4Gbs5oha7rmlYeq2c0n6zdM7y3mLuKbU7Hy6zN6tf/uu5rphQY2M3RxRy325I1b9dGvM2tTsgnI/XwshRE24oa8mFUVxzM7Objly5Mjqbo+opR588EElMzNzgFLO0AdFURxz8gtbDmrvaYymiTrGRIdyb6iXfJASlXKwMmNIBw9T4I6im/oFedrnSgewAOjg7UAjWwuAYABLM92Qe0ObWku2iKrILdTrBrVtbOxmiDpAp1OUMR3d5LxFVElegaq7q7WLsZsh6oDRwY2UrDx9uZ+vhRCiptzo9SlOdnZ2eebm5tXamJtt0qRJvPrqq8ZuRp3g4uKCXq83Bcr7ozvZWZjmmdfxy52e/uUgH6w5aexm1HvZeYW4O1gZuxn/ydO/HuGDdXLl1s3g4Whpbmai/NtT4+zpaFnnP4U/8/txZq8/a+xm1AtN7C1UwAXAwtTEzc3Bsk6/ET396xE+WCvZUtNSsvJxsDSjrp+3PLMkjNl/hxu7GfVeTl4h7g4Wxm7Gf/LMslPM3nDB2M2o91KzC3CwMqnz2fLsynDmbIo2djPqPWdrM/SqWtHnayGEqBE3vKCOoig3No+EuGnee+895syZQ35+PhMnTmTOnDnodOWflKxbt47HH3+c2NhY+vXrx3fffYerq2upfYr+5uV/U6kg9VDLffbPGb7afJaCQpXRoU15dUi7cufLXLo/mud+O2T4Xa+q5BboOfbGnbjaWjDtxwOsOBiDqYl2X3cHK3bMvLVK9/2XfN9du3228RxfbTmv1UpnL14d3LrcWolKyiL0rY1Ymxf3y74zvC2jO2vTwry84gR/HoklI7eQxnYWPDHAj3tDtW3HL6by5C9HiE7ORqdAV19n3h3Rjib2peeX1ykKSomKkcEStd/cTef5aksEBXo9ozp58uqgluXWT3RSFqHvbC1dP8NaM6pT8VUlG04m8Nbq00RcyaaRnTmfjG5HV19nw/aih1UAFEXKozY7GZvGrD9OcDgqBXsrM/a/fEuF++YV6Jm66AAHo1KIS81h70sDKHkFwMrDsczbHM7xi2kMDfHg03uDDdsORCTzzppTHItJxcxE4dbWTXhjaFtsLUuf8kqt1H5zN0cwb1skBYUqozq6M+uugArn+c7ILWDWn2dYc+IyehX6B7rwxb3tSu2Tmp1Przm7aOlmy2+TQgy3/7A7hs+3RJCUmU/fABdmj2iFg5VZqfsqFZz+itph7tYo5m2P1molxI1Zd7Qo/30nOZsus/dgbV78eejtwQGMCtGmhXnlr7OsOpZARl4hjW3NebxPU8Z0dDfsu2BnDPN2RJOWXUBrd1vevTuAwCY2pZ5DaqX2+3zbRebtiqWgUOWeDo2ZNdCn3HpZdjSBF/48b/hdr1fJLVQ58lwnXGyKMyI1u4Denx2mZRNrfr2/NQAHotN5b0MUx+MyMTPRcUuAI6/d0Rxbi9JjGRQFFVWKRghx89SbVdVVVUWv12NiYrxBYgUFBZiamlZ6W0UKCwvR6XTV8il29erVfPbZZ+zcuRM7OztuueUWvvrqKx599NEy+16+fJnRo0ezePFi+vfvz9SpU3n00Uf57bff/nM7jEVVVfQqmBhxUaCCQj2mJrpKb6tIoV5Fp1RPp9c/YZf4dls4q6b3wdbSlHu+2MH3Oy/wQE/fMvuO6OTNiE7Fczt/9s8ZNp6ML9WJ+9TAQJ66reUN3be2kVop7Z+T8Xy7PYJVT/TA1sKUe77azfe7InmgR7Ny9zfRKZx/545yt03o5sOMu1piZWZCeEIGwz7fRQdvB1q52+PpZMXCBzrh5WRFfqHK+2tPM3P5CRbc3/E/H8PNJPVT2oaTCXy7I5I/H++CrYUpo+bv44fd0Uzs3rTc/U10CuFv3VruthOxaUz/9RhfjA2ih58LiRm56OvQ141SG6WZmeoYFuLJsBBP5qw7U+n+XVu48Gg/P+6eu6PMNidrM6b2a8Ge80mk5eSX2paanc8DPZrRN7ARhXqVx386xBurwnhvZNB/PoaaJPVS2oZTiSzcGc0fUztja2HC6AUH+WFPDBO7lb/2xNNLwrAw1bHjuR7YWZhwKj6zzD7vrQ/H17X0dEI7wpP4aMN5lk7phJu9BU/8epyZK08zd0zb/3wMNUVqpbQNp6+wcFcMf0wJxtbClNHfHuGHvbFM7Fr+NHUmOjg3q3e52+4L9eDF23y185bELEZ8fZj2nna0crPlSEwa7/19gZVTgglsbMOHGyN4cukp1jxau89bake9qIbBI9e6rSLVWi9nkvl27yVWPtQWWwsTxnwfxg/7LZkYWnZ++OFBjRheYm7nz7ddZNO5lFIdwADvb4zC16X0IIa0nAImhrrRp4UjharKtGXneOvvSN4ZVPazlxBC3EzV1gms1+t58skn+emnnygoKMDPz4+//vqLJk2asH//fh566CEuXLjA6NGjCQ8PZ8KECUycOJFXX32VmJgYFixYAMD27dsZP348ERERALzzzjvMnz+fxMRE/P39+eyzz+jRowcAEydOxM7OjpMnT7Jz50727NmDTqfj8ccf5/Dhw3h5efHJJ5/Qv39/AMPzHj16lAEDBmBlVbVL0ufPn8+cOXNISEigf//+zJ8/H2dnZyIiIvDz8+Pzzz/n9ddfp1u3brRt25bTp09TUFDAmjVr+Pnnn/H19eWRRx7h2LFj+Pr68sknn9CrVy8A+vbtS69evVi7di1Hjx4lMTEROzu7//z3WLRoEY888gh+fn4APPvss8ybN6/cTuDly5fTqVMnBg0aBMDrr7+Ov78/GRkZ2Nra3tDz6/UqLy8/yvKDMRQUqjRrZMOPD3ejkZ0lh6OSefqXg0RdyWJIsCcRVzK5p1NTxnTx4YM1J4lLzebDMdoIjT3nE3ls0QH2zxoIwKd/n2bRrgiSMvPwbWTDW8PbE+qrzbs17ccD2FqacjY+nf0Xklj9VB8URWHG0iOcuJiKu6MVbw4LomeA9mYekZjBEz8eICw2jV7+jajqXG+Ldl7gq03nuJKZSw//RsweFYyTjTlRVzLp9tbfvDOiPR+uP0XHZs60dLMn/HIGBXo9G0/G89WEzjR1seGF3w9zMjYNH1dr3hgWRNcW2qjrYZ9to2sLFzaejOdkbBphb92JraVZJS2q3JJ90Uzo0ZzmjbS/59R+fizaGVFuJ3CZ++6PYkpfvxt73ircV69XeXnlCZYfvEiBXqWZqw0/TgqlkZ0Fh6NTePrXI0QlZTOkgzsRV7K4p6MXY0K9+WDdaeJScvhwdHsA9pxP4rGfDrH/pQEAfLrhHIt2R2q14mrDW8PaEtpcG0E47efD2FqYcvZyBvsjklg9vadWK8uOcyI2DXcHS94c2oae/trfJSIxkyd+PkxYXBq9/FyrXiu7Ivlqy3muZOTRw9+F2fcE4WRtTlRSFt3e2cQ7w9vy4fozdGzmREs3O8IvZ1KgV9l46jJfjQ+hqYs1Lyw5xsm4NHxcrHljaBu6FtX7sC920rW5CxtPX+ZkbDphr99WZqTbjViy/yITuvnQ3FUb2TK1ry+LdkVV2Al8Lf5NivPj39P2qCtZtHK3x8naHCdr7eo3FT06nULklbIf2iuj16u88sdJlh2Ko1Cv0szVmsUPdiyqn1Se+f04UUlZ3N3encgrWdzT0YPRnb2Yvf4scam5zLlH+6C/50Iyj/98hH0z+gLw6cZwFu+OISkrj+auNrw1pBWhzZ0AmP7L0aKsyWRfZDKrn+iGToEZK04a6ueNIa3o6af9rSISs5j2y1HCLqXT088FKzMdUPkXI4t2RzNv6wWuZOTTw8+ZD0a2wcnanOikLLq9t423h7bio3/C6ejjSEs3W8IT/q2fRL4c1x4fZyueXxbGqbh0mrpY88bdLQ2jaId/uYcuzZ3ZdDqBk3HpnHh1QPXUz8GL3Ne1aXH99GnOomt0Al/LpxvPc383b3oHaP8Prx4lXhm9XuXlFSdYfqjofcjVhh8ndynOll+OEJWUxZAOHkXvQ95atqw9TVxqyWy5wmM/HjKMXP30n7Ols2V4uxLZckjLlvh/s6UXik5hxtJjxdkyrG3pbPnpkJYt/teZLZvDi7LFVcsWm6JseXtjUbacLc6WhAytNk5e5qv7Qoreh44WZ8uwtsXZ8vlOuvo6s/FUUba8MbBaasOvsS1+jW3Zc/5Kpfuam+qY3Lvi96feRe/j5y5nlOkE7t+q9Dy/47s25f0qTLGh16u8suoMyw9f0rLExYpFEzvQyM6CIzFpPLMkjKjkbO4OakLklWxGhrgzupMHs/8O17JkpDb6a09ECk/8cpy9/+sJwGebLrB470WSMvNp7mrNm3cHEtrMEYAnfzuBjYUJZxOy2B+Zwl+PhaJTYObK05yITcfdwYLXBwfS00+rr4grWUz77QQn4zLo6eeMpVnVOtwW74nhq21RJGXm0aOFM+8Pb4WTtRnRSdl0n72Tt4cE8tGGC3Rs6kBgExvCE7Mo1KtsPH2FL8a0xcfFiheWn+LUpQyaOlvxxuAAuhTl4Yh5++nS3IlNZ65wMi6d46/0wdaiGrLkUBz3dfGkeVGn7SO9fVi052K5ncBn4jPYfOYKB2f0Mjx3W4/S59JHL6ZxNCaNcaGeLD8Sb7j9n1OJDG3vZugcntrbh5HzD/D+8FalrlIoSa9XeWX1OZYfiddqxdmKRfcH0cjWXKuV5aeJSs7h7naNiUzKZmRwE0aHuDN7wwWtVoZrX6LviUjhid9Psve5bgB8tiWSxfvitFpxseLNwf6E+jgA8OSSk9hYmHI2IZP9UWn89UgIOkVh5p9nORGXodXKXX70bKH9XSKuZDNtyUlOXsqkZwvHKmfL4r2xfLUjmqTMfHr4OvL+0ECtVpKz6f7hHt4eHMBHGyPo2NS+qFaytVo5c4UvRrXGx9mKF1ae4VR8Bk2drHhjkB9diup9xIJDdPFxZNPZJE5eyuD4zB7VUyuH47kv1IPmLkW10tObRfsq7gS+Fv9GxaN6DectyTm0crMlJiWXVm42tHbTzm2Gd2jCV9srnzJBr1eZtTaC5ccSi+rFkh/GtdTq5WIGz6wMJzoll7vbuBCRnMPI9o0YHdyYOZuiiUvLY/aQFgDsjUzjiWXn2POU9hnps60X+fFAPElZRfVyZzM6N7UH4Mnl57A1N+FsYjb7o9NZNbmtVi9/XSDsUibu9ua8dkdzevpq9RWRlMP0Zec4GZ9JT18HLKs4ncXi/fHM2xlLUlY+3Zs78P5g36J6yaHHp4d4605fPt4STYi3HS0bWxOemE2BXmXTuRQ+H+mPj5Ml//vzPKcuZ9HUyZLX72hGFx/tGEYuPEFoUzs2n0vhZHwWx17oXGYU7Y1YeiSB+zo1obmL1g8wpYcHi/fHl9sJXOa+RxOY3NW91G3HYjM4EpvJ+I5NWH4s0XB7P3+nUvuN7diY2Rtlig0hhPFVWyfw+vXr2blzJ+fPn8fW1pYjR45gZWVFXl4ew4YNY8aMGUyaNIl58+axcOFCJkyYUKXHDQgIYPfu3bi6ujJ37lxGjx7NhQsXMDPTOsZ+/vln1q5dS3BwMJmZmbRp04bZs2czcuRItm7dyj333MOpU6dwdXVl7NixDBgwgE2bNrFmzRruueceZsyYcc3nX7ZsGZ988gmrV6/G29ubp556iscff5yffvoJ0EbvHjx4kPDwcFRV5b333mP58uWsXLmSX3/9lYyMDDp06MD06dPZuHEjK1euZPDgwYSHh+Pi4lLqGLy9vQ3HVZKjo2OF7fviiy8YO3ZsmdvDwsK49957Db+3b9+eEydOlPsYYWFhBAUVj5Dx8fHB2tqas2fPEhwcXO59KrP59GX2RSSx5+XbsDE35URsKpZmJuQV6Hnw2z1MuyWAcd2a8cPOC/yyN4p7OlWtg8C3sS2rn+qDs40F324LZ8r3e9n7ykDMikYerDgYw09TutPOy5GsvAL6vLuBV+5uy+AOnuwKT+Th7/ay7cVbcLG1YOoP++kV0Iilj/Vi48lLTP5uL9NuCbzm8/915CJfbw3nxynd8HC05pUVR5mx9AhfTugMaN9UH4tJYfdLt6GqMHfDGdYci+W7h7oy//5QMvMKGPDBRib3bsGSx3qy9lgcE77eze6Xb8XZRusUWn4whp+ndMfDyQqzcqbvCPjfqgrb9+497RnesbwPSGkM6+hl+L2NhwOnL6VV+nofi0kh8komgzuUPpGev/kc8zefo3kjW168qzW9AsourlPRfa+2+UwC+yKS2TOzf1GtpGFpptNqZeF+pt3ix7guTflhVyS/7IvhnhLHcS2+jWxYPa0nzjbmfLv9AlMWHWTvzP7FtXLoIj893IV2ng5arby/hVcGt2Zwe3d2nb/Cw98fYNsL/XCxNWfqj4fo5e/K0qnd2HjqMpN/OMC0Adfu3P7raBxfb7vAj5NC8XC04pWVJ5ix7DhfjtdO3rVaSWX3jP6owNyN51hz/BLfPdCJ+feFaLUyZxuTezVjydSurD1+iQnf7GP3jP4422idp8sPXeTnh7vg4WhZfq3MXFth+94d0Y7hIWX/Nmfi0xkW7GH4vY2HPafj0yt8nEK9SvvX/sbURMdtrRvz0l2tsCnxoe6tv06yYNsFsvP1BHk50CugeERFWnY+nd7cQHpuASaKwsdj2lf8glZg85lE9kWmsOfFPtiYm3AiLt2QNQ99f4hp/X0Z28WLRbuj+XX/Re7p6FH5gwK+rjb89URXrX52RPLIj4fZ82IfQ/0sPxTHT5M60c7Tnqy8QvrO3s4rgwIZFOTG7vNJTF50mG3P98LFxpxHfzpCT38XljwSysZTCTy8+DDT+l/7C5i/jl1iwfZIFj/YCQ9HS2b9cYqZy0/yxTjtNSrUqxy7mMau//VGBT7fdJ41xy+zcGIw88Z1IDOvkFs+2sGknj4smdKZdScuc//Cg+z6X29D/aw4HMdPkzri4WiFWTkjhAJf/qfC9r0zvDXDg8u+lmfiMxnaofj21u52nI7PqPBxCvUqHd7YhKlO4bbWjZl5Z4Chfg5FpeLrakOf2dtJzc5nYOvGvHq3NrK8KjafTtDeh2YOKCdb9jFtgD/jujblh52R/LIvmns6lT/C8Gq+jWxYPb1Xcbb8cIC9Lw24Klu6lsiWzUXZ4sGu8Cs8/MP+omyxYOrig1q2PNpdy5bv9zNtgP81n/+vo3F8vfU8P07uUjpb7rsqW2b2196HNp5jzbFLfPdgZ+bf11HLltlbmdy7OUse7aZly4K97J45oDhbDl7k54e74uFUQbbMWFNh+94d0Y7hVczpm2HvhWQCm1T+5fqWs1fYH5nC7ud7lMmSBxcdYVq/5ozt7MGiPRf59UAcI0PcK31MAF9Xa1Y92hlnG3MW7oxm6k/H2P1Cj+J6ORLPTw8G09bDTsuSj3bxyp3+DGrXhN0Xknn4x2NsfaYbLjbmPPbLcXq2cGbJ5I5sPJ3IlJ+O8UTfZtd8/tXHL7NgRzSLH+iAh4Mls1adYebKU4apErQsSWfnc921LNkcwdoTCSyc0J6v7m1HZl4ht366h0ndvfl9cgjrwhK4//sj7Hyue3GWHLnEjw8EF70Xlc2Slq9urrB9bw9tyfAOZTtfzsZnMrR98e2t3e04U0GWHI5Jw9vJivfWhbPs8CU8HS159S5/urfQOs9VVWXmytO8NjiQc5dLf9moXnV1gV6FvEKVC4lZtPEov262nEtif2Qqu5/pqtXKpQwsTYuy5acTTOvTlLGd3Fm0N5ZfD8YxMrhJhcdfkq+LNaseCcHZ2oyFuy8y9ZcT7H62a3GtHI3np/uDimvl0328cnsLBrVtxO6IFB7++QRbnwzVauW3MHq2cGLJQx3YeCaJKb+c4Ik+1z7XXn0igQW7Ylg8IQgPBwtmrT7HzD/P8sVo7QuOQj0ci01n5zNdtFrZGsXasAQWjm/HV6Nba7Uydz+Tunvx+0PtWXcykfsXHWPnM11xtjYzHMOPE4PwcKigVt7YVmH73r47gOHty76WZy9nMjSo+Dy0tZsNZ8oZCf6vQj0Ev7sTUxOFWwNdmDnQt9R5y9vrzrNgVww5+XraedjSq6hjvbefE59tieToxXRau9mw5NAl+vg5V/Q0BlvCU9gfnc6u6cHYmJsQFp9lqJeHfjnNE708GduxMYv3x/Pr4cuMbN+o0scE8HW15M/JbbV62XOJR34/y+4ng4vr5XgiP45vRVt3G7LyCun3+RFeHujDoNYu7I5MY8pvZ9j6eAecbcx4fMlZevg68PvE1mw6l8KU387wRK9rn7+vDrvCN7vjWDS+FR725ry6NoKXVl/g85EBhtf5WFwGO6aHoKLyxfZY1p5K4tt7W/LVPQFk5hVy21dHeaiLO79NbM26U8lM/OkUO6YHG+pl5fFEFo9vhYeDRbn10uqdvRW27+27mjMsqOxreSYhm6Htiqc8bN3EhjOXsyt9vY/HZRKZlMOgNsWL/qmqyszVF3jt9macS7z2Y+yPSiewsSxsLIQwvmrrBDYzMyM9PZ1Tp07RuXNnQ+fhli1bMDU1ZerUqQA8/vjjfPDBB1V+3BEjRhh+nj59Oq+++irnz58nMFDrrBs+fDidOnUCYM2aNbRq1YrRo0cD0K9fP7p06cK6devo2bMnR44cYcuWLZibmzNkyBC6du1a6fN//fXXzJw5kxYttG9hX331Vby8vNDr9YZ9Zs2ahaVl8Qil3r17M3CgNnL1yJEj6PV6pk+fDsDIkSMNncr33XcfAA8++KBhxG55UlJSKm3n1TIyMrC3tzf87uDgQEZG+SfPGRkZeHuX/vB7rf2rwsxEITOngLPx6QQ3daKdlyMAO88lYqJTmFg0AvWhXi34YmPVF0ga1L74hGRyHz9mrz1FZGImfkUf8O4M8qBDU+1kbUNYPP5N7Bgaon0Y7enfiGAfJzafukyorwthsaksf6IX5qY6bm/nQUefyk/kFu+K5MlbA2nmqo0CePb2VoTMWou+xDXKz9zestSIi64tXOnXSjtpPXExFb1eazvA4A6eLNgazoaweO7prJ2c39vFxzBitzxn3h1U+Qt1lczcwlKjLeyszMjMLaj0fkv2RTGwrTt2JUYjT+7TgteHtcPa3JTVR2OZ+M0eNj7XHx9Xm0rvWx4znY7M3ALOXs4g2NuRdl7aqISd4VcwMVGY2L0ZAA/1bM4Xm89f45FKGxRU/AF9cm9fZq8/S+SVLPwaa6/tnUHudPB2BLRL2P2b2DK0qFOrp5+rViunLxPa3Jmw2DSWP9pNq5W2bnT0cSrzfFdbvCeKJ2/xp1nR6/LswABCXt9QulZuCyhdK77O9GupfZA5EZuGXlUNo+EGt/dgwbYINpy8zD2dtJq+N9TbMOKyPGfeur3Sdl4tM6+w1Kg/O8uKa8XFxpz1T/WijYc9l1JzmP7LYV79I4wP7in+UmnmXa148Y6WHIxKYWf4FcxLXPpnb2XGmbduJzU7n5/2RNHiGnVfETMTrX7OXc6gg7cD7Ty13NsZnoSJTuH+ohGoD/bw4YvNVV8UZ1BQcefD5F7NmPP3udL1064JHby1Wt14KgG/xjYM6aDVXA8/F0KaOrL5dCKhzZ0Ii0tn2dTQovppQkhTx0qf/8c9MUwf4EuzotFpz9zmR8c3N6HXF7+2z9zqV6p+ujR3ol+g9oHHUD+9mhmO5+vtkWw4lcA9HbUcHdPZ85r1c/qNiudsrUhmbgF2Jdbus7cyrbB+nG3MWTe9m1Y/aTk8+esxXv3zFB+M1EZnX0rLYdmhWH57uDMOVmY89MMhPt1wnhduv3Yn6b/MTBQtW+IzCG5aIlv+fR8qGt3+UK/mfLG56otrDWpf3Mk9ubcvs9eduao2SmbLZfwb2zI0WHvNe/q7EtzUic2nE4qz5bHu15ctuyPLZstr/5TOloGB15ctWy+w4WS8oSP83i5Nad7oGtnydvlTwNQ2e85fYfGuSFZN71npvqYmOjJyCzmXkEkHL3tDluw6n4ypTuH+rlruPtjdmy+3Rla5DXe1K+60mtSzKXP+OU9kUjZ+Ra/vnW0b095Le66NpxPxb2zDkKLOzx4tnAnxtmfLmSuENnMkLC6DpQ931OqlTWNCijLoWn7ce5Fp/ZvTrGiU5LO3+NLxnW2l6uXpW3yvyhJH+gZoHR1hceno9SqTempZOqhdExbsiGbj6SuGjvAxnTwMI3bLc+rVvpW282qZeYXYlRj1Z29pSmZeYbn7XkrL5eSlDAa3a8yhGb3YcCqRhxYdZUdRR/VP+2Jp4WpNx6YOZTqB+wa4MP23E4wL9cTdwcLwt83KL/+5oKhW8go5l5BFBy872hV1Fu+6kKLVShft//uD3bz4sgojRf91V9viDqtJ3b2YsyGCyKQc/Bppr+2drRsV18qZJPwbWTOkqPOzh68TIV72bDmbTKiPA2GXMlg6qYNWK61dCfG2L/uEV/lxXxzT+vrQrGiE5LMDmtHxvV2la6V/s9K10syRvv7a+XPYpQz0qsqk7tr/lUFtG7Ng50WtVoK1mh7T0d0wYrc8p17uVfkLdZXrqRVnazPWPtqRNu62XErL5amlp3htTTjvDy0eBDJjoC//u7U5B2PS2HUhxXDeYmNuwu2tXRn01UFUVJrYWbDkoQ6Vts+QLYnZdPC0pa279n9/V0SqVi9FI1Af6OLOlztiq3zcd7Uu7oyc1M2dDzdHE5mci5+r9ve7s5Uz7T2196WN51Lwb2TFkLZa52eP5g4Ee9qyOTyF0Kb2hMVnsuSBNpib6hjY0pkQr8rPx346cJlpvT1p5qx9Bn6mnzed5hwoXS99vUtdsdDFx56+fo4AhMVnoVe1tgMMauPCN7vj2Hg2xdARPjq4sWHEbnlOvhhaaTuvlpVXWGpEsb2lSYX1UtKSIwnc1tIZuxLnyD8fvIyvixUdve2u2Qm8NzKNHw/Es3JSuwr3EUKIm6XaOoEHDBjAI488wsMPP8ylS5cYP34877zzDnFxcXh5lR4R0rRp1S8L/fbbb/nwww+Jjo5GURTS0tJITEw0dAKX7LyMjIxky5YtpUbO5ufn07dvX+Li4mjUqFGpzlofH59Knz8yMpIpU6aUmkZBURQuX74MgE6nw8Oj9Giokm2KjY0t08Hq4+NDbGxsuftXF1tbW9LSikd6pqWlVTi1w9X7VrZ/VfQKaMyEHs157tfDXE7PYUQnb2YOasPltBw8HEu/mXs5Vf1b0Z92RzBv8zliU7JRUEjPzScpM8+wveRjxyRnsetcYqmRs/l6Pd39XLmcloOLrUWpE1kv58rbEZOcxXO/HeZ/vx8x3KYokJiRC2iLFLk5lD6+km26lJqDp1PZ47+UmlPu/tXFxsKEjBIdMRk5BaVGPZSnUK+y/FCMYWqOf/3boQ8wNMSLJfuj2HgqvtTUEhXdtzy9AlyZ0M2H534/xuX0XEaEeDLzrpZarVz1Wnpdx2vz054o5m29UFQrkJ5bcFWtFGdBTHIWu8KTSo2czderdG/hwuX0XFxszEvXilPl7YhJzua5JUf539JjhtvK1krpy9tL10ounmX+r1hxKa2Ga8XchIycErWSW3Gt2FiYElTUsebpZMVLg1oxbsHeUp3AADqdQqdmTiw9GMOi3WWnlnCwMmNUJ2/6zd7C4VduqXDhn/L08nfhvq5NeW7JiaL68WDGnQFcTs/F3bH063v1/71r+XlvDPO2RhCbmlOifoovO/dwKFk/2ew+n1Rq5Gx+oUr3Fs5cTrvx+nl+6QleXBZmuE1RFBIztBour348SxxvfFpu2ax1tCQ+Lbf4GByvb3qFqrCxMCU9p/jDVPo1sqZU/ThaMfPOQMZ/c4APRmrbLc1MGN3JE5+iDoOHezXjw3/OVbkTuFdAIyZ09+G5349qtdHRk5l3teJyeu5/z5Yt56+RLSXfh7K1bCkxctaQLWm5uNgaI1tyys+W1JqtjZstLDaNh77bzxfjQwwd9NfSy8+ZCV08eW7ZSRLS8xge7MaM2/2IT8/F/Rr/1yrz876LzN8eRWxKDoqiFGdJUX+fh0Px1DAxKTnsPp9cauRsfqGebr5OxKfn4WxjdlW9VN6OmJQcXlh2khkrThluUxSFxMwSWWJfenqakvl2KS23TD14OVpyqWSWONRAlpibkJ57VZZUMD2DpakOMxOFx/s2w9RExx1tG/PRxgsciEqlk48jczdHsHJqp3Lv2zfAhUf7+DDhu8Pk5BcypZcP68ISyvzNS+rVwokJoR48t+I0CRl5DO/QhBm3+Wq1ctVr6Xkdr83P++OYvyOa2NRcFAXScwtJyir5vnNVrVxIKTVyNr9QpZuvI/HpuThf/b5ThZqNScnhhRVnmPFH8ZzdikIltVL8+6W0vDK14OVowaX0vHL3ry5laiW3sMJasbEwJchT67T3dLRk5kBfxv9wrFQnMBSdtzR1YNnheBbvi2NiV09+3B/H8iOX2fZUKF6Olqw8dpnRC4+weXrna16h0svXgfs6NeH5P8+TkJHP8CBXXrylKZfT83G3Ny+1r+d1vD6/HLzM/F2xxKbmGeolOSsf0PK9ZC1eTMlld0RaqZGz+YUq3ZvZa9libVaqs7Yq7YhJzeWFP88z46/iL9i1etFqVquX0sfnUeL3S+l5pX4HrV7i02q2XqzNTcioYr38q1CvsvJYomFqDoDkrHzmbrvIioeuPX942KVMJv96hrkj/A0d9EIIYUzVujDcU089xVNPPUV0dDR33nknbdu2pXnz5sTExJTaLzq6+FtxGxsbsrKyDL/HxxfP0xUREcETTzzBpk2b6NSpEzqdDicnJ9QS126VnCDey8uL2267jT///LNM2yIjI0lMTCQnJ8fQERwVFWUY4VsRLy8v3njjjVIjkku2r7wJ6kve5uHhUep4/33ef0cKX71/ea7VGTtv3jzGjRtX5vbWrVtz7Ngx7r77bkAbkdymTZtyH6N169YsWbKkVPsyMzPx96/aB+2KTOnrx5S+flxMzmLc/F20dLOnqYsNsSmlvym9mFz8u7WFCdklvo1NSC/+kBF1JZOZy46y9LGedPB2QqdTCHxxFSol66H4cT0crejTsjGLJncr07bopCySMnPJyS80nCTHJGfh41LxyKd/H/OFO1uVGpFcsn3l10Pxz24OlqWOF+BichZ9WzYud//y+D7/R4XbPhgVXGphtn8FNLHnZGwaA9tq37afuJhKoNu1R4VsOX0ZvR76Bpad6qEkXTkNrup9/zWljy9T+vhyMTmbcQv20tLNjqYu1sSmXvValagda3NTskuM1EnIKFErSVnMXHGCpVO70sHLUauVl9aVuuyz5OrNHo5W9Al0ZdFDZUcUaLWSd1WtZBs6piri4WDJC7cHlhqRXLJ95dZKiZ/dHCxKHS9ox983sHikUKW18mLFl2x/MLIdI8q5ZDugiR0nL6UzsK02MuVEbFqVLqWG8muhpEK9NgdqefSqyuX0XDLzCiodPX61Kb2bMaV3My6mZDP+mwO0dLPF29mauJScUvvFXl0/ecXvPSWzJjopi5krTrL0kc6093JAp1No+co/lLxquOTfz93Rkj4BrvzwYNnFYaKTs8vUz8WUbMNIq4q4O1jy/ED/UiOSS7avsveeJvYWZbM2JYe+gcWXQFa2gnmLmX9XuO39EW0YEVJ2OoiAJjZa/bT5d9RpOoFNqvaF4tV9/y3Lud/1LgkzpU8LpvRpoWXL13u09yFnq0qy5RrvQ0lZzFx+nKVTu9HBuyhbZq696ryk+HE9HCzpE9iIRZMqyJaM8rKlkvehf7OlfdnXv8JsKXGbm4Nl+dnSskS2VPJK+/5vdYXbPrgnqNxsuZnOJ2Rw7/zdvDmsbZk5gq/l4V4+PNzLh4spOdy38BAtm9jS1NmKuNSrs6T4d2tzk1LvRYmlsiSbl/44zZKHO9Le0x6dTqHVq5tLZ0mJn90dLOnt78IPEzuUaVtMcjbJmflXZUkOPs6VZYkFz9/qW2pEcsn2VfpeZG9R6nj/fd5/RwpD5e9Ffq9sqnDb+8NaMjy47PukfxMbTl3KYGBrrS7D4tIJqCBLAt1sUSh7Pq0oCifj0olLzeHWT/YAkJNfSG6Bnm7v72DX89oaI1N6+TCllzYwZOvZK7jZW+Bhf+3Op4d7ePNwD2+tVn44Rssm8TR1siKuROc4QGzq1bVSfCVhYkZxB290cjYvrTrLkoc60N7TTquVN7ZXmC3uDhb09nPmhwllRxbGJOdUUCvX7gh2d7Dg+VualxqRXLJ95f2dS9eKeanjBbiYmmsYKXz1MZTH77WtFW57f0ggwzuUrWP/xjacupTJwFba+1vYpQwCmlw7R4vbc+0G6VWISMo2PO7AVq6G/3PD2zfh5VVnCU/IKjMH9dUe7u7Bw909uJiay4TFJwlsbE1TJwviSnR4AsSW+N3aTFf6PDezZL3k8NLqC/w+sTXtPWzR6RRav7O39HluyXqxN6d3C0e+H1d2UeeYlFySs/LJydcbOoJjU3MNI3wr4m5vznP9vUuNSC7ZvnLrpeR7kZ15qeMFrV76FI0Uhsrf8/3f2lPhtvcG+5Za1O1fAY2sOBmfxW0t/x3BnkVA42vn6NbwFPQq9GlR3LaT8VnEpeVx21dHAcjJ15NboKf7xwfZ+aQ2COb8lWzGLz7J63c2KzNHsBBCGEvVZn2vgv3797Nv3z4KCgqws7PDzMwMExMTunXrRn5+PvPmzSM/P58vvviiVKdw+/bt2bRpE7GxsSQmJvLxxx8btmVmap1qjRo1orCwkLfffrvMiNWSBg0axJEjR1iyZAkFBQXk5uayZcsWYmJi8PHxoW3btrz55pvk5+fz559/smvXrkqPa9KkSbz99tucOaN9K56YmMgff1TcCXe1Ll26oCgKc+fOpaCggGXLlnH06FHuvPPOKj9GRkZGhf/K6wAGGD9+PPPmzSM8PJz4+HjmzJnD+PHjy9132LBh7Nu3jzVr1pCdnc2sWbMYOnTofxoJfDgqmUNRyRQU6rG1MMXMRMFEp9CpmTMFhXp+2HGB/EI9C7efJ67Eh/E2Hg7sOJfApdRsrmTk8vWW4kt0s/IKUQAXWwsKVZVP/j5N+lULwpR0axs3wi6m8ufhixQU6sktKGTnuURiU7LxdrYm0M2ej9efJr9Qz/rjcRyISKr0uMZ29eHTv88QflmbI/VKRi7rjsdV+XUJ8XFGUeCbbeEUFOr568hFwmLTGNC6avPFAZx//+4K/5XXAQwwopM3i3ZeICIxg4T0HL7afLbCff+1ZH8Uwzt6lVnpedWRi2TmFlCoV/nz8EV2nEukz1WdvRXdtzyHo1M4FJWi1YpliVrxcaKgUOWHXZFareyIKPVBvI2HPTvOXeFSag5XMvL4emvxSARDrdgU1co/Z69dK60bExabxp9HYotrJfxKca242/HxP2e1WjkRz4HI5EqPa2yXpny64RzhCdq0Klcy8lh3/FKl9/tXSFMnrVa2X9Bq5WicVivX0aFx/p07KvxXUSfNiI6eLNoVSURiJgnpuXy1OZwRHcufF+5gVDLnEzJQVZX4tBze+uskA4tqOb9Qz097okjLzkevV9l+NpFlBy/So2hBrM2nEzgZl0ahXiU5K49ZK08Q5OVw3R3Ah6NTORydasgaUxOdNoLHx5ECvZ4fdkWRX6jnu51RxJUY6dja3Y4d4Ula/WTm8fX24su7s/IKURRwsTXX6mdDOOk5FU+fcmurxpyIS2fV0UtF9aNnZ3gSsSk5eDtZEehmy8cbwrX6CbvMgciUSo9rXBcvPt14nvAErdP8SmYe605crvLrEtLUEQWFb3dEavVz7BIn49IZ0LJqcw0ChL91a4X/yusABhgR4sGi3dFEJGaRkJ7LvK0RFe57KCqF8wmZxfWz+oyh8xhgVGdPftt/kZjkbNJzCliwPYJbWlW9/eVnC0XvQyo/7IwoP1s87dlxLrEoW3LLzxbbKmZLmyaExaaWzpaS70Pudnz897/Zcqlq2dLVR8uWy/9mS+6NZcu2q7PlOt6H3r2zwn8VZYuqquTkF5JfqH11m5NfSF6Bvtx9AXILCskp6gDJK9AbfgZtVFZOfiEFhSp6w8/aY8WmZHPPV7t5+rYAwzQcVXEkJq1ElphgaqLDRKfQsakDBYUqi/bEaFmyK7pUR19rdzt2nk/mUlquliU7ir/4z8ovRFEUXGy0LPl00wXSrzEV060tXQmLS2fVsXhDluw6n0xsag5eRVnyycYLRVmSwIGo1EqPa2xnTz7dHFE6S8ISqvy6BHs7oCjw7c5oCgr1rD5+mZOXMugfWLbjpyLnXu9X4b/yOoABRgS7s2hPDBFXirJkWxQjgstfuKm7rxNN7C34YksEhXqV9WEJXEzJoWNTBzr5OLL3fz35e3oX/p7ehedubUGwtwN/Pqqt5ZCTX8iZeO19LDwhk9f/Osv0/s2veUXKkZg0DsekFdeKTsFEUejobU9BoZ5Fe2O1Wtl9sXStuNmy83xKca3sLP48lJWn1953bMy0Wtkcee1aCXQh7FIGq45fLq6VCylFtWJJYBMbPtmsnT+tP5nIgejK14EY28mdT7dEEp6ofUF6JTOPdScTK7lXsWAvexRF4dtdMVqtnEi4/lqZ1bvCf+V1AAOMaN+ERftiibiSTUJGHvO2RzOinLmDAQ5Fp3E+MavofSeXt9ef57aWWvvyC/X8tD+OtJwC7bwlPJllR+Lp4esIQAcvO9afSiQmJQdVVfnj2GXyCtRKv4g5cjGDwxczKChUsTUvkS1eduTrVRbti9fqZe+lq+rFhp0X0riUlkdSZj4LdhV/3sjKv6petsaUGg19tVsCnAiLz2TViSsUFKpavUSkEpuai5ejBYGNrflkq5Zx608ncSCm8ikB7w1pzGdbLxJeNA1CUmY+609V/lnqX8Ge2pc3C/fEUVCosjrsCifjs+jv71jlxzg7s0uF/8rrAAYY3r4Riw/EE5GUo9XLztgK9/3X0iOJDG3nimmJKc06edux56kQ1j8SxPpHgni2nzfBXrb8UTTlQ2xqLmO+D+PJPl6GaTiEEKI2qLaRwKmpqTz55JNcuHABGxsbRo0axdixYzExMWHZsmVMmjSJZ599ljFjxtC7d2/D/W699VbuvvtuWrVqhaenJ5MnT+aTTz4BoE2bNjz22GMEBwdjaWnJtGnTrjl1gr29PWvWrOGpp55iypQp6HQ6OnXqxLx58wD46aefuP/++/n444+55ZZbyh3de7VRo0aRlpbG0KFDiY6OxtXVlXvvvdcwwrYy5ubmrFy5kqlTpzJz5kx8fX1ZsWKFYVG4mnLXXXfx2GOP0bVrV/Lz85k4cSKPPPKIYXubNm2YMWMG48aNo3Hjxvzyyy88/vjjxMbG0q9fP7777rv/9PzpOfm8vPwYUVcysTY35e5gT4Z39MZEp/DNg1145pdDvPbHcYYGe9K1RfFr0SewMQPbuNPrnX9wc7BifLdmho7glu72PNDTl1s/2ISFmY5JvVvg4VjxaEw7SzN+nNKdWSuO8fxvh1AUhfbeTnwwugMAX07ozLQfDzB/yzl6BzTmrqDKPywOCfYiI6eAid/sITYlG2cbc4aFeBlG2FbG3FTH95O68sLvh3n3rzB8XGxY+FAXw6JwNeXWNm6civPlzo+2UFCoMjq0Kfd3b27Y3vvdf5h+S6ChYzgzt4A1x+JY+UTvMo81f/M5nvr5IAAtGtvxzQOh+JaYy/Va9y1PenYBL688QVRSFtbmJtzd3oPhIZ5arUzsyDO/HeW1P8MY2sGDrr7Fo0n6BLgysE0Ter2/GTcHS8Z3acrX27TOmpZudjzQoxm3frgVCzMTJvVsds2pE+wszfhxchdmrTzB80uOFdWKAx+M1KY1+HJcMNN+PsL8revo7e/KXe0q/3sP6eCh1crC/cW1EuxpGGFbGXNTHd8/0JkXlh7j3TWn8XG2ZuEDnQwL8dSUW1s34dSldO78dAcFhXpGd/bm/m7FU+f0fn8z0wf4MaKjFxGJWby9+hRXMvNwtDJjYJsmvHRXK0AbvbHycCyv/XmSQr2Kp5MVswa34raiTuKUrDxeXHaMS2m52Jib0K2FC9/cX3YkbWXScwp45Y+TRCVlF9WPG8ODPbT6mRDMM78f5/W/TjOkvTtdmxePwugT4MJtrRvRe/Z23OwtGNfFmwXbIwAIdLPjge5NufWjnViY6niop881L4+3szTlp4c68sofp3h+6QkUBdp7OfD+CO3qiy/Gtmf6r8f4etsGevm7lDsi72p3t3cnPaeAB747SGxqDs7W5gwNdi/VSXot5qY6vpsYwv+WneDdtWfxcbZi4cTgGq+fW1o15oHuGdw1dxcFhSqjOnkyoWvx+3af2duZ1t+XESEeXLiSxTtrznAlIx9Ha1MGtm7CzDsDDPuOC/UiKimbWz/aiZmJwqAgNx7vd+0F9UpKz87n5RUlsqWDB8NDvIqypRPP/HakKFs8r8qWRlq2vLdJy5auTQ0dwYZsmbNFy5ZezSvPloe7MmvFcZ7//WhxthRNmfLl+BCm/XyY+VvP0zvAlbvKuXLgalq25DNx4b4bz5YHQ3lhyVHeXXMKHxdrFj7YucZrIzo5m9A3Nxh+b/bCarq1cGH5Y90B6P3eJqbf4m/oRO7xziZiiq6c6fmuNpL00oeDAfh9fwxP/nLY8FhLDlzkmdsCeO72QH7aE8XF5Gxe+yOM1/7QplPxcrJi6wv9rtm+tJwCZv15mqjkHKzNTRjcrjHDOrhholNYcF8Qzy49yet/nWVI+yZ0beZouF8ff2dua9WIPnN24uZgybjOHiwo6ggObGLLxG5e3PbpHi1Lenhfc+oEO0tTfnwwmFmrzvDC8lNalnja895wLVc/H9OW6b+d4OsdW+jl58ydbSvPg7uDmpCeU8CDi44Sm5KDs40ZQ9u7GUbYVsbcVMfCCe3534pTvLfuHE2drfj2vqCaz5KWrkzs5s2gL/ZpWdLRnQldir9g6PvhLqb1a8bwYHfMTLQ2PrP0JB9vvICvqzXfjA/CqWhxqcZ2xedYdpammJnqcLXV2p9boOeRn44RmZSNo7UZD3TzNsz/XJG03EJm/XWOqORsrM2KaqV9E61Wxrbl2eWneX1NOEOCGpeuFT8nbmvlQp+P92rvO53dWVDUERzYxIaJXTy57fP9Wq1087rmpfB2lqb8eH8Qs1af44UVZ7Rs8bTjvaFahn4+qhXTl57i653b6dXCiTvbVP73vrtdY61WFh8nNjVXq5WgxoYRtpUxN9WxcHxb/rfyDO/9fUGrlXFtDYt81ZRbWrow8bIng746SIFez6gQNyaEFn/52PeTvUzr48PwDk24kJTNu+vPcyUzH0crU25r5crMgdr7igL8cewyb6wJp1BV8XSw4JXbW3BrS+34RwW7cT4xmyHzDpKeW0hTJ0vm39u61Byx5UnLLeTVNReISsnV6qWNC8PauWr1MjqA5/44zxvrIxjS1pUuPsVX6fVu4cCtgU70nXsYN3tzxoY05ps92hd+gY2tmdjZjYFfHcXCVMeDXdwqrZfF41vx6toIXvjzPDoF2nvY8t5g7djnjvTnyeXnWLA7jl6+DtzZqvJ1Uu5u60pGbiEP/XJaqxdrM4a0czWMsK2MuamOb+8N5MVVF3hvQzRNnSz4ZkxgzddLgBOnO7sx+OtjFOhV7unQiAmdis/L+s09zBO9PQ0dw5m5haw9lcTyB0tfUWtuqqOxXXEO2lmaYGaiw9VWa/8vBy9zMTWPN9ZH8sZ6baCBl4MFmx7vUKPHJ4QQlVHUq5fFrcqdFKV5o0aNjl6+fPmGhorecsstjB8/nokTJ97I3YWRmJmZFRYUFNiqqlrqWi9FUZq72JofPfHmXTdUD/d8sZ0RHb0Z06XyOZpF3ffE4v309HNmdOfrnwv7nq92MyLEkzGh1T+PtqidPttwjg/WnZmdW1D4nKIoDwzt4P7Zl+PaV+06z6uMmrePESHujO5s3EvVRfUZ8vnu1L0RKWNUVV3rZGO+9LUhbYbfULZ8uYsRHb0kWxqIyCtZDPlsOwdnXP8iVACjFhxkRAc3Rncqf5S7qF+m/3qcHr6OjAqp2hctJY369jAjOjRhdEjVBguIui0qKZuh8w9x4Nnr/1IbYPT3YQwPcmV0cNWv+hJ1W9PXdhUW6inz+VoIIWpKtU0HIYQQQgghhBBCCCGEEKL2qdaF4eqq999/n9dff73M7ZMmTSo1R7FoGOZuOMOH606VuX1c12a8MTzICC0StdXcjef48O+zZW4f16UpbwwtfyFGIf71+abzfPhPeJnbx4Z68caQVkZokagt5m48x4frz5S5fVyXprwx7NorkYuG5/MtEXy04UKZ28d29uD1wYFGaJGorT7fGsVHmyLK3D62kzuv3/XfFoQW9c8X2y/y0ZaYMrffG9KY1+9oXs49hBBC1HZGmQ5C1E01NR2EaFj+y3QQouGpzukgRP1TXdNBiIblv04HIRqW/zIdhGhY/ut0EKLhkekghBA3m0wHIYQQQgghhBBCCCGEEPWYdAJXwcSJE3nzzTeN3QxhJNN+PMBH68tODyFEeab9fJiPypkiQoirTf/lKB+VMx2EEFUx7edDfPR32SkjhHjytxN8vOG8sZsh6ognl5zk43KmiBCiMk8uP8fH5UwXIYQQovaSOYHrkE2bNjFr1iwOHDhA586d2bx5s7GbJG6iD9ac5JO/T2NuWvzdzdl3B2OiUwB45peDbD+bSOSVTJY+1pMe/o0M+20/m8DsNSc5EpNCB28nlj9R+hLYa91X1E2fbTzH9zsjScnKx8HajIndfHhigB8A5y5n8NqfYRyITAFVpVsLF94e3pYm9paANh/pr/tjiE3JpomdJdNv8TNM37H7/BXGfr3X8DwqkJ1XyLone9Le2/EmH6WoDrPXn+WTDedLZcuZN24xZIv7c2uxMjNB0X7lsb7NefpWrZbGLtjPngvJhvvlFejpF+jKDw9ql8Iejk7l2d+PE56YSTtPez4dHUQzV+ubdGTiZvhswzm+3xlRnDXdfXhigDa36LnLGbz2RxgHIpMBlW6+Lrw9op0ha5Iz83huyVF2nE3ERKcwqL0Hbw5tg6mJjFGoDz7fEsFvB+KITcmhib0F0/o1Y1RHD8N2j//9g5WZDqUoXB7r48NTA3wB2BGexOy/z3P0YhodvOxZOqVTqcd+dmkYO8KTiUzKZsnkELq3cL55ByZqxI7zyczeEMHRi+l08LJj6aTgUtsLCvW88/cFfj94iZwCPa3dbFnxcNl9bp27n9wCPTuf6Wq43WPm5qJa035/rFdTnurfrKYPSdwkKdkFvPTXBTaHp2BuovBYT08e6upu2L7yeCKzN0ZzOSOfZs6WvHFHM0J97AGYsymaT7dexNxUMex/6sVQwzmQEELUN9IJXIfY2NjwyCOPEBkZybp164zdHGEEo0Kb8uGYkHK3tfVyZESnpkz78UCZbdbmJkzo0ZyYpCw2nbp8XfcVddOgIHcmdvfBztKMS6k5jJq3m5budtzauglpOfnc2c6dz+7tgKWZCa+sPMFTvx7hp8ldAFAUha/Gh9DSzY4TsWmMnrcb/8a2hPg40dXXhfPv3GF4nhWHYnlr9UmCvByMdaiiGozq5MmceypecGz7873wcLQsc/tPk0p3zPT+YBt3tWsCQG6Bnoe+P8STt7Tgno4efPRPOFN/OsKaad2qt/HCqAYFuTOxR4ms+WoXLd3ttazJzufOIDc+G1uUNStO8NQvR/jpYS1rPlh3muy8Qva/fAvZ+YWMmbebH3ZF8mBPWXCoPlCAL8a0paWbLSfi0rn3m0P4NbIhpGnx+8W2Z7vj4VA2W6zNTbivqxcXk7PZfOZKme1tPewYEezO9N9O1OQhiJvI2syE+0I9uJiSw+azSWW2v73+AifiMlj3WCea2JlzPC6jzD5f74zBwcqMy+m5ZbZteyq03FoTdd+sNREoCux/uiORyTmMWHgC/0ZW9G7hyOX0PJ5afo7vx7WiZ3N7fj2UwORfz3D4uY6GL6Du6dCI2UNaGPkohBDi5qj1ncB6vZ4nn3ySn376iYKCAvz8/Pjrr79o0qQJ77zzDvPnzycxMRF/f38+++wzevToAWhTONjb23PixAn27NlDnz59+O6773jsscdYu3YtISEhLF26FBcXFyIiIvDz8+Ozzz7j1VdfxcLCgjfeeIP777+/3DatWLGCV155hejoaDp16sSCBQvw8fEhOzubBx98kLVr16IoCq1bt2br1q3odNUzoiU0NJTQ0FAWL15cLY9XF+j1Ki8vP8rygzEUFKo0a2TDjw93o5GdJZ/+fZpFuyJIyszDt5ENbw1vT6ivC6BN4WBnacrpS+kcjEyim58rn4ztyItLjrDpZDztvBz55sFQnG0siLqSSbe3/uat4UHMXnsKC1Mdz9/ZitGhPuW2ac3RWN5fc5LYlGzaezsyZ0wI3s7WZOcV8tTPB9l0Kh5FgYAmdqx4oje6m/RN8gM9tdEzpiZlny/Ex5kQH2eW7I+67vvWJXq9yssrT7D84EUK9CrNXG34cVIojews+HTDORbtjtTqxdWGt4a1JbS5NnJo2s+Hi+slKoVuLVz4ZEx7Xlx2nE2nEmjnZc8393fC2cacqKQsur2zibeGtWH2ujNavdweWOFCd2uOXeL9daeJTcmhvZcDc0YFafWSX8hTvxxh0+kEFCCgiS0rHutebfXS3LX02mk6RSHyShYAIU2dCGnqZNj2QI9mDP18l+H3x/oVnwgHeTnQvYULByKTCfEpvs+/lhyIYWSIl+FEuq7Q61Ve+eMkyw7FUahXaeZqzeIHO2q1sjGcxbtjSMrKo7mrDW8NaUVoc+3Yp/9yVKuV+AwORqXSzdeZj0e3Y8byMDadTqCdpz0LJgTjbGNOdFIW3d7bxltDWjH773OYm+p4YaA/ozp5ltumNcfj+WDdWWJTtVqZfU9bvJ2syM4v5OnfjrHpdCIKCv5NbFgxtctNy5aqOhydSkxyDne10xZP2hl+BXNTHfd11f5vPHlLC77eFkl4QiYtGtXttf30epWXV5xg+aGi9yZXG36c3EWrn3/Ols6a4e1KZM0h7CzMOB2fzsHIZC1r7u3Ai0uPFWWNA99MLJE1b2/krWFtmb3utJY1d7S8RtbE8f7aoqzxdmDOqPbF702/HmbTqaKscbNlxWM9qi9rGpWTNYmZAIT4OJXKDS1rdhp+j07K5o62bthYmGJjYUr/lo05E1+2Y6cu0etVXll1huWHL2nZ4mLFookdaGRnwWebLrB470WSMvNp7mrNm3cHEtrMEdCmcLC1NOVMfAYHo9Po1tyRj+9pw4yVp9h05grtPOz4enxQUbZk0332Tt68O5A5/5zH3ETh+dtalBplW9KaE5eZ/fd5YlNyCPKyZ86IVnj9my1Lwth8+gqKAv6NbVg+pVO11cajfZoZfg7ytKdbc0cORqWW6gSuSLC3A8HeDiw9FFfu9ondtP8H9eG85ZXV51h+JF6rF2crFt0fRCNbcz7bEsnifXFavbhY8eZgf0J9tNfuySUni+olk4MxaXRr5sjHI1sy44+zbDqbRDsPW74e2xZnazOik7Pp/uEe3hzkz5wNEZib6nj+luYVLnS3JiyB2f9EEJuaS5CnHXOGBeLlZKnVy7LTbD6TVFQv1iyfFFxt9RLsbU+wtz1LD18qsy05K5/v9lxk87TOuDtYABDkaVdqn7jUXH45cIlX7mjBy6vq/7Rcer3KrLURLD+WWFQ7lvwwrqVWO1sv8uOBeJKyimrnzmZ0bqqNfH1y+TnsLEw4fTmLQxcz6Opjz8fD/Jjx1wU2n0uhnbsN80cHFNVODj0+PcQbdzTnw80xmJsqPNffm1EdGpfbprUnk5i9KVqrHQ9bZg9pgZejBdn5hTyzIpzN51K02mlkzbIH2lRb7Ww4m8zvE1tjaaYjsLE1d7Zy5vfDCfRu4cil9DycrEzp5av93xkW5MozK8NJyirAxcasWp5fCCHqklrfCbx+/Xp27tzJ+fPnsbW15ciRI1hZWQEQEBDA7t27cXV1Ze7cuYwePZoLFy5gZqYF+u+//84///xD06ZN6d69Oz179mTBggUsXryYQYMG8emnn/Laa68BUFhYyJ49e4iIiODQoUMMHDiQrl27EhgYWKo9+/fv57HHHmPVqlW0a9eO2bNnM3bsWHbs2MH3339PZmYmsbGxmJmZsXv37nI7RqKioggKCqrwmFetWkXPnj2r6yWs0zafvsy+iCT2vHwbNuamnIhNxdLMBADfxrasfqoPzjYWfLstnCnf72XvKwMxK7qM9M8jF/ltak+8nKwY9MlWhnyylTljgvl8fCfu+3oXC7ae5/k7WgFQqFc5GJnMvlcGcvxiCmO+2klHH2f8mpQ+wTwclcyLS4+waHI3Wrnb8+Wmszy6aB9/Tu/Db/uiyMor4PBrd2BmonAgMony+sVikrPo/97GCo950cNd6eLrWu62VYdjWX00Fg9HK6bdEsjQEK8beVnrrc1nEtgXkcyemf2L6iUNSzOtHnwb2bB6Wk+cbcz5dvsFpiw6yN6Z/UvUSxy/PdIVL0crBn22gyFzdzJnVBCfjw3mvm/2smDbBZ6/XcsDrV5S2PfSAI7HpDLm6z109HHCr7FtqfYcjk7hxWXHWPRQKK3c7fhy83ke/fEQfz7Rg9/2xZCVV8jhWbdgplM4EJlSQb1k03/2lgqPedFDoXTxLf8y2O92RvD6nyfJyiukqbM1g9u7l7vf3gvJBDaxLXdbXoGew9Ep3N+97JciiRm5bDmTwGtDWlfYvtpq85lE9kWmsOfFPtiYm3AiLr04W1xt+OuJrlqt7IjkkR8Ps+fFPsW1cjSe3x7uhKejFYM/383QL3Yze2Rb5t4bxH3fHuCb7ZE8N1C7HL5Qr3IwKoW9M/pw/GIa9y7YT0hTh3JqJZUZy8P44cGOtHKz5cstETz24xH+eLwrv+2/SFZeIYde7qfVSlRqhbUy4MMdFR7zDw92pEvzsh35AKuOXmL1sXg8HC2Z1t+XIR1K18qdn2lfEvRo4cxrd7fE1daizGMsORjL7W0bY2upnVqcic+klXtxhlqZmeDras3pSxl1vhN48+kE7b1p5oDys2Z6r+Ks+eEAe18aUCJrYvltajctaz7dzpDPdjBndHs+HxfCfQv2lM2aqGT2vXQLxy+mMmb+7oqzZulxFk36N2vCeXTxQf6c1pPf9kcXZc2tRe9NyRW/N31wjayZFEqXoi9ar/bdjghe/zOsOGs6lN8ZuTciiUC34rbf182HxbsjGRLsQXZeIdj0gz0AAEn5SURBVBtOXubZgQEVv/B1wJazV9gfmcLu53uUky3WrHq0M8425izcGc3Un46x+4UehtpYdSyeXyeF4Oloyd1f7GPIV/uZM6IVn41uy4TvD/PNzmieu1X7kq5Qr3IoKpU9L/TgeGw6Y785pGXLVf+3jsSkMXPlab6/v72WLduiePSX4/wxtTO/H4gjK6+QgzN7adkSnVZ+baTkcMvHuys85u8ndqBLUWd2RfIK9ByOSWNC19LnLXfN1aYX6tHCmVcHBeBqa37Nx6lvtpxLYn9kKruf6arVy6UMLIum5vF1sWbVIyE4W5uxcPdFpv5ygt3Pdi1RLwn8+mB7PB0tuHveIYbMP8ScYYF8dk8rJiw6xjc7Y3juFm1UfaEeDkWnsee5rhyPzWDsd0cJ8bbHr1Hp6XmOxKQx84+zfD+hHa2a2PDl9mge/S2MP6aE8PvBS1q9/K9b5fXy2b4Kj/n7+9pVWi9XOxWfiYWJjpX/b+++o6OovzaAP7ubTe+995BGSKEmdJAqLYCCiIAKCDZUii+CSlGxIFiwK6CidClKk94h9E4K6QXSe3aTLe8fE3YTsgFC+UHW53MO57A7s5OZzc2dmTvfuXMhFz8dzoSNqRRTe3pjUJi2GDlnaxKm9vSGiVT34JsnvzsNAOjoa405/f2bfaztv1aMkxllODolEmaGEly+UamNHXtj/D1BuAiw7Ph1TFqbiGNvRGpj51IBVo0NgZuVEQb/fAFDfrmIhYP98PVQf4z98yqWHruOaT2ECy1KFXAmqxzH3ozExZxKPPv7ZUS5W8Df3qTe+pzLKsesLcn49dlgBDma4vsj2XhlXSI2jW+JtWfzUFmjwqlprSEVi3E6s0xn7GQVy/HEd+ca3eZfRwVp2jjUpVYL/+q+js8VBj6EOpvBx84E+5KK0dnXCmvP5qGlixlsTbVlkC2XC7DtSgFcLI3wWhc3DG6p+zyMiEgfPPZFYKlUirKyMly9ehVt27ZFZKS299OwYcM0/58yZQrmzJmD5ORkTeH2qaeeQmhoKACgf//+uHLlCjp3FnqhxsbGNmipMGfOHJiYmCAmJgaDBw/G+vXr8c4779Sb55dffsErr7yiWY8ZM2bgww8/RFZWFqRSKQoKCpCcnIzQ0NBGC7menp4oLi6+vy/mP0IqEaFCpkDijTJEetogzN1aM21AuHY03YSu/li4/SrS8is0hduB4W4IchEOFHoGOyHxRhk6+Ak79X5hLth3S1uEaX2DYGIoQVsfO/Rt6YIt57MxpVf9iwB/HkvD8518NevxSo8W+GJnAnKKqyCViFBUWY20ggoEuVg2Wsh1tzFFwscDmvxdDIp0w9iOPrAzN8LhxDy8uOw4XK1NNKOfCZCKxaiQK5CYW45ID2uE1WlRMKCVtqg1oYsvFv6biLSCSk0xZWC4C4KchdjpGeyIxBvl6FD73fYLc8a+q3n1fta0Pi1gIpWgrY8t+oY6Y8v5HEx5IqDePH8ez8DzHb016/FKdz98sTsROSV146USQc4WjRZy3W1MkPBh33v6PsbFeGNstBeu5JRh28XrMDdqmPKv5ZXjk+3x+Hlsa53LeHfTJfg7mqNzQMN43ngmG2FuVvBz0F1AfpxJJUKsJOWWI8LDCmFu2pOKAa20o6MmdPbG5zuT6sdKKycE3oyVIAck5pajQ+3vr39LJ+xNyK/3s6b19hdixdsGfUIcseXCDUzpWf87WxmXiXExnpr1eKWbD77ccw05JTJIJWIUVdQgvaASgc4WjRZy3W1MED//iSZ/FwPDXTCmgyfszA1xOKkA438/CxcrY83o5w2T26G1lzVKZQrM3ngZr648j1UT2tZbhkKpwqazOfhyRJjmvQq5AhZGknrzWZgYoKJa0eR1fNxIJSIh19woR6TnLbkmXFsAndDFFwt3JNySa1zr55rcurnGBfvib9k39Qms3TfdLtek4/lOdXONP77YlSjsm8RiFFVUI63wZq7Rvc9wtzFFwkf9dE67k3EdvTE2pjbXXGgk1+SW45Nt9XNNSzdLVMgVCJy1HSo1MCzKDX1b6h6d2FwYSMQolyuRlFeBCHfLernlZqsUABjfyROf70pGWmGVpnA7IMxJc0GuR5A9EnMrNH/v/UIdG7RFmPqEr5BbvKzRJ8QBWy/m4vXu9VtprDyRhXHR7trc0sULX+1JQU6JDAYSEYoqa5BeWIVAJ/NGC3Pu1sa4OqfbfX0v7/+TAH9HM3T21+7rNrzUGlGeVkJu2RyP11ZfxMoXdbe80lcGEjHKq5VIyqtEhLsFwly1F86ebKl9PsP4GHd8vjsVaYUyTeF2QJgDAp2E2OnRwhaJeZWa32G/EPsGLRWEAqkEbb2s0CfYDlsv5eH1bvUv8K48dR3jOrhp1uOVzp74al86ckrkMJCIa+NFhkAns9vHy7uddU67VzmlcpTIFMgokiFuegdcyC7Hs7+eR7CzGQIczHAgqRAFFTUYFOaII8lFDT6/YUIEojwshVj7Jwmvrb2Clc+HP9B1/F/T5Jr8KkS4maOli/YC0JMh2jw/PtoFi/ZlIK1IrincDgi1Q6CjEEc9AmyQmF+F9rXF1b5Btth/rbjez5razV2IHU8L9AmyxdbLBXi9S/0LOitP52JsO2fNerzc0RVfHchETqkcUrEIRZUKpBfJEehoqrOQCwBu1ka4MrNdk7+Lrn5W+OZQFhYO8kNyoQxbrxTCprbIKxGLEBtmj/Gr4lGtVMHCSILfRwdrBmoNDLXDc22cYGcmxeGUEkxcnQBXS0PNyGkiIn3z2BeBe/bsiUmTJmHixIm4fv06Ro8ejQULFkAqlWLp0qVYtGgRMjIyIBKJUFpaivz8fE0R2NFRe3XYxMSkwevy8vq3HHp4eNT7f05Ow1vQ0tLS8Ntvv+HTTz/VvKdQKJCZmYnnnnsOaWlpiI2NhVwux6RJkzBz5swH9l38F3Vu4YgxHX0wffVZ5JbJMKyNB2YNCIVUIsafx1Lxw74kZBdXQQQRyuQ1KKyo1nzW3kI7Us1YKmnw+tZChJuNdjSEq7UJbpTKGqxPZlEl1p5Mxze7tbeZKVUq5BRXYXgbT2QUVuKFpccgV6gwNsYHr99SRL4fgc7ag5EugY4Y3sYT2y/msAhcR+cW9hgT7YXpay8gt0yOYVFumPVkkBAvx9Pxw4GU2ngByuSK+vFiXjc+xPVGiBgbSFBRraz3s9ystSMgXK2NcaO0Yf+5zKJKrD2ViW/2XtO8p1SqkVMsw/DW7sgoqsILy05CrlRhbLQXXq99cNuDJBKJEOJqiX3xefj83wS8N1A7aje7uAojfzyO2U8GIcavYRwt2pmAuJRCbHwlRuddDWtPZWJkI7emP+46B9jhuQ6emL7uUm2suOKd/i0glYixMi4TPxxIRXaJrE6s1Gg+a9cgVuq/rpTXjxXXW2JFV6/CzOIqrD2VjW/3pWjeUyrVyCmRYXiUKzKLqvDCr2cgV6gwJtoDr/d4cL3r6o4C79LCHsOjXLHjUq6mCHyzwG1nZogPhoQgbO4eVFYrYGqoPYTYl5APsUiEri20FwvMjAxQdst3US5TwMzwsT/0uKPOLRwwJsYL09eeF+KntRtmPRmszTX7kxvPNRZ1cotUckv8SFAhv12uaWTfVFiFtScz8c2eJM17mvhp446Mokq8sOyEsG+K9sLrtxSRH4Q755pjmP1kMGL8tTEy4ddTaO1ljRXj20OuUGLqmvP4cMtVzB4Q/MDX73+ls78txrR3w/S/riCvrBpDI53xTl9/IbecyMKPh9KRXSyDSCTS5pbaWp99nVuTjQ3EsDczrPf61v1Q3T7dje6HimVYezoH3+5P07ynVKmRUyLH8EgXZBbJ8OLv54Xc0t4Nr91SRH4QFu9ORlxqMf56qXW9fcnNAredmSE+GBSIVh8cQGW1EqaGksYWpXc6+9lgTDtXTN8Yj7zyagyNcMI7vX2FeDmZgx8PC7fWi0RAmVyJwkrtvqhevEjFDV43iJc6/XBdrYxxo6wat8oslmHtmev49qC2fZhSpUZOqRzDI5yQWSzDi39chFypwph2rnitq+7WaQ+aSe0I19e7ecG4tpDd2c8GB5OK4G1rgve3JOHbEY3flXSzYG1nZogPBvij1YIjzT7WOvta4bk2TpjxdzLyymswtJU9Zj7hCalEjFWnc/Hj0Wxkl1RrYqeosgaAsD+xu2PsqOr9LFcr7X7K1dIQuWU1uFVWiRzrzuXhu8PZmveE2KnGsHAHZJbI8eKqeFQrVHiujTNe66K7Nda9mN/fBzP/SUb7L07D3coIsWH2iM8TRgLvSyrGp3sysGl8SwQ7muJwaileWBmPfye1gqOFIVo4as//uvhZY1i4PXZcLWIRmIj0VrM4E3vzzTfx5ptvIiMjA/3790fLli3RrVs3vPbaa9i7dy/atGkDsVgMGxsbqOveC9JEGRkZ8Pb21vw/OLjhSYi7uzvmzZuHqVOn6lzGvHnzMG/ePFy9ehXdunVDdHQ0unXrVm+e9PR0hIQ0fqCybds2zYhlAl7q5o+Xuvkjq6gSz/54FEHOlojxt8esv85j/SudEOFhA7FYhMCZ/0CNe//9ZxVVwtNOuHqdXVyFgFtaQQDCCfiMfsGY3F33CfTb/UPwdv8QJN4ow9AlB9Ha2xYdAxzqzZNZVIkuC3Y1uh5/vhSjGbF8O49ZO9DHxktdffFSV19kFVXh2Z/jEORsgRh/O8zaeAnrJ3dAhLu1EC+zd+A+0gWyiqvgaSscOGYXyxCgo52Cq7UJZvRpgcnddBfs3u4biLf7BiLxRjmGfncUrb2s0dG//u8+s6gKXT7d1+h6/DmhnWYU4e0o1Wqk1vYEBoC8Mjme/v4YxsV4Y1R7zwbz/3QgGWtOZGLzqzGwMmnYMy3xRjmuZJdhcCO3fTcHL3XxxktdvJFVXIXRv5xCkLM5YvxsMWvjFayf1Bbh7lYQi0UIem/XfWQWIZ943CFWXKyMMaOPPyZ11V2AmdEnADP6BCAxtxzDvotDGy/rBoX7zKIqdF14qNH1+OPF1pqC7u3cLrfcnHbr3866U9mIjXSp9zTtFk5m+PWotpBQVaNEcn5lvXYAzdlLXf3wUlc/Idf8dLx232SHWRsuYv3kaER41OaaWdvv69ikfq6paiTXGGNG38DGc02/ILzdL0jYN317FK29bXTkmkp0+WRfo+vx58T2d5drVGqk1vYEBm7mmqNCrulQP9dczinFl89EwMRQAhNDCUa09cAn25p3ERgAJnb2wsTOXsgqluG5ZWcQ5GSOGF8bzN4cj3UTWyPczRJisQjBc/bdZ26RwcPWRPP/AMeGbVZcrIwxvZcfJnXRXayb0dsPM3r7ITG3AsN/PIXWnlaI8aufJzKLZei26KjOzwPAH89HNHqHws+H0rH2dA42Tmqjc19yk7i2OHw/fyvN1cSOHpjY0UOIl98uIMjpBmJ8rDH7n0SsezEC4W4WQrzMP3Rf3092iQweNiaa/wfoaMvjYmmE6U/4YFIn3Rd4ZzzhgxlP+CAxrwLDfz6L1h6WiPGt/7vPLJah25dxja7HH2NbNbkdxM0Rz7funkQiEa6XypGUX4mRy4Q2AjVKNcrkCoQvOIx9U9rBxrR+3OlTrE2MccXEGFdklcgxZsUVBDqaIsbbErO3pmDtuBCEu5pDLBYhZEHcfR3zZpfI4WEjXETILq1u0AoCAFwsDTGtuwcmddR9XDi9hyem9/BEUl4Vhi+/hNYe5ojxqd8fPKtYjm7fnG10PVaMDtaMWK7LzkyKH0doB968tj4RkW7CvvLK9Qp09LFEqLMQQ519reBiaYjTmeXoG9zwmEjczJ5xQUTUVI99EfjkyZNQq9WIjIyEhYUFpFIpJBIJKioqIBKJ4ODgAKVSiY8//hilpaX39bPmzZuHb7/9FufOncOmTZswa9asBvO8+OKLGDlyJLp3747IyEiUlpZi586dGD58OPbu3QtHR0cEBwfD0tISBgYGkEgaXmH29PRsMAr5bqhUKlRXV6OmpgYqlQoymQwSiUTTA1kfnU0vghpAmJsVzI0MIJWIIBGLUFmthAjCiDylWo2vdyagTNbwqnRTLNpxFR8/FYHLWSXYfjEHU3o17Es4qr0XXvrtBDr6OyDM3QplMgX2x+diYIQbDiXmwd7cCC2cLGBhbAADsaheQeQmdxtTJH86qMnrt+NiDqL97GFuZICj1/Kx9kQGfp3QQTO9WqGCSq2GWg3UKFWQ1ShhZCCGSCSCSqVGtVKFGqUaarUasholJGKRpjfY7T7bnJzNKIZaDYS5WcLcWEe8mNXGy66k+4+XfxPx8bCWuJxdiu2XrmPKEw3bv4xq54GXVpxGR397hLlZCvGSkIeB4a44lJQvxIuj+R3ixQTJC5p+i/afx9PRJ9QZtmZSnM8swbJDqXildvRoaVUNnvnxOPq2dK73ELibVp/IwDd7r2HTqx3haKn7SdrrTmWiZ7ADbM2aZ0+9sxklAIQnzJsbGcBAIob4ZqyIADtzQyFWdiejTHZ/7QsW7bqGBbEhuJxThh2XczGlZ8PvfFQ7d0xacQ4xfraaWDmQWIABrZxxOKkA9uaGCHA0h4WRAQwkIp0nKe42Jrj2Ya8mr9+OS7mI9rWBuZEBjqUUYu2pbCx/XrglO/56GRQqNYKcLVAuV+DdTVfRyc8OZnVu9y+TKbDjci7+ebVDveXG+NlBXqPCn3GZGBbliq92J6OFk3mz7wcMNJZr0HDf9EByTQI+HhamzTW9Gl4kHtXeEy/9fgod/e0Q5mZVP9ck5sPe4maukd5+3/Rx/yav35/H0tGnpRNszQyFXHM4Ba90F+5qEHLNMfRt6YJXejS80yHCwxorjqVhZv8g1CjUWHsyo14f6eboXGYp1Gp1bW6RwEAiFvZDNUqIRCLYmQm5ZcneVJTJ7zO37E7GgiFBuJxTjh2X8zClR8OLSM+0ccXklRcQ42eDMFcLlMmVQm4Jc8Lha4VCbnEwu/1+yNoYSfO6N3n91pzKxrcH0rBxUhs4WtTvIx5/oxwKpRpBzuYolyvw3t/x6Ohnq8ktdY9bVGrc9rilWqlutsct5zJLoQbQ0sVciBexCBKRCJXVKmFfZCYV4mVf+v3Hy540LBgUgMvXK7DjSgGmdGt4YeCZNi6YvPoyYnysEeZqLsRLUiEGtHTE4eQi2JsZIsDBVNgX3S5e3u/S5PW73e/c194UbTwtsWR/OuY+6Y9LOeU4nFyEmb194WpljFMzojXLOZleirnbruHvlyJhbWKA+BsVwn7MyUyItS1J6OhrXW8/1hydyyoXYsfZDOaGdXPNLbFzIKvBXTlNtXh/Jj560heXb1Rgx9VCvD4xrME8I6Mc8fLaRHT0sURLFzMhdq6VYECoHQ6nlMDeTIoAexOYG0kgaSR23KyNkDirfZPXL61QBisTA5gZirH1ciH2JBZj36tCu49wN3P8cDQH8bmVCHQ0xdHUEiTlVyHAQShk/3u1EB28LWFuKMGxtFKsO5eHZc8ENXkdiIiai8d+71dSUoI33ngDKSkpMDMzw9NPP41Ro0ZBIpFoevMaGxvj9ddfr9fOoakkEgnatm0LLy8vGBoa4ssvv9Q5Erh9+/b44osvMH78eFy7dg0WFhbo1asXhg8fjpycHEycOBE5OTmwsrLCpEmTHuiI3gMHDqB7d+1BuImJCcaOHYvly5c/sJ/xuCmT1eDdDReQXlABU0MDDIp0w9DWHpCIRXi+ky96fbYXRlIxxnfxg6u16Z0X2AiJWIQITxu0mbsDhgZizI8NQwvnhleao7xtMT82DFNXn0ZqfgXMjQzQJdARAyPckFsqw/TVZ3CjVAZLEynGxPjc1Yjeu/XXqQxM+fMUapRqeNia4uOnwhFdZ/kjvjuMo9eEXqQjvxeevh73bm942pnh6LV8DPtGO0LQe/pmPN3WE1892/qOn21OyqoUeHfTJaQXVsLUUIJB4a4YGuUmxEtHb/RadABGUgnGd/Kud4t+UwnxYoU2H+yGoUSM+YND0ULHyPEoLxvMHxyKqWvOIbWgUoiXFvYYGO6K3FI5pq89jxulclgaG2BMjNddjbK7W0euFeCDLVchq1HCydIIY2K88EJHbwDAtovXcTG7FMn5FVh6OFXzmZvF5oX/JqCgohrd6zyQbkpPf00fUrVajfWnszB3UPN7INxNZTIF3tt8BemFVbWx4oyhka5CrMR4otfiIzAyEOPFTl71brluKolYhAh3K7T9aL8QK4OC0ULHSM4oT2vMGxSEqesuIa2gEuZGEnQJsMeAVs64USbH9PWXNLHyXAePuxrRe7c2nMnGG6svoEalgoeNCRYMDUF07fLzyqvx9vpLyCmRw9xIgk4BdljyTP0Hm/5z/jp87EwR6lo/ZxoZiPHL2EhMXXsRszZcRpibJb4b1bx7MN5UVlWDdzfWyTURrhga5a7NNZ/vF3JNZ5/7zzUe1mgzf5ewbxrSsvFcM6Qlpq6um2scanONrDbXyGBpLH0IuSYfH2y5UptrjDEm2gsvdPIGUJtrskqRnFeBpYe0rU5uFpu/GBmOmesvImLOTohEQLSfPd4fFPrA1u1RKJUp8P7f8UgvksHUUIKBYY6IjXCGRCzCuGh39P7quJBbOnrUuz2/qYTYsEK7Tw5DKhFh3sAWOkcCR3laYe6AFpi2/kptbjFA5wBbDAhzwo2yasz46wpulFULuaW9W6Mjeu/F57uSUVBRjR51Hir3endvvN7dB3ll1fi/jVeRUyKDuZEBOvnbYskI7e/+WEoRhv90WvPa9929eDrKBV88LczzzC+ncTSlGAAwaukZAMDxGR01I6Obi1K5Eu9vSUJ6URVMpbXxEu4kxEt7N/T+5qQQL9Hu9W7JbyqJGIhwt0C7z45BaiDGvCf9dceLhyXm9vfHtA3xSCusgrmRBJ39bTGgpaMQLxsTcKNMDksjAzzXzrXJI3pv51hqMYb/on0omO+cg3g60glfDBfOx74dEYK31l9F8AeH4GplhEVDgzT9keteZLA2MYBEpH0vr7wa/7cpATmltfsxPxsseap5320ACLEzZ1sK0ovlQuyE2iE2zF6InbbO6PP9eRgZiPFCe+f7jp1wV3O0X3xayDX9fBDg0PCcK8rdAnP7eWPa5mSkFcpgZiRBF18rDAi1Q25ZNWZsTkZueTUsjSQY3cZZ54jee3Uuuxzvb0tFmVyJICdT/D46CA61bd1ifKzwaic3jPvzKgoqauBsaYgFA3zhVzuaecOFfLy5MUk4v7I2wkdP+qCDN1tBEJH+Et3LrTAikcjHwcHhfG5url7c05mamgp/f38oFM3/YTUPk1QqVSoUCnO1Wl2vIaFIJPKxMzc8f+mDJ5tlPKQXVCD6w53IWjTkUa/Kf8JrK06ik78tRjTTXrLphZWIXrAXWZ89+ahX5T/h691J+GxHwkK5QjldJBI9PyTC5evvng1vFlcnMgorEf3JQWR+0udRr4reGvzNsZK41OKRarV6u42Z4fq5g0OHNtfccqv0wkpEf7QHWQub/iBRur20gkoM/voQTr/TPFtvZRRWIWbhEWR81PNRr8p/wpTVF9HR1xpPRzXPhxZmFFUhZtFxZMzv9qhXRe+lF1ZhyI9ncGqa7oftNjcZRTJ0/OoM0t+PvvPMdE885x5VKlVocH5NRPSwiB/1ChARERERERERERHRw8MiMBEREREREREREZEeYxEYgLe3N1tB/Id52pmxFQTdNU9bU7aCoLviYWvKVhB0zzxtTdkKgnTysDVhKwi6ax42JmwFQffEw8aYrSCIiPQMi8BEREREREREREREeuw/UwTu1q0bVqxY8ahXgx6R2K8PYt3J9Ee9GtRMxH57BOtOZT7q1aBmYOh3x7HuVPajXg1qJmK/OYJ1J5lb6M6G/XAS68/kPOrVoGZi2M9nsP7s9Ue9GtQMDF92CevP5T3q1SAiokfE4FGvwH/Vjh078OqrryI7Oxvdu3fH8uXLYW9vr3Pe5ORkjB07FqdOnUJAQAB++eUXtGnT5n+8xvSgVCtUmPzbCZxOK0ROiQxx7/aGp52ZZvqmM5n4YV8SLmaWYEiUO756tvEnDK+JS8fif68iv1wOE0MJYiPd8d7gMEjEIgDAoYQ8vL/xAlILKuBqZYx3BoSiXytXAMCq42n45eA1pORVwMpUiuc7+eLVni0e7sZTk1UrVJi84jROpxcL8TKrBzxtTTXTN53Nxg/7k3ExqxRDIl3x1TMRt13etbxyvPPXRZxILYKpoQRTevpjQhdfAMChxHy8v/lybbyY4J3+QegX1vBp6CN/OI6DSflsi/GYqVaoMPmPcziTUYycEjniZnaBR51Y2XwuBz8cSBViJcIFX45s1eiyZDVKzN8Sj7/PXYdCpcboDh6Y2TcAIpGQW9p+tA/55dUQ174eEuGCz59qCQBYczILX+y+hvzyaphIJRgS4Yz3BgRp8hI9HqoVKkz+/ZQ2t8zu2TC37LsmxEuUK756JvK2y7uWW453/rqgzS1PBGBCF1/klckxe8NFHL1WAFmNEhGe1vhoaBj8Hc0BAKviMjB1zTkYGWjHJeyd3hVedfaL9GhVK1R4eeUFnMkoRU6pHMdndISHrYlm+tx/ErD9ch7yy6vhZWuCmX390TNI9zHt6pPZ+OVIBlILKmFlIsW4aHe80tUbAJBfXo3Zm+NxLKUIshoVwt0t8eHgQPg7mGk+O+2vK/ViZfeU9vCyM9X1o+gRqVao8PKay7XxUo3j09rDw6ZOvGxNwvYr+cgvr4GXrTFm9vZFz0C7Oy73mWXncCi5qF5ri+OpxXhvSxKu5VeihYMZPh8aiGBnIbesPp2DaRvi68fLa23hVSd26dGqVqjwyrpEnM4qx/XSahx7IxIeNsaa6XO3p2LH1ULkV9TA08YYM5/wRM8WNjqXJatR4YN/0/DP5QLUKNUY3cYJ/9fTQ3Pc0n7xaeRX1ODmocjglvZYONivwXJG/XYZh1JK2AaDiPQWi8CPQG5uLkaMGIEVK1agR48emDx5Ml5++WWsWbNG5/wjR45Enz59sHPnTixfvhyxsbFISkqCkZHR/3jN6UHp4GeHl3sEYNBXBxpMszE1xOTuATieXIDSqprbLicmwB5PhHaFrZkRiiqqMWF5HH49nIIXOvtCqVLjxWXHMXdIGEa088T++Fw8v/Q4Tr3fB7ZmRpArVPhoWDgiPG2QVVSJEd8dgYetKQZHuj+szaZ71MHXFi9398OgJUcaTLMxlWJyN18cTylEadXte5vLapR4+vtjmNzND8tfaAuVSo3sYhkACPHy6ynMHRSCEW3dsT8hH88vP4lTs3vC1sxQs4y/z2Wjqkb5YDeQHpgOvjZ4uZsPBn97vME0axMpJnf1wbGUIpTdIbd8vScZCTfKcWhGZ5TJFXjqhxPwsjXBs+09NPOsmtAW7X0anozF+NniiWAH2JoZoqiyGhN/P4vfjqbj+Y5e97+B9EB18LPDy939MWjJ4QbTbEylmNzdD8eTC1Equ328CLnlKCZ398fyF9pBpVYju7gKAFBZrUBrLxt8ENsSNqZSfLU7Cc8vO4GDb3fXfD7Gzw5rJ/OE+3HWwccGk7t6Y8j3JxtMMzOSYMXzEfCxM8WBpEK89Md57H4zGu7Wxg3mlStU+HBwICLcLZFVLMMzv5yBh40JBrVyQoVcgdaeVvhgUCCsTQzw9b5UvPj7eex/Sxsb0b42WDM+6qFuK92/Dt7WmNzJA0N+OtNgmpmRBCvGtoKPrQkOXCvCSysvYffrbXXGy03/XMxFVY2q3ntFlTV4YcVFLB4WhJ6BdvjhcAaeX3ERB99sB6lEKPxG+1hjzQsRD3Tb6MFq72WJSR1dEbv0YoNp5kYS/D46GD62xjiYXIKX1iRg98vhcLNueA685GAWEvIqceC1CJTJlXh6+WV42RhhVGsnzTwrnwtGOy/LRtfln0sFDeKMiEjfNKt2EPPnz8dzzz1X770BAwbgm2++AQC8/vrrcHNzg5WVFbp06YLLly/rXM6cOXMwfvx4zetDhw7B29tb8zozMxODBw+Gvb09AgICsGrVqge6HRs2bECbNm0wYMAAmJqaYt68edi4cSPKy8sbzBsfH4/Lly9j9uzZMDY2xqRJkyCVSrF///4Huk7NwaIdV/HqivonH6N/PIKlB5MBALPWn0PE+9sQ8H9/Y8hXBxB/vVTncj7bdgVvrTqteX08OR9t5u7QvM4ursLYn48iZNYWRH/wLzaefrC37hoaiDGhqz9ae9vqnN4l0BEDI9xgZ26oc3pd7jamsDXTHgiJRUBavhBHJVXVKKmqwdDWwlXwbkFOsDSWIq2gEgAwtqMP2vrYQSoRw9veHH3DXHAqtfABbOHjYdHOBLz6Z/2Tj9E/x2HpoVQAwKwNFxExdycCZm3HkG+OIP56mc7lfLYjHm+tPqd5fTy5EG0+2K15nV1chbFLTyDk3R2IXrAHG89kPdDtMDQQY0IXX7T20j3yoUsLBwwMd4Wd2Z0vCq06kQEPW1OM7+wDE6kEZkYGCHASRsyUVNUI8RLlJsRLoAMsjQ008QIAFXIFPt2RgNlPBj2YjXtMLNqZhFdXnq/33nNLT2HZ4TQAwOyNlxE5fy9avLsLQ749jvgbDXM1ACz8NxFT12pPYo6nFKHtR/s0r7OLZRi37DRC3t+NmE8OYOPZB3urt6GBGBM6e6O1l7XO6V1a2GNAK2fYmd05t+y6mocJnb1haSKFm7UJRrZ1w+qTdxfb7jYm9S4ciEUipNaJo+Zu0b8JePWP0/XeG/3zcSw9lAIAmPXXRUTM2YmAd7ZhyJLDjeeW7bfmlgK0mb9L8zq7uApjf4lDyLvbEf3RQ8wt3nfILXexL1oVVye3GN7MLRYAAC87M0zs6gsHCyMYSMSY2MUXiTfK73iRUx8s3p2M11bXL2yMWX4Wy45mAABmb45H1EcHEfj+XsR+fxIJjeWWndcwdZ32mPZ4ajHafXxI8zq7RIZxv55F6Lz96PjZYWw892DbAhgaiDG+kydae1rpnD6tlx/8HMwgFovQrYUdvO1NcTFL9zHYmA7uaOtlLRx72Jmib4gDTqUVAwC87EwxoZMn7M0NYSARY0InTyTmVqBU9t94ePPiPal4be2Veu+N+e08lh0T/vZn/5OIqI+PIHDeQcT+dAYJuRU6l7Nwdwqm/nVV8/p4ajHafXZU8zq7RIZxv19A6IeH0HHRcWw8f+OBboehgRjjY9wbj5eePvCzNxXiJcAW3nYmuJitO/YBoLJaic92pWJWH996759ML4G7jTF6B9tDIhZhUkcP5JZV42hK8YPcnMfS4n2ZeG19Yr33xvxxBcuPC3/7725NQeuFJxH0URyGLr2IhFzd++DP92Zg2qZrmtdxaaVov1i7f8sukeP5P6+i5Scn0PHLM9h0If+BboehgRjjo13Q2sNC5/Sp3T3gZ28CsViErv7W8LY1xsXruuN+d2IRxke7wNLYAG5WRhgZ6Yg1Z+++7UVltRIL92bgnV68YE1E+q1ZjQR+5pln0Lp1a8hkMhgbG6OoqAh79uzBL7/8AgDo0KED5s2bB1NTU8ycORPjxo1DXFxck36GSqXCwIEDMXr0aKxbtw5XrlzBE088gfDwcAQHBzeYf8CAATh06JCOJQGjRo3Ct99+2+D9y5cvo1Ur7W24Xl5eMDU1RWJiIiIjIxvM26JFi3qjflu1aoVLly6hd+/eTdq25i42yh29P98LWY0SxlIJiiurcTgxH4ufEUaEtPa2xYx+wTAxNMCH/1zClD9PY/tb3Zr0M1QqNcb8dBTD2njg5+fbI/FGGZ769hBCXC3RwrnhlePRPx5BXLLuwmlsa3d88lREUzezyXZeuo7Jv51AuVwBWzNDzI0VYsvWzAixUe5YeyIdI9t7Ye/VG5CIRQh01n2gdSKlAM928H7o6/u/Ehvpht6LD9aPl6R8LB4RDgBo7WWDGX0DYSKV4MOtVzFl1Vlsf6Nzk36GSqXGmF9OYFhrN/w8tjUSb5TjqR+OCfHi1PB7Hv1zHOJSGomXKDd8Miys6RvaBGfSi+FuY4KRPxzH+awShHtY4dNhYfCwNYWtmSFiI12x9mQmRrbzwN74XEhE9ePl838TMKKNO5ysGh+t0xzFRrqgz5dH68RKDQ4lFWBRbXuDKC9rTO8TABOpBB9tS8Abqy9g2+tNG7WoUqkxdtkpDItyxU9jIpB4owJP/3gCIS4WaFFbiK/ruaWnEJdS1Oj6fjw0tOkb2pT1VQNqdf3XtxaoJvx2BmoAUZ5WmDcouN4t2buu5GLyH+dQLlfC1kyKuYP058KBkFsONNwXjYgAALT2ssaMfrW5ZcsVTFl5FtvfvJfcEodhrd3x87g2Qm75/uhtcsvxxvdFUW74ZHjjrT8eBG1uOYbzmbW5ZXireu1IbopLKYSLlTEsTaSa906lFSF49nbYmxthbIwXxnfxbfC55mhIuDP6fn28fm65VojPhwnHk1GeVpjeyxcmUgkWbE/CG2svY+ur7Zr0M1QqNcYuP4thkS74aXQrJOZWYMTPpxHqYoEAx4YtNcYsP4u41GKdy4qNcMaCIff3t1pUWYNreZU685ouJ9KK8UxbN93TUovhYmkES2Pt6crp9BKEztsPOzMpxnRwx/iOnve1vo+TIeGO6PvNKW28VNXgUHIxPh8q/E6iPCwxvae3EC//JuONdVex9eXGW4bpolKpMfb3ixgW4YSfRoUiMa8SI5aeQ6izue54+e084tJKdC4rtpUTFgy+vzZiRZU1QisHx8Zbeny+JxVPRznD2bL+Balb91NqAGqokZBbiS7+wkCL0xmlCP3gEOzMDTGmnSvGx+jH3W5DwuzQ74cLkNWoYCwVo7hKgcMppfi8tr1BlLs5pnX3gIlUjAW70vHmxiRsmdi0/YBKpca4P69iaCsH/DiiBRLzqjDyt8sIcTZFgEPD39eYP67gRLrui55DwuyxYMD95fWiyhpcK6hCgIPudh4qIQDqvFY3KH5PXJMAtRqIdDfH3L7e8LLVHs8u2peJpyMc4GwhBRGRPmtWRWB/f3/4+/tj27ZtiI2NxYYNG9CxY0c4OQm3eYwaNUoz73vvvQcbGxtUVVXBxOTuez+dOHECFRUVmDp1KgCh4PrUU0/hr7/+wqxZsxrM/88//zR5O8rLy+Hh4VHvPSsrK50jgcvLy2FpaXlX8+o7Hwdz+NibY8+VG+jfyhVbz2ejrY8tHCyEHfjQ1trvdGqfIAS+8w+qqpUwMZTc9c84m16EymoFJncPAACEuFphYIQbtp7P0VkEXjEx5j636v71CnVG0icDkZpfjrUnMmBvrr1gMDjSDW+tOoMZa89CKhHhh7HtYGrY8M9+ye4EVFYrMayNR4NpzZWPvRl87M2w52ou+oe5YOuF62jrbQsHC+H7GRqlPemc2isAge8mo6pGCRNpE+IloxiV1UpM7iYcdIe4WmJgK+Fn6SrUrBjftJP7B+16iQyHkwrw54R2aO9ri4+3xePVP89i06tCHA+OcMVba85jxvoLkIpF+OG5KJjW/v0k3CjD7qt52PlmZ1wvlT3KzXjgfOzN4G1nij1X89E/zAnbLt5AO28bbaxEumrmfesJPwS9v7vpsZJZgspqJSZ19QEAhLhaYGArZ2y9eENnseT3F5p2Yv+gdWthhx8PpqK9jw1KZTVYfSILldXaNiDfjgpHmJslFEo1Pvs3EWOWncaetzpq+v4+EeyIxA96ITW/EutOZ8H+LkaTNhc+DrW55Uou+tf+vQv7otp4aa0tMkzt3QKBs7c3fV+kK7eEuwr7ol66ckv7+9yq+3O9pErILRPbC7llazxe/eMMNr3Wsd58eWVyzFh3HrMHaC+qR/vZYd+MbnC3NsG5zBK8sOwE7MyNEBuluzDYnPjYm8Lb3hR74wvQr6Ujtl3KRVsva22sRGh7rr/5hC+C5+67h9xSiqoaFSZ1EUavhbhYYECYE7ZezMWUHj4N5v9tXMT9bdRtKFVqTFlzCUPCneBrf+c+vd/sTxWOPSIb9p7PL6/G2xuuYlY/f8170b422PtGB7hZG+N8Vile/P087MwMERvR8PPNkY+dKbztTLA3oRD9Qh2w7VI+2npawaE2fw4N197W/mYPbwR/cKjp8ZJVhqpqJSZ1Eo73QpzNMaClA7ZeyscUHUXg38Y8vAtISpUaU9ZdxZBWjcdLYm4F9sQXYMcrbXCjTF5vWhtPS6QVVmHbpTxNO4hqpVqzr4r2tsbe19vCzcoY57PL8OIfF2FnJkVsne+xufKxM4G3rTH2JhWhX7Adtl8pRFsPC02sxLZy0Mz7Zjd3hHx8oumxkl2OyhoVJnUUjoFCnM0wIMQOWy8XYkrXhr+v355tOFjqQVGq1HhjwzUMaWkPXzvd5/Xd/Kzw49EctPOyRKlMgTVnc1FZp7XDkmEBCHMxg0KlxsK9GRj351XsejkcErEIiXmV2JNYhO0vtcKNsuqHth1ERI+DZlUEBoT+uKtXr0ZsbCxWr16NkSNHaqYtWLAAy5Ytw40bNyASiaBWq1FYWAg3t7s/kUhLS0NKSgqsra017ykUCowbN+6BbYO5uTlKS+vfJldaWgpz84aFgKbM+18wOMoNm85kon8rV2w+k4UhUdqT7a92xmNVXBryyuQQQQS1GiiurIaJ4d1fBMgoqkR6QSVa/J+2uK9QqTCi3eN/a5C3vTmCXCzxzvpz+GlcOyRcL8XLv5/E7xOiEe1nj0vZJRjz01G425gi1E17i96auHQsO5iMTVO6wLgJB4fNweAIV2w6m4P+YS7YfDYHQ+oU877anYRVcRnIK5dDBGjjxaop8VKF9MJKtJi1XfOeQqXGiLaP50gTY6kE7X1t0aWFcHLwVq8ABMzagQq5AlnFVXj5jzP4/cW2iPa1w6XsUoxZegLutqYIdbXEzL8u4r0BwTA0aFZdhO7akAgXbD6Xg/5hTth0LgeDI1w0077acw2rT2Qhr7y6TqzUwMTq7v9eMouqkF5YhcB3tbf7K1RqjGjzeBa63nzCD+9tvoquCw/B0sQAg8Kd67WvaHuzhYAUeH9AEFa+vxtJeRUIvKWg7W1viiBnC7yz4Qp+fC7if7gFD5eQW7LRv5ULNp/NxpAI7e/xq12JWHUio3ZfhHvcF1UJ+6J3tmneE3LL43mhrkFu6R2AgHe2o0KugJmRcKhZWlWDUT8ew1Nt3DGsTqG87gjySE9rTOjii60XcvSiCAwAg1s5YdP5G+jX0hGbz9/A4DoFqK/3pmD1qRwhVkSie8stxTKkF1YhaM4+zXsKlRpPt3Zp/EMPyYy/rkCmUOGjwXceTbz2VDaWHcnAxsltGxx7lMoUGLX0DIZHuWBopHY7POs80CvCwwrjO3li+6VcvSkCA8DgVo7YdCEX/UIdsPlCLga3ctRM+3p/Glafui7si0Q3c4ui6fFSJEPQ/IOa9xQqNZ7WUYh/2GZsjIdMocRHAwManeedvxPxbl8/nccedmaG+HFUKD7YnoxpG+IxJNwJgY5mcLESLrLUixd3S4yPccf2y/l6UQQGgMEt7bD5YgH6Bdth88V8DG6pfbje1weysPpsLvLLa7SxUqVoUhE4s1iOjCI5ghdo76pVqNR4OsLhNp96ON7+OxkyhQofPtnwwtZNU7q6Y872VHRfchaWxgYYGGqPTRe17SvaemovoL7X2wshp3NxLb8KLRxN8c6WFMzu7aW3x7hERHU1yyLwvHnzkJaWhkOHDmn69e7fvx9LlizB7t27ERgYiNLSUlhbW0Nd9z6hWmZmZqis1N4ecuOGtheWu7s7goKCcOHChbtan379+uHgwYM6p40ePRrff/99g/dDQkKwbt06zev09HRUVFQgIKDhQVBISAgSExMhl8s1LSHOnz+PyZMn39X66Zshke5YtCMeGYWVOJ5SgO/HtgUAHEnKx9JDyVj7cif4O5qjTKZAi5n/oOFvHzA1kqCqzoi2vDojC1ytTeDvZIF9b/e8q/V55vsjOJ6suz/W8DYe+PTp2z9N/UFTqtRIre0JfPV6GYJdLNExQDhYC3O3RpS3LQ4n5mmKwFvOZWH+3xex/pVOcLfRv6drD4lwxaKdCUK8pBbi++eE38eRawVYeigFaydFw9/RTIiX2TugI13A1NCg3oPQ8srrxIuVMfwdzbFvete7Wp9nfjqO443csj28tRs+fci3bAc5W+BUWv0WAzdPDoR4sUBHf+GJ7mHuVojyssbhpHyEulricFKBph2AUqWGUqVG2JydWDWxPUJdG3/IRnMxOMIZi3YlIaOoCnEpxfj+2QgAwJFrhVh2OB1rXmoLfwchVgLf2914rFRr9y11c4uLlTH8Hc2wd2qnu1qfUT+fxPFG2kEMi3LFp8MebjsIU0MDLBzeUvP64+0JiPTQ3d9RJAJEt1mWUqVGih71BAaAIZFu2tySUojvnxPaEgn7olSsndxBuy+atV33vsjwNvuim7llRre7Wp9nfjx2m9zijk+fesi5xcVC09f1ppu5BRAeDvfcz3Fo7W2Lt/vdvkAovl0wNUODw52xeHcKMouqEJdajO+eEdr+HE0uwrKjmVg9Pgr+DqYokysRNGdf47FSZz+UXy+3GMHfwRR73ry7FjXPLj2D4420gxgW6YxPYu9tNN+cfxJw9UY51oyPumMhZevFXHywLQnrJrZu8DCwymolxiw/i9aeVpjR2++2y9G3WAGAwWGOWLwnDZlFMsSlleC7kSEAgKMpxVh2NAurXwyHv31tvMw/BLWOiBHiRTsCMr9c23/bxbI2Xl5ve1fr8+zy8zh+y9/2TcPCnfDJkMAmbJ3WnK1JuHqjAmteCL9tvBxOLtb0PlaqhH/hCw7jz3HhCHUxR1d/W3R9VWj9UCpToPUnRxHhprvtmVikXwEzKMwei/dnIrNYjrj0Mnz7lNCa42hqCZbH5WD12FD42RujTK5E8IITuo9bpOL6x7gVt8SKvTF2vxJxV+sz+vcrOJ6uuxf40FYO+GTgvbWDmLM9FVdvVGL12JDbxoqpoQSfDtLmjE92pyPCTfegKZFI+HfTkZRSJOYJDzMVjnGBiM9O4o/nghHq3HCEPBFRc9bsisAeHh5o1aoVXnjhBfTo0QM2NsJopPLychgYGMDe3h4ymQyzZ89udBnh4eFYtGgRsrOzYWhoiC+++EIzrV27dhCJRFiyZAkmTJgAsViMc+fOwczMTGdP4G3btjV4705iY2Px9ttvY9u2bejWrRvef/99DBkyROfo3sDAQAQHB+Ojjz7CO++8g19//RXV1dXo2vXuik76xs3GFCGulnhz5Wl0CnCAtalw21OFXAGJWARbM0PIalT4eKvuhwICQKirFX7Yl4TrJVWQSsT4ab/2gQiRnjYQAfjl4DWMjvaGWCTCpawSmBpKdLaDWDnp3tpByBVKzcFYtUKl6f8GCAcfNUoVFEo1VGo1ZDVKGIhFMJA0PPBZfzIDMf72cLE2wbXcMny9KwGdA2uLvm5WiL9ehuPJ+Wjva48r2SU4di0f4zoKV9EPxOdi+pqz+OOlGJ3bpg/cbEwQ4mKJN1efQyd/u/rxIhEL8aJQ4eNt8Y0uI9TVEj/sT8b1EpkQLwdSNNMiPa0hEgG/HErB6A6eQrxklwrxoqMdxMoJ93bL9l3Fi0p1x3gZ1toNP+xPxuGkfLT3scWXu5LQwdcW5sYGtfFSjuPJhWjva4srOaU4llyIcdHeAIDz7z+hWU5WsQwDvj6M3W91rvcAsObMzdoEIc4WeGvNBXTyt4W1qdATrrK6Tm5RqPDJjsRGlxHiYoEfDqQKsWIgxk+H0jTTIj2sIAKw9HAanm3vAbEIuJRdVhsrDXP/n+Pb3NN2yBUqzcVPeSOxolSpoFTjtrGSUyKDRCSCnbkhDiUV4PdjGVj3ktDOJLOoCtdLZAj3sEKNUo3P/02Cg4UR/Gpv511/OhsxfrZwsTLGtbwKfL0nGZ0D7Br8jOasfm6x1+aWaiUkkjr7om1XG11GqFvd3CLSnVsOpmB09F3klokd7mk77npfpLpTbnHHD/tuzS12MDc2QI1ShReXnYSLtTEWDG3Z4LN7ruSilYcV7M2NcCGzBD8dSMbM/g/vtuL/NTdrYwS7mOOtdZfR0U+bWyqqlbW5RVqbW5IaXUaIiwV+PJSO66VyIVYOZ2imRbpbQiQSYemRDDzbzg1iEXA5pxymhhKdPV7/eOHeLk7Xyy3K+rGyaFcy9iUUYMOkNpqR3405kFiA6X9dwR/PRzRYvxqlCuNXnIeLlRE+GtywuLg3Ph+t3CxhZ26IC1ml+OlQOmb29W8wX3PmZm2MYGczvPXXVXT0tYF1be/sCnltbjGtjZedKY0uI8TZHD8eytTGyxHtA44j3S2EfdHRTDzb1vXO8TLu3i4g1d8XqevHy55U7EssxIYJkXeMl7P/p724kV0ix8AfTmPnq21gW/t3dCmnHIGOQlF81t+J6BFoq9mOvQkFaOVmATszQ1zILsNPRzIxs3fjI0mbGzcrIwQ7meGtjUno6GMFaxPhu6yoVgm5xdQAMoUKn+7OaHQZIc5m+PFoDq6XVsNQIsLPR7V3/ES6mUMkEmHZ8RyMau0kxMr1SpgainX2BF7x3L3lbSFWav+vVGv6HAPA4n0Z2J9UjL9eCIWZ0e1HMeeUyoXjFjMpDqeUYMXJG1gzTriIklUsR05ZNcJdzaBQqvH5vkw4mEs1rSXOTNO24Mourcagny/g30mtNHFGRKRPml0RGBAeEPfaa69hxYoVmvf69u2Lbt26wdfXF1ZWVpg3b16jn+/VqxcGDRqE4OBguLm5YcKECfjyyy8BAAYGBtiyZQvefPNNzJ8/HzU1NWjVqlW9QvH9cnR0xKpVq/Dqq68iOzsb3bt3x/LlyzXTJ02aBACaUcQrV67E2LFj8emnnyIgIAB//fVXvQfF/dcMiXLHrPXn8c1obZGkR7ATYvzt0X7+v7A0kWJ6v8YPRLoGOqJPqAs6L9gFZysTjI721hSCDSRirJgYjfc2XsDiHfFQqFQIdrHC/NgH+8Cujh/uQmaRMDKu0wLh9vDrX8QCANaeSMcbK7VP5l13MgNT+wRher9gZBZVosuCXTgw8wm425jicnYJ5m2+iFJZDWzNDDEwwg3/11844PFxMMdnT0dg2uqzyC6ugo2pIV7p0QKdWwi3Fn6xMx4lVTUYtkQ7kv1RjF5+2IZEumLWhkv4ZlSE5r0eQY6I8bND+4/2wNLYANP7Nj6SpWsLe/QJdULnT/fB2coYo9t74qeDwsmXgUSMFS+2w3ubL2HxzkQolGoEu1pg/uAHO0qz48f7kFkkjFDo9Mk+AMD1zwcAANaezMQbq89p5l13KgtTewdgep9AZBZVocun+3BgRje425ighZMFvhgZgSmrzqG0qgZtfWyx5Bnh9+1jb4bPhodh2rrz2njp5ofOLYSRwY6W2tFaMoWqwXv6YEikC2ZtvIIlz2hPersHOiDGzxYdFuyHpbEU0/s0XnDo2sIOvUMc0GXhIThbGuHZ9h74+VAqACFWfn+xNd7ffBWLd10TYsXFHPMGPdhiV6dPDyCzSOjZ3Pkz4aGlOZ/1BSDExhtrLmrmXX86G1N7+WFa7wBkFlWh68JD2D+tE9xtTJBaUInXVp5HQUU1vO1M8eWIMAS7CMXHCrkC09dfQlpBFYylYrTxssZvz0dpioNXcsowf0s8SqsUsDWTYmArZ7zdt/HbfZurIZFumLXhIr55VpszNbnlwz2wNLlTbnEQcssne4Xc0sFTUwg2kIixYnx7vLfpEhbvTKjNLZaYP+QB55YFe7W55eO9AIDriwYCqM0tq85q5hVySwtM7xso7Is+2YcDb3eDu42pkFueicCUlWe1uWWU8L2cSCnE3vg8mEjF8JupvXB+87P7E/Lw2sozqKxWwsXKGC919cPwNo9nS517NSTcGbM3x2PJCO3vr3sLO8T42iD608OwMDbA9F6Nj3rtGmCL3sEO6Pr5EThbGePZtq74ubYQbCAR47dxEZjzTwK+2JMChVKFYGdzzB14byM0G9N54RFkFgu5pcvnRwEA2R8LFwcX7kqGoUSEth9rH5T8aWwQhka6ILNYhm6LjmLfW9FwtzbGV3tTUSpTYPhP2uOcmyOQT6aVYF9CAYylYgS8v08z/eZnDyQW4vU1l7Sx0tkLwyL/920vHrYhrRwx+58kLHlKu3/o3sIWMT7WiP78uBAvPb0b/XxXfxv0DrZD1y/ihH1RWxf8XFsINpCI8duYMMzZmoQv9qZBoVIj2NkMc/s/2GJ658XHkVksjFjv8oXQTiD7w24AgIW7U4V4+eyoZv5PBwdiaISTEC9fxmHflHZwtzaGo4X2fEd+89ijzntf70/DnoRCSEQi9Au1x7wntdtxIKkIr6+7KsSLpRFe6uiOYXrUOgQQHhA3e2sqvh6m3e7u/taI9rZC9JdnYGEkwfQejbcR6uJnhV6BNui25CycLQ0xKsoRvxy/DgAwkIjw67NBmLM9FV/szxLOiZzMMKev9wPdhi5fn9XEStevzwIAsuYKxf+FezNhKBGh3WJtvvhkoC+GtnJAVrEc3b45i32vRMDN2ghphXK8/lciCioV8LYxwuJYfwQ7CRcEyquVeHvzNaQVyWEsFaO1uwWWjwqCgUQYDuxooR3QoI0z/RjkQER0K5Gudgl3/JBI5OPg4HA+Nzf3v9mY9j9KKpUqFQqFuVqtrvdUKJFI5GNnbnj+0gdPMh7ojl5bcRKd/G0f296W9Hj5encSPtuRsFCuUE4XiUTPD4lw+fq7Z8N5bx4BAAZ/c6wkLrV4pFqt3m5jZrh+7uDQocwtdCdpBZUY/PUhnH6n86NeFWoGpqy+iI6+1ng6Sr8KiPTgpRdWYciPZ3CqzshSotvxnHtUqVShwfk1EdHDwu7nRERERERERERERHqMRWAiIiIiIiIiIiIiPXavRWClQqFgAfk/RK1WQ6VSiQEodUxWKlVqxgPdFYlYBIWy6W1o6L+pRqWCUq2urn2prFGqGDykUSPkEgUAqNVQKJSqR7tC1CxIxICCqYTuklgsQg1zC90FsVjE3EJ3Ta1WQ6VGY+fXREQPxb0W7m5UVlaKc3NzH+jK0OPr0qVLMDU1LVCr1TU6Jt+orFaK88rk//P1oubHzFiKsxnFj3o1qJk4nVZcrlSpE2tfJl3IKuXZFQEAFEoVEnMrDAFcA4AKueLC+cwS7ojojhwsjFAuVyC/vPrOM9N/nrmRAc5llT3q1aBmwMHcEOVyJfLLdZ0uEdUXn1sFE6m4sfNrIqKH4p6KwGq1Wm5kZPTPtGnTZAqF4kGvEz1mZDIZ3nrrrSq1Wv2rrulqtVpuZCD+Z96mCzKOwqLbkdUocT6jSLb+dJbiQmbJo14deswdSszHwcR8MYDNtW8dyyuTV66My1Tfy0NNSX+o1Wos2ZuiEAFJarU6BQAUKvXqtSczVcwtdCcnUoogEYmUc7ckyHncQrcjq1HiXFap7K+zNxQXslkIpts7kVYCiRjKef+mynnXG92OrEaFuTtSq6CGzvNrIqKHRXSvJ9IikcjC0tJyi1qtbtuuXbtqExMT0QNeN3oMlJeXq+Li4oylUum2kpKSEWrtbdn1iEQiCwtjgy1qNdpGetlUm0gljAfSUKuBimqF6kxakbFUItpWJlOslhqIf/G1N1O42ZhAIgLjhTQUKrU6Nb8S2SVValmNaohard53c5pIJAoyNZTstjQ2sAx2sVAZiEWMnf+YGqVafSGrVCJXKLPK5coearU66+Y0sVg0XCoR/6rNLYwP0hJyS8XN3PKMhZFkphpoG+lhVW0sFTNWSEOtBiqrlaozGSXGBhLxtnKZYrXUQPSLr52pws3KCGLue6gOpUqtTimoQk6JXC1T1OYWNdpGuJtXmxgwt5CWGmpUVKtUZ7PKjQ3Eom1lcmWj59dERA/DPReBNQsQiXwARAAwfBArRI8dOYA4tVqdfTczMx7oNurFkkgkMgIQA8ABYBGY6lEDyAZwTK1WN7jdRCQU9qIA+ACQ/I/XjR49BYB4AJd0DQlnbqHbaJBbeNxCt8HjFrpbzC3UFE06vyYiepDuuwhMRERERERERERERI+ve30wHBERERERERERERE1AywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9Nj/AxMInh903u6+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn import tree\n", - "plt.figure(figsize=(25,16))\n", - "tree.plot_tree(dt, filled=True, rounded=True, feature_names = XX.columns)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, here’s how to extract predictions and mse estimates from the pruned tree." - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tree MSE estimate: 0.5442705453177679\n" - ] - } - ], - "source": [ - "y_pred = dt.predict(x_test)\n", - "mse = mean_squared_error(y_test, y_pred)\n", - "\n", - "print(\"Tree MSE estimate:\", mse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "It’s often said that trees are \"interpretable.\" To some extent, that’s true – we can look at the tree and clearly visualize the mapping from inputs to prediction. This can be important in settings in which conveying how one got to a prediction is important. For example, if a decision tree were to be used for credit scoring, it would be easy to explain to a client how their credit was scored.\n", - "\n", - "Beyond that, however, there are several reasons for not interpreting the obtained decision tree further. First, even though a tree may have used a particular variable for a split, that does not mean that it’s indeed an important variable: if two covariates are highly correlated, the tree may split on one variable but not the other, and there’s no guarantee which variables are relevant in the underlying data-generating process.\n", - "\n", - "Similar to what we did for Lasso above, we can estimate the average value of each covariate per leaf. Although results are noisier here because there are many leaves, we see somewhat similar trends in that houses with higher predictions are also correlated with more bedrooms, bathrooms and room sizes." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "from pandas import Series\n", - "from simple_colors import *\n", - "import statsmodels.api as sm\n", - "import statsmodels.formula.api as smf\n", - "from scipy.stats import norm" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1;31mLOT\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] \\\n", - "Coef. 76491.899559 129102.123280 35058.201371 59815.230609 \n", - "Std.Err. 12405.242699 17921.335635 2134.642203 11159.843199 \n", - "\n", - " leaf[5] leaf[6] leaf[7] leaf[8] leaf[9] \n", - "Coef. 37474.451548 44275.523233 54379.653727 49666.380327 77444.878973 \n", - "Std.Err. 2632.981719 2282.706417 3883.339922 4296.772925 7871.645357 \n", - "\n", - "\u001b[1;31mUNITSF\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", - "Coef. 1253.436921 1919.370259 1564.492235 5085.737805 1368.844174 \n", - "Std.Err. 43.006720 151.630637 12.265223 375.593742 5.763695 \n", - "\n", - " leaf[6] leaf[7] leaf[8] leaf[9] \n", - "Coef. 2087.609012 3608.566364 3138.982620 8380.256000 \n", - "Std.Err. 5.101007 69.986674 14.813386 228.071867 \n", - "\n", - "\u001b[1;31mBUILT\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", - "Coef. 1982.409326 1986.656000 1951.951955 1949.652439 1978.756254 \n", - "Std.Err. 0.975004 1.125603 0.457493 1.686299 0.574931 \n", - "\n", - " leaf[6] leaf[7] leaf[8] leaf[9] \n", - "Coef. 1978.991221 1982.609091 1988.700535 1989.653333 \n", - "Std.Err. 0.464422 0.662736 0.685155 1.091059 \n", - "\n", - "\u001b[1;31mBATHS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.538860 2.000000 0.997174 0.993902 2.028592 2.134197 \n", - "Std.Err. 0.036718 0.027824 0.001152 0.006098 0.004457 0.007777 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 2.000000e+00 3.153743 3.634667 \n", - "Std.Err. 2.545218e-16 0.014613 0.040049 \n", - "\n", - "\u001b[1;31mBEDRMS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 2.430052 3.080000 2.72586 3.085366 2.934954 3.337793 3.620909 \n", - "Std.Err. 0.044477 0.057474 0.01540 0.057637 0.015716 0.014112 0.020111 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 4.056150 4.389333 \n", - "Std.Err. 0.025086 0.040948 \n", - "\n", - "\u001b[1;31mDINING\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.202073 0.608000 0.487989 0.713415 0.469621 0.717391 \n", - "Std.Err. 0.029896 0.050668 0.011054 0.037469 0.013947 0.010268 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.870000 0.921123 1.013333 \n", - "Std.Err. 0.013806 0.014918 0.019791 \n", - "\n", - "\u001b[1;31mMETRO\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 6.367876 6.600000 4.587376 4.658537 5.609721 5.613294 \n", - "Std.Err. 0.131099 0.129515 0.063162 0.226951 0.066153 0.050662 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 5.976364 6.164439 6.402667 \n", - "Std.Err. 0.067004 0.074326 0.091031 \n", - "\n", - "\u001b[1;31mCRACKS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.922280 1.944000 1.922280 1.932927 1.954253 1.948997 \n", - "Std.Err. 0.019322 0.020648 0.005812 0.019593 0.005588 0.004499 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.966364 1.967914 1.978667 \n", - "Std.Err. 0.005438 0.006448 0.007472 \n", - "\n", - "\u001b[1;31mREGION\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 2.766839 2.960000 2.471032 2.493902 2.869192 2.764214 \n", - "Std.Err. 0.045438 0.058365 0.015533 0.051534 0.017560 0.013070 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 2.674545 2.879679 2.826667 \n", - "Std.Err. 0.019998 0.022828 0.033958 \n", - "\n", - "\u001b[1;31mMETRO3\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.891192 2.040000 1.682525 1.646341 2.057898 1.996656 \n", - "Std.Err. 0.022473 0.083008 0.021217 0.059137 0.040916 0.028187 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 2.001818 2.060160 2.176000 \n", - "Std.Err. 0.035992 0.046038 0.073729 \n", - "\n", - "\u001b[1;31mPHONE\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.601036 0.712000 0.672162 0.682927 0.711937 0.682274 \n", - "Std.Err. 0.128542 0.142247 0.035345 0.127639 0.040607 0.032536 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.684545 0.744652 0.562667 \n", - "Std.Err. 0.047985 0.052842 0.095394 \n", - "\n", - "\u001b[1;31mKITCHEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 1.005181 1.008 1.012718 1.006098 1.003574 1.004181 1.001818 \n", - "Std.Err. 0.005181 0.008 0.002433 0.006098 0.001596 0.001320 0.001285 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 1.005348 1.000000e+00 \n", - "Std.Err. 0.002668 1.033549e-16 \n", - "\n", - "\u001b[1;31mMOBILTYP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", - "Coef. 0.979275 2.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 \n", - "Std.Err. 0.014617 7.976078e-17 2.169102e-17 3.478375e-17 1.722204e-16 \n", - "\n", - " leaf[6] leaf[7] leaf[8] leaf[9] \n", - "Coef. -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 \n", - "Std.Err. 4.541240e-18 1.272609e-16 9.749025e-17 1.033349e-16 \n", - "\n", - "\u001b[1;31mWINTEROVEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.932642 1.832000 1.943005 1.975610 1.972838 1.973244 \n", - "Std.Err. 0.052497 0.112872 0.013459 0.012082 0.012155 0.009126 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.968182 1.998663 1.946667 \n", - "Std.Err. 0.014886 0.001337 0.034084 \n", - "\n", - "\u001b[1;31mWINTERKESP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.880829 1.776000 1.940650 1.993902 1.964260 1.962375 \n", - "Std.Err. 0.054548 0.114082 0.013496 0.006098 0.012389 0.009356 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.953636 1.994652 1.936000 \n", - "Std.Err. 0.015290 0.002668 0.034452 \n", - "\n", - "\u001b[1;31mWINTERELSP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 1.725389 1.6560 1.765897 1.817073 1.814868 1.832776 1.826364 \n", - "Std.Err. 0.058875 0.1159 0.015502 0.030281 0.015387 0.011429 0.018003 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 1.822193 1.832000 \n", - "Std.Err. 0.013989 0.037423 \n", - "\n", - "\u001b[1;31mWINTERWOOD\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.948187 1.84000 1.962789 2.000000e+00 1.977841 1.977843 \n", - "Std.Err. 0.051813 0.11268 0.013142 6.956750e-17 0.012014 0.009025 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.973636 1.998663 1.949333 \n", - "Std.Err. 0.014728 0.001337 0.033990 \n", - "\n", - "\u001b[1;31mWINTERNONE\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.243523 1.104000 1.190768 1.182927 1.163688 1.153010 \n", - "Std.Err. 0.058209 0.111195 0.015119 0.030281 0.015059 0.011251 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.145455 1.183155 1.098667 \n", - "Std.Err. 0.017512 0.014152 0.035560 \n", - "\n", - "\u001b[1;31mNEWC\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -8.844560 -8.600000 -8.962317 -9.000000e+00 -8.756969 -8.632107 \n", - "Std.Err. 0.089275 0.175977 0.013301 1.391350e-16 0.041185 0.038497 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. -8.663636 -8.358289 -8.200000 \n", - "Std.Err. 0.054385 0.089662 0.140282 \n", - "\n", - "\u001b[1;31mDISH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.606218 1.224000 1.495525 1.341463 1.105790 1.084448 \n", - "Std.Err. 0.035261 0.037441 0.010854 0.037142 0.008226 0.005687 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.046364 1.010695 1.005333 \n", - "Std.Err. 0.006343 0.003764 0.003766 \n", - "\n", - "\u001b[1;31mWASH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.093264 1.040000 1.053227 1.024390 1.015011 1.007107 \n", - "Std.Err. 0.020987 0.017598 0.004873 0.012082 0.003252 0.001718 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.003636 1.002674 1.002667 \n", - "Std.Err. 0.001816 0.001889 0.002667 \n", - "\n", - "\u001b[1;31mDRY\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.155440 1.040000 1.078662 1.060976 1.026447 1.010452 \n", - "Std.Err. 0.026148 0.017598 0.005844 0.018742 0.004292 0.002080 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.003636 1.002674 1.005333 \n", - "Std.Err. 0.001816 0.001889 0.003766 \n", - "\n", - "\u001b[1;31mNUNIT2\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 4.000000e+00 4.000000e+00 1.163919 1.04878 1.230164 1.076505 \n", - "Std.Err. 1.922963e-16 1.595216e-16 0.011039 0.02084 0.014687 0.006598 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.025455 1.030749 1.008000 \n", - "Std.Err. 0.005701 0.007363 0.005956 \n", - "\n", - "\u001b[1;31mBURNER\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -5.803109 -5.816000 -5.914743 -6.000000e+00 -5.962116 -5.976589 \n", - "Std.Err. 0.087316 0.105576 0.017701 3.478375e-16 0.014319 0.008838 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. -5.98000 -5.989305 -5.981333 \n", - "Std.Err. 0.01156 0.010695 0.018667 \n", - "\n", - "\u001b[1;31mCOOK\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.025907 1.024000 1.010834 1.000000e+00 1.005004 1.002926 \n", - "Std.Err. 0.011465 0.013744 0.002247 3.478375e-17 0.001887 0.001105 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.002727 1.001337 1.002667 \n", - "Std.Err. 0.001573 0.001337 0.002667 \n", - "\n", - "\u001b[1;31mOVEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -5.891192 -5.888000 -5.931700 -6.000000e+00 -5.979271 -5.979515 \n", - "Std.Err. 0.062492 0.078876 0.015231 3.478375e-16 0.010372 0.007733 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. -5.993636 -5.989305 -6.000000e+00 \n", - "Std.Err. 0.006364 0.010695 2.758533e-16 \n", - "\n", - "\u001b[1;31mREFR\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 1.005181 1.008 1.006123 1.006098 1.002144 1.001672 1.000909 \n", - "Std.Err. 0.005181 0.008 0.001694 0.006098 0.001237 0.000836 0.000909 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 1.004011 1.000000e+00 \n", - "Std.Err. 0.002312 1.033446e-16 \n", - "\n", - "\u001b[1;31mDENS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 0.0 0.144000 0.099859 0.189024 0.092924 0.195652 0.272727 \n", - "Std.Err. 0.0 0.031529 0.006643 0.035210 0.007895 0.008492 0.014095 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 0.328877 0.464000 \n", - "Std.Err. 0.018781 0.032404 \n", - "\n", - "\u001b[1;31mFAMRM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.005181 0.072000 0.115874 0.182927 0.105075 0.287625 \n", - "Std.Err. 0.005181 0.025843 0.007012 0.030281 0.008447 0.009772 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.440909 0.537433 0.752000 \n", - "Std.Err. 0.017569 0.022223 0.040841 \n", - "\n", - "\u001b[1;31mHALFB\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.186528 0.096000 0.451248 0.676829 0.190136 0.408445 \n", - "Std.Err. 0.071847 0.028791 0.011710 0.045717 0.010925 0.010709 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.813636 0.568182 0.91200 \n", - "Std.Err. 0.015878 0.021217 0.03503 \n", - "\n", - "\u001b[1;31mKITCH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.000000e+00 1.008 1.002355 1.006098 1.011437 1.012960 \n", - "Std.Err. 4.807407e-17 0.008 0.001052 0.006098 0.002844 0.002313 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.009091 1.036096 1.058667 \n", - "Std.Err. 0.002863 0.007082 0.012725 \n", - "\n", - "\u001b[1;31mLIVING\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 1.00000 1.072000 1.012718 1.060976 1.017155 1.069816 1.085455 \n", - "Std.Err. 0.01039 0.025843 0.003608 0.020642 0.005965 0.006964 0.010913 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 1.160428 1.200000 \n", - "Std.Err. 0.017986 0.031595 \n", - "\n", - "\u001b[1;31mOTHFN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 0.015544 0.0 0.069713 0.109756 0.060758 0.127926 0.223636 \n", - "Std.Err. 0.008927 0.0 0.006280 0.028704 0.007494 0.007965 0.015883 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 0.201872 0.384000 \n", - "Std.Err. 0.019956 0.036681 \n", - "\n", - "\u001b[1;31mRECRM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 0.0 0.032000 0.038625 0.091463 0.031451 0.070652 0.125455 \n", - "Std.Err. 0.0 0.015805 0.004236 0.022579 0.004882 0.005372 0.010397 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 0.212567 0.349333 \n", - "Std.Err. 0.015897 0.028163 \n", - "\n", - "\u001b[1;31mCLIMB\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 2.308571e+00 2.308571e+00 2.261089 2.280418 2.253642 2.293378 \n", - "Std.Err. 3.204938e-17 3.988039e-17 0.018633 0.019846 0.016414 0.008611 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 2.304161 2.317617 2.302415 \n", - "Std.Err. 0.004208 0.012362 0.006156 \n", - "\n", - "\u001b[1;31mELEV\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -6.000000e+00 -6.000000e+00 -5.567122 -5.908537 -5.551108 -5.880435 \n", - "Std.Err. 5.127900e-16 2.392823e-16 0.036987 0.064621 0.046704 0.018774 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. -5.960909 -5.959893 -5.981333 \n", - "Std.Err. 0.015944 0.020058 0.018667 \n", - "\n", - "\u001b[1;31mDIRAC\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.469150 1.520207 1.462422 1.425796 1.453864 1.402817 \n", - "Std.Err. 0.022588 0.024104 0.007016 0.029282 0.009189 0.008810 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.303784 1.275952 1.217845 \n", - "Std.Err. 0.016260 0.020886 0.030770 \n", - "\n", - "\u001b[1;31mPORCH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.155440 1.088000 1.111163 1.036585 1.067191 1.047241 \n", - "Std.Err. 0.026148 0.025441 0.006824 0.014705 0.006696 0.004339 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.042727 1.028075 1.018667 \n", - "Std.Err. 0.006101 0.006044 0.006999 \n", - "\n", - "\u001b[1;31mAIRSYS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 1.398964 1.120000 1.297221 1.243902 1.065046 1.068144 \n", - "Std.Err. 0.035340 0.029182 0.009921 0.033636 0.006596 0.005153 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.041818 1.036096 1.029333 \n", - "Std.Err. 0.006038 0.006825 0.008725 \n", - "\n", - "\u001b[1;31mWELL\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -0.709845 -0.584000 -0.894960 -0.853659 -0.896355 -0.876254 \n", - "Std.Err. 0.050833 0.075506 0.010056 0.043459 0.012176 0.010065 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. -0.855455 -0.879679 -0.837333 \n", - "Std.Err. 0.015858 0.017400 0.028645 \n", - "\n", - "\u001b[1;31mWELDUS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 4.507772 4.176000 4.762600 4.689024 4.802716 4.763378 \n", - "Std.Err. 0.094403 0.144608 0.020549 0.083221 0.022765 0.019461 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 4.699091 4.763369 4.696000 \n", - "Std.Err. 0.031655 0.034293 0.054157 \n", - "\n", - "\u001b[1;31mSTEAM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -0.129534 0.224000 -0.091851 -0.048780 -0.007148 0.035953 \n", - "Std.Err. 0.098258 0.132404 0.029913 0.109344 0.037755 0.029171 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.035455 0.163102 -0.002667 \n", - "Std.Err. 0.043003 0.053480 0.072981 \n", - "\n", - "\u001b[1;31mOARSYS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. -1.233161 0.952000 -0.409797 0.024390 1.425304 1.349498 \n", - "Std.Err. 0.280641 0.231922 0.079011 0.268272 0.052730 0.041123 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 1.505455 1.34492 1.354667 \n", - "Std.Err. 0.048562 0.05485 0.070740 \n", - "\n", - "\u001b[1;31mnoise1\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", - "Coef. 0.505618 0.508176 0.501445 0.50980 0.508980 0.498352 0.506366 \n", - "Std.Err. 0.019987 0.026851 0.006171 0.02291 0.007757 0.005849 0.008779 \n", - "\n", - " leaf[8] leaf[9] \n", - "Coef. 0.498214 0.489948 \n", - "Std.Err. 0.010782 0.015011 \n", - "\n", - "\u001b[1;31mnoise2\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.479330 0.510887 0.490818 0.506432 0.503823 0.491863 \n", - "Std.Err. 0.021813 0.024629 0.006199 0.022006 0.007677 0.005916 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.519609 0.510273 0.522781 \n", - "Std.Err. 0.008804 0.010675 0.014784 \n", - "\n", - "\u001b[1;31mnoise3\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.531553 0.520926 0.503041 0.513428 0.495849 0.502136 \n", - "Std.Err. 0.020642 0.025942 0.006234 0.024108 0.007680 0.005939 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.497612 0.507676 0.498867 \n", - "Std.Err. 0.008658 0.010623 0.014714 \n", - "\n", - "\u001b[1;31mnoise4\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.523838 0.508204 0.501693 0.490069 0.491062 0.496855 \n", - "Std.Err. 0.020465 0.025079 0.006255 0.023845 0.007588 0.005855 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.512434 0.511926 0.499861 \n", - "Std.Err. 0.008656 0.010537 0.015507 \n", - "\n", - "\u001b[1;31mnoise5\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.478568 0.523951 0.499522 0.507624 0.496674 0.500685 \n", - "Std.Err. 0.021662 0.025191 0.006281 0.022255 0.007758 0.005944 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.503707 0.486443 0.484459 \n", - "Std.Err. 0.008934 0.010450 0.015176 \n", - "\n", - "\u001b[1;31mnoise6\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.476431 0.498303 0.505307 0.499575 0.510473 0.508335 \n", - "Std.Err. 0.020660 0.026290 0.006271 0.022161 0.007732 0.005895 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.506212 0.497468 0.493743 \n", - "Std.Err. 0.008799 0.010308 0.015215 \n", - "\n", - "\u001b[1;31mnoise7\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.466509 0.532502 0.496970 0.518808 0.498091 0.503088 \n", - "Std.Err. 0.020272 0.026065 0.006161 0.023536 0.007586 0.005869 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.513389 0.509192 0.506994 \n", - "Std.Err. 0.008932 0.010350 0.014708 \n", - "\n", - "\u001b[1;31mnoise8\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.467514 0.531026 0.500346 0.504115 0.500933 0.495891 \n", - "Std.Err. 0.019916 0.023795 0.006282 0.022729 0.007797 0.005931 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.491334 0.504812 0.519548 \n", - "Std.Err. 0.008564 0.010536 0.014868 \n", - "\n", - "\u001b[1;31mnoise9\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.468098 0.526925 0.495539 0.529444 0.497031 0.505148 \n", - "Std.Err. 0.021758 0.025539 0.006286 0.022109 0.007718 0.005907 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.494763 0.507972 0.511789 \n", - "Std.Err. 0.008594 0.010442 0.014352 \n", - "\n", - "\u001b[1;31mnoise10\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.478180 0.500685 0.500060 0.472976 0.500191 0.511017 \n", - "Std.Err. 0.020324 0.026903 0.006198 0.020793 0.007517 0.005885 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.500824 0.506995 0.499019 \n", - "Std.Err. 0.008697 0.010502 0.015238 \n", - "\n", - "\u001b[1;31mnoise11\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.489795 0.488485 0.492516 0.509673 0.515484 0.508793 \n", - "Std.Err. 0.020479 0.026809 0.006266 0.022111 0.007814 0.005892 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.502809 0.505733 0.491129 \n", - "Std.Err. 0.008781 0.010552 0.014998 \n", - "\n", - "\u001b[1;31mnoise12\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.496124 0.547064 0.500455 0.471864 0.500168 0.501219 \n", - "Std.Err. 0.019757 0.025711 0.006398 0.020903 0.007672 0.005918 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.500728 0.521672 0.494793 \n", - "Std.Err. 0.008546 0.010593 0.014908 \n", - "\n", - "\u001b[1;31mnoise13\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.494888 0.535293 0.504892 0.479535 0.498929 0.497969 \n", - "Std.Err. 0.020970 0.025177 0.006226 0.022273 0.007703 0.005880 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.484956 0.488564 0.525039 \n", - "Std.Err. 0.008924 0.010471 0.014502 \n", - "\n", - "\u001b[1;31mnoise14\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.502771 0.511858 0.492756 0.485773 0.484064 0.506386 \n", - "Std.Err. 0.020405 0.026618 0.006238 0.023378 0.007688 0.005918 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.491079 0.506982 0.510278 \n", - "Std.Err. 0.008691 0.010477 0.015145 \n", - "\n", - "\u001b[1;31mnoise15\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.472543 0.528618 0.507714 0.515404 0.493721 0.504659 \n", - "Std.Err. 0.020178 0.027276 0.006296 0.022529 0.007811 0.005896 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.502755 0.505887 0.533510 \n", - "Std.Err. 0.008781 0.010675 0.014998 \n", - "\n", - "\u001b[1;31mnoise16\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.507393 0.484206 0.508391 0.476947 0.508548 0.496021 \n", - "Std.Err. 0.020754 0.023525 0.006304 0.024211 0.007776 0.005903 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.515021 0.506695 0.484385 \n", - "Std.Err. 0.008648 0.010293 0.015362 \n", - "\n", - "\u001b[1;31mnoise17\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.489426 0.471092 0.506304 0.494265 0.503826 0.502336 \n", - "Std.Err. 0.019743 0.026462 0.006370 0.021789 0.007648 0.005893 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.491715 0.520289 0.502923 \n", - "Std.Err. 0.008787 0.010738 0.014807 \n", - "\n", - "\u001b[1;31mnoise18\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.517420 0.501618 0.506690 0.514725 0.500758 0.501080 \n", - "Std.Err. 0.020522 0.026708 0.006223 0.022547 0.007592 0.005993 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.500188 0.506352 0.487323 \n", - "Std.Err. 0.008384 0.010230 0.015278 \n", - "\n", - "\u001b[1;31mnoise19\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.467595 0.508217 0.504449 0.509105 0.511728 0.498591 \n", - "Std.Err. 0.021083 0.026840 0.006173 0.022455 0.007697 0.005811 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.500900 0.514904 0.492103 \n", - "Std.Err. 0.008506 0.010683 0.014820 \n", - "\n", - "\u001b[1;31mnoise20\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", - "Coef. 0.490588 0.465721 0.508434 0.535436 0.498242 0.507797 \n", - "Std.Err. 0.020553 0.024379 0.006266 0.022370 0.007577 0.005956 \n", - "\n", - " leaf[7] leaf[8] leaf[9] \n", - "Coef. 0.503339 0.488032 0.496959 \n", - "Std.Err. 0.008697 0.010667 0.015243 \n", - "\n" - ] - } - ], - "source": [ - "y_pred\n", - "num_leaves = len(pd.Series(y_pred).unique())\n", - "\n", - "categ = pd.Categorical(y_pred, categories= np.sort(pd.unique(y_pred)))\n", - "leaf = categ.rename_categories(np.arange(1,len(categ.categories)+1))\n", - "\n", - "data1 = pd.DataFrame(data=x_test, columns= covariates)\n", - "data1[\"leaf\"] = leaf\n", - "\n", - "for var_name in covariates:\n", - " form2 = var_name + \" ~ \" + \"0\" + \"+\" + \"leaf\"\n", - " ols = smf.ols(formula=form2, data=data1).fit(cov_type = 'HC2').summary2().tables[1].iloc[:, 0:2].T\n", - " print(red(var_name, 'bold'),ols, \"\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Finally, as we did in the linear model case, we can use the same code for an annotated version of the same information. Again, we ordered the rows in decreasing order based on an estimate of the relative variance \"explained\" by leaf membership: $Var(E[X_i|L_i]) / Var(X_i)$, where $L_i$ represents the leaf.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 227, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Average covariate values within leaf')" - ] - }, - "execution_count": 227, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+MAAAJnCAYAAAD80oKqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXgURx/A8e+cJRc3kuDBnQpWpBQKlDqUUoe6u7u7K9W3TimlLrTFrUJxt2IBAoS4Xc5v3z/ucrnLXbBG4ffps0+zuzOzs3PD3s3O7KzSNA0hhBBCCCGEEELUHV19Z0AIIYQQQgghhDjaSGNcCCGEEEIIIYSoY9IYF0IIIYQQQggh6pg0xoUQQgghhBBCiDomjXEhhBBCCCGEEKKOSWNcCCGEEEIIIYSoY9IYF0IIcdRRSn2qlNJ8y+P1nZ+GQMoEAs5fU0plHEK8IQHxMg8yzuMBcT49zCwf6BiXBxxjXm0c4wDHH6yUmquUyjva65YQQoRjqO8MCCHEf6GUGgT8UWVzd03T1tVHfsTRRSmVANxesa5p2uP1lRdRe5RSQ4AhvtWVmqb9WF95aSyUUi2B34Do+s6LEEI0VNIYF0I0dpdXs+2eus2GaGSeAT70/b3zP6STADwWsP74f0hL1L8TA/7eG/D3ECo/58+AH2vgWB8Ds3x/76uB9BqaU6hsiG8BbgYs/Ld/b0IIcUSRxrgQotFSSpmB88LsGqeUul/TNHdd5ykcXz7tmqZ56jsvRzulVIymaWWapm0GNtd3fkTDomnan3V4rJ0c2Q3T5gF//61p2vR6y4kQQjRQ8sy4EKIxGwPE+f7+B9jo+zsdGFkRSCk1MuB5xY1V0kAp9XHA/mcCtkcppe5VSi1WSpUopexKqc1KqVeVUk2qpBH0zKhSqqNS6nulVCFQDsQppdr5jrVcKbVPKeVQSlmUUuuVUq8ppVLD5K21UuobpVSxLw9TlVJdlVLzAo53eZU4SUqpp5RSq5RSZUopq1Jqne8Z1ZhDKWCl1ElKqa+VUrt851+olFqqlLqnSrhYpdQjvnMrVUrZlFLblFL/U0p1+C+fhVKqt1LqC6XUGqVUrlLK6TvGSqXUE1XPqeqzuL5j/q2UsgB/+sKEfT76UI7lewZ3e5VjBz5zPCRgexel1Ie+MrH5Psu/lPeZXnUQn8N1AelOC7N/TsD+a3zbTvF9dhuVUvm+cylWSi1SSt2plDIe6Lj7Kyvfvsxw5+vb10Ip9brv+FZfXVymlLqj6rGVUglKqZcDwtqVUnuUUvOVUi8ppaIOkMdLAvLxfcD2kwK2fx6w/cyA7XMCtgc9M+5bNIJHP1wWECazmvw0VUp9orzPSluVUn8opXpXCRP2mXFV5TlvpVQ3pdRPvs/OopT6TSnVfn/lcbCUUhcopWb48ulQSu1VSk1WSvUME/ZxpdRspdRO32fp8H1GP1Sp6xVl9kRA9EurqydCCHFU0zRNFllkkaVRLsBMQPMtNwEPB6x/HRBOB+wI2NcrYF8EUOTb7gHa+banAGsC4lRdsoA2AekMCdhXBORUCZ8AnLqf9DS8DbuEgDTTgd1hwhUA2wLWLw+I0x7YtZ9jrAGSDrJ8n9hPOiur5PPf/YS1AMP/w2dx/QHKbSlgCEjn8YB9WwF31XwDnwZsezwg7kEfC5h3gLBDfOFGA9b9hPsCUAf4LOJ85agBLiAtYF+zgHO0ALG+7c8fIH8/VjlGdWUSdrtvX2bV8/VtPwEo3M+x5wARAeHnHyCv6Qcon6YBYXMDtj8SsH17wPYXA7Y/HLA98JgZvmV/+coM8++/kPD/BnMrPpsw9fTTgO2XB2zfA5SFSWsdoDuIf8OBac2rck2ctJ/zsgFnVUkrez/hPcAYX7gDldmQA+VbFllkkeVoWaRnXAjRKCnv5EAn+1ZdwNd4f1xWOFsplQigeYeHfxqw75KAv88A4n1/z9c0bavv77eB7r6/VwIXAacB3/m2Ncf77Gg48YAR78RepwC3AXa8jdD7gbG+7UOAc4CKns4M4JqAdJ7B29ACKMF7w2EUsBZoU82xvwBa+P6e60v/LLyNHXzn9Ho1cf2UUqcAjwZsmgtcCJwOPOg7lwrvABW93/uAK/E2QCuG/EYBk5RS0Yf5WawG7vKdywhgKN7HE5b49vfy7QunLd4RE+PxjpZ4q5pwFQ7lWLcQ+pjEiQHLCuUdQTERiPTtfw/vTZnxVJbhJcAV+8uUpmklwLe+VT1wQcDuC6kc6fa1pmmlvr8XALfi/SyG4f33cgne53cBRiml+uzvuIdDKRUBTMF7Awq8/2bOwFvvV/u2DQUe8oVPAQb7tu/ync8wYBzwAt76ru3vmJqm7QU2+FZTlFJdfH8HPgOe4btuAJwUsH32fpLe60vjk4Btv1P5GY8NEycBcAIX4/1ciyvy5dt2KJoCm4Bz8V5PnL7tXfHWz8N1XUBe8vBeW0YAT+Mt6whgYsU11Od14DK8n+UQvP+eHvTtU8BTvr8PVGYr/kO+hRDiyFLfdwNkkUUWWQ5nwfsjsKKnZWrA9r8Ctt8QsD0Db+9NRW+Tzrf9u4Dw43zbEvA28Cu2XwQM8i1DAEfAvk6+OEMI7v05q5p8j8f74z+3yjEqlu984XR4f8RXbL8jII0UgntaL/dt7x6wzYG3wV+R73Or7Is5QPl+ExB+KdX0wgGJBPc8j6mSz/KAfecd6mfh227AO/nTn3hHBQQer2J5JSD84wHbLQT0IgeE+TQgzOP/4VgZgfvCHOfmgP1rAj6PQVQ2fDRg4UHU+cEB4RcFbF8WsH1QwPYovA3epb665CH0XG45iDIJu923LzNg3xDftjMDtuXgbYBVnHNgeezxhY+k8t/CauB4IPIwrgkTAtK+zvdZlvrWV/n+fwkQg7dRq+G9yRU4qiKwbDKqqVOfhjn2kCpxewfse7eauhM2TYJ7sx1As4B9v4f77PZTJoFpzQvYvjRg+4sE18vlgeUYEKcr3huQ2/D2nFetSxoH0fMviyyyyCJL5SITuAkhGqvLAv6eVOXvAb6/L8f7QxhN0zJ9z4YOw9vbdLJSajHenl7wDo+u6PXuiLf3scKX+8lHN7w9V4HswNSqAZVST+IdNrs/FT1RqVQ+Dw/emwwAaJqWp7zPWx9bJW7XgL+NQHUTJhnxnuPy/eQjMK0fteonn+tA8Pwj/gmwfPncFJDPzr7th/JZgHfW6fH7yStUlltVf2madigzVf+XY4UTWI7dCX0NX4VuB0pI07QFSqkteB9F6Ku8z+IrvI1XgE2abwIypZTC+1qpkw6Q7KGcy8EKPOcmeHvow2mqlErSNK1AKfUZ3hEVPfDeXPAopXYCi4BPtIOb/GsO3h5e8N4AWI634b0F78iZnr7tuVROYLtA0zTXQZ/ZwSnVNG1pwHp+wN9Jh5jWRk3T9tRQWoECP6N7qP7tE90AlFI9gIUc+DVliXhvgAghhDgIMkxdCNHoKKUG4G1MVviyYnIgvMPLK/QNGK4K8FHA35fg7S2uGD78paZp1sPITmyYbfs0TdOq5NkI3BmwaRLeYe8n4u2ZqlBxXQ6KH2b9vwqX70CBk4rt79gHnHysGgf1WSilmhPcOH4db4//icDnAdur+z7bW832EDVwrP/iQJ9HhY8D/r6Y4GH+gWXan8qGuBvvTaBheM9lZkC4gzmXwM+/6k38lIOIvz8V530t3mHpX+Edlu7AO+rgAmCaUmrUQaQ1F2/vP3jPs2Lo+wIqbwgMJvgGxRxqXkGV9cDG/qH+e6nJtA5HxedzC5UN8c14691gKt+9XkF+VwohxCGQi6YQojG67MBBwob9Hu/kSuCdif3KgH2BDZl/8TZgKnTSNE1VXYA4TdPCPTcervGaTHCv0vWapk3z9WQmhwmfS+WzpuCdEAvwP2PbOUycDQF/W/FOBlddvueHiR9oXcDfo5VSQd8Xvp5X8JZVYK/5wIAwyUCngH2Bs6cf7GfRMuDvfE3T7tA0baav3AJfnVSdQ7mJcTjHChoxULWcCP5M/g73eVR8JgeZx8+orJuXUPncr4vgGwatAv5eqWna05qmzcHbuxm472AUBvxdMR8BSqmTCd9TGnjOOwHjfuphxXPzHk3TJmmadpGmaT186Qb21l50oExqmlaId34H8J7jON/fC4DFeIdWdyF4foGDbYwHfs5Hwm+nwM/oumo+HzPemyQQXGfe1DTtS03T/iD4OimEEOIQyTB1IUSjopSKJHjyqpfxzpgdqAdwo+/v8UqphzRNc2uaZldKTcL73Goc3ucjwdtY8Q/Z1jStyPd6pIrJuX5TSr2Ed7hrAt4eu5F4J1Hzv7brAPbhfX65ovHyrFLqF7yTaoVM3qVpmkcp9S1wlW/Tk0opB95nrO+hshc5MM4apdQSoA/eH9JzlFJv4p0UqwneyczOwNvreHLV+FV8SOXkVL2B6Uqp/+F9xrYH3rIbpWlaoVLqJyobOG8rpeLx9ujd5csHeG8u/BaQ14P6LPA+n1ohWSlV8Qz0WLw9vTXpcI5VgLfBX3Fz4g7fkHuPpml/4Z3I7Fm8w6UH+D7TL/HeaGmOd7jwGN+2xw+UQU3T9iilfsf7XHZg3ZtaZTh+4Ln0VErdiHe2/msJvkFyMP4N+PsipdQ2vI9iVDe0eSbeOtcSbyOuou7k4H0soQPeiQhXUln3tyqlfsU7RH0P3sdEBgekGVLfqzGbymH7x/r+/4evvi3C2yteMVomD++z5AcjcHj4iUqpM/B+htmapm2pJk5D9hGV5fSKb6LBJYAJ7+c2EDgb79D+TILr09W+V7ol4Z33QAghxOGq74fWZZFFFlkOZcHbQ1YxKVAxAa9HCgiTQPAka6cG7DuW0EmHbg6TRhP2/2ozDd9rjXzhh4TbXiXN56pJZ27A3/MCwlf3arMivA2rivXLA+J0YP+vNgs6xgHK+pn9pLGySj4P9GqzEWHSP9jPYnKYcC68PZ7hJsB6PNz2Kml+GhDm8cM9li/O3+HiBOw/h/2/2iwoDwfxuYwOE//MKmF0BE9mWLGU4e0lDnfu1ZVJHN6Ga9W0dhH8+rIhAXH6s/9Xm1X9zKqbEKxiGXOQZVP19YFZAfuerLLvmzDxA/dnBGzvQvjJ/D480L9/qp+orbrtlwdsn1clrbCf0X7KI2xavvrx5QHK3F8GeG/AOcLsn7ufMgt7frLIIossslQuR8JQKyHE0eWygL+nappmrxpA07QivD8SK1wesG8lwROX2QieAK4iXC7QF7gb+Advw9+Jt9fuH7wN1XMPMe+P+JaK2YhX4x1qHPYVaZqmZePtofoO76RIZXgnZRuEt0FewRIQZzPe3qwn8b5CqAxvL+ZOvA3Kh/C+S/uANE17CG+P8Hd4bwo48ZbDcgLKzJfP3sBjeHs7y/H+cM/E2wN3nKZpgc8pV8RbyUF8FsDVeJ/fzsLbqF2Ed7K32nje93CONR5vr3/Yias0TfsBOA74AO/oChvez2wL3on+rsf7eriDNRXvSIsKe/DOsh14TA/e3udPqRyVMRdvo3H9IRwLzftatdPxTs5nxzsaYCLQj+BHKQLjLMTbgHsV7yMP5XjLczvenvM7CH513gPAz3jrTBnehm8u3tf+na5p2vcHmd0/qHz9FwRPHlf10YyDrj+apm0ALsV7Ls4DBG/wNE3zaJp2MXA+3jKueLtDHt7r0vt4P/NdvvBr8L76bCHeupSNd/b6s+o880IIcQRRmqbVdx6EEEJUQymltCoXaqVUKt5GS8UQ8GM1TTvY4bZCCCGEEKIBkGfGhRCiYZutlPoK7/OceXif932Kyob4Krw9WUIIIYQQohGRnnEhhGjAlFLZQFo1u3OAYZqmra3DLAkhhBBCiBogz4wLIUTD9i7e55bz8D7TWYr3OeungW7SEBdCCCGEaJykZ1wIIYQQQgghhKhj0jMuhBBCCCGEEELUMZnArYYtyvlVhhrUspfWxtZ3Fo4Knw2u7xwI8d9dOFfVdxaOePmlUsZ1oVmCp76zcMRbdPu8+s7CEa+4LLO+s3DEK9n28RFzUTa3uqjO2lXWnZPrpdykZ1wIIYQQQgghhKhj0jMuhBBCCCGEEKJBUerI7zc+8s9QCCGEEEIIIYRoYKRnXAghhBBCCCFEg6KOgn7jI/8MhRBCCCGEEEKIBkZ6xoUQQgghhBBCNCjyzLgQQgghhBBCCCFqnPSMCyGEEEIIIYRoUKRnXAghhBBCCCGEEDVOesaFEEIIIYQQQjQoSqn6zkKtk55xIYQQQgghhBCijknPuBBCCCGEEEKIBubI7zc+8s9QCCGEEEIIIYRoYKQxLoQQQgghhBBC1DEZpi6EEEIIIYQQokGRV5sJIYQQQgghhBCixknPuBBCCCGEEEKIBkV6xoUQQgghhBBCCFHjpGdcCCGEEEIIIUSDoo6CfuMj/wyFEEIIIYQQQogGRnrGj0DffPQLv06ZzdYNmYw45yQeffOOsOGmfjWLZ+94k4hIk3/by188Sq+BPYPC7dy2m3FDbmbomQN54p27azXvjZHb4WDlG6+Rs3wZjtISops3p/uV15De74Sw4Td/+zWbvpqM22Gn+YmDOe62O9GbTGHDikrvvf09kz6fxrq12zjvgmG8//ED1Yad8PrXvPryZGxWO6POGczrb99JRISUcTgFBSXceO0LzJm5lOSUeJ54+hrOv2hESDi73cGjD37Ad9/MwWa1M/aCYbz02q0Yjd6vkY0bMrnz1tdZufxfUpok8PTz13P26MF1fToNjtvhYO1br5K3wnd9aNaCzldcQ2rf8NeHbd99zdavv8Rtt9P0xJPofkvl9WHF80+Rt3IZbpuNiMQk2p1/Ma1OO7MuT6fB8jgdbPvgVYpXL8VVVkJk0xa0uvhaEo8PLefyndvI/HQClm3/4iotpv93fwTt3/zGkxSvXobHbsOYkESz0ReTNvysujqVRkO++2pHwa7vsJVtQ/M40RtiiG0ykOikXiHhnLZ9FO2djtO6F4+7nBY9ngjan7PtExzlWf5nbvWGWNI73Von59DQWXPm47btRfO4UHozpoQemGI7hg3rcZZiy/8Hty0bpfQYYjsQmdTnkNMRh+doeGZcGuNHoJT0ZK64/QL+mbccu82x37Dde3fmg19e3G+Yl+9/jy7HdqjJLB5RNLcbc2oqg197g6jUNLIX/cOipx5n+IefEJ3eNChs9pLFbJr8JYNfeY3I5BQWPvYw6z/7hB7XXFdPuW88mjZL4d4HxzNrxmJs1urr9awZi3nlpS/5dcZrNG2WwkVjH+aZJz7hyWeljMO589bXMJmMbNv9A6tXbmHsqPvp3rM9Xbu1CQr3yotfsnzZRhav/BS328P5ox/ghWc/5+HHrsTlcnHhuQ9x1TVn88u0V/hjwSrOH/0Afy1pQ4eOLevpzBoGze0mskkq/V9+E3NqGjmL/2HZM49x0vufElXl+pCzdDFbpkyi/4uvE5GcwtInHuLfiR/T5arrAWh/4Th63nkfepOJsp07WHjPbcS160BCx071cWoNiuZ2E5GSSren3iIiJY2i5Qv595VHOea1z4hMDS5npTeQPOBk0k89h00vPBiSVvNzxtPuxvvRGU1Ys3aw7rFbiW7TkZh2Us6B5LuvdsQ2OZHE5qNQOgNOWy652z/FaG6KydwsOKDSExXfDV1yX/J3TA6bVmKz08M25I92poSe6IyDUEqP21GENXsaelMS+oiUoHCa5qY8ezqmuM6YU4cACo+r5JDTEWJ/jvzbDUehoWcM4KTT+xOfGPef05r5w3xi46PpfeIxNZCzI5PBbKbrZVcQnd4UpdPRtP8AotKbUvTvvyFhd86YRsZppxOX0QZTbCxdxl3KjunT6iHXjc+ocwZz1qgTSUqO32+4SROncdkVp9O1WxsSE2O576FL+eJzKeNwLBYrP32/gEcev4qYmCgGDOrJ6WcO4KtJM0LC/j71b264+VySkuJo0iSBG24ew8RPfwNg08ad7N2Tz823n49er2fI0OM5YUB3JodJ52hjMJvpdOmVRPmuD2kneK8PxZs3hYTNmjmNVqeeQazv+tDxksvImlFZd2Mz2lT2JCoFCsr37q6rU2nQ9JFmWl5wJZGp3nJO7D2QyNSmWLaGlrO5eSvShp+JuWWbMClBVKs26IwB5QzYsqWcq5LvvtphjExF6Xx9Zb7657IXhIaLSCE6qRfGiCZ1mb0jgt6UiFJ6ABTeMvY4S0PCOUu3oNNHYYrvjtIZUToDelPSIacjDp9Sujpb6ov0jB/l/l2zlZFdLiYuIYbTzhvKpbeej8HgvbBYSsv54MVJTPj2GX7+Un5UHyxbQQFlWVnEZmSE7CvJzKTpgEH+9fh27bAXFmAvLiYifv+NTHFwNqzL5IyzKsu4R8925OwrID+/mOQDNOSPNlv+3YVerwvqve5xTHv+XLAyJKymaWiaFrAOu7NyKS4uC9oeGH79um21ku/GzF5YgCUri9jWoQ3B0h3bSe8/0L8e19Z7fXCUFGOK89bdNW++yq6Zv+Ox24lr36Ha4e5HO0dRAda9WURV0+A+kG0fvELu3N/xOOxEt+kQdri7CCbffTWncPdUygtXomlOjJFNiYw9vNGJxdmzKM6ehSEimbi0YUTGHN6/hyORLW8hzrLNoLnRmZIwRLUICeO256IMMZRnz8Bjz0NnSiQiuV9Qg/xg0hFif6QxfhQ77oTufDn/bdJbprJt404evu4F9Ho9l912PgDvPz+Rsy4+hbTmctf1YHlcLhY/9zStTxlJXKvWIftdVivG6Gj/ujE6xre9XH6Q1BCLxUp8fGUZx8d7y7istFwa41WUWazE+cqnQlxcNKWl1pCwI07tx7tvfcfgIcfjcbt5d8J3AFjL7XTq3JomqQm8/spkbr7tfBbMW8GfC1YxeMhxdXIejYXH5WLF80/RYsRIYsJcH9xWK4boys+j4m9Xebm/Md7j1jvpftNtFG5YR/6qFZU9uMLP43Kx5fUnaTLkVMwtQsv5YLS99i7aXHU7pf+uo2TdCpSU837Jd1/NSmx+JgnNTsdRvgu7JbOyp/wQxKePwBjRBKX0lBevJX/Hl6S1vwFDRNKBIx8FIlP6E5HcD7c9F7d1L/h6uANpLgtu217MacPRm5viLF6Pdd9soluM8feIH0w64vAdDc+MH/lnKKrVPCOdZq3T0el0tO+awVV3XsicqX8B8O/abSz5YxUXXTeqnnPZeGgeD0ueewadwcCxt94eNozBbMZVbvGvOy0W3/aousjiUSE62kxJSWUZV/wdEytlXFVMtJnSgLICKC0tJzbWHBL23gfG0/PYDgzofRXDBt/EmaMGYTQaaJKagNFo4Ktvn2Hab//QrsU5vPnaFMaMHUpzuZHnp3k8rHzhaZTBQPebw0+qqa9yfaj42xAVXHeVXk9S955Y83LZ8cuPtZbnxkjzeNjy5lMog5E2V4cv54Ol9HriuvTEkZ/Lvuk/1kwGj0Dy3Vc7lNIREd0at7OEsvwlhxw/IqoFOn0ESmcgOvFYTFGtsJWGPkJwNFNKhyEyDc1djrNkY+h+nR59ZBqGqBYopccY3x3NbcfjKD6kdITYn3pvjCulHldKaQFLuVJqjVLq2mrCP+EL99R+0gi3zPOFnaeU+raatDOVUi9X2Xa5UmqZUqpUKVWolFqhlHq1Boug4VCKitGmy/9aw96d+xh1/BWc3n0cX77zA/N+/ZtLh99Wv3lsoDRNY9nLL2AvLKD/40+hM4S/ix2XkUHR1q3+9eJtW4lITJKegRrUpVsGa1ZXlvGa1VtJTUuSXvEw2ndsicvlZsvmLP+2Nau20KVr6FBGszmCV9+8nc07vmPtv1+RlBTHccd3RK/39gJ079mO6XPeZOe+X/jpt5fJ3L6HXn261Nm5NGSaprHq1RewFxXS+9Gnq70+xLZuQ8m2yrpbsnULEYlJ/l7xkHTdbizyzLifpmlsfed5nEWFdLyn+nI+5HTdLnlmvBry3Vf7NM2D2xH6zPhhpVUjqRyBNE/QxGwVdKZDHEVQTTri8Kk6/K++1Htj3KcY6O9bzgJmA+8rpS4OE/ZC3/8vCtj2YUD8/sCXQHaVbTceaqaUUg/40p4OjAEuBX4Czj7UtOqSy+XGbnPgcbvxuD3YbQ5cLndIuL9nLyU/pxCAzM27+OTVrxh8aj8ARo8fyXeLP2TinLeYOOctzrnsNAYM780bXz1Zp+fSWKx4/VVKd+5kwDPPoY+IqDZcqxEjyfz9N0oyM3GUlrLxi89pPfLUOsxp4+VyubDZ7HjcHtxuNzabHZfLFRLu4nEj+fyT39iwPpPCwlJefPZzxl0qZRxOdLSZs88ZzNNPfITFYmXhX2v49Ze/uPCSU0LC7tmdy949eWiaxuJ/1vHCs5/z0GNX+vevXb0Vm81OebmNN179iuzsfMZdJuUOsObNVyjbuYM+T+7/+tBi+Eh2TfuV0h3e68PmLz+nxSneMrQXFrJ77mxc1nI0t5ucpYvZM3c2KcceX1en0eBt/+AVrFk76PzA8/stZ03T8DjsaC4nAB6HHY/T+4YGZ3EheX/Owu0r56IVi8j7czbxPaScw5HvvprldpVRXrQGj9uOpnmwlW7BWrSGiJi2IWE1TUPzONE07+87zeNE83i/Ez1uK7bSLf795YWrcVh2EBnbvk7PpyHyuK04fa+O0zQPrvLdOC3b0Uc2DQlrjG6H256Ly7oHTfPgLFmP0keiM8UfUjpC7E9DeWbcpWnaPwHrs5VSA4DReBvWACilegEd8TbWhyml+miatkTTtCwgKyDcWMBeJc3DcTPwvqZpge8++UUp9UR1ERqCT177io9ernzNxbRv53LV3Rdx1kUjuOjEG5n8xzukt0hl6R+reOrW17FarCQ1SeDUsUO53Pe8eGRUJJFRkf40zNGRmCJMJKbIXeyqLPuy2T71Z3RGE1PHjvFvP/6Ou0jp0ZMZV17GKR9/RlRaGul9+9HxggtZcNft/netdr3sinrMfePxwrMTee6pT/3rX305kwceuZxLLz+d3j0vY+nqz2jZKo0RI/txx10XcvqI2/3vGX/oMSnj6rz21h3ceM0LtGk2mqTkOF6fcAddu7Vh1859QeW6bdserr3iWXJzCmnRMpUnn7mOYSP6+NOZPGkGn308FafTzYBBPfj591fk3e5A+b5sdv7qvT7MvOAc//Yet91Fco9jmHf1pQz58HPMqWmk9ulHu/MuYuE9t+Fx2EkfdBIdx/tueCjFjqk/subNV0DzYE5No+sNt5A+4MR6OrOGxZ6Tzb4ZP6GMJpZePdq/ve11dxPX5RhW3j6eY1+fSESTNOy52ay44Xx/mEUXDSeiSTrHv/cNANnTf2Tb+95yNjVJJ+OKW0jqK+VclXz31QZFWcESCndPBTT0xnjim52KOa4zLkcR+za/TVqHmzCYEnA7i8je9Lo/5u51T6M3JtC08x1omofifbNx2fMAHcaIFJJbX4RRXrkFKJylG7HlLwRNQ2eIJiKpL8bo1nhcZViyfiC6xTnoDDHoTPFENhmMLe9vNLcNfUQy5rRhKKVH2086ouYcDc+Mq3Cz4NZpBpR6HLhZ07SUKttnAyWapp0TsO1lvA3kDsC/wLuapt0ZJs2XgbGapmWE2TcPyNM0bWyYfZnAt5qm3e1btwDPa5r2VNWw1VmU86uMAqplL62Nre8sHBU+G1zfORDiv7twbv0NPTta5JdKGdeFZgme+s7CEW/R7fPqOwtHvOKyzPrOwhGvZNvHR8xFObXzXXXWrsrZ+Eq9lFuDud2glDL4ljil1DjgJOCHgP0KuAD4TdO0XcBvwAXq8G6ZqIDj+Zcw4ZYDtyilLlNKJR/GcYQQQgghhBBCiBANZZh6MuCssu1NTdM+D1g/EWgB3OVb/wrvc9yDgXmHeLwxYY4Xzk3Aj8CngKaU2gB8B7ysaZrM0CCEEEIIIYQQteBoGKbeUBrjxcBw398RQC/gSaVUgaZpFc9nXwRYgKm+9alAqW/7vEM83hzgvjDbfw5c0TRttVKqC3AKMBI4GXgEuFApdbymaWWHeFwhhBBCCCGEEKLBNMZdmqYtDVj/SyllBJ5VSr0FlABjgRmASSlVMSvQdGCsUupmTdMOpqe7QmGV4wGglHJU3aZpmh34xbeglLoK7wzrVwFvHMIxhRBCCCGEEEIchKOhZ7whn+F6wAS0A0YAKcA5QGHAMhZIwttzXSc0TfsIKAA619Uxq3rn6U/56v2f6uvwYTnsTi4YeD0FuUX1nZUasfbDD9j83Tf1nY0gboeD6ZePx1ZYWN9ZqRGPPfQBb7/RsMrYbndwXPfx5OQcGWUMUs51YcNH77Pt+6/rOxtB3A4Hc68ch/0IuV7s+OI99k5tWGXscTpYccslOIuPjDI+kNr6XizeupW5txzy22cbreLsmZTmLazvbATRPC6y/30Lt+vIHPBpL1iKo3hdnR/Xlr8YR8nGOj+uaFwacmO8u+//u/AORS8EhoZZcgh+53iNUUqlhtnWBIgH9tXGMQ+kMK+Y37+Zw+iA9yYvWbCSCwZez0kZ53LjOQ+wd1dOtfGLC0u57/KnGZJxLqN7XcH07+b5923ftJPLT7mdER0vYETHC7h57ENs37TTv//2ix5jaJux/mVQi9FcctJNAJgijJx50XAmTvi25k+6jtmLitgxYzptz6x8nXzO8mVMv3w8P55+CgvuvA3Lvuxq4ztKSlj46EP8eMZIfr/ofHbOnunfl79+HX/ccyc/jz6TX8aczT9PPIo1P9+/3+1wsPy1V5h67mh+Hn0mfz10P9bcXAD0JhMZp57Gv199GXLMxiY3t4gvv5jOlddWlvHcOcs4rvt4msSdwmnDb2PnjurLuKCghAvHPkRq/Ei6tDufryfPDNq/v7Tmz1vOacNvo1ny6XRtf0FQvIgIE5defhqvvdT4yxjqt5wBVi7/l1OG3kJawqm0aT6at9/0Xh+OpHK2FxWRNWs6rc8Y5d+Wt2IZc68cx29njWDhPbdRfoDrxZLHH+L3s05h9rjz2D0nuIwPJi2P08ncK8cx6+Jz/dv0JhMtTz2drV9PqoGzrF/O4kJy508ndURlGRevXsqKWy5h0UXDWffordhzqi9jZ2kJG194kEUXj2DZdWPJ/SO4jPeXlsfpYNv7L7P0yrNZfNnpbHz2Puz53muyzmgiddjp7P6h8ZfxgdTm92J8u3YYY2LY8/dftXoODYHbZcFSuIqYpN7+bbaybWT/+xa71z5N7rZPcDmKqo3vcZWTt2Myu9c+zd6Nr1JetNq/T/O4yN8xhb0bXyNrzWPYyrYHxS3eN5esNU+we90z/sXlKABA6QxEJx5Hae6fNXvCDYDHbcNZthVjbCf/Npd1D5as7ynN/Jzyvb/jcVZ/E0Jz27Hum01p5kTKdn6Ns2xr2HD2whWUbv8El3WPf5spvjuOolX+d8GLw6Grw6V+NJTGuEEpdYJvGayUugN4GPgJKML7vvEpmqbNq7oAU4BRSqmoWsjXGqXUB0qpsb58jQdmAeXAZ7VwvAP6dcos+g/rTaQ5AoCi/GLuv/JZrr1vHDM2TqbLsR14+NoXqo3/8v3vYjAa+W3dFzz+zt28eN87bNu4A4CU9CSe/fABZmz6imkbvuTEkf14+LoX/XFfn/wEc7d/61969OnMyWcP8u8fOWYIv309B4f9UJ4YaHgyp/9Oer9+6CO8ZWwvLmLh44/Q7YorOevHX0jo1JnFT1X/qvkVb76GzmjkzG9/oM+DD7PijdcoyfR+KTpLS2lz5lmcNmkKp335NYaoKJa99Lw/7pbvv6Vg/TqG/+9jzvj6O0wxMaycUPk0RMthw9kxYzpuR8gTFY3KpM9/Z+Sp/TD76nFeXhGXnPcIjzx+JbtyfuH4Xp257OLqy/jOW1/DZDKybfcPfPTZw9x+82usX7f9oNKKjjJz6eWn8/Tz14dN+/wLhzNp4nTs9sZdxlC/5ZyXV8ToM+/hqmvOZue+n1m98UuGjaj8AXqklHPWjN9J7XuC/3rhKC5i6RMP0+nyqxj53VTiO3Ri+TOPVxt/7YTX0BkNjPj6R467/xHWvPkqpb7rxcGmtfWbyUQkJIRsbz50OLtmNv7rRc7c30k8vrKMnSVFbHrpYVpddDV9PvuV6Had+PfVx6qNv/1/r6IzGOn90U90uP1Rtn/wCuU7tx9UWnt//YbSTWvp+eqn9P7fD+ijY8j86HX//pQTR5A7bxoeZ+Mu4wOpze9FgFbDRrB96i+1fh71rbxwBebYDiidEfA2zvN3fEVc2sk063ofRnMzCnZWP/qgcM+vKKWnaZd7SGp5LoW7p+K0VXbAmKJbkdRyDDpDTNj4UQndad7tIf9iMCX595kTelBeuArN46qhs20YXKWbMZhboHTeJ3M9bhvWfXMwJR5HTKuL0UWkYM2dV218W/5CUDpiWl1IZOpJ2PIW4nYEj4bxOEtwWTJRenPQdp0hCp0xAVf5rho/L3HkaCiN8XhgoW+ZBdwIvAeMB84EYoGJ1cT9AogBzqqFfD0JZABv4n1e/SlgHdBX07Tt+4lXaxbOXsZxA3r41+f9upC2nVox7OxBRESauPrui9myfjuZm0P/4VstNub++jfX3T+OqGgzx/brxokj+/H7N3MBiI2PoVmrNJRSaBro9TqyMveGzceenftY9c96Ths71L8ttVkKsfHRrF3WuIfk7Fu8iCY9j/Wv7/5jAXGtM2hx0lD0pgi6Xno5RVu3ULJzR0hcl9XK7j8W0PXyqzCYo0jp0ZNm/QewY+YMANL7nUCLk4ZijI7GEBlJu1FjyF+7xh/fkr2XtN59iExKQm+KoMXQYZRkZvr3RzVJxRgbQ8GG9bV2/nVhxrRFDBp8rH/95x8W0KVrBmPGDiUyMoIHH72cNau3sGljaBlbLFZ++n4Bjzx+FTExUQwY1JPTzxzAV5NmHFRavft24aJxI2nTtlnYvDVvkUpiYgyLFzXuMob6LecJr3/N8BF9uODiEUREmIiNjaJzlwx/+kdKOecs+YfkHsf61/f+uYDYjAyaDfZeLzqOv4KSbVsoq+Z6sffP+XS67GoM5iiSuvckrf9AsmZPP+i0yvfuYffsGbS/cFxI+uYmqRhjYija2LjLuGjFIuK6HutfL/hnAeaWbUgeMBSdKYKWF1yJZccWrFmhZey2WSlYNJ+WF12F3hxFXJeeJPYeSO786QeVln3fXhKO7YspIQmdKYKUQcMo31X59R+RnIohOpbSf+t+CGxdqs3vRYAmxxxLzopljf7G0YHYSrdgis7wr1tLNmCMTCUqvhtKZyQubSgOWzZOW25IXI/HgbVkA3FpJ6PTRxAR3RpzXCfKi1YB3t7t2JT+RES3Rh3Gz3uDMR6dPhJHedZhn19D5LJmoTenV65bdqAzJWCMboPSGYhIOBaPowB3mBEJmseJy7KDiMTjUTojhsg0DFGtcFXpHbfl/0NEUm9Q+pA09OZ0aYz/B0rp6mypL/XeGNc07XFN01TAYtI0rYOmafdpmlaqadq3vu1/VxN/sW//lIBtd2uallFN+CGapo2tZl+Gpml3B6y/rWnaKZqmNdM0LdK3/2JN0+qttbl1Yyat2zX3r2/btIP23dr4183RkTRvnc62gOHlFXZu241er6NVQPwO3dqwbVPwl+fwDhdwUqtzeOXB97ns1vPC5uP3b+ZwzAldadY6PWh7RoeWbF5XL/cpakzx9m3EtGzpXy/JzCS+XTv/usFsJqZZc0oDGskVyrJ2oXQ6YgPix7drH9QDEChvzSriMio/vzannUH+urVY8/Jw2Wzsmj2T9L79guLEtWpN8dYth3t6DcK6tdvo0LGyjDasz6R7z8oyjo4206ZdczaszwyJu+XfXej1uqD4PY5pz4b12w85rep06tyaNasadxlD/Zbz4kXrSUyKY9iJN5LRbBTnjb6fXTuDn+45Esq5NDP4elG6Yztxbdv71w1mM9FNm1O6I/QaYNntvV7EtKiMH9e2nf/acjBprX3nDTpdcS06X49lVbGtWlPSyK8X5Tu3Ym7eqnJ913aiW1fWPX2kmci05kGN5Aq2PbtAp8PcrDJ+dEZ7rL6wB0orddiZlG5cg6MgD7fdRu6CmSQcd0LQMcwtWlOeGX7o6pGitr8XzU2aoDMYKNt1ZDdanLZ9GCNS/OsuWw7GyDT/uk5nwmBKwmkPbYy77PmACopvjEwP6hk/EGvJJnavf57sfydQlr84ZL8hogkOW/WPGzRGHkchOmNc5bqzEH3AiAClM6IzxOJxFoXGdZaAUuiM8f5t+ojEoIa707IdpXQYolqGxAfQGePx+B4HECKchjKbujhIpcUWomIqh8FYLTYSkuODwkTHRVNeZg2Ja7VYiY4NHs0fHRtFuSU47KzNU7BabPz69Wyatgh5bB6A37+ew+V3XBCyPSrGTFmJ5aDPpyFylpVhiKosJ7fViqnKEFBjdDTO8vKQuC6rFWN0TEhYlzX08yjeupUNEz9jwJPP+LfFtGiJOTWV3y44F6XTE9e2DYNvuT0oniEqCmdZ455kpbiojJiAumgps5LSJCEoTHxcNGWloWVcZrESFx9cxnFx0ZSWWg85rerExERRXNy4yxjqt5z37M5l1YrN/Pz7y3Tr0ZaH73+PK8Y9yawFb/vDHwnl7Cwrw2De//XCUM01INz1whAdg8taflBp7f1zAZrbTdNBg8lbtSJs/vTmKJyWxl3GbksZ+siAMrZZMcYlBIUxREXjtobWY7fNiiEquIz1UdG4beUHlVZks5aYUtJYds05oNMT1botba6+Izg9cxQuS+nhnl6jUBffiwZzFI5GXlcPxOO2oXSmynWPA70hOiiMTh+B5rGHxNU8DnT6yKBtSh+Bx3Nwowmi4rsRk9QLnSEGR3kW+TunoNObiUqoHG2pdCY0t+1QTqnB0zwOUMbKDR4Xqko5ojOBJ/QRS01zBn1eACgT+F7gpHmc2AuWEZU+strjK53RmwdxWGQ2ddHgxMXHBDW0zdGRWMqCv/zKS8uDGuyVYc1YqjTSLWXlREWHCxvJmMtO44lbXg2ZIX3lonXk5xRy8lkDQ+KVl1mJiYsO2d6YmGJjcQX8oNCbzbjKg28wOMstGKNCpykwhAtrKcdgDi7jst1Z/PnAvRxz0y2k9DzGv33FG6/icTg464dfGPXrNJoPGsyfD9wbFNdVXo4xJvzzYI1FQmJsUAMwOsZMSZWbOCUllqCGZIWYaDOlVcKWlpYTG2s+5LSqU1ZWTnx84y5jqN9yjoyM4KxRg+jVpwuRkRE88Mjl/LNwbVDj+0goZ2NMrL/xDL7rhSX4muwqt4RcA8B7vXBWuV54w0YdMC2X1cqGD9+l20237Td/bmt5SEOosdFHx/obz+DtvXZbq5SbtRy9ObQe6yPNuKuUsdta7m/cHyit7R+8gsfpoPenv9Lvyxkk9xvMxmfuDknPEB17+CfYCNTF96LLWo6pkdfVA9HpzUENM53OhMcd3PD2uO0oXehIF29DOTis5rajq9pYrIYxMhW9MQ6ldEREtyIm+QSsVWYY1zyO0IZqI6d0Ef7GMwA6A1rVhrfHATojVSkVpiGtOf2Ne3vhCowx7dEZq//3r3nCNOiFCCCN8UamXdcMdm7d7V9v26l10LBwq8VG1o5s2nZqFRK3VdvmuF1udm6rjL9l3Xbadmod9lgej4bdaic3Oz9o+29TZjPkjP5hG/GZm3fRIWDYfGMU17YdZVmVz0zFZWRQvLVyCKLLasWyZw+xGRkhcWNatMTjdlMaEL9425agoeiWfdn8cc9ddBl/Ka1HBN9NLd66ldYjT8MUF4feZKLdOWMo3LgBe3GRP0zJzh3Et2tPY9a9Rzu2bK4soy5dM1i7urKMLRYr27ftoUvXjJC47Tu2xOVyB8Vfs2oLXbq2OeS0qrNp4w56HNO4yxjqt5y792iLUsq/v+JvTdP8246EcvZeLyqH1sa2bkPJtsph4S6rFcvePcS2Dr0uRjdvieZ2U7a7Mn7Jtq3+a8v+0rLsycK6L5uFd97CzAtGs+zJh7EV5DPzgtGUZ1fO9VG6cwdxjfx6Ed26HdY9lWUU1bIN5ZmV5eK2WbFn7yaqZWgZRzZrieZxB8W3ZG7B7At7oLQsmVtIHXoaxtg4dEYT6aefS9nmDThLivxxrFk7iMqoHLJ9JKrt70VrXh4epytoKPyRyBiZ5htu7mWITMUZMCzc43HgdhRijGgSEtcQkYyGB2dAfKdtH8bI8CMYD0iBVmWTy56LKTI9bPDGSmdK9A43r1g3JuIOGDaueZx4XKXojAmhcY1xoGl4nMX+bW5HAXqTN6zbthdnyXrKdn5F2c6v0FwWrDlzsQfMcu9xFqMLGBYvDo1CV2dLfZHGeCMzYHhvVixc618/6fT+bNu4gzlT/8Juc/DRq5Np3yWDjA6hX2jm6EiGnN6f/70wCavFxqrF61kwbRGnneedhG3R/BVsWrMVt9uNpbScNx79kNj4mKC0bFY7c375izMuGB6Sfs7ePEqKyujeq95ewV4j0vv2I3f1Sv9680GDKc7czu4F83E77GyY+BnxbdsR1yr0JobBbKb5oMGs//QjXFYreWvXsOfvv2g94hQArLm5/HHXHbQdNZq2Z40KiZ/YqRM7Zk7HWVaGx+Vi208/EpmcQkR8gj++s6SUpC5da+Xc68rIU/vxx4KV/vWzRg9m/brt/Pj9fGw2O88//Rnde7SjU+fQMo6ONnP2OYN5+omPsFisLPxrDb/+8hcXXnLKQaXl8Xiw2ew4nS40TcNms+NwVN4l37M7l8KCUvr2a9xlDPVbzuMuP51ffvqD1Ss343S6eOGZz+k/sAcJCd4ehCOlnFP7nEDB6lX+9fSBgynN3M7eP+bhdtjZPOlT4tq0I6aa60XTgYP597OPcVmtFKxbw76//6TFsJEHTCs2ow3DJn3Lie9+xInvfkTPO+4lIiGRE9/9CHMT749za14uztJSEjo37jJOOP4EStat9K8n9TuR8l3byV84D4/DTtY3nxLVuh3mFqFlrI80k9RvMLu++gi3zUrJxtUULvmTJieNPKi0Ytp3JnfedFwW7zU5e9oPGJNS/EPb7fm5uMpKiO3YrdbLoT7V5vciQO6qFTQ57jj0piO7BzEytgN2S6Z/3RzXBacth/Li9WgeJyX75mGMTMMYGdoY1+lMmOO6ULJvDh6PA7tlJ9aSjUQlVI6u0zyuyl5fzY3mcfpvgFpLNuJxW9E0DUd5FmV5izDHVf5ecztL8LitmKJa1M7J1xNDVAvcATc8DNGt8TgKcVoy0TwuHEUr0ZmS/A3sQEpnxBDdGnvhCu9kbrZ9uCw7McR4b75FpY8kqvloopqdTVSzs1F6M5EpAzDFdfGn4bZmYzAfWWUqapYK7KUQ/92inF9rtUCL8osZP+xWvln4gf/1Zovnr+SVB98jOyuHrsd35JE37qBZK++EIJ++/jUrF63j9cneV44UF5byzO1vsHj+CuKT4rjxocsYee4QAGb//CcfvPAFOXvyiDCb6HJsB2586PKgnu4Z38/nnWc+5YelHwf1egF88fZ35O0r4PYnr6nNIuCltbU7HNBeXMTsa69m5OeT/K9x2bdsKSvfeoPyfdkkdelK73vvJzq9KQAbJ00kb81qBj3/EuB9n+rSl14gZ/lSTHFxdL/6WloNGwHA+s8/ZcNnn6CPDB5VMPrXab5jF7Pq7TfJWbYUj9NFXJs29LzhJpI6ey/sm6ZMxpafzzE33lyrZQDw2eDaSzsvr4gBva9m1YZJ/tduzZ29lDtve4NdO7Lp3bcr7390P60zvGX80vMT+fvP1fww1VvGBQUl3HjNC8yZtZSk5DiefOZazr9ohD/9/aW1YP4KTh9+e1B+Bg0+lmmzva+Qe/2VyWTvzef5l2u/jGtbfZYzwP/e+5EXn5uItdxG/4E9eO2tO2nR0ttQrKtyvnCuOnCg/8BRXMSCG65i6Cdf+q8XucuXsnbC61hzskno3JVj736AKN/1YvPkiRSsWU2/ZyuvF6teeZ685UsxxsXR5arraH5yZRnvL61AeatWsPKFpxn+5Xf+bVu/noytIJ9u19duGeeX1m4ZO0uKWH3XlRw7YbK/jItWLWX7h69hz8smtkNX2t38IJGp3nLJ+u5zSjespsvDL3vjl5aw9e3nKF69FENsHK3GXU+TEyvLeH9pOUuLyfzoDYpWLUFzuYhq1YbWl99MbAfvDY7dP36JszCfjCtuqdUyAGiW4Kn1Y1SnNr8XAf568D7anHk2zQaEPv5WlxbdPq9W03e7LORsfo/0Trf6X29mK9tK0Z7fcDmKMEW1IKnFaAymRABKchZgt+ygSZvxgPc94wW7f8JeuhWdIYr49OFEJfT0p79342u4q0xElt7pdgymRPJ3foO9bCua5kZvjCM6qQ+xKZWTEZbm/onbWUZCs1NrtQyKyzJrNf2qPG4b5bt/IrrFuf7Xm7mse7Dn/4PHVYY+ogmRKYP8Q83tRatw2/YRle69WaS57djy/sRl3YPSRRCR1AtjTPiRMGW7viEyZSAGs/dtLR5XOeV7fiG65VhUmJnWa0vJto9r96Jch1r0eKLOGqpZax6rl3KTxngNq+3GOMC7z3xGYkoCF14X2rNaXxx2J+NPvoV3f3yepCqTOtW02m6MA6z98AMiEhPpcG742eTrg9vhYNa1V3HSa28SmZhY68erzcY4wOMPf0CTJoncdFvDKWO73cEJva5i+pw3SU2t/TKuC0d7Odd2Yxxg48cfYEpIoO2Y82v9WAfL7XCw4PorGfDKW0TU8vWithvjADsnvY8xPpGmZzacMvY4Hay68wq6Pz0BY3ztXy/qszEOtfe9WLxtK8tffZmhE96t0XQPR203xgGKs2ehM0QTm9K/1o91sDSPi31b3qVJ2yvQV/OO8ppS141xAHvBMpQ+ElN83Y5gseUvRmeMDeoprwvSGD880hg/QtRFY/xoVxeNcVH7jXEh6kJdNMaPdnXRGBf13xg/GtRFY/xoVx+N8aPNkdQYb9nzyTprV+1a/Wi9lJs8My6EEEIIIYQQQtQxaYwLIYQQQgghhBB1zFDfGRBCCCGEEEIIIQIpdeT3Gx/5ZyiEEEIIIYQQQjQw0jMuhBBCCCGEEKJBUUdBv/GRf4ZCCCGEEEIIIUQDIz3jQgghhBBCCCEaFHlmXAghhBBCCCGEEDVOesaFEEIIIYQQQjQo0jMuhBBCCCGEEEKIGic940IIIYQQQgghGhSZTV0IIYQQQgghhBA1TnrGhRBCCCGEEEI0LPLMuBBCCCGEEEIIIWqa9IwLIYQQQgghhGhQZDZ1IYQQQgghhBBC1DjpGRdCCCGEEEII0aAopeo7C7VOesaFEEIIIYQQQog6Jo1xIYQQQgghhBCijskwdSGEEEIIIYQQDYo6CvqNj/wzFEIIIYQQQgghGhjpGa9hx6Wk1XcWjngnpRfUdxaOCqVOW31n4Yg3ZVtkfWfhiPfgMc76zsIR795/4us7C0eFZb8U1ncWjng6JT+La5/0A4qDJ682E0IIIYQQQgghRI2TW4BCCCGEEEIIIRoWebWZEEIIIYQQQgghapr0jAshhBBCCCGEaFiOgm7jo+AUhRBCCCGEEEKIhkV6xoUQQgghhBBCNCzyzLgQQgghhBBCCCFqmvSMCyGEEEIIIYRoWKRnXAghhBBCCCGEEDVNesaFEEIIIYQQQjQsR0G38VFwikIIIYQQQgghRMMiPeNCCCGEEEIIIRoUTZ4ZF0IIIYQQQgghRE2TxrgQQgghhBBCCFHHZJi6EEIIIYQQQoiG5cgfpS4940IIIYQQQgghRF2TnnEhhBBCCCGEEA2L7sjvGpeecSGEEEIIIYQQoo5Jz7gQQgghhBBCiIZFXm0mhBBCCCGEEEKImiY940cYu93BrTe9wJzZiykoKKFd+xY8+fSNnHrawP3GGzn8BubNXYrFvhCDwVstLh//CHPnLMFisZGWnsxdd4/nyqtH18FZNHyf3/cC//6zErvVRlxKIsOuPI8BY08LG3buZ98z66OvcdrtHDNiEOc/egtGkwmA/N3ZfPPUBLav2oDBaOTYUwYx5v4b0Bv0dXk6DZLd7uSB295jwdxVFBWW0qZtU+5/YjzDRvYKCXvvLe/w3Vfz/esupwujycCWnCkA3HTlq/w5dzXl5TZS0xK58Y5zuOSKU+rsXBqyife9wOZFlXX55CvOo381dXne598z21eXew731mWDry5nb93Jd89MYNf6zcQkxnP2XdfQc/j+rztHA4fdycv3vcOSP1ZSWlhG8zZNuf7BS+k/rHfYsO8+/Smzf/oDu83O8HNO4o6nr8Vg9F6TH7/xZZb9sQpruY3k1EQuuelczh43sq5PqcHa9OqTFK1ehsdmw5iYRItzLib9lLNCwuUumMXOyR/jKCpAZzSSePwJtL32dgxR0UHhrHt2sfzWy0kZcBKd7ny0rk6jQcud9hq2navxuGzooxKJ730Osd1HhA3rLM6mYN6H2LLWovRGYroNI+nEy9FcTvLnvod152o8tlKMCU1JGDCOqDah1/ajmdOex95/3yIqvhsprc4PG6Yk9y9KchegeZxExXcjqfkolK7yp72laDXF++bgdhShN8aS1PJcIqMz6ugMGj6PsxjL7h8wRGVgTh0Sst9ZthV70Qo0VzlK6dFHtSAyuT9K5/3eczuKsOf/jdueh9JHEpHUF6OUb8068jvGpTF+pHG53LRomcbMue/TqlU6v//2F5dc+CDLVk0mI6NZ2DiTJ/2Oy+UO2X7v/Zfz/oePEBFhYuPGTE45+TqOPa4Tx/fqUtun0eCNuOYCLnrqDowmE/u27eTNy++lRZf2tOrWISjchj+XMuujKdz88QvEN0nmw9ue5PcJEzn7zqsA+OapCcQkJfD0vMlYS8p4+5oH+POrXzhp3Oh6OKuGxe1y06xFCj/MeIbmLZswe9oyrhv/InOXvEnL1mlBYV9860ZefOtG//pt176BLmBo0613j+XVd28hIsLI5k1ZnDvyIbof05Zjjm9fZ+fTUA331WWDry5PuMJbl1tWrct/LWXWh1O4yVeXP7rtSX5/eyJn3XEVbpebj259nAHnn8EN/3uOLUvX8OHNj3J3+3dIzWhRT2fWMLhdblKbp/DOD8+T1qIJC2ct5ZFrXmDivAk0bRVcjye+9Q0bV23mi/lv43Z7uHf8k3z62hSuvvcSAC699TwefO02TBFGMjfv4uZzHqBjj3Z0PkbqMUCLsePpcMv96IwmyrN2sOahW4lp25GY9p2CwsV16UHPF97BGJeA21rOlndeZscX/6PdtbcHhdv6/mvEduhch2fQ8MX3OZeU4TejDEYcBVlkf/swpiZtiEgLroOa28m+7x8j9pjTaXL63aB0uAr3ePdpbvQxKaSPfRpDXBOs25eR+9tLNBv3Bsb4tHCHPSoV7v6FCHPzavdbSzdTkjuf1LZXYTDEkbtjEsX7ZpPQdKRv/xaK9k4npdUFmKJa4HaV1lXWGw1b3t/oTSnV7tdHphHV9Ex0+kg0jxNb3l/YC5cRmdwfTfNg3TcTU1xnzOmn4rZlY903E70pEZ0xvg7PQjR2Mkz9CBMdbeaRx64lI6MZOp2OM848kYw2zVixbGPY8MXFZTz91Ic8+/wtIfu6dmtHRIT37p9SoJRi29asWs1/Y9G0fYa/dxulUEqRt2tPSLjFP83khDEjado+g6j4WEZefzGLfpzp35+/O5vjTh2MMcJEXJMkugzqzd4tO+rqNBq0qOhI7n74Ilq2TkOn0zHi9D60ykhj1Yqt+41XbrHx649/c964k/3bOnVtRUSEEaisyzu2Z9dq/huLpu0z/L3b+6vLS8LU5cW+upyzfRfFOfkMuXQMOr2ejv2Opc2x3Vj6y+y6PJUGyRwdydX3XELTVt56PPCUvjRtlcbG1VtCwv41YzHnXX02cYmxJKbEc97VZzF1cuX1om3n1pj89dj7We3O3Ftn59LQRbdqg87oq8soUGDN3h0SLqJJGsa4hMoNOh22KuFyF8zCEB1DfE/prQ1kSm6FMvjqoO8/V3HotbRs/Rz00UnEHz8KnTESncGEqUkGADpjJIn9L8IYn4ZSOqLa9sEQn4YjZ//X9qOJpWg1On0kETHtqg9TuJyYxN6YItPQGczEpw6lrHC5f3/xvtnEpw0lIroVSukwGOMxSCPRz1m2FaWPQG8O31EFoDPEoNNHVm5QCo+zBACPswjNXY4xrru3fM3N0Eek4iwLvbaL/0Cn6m6pJ9IzfoTbty+fzf/upEu3tmH3P/LQ21x7/bmkpSeH3X/LTc8z8bOpWK12jj2uE6eeLsNOK3z95Fss+mkmTpudFl3a0+3EviFh9m7ZQY+T+/vXm3dqS2l+IZaiEqIT4jhp3GiW/z6PDn16Ul5SxoY/lnD6LZfV5Wk0Grn7iti2eQ+durTab7ipP/5Ncko8/Qd1C9p+/23vMeWL2disDrof0zbscPej1TdPvcXigLrcdXBoXc7esoPuQyvrcrOAuqxpWkh4TdPYuzmzNrPdKBXkFLJr227adAqtx5qmBZWlpmnk7MmjrMRCTJx3CPVL973Db1NmY7fa6dijHf2Hhw53P5ptee8Vcmb/jsdhJ7ptB5J6nRA2XPH61ax/6l7c5RZ0EZF0eeAZ/z5XuYUdkz+ix5Ovkz3r17rKeqORP+c9ytbPQXM5MDVpizkj9Fpq3/svhrhU9v3wJPZ9mzEmtyJ56DWYUjJCwrotRTgL92BM3v+1/Wjhcdsozp5FatsrKStYVm04py0Hc1zlSEWjOR2Pqwy3qxydPhKHdTduV2f2bHwFTXNhjutCQtPT0OmMdXEaDZrmcWAvXE5U09Nwlv6737AuWzbW7BmgOUEZMKcO2294j6OwJrMqjgLSGD+COZ0uLhv/COMuPYPOnTNC9i9bup6Ff6/i1dfvIisrJ2wab719P6+/eQ//LFzDgvnL/D3lAs5/9BbGPnQj21duYMuS1RhMoV9wdquNyJjK5xDNvr9tlnKiE+Jo37snf3/7O/f2OweP20PfUSPoOWxAnZ1DY+F0urjpylc475KT6dBp/8Oev5k0l/MuHoqqMgPn829czzOvXsPSRZv4e8Fafw+jgPMeuYVzH7yRzFW+umwMU5fLbZhjw9fltDYtiU1OYM4n3zBk/Bg2L17F1qVraN/3mDo7h8bA5XTx+I0vc9r5w8jo0DJk/wkn9+br//3M8QN74vF4+ObDXwCwWe3+xvg9L9zInc9ex9qlG1n+1xpMYa47R7P2199Fu2tup2TTOorXrkAZw39nxXftSf/J07Dn55I94xciU9P9+3ZM+pD04WcS0USGTIeTfPL1JA25BvveTf7nwatyleVhy1pL6lkPktqqJyUrppLz83M0v2xCUHjN7SJ32qvEdBmKKenofqSlQlH2LGKSemMwJew3nOZxBPXaVvyteey4NRdobqzFa0lrdw0oPbmZX1CSM5eEdJkvxV64DGNsR3SGmAOGNUSmE5txKR6XBWfpJnTGWAB0xgSU3oyjeA2m+O64rXtw27LRm5vWdvaPLjKbumisPB4PV1z6KCajkTfeujfs/ltvfoFXXrvLP2FbdfR6PQMHHUtWVg7vv/dtbWW5UdLp9bTr1Z2ifbn8OWVqyP4IcyQ2S7l/veLvyOgoPB4P7177IMcMH8hLS3/iub++obyklJ9f+ajO8t8YeDwebrnqNYxGI8++du1+w+7OymXhH2s575KhYffr9Xr6DejK3t15fPa/32sju42WTq+n7fHdKcqupi5HRWIrC1+X9UYDV73xGOsXLOaRIRcy97PvOHbkYBLSqn8W72jj8Xh44qZXMJoM3PXc9WHDXH77+XTs0ZbLht3CdWfczeDTTsBgNJCYEjy0VK/Xc0y/buTuzeP7T3+ri+w3KkqvJ75rTxx5uWT//uN+w0YkNyHx+H5sfPlxAMq2baZ41VKanR1+wizhpXR6Ipt3xVWWT+nqaaH7DRFENutCVJteKL2RuF6jcdtKcRZUPuqmaR5yp7+O0htIHrr/a/vRwmHdg71sK7EpB74pr3QmPG67f73ib6WLQKe8NzxikvujN8ahN0QT12Qg1pL99wIfDdz2fNzWPZjiux9SPJ0hGoO5BdacuQAopcOcNhy3dRdlO7/EUbIWQ3QbdProA6QkRLAaa4wrpR5XSmkBS7lSao1S6tqAMBlVwgQuswLCfRqw3aWUyldK/amUul8pFV/luFXTLFNKrVJKXR0mj/N8Yf4XZl9LpZTHt39IwPZopdRTSqlNSimrUmqfUmq+Uuqqmiq7mqZpGtdd/RQ5OQVM+fYFjMbQxnZJiYVlSzcw7qIHadVsJAP7eYdGt211Bn/+sSJsum6XW54Zr4bb7SFvV+izm03bt2bPpm3+9d0btxGbnEh0QhzlxaUUZucy+OJRGE0mohPiOOGckaz/Y3FdZr1B0zSNO69/i9ycIj6cfF/Yuhzom0lz6X1CZ1q3Sd9vOLfLTeY2eWY8HI/bQ36YupxetS5vqqzL4B22fsunL/PsX99ywwfPkp+1l1Y9OoWkczTSNI1n73iTwtwinv3oQf/s6FVFmCO467kb+HnV53y75CPiEuPo1LMden34tyu4XR55Znw/NLcr7DPjoeHc2LK98yQUr12BLSebJVePZdFlo9j941fkL5zPijuurO3sNk4eN84wz4ybUlqzv2mQNU0jf+YEPOVFNDnzPpReBmoC2Mq243IUsnvjS2Stf47SvD+xFq9j778TQsIaI1Nx2ir//Ttte9EZYtAbotAZzOiN8UdFr+Khctv24nGVYdk1xduILl6DqzwTy+4fDxhXw+N/ZhxAb0oiqukZxLYeR1T6qXhcpegimtRi7o9Cqg6XelLTPePFQH/fchYwG3hfKXVxlXB3B4SrWKrOILbRt/1E4FJgri/eCqVURphjV6R5DrAK+J9SalyYcGXAuUqpquOqLgQsYcJ/B1wLTABOB24F1vr+bpBuvvF5Nm7M5PufXsVsjgwbJj4+hsys31i8fBKLl0/ip6mvA7BwyUT69utOTk4BX381g7KyctxuNzOmL2TKV9MZMrRPHZ5Jw1SaX8Sy3+Zht1jxuN1s+HMpy3+bS4d+oUNy+5w9nIXfTWfvlh2UF5cy/f0v6Tfa+xqYmMR4kluk8+dXU3G73JSXlLH4p5k06xT++f6j0X23vsvmTVl8/u3DmM0RBwz/7ZdzuWBc8PNceTlF/PjNAixlVtxuN3NnLueHb/5g0Ek9ayvbjUZpfhHLf5uHvdxXl/9ayvLfq6/L/3w/neyt3ro88/0v6Tu68pVGezZtw2l34LDamPPJN5TkFfjr+tHupXvfZse/u3jxi0eJ2E89zt2bR252PpqmsXbpRj597Sv/TOoFuUXM/GE+5RZvPf5n7jJm/jCfXoPkUQAAR1EhuQtm4baWo7ndFC5fRO4fs0noeXxI2Jx5M7Dl7kPTNGw52ez44gMSfBO1pY88m97vf8Vxr3/Mca9/TNNTR5HYqz/dH3+lrk+pwXGXF1G26Q88Diuax401cwWWTX9gbtkjJGxM5yHYszdh3bkKzeOmZMUv6M2xGH1D0fPnvIejIIvUsx9CZzjwtf1oEZPch2ad76Jph5tp2uFmYpL6EhnXidS2V4SEjU48jrKCZThtOXhcVor3zSMm8fiA/cdTlrcQt6sMj8tKae7fmOPkBqkxtjPRLc4jqtloopqNxhjbGYO5Jeb00NdEOsu24HGVoWkaHmcpjsJlGAImfHM7CtA8LjSPC0fxGu+EbrEdQtIRYn9q+lakS9O0fwLWZyulBgCjgS8Dtm+qEi4cS5Uwvyql3gcWA58AVceh+tP09bL3xtuI/6JKuPl4G/gjgcCxmBcCPwP+GwdKqQ6+cOdrmvZNQNgpquoDqQ3Ejh17+fCD74mIMNGq2an+7W+/+wADTzyOY7ufz8q1X9OqVTrp6ZVDSG02BwBpaUkYDAaUUnzw/rfcfONzeDwarVqn8/Krd3L2qJPq/JwaHAV/TpnK10++icejkdQslTH3XU/PkwdQsCeHZ8++hgd//h9JzVLpemIfhl15HhOuvBeHzcGxIwZy2s3j/Uld9fqjfP/Ce8z6+Gt0Oh0d+h7DmPvCD2E92uzamcPEj6YTEWGkZ5vL/dtffOsG+g3sxknH38z85RNo0dJ7F3rpoo3s2Z3PWWOqDO9Tis/+N437bn0Pj8dDi1apPPni1Zx6Vr86PJuGSSn46+upfP3Um2i+unzOfdfT4+QBFO7N4bmzr+GBn/9HYtNUugzqw8lXnseEK+7FaXdwzIiBnHZTZV1e8sts/vl+Gm6ni7a9unPD/56rnKX9KLZ3Vw4/fj4NU4SRs7pXlte9L93EMSd045ITb2TSH++Q3iKVrMxsnrrlVQrziklrlsIND11GvyHeH9dKKX747HdeuvcdPB4P6S1Sue2paxh8WvgJyo42SsHeaT+y5b1XwOMhIjWdtlffQnK/E7Hl7mP5zeM5fsJEIpukUb4rk8zP38NVVoohJpbEXieQMf46APQRkegjAp7DjTSjM5kwxifW16k1IIrS1dPIn/0uoGGIbULSSVcR1a4frpJcdk+8hebj38IQ1wRjUnNSTr2D/Nnv4rYWY2rSltSzH0LpjbhKcihbMx30Rnb9r7KRmTzsBmI6H92/MXQ6E+gqr5tKZ0IpA3pDNC5HEXv/fYOmHW/DYErAHNuRuCYnsm/bh2geF1Hx3YhPq7wZHZ82FI/bwp6Nr6F0BqLiexAf5l3aRxulMwS9i13pjGhKj05v9vaYZ31HdItz0Rli8DiKsBcsQfM4UDoThqiWRCRWTprpLNuCs3QTaB70kelEpZ+GUuFHMonDVI+znNcVFW4W3MNKSKnHgZs1TUupsn02UKJp2jm+Hu3twFmapoU+lFgZ51Ogu6ZpIdPEKqWuB94FumiatrG6NJVSU4CemqZ1Cdg2D8gDygGdpmnjfNs7AJuAUXgb5EM1TZunlOqDt/E/WNO0Pw6mHByepTVToKJa728sqO8sHBXOa2Or7ywc8aZsCz9yRdScvk2c9Z2FI969/8jrkupC1tz8+s7CEc8zZ119Z+GIV1i67cCBxH9Ssu3DI6YF2+HUj+usXbV52pX1Um41PoGbUsrgW+J8w8RPAn6oetyAcBXLweal4qWrB+oOaIW3kR7OZGCUUsrsW78Ib6O7avhNeIeuv66UOkUpJb+chRBCCCGEEEL8ZzXdGE8GnL6lGJgIvK1p2udVwv0UEK5iefQgj1Exg1jVd45UNPATlVK3A8cDz1eTxkzADpzpW78A+KpqIE3TSoBrgE7AdKBEKbVAKXVNQx2mLoQQQgghhBCN3lEwgVtNPzNeDAz3/R0B9AKeVEoVaJr2REC4O4A/q8Tdc5DHqK64fqqyfpumaQvCBdQ0zaWU+g64UCm1CegMfA0khQk7WSk1Azgb73PqpwAfACfj7VEXQgghhBBCCCEOSW1M4LY0YP0v36zlzyql3grYvqVKuEPR3Pf/fVW2VzTwU4GHgJeVUvM1TVtVTTpfAb8Be4E/NE3bo5QKaYwDaJqWj3fSuE985/M+cIVS6vn9pC+EEEIIIYQQ4jBoR8FA5Bp/ZjyM9YAJaFdD6Z3i+//CKtu3aJq2VNO03/AOPy+h+mHq4J1VvRC4gTBD1KujaZoTeM232vlg49Wkhx+cwJtvfHnggHXIbnfQo+tYcnKOjMnVfn7tY+Z+/n19ZyOI0+Hg6TOvojS/qL6zUiOeefRzPpjwc31nI4jd7mTQsTeSl1NU31mpMb+89jHzJjasuuxyOHj2rCOnLr/79KdMeb/q4Kz65bA7uXDg9RTkFtV3VmpE5ufvsfvnr+s7G0E8TgfLbrwER1FhfWelVhT+OZHi5XV/jS6Y/zElq6fV+XHrStHe6ZTk/lXf2QiieVzs2fQabldZfWelRtgLluAoXlvf2QiiaW4sWd/icVvrOyuigamLxnh33/93/deElFItgEeAuZqmbaounKZphcALwKlKqbAvYdU0zQM8C/wCfFvN8WIDJnkLVPESwaq987UuN7eQSRN/45prx/i3zZm9mB5dx5IQM4hThl3Pjh17q41fUFDMeWPuITH2RDq0OYuvvgz/hff0k/8jQt+H2bMWhexzOJz06DqWtq3O8G+LiDBx2RVn8/KLn/2Hs2sYSguKWPLzLAaeX3l+m/5ZwdNnXsVdvc7mzcvvoWBP9R+9paiED299grt7n81jw8ezdOoc/7783dnc2m0kd/ce5V+mvTvJv//d6x4K2nfHMWfw3GjvK3eMJhMnnDOSWR9NqYWzrlt5ucV8O2ku46+qfK/nH3NXMejYG2mTfB7nnvoQu3bmVBu/sKCUKy54lrYp59O709V8P2W+f5/D4eTqi5+nT+draBo1ir8XrAmK+/LTk2kZN4Z2TS7wLzu2ZwMQEWHkokuHM+HVhtV4PVxlBUUs/WUWA86rrMv//rOCZ8+6int6n82EKw5Ql4tL+OjWJ7i3z9k8MWI8y34Nrsu3dx/JvX1G+Zfp71XWZZfDwddPvMHDgy/gwQHn8r+bHqVoXx4ABpOJfueMZPbHjb8uF+YV8/s3cxh9aeWrJJcuWMmFA69naMa53HzOA+zdVX1dLiks5f7Ln+bkjHM5p9cVzPhunn+f0+HkwaueZUzvKxmQdibL/1odEn/T6i3cMOo+hrUZyxndxjHlA+9NAVOEkTMvGs4XE8J+vTUqzuJCcuZOJ33kKP+2olVLWXbjJfx93nDWPHQrtpzs6uOXlrD+2Qf5+/wRLLl6LDnzZ/r3eZxONjz/MEuuOY8/R51I0ZoVYdPwOJ0su/ESFl9Z+d2rM5pIG346Wd9PChunMXOXF1O2YS6xPSuv0dadq8j67CZ2TDif7G8fxlVSfb1220rJ+eU5dky4gF0fXUPZxsprtG3vJrK/f4yd745j5/uXkvPri7gslTfy43qPpnjxN2juI+9NCG6XBUvhCmKS+/q32Uq3smfTa+xa8zj7tn6Iy1H9zR23q5zczC/YteZxdm94CUth5eBMu2UnOds+Jmvd02Ste4bcHZNxO0v8+4uyZ7Nz9SPsWvuEf3HZveWudAZiEntRkhP26c5GxeO24izbgjG2sr/MZd2DJetbSjM/pXzvb3icpdXG19x2rPtmUZr5GWU7v8JZtjVsOHvhckq3f4TLujvoOOV7f6M083PKdgV/vymlxxDTEUdR6HVc7IdO1d1yAEqpU5VSm5RSW5RS94fZH6+U+kUptUoptU4pdUW4dEJO8TCKZX8MSqkTfMtgpdQdwMPAT5qmBX5TdgoIV7EcWyWtaN/2/kqp05RSTwErABtwMCf3LlAA3F1dAE3TJmiaNlrTtLxqgnQCtiqlnlZKna6UGuKbHO59YCWhz73Xus8/m8qppw3AbPZO7J6XV8QFY+/l8SeuJztvNsf36sK4ix6sNv5tN7+IyWRg197pfDrxKW656XnWrwu+0GzdmsX3382madOUsGm8+vJEUlNDR/RfeNFIvvj8V+x2x384w/q3+MeZdD2xD6bICADKCov56LYnOeOWy3j+729p1b0jn9z1bLXxv3n6bfRGA8/Mn8KlL9zH10+9xd4tmUFhXvjne15e+hMvL/2JU2+4xL/9hvef8W9/eelPtDmuK8eecqJ/f68zhrL4p1k4HY27jL/+YjYnj+yF2ewt4/y8Eq666Hnue/QSNuyexDHHt+f68S9VG//BO97HZDKwJvMz3v7kTu6/7T02rd/p3993QFcmfHwHqWnh3w189thBbM2d4l9at0n37zvn/MF8PWkOdnvj/yG4+MeZdKlSlz++/UlOv/kynv3rW1p268hnd1dfl7/11eWn5k9h/Av38U2Yuvzcwu95cclPvLjkJ0ZeX1mX53/xI5mrNnDf9+/xxNzJmGNj+P7Zd/z7e50+lCU/zcLVyOvyb1Nm0X9YbyJ8dbkov5gHrnyWa+8bx7SNk+l8bAcevfaFauO/fP+7GI1Gpq77gsffuZuX7nuHbRt3+Pcf07cbj719F8mpoXW5KL+YOy58jNHjT+X3jZP5etEH/veSA5wyZgi/fz0HRyOvy/tm/05irxPQR3jL2FlSxIbnH6b1JVdzwqRfiWnfiU0vPVZt/K3vv4rOYKTfZz/R8c5H2freK1h2Vr48Ja5rTzre8QjGxLBPqgGw+4fJYd813mTwCHLmTMPjbNz1uKqy9XMwt+mFzuAtc7e1hJypL5DY/2JaXv8FprT25Pz2crXxC+Z8ADoDLa/9lCan3kH+nPdx5Huv0R5bGbHdT6HFlR/Q4sr/oTOayZtR+SSjIToJY1ILyrctqd2TrAeWguVExnVCpzMC3sZ57o5JJKQNp0W3hzCZm5O3s/qblIW7f0EpA827PkByq/Mo2P0TDpv3hqrHbSUmqQ/NOt9Nsy73oNOZyN8VfGM5KqEHLbs/5l8MEUkB+47BUrgCzeOqhTOvO67SzRjMLfzvEve4bVj3zcKU2IuYVuPQRaRgzZ1bbXxb/t+gdMS0upjI1CHY8v7CXeUGicdZgsuSidJHBW1XOiPGmA5EJPUlHGNMO1xlm9E09388S1HXlPcF8m8DpwFdgYuUUl2rBLsJWK9p2jHAEOAVpZTpQGnXdGM8Hu/w8YXALOBG4D1gfJVwLweEq1iq3r7v7Nv+JzAJ74RprwDHaZq2gwPQNK0MeAPvJG2tDvN8tgIfAiPwzgz/G3A98DEwTNO0Or9izZj2NycOrvyx9eP3c+jarS3nnjecyMgIHnnsWlav2szGjZkhcS0WKz98P4fHnryemJgoBg46ljPPGsykL34LCnf7LS/yzHO3YDIZQ9LYvn03X076nXvuuyxkX4sWaSQkxrHonzUh+xqT9X8soX2fnv71VTP/Ir19a44bORhjhInTbhzPnk3b2LdtZ0hce7mNVTP/5IxbLiMi2ky7Xt3pPrQ/S36efcj5yN+dzdZla+l79nD/tsT0JkTFxZC5auPhnVwDMWfGcvqf2N2//ttPC+nUpSVnjRlIZKSJux+6iPVrMtm8KSskbrnFxq8/LuTeRy8hOsZMvwFdOeWMvnw72fvlajIZufbms+k3oCt6/aFf4pq1SCEhIYZli6sdfNNobPhzCe17V9bl1bP+Ir1da4711eVTD1CXV8/8k9NvuYyIKDNtj+9O9yH9WfrLwdXl/KxsOg/sTWxKIsYIE8eddhJ7t1ZeuhPSm2A+AurywtnLOG5AD//6vF8X0qZTK04+exARkSauuvtiNq/fTubm0MFhVouNeb/+zTX3jyMq2swx/boxaGQ/pn3jrctGk5ELrhvFMf26oQtTl79670f6DT2ekWOHYoowEh0TRUbHlv79qc1SiI2PZt2yxl3GhcsXEd/9WP96/sIFRLVsQ8rAoehMEbS66EosmVsozwr9aeC2WclfOJ/Wl1yF3hxFfNeeJPUdSO7c6QDojEaan30+8V17onT6sMe37dtDzvwZtBg7LmRfREoqhphYSjcdWe+ntmYuJ7J5N/96+ZaFmJJbEt1xIDqDiYQTLsSZm4mjIPQa7XHasGxZSOKAi9GZzEQ270pU2z6UbZgHQFSbXt50IqLQGSOIPfZ07Hs2BKUR2aI71u2HO7VQw2Ut/ZfI6DaV68XrMEamEZXQA6UzEp8+DKd1L05bbkhcj8dBeck64tOHo9NHEBmdgTmuC+WFKwEwx3UiKqEHOn0kOp2J2OQTsJcf8Oeyn8EUj05vxl7+nwey1iuXNQu9uWnluiUTnSkRY3QblM5ARMJxeBwFuB1FIXE1jxOXJZOIxF4onRFDZDqGqFa4yrYEhbPlLyQiqQ9UeSuzPqIJxtgO6IyxYfOmM0SDLgK3rfpRJaKKhjObel+8j0Rv0zTNgfcR51FVwmhArO+NWzF4O4UP2Fassca4pmmPa5qmAhaTpmkdNE27T9O0Ul+YzCphApf2AWldHrBdr2lakqZpAzVNe17TtOIqx61Ic2qYPD2paZpR07SdvvUhmqaN3c85rPWlNc+3Xqhp2qOapvXTNC1Z07QoTdM6+86pXh6OXrtmCx07tfavr1+/jR49O/rXo6PNtG3XnA3rtoXE3fzvTvR6PR07VsbvcUwH1geE/e6bWZhMRk47fWDY499x68s89fSN/p75qjp3zmD16s2HfF4NyZ7NmaRmtPCvZ2/dQfNObf3rEVGRpLRsyt4toV9yOTuy0Ol1QfGbd2oTEvbxEeN55ORLmPTQy5QVFldNBoDFP82iXa/uJLdID9qe1rYVezaFfr6NyYZ1O2jfobl/fdOGnXTtUfkDJSo6ktZt09m0IbSRuHXzHvR6He0C4nfrkcGm9Qf/A2Lmb0vo0vwSTup1M5998HvI/g6dWrB+zfYwMRuXkLq8ZQfNqtTl5JZNyd4aWpdzw9TlZp3akF2lLj95yngeG3YJXz4cXJdPGHMq21esozgnH4fVxrJf59BlUO+guGltW7G7kdflbRszadWusi5u37SDDt0q67I5OpLmrdPZvim0Lu/cthudXhcUv0O3NmzfdHA/oNcu20RcQgzXnnE3p3e9hHvGPUF2VvCPvIwOLdm8rnHXZcuOrZibV95Tt+zcTnSbymlo9JFmItObU74z9Dyte3ahdLqg+NEZ7bHsOvgy2frB67Qedy06U0TY/VEtWmPZHn4oa2PlyN+BMbF5wPouTCmV9VpnjMSQkI4zP7ReOwv3oJQuKL6pSZuwYQFsWeswJgf3mRiTWuDIzfyPZ9HwOG3ZGCIqRx06bDmYIiu/43U6EwZTEk576ONDLnseCoUxIL7JnO7vGa/KZsnEGBn8FmBryUay1j3N3k1vUJof+hiiMaIJTlv1jzo2Bh5HITpjfOW6sxC9qXIEgNIZ0Rli8ThDHwfwOItBqaD4+ojkoJ5xp2U7SukwRLUMiX8wdKYEPI4jY36lo0xzgh+5zqJyUvEKE4AueN8Qtgbvm708B0q4Lp4ZFzWoqKiUmNho/7qlzEp8fHRQmPj4GEpLLSFxy8rKQ8PGxVBWVu7f/8jD7/Dya3eGPfZPP8zF5XIx6pyh1eYvNjaK4qLqn8VpDKylZURGV04VYC+3Yo4JLrfImGjsltBJOBzlViKrhDXHRGMv94aNSYjn7ilv8fjMidzz9QRsFiuf3xt+COuSn2fRb9SIkO0R0WbKSxr3JCslRRaiYyvLuLzMRlx88HCvuLgoLKWhZWyxWImNCw4bGxdNWdnBTYpy1rkDWbB8Amt3fs7Lb9/Eq89N4Yevg5+Ti441U1IU+m+osbGWlhFRtS7HhtZPW5i6bA9Xl2Mrw8YkxnPnV2/x6IyJ3D1lAnaLlYn3Vdbl1IzmJDRN5bGTL+b+E85h37ZdjAx4JAMgMtqMtbRx1+XSYgtRMZVlbLXYiK5SxjFx0ZSHqZ9Wi5WY2OC6HB0bRXmYzyOc3L15/P71HG5/+lp+WP4JTVul89j1wY93RMWYKStp3HXZbSlDb64sJ4/NiiEqJiiMPioat7U8NK7Vir5KWEN0+LDh5C1cgOZ2k9J/cLVh9OYoXJbG/b1XlcduQZkq67XmtKIiguuqzhSFxxFaVw8lrCM3k+JFX5N0YvBoO53RjMfeuOttOB63DZ2u8qaO5nGg0wd3bih9JB536GMPHo8DVSWsTheJ5gkN67BmU5Izl4SmlXNZRCf0oGmn22ne9UGSWoymeN+coGfOvceOwOO2Hda5NRSaxw4qYGSnx4XSVRkprDOBJ/TxHU0LE1YZQXP60nZiL1hKRNIJh50/pYxhPzNRDaXqbFFKXauUWhqwXBuYkzC506qsj8T7GHMz4FhgglIq7kCnKI3xRiYxMY6ygIZ2dIyZkio/tEpKLMRW+TEIEBMTFRq21EJMjPdL88nH3+eScafRpk3VGz3eBtAD97/Fa2/es9/8lZaWE58QfnhOYxEVFxPUOImIMmMrC/7hZrOUBzVyKpiizNgsYcJGecNGRJtp1b0jeoOeuJREznvoJjb+vQxrWfDnsnXZWkryCoOeF69gt1iJiosJ2d6YxCfGBDW0o2IiKS0J/qFWWmoNarBXiI42U1oaXMZlpeXExISbazFUpy6tSG+WjF6vp88JXbj6pjOZ+sPfQWEspVbiEkL/DTU2UXExQTeNqqvLkWHqckS4ulxWGTYiqrIux6Ykcu5DN7Hp72XYfHX5m6fewmV38Mxf3/Dikp/oOXwg71//cJVjWzHHNu66HBsfE9TQNkdHYqlSxpbS8qAGe2VYM5YqjXRLWTlRYT6PcCIiTQw+vT9dj+voGxJ/EWuWbAhqfJeXWYmJa9x12RATG9R41kWacVmDr5lua3lQg72C3mzGXR4c1lUePmxVbpuVzM/epd21t+8/nLUcQ3Tj/t6rShcRgxbQeFZGM5ojuF57HOXoTKF19WDDOov2su/HJ0kaclXQkHgAj9OKLqJx19twdHozHo/dv650Jjye4Mav5rGj04c+ZqrTmdDc9qBtHo89pPHotOeTu/1TEpudQWR0hn+7MTIVgzEOpXRERLcmNmUA5cXBj1dobnvIzYHGRuki/I1nAHSG0Mavxwm60EcxlQoTVnP6G/f2wuUYY9pXOwz9YGiaM7TBLxoETdM+0DStd8DyQcDuLCBwOEQLvD3gga4Avte8tgDbOYg3b0ljvJHp3rM9m/+tHOrVtWtb1gQMC7dYrGzbmkWXbm1D4nbo2AqXy83mzZXx16zaTFdf2LlzlvD2W1No1WwkrZqNZNeufVxy4YO8/OJnbNm8kx2Zexh20jW0ajaSC8bey969ebRqNpLMzMq6uHFjJj17dgg5dmPSrGMbcnZUzo6Z3q510FBae7mNvF17adq+dUjc1NYt8LjcQfF3b9oWNizgvRsHIffWFv80k2NGDAzb4N+3bWfQUOPGqGv31mzdUllGnbq0ChoWXm6xkbltL526hE730K5DM9wuD9u2VNa7dWu206nr4Q0ZU0qhacEfwOZNWUHD5hurkLrcvnXQIw4VdTm9XWj9bOKry7lV6nJ6NXVZ+W4aVxTl7k3b6Dt6BNHxcRhMJk68eBQ712wKGsq+b9vOoEdAGqP2XTPYtbWyjNp0as2WgGHhVouN3TuyadMptC63atsct8vNrm2V8bes206bTtVcL6po17VN0K16pSo+g8r6nLl5V9Cw+cYoqnU7rLsrRwdGt2qDZXvlM5xumxXb3t1EtQo9T3OzlmgeN9Y9lfEt27cQ3fLAZWLdk4U9Zy+rH7iZRZeNYuPzD+EozGfRZaOw7ascyluetSNo2PyRwJTSGmdR5TXWlNwyaNi4x2nDVZwdMrwcwJjYDM3jwVlYGd+RlxkU1lWSQ/Z3jxLf73xiuoSOtnMWZGFqklEzJ9OAGM3puOyVcwabIlNxWCvnN/Z4HLjsBRgj0kLiGiJS0PDgDIjvsO7FFDAU3eUoJGfbx8SlDSU68bj95sV7zQ7+7nPaczFGNg0foZHQmZK8w80r1o2JuAOGhWseJx5XCTpj6ISMOmM8aFpQfLejAL3JG9Zt24OzZB1lO7+kbOeXaC4L1pw52ItWhaRVHY+jCJ2p+skiRRUNZzb1JUAHpVQb36RsFwJV3/24ExgGoJRKwzsR+AGfxZPGeCNz6mkDWbBguX991DlDWbd2Kz98Nwebzc4zT31Ij54d6Nw5IyRudLSZ0ecM5cnH3sdisfL3X6v45ef5XDLudACmzXyH5au/YvHySSxePolmzVJ4+90HuP7G8+jWvR1bd0z173vvg4dIS0ti8fJJtGzp/SLYvTuHwoIS+p3QI+TYjUnXE/uydUnlqyd6Dh/A3i2ZrJzxB067g2nvfkGzjm1Iaxv6IyQiKpJjRgzkt7c+x15uY9vydayZs5A+Zw8DIHP1RvZt34XH48FSVMJ3z71D+z49g4YOO2x2Vs74g36jTglJv2hfHpbiUjKOqZdX3NeYk0f2ZuEflXfkTzv7BDau38nUH//GZnPw6nNT6No9gw6dWoTEjYqO5PRRJ/DSU19SbrGxeOEGpk9dzNiLKn/Q2e1ObDbv3W2Hw4XN5vA3UKb9soiiwjI0TWPFkn/56J2pnHpmP3/cvbvzKSoso1ffTrV1+nWmy4l92bo0oC4P89blVTO9dXn6e/uvyz2HD+S3CZV1ee3chfQ+6+DqcqvuHVny8yyspRbcThd/ffUL8anJxCR6n8Ur2pdH+RFQl/sP782KhZXvsz3p9P5s27iDuVP/wm5z8PGrk2nfJYOMDqE3i8zRkZx0en/+98IkrBYbqxev549pizj1vMq67LA7sfvqstPpwh5Ql8+4cDgLfl/Iv2u34XK6+OTVrzimX1di472jDXL35lFSVEa3Xo27jJN6n0DxupX+9eQTTqR853by/p6Hx2Fn55RPic5oR1SL0JsY+kgzyScMZseXH+G2WSnZsJqCxX/SZGjlK7s8Tgceh7fHUXM58TjsaJpGdOs29PnoO457/WOOe/1j2t98H6b4RI57/WMiUlIBsOfn4iorIbZTt5BjN2bmNr2wZVXW66h2J+DI34ll8994XA6K/pmCMSUDU1LoNVpnjCSq/QkULZyMx2nDtmcD5VsXE9NlCACusnyyv3uEuGNOJ67nqSHxAWxZazFnHB92X2Nmju2IzVJ5s84c3w2nbR/lxWvRPE6K983BaE7HGNkkJK5OZyIqrivF2bPxeBzYLTuwlmwgKvFYAFzOYnK2fUxs8gnEJvcLiV9evB6Py4qmadjLd1Ga9zfmuC7+/S5nMR53ORGH+Sx0Q2GIaoHbVnmDwxDdGo+jEKdlO5rHhaNoBTpTEnpTQkhcpTNiiG6NvXC5dzI32z5clh0YYrzTWkWln0ZU8zFENRtNVLPRKH0UkSmDMMV5J9XWNM07G73mAd/fgTOne1wWNI8dfWRq7RaCqHG+SbtvBqYDG4CvNU1bp5S6Xil1vS/YU8AApdQaYDZw337e2OWnqvYIif/G4VlaqwWal1dE3+MvYd2m7/yTqM2etYjbb32JnTuy6duvG//7+DEyMpoB8MJzn/DnHyv45bc3Ae97xq+96ilmz1pEcnI8Tz97MxdeHP7LsGPbs3n3g4cYNjz0oj5/3jKuuPRRtu381b/tlZcnkr03j5deuaOmTzvI+xtrd+KLssJiXjj3Rh757WP/K6E2LVzON8+8TeGeHFr37Mwlz9xFcnPvpCszPpjM1mVrueH9ZwDve8a/fORVNi1cTnR8HGfdcSW9zzwZgGW/zuWXNz6hrKCIyOhoOg04jlF3Xk1ck8q7pMt+ncvPr33M4zM/9/d0VZj98TcU5xYw5r7rarUMAM5rU3vPjeXnlTDihNv5a827/tebLZizkgfv/IDdO3M5rk9H3vjgVlq29t7oeePFb1j013q+/Mn7+qLCglLuuP4tFsxZSWJSLA89dSljLjjJn36fzteQVeU95Ys3fEDL1mnccNnLzJ+9ErvdSdPmyVx+7WlcfeNZ/nDvvPY9+7ILeeKFq2rt/CtM2Va7wwHLCot5aeyNPPRrcF3+7llvXW7VozMXB9TlmR9MZuvytVz/nq8uF5cw+ZFX+XfhcqJ8dbnXGb66/Ntcfg2oyx37H8fZd11NXIq3LluKSvj+uXfYtHA5LqeLpu0zGH3vtbTu4W0Yzvn4G4rzCjjn3tqty32b1O5rvYryi7ls2K18vfAD/+vNlsxfySsPvkd2Vg7dju/Iw2/cQdNW3rr82etfs2rROl6d/ATgfc/4M7e/wZL5K4hPiuOGhy7jlHOH+NMf0/tKsqu8p/y7JR/50/v+09/49LWvsFvt9OzblbtfuJG05t4f8pPe/o68fQXc9uQ1tVoG9/4Tf+BA/4GzpIgVt19Jr3cn+19vVrRyKVs/eA17bjYxHbvS8dYHiUzz9ujt+uZzStavpttj3ldvOUtL2PzWcxStXIoxNo7Wl15P6kmV83EsueY87FXeU977g6/96VUoWrOCf197ir4fV74uKuv7L3EU5tP2qltq5dwDZc3Nr/VjVHBbS9gz6Q6aX/6O//Vm1p2ryJ/7Ae6SXEzpHUg55VaM8d56WLT4G+y7N5B2zqPe+LZS8ma8hW3nKnTmWBIHjiems/caXfTPVxT98xXKGHz9a33TVwC4LAXsnXwPLa54D6UPHUpcmzxzandWfLfLQvbmCTTtdKf/9Wa20i0U7PkFt6MIU1RLkluei8HXE1ucMw+7JZPUNpf74pdTkPU9ttIt6AxRJKSPJDrxGG/YfbMp3jcnZAh0y+7e7828HVOw+V6rpTfGEZvcj9iUAf5wJTl/4HaVktjs9Fotg8LS2p200+O2Ub77B6JbnOd/vZnLuht7/kI8rjL0EU2ITBnsH2puL1qJ27aPqHTvDTrNbceWtwCXdQ9KF0FEUh+MMeFHvpTtmkJkyiAM5ua+4+zFmh38hiJ9ZDpRTc8AwFG0Go+7nMjkw3/m/GCUbPvwwHODNxLtz/m8zhqqW364tF7KTRrjNay2G+MAjzz0Nk1SE7n1totr+1AHzW530Pu4i5k974Ow7yCvSbXdGAf45fWPiUlKYOilY2r9WAfL6XDwwpgbuO2zV4hNTqj149VmYxzg2UcnkpIaz7U3n12rxzkUdruTYf1u48cZz5KSmlDrx6vtxjjA1Nc/JiY5gSHjG05ddjkcvHjuDdzyae3X5dpujAO898xnJKYkcMF1Vd9yUn8cdieXnnwL7/z4PElNEmr1WLXdGAfInPg+xvhEmp99fq0f62B5nA5W3HYFPZ6dgCkhdMhrTavLxjhA4V8T0ZnjiT++bq/RBQs+xhCfTtwxtdsoDKe2G+MARXtnoDNEE9ck/Ftr6oPmcbF381uktbsGvaF25/Go7cY4gL1gKUofiSm++4ED1xFNc1O++wfMTc9Apz+4eUEOlzTGD480xo8QddEYP9rVRWNc1H5jXNRNY/xoVxeN8aNdXTTGRd03xo9GddEYP9rVRWP8aHdENcbHTKy7xvj34+ul3OSZcSGEEEIIIYQQoo4Z6jsDQgghhBBCCCFEEHXEdPJXS3rGhRBCCCGEEEKIOiaNcSGEEEIIIYQQoo7JMHUhhBBCCCGEEA3LUdBtfBScohBCCCGEEEII0bBIz7gQQgghhBBCiIZFJnATQgghhBBCCCFETZOecSGEEEIIIYQQDcuR3zEuPeNCCCGEEEIIIURdk55xIYQQQgghhBANiqY78rvGpWdcCCGEEEIIIYSoY9IzLoQQQgghhBCiYZHZ1IUQQgghhBBCCFHTpGdcCCGEEEIIIUTDcuR3jEvPuBBCCCGEEEIIUdekZ1wIIYQQQgghRMMis6kLIYQQQgghhBCipknPuBBCCCGEEEKIhkVmUxdCCCGEEEIIIURNk8a4EEIIIYQQQghRx2SYeg3r8HxhfWfhiGdYl1/fWTgq3PTFMfWdhSPebd3kElzbek3eV99ZOOJpmlbfWTgqeJKj6jsLRzxjq2b1nYUjXpo9rb6zIBqTI3+UuvSMCyGEEEIIIYQQdU26ZYQQQgghhBBCNCzyajMhhBBCCCGEEELUNOkZF0IIIYQQQgjRsEjPuBBCCCGEEEIIIWqa9IwLIYQQQgghhGhQtCO/Y1x6xoUQQgghhBBCiLomPeNCCCGEEEIIIRoWeWZcCCGEEEIIIYQQNU16xoUQQgghhBBCNCxKesaFEEIIIYQQQghRw6RnXAghhBBCCCFEwyLPjAshhBBCCCGEEKKmSc+4EEIIIYQQQoiG5SjoNj4KTlEIIYQQQgghhGhYpDEuhBBCCCGEEELUMRmmLoQQQgghhBCiYZFXmwkhhBBCCCGEEKKmSc+4EEIIIYQQQoiGRV5tJoQQQgghhBBCiJomPeONQOnCn7Asn4FjXybRPYeQPPYe/76yJb9TsmAK7rICIlp3J2nMXRjikgHQXA4Kp75L+fq/wOPG1KorSaNuwxCfgruskMJf38W+fTUehw1jWgaJp19HRMsu+82L5nKy963r0Bw2mt/3pX970cxPsW74G2fuTuKGXEzCsEtrpzBqSfGm6ZRuX4CjaBcxrQeQ2v96/76SLXMpWv8zblsRkU060aTfdRiiEgHQ3E7yln1OedYSNI+byJSOpPS9CkNUUmXaG3+neNM03LYSDNHJpA2+C1Nc07D5sBdsJ3/ZROyF29EZIkjoOor4zqcdVloN0dsTJvHZZz+xZs2/XHjR6XzyybP+fR9++C0vvvAh2dl5DBx0PB999DTNmqUC8MTjb/Pssx8QEWH0h1+56gfatm0JwKOPvMlPP81hw4ZtPPTQdTz2+E3V5qGoqITbb3+Oab//CcANN1wYFL5tmxHs25ePXu+9V9l/wHFMn/6/miuEWjZhwhd8+un3rFnzLxdddCaffvq8f9+HH37D889/QHZ2HoMGHc/HHz9Ls2ZpQfEdDgc9e55NWVk5WVkL/Nv//ns5t9/+LBs2bKVNmxa8885jDBrUu9p8LF++jttvf5bly9cTHW3mwQev47bbLgMgI+Nk9u3LQ6/XAzBgwHHMmPFxTRZDrcqZ/h0FC6Zh3bWNxAHDyLj+Qf++vLlT2ffzJJxFBcR06kGr6+7HlJgCwJYX7qFs42p/WM3lJKJZS7q+8BkA5Zmb2fXZG1h3bkVvjiLl5LNoOubysHk4UFoAOb9/Q860b3CVFGFMTqXdXc8R2bRlTRZFrcqd8R35C6Zh27WNxP7DaF21nH+ZhKuogOhOPWh97f0YA8rZsqlK2TRtSZeAcs763FfOkVEk76ecXZZSdk98k5JViwBIGT6apude6d9f9u8adk98C9ueHZiaNKXlFXcS06lnTRdFrSn95ycsKwJ+X4wJ+H2x9HdK/vD9vmjVnaRzqvy++K3K74uzb8MQ5/t98du72DMDfl+cuv/fF449myn87V0ce7egjJHEnXQRcf3PAaBolu/3Rd5O4k66mISTG9fvi6qKt8+iNOsv7KVZxDbrR+qxV/v3leycT+GW33Dbi4lM6kDqMVdiiAz4vbHuSyzZy9E0N5GJ7WnS4zIMZu9+e/FO8tZ9gaMkC2WIJK7VSSR1HBU2D3sWvYqt4F//uuZxYYpJp+VJT9fimdeeop1zKN3zF/ay3cSm9yWte+W/0eKsBRRl/o7LUYI5oT2pXa/AEJkAgOZxkrvxKyy5y72/4RLak9plvL/MrUVbyNv0FQ7LXozmFJp0Hoc5sUO1+bCV7CBv01fYS3ei05tIbHMGCa2GA5D5x324HSWgvL8tIuPb0bzXnbVUIkcO7Sh4Zlwa442APi6ZuKEXY9u8DM1p92+3bV9N0cyPSb3qJYzJzSn89V3ypzxL2jWvAFD694/Yd22g6a3vo4uIJv/H1yic+jZNLnkMzWHD1Lwjiaddhy4mAcvSaeR+/gjN7p6ILsJcbV5K/vgGfUwCroLsoO2G5GYkjLyassW/1k4h1DJDVCKJ3UZTvnc1mtvp327dt4GCVVNoNuxhjLHp5C37jJy/36LZ8EcBKN40DXveZpqf9gI6k5m8RR+St/Qz0gffAXgb8qXb5pE+5B6Mcc1xleWgM0WHzYPbVsLeuS+QfPw4mrbqh+Zx4Sov8O8/lLQaqqbNUnnwoeuYMf0vrDabf/v8+Ut4+KE3mD3nEzp0aMXttz3PJRffw9x5lQ2L8y84lYkTXwibbrv2rXj+hbt4//0pB8zDnXe+QHm5jW3bZ5CTU8CI4VfRqnUzrrjiHH+Yn35+m+HD+/+HM60/zZql8vDDNzJ9+h9YrZXXi/nzF/Pgg68yd+7ndOjQmttue4aLLrqL+fO/CIr/0ksfkZqaTFlZuX9bQUERZ599A++++zhjxpzC5MlTOeusG9i2bRaJifEhecjLK+DUU6/mtdceYOzYU3E4HGRl7QsK88sv7zF8+IAaPvu6YUxMIX30pZSsXown4JpcumEle6Z8QIeH3yAivQVZn71J5ltP0PHRtwBof99LQen8+9StxHY73r+e+faTxPceTMdH3sCRm82mJ27C3Lo9Cb0GheThQGnlzZ1K3rxfaXfPi0Q2b40jZw/66NgaOf+6UlHOpasX43EEl/Perz+g/UPect79+ZtkTniCDo+EL+fNT99KTNfKstnx9pPE9xlMh4e95fzvkzcR1bo98WHKefcXE/DY7XR7/WucJYVsefYOTCnpJJ90Oq6yEra98iAtr7yThD6DKfx7Nttevp+ur0/B0EjKWh+bTNxJF2PbsgzNVeX3xayPSb3C9/vit3fJ/+ZZ0q7y/b5Y+CP2nRtoerPv98VPvt8XF1f5fRGdgGXZNHK/eIRmd4b/feG2FJPz+YMknnY9Ud1ORHO7cBfn+ff7f18saZy/L6rSRyaQ2OEsynPXorkd/u3W/I3kb/yO5v3vwxidRt66L9m3/H2aD7gfgKLtM7EVbqXFSU+iM0SRu/oT8tZ9QXrvWwDYt+J9otOPp1n/+3GV57H772eJiGtFdPpxIXlo1i+4Ebj77+cxp+y/M6YhM0TEk9j2TMrz1wb/hivYRMGWH2jW+25MUWnkbppM9poPaNHnXgCKds7CVryVlic87i3TDZ+Ru+lLmh5zE25nGXtXTiC1yziiU4+nLHsRe1e+RetBz6E3hv72cjtK2bv8dVI6XUBMWi80jxuXrSAoTNNjbyEquWvtFoZodGSYeiMQ1W0QUV0HoosK/nK3bvyHqO6DMaVloAxG4oZegj1zDc78PQC4CrOJ7NALfUwiymgiuscQnDk7ADAkNSVu0Fj0cckonZ6YvmeguV248nZVmw9XwV4sq2YTN/jCkH0xx5+CuVNf1H4a8g1ZdMu+RLfsgz4iuIzLdy8nplU/TAktUHoDid3HYMvZiLPU27BwluVgbtoTgzkend5ETOv+OIuzANA0D4VrvyP5+PGY4luglMIYm4Y+IiZsHoo3/kZU057EthmE0hvRGc2Y4psfVloN1ZgxIxg9ehjJycENuKm/zGPs2FPo1q09JpOJhx+5ngULlrJ1686DSveyy0Zz2mknEht74JsTU3+Zxz33XElUlJmMjOZceeUYPv3k+8M4m4ZpzJhTGD16OMnJCUHbf/llLueddyrdunXAZDLxyCM3smDBkqAy3r59F1988TMPPHBtUNy//15BWloK5513Gnq9nnHjRtGkSRLffz8jbB5effVTRo4cxCWXnE1EhInY2Bi6dGlX4+daXxL7nkRCnxMxxMYFbS9e/hcJ/YZgbtEGncFI+pjLKNu4Cvu+3SFp2HP3UrZxNUmDTgnYlk3SwBEonZ6ItObEdOyJLSvzgPmpmpbm8bD3u09oMf4WzC0yUEoRkdYcQ0zcAVJqWBL6nERC7xPRV8l3yfK/SOgbUM7nHGI552WTOCC4nK3VlHPx8r9JPfMidBGRRDRpSvKQM8if/xsAln/XYoxPJLHfUJROT9KgUzDEJVC8ZH7NFUItq/b3xaZ/iOoW8PtiiO/3RcFB/r4YOBZ9rO/3RZ/9/74o/fs7Itv3JvqYYSiDCV1EFMbUVv79McedgrljX5Spcf6+qCqmaW+i049HV6VBZ9m3kpimfTDFNkfpDCR2OAtbwSaclhwAXNY8opp0xxARj05vJKZZPxyle/zxXeV5xDY/AaV0GKNTiUzqgKMs9N9EVc7yPGwF/xLbonHeHAWISetFTOpx6I3Bv4kseauISetNRIy3TJPanIWt6F+c5d4ydVrziEruVlmmaX1xlHnL1Fa0FYMpjpi03iilI7Zpf/SmWCw5y8PmoWjHTKJSuhHb9ASUzojOEIkpplntnvjR4P/s3Xd4FEUfwPHvXr9ceqUkJKH3LlKlCAIWBCkCAor6KvZesaNYEFHB3kWaiIIFVKSJVEF6h/SE9H65fvv+cfGSyyWAms58nuce2d2Z2dlf1ruZndldRS1+6ojojDdksuz6lF8GbBkJABh6jcKSeAR7YQ5OqxnjgY3o215SaVHWtDPIDhuqkOZV7i73x3cJHDETSa2ttkOo/+TST/llsBa4GhX+rYZizjqJvSQPp91CUcI29M26AeAoycVRkos1P5nE1XeTtOY+cg9+gyw7K92TOec0Co2B1F+fJWHVLNI3z8NuzP5XZTU0siwjlzuX//734cOn3et+/GEzoSH96NJ5DO+9t/w/76/8v8vvB2D6tMeICB/IyJH/48CB4/9pX/WFd4xd/z18uGyq4j33vMjcuQ+i1+vOmffvdYcPn6p0Xzt37ic4OID+/ScTHt6Pa66ZRVJSmkeaG254mLCwvlxxxc2NJsau7+QKy4ApOc4rae7WX/Bt3xVteFljLXzURHK3/oxst2NOS8J4+gh+nXudd7cVy7LlZmHLzcKcHMehu8dz+L5JpH3zKbKz8XxfVLb8j+L8R7k4nzpfnD1/Z83u/VT4DS7dbkqO/yeHUz/Jlf/2ebQvki6wfXH23O0LS/IxFHo/0j+8n5RXJpL51dPY8zOr8WAaEtnrn9Yi1wV+v6hBmPNOYTfn4XRYKE7dgU94F3fygJYjKErZjuy0Yy0+iznvDPrQ84/CFqVsQxfcFrVPWLUeSb0gy8iVnMeW0osU/s0GYc4/jd2cj9NhoSh9Jz6hXdxpPfO6yrNUcYHDXBCHQmUgZffLxG9+gLR9b2Mz5XikyTj8EXGb7yd17xtYiqoe/BIuLqIz3oDp2/Wh5PDvWNPjcNosFG76CiTJPZVdHdocVWA4aa9OIWXOWNf93ENv8CrHaTaS882rBAybhkJX+chiyZE/wOnAp5P3NL7GzKdZd4qTdmLJS8Jpt5J3+FtAQra7ppap/ZugMoSQtPouElbegq0wlaDO1wG4p5iXpB8i8spXaXr5UxgTt1N0ZnOl+3KU5FIcv5WQXjNoMfZtVL7hZGxb9K/KamhGX3kZK1f+wsGDJzCZzMx54T0kSaKkxATAxEkjOXL0BzIy/+CDD5/nxTnvsWzZv5uyOHLUQF599ROKioycPp3IZ599594PwOKvXiUu/lfiE9YzdEgfRo+6jfz8wmo5zrp05ZWD+frrdRw8eByTycwLL7xTGmPX7QLffbceu93OuHEjvPL279+DtLRMli37EZvNxhdffMeZM0nuvBWlpGTwxRereeutJ0lK2kxsbCRTppRNi1yyZB4JCRtJTNzE0KGXMnLkLY0ixv7d+5G3cxMlSWdwWi2kf/s5SJLHFOu/5W79hZDLRnusC+jZj/zdW9h30wiOPjyNkCFXYWh1/qmjFcuy5ro6MoWH/qTDq5/T5qm3yNv+GzmbG8c034DSOJv+jvN3n1cd5z9+IXiQZ5z9e7jivH/mCI49cu44+3frQ8b3S3CYSrCkp5CzZa17P4Y2nbHl55C7/Tdku52c39dhyUzDaa38/4uGRN/2PO2LkOaoAsJJmzeFlJdK2xdDztG+GFJ1+8JRmI1x/3qCrryD5g8tQRXUhOyVcytN25j5hHelOO1PLIXJOB1W8k6tASScpVPZNYYmqPQhJP72IPE/34m1+CxBbca48xvCu1F8dg9x624nefOT+EcNQhfY8rz7LUrZjl9U42zb+YR2pThjD5YiV0xz434AJPftARpDBCpdCAlbHyZu0z1YjWcJbnk1ALqA1jgs+RSd3YXstFOYtg2bKcvj1oLy7JY8is5uJ7TdZKIHvYZaH0rGoQ/d2yO63Er0wFeJGfQq+uD2pP21AIetpNKyhHIUUu196uoQ62zPwn+ma9WDgMtnkL30BdLmTUMZFIGk0aMMcD3EJvf7t5FtVprP/oaoZ7/Hp+MAsr6Y7VGG02Yha/EzaKI6EDB4SqX7cVpN5P/yMUFXV/1QrMZK36QzQV0mkLF1AUlr7kVlCENS61CWPqAte/enyA4b0eM/JHbSZxgiLyF9s+u+ZkmpASCwwzUoNQbUvmH4tb6ckrT9le5LUmrwieqNLqSV68EfXa7Dkn0Sp7XkH5fV0Fx+eV+ee+4uJk64n9iYEcTENMfPz0BkZBMAOnZsTbNm4SiVSvr378G9905j1arKp0ifz1tvPYFer6Vd29GMG3sPkyePdu8HYMCAnuj1Onx89Dz+xP8IDPRn69a91XKcdenyy/vx/PP3Mn78vURHD/WIsdFYwqOPzmPhwqcrzRsSEsSaNe/yxhufERExgJ9/3srw4f2JjIyoNL1er2XcuBFccklXdDotzz57F9u376OgoAiAAQN6uWP8xBO3Exjox9ate2rs2GuLf+deNJswk/gFT3H43olowpqi0PmgCfYccSo+fhBbfi6Blw52r7MXF3L61UdoMu5Genyxns4Lv6Hw4G6y1n93zn1WVpZC45q9FHHNVFQGP7RhTQm9fAwF+3dW49HWHb/OvWg6fibxbz7FkfsmogmtIs4nDmKvJM5nSuPc/fP1dHr73HGOnHEfCo2Wow9NJe6NJwnqdznq0v2o/AKIfXAuWeu+5tCd11J4cDd+nXqhCQ6vuYOvJbpWPQgYNoPsZS+QNn8aysDS9oV/afvih7eR7VaaP/ENUU+Xti8WV9K+WHLu9gWApNLi02EA2sh2SGoNAUOnY006itNsrNFjrG98QjsS3G4sGXsWkbjhYVQ+oShUOlQ6V3sj69CXyA4bMVcspOWo9zE06cXZ3QsAcFiLSdv9BsFtx9By9IdEXz6fkqzDFCRsPOc+TbkncVgK8G1a9cM4GzKfkA4EtxpD+oH3SNz6GCr93zF1PaAt89hXyE4bsUPepNWwd/AN70naX28BoNT40rTb3eQnrSd+y4OUZB9BH9zBnbciSaHGEN4DXUAsCqWa4JZjMBeccXe49YFtUCg1KJRagmOvRKHywZx/stKyhItLg3iAmyRJzwHPlltlAs4AC2VZ/rA0zU3AZ4CfLMvFFfLfXZpWKl0eAmwCusiyfLh0XQLwjSzLD5cuxwAXMtcsVpblhH91YNXAr+8Y/Pq6rozaslMo3LQUTUSMa/lsHAEjZqL0cd1v59dvLAUbvsRhLEBpCEC2W8n+6jmU/qEEX3tflfuwZ6dhz8sg46PSkS2HHafZSMrL19Nk1luogppUmbcxCGh7BQFtXfcbWgvPkn94NZrASAAs+UkEd5vkvnfbv91I8g59g8NciNq/KShUcIEX2zSBLfBM7Pq3jPyPy2qI7rxrKnfeNRWAkycTeOmlD+jcuXWlaSVJ8podeqGCgwP56qvX3Muzn3yTS/p0rjK9a1//cmf1zF133cBdd7lGr06ejOfFF9+jc+c2nDqVSEJCKoMGubZZrTYKCopo0mQAO3euICYmksGD+/Dnn6sAsNvttGo1gocemlnpfrp2bUf5B6BKpQtVxbExxTjsiusIu8I1O8Z8Npn01V+ii/QcncrZ+jOBl1yGUufjXmfJTEOSFIRcNgoATUg4wf2GUbB/J2EjxlGVysrSNW2BpFJXmacxqBjnjDVfoovyjHPu7z8TUCE21sw0JIWCkEFlcQ7qN4zCKuKs8vUn5q5n3MtpKz7Ep9woul+H7rSb4xr9kh12jjwwhfCrvJ+r0hD5XToGv0vLtS+2lGtfpMcRMLxc+6LvWAo2VmhfLH0OpV8owWOqbl8AqJvEQmVPTG4k3wn/REDM5QTEXA6AtTidvFM/oPFzTe+3FCUT0u46lBpXeyMgdjh5J7/DYS3CVpLtuq85cgAAKn0wvs0upSTzIAExw6rcX1HyNgxNeqFQ6apM09AFRg0jMMoVA6sxnby4H9H4umJqLUomuPU4973mAVGXk3tmDQ5rEUqNH/rgdkRd+hQAstNB4rYnCIy+otL9aP0i8Wikna+9JkHFWfBCJS6Cp6k3pJHxAqBf6ecaYAPwgSRJU2tof2fL7a8f8Pf8q7sqrD9bQ/t3kx0OZJsVnE5k2Ylss7rXWTPikWUZe34muavfxK//OBR614NYNJHtMO7/DafZiOywU7TrB5R+Ia4fSoedrKVzkNQaQiY8iqSo+lRQR8TQ/NElNL37PZre/R7B4x5A6RtI07vfQxkQVlpHu6uOsgxOV91kp6OmQ1NtZKfDNRVMdoLsxOmwutdZ85NdMTZmk737YwLajXT/GGpDWlIUvxWntcQ1jenUepT6IJQ6fxQqLb4t+lJw9EecNhP2khyKzmzEp7n3k00B/FoOpiT5Tyx5CchOO3mHv0MX1g6lxvCPy6qv7HY7ZrMFh8OJw+HEbLa41x0+fApZlklKSmPW7c9x773T3E/qXrNmI3l5BciyzO7dB1m4cAljxgx1l2uz2TCbLTidznL7qPz8O3MmiZycfBwOB+vWbeWjj1Yye7brVXZJSWls2/YXVqsVs9nC6/M+JTs7jwEDelZaVn3kGWNHhRifdMf4ttue4b77ZhAUFEDnzm1ITt7M/v2r2b9/NR9//CIRESHs37+aqCjXq/P27TuKzWajsLCYhx9+lcjICEaOHFRpHWbOvI7vvvuN/fuPYbPZmDPnXQYO7EVgoH9pjPe6Yzxv3scNLsayw47TanHdg+10uv5dus6UHIcsy1izM0j6eB5hIyeg8i17OJbTaiF/12ZCBo/yKFPXxPXKsdxt65GdTmz5OeTt2IS+ReUXpM5VlkKrI6jvMDJ+XIbDVII1J5PsjT8S0KNhvSHg75jidCKfI87Jn5TG2VAhzrs3uy9u/E1bWZx3bkIfXXmcLRmp2IsKkJ0OCvbvJHvjDzQZW/ZqrZKEk8h2O44SI6lL30UTHIZ/1z41EI2a4dG+cJ6jfbHmTfz6lWtfNK/QvthdoX2xfA6SSkPI+HO3L8D1ANiSo9tK7y23U7h5Cdrozij0vqV1bNjti4pcbQsbyK42ndNhc6+zFKYgyzI2Uw5ZBz8nIHYEytK3pugCYilK2Y7DVtreSNiIUhuIUuOHxtAEZJmi1B3IshO7uYDitN1o/Kt+laHTYcV49k/8ogbU1qHXmL/j53qOToWYFqe6Y5p57EsCWwx3Pw1dGxBD0dkd7pgWpGxyxxTAUpiE7LTjtJvIPrUSlTYIQ2jlF+/9mg3AmLkPS5ErT27cj+gC26BU+2Az5WDKP+Uqy2EjL+FnHNZidIFVf78LF48GMTJeyi7Lcvk5dhskSeoPjAWWVp7l35Nl2QK49ydJ0t+j7Ucr1KPGFWxeQuHGstcPlezfgP+wafj3v46cFa9gz01D0vrg2/MKAobf6E4XOPo28n58h7Q3bkJ22NFExBB6g2uCgSXpKOYTu5DUWlJeLBsNCLvxJXQxXTAnHCLri9lEPfs9klKJ0q/svdkKvR9ICo91ud8twLhvvXu5cPMygsc/jG/Pyq8g1jd5h78j/3DZE7WLE/4gsPN1BLQfTeb2RdiKMlGodfi1HExQ10nudCE9biBnzxck/fAgOO2oAyOJGPSAe3voJTeRtetjEr+7C4XGB/9Ww/BrOQQAU+Zx0je/SuykzwDQN+lEcPfrSd88D9luQRfWjvD+d19QWQ3FSy9+wAsvvOteXvLVDzzzzJ3cd/90pt3wKGfOJOPn58NNN43jhTn3uNOtWLGWW295CovFSmRkEx599BZuvHGse/tttz3Ll1+scS/Pnfshn3z6IjfdNI6tW/dy1ZW3U1jkmga9d+9RHnzgFfLzi2jbNprFX71Kp06uH8SiohLuunMOZ84ko9Np6N69PT+tfd/ryeT12Ysvvsfzzy9yL3/11fc8++zd3H//jUyd+lBpjA3MnHkdc+a4RqxUKhVNmpRN8Q0ODkChUHise+21j1m71vWU6FGjBvHdd++4t23duofRo/9HcfE+AIYN68fcuQ9w1VW3UVJiZuDAXixdWvpKpCIjd9zxXGmMtXTv3p516z4iJKTyqX/10dnvvnTdD14q949faXLdTYSPnkj8ohewZqah0PkQMng0zSbd4pE3f89WlD4Gj1dtASh9DLR8YA6pyz4g6dM3UGi0BPTsT9Ox0wEoPn6A068+SvfPfjlvWQBRN91P0sfzOHTXOJQ+voQOu4aQIVdVYxRqXvpqzzjnbXPFOWzURBLeKRfny0bTdKJ3nBX6yuMce/8c0pZ/QPJnpXHu0Z8m15bF+cxrj9LtU1ecS+JPkLJ4IY6SYnRNooi562n0kbHu8jJ+XEZh6fR//659iH3gpZoIRY0p2LLEdT94qZIDG/AfOg3/fteRs7Jc+6LHFQRcXq59Meo28n56h7Q3S9sX4TGETq2kfTG3XPtiern2xeLZRD39PQC6lj0IHDGTrMVP4bRZ0EZ3ImTi4+58uWsqtC+2LCN4XMNpX1SUd+qH0vvBXYpTdxDU5loCWl5B5r4PsJVkolDp8IscSHC769zpQjpeT/bhJSRtehycdjR+ke7XminUeiJ6303usZVkH1qMpFTjE96doDau+59NOSc5u/sNWo5+312eMf0vFGof9CEN95Vmf8uN/5G8uB/cy0VndxLU8hoCW4wg49CH2EqyXDFtNoDg1mPd6ULbTCLrxDKSts1Glu1ofJvTtNud7u15CT9TknMIAJ+QTjTpXna7pinvJGn73qLVMNdvoU9wB0JajyNt39vIDiu6wNZEdPkfAE6HmaxjX2EryUJSqtH6RdGsx/3ugR3hHOrwXu7aIjWEqYGl09TvlmU5tML6DUChLMvjqnuaeiV16AwcAobKsry5qrpGz11f/wPawKmOZJ8/kfCfnfqqW11XodFTSA3pemjD1GtZxvkTCf9JA2hGNAo5cQ3/wXD1nXrX+V8FJvw3kqXhzmpoKE79ekuj6cHGPvpjrf3CxL92dZ3ErUG1BCXJ3XL1AcYAg4Gb665GgiAIgiAIgiAIQrVrNJcVqtaQOuMhgK3CurdlWf6yLiojCIIgCIIgCIIgCP9WQ+qMFwDDS/+tBXoBL0iSlCvL8vN1Vy1BEARBEARBEARB+GcaUmfcLsty+RfRbpMkSQ3MlSRpIWAvXa+sJK8SEDepCIIgCIIgCIIgNADyRfAAt4b0arPKHAU0QCsgq3RdZS+9bgpk1lalalr+L59QuO3b8yesRbLdStqCm3EU59V1VapF7v7lFBxfV9fV8CA7bCT/+BAOc0FdV6VaPPnEAt56s37dZWKxWOnY4WoyM3PquirV5okn5vPmm5/XdTU8WCxW2rcf1WjinLr8AzLXfV3X1fDgtFk58tA0bAWN4zs5rZ7G+OjDjSfGAPm/fkLh9nrYvnir8bQvco6tJD/u17quhgfZYSNp0xPYLYV1XZVqkX1qFfmJ68+fsBbJThuJ257Cbm0cMRaqT0MaGa/M3y/7SwZOAxbgWuC1vxNIkqQArga21nrtaoDDmI9x3280fehz9zrzmX3kfr8QR0EWmsj2hIx/GFVQRKX5bZlJ5P6wEGvqKZSGQAJH3YpPp4EAGPdvIHfNW2WJZRnZZqHJnYvQNG9L/oYvKdy8DEmldidpes8HqIKbIqk0+PYaReHvXxN05e01cuy1xWEupCh+K1HXLABc7zjN3L4IS24cdmM2TS9/Cn1ExyrzF5z4haL437HmJ+Mb3Z/wfrPc28zZp8g7uBJLbjxICvThHQjpfSMqfdlrnSy58eTsXYwlLx6FSktgx2sJaD8aSanGr+UQ8o/+QEjPaTUXgFqQlZXL4sXfc/JU2QWPDRt2cs/dL5KUdJZLL+3Cp5/NJTq62TnLOXUqkW5dxzJ+whUsXvwqAAkJqbRqeQUGg96d7tFHb+Gpp+8A4Morb+ePrXvd26xWG+3axXLg4Gq0Wg0zZ47jtVc/4fX5j1bnIdeJrKxcvvxyNadPuxolVquVqVMfZs+ewyQmprJp05cMGXLpOctYvvwnnn9+EUlJZ2nSJJTPP3+FQYN6A/D112t59tmFpKSkExXVlLlzH2Ts2OHuvH/9dYT775/LX38dxWDQ8+STt3PffTei1Wq4+ebxvPrqR8yf/3hVu24QbIX55G79hU4LlrnXFR7eS/JnC7DmZGBo3ZHo259AG1bZdWI4OedejKePIilck7rUwaF0mr8EcL0yLemT+e60suxEtlpo/+JH+LRsR9o3n5K+ZjEKlcadpsMrn6GNaIZCrSFkyJVk/LCEyGl305DZCvPJ/eMXOr5RFuOiw3tJ/rw0xq1cMdZUEeO/mdOTOf74TAL7DCbmzqfd650WM6lL3yVv5yZkhx19i1a0fWaRR16n3cbxx2fiNJvovGgVgCvGgxtHjKG0fbH/N5o+8Ll7nfnMPnJ/LNe+uO5hVIGVty8AjAc3UbDpKxwFmSh9gwm+7mF0MV0AcFrN5P/yISWHf3e9Dq1JSyJufQOAwu3fUrRzNc6SQhQaHT6dBxM48jYkpdLVvug5isKtXxM0uoG3LyyFFKVsp8WwV93rSrKPkn1oMXZTLtqgloR3uwW1T2iVZRSl7iLv1BrsphyU2gDCu92KPqQtAMVpu8k9uRq7KQ+VPpiQ9uMxNHG93i/3xGryTv+IpChr+kdd9gJqQ7irfRE1iPwzawntOLmGjr52OKxFFJ3dQfSAuQDITjvphz7CUpiA3ZxDs14P4xPcvur8tmIyj3xBSc4RlBpfQlqPx69p2e9kQcrv5Cesw24tRB/YmvCOM1HpAgEoyT1OXtwPWIqSUKh8iBlU9neWFGr8mw8gP34doe2ur5mDb4wugpHxhtQZV0mS1Lf03xpc94w/BayRZTkdQJKkN4EXJUkKALYA/sAsoDVwIb2XtpIkTaiwzijLcr0ZIjX+9Su6dn1QqLUAOIwFZC15npBxD6Jv35f83z4ne8VLNJn1tlde2eEg66tn8e1zFeEzX8ESf5Csxc+gjohBHRqJofvlGLpf7k5f/NevFG5agrpZG/c6ny6DCZ1UeePZp9tQ0hfdQeAVM5HKNQ4bmqK4Lfg06+7RwNWFtSOg3Sgy/vCOa0UqnyCCOo2l5OxBZIfnMwedViN+rYcR0bQrSEqy93xO1s4PaDrUFVOHuZCzm14lpOc0mra4FNlpx16S687vG9OflHVPENzteiSlmobqi89XM3r0IPR6HQDZ2XlMGH8fH370AtdcM4Rnnl7IlMkPsX3HsnOWc/fdL3LJJZ0r3ZabtxOVyvsrbu3aDzyWhw29iaFD+7iXp0y9ip49xvPS3PvRahvueQzw+effcuWVg91xBhg4sCf33z+DiRPvP2/+9eu38dhjr7NixQL69OnK2bNZ7m2pqRlMm/Yoa9a8w6hRl7F27RYmTryPhISNhIeHkJ2dy6hRt7JgwRNMmDAKq9VKSkrZa8amTr2G7t2vZe7cBxt0nHO3rMO/e18UGtd3sr0wn7gFTxH9v0cJ6NmftJWfEL/wOdq/8H6VZUTddD+hQ6/2Wh888AqCB5a9SzlnyzrOfvcF+ti27nVBfYcRe9fTXnkBgvsP59gTt9Ds+ttQqBtwjH9fh3+3cjEuyifuzado8b9HCejRn7PfuGLc7hwxBkj5bAE+Lb0b4UmfzEN2OOgwbzEqXz9Miae90mT+uAyVfyBWs8ljfVD/4Rx/suHHGMC471d0bSu0L5Y9T8jYB9G360v+htL2xe2V/w6aTu8l/9dPCL1+Nprm7XAU53psz13zJjgdNL33YxR6P2xnz7i36dv3xbfHFSj0vjhKCslePoeind/hP8DVJPPpOpT0d+8gcETDbl8UpmzDJ7wrCqXrGBzWIjL2LCKs60x8IrqTe+JbMv56j8iBlf8/XZJ1hNzjK4noeQfawFiPmXJ2Ux4Z+z6kySX34hPWhZLMg2TsfZcWl89DpfUHwLfZJUT0qPyChl/zviT//iwh7cY36PZFYdo2DKFd3DEG0Ae2JrDFcNIPnvs7AiDr2FIkhZLYwW9gKUrm7P630fhFovVtjin3BLmnv6NZ74fR+ESQdWIZ6Yc+JPIS18V7hVKDX7OB+Dqt5MWv9Srbr8mlJO18gZA21yEpGm6MherVkKapBwA7Sj+/AXcC7wPTy6V5AngMGAf8AHyK617xwbIs77+AfVwDrKzwea96ql89TCf/RBfbpWz5yB+oI2Lw6XIZklpDwOXTsZ2Nw5aV5JXXlp2EoygHvwHjkRRKdK16oI3uhHHfb5Xuy/jXegzdhyNJF3ZVShUQhkLviyX5+L87uHqi5OwBdOEd3MuSUkVA+9HowtuDdP7/ZQxRfTBEXYJS6+e1zadZd3xb9EWh9kGh0hLQ9grMWSfd2wuOr8WnaVf8YgciKdUo1Ho0Ac3d21U+ISjUBszZ3o3FhuTnn7dy2eBL3MvffrueTp1aM3HiSHQ6Lc8+dycHDpzg+PG4KstYvnwtgYF+DBvWt8o055OQkMrWrXuZNn2Me11kZBOCgvzZufPAvy63vli37ncGl4uzRqPh/vtvYuDA3iiV5z+Xn312Ic88cyd9+3ZHoVDQvHkEzZu7RsVSUtIJDPRj9OjBSJLEVVcNwWDQc+aM67vnjTc+Z+TIgdxwwxi0Wg1+fr506NDKXbYrzgHs3Lm/eg+6lhUc2Ilvh+7u5fw/f0cfGUNQ36EoNFqajp+JKfE05tTE/7yvnK0/EzJo5AV/J2tCwlEZfDGePvqf912XCquK8aWuGDe5biampNOY06qOcd6ODSgNfvh16umx3pyWRMHebbS45RHU/oFICiU+se080lgy08jd9isRY7yv6TeWGENp+yKmXPvi6B+ow2Pw6Vzavhg2HVt65e0LgIKNiwkYegPaqA5ICgUq/1BU/q4RXltWMqYTOwm+9n6UBlecNc3LLiqpg5uh0PuWFSYpsOemuRdVAWEodI2gfZF5EH1I2fllPLsXtV8zfJtdgkKpJrjtWKyFyViLz1aaP/fkdwS1GYMuqBWSpEClD3LPrLObc1GofTCEd0WSJAwR3ZBUGuwlF3aXpkofjFLtgzn/zPkT12Ml2YfRB5WdW5JCRWD0CPRBbc7bhnM6LBRn7iW41VgUKh36oDYYwrpRdHYHAMbsA/hG9Ebr2xxJoSI49hrM+SexlcZYF9AS/2b9UOvDKi1fpQtGqfLBnF9120aoQJJq71NHGkRnXJbl52RZlsp9NLIst5Fl+TFZlovKpZNlWV4gy3JHWZa1siz7y7I8UpblXRXK21xazuFy62Iq7OPvT0zp9sOly5tr67grY0tPQBUa5V62ZiaiadLSvazQ6FEFN8WWUUmjRK6kQFnGlpHgtdqel4El4RCGHsM91puO7yTlxfGcfet/FO36wSufOqyFx9Xuhsian4zav2mt7MuceRxNQGTZcs5pFBoDqb8+S8KqWaRvnofdmO2RRxPQHGv+f2/Y16VDh07Rrl2Me/nokTN07VrWQDEYfGjVKoojRyq/6FBYWMxzzy7i9dcfqXIfsTEjaBE1jJtvnk12duX3Gi7+cg2DBvUiNjbSY337Di05eODEPzii+unQoZO0axf7r/I6HA727DlMVlYerVuPIDLyMu6++wVMJjMAvXt3pkOHVnz//QYcDgerV/+GVqtx/x137txPcHAA/ftPJjy8H9dcM4ukpDSPfXTo0JIDBxp249qcHIeuadl3siklHn2L1u5lpU6PNqI5ptT4KstIW/4BB267hhPP3UnR0X2VprFkpVN87ADBg0Z6rC/4azsH/ncVRx+ZQdb61V75dM2jKx3pbUjMyXFoy8XYXEWMzSmVx9hRYuTsN5/Q/IY7vbYZzxxFExrB2VWfcvD2azj22I3k797skSbli7doNuk298h8RdpGEGMAW8YFti8yvX9/ZKcDa9pJHMYC0hbcROq8qeT+uAinzQKAJeU4qoBwCjZ+ScrLEzi78DZKjnjePWg8sJHkF8eS+vIEbOlx+Pa+ymO7OqwFtvQG3r4oSkHt26Tccipa/xbuZYVKi8oQjrUo1SuvLDux5CfgsBaRuPExEn57kKxDi3E6rABoA2PR+DbDmL4PWXZiTP8LSaFG41f2Ny3JOED8L3eTtHk2BQkbvfah9muGpTC5Og+51lmKU1D7nPuWlarYjBlIkgKNoSy/xjcKa3Hpb5csI3s0puXSfXr/vaqiNjTFUtywYyxUr4Y0TV0AnOZiFNqye2FlqwmlIdAjjaQz4LSaqEgdFoXCEEjR1pX4DbgOc9x+zAmH0MV280pr3LcebUxnVMFlnVJDl8H4XnIVSt9ArMnHyVo6B4XOF0O3oWX71upxmo3VcKR1x2ktQaHSnT/hf2TJSyLv8LdEXPaQe52jJJfi3ASaDHsCTWAUufuWkbFtEc2veM6dRqHS4bSW1Hj9alJ+fhF+fgb3cnFxCWFhQR5pAgJ8KSqq/Fx65umF3HzzdURFeV80CQ0NZNfuFXTv3p6cnHzuvvtFpk17lJ9//sgr7eLF3/PkbO8pe35+BvLzG/5DVirG+Z/IyMjGZrPxzTc/s3XrEtRqFddeeycvvvgeL730AEqlkhkzrmXq1Icxmy1oNGpWrnwLg8EHgJSUDP766yjr139Kly7tePTReUyZ8iDbti1376MxxNleUoxS5+NedlpMqPwCPdIofQw4Td7fyQDNp8xC1zwGSaUib8cGzrz+OB1e/hRtRHOPdLlbf8G3fVe04WXPUQjqO4zQy8egDgjCePoocW8+jdLgS3D/souoCp0PjpLiajjSumMvKUapL4uxw2xC5R/okUapN+CoIsZnv/mYkCFXoQnxvtfZlpuFOSWewD6D6fzOtxhPHSFu3mPomsegax5D/p+/IzsdBF5yWZUXSpSNIMbwD9oXFu84O4rzwWHHdGQrEbfOB4WKrKXPUrh5KYEjZuIozMaWmYC+00CaP7IMS/Ixsr56CnVYNOpwV2fU0G0Yhm7DsOWkYty3HqWv529Co2hf2EwoVGUxdjosKDWes+iUKj1Ou9krr8NSALID49k9NO//BJJCSfqfb5N36gdC2o9HkhT4RfYnY98HyE4bkqQiotedKFSui0i+zS7BP3owSm0AlrwzpO99B4XaB7/mZbPLFEodTlvDbl847aZ/3YZzOswefx8AhUqP0+H6e/iEdiX90AcERA5G7RNBbtwPgIRcekHkQihUOpy2yr+rhEo0iGHj/+YiOMTGRaH39fghlDTeP06ypQSFRl8xK5JSRdi05zCd2EXqy9dT9McqfDpfhjLA+0Ehxv2/YegxwmOdOjwalX8IkkKJNroTfv3Hel3Zli0mFLp/1/ivLxQaQ6U/hNXJVpRO+uZXCek1A3142T2MklKDT1RvdCGtUCg1BHW5Dkv2SY/Ot9NuRqHxqazYBiMoyN+jo+3r60NhoWdjtrDQWGlHcv/+Y2zYsIP7H5hRadm+vgZ69+6MSqUiIiKUhQtns/7X7V7l//HHXtLTs5kw4QqvMoqKjAQG+v+bQ6tXKsb5n/j7PvN77plO06bhhIYG8+CDM1m7dgsAv/22nUcffZ3Nm7/Eaj3Mli2LufXWp9i//1hpfi3jxo3gkku6um49ePYutm/fR0GBezJTo4izyuCHw1z2/6dCq8dh8mzMOkxGFHrv72QAQ+uOKPU+roeBXTYa37ZdKNi/0ytd7tafCRk0ymOdPjIGTVAokkKJb9suhI+aQP6uzR5pnOYSlD6+NGQqg59HTJU6Pc5KYqysJMYlCacoOryXsNGTKi1bodEiKVU0GTsDhUqNX4fu+HbsQeGhP3GYTaQte4/IG+87Z/0cjSDGUEX7wlKhfWEu8eiwu/OW3i/v2/dalH4hKA0B+Pcfj+nkbldZag0oVQQMvgFJpUYX2xVtbDdMZ/Z6laUOaY46PJrcHxZ67rsxtC/UPjjtZTFWKLUey1B1Z1JSuGLsH3M5Kl0gSo0fAS1HUpJ5EHDdT55z7Gua9XuMlld+RLP+j5F18DMsBa7bCjR+zVHpgpAkBbrgNgTEjsB4do/HPpwOMwp1w25fKFU+/7oNp1DqvPI67SYUStffwyekA8GtxpB+4D0Stz6GSh+KQqVDpQuqrLhKOe1mFOrKfw+Ei5PojDcw6iYtsWenuJc14dFY08vuPXFaTdhzz6KOiK40v6ZJSyL+N5/Ip1YRPvNl7HnpaCIr3B+XeARHYQ4+nQedsy6SJIHsOffdlpWEummrKnI0DNrAKGyFld+vVR1sxizObpxLUOdx+MV6xlgT2AIof9+K69/lp0VZC1LRBFb+920ounZty8mTZVMdO3ZqxcGDZdPCjcYSzpxJplOn1l55t2z+k4SENGKih9Os6WXMn/8Z365aT+9eFZ+96PL3/bVyhXP1yy/WMO66Efj6ejfujh+Lo2u3dl7rG5quXdtx8mTCv8obFBRAZGSTKu9P3r//GJdd1pvevbugUCi45JKuXHppV377bbt73+WzVvZ3OHYsjm7dqn6qbUOgj2qF5WzZlEN9ZCympLIpyw6zCUtGGvrmF3i7QCXfq8UnDmHLzyHw0iHny1xhCiWYUxPRR3v/f9SQ6KJaYUkvi7EuMtZjWrjDbMKSmYYu0jvGxcf2Yc1O58i9Ezl051gyf1pB/u4tHJ99C+D6+1XFkp6CJTudUy/cw6E7xxL/5lPY8nM4dOdYLFllvxGWRhBjAHVES+w552lf5J1FHe79+6PQ+6H0D8Xz96uMJqJlpeur5HRgz/X8HbZlJaFu0sDbF/5R2IrLHmSp8WuOtdy0cKfdgs2YhcavuVdepcaAUhdU5XeytTAJfXA7dIGxrg53YEu0gS0xZR85R40qtOGK0tD6R1WRtmHQ+EViK8k4f8JKqA0RyLIDq7Esv7U4BY1v2YykwKhhRA+cS+yQBfiG90R2OtD4ev+9qmIznkXr27BjXKvEPeNCfaNvewnm+INly50GYMtIoOTwVmSblYKNS1A3iUUd1qLS/Nb0OGSbFafVTOHWlTiKcvDt6TkyWPzXr+g7DUKh9bw6WnJ0O05TEbIsY0k+TtH21eg79HNvtxdk4ywpQhvVwBvXzbpjzjzmsU522Nz3ZclOO06H1atz507rdLjSyk6Qna60TgcA9pJczm54Cf82I/BvM9wrr1/LwZQk/4klLwHZaSfv8Hfowtqh1Bjc+Z1WI7rQht3wGz16EL9v+dO9PG7ccA4fPs2qVb9iNluY88J7dO3alvbtvRtw/7ttIqdOr+Ovfav4a98qbr/9eq686jLW/fwhALt2HeTEiXicTic5Ofncd9/LDBlyCQEBZVMBTSYz33zzKzfeeK1X+ampGeTmFtC3r/ftGw3NlVcOZku5OIPrHd9ms+s+TqvVhtlsqfJcnjnzOhYuXExmZg55eQW8+eYXXH31EAAuuaQLW7fucY+E79t3lK1b97rvGZ858zq+++439u8/hs1mY86cdxk4sJd7JLwszt1r4Mhrj3/3vhQdK3vYX8All2FKjidv92acVgvp332OvkUrdM29OzB2YxGFB3bjtFqQHXZy//iV4uMH8O/axyNdzu8/E3jJYI+p2gD5e7ZiL3Z9JxtPHyXrl1UE9hro3m7NzcJuLMLQuupXMTYEAd37Ulw+xr0vw5QST375GEe1QtfMO8ahw8bQ8Y1ltJ/7Ce3nfkLo5WMI6N6PVo+5Xhnn274b6tAIMr5fguywU3ziEMXH9uHftQ/6qFg6v/2NO2+L/z2KKiCI9nM/QRMSDjSeGENp+yKhXPuiY2n74khp+2LTEtQRVbcvDD1HUrxrDY7iPJymIop2fIe+neuVUNqYLqgCwin8fRmyw4El8QiW+IPoW/cCoHjPOvd7xG2ZiRT+vgJdq+7usu2F2ThNDb994RPeFVNu2YVnQ5OeWItSKT67B6fDRt6pNWj8I9H4Vv7cGv+oQRTE/4bdUojDaqQg/lcMEa7fKm1gLKbck+6RcEtBIubck2hKO9fG9L9wWI3Isow5L46C+N/wiejhLttuysNhM6ILbNgXPHxCu2DKO+mxTnbacP79dhvZgdNhq/R3T6HU4hvek9wza3A6LJjyT2HM2o9fU1db1+mwYSlORZZlbKYcMo99SWCL4SjVrjaaLDtLy3YAsuvfTru7fLs5D4fdiC7wH16cEho1cc94A2PoMYL0RXfgtFlQqLUoDYGETX2G3B8WkbPyVTRR7Qm9/kl3+oLNy7AkHCL8Jtf7Fo37fqN4z8/gtKON7kz4zFc8XhMi26yUHP6dsKnPeO275NBmcr+dj+ywofQPxf+ySR4d+ZKDGzH0HNGgXzsC4Bc7iJR1T+K0W92vN0v+8SH3g9TSN70CQNSYt1D7hpF3ZDXmzBM0HfoYAHmHvyP/8Lfu8ooT/iCw83UEd51A0ZlN2IszyTv8LXnl0sRO+gwAfZNOBHe/nvTN85DtFnRh7Qjvf3e5srbhFzuoQb92BGD6jGvp2WM8JpMZvV5HWFgwK795k3vveYkZ0x/n0ku7snTZ6+70L8/9kK1/7GXt2g/w8dHj41M2xcvX1wedTktYWDAAcXHJPDX7LTIzc/H3NzB8RH+WLJ3nsf/VqzcQEODL0KHe79hetvQnZsy4tkG/butvM2ZcS/fuY91xBmjXbhSJia6HzYwc6RodjI/fQExMJHPnvs/WrXtYt+5jAJ5++k6ys/No29b1lPtJk0Yze7brfe2DB/fhuefuYcKEe8nIyCYsLJgnn7ydK65wdQaHDevH3LkPcNVVt1FSYmbgwF4sXVr2zuylS3/gxhvHNvg4hwwaybEnb8FptaDQaFH7B9Ly/jkkf/4mCe+8iKF1R2LvedadPn31YopPHKT1Y67XaaWt/BhzWqLr9p9mLWj54EvompV1dpxWC/m7NhF7/xyvfeft2Ejih68i22yog8OIuGYqIZeNLtu+7TdCBo1q8K/cCh40kuNPeMY49v45pHz+JgnvumIcUz7GaxZTfNwVY4VWh0JbNuVXodMjaTSoS+85l1QqWj44l6SPXiPjhyVoQiKInjXb3bFXB4a48yoN/kiSwmNd3vbfCG4EMQYwdB9B+rsV2hdTniH3x0XkfPMqmsj2hE4q177YsgxL4iHCZ7jaFwFDbsBZUkDaWzcjqTT4dL6MgMFTAddtcqFTnyN3zQIKt65AGRhByPhH3B17S9IR8n/7DNlqQmEIxKfTIAIvv8m9r5KDGzH0aATti8j+JP/+LE6HFYVSg1LrT0Svu8g+/BWZ+z5EG9iSiJ53uNPnnfoRU+5Jml36IABBba7BYS0iedPjSEo1vk37ENj6GgD0Ie0Jbnst6XvfwWEpRKn1I6j11fiEuV7/WZy2m8wDnyI77ah0QQS2vhL/qLKLd0VpO/GLHNDg2xf+TfuRtPMFd4wBErc9hd2cA0DaXwsAiB74Cmp9KLnxP2HOO0WznvcDENbhBjKPfE785gdQanwJaz8NbenIt+y0kXHoQ2wlWShUOvyaDSC49Vj3vk15J0nbW9Z2idt4B7qgtkT2dr36rCh9F35N+4vXmv0TF8F7xqWqRkSEfyd67voaD2j+r5+iMATiP+C6mt7VBZPtVs4unEXE/+Z7PXSluqmOZJ8/0X+Uu385Sl0AAe1Hnz9xLZEdNlLWPU6z4c+g1AXU+P5OfVWzI8Ozn3yT8PBg7ru/8nu/64LFYqVH9+vYvOULwsNDzp/hP1JINX899Mkn3yA8PJj777+pxvd1oSwWK926jeH335fUeJx7Lft30xX/idTlH6IOCCS8ivuS64LTZuXY4zfT9pmFqANq9ju5NpoRaSs+ROVf/2J8/ImbafN0zccYICeuZp9lApC/vrR90b+etS/emUXELTXfvlDvuvCnYv9bOce/QanxJ7Cl9/NK6orssJH8+zM06/+E+53kNUWyOGq0fICcU9+i1PgRGD3i/Ilriey0kbTjeZpf8igqTc3G+NSvtzSaHmzM87/UWkc14dmRdRI30RmvZrXRGb/Y1UZnXKj5zrhQO53xi11tdMYvdqIZUTtqozN+sauNzvjFrjY64xe7RtUZn/Nr7XXGn76iTuIm7hkXBEEQBEEQBEEQhFomhmUEQRAEQRAEQRCEekWuw6ec1xYxMi4IgiAIgiAIgiAItUx0xgVBEARBEARBEAShlolp6oIgCIIgCIIgCEL9chEMG18EhygIgiAIgiAIgiAI9YsYGRcEQRAEQRAEQRDqF/EAN0EQBEEQBEEQBEEQqpsYGRcEQRAEQRAEQRDqF4UYGRcEQRAEQRAEQRAEoZqJkXFBEARBEARBEAShfhEj44IgCIIgCIIgCIIgVDcxMi4IgiAIgiAIgiDUL41/YFyMjAuCIAiCIAiCIAhCbRMj44IgCIIgCIIgCEK9Iot7xgVBEARBEARBEARBqG5iZFwQBEEQBEEQBEGoXyQxMi4IgiAIgiAIgiAIQjUTI+OCIAiCIAiCIAhC/SLuGRcEQRAEQRAEQRAEobqJzrggCIIgCIIgCIIg1DIxTb2a5X28rK6r0Oj1ePuWuq7CRaFF15V1XYVGT9O/c11XodFb+JRPXVeh0QvVOuu6CheFYK1c11Vo9PwfCq7rKjR6F8GsY6E6XQTnixgZFwRBEARBEARBEIRaJkbGBUEQBEEQBEEQhHpFcREMG18EhygIgiAIgiAIgiAI9YsYGRcEQRAEQRAEQRDqFUncMy4IgiAIgiAIgiAIQnUTI+OCIAiCIAiCIAhCvSJGxgVBEARBEARBEARBqHZiZFwQBEEQBEEQBEGoV6SLYGhcjIwLgiAIgiAIgiAIQi0TI+OCIAiCIAiCIAhCvXIRDIyLkXFBEARBEARBEARBqG1iZFwQBEEQBEEQBEGoV8TIuCAIgiAIgiAIgiBcxCRJGiVJ0glJkk5LkvR4FWmGSJK0X5KkI5IkbbmQcsXIuCAIgiAIgiAIglCvSPVk2FiSJCXwDjACSAH+lCTpe1mWj5ZLEwi8C4ySZTlJkqTwCym7nhyiIAiCIAiCIAiCINQ7fYDTsizHybJsBZYD11ZIMxX4VpblJABZljMvpGDRGRcEQRAEQRAEQRCEyjUHksstp5SuK68tECRJ0mZJkvZKkjTjQgoW09QFQRAEQRAEQRCEeqU2H+AmSdJtwG3lVn0oy/KHf2+uJItcYVkF9AIuB/TADkmSdsqyfPJc+xWdcUEQBEEQBEEQBOGiVdrx/rCKzSlAVLnlSCCtkjTZsiwbAaMkSb8D3YBzdsbFNHVBEARBEARBEAShXlFItfc5jz+BNpIkxUqSpAEmA99XSLMGGCRJkkqSJB/gUuDY+QoWI+OCIAiCIAiCIAiCUAlZlu2SJN0N/AIogU9lWT4iSdKs0u3vy7J8TJKkn4GDgBP4WJblw+crW3TGGyFr4VFsRadxWvNQ+bZEHzaoyrROWxHmnJ04zOlIkhKVXxt0wZf843IuNqk/riJjw1qMCXGEXzacdg/MrjRd+oZ1pP2wElNaCkofA+GDRxA74zYkpQqnzcqp9+aTv38P9uJCdE0jiZ1+G8G9+9Xy0TQMxTm7KMnbj82SiU9AZ4Iix1Wazpi3j/zU75EUZV9vIS2movWNra2qNhiFh9dRdHIT1twkfFsPJGzI3ZWmKz79B/l7v8Zeko+kVOET1YOQAbeg0Ph4pLMVnCX1mwfxie1L+LD7auMQGoQfPv+BDSvXk3AigcFjhvDAGw9Wmi7hRAKfzPmYM4dOU5hXyI9Ja/9VORejlZ/8wE8rNnDmWAIjxg3mmbcfqDLtsvdXs3jRN1jMVoZe1Z9HX7sLjVYNQFpSBvMef5fDe46j1qgZds0A7p9zGyqVsrYOpd5a/OGPfLd0AyeOJnD1+Mt49b2qY/zZO6v56K1VmM1WRl7Tn+ffuNMd42lXPcH+PSfcMY1oGsIve96vlWNoCD557ydWfLWB40cSGTvpMt7+sOrv0g8WrmHR/G8xm61cdW0/Xn37DrSlcf4n5VxsPnnvJ5Z/tYFjhxMZN+kyFn5UdWzef3sNC9/4FrPJytVj+/FahRhfaDnCv1Ob94yfjyzLa4G1Fda9X2F5HjDvn5Qrpqk3QpLSB01gN9R+bc6ZTpYdlKT/gkrfFN8WkzFETULt2+ofl3Mx0gaH0mLSjTQZcdU50zktZlr97z76LfmJHvM/JP/AHpK/XQaA7HCgDQ2n28uL6L/8F2JuuJVjrz2DOeNsbRxCg6NU+eEXfhmGoB7nTavxiaRZx9nuj+iIV05pCCKw5wT82g07Zzpdk/Y0vfZFYmZ+SdSUd5BlB3l/LvNKl/3HR2jCWlVSwsUtJCKY6++dzIhJV5wznUqlYtDVg7h3XuUNugst52IU2iSEmfdfz9VTRpwz3c5Ne/ly4Tcs+uYlvtvzKalJ6Xz02hL39nmPv0tQaCA/HlzM4o0L2bf9MKs++6mmq98ghDcJ5o6HJzFh2rljvHXDX3z45iq+WPMimw5+QnJCOm+9vMQjzTPzbmd/6kr2p64UHfEKmjQN5oHHJjF5xvBzptu0/i8Wzl/FyrVz+PPYRyQmZDDvxaX/uJyLUURpbKbceO7YbFz/F2/PX8WqtXPYe/wjEuMzeG1OWYwvtBxBOBfRGW+E1IYY1IZoJIX2nOlsRadRKH3QBHRGUqiRFCqUmuB/XM7FKLT/YEL7XYbKz/+c6ZpdOY6ATt1QqNVoQ8IIH3IFhccOAaDU6YmZegu6iKZICgUhfQagi2hG0ekTtXEIDY4+oCN6/w4olPq6rkqjYYjtiyGmDwqd3znTqXxDUerKznVJUmArTPdIU3z6D5RaA/pmXWqkrg1Z/9ED6DeyP/5B545zZKtIrpg8khZto/9TORejoVf1Z/CV/QgIOvd38toVGxkzdQQt20fjH+jLzQ9M5qcVv7m3pyVlMHzMQLQ6DSHhQfQd1ov4E0k1Xf0GYeSY/oy4uh+Bwec+/75btoEJ00fQpkM0AYG+3PnoZL5buqGWatnwXTW2H6PH9CX4PHH+eskmps4YQfuOLQgM8uXBxyexYvHGf1zOxejqsf248kJi/NUmbrixXIyfmMTyr8pifKHlCP+eJNXep66IzvhFzGHJQlL5UpL+K8WJSyk5uw6HNbeuq9WoFRw+gKFF5aO01rxcSlKTq9wuXDibKZ2zx14l/eTbFGZuQZYddV2lBs+cfoyEz2aQ+Nl0jPG78O9SNivEaS0hb+8KgvveWIc1FITzizuRSOtOZd+xbTrFkpuVT0FuIQDX/28M61f/jrnETObZbHZs2EPfYT3rqroN0qljSbTvXBbj9p1jyM7MJ680xgDzn/+SPi2nMnnko+zaeqguqtngnTiWRMeuMe7ljl1iycrMJzensOpMwj9y/FgSnbrEuJc7dYklK0PEWKhe4p7xi5hsN+Iwn0UfMRylvim2gqOYMjZgiLwOSRL3x1W39N9+ouj0cdre85jXNqfdzvH5zxMxbBQ+UZWPigkXRmuIJrzNnSjVAdgtWeQmr0SSFPiJZx78J7omHYiZ+SV2Yw5Fx35D7Rvu3pa3Zzl+7Yah8g2twxoKwvmZjGZ8/Q3u5b//bSw2ERDsT49+XVjz1S9c3noSDoeTK6+/nMGjxXM8/okSoxk//7LnSfj9HeMiE0HB/jzy/E20aheFRqPmx1W/M2vKHNZsfYsWsU3rqsoNkrHYjH+5c9k/wBXz4mITwSHnniEiXBhjsRn/ABHjuiTVp5vGa4gYGb+ISQolSl0EKp9IJEmJOqAzssOC01pQ11VrdLJ3/E78F+/T5bnXUQcEemyTnU5OvDEHSaWm9SzxQKb/SqUJRqUJQpIUqHUR+IUNxlRwtK6r1WioDCHoo3qQuWEBAJbseEypBwnocnUd10wQzk9v0GEsKnEv//1vg68ep9PJ/ZOfYciV/dkUv4pfji2lKL+YRXM+q6vqNkg+Bh3F5WL8978Nfq5bjLr1boevnw8arZrrpl5Oz0s7sPnXPXVS14bM4KujqFyciwpd//b1FbdyVReDr84dVxAxFmpGg+yMS5L0nCRJcunHKUlSniRJf0qS9JIkSU0qpJVLH0X/97JakqQHJUk6LElSiSRJ2ZIk7ZIk6fFyaWJK83m1LiVJGlK6rXPNHmXNU5S7P1yoObl7d3Jq0Wt0evpVDDGeD7eSZZmTb7+CNT+Xjk+8hEIlJqtUO0kC5LquReMiO7AVZgBgPnsEe1EWyUvvIGnxrRQc/IGS+F2krnqkjispCN5atovm1JF49/KpI/EEhwUSEOxPYV4RGalZTLzlajRaNQHB/lw9eTg7fhMdxX+iTYcWHD9cFuPjh+IJDQ8kKLiKkUQJkMV39D/VrkMLjh4si/PRQwmEhQeKEdtq1L5DC44cKovxkUMJhEWIGNcmSVF7n7rSIDvjpQqAfkB/XC9e/xaYDhySJKnXOfItAl4AlgBXA7cBW4BrarS2tUiWnchOOyCDLCM77ciy0yud2tAKhyULuykNWXZiKzyKpNSh0AT8o3IuRrLDjtNqAacT2enEabUgO+xe6fIO7OX4/Bfo8MSL+Lft6LX99LuvU5KSQOenX0WpFQ/KOxdZdiA7bciy7Po4bZXeC24uOoXDXgyAzZJFUeYWdP7ta7u6DYLsdOC0W0EuPY/tVmSnd0yLT/2OvTgLWZaxFWWR9+cy9M1d1yP9OowgcvIimo2fR7Px8/DrOAJ9i540ufKp2j6cesthd2A1W3E4nDgdpf+2e8dZlmWsZit2q+u7xGq2YrPY/nE5FyO73YHFbMXpcOB0OLGYrdgric3oScP4YemvxJ9IojC/mM8WrOCq611PQg4MCaBZiwi+/XwtdruDooJi1n69weMe84vZ3zF2OJw4zhHjsZOH8c3i9Zw+nkRBfjHvvf4146ZeDkBhfjFbN/zlzvv915vZs/0IAy8X9+X/zW53YDZbcTidOB1OzFXEeeLUoSz94jdOHEsiP6+YBa9+zfXTh/3jci5G7tiUnstVxWbSDUNZUj7Gr3zN5GmVxPg85QjCuUhyA7waKUnSc8DdsiyHVlgfCPwO+ADtZFl2SJIkA/fIsrxIkiQfIB+YXfoeuPJ5Jbk0GJIkxQDxwDWyLP9YId0QYBPQpbIXufu3vLnOA2rJ24c1f7/HOk1gd9R+bTCmfIchchwKlS8ANmMCltw9yA4zSm0I2pC+KDVB5yxHewGvlqpJPd6+pU73D5Cw9BOSlnlOXWwxZSZNhl/Fnrum0/udxejCm3DgyXsoOHIQhUbjThfQsStdnp+POTOd3bdMQFJrkJRl9+i3uesRIobU/auLzjzx2/kT1aLCjE0UZW3xWOcXNhifoB5knn6H8NZ3odIEUnD2F0ryDyI7rShUBnwCu+IXPrhePgdB079uJ9jk7VlB/l8rPdYF9pyIX/thpHz9AJGTFqDyDSN391KKT23GaTGi0BrwiepJUJ8bUFbyFPa8PSuwFabXm/eML3zK5/yJatiSN75i2ZtLPdZNuX8qI66/gjsvn8W7G94nvHk4GckZ3DJgpke68MhwPt3++TnLueHBaTVa//MJ1db9RdqP5i3hk9c9X7d3y8NTuGbKCKYMupNlW9+lSaTrOQdL3/+OxQtXYTFbGHr1AB4r957xk4fjWPD0h5w+Eo9CqaTXgC48/PIdBIcF1vYheQnW1m3z4u2Xl7LoVc8Y3/3YFCZMG86Vfe9i7c53aBblivGni/5+z7iFkdf054UFrhjnZhdw68TniD+VikKhoGXbSO6ffQMDhtZtu+Jv/pq6P5fnvbiM+XOXe6x76MnJTLlxOJf1vJvf/1pEZFQY4HoH9qI3VmE2ud4z/trCO93vwK6qnEeemlI7B1IFRT24Bfi1F5fx+kuesXl49mSmzhjOwJ5388dfi4hs4Yrxe2+tYWFpjK8e24955WJcVTmP1nGMw3Rj6kGUq0fXxVtr7Yvv4PRBdRK3RtUZL902ClgHjJZl+ecKnfEwIBOYIcvy4nOUH0MD7ow3dvWhM34xqG+d8caorjvjF4P60Blv7OpDZ/xiUNed8YtBfeiMN3b1oTPe2InO+L9TV53xhjxNvSqbADvQt+IGWZazgGTgOUmSrpMk6XwvBlRIkqQq/wHq3/CaIAiCIAiCIAhCIyLeM94AybJsAbKBiCqS3AT4AauAfEmS9kiS9LAkSZpK0q4BbBU+YrhQEARBEARBEARB+E8a66Obq7y+IcvyRkmSWgFXAZcDw4F5wFhJki6TPZ9Q9gDwR4UiegHvV3N9BUEQBEEQBEEQhItIo+uMS5KkA0KAjKrSyLJcBCwHlkuut8k/DzyN64nqa8olPS3Lssc7TSRJ8q32SguCIAiCIAiCIAhudTl9vLY0umnqwFBcFxl2XEji0ieo//1k9Qbx/iNL7h6sBUfquhoeZNmBMeVbnA5TXVelWsR/8T4pa76u62p4cNqs/DlrKtb8vLquSrUoSP+N4uwL+t+01shOOxknF7pfjdYY5O5eQsGhH8+fsBbJDhspK+7FYSqo66pUi89f+Yw1H6+u62p4sFlszBp6G/nZ+XVdlWrx7oufs/yDNedPWIusFhvXD5hFblZ+XVel2rz+/Bd8/m79i/PIS2aR00ji/NIzX/Lhou/ruhoeLBYbA7vfSVZmfl1XpVq8+PSXfLCw/sW4f7fGE2Oh+jSqznjpq81eBU5Tyb3dkiSpS9NU1Kb0v1WOptcXTocZW/EZ1H7t3OvspjSMKd9SlPAlJWfX4bRV3ZGQHRZMGRsoSlhMcdLX2IrPuLc5rPkYU7+nKHEJRYlLKDn7Mw5rvnu7JW8fRfGfU5Sw2P1x2ooAkCQlKt82WPMPVf9B1zJrQR4ZG3+m6ahr3evyDuzhz1lT+WP85Rx48h7MmelV5rcVFXLkpSf4Y8Jwdt08nszNv7q3GZPi+euBW9g+eRTbJ4/i4FP3YUyKd28/9OxD/DFxhPuzddwQ9tw9AwCFWkOTEVeRvOqr6j/oWuawGynJP4AhuLd7nbk4joyTC0k78iJZ8Z9jL3fuVeS0l5CTuJy0Iy+RfmIBJfkH3dtkp52cpBWkn1hA6uHnsBTHe+S1FMeTFf85aUdfJv3EAo9tkkKFT1APirO2Vc+B1jGHqYDik1vw6zDCvc6UepCUFfeS8MlUzv7wLLairKrzm4vI+PU1Ej69gaSlsyg+vdW9zZqXTOq3j5L4+Y0kfn4jZ396Hmtesnt7+roXSfh0mvsT//FkUlY+CICkVOPbbhj5+1dX/0HXsoKcAjau2sioaaPd6/b/sZ9ZQ29jfNtxPHH942SmVP3TUpRfxIv/m8P4duOY2e9GNq/e5LH9XGXZLDYWPbGQaT2nMrnLJJ6f+RzZ6dkAqLVqhk8awTfveb66riHKyy5g3cqNjJ0xyr3uz9/3c/2AWQyOGc+d457gbHJmlfkL8op47KYXGRIznrG9ZvLLqs0e289X1vGDp5l17WMMjZ3A6E7TWPGhq7Oq0aq5espwFi/6pvoOtg7lZhewevlGJs8si/P2LQcYecksujYdz/SrnyQ1qeo45+cVcecNL9Gt2QSGdL6ZH1Zu9th+vrKO7D/N1NGP0735RPq1mc4X77k6UxqtmgnTRvDhm6uq72DrSHZWASuXbGL6LSPd67ZuOsDA7ncSGzKR60bNJvkcMc7LLWLm9XOJDZ1Er3a38u0Kz9d9XkhZVqur492j9c3udVqtmskzhrPojW+r4SjrVnZWAV8v2cSMW8ti/PumA/TvdifRwRMZN3I2yYnnjvGNk+YSEzKJnm1vZdVyzxhfSFlWq6vj3a2VZ4ynzBjOwvkNP8a1SSHV3qfOjrHudv2fqSRJ6lv6GSFJ0uPAAaApMFmWZUcleQKAOEmSFkiSNEaSpMGSJN2G62FuqcB3tVf9f8dedAqVPhJJ4brDwOkwY8rYiCaoB74tpqLQhmLK2lxlfnPODpAU+LaYjC58MObsHTisrpFWhVKPPnwovi2m4ttiCiqfFpgzPctSGWLxi5nu/ijUZQ+kV/u2xF58mspD33BkbFhHcO9+KLVaAGwF+RydO5uYabfSf9la/Fq359hrz1SZ//T781Go1PRb/D3tH3qGU+/Nx5gYB4A2OJSOj79Iv2Xr6LfkJ0L6DOT4vOfcebs8P5+BK9e7P/7tOxM2YKh7e/jgEWRs+BmnzVozB19LSvL2o/Nrg6RwvavTYTeSm7QC/4hhNO3wGBp9M3KTq+5E5J9diyQpadL+YYIiryM/7Sds5rIfRK1PC4Iir0Oh8r6rRFKoMQT2IKDJCK9tAD6BXSjJ34/stP/Ho6x7RSc3o2/RA4XKdS47zIVk/Po6QZdMpsWNn6MNa0XWhjeqzJ+z7WMkhYoW0z8mfNh9ZG/9CGuuq8Ot9AkmfMTDtLjxc1rM+BSf6N5kbii7uNFk9FPE3PyV+6OLaIuhZT/3dt/Wgyg+uRnZYauho68dv61cT++hvdHqXDEuyC1g7u0vMu2h6Sw7uII2Xdvw6l2vVJn/vafeRa1W8dVfS3n4rUd5d/Y7JJ5IvKCy1ny6muN/HWfhL+/w5Z9f4etv4INnyh5pMmTsUDZ+swGbpWHH+KcVv9Hv8t7o9K4Y5+cU8PjNc7ntsWn8enwZHbq34anbXq0y/+uPv4dKrWbtka947t2Hee2xd4k7nnhBZeXnFPDA5GcZO30Uvxxfxje7PqTPkJ7u7SOvG8LarzdibeAxBvh26QYGjyiLc25OAXdPn8v9s6fxZ/wyOvdozf03v1Zl/ucffh+1RsX2k4t5/aOHePah9zh1LPGCysrNKeCWCc8xeeYodsctZf1fHzBgWNm7x6+ZMJjvlm1o8HFe8dUGLh/ZC31pjHOyC7l5yis8+swNHEtdQreerbl9+rwq8z/xwAeoNSoOJ3zBu589yGP3vc/xo0n/qKx3F3xHaFiA1/rrJl3GyiUbsTTwGC9fvIHhozxjPHPyKzz+zA2cSHPF5bZzxPjx+z9Ao1FxONEV40crxPhCynqnihiPv/4yvm4EMRaqV0PujAfgmoq+HVgJTAC+wvX+771V5CkEXsP1ELaPgJ+BR4FfgL6yLNf7OZN2UwpKfZOyZWMiCk0gakMskkKFNrA7Tmuux4j232SnDbsxEW1QTySFGpUuApVPC+ylo+OSUotC7Yf09w0akoTTXnjBdVOoDKDQ4DBXPdLWEOTu3UlA5+7u5ewdWzC0iCVs4DAUGi3RU2/GGH+akuREr7wOs4ns7VuInnYrSr0PAZ26EdJnIJmbfgFA5euHLqJpaYxlJKUCU1pKpfUwZ5yl4OhBwoeWXd3Vhoaj8vWj8Hj9uk3hnzIXn0JriC5bLjyGWhuGPqATkkKNX/gQbOYMbBbvc8nptGIqPIpfxFAUSi1aQzQ6v3aU5B8AXKPbvqH9Ssv3vtSp8YnEJ6gbSk1QpXVTqgOQlHqspsr/Lg2JKXkf+qad3MvG+F1ogiMxtOyPQqUhsNckrDmJWPNTvfI6bWaM8bsI6j0ZhVqPrkkHfKJ7U3zKNUqg1BpQ+4W7vy8kSYG9oPIZI7aiTMzpx/Ftc5l7nco3BIXWgDnjZHUecq3bu3kPXfp2cS/vWLedFm2jGXj1IDQ6DVMfuIH4o/Ekn072ymsuMbN93TamPTwdvUFPpz6duHT4pWz6duMFlZWRnEHPy3oSFBaERqfhsjGDSTpZ9r0U2jQUQ4Avx/cdr+Eo1KwdG/bSo39ZjDf/tIOW7Vpw+ZiBaHUabn14KqePxpNwyjvGJqOZTT9t5/bHp+Fj0NP90k4MGnkp61ZuuqCylr2/mkuH9mTUhKFotGoMvj7Eto1ylx/eLBS/AAOH9zbsGAP8vn4vfQZ0di//+sMO2rRvweixrtjc8/hUjh+O58xJ7ziXGM38+v127p89DYOvnt79OjFsVB9Wr9h0QWV99s4aBg7rwZhJQ9Bo1fj6+dC6XVmcmzQPJSDQl/1/Nuw4b/z1L/oNKovx2jU7aNchijHXDUCn0/Dw7CkcPZTAqRPevz9Go5mfVu/gsWduwOCr59L+HRl5VR++WbbpgstKTMhg1fIt3PPwBK/ym0W6Yrx394kaOPLaUzHGP/0dl/GuuDzy1BSOnCPGP67ewePP3oCvr56+A1wxXrl00wWXlZiQwTfLtnDfI403xrVJvNqsnpJl+TlZlqXSj0KW5UBZlnvLsjxbluX0CmklWZYXlf7bKsvyK7IsXybLcoQsy3pZllvLsjxLluWUcnkSSvN53Wgpy/Lm0m2Ha/5IvTmteSjU/mXLtjyUmmD3sqRQo1D54bTle+e1FYIkoVCXXa1TaoO8Ou5FiUsoTvgSS85ONAFdPbbZS5IpSlyCMeU7rIXeP4oKTSBOa+6/PLr6oSQhDp/mLdzLxqR4DLGt3ctKnR5dk+Ye08v/ZkpNRlIoPPIbYlt5pd02eRRbr7uc0x+8SdSk6ZXWI2PjzwR07Iq+STOP9T5R0RjjT/+rY6sv7OZMVJpQ97LNkoW63EUmhUKDShOEvZILO3ZLDqBArS3Lr9ZHYK+k4/5vqbWh2MxV34rQUFhzk1AHlJ0/trxkNMEx7mWFWofKPwJbrnfj2laQhiQpUAeW5deGRHtMRQdI/HwGCZ9MIWfbpwT0uK7SehSf3IKuSXvU/p5vnNQERmLNTfgXR1Z/JBxPoHmrSPdy4slEYjvEupd1PjqaRDf16CT/LTUuFYVCQfOWZfljO7YksTTt+cq64vorOLbnKDnpOZhNZjav3kSvIb099hHVOor4o3HVc7B15MzxBKJbNXcvx51IpHWnsrjoDTqaRzch7kSSV96kuFSUSgUtyuVv0ymWuNLZB+cr6/DeE/gH+vK/qx5mdMcbeGja86SneE5LjWkTxakj3r8HDc2JownEtimL0+ljSbTvXBYbH4OOFrFNOH3MO84Jp1NRKBXEti7L36FLrDvt+co68OcJAoP8uP6KR+jbehq3X/8CaRVuF2jVNorjhxt2nI8dSaRVuRifOJZExy5lcTEYdES3bMKJSmIcdyoNpVLhkb9jlxhOHE2+4LJmP/ghTzw3DZ2+srf5Qpt2kRw91PBj3Lp8jI8m0amrZ1xiWjZxj3aXV1mMO3WJ4cSx5Asu68kHP+TJ56uOcdv2kRw52LBjLFSvRvc09cZOdlpBUpetcNqRlDrPRAoNOL2nwMiyDUlR4ctB0oDsmdYv+gZkpw1b8WmPab4qQyxqv3ZISh1OSxamzE1ICg1q35ZlxUlqVx0bMLuxCKXex73sMJvQ+Ad6pFEZfHGYSrzyOswmlD6+5007YPnPOMwmMjasQxvehMpkbPqZFpNu9Fqv1PtgNzbsB4w5HWYkZdm5KDusKFQ+HmkUSh1Op8Urr+y0olBqPdMqdDgd3mn/LUmhxekwV1t5dcVpMSJp9GXLNjNKnb9HGoXGB6fN+8GLss2MQuP5N5E0PsgV0kbf9CVOm5nik5tR+YVVWo/iU1sI7DHea72k0eG0eP9/1JAYC43oDWUxNpeYCQj2nJ5o8PPBZPSOsclowsff4LHOx8/gTnu+spq3jCSseTg39pmOQqkgpn0Ms+bc6ZFe76vHWGj89wdYDxQVGPHxLYuxyWgmMKRCXPwNlBRXHmODn+d5bPDzoaQ0hucrK/NsNicOneHtr+fQqkMMi174jKdnzeOjH8umpvr46ilu4DEGV5wN5eJcYjQTFOr5feHnb8BYSZyNRjN+/p5x9i2X9nxlpadlc+TAGT5b/QLtOsbw2jOf8eCtr7P8l7Kp7AY/PYUFDTvOhflGfP3KYmwsNhMS5hkXf38fiosqi7HJK8b+/gaKS2N4vrLWrtmBw+7gymv7se33yp/v4+unpyC/Yce4oGKMjWZCvM49n8rP42ITfgEVYhxgcMfwfGX9tGYHdruDq84RY4OvnoIGfh7XJvE0daHekRRaz86zQoVcsePttIJCTUWVdpRlm2fn3r0fNWq/9piytrqfkK7UBKJQ+SBJCpS6CNT+HbEbEzyLq6zD38CofP08Os9KnR57iecXp73E6NFhL5/WUSGt4xxpm44ey4kFL3o9Ib3gyAGsebmEDRjilc9hKkFlaNhv2FModciOsnNRUmqQK3S8nQ4LCoW2YlYkhQa5Qsfb6bR4ddD/C9lpQVHxIlcDpNAakK1lDQ6FWufV8XZaTSjU+opZkdQ6nFbPjrJsMyFVklah1uHX8QqyNi30ekK6Of0YjpJ8DC37euWTrWYUWu//NxoS3wBfj462zkdHSbFn3EqKSzw67H/TG/SYiqpOe76y3pm9CKvFyrKDK1h1/Dv6jerPszOe9khvKjZhqNDhb2j8A3w9Otp6gw5jxbgUlXh02MvS6r0a3cbiEnxKY3i+srQ6DYOv7EfHHm1Lp7FP4dCfxzw63yXFJnwbeIwB/AN9PWLlY9BhrHB+FheVeHTY/2Yw6CiumLawLO35ytLqNIy4ui9de7rifPfjU/hr1zGKynVajEUm/AMadpwDgnw9OtoGXx1FhZ7nZ1GRyaMz6U5r0HvFuKioBN/SGJ6rLKPRzJynvuClN247Z/2Ki0wEBDbsGAdWjLFBR1GFixvFRabKz2NfPcWFFWJcWOL+e5yrLKPRzAuzv+Dl88TYWGwioIGfx0L1Ep3xBkahCXJNN/97WR2Eo9y0cNlpw2kvQqEO9M6r9gdZxmkrayw7rLkoNd5pS0sD2Y5sP9fIleyx5LTmoyg3bb4hMsS0oiStbCquoUUsxoRyT503mzCfTcXQItYrr755FLLTgalc/uL405WmBUB24rSYseZ4TrHO2Pgzof0uq7QTX5Kc6DFtviFS6yKwW3PKlrVh2MxlT4l2Oq04rLmodN4jrSptCDLO0unqLjZzOipt5aOy/4bNko1aV/mMhYZEExKNrSDNvawOisKak+BedtrM2AvTUQdHeeVVBzRDlp3YCs6611lzEtAEeacFQJaR7VbsxhyP1UUnN2OI7VNph9+an+Ixbb4himkfS2pc2T330W2jPaaFm0vMpCem06JttFfe5i2b43A4SI0vyx9/NI7o0rTnKyv+aDzDJw7HL9APtVbNNTeN4eT+kxTkln3HJ59OJrZj2eylhqhVxxiSzpTFqGW7aI9p4SajmZTEdFq2a+GVt0XL5jjsDpLK/Y1OH4mnZbvoCyqrdcdYzydPlA7TuN6K6pJwKpk2nar4jm9A2nWKIeF02fdF6w4tOH44wb1cYjSTFH+W1h284xzTujkOu5OEM2X5jx+Od6c9X1ntOsWUPa8G3P8uH+czJ5M9pro3RB07RxN3uuxcbNehhce0cKPRTGLcWdpVEuOWbZphtzuJK/c3OnIonnYdo85bVvzpNJITM7l2+BN0ibmRW6a8QkZ6Hl1ibiQpsey399SJFI+p7g1Rh87RnDlVLsYdW3hMCzcazSTEnaV9x38Q4w5R5y0rrjTG1wx/gk4xNzJzsivGnSrE+OTxFI+p7sK5SQqp1j51RXTGGxiVTySOcveyqgzROK152IwJyE471vz9KDTBlXawJYUalSEaS94+18PczBnYjUmofFsBYDel4rDkIMtOZKcVS+5uJIXGfY+5zZiI7LAgyzIOSxa2wmOofMq+zJx2I7LTirKSDlRDEty7HwWH97mXQ/pdhjExjqxtm3FaLSQu/wxDbCt8orwb10qdntB+g0lY8jEOs4mCowfJ2fWH+yFsefv+pPjMSWSHA3uJkTMfL0Ll6+dRlsNiIWvbJiIuv9KrfEtOFvbiQvzbd/La1pBo/dpgKTerQuffAZs5E1PBUWSnjaLMLah0Eagr6WArFBr0/h0ozNyE02nFYkzCXHgCn8Bu7jSy0+6eMSLLDmSnzd2oc53fNpCdpWltHk9Od9gKcTpMaPSRNHQ+UT0xnz3qXjbE9MGam4wxbidOu5X8v1aiCYlGE9jcK69CrcMQ04e8Pctx2syY049jTNiDb5vBAJhSDmDJjkN2OnBaS8jd8TkKrQF1YFncnHYLJXE78G071Kt8uzEHp6UYXUTbGjjy2tN7WG8O7yybjthvVH8STyaybe0fWM1Wlr25lJgOMUS19r6IofPR0W9Uf5bM/wpziZmjfx5h1/qdDL1u2AWV1bZbGzau2oCx0IjdZmft4p8IjghxT23PTs+mOL+I9j3a10Ikak7/4b3Zt6PsMS2Dr+xH3PFENv64DYvZyidvLKN1hxhi2njHWG/QMeTKfnz06hJMRjMHdh/l9593MXri0Asq6+rJw9mybgcnD8dht9n57I3ldLu0I34BrtlJmWezKcwvpnOvhh1jgMEjerN7W1mcr7i6HyePJfLLGlds3nltOe06xdKqrXecfQw6RlzTj7fmLqHEaGbvzqNsWLeLsdcPvaCyxt8wnPU/7uDowThsNjvvvracXv064h/oinN6Wg4FecV0v6Rhx/nykb3ZsbXsAayjx/Tl+NEkfly9HbPZyhsvr6BD5xjatPP+/TEYdFx5bV9em7MUo9HM7h3H+OXH3UyYMvS8ZbXvFM1fJz9hw8432bDzTea/czdh4QFs2PkmzSNdz185m5pDfl4xvfq089p3QzJ8ZG92/FEW4ytL4/LDd664zJ+7go7niPFV1/bl1RdcMd61/Rg//7ibiVOHnresDp2i2XfqEzbufJONO9/kjXddMd7YCGMsVC+p/FVH4b/zb3lzjQbU6TBTkroGQ+R49+vN7KY0LDk7cdqLUWrD0IUOdL9yzJJ/AIc5A58mVwCu94ybs//AbkpDUmjRBvdCXdoZtxnjsebtw2k3IklKFNpQtMG93Q+IM2Vuxm5KA9mBQmVA7dceTUBHd92s+YdwOkzoQvrUZAjo8fYtNVq+rSCfvffN5JIPlrtfb5a3/09Ov78AS1Y6fm070u7+2egimgKQ9PWXFBw5QJfn57vyFxVy8q2Xydv/J2o/f2JvnEX4EFf8s/7YSMJXH2PJyUKp0eLbpj2xN87Ct9xId+aW9cR/8T59PvnGY6QAIPnbpVhzc2h16z01GgOAM0/8VmNlO+xGMk+/T5O297pfb2YuPkNB2lrstgI0+uYERY5FVfrE86LM37GUJBEaMw1wvWc8L3UNluI4FCo9/hHD8Qkse9hg+okFOGye06Uj2t6HShOEpTie7IQvPLZpfKIJaznTta+sbTjsRQQ2HUVN0/TvfP5E/4HDXEjqqoeJvH6h+/VmppSD5Gz7GHtxNtrw1oQOuRu1XzgA+ftWYU4/RpPRT5XmLyJ7y7uYUg+i0PoRfOkN+LYeBIAxbjt5fy7HbsxFUmnQhrUiuM8NaEJi3PsvPv0Hubu/ImrKe17ncv6BNThK8gjpd1ONxmDhUzU7Db4gt4B7R93Nh79/7H692f6t+3j/mffITMmkbY92PDD/QSKiXA+v+3rRCo7sPszzX84BXO8Zf+vhBezbug//IH9ufPwmhowtu3hxrrIK8wr54Nn32b91H3abnei20dzyzP9o193V0Fv1/jfkZubyv2fOPW3yvwrVOmu0/PycAqZffi8rd3zofu3W7i37mf/k+6SnZNKxZ1uefusBmrVwxeXzN79m/64jvLnsecD1nvGX7n+L3Vv2ERDsz52zb2Tk+CHu8s9VFsCqz9fy+YLlmE0WuvbpyKOv3klEc9eFwq/eWUV2Ri73v/C/Go0BQLC2ZttruTkFXDvoPtbv/cAd522b9/PCI++TlpxFt15teeXd+4mMdsXmvflfs2fHET75xhXn/LwinrjrLbZv3k9gsB8PP3sj10wc4i7/XGUBLP1kLe++vgJziYVefTvy3Pw7aBrpivPHb39LZnouT869tUZj4K+p2XM5J7uQ4X3vZ/uh99yv3vp9436efPBDUpKy6HFJW9768F5alMblrddWsnPbUZateRZwvQP7gVkL2bJxP8HBfsyeM4Prrh/sLv9cZZW37fdD3H3zAvad/tS97p0F35KZnsfzr9ZsG6umByBzsgsZdun97DxcFuMtG/fzxAOuuPS8pC1vf1QWlzdLY7y8XIzvu30hv2/cT1CwH0/NmcH4yWUxPldZ5W37/RB3zlzAgTNlMV70xrdkpOcx57WajXGYbkyjudO6z8o/aq2junviwDqJm+iMV7Oa7owDWHL3Iil1aALqz+ioLDsoSV2DvuloFErv6ajVqaY74wDxX36AOiCIyGsn1fi+LpTTZmXvPTfR7ZV30ARW/lqu6lSTnXGAgvTfUKoM+Ib2O3/iWiI77WSefo/QljNRVvKO8upW051xgNzdS1DqAwjocnWN7+tCyQ4bqd88RNMxc1Dqvd/FWp1qujMO8MWrnxMYEsi1t46t8X1dKJvFxj2j7uKVla8RGBpYo/uq6c44wHsvfUFQaCCTb7+2xvd1oawWG9OH3cN7q18hOCywxvdX051xgPkvfElIaAA33Vm/4nzNwHtYuvYVQmo4zjXdGQeY+8xiQsMDuO3uMTW+rwtlsdi4/NL7+O7XuYSFB9bovmpjNvBLzywmNCyA2++pXzEe2uc+1qyv+RiLzvi/IzrjjURtdMYvdrXRGRdqvjMu1E5n/GJXG53xi11tdMaF2umMX+xqozN+savDW3MvGo2pM37pN7XXGd81oW464+KecUEQBEEQBEEQBEGoZeI944IgCIIgCIIgCEK9It4zLgiCIAiCIAiCIAhCtROdcUEQBEEQBEEQBEGoZWKauiAIgiAIgiAIglCvXAwP/BMj44IgCIIgCIIgCIJQy8TIuCAIgiAIgiAIglCviAe4CYIgCIIgCIIgCIJQ7cTIuCAIgiAIgiAIglCvSBfBsPFFcIiCIAiCIAiCIAiCUL+IkXFBEARBEARBEAShXhH3jAuCIAiCIAiCIAiCUO3EyLggCIIgCIIgCIJQr0gXwdC4GBkXBEEQBEEQBEEQhFomRsYFQRAEQRAEQRCEeuUiGBgXI+OCIAiCIAiCIAiCUNvEyLggCIIgCIIgCIJQr4iRcUEQBEEQBEEQBEEQqp0YGRcEQRAEQRAEQRDqFTEyLgiCIAiCIAiCIAhCtRMj49Us5cSUuq5Co5dnya3rKlwU8jb3qusqNHp7s9V1XYVGL8bXVtdVaPTu2h5U11W4KCQvT67rKjR6yhOifVHT0jJ31XUVGr3ihDF1XYVqoxAj44IgCIIgCIIgCIIgVDfRGRcEQRAEQRAEQRCEWiamqQuCIAiCIAiCIAj1ipimLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9opDkuq5CjRMj44IgCIIgCIIgCIJQy8TIuCAIgiAIgiAIglCviHvGBUEQBEEQBEEQBEGodmJkXBAEQRAEQRAEQahXLoZR44vhGAVBEARBEARBEAShXhEj44IgCIIgCIIgCEK9Ip6mLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9Ip6mLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9cjGMGl8MxygIgiAIgiAIgiAI9YoYGRcEQRAEQRAEQRDqFXHPuCAIgiAIgiAIgiAI1U50xgVBEARBEARBEAShlolp6oIgCIIgCIIgCEK9IklyXVehxomRcUEQBEEQBEEQBEGoZWJkvBHKzS3kntveYONvewkJDeDZOTczccqwStO+89Yq3nz9a8wmC2PGDeKNRfeg1WoA+PDdNSz58leOHk5gwvVDeO+TR2rzMOq1/NwiHr1rIVs37iM4xJ9Hn5vBtZMGV5r240VreH/BKixmK6PG9OPFN+9Eq1UD0LHJJI+0ZpOV6f8bzfOv317jx9AQFOQV8fx9b7Nj8z4Cg/2596kZjJ4wxCvd6WOJvPHMJxw7cJr83CL2Zf/g3ma12Jj76Hvs2rKfwrxiolo25e7Z0xk4vHctHkn9VZxfxBdPLeDItr34BgUw/oGZXHrNUK90qScT+PrVD0k8cpri/EI+Pv6zx/bslHS+euEd4vYfQ6VR0+uKgUx+chZKlbK2DqXeKsgr4ul732bHJtd5fP8zM7iqkvP41NFE5j39CUdLz+PDuT94bF/60Y+sXraBU0cTuHL8Zbz0zgO1dAT1n62okBNvvUzevj9R+wcQe+PtRAy5witd+oZ1pH6/ElNaCkofA+GDR9DyxtuQlK7mkDE5gdPvvUHR6ROoAwJpNfNOQvtX/t1+MXJYisna+QGmtEModX4Ed5+Mb+yAc+ZJWz8Hc8ZRYqd+haTw/D6wFZ4l5cfHMLToQ/jAu2uy6g2Gw24kI34JJYXHUKoMhERei3/IJV7pCrN3kBG/BEmhdq9r1uYOfPzbeqSzmjNJOvwSvkE9aNLqppqufoMgOyxYcrbjMJ9FUmjRBPVAZWjplc6SsxO7Ma5cRidICgwtpgJgSv8FpyULJNfYpqT0waf52No4hIvGxfAAN9EZb4QevncRao2aUylfc+jAGSZd+xSdu7akQ6cYj3S//bqHBfNW8MMvr9GkWQjTJj7P3OcX8/zcWwBo0jSER56Yyob1ezGbLHVwJPXX0w+9j1qjYs+ZLzl6MJ6bJ75Ahy6xtO3QwiPdlt/+4v03vmHpTy8R0SSY26bOZcFLS3n8hRsBOJr+tTttidFM71YzuHLsuRs2F5OXH30ftVrFhqOLOXE4jnunvEDbzrG0ah/tkU6lUjLi2oFMnHklD854yWObw+6gSbNQPvn+ZZpEhvHH+j08dstrrNy6kGYtImrzcOqlpS8sQqlW8cYfy0k+foa3b3+GyPaxNG8T45FOqVLSe/RlDJl6De/c9bxXOV+98A7+wQHM37qUksJi3rj5STYt/YHhM8bWzoHUYy8+4jqPtxxfzPHDcdx5/Qu06xRL6w4VzmO1kpFjBzL5liu5d9pLXuWENQnm9ocmsW3jPixm8Z1c3qn35qNQq+n/1fcUx53i0POP4hvbGkO0ZwPbaTHT6n/34d+uI7aCfA7PeYzkb/1oMXE6ssPOkTmP03T0WLrOWUD+4f0cfuExekXH4tO8RRV7vrhk7/4USaEiesL7WPMSOLvpNTRBLdAERlWavij+D1cHpqry/vwMbYh3J+hilpm4AklS0rL7y1hKUkg79R5an+Zo9c280up8Y4nq8NA5y8tKXIHWEH3ONBcbS+4ukBT4RE7Eac3FnLkRhToYhSbQI502pC/akL5l+bK3eZWlCb4UtV+bmq6y0IiJaeqNjNFo4vvv/uCp527E11dPvwGdGX11P5Yv2eCVdtni9Uy/aRQdOsUQFOTHI0/ewNLFv7q3jxk3kKuvHUBwsF9tHkK9V2I08/OaHTz01A0YfPVc0r8jw6/sw7fLNnmlXbV0I5NmjKBthxYEBPly72PX800lfwuAtau3ERIWQJ8BnWr6EBoEk9HMhh+3c+cT0/Dx1dOjbycGj+rDj197xzmmTSTjpl1Bq/beDWa9Qcesx6bSrEUECoWCy0b2oXl0BEcPnK6Nw6jXLCVm9q7fxth7Z6Az6GnTqzPdhvVlx/cbvdI2aRnFoAmjaNa68kZddko6vUdfhlqrISAsmM6DepF2OrGmD6HeKzGaWf/Ddu550nUe9+zbiSGj+/BDJedxbJtIxk+/gtaVnMcAI67pz+VX9SNQfCd7cJhNZG/fQsy0W1HqfQjo1I2QSweSsekXr7TNrhxHYOduKNRqtKFhhA+5goKjhwAoSU7CkptD5NjrkZRKgrr1IqBjFzI2epdzMXLazRiTdxPUbRIKtQ5deHsMkb1cHe7K0ltLyD+4iuAeUyvdXpywHYXaB12TzjVZ7QbF6bBQnLefkMirUSh16P1aYwjsQlH27n9VXlHOHhRKPT7+7aq5pg2X7LThKElCE9gDSaFGqYtA6ROF3XjmvPnsJYmofFvVUk0FcHVUa+tTV0RnvJE5fTIVpVJB67aR7nWdu7bk+NEEr7THjybSuWvZFekuXVuSmZFHbk5hbVS1wYo7nYpCqaBlm+budR06x3LqWJJX2pPHkujQJdYjXXZmPnmVxHjV0o1cN2UoknQRzMm5AIlnXOdydOuyOLftFEvcce84/xM5mXkknkmttON+sclISEGhUNAktuz7IqpdS9JO/fNO9PAZY/lz7RYsJjN5Gdkc2rqHzoPErQB/n8cx5c7jdp1iOf0fz2OhTElqMpJC4TF67RvbCmNi/HnzFhw5gCHa9R0t4/2gIFmWMSbGea2/GNkKzyJJCjT+Td3rNEHR2PJTKk2fu385fm1HoNQHem1zWkvIO7CSkF7Ta6q6DZLVnImEAo2ubNaWVh+J1XS20vSWkhTO7HuUhIPPk5O2Dll2uLc5HCZyUn8iNGp8jde7IXHaC0GSUKj93euU6iCctoJz5rOXJCEpdSi0njPqrPl/YUxegSl9HQ5zeo3UWWjcRGe8kTEaTfgHGDzW+QcYKC42eaUtNpoIKJf273xFRSU1W8kGrqTYjJ+/j8c6P3+fSmNcYvRM6xfg+nfFtKnJWez64wgTplZ+b//FqMRoxrdCnH39DRgrifOFstnsPDlrPtdcP4zYNpVPq7yYmEvM6P08vy/0fgbMxn/+HdD2ki6knkrknt7X8cjgacR0akOP4f2rq6oNVmXnsd9/PI8FTw6TCaWPr8c6lY8vDtO5z+P09T9RdOo4UeOmAOATGY0mIJDkVUtx2u3k/rWbgsP7cVrELQEATrsFhdrzXFao9Tht3ueyJecM5qyTBLQbWWlZuQdW4td6KCpDSI3UtaGSnRYUSp3HOoVKj9PpfQ7qfdsQ3Xk2Lbu/QtPWt1Kcs4e8s7+5t+em/Ih/WD/U2qAar3eD4rQjSWrPdQo1stN2zmx24xlUhpYeAyaaoJ74NL8On8gJqHzbYs7ciNNWVBO1vmgpJLnWPnV2jLW9Q0mSnpMkSa7k81u5NF+UrrulijL+znNDJdum/729ijyyJEkmSZKOSZL0mCRJqgrpPi9Ns76SsvWSJBWVbr/pXwehBhkMeooKPRsgRYUl+PrqvdL6GvQUlkv7dz4/Px+vtEIZH18dxRUuWBQXVR5jH4OO4qKyhkpxaYwrpv122UZ69+tAVEyTGqhxw+Rj0GGsJM6GSuJ8IZxOJ0/d8QZqjYrHXp1VHVVs8HQ+OszFnjE2FZegM/yz7wCn08mbt86m5xUDeGffat7c8TUlhcV88/on1VndBqm6z2PBm1Kvx2EyeqyzlxhR6qs+j7N3/E7cF+/T5fnXUQcEAqBQqej01Mvk7tnBjuljSPluOWEDh6ENDavJ6jcYCpXWq+PttJlQqD3PZVl2kr37M0J6z/B6YBuAJTcBU/ohAtpfWaP1bYgkhRan0+yxzukwoVBovdKqdaGotaFIkgKtT3OCm42mOG8fAJaSZEoKjxMUIS7we1GokOUKHW/Z5vEgvIqcdiNOcwYqg+cUdaU2DEmhRpKUqH1bodSG4zBVPlNEEKpSVyPjBUC/Cp97ACRJ0gFjS9NNOUcZxVVsn1y6rTLzS/d1JbAWeAV4vIqyh0qSVPHpTlefoz71Quu2zbHbHZw5leped/hgHO07xnilbd8xmsMHy6bfHTp4hvCIIIJD/L3SCmVatm6Ow+4k/nSae92xwwm06eA97blthxYcOxRfLl08oeGBBFWI8bdLN4lR8QqiWzXHbneSeKYsziePxNPyX0wvl2WZ5+97m9ysfF7/7AnUavHsSoCImEgcDgcZCWXfFykn4mjW5p897MdYUETu2SyG3TAGtUaDb5A/A667gkO//1ndVW5wKjuPTxyJr/K+cOGf82kehexwUJKa7F5njD/tnn5eUe7enZxc+Bqdn34V3xjPxrVvbGu6v7KIAcvW0nXOG5jT0/Br26FG699QqP2bIssObIVlU6ateUmoAyM90jltJiw5cWRufZvEb2aRum42AEnf3oUp8zjmjKPYi7NJ+u5uEr+ZRcGxHzEm7yblpydq9XjqI40uHFl2YjVnutdZSlLR6JueI9ffykZsSwpPYbPmEn/gKeL2PU5e+m8U5+0n6cgrNVDrhkWh8gdZxmkru13Qac1DoQ6oMo/deAaFNgyFWjyvo7YppNr71Nkx1tF+7bIs76zwOVa67SrAH9iAq0Nc1VDhD8AVkiS5599IkhQMjAC+ryJPQum+Nsmy/BDwCzCjknQngDPAxArrJ5+j7HrBYNBzzdgBvPT8FxiNJnZuP8LaH7Yz+YbLvdJOmTacxZ//zPGjieTlFTHv5aVMnV72Khi73YHZbMXhcOJwODGbrdjtDq9yLjY+Bh0jx/TjjZeWUGI0s2fHUdb/tIvrpni/Duq6KUNZ8eV6Th1PoiCvmIWvfc2ECn+LvTuPkX42hyvHiaeol6c36Bh2VT/ee2UJJqOZ/buOsmXdLq6e5B1nWZaxmK3YbHYALGYrVkvZle+XHn6X+JMpvLXkaXR67xGGi5XWR0fPEQNY8/aXWErMnPrrCPs37KDfGO8LQ7IsY7NYcdhccbVZrNisVgD8ggIIjWzC5mU/4rA7KCksZvvq34hqJ56S7GPQMfzqfix62fV98dfOo2xau4trznUeWys/j+12B5Zy38kW8Z0MgFKnJ7TfYBKWfIzDbKLg6EGyd/1BxFDvKdJ5B/Zy7PUX6Pjki/i36+i1vTj+NE6rBYfZTPK3S7Hm5dBkuBjBBVCodBii+pB7YCVOuxlz5gmMKXvwix3omU7tQ4vx79L8qldoftUrNBn6GADNr5yLLqQ1fm0uJ2rsm+7t/m2G49O8B00vF51xhVKLb1B3clJ/xOmwYCo6gzH/IH6hfbzSGvOPYC/tUFpN6eSeXYchsAsAAWEDien6HC06P0GLzk8QEDYIQ2AnmrW9q1aPpz6SFGqUPi2w5u93PczNnIm9JNlr1Ls8e3Gc14PbZKcVuykVWXYgy07sxXE4LJkoK3nqvSCcS328Z3wKkArcjat+k6pItwNIA8o/mWJ8ad4dF7ivA0BVN46uwNX5BkCSJD9cI+rLL7DsOjN/4T2YTRZaN5/ELdPn8sbCe+nQKYbkpEyaBY0hOcl1xXX4yEu476GJXH3FI3RpPZ0WLSJ48tmyh6nMm7uECP+rWTBvBSuWbiDC/2rmzV1SV4dVr7z4xizMJiu9Wk7n3ptf58UFd9C2QwtSk7Po2GQSqclZAAwZ0YtZ91/HlCtnM6DTLTSPCueB2Z5Plv1m6UZGjemHr7g9wMuT8+7AYrYwrMM0nrhtHk/Ou4NW7aM5m5JJ/+iJnE1xnctnkzPpGzmeCQNcDY2+keMZ29c1FT0tOZNVX/zMicNxDO80g/7RE+kfPZG1KzfX1WHVKzc8czdWi5UHBlzPRw+9wrRn76F5mxhy0jK5q+dYctJcMc5JzeCObmN45urbAbij2xieGnWru5w7Fz7N4a17eKD/9Tx5xc0olAquf+L2Ojmm+ubp113n8eB203j0f/N4ev4dtO7gOo8viSo7j9OSM+nVbDzX9nedx72ajefqPmW3VHzw+gp6NRvPJ29+w49fb6ZXs/F88PqKOjmm+qbNnQ/htFrZfsM1HJv3HG3ufAhDdEvMmelsnTACc6brwUqJyz/HbjRy6LlH2DphBFsnjODgs2WvhsrY9As7pl/L9mnXkHdgL13nLECh1tTVYdU7oX1uRnbYSFw5i4w/FhLW5xY0gVHYjdnEL78JuzEbSZJQ6QPdH6XONRNMqQtAUqpQqLQe2yWVrvSp1mJWHkB49PXIThtx+x8nPe4zwqIno9U3w2bJ5fTeB7BZcgEoKTxB0uG5nN77AKmn3sU3qDvBTUcBoFBqUKkD3B+FUoskqVGJkV0AtMGXguygJGUlluzf0YZcikITiNNejDFpKU572QRbhyUL2VGCyifGsxDZiS1/PyXJKyhJXoGt6Di6sCHnHGEX/rmL4WnqkizX7g3rkiQ9h6ujXXHE2wH4ApnAe7IsPyhJ0l7AKstyvwplyLimtUcBvWVZvrx0/UZgN5ACLJRlWaqYR5blReXWLQO6ybLcsdy6z4HOwHTgCBAjy3KSJEkzcE1rb49rmv1MWZY/r3h8hbb1dfcEgItEnsV8/kTCf5ZnEU91r2l7s6u+R02oHn3Dz/1QHuG/u2u7eEBUbUhennz+RMJ/ojyRW9dVaPTSMnfVdRUaveKELxpNA27Gli211q/6cvDgOolbXV0ICAFsFT6XA+MAHWWjz8uBvpIkVX7jl2v7EEmSmpROZx/MuUeuFZIkqSRJ8pMkaQpwHfBCZQlLp80fAq4vXTUZ+BpwXtghCoIgCIIgCIIgCP+GuGe85hQAl1T47MI1RT1OluXdpemWAzLlpouXJ8vyPuAUrnu7JwGnZFnef479voWr418ILAXekWX5XJ335cDk0nvRh9MApqgLgiAIgiAIgiAI9V9dPVLYLsvynvIrJEkKxdXhfUeSpMDS1UXAn8BU4OUqyvr73m6J83eW5+Ea3Q4A7gcekCTpN1mW11aRfjkwF3gSSJVleackSb5VpBUEQRAEQRAEQRCqQV2+/7u21KcHuE3EdXHgPiCv3KcP0FmSpM5V5FuO63Vl4sPlrAAAwmdJREFUfTl/ZzxJluU9sixvwDVF/QQwT5KkSicnyLIcj+se9AdwdfoFQRAEQRAEQRAE4T+rT53xKcAxYGiFzyhcU8urmqp+DPgQ+FCW5eMXujNZlm3A00BH4JpzJJ2P6zVqX15o2TXtudmf8O7b39Z1NTxYLFZ6d76ZrMy8uq5KtXj12S/45J01dV0NDxaLjWE97yA7K7+uq1It3p7zBUver18xtlpsjOs7i9xGEuOKVs3/lPVffFfr+13x8gdsXv5Tre+3tix44QsWv1f/zuVrLp1FTiM9l+M+f5+UNV/X+n5Pf7SQtLWra32/tSV33zIKjlU1WbBuyA4byd8/hMNcUNdVqRbZyWvIS99Y19Xw4HTaSDj0AnZbUV1XpVpY8/7CVni0rqvhQZYdlKSuRnaY6roqQj1TLzrjkiRFAgOBL2RZ3lzh8wvwM67OeqVkWZ4ly/KsqrafwyrgOPDIOcr+WpblsbIs14v/q7Oz8lm+5Ddm/u8q97rNG/fRu/PNNAm4hqtHPEJSYkaV+XNzC7lhwnM0DbyGzq2nsXKZ5w/Cucp6+YUvCfEZTbOgMe5PfNxZALRaDdNuGsWbr9d+46i65WQV8O2yTdxw8yj3um2bDzCs5x20D5/A5Ctnk1L6erjK5OcWcduUuXSImMiAjrew5ust7m1/7T7OtDFP063FVHrGTOPO6a+Qme759NbD+88waeTjdGwyid4tp/Ppu65X22u1aiZNH877b6yq5iOufbnZBfy4YiPjbyyL8a7fDzCu7yz6RY3nf9c+SVpy1TEuyCviwRkv0a/FBEZ3v5l132z22H6usu66/ln36836R0/kkqbjmDjobgA0WjXXTh3BZ283/BhXVJSbz441Gxh8fdk7k4/t2MdTo2/lzu7XMm/Go+SkVv3dUZxfxDt3v8CdPa7l0WEz2PXDJve2tNOJzBl/D/f2mcC9fSYwf+bjpJ1OdG8fecsEfnp/GXZr43uyeW52AT+s2MjEm8rO5Z1bDnDNpbPo3Xw8M8ec/1y+d/pLXBI5gRFdb+anCufyucqyWmw8/+A7XNZuOv1bTuGuKS+QkZYDuM7lcTeM4NO3Gt+5bC3II2PjzzQdda17Xd7+PeyeNZWt4y9n/xP3uF9lVhlbUSGHX3yCreOHs3PmeDI2/+re5rTZODL3KXbePIEtVw8k/+BfHnmjxk8h6esvcdoa37nsMBdSFLcVvzbD3etMZw+T/P1DxC+7kbT1c7AVZ1Wd31JM+pb5xC+7iaTv7qE4fpt7m+ywk/H7ApK+u4e4r6ZgSvdsUskOG1m7Pibxm9tJ+PpW0jfNw17i+m2UlGr8Wg0m/8j31XzEtc9uK6IwZxcB4WXvZi8pPE7CoRc4vfd+Uo6/ic2SU2V+h91I2qkPOb33AeIPPEVhzp/ubabieFJOLOTMX48Qt+8xzp7+GLu17AJG3tn1JB5+kdN7HyT+wDPknV3v3qZQqPEP7Ufe2V9p6GSHGbvxDCrftu51DtNZSlJXY0xagin9F49Xl3nnt2DO3IQxaSklKauwG+MqTWfNP4Ax8UscprSy/ZjTMaX/gjFpGSUpnt+9kqRE5dsaa8GR/3iEFxfxALfaMxnXg9qqeon1V0BLSZIurc6dyrLsxHUv+kBJkvqdL319sOTLXxkxqg96vRaAnOwCpk96ntnP3URCxiq692rDzBteqjL/w/cuQq1Rcyrlaz764nEevOdtjh1JuOCyrps4mLS8792f2JZN3dsmTh7K0sXrsVis1X/gteibJRsYekVvdKUxzs0uZNYNL/PQ0zewP2kpXXu05u4bX6sy/9MPvY9ao2LPmS958+OHeOqB9zh5LAmAgnwjU2aO5I/DH7Pt6CcYfPU8fMdb7ry52YXcOO45pt48in2JS9h84AMuG9bDvf3aSYNZtXQjFkvDbgj+sGwDA4eXxTgvp4CHb5zLnU9MY/OpZXTs3prHb606xi8/+j5qtYoNRxcz9/2HmPvIe5w5nnhBZb2z4nm2J650f7pd0p7hYwa4t4+eMJgfV2zA2sBjXNG279bTZfAlaHSumBflFfDuPXMYe98M3tq1kpjObfjgwaoezQFLX1iEUq3ijT+W8795j/LV8wtJPZUAQGB4CHe8NZu3dq3kzR0r6Da0r0dZgeEhNGkZxf6NO2v0GOvC6qUbGFThXL5/xlzufmIa284so1P31jx8c9Xn8ouPuM7lLccX8+qHDzHnofc4fSzxgsr66oPvOfDncb7d+jabjn6BX4CBuY9/4N5+5fjBrFne+M7ljN/WEdy7H0qtK+a2gnyOzJ1N7LRbGbBsLX5t2nP01WeqzH/qvfko1Gr6f/U9HR5+hlPvzseYWNbgDujUlQ4PPY0mKMQrrzY4FH1kC3J2/VH9B1bHis5swad5dxQq13vVHeZC0n9/g6BuE4me9BHa4JZk/vF2lfmzd3+KpFARPeF9wgfcRdbuT7Dml72OTRfWjvABd6HUBXrlLfg/e3cdH8W1BXD8N7vZzUqc4EGCOy2FUtyKQw3aRwttqbu7u1KjLZRSo0LRAnXD2uLuDkmQoPFks37fHxs22WyCtHHO9332lZm59+6dw2GSO3dkx684ju+m7tA3qD9iIjqjhROrp/i3hzXsRta+v1Geyp3LWSdWYI1sjU6XF2NXNof3fEK1usNodP44Qq31ObL382LrH0uagabpaXTea9RqNJbjSdNx5A0GvW4bkdW70bD9izRs9xI6fShHE77211VAzfjraNxhHHWb3UX6sb/ISsl/fFN4tY5kpqzE663cMXZl70Fvroum8z0WS3ns2I8vxhh1HpZ6o9CHVsNx/O9i6ztSV4KmwxJ3JaGx3XGkrMTrTA8o43Vl4bYloenNgZW1EELCmmCMvqDItkOs8bhz9qKU5z/to6haynwwrpR6XikVW2jdW0opvVLqYDF1ZiqlNKXUyrxlreD7woso/2HBd4yfqo5S6qu8bcvzlscqpTqeou3svPJTTrmjpeTP31fTvUdb//IP85bQolVDLh/ZE5PJyBPPXMuWTfvYtWN/UN2cnFx+mLuEp5+/nrAwM126tWHwsC5Mn7rgrNsqSt246kRFh7F65RnfLVAhLf5zLZ27t/Yv//bDMpq2qM/Qy7tjMhm5/8mr2b4lkT07g9PVlmPnt++X89DTo7GGmenUtRUXD7mQOdN8s4h9BlzA0Mu7Ex5hwWwJ5frbhrF2RX68Pv1wHj0vPp/L/teb0FADYeEWmrSo599eu24skdFhrF+9sxQjUPqWLljLBV3zHwOx8KflNGpRn/6XdifUZOT2R69h19YEEnYHv1c3N8fOgp+WcecTY7CEmTn/otb0GnQhP81cdNZtJe8/yvoV2xh2VR//upp1YgmPDGPTmsqdx4Vt+XsNzTrlHzvW/bGUOk0a0HFQTwyhRi65+1oO7NjH4X3BcXLY7Kz9cymX3XsdJquZphe0oX3fi1j+g+/KGktEGLFxtdA0DaVAp9dxfP/hgDaaX9iOTX+tCmq7sluyYC0du+Xn8vwfl9O4RX0GXubLvzsfu4adWxPYtys4rrYcO3/+uIx7nvTlcoeLWtN78IX8mJfLp2vrYNJRuvXtQGyNaEJNRgZf0ZO9BY7XterGEhEVxsYqlsupa1cQ1fY8//Lx5X9hrR9P9e590RlDaXjNjeQk7MF2ICmorseey4llf9FwzM3ozRYiW7enWufuHF30OwA6g4G4S68isnV70BX9K1JU2/NJWbO8VPatPNmSN2Cq0dK/nHNgNcbIOMIaXIRObyS6/QicaUk4Mw4F1fW67eQcWEV0+6vQGUyYarTAGncBWQm+kxaaPoTIlkMw1WhRZFxd2ccx12lHiDkKnd5IWIMuuNLzf8aGWKuhM4ZhP7G7FPa87ORkbMMc3tS/nJ22AaOpNuExHdDpDFSrMxSH7RDO3OArO7weB9lpG6gWNwyd3oQ5vAnWqLZknfAdV61RrQmP6YBeb0anNxJZoxe52fknmWJq98dkrY+m6TGaa2KNahew3WCMRq+3YM9OLL0AlAFPbjL60Fr+ZbdtPzpjFCHWhmiaHkNke7yuNLyu4NselNeFx7YfY9T5aDoDelNN9JZ6uHP2BpRzpq7EGN2BwsMofWgshrDG6EKKftazLsSKpjPidRR/hYkIpCvDT3mpKDPj4gxt25JIk+b5g7Md25Jo066Rf9lqNRPfqDbbtwX/ErJn1yH0eh1NmsX517Vp14gd2xLPuK3ffl5Bg5oj6Nz+Fj79+Meg72jevD5bNu0NWl+Z7NyaRKOm+THateMALds29C9brCYaxNdidxEnKfbtOYROr6NR07r+dS3bxLN7e9EnNFYu3ULTAoPt9at3EhkdzhX9HuWC+Gu56cqXOHQg8KDdpFk9tm9O+Le7VyHs3p5Iwyb5Mdq7cz/NWsf7l81WE3ENawUMLE5K2uvL4wYF6jdrHc++vLJn09aPMxZy/kWtqNugVsD6+Gb12LW1cse4sIO7EqkVn5/XyXuSiGuR/+891GKiev3aJO8OPnYcTTyITqcLqF+veaOgsvd0GsEd7Ycz7eWPGHLb/wK21W5Uj4M7i77crzLbvS0wl/fs2E/zNvn5Z7GaqHeaXC5Yv3nrePbklT1dW1eM6c/6lds5djiFXJudn2ctpnu/wBmZRs3qsXNL1crlnMR9mOvW9y/bkhKwxjfxL+tNZky16pKzP3i/bYcOoOl0WArUD4tvTE7SmcfIUq8hOQl7/mXvKy5n+gEMEXUKLB/EGN3Av6wLMRESVhNnRvCJaFfmYTRNhzEi/2o5Y3SDgAH1qUQ06Y39+C7ctlS8bgdZiUsx120fUMYYUQdn2plNDlRUztxkjKaaBZYPE2rJ//ev04diMMXiyD0cXNd+DA1dQP1QcxzOIsoC5GbtIdRcu8htSins2XsxFtpuNNfCmXtmf2cVldeVhmaIKLCcjs4Q7V/WdAa0kPCg2W4ArzsTNA1dgfp6Q3TAwN2dkwiajhBzXFD9M6EzROJ1Vo3nK4mSUV6vNhP/UkZ6NuFh+ZfFZGfnEhsbFVAmItJKdnbwAyJycnKJiLQWW/Z0bV0+shdjbx5KjZpRrFm1g2v/9xJRkWGMHJU/qxgWbiYjPee/7GK5y8zIwVogxrbsXGJiIwPKhEdYyM4KjrEt2054hCW4bBF/H9u3JPD+GzP4ZNpT/nVHDqWwZeM+vvn+RZq3bsDrz0zh3hvG8d38/EtTreFmMjMqd4yzM3KwhBeIcY6d6GoRAWXCIqzYioibLcdOWKEYh0VYyckrezZt/TxzETc/eFXQemuYmaxKHuPCcrOyMVnz4+aw5RIWExVQxhxmxZ5jC6prt9kxhwceO8zhwWU/WP0dDpudZfP+pFqdGgHbTFYLtsyqFVOArMLHixw7MbHB+ZdzhrkcXiiXT9VWw8Z1qR1Xnb6tx6LX62jaqiFPvRn4+JSqmMvunCxCzPlx89hzMURGBZQJsYbhyQ3OZU9uLnpL4KxViKXossXRmy24s6vGg64K8jpt6Awm/7Jy29GZAvNPZ7SgXPbgum4HOkNgLusMZryuM3tYlSG8NiGWauyfcxdoOoxR9YjtdENwe87Kncsejw2dPtS/7PU60BeaRdXpzShvcIyV14FObwosG2LG63UElXXYDpGa/Ct1mt5WZD9Sk39GKUVE7EWB7elC8bgr+QPGvE40naHAshutQMzBNyD3Pce5cF03mmYIXKczoPIu3VdeF8709ZhqXBxc90xpBpS3ct/OWZbk1WaiwomKDiOrwC91YWFmsrICfzhlZdoICzMXrorVaiYr01Zs2dO11aJVA2rXqYZer6dzl9bcfvdlzJvzT0D57KxcIqMCf2mvbCKjwgJ+cbaEmcnOCoxbdlYuYeHBMbaEmYooG/z3kbg3mbFXvMBzb9zChd3yL4kPNRsZOOwi2l/QFJPJyH2Pj2Ltyh0Bg++crOCTKpVNeFQYtgInMyxWEzmF4paTZcNSRB4XVTY7y+YfEJ1pW+tXbOXEsTQuHt6NwnKycwmv5DEuzBIRFjB4DrWYsWcHxsmebQsYsJ9kspiCyuYWUzbUYqLXqKF89thbZKak57edY8MSUbViChBR+HhhDT4G5BTIz4LOJJdP1dZLD0/E4XCydO+3rD44m4uHdeH2K58PLF8FczkkLBx3gcGz3mTGYwv82eWx5aA3B+en3mzGkxtY1l1M2eJ4cm2EhIWfZa8rPp3RirfAQFsLMaFcgfnndeWiGUyFq6ILCQ0aeHtduegMwXlflBOrPkd5XTS48hPiR03BWu9Cjix8Pbg9Y+XOZb3egteTP3jW6ULxegIH3l6PHU0XHGNNF4rXW7hsLjpd4EDTaT/GoV0TqF5/JObwJhSWfnQxmSdWUafZHeh0gQNP38mBM/s7q7B0of7Bs285JHAZ36A6aNB9smzhQbpy+Qf3zvSNhFgboTP8h3//yoWW98wAIUAG45VO67aN2Lsr/xKiFq0asGVT/qWfOTm5JOw7TMtWDYLqNmlWF7fbw97d+fd7bdm0jxatGp51W0De/aGBZ6x27txPm3aN/9W+VRQt2jQkYU9+jJq1CLws3JZjJynhME1b1A+q26hJXTxuLwl78p+uuX1LIk1b5pc9uP8Yoy95lnse+x9XXN0noH7LNg0p+NZ7LW+hYJz37DpAy7bxVGZNWzUkaW9+jBo3r8+uvAcJgu++8IOJh2lcRIwbNK6L2+0NqL9rawKN8sqeaVs/Tl9I36FdihzwJ+w6EHCpe1UQ1zyeo4n5eV2nSQMO7Mj/9+6w2Tl+4DB1mgb/e6/ZMA6PxxNQ/+DOfUWWBVBehdPuIP3oCf+6w/sOENe8UZHlK7NmrQNzuUmL+uzckuhftuXYOXAWubxzawJN8sqerq2dWxK47Op+REaHYww1cM2tw9i8bhdpKfmXVO7bdSDgUveqwNqwMbmH8u/BtzSIJzsh//Yojz2X3COHsNYP3m9L3Xoojwdbgfo5CXuwNjjzGNkOJAZcFl9VhEbXx5WVf8mzMSoOR4HLwr1uO+6soxgjgy/PNUTURikPrsz8+s60/RiizuxSXkdaEuGNeqEPDUPTG4hoMRBHyl489sz89jKTMUYH/zuqTIyWujgd+W+tMJpr48jNP656PQ5cjuNFXl5uNNVAKS9Oe/4bFRy2QwGXmrscKRza+QExdQYTERv8zOOM48tIO/wncc3vxWCMDtruzD2C8V9efl1R6IxRKFd+3ugMUXhd+ZeFK68L5c5CZ4wKrhsSAUrhLVDf60xDZ/BdHem1H8aVtQPbgZnYDsxEeWzYT/yNM2PLGffP68pAV0TsRdHkaeqiwhkwqBNL/tnkXx5+aTe2b03k+zn/YLc7eePlqbRuG0+zIn7xs1rNDL+sG6+88CU5ObmsWLaVX35cxqjR/c6orZ9/WEZaWhZKKdau3sHHE+YxdHj+Q+iTD50gLTWLTp1blHIUSlefARewckn+gXXg8C7s2r6fX79fht3uZPzr02nRuiFNmgf/wLJYTQy8pAvvvDIVW46dNcu38efPK/2D7iPJKVwz7Gmuu2UIY24aHFT/yjH9+P2nFWzdtA+Xy837b86gU5dWREaF+eunp2ZzfqfmpbT3ZaP7xR1Zuyw/xn2GdmHv9iTm/7gUh93J5Lem07RVPPFN6wXVNVtN9B3ahY9en0pujp0NK7fx168r/Q9hO5O27LkO/vxhKZeM6hfU/rHDKWSmZ9OuY+XO48La9uzErlWb/csd+ncleXcia39fgsvh5MeJU4lrHk/tRsExD7WY6NC/G9+//xUOm53d67ayYcFyulzSF4CtS9exf9sevB4Pudk5zHj9YywRYdRunH8c2rVqM217dir9HS1jPS7uyJql+bncb1gX9mxP4s8ffPk3adx0mrWKp1Gz4LharCYuHtaFD1/zHS/WrdjGol9WMjwvl0/XVpvzm/LD9IVkZebgcrmZ/tkv1KgdQ3Q13y+OR5NTyEjLpn0Vy+WYjl3I2LLevxzbpSc5Sfs4vnQxXqeDpGlfYG3YGEu94JNFepOZ2C69SJz6KR57LhnbNnFi5RJq9hnoL+N1OfE6fbOXXrcbr9MRcEI0Y8sGYi4o0Ze7VAjmOudhP7rdv2yt1wln+gGy96/E63GStmkOxuj6GCPrBtXVhZiw1ruQ1I2z8Lrt2I/tJOfgGsLj81/hpTwuvB7f5bnK68brcfrjGlqtMVn7/sHrtKG8bjJ3/YneHI0+7zJ5ty0VryMbU2zToO+uTKyRrcnNyn/egDW6Pc7cZLJS1+P1ukhN/pVQc12M5lpBdXX6UMKizyPl0E94PQ5ys/aSk76J8NgLAXA70zm0832iavQkqkaPoPqZKatIOfgDdZvfg8EUG7Td7UzH47ZhCmtYcjtcDkLMcXgKnPAIsdTH60zHnZPkO2GUsQmdIdo/wC5I0xnQW+rjTN/ge5ib/Rhu2wFCrL5JJlPN/pjrXIKpznBMdYaj6c2ExlyEIdz3O5lSCqU8KFTesifgyelet813u0Fo9dIMgahktMIzm+K/yXT9WaoBTTmRQfdOd7Bu2xf+15stWrCOR+77kAP7j9HxwhZM/PRhGjT0Hcjfen0ay5du5rsfXwV87xm/+5a3WbRgHTHVInj+5Zu48uq+/vZP1daNY15l4fy1OB0u6tSN5ebbh3P73Zf7645/eyZHj6Ty6rh/88r3M5fmCL6XqiSlnshkSLf7WLxhkv91RUsWbeDZhz7m0IHjnNexGW9Nuo96DXwPUZkwbiarlm/jyznPA773jD9y5/ssWbSB6JhwHnvhei69qhcA7702jfdenYbFGngJ2rYj+e9n//rTX/jwzZnk5jrodFErXnr3durE+Q7cH783h2NH0njm9ZtKNQYAaY7SO02YlpLBqN738f2qj/0xXvHXBt54bBKHDx6nTYdmvPjh/dSp74vxZ+/OZN2KrUyY8QLgezfz8/eOZ8VfG4iKDufeZ65n8Mje/vZP1RbAr9/9xfsvfckv6z/zX31w0pcfzOH40VQefvnmUtv/k9aeKOIyuVKSlZbBi5fdxSu/f+Z/vdm2Zev49qWJpCQfI75dc2587SFi43z/3n+eNJ3da7dw/ycvA773jE956h22LVtHWFQEIx68kc7DfYPGNb/9zbzxX5F29ASG0FAatm3GiIduoF7eTHj6sRReufI+XvvzC0KMZbfPABfVKN3X9KSlZDCy5338vCY/l5cv3sCrj00i+cBx2l7QjFcm3E/dvPyb/M5M1i3fyqRZ+bn8zD3jWb54A5HR4Tzw3PUMLZDLp2orPTWT1x6fzPLFG3A53TRpWZ9HX76Zthf43q/7+ftzOHE0lUdfKd1cvmtZ2c7yuDLSWXPvDVw4ebr/9WZpG1aze9K7OI4dIbxZK1o88BSmmr4Zw6SZX5GxdSPtXnjbVz8rk53jXyNt/WoMERHEX387NXsP8Le/4saROAq9p7zzZ7Mw1ayNI/UE6x64hc6fzkRnKNtcPjA9+In8Jcljz+TgL09Q75J3/a83sx3eTMrqKbhzjhNarQnVu96BIcz38yhtyzzsx3ZQu+/jvvqObI4v/5jcw5vRhYZR7fyrCYvPvw1o/9x7cOecCPjOepe9jyGsOh5HFimrv8R2eDN43Rii6lHtgjGYYn1XIKRv/RFPbjrVOl5bqjHQ70wt1fY9rmz2b32NBu2e87/ezJaxg2P7Z+J2pGIKa0jN+GsxhPpeq5ea/Bu52Xup2+wuX313DkcTvsGWuQN9iJVqcZcSUc13kjPl0M+kJv8SdAl0kwveBSBh47O4XWloWv7josKrXUjNhlcDvveQu12ZVK8/olRjkHxsZam2rzx2cg//hLnOZf7Xm3lyk3GkrkJ5ctAZYwmN7eZ/4rkzYzNe+1FMNS/Oq+/AkbIMj/0wms6IMboDIdair+qyHfyO0Gpd0Jt9Dz702I9gPxr4rnZdaE3MtQbmfdcWlCeX0JjSPTGdnfhlOc7zlqy7ly8qs4Hqh136lEvcZDBewkp7MA7wwtOfU71GFHfee0Vpf9UZczicdLvgdn5d+DbVa5TuL2alPRgHePP5r6hWPZKb7rq01L/rTDkcLgZ3uZeZv79GbPWoUv++0hyMA3zw8lfExEYy+vaKE2Onw8X/et3DZz++TkwZxLgsB+MAc975gvBqUfS//vLTFy5BM16fTI36telzzfAy/V4o/cE4wHsvfUW12EiuvaNi5fKInvcw5afXqVbKuVzWg3GAfV9+jDEqmrhLgx/AWJr2fvoBptp1qTu07H/+lvZgHCB1/XT0pggiWw4p9e86U8rj4uDPj1NnwLPoTcGzmSWptAfjACcOfo8+JJzoWn1PX7iMeL0u9m99jbgWDxDyX+6HPgOlPRgHcKatQ9ObMES0KvXvOlNKechN/hFzrYHB7ycvYTIY/3dkMF5FlMVg/FxXFoNxUfqDcVH2g/FzUVkMxs915TEYPxeVxWD8XFcWg/FzXVkMxs91VWkwfm8ZDsbfL6fBuNwzLoQQQgghhBBClDF5z7gQQgghhBBCiApF3jMuhBBCCCGEEEKIEicz40IIIYQQQgghKpTyfP93WZGZcSGEEEIIIYQQoozJYFwIIYQQQgghhChjcpm6EEIIIYQQQogK5VyYNT4X9lEIIYQQQgghhKhQZGZcCCGEEEIIIUSFIg9wE0IIIYQQQgghRImTmXEhhBBCCCGEEBWKpqny7kKpk5lxIYQQQgghhBCiGJqmDdI0baemaXs0TXv8FOU6aZrm0TRt5Jm0KzPjQgghhBBCCCEqlIpyz7imaXpgAtAfOAis1jTtB6XUtiLKvQH8fqZty8y4EEIIIYQQQghRtAuBPUqpfUopJzAduLSIcvcA3wHHzrRhmRkXQgghhBBCCFGhVKBZ47rAgQLLB4HOBQtomlYXuBzoC3Q604Yr0D4KIYQQQgghhBBlS9O0WzVNW1Pgc2vBzUVUKfx0ufeAx5RSnrP5XpkZF0IIIYQQQghRoejK8GnqSqnJwORiNh8E6hVYjgOSC5XpCEzXNA0gFhiiaZpbKTXvVN8rg3EhhBBCCCGEEKJoq4GmmqbFA4eAUcA1BQsopeJP/lnTtCnAT6cbiIMMxoUQQgghhBBCVDAV5WnqSim3pml343tKuh74XCm1VdO02/O2T/q3bctgXAghhBBCCCGEKIZS6hfgl0LrihyEK6XGnmm7MhgvYa06LCvvLlR5KRk7yrsL54TZS68r7y5UebUs3vLuQpWXmK0v7y5UeY+0yyzvLpwb2kWWdw/OARLj0hd/+iJC5KkoM+OlSZ6mLoQQQgghhBBClDEZjAshhBBCCCGEEGVMLlMXQgghhBBCCFGhnAs3msnMuBBCCCGEEEIIUcZkZlwIIYQQQgghRIWi01R5d6HUycy4EEIIIYQQQghRxmRmXAghhBBCCCFEhSKvNhNCCCGEEEIIIUSJk5lxIYQQQgghhBAVisyMCyGEEEIIIYQQosTJzLgQQgghhBBCiApFLzPjQgghhBBCCCGEKGkyMy6EEEIIIYQQokKRe8aFEEIIIYQQQghR4mRmXAghhBBCCCFEhaLTVHl3odTJzLgQQgghhBBCCFHGZGZcCCGEEEIIIUSFIveMCyGEEEIIIYQQosTJYFwIIYQQQgghhChjcpm6EEIIIYQQQogKRV/eHSgDMjMuhBBCCCGEEEKUMZkZr4K8bhtph37Akb0XXYiFiJr9sES1CyqnvG4yjs4nN2MLyuvGEtWGyNqD0TTfeSi3M4305J9x2g6i6fSYI1oRWXuQf7vwUcqDO20NHvtR8DrRQsIIiWyH3lynyPLurJ24M7eD8qC3xBES3VFieoYSdyby2UufsnfzHjLTMvlp/y+nLL9v617GPzKeg3sOENekHveNu49GrRuXUW8rJ4lx2ZA4lz6JcemTGJc+iXHZkDhXTPIAN1EppR/+BU3TU6vFw0THXUF68s+47MeCymWdWIIrN5maTe6kZrN7cOYeJuvY3/ntJP+MPsRK7RYPUaPx7ThykshJXV2Wu1I5KAV6C8YafQmtO4KQyLa4UpbhdWcHFfXkHsaduQ1jjT6E1hmO152NO2NLOXS6cgoJCaHHsB7cO+6+05Z1OV28dPOL9LmiD9M3z6TfyH68dPOLuJyuMuhp5SUxLhsS59InMS59EuPSJzEuGxJnUV5kMF7FeL1OcjO3EV6zDzp9KKHWBpjCm2NL3xhU1p65k7BqndGFWNCHWAmr1hlb2nr/do8rHXNkazSdAb0hHFN4E1z242W5O5WCpgvBENkWXUgYmqahN9dFC7GinGlBZT22BPTWRugMkWg6IyERrfHkJJRDryunuMZxDBg1kPrNGpy27OYVm/G4vVx602UYQg1ccuOloGDTsuB/CyKfxLhsSJxLn8S49EmMS5/EuGxInCsmnabK7FNu+1hu3yxKhduRAugwhMb61xnMNXE7ih5EKwKTz+POxOuxA/gG5xlb8HqdeFyZ2LN2YwpvUmp9ryqUx45yZaEZIoO3uTLRGaP9yzpDNHjtKI+jLLt4Tti/K4n4lg3RtPxrnBq2aEjSrv3l2KuqRWJcNiTOpU9iXPokxqVPYlw2JM6iJMk941WM8jrR6UMD1ul0JrxFDPZM4U3ISVlJqDUelJfslJV5bbhAb8JoaUhO6joOb3sNUFii2mMKb1EWu1FpKeXFlbIcvTUenSEiuIDXBZohf1lnyKvnQiM0uLz413JzcrGEWwPWWSKs5GbbyqlHVY/EuGxInEufxLj0SYxLn8S4bEicy45e7hn30TTteU3TlKZpu4vZvidv+/OF1o/VNG2lpmk5mqZlapr2l6ZplxRRf0pe/ZOfLE3TVmuadkWhcr3ztrcpsC5R07S3Ciw3LNRWcZ85mqalaZpWo4j+TNY07ZimaTEFvvPkJ03TtCWapvU7k9iVNU1nDJpl9XodQQN0gPDqPTGYanFszySO7/sMc0QL0HToQqwo5SUl6WvMES2p0+oparV4FK/HTubRP8tqVyodpRSulBWg6QiJvqDoQjoDqAL3FHl9f9YKDtCF36K5ixjZ4gpGtriC56575qzqmq1mbIV+MNqybJjDLCXZxUpPYlw2JM6lT2Jc+iTGpU9iXDYkzqKiOJuZcTsQr2laR6XUmpMrNU3rBDTI206B9R8BtwATgafzvmsU8L2maY8rpd4o1P4O4Ia8P0cAY4FZmqb1UkotOYt+Hga6FFhuBEwF7gLWFVi/HdgCjAOuL9DvC4GbgBuVUqkFLkEZDewDqgEPAL9pmtZJKbXhLPpW6kJCq6Hw4nakEBJaDQCX/QghodWDymo6A1F1hhJVZygAOalrMJjqoGk6PO4cPK5MrNUuRNOFoNeFYIk+j8yjC4msNaBM96kyUErhTl0FXjuG2J5oWtHnuTRDBF5nOnpLfQC8rnTQmdCKOFkioM/lfehzeZ9/Vbd+swbMnTwHpZT/UrLEHQkMu35YSXax0pMYlw2Jc+mTGJc+iXHpkxiXDYlz5SBPUw+UAyzEN6AuaFTe+pyTKzRNuwy4HbhbKXWvUupPpdSvSqnrgTeBVzVN61C4faXUirzPH8AY4BgQNJN+KkopR4F2VgCb8jZtK7heKZUB3A9cp2laj7x+6/CdPPhHKfVloaY35dX7GbgMyMZ3sqFC0emMmCNaknlsEV6vE0fOfuyZO7FEtQ8q63Fl4nFlopTCaTtA1rG/iajRGwB9iBW9IYqc1NUo5cHrycWWthGDqVYZ71Hl4E5bg9ediSG2B5qu+HNceks8npx9eF0ZKK8TT+ZW9Nb4Muxp5aaUwml34na6AXDanbgcRT+9tO1FbdHpdfzw+fe4HC5+nPIjAO26Bv9bEPkkxmVD4lz6JMalT2Jc+iTGZUPiLMqLptTpnx6Xd/n53cCjwPNAA6WU0nyng/YDz+KbYf5QKfW8pmmLgDighVLKU6itSCAJmKOUujFv3RSgjVKqY6Gye4EflFIP5C33BhYBbZVSW/LWJQKzlVIPF9P3NsBmoI9SanER238G6gPnA7cC7wLnKaW2F/edeetXAieUUkMLthfX9oXyexxfHt97xr/Hkb0PXYiZiJoXY4lqh9uZzrE9E6jR5C5CjFE4chJJOzgXrzsHvSGS8Bq9At5H7sw9TMbh33DZj6JpGkZrPFF1hqAPCSvHvYOUjB3l+v2FKXcOjsM/AjooMCNuiO6ILrQ6jiO/ElprMFqI7/4id9aO/PeMm+sRElMx3zM+e+l15d2FIEcPHOWmbjcErKsRV4PPl00B4LnrnqH1hW246u7/AbB3y17ef3Q8B3bvp17Tetz75v00biPvAT0ViXHZkDiXPolx6ZMYlz6JcdmoSnEeWm9wlZlP/nL372U2rrq+6cByidvZDsabAEeBi5VS/2ia1hP4A6gF7AE+BF7GN2s8USn1YDHtzcU3uG2StzwFaANclFckArgReAPod3IQXUqD8XhgK/A+vsH4R0qppwpsL+o79cAB4Fel1E0F26sIg/GqrqINxquqijgYF0IIIYQQxZPB+L9TXoPxs3qaulIqXdO03/Bdmv5P3n9/y1t/slgsEIpv9rs4ScCgQusuAApeD+IFHi1qAF2SlFIJmqa9gu8kQkLef4ui1zQtBIgBngJqA3NLs29CCCGEEEIIcS6Se8aLNh0YqWlaKDAyb7kkbAc65X164bv0/RVN08aWUPunMi7vvx8qpXKLKbMB38mCo/ge8PaYUuqnMuibEEIIIYQQQogq5t+8Z/wH4FPgFcAK/Fho+wnAge8J68VpABwqtM5W8CntwN+aptUC3tQ07Ut1JtfT/0tKKWfezL7zFMVGAXuBNCBJKeUurf4IIYQQQgghxLlMr1X9u3/PemZcKZUD/ITv9V4/5i0X3O4GlgNDtSLe76RpWgTQG/j7DL5uG1Ad36Xv5W2rUmqNUmqvDMSFEEIIIYQQQvwX/+YydYCP8M2ITypm+3igGXBzEdsex/eAtg/P4HvaALlAyr/oY5WVcWQ+2SeWl3c3Aiivm6O7PsDjzi7vrpQJV/pG3Fk7S7xdrzMdx9E/S7zdymjK61/w/afzSrzdhO0JPHz5QyXebmUkMS4bEufSJzEufRLj0icxLhsSZ1GR/KvBuFJqsVLqsuIerqaUmodvoD5B07T3NE27WNO0QZqmfQE8ATyllFpXqJpV07SL8j59NE17Ft97vCcrpbyn6VIzTdNGFvoM/jf7VtF53DnY0jdijcl/C5w9ex9Hd31A8taXOZ4wBbczvdj6XreNlKTpJG99hSM738WWvsm/TXndpOyfwZGd73Joy/M4shMC6mYeXcShLS+SvO0V/8ftTAVA04VgiT6f7ONLS3aHKyDlseOxJaK35r/CwmM/guPwz9gPzsJ5bCHKnXOK+g6cJ/7BfnAW9uQf8OQk+rfpjFFoOiOe3MJ3cZxbMlIyWPjdQgaNyf9nvGHJBm7vcysjml3OE/97nGMHjxZbPys9i5dveYkRzS/nhi7Xs3jeIv+2+JbxWCOsrPxzZanuQ0UnMS4bEufSJzEufRLj0icxLhsS58pFV4af8lKa330nvsF0F+B7YBbQCLhUKfV6EeVb4Lu8fTnwC757tJ/F927z0xme137Bz0f/sf8Vki1tA6bwpmg6A+AbnKfun0FEzb7UbvkYRnMdUg/MKrZ++uFf0DQ9tVo8THTcFaQn/4zLfsy/PdRSn+i4K9AV8y5xc2Rr6rR6yv8JMcb4t1mi2mJL34DyVu2r+D05CehNtdF0vkcuKI8D14mlhES2JbTuFWjGGJwpy4qt70pfC+gIrXMZxmpdcKWtxevK8G/XWxrgyd5b2rtRoc2f9Scd+3Qk1BQKQEZqBq/e9jJjHrqWaZtm0LRdU964q6jDiM9HT0/EYAjhm3Xf8vD4R5n41ASSdua/4KH3ZX34beovpb4fFZnEuGxInEufxLj0SYxLn8S4bEicRUVzRoNxpdTzSqlT3retlIpVSj1fYFkppaYopTorpaxKqXClVC+l1A9F1B2rlNIKfMxKqVZKqdeVUs4C5Rbnbd9SYF3DQnVPfhrmbd+St7z4NP3XlFJBl84X9Z3lyZ69m1Br/rPx7JnbMYRWxxzZGk1nILxGb1z2o7gcx4Pqer1OcjO3EV6zDzp9KKHWBpjCm2NL3wj4ZrfDYrvktX/27xLQGyLR9GacuQf/9f5VBl77YXShNfzLntwDaIYI9Jb6aJqekIg2KFc6XldmUF3ldeO1HSQksi2azoAutDo6c53A2fHQGngdR1HKUxa7UyGtXbyGthe19S8v/3UZ9Zs1oPuwHhhNRq55YDQJ2xI4sOdAUF27zc6yX5cy5uFrMVvNtL6wNZ0v7syiOQv9Zdp2acvGpRtxOVxB9c8VEuOyIXEufRLj0icxLn0S47Ihca5cdFrZfcptH8vvq8W/4bYfI8SYf17E5TiOwVzLv6zTGQkxRuO2Bw/G3Y4UQIchNL++wVwTdxED9+LYs3aRvP11ju6eQHbK6qDthtBYXPYjZ9xeZeR1ZaCFhPuXlSsTnSHav6zpQtD0YagCs93+su4s0DR0hgj/Op0hOqCsFmIBNJQrq3R2oBJI3JFI3cZx/uWkXUnEt4z3L5ssJmo1qM3+XUlBdQ/tO4ROp6Nuo/z68a0akVSgbGytWPQGPQf3Ve0TR6ciMS4bEufSJzEufRLj0icxLhsSZ1HR/JtXm4ly5PXY0fRG/7LyONGFWALK6PQmvF5HUF3ldaLThwaW1ZnweoLLFsUc2RprzAXoQsJw5h4kdf9MdHoTlqj8M4yaLhSvx342u1T5eJ2Qd5sAAMoFOlNgGZ0BpYo4K6pcoBlOX1Zn8H3POSonMwez1exfttvsRMZEBpSxhlvIzckNqpubk4slwhqwzhJuDSprtlrIyTw3HjhYFIlx2ZA4lz6JcemTGJc+iXHZkDhXLuU5Y11WZGa8ktHpTShP/iBN0xtRhQbeXo8DnS60cFU0nRFVaODt9TqCBujFMZhqoDdEoGk6Qi31CavWmdzMbQFllNeBTm8qpoUqQmcEb4HBs2YIXAZQLrTCg+6TZQsPvL1FlPW6fN9zjgqLDAv44WaymLBl2wLK2LJtAT9QTzJbzeRmnb5sbo4Na0TRz0Y4F0iMy4bEufRJjEufxLj0SYzLhsRZVDQyGK9kDKaauJ35b3ozhFbHZc9/6qPX68TjTCXEVD2obkhoNRTevMvVfVz2I4SEBpc9MxqgAta4HCcwmGoVXbyK0BmifJeb59EMEXhd6f5l5XWj3NlohsigulpIOCiFt8Al6F5XekBZ5ckF5UUzhAfVP1c0bBHPoX35T5Rv0KwBCdv2+ZftNjtHko5Qv1mDoLp1G9XF4/FwKCG/fsK2fTQoUDblSApul5u4ApeanWskxmVD4lz6JMalT2Jc+iTGZUPiXLnoNVVmn/Iig/FKJjS8KY4CD/syRbTEZT9GbsY2lNdF1rG/CDHVxFDEAFunM2KOaEnmsUV4vU4cOfuxZ+7EEtXeX0Z53ai8WV6lPCivC6V8CZqbuQOvJxelFE7bQbJTVmIKb+Gv63Fl4vXkYjRX7QOQzlwbryP/CfR6cxzKlYHHdgClPLgzt6AZogLuCz9J04WgM8fhztzse5ib4zje3EPorQ39Zbz2o+hMNdE0fVnsToXUsW9HtqzY7F/uMqgrSbuSWPrLEpx2J9Pe+5aGLRtSr0m9oLomi4kug7oy9e1vsNvsbFu9lZV/rqDPFX39ZTav2ES7ru0xhBZx9cI5QmJcNiTOpU9iXPokxqVPYlw2JM6iopHBeCVjiWqPPWu3f8CsD7ESU/8qMo8uIHn7GzhtB4mpN9JfPuvY35xI/Ma/HFV7KMrr4sj2caQdnE1UnaEYTPlPBj+6+wOSt72C151FStI3JG97BU/erG9uxhaO7Hqfw9tfJe3gXMKrd8MafZ6/ri19M5ao9v5XflVVeks8Hvth/yvcNL0JQ2w33BmbcByag9eZgqFaF395d+ZWnMf/8i8boi8A5cGRPBdnynIM0RegKzAz7rEloQ9rUnY7VAH1HdGPNYtW47D7bquIrBbJk5Oe4utxXzGq7VXs3LCTRz983F9+5oczeO66Z/zLd75yF067g9HnX824e97kzlfuokHz/DPXi+ctZsjoIWW3QxWQxLhsSJxLn8S49EmMS5/EuGxInCuXc+Fp6trJWU9RMuLavlDqAc04Mh99iJWw2C6nL1xGlNfNsT0fEdvoBvTFvKO8pKRk7CjV9s+EK30jmt5ESHjzEm3X60zHlbaa0Jr9S7Tdf2P20uvK9fu/fGMKUdWiuPTmy0q03cQdCXzw+Ae8Pe+dEm23MpIYlw2Jc+mTGJc+iXHpkxiXjaoe56H1BleZx559n/RrmQ1UL21QPnGTwXgJK4vB+LmuIgzGzwXlPRgXQgghhBBnpyoNxn/cX3aD8eH1yyducpm6EEIIIYQQQghRxqr2zb1CCCGEEEIIISodec+4EEIIIYQQQgghSpzMjAshhBBCCCGEqFD0MjMuhBBCCCGEEEKIkiaDcSGEEEIIIYQQoozJZepCCCGEEEIIISoUnVb13xgtM+NCCCGEEEIIIUQZk5lxIYQQQgghhBAVyrkwa3wu7KMQQgghhBBCCFGhyMy4EEIIIYQQQogKRSevNhNCCCGEEEIIIURJk5lxIYQQQgghhBAVil5mxoUQQgghhBBCCFHSZGZcCCGEEEIIIUSFIu8ZF0IIIYQQQgghRImTmXEhhBBCCCGEEBWKPE1dCCGEEEIIIYQQJU5mxoUQQgghhBBCVCgyMy6EEEIIIYQQQogSJzPjJSwzJ6m8u1DlGULM5d2Fc0KO6xw4HVnOYk3e8u5ClZeUrS/vLlR5da2e8u7COcGsr/pPFS5vXiU/90pbiE7yWJy5c2HW+FzYRyGEEEIIIYQQokKRwbgQQgghhBBCCFHG5DJ1IYQQQgghhBAVinYO3DkiM+NCCCGEEEIIIUQZk5lxIYQQQgghhBAVyjkwMS4z40IIIYQQQgghRFmTmXEhhBBCCCGEEBWK3DMuhBBCCCGEEEKIEicz40IIIYQQQgghKpRzYdb4XNhHIYQQQgghhBCiQpGZcSGEEEIIIYQQFYqmqfLuQqmTmXEhhBBCCCGEEKKMycy4EEIIIYQQQogK5Rx4mLrMjAshhBBCCCGEEGVNZsaFEEIIIYQQQlQo8p5xIYQQQgghhBBClDiZGRdCCCGEEEIIUaGcAxPjMjMuhBBCCCGEEEKUNRmMCyGEEEIIIYQQZUwuUxdCCCGEEEIIUaHozoHr1GVmXAghhBBCCCGEKGMyM34O8boyyDn0PSGWBphr9CqyjDNjK86MzSivmxBrQ0yxXdA0fRn3tPKSGJec3776gb++m8/+XQl0G9abO8c9VGS5/TsT+fq1T0jYsoestExm7P01qMzSHxcz+4NvSUk+RlT1aO548yFadmpTyntQ8c374kd+nzmfhB2J9Lm0F4+992CxZWdPnsv0ibNx2p30GNKN+167C2OoAYAHRz7OtnU70Ot9eRxbqxpf/jO5TPahMljwzQ8smfMnh3Yl0nlYL256/eEiyy2d+yfzv/6eo4nJmMMsdB7WmxEP3oA+xBfXyQ+/wfYVG3DYHERWj2bwzSPpeeXgstyVCuv7L37kz1nzSdyRSO9Le/Hwu8Xn8pxP5jJz4mwcdifdh3Tjnlfzc/nIgaN8+OREtq/bjsFooPuQ7tzxwq3+v4Nz2Xef/8hvMxawb0ci/S7rxZPjHyi27MyP5/HtBF+Mew3tyoOv58f4pbveYu2SjdhtdmJqRHPNnSMYNnpgWe1GhTfn8x/5Le+43PeyXjxxiuPyrMlz+XaC77jcc0g3HigQ55fvHse6AnEedcdIiXOe7z77kV/ycvniy3rx1PvF5/KMj+cx9cP8XH74jfwYn0074t85BybGZWb8XGI/sQK9MbbY7W7bIZzpmzDXGkhYvStR7iycaevLsIeVn8S45ETXrMYVd42iz8gBpywXYgihy5Ce3Pba/UVu37RkHd+++QV3vPEAUzbN4flp46hZr1Yp9LjyqVYzhtH3jWLQ/04d49WL1zJtwmzemvEqU1d8zuH9R/jy7W8Cytzz8h38vPs7ft79nQzEC4mqEcPwO6+m+4hTx9mZ6+DqJ2/n/RUzeHrWe2xfsYHfPp/t3z70tv/x5sIvmbhuDvdOfJ45731F4pbdpd39SqFazRiuuXcUA06Ty2sWr2XGhNm8Pv1Vvlr+OUeSjvB1gVz+8MmJRMVGMm3tN0z8/QM2r9jMj1/+XNrdrxRia1bjuvv/x5BR/U9ZbtWitUz9cDbvznqFmas+JznpCJ+/NdW/fcy9VzJz1ef8tnsWr015hk/f+JqdG/eUdvcrjdhaMVx73ygGjzp1Lq9avJZvP5zNOzNfZfrKz0nef4Qv3srP5dH3XMX0lV/wy67ZvPLFs3z25lfs3CTHC/CdML7+gf8x9DS5vHLRWr75YDbvzXqFWat9ufzZuPxcPtN2hDgVGYyfI1zZ+9D0RvTm2qcoswdDeDP0xmg0fSjGqPa4suUH5JmSGJeszgO70WlAV8KiIk5Zrk6jOPpeNZB6TRsUuX3We98w4p5raHZ+S3Q6HTG1YompVfwJk3NJjyHd6D6oCxHR4acs98esBQweNYCGzRsQHhXOmPtG8fvM+WXUy8rvggHd6XBxV8KiTh3nPtcMo1nHNoQYDUTXjOWi4X3Ys26bf3vdpg0xGI2+BQ00DY7tP1yaXa80ug/pRtczyOU/Zy1gYIFcvub+Ufw5Kz+Xjxw4Qs9hPTCajMTUiKFj7wtI2pVU2t2vFHoN7UqPwV2IiD71Mfm3WQsZenV/4ps3IDwqjOsfGMVvM/JjHN+8gX9mUdN8iXwoSfL4pJ5DuuXF+dS5/PvMBQy5ekBenMO57v5R/Daz+DhrmkZy4pFS7Xtl0WtoV3oO7kJEzKlz+deZCxl2TX8atWhARFQYYx8cxa8FcvlM2xH/Xt4hokw+5UUG4+cA5XXiSFtPaEynU5bzutLQGaP9yzpjDMqTi/LYS7uLlZ7EuGLyejzs3bKbzNQM7u1zI3d0G8Pnz0/EaXeUd9cqlcSd+2ncKt6/3Lh1PGnH08lIzfSv++y1KVze5mruvfRhNizbVB7drHJ2rd5CnSaBJ5m+fv5Dbm9/KU8NvoXI6jG063XqY44IlLRrP40K5HKjVr5czkzz5fJlN13K4h/+xp5r58ThE6xevJaOvS8or+5WSgk7k2jcusDxolU8qYWOF+88PpH+8SMY0+N2qtWI4aJ+Hcujq5Va4q5Cx+VWwcfld5+YwMBGV3Bdz9uoViOGzhLns5KwM4kmBWLcpIhcFuK/ksH4OcCRtg5DeFN0IWGnLKe8bjSd0b988s/K6yrV/lUFEuOKKf1EOh6Xm5W/LuGFGW/xxo8TSNi6lzkfTivvrlUqubZcrBEW/7I13Opbn5MLwC1PjuWb5Z8xY+1XDB09iKfHvkhyosx0/Rf/fPcHiVt2M+jGEQHrr33+biaum8PjU9/igv7dCDEayqmHlZPdlos1PDiXbdm+XG53URuSdiVxeYsrGd3pepq1a0LXQV3Kpa+VVW6OnbC8uAKEReTFOO94AfDg63fy256ZfDjvDXoO6YJR8vis5eYEHpeLivMDr93FL7tn8f7cN+kxpKvE+Szl5tixRhSRy9m5xVURJUwrw095KZPBuKZpz2uapjRN+72IbbM1TVtcoNyJYtp4S9O0xALLY/Pa3KZpmu40ZRvmlR2maVrvvD+f8pNX70pN037QNO2QpmnZmqat1TTt6hIJShnxOFLw5B7GGNn6tGU1XUjgoNDrzFsvB+9TkRhXXEaT72THoOuGE10jhoiYSIbddDnr/1pdzj2rXMwWM7as/F8+crJsvvVWMwAtO7TAEmbBGGpg4FUX06ZTS1YulBj/W+vmL+O7tz/ngU9eIjwmMmi7Tq+nWcc2pB05waJpP5VDDysvk8Uc8Iu0LduXy5YwM16vlydHP0u3wV35ftccZm2eRlZGNp+98kV5dbdSMltN5OTFFfKPF5a848VJer2edp1bc/zwCeZ9+UuZ9rEqMFuLPi6fKs7fS5zPitlq8scVCsQ4zFxcFSHOWlnPjA/QNK2kr6lrCYw4bal864AuBT4nH2t7RaH1AA8C2cADwCXAIuBbTdPu+e/dLhse+xG87mxyDswie/90nBlbcNuSyDn0fVBZnSEarzM1v64zFU1vRtObyrLLlY7EuOIKiwynWq3Y8r0ZqApo2Lw+e7ft8y/v25ZAdPUoIou7T07TUKqMOlfFbP57DVOeHs+9k14grnn8Kct6PB6Oyz3jZ6VBs/rsKyKXI6IjyErP4njycS4dOxxjqIGI6AgGXtWfVYvWlGOPK5/45g3YuzXBv7xnWwIxpzheeDxeDsmVNGetYbPA4/Le0xyXPW4PyXJv/lmJb96APdvOPJdFyZOZ8ZKVCmwCnirhdhcDT55pYaVUplJqxckPsDNv0/pC6wGGK6WuUUrNVEotVEo9DEzDN0ivFAzhzbHGjcBS5xIsdS7BEN6cEHMc5lrBr7cwhDXGlb0bjzMd5XHgTN+IIaxJOfS6cpEYlw6P24PT4cTr9eL1enE6nHjcnqBySimcDidul++KA6fDicvh9G/vPbI/v331Axkn0snOyOKXL+bRoU/nMtuPiszj9uC058XY48VpLzrG/Uf25dfpf5C4az9Z6Vl8M346A6+6GIDsjGxWL17rrzt/ziI2r9hCp14dynp3KiyP24PLkR9nVzG5vH35BiY/8gZ3ffA0jdo1D9iWmZLOyp8XY8/JxevxsOWfNaz8eTEtLzqvjPaiYvPnsufUuXzxyL78Pv0PkvJy+dvx0+l/pS+XI2MiqVW/Jj999TMet4fsjGz+nLWARi1PfVLkXOF2e3DYnXg9HrweLw67E3cRMR44si8/T/uDxJ37yUrP5qv3ZjDof74Yp51IZ8G8v7Dl5OLxeFi1aC0L5v5Fh+7ty3p3Kqz8OHtPGecBV+bFOS+Xvx4/nUFXFRPnxWtZOO8vzu/Wrqx3p0IKyGVv8TEedGVffv72DxJ27iczPZsv353B4LxcPpt2hDgVTZXB9IWmac8DdwN34RvMtldKbc7bNhuIVUr1PllOKRX0qGNN094CRiqlGuYtjwW+AC4G5uMbOP9UTNmGQELBMgXaHQb8CMQrpRLPYF8eAZ5XSlmL2h7R6MYKPR/kSFuP15WJuUYv32zuwblY4y733+vszNiCM30zSnkIsTbAFNtV3oF9lqpKjD+df1W5fv+s8d8w+/2pAetG3juaPlcO4MGBt/HO7x8TW6cGxw4e5Z5eYwPKVa9bgw///hIAt8vNlJcmsfSHxRhCjXQZ0oPRj9+EMdRIeYs1ecv1+798eypfvfNtwLrrHryGQaP6c2PvO/h88UfUrFsDgFkfn3zPuIMeQ7px/+t3Yww1kJ6SwZPXPsf+PQfR6XXUbxzH2EevpWPP88tjl4IkZZf/v615H3zNDx8G5vIld4+mx4iBPD30Vl7+eTLV6tTgzWsfZdfaLRgK5GbTC9rw4Kcvk5mazsR7X+HAjn0or6Ja3RpcfO2l9Lqq/N8zXtda/r98fv32VL55NzCXxzxwDQNH9eeWPnfwyaKPqJGXy99N9r1n3Gl30G1IN+597W7/U6f3bt3LpOc+Yd/2feh0etp3bcvdr9xJVGxUWe9SELO+fH+9+PytqUx5O/B5G2Mfupqho/pzXa87+eqvidSM88V4xqS5fDvhOxx2B72GduOhvHczp5/I4JlbXmPvtgS8Xi8142ow8qbhDB8zqDx2KYhXlf9VVF+8NZUvCx2Xr3/wGoaM6s/1ve/gy8Uf+eM88+O5TJswG4fdQc8h3Xjwjfzj8nO3vMqebQmovDiPuOkSho0u/ziH6Mr/1+TPxk3li0K5fMNDVzP06v5c2/NOvv57IrXyYjx90lymfujL5d5Du/Hwm/nvGS+unZseGV02O1KMbjWHln8il5BdGT+VWcI0ixxWLnEr68F4DWAbsEEpNSpv238djIcDc4EwpVSXYso2pOQG43OBOKVUkZfbV/TBuBBnqrwH4+eC8h6MnwsqwmC8qqsIg/FzQXkPxs8FFWEwXtVVhMF4VSeD8X+nvAbjZXrPuFLKC7wOXKlpWrMSbPoV4CJN0/qVYJtB8tq/FJhQmt8jhBBCCCGEEOcyuWe8dHwD7AeeKKkGlVKLgaXA0yXVZmF5s+vfAt8rpaaU1vcIIYQQQgghhKj6ynwwrpRyA28CYzRNa1Bosxso7ppCfd724rwC9NY0ret/72UgTdNigF/xnUQYU9LtCyGEEEIIIYTIp2mqzD7lpTxmxgE+B44BjxVafxyI0DTNUkSd2nl1iqSU+hVYSwnPjuf15SfACAxVSuWUZPtCCCGEEEIIIc495TIYV0o5gLeAG/ENsk/6J69PwwqW1zTNCvTL234qrwCDgRJ5p46maSHALKApMFgpVezJgIrCkboGZ8bWEm/X40wlJ/mn0xc8R0ic/7tvx33Bz1/MLe9uBHA5nDzQ/xYyTqSXd1dKzKevTeG7T+aVdzcCOB0uxva8jbQqEufZb3/OH1MqWC47nTw56GYyU9LLuysl4vPXpjDn03nl3Y0AToeLm3rdRnoVyWOAj1+ZwszJ35d3NwI4HS7GdL+9yhwvJr86hVkV8Jh8bY+qc0yeVEHz+Jrut5N2PL28u1KpVKR7xjVNG6Rp2k5N0/ZomvZ4EdtHa5q2Ke+zTNO0M3pnY3nNjAN8DGQB/svKlVLbgBnAZ5qmPaZp2sWapl0D/I0vTu+fps15wFagTwn1cSIwBHgJiNE07aICn9AS+o4S4/XYcWXvxRCe/35ad24yOQfnkJX4FbbDv+J1ZRdbX3kc5B5dQFbi12Tvn4kre69/m94Yg6Yz4rbtL9V9qAwkzv9dZko6f89dQP+rh/jXbV66ngf638K1rS/jhWse4/iho8XWz07P4q3bX+S6NpdxV4/rWfLDIv82t9PFO3e9zN09r+d/jQezdcWmgLpblm/khWseY2z7Edzd8/qAbYZQI71HDuD7ybNKaE/LV3pKBn/MXsiwMfmvv1r3zwbG9ryNIY2v4MGRj3P0YPHnGDPTsnj2ppcZ2uQKrr5wLAvmLvZv27Z2B4+MeorLWv+PK9pezQu3vkrK0VT/9vVLN/LgyMe5pMWVXNP5hoB2jaEGBo3qz/QJs0tuZ8tJZmo6y+YtoPeo/Fzetnw9Tw66mdvbX8qb1z7KidPk8gd3vcjt513KI32uY8WPgbk84d6XeaTvddzYfBA7Vm4MqDvvg6+5pfVQ7jj/Mv/n2IHDABiMRnqMGMgvn8ws4T0ue+kpGcyfvZCho/PzeP2SDdzU6zYuaXIFj1x5+jx+4aaXuaTpFVzbeSwLC+Tx6dp6asyzXNpshP8zNP5Sbut3J+DL44H/68+MiZU/jwHST2Tw++yFXHpt/uuv1v6zgTHdb6d//AjuG/EERw6cOs5P3fAyAxqN4MqON/DnnMUB20/X1s5Ne7j7sscY2Hgkl7Ydw6xPfIMpY6iBIVdfzNQPK3+cTx6TLylwTF77zwau7XEbAxtdwf0jH+fIaXL56RtfZlDjK/hfp7HMLyLGxbX16OhnGdRkhP9zcYNLuaFvfi4PGdWfaVXgmJx2IoPfZgXm8Zp/NnBN99vpFz+Ce644fR4/ccPLXBw/ghEX3MAfhWJ8urZ2btrDXZc9Rv9GIxneZgwzC+Tx0FEX800VyONzkeZ7B/EEfJO+rYCrNU1rVahYAtBLKdUO39hx8pm0XW6DcaWUDXi3iE3X5a2/Fd992h8CSUB3pdSh07SpgFdLsJsD8v47Hlhe6FO7uErlxZ21mxBzHJouBPANGnOPLsQYfT5h9a9BFxpL7vHFxda3pywHTUdY/VGYavTCfmI5Hmeaf7shrDHOzJ2lvRsVnsT5v1v83XzO79UJo8l3TiszNYO373yZqx64js/WzaRx26a8d+9rxdb/7LkJhBgMTF45jXvefYRPn/mQA7uS/Nubd2zN3e88QlT16KC6JouJPlcOYMzjNxXZdvdLevP3nPm4HM7/uJfl7/eZ8+nctyOhZl+cM1IzeP6WV7jhkTHM2zqd5u2b8tLtrxdb//2nJmIwhDB741Se/PARxj8xgcSdvjhnZWQzbPQgpq74gm9XfYElzMK4B/MP6WaLicGjBnDr0zcW2Xa/y3rzx6wFOB2uEtzjsrd0zp+0K5DLWakZTLj7JS6/7zo+WDWLhm2aMumB4nP5mxc/JMQQwntLp3PLuEf5+vkPOLQ70b+9aYfW3PLmo0QWkcsAnQb35KP18/yfGvXyfzR1Ht6bZXPn43JW7lz+c+Z8OhXK4xdveYXrHxnD7C3TadauKa/eUXweT3h6IiHGEGZsmMpjHzzCB0/m5/Hp2nrlmxf5ftd3/k+rC1rSY1h3//Y+l/VmfhXIY4BfZ87nogJxTk/J4OmbXuWmx8bw0/ZpNG/flOdvf6PY+u8++REhRgPzNn/DMxMe5p3HJ5KQF+fTtZWeksEj1zzHJdcO4sdt05i2fDKdeuVf5Hjx5b35febCSh/n32YEHpPTUzJ49uZXuOnRMfywbTrN2zXlhVMck9970ndMnrNpKk99+AjvPjEhIManauvNqS/y257v/J/WHVvSu0Au97u8N7/NrPy5/OuM+XTpFxjjp258lZsfHcMv26fRon1Tnr2t+Dx++4mPMBgM/LDlG56d+DBvPzaRfTuSzqit9JQMHrr6OS69dhA/b5/GjBWTubBAHve/oje/zar8eXyOuhDYo5Tap5RyAtPxvWHLTym1TCl18hf6FUDcmTRcJoNxpdTzRb07XCn1qlJKU0r1LrDOqZR6VinVWCllUErFKKWuUErtKFR3Sl7d7ELrv81b37DAusS8dUHX/yqlfsrblljEtoZ524r6BJUvb+7cg+jNtfKXc5LQGaMwWOPRdCGERp2H15mKx5keVFd5XbhzkgiN7oCmMxBiqkmIpT7ugrO2plp47IdR6tx+p6zE+b/b8NcaWnVu619e9ftS6jVtQJchPTCGGhl53xiStidwaO+BoLp2m52Vvy/lqgevxWQ106JjGzpefBH/zFsAQIjRwNAbLqdFxzbo9MGHuCbtm9Pz8n7UqF/0+bRqtatjjQhj94YdRW6vTFYtXEO7i9r4l//5ZRkNmtWn1/AeGE1GrntoNHu3J7B/T3Ccc212/vllGWMfuRaz1UzbC1vTpX9n/vxuIQCd+3ak1/AeWMMtmMwmLr1hGFtWb/fXb3F+c/qP7Evt+rWC2gaoXieW8Mgwtq+r3HHe/PcamnfKz+W1fy6lTtMGdBrcE0OokUvvuZYDO/ZxuIhcdtjsrP1jKZffdx0mq5lmHdtwXt+LWPa9L8YhRgMDxl5Os45t0OnO/n3pMbWqY4kMY18lz+XViwLzeGleHvcc5svjax8azb5tReex3WZnyS/LuD4vj9vk5fGCvDw+m7aOHDjKllVbuXhEX/+66nViCYsMY0clz2OAFQvXcl6X/Fz++5flNGxenz7DuxNqMnLDw9ewZ1sCSbuLPl789fMybn50DBarmXadW9NtQGd+n73ojNqa+fE8LuzdgQEj+mAMNWAJs9CwWT1/+zXqxBIWZWXb2sod55WL1tC+S4Fj8q/LaNisPr2H9yDUZGTsw6PZe4oY//3LMm589Fp/jLsO6MwfsxeedVuHDxxl88qtDBiZn8s16sQSHhXGtkqey4Xz+K9flhPfvD59L/Hl3o2nyuOcvDx+zJfH7Tu3pvvA/Dw+XVszPp5H5z6nzuPwSCtbK3kelyVNK7vPadQFCibNwbx1xbkJ36TyaZXnZeqihHmdaegMEfnLrjT0xhj/sqYzoAsJx+tKD67rygRNQ2eI9K/Th0YHDCh1IVZAh9eVURrdrzQkzv/d/l0J1G6Ufww7uHs/DVrG+5dNFhM169fm4O6koLqHEw6i0+moE59/wrFBi3gOFFH236rbpB5J2xNKrL3ykrAjkXqN8+OUuGs/jVs18i+bLSbqNKhN4s7g2yIO7juETq+jXuP8v6fGreOLLAuwecUWGjarf1b9q980jr3bKnecD+5KpFaBXEzenUS95vkxDrWYqFG/Nof2BOfnkURfLhesX69FI5KLKFucjYtWcs+FI3l66K0s+jb4eRN1GtVj/459Z9xeRZS4I5G4AnmctGs/jQrksclionbD2iQVl8c6HXEFjjfxreJJ2rX/rNuaP3sBbS5sTa1CJ5jqN41jXyXPY4B92xOp1yQ/Tgk7k2jSKv+4bLaYqNugFglFxObA3uKOF0ln1NbWdTsJjwrjjuEPc0mb0Tx+3QtBtx40aFqPPZU8zvu2J1K/4DF5534aty7imLyriFwuKsat8o/JZ9PWH7MW0LZz66CTpQ2axLF3a1WI8Sny2HqKPM77uVe/UIwTisvjQm1tXevL49uHPcyw1qN59NoXgm47qAp5XFVpmnarpmlrCnxuLbi5iCpFPoJd07Q++AbjhR9UXiQZjFchyusEzZC/wutG0xkDC+mM4A2+PEYpV3BZzQgqsKymM6A8lfuSx/9K4vzf2TJzMFvzX5pgt+ViCbcGlLGEW8nNzg2qa7fZiyxrzwku+2+ZrGZysoq/77+yyM7MwRJm9i/n5uRijQh8WYU13IIt2xZUNzcnF2t44bJWcouI895tCXz93jRufaboS9KLYwmzkJ1ZueOcm5WNqVAumwvlpznMij0nOMYOmz24bHjRZYvSaXBPXv7lE8Yvn8HYl+7nh4lTWfHTooAyJquF3MzK/RKQ7MwczIXzOCg3LeQWEbeicz7/2HI2bc2fvZD+V/ULWm+2Vv48hrzjhbVAnG12rBGB+WmNKPoYkJuTS1ihOIaFW7CdjPNp2jp++AS/z1rIvS/dyqw1X1C7fi1euHNcQHmL1Ux2Vchl66lzOay4Y7KtiLIRVmw5xedycW39Pnshg4rI5apwTM4K+rkXnHthEVZ/bhZUZB5HFMjj07R17PAJfpu5kPteupXv1n5Bnfq1eOGOQnkcZiY7o3LncVnSleFHKTVZKdWxwKfgPd8HgXoFluOA5ML91TStHfApcKlSKuVM91FUEZouNHBQpwtBFR4Qep2gM1CYphl8g8yClCtw0InvMmtNX2gweY6ROP931oiwgF92TRZz0C8Mudm2gF/A88uayC1U1pZtw2QNLvtv2XNysYaHlVh75SU8MizgFw6z1YwtKzh2lrDgt0n6ygb+spKTZQv4RRLgUEIyT1z7HHe9cBvtOrfhbNiybYRFVO44WyLCAgbPJosZe+FczrEFDNhPCrWYgstmF122KHWbNCC6ZjV0ej1NOrTi4usuY+3vSwLK2HNsmAv98ljZhEWGBZyYM1uDjxe2LFvACb6AsoXy2Fbg2HKmbW1ZtZW042n0GNqdwnJzKn8eQ97xosBA22wxBR0vijoGgC+OOYWPF9k2/6DodG2Fmoz0GNyFluc1811i/eDVbFm9PWDwbcvJJayS53J4ZFjAyYyi8i+nuGOypehj8skTKGfa1qaVW0k9lkavYcG5XBWOycE/90zkFJF7liJ+vzBbzeRkFxFj//Hi1G2Fmoz0HNyFluf78viGh65mc+E8zs4lLLJy5/E5ajXQVNO0eE3TjMAo4IeCBTRNqw/MAa5VSu0604ZlMF6F6IzRvsugTy4bovE4859urLwuvO4sdIao4LqGCFAq4NJojzMVvTG/rNdtA7wBl1ifiyTO/139FvEcTsh/HmNc0/oBl4XbbXaO7j9MXNMGQXVrx8fh8XgC6idtT6BeEWX/rUN7DgRcNl9ZNWrZkIP78uPUsFn9gMvCc212khOP0LB58OXlcY3q4vF4Aurv25YQUPbowWM8Muoprr1vFP0L3Ht4pvbvPkjjVpU7znHN4zmSmB+jOk0bcKDAZeEOm53j+w9Tt0lwftZq6MvlowXqH9ixjzpFlD0TGhq+55jmS953gPotGhVTo3KIb9mQQwXysEGz+gGXhdttdg4nHaHBKfL4UKE8bpB3S8WZtvXnrAV0G9y1yIHo/t0HaVTJ8xigcauGHNibH6f45g0CLqc9ebyILyLO9Rr74nygQJz3bk2gYfMGZ9RW45bxAfdsankLBfM5afeBgEuEK6NGLRsGxKhh8/oBl4X7j8lF3PIT1zj4mLy3wDH5TNv6fdYCeg7pGnAVxElJew7SuHXljnHjVoExjm/eIPDnXo6dQ0nF5HGjunjcgXm8Z2sC8QXy+FRtNWkVH3Axc1XN47JUUe4ZV0q5gbuB34HtwEyl1FZN027XNO32vGLPAtWAiZqmbdA0bc2Z7KMMxquQEEscHvuR/GVrA7zONFw5iSivG2f6BnTGmICB30mazkCItQGOtPW+h4zZj+LO2U9IWGN/GY/9MHpTLXxP9z93SZz/u/N7d2L7ys3+5QsHdOXArkRW/rYEp8PJdx9MpX6LhtRtXC+orsli4sIBXZn53tfYbXZ2rNnKmvnL6XFZ/iV3LocTZ97T0N0uF06H0//D0Ov14nQ48bjcKAVOhxO3M//KhtQjJ8jOyKLpeS1Ka/fLzIV9O7FpRX6cuw/uSuLOJP7+eSlOu5Ov3/2WRi0bUr9JcJzNFhPdB3dlylvfkGuzs2X1Npb9sYL+eQ+vOn74BA9d9QSXjh3G8OuGBNX3er047U7cbg9KKZx2J64CcT5++ASZ6Vm07FC549yuVyd2rs6PcYf+XTm0O5E1vy/B5XDyw4SpxDWPp3YRuRxqMXFB/27Mff8rHDY7u9duZcOC5XS9NP/Ehsvp9D/Z3+1y4yqQy+vnLycnIwulFPs27WT+199zfr8u/rppR0+Qk5FFo0qey4XzuGteHv+Tl8ffvPst8cXkscliotvgrnz19jfYbXa2rt7G8j9W0C8vj8+kLUeug39+XsKAqy4Oav/E4RNkpWfRopLnMcBFfTuycfkW/3LPwV1I2JHE4p+W4rA7mfLONBq3akiDpkUfL3oO6cLn46aSa7OzedU2lvy+koEj+5xRW4NHXczfvy5n95Z9uF1uvnx3Ou0ubEV4pG+W9vjhE2SlZ9Pqgsod54v6dWLj8vxc7jG4Kwk7k/jrZ19cvnrnWxqdIsY9Bnfl83Hf+GO89PcV/oewnUlbjlwHi39awqAicvl4Xi63quS53KVfR9YXyuN9BXLvi3em0bhlMTG2mug1pAufvjmV3Bw7m4rI41O1NaRQHk95dzrtOgfmcWZ6Nq0reR6fq5RSvyilmuU9ZPyVvHWTlFKT8v58s1IqWil1Xt6n45m0qxU+iy7+m4hGN5ZbQL0eO7ZD32ONG+F/7ZY7NxlHygq87mz0odUxxXZHZwgHwJG+EY/9KJZavje4KY8D+4kluHOT0XShhMZcgKHAINF25E+M4c0JsZ7dQ5qqmnMlzp/Ov6rU2s5MzeCx4XcxfsFn/ldCbVq6ni+en8jxQ8doel5z7njzIWrE1QRg7sTp7Fi9lSe+eAnwvZv5o8feZfPSdYRFRXDNozfQ/ZI+/vbv7nk9xw8FPjTlg7+mUCOuJltXbOLF0YHP1GjVuS3PffsmAD9Mnk368VSue+pWSlusyVuq7WekZnBr/3v4askn/te8rP17PR88PYmjh47R8vzmPPruA9Sq54vz1PdnsHnVVl7/5kXA977VcQ+9x7q/1xMRHcHNT46l3+W9AfjqnW/58u2pmCymgO/8efd3AGxYtomHrnwiYFv7Lm15Z7bvVTszPvqOlKOp3Pn8LaW1+wAkZZfuSa2s1Ayev+wuXvsjP5e3LlvH1BcnkpJ8jEbtm3PTaw8RG+d7UNJPk6aza80WHvz0ZcCXy188+Q5bl/lyeeRDN3LR8PxcfqTvdaQUyuU3F0whNq4Wkx58ja1L1+F2uoiuGUufa4bR/7rL/OV+/XQWGcdTGfXEbaUag7rW0n3zQ0ZqBncOuIfP/8nP43X/rGfC05M4dvAYLc5vzkMF8njaBzPYsnIrrxTI43cezs/jG58YS9/Le/vbP1VbAIvmLebz16bw1Yov/DNdJ8366DtSj6Vy23Olm8cAZn3p/nqRnpLBTf3v5dulk/1xXvP3Bt57chJHDh2j1fnNeGL8A9TOi83X42eyaeVWxn37AuCL8+sPjGdNXpxve+p6+l/R29/+qdoCmPflL3z13nTsuQ7aXdiKB167k5p1qwMwbaLveHH3C6UbZ686/SOV/4v0lAxuHnAPUwsck9f8vZ7xT+Ufkx9/Lz8u37w/g00rt/Lm1PxcfuPB91ibF+NbnxzLxQExLr4tgAVzFzP51SlMXxWcy9MnfkfKsVTuKuVjcoiu9PP4hovvZfqy/Dxe/fcG3n1yEkcO+nLvqfEPULu+Ly5fjZ/JxhVbeXtafh6/9sB4Vv+1noiYCG5/6noGFIjxqdoCmDvlF74skMcPvZ6fx99O8MX4nlLO4241h5ZuIpeh/dk/ltm4qn7Y8HKJmwzGS1h5DsYBHKlr0fQmjJGtS7RdjzMV+4llWOsMK9F2K6tzIc6lORgHmPbWFCKqRTL0hstL9XvOhsvh5NFhd/H8tHFExkaV+veV9mAc4NPXviQ6NpIRt1xW6t91ppwOF7f2v5t357xBdCnHubQH4wDfvfMF4TFRDBhbgXLZ6eS5S+7k8alvEVEtqlS/q7QH4wCfv/4lUbGRXHHzZaX+XWfK6XBxx4C7efu7N4gqg+NFaQ/GASa/+iVRsVFcdeulpy9cRpwOFzf2u4cP5r1e6seL0h6MA3zymi+Xr6xgx+SbLr6b9+eW/jG5tAfjAB+/+iXRFTCPx/a7hwlzXye6elSpfpcMxv8dGYxXEeU9GBeipJT2YFyUzWD8XFcWg/FzXVkMxkXZDMbPdWUxGD/XlcVg/FxXlQbjB3LKbjBez1o+g3G5Z1wIIYQQQgghhChjIeXdASGEEEIIIYQQoqAqM8V/CjIzLoQQQgghhBBClDGZGRdCCCGEEEIIUaHozoGpcZkZF0IIIYQQQgghypjMjAshhBBCCCGEqFDOgYlxmRkXQgghhBBCCCHKmgzGhRBCCCGEEEKIMiaXqQshhBBCCCGEqFA0TZV3F0qdzIwLIYQQQgghhBBlTGbGhRBCCCGEEEJUKPIANyGEEEIIIYQQQpQ4mRkXQgghhBBCCFGhaOfA1LjMjAshhBBCCCGEEGVMZsaFEEIIIYQQQlQo58DEuMyMCyGEEEIIIYQQZU1mxoUQQgghhBBCVCjnwqzxubCPQgghhBBCCCFEhSIz40IIIYQQQgghKhR5mroQQgghhBBCCCFKnMyMl7DNmy4v7y5UeXsz9eXdhXNCDbO7vLtQ5V02+nh5d6HK+216bHl3ocrbnCq/SpSFhxaEl3cXqry4WufANFw5W3zzhPLuQpWXu39oeXehBFX9f5MyMy6EEEIIIYQQQpQxOZ0thBBCCCGEEKJC0WRmXAghhBBCCCGEECVNBuNCCCGEEEIIIUQZk8vUhRBCCCGEEEJUKJpW9eeNq/4eCiGEEEIIIYQQFYzMjAshhBBCCCGEqGDkAW5CCCGEEEIIIYQoYTIzLoQQQgghhBCiQpFXmwkhhBBCCCGEEKLEycy4EEIIIYQQQogKRmbGhRBCCCGEEEIIUcJkZlwIIYQQQgghRIUi7xkXQgghhBBCCCFEiZOZcSGEEEIIIYQQFYzcMy6EEEIIIYQQQogSJjPjQgghhBBCCCEqFHnPuBBCCCGEEEIIIUqczIwLIYQQQgghhKhQZGZcCCGEEEIIIYQQJU4G40IIIYQQQgghRBmTy9QrgS8//onZUxeyc2siw0f25O2P7wdg3aodvPPyVDZv2Itep+OiHm14ftyt1KgVA8C7r37LhHGzMIYa/G39tvx96sfXAmDUkKfYtS0Jp9NFXIOaPPjUNQwYdtEp++J0uhh00b3Ycuys2PlF0PYVS7YwavCT3P3IVTz87JgSikDpm/fFj/w+cz4JOxLpc2kvHnvvQf+2n7/9nekTZpF6LI22F7bi4bfvJ7ZWNQDWL93I1+9OY8+WvYRFhvHtysCYbF29jQnPf8L+3QeoVb8m9716J20vbF1kH777ZB5zP/+BjNRMzFYzvYf34LZnbkIfoufooWPc2PuOgPJ2m53bnrmJq26/ooSjUXq+/eQnvp+2gN3bEhk8oievTHgAgEP7jzLovJsxW03+sjfeO4LbHxnlX962cQ9vPPkp2zftxWwxccsDVzLm9ksC2l+9dDM3Dn+SWx66inufuvaUfXE5XVzR4x5s2XYWbJ3iX79h5XbeeOoT9u06SN36NXn6rdvpcFHRf2cV1aGVb+BI3wuaHoAQUxT1e74GgO3ENk5s+wZ3biqhUY2o0e5GDOZYAJTHxYnt08g5ug6lPJiimlC9zXWEmKIBSFr8CB5HJmi+87imqCbUufChIvuQvPod7Gm7/cvK68ZorUW9Hi8FlMtN2UnyqjeIajyMas0qRy5/Pfkn5kxdyM5tiQwb2ZM3P7ofgN079vPobe+xP+EwAG3Oa8LTb95C0xb1/XW3btjLy098wraN+zBbQrn9oSsZe4cvj7dt2sdLj05mx9ZErGFm/jd2IPc8Niro+wEcDhcvP/YJf/60HLfLQ4eLWvLiu3dSq061gHIrl2xhzNAnuePhq3jwmcpzTHY5XEx+dgIbl6wnOyOb2g1qM/qR6+nQuxMAm5Zu4JNnJ3I8+TjNzmvO3eMeoEZcTX/dz16cxMrfl+Nxu2lxQStue+VuqtWK5fihY9w34PaA77Lb7Fz/5M1cekvR+bd3yx6+ePFj9m3dS6jZxIi7rmLYDZcB8O3bX7Hqz+Uc3HOAkXePYtT9lSfGAAcmvUTOtrV4HXZCImOIHXINMb2HAeB12DkyfSIZqxahPG5M9RrT6KkPAVBKcXTmJNL++hmA6F5DqXnV7Wia75LS3KTdHP5mPPYDe9GZLMT0Hk6Ny8YW2Yejcz/n+I9fowsx+tc1efkLjDXq4Ew5yp4nrgso73XkUmvUncQOLvrfRkW08Y0XSd2wFrfdTmh0DPFXXkO9wcPxulxsfP0FMnbvxH70CJ3efJ9q7c/310ucM5Ok72fjzMwgxGSmVq++NL/lTnR636/vmXt3s33Ce2Ql7EVvsVBv8HCajLmhyD64srPY/tH7nFi9AoB6wy+n6bU3+refTVsVkdedjTttLV7HCdD06C31CIk6H+XOwpWyAuXOBkBnjCEkugM6QyQASnlwp63Dk3sQUOiMsRiiO6KFWPLbTV2F15mCprcQEn0BelOtIvvgztyOJycR5clB04WiD2tCSETLwDJZO/Fk7UJ57Wh6K4bY7ugMEaUXmEqv6s8by2C8EqhZK4a7H7mKvxesw57r9K/PSM/h6hsG8lG/DoSE6Hn2oUk8fMd4vpr7gr/MsBHdee/Ton9Zfu7Nm2naoj4hIXrWr97JmEueZdH6j/yD+aJMHj+X2OqR7M+xB21zudy88OgnnNex2X/Y2/JRrWYMo+8bxZrF63DYHf71G5dv5vPXv+TtWa9RN74OE56dzCt3vcm7370BgNliYvCoATjsDr79YGZAm5lpWTx9w0vc/9qddB/SlYXz/uLpsS/wzbLPCI8KD+pDl/6dGXjVxYRFhpGZlsULt77KnM9+4MrbLqdm3Rr8vPs7f9nD+49wXbdb6Dm0WylFpHTUqBXDrQ9dxbKF67EXiPNJyxKmExKiD1qflpLBHVc+zyOv3MyAS7rhcro4mpwSUMblcvPGE5/Q7oLmZ9SXLz6YQ0xsFLbsI/51GWlZ3DP6JZ5+604uHt6FX777m7uvfolf139KZFTYWe5t+YptNYaIej0D1nmcWRxdP4HqbcZiqXEeqbvncnT9JOK6Pg1AetJ87Ol7iOv+AroQC8e3TOHEtqnU6nC3v41aF9yLJfb0JyfqdHowYPnQyjcwxwT+UqK8bk5s/5bQyEb/djfLRY1aMdz5yFX8s2Addnv+MblmrRg++Oox6tavgdfr5ZtPfuGBG8fx07IPAEhNyeTGEc/z5Gs3MehSXx4fKZDHD978NgOGXcQ3P7/CwaRjXD3ocVq1jaffkM5Bffjyox/YsHoHPy17n/AIK0/d+yEvPvIxE6c+6S/jcrl5+fFPaF8Jj8kej4dqtWN5ecabxNapzrpFq3nr7td577eJmCwm3rzjZe587T46XtyZaW9/zdv3vM4bc98F4Kcv5rFz3Q7e/XUClggrHz0+nk+fn8Rjk56met0afLt1jv97jh44wl29b6bL4KKPpZmpGbw09hluePpWug7ujtvlIuXICf/22g3rcN3jN/L71F9LNyClpPqwMdS96TF0BiOO5CQSXr8Pc4OmmOObc+iLceD10PS1r9GHhWNP2uOvl7b4BzLXLaHJy58DGonjHsRYvQ4xfS8F4OCkF4m4oCfxT4zHefwICa/chal+EyI6dC+yH5EX9qXe7c8ErTdWq0mryb/7l53Hk9n1yDVEdOxVsoEoZY3+dy1tH3gcndFI9v4kVj16LxFNmhHesBHRrdvR8PKr2PBK8P7XuKgbdQcMxhAWjjMzkw0vP0PSvNnEj/CdiNj4+gvU7NqTC8e9T+7RI6x86E4iGjelRpfgOO+Y9AEeh51eX83CkZ7G6sfvx1yjJnEDh551WxWRO20t6EIJrXsZeJ04jy/Gk70HvbUhhthuaHoroPBk78GVsozQWoMB8GTtwutM8S3rDLhSV+FKX4cx1rffrpTl6IyxhMb2xGs/jOvEUnS1h6LpTUX2w1CtM5ohCuXOxnl8MVqIBb2lga+P2Xvx5OzDUL0nWkgEypONphmLbEecO6r+6YYqYNClXRk4/CKiYwLPnPUZcAFDL+9OeIQFsyWU628bxtoVO8643ZZt4v0DH03TcLncJB88UWz5A4lHmDt9MXc8dGWR2z95fx49+55H42ZxZ9yHiqLHkG50H9SFiOjAQfLyP1fSc1h3GjZvgMFoYMz9o9i0YgvJib6ZrxbnN6f/yL7Urh98lnTrmu1EV4+i1/Ae6PV6+o/oS2RMJP/8uqzIPtRpWJuwSN+ATymFTqeRnJhcZNk/Zy+kbefW1KpX87/sdpm7eHhX+g3tQmRM8MmIU/lq4vd07Xs+w67sjTHUgDXcQqPm9QLKfDlhLl37nE/DZnVP297BpCP8NHMxN98/MmD9hlXbqVY9ioGXdUev1zP8qj7ExEay4Mei/84qm5wjazGE1SGsdid0egMxTS7FmXUAZ7Yvn92241hi2xASGolObyCs9oU4sw/95+912U5gT91FeN0uAevTE37HEtsaY1jt//wdZWngJV3pP+wiogodkyOiwohrUBNN01AK9HodSfsO+7d/8eE8evQ7n0uv6k1oqIGwcAtNCuTxof1HGX5VL/R6PQ0a1eaCi1qye/v+IvtwMOko3fueT2yNaEJNRoaO6MGeHQcCynz+wTy69zmPRpXwmGyymBh1/xhqxNVEp9PRsV9nasbVZO/m3az4bRn1mjag69AeGEON/O/+0SRtT+DgXt/+Hzt4lPN7diCqejTGUCPdhvfiwK6kIr9n8ZwFtLqwjX9WvbAfPpvL+T060OuyPhhCDZjDLMQ1yb/Soc+Ii+nQuxNmq7nkg1AGTHHx6Ax5g4G8WW3nsUM4Du8na/1S6tzwCCERUWg6Peb4/BOdaUt+I3bQ/zDE1MAQU51qg/5H2pL8ExLOE0eI7NIfTacntGZdLM3a4TiU+J/7m77kd6zN22OsXrmOGeEN49EZ8+OsaWBLPoTOYKDhFVcR3aYd6IJPRFvq1MUQdvLnpULTNGzJ+cfk3KNHqNO3P5pej6VOXaJatyMrKaHIPhxbuYxGV16D3mTCUqs2cQOHcuj3X/5VWxWRcuegt9RH0/RoejM6U22UKwNNZ0QXEua/agM0/yz5yXo6Uy00vQlN06O3NEC5MgDwujJRzjRCItug6ULQW+qhGSLzZtGDhUS0RGeMQdN06AwR6M11fTP1+H6vc2duISTqfHSGSDRNQxcSjqYPLdW4VHaappXZp7zIYLwKWbl0C01bBA5QFvy6mvb1r6F/p7v4+tNfgurcOPJFmsWO4LI+D3NRjza069Ck2Pafe3gyjzx3LSZz8Fm8g/uPMevr+dz7eOW5bOxMKHXy/04u+/6csDPxDOoqf/n8lZC4o+hfCgEWzF3M8OYjuaLt1ezdlsCwMYOLLPfH7AUMuLLfaftQ2QxsfyP9Wo/l6bveIy0lw79+05qdREaFM2bgI/RqNoa7r36RwweP+bcnHzjGvKnzAy5rP5XXHvuY+565DpM58IegUgF/3XnrFLu3F/93VlGl7JxNwvx7ObT8VXJTfCfpnNnJhIbnHyN0IaGEWGr4B9zh9XpgT9uD256G1+MgO3kFlti2Ae0e2/gJCfPvJXnV2zgyix4oFpZ1aBmmmGYYLNX961y5J8g6uIToJpecombl1KH+1bSpMYIXH5nM7QVOXm5YvZPI6HCu6v8onRtfy63/e4nkA8f928fecQnzpi3C5XKzb/dB1q/eSdfe5xX5HVde2591K7dz9HAKuTYHP8z8i579O/i3H9p/jNnfzOfuYi5zr2zSj6eRnHCIes0acGB3Eg1bxvu3mSwmajao7R9w97tqANvXbiP1aAqOXDv/fL+I83t3LLLdxXMW0HtE8cfSXet3EBYVzhMjHmJsx6t59abnOX7oWLHlK6PkL99h6y392f34GEKiqhHW/iJse7dhiK3JsTmfs/2u4ex+6noyVi/213EcSsRUP//3BXP9JjgO5Q/cqg24kvSlv6HcbhyH92PbsxVr6wuK7UPWhmVsv3Mou5+4jpQF84otl7b0d6K6D/pP+1tetn7wNn9ccjFLbh5NaEw1ql946tsCT0pe+Cd/Xj6QhVcOIzNhD/WGXOrf1vCyKzk0/3e8bjfZB/aTvn0rsecXnetA4O8kCrKS9v3rtioafXgzPLb9KK8b5bbhzT2MzpR/0sZ+8DscB2fhTl9LSHir/HphjfA6TqA8uSivG48t0V9PuTLRQsLQdPm3e+qM0f7B+qkopfA6jqPlXQ6PxwaeXJQrA3vy9ziSf8SVsTn490RxzpHL1KuI7VsSeP+NGXwy7Sn/umFXdOeaGwYSWyOKDat3cfuY14mItHLplfmXd30++1lcLjdLFm1k766D6HRFn5/57YfluD0eBl3SheX/bA7a/vwjk3nwmdFYwyrn7EBxOvftyEt3vMGwa4cQF1+Hr9+dhqZpOHKDL7EurHXHlqQcTWXhvMX0HNqdBXMXk5x0GPsp6va7vDf9Lu/NwX2H+HP2QqKrRwWV2bRyC2nH0+k1rHJcOnYmomMimL7gHZq3bUR6aiavPjKJx299m4+/exGAo8kn2L5xL5PnvEjTVg155/kvePTmt/j6tzcBeO3xydz9xBgsZ5B/C35ajsftpd+wLqxeEpjL513YguNHUvnlu7/of0k3fpn9FwcSjpzy76wiqtZ8JMawOmhaCFmHV3F47XjqdXsBr8eO3hh4VYI+xIzX7bvtxGipRYg5hqRFD4GmwxgWR50LR/vL1mh/K6ERDQBFRuJ8Dq9+h3o9X0VvsJyyP1nJy4huPCxg3Ylt3xLT7HJ0IUVf6leZrds/DVuOnbnfLqRO/fwTEEeSU9i6aR9T5r5I89YNeOPZKTxw0zhm/OHL4z6DOvHIbe/y2Qdz8Xi83P3YKNpd0LTI72jYpC6146rTvcUN6PU6mrVqwHPjbvNvf+mxydz/VNU4Jrtdbt57YBy9R1xMXON62G12ImIiA8pYwi3k5uQCUCc+jup1anDzRdei0+to0Lwhz79wZ1C721ZtIeNEOl0GF38sTTl8gn1b9vLc16/QoEVDvnrtc9657w1em/12ye5kOapz/YPUvvY+bHu2krN9PboQI6604zgOJhDRsRfNx88hd89Wkt55jNC6DTHVaYjXnovebPW3oTNb8dpzUco3extxXhcOTn6VE7/OAK+H6peOxdKoZZHfH3lhX2J6X0JIZDS5e7ex/4Nn0FvCiOpycUC5nJ0b8WSmEdGpcl2iflLrex6i1Z33k759K6mb1udfkXAadfr2p07f/uQcOkDy/N8JjY72b6veuSubx71C4uzpKK+HxqPHEtm86DjHdryQhJlTafvwUzjSUjn4x894HI5/1VZFpAutjid7L45D3wEKnaUhOnP+lXKmuBG+wXZOAlpIfu5qIeFoIRYcyd8DGpohEkP1vBNHygUFBuK+CgaUx3ba/rgztwCgt/pOHCqP7/jktR8htNZglNeJ6/hfePQWQsIa//sdr/Lk1WYlTtO0xZqmzS5m2xpN06bk/XmKpmlK07SPT1Uub3lsXtkwTdOez/vzqT6L8+pZNU17SdO0nZqm5WqadlTTtL80TbupQNu9i2nDXcKh+dcS9yYz9ooXeO6NW7iwW/69nE1b1Kdm7Wro9XouuKglN9wxnF/nBV9uazCE0GfABfy9YB1//rwyaLstx87rz07hhQK/6BU0/5dV5GTnMnxEj5LbqQqiQ4/zuP7h0bxwy6tc0/kGatWriSXMTGzt2NPWjYyJ4KXPn2H25HmMPG80qxevpUOP86h+BnXjGtWlQfP6jH9yYtC2P2YtoMeQbpX2ssiiWMLMtD6/KSEhemJrRPPkm7ezbNF6sjN9P/BCTUb6Dr2INh2aEWoycsejV7Nh1XayMnNY/NsqbNm5DLri9Plny7HzzvNf8MQbRedyVEwE46c+xVcT59G7+bUsXbCOi3q1p2ad0/+dVSSmqMboQsxoegMRcd0wRTfFdnwTOr3JP/A+yevO9Q+Ij2/9GuV10bDf+zTq/xHWWh04vOZdf1lzdFN0eiM6fSjRjYeiM1iwp+46ZV9yU3fhcWQQVit/hiXn6Aa8bjthtS8swb2uWCxWE1ffNIhHb3uPlOPpAJjMRvoPu4h2FzQl1GTknsdHsW7lDrIyckhPzeLGEc9z92Oj2HLsO/7e9jn/LFjH1E+Cr2gCeO7Bj3A6XKxOmMrGw7MYcEkXbhrpe17Igl9XkZOVy9AqcEz2er2Mf/AtQgwh3PKC7yGWJosJW3bgL8O52Tb/MfHjZz7E6XDy5foZTNs6l84Du/Ly2OD7cRd9N5+LBp36WGo0hdJ5YBeatm/muyT+vmvYuXY7OZk5JbiX5U/T6bE2a4cr7TipC+ehM4Si6UOoccl16EIMWFuch7Xl+WRvWQ2AzmTGk5sfA2+uDZ3JjKZpuLMzSXzrEapfej2tP/2T5u/OJnvLKlIWzC3yu011G2KIjkXT6bE0bUu1ASPJXLM4qFz6kt+I6NgTvenUJ/8qMk2vJ7pNO+zHj7P/p3lnVddatx5hDRqy7cN3AHBmZrLm6YdpPHos/X+aT+9vvuPE2lXs/7HoOLe84350xlD+vvFq1j//BLV7X4wptvq/aquiUUrhPP4XekscoXEjCa1zOXhduDM2BpTTdCHow5rgSl2B8vh+FrrS1oDyEFrnckLjRqI3x+E88VdeBQN4XYW+zBUwU14Ud9YuvDmJGGN7ouU9SNX/QNXwlv5L5/XWxnjtRd+OKM4dlWFmfKymaS8qpc70xsVPgd8KLN8D9AUuL7AuM++/3wHnAy8DW4AaQE9gCPBZoXZHA/sKLFeI60oO7j/G6Eue5Z7H/scVV/c5ZVnffYzFd9vj9pKUcCRofcLeZA4mHePKgY8DvocCZWXY6Nj4OuYuHMfSvzayef0eOjb2PfE0K9OGXq9jx9ZEPp3x9H/Yu4rhsrHDuGysb1bvwN5DTB0/nfjmDc6obvsubZn4y3sAeNwexnS9iStvu/zUlfJ43B6SEwP/Phy5Dv7+aQkvfFr543pKeSdCVd4/s2atGwbcz3Pyz0opVv61ka3rd9O7he/p6dmZNnR6Hbu3JfHB1MA47d+XTPL+Y1w/9DEAXE432Zk2ere4lql/vEXd+jXp1K0t0xf4BqBut4chHW7h+rvO7O+sIlMojGF1yDqUf0LO63bgsh3HGOabPXBkHaBasyvQG33PLohscDFpu+fhcWYFzaj7aJzuUJh1aBnWmh0CZsBzU7bhyEgkccH9ef3IBU2HM+sgtS+49z/tZ0Xi9Spycx0cSU6hWvUomrduSMHb0jTy8/hA4hH0Oh2XX90XgNp1Yxk6ogeL/1zD6FuGBLW9Y0sCDz4zhqi85y9cd+swxr/yLakpmSz/ayObN+yhS9PAY/KubYlMmlZ5jh1KKSY89h4ZJ9J56osXCDH4fmWp17QBi+bM95ez2+wcSTpCvWa+43Li9gRGP3Sd/0GZQ8dewvR3vyEzNcM/o+6wO1j+6xIem3TqeDRsEXjsyf8LrBC/ApQ8jwfnsUOEn3/qK69C6zbEfmAvlsa+y33tB/YQWtc3A+g6ngw6HdF5l5MbYmoQ2bkv2RtXUK3fGRxLNS3ofiGv00HG6sXUv/flf7FTFY/yusk9fPbP41Aej/+e8dwjyWg6HXX7++Jsql6D2r36cXzVcuoPD46zMSKC9o8/61/e9fnH/pnvs22rwvE6wWNDH9bUN/jV69Fb43FnbIao8woVVqA8KE8umt6EcqYTEtXWf++2PrwZ7swtKI8DzRCBcmejvPkDcK8r3f9AtqK4s/fhztqOsUY//xPZwTcDL3cHnz1NZsbL3TYgHXjkTCsopQ4qpVac/ACHAUfBdUqpbZqmNQUGAncrpT5QSi1SSs1QSt0FjCyi6U2F2gieQi4lbrcHu92Jx+PB6/Vitztxuz0cSU7hmmFPc90tQxhzU/C9xX/8tIKMtGyUUmxYs4spk36k/1DfU3n37DzIoj/WYs914HK5mTt9EauWbuWi7m2C2mneqgHLdnzOL8vG88uy8bzxwd3E1ojil2XjqRMXy0NPj2bh+kn+7RcPuZBRYwfw1kf3lXpsSorH7cFpd+L1evF6vDjtTv+6hB2Jvte4HDrGu499wOU3Xer/Jc/r9ZV1uz2+M7N2Jy5n/lnU3Vv24na5ycmyMenFz6heO5ZOvYu+b+7nb38n7UQ6AIm79jPtw1mc3719QJklvy3HGmHlvG7tSicQpczt9uCwO/F6fHF25MVu05qdJOw+iNfrJT01k9cfn0yn7m0Jj/BdSnbZNRez4Ofl7Ni8D5fLzaRx0+lwUSsiIsO4+8nR/LT6Y2b/9T6z/3qf3oMuZMS1A3j5w+D8a9KyAX9u/sJf9oXx91CtRhSz/3qfWnV9s9/bN+3F5fIN0t9+5nNq1omlW78OQW1VVB6XDdvxLXg9LpTXQ9ah5djTdmGJbYO1Zgec2YfIPrIGr8dF2p4fMIbH+R+gZopsSNahZXhcNpTXTeb+hehDo9Abw3HlppCbthvldfvq7vsVjzMLU3TRl1EDeD1Oco6sJjwu8Bf7mGaXU7/Xa8R1f4G47i9gqXEeEfV6UqPtjcW0VLHk57EnII+XLFzP1o178Xg8ZGXaePXJz4iMCvM/pG3E6H78+eMKtm3y5fGEcTPo2KUVEVFhNGxSFwX8MOsvvF4vx4+m8cucJbRsE19kH9p2aMrcaYvIysjB5XIz9dNfqFk7hphqEdz/1Gj+XDuJH5aM54cl4+k3+EKuun4Ar0+oPMdkgI+f/pCDew7wxKfPEWrKf75D54FdObArieW/LsHpcDLz/W9p0KIhcY19cW7SrimL5y4gJzMHt8vNr1//TEzNagGXtq/8fRmWcCtturQP+t6C+l7Zn5W/Lydhm+9YPuuDabTs2BprhO+EldvlxulwopQXr9uD0+H7WV0ZuDPTSF+xAI/d5jtWbF5F+ooFWFt1wNq8PYZqNTn+01SUx03Ors3k7FhPeBvf1SzR3QaR8tsMXKnHcaWd4MSvM4ju7vs9xFjL9/eQvvxPlNeLKz2FjJWLAu4xLyhz3T94crJQSmHbu42UP74jvNBT1zPX/o3eEoa1ZeU5Fp/kSE/j8OL5uHNtKI+H42tWcnjRAmLa+/bF63TicfouF1duFx6nwz9xcuDXH3GkpwGQnZTAvunfEHO+73cIa916oHz3lCuvF0dqCof/Xkh4o6LjbEs+hDMzw9eH1Ss48OuPNL76+n/VVkWj6UPR9FY82XtQyovyOvHYEtCMUXjsR/A60/LWu3CnrwfNgJb3OjGdMcb3OjKv79+xJ3s36M1o+lB0hgg0Y7RvcK48eGwHUc509OaiH4rpyUnEnbEJY/Xe6EIC38Ci6ULQWerjztqB8rpQbhuenL3oTHVKPT6iYqvoM+O5wDvAc5qmvaqUKsmnpkTl/TdoKlhVsKcpfPDmDMa/Nt2/PHf6Yu57YhSaprE/4QjjX5/O+Nfzt2874nvF1o/f/cOjd36A0+miVp1q3P7ACEaOzntQjVK899o07r7+ADq9jvjGtflgyiO0Oc9338qqpVsZO+IFth2ZSUiInho18+9RiowJR6fT/OvCwi2Eheef/TOZjFgsJv+MTWXwzfjpfPXOt/7l+XMWcd2D1zDi5kt55e5xHE48jDnMzKD/9eeGR/PfI7tpxRYeuvIJ//LgxpfTvktb3pn9OgAzJs5m1cI1AHTqfQEvfJY/C7Np5RaeGPOc/5VlW1dv4/M3vsKek0tktUh6DevODY8Eviv7j1kLGDCyX7k+9fG/mPzWDD56c5p/+aeZi7nj0atp2LQu77/0FaknMrCGW+jS+zze/CT/HFznnu2575nruGvUC+TaHHS4qBVvTH4YAGu4BWuB/As1GzFbTUTmPRl/7fKt3HHV86w6MMt3GXzBXI4OR9O0gHVfvD+Hf/70/Z1169eB977Of1VUpeB1k7p7Ds7sw2iaDoO1NrU63OMfcNc8/05ObJvKsY2fEBrViJrn5b9zuVqL/3Fi27fs//sJ8Loxhtf1v9ZMue2c2Po1LtsxNJ2B0Ij61O70gH8WPTd1F4fXvEujAR/528s5ug5diAVzTIuALupCzOhC8i8N1umNaPpQf1sV3cRxM/igwDH3+xmLuefxUTRtUZ+XHp3MkeQUQk1G2nVoymffPUeoyXdvaJde7Xnw2Wu59aoXybU5uKBLK97Je/VkeISFCV8/zrjnvuS5Bz/CZDLSd9CF3PHwVQCsXraVm0e+wMZk3/H98Zdv4KVHP+HiDrfjcrlp1rI+E/Jea1b4mBxqNmKuZMfkYweP8se3v2IwGripwHMLbnvlHnpd1odHJj7Fp899xPgH3qLpec156IPH/WXGPnkzn74wibv63ozb6aZ+8wZBM+CLv1tA7yuCj6XbVm3h5Rue9b/+rG3X8xj9yPW8cuPzOHIdtOzYigfGP+ov/9ET77Pou/xZ+tkTZnD3uAfoO7J/SYajlGikLpxH8pdvg9eLIbYmtUffQ0QH3+0N9e97lUOfv8nxn6ZijK1J3C1PEVrHNyMY3ecSnMeT2fP0WN9yr2FE9/E9jFFvtlL/npc4OvNjkr98B50xlPDzulJ9uO/nWc7OjSS9/aj/lWUZKxZy6NM3UG4XITHVqT70Gv/A/qT0Jb8R1W1gpfzZpwH7f5rH1vffRikv5hq1aHH7PdTs6ovz3zePxn7U96vomid9x4OeX87EUqs26Vs3s3vKJ3hyczFERVGrR2+aXn8zACFWK+c/+zI7P5vEtg/eRhcaSo3OXWl8te+KmNTNG1n79CP0//4PADJ272THpPdx5WRjrVuPdo89Q3jD+DNqqzIwxHbHlb4Od+Z20DR0oTUxRJ2P13EMV9pa3z3bmh6dMQZj9d7+y8dDos7Dlb4Ox+GfQXnRDJEYq+WfDDJU64IrdSWOQ3PQ9Ja816T5rvTyOo7hPP43pjjfHJ47YzN4HTiP/umvr7c0wBDTyddW9AW4Ulf77k/XGQixNkZvrVyv9ix7FX3e+L/TynrcmXe/9gmlVNDss6Zpa4AtSqmxefeEtwH6AEnAZKXU44XL5S2PBb4AwpVS2YXafAsYqZRqWGh9BJAM7ASeAP5WSgW9PFvTtN7AIuA8YGuBTV6llLdw+aTsHyvUQL4q2psZ/PoPUfJqmIPSW5Swy0YfP30h8Z/8Nr1y3e9fGW1Orejn9auGZ/+uHCerKrO4WpVvsF/ZLL55Qnl3ocrL3T+tyiSyzb20zMZVlpBu5RK3Cn+6QSmVBbwP3KlpWvTpyp9Fu5nALUBz4HcgU9O0vzVNu0Ur+tTrBsBV4PNiSfVFCCGEEEIIIUQ+rQz/V14q/GA8z/i8/5bok32UUtOABsCNwHSgGTAZ+LaI4qOATgU+wY+5FkIIIYQQQgghzkB5XFvmBoq7zliftz2AUipN07SPgHs1TSvRl3sqpVLwXeL+haZpBuBj4AZN015XShV8J8JWpdSWkvxuIYQQQgghhBDBKuNzIs5WecyMHwdqFbOtNlDcQ9reBszAnaXRKQCllAs4+VLdFqcqK4QQQgghhBBC/FvlMRj/B7hA07S6BVdqmtYZqJm3PUjek9Q/AR7ENyj/TzRNC9c0rah2Tr6n5+h//Y6S8sZzX/LZhO/Luxtn5c+fV3L32HHl3Y1iffraFL77ZF55d6NEPXfzy6xatKa8u3FK7734JV9/VLlyedGvK3nkpjfLuxvFStk5m/SEP8q7GyXqyLoPsR3fXN7dOGNvPf8lX0ysWHntcLgY2PEOUo6nl3dXSsQ3b37Bj5/PK+9uBHA5XNzT71bS815JWRkdmfkxJ36fWd7dOCuZ65ZwYOLz5d2NM7bz80kkzqlcMT62fAkbXn2uvLtRLFf6RtxZO8u7GyXKeWIJntzD5d2NCkgrw0/5KI/L1L/CN6D+W9O0l/E9Kb0l8BywDN/D1IozDrgd36B99X/sR3PgB03TPs/7Xhu+J6Y/he9hbUv+Y/slIuV4BnOmLeKvjR8HbXvvtWm89+o0vvnhRbr3OQ+AzyZ8z5RJP5GWkonFambYiO48+fINhIQUfWfA0sUbeebBSSQfPM55HZvz1qT7iKtfAwClFK8/+yUzvvS9ouF/113M4y+NRdM0Dh04Tv9OdwW0Zcux89QrN3DLvZfTf2hnxr3wNdu3JBT7ntzykp6SwR+zF/L1kk8AcDldvHLXOHZt2s3Rg8d4e9ZrnNc1/z3eX749lanvz8BgNPjXfTL/Q+o08L0q6os3v2bp78tJ2n2AMfeN4vqHRnMquzbvYeJzk9m9eS8mi4lr7rmKETdfCsCDIx8ncWcSLqeLWvVqMfaR0XQb2AWAlKOpvPvYB+zatIeUo6lMXfE5terV9Ld79V1X8t4TE7iwT8eSCVQJSz2RwY8zFvLzmsmAL+6P3fIWWzfsIfnAMT7/4VU6dW/rL//F+3P4YfoCkg8eJzomnP/dOJQb7r2iyLY3rt7Bh69OZdvGPej1Ojp2a8sTr99K9Vox/jLbNu7hjSc/ZfumvZgtJm554ErG3O57Fc/A9jeRcjwdnd53fvK8Ti2YPOclAPoM7sz7L33Fzq0JNG9dsXLZ48gk69Ay6vfyvUrPmXWIY5s+xWXzPaU9NLIBsS2vwRjuO/eZvPod7Gm7/fWV143RWot6PXz7mrT4ETyOTNB8cTBFNaHOhQ8V+d2pu+eRtvdnNF3+j5F63V/AYPEdP+xpezixfRrO7GQMlurEthqDOaZZUDvHNn1G1qGl1O/5GgarL5+jGg3h+NavsVRvG1S+okk5kcG86YuYv953jD6YdJQ+7W7BYjX5y9xy/xXc/eioIuu3r3NVwLI918nomwfz7LjbAMi1OXj96c/5de4SXG4PLdo0ZNqvrwfUcTpdDO96Lzk5dpZs/wKA0FADI8ZczOT3vuOJV24qsf39f3v3HR5VsT5w/PvupveE0HtvUqUK0kRFvQI2xK7X3tu1XZWL+rOiXrGhXq/1ClbsBRVEBSnSlSq9lwAhPZvdnd8fs0l2N5uQQJrx/TzPPsnOmTNnzuzJ5syZVhMO7T/E7OmzeGH2q4Bd9uya4y8jKqa4jMdefTbjbjo/5P5fvfk5P3z0HVvWbub404dx45O3BWxfMXcZ/5nwIvt27qNDz47cMOlWGjSz1+Jv85bzwbPT2LhyPbEJcbw8542i/cIjwxlxzol8/NIHXHbflZV81lXPnZFO+twZdJhUvNykNz+P3e++yKGFP2A8bqKat6XNvc8D4MnOZNc7z5K5YgEAKSeMpeEZfy81/QOzvyDty3dwHzpATIduNL38bsKT7eoG3gIXu955lozFP4PHTUz7bjS55HbCU+rj2r+H9fcELqnlzc+l0fjrSD1lPAm9B7Pnw/+Qt3UDUS3aVnaxVCpX+kF2fj+DIa/bpRC9BQUsf+wBDv2xlrw9u+n7xLPU69GrxH7eggLmXnMp7rxchr8zvdT0d/04i/Vvv0Ze2l6i6jegw2VX0fC4IQDsX7aEDe+8Qcb6dYTFxzPsrQ8C9l14x01kbtmIt6CAmIaNaXfx5UXLrTUYOJh1r79C5sb1tW6tcePJw5OzmchGpwHgzU/Dfeg3vAUHAcER2YDw5N6I07a3uTNW23XEPdmIIxJnXDvCEjoXped1HbRLnxUcAkcYYbFtCUs8JvSxjcF9aDme7I0AOGPbEJbYAxHBuLPJ3/110A5uwhJ7EpbQCU/uTtwZq+xxxIkzuglhSb0Qh723DIvvTMHBRTijG1dyianartor48aYLBEZAjwCPAakYFuh3wPuDbVcmN++20XkTews6EdrA/AqcDJwLba1fSvwGvC4MabE2PWa8OE7Mxl+Uh+ioiMDwrds3MXXn/xCA7/KBsDIU/px9gUnkJgUR/qBTK696DHemPI5V9w4tkTaB9IyuOaCR3ns+Rs44ZR+PP3QO9xwyRN88sOTAEx9fQbffbGAr+dNRkS4cPQEmrduxIWXn0LT5vWL1jMH2LZ5N0N7XMOoMccVhY0+ZwjTXp/Bg09dU+LYNWnG+9/Tf0QfIv3KtFu/Lpx15RgevPrRkPsMG308/3zujpDbmrRqzJX3/p0v3v7qsMc+dOAQ91wwgWsnXsmQ0wbjLihg3660ou3XP3g1rTq0wBnmZPWSNdwx/j7e/PkV6jVMQRxC32HHct4N47hpzD9KpN2pV0dyMnNZu/wPOvZoX2J7Tft06kyOHxl4Lfca0IULrx3N7Zc9XiK+wfDwlFvp0LU12zbt4uqzJtCoaSqnnDWkRNyM9CzOvuRkBo24B2eYg0fufJn7b5jMSx8+AMDB/Ye49pyJ3PHwFZw0ehAFrgL27NwfkMZzU+9n4LCeIfN+yllD+PDNGdz7RO26ljN2zCWmfnccTruOtTMqmYa9ricsuh5gOLRlJnuWv0zzwXbxhyZ9AyshOxY8TnRK54CwRsfeRExq13IdP65xXxr2uKpEuMeVxa7Fz1K/60XENjqWrJ0L2L34WVoMexxneGxRvNwD64oeHPiLSmqDceeSd2gTUYm16wFIsOnvzGToiSW/oxdvnVbqQ1B/heuGg32gObD9xYwaO6go7L6bn8fj9vL1ry+SlBzH6hWbSqTx6uSPSamfSHZ24Oqcp58zlDGDb+a2CRcTGRleYr8/ix8+/I7ew/oQGRVYxm8v/wBnOco4pWEKZ98wnmU/LcGV5wrYlnHgEE9c+39c9+jN9BnZn2lPvc1TNz7G4x/bEWtR0VGMOOdEBp8+lI9efK9E2sePGc7tp93AhXdcSvifrIwPzvma+B4DcEQUl+uO1yeB10P7R9/GGRdP3pb1Rdt2TX0eryufjk+9jzvjIJsev5WIeo1IHnJqibSz1yxjz4ev0PruyUQ0asbu/z3LtikP0OafzwGw/9sPyV2/kvb/9zqO6Fh2vD6JXf97hhY3PUxEvYZFa5ADuPbtZN0d55PQZ2hRWOKAEzgw+zOaXHxrVRRNpdnx3dfU7zsAZ2RxGSd37U6rM8ax7OH7S91v0wfTiEhKxr07t9Q4eWn7WPHEQ/Se+Cipffqzb+E8lj08gaFvfUBkUjLOqCiannwqjYePZMO7b5fYv/O1NxHbshUOZxjpa1by6923cvx/pxJVzz4waTxsJNu++pwuN9SuMvZkb8IZ1bjoQbDxunDGtSU8qjEguNMXU3BgARH1hxXtE16vPxKehHFn4do3GwmLwRnTEoCC/fNwRDcjrMEIjCcb156ZSEQyzuimIY69AW/uDiIbjgLAtW82nrA4wuLaIWGxReuNA3jdWbh2fYkjppkvwEVYQlcckfUBLwX75+FOX1a0Brkjsh6YAryuAzgiUoIPreqwGplN3Riz0xhzqTGmoTEm3BjTzBhzo2+5scI4lxpjSjTxGWOuMsZI4RrjvrA3fGFZIeL/I3iNcV/4QWPMBGNMf2NMPWNMjDGmkzHmLmPMAb94s31p18jkbbO/W0z/wSVvjCf842XufvASwiMCn6e0bNOYxCS7FqkxBofDweaNobu9fPPZL7Tv1ILTzhhMVFQEt/zzPFb/vpn1a7cD8NE7s7jixjE0bppKoyb1uPLGMXz4v5kh0/po2g/0G9SV5i2LW2oHDD6GWTNqX7fphbMW0X1A8VPP8IhwzrpyLN36dcXhqPifxMnjRtJ/RB+i4w4/euKDlz+hz9DejDxzOBGR4cTExdCyfYui7W27tC66uRQR3G43+3baykpK/WTGXPo3OvUs2bpYqMdx3Vgw82g7jVSNOTMXc+ygwHK/6Nox9B4Qutz/ftNZdOnRjrAwJ63bN2P4qf1ZunB1yLSPP7EPJ48dTFxCDNExUZx35WkBcd968VOOG9GLv50zjIjIcGLjY2jTsXm58953UDd+/rb2lWvOvt+ITulY9N4ZHkN4TKqd8MQYRBwUZIeehqMgJ428A+uIbzqw0vOVl74eZ2QCcY37IuIgvulAnBHxZO9eXBTHeD2krZpKapfQPUmiUjqRs3dFpeetsv303WL6hfiOPhLffDqXlNRE+h5n09v4x3Zmfr2QhyZfT73URJxOJ8f0Cmyl2rZ5N5++P5trbjunRHqNm6aSkBTHsl//3N05l/y4iK79j7yXxIBRg+h/0nHEJ8WX2Db/m19o3r4lx512PBGREZx7ywVsWb2J7Ru2AdC+Z0eGnXkCDVuEnuomtXEqcYlxrFu65ojzV1OyVswntmPPovf5u7aSuXQuTS67g7CEJMThJLp18fdL5rJfSD31PByRUUTUb0zy0NM4+HPoh9AZS+eS2G8YUc1a4wgLp/6YS8hZu5z8PTsAKNi3i7hu/QhLTMEREUlS/xPI27E5ZFrpc2YQ27EHEfWLWwxjO/Uic/m8oy+EKrbv1wWkdO9Z9N4RHk6rM8eRfEx3cIR+kJSzeyc7Z31Lm/EXlpl2XtpewmPjqN93ACJCg/7H4YyKImenLeOkTl1oOnIU0Y2ahNw/vk07HM7Ce0jBuD3k7Sv+f5HSoyf7Fta+Mvbm7cIR2aDovTO6Cc6YFogjHHGE4Yxrjze/uJEjLKEzjogURBw4whNwRjcN2G482ThjW9rtYfE4Iuvb1usQPNmbcMZ3RMJibIU+viOe7JIPSAG82ZtxRNbHEWbvyZ2xrXBG24cI4ojAGdsGrystYB9HZAO8uTuPuGzqIsFRba+a8mdZ2uwva+3KLbRp3ywg7MuP5xAeHsbwk0N3R/70/R85psm59Gp1Iat/28T5fx8VMt66Ndvo3K1V0fuY2Chatm7EH2u2AvDHmq107lbcKtW5W2v+WLMtZFrTp/3AWeePCAhr17E527fsJTMj57DnWZ02rdlM87bNDh/Rz/zvFjK267n8ffi1fPbml0d87NVL1hCfHM+No2/nrO7nc+8lD7BnR2Bl6Z8XT2RUm7Fc/7fb6DmwGx0q0Mrdol1zNqzaeMT5q0p/rNpM63YlnzSXhzGGJfNW0a5Ti8NHBhb/spJ2HYvjrli0lsSkeC48+Q6GdriQG857kF3bA8v97qufYkj7C7jqzPtZ+3vgP9c2HZuzY+tesmrZtezK3E54bMlKwqbvrmfjt1eTtmoqyW1PC7lv5o5fiErpQHhM/YDwvcv/w6bvb2LnwqfIz9ha5vFz9i5n0/c3svXn+zi05YfiDQYwJii2wZW1o+hd+uZviU7pQGRC6IciEXGNcWWG/r6pTdau2kLrdiW/T4YdczmDO1/GXddN5sD+jBB7lvTx1Fmccd7wotljly9aR9PmDXj20an0a30Bpw28kW8+/SVgnwfvfIXbJ1xEVFREyDTbdmzOmt9D3yz+WWxdu5kmbUqW8dWDL+WKgRfx3B1Pk3Eg9M3z4Wz7YwutOhf/n4uKiaJhy8ZsW7el3Gk0bduczatr5/duWfK2bySicfHfX86GVYSnNmTv9NdYff3p/HHvJRz6dXbgTv5/18aQt7208zb2eyBov/wdNn7y0NPIWfcbBQfT8ObnkT7vO+K79w+Z0sG5M0gaHHgfE9mkJQVpu/HkZpfnVGtM5uYNxDYr3/+tQqtfeIYOl10V0GMhlMT2nYht0ZK98+ZgPB72/PITjvAI4tuUv+v+4vvv5Nu/ncD8m68mpXtPEjsUz10c27wVuXt24c6uXWXsLTiEhJV8sFa0PX8fEp4YcpsxpsR2Z1wH243dePEWZOB1peGIbBh6/4IMHOHJRe8dEcllVtwdsa3KzmdYYD4lPAFvQXqp+6i6qSbGjKsKyDiUTaxfi2t2Vi6THnibtz95oNR9xowbyphxQ9m0fifTp80itUFSyHg5WbmkpAZ+EcQnxJCVmes7Vh7xCbF+22LJzsrFGBOw1MDCuStJ25vOqWOPC0grNj666BziE2LKd8LVICsjm5hytGIXGnr68Zx2wSiS6yexZslaJl71CHGJsYwYO6zCx963K40/ft/AE9P+jzadWvHKw6/x8HVP8OynTxbFeeStibgL3Cz+eRnb1m+rUGt9TFw0WYdq1z/OQpmHKlbu/l58bCper5ex5488bNy1Kzfx0qR3efad+4rC9uxMY/XyDbwy/UHad2nF0xNf584rnuTtb+zEbI+9fDude7TFGMM7L3/O1WdP4LMFU0hItE+0C/OdmZFFXC26lr3uXBxhUSXCW5/4Al53Ppk75vq6rJeUufMXktv+LSCsQY+riExoCRgObf6eXb8+TfMhj+AML3nOcY36ktB8KM7IRPLTN7J76Qs4wqOJbzKAqOR2ePLTydw5n7hGfcjcuYCCnH0Yj+0i7M49QMa2H2l23IRSz80RFoWnoHY9/Agl81B20XcdQHK9BKb/8BSdu7ch/UAGE29/mduveIrXPy79Oxtg57Z9LJy7kkeev7EobPeONNat2sLJowcyZ+0bLF24lqvGPUi7Ts1p17E5334+D4/bw0mnD2TBz6EnvIuNiyajln4nlFd2RnZAz6P45ASe+PQZWndpS+bBDF6Z8CLP3DKJCW/9X4XTzsvJIyEl8P9gTHwMudmldw8OFh0XTXbmn6+MPTlZOKOK/7YLDu4jf/smEvoMpePk6eSuX8mWp+8ismkropq0Iq5bP9K+fIemV96LO+MAB3/6CuPKD5l2fPeBbHtxIinDxxDRqBl7P30DRPDm2/gRjZoTXq8ha285ExxOopq1ofFFt5RIJ3vtcjwZB0noOzQgvDDfnpwsnNGxJfarLdxZWTijy/8/Y8/cnzAeDw0HDWH/8qVlxhWnk6YjR7H8sQfxulxIeBg9732QsKjy/5899qEn8Lrd7F+6iOxtWxC/+42wGJvvguwswmJrURl7XeAIPSTE60rHnbGSiNTBIbe7M2wnV2ds8QM4Z3RTCg7MJz9zDWBwJnS1XcZDMe7AY0s4GHeJ+2Jv/l6MNx9ndOiHzZ683XiyNxHR8MTADRJuz0/50aXNVA1LTIojO6v4puDfD0/ljPHDad6qtNXhirVu14T2nVtw/61TQm6PiYsmKzPwZjcrM5c4341lbFxUwPaszBxi46JLrPn30dRZjBo9MOChAUC2r1KfkFiLvsSB+MQ4crLKf6PVqkMLUhvVw+l00rVvF868fDQ/fTn3iI4dGRXJ4FED6dSzAxFREVx06/msXLSarIzAG7mw8DD6j+jDoh+X8Mu388udfk5WLnG1rLwLJSRVrNwLTf3PF3z+3ixeePdfRBxmTObWjTu5btxE7n70So4dWNx1ODIqghGnDeCY3h2IjIrg2jvPY9nC1WT6yr3XgC5ERUcSHRPFFbeeQ3xiLEvmrSravzDf8QlxFc5/VXKEx+B154XeFhZJQoth7F3xKu78wJbZ3APr8OQfIq5RYO+a6OT2OJwROJyRJLc9DUd4DHkH1oVMPyK+KWFRyYg4iEpuR2LLkUXd0J0RcTTqfROHNn/L5lm3kpv2G9H1uuCMsi0KaaunkdLu9JCV/EJed16Z22uLhKS4ou86sJXfbr3bExbmJLVBMv968mrmzFp62B5CH787i2MHdg74bo+KjiQ8PIzr7jiXiIhw+g8+hv7Hd2POrKXkZOfxxIQ3iiZ6K012Vm6t+w6uqNjEOHL9vjuiY6Np170DzjAnSfWTufLBa1n28xJyMiv+8CYqJoqcrMD9crNyiI4tf4UmNyuX2Pg/Xxk7Y+Lx5BWfuyM8EnGG0WD0xTjCwont1JPYzr3I+t0O0Wl84c1IRCR/3HU+W5/5J0kDTiAsuX7ItOO6HkuDMy5j6/P3sfa2c4hIbYwjKobwFBt/55tP4S1w0emFL+jyygwS+gxhy1Ml52VJn/MNCX2GBDw0AIry7YypXd/JwcLj4vHklu+6dOflsvbVKXS+/pZyxU9bsoi1r06h36RnOenLWfSf9Bwrn3mcjA1/HH5nP46wMOr3HUDaooXsnVc8d7E7x+Y7PLaWlbEjArwFJYK9BZm40n4kPKlXQDf2Qu7MdXizNxOROgQRO0TAePJx7ZtNWEJXIpudQ2Tj0XjzduPOLKUMJSzw2KYAJKzEfbEnezOO6GZFk7MF5DM/jYL98whPHYQjPCFwoymw56f+UrQyXst1OqYVm9YXd+2c++MK3pjyOX3aXkyftheza3sa11/yBFOe/ijk/h63hy2bdofc1qFTc1b/Vtx9MSc7jy2bdtHe1xW4facWAdtX/7aJ9p0Cn/Ll5ebz1SdzOfuCwC7qAOvXbqNZywa1qlUcoE3nVmzfuOPwEUsjginRBbf8x/b/0i76vZT0PG4POzeXf6mLreu30bZLmyPKW1Vr37UVmzdUbCzUx//7jv8+8yH/+eRhGjVNLTPuzm17ufKM+7n6H+M5/dzA67FD19DlXtrnKAR+xhvXbqNpiwa1qlUcIDK+GQXZof++ATAG43HhyTsYEJy54xdiG/YO2aoeSAjsa1r+uNH1OtLsuAm0HvkcDbpfSUH2bqIS7bWZu38V+9d8wOaZt7B55i0AbJ/3MJk7ix88ubJ2ERFf/nH9NaVT11Zs2lD690nRZXeY74xPpv3AGecFXrcdu7YqNf7mDTvZsXUv5426m4HtL+b6Cx9l3+6DDGx/Mdu3FK/MuWHtNjrVshUtKqpVp9bs3FRGGVP233NZmrdvGdDFPC8nj91bdtO8Q8typ7FjwzZada6d37tliWreFtfubQHvyxIWl0DzaybQ6dlPaP/oWxhjiGnTudT49UaeSYcnptH5+c9I6DsU4/EQ1cyWU97WDSQfP4qwuAQc4RHUG3kmuRtX485ML9rf68rn0K+zS3RRB8jfuYXw1Ea1ulUcIL51W7J3lG+4Tc6O7eTu2cWC229g1vgxLHvwXvIP7GfW+DHk7C55H5C54Q+Su/UgsUMnxOEgsWNnEjt2Yf+SI5urx3g85Owq/jvL3raZ6IaNa1erOOAIT8K4MwPCjDsb174fCEvoGtDqXcidtRF35mrCGwxHwor/jxtPNiA4Y1sj4vBN7NYCb17o+67gbuReV3qJLvHG68aTsy1kPryug7jSfiY8pR/OqJKNarYbfFIZZ//XIyLV9qopWhmv5YafdCwL5hTPHTf184eYsfB5vvplMl/9MpmGjVN4ZPJ1XHyVnc303Te+Jc23ruwfa7by4lMfMmhoj5Bpn3z6QNat3srXn/5CXp6LyY+9S6eurWjX0Y7NO/P84bz6/Kfs3rmfPbv285/nPuHsC08ISGPG5/NJSIxl4JDuJdJfMOd3hp14bGUUQ6XqN6IvK+YHdul05RcUzbLrLnDjynMV3djNnTGPzPRMjDGsWbqWj1/7nONOGlC0b1F8r8Hj9uDKc+HxeEIee9S5JzLnm19Y//sG3AVu/vfMNI7p15W4xDi2rt/GglmLyM/Nx13g5ruPZrFiwUq6DyyeuMiV58Llsk9lC/zyXGj5vN/oN7z2lTnA8SP7sGhu4DyIrvwC8n3nUOCyvxeW+xcfzGby/73Ff6Y/dNieIHt27ufyMfcy/vLTGHfZKSW2jz1/JDO/nMea3zZSUODmpUnv0ntAFxIS49i1fS9L568qOv7rz04n/UAGvfoX32Qu+uV3Bo+sfeUaU787uQeLJ+fKSVtJ/qEtvrFvuexf8y6O8BjC44on8PF6XGTv/pX4ZoHd+Apy95N78A+M143XU8DBjV/jcWUSlRx6zoLsPUvxFGRjjCEvfSOHtnxPTIPiJXryD22xaRXksn/Ne4RFJRNT307g13zIozQb/EDRC6DxsTcT27B30f55B9b+KZY2G3rSsfzq9x29bNFaNv6xHa/Xy8EDGTx053/of3w34stonV6yYDV7du3nFL9Z1AH6DupK42apvPT0B7jdHhbPX8XCOb9z/Am96dClJT+teo3P5kzmszmTefi5G0htkMRncybTuJl9cLV7534OHcyiZ9+OoQ77p9F7WB9WLSj+zl63dA07NtgyzjyYwasPvMQxA7oTmxC6jD1uD658F16vF6/H/u5x2+/o/icfx7Z1W5j39Rxc+S7ef3YqLTu1ollb+yDI6/X64tuuqK58FwWu4pax/bvTyEzPpEOvTiGPXZvF9xhA9prlRe9jO/YgvF5D9n3xDsbjJnvdb2SvWUr8Mf0AyN+zA3fWIYzXQ+by+Ryc/Tn1R18cMm2vK5+87Rttme3fw47XJ1HvpLNxxtqxvtGtO5E+dwaenCyM283+WZ8QlpRKWHxSURoZi3/CGRNHbOfeJdLPXruM+O4DSoTXNqn9BnBgxbKAMK/LhcfXvd+4C/C48jHGENeqNcP+9xGDXnyNQS++Rtdb7yIyKZlBL75GdP2SLb2JHTtx8PcVRS3hGevXcfD3FUVjxo3Xa9P2uMEYPK58vAX22s3auoV9v87Hk5+P1+1m58wZHPh9Ocndehalf2DFMlL7hh7HX5Mc0Y3x5hfP+WLcObj2ziIsrj1hcSWXYfNkb8Z9aAUR9YcVTaZWqHDsuR0zbjCeXDw5W5FSKsTO2NZ4Mtdi3Dk2buaaEpVub+52cISXaJ33utJx7ZtNePKxIWdqBzuO3BGlS5v91eiY8VruzPNGcOqgm8nLzScqOpLkeoFdWhxOB4lJcUVdxBfNX82TD75NdnYeKamJnDZ2ELfdXzxb8Yl9r+f6f5zD2HOHUa9+IlP+dzcTbn+ZW654mp59OvDcG8XdxC74+yi2bdrNyQPsGMbxF5/IBUGTwX04dRZn+k045O+zD3/m36/eViK8pp10zgiuOvFG8nPzi5Y3u3TIVezxTeh11/l2uZHCdbx/+PQnJt02mQJXAfUbpzL+urM5eVzx2OWn7niWbz8onmX+nWff446nb2HUuSeyYsHv3HPhv/jyD9tzodfgHlx+1yX885IHyM/N45i+Xbn3eVvmxhjeevodHlq3DYfTQbPWTbh/yl106Fb8z+WUtmcU/X7pUNs9deYOO6HcmmXriI6JolOv2nnjPXr8cM4eUnwtA5ze7xp2brPlfvXZ/wLgm2Wv0rRFQ55/+G0OHchk/Mjia+hv5wxjwtN2ffuxA6/jitvG8bdzhjH97W/Zvnk3UyZNY4rfmrkLt9l1VfsP6cHN91/M9eMfIDcnn94DuvD4K3Z5uOzMXB76xxS2b95FRGQEnbq1Zsr7E0lKKf5b++qjn3js5dDrbdek+KbHsW3ORLweFw5nBN6CHNJWvYM77yDiCCcqqTWN+9yGw1ncVS57zxIcYTFEpwRWHow7j7SVb1OQsxdxhBOZ0ILGfW/FGWFvXnIPrGPXon/T5iQ77CVr1wL2/vYaxusmLCqZpDankNCsuDKZvulrcvbZClR06jE07H1D0bawyKCuediu7YVLtOWlb0KckUQl1f7WxrHnjWD04OLretvm3Tz9wNvsTztEXHwMg4b35N//LV6KcMqT77No3ir++9HEorDpU2dx0ukDiYsP7HkRHh7GS9Pu4583Pscr//6IJs0b8MRLt9C2g31gWr9h8URCScnxiEMCwj7/4EfOOH/En3pZM4BhZ57AbafdQH5ePpFRkezZtpt3Jr3Jof3pRMfF0GNwL2599s6i+B++8B6rf/2d+994CIAPnp/G+5OnFm3/8ZMfGHfz+Yy/5UIS6yVyx4v38uq/pjD51idp37Mjtz93d1HcVQt/Z8J5xe/HdxpL1/7deOhduxzjz5/OZvhZJ/zpljUDSBp0MuvvvxyvKx9HRCQSFkaLmx9hx2tPsO+Ld4hIbUizK+8lsontJZC3eS27pj6HJyeLyEbNaXbN/UQ1K66I/HHPxdQ//UKSjjsJU+Bi25QHce3diTM6hqTBp9DwrOL17huddx27/jeZdXeeb9czb9qaFjcFjvlPn/MNSYNODnl/cWj+9zS7uvSlwWqLpiNHMfe6v+PJzy9a3uynKy4gb4/t0bTon/b/ypA33yemUWMiU4rHKofHJ4DDERA258qLaHPeRTQZcRIp3XvR7sLLWPbQ/eSnHyAiMYk24y8i9Vj78OTAb8v59c6bivb97vSRJHfvSf9JzwGG9W+/RtbWzYjDSUzTZvT85wMkti++f9g1eybd76x9ZeyMaU3+nm8I87oRRxie7I0YTzbujJW4M1YWxStcZsx96Dfw5uPa851fGi0JT+mLOMIJTx2MO3055uDi4vW/E7oAduy3a99PRWk5Y9ti3Fnk7/nG974NztjAHiWenM04Y1uVuG49mWvBm0/BgYUUHFgIgDhjiGx8qu9Y+0GcpY9X/8uq+2PG5Ui726rQtmR9XukF+sTEt6hXP5HLrx9T2UlXme+/WsjH7/7AC2/dVelpb8g4/Lqyh/Pqo2+SnJrIWVeOPfoM1RITr3yYU8afRP8T+lZKeg2ivZWSjr/JD71FSmoiF13757mWZ3+zkM/fm8VTr999+MgVNPaCkmtsV9T+tR/hjIgnqfVJlZCj2mH3kheIb3Y8sQ1K9ripqG/eLXt4Q2V46oG3SKmfyGXX1Z7rOj+/gNGDbmLq149Sr35SlR7rtwNV/1z/f5PeILFeEqf/fWyVH6u8CvILuO3U63novSdISk2q8uNN+Knyx+7u/uAVwhKSSD15XKWnXVUyls4lfe63tLih7EkRj0SzRpV/47/utZeJSEqm1Zl/njLeO38uO7+fQc/7Hqz0tGdf8cJRp1GQvhxxRhEWXzsbH46EK22OrdxHh16KriJyt06rMzVYl3dxtVVUIxzH1ki5aWW8klVFZVwFqozKuDq8qqiMq0CVURlXZauOyvhfXXVUxlXVVMZVoKqojKtAlVEZV2WrS5XxAu/SaqtXhTt61Ui56ZhxpZRSSimllFKqmunjbKWUUkoppZRStUydaeQvlbaMK6WUUkoppZRS1UxbxpVSSimllFJK1SqiLeNKKaWUUkoppZSqbNoyrpRSSimllFKqVgler70u0pZxpZRSSimllFKqmmllXCmllFJKKaWUqmbaTV0ppZRSSimlVC1T99uN6/4ZKqWUUkoppZRStYy2jCullFJKKaWUqlV0aTOllFJKKaWUUkpVOm0ZV0oppZRSSilVy2jLuFJKKaWUUkoppSqZtowrpZRSSimllKpVRLRlXCmllFJKKaWUUpVMW8aVUkoppZRSStUydb/duO6foVJKKaWUUkopVctoy7hSSimllFJKqVpF1xlXSimllFJKKaVUpRNjTE3nQSmllFJKKaWU+kvRlnGllFJKKaWUUqqaaWVcKaWUUkoppZSqZloZV0oppZRSSimlqplWxv+iRKSdiLwsIstFxCMis2s6T3WJiJwjIp+JyA4RyRKRxSJyXk3nq64RkbNF5BcR2S8ieSKyVkTuE5GIms5bXSQiTX3XsxGRuJrOT10hIpf6yjT4dU1N560uEZEwEblbRP4QkXwR2S4i/67pfNUlIjK7lGvZiMjAms5fXSEi40Vkie/7eIeIvCUiTWo6X3WJiIwVkRW+74pNInJbTedJ1U26tNlfV1fgVGA+oBWXyncbsAm4FUjDlvVUEUk1xjxXozmrW+oBPwCTgHSgHzARaATcUGO5qrsmAVlAbE1npI4aAeT6vd9YUxmpo14HTgAeANYAzYEuNZqjuuc6ICEo7EGgF/Br9Wen7hGR0cA04AXgDqAx8H/AFyLSxxjjrcn81QUiMgiYDrwG/APoDzwuIl5jzDM1mTdV9+hs6n9RIuIo/MIWkQ+BVGPMsJrNVd3hq3SnBYVNBQYaY1rXULb+EkTkYeB6INnoF1ylEZHjgU+BR7CV8nhjTFbN5qpuEJFLsRVFLdMqIiKjgM+BHsaYVTWdn78KXy+l3cB7xphrazo/dYGIvAu0N8Yc6xc2Gvv93MUYs7rGMldHiMgMINoYM8Qv7GngUqCRMcZVU3lTdY92U/+L0ienVSu4Iu6zFGhQ3Xn5C9qP9vaoVCLiBJ7DtnCFuraVqu3+DszSini1GwUkY1tyVeUIBw4FhaX7fkr1ZqXO6gl8HxT2LfZa1uEWqlJpZVyp6nMcoDeCVUBEnCISIyKDgZuAKdoqXqmuAaKw3SJV1dkgIm7f3AdX13Rm6pj+wDoReV5EMkQkR0Sm6zjbKjce2AH8XNMZqUNeA44XkYtFJEFEOmC7qf+gD5sqTRQQ3Pqd7/vZuZrzouo4rYwrVQ1E5ARgDFqZqSrZvtfPwI/YcXSqEohIPeAh4DZjTEFN56eO2gXcD1wEnA4sAF4SkVtrNFd1SyNsF9Oe2AriZcCxwMcioq2JVUBEYrDX83v6cLTyGGO+xF7Lr2BbyNcCTuDMGsxWXbMe6BsU1s/3M6Wa86LqOJ3ATakqJiKtgKnAp8aYN2o2N3XWcUAM9p/lBOB57ERC6ug9DCwwxnxV0xmpq4wxM4AZfkFfi0gkcJ+ITNZhRZVCfK8xxpj9ACKyC/vwbgQwswbzVledDsShXdQrlYgMB14CJgNfAw2xE5d+LCIjjTGeGsxeXfESMEVErgQ+xN5b3O7bpuWrKpVWxpWqQiKSgv1nuRW4sIazU2cZY5b4fp0jImnAmyLylDFmQ03m689ORLpix9oOEZEkX3CM72eiiHiMMbkhd1ZH60NgHNAKnVW9MhwENhZWxH3mYLuidkEr41VhPLDeGLOopjNSxzwFfGaMuaswQESWYVcIGIOdBVwdndeAHsAUbA+EHOAu7Nwpe2owX6oO0m7qSlURXxe9L7CTiZ1mjMmu4Sz9VRRWzHXW+qPXHjtZ0DxsZeYgxUMttmNvTFTV0u69laO0GaYF0J4HlUxEEoFT0FbxqtAJWOYfYIxZi10WsW1NZKiuMcZ4jDE3APWB7tjeB/N9m+eXuqNSR0BbxpWqAiISBnyArcwMMsbsreEs/ZUM8v3cVKO5qBvmAMODwkZhWwhORVtsq9JZ2Jnrt9R0RuqIL4AHgpadHIJ92LS85rJVZ50BRKKV8aqwBejtHyAinYFoYHNNZKiuMsYUPoRGRK4DfjHGrKnZXKm6Rivjf1G+VttTfW+bAgkicrbv/VfGmJyayVmd8SK2fG8GUkRkgN+2pcaY/NC7qYoQkW+wy4+sxI7jGoQd1/WedlE/er5Ky2z/MN8cCAA/65rYlUNEPgIWAiuwEzGd63vdpOPFK80r2JUWPheRR4B44HHge2PMnBrNWd00Hliua15XiZeAf4vITorHjE/AVsR1bo9K4LtnG4ztgZAAnAec7AtTqlJpZfyvqwG25dZf4fvW6NPVo3WS7+fkENu0fCvPr9hZZVsBbmxL7T3YmxWl/izWYsfmN8d2m14FXGyMebtGc1WHGGMyRGQE8CzwLnas+KeAzlhfyUQkFTgBu0KAqnzPYq/fa7HLTqZjezHdo8PhKk0B9oHoROwwlp+xvRx/q8lMqbpJdLUJpZRSSimllFKqeukEbkoppZRSSimlVDXTyrhSSimllFJKKVXNtDKulFJKKaWUUkpVM62MK6WUUkoppZRS1Uwr40oppZRSSimlVDXTyrhSSimllFJKKVXNtDKulFJHQEQmikhaNR2rsYh8JSKHRMSIyLAy4jYVkSwRaVOF+blBRGp8Xczy5KM6P6fqIiJxvuvgUr+wzSLyZAXS6CciE0OE13h5VfRcKvG4IcvkKNIrV1ke6fn6roEbDhPnHBFZKyLOiqavlFKq6mllXCmlar97gR7AecBAYEkZce8DPjfGbKyOjKla4wzg2QrE7wf8K0T4q8DJlZKjP5/SyqSqVfSzq4iPAAEuqqL0lVJKHYWwms6AUkqpw+oELDDGfFVWJBFJAC4BxhztAUUk2hiTe7Tp1PQxaiNfK6XTGOOqrDSNMUsrKZ3twPbKSEuVT2V9dqWk7RWRt4AbgTeq6jhKKaWOjLaMK6VUFRGRY0TkSxHJ9L0+EJFGfttjReR5XzfSHBHZJCIv+CrVhXEMcAJwhq9b6uYyDjkOyAVmBeUjVUTeFJH9vuPMFpE+QXE2i8hTInK/iGwHMnzhkb48povIARH5NxAe4lxTRORlEdkjInki8ouI9A+KY0TkNhF5RkT2Ab/5wqNE5AkR2SYi+SKyXERODdq3XPkojYgMEpElvrwtE5HBftsmichGEZGgfS4TEZeIpJaS5jDfOZ0kIl+ISLaIbBWRa4LivSEii0RkrIisBPKA/r5tY3zb8kRkt68cwoP2P0tE1olIroj8hH04E5yXEl2dRWSIiPzgG7ZwyPe59/J1b3/OF8f4XrN970t0rRaR1iLyiYhk+K7jz0WkXVAcIyI3i8gjIrJPRPb6ruXIUGVXUSIyTkR+810f20TkYREJ822L8oWf7xf/UV+eRvuFPScic0tJv9Qy8YWNEJEFvs9pj4i8KCJx5cx7LxGZ7/vbWyoixwdtD/XZ3eA7z2xf2Z8goYeoOMtR5h8BvUXkmPLkVymlVPXRyrhSSlUBX2VlLhCF7SJ6KdAV+Nyv0hcDOLHd0E8B7gdGAB/4JTUQWAr84Pv9jDIOewKw0BjjCQr/BNv1+B/Audjv/h+CK1TA+cBQ4DpfPIDHgCuAh4ALgJbA7UHnGgl8D5wI3AGMBfYB34vfwwefO4DG2DK5yRf2IbZ8HgFOB34FPhORnn77HTYfZYgB/ge8BJwDpANf++XtVaC179z9XYrt8n+4cb//BVYAZwJfA1NE5G9BcVoBTwCPAqcCm0RkHDAdWAiMBh4ArvLFAUBEegPvAct96X8GvH+4E/ZV2mYCBdjeEucCPwNNgS+Bp3xRB/pe15WSTqQvnc7AldgyaQ38KCIpQdFvB5oAFwKTgKuBmw+X13Kcy0nYMliC7fXxHPZafh7AGJOHvWb8K7lDsA89gsN+LuUwpZaJiHQBvgHSgLOwXdnPx163hxMDvAm87Ns3H/hYRGLKON8zfOf4GfbvfQX2GgvlsGVujFkNHMR+PyillKpNjDH60pe+9KWvCr6AiUBaGdvfBtYCEX5h7QEPcFop+4QBgwADtPALnw18WI48rQMmBYWN8qU31C8sFltZftkvbDOwC4jyC6uHbWm/yy/MAayx/z6Kwi4HXED7oHPZ4J8fXz6WBuXvhOD8+cJ/Aj6oSD7K+JwMcL5fWBxwAHjML2wO8Kbf+zaAF/hbGWkP86X9SlD4d8B8v/dv+OL19AsTYAvwetC+f/edaz3f+/eBVYD4xbnXl96lQZ/fk37v5wGL/PcLOs4Nocou+LoGrgHcQBu/sGa+z/ueoM/2p6C0PvEvhwr8bQWfy3zgh6A4d2L/lpr53j8K/O77PQpb6X2+8PhAEmX87R2mTN4F/sAOLSgMG+c754HluPZG+IX19IWNKuN8fwW+DErrRd9+w46kzLHfIe9U9LPQl770pS99Ve1LW8aVUqpqjAQ+BrwiEubrUrsJe+Nd1EVcRC7ydV3NwrZizvFt6nAEx2yEbb3z1w/YZ4z5sTDAGJMNfAEMDoo709hWxkLdsBWbT/329fq/9xkJLMa29haeK8CP+J2rz5ch9t0NzC3c17f/TL99y5uPsnzst28WtsLcz2/7f4Gz/LoeXwrswbaIljttn+nAsRI4g/UOY8wyv/cdgBbA+0HnPQt7roVdivsBnxlj/GeNn15WZkQkFtsN/s2g/Y5EP2CJ8ZsQ0Nhx5XMpef18G/R+FbbifsR8ZdibwN4iYFvKHdgWbLAt3l18rfUDgGxgCrZ7doxfXkN2Uz+MfsDHJrDHyUfYhxTBZRCsAFsRLrTK9zNkufjOtye2Vdxf8PtC5S3zNOz3g1JKqVpEK+NKKVU1UoG7sDfj/q82QHMo6o76FrYV8xxsJaKwG3rUERyzsEXQX2NspTLYHiC4m3FwvMKb971B4cHvU7F5Dz7Xy/CdaxnHSPUdJ3jfiX77ljcfpckyJSeK24stm0LvY1vCx/mGEVwMvGWMcZcj/VD5CsOeW6FQ5w3wFYHnvckX7n/uFT3vZGzL+67DxCuPilw/6UHvXRzZdewvFTs3QHAeCt8X5mEutqV4MLZr+hxjzErgEPbaPB7bch6cx/IoUQa+ivl+SpZBsAzfg6PC/Qon7SutXOpjr519QeHB7wulB70vrczzyzimUkqpGqKzqSulVNU4gG0xfTXEtsLW63Ows6QXjdcVkeBxyxU9ZlJQ2C6gQYi4DX3x/QW3ou72/WwQFDc4vQPYLtHXhjhO8MOB4GMcAHZgx5mXprz5KE2clJy5vQF+lVVjTLaIvIttEd+CHZP+RjnTD85HA2yrqX8vhVDnDXaMeKjZtAsr5btLSb8sB7EPFhofJl557MLOdRAs1PVTFdKwDymCz7mh7+cBAGPMIRFZga109wRm+LbP8YWVNV78cEr8DflasOtR+WWwD3vt1A8KD35fUUlUz+ellFKqArRlXCmlqsZMbFfjxcaYRUGvzb440ZSsrF5wFMdci51cy98CoIGIDCkM8HXbPY3iLvGl+Q07CVbRUmki4qDk0mkzgXbA1hDn+tthjjET2/qbFWLfRRXMR1mKJr7zdUU/ETtxmr//YituE7HjbldXNG2/94tNyYn0/K3FPoRoFeq8jTH7ffF+BUb7TfoHdiK3UvmGISwALg7az58L7EzkZaXlS+dYESm6rkSkKXAch79+jpqvDBdjH1z5G4d94DDPL+xnYDi26/pPvrCfsJMXHsvhK+OllckC7GoG/sMOzsQ2aFRqGfjOdxklr+3RJWNXSCvsnBJKKaVqEW0ZV0qpIxchImeHCP8RW6FbCHwpIq9hW/iaYiuBbxhjZmPHLb8gIvdib/hP5ehmPJ5L0E27MWaGbzmn90TkbmzX2n9gHwRMKisxY8x+EXkFeEBE3MBK7IzawUs6vYWd6Gu2b4mmjdhWw37AbmPMv8s4zHfYVszvRORx3zESsK2bUcaYeyqQj9LkAg/7KuE7fecfAUwOOt8FYpceG4ydlbq8ThGRh7Gf+5nYz7jMBwXGrv98O/C22KXsvsZWBttgewmcbYzJAR7HXhvvi8h/sQ94Li9Hnu7GznD/ta/ssrGV1EXGmC+wk98B3Cwis7DdqdeGSOcN7HCLr0VkAnYStInY6/nlcuQjgNil+h4wxkyswG7/AmaIyOvYydS6YWfV/49v/Hqhn7DraWdhZ14HWwF/2vf74SrOpZXJ/2F7L3wiIlOwY7IfB2YYY+aFTuqoPAJMF5HnsWPFB2EfnoF9AFEhvjkEOmFXa1BKKVWLaMu4UkoduXjsxFLBr67GmHXYsao5wCvYytYD2Jbw9b79X8Yup3QzdlKultglk47UdOwkVi2Cws/AVnqf8eVPsDM8r+fw7gReAyYA07CV2af9I/gmfRvuO8YD2EmlJmNnjw9ufQ7gm2DsTN8xbsFWzF/GVhz9K0+HzUcZcrBjwK/DTryVDJxqjAk1pvoTbOX93XKmDXbJtd6+ff8GXG+MKW3CrSLGmPewlfae2M9lui+PS/C10vp6B4wHevnSH0vxsnNlpf0T9qFA4bJu72GXbiusvP6MfRhzM7ayH7JibYzJx06ytwbbc+BNbDf+YcaYCnV79lvOq7xj/Qvz8C22DPoAn2Ovk6ews5/7K2z5nuc31n8pkAlsMsbsOMyhQpaJb+z5Kdiu6tOxlfNpQKgHcUfNGPMxdtm/sdjPvC/2ARJAxhEkeRL2b2DG4SIqpZSqXnL0E60qpZSqLURkGXYJozJbvVVoIrIQWGuMuagccYdh13/vZoz5vYqz9qcnIsOxlcvmxpgjqVT+ZYnIfdgl7VJCTEZ4uH2nAdnGmCuqJHNKKaWOmHZTV0qpuuVhYJKI/LucM4ErQET6ACOwrZDX13B26qrjgFe1Il42EakP3IN90JODncfgLuC/R1ARb47tfdG9svOplFLq6GllXCml6pYPseOOm2K7E6vy+RW7TNQ9xphfazgvdZIx5uGazsOfhAs7xvtiIBE7m/tkjmzMdzPgmnIOSVFKKVXNtJu6UkoppZRSSilVzXQCN6WUUkoppZRSqpppZVwppZRSSimllKpmWhlXSimllFJKKaWqmVbGlVJKKaWUUkqpaqaVcaWUUkoppZRSqpppZVwppZRSSimllKpm/w/Anl7oNNSXcgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "df = pd.DataFrame()\n", - "for var_name in covariates:\n", - " form2 = var_name + \" ~ \" + \"0\" + \"+\" + \"leaf\"\n", - " ols = smf.ols(formula=form2, data=data1).fit(cov_type = 'HC2').summary2().tables[1].iloc[:, 0:2]\n", - " \n", - " # Retrieve results\n", - " toget_index = ols[\"Coef.\"]\n", - " index = toget_index.index\n", - " cova1 = pd.Series(np.repeat(var_name,num_leaves), index = index, name = \"covariate\")\n", - " avg = pd.Series(ols[\"Coef.\"], name=\"avg\")\n", - " stderr = pd.Series(ols[\"Std.Err.\"], name = \"stderr\")\n", - " ranking = pd.Series(np.arange(1,num_leaves+1), index = index, name = \"ranking\")\n", - " scaling = pd.Series(norm.cdf((avg - np.mean(avg))/np.std(avg)), index = index, name = \"scaling\")\n", - " data2 = pd.DataFrame(data=x_test, columns= covariates)\n", - " variation1= np.std(avg) / np.std(data2[var_name])\n", - " variation = pd.Series(np.repeat(variation1, num_leaves), index = index, name = \"variation\")\n", - " labels = pd.Series(round(avg,2).astype('str') + \"\\n\" + \"(\" + round(stderr, 3).astype('str') + \")\", index = index, name = \"labels\")\n", - " \n", - " # Tally up results\n", - " df1 = pd.DataFrame(data = [cova1, avg, stderr, ranking, scaling, variation, labels]).T\n", - " df = df.append(df1)\n", - "\n", - "# a small optional trick to ensure heatmap will be in decreasing order of 'variation'\n", - "df = df.sort_values(by = [\"variation\", \"covariate\"], ascending = False)\n", - "\n", - "df = df.iloc[0:(8*num_leaves), :]\n", - "df1 = df.pivot(index = \"covariate\", columns = \"ranking\", values = [\"scaling\"]).astype(float)\n", - "labels = df.pivot(index = \"covariate\", columns = \"ranking\", values = [\"labels\"]).to_numpy()\n", - "\n", - "# plot heatmap\n", - "ax = plt.subplots(figsize=(18, 10))\n", - "ax = sns.heatmap(df1, \n", - " annot=labels,\n", - " annot_kws={\"size\": 12, 'color':\"k\"},\n", - " fmt = '',\n", - " cmap = \"YlGnBu\",\n", - " linewidths=0,\n", - " xticklabels = ranking)\n", - "plt.tick_params( axis='y', labelsize=15, length=0, labelrotation=0)\n", - "plt.tick_params( axis='x', labelsize=15, length=0, labelrotation=0)\n", - "plt.xlabel(\"Leaf (ordered by prediction, low to high)\", fontsize= 15)\n", - "plt.ylabel(\"\")\n", - "ax.set_title(\"Average covariate values within leaf\", fontsize=18, fontweight = \"bold\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Forest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Forests are a type of **ensemble** estimators: they aggregate information about many decision trees to compute a new estimate that typically has much smaller variance.\n", - "\n", - "At a high level, the process of fitting a (regression) forest consists of fitting many decision trees, each on a different subsample of the data. The forest prediction for a particular point $x$ is the average of all tree predictions for that point.\n", - "\n", - "One interesting aspect of forests and many other ensemble methods is that cross-validation can be built into the algorithm itself. Since each tree only uses a subset of the data, the remaining subset is effectively a test set for that tree. We call these observations **out-of-bag** (there were not in the “bag” of training observations). They can be used to evaluate the performance of that tree, and the average of out-of-bag evaluations is evidence of the performance of the forest itself.\n", - "\n", - "For the example below, we’ll use the regression_forest function of the `R` package `grf`. The particular forest implementation in `grf` has interesting properties that are absent from most other packages. For example, trees are build using a certain sample-splitting scheme that ensures that predictions are approximately unbiased and normally distributed for large samples, which in turn allows us to compute valid confidence intervals around those predictions. We’ll have more to say about the importance of these features when we talk about causal estimates in future chapters. See also the grf website for more information." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.inspection import permutation_importance\n", - "from sklearn.ensemble import RandomForestRegressor" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Forest MSE: 0.5873930432041589\n" - ] - } - ], - "source": [ - "forest = RandomForestRegressor(n_estimators=200, oob_score=True)\n", - "#x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy() , Y, test_size=.3)\n", - "forest.fit(x_train, y_train)\n", - "# Retrieving forest predictions\n", - "rf_pred = forest.predict(x_test)\n", - "\n", - "# Evaluation\n", - "mse = mean_squared_error(y_test, rf_pred)\n", - "\n", - "print(\"Forest MSE:\", mse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "The fitted attribute `feature_importances_` computes the decrease in node impurity weighted by the probability of reaching that node. The node probability can be calculated by the number of samples that reach the node, divided by the total number of samples. The higher the value the more important the feature.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
UNITSFNUNIT2BATHSMOBILTYPLOTnoise2noise10noise18noise14noise17
importance0.1470690.1122320.064450.0510780.0333540.0291630.0277140.0260120.0258770.024181
\n", - "
" - ], - "text/plain": [ - " UNITSF NUNIT2 BATHS MOBILTYP LOT noise2 \\\n", - "importance 0.147069 0.112232 0.06445 0.051078 0.033354 0.029163 \n", - "\n", - " noise10 noise18 noise14 noise17 \n", - "importance 0.027714 0.026012 0.025877 0.024181 " - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "feature_importance = pd.DataFrame(forest.feature_importances_, index=covariates, columns= [\"importance\"])\n", - "importance = feature_importance.sort_values(by=[\"importance\"], ascending=False)\n", - "importance[:10].T" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Variable Importance')" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHtCAYAAACkkSLFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4BUlEQVR4nO3deZhkVX3/8ffHQTbFaAQVAYEoLojJT0RETQyuESHiAgquaAIawX3DDUGjxD0qm2gQUQMR3CY6iguioqIMaFREdESQVcYFBUEB+f7+uHekKLqnu3qqq27VvF/PU8903Xtu1ff0Mv3pc+89J1WFJEmSuusW4y5AkiRJq2dgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJIslnkvxgNfsPS/LbJOut4ftUkgMGPObgJL+aR7vzk7x94dUN9n5dkeRRSV407jokLS4DmySA44Htkty7f0eSJcAewCeq6k9r+D4PBE5cw9fQTT0KeNG4i5C0uAxskgA+DVwN7DXDvocCd6QJdQuSZAOAqjq9qn650NfRjZLcsg3TktYCBjZJVNVVwGeAJ8+wey/gl8BXktwzyQlJLkxydZKzk7woyV/+L0myc3vq85+SLE1yFXBYu+8mp0ST7Jrki0kuT/L7JKcnedRMNSZ5cJKzkvwxyfeS/P1c/Ury90m+2tb66yTvT7LRIJ+bnv48PMmnk/whyU/bU5FLkrwtya+SXJzkJX3HHptkeZLHJflxW/tpSbbta7dhkvckuaxtc0b/5yHJqUlOSrJfkp8BfwSOBl4KbNnWWEmObds/sP38X9LW/L0kT+17zX3aY+7Tfh3+0Nb5hBk+D49P8p0k17Sfy2VJtuzZv12Szya5sn2cmOROg3yuJc3OwCZpleOBbZLcb9WGJLcEHg98rKr+DGwGnAs8D3gM8H7gEOCVM7zefwH/Bzy2/XgmWwP/CzwdeCLwTeBzSR7c125D4CPAUcCewBVtu1kDQfsaXwYuozml+6K25g/Odswc3gecRvP5uAA4iSaIbgQ8pX3+jiQ79R23JfBO4I1tu78CTk6yfk+b9wPPAt7Uvv6FwGdnCKUPBv6N5vP9zzSf+/9u+/jA9vHGnvf9BvCvbduPAx9MsvcMfftvYGn73j8FTkiy+aqdSZ4OfAL4GfCkttafAJu0++/Wvtf6NF/LfYB7A/+bJDO8n6RBVZUPHz58AKwH/BZ4W8+23YACHjhD+wDrAK8GzuvZvnN7zLtmOKaAA2Z5/1u0r3cycEzP9oPb457Ss+3WwG+A/+jZdj7w9p7nXwe+0vceD2tfa7vVfB4OBn41Q39e37Nt23bbKX31Xwa8pWfbsW27B/Vs2xK4Hnhu+/xewA3AM/te64fAyT3bTgWuAe7UV+/bgfPn+Nqu+lq9r6/mfdr6nt2z7fZ99d0CuJjmGsbZXv/DNEF+3Z5t2wB/BnYd9/e2Dx/T8HCETRIA1dxQ8EngST2jIk+mGU06HSDJ+kkOSbIC+BNwHc2o0NZJ1ul7yc/O9Z5JNk/yoSQX04SE62guor/7DM0/2VPrVcAXgR1ned0NaUabPpZknVUPmhGy64D7zXTcHL7c8/GK9t9Temq6ATiPZhSy1+VV9c2edhcAZ/bUfn+aQHViT5sb2uf9I2xnVtVl8yk2ye3a06wX0PT5OmA/Zv7cfqHnvX8NXA6sGmG7B3BnVj8y+Qiar88NPZ/rn9OE6B3mU6+k1TOwSep1PHAX4IHtKbvdgeOrqtr9bwFeRnPt1GNowsa/t/vW73ut1d5c0F73thR4EHAQzc0N9wc+N8NrXVVV1/RtuxzYdJaXvx2wBDiCG8PKdTQh85bAFqurbRZXrPqgqq7t39a6lpvXfvkMr9Vb+6Y0/bu6r80vgQ1z06lUBrlh41iawP02mhB8f+CYGeqD1ffj9u2/l67mvTamOU17Xd/jb1jY51pSn/6/iCWt3U6hCQV70QSJjbjp3aF7Au+tqreu2pBk11leq2bZvsrdgPsCu1TV53teb4MZ2t46yQZ9oe0OzB4irmjf/2Bg2Qz7L5mjtmG6wyzbzm4/vpSmfxv2hbY7AlfXTadSmetzCjQjocCuNKefj+rZvpA/0n/d/jtbOIbm9PQngQ/MsG9i5rSTuszAJukvqurPSU6kCWabAedU1fd7mmxAM0oF/GWOtpmmApmPVcGs9/W2pLmw/vsztH88zcXxJLk18Eiakb6Z+vGHJKcD96iqNyywvmG5Q5IHrTotmuQuwPbceIrxDJogtgdwXNsm7fPT5vH6M43qrUczwtj7ud2I5gaQeYW+HufSXMP2TJobRGbyZWA7mlO2g76+pHkwsEnqdzxwAE1AOqhv3xeB/dtr2H4D7E8TDhbix8BFNHdWvo5mNO8QmnDQ7xrgTW1Qu4TmtOy6wLtX8/qvAL6c5AaaOzivpDnduyvwmqr6yQLrHtSvgA+3fbwGeAPNKdFjAarqnCTHA4cluQ3N9XH7AvekuSN0Lj8G7phkH5obFX5VVecnOQM4KMnvaW5qOBD4HXCbQYqvqhuSvAL4aJKP0nx/FM0NHMdX1XKakczv0NzZekzb581oQvWxVXXqIO8p6ea8hk1Sv2/RXCwe4IS+fc+nufvycJrroX4IHLqQN2lP9T2B5maDk2imozgU+OoMza8GnkEzncjHaa5Re0xVzXpdVVWdBjyEZuqJD9OMDr2CZsqMUU7eewHwcppQcwLwe+CfquqPPW32BT4EvI5mEuMtgd3aPszlYzTh7600o3UHt9ufQnPh/3E0wfbj7ccDq6r/ppl25Z40X6vj2o9Xtvt/AuxE83U6muY6xENoRvhWzPCSkgYUR68laXG0k9huV1XeKSlpjTjCJkmS1HEGNkmSpI7zlKgkSVLHOcImSZLUcQY2SZKkjpv6edg23njj2mqrrcZdhiRJ0pzOPPPMX1XVJv3bpz6wbbXVVixfvnzcZUiSJM0pyQUzbfeUqCRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6rh1xl3AONzv5ceNu4SBnfm2Z4y7BEmSNCaOsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSx408sCV5dJJzk6xIcuAM+++Z5FtJ/pTkZTPsX5Lku0k+M5qKJUmSxmukgS3JEuBwYBdgW2DvJNv2NfsN8ALg7bO8zAuBcxatSEmSpI4Z9QjbjsCKqjqvqq4FTgB2721QVZdX1RnAdf0HJ9kc2BX4wCiKlSRJ6oJRB7bNgAt7nl/Ubpuv/wReAdwwxJokSZI6bdSBLTNsq3kdmOwGXF5VZ86j7X5JlidZvnLlykFrlCRJ6pRRB7aLgC16nm8OXDLPYx8MPDbJ+TSnUh+W5CMzNayqo6tqh6raYZNNNlmTeiVJksZu1IHtDGCbJFsnWRfYC1g6nwOr6lVVtXlVbdUed0pVPW3xSpUkSeqGdUb5ZlV1fZIDgJOBJcAxVXV2kue2+49KcidgOXAb4IYkLwK2rarfj7JWSZKkrhhpYAOoqmXAsr5tR/V8fBnNqdLVvcapwKmLUJ4kSVLnuNKBJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnquJEHtiSPTnJukhVJDpxh/z2TfCvJn5K8rGf7Fkm+kuScJGcneeFoK5ckSRqPdUb5ZkmWAIcDjwQuAs5IsrSqftTT7DfAC4DH9R1+PfDSqjoryUbAmUm+2HesJEnS1Bn1CNuOwIqqOq+qrgVOAHbvbVBVl1fVGcB1fdsvraqz2o+vBM4BNhtN2ZIkSeMz6sC2GXBhz/OLWEDoSrIVcF/g28MpS5IkqbtGHdgyw7Ya6AWSWwMfB15UVb+fpc1+SZYnWb5y5coFlClJktQdow5sFwFb9DzfHLhkvgcnuSVNWPtoVX1itnZVdXRV7VBVO2yyySYLLlaSJKkLRh3YzgC2SbJ1knWBvYCl8zkwSYD/As6pqncuYo2SJEmdMtK7RKvq+iQHACcDS4BjqursJM9t9x+V5E7AcuA2wA1JXgRsC/wt8HTgB0m+177kq6tq2Sj7IEmSNGojDWwAbcBa1rftqJ6PL6M5VdrvNGa+Bk6SJGmqudKBJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnj1hl3ARq+X7zhPuMuYWB3OegH4y5BkqTOcoRNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp40Ye2JI8Osm5SVYkOXCG/fdM8q0kf0ryskGOlSRJmkYjDWxJlgCHA7sA2wJ7J9m2r9lvgBcAb1/AsZIkSVNn1CNsOwIrquq8qroWOAHYvbdBVV1eVWcA1w16rCRJ0jQadWDbDLiw5/lF7bbFPlaSJGlijTqwZYZtNexjk+yXZHmS5StXrpx3cZIkSV006sB2EbBFz/PNgUuGfWxVHV1VO1TVDptsssmCCpUkSeqKUQe2M4BtkmydZF1gL2DpCI6VJEmaWOuM8s2q6vokBwAnA0uAY6rq7CTPbfcfleROwHLgNsANSV4EbFtVv5/p2FHWL0mSNA4jDWwAVbUMWNa37aiejy+jOd05r2MlSZKmnSsdSJIkdZyBTZIkqeMMbJIkSR1nYJMkSeo4A5skSVLHGdgkSZI6zsAmSZLUcQY2SZKkjjOwSZIkdZyBTZIkqeMMbJIkSR1nYJMkSeq4BQW2JLskeV2So5Pcpd32kCR3Hm55kiRJWmeQxknuCCwF7gecD2wNHAX8AngW8Efg34ZboiRJ0tpt0BG29wK3Bu7ZPtKz70vAw4dUlyRJkloDjbABjwaeWVUrkizp23cRsNlwypIkSdIqC7mG7c+zbN8YuGYNapEkSdIMBg1sXwee3ze6Vu2/zwZOGUpVkiRJ+otBT4m+EjgN+CHwSZqwtm+S7YDtgJ2GW54kSZIGGmGrqh8COwDLgX1oTo8+AbgQeEBV/WTYBUqSJK3tBh1ho6pWAE9fhFokSZI0g4FG2JJskWT7WfZtn2SL4ZQlSZKkVQa96eBI4Gmz7HsKcMSalSNJkqR+gwa2nZj9TtCv4E0HkiRJQzdoYNuQG6fxmMmt1qAWSZIkzWDQwPYDYO9Z9u0NnL1m5UiSJKnfoHeJ/gfw8STrAccClwKbAs8Entg+JEmSNEQDBbaq+mSSZwKH0oSzolkA/mLgaVX1qaFXKEmStJZbyDxsH07yEeAewO2BXwPnVtXqrm2TJEnSAg0c2ADacPbjIdciSZKkGQwc2JLcGdgN2BxYv293VdUrh1GYJEmSGgMFtiSPB44HlgCXA9f2NSmaBeIlSZI0JIOOsL0Z+AKwT1X9ZhHqkSRJUp9BA9sWwPMNa5IkSaMz6MS536S5O1SSJEkjMugI20uAjya5CvgicEV/g6q6egh1SZIkqTVoYPt+++8HmX1N0SULL0eSJEn9Bg1sz2b1i79LkiRpyAZdmurYRapDkiRJsxj0pgNJkiSN2EJWOngysC9wd26+0gFVdYch1CVJkqTWQCNsSZ4CfAhYQbM01VLgM+3r/B44bB6v8egk5yZZkeTAGfYnyXva/d9Psn3PvhcnOTvJD5Mcn+RmgVGSJGnaDHpK9OXAG4H92+dHVNWzga2BXwGrndIjyRLgcGAXYFtg7yTb9jXbBdimfewHHNkeuxnwAmCHqtqO5m7UvQasX5IkaeIMGti2Ab5RVX8G/gzcBqCqrgTeAhwwx/E7Aiuq6ryquhY4Adi9r83uwHHVOB24bZJN233rABskWQfYELhkwPolSZImzqCB7XfAeu3HFwP36tkX4PZzHL8ZcGHP84vabXO2qaqLgbcDvwAuBX5XVV+Y6U2S7JdkeZLlK1eunKMkSZKkbhs0sC0H/rb9eClwUJJ9kzwTeBvw7TmOzwzb+ud1m7FNktvRjL5tDdwZuFWSp830JlV1dFXtUFU7bLLJJnOUJEmS1G2DBrZDaUa4AA4CvgMcQbPywa+A58xx/EU0C8ivsjk3P605W5tHAD+vqpVVdR3wCeBBA9YvSZI0cQYKbFV1elX9T/vxFVW1O3Br4LZV9YCq+tkcL3EGsE2SrZOsS3PTwNK+NkuBZ7R3i+5Ec+rzUpqguFOSDZMEeDhwziD1S5IkTaJBp/U4JsnWvduq6k9V9fskWyY5ZnXHV9X1NDcmnEwTtj5WVWcneW6S57bNlgHn0Uwd8n7gee2x3wZOAs4CftDWfvQg9UuSJE2iQSfO3Qc4Cvj5DPs2Bp5Js97orKpqGU0o6912VM/HxY3ThvQf+3rg9QNVLEmSNOEWsjTVbIu/bwd4S6YkSdKQzTnCluSFwAvbpwV8Ksmf+pqtD9wROHao1UmSJGlep0R/BHy8/filwFdo5kHrdS3wY+BjwytNkiRJMI/AVlVfBL6Y5BbA7YCDq+qiRa9MkiRJwGDXsN2C5qaC7RapFkmSJM1g3oGtnZLjApo1PCVJkjQig94l+hbgNUlc70mSJGlEBp2H7VHApsD5Sc4EfslNp/moqnrysIqTJEnS4IFtY+DcvueSJElaRAMFtqp66GIVIkmSpJktZKWDv0hyy2EVIkmSpJkNHNiSPCjJ55JcCfwxyZVJliV54CLUJ0mStNYb6JRokkcCn6W5ju1tNDcd3BHYAzg1ya5V9aWhVylJkrQWG/SmgzcBS4E9q6r37tA3JPk48GbAwCZJkjREg54SvQ/w/r6wtsrR7X5JkiQN0aCB7QrgrrPsu1u7X5IkSUM0aGA7ETg0ydOSrA+QZP0kT6M5XfqxYRcoSZK0thv0GrZXArcHPgR8KMlVwK3bfce3+yVJkjREg06cew3w1CRvBHYE7gRcCpxRVT9ehPokSZLWeoOOsAHQhjMDmiRJ0ggMHNiSrAvsQzPCtinNCNu3gQ9V1bVDrU6SJEmD3XSQ5F7AT4HDge2AP7f/Hg6sSLLt0CuUJElayw06wnY08DvgH6rqF6s2JrkLzQoIRwEPGV55kiRJGnRajx2Ag3rDGkD7/CDg/sMqTJIkSY1BA9v5wPqz7Fsf+MUs+yRJkrRAgwa2A4F/T/KA3o1JdgLegPOwSZIkDd2g17C9FrgN8M0klwOXA3doH78GXp3k1asaV9WOwypUkiRpbTVoYPth+5AkSdKIDLrSwbMWqxBJkiTNbNBr2CRJkjRiC1npYEfg8cBmzHDHaFU9aQh1SZIkqTVQYEvyYuAdwC+B8wCXopIkSVpkg46wvRR4N/CSqqpFqEeSJEl9Bg1s6wGfNaxpnB783gePu4SBfOP53xh3CZKkCTfoTQfHAk9YhDokSZI0i0FH2F4JHJbkS8ApwBV9+6uqjhxGYZIkSWoMGtgeBjwV2Kj9uF8BBjZJkqQhGvSU6BHAt4F7A+tV1S36HkuGX6IkSdLabdARtjsDz6uqcxajGEmSJN3coCNsXwL+bjEKkSRJ0swGDWzvAZ6T5LVJHpRk2/7HXC+Q5NFJzk2yIsmBM+xPkve0+7+fZPuefbdNclKSHyc5J8kDB6xfkiRp4gx6SvRL7b9vAA7p2xeamw5mvY4tyRLgcOCRwEXAGUmWVtWPeprtAmzTPh5AcxPDA9p97wY+X1V7JFkX2HDA+iVJkibOQu4SXZNJc3cEVlTVeQBJTgB2B3oD2+7Ace3kvKe3o2qbAn8AHgLsA1BV1+LSWJIkaS0wUGCrqlPX8P02Ay7seX4RN46era7NZsD1wErgg0n+DjgTeGFV/WENa5IkSeq0Oa9hS7IyyeXzfPxyrpebYVv/iN1sbdYBtgeOrKr70oy43ewauLbm/ZIsT7J85cqVc5QkSZLUbfMZYTucNTsN2usiYIue55sDl8yzTQEXVdW32+0nMUtgq6qjgaMBdthhB9c9lSRJE23OwFZVBw/x/c4AtkmyNXAxsBfwlL42S4ED2uvbHgD8rqouBUhyYZJ7VNW5wMO56bVvkiRJU2nQmw7WSFVdn+QA4GSau0mPqaqzkzy33X8UsAx4DLACuBp4Vs9LPB/4aHuH6Hl9+yRJkqbSSAMbQFUtowllvduO6vm4gP1nOfZ7wA6LWZ8kSVLXDDpxriRJkkbMwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjpunXEXIOmmvvqQfxx3CQP5x699ddwlSNLUc4RNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxIw9sSR6d5NwkK5IcOMP+JHlPu//7Sbbv278kyXeTfGZ0VUuSJI3PSANbkiXA4cAuwLbA3km27Wu2C7BN+9gPOLJv/wuBcxa5VEmSpM4Y9QjbjsCKqjqvqq4FTgB272uzO3BcNU4HbptkU4AkmwO7Ah8YZdGSJEnjNOrAthlwYc/zi9pt823zn8ArgBsWqT5JkqTOGXVgywzbaj5tkuwGXF5VZ875Jsl+SZYnWb5y5cqF1ClJktQZow5sFwFb9DzfHLhknm0eDDw2yfk0p1IfluQjM71JVR1dVTtU1Q6bbLLJsGqXJEkai1EHtjOAbZJsnWRdYC9gaV+bpcAz2rtFdwJ+V1WXVtWrqmrzqtqqPe6UqnraSKuXJEkag3VG+WZVdX2SA4CTgSXAMVV1dpLntvuPApYBjwFWAFcDzxpljZIkSV0z0sAGUFXLaEJZ77ajej4uYP85XuNU4NRFKE+SJKlzXOlAkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6riRryUqae112Ev/d9wlDOyAd/zzuEuQJEfYJEmSus7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEuTSVJQ/Kmp+0x7hIG9pqPnDTuEiTNgyNskiRJHWdgkyRJ6jhPiUqS5uWcN50y7hIGdq/XPGzcJUhD4QibJElSxxnYJEmSOs7AJkmS1HFewyZJEnDwwQePu4SBTFq9WjMGNkmS1gIfO3HHcZcwkCft+Z1xl9ApnhKVJEnqOAObJElSxxnYJEmSOs5r2CRJ0kT7u5NOHncJA/u/Pf5poPaOsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSx408sCV5dJJzk6xIcuAM+5PkPe3+7yfZvt2+RZKvJDknydlJXjjq2iVJksZhpIEtyRLgcGAXYFtg7yTb9jXbBdimfewHHNluvx54aVXdC9gJ2H+GYyVJkqbOqEfYdgRWVNV5VXUtcAKwe1+b3YHjqnE6cNskm1bVpVV1FkBVXQmcA2w2yuIlSZLGYdSBbTPgwp7nF3Hz0DVnmyRbAfcFvj38EiVJkrpl1IEtM2yrQdokuTXwceBFVfX7Gd8k2S/J8iTLV65cueBiJUmSumDUge0iYIue55sDl8y3TZJb0oS1j1bVJ2Z7k6o6uqp2qKodNtlkk6EULkmSNC6jDmxnANsk2TrJusBewNK+NkuBZ7R3i+4E/K6qLk0S4L+Ac6rqnaMtW5IkaXxGuvh7VV2f5ADgZGAJcExVnZ3kue3+o4BlwGOAFcDVwLPawx8MPB34QZLvtdteXVXLRtgFSZKkkRtpYANoA9ayvm1H9XxcwP4zHHcaM1/fJkmSNNVc6UCSJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjRh7Ykjw6yblJViQ5cIb9SfKedv/3k2w/32MlSZKm0UgDW5IlwOHALsC2wN5Jtu1rtguwTfvYDzhygGMlSZKmzqhH2HYEVlTVeVV1LXACsHtfm92B46pxOnDbJJvO81hJkqSpM+rAthlwYc/zi9pt82kzn2MlSZKmzjojfr/MsK3m2WY+xzYvkOxHczoV4Kok5867wjWzMfCrxXjhvP2Zi/Gyg1q0/vH6mb68I7co/csLOtE3WKyvX6a7f89/57BfcUEW7WfvtR/txNdv8f5vee2ivOqgFqV/hxxyyLBfcqEWpX9PnvHX/lgszu+G2XdtOdPGUQe2i4Atep5vDlwyzzbrzuNYAKrqaODoNS12UEmWV9UOo37fUbF/k83+Ta5p7hvYv0ln/0Zj1KdEzwC2SbJ1knWBvYClfW2WAs9o7xbdCfhdVV06z2MlSZKmzkhH2Krq+iQHACcDS4BjqursJM9t9x8FLAMeA6wArgaetbpjR1m/JEnSOIz6lChVtYwmlPVuO6rn4wL2n++xHTPy07AjZv8mm/2bXNPcN7B/k87+jUCafCRJkqSucmkqSZKkjjOwSZIkdZyBTZIkqeMMbJIkSR038rtENR2S3BLYtKp+Me5ahiHJhsC/APcELqNZz/aC8Va1MEn+FtgX2IqmL5+oqs+NtaghSfJn4IFV9Z1x17JYkmwB3AE4t6qummH/xsBjquq4kRc3JEk2Au4O3I5mxZorgJ9U1ZXjrGuxtF+zLYHzq+rX465n2JKsAzwJ+GJVrRx3PdPKEbYBJbk2yf17nifJG5LcaZx1DVOS/ZP8LMmVSb6d5OkzNNse+Pmoa1tTSd6R5Cd92zYCzgL+E3gycBDwf0nuPvoK10yShwHLgacCm9DMafiZJC8da2HD05m1aoYtyXpJTgTOB74D/DbJfyX5q76mdwU+OOr6hiHJI5J8DfgNTR+/AHyRZmL03yT5WpKHj7PGhUqybpJ3Jbk0yWVJXtNuPwS4mKa/lyc5Psmtxlrs8N0K+DDNH7wTKck1ST6eZI8k64+7npkY2Aa3Djf9pXEL4DXAncdTznAl2Qt4L3A6cAjN8l/HJjkpyQZjLW44Hgp8pG/by2j+2t+3qjam+VqeD7xutKUNxSHAV4EtqmonmuXcDgNen8Sf9257JfBI4LnAA2i+L3cDlifZZpyFDUOSJ9FMfH4l8GyaPm5D87O3Y7vt98DJSfYcV51r4NXAc4D/Bo4A9k/yXuAFwPOBnYADgF3oygqnA0jyndkewCk0vxeP7tk2adYD/gH4GE2wPi7JY9rRw05wHrYBJbkB2GnVKZkkS4DrgB2q6qyxFjcESZYDp1TVK3q2PRz4KE2I2bWqfp3kAcA3q2rJeCpdmCS/AZ5eVZ/t2fZDgKrarmfb04FDqupvRl/lwrX9e2rvKdAkd6A5NXrXqpq4UdFe7c/f44Dvzaf9JJ2yT/Jj4LCqOqxn251ofoHcC3hsVX1rgn/2zgY+U1WvnKPdW4Hdqmrb0VQ2HEl+ChxRVe9qn/8DcCrwgqo6vKfdi4F/q6qJGsFvf/YuAz7PzUe61wX2pgnklwFU1bNGWuAaWvW7neYU/d7AHjRrlv8GOAk4vqq+Or4KvYZNN3cPmr/s/6Kqvtyu6/o54FtJdhlLZcOxDvDHVU+S/DXNL8PD+9qdD0ziae7bAv3XyKx6fjsm8DT2DD45jzah+Y93kkLNFsD3ezdU1WXtH0wfBr6U5KnApeMobgj+hvmtVPNZmhGpSbMZzaUVq5xF8334f33tvtu2nTRPAN5Bc0r+hVX1vVU7ktyWJuQcWlVfG0t1Q1JVZ9Ccon9JkofQ9OsJwL5JLgNOAE5o242UgW1htk6y6mLgVb8Q/ibJH/sbVtWPRlfWUPwO2Lh/Y1Wdn+RBNP+ZfhN446gLG5KfADsDX26f79b+e3JfuzvQ/GU1iXq/P2E136MT+P0J8HLg3HEXsQguoTlFeJNfeFV1HbBXkv8ETgQm9WaDn9KMjs41SvG4tu2kuRj4f9zYv79r/70PcFpPu7+l+VpPlKr6VJLPAa8AvpbkBOA17U0GU3mqrg2fX2vXMX8ETXh7NvAixvDHoKdEB9QOm/Z/0lYND1fftprA0xafBq6sqqfNsn8DmuHhXZjM/u0DvB84EvglzfUlVwL3an8xrmr3PmDLqnr0OOpcqFm+P+Hm36OT+v15k0sSpkmSY4C/qaqdV9PmVcCbmMyv3e40/3d8leY0749p7g4tmpHhewJ70vxBtUdVLR1HnQuV5CCaMHMEzbV4zwE+QXMD0CtoRtq2B94CfKD3spNJk+QuNKNtj6T54/04mv9Pd57UEbb5/t+SZF1gl6r69Ggqu5EjbIN76LgLWGQfAV6c5K+r6mYjTFV1TZLH0gSeR468ujVUVccm2RTYn+aXxFnA/n1hbRNgd5oL+CfNtH9/TrMjgCcnuf1sUz9U1aFJLmAyf/Y+neShNDfzvBe4JTf9A+I64CvAQ6vqG+Opco0cSvN/ytNp+vaBqjowycU0/1+uumHtU8AbxlTjULTXhu7Zfj3fTfOH71ox+lNV1wIjD2vgCJs0VZLctqquGHcdi2WaR9jWJu0oxV1prqsE+C3ws/aX4dRJcnuaa/guqKrLx13PMLU33u1Hc7fve6vqvDGXNLUMbEOU5D40w/q/BE6rqhvGXNLA0kxMutM4LqjUmmsvin1ZVfVPXTIVkvwjcOZME8pOoyTbAvejuSHhmPYmhLsBv5zWSWYlzcxTogNK8mya89d79m3/KLAXN96d9t0kj5jA0Y4w3ZOTvnWQ9hN4nclSmnnznkUzdcBP5jpgkqy6rb49rf0vwEO48Y67i2mujzqmqib1TkoAktwaOAZ4InA9zf/Vn6eZMuHNwC/ou5t7WrTXR+08ySs5rI79m2zj7J8jbANKcirwg6p6fs+2fwWOppl9/F00Q8NH0VzD8Opx1LlQ037KKclM01rcheYXYf/pmJq0edgAkuxIcz3UvYG3AW+qqj+Nt6rhaSd3PhrYAPgBsGoJsS2B7Wimbdm3qv5nPBWuuSRH06xS8XTgGzR92qGqzmpvnHlZ77yB0yTJE4GPTdpNFfNl/ybbOPvnCNvg7snN5+x6Os0v/P2q6s/AD9sUvh/N7NeT5k5t/XOapIlJAapq697n7SzW1wL/PA0THwNU1XfSLJ/2bzR3cO2d5DCai7r7mtaRIy9wDSR5MM2cZCfRTClwXt/+rYF/Bz6S5BdV9a0xlDkMT6CZ6+or7TVCvS6gCaeS1iIGtsHdBvjLRaNJ1qOZHfn4Nqyt8l2akZtJNK0Tk85kKoeYq6qSHEVz7dMraUZ+b9aM5u61SfJqYFlV7T3TznYlh6e2pxRfC+w6yuKGaANuPgHyKhsBf55lX2e118dOLfs32Sahfwa2wf2C5lTTqskRH0JzC/dX+tptCFwzwrqGaVonJl1rtCNRR9Dcifda4G29U5dMsAcCz5xHuw8Axy5uKYvqDOAZNNet9duDZvLqSfMnmtO7n5qj3X2BiVrWqGX/GvZvkRjYBnci8Lr2brxf0sy9cxXNxd69HgSsGHFtw3LatF7DNu2SbExz3dozaJYS272qzh9rUcO1Ps2kpHO5sm07qV5LsxTVl2j+zyngMe06lHvQ/KE4aZYD1/euqzmT9hqhSfyFb/+wf4vpFuN40wl3KM2M1ScBX6dZe3O/qvrtqgZJ1qdZvqJ/uSN117ScGv0J8HBgz6rabcrCGjT9m8/kwDszmcsbAVBVp9F8HdcDDqO5BOEQmrm8HjGh0+58G9hxHu3+QHMmY9LYv4b9WyTeJbpA7VxItwXO7Z8Pqb1+5h40E0FeMfrqFm4tuEv0Y/2baKZO+DLN5J29qqqePJLChiTJx4F9pnWOriQvormp4PFV9cVZ2jyC5jrM11bVu0dY3qJol4O7HXBFVV097noWKsktgQ2r6nfjrmUx2L/JNgn9M7ANKMkpwPOq6sfjrmUxTPvEpO20LPP+pq+qiVrqqb1w9oFTHLiX0CwLswtwSvtx77Qej6UZmfos8LhJnLx6NkluR9PHc6ZpmhZJ82NgG9BaMAL1mEHaV9WyxapFg5v270+AJLegWbvwBcBWfbvPp1nb8HjgnhO8EPUhwHpVdWD7/GE04XRDmimEHlVVZ4+xxKGY9pUc7N9k61r/DGwDmvZfiG3/ivmtdlCTNjniWjBCOtXfn/2SbE7PSgdVdVG7faIn70yyAvj3qjq2ff5dmqB2CPAm4A9V9djxVbhmZlnJ4f7txMAfA35RVRO7koP9s3+LwbtEF2aaU+7WczeZaDvTzKU3ze7b3vgyp0kdgVqlDWgXjbuORXBn4DyAJFsAfwc8p50U+Z00q6pMsnfS3En/CG5cyWGVZTTLbk3sL3zsn/1bBAa2hflUknldQzJpSxtV1QVzt1LHHcE8R0iZ/ImPp9WVwF+1Hz8M+G3PqOkfaU6NTrJpX8nB/k22TvbPwLYwXwEmenHptdw0j5ACPJVmjU1Nrq8CB7anuF9Gc/3aKncHLhxLVcMzdSs59LF/k62T/TOwLcx7pvUaoXZx9PkGmqqquy5mPYtkakdIW+dNwwXpa7kX06yZegLwPeA1PfueAUz0qWymcyWHXvZvsnWyfwY29fs4cwe27WkmL53Ukaq1foQ0yaOBIyYtkCZZyfy+79Zb7FoWU1VdTHMqdCb/xE2vqZlE07iSQy/7N9k62T/vEh3Q2nYXXq8kOwGvo5kD62zgzVV1/HirGsy0f/3m279JvYsyycEMNo/eIYtXjdZEu97tfwA70VxLWcDpwCuq6hvjrG0Y7N9k62L/DGwDSvJ64P1Vdcm4axmVJA+l+YtjZ+As4E1V9alx1rRQa0Fg2xK4tKqunaPdRAa2adZOF/CqqvrZDCty3ExVPWkEZS26aVnJYTb2b7J1qX+eEh3c2wCSzOsurXF/gddEO4nua4AH0tzavGtVzXROf+q002L8c1WdOO5aBuFdvhNtE+CW7cd3YHIvORhIVV0DXJPkdknuzpSt5GD/JluX+mdgG9xVDPYf6cSNYLSjL68G7gt8CXhoVX11vFUNzSHMMm9Xe/v2o4C9gd2BW9NcvyAtut5l0Kpq5zGWsujmWskhyUSv5GD/7N+i1OUp0cEk2YfBrqH50OJVM3xJfgjcCziVZpHtb6+u/SSPIK6S5CE0IW0P4K+BlcD/AB+pqjPGWdugkrx1nk3vAezmKdHJkOSWVXXduOsYlrVgJQf7Z/+GX5eBTb3aa7xWmfObY1J/4Se5H01IezLNrPJXASfTLEXy0EldAaCdlmXeqmraV7aYWEkeRHOTz9/T/GV/NfB14I1V9a1x1ramklwNPLqqvtau5HAB7bWlSXYFPlhVdxhvlQtn/+zfYvCUqPo9a9wFLKZ2qHtv4K7An2iWGTkB+AywPs0o28QygE2HJI8EPgucS3Pd7C+BO9J8f56aZNeq+tIYS1xT076Sg/2bbJ3sn4FtQEmOGaB5VdW/LFoxi2DSTuEuwOtoRg6/DDyrne8KgCQTPXeXpsqbgKXAnnXT0yBvSPJx4M0015dOqmlfycH+TbZO9s9TogNKMp9rmtYH7k0T2CbylOG0akfYnkzzQ/dHmlGME9p/1wN+C+w8wadEtx2kfVX9aLFq0cIluQZ4XFWdPMO+fwI+VVUbjL6y4UiyGc1KDvenWcnhSVV1abvvW8D3q+o546twzdg/+7codRnYhifJrYDnAS+hmbflQ5P2TTvH0lTXA5fTLIvz3lXfwJMoyfbAU4AnAZvTXMP2BeDxNIHt62Msb8Havwjn80Md/IOis5JcSnOt2hEz7NsfeG1VbTr6yhZfktsAf5xrLsFJZf8m2zj7Z2AbgiR/BbygfWwAfAB4W+/ptkmR5O3M/gt/CbAp8PD2+d9X1U9GUtgi6rlL9InAxsBvaEbdPlxVq71LtmuS/OMg7adoupapkuQ9wDOB/YGTquqP7dyAewCH0fwx+MJx1ihptAxsayDJxjSjac+jGbE4EnhHVa0ca2GLrB1J/Crw86rac9z1DEs7D9sjaUbedgdu7QiUxqGdXf0DwF7tpqto5gUEOB7416qaqPVEp30lB/t3U/Zv+LzpYAGSbAq8HHgOzXVQ7wLeXVVXjLOuUamqPyR5J/CecdcyZBvRzMH2MmBfYLfxljN8SW5fVb8edx1avXZ29acmeSPNdTSbApcCZ1TVj8da3MJN+0oO9m+ydb5/jrANKMmRwD7AFcA7gSOq6g/jrGkckjwcWFZVE3dnZZK9gMfR/HB+oqo+muQg4FXAum2zTwHPmMSvbTt/12Np+vepqvp6kmcAb6X5T+ka4H3AK6vq+vFVqrm0S+FsTnMj001U1bLRVyRpXAxsA+qZWPZHNBNZrlZV7bi4FY1HklcA+1bVNuOuZRBJ9qUJK2fQzLXzEOBwmhD+Rpqv631o1lA9oqpePZ5KFybJ42mW07qc5vtzS+AVNNNAvJ8b+/evNBeuv21MpWo12rt9/wfYluZyi35TdcPItK3k0M/+Tbau9M9TooM7jg4OlY5Ke+HzbjSB5l1jLmchng/8Z1W9BCDJ04APAS+sqsPaNp9Pcj3wXJo1VSfJq2humHh6VVWSl9GMrB1UVYeuapTklzQXtRvYuul9NKO9T6AJ2VN3x13/Sg7t7PJTsZID2L+xFjcEXeyfI2y6iSQrWf1dordp//0fmlAwUafUkvyBZg3Nr7TPNwJ+Bzy494cwyT8AX6yqm52K6rIkvweesGoW/CS3A34NPKSqTutptzPw2aq61Tjq1OoluQrYq6o+M+5aFkPfSg4nctOVHO4BTPRKDvbP/i1KXQa2wcyx0sFf5imrqi+MqKShSnIwq5+HbSXw9ao6Z2RFDVF7SnunVcuMtHeGXgfsUFVn9bR7APDNSTvtNO39W1sk+T+av+RPGnctiyHJd4BfcPOVHGhXcthiki8nsX/2bzF4SnRw91nNvlXzlL06yWnAY6rqqtGUNRxVdfC4axiBmQLpNP3lMu39Wxu8FHhrkrOq6rxxF7MI7gO8rv+XYetompt+Jpn9m2yd7J+BbUBVdf+52rSjF0uBfwdetNg1DVOSUwZoXlX18Lmbdc7J7TVqvb7ct22SfzaObU/99vpwew3GKp4K7bZDgc2AHyc5n+au9JuY5BEMmv7cdZZ9d2OG/k6YK7B/k+wKOti/Sf6l1FlV9e0kbwBeyYQFNppZ/ucajdkUeNA82nXRIeMuYJF9aIZtZ8/S9juLWYjWyA/bx7Q6ETi0veayfyWHNzHz9/EksX+TrZP98xq2RZLkocDnJ3GestkkuQtNCH02zZQY7+q981CS5mMaV3LoZf/s36LUZWBbHEn2AQ6dhgWak9yNZrqIp9HcVPEO4H3tbOyStCBJ7sn0rORwM/ZvsnWtfwa2RdAuXfV1mrtFnz3uehYqyb1p5lvbE7iQZj6vY6pq6uaEmjZJ/h9wAM3EwJu1my+mWQP28Kr63ngqk2407Ss52L/J1rX+GdgGNMeisEuAOwH3owk4/1BVl42ksCFKcj+aoLY78BPgP4CPVNWfx1qY5iXJy2kuWr8S+ApwQbtrS2BnmjVTX+0qBxqXaV/Jwf7Zv8XgTQeD22Q1+66n+eX4EeC4CV2H8nPAo4Dv00zceeKYS9IAkvwz8Baa0dA3V9Xv+/ZvRHN6+z+S/KiqPjuGMqVpX8nB/k22TvbPETbdRM9aqb8BblhdW4CqusPiVqRBJDkV+HlVPWuOdh8Etqqqh46kMKnHWrCSg/2bYF3tnyNs6jft015Mu/vSnA6dywnA6k7vS4vpZ8xwXdAUsX+TrZP9M7DpJqrKwDbZltCcmp/L9cAtFrkWaTbTvpKD/Ztsneyfp0SlKZLkdOBbVfXiOdq9i2bN0QeOpjLpRknOAO4C3A44nylbycH+2b/F4AibNF2OAo5O8iPgAzOthZfkX4HnAfuOujipNe0rOdi/ydbJ/jnCJk2ZJEcCzwF+CvwvN53WY1fg7jQTHz9vPBVKkgZlYJOmUJLHAS8EdgJWLY/2J+BbwLur6tNjKk2StAAGNmmKJVkCbNw+/ZWTH0vSZDKwSVMkyUEDNK+qeuOiFSNJGhoDmzRF2omPrwH+wMxLqvQqJz6WpMngXaLSdDmP5nb0M2kmx/1k//JUkqTJ48SZ0hSpqrsBDwLOBt4IXJbkE0n2TLLBeKuTJC2Up0SlKZbkIcBewBOBDYGlNFN6fG2shUmSBmJgk9YCSdYF3gS8GFhaVU8Yc0mSpAF4DZs0xZI8mGaEbQ9gI+Ak4MixFiVJGpgjbNKUSbI9TUh7MnBH4PM0NyAsraqrx1mbJGlhDGzSFElyLrA1cApNSPuEd4lK0uQzsElTpJ2H7Y8087DN+cPtPGySNBm8hk2aLoeMuwBJ0vA5wiZJktRxTpwrSZLUcQY2SZKkjjOwSZIkdZyBTZIkqeMMbJIkSR33/wHMz6lUjogebwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(10,7))\n", - "sns.barplot(importance.index[:10],importance.importance[:10])\n", - "plt. xticks(rotation= 90, fontsize=15)\n", - "plt.yticks(fontsize=10)\n", - "plt.ylabel(\"Importance\",fontsize=15)\n", - "plt.title(\"Variable Importance\", fontsize=15)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "All the caveats about interpretation that we mentioned above apply in a similar to forest output.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Further reading" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "In this tutorial we briefly reviewed some key concepts that we recur later in this tutorial. For readers who are entirely new to this field or interested in learning about it more depth, the first few chapters of the following textbook are an acccessible introduction:\n", - "\n", - "James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer. Available for free at [the authors’ website](https://www.statlearning.com/).\n", - "\n", - "Some of the discussion in the Lasso section in particular was drawn from [Mullainathan and Spiess (JEP, 2017)](https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87), which contains a good discussion of the interpretability issues discussed here.\n", - "\n", - "There has been a good deal of research on inference in high-dimensional models, Although we won’t be covering in depth it in this tutorial, we refer readers to [Belloni, Chernozhukov and Hansen (JEP, 2014)](http://www.mit.edu/~vchern/papers/JEP.pdf). Also check out the related `R` package [`hdm`](https://cran.r-project.org/web/packages/hdm/hdm.pdf), developed by the same authors, along with Philipp Bach and Martin Spindler." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "vscode": { - "interpreter": { - "hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb" - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to Machine Learning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this chapter, we’ll briefly review machine learning concepts that will be relevant later. We’ll focus in particular on the problem of **prediction**, that is, to model some output variable as a function of observed input covariates." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# importing the packages\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import random\n", + "import math\n", + "import warnings\n", + "from sklearn.metrics import mean_squared_error\n", + "from SyncRNG import SyncRNG\n", + "warnings.filterwarnings('ignore')\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we will use simulated data. In the next section we’ll load a real dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 501, + "metadata": {}, + "outputs": [], + "source": [ + "# Simulating data\n", + "\n", + "# Sample size\n", + "n = 500\n", + "\n", + "# Generating covariate X ~ Unif[-4, 4]\n", + "x = np.linspace(-4,4, n) #with linspace we can generate a vector of \"n\" numbers between a range of numbers\n", + "\n", + "random.shuffle(x) \n", + "mu = np.where(x<0, np.cos(2*x), 1 - np.sin(x) )\n", + "y = mu + 1*np.random.normal(size =n)\n", + "\n", + "# collecting observations in a data.frame object\n", + "data = pd.DataFrame(np.array([x,y]).T, columns=['x','y'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following shows how the two variables `x` and `y` relate. Note that the relationship is nonlinear." + ] + }, + { + "cell_type": "code", + "execution_count": 502, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Outcome y')" + ] + }, + "execution_count": 502, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFzCAYAAACdPfApAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB4eUlEQVR4nO3deXgURf4/8HflDoccAoIEuQUP7qyii6Cs7qrrgfcJuqzr4q0rXiBe+xNRQPC7HqvroqIg4AqKoKsgiYiuQDhFAgEUlEsBuQkQMp/fH50JyWSO7pm++/16nnkgyUxPdXdVdX2qq6uUiICIiIiIiIi8Lc3pBBAREREREVHqGNwRERERERH5AIM7IiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEPZDidACMaNWokrVq1cjoZREREREREjli0aNF2EWkc7W+eCu5atWqFoqIip5NBRERERETkCKXUhlh/47BMIiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEPMLgjIiIiIiLyAQZ3REREREREPsDgjoiIiIiIyAcY3BEREREREfmApxYxJyIiIiIiG4VCwJo1wJYtQLNmQPv2QBrvD7kVzwwREREREdUUCgFTpwLdugHnnKP9O3Wq9ntyJQZ3RERERERU05o1wIABQGmp9nNpqfbzmjXOpotiYnBHREREREQ1bdlyNLALKy3Vfk+uxOCOiIiIiIhqatYMyM2t/rvcXO335EoM7oiIiIiIqKb27YHx448GeLm52s/t2zubLoqJs2USEREREVFNaWnA5ZcDnTpxtkyPYHBHRERERETRpaUBHTpoL68J4DIO/t47IiIiIiIKnoAu48DgjoiIiIiI/CWgyzgwuCMiIiIiIn8J6DIODO6IiIiIiMhfArqMA4M7IiIiIiLyvlAIWL0aKCzUJk4J4DIOnC2TiIiIiIi8LTyBSvg5u9xcYPJkYPFiYOtWzpZJRERERETkCdEmULnmGkAp4OyztaUcfB7YAQzuiIiIiIjI6wI6gUokDsskIiIiIvKzICzmHZ5ApWqAF4AJVCL57KwSEREREVGloCzm3b599QlU2rUDPvgA2LxZm2TFb/sbg2N37pRSOQDmAsiuSMd/RORxp9JDREREROQ7sRbz7tRJew7NL9LSgMsv1/Zr+3ZgwwagX7+jk6uMH6/93W93LCM4uXeHAPQVkS4AugI4XynV08H0EBERERH5S5CeRUtL0wLWRo2AW26pGdCuWeNs+mzgWHAnmn0VP2ZWvMSp9BARERER+U4QF/MOUkAbwdH7kkqpdKXUUgC/AJglIvOdTA8RERERka9EPosWhMW8gxjQVnA0uBORchHpCiAPwGlKqVMj36OUulUpVaSUKtq2bZvtaSQiIiIi8qzws2hLlgAFBdq/fn/2LIgBbQUl4o6RkEqpxwHsF5FRsd6Tn58vRUVFNqaKiIiIiIg8x8fLPyilFolIfrS/OTlbZmMAZSKySymVC+BcAM86lR6ykY8LGxERERFFcKLtF55cxU8zgurgZIu6GYACpdRyAAuhPXM3w8H0kB2CstYKEREREbHtZzPXDMvUg8MyfWD1aq1QV53BKDdXG/8dsJ4VIiIiIt9j28908YZlciwc2SvAU9MSERERBQ7bfrZicEf2CvDUtERERESBw7afrRjckb0CPDUtERERUeCw7Wcrx2bLpIAKr7XSqRNnyyQiIiLyO7b9bMXgjuwX0KlpiYiIiAKJbT/bMLgjIiJv49qZREREAPjMHREReRnXTyIiIqrE4I6IiLxrzRpgwICj02yXlmo/r1njbLqIiIgcwOCOiIi8i+snERERVWJwR0RE3sX1k4iIiCoxuCMiIu/i+klERP4QCgGrVwOFhdq/dj077dT3WoSzZRIRkXdx/SQiIu8LT44VfoY63FF3+eXW1udOfa+FlIg4nQbd8vPzpaioyOlkEBERERGRWVav1mY7rvoMdW4usGSJtWvjOfW9KVJKLRKR/Gh/82ZISkREREREzjFzOKNTk2P5cFIuBndERERV+ez5CyIi05m9xqhTk2P5cFIuBndexgYIEZG5uCi6M3g9I/IWs9cYdWpyLB9OysUJVbzKhw+AEhE5LlaDpVMnVz9/4Wm8nhEdFQpp9ZDbJ4iKN5wxmbrSqcmxfDgpl3dTHnRm95gQEZEvn79wPV7PiDReGjlgxXDGtDQtMDz7bO1fuwIsp77XIt5OfZCxAUJEZD4fPn/heryeEWm81NHhw+GMfsHgzqvYACEiMh8bLPbj9YxI46WOjvBwxiVLgIIC7V8OpXYFngGvYgOEiMh8bLDYj9czIo3XOjp8NpzRL7iIuZd55aFbIiKieHg9I+LkQqkIWB0SbxFzBndEREReFrBGDZGvub08uzF9AQyK4wV3/txjIiKiIPDS7HpElJibhzq6tb7x0kQ0NnBRjiEiosCKtYg1F7eOj40aIrKLW+sbL01EYwMGd0RE5KxYvcFHjrizl9hN2KghclaQOqDcWt94bSIaizG4s1KQCjwRUbJi9QYvWeLOXmI3YaOGyDluHaZoFbfWN3pn3A1Iu5zBnVWCVuApvoBUKERJidUbvHGjPb3EXi6fXEaAyDluHaZoFbfWN3qWsAlQuzzD6QT4VqwC36mT9oAsBUcAZ3EiMiTcG1w1kMvNBfLyov/ezF5ir5fPcKOmUyd3zV5HFATxhin6sa3n5vomPBFNrOMeoHa5C86GT7l1XDLZL2g9e0RGxeoN7tbN+l5iP5RPN8+uR+Rnbh2maCWv1jcBapfzzp1VYvVE+7nAW8mN66roFbSePSKj4vUGW91LzPJJVJ2Xr7d2C3dMRd75d3qYYhAYzacBapeztFrFreOSvcjr46SD2LNHZFSs3mCre4lZPomO8vr11m56nvUi8yWTTwPULlci4nQadMvPz5eioiKnk6Efe7/MsXq1VnAje1uWLPFGz7rXn+kh8jOzyyfrffIyr19vKRiSzac+qp+VUotEJD/a3xwblqmUagFgPICmAEIAXhORF5xKjyUSPdxJ+gqa14dNufkBZKKgM7N8siOHvM7r11sKhmTzaUDa5U4+c3cEwP0islgpVRfAIqXULBFZ6WCayE56G0J+GCcdkAqFyJPMKp8Bmo2NfMoP11vyP+bTuBzrShSRLSKyuOL/ewEUA2juVHqogp3rPemdpS5A46RN5+X1u4i8JkCzsZFP8XpLXsB8GpcrZstUSrUC0A3AfIeTEmx2DynSe1udwxqTwyFi5AQfPdNgGHuTyev8eL21sk4Kcn3npET5NODnxfEJVZRSdQB8AeBpEZka5e+3ArgVAE444YQeGzZssDmFAWL3g9R8cNtaPL5kNz93KOhpLPh5/4m8yMoyyfJenZMBVdXvbt4cWLbM9+cl3oQqju6lUioTwPsAJkQL7ABARF4TkXwRyW/cuLG9CQwau4cU6b2tzqGFyeEQMbKbHxYEj0bvtNucFp3IXaysk/xa3yXDySU0Ir/77bcDf14cu+IopRSAfwMoFpHnnUoHVWH3ek96GkJccyd5XL+L7ObXDgUjjTir1+UjIv2srJP8Wt8lw8lAN/K7Q6HAnxcnrzq/BdAfQF+l1NKK14UOpoeceEA1UUOIPWPJ4wPHZDe/dii4uRHHkQ3W4bH1PivrJL/Wd3pElo3Nm52rI6PVz0E9LxWcnC1znogoEeksIl0rXh87lR6CO4cUublR5XZuPJ/kb37tUHBrI44jG6zDY+sPVtZJXqnvzO6kiFY2jhxJvo5MNX2R9fNbbwGPPeb+82IhxydUMSI/P1+KioqcTgbZiZOCEHmLH2cpc+vECawfrcNj6x9unS3TjrrSzLornN61a4EFC4Bx44CNG7W/tWsHPPkkcMstNb8HiL2fZqQv2jYmT9a+Z+tW/1yHIsSbUIXBHbmbWxtVVvFjw5jILkFrxBUWaj3nkQoKtKHulDweW7KSXW0bszopoqV32DDg5ZePBnjz5gGNGmn1XNOmQHq69rcjR4Dbb9eCwsj9NDN9AWs7uXa2TKKEgjS0kMOAyKvc8GyS1eVHz0Qp0Y6Dlely63BRP+CxJSvZNZ+AWY+2REvv3/+u/Q7QykajRlrd2Ls3sGIF0KUL0LcvcOmlwMCBQF5ezf00K32cyKqaYO89eUOiQut0w9Ks7+fkMeRFbumUcLr8xDoOJSXWpcsrz/xU5XR9rZcXjy15h13zCZjVSRErvUrVLBuJAsGq++nyThQRQWnkfnsAgzvyNqcblmZ+PyePIS9yOqgKc7r8xDoO69ZZly6vjWxwur42wmvHlrzFrqDGrE6KWOk977yaZSNeIBj+XHg/XdiJcvjwYXz66ae444470KZNG9xzzz2OpSVZGU4ngCglsRpUnTrZ89C7md8frjwjx567pAeLKKp4QZWdE084XX5iHYe6dZNPl57nSMIjG7wwyYfT9bVRXjq25C3hoCbymTuzg5pwJ0WnTqk9jxYrvWedVXNbsepikZr7aVb6UrRr1y588skn+OCDD/DJJ59g7969qFWrFs4991z07dvX1rSYgcEdeZvTDUszv9+uyp7ITE4HVWFOl594xyGZdPlxMimn62sit7AyqInWKRSvk0JvJ5Le9Eari19/HWjZUvtd5Occ6kT56aefMH36dHzwwQcoLCzEkSNHcNxxx+Gaa65Bv3798Lvf/Q45OTm2psksnC2TvM3p6arN/v4AzvhEHuemIMTJ8hPvOADG0+V03WYFP+4TkZsYrY+tqr9d2pZZt24dpkyZgvfffx+LFi0CAHTo0AGXXnop+vXrh9NPPx1pLkinHlwKgfzL6Yal099P5AYuvZDbzszj4Mep+K1YcyvoeY6c4db8Z7QDJdH73bqfBqxfvx5TpkzBlClTKgO6nj174rLLLsOll16KDh7tWIoX3HFYJnlT1QqnSxdg8eLEi1VaUUmZMbTCB5UnBVyqw2r8UgbMHF7kluGuZjJrKBo71chJbs5/Roc+x3t/+/bu3c8EfvrpJ7z33nuYPHkyFixYAAA47bTTMHr0aFx55ZU44YQTHE6htXjnLij80ngCkqtY3VoZuzVdRHbRWwb8VIfpwbohNg7vdJ6fy2OifXNz/jPzzh3g3v2MYvv27Zg0aRLeffddfP311wCA7t2745prrsFVV12F1q1bO5xCc8W7cwcR8cyrR48e4jvl5SKrVokUFGj/lpdb8x3vvSeSmysCaP++954132WHVauO7kv4lZur/d7Mz9jBrekisoueMuC3OkwvO64PXlRQUD2/hF8FBU6nLBj8XB717Jub85/RcxPv/W7ezwqlpaXy3nvvycUXXywZGRkCQDp16iRPP/20lJSUVH+zz+pTAEUSI17isEwn2dUza/f002b06MXbRjIzrrl1lja3povILrHKwMqV2v/bt/feFPpm4VT80flxyGo0br075ufyqGff3Jz/jA59jvd+l+6niOCrr77C+PHjMWXKFOzevRvHH3887rvvPvTv3x+dOnWq+SEjE161bautT+q2cmeAt1LrN3Yt/mvn4r7xFqkNhbQhAIWF2r+xFq5NtNBtMot/2rVgqFFuTReRXWKVgaKio2V/82ZnFygnZ8S6Zrhw4WPTuXHB9/D5WLkS+NvfgLy8o3/zS3nU016Klf/attXXxrFauFPo7LO1fxMFJrHe77JytnbtWjz22GNo27YtzjrrLEycOBGXXHIJPvvsM/z444947rnnogd2QOz29rp11cvZRRcB77zjrnKXjFi39Nz48t2wTDNvece73Wzn0L9Y31VcrH+oQKL0JjMkxK3DSNyaLiK7RCsDw4eL5OUd/XnBAg5fDppEdaPPhljV4LYh+3rKqR/Ko97jHpn/ysr8eS13uJwdOHBA3n77benTp48AkLS0NDnvvPNk/PjxsnfvXv0bitXeLiysfr6HDIl+/hcscN25RJxhmY4HbEZevgvuzKq89VwE7ap0YhWgmTP176ueoDeZCsfKSiqVbfu9kUKUSLgMTJ2qXVzDDcbwa9489zWcWG6t5bbgxqhU84fbnneKdT7CjWGny6NZkm0veT2/usyiRYvktttuk3r16gkAadu2rQwfPlw2btyY3AZjnZ8ZM6r/bujQ6OVu2DDX5fF4wR2fuXNS+JZ35Bhgo7e8E40RN2v6aT1ijdGuXVv/s2V6xnkn8yxKtM+Y9XxgKs9O8rkaCrpwGQCAG26oWfYbNQLOOMOeOkwPzmRpPS8/j2xG/nDb806xzkd+vjZ7ogefS4oq2faSl/OrS+zcuRMTJkzAv//9byxduhQ5OTm48sorccstt6B3795QSiW/8Vjt7bZto5ezyJ/Ly731XGmsqM+NL9/duRMxp/c3mR4+q3qdY/V6lZTo79Wy605j+HvatdN6H4cNE/nsM214hRHssSMyh1eGKbPMW8/Lx9iMtLutLHj5fNjBT8fHxlEJ5eXlMmfOHLn++uslOztbAEj37t3l5Zdflp07d5qblmjbiixn7dqJvPFG7OHHLpopFByW6XNGKxWrLxp6CpCe6XmtrlxWrdIK8vDh1dM1YYKx73Pb8BkiL/PCcMcglXmnzofbghsjzMofbioLXj4fdvDL8bFpP7Zv3y6jRo2S9u3bCwCpX7++3HnnnbJkyRLb01KtnBUXi6xdK/LFF1qHf9XHBFwWrMcL7riIuR8YHQJi5wKcVYc9Nm+u3dreutX5YVWANqPVrFnAmDGpHQs3L2hK/uTWKdKDwuwyb/R8xnu/mXnDieGnVdPftCmQng5s2uStfO7XawLrnfjMPj5OHG8L866IYP78+XjllVcwefJkHDp0CL/97W8xaNAgXHHFFciNnDXZ7nJUtb479ljgjjuAp55y7dB7LmIeBEZ6+OzqdXZ7T9aqVVrPTKrHwu37Sf7C/OY8M8+BmYsOm503qo4Kycs7Onzdqpnj/JK33bQfbrr7Z5SX054qp/KQ2e3D8nLZt3ixvHb//dLt5JMFgNSpU0duu+02Wb58ub1pSSRyFFxenlbfzZzpyvwHDsv0KKsqtmSGcSZKR7T3uH0Menm59oydWTOWBvUiRPZye7kKCrPKvNHzGe/9sRonM2akNmNjXl7N4etWNDT9lLfdcE1wU5BpVLS0T5+uDZsLwnXWqbJg4veuWL5c7jz/fDkGEADSWSl55S9/kT27dtmeFl08NtyewZ0XWVkpG9m2nvfGes+8ec4XlEQX2LIy7Rk7Oy9+brjok/dUXS7A6XJF5qkaQA0Zok3FPXSoVn/Ge3+081/1b2YEZOHGVay1nxKt/eX16f/j8UI97uVgOVpHxTPPeDNQTYZTZSHFtuehQ4fk3Xffld69ewsAyQLkRkC+AiRkNP/Z3TnhsfLC4M6LrM5kei9MetIR6z1OLzyst2LQeyzMuJh7uSfVy7zQEIunar4ZOtRTFyBKwOjETnrv3OkNyOIJ5zs9w9fNqNu80rjySj3ulmA5mfo3Mu1m5GcvSaYsmHWdS2I7P//8szz11FPStGlTASCtW7eWZ2+9VX5JNf/Zee32SrmuwODOi9ww21Z5ec0FHqOlI15anSwoZjYUzCr0Xmm8+InHKuyoIp99smOIHNmjvFzk00/11wt6n7mLtRhvMtcQPR11ZtRtXimrXqnH3ZDOZM9pZNrNys9eYeazuBZaunSp/OlPf6pcxuD888+Xjz/+WMq98GhONB7qCGZw50VOXyjDn33ssdQu6k4WFDN7Lc2qpNwQtAeNFy8wkSLzTXgI39SpwTr/Xs738dI+Z46xeiHetsJ/++ILezu3glS3ueWOWCJuCJaTrX8j066nLeI3RsqCjde5I0eOyAcffCDnnHOOAJBatWrJbbfdJsXFxTXT73T+8zEGd17k9BCX8Gf13CVwawE2s7Iz62LudNAeRF5piMXjhwC1qmQa8F7O94nSbsX5Nft4JTpnfsuj8XhpX50OllOpf6umvaTEu+XfDjZc53bv3i1jx46VNm3aCABp0aKFPPvss7Jjx47YH3I6//kYgzs3SLYx49TD6ZEP5ocf9C8sjD3xitsKcKp3LqvuT3GxORdzp4P2IPLD8fJqYBOtXjBrmJabzmOqgY9V59fO645X82gygrSvqTL78Qi3tTPcwsL6ce3atXLPPfdI3bp1BYCceeaZMmXKFCkrKzMh4Q7yeH5icOc0py4EZty5i/dZJwqG0e806w7B9OnmrmvlVNAeRH5piHntQhTruJeUJFcvuTXfmzVk0Q3nN9Wy4oZ9sEuQ9jUVfql/3c7k4xwKhaSgoEAuvfRSUUpJRkaG3HDDDbJgwQKTE+4QH+RLBndOc6rH2Yxn7mJ91omCYdd3xjpfJSXuuJi7+Q6GW7EhZr9Y+bSwMLkgzYl8ryff6EmXkbQ7mVdZt1CqYt2tZ/1rPROOc2lpqYwbN046d+4sAKRRo0YydOhQ2bRpk/npdZIP6joGd05zssc5lcIe77NOFAy7vlPv+bLrghX5PWVlnu9xogCIVY5mzjRnggWr7yrp/T69d+X0LsviZNl2691R8gan8y8lbcuWLfLYY49J48aNBYCceuqp8vrrr8uBAwes+UKnA34f1HUM7pxmdVDiRCFxomDY9Z16h6TacRGL9T1lZewJJWuYVZ/EKkfFxeY9C2vl82B662297zPrLqCVnP5+Sh3v/JIBRUVF0r9/f8nMzBSllFx88cUye/ZsCYVC1n2pGzoBfJBXGdw5zcqMbGeQUfWCkexzM6mwK0ieN09bQDjeMbWrYvBBBUQeYmZ9Em9bVjZAo207mXJk5A6+WcfM6d5kNzS6KHlOnz+n868fWVBXlpWVyX/+8x/p1auXAJDatWvLXXfdJSUlJamnVw83tGucLismcG1wB2AcgF8ArNDzfs8GdyLWNWbsKCSxCsH06f555i5y2+3aaQsLxzpfdl3EeLEkO5ldn9h9FyFWHaFnHblUOrCsvttpd6OHowK8yen84/T3+43JbZ6dO3fKqFGjpGXLlgJAWrVqJaNHj5adO3eam+5E3NKu8Xhd5+bgrjeA7oEI7qxiRiFJlMHjDa+yu2C4JUjmnTvyI7dcdJMVq7wsWBC/HAWhA8urPN4As5XT5Zf511wmXf9Xr14td9xxh9SuXVsASO/evWXq1Kly5MgRixKeQKr7xTpBROIHdxlwkIjMVUq1cjINntesGZCbC5SWHv1dbq72ez1CIWDqVGDAAG0bubnA+PHA5ZcDaWnae7Zsqb59QPt561bg7LOBDh0MJ1tEUFpaiv379+PAgQMIhULIyMhAeno66tSpg7p160IpVfODaWna9yXxnXHF2sctW6J/V/v22nGKPG7t21d/XygErFmjbadZM+3v4eOqh97vIf9INc+kItX6xGmxyvHhw/HL0Zo1R/8W/syAAcDixQgtWoQD69fjQL16KG3WDMeXlyPTqvORlqbVvZ06OXP+3UbP9YmOcrr8Mv+ay2i7pAoRwezZs/HCCy9g5syZyMrKwnXXXYd77roL3erU0baxdq0z5yeVdg3rBF2UFvw5mAAtuJshIqcmem9+fr4UFRVZnygvSTWjr14NdOtW82KwZMnRykPPe6I4fPgwvv32WxQXF2NVcTFWL1qEjT/9hM27dmHLtm0oKyuL+dn09HQ0bNgQzZo1Q6tWrdC6dWuceOKJ6Ny5Mzp37oxjjjkm8b4Zkcw+JmqEm1UJOdnY9xqvHyunL1xOf3+q4pXj9u1j5o19n3yCZRdeiGIAqwCUANgEYHPDhvhl1y6EQqEqm8tFr169cPvtt+Piiy9GulLuzHNeLwtA0teewPJ6+Y3HaH62+v12SCL/l5aW4p133sELL7yA7777Dk2aNMFtt92GQYMGoWmTJtblD7uON+uESkqpRSKSH/Vvbg/ulFK3ArgVAE444YQeGzZssDF1HpFKpVRYCJxzTs3fFxRod+XC29dRIezZsweFhYWYM2cO5s+fjyVLluDQoUMAgPS0NLQRQUsRHJ+ejmYXXYQGPXuiVu3aqF27NtLS0lBeXo4jR45g3759+PXXX7Fjxw5s3rwZ69evxw8//IB9+/ZVflf79u3Rq1cvnHXWWTj77LPRunXr1I4XYH6lx0rIXn5o2CSbZ8xsmLixkaOXzjywdetWfP755ygoKMCCBQvw3XffVQZwOQDaA2iRloZml1+Oph06oF69eqhduzaysrKwYsUKTJs2DT/++CNat26Nu/v0wcBJk3DMwYPuyXN+KAuAvusTVefl8huL0fxs9fvtYiBdmzZtwksvvYTXXnsNO3bsQNeuXXHvvffi2muvRXZ2tvYmq9okdh4/1gmV4gV3jj5zVxFYtoLfnrnz0njgFKfxXrNmjTz77LNy5plnSnp6ugCQ3Nxc6d27twwePFgmT54sK2fOlEM5OSmNGw+FQvLTTz/JjBkz5Omnn5ZLLrlEGjZsKAAEgHTs2FHuv/9+KSwsjD+O3M4Z/Jx+/iFo/PB8YjJ5hs+5VBelHIdCIVm4cKEMGTJETj311Mp6o0GDBnLBBRfIY8OGyUcPPyzfZ2fLER3HsKysTN577z35bffuAkDqAnIPIGur5jlOSZ86v+xHUHj1mXg357MEx3T+/Ply3XXXSUZGhiilpF+/flJYWBh9KQOr2iR2TsTl5nNlM7h1QhXxY3DntYZWEundunWrjBo1Sjp37lzZSOrevbsMHTpUCgoK5ODBg9U/YFGFUl5eLitWrJCxY8fKeeedJ1lZWQJAjj/+eLn33ntl4cKFNSs4OysGv1VCbu+08EMwnUye8Vs+M1FJSYk88sgjcsIJJwgASU9Pl3POOUdGjBghixYtkvKqeThW/o6X7wsKZAEgNwCSAYgC5FJACv7v/yQ0ZQqnpE+V166nfmOkzrfyXBnNz1a/32GHDx+WSZMmSc+ePbXOpbp15b777pN169bF/6BV1wozj1+iDviSEpHx41kniIuDOwDvAtgCoAzARgB/jvd+TwR3Xmxo6ajAy8rKZPr06dKvXz/JyMgQANKzZ08ZM2aMrF+/Pv72bTome/fulUmTJkm/fv0qA73u3bvLa6+9Jnv37tXeZGclHmt5hTlz3BkcxeOFRpYXy16kZI6zxxompolRb+3bt0/eeOMNOeusswSApKWlyYUXXihvvPGGbN++Xdc2qv093vmokuc2ATIUkEYVHV5dlJI3ACl1Ii/6oSyEub1Tya+M1kVW5rnIbefliQwbJjJjhrEZvr14566KHTt2yIgRIyQvL08ASNu2beWFF16Q3bt369uAVddxM49fvNnZw2kPn//Jk7XfB7ROcG1wZ/TlieDOZw2tPXv2yOjRo6VFixYCQJo0aSIPPPCArFy5Uv9GHAgMdu3aJa+88krl3cW6devK7bffLqs+/tjeStzIwuhu5oWLnxcCUD2MNmatODdWNKjN3GaUc73p1VfloQcflHr16gkAOfHEE2XEiBGyadMm3duokV8SHdso2zjwzjvy+uDBcmpFkNcEkMcB2WLndcAvZYGcY7ResbLtUzU/5+WJPPNM/LxtNP9Hbt9lgcOKFSvk1ltvldzcXAEgffv2lenTpye3lIFVdbtZ9U2sfDRzpvvbIDZjcGcnOxrBNvRkbtmyRR555JHKhlKfPn1k2rRpcvjw4eQ26ETva3m5hIqL5esXX5T+l14q2dnZopSSq884Q5ZlZ9vb6PFCcBSPVzotgtjLb3ZD3orAwOxtVilP3wHyJ0AyK+7SXXXVVTJ37tzoz5zE2EbMMqkn30fLc6tWSSgnR2YDclFFkJcFyE39+snixYuT22ejgloWgrbPVjFa51t9jQuf28JCfd9jNC+4bMhfeXm5TJ8+XX73u98JAMnJyZE///nPsmzZMtvTootZZS9WPios9EYbxEYM7uxkdY+pxdvfunWr3HXXXZKVlSVpaWly5ZVXyvz5803ZdjVWX4SjHKefX39dHnn4Yalbt64AkIvPPFPmT5liT8VtVnDkVOPF68Gp35mZL/SeayPfaXb+KSiQYkCurAiccgG5A5C177xjaBsJy2Sy6Y6of1ZnZ8ud559fuYhwnz59nF1E2I94t9JcRvO+Xcffyo5GF1zndu/eLWPHjpW2bdsKAGnevLkMHz5ctm3bZlsaHBUrH5WUOH5u3IbBnd2sbIBbVPns2rVLHn30Ualdu7akp6fLLbfcImvWrDEp0RGsujNQ9ZgXF8c8Tr/++qs89dRTlbNtXn755VJSUmLa7kVlxnlzsvHChpP/hcvQ1KmJG09G84OJDbINGzbIwCuukDRA6gAyDJBtyZQnPWUylXwf5Tqwc+dOGTVqlLRs2VIASOvWreX555+XXbt2GT4OFMEFDXNP3zmMTHtZmfG8b8f+W3me9dZTFuxnSUmJ3HXXXVKnTh0BIGeccYZMmjQp+dFSXhbt+Maqi8vKvFvmUsTgzo2SrRxM7rU6dOiQjB49ujLQufrqq2X16tVJbUs3syvnaIV+8uSEx2nv3r3y1FNPSZ06dSQjI0PuvPNO+eWXX8zZRz1pNBocOd148XLDheKrmj+HDk2czxyYsGDnzp1y3333SVZWlmRlZcm9f/yj/BJeYiWZ8qS3TFqQ78vKyuQ///mP9OrVSwBInTp15O6777auQy0InB467uUOMC81nK08zlZ1+MSoQ0KhkHz22Wfyxz/+UZRSkpmZKTfeeKMsWLAg9X0xygvXdzM6IGJty437mwCDO7dJpXIysYE/a9Ys6dixowCQ3//+97Jo0aIkdiYJZl+Eox2Txx7TfZy2bt0qgwYNkvT0dKlbt648++yz1vSWpVqZON14If+qWoby8kSGD49fPxnNiynUeeXl5TJu3Dhp3LixpKWlyZ/+9CfZsGGDORdnF1zgFy5cKDfeeKNkZmaKUkouvvhi+fTTT6Xcg42NhDw4qsUz358Kr6Xdqnykp54yYbjqvrfflldeeklOOukkCU9U99hjj8nmzZvN2Q+jvNoxYdKwec/sbwQGd24TK0OWlCSusEzIlBs2bJArrrhCwlPpzpgxw/g+pFK5WvD8TY1GZl6e4QejV65cKRdddJEAkFNOOUXmzp2bXHqs4rULMHlHZBnKyxMZMkQbohmtfCeTF5OoMxYuXCinn366AJAzzzzTvslIHLB582Z59NFHpUmTJgJA2rdvL2PGjJGdO3c6nTRzePx59ITMXuvLzk4HKzoOXdBxkpRE6U5hopnvAXkAkAbQnhXu1q2bvPnmmzXXBrabV9sWyeZbr+5vBAZ3bpNqMJJkpVlWVibPPvus5ObmSm5urvy///f/pLS01Hj6U72Imn0R1hMsFxdrP+s4Zh9++GHlosc333yzdUM1jfLS0BnyFjsnT9BRf+3evVtuv/12UUrJcccdJ+PHj088+6VPHDx4UN555x0544wzBIDUqlVLbr31VvfOkqeXHQ0qJwMKs/bPiSDVjkclPHhnJCqDx6r8889lJiB/BEQBkg5tIqgv/+//3FOneXVUULL51qv7G4HBnZOiXWyiZchhwyy98C1fvlx69OghAKRfv37asKZkmTU5iFkX4UQXkiQuNPv27ZOHHnpIMjIypGHDhvLOO++4oyI2c8w5UZiJz5Gk+j2ffPKJtGjRQpRScs899wR6spFFixbJwIEDJScnRwDIWWedJZMmTZJDhw45nTTjfNKgismsgMaJuwplZSKffqq1Q4YOFWnXzpoOV4/dGTE0sUfEsdq+fbs899xz0rpiwfHjoE3+9JOejjO7Oyi8er6SLXNe3d8IDO6cEu9OSxITgCTj0KFD8vjjj0tmZqY0btxYpkyZknqQ4saLdLwKMYWCvGLFCunZs2dlULx161Zz0mQWt1dSXh2aE0QO59cdO3bITTfdJADkpJNOkv/973/60lpSot2Z93Ee27Fjh4waNUratGkjAKRp06by+OOPx16g3Y3cXleZwYwyZPf1NVo7ZcIErZ2SLDe2EYyKFzjEOc/z58+Xm266SbKzswWA9O7dWybde68c0jP5k1N3PL18p9WiTkYvYHDnlHgXs8gMGWfq/mQtW7ZMOnXqJADk+uuvN2+dFK9dpFO80Bw5ckRGjhwp2dnZcuyxx8rkyZMTf8iuysOqi6hZk1X4oAIlE8XIrx+PGCFNmzaV9PR0GTp06NFnUBL1nOfliTzzjLfyWAplq7y8XGbOnCkXXnihKKUkIyNDrrrqKvniiy/cMbIgnsj6oF077W7RnDm+DcrjipUP7Ly+lpeLLFhg/vd5rY0QjYF9OHDggIwbN07y8/MlPPvtbbfdJt9++632Br1l3snjFrSOWB/sL4M7pxhpeJvYEC4vL5fnn39esrKy5LjjjpMPP/ww5V1JmNYJE0TmzXNnITGpwly5cqX85je/kfCSEXEnOrCrkrbie7w8vIj0cerCFpEnDgByZ3q6AJBOnTpVnzAlVj6s2hE2ZIi38piJ9fzatWtl8ODB0qBBAwEgJ598sowdO1Z27NhhQcJNEs538+Zp1wyjx8EHDTIRSXxXyI5OsfD3DBtmfgehHzr2dLTfVq9eLffff3+1Mvjiiy/K7t27E28/Wl72wx1Psg2DO6ckM0lBtAuXgQvapk2b5LzzzhMAcskll1i7bls4TZ9+qvXCurUSN/FCU1ZWJk8//bRkZGRIy5YtZd68edHfaFclbcVF1KygjBcq96haXouLRaZPd6bhVSW/LgHkZKUEgNx37701J3eKlQ9nzDj689Ch3spjFnR47N+/X/79739XziqanZ0tN954o8ydO9e9d/OSOQ5+CBjCEu2/nUOk9axrGUlP+rweiMc4R6XLlsk777wjffr0EQCVd88LCwv1lzc9HVdmdtZ6+TxQTAzunGLGxcjANj788EM59thjJTc3V/75z3/ac2H3yt0Zkyu4+fPnS5s2bSQtLU2eeuopOXLkSPU32D20xqwLbXl59cZzKg1mr+QNv4tWhzzzjDak0YHzEjpyREY/9JBkZmRIs8aN5dNPPon+xlidA198cXRfkmmYOinWPs2caUqja+nSpXLHHXfIMcccIwCkY8eOMnr0aPOG5JslmY4fP9Unbuj4CqdBz7qWVaXSrvFSoBGxn99mZ8vdF1xQeZeuTZs28swzz8iWLVuMbztWXi4pMbcDw08dIlQDgzsnpVqZ6bigHT58WAYPHiwApHv37lJcXGzuPsRjxkXKSxV+Fbt375YbbrhBwg9Nb9y48egf3VSpxkpL5NIQ4fcZWAA+qe/1yPn1jVh1yJAh9jUsK8r4zo8+kn7nnisA5NJLL40fdOhpAHntmbtY+zRsmKnp3r9/v7z55pty5plnCgDJysqS6667TgoKCtxxNy+ZQM0NAZFZzA5Uk7mGVk1DeF3LYcO0Z/DifT7ZtBu5HrikTbBvzx7599NPS8+TT64sR9dcc43Mnj1bylNJU7y8bOa++6lDhGpgcOdlCS5oGzdulF69egkAuf322+1fDDPVysMHAcD48eOlTp060rhxY/n888+P/sElF6i4Dcqqxzw8JMRoT248bjkGRhlNt5v3M1YdUnVIYzLDxfWqKOOLsrOlDSAZgDx/000SirzbHeNzMZ9LCqfJS7NlRtun4cO1MmdRo+vbb7+Vu+++W+rXry/hxdGHDx8uP/30U8202ZWHk6n3/dRQNfO6l+y2kv2c1QtHO9wmCIVCUlRUJIMGDZK6detacwfcrrzspw4RqoHBnZfFqQRmz54tjRs3ltq1a8vEiROdSV+qFbFPLtgrV66Uk046SdLS0mTEiBHu6B0P09u4rzocM9yTO3SoSGGhuxvMZjOap93eQaE3uI/Vg57ivoWKi+XVzEzJBiQPkK+MlHE3B83JKi/XytTQoVoZqzo81sJG14EDB2T8+PFy1llnCQBRSsl5550nEyZMkP1799qfh5PpQHFrOUsmn5rVQZHKNTTVO35Gvk9voOFQm2DLli0ycuRIOfXUUwWA5OTkSP/+/eXLL79M7noe79jalZd90r6i6FIK7gAUAbgDQINE77X6FcjgLkolUD55sjz15JOilJKTTz5ZVq5c6Xwak22A+ahnae/evXLNNddIeMiZaxZf1jssr+qzTEG+EBi9ILr9Aqp3WG40Ke7bvn375MaKCZ7+AMg2j5dx0zicZ9auXSuPPfaYtGrVSgDIMXXqyF/S02UeICE35uEwNwb7qTbUU/28G9bFM3PhaBv3p7S0VKZMmSIXXnihpFfM2nv66afLyy+/LL/++mvyG451jMrKjubf4mJ9dXAq3NwhQilLNbhrB+BpAGsBTALwBwAq0eeseAUyuBOpdkHbuWCBXHD++QJAbrzxRtm3b19S20m6MjH74ur2hrFBoVBIxo4dKxkZGdKuXTtZtmyZ00nSP6FGsg9zu7HBlQqjz0N4oYMi2XOUwr6tXbtWTjnlFFFKyVMZGVLukzJuCpc0usrLy6WgoEBu+sMfpDYgAKQ9IP8PkA1uy8Nuleo1zKrPl5RYVy8ne6dST563uE0QCoXkf//7nwwaNKhyqHLz5s3l4YcfNm++gmj70K5dcst/pMpv12eqZMqwTABpAC4BsAnATwCeBNBQ7+fNeAU2uKtQXFws7du3l8zMTHnllVeMDRUwozFhRYPEJY0cs82bN0+OP/54yc3NTX7IrJmVctVtxZsK3w9DpVI9bnom8oi8A+ajDopqkmxoffbZZ9KgQQNp2LChfPbf/7ovj7iBmxpdq1bJ3pwceROQsyuCPAVI35495V//+lfNuxhefebRCql27qT6+bKymkHD9OnuLHN68rxF15SSkhJ58sknpUOHDgJAcnNz5YYbbpDPPvus5mzXqYp2Tr22Jie5XsrBHYDOAMYAWA3g/wCcDuB+AEv1fN6sV5CDuxnTp8sxdepI4/r15csJE8xrsBqpWKzqUXNTI8dEW7duld69ewsAeeSRR8TQ7FpWB01mHXO33Xm1shMj1hpExcX2NaTsLisGj2coFJLnn39e0tLS5NRTT5V169Y5k24/sePYRZzn77Oz5Ymrr5b27dsLAMnMzJSLL75YJk6cKPv27PHubKV6GTnmTt65C5+3du2Oznb56afWrJdmJ5Py/E8//SSjRo2SHj16SPg50z59+sjrr7+ub6HxZJWUaOdi6FDtlZcnliwWT4GW6rDMRQA+B3A9gOyIv01N9HkzX0EM7kKhkDwzfLgopaS7UtpQmWQuoGasr+SF4Wcuc+jQIbn11lsFgFx88cWyZ88efR80I2iyo1HotjxhVrBpdPilAw1wtw3rKS0tlQEDBggAueyyy2Tv3r3WpsvPwsd8zhyRzz7TGu8OdByEZw68//77pXnz5gJAauXmyrXp6fIhIIceesjbQUQ0RsuZk8/cxarvzFqr1IO2bdsmr7zyivTu3VuUUgJA8vPzZfTo0dWXK9KrallcsEBk3rz4dXysxyAKC9k5TqZKNbhrk+g9dr2CFtzt37+/coKOa9PTZb8Vd92MrK/ktrs0HhEKheQf//iHpKenyymnnHL0bkY8qQZNQZ2Ny8pg0+l9dfr749i4caOcdtppAkCeeOIJY3epqbpoZTe8XIKD57y8vFy++OILGXTJJXIstKGb9XNy5M+AfAzIQb8EEcmUs1Qb2GY/ExuwybG2bdsm//73v+WCCy6QjIwMASAnnXSSPPXUU1JSUpL8hmOVxXbtYl9PY+UfK0Z4uPGxCLINl0LwoE2bNkn37t1FKSUjbr316AxmyV5A4zUYjA4BcftQQZeaPXu2NGjQQI499lgp+Pzz+Pvq9EP6ernt4mLlfju9r267S1ph0cKF0qxxY6mdkyNT//EPc46HWXWBF+uUWHm46uy2U6c6tz+rVsnhnBz5GJD+nTpJ3YpA7xhArgPkvaws2btokf3pMovRcpZKHrP7+WAv5H+dfvrpJ/nHP/4h55xzjqSlpQkAadWqlTz00EOydOlSfXMSJDr+8cpirOuKnSM8XNzhR9ZjcOcxK1askBYtWkjt2rXlo48+MneoWarrK1nVWHK64WyTNWvWSMeOHSUjPV1ey8yMva+pHg87AwE3NaC90gGRzHZceCGf+dFHUjs7W1ooJcvd1hud7Haczs+J1qWs2rh0oo6selzz8uTg3/8uM7Oy5M+ANKoI9HJycuTSSy+Vt956S3bs2GFv+lJlpJylkletfD64vNz5fGyBkpISGTFihJx++umCirx28skny6OPPiqLFy82f5K5RGUx2vXUznrapR1+ZA8Gdx7y+eefS7169aRZs2ayKNz7aWaD1YUNRFenywK7Fi6UCyp6Gh8EtCnio+1rKhfnAB3PGtzeqNFTnqPtg8s6QP75z39Kenq6dFNKNkXms8LC5I+9WXk32eF1Th/jRHcLXDBEs1r+rDJbZtmKFVI4Z47cfffdkpeXJwAkPT1dfve738nYsWNTGyJnFyN5IJW8auXzwalwUf155MgR+eqrr2TIkCGVi4uHn6EbPnx4aksX6Dn+ydy5s7MOibcPLjqPZI1Un7mrBWAYgH9V/NwewEWJPmfFy+/B3VtvvSWZmZlyyimnyIYNG6r/0cw7Bk43XqIJUg9UQYGUAXJbxYXqCkAOmL2vbj3PiQThgpSoUeHy3vjy8nJ56KGHBIBcePrpsjdWz3ayec6suiCZ7bihUyTa+Z8wQeTjj0XefVfk2WePzsDn4joyFArJggUL5JFHHpGOHTtWNszbt2wp995zj8yaNUsOHjzobCJjlSe95SyVvOrGa54Lrhs7duyQCRMmyPXXXy8NGzas7CDo3bu3jB07tmbbKFl6jn8yz9yFP2dHPR3rfJWVOX4edTFynFxw7XObVIO7yQAeBLCi4udcu5dACL88H9zFyJyhUEiefPJJASB9+/aVnTt3Gt6GGelwlBsaVXap2NcQIKOhrSd1ulLy81dfmfs9bjzP8bigYWGLRI0KO8uCwTxSWloq1157rQCQv/71r1K2YkX858PsuuNm1nb0NritLluR24+2llm4ken2OrKiXK/LzpZ/AHJ+WppkZ2YKAKlTp47069dPXn3lFVk3a5a9dZUZ9Y0b7tyZyYE0HTlyRObPny9PP/20/Pa3v618fq5x48YyYMAAmTx5cs11FmMxUi717mvVbeqZLdNu0fbZjXkrkpHyF5S2gUGpBndFFf8uqfK7ZYk+Z8XL08FdjMx5+OBBufnmmwWADBgwQA4dOmR4G77I4H7et0gR+zo1K0tys7KkVatWsnLlSqdT5xwvXJDMkGg/7erRN1jmduzYIb169RIA8uyzz2rPt8Tq2U7med4k0xVTWZm25ld4valEve0i+vKgE3VVrHR9+qn768goad+XkyMfvfKKDBo0SFq0aFF5V681ILekp8uke++VX7ZutT1dhusbp5+5M5sNdU8oFJLi4mJ58cUXpV+/flK/fv3K89+9e3cZNmyYfPPNN2J4xl2jx9ONx98sbrwrHMlI+QtK28CgVIO7ryvu1i2u+LktgAWJPmfFy9PBXZTMuSsnR84980wBII8//njih4G9kMFT6dH22p2mVETs64JvvpHjjjtO6tevL3PmzEl5e548dl64IJkhUaPCrnJu4HvWrVsnHTp0kKysLHn33Xdr7s+qVdqamcOGVQ/skk13qvk51tDGsjLjn4ts8DlRD3u5bCRIe6i4WIqzs+VFQPoBUq+ioQ9AunTpIvfff79Mnz7d/IlZzDqmXrvmxftOC/J2KBSStWvXyptvvik33XRT5XqJAKRly5by5z//Wd599135+eefU9uvZJ+x9fp1MxovtBWNlD8v138WSjW4Ow/AFwC2AZgAYD2AsxN9zoqXp4O7iMz5IyCdAMlIT5c33ngjqW24LoP7uSfMBuvXr5dTTjlFMjIy9OcJEf8cdy9ckMwSr1Fh1/nUWZ/Mnz9fGjduLA0aNJC5c+fG3ye35MNU8lKiBp8T9bCXy4bBO9VlgMwH5Ok//1nOOeccycrKqgwGTjnlFPnrX/8qb7/9tvzwww/GZkc0mi4/SlRGTSjDZWVlsmjRInnhhRfkyiuvlKZNm1aev4YNG8pVV10lr776qqxduza18xcplXLptSAvUXrdVBfHwjt3KUt5tkwAxwL4I4CLADTS8xkrXp4O7qpkziWAHA9tXaBZ48YltQ1XZnA3pM9rlXSEXbt2ybnnnisAZNiwYfoufm447mbwwgXJLnbkYx355oMPPpDc3Fxp3bq1rDIjMLKLlQGYE+XNy2UjxTvVBw4ckLlz58rTTz8tF1xwgRxzzDGVwULz5s3l6quvlpEjR0phYaHs2bPHvHT5kd5hxwbK8MaNG+WDDz6QoUOHynnnnSd16tSpdmfuhhtukFdeeUW+/fZb40Mtzd63aLyWD/SmV08A6GRdzWfuUmZGcNcZwCUALg+/9HzO7Jeng7uKzPnfrCypA0ieUrJ81CjjQzjcnMGdvrPo9uOj0+HDh2XgwIECQPr37x//OUwR54+7mZy+4ARJgvLywgsviFJKTjvttNSHTNnNygDMqXrGi2UjnOY5c2JPRmHweB45ckSWLVsmL730klx33XXSsmXLymBCKSUdO3aU/v37ywsvvCBfffWV7Nu3L3H6vHRMU5HitWLr1q3y8ccfy5NPPikXX3yxNGvWrPLYp6enS5cuXeT222+XiRMnyo8//mjprtSQbLl0S+eo3rzo9LOiZjJS/oJWVnWIF9wp7e+xKaXGVQR33wEIVfxaRGRg3A9aID8/X4qKiuz+WtO8/tprGHT77Ti1VSvMHDcOzXv1AtLSjG0kFALWrAG2bAGaNQPatze+DausXg106waUlh79XW4usGQJ0KGD/7/fRCKCp59+GsOGDUPfvn3x/vvvo379+tHf7KP9JptFqU/KRTB48GCMHTsWl156KSZOnIhatWo5nVJjQiFg6lRgwACtXOTmAuPHA5dfbk596eZ62C2MnIMUj+e2bdtQVFRU+Vq4cCG2bNkCAFBKoU2bNjj11FOrvU488URkZWXpT4MZ59zpfKPzWrFnzx6sWLGixmvbtm0AtGPasWNH5Ofn4ze/+Q3y8/PRpUsX5+uJZI5vYSFwzjk1f19QAJx9tj1pMlJWzEgv2wy+oJRaJCL5Uf+mI7hbKSInW5Sw8wG8ACAdwOsiMiLe+70a3IkIHn30UQwfPhznn38+pkyZgrp161r/xXZfSKxuUEX7vqr7t3070KtXzfeZVUk74J133sHAgQNx4oknYubMmWjZsmXNN9l93Mm3Dhw4gBtvvBHTpk3D3Xffjeeffx7p6enJbczphqzT36+HF9KYLIcbkJs3b8bChQuxfPnyyuBk9erVKC8vBwBkZGTgxBNPxIknnoh2bdqgbVkZ2v36K9rWr48W//0vMkaMOFqHmlHHuqGerpKG0tJSfJ+djbX33IO1jRtj3fffY+3atVi9ejV+/PHHyo/Url27MiA+5ZRT0L17d3Tr1g3HHHNM6mlxQ963Mp/qPedG0mBGeq0OaMkW8YI7PUMy/w3g5ETvM/qCFtCtA9AGQBaAZYm+x4vDMg8ePCjXX3+9AJC//OUvcvjwYXu+2O9Dh2LNhteunfPDK0w2Z84cqVevnjRt2lQWvf9+7Ek4OGRBHx6r6iqOxy/TpsnpXbqIUkrGjh2b+jbdMOzHbGbmHb8eozAXDhc/ePCgLF++XCZOnChDhgyRSy65RE4++eTKdffCr8z0dGmfmSl/6NVLBg4cKMNuv13+mZkpHwGyGJCfASnPyTF2bbFx+N+hQ4dk/fr18tVXX8mUKVNkzJgxMnjwYLnuuuvkrLPOkubHHVdtfwFI/fr1JT8/X6677joZPny4TJ8+Xb7//ntrnpNzU963Mi3Rznm7dtoQ5ap1iJGyYkZ63TIUlVKCFIdl9gbwEYCtAA4BUFpMKJ1TjDjPAPCEiPyh4udHKoLNZ2J9xmt37nbu3InLLrsMX3zxBYYPH46HH34YSil7vtzvt91j7d8HHwD9+vnuDtbKFStwYd++2L5tG6YAuNBH+2YrN/Seu0nF8Si58UZceOgQNgGYOHgwLnv22dSGzvmx/jE77/jxGFXllf1bvRqhrl2x+eBBrAWwFsC6jAysbdcOP4RC2Lx3L7Zu3YrItlImgEbHHotjmzVDw4YNa7zq16+PWrVqITc3V3uVlCB38GDkQltbKhNaYwrvvAP07Flt2yKCQ4cOobS0FAcOHEBpaWm11/79+/Hrr79Gfe3YsQM7duyosZtZWVlo3rw5mjdvjjZt2qBdu3Zo164d2rZti3bt2qFhw4aWHN6o3JY3rLqLGHmHLC8PuP124O9/r16HdOmivfQej1TTy+ugL8S7c5eh4/PjAPQH8C2OPnNnhuYAfqry80YAp5u4fUf98MMPuPDCC/H9999jwoQJuP7664/+0Y7hCFu2VK8oAO3nLVvcdWFNVqz9y8rSKsREx9YtQ0J0OjkzE9/s3Ys/ArgYwEulpRg0YADQqZO3z6fd52HNmqMXNED71w/HMVlr1uCrG27AJYcPIw1AAYCeL70E3HJL9eNhtDHgx/rH7Lzjx2NUVfv2Wh6JzDPt2zudsuq2bEHawYPIA5AH4GwAOHIEuOoq4IYbgA4dcOS777A1Px+bDh7EZgCbAGzKyMD2vn3xa3k5fv31V3z//fcoKirCr7/+igMHDuj//htvTDrp9erVqxZQtmzZEg0bNkSTJk0qA7nw69hjj7WvczkRt+X9tDTte83+7mbNtHwf3tcBA44GdsDROmTxYmNlJdX0pqVpdXenTtZcez3WvvIjPcHdjyIy3YLvjlbL1LiNqJS6FcCtAHDCCSdYkAzzLVy4EBdddBEOHz6Mzz77DH369Dn6R7t6TCIrFUD7uVkz877DSfH2L1Gl58Veqy1b0PTgQXwB4FoAtwH4obQUz2zahDSvNgSdOA9ua1Q47L1330X/w4dxAoBPALQFoh8Po4GNH+sfs/OOH49RVVY3IM0S6zz06lXZuM446STkvf028nTWVQcPHsSuXbuq33Xbvx+ls2ej9LnnUHr4MMoyM4G//hXIz4+6jezsbOTm5la/+1fxql27NurXr4+MDD1NuBicbIB7Ne8bPWaRHRzp6dHrkK1b7S8rVgW0Xmxf+VGs8ZrhF4CXAUwEcB1MXAoBwBkAPq3y8yMAHon3GS88c/fhhx9KrVq1pFWrVrJy5cqab7BrrLObxrRbIZX9s3qadCue56qS5jJAbqt4TuKaCy+U0tJSc77Dbk6M++ezBiIiEgqF5LnnnhMA8tu0NNme6HgYfX7KzfVPsmXU7Lzj5mMUJLGe3y4rq/m+VOt2s5/ZTHZbTuc9p78/nAYjxy/ZNFf9ngUL/H/94TXWNkhlnTsAb0R5jUv0OR3bzQDwPYDWODqhyinxPuP24O7FF1+UtLQ0yc/Pl61bt0Z/k50Pmft94ohk90/vObCr8tcjYtuhnBx57sYbBYD06tVLtm/fnvp32M2JCRfc0KhwWFlZmdx2220CQK6+6iopnTAh8fFI5oLtxvonlfNvRd5x4zGKx2vp1ctr+2U0L0buX0mJ8w1wvcfcinOTTFm2cn25sjJv5b94XDiRkl+lFNxZ+QJwIYASaLNmDk30frcGd+Xl5XL//fcLALn44ovjL5rKXg3n6TkHTlX+8US5yE2ePFmys7PlxBNPlHXr1pnzPTq+1xROlQWvNeRMtG/fPrnooosEgDz44IPaTHh6jodfguJYea64WN/nA5x3HM8DQT72kYzUndHO2/jxInl57m+AW5Xnkrn2mBW0RObjsjJ/1K1hbOPaJtU7d3kApgH4BcDPAN4HkJfoc1a83BjcHThwQK688koBIHfeeaccOXIk/gecvkCSvnPgZOUfTqPOhsyXX34pDRs2lMaNG8s333xj/LsSpcOmu5EsC9basmWL9OjRQ9LS0uSVV14xvgE/NK5jldHJk725P3ZystHGuqI6I9eaWOdt2DD3N8CtynPJXKutSovfgiGWVdukGtzNAvCnimGUGQBuBjAr0eeseLktuAuFQnL22WcLABk9erSEQiF9H/RDI8nrEp0DJyv/JCrH1atXS5s2bSQ3N1emTZtm7PviceBuJOlk4NitWLFCWrZsKbVr15YZM2bYl0a3idfQ9WpjSq9Uy5qTw63sbAB7oU4ycjzidWi4vQFuVZ5Ldpi5FUGLH4cxeqEM+UCqwd1SPb+z4+W24E5E5O2335b33nvP6WSQ2Zys/JNsyPzyyy/Ss2dPcxahDvPjhccPDOS1WbNmyTHHHCPNmjWToqKi1L/Xyxft8nJtSFrV4zZ8uDZEzc952oy6yck7DInqIbPypR13HcyamEVvOuMNRXZ7WbYqz5kxOYpZx8xvd+7INqkGd7MB3AggveJ1I4DPE33OipcbgzvyKScr/xQCqgMHDshll10mAOSee+5JPEw4EV543EnneXn99dclIyNDOnXqJD/++GNq3+mX4TYlJdqduqFDRYYM0QI7v+fpWPllwQL958/J8x8vv5uZLjtGKpiVViMTkni13Fr9WIAbglsvn59kuOW4+0Cqwd0JAKYD2Fbx3N0HAFom+pwVLwZ3ZLmqFU9Jida7aXcllGID48iRI3LvvfcKALnssstk//79yaclaBcer4jXAVBeLuUrV8rD118vAOQPv/+97N69O/Xv9EugH8Q8HSu/DBtmbN+daphFO2cTJojMm2fu9PJWj1TgJFLGeTntegVhH0WCWfdaKF5wl3AFTBH5EcAlid4XeE4uCGoWP+xDKtyy+GbkwqfhdFQsqJtIeno6xowZg9atW+Pee+9F3759MX36dDRp0sR4WtywELGf82Wy+xZrEeCmTVE6fjxuvuUWTCkvx1/T0/GPG25A5rffAo0apXbs/LIAvBvytN1i5Zfy8viL0UcysvCxmeU28pwdPgzccQewdi0wbJh5+dLqxbWdKkNWLVhtBy+nXS89++iH6+CaNUfbNYD2r5H6h/SLFfWFXwDeAlC/ys8NYMI6d8m8XHvnzg+9EX7Yh1QZnV7ayp42k7Y/bdo0yc3NlTZt2sjq1avNTWOyjOxbqvnSzT2iqexbjM/+Mm2anJGWJgBkJCCh8N+GDEm9TPvlzl0QRcsv4WcNAe0OmJnlxMrrSWQ+HDrUvHxp9XWQZYiS4Zf2GZ/hNxVSHJa5RM/v7Hi5NrjzQ4Xth31IlZHFzT1U0c6fP18aN24sDRs2lC+//NLYh80Ojoweu1TypVvPU/iYzpgh8thj1debMlLmIs5N8SefSJsGDSQHkP9E5uGhQ1Mv0249nqRPebk2hHHYsKPPGgIi7dppQxzNPK9WXk8i6+m8PC1QNSv9VnYIBbEMubmDzSv80j7zy364RKrB3TIADar83BDAt4k+Z8XLtcGdH3oj/LAPqdJb8Xiwglq3bp106NBBsrOzZdKkSfo+ZEVDxOixSyVfuvE8JbqDkmSZ++STT6Re7drSpHZt+SY7u+Y+DxliTplmQ83bouW/Tz81v5xYeT2JVq7btdMCVy/kyyCVoSAGs1bwS/uM+cFU8YI7PQN2RwP4Win1d6XUUwC+BjDSvIGhPhAep19VsuP0QyFg9WqgsFD7NxQyJYkJmbkPYU7tS7LfG37WLXwcYj3rFu+5CZdq06YNvv76a5x22mm49tpr8cQTTyCU6LjEGh+/Zk3yCTF67FLJl248T9GO6d//rv0OMFzmRATPP/88/vjHP6JVixZY2KgRTn/88ep5eNgwLR8nsf0aws+GnH229q/XnvkIuvCza0uWAAUF2r+ZmeaXEyuuJ2HR6ulnngF69PBGvgxSGbLiGhJEVpanSFa226LVP3bPaRAUsaK+qi8AJwO4E8BdAE7W8xkrXq69c2dWb4QZ20m2V9DsHhWnemisfkar6tCmoUOP3nFx+o6QTgcPHpQ//elPAkD69esne/bsif1mK3oLjd5NS+V8uvHOXaxjGn5uyEBePXjwoNx8880CQK644grZt2eP9vl27bQ7dU8/rQ39bNeOvaRBuVuSzH5aUU6srv+Dcj6N0nP9svO4+eWOk9Psak/xzpqnIMVhmW/r+Z0dL9cGdyLmVJqpXmTdNPmEUw1rK7831pC6du3cVQEmOI+hUEjGjh0r6enpcsopp8jatWujb8ctjT63dFiYIdYxLSw0tG9bt26VM888UwDIE088IeXhz0Ueq7IyNoLdmA+skOx+WnV8GIDZK9F5dKIcuLGDzavsKE88X56SanC3OOLndAArE33OipergzszpNrL5aaC6VSPnd3PeuTmGlsI2GoGLuCzZs2SBg0aSIMGDWTWrFkpbctwGu1q9LmtgRnvmOpM66JFi6RFixaSm5sr7733nr3p9yI31YtWSmY/w3luzhytHgvPmul0OaHo4tURic6/E+UgKB0rfsE7rZ4SL7iLOdBVKfWIUmovgM5KqT1Kqb0VP/8C4ENLxogGXarjqt30jJGdY8Tt+t5Yx3f/fveMGTfwjMO5556LhQsX4vjjj8f555+PsWPHhjtwNFaNj7fzmRO3Pd8S65gC2hqL3boB55yj/Tt1ao3nHcaNG4czzzwTAPDVV1/hyiuvtHsPvMdN9aKZIp+N2bzZ2H6G1/Xs1g3o2xfo00d7rxfXzwqCqucrWh2RKJ87UQ74jJW3ONVuI/PFivrCLwDPJHqPXS/f37lLtZcrVs9ccbG16Y7Gq8/cxeOFOwBJ9Lzt2bNH+vXrJwDk2muvjf8cXpBZeRcwQd4qLS2VW265RQDIueeeK7/88ot53+13Xii3RkWr5z77zNh++vG4eFmi+qW4OLU7czzflAjvtHoKUhyW2TvaK9HnrHj5PrgTSa0BGa1gPvOMyPTpsbdj9Zo+TgyJs+p7vVDxJXkBLy8vl+HDh0taWpp06NBBvv32W5sS7BFWn/s4QfkPP/wgPXr0EAAydOhQOXLkiDnfGRReKLdGxVoOwMh6dRyC5R56npebPDn++XLjM3fkPW57lIFiihfcKe3vsSmlPqryYw6A0wAsEpG+5t5DTCw/P1+Kiors/lpvWbMGePttbaiGiDZl9I4d2nCIDh2qvzc8zCM8jC889T+HTcQWCmnHeMsWbaiCmUOYzNh2Mue0yvcWbNiA6x56CHv27MGrr76K/v37p75ffrB6tTYMquqwptzc6OWqKr3nNMb2P3nhBdzw0EMIhUJ4++23cfHFF5u3T0FiZbl1QmGhNjQv0rx5QKNG+vYz2TztFWadczvyTqJzsXo1MHEiMHJk/POVKK1+KwdEAaaUWiQi+VH/GCvqi/UC0ALAu0Y/Z8YrEHfuUmWkN5bDNNzDzF5VIz1vUb5382uvSZ8+fQSA/OUvf5HS0tKkd8s3krnLYeScRry3LCdHhl1xhSilpEuXLrFnNKVgMqPu9vOdHLP2za5jlKh+KSjQlt0ZPrx6WsaP98f5IiLDkMqduyiRogKwXEQ6pRZzGsc7dzoY6Y2N1ftbUKBNQEH2caoXPcb3Hlm4EMPeeQcjRoxAt27dMGnSJJx44onWpcPtkjk/Rj9T0au+YckS3DByJL5avBg333wzXnrpJdSqVcvc/SFvM3qHPtYdG7/eyTGrPrWrXtZz565bN+DYY7VzrpR2nvr3186ZV/k1/xHZIN6du4SlSCn1D6XU/1W8XgTwJYBlZieSTNK+vXaRD894FL7oR7sAcGYk54VnvFu50pkZ/WLMoJaxbRueeeYZfPTRR9iwYQO6deuGf/3rXzDaGaRL5Kx/ETNEuoKRchVmdHa6tDS8t3w5ugwahOVr1mDChAl44403GNhRTUZmIYw3y6LbZpM1i56yp6fesWuGyUT1S/jvO3YAw4cDzz8PdO4MtG1rbjrslGj2T3KeF67NFF2sW3rhF4CbqrxuAPDbRJ+x6sVhmTrpHZbn52E5XlD1+A8d6tpF3zdu3CjnnnuuAJB+/frJtm3bzPt+L+VBow+aGxg6t3fv3srZME877TRZt26dNftAwRPE4feJ9llvvWPnsUtUv/htoguzjq3fjotbeOnaHFBIcbbMHACnAjgFQE6i91v58m1w52TlxIrROVUvbtGep3DR0hHl5eUyevRoycrKkmaNG8t/n33WnPzi5wu8zmP7xRdfSJs2bUQpJQ8//LAcPnzYoQSTLwVxVsxEZU9vvcMGrnXMyJc8P9YJYqeQxyQV3AHIAPAcgO0AFgFYAmBbxe8yY33OypcvgztWTsEVeXHLyxMZMkRk6lR3Lh1RXi5LR46Uk5USADIwPV12vvlmaun0+wW+6rEtLhYpKak8zvv37pV77rlHAEibNm3kiy++iP95twSt5C1ubqQ5tRSPkXqHZTCxZI6RGfnSzXnb64LYKeQxyQZ3YwC8DqBuld8dA+A1AC/E+pyVL18Gd6ycqgvShdRr574ivaWAPAxIOiDNAPnw5ZdT3qbvL/ARAeiXWVnSrmlTASB33nmn7Nu3L+FnXBW0kne4NR85mS4v1BluoWe4aDLn0YzzbzQACVL7Qo94x4NlxPWSDe7WANpsmhG/TwewJtbnrHz5Mrhj78hRbm2EWMVr+xuRV4sA6QwIALn22mvl559/Nr5NJy7wTqi4UG4H5JaKY9ZKKZnz5psJP8OLK6XMjY1aJ/O31+pep+g5Tqmcx3C+nDdPZMECkTlzjOVPI9/Nc16dFxa9d2O95SLJBnclyfzNypcvgzs24I4K4rHwUuUV5fwcysmRp+6+WzIzM6VevXrywgsvSFlZmbHtpnoMPJBvQnPmyDhAGlXc8RwMyN5EAajZQauX8hr5n9OdMiwPiempW1M9j6kEEUY+64HrhK30HA+n54NwOrh0uXjBXbx5j1cqpQZE/lIpdSOAVTon46REkpli3Q5OTIFr17TTbuKlqcij5NWst9/GsDFjsHz5cpx22mm455570L17d8ydO1f/dqMdAyP5z61lqMKyZcvQ58EHMRDAiQAWAxgJoE6iZUfMXKrErdOOc6ptd7LjvDi9FI+X6l6n6Lkmp3oe16w5ul5jePsDBmi/T8TIkiBBbF/Eo+d4OFlGUskXFPfOXXMA8wEUAhgNYBSALwAsANA81uesfPnyzp2I+3oQneoxYc+a+8XJq6FQSKZOnSonnHCCAJDrrrsuuSn9k8l/bitDIvLjjz/KgAEDRCklDRs2lNcHDZLynBxj+2RWOXRj2WLPrDvZdV54/t1P792dVM6jXXdw3VgHOsntx8PpO/segBSXQugL4C4AdwP4XaL3W/nybXDnNk4Vel7sfWH//v3y6KOPSk5OjmRmZsodd9whWzZt0h98uf2ik8CuXbvk4YcflpycHMnOzpYHHnhAdu7cmVwAalbQ6sYLpcfPs2/ZeV5c2ClDVei9JqdyHu3Kb35rX6Radtx+PHh9SCil4M5NL9cGd367QDnZEPTbsQywTZs2yaBBgyQjI0NqZWfLIxkZskPPRcSj+W/nzp3y1FNPScOGDQWA3HDDDbJ+/Xrr0mqEGy+Ubgw4gyRWXud5cT87r5NWf5edQYZf2hdmHTM3Hw+3B58uwODOSn7MgG5pCLq54gk6A+dmzaefynXp6QJAagNyLyDrs7Nj5yeP3Tn+5Zdf5JFHHpG6desKAPnjH/8oRUVF1qbVKDfWU26pZ4IoXn7geXE3N5blVPkpWLVDUMqoH86VhRjcWcmPhcwNFw83pIGiM3puKu4ELAekPyAZ0GaMvP53v5PFixenvn2zGCzLy5Ytk0GDBklubq4opeSqq66SJUuWWJvGVKQ67Xi0baVy0WUZd068vM7z4m5+bHNYqWpdVVLij7zNu+skDO6s5ddC5nSPCS9g7hXt3LRrpwUMOhZD/RGQv2VkSJ1atQSA/OY3v5F//vOfsmvXrqOfcSL/6SjLpaWlMn78eDnjjDMEgGRnZ8vNN98sxcXF1qfPDGY03M1s/DtdzwRVorzul/Pil/2oyq9tDitE1lXDhvmjXcH2EUn84I5z/6bK6emcreL0NNGctti9Is9NXh4wcCDQp0/0afYjlipokZuL0e++i59++gljxoxBaWkpBg0ahGbNmqF///6YNWsWysrLrc1/0aZ6j1GWy5s0QUFBAf7617+iefPmGDBgALZv347Ro0dj06ZNeOONN9CxY0dz02cVM6aXNnOKaqfrmaBKdN1y+ryYsRSDW5f/SJXb2hxuWM4kVhoi66pQyB/tCpcv/0MuECvqs/IF4CoA3wEIAcjX+zlX3rnjEBZrsGcqOXp6qlPtzY48N0OGpLQYaigUkoULF8ptt90m9erVEwBSv3596d+/v7z33nuyffv2ZI5EbLHKbFlZ5e/3ADI1K0v+3LevNG3aVHtesHZtue6662T27NlS7tXybUavP+8ceJ+V1y23zOLn12uIm9ocbkhLtDRMny5SXCwydarI0KEieXna34YO9XaeqFq2iou1YaZ+uitNhsBtwzIBnASgA7Q19Lwd3In4c+iH09xw0UiWU/lBzzGL9p4JE7TnsIxMzx851MWkxv6BAwfkww8/lJtvvrly1kmllHTv3l3+9re/yaRJk+SHH36QUChkeNuVIhp9IUB+ysmRD19+WR4YPFh6dukimRkZAkCOOeYYueqqq2Ty5Mmyb9++5L/TLcxo8Pq10Rw0VtRTZtTbZuUvP3dCuKXN4Ya6IDINeXkizzxTPQ8OH679PtrfvNSu8GqbiCwRL7hT2t+doZQqBDBYRIr0vD8/P1+KinS9lfwgFNKGVWzZog05ad/e/cO2wkOBwkNBwsMlLr/c+rSvXq0NPao67CQ3F1iyRBtaFe89990HjBmjP61Vz03t2tqQzHjfm4QjR45g4cKFmD17NmbPno358+fj0KFDAIAGDRqgY8eO6NixI9q2bYvjjz8exx9/PJo0aYLatWujdu3ayM7ORnl5OcrLy3Hw4EHs3LEDv377LX5Zvhzrly7F+qIirN2/H8sB/FrxnVlZWfjNb36Ds846C+effz7OPPNMZGZmJr0PrmNG/nQyj3uNF+uwVOipgxIpLNSGUUYqKNCGidqZForPrHNlZhqGDNGuZbGucZMna+Vw61ZvlUnmZ4qglFokIvnR/pZhd2KIdAs/9+GliivW80idOlm/H/GeUwx/d6z3KGUsrVXPTSikNe4jG/spjv/PyMjAGWecgTPOOAPDhg3D4cOHsWLFCsyfPx/Lly/HqlWr8Mknn2Dr1q1Jbf+4OnXQOisLVxw+jC6Zmejy5pvocdllyI18nsVP0tK0IKxTp+QDDjO2EQRBDIL11EGJhJ8pi2zEGn2mLPxcksn1ElVh1rkyMw3ha1lVpaVAfr4WCIXrKq88Jx1mRtmiwLAsuFNKzQbQNMqfhorIhwa2cyuAWwHghBNOMCl1RBaxswKOvCvQvHniC22si3H4Dn4yabWpsZ+VlYXu3buje/fu1X5fWlqKLVu2YMuWLdi2bRv279+P/fv349ChQ8jIyEB6ejqyduxAwyeeQMPDh9EIwAkAapWXA4MHG7tj6QdmdJp4sePFbk529DjFjMa+WUFZrHoJ0O6CsGMidW4IoCPTkJ4ePQ+efLK3y50bAmnyDA7LJDKTXUMnYt0VyM4Grrkm9p2CaJ8bNgx4+WVg40b/DvOINXxo6lTtos8GHpnNDUPW7GbW3UqrhrM6dTfVz8Nzje5brPencoyqfrZ5c2DZMv/dMU+Ud/2cxyiqeMMyGdwRmcmuxkOsIHLxYm1YSrwKvupF4PBh4I47gLVr/XMRjIbPK5Ddgprn3NzIdOKcBHF4biyxjkW/fsAHHxg7RvHymZvzYCriBcbMY4HjuuBOKXUZgH8AaAxgF4ClIvKHRJ9jcEeeYMeFxay7Aman1a0XVSsufm7dV3IHvze43JL/jaTDibupQQ3yo4l1LL74wtikXH4vW0YxjwWS6yZUEZFpAKY58d1ElrPjeSSzxt+bmVY3X3DNfi7Q6L66pSFM9vHzxDNuKetG0+HEc0ucCOOoWMdi40ZjxyiIz7PGwzxGEXxwlSEKoPBD5OGZHd0wE1ysC+6aNfo+HwppPZCFhdq/oZC56QsHsmefrf2bSiPUyL6GG6Dduml3Dbp10342e//IfczMc26Salm3Oh2LFkWvR5yoN8MBZVVBnQgj1rHIyzN2jOIFM0HEPEYRfHKlIQqY8F2BJUu0IUVLljh/hyyVC67XAiAj+2p1Q9jqoJgoklsa17HS8dFH0esRJ+pNN3bEOSXWsejWrebvX3316PNkkRjMVMc8RhG4zl0qog21Ajj8iuzhtunoEw15ijc00WvDbKrua16eltb0dG1B91Coepm3csiMW4bHUbC4ZVr2WOkoL9f+H60esbve9PPwXKPiHYvLLwdOPRVYvhxYsUJbjHzHjuj1mRuWYHAT5jGKJCKeefXo0UNco7xc5L33RHJzRQDt3/feE5k+vebvysudTi2R9WKVifLy+H8TESko0H4f+SoosCfdq1Zp37Vqlb7yGt6fdu1Ehg+PX+ZXrTr69/ArN1f7faqs3DZRLInKs5PpGD5cJC/P/nqEUmekPkum3ibyEQBFEiNecnQpBKNcNVtmrNmJBg8G/v736r/jjEUUFLHuziWazcup2b703PmKdYd+3Trtd+efHz/dVt5dC+JaauQObpkkqGo6atcGrr9eW9oljNdg72B9RqRbvNkyec82WbGGWkWODw/yQ74UPLEmkEj0jI5TzwyUlMR/Hi7as4AzZ2q/69IF+OyzxM8eWfmcj9XPnvB5PorFLZPFVE1Hjx7AM8/w2SOv4rN0RKZgcJesWJVQ5AWOFRNR4ou2ExMdhELa8x3xgrNozwIuXFj9d3oaI1Y1hK0Mir02yQ2RGyeaSlWQOlg4MQiRKTihSrJiPdCbnX30AW9WTEQaPQ/AG5nowIwhYWvWAN99F39iiGh3HEOho7976y1g2DBtKLYTZd7KB+m9NskNEeC+iaZSEbQJkzgxCJEpGNwlK1YlBGi9hayYiI4y86JtVoNnyxZg3Liawdmrrx4ty9Fm40tPP/q7jRuBl1/WnrXt2RNo29b+Mm9VY5YL4xI5K4gdLH4KzokcwuAuFbEqIVZMFARG756ZddE2q8HTrJk21fbLLwP33QcopaWxZ8+j+xHtjmN+fvXf7dgBdO6sTazip44ct0x3TxRU7GChoHDLBE0+weCOiIxzcriQWQ2eqoHb8OFH96Ft26PviXeH3u9Dh7iWFJGz2MFCQRC04cc24FIIRGSck0sXLFoE9OljzneztzA+Hh8i57DRS0HgVHvC4+IthcA7d0RkXLy7Z+3bWxMQhBs6jzxi3iQmfL4jPh4fIudwghEKAg4/Nh2DOyIyLtZwoaZNretprvqsXfg5ufR04OKLtfWt2OAhoni8eCeaHSzkdxx+bDqX12pE5Eqx1iNKT4+/KHgqqvbubdyoPSf3978D+/e7q4EWpHWpiLzCzHUbWcaJzMP1DU3HO3dEZFys4UJz51o3vMILvXt8RobIncyaZZdlnMhcHH5sOh45IkpOeLjQ2Wdr/6alHQ3AqjIrAPNC716sBqQZdy6JKHnxnusxwuoyzruCFETR2hOUNB49oqCwo9FgZQAW7t1bsgQoKND+dVtvuVkNSCIyl1kdT1aWcTOHjhJRYHFYJlEQ2DWUyOrhFUYmF3Bi8gQvDB0l0suLE5DEYta6jVaWcbOGjhJRoHm0liYiQ+wcLuiG4RVO9YB7YegokR5+u4tk1p1/K8s47/wTkQm4iDlREBQWag20SAUFWhDmN04uiuqnux0UXFxYODaryjiPORHpFG8Rc7Y43IoPVZOZrJzoxI2c7AF3w51LolTxLlJsVpVx3vknIhOw1eFGfhsOQ84LWqMhaMEskdlYhuznhUmjiMj1OCzTjTg0g6wQpOGCXIsqWOebzMcyZA6WQyKyQLxhmZwt043iDYdhcEfJMjLTpFsk2zAK+qKobJhTqoJehszAckhEDuCdOzfinTsiNoxSwTqEyHksh0RkEU6o4jVBez6KKBo7l2/wG06GQeQ8lkMicgCHZboRh8O4C5+ZcAaHJyePi6kTOY/lkIgcwBaqW3E6dXfgzKXO4Wx9yePdfyLnsRwSkQP4zB1RPHxmwjl85i41vONM5DyWQyKyAGfLJEoWhwY6h8OTU+PF2VGJ/IblkIhsxuCOKB4+M+EsNoyIiIiIdGMXOFE8fGaCrBYKacN/Cwu1f/k8JxERESXJkTt3SqmRAC4GcBjAOgB/EpFdTqSFKC4ODSQr8blCIn/hM3ZE5DCnapxZAE4Vkc4ASgA84lA6iBLjzKVkFa7lR+QfnF2ZiFzAkVaqiHwmIkcqfvwGQJ4T6SAichQXOSbyD3bWEJELuOEWxEAAnzidCCKyEZ8z03AtPyL/YGcNEbmAZcGdUmq2UmpFlNelVd4zFMARABPibOdWpVSRUqpo27ZtViWXiOzCoUtHccIeIv9gZw0RuYBji5grpW4CMAjA70TkgJ7PcBFzIh/gwvDVcQIGIn/gBElEZBPXLWKulDofwEMA+ugN7IjIJ7gwfHVcy4/IWnZ1oHB2ZSJyAacWMX8RQDaAWUopAPhGRAY5lBYishMXhiciu9h9N42dNUTkMKdmy2wnIi1EpGvFi4EdUVDwOTMisgtnsCSigHHqzh0RBZVZQ5fc+KyaG9NEFGQcBm4O1m1EnsGSSUT2S3VheDfOuOnGNBEFnZkzWAZ1CRfWbUSewuCOiLzHjUOt3JgmoqAzaxh4kAMc1m1EnsLgjoi8x4rFglPtlecCxkTuEx4GvmQJUFCg/ZvMZCpBDnBYtxF5CoM7IvIesxcLNqNXngsYE7lTqsPAgWAHOKzbiDyFwR0ReY/ZM26a0SvPWUCJ/CvIAQ7rNiJP4WyZROQ9Zi8WbMaMelzAmMi/wgFO5Hp5QQhwWLcReYoSEafToFt+fr4UFRU5nQwi8pvVq7WhmJELqy9ZwunSiUjD5QCIyCWUUotEJD/a33jnjois4aWGkJt75b10HIn8LPzsHjt8iMjFGNwRkfnCE5REBkvJzFJnB7cOO/LacaRgYgcEEZFrcFgmEZmPwxzNweNIbscOCCIi28Ublsmal4g0qa7zVlWQpw03E48juV2Q138jInIhBndEZM46b1UFedpwM/E4ktuxA4KIyFUY3BGR+b3vXBfJHDyO5HbsgCAichVOqEJE5qzzVpVbJyjxGh5Hcjs3zzRLRBRADO6I6Gjve+TEHan0vnPacHPwOJKbsQOCiMhVWPsSEYf/EVHywh0QZ5+t/cvAjojIMbxzR0Te6H3nWlpEREREcTG4IyKNm4f/ObWWFgNKIiIi8hC2UojI/ZxYS8vs5SGIiIiILMbgjojcz4m1tLg4MxEREXkMgzsicj8n1tLi4sxERETkMQzuiMj9nJjNk4szExERkcdwQhUicj8nZvPk4sxERETkMQzuiMgb7J7N0wvLQxARERFVweCOiCgWNy8PQURERBSBwR0ReRvXoiMiIiICwAlViMjLuBYdERERUSUGd0TkXVyLjoiIiKgSgzsi8i6uRUdERERUicEdEXkX16IjIiIiqsTgjoi8y4nFzYmIiIhcirNlEpF3cS06IiIiokqOBHdKqb8DuBRACMAvAG4Wkc1OpIWIPI5r0REREREBcG5Y5kgR6SwiXQHMAPCYQ+kgIiIiIiLyBUfu3InInio/1gYgTqSDiMgyXFydiIiIbOZYS0Mp9bRS6icAN4B37ojIT7i4OhERETlAiVhz00wpNRtA0yh/GioiH1Z53yMAckTk8RjbuRXArQBwwgkn9NiwYYMVySUiMs/q1VpAV3UNvtxcYMkSPhtIREREKVFKLRKR/Gh/s2xYpoicq/OtEwHMBBA1uBOR1wC8BgD5+fkcvklE7hdvcXUGd0RERGQRR4ZlKqWqLkJ1CYBVTqSDiMgSXFydiIiIHODUOncjlFIdoC2FsAHAoGQ3VFZWho0bN+LgwYOmJY6CKScnB3l5ecjMzHQ6KeR14cXVBwzQ7thxcXUiIiKygVOzZV5h1rY2btyIunXrolWrVlBKmbVZChgRwY4dO7Bx40a0bt3a6eSQ13FxdSIiInKAU3fuTHPw4EEGdpQypRSOPfZYbNu2zemkkF9wcXUiIiKymS+6kRnYkRmYj4iIiIjIy3wR3BEREREREQUdgzsTpKeno2vXrjjllFPQpUsXPP/88wglWKx4/fr1mDhxok0pJCIiIiIiv2NwZ4Lc3FwsXboU3333HWbNmoWPP/4YTz75ZNzPMLgjIiIiIiIzBS+4C4WA1auBwkLt3wR32Ixq0qQJXnvtNbz44osQEaxfvx5nnXUWunfvju7du+Prr78GADz88MP48ssv0bVrV4wZMybm+4iIiIiIiPTw/GyZhoRCwNSpNdeeuvxyU6cob9OmDUKhEH755Rc0adIEs2bNQk5ODtasWYPrrrsORUVFGDFiBEaNGoUZM2YAAA4cOBD1fURERERERHoEK7hbs+ZoYAdo/w4YoK1FZfJ05SICQFtk/c4778TSpUuRnp6OkpKSqO/X+z4iIiIiIqJoghXcbdlyNLALKy3Vfm9icPf9998jPT0dTZo0wZNPPonjjjsOy5YtQygUQk5OTtTPjBkzRtf7iIiIiIiIognWM3fNmmlDMavKzdV+b5Jt27Zh0KBBuPPOO6GUwu7du9GsWTOkpaXh7bffRnl5OQCgbt262Lt3b+XnYr2PiIiIiIhIj2AFd+3ba8/YhQO88DN37duntNnS0tLKpRDOPfdc/P73v8fjjz8OALj99tvx1ltvoWfPnigpKUHt2rUBAJ07d0ZGRga6dOmCMWPGxHwfERERERGRHir8bJgX5OfnS+QkI8XFxTjppJP0byQU0p6927JFu2PXvr2pk6mQtxnOT0RERERENlJKLRKR/Gh/C9Yzd4AWyHXoYPoEKkRERERERE7iLSsiIiIiIiIfYHBHRERERETkAwzuiIiIiIiIfIDBHRERERERkQ8wuCMiIiIiIvIBBncm+Pnnn3H99dejTZs26NGjB8444wxMmzbN1jSsX78ep556atTfT5w4Maltjh07FgcOHKj8uU6dOgk/8+abb6Jx48bo2rVr5WvlypUoLCxEvXr1cOGFF+LgwYPo2LEjvv3228rPPffccxg0aBAAoFWrVgCA8vJy9OjRA3Pnzq183+9//3u89957Se1P2AMPPICmTZti1KhRKW2HiIiIiMhNGNylSETQr18/9O7dG99//z0WLVqESZMmYePGjTXee+TIEdvTFy+4S5SeyOBOr2uuuQZLly6tfJ188skAgLPOOgsff/wxcnJyMHbsWNx+++0QEWzatAmvvvoqnnnmmWrbSU9Px8svv4w77rgDZWVlePfdd6GUwlVXXWU4TVWNHDmyMpAkIiIiIvKL4K1zZ7I5c+YgKyurWrDQsmVL3HXXXQC0O1kzZ87EwYMHsX//fvznP//BwIED8f3336NWrVp47bXX0LlzZzzxxBOoU6cOBg8eDAA49dRTMWPGDADABRdcgF69euHrr79G8+bN8eGHHyI3NxeLFi3CwIEDUatWLfTq1Stq+h5++GEUFxeja9euuOmmm9CgQYNq6XnssccwatSoyu+68847kZ+fjz179mDz5s0455xz0KhRIxQUFAAAhg4dihkzZiA3NxcffvghjjvuuKSO2/nnn49x48Zh/PjxmDlzJp544gk0aNCgxvtOP/10nHnmmXjiiScwceJEzJo1S/d3XHrppbjiiiswYMAAvPrqq5g7dy4mTJiQVHqJiIiIiNzOV8Hdvffei6VLl5q6za5du2Ls2LEx//7dd9+he/fucbfxv//9D8uXL0fDhg1x1113oVu3bvjggw8wZ84cDBgwIGGa16xZg3fffRf/+te/cPXVV+P999/HjTfeiD/96U/4xz/+gT59+uCBBx6I+tkRI0ZUC97efPPNaukpLCyM+rm7774bzz//PAoKCtCoUSMAwP79+9GzZ088/fTTePDBB/Gvf/0Ljz76aI3PTp48GfPmzau2/9GMHTsWp512Gtq3b4/+/fvH3P9nnnkGLVq0wL333ot27dpV/v6aa67B6tWra7z/b3/7GwYMGIDXXnsNv/3tb9G6dWuMHj0a33zzTczvICIiIiLyOl8Fd25wxx13YN68ecjKysLChQsBAOeddx4aNmwIAJg3bx7ef/99AEDfvn2xY8cO7N69O+42W7duja5duwIAevTogfXr12P37t3YtWsX+vTpAwDo378/PvnkE11prJoeI7KysnDRRRdVpiPWXbRrrrkGL774YsLtHX/88ejbt2/lNmOZO3cu6tWrhxUrVlT7/eTJk+N+7rjjjsNTTz2Fc845B9OmTUtqn4mIiIiIvMJXwV28O2xWOeWUUyqDNQB46aWXsH37duTn51f+rnbt2pX/F5Ea21BKISMjA6FQqPJ3Bw8erPx/dnZ25f/T09NRWloKEYFSKqk0V01PvO+NlJmZWfmd6enppjxDmJaWhrS02I9+7t+/Hw8++CDmzJmDgQMH4uOPP8aFF14IIPGdOwD49ttvceyxx2Lz5s0pp5WIiIiIyM04oUqK+vbti4MHD+KVV16p/F28SUh69+5d+dxXYWEhGjVqhGOOOQatWrXC4sWLAQCLFy/GDz/8EPd769evj3r16lUOf4z1LFndunWxd+/emNtp2bIlVq5ciUOHDmH37t34/PPPdX/WDk899RSuvvpqdOzYES+//DLuu+++ygB08uTJ1SZuCb/Cgd2CBQvwySefYMmSJRg1alTCY0pERERE5GUM7lKklMIHH3yAL774Aq1bt8Zpp52Gm266Cc8++2zU9z/xxBMoKipC586d8fDDD+Ott94CAFxxxRX49ddf0bVrV7zyyis48cQTE373G2+8gTvuuANnnHEGcnNzo76nc+fOyMjIQJcuXTBmzJgaf2/RogWuvvpqdO7cGTfccAO6detW+bdbb70VF1xwAc455xw9h6LS5MmTqy2F8PXXXxv6fNjKlSsxbdo0DB06FID2/OMf/vCHmMe2qkOHDuEvf/kLxo0bh+OPPx6jR4/GwIEDo945JSIiIiLyA+Wlxm5+fr4UFRVV+11xcTFOOukkh1JEehUWFlab2CWeVq1aYf369ZamJ3J20jDmJyIiIiJyM6XUIhHJj/Y33rkjW2RlZWHFihWVz8s56YEHHsA777xT7dlDIiIiIiKv89WEKuReZ555pu67cffee6+laRk5ciRGjhxp6XcQEREREdmNd+7IdawO7oiIiIiI/MgXwZ2Xnhsk92I+IiIiIiIv83xwl5OTgx07drBhTikREezYsQM5OTlOJ4WIiIiIKCmef+YuLy8PGzduxLZt25xOCnlcTk4O8vLynE4GEREREVFSHA3ulFKDAYwE0FhEtiezjczMTLRu3drchBEREREREXmMY8MylVItAJwH4Een0kBEREREROQXTj5zNwbAgwD4sBwREREREVGKHAnulFKXANgkIsuc+H4iIiIiIiK/seyZO6XUbABNo/xpKIAhAH6vczu3Ari14sd9SqnV5qTQVI0AJPXMIKWMx945PPbO4bF3Do+9s3j8ncNj7xwee+e49di3jPUHZfcSAkqpTgA+B3Cg4ld5ADYDOE1EttqaGJMopYpEJN/pdAQRj71zeOydw2PvHB57Z/H4O4fH3jk89s7x4rG3fbZMEfkWQJPwz0qp9QDyk50tk4iIiIiIiHywiDkRERERERG5YBFzEWnldBpM8JrTCQgwHnvn8Ng7h8feOTz2zuLxdw6PvXN47J3juWNv+zN3REREREREZD4OyyQiIiIiIvIBBncmU0oNVkqJUqqR02kJCqXU35VSy5VSS5VSnymljnc6TUGhlBqplFpVcfynKaXqO52moFBKXaWU+k4pFVJKeWomL69SSp2vlFqtlFqrlHrY6fQEiVJqnFLqF6XUCqfTEiRKqRZKqQKlVHFFfXOP02kKCqVUjlJqgVJqWcWxf9LpNAWNUipdKbVEKTXD6bQYweDOREqpFgDOA/Cj02kJmJEi0llEugKYAeAxh9MTJLMAnCoinQGUAHjE4fQEyQoAlwOY63RCgkAplQ7gJQAXADgZwHVKqZOdTVWgvAngfKcTEUBHANwvIicB6AngDuZ72xwC0FdEugDoCuB8pVRPZ5MUOPcAKHY6EUYxuDPXGAAPAuCDjDYSkT1VfqwNHn/biMhnInKk4sdvoK1bSTYQkWIRWe10OgLkNABrReR7ETkMYBKASx1OU2CIyFwAvzqdjqARkS0isrji/3uhNXSbO5uqYBDNvoofMytebN/YRCmVB+CPAF53Oi1GMbgziVLqEgCbRGSZ02kJIqXU00qpnwDcAN65c8pAAJ84nQgiizQH8FOVnzeCjVwKEKVUKwDdAMx3OCmBUTEscCmAXwDMEhEee/uMhXbDJuRwOgxzfCkEL1FKzQbQNMqfhgIYAuD39qYoOOIdexH5UESGAhiqlHoEwJ0AHrc1gT6W6NhXvGcotOE7E+xMm9/pOfZkGxXld+xFp0BQStUB8D6AeyNGy5CFRKQcQNeK59mnKaVOFRE+d2oxpdRFAH4RkUVKqbMdTo5hDO4MEJFzo/1eKdUJQGsAy5RSgDY0bbFS6jQR2WpjEn0r1rGPYiKAmWBwZ5pEx14pdROAiwD8Tri2iqkM5Huy3kYALar8nAdgs0NpIbKNUioTWmA3QUSmOp2eIBKRXUqpQmjPnTK4s95vAVyilLoQQA6AY5RS74jIjQ6nSxcOyzSBiHwrIk1EpFXFouwbAXRnYGcPpVT7Kj9eAmCVU2kJGqXU+QAeAnCJiBxwOj1EFloIoL1SqrVSKgvAtQCmO5wmIksprcf63wCKReR5p9MTJEqpxuEZqJVSuQDOBds3thCRR0Qkr6JNfy2AOV4J7AAGd+QPI5RSK5RSy6ENjeVUzfZ5EUBdALMqlqL4p9MJCgql1GVKqY0AzgAwUyn1qdNp8rOKiYPuBPAptEklpojId86mKjiUUu8C+B+ADkqpjUqpPzudpoD4LYD+APpW1PFLK+5mkPWaASioaNsshPbMnaem5CdnKI6iIiIiIiIi8j7euSMiIiIiIvIBBndEREREREQ+wOCOiIiIiIjIBxjcERERERER+QCDOyIiIiIiIh9gcEdERBSHUqqFUuoHpVTDip8bVPzc0um0ERERVcXgjoiIKA4R+QnAKwBGVPxqBIDXRGSDc6kiIiKqievcERERJaCUygSwCMA4AH8B0E1EDjubKiIiouoynE4AERGR24lImVLqAQD/BfB7BnZERORGHJZJRESkzwUAtgA41emEEBERRcPgjoiIKAGlVFcA5wHoCeA+pVQzZ1NERERUE4M7IiKiOJRSCtqEKveKyI8ARgIY5WyqiIiIamJwR0REFN9fAPwoIrMqfn4ZQEelVB8H00RERFQDZ8skIiIiIiLyAd65IyIiIiIi8gEGd0RERERERD7A4I6IiIiIiMgHGNwRERERERH5AIM7IiIiIiIiH2BwR0RERERE5AMM7oiIiIiIiHyAwR0REREREZEP/H94IGcrP9nYNAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,6))\n", + "sns.scatterplot(x,y, color = 'red', label = 'Data')\n", + "sns.lineplot(x,mu, color = 'black', label = \"Ground truth E[Y|X=x]\")\n", + "plt.yticks(np.arange(-4,4,1))\n", + "plt.legend()\n", + "plt.xlabel(\"X\")\n", + "plt.ylabel(\"Outcome y\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note: If you’d like to run the code below on a different dataset, you can replace the dataset above with another `data.frame` of your choice, and redefine the key variable identifiers (`outcome`, `covariates`) accordingly. Although we try to make the code as general as possible, you may also need to make a few minor changes to the code below; read the comments carefully." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Key concepts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The prediction problem is to accurately guess the value of some output variable $Y_i$ from input variables $X_i$. For example, we might want to predict “house prices given house characteristics such as the number of rooms, age of the building, and so on. The relationship between input and output is modeled in very general terms by some function\n", + "\n", + "$$\n", + " Y_i = f(X_i) + \\epsilon_i\n", + "$$ (true-model)\n", + "\n", + "where $\\epsilon_i$ represents all that is not captured by information obtained from $X_i$ via the mapping $f$. We say that error $\\epsilon_i$ is irreducible.\n", + "\n", + "We highlight that {eq}`true-model` is **not modeling a causal relationship** between inputs and outputs. For an extreme example, consider taking $Y_i$ to be “distance from the equator” and $X_i$ to be “average temperature.” We can still think of the problem of guessing (“predicting”) “distance from the equator” given some information about “average temperature,” even though one would expect the former to cause the latter.\n", + "\n", + "In general, we can’t know the “ground truth” $f$, so we will approximate it from data. Given $n$ data points $\\{(X_1, Y_1), \\cdots, (X_n, Y_n)\\}$, our goal is to obtain an estimated model $\\hat{f}$ such that our predictions $\\widehat{Y}_i := \\hat{f}(X_i)$ are “close” to the true outcome values $Y_i$ given some criterion. To formalize this, we’ll follow these three steps:\n", + "\n", + "+ **Modeling:** Decide on some suitable class of functions that our estimated model may belong to. In machine learning applications the class of functions can be very large and complex (e.g., deep decision trees, forests, high-dimensional linear models, etc). Also, we must decide on a loss function that serves as our criterion to evaluate the quality of our predictions (e.g., mean-squared error).\n", + "\n", + "+ **Fitting:** Find the estimate $\\hat{f}$ that optimizes the loss function chosen in the previous step (e.g., the tree that minimizes the squared deviation between $\\hat{f}(X_i)$ and $Y_i$ in our data).\n", + "\n", + "+ **Evaluation:** Evaluate our fitted model $\\hat{f}$. That is, if we were given a new, yet unseen, input and output pair $(X',Y')$, we'd like to know if $Y' \\approx \\hat{f}(X_i)$ by some metric.\n", + "\n", + "For concreteness, let’s work through an example. Let’s say that, given the data simulated above, we’d like to predict $Y_i$ from the first covariate $X_{i1}$ only. Also, let’s say that our model class will be polynomials of degree $q$ in $X_{i1}$, and we’ll evaluate fit based on mean squared error. That is, $\\hat{f}(X_{i1}) = \\hat{b}_0 + X_{i1}\\hat{b}_1 + \\cdots + X_{i1}^q \\hat{b}_q$, where the coefficients are obtained by solving the following problem:\n", + "\n", + "$$\n", + " \\hat{b} = \\arg\\min_b \\sum_{i=1}^m\n", + " \\left(Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{iq}^q b_q \\right)^2\n", + "$$\n", + "\n", + "An important question is what is $q$, the degree of the polynomial. It controls the complexity of the model. One may imagine that more complex models are better, but that is not always true, because a very flexible model may try to simply interpolate over the data at hand, but fail to generalize well for new data points. We call this **overfitting**. The main feature of overfitting is **high variance**, in the sense that, if we were given a different data set of the same size, we'd likely get a very different model.\n", + "\n", + "To illustrate, in the figure below we let the degree be $q=10$ but use only the first few data points. The fitted model is shown in green, and the original data points are in red." + ] + }, + { + "cell_type": "code", + "execution_count": 503, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Outcome y')" + ] + }, + "execution_count": 503, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAGDCAYAAACMZtMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABoTklEQVR4nO3dd3hUVf7H8c9JgSSQBEgCBEKoIXQIoIiA9KJioQm6CqiIXX/q6urqruuqrG3taxcEFUGKgg0FpdgAQXoJoQWCgUCAkEAgZc7vj0kQFZCSyZ3yfj3PPMO9c2fmkwxJ5n7nnO8x1loBAAAAAAB4QpDTAQAAAAAAgP+i8AAAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAD4A2PMSGPMdx54XGOMGWeM2WeMWVzWj3+aWcKNMZ8YY3KMMVOMMX8xxnx1mo/xd2PMW57KCACAPwhxOgAAAIHGGLNVUg1Jxcfsfsdae5szicpVZ0m9JSVYaw86nGWw3K9DjLW2qGTf+6U3GmOspCRr7caS7W6S3rPWJpQeY60dU25pAQDwURQeAABwxiXW2jlOh3BAXUlbnS46GGOCS7JsOKboAAAAPICpFgAAeBFjzKvGmKnHbD9pjPm6ZIpCVWPMp8aY3SVTFT41xiQcc+w8Y8xjxpgfjDF5JdMIYowx7xtjDhhjfjLG1DvmeGuMucMYs9kYs8cY87Qx5rjvDYwxTYwxs40xe40xqcaYK07yNdQyxswsOXajMeaGkv3XS3pLUseSfI8c575BxpiHjDHpxpgsY8wEY0x0yW2zjDG3/e74FcaYgX+W0RjzTsn39nNjzEFJCyT9U9LQkizXHzu9xBizoOSuK0puHyHpC0m1SrbzSr7Ofxlj3iu5T72S7+kIY8y2ku/pg8dkCDfGjC957dYZY+4zxmSc6PsIAIC/oPAAAIB3uUdSq5KT4C6Srpc0wlpr5f67PU7uT+oTJeVLevl39x8m6RpJtSU1lPRjyX2qSVon6eHfHT9AUntJbSVdJum63wcyxlSSNFvSREnVJV0p6RVjTPMTfA0fSMqQVEvu6QxjjDE9rbVvS7pJ0o/W2srW2t9nkaSRJZfukhpIqnzM1zix5LlLczUr+V58dooZr5L0uKRIST0ljZE0uSTL28eGsNZeUPLP1iW3j5d0oaRfSrYrW2t/OcHX31lScslz/NMY07Rk/8OS6pV8Xb0lXX2C+wMA4FcoPAAA4IyPjTH7j7ncIEnW2kNyn5A+K+k9SbdbazNKbsu21k6z1h6y1ubKfRLd9XePO85au8lamyP3J/SbrLVzSqYTTJGU8rvjn7TW7rXWbpP0vI45sT9Gf7mnR4yz1hZZa3+WNE3uosJvGGPqyH3i/Tdr7WFr7XK5Rzlcc4rfl79IetZau9lamyfpAUnDjDEhkj6S1MYYU/eYY6dba4+cYsYZ1trvrbUua+3hU8xzJh6x1uZba1dIWiGpdcn+KySNsdbuK3lNX/RgBgAAvAY9HgAAcMblJ+rxYK1dbIzZLPcn9x+W7jfGREh6TlI/SVVLdkcaY4KttaWNKncd81D5x9mu/Lun237Mv9PlHqXwe3UldTDG7D9mX4ikd49zbC1Je0sKI8c+bvvjHHs8tUqOP/a+IZJqWGt3GGM+k3tUx5Ml16NPI+OxX6sn7Tzm34f06/e81u8ylFceAAAcxYgHAAC8jDHmVkkVJf0i6b5jbrpH7iH8Hay1UZJKpwOYs3i6Osf8O7HkOX9vu6T51toqx1wqW2tvPs6xv0iqZoyJ/N3j7jjFPL/IXUQ49r5F+rWA8oGkK40xHSWFS5p7GhntKWY4kbO9f6akhGO265zoQAAA/AmFBwAAvIgxprGkx+SebnGNpPuMMW1Kbo6Ue9TCfmNMNf2xX8OZuLekaWUdSXdKmnycYz6V1NgYc40xJrTkcs4xvQuOstZul/SDpP8YY8KMMa3k7lPx/u+PPYEPJN1ljKlvjKmsX/swlK488bnchYl/l+x3nW7G07BL7n4Mx27HlDa7PAMfSnqg5PtdW1IgLJ8KAACFBwAAHPLJMasj5BljPirpY/Ce3H0XVlhr0yT9XdK7xpiKcvdgCJe0R9JCSbPKIMcMSUslLZf0maS3f39AybSJPnJPbfhF7qkET8o9KuN4rpS7ieIvcvdleNhaO/sU84yVe3rEAklbJB2WdPsxWY5Imi6pl9yNJM8046n4l6TxJT04rrDWrpe7MLK5ZN/xpqWczL/lbrq5RdIcSVMlHTmLfAAA+ATjbpINAAACjTHGSkqy1m50OksgMsbcLGmYtfb3DUIBAPArjHgAAAAoB8aYeGNMJ2NMkDEmWe6eHR85nQsAAE9jVQsAAIDyUUHS65LqS9ovaZKkV5wMBABAeWCqBQAAAAAA8BimWgAAAAAAAI+h8AAAAAAAADzGp3o8xMbG2nr16jkdAwAAAAAAHGPp0qV7rLVxx7vNpwoP9erV05IlS5yOAQAAAAAAjmGMST/RbUy1AAAAAAAAHkPhAQAAAAAAeAyFBwAAAAAA4DE+1ePheAoLC5WRkaHDhw87HcXjwsLClJCQoNDQUKejAAAAAABwSny+8JCRkaHIyEjVq1dPxhin43iMtVbZ2dnKyMhQ/fr1nY4DAAAAAMAp8fmpFocPH1ZMTIxfFx0kyRijmJiYgBjZAQAAAADwHz5feJDk90WHUoHydQIAAAAA/IdfFB6cFhwcrDZt2qh58+Zq3bq1nn32WblcrpPeZ+vWrZo4cWI5JQQAAAAAwBkUHspAeHi4li9frjVr1mj27Nn6/PPP9cgjj5z0PhQeAAAAAACBIPAKDy6XlJoqzZvnvv6TkQmnq3r16nrjjTf08ssvy1qrrVu3qkuXLmrbtq3atm2rH374QZJ0//3369tvv1WbNm303HPPnfA4AAAAAAB8mc+vanFaXC5p+nRp+HApP18KD5cmTJAGDpSCyq4G06BBA7lcLmVlZal69eqaPXu2wsLClJaWpiuvvFJLlizRE088oWeeeUaffvqpJOnQoUPHPQ4AAAAAAF8WWIWHtLRfiw6S+3r4cKllSyk5uUyfylorSSosLNRtt92m5cuXKzg4WBs2bDju8ad6HAAAAADA84pdxVqdtVp7Du1R3Sp11ahao19vdLnc55eZmVJ8vJSUVKYfZvubwCo8ZGb+WnQolZ/v3l+GhYfNmzcrODhY1atX1yOPPKIaNWpoxYoVcrlcCgsLO+59nnvuuVM6DgAAAADgOYXFhXph0Qv674//1c68nUf3p9RM0TN9nlGPut3KZSS9Pwms70p8vPs/xbHCw937y8ju3bt100036bbbbpMxRjk5OYqPj1dQUJDeffddFRcXS5IiIyOVm5t79H4nOg4AAAAAUD6yDmap87jOunf2vWpVo5XeG/Ce5o2Yp5cufEk5R3LUa0Iv/feTB44/kj4tzdnwXiywRjwkJbkrUb+vTCUlndXD5ufnq02bNiosLFRISIiuueYa3X333ZKkW265RYMGDdKUKVPUvXt3VapUSZLUqlUrhYSEqHXr1ho5cuQJjwMAAAAAeN6OAzvU691eSt+frilDpmhws8FHb+tar6uuS7lOIz8eqb8uf0oRzaWbj23J54GR9P7ElPYi8AXt27e3v2+4uG7dOjVt2vTUH8TH5+Kc9tcLAAAAADip/Yf3q8NbHZSZm6nPrvpMXep2Oe5xRa4iXf52L325fb6+Gyt12FFyQ3i4tGxZQBcejDFLrbXtj3eb75xxl5WgIPd/hm7d3Nc+VHQAAAAAAJQtl3Xpmo+u0eZ9m09adJCkkKAQvXvVNNUKi9XIgUYFwSqzkfT+jLNuAAAAAEDA+s+3/9GnGz7V832fP2nRoVTVSjF6ddA4rY+xem7saGnFCqlFC2nBAik11T3KHr9B4QEAAAAAEJBW7Vqlf83/l4a1GKZbzrnllO93UXJ/XZx0sZ7I/FD7f/5BattW6t5dSklxr3hB8eE3HCs8GGPCjDGLjTErjDFrjDGPnOlj+VKfirMRKF8nAAAAAHhasatYoz4ZpSphVfTShS/JGHNa93+8x+Paf3i/XnhrFCtc/AknRzwckdTDWttaUhtJ/Ywx553ug4SFhSk7O9vvT8qttcrOzlZYWJjTUQAAAADA573y0ytavGOxXuz3omIjYk/7/q1rtlb/ah31v5Qi5R+7XmTpChc4yrHlNK27UpBXshlacjnt6kFCQoIyMjK0e/fusoznlcLCwpSQkOB0DAAAAADwafvy9+lf8/+l3g16a1iLYWf8OPe0vknd9/6oD1pK1y0r2Rke7l5BEUc5VniQJGNMsKSlkhpJ+p+1dtHpPkZoaKjq169f5tkAAAAAAP7p8W8f1778fXqmzzOnPcXiWF07/UVNf/i73jjnF123zLLCxQk42lzSWltsrW0jKUHSucaYFr8/xhgz2hizxBizJBBGNQAAAAAAPGfLvi16afFLGtlmpFrVaHVWj2WCg3XDBXdrUS2r1Z+OlZYtkwYOlIJYx+FYXvHdsNbulzRPUr/j3PaGtba9tbZ9XFxceUcDAAAAAPiRxxY8piATpEe7P1omj/eX1lcryATpw4gtUnIyRYfjcHJVizhjTJWSf4dL6iVpvVN5AAAAAAD+bcu+LZqwcoJGtx2t2lG1y+Qxq1eqrq51u2rK2il+v+jBmXKyFBMvaa4xZqWknyTNttZ+6mAeAAAAAIAfG/PtGAWZIN3X6b4yfdzBzQZr/Z71Wrt7bZk+rr9wrPBgrV1prU2x1ray1raw1v7bqSwAAAAAAB/jckmpqdK8ee5rl+ukh2/L2aZ3VryjG9reUGajHUoNbDpQRkZT104t08f1F0w+AQAAAAD4FpdLmj5dSkmRund3X0+fftLiw0uLXpK1Vveef2+Zx6lZuaa61O2iqesoPBwPhQcAAAAAgG9JS5OGD5fy893b+fnu7bS04x6eeyRXb/78pgY3G6y6Vep6JNKgpoO0Omu1Nu3d5JHH92UUHgAAAAAAviUz89eiQ6n8fPf+4xi3fJxyjuTorvPu8likvg37SpLmbJ7jsefwVRQeAAAAAAC+JT5eCg//7b7wcPf+3yl2FeuFRS+oY0JHdUjo4LFIjWMaKyEqQXO2UHj4PQoPAAAAAADfkpQkTZjwa/EhPNy9nZT0h0M/2fCJNu/brLs73u3RSMYY9W7QW99s+UbFrmKPPpevofAAAAAAAPAtQUHSwIHSsmXS3Lnu64ED3ft/57mFz6ludF1d3uRyj8fq1aCX9ubv1fKdyz3+XL6EwgMAAAAAwPcEBUnJyVK3bu7r4xQd1mSt0YL0Bbr1nFsVEhTi8Ug96/eUJM3ePNvjz+VLKDwAAAAAAPzS60tfV4XgCro25dpyeb4alWuoZfWWNJj8HQoPAAAAAAC/c6jwkN5d+a4GNR2k2IjYcnvenvV76vvt36uwuLDcntPbUXgAAAAAAPidKWumaP/h/bqx3Y3l+rwd63TU4aLDWrFrRbk+rzej8AAAAAAA8DuvL31dyTHJuqDuBeX6vB0TOkqSFmYsLNfn9WYUHgAAAAAAfmXVrlX6MeNHjW43WsaYcn3uhKgE1YqsReHhGBQeAAAAAAB+5Y2lb6hCcAWNaD2i3J/bGKPzEs7Tjxk/lvtzeysKDwAAAAAAv3Gk6Igmrp6oAU0GKCYixpEMHRM6avO+zco6mOXI83sbCg8AAAAAAL/xWdpn2pu/VyPbjHQsw3kJ50miz0MpCg8AAAAAAL8xfsV41axcU70a9HIsQ7v4dgoJCqHwUILCAwAAAADAL+w+uFufp32uq1terZCgEMdyhIeGq03NNlq0Y5FjGbwJhQcAAAAAgF+YuGqiilxFGtGm/JtK/l5KzRQt37lc1lqnoziOwgMAAAAAwC9MWDlBbePbqkX1Fk5HUZuabbQ3f68yDmQ4HcVxFB4AAAAAAD5vddZq/Zz5syNLaB5Pm5ptJEkrdq1wNogXoPAAAAAAAPB545ePV0hQiK5scaXTUSRJLau3lCQt37nc2SBegMIDAAAAAMCnFbmK9N6q93RR0kWKqxTndBxJUmTFSDWq1ogRD6LwAAAAAADwcXM2z9HOvJ1eM82iVJuabRjxIAoPAAAAAAAfN2n1JEVXjNbFSRc7HeU3WtdorY17Nyr3SK7TURxF4QEAAAAA4LOOFB3Rx+s/1uVNLlfFkIpOx/mN0gaTq7JWORvEYRQeAAAAAAA+68tNXyrnSI6GNh/qdJQ/KC08BPp0CwoPAAAAAACfNXnNZFULr6ZeDXo5HeUPakfWVrXwalq5a6XTURxF4QEAAAAA4JPyC/M1M3WmBjYZqNDgUKfj/IExRk1jm2rdnnVOR3EUhQcAAAAAgE/6PO1z5RXkaWgL75tmUapJbBOt203hAQAAAAAAnzN5zWTFRcSpW71uTkc5oaaxTbX70G5lH8p2OopjKDwAAAAAAHxOXkGePt3wqQY3G6yQoBCn45xQ07imkqT1e9Y7nMQ5FB4AAAAAAD7n0w2fKr8o3ytXszhW01h34SGQ+zxQeAAAAAAA+JzJayYrvnK8Oid2djrKSSVGJyosJCyg+zxQeAAAAAAA+JQDRw7oi7QvNKTZEAUHBTsd56SCg4KVHJPMiAcAAAAAAHzFjPUzdKT4iFevZnGspnGBvaQmhQcAAAAAgE+ZvGay6kTV0XkJ5zkd5ZQ0jW2q9P3pOlR4yOkojqDwAAAAAADwGfvy9+mrTV/piuZXKMj4xiltk9gmsrLakL3B6SiO8I1XCQAAAAAASR+t/0iFrkKvX83iWEdXtgjQBpMUHgAAAAAAPmPymslqULWB2tdq73SUU9aoWiNJ0sa9Gx1O4gwKDwAAAAAAn7D74G59vflrXdHsChljnI5zysJDw1U7srY27qPwAAAAAACA15q+brqKbbGGtRjmdJTT1qhaI23au8npGI6g8AAAAAAA8AmT1kxSckyyWtVo5XSU09awakNt2kfhAQAAAAAAr5SZm6n5W+draPOhPjXNolTDag21M2+n8grynI5S7ig8AAAAAAC83tS1U2VlNbSF76xmcazSBpOb9212OEn5o/AAAAAAAPB6k9dMVovqLdQsrpnTUc5Iw6oNJQXmyhYUHgAAAAAAXm17znZ9v/17DW3um6MdJPdUC0kB2WDSscKDMaaOMWauMWadMWaNMeZOp7IAAAAAALzXlLVTJMmnCw9VwqooJjwmIBtMhjj43EWS7rHW/myMiZS01Bgz21q71sFMAAAAAAAvM3nNZKXUTFFSTJLTUc5Kw2oNmWpRnqy1mdban0v+nStpnaTaTuUBAAAAAHifLfu2aPGOxT492qFUoC6p6RU9Howx9SSlSFrkcBQATnC5pNRUad4897XL5XQiAAAAeIkP13woSbqi+RUOJzl7jao10racbSooLnA6SrlyvPBgjKksaZqk/7PWHjjO7aONMUuMMUt2795d/gEBeJbLJU2fLqWkSN27u6+nT6f4AAAAAEnuaRbn1j5X9avWdzrKWWtYtaFc1qWt+7c6HaVcOVp4MMaEyl10eN9aO/14x1hr37DWtrfWto+LiyvfgAA8Ly1NGj5cys93b+fnu7fT0pzNBQAAAMelZadp2c5lfjHNQpIaVG0gyT19JJA4uaqFkfS2pHXW2medygHAYZmZvxYdSuXnu/cDAAAgoE1eM1mSNKTZEIeTlI26VepKktJz0h1OUr6cHPHQSdI1knoYY5aXXC5yMA8AJ8THS+Hhv90XHu7eDwAAgIA2ec1kdarTSXWi6zgdpUzUiqylYBOsbTnbnI5Srpxc1eI7a62x1ray1rYpuXzuVB4ADklKkiZM+LX4EB7u3k7y7aWSAAAAcHbW7l6r1Vmr/WaahSSFBIWodlTtgBvxEOJ0AAABLihIGjhQatnSPb0iPt5ddAhyvPctAAAAHDR59WQZGQ1uNtjpKGWqbnRdpe+n8AAA5SsoSEpOdl8AAAAQ8Ky1mrxmsrrW66r4yDOYgutyuZuVe+EHW3Wr1NWC9AVOxyhX3vGdBwAAAACgxMpdK5WanXpm0yy8fLn2utF1tePADhW5ipyOUm4oPAAAAAAAvMrkNZMVbII1qOmg07+zly/XXje6roptsXYc2OF0lHJD4QEAAAAA4DVKp1n0qN9DcZXiTv8BvHy59sToREkKqJUtKDwAAAAAALzG0syl2rxv85mvZuHly7XXrVJXkgJqZQsKDwAAAAAArzF59WSFBIVoQNMBZ/YAXr5ce+mIh0Ba2YJVLQAAAAKRF3d8BxC4rLX6cO2H6tOwj6qFVzuzB/Hy5dojQiMUFxHHiAcAAAD4MS/v+A4gcC3MWKhtOdvOfJpFqdLl2rt1c197SdGhVN0qdSk8AAAAwI95ecd3AIFr0upJqhhcUZc3udzpKB5VN7puQE21oPAAAAAQaLy84zuAwFTsKtaHaz/UxY0vVlTFKKfjeFRidKK25WyTtdbpKOWCwgMAAECg8fKO7wAC04L0BdqZt1PDmg9zOorH1Y2uq/yifGXnZzsdpVxQeAAAAAg0Xt7xHUBgmrR6kiqFVtLFjS92OorH1Y6qLUnacWCHw0nKB6taAAAABBov7/gOIPAUFhdq6rqpuqzJZYoIjXA6jsfVjiwpPOTuUOuarR1O43kUHgAAAAJRacf35GSnkwCA5myeo735ewNimoX064iHjAMZDicpH5S1AQAAAACOmrRmkqqEVVGfhn2cjlIu4ivHy8gEzFQLCg8AAAAAAMccLjqsj9Z9pIFNBqpiSEWn45SL0OBQ1ahcQztyKTwAAAAAAOBRX6R9odyCXA1rERjTLErVjqxN4QEAAAAAAE+btGaS4iLi1L1+d6ejlKvaUbWZagEAAAAAgCflFeTpk9RPNKTZEIUEBdbaB4x4AAAAAADAwz5J/UT5RfkBN81Cchce9ubvVX5hvtNRPI7CAwAAAADAEZPWTFLtyNrqlNjJ6SjlLiEqQZICYtQDhQcAAAAAQLnbl79PX6R9oaHNhyrIBN6pae2o2pIUEH0eAu/VBQAAAAA47qP1H6nQVRiQ0ywk91QLiREPAAAAAAB4xPur3lfDqg3VvlZ7p6M4ghEPAAAAAAB4SMaBDM3dMldXt7paxhin4zgiqmKUKleoHBAjHgJrvRIAAAAAgGe5XFJampSZKcXHS0lJUtBvP/P+YNUHsrK6utXVDoX0DglRCco4kOF0DI9jxAMAAAAAoGy4XNL06VJKitS9u/t6+nT3/mO8t+o9nZdwnhpVa+RQUO9QO7J2QIx4oPAAAAAAACgbaWnS8OFSfr57Oz/fvZ2WdvSQlbtWauWulbq6ZWCPdpDcfR7o8QAAAAAAwKnKzPy16FAqP9+9v8R7K99TSFCIhrYYWs7hvE985XjtOrhL1lqno3gUhQcAAAAAQNmIj5fCw3+7LzzcvV9SsatYE1dN1IWNLlRsRKwDAb1Lzco1VVBcoP2H9zsdxaMoPAAAAAAAykZSkjRhwq/Fh/Bw93ZSkiRp3tZ52pG7I+CbSpaqWbmmJCkzL/NPjvRtrGoBBLpT6DoMAAAAnJKgIGngQKlly+O+v3xv1XuKqhilSxpf4nBQ71BaeNiZt1PN4po5nMZzKDwAgay063BpA6DSivTAgRQfAAAAcGaCgqTkZPflGIcKD2na2mka0myIwkPDT3DnwHJs4cGfcWYBBLJT6DoMAAAAlIVPUj9RbkEu0yyOQeEBgP87ha7DAAAAQFl4d+W7SohKUNd6XZ2O4jWiK0arYnBFvy88MNXCjyzfuVwfrvlQy3YuU87hHNWKrKWW1VtqYNOBalmjpdPx4I1Kuw4fW3w4puswAAAAUBayDmZp1sZZuqfjPQoyfP5dyhij+Mh4vy888Ir7ga37t6r/xP5KeT1FT//wtHbl7VJEaIRW7FqhR+Y/olavtVLHtztq/tb5TkeFt/mTrsMAHOZySamp0rx57muXy+lEAACckfdWvqdiW6wRbUY4HcXr1Kxc0+8LD4x48HFzNs/RkClDVOQq0pgeY3Rj+xtVLbza0duzD2XrvZXv6bmFz6nb+G76S8u/6H8X/U/RYdHOhYb3+JOuwwAcRPNXAICfsNZq7LKx6lC7g1+v3HCmalauqU17Nzkdw6N45+LDvtr0lS6eeLHqRNXRiptW6IEuD/ym6CBJMRExuvO8O7X21rX65wX/1KTVk9T+zfZasXOFQ6nhdUq7Dnfr5r7mhAbwDjR/BQD4iSW/LNGa3Wt0bZtrnY7ilWpW8v8RD5xh+KjUPam6YsoVahLbRPNHzleDqg1OenxEaIQe6f6I5o2cp0OFh9RpbCfN2TynnNICAE4bzV8BAH5i3PJxCgsJ07AWw5yO4pVqVq6p3Yd2q7C40OkoHkPhwQflHsnVZZMuU2hwqGYOm6mq4VVP+b6dEztryQ1L1KBqA130/kWavm66B5MCAM5YafPXY9H8FQDgY/IL8/XB6g80qOkgpnufQOmSmlkHsxxO4jkUHnzQP+b+QxuyN2jKkCmqW6Xuad8/PjJe80fO1zm1z9HQqUP12YbPPJASAHBWaP4KAPADH6//WPsP79d1Kdc5HcVrlRYe/Hm6BYUHH/Nz5s96afFLuqn9TepWr9sZP07V8Kr6/KrP1aZmGw36cJDmbZ1XZhkBAGWgtPnrsmXS3LnuaxpLAgB8zLjl41SvSr2zOnfxdxQe4FVc1qWbP7tZsRGxGtNzzFk/XnRYtGb9ZZYaVG2ggZMHakP2hjJICQAoMzR/BQD4sG052zRn8xyNbD1SQYa/YScSH+meRknhAV7hk9RPtHjHYj3Z60lVCatSJo8ZExGjT6/6VMFBweo/sb/25u8tk8cFAAAAENjGLx8vK6sRbUY4HcWr1ahUQxKFB48xxow1xmQZY1Y7mcMXWGv16IJH1bBqQ13d6uoyfewGVRvoo6EfKT0nXYM+HKSC4oIyfXwAAAAAgaXYVayxy8eqZ/2eqlelntNxvFrFkIqqGlaVwoMHvSOpn8MZfMKXm77U0syleqDzAwoJCinzx++c2FlvXfKW5m2dp/vn3H9mD+JySamp0rx57muXq0wzAgAAAPANX236Slv3b9XodqOdjuITalauqcw8/10y29HCg7V2gSTG9p+CMd+OUZ2oOrqm9TUee45rWl+j2865Tc8tfE7T1k47vTu7XNL06VJKitS9u/t6+nSKDwAAAEAAen3p66peqboub3K501F8QvVK1VlOE85ak7VG3277Vnd2uFMVgit49Lme6fOMzql1jq6beZ027t146ndMS5OGD5fy893b+fnu7bQ0zwQFAAAA4JUyDmTokw2f6Lo213n8/MVfVK9UXbsP7XY6hsd4feHBGDPaGLPEGLNk927/fSFO5q2f31JoUKiGtx7u8eeqGFJRU4ZMUbAJ1uAPB+tw0eFTu2Nm5q9Fh1L5+e79AAAAAALG2z+/LWutbmh3g9NRfAYjHhxmrX3DWtveWts+Li7O6Tjl7kjREU1YOUEDmg5QXKXy+frrVqmrCQMmaMWuFXrw6wdP7U7x8VJ4+G/3hYe79wMAAAAICEWuIr3585vq07CPGlRt4HQcnxEXEae9+XtV5CpyOopH/GnhoWS0wa3GmKrlEQi/9fH6j7U3f69GpYwq1+ft37i/bm5/s55d+KzmbJ7z53dISpImTPi1+BAe7t5OSvJsUAAAAABe4/O0z7Ujd4duan+T01F8SvVK1SVJew7tcTiJZ5zKiIdhkmpJ+skYM8kY09cYY8riyY0xH0j6UVKyMSbDGHN9WTyuP3lnxTuqG11XPRv0LPfnfqbPM2oS20QjPh6h7EPZJz84KEgaOFBatkyaO9d9PXCgez8AAACAgPDaktdUK7KW+jfu73QUn1I6un33Qf9sL/CnZ4XW2o3W2gclNZY0UdJYSduMMY8YY6qdzZNba6+01sZba0OttQnW2rfP5vH8zb78fZqzeY6GNh+qIFP+J/ARoRGaOHCidh/crRs/vVHW2pPfIShISk6WunVzX1N0AAAAAALG1v1bNWvjLI1KGaWQoBCn4/iU0hEP/trn4ZTODI0xrST9V9LTkqZJGizpgKRvPBcNM1NnqshVpMHNBjuWISU+RY/1eEzT1k3TuOXjHMsBAAAAwLu9tuQ1GWM0qm35ThP3B3ERJSMe/HRli1Pp8bBU0nOSfpLUylp7h7V2kbX2v5I2ezpgIJu2bpoSoxPVvlZ7R3P89fy/qlu9bvq/Wf+nbTnbHM0CAAAAwPscKjykN5a+oQFNBqhOdB2n4/gcRjxIQ6y1Pa21E621R469wVo70EO5Al7ukVx9tekrDWwyUGXUUuOMBZkgjb10rFzWpetnXv/nUy4AAAAABJT3Vr6nfYf36c4OdzodxSdVDa+qYBMc0D0eGNXggM/SPtOR4iMa1GyQ01EkSfWr1tczfZ7RnM1z9MbSN5yOAwAAAMBLWGv14qIXlVIzRZ0TOzsdxycFmSDFRsQG9IgHOODTDZ8qLiJO59c53+koR93Y7kb1atBL93x1j7bs2+J0HAAAAABe4OstX2vN7jW6o8Mdjo/W9mVxleICt8cDyp/LujR782z1adjHkdUsTsQYo7cueUtBJkjXz7xeLutyOhIAAAAAh7246EXFRcRpWIthTkfxadUrVQ/cEQ/GmAhjzD+MMW+WbCcZY1iU1YNW7FyhrINZ6tOwj9NR/qBulbp6tu+zmrt1rl796VWn4wAAAABw0Ka9m/Tphk91U/ubFBYS5nQcnxYXEdgjHsZJOiKpY8l2hqTHPJYI+mrTV5Kk3g16O5zk+K5PuV59G/bVfXPu06a9m5yOAwAAAMAhLy1+SSFBIbq5/c1OR/F5AT3iQVJDa+1TkgolyVqbL4mJOx701eav1LJ6S8VHxjsd5biMMXrr0rcUGhSq62Zex5QLAAAAIADlHM7R2GVjdUXzK7z23MWXxEXEaf/h/SooLnA6Spk7lcJDgTEmXJKVJGNMQ7lHQMADDhYc1HfbvlPfhn2djnJSCVEJer7f81qQvkAvL37Z6TgAAAAAytnrS19XbkGu7jrvLqej+IXqlapLkvYc2uNwkrJ3KoWHhyXNklTHGPO+pK8l3efRVAFsQfoCFRQXeGV/h98b0XqELk66WPfPuV9p2WlOxwEAAPAeLpeUmirNm+e+djFCFP7lcNFhPbfwOfVu0FvtarVzOo5fiKsUJ0l+Od3iTwsP1trZkgZKGinpA0ntrbXzPBsrcC1IX6CQoBB1SuzkdJQ/ZYzRG5e8oYohFTVyxkgVu4qdjgQAAOA8l0uaPl1KSZG6d3dfT59O8QF+ZcKKCdqZt1P3d77f6Sh+o3TEw+6D/tdg8lTXaqwtKVhSBUkXGGMGei5SYPtu+3dqF99OEaERTkc5JbUia+mlC1/SD9t/0H9//K/TcQAAAJyXliYNHy7l57u38/Pd22mMEIV/KHYV66nvn9I5tc5R93rdnY7jN+Ii/HfEQ8ifHWCMGSuplaQ1kkrLtFbSdA/mCkiHiw5r8Y7Fuv3c252Oclr+0vIv+mj9R/rH3H/owkYXqmWNlk5HAgD4qMLiQu0+tFv7D+/XocJDRy+SFGyCFRwUrArBFRRVMUrRFaNVJayKoipGyRj6XsOLZGb+WnQolZ/v3p+c7EwmoAxNWzdNm/Zt0lO9n+L3bxk6OuLBD5fU/NPCg6TzrLXNPJ4EWvrLUhUUF6hzYmeno5wWY4xeu/g1tdjWQsM/Hq5FoxapQnAFp2MBALzU7oO7tXzncm3I3qCNezdq476N2rJvi3bm7VR2fvZpP17F4IpKiEpQYnSi6kTXUd3oumoa21Qta7RUckyyQoNDPfBVACcRHy+Fh/+2+BAe7t4P+DhrrZ78/kk1jmmsy5IvczqOX6kSVkUhQSGBOeJB0o/GmGbW2rUeTxPgvt/+vSSpUx3v7+/we3GV4vRG/zd0+eTL9ej8R/Voj0edjgQAgcXlcg/jzsx0n9wkJUlBpzqj0nOOFB3RT7/8pHlb52nRjkValrlMO3J3HL29UmglNarWSEkxSbqg7gWqUamGalSuoaphVVWpQiVFhEYoLCRMRkbFtljFrmIVFBco50iOcg7naP/h/dp1cJe25WzT9gPbNXfLXO3I3XF0qefQoFAlxyYrpWaKzq9zvjrV6aTm1ZsryDj/vYEfS0qSJkz4dbpFeLh7OynJ6WTAWZuzeY5+zvxZb13yloKDgp2O41eMMYqNiFX2odMvwnu7Uyk8jJe7+LBT7mU0jSRrrW3l0WQB6Ltt3yk5JvloN1Nfc1mTyzSyzUiN+W6M+jfurw4JHZyOBACBobSR3e9PcgYOLPfig7VWy3cu12dpn2ne1nn6YfsPyi9yf+rbNLaputXrppSaKUqJT1HT2KaqWblmmQ/TLSguUOqeVK3KWqXVWau1KmuVvtr0ld5d+a4kKbpitDrW6ahe9XvpwqQL1TS2KUOFUbaCgtw/fy1bel0xEDhbj3/7uGpF1tLVra52OopfigmP0Z58/1tO01hrT36AMRsl3S1plX7t8SBrbbpno/1R+/bt7ZIlS8r7acuFy7oU93ScBjQZoLcufcvpOGcs53COWr3WSmEhYVp24zKfaZIJAD4tNdXdNf/3w7qXLSuX+eSFxYVakL5AM1JnaEbqDG3L2SYjo9Y1W6tr3a7qVq+buiR2UUxEjMeznIi1Vpv3bdb327/X99u+17fbvtW6PeskSYnRierXsJ8ubnyx+jTso7CQMMdyAoA3m7tlrnpM6KEX+r2gOzrc4XQcv9TtnW6yspo/cr7TUU6bMWaptbb98W47lREP26y1M8s4E34ndU+q9ubv9clpFseKDovWuMvGqeeEnnpgzgN64cIXnI4EAP7PgUZ21lotzVyqCSsm6IPVH2jPoT0KCwlTn4Z99HDXh9W/cf+jTbK8gTFGDas1VMNqDTW89XBJ0racbZq1cZa+2PiFJq6eqDd+fkORFSJ1afKluqL5FRQhAOAY1lo9PO9h1YqspdHtRjsdx2/FRsQeLYz7k1MpPKw3xkyU9IncUy0kSdZaVrUoQz/98pMk+cX0hB71e+iOc+/Qi4tf1GVNLlOP+j2cjgQA/q0cG9llHczSO8vf0fgV47V291pVDK6oy5pcpmHNh6lPwz6qVKFSmT+npyRGJ2p0u9Ea3W60CooLNHfLXE1ZO0Ufrf9I7696X5EVIjW42WBd2+ZadU7szHQM4HR4ad8ZnLmvt3ytb7d9q5cvfJmirAfFRsRqz6HAnGox7ji7rbX2Os9EOjF/nmpx5xd36u1lbyvn/hy/aNJyqPCQUl5PUX5hvlbdvErRYdFORwIA/1UOPR6W/rJULy5+UZNWT1JBcYE6JnTUiNYjdEXzK1Q1vGqZPIe3KCwu1DdbvtHkNZM1Ze0U5RXkKalakq5tc62Gtx6u2lG1nY4IeDcv6juDsmGtVedxnbUtZ5s23r5RFUMqOh3Jbz30zUN64rsnVPiPQp8reJ9sqsWfFh68iT8XHjqN7aQgE6Rvr/3W6ShlZlHGInUa20lDmg/RxIETfe4HBwB8igc+XSx2FWvauml6YdEL+mH7D6pcobJGtB6hW8+5VU3jmpZRcO92sOCgpq6dqrHLx2pB+gIFmSANaDJAd3S4Q10Su/C3DTgeh/vOoOx9ufFL9Xu/n1656BXdfM7NTsfxa8/9+Jzu/upu7fvbPlUJq+J0nNNyssLDn74jMcYkGGM+MsZkGWN2GWOmGWMSyj5m4CpyFWlZ5jK1jz/ua+SzOiR00L+7/1uTVk/SuOXHGzgDACgzQUHuN/Tdurmvz6LoUFhcqHHLxqnp/5pq6NSh2pW3S8/3fV4Zd2Xo5YteDpiigyRVqlBJI9qM0PyR87Xx9o36a8e/au7Wuer6Tle1eb2N3v75beUX5v/5AwGB5GR9Z+BzXNalB75+QHWj6+q6lHIf9B5wYiNiJcnvplucyruScZJmSqolqbbcvR44iyxD63avU35RvtrX8q/CgyT9rdPf1LN+T932+W1at9v/mqQAgD85XHRYr/70qhq91EjXzbxOlStU1tQhU7Xh9g2687w7A37aXMNqDfVk7ye1/a7teusS9wpUoz4ZpYTnEvTQNw8p62CWwwkBL1Had+ZYHuo7A8/7YNUHWrZzmR7v8ThTLMpBIBce4qy146y1RSWXdyTFeThXQFmauVSS/LLwEBwUrHcHvKvKFSpr6NShfCoEAF6o2FWsccvGqfFLjXXL57eoVmQtfXbVZ1o6eqkGNRukIMOc7GNFhEbo+rbXa/mNyzVvxDx1rdtVY74do3rP19Ptn9+u9P3lvuI44F2Sktw9HUqLD6U9HpKSnM2F03ak6Ige/OZBpdRM0ZUtr3Q6TkAI5MLDHmPM1caY4JLL1ZKyPR0skCz5ZYkiK0QqKcY/fxnHR8ZrwoAJWpW1Svd8dY/TcQAAJay1mrF+hlq91krXzbxONSrX0FdXf6UfrvtBFyVdRP+CP2GMUdd6XTV96HStvXWtrmxxpV5f+roavthQwz8arrW71zodEXBGUJC7keSyZdLcue5rGkv6pP/99D+l56TryV5PUoQuJzERMZICs/BwnaQrJO2UlClpcMk+lJElvyxR2/i2fv3D3K9RP917/r16dcmrmrZ2mtNxACDgLfllibqM66LLJ1+uIleRpgyZosWjFqt3w94UHM5Ak9gmevuyt7Xpjk26/dzbNW3dNLV4pYWGTR2m9XvWOx0PKH9l2HcGzth/eL8e//Zx9W7QW70b9nY6TsAI2BEP1tpt1tpLrbVx1trq1trLrbWMISwjRa4iLd+5XO3i2zkdxeMe6/GYzq19rq6beZ3SstOcjgMAASnrYJZGzRylc988Vxv3btTr/V/X6ptXa3CzwRQcykCd6Dp6rt9zSv+/dN3f+X59uuFTNX+luUZ8PEKb9m5yOh4AnLJ/zfuX9uXv01O9n3I6SkCJrBCpZTcu06i2o5yOUqZOZVWL8caYKsdsVzXGjPVoqgCSlp2mI8VH1KZmG6ejeFyF4Ar6cPCHCg0K1eWTL1fukVynIwFAwCgsLtSLi15U45caa/yK8bq7493acPsGjW43WqHBoU7H8zuxEbEa03OMNt+5WXedd5c+XPOhkl9O1g0zb9C2nG1OxwOAk1qTtUYvL35Zo9uNDojzFG9ijFGbmm18binNP3MqY55aWWv3l25Ya/dJSvFYogCzctdKSVLLGi0dTlI+6lapqw+HfKj1e9brupnXyVrrdCQA8Hvzt85XyuspunPWnTq39rlaedNKPdPnGUVVjHI6mt+rXqm6nunzjDbdsUk3t79ZE1ZOUKMXG+nOL+70u2G0APyDtVZ3zrpTURWj9FiPx5yOAz9xKoWHIGNM1dINY0w1SSGeixRYVmWtUrAJVtPYwFkTvUf9Hnqy15OaunaqnvqeoVsA4Cn78vfphpk3qNv4bjpYeFAfDf1IX179pZrGBc7fHG9RK7KWXrroJaXdnqYRrUfo5Z9eVsMXG+qJ755gxScAXuWj9R/p6y1f69Hujx7tNwCcrVMpPPxX0g/GmEeNMf+W9IOkpz0bK3CsylqlxjGNA25N3Hs63qOhzYfqga8f0KyNs5yOAwB+xVqraWunqdkrzTR2+Vjde/69WnPLGl3e5HL6ODgsMTpRb176plbetFIX1L1AD3z9gBq/3Fjjl49XsavY6XgAAtzBgoO6+8u71bJ6S93Y/kan48CPnEpzyQmSBknaJWm3pIEl+1AGVu1aFTDTLI5ljNHbl76tVjVa6YopVxydcgIAODs7DuzQwA8HavCUwYqvHK+fbvhJT/V+ShGhEU5HwzGaV2+uT678RHNHzFXNyjU1csZItXujnb7a9JXT0QAEsH/O/afSc9L1ysWvKCSIQe4oO6fSXPJda+1aa+3L1tqXrLVrjTHvlkc4f5d7JFdb9m9Ry+qBV3iQpEoVKunTqz5VVMUoXfT+RdpxYIfTkQDAZ1lrNX75eDV7pZlmbZylp3o9pcU3LFbb+LZOR8NJdKvXTYtGLdIHgz7QgSMH1Pe9vur3Xj+t3b3W6WgAAsySX5bo+UXP66Z2N6lzYmen48DPnMpUi+bHbhhjgiX5/9qP5WDN7jWSFLCFB0lKiErQZ1d9pgNHDujiiRfrwJEDTkcCAJ+TdTBLAz8cqJEzRqp1jdZaffNq3dvpXj6t8hFBJkjDWgzTulvX6dk+z2rRjkVq9Wor3fHFHdqbv9fpeAACQGFxoW745AbVrFxTT9S9Xpo3T0pNlVwup6PBT5yw8GCMecAYkyuplTHmgDEmt2Q7S9KMckvox1btWiUpcFa0OJHWNVtrypApWp21WldMuUKFxYVORwIAnzFj/Qy1eKWFPk/7XM/0fkZzR8xVw2oNnY6FM1AxpKLu6niX0m5P0+h2o/W/n/6npJeS9PLil1XkKnI6HgA/9t8f/6vlO5fr5SpXKbrDBVL37lJKijR9OsUHlIkTFh6stf+x1kZKetpaG2WtjSy5xFhrHyjHjH5rVdYqVQqtpHpV6jkdxXF9G/XV6/1f15ebvtQ1H11Dgy0A+BM5h3N07Yxrdfnky5UQlaClo5fqnvPvUXBQsNPRcJZiI2L1ysWvaPmNy9WmZhvd/sXtav1aa83eNNvpaAD80MpdK/XwvIc1KKGPBtz2Pym/ZKWd/Hxp+HApLc3ZgPALpzLV4gtjzAW/v3g8WQBYleVuLBlkTuVl8H/Xt71eT/V6SpPXTNYNn9wgl6W6CgDHM3/rfLV6rZXeXfGuHurykBaOWqgW1Vs4HQtlrGWNlppzzRx9NPQjHS46rD7v9dGlH1yqtGxOAgCUjcNFh3X19KtVNayqXku85deiQ6n8fCkz05lw8CunMvnz3mP+HSbpXElLJfXwSKIAsnb3Wl3S+BKnY3iVezvdq4OFB/XI/EcUHhKuly96maXfAKBEkatIjy14TI8ueFQNqzbU99d9rw4JHZyOBQ8yxujyJpfrwkYX6vmFz+uxbx9T81ea684Od+qhCx5SdFi00xEB+LCHvnlIq7JW6bOrPlOsq6EUHv7b4kN4uBQf71xA+I1TWU7zkmMuvSW1kHtpTZyFffn7lHUwS01imzgdxes83PVh3Xv+vXplySsa/clopl0AgKTtOdvVY3wPPTL/EV3T6hr9fOPPFB0CSMWQivpb578p7fY0Xd3qav33x/+q8cuN9fbPb/N3EsAZ+WbLN3r2x2d1c/ubdVHSRVJSkjRhgrvYILmvJ0xw7wfO0pmM8c+Qu/iAs5CanSpJSo5JdjiJ9zHG6MleT+qhLg/prWVvafjHw2k4CSCgzUydqTavt9Gyncv07oB39c7l76hyhcpOx4IDalauqbGXjdXiGxarUbVGGvXJKJ371rn6btt3TkeDk1wu9woErESAU/RL7i+6ctqVSo5N1tO9n3bvDAqSBg6Uli2T5s51Xw8c6N4PnKU/nWphjHlJki3ZDJLURtIKD2YKCOv3rJckRjycgDFGj/Z4VJUrVNb9X9+vA0cO6INBH/BG+ywUu4qVcSDjN5cduTu0N3+vDhw5oJwjOcoryJPLuuSyLllrFRIUosoVKh+9xEXEKT4yXvGV41U7qraSqiWpTnQd+pQAHnK46LDum32fXlr8ktrGt9WkQZOUFMMnT5Da12qv7679TpNWT9J9c+5Tl3FdNKzFMD3V6ynVia7jdDyUJ5fLvfLA8OHuIfKln1JzwogTKCwu1NCpQ5VXkKdvhn+jShUq/XpjUJCUnOy+AGXoVHo8LDnm30WSPrDWfu+hPAEjdU+qQoNCVb9qfaejeLW/df6bosOidevnt+qCcRfokys/Ue2o2k7H8mrWWqXnpGvJL0u0JmuN1u5Zq3W71yk1O1UFxQW/OTYiNEKxEbGKqhilqIpRqhJWRSFBITIyMsaoyFWkgwUHlXEgQ7kFuco6mKUDRw785jHCQ8LVOKaxWlRvofa12qt9rfZKqZny2z9iAE5b6p5UDZ06VCt2rdBd592l//T8jyqGVHQ6FryIMUZXtrxSlyZfqqe+f0pP/fCUZqyfofs736+/nv9XRYRGOB0R5SEt7deig/TrSgQtW3LyiOP6+9d/13fbvtP7A99X8+rNnY6DAGGstSc/wJgwSY3kHvWwyVp7uDyCHU/79u3tkiVL/vxAHzBg8gCl7knV2lvXOh3FJ3yR9oWumHqFoitGa8awGWpXq53TkbzGkaIj+n779/o2/Vst/mWxftrxk3Yf2i1JMjKqX7W+msY2VbO4Zmoc01gJUQlHL9EVo0+7eefBgoPKzMvU9pzt2pC9QanZqUrNTtWKnSu0I3eHJCnIBKldfDv1qN9D3et1V+fEzhQigNMwde1UXTvjWoWFhOmdy97RxY0vdjoSfMDW/Vt13+z7NGXtFCVGJ+rp3k9rSLMhNGn2d/PmSd27/3H/3LlSt27lnQZe7oNVH+iq6Vfp5vY365WLX3E6DvyMMWaptbb9cW87UeHBGBMiaYyk6ySlyz3NIkHSOEkPWmvLfdK9PxUemv6vqZrENtFHQz9yOorPWLFzhS754BLtOrhLL/R7QTe2uzFg30xt2rtJszbO0qxNszR3y1wdLDwoI6OmcU11bu1zdW6tc3VO7XPULK5ZuX7ilZmbqSW/LNHiHYs1P32+FmYsVKGrUBWCK6hn/Z4a0GSALk2+VDUq1yi3TIAvKSwu1P1z7tezC59Vx4SOmjJkCqO8cNrmb52vO2fdqRW7VqhLYhe90O8FpcSnOB0LnpKaKqWk/HElgmXLGPGA3/hh+w/qMb6Hzq19rmZfM5tRdChzZ1p4eE5SpKS7rLW5JfuiJD0jKd9ae6eH8p6QvxQeCosLVWlMJd3T8R79p9d/nI7jU/Yc2qNrPrpGszbO0lUtr9IrF70SEEuJHSw4qHlb5x0tNmzcu1GSVL9KfV3Y6EL1a9RPXet1VVTFKIeT/tbBgoP6fvv3+nLjl/o49WNt3rdZRkYd63TUkGZDdFXLq1S9UnWnYwJeYWfeTl0x5Qp9u+1b3X7u7XqmzzOqEFzB6VjwUcWuYr297G09+M2Dyj6UrVFtR+nxHo8rrlKc09FQ1ujxgFOwZd8WdXirg6IqRmnhqIWKjYh1OhL80JkWHtIkNba/O8AYEyxpvbX2rLtbGWP6SXpBUrCkt6y1T5zseH8pPGzI3qDkl5P1zmXvaESbEU7H8Tku69J/vv2P/jnvn6oVWUtvXfKW+jbq63SsMmWt1Zrda9yFho2z9O22b1VQXKDwkHB1r99d/Rr2U79G/dSoWiOfGfVhrdXqrNX6eP3Hmr5+upbvXK6QoBBdnHSxRrQeoYsbX8xJFgLWd9u+05ApQ3TgyAG9ecmbuqrlVU5Hgp/Yf3i//j3/33pp8UuqFFpJD3d9WLeeeyu/b/2Ny+Xu9ZCZKcXHu5c/pOiAEnsO7dEF4y5QZl6mFl6/UMmxjISBZ5xp4WGDtbbx6d52GqGCJW2Q1FvuJTp/knSltfaETQ/8pfDwSeonunTSpfrx+h91XsJ5TsfxWYt3LNbIj0dq3Z51urbNtfpPz//49BD+/Yf3a87mOUeLDaX9EprHNVe/Ru5CQ+fEzgoLCXM4adlYk7VG41eM17sr39XOvJ2KCY/RqLajdMs5tygxOtHpeEC5sNbqhUUv6N7Z96p+lfqaPnS6WlRnxWqUvfV71uuuL+/SrI2zlByTrOf6PqcLky50OhYAD8s5nKMeE3po7e61mvWXWepar6vTkeDHzrTw8LGk6dbaCb/bf7WkK6y1l55lqI6S/mWt7Vuy/YAkWWtPOPfAXwoPT3//tO6bc5/23rdXVcOrOh3Hpx0uOqxH5j2iZ358RuEh4frHBf/QHR3u8Ik5ay7r0tJflmrWxln6ctOXWpixUMW2WNEVo9WrQS/1a9RPfRv29ftl0YpcRfpq01d66+e3NCN1hoyMBjQdoNvPvV1dErv4zIgO4HTlFeRp1MxRmrxmsi5vcrneueydgJg6BudYa/V52ue668u7lLY3TRclXaTn+j6nxjFn9VkSAC91sOCg+r7XV4t3LNbHwz7WRUkXOR0Jfu5MCw+1JU2XlC9pqdyrWpwjKVzSAGvtjrMMNVhSP2vtqJLtayR1sNbedqL7+EvhYdTMUfpkwyfa9dddTkfxGxuyN+ier+7Rpxs+VZ2oOrr3/Hs1qu0ohYeGOx3tN3bm7dTsTbM1a9MsfbXpK+05tEeSez320ukTHRI6KCToVFa69T/p+9P16pJX9ebPb2pv/l61jW+rBzo/oAFNBig4KNjpeECZWb9nvQZOHqjU7FSN6TFG93W6jyIbyk1BcYFeWvSS/r3g3zpUeEg3tbtJ/+j6D3ruAH4k90iuLp10qRakL9DkwZM1uNlgpyMhAJxR4eGYO/eQ1FySkbTGWvt1GYUaIqnv7woP51prb//dcaMljZakxMTEdunp6WXx9I7q+k5XFbuK9d113zkdxe/M2TxHj8x/RN9t+07VK1XX6LajdX3b61WvSj1H8uQV5GlB+gLN2TxHszfP1uqs1ZKkuIg49W3UV/0a9lPvhr15s/c7hwoP6f2V7+uZH5/RhuwNahLbRPd3ul9XtbxKocGhTscDzsq0tdM0csZIhYeEa9LgSepRv4fTkRCgduXt0sPzHtZbP7+liNAI3dfpPt113l0sfwz4uOxD2brw/Qv1c+bPmjBgAn2DUG7OqvDgKYE81SLh2QT1bNBT4y8f73QUv7UgfYGe/P5JfZH2hSSpV4NeGtR0kC5NvlTxkfEee96sg1n6cfuP+jHjR32//XstzFioIleRKgZXVJe6XdSrfi/1atBLKfEpCjI0ffozxa5iTVs3TWO+HaMVu1aoXpV6eqjLQxrRZkTAjgqB7ypyFemBOQ/omR+f0XkJ52nKkClKiEpwOhag9XvW6+9f/10frf9I8ZXj9a9u/9J1Kdfxe9YX0WQy4GUcyFDf9/pq095NmjJkii5JvsTpSAgg3lp4CJG7uWRPSTvkbi55lbV2zYnu4w+Fh/zCfEWMidAj3R7RP7v+0+k4fm9bzjaNXTZW7658V5v3bZYkpdRMUefEzupUp5PaxrdV/ar1T/vN1ZGiI0rPSdearDVanbVaq3ev1pJflhx9jtCgUKXEp6h7ve7q1aCXOtXp5HXTPnyJtVafpX2mRxc8qsU7Fis5JlmPdn9Ug5oNooADn7Azb6eGTR2m+enzdes5t+rZvs+yqgC8zvfbvtd9c+7TD9t/UJPYJvpPz//osuTLmAbkK1hWM+AtzFioAZMHKK8gTzOHzVT3+t2djoQA45WFB0kyxlwk6Xm5l9Mca619/GTH+0PhYe3utWr+SnO9N+A9/aXVX5yOEzBKl6ecsX6G5myZo8U7FutQ4SFJ7iJBw2oNVSuylqpXqq5qYdVUIbiCQoNDZa1VbkGu8grylFuQq8zcTG3L2aZdB3/tz2Fk1KBqA7Wp2UYdEzqqY52Oahvf1m9Wn/Am1lrNSJ2hB795UGt3r1Xb+LYa02OM+jTswxtjeK3vt32vIVOGaP/h/Xrzkjf53Q+vVvp79v459ys1O1Wd6nTSf3r+R13qdnE6mn8ri5EKqalSSoq76FAqPFxatkxKZvlEf/fuind1wyc3qHZUbc0cNlPNqzd3OhICkNcWHk6XPxQeWErTOxQWF2rlrpValbVKqXtStWHvBu3K26Wsg1nam79XBcUFKnQVysgosmKkKleorMoVKqtm5ZpKjEpUYrT70rx6czWNbcp82HJW7CrW+6ve1z/n/lPpOenqXq+7nu37rNrUbON0NOAoa61eXPSi/jr7r6pXpZ6mXzFdLWu0dDoWcEqKXEUau2ys/jXvX8rMy1TP+j31SLdH1Cmxk9PR/E9ZjVSYN0/qfpxPuOfOlbp1K6u08DJ5BXn6v1n/p7eXva1u9bpp6pCpiomIcToWAhSFBy/y/MLnddeXdynrr1mKqxTndBzApx0pOqI3lr6hR+Y/or35e3VD2xv0aI9HadYJx+UV5OmGT27QpNWTdFnyZRp/+XiWyoRPyi/M12tLXtMT3z+hrINZ6tOwjx7p9ggfnpSlshqpwIiHgLPklyW6atpV2rh3o+7vfL8e6fYITbjhqJMVHpjwVc427d2kyAqRio2IdToK4PMqhlTU7R1uV9rtabqjwx0au3yskl5K0n9/+K8KigucjocAlbonVR3e6qAP13yoMT3GaPrQ6RQd4LPCQ8N1V8e7tPmOzXq699NalrlMHd/uqAvfv1CLMhY5Hc8/ZGb+tlggubczM0/vcZKS3CMlwkt6SpWOnEhKKpuc8Bq5R3J116y71OGtDsovytc3I77RmJ5jKDrAqzHioZxd9P5FyszL1LIblzkdBfA76/es191f3q0vNn6hpGpJerbvs7o46WL6P6DcTF83XSM/HqmKIRU1adAk9WzQ0+lIQJnKK8jT/xb/T0//8LSy87PVvV53/a3T3+i1czbKcqRCOa5qcajwkLbnbFfGgQztOrhL2YeytefQHvclf4/2H96vQ4WHdKjwkPIL893XRflyWZeMjIJMkIwxMjIKCQpRpQqVjk5trRTq/ne18GqqXqm64iLiFFcpTtUrVVeNSjWUGJ0YkNNcXdalD1Z9oL/N+Zt+yf1FN7a7UWN6jlHV8KpORwMkMdXCqyS/nKxWNVppypApTkcB/NYXaV/ori/vUmp2qvo37q+XLnxJ9arUczoW/FiRq0h///rvevqHp9WhdgdNGTJFdaLrOB0L8JjcI7l68+c39eyPz2pH7g61qdlGf+v0Nw1uNphlOE+Xl65GYa1VZl6mNmRvcPfDyt6gjfs2alvONm3P2a7s/Ow/3MfIqGp4VcVGxKpqWFVFhEYoIjRC4aHh7uuQcAWZIFlrZWXlsi5Za1Vki3Sw4KDyCvJ0sNB9nVeQp+xD2dqbv1dWfzxfiQmPOdpzq250XSVGJyopJkmNYxqrQdUGfrVyUGnT13/M/YdWZ61WSs0UvXrxq+qQ0MHpaMBvUHjwEsWuYoU/Hq67O96tJ3o94XQcwK8VFhfqxUUv6uF5D8tlXfrHBf/QPeff41dvROAdduXt0rBpwzRv6zzd0v4WPdv3WVUMqeh0LKBcFBQX6P2V7+upH57S+j3rVb9Kfd3R4Q5d2+ZaphidjnIcqXA8WQeztGLnCq3Y5b6s271OG7I3KLcg9+gxYSFhalStkftkPypRdaLrqE5UHdWJrqOalWseLTYEBwWXabYiV5GyD2Vr96HdyjqYpczcTG0/sF3p+9O17cA2pe9PV3pOuvIK8o7eJ9gEq37V+kqOSVbjmMZqHNNYyTHJSo5NVnzleJ8ZnXOw4KAmrJiglxa/pHV71impWpIe7f6ohjQfwnLi8EoUHrxE+v501Xuhnt7o/4ZuaHeD03GAgLA9Z7v+78v/0/R109U0tqlevfhVda3X1elY8BPfbftOV0y5QvsP79fr/V/XNa2vcToS4AiXdWlm6kw99f1T+jHjR1UKraThrYfrtnNvU7O4Zk7HQwlrrbbs36LFOxZr+c7lWrFrhZbvXK6deTuPHlM7sraaV29+9KS99IQ9ISrBa092rbXad3if0rLTtCF7g3uURnbq0X/nF/06jSWyQqSSY5PVJLaJkmN+vU6KSfKKpdCLXcWat3WeJq6aqGnrpinnSI7axbfTnR3u1JUtr2REEbwahQcv8c2Wb9RzQk99Pfxr9ajfw+k4QED5PO1z3fb5bdqyf4uGtx6up3s/zeoXOGPWWj2/8HndO/teNajaQNOumMZSmUCJpb8s1cs/vawPVn2gI8VH1KN+D916zq3q37g/o87K2YEjB/TTjp+0MGOhFu5YqEUZi7T70G5JUmhQqJrFNVPrmq3VukbJpWZrv2uA7rIu7Tiw42ghYv2e9Vq/Z71Ss1O1LWfb0eOMzNFREr8pSsQmq0alGh4bJVFaDFqQvkBfbfpKszfP1p5DexRZIVIDmg7Q6LajdX6d831mlAYCG4UHL/Hm0jc1+tPR2nrnVtWtUtfpOPBGDg+19HeHCg/p8QWP6+kfnlblCpX1RK8nNKrtKK/9BAfe6cCRA7p+5vWaunaqBjQZoHGXjWNIOXAcuw/u1tvL3tYrP72i7Qe2KzYiVn9p+Rdd2+Zata7Z2ul4fqfYVaw1u9doUcYiLcxYqEU7Fmnt7rVH+yM0iW2iDrU76LyE89Shdgc1r9484AtBBwsOKm1v2m+KEev3rFfqntTfjJKIrhitxjGNlRCVoNqRtVU7qvbR69iIWEVVjFJUxShFVoj8w8oSLutSXkGe9h/er335+5Sek67N+zZr877NSs1O1ZJflmhv/l5JUo1KNdSnYR9d0vgS9W/cX+Gh4eX6/QDOFoUHb+By6YGpN+mZ9WN1eMhKBSc34YQSv+WlzaX80brd63TL57do3tZ5Or/O+Xq9/+tqUb2F07HgA1ZnrdagDwdp095NerLXk7q74918CgX8iSJXkWZvmq2xy8dqZupMFRQXqG18W41sPVJXNL9CNSrXcDqiT9qZt/NokWHhjoVa8suSo30OqoVXO1pkOC/hPJ1T6xxWPjgNLutSxoGMo0WI9XvWK21vmnbk7tCOAzuUcyTnhPetGFzxN38XCooL5LKuPxwXWSFSjao1Urv4djqn9jk6L+E8tazekr8p8GkUHpxWckJ51ZRhWhhfrM1vcEKJ4yjL5bTwp6y1mrBigu756h7lHMnRfeffp4cueIhPF3BC7698X6M/Ha2oilGaPHiyLqh7gdORAJ+TfShbE1dN1Ljl47Rs5zIFmSBdUPcCDW46WAObDlR8ZLzTEb1SfmG+fs78WYt2LHJfMhYpPSddkhQSFKI2Ndv8ZjRDo2qNOIH1oLyCPP2S+4t2HNihvfl7deDIgaOXY5tcSlKF4AqqGl5VVcKqqEpYFSVEJahB1QaKCY/hNYLfofDgtJITyk5X5qtCsTR3vDihxB/Nmyd17/7H/XPnSt26lXeagLHn0B7dO/tevbP8HTWo2kCvXfyaejfs7XQseJEjRUd015d36dUlr+qCuhdo8uDJqlm5ptOxAJ+3Omu1pqyZoilrp2jdnnUyMuqc2FkDmgzQhUkXKjkmOSBPzFzWpdQ9qUcLDIt2LNKqrFUqchVJkhKjE39TZGgb35aiOQCvQOHBaSUnlAl3S703SeNmlOznhBLHYsSDo+ZumaubPrtJG7I36KqWV+m5vs/RfBLasm+Lhk4dqp9++Un3nn+vxvQcQ0dxwAPW7l6rqWunasraKVqdtVqSVDe6rvo16qd+jfrpgroXqFp4NYdTlj1rrbbu36rlO5draeZSLdqxSD/t+OnoUP7ICpE6p/Y56lC7gzrU7qBza5/LqBAAXovCg9NSU1XQro3C/npY/5wv/WueOKHEH9HjwXGHiw7rie+e0H+++48qhVbSU72f0nUp19F8MkBNWTNFoz4ZJSOjcZeN04CmA5yOBASErfu36suNX2rWplmas3nO0aHrLaq3UJfELuqS2EXn1zlfidGJPjUi4kjREa3dvVbLdy53X3Yt14qdK44WGYJNsFrWaHm0yNAhoYOaxDbhbxAAn0HhwWkulzZNekWN0m7X2I+la1M5ocQJsKqFV1i/Z71u+vQmzU+fr86JnfV6/9dZhz6A5Bfm664v79LrS1/XeQnn6YNBH6helXpOxwICUkFxgRZmLNSC9AX6btt3+mH7D8otyJXkbqDYpmYbpdRMUUrNFDWLa6akmCRVrlDZsbzWWu06uOvoso2pe1K1Ptt9vWX/lqNNBiNCI9S6Rmu1qdnm6KVF9RaKCI1wLDsAnC0KD17gm01z1PO93vq61X/Vo9nFnFACXs5aq3eWv6O/zv6rco/k6m+d/qa/d/k782j93NrdazV06lCtzlqt+86/T4/1eOwPS6MBcE6Rq0irdq3SwoyFWrZzmZbtXKZVu1bpSPGRo8fEV45X45jGali1oWpH1VZ85XjViqyl+Mj4o0sfRleMPuWfbWutCooLtDd/r7Lzs7Xn0B5lH3JfZ+ZlalvOtqOX7Qe263DR4aP3DQsJU+OYxkqOSVaT2CZqHtdcKfEpali1oYKDgsv8+wMATqLw4AXGLRun62Zep423b1TDag2djgPgFO0+uFt/nf1XTVgxQY2qNdKrF7+qXg16OR0LZcxaq3HLx+m2z29T5QqVNWHABPVr1M/pWN6BkVjwcoXFhe7RBdmpSstO04a9G5SWnaZN+zYp62DWcZcylNxFgcgKkQoNDlWwCVZIUIiCg4JlrdXhosM6XHRY+UX5Olx0+ISPYWRUK7KW6kTXUWJ0ohKjEpUYneguNsQmKzE60bNTJfj5BOBFTlZ4oENWOUnPSZeRUZ3oOk5HAXAa4irFafzl4zWi9Qjd9OlN6v1ub13d6mo92+dZxVWKczoeykDO4Rzd8vktmrhqorrX6673Br6nWpG1nI7lHeg9Ax8QGhyqljVaqmWNln+4rchVpKyDWcrMzdQvub8cXfow50iODhw5oNwjuSpyFanIFqnYVawiV5GMMQoPCVdYSNjR67CQMMVExCgmPEaxEbGKiXBfx0bEqkJwBQe+avHzCcCnMOKhnFw741p9tekr7bh7h9NRAJyhw0WHNebbMXriuycUWTFST/d+Wte2udanmpvht+Zvna/hHw9XxoEM/avrv/T3Ln9n+POxWG0H8F78fALwMicb8UA5tJyk70+nORng48JCwvTv7v/WiptWqHlcc10/83p1G99N6/esdzoaTtPhosO696t71X18d1UIrqDvrv1O/+j6D4oOv5eZ+duTGsm9nZnpTB4Av+LnE4APofBQTtJz0lU3uq7TMQCUgaZxTTVv5Dy9dclbWrVrlVq92koPz334Nw3F4L1W7Fyhc948R8/8+IxGtxutZTcuU8c6HZ2O5Z3i492foB4rPNy9H4Cz+PkE4EMoPJQDl3Vpe852Cg+AHwkyQbq+7fVaf9t6DW0xVP9e8G+1fq215m6Z63Q0nECxq1hPff+UznnzHO0+uFufXvmpXuv/mqNL73m9pCT3nPHSk5vSOeRJSc7mAsDPJwCfQnPJcpCZm6lCV6HqVqHwAPib6pWq690B7x5tPtljQg+NaD1Cz/R5RrERsU7HQ4l1u9dp1Cej9MP2HzSo6SC91v81Xp9TERTkblTXsiVd8wFvw88nAB/Cb6ZykJ6TLkmMeAD8WK8GvbTq5lV6sMuDmrhqopq83ETvLH9HvtTA1x8VFBfo0fmPqs3rbbR+z3pNuHyCpgyZQtHhdAQFuRvVdevmvuakBt7M5XI3XZw3z33tOv4ymH6Dn08APoLfTuVgW842SVJidKLDSQB4UnhouB7r8ZiW3bhMTWKb6NoZ16rHhB5K3ZPqdLSAtHjHYrV/o73+Oe+fGtBkgNbeslbXtL6GVUgAf1W6vGRKitS9u/t6+nT/Lz4AgA+g8FAOMg5kSJLqRNdxOAmA8tC8enMtuHaB3rzkTS3fuVytXmulf837lw4VHnI6WkDIPZKru7+8Wx3f7qi9+Xs1Y9gMTRo8STUq13A6GgBPSkuThg//daWH/Hz3dlqas7kAABQeykPGgQxFVohUVMUop6MAKCdBJkij2o7S+lvXa3CzwXpk/iNq/FJjjV8+Xi7Lp2+eYK3VB6s+UJP/NdFzC5/TDW1v0Jpb1ujS5EudjgagPLC8JAB4LQoP5SDjQIYSohKcjgHAATUq19D7A9/Xt9d+q9pRtTVyxki1e6OdvtnyjdPR/MrqrNXqMaGHrpp+lWpWrqkfr/9Rr/V/TdFh0U5HA1BeWF4SALwWhYdykHEgQ7WjajsdA/hzgdaUqxx1TuysH6//URMHTtS+/H3qOaGn+k/sr9VZq52O5tP2HNqjO7+4U21ea6OVu1bqtYtf0+JRi3VewnlORwNQ3lheEgC8FoWHcrAjdwcjHuD9aMrlcUEmSFe2vFLrb1uvJ3s9qW+3fatWr7bSldOupAHlacovzNcT3z2hhi821Ms/vaxRbUdpw20bdGP7GxUcFOx0PABOKF1ectkyae5c9/XAgaz0AABegN/EHlbkKlJmbqYSIik8wMvRlKvchIWE6b5O92nLnVt0f+f79UnqJ2r2SjON+HiENu3d5HQ8r1bsKtb45ePV+OXGeuDrB9S1bletunmVXuv/mmIiYpyOB8BpLC8JAF6J38Yetitvl4ptMSMe4P1oylXuqoVX05ieY7Tlzi26+7y7NWXNFCW/nKzrZ1zvPyMgymj6TpGrSO+ueFfNXmmmkTNGKr5yvOaNmKeZV85Us7hmZZsZAAAAZYrCg4eVLqVJ4QFej6ZcjomrFKen+zytTXds0q3n3KqJqyeq6f+aasDkAfpx+49OxztzZTB9p7C4UOOWjVOTl5to+MfDFRYSpqlDpmrhqIXqWq+rB8MDAYg+PwAAD6Hw4GGlhQeaS3oR3lgdH025HBcfGa8XLnxB6f+XrocueEjzt87X+WPPV5dxXTRt7TQVFhc6HfH0nMX0nX35+/TMD88o6aUkXTfzOkVVjNJHQz/SshuXaVCzQQoy/PkCyhR9fgAAHsQ7Nw/bkbtDEiMevAZvrE6Mplxeo3ql6vp3939r213b9EK/F7Q9Z7sGTxmsei/U08NzHz5a0PR6ZzB9Z/2e9brls1uU8FyC7p19r+pVqaeZw2Zq6eilurzJ5RQcAE+hzw8AwIN4B+dhGQcyVDG4omLCaXrmFXhjdXI05fIqlStU1h0d7tCmOzZp5rCZal2jtR5d8KjqPV9Pl0+6XNPXTdfhosNOxzyxU5y+k1eQp/HLx6v7+O5q+r+menvZ27qi+RVaduMyzRs5T5ckXyJjTDkGBwIQfX4AAB4U4nQAf5dxIEMJUQm8afYWJ3tjlZzsTCbgTwQHBeuS5Et0SfIl2rJvi95Y+obGLR+nGakzFF0xWoOaDtJVLa9St3rdvGspydLpO6XFvmOm7xS5irQgfYEmrJigqWun6mDhQTWs2lCPdn9UN7S9QTUq13A6PRBYSguFx/6NpM8PAKCMGGut0xlOWfv27e2SJUucjnFaLhh3gYwxmj9yvtNRILl7OqSk/PGN1bJlFB7gU4pcRZq7Za7eX/W+pq+brtyCXMVGxOrCRhfq4qSL1bdRX1UJq+J0TPc0prQ0KTNTh+KqaE7QVn20YYY+Sf1E2fnZiqwQqaHNh2pkm5E6v875FGkBp5RORfx9oZApdwCAU2SMWWqtbX/c2yg8eFaDFxqoY52Oen/g+05HgcQbK/il/MJ8fbrhU81InaEvNn6hvfl7FWyC1Smxk7rV7aYudbvovITzVLlC5XLNdaToiH7O/Flfb/laX2/5Wj9s/0EFxQWKrhit/o376/Iml+uipIsUERpRrrkAnMAxhULFx7tHLfG3EQBwiig8OMRaq7DHw/R/Hf5PT/Z+0uk4KMUbK/ixYlexFu1YpM82fKZZm2Zp+c7lclmXgk2wWtVopdY1W6t1DfelSWwT1axc86xHGVhrtefQHqVmp2r9nvX6OfNn/fTLT1qxc4UKXe6VONrUbKOe9Xuqb8O+6lqvqyoEVyiLLxcAAABegsKDQ3Yf3K3qz1TXi/1e1O0dbnc6DoAAdODIAf24/Ud9t+07LdqxSCt3rdSug7uO3h4WEqZ6VeqpXpV6iouIU0x4jKqFV1NUxSiFBocqNChUocGhKigu0KHCQzpUeEh5BXnalbdLmXmZ2pm3U+k56dqbv/foY0ZWiFT7Wu11Tq1zdG7tc9W1XlfFRsQ68eUDAACgnJys8EBzSQ/ad3if6kTVUWJ0otNRAASoqIpR6tuor/o26nt03668XVqxa4U27t2oLfu2aPP+zUrfn651u9cpOz9beQV5J33MkKAQ1ahUQzUr11StyFrqULuDkmOTlRyTrOTYZNWrUo9lLwEAAHAUIx4AAL9RUFyg3CO5KnIVqdBVqMLiQlUIrqCI0AhFhEaoQnAFmkACAADgNxjxAAA4ZRWCKygmIsbpGAAAAPATjIUFAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMY4UHowxQ4wxa4wxLmPMcZtPAAAAAAAA3+fUiIfVkgZKWuDQ8wMAAAAAgHLgyKoW1tp1kliODQAAAAAAP0ePBwAAAAAA4DEeG/FgjJkjqeZxbnrQWjvjNB5ntKTRkpSYmFhG6QAAAAAAQHnwWOHBWturjB7nDUlvSFL79u1tWTwmAAAAAAAoH0y1AAAAAAAAHuPUcpoDjDEZkjpK+swY86UTOQAAAAAAgGc5tarFR5I+cuK5AQAAAABA+XGk8AAAXsflktLSpMxMKT5eSkqSgpiNBsCL8XsLAOAj+OsEAC6XNH26lJIide/uvp4+3b0fALwRv7cAAD6EwgMApKVJw4dL+fnu7fx893ZamrO5AOBE+L0FAPAhFB4AIDPz1zfvpfLz3fsBwBvxewsA4EMoPABAfLwUHv7bfeHh7v0A4I34vQUA8CEUHgAgKUmaMOHXN/Hh4e7tpCRncwHAifB7CwDgQ1jVAgCCgqSBA6WWLekOD8A38HsLAOBDKDwAgOR+s56c7L4AgC/g9xYAwEdQFgcAAAAAAB5D4QEAAAAAAHgMhQcAAAAAAOAxFB4AAAAAAIDHUHgAAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMRQeAAAAAACAx1B4AAAAAAAAHkPhAQAAAAAAeEyI0wEAwGu4XFJampSZKcXHS0lJUhD1WQAAAOBs8I4aACR30WH6dCklRere3X09fbp7PwAAAIAzRuEBACT3SIfhw6X8fPd2fr57Oy3N2VwAAACAj6PwAACSe3pFadGhVH6+ez8AAACAM0bhAQAkd0+H8PDf7gsPd+8HAAAAcMYoPACA5G4kOWHCr8WH8HD3dlKSs7kAAAAAH8eqFgAguVevGDhQatmSVS0AAACAMkThAQBKBQVJycnuCwAAAIAywUd5AAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAAAAADwGAoPAAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAAAAADyGwgMAAAAAAPAYRwoPxpinjTHrjTErjTEfGWOqOJEDAAAAAAB4llMjHmZLamGtbSVpg6QHHMoBAAAAAAA8yJHCg7X2K2ttUcnmQkkJTuQAAAAAAACe5Q09Hq6T9IXTIQAAAAAAQNkL8dQDG2PmSKp5nJsetNbOKDnmQUlFkt4/yeOMljRakhITEz2QFAAAAAAAeIrHCg/W2l4nu90YM0JSf0k9rbX2JI/zhqQ3JKl9+/YnPA4AAAAAAHgfjxUeTsYY00/S3yR1tdYeciIDAAAAAADwPKd6PLwsKVLSbGPMcmPMaw7lAAAAAAAAHuTIiAdrbSMnnhcAAAAAAJQvb1jVAgAAAAAA+CkKDwAAAAAAwGMoPAAAAAAAAI9xpMcDAAAAAC/icklpaVJmphQfLyUlSUF8RgmgbPDbBAAAAAhkLpc0fbqUkiJ17+6+nj7dvR8AygCFBwAAACCQpaVJw4dL+fnu7fx893ZamrO5APgNCg8AAABAIMvM/LXoUCo/370fAMoAhQcAAAAgkMXHS+Hhv90XHu7eDwBlgMIDAAAAEMiSkqQJE34tPoSHu7eTkpzNBcBvsKoFAAAAEMiCgqSBA6WWLVnVAoBHUHgAAAAAAl1QkJSc7L4AQBmjjAkAAAAAADyGwgMAAAAAAPAYCg8AAAAAAMBjKDwAAAAAAACPofAAAAAAAAA8hsIDAAAAAADwGAoPAAAAAADAYyg8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BhjrXU6wykzxuyWlO50jjMQK2mP0yFw1ngd/QOvo3/gdfQPvI7+gdfRP/A6+g9eS//gi69jXWtt3PFu8KnCg68yxiyx1rZ3OgfODq+jf+B19A+8jv6B19E/8Dr6B15H/8Fr6R/87XVkqgUAAAAAAPAYCg8AAAAAAMBjKDyUjzecDoAywevoH3gd/QOvo3/gdfQPvI7+gdfRf/Ba+ge/eh3p8QAAAAAAADyGEQ8AAAAAAMBjKDyUI2PMX40x1hgT63QWnD5jzKPGmJXGmOXGmK+MMbWczoQzY4x52hizvuT1/MgYU8XpTDh9xpghxpg1xhiXMcZvuj4HCmNMP2NMqjFmozHmfqfz4PQZY8YaY7KMMaudzoIzZ4ypY4yZa4xZV/I79U6nM+H0GWPCjDGLjTErSl7HR5zOhDNnjAk2xiwzxnzqdJayQuGhnBhj6kjqLWmb01lwxp621ray1raR9KmkfzqcB2dutqQW1tpWkjZIesDhPDgzqyUNlLTA6SA4PcaYYEn/k3ShpGaSrjTGNHM2Fc7AO5L6OR0CZ61I0j3W2qaSzpN0Kz+PPumIpB7W2taS2kjqZ4w5z9lIOAt3SlrndIiyROGh/Dwn6T5JNNXwUdbaA8dsVhKvpc+y1n5lrS0q2VwoKcHJPDgz1tp11tpUp3PgjJwraaO1drO1tkDSJEmXOZwJp8lau0DSXqdz4OxYazOttT+X/DtX7pOd2s6mwumybnklm6ElF96r+iBjTIKkiyW95XSWskThoRwYYy6VtMNau8LpLDg7xpjHjTHbJf1FjHjwF9dJ+sLpEECAqS1p+zHbGeJEB3CcMaaepBRJixyOgjNQMjx/uaQsSbOttbyOvul5uT+wdjmco0yFOB3AXxhj5kiqeZybHpT0d0l9yjcRzsTJXkdr7Qxr7YOSHjTGPCDpNkkPl2tAnLI/ey1LjnlQ7iGm75dnNpy6U3kd4ZPMcfbxyRzgIGNMZUnTJP3f70Z5wkdYa4sltSnpXfWRMaaFtZYeLD7EGNNfUpa1dqkxppvDccoUhYcyYq3tdbz9xpiWkupLWmGMkdxDun82xpxrrd1ZjhFxCk70Oh7HREmficKD1/qz19IYM0JSf0k9LesKe63T+JmEb8mQVOeY7QRJvziUBQh4xphQuYsO71trpzudB2fHWrvfGDNP7h4sFB58SydJlxpjLpIUJinKGPOetfZqh3OdNaZaeJi1dpW1trq1tp61tp7cb7baUnTwPcaYpGM2L5W03qksODvGmH6S/ibpUmvtIafzAAHoJ0lJxpj6xpgKkoZJmulwJiAgGfcnY29LWmetfdbpPDgzxpi40lW6jDHhknqJ96o+x1r7gLU2oeS8cZikb/yh6CBReABOxxPGmNXGmJVyT51huSnf9bKkSEmzS5ZHfc3pQDh9xpgBxpgMSR0lfWaM+dLpTDg1Jc1db5P0pdyN7D601q5xNhVOlzHmA0k/Sko2xmQYY653OhPOSCdJ10jqUfI3cXnJp63wLfGS5pa8T/1J7h4PfrMUI3yfYYQxAAAAAADwFEY8AAAAAAAAj6HwAAAAAAAAPIbCAwAAAAAA8BgKDwAAAAAAwGMoPAAAAAAAAI+h8AAAAMqNMaaOMWaLMaZayXbVku26TmcDAACeQeEBAACUG2vtdkmvSnqiZNcTkt6w1qY7lwoAAHiSsdY6nQEAAAQQY0yopKWSxkq6QVKKtbbA2VQAAMBTQpwOAAAAAou1ttAYc6+kWZL6UHQAAMC/MdUCAAA44UJJmZJaOB0EAAB4FoUHAABQrowxbST1lnSepLuMMfHOJgIAAJ5E4QEAAJQbY4yRu7nk/1lrt0l6WtIzzqYCAACeROEBAACUpxskbbPWzi7ZfkVSE2NMVwczAQAAD2JVCwAAAAAA4DGMeAAAAAAAAB5D4QEAAAAAAHgMhQcAAAAAAOAxFB4AAAAAAIDHUHgAAAAAAAAeQ+EBAAAAAAB4DIUHAAAAAADgMRQeAAAAAACAx/w/hT/2brQdymkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "X = data.loc[:,'x'].values.reshape(-1, 1)\n", + "Y = data.loc[:,'y'].values.reshape(-1, 1)\n", + "\n", + "# Note: this code assumes that the first covariate is continuous.\n", + "# Fitting a flexible model on very little data\n", + "\n", + "# selecting only a few data points\n", + "subset = np.arange(0,30)\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n", + "poly = PolynomialFeatures(degree = 10)\n", + "X_poly = poly.fit_transform(X)\n", + "\n", + "poly.fit(X_poly, Y)\n", + "lin2 = LinearRegression()\n", + "lin2.fit(X_poly[0:30], Y[0:30])\n", + "\n", + "x = data['x']\n", + "xgrid = np.linspace(min(x),max(x), 1000)\n", + "\n", + "new_data = pd.DataFrame(xgrid, columns=['x'])\n", + "\n", + "yhat = lin2.predict(poly.fit_transform(new_data))\n", + "\n", + "# Visualising the Polynomial Regression results\n", + "plt.figure(figsize=(18,6))\n", + "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", + "plt.plot(xgrid, yhat, color = 'green', label = 'Estimate')\n", + "plt.title('Example of overfitting')\n", + "plt.xlabel('X')\n", + "plt.ylabel('Outcome y')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, when $q$ is too small relative to our data, we permit only very simple models and may suffer from misspecification bias. We call this **underfitting**. The main feature of underfitting is **high bias** -- the selected model just isn't complex enough to accurately capture the relationship between input and output variables.\n", + "\n", + "To illustrate underfitting, in the figure below we set $q=1$ (a linear fit)." + ] + }, + { + "cell_type": "code", + "execution_count": 504, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Outcome y')" + ] + }, + "execution_count": 504, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAGDCAYAAACMZtMJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA500lEQVR4nO3de3zcd33n+/dndB1LI9uxLWs0Y8dOItxc5FhBuTUJwUlIAw03P2CX7IK7pUuW02aXnu0Nmsc5NGdLSxdKtrvQ9pFHIcUU2NIiTmmAQtiShS7lYpOEJQRHwAkgaXy/6OKRLGk+54/fSJY0Y2lsz0+/ubyej4ceo99v5jvz+Wl0mXnr9/18zd0FAAAAAAAQhljUBQAAAAAAgNpF8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAGRm/8bM/imE+zUze9zMTprZt8p9/0Ue70Uzu+cSxr/ezH5mZuNm1mdmz5nZyy/wPsbN7IqLrQEAgFpD8AAAQMjyb4az+Tekcx8fjLquVXK7pFdISrv7TVEXU4L3S3rI3dvd/Wl3v9bdn5IkM/s9M/urhTc2s6fM7N8u3Jcf++PVKxkAgMrWGHUBAADUiVe7+5ejLiICl0t60d0noi5kOWbW6O4zCup9Lup6AACoJZzxAABAhMzsz8zsbxds/5GZ/Y/8FIX1ZvaEmR3NT1V4wszSC277lJn9vpl9PX8Wxd+b2QYz+7iZjZrZt81s24Lbu5n9BzP7sZkdM7P3mVnR1wJm9nNm9qSZnTCzg2b2L5Y5hm4z+2z+tj80s7fl9/+KpL+QdGu+vkeKjF10FoGZbcvX2bjgGP+Tmf0vMxszsy+Z2cYFt3+Lmf3EzI6b2cNL7jtmZu80sx/lr/+UmV225HF+xcx+KulrZjYuqUHSs2b2o/ztXjSze8zsPkm/K+lf5o/lWTN7j6Q7JH1w4Vks+fu9Kv/5X5rZh8zsc/n6v2lmVy6o8d781/e0mf2pmf3PpWdQAABQ7QgeAACI1m9I2mlBj4U7JP2KpF9yd1fwd/pxBf+F3yopK2npFI03SXqLpJSkKyX9c37MZZKel/TuJbd/vaR+STdIeq2kty4tyMzaJD0p6ROSOiU9IOlPzeza8xzDJyUNSeqW9AZJf2Bmd7v7hyW9XdI/56cfLK2lVP9K0i/na2mW9Jv5Oq+R9GcKjr9b0gZJ6QXj/oOk10m6M3/9SUkfWnLfd0q6WtJd7t6e33e9u1+58Ebu/g+S/kDSX+eP5Xp3f1jS13RuasZD56n/AUmPSFov6YeS3pOvf6Okv5X0rnztByX9fGlfEgAAqgfBAwAAq+P/NbNTCz7eJknufkbSmyV9QNJfSfr37j6Uv+64u3/a3c+4+5iCN6x3Lrnfx939R+5+WtIXJP3I3b+cnzbwN5L6ltz+j9z9hLv/VNJ/UfCmeKn7FUyPeNzdZ9z9O5I+rSBUWMTMtijo4/A77j7p7s8oOMvhLRf6BVrG4+7+grtnJX1K0q78/jdIesLdv+ruU5L+L0m5BeP+naSH3X0of/3vSXrD3NkUeb/n7hP5+w7LgLt/K/+cfHxB/a+S9Jy7D+Sv+6+SDoVYBwAAkaDHAwAAq+N15+vx4O7fMrMfK/iP/qfm9pvZGkmPSrpPwX/LJSlhZg3uPpvfPrzgrrJFttu12M8WfP4TBWcCLHW5pJvN7NSCfY2SPlbktt2STuSDkYX321/kthdr4ZvxMzp3TN1acDzuPmFmxxfc9nJJnzGzhWHErKTNC7YXfj3CUmr9bmZDq1APAACrijMeAACImJn9mqQWSSOSfnvBVb8haYekm929Q9LL5oZcwsNtWfD51vxjLvUzSf/T3dct+Gh39/+jyG1HJF1mZokl9ztcYj0TktYs2O4qcZwkZbTgePJBzYYF1/9M0iuXHEeruy+szS/g8Yrd9kLGL5XRgqkhZmZaPFUEAICaQPAAAECEzOwlkn5fwXSLt0j6bTPblb86oeCshVP5pogX2yNhod/KN63cIukdkv66yG2ekPSSfOPGpvzHjWZ29dIbuvvPJH1d0h+aWauZ7VTQp+LjJdbzjKSXmdlWM1uroN9Bqf5W0v1mdruZNUv6f7T4tc2fS3qPmV0uSWa2ycxeewH3v9RhSduWNOQ8LOmKi7y/z0nqNbPX5ad//JouLHgBAKAqEDwAALA6/j6/8sHcx2fybzb/SkHfhWfdfVDBygkfM7MWBT0Y4pKOSfqGpH8oQx1/J+mAgjf8n5P04aU3yE+buFdB48oRBVMF/kjBWRnFPCBpW/62n5H0bnd/spRi8rf7a0nfzdf1RKkH4u7PKXiz/gkFZw+cVNDkcs6fSPqspC+Z2ZiCr+HNpd5/EX+TvzxuZt9Z8BhvsGDVkf96IXfm7sckvVHSf5Z0XNI1kvZLmrqEGgEAqDgWNM0GAAC1zsxcUo+7/zDqWlAofybFkKR/7e5fiboeAADKhTMeAAAAImJmv2Bm6/JnuPyugv4d34i4LAAAyorgAQAAIDq3SvqRguk0r1aw+kmYS3sCALDqmGoBAAAAAABCwxkPAAAAAAAgNAQPAAAAAAAgNI1RF3AhNm7c6Nu2bYu6DAAAAAAAsMCBAweOufumYtdVVfCwbds27d+/P+oyAAAAAADAAmb2k/Ndx1QLAAAAAAAQGoIHAAAAAAAQGoIHAAAAAAAQmqrq8VDM9PS0hoaGNDk5GXUpoWttbVU6nVZTU1PUpQAAAAAAUJKqDx6GhoaUSCS0bds2mVnU5YTG3XX8+HENDQ1p+/btUZcDAAAAAEBJqn6qxeTkpDZs2FDToYMkmZk2bNhQF2d2AAAAAABqR9UHD5JqPnSYUy/HCQAAAACoHTURPEStoaFBu3bt0rXXXqvrr79eH/jAB5TL5ZYd8+KLL+oTn/jEKlUIAAAAAEA0CB7KIB6P65lnntFzzz2nJ598Up///Of1yCOPLDuG4AEAAAAAUA/qL3jI5aSDB6WnngouVzgz4UJ1dnbqscce0wc/+EG5u1588UXdcccduuGGG3TDDTfo61//uiTpne98p772ta9p165devTRR897OwAAAABAhQn5fWWtqfpVLS5ILicNDEh790rZrBSPS/v2SXv2SLHyZTBXXHGFcrmcjhw5os7OTj355JNqbW3V4OCgHnjgAe3fv1/vfe979f73v19PPPGEJOnMmTNFbwcAAAAAqCCr9L6yltRX8DA4eO6bQwou9+6VenulHTvK+lDuLkmanp7WQw89pGeeeUYNDQ164YUXit6+1NsBAAAAACK0iu8ra0V9BQ+ZzLlvjjnZbLC/jN8gP/7xj9XQ0KDOzk498sgj2rx5s5599lnlcjm1trYWHfPoo4+WdDsAAAAAQIRW6X1lLamv80CSyeA0mIXi8WB/mRw9elRvf/vb9dBDD8nMdPr0aSWTScViMX3sYx/T7OysJCmRSGhsbGx+3PluBwAAAACoIKvwvrLW1Ffw0NMTzL2Z+yaZm4vT03NJd5vNZueX07znnnt077336t3vfrck6Vd/9Vf10Y9+VLfccoteeOEFtbW1SZJ27typxsZGXX/99Xr00UfPezsAAAAAQAUJ6X1lLbO5XgTVoL+/35c2XHz++ed19dVXl34nuVwwJyeTCRKpnp6qagBywccLAAAAACivKn9fGQYzO+Du/cWuq68eD1LwzbBjB3NvAAAAAAAXZ+H7SkKIFfHVAAAAAADgYswtrdnXJ+3eHVwODAT7MS+y4MHMWs3sW2b2rJk9Z2aPRFULAAAAAAAX7HxLaw4ORltXhYnyjIcpSXe5+/WSdkm6z8xuuZg7qqY+FZeiXo4TAAAAAKrCcktrYl5kwYMHxvObTfmPC35n3draquPHj9f8m3J31/Hjx9Xa2hp1KQAAAAAAiaU1SxRpc0kza5B0QNJVkj7k7t8scpsHJT0oSVu3bi24j3Q6raGhIR09ejTkaqPX2tqqdDoddRkAAAAAAOnc0ppz0y1YWrOoilhO08zWSfqMpH/v7t873+2KLacJAAAAAEBkWNVCUhUsp+nup8zsKUn3STpv8AAAAAAAQEVZuLQmiopyVYtN+TMdZGZxSfdI+kFU9QAAAAAAgPKL8oyHpKSP5vs8xCR9yt2fiLAeAAAAAABQZpEFD+7+XUl9UT0+AAAAAKCK0VuhavCsAAAAAACqSy4nDQxIfX3S7t3B5cBAsB8Vh+ABAAAAAFBdBgfPLWEpBZd79wb7UXEIHgAAAAAA1SWTORc6zMlmg/2oOAQPAAAAAIDqkkxK8fjiffF4sB8Vh+ABAAAAAFBdenqkffvOhQ/xeLDd0xNtXSgqyuU0AQAAAAC4cLGYtGeP1NvLqhZVgOABAAAAAFB9YjFpx47gAxWNOAgAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAIQmsuDBzLaY2VfM7Hkze87M3hFVLQAAAAAAIByNET72jKTfcPfvmFlC0gEze9Ldvx9hTQAAAAAAoIwiO+PB3TPu/p3852OSnpeUiqoeAAAAAABQflGe8TDPzLZJ6pP0zYhLARCFXE4aHJQyGSmZlHp6pBgtaAAAAIBaEPkrezNrl/RpSb/u7qNFrn/QzPab2f6jR4+ufoEAwpXLSQMDUl+ftHt3cDkwEOwHAAAAUPXM3aN7cLMmSU9I+qK7f2Cl2/f39/v+/fvDLwzA6jl4MAgbstlz++Jx6emnpR07oqsLAAAAQMnM7IC79xe7LspVLUzShyU9X0roAKBGZTKLQwcp2M5koqkHAAAAQFlFOdXiNklvkXSXmT2T/3hVhPUAiEIyGZzhsFA8HuwHAAAAUPUiay7p7v8kyaJ6fAAVoqdH2rdP2rs3ONMhHg+2e3qirgwAAABAGVTEqhYA6lgsJu3ZI/X2sqoFAAAAUIMIHgBELxYLGknSTBIAAADlwHLtFYWvPAAAAACgdrBce8UheAAAAAAA1I7BwXP9w6Tgcu/eYD8iQfAAAAAAAKgdLNdecQgeAAAAAAC1g+XaKw7BAwAAAACgdswt1z4XPrBce+RY1QIAAKAe0fEdQK1iufaKQ/AAAABQb+Y6vs81X5v7b+CePbwwB1AbWK69ovCXBQAAoN7Q8R0AsIoIHgAAAOoNHd8BAKuI4AEAAKDe0PEdALCKCB4AAADqDR3fAQCriOaSAAAA9YaO7wCAVUTwAAAAUI/o+A4AWCXE2gAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDSNURcAAAAAAKghuZw0OChlMlIyKfX0SDH+513PePYBAAAAAOWRy0kDA1Jfn7R7d3A5MBDsR90ieAAAAAAAlMfgoLR3r5TNBtvZbLA9OBhtXYgUwQMAAAAAoDwymXOhw5xsNtiPukXwAAAAAAAoj2RSiscX74vHg/2oWwQPAAAAAIDy6OmR9u07Fz7E48F2T0+0dSFSrGoB1Du6DgMAAKBcYjFpzx6pt5fXl5hH8ADUs7muw3MNgOYS6T17+OMAAACAixOLSTt2BB+AmGoB1De6DgMAAAAIGcEDUM/oOgwAAAAgZAQPQD2j6zAAAACAkBE8APWMrsNAZcvlpIMHpaeeCi5zuagrAgAAuGA0lwTqGV2HgcpF81cAAFAjzN2jrqFk/f39vn///qjLAAAgfAcPSn19i/uwxOPS00/TJRwAAFQcMzvg7v3FruNfJgAAVCKavwIAUFdyntPh8cP6TuY7GhkbibqcsmKqBQAAlWiu+evSMx5o/goAQNWZmpnSyNiIhseGNTQ6pOHR4XOfjw1reHRYI2Mjms5NS5L++N4/1n+89T9GXHX5EDwAAFCJ5pq/Lu3xQPNXAAAqhrvr9NTpxUFCkVDh6JmjBWPXNK1RuiOtVCKlOy6/Q+lEWqmOlFKJlG5I3hDB0YSH4AEAgEpE81cAACI1m5vV4YnDK4YKE9MTBWM3rtk4Hyrc1H1T8Hk+VJj7fG3LWplZBEe2+ggeAACoVLFY0EiSZpIAAJRVdjo7HxycL1TIjGU067OLxjXGGtWd6Fa6I63rN1+vV131qoJQoTvRrZbGloiOrDIRPAAAAAAAaoK76+TkycIgYUmocCJ7omBsojmhVEcQHty98e5FZyfMfb6pbZNixtmHFyrS4MHMPiLpfklH3P26KGsBAAAAAFSumdyMDo0fOu+Uh7nPJ2cmF40zmTrbOpXqSGn7+u26fevtBaFCqiOljpaOiI6s9kV9xsNfSvqgpH0R14FyyOWkwUHmIgMAAAC4IBNnJ5btozA0OqTDE4eV89yicc0NzfPBwY2pG/W6xOsKQoVkIqnmhuaIjgxSxMGDu3/VzLZFWQPKJJeTBgYKu6/v2UP4AAAAANQpd9exM8dWDBVOT50uGLuudd18qNDb2VvQnDGVSGnjmo1106CxmkV9xgNqxeDgudBBCi737g26sdMUDQAAAKg5Z2fPKjOWWTZUGB4b1tnZs4vGxSymrvYupRIp9Wzo0e5tu4uGCm3NbREdGcqt4oMHM3tQ0oOStHXr1oirwXllMudChznZbLCf4AEAAACoKqNToysuI3l44nDBuNbG1vllJG/dcqvSicJlJLvau9QYq/i3oiijin+23f0xSY9JUn9/v0dcDs4nmQymVywMH+LxYD8AAACAipDznI5MHFkxVBg7O1Yw9rL4ZfOhwg1dNxSs+JDqSGl963qmPqBAxQcPqBI9PUFPh6U9Hnp6oq4MAAAAqAuTM5MaGRtZNlQYGRvRTG5m0bgGa1AykVS6I61rN12re6+4tyBU6E50K94Uj+jIUO1WDB7MbL+kxyV9wt1PlvPBzeyTkl4uaaOZDUl6t7t/uJyPgVUSiwWNJHt7WdUCAAAAKCN31+mp04VBwpJQ4diZYwVj25ralOoIwoM7L7+zoI9CuiOtzrZONcQaIjgy1ItSznh4k6RflvTtBSHEl9z9kqc9uPsDl3ofqCCxWNDPgZ4OAAAAQElmc7M6PHF42RUfhseGdWb6TMHYTWs2KdWR0pa1W3RL+paioUJHSwdTHxA5KzU/MLOYpPsl/ZmknKSPSPoTdz8RXnmL9ff3+/79+1fr4QAAAADgomWnsysuI3lo/JBmfXbRuKZYk7oT3fNnKqQShSs+dCe61dLYEtGRAYXM7IC79xe7rqQeD2a2U8FZD6+S9GlJH5d0u6R/lLSrPGUCAAAAQOVzd53InlgxVDg5WThTvaOlIwgSOlJ6xZWvKBoqbGrbpJgxZRm1o5QeDwcknZL0YUnvdPep/FXfNLPbQqwNAAAAAFbV9Oy0Do0fWjZUGB4b1uTM5KJxJtPm9s1KJVLavn677th6R8GKD6lESomWRERHBkSnlDMe3ujuPy52hbvvKXM9AAAAABCK8bPjKy4jeWj8kFyLp6O3NLTMBwc3pm7U6xOvLwgVku1JNTU0RXRkQGVbMXg4X+gAAAAAAJUg5zkdO3NsxVDh9NTpgrHrWtfN91HY2bmzoDljqiOlDfENNGgELkFJPR4AAAAAIApnZ89qZGxk2VBhZGxEZ2fPLhoXs5i62ruU7khrx4YdumvbXUVDhTVNayI6MqB+EDwAAAAAiMTo1GhhkLAkVDgycaRgXLwxPr/iw21bbiu6jOTm9s1qjPF2B6gEpTSXXCPpNyRtdfe3mVmPpB3u/kTo1QEAAACoOjnP6cjEkWVXfBgeG9b42fGCsRviG+ZDhf7u/qKhwrrWdUx9AKpIKRHg45IOSLo1vz0k6W8kETwAAAAAdWZyZlIjYyPLhgqZ8YxmcjOLxjXGGpVsTyrVkVLv5l7dd9V9BaFCd6Jb8aZ4REcGICylBA9Xuvu/NLMHJMnds0a8CAAAANQUd9epyVPLNmccGh3S8ezxgrHtze3zIcLu7bvPBQqJ1PzZC5vWbFJDrCGCIwMQtVKCh7NmFpeCNWXM7EpJU6FWBQAAAFSzXE4aHJQyGSmZlHp6pFgssnJmc7M6NH5oxVAhO5MtGNvZ1qlUIqUta7fo1vSt80HCwlCho6UjgqMCUC1KCR7eLekfJG0xs49Luk3SvwmzKAAAAKBq5XLSwIC0d6+UzUrxuLRvn7RnTyjhw5npMysuI5kZzyjnuUXjmmJN81Mc+pJ9evVLXl2w4kOyPamWxpay1wygvpi7r3wjsw2SbpFkkr7h7sfCLqyY/v5+379/fxQPDQAAAJTm4EGpry8IHebE49LTT0s7dpR8N+6u49njK4YKJydPFoxd27J2cYiw4OyEuc83rtmomEV3FgaA2mJmB9y9v9h1pa4vk5LUkL/9y8xM7j5QrgIBAACAmpHJLA4dpGA7k5kPHqZnp5UZz6wYKkzNLp7hbDJtbt+sdEdaV66/UndefmfRUKG9uX21jhYAVlTKcpofkbRT0nOS5s7PckkEDwAAAMASYxsTGk61aLh5SsMd0lCHNLy+QcM//H0NvfCbGh4b1uHxw3ItPvO4paFlforDzamblfq5wmUku9q71NTQFNGRAcDFKeWMh1vc/ZrQKwEAABevwhrZAbUo5zkdnTg6fzZCseaMw2PDGp0ald62eOz6hlalp48o1ZHSrq5dRac/XBa/TCweB6AWlRI8/LOZXePu3w+9GgAAcOFWuZEdUIumZqY0MjZSECIsnAYxMjai6dz0onExiynZnlS6I62rN12te664JwgS2pNKnXalJxrUvfVarbl6Jz+PAOpWKcHDRxWED4cULKNpktzdd4ZaGQAAKM3g4LnQQQou9+6VensvqJEdUIvcXaNTo4sChGKhwtEzRwvGrmlaMz/F4Y7L7yjaqHFz22Y1xBoiODIAqB6lBA8fkfQWSf9b53o8AACASlFCIzugFs3mZnVk4sii6Q7Fpj9MTE8UjN24ZuN8kHBT900FzRnTHWmtbVnL1AcAKINSgoefuvtnQ68EAABcnGQymF6xdOm+ZDK6moBLNDkzufjshCJnKmTGMpr12UXjGmON6k50K5VIaefmnXrlVa8sCBW6E91qbWyN6MjqBH1nACxQSvDwAzP7hKS/VzDVQpJYThMAgErR0xP0dFja46GnJ+rKgALurpOTJ1cMFU5kTxSMbW9unw8Q7t5+d9FlJDvbOhUz3uBGir4zAJYwd1/+BmaPF9nt7v7WcEo6v/7+ft+/f/9qPywAAJWP/y6iAszkZnRo/FBhqDA2ND8NYnh0WNmZbMHYzW2bFy0bWSxU6GjpiOCocMEOHpT6+grPwnr6aaZ/ATXMzA64e3+x61Y848Hdf7n8JQEAgLKKxYIX9LyoR0gmzk4Unp2wJFQ4NH5IOV/cEqy5oXk+OHhp8qV67Y7XFoQKyURSzQ3NER0Zyo6+MwCWWDF4MLO0pP8m6TZJLumfJL3D3YdCrg0AAAAhc3cdO3NsxVDh1OSpgrFrW9YG4UFHStd1Xlf0TIWNazbSoLHe0HcGwBKl9Hh4XNInJL0xv/3m/L5XhFUUAAAALt307LRGxkbO20dheHRYI2MjmpqdWjTOZOpq71K6I62eDT16+baXFw0V2prbIjoyVDT6zgBYopTgYZO7L+zz8Jdm9ush1QMAAIASjE2NLduccXh0WEcmjsi1uJ9Xa2PrfB+FW7fcWrSnQld7lxpjpbxMBIqIxYJGkr299J0BIKm04OGYmb1Z0ifz2w9IOh5eSQAAAPUr5zkdnTi6YqgwdnasYOxl8cvmg4Qbum4oaM6Y7khrfet6pj4gfPSdAbBAKcHDWyV9UNKjCno8fD2/DwAAABdgamZKI2Mjy4YKmbGMpnPTi8Y1WIOSiaRSiZSu3XSt7r3i3oJQIZVIKd4Uj+jIAAA4v1JWtfippNesQi0AAABVyd11eup0YXPGJaHCsTPHCsauaVozHyDcefmdRZeR3Ny2WQ2xhgiODACAS1fKqhYfVbCKxan89npJf+zunPUAAABq3mxuVocnDi+74sPQ6JDOTJ8pGLtpzab5sxFuTt1cNFRY27KWqQ8AgJpWylSLnXOhgyS5+0kz6wuvJAAAgNWRnc6uuIxkZiyjWZ9dNK4x1jgfHFy/+Xr9Ys8vFoQK3YlutTS2RHRkAABUjlKCh5iZrXf3k5JkZpeVOA4AACAS7q4T2RMrhgonsicKxiaaE0F40JHS3RvvLrqM5Ka2TYoZHfoBAChFKQHCH0v6upn9rYLmkv9C0h+EWhUAAMB5zORmlBnLLLviw/DYsCZnJheNM5k62zqV7khr+/rtun3r7UVDhURLIqIjAwCgNpXSXHKfme2XdJckk7TH3b8femUAAKDujJ8dnw8OzhcqHJ44rJznFo1rbmieX0byxtSNel3idQWhQrI9qaaGpoiODACA+lVKc8mPuftbJH2/yD4AAIAVubuOnTm27IoPw6PDOj11umDsutZ186HCzs6dBc0Z0x1pbYhvoEEjAFyqXE4aHJQyGSmZlHp6pBjTynDpSplqce3CDTNrkPTScMoBAADV5uzsWWXGMsuGCiNjIzo7e3bRuJjF1NXepVQipR0bduiubXcVhAqpREptzW0RHRkA1JFcThoYkPbulbJZKR6X9u2T9uwhfMAlO2/wYGbvkvS7kuJmNqpgmoUknZX02CrUBgAAIjY6NVrYnHFJqHBk4kjBuHhjfD44uG3LbUWXkexq71JjjH7VAFARBgfPhQ5ScLl3r9TbK+3YEW1tqHrn/Wvv7n8o6Q/N7A/d/V2rWBMAAAhZznM6MnFk2RUfhkaHNH52vGDshviG+VDhpcmXFg0V1reuZ+oDAFSTTOZc6DAnmw32EzzgEpXyb4YvmNnLlu5096+GUA8AALhEkzOTGhkbWTZUGBkb0UxuZtG4BmtQd6JbqY6Urt10rX7hyl8oCBW6E92KN8UjOjIAQGiSyWB6xcLwIR4P9gOXqJTg4bcWfN4q6SZJBxSscgEAAFaJu+vU5KnCKQ9LQoVjZ44VjG1ragvCg46U7rz8zqLLSHa2daoh1hDBkQEAItfTE/R0WNrjoacn6spQA0pZTvPVC7fNbIuk/xxaRQAA1KHZ3KwOjR9adsWH4bFhnZk+UzB205pNSnektWXtFt2SvqVoqNDR0sHUB6BWsRIByiEWCxpJ9vbyvYSyu5iOTkOSrit3IQAA1Koz02fmg4PzhQqHxg9p1mcXjWuKNak70a10R1p9yT7d/5L7C0KFZHtSLY0tER0ZgMixEgHKKRYL+jnQ0wFltmLwYGb/TZLnN2OSdkl6NsSaAACoCu6uE9kTy674MDw6rJOTJwvGdrR0KJUIwoNrrrxm/vOFocLGNRsVM944AFgGKxEAqAKlnPGwf8HnM5I+6e7/K6R6AACoCNOz0zo0fmjZUGFkbESTM5OLxplMm9s3K5VI6cr1V+plW19WsOJDKpFSoiUR0ZEBqCmsRACgCpQSPPy1pKsUnPXwI3efXOH2AABUtPGz44XNGZeECofHD8vnT/gLtDS0zAcHN6duLrqMZLI9qaaGpoiODEDdYSUCAFXgvMGDmTVK+gNJb5X0EwXTLNJm9rikh919enVKBACgNDnP6diZY8uu+DA0OqTRqdGCsetb18+HCtdvvr5oqLAhvoEGjQAqCysRAKgCy53x8D5JCUnb3X1MksysQ9L78x/vCL88AAACZ2fPamRsZNlQYXh0WNO5xbl4zGJKtieV6khpx4Ydunv73UVDhTVNayI6MgC4BKxEAKAKmLsXv8JsUNJLfMkNzKxB0g/c/ZJjVDO7T9KfSGqQ9Bfu/t7lbt/f3+/79+9f7iYAgCrj7hqdGi2c8rAkVDgycaRgbLwxHoQH+TMVii0jubl9sxpjF7OIEwAAAEplZgfcvb/Ydcu9EvOloUN+56yZFU8rLqyoBkkfkvQKBUt0ftvMPuvu37/U+wYAVIbZ3KyOTBxZdsWH4bFhjZ8dLxi7Ib5hPlTo7+4vGiqsa13H1AcAAIAKt1zw8H0z2+vu+xbuNLM3S/pBGR77Jkk/dPcf5+/3v0t6rSSCBwCoApMzk4umOBQLFTLjGc3kZhaNa4w1KtmeVLojrd7NvbrvqvsKQoXuRLdaG1sjOjIAAACU03LBw69JGjCzt0o6oGBVixslxSW9vgyPnZL0swXbQ5JuXnojM3tQ0oOStHXr1jI8LABgOe6uU5Onll3xYXh0WMezxwvGtje3z0952L19d9HpD51tnYoZc48BAADqxXmDB3cflnSzmd0l6VpJJukL7v4/yvTYxc6NLTa14zFJj0lBj4cyPTYA1KWZ3IwOjx9eMVTIzmQLxna2dSqVSOnytZfr59M/X9CcMd2RVkdLRwRHBQAAgEq2Yrctd/9HSf8YwmMPSdqyYDstaSSExwGAunBm+kxhc8YlocKh8UPKeW7RuOaGZnUnupVKpPTS5Ev1mpe8piBU6E50q7mhOaIjAwCUJJeTBgdZ3QJAxYmyzfe3JfWY2XZJw5LeJOlfRVgPAFQkd9fx7PEVQ4VTk6cKxq5tWTu/4sO1V15bdBnJjWs2MvUBAKJUjsAgl5MGBqS9e6VsVorHpX37gqU2CR8ARCyy4MHdZ8zsIUlfVLCc5kfc/bmo6gGAKEzPTisznll2Gcnh0WFNzU4tGmcydbV3KdWR0pXrr9Sdl99ZNFRob26P6MgAACUpV2AwOHjuPqTgcu9eqbdX2rEjnNoBoESRLmzu7p+X9PkoawCAsIxNjRWenbAkVDg8fli+pL1NS0PL/DKSN6duVvrqwmUku9q71NTQFNGRAQDKplyBQSZz7j7mZLPBfoIHABGLNHgAgGqU85yOThxdtjnj8NiwRqdGC8aub10/Hyrs6tpV0JwxlUjpsvhlMivWfxcAUHPKFRgkk8HZEgvvKx4P9gNAxAgeAGCBqZkpjYyNLBsqjIyNaDo3vWhcgzWoq71L6Y60rt50te654p6CUKE70a01TWsiOjIAQEUqV2DQ0xNM0Vg6ZaOnp7z1AsBFIHgAUBfcXaNToysuI3n0zNGCsWua1iiVCMKDOy6/Y/7zhaHC5rbNaog1RHBkAICqVq7AIBYL+kL09rKqBYCKQ/AAoOrN5mZ1ZOLIiqHCxPREwdiNazbOBwk3dd9U0Jwx3ZHW2pa1TH0AAISjnIFBLBZMz6CnA4AKQ/AAoKJlp7PzYcLSHgpz4UJmLKNZn100rjHWqO5Et1KJlK7ffL1eddWrCkKF7kS3WhtbIzoyAADyCAwA1DiCBwCRcHednDxZuOJD/vO5yxPZEwVjE80JpTpSSiVSunv73UWXkexs61TMOL0UAAAAiBrBA4Cym8nN6ND4oWWXkRwaHdLkzGTB2M1tm5XqSGnbum26fevtRUOFjpaOCI4KAAAAwMUgeFgtuVywTjPNfrCcKvg+mTg7cd4pD3NBw+GJw8p5btG45obm+eDgpcmX6rU7XlsQKiQTSTU3NEd0ZAAAAADCQPCwGnI5aWCgsFvxnj0V96YSEYr4+8TddezMsfNOeZjbd3rqdMHYtS1rg/CgI6XrOq8raM6YSqS0cc1GGjQCAAAAdcjcPeoaStbf3+/79++PuowLd/Cg1NdXuD7z00/TRAjnhPh9cnb2rDJjmWVXfBgZG9HU7NSicSZTV3vXfKhQbBnJVCKltua2S6oPAAAAQHUzswPu3l/sOs54WA2ZzOI3k1KwnckQPOCci/w+GZ0aXXbFh+HRYR2ZOCLX4pCxtbF1Pki4dcutRUOFrvYuNcb4NQEAAADg4vGOYjUkk8F/rpf+JzuZjK4mVJ4l3yc5k45saNVwy3ENH/zseUOFsbNjBXd1Wfyy+SDhhq4bCpozpjvSWt+6nqkPAAAAAEJH8LAaenqCufpL5+739ERdGSIyNTM1HxycO1NhSMPv2aWh57+p4bacMglpumFS+tIb5sc1WIOSiaTSHWldu+la3XvFvQXTILoT3Yo3xSM8OgAAAAA4h+BhNcRiQYPA3t6KXq0Al87ddXrqdOHZCUvOVDh25ljB2LamtuCMhL4bdad1KHXZNqUv36nU2vR8qNDZ1qmGWEMERwYAAAAAF4fgYbXEYsE8fXo6VK3Z3KwOTxxedhnJ4bFhnZk+UzB205pN81McbknfUtCcMdWR0tqWtUx9AFB5qmCZX6Bu8fMJoEoQPACSstPZZZszDo0O6dD4Ic367KJxTbEmdSe6lepIqS/Zp/tfcv+5Jo356Q/diW61NLZEdGQAcAlYDhqoXPx8AqgiLKeJmubuOpE9sWKocHLyZMHYRHNiPkCYPzNhSaiwqW2TYsYfdwA1iuWggcrFzyeACsNymqhJM7kZZcYyy4YKw2PDmpyZXDTOZNrcvlmpRErb12/X7VtvL1jxIZVIKdGSiOjIAKBCsBw0ULn4+QRQRQgeUJHGz44v25xxeHRYh8YPybX4jJ3mhub54ODG1I16feL1i1Z8SHWklGxPqqmhKaIjA4AqwnLQQOXi5xNAFSF4wKrKeU7HzhxbMVQ4PXW6YOy61nXzocLOzp0Fy0imOlLaEN9Ag0YAKBeWgwYqFz+fAKoIPR5QNmdnz2pkbGTZUGFkbERnZ88uGhezmLrau87bRyHdkVZ3olttzW0RHRkA1DG65gOVi59PABWEHg+4ZKNTo4VBwpJQ4cjEkYJx8cb4fN+E27bcVjRU2Ny+WY0xvhUBoCKxHDRQufj5BFAleLdX53Ke05GJI8uu+DA8Nqzxs+MFYzfEN8yHCv3d/UVDhXWt65j6AAAAVgdnAABARSJ4qGGTM5MaGRtZNlTIjGc0k5tZNK7BGtSd6FaqI6Xezb2676r7CkKF7kS34k3xiI4MAABgiVxOGhgo7HmwZw/hAwBEjOChCrm7Tk2eWrY549DokI5njxeMbWtqmw8Qdm/fXbSnQmdbpxpiDREcGQAAwEUaHDwXOkjB5d69Um8vUxEAIGIEDxVmNjerQ+OHVgwVsjPZgrGdbZ1KJVLasnaLbk3fWrDiQyqRUkdLB1MfAABA7clkFi8tKQXbmQzBAwBEjOBhFZ2ZPrPiMpKZ8Yxynls0rinWNB8c9CX79OqXvLogVEi2J9XS2BLRkaFmMDcWAFCtkslgesXC8CEeD/YDACJF8BCiF0+9qLc/8fb5UOHk5MmC23S0dMwvI3nNldconUgXhAob12xUzHjzh5AxNxYAUM16eoK/W0v/jvX0RF0ZANQ9gocQtTa26nj2uK5cf6VetvVlBSs+pDpSam9uj7pMIMDcWABANYvFgrC8t5cz9wCgwhA8hKirvUvfftu3oy4DKA1zYxEGpu8AWE2xWPA3i79bAFBRePUHIDA3N3Yh5sbiUsxN3+nrk3bvDi4HBoL9ACpPLicdPCg99VRwyc8qAKBMCB5Qf3hhVdzc3Ni58IG5sbhU55u+MzgYbV0AChEUAgBCRPCA+sILq/Obmxv79NPSV74SXNJYEpdiuek7ACoLQSEAIES8o0B94YXV8ubmxr785cEloQMuBdN3gOpBUAgACBHvKlBfeGEFrB6m7wDVg6AQABAiVrVAfZl7YbUwfOCFFRAOlrYDqsdcUDh3ViBBIQCgjAgeUF94YQWsLpa2A6oDQSEAIEQED6gvvLACAKA4gkIAQEgIHlB/eGEFAAAAAKuGf/MCAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQEDwAAAAAAIDQRBI8mNkbzew5M8uZWX8UNQAAAAAAgPBFdcbD9yTtkfTViB4fAAAAAACsgsYoHtTdn5ckM4vi4QEAAAAAwCqhxwMAAAAAAAhNaGc8mNmXJXUVuephd/+7C7ifByU9KElbt24tU3UAAAAAAGA1hBY8uPs9ZbqfxyQ9Jkn9/f1ejvsEAAAAAACrg6kWAAAAAAAgNFEtp/l6MxuSdKukz5nZF6OoAwAAAAAAhCuqVS0+I+kzUTw2AAAAAABYPZEEDwBQcXI5aXBQymSkZFLq6ZFizEYDUMH4vQUAqBL8dQKAXE4aGJD6+qTdu4PLgYFgPwBUIn5vAQCqCMEDAAwOSnv3StlssJ3NBtuDg9HWBQDnw+8tAEAVIXgAgEzm3Iv3OdlssB8AKhG/twAAVYTgAQCSSSkeX7wvHg/2A0Al4vcWAKCKEDwAQE+PtG/fuRfx8Xiw3dMTbV0AcD783gIAVBFWtQCAWEzas0fq7aU7PIDqwO8tAEAVIXgAACl4sb5jR/ABANWA31sAgCpBLA4AAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAEJD8AAAAAAAAELTGHUBAFAxcjlpcFDKZKRkUurpkWLkswAAAMCl4BU1AEhB6DAwIPX1Sbt3B5cDA8F+AAAAABeN4AEApOBMh717pWw22M5mg+3BwWjrAgAAAKocwQMASMH0irnQYU42G+wHAAAAcNEIHgBACno6xOOL98XjwX4AAAAAF43gAQCkoJHkvn3nwod4PNju6Ym2LgAAAKDKsaoFAEjB6hV79ki9vaxqAQAAAJQRwQMAzInFpB07gg8AAAAAZcG/8gAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgIHgAAAAAAQGgiCR7M7H1m9gMz+66ZfcbM1kVRBwAAAAAACFdUZzw8Kek6d98p6QVJ74qoDgAAAAAAEKJIggd3/5K7z+Q3vyEpHUUdAAAAAAAgXJXQ4+Gtkr4QdREAAAAAAKD8GsO6YzP7sqSuIlc97O5/l7/Nw5JmJH18mft5UNKDkrR169YQKgUAAAAAAGEJLXhw93uWu97MfknS/ZLudndf5n4ek/SYJPX395/3dgAAAAAAoPKEFjwsx8zuk/Q7ku509zNR1AAAAAAAAMIXVY+HD0pKSHrSzJ4xsz+PqA4AAAAAABCiSM54cPeronhcAAAAAACwuiphVQsAAAAAAFCjCB4AAAAAAEBoCB4AAAAAAEBoIunxAAAAAKCC5HLS4KCUyUjJpNTTI8X4HyWA8uC3CQAAAFDPcjlpYEDq65N27w4uBwaC/QBQBgQPAAAAQD0bHJT27pWy2WA7mw22BwejrQtAzSB4AAAAAOpZJnMudJiTzQb7AaAMCB4AAACAepZMSvH44n3xeLAfAMqA4AEAAACoZz090r5958KHeDzY7umJti4ANYNVLQAAAIB6FotJe/ZIvb2sagEgFAQPAAAAQL2LxaQdO4IPACgzYkwAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAaggcAAAAAABAac/eoayiZmR2V9JOo67gIGyUdi7oIXDKex9rA81gbeB5rA89jbeB5rA08j7WD57I2VOPzeLm7byp2RVUFD9XKzPa7e3/UdeDS8DzWBp7H2sDzWBt4HmsDz2Nt4HmsHTyXtaHWnkemWgAAAAAAgNAQPAAAAAAAgNAQPKyOx6IuAGXB81gbeB5rA89jbeB5rA08j7WB57F28FzWhpp6HunxAAAAAAAAQsMZDwAAAAAAIDQED6vIzH7TzNzMNkZdCy6cmf0nM/uumT1jZl8ys+6oa8LFMbP3mdkP8s/nZ8xsXdQ14cKZ2RvN7Dkzy5lZzXR9rhdmdp+ZHTSzH5rZO6OuBxfOzD5iZkfM7HtR14KLZ2ZbzOwrZvZ8/nfqO6KuCRfOzFrN7Ftm9mz+eXwk6ppw8cyswcyeNrMnoq6lXAgeVomZbZH0Ckk/jboWXLT3uftOd98l6QlJ/3fE9eDiPSnpOnffKekFSe+KuB5cnO9J2iPpq1EXggtjZg2SPiTplZKukfSAmV0TbVW4CH8p6b6oi8Alm5H0G+5+taRbJP0aP49VaUrSXe5+vaRdku4zs1uiLQmX4B2Sno+6iHIieFg9j0r6bUk01ahS7j66YLNNPJdVy92/5O4z+c1vSEpHWQ8ujrs/7+4Ho64DF+UmST909x+7+1lJ/13SayOuCRfI3b8q6UTUdeDSuHvG3b+T/3xMwZudVLRV4UJ5YDy/2ZT/4LVqFTKztKRflPQXUddSTgQPq8DMXiNp2N2fjboWXBoze4+Z/UzSvxZnPNSKt0r6QtRFAHUmJelnC7aHxBsdIHJmtk1Sn6RvRlwKLkL+9PxnJB2R9KS78zxWp/+i4B/WuYjrKKvGqAuoFWb2ZUldRa56WNLvSrp3dSvCxVjueXT3v3P3hyU9bGbvkvSQpHevaoEo2UrPZf42Dys4xfTjq1kbSlfK84iqZEX28Z85IEJm1i7p05J+fclZnqgS7j4raVe+d9VnzOw6d6cHSxUxs/slHXH3A2b28ojLKSuChzJx93uK7TezXknbJT1rZlJwSvd3zOwmdz+0iiWiBOd7Hov4hKTPieChYq30XJrZL0m6X9LdzrrCFesCfiZRXYYkbVmwnZY0ElEtQN0zsyYFocPH3X0g6npwadz9lJk9paAHC8FDdblN0mvM7FWSWiV1mNlfufubI67rkjHVImTu/r/dvdPdt7n7NgUvtm4gdKg+ZtazYPM1kn4QVS24NGZ2n6TfkfQadz8TdT1AHfq2pB4z225mzZLeJOmzEdcE1CUL/jP2YUnPu/sHoq4HF8fMNs2t0mVmcUn3iNeqVcfd3+Xu6fz7xjdJ+sdaCB0kggfgQrzXzL5nZt9VMHWG5aaq1wclJSQ9mV8e9c+jLggXzsxeb2ZDkm6V9Dkz+2LUNaE0+eauD0n6ooJGdp9y9+eirQoXysw+KemfJe0wsyEz+5Woa8JFuU3SWyTdlf+b+Ez+v62oLklJX8m/Tv22gh4PNbMUI6qfcYYxAAAAAAAIC2c8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AAAAAACA0BA8AACAVWNmW8zs/zOzy/Lb6/Pbl0ddGwAACAfBAwAAWDXu/jNJfybpvfld75X0mLv/JLqqAABAmMzdo64BAADUETNrknRA0kckvU1Sn7ufjbYqAAAQlsaoCwAAAPXF3afN7Lck/YOkewkdAACobUy1AAAAUXilpIyk66IuBAAAhIvgAQAArCoz2yXpFZJukfR/mlky2ooAAECYCB4AAMCqMTNT0Fzy1939p5LeJ+n90VYFAADCRPAAAABW09sk/dTdn8xv/6mknzOzOyOsCQAAhIhVLQAAAAAAQGg44wEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAISG4AEAAAAAAITm/wc777VfP4XMhAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lin = LinearRegression()\n", + "\n", + "lin.fit(X[0:30], Y[0:30])\n", + "\n", + "\n", + "x = data['x']\n", + "xgrid = np.linspace(min(x),max(x), 1000)\n", + "\n", + "new_data = pd.DataFrame(xgrid, columns=['x'])\n", + "\n", + "yhat = lin.predict(new_data)\n", + "\n", + "plt.figure(figsize=(18,6))\n", + "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", + "plt.plot(xgrid, yhat, color = 'green',label = 'Estimate')\n", + "plt.title('Example of underfitting')\n", + "plt.xlabel('X')\n", + "plt.ylabel('Outcome y')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This tension is called the **bias-variance trade-off**: simpler models underfit and have more bias, more complex models overfit and have more variance.\n", + "\n", + "One data-driven way of deciding an appropriate level of complexity is to divide the available data into a training set (where the model is fit) and the validation set (where the model is evaluated). The next snippet of code uses the first half of the data to fit a polynomial of order $q$, and then evaluates that polynomial on the second half. The training MSE estimate decreases monotonically with the polynomial degree, because the model is better able to fit on the training data; the test MSE estimate starts increasing after a while reflecting that the model no longer generalizes well." + ] + }, + { + "cell_type": "code", + "execution_count": 560, + "metadata": {}, + "outputs": [], + "source": [ + "degrees =np.arange(3,21)\n", + "train_mse =[]\n", + "test_mse =[]\n", + "for d in degrees:\n", + " poly =PolynomialFeatures(degree = d, include_bias =False )\n", + " poly_features = poly.fit_transform(X)\n", + " X_train, X_test, y_train, y_test = train_test_split(poly_features,y, train_size=0.5 , random_state= 0)\n", + "\n", + "# Now since we want the valid and test size to be equal (10% each of overall data). \n", + "# we have to define valid_size=0.5 (that is 50% of remaining data)\n", + "\n", + " poly_reg_model = LinearRegression()\n", + " poly_reg_model.fit(X_train, y_train)\n", + " \n", + " \n", + " y_train_pred = poly_reg_model.predict(X_train)\n", + " y_test_pred = poly_reg_model.predict(X_test)\n", + "\n", + " mse_train= mean_squared_error(y_train, y_train_pred)\n", + " mse_test= mean_squared_error(y_test, y_test_pred)\n", + " \n", + " train_mse.append(mse_train)\n", + " test_mse.append(mse_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 606, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(7, 1.3, 'High bias \\n Low Variance')" + ] + }, + "execution_count": 606, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAGECAYAAAAfhUDJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABwh0lEQVR4nO3dd3zT1f7H8ddp2XsJsrfIKJS9ZIkiKksRFRUFVFx49frz6nWAXNziAheC4EBFxS0iCipDKKNAGSqK7CVLdlltz++Pk5a2dAFJvmnzfj4eeST5zk+SJs0n55zPMdZaREREREREwkGE1wGIiIiIiIgEixIgEREREREJG0qAREREREQkbCgBEhERERGRsKEESEREREREwoYSIBERERERCRtKgEREwpAxZpYx5lWv4/AnY0x+Y8yfxpiOATp+DWOMNca0CMTxcwvfc3BVZvcz2ed5Y8yYwEcnIpI9JUAiIhkwxrzj+2L3VgbrnvOtm5pqWRFjzFPGmL+MMUeNMbuNMfOMMf0zOGb6y4Is4hiYyT7WGFMoB49joDHmUAarrgQeyv6ZODu+xzw1+y39Ygiw1Vo7x3dufycsm4GKQNzZHMQYs8EYc79fIjp5zMxe52CoCHzjiyOz5/xZYKAxplbQoxMRSSef1wGIiISwzcA1xph7rLWHAYwx+YABwKZ0244F2gP3AKuAMkBr33VqM337p3Y8mzjigdrpF1prj+bgMWTIWvvPme4bwu4GnjjdnYwxBay12b0GWGsTgb/PJLC8zFqb7XNird1ljPkBuAP4T+CjEhHJnFqAREQytwJYA1ydatnlwFFgVrptewFPW2unWms3WGuXWmvfsNa+lm67Y9bav9NdsktGbAb7pHzpNMZ0NMYsMMYcMsbsN8YsNMY0MsZ0Bt4GiqZqNRrh2ydNFzhfq8RwX4vNQWPMZmPMNcaYUsaYj3zHXmOM6ZZqn0hjzARjzHpjzBHf+geMMRG+9SOAm4DLU52/s29dZd9x9/ou3xpj6qY6dlVjzFfGmH+MMfHGmNXGmGsze4J8LQ7nAalbm9b7rhf7zj3Lt+07xpipxpgHjTFbgC2+5TcYYxb7Hv9OY8wUY0zlVOdI07phjOnsu9/V95zHG2NijTHNsohzFlAdGJX8nKRa184YM9t3nK3GmDeMMSXO5nXO4PwljTGTfI/vqDFmnTHm3lTrrTFmqO/1iDfGbDTG3JDZ40m1T3IXuAyfc5+vgf6IiHhMCZCISNYmAINT3R+M+7Jp0233N9DdGFMyWIFBSovUV8AvQBNcq9NoIBGYD9yLa0Gq6Ls8n8Xh7gUWAc2AT4B3gQ+BaUA0MAd435zsehcBbMUliPWBR4CHgUG+9c/7jjMz1fnnG2OKAD/jEslOQFtgOzDTtw7gdaAI0AVo6IttXxaxdwD+stam3qaV77q779xXplrXCWjsW9fVt6wA8BjueewBlAMmZ3HOZE8D/8U9b3uAD4wxJpNtr8QlXCM5+ZxgjIkCfsAlCU1820UDE33r/fU6PwFE+R7f+bi/563ptvmfL45oYBzwXgZd2jKT1XO+CKhsjDmlNVNEJJjUBU5EJGsfAs/7WicO4r7Y3Y37ApvaEOADYLcxZiXuS+lX1toZ6bbrbk4dq/GatfbBLGIomsE+K6y17YASQCngG2vtWt+61ckbGWP242tByupB+nxvrX3dt99jwH24pOI937LHcV+YGwGx1toTwPBU+2/wtX70ByZYaw8ZY47ga/VKFdMNgAEGWWutb9ltwE7cF/NPcK0kn1lrl/t2W0/WquOSqNR2+a73ZPD4jwKDrbXHkhdYayemWr/OGHMH8Lsxpoq1dksW5x5mrf3Z9zhG4pKUyvhallKz1v5jjEkEDqaL6T/Ax9baF5IX+M6/zBhTHkjAP69zdWCZtXaR7/6GDLb53Fr7pu/2k8aYLrgEK8uWIJ+snvNtvusawFpERDyiBEhEJAvW2r3GmC9wX/z3AbOstZvS/8BvrZ1j3ADvNrixQBcCPxhjxllrb0u16RxcspTavmzCiMf9Gp/aMd95/zHGvAN8b4z5EfgRmGKt3ZyjB5jWiuQbvuQlHliZav0O33X55AXGmNuBW3BfrAsD+YGN2ZynOVATOJjueSzCybFOo4GxxpjuuMf0hbV2SRbHLIxLanJqVerkB8CXvD2Ge67L4JI0gGpkkMyksiLV7eQv+eWz2Se95kAdY8w1qUPyXde21sb46XV+A/jU91hn4BKq2em2icng/uWneZ6MHPFdF/bDsUREzpi6wImIZG8icCMuCZqY2UbW2hPW2rnW2mestd2AYcAQY0yNVJvFW2v/SnfZnc35bQb7bE61chCuS9Qc3FikP40xl5zB4zyR/rzpliV3+0se43MN8DLwDnAJLnF4HdeVLCsRuEpq0eku5wFvAlhrJ+CSpLd9y+dnNq7FZzdQOpvzpnY49R1jTFHge1yyOQBoiWvtg+wfT6bP0WmIAN4i7fPRBKiLr+qcP15na+13uGT1eVwXv2+NMW+fZqxnKrkgyK4stxIRCTAlQCIi2fsRV6mtHPDlaez3m++6mL8DSs9au9xa+6y1tjOuQMNNvlXHgcgAnfYCYKG19lVf0Ye/OLVaXUbnXwrUAXZnkNilFISw1m6x1o6z1l6N62qXvuUstWVAPeMrwJDq3GRw/oycj3t9H7bWzrHWriZVS5efZfacNMzg+fjLWpvccuKX19lau9taO8laOxC4GbjJGFMw1SZt0u3SBvj9NB4bmcTSCJcsrsxgnYhI0CgBEhHJhm+cSmOgZvpuU8mMq6p2mzGmua9a2GXAU8AfpP3yWNAYc266yznZhGAy2Odc46qw1TTGPOOrIFbdN16jMSeTrw1AIWPMxcaYcqmKDPjDn0AzY8ylxpi6xphhuOICqW0AGhlj6vnOnx83VmoH8JUxppPvMXQ0xrzgG2uFMWa0Maa7MaaWMSYa1xrzG5n7GSiEe+zJduK6XV1ijKmQTYGKTbhuhUN957wceDyHz8Pp2gB0MK4SXjnfsmeBVsaYscaYpsaYOsaYHsaYNwH89TobY0YaY/r4Xq/6uCIF69L9XV9pjLnVt81DuCIRL+fwsWX1nHcA5lpr43N4LBGRgFACJCKSA9bag9baA1ls8j2u69T3uMHprwNzgYt988ckuwg3WD/1ZVk2py+SwT7bcV3E4nFdxKbgEpJ3cQnGs7645+PmKJqM63r0QI4ecM68iStY8CGwGDe4/YV024zHJYCxvvO3930B7gis88W92hd3aWCvb78I4BXcF/wZuITpJjJhrd0DfA5cn2pZAvAv3Bilbbgqapntv8t3/D6+cyYXgQiE4UBVXCGAXb7zr8A9JzWA2cByXHW55HFX/nqdjwFP+o4/DygO9Ey3zQigL25s0x24YhWLc/LAsnnO++P+HkREPGV8BXhERERyNWNMQ1xLUJ1sklXJhHHzEvWz1n7q5+NeDowCGvuSJBERz6gFSERE8gRr7a/A/biWMQktRXEtSUp+RMRzagESERERIHAtQCIioUQJkIiIiIiIhI2AdYEzxkw0xuw0xqzKZruWxphEY8xVgYpFREREREQEAjsG6B1OTiKXIWNMJK6CzfcBjENERERERASAfIE6sLV2TrrZzzNyN/AZbsbtHClXrpytUSO7w4qIiIiISLhasmTJbmtthvPsBSwByo4xpjJwBXAhp5EA1ahRg9jY2IDFJSIiIiIiuZsxZmNm67wsg/0y8GC6CQIzZIwZYoyJNcbE7tq1K/CRiYiIiIhInuRZCxDQAvjIGANQDrjMGJNgrf0y/YbW2nHAOIAWLVqobJ2IiIiIiJwRzxIga23KRHXGmHeAqRklPyIiIiIiIv4SsATIGDMZ6AyUM8ZsAR4D8gNYa8cG6rwiIiIiIiKZCWQVuP6nse3AQMUhIiIiIiKSzMsiCCIiIiIiIkGlBEhERERERMKGEiAREREREQkbSoBERERERCRsKAESEREREZGwoQRIRERERETChhIgEREREZFQtXcv/PWX11HkKUqARERERERC0ZEj0KkT1KsH//oX7N/vdUR5ghIgEREREZFQdPfdsHIlXHEFvPoqfPCB1xHlCUqARERERERCzbZt8MUX8PDD8OmnsHQpDBni1s2cCX/+6W18uVg+rwMQEREREZF0KlWCFSugQgV3PzraXSclwV13wYYN8OCD8NBDULiwV1HmSmoBEhERERH/stbrCHKvw4fhzTddolO5MuRL114REQGzZ0O/fvD449CoEXz3nTex5lJKgERERETEfzZuhDJlYNIkryPJnYYOhTvucF3eMnPuufD++/DTT1CgAFx2GSxYELwYczklQCIiIiLiPzNnwr59cMstEBfndTS5y9tvwzvvwLBh0KJF9tt36QLLl8PkydC6tVu2YAEkJAQ0zNxOCZCIiIiI+E9MDJQu7QbvN2zodTS5x6pVbmzPhRfC8OE5369AAbj2WjDGFU7o3BmaN4d58wIWam6nBEhERERE/CcmBtq1g8ceg/z5YccOOHjQ66hCW2Ii9O8PJUq4UteRkWd2nIoV4aOP3OSpF1wAN98Mu3f7N9Y8wNhcNkitRYsWNjY21uswRERERCQju3e7LnB16sDRo64VqFEjV9I5Qr+9Z2rOHFc8olOnsz/WoUMwciS89JJrjfvrL5dchRFjzBJrbYb9CPVXKCIiIiL+U66cS34AChWCe++Fr792XeLkVNu3u+uOHf2T/AAUKwbPPQfLlrmWuOTkZ+tW/xw/l1MCJCIiIiL+MXkyPP982mVDh8Jtt8Gzz8J773kTV6havhxq14Z33w3M8Rs1cuOKAH75BWrUgP/7v7DvkqgESERERET8Y8IElwSlZgy88oob3H/rrSrXnOzAATeXT+nScOmlgT9f/fowaBC8+KK7/emnYTtfkxIgERERETl7iYmwcCG0bXvquvz5YcoUuP56qFs3+LGFGmthyBBYu9YljOXLB/6cZcvCuHGuSEW5ci75uuaawJ83BOXLfhMRERERkWysWuUG37drl/H6MmVg4kR3+9gxN1dN0aLBiy+UjB0LH38MTz3lxv4EU5s2EBsLr74KBQu6ZdbC8eMn7+dxagESERERkbM3f767zqgFKLWkJOje3bUGJSUFPq5QFBEBffrAgw96c/58+VxxijvucPc//BCiotwktmFACZCIiIiInL1du6B6dTfQPisREXDFFfDVV/DII0EJLeTcdht8/nnolAWvVMm1Al18sZuPKLkyXR4VIs+6iIiIiORqw4e7MS3GZL/t3Xe7JOCZZ2DSpMDHFgqshcGD4ZNP3P2cPE/B0qULrFwJI0a4+Zrq1cvTFfuUAImIiIiIf0RG5my75MpwXbrALbec7D6Xl736Krz9Nmzc6HUkGStUyM0ZtGqVG8dVvLhbngcrxSkBEhEREZGz8+230L49bNqU832SK8N17gwlSwYstJCweLGbf6dHD3cdyurUge++c2OUAJ5+Gm6/Hfbu9TQsf1ICJCIiIiJnZ84cV1nsdMs5ly0L338PDRuerESW1+zdC1dfDRUruglPQ2XcT1aMOdlF79AhGD/edYt799080SKUC14BEREREQlp8+dDs2auG9WZuusuNy9NXqsMN2UKbNniyl6XKeN1NKfvqadgyRKoXRsGDnQtdn/84XVUZ0UJkIiIiIicuePHXetPZvP/5NT558OXX8Kjj/olrJAxZIgbV9OmjdeRnLnoaJg3z02k+ttvrlUoF1MCJCIiIiJnLi4Ojh7Nfv6f7Nx9t0sWnn4a3n/fL6F5KjYWli93t+vV8zYWf4iIgFtvdeO8mjd3yx591JUzz2WUAImIiIjImTMGevY8+xYgY1yltM6d4eabISbGL+F54p9/oG9fN6dOXuvSV7iwuz5yBL75xhVL6NULNmzwMqrTogRIRERERM5cy5bw9dduMs2zlT8/fPopNGiQe6uOJSXBTTfB33+7uXRyQ9GDM1G4sGvlGjUKfvoJGjWCHTu8jipH8nkdgIiIiIjkYv/849/B/WXLukH3yYmDtaE1aWh2XngBpk518xy1aOF1NIGVPz/cf78rXjFtGlSo4HVEOZJHU1IRERERCbjNm13C8s47/j1ucvLz+uuuhHRu6Ua2ZAk89BBcdZWrahcuqlaF227zOoocUwIkkocVK1Yszf133nmHoUOHAjB27Fjee++9LPdPvX1WatSowe7du09ZnpNziIhILpY8TicqKjDHP3HCdYkbNiwwx/e3xo1h5Eh4663c1WoVZtQFTiRM3X777XniHCIi4qH5891YkMaNA3P8f/0Lfv3VzUVTvz7ccENgznO2kpJg/34oXRoeftjraCQbagESCVMjRozg+eefB2Dx4sU0btyYtm3b8p///IdGjRqlbLdt2za6d+9O3bp1eeCBBzI93qhRo2jVqhWtWrXir7/+OuUc48ePp2XLljRp0oS+ffsSHx8PwJQpU2jUqBFNmjShY8eOgXq4IiISCDEx0KqVGwsSCMmV4Tp1gltugQULAnOes/XMMy4J/PtvryORHFACJJKHHTlyhOjo6JTL8OHDM9xu0KBBjB07lpiYGCIjI9Osi4uL4+OPP2blypV8/PHHbN68OcNjlChRgkWLFjF06FDuvffeU9ZfeeWVLF68mOXLl1O/fn0mTJgAwMiRI/n+++9Zvnw5X3/99dk9YBERCZ4jR2Dp0rMvf52dAgXgs8+gWjVYvDiw5zoTs2e7LnoXXJBrigCEOyVAInlY4cKFiYuLS7mMHDnylG327dvHwYMHaef7B3bdddelWd+1a1dKlixJoUKFaNCgARs3bszwXP3790+5jslg7oZVq1bRoUMHoqKi+OCDD/j1118BaN++PQMHDmT8+PEkJiae1eMVEZEgSkpyRQr69Qv8ucqWdROu3n134M91OnbscHP91K4N48Zp3E8uoQRIJMxZa7NcX7BgwZTbkZGRJCQkZLidSfWhbzL4BzBw4EBeffVVVq5cyWOPPcbRo0cBVyjhiSeeYPPmzURHR7Nnz54zeRgiIhJsRYvCrbdC06bBOV+RIu76p5/cRKleV4ZLTHRjkvbuhSlToHhxb+ORHFMCJBLmSpcuTfHixVng61f90UcfndFxPv7445Trtm3bnrL+4MGDVKxYkRMnTvDBBx+kLF+7di2tW7dm5MiRlCtXLtMudiIiEmJ+/BHWrQv+eVeuhIkTva8Md/iwK9c9Zgw0aeJtLHJaVAVORJgwYQK33norRYsWpXPnzpQsWfK0j3Hs2DFat25NUlISkydPPmX9448/TuvWralevTpRUVEcPHgQgP/85z+sWbMGay1du3alif6JiIiEPmtd16/LLvP/HEDZSV0ZrkEDuP764J4/WYkS8N136vaWC5nsur+EmhYtWtjY2FivwxDJUw4dOpQyZ9AzzzzD9u3bGT16tMdRiYhIyFq7FurUgTffhCFDgn/+48ehWzdXFW72bGjdOnjn/vtvN8np6NFQpUrwziunxRizxFrbIqN16gInInz77bdER0fTqFEj5s6dy6OPPup1SCIiEsrmz3fXGXR5DorkynCVK8P77wfvvImJcN11ruVn377gnVf8Sl3gRIRrrrmGa665xuswREQkt4iJcV3AGjTwLoayZV0iVr588M45ciT8/DO8/TakmjNPche1AImIiIjI6Zk/H9q0gXRzxwVdhQpuDM7atfCf/wS2MtyMGfD44zBwoLtIrqUESCQPyMlYvho1arB7926/nvfw4cOULVuW/fv3p1nep08fPvnkkxwf57LLLmOfuhKIiOQe06e7MTChYvp0eP55yGTC77NmLYwY4Vq8XnstMOeQoFEXOJEQlJiYyJ49e9i5cye7du1i165dWd4+dOgQS5YsoWHDhkGNs2jRonTr1o0vv/ySm266CYD9+/fzyy+/8OGHH2a7v7UWay3Tpk0LdKgiIuJP557rLqHizjvdRKlPPumSlHSTep81Y2DaNPjnn5PzEUmupQRIJAiSE5rsEpnk23v37qV06dKcc845nHPOOZQvXz7ldsOGDencuXOa5WXLliXyDLohbNy4kcGDB7Nr1y7OOecc3n77bSpXrkzdunVZu3Yt+/fvp0yZMsyaNYuOHTvSoUMH3n77berUqZNyjP79+/PGG2+kJEBffPEF3bt3Jykpia5du7J3715OnDjBE088Qe/evdmwYQOXXnopXbp0ISYmhi+//JJOnToRGxtLuXLl6NOnD5s3b+bo0aPcc889DPFVFypWrBj33HMPU6dOpXDhwnz11VdUqFCBHTt2cPvtt7PONxfFG2+8Qbt27Xj//fcZM2YMx48fp3Xr1rz++utn9ByJiEg6n34KmzfDvfeGTgloY1zLzJo1MHgw1K7tv8pwX30Fl1wCJUu6i+R6KoMtcgb8mdBkdPtME5qs1KhRIyXJSNazZ0+uuuoqbrrpJiZOnMjXX3/Nl19+Sffu3XnhhRdYv349//vf/+jTpw/3338/559/PuvXr09z3OPHj1OlShV+//13ypYtS/fu3bn77ru55JJLiI+Pp0SJEuzevZs2bdqwZs0aNm7cSK1atZg/fz5t2rQ5JbZ//vmHMmXKcOTIEVq2bMns2bMpW7Ysxhi+/vprevbsyQMPPECJEiV49NFHueaaa2jbti333nsviYmJHDp0iG3btvHAAw/w+eefkz9/fu68807atGnDjTfe6NfnVEQkLF16KWzZ4iYkDTW7d7vEp359mDr17I/33XdurqORI72feFVOS1ZlsAPWAmSMmQj0AHZaa08pk2GM6Q08DiQBCcC91tpfAhWPhAdrLe+99x7Dhg0jNjaW8jmsDHO2CU3q5KVhw4ZBSWj8ISYmhs8//xyAAQMG8MADDwDQoUMH5syZw/r163nooYcYP348nTp1omXLlqcco0CBAvTq1YtPP/2Uvn37EhcXR7du3bDW8vDDDzNnzhwiIiLYunUrO3bsAKB69eopyU96Y8aM4YsvvgBg8+bNrFmzhrJly1KgQAF69OgBQPPmzZkxYwYAP/30E++99x4AkZGRlCxZkkmTJrFkyZKUeI8cOZLjvwUREclCUpKbe+fqq72OJGPlyrliBf7onrd5MwwYAI0bw/33n/3xJGQEsgvcO8CrwHuZrP8R+Npaa40xjYFPgPMDGI/kcatWreLOO+/kyJEjTJkyBYBff/3VL13OcktCc7aMrytDhw4dGDt2LNu2bWPkyJGMGjUqpRtcRvr3788TTzyBtZbevXuTP39+3nnnHXbt2sWSJUvInz8/NWrU4OjRo4AbO5SRWbNmMXPmTGJiYihSpAidO3dO2Sd//vwp8UVGRpKQkJDp47DWctNNN/H000+f8XMhIiIZWL3azX/Trp3XkWSuVi13ffAgvPGGS14iTrPu14kTcO21cOwYTJkChQv7P07xTMASIGvtHGNMjSzWH0p1tyiQu/riSUi59957GT16NGXLlgWgffv2lCpVKsPuZQ0aNDhleZkyZciXL/yGxLVr146PPvqIAQMG8MEHH3DBBRcA0Lp1a2688UZq1apFoUKFiI6O5s0332RqJt0JunTpwk033cRrr73GK6+8ArhiCOXLlyd//vz8/PPPbNy4Mdt49u/fT+nSpSlSpAirV69mwYIF2e7TtWtX3njjjZQucIcPH6Zr16707t2bf//735QvX55//vmHgwcPUr169dN4dkRE5BQxMe7aqwlQT8dnn8GDD8KBA/DEE6e374gRrtT35Mlw3nkBCU+84+k3PmPMFcDTQHng8iy2GwIMAahWrVpwgpNcpX///mzYsIFZs2bRqlUr7rzzTnr06BGWSU1WGjduTITvV7Crr76aMWPGMHjwYEaNGpVSBAGgYMGCVK1aNaWbWocOHZg8eTJRUVEZHjciIoK+ffsyZcqUlFai66+/np49e9KiRQuio6M5//zsG3i7d+/O2LFjady4MfXq1cu0m1xqo0ePZsiQIUyYMIHIyEjeeOMN2rZtyxNPPEG3bt1ISkoif/78vPbaa0qARETO1tatULEi1K3rdSTZu+km+OWXM6sMd+ONbqLXa68NXHzimYAWQfC1AE3NaAxQuu06AsOttRdld0wVQZCsHD58mE8++YRx48Zx2223MVATlYmIiPjXiROQP7/XUeTM8eNw8cWwcCHMnp19ZbiDB6FYsdCpbidnLKsiCCGRAPm2XQ+0tNZmOVOjEiARERERybHkynAlSsDSpZknN8ePQ4cO0LQpjB0b3BjF77JKgE5zRJj/GGPqGN+IZmNMM6AAsMereEREREQkCzNmQOfOsGGD15GcnnLl4Ntv3Xw+WbXs/Pe/sGgRXJRthyTJ5QJZBnsy0BkoZ4zZAjwG5Aew1o4F+gI3GmNOAEeAa2xum5RIREREJFzMnu3G1JxzjteRnL7kcahJSfDhh248UOrKcF9+CS+9BEOHwlVXeRKiBE8gq8D1z2b9s8CzgTq/iIiIiPhRTAxER0MmUxnkCl9/7eb2+eMPePxxt2z9ehg4EFq0gOef9zQ8CQ7PusCJiIiISC6RkOAKCeSG8tdZ6d0bbr7ZlcX+8EO3bNMmKFsWPvkEChb0Nj4JCtUIFhEREZGsrVwJhw+H9gSoOWEMvP46rFkDgwdD7drQqZNrEdLUGWFDLUAiIiIikrXEROjePfcnQAAFCrhJUkuWhPvuc+OClPyEFb3aIiIiIpK1Fi3gu++8jsJ/ypWDuXNdt7eEBJcUSdhQC5CIiIiIZO3AAa8j8L/zzoNHH1XyE4aUAImIiIhI5v7+G0qVggkTvI5ExC+UAImIiIhI5mJiwFpo0MDrSET8QgmQiIiIiGQuJsZ1E2vWzOtIRPxCCZCIiIiIZG7+fGjeXHPkSJ6hBEhEREREMnb8OMTG5o3y1yI+KoMtIiIiIhlLSIAXX3RlsEXyCCVAIiIiIpKxIkXgzju9jkLEr9QFTkREREQyNncubNzodRQifqUESEREREROZS1cey089JDXkYj4lRIgERERETnV5s2wbRu0bet1JCJ+pQRIRERERE4VE+OuVQFO8hglQCIiIiJyqvnzXRGExo29jkTEr5QAiYiISMAVK1YsIMcdMWIEzz///CnLt23bxlVXXRWQc4aN+fOhZUvIn9/rSET8SmWwRUREJM+pVKkSn376qddh5G6ffw779nkdhYjfqQVIREREPBEXF0ebNm1o3LgxV1xxBXv37mXnzp00b94cgOXLl2OMYdOmTQDUrl2b+Pj4U46zfPlyLrzwQurWrcv48eMB2LBhA40aNUq53aFDB5o1a0azZs2YP38+ANu3b6djx45ER0fTqFEj5s6dG4yHnXtUrQpRUV5HIeJ3SoBERETEEzfeeCPPPvssK1asICoqiv/973+UL1+eo0ePcuDAAebOnUuLFi2YO3cuGzdupHz58hQpUuSU46xYsYJvv/2WmJgYRo4cybZt29KsL1++PDNmzGDp0qV8/PHH/Otf/wLgww8/5JJLLiEuLo7ly5cTHR0djIedO3z9NYwZ40phi+Qx6gInIiIiQbd//3727dtHp06dALjpppvo168fAO3atWPevHnMmTOHhx9+mOnTp2OtpUOHDhkeq3fv3hQuXJjChQvTpUsXFi1alCaZOXHiBEOHDiUuLo7IyEj+/PNPAFq2bMngwYM5ceIEffr0UQKU2oQJsHo1+JJFkbxELUAiIiISUjp06JDS6tO7d2+WL1/OL7/8QseOHTPc3hiT5f2XXnqJChUqsHz5cmJjYzl+/DgAHTt2ZM6cOVSuXJkBAwbw3nvvBeYB5TbWugIIKn8teZQSIBEREQm6kiVLUrp06ZRxN5MmTUppDerYsSPvv/8+devWJSIigjJlyjBt2jTat2+f4bG++uorjh49yp49e5g1axYtW7ZMs37//v1UrFiRiIgIJk2aRGJiIkBKt7pbb72Vm2++maVLlwbwEecia9fC7t2aAFXyLHWBExERkYCLj4+nSpUqKffvu+8+3n33XW6//Xbi4+OpVasWb7/9NgA1atQASGnxueCCC9iyZQulS5fO8NitWrXi8ssvZ9OmTQwbNoxKlSqxYcOGlPV33nknffv2ZcqUKXTp0oWiRYsCMGvWLEaNGkX+/PkpVqyYWoCS+YpEqAVI8ipjc9ngthYtWtjY2FivwxARERHJmx5/HF56ybUCRaizkOROxpgl1toWGa3TX7WIiIiInDRsGGzfruRH8iz9ZYuIiIhIWgULeh2BSMAoARIREZGgqlGjBrt37065P2vWLHr06AHA119/zTPPPJPl/qm3z8w777xD//790yzbvXs355xzDseOHctRnLGxsSlzBoWN2bPh4oth3TqvIxEJGCVAZ2H+/PmcOHHC6zBERETyjF69evHf//73rI9z5ZVXMmPGDOLj41OWffrpp/Tq1YuCOWjdSEhIoEWLFowZM+asY8lVZs+GH3+EsmW9jkQkYJQAnaHt27fTqVMnqlevzogRI06ZdVpERERO3zvvvMPQoUMBWLt2LW3atKFly5YMHz6cYsWKpWx36NAhrrrqKs4//3yuv/560hd1KlGiBB07duSbb75JWfbRRx/Rv39/vvnmG1q3bk3Tpk256KKL2LFjBwAjRoxgyJAhdOvWjRtvvDFNS9OiRYto164dTZs2pV27dvzxxx8p8V555ZV0796dunXr8sADD6Scb/r06TRr1owmTZrQtWtXAA4fPszgwYNp2bIlTZs25auvvgrAs3gW5s+Hhg2hZEmvIxEJGCVAZ6h8+fJ8+eWXREdHM3LkSKpVq0a/fv2YNWvWKR/CIiIiklaXLl2Ijo4mOjqaW265JcNt7rnnHu655x4WL15MpUqV0qxbtmwZL7/8Mr/99hvr1q1j3rx5p+zfv39/PvroIwC2bdvGn3/+SZcuXbjgggtYsGABy5Yt49prr+W5555L2WfJkiV89dVXfPjhh2mOdf755zNnzhyWLVvGyJEjefjhh1PWxcXF8fHHH7Ny5Uo+/vhjNm/ezK5du7j11lv57LPPWL58OVOmTAHgySef5MILL2Tx4sX8/PPP/Oc//+Hw4cNpzpWYmJim5SpokpJgwQKVv5Y8TwnQGYqMjOTyyy9n2rRprFmzhn//+9/89NNPdOnShaioKF5//XUOHjzodZgiIiIh6eeffyYuLo64uDjeeuutDLeJiYmhX79+AFx33XVp1rVq1YoqVaoQERFBdHR0mnl/kvXo0YNffvmFAwcO8Mknn3DVVVcRGRnJli1buOSSS4iKimLUqFH8+uuvKfv06tWLwoULn3Ks/fv3069fPxo1asS///3vNPt07dqVkiVLUqhQIRo0aMDGjRtZsGABHTt2pGbNmgCUKVMGgB9++IFnnnmG6OhoOnfuzNGjR9m0aVOac61cuZLatWvzww8/5OCZ9KPff4f9+5UASZ6nBMgPateuzahRo9iyZQsTJ06kUKFC3HXXXVSuXJmhQ4fy22+/eR2iiIhInpJ6HE9kZCQJCQmnbFO4cGG6d+/OF198kdL9DeDuu+9m6NChrFy5kjfffJOjR4+m7JM8SWp6w4YNo0uXLqxatYpvvvkmzT4ZxWKtxRhzynGstXz22Wcpyd+mTZuoX79+mm3q16/PuHHjGDRoEI899hiJiYk5fFbO0tGj0LUrtG8fnPOJeEQJkB8VLlyYQYMGsXjxYhYsWECfPn0YP348DRs2pEuXLnz66acqmiAiIpJDbdq04bPPPgNI6cp2uvr378+LL77Ijh07aNOmDeBacypXrgzAu+++m6PjpN7nnXfeyXb7tm3bMnv2bNavXw/AP//8A8All1zCK6+8ktJdftmyZafs++mnn3LdddcRERHB6NGjqVu3Lnv27MlRnGeleXOYORPq1An8uUQ8pAQoAIwxtG7dmvfee48tW7bwzDPPsH79evr160eNGjUYOXIk27dv9zpMERGRkPbyyy/z4osv0qpVK7Zv307JMxiY361bN7Zt28Y111yT0iIzYsQI+vXrR4cOHShXrlyOjvPAAw/w0EMP0b59+xy1yJxzzjmMGzeOK6+8kiZNmnDNNdcAriXpxIkTNG7cmEaNGjFs2LBT9q1evTpDhgyhUKFCWGspWbIkR44cOY1HfYa8GHck4gGT2wbst2jRwsbGxnodxmlLTExk2rRpvPbaa3z//ffky5ePvn37cuedd9KhQ4cMm8lFRETCWXx8PIULF8YYw0cffcTkyZNDr2qanyUlJdG3b1+io6O57LLLaN68ORERQfi9es8eqFABxo6FTIpSiOQmxpgl1toWGa5TAhR8f/31F2+88QYTJ05k3759REVFceedd3LDDTekKfEpIiISzubOncvQoUOx1lKqVCkmTpxIHXXPCoxvv4UePWDWLOjUyetoRM6aEqAQFR8fz+TJk3nttddYtmwZJUqU4KabbuKOO+44ZUCkiIiISMA88gg8+ywcOABFingdjchZyyoB0hggDxUpUoSbb76ZJUuWMH/+fHr16sWbb75JgwYN6Nq1K59//nmGVW1ERERE/Gr+fIiOVvIjYUEJUAgwxtC2bVsmTZrE5s2beeqpp/jrr7/o27cvNWvW5IknnuDvv//2OkwRERHJixISYNEizf8jYUMJUIgpX748Dz30EOvWrePLL7+kQYMGDBs2jGrVqtG/f39++eUXclu3RREREQlhJ07AU0+Br1KdSF6nMUC5wJ9//skbb7zB22+/zf79+2ncuDF33XUX119/faYTtomIiIiIhCuNAcrlzjvvPF566SW2bt3KuHHjMMZw2223UalSJe655x7++OMPr0MUERGR3GrBAti61esoRIJGCVAuUrRoUW699VaWLVvGvHnz6NGjB2+88Qbnn38+F198MV9++aWKJoiIiMjp6d8f7rnH6yhEgkYJUC5kjKFdu3Z88MEHbN68mSeeeILVq1dzxRVXUKtWLZ566il27tzpdZgiIiIS6rZvhw0bVABBwooSoFyuQoUKPPLII6xfv57PP/+cevXq8cgjj1ClShWuv/565s+fr6IJIiIikrGYGHetBEjCiBKgPCJfvnxcccUVzJgxg99//5077riDqVOn0r59e5o2bcqTTz7J8uXLlQyJiIjISfPnQ4EC0LSp15GIBI2qwOVhhw4d4oMPPmDixIksWrQIgGrVqtGjRw969uxJly5dKFiwoMdRioiIiGfat3fX8+Z5G4eIn2VVBU4JUJjYvn073377LVOnTmXGjBnEx8dTtGhRunXrRs+ePbn88sspX76812GKiIhIMK1fD3v3QrNmXkci4leeJEDGmIlAD2CntbZRBuuvBx703T0E3GGtXZ7dcZUAnb0jR47w888/88033zB16lS2bNmCMYZWrVrRs2dPevbsSVRUFMYYr0MVERERETltXiVAHXGJzXuZJEDtgN+ttXuNMZcCI6y1rbM7rhIg/7LWEhcXx9SpU/nmm29YvHgx4LrKJSdDnTt3Vlc5ERGRvGb6dNcCdNttEKFh4ZK3eNYFzhhTA5iaUQKUbrvSwCprbeXsjqkEKLCSu8p98803zJgxgyNHjqirnIiISF501VWwdCmsW+d1JCJ+lxsSoPuB8621t2SyfggwBKBatWrNN27c6O9QJQOpu8p98803bN26FWMMrVu3pmfPnvTo0UNd5URERHIja6FKFejcGT74wOtoRPwupBMgY0wX4HXgAmvtnuyOqRYgbyR3lUseN5TcVa569eopVeXUVU5ERCSX2LgRatSAV1+Fu+7yOhoRv8sqAfK0w6cxpjHwFtA7J8mPeMcYQ9OmTRk+fDiLFi1i27ZtjB8/niZNmjBx4kS6d+9OuXLl6Nu3L2+//TY7d+70OmQRERHJzPz57rptW2/jEPGAZwmQMaYa8DkwwFr7p1dxnJUVK6BPHxg3DrZs8TqaoKpYsSK33HILX331FXv27GHq1KnccMMNLFy4kMGDB3PuuefStm1bnnrqKVauXKkJWEVERELJ2rVQrBg0bux1JCJBF8gqcJOBzkA5YAfwGJAfwFo71hjzFtAXSB7Qk5BZM1VqIdUFbvp0Vzll0yZ3v3FjuPxy+L//g7JlvY3NI6m7yn3zzTckv1bqKiciIhJi4uOhSBGvoxAJCE2EGkjWwm+/wbRp8O23EBsLO3ZA0aLwxRdw+DB07w7lynkdqSe2bduWUlVu5syZHDlyhGLFiqVUlbvssstUVU5ERERE/EoJUDAdOQKFC7vbl10G330HxkDr1q51qEcPiI72NESvHDlyhJ9++imlkEL6qnL9+vWjbt26XocpIiKSt8XEwOOPw5gxUKeO19GIBIQSIK8kJcGSJSdbhxYvdknRt9+69TNnusSoeHFv4/SAtZZly5alJEOxsbEUKlSIJUuW0KBBA6/DExERybuefhoefhh27w7bLvuS9ykBChU7dsDevXD++e72uedC/vzQoYNrHbr8cjjvPNdiFGbWr19Py5YtqV27NvPmzSNfvnxehyQiIpI39ewJa9bA6tVeRyISMCFbBjvsVKjgkh9wv7jMng3//rdLhv7v/9y6995z648cgaNHvYs1yGrWrMlrr73GokWLeOGFF7wOR0REJG+y1nWBa9fO60hEPJNtAmScG4wxw333qxljWgU+tDwuXz7o2BGefRZWrYING+D11+Gii9z6Dz90SVKvXjB27MlKc3nY1VdfTd++fRk+fDi//fab1+GIiIjkPWvWwJ49mv9HwlpOWoBeB9oC/X33DwKvBSyicFW9OtxxB1Su7O5HR8PgwS45uuMOt75xY1eyMo8yxvDaa69RvHhxBg0aREJCgtchiYiI5C2HDrkfYNu39zoSEc/kJAFqba29CzgKYK3dCxQIaFQCzZvDK6+4icp++w2ef94VTEiu1z9oEFx7resyt2uXt7H6UYUKFVK6wr344otehyMiIpK3NGvmuuCr4JCEsZwkQCeMMZGABTDGnAMkBTQqOckYqF/fjREaP/7k8hIl3AfYTTe5sUWtW8PEid7F6UdXX301V155JcOHD+f333/3OhwREZG849gxryMQ8VxOEqAxwBdAeWPMk8AvwNMBjUqyN3o0bN3qymz/738uUdq40a07ehRuvRU+/RT27/c2zjNgjOH111+nWLFiDBw4UF3hRERE/GH/fihZEsaN8zoSEU9lmwBZaz8AHsAlPduBPtbaTwIdmORARIRryh42DBYsgBEj3PI//nDJT79+UK6cK6yQy4oKVKhQgVdffVVd4URERPxl4ULXAlSrlteRiHgqJ1XgJllrV1trX7PWvmqt/d0YMykYwclpSp4/qEkTNy5ozhy4/35YsQLatDnZQpRLXHPNNeoKJyIi4i/z57vvCq1UzFfCW066wDVMfcc3Hqh5YMIRv8mXz02w+vTTrpvco49CtWpeR3Va1BVORETEj2JiICrKjSMWCWOZJkDGmIeMMQeBxsaYA8aYg777O4GvghahnL2qVeGBB9yvPitXwm235ZpJVtUVTkRExA+Sklx3eU2AKpJ5AmStfdpaWxwYZa0tYa0t7ruUtdY+FMQYxZ/mznWDHzt1gu3bvY4mR6655hquuOIKdYUTERE5U8ePuzHD11zjdSQinjPW2uw3MqY0UBcolLzMWjsngHFlqkWLFjY2NtaLU+cdn38OAwZAqVLw1VfQooXXEWVrx44dNGjQgLp16zJv3jwiIyO9DklEREREQpQxZom1NsMvuTkpgnALMAf4Hvif73qEPwOUILvySjcQMn9+N05o4UKvI8pWcle4hQsXqiuciIjI6Vq6FHbs8DoKkZCQkyII9wAtgY3W2i5AU2BXQKOSwGvSBBYtgjvvhKZNvY4mR6699lquuOIKhg0bpq5wIiIip+Paa2HIEK+jEAkJOUmAjlprjwIYYwpaa1cD9QIblgRF+fLwwgtQoADs3g133AEHD3odVaaSq8IVLVqUQYMGkZiY6HVIIiIioW/3blizRgUQRHxykgBtMcaUAr4EZhhjvgK2BTIo8cDcuTB+PLRtC+vWeR1Nps4991x1hRMRETkdMTHuum1bb+MQCRHZJkDW2iustfustSOAYcAEoE+A45Jgu+IK+P572LbNTZA2a5bXEWXq2muvpU+fPgwbNozVq1d7HY6IiEhoi4lx8wPmgqJHIsGQkxYgjDGljTGNgYPAFqBRQKMSb3Tt6sYFlS8PF18MX37pdUQZMsbwxhtvqCuciIhITsyf78b7FinidSQiISEnVeAeB1YArwAv+C7PBzgu8UqdOu6XokGDoH17r6PJ1Lnnnssrr7zCggULeOmll7wOR0REJHSNHw+vvOJ1FCIhI9t5gIwxfwBR1trjwQkpa5oHKMhOnIBHHoEHHoBy5byOJg1rLVdeeSXfffcdcXFxnH/++V6HJCIiIiIh4KzmAQJWAaX8GpHkHkuXwpgxblzQqlVeR5OGusKJiIhk48cf4a23QP8jRVLkJAF6GlhmjPneGPN18iXQgUmIaN0aZs+Go0dd9ZivvvI6ojTUFU5ERCQLEybAiBEQGel1JCIhIydd4H4F3gRWAknJy621swMbWsbUBc4jW7dCnz6wZAm89pqbMyhEqCuciIhIJmrUcL04PvnE60hEgupsu8DtttaOsdb+bK2dnXzxc4wS6ipXhjlzYPDgkJtITV3hREREMrBtG2zcqPl/RNLJSQK0xBjztDGmrTGmWfIl4JFJ6Clc2PUjbtLE3X/xRdcyFALUFU5ERCSd5AlQQ+yHSxGv5aQL3M8ZLLbW2gsDE1LW1AUuRGzcCI0aQbFibr6g1q29jghrLVdccQXTp09XVzgREZEnn4QnnoD9+6FAAa+jEQmqrLrAZZsAhRolQCFk1Sro1cs1sY8fDwMGeB0Rf//9Nw0aNOD8889n7ty5RGrQp4iIhLMDB6BECa+jEAm6MxoDZIy5wXd9X0aXQAUruUijRrB4sWtav/FGeOwxryNK6QoXExPDyy+/7HU4IiIi3lLyI3KKrMYAFfVdF8/gUizAcUluUbYsfP893HUXNG7sdTQAXHfddfTu3ZtHH32UP/74w+twREREgi82Fnr3hjVrvI5EJOTkZAxQe2vtvOyWBYu6wOUCn3wCzZpBnTqehbB9+3YaNmyornAiIhKenn8e/vMf+PtvqFDB62hEgu5sy2C/ksNlInD4MNxzj5tz4McfPQujYsWK6gonIiLhKyYGatVS8iOSgazGALU1xvwfcE668T8jAP2cLhkrWhTmzXPzBl1yCbzyCnhUaOO6666jV69e6gonIiLhxVqYP1/z/4hkIqsWoAK4sT75SDv+5wBwVeBDk1yrVi33wXv55fCvf8Htt3uSBBljGDt2LIULF9YEqSIiEj42bHBd3zT/j0iG8mW2wlo7G5htjHnHWrsRwBgTARSz1h4IVoCSSxUvDl98AcOHQ/78YIwnYVSsWJExY8YwYMAARo8ezX33qYChiIjkcfv2udaf9u29jkQkJOWkCMKHwO1AIrAEKAm8aK0dFfjwTqUiCLnYvHlu4tQmTYJ6Wmstffr04YcffiAuLo569eoF9fwiIiIiElxnWwShga/Fpw8wDagGeD/jpeQu1sLQoe7XqC++COqpU3eFGzx4sLrCiYhI3paQ4HUEIiEtJwlQfmNMflwC9JW19gTgzah2yb2MgWnT3OSpV14Jjz8e1HFByV3h5s+fz+jRo4N2XhERkaA6dAhKlYI33/Q6EpGQlZME6E1gA25i1DnGmOq4Qggip6diRZg1CwYMcGODrrkGjh4N2umvv/56evbsySOPPKKqcCIikjctXuympKha1etIREJWtgmQtXaMtbaytfYy62wEugQhNsmLChWCd9+FUb4hZAUKBO3UxhjefPNNChUqpK5wIiKSN8XEuOs2bbyNQySEZZsAGWMqGGMmGGO+891vANwU8Mgk7zIG7r8fPv4YIiJg40ZXNjsI1BVORETytPnzoX59KFPG60hEQlZOusC9A3wPVPLd/xO4N0DxSDhJLo19333QuTO8805QTnvDDTekdIX7888/g3JOERGRgLPWtQBpAlSRLOUkASpnrf0ESAKw1ibgSmKL+Mdbb0HHjjB4MAShxHlyVbhChQppglQREck7jh93PSyuvdbrSERCWk4SoMPGmLL4Kr8ZY9oA+wMalYSX0qXh88+hfHlXKjspKeCnrFSpUkpXuDFjxgT8fCIiIgFXsCA89BBcfLHXkYiEtJwkQPcBXwO1jTHzgPeAuwMalYSfEiXguedg4UL44IOgnPKGG26gR48ePPzww+oKJyIiud/KlbBnj9dRiIQ8Y3MwF4sxJh9QDzDAH765gDzRokULGxuEblLigaQkeOUVGDTIJURBsG3bNho2bEjDhg2ZPXs2kZGRQTmviIiI3zVq5Mpff/ed15GIeM4Ys8Ra2yKjdTlpAcJam2Ct/dVau8rL5EfyuIgIuOcel/wEaZLUSpUqMXr0aObNm6eucCIiknvt2we//grt2nkdiUjIy1ECJBJUv/4KTZvCqlVBOd2AAQNSusKtWbMmKOcUERHxq4UL3bUSIJFsBSwBMsZMNMbsNMZk+C3WGHO+MSbGGHPMGHN/oOKQXOjcc2HzZrj77qC0BKWeIFVV4UREJFeaP9/1pGjVyutIREJepgmQMeaGVLfbp1s3NAfHfgfonsX6f4B/Ac/n4FgSTsqWhSefhFmzYMqUoJwydVe4V155JSjnFBER8Zv58yEqCooX9zoSkZCXaREEY8xSa22z9Lczup/pwY2pAUy11jbKYpsRwCFrbY4SIRVBCBOJidCyJezaBatXQ9GiAT+ltZaePXvy008/sXz5curWrRvwc4qIiPjFb7/BP//ABRd4HYlISDjTIggmk9sZ3Rfxr8hIVxFuyxYYNy4opzTGMG7cOAoWLKiucCIikrs0aKDkRySHskqAbCa3M7ofUMaYIcaYWGNM7K5du4J5avFS+/bw/fduLFCQVKpUiZdfflld4UQkNM2fDy+/DIMHQ/PmUKOGSh4LzJkD774LCQleRyKSK2TVBS4e+AvX2lPbdxvf/VrW2mz7JKkLnPjNoUNQrFhQTqWucCLiqYQE+PNPWLECli+HAwfgtdfcui5d3PjIChWgSRPXSn7ZZTBqlKchi8duugmmT4e//wajTjoikHUXuHxZ7Fc/QPGInJ5Vq+DCC2HiROjRI+CnS64K17BhQwYNGqQJUkUkcP75B1auhI4d3RfXRx6BF16AY8fc+nz5XKKTlOQqfL35JpQs6RIgcD8OJY+RPHw4KOMlJQTNnw9t2yr5EcmhTLvAWWs3pr4Ah4BmQDnf/SwZYyYDMUA9Y8wWY8zNxpjbjTG3+9afa4zZAtwHPOrbpoRfHpXkLfXqQblycO+9cPRoUE5ZuXJlVYUTEf+Li4OHH4bLL4eqVV3Vy86dYft2tz46GoYOhffec9sePgyxsS75ATjvvJPJD7iWcWNg40b3WTl+fHAfj3hv1y746y/N/yNyGrLqAjcV+K+1dpUxpiKwFIjFdYcbZ619OWhRpqIucGFq5ky4+GJ44gn3C2kQqCuciJyRf/5x3deSu7AtX+4Sk6ZNYdIkN36nfn1o3Ni17jRpAh06QOHCZ37OI0fgqqtg2jR46SX3g5GEh6+/ht69Ye5cFUEQSeVMu8DVtNYmT2I6CJhhrb3RGFMcmAe87N8wRbJw0UXQt6+bH2jAAKhWLeCnTN0VbvDgwcyePZuIiIDNHSwiuU1iIqxZ4xKcqChXhWvOHOjU6eQ255zjEpzjx939fv3g6quhYEH/xlK4MHzxBVx3Hfz7365r3COPqEtUOFi1CvLnd0UxRCRHsvo2dyLV7a7ANABr7UEgKZBBiWTohRfc9UcfBe2UlStX5uWXX+aXX35RVziRcJZcFn//frjlFjdPWbFiriXn2mvhs8/c+qgoePZZNyB92zbYsQNmzIDWrd36QoX8n/wkK1DAfT4OGADDhsGECYE5j4SWhx92XSjPpgVRJMxk1QXuG+AHYAswEdcitM8YUxiItdY2DF6YJ6kLXJhbtw5q1QrqKa219OjRg59//lld4UTCxY8/wk8/nezG1rOnq8SWkAC1a0Pdumm7sNWvH7jE5nQlJcGLL8Jtt0Hx4l5HIyLiiay6wGWVAJUHRgIVgdestT/4lncBmue0bLW/KQESwCVCVau6Zv8g2Lp1Kw0bNiQqKkpd4UTyuhkzoFs3NyHz+ee7BOfyy133stzm0CGXuN1/v3s8krcsXw6PPw5PPeUKZIhIiqwSoKyqwO201t5ure2dnPz4lv/sVfIjArj5MerXh1dfDdopU3eFu//++1mxYgWJyV1iRCRvWbfOte7s3+/GV3zwQe5MfsB1zfvvf+GGG+DEiey3l9xl9mz3Ghcp4nUkIrlKVi1AX2e1o7W2V0AiyoZagARr3XxAc+e6ZOjcc4N0WsvVV1/Np59+CkCJEiVo27Yt7du3p3379rRu3ZqimoNDJG9ISHBz8OQFo0bBAw9Ar17w8cduHJLkDddeC/PmwebNXkciEnLOtAvcLmAzMBlYCKQpJWOtne3nOHNECZAArvJSo0bQvz+8807QTmutZf369cybNy/lsmqVK5YYGRlJdHR0SkLUvn17KleuHLTYROQsrVjhWn/69PE6Ev97/XW46y43ncCXX6rFIK+oXh3atHGJrYikcaYJUCRwMdAfaAx8C0y21v4aqEBzQgmQpHj4YXj6affrl4cTwO3du5cFCxakJEQLFy7kyJEjAFSvXj1NQtSoUSMi1Q9fJPQkJkLbtrBhA6xdmzeLB7z7riuNPXcu1KzpdTRytrZscWNhX34Z7rnH62hEQs4ZJUDpDlAQlwiNAkZaaz2rB6wESFIcOuRage69N6Qm/Ttx4gRxcXFpWom2+2Z5L1GiBG3atEnTba5YsWIeRywivPIK/Otf8OGHrmU5rzp8GIoWdV2JDx3Km4leuIiLcyXZx46FFhl+xxMJa2ecAPkSn8txyU8N4GtgorV2awDizBElQJJGfHzId+Ww1rJhw4ZTus1Za4mMjKRJkyZpWomqVKnidcgi4WXzZjeJafv28N134TF56H//C9OmuYp3FSp4HY2IiN+daRe4d4FGwHfAR9baVYELMeeUAEmG5s51X2DKlvU6khzZt2/fKd3m4uPjAahWrVqahCgqKkrd5kQCxVo35mfGDPj11/DpGjZzJvTuDVWquDmP9MNL7pOUBJqSQSRTZ5oAJQGHfXdTb2QAa60t4dcoc0gJkJxiyxb3peXWW91A31zoxIkTLF++PE0r0bZt2wAoXrz4Kd3miqvbioh/WOu6vR08CLff7nU0wfXLL3DZZe6Hox9/DPok03IWjh6FihXdONhw+7sVyaGzHgMUSpQASYbuvRfGjIHYWGjWzOtozpq1lo0bN6ZJiFauXIm1loiIiFO6zVWtWtXrkEUkN4qNhUsugZIl4fffoWBBryOSnJg3Dy64wFX0693b62hEQpISIMn79u1zs2DXret+1cyDffj3799/Sre5w4ddI23VqlVP6TaXL6/MYSISKA884Kpo3X2315F4a+VKV/5bX6Rzj+S5nXbsgPLlvY5GJCQpAZLw8PbbMHgwvPceDBjgdTQBl5CQcEq3ua1bXX2SYsWK8cILLzBkyBCPoxQJUfPnu6IH994LL73kdTSh45NP3NwyrVt7HYlk5YorXOL6119eRyISspQASXhISoJLL4VrrnGJUJix1rJp0ybmzZvHm2++SUxMDIsXL6ZJkyZehyYSWo4fd11lDx50hQ9Uit45fhwaN4atW+Hbb6FjR68jkoxY68b/dOvmfvATkQxllQCpj4zkHRERMH16nuz+lhPGGKpXr0716tXp1q0bUVFRXH/99cTGxlKoUCGvwxMJHaNGucRn6lQlP6kVKAA//QQXXQTdu8MXX7jxQRJaTpyAO+/U3D8iZ0H1EyVvMcb9OjZpEvz2m9fReKZcuXK8/fbb/Prrrzz00ENehyMSOnbtgiefhH794PLLvY4m9FSqBLNnQ7160KsXfPWV1xFJegUKwPDhroKfiJwRJUCS9+zd62Z0/9e/XDIUprp3785dd93Fyy+/zMyZM70ORyQ0nHOOaykePdrrSELXOee4lqCmTV2VOAktq1fD/v1eRyGSq2kMkORNr70GQ4fCp59C375eR+OZ+Ph4mjdvzsGDB1mxYgVlypTxOiQR7xw4ACU8mcIudzpyBAoVci3r+/ZBqVJeRxTerHWlyq+80lUvnDHD64hEQlpWY4DUAiR50223ucG8990H8fFeR+OZIkWK8P7777Njxw7uvPNOctsPHp44fhw2bXLXAAsXwquvuokHJffatQvq1IE33vA6ktyjcGGX/Kxb57rEjRnjdUTh6Y8/oH9/V/igYUN3X903Rc6KEiDJm/Llc19aN22CZ57xOhpPNW/enBEjRvDxxx/z4Ycfeh2OdxIT4e+/YelSN/h91y63/Jdf3JeJ6Gg3n0bBgq4McPIYsrg4N09M+/bui6DkTvfd51oxOnXyOpLcp3Jl9/d/zz3w9NNeR5O3bdniKrsNGgRTprhlBQq4cVkXXQRvvQVr17ry7SJyxlQFTvKuDh3cRHEtW3odiecefPBBpk2bxl133UWHDh2oVq2a1yH5j7Vu3Ne2bScvW7dCjx7QpAnExLgB73//7ZKgZN9847Y5ccKtq1oV2rRxg8CTL+BKqlesCDfd5Eonv/uuJozMbWbMgPffdwPHGzTwOprcp2BBNz/QwIHw8MNw6BA88UTYVtz0u8RE12X7xx9hzRq3rGxZ9/kFULOm+0zT8y3iNxoDJBIm1q1bR5MmTWjRogU//vgjERG5pAH4+HE3aWVyYpOc5Fx7rZsMcNUqiIo6db9x4+DWW12rzRNPpE1sKlWC888/vfEg69e7RGrJEvjoIzfflIS++Hj395EvHyxf7sa0yJlJTIQ77oDx40++v+T07NvnWnN++sklNC+/7Ja3bw9lysCFF7pLVJSb2kFEzpjmAZLwduwYPPsstGrl5rYIU7Vq1WL06NHcfPPNvPjii9x///1eh+QkJcErr6Rtwdm2zfV5Hz7cDcTu0uXk9kWLui45F13k7teoAS++6JKaypXddcWKbvwCQK1aMHHi2cdZs6brLvfcc67lSHKHBQvc39P06Up+zlZkJLz5pusuesMNXkeTu4wdCxMmuC64SUnu8yl1GetfflELj0gQqQVI8r7k2c0TE11rQcGCXkfkGWstffv25dtvv2Xx4sU0btw4+EEkJLjqfHv2wF13uWXFi7vXKXULTe/e7kuWtfDzzyeXh0oVr8OH3Twpjz6aNkGT0LNzpxvfJf61fz+89BI88gjkz+91NKHh6FGXdP/0E8yZA99955Kd//3PdXFLbuFp3Tqs/xeJBENWLUBKgCQ8/PCDm9H86afhv//1OhpP7d69m6ioKMqVK8fixYspFKxfxePjXUvMCy/Ahg2uRW7BAver5969rsRubvoFdMMGuPRS+PNPePxx93elLiuhIzHRfQm9+GKvI8m73n8fBgyAPn1ct9Bw/kI/f75rsZ43zyVBERHQogVMnuxaoUUk6FQGW6RbNzde5PHHXZWdMFauXDkmTpzIqlWreOSRR4Jz0i++gGrVXDW1ihXhyy9dcYLkhKd06dyV/IDrerd4sRsL9Mgj0LOna9WS0PD66+59P2uW15HkXTfc4Epjf/mla7ENhykHkpJg2TL3Q87ll7uuleDGmO3e7cZIff01/POPK6Gv5EckJKkFSMLHhg1Qv777tXLyZK+j8dxdd93F66+/zo8//siFF17o/xOsX++Smho1XCnp4cPhwQfdYN+8xFrXv//ee90Xos8/9zoi2bzZVXu74AKYNi33Jde5zcSJcMstrvLm1KmuS2tec+CAK009a5ZLbsDNjfT44644ioiEHHWBE0n23nvQqJErZxzm4uPjadasGYcPH2bFihWULl3aPwdetswVCvjkE/cL8bvv+ue4oS421pWurVnTdYEpWFBfvL1grWuNmDkTfv3VvR4SeB995Epkz5rlWntzK2td5ciffnJjD6tUcZ9n1kLbtm4i0gsvdOP+kkvli0hIUgIkIhmKjY2lbdu29OvX7+wnSZ01C556ys25Urw43H67mzixcmW/xJprWAtXXukSoPHj8+av4aHss8/gqqtg1CgIlUqH4eLYMfd3n5TkCiT460cVfztxwlUG3LzZtewkV2N75BE3rmnTJne/YkW4/nr3tyQiuY7GAImkduyYm9BvzBivI/FcixYteOyxx5g8eTKTz6RbYEKC+8IP8NVXsHIlPPOM+2Lx3HPhl/yAez5at3azuLds6SoPSvBERLixP/fe63Uk4Se5CML//R+0a+fm7Qq2hAT3+TN/Pnz8cdrP+Ucfda02BQu6rrkdOqQt5338uHvPvvYa/P67i1/Jj0iepBYgCT/WuupdMTGugleFCl5H5KmEhAQ6duzIb7/9xsqVK6latWr2O8XHw9tvu4HA48dD167uF99ChcK7ElRqs2a5yVoPHHBzpwwY4HVEIsExd64bD1eunCv97K9uiAkJsH27K2SzebO73rLFjcMpWtRdjxjhWqBSO3gQihVzn1UxMVC1qrtUqeKuGzb0T3wiElLUBU4kvT/+cDNt33CDfybJzOXWrl1LdHQ0LVu2ZObMmURkVs55zx736+grr7iKR23auF9IL7gguAHnFtu3uyRo9WqXbJcs6XVEeVdMjKu6dffdbsJO8daiRW7i6aJF3XisevWy3+fAAfjtt5PJzebNJ1uTa9Z0rTn33JN2n6JFYflyqF3bnWfOnLTJTZUq7n2n8XgiYUcJkEhGHnzQ/WNdsMB1WQpzEyZM4JZbbuGFF17gvvvuO3UDa+G88+Cvv6BHD3jgAZf46ItF1hIS3KDq885zc9Ns2+a+mIn/HD/uCpscPOgKHxQr5nVEArBihZuHqXBh96PT4cOusEByYpOc5Dz3nPss+eILN34uWeHC7r3y4YfQvLlLjn755WRyU7WqkhsRyZQSIJGMHDzofpWsV8/9Uw5z1lquvPJKpk2bRmxsLFFRUa589YQJ8OKLbqb3adOgenV1GTlTTz7pWszefddVKhP/ePJJN75j6lTX9UpCxx9/uCkILrnEzZvVqpVbXrjwyUTmscegY0fYscNVU0xenhvnBxORkKEESCQzv/ziulaE42D9DOzatYuoRo3oWbQoY2vXJnLmTFfFbPZsaNrU6/Byv/Xr3ZwhS5bAf/7jqubly+d1VLnbn39C48bQq5crvS6h68gR93pVqQJlyii5EZGAUhU4kcxccIFLfqx11eHC3DmJiawuUYLx69dzeP58ePppVxJWyY9/1Kzpku477nAtQRde6LrEyZmx1j2XhQrB6NFeRyPZKVwYmjRx82Up+RERDykBEklIgIsuCt85Q+Lj3eBxgPLlKdWwIe937EiF+Hh+bt0aSpXyNLw8p1AheP11+OADVyJ782avI8q9jHFVv8aPd3O2iIiI5IC6wImAqxz1+uuwdKn7hTIc7NnjHvOYMS4J3LLFVVQCDh8+TNOmTTl69CgrVqyglJKgwDhwAEqUcLdnzHDlxDOrwCdpWatWBBERyZS6wIlkZ+RI1yf97rtPTuyZV23d6krJVqsGw4e7UtZffw1FiqRsUrRoUd5//322bdvGXXfd5WGweVxy8rNwoZu8s0cPl5hK9gYNcpUcRURETpMSIBFw1YaeftpN4Dd5stfRBEZCgrvessW1/PTrBytXwjffuBnR0/2a3qpVKx577DE+/PBDPvroIw8CDiOtWsEbb7hJI5s1O9klUTL2ww+ukp4m3RURkTOgLnAiyZKS3HxAkZFuUsW80L3GWlfi+9lnXYvP+PFu+c6dUL58trsnJCTQoUMHVq9ezYoVK6iq+WsCKzbWJaZbt7rJZm+7zeuIQk98PDRq5MqyL1/uxlSJiIikoy5wIjkREeHK6P74Y+5PfhIT3WNp2dKNK1m+HM4//+T6HCQ/APny5eP999/nxIkTDBw4kKSkpAAFLAC0aOFKZF9yiVo3MvO//7ly4uPGKfkREZEzogRIJLWaNV0hgGPH3KR8ucnOnSdLeT/3HFxzjRtkP26cm4jw//7vjA5bu3ZtXn75ZX766SdGq9Rw4JUp48ZkDRzo7n/xhasWJ/DPP6775s03Q6dOXkcjIiK5lLrAiaRnrRuTUaYMTJ8euq1Bhw/DnDkwc6a7rFjh4r3kEvj1V1i9Gvr0cV36zpK1lj59+vD9998TGxtLo0aNzj5+yd6JE67lbvt2ePNNGDDA64i8t2aNm0emTBmvIxERkRCmLnAip8MY90Xzhx/gq6+8juakhATYt8/d/vNPV7jhssvg1VehXDlXxKFePbe+YUPo29cvyQ+AMYbx48dTsmRJrr/+eo5p0tjgyJ/fTZzaqhXceCMMGQJHj3odlTfWr3fXdesq+RERkbOiBEgkI3fe6QZa33svHDniTQzWwh9/wGuvwRVXuCTn4Yfdujp14IEHXJK2d68bt/Tf/0KNGgELp3z58kycOJEVK1YwbNiwgJ1H0qlY0bXwPfSQK2LRrp13f5Ne2bwZGjeGp57yOhIREckDlACJZCRfPteysnGjq6AWLIcPn7zdrp3r/jR0KMTFwdVXQ69ebl1EBDzxBFx8cZr5ewLt8ssv57bbbuP5559n9uzZQTtv2MuXz335/+YbN1dQ4cJeRxQ81sJdd7kqjf37ex2NiIjkARoDJJKV/v3d+IuffnJJh78dOnRyHM+MGa6L26ZNrhve66+7L74XXQS1avn/3Gfo8OHDNG3alGPHjrFixQpKlizpdUjhadEi+Owzlwjnz+91NIHz2Wdw1VUwahTcf7/X0YiISC6R1RggJUAiWTl40FWF81fyk5DgjhURAc8/77o1JSS4kscdOrhk59//hgIF/HO+AFm0aBHt2rWjf//+TJo0yetwwtPIkfDYY3DBBfDRR1C5stcR+d/+/VC/PlSoAIsXux8EREREcsCTIgjGmInGmJ3GmAzrtxpnjDHmL2PMCmNMs0DFInLGihd3ycquXW4undNlravG9uqr0Lu3q14VF+fWNW/uSlPPmOHG8cyYAQ8+GPLJD0CrVq0YNmwY77//Pp988onX4YSn4cPhgw9g2TJo2tSNA8trfv/dvYfGj1fyIyIifhOwFiBjTEfgEPCetfaUmrnGmMuAu4HLgNbAaGtt6+yOqxYg8UTr1q572sqV2ScoSUkuaVq5Ei69FLZudctr1XItPPfe637VzuUSEhK44IIL+PPPP1m5ciWV82ILRG7w+++u4t/q1a6rZufOXkfkX0ePasJTERE5bZ60AFlr5wD/ZLFJb1xyZK21C4BSxpiKgYpH5KyMGOFKT2c0EejBg/Dtt67rWlSU65oELuFp397N37J2rbu8+WaeSH4A8uXLx6RJkzh27BgDBw4kKSnJ65DCU/36bjzQ00+7bpQA777rSrgnJHgb25k6fhwmTHDxK/kRERE/87IKXGVgc6r7W3zLTmGMGWKMiTXGxO7atSsowYmkcemlrgLbyJEnW3Sshe7d3ZwkPXrA2LGuZHHyXDxFi8LHH7u5W0KoiIE/1a1bl5deeomZM2cyZswYr8MJX8WKue6TkZHu7/Kll9wkuNWqudLpa9d6HeHpee45uOUWVyBERETEz7xMgEwGyzLsj2etHWetbWGtbXHOOecEOCyRTLz0Ehw7Bg0auPvGuNv33++quO3d6+blCbNSvbfeeis9evTgv//9L6tWZTjkT4LJGIiNdS1ALVq4Mu516uSeOXT+/NNVtrv6arjwQq+jERGRPMjLUaVbgKqp7lcBtnkUi0j2atWCt95y3Y2Sx/m8+KLXUXnOGMNbb71FVFQUN9xwAwsXLqRgwYJehxXe8uVzLZa9erkWy3feOZlMrFrligrccovrshlKrIXbbnPd3jLqbioiIuIHXrYAfQ3c6KsG1wbYb63d7mE8Itm78UZX0S0QcwLlYhUqVGDChAksX76c4cOHex2OpFa5MjzyCLRp4+7Hxrrumo0bu+Ieb73lxrGFgnfegVmzXBe4c8/1OhoREcmjAlkGezIQA9QzxmwxxtxsjLndGHO7b5NpwDrgL2A8cGegYhGRwOvZsydDhgxh1KhRzJ492+twJDMDB7pWoZdegsOH4dZboW5dOHHC68jgvPNg8GDXOiUiIhIgmghVRPzm0KFDNG3alOPHj7NixQpKlizpdUiSFWtdl87ff3eJkbVuDFubNjBggJu3SkREJBfypAy2iISfYsWK8f7777N161buvvtur8OR7BjjusENHOju798PGza4ku6VKrlk6Mcf3Zi3QPrhBzc/Vnx8YM8jIiKCEiAR8bPWrVvz6KOPMmnSJKZMmeJ1OHI6SpWCBQtg+XK4/Xb4/ns3ee8nnwTunPHx7lzTp2tsnYiIBIX+24iI3z3yyCO0atWK2267ja3J8yZJ7tG4savCtm0bfPihqyYHblnPnv6dZPV//4P1690kwZr0VEREgkAJkIj4Xf78+Xn//fc5duwYgwYNIinQXagkMAoVct3gihRx9yMjXRU5f02yGhcHL7wAN98MnTr5I2IREZFsKQESkYCoW7cuL774IjNmzODVV1/1Ohzxh6FDYfPmtJOs3n77yfWn2yp0zz2u0MJzz/k3ThERkSyoCpyIBIy1ll69ejFz5kyWLFlCgwYNvA5J/GnrVti3Dxo2dLebNnUtRjmdZHXNGti0Cbp2DXioIiISXlQFTkQ8YYzhrbfeonjx4lx//fUcP37c65DEnypXdskPwLFjLpFJP8nq4cOn7nfkiLuuW1fJj4iIBJ0SIBEJqAoVKvDWW28RFxfHY4895nU4Eii1asHkya5wwssvu8TntttcCxG4EtvWusvVV8P113sZrYiIhDElQCIScL169eKWW27h2WefZe7cuV6HI4FUtqwb27NyJfz6q2slAujXz3WLu/NOmDoVmjXzNk4REQlbGgMkIkFx6NAhoqOjSUhIYMWKFZQoUcLrkCSYJkyA8eNh4UI3VmjRIsiXz+uoREQkj9IYIBHxXLFixZg0aRKbN2/mX//6l9fhSLDdfLObZHX1apgxQ8mPiIh4RgmQiARN27ZteeSRR3j33Xf57LPPvA5HvFCvnusmJyIi4hElQCISVMOGDaNly5YMGTKEbdu2eR2OiIiIhBklQCISVPnz52fSpEkcOXKEQYMGcSS5JLKIiIhIEKgTtogEXb169XjxxRe54447KFKkCJUqVaJmzZrUqlWLWrVqpbldsWJFIiL0W42IiIj4h6rAiYgnrLVMnTqVuLg41q9fz7p161i3bh1btmwh9edSwYIFqVGjRqYJkqrJiYiISHpZVYFTAiQiIeXYsWNs2rSJdevWpUmM1q9fz9q1a9m/f3+a7cuUKZNhYlSzZk2qVatG/vz5PXokIiIi4hUlQCKSZ+zdu/eUxCj5esOGDZw4cSJl24iICKpVq5Zp61G5cuUwxnj4aERERCQQskqANAZIRHKV0qVLU7p0aZo1a3bKusTERLZu3ZphgjR16lR27NiRZvuiRYtm2npUs2ZNChcuHKyHJSIiIkGiFiARCRuHDx9mw4YNGXavW7duHfHx8Wm2r1ixYkoyVK1aNapWrUrVqlVTbpcqVUotSCIiIiFILUAiIrgWn4YNG9KwYcNT1llr2blzZ5oudckJ0i+//MLWrVtJSEg45XipE6PUyVHypUiRIsF6eCIiIpIDSoBERABjDBUqVKBChQq0adPmlPWJiYns2LGDTZs2sXnz5pRL8v0VK1bw999/n7Jf2bJlM02OqlWrRqVKlVSoQUREJIjUBU5ExE+OHTvG1q1bT0mOUt/ft29fmn2MMVSsWDHLlqTy5ctrLiQREZHToC5wIiJBULBgwZRCCpk5dOhQpsnR8uXLmTp1KkeOHEmzT4ECBahSpUqGyVHy7ZIlS2o8koiISA4oARIRCaJixYpRv3596tevn+F6ay179uzJsJvd5s2bmTNnDlu3biUxMfGU45533nl07NiRTp060bFjR8qUKROMhyQiIpKrqAuciEguk5iYyN9//31KcrRixQpiYmI4evQoAFFRUXTu3DklITrnnHM8jlxERCQ4NBGqiEiYOHbsGIsWLWL27NnMnj2b+fPnp5T3btCgAZ06dUq5nHvuuR5HKyIiEhhKgEREwtTx48dZsmQJs2bNYvbs2cybN49Dhw4BUK9evTQJUeXKlT2OVkRExD+UAImICAAJCQksXbo0pYVo7ty5HDhwAIA6deqkSYiqVavmcbQiIiJnRgmQiIhkKDExkbi4uDQJ0d69ewGoUaMGnTp1ShlHVKNGDVWaExGRXEEJkIiI5EhSUhIrV65k9uzZzJo1izlz5rBnzx4AqlatmtI61LlzZ2rXrq2ESEREQpISIBEROSNJSUn89ttvKS1Es2fPZufOnQBUqlQpTZe5evXqKSESEZGQoARIRET8wlrL6tWr0yRE27dvB6BChQp07NgxpctcgwYNlBCJiIgnlACJiEhAWGv566+/UqrMzZ49my1btgBQrly5lIlZO3fuTKNGjYiIiPA4YhERCQdKgEREJCistaxfvz4lGZo1axYbN24EoEyZMnTo0IGuXbvSvXt36tat63G0IiKSVykBEhERz2zcuDFNQrRu3ToAateuzaWXXkr37t3p0qULRYoU8ThSERHJK5QAiYhIyFi7di3Tp0/nu+++46effuLIkSMULFiQjh07cumll3LppZeqoIKIiJwVJUAiIhKSjh49yty5c/nuu++YPn06v//+OwDVq1dPaR268MILKV68uMeRiohIbqIESEREcoUNGzbw/fff89133/Hjjz9y6NAh8ufPzwUXXJDSOtSwYUO1DomISJaUAImISK5z/Phx5s2bl9I6tHLlSgCqVKlC9+7dufTSS+natSslS5b0OFIREQk1SoBERCTX27JlS0rr0IwZMzhw4AD58uWjXbt2KQlRkyZN1DokIiJKgEREJG85ceIECxYsSGkdWrZsGQDnnntuSjJ08cUXU7p0aY8jFRERLygBEhGRPG379u388MMPfPfdd/zwww/s3buXiIgI2rRpk5IQNWvWTBOxioiECSVAIiISNhITE1m0aFFKqe3Y2FistZxzzjlccsklXHrppXTr1o1y5cp5HaqIiASIEiAREQlbu3btSmkd+v7779m9ezfGGFq2bJnSOtSyZUsiIyO9DlVERPxECZCIiAiQlJTEkiVLUlqHFi5cSFJSEmXKlKFbt25ceumlXHLJJVSoUMHrUEVE5CwoARIREcnAP//8w4wZM1KKKezYsQOA6OhoKlasSEREBJGRkUREROTo9uls649jFCpUiKioKGrVqqXqdyIiqSgBEhERyUZSUhLLly9n+vTp/Pjjj+zfv5+kpCSSkpJITEzM8e2cbOvv/72lSpWiefPmtGjRIuVSvXp1JUUiEraUAImIiIQQa61fEqpDhw4RFxfHkiVLiI2NZcWKFZw4cQKAsmXLpkmImjdvTpUqVZQUiUhYUAIkIiISBo4dO8bKlSuJjY1NuaxatYrExEQAypcvnyYpatGiBRUrVvQ4ahER/8sqAcoX4BN3B0YDkcBb1tpn0q0vDUwEagNHgcHW2lWBjElERCSvKliwYEpik+zIkSOsWLEiTVI0ffp0kpKSAKhUqVKaVqIWLVpQvnx5rx6CiEjABawFyBgTCfwJXAxsARYD/a21v6XaZhRwyFr7P2PM+cBr1tquWR1XLUAiIiJn5/Dhw8TFxaVJiv7444+UsUlVq1Y9pftc2bJlPY5aRCTnvGoBagX8Za1d5wviI6A38FuqbRoATwNYa1cbY2oYYypYa3cEMC4REZGwVrRoUdq3b0/79u1Tlh08eJBly5alSYq++OKLlPU1a9ZM00rUvHlzSpUq5UH0IiJnJ5AJUGVgc6r7W4DW6bZZDlwJ/GKMaQVUB6oASoBERESCqHjx4nTs2JGOHTumLNu3bx9Lly5NkxRNmTIlZX2dOnXStBQ1bdqUEiVKeBG+iEiOBTIByqjMTPr+ds8Ao40xccBKYBmQcMqBjBkCDAGoVq2af6MUERGRDJUqVYoLL7yQCy+8MGXZnj170iRF8+fP56OPPgLAGEO9evXSlORu2rQpRYsW9eohiIicIpBjgNoCI6y1l/juPwRgrX06k+0NsB5obK09kNlxNQZIREQktOzcuTOlFHdsbCxLlixh69atAERERFC1alXy5cuHMYaIiAiMMTm6fbbrz2TbrCak9feyMz1OnTp1VNJcJBuelME2xuTDFUHoCmzFFUG4zlr7a6ptSgHx1trjxphbgQ7W2huzOq4SIBERkdC3ffv2lKRo7dq1KRPAJs+BlNVtr7Y93fmYAjm5bXYqVapEmzZtUi7NmzenSJEiQY1BJJR5Ng+QMeYy4GVcGeyJ1tonjTG3A1hrx/paid4DEnHFEW621u7N6phKgERERCTUJCdQZ5I8nc6yEydO8Ntvv7FgwQIWLFjA2rVrAYiMjKRJkyZpkqI6deqolUjCliZCFREREcmDdu3axcKFC1MSokWLFnHw4EEAypQpk5IMtW7dmlatWqlyn4QNJUAiIiIiYSAxMZHff/89JSFasGABv/32W0oXvfr166dpJWrYsCGRkZEeRy3if0qARERERMLUgQMHWLx4cZqkaPfu3QAUK1aMli1bpmkpqlChgscRi5w9JUAiIiIiArjxSuvWrUuTEMXFxZGQ4GYiqVmzJq1bt05JiqKjoylYsKDHUYucHiVAIiIiIpKpI0eOsHTp0jRJ0ZYtWwAoUKAAzZo1S9N1rlq1aiqwICFNCZCIiIiInJYtW7akKbAQGxvL0aNHATj33HPTJEQtWrTQhLcSUpQAiYiIiMhZOXHiBCtXrkzTSrRmzRrATXgbFRWVkhC1bNmSYsWKpUwym37S2YwuZ7teLVKSmhIgEREREfG73bt3s2jRopSEaOHChRw4cMCzeM42gUqdSAVzXU73zepxh8K6Sy65hBEjRmS6XzBllQDlC3YwIiIiIpI3lCtXjssuu4zLLrsMgKSkJFavXs2yZcs4duwY1to0l6SkpFOWhdL65IaBYK7L6b6ZCaV1hQsXznRdKFECJCIiIiJ+ERERQYMGDWjQoIHXoYhkKsLrAERERERERIJFCZCIiIiIiIQNJUAiIiIiIhI2lACJiIiIiEjYUAIkIiIiIiJhQwmQiIiIiIiEDSVAIiIiIiISNpQAiYiIiIhI2FACJCIiIiIiYUMJkIiIiIiIhA0lQCIiIiIiEjaUAImIiIiISNhQAiQiIiIiImHDWGu9juG0GGN2ARvPcPdywG4/hiP+pdcn9Ok1Cm16fUKfXqPQptcntOn1CX2h9BpVt9aek9GKXJcAnQ1jTKy1toXXcUjG9PqEPr1GoU2vT+jTaxTa9PqENr0+oS+3vEbqAiciIiIiImFDCZCIiIiIiISNcEuAxnkdgGRJr0/o02sU2vT6hD69RqFNr09o0+sT+nLFaxRWY4BERERERCS8hVsLkIiIiIiIhLE8lwAZY6oaY342xvxujPnVGHNPBtt0NsbsN8bE+S7DvYg1XBljNhhjVvqe+9gM1htjzBhjzF/GmBXGmGZexBmujDH1Ur034owxB4wx96bbRu+hIDLGTDTG7DTGrEq1rIwxZoYxZo3vunQm+3Y3xvzhez/9N3hRh5dMXqNRxpjVvs+xL4wxpTLZN8vPRDl7mbw+I4wxW1N9jl2Wyb56DwVYJq/Px6lemw3GmLhM9tX7J8Ay+26dm/8P5bkucMaYikBFa+1SY0xxYAnQx1r7W6ptOgP3W2t7eBNleDPGbABaWGszrBPv+yd0N3AZ0BoYba1tHbwIJZkxJhLYCrS21m5Mtbwzeg8FjTGmI3AIeM9a28i37DngH2vtM75/KKWttQ+m2y8S+BO4GNgCLAb6p/48FP/I5DXqBvxkrU0wxjwLkP418m23gSw+E+XsZfL6jAAOWWufz2I/vYeCIKPXJ936F4D91tqRGazbgN4/AZXZd2tgILn0/1CeawGy1m631i713T4I/A5U9jYqOU29cR+C1lq7ACjle/NJ8HUF1qZOfiT4rLVzgH/SLe4NvOu7/S7un1F6rYC/rLXrrLXHgY98+4mfZfQaWWt/sNYm+O4uAKoEPTABMn0P5YTeQ0GQ1etjjDHA1cDkoAYlKbL4bp1r/w/luQQoNWNMDaApsDCD1W2NMcuNMd8ZYxoGN7KwZ4EfjDFLjDFDMlhfGdic6v4WlMR65Voy/6ej95C3Klhrt4P75wSUz2AbvZdCx2Dgu0zWZfeZKIEz1NdFcWIm3Xf0HvJeB2CHtXZNJuv1/gmidN+tc+3/oTybABljigGfAfdaaw+kW70UqG6tbQK8AnwZ5PDCXXtrbTPgUuAuX9N3aiaDffJWX81cwBhTAOgFTMlgtd5DuYPeSyHAGPMIkAB8kMkm2X0mSmC8AdQGooHtwAsZbKP3kPf6k3Xrj94/QZLNd+tMd8tgmefvoTyZABlj8uNeoA+stZ+nX2+tPWCtPeS7PQ3Ib4wpF+Qww5a1dpvveifwBa55NLUtQNVU96sA24ITnaRyKbDUWrsj/Qq9h0LCjuSuob7rnRlso/eSx4wxNwE9gOttJoNuc/CZKAFgrd1hrU201iYB48n4edd7yEPGmHzAlcDHmW2j909wZPLdOtf+H8pzCZCvr+gE4Hdr7YuZbHOubzuMMa1wz8Oe4EUZvowxRX0D6DDGFAW6AavSbfY1cKNx2uAGPm4PcqiSxa9ueg+FhK+Bm3y3bwK+ymCbxUBdY0xNX4vetb79JAiMMd2BB4Fe1tr4TLbJyWeiBEC6saVXkPHzrveQty4CVltrt2S0Uu+f4Mjiu3Wu/T+Uz+sAAqA9MABYmapk4sNANQBr7VjgKuAOY0wCcAS4NrNf5sTvKgBf+L475wM+tNZON8bcDimvzzRcBbi/gHhgkEexhi1jTBFcxZbbUi1L/RrpPRRExpjJQGegnDFmC/AY8AzwiTHmZmAT0M+3bSXgLWvtZb7qY0OB74FIYKK19lcvHkNel8lr9BBQEJjh+8xbYK29PfVrRCafiR48hDwtk9enszEmGtcdZwO+zzu9h4Ivo9fHWjuBDMah6v3jicy+W+fa/0N5rgy2iIiIiIhIZvJcFzgREREREZHMKAESEREREZGwoQRIRERERETChhIgEREREREJG0qAREREREQkbCgBEhGRNIwxicaYOGPMKmPMFF9Z9My2HWiMeTWY8aU690hjzEXZbPOOMeaqbLapYYzR3CEiImFCCZCIiKR3xFobba1tBBwHbvc6oIxYa4dba2d6HUdqxphIr2MQEZGsKQESEZGszAXqGGPKGGO+NMasMMYsMMY0Tr2RMaa4MWa9MSa/734JY8wGY0x+Y8wsY8yzxphFxpg/jTEdfNsUMsa8bYxZaYxZZozp4ls+0Heub3zHHGqMuc+3zQJjTBnfdimtO8aY4caYxb5Wq3G+mcszZYxpboxZboyJAe5KtTzSGDPKd6wVxpjkyTEjjDGvG2N+NcZMNcZMS3XuDb7z/wL0M8Z0M8bEGGOW+lrQiqU652xjzBJjzPfGmIp+eYVEROS0KAESEZEMGWPyAZcCK4H/AcustY1xM4C/l3pba+1BYBZwuW/RtcBn1toTvvv5rLWtgHuBx3zL7vLtGwX0B941xhTyrWsEXAe0Ap4E4q21TYEY4MYMwn3VWtvS12pVGOiRzcN7G/iXtbZtuuU3A/uttS2BlsCtxpiawJVADSAKuAVIv99Ra+0FwEzgUeAia20zIBa4z5cYvgJcZa1tDkz0PS4REQmyfF4HICIiIaewMSbOd3suMAFYCPQFsNb+ZIwpa4wpmW6/t4AHgC+BQcCtqdZ97rtegkskAC7AJQVYa1cbYzYC5/nW/exLqg4aY/YD3/iWrwTStD75dDHGPAAUAcoAv6baJw1f3KWstbN9iybhEj2AbkDjVOOGSgJ1fbFOsdYmAX8bY35Od9iPfddtgAbAPF8jVAFc0lYPl9TN8C2PBLZnFJ+IiASWEiAREUnviLU2OvWCTLqU2TR3rJ3nKyjQCYi01qYuLHDMd53Iyf89WXVTO5bqdlKq+0mk+9/lazV6HWhhrd1sjBkBFCJzJn3s6dbdba39Pt05Ls9k+2SHU+0/w1rbP93+UcCvGbQ4iYhIkKkLnIiI5MQc4HoAY0xnYLe19kAG270HTMZ1MTudY54HVAP+OIPYkpOd3b7xNllWfbPW7gP2G2Mu8C26PtXq74E7Uo1lOs8YUxT4BejrGwtUAeicyeEXAO2NMXV8+xfxPbY/gHOMMW19y/MbYxqe5uMUERE/UAuQiIjkxAjgbWPMCiAeuCmT7T4AnsAlQdl5HRhrjFkJJAADrbXHsqlfcApr7T5jzHhc97gNwOIc7DYImGiMicclPcnewnXRW+pr9doF9AE+A7oCq4A/cV0C92cQyy5jzEBgsjGmoG/xo9baP33d6sb4uuDlA17GddUTEZEgMtZm1gtARETk9Pi+5Pe21g7wOhZ/M8YUs9YeMsaUBRYB7a21f3sdl4iInB61AImIiF8YY17BFRO4zOtYAmSqMaYUrrDB40p+RERyJ7UAiYiIiIhI2FARBBERERERCRtKgEREREREJGwoARIRERERkbChBEhERERERMKGEiAREREREQkbSoBERERERCRs/D//UWvzb0idnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(14,6))\n", + "\n", + "ax.plot(degrees, train_mse,color =\"black\", label = \"Training\")\n", + "ax.plot(degrees, test_mse,\"r--\", label = \"Validation\")\n", + "\n", + "ax.set_title(\"MSE Estimates (train test split)\", fontsize =14)\n", + "ax.set(xlabel = \"Polynomial degree\", ylabel = \"MSE estimate\")\n", + " \n", + "ax.annotate(\"Low bias \\n High Variance\", xy=(16, 1.23), xycoords='data', xytext=(14, 1.23), textcoords='data',\n", + " arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\"),)\n", + "ax.annotate(\"High bias \\n Low Variance\", xy=(5.3, 1.30), xycoords='data', xytext=(7, 1.30), textcoords='data',\n", + " arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\"),)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To make better use of the data we will often divide the data into $K$ subsets, or _folds_. Then one fits $K$ models, each using $K-1$ folds and then evaluation the fitted model on the remaining fold. This is called **k-fold cross-validation**." + ] + }, + { + "cell_type": "code", + "execution_count": 607, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV\n", + "from sklearn.metrics import make_scorer\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.model_selection import KFold\n", + "#cv = KFold(n_splits=10, random_state=1, shuffle=True)\n", + "scorer = make_scorer\n", + "mse =[]\n", + "\n", + "for d in degrees: \n", + " \n", + " poly =PolynomialFeatures(degree = d, include_bias =False )\n", + " poly_features = poly.fit_transform(X)\n", + " ols = LinearRegression()\n", + " scorer = make_scorer(mean_squared_error)\n", + " mse_test= cross_val_score(ols, poly_features, y, scoring=scorer, cv =5).mean()\n", + " mse.append(mse_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 608, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'MSE estimate (K-fold cross validation)')" + ] + }, + "execution_count": 608, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAGJCAYAAABb3v/JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLP0lEQVR4nO3deXxcZdn/8c+VvVmaNEub7m1K6U4XamkA2YWWfdFHEVQefX6AyqbiAj4KKojro6CCoCIqAoqAbKUsBSloC7TQ0pa2dKfpljTpkibNfv/+OCdlOs0yaTNzJpPv+/WaVzLnnDnnmsk0/eae69zHnHOIiIiIiEj3Swq6ABERERGRRKWwLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIiIiIlGisC0iIiIiEiUK2yIiIiIiUaKwLdJDmdkVZub829FtrD8lZP0ZIcuTzOy/zexNM6sysxozW2dmj5jZjHb2H37bHaPnOMLMbjWzkjbWbTSzB2JRR9hxbzWz06K076fN7Fch908J//n5y0v857+xrdfG3ybJzH5pZtvMrMXM/tmFOlp/9iM62W6Ev90Vke67NzOzB8xsY8j9iF+/w32/m9mFZvbVNpa3vrdO6eo+u3DsJ83sN9Hav0hPkRJ0ASJyxKqBzwDfCVv+WX9dTtjynwHXAb8EbgUagaOBi4DjgDfDtv8EUBa2rOkIa47UCOAW4HVgfdi6i4C9Maoj1C3A7cDL3blTMzsJ+BgwqpPtxgDzgDrgNOfcB+1s+nHgeuBrwAKgsvuqlW6yDSgF1kXxGBcCZwD/F7b8bf/Y70Xx2LcCb5jZnc6596N4HJG4prAt0vM9DlxuZt91/iVhzawPcAnwGHBF64b+8i8Dv3LO3RiyjxeB35hZW592LXHOrY1W8YfLOfdO0DV0s68DTzvntrS3gZlNwAvau4DTnXNbO9jfOP/rL51zLd1XZuyYWbpzrj7oOqLFf24LAzr23mgf2zn3jpktAW4AvhTNY4nEM7WRiPR8fwGGAyeGLLsISMYL26GygDRge1s76s5QZmaFZnaPmW0xs3ozW2VmV4ZtU2xmfzKzrf4228zsGTPr73+8/Yq/6YshLSyn+I896GP1kNaH483s72ZWbWY7zOwmf/0sM3vHb5t5y8yODavlTDOb49dQa2bLzexrZpYcso3zv/12SD23hqw/2czm+ceuMbPnzWxiBK/VIGA28FAH20wB/gWUAyd3FLT9VoXWuppDWxXMbKCZ/dnMdvqv+btmdnkENWaa2d1mVmlm+8zsKWBIZ48LefxkM3vCf/x+M1vd+rPx1//LzF43s/P8n1M9fkAzsxlm9pJ/3Br/NZ4Rtv+PmNmL/v5rzWy9md0dsr7d91oHNa8ws/B/Q5jZcf5reqF//ygz+4uZbfCf23r/vd+vk9ekzTYSM7vef3/XmdkiM/toG48tMrN7zex9//luNrOHzGxwyDYPAJ8DBoe8Xzf66w5pIzHPV/yfTYP/Gv3azPqGHduZ2W1mdp3/nKvN7FXz/hgM9whwmXl/6Iv0ShrZFun5NgHz8VpJXvOXfRZ4AtgXuqFzbqeZbQBuNLM9wJwO2hBaJZtZ+O+Klo6Cuf+f87+BPnihbwNwFnCPeaOVrX3JrX8ofB3YDAwATgcy8T7m/jLwG7y2l7f8x3T2sfefgD8D9+G1wPzQzPKAs/HaP/YBPwH+aWajnHMN/uNK8EaNf4XXojHdr70I+Ja/TSleS8YDwL3+sjL/OZ8DPAk8C7SG128Cr5nZMc65zR3U/DG8P45eb2f9R/Beo43Ax5xznbWEXIT3ml3h1wywzsyygFeBfsDNeK/55cBfzCzTOXdfB/u8F/gk8D28n8XH6OCPg1B+MP4XsBb4Ct5rNho4JmzTo4G7gB/gtQ1Vmdkxfs3v+c/H4f08XjWzmc65pWaWDTyP1wJ1BV771Ajg+JB9d/Rea89fgO+ZWT/n3K6Q5ZcDVcAc//4g/zndgPepQwne6zuHD1//iJjZF/BavB4A/gYcBTzMoe1g+Xjv05uACr+GrwH/NrOxzrk6vNexCO/9c77/uI4+Kbjd399vgKeB8f4+JpvZyWH/5i8HVuO1KqUBPwWe9I8d2mY2H+iL9zp0a+uVSI/hnNNNN9164I0Pg8dRwOfx/pPPAAbi9VR/DDjF3+aMkMfNxAttzr9tAf4AzGhn/23dnumktu/gBYHRYct/B+wEUvz7+4DrOtjPIfWHrNsIPNBGvd8NWZaCNxLcCIwMWX6+v+3J7RzX/Md+239dk0LWOeC2Nh6zFpgXtqyv/3x/2cnrdQ+wpYPn74DdQEEX3h+3eb/iD1p2jb+vU8KWv+S/Tslhr+UI//4YoBn4Vht1O+CKTmqZjxdwMzvY5l9ACzAlbPk//OeeF/a6VgGP+/en+3Uc08H+O3yvtfOYof7zvipkWSpeuL27g8el4H3S5ICpIcsfADaG3B8R+vrhfdq8GZgbtr9P+ts90MExk/16HXBR2DHLOnhvneLfbw3vD4Rtd7m/3flh/wbWAKkhyz7uLz8+7PGp/mt4c1dee910S6Sb2khEEsOjQDpwHnAZXpvIvLY2dM4txAtPs4Gf44XWzwELzOyzbTzkIryRsdDbDZ3UMwt4A9hgZimtN7zRxwK8ETPwRki/7n9sPsnMLKJn27HnWr9x3gjbWuB959yGkG1W+V+Hti7w2yvuNbNNQANeQL8NyAPabTXwHzsa78TGv4Y931q8kfCTOql5EF6Aa8+zQC7w09DXyP/YPyXsmB05CS/U/yts+YN4I6DjD3mE5zi8IPj3sOWPdHI8zCwTOAH4q3OutpPNNzrnlrRR8zPOud2tC5zXb/wUcLK/aA1eIL/XzC43s6EcqsvvNed9GvEq3qdGrWYBhXifngBgZmlmdrN5rVL78d47rZ8yjensOCGG+Lfw1/kx2jgp2cy+aGZLzWyfv771U6quHLPVTLzfIQ+GLX/E3/fJYctfdM41htxf5n8dFrqRv80evPe4SK+ksC2SAJxz1cA/8ULBZ/GCTbttHs65eufcXOfcjc65E/BC1nYOnbEAYLlzblHYrbMTJvvjhaTGsNuj/voC/+sn8ULTN4B3gS1m9l1r+0TNSO0Ku9/QzjLwPgnAP95TwLl4Afs0vD8qbg/drgOtYfwPHPqcz+XD59ueDDr+eP+XeLOg/Ddwd8jyk9s4Xkfy8WbACLc9ZH1bBvpfd4QtD7/fln54/9eEz2jTlrZq66jmfgDOuT3AqcBWvNfnA/N67i8J2f5w32t/Bk4ws5H+/c8Aa/0/Wlvdgddy9CBwDjADuNhf19l7J1Sbr7P/R+NBrUNmdi3ec33JP9YMvMDc1WO2av3ZH/Rahxw7/L1RFXa/9f3b1rH347WUifRK6tkWSRx/xhsBTQIu7coDnXPvm9nfgK+YWX/nXPkR1lKJ15ZwfTvrV/vHLcfry/6yeVPafQ6vJ7gCr0UhVkbhtSJ8xjl3YGTPzM6L8PGtQegmvPATrqGNZeGPH9nRBs6575tZOnCzmdU5574CLMb7oyBSVbQ96lkcUkdbWgPYAA6egnFABMfchdceMrizDfHaEMJVhdQXqpiQwOePiF/ij+5Px/tZ/N3MJjvnlh/Be+0xvB7my83sTrxPj+4I2+ZTwJ+dc7e1LvD7yLsq9HU+wH9O4X+wfQqvbelrIdt1+B7qROtrWQysaOPYRzJ1ZD5eO5VIr6SRbZHE8SLex8+/dc6taGsDM0s1s/YC0li8Eag93VDLXH9/H7QxKr7IH4k/iHNutXPuZrxw1jqDR+toWbRHxVpPkjswMmxmqXgtOeEa2qhnNV47zoR2nu+7nRx/FTC0szYQ59y38T59uMHM7nDOVYcfq5PjvAoMMbMTwpZ/Gu+Po5XtPO4NvMD8X2HLP9XJ8fBbR17HC6uH83N8FTjHzA6cIOh/f56/Lvx4Tf6o83fw/o8b18Y2bb3X2qu/Gu/E18/gnXCbgXfiZKhMDv1U4b87flptKsPr2Q5/nS/h0MGxSI9ZT2T/fhb624b/TD/pH/uQ1zoSZlaM95qtPpzHiyQCjWyLJAjnXDOdj2jn4n3E/ne8mRLK8EatPoXXw/0Td+i8xlPMrLCNfS1yB886EOoXeP9Jv2Zmv8D7jzYLL4B/1Dl3gZnl4o0C/xUvbDYCF+C1Brzg7+d9vH7Rz5tZFV4YWN1WWD9CK/FmdbndzJr9Wr7Szrbv4YW/uXhhbatzbquZfRlvNoY0vD96duKNUB6P90dHWy06rebjjbIegzcLS7ucc1/zR7i/ZWb1zrlbI32SeCfLXQ88bmbfxvv5X4Z3Mu1V/nuorWOuNrOHgO/7bRets5GcHeFxb8QLawvM7Of+cUvwToa8tpPH/gCvFWeemf0Yb/T7m3hh8/sAZnYucCVeK9UGvPfadXizkiyI8L3WkT/j/dv6HvB6WP8/eH9cfs7MluGdI3AxB8+EEhHnXIuZfQ/4vZn9Ea9f+ii8UfrwCzjNBb5pZjfjzcJyGt5JiuHeA/LN7IvAIqDOObcsfCPnXJWZ/R9wk5nV4P1+GIfXVvU63qdmh+M4/+v8w3y8SI+nsC3Su+wF/hcvKP0Ur9e4Du9j46vwZgsJ92gby8A7oa7Nj4adc3vM7Hjgu3jBaDDeCWyr+XDu7zq8YPn/8KZka/HXX+ace9LfT6WZXePv41W8GRdOxZu5ots45xrMmzP513jBqgq4H++Es/DX5Bq86emexjuh7HvArc65OeZdBfLbwO/xRhO3440Y/q2TEl7D6zc+j07Ctu9a/9i3mNl+59yPI3gMzrkaMzsZb+rDH+FNJ7easPaZdlyFN6PHjXhTvb2MNyLe3nSFocd9yx9N/z7e1IrpeH/c/DGCx75r3lzQt+NN62h4r+nJzrml/mZr8D6V+Q5e33M1/h8Ezrky/4+TDt9rnXgR72c52H8O4a7162rt8Z+DF87Dr8baKefcH/wWlK/6+1iO98dw+M/n+3gn734Fb+T4VbzpNcOvtPp7vF7uH/rbb8KbBaUt38Zrq7kab47zSrx/Dzd1dA5IJ84FFkdwnodIwjLn2mqRExGRWDLv4jiXAUc7/WKWBGBmGXh96Dc65/4QdD0iQVHPtohIfPgF3sjjJZ1sJ9JTXIV3LsCfgi5EJEgK2yIiccCfvu4zeC0aIomgHu+CPe2d2yHSK6iNREREREQkSjSyLSIiIiISJQk9G0lhYaEbMWJE0GWIiIiISAJbvHjxTudcUVvrEjpsjxgxgkWLOrvGg4iIiIjI4TOzTe2tUxuJiIiIiEiUKGyLiIiIiESJwraIiIiISJQobIuIiIiIRInCtoiIiIhIlChsi4iIiIhEicK2iIiIiEiUKGyLiIiIiESJwraIiIiISJQobIuIiIiIRInCtoiIiIhIlChsd7NFG6tYW14ddBkiIiIiEgdSgi4g0Xz/mfd4t2wPk4fm8fFpgzlv8iDyMtOCLktEREREAmDOuaBriJrp06e7RYsWxfSY5dV1PLVkK/9YXMaq7dWkJSdx+rj+XDJtCCePKSI1WR8miIiIiCQSM1vsnJve5jqF7ehwzrFi614ee7uMp5ZspbKmgcLsNM6fPJiPHzuE8YP6BlKXiIiIiHQvhe2ANTa38K/VFTy2uIx5q3bQ2OwYN7Avl0wbzAVTBlOUkx50iSIiIiJymBS248iumgaefncrjy0uY2nZHpKTjFOOLuKSY4dw+rj+pKckB12iiIiIiHSBwnacWrOjmn+8XcY/39nCjr315PZJ5bzJA7lk2hCmDM3DzIIuUUREREQ6obAd55pbHK+v3clji8t4fsV26ptaGFWUxcXThnDxtMEMzO0TdIkiIiIi0g6F7R5kb10jc97dxmNvl/HWxl2YwYlHFXLJtCGcNaGYPmlqMxERERGJJwrbPdSmyhoee3sLj79dRtmu/WSnp3D2pGIumTaEGSPz1WYiIiIiEgcUtnu4lhbHmxur+MfiMp5bto2ahmaG5vfh4qlDuGTaEIYVZAZdooiIiEivpbCdQGobmpi7fDuPvV3Gf9ZV4hzMGJnPx6cNYfakYnIyUoMuUURERKRXUdhOUFt27+ef72zhscVlrN9ZQ0ZqErMmFHPJsUM4flQhyUlqMxERERGJNoXtBOec453Nu/nH4jKeWbqVvXVNDMzN4MKpg7lk2hCO6p8ddIkiIiIiCUthuxepa2zmpZU7eGxxGfPX7KS5xXHVSSXcdPa4oEsTERERSUgdhe2UWBcj0ZWRmsy5xwzi3GMGUV5dx0/nrube+esZOzCHi6YOCbo8ERERkV4lKegCJHr652Tww4sncdzIfG56fBnLt+wJuiQRERGRXkVhO8GlJifxm8um0S8zjasfXMyumoagSxIRERHpNRS2e4HC7HTuufxYyvfWc90j79Dckrh9+iIiIiLxRGG7l5gyNI8fXDiB19bs5KfPrw66HBEREZFeQWG7F/nkR4bx6eOG8dtX1zFn2bagyxERERFJeArbvcwt541n6rA8bnx0Ke/vqA66HBEREZGEprDdy6SnJPPby48lMy2Fq/6ymD37G4MuSURERCRhKWz3QgP6ZnDP5dPYXFXLV/+2hBadMCkiIiISFQrbvdRHRuTznXPHM29VOXe9vCbockREREQSksJ2L/bZ0uFcPG0wv3xpDfNW7gi6HBEREZGEo7Ddi5kZP7xoEhMH9+WGvy1hw86aoEsSERERSSgK271cRqp3wmRKknHlnxdRU98UdEkiIiIiCUNhWxjSL5NfXTqNdRX7+Po/luKcTpgUERER6Q4xC9tmdr+ZlZvZ8nbWX2Zm7/q3/5jZ5JB1s8xstZmtNbNvxarm3uTE0YV8c9ZY5izbzr3z1wddjoiIiEhCiOXI9gPArA7WbwBOds4dA/wAuA/AzJKB3wCzgfHApWY2Prql9k5XnlTCOccM5CdzV/HamoqgyxERERHp8WIWtp1z84GqDtb/xzm3y7+7EBjifz8DWOucW++cawAeAS6IarG9lJnxk0uOYXT/HK59+B02V9UGXZKIiIhIjxavPdtfAJ7zvx8MbA5ZV+Yva5OZXWlmi8xsUUWFRme7Kis9hXs/cyzNLY6rH1xMXWNz0CWJiIiI9FhxF7bN7FS8sP3N1kVtbNbuGXzOufucc9Odc9OLioqiUWLCG1GYxZ2fmsJ72/Zy8+PLdMKkiIiIyGGKq7BtZscAvwcucM5V+ovLgKEhmw0Btsa6tt7mtLEDuOH0o3n8nS386T8bgy5HREREpEeKm7BtZsOAx4HPOOfeD1n1FjDazEaaWRrwKeCpIGrsba497SjOGDeA255dyZsb2m23FxEREZF2xHLqv4eBBcAYMyszsy+Y2dVmdrW/yXeBAuBuM1tiZosAnHNNwDXA88BK4O/OuRWxqrs3S0oy/u+TkxmWn8mX/rqY7Xvqgi5JREREpEexRO7HnT59ulu0aFHQZfR4a3ZUc+Fv/s3oATn87aqZpKckB12SiIiISNwws8XOueltrYubNhKJX6MH5PCzT0xmyebd3PrUe0GXIyIiItJjKGxLRGZPGsgXTxnFw29+wCNvfhB0OSIiIiI9gsK2ROzGM8fw0dGFfPfJFbzzwa7OHyAiIiLSyylsS8SSk4y7PjWV/n3T+eKDb1NRXR90SSIiIiJxTWFbuqRfVhr3fuZYdu9v4MsPvU1jc0vQJYmIiIjELYVt6bIJg3L50cXH8OaGKn44Z2XQ5YiIiIjErZSgC5Ce6cKpg1latps//nsjxwzJ5aKpQ4IuSURERCTuaGRbDtvNZ4/juJH53PT4MlZs3RN0OSIiIiJxR2FbDltqchK//vQ08vqkcdVfFrOrpiHokkRERETiisK2HJGinHR++5ljKd9bz3WPvENzS+JekVRERESkqxS25YhNGZrH9y+YwGtrdvKzF1YHXY6IiIhI3FDYlm7xqRnDuHTGMO751zqeW7Yt6HJERERE4oLCtnSbW88fz9Rhedz46FLW7KgOuhwRERGRwClsS7dJT0nmnsuOpU9aClf+ZTF76xqDLklEREQkUArb0q2KczO4+7JpbK6q5at/W0KLTpgUERGRXkxhW7rdjJH5/O8543hpZTm/enlt0OWIiIiIBEZhW6Lic8eP4OKpg/nlvPd5edWOoMsRERERCYTCtkSFmfHDiycxfmBfrn9kCRt21gRdkoiIiEjMKWxL1GSkJvPby48lJcm46i+LqKlvCrokERERkZhS2JaoGpqfya8uncba8n1847F3cU4nTIqIiEjvobAtUXfi6EK+MWssz767jfvmrw+6HBEREZGYUdiWmLjqpBLOmTSQH89dxTsf7Aq6HBEREZGYUNiWmDAzfvzxY0hJSmKOLucuIiIivYTCtsRMdnoKU4flsXB9VdCliIiIiMSEwrbE1MySAlZs3cOe/bqUu4iIiCQ+hW2JqdJRBbQ4eHODRrdFREQk8SlsS0xNHZZHekoSC9ZVBl2KiIiISNQpbEtMpackc+zwfixYr7AtIiIiiU9hW2KutKSAVdv3sru2IehSRERERKJKYVtibuaoApxDs5KIiIhIwlPYlpibPCSPPqnJLFQriYiIiCQ4hW2JubSUJKaP6KeTJEVERCThKWxLIGaWFLB6RzWV++qDLkVEREQkahS2JRClowoAeEPzbYuIiEgCU9iWQEwanEtWWrJaSURERCShKWxLIFKTk5g+Il/zbYuIiEhCU9iWwJSOKmBt+T7Kq+uCLkVEREQkKhS2JTClJV7ftubbFhERkUSlsC2BmTCoLznpKerbFhERkYSlsC2BSUlOYsbIfN5Q37aIiIgkKIVtCdTMkgLW76xhx171bYuIiEjiUdiWQLXOt61WEhEREUlECtsSqHED+9I3Q33bIiIikpgUtiVQyUnGcSUFmm9bREREEpLCtgSutKSAD6pq2bJ7f9CliIiIiHQrhW0JXGvf9kK1koiIiEiCUdiWwI0ZkEO/zFS1koiIiEjCUdiWwCUlGceNLNBJkiIiIpJwFLYlLpSOKmDL7v1srqoNuhQRERGRbqOwLXFB822LiIhIIlLYlrgwun82BVlpLFTftoiIiCQQhW2JC2bGTH++bedc0OWIiIiIdIuYhW0zu9/Mys1seTvrx5rZAjOrN7Mbw9ZtNLNlZrbEzBbFpmKJtZmjCti2p45NlerbFhERkcQQy5HtB4BZHayvAq4DftbO+lOdc1Occ9O7uzCJD6Ulft+2WklEREQkQcQsbDvn5uMF6vbWlzvn3gIaY1WTxJdRRVkU5aTrJEkRERFJGD2lZ9sBL5jZYjO7MuhiJDrMjNKSAhaqb1tEREQSRE8J2yc456YBs4Evm9lJ7W1oZlea2SIzW1RRURG7CqVbzCwpoLy6nvU7a4IuRUREROSI9Yiw7Zzb6n8tB54AZnSw7X3OuenOuelFRUWxKlG6iebbFhERkUQS92HbzLLMLKf1e+BMoM0ZTaTnG1GQSXHfDJ0kKSIiIgkhJVYHMrOHgVOAQjMrA24BUgGcc781s2JgEdAXaDGzG4DxQCHwhJm11vuQc25urOqW2DIzSkcV8NqaCpxz+D93ERERkR4pZmHbOXdpJ+u3A0PaWLUXmByVoiQulZYU8MQ7W1hbvo/RA3KCLkdERETksMV9G4n0Pgf6ttVKIiIiIj2cwrbEnSH9+jA4r49OkhQREZEeT2Fb4o6ZMdOfb7ulRfNti4iISM+lsC1xqXRUAbtqG1m9ozroUkREREQOW5fCtplNN7NP+lPwtU7LF7OTLKX30HzbIiIikggiCttmNsDM3gDeBB4CBvir/g/4eZRqk15scF4fhuVnslAnSYqIiEgPFunI9i+A7UABUBuy/FG8i8yIdLuZJfm8saFKfdsiIiLSY0Uatk8Hvu2c2xW2fB0wrHtLEvGUjipgz/5G3tu2N+hSRERERA5LpGG7D9DQxvIioK77yhH5UGlJIYBaSURERKTHijRszweuCLnvzCwZ+CYwr7uLEgEozs1gZGGWTpIUERGRHivSmUS+AbxqZh8B0vFOipwA5AInRKk2EWaWFPDM0q00tziSkyzockRERES6JKKRbefce8Ak4D/AC0AG3smRU51z66JXnvR2M0vyqa5vYsXWPUGXIiIiItJlEY1sm9kwYLNz7pa21jnnPuj2ykSA0pIP59s+ZkhesMWIiIiIdFGkPdsb8E6GPIiZFfjrRKKif98MRhVlsUAnSYqIiEgPFGnYNqCtyY6z0WwkEmWlowp4a0MVjc0tQZciIiIi0iUdtpGY2V3+tw64w8xCL2iTDMwAlkSnNBFPaUkhDy78gGVb9jBtWL+gyxERERGJWGc925P8rwaM4+C5thuAt4GfRaEukQOOK8kHvPm2FbZFRESkJ+kwbDvnTgUwsz8C1zvndCk/ibnC7HSOHpDNgnWVfOmUo4IuR0RERCRikU79998K2hKk0pICFm3cRUOT+rZFRESk54j0BEnM7FQzu8/M5prZy6G3aBYoAt5Jkvsbm3m3bHfQpYiIiIhELKKwbWZXAM8BOcApQAXQD5gGvBel2kQOOG5kAWbo0u0iIiLSo0Q6sn0jcI1z7lKgEbjJOTcVeBDYF63iRFr1y0pjbHFfFm5Q2BYREZGeI9KwXQK85H9fjze/NsCvgSu6uSaRNs0syWfRxl3UNzUHXYqIiIhIRCIN25V4LSQAW4CJ/vcFQJ/uLkqkLaUlBdQ3tbDkg91BlyIiIiISkUjD9mvAmf73fwfu8qcDfBh4MRqFiYQ70LetS7eLiIhIDxFp2L4GL1gD3AH8FG9U++/A/0ShLpFD5GamMmFQX50kKSIiIj1GZ1eQBMA5VxXyfQvw46hVJNKB0pIC/rRgE3WNzWSkJgddjoiIiEiHIp5nG8DM8s1srJmND71FqziRcKWjCmhoauHtD3YFXYqIiIhIpyIa2TazqcAfgUmtiwAX8lVDjBIT00fkk2SwcF0lx48qDLocERERkQ5FFLaB+/FmIbke2IEXsEVirm9GKpMG5+okSREREekRIg3bo4FPOOfWRrMYkUjMHFXA/a9vYH9DM33S9KGKiIiIxK9Ie7ZfB8ZFsxCRSJWWFNDY7Fi0qarzjUVEREQCFOnI9heA35tZCbAc75LtBzjn5nd3YSLt+ciIfJKTjIXrK/no6KKgyxERERFpV1faSKYAZ7WxTidISkxlpadwzJBczbctIiIicS/SNpJ7gXl4s5H0B4pCbv2jU5pI+0pLCni3bA819U1BlyIiIiLSrkjD9hDgFufcCufcTudcZegtmgWKtKV0VAFNLY63NqpvW0REROJXpGH7ReDYaBYi0hXTh+eTmmyaAlBERETiWqQ923OBn5vZMcAyDj1B8vHuLkykI33SkpkyNI+F6zWyLSIiIvEr0rB9t//15jbW6QRJCcTMkgLu/tc6qusayclIDbocERERkUNE1EbinEvq4KagLYEoLSmgWX3bIiIiEsci7dkWiTvThvcjLTlJUwCKiIhI3Gq3jcTMvgrc7Zyr879vl3Pu/7q9MpFOZKQmM3VYnk6SFBERkbjVUc/2tcCfgDr/+/Y4QGFbAlE6qoA7561hT20juZnq2xYREZH40m4biXNuZOsc2v737d1KYleuyMFKSwpwDt5U37aIiIjEoYh6ts3ss2aW3sbyNDP7bPeXJRKZKcPySE9R37aIiIjEp0hPkPwjkNvG8hx/nUgg0lOSOXZ4P/Vti4iISFyKNGwbXm92uGHAnu4rR6TrSksKWLltL7tqGoIuRUREROQgHV7UxsyW4YVsB7xqZk0hq5OB4cCc6JUn0rnSUQXwIryxoZJZEwcGXY6IiIjIAZ1dQfIf/teJwLPAvpB1DcBG4LHuL0skcscMyaNPajIL11cpbIuIiEhc6TBsO+e+B2BmG4FHnHP1sShKpCvSUpKYPqKfTpIUERGRuBNpz/YcoG/rHTObZGa3mdml0SlLpGtmlhSwekc1lfv096CIiIjEj0jD9t+B8wDMrBCYD1wE/NbMvhal2kQiVjqqAICF6zXftoiIiMSPSMP2McBC//uPA2udcxOAzwJXRaMwka6YNDiXrLRkFqzfGXQpIiIiIgdEGrb78OHJkWcAT/nfvw0MjWQHZna/mZWb2fJ21o81swVmVm9mN4atm2Vmq81srZl9K8KapRdJTU7iIyPz1bctIiIicSXSsL0GuNjMhgJnAi/4ywcAuyPcxwPArA7WVwHXAT8LXWhmycBvgNnAeOBSMxsf4TGlF5lZUsC6ihrKq+uCLkVEREQEiDxsfw/4Md5Ufwudc2/4y88C3olkB865+XiBur315c65t4DGsFUz8NpW1jvnGoBHgAsirFt6kdIS9W2LiIhIfIkobDvnHse7WuR0Dh6dfgn4ahTqCjUY2Bxyv8xf1iYzu9LMFpnZooqKiiiXJvFkwqC+5KSnqJVERERE4kakI9s453Y4594BiswsyV/2hnNuVdSq81hb5bS3sXPuPufcdOfc9KKioiiWJfEmJTmJGSPzWbheYVtERETiQ0Rh28xSzewnZlYNbAFG+Mt/bGZfimJ94I1kh56EOQTYGuVjSg9VOqqADTtr2L5HfdsiIiISvEhHtm/Bm2f7ciD0qiFvAld0c03h3gJGm9lIM0sDPsWHs6GIHGTmgb5tjW6LiIhI8Dq8XHuIS4HPO+deNbOWkOXLgaMj2YGZPQycAhSaWRlegE8FcM791syKgUV4V6psMbMbgPHOub1mdg3wPJAM3O+cWxFh3dLLjBvYl74ZXt/2hVPbbe0XERERiYlIw/YgYFM7j49oH865Di/t7pzbjtci0ta6OXiXjBfpUHKScVxJAQs0si0iIiJxINI2khXASW0s/y9gcfeVI3LkSksK+KCqli279wddioiIiPRykY5sfw940L+oTTLwCTMbC3waOCdaxYkcjtJRXt/2gnWVfPzYNj8sEREREYmJSOfZfhpvFPtMoAWv33o0cJ5z7qXolSfSdWMG5NAvM1UnSYqIiEjgIh3Zxjn3PN5JiiJxLSnJOG5kgS5uIyIiIoGL+KI2Ij1J6agCtuzez+aq2qBLERERkV5MYVsSUmjftoiIiEhQFLYlIY3un01hdpqmABQREZFAKWxLQjLz59teV4lzLuhyREREpJdS2JaEVVpSwPa9dWyqVN+2iIiIBKPDsG1m/zGzvJD7d5hZfsj9QjP7IIr1iRy2mSV+37ZaSURERCQgnY1szwTSQu5/GcgLuZ8MDO7mmkS6xaiiLIpy0nWSpIiIiASmq20kFpUqRKLAzCgtKWDBevVti4iISDDUsy0JrXRUARXV9ayrqAm6FBEREemFOgvbzr+FLxPpEUr9vm1dul1ERESC0Nnl2g140Mzq/fsZwO/MrHV6h/SoVSbSDYYXZFLcN4MF6yu5fObwoMsRERGRXqazsP2nsPsPtrHNn7upFpFuZ2aUjirgtTUVOOcw02kHIiIiEjsdhm3n3H/HqhCRaCktKeCJd7awpnwfRw/ICbocERER6UUO6wRJMxtmZuNNw4TSA5SO8ufb1hSAIiIiEmOdXdTmk2b2xbBl9wAbgGXAcjPTPNsS14bmZzI4r4/CtoiIiMRcZyPb1wItrXfM7AzgKuC7wCf8x38natWJdJOZJQW8saGSlhZNpiMiIiKx01nYHgO8EXL/AuAF59ztzrnHga8BZ0arOJHuUjqqgF21jazeUR10KSIiItKLdBa2s4GqkPvHAy+H3F8BFHd3USLdTX3bIiIiEoTOwnYZMAHAzPoCk4B/h6wvAPZFpzSR7jM4rw/D8jNZoIvbiIiISAx1FrYfBe4ys88Dvwe2AQtD1k8HVkWpNpFuVVpSwBvrK2lW37aIiIjESGdh+wfAAuDneKPalzvnmkPWXwo8G6XaRLpV6agC9tY1sXLb3qBLERERkV6is4va7Ac+28H6U7u9IpEomVni9W0vXF/JxMG5AVcjIiIivcFhXdRGpCcqzs1gZGGWTpIUERGRmOlwZNvMnopkJ86587unHJHomllSwDNLt9LU3EJKsv7WFBERkejqLG2ci9erXdnJTaRHKB1VQHV9Eyu2qm9bREREoq/DkW3gZ8DlwEnAH4EHnHNlUa9KJEpmluQDXt/25KF5wRYjIiIiCa/DkW3n3DeAocBX8Kb5W2Nmz5nZx80sNRYFinSn/jkZjCrK0nzbIiIiEhOdNq0655qdc0855y4ERgKvALcBW8wsO8r1iXS70lEFvLWhisbmlqBLERERkQTX1TPEsoA8vMu47wN0dRDpcUpLCqlpaGbZlj1BlyIiIiIJrtOwbWZ9zOxzZjYfWAYMBz7nnCtxztVEvUKRbtbat60pAEVERCTaOgzbZnYfsB24FngYGOScu8w5Ny8WxYlEQ0F2OmMG5LBQfdsiIiISZZ3NRvI/wAfANmA2MNvMDtlI82xLTzOzJJ+/LyqjoamFtBTNty0iIiLR0VnY/jPqy5YEVDqqgD8t2MS7ZbuZPiI/Zseta2xm5756Kqr92756dlY3ULGvjorqevL6pHH7RRN1wR0REZEE0WHYds5dEaM6RGLquJEFmHl920catptbHFU1DQfC84EgfeB+3YH7e+ua2txHflYaeZmprK+o4ejiHL5w4sgjqklERETiQ2cj2yIJqV9WGmOL+7JgfSXXnj76kPXOOarrmw4Ozu2E6cp99bS08flPdnoKRTnpFGWnM6Y4hxOPKvTut96yMyjKSacgO43U5CScc3z+gbf4+QurmTWxmMF5fWLwSoiIiEg0KWxLr1VaUsBf39jEL196v80wXd906DzcqclGUbYXlgflZTB5aO6B+6EhujAnjcy0rv3zMjO+f8FEzvzFfG55cjm/++x02jpHQkRERHoOhW3ptc4Y15/7/72BO+etIT8z7UBYHlmQFRaeP/w+t09qVAPw0PxMvvqxo7l9zkrmLt/O7EkDo3YsERERiT5zLnHPf5w+fbpbtGhR0GVIHNtb10if1GRS4+iExKbmFi74zb+pqK7npa+dTN+M1KBLEhERkQ6Y2WLn3PS21sVPwhAJQN+M1LgK2gApyUnccfEkdu6r56dzVwddjoiIiByB+EoZIgLAMUPy+NzxI3jwjU0s3rQr6HJERETkMClsi8Spr505huK+Gdz8+DIamw89WVNERETin8K2SJzKTk/h+xdMZPWOan732vqgyxEREZHDoLAtEsc+Nn4AsyYUc+dLa9hUWRN0OSIiItJFCtsice7W8yeQmpzE//5zOYk8e5CIiEgiUtgWiXPFuRl8Y9YYXluzkyeXbA26HBEREekChW2RHuCy44YzZWgeP3jmPXbXNgRdjoiIiERIYVukB0hOMu64eBJ79jfywzkrgy5HREREIqSwLdJDjBvYl//5aAl/X1TGwvWVQZcjIiIiEVDYFulBrj99NEPz+3DzE8uob2oOuhwRERHpRMzCtpndb2blZra8nfVmZneZ2Voze9fMpoWs22hmy8xsiZktilXNIvGmT1oyt184ifUVNdz9yrqgyxEREZFOxHJk+wFgVgfrZwOj/duVwD1h6091zk1xzk2PTnkiPcNJRxdxwZRB3POvdawt3xd0OSIiItKBmIVt59x8oKqDTS4A/uw8C4E8MxsYm+pEepbvnDuePmnJ3PzEMlpaNPe2iIhIvIqnnu3BwOaQ+2X+MgAHvGBmi83syo52YmZXmtkiM1tUUVERpVJFglWYnc7NZ4/lzQ1VPLp4c+cPEBERkUDEU9i2Npa1Dtmd4Jybhtdq8mUzO6m9nTjn7nPOTXfOTS8qKopGnSJx4b+mD2XGyHx+OGcVO/fVB12OiIiItCGewnYZMDTk/hBgK4BzrvVrOfAEMCPm1YnEGTPjhxdNYn9DMz945r2gyxEREZE2xFPYfgr4rD8ryUxgj3Num5llmVkOgJllAWcCbc5oItLbHNU/my+eMoonl2zl1ffVNiUiIhJvYjn138PAAmCMmZWZ2RfM7Gozu9rfZA6wHlgL/A74kr98APC6mS0F3gSedc7NjVXdIvHuS6eOoqQoi//95zL2N2jubRERkXhiziXuTAbTp093ixZpWm5JfAvXV/Kp+xZy9cmj+NbssUGXIyIi0quY2eL2pqeOpzYSETlMM0sK+K/pQ/jda+tZuW1v0OWIiIiIT2FbJEHcfPY48vqkctPjy2jW3NsiIiJxQWFbJEHkZabxnXPHs2Tzbv76xqagyxEREREUtkUSygVTBvHR0YX8ZO5qtu+pC7ocERGRXk9hWySBmBm3XTiRxuYWbnlKM2SKiIgETWFbJMEML8ji+jNG8/yKHbywYnvQ5YiIiPRqCtsiCej/fbSEscU53PLUCvbVNwVdjoiISK+lsC2SgFKTk7jj4kls31vHz55fHXQ5IiIivZbCtkiCmjqsH5+ZOZw/LdjI0s27gy5HRESkV1LYFklgXz9rDP1z0rnp8WU0NbcEXY6IiEivo7AtksByMlL53vkTeG/bXu7/94agyxEREel1FLZFEtxZE4o5Y9wAfvHiGjZX1QZdjoiISK+isC2S4MyM718wgSSD7zy5HOd0KXcREZFYUdgW6QUG5fXha2eO4V+rK3jm3W1BlyMiItJrKGyL9BKfO34ExwzJ5XtPv8ee2sagyxEREekVFLZFeonkJOOHF01iV20DP5q7KuhyREREegWFbZFeZOLgXD5/wggefvMD3tpYFXQ5IiIiCU9hW6SX+crHjmZwXh9ufnwZDU2ae1tERCSaFLZFepnMtBRuu3Aia8r3ce+r64IuR0REJKEpbIv0QqeO7c85xwzkV6+sZX3FvqDLERERSVgK2yK91C3njSc9JYlvP6G5t0VERKJFYVukl+qfk8G3Zo9lwfpKHnt7S9DliIiIJCSFbZFe7NKPDGP68H7c/ux7VNU0BF2OiIhIwlHYFunFkpKMH148iX31Tdz27HtBlyMiIpJwFLZFermjB+Rw1UmjePztLfx77c6gyxEREUkoCtsiwjWnHcWIgky+/cQy6hqbgy5HREQkYShsiwgZqcncftEkNlbW8uuX1wZdjoiISMJQ2BYRAE44qpCLpw3mt6+u4/0d1UGXIyIikhBSgi5AROLH/54znldWlXPT48t49KpSkpIsZsduam5h9/5GdtU0UFnTwK6aBqpqG6ja533dXdvIqWP7c/7kQTGrSURE5EgpbIvIAflZaXz7nPHc+OhSHn7rAy47bvhh7cc5R01D88HBufUWEqB3hSzbs7+R9q6tk52eQnpKEk+8s4U3N1TynXPHk56SfATPVEREJDYUtkXkIJdMG8zjb5fxo+dW8bFxA+jfN4PG5hZ21X4YmHfVNFJVU09VTSO7aj8M1KEj0g1NLW3uPzXZ6JeZRn6Wdxs3qC/5Iff7ZaVRkJVGv8w0CrLTyMtMJT0lmabmFn76/Grunb+e5Vv2cs/l0xiY2yfGr46IiEjXWCJfpnn69Olu0aJFQZch0uNs2FnDWb+cT1ZaMs0tjr11Te1u2zcj5UBQzvdDcn52GvmZIcE55GtOegpmh9+eMmfZNr7+6FIyUpP51aencvyowsPel4iISHcws8XOueltrlPYFpG2PPFOGS+vqjgwypyflUp+Vjr9slIp8L/2y0wjNTn251mvLa/mqr8sZsPOGr45ayxXnlRyRAFeRETkSChsi0jC2VffxNcfXcpzy7cze2IxP/3EZLLT1RknIiKx11HY1tR/ItIjZaencPdl07j57LE8v2I7F/z6ddaWa8pCERGJLwrbItJjmRlXnjSKB//nOHbXNnLBr//NnGXbgi5LREQCEo8dGwrbItLjHT+qkGeuO5Gji3P40l/f5o45K2lqbns2FBERSRxNzS28uaGKHz23ilm/nM9Db34QdEmHUIOjiCSEgbl9eOTKmdz2zErunb+epWW7+fWnp1GYnR50aSIi0o127qvn1dUVvLK6nPnvV7C3romUJGP6iH5x+TtfYVtEEkZ6SjI/uHAiU4bmcfMTyzj3rte5+/JpTBvWL+jSRETkMLW0OJZv3cPLq8p5ZXUF75btxjkozE7nrAnFnDa2PyeMLqRvRmrQpbZJs5GISEJasXUPVz+4mO176vjuueO5fOZwTQ8oItJD7NnfyOtrdvLK6nL+tbqCnfvqMYMpQ/M4dUx/Th3TnwmD+pKUFB+/1zuajUQj2yKSkCYMyuWZaz7KDX97h+88uYJ3Nu/m9gsn0SdNl3kXEYk3zjnWlO/zRq9XlbNo0y6aWxy5fVI56egiThtbxEmjiyiIwzaRzihsi0jCys1M5Q+f+wh3vbyGO+etYeW2au69/FiGFWQGXZqISK+3v6GZ/6zzRq9fWVXBlt37ARg3sC9XnVTCqWP7M3VoHikBXDytO6mNRER6hVdWlXP9I+8AcOenpnLq2P4BVyQi0vt8UFnLy6t28MrqChasr6ShqYXMtGROOKqQ08b255QxRQzM7RN0mV2mK0iKiOD9kr/6wcWs3L6X604bzfWnj46bfj8RkUTU0NTCWxureGVVOS+vLmd9RQ0AJYVZnDKmP6eOLWLGyHzSU3p2i596tkVEgGEFmTz2xeP59j+Xcee8NbxbtptffHIKeZlpQZcmIpIwduyt45VV5byyupzX1+ykpqGZtOQkjivJ5zMzh3PqmP6MKMwKusyYUdgWkV6lT1oyP//EZKYO68f3n17Beb9+nd9efiwTBuUGXZqISI/U3OJYsnmXf3JjBe9t2wvAwNwMLpg6mNPG9Of4owrITOudsVNtJCLSa739wS6+9ODb7Kpt4IcXTeKSY4cEXZKISI9Q29DEvJXlvLRyB6++X8Hu2kaSk4xjh/Xj1LFee8iYATm9ZspVtZGIiLRh2rB+PHPdiVz70Dt87dGlLNm8m++cO560lJ595ruISDQ0NLXw2poKnlq6lRff20FtQzMFWWmcNrY/p43tz0ePKiI3Mz4vLBMkhW0R6dUKs9P5yxdm8NMXVnPvq+tZvnUPd182rUeeDS8i0t1aWhxvbqziySVbeW75NnbXNpLbJ5ULpgzm/MmDmDEyn2SdaN4hhW0R6fVSkpO4afY4pgzJ48ZHl3LuXa/zq09P5fhRhUGXJiISc845lm/Zy1NLt/D00m1s31tHn9RkzpwwgPMnD+Kjo4v0CWAXKGyLiPhmTxrI6AE5XPWXRVz++zf45qyxXHlSSa/pORSR3m1dxT6eWrKVp5ZuZcPOGlKTjZOPLuLmc8Zxxrj+vfYExyOlV01EJMRR/bN58poT+cY/lnLHc6tYsnk3P/3EZLLT9etSRBLPtj37eXqpF7CXb9mLGcwcWcCVJ5Uwe2KxpkbtBjH738PM7gfOBcqdcxPbWG/AncDZQC1whXPubX/dLH9dMvB759yPYlW3iPQ+2ekp/ObT0/jda+v50XOreH9HNfd+5liO6p8TdGkiIkdsV00Dc5Zv48klW3lrYxXOweQhufzvOeM495hBFOdmBF1iQonZ1H9mdhKwD/hzO2H7bOBavLB9HHCnc+44M0sG3gc+BpQBbwGXOufe6+yYmvpPRI7Uf9bt5LqH32F/QzM//cRkzp40MOiSRES6rKa+iRff28GTS7bw2pqdNLU4RhVlccGUwZw3eRAje9FFZqIhLqb+c87NN7MRHWxyAV4Qd8BCM8szs4HACGCtc249gJk94m/badgWETlSx48q5OlrT+RLf32bL/31ba46qYSvnzWGlGSdHCQi8a2+qZlXV3tT9b20cgd1jS0Mys3gCyeO5Pwpgxg/sK/OSYmBeGpCHAxsDrlf5i9ra/lxMaxLRHq5gbl9+NuVpdz27HvcO389S8t28+tPT6MwOz3o0kSOSE19E2W79tMvM5WinHQFrwTQ3OJ4Y33lgan69tY1kZ+VxsePHcL5kwczfXg/kjRVX0zFU9hu6yfvOlje9k7MrgSuBBg2bFj3VCYivV5aShLfv2Aik4fkcfMTyzj3rte59fwJnDl+gP7jkri2t66RTTtr2VhZw6bKGjZW1h74WlFdf2C7zLRkhhdkMbIwkxEFWYwozGJkYRYjCrIozE5TEI9jzjmWlu3hySVbePbdbZRX15OVlsxZE4o5b8ogTjyqkFR9GheYeArbZcDQkPtDgK1AWjvL2+Scuw+4D7ye7e4vU0R6s0uOHcLYgTlc9/A7XP3gYsYN7Mv1p49W6JbAOOfYXdvoh+naQ75W1TQctP2AvukML8ji1DFFDC/IYki/PuzZ38iGnTVs3FnDym3VvLBiB00tH/4Xmp2ewvCCTC+AHwjiXijPz1IQD8qaHdU85c8ksqmylrTkJE4ZU8QFUwZz2tj+9ElLDrpEIYYnSAL4PdvPtHOC5DnANXx4guRdzrkZZpaCd4Lk6cAWvBMkP+2cW9HZ8XSCpIhES1NzC0+/u5W75q1lw84axhbncMMZozlzfLFCd5xpbnHsb2wmMzW5x/5snHPs3NdwyMj0pkovIO+tazqwrRkMyu3D8IJMhhdkMaL1a2Emw/IzI5orubG5hS279rPB3/+mylovjFfWULZrP80hQTwnI+XDkXA/kI/wR8T7ZaYqiHezsl21PL10G08u2cKq7dUkmXduyfmTB3HWxGJy++hy6UHo6ATJWM5G8jBwClAI7ABuAVIBnHO/9af++zUwC2/qv/92zi3yH3s28Eu8qf/ud87dHskxFbZFJNpaQ/ev5q1lvUJ33GhoamHB+krmLt/GCyt2UOmP7manp5CVnkx2egrZGalk+99npaeQk55CdkbY92ne15z0VO9xGSlkp6fQJzW520NkS4ujvLr+0HaPnd7XmobmA9smGQzpl+mNNhdkHfg6ojCTIf0yyUiN3ohmQ1MLZbu8kfMNfm2tQXzLrv2E5HD6ZqR4rSh++P7w+8y4nr/ZOUdjs6OhuYWGphYaQ782t9DY5K1rbA5f52gM2c5b7g7a7sDjmlzYdi0HjtkYvixkn7trGwGYOiyP8ycP4pxjBtI/R1P1BS0uwnYQFLZFJFaaWxxPL93KXfPWHAjd158+mrMmKHTHSl1jM6++X8Hzy7fz0sod7K1rIistmVPH9mfi4Fxq65vYV9/MvvpG9rV+X9dITX0z++qbqK5rpKah+aBR2/YkmRfcs/1QfiCwHxTQvWWt61tvWekp7Nkf0vbhjxxvqqqhrrHlwDFSkoxh+ZkHj1D7oXVwXp+4vFx2fVMzm6v2s9EP3xv9PxY27Kxh6579hEaOvMzUDwO4/4fCiIIshuZn4tyHQbe+6cOv9U3NXmANWf7hdgevq/fX1Te2btN8yOM+XOc9PnRdd8cjM0hLTvJuKUmkJieRmmKkhi9LbmtZEmn+tgNz+3DOpIEMK8js3gLliChsi4jEiEJ3bFXXNfLK6grmLt/GK6sq2N/YTG6fVM4YN4DZE4s5cXRhl0Z5nXPUNbZQXe+H8LomP5g3+SG9dZm3vrquiRp/fXW9/33rsoamTgNbWkoSw/PDw7QXOgfmZiTUFJN1jc1srvqwHWWj/4fGxp01bN1T163HSktJIt2/pSUnkZ6afCC8pqd4Xz/8/uB16Slh2yV726QmW1j49YJxWvLBy9JCQnRqsref1OQkkvXvP6EpbIuIxFhzi+OZd7dy57w1rK+oYcyAHK4/YzSzFLqP2K6aBl5cuYPnl2/ntTU7aWhuoTA7nbMmDGDWxGJmlhTExcwLLS2O2sZmauqbqPZDe+v3fTNSGFGYRXHfDL0f8IJ4a1/4lt37STY6DMjpKckHgm16alLIdl4oVp+4xJrCtohIQBS6u0d5dR3Pr/AC9oL1lTS3OAbn9eGsCcXMnlTMtGH9NHIoIoFR2BYRCVhr6L5r3hrW+aH7utNHM3uiQnd7NlfV8vyK7cxdvp3FH+zCORhZmMWsicXMnljMpMG5GsEUkbigsC0iEifCQ/fRA7K5/vSjFbp96yr2MXe5F7CXbdkDwNjiHGZPHMisicUcPSBbAVtE4o7CtohInGlucTy7bBt3zVvD2vJ9HD0gm+tOH83ZEwf2qtDtnGPltmrmLt/G3BXbeX/HPgAmD81j9sRiZk0oZkRhVsBVioh0TGFbRCRO9cbQ3dLiWFK2m+eXb2fuiu1sqqwlyeAjI/KZNbGYsyYUMyivT9BliohETGFbRCTONbc45izbxp1+6B7d3w/dkwYmxIl/zS2ONzdUMXf5Np5fsYPte+tISTKOP6qQ2ROL+dj4ARRmpwddpojIYVHYFhHpIVpD913z1rCmh4fuhqYW/rNuJ3OXb+fF97yrOKanJHHy0UXMmljM6WMHkJupS0uLSM+nsC0i0sO0tDjmLN/GnS/Ff+iua2xmx946tu+pY0d1PTv21PHetr28tHIH1f5VHE8bN4BZE4o5ZUwRWekpQZcsItKtFLZFRHqolhbHc8u3c+e893l/xz6O8kP3OTEI3S0tjsqaBnbsrfPC9N46duzxvm7fW0+5v2x3beMhj+2Xmcrp/lUcTziqa1dxFBHpaRS2RUR6uO4O3bUNTd5I9N76A0Hau996q6e8uo7G5oP/j0gyKMxOpzg3gwF9MxjQN53ivt73Hy7LoG9GiqboE5FeQ2FbRCRBtLQ45q7Yzp0vrWH1jmpGFWVx3emjOfeYQSQnGc0tjsp99QeF5+17Q0K1PzJdXdd0yL6z01O88JybwYCcDAbkZoQF6XSKstNJiYNLoYuIxBOFbRGRBBMeugfmZuAcVOyrp7nl4N/ryUlG/5x0LzT7o9GtQbq4rxeqB/TNIFu91CIih6WjsK3frCIiPVBSknH2pIHMmlDM8yu2888lW+ibkeq1cRwUpNMpyEqPu5MqRUR6C4VtEZEeLCnJmD1pILMnDQy6FBERaYMa70REREREokRhW0REREQkShS2RURERESiRGFbRERERCRKFLZFRERERKJEYVtEREREJEoUtkVEREREokRhW0REREQkShS2RURERESiRGFbRERERCRKFLZFRERERKJEYVtEREREJEoUtkVEREREosScc0HXEDVmVgFsCroOOUQhsDPoIkS6gd7Lkij0XpZEEdR7ebhzrqitFQkdtiU+mdki59z0oOsQOVJ6L0ui0HtZEkU8vpfVRiIiIiIiEiUK2yIiIiIiUaKwLUG4L+gCRLqJ3suSKPRelkQRd+9l9WyLiIiIiESJRrZFRERERKJEYVtixsw2mtkyM1tiZouCrkckUmZ2v5mVm9nykGX5Zvaima3xv/YLskaRSLTzXr7VzLb4v5uXmNnZQdYoEgkzG2pmr5jZSjNbYWbX+8vj7nezwrbE2qnOuSnxNi2PSCceAGaFLfsWMM85NxqY598XiXcPcOh7GeAX/u/mKc65OTGuSeRwNAFfc86NA2YCXzaz8cTh72aFbRGRTjjn5gNVYYsvAP7kf/8n4MJY1iRyONp5L4v0OM65bc65t/3vq4GVwGDi8HezwrbEkgNeMLPFZnZl0MWIHKEBzrlt4P3SB/oHXI/IkbjGzN7120wC/9hdpCvMbAQwFXiDOPzdrLAtsXSCc24aMBvv456Tgi5IRES4BxgFTAG2AT8PtBqRLjCzbOAx4Abn3N6g62mLwrbEjHNuq/+1HHgCmBFsRSJHZIeZDQTwv5YHXI/IYXHO7XDONTvnWoDfod/N0kOYWSpe0P6rc+5xf3Hc/W5W2JaYMLMsM8tp/R44E1je8aNE4tpTwOf87z8HPBlgLSKHrTWY+C5Cv5ulBzAzA/4ArHTO/V/Iqrj73ayL2khMmFkJ3mg2QArwkHPu9gBLEomYmT0MnAIUAjuAW4B/An8HhgEfAJ9wzunEM4lr7byXT8FrIXHARuCq1p5XkXhlZicCrwHLgBZ/8c14fdtx9btZYVtEREREJErURiIiIiIiEiUK2yIiIiIiUaKwLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIt3IzEaYmTOz6UHXEgkz22hmN3Zh+1P851fYxeMsN7Nbu1ygiEgPp7AtIhLCzB7ww6Qzs0YzW29mP/MvxpSIPgLcHXQRIiKJKiXoAkRE4tBLwGeAVOCjwO+BLOCLQRYVDc65iqBr6C5mlgI0O11AQkTiiEa2RUQOVe+c2+6c2+ycewj4K3AhgJmlm9kvzWyHmdWZ2UL/SmaHMM/a8DYNMxvtj5xP8+87M7vSzB41sxp/NP3ysMdMMrOXzGy/mVX5I/C5IesfMLNnzOybZrbdzPaY2Y/MLMnMbjWzcn/5N8P2e1AbiZl91cze9evYYma/N7O8rrx4ZtbfzJ70a91kZp9vY5tcM7vPr6vazF4Nb70xs8+b2QdmVmtmT5vZl8zMhay/1W9PucLM1gH1QFaE+z7eX17rP897zKxvV56niEgkFLZFRDq3H2+UG+AnwCeBzwNT8S4VPNfMBoY/yB9h/YO/bajPA0ucc2+HLPsu8CQwGfgbcL+ZDQcws0xgLrAPmAFcBBwP3B+235OAkXiX374a+AYwB0gHTgRuBX5kZsd28FxbgBuACcCn/eP9qoPt2/IAcBRwBt4fKZ8FRrSuNDMDngUGA+fivY7zgZdbX0czK8X7ROE3eJcSfwr4XhvHGunX+Qm8164+gn1PAl7w9zkZuNg/RvjrKSJy5Jxzuummm266+Te8oPhMyP0ZwE68AJwFNACfDVmfDKwDbvPvjwAcMN2/Xww0AjNDtt8CXBOyDwfcEXI/BagFLvfv/z9gD5ATss0p/uOOCql7M5Acss0i4N2w57cRuLG9+228HrPwAmxS2HEL29n+aH/9CSHLhgPNwK3+/dPw/nDoE/bYJcA3/O8fBuaGrb8P/28Y//6t/ms7IGRZJPv+M/CHsPVT/Lr7B/0e1E033RLrpp5tEZFDzTKzfXihNxVvxPlaYJR//9+tGzrnms1sATC+rR0557ab2TN4o9kL8cJrAV5rSqh3Qx7TZGYVQH9/0Ti80Fwdsv1/8EahxwNr/WXvOeeaQ7bZAewOO86OkP0ewsxOA27yj5mL98dBGt4fDVvbe1yIcX5db4Y8n01mFvrYY4FMoMIb5D4gA+81BhgLPB227zfw/vAIVeac29HFfR8LHGVmnwxZ37rxKKC8vScnItJVCtsiIoeaD1yJN2q61TnXCBDSKtLWCXgdnZT3e+AhM7sBL3Q/7pzbFbZNYxv7a231sw72H7q8rX10tN+D+G0rzwK/w2trqQSm4Y0yp7Vz/EN2E8E2SXih/6NtrNsbsp9ITnSsOYx9J+H9TH7RxjZbIjimiEjEFLZFRA5V65xb28bytXhtJCcC6wHMLBkoBR7qYH9z8YLe1cB5wNldrOc94PNmlhMyun08Xmhc2cV9dWQ6Xqj+SusIuZmd28V9rPTr+gje6DtmNgwYFLLN28AAoMU5t76D/cwIWxZ+vy2R7PttYEI7P2MRkW6lEyRFRCLknKsB7sE7yfBsMxvn3x9AB3NV+8H1fuAOvJHTeV089F/xRnD/7M9KchJwL94IeXcGxjV4/y/cYGYjzexSvJMlI+acW433x8W9ZlZqZlPw+sn3h2z2El4rzpNmNts/VqmZfc/MWkek7wLONLOv+7O3fAHvxNDORLLvHwMzzOy3ZjbVzI4ys3PN7N6uPFcRkUgobIuIdM03gb8Df8Q76e4YYJZzblsnj7sfb9T4j865Ls0D7ZyrBc4C+uL1Qj8JLODQWU6OiHPuXeB64Kt4o+n/A0R8dckQVwAbgJfx+q4fwjsRs/U4Dm90/2W8lpXVeK/pGPy+cOfcArz+7Ovw+tkvxAvJdZ08h0j2/S7ezC0jgFeBpXh/CO04dI8iIkfGuvg7X0REDoOZHYc34lrinPsg6Hp6IjP7BXCGc25S0LWIiERKPdsiIlFkZunAUOA24AkF7ciZ2deBF/Gm8jsDr+f95kCLEhHpIrWRiIhE16V4rQwFeO0ZErnpwPPAcrz2lpuAXwZZkIhIV6mNREREREQkSjSyLSIiIiISJQrbIiIiIiJRorAtIiIiIhIlCtsiIiIiIlGisC0iIiIiEiUK2yIiIiIiUfL/Ad9pYeMhjWauAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,6))\n", + "plt.plot(degrees, mse)\n", + "plt.xlabel('Polynomial degree', fontsize = 14)\n", + "plt.xticks(np.arange(5,21,5))\n", + "plt.ylabel('MSE estimate', fontsize = 14)\n", + "plt.title('MSE estimate (K-fold cross validation)', fontsize =16)\n", + "#different to r, the models in python got a better performance with more training cause by the\n", + "#cross validation and the kfold" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A final remark is that, in machine learning applications, the complexity of the model often is allowed to increase with the available data. In the example above, even though we weren’t very successful when fitting a high-dimensional model on very little data, if we had much more data perhaps such a model would be appropriate. The next figure again fits a high order polynomial model, but this time on many data points. Note how, at least in data-rich regions, the model is much better behaved, and tracks the average outcome reasonably well without trying to interpolate wildly of the data points. " + ] + }, + { + "cell_type": "code", + "execution_count": 609, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Outcome')" + ] + }, + "execution_count": 609, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAFzCAYAAACZ9MoQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACnaUlEQVR4nOzdd3gU1dcH8O9seiEQINTQQ+8QBCyANEURKQqiFFFAf+prL0iRAFIEFEREBQTpvQrShIQiNSG0JEAINRBCAiSQnuye948lIQm7my0zOzO75+OzTwzZnb1zZ+beO2duEYgIjDHGGGOMMcYYY1LQyJ0AxhhjjDHGGGOMOS4OPDDGGGOMMcYYY0wyHHhgjDHGGGOMMcaYZDjwwBhjjDHGGGOMMclw4IExxhhjjDHGGGOS4cADY4wxxhhjjDHGJOMqdwIsUb58eapZs6bcyWCMMcYYY4wxxlghERERyUQUYOhvqgo81KxZE+Hh4XIngzHGGGOMMcYYY4UIgnDN2N94qAVjjDHGGGOMMcYkw4EHxhhjjDHGGGOMSYYDD4wxxhhjjDHGGJOMquZ4MCQ3Nxfx8fHIysqSOylOz9PTE4GBgXBzc5M7KYwxxhhjjDHGFEL1gYf4+HiUKlUKNWvWhCAIcifHaRER7t69i/j4eNSqVUvu5DDGGGOMMcYYUwjVD7XIyspCuXLlOOggM0EQUK5cOe55whhjjDHGGGOsCNUHHgBw0EEh+DgwxhhjjDHGGCvOIQIPcnNxcUGLFi3QuHFjNG/eHD/99BN0Op3Jz1y9ehUrV660UwoZY4wxxhhjjDF5cOBBBF5eXjh16hSioqKwZ88e/PPPP5gwYYLJz3DggTHGGGOMMcaYM3C+wINOB1y4AISF6X+W0DPBUhUqVMD8+fMxd+5cEBGuXr2K5557Dq1atUKrVq1w+PBhAMCoUaNw8OBBtGjRArNmzTL6PsYYY4wxxhhzCBLfizHlUv2qFhbR6YCNG4EhQ4DMTMDLC1i6FOjbF9CIF4OpXbs2dDod7ty5gwoVKmDPnj3w9PREbGwsBg4ciPDwcEybNg0zZ87Etm3bAAAZGRkG38cYY4wxxhhjqmenezGmTM4VeIiNfXyiA/qfQ4YATZsC9euL+lVEBADIzc3FRx99hFOnTsHFxQUXL140+H5z38cYY4wxxhhjqmPHezGmPM4VeEhIeHyi58vM1P+7iCf75cuX4eLiggoVKmDChAmoWLEiTp8+DZ1OB09PT4OfmTVrllnvY4wxxhhjjDHVsdO9GFMm5+rTUrmyvktPYV5e+n8XSVJSEt5//3189NFHEAQBqampqFy5MjQaDZYtWwatVgsAKFWqFB4+fFjwOWPvY4wxxhhjjDHVs8O9GFMu5wo81K2rH0eUf8LnjyuqW9emzWZmZhYsp9m1a1d0794d48ePBwB88MEHWLJkCdq1a4eLFy/Cx8cHANCsWTO4urqiefPmmDVrltH3McYYY4wxxpjqSXQvxtRByJ+LQA2Cg4Op+ISLMTExaNiwofkb0en044sSEvTRtbp1eTITEVl8PBhjjDHGGGPOge/FHJogCBFEFGzob841xwOgP7Hr1+dxRIwxxhhjjDFmT45+L8aBFaM4FxhjjDHGGGOMMVvkLxfasiXw/PP6nxs36v+dceCBMcYYY4wxxhizibHlQmNj5U2XQnDggTHGGGOMMcYYs4Wp5UIZBx4YY4wxxhhjjDGb8HKhJnHggTHGGGOMMcYYswUvF2oSBx5E4OLighYtWhS8pk2bZvS9mzdvRnR0dMHv3333Hf7991+b05CSkoJ58+bZvB3GGGOMMcYYYyXQ6YALF4CwMP1PAOjbF4iMBEJD9T/79uVVLR5xvuU0JeDl5YVTp06Z9d7NmzejZ8+eaNSoEQBg4sSJoqQhP/DwwQcfiLI9xhhjjDHGGGMG5K9gkT+ZZH7vhr59HXu5UBtw+EVCo0aNQqNGjdCsWTN8+eWXOHz4MLZu3YqvvvoKLVq0QFxcHN5++22sX78eAFCzZk2MHj0a7du3R3BwME6ePIkXXngBderUwe+//w4ASEtLQ5cuXdCqVSs0bdoUW7ZsKfiuuLg4tGjRAl999RUAYMaMGWjTpg2aNWuG8ePHy5MJjDHGGGOMMeZIeAULizlUj4dPd36KU7dPibrNFpVaYPaLs02+JzMzEy1atCj4/dtvv0W3bt2wadMmnD9/HoIgICUlBWXKlEGvXr3Qs2dPvPbaawa3Va1aNRw5cgSfffYZ3n77bfz333/IyspC48aN8f7778PT0xObNm2Cn58fkpOT0a5dO/Tq1QvTpk3DuXPnCnpe7N69G7GxsTh+/DiICL169cKBAwfQoUMHkXKGMcYYY4wxxpyQqRUsuLeDQQ4VeJCLoaEWeXl58PT0xPDhw/Hyyy+jZ8+eZm2rV69eAICmTZsiLS0NpUqVQqlSpeDp6YmUlBT4+Phg9OjROHDgADQaDW7evInExMQntrN7927s3r0bLVu2BKDvKREbG8uBB8YYY4wxxhizRf4KFoWDD7yChUkOFXgoqWeCPbm6uuL48ePYu3cvVq9ejblz52Lfvn0lfs7DwwMAoNFoCv4///e8vDysWLECSUlJiIiIgJubG2rWrImsrKwntkNE+Pbbb/Hee++Jt1OMMcYYY4wx56LT6YcQJCTob6zr1uUJE/NXsMgfbhEUBPz6K3Dr1uO/O3seFeNQgQclSUtLQ0ZGBl566SW0a9cOQUFBAIBSpUrh4cOHVm83NTUVFSpUgJubG0JDQ3Ht2jWD233hhRcwbtw4vPXWW/D19cXNmzfh5uaGChUq2LZjjDHGGGOMMedgahJFZ76x1mj0edC0KZCcDFy7BvTuzXlkgmyBB0EQPAEcAODxKB3riUiVMyAWn+PhxRdfxCeffIJXX30VWVlZICLMmjULAPDGG29gxIgRmDNnTsGkkpZ466238MorryA4OBgtWrRAgwYNAADlypXDM888gyZNmqBHjx6YMWMGYmJi0L59ewCAr68vli9fzoEHxhhjjDHGmHmMTaLYtCnPZaDRPM6Dbt04j0ogEJE8XywIAgAfIkoTBMENwCEAnxDRUWOfCQ4OpvDw8CL/FhMTg4YNG0qbWGY2Ph6MMcYYY4w5iLAw4Pnnn/z30FCgUyd7p0aZOI8KCIIQQUTBhv4mW98P0kt79Kvbo5c8URDGGGOMMcYYY0XlT6JYGE+iWBTnkVlkHXQiCIKLIAinANwBsIeIjhl4z0hBEMIFQQhPSkqyexoZY4wxxhhjzCnlT6KYf2OdP39B3brypktJOI/MIuvkkkSkBdBCEIQyADYJgtCEiM4Ve898APMB/VAL+6eSMcYYY4wxxpxQ4UkUeVULwziPzKKIVS2IKEUQhDAALwI4V8LbGWOMMcYYY4zZQ/4kijxRonGcRyWSLQwjCELAo54OEATBC0BXAOflSg9zEDodcOGCfpKXCxf0vzPGGGOMMcYcD7f9VUPO/h+VAYQKgnAGwAno53jYJmN6mNrlrzPcsqV+ZtmWLfW/cwHEGGOMMcaYY+G2v6rIuarFGSJqSUTNiKgJEU2UKy22SkxMxJtvvonatWujdevWaN++PTZt2mTXNFy9ehVNmjQx+O8rV660apuzZ89GRkZGwe++vr5Wp88ujK0zHBsrb7oYY4wxxhhj4uK2v6rwjBc2IiL07t0bHTp0wOXLlxEREYHVq1cjPj7+iffm5eXZPX2mAg8lpad44EHxEhIeFzz5MjP1/84YY4wxxhhzHNz2VxVFTC6pZvv27YO7uzvef//9gn+rUaMG/u///g8A8Ndff2H79u3IyspCeno61q9fj3feeQeXL1+Gt7c35s+fj2bNmiEkJAS+vr748ssvAQBNmjTBtm36kSc9evTAs88+i8OHD6Nq1arYsmULvLy8EBERgXfeeQfe3t549tlnDaZv1KhRiImJQYsWLTB06FD4+/sXSc93332HmTNnFnzXRx99hODgYDx48AC3bt3C888/j/LlyyM0NBQAMGbMGGzbtg1eXl7YsmULKlasKFneWix/Dd3CBRCvocsYY4wxxpjj4ba/qjhU4OHTTz/FqVOnRN1mixYtMHv2bKN/j4qKQqtWrUxu48iRIzhz5gzKli2L//u//0PLli2xefNm7Nu3D0OGDCkxzbGxsVi1ahUWLFiA/v37Y8OGDRg0aBCGDRuGX375BR07dsRXX31l8LPTpk0rElj466+/iqQnLCzM4Oc+/vhj/PTTTwgNDUX58uUBAOnp6WjXrh0mT56Mr7/+GgsWLMDYsWNNpt2u8tfQze9yxWvoMsYYY4wx5pi47a8qDhV4UIIPP/wQhw4dgru7O06cOAEA6NatG8qWLQsAOHToEDZs2AAA6Ny5M+7evYvU1FST26xVqxZatGgBAGjdujWuXr2K1NRUpKSkoGPHjgCAwYMHY8eOHWalsXB6LOHu7o6ePXsWpGPPnj0Wb0NSvIYuY4wxxhhjzoHb/qriUIEHUz0TpNK4ceOCQAIA/Prrr0hOTkZwcHDBv/n4+BT8PxE9sQ1BEODq6gpdoRlYs7KyCv7fw8Oj4P9dXFyQmZkJIoIgCFaluXB6TH1vcW5ubgXf6eLiIsucFSXiNXQZY4wxxhhzDtz2Vw0OB9moc+fOyMrKwm+//Vbwb6YmZOzQoQNWrFgBAAgLC0P58uXh5+eHmjVr4uTJkwCAkydP4sqVKya/t0yZMihdujQOHToEAAXbLK5UqVJ4+PCh0e3UqFED0dHRyM7ORmpqKvbu3Wv2ZxljjDHGGGOMsZI4VI8HOQiCgM2bN+Ozzz7D9OnTERAQAB8fH/zwww8G3x8SEoJhw4ahWbNm8Pb2xpIlSwAA/fr1w9KlS9GiRQu0adMG9erVK/G7Fy9eXDC55AsvvGDwPc2aNYOrqyuaN2+Ot99+G/7+/kX+Xq1aNfTv3x/NmjVD3bp10bJly4K/jRw5Ej169EDlypULJpdkjDHmQHQ6/bJj3EWVMcYYYxISDHX9V6rg4GAKDw8v8m8xMTFo2LChTClixfHxYIwxldDpgI0bn5yUq29fDj4wxhhjzGKCIEQQUbChv3HLgjHGGHNGsbGPgw6A/ueQIfp/Z4wxxhgTEQceGGOMMWeUkFB07XNA/3tCgjzpYYwxxpjD4sADY4wx5owqV9YPryjMy0v/74wxxhhjInKIwIOa5qlwZHwcGGNMRerW1c/pkB98yJ/joW5dedPFGGOMSUGnAy5cAMLC9D91Ok6PHak+8ODp6Ym7d+/yTa/MiAh3796Fp6en3ElhjDFmDo1GP5FkZCQQGqr/yRNLMsYYc0T5Eyq3bAk8/7z+58aN8t3sKy09dqD6VS1yc3MRHx+PrKwsmVLF8nl6eiIwMBBubm5yJ4UxxhhjjDHG9C5c0N/cF57byMtLH3SvX5/TIxJTq1q42jsxYnNzc0OtWrXkTgZjjDHGGGOMMWvpdPqVlRIS9PMN1a0rXi88UxMqy3Gjr7T02AH3p2SMMcYYY4wxJh+phx4obUJlpaXHDjjwwBhjjDFpONnEWYwxxqwUGwsMGfK4F0Bmpv732Fhxtq+0CZWVlh47UP1QC2YFKbsxMcYYY8Djp1f5Dcn8RhVPYKkO3FZgjNmT1EMP8idUbtpUGeWa0tJjB467Z8wwJ5xBlTHGmAykfnrFpMNtBcaYvdlj6IFGow9idOqk/yn3Tb7S0iMxx9479iRuCDLGGLMHU0+vmLJxW4Ex9XCUIW1OOPTA2XDgwdlwQ5Axxpg9OOHEWQ6D2wqMqYMj9U7KH3oQGQmEhup/8tA8h8JH0tlwQ5Axxpg98NMr9eK2AmPq4Gi9k5xs6IGz4aPpbLghyBhjzB746ZV6cVuBMXXg3klMRXhVC2fjhDOoMsYYk0n+0ysxZiRn9sNtBcbUIb93UuHgA/dOkh6v+mMVDjw4I24IMsYYY9ZxlgYntxUYU7783knFly1WS+8kNZanvFS01Th3GGOMMcbM4UgTuTHG1E/NQ9rUWp462rwadqSCs5IxxhhjTAG4wckYUxq1Tsio1vKU59WwmkrOTMYYY4wVMLVuu6Os6a5E3OBkjFmKy2TD1Fqe8qo/VuPAA2OMMaYmprqnqrXrqlpwg5MxZgkuk41Ta3lq6ao/HHgqIBCR3GkwW3BwMIWHh8udDHGpcVIVxhhj8rlwQd94LT6LeWSk/v+N/Y0nCbQdTyrGGLOEqfLa2ctkNZen5t6/qXkfrSQIQgQRBRv6G69qIScnPBmZAnCwizF1K6l7qrG/SdnIdZZyhZeZZIxZwlR57eyBBzWXp+au+mNsHoumTZ3y+KvgyDowtU6qwtSLu/wxpn6muqfK0XXV2coVtU7kxhizP7UOJ7AXRy9P1TqPhUQc7OiqDJ+MzN442MWY+pkaX2rp2FMxcLnCGGOGyVEmM+XgwFMRPNRCTvknY/FxX056MiqCo3cX5i5/jKlfSd1T7d11lcsVxtTF0ds6SqLm4QTMdvmBp+LD6p008MSBBznxyagszjDnBge7GHMMpsaXmjv2VCxcrjCmHs7Q1lEae5fJTDy2Buk48FQEr2ohN446K4czzDzMDQ7GmNjsUa5wXcmYOJyhrcOYGLjNbBVe1ULJOAqqHM7QXZgjr4wxsUldrnDjjzHxOENbhzEx8IoUopMt8CAIQjUASwFUAqADMJ+IfpYrPcxBWfKUzFm6C3OwizEmNinLFW78MSYeZ2nrMGYrDtKJTs5HBXkAviCihgDaAfhQEIRGMqaHORpLl3jjmYcZY0x5eAUoxsTDbR3GzMMrUohOth4PRJQAIOHR/z8UBCEGQFUA0XKliYlM7jG5lj4l42EI8pH7XGHMnvh8tww/oWVMPNzWsR8u69XNkkUA+FibRRE5IghCTQAtARwz8LeRgiCEC4IQnpSUZPe0MStZ2ttACtY8JcvvLtypk/4nFxrSU8K5wpi98PluOX5Cy5i4nLmto9PpJ9gMC9P/lKrs5bJe/fKDdJGRQGio/qehuYX4WJtN9lUtBEHwBbAfwGQi2mjqvQ65qoWjUsKsyUpIAysZHyfmTPh8t+7JED9NYozZyp4T1XJZbzsllvuG0hQby8e6EFOrWsh69ARBcAOwAcCKkoIOTGWUMCbX0qdk9oqCs6KUcK4wZi/Ofr5b+2TImZ/QMsbEYWwIbmys+N/l7GW9rZTYi8BYmm7d4mNtJtlqbkEQBAB/Aoghop/kSgeTiBImZDG3ixSgzALOWSjhXGHMXpz9fLdnw58xxgqzZzDA2ct6WymxrjCWJl9fPtZmkvORwTMABgPoLAjCqUevl2RMDxOTUsbkmvuUTIkFnLNQyrnCmD04+/nOTwGZVLjXIiuJPYMBzl7WW6r49avEXgTG6q+cHD7WZpJzVYtDAAS5vp9JTG2zJvNavfJR27nCmC2c/XxX8woVShxvzPTsOXafqZclqxTYylHKenuUe4au3y1bxKkrxEy/sfqrfHmgfXv1H2s7kH1ySUvw5JJMMjwJEGOMSU+tN4hqTbez4DqcmUuNAUS50ixluVd4n3x8gDffBC5devz3oCBgwgRg+HDrv1vs9NuwvZSsFJxPPo+M3AxU9q2M+uXrQyMo/LyzkqnJJTnwwBjAjUrGGLMXMRvR9mqQ842tsoWF6ednKi40VD/UkjG1krN9KlW5Z2ifxo0D5s0D4uMfv+/QIX1vgvzyvU4dIC7O+O/Fy38p0m9BnZOdl42lp5di+dnl+O/6f9CStuBvAd4BeLflu/jm2W9QxrOMdWlRKFOBB9mGWjCmKI7SJU4qanxCwJiSKP0asmf68ufeMafhZypd9myQ83A8ZVPzEB7GTDE2B1nTptKXPVKVe4b2adIk4LPPgClT9P+WP4Qhv64wVN7PmwdMnqzvKWGo/Jci/WbUX0SEJaeXYOy+sbj58CaaVGiCUc+OQrvAdvB198XVlKv4++LfmH54OpacXoJ1r6/DM9WfsS49KqOgVg9jMjNnIkqlTl4lZbp4xQ/GbKP0a0ip6SspXfacFJhnqFc2nsiPOSo5J+SVqtwztk8uLo+/o/j1a6i8/+ADoH//x78XL/9lKLevp15Ht2XdMGzLMFQrXQ17Bu/BmffP4PvO36NnvZ7oVLMT3m7xNjb034Djw4/D190XnZd2xo7YHZKlSUk48MCYudTaOLcVr/jBmG2Ufg0pNX0lpcueDXJHvbFVajDdUpYsn82YmsgZ9JSq3DO2T6+8Yvz6NVbeC0LR3wuX/3Yut7df3I6Wf7TE8ZvH8dvLv+G/d/5D19pdIQiG11JoXaU1jg4/isYBjdF3bV9EJkQC0PeYOH/+PObMmYPTp09Lkla5cInMmLnU2ji3FS9/x5htlH4NKTV9JaXLng1yR7yxVWow3VrmLp/NmJrIGfSUqtwztk+tWxu/fo2V94XnKixe/tup3CYi/HDoB/Rc1RPVS1fHyfdO4v3g982aPLKsV1nseGsHylJZvDj6RQx9Zyhq1KiBhg0b4pNPPsGOHY7VE4LneGDMXEod4yt1unjsLGO2Ufo1pNT0lZQuMZbGs2RuC0vmplADOceOM8bMY885yIyVh2KXe9bsk6HyPn+OB8B4+S9xuZ2rzcWH/3yIBScX4I0mb2Dxq4vh6epZ8udyc3Hs2DHs3r0bu3btQsKJBBARVvusRs8XemLMmDHo1q0bateuLUm65cKBB8bMpdbGua3sue41Y45I6deQUtNXUrpsbZA7+2pGSg2mM8aKskfQ09by0NIJii3dJ0PlfZ06QPv2sk3anJGbgdfWvoYdl3Zg9LOjManzJJO9HO7cuYMdO3Zg27Zt2L17Nx48eACNRoO2bdviu+++Q7RfNNanrsd3//sOzSs1t9t+2BMvp8mYuZTaSLVHupQ+Iz9jSqf0a0ip6ZMyXc6+RKaz7z9j7DFbygOlto8llJ6TjldWvYKwq2H4o+cfGNF6xBPvISKcOXMG27Ztw7Zt23Ds2DEQESpXroyXX34ZPXr0QOfOnVGmTBkAwP3M+6j7S120qtwKuwfvtvMeicfUcpoceGDMEs7YOGeMMUcUFqaf26C40FD9OGNHJ+XNAtdJzJmp8fy3pTx0siDmw+yHeHnly/jvxn9Y0nsJBjUbVPC3rKws7N27tyDYEB8fDwBo06YNevbsiZ49e6Jly5ZGJ5yceXgmvtrzFQ6/cxjtq7W3y/6IzVTggYdaMGYJa7q72aMCErsbnhorTcacAV+b4lHq8Dl7kWrsuBM+/WSsgFrPf1vKQ3OHbTlA/ZWalYoeK3rg+M3jWNl3JQY0GYAHDx7gn3/+wcaNG/HPP/8gPT0dvr6+6N69OyZOnIgePXqgUqVKZm3/f8H/ww///YBp/03Dlje2SLw39qeuo83k4yhLblnK1v1W46zhakwzY86Ar01xOeoSmZaQYiUIpa4AxZgtzG0PqvX8t6U8NGeFIQeov+5n3kf35d1x4tYJLOiyAGnH0vDyyy8jICAAAwcOxIEDBzBo0CDs3LkTycnJ2LBhA4YNG2Z20AEAfNx98L/g/+HvC38j7l6chHsjDx5qwUqm1uitrcTYbzV2P1NjmhlzBpZemw7wdElynEfic/YhLI6GrxHL2oNqPv+tPdbm5I/K25Z3M+6i05xOiDkYg4ZJDREdEQ2dToeaNWuib9++6Nu3L9q1awcXF5fHH7IyP289vIUas2vgk7afYGb3mRLulTR4qIWjkKvwV8qSW2Lvf0nbE2O/1ThruBrTzJgzMHZtRkfr/79wGeasAWNLOdoSmUrg7ENYDFHrzTuXI3qWtAfVfP5bWx6aM2xLpW3La9euYdHyRZixYAYyr+nTT40JY8aMQd++fdG8eXPD8zWUdO2YKBOqlKqCnvV6YtmZZZjaZSrcXNzsucuScqJSQ+Xk7KJkqrCwF7H335ztibHf5nQ/Uxo1ppkxZ2Ds2gwPf7IMU2t3X6Z8JXU55yEsRam5izmXI3qWtAed9fwvadiWitqWt27dws8//4z27dujZs2amDh2IrLysvDuV+/iwoULOHfuHCZOnIgWLVoYnSTS5LVjqkx4VL4OcwnGnfQ72HFxu/123A448KAWchb+SigsStp/S+diMCc/xdhvNVZAakwzY87A0LU5bpz+34qXYUoIGDPHY85NdP7Tz8hIfffyyEjne0JemBpv3vPbVNHRwOefA4GBj//mjOWIJe1BU+e/s86XBii+bXnnzh389ttv6NixIwIDA/Hpp5/iQfoDBLwSAM8vPLH34F4snL4Q9erVM2+DpupgY2VCXFxB+dpjwFi0uSUg4/B+xzpPiEg1r9atW5PTCg0lAp58hYbavm2tluj8ef22zp/X/1787+vWEXl56b/Ty0v/e/H3ScnU/luTPnPyU6z9Lil/lUiNaWbMGeRfmxs3Eo0eTRQYaLgMO3/+cdmV//Ly0v+7UnG5o3xqPK/kJmX7TQqG2j5Tpjwua5zxeIvRHlRCW1puCivj7969SwsXLqSuXbuSRqMhANSwYUOaMGEC7T2+l+r8XId8p/jSgasHLN+4qbLSWJkQFmb4M8ePy55XlgAQTkbu5WUPJljycurAg1SVvbkFodyFhan9tyZvzP2M3PttKbWllzFmnZLKMLU1ctWWXmeltptoa4lZl6otWGMsvaNHO/d1aes5obbzwEFlZmbSunXrqFevXuTm5kYAKCgoiMaMGUNnzpwhnU5HsXdjqfqs6lRmWhk6euOodV9kqk4zdi5s22a4fB03TlXXHQceHIFUjTK1FISm9t+ahpDcjVwpAgRy7xNjzH7Mud7VFIhUS13k7JzhOIldl6qtbjbWptq4UfnliJI5S9BOgbRaLYWFhdG7775LpUuXJgBUpUoV+uKLLyg8PJx0Ol3Be6PuRFHlmZWp/PTyFJkQaesXG66DjZUJMTGmg34qKWdNBR54OU01kWJWZFuW/bH3LM3Gvs/aJXrkmmW68Ey35coBw4YBTZoAzZoB9epZnwaVL1XEGLOQWmfKN0TNS9BJSWnH2BlWOZCiLlXacTSF2xLScMZ8lfm8j46OxvLly7FixQpcv34dvr6+6NevHwYNGoTnn3/+8dKXj9J5OvYgup77Gq5uHvh38L9oXKGxdIkzlDfAk+XruHHAvHlAfLxq6kNeTtNRSLHsl7XL/sjR+DC2//kT1hRPS0kT1si1jFr+pDLlygEffABMmiROHqp0qSLGmJUcaSlINS9BJxUl3uSbs2ye2klRl6rpWrW2TcVMc7Z8lan8un37NlatWoXly5fj5MmTcHFxQffu3TFt2jT06tULPj4+BtMZOvYt9O6TA78cAfta/Yy65RtKlkYAT5YJ+YGIypWBPXuAXbsArfZx0MFB6kPu8eDsrC0Y5I7cFo8U1qmjnw1WDQ2h/Cd7o0cDs2aJl4dyHxPG7ElNTxBZyaRspFp7rpjzOSnPQ6WU6c52rSkl3+XkbMfcXqTMV6UdMzteRxkZGdi4cSOWL1+OPXv2QKfTITg4GIMGDcIbb7yBihUrmkzn6jebYuhLuQi6B+xcDlTLtfP1Xrz+CwoCxozRP5xUStDZAtzjgRln7dMLOZ+um2qgqqFRkP9kTxDEzUNni6Yz56XEJ8HMNlI9Sbf2XDHnc1Kfh4Xr2cBA/fcIApCYKM/QQGe51rguVVcPDTWRKl+VeJ1KeZ+g04EuXsTRvXuxaP9+rNm5Ew8fPkSNGjXw7bffYtCgQWjQoIFZm/rp+M/4olcunrsGbFkF+GcBgJ17CxdfXvPSJWDyZGD/fiA9XRmBJJFwjwdHY6+Ipz3mVRB7TgelyK8gzp4FZsxw3nGkjFlL7WUAsx9rzxVzPmfoPUFBwMqV4jQW87cv9rA8a9LgbNea0utSpadPDM6wj2JR4nUqUZpuxcdj2ahRWLxyJS4QwRvA6x07Ytj48XiuY0dozDxHcrQ5+HTnp/gt/De8dl6DZet18MwTL50WcbA5jkz1eOAr2JHk39C2bKk/gVu21P+u04n/XflPBLy89L+b80TAkvSZeq+pKKoa5D/ZGzQI+OMPy/LQnG3Xr68vqOrX50qaOSa1lwHMfqw9V8z5XPH3BAYC77wDdOwoTh2cX88OG/Y46JCfjiFD9DdlUnO0a02n098QhYXpfxo7NkquS+3Z1pOLsX3MyzPv+DkbJV6n1twnGJGdnY3169fj5ZdfRrUaNTBqxQoEEOFPALcB/HX8ODpWqWJ20CExLRFdlnbBb+G/4ev2X2F135XwdBOxLW6p/J7QhTnInA7F8VALR1K8q05+46RpU/GjdtZ0i7Ukfabeq/RJyMyJ0ms0+n+vUwd46il5I/r8VEG9nOnYFd5XHx9llwFMOQrXF/nDFVxc9OeQTmf8ejGnnin+niFDDAcIrK2D8+vZ4unI37axrsBilgtKr28tocTu6NawZ1vPWraeg4b28dtvgZwcYPhwdR8/KSjxOhVh+FxkZCQWL16MFStW4N69e6hatSpGDRyIt1esQJGwgAVDOMJvhaPPmj64m3EXq/qtwhtN3tCfr81ayNeWcqbhXcbW2VTiq3Xr1iKuMuqApFgjWKx14LVaom3bzE+fqX1R8prYUqZNrGNRfJtKzUtmmjMdu+L7GhREtHixc+w7s03+uRMURDRlivnnjDnXV/H3jBsnfh1MpC/vDa3tbmhNd7HLBUcqZyzJRyWToq0nJjHOGUP7OHq0Yxw/Kdia51K0L62UlJREs2fPpubNmxMA8vDwoAEDBtDOnTspLy/P6utYq9PSrCOzyH2SO9WYVYMiEyLts0PmUtAxsBWAcDJyLy97MMGSFwceSiB2pSpWgyN/O999Z376StoXpV6gUjVspGr8OUpDzBk507EztK9BQUTHjyuvDFAipZaXYilp/7Ra/bli6fViTr4Vfo8132Hu/plb/ktRLjjK+aP0G3ZzKb3sFyN9hrYhVWDPUVh7nSoguKjVamnXrl302muvkZubGwGg1q1b09y5c+nu3bs2p/fWg1v0wrIXCCGgV1a+QknpSRLvkXPjwIOzELvwEKtyy99OYKD5T5wUUBBaRaqGjVQNDSX3kmGmOUoj2hzOtK9iU2tZai5z988e55ASerzxtWKc0m/YzaX0a1qMc9DQPu7e7RjHT2lkvC5u3bpFkydPplq1ahEAKleuHH322Wd05swZ0x+0oJ25MXojlZ9enjy/96R5x+eRTqcTdyfYE0wFHniOB0ci9nJkYi2Fk7+d+Hhg3jzgs8/0S4J16wY895zh9Em1tJrUpBpnJ9WyRGKn11HG0KqBEsd0SsXR99XUeGgpxkorbTy4LczdP3ucQ7bWW6aOtbnL8Dn6tWILRxlHrfT2kRjnoKF9rFPHMY6f0ki57KUBWq0Wu3fvxvz58/H3339Dq9Wic+fOmDJlCvr06QMPD4+SN2JGeXg99Tr+b8f/YeuFrWhRqQVW9l2JhgENRdwTZhVjEQklvhy+x4PSnhSL3eOhpO0obf+tIcaTCEP5oJYhHI7yREkNlP7US0yOvK+m9k2qsdJqeAIu9hN+pZ9DYg9tVOp+ys0R2hlKp4SeP8x8dmq3xcfH08SJE6l69eoEgAICAujrr7+mixcvivo9OXk5NPO/meQz2Ye8J3vT9EPTKScvR9TvsJmDn8fgoRYqoMTGgj0bQkrbf1sKBVs/aygfcnPVUZGr9SZHrRy88irCUffVVKNPqrHScgQDLTl+Us1poORzSMzjpOT9ZM6Bz0H1kLD9nZubS1u3bqVXXnmFNBoNAaBu3brRunXrKDs7W4TEP6bVaWnlmZVU5+c6hBBQz5U96er9q6J+hyiUdr8jAVOBB0H/d3UIDg6m8PBwuZMhjQsX9OsUF++aFhkpb3dYsZblKmk7Stp/OYcLmMqHunWVv3Siko4jY2oQFqZfp7640FD9T2N/69TJvO0rYfiTpWmwpByxdNtKXYLW1Hlg7rFmTA5KvaaY+UQ+htevX8eff/6JP//8Ezdv3kSlSpUwbNgwDB8+HLVr1xYx4foH6P/E/oMx+8bgdOJpNKvYDFO7TEWPoB4QBEHU7xKFE7STBUGIIKJgQ3/jOR6Uws5jrMxm7rhSW7ejpP2Xc0x0SflQPA/lrPANfbejjKFlzF5KGg8txVhpqQLIxlhaplpSH1iyf0oIwhjDczMwNVLyNcXMJ0JbPzc3F9u3b8eCBQuwY8cOAMALL7yAX375BT179oSbm5tYqQUAZOdlY8XZFfjpyE+ISopCbf/aWNF3Bd5o1B+aS3HA/v3KDIQp6X5HBgo6Ek4uv9FRmNSNDp1OH3kLC9P/1Omk+66SyLH/xpgqFKRmST7kV/gtW+qflLVsqf/dHsfR2HcD+gZHZKT+SV1kJDdAGDMlP1iXf90XDtaZ+psl8huVnTrpf1obdLC2vLG0TLW0PjB3/4wFQGJjS94HqYl1rJljUlJ7rTAlX1PMLq5cuYKxY8eiRo0a6NOnD06dOoWxY8fi8uXL2LFjB/r06SNq0OHK/SsYHzoeNX+uiXe3vgsXjQuW9F6CmA9j8GbjN6DZtFmedrG5lHS/IwMeaqEU9o4ayx2lLv7krE4dYPNmZUTN5egGlZ8fycnAtWvA8OEl54Oc3bWcoKsYYwWk7lkk5aoWYiXxfAzuPNcKN9yzcKsU8NADSPNxw8OvP0VuuTJw1bgWvEp7lEZ57/Io510OFXwqoNrtDLi1fsr88kKq+knpwxkUcqyZwsjdXjNF6deUM7JDOZKbm4utW7di/vz52LNnDwRBwEsvvYQRI0bgpZdegquruB3qU7NSseXCFiw+tRhhV8MgQMCLQS/i8/afo0utLo+HVKihbark61kkpoZacOBBSezZ6JDz4jR20fXuDcTFyd/okjsIFBQE/Por4O5uOh/krPC5scGchRM0EgojrRbXToXhxOWDOCsk4WzeTZxLisK1+1eRS3lWbdNFcEEN1/KoczEJDe7o0CrZDa0+noqGAz6Cm5uRpdOkqA/V0ChlrDgln7dKTpszkri+iouLw8KFC7F48WIkJiYiMDAQw4cPxzvvvINq1aqJsAOP3Xp4C1svbMXm85ux78o+5OpyUce/Doa1GIYhzYegWmkD36eWtqmDB5kVG3gQBGERgJ4A7hBRk5Le7/CBB3uS4uI090JSQ0WlhiAQ93hgTHpOcK7fSL2BHZd24MDV/ThwYRdu5N4FAGh0QD3PqmhSpx3qoCyq/fwXqt3NRZWHQOksoJTGE76h/8GtQWNoSYs8XR5yc7ORcv4U7t66hORSLrhdWoPLKVcRd+8SLiVEISblEtJ1WQAADxcPtA1si041OqFTzU5oF9gOXm5eppJqGycLIknOwRvPiqHkmym+ppRFgvoqJycHmzdvxvz587F37164uLigZ8+eGDlyJF544QW4uLiIkvSM3Az8d/0/7LuyD3uv7MWJWycAAEFlg9CnQR/0btAb7QPbm54w0gnqazVQ8uSSfwGYC2CpzOlwPmJPZGVJ5aOGiVXEmlTTHNbmh6UTOYrZSORJJJkUlHgjo4byykJEhNOJp7H5/GZsvbAVkbcjAQCVPAPQ4UwKvrkMtIsHGiUBXm73gMjJj45F9yev+UYtig4L+Xs3yg0ZgjpF6oGJBe/R6rSIvReLyIRIhN8Kx4HrB/D9we8x8cBEeLp6okutLuhVvxd61uuJKqWqiLvjYk606ez4htN+lDzxKF9TyiJifXXx4kUsWLAAS5YsQVJSEmrUqIFJkyZh2NChqJqRod/mpUtWH+/EtEQcu3kMx+KP4XD8YRy+cRg52hy4alzRLrAdJj0/CX0a9EGjgEbmr04hdttUiW0SlZN9qIUgCDUBbOMeD3YmdqPBkiijSBFJIsLdu3dx6dIlXL16Fbdv30ZiYiISExORmpqKjIwMZGRkIDMzE4IgwMXFBS4uLnB3d0eZMmUKXhUrVkS1atVQvXp1VK9eHVWrVoXGngWLLflhbqEoRSORC2T7cJZ8VuqNjAM9QUl4mIAVZ1dgyeklOHfnHDSCBk9Xexq96vXCK/VfQf2zCRA6d37yg/lPVs1cFjk7MxPXAFwHcMPNDTfefx93BQEpKSlISUlBamoqsrKy4OnpiRYtWqDN023g09gH+67vw98X/8bVlKsAgHaB7TCo6SAMaDIA5b3L2yGHmNkc6LpQPKWWjUx5bLwus7KysHHjRixYsABhYWFwdXVFr169MHLkSHTt2hUugmDVuZiZm4nI25E4Fn9MH2y4eaygnHcRXNCsYjN0rtUZXWp1wXM1noOvu6/1bR+x2kx83VlNsUMtgJIDD4IgjAQwEgCqV6/e+tq1a3ZMnYMT84bGkq6AVlzMmZmZOH36NCIjIxEZGYlTp04hNjYWKSkpRd7n6uqKihUrwt/fH97e3vD29oanpyeICFqtFlqtFtnZ2UhNTUVKSgru37+PjIyMItvw8fFBw4YN0ahRIzRt2hRPPfUUWrduDR8fH+vypiT2KNy4kahOzlTxiXGOShGkUfkxICLsu7IPc47PwbaL26AjHdoFtsPQ5kPRr2E/BPgEPH6zFccgMTERx44dQ3h4OKLCwhB18CAuAdAWe1/p0qVRpkwZ+Pv7w8/PD56ennjw4AHOnDmDjIwMVKxYEcOGDcO7776LLN8MbDm8GKsvb8G59Ctw1bjixaAXMbjZYLxa/1V4uBqZF0JOzhIgzKfk7v+OyNnOr+Js2X+5b2Dtycr6KiYmpqB3w71791C7dm2MGDECb7/9NipVqvT4jWbUETrSIfZubEFvhmM3j+F04mnk6fRzBFXzq4a2gW3Rtqr+1bpKa3i7eYuyH6LidrPVVB14KIx7PCiYpRdoCQV6WloaDh48iAMHDuDAgQM4ceIEcnNzAQD+/v5o2bIlGtSvj6CMDNRdtQq1cnJQydMT/kuWQPPaaxYVTA8ePMCNGzdw48YNXLt2DefPn0dUVBSio6Nx8+ZNAIBGo0GTJk3w3HPPoWvXrujUqRPKlCljfv6UVIFJXcFxI1GdnKnis/UclbKhosIGaFZeFpacWoI5x+cgOikaAd4BGNFqBIa2GIp65eoZ/pAZeXjt2jX8+++/2Lt3L44cOYKrV68C0JeRQdWro9H162is06EugBoAqnt4oOqJE/Bo2tTgV+bl5WHnzp1YsGABtm3bBp1Ohy5Nm2Lk+fPonZuL89U9sPyrF7AyJwI3H95Eee/yGN5yON4Lfg81y9QUPd+sooRGsr05U9nE5GXL9WXtZ9V8TZtZX2VmZmL9+vWYP38+Dh06BDc3N/Tu3RsjR45E586dDff8NVBP3/UCji+bhqNlM3Ds5jEcv3kc97PuAwB83X3RpkobfZDhUbChcikzhggpoXzhdrPVTAUeQESyvgDUBHDOnPe2bt2aHIZWS3T+PFFoqP6nVit3imyj1RKtW0fk5UUE6H+uW2fRfsXGxtLs2bOpW7du5O7uTgDI1dWV2rVrR19//TVt3LiRrl69SjqdTv+B8+cff1/+y8tL/+8iuXPnDm3bto3GjRtH3bt3Jx8fHwJAGo2GnnrqKZo4cSKdOXPmcZoMESFvbGaHvGISCA0teszyX6GhcqdMfLaeo3yOExFRek46/XT4J6o0sxIhBNTqj1a05NQSysrNMm8DxeqmnKws+vfff+mjjz6ioKAgAkAAqFKlSvT666/TzJkz6eDBg5Senm5zWXfjxg2a+PHHVF0QCAAFAPQlQBc8PCgvOop2XdpFvVe9SpoJGhJCBHpl/vO06+IO0+WvPTjjuaeEeo3Jy17tWFuuL2s/68DX9NmzZ+njjz+mMmXKEAAKCgqi6dOnU2JiYomf1cXEUExVD/otGDSoD6ju/4EQon9pJmio6bymNHzLcFoQsYDO3D5Dedo86xIpddvHnHPXgc8BqQEIJyP38tzjQQ5qjqSaYsVTwbi4OKxduxZr1qzB6dOnAQANGzbESy+9hBdffBHt27c3PsTBymjkw+yHuHD3Aq6lXENCWgISHiYgIS0BiemJeJj9EOm56UjPSUe2NhsCBGgEDTSCBl5uXvBz9YPuhg5p59OQfDYZCecTQEQIrBGI1/q9hqGDh6J58+ZFJ8JRQuTWUc+5kqjwSXURSjh37MXWc9TJn05k5WXhl2O/YMbhGUjKSELnWp0xrsM4dKzR0fyJuR7Jy8vDnj17sGrVKmzbtg3379+Hp6cnunbtim7duqFr165o2LCh4e2auubMuR7DwqB9/nnsATAfwFboh210bN4cI7/8En01GiR99g7+aJKNBa2BOz5A84rN8c0z3+D1xq/DVSPDnNnOeu6pvXxltg1DsFebwpbry9rPOtg1nZ6ejjVr1mDBggU4evQo3N3d0a9fP4wcORIdOxqvI4gIF+5eQNjVsIJXYnoiAKDSQ6BdggZtn30D7V54F62rtkEpj1LiJFjKto85565OB8TFAUePAu+951ztZhEodqiFIAirAHQCUB5AIoDxRPSnsfc7TODBmW4mDEhNTcXq1auxaNEiHD9+HADQvn179O/fH6+++ipq1apl3oZKyMdcbS6ikqIQfisckQmROH/3PM4nn8eth7eKbMZFcEFF34qo5FsJfh5+8HHzgY+7DzxcPEDQR+i0pEVGbgZSs1KRmp2Ke5n3kPAwAbmpucAFAOcBXAGgBUoFlkKbF9tgyOAheDn4ZZQ/fk4ZFVjxBkadOvqC1VEbjY4QbHGEfbCELTcyTlqu6kiH1edW49u93+J66nV0q90N33X8Ds9Wf9bIB4zncUREBJYuXYpVq1YhKSkJ/v7+6NWrF3r37o1u3boZDgKLPcFtseOYAOAvV1csrFwZl2/cQFkAQwCMAFDHBVjZ2g0/DAjEhYdXUKtMLXz59JcY1mKYtMtyFuek5x5TOVvqF3ue84a+KygIWLkSSE+XZvl2B7mmT548iQULFmDFihV4+PAhGjRogJEjR2Lw4MEoX97whL0pWSnYE7cH/1z6Bzsv7cTttNsAgKqlqqJTzU7oVKMDOlFN1HnoBqFKFWnajlK2fUo6toW/u1w5YNgwoEkToFkzoF49x2x7iUzRQy0seTnMUAtn6j79iE6no//++48GDRpEnp6eBICaNm1KM2fOpGvXrlm30WJdPe/6e9LGP7+kT/75mNotbEee33sWdAHzm+pHbRe0paGbhtKUA1NoY/RGikyIpNsPb1vdFUyr09Lth7fpxM0TtObcGvp689fUakQr8q7tre+OLIBQH1Tp3QB691UNrW0EuuulkO5aztBN1lG6yTnasCyp2OOcttexMPN79l/dT23mtyGEgFr+3pL2Xt5b8naL5VHG8uW0+M8/KTg4mACQh4cHvfbaa7R582bKzs62eHtG89zc69HINrW5ubRn5kx6HSC3R8M9ngFoCUBpO/6hTTGbqO2CtoQQUNUfq9K84/MoO6+E9IvFGcpT5nhsqSPt2Y4tfn0FBREtXmze9WbttVn4c4GBROPGEa1ZQxQTo/jrOjU1lX7//Xdq1aoVASBPT08aMmQIHTx40OiwtJikGJp2cBp1WNyBXCa4EEJA/tP8acC6AbQwYiFdunvJ/kPapKpvSzp3HaXtKCOYGGohezDBkpfDBB7kOqlluIHJycmhFStWUJs2bQgAlS5dmv73v/9ReHi4zYVYalYqbY7eSJ+uHErNZ9QhIUQghIC8vvei5xY9R5/v/JxWnllJsXdj7VNgFsrfM/9sobf+9yb5+vsSABLKCITuIIwCtRkp0PhfX6ezCaflG5vsDAWrEwb4nJ6UZZy9bi7N+J5bD27RgHUDCm6yl5xaQlqdGekodN1fejR/QtlHN/ENGzakuXPn0v37981PqyXliCXXo7Hj+Oj7EgGaDlDdR2kv4+dHH330EZ0+fZr2Xd5Hz/z5DCEEVHN2TVp0chHlanPN3ydrcYCwZJxHymJLHWnvNkThc+f4ccu+29rzTqsluniRaOlSxQcVdTodHT16lN555x3y9tY//GrWrBn98ssvdO/ePYPvP3P7DH237ztq9Gujgod0LX5vQaP/HU2Hrh2yT7kph5LOXW472owDD0ojx9MRO39ncnIyTZkyhapUqUIAqF69ejRv3jxKS0uzabsXki/Qj4d/pM5LOpPbRDdCCMjze0/qsqQLTdo/iQ5eO6ifRM3eDRwj+ZudmUlr166l5557Tv800cuNqnSrQPhCX8g3mNuAxu0bR2dun5E2fcVJUbAqrVHpDMEVZj+Wnk/WXg8mvker09K84/PIb6ofeUzyoAlhEyg9J938fQgNpRMA9QFIAMgFoNcACp01y7ogqCXliBjXY7FyVufpSaEhITTwjTcKJiRu27YtLVy4kDad3kSt/2hNCAHVnVOXVp5ZaV5whkmDe4Uojy3XpJzH0543hgpvR9y7d4/mzJlDTZs2JQDk4+ND7777Lh07dsxgmR6TFENj9o6her/UI4SAhBCBOi7uSL8c+4XiU+Nl2AMZlHTuKvyYqwEHHpTI3jdpdrqQ7ty5Q998803B6g/dunWj7du3k9bK/cvKzaLdl3bTJzs+oaA5QQVR2ca/Nqavd39NYVfCnpytXY4u1zExJebvsWPH6LXXXiONRkPu7u7U/pX29NTUp0gzQVPQVfrX47/S/cz74qXTGLHPByU2KpWYJqZelj6xt/bcM/I9p/9eSO0WtiOEgLos6UIXky9alPz9+/dT92ee0fcQAGgsQPG2XveWlCNiXY9G6s6kpCT66aefqGHDhgSASpUqRe+99x79tOEnajqvKSEE9NSCp+jQtUPW7SuzDTfm5Vf82snNte2alOthgz3PJUuDHHbIE51ORwcOHKDBgwcXDF0ODg6mP/74g1JTU594f3J6Ms09NpeeWvBUweoTXZZ0od9P/E63H94WPX2qYOo4cdvRZhx4UDsxCjKJI8RJSUkFAQdBEOjNN9+ks2fPWret9CRacmoJ9V3Tl3yn+BJCQB6TPKjH8h706/Ff6cr9K6Y3IHWlZKhQWrPG7Py9dOkSffDBB+Tl5UUajYb6v9mfxm8aTy1+b1HQg2PwxsF08Jrx8XiS7IMtBatSG5VK64XB1MXa7r0iLv+WqwFN6uxKrhNcqfz08rTs9DKzywWdTkc7d+6kZ599lgBQhQoVaNpbb1Gqp6c4172l5YidGuUHDx58olH+9ti3qdJk/RKjr619jeLuxYn+3cwEpXdfdvS6wti1mpurvv22542hHMFVI5KSkmjmzJnUoEEDAkB+fn70v//9j06ePPnEe7Pzsmlj9Ebqvbp3Qe/g5r81px8P/0gJDxNESY9BjnIdGdoPMfbNUfKnBBx4UDOxCjKJbgzv3r1Lo0aNKhJwiI6Otng7sXdjaeZ/M6nD4g4FPQCq/FiF3vv7Pfr7wt8WdyeWtIFjKC+/+87i/E1MTKTPP/+cPDw8yNXVld5//33aEbGD/rftf+Q31Y8QAmr9R2tacWYF5eTliJP2wsQsAJXeqGTMUrZMaGbL9VDoe8+XAz01Uj93zcB1b1ByerLZyT927Bh16tSJAFC1atVozpw5lJ6eLn7DR8ENqfxuyE2aNCnohtzq5Vbk8Z4HuU10oy93fWmfHmZK5KC9Lq3iDE84lZz/1rDnRL9iT6Br6ruK7ZNWq6Xdu3fTgAEDCoaTtW/fnhYvXmxw6PLV+1dpzN4xVHFGRUIIqNLMSvTFri/oVMIp2/LB3PQ76nUkxr45cv4Uw4EHNROrshD5hM/KyqIff/yRypQpQ4Ig0MCBAy0KOGh1Wjpy4wiN2jOqyMQ2zX5rRmP3jqUTN09YPx5X6grW0E1FYKDVExDFx8fT+++/T66uruTp6Umff/453bh9g/4I/4Pq/1KfEAIK/CmQph+aTimZKeLsg9gcrVHDmKFzOihI3/OhpMaujdeDNi+Xftk6lrwmepD/lNK0+sxKs5N94cIFeu211wgABQQE0C+//FLy6hQOTqfT0ZEjR4pMvFY6sDShG8h/rD/9Ef6H1asbqZITzDNlEWeov6R+OKDgAKTNzN03kQLOBFCchweN69ePqlevTgDI39+fPvnkE4M9ifO0ebTtwjbqubInaSZoSDNBQ6+sfIW2Xdhm3wkiHfk6EmPfHDl/iuHAg5oZK8gOHbK8kBehYtDpdLRu3TqqXbs2AaDu3bvTmTPmTYyYnJ5Mq8+upmGbhxVEY10muFDnJZ1p9uFZdDn8X3EqLakbOMYKj4sXnxw/aUF+X758mYYOHUoajYbKli1Lc+fOpeycbNp+cTt1WdKFEAIqM60MhYSGKO8pnak8d+QGCXNcIjYiLSmD7qTdoReXv0gIAfX4owPd3LnOrOvm9u3b9P7775OLiwv5+PhQSEgIPXjwwLx9dSKpqam0YMECevrppwkAQaNf9rjO/+rQ4SuH5U6efcjVAFZqXSDlTblS9lnKY67koJI92TjELt3Tk5YC9Dz0q/UIAL3w7LO0Zs0ayszMfOIjtx/epskHJlONWTUKejeM3TuWrqVYuUS9rRy556sY++bI+VMMBx7UwFjlZOyp24oVdi/kjx07Rs88mpyscePGtGPHDpPvz8rNooPXDtK4fePoqQVPFSx3WWZaGXp97eu0/PRyupdxT5pKS8rK3pz02rBPp0+fps6dOxfk8+7du4mIKOJWBPVe3ZsQAio9tTSNDx2vrACEsTFx3CBhaiRBt9mS7L+6n6r8WIU8JnnQr38MJ51XyXMx5Obm0uzZs8nPz49cXV3po48+otu3nXTCMAvFxMTQV199RWXKl9EHIXxAzXo3o0MnHHwCSidqAJtFqptypdR/Wq1+Auw1a/TDQgMDxU2LEz3JNcmK453fG2tkz57k9yjgUBug7wG6buSaPHP7DA3bPIzcJ7kXTDa8LmqdNENyLeHI5wH3eLAIBx6UrqSnxcX/tmuXXU/eu3fv0siRI0kQBKpYsSLNnz+fcnOf7L6VnJ5M2y9up2///ZaeW/QceUzyKJhBt/3C9jQ+dDwdvn74ya5farwYS7qpsHGfdDodbdq0qaBnSa9evSg2NpaIiCITIqnP6j4FAYhpB6dRRk6GyDsoEjUeW8aI7HrToNVp6fv935NmgobqzqlLkUc2mXXdhIaGFsxf0L17dzrP15VVcnNzac3GNRT0TJC+BwRANRvXpF9//ZXu378vd/LEx+VyUVJd60rIZ0P7tnSpvoemWGWZswWyTLX/zAw43759m2bMmFGwCo+3lxcNdXGhMIC0Bs4VrU5L2y5sK+j96j3Zmz7Y9gGdT4xWRo8aIuUE2qTAczxYhAMPSldS5VS8INu3zy6FvE6no8WLF1P58uXJxcWFPv/8c0pNTaW7GXcp/GY4rT67mkb/O5peXvEyVf2xasE8Da4TXempBU/R5zs/p43RG/W9GkxxxEpLpH3KzMykqVOnkq+vL3l4eNCkSZMKxmufSjhFPVf2LJgDYnHkYsPjlOXs6qn2Y6uUbrJMHnY4/nfS7lC3pd0IIaA3N7xJD7IelHjdxMfH0xtvvEEAqEaNGrRp06aSV7oovi9qnM2+JCIcr/1R+6nOG3UIFfQBCA9PD3rrrbfo33//JWuXhVYcQw3grVv1T8Ud6XywhBTXuhLqP3sEP5QQYLEXG24ec3JyaPPmzdSrVy9ycXEhAPT000/TwoUL6UFKisHtpmU+oHnH5xXM91X1x6o07eA0uptxV5k3so7cZhJj3xw5fwrhwIPSWVo5mVnI63Q6updxj2LvxtLZxLMUfjOc/rv+H4VeCaVdl3bR9ovbaXPMZloftZ5WnV1Fy04vo0UnF9H88Pk0asUoqt5UP6lN+frl6ZnJz1DTeU2p1JRSBQGG/CBDk3lNaNDGQTTjvxm07/I+y1agsGB/VEXkfbp58yb179+fAFDDhg3p4MGDBX8LuxJGbea3IYSAms5rSrsv7X78QbkrJnsdWykKc7nzjjm8k7dOUo1ZNchjkgctiFjwOHhg5LrRRkfTL7/8UhCIHD9+PGVkFOrtZOw6KH4uW7JCh1qIeL3qdDpafno5lfukHKENyN3HvSDIM2bMGMfoWVL4XLl4kcs6a0jc81GU9G3bJn3ww5nqSguPqU6no/DwcPr4448pICCAAFClSpXom2++oZiYmKJvLnQ+xZ/cT9/uGUX+0/wJIaDg+cG08szKosMp5D6/GDPC5sADAG8A4wAsePR7XQA9zfmsmC+HDTxYWngYKOSTVy2iNWdW0Ze7vqQey3tQjVk1Ctbuteg1FoTnHk245QXy6utFNX+qSa3+aEWvrHyFPv7nY/rp8E+0KWYTnUo4RVm5Wbbvv6FKa8WKxxNoqrHykqgi3r59O9WoUYMA0PDhw+nePX1vEp1OR2vOraE6P9chhID6rulLV+9flb9iskeDxJG7yTL7sfOTiJVnVpLX914U+FMgnbh54sm0FDuno2fNKpgQsVu3bhQXF1fiZwqug+Ln8ujRjnduS3C9pmSm0IfbPySMAfm/5U8tn21JGo2GAFCbNm1ozpw5dOfOHRF3QiZi5J2TPMkrIPFcT6Klz4qlvq3+Pmc4/mY+KLx27RpNmTKlYCiFh4cHvfbaa/T3338bHKqcL+JWBL214S1ynehKmgka6ru6Dx08uIJ0+/Y9ma9K6FHDmAFiBB7WAPgawLlHv3sBOGXOZ8V8OWzgwZrKSaulzKjTtGTVKOo07/HEjR6TPKj5b83pzQ1v0rf/fks/Hf6Jlp5aSuui1tHW81tpZ+xOCr0SSoeuHaJj8cco4lYEnbl9hqLvRNO6XesoqH4QAaABbw2ghMQE++ZBfqW1a5f+iZzaI+cSVcRpaWn05ZdfkouLC1WoUIHWr19f8Les3CyacmAKeU/2Js/vPWniX8Mo01XmiknqBolUAQKu1B2TzJOg5mpz6YtdXxBCQM8teo5uPzQyEeSjdGbv3k0T/u//yN3dncqWLUtLliwxPKzC1HVQ/FweM8bxzm0Jr9cjN45Qs9+aEUJAL8x7gcZ9P45atGhBAMjV1ZVeeeUVWrt2rcGZ51XB1rxzpife+cytd+S6Ic9PX2Ag0ZQp1h0bZwkmWMLEcU9NTaU///yTOnXqRIB+qNZzzz1H8+fPNzlXjFanpa3nt1LHxR0JIaBSU0rRpzs+pcvJl0xfV/Z4OMLnALOCGIGH8Ec/Iwv922lzPivmy2EDD0QWXdx52jz6/cTvFPhTICEEFDQniL7b9x0duXHk8cSNFmwvIyODvvjiC9JoNBQYGFjiahWS4qfMZouMjKRWrVoRABo4cCAlJycX/O16ynXqv64/IQRU+xOBttZTSX5aU8lJdcPB56LjMXaDdPGiXY51cnoydV3alRAC+nD7hyXOQn7ixImCySPfeOMNSkxMNP5mU9dB8XN5zBjHO7eNXa/Hj4vSWM7Jy6Hph6aT1/de5DvFl2YfmU2RpyLpq6++oipVqhAAKl26NA0fPpwOHDigrvkgbC3rnLGsVHpgunD6AgP1vZzGjCEKCzM/6CBGMMnRblyL5Uuupydt//ZbemPAAPL09CQAVLduXZo4cSJdvnzZ5KYycjLo9xO/F8zfUO2najTzv5mUkpmif4M5879JGfBzxoAiE4UYgYfDj3o5nHz0ex0Ax835rJgvhw48mCkmKYbaLWxHCAE9/efTtCduz5NPvywoLA4ePEh169YlAPTee+9RamqqnfbECCkqc0er+ArJycmhSZMmkZubG1WsWJE2b95c5O97L+2hRlP1Aaq+/UG3ynsqt+Iwdt6amgRPq9XfWEjR6OVK1/EYa8iFhUl+E3Eh+QIFzQki90nu9OfJP02+Nycnh8aPH08uLi5UtWpV+vvvv0v+AlONVGed42HKFP2+irhvl+9dpheXv1gw7jriVgTl5eXRnj17aPDgweTj40MAqGbNmjR27Fh1zAdha1mn9JtwKSj9abMSgknWnlcKb7Pp8vLoxLp19Em/flShXDkCQGXLlqUPP/yQjh49WuJEv4lpifTdvu+o/PTyhBBQ6z9aPzl/A5F515WUeeWMAUUmCjECD90A7AeQBGAFgKsAOpnzWTFfzh542Byzmby+96KyP5SllWdWGi/czCgssrOz6ZtvviFBEKhmzZr077//2mkvSiB2QeckN4+nTp0q6Po7aNAgunv3bsHfcnKyaOrGz8ljghuVnlyKFoT/UfIM+HIwduwLLx9b+PjlH9ugIOu7kpZE4Q0gm9iyb2rNF2MNue3brSt3zMyHsCth5D/NnwKmB9Dh64dNbi96+3ZqXa8eAaDBgwaZv5xjSWVd8bQ66qoWx48TjRunf8IbGChJY1mn09Hqs6up4oyKpJmgoc93fk4Psx8SkX4o3LJly6h79+4F80G0aNGCfvjhB7p69apoaRCdnDe5aqT0p81KCCZZc14ouM127tw5Gjt2LAUF6Ycku7u7U79+/Wjz5s0Fq42ZEn0nmoZvGV6w1PwrK1+hsCthNrXlJeWMAUUmClFWtQBQDsDLAHoCKG/u58R8OXPg4Zdjv5AQItBTC56iWw9umX5zCYXFuXPnCm5Shw8fTg8fPpQ8/WYTu9KRu+C2o+zsbBo/fjy5urpS1apVad++fUX+fjH5YsEYwk5/daKLyRdlSqkRxs7bceMMH7/Cxza/K+m4caJ1rXZotlxnCm4YlshYeRATY9U8O+Z8ZumppeQ20Y0azG1AcffijGyMSJubSz8NHUoeAJUDaL27u3XrhDtaMMFSdmws38+8T+/9/R4hBFR9VnX6+0LRnik3b96k2bNnU7t27Sh/zHf79u3p559/plu3CtXjaj9uai4TbFH4uF28KO5ypHJP+CnG91tzLSqszXbp0iWaPHlywZA3jUZDXbt2pYULFxZM7m2KTqejvZf30ksrXiKEgDy/96T3/n6PzieZsT9yX1cKOxZMPcQKPDQD0AtA3/yXuZ8V6+WsgYc/T/5JCAG9uupV85aqNFJYaKOjafbs2eTh4UEBAQG0ZcsW6RNvDTEbYU4YsY2IiKD69euTIAg0atSoIpF4rU5LCyIWUOmppcnze0+afmg65WnzZExtIcYqudGjDR8/Jzy2orGlQaHmxoiphpyl5U4J+aDT6ei7fd8RQkCdl3SmexnGG6k3btygTk89RQDoFYBuqy1flUSG8/O/6/9R418bE0JA/db0o/jU+Cfec/nyZZo6dSo1b96cAJAgCPT888/TH7/9RsmLFqn/pl2twRMx0i3FDaLc9ZsY+2TNtSj3fhNRfHw8/fTTT9SmTZuCgOEzzzxDc+fOpdu3b5u1jfScdJofPr9gUtoKMyrQxLCJdCet0Co45px7cl5Xcgc+mGqJMdRiEYBwAEsALH70WmTOZ8V8OWPgYev5raSZoKEXlr1A2Xkld+UiIoOFxc0//qBuXbsSAHr55ZfNLjwNblvMQlDqQlXNN0k2SEtLoxEjRhAACg4OposXi/ZuuPXgFvVe3ZsQAnp20bN06e4lmVJaiKFKbsWKxyucmOrx4ETHVhQlNe5MXZcKaBjaRKwyx0Q+ZOVm0Zsb3iSEgN7Z/I7Jsnvz5s1UtmxZ8vH0pD8B0qk1X5VCpsZydl42TTkwhTy/96RSU0rRz0d/fjzZczHR0dE0fvx4qvdoSI0rQC8B9BdA97gcsx+xzhUp6iIl1G+2lpXW5K9M+33r1i369ddfqUOHDiQIAgGg1q1b04wZM+jatWtmbyfuXhx9sesLKjOtDCEE1Py35rQwYiFl5hZb8UbMILiUlJQWphpiBB6izXmf1C9nCzxcvneZ/Kb6UfD84ILxo2YrVFjsWLCAypcvT97e3vT7779bP75f7AadPRqITh6x3bBhA/n7+5OPjw8tWrSoyLHX6XS09NRS8pvqRz6Tfej3EzacG2IxNA7dVOVs6xhYZ61QLZmIsHi+KqFBrARG8iH1bDh1XtKZEAKacmCK0WsqMzOTPvroIwJALVu2pAs7dnC+ikXGa/vS3UsFk0+2+qMVHY8/bvS9Op2OIhcsoK8Bqv7oyaorQN0B+v2zz6x/QMDMI1ZZJtWk2JZOtqxEll6LdmyzXblyhX788Ud6+umnC4INDRs2pIkTJ9KFCxfM3o5Op6Ndl3bRKytfISFEIJcJLtR/XX86cPWA5fM3XLzo1G1W5hjECDz8CaCROe+V8uVMgYecvBxqu6AtlZ5amq7cv2LdNnJy6KuvviIA1LRpU4qOjrYtUWLfcNjrBsaZbzBJ3437+eefJwD0+uuvPzEu8XrK9YIl/l5c/iLdfHCz5I3aM09NfZe16VBjQErMPDe1/yVdl2rMOykYyIeElfOp5e8tyXWiKy07vczoR6Ojo6lZs2YEgD7//HPKysrifHUgOp2O1p5bS5VnViYhRKAPtn1A9zPvG37zo+tNB9BxgL4BKOjRTZAgCNShQweaPXs2Xb9+vejnpJxfQG2sLRvFChiI3ZbJ359Dh/RzFpkTiHckErYvzp8/T5MnT6bWrVsXDKNo0aIFTZo0iaKioiza1u2Ht2n6oelU75d6BcMpxu0bZ3CoVRFarX4lpTFj9K/8SXAB/b9zAJqpnBiBhw4AUgFcAHAGwFkAZ8z5rJgvZwo8hISGEEJAa8+tterzV65cobZt2xIAev+NNyhj507lzZeg9i7bKpKXl0fTpk0jV1dXqlatGh0+XHRmfa1OS3OPzSWv773If5o/rTq7yvjGxLxBkisopLan9lLclBrLe7mX8LI23XIolJbYE7uo9s+1yXuyN+2I3WHw7TqdjhYsWEBeXl4UEBBA27dvN7o92ffN2UiQ96lZqfTxPx+TZoKGKs2sRKvOrjJr+Wvd2rV05tQpGj9+fMGkdgDoqaeeomnTplHshQuPPxMYSDR1quPfjBpjS9koVj0gdp1obVCYPUGn09Hp06fpu+++o8aNGxdcS+3ataPp06fTpUuWDTPN0+bRjtgd1G9NP3Kd6FowXHXZ6WWUlZtV8gYMHd8pU/TXsZcX0bZt3C5mqidG4OHSo4klawGokf8y57Nivpwl8BB3L448JnnQG+vfsOrz69evp9KlS5Ofnx+t/fxz8Rokxiq9mBhxt8eVqGSOHz9OtWrVIldXV/rpp5+eaARfSL5AbRe0JYSAhm4aaniIjxIba5ZSW9DLnteKkq9LhfYKiLgVQRVmVKByP5SjozeOGnxPamoq9e/fnwBQly5diq5qwOyvcKAhJoZo61bJzquIWxEUPD+YEALqtrTbkysKlRD0uHDhAk2dOpWCg4MLbpyaCAKNAui/IUMoz9NTmderPdhSXikxiG5qf9RWb8kkOzub/v33X/rkk0+odu3alL8aRceOHWnOnDl048YNi7d56e4lCgkNoeqzqhNCQOWnl6cvdn5OMcf/Idq3T98z5dChko+9seM7bpz+3IuJ4Z7ATPXECDzsM+d9Ur+cJfDw6qpXyWeyT8ndtYrJzMykDz74gABQmzZtKG7PHvG7/xWvpKdO1TfYxI7sM8ncv3+fevfuTQCod+/edP/+/SJ/z9Xm0rh940gIEajunLoUcSui6AaU2j1VLd9tDXs2OJV8XSrwuO2J20O+U3ypxqwaRpdIi4qKonr16pGLiwtNnTqVtErIS2dmrC4r3OVZ5PMqT5tHvx7/lfym+pHHJA+aEDbBvCekxVy9epV++uADeh4gl0dBiPIADQFoLUCpznYzamvZqLQbMFP7o8DyTymSk5Np2bJl1L9/f/Lz8yMA5OnpSS+//DL98ccflJiYaPE2bz+8TXOOzil4GCOECNR9WXdae24tZedkGu65EBRkur40dny3bxdn7ipzKLmOZw5BjMDDPAArAQzk5TSl9W/cv4QQ0NSDUy363JUrV6hly5YEgL744gv9EopS3KxcvKiPzI4Zo1/mML97mK1jGeWeK8DJ6HQ6mjVrFrm6ulKtWrXoxIkTT+RPaNxeqvpjVXKb6EY/HS7UO0LJE3KZS20Vr70bnEq9VhT2xG/V2VXkNtGNms5ranRulPXr15Ovry9VqFCBwsLCpEmIVMdLqeeBrYxdT8WX7t24UfT9vvXgFg1cP5AQAqo7py7tjN1pdfrvA7S6Tx96y8WF/B8FIdwA6qrR0OzRoykuLk60dCuWtWWj2HPmiLUtWyb+dSI6nY6io6Np+vTp9Nxzz5FGoyEAVKlSJRo+fDht2bKF0tLSLN5uasZ9WrJjGr3wcxtymeBSsDLFD4d+oOspheZZMVWGmDr/zDlfpS53OYDFJCZG4GGxgRcvpymB5xY9R4E/BVr0JGT37t1Urlw5Kl26NG3duvXxH6QoXBTW8DcbV9gGHTlyhKpVq0bu7u409913SZffZfdR/iQ/vEOvrnqVEAJ6acVLlJiWKF5eyl35qemmylHOX1vzXO5zppC5x+YSQkDPLXrO4MSBubm59PXXXxMAate8OcWvXSvNeSbVuWHrdpV8fRmrx8aMMXwTIcG1tvvSbqo7py4hBPTKyleeHH5hSuFj82iOh1xPTzoA0NeurtSwalXKH5LRsGFD+uKLL2jXrl2UkZEh6j4ogjXnqb3mZJBif5R8XUksJSWFNmzYQCNGjKDq1asXnOPNmzensWPH0rFjx6zqTZbwMIH+CP+Deix/kdwn6OdtqPkJaHR3Vzq37CfDeVxSGWKsTayEulyt7XimGjYHHpTycvTAw/6r+wkhoDlH55j1fp1OR9OmTSONRkNNmjSh2NjYom+QooBTUMPfImpNtx0kJyfTyx07EgDqD9CDYvmj0+lo7rG55DHJgyrNrER74vaI0/hRQgWsJmpvcJp7vE3tp0LOmSkHphBCQL1W9aKMnCdv5pKSkqhLly4EgN7v1o2yCgf0VqwwbyywuaQq25Qydl4KpsZZ5/9//oRvEtYVWblZNP3QdCo1pRS5TXSjr3d/TalZqeZ9uPB1YmBVi0uXLtHs2bOpa9eu5O7uTvldz7t3704zZ86kM2fOyL98slgsLRvFvGakuP7UXtaLRKvV0okTJ2jSpEn07LPPkouLCwGgUqVKUZ8+fej333+na9euWbxdnU5HpxJO0bSD06j9wvYkhAiEEFDtGdXoi5dc6b9qIF1Jx9LaHg/6HZP3+Cqh1wVzaGL0eAgEsAnAHQCJADYACDTns2K+HD3w0G1pN6o4o6LBhmxxDx48oH79+ulvFvv3p4cPDUwCSCR+4aH0BqUxHOE1Sbt3L/0A/ZjhBgDFGMif07dPU8O5DUkIEWjs3rGUp80T4YsduHJz5H2zhrmNnZLKFxnzVafT0ag9owghoDc3vEk5eTlPvCc8PJyqV69OHh4e9OfkyaYbp2KUnVKVbbZsV+mBXmPn2cWLRJs2Ea1aRfTDD0WXupOwrkh4mEDDNg8jhIAqzqhIi04uIq1OvPM6LS2N/vnnH/r000+pUaNGBU+KKwcE0NAhQ2jFihV0+/Zt0b5PEmJe92JeM2prWyi4XtLpdHTp0iVasGABDRw4kMqXL19wrrZu3ZpGjx5NBw4coJycJ8vdkiQ8TKClp5bSoI2DqOKMioQQEEJArf5oRZP2T6KziWdJt2+f+cfSUBlizhwPSmBOrxo1tvOZYogReNgDYBgA10evtwHsMeezYr4cOfBw8tZJQgho+qHpJVYM58+fp4YNG5JGo6GZM2fa/6mFgisuo5TeEJbbo/wJBSgAoFIAbXR3fyJ/0rLTChrIXZZ00Q+9YE/iivtJ5jTQlXCdGinftDotfbj9Q0II6L2/3zN4Y7ho0SLy8PCg6tWr6+dNKak7rtw9E6TarqU3Y3LUKYa+U6vV90gxdDNhh3PwePxxar+wPSEEFDw/mP67/p+4X/CoXLru4UF/AjTAxYXK+voW3Nw1atSIPvjgA1q7di0lJiQop54XuzxVeo8HqSiwXrp+/Tr99ddfNHTo0CLDJypWrEiDBg2i5cuXWzwxpC4vj+LC99CSVaNoxNLXqeHchgWBhoDpAfTmhjdpceTiJydwt/RYFi5DzF3VQilMlblqOqdNsaZeUeP9jQKJEXg4Zc6/Sf1y5MDDe3+/R17fe9H99LsmK4YtW7aQn58flS9fnvbu3WvexvlCUmSFqyiF8ucGQE8JAgGgb0eNory8J3s2/HnyT/L83pOq/FiFDl47KEOCFc5RKm4xmZMncj89NFJO5OZm09BNQwkhoC92ffFEsDcrK4vef/99yl8q886dO6b3ufAkhrbumxLneLDk/FdS2Wws3bt22S09Op2Olp1eRlV+rEIIAfVe3Zui70SLs3ED+5fn6UnH162jadOm0Ysvvkg+Pj6PAxGCQB8AtNbdnRIXLpSvvhS7PFXyHA9SUkC9dO3aNVq5ciWNGDGC6tSpU3CulStXjvr160e//vorRUdHW/RA7U7aHdoZu5OmHJhC/Vb3pUrflykINJQZBXppZkuadmAqnbx10nRPIjUdSynJXQ+LQe65X5ycGIGHfwEMAuDy6DUIwF5zPivmy1EDDw+yHpDvFF96e/PbRiuGvKgoGjduHAGg4OBg88e18YX0GAdgTCuUP1lnztDIESMIAHXr1o2Sk5OfePuphFMUNCeIXCa40Iz/ZjjOeGExOELFLTZzyiK5G8YGvj/bx5P6LexOCAFNDJv4xHkeHx9P7dq1IwD09ddfU25urul9lmLuACmG1J0/b9n69MU/b269I/cxL0xB121adhp9v/978pvqR5oJGnp3y7t0I/WGbRs1Y/9ycnLo6Jo1NM3VlV4EyOfRjSEAalC7Nr3zzju0cOFCioqKsmoiP6nSbTExrxm1tC3sfH7n5uZSeHg4/fzzzzRgwAAKDAwsOJdKly5NvXr1olmzZtHp06fNOpdSs1LpePxxWnpqKY3+dzT1WtWLAn8KLAgy5M/TMOg1F/otGHS2AkgrWFieqOVYSklJZbK1rNkHR9hvhRAj8FAdwFYASY/medgMoIY5nxXz5aiBhz/C/yCEgI7cOGKwYrgHUI+2bQkADRs2jDIzM83fuCNcSFwRyGbBggXk7u5ONWrUoIiIiCf+npKZQv3W9Ct4Mmdodn8icr5j6AjXnRRKOg/kDpQWK3/T3UAvvqVv0M46MuuJt+/fv58qVKhAPj4+tG7dOsPbLLzPu3bpu+0rOQgs1jEw95pX0M2+Eq/bpPQk+mznZ+Q+yZ08v/ekr3d/Tfcy7lm3MXP3r9AxyQHoKEDTAHq5XTsqW7Zswc1jmTJl6MUXX6QJEybQ7t27KTXVzIkxpUq3syvpmpM4H5OTk2nHjh00duxY6ty5c5HeM4GBgTRgwACaM2cORUREGOxJmafNo+sp1+nQtUO04swKmnJgCr3393vUeUnngh5A+S+XCS7UcG5DemvDW/Tj4R8p9Eqovv0hVnnibG2WwuSuh8VgzXmgpLpI5UwFHgT939UhODiYwsPD5U6G6ILnByNHm4PT75+GcPEi0LIlkJkJADgDoI8g4IarK3755ReMHDkSgiCYv/GwMOD555/899BQoFMnMZIvLZ0O2LgRGDJEnydeXsDSpUDfvoBGI3fqnMKJEyfQr18/JCUl4ffff8fQoUOL/J2I8POxn/HVnq9QvXR1rHt9HVpVbvX4Dc54DJ1xn8Wi0wGxsUBCAlC5MlC3rv3y7MKFgvL3gQfwykDgYA1g/lOTMPylsQVvIyLMmTMHX3zxBerUqYNNmzahUaNGJW9fzn0zV6E8KODlBURGAvXrq//7TFHwdXs15SrGh43HstPLUNqzND5t+yk+bvsx/L38zd+Iuftn4phQvXq4ePEijhw5giNHjuDw4cOIiorSNygFAU2aNEHr1q3RqlUrtGrVCi1atICPj49tO6/g46IY5uSRiPmYkpKCiIgIhIeHIzw8HBEREbhy5QoAQKPRoHnz5nj66afR4qkWaNyqMXwDfHEv8x4S0xORmJaIO+l39P+frv//hIcJiH8QDy1pi3xPWa+yqFu2LhqUb1DkVdu/Ntxd3J9MmBjliaOeb5bUP+a8V8n1mTXngZLqIpUTBCGCiIIN/s2cwIMgCEsAfEJEKY9+9wfwIxG9I2ZCS+KIgYeYpBg0mtcIs1+YjU/afVKkwFuVmYnhAMr4+2P933+j/TPPWP4Far+QlJx+JRe6IktKSsIbb7yBffv24YMPPsCsWbPg7l600j984zAGrB+ApPQkzH1pLoa3Gq7/g5KPoZSc6PxwGI/K37sjB6PHa1mIrAQsr/EpBgz7seDYpaenY+TIkVi5ciVeffVVLFmyBKVLl5Y54SKyd7BaaY18hV+3ZxLP4LvQ77Dlwhb4efjh46c+xqftPkU573LmbcDcGwoLjklqaiqOHz+OI0eO4OjRozh58iQSExMBAIIgoEGDBgWBiNatW6NFixaWXzMKPy6yM7eeNSMfc7Q5eJD9AA+yHyA1KxVX468iKioKMedicPHsRVyJvoK78XcL3u9dwRu+NXzhXs0dqALkVspFmpCG9Nx0o8nVCBoEeAeggk8FVPStiEq+lVDdrzqql66OGmVqoHpp/f/7uvtalg9ilCdqaLNYej2IXc4qrdwWI31K3ycVESPwEElELUv6N6k5YuBh4v6JCAkLQfzn8ahSqgoAIDc7G9+89x5mLVmC54KDsXbLFlSqUsW6L1D7haTUHhtqz1cr5OXlYfTo0ZgxYwbat2+P9evXo0qx8zIpPQlvbXwLey7vwchWIzGnxxx4HDqizGPImAG3H9xCt0WdEPvgKtY9+zNe6fRewTUdFxeHvn374uzZs5g0aRK+/fZbaBztepej0c03lRY7ffs0vj/4PTZEb4CPuw8+bPMhPm//OSr4VDD+IbGfeBpBREhISEBERAROnjyJkydPIiIiAjdv3ix4T/Xq1dG4ceMir4YNG8LX18IbTaZXqK1EAFI8gWRvIGnRL0iqXw33Mu8hNTsVqVmpRX8W+v/7KfeReiMVOQk5QCL0A6vvAMgo9D2lAVQBhCoCfGr6oEytMvAv6w8/D78SX/6e/qjoWxEVfSqirFdZuGhcpMkLW8sTpbY781nT/hS7XHfE4Iy1n2FPECPwcBpAJyK6/+j3sgD2E1FTUVNaAkcMPDSZ1wRlvcriwLADAIA7d+6gf//+2L9/Pz7++GPMnDkTbm5utn2Jmi8kpRZuSk2XHaxbtw7Dhg2Dr68v1q9fj2effbbI37U6LcaFjsPUQ1PxVNWnsKH1dAQ+08Mp84qpy/XU6+iytAsSHiZg68Ct6Fyrc8Hf/vnnH7z11lsQBAGrVq3CCy+8IGNKJeSEQVU1i7oThckHJ2P1udVwd3HHoGaD8Gm7T9GkQpOib1TAcU1MTERkZCROnjyJqKgoREVF4fz588jOzi54T82aNQsCEfXq1UOdOnUQFBSEKlWqFA3yydEVXOa2VGZuJm49vIX4B/G4+fCm/ueDm7idfhvJSdeRdO4YkrwIyd5AnrF7ei3gneENrwdecEtxA+4Cecl5yEzIRHrS4x4K7l7uCAwKRO36tVGvYT00adIELZu3RM2qNeHn4QcvVy/Lhv2qib3bd5aeV9akT+xgitKDM0xWYgQehgD4FsB66IOp/QFMIaKlNibsRQA/Q79SxkIimmbq/Y4WeIhOikbjeY3xS49f8NFTH+H48ePo168fkpOTsWDBAgwaNEi+xCklWKGAxlJBOgrnR3IyUOyGG4DTFLpRUVHo06cPrly5gtmzZ+ODDz54ohGyMWYjhm4eCm83b6wN+AAd//cD38gwxYq9G4suS7vgQfYD7HhrB9pXaw8A0Ol0+P777xESEoLmzZtj48aNqFWrljhfqpRyVi3pspSj7IcZLiRfwOyjs7Hk9BJk5mWie53u+KzdZ3ihzgv6slmhwfK8vDxcvny5IBBx7tw5REVF4cKFC8jNzS14n6enJ2rXro06tWsjqFw51HFxQZ2sLNTcuxeBqanwXbZMsvkMJNmeARm5Gbhy/wri7sfh8v3LBa8bD24g/kE87mXee+Izvu6+qOxbGQHeAQhIzUX5gxHwvaeDS5oLdO1fRHbZakhJSMXt67dx48oNXLt6rUi++vr6om7duqhfvz6aNm2KJk2aoGnTpqhRo4Y0vbnUcE3as91pzXdZc9PvjD0emGxsDjw82kgjAJ0BCNAvpRltY6JcAFwE0A1APIATAAaa2q6jBR4mhE3AhP0TcPPzm9i+Zjs+/PBDVKlSBRs3bkTLlnYdxVKUUm72C6dHzorKUH4sXAiMHw9cuvT4fU5W6KakpGDw4MHYtm0bhg4dit9++w1eXl5F3hOTFIM+a/rg0r1LmNnia3xSqhuEKlWU2dhgTivqThS6LuuKPF0e9gzegxYVmgGxsUiJjcXgH3/EtrAwDB48GL///ju8vb3F+VKllbNykLJsd9L8vZtxF39E/IG5x+ciIS0BDcs3xHut38Pgh7VQtvurT35AocHyvLw83LhxA5cuXUJcXJz+56VLiIuMxKXr15FZ7P2lAVSrWxeBdeqgWrVqCPT0RJXff0fF3FxUAPQvT0/4nDol641WrjYXl+5dwrk75xCdFF0QZIi7H4fbabeLvNfX3Re1/WujRukaqFqqKgJcA+CT4wP3THdo0jXIe5iHlOQU3L59Gzdu3MD169dx/do1pGdkFNmOl5cX6tata/BVsWJF+/VcUNM1aa92p6nzqm5dw2mw5lxUYSCOqZcYPR6WEdHgkv7NwkS1BxBCRC88+v1bACCiqcY+42iBh2a/NUNp19JoeKIhFixYgO7du2PlypUoV87MSaKkwpHMoozlx+bNQO/eTl3o6nQ6TJo4ESETJqB1vXrY8NtvqNGpU5E8eJD9AEM2DcGWC1vwZtM3seCVBfB2E+nmjRUld5BOhU4mnET3Zd3h7uKOvUP2omG5+sDGjTg3aBD6ZGfjKoBZ77yDD+fPh+BioP+ytXnu7OWs1A1XJ8/fHG0O1pxbg1+O/4ITt07AQ+OO185qMeK4Fh2u6Z8gqS4/Hh1TyszEbQCXANxwc8ONZ59FfGgo4p99FjcyMxEfH18wuWVx3p6eqFCpEgICAlCmTBmULl3a4E9vb294e3vDy8tL/zp3Dl7Dh8MLgDv03XQ1AFy2bYOmY0e4uLhAo9FAEARotVpkZWchNjkWUbejEHMnBjGJMbiQdAFX7lxBXnYekAMgFyjnWg7lXMuhrEtZ+MIXHjke0GRroMvUIS01Dffv38f9+/dx9+5dZBQLKAD6FSQCAgJQrVo1VK9e3eArICBAGXPROPk1aZCx3guHDunrFEPlI2Bd2elgQ4+YcpkKPLiauY3GxTboAqC1jemqCuBGod/jAbS1cZuqEf8gHmdjz6Larmo4FH0I3377LSZNmgQXQw1be0tIKFoxAPrfExKcs3Iwlh/u7voK04knrtEAGN+kCVq5u2PQxYsI7tIFa777Dp3Hjy/YLz8PP2wcsBHTDk3D2H1jce7OOWwasAm1/WvLm3ixKOWY8hMIix2+cRg9VvSAv6c/9g7Zizpl6wAXLmDNm2/indxc+AEIBfDsqlXA118/Wf7ZkufOXs7Gxj7ON0D/c8gQoGlTcfbfyfPX3cUdg5sPxuDmg3H69mksiJiP5fgLKxpnoPY9YOB5V7w5eDIa1a0rd1LN9+iYCgAqP3ohNxd4+mng6FF9T8RHxzb77FncbtMGSdnZBXMk3nF1xZ2BA3EnLw937txBamoqbty4gdTUVKSkpCCz+Plijp49bdqlu4/+y+fl5QV/f3+ULVsW/v7+qFmzJlq2bIly5cqhYsWKqFSpEipVqlTw/+XLl1dGu9EcTn5NGlS5sr7eKB6McXc3XT727av/f0vaHRqN/rNi5bXY2zNFKe0sZjOTgYdHvRBGA/ASBOEBHgXJoY/Vzrfxuw317Xqi+4UgCCMBjAT0syA7ijlr5gDz9ZXOhg0b0Dc/ilmYXBeasYKwcmXpv1uJTOWHJYWuI94YPrp5eCUnBycA9AbQbeJEzMjOxmdTpxZ04dQIGox+bjRaV26NgRsGovX81ljZdyV61O0hZ+ptp6RjKvWNnIPZe3kveq3uhUC/QPw7+F9UK10NeXl5GPXdd/gxNxdPA1gHoApgvHFsS547ezkr9U2Is+dvIc0rNcfcl3/F9K4/YH3or1h+cT2mljuJyXGfo9n8vzCwyUD0adAH9csrvJwwdkw1Gn25WyiI4tG4MWosX44aFpTNOTk5SE1NRWpqKtLT05GZmVnwykhPR3zodlzevBw3PLW45SfgVrWySNQ+QG5err71qgNKe5RGRb+KqOxXGVXKVEG1MtVQtUxV+Hr6wtXVFV5eXvDx8YGPjw+8vb2L/CxVqhQ8PT1tzyel3qTxNfmkunX152Xx8zQtzXT5aM+bfrkpqZ3FbEdEJb4ATDXnfZa8ALQHsKvQ798C+NbUZ1q3bk1qp9PpaNasWSRoBHINcKWoqCjDb9RqidatI/LyIgL0P9et0/+71OT8biUSKz/On3+8jfyXl5f+36VI8/nzRKGh+p9SHbvQ0CL78wCgvvomGL3xxhuUlpb2xEfi7sVR89+akxAi0KT9k0irU/F5Zc9jWpJix6LgFRpq/7Qo3LYL28hjkgc1mdeEbj+8TUREiYmJ1KlTJwJAH7q4ULY5x9SWPHf2clbqa8fZ87cECQ8TaM7ROdRuYTtCCAghoLpz6tIXu76gsCthlKvNlTuJTzJ0TJcuJbp40fBxtaIe1Ol0FJ8aT7su7aKfDv9E72x+h9ouaEulppQqyCeEgCpPC6CuS7rQJzs+oQURC+jw9cOUkpki/j5bSsnnvdLTZkubyZbPG/qsktoWcuO8UB0A4WTkXt7cOR46GAlaHLA24CEIgiv0k0t2AXAT+skl3ySiKGOfUfscDxkZGRgxYgRWrlwJ10auGDhuIJa+YWRhELnHwik1Yi4XMfLDXssP2TM6bOA8JU9P/PDBBxg9axaaNm2KTZs2oXbtosMqMnIzMPLvkVhxdgVerf8qlvRegtKepcVNmz0oaUkpucsMlVgXtQ5vbnwTLSq1wM63dqKcd7kiKwr9Pm8ehpYqZd71Y2ueq7WcFSPd9iin1Jq/pkiwT9dSrmHbxW34++Lf2HdlH3J1ufDz8EOHGh3wfM3n8XzN59G8UnNoBAXknUj7ryMdbqTeQExyDKKTohGTFIPo5GhEJ0UjJSul4H0B3gFoUqEJGgc0RuMKjQt+lvUqK+JO5SfKin0r/hmNBmjeXLn1gKX7aI9r2NaySIqyzNg2e/cG4uIcq0wriZLaWcwspuZ4MLd3wt+FXnsApALYZ85nS9juS9AHH+IAjCnp/Wru8RAXF0fNmjUjQRBo5NcjCd+B1p5ba/wD/PTS8VgatbU2gm7vnhVGnmDs3LmT/P39yd/fn3bu3PnER3U6Hc05OodcJ7pSvV/qUdQdI71/lExJkXglP01SiL8i/yLNBA09u+jZgqeT8+fPJ3d3d6pZsyadPHlS/0Zzrz1nzHMx99lePbMchR3OtwdZD2h91HoauXUk1Z1Tt+AJv/80f3ph2Qs0du9Y2hyzmW4+uFk0XQo9jg+yHtCphFO0IXoDTT04lQZvHEzB84PJZ7JPkR4MAdMDqOPijvT+3+/T3GNzKfRKKN1Ju2O/hFpzbI31AAkMdIy2o73KV1vrcanaAcWvq9xc56tviJTVzmJmga09HgxEMqoBmE5EAy2Pg1hPrT0edu7ciYEDB0IQBKxatQr/uf+HyQcnI/mrZPh7+Rv+ED+9dDyWRMVtiaDbOzps4onE5cuX0adPH5w9exaTJ0/GqFGjnli668C1A+i/rj/SctKw+NXFeL3x65KmSVRKG3voiE94RTLvxDx8+M+H6Fa7GzYN2ARXcsVHH32EhQsX2raikLPlubG6af9+oHVrx953ucnQLoh/EI+wq2EIuxqGE7dOIOpOFLSkBQBU9KmIhuUbouEDdzRcG4oGCbmolemBwNmL4PnaG5KfC0SEe5n3cOvhLdx6eAs3H97E1ZSriLsfh7h7+mUqkzKSinwm0C8QjQIaoWH5hgU/GwY0RHnv8pKmtUTWHFtjn/nyS2DSJPO3o1T2Ot9tbTPZq83lrPcFSmtnsRKJsapFcfEAmlifJOeg0+kwdepUjBs3Ds2aNcPGjRtRu3ZtTFw0EW2qtDEedACMTzijphmoWVEajfkzESt10jpjN1lGJjmqXbs2Dh8+jBEjRmD06NEIDw/HX3/9hVKlShW8p0ONDogYGYHX1r2G/uv746tbX2FKlylw1VhZPNmzkrLkmNqDM004ZYGZh2fiqz1foVf9Xljz2hokJSShX79+OHHihO0rCjlbnhubFPLvv4Fr17gxKCUZVgUI9AvEoGaDMKjZIAD6YXKnbp/CiZsncCrxFM7fiMTKhNNI7Zb/iWwg5i0ETP8/VCtbE1VLVUVZr7Lw9/SHv5c//D394evuCzcXN7i7uMPdxR1uGje4alyRq8tFjjan4JWdl42HOQ+RkpWC+5n3kZKt/3k38y4SHiYgIS0BOdqcIunVCBpUL10ddfzroE+DPqjtXxt1ytZBHf86qFO2Dvw8/CTJJ5tZc2yNfaZJk8dtADW3He11vtvaZrLXpJnOuiqI0tpZzCZmtewFQfgFj1ec0ABoCeC0VIlyFCdPnsS4ceMwcOBALFiwAN7e3sjMzcSJmyfwabtPTX+YLzTHZO5Nii0VjFRBKytv6H18fLBixQq0adMGX331Fdq2bYtNmzahfqH9qOpXFfvf3o/Pdn6GGYdnICIhAqv7rUaAT4Dl6bT36g7OduOpJCX0NiAiTNg/ARP2T8CAxgOwrM8yHDpwCAMGDEBWVhY2btyIPn362CUtDsNYI1ur5VVUDBHzvFDAqgDebt54utrTeLra0/p/CAsD/d/zSPQFYsoD18oA8X7Ajbeexg0fLa6nXsfpxNO4l3kPaTlpVn2nAAGlPUujjGeZggDGczWeQxXfKqjiWxlV0gRUydCgSmAjBDZ7Fm5uHuLtsL1Yc2yNfaZZM8uX+lYie53vtraZ7PWgUAHXv2y4neU4jI3BKPwC8D8AHwH4EMAgAM+Y8zmxX2qc4+H48eOk0+kKft9/dT8hBLT1/FYZU8UUz9YxbVKMuRVhnN2+ffuofPny5OfnR1u3Gr4GFkcuJo9JHlTtp2p0PP645enk+VGcQwnjf7U6LX2641NCCGjY5mGUm5dLM2bMIBcXF2rQoAHFxMTYLS0OxdC+TpnyeFw5X2ePiX1eKPE8M7de0GopJ/os3dm1ia5G7KWLd85T1J0oikyIpGPxx+i/6//RiZsn6PTt0xSTFENx9+Loesp1up953/jKR3LlhxT1q1hzPMh9PojJnvsn56oWlnyHIx9v5jBgYo6HkgIOrgCmA0gGcBJA5KP/nw7AzdRnpXipMfBQ3Pf7vyeEgO5m3JU7KUzJlFjBiHRDf+3aNWrdujUBoPHjx5PWwD5F3IqgGrNqkPskd1oYsdCydPJERM7BxHHOycuhwRsHE0JAn+z4hO7dv0d9+vQhANSvXz968OCB3dLikLRaouPHicaNIxo9+nHQwZH32RrGzovjx20LPihpIkdz6iqp6jM5rjsp62Zrjq3SzgexOfr+WYrzwzjOG8WwJfAwC8BCAKUK/ZsfgPkAfjb1WSlejhB4eGHZC9T418ZyJ4OpgdIKUREbeRkZGfT2228TAOrZsyelpKQ88Z7k9GTqtrQbIQQ0cutIysrNMm/jSgzaMPEZCYRl/LuTXln5CiEE9H3YJDqzZQvVDQwkFxcXmjljRpEeaFKnxaGf/vN1VjJj58W4cY6VV4XrqpgYoosXi9ZbUgUI5LjunC3IyJgacH2kKKYCDyUN+uoJYAQRPSw0NOPBo6EXL9k4ysO56HTQxkTj8NWDeK50U/24T0el0+ln3w0L0/905H0VW+G8i43VjxHs1Ek/rk3uMZr54xi9vPS/2zCO0cvLC4sWLcKvv/6KnTt3ok2bNoiKiirynnLe5bDjrR349tlvMf/kfHT4qwPiH8SXvPH8+VEiI/WzSkdGKmfCO742xJM/3rWQ1NKeeOHCWGy7uA2/vfQram5MQrtXX8XD+Hjsc3HBF1WqQDh8WPy8N5AWhx97q+TrTCmMnRf582HExtonHVKXO/njrzt0AM6dA5o318/y37Klfl6gW7eMz1lkCzmuO1PzLzGmJM7U3jA2t5e9ylhmPmMRCX3AAhet+ZtUL9X2eHgUiYuo6UEIAa1o5ea4kTiOOlrPkryTqzeEBN978OBBqlixIvn4+NCaNWsMvmdD9AbyneJLAdMDKPRKqM3fKQspxnsrqUeMJcRIe7H8vF3Ok5pPq0FuE91oRcQy+vD11wkAPQfQrcJPJkePFr9c4nKPGVLSfBiHDjnWuHBTQ0uk6CUgx3XHPR6YGjhbneSMvQ4VDDYMtdgMYIiBfx8EYKupz0rxUm3g4VFF9XNbEEJA1/0cuKLiStl6FkzS5WgVys2bN+npp58mAPTRRx9RVtaTwypikmKowdwG5DLBhX48/KPhLvP2uhm35nvEvDbUfA6ImfZHx+HyPyspaGYN8p7sTcv2L6G2desSAPoSoJziDZExY6Qpl9QcCGLSMTYfRlAQ0YoV0l/D9qyTjTX+Dx1S1rwItn6fWste5jycrS3ubPurcLYEHqoCOAYgDMCPAGYC2A/gOICqpj4rxUu1gYdHlfFbfUFVPnfwSBxHHa1nbt45aAGbk5NDX3zxBQGg4OBgunz58hPveZD1gPqu6UsIAQ1YN4DSstMe/9FeDUJrv0fMa0Nt50Dhm4Pjx/U3XSKl/WziWao8szL5T/Onn1f+TOX9/akUQOv79TOcR6NHc7nE7MtQmbFrl32uYXvWyabKJUcKzDnSvoiN80YZnK0tzgFBRTEVeDA5GJOIbhJRWwATAVwFcB3ARCJ6iohuijTaw/E9GocYXgVoc+vRv4k1DlFpY7iccayzWMzNOwcdY+rm5oaZM2di8+bNuHTpElq2bIktW7YUeU8pj1JY//p6TOsyDeui16Hdn+0Qe/fRGD57jfGz9nvEvDbUdA7odPpx3i1b6sd9d+wIvPMOEBj4+D1Wpj30SiieXfQsQMCb997EZ4M+QwU/P5wA0O/YMWDcuKJzkowbp5+XJP93LpeYPRiaD8PNzT7XsD3rZFPzAOXPA6GUOYts4Uj7IqbiZX3+HB9yt0udkbO1xXnOIfUwFpFQ4ku1PR60WkpdvYSE8aCJHUSMxClxzLg9oo5Ki6iLlR5z8+7iRX233TFj9K/AQGU/7bbC5cuXKTg4mADQ559/Tjk5OU+8Z/el3VTuh3LkN9WP1kett1+E39rvEfPaUFOPB2NpLdzzwIq0Lz+9nNwmulG9yfWo/XPtCQC99dZb9DAi4vH3BQbqv2fyZKIdOx73tOCnIUxu9rqG7f0kUGn1s9qpKT/VVC85Orl7AKjpvGWig7VDLZT2Um3ggYjCLu8jhID+WT9NvItQqWPGpSxw5C5MpU5PSXln6PumTiXaulVdBbsZ50hWVhZ99NFHBIDat29P165de+I9V+9fpacWPEUIAf3fikGU5espfaPHluvO3kEqJTC1pKAVadfpdDT5wGRCCKjp502pfEB58vb2pkWLFunn/TCWN7m53BCyFjciDbMlX+x5DfPxUydzzxGlHF9n696vdHJOQq6W9gmTBAceFGDmfzMJIaDEtETxNuqMY8aVlk57p8fY98XESPN9UrCwUlq7di2VKlWK/P39af369U/8PTsvmz7f+TkhBNR6Wm2Kq+QhbWWnlEpVKY3Nkpia6d7CtOdqc2nk1pGEcaCGrzYkANS0aVOKjo4u+ka15I0aKOV8Vxox8oXPU2aKOe0LJV2fSmufMXnweeD0TAUeePCLnYQnhKN66eqo4FNBvI0645hxpaXT3ukx9n23b0vzfVKwcI6E119/HSdPnkSdOnXw2muvYcSIEUhPTy/4u7uLO3584UdsHrAZcbiHlv/nhg1rQ6Qb46eUsYRqGWdsbNx369aP0w6UOFdNWk4aXl39KubvnY8q66ogZksM3n//fRw7dgwNGzYs+ma15I0a8ProhtmSL/lzMx04oP+9Qwc+T51RSXN0mdO+UNL1aWqOD+Y8lNZOZ4rCtZydRNyKQHCVYHE3KmYhr5aJaJSWTnunR2n7bw0rKqWgoCD8999/GDVqFP7880+0atUKJ0+eLPKeVxu8isj3ItGgQiO8Fh2CTy7PQ7YuV4o94BtbS5QUqDFjQrKbD26i418dsWPLDnj96YW0W2lYu3YtfvvtN3gVvx6YuLgRafgG0dp84Qn4GGDeeWBOfa+k61MpQXkmL0dopzLpGOsKocSXWoda3M+8TwgBTT4wWfyNSzlmfMUK/bhoJVFSt0I50qO0/beGjd3w9u3bR1WrViU3NzeaMWMGaYvte3ZeNn228zNCCCh4fjDF3YuTYi8cl727f5dwPhyLP0YVv69Irq1cCQC1adOG4uL4mNqNs3ebNVbmxsRYly/Onp+OzpzyU6vVDzUTYxgFn09MaRyhncpsAp7jQV57L+8lhIB2Xdold1JMy83Vry0+bpx+JvigIPMKC3vfqChtXKyz77+lRKiUkpOTqW/fvgSAunbtSjdv3nziPZtiNlGZaWWo9NTStOrsKjH3wHHJ0WAwMVfN8tPLye1dN3LxdyGNRkNjx441uMIJk5CzNyKN3dhdvGhdvvAEfI7LnGsl/z35k+uWdB5YM+G0M12fTJnU3k5lNjEVeBD0f1eH4OBgCg8PlzsZFpt9dDY+2/UZEr9MFHeOB7FduKDv7le4256Xl767XP447OLyuwvmjzHMH+7B3escg06nHyuakKDvJpe/Hruc2330Wbp1CwsPHcKn06bBy8sLv/32G15//fUib72achUDNwzE0fijGNxsMOa+NBd+Hn62p99RWVMGFGfpsTXwnTovT4xa+CZmzFsEHAZq1qqJlctXon379lbuGLOJVOWAGoSF6bvCFxcaqp+bwdJ8EeMacxRKrF9sYc6xzX/P558DP/0kznngzNcnY0xxBEGIICLD8wsYi0go8aXWHg/vbnmXKsyoIHcySmbNkxju5ue4lPgkxUCaYmbPpjZt2hAA6t+/PyUlJRX5SK42l0JCQ0gzQUM1Z9ekQ9cOyZR4FbD1aaw150yxzzwo7Ukdv2xEqAQCQO+8+w49fPhQjL1jzHJi13FKLFflIFU+yJm/5pSf+e8JDCSaMoXPA8aYwwGvaiGvs3fOokmFJnIno2TWTAijpImNmLiUNFu2iTQ1+PZbHF68GJMnT8amTZvQuHFjbNq0qeAjrhpXjO80HoeGHYIAAR3+6oDvQr9DrlaiiSfVzNZJoaw5ZwpNSHZq0wLUbueF/bOi4Zvti02bNuHPhX/C19fXuv1hzFZiz9TPE/DpSVW/yFlvmVN+5r8nPh6YNw/47DNg3Dhg/37nOQ9KWs2DMeawnKCEk5eOdIi6E4UmASoIPFjTwOLZax2XEoNKRtLkmpSE0aNHIyIiAlWrVkXfvn0xaNAg3Lt3r+Bt7au1x6n3T2Fws8GYdGASnl38LGLvOvmSgMXZepNl7Tmj0WDyqfVo/b/3kLzrPrr07IIrF6+gd+/eFu8CY6KyNlBg6uaKV8Uxv6yw9CZVznrLnPKz8Hvi44FZs4BmzfTLCzvDecCrujDm1JyglJPXtZRrSM9NR9OKTeVOSsmsaWDxus2OpXAjz8dHeUGlEgJdTZs2xbFjxzBhwgSsWbMGDRo0wIoVK0CP5rLx8/DDX73/wprX1uDi3Yto/ntzzD46GzoSodHjCE9xbH0aa0Ug8kH6AwQPCMbYgWPhmumKxasX49/N/6J8+fI27AhjIrI0UMA3VyUzp6ywJh/lfBhiTvnp7D1epOqR4gj1ryPj48PyGRuDocSXGud42Hp+KyEEdOTGEbmTIh2evdYxFB8bGxREtHixssagWjB+99SpU/TUU08RAOrerRtd2r27yDkanxpPL694mRACenbRs3Qx+aJd0uXQLMyHZZuWkWclTwJAjbs3pjvJd+ycYMYkwHMflUyqpSK5LFY2KVZ14WOubHx8nA54VQv5TDk4BWP2jUHqqFTxZtPnGYyZFAzNyB0UBKxcCaSnK+dcs+D812q1+P233/Dt118jNzMT3wH40tMTbsuWAX37ggQBy84swyc7P0FWXhamdJ6Cj9t+DBeNi2VpkmKmerVe58XTXacOEBdXZD8SEhPR791+OLLjCISyAkZPHY3vR34vd8oZE4eplTA6dbJ3apSrpDLO2nxUa9mpFrbkrxR1Ja8Uo2x8fJyOqVUtuCSW2Lk751CjdA1xgw7chZNJwdDY2EuX9EEHJY1FtqDbs4uLCz7s1g0xRHgZwGgALbOysO+tt4DYWAiCgCHNhyDqgyh0rd0Vn+/+HM8tfg7n7pyzLE1ijytW83Ve+PjUrQts3lywH3ktWmDGu0NRI6gGjuw+gmq9qiEmKsZw0IG7ZjK1UvPcR/a87koqy63NR55DQzq21k1SDM9V4nxU7DE+PqwQLo0ldu7OOXHnd1DiSgNqwzc0hqm5sWxKQgKqZmVhPYAtANIBdMnJQd8RI3D58mUAQJVSVbD1ja1Y1mcZLt69iJZ/tMQ3e75Bek66ed8hdt45ynVeaD8OAmiszcLXfy1HbpVcfLzkY1zedBn1Kxl44qHmwAtjap37SGnXnVrzUY3MbRfZWjdJMceFNfUvtwPFU1JeOmrbklmFAw8SytXm4nzyeXFXtODIoW2U1rBSEkdt5BWq9HoBiAEw2dUVuyMi0LBhQ3z77bd4+PAhBEHAoGaDcP6j8xjSbAimH56ORvMaYeuFrSV/h9h55yjXeUICLmZmopcAdABw0QsIeAk4NGMOfn7rZ7hqXA1/zlECL8w5qXUCQaVdd2rNR7WxpF0kRt2U3yOlQwf97wcO2Hbzb2n9y+1A8ZiTl0puW3IAyv6MTf6gxJfaJpc8l3iOEAJafnq5eBvlSatsw/lnmiNOFGpkYqObN27QkCFDCABVqlSJ5s+fTzk5OQUfO3jtIDX+tTEhBNRrVS+6cv9Kyd8jVt45wHmanJxMHw8eTC4ACW4gdAa99wLoQWnPkvdDignIinPEc50xW9jjumPKY0l9I1bdJPaEg5aU5w5QvyqGuXmpxPqWJ72UDExMLil7MMGSl9oCD9l52RSZEEnJ6cnibVRtF4rSChtuWDknE+fh0aNHqX379gSAgoKCaMWKFaR99PecvByafmg6eU/2Jo9JHvTNnm8oNStVtO82+Rk1XeeFpKWl0bRp08ivtB8JGoHQGlRzOGh/DQv2Q+qGoYrzlzkBuepNviFzTpa0i8QqO+U817gdKB415yWXd5LhwIOjUdrNvDFKbNxzQcMM0Ol0tHXrVmrWrBkBoCZNmtCmTZtIp9MREdGN1Bs0eONgQggoYHoA/X7id8rV5pa8YVuuAbVc54+kpaXR9OnTqXz58gSA3Bu4k/ChQF/s/JzSz0UqK/CixnJAZecDs5Kc9aYS62wmPUvLQzHKIjlvWNVY/iuVmvNSzUEThePAA5OHEgskblgxE7RaLa1evZrq1atHACg4OJjWr19PeTk5ROfP04mtv1OHX4MJIaDGvzamDdEbCoITBinxGhBZ8YCDX2M/wrugZ/58hk7eOmn9hqW80VZbg4PLLechd5nBAS7nI0f5Iud57uzlqZjXuJrzUu6y1oGZCjwI+r+rQ3BwMIWHh8udDGYupa5lzmt8sxLk5eVh6dKlmDJlCuLi4hBUqRK+uHsXQ3Nz4enlic1zP8Ko9K24eO8iWlZqiYnPT8TLdV+GIAhFN6TUa0AEt2/fxm+//YZ58+YhOTkZVVtWxc1WN1GpYSXM6DYDbzV968n8UAq1rSuutvQyw8ypexy4zGAKZu92Uf6khPmTmeZPOGivyUOdtR0oRb6rNS/lPgcdmCAIEUQUbPBvHHiQmFovSDFwY5mpnFarxaa5c/HDZ58hnAgBAD4G8L6nJ8qcDMfKnAhM2D8Bl+9fxlNVn8J3Hb5Dj7o9oBEeXeNKvAZsLJNOnjyJn3/+GatWrUJeXh5qPlUTN5rfgEs1F3zc9mOM7TAWfh5+Eu6ACNTW4OCbUfUz95xTYpnBpOWs7UQl7LcS0mBPXL4U5WzH305MBR44d6Xk7Ev2KHkJncJ4OR3nYMVxdnFxwWvNm+M4EUIBBAMYB6BqVhbe/vhT1H5YGzEfxGDBKwtwO+02eq7qiaa/NcWiyEXIzstW3jVgZZmUnZ2NdevWoWPHjmjdujXWb1iPZi83g+ennrj20jUMfXkoYv8vFtO7TVd+0AEoukzfoUPA/v1AuXL6Boit178U5Qmvg65+5i5VqbQyg0nLmduJ+ctqduqk/yn1DV/xsjkvz/ny3lGW6haLvc9BxnM8SIrHDyl/vKiax6cx89lynItdx+cA+sjFhfx8fQkANWrUiH744QeKuxpHS08tpWa/NSOEgCrNrESTD0ymxAcJyrkGLCyTTp06RR9//DGVLVuWAFDValWp/bvtyX20O2kmaGjAugF0PknF5ZkUS7pJUZ5wOaV+lq4coJQywx6cbX8L43aifRgqQ3ftcr685/ON2QF4jgeZcPdY5eNuZ87B1HGuW9d0VzsjXaTTX3gBq9euxcKFC3H06FEIgoDnn38eAwcOROlmpbHw4kLsjtsNV40rXq3/Koa3Go5utbvBReNi//3PZ0aZFBMTg7Vr12Lt2rWIjo6Gu7s72nZti6ymWTjhcQLubu4Y1mIYvnz6SwSVDbJr8kUn9vUvZXnCXULVjesaw9Q27Els3E60D0PX37hxwKRJT77XkfPe2a83Zhemhlq42jsxTiW/e2zxhgZ3j1UOU93OnLkxKBW5bp6MHefkZODsWdOVcH63/KZNi6TbR6PBu+++i3fffReXLl3CihUrsHz5cowYMQIajQbPPPMMvu76Ne5UvoO/r/6NDTEbUM2vGoY2H4r+jfujSYUm0k2+aCyfDZRJuZ6eOHzjBv755hts374dUVFREAQBbdq3wcufvoxT5U/hYN5BVPatjLEtx+KDNh+gcikHKcPEvv6lLE/yu4RyuaRO+UMoipc1ahpCIUX5bWwIStOmznGuq6mdqPTgp6n0GSqbdTr15L1YjLRnFHUcmWMz1hVCyheA1wFEAdABCDb3c6obasHdY5WPu53Zj6XXg5jdb40d5+PHRT3+Op2OIiMjafz48dSsWTMCoB+iULUqdXy1IzV5rwkJHwuE8aD6v9SnsXvH0vH445SnzbN+34ozlc9aLeWuXk0nPDzoR4B6azTk5+VFAMjV1ZXaPtuWXv30VWryQxNCCEgIEajLki60Pmo95eTliJdGpRD7+ufyhJli7yEFalg2T21L24pNLe1EpafTUPq2biWKidGfS8ePEwUFFT3HgoKIVqxQ7j6JxZmHMjFZQGlDLQRBaPgo6PAHgC+JyKzxE6obagEoP0Ls7By925mSzj9LuhobOy7NmwM3b1q+L8a2V64c0Lnzk+8XqavllStXsGfPHvz777/Yu3cv7t27BwDwKe0Dz5qeuFvmLhAAlK5WGt3adEOPBj3wTLVnULdc3ccrY1iqUD4/AHAJwGk3N0QOGIDIq1dx6tQppKWlAQBqBlZF3bYN4VrfDedLn8eVzCsAgDZV2uCNJm9gQOMBqOpX1eZ8UCyxr39HL0+Yeoh9Lko1VISHoCirnjZG6cepePoCA4EPPwQmTnx8/s+bB0yeDFy69Ph66N0biItTdt7bguskJgPFLqcpCEIYHD3wwJRPDZW+NZRW4VgyltVYI+fLL/VjMq3ZF0PHOTbWbo0pnU6Hs2fP4tixYzh69CiOHj2K8+fPo6AM1gDwA1AacC/rjqqBVVGrci3UqlwL9arWQ71K9eDj6QNXV1e4uLggJycHGRkZyMzMxMPUVNyJiUHi9etITEnBjUOHcCknB3cKfb+3pwdqNqqDcrXLATWAm/43cTnvsn6XXb3QuVZn9AjqgR51e6C2f21R913RxL7+HbU8URrOZ9PEvlGUai4CpdVTzDClz0VRPH2jRwOzZj15/u/fD6SnO0+ZofSAEXNIPMcDY6Y46thppY2dtWQsq7Gx8vnLXFmzL4aOsx3HXWs0GjRv3hzNmzfHyJEjH+1GJi5cuICoqChERUXhzIUzuHjlIhJuJuDK6Su4orti0Xe4uwLeHoB31VLwdtWiRmktsgOA+zWAjArZiNZEAwACvAPQvlp7jAgcgXaB7dAusB08XT1F32dVEPv6d9TyREn4ZrVkYs83ItVcBDzmXB2UPhdF8fQJguHzPz1dGYESe+F5zJjCSBZ4EAThXwCVDPxpDBFtsWA7IwGMBIDq1auLlDrGnIDcFU7xJ5J16ph/k2+skVO4h5YY+yJzo9fLywstWrRAixYtnvgbEeFe6j1EXonE6auncSHhAhIfJiI5PRl30+4iJS8F2UI2cpCFLCELOl99pwnSAnnahyjtXR6VriajYqYLqjTugfrtXkb98g3RoHwDVPCpIN3EloxJTWlBVSUS+0ZRyiCtoWAd92hRFqVPjlo8fS4uyg6U2IvSA0bM6fBQC8YclZxd7Iw9kTR3PKWhz3/3HfDrr0B8vH33RekedTElAEVCCdu3A97e3Ghnjkfp3b6VQIpeIfYKBnCPFmWy5fib+qxY51Xh7VStCpw+zecQX0tMBjzHA2POSM4KR4ygR+FGRKVK+v8fMIArz+J4DCdzNnzOm0etvQaUdnzVmo9KYaotAtjWTrFHQEPtOI+YnSku8CAIQh8AvwAIAJAC4BQRvVDS5zjwwJiF5KpUpHgiyRWkYfYIMHHeMyXhp3iOTUk9Wvhcs52pQBJgfZCJj41tOP+YRBQXeLAWBx4YUwmlPbEyh5pvrqVMu7WNEzXnJ1M+Pr/0lJ4P1qRPSfWHktKiVqYCSYD1QSY+Nrbh/GMSMRV4UFDtxBhzGPkTPXl56X9X2kRUxeXfXLdsqW8EtWyp/z1/FQ2ly5+crVMn/U8xbzyMTeQXG2v8M2rPT6Z8Up7zaqH068xY+vLy9Dc9YWH6n8XTq6T6w9Qkzcw8+RMcFpY/waGpv5WEj41tOP+YDJywpmaMSS5/tYjISP2Ti8hIZXffs+bm2hidznSjWm2saZyImZ+MMcOUfp0ZS9++faaDJUqqP2y5MWZ6pgJJtgSZ+NjYhvOPyUChdwGMMdVT0xNJsSL/Sn8CaQ1rGif2fpLiaMEexsyh9CeWxtJ36FDJwRKl1B9K6n2hVqYCScX/tn+/vm6JjS25HOdjYxvOPyYDV7kT4NAMjW0ElD0ekzFnZO5a1yWNVzb2hK9pU/WOmSy8Pnq5csCwYUCTJgCRPj8MlV/2XDucJ8hizsqe15k1jKVPqy36vvxgiRLLyPwb46ZNud1mi/xAkqFjrNHo8/TsWeCll8wvx/nY2Ibzj8mAzy6pGHvyuX27Yz0NZcwRmBP5N6c3g1KfQNrSIyC/cXL6NDBlCjBzpn5Z01atjJdf9nySovTu5oxJRelPLA2lb+FCYO3aou9TUrDEEKX0vnBk1pbjfGxsw/nH7Ix7PEjFWCH65ZeO9TSUMUdgTuTfnN4MSnwCaW6PgJJ6aPn4AO+9Z175Zc8nKaaCPVyuMkem9CeWhtJXpw7g7v5keaSUYAmTB5fjjDkFDjxIxVghWvzpIBesjCmDqa6ggHkNo8LDEpTQqNbpgIiIkgMmhoITa9YA2dmP/23cOMsahiXlp1jkCPYofQlD5jzsdZ1Zy1D6lBwsYfJQYtCeMSY6LumlYmxCtuKVKxesjKmDOZMsKmk29vxgwt9/lzz8w1BvjhMniv6bTqfMGbDt3d3cEScQZcyenLl7N0+Ea5jShw0xxkThRKW9nRkrRNu04YKVMTUyt2FkTaNaisZofjDBnICBod4cOl3Rf1uyRN/rQWnll72DPTynBGPMGhy0NE5JQXvGmGR4qIVUjI29BPQFKncxZExdpBpPLdWqDPnBhPyAwaRJxod/GOrm6uJS9N/i44FFi/TLnaWnK6v8smd3cx6LzBizhiOueiQmpQ8bYozZTCAiudNgtuDgYAoPD5c7GYwxJp4LF/RPvoqPbY2MtK0BVni7gYH6Bq6LC/DKK0Dr1k9OLFnSHA+8TKWeVMeLMebYwsL0PR2KCw3V95BjjDEHIAhCBBEFG/ob93hgjDkXpU0MKNUT9MITXcbHA7Nm6X8vHnQATPfQ4kngilLaBKKMMXXgCRQZk4/S2n5OigMPjDHnIdWwBlvS4+MjTWPU0qEhxrq5ctfXopS+hCFjTJk4aMmYPJTW9nNiPNSCMeY8Suomb8+IeH5F+O23wDvvPDkHA1eIjDHmWPipK2P2x0Mk7YqHWjDGGGB6WEPduvaNiBeeaGzePOCzz4zPwcAYY0z9eAJFxuyPJ4VWDA48MMach6kxtvaecbxwRRgfD0yZov//zp056MAYc17cK4AxJiaeX0UxuCRnjDmP/DG2Xl763wuPsTUVEZdCfkVYmBorQp1O340xLEz/k9ekZ4xZK38IWsuW+hUgWrbU/y5GucJlFWPOyVTbj9kVBx4YY84jf2LAyEj9EmaRkY+HUtg7EOAIFaGUNwmMMedjrOdZbKxt2+WyijHnZartx+yKJ5dkjDFAnlmP1d6lmCdsYoyJKSxMHxgoLjQU6NTJ+u3au6xSe9nOGGNW4sklGWPqIVeDTY5lEtU+0RhP2MQYE5NUY7HtWVbx0n2MMWYQl4CMMeWQuztsfiCgUyf9TyU2EpU0TtlR5qlgTGmUdJ3bk1RD0OxZVkk1XIQxxlROga1qxpjT4gabaXIHZopzhHkqGFMapV3n9iTVWGx7llX2nqiYMcZUgud4YIwph1Tjex2FEudU4LHMjIlLide5I7BXWcXHjzHmxEzN8cCtQ8aYcnDXfdOU+CRNDcNTGFMTJV7njsBeZRX3BGOMMYN4cklHwU8dmSPIb7AVn5SLG2x6Uk28xhhTDr7O1U2OiYoZY0wFuBR0BM48HpQ5Fl5r2TR+ksaY4+PrXP24JxhjjD2B53hwBDyekDFlE7NHEvdushznGVMbPmflx8eAMcYsxnM8ODoeD8qYcondI4mfpFmGe4QxNeLrXF5cbjDGmOi4JnMEPCEfY8rFS4TKi/OfMWYpLjcYY0x0HHhwBDwelDHl4h5J8uL8Z4xZissNxhgTHa9q4Qh4BmXHxuNM1Y1nqJcX5z9jzFJcbjDGmOj47sVR8HhQx8TjTNWPeyTJi/OfMWYpLjcYY0x0vKoFY0rGK5Y4Bu61Ii/Of8aYpbjcYIwxi5la1YKHWjCmZKbGmXLgQT3yeyTxMZMH5z9jzFJcbjDGmKg4dMuYkvGKJYwxxhhjjDGV48ADY0rG40wZY4wxxhhjKsdDLRhTMl6xhDkyHkPNGGOMMeYUZAk8CIIwA8ArAHIAxAEYRkQpcqSFMcXjcabMEeWv2DJkiH7ekvzePH37cvCBMSYPDoYyxphk5CpN9wBoQkTNAFwE8K1M6WCMMSaH2NjHQQdA/3PIEP2/M8aYvfHy1YwxJilZAg9EtJuI8h79ehRAoBzpYIwxJhNTK7Ywxpi9cTCUMcYkpYT+Y+8A2GHsj4IgjBQEIVwQhPCkpCQ7JosxxkzQ6YALF4CwMP1PfipmGV6xhTGmJBwMZYwxSUkWeBAE4V9BEM4ZeL1a6D1jAOQBWGFsO0Q0n4iCiSg4ICBAquQyxpj5uEuu7XjFFsaYknAwlDHGJCUQkTxfLAhDAbwPoAsRZZjzmeDgYAoPD5c2YYwxVpILF/TBhsJPx7y8gMhIngTUEjyRG2NMKXjCW8YYs5kgCBFEFGzob3KtavEigG8AdDQ36MAYY4phqksuBx7Mxyu2MMbyyR2I5OWrGWNMUrIEHgDMBeABYI8gCABwlIjelyktjDFmmfwuucV7PHCXXMYYs5xSehtwMJQxxiQj16oWQURUjYhaPHpx0IExph48PwFjjImHV5RgjDGHJ1ePB8YYUy/ukssYY+Lh4WuMMebwOPDAGGPWkKJLrtxjnC2ltvQyxpRJyuFrXE6Zj/OKMSYhLk0YY0wJ1LZEp9rSyxhTLqmGr3E5ZT7OK8aYxGRbTtMavJwmY8xhqW2JTrWllzGmbFI8bedyynycV4wxEZhaTpN7PDDGmBKYGuMsBp1O37AMC9P/tPUpltTpZYw5l/zha5066X+K0cWfyynzcV4xxiTGgQfGGFOC/DHOhYk5xlnsLrRSppcxxsTA5ZT5OK8YYxLjwANjjCmBlEt0SrFUHS8pyhhTOi6nzMd5xRiTGK9qwRhjSiDlEp1SLFXHS4oyxpSOyynzcV4xxiTGgQfGGFMKKZboBKRbqk6q9DLGmFi4nDIf5xVjTEIcxmSMseLEnohRbtyFljHGGGOMyYh7PDDGWGH5EzHmz4mQf5Pet696u5yquQutFEvsMeaI+Fph7P/bu7tQy+6zDODPO20kh6qotNJpE5peHKIlE2dkKJFeaGoaUi0jjhQq1QpKvbGQip9xoEVKIRBRL/yiaJFgqwieUknQJsVIb/zopJPElCROUZpERxIRqWKw1vN6sfcwp+mYnK+1117r/H4wnFnrnJl54GXN2edZa///wBrzHQlgpyEWYlwHQ2xVN7QhduOAOXKtALDmJvDKE+Aqhno7hL3M18dcSyA4bK4VANac4gGYniHv7tnLfH0ogWB3XCsArDnFAzA9Q97dsxDj+lACwe64VgBYc4oHYHqGvLt3eSHGCxeShx5afJzywpJTpgSC3XGtALDm7GoBTM/lu3s7y4fDvLtnL/P1MOXdOGCVXCsArDnFAzA9l+/uvXjLS3f35kcJBLvjWgFgjSkegOmZ+t297e3FehRTzA4AAHukeACmaap39y7vyPHipzXGWkdCCQIAwMC8ugRYpSF35NirIbclBQCAJcUDwCoNuSPHXq1TCQIAwGwpHgBW6fKOHDsd5o4ce7FOJQgAALOleABYpcs7clwuH8bckWOdShAAAGbL4pIAq7ROO3LYlhQAgBVQPACs2rrsyLFOJQgAALOleAA4ytalBAEAYLbc1gIAAAAGo3gAAAAABuOtFgDrZHs7uXjRmgsAAMyGV7MA62J7O9naSk6dSm69dfFxa2txHgAAJkrxALAuLl68srVlsvj4nvcszgMAwEQpHgDWxaVLV0qHy154YXEeAAAmSvEAsC6OH082Nr763MbG4jwAAEyU4gFgXWxuJvfee6V82NhYHG9ujpsLAAAOwK4WAOvi2LHk7NnkxAm7WgAAMBuKB4B1cuxYcuONi18AADADo9xGq6oPVdVjVfVIVT1QVa8bIwcAAAAwrLGe372nu2/u7pNJ7kvygZFyAAAAAAMa5a0W3f2lHYevStJj5ADgkGxvJxcvWpsCAICvMdqrwqr6cFU9k+TdeYknHqrqJ6vqfFWdf/7551cXEIDd2d5OtraSU6eSW29dfNzaWpwHAODIq+5hHjaoqk8nee1VPnWuuz+54+vuSnJtd3/w5f7O06dP9/nz5w8xJQAH9tRTi7LhhReunNvYSC5csEgmAMARUVUPd/fpq31usLdadPdtu/zSjye5P8nLFg8ArKFLl766dEgWx5cuKR4AABhtV4vNHYdnkjw5Rg4ADsHx44snHHba2FicBwDgyBtrjYe7q+rxqnosye1J7hwpBwAHtbmZ3HvvlfJhY2NxvLn50n8OAIAjYaxdLX5ojH8XgAEcO5acPZucOGFXCwAAvsYoxQMAM3Ps2GI9B2s6AADwIm5HAQAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAIOp7h47w65V1fNJvjh2jn14dZJ/HTsEB2aO82CO82CO82CO82CO82CO82GW8zDFOb6hu19ztU9MqniYqqo6392nx87BwZjjPJjjPJjjPJjjPJjjPJjjfJjlPMxtjt5qAQAAAAxG8QAAAAAMRvGwGh8ZOwCHwhznwRznwRznwRznwRznwRznwyznYVZztMYDAAAAMBhPPAAAAACDUTysUFX9bFV1Vb167CzsXVV9qKoeq6pHquqBqnrd2JnYn6q6p6qeXM7zE1X1TWNnYu+q6p1V9fmq2q6q2az6fFRU1R1V9VRVfaGqfnHsPOxdVX20qp6rqsfHzsL+VdX1VfVQVT2x/D/1zrEzsXdVdW1V/W1VPbqc4y+PnYn9q6pXVNWFqrpv7CyHRfGwIlV1fZK3JXl67Czs2z3dfXN3n0xyX5IPjJyH/XswyU3dfXOSv09y18h52J/Hk5xN8pmxg7A3VfWKJL+Z5O1J3pTkh6vqTeOmYh9+P8kdY4fgwL6S5Ge6+9uT3JLkp1yPk/TfSd7a3d+R5GSSO6rqlnEjcQB3Jnli7BCHSfGwOr+W5OeTWFRjorr7SzsOXxWznKzufqC7v7I8/Osk142Zh/3p7ie6+6mxc7Avb07yhe7+h+7+cpI/SvIDI2dij7r7M0n+bewcHEx3X+ruzy1//x9Z/LDz+nFTsVe98J/Lw2uWv7xWnaCqui7J9yf53bGzHCbFwwpU1Zkk/9Tdj46dhYOpqg9X1TNJ3h1PPMzFjyf5s7FDwBHz+iTP7Dh+Nn7QgdFV1Q1JTiX5m5GjsA/Lx/MfSfJckge72xyn6dezuGG9PXKOQ/XKsQPMRVV9Oslrr/Kpc0l+Kcntq03EfrzUHLv7k919Lsm5qroryfuSfHClAdm1l5vl8mvOZfGI6cdWmY3d280cmaS6yjl35mBEVfX1Sf4kyftf9JQnE9Hd/5vk5HLtqk9U1U3dbQ2WCamqdyR5rrsfrqrvGTnOoVI8HJLuvu1q56vqRJI3Jnm0qpLFI92fq6o3d/e/rDAiu/D/zfEqPp7k/ige1tbLzbKqfizJO5J8b9tXeG3t4ZpkWp5Ncv2O4+uS/PNIWeDIq6prsigdPtbdW2Pn4WC6+9+r6i+zWINF8TAtb0lypqq+L8m1Sb6xqv6gu39k5FwH5q0WA+vuv+vub+3uG7r7hixebH2n0mF6qmpzx+GZJE+OlYWDqao7kvxCkjPd/V9j54Ej6LNJNqvqjVX1dUneleRPR84ER1It7oz9XpInuvtXx87D/lTVay7v0lVVG0lui9eqk9Pdd3X3dcufG9+V5C/mUDokigfYi7ur6vGqeiyLt87Ybmq6fiPJNyR5cLk96u+MHYi9q6ofrKpnk3xXkvur6lNjZ2J3lou7vi/Jp7JYyO6Pu/vz46Zir6rqD5P8VZIbq+rZqvqJsTOxL29J8qNJ3rr8nvjI8m4r03I8yUPL16mfzWKNh9lsxcj0lSeMAQAAgKF44gEAAAAYjOIBAAAAGIziAQAAABiM4gEAAAAYjOIBAAAAGIziAQBYmaq6vqr+saq+ZXn8zcvjN4ydDQAYhuIBAFiZ7n4myW8nuXt56u4kH+nuL46XCgAYUnX32BkAgCOkqq5J8nCSjyZ5b5JT3f3lcVMBAEN55dgBAICjpbv/p6p+LsmfJ7ld6QAA8+atFgDAGN6e5FKSm8YOAgAMS/EAAKxUVZ1M8rYktyT56ao6Pm4iAGBIigcAYGWqqrJYXPL93f10knuS/Mq4qQCAISkeAIBVem+Sp7v7weXxbyX5tqr67hEzAQADsqsFAAAAMBhPPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg1E8AAAAAINRPAAAAACDUTwAAAAAg/k/qazBgvCzyzQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "X = data.loc[:,'x'].values.reshape(-1, 1)\n", + "Y = data.loc[:,'y'].values.reshape(-1, 1)\n", + "\n", + "\n", + "subset = np.arange(0,500)\n", + "\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "\n", + "\n", + "poly = PolynomialFeatures(degree = 15)\n", + "X_poly = poly.fit_transform(X)\n", + "\n", + "poly.fit(X_poly, Y)\n", + "lin2 = LinearRegression()\n", + "lin2.fit(X_poly[0:500], Y[0:500])\n", + "\n", + "x = data['x']\n", + "xgrid = np.linspace(min(x),max(x), 1000)\n", + "\n", + "new_data = pd.DataFrame(xgrid, columns=['x'])\n", + "\n", + "yhat = lin2.predict(poly.fit_transform(new_data))\n", + "\n", + "# Visualising the Polynomial Regression results\n", + "plt.figure(figsize=(18,6))\n", + "sns.scatterplot(data.loc[subset,'x'],data.loc[subset,'y'], color = 'red', label = 'Data')\n", + "plt.plot(xgrid, yhat, color = 'green', label = 'Estimate')\n", + "sns.lineplot(x,mu, color = 'black', label = \"Ground truth\")\n", + "\n", + "plt.xlabel('X')\n", + "plt.ylabel('Outcome')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is one of the benefits of using machine learning-based models: more data implies more flexible modeling, and therefore potentially better predictive power -- provided that we carefully avoid overfitting.\n", + "\n", + "The example above based on polynomial regression was used mostly for illustration. In practice, there are often better-performing algorithms. We’ll see some of them next." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Common machine learning algorithms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Next, we’ll introduce three machine learning algorithms: (regularized) linear models, trees, and forests. Although this isn't an exhaustive list, these algorithms are common enough that every machine learning practitioner should know about them. They also have convenient `R` packages that allow for easy coding.\n", + "\n", + "In this tutorial, we'll focus heavily on how to **interpret** the output of machine learning models -- or, at least, how not to _mis_-interpret it. However, in this chapter we won’t be making any causal claims about the relationships between variables yet. But please hang tight, as estimating causal effects will be one of the main topics presented in the next chapters.\n", + "\n", + "For the remainder of the chapter we will use a real dataset. Each row in this data set represents the characteristics of a owner-occupied housing unit. Our goal is to predict the (log) price of the housing unit (`LOGVALUE`, our outcome variable) from features such as the size of the lot (`LOT`) and square feet area (`UNITSF`), number of bedrooms (`BEDRMS`) and bathrooms (`BATHS`), year in which it was built (`BUILT`) etc. This dataset comes from the American Housing Survey and was used in [Mullainathan and Spiess (2017, JEP)](https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87). In addition, we will append to this data columns that are pure noise. Ideally, our fitted model should not take them into acccount." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import io\n", + "\n", + "url = 'https://docs.google.com/uc?id=1qHr-6nN7pCbU8JUtbRDtMzUKqS9ZlZcR&export=download'\n", + "urlData = requests.get(url).content\n", + "data = pd.read_csv(io.StringIO(urlData.decode('utf-8')))\n", + "data.drop(['Unnamed: 0'], axis=1, inplace=True)\n", + "\n", + "# outcome variable name\n", + "outcome = 'LOGVALUE'\n", + "\n", + "# covariates\n", + "true_covariates = ['LOT','UNITSF','BUILT','BATHS','BEDRMS','DINING','METRO','CRACKS','REGION','METRO3','PHONE','KITCHEN','MOBILTYP','WINTEROVEN','WINTERKESP','WINTERELSP','WINTERWOOD','WINTERNONE','NEWC','DISH','WASH','DRY','NUNIT2','BURNER','COOK','OVEN','REFR','DENS','FAMRM','HALFB','KITCH','LIVING','OTHFN','RECRM','CLIMB','ELEV','DIRAC','PORCH','AIRSYS','WELL','WELDUS','STEAM','OARSYS']\n", + "p_true = len(true_covariates)\n", + "\n", + "# noise covariates added for didactic reasons\n", + "\n", + "p_noise = 20\n", + "\n", + "noise_covariates = []\n", + "for x in range(1, p_noise+1):\n", + " noise_covariates.append('noise{0}'.format(x))\n", + "\n", + "covariates = true_covariates + noise_covariates\n", + "\n", + "x_noise = np.random.rand(data.shape[0] * p_noise).reshape(28727,20)\n", + "x_noise = pd.DataFrame(x_noise, columns=noise_covariates)\n", + "data = pd.concat([data, x_noise], axis=1)\n", + "\n", + "# sample size\n", + "n = data.shape[0]\n", + "\n", + "# total number of covariates\n", + "p = len(covariates)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's the correlation between the first few covariates. Note how, most variables are positively correlated, which is expected since houses with more bedrooms will usually also have more bathrooms, larger area, etc." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
LOTUNITSFBUILTBATHSBEDRMSDININGMETROCRACKS
LOT1.0000000.0648410.0446390.0573250.009626-0.0153480.1362580.016851
UNITSF0.0648411.0000000.1432010.4287230.3611650.2140300.0574410.033548
BUILT0.0446390.1432011.0000000.4345190.2151090.0374680.3237030.092390
BATHS0.0573250.4287230.4345191.0000000.5402300.2594570.1898120.062819
BEDRMS0.0096260.3611650.2151090.5402301.0000000.2818460.1213310.026779
DINING-0.0153480.2140300.0374680.2594570.2818461.0000000.0220260.021270
METRO0.1362580.0574410.3237030.1898120.1213310.0220261.0000000.057545
CRACKS0.0168510.0335480.0923900.0628190.0267790.0212700.0575451.000000
\n", + "
" + ], + "text/plain": [ + " LOT UNITSF BUILT BATHS BEDRMS DINING METRO \\\n", + "LOT 1.000000 0.064841 0.044639 0.057325 0.009626 -0.015348 0.136258 \n", + "UNITSF 0.064841 1.000000 0.143201 0.428723 0.361165 0.214030 0.057441 \n", + "BUILT 0.044639 0.143201 1.000000 0.434519 0.215109 0.037468 0.323703 \n", + "BATHS 0.057325 0.428723 0.434519 1.000000 0.540230 0.259457 0.189812 \n", + "BEDRMS 0.009626 0.361165 0.215109 0.540230 1.000000 0.281846 0.121331 \n", + "DINING -0.015348 0.214030 0.037468 0.259457 0.281846 1.000000 0.022026 \n", + "METRO 0.136258 0.057441 0.323703 0.189812 0.121331 0.022026 1.000000 \n", + "CRACKS 0.016851 0.033548 0.092390 0.062819 0.026779 0.021270 0.057545 \n", + "\n", + " CRACKS \n", + "LOT 0.016851 \n", + "UNITSF 0.033548 \n", + "BUILT 0.092390 \n", + "BATHS 0.062819 \n", + "BEDRMS 0.026779 \n", + "DINING 0.021270 \n", + "METRO 0.057545 \n", + "CRACKS 1.000000 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.loc[:,covariates[0:8]].corr()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized linear models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This class of models extends common methods such as linear and logistic regression by adding a penalty to the magnitude of the coefficients. **Lasso** penalizes the absolute value of slope coefficients. For regression problems, it becomes\n", + "\n", + "$$\n", + " \\hat{b}_{Lasso} = \\arg\\min_b \\sum_{i=1}^m\n", + " \\left( Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{ip}b_p \\right)^2\n", + " - \\lambda \\sum_{j=1}^p |b_j|\n", + "$$ (lasso)\n", + "\n", + "\n", + "Similarly, in a regression problem **Ridge** penalizes the sum of squares of the slope coefficients,\n", + "\n", + "$$\n", + " \\hat{b}_{Ridge} = \\arg\\min_b \\sum_{i=1}^m\n", + " \\left( Y_i - b_0 - X_{i1}b_1 - \\cdots - X_{ip}b_p \\right)^2\n", + " - \\lambda \\sum_{j=1}^p b_j^2\n", + "$$ (ridge)\n", + "\n", + "Also, there exists the **Elastic Net** penalization which consists of a convex combination between the other two. In all cases, the scalar parameter\n", + "$\\lambda$ controls the complexity of the model. For $\\lambda=0$, the problem reduces to the “usual” linear regression. As $\\lambda$ increases, we favor simpler models. As we’ll see below, the optimal parameter $\\lambda$ is selected via cross-validation.\n", + "\n", + "An important feature of Lasso-type penalization is that it promotes **sparsity** – that is, it forces many coefficients to be exactly zero. This is different from Ridge-type penalization, which forces coefficients to be small.\n", + "\n", + "Another interesting property of these models is that, even though they are called “linear” models, this should actually be understood as **linear in transformations** of the covariates. For example, we could use polynomials or splines (continuous piecewise polynomials) of the covariates and allow for much more flexible models.\n", + "\n", + "In fact, because of the penalization term, problems {eq}`lasso` and {eq}`ridge` remain well-defined and have a unique solution even in **high-dimensional** problems in which the number of coefficients $p$ is larger than the sample size $n$ – that is, our data is “fat” with more columns than rows. These situations can arise either naturally (e.g. genomics problems in which we have hundreds of thousands of gene expression information for a few individuals) or because we are including many transformations of a smaller set of covariates.\n", + "\n", + "Finally, although here we are focusing on regression problems, other generalized linear models such as logistic regression can also be similarly modified by adding a Lasso, Ridge, or Elastic Net-type penalty to similar consequences.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "X = data.loc[:,covariates]\n", + "Y = data.loc[:,outcome]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import Lasso\n", + "\n", + "lasso = Lasso()\n", + "alphas = np.logspace(np.log10(1e-8), np.log10(1e-1), 100)\n", + "\n", + "tuned_parameters = [{\"alpha\": alphas}]\n", + "n_folds = 10\n", + "\n", + "scorer = make_scorer(mean_squared_error)\n", + "\n", + "clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False, scoring=scorer)\n", + "clf.fit(X, Y)\n", + "scores = clf.cv_results_[\"mean_test_score\"]\n", + "scores_std = clf.cv_results_[\"std_test_score\"]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next figure plots the average estimated MSE for each lambda. The red dots are the averages across all folds, and the error bars are based on the variability of mse estimates across folds. The vertical dashed lines show the (log) lambda with smallest estimated MSE (left) and the one whose mse is at most one standard error from the first (right)." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "data_lasso = pd.DataFrame([pd.Series(alphas, name= \"alphas\"), pd.Series(scores, name = \"scores\")]).T\n", + "best = data_lasso[data_lasso[\"scores\"] == np.min(data_lasso[\"scores\"])]" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1e-08, 0.1)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAF3CAYAAADElWPXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABLyUlEQVR4nO3dd5hU5fn/8fc9swV2KVIFAQUViIAUKYqgoFjQqIgxijGWaKwxiUn0G2NiSfLNz3ztSSxEjSVGg0YloMEexYAosIgIGhXBghQBEZQFtsz9++PMymxlFmbmzOx+Xte118yc5znn3Gdndvfepx1zd0RERETqEgk7ABEREcleShRERESkXkoUREREpF5KFERERKReShRERESkXkoUREREpF55YQeQCR07dvSePXuGHYaIyE6rmspuZiFHIrmgpKRknbt3SsWxmkWi0LNnT+bPnx92GCIiIhlhZh+l6ljqehARyQHz5s1j3rx5YYchzVBaEwUzG29m75rZUjO7oo7yy81sYfxrsZlVmll7M+ubsH2hmW0ys0vj+1xrZp8mlB2bzmsQEckGS5YsYcmSJWGHIc1Q2roezCwK3A4cCawA5pnZdHd/u6qOu98A3BCvfzzwE3f/HPgcGJxwnE+BqQmHv8Xdb0xX7CIiIhJIZ4vCCGCpuy9z9zJgCjChgfqnAX+vY/s44AN3T1l/i4iIiCQnnYlCN+CThNcr4ttqMbMiYDzweB3Fk6idQFxiZovM7F4za5eKYEVERKS2dCYKdc3hqe9WlccDs+PdDtsPYFYAnAD8I2HzncA+BF0Tq4Cb6jy52flmNt/M5q9du7aRoYuIiAikd3rkCqBHwuvuwMp66tbVagBwDLDA3ddUbUh8bmZ3A0/VdUB3vwu4C2DYsGG6l7aI5LSzzz477BCkmUpni8I8oLeZ9Yq3DEwCptesZGZtgTHAtDqOUWvcgpl1TXg5EVicsohFRESkmrS1KLh7hZldAjwLRIF73X2JmV0YL58crzoReM7dNyfuHx+3cCRwQY1DX29mgwm6MT6so1xEpMl59dVXATj44INDjkSam7SuzOjuM4AZNbZNrvH6fuD+OvYtBTrUsf2MlAYpIpID3nvvPUCJgmSeVmYUERGReilREBERkXopURAREZF6NYu7R4qI5Lr8/PywQ5Ackeqlg5QoiIjkgNNPPz3sECRHjB6d2qWD1PUgIiLSRKxdC++9V9fCyDtPiYKISA6YOXMmM2fODDsMyXLx5TZSSomCiEgOWL58OcuXLw87DMlys2dDfr66HkRERKQOs2c7/QZWpvSYShRERESaiJ9cFuP7l2xL6TE160FERKSJGHNEBas3VqT0mEoURERyQFFRUdghSJabNw9WfB5j3/6pPa4SBRGRHHDKKaeEHYJkud/9Dt54s4Cn/lOW0uNqjIKIiEiOc4dXX3UGD0vtQEZQoiAikhNeeOEFXnjhhbDDkCz1/vuwdq0xeHhqxyeAuh5ERHLCihUrwg5Bstjs2cHjELUoiIiISE2vvgptd3N67RtL+bHVoiAiIpLjbro5xvhTNhNJw7//alEQERHJdfmV9Nkv9a0JoERBRCQntGnThjZt2oQdhmShV1+FX/3S2PRFeo6vrgcRkRxw0kknhR2CZKknn4Q7/xjluxem5/hqURAREclhs2c7+w2opGXL9BxfiYKISA545plneOaZZ8IOQ7JMeXmwdPOgoamfFllFXQ8iIjlg9erVYYcgWWjRIti61Rh4QPoSBbUoiIiI5KhPP4U2bZyBB6R+RcYqalEQERHJUSecAK+98xXllZ62c6hFQUREJEdVVMaoiMUwS985lCiIiOSADh060KFDh7DDkCyyYQMMHmz859/p7RxQ14OISA44/vjjww5BsszcubBksVFQmL5uB1CLgoiISE567TUwcwYMSt+MB0hzomBm483sXTNbamZX1FF+uZktjH8tNrNKM2sfL/vQzN6Kl81P2Ke9mT1vZu/HH9ul8xpERLLBk08+yZNPPhl2GJJFXn8d9u0bo7hVes+TtkTBzKLA7cAxQD/gNDPrl1jH3W9w98HuPhj4BTDT3T9PqHJYvHxYwrYrgBfdvTfwYvy1iEiTtn79etavXx92GJIl3OH1150Bg9PbmgDpbVEYASx192XuXgZMASY0UP804O9JHHcC8ED8+QPAibsSpIiISK7ZvBnGHRlj1NjytJ8rnYlCN+CThNcr4ttqMbMiYDzweMJmB54zsxIzOz9h++7uvgog/ti5nmOeb2bzzWz+2rVrd+EyREREskurVnDL5DKO+mb6Flqqks5Eoa5ZnfUNzTwemF2j22GUux9A0HXxAzM7tDEnd/e73H2Yuw/r1KlTY3YVERHJahs3Qum29CcJkN5EYQXQI+F1d2BlPXUnUaPbwd1Xxh8/A6YSdGUArDGzrgDxx89SGLOISFbq0qULXbp0CTsMyRJHHOFcdHaLjJwrnYnCPKC3mfUyswKCZGB6zUpm1hYYA0xL2FZsZq2rngNHAYvjxdOBs+LPz0rcT0SkqRo/fjzjx48POwzJAlu3wptvwl57p38gI6RxwSV3rzCzS4BngShwr7svMbML4+WT41UnAs+5++aE3XcHplqwJmUe8LC7V91f9ffAo2Z2LvAx8O10XYOIiEi2eeMNKC839s/AjAdI88qM7j4DmFFj2+Qar+8H7q+xbRkwqJ5jrgfGpTJOEZFs98QTTwBw0kknhRyJhO3114PH/Yc0gURBRERSY9OmTWGHIFni9deh6x4xOndJ79LNVZQoiIiI5JDTvhOj//CtGTufEgUREZEcMuaISnoNSf9CS1V0UygREZEcsXw5zHk9RmVmhicAShRERHJC9+7d6d69e9hhSMjuuw++Oa6AsrLMnVNdDyIiOeCII44IOwTJAgsWwD59YrRsmblzqkVBREQkR5SUON8YkMF+B5QoiIjkhEcffZRHH3007DAkRKtWwerVxn4ZThTU9SAikgNKS0vDDkFCVlISPPbbX4mCiIiI1DBmDDw0dQv79leiICIiIjW0bg2DR5RTGcvseTVGQUREJAf8/voYby20jJ9XiYKISA7o1asXvXr1CjsMCcnatfCLn0eY+2rmOwLU9SAikgPGjBkTdggSogULgsd+AzM7PgHUoiAiIpL1qhKFb2R4ICMoURARyQkPPfQQDz30UNhhSEgWLIAee8Vo0zbz51bXg4hIDigvz9zdAiX7vP2Os9/+FaGcW4mCiIhIlpv1egVvL98SyrnV9SAiIpLlyisrabNbOOdWoiAiIpLFHn4YfvrjKBXh9DwoURARyQV9+vShT58+YYchIXjySfj381HyQhosoDEKIiI54OCDDw47BAlJSYln/EZQidSiICIikqU2bYL338/8raUTKVEQEckB999/P/fff3/YYUiGLVwYPO6nFgURERGpaeNG6L5nLNQWBY1REBERyVLHHw99hm+mrMJDi0EtCiIiIlmqvCJGWUUs1BiUKIiIiGShtWthrz2Nl54Nt/FfXQ8iIjmgf//+YYcgGfbii7BqldGxc3jdDpDmFgUzG29m75rZUjO7oo7yy81sYfxrsZlVmll7M+thZi+Z2TtmtsTMfpywz7Vm9mnCfsem8xpERLLB8OHDGT58eNhhSAY99xy03c3pN7BxAxmLSubSDbqkKo60tSiYWRS4HTgSWAHMM7Pp7v52VR13vwG4IV7/eOAn7v65mRUCP3P3BWbWGigxs+cT9r3F3W9MV+wiItmm6u6R+fn5IUcimeAOzz/vjBhVQTSa/H5FJXPpNWkCXaBbqmJJZ4vCCGCpuy9z9zJgCjChgfqnAX8HcPdV7r4g/vxL4B1SeNEiIrnmoYce4qGHHgo7DMmQ//4XVqwwRh7auNuLF8+ZhZWXpTSWdCYK3YBPEl6voJ4/9mZWBIwHHq+jrCcwBHg9YfMlZrbIzO41s3Ypi1hERCQLFBTA2d8vZ9SYxt0JavPI0Xh+AQ4pG9iQzkTB6thWX+DHA7Pd/fNqBzBrRZA8XOrum+Kb7wT2AQYDq4Cb6jy52flmNt/M5q9du3YnwhcREQnHPvvA5b/eQtdujft7Xzp0BMunTGMNrExVLOlMFFYAPRJed6f+wCcR73aoYmb5BEnCQ+7+RNV2d1/j7pXuHgPuJujiqMXd73L3Ye4+rFOnTrtwGSIiIplTVgavzK6krHznGgVKh47gU1idqnjSmSjMA3qbWS8zKyBIBqbXrGRmbYExwLSEbQb8BXjH3W+uUb9rwsuJwOI0xC4iIhKKOXNgzOgor7yQHSsYpC0Kd68ws0uAZ4EocK+7LzGzC+Plk+NVJwLPufvmhN1HAWcAb5nZwvi2K919BnC9mQ0m6Mb4ELggXdcgIpItBg8eHHYIkiHPPw/RqDNsZOPGJ6SLuYe7kEMmDBs2zOfPnx92GCIiIjs0YoRTQSUPPLF5x5XrMbDHbiXuPiwV8WgJZxGRHFBaWkppaWnYYUiarV8P8+fDQYdkR2sCKFEQEckJjz76KI8++mjYYUia/fvf4G4cfKgSBREREanhuOPgvkdK6T+occs2p1N2DKkUERER8gpiDD24casxpptaFERERLLA8uXwi184a1bVtV5heJQoiIiIZIGnnoKbboiybWt2JQrqehARyQHDhqVkpptksSefdHrtE2PPXrGwQ6lGiYKISA4YMGBA2CFIGm3cCC+/DN/9fvbMdqiirgcRkRywceNGNm7cGHYYkiZPPw3l5cbYI7NrICMoURARyQlTp05l6tSpYYchabJ6NfTYK8bAA7JnWmQVJQoiIiIhu/AHlTz5ypdEo43ft6hkLp1uu5mikrmpDwyNURAREQlVRQVs2lJOZCf+dS8qmUuvSROw8jI8v4DlU6ZROnRESuNTi4KIiEiIfvpTOOqwfGI7MdmheM4srLwMq6zEyssonjMr5fEpURAREQmJO0yf7uzWPrZTLQqbR47G8wvwaBTPL2DzyNEpj1FdDyIiOWDkyJFhhyBpsGgRfPSR8b1Ldm62Q+nQESyfMo3iObPYPHJ0yrsdQImCiEhO6Nu3b9ghSBpMmwZmzphxO79+QunQEWlJEKqo60FEJAesW7eOdevWhR2GpNj06c7AAyrp0MnDDqVealEQEckBTz31FABnn312uIFIyrjDuRdUso1tYYfSICUKIiIiITCD475Vxhel2bdscyJ1PYiIiIRg6lTnvQ+ybyXGmpQoiIiIZNimTTBpEvz1noKwQ9mhBhMFM4uY2eJMBSMiItIczJgBZWXGuPHZdxOomhoco+DuMTN708z2dPePMxWUiIhUd+ihh4YdgqTQ1KnQsVOMQUOzv+shmcGMXYElZjYX2Fy10d1PSFtUIiJSzd577x12CJIiW7fCjBnO+Ak7d3+HTEsmUfh12qMQEZEGrV69GoAuXbqEHInsqpIS2LwZDjs6u2c7VNlhouDuM81sd2B4fNNcd/8svWGJiEiiZ555BtA6Ck3BqFEw683NtCjO/m4HSGLWg5mdAswFvg2cArxuZienOzAREZGmaFtFJa3bVZKf/RMegOSmR/4SGO7uZ7n7mcAI4Kr0hiUiItL0vPoqjD/aWPGRhR1K0pJJFCI1uhrWJ7mfiIiIJHjsMZg9y9itffbe26GmZP7gP2Nmz5rZ2WZ2NvAvYEYyBzez8Wb2rpktNbMr6ii/3MwWxr8Wm1mlmbVvaF8za29mz5vZ+/HHdsldqoiISHjc4Z//dA4aXUGr1mFHk7wdLbhkwB+BPwMDgUHAXe7+8x0d2MyiwO3AMUA/4DQz65dYx91vcPfB7j4Y+AUw090/38G+VwAvuntv4MX4axGRJm3cuHGMGzcu7DBkFyxaBMuXG4fnwCJLiXa04JKb2T/dfSjwRCOPPQJY6u7LAMxsCjABeLue+qcBf09i3wnA2Hi9B4CXgR0mLiIiuaxHjx5hhyC7aOpUMHPGHrnz0yKLSuZSPGcWm0eOpnToiBRGV79k1lF4zcyGu/u8Rh67G/BJwusVwIF1VTSzImA8cEkS++7u7qsA3H2VmXVuZFwiIjnnk0+CX4lKGHLXXns53/5uGR067tz4hKKSufSaNAErL8PzC1g+ZVpGkoVkxigcBswxsw/MbJGZvWVmi5LYr64hnfV9d44HZrv75zuxb90nNzvfzOab2fy1a9c2ZlcRkazz4osv8uKLL4YdhuyCiaeW86v/t3Wn9y+eMwsrL8MqK7HyMornzEphdPVrsEUhPkbhQuCjnTj2CiAx9e0OrKyn7iS2dzvsaN81ZtY13prQFahz8Sd3vwu4C2DYsGG5M7xURESanCVLINKqAqI7f4zNI0fj+QVA0KKweeTolMXXkGTGKNwSH6PQWPOA3mbWC/iUIBn4Ts1KZtYWGAN8N8l9pwNnAb+PP07bidhEREQywh1OPdUpblvAPY/s/EDG0qEjWD5lWtMZo+DuFWZ2CfAsQQ51r7svMbML4+WT41UnAs+5++Yd7Rsv/j3wqJmdC3xMsGKkiIhIVpo/H5YsMa7+fdkuH6t06IiMJQhVkkkUDgMuNLMPCe4eaQSNDQN3tKO7z6DGmgsJCULV6/uB+5PZN759PaA5QiIikhPuvx8KWzhHH59b0yKrJJMoHJP2KEREpEHjx48POwTZCVu3wsMPO+PGl9O6TdjR7Jwdznpw948IBhYeHn9emsx+IiKSOl26dNEtpnPQv/8NX3xhnHjKrnc7hGWHLQpmdg0wDOgL3AfkA38DRqU3NBERqbJs2TIA9t5775AjkcY45hhn6gub6dU7N24pXZdkuh4mAkOABQDuvtLMcmiVahGR3PfKK68AShRyzZfbKtinb+4mCZBcF0KZuzvxBY/MrDi9IYmIiOS+P/wBzjnbqNj5FZuzQjItCo+a2Z+B3czsPOAc4O70hiUiIpK73OGOO5zW7SAvmb+0WWyH4bv7jWZ2JLCJYJzC1e7+fNojExERyVFz5sB77xm/uTF3BzFWSSrPiScGSg5ERESScN99UFTkHHVcbq6dkCjHG0RERJqH4447LuwQJEkbNsCUKc4Rx5ZT1ARG9SlREBHJAR07dgw7BEmSO5x6egXHfGtb2KGkhBIFEZEc8O677wLQt2/fkCORHSlqXcmPf1UadhgpU2+iYGZvEZ8SWZdk7vUgIiKpMWfOHECJQra77z5osVsZA4aHHUnqNNSiUNUh9oP444Pxx9MJlnEWERGRuPXr4Uc/ckaNjXJDc0gU4vd1wMxGuXvics1XmNls4DfpDk5ERCRX3HwzbN4MF1zaNMYmVElmZcZiMxtd9cLMDgaawDhOERGR1Fi3Dv74R+fo48rZt28s7HBSKpnBjOcC95pZW4IxCxsJVmcUERER4Kab0tOaUFQyl+I5s9g8cjSlQ0ek9NjJSiZR+NzdB5lZG8DcfaOZ9Up3YCIist3EiRPDDkEa0GWPGKedXc4+fVLXmlBUMpdekyZg5WV4fgHLp0wLJVlIpuvhcQB33+TuG+PbHktfSCIiUlPbtm1p27Zt2GFIPSactoUrfrM1pccsnjMLKy/DKiux8jKK58xK6fGT1dD0yG8A/YG2ZnZSQlEboEW6AxMRke0WL14MwIABA0KORBK99RbMnF3BIcdWEEnmX+9G2DxyNJ5fAAQtCptHjt7hPunQUNdDX4IpkrsBxyds/xI4L40xiYhIDfPnzweUKGQTd7j4YmfxkghPjYY2u6X2+KVDR7B8yrTsHaPg7tOAaWY20t3nZDAmERGRrPe3v8GsWca1N2xJeZJQpXToiNAShCrJNJRMNLM2ZpZvZi+a2Toz+27aIxMREclSX3wBl13mDBxSwYmn5P4dIhuSTKJwlLtvIuiGWAH0AS5Pa1QiIiJZ7JprYO1auPJ3W1I+NmFX3fWHwpQeL5npkfnxx2OBv7v752aW0iBERERyyaGHVxArrKDf/tm3uNLrs1N7v8dkjvakmf0X2AJcbGadgNTOARERkQadcsopYYcgcbGYM+DALfQZmn1JQtk2WPRGNKXH3GGDibtfAYwEhrl7OcENoSakNAoREWlQUVERRUVFYYfR7D30EPzs55VsLs2+JAFg8ZtRtm1Nbat/Uj0r7r7B3Svjzze7++qURiEiIg1auHAhCxcuDDuMZm3DBvjJT5yXXoJoalv3U2bZ0gjRqKf0mFk2BENEROqiRCF8v/pVcCvpX2bhAMYqJ3+nnPWfp/aYWXqpIiIi2aOkBO6805l0Vhnf6J+d3Q4ALQsitG0TQtdDFTO7tpH1x5vZu2a21MyuqKfOWDNbaGZLzGxmfFvf+Laqr01mdmlVDGb2aULZsY2JSUREpDHc4Uc/cjp0dH5wWfaO5X97UYRzTi3i7bdTe9zG9rKcAFybTEUziwK3A0cSrL8wz8ymu/vbCXV2A+4Axrv7x2bWGcDd3wUGJxznU2BqwuFvcfcbGxm7iIhIo5nBb68v473lFbRuE3Y09Xv91Tz+83KU9u1Te9zGJgqNac8YASx192UAZjaFYLZEYq7zHeAJd/8YwN0/q+M444AP3P2jRsYqIiKySyoroTxWSeeeW+m0V3rPVVQyd5fu61Dyeh59+jhduqS266Ghu0eeBjzn7usTNg9txLG7AZ8kvF4BHFijTh8g38xeBloDf3D3v9aoMwn4e41tl5jZmcB84GfuvqERcYmI5JzTTz897BCaHXc4/XQoJ8Y1NwQtC+lSVDKXXpMmYOXBnSKXT5nWqGShshLemJvHqaekPsiGxijsBfzDzP4THxdwINCYORd1RVtz/zyC5OObwNHAVWbW5+sDmBUQdHf8I2GfO4F9CLomVgE31Xlys/PNbL6ZzV+7dm0jwhYRyT75+fnk5+fvuKKkzF/+Ao88At17VqY1SQAonjMLKy/DKiux8jKK58xq1P7v/zfCl5uMMWNSH1u9iYK7/97dDydYuvlN4BxggZk9bGZnmtnuOzj2CqBHwuvuwMo66jwTX5thHfAKMCih/BhggbuvSYhrjbtXunsMuJugi6Ou+O9y92HuPqxTp047CFVEJLvNmzePefPmhR1Gs7FkSTCA8aBDyjnn4m1pP9/mkaPx/AI8GsXzC9g8cnSj9i8vMw4dE+PQQ1Mf2w7HKLj7lwQDCacCmFk/gj/gfyVoBajPPKC3mfUiGIw4iWBMQqJpwG1mlgcUEHRN3JJQfho1uh3MrKu7r4q/nAgs3tE1iIjkuiVLlgAwfPjwkCNp+kpL4dRTnaJi5//dmpk1E0qHjmD5lGk7PUZh/yGVvPAi5Kd29WagEYMZzaxdfIXGtwkGJNbZ5F/F3SvM7BLgWSAK3OvuS8zswnj5ZHd/x8yeARYBMeAed18cP18RwYyJC2oc+nozG0zQjfFhHeUiIiI77e234dOV8Ps/baFj59SuctiQ0qEjdmoQozuUb4uQH01PRtOYWQ8vAgc05uDuPgOYUWPb5BqvbwBuqGPfUqBDHdvPaEwMIiIijdHrG9uYMXsrrVqHHUlylr0f4VtHtuLxx+HEE1N//MakH7q3tIiINFlvvgnX/V+MlV/kTpIAMP+1PGIxY//903P8BlsU4lMQIUgS2iW8po5pjCIiIjlp2TI4+mjHInDoN6HNbmFHlLyS16PssYez997p+X9+R10PvRKeFwI9CZKGzHXaiIgIZ599dtghNFlr1sBRRzlby+CBxzfnVJLgDgvm5nH4WEvbFM4GEwV3/3XVczOb4O6/SU8YIiIimbdpExxzjLNyJdw1ZTN7987eGz7VZfVK47PVEUaNSt85GjOYUWMURERC8uqrrwJw8MEHhxxJ0zJzprPkbbj17lIGHVAZdjiN1qIl/O76CsaPb+wdGZLXmCNrtoGISEjee+89QIlCqlRUQDTqDDp4CzNmVdC5S272qLdr71z6YygqSN85kp71ULW+gYiISC57/30YNMh54B9b2bilPGeTBIDXZkXZsDYNqywlyMB6UyIiItnh5ZfhwAOdlascy8u9roZEZdvgB2cV84c/pHdkgBIFERFp8tzhrrvgyCOddh1jPPzkVxwwItxEoahkLp1uu5mikrk7tf87S6KUlxkHHZTiwGpozBLOxe6+OZ3BiIhI3XTnyF3z7LPOBRcYo8ZUcP0dpbRuE248u3pbaYBFJUGXw8iR6Yhwux0mCmZ2MHAP0ArY08wGARe4+8XpDU1ERKqcfvrpYYeQc8rKgtUW+w+qYO/BW7jxzgjjjqkgmt4u/aQk3lYagttKNzZReHNBlL32crp2Db/r4RaCu0SuB3D3N4E03MhSRERk17nDjBkwZIhz+Din5N1StlXEOOq47EgSYNdvKw3w1oI8Djoo/SsXJNX14O6fWPUln3J7BIiISI6ZOXMmAGPGjAk5kuxVXg6PPALXX++89ZbRrYdz3R+3sFu77JvVsKu3lQZ4dPo2OrVqmYboqksmUfgk3v3gZlYA/Ah4J71hiYhIouXLlwNKFOoSi0EkAm8tiXHGGRH27Rvjf2/ZxjETysnmoR07e1vpKn37ROiUgZtXJZMoXAj8AegGrACeA36QzqBEREQa8uWXMG0aPPywU9TKuWXyVgo6lfPgtCj7D64k0sTn9D09LZ9W0TwuvjD959rR3SOjwK3urlE0IiISuhdfhLvvhunTnS1bjK7dnBNPLeOL0nKAnFyGeWdMeaCAFnmR8BMFd680s05mVuDuZekPR0REZLuKCnjhBTj8cIhZJU8+4zz3fITjTy7n2BPLGTys6bce1FReBm+/FeXiizJzC6Zkuh4+BGab2XTg63UU3P3mdAUlIiLVFRUVhR1CRi1ZAg88AA8+6Kxebfz5wVJGji1n0rlw1g8gL333QMp6774dZdtWS/v6CVWS+VavjH9FgAwMmxARkZpOOeWUsEPIiM8+g+OOc+bNM/LynEMOr+Dnvylj6MgKAIpbhRxgFlj0RjDHM90rMlbZYaLg7r8GMLPWwUv/Ku1RiYhIs7BxI0ydCqWlzhnnVLAlUk6L1vlcfk0Fx55YToeO2Te1MWyrPo3QvbvTo0dmuh7MveE3wcwGAA8C7eOb1gFnuvuSNMeWMsOGDfP58+eHHYaIyE574YUXADjiiCNCjmTXvfkmPPkkPP+8M2cOlJcbgw6o4MFpuktAMvKiRq92bWjRov46Zlbi7sNScr4k6twF/NTdX4qffCxwN6CboouIZMiKFSvCDqHR3OHTT6GkBBYsgKuuggqv5JY/wgP3RtlvQIzvfr+CcceUs//g5jFbIRWKCqINJgmplkyiUFyVJAC4+8tmVpzGmEREJEd8+SWsXAmrVsEBB0CbNsHyyb/9rbN0KaxbFzSPRyLOgUd+RY+eMU6/0Pjej6B9h+bTrVBUMneXVmGsMvvlPP7xQAv+ej9065a6+BqSTKKwzMyuIuh+APgusDx9IYmISJi2boUPPoB164Kv9euDQYYTJ0L//vDKK8655wbJwebN2/vJH3p8KwcdUsHqr4xYtJBDj4zRt18l/favpE+/SlrGVxvu0rX5JAiQmjtFVil5PcorL0do337HdVMlmUThHODXwBPx168A30tbRGmwahX89rfVtx16KIwZE2TDt95ae58jjghu3bl+PdxxR+3yb34zyJ5XrYJ77qldPnEiDBgAH34IDz5Yu/zUU6FPH3jvvWBt8prOOAN69oTFi4OBPjV9//vQtWvQnPevf9Uuv/hi6NAB5swJ5iDXdOml0Lo1zJwJr7xSu/x//gcKC+H55+G112qXX3VV8PjUU/DGG9XLCgrg5z8Pnj/xRDDNKVGrVvCTnwTPp0yB99+vXt6+PfwgvvbnX/8KH31UvbxLFzjvvOD53XfD6tXVy/faC848M3h+++3w+efVy3v3hkmTgue33gpf1Rie279/8P4BXH99cAe6REOGBO8/wP/+7/btVbdDOfDA4POzbRvceGP1fc3gkEOCry+/hNtuo5Zx42DEiCDump8tMzjqKBg0CNasgb/9rXb5scfCN74BK1bAY49t314V3/HHQ69ewWez6rNTVW4WlHfrBkuXwksvbS+PRLaXd+wYfHZff736vmbB96ZNm6D8rbeq7xuJwJFHQosWwfGXLw+2JX6NHBlMffv44+CPUyQC0WjwFYnAfvsFx1q3DjZv3r69qk7HjkHMW7ZsX9o38StbbgqUChUV8MUXsGFD8NixY/DelpbCXXfBpk3B87Ky4Ov44+Hoo4OfmfPPD75HW7Y4X30F6z+Hq69xJp1eyYISGDu69trHLdptwdqV83mFsW+/QkaOdTruHqNTZ6dj5xh79o6xeZsz/GAYfnBFxr8f2SoVd4qs8vaiKAMG8HXSlQnJzHrYQHB/h5y1ciVcfXX1bT+6rIwe/cpYs9q4+uraPSlbYtvYfd9yln9Qd3mkaCu79ajgrSURrr669vzm1p22UrR7Ba8tjHL11bXf0S69tpDXrpKZc+su32f/LcSKK3lhVh5XX127M2rgyFL2z4vx9Et1lx985GZ6xZwnn8vnumsLa5UfceJmdu/iPPFUAX+8saBW+YTvfkWrVvDIEwX8ZXLt8tMvDP66/u3RQh55sPovlOJi59vnBIOS7n+okCefqF7eefcYE75bCsDd97Xg389V/xj23DvGMacE5Xf8uSWvv1r9N3v/gZWMO3ELAH+4rSVLFlUvP/DgSkYfE5TfeHMRHy6rvhrL4UdVMGLcVgCu+30Rn62pXn78SeUMGr0NgN/8prjaf0wAp55Rzn4jgvKrrqo9V+vci8rZZ3AZX30Fv/pV7c/Ojy4vo/t+5axZbVx5Ze3PzpW/3kanvStYttT4+c9rl5dHt9G2WwVvLY5w2WW1Pzt5rbbSomMlr5VE+MlPape36riVSJtKXpwd5ZJLan922nXdysEtYzz97yg/uqD2Z+epF7cwcLDz+FN5XPmz2p+NV+ZtZe99nQcfyeN/r679x+aN/26hSxfjzrvzuPn62r+Cln26leLW8P+uz+PPt9cuX7tpG5GI8dPLozx4f/X3vlUrZ8VnwR+oc8+K8vg/qr+3Xbo67y8P+sJP+3aEZ562rxMIM+jdB16bGwPgpBMjzHl1e5kZDBoM/3o6KD92fIQli6snYQeNhL8/EsMMDhsT4aMPt5/bgXHjnLv/Evw3PXRwhDVrgmSm6mvit5w7/xwcf889omzdGiRN0SgcfXQbevZytpRVUlHpdGgbpby8+mfz4h9VcOWvy9mwwfnJT4LPTn6BU1AQPLbuVMZeg4Lfe+99UERhC6ewBezWyenZx7FWZXy4rpL8dnDDHfm0bRejXXtnt3bBV2ELqIzBPn2c62/fUuu9kbpV3SkSynb6TpEQjPl4+608Tv5WZmY7VElm1sPzwLfd/Yv463bAFHc/Ov3hpUa/gUP84Sdfrrat6r8b9+AHtKZ0l1f98tlReSwW1Mm28qr/yna1vLKe8UuZKq+o458es8aXJ15j1X+t7jX2j9exSPDL3z1YYS2RO0TzgvJYLGiVSCwDyM8PviorYeuW2uWFhZBfEJy7dHNwXvftv1iKip38AijbBl99ZcF+vn3/Nm2dgsLgv81NX1gQtm//rHbqHJR/uQk2rI/g8XNXHaf7njHyC2DD58baNfb1flXlvfeLkZ8Pqz41Vq+MBGWx4A+QOwwfWUk0Ch+8F2HFxxFilUFZLAaxSmP8CcFSvW/Mi/LhBxFiHmyPxSAadU4+PSif+UIey5ZGiFVuj6FlS+eM84Jv+vTH8lm+NEgkKuN12rWPcc7FQfnD9xXw8YcRPLb9+rrs4Zz7g+BNuftPhaxeaV9/39yNvXpVcvaFwf5/ur6Q9esiuG9PJPrsV8l3vheU33pdIaWbg0QFg2gE9tu/kuNOCuK/7YZCtm4xKmNQWRG83weMqOSbE8txhz/+XyEFhcH7VfXVc58Ye/WK4Q5fboSiVs17YaJskooxCis+No4d1YbJk+GCCxqum8pZD8kkCm+4+5Adbctm/QcO8SkzXg47DBERkZ323jsRbv5NMbf/KcLgwQ3XzfT0yJiZ7enuH8dPvhdf/28kIiKZ8OZrLwMw6KCxocYh4emzX4znXohRXJjZm1skkyj8EphlZjPjrw8Fzk9fSCIiUtPG9WvDDkFCVlEBLfMzPxp3h2mJuz8DHAA8AjwKDHX3Z5M5uJmNN7N3zWypmV1RT52xZrbQzJYkJCOY2Ydm9la8bH7C9vZm9ryZvR9/bJdMLCIiIrkqFoMjhrXmuusyO5ARkkgUzGwUsMXdnwLaAlfGux92tF8UuB04BugHnGZm/WrU2Q24AzjB3fsD365xmMPcfXCNfpYrgBfdvTfwYvy1iIhIk/XJRxE+Xx+hS5fMnzuZjo47gVIzGwRcDnwE/DWJ/UYAS919mbuXAVOACTXqfAd4omr8g7t/lsRxJwAPxJ8/AJyYxD4iIiI5a8mbQZfDsJQMT2ycZBKFCg+mRkwA/ujufyC52013Az5JeL0ivi1RH6Cdmb1sZiVmdmZCmQPPxbcnjonY3d1XAcQfO9d1cjM738zmm9n8DZ+vTyJcEZHs1aptO1q1VU9rrigqmUun226mqGRuSo739qIoLVo4/frtuG6qJTOY8Usz+wXB0s2HxrsUaq+iUltdHSk1Z0vkAUOBcUBLYI6Zvebu7wGj3H2lmXUGnjez/7p7HWsI1s3d7yK4oRX9Bw7RLA0RyWkHjM79u0Y2F6lcsrnK229FGTw4WEMl05JpUTgV2Aac6+6rCVoFbkhivxVAj4TX3YGVddR5xt03u/s6guWhBwG4+8r442fAVIKuDIA1ZtYVIP6YTHeFiIhIRiQu2WzlwZLNu+rYEyo4//zMD2SE5GY9rHb3m939P/HXH7t7MmMU5gG9zayXmRUAk4DpNepMAw4xszwzKwIOBN4xs2Izaw0Qv1PlUcDi+D7TgbPiz8+KH0NEpElbMOsFFsyq48YtknWqlmz2aHSXlmxOdN6FMb4X0l2W0ra4p7tXmNklwLNAFLjX3ZeY2YXx8snu/o6ZPQMsAmLAPe6+2Mz2BqZasO5pHvBwfJomwO+BR83sXOBjas+UEBFpcr7auCHsECRJpUNHsHzKtJTcVhpgzSoj0i5K95CGqKR1FXB3nwHMqLFtco3XN1CjK8PdlxHvgqjjmOsJxjSIiIhkpdKhI3Y5Qahy3+RC/jmlgE2bwrn7ab1dD2Z2mZn1qK9cRERE0u/tRVGGDAnvFukNjVHoBrxqZq+Y2UVm1jFTQYmIiEiwbPN/l0QZPjycgYzQQKLg7j8B9gSuAgYCi8zsaTM7s2qgoYiIZEbbDp1o26FT2GFIhi1fGmHrFgtloaUqDY5RiC+0NBOYGR+YeATBYMLJQFH6wxMREdBdI7NZUcnclA1crOntReGtyFglqcGMZrY/wfTGU4H1wJXpDEpERCQXpGNxpUQHHVLBPffG6N07s7eWTlRvomBmvYHTCBKESoJ7NRwVn5EgIiIZNO/lYIb48LHjQ45EEiUurgTB4kqpTBS67OGMG2ZYeEMUGmxReBb4O3Cqu7+VoXhERKQOWzZ/GXYIUoeqxZWgLGWLK1UpLYXnphXS6Uxj991TdthGayhROJrgBkzVkgQzOwRY6e4fpDUyERGRLJfqxZUSzXs1j6v/pwWjhpK1icIt1D0WYQtwK3B8OgISERHJJalcXCnRrJfyKC52Ro0Ksd+BhtdR6Onui2pudPf5QM+0RSQiItLMucPsl/M5/HCjsDDcWBpKFFo0UNYy1YGIiEj92nfuSvvOXcMOQwhmOnS67WaKSuam7RwffxhhxccRxmfB2NWGuh7mmdl57n534sb4zZhK0huWiIgkGjA8dYPkZOelezpklcULg/UTsj1RuJTgDo6nsz0xGAYUABPTHJeIiEjWSfd0yCrfnFjO2afE6LJ7eOsnVKk3UXD3NcDBZnYYMCC++V/u/u+MRCYiIl977cWnADho3HEhR9K8pXM6ZKKWBVG6dA4/SYAkVmZ095eAlzIQi4iI1KNs65awQxDSOx2yytxXozx8T0vuuwf23DPlh2+0pJZwFhERkUC6pkNWmfl8PrNfidAxS+7ZnB3tGiIiIgLA7Jl5jBkDRVly60UlCiIiIvXIxFTIRCtXGMvejzJ+fLiLLCVS14OISA7otEcWdFY3M5maCpno1ZnBn+VjjknraRpFiYKISA7Yb8iBYYfQ7GRqKmSiNm2dCSc6fftmT4uCuh5ERETqUDUV0qPRtE6FTHTCxBj/nBrubaVrUouCiEgOmP3sVABGHa317jIlE1MhE32xwdijfX5az7EzlCiIiOSAyoqKsENoltI9FTLRX24v5PGHCli7Flo0dLelDFPXg4iISFymZzlUcYeXns1j1KjsShJALQoiIiJAOLMcqix7P8LHH0b5xc8zcrpGUYuCiIgI1Wc5WHkwyyFT/v1sMDbhhBMydsqkqUVBRCQHdNlz77BDaPIydcOnurz0bB4jRjh77JFF0x3ilCiIiOSAPvsPDTuEJqeoZG61GQ2ZnuWQ6IY/ltEqkiVrNtegREFERJqd+sYjZHKWQ6IDh+bRrjjjp01KWscomNl4M3vXzJaa2RX11BlrZgvNbImZzYxv62FmL5nZO/HtP06of62ZfRrfZ6GZHZvOaxARyQav/OsfvPKvf4QdRpMR5niEmu6fXMD8V7P3//a0RWZmUeB24EhgBTDPzKa7+9sJdXYD7gDGu/vHZtY5XlQB/MzdF5hZa6DEzJ5P2PcWd78xXbGLiEjTFuZ4hERfboI/Xd+CaJlx5JGhhLBD6UxhRgBL3X0ZgJlNASYAbyfU+Q7whLt/DODun8UfVwGr4s+/NLN3gG419hUREUlazTEJYY1HSDTrpXzKy40TTwzl9ElJZ6LQDfgk4fUKoOZdTfoA+Wb2MtAa+IO7/zWxgpn1BIYArydsvsTMzgTmE7Q8bEht6CIi0pQ0NCYhTC89m0fnzs6BB2bfbIcq6RyjUNdVe43XecBQ4JvA0cBVZtbn6wOYtQIeBy51903xzXcC+wCDCVodbqrz5Gbnm9l8M5u/4fP1u3IdIiKSY2qusJhNYxKqlG2D/7yUzwknGNFo2NHUL50tCiuAHgmvuwMr66izzt03A5vN7BVgEPCemeUTJAkPufsTVTu4+5qq52Z2N/BUXSd397uAuwD6DxxSM0EREckp3Xr12XElAepuPciWMQmJPv0kwm67kdXdDpDeRGEe0NvMegGfApMIxiQkmgbcZmZ5QAFB18QtZmbAX4B33P3mxB3MrGt8DAPARGBxGq9BRCQr7NNvUNghZLXE8QeJrQcQtB6sveSnWTEmIVGvfWO8tzRGi/wsbk4gjYmCu1eY2SXAs0AUuNfdl5jZhfHyye7+jpk9AywCYsA97r7YzEYDZwBvmdnC+CGvdPcZwPVmNpigG+ND4IJ0XYOISLaoqCgHIC8v+25DnGk1ByXWbEFYee11dbYeZMOYhCqxGORFjaLC7E4SIM0LLsX/sM+osW1yjdc3ADfU2DaLusc44O5npDhMEZGs9+qz/wTg0G9+O9xAQlZXt0LNFoS8DZ9nXetBTW/Mi3L5RcU8PQOGDQs7moZl7woPIiIi7Lhboa7xB9nUelCX557K56svoW/fsCPZMSUKIiKSNXamWyFb1kRIVmUlvPB0Pscea7RuHXY0O6ZEQUREssKudCtkewtCojfmRVm7JsIpp4QdSXKUKIiISGiaYrfCjjz3VD4tWjjf/Gb2LrKUSImCiEgO2Kt3v7BD2GXNoVshGcdNrGDMQYW0ahV2JMlRoiAikgP26tM/7BCqqeuPfs0/5onbgGbRrZCMw8dG6No27CiS1ywShby1aygqmZvUhzmVddJ5bNVRHdVJrk5TsW3rFgAKW7RM6XF35vtaV0vAHtf+oloSANUTgw0nT2oW3Qo78sLTeQwfkE/XkWFHkrxmkSjkr15Fr0kTkvowp6pOOo+tOqqjOsnVqe+PXC7+IzDvn38numkj44aOStm5dvb3Vs2WgLYzptdKAoBq24Bm0a3QkMpK+N2VLTn8sAijlShkHytP7sOcqjrpPLbqqI7qJF+nqfwj0PKdxRCL0euG61N2rrr+y0/m+1qzJWDjsSdQPHfO16+rkpDEOl+cfBpfnHxak+9WaEjJ61HWr8ud2Q5Vmk2ikOyHOVV10nls1VEd1Umuzs7855ut/wgQi31dN1Xnqvk9TPb7WldLwLZv9KuVBNQ33qC5eu6pfIqKnGOPzY3ZDlWaRaJQ3qUryyc/kPSHOVV10nls1VEd1UmuTlP5R4DpUyAWS+m56vsvP5nva82WgLpaBppTa8GOVFTAi0/nc9xxRlFR2NE0jrk3/Tsw9x84xKfMeDnsMEQkBE1ljMKsKfemfIyC/ohnzgfvRfjuhFY8cL/xrW+l/3xmVuLuKbmLhBIFEZEcsGLZuwB03zsHbg4gderephXFLaIUFKT/XKlMFJpF14OISK5TgpC7ysuhTXGUdm2y/5bSdYmEHYCIiOxY6VdfUvrVl2GHITvhb38p4PixRWzaFHYkO0eJgohIDpg/8xnmz3wm7DCkkWIxeOyhQjp2MNq0CTuanaNEQUREJE1e+08en3wY4aKLcmtKZCIlCiIiImny6IMFdOrkGZnpkC5KFERERNJg9Spj5gt5nHOOUVgYdjQ7T7MeRERE0qB9e+fPf6nkiLG5/ac2t6MXEWkmeu8/NOwQpJGKi41zzoxiuTs8AVDXg4hITui659503XPvsMOQJL06M48H72zJ1q05niWgREFEJCd8+cXnfPnF52GHIUm6/88FPHhfXkZWYUw3JQoiIjngjdkv8sbsF8MOQ5KwYG6U1/6Tz8UXG9HcXIyxGiUKIiIiKeION/22BXvs4fzwh2FHkxoazCgiIpIiz0zP562Fedx7LxQXhx1NaqhFQUREJEX23jfG97/vnHlm2JGkjloUREREUuSwUfmcfHTuz3RIpBYFEZEc8I3BB/KNwQeGHYbUY8Pnxu+vaknZl01gmkMNaU0UzGy8mb1rZkvN7Ip66ow1s4VmtsTMZu5oXzNrb2bPm9n78cd26bwGEZFs0LnbnnTutmfYYUg9/nxrIVP+ms+GDU2rNQHSmCiYWRS4HTgG6AecZmb9atTZDbgDOMHd+wPfTmLfK4AX3b038GL8tYhIk/bF+s/4Yv1nYYchdfhwWYRHHyzgvPOMfv12XD/XpLNFYQSw1N2XuXsZMAWYUKPOd4An3P1jAHf/LIl9JwAPxJ8/AJyYvksQEckOi16byaLXZu64omRULAa/+XlLWraEX/867GjSI52JQjfgk4TXK+LbEvUB2pnZy2ZWYmZnJrHv7u6+CiD+2DnlkYuIiCThkb8WMP+1PG691dh997CjSY90znqoq6PG6zj/UGAc0BKYY2avJblvwyc3Ox84H6Brtx6N2VVERCQpJ5wYo1XE+d73mt7YhCrpTBRWAIl/obsDK+uos87dNwObzewVYNAO9l1jZl3dfZWZdQXq7LRz97uAuwD6DxzSqCRDRESkIZWVYAaD+7bgoCubbpIA6e16mAf0NrNeZlYATAKm16gzDTjEzPLMrAg4EHhnB/tOB86KPz8rfgwREZGMufeOQi6Y1JrKsiZwM4cdSFuLgrtXmNklwLNAFLjX3ZeY2YXx8snu/o6ZPQMsAmLAPe6+GKCufeOH/j3wqJmdC3xMfKaEiEhT1n/YqLBDkLh3344w+ZZCTjrJmswyzQ0x96bfKt9/4BCfMuPlsMMQEZEcV7YNvnN8KzZ+HmHJEqNDh7AjqpuZlbj7sFQcS0s4i4jkgPVrgmFaHXbfI+RImrc//l8L3nsnypNPkrVJQqppCWcRkRywZP5slsyfHXYYzVppKfznxXwuvhiOOy7saDJHLQoiIiJJaNvGWLDAKMgPO5LMUouCiIhIA9zhsYfy6dCiiN3aGkVFYUeUWUoUREREGvD4w/n85ooipj/ePBvhlSiIiIjUY/nSCNf/uiVHHeV873thRxOO5pkeiYjkmIEHjQk7hGbn8/XGJd8rplUx3H+/EWmm/1orURARyQG7ddD97zLt6p+1ZO1q46WXjK5dw44mPEoURERywGeffgxA5257hhxJ83HzzbBmhXHQQWFHEi4lCiIiOeC/C18HlChkwuyX8/jWhDw6dc+HgWFHE75m2uMiIiJS24N3F3DRGcX8e0Zh2KFkDbUoiIiIAPdNLuCW37XkW9+Cb+t2g19ToiAiIs2aO9x6XQvuu7OQb38bHnyQZjvDoS76VoiISLP2/n8jPHh3ARdeCH//OxSq16EatSiIiOSAIaPGhR1Ck+MOZjB2ZAElJcb++wevpTq1KIiI5IDWu7Wn9W7tww6jyfjvkginjG9FyUvFdGhVyMCBShLqo0RBRCQHrPp4Gas+XhZ2GDmvogLu+kMh3zmuFRs/j9CpvRrWd0TfIRGRHPD+WyUAdN1z75AjyV3Ll0b45aUtWfxmHpMmwW23QYcOYUeV/ZQoiIhIs7Dsv/msWhHlkUfglFPCjiZ3KFEQEZEm6cNlEe75UyG9e8Ovr4kw4II8zjoV2rULO7LcokRBRESajNJSeOnZfGb8M5/ZL+dRWAhD/scojk95VJLQeEoUREQkp5VuhpZFwayF/7uqiKmP5tOjh3PFFcaPfwyddePNXaJEQUQkBwwbMz7sELJGeRkseiPK67PzeH1WHm+9EeWF/5Rx4NA8rrkyyqU/gNGjTasrpogSBRGRHFDUqnXYIYTGPUgOCgrhzQVRLjitmNJSIxJxhg6Fyy83enYtpEU+DBoUdrRNjxIFEZEcsGLZuwB037tvyJFkRnk5lLwW5fkZ+bz8fD5nf7+CX15p7DE6ytlnG0ccAWPHmsYcZIASBRGRHLDsnUVA008U3OG3v2jBCzMK+GKDUVTkHHOMcfjoAtoWAUVw++1hR9m8KFEQEZHQfLbaeOXfeXy8PMovf11Om5Z5WHk+xx9nnHQSHH200bJl2FE2b0oUREQko+a8kse0f+SzaEEeKz4ORhzuvbdzx82FtGwJjz4ScoBSjRIFERFJqfXrjMULo3y2OsJHyyJ8GP+67+9b+UbfCF+szueN16OMHGn8+Idw9NEwYIDppkxZqlkkCm+/FWXQnm2qbfvhZWX86PJy1qw2Rg8qqrXPz68p4/sXl7P8A+Oog2uX//aGbUw6s4LFb0aYeFTtdrGb7tjGCd+q4LXZUc44qUWt8sl/3cq4oyt58dkoF55Zu/zBJ7Zy0KhKpj+ex88urn1z9KnPbWHAoBhT/prHVZfXLn/u1VJ67ePcc0c+//frglrls94sZfcuzh9vyOdPN9Yuf+ODzbRqBdddU8C9k/Nrlb+/ZjMAv/pZIY/8rfrHqKgY3lwWlP/0wkKenFq9vPPuzuxFpQCcf0YLXnouWq28597O83OC8tMntmDuq9XLBwyKMfW5LQBMPKolSxZVnwM14uBK/vbEVgCOOriID5dV/+1z2FGV/PmvQfmoQUWsXVO9/LiJFdx85zYAhuxbTOnm6td+yukV/PbGoLxv1+Kvt1f9kjv7/HKuuLaMr76C4X2Lqenin5ZxyU/L+WyNcdjw2p+ty39Vxtnnl/PhMuOEw6uXm8GvfreVb3+ngiVvRTj9xKJq5wb43U1bOeaECua/HuWis1puLzcH4Mbbt3LIYZXMejnK/1zS4uvyoA784e4tHDA8xgtP5/G7XxVCvCwSCR5vu6+U3t+I8fS0PG67sTDYN7L9GLfdv5luPZzpj+Xzt78UEKnaNxI83npPKe3aB+VPPZFPJL5/NBrsf/0dpbRsCU8+ns9//p1HNAqRKEQjweM1/7cFM3j2yXzeeiMalEWdaBQKW8B5Pwzem5efz+OjZZF4eXDu4lbO8d8qB2DenChr10TIy/Ovz9GqtTN8ZCUA774doXSzEc2DvKgTzYPiYqf7XsH3cd1nRmUl5OVDXhSieU5+fhBDrqq67XLZNvjkowhffWV8tcnY/BVs2mQMO6iSnnvH+OC9CH++tZBNGy342hQ83jp5G4cd7sxbHOWH3wt+L7Vo4fTpAwcOM7q3K2aP3eCnP4LLf6K7NeaKtCYKZjYe+AMQBe5x99/XKB8LTAOWxzc94e6/MbO+QGLj097A1e5+q5ldC5wHrI2XXenuMxqKo2tX+P73a/yxOKyQfToV0qkQfvWr2vscfURQ3tbqKR/Tgn06Qct+dZePOzgojwyqu/zQYS3ZpxOUD6u7/OBBLenVCcYdXHf58H5F7NEJjh4D2+ooH7xvMR07wnFHQH5l7fIBexXTpg2ceAy0reMX2zf2aEVhIZx8AuzRsXb5Pp1aATDpW9C7Z/WygoLt5d+dBIP6Vy9v3dq+Lj/nDBg1onp5hw7by88/B446vHp5167Rr8svOh9Wrqxe3rNn3tflP/wBrF9fvbxv3+3lP70Uvvyyevn+++ezT6cgObrsZ1BWVr182LDt5VdcEWxz314+alQB+3QqYFsbuOwyajn88EL27VxI5xbwk0url7nDUYcG5W2AH/ygehnA2ANbsm9nKOwD559X/dwAo4e2pPfuwH5w5hlBeVAn+BkY0b+IPrvD1v3g2ydvL6/6OqBPMX27wIb94OijqpfFYrB/z1b06gqf7gsjhgXbqsrcYUCPNuyxB7zbHXr1CLZXVm6v079bGzp0gLmtIVLpX5dX1dmvaxtatnSmb4al7wR/jGOVUFEZ7N+nS5A43rnYePxh+3rfigpo1Qp+9+ug/OUZUZ54rHoS2bWrc9H3g197P/tLHs8/W718394xZpeUgcP5vyngtdnVywcOjvGvfwdJ5ne+14LFNZLUg0ZV8vA/t+LuHDWqiE8+NvKiQTIRjTqHHl7J//1pK45z2nFFbNpoXycy0TznkMMquOTybbjDD79XhHswJbCgwGnZ8mSGDK8Agu/DdVe1IBaDbVuNsm2wbZtx+NHlTDilnC83wbmntKJsW/B9cw/e+7PO28bp55SzZpVx2vHFX78nZWVQutn4xbVlfO+8Ct5dHmHiuNr/AN02uYLDD4TNK42l/43Qvh1062IM2C9Y8XDgvi3ZswOceCwMeB322AP22KP2egZ5zeJf1KbDvOZvmVQd2CwKvAccCawA5gGnufvbCXXGApe5+3E7OM6nwIHu/lE8UfjK3W9MNpZhw4b5/Pnzd+YyRCSHxGJ8/Udp69bgD2BVIlGViHTpEpR/+mmQJFZUBF+VlZCfDwMHBuUlJUGSWVVeXg5t28IRRwTlU6fC2rXbyysqoFs3OPXUoPymm4Ly8vLt5QMGwEUXBeUXXggbNlQ//5gxcPnlQflhhzmbNsG2bbBla/B42nec3/6vU1EBPXtEiESgRUto0QKKWsLZZ8OllxqlpTBpUrA9L297a8/JJ8OJJwbXddllwfcqEgmuu3VrOOEEGDUKNm2Cp58OrrdNm+2PnTtDYe0GTMlCZlbi7sNScqw0JgojgWvd/ej4618AuPt1CXXGsuNE4SjgGncfFX99LUoURKSZWbhwIQCDBw8ONQ7JDalMFNK5wGU34JOE1yvi22oaaWZvmtnTZta/jvJJwN9rbLvEzBaZ2b1mVudyG2Z2vpnNN7P5a9eurauKiEjOWLhw4dfJgkgmpTNRqGuYSs3miwXAXu4+CPgT8M9qBzArAE4A/pGw+U5gH2AwsAq4qa6Tu/td7j7M3Yd16tRpZ+IXERFp9tKZKKwAeiS87g5UG3bm7pvc/av48xlAvpklDp07Bljg7msS9lnj7pXuHgPuBmoMhRMREZFUSWeiMA/obWa94i0Dk4DpiRXMrItZMEHGzEbE40kco34aNbodzKxrwsuJwOI0xC4iIiKkcXqku1eY2SXAswTTI+919yVmdmG8fDJwMnCRmVUAW4BJHh9daWZFBDMmLqhx6OvNbDBBN8aHdZSLiIhIiqRt1kM20awHEcl15eXBQlH5+bUXQBOpKZWzHrTshYhIDlCCIGFJ5xgFERFJkXnz5jFv3ryww5BmSImCiEgOWLJkCUuWLAk7DGmGlCiIiIhIvZQoiIiISL2UKIiIiEi9lCiIiIhIvZrFOgpm9iXwbooO1xbYmKK6DZXXVVZzW0OvE593BNYlEW8yMnH9yVx7zW31fS9See31xbGzdXfl+rP9vU+mflO+fv3sh/+zD03z+pN97/u6e+sk422Yuzf5L2B+Co91V6rqNlReV1nNbQ29rvE8p64/mWtv6HoTX6fy2rPp+rP9vW/u16+f/fB/9pvq9Yfx3qvrofGeTGHdhsrrKqu5raHXjYmzMTJx/clce81tO/repEq2XH+2v/fJ1G/K16+f/Z0r18/+jrdl/L1vLl0P8z1FS1nmouZ8/c352kHXr+vX9TfX60/ltTeXFoW7wg4gZM35+pvztYOuX9ffvDXn60/ZtTeLFgURERHZOc2lRUFERER2ghIFERERqZcSBREREalXs08UzGxPM5tuZvea2RVhx5NJZnaImU02s3vM7NWw48k0M4uY2e/M7E9mdlbY8WSamY01s//EPwNjw44nDGZWbGYlZnZc2LFkkpntF3/fHzOzi8KOJ9PM7EQzu9vMppnZUWHHk2lmtreZ/cXMHkumfk4nCvE/7p+Z2eIa28eb2btmtjSJP/59gH+5+zlAv7QFm2KpuHZ3/4+7Xwg8BTyQznhTLUXv/QSgG1AOrEhXrOmQout34CugBc3z+gF+DjyanijTI0U/++/Ef/ZPAXJq+mCKrv+f7n4ecDZwahrDTbkUXf8ydz836XPm8qwHMzuU4BfdX919QHxbFHgPOJLgl9884DQgClxX4xDnAJXAYwS/NB909/syE/2uScW1u/tn8f0eBb7v7psyFP4uS9F7fw6wwd3/bGaPufvJmYp/V6Xo+te5e8zMdgdudvfTMxX/rkrR9Q8kWOK3BcH34qnMRL9rUvWzb2YnAFcAt7n7w5mKf1el+HffTcBD7r4gQ+HvshRff1K/9/JSF37mufsrZtazxuYRwFJ3XwZgZlOACe5+HVCredHMLgOuiR/rMSAnEoVUXHu8zp7AxlxKEiBl7/0KoCz+sjKN4aZcqt7/uA1AYVoCTZMUvf+HAcUELYlbzGyGu8fSG/muS9V77+7Tgelm9i8gZxKFFL33BvweeDqXkgRI+c9+UnI6UahHN+CThNcrgAMbqP8McK2ZfQf4MI1xZUJjrx3gXHIkOUpCY6//CeBPZnYI8Eo6A8uQRl2/mZ0EHA3sBtyW1sgyo1HX7+6/BDCzs4m3rqQ1uvRq7Hs/FjiJIEGckc7AMqSxP/s/BI4A2prZvu4+OZ3BZUBj3/8OwO+AIWb2i3hCUa+mmChYHdvq7V9x98VAzjQ570Cjrh3A3a9JUyxhaOx7X0qQKDUVjb3+JwiSpaai0Z9/AHe/P/WhZFxj3/uXgZfTFUwIGnv9fwT+mL5wMq6x178euDDZg+f0YMZ6rAB6JLzuDqwMKZZMa87XDrp+XX/zvf7mfO2g60/r9TfFRGEe0NvMeplZATAJmB5yTJnSnK8ddP26/uZ7/c352kHXn9brz+lEwcz+DswB+prZCjM7190rgEuAZ4F3gEfdfUmYcaZDc7520PXr+pvv9TfnawddfxjXn9PTI0VERCS9crpFQURERNJLiYKIiIjUS4mCiIiI1EuJgoiIiNRLiYKIiIjUS4mCiIiI1EuJgojsEjP70Mw67modEclOShRERESkXkoURCRpZvZPMysxsyVmdn6Nsp5m9l8ze8DMFpnZY2ZWlFDlh2a2wMzeMrNvxPcZYWavmtkb8ce+Gb0gEdkhJQoi0hjnuPtQYBjwo/jtahP1Be5y94HAJuDihLJ17n4AcCdwWXzbf4FD3X0IcDXw/9IavYg0mhIFEWmMH5nZm8BrBHer612j/BN3nx1//jdgdEJZ1S2tS4Ce8edtgX+Y2WLgFqB/OoIWkZ2nREFEkmJmY4EjgJHuPgh4A2hRo1rNm8ckvt4Wf6wE8uLPfwu85O4DgOPrOJ6IhEyJgogkqy2wwd1L42MMDqqjzp5mNjL+/DRgVhLH/DT+/OyURCkiKaVEQUSS9QyQZ2aLCFoCXqujzjvAWfE67QnGIzTkeuA6M5sNRFMZrIikhm4zLSIpYWY9gafi3Qgi0kSoRUFERETqpRYFERERqZdaFERERKReShRERESkXkoUREREpF5KFERERKReShRERESkXkoUREREpF7/H46FhIJmr0CqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure().set_size_inches(8, 6)\n", + "plt.semilogx(alphas, scores, \".\", color = \"red\")\n", + "\n", + "# plot error lines showing +/- std. errors of the scores\n", + "std_error = scores_std / np.sqrt(n_folds)\n", + "\n", + "plt.semilogx(alphas, scores + std_error, \"b--\")\n", + "plt.semilogx(alphas, scores - std_error, \"b--\")\n", + "\n", + "# alpha=0.2 controls the translucency of the fill color\n", + "plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)\n", + "\n", + "plt.ylabel(\"CV score +/- std error\")\n", + "plt.xlabel(\"alpha\")\n", + "plt.axvline(best.iloc[0,0], linestyle=\"--\", color=\".5\")\n", + "plt.xlim([alphas[0], alphas[-1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here are the first few estimated coefficients at the $\\lambda$ value that minimizes cross-validated MSE. Note that many estimated coefficients them are exactly zero." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
(Intercept)LOTUNITSFBUILTBATHS
Coef.11.6434213.494443e-070.0000230.0002290.246402
\n", + "
" + ], + "text/plain": [ + " (Intercept) LOT UNITSF BUILT BATHS\n", + "Coef. 11.643421 3.494443e-07 0.000023 0.000229 0.246402" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lasso = Lasso(alpha=best.iloc[0,0])\n", + "lasso.fit(X,Y)\n", + "table = np.zeros((1,5))\n", + "table[0,0] = lasso.intercept_\n", + "table[0,1] = lasso.coef_[0]\n", + "table[0,2] = lasso.coef_[1]\n", + "table[0,3] = lasso.coef_[2]\n", + "table[0,4] = lasso.coef_[3]\n", + "pd.DataFrame(table, columns=['(Intercept)','LOT','UNITSF','BUILT','BATHS'], index=['Coef.'])" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of nonzero coefficients at optimal lambda: 46 out of 63\n" + ] + } + ], + "source": [ + "print(\"Number of nonzero coefficients at optimal lambda:\", len(lasso.coef_[lasso.coef_ != 0]), \"out of \" , len(lasso.coef_)) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predictions and estimated MSE for the selected model are retrieved as follows.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "glmnet MSE estimate (k-fold cross-validation): 0.6156670911339063\n" + ] + } + ], + "source": [ + "# Retrieve predictions at best lambda regularization parameter\n", + "y_hat = lasso.predict(X)\n", + "\n", + "# Get k-fold cross validation\n", + "mse_lasso = best.iloc[0,1]\n", + "\n", + "print(\"glmnet MSE estimate (k-fold cross-validation):\", mse_lasso)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next command plots estimated coefficients as a function of the regularization parameter $\\lambda$.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "coefs = []\n", + "for a in alphas:\n", + " lasso.set_params(alpha=a)\n", + " lasso.fit(X, Y)\n", + " coefs.append(lasso.coef_)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCgAAAGHCAYAAAByGmNgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADReUlEQVR4nOzdd5wc2Vno/d9zKnSYrJlRjrurzcG7q11HHNbGXgM2BmyDbTA2wRiuwfASDFzANplLMgYM5gIXMME42zjnnHbXm6OkVQ4raXLoUOG8f1R1d3VPz2gkzUxrpOe7n9o6derUqdM9LWnq6RPEWotSSimllFJKKaVUJ5lON0AppZRSSimllFJKAxRKKaWUUkoppZTqOA1QKKWUUkoppZRSquM0QKGUUkoppZRSSqmO0wCFUkoppZRSSimlOk4DFEoppZRSSimllOo4DVAopZRSq4iIrBORL4vIlIj8uST+n4iMici3ReS7ROTRRdTzKhH59Eq0+XwjIleIyN3pe/gLK3jfrSIyLSLOSt0zvW/TZ+YMr90uIlZE3KUsq5RSSrWj/4AopZRa9URkP/BT1trPdrotK+B1wCmg11prReS7gO8GNltrZ9IyV5yuEmvtfwD/sRQNEhEL7LTW7lmK+lbArwFftNbeuJw3af1cWmsPAt3Lec95NH1mOnB/pZRSalG0B4VSSim1umwDHso8aG4D9meCE+r0tgEPdroRK6j1M6OUUkqdlzRAoZRS6oIlIgMi8lEROZkOgfioiGzOnH+NiDyedn3fJyKvSvMvE5EviciEiJwSkf/OXPM0EbkjPXeHiDxtgftvEZEPpPcfEZG/SfONiPyWiBwQkRMi8m8i0pe57iki8nURGReRe0Xk2Wn+vwA/DvxaOlTgZ4B/BJ6aHr9VRJ4tIocX0YbXiMhXM+WuFJHPiMioiDwqIi/PnPsXEflbEflY+l59S0QuTc99OS12b9qGHxaRofS9Hk/r+4qItP2dQ0T+SkQOicikiNyV9gipnbtVRO5Mzz0hIn9xNj/nlrKfB54D/E3a3stF5Isi8lOZMq3vjRWR14vI7rT+vxURyZz/aRF5OH1vHhKRm0TkXcBW4H/S+/xa6xAIEdkoIh9J36M9IvLTmTrfIiLvST8bUyLyoIjsavea0vJtP5dtPjPPa3Pt90oy5GUy/Vm8ZYH7fFFE/kiS4UQTIvJhEVnTUuxVInJQkj87/ztz7a0i8o30c3FMRP5GRPz57qWUUuriowEKpZRSFzID/D+Sb5C3AiWg9oDeBbwdeKG1tgd4GnBPet3vAZ8GBoDNwF+n16wBPpZeNwj8BfAxERlsvbEk8wx8FDgAbAc2Ae9OT78m3Z4DXELS7b/Wrk3pPX4fWAP8CvB+ERm21r6GZFjG/7HWdltr3wm8HvhGevzmM2hDtlwX8BngP4G1wCuAd4jINZlirwDemr4ne4A/ALDWPjM9f0Pahv8Gfhk4DAwD64DfBOb79v4O4Enpa/1P4L0ikk/P/RXwV9baXuBS4D3z1DHvz7mVtfY24CvAG9L2PjZPna2+D7gFuAF4OfACABF5GfAW4NVAL/BiYMRa+2PAQeBF6X3+T5s6/4vkfdoIvBT4QxF5bub8i0l+Xv3AR+Z7TQt9Ltt8ZtoNg5pJ298PfC/wsyLykgXei1cDP5G2O0zvm/UMkmFGzwV+R0SuSvMj4JeAIeCp6fmfW+A+SimlLjIaoFBKKXXBstaOWGvfb62dtdZOkTxUPytTJAauFZGCtfaYtbbW7T8gedjdaK0tW2tr36Z/L7DbWvsua21orf0v4BHgRW1ufyvJA9yvWmtnWup5FfAX1trHrbXTwG8AP5J+s/6jwMettR+31sbW2s8AdwLfcxZvwUJtyPo+kmEi/y99Xd8B3k/y0FzzAWvtt621IckD75MWuG8AbAC2WWsDa+1X5hteYK399/TnFFpr/xzI0ZhDIwAuE5Eha+20tfab89Rxup/zUvhja+14Oo/EF2i8/p8iefi/wyb2WGsPnK4yEdlC8iD/pvTncg9Jb5gfyxT7avo5iIB3kQRH2jmTz+Uc1tovWmvvTz9v95EEThZ6/95lrX0gHVb028DLpXniz7daa0vW2nuBe2vtttbeZa39ZtrG/cA7T3MfpZRSFxkNUCillLpgiUhRRN4pyVCKSeDLQL+IOOnD1Q+T9EA4lg5fuDK99NcAAb6ddq3/iTR/I0lvhKwDJD0TWm0BDqQP9K1a6zlAMnH1OpLAyMvSbvDjIjJO8iC74cxe/WnbkLUNeHLLPV8FrM+UOZ5Jz7LwZI9/StLL4tOSDKH59fkKisgvp8MjJtL79pF8ww7wk8DlwCPpsIXvm6eOeX/OC73oMzTf698C7D2L+jYCo2lApab1s9R6z7y0XyHjTD6Xc4jIk0XkC+kQmQmSPxNDC1xyqOU+Xkv5tu9VOpzmoyJyPP05/eFp7qOUUuoiowEKpZRSF7JfJvk2/snpMIHacAQBsNZ+ylr73SQP/48A/zfNP26t/Wlr7UbgZ0iGO1wGHCV5mM/aChxpc+9DwNZ5Hihb69lK0lX+ifS6d1lr+zNbl7X2j8/0xZ+mDa3lvtRyz25r7c+exT2x1k5Za3/ZWnsJybf4/1/L0AUAJJlv4k0kQyYGrLX9wASNn89ua+0rSIad/AnwvnQ4SqsFf86LMAMUM8fr5yvYxiGS4SftLDQp5VFgjYj0ZPLm+yydzpl8Ltv5T5IhJFustX3A37Pwe7el5T4BySohp/N3JH/OdqY/p988zX2UUkpdZDRAoZRS6kLhiUg+s7lAD8l8BOPpOP36HA0isk5EXpw+8FaAaZIx8ojIy6QxyeIYyYNmBHwcuFxEXikiroj8MHA1yTwPrb4NHAP+WES60jY9PT33X8AvicgOEekm+Sb5v9OeDv8OvEhEXiAiTnrds2WeSR9PY6E2ZH00fV0/JiJeut2SmTvgdJ4gmUsDABH5PkkmGhVgkuS9i9pc10MSmDkJuCLyOyTzONTq+dF07o0YGE+z56un7c95ke4BfjDtiXEZSc+NxfpH4FdE5GZJXCYitWBB0/uSZa09BHwd+KP053J9et+zWfr1TD6X7fSQ9OYoi8itwCtPU/5HReRqESkCvwu8Lx2Gspj7TALTaW+lswqAKaWUunBpgEIppdSF4uMkD6m17S3A24ACybe73wQ+mSlvSL55PwqMkoyFr03YdwvwLRGZJvlm+Y3W2n3W2hGS+Rp+GRghGQryfdbaOd8epw9sLwIuI5ks8TDJkBKAfyaZU+DLwD6gDPx8et0h4PtJvl0+SfIN/a9yFv9mn6YN2XJTwPOBH0nfj+MkPRZyi7zVW4B/TYeHvBzYCXyWJOjzDeAd1tovtrnuU8AngMdIhgqUaR4+cDvwYPpz+CvgR6y15Tb1vI35f86L8ZdAlSSg8K+cQZDAWvtekjkv/hOYAj5EMuEnwB8Bv5W+L7/S5vJXkExeehT4IPDmdM6RM3Imn8t5/BzwuyIyBfwO809GWvMu4F9IPid54BcWeZ9fIQl+TJH0VvrvhYsrpZS62Mg8c1YppZRSSinVRES+CPy7tfYfO90WpZRSFx7tQaGUUkoppZRSSqmO0wCFUkoppZRSSimlOk6HeCillFJKKaWUUqrjtAeFUkoppZRSSimlOk4DFEoppZRSSimllOo4t9MNWA5DQ0N2+/btnW6GUkoppZRSSimlMu66665T1trhducuyADF9u3bufPOOzvdDKWUUkoppZRSSmWIyIH5zukQD6WUUkoppZRSSnWcBiiUUkoppZRSSinVcRqgUEoppZRSSimlVMdpgEIppZRSSimllFIdpwEKpZRSSimllFJKdVxHAxQicruIPCoie0Tk19uc7xOR/xGRe0XkQRF5bSfaqZRSSimllFJKqeXVsQCFiDjA3wIvBK4GXiEiV7cU+1/AQ9baG4BnA38uIv6KNlQppZRSSimllFLLrpM9KG4F9lhrH7fWVoF3A9/fUsYCPSIiQDcwCoQr20yllFJKKaWUUkott04GKDYBhzLHh9O8rL8BrgKOAvcDb7TWxivTPKWUUkoppZRSSq2UTgYopE2ebTl+AXAPsBF4EvA3ItLbtjKR14nInSJy58mTJ5eynUoppZRSSimllFpmnQxQHAa2ZI43k/SUyHot8AGb2APsA65sV5m19h+stbustbuGh4eXpcFKKaWUUkoppZRaHm4H730HsFNEdgBHgB8BXtlS5iDwXOArIrIOuAJ4fEVbuQKq5ZAoiBEREBAjiIBIY48BUzsv7TqfKKWUUkoppZRSq1fHAhTW2lBE3gB8CnCAf7bWPigir0/P/z3we8C/iMj9JENC3mStPdWpNi+Xuz55gO988sDiL5A0WGHSIEY2oJHJM7VgR7qZWrnssRGMoeU4c42Tya+l031T2hGMYzLpTF6admpp16TH2bTBuMne8dI816Rb7TVqYEYppZRSSimlLlSd7EGBtfbjwMdb8v4+kz4KPH+l27XSdlw/RHd/DmstNibZ22RPurexJY6B2rk4u89cl+bHtXScnIvr5VqOI1tPx5HFho10HDfqyB5n01GU1hHF2NYZRJaS0AhYeEnQwvWcegDD8Qyu1zjveg6On+S5noPrN/Jd3ySb5+DlHFzfwctljnNpeaeTI6CUUkoppZRS6uLS0QCFSqy/pI/1l/R1uhnnLAmipAGMKM6k0+PIEoXZdPO+lo7CmDiMicLMcWSJgrh+HAUxYbqvHQeViNJ0kJyrxoRBRBjERNWkLWfKOIKXS4IWXt7Fyzn4+dqxg5dz8dO0X3DJFVz8goufHifpJN/xNNihlFJKKaWUUgvRAIVaMmIExwiOC8monfNHHMWEmcBFLYgRVCLCakRQjQgrEUE1To5r+ZWYoBwSVCKqlYigHFGaqibH5eQ4Ck+/8q3jGXJFl1zRI9+V7HNFl3zRI9fl1s8Vuj0KPT75bo98t4fnn1/vo1JKKaWUUkotFw1QqIuCcQy+Y/DzS193FMZUyyHVUkS1FCZbOdlXSlGSng2pzAaU0/3UaJlThwMqsyFBOZq3btc35Ls9Ct1+uvco9PoUe326en2KvTmKfclxvstDjM7ToZRSSimllFqdNECh1DlyXEOh26fQfXbXR1FMdTakPBNQng4oTdf21ZbjgIkTs8xOVAmDub02xAjFHo9iX46u/hzd/Tm6BnJ0DyTp7oE8XQM57ZWhlFJKKaWUOi9pgEKpDnMcQ6HHp9DjL6q8tZagEjE7UWV2srZV6sczE1WmRssc2ztOZSacc32u6CZBizV5egcL9A7l6R1K94MF/IL+taCUUkoppZRaefokotQqIyL4+WQCzv51xQXLBtWImbEK0+MVZsbKTI9XmB5LtqmRMkd3j88ZYpLrcukbKtAzWKBvOE//uiL967oYWFck3+0t50tTSimllFJKXcQ0QKHUBczznTTA0D6QYa2lMhMyOVJi8lSZyVMlJkeS/anDU+y79yRx1FgBJd/lJfWtLzKwrkj/2iTdv7aA0WVZlVJKKaWUUudAAxRKXcREpL5iyNptvXPOx1HM5EiZ8SdmGX9ilrEnZhk/PsvBB0Z45OvH6uUc1zCwocjQpm4GN3czuCnZir2LG7ailFJKKaWUUhqgUErNyzgm6SWxtgjXNZ+rlMIkaHF8hpEjM4wcmebgQ6M88s3j9TKFXp+hTV0MbupmeFsP67b30jtUQERXG1FKKaWUUko10wCFUuqs5Aou67b3sm57c8+L0lSVkSPTjByZ4dSRaUYOT3P/F48QhcnKI7mu5Lq16bXrtvcueoJQpZRSSiml1IVLAxRKqSVV6PHZfOUaNl+5pp4XRTGjR2c4sX+SJ/ZPcmL/JHd9fD82nd6iZzDPuu29rL+kj01X9DO4sRsx2stCKaWUUkqpi4kGKJRSy85xDMNbehje0sM137UJgGo55NShKZ7YN8UT+yc5vm+CPXedAJKlUDfu7Gfjzn42XT7A4OZujAYslFJKKaWUuqBpgEIp1RF+3mXjzgE27hyo502Nljn62BhHHhvnyO5x9t17KilbaAQsNl8xwNCWbp3HQimllFJKqQuMBiiUUueNnjV5rnjKBq54ygYApsfKHHlsnKO7k23/fUnAotjns+3aQbZfO8Tmqwbw8/pXmVJKKaWUUqud/lavlDpvdQ/kueLJ67niyesBmBmvcOjhUfbfP8Leu07w8NeOYRxh487+JGBx3RD964odbrVSSimllFLqbIitzVJ3Adm1a5e98847O90MpdQyiqKY43snOHD/CPsfGGHs2AwAfcMFtl83xGW71rJuR68OBVFKKaWUUuo8IiJ3WWt3tT2nAQql1IVg8lSJAw+MsP/+EY48OkYUxvSsyXPZrrXs3LVO561QSimllFLqPKABCqXURaVaCtl370l233mCQw+NEseW/nXFerBizYauTjdRKaWUUkqpi5IGKJRSF63ydMDeu0+w+84THHlsDCwMbupm5y1rueLJG+geyHW6iUoppZRSSl00NEChlFLAzESFvd85we47TnD88QnECNuvG+SaZ25i61VrEKNDQJRSSimllFpOCwUodBUPpdRFo6svx/XP2cL1z9nCxMlZHvrqUR7++jH23XuKnsE813zXRq562kaKvX6nm6qUUkoppdRFR3tQKKUualEY8/g9J3nwK0c48ug4xgg7njTMNc/cyObLB7RXhVJKKaWUUktIe1AopdQ8HNewc9c6du5ax9jxGR786lEe+cYx9n7nBH3DBa6/bTNXPX0jnu90uqlKKaWUUkpd0LQHhVJKtQiDiL3fOckDXzrM8ccnKfR43PDcLVz7rM3kChrXVUoppZRS6mzpJJlKKXWWju4e565P7ufgg6P4eYfrnr2Z62/bovNUKKWUUkopdRZ0iIdSSp2ljTv72bjzSZw8OMVdnzzAXZ86wL2fO8RVz9jIjd+9lZ41+U43USmllFJKqQuC9qBQSqkzMHZ8hu98+iCPffM4AJc/ZT03v2Ab/euKHW6ZUkoppZRS5z8d4qGUUktsarTM3Z85yENfPYqNLNc8axO3fO92Ct069EMppZRSSqn5aIBCKaWWyexklW9/dB8PfeUIXt5l1wu3c/1zNuN4ptNNU0oppZRS6ryjAQqllFpmI0en+fr793LwwRF6h/I89Qcu49KbhhGRTjdNKaWUUkqp84YGKJRSaoUcemiUr71/NyNHZlh/SR9Pf+llrL+kr9PNUkoppZRS6rygAQqllFpBcWx55BvH+NaHH2d2ssplu9by1JdcSu9QodNNU0oppZRSqqN0mVGllFpBxghXP30jl928lrs/fZB7PnOQffee4skvvoQbnrsFY3TYh1JKKaWUUq06OoubiNwuIo+KyB4R+fV5yjxbRO4RkQdF5Esr3UallDpbft7lyS++hFf97lPYctUavv7+PXzgT+9i9OhMp5umlFJKKaXUeadjQzxExAEeA74bOAzcAbzCWvtQpkw/8HXgdmvtQRFZa609cbq6dYiHUup8Y61l951P8JV376ZaCbnle3dw4/O34ji62odSSimllLp4nK9DPG4F9lhrHwcQkXcD3w88lCnzSuAD1tqDAIsJTiil1PlIRLj8lvVsvmINX373Y3zrw4+z9zsneO6PX8XQ5p5ON08ppZRSSqmO6+RXd5uAQ5njw2le1uXAgIh8UUTuEpFXr1jrlFJqGRR7fW5/3bXc/rprmRmv8N4/vJNv/c/jRGHc6aYppZRSSinVUZ3sQdFulrjW8SYucDPwXKAAfENEvmmtfWxOZSKvA14HsHXr1iVuqlJKLa1Lb1rLpssH+Mp7H+POj+3n8btP8twfv4q123o73TSllFJKKaU6opM9KA4DWzLHm4Gjbcp80lo7Y609BXwZuKFdZdbaf7DW7rLW7hoeHl6WBiul1FLKd3t892uv4Xt/7noqMwHv+5O7+M6nDnAhLv+slFJKKaXU6XQyQHEHsFNEdoiID/wI8JGWMh8GvktEXBEpAk8GHl7hdiql1LLafv0Qr3jzk7nkScN844N7+cTf30+lFHa6WUoppZRSSq2ojgUorLUh8AbgUyRBh/dYax8UkdeLyOvTMg8DnwTuA74N/KO19oFOtVkppZZLrujxgp++hme8bCcH7h/hvX94B6cOT3e6WUoppZRSSq2Yji0zupx0mVGl1Gp2dM84n/q/D1CdDXn2q67giqds6HSTlFJKKaWUWhILLTPaySEeSiml2th4WT8v/81bWLejl8/+y8N88T8fJQp0lQ+llFJKKXVh0wCFUkqdh7r6crz4jU/ixudv5cEvH+EDf3YXU6PlTjdLKaWUUkqpZaMBCqWUOk8Zx/C0H7yMF/7MdYw/Mct7/uAODj440ulmKaWUUkoptSw0QKGUUue5S24c5mW/cQtd/T7/8zf3cs9nD3a6SUoppZRSSi05DVAopdQq0L+uyA+9aReX3jjM1963h6+/fw8X4iTHSimllFLq4qUBCqWUWiU83+H5P3Ut1z5rE3d/5iCf/9eHiSKdPFMppZRSSl0Y3E43QCml1OIZIzzzRy6n2Ovz7f/ZR2km4AU/fS2e73S6aUoppZRSSp0T7UGhlFKrjIhwy/fu4FmvvIKDD4zwkbfdQ3km6HSzlFJKKaWUOicaoFBKqVXq2mdu4gWvu5YTByf5wJ99h+kxXYZUKaWUUkqtXhqgUEqpVezSG9fy4p9/EjNjZd7/f+5i7PhMp5uklFJKKaXUWdEAhVJKrXKbrhjgJb98E1Fk+cCffofj+yY63SSllFJKKaXOmAYolFLqAjC8pYcf+tWb8YsuH/7Luzn40Einm6SUUkoppdQZ0QCFUkpdIPqGC/zQr95M/7oiH/+7+zm6e6zTTVJKKaWUUmrRNEChlFIXkGKvz4vf+CR6B/N87G/v4+TBqU43SSmllFJKqUXRAIVSSl1gCt1JkCJX9PjI2+/RiTOVUkoppdSqoAEKpZS6AHUP5HnxLz4JMcJH/uoeJkdKnW6SUkoppZRSC9IAhVJKXaD61xZ58S88iaAS8ZG33cPsZLXTTVJKKaWUUmpeGqBQSqkL2NDmbr7vDTcwM1HhI2+/h/JM0OkmKaWUUkop1ZYGKJRS6gK3/pI+vuf11zN2fIaP/e29BJWo001SSimllFJqDg1QKKXURWDL1Wt4/k9ewxP7JvnEO+8nCuJON0kppZRSSqkmGqBQSqmLxKU3ruU5P3Ylhx4a5TP//CBxpEEKpZRSSil1/tAAhVJKXUSuetpGnv7Sy9h790m+9J+PYq3tdJOUUkoppZQCwO10A5RSSq2sJz1vK+WZgLs+cYDBzd1c/5wtnW6SUkoppZRS2oNCKaUuRk9+0SVsv36Ir713D0d3j3W6OUoppZRSSmmAQimlLkZihOe99mp6hwt88h8eYHqs3OkmKaWUUkqpi5wGKJRS6iKVK7i88PXXEVZjPvHOB3RlD6WUUkop1VEaoFBKqYvYmg1dPPc1V3Fi/yRffvejnW6OUkoppZS6iGmAQimlLnKX3riWm2/fxkNfO8aDXznS6eYopZRSSqmLlAYolFJKceuLL2HrNWv48rsf4/jjE51ujlJKKaWUughpgEIppRTGCN/9E9fQPZDjE++8n5mJSqebpJRSSimlLjIaoFBKKQVAvsvjha+/nmop5FP/8ABRqJNmKqWUUkqplaMBCqWUUnVDm7u57ceu4tjeCb723t2dbo5SSimllLqIuJ1ugFJKqfPLzlvWceLgFPd85iDD23q56mkbOt0kpZRSSil1EehoDwoRuV1EHhWRPSLy6wuUu0VEIhF56Uq2TymlLlZPfcklbL5ygC/956OMHJnudHOUUkoppdRFoGMBChFxgL8FXghcDbxCRK6ep9yfAJ9a2RYqpdTFyziG7/6Ja/ALDp/714eJIp2PQimllFJKLa9O9qC4FdhjrX3cWlsF3g18f5tyPw+8Hzixko1TSqmLXbHX51mvvIKTB6e46xMHOt0cpZRSSil1getkgGITcChzfDjNqxORTcAPAH+/gu1SSimVuvTGtVx+6zru+vh+Th6c6nRzlFJKKaXUBayTAQppk2dbjt8GvMlaG522MpHXicidInLnyZMnl6J9SimlgO/64cvJ93h89l8eIgp0qIdSSimllFoenQxQHAa2ZI43A0dbyuwC3i0i+4GXAu8QkZe0q8xa+w/W2l3W2l3Dw8PL0FyllLo45bs8nvOjVzJ6dIZvf3Rfp5ujlFJKKaUuUJ0MUNwB7BSRHSLiAz8CfCRbwFq7w1q73Vq7HXgf8HPW2g+teEuVUuoit/26Ia56+gbu/vQBjj8+0enmKKWUUkqpC1DHAhTW2hB4A8nqHA8D77HWPigirxeR13eqXUoppdp7xkt30jWQ43P/+jBB9bQj75RSSimllDojYm3rtA+r365du+ydd97Z6WYopdQF5/Ajo3z4bfdw/W2b+a6XX97p5iillFJKqVVGRO6y1u5qd+60PShE5GUi0pOmf0tEPiAiNy11I5VSSp3/Nl+5huuevZn7Pn+YI4+Odbo5SimllFLqArKYIR6/ba2dEpFnAC8A/hX4u+VtllJKqfPVU3/gUvqGC3zu3x6mWg473RyllFJKKXWBWEyAojbQ+HuBv7PWfhjwl69JSimlzmdezuG5P34VU6Nlvvb+PZ1ujlJKKaWUukAsJkBxRETeCbwc+LiI5BZ5nVJKqQvUhsv6edLztvLQV45y8MGRTjdHKaWUUkpdABYTaHg5yUobt1trx4E1wK8uZ6OUUkqd/5784h0MrC/y+Xc9Qnkm6HRzlFJKKaXUKreYAMU7rbUfsNbuBrDWHgN+bHmbpZRS6nzneg7Pe+3VzE5U+PZH93W6OUoppZRSapVbTIDimuyBiDjAzcvTHKWUUqvJ2m29XPNdm3jgS0cYOTrd6eYopZRSSqlVbN4AhYj8hohMAdeLyGS6TQEngA+vWAuVUkqd12598Q78vMPX3rsba22nm6OUUkoppVapeQMU1to/stb2AH9qre1Ntx5r7aC19jdWsI1KKaXOY4Vun1u+dweHHh5j//06YaZSSimllDo7px3iYa39DRHZJCJPE5Fn1raVaJxSSqnV4dpnb2JgfZGvvXc3URB3ujlKKaWUUmoVOm2AQkT+GPga8Fskq3f8KvAry9wupZRSq4jjGJ7xsp1MnCxx7xcOdbo5SimllFJqFXIXUeYHgCustZXlboxSSqnVa+s1g2y/bpA7P76fK5+ygWKv3+kmKaWUUkqpVWQxq3g8DnjL3RCllFKr39NfupMoiPnmh/d2uilKKaWUUmqVWUwPilngHhH5HFDvRWGt/YVla5VSSqlVqX9dketv28I9nz3Itc/cxNptvZ1uklJKKaWUWiUW04PiI8DvAV8H7spsSiml1By7vmc7hW6Pr75Hlx1VSimllFKLd9oeFNbafxWRArDVWvvoCrRJKaXUKpYruDzlJZfyhXc9wp47T7DzlnWdbpJSSimllFoFFrOKx4uAe4BPpsdPEpGPLHO7lFJKrWJXPnUDQ1u6+foH9hBUo043RymllFJKrQKLGeLxFuBWYBzAWnsPsGPZWqSUUmrVM0b4rpdfzvRYhbs/fbDTzVFKKaWUUqvAYgIUobV2oiVPBxUrpZRa0Mad/Vy2ay13f+oAU6PlTjdHKaWUUkqd5xYToHhARF4JOCKyU0T+mmTCTKWUUmpBT/vBy7DANz6wp9NNUUoppZRS57nFBCh+HriGZInR/wImgV9cxjYppZS6QPSsyXPT87ey+84THN0z3unmKKWUUkqp89hpAxTW2llr7f+21t5ird2VprWvrlJKqUW58QXb6OrP8c0P7dVlR5VSSiml1LzmXWZURN5mrf1FEfkf2sw5Ya198bK2TCml1AXB8x1uvn0bX373Yxx5bJzNVwx0uklKKaWUUuo8NG+AAnhXuv+zlWiIUkqpC9dVT9/AXZ/Yzx0f3acBCqWUUmqJWWshDLHZLQggirBB0LKFmXQ12VcDbLWabEGaDqrNeUGIjSJsFEIYYaMIohBbS4ch1sZJg0SSHVJPI2naCOJ5GN9HfB/xfMTzknRty/mYri6cnh5MVzdOTzempwfT3Y3T3Y0Ui0itXnVBmTdAYa29K03eCZRs+mkTEQfIrUDblFJKXSBcz+HGF2zjq+/ZzZHHxth0uQYplFJKnf+stckDeqWCrVSIK1VsNUnbapW4UsFm8uJKWrZaaZyrHZfT68IwfcivPdxn0xE2DOYPAIRhIx1F9WAEYbhs70ESRPAQzwPXRRwHcZxG2nXASdIYA7XhnNbW0xbb6JNfC5pUGwGQOA2YEASLa5TjJMGK3t5k6+vD9CV7p68/yevvw/T24q1bh79jB05Pz9K/OWrJLdSDouZzwPOA6fS4AHwaeNpyNUoppdSF55pnbOQ7nzzAHR/brwEKpZRSAPWH7Lnf/ocQpt/yZ3oE1L/9DxsPtHN7CARND8Bx/UE481BcqWCD2rmgEYCoZoIKlUpyj3Mknofkcsnm+4jvIbUHes+tp8V1k54F+Tziuu0DAK6TlHddcAziesl1rot46TW1PM9NHuTTAANp/fUeC/XNbfRcqPVk8HyM74HnrWhPBRvHyc+uUiGemSGamiKeniaenk7SU9PEM410NDlJNDlBPD5BcPRocjwxAVE0p25naIjc9u34O3ak23ZyO3bgbd6cvJ/qvLCYn0TeWlsLTmCtnRaR4jK2SSml1AXI9R1ufP5Wvva+PRzdM87Gy/o73SSl1EXCWpt8axvHyYNwZm/DMDnX9K10+s117eG5dm0cJ+Xq6RjixrnaN8bWpt8WWwvY5vy0fhvWut+Hc79Rrz+MV5P7t+uaH0eNe2Q2W/uaOnsujhvfYGfL2nhOOUjbGS9QbqG81ns3tY2kLdlv/Zd58uSmYQP1LXkIN34SMDC9BSSfS4ccpIGEnI/J5RrHfho48JNz4mfP19I+ks83ztXyzGIWTlQAYgySy0Euh9Pbi7dhwxnXYa0lnpklnhgnmpggOHaM6r59VPbto7pvP1Of/SzR2FjjAs8jd8klFJ98K11PeSrFW2/B6e5ewlelzsRiAhQzInKTtfY7ACJyM1Ba3mZdXKqHDxMcPdrpZiilWumCE0sn/QV0R95yV1745n/cwwteUFjOGy5j3e1ut4j7LaLMkq5y0lpV27qXpt3tysx5Le3qaVt1JtO2T9t58pvqa7rfGdRp25SrPWBm8uctX3sgbVvWtpS3zWWaHmqbyzQ98La9du65pjqzD55tytu49WEzbtSbPngnD6SNB9fWY2yMraXjuPEAG8eNc7UHexsn19XSUS0/zYuj5HwU1R/qsbWAQJy0txY0aN235tUCCqtF/Vtur/6NumTy8NK0cRpj+qUx1l/ENI35FyNQmwcgW75WLjsvgKRljZm/3Dx57e7dyM+0wZi53/g7bY5r3+ynr73eMyCb77f2BGjecF2dp+AiJCI43V043V14mzaRv/rqOWWi8fF6wKK6bx/lBx9g/L/fw9i/vQsch8K111J86lPoespTKdz4JExOZzhYKXK6X4ZE5Bbg3UDtCXoD8MOZOSrOO7t27bJ33nlnp5uxaCf+8m2MvPOdnW6GUkqtiIObn8uey36Qm7/zZ/RN7ut0c5S6uEjrg2r68DjfcfqgKqc5rj+0GpM+6JrGw6gRaDpuKVdLm3T8upCkHZOcd5ym87XrxTFQK5fd18rUxsk7BnHc+l4ck3aXT65PHpbTLvRu7ZpantO4xqTtSMfZi+OApO1wnLbvZRo5aMpPuul7yb1cN7mXl3bfdxx9oFaqQ+JKhdLd9zDzzW8w+41vUnrgAYgiJJejePNNdD3tafT9wA/gDg52uqmrnojcZa3d1fbcYr6tEREPuIIkDvqItfbcB2Mto9UWoKgeOkRwRHtQKHVe0l8Ul076VgaB5f3vnWXNoOH5y9iLYsV/yV/M/ZaqzKLJgofJ7Zax3XPyFlOmuVhT+xaTbrr4bOuRpl39+uw3w+326QUiC5SpPbSmxefUmz3O3rfloXfOPbIPwK15xuhDr1JKnaFoeprZb99RD1hUdu9GfJ++l7yENa95DblLdnS6iavWQgGKeYd4iMht1trPi8gPtpzaKSJYaz+wpK28iPlbtuBv2dLpZiil1Iq5cfoA3/jgXqaGr2D9jr5ON0cppZRSqonT3U3Pbc+h57bnAFB5/HFG/+VfmfjQhxh/z3vovu02Bn/itRRuvlmDwEtooRlbnpnuX9Rm+75lbpdSSqkL2LXP2kS+y+POj+3vdFOUUkoppU4rd8klbPjdt3LZ5z/H0M/9LKW77uLAj/4Y+3/4R5j85CeT+W7UOVtoksza1Kb/ZK396ko0Riml1MXBz7s86bu38M0PPc4T+ydZt723001SSimllDotd2iI4V/4BQZ/+qcZ/+AHGf2Xf+XIL/4S3ubNrPnxH6f/pT+EKSznROAXtoV6ULw23b99JRqilFLq4nLdszeT63K582M6UaZSSimlVhdTKLDmla/k0k98nE1v/yvcoSGe+IM/YO8Lbmfsv9+TLKWrzthCAYqHRWQ/cKWI3JfZ7heR+5bi5iJyu4g8KiJ7ROTX25x/Vea+XxeRG5bivkoppTrPz7s86blb2H//CCcPTnW6OUoppZRSZ0wch97nP5/t7/4vtv7bv+Jt3MjxN7+Zx7/vRcnQj6VcQvwiMG+Awlr7CuApwG7mzj/xonO9sYg4wN8CLwSuBl4hIq2L1O4DnmWtvR74PeAfzvW+Simlzh/XPWcLuaLLHdqLQimllFKrXNett7Ltv/6Tze/4W8RzOfKLv8T+l76Mma9/vdNNWzXmDVCIyOestceBT1lrD7RuS3DvW4E91trHrbVV4N3A92cLWGu/bq2tzYXxTWDzEtxXKaXUeSJXcLn+ti3su/cUJw9pLwqllFJKrW4iQs9tt7HjQx9iwx/9EeHYKAd/4ic58NrXUrr//k4377y30BCPDSLyLOBFInKjiNyU3Zbg3puAQ5njw2nefH4S+MR8J0XkdSJyp4jcefLkySVonlJKqZVww22b8Qsud358f6ebopRSSim1JMRx6P+Bl3DpJz/Jut/8DSqPPMr+l72cw2/8RaoHluL7/gvTQgGK3wF+naTXwl8Af57Z/mwJ7t1usdi2A3RE5DkkAYo3zVeZtfYfrLW7rLW7hoeHl6B5SimlVkKu6HH9bZt5/O6TnDo83enmKKWUUkotGeP7rHn1q7n0M59m6H/9L2a+8hUef9GLOfX378QGQaebd95ZaA6K91lrXwj8H2vtc1q225bg3oeBLZnjzcDR1kIicj3wj8D3W2tHluC+SimlzjM33LYFL+9oLwqllFJKXZCc7m6Gf/4NXPLJT9D9nOdw8m1vY98PvZTSvfd2umnnFTndrKIiYoBXApdYa39XRLYC66213z6nG4u4wGPAc4EjwB3AK621D2bKbAU+D7zaWrvomUV27dpl77zzznNp3or6wsgkXx/Xbw2VUqvTUs1NfeSxMZ7YN8m1z9yEX3CXqNaVsZLzcy/lZOB2iVq+mFqW9D1aRGWLa9PcUu2uW8x73lqkbT1t67anLXPae9nsOdu2XFPazs1vd13r67Zzztu5eS3X1kq03j97Xzsnr3bcfG2jzrnX1fOayjTqqR3HmWPSa+P0utYy1NPN92uqv9bGM/iAN+5jm9oZZ+qKM+djGu91nJaL29xPMn2Ts92UJT2SBcrJnJxGudYyrfVk65c0X9JcI7V8qadr15q0jGTKZI8BjEij3pbryKRNLS2Nb1+NCGbOuUY7WvMdmXtNLU8ARwRXkn2STs67adqQpo3gSbLV0m567KXHeSMUHEPRMRRMuncMvgiS/QGpC9rU5z/P8bf+LuGJEwy86lUM/+Iv4nR3dbpZK0JE7rLW7mp3bjG/Af4tyd+NtwG/C0wB7wduOZdGWWtDEXkD8CnAAf7ZWvugiLw+Pf/3JMNMBoF3pH9Yw/leyGr27YkZ3nlI581QSq1eS/H7lC1AdHmeO06MYpzV9wvaSrZ4ae+1NLUt5jOwlO1eTF2LKtOmkLS58mzut9g/F633a3dZa11z7jVPffM/tC58jzkPtS1lJFNuvnNz6sqcF5rrrD+cZhooNLcj++Baf6CVhesSUztOHkzbXdv6EF0rM/fhuKWNc9q0uB946z2zr6F2j9YH61p7TEu7auYPRrUEedqUaw0mtS1vW/PnBo8aQZtGQKU1EJMNEDVdkw3W1M+1lmscx23K1AI3taBTbC0hYGOIievBnXYBoNja+vkoU1dTnrVEWEILkbWENslfSo5QD1h0OYZux0n2rkN37dg19XSP69DrOvS6Jt079LkOPY5D3lloJL86H/TcdhvFW2/l5F/8JWP/8R9Mfe5zrP+d36bnOc/pdNM6ajE9KL5jrb1JRO621t6Y5t1rrb1hRVp4FlZbDwqllFKJj//dfRzbM8GP/9HTcH2n081RSiml5mWtJQbCTMAiiJN0kObVjqvWEsZJfjmOKUUxs1HMbCZdii2zUZTkRzHTUcxUGDETxUxHEdNRzHQYU4rj07YtZ4QeJwlY9HsO/a7LgNecHvBc+tPzg57LoOfS5RjtxdEBs3ffzfHf+R0qu/fQ88LbWf+bv4l7Ac+reK49KAIRcUiDpCIyTBJsVEoppZZUbcnR3Xc+wVVP29jp5iillFLzEhEckmEfuRW8b2QtM1HMZBgxFUZMZrcoZjKImIySc+NhxEQQcTII2D1bZjwMmQznf5TLG6kHKwb9xn7Ic1nre2zINbZuV79IWCrFG29kx/vfz8g//ROn3vF37P3a11n3a79K3w/90EUXMFpMgOLtwAeBdSLyB8BLgd9a1lYppZS6KG26vJ81G7u47wuHufKpGy66f5SVUkqp03FE6kM6zkYYW8bDiPEwZDyIGA1CRoOQU9WQkSDdqhGn0qDGSDWk1Gbikx7HsD7nsTHnp3uPTXmfbXmf7cUcG3Mejv47vmji+wz97M/S84LbOf7mN3Pst36bif/5KBt+963427Z1unkr5rRDPABE5EqSySwBPm+tfXhZW3WOdIiHUkqtXg98+Qhf+s9H+cFfuYkNl/V3ujlKKaXURW8mijhRCTlaqXK8EnC0EnC8EnAss52oBk3d7D0RtuZ9thV8thdybE/3O9LNNRq8mI+NY8bf9z5O/OmfYatVht7wvxh8zWsQz+t005bEuQ7xAMjRmIvHX5JWKaWUUm1c8eT1fPNDe7nvi4c1QKGUUkqdB7ochx1Fhx3F+QezhLHlaKXKgVKV/eUK+0tV9pcqHChV+fbEDNNRI3yRM8IVxTxXdRe4ujvP1V0FruzOM+xfGA/g50qMYeDlL6f7Wc/mid//fU7++V8w+fFPsOH3fo/Ctdd0unnLajGTZL4R+GmSlTsE+AHgH6y1f738zTs72oNCKaVWt6++bzf3f/4wr/7Dp9HVv5Ije5VSSim11Ky1jAQRB0oV9pYqPDxd4uHpMg/NlDhRDevlhn2Xq7sKXNWdZ1dvF7f2dbE2p0GLyU9/mid+7/cJR0ZY85rXMPzzb8AUCp1u1llbqAfFYgIU9wFPtdbOpMddwDestdcveUuXiAYolFJqdZs4WeLff+cb7Hrhdp784ks63RyllFJKLZOT1YBH0mBFLWjx6EyZSjrvxba8z639SbDi1r5udhZzmItwbotocpITf/bnjL/nPXhbtrDhrW+h62lP63Szzsq5BijuB26x1pbT4zxwh7X2uiVv6RLRAIVSSq1+H/vbe3li/yQ//odPx/F0PXellFLqYlGNYx6YKvGtiRnumJjhWxMzjARJT4t+1+GWviRg8fSBbm7oKV5Uk3HOfPvbHP/t36F64AB9P/ADrPv1N+H09XW6WWfkXOeg+H/At0Tkg+nxS4B/WqK2KaWUUm1d95zN7H/7vey56wmueMqGTjdHKaWUUivEN4ab+rq4qa+LnyUZIrKvVOXbE9N8Ow1afGZkEkgCFt810MOz1/TwrDU9bM5f2FMmdt16Kzs+8mFOvePvmPjgB7Hx/MvGrkaLXcXjJuAZJHNQfNlae/dyN+xcaA8KpZRa/Wxs+c+3fgs/7/Cy37il081RSiml1HnkVDXkq2NTfHF0ii+NTXGsEgBwWTHHswaSYMXT+7vpOsvlWFeDeHYWUyx2uhln7KyGeIjILcCQtfYTLfkvBo5Ya+9a8pYukdUWoHjssd/n5MlPd7oZSqlldPpQsGqnPJVjZqRI34ZJ3Fy05PVfRD1Cz9FKv1HLeb/5627+PGQP7ILXLf6eC9cjCHaeMo22ySLb0+68tOQ27rfgnwXLaf6wtG9T690azTrzumrH2XeyVlZa29Z0ubTsm+9SP85UbOt5kikk9YKCpBc06pZ6vgEcRAxgMGJAHAQnuVZM+/elqfm26WghggExab21ewkiTibfyRw7CCY9dhrnjVMv19jc5Ly4IAYjXia/VsZLrk3zkjIuIi7GeIh4GOOmeV7mWv3LVy0tay2PzVb40ugkXxyd4hvj05RiiyfCdw1082MbB/nuwT5d2vQ8cbZDPP4UeE2b/IeAfwBuO/emKYBHH91NGJU73QyllDoPlaFrgrHJpa95xX9FkfMzTHXa92GF2y2LCect6oe3uHY3nmMX/zrbtrGpTaeb32v+8011z3mdzdc1nvFa67Mt55vLJDGCdm2Y/7okb+59sm3QZ87TS74XFKytBThqaVqOm/NAwAo2GxRB0mK1iIyt/5wEm/6M4zTfIhKlxzGdDZsLxvgY4yPiY4yXHucw4iPpuXpefZ9sjskhxscxOYzJY5w8Tn1fSMo4BYzJ4zh5jFPAMcU0T1eDuFCJCFd05bmiK8/rtqylEsfcMTHD50em+OCJMV77wH7W+x6v2LCGV20cvOCHgaxmC/WguH++iTBF5F5r7Q3L2rJzsNp6UOzdu5cDBw50uhlKKXVeOvjQKCcPTHL9bVvwchduN81OWMwwz5W2km1aynudbV1nc91C15ztuYXOn0l+I88CNj22mfONh+NsuqmsAPOUszZuBFfS/MY9ag/kjWsscT3o06gnU0biNGrQKJvUF6WtSvOI0/vFSZo4ud7WHvjTY2IsUXNZG6X3aZSFGJE4CVaJraelliaTNnEjPWefbMbEmWNbPzZmacemWysILogLpD0j8ECctKdEoweGMUkPDiMGMe16nmTrTX8uNnkfLTHWRlgbYm1IHAdYGxDHAXFcwdrqWbVfxMNxkmBFfW+KOG4XjtOF63bjOt049X0XrtON66Z5bi+e24fr9uI4+XN6L9XKCWPLZ0cm+bejp/jC6BQCPHewlx/bOMhzB3svqgk2zxdn24NioYVVu86tSSrr0ksv5dJLL+10M5RS6rw0fs0s//Hmb7Im3sEtt+3odHOUUmpJWJsEQ+I4btq3y4vjeE5eFEXEcUwURfNuYRgShlWiqEIYVojiClFYIYqSvDhO9lFcIY6qxHGSF9sqNq6mQYEqlirYECTASIwxEWIijIkxEmFMhDEhYqpNARNTD7BEGFMLnCTlF+pJdHqS9qZIek7UelokPTJqQ0rc+pCW5sBI7X1Ogh9RXCEoTxLHZcJwhiiaIY5Lp22BMT5uGqzw3F5crxfX7cPz+vDcATyvH8+r7Rtpx+nWIS4rzDXC7cN93D7cx8FShf84Nsp/HRvhM/dPsinn8aqNg7xywyDrc9rD5nywUA+KvwdGgN+ymUIi8lZgg7X2dSvTxDO32npQKKWUWtj//PU9nDo8zav/4Gk4ri45qpRSnRDHMUEQEIZh075d3kLnqtUqQVAmCEqEYZkwLBGGpSRYEpWxVHFMLfCRBD+M00jXzrlujOdbPDfGdSMcN8JxIowJEAkQqQIVIFjU6xNxcJy094RTbAp+GPEQ4wImnS8mTnt3hMRxmSiaIQymCaMJwnD+cYkiLq7bh++vwXP72wQy1iR7fw2+N4jvD2pQYxkEseVTpyZ419ERvjQ2hS/CqzcN8sZt6xj2NVCx3M52kswu4B+BW4F70uwbgDuBn7LWTi99U5fGagtQfOMb3+Cuu87bOUeVumDpP/Yr61zebzvZBfu3wNYjSP/UedGm5aprMfWc7b1Od91855czfzF5pyuznOmF8hbaL/bcYtML5Z3J+dqWdL+fP69dut2+Nd3uOJuv1GJEUUS1WqVSqcy7r23lcrntViqViNPlF5NeHSGOG+Cke9+LKRYd8nnI5yGXt+T8GM+LknJOFZEKQonYloiiKcJwEmvnD3aIuGmAYQDP7cVxu3FMHjHJBKGQDC1KeqZUCMMpgmCMIBgnCMbnHbpiTA7fG8TzB/H9IXx/MAle5IbJ+WvJ5daRy63D99fiOLml/4Fc4PbNVvibg0/w7uOj+GL4qc1D/NzWtQx4Cw02UOfirAIUmYsvAa5JDx+01j6+xO1bcqstQPH2L7ydTx/WVTyUUitrpecfOKeHEwvBpIsYcLvDpWvUaW97JhMnLs/DV7s2LOpei2i6xbatq/Wep111wLavZ6H7tmQsqFb3vD+Pxf6YTldu3urT12ebj20jY/H3ytRxuusWel8Xer+bztl58uerwy6urNj5z9fTtiU/XelCRJJ5CU6zN8bU9yKCk67+UMt3jDMn7Rinfo1jnGRzGnvXuM3HjovneLiOi+u6ybGbHNfqqrXHkbTudKsdZ/e1a1xJrnfEqec7kt5fGvWq5WOtJQgCyuUys7OzlEolSqVSPZ3Nm5mZYXZ2lpmZGSqVStv6XNelu7uL3t48vb0O3d2GYtGSz8f4foDnVXGcMrGdTIIO1RGqwQjV6ihR1P57XdftTYIL/lp8fxjPH8B1ujGmNqGnEMdVgnCUanWEavUUQXU0rXekbbDE8waS+nJryeXWk8utI5/fSD6/iUJ+E7ncRg1izOPx2Qp/tv84H3xijG7H8Pota/mZLcN0X8DLlHbK2c5BAUAakDjvgxKrmRdUcMOzm+xHKaVWg6UIhVgvJqj6SDXEOEs78du5W8GJHVfsTrX7nf6OZ/qYtfCKlrbleBGvue1z9ulW2lh8AKrNVJAL5sxX7/z57Y8y00fOW8/cdTVazzX/3857rvXa+etZsF5pzpmvxqZ7LuYDlP0gLP2Kwx1hrGAwJAuENu8dTP28k82rpW2ScnFwxcHFwcFpOk72Lq64ePXNq6fdTJ5vfHzjkTM+vnjknRxemuc6yXKj1HrP1HrEGIMYB+Ok+1q+42AcB+O4GMeke6e+OY6LOAbHcZvLuOmyp0vYG833fXzfp7e3d9HXhWHIzMxM221qaoqpqSmOH59mamqqbTDD93vp69tCf38/fX199PX1sWagi65uS7EQ4nplwuAUlcoJKtUTVConqFaeYHziDiqVE3OCDiIe+dyGNMiwkd7eG9JAwwY8rxdwCYKRpL7K8bTOJ6hWTjAz/RiV6klqE8M22jhEPr8p3TaSz2+mWNhKobCdfH4TxlycPQcuKeZ4x9Xb+Pmta/k/+47zp/uP809HTvKGret47aYhCo4OMV0Jp+1BsRqtth4U3/rge/jOJz7S6WYopdR5zeJh5UeA/Rj7lU43Ry2jC/qb5RV+bYu621K1aZH1zNf7oymoIdlgR3peWkI1JhtcqZ1PerZYEWqrdcZp2kqynkcsyYZIss6GGKxAbEiul3QhTtO4Nk6vs+m1kdh6Opuf3Nsm635IXD+Oiev5yT5ZpSK5IiK9gvoKIRLXj+vnJCZOr43FEoslqu1NXE/HJsmPTJI+VyYCJxbcyOBGktlM+3Ro8CLBDZN8rymveW/s3M9CLVjhpIENx3UxrpvsnTTtOBjXw0nzHc/DcZK9cV3cdO+4Hq7n4Xh+uk/Tvp+c8xvnvFwe1/dx/Ryu7+Plcrh+DuPM/+15tVqtBy1q28TEBBMTE4yPjzMxMUGp1DzhpjGG/v5+BgcH52zd3d1E0UQSZCgfo1w+SrlylHL5SJIuH6FSOUE24CDikM9tolDYSqG4jWJhG4XCNgrFbRTyWxFxqFSeSOs43FRXqXyESuUocVzN1OcmAYvidgqFbRSL2ykWtlMsJsELkYunN8Hdk7P8yePH+OLYFOt8l1/avp4f3TCIay7gf6NWyDkN8ViNVluA4uv/+Hfc//UvdboZSq0i+g/DSjqfnhWr5YgoiMl3ecgK/YKwpHdZ3NPi0t3uLO7X/ppFVLSYuTMW05yzrWuxD8eLKbfIuTJaW9JcZJ787JwWSKZYppDMc14yD/dN9TT9r7mtrXNpSFpD69wabcpl65P0gb6WX8+rLR1ZmwOj1sb68dx9c55J6jGmni9pflKN1O8hp7lHPQ2IMUk7Tba96WaSb0GlNi9G5j2pt6epvuZ65twv3ay1RLEliiOiMCKKI8IoIgzCZB+FRGFEEIbJZJFhSDWdRDIIQoIwSCeQDKgGwdzPRvZnaAz5fJ58oUCx2EWhUKBQLFIsFil0dVEsFunq7qZYLJLrKuAXfCKJCIkIbEg5LBNEVSpRhXJYohJUKEdlKmFyXA4rlMMy1SjZl6Nysg/LlKL0fFSiHCXX1faVuEJgFz8Mz8cjLz45/HTvkbPJlrceudgjF7vkYod85OGFhlzk4AWCHwh+1eAEljiMiIKAOAyJwpAoDJItCImCIF0C9uwYx60HLPxCAS9XSPb5PH6+gJdPjv18Hi9fIFcs4he7yBWK+MUi4vlUo4jZSpXZcpmJiUlGR0cZGRlhZGSEMGy8X67rsmbNGgYHBxkaGmLdunWsXbuWwcFBnDRQEsdBGnA4Sql8kFLpIKXZA5RKB5kt7W+ZoFPI5dbT1XUZXV070/1ldBV3pr0vkjkxqtWTzJYOUprdz2zpQLrfT6l0gCiabbwXxqdYvIRi8dK0vkvpKl5GsbgdY/yzfo/Pd98Yn+aPHz/GtyZmuLIrzx9dvpmn9nd3ulmr2tlOkrlmoUqttaNL0LZlsdoCFHf81m+w91tf63QzlFolzqOnZdURKxpWX+GPW8e/MmjzEL7yQ0qWyCICLWd7rzZf+i6qIbZ9dnPdi6hrofu3vV6y5xf4GUubvEa0pG39tnay7bXZtrZ5H2TufbKvzUrLNemxbRRvej22pY2ZJehQLdIgh0g6ZMNx0l4J6XCMdMiGOHOHbiRDPBpDNmpDPmrXYYTYUO/lkfT0iAmJCNN9QFjfKjagQkDVBpRthbKtUrYVZuMSM3GJClWiWn1pr5DacWQs4jp0FXrozffSnx+gz++jN9dLX66P/lw//bl+Bvx++txeek0XvU4PeesRBwFRGBJWq8kWVAgqlSRdqRBWKwTVSv18UCkTlMtUS7PJvlyiWi4TlEtUSyWCcnlRgRC/UCBX7Cbf3U2u2I3T1U3s5wldlypCOYyZqVSZLpXqc0UZY5oCFrWtv79/TvA0CMbTIMOBdL+Pmdk9zMzsJY7L9XI5fx1dXZdR7LqM7q6ddPdcTXfXFThOvl7GWpsEL2b3UyrtZ2Z2LzMze5mZ2UO5fJj63wDiUChsqwdCuruvpLvrSorFbRdMjwtrLZ88NcFv7znC4XLAD64b4Hcu3ahLk56lsw1Q7CP51AmwFRhL0/3AQWvtjmVp7RJYbQGKcGyMeHL+5YiUUuq8tsI98Xbf+QTf+sg+nvKSS7jsprXLeq8V72W4pLdbzCyZK1dm0e/lnGJtrmutq13dbfLmtKHpSdrOc6Ll3DzpprqbLm9TvmVvbWbCzHo9Z1g2U85mr7EtdbU7b237OlrP1fJj25TfNi+OG9fbeG45G2eO4+Zr4qhxLo6B9Fx6bG27dJQpE2FjC1FUP2+jkDiKk2tq5+OIOIqxUe3aKFn1IartQ2xsk/PpFochhGFSXxBioyh5LQBIY3hK7ScjzQEUmwn4JO+WNAV/rOsinguul+w9D+t6UM/PbJ4Lvo/kcuB54CdlY8cQIIRAgKVqLZU4phJHVMKISrVCtVIlqFaS103zz9p1HHzPw3UdPMfFdR0cY5KJQx2DI4KNY+I4Jo7T9yWOidP3MY5C4igiSt+zKH3f4jgiDiPiaHkmOraAdZKhOpGxhCYmlJjISQIZtX3oWKwDju/j+3k8P08+X6RY7Ka70EdvVz+9XQP0dw8y2LuWnmIfXj6P6+fw8jm8XB4vl8dxm+dpsNYSVipUSrNUZmeolmapzM5SnZ1J9ml+ZXaWysw05ZlpytNTlKcb6ShozD9hRYj9PHGuQJwrYIvdxLkCkdO4r2OE/q4uhtcMsHHDBjZv286GLVvId81dltTaiHL5CDMze5iZ2c3MzB6mZ3YzO7u33ktCxKFYvJSenmvS7Vp6uq/Cdef2FoiiErOzj6f17UmDIHsolQ6kw5fAmDxdXTvp6b6K7u4rksBF95V4Xv8S/dRX3mwU89cHnuAdh07givAr29fzU5uH8XTYxxk511U8/h74iLX24+nxC4HnWWt/eclbukRWW4DCxh3/zkwppVYNG1s+/La7GTkywyt+51aKfTobeaet2n/FVjgAtWR3W2xFi4ktLa7QUhRpW/C0gat54z62XXKBa9tXNDfW1T6ItVAzbRwnQYsgwAZVbLUK1Qq2WsVWK5Dm2UqaF1STstUAwiDNq+1DbFCBakAcVKEaYKuVer02CLCVCgQBtlwmLs1iSyVsaTYN5pyGCFLswnR3Y7q6oFgkzucJc3kC36PieZQch1kRprFMRhFTWALPo5LLEbouYgw9Pb309/fR39dPX38/A/399Pf3M7BmgL6+PoyZfzJBmwajoiisByyiMEwCG2GU5idBjjAIiMMgHbaR5IdhOpQjSIZxhEFQT0dBQBhUk+MgpFotUy7PUK7MUqmUqFbKBEGFqFpNAkxhBGGMCc9sJSIAcRzcnI+fLyRDPdLARXYeCzed76K+1ea/aJ0XI50rwwrpsJRGr41qqUR1dpby7DTl6WlmpqaYnJlhulKlFEOYBjCovedhiFstUSCmx/cZ6O1mzdAwPYNDybZmiJ6hIboGBpN72phy+QhT0w8xNfVgfatWT9ZeKcXidnq6r6G393r6+m6mp+fqeYd0RFGFmdndTE8/wvT0o+n+EYKg0fk+l9tAX9+N9PXeSF/fTQvWd77aN1vht3Yf4XOjk1xezPOHl2/iGQM9nW7WqnGuAYq7rLU3t+TdOV+F54PVFqD45of2ctcnD3S6GUoppZRSajWyFhMHOFEFNyrjRJVkC8u4URk3LOOEpXrajUrJubCEG5WSfTCLG5YwzB/oiMVQ9QtU/DzVnE8l51HJuVRyucxWoOr3ErkDRO4aHLpxbBEvLuKQw2TnO5HMCJz6XCC1KVVqc5805mOpzw9SK5eZH0Vqx4Z6/SIgpnGOTBnJXGMBKwGz8QQzdoRpxpiNx5iNJyjHk5TjKSrRNJVohiCaxUQkk32mE4T6oUMhypGLkjkz3NjBjQwmBonipMdNHCxBUFSSiUAdD9fzMZ6froriENuYIIoI44iqtYQI1hgQA9YiQRUTVDDVMhKFCJDv7qF7YA09g0P0rdvAwIZN9K1dR/+69eT6hHJlTxKwmH6QqckHKFeOAmBMjt6e6+nru4m+/pvp670R359/doBkqMipJFgx8whTkw8wMXk35fKRtD6fnp7rkqBF30309d5ELjd8ju/V8rPW8umRSX5r9xEOlat8/9p+3nzpRjbmV1ewpRPONUDxKeArwL+TxJF/FHimtfYFS93QpbLaAhSHHxnl2N6JTjdDKaVWlaOPjXP40TF23rKWgfVdnW6OWqVWfnqCJbrhIqtZugU6lvCNktbDNnXPnedz8W2a91qZJ78lr+Xkubz0Ob9mW9u2wtasxmSl85WrJWpDf1rvU7vdPD1NrG0zWskmvXorJZiZRmansLPTyOw0zE7B9CTMTCIz6X46k56dRObpwVHxfcr5POV8nmo+T9jVi+0Zgr61OP0bcAe24PZtwOaL9aEmtZFJFpIhOvVj2xiNlJazcTZtW87Vytt0lJJNRxS15Mdzz9frqZ+vlYmZNpNMuqNMuaNMuWNMemNMeWNMuaNM+COUvKmm9yAXFugtD9FXHqSvPED/7CC9s2voK63BjzywERBhbQhE6XGYDpUIwSabraXTvW1KB2k6SPMDsAHnti6vQYyPcfM4XgG/kCPXG5Prn8HtPonTdQw3X8XxYxxnHb5zJZ7cgGtvwjNrESPp/CSCcZLJZmtpY4SIUwTxg1Ti+6mED1AJH0naDXjOJroKt9JdeCo9xSfjeX2ZwFIjyFSrt5FuzjciGFeW9u+wFqUo5m8OPsHfHDyBI8JvXbKB124aWtZ7rnbnGqBYA7wZeCbJ3xNfBn5XJ8lcOt/+8Pu4W5cZVeer1fqX6wq3+0y7hi5Q0emLnPVrO/0vxfPccBE1L/yAkVTTrp6FnhLmLQEiWCuUy88DfAqFTyMSthRp/5TS/Lwyt0xjlYR27Zbmy5rqzUwUmM78X09nHiqyDx6tKzI0rYqQuXe7FRia8tKvGZvuY6S+0kG76+asRtC0UgE0raKQrmzQyKutdGAavyzW6zP1Xxbr7aiVM5ny9RUUTEuZxuR9xmSuq20iiHGSX0Az+Y2005zv1I6d+kR+kt0bB+PUJgNMJ/1brX/vKdUh1lriqSmi0VHCkRHCkRGikRGCUyOUjh2jdPw4wcgp7OgYMjmJW6nMqSP0feK+PszwELkNG+m5ZAeFbdvwNm7E27QJd8MGjL86vpmeCWY4PHWYw9OHOTx1mENTh+rpI9NHCOPGv1dr8mvY0XsJ23u3s717O9vSbW1+HWKFOE4CR3FkG+lMXvZcXMurHUcxURARVCpUS7OMT5zk1OgRxiaeYHLqFEF1BuIYB6HoFPCtgwkj4soMYXWWKCwTh5Uk4LHIlVCMG+PkQxzfAEVsNEBUHQbbC5JHTAGkgJguRIpJXu3fJROQGzhIcXAvhaHdFNc+iuOXsLFQGr2EmeNXM3P8GspjO8DOP4xoDgEv5+DnHLy8i5938PIOXi5N5xz8gku+26PQ7ZHv9pN9l0e+2yNXcBe1ctiBUoVff+wwXxid4jlrevjLK7fqJJrzWJJlRkWk21o7vaQtWyarLUBx3z//Xx6/4xudboY6DyzZQ+4SWdTYZGDJvhFcrNPdzi6izJLdbGWrqk3Etjz3Ov23ke3MebtFMp8dmacQrSUy1y1wQ8nWJVSjAUaD51J09tLj3T1/+TntyhaYm2Xnvqg5Lba0lqGRv8DxfHnzX1trTKb1tnHUyLONlQ6yEyHS8u0jjW9LyXwjWD8fpxP+2do3hrZRXyav+Thue261EjFzghaNzcVxHcRkVj0wDsZ1cFwX43rJigiui5NJG9fDcZx0vHl6znVxPS855yV5jpuMSXe9pAu3k45Rd30/Gaeejl+vnbtYgynW2vrcBVF2DoLMcZjOSVCfl6BaTfKqjXkKwnSsf5TmR2FQPw4z19ooorbixZygm2kJwNWCZC3BtfYBNVMPoDXlS3Mwbb4gmzGm/hmUdCWO+ufWTfbJ589NV+pwk3zHTfLTYyetY6XEMzNMHTzIyO7dTDy+j5nDh6geO048corc9DSF2RKFUgmT/XtEBGdoCH/z5nrQwt+2FX/bNvzt23EGB1fFn4cojjg6fZTHJx5n38Q+9k3uY9/EPh6feJyJSqNHddEtcsWaK7h84HKuWHMFVw5cyWUDl1FwC0vWlvHxcQ4cOMD+/fvZs2cPU1NJz49169Zx2WWXcdlll7F161YcxyEKQ8afOMapA/s5cWAfI0cOMn78KJMnThBUaquDWNwC5HsFcZKlX8OKISw7xNX2ny/jOOR7+sl391Ho7iPf3UeuK9kKPb2Y/Cg29yiBcxfV+BHAIvSQd3eRN7eSM09F7GDSy6UevCEJ1NgkYBOFMdVySFCOCCoR1XJEUAmTfTkkqERUSiFx2P7fLRHIpwGLQo9Pocen2OtT6PHSfS0vCWj8x8g4v7f3KHlj+NMrtvB9a/uX7Gd2oTjXHhRPA/4R6LbWbhWRG4Cfsdb+3NI3dWmstgDF4be/k5Pv+VCnm6E6bbX+Mr/SzV7MagEreK9F3/EsVx1Y1J3adSFeVN0LzBS3iuzf+gKOb3gqVz/4T/ROH+pcQ5boPZSV+kMlAunDFmmPBBynfoyTPChhDOK4YAScZII80gckXINI8kCE4yCOAddBTFredZK6HQfrpA9hrsEaJ1mFwDH1e5HWgXHAc5IJ3xwH6yTnramdr5VN2oNxsEawTtJWm7YZI/XJ+OJ0hYfkF9hkxYFaPtYSR1Gyxcme9FxtZYK4toJDnKxGENVWLojSFQtq+VGUrmBQm+QvJMpOAhgGxGFEGAbzfBt5uvCWbU6LzJ2Ez8/h1Sbo833cXO04l6RzueSaNO24ybd7jUBTErCyscXWuvzbuB7Iqr2n9QBVmk6uiTPvbZy+57V0bYWH5D2rr+yQrvhQ2+oTJ4ZBvUwyQWKQnE/fxyhcupUgsoGgbPAnCQh59UCTnfN6bdNrz37GrLWN98DO9560phufzU4QMY1ghuumgbRGIMOpBdLS98ZxM+k0qNaY+LE2KWQjnQTacknwLfO59HK5+rHjeczMznL8+HGOHT7MyUcfZWrPXjh5guLMLF0zM/RXq3SXZvEmJpGoMXzBdHXhb99eD1j427cl6UsvxemeuwrF+cZay1hlrB6s2D22m0dHH+WxsceYDpLviI0YtvZs5co1VyZBizVXct3QdfTl+pbk/idOnGD37t3s2bOHgwcPEscxvu9zySWXsHPnTi6//HJ6enrmXFeammT0yCFGjx5m5PAhTh3cx8mDByhPj1NcV6Jn0zS9Wyq4XWWiikNUyuNxJXn3SiQcpjJVZmZinJnxMWbHx5idmKB1yVbX8+laM0C+18EtzmL9Y5j8OLnegMGNl7Pl0ttZt/6FFAqbzvr1B5WI8nRAeSagNB0k6ezxVJXZqSqlqYDSVJXKbPu/h7y8w8yGPO++1udAUXhO4PHGXC/r1xTo6s/RPZAjX/QW1SvjQnWuAYpvAS8lWcnjxjTvAWvttUve0iWy2gIUOkmmUkoppZaOnZu2trXPTSZt55Q9bZl59y1psZleUumu3T4zFCo7vrwxEWJmYkMj9b1JhwQ17Z1aTwRJe70YHMekPQcMjuukPVvS4T3GYLJ1G0mOW+5TH9NeK+O0Safj6x0nbU9mvH2SbuQ5rknLmnrd9XcwEySzTUt4Ro1zUe04CdzUzkdR2BRAqwXOaqtgxPXjTCAoDapFma0WCIqjaN4eKrXVNLK9VaKgek4BJMfzkuBFPp+ujJHDuB6xCEEUUa6GlCoVgmpAPgjoqQQMi2EwjOkulciNj2NPnmpa1cTduIHczp3kd+4kl27+JZdg8vmzbudKsdZyZPoIj44+yqNjj/LI6CM8NvYYR6aP1Mts793O9cPXc8PwDVw/fD2X9V+Ga9wFaj29SqXC448/zp49e9i9ezeTk5MAbNu2jauvvpqrr756TrCi1cz4GCcP7udUbTu6m2r8CF0bJ+jdNo3fFWKt4IRb6O99Blsvexlrhq7D2pjS5CRTI6eYGjnJ1KmTTI6cahyPnGJmdLQ5iCEWvzugMJBjYN1m1m69geFNV9G3bj0D6zeRX4YgVRTGlNKAxexUldJkldnJKjMTFWbGKkxMVPjImpjP7/DoLcV8/7dm2HYy+bMhAn7BJVd0yRW9ZJ8e++lxV1+Ooc3drNnQheOdwZCWVeCcAxTW2ieLyN2ZAMW91toblqGtS2K1BSge3zPGkUNTpy+olFIsct6I89ByNnv02AwPfvkoW68eYNt1Q0t7v8W84dYu6n6LGp20VA23c4eNtdZt7eLep7YTCjZd2a7XDnMqb61GSCerq31Ln852L1EMaa8F4jjZRxFk8m2cLBEoUYgNLURhci5svycMIf3GnjDJr20EycNYsk/KNS1jueCrSBmDeD6S8xHfB8/H5HzEz4HnJWPn/RyS8zF+Dsnl0rJp2s8cO6Zx++y4HppjB40ytrVYmp1OBFjPr034F6cPpRFxmJ1AT1r2mWtl7rmmIVzpvjF6qDEJY2NCwkxbs2XqQ41q6dbjbB1tJjXMlmua7LDNxIdxS7lat/BamQ4u/S4CJhu0cJMgRj2Qkdk7mXOOl2xuLZ3N8wyu5yRpP0m7nsGppTN7L+fguEvzEGTjOBk+EwTJ0Jo0cBFWqwTVCmE1SYeVcuO4UiGoVAiDKkG5TFApJ8eVMkG5TLWel+QHpRJRGLS9v4kthWpAVyWgu1ylN4joLVcplsqY9GdsRQj7+4jXrcVu2gjbtmIu3YE7NNzo2ZFZMtTL5fBqy4nmcys6JKadyeokD408xP0n7+e+k/dx36n7GC0nUwQW3ALXDF7DdcPXccPwDexat+ucelnUelc8/PDDPPjgg5w8mSxBum3bNq655hquuuqq0wYrauIoYvTIIY7ueZTjh77CTPkO3IHDFIeSYSLBdAFTuZyBvmey46qXMLh5W9uhO3EUMT02wuSJE4yfOM6pI49w4tD9TDxxlNmxgLDUHKDp6h9gcPMW1mzayuDmrQxu2szg5q0UevuWfWjQHWNT/K+HDnKoGvCKXBevKOeIp0MqsyGV2YBKKaQyk0nPhkRBI/hijNC/vsjQ5m4GN3cztLmboc09FHtXx5ws7ZxrgOJ9wF8AfwM8BfgFYJe19keWuqFLZbUFKN7yv9/Gf0fbOt0Mpc4Dq/TJexVbvQM7Tu/8fG2n/4wvZbsXV1dzm87k/ot6cF9k3Yupa57Rwae9b9ur0t9/WofU1I7FMue8YOfkJ3m1dNLK5jLNx9n7SvpEn6Rpc5ymhcZxUzrpdWDSCVcb52xTWdNyrcnUYSQ9n9knaUnKpflGJB05k86KL5l0bab8WtoYnNrs/cbgGIORtFeBCI5JH8CN4KRlXddJyjkmPe8kD9yOg5v2fnAdB8dJH7gdB9dz8FwXx3eTvWvwnOR+rknu4zqCZwxOuncdwa1P4tpeI2DRCFpkJyesT0zYMnlhY8LCOMmLms8158dEkSUObTqUqDFWPg6z52OisCWdng+DJB0FEVGaDsOYqBqd9YgzYyQJWuQcXN/B8x28nEnSuXTLu410y+bnk8kG/byb7AtJ0GO5HgCjMKRaLhGUSkxPTnDk4AGOHjrE8SNHGD15gjgMkDiiO5+np1ik4DoUJydxTpzCGxklPzFJcWqGYiWo/01S8hwmCjkminkmCz4ThRxVb25vBNfz8fL5ZMslez+fx8sX8POF5LhQxMvl8QtpXrrPFYr4xSK5Yhe5Yhd+sXDOAY9aT4tasOK+k/fx8OjDhHGIIFy55kpuXX8rt264lZvX3UyXd/arX504cYKHHnqobbDi6quvpvsMeytUS7MceuybHDv8MWaqd2C6j2IcSzDrMHNkmC7vKWy+5Ha2XX8jPWuGTltfuXyUo4c/xqE9n2bk6G4q4x7R9HqCqQGmTswSlMv1svmeXtZs2sSaLVtZu+NShndcQv+mzSAQ2WS4VmQjLJY402MjG6Rv/XzXzklmwuxSFPMn+5/gPcdGuaIrz59esZUruwvp390y55oojJkZrTJ2pMTokVlGDk9z6vA0M+ONCWYLvT5Dm7t53muuXnXBinMNUAwBfwU8j+Tfsk8Db7TWjix1Q5fKagtQ/NsfvYXH505mrJRSSqmzcZrfbey8B2dyj7Ove062nScfklBDm/NNYZM552uhkVphwdYmf82EXGwjhDLnOJsfN8Ip6V7SvORbaIsQ1csIsTTKxJLuMW3rr6Wb7mEz9bfcr17O1uolcz6zt5k20FwWBMdGuDZONpK9h8UlxhOLh8UTcA14Ap4RPEfwHdPY3OzmkPMccr5L3nfJ5TxyeZ98ziOf98kVcuQLOQqFHPl8jkLOJe8a8p5D3nNwlngseiOAERNWY6IgJgwiwmpMWI0Ig1p+RJCeDyoRYTUiqCblasdhNSKoxATVZILB2qSCYXWRqzo4kgYsGsGLpFt7pmt7fd9IF7o9cl0e5izfmyiKOHbsGHv37mXv3r0cOnQIay2+77Njxw4uvfRSLr30UgYHBwkmxpm5/wFK999P+aGHCB5+hOjw4XpddnCAeOtWgh1bqW7ZSKm/j2pYpVopUU17dVSrJaqlMtVqmWqlRFCtUC2XkklWASu1nhvJVq873bu5NOBRaAQ3/DSQ4ReLSZCjUMArFvHzBfxiEa+Qxy92IbU5d7BN+2pcZd/4Ph4efZhHRh9hz/geIhthMGzr28YVA8kknNt7t+M5HrGN69dm07WH81penM5HE9uYickJjh47ytGjR5mangIDw2uH2bhpIwODA1gsURwRk1wfxcnDfmSTIUy1h/8ojpJ7EBNGFaYmDzA9s5/AjmGxhKGhMuNiwy78wiC5nm78ri6soX5taMN6nZGNiOKIMK5SDSephNNEcUBkhRiX2Boia4lsTCydmfflTDji4IiDEYNYg7EGYoFY+MQPf4yBrv5ON/GMnGuAYou19lBL3npr7fElbOOSWm0Bivv+6xM88cB4p5uhVEed0TPCovqkL9H30G3v1abu+dq02N+rFrx+ntfSpqf16eu1C1w3T39/aS3Xpm3t6pnvPkLzzyf7i1q9F3m2LZl0di+Z+6T5pSmH8aM+vesrdK0J06+EbWOfva72tbLJ1GNsy/lM+hwtdtWs09ezJNWcVV3zvYazadN81yzmfbK1IQdtyrYOdWg9bs6z85ZpaosF21JB45zNlG8kmuu0c8/VL7dz7tWcn7m/JZlwsTbUJUwnn4yiZHhMnObH6WSOUdyY+JKk20Q9GCHpZKLpPjkvSX4aYKjtG/07sv1GqA/DqKdJggu14Ii1ZK4/j9jsz6P5dcRp++NaAMQKEYYYQ4QQYohwCDEEku6NS4hDRFI2whDZTBohsoY4PR9iiGy6T897cUTOhvg2Ik9ETiLyElEwMXnHUnRj8i7kXUskFWaZoiolnFyEyUVIPsYUYiQf4XkRjhPiuiHGNEJVNn3tyc+v8RlNshqft+yfivrPtZ6bfg6hPiymsbxlMu1DHNukx0ds68dx63GaF9UmGiXThuwdxYKxGCf5qGIskk0bkHSPaQQBYpLPfUz6IE0ymWkQhoRhSBiFSftJ/n2orZ6SPooT1x7QbUx8Zr+hqNMwYjAYjBgc4zSOjak/gDcdI9i4TBROQVxKRpvFQlwx2LKL53bT1d1HV28/uVwBxzj1h/la/a5xccTBRjNUy4eolPZjoxlc49HbdSm9PVfRld9CMFtiZnSEmdFRpk+NMDMykgwDRPA9n96htQxs2MTAho30Dq/DOI1eL/W/szN/VlrzauWmw4hPnhrn3qlZhn2XFw/3sSnvNQWEoBF4iWxjH8VR87GN+LVbfm1JV3dZCQsFKBYze8o+EXkv8BPW2lKa93HgpqVq4MXuvuOPsa+8uj5UZ+w8+91kMZa3ye3+sZMzuunZ9ZbM3nehweG1B0KZp3RzPXPPtXZ1a3/Ltte0lml3zQLP0fXEYt7iRQU6Mrt2PyJpm0zTQqZvd7uzLQ/eMqfofD+Bpjw7z5tm251rPp88dpjm/Na0TY/tnBkNqP/862Waz9XSgmRiEpkXbbOvQeqlm89B0uEcauue18u0e18cGDkJoyfbvPQWi/1jlPyyEGElxpo4SZsYKxFIbZ9sSX6YpiOspJuJQUIwEdaEWMLkfHqMRMQSgQmSY9OYZG7u525xvzDPXRFk7nXNf5fYefLnfru00Goj0tQ+O09+y7m2904eVKT+UWg86jbqyjwy1/+8xgvcr1ZfrUzm/mKb07UPt6SP51K7vlGPEGfua+v3lWzbMsfJH3WLaWpLbUhGpm9B7Z4t92nNy15Xa5fJvI7zZc6aeu8N29gaxyY5to3eEbV8Wo6bzmXyYmsyeUl+Lc/Ggo2Tc9TTBhsn54jTsnGtfLIl1zvE1hDHhriedohqaRyiRf06fZr3pz5fRhIciazUgxhB5FCNHKaqLiPiURaPgOHknHUIcAgy6dCaNM/BiUPyUZlcXMa3ZTwp4VDGMWWMUwanDF4Z688S5mYJCiWi3CyOW8JxSoiJMn9G5u4bfx7bnxOx4IC4c8871B5EJPm7PXaSn4t1IHaQ2MHGLth0H7hgXWzkQuwh6edDbNo9Pv03ypgIcUKMCTBOiOMEGKeK44Y4ThXjV3DcaubPSWNrGv6Uvq5aeA7St2tEcE9Jsp9I/6oQiNcI8bAQrzfYYQfjmuTfvvSBW0QwkrTZpA/iiMmcN0j64J4sY+ukecmemGTIUZSuThQmKxDZMBniE1dDoiAkqoSE1YCwEqTBSkHi9M9cDIKLnyuSy3UhhQKn8hFH3Vn22pOMRslqIVu7N3HL+pu5Zd0uLhu4As/JJ8OzxKm/jtprEiRtcyPfxpa9e/Zyz933cGD/AQyGyy+7nJtuuonLL78cxzm74SxBMMmpU5/h+PGPMjr2NSAimIp44r6Qsd0hA+su5bJbnsJlu57C2h2Xzju0yNqYsfFvcfz4hzhx4pNEpfvJxxvZsOGH2HDTz1IobAGSeS5Gjhzi+N7HeGLvbo7ufpST33qYKfsQJc9n4xVXsvnq69hy9XWsv+wKXM9b9Gt5PfCZUxO86bHD/O1UwOv6hnnTJRsoOhfWZJhnYzE9KO4G/i/wk8DLrbV7sxNmntPNRW4nGT7iAP9orf3jlvOSnv8eYBZ4jbX2O6erd7X1oPiZ//0uPhWt6XQzlFJKKXWBkXQm1Po8FGQfwGzLceYhLX3oSjoY2WQeirS8sUmAJemcZJPj+han55NzTlo2OQdOLU+SlWJrc1nU0k46j4VjpD4fhXHTVTicZD4D4znpEpcOJufh+B7Gc3DdZG4M1zXp6rUGxwXXqU0qKcnKt67BcyVdpVZw/dqEkyTL57Y1f3CtvpxtFKdzR9SWm43TJVOTyVdttYStlrHVMnGljA0qxNUKcRAQB8kKGWEQMBFUmAgDpqKIUixI7ODGDrnYxbUui/t+MW1bOo9GZIXAGoLYoYJLGY9Z4zMrOQIcKjbJr1qXCi4V61DFJReHdNsqPRLS64T0+ZbegtBXdOjv9ejr9+lbU6RvMEd/0dCbb8xd0hSkqwXeEGr9arCNAF39s5oUbpyvBQjr6UaXnahqqc4I5WnSvaUyLVSmhfJMup8WylOGOGp5UBVLrium0BuR74nIdVeJnHFK4XGmKoex3jiFLmHt2mHWrltLX18PtQBnsuxuMizBTpaIHzqOfeA49qETsGcEIgsFF64fhpvWYW8cwg75aW+mGEt6fX0LwcbE6d7aMK2/uUyyfG1yLq6VsWHTdq6eCIQHSw4PlB32VZI/8b0m5ppCzDV5y868Q9HN4Th5HDePMbl08zPpHE4t7eSZnfHZu1fYu7dKqRRTLLpcfvkatmwZZMPGdRSLPTimiOMU0q2IMQXMaVYhCYIxnjjxCY4dfS+TU/eBdSmf2Mjhbxumj+bpGVzLpbuezGW3PIXNV11TX1K5VRSVOHnqsxw/9gFGRr8CWAb6n8KGjS9j7fALcJzmL5HL09McfuRBDj14H4ceup+TB/aBtbh+jo2XX8mWq69j4xVXsf7SnfiF4mnf86kw4vf2HuXfjo6wLe/z51du4RkDi5twdDU71yEe37HW3iQiTycJVLwJeKu19px6UIiIAzwGfDdwGLgDeIW19qFMme8Bfp4kQPFk4K+stU8+Xd2rLUDxjj95NdZ/otPNUOrCob0xF+W863adWop2Zcftr5TT3+70r6v9P8nNr6X9febWbefk2zb1S+ZsLSFz8xe4Lq0527ehXt4ueE22QLt5FEi7ks/tKVP7+db6XtX7J2R68mT7ZjTqqT9iZG4mTfXVvyut1VVvq5CdHm3uvUy93thm3z+pl2/qR2HBYubkWyvtjy3JfA+169I21edxsNTTtfy4/r5kyjWVb50XQtqWjdPQRVw7nxn6MTedtC0W05RfnztCkqEOtbJx/RqpXxNnzsWycisliLW4WBxI5qOwliQckOT7WFwhnZ/C4kF9vgpXwJdk/gpXIlyJ8STClSjpY2EiHAlxJEzyTACmyqwzzbg3yYg7zglnnJPeFGVToSohvTbHhqiPDVEf6+I+ijZfn0vEIpgYvDjEjSPcKJlTw0QxJrbpaLXk2/Okh0nS6yPEpWJ9yuQokyOUhb/xTYZjCEFsqMQOJXymJceUKVDGpWw9ymlQo2w9qlboDst0x2XyEuC5EY5niQsOYZdHubdAnHeJfUNskuFFkThEYojEEItDLOnwGHGIjEMoDhHpkKT6D4uWtLTNr/WC6KpCz2xMbynZemZjekox3em+ZybGD5v/xip7MFEUJovCVNEw0+NS6jKUu10qPR5hl4vjOOkksiAIhVKJKx66j6vu+w5X3fsdBkaSrnxPbNrCnifdzJ4n7eLwVddgPR+nFpCTpI9g9thpOhbcNK8WxHPTcq5IvawLuCbGJcIlwpGokSZM0yGOTY6TLcCxIRJXiKbHiabHCGfGCWYnmJg+xYOV4zwUjbPHKVFN39uBGNbFwgYxbPF9thZyDKYTpxpPECcCQixV4rhMFFWwtkocC6Ojmzl+bCdjYxtIfjqWYtc4vb0n6e09QW/vSfL56SQ4anwcpwvH6cJ1unDcWro7k+7CdXsIw2kmp+5jfPxO4riEYZDS0c3s+2pAeSzGOB6DmzYztG0Hw1u3M7R1O4NbtpLv7yM7p0apfJQTT3yYU098mGrlCMbpon/w+fQPfy+54hVYqa0ylM7zgaUyPc2J3bs59chuTj62h8nD6fKvIvRsWEffjq30b99C7/YtFNcNQTpfSOucHvfNwDuOexwLDM/trfKjgyXyJq4PU2qd+6N+jOX27bfjOxfXJJnZ5UU3AP9NsorH6UNCC9f7VOAt1toXpMe/AWCt/aNMmXcCX7TW/ld6/CjwbGvtsYXqXm0Bio+945ls7t/f6WYopS4YGqFZqtDLQsMYOuXsX9tShFDOoQ0tt19MHXKa31HmlD+j0upcJMMRmgMuteEYyflaoCfTQb4W5LFpwKU+zIM0qEJTmvrDNZlhG5I+dDfScTqsI44FrJMemzQAlAZK0n0yWWeSH0ujXIypT+YZp+cjGtdEmHQ+CqmXTeaVMJn5JRplz4ZgcYhxJU4eLiXGI8I16UASiZPgB2ngIzOEqfXvqkZY7/R/hiIsFRNTFUu1tpeYshHKAhUHylL7sTXmIUl2jTlH5r6eeV6nPU0hO98JpVQ7O2eu45d+/Y9PX/A8cq5zUHxPLWGtPSYitwFPW4J2bQKyk28eJuklcboym4A5AQoReR3wOoCtW7cuQfNWTs+JIjecmOh0M5RSSimlLg7Ssp/v/PmkNsIAqAqUxDBjhFkxzBphVoRZU0sn+xkxTBvDtJF0n6RnxDCVpivzDmtRSq0GG09t63QTltS8AQoR+VFr7b8Dr5hngpEvn+O9542ZnmGZJNPafwD+AZIeFOfWtJU1m7+V4xOv6nQzlFJqma30b/xL149i6Syq38CS3W1xw2Vay5xlP4q2E7Iu/l7zDweZL72Y8moppJ2MsRITJQM4sGLTZTstsdTXPkjTybJ9Fksk6QoK9WvSI6nVmq60UDuu1SVR5lxyHVKrJ70uvYeVpG21DRqT2SadGWw6pMSmH1MLcQhRBQnLSDqfQNlElIxlxo2ZMiHTToWyCZOVUwQMhqLNU8CnaD1yNo8f58hbHx8PRzxiIoL0fQokIiImICKSmJCYUCIAAokJ0nNVE1EWS1UiKhJRJSIwEVWJCCQkkCitIyQi2RYrWY0lB1IAybdsOVw8cjh4GHwr+EDOCvkICrFQjIXuQOgJDX4oSJzMS2Li2qJHBmKDhC4SGSQEGwFROtFo7BCJSyx+skJM+vOstc6EFfyohBOVEVvFEIDExE6Q9NZw0mFGRogNRCLYZI5TIiPpJzAjO9IjfX6p9SZpep6pl2sEZ2z6aQ+tJcqsxCM0hlrMF8pZ8G8dazG2jMQxiKTvxemGLtnFdH5Z6Op0n/Raimqr01CbwsMQ1csJIRBb6sPCWhlsMuSEljlpxNbnrnHE4iyy0fPP6LJcTneH9v2ALMnKPbEkPX/c+oLHS9ccS5j2LGsMW0yGJy1+rplnfdft596m88hCr7wr3S/XLB2HgS2Z483A0bMos/oNbORz0cFOt0Kptqysqnjfea11DYzzwWr96Z5/7+QSWswPZUnfgNbKFtlZe4F21kq3xizmrvlj2/65qA0/XXCNoDnNlpaS7Qq1a2X7trVWJUj9FpL5FVUy907ybf18/fFIsnVJ5rxkrheQ5laIFWgqmaZt9mGrsZKO0GiHkAyXMLU8kbS+zEOWrbU3SQsQS/ozsbVflJOHeqmvoNP+vWx6iZmcRpDMhTSYkIYV0iBFY2/TfZQGK2oBjzgNeMTEyTmJiYiT4RQSpcfJ3BVROt9FJKTLfsZEaaAgSh/4p5xZps0s006ZWafMrKlQMUG97QaDi4NjkxUJahOkJPVMEZOuuLMEkgCCjxUfKx5WfBAPK8U0L4c1flomhxUfRwyOGFwxeGLIiZATg4/BMwZPHIy4xMYjctx03g8HYpeeisOaksuaKY81Ez6Dkzm6ZtP5EIzFkSh5yLRRshxnEBAFEWEYEUYQxobIekTiETp5rLR/lHCDaXLVSfzqJG4wjcSjGEpYqRC5Fap+TNDjEPT1EA0NQM8wnu/jeR6e5+H7/qK2XC5HLpcjn8/j+/6iV4eI45hTp05x+PBhDh8+zIEDBxgZGQGgUCiwfft2duzYwY4dOxgaGpp3NYiFf7gWHvowfPLXYeo47HoNPO/NUBhoWzyKLbPVkFI1YqYaMVMJma6E9X0jHTFdbuRPlgMmSwFT5Vo6pBrNXXmpxgj0FTwGij59xWTfX/AY6vYZ7M4x2OUz1J1jTZfPYLfPYFeOgr9yc8GcD8LY8s7DJ/mzfccwIvzGJRt47aYhnCVYFslaywd2f4AP7fkQ9568F4tlU/cmbtt6G7dtuY0b196IYy6u97vVvAEKa+070/1bl+nedwA7RWQHcAT4EeCVLWU+ArxBRN5NMvxj4nTzT6xGj/ZN883g7k43QymlOq72nZUTRXhBgBcEOFHyIBA6LoHvEXheMrnaeaTlO7yzr2cJA4Jn06bFXjOn3KLiFwvVnj7OL6YzR5sytv4QnzzrN75XTb/2yjzeN19v029Zm1vWqCM53foNbe2hvrU+W3+qr11jM9fUS6R5Nv3OrnGmPvmatemykzb59r4+IVtarvafqbU3CSLUPj+23X92bt6FSYBk+cb0e1+Q2t5p7MUBfKwUgNpxtoxbz7PigiSLYibpZNrMWhkrHoJpmtjQre0hnVgTXCSZYNOCby05C76N8eIINw5xoyTtxBFeGOGGMU66xbFDWXLEfSXM+nF2j93AYbuFSb+PKVPEi8APLH5o6S5X6Z8p0T9doms6IDcT4pbADYSchZyFvCRtKUnIrEgSBKm9d204YQkvmMYPpslXp/FsGVeqeG6ElwOvYJhxDI9U4J6Kw0Shh6tv2sTtT3sSV+9Yi+d5uK6L67p4nofjOGf30H+WZmdn68GIw4cPc+TIESqVCgD5fJ4tW7Zw8803s2PHDtatW4eIUI1igsgyPhtQjWKqYUwljKmEUbIPMukwphIk6XIQUZ48RemRz1IePUKp8CrK255GebKf0rt3UwoiStWI2foWMltNrl0MEejyXbpyDt05l96CR3/RZ+tgFz15l968R2/BpSfv0ZtPz6cBiYGiT0/exZgLOsx/Tu6enOVXHj3Ig9NlXjDUyx/u3Mym/NJMQDkbzPKWr7+FT+z/BJcPXM7PPulnuW3LbVw+cPmK/nk43y00xOPtC11orf2Fc7mxtTYUkTcAnyLpMfTP1toHReT16fm/Bz5OMgfGHpJlRl97Lvc8X90/PMpD8Uinm6GUWk6Lfha42P+BqnVrzXw/XftHWwIgWOL7nY/DTpamTY3H8sbx4pxlG0/3y5VtLjN3SMd8M+fNP6yjcYVpKSZN+/bDR9rfo/6Nv7SrI5vX2kOgcZ2dU661jmQVi+y5pnTm3nPrqp1vvra+2om0u7fUr7Fz8iG7CKnNlG2+ZzKZZHN9puXemXrSAEEjYFCr32TKpkEEkfrSpLUu48nKCOkSpaTLkdb2ttblvFY2Su8SYyQm6ZQdITbpQ2FsiGPjZFWOOMa14MbgxSRpqK/E4SF4UtsMvhF84+LWeihg8MXgYvDFwRMHX5LQA7EPsQc2B9ZDrEOysqQkvVUigfTYRmCDGFuNCKoRs9WYcjWiGsRUg5iwaonCmDiwyUiVCHqtYOKkV8cm6yDikvydOMFchkZnaHDCMk5Uxg1LuOneicp4hHhOjO9ZcjlDruCQ6/bI9+TI9xXJ93chfV1ExW7Cvs3Q10/c20/sOFhriWLYe3Kav/vK43zn4Dj96zxecPV6Xn31OnryLnFseXTCEtuQOA6I4mT4RJzuo7ixxdYSxum5OE2neVHUKB/GzdcFUVzPD6OYSjVgerbETKlMqVxhtlyhEoTENuld43g9GPc6jOeBSSZVDfdbqnumCaJ7CdLAxLkyXEfRvY48efInhII3TcF3yLsO/UWfTQMOBS8JNBR8h2I27TsUfZeenEtXzqU779KdpoueowGGZTAdRvzR48f45yOnWOd7/NO12/meob4lCxwcmjrEG7/wRvaM7eGNN72Rn7z2JzUoMY95V/EQkR9Pk08HriZZvQPgZcBd1tpfWv7mnZ3VtorHOx76GB85Vel0M5RSq8Ti/jk7/74dndtuiw0jbBhiw2T9dwBxXMR1Ec87/UPvGd1veStazLjUlQtPJMxi2jTnhnNb0O61LdTOpkd/aZ/fWu9CnSWaQwnNoYL68/MC17W+xtawQH0vzefa3U9IuugKpIO24ySuFsXpcZqXpm2mTOP12ka7as/rQrpWoa0fW0iWirRJfRYLae8KbAxx0ruCOG7kpdck++Rekrl39lwjXRvmkYYbaufqHUIsEmfKx+n7lCzlgcRJKRMnD+DJe5PMV4AFYwWJ0nBZDBInw1RMLDgYHHERcTHGxZjkz33VhFScgIpUKZsyZalQtmXKtkKJMkEcIBiMNYg15GKX3tChNzL0xj697gC9+bX0dW+n21+DSVcOkTgNgiZTVRCHEXFoiaM4CQhEMXFkM3ub/DhjSxSlP9oYkh+31Dd7lit3ZJmoiolDTFzFiQNMVMWJq/W9EwWYuIqRCCNgiQhsRDmOqMQxgUDVQK7o091XYGiwi/Xr+9iyZQ1xVxdTTo5xk2MMn1N4nAwMp2ZDRmeqTUMIZqtRU/p8YgQcI8kmgmNqn98YG0fYKAJbW38FPMeQ812K+RxdhTxdhTw5z8E1BtcRPMfgGsF1DDnX4KV5vmuSvZPmpcd5zyHnJmV915Bzk+O8Z8ideojcp99EfuwR8le/EO/230f6NnX6LVOL8NWxKX7h4YMcqwS8ZtMQv3HJBnrdpRtm8bUjX+PXvvxrAPzJM/+EZ2x6xpLVvVqd1Soe1tp/TS9+DfAca22QHv898OllaOdF6/bpG7h2n/agUOp8c/494i/S+dhwm3Q7j6emCI4fJzx+nPDUqeQ3fcfBW7cOd/16vA3rMfmFV7Fe0a7pi1zmclHFFlXV6QudbnnwRrklud3i7temzJyslozmQ9s+aefLb39tU76t7Wxzsczkd/VT1kJksZHFxnGSjpNjYouN4uRcVCuXBgTavU4AR8AIku5xBDGNNMYk5yW9d6bjUKMDka3XbVvbbpvvW3ufknhBel36Z87GteEjtevsnHtlw0RJVa29Q2heUrS+X75v/zyy3/+fndl0gxkAJE57VdgIsXF9b2xUP2dq5+PsuRDHJsMwasfGRogkE+bZJKKTzJchllAsgcSEBkIjhI4QORA4QugYTM7BzXvkCz6FQo6u7jw93QX6u4v0dxdZ0zVEsbuLiuOzbzpiz1TII2MVrur5daZjy5u/8SZqs4tsGiiwqT/PYHeO7pyL6ximyiHjs1XGZquMTQeM3FmhHJSA0pz3qCfnMtCVdPvvyrms683TlXPp8p1kn3PpziXf5vuOwRihGkZ84dETfPHRk1gLz75imO+5bgO9eQ8n/VzXAggmDSYkH/9aOtm7Jj2fHjum+XytjI1CJsbHGBk5xejICKdOnapvYRiCgDGG4fXDrF+/nvXrN7Fu3TrWr19PsbjwvydLIo7h62+Hz/8e9GyAH/t3uOx5y39ftSQ+8MQYb3z4INsLPh+9aSc3953r3zwN1lr+6YF/4u3feTs7B3bytue8jS09W05/4UVuMdODbiSZKHM0Pe5O89QSOfjhL/PIE32dboZSqo0lma35YnBGb1MBZAcM72hkRSSzER0ZARYTsF3Jn8vi7rWoR7VFBhcWUdGiSp1dm86ujW3/rMzJmr/upuvnfZ/m6XHRLjLRVKZdoMO2L9Ny7/btss3XZepszm969J9TT1OPCpu93s4tY2shgSTSkO0VkRzbpteQrae5DpvJby7TqKOWjjO9MJKH8Hob6j1X0uBIrbsE6Uob9akwI2Ibk6xrka77Iel5Se9lTPJgahxcx+A4Lp7j4BGTiyr4wSxuMIGJSskgEccgxV5M9yCmZy3SswbjuBjPYBwnOZ+mHS/JF8cldB0qYigbQ8kYShhmxWVGfKaMYQphUgyTCBMYxoAxDONWGEWoui6h61J103lw0q45OSOs8VzWeA7DnseQ7zLsuwz7XrpP0gPGkLNCOYiYKgdMl0OmKiEnpyrcfWqGw6OzHDtQ5uRUhZGZk0xXGr0Xck4V4RcpR/nsJ4zDYyUOjyWBBxHozXsMFJM5CYa7c1y+toehnmTiw8HuHIPdPkNdyX5Nl0/eW/y3xEEU85/fOshffW43ozNVvv9JG/mV51/BljXnHgSIooiJiQnGRsYYHR1ldHS0HoQYGxtrKtvf38/Q0BA7duxg7dq1rF+/nuHhYVx38aseLJmpJ+BDr4e9n4erXgwvfvu8k2Cq88/fHTzBW/ce5an9XfzLtTvo85buMzQTzPDbX/ttPnPgM7xw+wt5y9PeQtFbgYDZBWAxP4U/Bu4WkS+kx88C3rJsLboIPfnl13DDww93uhlKqQtKZ8Y1RpMTVPcfoLp/P9UDB4jSWdHF8/AvuYTczp3kdl6G078Cv8At1VuwhGNEFzXedFH3W+y4k7O5X5tr2mXNGTeReTRPhzZIDDaOsWHaEyEGouQ4GRJBI13vodA4n+wthDE2bH+88OtJ00YwvoP4BvEcxE824ztIzkX85FttybnN+7yTlDfZeRnSe9ST0rhnrUz9uM35epnMe1jLz16fvbbddcY059WOM2WTYSMm2ZD66wiJKUVlSlGZ2bDEdDjDdDTLTDjDVDjNVDDDdDjDVDCd7KvTTIZTTFQmmKhOMFGZIIjnnw+my+tiIDfAmvwaBvIDDOSHGMgPsCa3hjWFNQwVhhguDDNUGKIv14exwOjjcPRuOPodOHIX1WP3M4th1hQoDVzK7MZdzK67jtnhayj1bGI2hukoZjqMmIliZqKY6ShJT4cxM1HEdBQzFUZMRRGTYUS7j0vjQ2txY0uvOPQaoRtDEaFHDMNA3goFwLfJ/BVuCCZOetQEQUw5CCkFFWarEaeqIQfTVRhqKzLMVsNFz2sgAjnXMNSdTGq4rjeHU/0KRa/ClTteRm/Bp6/g0ZdOjjiQrsTQW0h6MCy1OLZ88sHj/OmnHmXfqRmecskafvN7ruL6zf1nUEfM7OwsExMTjI+PMzY2Vt9GR0eZmJho6jHlOA5DQ0Ns3LiR66+/nqGhIYaHh1mzZg2+vzQTFp6zPZ+FD74eKlPwfX8JN792Sf+9UMsntpa37jnKOw+f5EXD/fz1VVvJO0s3+faByQO88fNvZN/kPn5l16/w6qtfrfNNnIF556AAEBEDPAV4nGQVDYBvWWuPr0Dbztpqm4NCKaVWIxvHVPfvp3TvfczecQezd9xBcOgQAKanh+LNN1O85RaKt95C/qqrkE58u7XKJPMJ2HQiveSbbRul36bXHvCb5jZos48yx7WH/jhuDE/IlqsNV8ik2+XZMA0cRDYJDNSCBLVztXSQnCc+h54iRpJAwv/f3p0HRnLUd/9/V/dcuo/Vai/tZe/tY30sGDCHiSEEc4YACYQAAUIOzhxPAiGQ8OQhIU8OSMhBCDwJ/EhCgJCAwRBjEttgwMY29tretb3rvU+ttLpGozm6u35/dM9oZjTand2VNDo+L9Kp6qrqmq+07ZHmq+7qYgIh7kQJhTC54ER9JumGSYTyenVbKoaTimHi8+upL+djrSXn58j5ObJeNiz97GTdy5L1s0x4E0wUJsLSm2DCr9zPeBkyhQwZL8N4YZzxwjiZQoasnz1vDI5xaIm30hxtLfF2WhLtNMXbaIq1k4q3kYy3kYi1E4+1EnNbiMc6MLE2AuLkAks2CMgFAVk/2ryACc9nIpshmxkjm8swUciHTz6wLjmTIE+cnEkQWKd03odrRtjJNSTK26JEWByI23Bzo82JShPY0nFB9N+E71t8P6DgR4tSXuQ5m4w5pYUP466JbnEw4aKN0decyXtkC5VPaGhOuKzuSLGuu5nLelvZsqKN7ava2NLbRrLqqobT/d/k0UffyRU7PsbKlS+/qDgvRsEP+OpDJ/jkXU+xvz/NlhWtvP/F27lp6/KKD1vWWjKZDOl0mtHRUUZGRhgZGZlS9/3K9Syam5vp6uoqbd3d3aV6W1sbzjx7WlOJl4f//t/w/U/A8u3wmn+E3u2NjkrqlAsC3r33CF/tH+ZtfT38701rcGYweXDX0bt4/3ffj+u4/Nnz/owbVt1w/oOWoHOtQXHOBEV08A+stc+clchmyUJLUAweGWHk9Hijw1g85uUV+XMY1Bx//TN2xXpdl4df/FSz+Xp1XcV+/ivWK9dWqGN82U32Fz6m2Fa8d32alyu7IR5/+CyFY0+RP3KAwtH9FI4fxOYmsBhMcwuJDVtJbNhGYuM2Yr1rMcXneJfdHz85b9Urll0iX36lOhX14jx2al/ZZfY2mLzHHlvWXqpPthHYsqv2bemY0jBb2V5e2vLxQXHfTsZggeJV79go+VAcX36snZxzun+HWt+qC2w739zW1FgzwXXCRRzdsD7Z70RPZHQwjsG6BhOL+ovj3LA9HDs5xsYMxBys40AsanfDduM6WGfy2+xH38/Jb5eNPpdOnlNBtB9+Cyf7i583i9/egOjpAPj41scLfALr4wUF/MCnYD086+NH+z4efuDh2+L4Ar71JktbiPo9AuuVtRXwbXHzCKJ6cUxg89F+ccsTENZtWXlRb0g2BiSBBJDE2CTWJsEmsYR1a1PYIIG1SYIgFZVJbNCE76ei/iZMEIdo3YnJc7+8HiUMbB39s8wYSEQLG5bKaFHD4oKGyZhLMh72J6sWOkzFwwRDKh7V48XFEMMnKjgGxnMeY1mP0WyBwXSes+N5zoxlOTWa4+RIlrPj+YqYYo5hdWcTfV3htrarmb7usNzY00J3S6Kuv6haG3DffS8lsB7PuOGbGDNzC/dNZyLv84X7DvOP393P0OgYW5clePmVPWxfFmd8PM3Y2BjpdJp0erIeBJUJGGMMbW1tdHR00NHRQXt7e6ne0dFBV1cXqVRqmgjmsbMH4MtvDa/02fUWeNEfQbyp0VFJnUY9n1985CD3DKf54OWr+bW1y2fkygZrLfefvp9P7f4UPzz5Q7Z3b+fjz/84q1u1KsJ0LmqRzDK3G2N+BviKrXdlLrkgv3zbgzxw9Eyjw7hIOiVkrs3Dc24ufgMvmdWszfmPMxba+mBHH+y4qfYhh0/C4ROXHtM039fp1wWp0V5zDltVVrWb6nHnGFvjdcyU48rmjZ7QEF7TXjam+AiFWq9b6rOV85vq8XaauUqfIkttxlT1l+azVcdEY6zFRFdUVM43dT+cO5g6rliPFhYMH+dQ3hdU9pvJ/eLYyna/bHxQMa5YN6U2PxxnKj9EzRYbuGBdrI2FSQMbw9qwDRvHBsX2JqxtgyCGtfHJsUEsGhevLG0cgqgkjg2SGJvA2gTGJsA40d0dZvKpJCZcoNAYE939MblgoYlKp7iIYXGRQre4eCG4jhPmmBwTPvkgWrgw5hjixSchGEusME6iMEoiN0RyYpDERD+JiQFi+MRMgOs4xFqX4bb1Eu/sI9bdR6xjDbF4ouppCuHrhE9SKLZP1uNu+JqJsictxKKrFi5EtuAzlAkTDYPpPP1jOc6M5Tg8mKF/LFwH4kw6x5nRHGM5b8rxHU1xVnWkWNWRYufaTla1p1jZkWJtdzNru5tZ0ZYkNgOXjJ85czvp8Se4YsfHLjo5EQQB2WyWiYmJiq3YlslkwtsvxtIcPzNMenychC3wE8aG+a40HPhheDk1QFNTE21tbbS2ttLT00Nra2tpv5iIaG1txXVnP5kyp3Z/Cb7+6+EtU6/9HOx4RaMjkgtwKlfg9Q8/xZOZLH+9fR2vXtl9yXNaa/nu8e/yqd2f4uEzD7MstYxfv/7Xef2215OKLcAE3DxRT4LiNwgXUvaMMVkoPmHLts9qZEtIsu+7tDZ9qdFhiIiIXAQT/X8HcMIPwtGzMw1O9GHZRH1OVT3cD+8oNWVtUb9xMMQxxsHBCT+A4+AYB2NcHNywzzgY3Mn2aLzjxHBwcYyLa2I4xsVxXFwTtjk4uE6MmInhOjEcEyNW2g+PcY1LzIkTc2LEnTgJd7IedxLEnBgJNzwmFUuScBKTTyCIkgBxEz2ZwBhiDrjGwTXhX9nDNkOsmAyA0gdbpyqZ0NB7mAMfRo7B4H4YfCoq90P/fhg5SvERpxgHlm2Ctduh9wpYsQN6d0DXBnBm/gNrzvM5k84zOlFgpHzLFBiZ8MInWUSJiOFMgbPj4f50j89sTcZY3pZkeWuS7avaee7mJMvbkvS2JVnd2cTKKCnRnJj9W9aCwOfAwb8ildpAPP5MTp48ST6fJ5fLlcpsNlsqy+vlbdnsuW/pSSSSFEyMgawhE7h0tvdyxcYVXL6qm5aWFpqbm2lpaaGlpYXW1tbGLEbZSMNH4b9+F/Z+DdY+A37mH6BzXaOjkgvw5HiW1z38FMOez+evvoybui/tY6wf+Hz7yLf59O5P88TQE6xuWc0HbvgAr9z0SiUmZsB5b/FYiBbaLR4P9T/EnsE9jQ7jomnRl8XNNGixxXOZy5jm+vyu5/Xq+frLx1gswfg4wcAghYEB/DMDeAMDeGf68c8OlW5LMIkE8ZUria1cSWzlCuIrVxJfsRKn6jLcWjHWiql6XL3/buXHlR9TUZ9mTGXVTOkvHjelz9Q+xpQ+XE//9ZTPWT5fzTkwleOr6uc6xhQXQyz+r2yMY5ya46rbjTE4URKhOHf4od5MHV82tthXHFverp8Bi4S1MDEEw0dg+HBUHoGhw+H+2YPg5ybHJ1rDRERpuxyWb4WerRA/9y/o1lpyXkA65zGe8xjP+YznPdI5j0wuXFxyNFtgLBu2jWULUVncwr6RiQI579xXxbSlYnS3hItNdjXH6WpJ0N2cCMuofVlrgt62MBFRT+LBWksQBHieN2UrFApTyuq2fD5PoVA4Z5nP52lt3cf2HXfy+OM3cqb/smnjMcaQTCZJpVJTylQqRVNT05QtlUrxxGCOf3+on288ehrPD7jlqlX86k2Xc8XqjvN+D5YELxc+PvTuPw/3n/tbcON7wV1iCZoF7r7hNG965CCuMfzLzsu4uu3in6RRCAp848A3+Mwjn+HQ6CE2tG/gbVe9jVsuu4W4E5/BqBe/S1qDIpqgC9gMlH7iWGvvnrEIZ9hCS1CIiFwqay3+8DCFY8cpHD8WPknj4EFyhw6SP3iIYHS0NNbE4yQ2rCdx2eUkt24htXUrya1bia9eHT4JQEQWn1waxk7C6IlwGzsxWY8SETY3RgGXHAlyxMklusi1bSDX2ke2bR0TrWvJNa9momklWbeNCc8nWwjIFnyyBZ+JvE+mWOY9MvmwPlFqCxMRmbyPX1qUcvLRpQ42Kif3WxKGtmSMloRDa9KhOe7QmnBpjjm0JB1a4g5NcUNzVKZihpQLCdeQcMFYi+/7+L6P53mlevVW7Ksuq9uK26X8gc91XRKJBPF4nEQiUVGfbIuRSP4pxni0NP8ZqVQTyWSSRCJRUaZSKRKJ+tazABjJFPj3B4/xr/cdYV9/mrZkjFdeu4a3PHsjG3taLvprWnT2fRu++dvhmhPbXxauNaGrJhYU31o+cfg0f3roFOtSCb6w83LWNyUvaq5jY8f4+oGv85V9X+Hk+Em2dW/jl676JW5edzPuLFwZthRc6iKZbwPeA/QBDxE+1eMH1tqfmOE4Z8xCS1CMj48zMTHR6DBEZB6z1hJkMnj9/RT6+/FOncY7dZLC6X68U6fwTp8iyFS+j7jLlhHv6yPet4bEmjVRvY94b2/02MGFaS6v/JvJ17rYuWbzuOnGnO/Yc/VfyJz1tF3omHr7atXr7T/XeGstfhD+hd2P6jaw+DZapDOIShvgB0HZfrE/KJWlvopxYX+pvZAn8PIEXgHfL4Rl4BH4AYHvRfMF0cNhnGgzZXUHaxwCO7l6iilLGgA4ZeufONEaJyZqLx8Tra9KuJZqlGgwk+OK84YLaEZriczxlbyu69bcYrHYlHp1GY/HicViFe3VW3FMrbJYr+fpFGfO3M7uR36VHTv+nFUrX3lJX7O1lgePDPHP9x7hG7tPkvMCdq7t5Oefvo6X7lw1J7erLBhDh+Fb74cnvhFeGfTi/wubbm50VHKBjmXzvHPPYX44Ms7Lezv5v1v66Ixf2Hk+mh/l9kO3c+tTt/Jg/4MYDE9f+XTeeMUbec6a5+jqwUt0qYtkvgd4GvBDa+3zjTHbgA/PZIBL3V3fu4f7fvD9RochIgtRd1e47TjPI86OHw+3e++dm7hEZNYVL0KwFbd0hXcsuYCLIW4gyiqUFhA1xgkXHY0WDjXF23yKt/ZEi06Ga3aEa4O4bnibj+s60cKZhpjrlvZjbnT7j+PgOJP1Wm0XurmuO+1+sV5eVtfL2xbChwprLQcOfoKmpg2s6H3pRc8zNJ7nqw8d51/vO8oTp8doTcZ4za4+Xvf0dbqNo1ohC/f8JXzvL8J1VG7+fXjmOyB2cX9xl8b5z9ND/PaTR/Et/OW2dbx2ZVfd/90XggLfP/59bj1wK/9z5H/IB3k2dmzkPde9h5dsfAmrWlfNcvQC9SUostbabPRDK2mtfdwYs3XWI1tCdo+3cVd++nsLRWThMTagycvT7GVp8nI0e1la81lavAlaCllaChPRlqXFy+JU/RUxAMbjzYwlmhhLNDMWbynVRxKtDCdbyZznPu/5Zmb/TjozHzLmehWm+l6vjkcPXvTr1/99q+MG0LrG12oPHzRRfNJEuABkqZ3wA3LUNfnBueyYyadRFNfgMGVjJ9f/cEsftCfnCetOqS18isVkm+uEUbjFp1s44ZyuU1zoMny0qmtMaf6YG75izHo4toBr87hBnpifxwnyuEGWmJ/D8bPE/QkcL0PMGydWSON6aWL5NDFvjLj1cPGIGz98+gUeCTxi+CSSzcSa2og3tRNv7iDR1kmsdTnxtuW4bcuhdQW09ELrckh1wgL4IC61DQzcQTq9hx3b/xTHubC/+o5MFLj9sVN8ffdJ7tk/gBdYdvZ18NFXXcXLdq6mJamrJSpYC3tvhW9/EIYOwY5Xwos+Ah19jY5MLlDa83n/vmN86dQQ17U387c71rOhjls6/MBn98Bubj90O7cdvI2z2bN0Jbt49ZZX8/LLX86OZTsWRGJzMannXeqYMaYT+E/g28aYIaCe58dJnV7y9B1ctlZvhIveEn9vm+svf6Z+mJggwJkYxx1P446P4abHcMfTOONhGe6PEhsbwR0bwR0dITY2ijs+VnM+6zh4HV34nd14HV14K1fhdXbhd3TjdXbhdffiLevB6+gmHovRDVQ/CGsmf05OXfix1piq/ZoLYtY47pxjzDTtlcdVLoZZe66K+rQLZl7gnNPEZ6oqtcaZ0v65+speaZrjTMVxpubXXGyfsl8xbrKt4gN++Wubsg/55XNU7ZePwZQdVzVn9TzF1y0mHhomCMCbCP9aWiwLmcktX10fh8IE5Mchnw7XcciPw0S6cj+fDo85H+NCU2eYQGiOyqZOSF0WlR1R37Jo6w7LVKcW5lsirA2f3NHUtJ4VK15e1zHjOY879p7m1odPcveTZ8j7AX1dTbztOZfxsp2rdLVELdbCE9+EO/8YTu2Gni3wC/8Jlz+/0ZHJRXhgZJxf23OYo9k8v75+Bb+xYSXxc/y8yRQyfP/E97nz6J3cfexuhnJDxJ04z1/7fF52+cu4cc2NWvSygc77085a+9NR9Q+MMf8DdADfmtWolpir+jq4qk8/PERmks3n8cfHsZlMRRlkMuETLTIZgrE0QXoMP50O62NRPV1WHxs75z3SJpHA7ejA7e7G7e4itmk9bmdXuN/VSayrWO8itnw5bmenFqKUxc1a8AsQFKLSL6sXwPfAz4dbUKyX9+fBi/r9XNjuRaWfK+vPhe1eNirL6sW+wkTYVkxI+PkL/3qMC4mW8KkVydbJentf5X6iFVLtkGyPyjZIdpTV2yHepCsb5JyOHvsc6fQerrzir8559cRE3ufOJ/q5dfcJ/vvxfrKFgJXtKX7hmet52c7V7Ozr0F99a7EW9t0O//NHcPIh6NoIr/wkXPUaJQEXIN9a/vLwaf780ClWJeP8x7WbuKGztebYU+OnuOvoXdx57E7uPXkvhaBAW6KN5/Y9l5v6buLGNTfSlmib469Aapn2v0RjTPUf7QAeicpW4OysRCQii5INAmw+H265HEEuj83nyvZz2Fwem8sSZHNRmcVmi2WOIBeVExMEExnsRDaqT2CjsrhRKNQXWDyO29qK09YWlq2txPv6cFtbcFrbcNrbwgREewduRztuRwdOe1i6HR1THsEpsiAE/uRVAvk05MbCMj8+Wc9FVwkU24tXFNSsZ8KEQOCB9Wc3djcZ3hceS5bVU5NtiWaIdYObCBMCsdS5y3gTxJvDLdE8te4mlFSQOZHNnuDAgY+xbNnz6O29paLPWsu+/jR3PXGGu/ed4d6DZ8l7AT2tCV67ay0vvXo1u9Z3Nf4qpfnKWtj/Hbjzj+D4A+ETOV7xN3D1z4Krv5QvRHvTE/zOk8e4b2Scn+7t5KNb+ugoWwgzsAF7B/dy57E7uevoXew9uxeAtW1red2213HT2pu4pvcaXSkxD50rVfgAk2strQOGononcATYONvBiSwl1lrwfWwQhKUfQOBjfR+CoFQWx1jPC9s9PxxXLH0/Oj5q872o7oXtno/1o3rBw3oe1itMv18ohG2FAtYrYAsF8Dxsvqw9nz9nGRQK9ScMphOP4ySTmFQKp6mptJmmJuIdHThNKUxTE05TM05TCqelBae5BaelOapHZbHe3IzT1oaT1AJY0mDWRlcFFK8WyIabny+7OqD8KoFcdHvCRNkVAsUyU3b7wkTVbQpldS9bf3yxVHSVQAvEozLRHN5+EG+e7HMT4MTCX/adWFk9Do47WXeLW2LqfnFMLBm1RWUsOTm/kgWySD3x5Iex1mfrlg9jjGEkU+B7+we4+8kwKXFyJPzvdnNvK298xnqev62XGzZ2E3N1Vd60rIWn/ju8lePYj6BjLbzsr+Ca1ysxsUCNeT5/dugUnz52hnbX5a+3r+PVK8O/q2cKGX5w8gfcfexu7j52NwMTAxgMO5fv5Nev/3Vu6ruJjR0bdXXRPDdtgsJauxHAGPNJ4GvW2tui/RcDL5ib8JaG8XvvY+LHP472qi4ln+7RaRX1GuMrLkmvehxarWOnO676UWq1xltb+Rr2fP22cp6ovyI+W9ZXfXxgpx5XY7wtHxcE2OLXU9ZubRAeGwTT7wfR8eV9xf3yvnPVfT+KPZisV7XNK46DicUgFsPE4+FWrFeVxGM4zU0Qb8dJJKLxCUwiKuPxsJ5IYpJJnGQCk0iU9k0yER6XSGCSKZxUlIRIJsOEQzIaF9Oll0tOEIR/jQ/8qrK63YvqQXQ7gTfZXz0m8KJxZftT6lXblNsUvMmyeMtCsc+PblEIyurl7RW3LOQnt0vlJiDWBPHi1QHFeku4eGIxkVC6MqAlHJdohkRbdKtCa9ltDGW3LuiyZ5FZd+bM7QwM3EGs85383fcm+N6+e3jo6DCBhbZUjOds7uE9m5fz3C3LWd3Z1Ohw5z+/EC5++cO/g2P3QfsaeOnH4Jo3QCzR6OjkIlhr+c/+Yf5g/3H68x5vWL2M91+2ioncaf5l779w97G7ue/UfRSCAq3xVm5ccyPP63sez17zbLpSXY0OXy5APb91PM1a+yvFHWvtN40xfziLMS0547f/B4P//J+z+yJTV3Yr66taJG/KinDTru42Ob56XMXicKbyuMmV10rtxZXcp8RVthhbxWpu07WX4in2RfMXx0Srs4eLu5WPKz5erThPVHcccAwmVna8MdEj2txwHqe0UtzknOX14us7Ze0VYx1M6WHx4erwk2X0Wo4J1y1wCEs37DfF+Fyn8hjHmWxzi2NMRZsxBmJRvdgWcyfnAc6VMDunKeOK+wGQDbdaY/KE28h0x1fPfZ72UlutcdOMsefqO8d+3fWqY2v1X3BZfXxQOcYG0/QzWS+NOcd+qazayscVEwVTtuKYskRCad9W7heTCvOOKbsKILpCoHgFgBObvAKg/OqARGtVe/kVAVVXB5SXpVsWUlFbqvI2hvLbE2Kp8AoFEVlQzo7n+dGhszx48Bg74r/LUHY1f/jtywnYx9VrOnjn8zfxvK3L2dnXqask6jU+AA/8E/zoMzB2Aro2wC1/Bte9UY8MXcCeGM/yu08e457hNFe0JHhHzwgDw7fxlm/cx1MjTwGwoX0Dr9v2Op7X9zyuXXGtbt1YwOpJUAwYY34P+Dzhr8FvAAZnNaolZvkNSZbnyx6MUu9VR9OM01VLi0QQbTLPlSfI6qyX/iM10/RX9V1wCVHWK0qSTVMn2jfVfU6N/TC5hYlP7hfHYcIPyKXj3Kox5e3lY6PSqRrvuGFfqXSq9suOc2JT+0r12DT7sbLj45XtFZtbdZuCPiCIyMUJAsvBwXEePjrMjw4N8aNDZ9nfnwbg57d/hZa+YY41/R6fefMzuG59F+0pfbi6ICcfhns/BY98KbxS7bLnh1dMbH6hErgL2Ljn88cHjvKPx4eI4bEpewf9R77AJwhoijVxbe+1vGrzq3hu33PZ0LGh0eHKDKknQfE64PeB/4j2747aZIaYZ78bnvbmRocxjXmY7ZixDMwMzVN3PHP5ejXG1DyujrmmHHeRc9cTd8WYcx1vLqDdTD9u2jFm+j5lAEVE5BystZwYybL76DAPHxth97FhHjk+wljWA6AtGeP6DV389LVruH7VScZP3EXfmjfwgq2vbGzgC43vweNfh3v/Ho58P7yF7do3wNPfDr3bGh2dXKSR3AgP9T/MPx8/wn+NryfntJFK30Xn6H+wtWcTT7vmV7lh1Q1cuexK4lpHZFGq5zGjZ4H3zEEsS1dzd7iJiIiIyILhB5ajZzM8cXqMvSdH2R0lJAbS4doycdewbWU7L9+5mp19nVy9toPNvW24jiEIPH50/6+TTPRy+eW/2eCvZAHpfxx2fwEe/rfwNo7O9fCTHwmTE02djY5OLtDJ9Eke7H+QH/f/mPtPP8CebDOZjp/BS15JG6d5XesBXrXtWezs/VWSrm7TWQrOm6AwxmwBfgvYUD7eWvsTsxeWiIiIiMj8YK3l9GiOJ06P8eSpMR4/NcaTp8fY1z9GthDej2kMbFreyvO29LJzbQdX93WybWUbqXjtWwyOHvsn0uk9XHXl3xKLtc3ll7PwpM/Ao1+Gh78AJx8Kb9vbdDO85M9hy4t0G8cCUQgK7B/az+4zu3mw/0Ee7H+QU+OnsIDbcj2F7l9mtH0lvXHLb25YyRvW7MTVlatLTj23eHwJ+CTwaWA+rlomIiIiInLJRjIFDg2Oh9tAplR/qj/NaHSLBkBvW5KtK9v4+RvWs3VFG1tWtrG5t5WWZH1PvZmYOMaBAx+np+dmli//ydn6cha2wgQ8cVt4pcT+O8LFk1fthBf9MVz1amjtbXSEcg7WWo6NHeORgUd4ZOARHh14lL1n95LzcwAsb1rOdSuu49mbfo178pexe9yyJhnnTzes4GdXdpPQuk9LVj3vop619u9mPRIRERERkVmU83xODmc5PjzB8aEJjg1PcPRshoMD4xweHGcoU6gYv7ojxYaeFl62czXbVraxZUW4dbVc/KMqrbU88eTvY4xh65Y/qHx62lLn5eDgd2HPf8Ker0JuFNpWw7PeBTt/Dnq3NzpCmUZ/pp89g3t4dODRcBt8lJHcCAApN8X2Zdt57dbXclXPVVzZcyUn/C7+9OApvjeUZmUixh9t7uXnVy8jqcTEkldPguJWY8yvES6SmSs2RmtTiIiIiIg0XMEPGEjnOD2a4/RoltOjk4mIYtk/lqs4xhhY1R4mIV581So2LGtmw7IWNvS0sK67edrbMy5F/5lvMjh4J5s3fYBUavWMz7/gTAzDvm/DE9+AfXdAfgziLbDjFbDzZ2HDc3QLxzxzJnOGPYN7eGzwMfYM7mHP4B7OTJwBwDEOmzo38YJ1L+DKniu5qucqLu+8nJgTw1rLPcNp/tdT/dw5tJ/liRh/uGkNb1i9jCY9Slci9SQo3hSV/6uszQKXzXw4IiIiIiIhay3pnMdAOs9gOsdAOs9AOsdAOkf/WI7TI1lOj2U5PRq2WVt5fMJ1WN2ZYk1XEzdtXc6azubSfl9nMys7UiRic/fByPPGePLJ/01b2xX09b1xzl533hk+Gt6+8fg34PA9EHjQ0gtXvgq2vQQ2Pg/iqUZHueT5gc+RsSPsH97PvqF97B3cy57BPfRP9ANgMFzWcRnPWPUMrui5gh3LdrC1ayvN8eaKeTJ+wBdODPLpY2d4fDxLd9zlQ5ev5s1remhWYkKq1PMUj41zEYiIiIiILG4TeZ+hTJ6hTJ7hTCGqFxiJyqFMnqHxPIPjeQbGcgyM58l7Qc25eloT9LalWNGe5MrVHaxoT0VbkhXtKXrbk/S0JHGcubmFwvezBEEOa30sAdZ6YMPSWh9rA44c+TT5/CA7r/4HHKe+9SoWBS8HR++FA3fBvtvh1O6wfdlmeOY7w6TEml2gy/sbwlrL6cxp9g3tKyUj9g/v56nhp8gH4RNpDIYNHRt4+qqnc8WyMBmxrXvblGREuaPZPP90fIB/PjHIsOdzRWuKj21byyt7u3TFhEyrrndGY8yVwA6glMq01n5utoISERERkfkl5/mksx7pXLSV1cey4TaaLTA6UWA06zEyUawXGJ0I+6ZLNgC0JFw6mxN0tcTpaU2yubeNnrYEPS1JlrUm6GmdLLtbEsTnyQccay0HD/4lBw/9DTD911e0tu/NtLdfNfuBNVIQhEmIA3fCwbvg8A/AmwifvtG3C17w4TAp0bO50ZEuKeOFcQ6PHubw6GEOjR4K6yPh/lhhrDSut7mXzZ2buWH7DWzq3MTmrs1c1nEZqdj5r2qx1vKD4XE+c/wM3zwzgjHw4p4O3ta3nBs6WrTmipxXPY8Z/X3gJsIExW3Ai4HvAUpQiIiIiMwD1lpyXkCuEJDzfHJeQLbgM1HwmciHZbbgky0EFW0TeZ9M3mei4DGe88nkPTJ5n/G8TyYX1jP5sC/vn//Dd8wxdDTFaW+K056K0d4UZ01nE+1NMdpTYXtXc4Ku5jhdLYlSvaM5TjK28NYZCII8jz/+AU6e+gq9vS+ho+NajHExuBjjYEysVGIcYm4L3d3PbXTYM89aGHwKDt0dJSW+CxPRcnXLt8H1bwpv29hwI6Q6GhrqYmatZTA7yPH0cU6kT3A8fZxjY8dKSYniOhEQXhGxqmUV69vXc8tlt5QSEZs6N9GRvPB/o6GCx1f7h/nc8QH2jGfpirm8Y10vb1rTQ1/q4heVlaWnnisoXg3sBH5srf1FY8wKwkeOioiIiCxK1loCC14Q4AcWL7D4vqVQ3PejtiDAi/YLfkDBt3h+QCGIyqjdCybrBS+qBwEFr3hcQN4PyHvRVlXPeeEWtoXJgmwhIFfwyUbtF8MYaEnEaE640RajJenS0RRndUeK5qivNRWjNTm5tSRjtKUm663JGO1NMZri7pL5C6nnjfHII+/g7NA9bNz4HjZueNeS+drJj8PxB+DofeF27EeTCYn2NbD1xWFCYuNzoX1VY2NdRHJ+jv7xfk5lTtGf6efU+KkwETF+nONjxzk5frL0GM+i7lQ369vXc+OaG1nfvp4N7RtY376etW1r67oi4pzxBAF3DI7y5VND3DE4SsFadrSk+Iuta/npFbqNQy5OPQmKCWttYIzxjDHtQD9aIHNGnR3PM5zJNzoMWQDs+YcsetULoM3yq83cTDM0VT3T1Ptato7Z6pmr1pjqueuOqWpcrRinjqk1j63ZX3msndJuq/drzDM5tmyyaY4vH2dteX/Z0WXzWVsZS/m4sN1W9U+dvyJmWzlvxZxlfUH5uOjAwE6ODcdMvk4QtQd2Mp4gsKV5Ajs5R/XY8nHFuYKy1wsC8KM2a8EPJuuBtdF+ed1Wtgc2PD4q/WBqm+fbiuOLyQe/WI+2ueI6hrhriLsOcdch4Tok42GZiEWb69CeipGMuSRjTrjFnXC/WMYcUvHJ/lTcpSnu0pRwK+pNcZdUfHLskvlQPYOyuVM8/PBbGR/fz/Ztf8Lq1a9udEizw/cgOwKZATj5cJSQuBdOPwbWD8f0bIFtt0Df02H9s2DZpjDzJXXL+3kGJwYZmBhgMDvI4MQg/RP9nB4/TX+mn9OZsBzODU85tjPZyerW1Wzu2szz+p7HmrY1rGldw+qW1axuXX3ONSIuhrWW+0czfOnUWb7WP8yw57M8EeMtfT28ZkUXV7Q26T1FLkk9CYr7jTGdwD8ADwBp4L7ZDGqp+czd+/mbuw42OgwREZEZYwDHgDGG4hqFrmNwjMGY8POLE/UV2xxjMGXjnPIxTuVY15iKca5jcBxDzDW4xuA4TlSasrEQcx0cY3CdaA7XKfXHnLAsbuX7Mdcp7cddJ+p3prTHY+F+WDrEXEPCnRyXiDlRImIyIeHO0SKOMjPS6Sd46OG34Hlj7Lz60yxb9pzZezFrIfDDZEBFGYSln4egECYSSvXiFu17+bDuF8DPhfVSWz5cwDI7DJmzMDEUbVE9O1IZT6IV1lwHz/mNMCHRtwuau2fv61+gAhswlh/jbPYsQ9khzmbPlrah7FApCVFMSIzlx2rO053qZkXzCla3rOaa5dewomUFvc299Db3srJ5JStaVtASb5mTr+mpTJavnB7i308PcWgiT5NjePHyTl69oovndrUR0/uYzJB6nuLxa1H1k8aYbwHt1trdsxvW0vKS3DfYEv/vRochC4auo5jLH4FmBr/fMzVXPV9/va9Vz7j6vt9T56k+rtZr1W678ONqx2jL+svrtecp1s2U/elf35ip81bPM91cBlvzNcOt/Dh7zv6p4ytLUzWuNKcJ606przhPedvkGKI2p6osvo5LMNle73+kliX4llb2zTHmPO3mHPvn6ptmv/QS5xt7iWPqOa6uWOqs12yjsu+cZZWal3xZsAFnUxM8svIMjjVcf7ybtj3vD5MFUX+4lder9ovjikmGiv6ytmIyYk6YcF2Ipq5wa+6GZZdDU3dl2/Jt0LsD3CX09JGItZZ0IV2RYJgu+XA2e5bh7DCe9WrO1RZvY1nTMpY1LWNL1xaWNS2jp6mHZamobFrGslTYn3Abt3aDby0Pjmb4r4ER/mtghH2ZHAZ4dlcrv75+JS9Z3kHrAlw3Rua/ehbJ/I619mYAa+2h6raLYYzpBv4N2AAcAl5rrR2qGrOWcCHOlYRLIn/KWvuXF/ua89mOa57Fjp54o8MQkflAl0XOsQX6/Z7R82Suvge17gWa5oPgeaeqHnORc9f7+tPcGlR5/Ay3l9pq7E/bVz1feX8d857z+HrHlLdV7V9ILHXXbeVrV7TVWdb872lq26nmEfZ0naHZS3LN0GZSyRSkHEqXBGHAONNsZWMcN2pza4yJ6o4b9jvu9G1ODNw4OHFwE2HiwE1E+2X1WCLqT4bj3QTEivWoXCI/ewpBgXQ+zVh+jLH8GCP5kbDMjTCaH2U4O8xwbpiR/AgjuZGwnhthNDc6bcKhNd5Kd6qb7lQ3a1rXcFXPVXSnuulKdVWU3aluupJdxN35+zt/xg+4++wY/zU4wrcHRhkoeMQMPKuzlTet6eGWng5Wa8FLmWXTJiiMMSmgGegxxnQx+U7dDqy+xNd9H/Ada+1HjTHvi/Z/p2qMB/ymtfZBY0wb8IAx5tvW2j2X+Nrzz4Ybw01ERERE5hVrLYcPf5KnDvwZnZ03cPVVf0c83tHosJaMQlBgwpsgU8gw4U2Utkwhw7g3znh+nPFCuKUL6Yp6ppBhND9aSkhkvMw5XyvlpuhIdtCZ7KQj2VF6okVnspPOZOdkoqEs6dDIqxxmwpGJHHcPpbl9YIS7h8bIBpY21+HmZe38VE8Hz+9uoyO+9K6akcY519n2y8B7CZMRDzCZoBgF/uYSX/cVhI8uBfgscCdVCQpr7UngZFQfM8bsBdYAiy9BISIiIiLz0sFDf83Bgx9nxYqXsWP7n+A4yUaH1FDWWvJBnqyXJe/nyfqTZc7Llcqcn6ts83Nkvcky62en3Z/wJsh4YULCC2pfuVBLU6yJ1ngrLfGW0ra+fT1tiTbaE+20JdpK9er9jmTHJT/VYiE4ky9wz1Ca7w6N8d2hNEey4UL9a5Jxfn7VMn6qp4MbOltIOHoChzSGsdWXBVYPMOZd1tpPzOiLGjNsre0s2x+y1nadY/wG4G7gSmvt6DRj3g68HWDdunXXHz58eCZDFhEREZElZmTkIe5/4DWsXPEyduz4M4yZnQ9t4WNtA3zr4wUenvXCMvDwg7CtYAsV+8UxBb+AZz0KQaF0THU97+cpBIXJzZ+s5/385Bbkyfk5Cn6BnJ8jH0z25fxcabtYjnFIukmaYk0k3SSpWIqUmyIVS03Zb4o10RxrpinWFNbjU+vlyYjmWDOuozURqo16Pj8YTvO9KCHx+HgWgPaYw7M6W3l2VxvP7mpla3NKT9+QOWOMecBau6tm33QJCmPM04Cj1tpT0f4bgZ8BDgN/YK09e54XvYNw/YhqHwA+W2+CwhjTCtwFfMRa+5VzvWbRrl277P3331/P0HlhODs87eq9IiIyO+p5zOpcm8mYzvcHiLrnqSOmuuKuM5z6Hn9bOabm42hrtdXxPannuPO+nq3dXvnY2mnqNWKcfJSsPed+9RylcdipY0uFrZiv1tzFdosNl20o/q9We1lb9ddb6qsui/Wy/cAGpTgCG0wZX+wPbBD228n28vEBQWmOYnv5MeX9vvWx1pZKbIEbg//GxeM7PIe8dUvH+tYPyyAsAwKCIGwv9nmBVxrrW7+i3w98PBsmG4ptc8FgSLgJ4k6chJsg5sRK9aSbJOEkSLhlmxO1R/1JN0kylpysV2+xJCk3NVlGSYekG+7HnJg+BM8iay0HJnLcP5LhgdFxHhgdZ286SwA0OYand7Ty7K4wKXFVa5OevCENc64Exblu8fh74AXRBM8FPgq8C7gG+BRwzgc+W2tfcI6AThtjVllrTxpjVgH904yLA/8O/HO9yYmF6HN7Psc/PPIPjQ5DREREZEEzmPDRtjhgwDUujnEwmLA0YekQ1g0G17iT7dHmGpfnpk7Tmkzz1YnLOOEPlNorxjkucRMvzREzMRzjEHNipTHFNtdxS/sxJ4ZrXFzHrSiLxxXHVGzVbdF+3I1P6Ys78VK9mJAotsniMer5/Hg0TEbcPzLOj0czDHlhsqvNdbiuvYX3bujg2Z1tXN/RTFK3bcgCcK53KbfsKomfJXyKxr8D/26MeegSX/drwJsIkx5vAr5aPcCE6dXPAHuttX9xia83r71w/QvZ2LGx0WGIiMg8MJN/XTQz9ISOeuapJ+6646ljWPVcteauFVM9x9VuurDXK++f7nsz3ZiK9tLjMyv3i+NL+1Xt1ccXP4zXOra6rfghv/y1a7UX6xXtNcZWz1NMGBRfs3q/ekwx4VCaLypLCYeqvpkwNHQvD/7451mz5g381dYPz8icIpeiP1fg0fQEj6UnSuVTmRyW8O1hS0uKFy/vYFd7C9d1NLOlOYWjq1VkATpngsIYE7PWesDNROs71HFcPT4KfNEY81bgCPAaAGPMauDT1tpbgBuBXwAeKUuI/K619rZLfO15Z/uy7Wxftr3RYYiIiIgseZ6XZs/e36GpaS2bLv/tRocjS0w+CDgwkePxdLYiIXEmP7lY6NpUgitbm/jp3i6u72jmuvYW2mNaf0MWh3MlGv4VuMsYMwBMAN8FMMZsAkYu5UWttYOESY/q9hPALVH9eyzYB9SLiIiIyEK0f/9HyWaPcf11XyAWa2l0OLJIjXk++zJZ9o3nwjKTZf94jkPZHH60fEvcGLa2pPiJ7naubG3iitYmrmhN6bGfsqhNe3Zbaz9ijPkOsAq43U6udOQQrkUhIiIiIrJoDA7ezfET/8q6dW+js7Pm+m0i5zTu+QwUPAbyHmfyXlQvMFAI98/kPQ5O5DiZK5SOiRvDxqYk21pTvLy3k80tKba2pNjcnNTjPmXJOWf6zVr7wxptT85eOCIiIiIic69QGGHv4++nuXkTl238jUaHI5fItxbPWrzAko/q+WCyLNhoC8L9vA3IBTbaAvJRmYv6s0HAuB+Q9n3SfkDa88n4QVj3/bDP85kIaj8tqD3m0BOP05OI8eyuVrY0p9jcnGJTS5L1qSRxPVFDBLj0tSRkBnytf5jbBy7prhkREVlCFvu6Z/Pxy5upBUfre60ZnGuGJpuf/ybl9fIFP2uPmfbY6IArzn6Elbkz/Kj3w3z1qTMXHVNpM+VtUYT1fCNrfL6t9ZF3Lh+VXP5K5U/CtVVjLMXH1YaC0mNpi3UIsAQ2TCD4xZLJerHPs5YA8KwtjS2vF8cUiokIaykEYXvBzvx3xwAtrkOr69Iac2iO6quTcVpjqajPYVk8Rk8ixvJEmIzoifb1BA2R+ihBMQ8cy+a5b2S80WGIiMgCMHcfSRpjLj901cvOv5DqMlNhz8cvv/JDsi2rU7s+7YfqcO/q4Ie80Ludbzo/y23DK4Chi46r+EG9OH95W/GJC+dTa0zNtjnMHFU+XYba9bKnzThmMlnjGFORuHExuMbgGiZLDE5VW9IYmnFK+zFTeVzMGOLRftwJ94ttpboT7k8py+oJx5AwhqTrkDCGlOOEbU5Z3czcU2JEZHrGLtSfuuewa9cue//99zc6DBERERGZ5/L5QX5470+RSq5i164v4ziJRockIrKoGWMesNbWXOhH1xqJiIiIyJJkreXxJz6I56XZseNPlZwQEWkwJShEREREZEk6ffpWzpz5Ly677L20tm5tdDgiIkueEhQiIiIisuSMjz/F4098kI72a1m/7m2NDkdERFCCQkRERESWGM8bY/cjv4LjJLjyyr/CGLfRIYmIXJB0Ps2tT93a6DBmnJ7iISIiIiJLhrUBj+35TSYmjnDtNZ8jlVrd6JBERC7ID078gA99/0OcyZxh5/KdrGtf1+iQZowSFCIiIiKyZBw8+AkGBr7Dls0foqvrhkaHIyJSt/HCOH9+/5/zpSe/xIb2DXz2xZ9dVMkJUIJCRERERJaIM2fu4OChv2Llyp+mr++NjQ5HRKRu9568lw/d8yFOjp/kTTvexDuvfSepWKrRYc04JShEREREZNEbH3+Kx/b8Jm1tV7Jt6//BGNPokEREzitTyPCxBz7GF574Auvb1/PZF3+Wa3uvbXRYs0YJChERERFZ1MoXxbz6qr/DdRffXx1FZPG5/9T9fPCeD3I8fZw3bH8D777u3TTFmhod1qxSgkJEREREFi0tiikiC02mkOETP/4En9/7efpa+/h/L/p/7Fq5q9FhzQklKERERERk0dKimCKyEAQ24MHTD/L1A1/n9kO3M1YY43XbXsd7r3svzfHmRoc3Z5SgEBEREZFFqbgo5qqVr9KimCIyLx0aOcStB27lGwe+wfH0cZpiTbxg3Qt47dbXck3vNY0Ob84pQSEiIiIii87kophXsVWLYorIPDKUHeJbh77F15/6OrsHduMYh2esegbvuOYd3Lzu5iV1xUQ1JShEREREZFHJ58+WLYr5t7hustEhicgSVQgKHBo5xBNDT/Dk2SfZe3Yv95+6H896bO7azG9e/5vcctkt9Db3NjrUeUEJChERERFZNDxvjIce/kWy2eNcc81ntSimiMyZ4ewwjw89zhNnn+DJoSd5cuhJnhp+ikJQACDuxLm883Jev/31vPzyl7O1e2uDI55/lKAQERERkUXB9yd4ePfbSacf5+qrPklX59MaHZKILHIn0if4zpHvcMfhO/hx/4+xWAB6mnrY2rWVZ25/Jlu6t7C1aysbOjYQd+INjnh+U4JCRERERBa8IMjzyKPvYHj4R1x5xcfp6Xl+o0MSkUXq0Mgh7jhyB3ccvoPHBh8DYHPXZn5l569wTe81bO3ayrKmZQ2OcmFSgkJEREREFjRrfR7b85sMDt7Ftq0fYcWKlzY6JBFZRKy1PDn0ZCkpsX94PwBX9VzFe697Ly9Y/wLWt69vcJSLgxIUIiIiIrJgWWt5/PHfo7//NjZtej9r1vxco0MSkUVgODvMD0/+kHtO3MP3T3yf/kw/BsN1K67jfU9/Hzevu5mVLSsbHeaiowSFiIiIiCxI1lr27/9jTpz8Ihs2vJP1697W6JBEZIHyAo/dZ3aHCYnj3+exwcewWNoSbTxj1TO4cfWNPG/t8+hp6ml0qIuaEhQiIiIisiAdPPTXHDn6Gfr63shlG9/b6HBEZAHJFDI8fvZxHh14lAf7H+Tek/eSLqRxjMPVPVfzqzt/lWeteRZXLrsS13EbHe6SoQSFiIiIiCw4R47+IwcPfpxVK3+GLZs/iDGm0SGJyDyV83M8efZJHh18lMcGHuOxwcc4MHKAwAYArGldw4s2vIgb19zIDatuoD3R3uCIly4lKERERERkQTlx4svs2/d/WL78p9i27Y8wxml0SCLSYFkvy6nxU5wYP8HJ9ElOjofbvqF97Bvehxd4AHSnurmy50peuP6FXNlzJTuW7dBtG/OIEhTzwL/s/Rf+Y/9/NDoMERGZZYaF+RfemfrLdL1ffz3j6omprter80urnqvW3NUx1f311nHcucaU6uYcfVVzVLxG1XEGUxpb3lb32KrXqTmXqRxf+l+NY8tLgJX+fjYVfsiws5ofpnu59b4/mTKufE7HOGDAwZnS7xintO8YJxwLYb1svGOcyTHFdmNwcCr6imNLbdSuu8YtjStu1W3F/YrSqRw3ZYxTuS+yWIwXxunP9HMmc4b+iX4GMgP0T/SHCYn0CU6On+Rs9mzFMY5x6G3uZUP7Bt58xZu5YtkVXNlzJSuaV+iKq3lMCYp5oC3RphVgRUQWOzvXLzczLzhj89j65qnn9eqKqa4hdcZUFXut46a01Zi6nuNqfZ8stqJ9ujHVfeVzV7xORbXyOBv9r9br1Dv2vP1lX0+xXhGrtaVjS30WLAHPahphc8sIT+WTfHEE8vY7WCyBDcrG2VJbcb5if/ncxf7FrJioiDmxUuLCNW4pkREzsVJ/sb18jGvcyWMdl5iZHBczsYoxU16rxlw1X9+ZjKP6mJiJhXNH7XEnPtnnhH1xEy/VY06MuDO57xpXH0TnGT/wyXgZRvOjjOXHGM2NMpqPtrL6SG6EgYkBzkycoT/Tz4Q3MWWuplgTK5pXsLp1Ndu6t7GqZRWrW1ezqmUVq1pX0dvcS9yJN+CrlEth6v2FYSHZtWuXvf/++xsdhoiIiIjMAGsDntz3hxw79jlWrngF27d/FMdJzMC8k4mQgGBKMqNYD2xQGlOsT2kPJseWz1U+R/XmW/+c7VPKoHZ7PWO8wCvt+9bHD/xSPQgCPOuV2jzrEQThWC/wKvbLj/UCr7TvWa9irmIsnvVm4Ay4OAZDzImRcBPEnXhpS7iJUjKjvK9inDu1rVZ/MSFS3J/uSphivTxhUitRV56wm5JQixJwpYQcVJxjpXOOcGz5uVhxvpa3l53X025Rf+nfuezfv/ocKPgFJryJKVvWzzJRmCAf5M/5b+YYh/ZEO+2JdnqaeljevJzlTcvpbe4t1Zc3L6e3qZeWeIsSUAuUMeYBa+2uWn26gkJERERE5q0gyPHYnt+iv/821q19K5s2vW/G1pwo3TpiwEWr9M+W4ofbUoKjPEESJVSqkxrFpErxA7AXeKW+8vZCUCjtF+vVbYWgQMEv1K4HBfJ+noyXYTg3XDEmH+RL/QW/0NBky3xQcXWLE5tyFU0x6dMUa6Ip1sTy5uU0xZpIuamwLd5Ek9tEc7yZtkRbKRHRnmwv1ZV0ECUoRERERGRe8rwxdj/yqwwN/YBNm97H+nW/1OiQ5CI4xsFxHeIs7MvtrbWVSY+qZEfez097dYxvfay1+NYHqFibpXxdllprspSvlTJljRXHqVhPpaI8xxoq1XMW1zgprpVSvVWvESMyWxqSoDDGdAP/BmwADgGvtdYOTTPWBe4HjltrXzpXMYqIiIhI4+RyZ3j44beSHn+cHdv/lFWrXtXokGSJM8aEt3K4CzvRIjKfNWp53/cB37HWbga+E+1P5z3A3jmJSkREREQaLpM5xAMPvJbxzAGuvvpTSk6IiCwRjUpQvAL4bFT/LPDKWoOMMX3AS4BPz01YIiIiItJIo2OPcv8Dr8Xzx7ju2s/Ts+ymRockIiJzpFEJihXW2pMAUdk7zbiPA78NLP7nQImIiIgscQMD/8ODD74e10ly/XVfpKPjmkaHJCIic2jW1qAwxtwBrKzR9YE6j38p0G+tfcAYc1Md498OvB1g3bp19QcqIiIiIg1lrc+BAx/n0OG/pbV1Ozt3fppUstavkSIispjNWoLCWvuC6fqMMaeNMaustSeNMauA/hrDbgReboy5BUgB7caYz1tr3zDN630K+BTArl277KV/BSIiIiIy2/L5QR597L0MDX2fVatezdYtH8Z1U40OS0REGqBRt3h8DXhTVH8T8NXqAdba91tr+6y1G4CfA/57uuSEiIiIiCw8wyMPcN+PXs7IyANs3/ZRdmz/EyUnRESWsEYlKD4KvNAYsw94YbSPMWa1Mea2BsUkIiIiInPAWsuRo//Igw++Hsck2HX9l1m9+jWNDktERBps1m7xOBdr7SBwc432E8AtNdrvBO6c9cBEREREZFZ53hh7H/9d+vtvo6fnBezY/qfE4+2NDktEROaBhiQoRERERGTpSaef4JFH30Emc5hNl/8269a9HWNMo8MSEZF5QgkKEREREZlV1lpOnvwyTzz5YWKxFq679vN0dd3Q6LBERGSeUYJCRERERGZNNnuCvY//LmfPfpfOzhu48oqPk0z2NjosERGZh5SgEBEREZEZZ23A8eP/yv6n/gSwbNny+/SteQPGNGqNdhERme+UoBARERGRGZXJHGLv4+9nePg+urtuZNu2P6Kpqa/RYYmIyDynBIWIiIiIzAhrfY4c/UcOHPgYjhNn+7aPsmrVq7UQpoiI1EUJChERERG5ZOn0k+x9/H2Mjj5MT8/NbNv6hySTKxodloiILCBKUIiIiIjIRfP9CQ4f+QcOHfpbYrE2rtjxMVaseJmumhARkQumBIWIiIiIXDBrA06d+g+eOvAX5HKnWNH7UrZs+RCJxLJGhyYiIguUEhQiIiIickHOnr2Hffs/Sjq9h/a2q7niio/T1fm0RoclIiILnBIUIiIiIlKX9Pg+9u//KIODd5JKreGKKz7Oit6X6NGhIiIyI5SgEBEREZFzyuUHOHjg4xw/8W/EYi1suvx36Ot7E66bbHRoIiKyiChBISIiIiI1ed4YR4/+E4eP/ANBkKOv7xfYuOGdJBLdjQ5NREQWISUoRERERKRCPj/AkaP/xPHjn8fzxli+/CfZdPlv09y8sdGhiYjIIqYEhYiIiIgAMDFxjCNHPs2Jk18kCPL0Lv8p1q//Zdrbr2p0aCIisgQoQSEiIiKyxKXTT3L4yN9z+vStgMPKla9k/bq309JyWaNDExGRJUQJChEREZElamTkIQ4d/jsGBu7AcZro63sj69a+hVRqdaNDExGRJUgJChEREZElxPcznD79dY6f+AKjow8Ti3WwccO76ev7BS1+KSIiDaUEhYiIiMgSMDa2h+MnvsCpU1/F99O0tGxm8+bfY/Wq1xCLtTY6PBERESUoRERERBYrzxunv/8bpaslHCdJb+8trFn9c3R0XI8xptEhioiIlChBISIiIrKIWGsZHdvNyZP/XnG1xJbNH2TlylcSj3c2OkQREZGalKAQERERWeCstYylH6P/9Dc43X8b2ewxXS0hIiILjhIUIiIiIguQtZb0+BP0n/46p/tvY2LiMMbE6O6+kY0b38Xynp8kHm9vdJgiIiJ1U4JCREREZIGw1jI+/iT9/d/idP83yGSeAhy6u57J+vW/TO/ynyQe72p0mCIiIhdFCQoRERGReczzxhka+j4Dg3cyOHgnudwpwNDZ+XTW9r2J3t4XkUj0NDpMERGRS6YEhYiIiMg8Yq0lkznA4OCdDAzeyfDw/Vibx3Vb6e5+FsuWvZueZc8nmextdKgiIiIzSgkKERERkQbL5c4wPHwfQ8P3Mjh4N9nsUQBaWjazdu0bWbbsJjo7rsdxEg2OVEREZPYoQSEiIiIyx7LZEwwN38fw0L0Mj/yITOYgAK7bTFfXM1m//u0s634eTU1rGhypiIjI3FGCQkRERGQWWesznjnA6MhD0VUS95HNHgMgFmujs+NprF79s3R2Pp221itwHP16JiIiS5N+AoqIiIjMEGst2ewJRsceZnR0N6OjuxkbexTfHwcgHu+is/NprF37Zro6b6C1dSvGuA2OWkREZH5QgkJERETkIlgbkM0eI51+grH0XkZHw6REoXAWAGMStLVuY9XKV9HefhVt7VfT0nw5xjgNjlxERGR+UoJCRERE5DwKhSHS6SfCbTwsx8f3la6MAENLyyZ6lj2f9varaW+/mtbWrThOsqFxi4iILCRKUIiIiIgQrhWRzZ4gkzlIJnOA8cxBJjIHSY/vI5/vL42Lx7toadnCqlU/Q2vLVlpbt9LSsoVYrKWB0YuIiCx8DUlQGGO6gX8DNgCHgNdaa4dqjOsEPg1cCVjgLdbaH8xZoCIiIrKoBIFHLneKiexRshPHyEwcKiUkJiYOEwT50ljXbaWl+TK6u2+ktXVrKRmRSPRijGngVyEiIrI4NeoKivcB37HWftQY875o/3dqjPtL4FvW2lcbYxJA81wGKSIiIgtLEOTJ5c6Qy51kInuM7MSxqDzKRPYYudxJrPVL442J09S0jubmjSxbdhPNzRtpbr6M5uaNJOLLlIgQERGZQ41KULwCuCmqfxa4k6oEhTGmHXgu8GYAa20eyCMiIiJLjrUWzxslnx8gl+8nlz1FLneaXO4U2dxJcrlT5HKnyOcHCS+6nJRI9NKUWkNHx3U0pfpoalpLKrWGpqa1JJOr9VhPERGReaJRP5FXWGtPAlhrTxpjemuMuQw4A/yjMWYn8ADwHmvteI2xIiIissAEQY5CYZh8YYhC/iyFwhD5wlny+TPk8wPhljsTJSUGCP9WUSkW6yCVXEkytZK21h0kU6vC/eQKUqk+Uqk1uG6qAV+diIiIXKhZS1AYY+4AVtbo+kCdU8SA64B3WWvvNcb8JeGtIB+c5vXeDrwdYN26dRcesIiIiFwway1BkMPzRigURvC8UQqF4XDfG8UrjFDwRvAKoxS8IQr5oTAhURjC99PTzOqQSCwjkVhOIrGMlpZNJBI90X4PieTyUhLCdXX3p4iIyGIxawkKa+0Lpuszxpw2xqyKrp5YBfTXGHYMOGatvTfa/zJhgmK61/sU8CmAXbt22enGiYiILHXW+vj+RLSN4/vjeH4mrHvj+H4Gz0/j+xl8bzyse2k8bwzPj0ovjR/VrfXO+XqxWBuxWAfxeBeJeBfNzZcRT3QRj3dFbd2lejzRTSLehTHuHH03REREZL5o1C0eXwPeBHw0Kr9aPcBae8oYc9QYs9Va+wRwM7BnbsMUERGZPdb6BEEBawsEQY4gKJb5sLR5Aj9XWS+1ZfGDLIGfJQhyNet+ECYhgmCilJAIgomKJ1WcjzGxMMHgtuHGWonF2kilVlfsx9xWYvF24rEOYvEO4rH2KCHRQSzWpmSDiIiI1KVRCYqPAl80xrwVOAK8BsAYsxr4tLX2lmjcu4B/jp7gcQD4xUYEKyIil85aC1isDYAg2g9K++EYH2sDLAHYIHragi21h+PLx/hl+z7Y4li/qn9yjA28ir7AetFredE4L2ov1qMt8Aiq9q0tbytEyQavlHSwQSHsDwphYqGUjMiH/WVPk7h4BsdJ4bopHCdZVk/huk3E451RvRnXTeE6zThuE67bhOs04cZaiLnNuG5LtIX1WCwsHScxAzGKiIiInF9DEhTW2kHCKyKq208At5TtPwTsmrvIGuPMwHc4e/a7MzPZIr+5xc7pFziTr1XHXPb8Y+r7+uuMu47Xq2uamq9X1VbztWzVXh3zTGmyZTVbe5CtY0zV2MlxNcZPGXO+/rKy1rHRh/bJ9sl5psRbarNVbcXXqR5jo/+z0/QTfegvTxyUHxNUjrc2/GCPLSUbyo+rLMvHBWWvs9AYjIljjIvjxDCmcitvc0wc48QwJk7MbcE4cRwTi8p4ND6BcRI4ThzHRHUTj9rjUT2J4yZxTCJKONQqJxMSYXx6FKaIiIgsfHqu1jyQHtvLqVO3zth8i/8X1YX69Z0/7vr+7WZqDJh6xl30+WSq9mrMM2XuWq81ta1iLlPZU6te+X2tVZ9ubFVfsW6mHhf2mqrmynEGU3Wsmeyt2V4cH23G4FS0FWOanLf6GFNrfHm/caJ2p9RePiasOxX1irbSOKesb3K/fD6DWxoTvq4THl8aF8ZgjFs2nxPeHhAdb0zUHo0J992ycZPHlG9he3lbcUwxweDWKN3S90dEREREZp8SFPPAxo3vZOPGdzY6DBEREREREZGG0Z+GRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThlKAQERERERERkYZTgkJEREREREREGk4JChERERERERFpOCUoRERERERERKThjLW20THMOGPMGeBwja4OYKSOKeoZd74x0/VP194DDNQRWyPU+31r1NwXOseFjL/Yf+d6+nUuzOzcF3P8XL0n6DyY27n1njB35vO5oPeEuTOfz4OLmUO/L168+Xwu6D1h7ug8uPgxS+U9Yb21dnnNI6y1S2YDPjVT4843Zrr+c7Tf3+jvz6V+3xo194XOcSHjL/bfuZ5+nQszO/fFHD9X7wk6D+Z2br0n6Fy42OP1nrD4zoOLmUO/Ly7Oc0HvCToP5vt5cJ5/7wV3Hlzs93up3eJx6wyOO9+Y6frrjWE+mc2YZ2LuC53jQsZf7L9zPf06F2Z27os5fq7eE3QezO3cek+YO/P5XNB7wtyZz+fBxcyh3xcv3nw+F/SeMHd0Hlz8mCX/nrAob/FYiIwx91trdzU6Dmk8nQsCOg9kks4FAZ0HEtJ5IEU6FwQW53mw1K6gmM8+1egAZN7QuSCg80Am6VwQ0HkgIZ0HUqRzQWARnge6gkJEREREREREGk5XUIiIiIiIiIhIwylBISIiIiIiIiINpwSFiIiIiIiIiDScEhQLgDFmnTHma8aY/2eMeV+j45HGMMY8xxjzSWPMp40x3290PNI4xhjHGPMRY8wnjDFvanQ80hjGmJuMMd+N3hduanQ80ljGmBZjzAPGmJc2OhZpDGPM9uj94MvGmF9tdDzSOMaYVxpj/sEY81VjzE82Oh5pDGPMZcaYzxhjvtzoWC6EEhSzLEoq9BtjHq1q/yljzBPGmP11JB22AN+w1r4F2DFrwcqsmYnzwFr7XWvtrwBfBz47m/HK7Jmh94RXAGuAAnBstmKV2TND54EF0kAKnQcL1gydCwC/A3xxdqKU2TZDvyfsjX5PeC2wqB47uJTM0Lnwn9baXwLeDPzsLIYrs2SGzoMD1tq3zm6kM09P8ZhlxpjnEv4C+Tlr7ZVRmws8CbyQ8JfKHwGvA1zgj6umeAvgA18m/GX0/7PW/uPcRC8zZSbOA2ttf3TcF4G3WWtH5yh8mUEz9J7wFmDIWvv3xpgvW2tfPVfxy8yYofNgwFobGGNWAH9hrf35uYpfZs4MnQtXAz2EyaoBa+3X5yZ6mSkz9XuCMeblwPuAv7bW/stcxS8zZ4Z/Z/xz4J+ttQ/OUfgyQ2b4PFhQvyvGGh3AYmetvdsYs6Gq+enAfmvtAQBjzBeAV1hr/xiYcmmmMea3gN+P5voyoATFAjMT50E0Zh0wouTEwjVD7wnHgHy0689iuDJLZuo9ITIEJGclUJl1M/Se8HyghfAqywljzG3W2mB2I5eZNFPvCdbarwFfM8Z8A1CCYgGaofcEA3wU+KaSEwvTDP+esKAoQdEYa4CjZfvHgBvOMf5bwB8YY14PHJrFuGRuXeh5APBWlKBajC70XPgK8AljzHOAu2czMJlTF3QeGGNeBbwI6AT+elYjk7l2QeeCtfYDAMaYNxNdWTOr0clcudD3hJuAVxEmLG+bzcBkzl3o7wnvAl4AdBhjNllrPzmbwcmcudD3hGXAR4BrjTHvjxIZ854SFI1harRNe6+NtfZRYMFcliN1u6DzAMBa+/uzFIs01oW+J2QIk1WyuFzoefAVwmSVLD4X/PMBwFr7TzMfijTQhb4n3AncOVvBSENd6LnwV8BfzV440iAXeh4MAr8ye+HMDi2S2RjHgLVl+33AiQbFIo2j80CKdC4I6DyQSToXBHQeyCSdCwJL5DxQgqIxfgRsNsZsNMYkgJ8DvtbgmGTu6TyQIp0LAjoPZJLOBQGdBzJJ54LAEjkPlKCYZcaYfwV+AGw1xhwzxrzVWusB7wT+C9gLfNFa+1gj45TZpfNAinQuCOg8kEk6FwR0HsgknQsCS/s80GNGRURERERERKThdAWFiIiIiIiIiDScEhQiIiIiIiIi0nBKUIiIiIiIiIhIwylBISIiIiIiIiINpwSFiIiIiIiIiDScEhQiIiIiIiIi0nBKUIiIiEjDGWMOGWN6LnWMiIiILFxKUIiIiIiIiIhIwylBISIiInPKGPOfxpgHjDGPGWPeXtW3wRjzuDHms8aY3caYLxtjmsuGvMsY86Ax5hFjzLbomKcbY75vjPlxVG6d0y9IREREZoQSFCIiIjLX3mKtvR7YBbzbGLOsqn8r8Clr7dXAKPBrZX0D1trrgL8Dfitqexx4rrX2WuBDwB/NavQiIiIyK5SgEBERkbn2bmPMw8APgbXA5qr+o9bae6L654Fnl/V9JSofADZE9Q7gS8aYR4GPAVfMRtAiIiIyu5SgEBERkTljjLkJeAHwTGvtTuDHQKpqmD3Hfi4qfSAW1f8Q+B9r7ZXAy2rMJyIiIguAEhQiIiIylzqAIWttJlpD4hk1xqwzxjwzqr8O+F4dcx6P6m+ekShFRERkzilBISIiInPpW0DMGLOb8MqHH9YYsxd4UzSmm3C9iXP5v8AfG2PuAdyZDFZERETmjrG2+ipKERERkcYwxmwAvh7driEiIiJLiK6gEBEREREREZGG0xUUIiIiIiIiItJwuoJCRERERERERBpOCQoRERERERERaTglKERERERERESk4ZSgEBEREREREZGGU4JCRERERERERBpOCQoRERERERERabj/Hz+8lhPiwwjzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.pyplot import figure\n", + "\n", + "plt.figure(figsize=(18,6))\n", + "plt.gca().plot(alphas, coefs)\n", + "plt.gca().set_xscale('log')\n", + "plt.axis('tight')\n", + "plt.xlabel('alpha')\n", + "plt.ylabel('Standardized Coefficients')\n", + "plt.title('Lasso coefficients as a function of alpha');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "It's tempting to try to interpret the coefficients obtained via Lasso. Unfortunately, that can be very difficult, because by dropping covariates Lasso introduces a form of **omitted variable bias** ([wikipedia](https://en.wikipedia.org/wiki/Omitted-variable_bias)). To understand this form of bias, consider the following toy example. We have two positively correlated independent variables, `x.1` and `x.2`, that are linearly related to the outcome `y`. Linear regression of `y` on `x1` and `x2` gives us the correct coefficients. However, if we _omit_ `x2` from the estimation model, the coefficient on `x1` increases. This is because `x1` is now \"picking up\" the effect of the variable that was left out. In other words, the effect of `x1` seems stronger because we aren't controlling for some other confounding variable. Note that the second model this still works for prediction, but we cannot interpret the coefficient as a measure of strength of the causal relationship between `x1` and `y`." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correct Model\n" + ] + } + ], + "source": [ + "mean = [0.0,0.0]\n", + "cov = [[1.5,1],[1,1.5]]\n", + "\n", + "x1, x2 = np.random.multivariate_normal(mean, cov, 100000).T\n", + "y = 1 + 2*x1 + 3*x2 + np.random.rand(100000)\n", + "data_sim = pd.DataFrame(np.array([x1,x2,y]).T,columns=['x1','x2','y'] )\n", + "\n", + "print('Correct Model')" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.997\n", + "Model: OLS Adj. R-squared: 0.997\n", + "Method: Least Squares F-statistic: 1.897e+07\n", + "Date: Wed, 22 Jun 2022 Prob (F-statistic): 0.00\n", + "Time: 20:59:12 Log-Likelihood: -17706.\n", + "No. Observations: 100000 AIC: 3.542e+04\n", + "Df Residuals: 99997 BIC: 3.545e+04\n", + "Df Model: 2 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 1.5012 0.001 1643.500 0.000 1.499 1.503\n", + "x1 1.9998 0.001 1996.643 0.000 1.998 2.002\n", + "x2 3.0011 0.001 3002.007 0.000 2.999 3.003\n", + "==============================================================================\n", + "Omnibus: 90005.976 Durbin-Watson: 2.010\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 6016.746\n", + "Skew: -0.006 Prob(JB): 0.00\n", + "Kurtosis: 1.798 Cond. No. 2.24\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "import statsmodels.formula.api as smf\n", + "\n", + "result = smf.ols('y ~ x1 + x2', data = data_sim).fit()\n", + "print(result.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model with omitted variable bias\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: y R-squared: 0.760\n", + "Model: OLS Adj. R-squared: 0.760\n", + "Method: Least Squares F-statistic: 3.174e+05\n", + "Date: Wed, 22 Jun 2022 Prob (F-statistic): 0.00\n", + "Time: 20:59:21 Log-Likelihood: -2.4332e+05\n", + "No. Observations: 100000 AIC: 4.866e+05\n", + "Df Residuals: 99998 BIC: 4.867e+05\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 1.5107 0.009 173.262 0.000 1.494 1.528\n", + "x1 4.0084 0.007 563.401 0.000 3.994 4.022\n", + "==============================================================================\n", + "Omnibus: 0.159 Durbin-Watson: 2.003\n", + "Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.158\n", + "Skew: -0.003 Prob(JB): 0.924\n", + "Kurtosis: 3.001 Cond. No. 1.23\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "print(\"Model with omitted variable bias\")\n", + "\n", + "result = smf.ols('y ~ x1', data = data_sim).fit()\n", + "print(result.summary())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "The phenomenon above occurs in Lasso and in any other sparsity-promoting method when correlated covariates are present since, by forcing coefficients to be zero, Lasso is effectively dropping them from the model. And as we have seen, as a variable gets dropped, a different variable that is correlated with it can \"pick up\" its effect, which in turn can cause bias. Once $\\lambda$ grows sufficiently large, the penalization term overwhelms any benefit of having that variable in the model, so that variable finally decreases to zero too.\n", + "\n", + "One may instead consider using Lasso to select a subset of variables, and then regressing the outcome on the subset of selected variables via OLS (without any penalization). This method is often called **post-lasso**. Although it has desirable properties in terms of model fit (see e.g., [Belloni and Chernozhukov, 2013](https://arxiv.org/pdf/1001.0188.pdf)), this procedure does not solve the omitted variable issue we mentioned above.\n", + "\n", + "We illustrate this next. We observe the path of the estimated coefficient on the number of bathroooms (`BATHS`) as we increase $\\lambda$." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'lambda')" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCYAAAFNCAYAAADcoG4BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACNHUlEQVR4nOzdd3hURRfH8e8kIQmh956E3pv0DiJVEFBRFFFQQUTEXnkVFLEgFlREEMFCFCuIoqJ0EBCC9F5D7zWEkDbvH5NsEhIgICEQfp/nuU927rn37uxlgezZmTPGWouIiIiIiIiISEbwyugOiIiIiIiIiMj1S4kJEREREREREckwSkyIiIiIiIiISIZRYkJEREREREREMowSEyIiIiIiIiKSYZSYEBEREREREZEMo8SEiIjIVcYYU94Ys8wYc9IYM8AYk9UY84sx5rgx5ntjTHdjzJ9puM6LxpixV6LPl5MxJtwYUyqj+3EtMcYEG2OsMcYno/siIiJysZSYEBERuUTGmLuNMaHxH6T3GmN+N8Y0vgyXfhaYba3NYa39ALgdKATks9Z2tdaGWGtbX+gi1trXrbUP/tfOpOeHXmPMbGNMsj5aa7Nba7emw3P1NMbMv9zXvRTGmM+NMVHx752TxpilxphmF3H+dmPMTenZRxERkStFiQkREZFLYIx5EngfeB2XNAgEPgY6XYbLBwFrzmpvtNbGXIZry9VjmLU2O5ALGAX8ZIzxzuA+iYiIXHFKTIiIiFwkY0wu4FXgEWvtT9baU9baaGvtL9baZ+KP8TPGvG+M2RO/vW+M8UtyjQ7GmOXGmGPGmAXGmGrx+2cCLYCP4r9N/wZ4Gbgzvv3A2d/8G2MqG2P+MsYcMcbsN8a8GL9/sDFmQpLj6sc/1zFjzApjTPMksdnGmCHGmL/jv8H/0xiTPz48N/7nsfg+NEjlnngZY543xmwxxhw2xnxnjMkbH/M3xkyI33/MGLPEGFPIGDMUaJLktX4Uf7w1xpSJf/y5Mebj+NEo4fH9Kxx/P48aY9YbY2om6UdCH04aY9YaY7rE768IfAI0iL/OsSR/TsONMTvi790nxpis5/hz9zLG/M8YE2aMOWCM+TL+vZB0VMl98dc6ZIwZeJ63kYe1Ng74GsiLS3JhjCltjJkZf88OGWNCjDG542Nf4RJhv8S/lmeTXK57as9vjKlr3OieE/Gv89209E1ERORKUGJCRETk4jUA/IFJ5zlmIFAfqAFUB+oC/wMwxtwAjAMeAvIBo4Epxhg/a+2NwDygf/yUhrtwozK+jW9/lvRJjDE5gOnAH0BRoAww4+zOGGOKAVOB13AfgJ8GfjTGFEhy2N1AL6Ag4Bt/DEDT+J+54/uwMJXXOwDoDDSL78dRYGR87D7cqIAS8a+3L3DaWjvwrNfaP9U7CXfE37v8wBlgIfBvfPsHIOmH7C24ZEcu4BVggjGmiLV2XfzzLox/rtzxx78FlMP9OZUBiuESQanpGb+1AEoB2YGPzjqmMVAeaAm8HJ8QOa/4URL3AtuA/Qm7gTdw97Ii7t4NBrDW9gB2AB3jX8uwNDz/CGCEtTYnUBr47kL9EhERuVKUmBAREbl4+YBDF5ha0R141Vp7wFp7EPchuUd8rDcw2lr7j7U21lr7Be4Dd/1L6EsHYJ+19h1rbaS19qS19p9UjrsH+M1a+5u1Ns5a+xcQCrRPcsx4a+1Ga+1p3AfXGhfRj4eAgdbaXdbaM7gP0bcbV5ciGnfPysS/3qXW2hMXce1J8edE4pJBkdbaL621scC3gGfEhLX2e2vtnvjX+C2wCZcUSsEYY3B/Fk9Ya49Ya0/ikkDdztGP7sC71tqt1tpw4AWgm0lee+MVa+1pa+0KYAUuKXUuT8eP3DiFmxb0Uvxrwlq72Vr7l7X2TPz7511c0udCzvX80UAZY0x+a224tXZRGq4lIiJyRSgxISIicvEOA/nN+YtBFgXCkrTD4veBqxnxVPy0hmPxH05LJIlfjBK4UQIXEgR0Pes5GwNFkhyzL8njCNyIgLQKAiYlufY6IBY3NeErYBow0bhpLcOMMVku4tr7kzw+nUrb009jzL0mcYrMMaAKbmRFagoAAcDSJMf/Eb8/Nan9mfoQP/0i3sXcw+HxIzeyArWBt40x7eJfR0FjzERjzG5jzAlgwnleR1Lnev4HcCND1sdPpemQhmuJiIhcEUpMiIiIXLyFQCRu6sK57MF9WE8QGL8PYCcw1FqbO8kWYK395hL6shM3ND8tx3111nNms9a+mYZzbRqv3+6s6/tba3fH1994xVpbCWiIG+Vx70VcO02MMUHAp0B/3AomuYHVuGkRqT3XIVxio3KSPueKL0iZmtT+TGNInii5aNZZDfwN3By/+434/laLn35xT5LXkdprudBzbIqfFlQQN33lB2NMtv/SbxERkctFiQkREZGLZK09jqtDMNIY09kYE2CMyWKMaWeMSZjv/w3wP2NMgfgiki/jvvUG9+G5rzGmnnGyGWNujq8XcbF+BQobYx6PL+SYwxhTL5XjJgAdjTFtjDHe8QUpmxtjiqfhOQ4Ccbi6CufyCTA0PjlA/OvuFP+4hTGmanwthRO4aQWx8eftv8B1L0Y23Af2g/HP2ws3YiLBfqC4McYXPEUnPwXeM8YUjD+nmDGmzTmu/w3whDGmpDEmO4m1P/7zainGmAq4ESwJq7HkAMJxBUeLAc+cdcpF3TdjzD3GmALxr/lY/O7Y85wiIiJyxSgxISIicgmste8CT+KKMh7EjRjoD0yOP+Q1XA2HlcAqXLHG1+LPDcXVNvgIVyRyM66o4qX04yTQCuiIG8a/CVec8ezjduKWMn0xSX+fIQ2/C1hrI4ChwN/xUx5Sq4UxApgC/GmMOQksAhISJIVxRSpP4KZ4zCExSTMCV4viqDHmg7S85vP0cy3wDm5Ey36gKm4UQoKZuA/++4wxh+L3PYe7/4vip0xMxxWPTM043LSUubhClZHAo/+hy8/Gr6pxCvgTGI8rhAquJskNwHFc0dKfzjr3DVzi65gx5mkurC2wxhgTjrvn3eJrdoiIiGQ4Y+1lG0EpIiIiIiIiInJRNGJCRERERERERDKMEhMiIiIiIiIikmGUmBARERERERGRDKPEhIiIiIiIiIhkGCUmRERERERERCTD+GR0By6n/Pnz2+Dg4IzuhoiIiIiIiIgksXTp0kPW2gKpxTJVYiI4OJjQ0NCM7oaIiIiIiIiIJGGMCTtXTFM5RERERERERCTDKDEhIiIiIiIiIhlGiQkRERERERERyTCZqsZEaqKjo9m1axeRkZEZ3ZVrlr+/P8WLFydLliwZ3RURERERERHJZDJ9YmLXrl3kyJGD4OBgjDEZ3Z1rjrWWw4cPs2vXLkqWLJnR3REREREREZFMJtNP5YiMjCRfvnxKSlwiYwz58uXTiBMRERERERFJF5k+MQEoKfEf6f6JiIiIiIhIerkuEhMZzdvbmxo1alClShU6duzIsWPHANizZw+33357quc0b96c0NDQK9hLERERERERuRghISEEBwfj5eVFcHAwISEhGd2la5ISE1dA1qxZWb58OatXryZv3ryMHDkSgKJFi/LDDz9kcO9ERERERETkYoWEhNCnTx/CwsKw1hIWFkafPn2UnLgEmb745aUaPHswg5sPvuzXbdCgAStXrgRg+/btdOjQgdWrV3P69Gl69erF2rVrqVixIqdPn/ac89lnn/HWW29RtGhRypYti5+fHx999BEHDx6kb9++7NixA4D333+fRo0aXfY+i4iIiIiInMvSpUv5999/U+zv2bMnWbJkYdGiRaxatSpFvHfv3gDMmzeP9evXJ4tlyZKFnj17AjBz5ky2bNmSLB4QEED37t0B+OOPP9i5c2eyeK5cubjjjjsA+OWXX9i3b1+yeP78+enSpQsAkyZN4tChQ8niRYoUoUOHDgB8++23nDhxIlk8MDCQgQMHEhERkWx/REQEAwYMoEiRItx4440AjB8/npiYmGTHVahQgSZNmmCtZezYsSnuTdWqValfvz5RUVF88cUXyWI33XRT5luYwFqbabZatWrZs61duzbFvrRgMJd0XmqyZctmrbU2JibG3n777fb333+31lq7bds2W7lyZWutte+8847t1auXtdbaFStWWG9vb7tkyRK7e/duGxQUZA8fPmyjoqJs48aN7SOPPGKttfauu+6y8+bNs9ZaGxYWZitUqHDZ+ny2S72PIiIiIiKSub388ssWSLGdPHnSWmvtk08+mWo8Qe/evVPEsmfP7ol369YtRbxIkSKe+M0335wiXq5cOU+8adOmKeJJPzvecMMNKeLNmzf3xMuWLZsi3qFDB2uMSfV1Afauu+7ynJ8tW7YU8T59+lhrrY2Li0v1/Keeespaa+2JEydSxH788cfL9Ud3RQGh9hyf5Y2LZw61a9e2Z9dlWLduHRUrVvS0m3/enJ41etKzRk+iY6Np9VUrHrzhQe6pdg8R0RG0D2nPw7UfptuP3Tj23DE6TezEgHoDuLXirRyKOMTt393OUw2eomP5juwL30fh7IUv2C9vb2+qVq3K9u3bqVWrFn/++Sfe3t7JRkx07tyZAQMGeLJqN9xwA2PGjGHXrl1MmjTJkyX74IMP2LhxIx999BEFCxakaNGinuc5ePAg69evJ0eOHJfjdiZz9n0UEREREZHr28mTJ8mRIwcnTpzg5MmTKeJFihTBy8uL48ePEx4eniJerFgxAI4ePZpi5IExxvNZ58iRI8lGlAN4eXlRpEgRAA4fPpxiFUEfHx8KFSoEuM9JUVFRyeJZsmShYMGCABw4cIDo6OhkcV9fXwoUKADA/v37U4x48Pf3p1atWoSFhaX6ulauXEnevHkBV1vw7M/dAQEB5MmTB2ste/bsSXGN7NmzkytXLuLi4ti7d2+yWN68ecmaNWuKc652xpil1traqcXSdSqHMaYtMALwBsZaa988x3F1gEXAndbaHy7m3Mtp6NyhzAmbw5ywOQDkfis3AIWyFeLWirde8nUTakwcP36cDh06MHLkSAYMGJDiuNRWvzhf4iguLo6FCxdek29KERERERG5dsXFxdGkSRMaNmzIxx9/TM6cOc95bK5cuciVK9c543ny5CFPnjznjCd8wD+XfPnynTeekGA4l4QExbkkJDjONnToUPr06ZMsqRIQEMBbb72VrM9Jv0w+mzHGk6BJjZeX13njmUW6Fb80xngDI4F2QCXgLmNMpXMc9xYw7WLPvRSze86mZ42eAGTxzsLsnrO5p9o9AAxtORQ7yGIHuWRAwuNvu34LQP6A/MzuOZuO5TsCpGm0RFK5cuXigw8+YPjw4Skyck2bNvUUSVm9erWnDkXdunWZM2cOR48eJSYmhh9//NFzTuvWrfnoo4887eXLl19Uf0RERERERC7FlClTWLFiBfXr18/ormSY7t27M2bMGIKCgjDGEBQUxJgxYzy1LyTt0nNVjrrAZmvtVmttFDAR6JTKcY8CPwIHLuHca07NmjWpXr06EydOTLb/4YcfJjw8nGrVqjFs2DDq1q0LuGFAL774IvXq1eOmm26iUqVKnmzjBx98QGhoKNWqVaNSpUp88sknV/z1iIiIiIjI9cVay6uvvkqZMmW4++67M7o7Gap79+5s376duLg4tm/frqTEJUrPqRzFgKSlUXcB9ZIeYIwpBnQBbgTqXMy56W1Qs0GX7Vpnz6f65ZdfPI9Xr14NuOkeZycrEtx999306dOHmJgYunTpQuvWrQFXSfbbb7+9bP0UERERERG5kF9++YVly5Yxfvx4fHy00KP8d+k5YiJlwQRXRTSp94HnrLWxl3CuO9CYPsaYUGNM6MGDBy++l+eQHkuFXqrBgwdTo0YNqlSpQsmSJencuXNGd0lERERERK5TI0aMoFSpUtxzzz0Z3RXJJNIzvbULKJGkXRw4u9xobWBifNHH/EB7Y0xMGs8FwFo7BhgDblWOy9Lzq8zw4cMzugsiIiIiIiIA/PTTT2zdulWjJeSySc930hKgrDGmJLAb6AYkm4BkrS2Z8NgY8znwq7V2sjHG50LnioiIiIiIyJVjrcVaS65cuahZs2ZGd0cykXSbymGtjQH641bbWAd8Z61dY4zpa4zpeynnpldfRURERERE5Px+//13qlevzrZt2zK6K5LJpOvYG2vtb8BvZ+1LdekIa23PC50rIiIiIiIiV561lldeeYWTJ09SrFixjO6OZDKaFCQiIiIiIiLnNW3aNBYvXszo0aPx9fXN6O5IJpOeq3JIvOzZs2d0F0RERESuaSEhIQQHB+Pl5UVwcDAhISEZ3SWR60bCaInAwEB69uyZ0d2RTEgjJkRERETkqhYSEkKfPn2IiIgAICwsjD59+gDQvXv3jOyayHVh1qxZLFq0iFGjRmm0hKQLJSZSs3cvdOsG334LhQuny1P88ssvvPbaa0RFRZEvXz5CQkIoVKgQc+bM4bHHHgPAGMPcuXMJDw/nzjvv5MSJE8TExDBq1CiaNGnCN998w+uvv461lptvvpm33norXfoqIiIici4TJkzg5ZdfTrF/5syZBAcHM3r06FR/R1m8eDH58+fn3Xff5aOPPkoRX7NmDVmzZmXIkCG88sorxMbGJotHREQwcOBAVq1axXfffZcsliNHDlasWAHAo48+ytSpU5PFCxcuzIIFCwC4//77mT17drJ46dKl+euvvwC44447CA0NTRavVq0akydPBuDmm29m3bp1yeINGzZkwoQJALRo0YKwsLBk8VatWjF69GgA6tSpw+HDh5PFO3XqxHvvvQdApUqViIyM9MRKlSrFc889R6tWrRC5Upo0acJXX31F165dM7orkkkpMZGaIUNg/nz3c+TIdHmKxo0bs2jRIowxjB07lmHDhvHOO+8wfPhwRo4cSaNGjQgPD8ff358xY8bQpk0bBg4cSGxsLBEREezZs4fnnnuOpUuXkidPHlq3bs3kyZPp3LlzuvRXREREJDVFihShcePGKfZnzZoVgOLFi6caz5IlCwBBQUGpxr283IzjkiVLpkhKJNixYwdly5ZNcX5AQIDncYUKFTh+/HiyeJ48eTyPK1WqRExMTIrXlKBatWr4+/sni5cqVcrzuGbNmuTLly9ZvFKlSp7HtWrVokSJEsniFStW9DyuV68eJ06cSBYvX76853HDhg2JiooC3HD6uXPnsnz5clq1akVUVBRnzpwhR44ciKSnLFmycM8992R0NyQzS1iLNjNstWrVsmdbu3Zt8h3NmqXcRo50sVOnrK1f31ovL2vB/WzQwNrx41384MGU56ZBtmzZUuxbuXKlbdWqla1SpYotV66cbdOmjbXW2jfeeMPWrVvXjhgxwu7cudNaa+2cOXNs6dKl7aBBg+yyZcustdZOnjzZ9ujRw3O9sWPH2ieeeCJN/bkUKe6jiIiIXNfmzJljX375ZXv8+PF0f66goCALpNiCgoLS/bmvNtHR0fb06dPWWmu/+OILmytXLvvUU0/Z7du32wkTJtigoCBrjLFBQUF2woQJGdzbq5PuU9pMmDDBBgYGWsDmy5dP90n+MyDUnuOzvIpfni0sDKx1j6117XTw6KOP0r9/f1atWsXo0aM9Q/Sef/55xo4dy+nTp6lfvz7r16+nadOmzJ07l2LFitGjRw++/PJLbEIfRURERDLADz/8wPDhwz0jI9LT0KFDk42CADcqYujQoen+3FcbHx8fzwiOatWq0bZtW95//31KlizJfffdR1hYGNZaTx0OFQlNLqFeie7T+SXcpx07dgBw+PBh3SdJVyYzfcCtXbu2PXsO4Lp165INlzuvvXuhVClIMo+PrFlh69b/VGsie/bshIeHJ9tXs2ZNxo4dS61atejVqxfbtm1j9uzZbNmyhdKlSwPQuXNnevbsSc2aNSlWrBg+Pj68//77bN++neeee4769et7pnK0adOGRx99lE6dOl1yP8/nou6jiIiIZHrVq1enYMGCnloM6S0kJISBAweyY8cOAgMDGTp0qApfxtuxYwdVq1ZNMSUE3BD8qlWreto333wzr776KgANGjTwTBNJ0LVrV55//nmio6OpX79+iuv17NmTRx99lOPHj3PjjTemiPfr148HHniAvXv30qFDhxTxp59+mrvuuostW7Zwxx13pIi//PLLdOrUiVWrVqW6+sObb75Jq1atWLRoEY888kiK+IcffkjDhg2ZOXMmzzzzTIr43r172bt3b4r9Cfdp4sSJlC1blu+++y7V2ig///wzxYsXZ/z48anWRpk+fTp58uRh5MiRjBs3LkV8wYIF+Pn58fbbbzNx4sRkMR8fH/755x8AXnnlFaZMmZIsnjNnTmbNmgXAc889x/Tp05PFCxcu7Kmn0r9/fxYuXJgsXqpUKb7//nvA1VZJqMOSoEqVKnzxxRcAZMuWzVNsNqmgoCC2b9+eYr9IWhhjllpra6cWU42JpIYMgbi45PtiY/9zrYmIiAiKFy/uaT/55JMMHjyYrl27UqxYMerXr8+2bdsAeP/995k1axbe3t5UqlSJdu3aMXHiRN5++22yZMlC9uzZ+fLLLylSpAhvvPEGLVq0wFpL+/bt0y0pISIiIpLUkSNHWLVqFa+88soVe87u3bsrEXEOgYGBnDx5MtVYdHQ0RYsW9bRz587teVykSBGio6OTHZ8rVy7AFWFPel6ChHoWXl5eqcazZ88OuA/ZlxJPGBmTJUuWVOMJI3T8/PxSjfv5+QHg7++fanzZsmUp9kHiffLxcR+PsmXLlur5CfEcOXKkGk+ojZIzZ85U48aYc8a9vb09j3Pnzp0innDvwNVJOTueP39+z+N8+fKliBcsWDDZsWfHCxQo4HmcWlIC8IygELncNGIiqZo1YfnylPtr1IBz/CN2vdCICREREUkwZcoUOnXqxJw5c2jatGlGd0eA4ODgFKt/gL7hPpvuU9roPkl6ON+ICdWYSGrZMldX4uztOk9KiIiIiCS1d+9e8uXLR926dTO6KxJPdTjSRvcpbXSf5EpTYkJERERELspDDz3EgQMHUiyjKRmne/fujBkzhqCgIIwxBAUFMWbMGE1/OYvuU9roPsmVpqkckia6jyIiIiIiInKpNJVDRERERC6Lv/76i5o1a7Jx48aM7oqIiGQSSkyIiIiISJrNnj2b1atXU6xYsYzuioiIZBJKTIiIiIhIms2ZM4datWqRLVu2jO6KiIhkEkpMXAG7du2iU6dOlC1bltKlS/PYY48RFRXF7Nmz6dChQ4rjf/31V2rWrEn16tWpVKkSo0ePzoBei4iIiCR3+vRpFi9erCVCRUTkslJiIp1Za7n11lvp3LkzmzZtYuPGjYSHhzNw4MBUj4+OjqZPnz788ssvrFixgmXLltG8efMr22kRERGRVCxatIjo6GiaNWuW0V0REZFMRImJJIYNg1mzku+bNcvtv1QzZ87E39+fXr16AeDt7c17773HuHHjiIiISHH8yZMniYmJIV++fAD4+flRvnz5S++AiIiIyGWSLVs2unbtSqNGjTK6KyIikokoMZFEnTpwxx2JyYlZs1y7Tp1Lv+aaNWuoVatWsn05c+YkMDCQzZs3pzg+b9683HLLLQQFBXHXXXcREhJCXFzcpXdARERE5DKpW7cu3333Hblz587oroiISCbik9EduNJSmxVxxx3Qrx/UqwdFi0KbNlCkCOzdCxUrQliYO+7QIbj99uTnzp59/uez1mKMSfN+gLFjx7Jq1SqmT5/O8OHD+euvv/j8888v+NpERERE0kt0dDT79u2jRIkSGd0VERHJZDRi4ix58rikxI4d7meePP/tepUrVyY0NDTZvhMnTrBz505Kly59zvOqVq3KE088wV9//cWPP/743zohIiIi8h8tWbKEwMBApk6dmtFdERGRTCZdExPGmLbGmA3GmM3GmOdTiXcyxqw0xiw3xoQaYxoniW03xqxKiF2uPs2enXLr18/FAgJg0CCIiICXXnI/Bw2Cnj1dPH/+lOdeSMuWLYmIiODLL78EIDY2lqeeeoqePXsSEBCQ4vjw8HBmJ7nw8uXLCQoKurQXKyIiInKZzJ07F3DTOURERC6ndEtMGGO8gZFAO6AScJcxptJZh80AqltrawD3A2PPirew1taw1tZOr34mlVBT4rvv4NVX3c+kNScuhTGGSZMm8f3331O2bFnKlSuHv78/r7/+OgAzZsygePHinm3ZsmUMGzaM8uXLU6NGDQYNGqRpHCIiIpLh5syZQ6VKlShQoEBGd0VERDKZ9KwxURfYbK3dCmCMmQh0AtYmHGCtDU9yfDbApmN/LmjJEpeMaNHCtVu0cO0lSxL3XYoSJUrwyy+/pNjfvHlzTp8+nWJ/kyZNLv3JRERERC6zmJgY/v77b7p3757RXRERkUwoPRMTxYCdSdq7gHpnH2SM6QK8ARQEbk4SssCfxhgLjLbWjknHvgLw7LMp97Vo8d+SEiIiIiLXuhUrVnDy5EmaNWuW0V0REZFMKD1rTKS25ESKERHW2knW2gpAZ2BIklAja+0NuKkgjxhjmqb6JMb0ia9PEXrw4MHL0G0RERERSapUqVJMmDCBli1bZnRXREQkE0rPxMQuIOl6UsWBPec62Fo7FyhtjMkf394T//MAMAk3NSS188ZYa2tba2trzqOIiIjI5ZcnTx66d++u+hIiIpIu0jMxsQQoa4wpaYzxBboBU5IeYIwpY4wx8Y9vAHyBw8aYbMaYHPH7swGtgdXp2FcRERERSUVcXByffPIJYWFhGd0VERHJpNItMWGtjQH6A9OAdcB31to1xpi+xpi+8YfdBqw2xizHreBxp7XWAoWA+caYFcBiYKq19o/06quIiIiIpG7NmjU8/PDDzJkzJ6O7IiIimVR6Fr/EWvsb8NtZ+z5J8vgt4K1UztsKVE/PvomIiIjIhc2dOxeApk1TLfclIiLyn6XnVA65TCZPnszatZ5VVunZsyc//PBDBvZIRERErhdz5syhRIkSBAUFZXRXREQkk1Ji4hpwdmJCRERE5Eqw1jJ37lyaNWtGfFkwERGRy06JibOEhIQQHByMl5cXwcHBhISE/Kfrbd++nQoVKnDfffdRrVo1br/9diIiIpgxYwY1a9akatWq3H///Zw5cwaA559/nkqVKlGtWjWefvppFixYwJQpU3jmmWeoUaMGW7ZsSXb9V199lTp16lClShX69OmDK9EBH3zwgec63bp1A9w3HjVq1KBGjRrUrFmTkydPYq3lmWeeoUqVKlStWpVvv/32P71eERERyTzCwsI4cOCApnGIiEi6StcaE9eakJAQ+vTpQ0REBOD+M+7Tpw8A3bt3v+Trbtiwgc8++4xGjRpx//338+677zJ69GhmzJhBuXLluPfeexk1ahT33nsvkyZNYv369RhjOHbsGLlz5+aWW26hQ4cO3H777Smu3b9/f15++WUAevTowa+//krHjh1588032bZtG35+fhw7dgyA4cOHM3LkSBo1akR4eDj+/v789NNPLF++nBUrVnDo0CHq1KlD06ZNKVKkyCW/XhEREckcgoODOXz4MD4++pVRRETSz3U3YqJ58+Ypto8//hiAF154wZOUSBAREcFjjz0GwKFDh1KcmxYlSpSgUaNGANxzzz3MmDGDkiVLUq5cOQDuu+8+5s6dS86cOfH39+fBBx/kp59+IiAg4ILXnjVrFvXq1aNq1arMnDmTNWvWAFCtWjW6d+/OhAkTPL9MNGrUiCeffJIPPviAY8eO4ePjw/z587nrrrvw9vamUKFCNGvWjCVLlqTpdYmIiEjmlydPHnLkyJHR3RARkUzsuktMnM+uXbtS3X/48OH/dN20zsn08fFh8eLF3HbbbUyePJm2bdue9/jIyEj69evHDz/8wKpVq+jduzeRkZEATJ06lUceeYSlS5dSq1YtYmJieP755xk7diynT5+mfv36rF+/3jP1Q0RERCQpay3du3dn0qRJGd0VERHJ5K67cXmzZ88+ZywwMJCwsLAU+xOqUOfPn/+855/Ljh07WLhwIQ0aNOCbb77hpptuYvTo0WzevJkyZcrw1Vdf0axZM8LDw4mIiKB9+/bUr1+fMmXKAJAjRw5OnjyZ4roJSYj8+fMTHh7ODz/8wO23305cXBw7d+6kRYsWNG7cmK+//prw8HAOHz5M1apVqVq1KgsXLmT9+vU0bdqU0aNHc99993HkyBHmzp3L22+/fdGvUURERDKXsLAwvv76axo2bJjRXRERkUzuuktMnM/QoUOT1ZgACAgIYOjQof/puhUrVuSLL77goYceomzZsowYMYL69evTtWtXYmJiqFOnDn379uXIkSN06tSJyMhIrLW89957AHTr1o3evXvzwQcfJFsmNHfu3PTu3ZuqVasSHBxMnTp1AIiNjeWee+7h+PHjWGt54oknyJ07Ny+99BKzZs3C29ubSpUq0a5dO3x9fVm4cCHVq1fHGMOwYcMoXLjwf3q9IiIicu2bO3cugApfiohIujOZaSh/7dq1bWhoaLJ969ato2LFimm+RkhICAMHDmTHjh0EBgYydOjQ/1T4cvv27XTo0IHVq1df8jWuBhd7H0VERCRtLvfvHpfLAw88wOTJkzl48CBeXpr9KyIi/40xZqm1tnZqMY2YOEv37t2vil8GREREJPM734pgd999N7GxsSnO8fLywsvLi7i4OOLi4i467u3tjTHmgvE5c+bQpEkTJSVERCTd6X+adBYcHHzNj5YQERGR9DFw4MBUVwQbOHAgCxcuJEuWLCm2hGKU06dPTzU+ffp0ACZNmpRqfOHChQB8+eWXqcZXr15NVFQUN998s6ZxiIjIFaEREyIiIiIZZMeOHefcX6JECYYMGZIiVqlSJQDKlCmTajyheHalSpVSjZcoUQKAmjVrphovVKgQvr6+3H///Z4C4CIiIunpuqgxUaFChTQv2SkpWWtZv369akyIiIhcZsHBwedcEWz79u1XvkMiIiLp5Hw1JjL9VA5/f38OHz5MZkrAXEnWWg4fPoy/v39Gd0VERCTTGTp0KL6+vsn2XY4VwURERK4lmX4qR/Hixdm1axcHDx7M6K5cs/z9/SlevHhGd0NERCTTSSi4fTWuyiEiInKlZPrERJYsWShZsmRGd0NEREQkhQ0bNtCsWTNN2xARketapp/KISIiInK1GjhwIA0aNNCUUxERua4pMSEiIiKSAWJiYpg+fTpt2rRRkW4REbmuKTEhIiIikgH++ecfjh8/Ttu2bTO6KyIiIhlKiQkRERGRDPDHH3/g5eVFy5YtM7orIiIiGUqJCREREZEMMG3aNOrXr0+ePHkyuisiIiIZKtOvyiEiIiJyNZo8ebKWMxcRESGdR0wYY9oaYzYYYzYbY55PJd7JGLPSGLPcGBNqjGmc1nNFRERErmVFixalevXqGd0NERGRDJduiQljjDcwEmgHVALuMsZUOuuwGUB1a20N4H5g7EWcKyIiInJN+uCDD/jqq68yuhsiIiJXhfQcMVEX2Gyt3WqtjQImAp2SHmCtDbeJC3dnA2xazxURERG5FsXFxfH666/z+++/Z3RXRERErgrpmZgoBuxM0t4Vvy8ZY0wXY8x6YCpu1ESazxURERG51qxcuZL9+/fTpk2bjO6KiIjIVSE9ExMmlX02xQ5rJ1lrKwCdgSEXcy6AMaZPfH2KUBWQEhERkavdH3/8AUDr1q0zuCciIiJXh/RMTOwCSiRpFwf2nOtga+1coLQxJv/FnGutHWOtrW2trV2gQIH/3msRERGRdDRt2jSqV69OkSJFMrorIiIiV4X0TEwsAcoaY0oaY3yBbsCUpAcYY8oYY0z84xsAX+BwWs4VERERudbExcURFRVF+/btM7orIiIiVw2f9LqwtTbGGNMfmAZ4A+OstWuMMX3j458AtwH3GmOigdPAnfHFMFM9N736KiIiInIleHl58ffff5NY+1tERETSc8QE1trfrLXlrLWlrbVD4/d9Ep+UwFr7lrW2srW2hrW2gbV2/vnOFRGR9BUSEkJwcDBeXl4EBwcTEhKS0V26Kuk+pY3uU0pxcXEAxA8YFREREdI5MSEiIteOkJAQ+vTpQ1hYGNZawsLC6NOnjz5MnkX3KW10n1Ky1lK1alVeeeWVjO6KiIjIVcVkpqGEtWvXtqGhoRndDRGRa1JwcDBhYWEp9ufIkYPevXt72tWqVeO+++4D4KWXXiIiIiLZ8bVr1+auu+4C4NlnnyU2NjZZvHHjxnTp0oWYmBiee+65FM/XsmVL2rdvT3h4OIMGDUoRb9++PS1btuTIkSMMHZpyQF2XLl1o3Lgxe/fuZfjw4Sni3bp1o06dOmzfvp0PP/wwRfy+++6jWrVqrF+/nk8//TRFfOLEiezZk7Iec8J9evTRRwkODmbJkiVMnDgxxXFPP/00RYoUYd68eUyePDlFfODAgeTNm5fp06fz+++/p4i/+uqrZMuWjalTpzJz5swU8bfeegsfHx9++ukn/v7772Qxb29vhg0bBsA333zD2f9nZsuWjVdffRWAzz//nFWrViWL58mTh//9738AjB49mo0bNyaLFy5cmGeeeQaAvHnzcvTo0RT9CwoKYvv27Sn2Xw82btxI+fLl+fjjj3n44YczujsiIiJXlDFmqbW2dmqxdKsxISIi15YdO3akuv/kyZOMGTPG0+7UqZMnMfHll19y5MiRZMefOnXKk5gYO3Ys0dHRyeLGGLp06UJsbGyy6ybIkSMH7du358yZM6nGixYtSsuWLVP0K0G5cuVo3LgxR44cSTVes2ZN6tSpw759+1KNN23alGrVqrFr165U46dOnUqxDxLv0x133EFwcDAbNmxI9fwHHniAIkWKsGbNmlTjAwYMIG/evCxfvjzV+Isvvki2bNlYvHhxqvE33ngDgL///jtF3NfX15OYmDNnTorRC3nz5vUkJv766y+mTEledzowMNCTmPjtt99SJEYqVarkSUyklpSAc7/PrgfTpk0DoE2bNhncExERkauLRkyIiAhw7hET1/M33KnRfUob3aeUbr75ZjZt2pRipImIiMj14HwjJlRjQkREAPdN/NkCAgJSnS5xPRs6dCgBAQHJ9uk+paT7lFxkZCSzZs2ibdu2Gd0VERGRq44SEyIiAsDSpUsBVyfAGENQUBBjxoyhe/fuGdyzq0v37t0ZM2YMQUFBuk/nca771LJlS8LDwzO6e1fcmTNneOGFF+jWrVtGd0VEROSqo6kcIiLC/PnzadKkCU899VSqBSNFLofIyEiqVKlC+fLl+fnnn/HxUakrERGR64WmcoiIyHkVL16cXr16aRlDSVf+/v4888wz/PbbbzzyyCNkpi9HLmTGjBnX5UgRERGRtFBiQkRECA4OZty4cWTLli2juyKZ3EMPPcQLL7zAmDFjPCuIZHa7du3ipptuYtSoURndFRERkauSEhMiItexjRs30qVLF3bt2pXRXZHryNChQ+nevTsDBw7kp59+yujupLuEZULbtWuXwT0RERG5Omlyp4jIdcpaS9++ffn3338111+uKGMM48aNo0iRIjRv3jyju5Pupk2bRrFixahcuXJGd0VEROSqpN9ERUSuU1988QWzZs3ik08+oXDhwhndHbnO+Pr68vbbbwNuxYoNGzYQFBTkiRtjyJkzJwCnTp0iJiYm2fkXint5eZEjRw4AwsPDiY2NTRb39vYme/bsAJw8eZK4uLhkcR8fH8/UphMnTqSoh3GheJYsWQgICCAmJoZff/2Vu+66C2NMWm6NiIjIdUdTOURErkMHDx7kqaeeolGjRvTu3TujuyPXuV69elG9enVy587t2UqWLOmJ33fffcliuXPnplq1ap74rbfemiLeoEEDT7x169Yp4q1atfLEGzZsmCLepUsXT7xatWop4vfee68nXqpUqRTxfv36AS5pcvr0adq2bZsu905ERCQz0IgJEZHr0KuvvsrJkycZPXo0Xl7KUUvGGjp0KHXr1k026sDf39/zuGfPnjRq1CjZOQmjJcAV1Dz7g3++fPk8jwcMGEDXrl2TxYsUKeJ5/Mwzz3D48OFk8cDAQM/jl156iRMnTiSLlylTxvN4yJAhREZGJotXqlQJgFy5cvHpp5/SuXNnREREJHUmMy3VVbt2bRsaGprR3RARueodO3aMefPm0bFjx4zuioiIiIhcB4wxS621tVOLacSEiMh15MyZM3h5eZE7d24lJURERETkqqDxuyIi8ay1TJkyhbp16zJv3jwAfvnlF4oVK5Zi+/fffwGYOHFiqvENGzYAMHbs2FTju3fvBmDEiBGpxo8dOwa4Ie6pxRMK/b344ospYqVLl/a8psceeyxZLCAggFq1anHq1KkrdVtFRERERM5LIyZERIC5c+fy/PPPs3DhQsqUKUPevHkBNw+9ffv2KY7PnTs3AMWLF081nlDtPzg4ONV4wvz50qVLpxrPkiULABUqVEg1nlDdv3LlyiniCeeCK9oXERGRLN6gQQPPagIiIiIiIhlNNSZE5LpmreXWW29l8uTJFC1alMGDB9OzZ89kH+5FREREROS/OV+NCU3lEJHrRkhICMHBwXh5eVG8eHFCQkIwxlCjRg3efvttNm/eTO/evZWUEBERERG5gjSVQ0Qyjbi4uBT7vLy8sNYSEhLCQw895JnWsHv3bh544AEABg0adEX7KSIiIiIiiTRiQkSueadPn+bmm2/Gx8cHb29vz/boo48CEBMTQ48ePVLUWjhz5gwDBw7MiC6LiIiIiEi8dB0xYYxpC4wAvIGx1to3z4p3B56Lb4YDD1trV8THtgMngVgg5lxzUUTk+nTy5En++ecfbrrpJrJmzUpAQABPPPEEuXLl8hxTu7b7Z8PL69w52B07dqR7X0VERERE5NzSLTFhjPEGRgKtgF3AEmPMFGvt2iSHbQOaWWuPGmPaAWOAekniLay1h9KrjyJy7dm8eTMfffQR48ePJzIykj179pAvXz6+//77c57j7e1NUFAQYWFhKWKBgYHp2V0REREREbmA9JzKURfYbK3daq2NAiYCnZIeYK1dYK09Gt9cBBRPx/6IyDVs3bp1dOjQgXLlyvHxxx/TsWNH5s6dS758+dJ0/tChQwkICEi2LyAggKFDh6ZHd0VEREREJI3SMzFRDNiZpL0rft+5PAD8nqRtgT+NMUuNMX3SoX8icg3x9fXl33//5eWXXyYsLIwJEyZQr169C58Yr3v37owZM4agoCCMMQQFBTFmzBi6d++ejr0WEREREZELSc8aEyaVfTbVA41pgUtMNE6yu5G1do8xpiDwlzFmvbV2birn9gH6gIZki2Q2U6ZMYfLkyXz22WeULl2aHTt24ONz6f9sde/eXYkIEREREZGrTHqOmNgFlEjSLg7sOfsgY0w1YCzQyVp7OGG/tXZP/M8DwCTc1JAUrLVjrLW1rbW1CxQocBm7LyIZ5cyZMzz22GN06tSJ5cuXc/Som/H1X5ISIiIiIiJydUrPxMQSoKwxpqQxxhfoBkxJeoAxJhD4Cehhrd2YZH82Y0yOhMdAa2B1OvZVRK4SGzdupEGDBnzwwQc89thjLFy4kLx582Z0t0REREREJJ2k29eP1toYY0x/YBpuudBx1to1xpi+8fFPgJeBfMDHxhhIXBa0EDApfp8P8LW19o/06quIXB1iY2Np3749R48e5eeff+aWW27J6C6JiIiIiEg6M9amWvbhmlS7dm0bGhqa0d0QkYsUHh5O1qxZ8fb2ZuHChZQoUYLixbVIj4iIiIhIZmGMWRo/ECEFTdgWkYsWExPD3LlziYyM9OwLCAigefPmAPzzzz8cPnw42Tk5c+akcWNX3/bvv//m+PHjAJw6dYqBAwfSvXt3Bg0aRIMGDa7MixARERERkauCEhMictF69OjBxIkTk+0rU6YMmzZtAuCFF15g1qxZyeI1a9bk33//BeDxxx8n6eimYsWK0aJFi3TutYiIiIiIXI2UmBCRNImNjSUmJgY/Pz/69etHmzZtqFSpkifu5+fneTxy5EhOnjyZ7PyAgADP488//5xTp0552hUrViRHjhzp2HsREREREblaqcaEiFzQxo0b6dWrFw0aNGD48OEZ3R0REREREbnGnK/GRHouFyoi17i4uDhGjBhBjRo1WLt2LTVr1szoLomIiIiISCajxIRIZrF3LzRrBvv2XZbLbdu2jebNm/P4449z4403smbNGrp3735Zri0iIiIiIpJANSZErlUxMXDiROL2xhswfz4MGQINGsD+/XD8eGK8Rg0YMMCd26oVHDvmrpGwdekCr7/u4iVKEBkby8YDBxhfuDD3hYVhJkyAZ5+FqCho2xayZAFfX/DzA39/6NwZbr8dTp1yfUjY7+fntkaNXB9OnYLp05PHsmWDwEDInTv979vevdCtG3z7LRQunP7PJyIiIiIi56XEhEhGOHYMjhxJnljw8oL27V38k09gzZrk8ZIlYexYF69dG5YuTX5NLy+Ii4Px4+GXX2DnTjAGcuSAnDkhSfFJcud2SQUfn8QtMJDY2Fh++uknbm/fnopnzrA9MhL/uDiIjoa8ed25cXEukRER4ZIUkZFw5gzccIOLnzwJ773nYkkNG+YSE3v2uCTG2UaOhH79YMUKaNzY9TlXLvczZ054/nm48Ub3ur7/HvLlS74FBrpkx4UMGZKYwBk58sLHi4iIiIhIulJiQiStYmLcB3iA7dth27bkiYPISHjqKRf/6CP480/3IT1h1ELWrLBqlYv36AG//pr8+qVKJSYmJk+GxYsTP5TnyOESCQnuuw9uuSUx/u23MGuWSxrExkLLlvDBB24kglcqM7a+/z7FrtjYWO69916+/vprZs+eTbNmzUj1Y76/P8yde+77VLiwS1TExbnkxJkzbktIjJQoAaGhifvPnHGjKGrUcPE8eaBPn8T7lvAzoVDv6tWJ9zmp336Ddu3gjz/gsccgf36XsEj42b+/u4fjxrm+jRsHTz4JpUuf+7WIiIiIiEi606occv1IeK8b4761X7cOjh5Nvv3vf+7D/Lhx8Omn7kPxsWPuZ0QEnD7tPpg/9pj74J+UMS4pYAwMHOg+KOfIkfitf4EC8P777tg//3S1IBKSDrlyuQ/kl/Ihee9el9SIjEzclzUrbN2a5qkKSZMSr7/+Oi+88MLF9+NKiYtzfx6HD7tRJ4cPu+2mm9zrXbAARoyAQ4fc/kOH3LZ4sRuJMmaM+3NKEBAABQu6xE5wMMyc6R4XKgRFiritcGEICgJv7wx72SIiIiIi17Lzrcpx3hETxpivrLU9jDGPWWtHpE/3RC4gLTUBYmPdB/28ed2H8hUr4JtvYPdu2LXL/dy9G/79F8qXh+++gyeeSH4NHx/o29clJry9XcKgeHGXNMid2/1MSG48/LCryZAwYiFhSzB0qNvOpXXr/3RLkhkyxH1YTyo2Ns1TFa6ppAS4ESB58rgtNQ0bui0pa937aPz45EkJHx83eiU8PPF6Cxe6Whtn39Pjx92f8TvvuNEuhQsnT1zcc49LSkVGuroZxly+1ywiIiIikoldaCpHLWNMEHC/MeZLINlv2tbaI+nWM5EECTUBHn/cfdDOl8/VX3jzTQgLgx07XNIhJsYVVWzZEjZvhnffhaJFXXKhZk3o0MElLQBuvdXtS/iAmyePS0gkfJi87z63nUuFCm67GixcmLKeQ1SUGzmQBosWLWLixInXRlLiUhkDr72WMtng5eWSUBMmJO4bONDVszh40CW79u51hURz5HBxX19Xc2PxYhePiHAJix49XPz+++HHH12yIiF5UbYsvP22iy9d6vpRpIgbqZF0io6IiIiIyHXovFM5jDEDgIeBUsBukicmrLW2VPp27+JoKsc1KibGffjbscMlEkqWdAmH/v1dgmH9+sRj33/fTaMIDYWuXV3Bw4StRAm4+Wb3MybGfehMrb6CpLBu3ToqVqyY0d1IXzVrwvLlKffXqAHLll3aNa11oy0OHXLvW3BJiSVL3Hs6YcudG+bNc/GmTRMfg6uB0awZ/PCDa3/8sau7kXQ0RtGiiYkREREREZFr0PmmcqSpxoQxZpS19uHL3rPLTImJq9yxY26Ye+HC7nH37q7Ow44dicPrX30VXnrJfRPdrp07bscO9w2zjw/cdRd8+WUGvojMITY2lj59+tCpUyduueWWjO7O9WXVKlc8de/exBEZhQvDoEEuXr48bNyY/Jx27VzNEoDbbnMjQJImLqpXh1q1XDwuTgk5EREREbnqXHKNiQTW2oeNMY2Bstba8caY/EAOa+22y9lRyWQ++cStoLBuHaxd6z6EPfigKyqZM6f7lrlePZegSBj1UKWKO7dwYfdBrFSpxOH3MTHuW+Vhw9Jc1PF6ERISwsCBA9mxYweBgYEMHTqU7t27p3psbGwsPXv2ZMKECZQrV06JiSutalW3ncv69a4Qa8Joi3373KiKBBERLrExY4ZL3AH07u2KesbFuWKeefMmTiMpXBg6dXKruMTGwqJFbgRGsWLnnkaSlrouIiIiIiKXSZoSE8aYQUBtoDwwHvAFJgCN0q9rctWLinIfolatctvKle5DzLhxLv7OO25ufsWK0Lat+9ko/i3j5QX//HP+6//Hoo7Xi5CQEPr06UNERAQAYWFh9OnTByBFciJpUmLo0KE899xzV7y/cgHGuMRC3rxQuXLK+O+/Jz4+fdr9HUtYxjY6Gp55JvlojGXLXILvllvgwAFo3DjxeQoXdlOfnnkGbr/dLcs6bZorHDtvnhvB9PHH6f+aRUREROS6ltapHMuBmsC/1tqa8ftWWmurpW/3Lo6mcqSjAwfc/Pzdu6FXL7fvxhvdsooAWbK4xEPLlq7oJLilHPPkufTVCdKjJkAa7N+/n507d3Lo0CHP1q9fP3x9fRk/fjxffPEFhw4d4syZM55z1qxZg6+vL6+++ipfffVVsutlyZKFtWvXAvDcc8/x008/JYvnzp2bJUuWANC/f3+mTZuWLF6sWDFmz54NQM+ePfn777+TxXft2kVk0qVC4/n4+BAcHEzNmjX57rvvAGjZsiUzZ87ktddeY+DAgZdwd+Sadvo0zJnj/h7v3Jm49esHnTu7ZGH9+snPqVjRLY17001ulNOaNa6YZ5EiWnlERERERNLsP0/lAKKstdYYY+MvmO2y9U6uLrGxbpUCgIkT4Ysv3NKbe/e6fb6+blnELFnccpu9e0O1alCunNuXVN68/60v6Zh8OJePP/6Y/v37c3bCrmvXrhQrVoyoqCistZQrV46sCSt8AF7xc/qDgoKoW7dusnO9E+4nULJkyRTx7Nmzex6XKVOGo0ePJovnTzKMv0KFCkRHRyeLb968OdXXEhMTQ926dSlbtqxnX506dbjrrrt48MEHUz1HMrmsWd3opXOpXt0VlZ00yU2d8vZOXHUEYPZsFwc3ZaRMGbe98Yb7N+DwYVdHpkgR1bkQERERkTRL64iJp4GyQCvgDeB+4Gtr7Yfp272LoxETF+nYMbd0YcI0jFWr3LehW7e6Id7vvOMKTdao4bbq1d2WL18Gd/zyiYyMZOLEidSoUYMaNWqwdu1aQkJCqFevHvnz5/dsefLkwVyl3w4HBwcTFhaWYn9QUBDbt2+/8h2Sa9fevW7aR9IROFmzJv6bcOSI+zdj06bEbfPmxHow770HTz7pzklIWpQtCy++CLlyuev6+WmkhYiIiMh16D+vyhF/kVZAa9ySodOstX9dvi5eHkpMnMOpU64A5erVLvnQp4+r/P/FF9CzpzumYEFXkK9aNXj6aVccLxPbt28fo0aN4pNPPuHAgQM89dRTDB8+PKO7dUnOrjEBEBAQwJgxY85ZAFMkVf36wWefufoxCXx9XdHatNR1WbvWjapISFhs2uQKdR47Bv7+LmnxySfJkxZlyrjrK1khIiIikqldjqkcACsBv/jHK/5zr+Tyi4qCDRvcFIpixdwoiC5dYNs2SEhA+ftD06YuMdGmDfz1l0tIFCqUsX2/gh5//HE+/vhjoqOj6dChA48//jg33nhjRnfrkiUkH9K6KofIOS1cmDwpAa69YEHazq9UyW1JJZ0e1qqV+7lpk0uWTp0KuXO7KWEA990H//7rEhYJSYtKlRKL5oqIiIhIppTWqRx3AG8Ds3EjJpoAz1hrf0jX3l2ka27ExKUsyRcV5QrY5coF4eHwv//Bli3u28nNm9288NdfhxdecAUr+/d3S3AmbKVLJ35IuAZczDKYqTly5AgzZsxg9uzZjBgxAh8fH4YMGcKBAwd49NFHKVeuXDr2XkTOKzbW/TtVpIhrv/eeK6i7ebP7dy0qCm64wU0fAejRw40ASzraokKFxPNFRERE5Kr1n6dyGGNWAK2stQfi2wWA6dba6hc4ry0wAvAGxlpr3zwr3h1IWK8wHHjYWrsiLeem5ppLTPTrB6NHQ9++yYdJx8QkLv83fDhs3Oh+Sd+yxVXQ79MHRo1yxxUo4Jb7K13afbNYpQo0aADBwRnyki6nS52isGXLFsaPH8+ff/5JaGgo1lpy5szJP//8Q4UKFa5E10Xkv4qNhV273BKmVau6fffdB0uWJCYtADp1gsmT3eMHHnA1cJImLooVUyFOERERkavA5UhMrLLWVk3S9gJWJN2XyjnewEZcwcxdwBLgLmvt2iTHNATWWWuPGmPaAYOttfXScm5qrqnERNIicz4+cOutbgm/LVugTh2YMsUdFxTkRkiULp24NWnilu4DN0XjGp2bfeDAAT7++GP27NkDQNu2bbn11ls5deoUTzzxBN988w3h4eEpzitevDjt2rVLsf/hhx+mZs2azJw5k9atW1OvXj1atWpF69atqVu3Lj4+FzNzSUSuWglJi82b3eogDRpAdLQr0rt5c/LpKAMGwIgRLv7ii8mTFsWLK2khIiIicoVcjhoTfxhjpgHfxLfvBH67wDl1gc3W2q3xnZgIdAI8yQVrbdKJy4uA4mk995o3ZAjExbnHMTFurnWtWtC+vfslO8H69a7C/blcg0kJay3/+9//GDFiBKdPn6ZQfH2L4PhRHlFRUfz666+pJiUAdu/eza+//ppif7ly5ahZsyZNmjTh8OHD5MqVK91eg4hkIG9vl7QNCkrclyWLW1UoadJi0yaoXNnF9+yBDz+EM2cSz/H3d/sefNAtdfrjj4mFOdOStLiU6XgiIiIiksJ5ExPGmDJAIWvtM8aYW4HGuBoTC4GQC1y7GLAzSXsXUO88xz8A/H6J515b9u4l5NNPGRgTww4gEBgaFUX31H65PV9S4hpz5swZ/Pz8MMawfv16OnbsyKBBg1JMr8iTJw979uw55zKYgYGB510GM0uWLEpKiFyvkiYtWrZM3B8UBBERLmmRdNWQhMTFihXw0EOJx/v5uRFqo0a5gsF797qCnUmTFkOGwPz57mdaVi0RERERkVRdaMTE+8CLANban4CfAIwxteNjHc9zbmpf5ac6b8QY0wKXmGh8Cef2AfqA+8B6LQjp0YM+MTEkVE4IA/pERxN3zz3c+vPPxMXFkSNHDgC2bt1KdHQ0ZcqUwfsaKlqZVHh4OB9++CHvvfcec+fOpUKFCnz77bcXnFoxdOjQVGtMDB06NL27LCKZkZcXBAa6LWnSAqB5cwgLS0xYbNrkptblzevif/6ZuLyyn5+7xpYtbuTb+PHw8MOQI4er+aPpISIiIiIX5UKJiWBr7cqzd1prQ40xwRc4dxdQIkm7OLDn7IOMMdWAsUA7a+3hizk3vi9jgDHgakxcoE9XhYFz5xJx1r4I4N4ZM7g3e3YaNGjAgvjl+W655RbWrFlDrly5aNy4Mc2aNaN169ZUr37euqPJHDlyhDVr1rB27Vpy5cpFmzZtyJMnz+V7Qedw+vRpRo0axZtvvsnBgwdp3749Jn7qSVrqPWgZTBG5YpImLVJbPrhjR5gxIzFx8cMPidPxYmNd4c3Fi13SolSpxCVPX3kFsmVzq4lkzaqkhYiIiEgqLvQbkv95YheaY7AEKGuMKWmM8QW6AVOSHmCMCcSNwuhhrd14Medey8KiY84ZGzZsGAMGDPC0hw8fzvjx47njjjvYvHkzzz77LO+99x7gajW88847/P3330RFRXH06FHmz5/Pvn37AJg+fTpFihQhX758NG3alL59+3LXXXexefNmABYsWMB7773HP//8Q1TSYnFpFBUVRVhYGAsWLOD777/nvffe49NPP/XEGzRowFNPPUX16tVZsGABU6dOpXz58mm+/rBhULRod7Zv305cXBzbt2+naNHuDBt20V3N1IYNcyssJjVrFrpPZ9F9ujDdo/PIm9clLPr0YZjfS8zanWSp4agoZi3LzbD2s12xzfLlYetWGDvW1bEAeOopV6izUiW3kshTT8GYMRnyUq4UvZ/SRvcpbXSfLkz3KG10n9JG9yltdJ8uI2vtOTdcscveqex/APj2fOfGH9cet7rGFmBg/L6+QN/4x2OBo8Dy+C30fOdeaKtVq5a9FhQsGGRxU1OSbQULBl3w3L1799pt27ZZa63dsmWL59wsWbJ4Hn/22WfWWmvXr19ve/XqZd9++23722+/2e3bt9t///3XRkVFWWutfemllzzn+Pv728aNG9tnn33WRkZGWmut/eqrr+xjjz1me/XqZW+77TZ700032dtuu83Tl8aNG6d4DbVr1/bEX3vtNTt79uxLvk8zZ1qbP7/7mVpbHN2ntNF9ujDdo7SZect7Nj8H7EyaWwt2Js1du9N7yQ+Mi0t8/Ouv1j7zjLVdulhbpYq1/v7WBgcnxm+91dqKFa295RZrn3zS2lGjrJ0374q8nvSi91Pa6D6lje7ThekepY3uU9roPqWN7tPFSfp5/+ztvMuFGmMKAZOAKGBp/O7agC/QxVq779LSIenjWlkuNCQkhAce6MOZM4kTOowJoHz5MRQq1J077oB+/VydtvbtU57fs6fbDh2CW245yPHj8zhxYhFZsuQnW7bKDBhQl969C7BzJ/TokfL8p55yo5I3bICePXdz4sRCjh9fwIkTC4iK2sMvv4TRqpWhXbu7+euvqfj45MTbOyc+Prnw8wti8uRvaNgQXnvte7766jh+fsXx9S2Gn19xfHxyM2KEoUYNmD4dXnst5fOPHu2+UPzlF3jnnZTxr75y07S//RZef93VmytSxNWeq1jRjabOnx8+/9xtZ/vtN/fF5Mcfw3ffpYzPnu1+Dh8OZy/ukTUr/B5fgnXIEPdcSeXL5wr3A7zwAixcmDxevDhMmOAeP/44LF+ePF6uXOKXpH36wMaNyeM1asD777vH99zj6vQl1aABvPGGe3zbbW4hAYCjR919atjQLUzw3XcuU3v6dPLzO3SAp592j5s3J4WLee/dfnvK+MMPw513kqb3XtI6gwn+9z+3Eu7y5e7+ne31191rXLDArfx4tvff57zvvV693Otv2RJ++sm9n5LOakr63hs1KuX5P/yQ+d97s2ZBu3ZQqFDi37k8ec793kvQsiW89JJ73K5dJn/vtQ7l6Ckf1lGJIuxhL0UZST9611jK9LeXpfHfPQvRMW41EeCrJmMoseYPvg0txahdt4CNg1y5oEZNAH4IuJf83kf5POpuPt/W1L1hArK5qSNcve+9o0fde+2ZZ9zfqXr14OwFly71370EmeG95+3tVg3PmTP53zv47//uXcz/uVf7v3u//Zb8d4KmTd3rhiv7f26Cq/G9l/D7QJEicOwYTJ4MRYtmzP+5V/N7LyICtm1z9/Cdd1xd46S/D1ytv+8luFLvvcmT3bFJfw/Pk+fq/33vSr/3kv6927sXpk2DFi3S///ca9ElLxdqrd0PNIwvTlklfvdUa+3My9zH60pCjYRHHhnI8eM7MF7FKF/uTQoV6s7+8H2s3H8AqAZARHQEPl7e+Hr7pXotX98CFChwKwUK3OrZlzNn2vvi51eMAgVup0AB9z+etbGeOhCvvx7C6dPnXo70xhu7en4hSC958ri/5Dt2uKnfV6A0xjUp4T7NmeP+o2rRQkPIUlO/vvvPdMgQvZ/OpUULVxph9Wrdo3OqXZs8QJFtsGNHMIGBUOfnsVADSPO/icaTlADcb64l+sC3wCgLZ6Jc7YoEAQGwYRlsmAXRRdy+ggWhYiX3+N57ITA/7OkER6u633z8/DN8Sek8edwvskOGuH+b9u1L+Qu6uL93XbvCp5/q7935nP07gVbpTSnpPbrzTvfe2rAho3t19cmXD9q2df82NWuW0b25ejVurN/D0+Lsf5tatMjoHl2jzjWU4lrcrpWpHINmDbLc19wScMDS9BX3877mdtCsQbbKx1Vsl4ldPMdW+KiC7fpdV0+73qf17OO/P+5pP/HHE/arFV952pPXTbar9q/ytE9EnrBxSYcTX2MShkO99JKGRZ2P7lPa6D5dmO5R2mTYfYqLs3bXLmtnzbI2NNTtCw+3tmpVa7NmtRYSt+eec/GTJ619/HFrR4609s8/rd261dqYmCvSXb2f0kb3KW10ny5M9yhtdJ/SRvcpbXSf0o7zTOXI8GTC5dyulcRE0rlHDCZZOzI60h6PPO459s/Nf9oFOxZ42s/++awd9+84T7vaqGr2+b+e97QDhgbYJ/940lprbVxcnPUd4muf++s5T7vJuCb2y+VfWmutjYmNsUPnDrWLdy32tJftXWaPnj6abq/9YmjOVtroPqWN7tOF6R6lzVV7nxKSFrNnW/vpp9b+84/bv26dtQEByZMWWbJY+8UXLr5nj0taTJt2WZMWV+19usroPqWN7tOF6R6lje5T2ug+pY3u08U5X2JC65ZlgCVL3HykhGE+LVq49pIl4OfjR06/xLkYrUq3okGJBp72W63eolfNXp72ir4reOOmNzzt0N6hPNHgCQDibByv3/g67cu6yWORMZH4eCXO3jl+5jgDZw5kwU63NOnh04epObomIStDANh7ci9F3ynKt6u/BeDAqQM88PMDLN692J0feZwf1v7AnpNuJdeYuBhORZ1yGa/LfJ8Gzx6c7D5JovO9nySR7tOF6R6lzVV7n4yBYsXcuOQHH4S6dd3+ChVcYYfdu92k608/hSeegKpVXXzpUnjkEWjTxi11mjWrOydhYuvOnfDnn26lkaTTSy7gqr1PVxndp7TRfbow3aO00X1KG92ntNF9unzOW/zyWnOtFL9MavDswQxuPjjDnj8yJhIAfx9/IqIjmLZ5GtUKVaN03tLsD9/PwJkDub/m/TQs0ZD1h9Zz05c3MermUXQs35HQPaHU+bQOP3f7mVvK38I/u/6h/mf1mXr3VNqXbc+/e/9lwO8D+LDdh9QsUpPNRzbzzapv6FWzF8VzFudwxGG2HN1ClYJVCMgScN5+mlcMdlDmea+KiFw1rHXVujZtgs2b3bZpE7z5pqsIN2qUq5IGri5GqVJu/+jRLhGyZw9ERrqJtT6plK7auxe6dXNVxlQUQERE5Lp1vuKXGjGRwTIyKQEuIeHv4w9AQJYAulTsQum8pQEolL0QY28ZS8MSDQGokL8Cu57cRcfyHQGoXKAyK/uupFmQqxpUNEdR3rrpLSoXqAy4ERt+Pn74evsCsObAGl6e/TKHIg4BMHPbTOqNrcfWo1sBmLh6IrnfzM2WI1sAmL51Ond8fwcHTx0EYNX+VXy69FMiot1qJocjDrPt6DbibFz63iQRkczMGFe2v1kzeOABVwr+hx9c8gFcBb05c2DsWFdqvUoVN4oie3YX/+gjKF3aFegsXx5uvtmVWY+KcvH//Q/mz3dV5kRERERSoRETckVFxUbhbbzx9vJmX/g+QveE0iK4Bdl8s7F492ImrJzAqy1eJbd/brp+15Uf1v2Q4hrPNXqON296k7fmv8XzM54n/IVwsvlm472F7/HRko9Y/8h6snhn4Ye1PzB963RG3TwKYwxLdi8h7HgYt1dyK5AcjjiMxZI/IP+Vvg0iIpnH2rWwaFHiiItNm+DgQbf+3b59bk222FiXAGnQwE0TqVgxcS27EydcksNL35WIiIhkZpe8XKjI5ZYwegKgcPbCdCjXwdOuW6wudYvV9bS/v+N7z2PziuH0wNMcijhEsRzFAOhQrgOFshfyTAMJzh1Mk8AmZPF2S/BtPLyRGdtmeJY//Xz550xcM9GTmHhxxotM3jCZ/U/vB+DZv57l373/Mv1et97f6NDR7Avfx6DmgwCYvX02UbFRtC7dGnA1N3y9fcntn/vy3SARkWtNpUpuS8pal4gYMiRxyVJjYMsWV6vin38SExO33OISG0FBbjpIUBDUrg19+7r4/v2QN2/y5VVFREQkU9GICbkmXI4aE0dOH+FwxGHK5isLwLyweWw/tp0e1XsAMHLxSDYc3sAH7T4A4MEpD7LpyCbm9JwDQPuQ9hyMOMiS3q6aTauvWhEeFc7CB1yBuG4/dMPfx5/PO38OwJA5Q8jtn5tH6z0KwOT1k8mbNS9Ng5oCsP3YdnL65SRv1rz/6XUlldE1S0REPPbudfUoIiMT92XN6hIT+fMn1qP4+mtYvhy2b4ewMLcQfPXq8McfLl66tIsVLeqSFkFB0LIl3H+/i2/e7BaQz5btCr44ERERuVjnGzGhxIRcE66GD9x7T+4lIjrCU4Nj6sapRMdF07lCZ8D10dfblxebvAhAu5B2FMxWkC86fwFAhY8qUL1wdb693a1yUuaDMtQrXo+QW90qKLXG1KJlyZYMazUMgAd+foDGgY09q7CMWjKK6oWre2p+LN2zlOI5i1MoeyFPH1UkVESuGv36wWefJdaaAPD1dSuGjBx5/nPj4hKndnz5pUs+7NjhEhdhYW4FkVGj3HFZs7rnyJcvccTFHXfAXXe5kRtLl7p9+fMnjt4QERGRK05TOeSal9FJCYAiOYoka99c7uZk7bP7+Hv335O1Z903C0ti0mBYq2HJ6lu0CG7hKRwKsPrgakrmKelpPz7tcZ6o/wQNSzTEWkvdsXV5sfGLDLlxCDFxMWR/Pbvn2DMxZ2gb0pZ+tfvRtXJXTkef5rW5r9GpQifqFqvLmZgzTN86nRqFa1AsZzFi42I5fuY4Of1yJltSVkTkki1cmDwpAa69YMGFz01ab+Lee899XFwcfP55YsIiLAw2bnT1LQAOHIA6ddzjrFkTExePPOKmkEREuMRFYKBbYSS1VUVEREQk3el/YJEr5OzExq0Vb03WHt56eLL2Pw/+k6y9/+n9eBn3y7rF8nO3nymVpxSDZw/mlTmveI4zr7hvBANzBnpWLDkaeZS3/n6LwFyB1C1Wl33h++jwTQfG3TKOXjV7se3YNsp+WJYvO39Jj+o92HR4Ex2+6cCH7T6kdenWbD+2ncGzB/NE/SeoXrg6e0/uZfL6yXQs35HiOYtz4swJthzZQrl85cjmm42EkVhG306KXL+WLUv/5/DxcSMjziV7dpg0Kfloix074PRpF1+7Fpq66XV4e7vkRGCgq43RvLkr4vnvv4n1LwLOv7S1iIiIXBolJkSuEUmLbHoZL0/h0MHNE6e5nGsqR9EcRYl+KdqTqCiUvRD/PPgPwbmDAcjjn4f327zvKT7q4+VDzcI1yeOfB3D1OWZvn02vGm5ayfpD6+n3Wz8qFqhI8ZzFWbRrEW0mtGF+r/k0CmzEb5t+o8u3XVj4wEJqFa3FrG2zeHn2y3ze6XNK5y1N6J5Qvln1Dc81fo6C2Qqy+chmlu5ZSodyHcjmm42jp49yNPIoQbmC8Pbyvuz38mqYGiQiV0C2bNC587nj5crBtGkpExcJIyfmz4dbkySR8+d3SYqxY6FGDVfMc+XKxNoXefNquoiIiMgl0NpcItcJY4znQ76/jz91i9WlYLaCAOQLyMdj9R+jfP7yAJTMU5KJt0+kTjE3BPqGIjew/fHtNAtuBkDjwMbseXIP9YvXB6BG4RpMunMSFQtU9Jz/VIOnKJqjqOe5fb19PauybDq8idFLRxMZ44riTd86nW4/duP4meMAhKwKofQHpTly+ggAHy3+iHzD8nHizAkXXxlC2wltiYp1w8T/3PIn/5v5P0/iZcW+Ffy8/mfPaz946iC7TuzytJOOMBGR61jOnNC6tat7MWSIq2cxezY0buziN94I8+bBhAkwdKhLUuTP784DmDrV7atVy+3PkcOtULJjh4svXQohIfD333D06Pn7sncvNGvmllgVERG5zqj4pUgmcq2OBDgeeZzdJ3dTLl85fLx82HBoA4t2LeLuqneTxTsLM7bOYNL6Sbzf9n18vHwYv2w8Y/4dw4L7F2CMYdCsQQxfOJxTL54C4MlpT/Lpv59y8oWTADz626OErArhyHMu0WFeMVQqUIk1/dYA8Nb8t1h9cDVfdfkKgAkrJ7A/fD9PNXwKgLlhc4mMifQsFbvj+A68jBfFcxa/ovdJRK4yJ07Apk3JR1yEhbkER/bs8MwzMDzJNL3AQKhWDb7/Hvz9XbIiRw43QqNfPxg92i2TeqHioCIiItcgrcohIpmetdZT02J/+H4OnDpA1UJVAfhn1z8M+3sYP63/KcV5g5oNwst4serAKr7v+j0A3X/qzrqD6/j3oX8B6PB1B/aG72Vpn6UAtP6qNSfOnGDRg4s8bW8vb0/B0wenPEhOv5y82+ZdAF6f9zr5subjodoPAfDt6m8pkK0AN5a8EYBle5eRJ2sez9Sa09Gn8ffxz9AaHddqkkvkqhIR4RIVW7fC6tVu2sfu3W5UBsCdd8LPP7spJWvXQmws+Pm55VELF87InouIiFx2SkyIiCRxscuq7jm5h9PRpz1Lxc7ePpszMWdoU6YNAJ+EfgJA39p9ATdCI4dfDl5v+ToAzT9vTmCuQL7s8iUAZT8sS52idfj6tq8BKDmiJE2DmnqWli32bjHalWnH2FvGAlBvbD1uKXcLA5sOBODeSffSunRr7ql2D+ASH41KNPJMtfl5/c9UKlCJsvnKYq1l27FtFAgoQA6/HOl2j0TkEvzyC8ydCxMnJq4kYgw8/LAbNfHss64oZ/XqbqRFuXJaOURERK5Z50tMqMaEiMgFFM1R1JOUAGge3NyTlACXkEhISgB82P5DT1ICYHbP2Z6kBMCC+xfwQbsPPO1xt4zjifpPeNrPNXqO2yre5mlXLlCZYjmLedqrDqxiX7ibhx5n4xg4cyCzts8CICo2is7fdua7Nd8BEBEdQekPSnuSJ0dPHyX769kZHToagMMRh2nwWQNPTY7DEYfp80sfz3MdPX2UD/75gE2HNwEQHhXOrG2zOBRxyPN8B08dJDo2Oi23UkSS6tgRnnwSDh1K3GctjB/vak388w+8845beaRyZTft44nEfytYsACOHLny/RYREbnMlHYXkevOoGaDMvT5C2QrkKzdomSLZO0B9QYka4/rNC5Ze9lDicswehkvYl6KIdbGAuBtvPm3z78Uyl4IcCusfNH5C24ocoOLe3nzUK2HqFywMgCxNpacfjnx9fY959KzAEVuL0LZfGXZeHgjN355I5PvnEynCp1YtncZ9T+rz9S7p9K+bHsW7lxI52878+MdP9I4sDGhe0J59q9n+aDdB1QpWIXVB1YzOnQ0zzR6hsBcgWw5soXpW6fTtXJX8mbNy/7w/Ww8vJHaRWuTNUtWIqIjOB19mjxZ83iWy72aaMqL/GdDhkBcXPJ9sbFu/5w5EBUF69fDihVuq+qmqHHyJDRq5B4XL544qqJLF6hT58q+BhERkf/o6vstT0QknWW2D5LeXt6eFU+8vbypWaSmZ0UUPx8/7q1+L1UKVgEgp19O3mnzDo0D3aoDBbMVZNo902hXth2Dmw/GDrKeKRx2kCXmpRgOPXOIjuU7AlA2b1lm3TeLhiUaAhCYK5AP233ouX7erHnpUqELhbK5xEhMXAzRcdGepMKO4zuYsGoCxyPdCixL9iyh79S+7A/fD8C0LdNo+nlT9pzcA8A3q74h/9v5PauqjFs2jsLDC3Pw1EEAvlvzHTd+cSMnz7hCp39s/oP+v/XnTMwZABbtWsTIxSM9K7ZsPLyRWdtmee7dkdNH2Hty7yXfe63wIv/ZwoUu+ZBUVJQbDQHg6+sSDj16uEKa992XuP+PP2DYMLeax44d8PbbsGSJi2/Z4hIUDzwAH3zgkhwXWhlEREQkgygxISIi5+Tt5U2+gHz4+/gDkMMvB82Dm3tGfRTJUYT+dfsTmCsQgPL5y/NJh08om68sAPWL12der3lUKlAJgPZl23P0uaOewqRdKnRhz5N7KJO3DACtS7fmrx5/eRIr9YvX5/0275Mvaz4ASuUpRafyncjmmw1wRU9j4mLI4p0FgPWH1vPN6m88S+P+uvFXBvwxAIMb/fHZv5/R/uv2ntc3ZM4Qyn9U3tN+/I/HKTWilKf96pxX6fB1B0/74yUf8/SfTye7R2OWjvE8nr9jPjO2zvC0txzZwraj2zztyJhIYuNiL3DX5bqybJmbvnH2tmzZ+c/z84M2bdzKHxMmuMKa4eHQs6eLnzoFuXLBlCnw2GPQvDnkzeuWOAVXkPO772DDBjdCQ0REJAOp+KWIiKSQWaYoRMZEcvLMSU8iJexYGLtO7KJRoBsCv2jXIjYc2sB9Ndy30D+u/ZGV+1fySgs3EuL9Re+zYv8KxncaD7ilaCevn8y2Y9tSPNegZoNYsmcJB04dYElv9611q69acSrqFAsecN9+N/+8ORbLnJ5zAOg0sRN5/PPweefPAXj414cplL2Q596/Nvc1iuUoRq+avQD4fPnnFMtRjFalWwEwa9ssCmYr6Jmas+3oNnL55yJv1rxA8tVqMlJmeT9dk6yFvXtd4mLFCjfyomhRN4riscfcMVmzQpUqbjrI0KFQsKCbXuKl769EROTyybBVOYwxbYERgDcw1lr75lnxCsB44AZgoLV2eJLYduAkEAvEnOsFJKXEhIiIXEnmFUPkwEj8fPwA2Hl8J5ExkZ4RI/N3zCc6NtpTR2TCygkYDN2rdQfgldmvkM03G083dKMw7p10L0WyF+GtVm8BUH9sfSoXqMxnnT4DIOj9IFoEt/AkMoq+U5Sby97Mp7d8CkD+Yfm5s/KdjLx5JAC538xN7xt683brtwGoOqoq99e4nycaPIG1lo7fdOSeavfQrUo3YuNieerPp7il/C3cWPJGomOjGbN0DE2CmlCtUDWiYqOYtW0WlQtWpnjO4sTExbDj+A4KZitIdt/sJPw+kVoiRKu8XIUiI2HdusTaFStWuCVNt22DbNng+efdaiH167taFo0bu/oWWhVEREQu0fkSE+n2v4sxxhsYCbQCdgFLjDFTrLVrkxx2BBgAdD7HZVpYaw+dIyYiIpLhEpISACVylUgWS6jlkSBhidcEg5onL8SadPUWgEUPLkrWXtl3ZbIP/r/e/Ss5/XJ62iPbjyQod5Cn/WSDJ6lT1BVCtNZStWBViuQoArjCp/vC93nqc0TGRDJ++XiCcgVxY8kbORl1kv6/9+f9Nu9TrVA1jpw+QtuQtnzc/mMervMwe0/upfQHpRnbcSwP3PAAW49upeyHZfmqy1d0r9adzUc20z6kPSPajgDctJb+v/dnULNB1C9en21Ht/HuwnfpV6cfFQtUZNeJXfyw9gduq3gbJXKV4MCpA/yz6x8aBzYmT9Y8nDhzgl0ndlEqTyn8ffyJiYshNi4WX2/fq2JUyOVwRUeW+PtDzZpuS2CtW64UoFYtl6T4+2/49lu3r3hxV8vCGNi40Y28yJ79yvRXREQytfQco1cX2Gyt3WqtjQImAp2SHmCtPWCtXQJonTkREbnmXOkVXnL550qWiLihyA2e+hwAd1a5k/rF63vaLzd7mXZl2wFuJMPXt31NtyrdALdiS2ifUHrX6g1ANt9sHH/+OE80cMtR5vbPzYGnD/DADQ8ArrDp3/f/TecKnT3xzzt9TtOgpoArrDqwyUBPIdSRi0ey6cgmT02PMh+W4Y/Nf3hqchw4dYCQVSHsP+UKn244tIEnpj3B9mPbAVi6Zym3TLyFDYc3AG7aSuWPK7P2oPt+Y9K6SfgP9Wf1gdWAm4ZT7N1ibD26FXD1RZqOb+pZWnfG1hn0nNyTY5HHAFi4cyGvznmV09GnAVi1fxUTVk7wLH0bdiyMBTsXeAqnHos85rlWesnwYqpJEzxdu7qExM6dEBYGX3/tRlEkHHPbbZA7tyuw+eST8PPPWrpUREQuWXomJooBO5O0d8XvSysL/GmMWWqM6XOug4wxfYwxocaY0IMHD15iV0VERC5eZq6b4GW8KJCtANl93Tfivt6+NCzR0DPiIodfDu6rcZ9n2kqBbAUYcuMQqheuDsB7bd9LscqLHWQ9y9/WK16PI88doXlwcwCaBTfjyLNHPImVRoGNWNJ7iSfRUbtobSbeNpFSeVxx0soFKzP0xqGeQqlFcxSlbem2nsSNweDt5Y2PlxscuvvkbmZtn+WZcrJg5wIGzR7kWWp3yoYp9JjUw5OIGL98PI3GNfLcj2F/D6PEe4kjYp7961nyD8vvab8651Xqj01MCr2/6H26/9Td0/58+ef8b+b/PO2f1//MZ/9+5mnPC5uX7P6vP7Tek4QBOBxx2JNUueICA+Guu+CRRxL3DR/uEhXZssHHH0PnztC/v4tZC7/+CocPZ0h3RUTk2pNuNSaMMV2BNtbaB+PbPYC61tpHUzl2MBB+Vo2JotbaPcaYgsBfwKPW2rnne07VmBAREbn6XK01JmLiYvA23hhjOBZ5jEMRhyidpzTGGLYe3crmI5tpXbo1AIt3L2bl/pU8eMODAEzdOJUle5Z4klPjlo1j0a5FjOnoRoS8Pu91Fu5ayC93/QJA/9/6s3j3Yhb3XgxA1++7svbgWrpW6prqSInSeUqTLyAf/zz4DwAtv2xJVGwU83q5BEaLL1qQLUs2fr37VwBu/+528gfk55MOnwDQ99e+FM9ZnP81dcmQl2e9TFCuIM8ImI+XfExQriBuLnczAD+t+4niOYtTt1hdwI0oKZy9MCXzlATcUr+5/HKRyz8XcFZh1TNnYPFil6S44Qa34kfp0i5WtapbzrR5c7jxRsiT55L/vBKomKqIyLXpfDUm0nPExC4g6WTb4sCetJ5srd0T//MAMAk3NURERESuMVd6ykta+Xj5eD5c5/bPTZm8ZTztUnlKeZISAHWL1fUkJQBuLndzsg/H99e835OUAHixyYuepATAR+0/8iQlAL657RuW9HaJDTvIsvMJN8g0YWTJxNsn8m7rdz3HD6g7gCfrP+lp317xdjqVT5whWzZvWUrmLulpnzhzgvCocE97xrYZhO5J/PLmzflv8uO6Hz3tflP7MW7ZOE+7/dfteW/Re552xZEVGTJ3iKft95ofL818CYA43ywELb2HD6LnAxBVtBD9XqjGiv5doXBh7LhxcPvtLP9yGAARG9cS8lInli77DYDwqHBGLRnF+kPrATgVdYqpG6ey56T7tTEyJpKV+1dyPPI44Ka8HIs8RkxcDCIikjmkZ2JiCVDWGFPSGOMLdAOmpOVEY0w2Y0yOhMdAa2B1uvVURERE0o2+3U7Jx8uHgCwBnnbxnMWTxWsXre1Z1hagU4VOdKnYxdN+pO4jnvogAG/c9AbPNX7O0/76tq9586bExdD+vv9vRnUY5WlvfWwro25ObC98YGGyP6dJd06iX51+nvbI9iPpWqkr4EZLvNjkRZoFNwMgzsZxY8kbCcrlCq/GeBs2VMjPuoduhT//5PjebXR9ohhrb3DfV0VP+pHur02h1g03Q8WK2IceYs5b/ViyyS2ju/vkbjp804HZ22cDsPnIZqp/Up0/t/zp6U+et/IwdeNUwI1myfFGDqZvne5pV/64Mot3u0TQ0j1LaTuhrWdqzIp9K+g9pbennsnag2t5dc6r7A939U62HNnCuGXjPImQ3Sd289eWvzz1SI6cPsL6Q+s9iZEzMWcIjwonPVe6u1iDZw/O6C6IiFyUdEtMWGtjgP7ANGAd8J21do0xpq8xpi+AMaawMWYX8CTwP2PMLmNMTqAQMN8YswJYDEy11v6RXn0VERERyWhXcmSJj5dPshVlSuYpSeHshT3t5sHNqZC/gqfds0ZP6hWvB7hCqoObD+amUjd5rjW+03g6VXAjOAKyBDDj3hmeQqu5cxbk+3d3cXcTl+jI9dQL8M8/8NZbUKoU2X/8hW8me3Nr2VsACJq3is35XqVt1qoAlMhZgq6VunLHD3dQ5GnD7PFQ6CR0/rYzg2cPJn9Afnrf0JsSOV3iI6tPVirmr+ipjxIVG8XRyKOexMG+8H1M3TTVM6Jk9YHVDJo9iMOnXU2MBTsX8MCUBzgY4WqX/bH5D1pPaM2hCLdQ3Lerv6XiyIqe9iehn5DjjRyeGiDvL3qf3G/m5lTUKQBGLRlFlY+reAqrfr78c9qFtPP057s13/Hwrw977vVvm37jjXlveNpzw+by1YqvPO3l+5Yzc9tMT3vb0W2e0SbgCrVmeCFVEZGLlG41JjKCakyIiIiIXGNiYmDDBqhc2bU7dICpbjQEpUu7GhVt2sAdd0C/fsR+Mgrvh/vByJGXrQuxcbF4GS+MMURER3Dw1EGK5ihKFu8sHDh1gE2HN1G7aG38fPzYfGQzoXtC6VKhC34+fizds5SZ22byWP3H8PX2ZcbWGUzZMIV32ryDj5cP36/5nolrJvJD1x8wxjA6dDRfrfyK+fe7qS+vzX2Nr1Z+xYb+bgWax35/jJBVIRx61iU+ek/pzdRNU9nzlJva0nNyT2Ztn0XY42EA3PXjXSzds5SNj24E4LbvbuOndT956rp0ntiZfeH7PMsP95jUg4joCH68w03leWTqI3gZLz5s/yEAL854kWxZsjGw6UAAhi8YTh7/PJ76JJ/9+xn5A/J7ElE/r/+ZAtkK0LBEQwD+3vE3+QLyeRJbGw9vJJdfLgplLwS4aUb+Pv74evtetj+/S6V6JSJX1vlqTCgxISIiIiJXj9hYWLkSZs+GOXNg7lyoVQu+/BJKlYLISMiSBf7+2y1XmgklLS564swJTkWd8qyIs/3Ydo5FHqNG4RoAhO4J5ejpo/y98+9UR0p0Lt+Zm0rdxCN13aoqb//9NpExkbzUzNUIeeKPJ/AyXrzT5h0Auv3QjZx+OT01U5qOb0qxnMX45rZvAFdvpGrBqnzX9TsASo0oRaPARnzVxY3qKP5ucdqUbsNnndyqM4WGF+LWCrd6phLlfjM391W/jxHtRgBQ4O0CPFz7YV5t8SoAFT6qwMO1H+ax+o8RZ+No/nlzet/Qmx7VexAVG8W9k+6le9XudCzfkdPRp3lxxovcWvFWmgQ14VTUKT5e8jGtS7emeuHqnIo6xaT1k2hQvAGl85YmIjqChTsXUqVgFQplL4R5xbCm3xpK5CxBDr8cxMTFEB4VTnbf7J4VfUQJHLl8zpeYwFqbabZatWpZEREREclEYmOtPXjQ2ocfttbX11q3IKnbgoKsvfdea2fMyOheXlUYTLpd+3T0aRsRFeFpbz+63e45scfTXrhzoV13cJ2n/dPan+ziXYs97Q//+dDO3DrT0372z2ftLxt+sdZaGxcXZ+/+8W773ervrLXWnok5Y1t83sJ+ufxLa621J8+ctOU+LGfHLh1rrbX20KlDNsfrOezHiz+21lq7+8Ruy2Ds6NDR1lprtx7ZahmM/XzZ59Zaa9cfXG8ZjA1ZGWKtdfeJwdjv13xvrbU2dHeoZTB2yvopntfiN8TP/rXlL087+P1gu3DnQmuttYt2LrINxjawK/ettNZau3jXYttlYhe7+fBma621S/cstf1+7Wd3Hd9lrbV25b6VdsicIfbQqUOe/ny69FN7IvKEtdbabUe32V82/GJPR5+21lq79+Reu2T3EhsdG22ttfbY6WN25/GdNjYu1lprbVRMlI2KibJxcXFp+JO7dOn5fpLrCxBqz/FZPj2LX4qIiIiI/DdeXhAdDePHQ1RU4v4sWaBKFfjtN1izxu3bswd69ICxY2HzZpe+kMvK38efrFmyetpBuYM8ozkA6hevn6w+SZeKXahTLHFkS/+6/WlRsoWn/Vart+hQrgPg6peE3BpC18qu0Kqvty8z75tJj+o9AMjum50N/Td4ppXkC8jHiRdO8HAdV6OjSPYihL8QTs8aPQFXVHbTo5voXKEzACVylaBn9Z50/6k75hXj6UPX77syePZgiuUsxntt3qNyQTetqHD2wgyoN8BT2DWnX06aBjUlj79b9tbLeCUbXREeFc7mI5uJjnP1RHYe38l3a7/z1DNZtm8ZL816yVOPZN6OefT+pTfHz7hCq79v+p2O33T0FF6duHoidT6t4zl/9NLRlHivBJExke7e/f0Wvq/5EmtjARg6dyj5h+X31C8ZvmA4tcbU8rzOjxZ/xC3f3OJpj/13LA/98pCn/fWqr3llduKomykbpjA6dLSnPWPrDCatm+RpL9m9hPk75nvaGw5tSFbvZH/4fg6eOuhpn4k5k6lX01HR2f9GUzlERERE5OrWrx989lnyxISvLzz4IHz0kUtc+PrC/Plw++2w362wQdGirkbFK69A2bIZ0/cMoKH3aWNeMZ5aHFeCtZZYG4u38fbUMzly+giFsxfGx8uHg6cOEnY8jOqFqpPFOwvbjm5jzcE1tC3TFh8vH1buX8ni3YvpVaMX3l7ezN8xn9nbZzOwyUCMMfy68Vf+2vKXZ5rMVyu+4s+tf3qm2XzwzwdM2zKNqXe7Gi6DZg1i+rbp/H3/34CrNzInbA6r+61m8OzBqU4NKhBQgAPPHACg4zcd2XNyD0v7LAWg9VetORl1koUPLASgxRctiLNxzOnpVtxp+FlDsvtm588eboWdZp83o0j2Iky8fSIAHb7uQMncJT31Tu7+8W7K5yvPoOauMHDfX/tStWBVz7Sk56c/T7VC1bi76t0AvDX/LaoVqka7su0A+HTpp1QpWIUGJRoA8NO6nyifr7wn8TRn+xxK5ilJYK5ArLWsP7SeQtkLkTdrXqy1HDl9hOy+2ZMVCj6fK/1+uhZpKoeIiIiIXLtq1Eg+hSNhq1Ej5bFxcdauW2ftqFHWdutmbeHC1m7f7mITJlh7550utnatO1auW5qicH4xsTH2dPRpz306eOqgZ1qKtdZuPLTRrtq/ytNetHORnRc2z9OeunGq/XXDr572F8u/sN+s+sbTfvvvtz3Tbqy19ulpT9t3F7zraff4qYcdMmeIp33TlzfZgTMGetqVRlayT017ytPO/WZuO+C3AZ62/2v+9pk/n/G0vV/x9pwfExtjGYx9ZfYr1lprI6IiLIOxb85701rrps0wGPvOgnestdYeCD9gvV7xsqOWjLLWWrvnxB5b6O1CnmlBO4/vtAzGMy0p7FiYbflFSztr2yxrrZvydNcPd9klu5d42gN+G2DXHFjjOX7InCF265Gt1lprdx3fZUeHjrZ7T+611rppPT+t/ckeiThir2WcZyqHqrqIiIiIyNVt2bK0H2sMVKjgtr59XQojvpAkR4+6URXffuvaBQtCixYQEgLe3pe/33JVu5JL9F6LvL288fZK/HuRPyB/snjZfMlHISUsKZygfdn2ydr3Vr83Wfvphk8na7/d+u1k7S+7fJms/VePv5K11/Rbk6x95NkjWBJHLOx4fEey0Q7L+y73vAZjDDPunUFw7mDALXv8zW3fUK1QNQD8fPwY0XYETQKbAG4K04uNX6Rm4ZqAm2bUqXwnpm+dTvefunueo+M3HQEYUHcAkTGRxNk4AE5FnyJ0T6hnGs+BUwf4YsUXdCzfkUoFKrH16FZemvUSjUo0omSekqw5uIaHfn2IygUqUzh7YUL3hHLrd7ey+MHFyaZGZSaayiEiIiIi1w9rYcsWt+LHnDlw+HDi8qQ9ekBEBDRv7rbKlV2NC5HrmKYGpc1/mcphrSUmLgZvL2+8jBdnYs5wKOIQ+QPy4+fjx4kzJ9h6dCvl8pUjIEvAZe75laPlQkVERERELqR/f/j1VwgLc+18+eDhh2HIENdOOvpCRCQJ1Zi4sPMlJpQCFhEREREBV0hz+3a3ffEF3HKLm+4BcOoUFC4MnTrBu+/Cv/9CbGxG9lZEriKaGvTfaMSEiIiIiMiF7N8P//sfzJ7tliIFyJULxo2DW291K4MYAz4q4SYikprzjZjQv5wiIiIiIhdSqBB8+ql7vHt3Yo2KhGVIp0yBXr2gcWNXn6JZM7jhBsiSJcO6LCJyrdCICRERERGR/2rpUhg71iUr1q1z+7Jnhw0boGhROHQIcuYEX9+M7aeISAbRiAkRERERkfRUq5bbwE37mDsXliyBIkXcviefhB9/hIYNE0dU1K2rRIWICBoxISIiIiKS/qZNc8uSzp4Nq1a5fTVqwLJl7vHatVCqFPj7Z1QPRUTSlUZMiIiIiIhkpDZt3AZw+LAbUREd7dpxca42RUQE1K+fOKKifn3ImjXDuiwicqVouVARERERkSspXz7o0gXuuMO14+Jg/Hjo1w9OnoQhQ+DGG2HwYBc/cwZmzHCJCxGRTEgjJkREREREMpKPD3Tq5DaAY8dg/nw3tQPgn3/gppvcCh9160LTpm5r0gSyZUt+rb17oVs3+PZbKFz4ir4MEZFLpRETIiIiIiJXk9y5oUMHqFTJtW+4wdWneOIJiI2Ft9+Gdu1g+XIXX73aLVd69KgbbTF/vvspInKNUPFLEREREZFryalTsHChGzHh5wfPPuuSFQDGgLVutY8tW6B48Yztq4hIvPMVv9SICRERERGRa0m2bG5qh5+fa7/6KsyZA3XqJB4TFQWvv+4ef/EFfPklbN/ukhYiIlcZJSZERERERK5l/v5QtqxbhjRp4uHzz2HfPhg5Eu67D0qWhKAg6N4dvvsuw7orInI2Fb8UEREREbnWDRniVvdIKjbW7V+0yNWhmDvXbTNmuKked9zhEhm9ekHNmq6gZrVq4O2dMa9BRK5b6TpiwhjT1hizwRiz2RjzfCrxCsaYhcaYM8aYpy/mXBERERERibdwoZu+kVRUFCxYAF5eLuHQv78bKbF3L3z0kTvm4EE3DeTxx12Rzbx54eabXfJCROQKSbcRE8YYb2Ak0ArYBSwxxkyx1q5NctgRYADQ+RLOFRERERERgGXL0n6sMYnLjBYsCNu2wY4dMG9e4qiKEydcPDQUnnsucYnSevUgIODy919ErmvpOZWjLrDZWrsVwBgzEegEeJIL1toDwAFjzM0Xe66IiIiIiFwmgYGu9kT37q6dUKvixAm3DOkrr7h9WbK4IpsTJriaFda6RIeIyH+QnlM5igE7k7R3xe+7rOcaY/oYY0KNMaEHDx68pI6KiIiIiEgSCcmGG2+Ef/+FI0dg6lR48kk3NaRQIRd/+WU3BeTxx+HHH+HAgQzrsohcu9JzxERqqdO0rk+U5nOttWOAMQC1a9fW+kciIiIiIpdb7tzQvr3bkipTBvLkgTFjYMQIt69ePVfzwhg4eRJy5Lji3RWRa0t6JiZ2ASWStIsDe67AuSIiIiIiciXcd5/boqJg6VJXp+L06cQRFw0bQnh4Yo2KJk3c0qaa/iEiSaRnYmIJUNYYUxLYDXQD7r4C54qIiIiIyJXk6wsNGrgtgbXw0EMwezb8/jt8+aXb36cPjB7t4mvWQKVKbnqIiFy30i0xYa2NMcb0B6YB3sA4a+0aY0zf+PgnxpjCQCiQE4gzxjwOVLLWnkjt3PTqq4iIiIiIXGbGuCVK+/d3SYgNG9yIitKlXXz7dqha1U0TadIkcUTFDTe4Ipsict0w1maesgy1a9e2oaGhGd0NERERERG5kOPHYcqUxCVKN250+ydOhDvvhN27YfNmqFsXsmbN2L6KyH9mjFlqra2dWiw9p3KIiIiIiIikLlcu6NHDbQD79rkRFS1auPYPP7jVPnx9XXIiYVTFjTe6fSKSaWjEhIiIiIiIXH2OHYP58xNHVISGuikhx465lT7+/BMiIqBxY8ifP6N7KyIXoBETIiIiIiJybcmdGzp0cBu41T1WrUpcfvSdd1xyAqByZTeaolUr6NIlQ7orIpdO5W9FREREROTqlz178lU/pkxxIypefx1KlIAJE+DjjxPjgwbB+PGwZYsbaZHU3r3QrJmbPiIiGU5TOURERERE5NoXEwOHD0OhQnDmDAQGwoEDLla0qBtR0asXtG4N/fq5JUv79oWRIzO23yLXifNN5dCICRERERERufb5+LikBICfnxsVsWYNjBrlRkfMmwfr17v948ZBXBx8+in88YdLaohIhlGNCRERERERyXy8vKBSJbf17eumc8TGwoABLikBEB0N7dq5aSKNGsHw4VClSsb2W+Q6pBETIiIiIiKS+RkDBw+6uhPR0Yn7fX3h9tth926XoAA3oqJ5c3j5ZfjrL1d4U0TSjUZMiIiIiIjI9WHIkMTREkkFBLgVPxL4+sKpUzB0qDve2xvq1HHLlmbJ4qZ++OijlMjlor9NIiIiIiJyfVi4EKKiku+LioIFC5Lvu+cet5086WJz57oRFVmyuHinTrBrlyuo2bQpNGkChQtfmdcgkglpVQ4REREREZGL8d578PvvLmlx6pTbd/fdEBLiHu/d6xIVxmRcH0WuMudblUMjJkRERERERC7GE0+4LToa/v3XrfhRtKiLnTrlliotUsSNpEgYVVGhghIVIuegxISIiIiIiMilyJIF6tVzW4K4OHj/fTf9Y+ZM+Pprt//99+Gxx+DECdiyBapVc7UrRESJCRERERERkcsmRw545BG3WQubN8OcOW6VD4Dp0+G22yBnTmjcOHFURZ06iTUsRK4zSkyIiIiIiIikB2OgbFm3JWjSxNWimDvXbb/95vZv2ADlysGyZXD0KNSv71YLEbkOKDEhIiIiIiJypRQo4Apl3n23ax886IpoJiQvRoyAL75woydq106sUdGunWpUSKalVTlERERERESuFsePw99/u9EU8+bBkiVQqhSsX+/in34KefO6kRcFC2ZsX0UuwvlW5VBiQkRERERE5GoVEQE7d0L58q5mRWAg7NrlYhUquNEUt90GrVtnbD9FLuB8iQmvK90ZERERERERSaOAAJeUADeVY8sWWLgQ3noLSpeGb7+FGTNcPDISevWCsWNh40aXyBC5BmjEhIiIiIiIyLUqNhZOn4bs2WHdOmjWzNWtAChUyI2oePZZV69CJAOdb8SEil+KiIiIiIhcq7y9XVICoGJF2L/frfAxb56rUzFnDpw54+J//QUffOCSFc2aQc2aWqJUrgrpOpXDGNPWGLPBGLPZGPN8KnFjjPkgPr7SGHNDkth2Y8wqY8xyY4yGQYiIiIiIiFyIMa72RO/e8NVXsGMHNGzoYseOuSkezz4L9epB7tzQqhUcOZL6tfbudQmMffuuVO/lOpVuIyaMMd7ASKAVsAtYYoyZYq1dm+SwdkDZ+K0eMCr+Z4IW1tpD6dVHERERERGRTC9hmdGuXd22b1/iqh8rV7oEBcCjj8Ly5YlLlH7/PcyfD0OGwMiRGdV7uQ6k54iJusBma+1Wa20UMBHodNYxnYAvrbMIyG2MKZKOfRIREREREbm+FS4Md9wBH37opnp4xX8sLFUKoqNdYc22beGzzyAuDsaPd8mMhCkhIpdZeiYmigE7k7R3xe9L6zEW+NMYs9QY0yfdeikiIiIiIiLwxBOwaJGb8tGxo6tfAa7A5quvusRFrVrw5JMwZQocPZqh3ZXMIz0TEyaVfWcvAXK+YxpZa2/ATfd4xBjTNNUnMaaPMSbUGBN6MKH6rIiIiIiIiFyakyddoczYWNeOioLPP4e77oJcuWDUKOjUCfLlgzffdMfExrrzRC5BeiYmdgElkrSLA3vSeoy1NuHnAWASbmpICtbaMdba2tba2gUKFLhMXRcREREREblODRnipnAklbAs6cyZbkTF3LnwyivQuLGLL10KefO69qBBrn5FVNQV77pcm9IzMbEEKGuMKWmM8QW6AVPOOmYKcG/86hz1gePW2r3GmGzGmBwAxphsQGtgdTr2VURERERERAAWLkyZVIiKggUL3GM/P2jSBF56KTExUaCAW+0jOhpee80Vz8ybF5Ytc/GIiJTJDpF46bYqh7U2xhjTH5gGeAPjrLVrjDF94+OfAL8B7YHNQATQK/70QsAk46rH+gBfW2v/SK++ioiIiIiISLyEZMLFKFkShg5127FjMHs2zJjhli4Ft//TT+HGG6FlS7jpJneOCGCsPbvsw7Wrdu3aNjQ0NKO7ISIiIiIiIkn9/jt88w1Mnw5797p91au7JIgxbsUPP7+M7aOkK2PMUmtt7dRi6TZiQkRERERERASAdu3cZi2sX+8SFCdOuKQE/2/v/mP9qus7jj9fFJFRBoW2/FgRCogDsoHCBfmhCEtDhGE7ska66TCyiIZIgpEMAgkSG0hMXALoAJmYpYZJVMZWBAYTCEZ+X7ADOkG6rgs/qi3KStRCC/3sj/NteimXcr732+/3nPu9z0dy0vs953zO/Xzzyufeft/3fD4HOOaY6ikg8+ZVd1R89KMwfXqzfdbA9HONCUmSJEmStkjgsMPg/PPh0kurfaXAokUwYwZcc01VwNhjj2pxzc3eeKOR7mowLExIkiRJkpqTwCWXwH33wSuvwF13wZe+BB/6UHV85cqqUPGJT8DVV8Py5VUxQ0PDqRySJEmSpHbYZRc49dRqG+vTn66mf/zoR9XrffaBW26BE06onvaxg39zn8xMT5IkSZLUXgcdBNddB889B6tWwY03Vk/3OPjg6vg3vgEf+ACcd15VrPjNbxrtrrpnYUKSJEmSNDkccACccw7cdBPsvXe178ADq8LEd78LCxfCrFlw3HFb1qVw2kfrOZVDkiRJkjR5zZ9fbRs3wqOPVlM+fvlL2LHzcfeMM2D9+i1P/Dj66C3H1AreMSFJkiRJmvze8x448UT4yleqqR+bffCD1fSOSy+t7qSYNQsuv7ypXmocFiYkSZIkScPriitg2TJYswZuvhk++UmYM6c6tm5dNT3kM5+BJUvgxRcb7epU5f0rkiRJkqThN3s2nHVWtW22bh0cfzzccUdVmAA49NDqjouTT26km1ORd0xIkiRJkqam/fev7qL41a/gZz+Dr38d5s7dsrDm978PH/5wNQ3kvvvgtdfefo3Vq+FjH6vWtdCEWJiQJEmSJE1tO+xQrUXx5S/DnXfCYYdV+9/73mqhzK99rXpE6R57wKmnwu9+t6Xt4sXw059W/2pCLExIkiRJkjSeBQvggQeqxTNvuw0+//lqkc3p06vjZ58N3/oWbNoEN95Y3T2hrlmYkCRJkiRpW3bbrXrs6FVXwe23b9n/5JNVUQLg9dfhkEPgq19tpIuTmYUJSZIkSZK6tXo1PPvsW/e99hq8+mr19caN1foUF1xQ3W2xeb/exsKEJEmSJEndWrx4y90Sm02bBuvXV1+//DLsvns11WP+fNhzTzjxRLjnnsH3teUsTEiSJEmS1K2HHoING966b8MGePDB6ut994W774ZXXqmKERddBG++WS2mCXD//XDaadWTQJYte3uRYwpJKaXpPmw3IyMjZXR0tOluSJIkSZK0bUuXwsUXw89/Xr2eNat68se118LMmc32rQ+SPF5KGRnv2I6D7owkSZIkSVPe/PnV9uKL1R0VP/4xPPEEzJhRHb/iCli1CubNqwoWs2c32du+ciqHJEmSJElNmTOneuzokiXw9NPVOhUAa9fCD34AixbBXnvBkUfClVc229c+sTAhSZIkSVLbXHVVtYDmI49Ud0/MnAkrVzbdq75wjQlJkiRJkiaDUiBpuhcTsq01Jvp6x0SSjyd5NsmKJBePczxJrukcfzLJUXXbSpIkSZI0pUzSosS76VthIsk04B+A04DDgb9KcvhWp50GHNLZzgWu66KtJEmSJEma5Pp5x8SxwIpSyspSygbgZmDBVucsAJaUysPAjCT71mwrSZIkSZImuX4WJuYAz495/UJnX51z6rSVJEmSJEmTXD8LE+NNftl6pc13OqdO2+oCyblJRpOMrl27tssuSpIkSZKkJvWzMPEC8L4xr/cDXqp5Tp22AJRSbiiljJRSRmbPnt1zpyVJkiRJ0uD0szDxGHBIkgOT7AQsApZudc5S4OzO0zmOA9aVUlbXbCtJkiRJkia5Hft14VLKG0m+CNwFTAO+U0pZnuQLnePXA3cApwMrgN8Dn91W2371VZIkSZIkNSOljLt0w6Q0MjJSRkdHm+6GJEmSJEkaI8njpZSR8Y71cyqHJEmSJEnSNlmYkCRJkiRJjRmqqRxJ1gL/24dLzwJe7sN11RwzHT5mOnzMdPiY6fAx0+FjpsPHTIfPZM30gFLKuI/SHKrCRL8kGX2nuTCanMx0+Jjp8DHT4WOmw8dMh4+ZDh8zHT7DmKlTOSRJkiRJUmMsTEiSJEmSpMZYmKjnhqY7oO3OTIePmQ4fMx0+Zjp8zHT4mOnwMdPhM3SZusaEJEmSJElqjHdMSJIkSZKkxkzpwkSSjyd5NsmKJBePczxJrukcfzLJUXXbqhk9ZroqyVNJliUZHWzP9U5qZHpokoeSvJ7kwm7aqhk9Zuo4bakauX6q83P3ySQPJjmybls1o8dMHastVCPTBZ08lyUZTfKRum3VjB4zdZy2UN2xluSYJG8mWdht21YqpUzJDZgG/DdwELAT8J/A4VudczpwJxDgOOCRum3dJlemnWOrgFlNvw+3rjPdCzgGuAK4sJu2bpMr084xx2kLt5q5ngDs0fn6NH+ntnvrJdPOa8dqy7aame7KlqneRwDP1G3rNrky7bx2nLZsqzvWOufdC9wBLOymbVu3qXzHxLHAilLKylLKBuBmYMFW5ywAlpTKw8CMJPvWbKvB6yVTtdO7ZlpKWVNKeQzY2G1bNaKXTNVedXJ9sJTySuflw8B+dduqEb1kqnaqk+lvS+cTDjAdKHXbqhG9ZKp2qjvWzgduAdZMoG0rTeXCxBzg+TGvX+jsq3NOnbYavF4yheoH9d1JHk9ybt96qW70MtYcp+3Uay6O03bqNte/pbp7bSJtNRi9ZAqO1TaqlWmSM5M8A9wOnNNNWw1cL5mC47SN3jXTJHOAM4Hru23bZjs23YEGZZx9W1cQ3+mcOm01eL1kCnBiKeWlJHsB/5HkmVLKT7ZrD9WtXsaa47Sdes3FcdpOtXNNcgrVh9jN85wdq+3US6bgWG2jWpmWUm4Fbk1yErAYmFe3rQaul0zBcdpGdTK9CriolPJm8pbTJ/U4ncp3TLwAvG/M6/2Al2qeU6etBq+XTCmlbP53DXAr1e1QalYvY81x2k495eI4ba1auSY5Avg2sKCU8utu2mrgesnUsdpOXY21zgfUg5PM6ratBqaXTB2n7VQn0xHg5iSrgIXAtUn+ombb1prKhYnHgEOSHJhkJ2ARsHSrc5YCZ6dyHLCulLK6ZlsN3oQzTTI9yR8CJJkOnAo8PcjOa1y9jDXHaTtNOBfHaau9a65J9gf+BfibUsovummrRkw4U8dqa9XJ9P3p/Ak21ZPLdgJ+XaetGjHhTB2nrfWumZZSDiylzC2lzAV+CJxXSvnXOm3bbMpO5SilvJHki8BdVCuYfqeUsjzJFzrHr6da5fR0YAXwe+Cz22rbwNvQGL1kCuxNdYsbVOPin0sp/z7gt6Ct1Mk0yT7AKLAbsCnJBVQrEL/qOG2fXjIFZuE4baWaP38vA2ZS/WUH4I1Syoi/U9upl0zxd2or1cz0L6n+gLMRWA+c1Vk40XHaQr1kmsRx2kI1M+2q7SD6vT1sfnSMJEmSJEnSwE3lqRySJEmSJKlhFiYkSZIkSVJjLExIkiRJkqTGWJiQJEmSJEmNsTAhSZIkSZIaY2FCkiRtV0l+u52uc3mSC2uc909JFm6P7ylJkgbPwoQkSZIkSWqMhQlJktQXSXZNck+SJ5I8lWRBZ//cJM8k+XaSp5PclGRekgeSPJfk2DGXOTLJvZ39n+u0T5JvJvmvJLcDe435npcleaxz3RuSZLDvWpIkdcvChCRJ6pfXgDNLKUcBpwB/P6ZQ8H7gauAI4FDgr4GPABcCl4y5xhHAnwPHA5cl+SPgTOCPgT8FPgecMOb8b5ZSjiml/AnwB8AZfXpvkiRpO9mx6Q5IkqShFeDKJCcBm4A5wN6dY/9TSnkKIMly4J5SSknyFDB3zDX+rZSyHlif5D7gWOAk4HullDeBl5LcO+b8U5L8HbALsCewHLitb+9QkiT1zMKEJEnql08Bs4GjSykbk6wCdu4ce33MeZvGvN7EW/9/Ura6ZnmH/STZGbgWGCmlPJ/k8jHfT5IktZRTOSRJUr/sDqzpFCVOAQ6YwDUWJNk5yUzgZOAx4CfAoiTTkuxLNU0EthQhXk6yK+CTOiRJmgS8Y0KSJPXLTcBtSUaBZcAzE7jGo8DtwP7A4lLKS0luBf4MeAr4BXA/QCnl/5L8Y2f/KqoihiRJarmU8rY7ISVJkiRJkgbCqRySJEmSJKkxFiYkSZIkSVJjLExIkiRJkqTGWJiQJEmSJEmNsTAhSZIkSZIaY2FCkiRJkiQ1xsKEJEmSJElqjIUJSZIkSZLUmP8H+6pSHXRTKu8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.linear_model import Ridge\n", + "\n", + "scale_X = StandardScaler().fit(X).transform(X)\n", + "ols = LinearRegression()\n", + "ols.fit(scale_X,Y)\n", + "ols_coef = ols.coef_[3]\n", + "lamdas = np.linspace(0.01,0.4, 100)\n", + "\n", + "\n", + "coef_ols = np.repeat(ols_coef,100)\n", + "###############################################\n", + "\n", + "lasso_bath_coef = []\n", + "lasso_coefs=[]\n", + "for a in lamdas:\n", + " lasso.set_params(alpha=a,normalize = False)\n", + " lasso.fit(scale_X, Y)\n", + " lasso_bath_coef.append(lasso.coef_[3])\n", + " lasso_coefs.append(lasso.coef_)\n", + "################################################# \n", + "\n", + "ridge_bath_coef = []\n", + "for a in lamdas:\n", + " ridge = Ridge(alpha=a,normalize = True)\n", + " ridge.fit(scale_X, Y)\n", + " ridge_bath_coef.append(ridge.coef_[3])\n", + "####################################################\n", + "\n", + "poslasso_coef = [ ]\n", + "for a in range(100):\n", + " scale_X = StandardScaler().fit(X.iloc[:, (lasso_coefs[a] != 0)]).transform(X.iloc[:, (lasso_coefs[a] != 0)])\n", + " ols = LinearRegression()\n", + " ols.fit(scale_X,Y) \n", + " post_coef = ols.coef_[X.iloc[:, (lasso_coefs[a] != 0)].columns.get_loc('BATHS')] \n", + " poslasso_coef.append(post_coef ) \n", + " \n", + " \n", + "#################################################\n", + "plt.figure(figsize=(18,5))\n", + "plt.plot(lamdas, ridge_bath_coef, label = 'Ridge', color = 'g', marker='+', linestyle = ':',markevery=8)\n", + "plt.plot(lamdas, lasso_bath_coef, label = 'Lasso', color = 'r', marker = '^',linestyle = 'dashed',markevery=8)\n", + "plt.plot(lamdas, coef_ols, label = 'OLS', color = 'b',marker = 'x',linestyle = 'dashed',markevery=8)\n", + "plt.plot(lamdas, poslasso_coef, label = 'postlasso',color='black',marker = 'o',linestyle = 'dashed',markevery=8 )\n", + "plt.legend()\n", + "plt.title(\"Coefficient estimate on Baths\")\n", + "plt.ylabel('Coef')\n", + "plt.xlabel('lambda')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The OLS coefficients are not penalized, so they remain constant. Ridge estimates decrease monotonically as $\\lambda$ grows. Also, for this dataset, Lasso estimates first increase and then decrease. Meanwhile, the post-lasso coefficient estimates seem to behave somewhat erratically with $lambda$. To understand this behavior, let's see what happens to the magnitude of other selected variables that are correlated with `BATHS`. " + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "scale_X = StandardScaler().fit(X).transform(X)\n", + "UNITSF_coef = []\n", + "BEDRMS_coef = []\n", + "DINING_coef = []\n", + "for a in lamdas:\n", + " lasso.set_params(alpha=a,normalize = False)\n", + " lasso.fit(scale_X, Y)\n", + " UNITSF_coef.append(lasso.coef_[1])\n", + " BEDRMS_coef.append(lasso.coef_[4])\n", + " DINING_coef.append(lasso.coef_[5])" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'lambda')" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCYAAAE9CAYAAADXgmPAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABpgUlEQVR4nO3dd3RUVdvG4d9OTwiE3nvvBAxFihRRqhRBwIaAyIsdFBUbop+IBQWxgqKIKKAIAtJFkCIt9N6r9F4Cqfv74wyIiBgg4WQm97XWLLJPmbmTcyaaZ3Yx1lpERERERERERNzg53YAEREREREREUm/VJgQEREREREREdeoMCEiIiIiIiIirlFhQkRERERERERco8KEiIiIiIiIiLhGhQkRERERERERcU2A2wFSUvbs2W3hwoXdjiEiIiIiIiIil1i2bNkRa22OK+3zqcJE4cKFiY6OdjuGiIiIiIiIiFzCGLPr3/ZpKIeIiIiIiIiIuEaFCRERERERERFxjQoTIiIiIiIiIuIan5pjQkRERERERCQlxMfHs3fvXs6fP+92FK8SEhJC/vz5CQwMTPY5KkyIiIiIiIiIXGbv3r1kzJiRwoULY4xxO45XsNZy9OhR9u7dS5EiRZJ9noZyiIiIiIiIiFzm/PnzZMuWTUWJa2CMIVu2bNfcy0SFCREREREREZErUFHi2l3Pz0yFCREREREREZE0aOfOnZQvX/5v2/r27cuAAQPo1KkT+fLlIzY2FoAjR45QuHDhv503ffp0IiMjiYyMJDw8nFKlShEZGUnHjh2JiYnh/vvvp0KFCpQvX57atWtz5swZAPz9/S+eFxkZyc6dO1P1+9QcEyIiIiIiIiJeyN/fn6+++opHH330ivsbNWpEo0aNAKhXrx4DBgwgKioKgP79+5MrVy7WrFkDwKZNmy5OWBkaGsrKlStT/xvwUI8Jt23fDvHxbqcQERERERERL9OjRw8GDhxIQkLCNZ+7f/9+8uXLd7FdqlQpgoODUzJesqkw4SZroXlzKFIE+veHo0fdTiQiIiIiIiJeomDBgtSuXZtvv/32ms/t0qUL77zzDrfeeiuvvPIKW7Zsubjv3LlzF4dxtG7dOiUjX5GGcrhtwAAYNAheegneeAMefBCefRZKlXI7mYiIiIiIiOD0TEjpoQ2RkZEMGjToqsf820SSl25/6aWXaNGiBc2aNbvm19++fTszZszg119/pWrVqixcuJAyZcrc9KEcKky4yRho2tR5rF0LgwfDt99C/fpOYSI2FgIDwU8dW0RERERERNKbbNmycfz48b9tO3bsGEWKFLnYLl68OJGRkfzwww/X/Pzh4eHcfffd3H333fj5+TFlyhTKlClzw7mvlQoTaUX58jB0KLz1FkREONs++AC+/hqefNLpSZE5s6sRRURERERE0qP/6tmQWsLDw8mTJw+zZs3i9ttv59ixY0ybNo2nn36a2bNnXzzu5ZdfvuYeEwsWLKBs2bJkyZKFuLg41q9fT7169VL4O0gefRSf1mTP7vSSAKhQAbJlg6eegjx5nOLE3Lnu5hMREREREZGbZsSIEbz55ptERkbSoEEDXnvtNYoVK/a3Y8qVK0eVKlWu6Xm3bdtG3bp1qVChApUrVyYqKoo2bdqkZPRkM9ZaV144NURFRdno6Gi3Y6S8Zctg2DD4/nuoXRt++cXZfuwYZM3qbjYREREREREftGHDBleGNfiCK/3sjDHLrLVRVzpePSa8wS23wKefwr598NlnzrZduyB3brjrLvj5Zy05KiIiIiIiIl5JhQlvEhYGBQo4X4eEQK9eTm+K1q2d7Q895BQsRERERERERLyEChPeKlcuZ6LM3bth4kSoUwemTXMKFgCffw7NmjnH/P47nDvnbl4RERERERGRK9CqHN4uIMAZznHXXWCtswQpOF/v2AFTpjjtwECoUQPmzNHyoyIiIiIiIpJm6C9UX3KhKAHw6KOwfj0cOQKTJsGzz0K5cn8VJT75BNaudSeniIiIiIiIiId6TPi6bNmgeXPnccHx4/DCC3D2LNx+O/ToAU2bqieFiIiIiIiI3HT6SzQ9ypLFmSSzf3/YuNEZBlKqFCxe7HYyERERERER8fD39ycyMpJKlSpRpUoV/vjjDwB27txJaGgokZGRFx8jRowAoHDhwlSoUIEKFSpQtmxZXnnlFWJjY/9xXtmyZenYsSPxnhUe58yZgzGGYcOGXXz9FStWYIxhwIABACxatIjq1asTGRlJmTJl6Nu3b4p8nypMpFfZskHv3s48FKNHQ968ULiws2/LFjhxws10IiIiIiIi6V5oaCgrV65k1apV9O/fnxdffPHivmLFirFy5cqLj44dO17cN3v2bNasWcOSJUvYvn073bp1+8d5a9asYe/evfzwww8X91WoUIExY8ZcbI8ePZpKlSpdbD/00EMMHTqUlStXsnbtWtq1a5ci36cKE+ldYCC0b++s3JErlzNp5gMPQMmSMHQoJCa6nVBERERERCTdO3XqFFmyZLmmc8LDw/n888/5+eefOXbs2N/2+fv7U61aNf7888+L2woWLMj58+c5ePAg1lqmTZtGkyZNLu4/dOgQefLkuXh+2bJlb+A7+kuqFiaMMY2NMZuMMVuNMb2vsN8YYwZ79q82xlS5ZN9OY8waY8xKY0x0auaUSxjjLDVaujT8739wyy1O0UJERERERERuqnPnzhEZGUnp0qXp2rUrr7766sV927Zt+9tQjnnz5l3xOTJlykSRIkXYsmXL37afP3+exYsX07hx479tb9u2LT/++CN//PEHVapUITg4+OK+nj17UqpUKVq3bs2QIUM4f/58inyfqTb5pTHGH/gEuAPYCyw1xky01q6/5LAmQAnPozrwmeffC+pba4+kVkb5F5UrO8WIH3+E556DevVg/Hho1crtZCIiIiIiIu6oV++f29q1g8ceg5gYZ0GBy3Xq5DyOHIG2bf++b86c/3zJC0M5ABYuXEjHjh1Z61ld8cKQjOSw1l78+kJBY8uWLbRt25aKFSte9i21o3379mzcuJF777334rwWAH369OH+++9nxowZfP/994waNYo5yfg+/ktq9pioBmy11m631sYBo4GWlx3TEhhhHYuAzMaYPKmYSZLLGOdNtnEjDBz415ts5Uo4c8bVaCIiIiIiIunNrbfeypEjRzh8+PA1nXf69Gl27txJyZIlgb8KGlu3bmXRokVMnDjxb8fnzp2bwMBAZs6cye233/6P5ytWrBiPPvoos2bNYtWqVRw9evT6vymP1FwuNB+w55L2Xv7eG+LfjskH7AcsMMMYY4Eh1tqhV3oRY0w3oBs442EkhYWGOsuJAsTFOSt4JCXB22/DffeBv7+r8URERERERG6Kq/UMCAu7+v7s2ZPVQ+JqNm7cSGJiItmyZSMmJiZZ55w5c4bHHnuMVq1akSVLFk6ePHlxX548eXj77bfp378/LVq0+Nt5b7zxBocOHcL/sr/3Jk+eTNOmTTHGsGXLFvz9/cmcOfMNfV+Quj0mzBW22Ws4ppa1tgrOcI/HjTG3XelFrLVDrbVR1tqoHDlyXH9a+W9BQTBmjLOCR8eOUKkS/PSTU6gQERERERGRFHVhjonIyEjat2/PN998c7FYcPkcE4MHD754Xv369SlfvjzVqlWjYMGCDBky5IrP36pVK2JiYv4xP0XNmjVpdYWh/N9++y2lSpUiMjKSBx98kO++++4fxYvrYS4da5KSjDG3An2ttY087RcBrLX9LzlmCDDHWjvK094E1LPW7r/sufoCZ6y1A672mlFRUTY6WvNkprqkJBg7Fl57zRnqMXMmNGzodioREREREZEUs2HDBsqUKeN2DK90pZ+dMWaZtTbqSsenZo+JpUAJY0wRY0wQ0AGYeNkxE4GOntU5agAnrbX7jTEZjDEZPeEzAHcCa1Mxq1wLPz9n/om1a2HCBLgw7ujLL2HaNGfJUREREREREZFkSLXChLU2AXgCmA5sAH6w1q4zxnQ3xnT3HDYF2A5sBb4AHvNszwXMN8asApYAk62101Irq1wnf39o0cKZKDMpCT78EJo0gTp1YPZst9OJiIiIiIiIF0jNyS+x1k7BKT5cuu3zS762wONXOG87UCk1s0kK8/ODZctg2DDo1w8aNID69Z0VPSrpUoqIiIiIiMiVpeZQDklvgoLg0Udh61YYNAg2bPhrWEdMjIZ4iIiIiIiIyD+oMCEpLyQEnn4adu2CyEhn2//+BzVqwKRJKlCIiIiIiIjIRSpMSOoJCvrr6/r14fBhZ06KypWdVT20zKiIiIiIiEi6p8KE3BxdusCmTTB8OJw7B/fc48xFISIiIiIiIlfk7+9PZGQk5cqVo1KlSnzwwQckeT7gnTNnDs2bNwdg+PDh+Pn5sXr16ovnli9fnp07dwJQuHBhjhw5AoAxhmefffbicQMGDKBv374X2yNHjqRixYoXX7Nr166cOHEiVb9PFSbk5gkMhIcegvXrYdQo6NzZ2b54MYwcCYmJ7uYTERERERFJQ0JDQ1m5ciXr1q1j5syZTJkyhddff/2Kx+bPn59+yfjwNzg4mHHjxl0sVFxq2rRpDBw4kKlTp7Ju3TqWL19OzZo1OXjw4A1/L1ejwoTcfP7+0KED5M/vtIcNgwcfhHLl4PvvVaAQERERERG5TM6cORk6dCgff/wx9grz9jVv3px169axadOmqz5PQEAA3bp1Y+DAgf/Y169fPwYMGEC+fPkAp8dGly5dKFWqVMp8E/9ChQlx3+efO3NOBAbC/fdDhQowYYLbqURERERERNKUokWLkpSUxKFDh/6xz8/Pj+eff5633nrrP5/n8ccf57vvvuPkyZN/275u3TqqVKmSYnmTS4UJcZ+fH7RpA6tWwQ8/OO0LVb7ERE2SKSIiIiIirqs3vB7DVw4HID4xnnrD6zFy9UgAYuJjqDe8HmPWjgHg5PmT1Btej3EbxgFwJOYI9YbXY9KmSQAcOHPgunNcqbfEBffddx+LFi1ix44dV32OTJky0bFjRwYPHvyvx6xZs4bIyEiKFSvGmDFjrjtvcqgwIWmHn58zKebq1dCjh7Nt1CioWBF+/FEFChERERERSde2b9+Ov78/OXPmvOL+gIAAnn32Wd55553/fK4ePXowbNgwzp49e3FbuXLlWL58OQAVKlRg5cqVNGnShHPnzqXMN/AvAlL12UWuh5/fX0uNZsvm9Jpo184Z4vHaa9C6tXOMiIiIiIjITTKn05yLXwf6B/6tHRYY9rd2REjE39rZw7L/rZ07PPc1v/7hw4fp3r07TzzxBMaYfz2uU6dOvPvuu5w+ffqqz5c1a1batWvHsGHD6NKlCwAvvvgivXr1YsKECeT3zAmY2kUJUI8JSeuaNIG1a+G77yAuDtq2dSbOFBERERER8XHnzp27uFxow4YNufPOO3nttdeuek5QUBBPPfXUFeehuNyzzz77t9U5mjZtylNPPUWTJk0oW7YsNWvWxN/fn0aNGt3w93I15mrjU7xNVFSUjY6OdjuGpJbERBg9GrJkgaZN4fRp+O03aNECrlIxFBERERERuVYbNmygTJkybsfwSlf62Rljlllro650vHpMiPfw93dW7Wja1GkPHw6tWsEtt8DEieBDRTYREREREZH0QoUJF+3fv589e/a4HcN7PfqoU5w4dQpatoSoKGfZURUoREREREREvIYKEy4aNGgQBQsWpE6dOnzyySccPHjQ7UjeJSAAHnoINmyAr75yhnYMGfLXsA6t4iEiIiIiIpLmqTDhom7duvHmm29y4sQJnnjiCfLmzcsdd9zBl19+ybFjx9yO5z0CA6FzZ6dA8d13zrY9e6BoURgwwClYiIiIiIiIXCNfmpPxZrmen5kKEy4qVqwYL7/8MmvWrGHNmjW89NJL7Ny5k0ceeYRcuXLRvHlzRo4cyalTp9yO6h38/eHCer5nzkDx4vDcc1CwILzyChw+7G4+ERERERHxGiEhIRw9elTFiWtgreXo0aOEhIRc03lalSONsdayYsUKRo8ezZgxY9i9ezfBwcE0bdqU9u3b07x5czJkyOB2TO+xdCm88w6MGwfh4U5PiogIt1OJiIiIiEgaFx8fz969ezl//rzbUbxKSEgI+fPnJzAw8G/br7YqhwoTaVhSUhKLFy9m9OjR/Pjjj+zfv5+wsDCaN29O+/btadKkCaGhoW7H9A6bNsG8edC1q9Pu0sUZ6nH//VCkiLvZREREREREfJwKEz4gMTGR+fPnM2bMGMaOHcvhw4cJDw+nRYsWtG/fnkaNGhEcHOx2TO8QGwt33glz5zrtmjWdAkW7dpA9u7vZREREREREfJAKEz4mISGBOXPmMGbMGMaNG8exY8eIiIigSZMmNGvWjMaNG5Ndf2D/t127YNQoZ8LMtWvho4/giSfg3DlnRQ8NmREREREREUkRKkykYQv3LKRS7kqEBYZd1/nx8fHMmjWLH374gcmTJ3Po0CH8/PyoXr06zZo1o1mzZlSqVAlzYQlNubLVqyF/fsiaFb78Ep5+Glq0gPbtoXFjuMbJW0REREREROQvKkykUYfPHqbIh0XoWKkjnzb79IafLykpiWXLljF58mQmT57MhZ9Fvnz5aNq0Kc2aNaNhw4aaPPO/rFgBQ4fC2LFw5AhkygStWjkFi8smcBEREREREZH/psJEGvbL5l+okb8G2cNSfujFgQMHmDp1KpMnT2bGjBmcPn2asLAw7rrrrouTZ17rMi7pSnw8/PYbjBnjrOYxc6az/fPPoWRJqFvXWaJURERERERErkqFCS+QZJN4fc7rdI/qTp6MeVL8+ePi4pg3bx5jx45l7NixHDlyhIwZM9KyZUs6dOjAHXfcQVBQUIq/rs+wFoxxihX58sHhw5AnD9x3HzzwAFSq5OwXERERERGRf7haYcLvZoeRK9t8dDMfLPqAsevHpsrzBwUFcfvtt/PZZ5+xf/9+ZsyYwT333MMvv/xC8+bNyZ07Nw8//DAzZswgISEhVTJ4tQtFh8BA2LkTfvgBqlWDwYOhcmUYONDVeCIiIiIiIt5KPSbSkF0ndlEwoiDGGKy1N2XCyri4OGbOnMmYMWP4+eefOX36NDlz5qRjx448/PDDlC5dOtUzeLWjR50iRcOGUKIETJ0KAwY4vSjatHHmpxAREREREUnn1GPCSxTKXAhjDLtO7KLqF1VZeWBlqr9mUFAQzZo1Y8SIERw6dIjx48dTs2ZNBg0aRJkyZahduzZff/01Z8+eTfUsXilbNnj0UacoAc5So7t2QZcukDs33HsvTJ4MiYnu5hQREREREUmjVJhIg2ITY4lPir/prxsSEkKrVq0YP348e/fu5d133+Xw4cN06dKFPHny0K1bNxYvXowv9bJJcXffDVu2wB9/QKdOzoSZjz7611CQP/905qsQERERERERQEM50qwkm4SfcepG+07vI2/GvK7ksNayYMEChg0bxg8//EBMTAzlypWja9euPPTQQ2TJksWVXF4jLg62b4fSpSEhAfLnh8yZnaEe998PRYq4nVBERERERCTVaSiHF7pQlPhp/U8UG1yMhXsWupLDGHNxOMf+/fsZOnQoGTJkoGfPnuTNm5fOnTuzdOlSV7J5haAgpygBznCON990hni8+ioULQp16sCcOa5GFBERERERcZMKE2lc/SL1eSzqMarkqeJ2FDJlysQjjzzC4sWLWblyJQ899BA//vgj1apVIyoqimHDhmkuiqsJDoauXZ1CxM6d8NZbzuSZSUnO/s2bYfx4iI11M6WIiIiIiMhNpaEcXiQmPoYpW6bQtmxbt6NcdOrUKUaOHMlnn33G2rVriYiI4KGHHqJ79+6UKVPG7Xhp34X3nzHw8stOsSJLFmjXDh58EGrW/Gt+ChERERERES+loRw+4sNFH9J+bHvWH17vdpSLMmXKxGOPPcbq1auZN28eTZs25bPPPqNs2bLUr1+fn3/+mUStSPHvjPmr8PD6685yo02bwrffQu3aEBn5V48KERERERERH6QeE14kISmBubvm0qBIA7ejXNWhQ4f46quv+Pzzz9m1axfFixenR48edOrUiQwZMrgdzzucPg0//wyHDsGzzzo9Kzp2hOrVoX17yJHD7YQiIiIiIiLJdrUeEypMeKmlfy7l29XfMrDRQPz9/N2Oc0UJCQmMHz+e999/n8WLF5MlSxa6d+/OE088Qd687qwy4rWOH4f69WHVKggIgMaNnZU9WrSA0FC304mIiIiIiFyVa0M5jDGNjTGbjDFbjTG9r7DfGGMGe/avNsZUuWy/vzFmhTHml9TM6Y1+2/Ebv2z+hWPnjrkd5V8FBARwzz33sHDhQhYsWED9+vV5++23KVy4MB07dmTlypVuR/QeWbLAypWwejU88wysWAEdOsBPPzn7z5/XkA8REREREfFKqdZjwhjjD2wG7gD2AkuBe6216y85pinwJNAUqA58aK2tfsn+Z4AoIJO1tvl/vWZ66jEBcPL8SSJCIrDWEpcYR3BAsNuR/tO2bdv48MMP+eqrrzh79iwNGjSgT58+1K1b1+1o3iUxEX7/HapVg/BweO89GDwY7rvPmTSzfHm3E4qIiIiIiFzkVo+JasBWa+12a20cMBpoedkxLYER1rEIyGyMyeMJnR9oBnyZihm9WkRIBAB9Zvfh9hG3ExMf43Ki/1asWDEGDx7Mnj17ePvtt9m4cSP16tWjVatWbN682e143sPfHxo0cIoSAJUqOY/334cKFZxJMwcN+mvVDxERERERkTQqNQsT+YA9l7T3erYl95hBwPOA+qf/h0q5K1EpVyVCA7xnroEsWbLwwgsvsHXrVvr168esWbMoV64cTz/9NEePHnU7nve580745RfYt8/pOREcDFOm/LXix4wZcOaMuxlFRERERESuIDULE+YK2y7/+PaKxxhjmgOHrLXL/vNFjOlmjIk2xkQfPnz4enJ6vbZl2/JJs08wxrD/9H7WHVrndqRkCw0N5aWXXmLr1q106dKFjz/+mOLFi/P+++8TGxvrdjzvkzMnPPkkLF4MEyY42/bvhyZNIFcuuP9+mDwZ9LMVEREREZE0IjULE3uBApe08wP7knlMLaCFMWYnzhCQBsaYkVd6EWvtUGttlLU2KoeWUKTrpK40/q4xsQne9Ydnrly5GDJkCKtWraJGjRr06tWLsmXLMnbsWHxp5Zib6sJqHblzw9y5znKjU6dC8+bOcqNTp7qbT0REREREhNQtTCwFShhjihhjgoAOwMTLjpkIdPSszlEDOGmt3W+tfdFam99aW9hz3m/W2gdSMavP+LTpp4xoNcIrJsK8kvLlyzN16lSmT59OWFgY99xzD3Xq1GHx4sVuR/NexkCtWvDZZ07viSlToF07KFfO2T9mDLRqBd9+6yxLKiIiIiIichOlWmHCWpsAPAFMBzYAP1hr1xljuhtjunsOmwJsB7YCXwCPpVae9KJQ5kLUL1IfgLHrx/Lhog9dTnR97rzzTlauXMnQoUPZunUrNWrU4L777mPXrl1uR/NuwcHOsI4vv4SCBZ1tp09DdLTToyJnTmjUCD7/XBNnioiIiIjITZFqy4W6Ib0tF/pf7vvpPnad3MWch+YQ6B/odpzrdvr0ad59913ef/99kpKS6NGjBy+++CIRERFuR/MdSUmwdCmMG+c8QkNh9Wpn3+DBkD073H67M0+FiIiIiIjINbracqEqTPiwxKREzsafJVNwJmITYjHGEOQf5Has67Znzx5efvllvv32W3LkyMHrr7/OI488QkBAgNvRfIu1zpCOrFmdr4sUgQs9VcqXh4YNoW1bZ3iIiIiIiIhIMlytMJGac0yIy/z9/MkUnAlrLQ/9/BDNvm9GYlKi27GuW4ECBRgxYgTR0dGULVuWxx57jIoVKzJlyhRNkJmSjHGKEhe+3rbN6U3Rv78zkeZnn/01cWZMDLzwgrPSx8mT7mUWERERERGvpR4T6cS3q77lcMxhnrn1GbejpAhrLRMnTuS5555jy5YtNGzYkPfff5+KFSu6Hc33nT/vPDJnduamqFkT4uPBzw8iI6FuXXj0UShRwu2kIiIiIiKSRqjHhPBgpQcvFiU2HtnIsXPHXE50Y4wxtGzZkrVr1/Lhhx+yfPlyKleuzDPPPMPp06fdjufbQkKcogRAVJTTU+K33+DVVyFTJqdHxYXVPX77DZ58EsaOhUOHXIssIiIiIiJpl3pMpDOxCbGU/Lgk5XOWZ/J9k92Ok2KOHz/Oyy+/zOeff06+fPkYPHgwrVq1whjjdrT0JzYWAgLA3x8+/RSee84Z8gFQurTTo+KDDyAszN2cIiIiIiJy02jyS/mbGdtmUDCiIKWzl3Y7SopbtGgR3bt3Z9WqVdx111189NFHFCpUyO1Y6Vt8PCxbBr//7jy2bYONG535K15+GQ4ccIaDVK0KZcs6RQ0REREREfEpKkzIv/pm5Tc0K9mM7GHZ3Y6SYhISEvjwww/p06cPAH379qVHjx4EBnrvkqk+xVqnKAHw+OMwatRfQz9CQ6FdOxg+3Gn/+SfkyePMXyEiIiIiIl5Lc0zIFe05uYfuk7vzwcIP3I6SogICAnj22WfZsGEDDRs25PnnnycqKoqFCxe6HU3gr6IEwCefwJEjsGkTjBwJ//sflCnj7LPWWZ40a1a4/XZnDoslSyApyZ3cIiIiIiKSKtRjIp1bsX8FFXJVIMDPd7vPT5gwgSeffJK9e/fSrVs3BgwYQHh4uNux5L/Ex8O33zorfyxdCitWQGKiM/zjzTedr+PinF4WIiIiIiKSpqnHhPyrynkqE+AXwKnYU3Se0JlDZ31v5YSWLVuyfv16evbsyRdffEGNGjXYvHmz27HkvwQGQpcuzgSaS5fCwYNOoaJ9e2f/ggWQPTu0bu0M/Th82NW4IiIiIiJyfVSYEAA2HN7A+A3jWb5/udtRUkV4eDjvv/8+M2bM4ODBg1StWpUJEya4HUuuRbZs8MADUKGC086RAzp1cnpUdO4MuXNDnTqwd6+rMUVERERE5NpoKIdcdOL8CTKHZHY7RqrbvXs3bdq0ITo6mpdeeok33ngDf39/t2PJ9bLWGeYxcSLMng2//ur0tvjsMzh5Etq0gRIl3E4pIiIiIpKuaSiHJMuFosSv23+l5eiWxCbEuhsolRQsWJB58+bRtWtX3nrrLZo2bcrRo0fdjiXXyxioUgX69nWWI72w+sqcOfDii1CyJFSsCK+/DuvXu5lURERERESuQIUJ+YfDZw+z88ROTpw/4XaUVBMSEsIXX3zB0KFDmTNnDrfccgvLl/vmMJZ0a8wY2LULBg6EiAinMPF///fX/v373csmIiIiIiIXaSiHXFF8YjyB/oFux7gplixZQtu2bTl06BCfffYZnTt3djuSpIYDB+DsWShWDDZuhLJloX59Z56Ku++GDBncTigiIiIi4rM0lEOuWaB/IAlJCTw2+TE+WfKJ23FSVbVq1Vi2bBm1atWiS5cudO/endhY3xzGkq7lzu0UJQCyZHGGfuzcCR07Ovu6dIE//3QzoYiIiIhIuqTChFzV3lN7+fO07/+xliNHDqZPn87zzz/PkCFDqF+/Pvv27XM7lqSWXLmgTx/YuhXmznWWIJ08+a9eE0uXOsNAREREREQk1Wkoh1xVQlICAX4BAFhrMca4nCj1jR07lk6dOpEpUybGjRtHjRo13I4kN0NCAgQ49zo1asCSJdCkCXTrBs2a/bVPRERERESumYZyyHW7UJTYdmwbtb+uzdZjW11OlPratm3LwoULCQkJoW7dugwbNsztSHIzXFp4GDMGXnnFWYa0VSsoXBi++sqtZCIiIiIiPk2FCUmWJJvE0ZijHI1JH8tqVqhQgejoaOrWrUvXrl15/PHHiYuLczuW3CyFCsEbb8Du3TB+PFSoAH6eX5fHj8Mvv0BiorsZRURERER8hIZySLIlJiXi7+cPpJ9hHQkJCbz00ku899571KlThx9//JFcuXK5HUvc9Omn8PjjUKAAdO0KDz8M+fK5nUpEREREJE3TUA5JEReKEkOXDaXd2HYkJvn+J8YBAQG8++67fP/990RHRxMVFYWKX+ncI4/A2LFQujS89hoULOgM91CPGhERERGR66LChFyz8wnnORt3lrjE9POH2L333ssff/yBv78/tWvXZsSIEW5HErcEBkKbNjBjhrOqx3PPQXAwBAU5+8eOhf373c0oIiIiIuJFNJRDrsuFYR2XDu9ID44cOUK7du2YPXs2Tz31FAMGDCAwMNDtWJJWHD/uLEWalAQtWsD//gd33PHX/BQiIiIiIumUhnJIivP38ycmPoYm3zXh/T/edzvOTZM9e3ZmzJhBjx49GDx4MA0aNGC/Ph2XC7JkgXXr4JlnYN48aNwYihWDuXPdTiYiIiIikmapMCHXLdg/mOxh2ckWls3tKDdVQEAAAwcOZNSoUSxfvpwqVaowf/58t2NJWlGiBLz7LuzdC6NGQZEiziofAEuWwK+/Oj0qREREREQE0FAOuUGXrs5xLv4coYGhLie6udauXcvdd9/Njh07eP/993nyySfTxWolcp3at4cffnB6UTzyCHTuDDlzup1KRERERCTVaSiHpJoLf4Qv27eMooOLMm/XPJcT3Vzly5dn6dKlNGvWjKeffpoHHniAs2fPuh1L0qpvvoHvvnOWF+3dG/Lnh1693E4lIiIiIuIqFSYkRRTOXJjq+apTMKKg21FuuoiICMaNG0e/fv0YNWoUNWrUYMuWLW7HkrQoJATuuw9+/x3Wr4fHH3eGegDExsKgQXDkiKsRRURERERuNg3lkBRnreX4+eNkDc3qdpSbbsaMGdx3333Ex8fz7bff0qJFC7cjibeYPt2ZLDMoyFmO9H//g9tuAw0NEhEREREfoKEcclP939z/o8qQKhw+e9jtKDfdnXfeybJlyyhRogQtW7bklVdeITEx0e1Y4g0aNYK1a52CxJQpUK8elCkDBw+6nUxEREREJFWpMCEprlmJZrQr1y7drdZxQaFChZg/fz4PP/ww/fr1o2nTphw9etTtWOINypWDwYNh3z4YPhyqVv1rcsxvvnGWIPWhXm4iIiIiIqChHJLKjsQcIdAvkIiQCLejuOLLL7/k8ccfJ0+ePPz000/ccsstbkcSb5SY6MxFsWeP04uiWzfo2BGypr/hUiIiIiLinTSUQ1yRmJTIHd/ewT0/3oMvFcCuRdeuXZk/fz7WWmrVqsWwYcPcjiTeyN8fNmyAYcMgY0bo2dNZ2ePrr91OJiIiIiJyw1SYkFTj7+fPy3Ve5qU6L11cVjQ9qlq1KsuWLaNOnTp07dqVbt26cf78ebdjibfJkAG6dIHFi2HFCujcGSIjnX0rV8JHH8GJEy4GFBERERG5PipMSKpqW7Yt9QrXA2DhnoXEJca5G8gl2bNnZ9q0abz44ot88cUX1KlTh927d7sdS7xVZCR8+ilUruy0f/4ZnnoK8uZ1ChaLFmkuChERERHxGipMyE2x4/gO6g6vy//9/n9uR3GNv78/b731FuPHj2fTpk1UqVKFX3/91e1Y4gv69oVly+DBB2HsWLj1VmjQQMUJEREREfEKqVqYMMY0NsZsMsZsNcb0vsJ+Y4wZ7Nm/2hhTxbM9xBizxBizyhizzhjzemrmlNRXJEsRRrQewXO1nnM7iutatWpFdHQ0uXLlolGjRvTv3z/dzsEhKahKFRgyxFnR4/PPoVUrMAaSkqB3b1i6VIUKEREREUmTUm1VDmOMP7AZuAPYCywF7rXWrr/kmKbAk0BToDrwobW2unEmJMhgrT1jjAkE5gNPW2sXXe01tSqHd0hISuC71d/RsVLHdD33xJkzZ+jatStjxoyhVatWDB8+nIiI9Ll6iaSiTZucokVMjDP043//g/vucybRFBERERG5SdxalaMasNVau91aGweMBlpedkxLYIR1LAIyG2PyeNpnPMcEeh76qM9HjFk7hk4TOjFrxyy3o7gqPDycUaNGMXDgQCZNmkS1atVYt26d27HE15QqBfv3O3NSJCVB9+7Oih4rVridTEREREQESN3CRD5gzyXtvZ5tyTrGGONvjFkJHAJmWmsXp15UuZnuq3Afsx+aTcOiDd2O4jpjDD169OC3337j5MmTVKtWjTFjxrgdS3xNpkzw6KNOMWLRIujYEcqXd/b9/LOzTURERETEJalZmLhSH/3Lez386zHW2kRrbSSQH6hmjCl/xRcxppsxJtoYE3348OEbySs3iTHm4kodm45sYvDiwe4GSgNuu+02li9fTmRkJB06dOCZZ54hPj7e7Vjia4yB6tXh448hMNCZc+Lll53JMmvWdCbOTEhwO6WIiIiIpDOpWZjYCxS4pJ0f2Hetx1hrTwBzgMZXehFr7VBrbZS1NipHjhw3GFlutk+Xfkq/ef04EnPE7Siuy5s3L7Nnz+bJJ59k4MCB3H777Rw4cMDtWOLLjIHFi2HwYDh0CO65B0qUgAkT3E4mIiIiIulIahYmlgIljDFFjDFBQAdg4mXHTAQ6elbnqAGctNbuN8bkMMZkBjDGhAINgY2pmFVc8kGjD1jSdQnZw7K7HSVNCAoKYvDgwYwcOZLo6GiqVKnCggUL3I4lviw8HJ580pkkc/x4KFAAwsKcfcePw6lT7uYTEREREZ+XaoUJa20C8AQwHdgA/GCtXWeM6W6M6e45bAqwHdgKfAE85tmeB5htjFmNU+CYaa39JbWyinv8/fwplLkQAB8u+pB35r/jcqK04f7772fRokWEhYVRr149PvroIy0pKqnL399ZYnTuXLjjDmfb669DkSLwzjtw9qyr8URERETEd121MGGM+dbz79PX8+TW2inW2pLW2mLW2n6ebZ9baz/3fG2ttY979lew1kZ7tq+21la21la01pa31r5xPa8v3sNay5J9S1iybwlJNsntOGlCxYoViY6OpkmTJjz11FM8+OCDnNUfh3IzPfgg1KgBvXtD0aLw4Ydw/rzbqURERETEx5irfQprjFkPNMEZclGPyyartNYeS81w1yoqKspGR0e7HUOuU0JSAtZaAv0DiU+MJ9A/0O1IaUJSUhJvvfUWffr0oXz58owbN47ixYu7HUvSkz/+gFdegdmzndU9Pv3U7UQiIiIi4mWMMcustVFX2vdfQzk+B6YBpYFllz1UAZAUFeAXQKB/IGfjztJgRAPe/+N9tyOlCX5+frzyyitMnTqVP//8k6ioKCZNmuR2LElPataE336DWbPg2WedbevWwfDhWsVDRERERG7YVQsT1trB1toywFfW2qLW2iKXPIrepIySzgQHBFMoohAFIwq6HSVNadSoEcuWLaNo0aK0aNGCV199lcTERLdjSXrSoAEUK+Z8/fXX0LkzlCsHo0dDkoZgiYiIiMj1Sdbkl9baR40xtY0xnQGMMdmNMUVSN5qkVwF+AYy8eyT3lLsHgP2n97ucKO0oXLgwCxYsoHPnzrz55ps0a9aMo0ePuh1L0qP33oNx4yAoCO69FypVgl80R7GIiIiIXLtkFSaMMa8BLwAvejYFASNTK5TIBWsOrqHkxyX5esXXbkdJM0JDQxk2bBhDhgxh9uzZREVFsXz5crdjSXpjDLRuDatWwahREBcH8+c7+6x1HiIiIiIiyZDc5UJbAy2AswDW2n1AxtQKJXJB6eyl6X5LdxoXb+x2lDTFGEO3bt2YN28eCQkJ1KxZk6+/VvFGXODnBx06OHNO9OnjbJs2DWrXdibLFBERERH5D8ktTMRZZ/kOC2CMyZB6kUT+EugfyHt3vkeejHmw1vL7zt/djpSmVKtWjeXLl1OrVi26dOnC//73P2JjY92OJelRQACEhTlfx8bCrl3OnBQNGsCCBe5mExEREZE0LbmFiR+MMUOAzMaYR4BfgS9SL5bIPw1fOZx639Rj7q65bkdJU3LkyMH06dN54YUXGDp0KHXq1GHPnj1ux5L0rFUr2LoVBg1yelLUrg1duridSkRERETSKGOTOQ7YGHMHcCdggOnW2pmpGex6REVF2ehorWLqq+IT4/l+zfd0rNQRY4zbcdKkcePG0alTJ4KDgxk9ejS3336725EkvTt7Fj7+GHLnhocecuai2LLFWc1DRERERNINY8wya23UlfYlt8cEwGrgd2AOsCoFcolck0D/QB6KfAhjDPtO72PEqhFuR0pz7r77bpYsWUKOHDm48847eeedd0hu8VEkVWTIAC+84BQlAIYPhwoV4L77YPNmV6OJiIiISNqQ3FU52gFLgHuAdsBiY0zb1AwmcjXvLniXJ6Y8wYEzB9yOkuaULl2aJUuW0KZNG3r37k2bNm04deqU27FEHG3bQu/eMGEClCkDnTvDjh1upxIRERERFyVrKIcxZhVwh7X2kKedA/jVWlsplfNdEw3lSD/iEuPYdGQTFXJVcDtKmmWtZeDAgTz//PMUK1aM8ePHU7ZsWbdjiTgOHYK334ZPP4VKlWDxYrcTiYiIiEgqSomhHH4XihIeR6/hXJEUF+QfdLEoMWbtGD5d+qnLidIeYwzPPPMMs2bN4sSJE1SrVo0ffvjB7Vgijpw54YMPYNs2GDrU2XbsGDz3HBxQTygRERGR9CS5xYVpxpjpxphOxphOwGRgSurFEkkeay0/rP+BMevGkJiU6HacNKlu3bosX76cihUr0r59e3r27ElcXJzbsUQc+fI5PSYA5syBgQOhWDFnXoqjR12NJiIiIiI3x1WHchhjigO5rLULjDF3A7VxVuU4Dnxnrd12c2Imj4ZypE9xiXHEJcYRHhROkk3Cz6gzz5XExcXRq1cvPvroI2655RZGjx5N8eLF3Y4l8ndbtsDrr8P330N4OPTsCa+9Bn56X4uIiIh4sxsZyjEIOA1grR1nrX3GWtsTp7fEoJQMKXK9gvyDCA8KJz4xnjY/tOH9P953O1KaFBQUxODBgxk3bhzbt2+ncuXKfPfdd27HEvm7EiVg5EhYswbuvBNWrvyrKBEf72o0EREREUkd/1WYKGytXX35RmttNFA4VRKJ3IAg/yCC/IPcjpGmtW7dmpUrVxIZGckDDzxAp06dOHPmjNuxRP6uXDkYO9Z5gNOTonBhZ6jHuXOuRhMRERGRlPVfhYmQq+wLTckgIjcq0D+Q0W1G82T1JwE4eOYgyVl1Jj0qWLAgs2fPpk+fPowYMYJbbrmFlStXuh1L5J8CA51/ExKgbFl45hkoXtxZzSM21t1sIiIiIpIi/qswsdQY88jlG40xDwPLUieSyPUzxgCw5+QeKnxWgff+eM/lRGlXQEAAr7/+OrNmzeLMmTNUr16djz76SMUcSZvKlIGZM2H2bChaFB5/HCpWBE3kKiIiIuL1/qsw0QPobIyZY4x53/P4HegKPJ3q6USuU75M+Xi48sO0Kt3K7ShpXv369Vm1ahV33HEHTz31FK1ateKoVkOQtKpePZg7F6ZNg0cfhSDP0K2ZMyFRK/OIiIiIeKOrrspx8SBj6gPlPc111trfUjXVddKqHPJvZmybQcOiDbVix1VYa/nwww95/vnnyZUrF+PGjaNq1apuxxL5b4sWwa23OkM93ngDWrfWKh4iIiIiacyNrMoBgLV2trX2I88jTRYlRP7N7zt/p9HIRnyz8hu3o6Rpxhh69OjBwoUL8ff3p06dOowYMcLtWCL/rVo1GDMGkpKgbVuIioLJk0HDkkRERES8gj5SEp93W6HbGNVmFA9WetDtKF7hlltuITo6mpo1a/LQQw/Rs2dPEhIS3I4l8u/8/KBdO1i7Fr75Bk6ehIceAq02IyIiIuIVVJgQn2eMoUP5DgT4BXDy/En6zulLfGK827HStOzZszN9+nSefvppBg0aRKNGjThy5IjbsUSuzt8fOnaEjRvht98gY0Zn3okuXWDePLfTiYiIiMi/UGFC0pVfNv/CW/PeYvn+5W5HSfMCAwMZNGgQX3/9NQsWLKBq1aqsWrXK7Vgi/y0w0FmxA2DbNpg6FW67DRo3hqVL3c0mIiIiIv+gwoSkK/dXvJ+NT2ykev7qbkfxGp06dWLu3LnEx8dz6623MmbMGLcjiSRfyZJOceK99yA62pmPomVL0MozIiIiImmGChOS7hTNUhSA2Ttm0/z75pyNO+tyorSvWrVqREdHU6VKFTp06EDv3r1J1NKM4i3CwqBXL9ixA/7v/+DQIYiIcPadPu1uNhERERFRYULSr32n97H31F7OJZxzO4pXyJ07N7/99hvdu3fnnXfeoXnz5pw4ccLtWCLJlzEjvPIK/PEHBAQ4k2OWLOnMS7Ftm9vpRERERNItFSYk3bq/4v1Ed4sme1h2kmwSp2JPuR0pzQsKCuKzzz5jyJAhzJo1i1tvvZVt+oNOvI0xzr+JifDggzB2LJQqBd26we7d7mYTERERSYdUmJB0LcAvAIBnpj/DbV/fpmEdydStWzdmzpzJoUOHqF69OnPnznU7ksi1i4iAd991eks89piz1GiJErB1q9vJRERERNIVFSZEgGYlmnFXybsICwxzO4rXqFu3LosXLyZHjhw0bNiQr7/+2u1IItcnTx4YPBi2bIF+/aB4cWf7hAlw+LC72URERETSAWOtdTtDiomKirLR0dFuxxAvt+vELowxFIwo6HYUr3DixAnatWvHzJkzee655+jfvz/+/v5uxxK5MSdOQN684O8PPXrAs89C5swuhxIRERHxXsaYZdbaqCvtU48JkUtYa2nzQxtajGpBkk1yO45XyJw5M5MnT+axxx7jvffeo02bNpw5c8btWCI3JnNmWLYMmjaFN9+EwoWdf7WKh4iIiEiKU48Jkcss37+c+MR4quev7nYUr/Pxxx/z9NNPU6FCBSZNmkSBAgXcjiRy41atgj59YPJkWL/eWclDRERERK6JekyIXIMqeapcLEqMWjOKdYfWuZzIezzxxBNMnjyZHTt2UK1aNZYsWeJ2JJEbV6mSM9/E1q1/FSUefRQ+/hhiY93NJiIiIuIDVJgQ+Rcx8TE8/+vzvDnvTbejeJXGjRuzcOFCQkNDqVu3LmPGjHE7kkjKKFzY+ff8ediwAZ580lnF48svIT7e1WgiIiIi3kyFCZF/ERYYxtxOcxnWYpjbUbxO2bJlWbx4MVFRUXTo0IE33ngDXxo2JulcSAjMng0zZzoTZD7yCJQp48xJISIiIiLXLFULE8aYxsaYTcaYrcaY3lfYb4wxgz37Vxtjqni2FzDGzDbGbDDGrDPGPJ2aOUX+TZEsRQgLDCM2IZb2Y9uzYPcCtyN5jRw5cvDrr7/SsWNHXnvtNe6//37OnTvndiyRlGEMNGwICxfCL79Avnx/9ag4cACSNHmuiIiISHKlWmHCGOMPfAI0AcoC9xpjyl52WBOghOfRDfjMsz0BeNZaWwaoATx+hXNFbprj54+z6sAqNh3d5HYUrxIcHMzw4cPp378/o0aNon79+hw4cMDtWCIpxxho1gx+/x2yZQNroXlzqFwZJk502iIiIiJyVanZY6IasNVau91aGweMBlpedkxLYIR1LAIyG2PyWGv3W2uXA1hrTwMbgHypmFXkqnKH52Zl95V0qdwFgHPx+uQ/uYwx9O7dm3HjxrFmzRqqVavG6tWr3Y4lkjqshWeegZgYaNkSqleH6dNVoBARERG5itQsTOQD9lzS3ss/iwv/eYwxpjBQGVic8hFFki8kIASAtYfWUmxwMaZtneZyIu/SunVr5s2bR1JSEjVr1mTSpEluRxJJeX5+cN99zuSYw4bBwYPQuDGMHet2MhEREZE0KzULE+YK2y7/yOiqxxhjwoGfgB7W2lNXfBFjuhljoo0x0YcPH77usCLJlTdjXmrkr0GpbKXcjuJ1qlSpwpIlSyhTpgwtW7bk/fff16SY4psCAqBLF9i8Gb74Alq0cLZPmQKLFrmbTURERCSNSc3CxF6gwCXt/MC+5B5jjAnEKUp8Z60d928vYq0daq2NstZG5ciRI0WCi1xN1tCsjGs/jiJZigCw6sAqlxN5l7x58/L777/Tpk0bevXqxSOPPEJcXJzbsURSR3AwdO3q/GstvPIK3Hor3HUXrFjhdjoRERGRNCE1CxNLgRLGmCLGmCCgAzDxsmMmAh09q3PUAE5aa/cbYwwwDNhgrf0gFTOK3JCRq0dSeUhl5u6a63YUrxIWFsaYMWN45ZVXGDZsGA0bNuTgwYNuxxJJXcbA3LnQrx/Mnw9VqsA998AmTaorIiIi6VuqFSastQnAE8B0nMkrf7DWrjPGdDfGdPccNgXYDmwFvgAe82yvBTwINDDGrPQ8mqZWVpHr1aZMG96/831qF6ztdhSv4+fnx//93//x/fffEx0dTVRUFEuXLnU7lkjqCg+Hl16CHTugTx9nYswtW9xOJSIiIuIq40vju6Oiomx0dLTbMSSdOnbuGBM2TqBz5c5uR/E6K1asoHXr1hw4cIDPP/+cTp06uR1J5OY4fhwyZ3Z6U7z2GuzdC6++CoULu51MREREJEUZY5ZZa6OutC81h3KIpCsfLvqQRyc/yo7jO9yO4nUqV65MdHQ0tWvXpnPnzjzxxBPEx8e7HUsk9WXJ4hQlABISYORIKFkSHn8c9l0+LZOIiIiIb1JhQiSF9Knbhz8e/uPipJhybbJnz860adPo1asXn3zyCbfffrvmnZD0pV8/2LrVWc1j6FAoVgyGD3c7lYiIiEiqU2FCJIX4+/lTJU8VAKZtnUavGb20FOY1CggI4L333rs478Qtt9zCkiVL3I4lcvMUKACff+5MiNm+PURGOtsPHHCGfYiIiIj4IBUmRFLBnJ1z+G3Hb5yNP+t2FK9077338scffxAYGEidOnX46quv3I4kcnMVLer0lrhQmHjuOWfeiTfegFOnXAwmIiIikvJUmBBJBf1v78/cznMJDwonMSmRhKQEtyN5ncjISKKjo7ntttt4+OGHefzxx0lI0M9R0qnnn4cGDZwJMosUgXffhbMqfIqIiIhvUGFCJBUYYwgPCsdaS9dJXbl/3P0k2SS3Y3mdbNmyMXXqVHr16sWnn35K8+bNOaVPiyU9qlABxo+HpUuhenV44QV4/XW3U4mIiIikCBUmRFKRMYbyOcpTNntZ/IzebtfjwrwTX3zxBbNmzaJWrVrs2rXL7Vgi7oiKgilTYMEC6NnT2bZwIQwZAnFx7mYTERERuU7Glybni4qKstHR0W7HEPlXu07sIkeGHIQFhrkdxSv9+uuvtG3blpCQECZNmkTVqlXdjiTivqeego8+coZ49OkDDzwAAQFupxIRERH5G2PMMmtt1JX26SNckZvkfMJ56n1Tj4d+fsjtKF6rYcOG/PHHH4SGhlK3bl3GjRvndiQR9334odOLIksW6NwZypWDn392O5WIiIhIsqkwIXKThASE0P/2/rxU+yW3o3i1smXLsmjRIipWrEjbtm0ZMGCAlmWV9M0YaNIEoqPhp58gKAg2b3b2JSWB3h8iIiKSxqkwIXITdSjfgcp5KgPw47ofORpz1OVE3ilXrlzMnj2btm3b8txzz9G9e3fi4+PdjiXiLmPg7rth1Sro0cPZNmoUVKsGU6eqQCEiIiJplgoTIi7Yd3ofHX/uyFvz3nI7itcKDQ1l9OjRvPjiiwwdOpRmzZpx8uRJt2OJuM/Pz+k1AZAhAxw5Ak2bQu3aMHu2u9lERERErkCFCREX5M2Yl987/U6/2/u5HcWr+fn58dZbb/HVV18xe/Zsatasyc6dO92OJZJ2tGoFmzbBZ5/Brl3QoAF06+Z2KhEREZG/UWFCxCXV8lUjJCCEc/Hn6DKhC7tOaAnM69W5c2emT5/On3/+SY0aNdDqPCKXCAqC7t1h61YYNAiaN3e2nzkDy5a5Gk1EREQEVJgQcd3WY1uZsGkCS/ctdTuKV2vQoAF//PEHISEh1K1bl0mTJrkdSSRtCQmBp5+GFi2c9qefQlSUMy/FmjXuZhMREZF0TYUJEZdVyFWBbU9to23ZtgAkJCW4nMh7XVixo2zZsrRq1YqPPvrI7UgiaVf37vD66zBrFlSqBPfd99dqHiIiIiI3kQoTImlA5pDMAETvi6bsJ2VZc1CfXl6v3LlzM2fOHO666y6eeuopevbsSWJiotuxRNKeTJmgTx/YsQN694aJE+Hxx91OJSIiIumQChMiaUim4EzkyZiHLKFZ3I7i1TJkyMBPP/3E008/zaBBg2jbti0xMTFuxxJJm7Jmhbfegu3bneEdAHv3OkWKvXvdzSYiIiLpggoTImlIyWwlmfPQHPJnyo+1lh3Hd7gdyWv5+/szaNAgBg0axIQJE6hfvz4HDx50O5ZI2pUzJ5Qo4Xw9fz588QUULw49e4LeOyIiIpKKVJgQSWOMMQAMWjSICp9VYNORTS4n8m5PP/0048ePZ82aNdSoUYMNGza4HUkk7evQwZlv4v774aOPoGhReOUVsNbtZCIiIuKDVJgQSaM6lO/AC7VeoGS2km5H8XotW7bk999/59y5c9SsWZO5c+e6HUkk7StcGIYNgw0boHVr2L8fPIVTzp1zNZqIiIj4FhUmRNKoPBnz8GrdVzHGcOjsIWZsm+F2JK9WtWpVFi1aRO7cubnzzjuZMGGC25FEvEOJEjBypDO0A2DZMsifH95+G86ccTebiIiI+AQVJkS8wAu/vkC7H9tx/Nxxt6N4tcKFCzNv3jwiIyO5++67+fLLL92OJOI9/Dz/y5AhA9SsCS++6Azx+OAD9aAQERGRG6LChIgX+LDxh0y9f6pW60gB2bNnZ9asWdx555088sgjvPXWW1iNmxdJvtKlYdIkWLgQKlaEZ5+FypVBy/KKiIjIdVJhQsQLZArOxK0FbgVg/IbxfLHsC5cTebcMGTIwceJE7r//fl5++WV69OhBUlKS27FEvEuNGvDrrzBnjtN7wt/fmRzzxx8hPt7tdCIiIuJFVJgQ8SLWWkasHsHXK78mISnB7TheLTAwkBEjRtCzZ08GDx7MAw88QFxcnNuxRLxP3brw0EPO17NmQbt2UKYMjBihXhQiIiKSLCpMiHgRYwxj2o5h6v1TCfALIMnqU/4b4efnx/vvv8/bb7/NqFGjuOuuuzijyfxErt/ttzvDPDJmdIoV5crBmDGgHkkiIiJyFSpMiHiZIP8gIkIiSExK5P5x99N3Tl+3I3k1YwwvvPACX331FbNmzaJBgwYcPnzY7Vgi3skYaN7cWblj7FgICIDnn9fQDhEREbkqFSZEvFhoQCjhQeFux/AJnTt3Zvz48axZs4batWuza9cutyOJeC8/P2jTBlatgtmzITgY4uIgOtrtZCIiIpIGqTAh4qX8/fwZ1mIYvWr2AmDf6X0a2nGD7rrrLmbOnMmhQ4eoVasWGzZscDuSiHfz93eWFAXo3x9uvRUGD3YmyRQRERHxUGFCxIsZYwA4fPYwUUOjePHXF11O5P1q167N77//TkJCArfddhvLly93O5KIb+jRA5o1g6efhgcegLNn3U4kIiIiaYQKEyI+IHtYdp6o9gQdK3V0O4pPqFixIvPnzydDhgzUr1+fuXPnuh1JxPtFRMC4cdCvH4wa5fSe2LrV7VQiIiKSBqgwIeIDjDG8VOclyuUsB8Avm38hPlGTzd2I4sWLM3/+fPLmzUujRo2YMmWK25FEvJ+fH7z0EkybBidPwvnzbicSERGRNECFCREfs/rgau4adReDFw92O4rXy58/P3PnzqVcuXK0bNmS0aNHux1JxDfceSds2QLlyzvtn3+GxERXI4mIiIh7VJgQ8TEVc1Xkl3t/4cnqT7odxSfkyJGD3377jZo1a3LfffcxZMgQtyOJ+IagIOffOXOgdWto2VLzToiIiKRTKkyI+KBmJZsR5B/Embgz9JzWk9Oxp92O5NUyZcrEtGnTaNq0Kd27d+ftt992O5KI76hbFz79FKZOhTvugGPH3E4kIiIiN5kKEyI+bOGehXwW/RmL9i5yO4rXCw0NZfz48dx77728+OKL9O7dG6slD0VunDHw6KMwdiwsW+YUKvbtczuViIiI3ESpWpgwxjQ2xmwyxmw1xvS+wn5jjBns2b/aGFPlkn1fGWMOGWPWpmZGEV92R7E72P70du4odgeA/pC+QYGBgXz77bd0796dd955h0cffZREjYsXSRmtWzu9JvbsgaVL3U4jIiIiN1GqFSaMMf7AJ0AToCxwrzGm7GWHNQFKeB7dgM8u2TccaJxa+UTSi7wZ8wIwf/d8an1Vi4NnDrqcyLv5+/vz6aef0rt3b4YMGcIDDzxAfLxWQBFJEQ0awPbtznwTAGfOuJtHREREborU7DFRDdhqrd1urY0DRgMtLzumJTDCOhYBmY0xeQCstXMBDTQVSSGxCbGcTziPRb0mbpQxhv79+/POO+8wevRoWrVqRUxMjNuxRHxD1qzOvzNmQJEiMG+eu3lEREQk1aVmYSIfsOeS9l7Ptms9RkRSwO1Fbye6WzS5w3NjreXAmQNuR/J6zz//PEOGDGHq1Kk0btyYkydPuh1JxHeULg3ZsjlLi06e7HYaERERSUWpWZgwV9h2+Ue1yTnm6i9iTDdjTLQxJvrw4cPXcqpIuuNnnLd83zl9qTykMvtP73c5kffr1q0b33//PQsXLqRBgwbo95BICilY0OktUa6cM7Tju+/cTiQiIiKpJDULE3uBApe08wOXT7OdnGOuylo71FobZa2NypEjx3UFFUlvOpTvwP9u+R+5w3O7HcUndOjQgQkTJrB+/Xpuu+029u7d63YkEd+QIwf89hvcdhs88AD88YfbiURERCQVpGZhYilQwhhTxBgTBHQAJl52zESgo2d1jhrASWutPsIVSWVlcpShb72+GGP489SfzNulMdw3qmnTpsyYMYN9+/ZRu3ZttmzZ4nYkEd+QKRNMmQKffw633up2GhEREUkFqVaYsNYmAE8A04ENwA/W2nXGmO7GmO6ew6YA24GtwBfAYxfON8aMAhYCpYwxe40xD6dWVpH07KlpT9H2x7acjTvrdhSvV6dOHWbPns3Zs2epU6cOq1atcjuSiG8ICYH//Q+Mgc2b4eWXISnJ7VQiIiKSQoy1vjNDf1RUlI2OjnY7hohXORJzhG3HtlE9f3W3o/iMjRs3cscdd3DmzBkmT55MzZo13Y4k4jv694eXXoJ774VvvoHAQLcTiYiISDIYY5ZZa6OutC81h3KIiBfIHpb9YlFi1JpRfLXiK5cTeb/SpUszf/58cuTIwR133MHMmTPdjiTiO3r3hrfeglGjnEkxtVSviIiI11NhQkQAsNby/drv+Xb1tyQmJbodx+sVKlSIefPmUaJECZo1a8ZPP/3kdiQR32AMvPgiDBkC06Y5y4meOOF2KhEREbkBKkyICADGGMbeM5aJHSbi7+ev4kQKyJUrF3PmzKFq1aq0a9eOr7/+2u1IIr6jWzcYMwaCgyEoyO00IiIicgNUmBCRi4IDgskYnJH4xHja/NCGt+a95XYkr5c5c2ZmzJhBw4YN6dKlCwMHDnQ7kojvuOce+PVXCAuDU6dg5063E4mIiMh1UGFCRP7BGEOm4ExEBEe4HcUnZMiQgYkTJ9K2bVueeeYZ+vTpgy9NPCziKmOcfzt3hpo1Yc0ad/OIiIjINdOqHCJyRdZajOd/+A+cOUCuDLkutuX6JCYm0q1bN7766iuefPJJBg0ahJ+f6sMiKWLdOme+iZgYmDIFbr3V7UQiIiJyCa3KISLX7EIRYs/JPVT8rCLv/fGey4m8n7+/P19++SXPPPMMH330EZ07dyYhIcHtWCK+oVw5WLAAsmeHhg1h+nS3E4mIiEgyBbgdQETStnyZ8tG1Sldal27tdhSfYIxhwIABZMmShVdffZVTp04xatQoQkJC3I4m4v0KF4b586FxY3j0Udi4URNjioiIeAEN5RCRazJr+ywaFGmgYR0p4OOPP+bJJ5+kQYMG/Pzzz2TMmNHtSCK+4eRJOHQISpQAa/+ah0JERERco6EcIpIiftvxGw2/bcjI1SPdjuITnnjiCUaMGMHvv/9Ow4YNOXbsmNuRRHxDRMRfRYmnnoI333S+FhERkTRJhQkRSbb6hevzbetvubfCvW5H8RkPPvggP/30EytXrqRu3brs37/f7UgiviMpyek98eqr8MwzTltERETSHBUmRCTZjDE8UPEBAvwCOHn+JO//8T5JVv+jf6NatmzJ1KlT2bFjB7Vr12bHjh1uRxLxDf7+MHw4PP00DBrkLCkaH+92KhEREbmMChMicl2+W/MdL856kdUHV7sdxSc0aNCAWbNmcfz4cWrVqsW6devcjiTiG/z8YOBAeOMNGDECHnjA7UQiIiJyGU1+KSLXxVrL+sPrKZeznNtRfMratWu58847iY2NZdq0aVStWtXtSCK+49NPIX9+aNHC7SQiIiLpjia/FJEUZ4y5WJSYtX0Wz0x/Bl8qdLqlfPnyzJs3j4iICBo0aMDs2bPdjiTiOx577K+ixM8/Oyt3iIiIiOtUmBCRGzZ752xmbp/JqdhTbkfxCcWKFWP+/PkULFiQJk2aMGnSJLcjifiWo0ehY0eoXRt27nQ7jYiISLqnwoSI3LD/q/9//NHlDyJCIkiySeo5kQLy5s3L3LlzqVixIq1bt2bkSC3RKpJismWDadPg8GGnOLF+vduJRERE0jUVJkTkhhljyBickSSbxGOTH+OpqU+pOJECsmXLxqxZs7jtttt48MEH+eSTT9yOJOI7ataE33+HxESoUwcWL3Y7kYiISLqlwoSIpBiDITwonIzBGd2O4jMyZszIlClTaNGiBU888QT9+vVT0UckpVSsCAsWQObMMGuW22lERETSLa3KISIp6sLvFGMMR2OOkjU0K8YYl1N5v/j4eLp06cLIkSPp1asX7777rn6uIinl5EnIlAmMgVOnnK9FREQkRWlVDhG5aYwxGGM4du4Y1b6sxsu/vex2JJ8QGBjIN998w+OPP86AAQPo1q0biYmJbscS8Q0REU5RYvNmKF4cvvjC7UQiIiLpSoDbAUTEN2UJycK95e+lRakWbkfxGX5+fnz00UdkyZKFN998k5MnTzJy5EiCgoLcjibiG/Llg1tugW7d4NgxeOEFtxOJiIikCypMiEiqMMbwZoM3L7aX/LmEqnmravjBDTLG8H//939kzpyZXr16cerUKX766ScyZMjgdjQR75chA0yYAJ06Qe/ecOQIvPuu05tCREREUo2GcohIqlvy5xJqfFmDocuGuh3FZzz77LN8+eWXzJw5k0aNGnHixAm3I4n4hqAgGDkSHn8cBgyAzz93O5GIiIjPU48JEUl1VfNW5dNmn/JgpQfdjuJTHn74YSIiIrjvvvuoX78+06ZNI1euXG7HEvF+fn7w0UfOsI5773U7jYiIiM9TjwkRSXXGGLpHdScsMIzzCecZtnyYlrxMIW3btmXSpEls2rSJOnXqsHv3brcjifgGY6BzZwgJgePH4dFH4fRpt1OJiIj4JBUmROSmGrFqBF0ndWXR3kVuR/EZjRo1YubMmRw6dIjatWuzadMmtyOJ+JZFi5yVOho0gMOH3U4jIiLic1SYEJGb6pEqjzC/83xuLXCr21F8Sq1atZgzZw6xsbHUqVOHFStWuB1JxHc0aQI//wxr10KdOrBnj9uJREREfIoKEyJyUxljqFWwFgAr9q+g75y+GtaRQiIjI5k3bx4hISHUq1ePefPmuR1JxHc0bw7Tp8P+/VCrFqhnkoiISIpRYUJEXPPj+h/5euXXHD131O0oPqNkyZIsWLCAPHny0KhRI6ZOnep2JBHfcdtt8PvvkDcvhIe7nUZERMRnGF/6pDIqKspGR0e7HUNEkslay+GYw+TMkPNi2xjjcirfcOjQIRo3bsyaNWsYOXIk7du3dzuSiO+w1pkcMzHRGd5RqZLbiURERNI8Y8wya23Ulfapx4SIuMYYc7Eo8fqc1+k5vaeGdaSQnDlzMnv2bGrUqMG9997LF1984XYkEd9xoYDarx9Uq+bMPyEiIiLXTYUJEXGdtZYT509w4vwJLCpMpJSIiAimT59O48aN6datG++++67bkUR8yxNPQJUq0KYNfP2122lERES8VoDbAUREjDF80OgDLBY/48fp2NOEB4VrWEcKCAsL4+eff+bBBx/khRde4MSJE/Tr108/W5GUkDUr/Por3H03dOkCx47Bs8+6nUpERMTrqMeEiKQJxhj8jB9n485Sd3hdek7v6XYknxEUFMT333/PI488Qv/+/Xn44Yc5ceKE27FEfEOGDDBpErRrB6++Crt3u51IRETE66gwISJpSlhgGE1LNKVRsUZuR/Ep/v7+DBkyhJdeeonhw4dTsmRJvvjiCxITE92OJuL9goLg++9h8WIoWNDZpvlyREREkk2FCRFJU4wxvNngTZqUaALA6oOrSbJJLqfyDcYY+vXrR3R0NKVKlaJbt25ERUUxd+5ct6OJeD9/f6hQwfn688+hfXuIjXU3k4iIiJdI1cKEMaaxMWaTMWarMab3FfYbY8xgz/7VxpgqyT1XRHzflqNbqPZFNd6e/7bbUXxKlSpVmDt3LqNHj+bo0aPUrVuX9u3bs2vXLrejifiGc+fgxx/hrrvgzBm304iIiKR5qVaYMMb4A58ATYCywL3GmLKXHdYEKOF5dAM+u4ZzRcTHFc9anIGNBtI9qjsAU7ZMYdKmSS6n8g3GGNq3b8/GjRvp27cvkyZNonTp0rz22mucPXvW7Xgi3q1nT2eVjt9+g4YN4ehRtxOJiIikacam0hhIY8ytQF9rbSNP+0UAa23/S44ZAsyx1o7ytDcB9YDC/3XulURFRdno6OgU/15EJG24fcTtxMTHsPDhhQA89PNDhAWE8VnzzwBYsHsBwQHBROWNAuDX7b+SNTQrVfI4nbFmbJtBzgw5icwdCcD0rdPJHZ6bSrkrAU7ho2BEQcrnLA/A5M2TKZy5MOVylgNg4qaJlMxWktLZS2OtZdLmSZTKVopS2UuRmJTI5C2TKZO9DCWylSA+MZ6pW6dSLkc5imUtRmxCLNO3TadCzgoUyVKEc/HnmLl9JpVyVaJQ5kKcjTvLrB2zqJy7MgUiCnA69jSzd87mljy3kC9TPk6eP8nvu36nat6q5MmYh+PnjjNv9zyq56tOrvBcHI05yoI9C7g1/63kyJCDw2cPs3DvQmoVqEW2sGwcPHOQxX8upk7BOmQJzcL+0/tZum8pdQvVJSIkgiUbltDrg17MGzGP/Dnz89iLj3Em4xkqhVcixD+EQ3GH2HFuB5EZIwn2C+Zg7EF2nt9J5YyVCfILYn/sfnaf380tmW4hwARcbEdlisLf+LP3/F7+jP2TapmqYYy52K4eUR2A3ed2czDuIFUjqgKw69wuDscdJirCuZY7z+3kWPwxqmRyruX2mO2cTDhJ5UyVAdgWs43TCaeJzORc2y0xWziXeI6KGSsCsPnsZmKTYqmQ0elqv+nsJhJsAuXCnWu74cwGLJay4U4NfP2Z9RgMZcLLALDuzDoCTAClMpQCYM3pNQT7BVMyQ0kAVp9eTah/KCXCSgCw8tRKMgZkpFhYMQBWnFpBREAERcOKArD81HKyBGShSFgRAKJPRpMjKAeFQgtdbOcMyknBUGe+gsUnF5MvOB/5Q/JjrWXJqSUX24k2kehT0RQILkDekLwk2ASWnVpGwZCC5AnOQ3xSPMtPL6dwSGFyBeciNimWladXUiS0CDmDcnI+8TyrzqyiaGhRcgTlICYxhjVn1lA8tDjZgrJxNvEsa8+spURYCbIGZuVMwhnWnV1HqbBSZA7MzKmEU2w4u4HSYaWJCIzgZPxJNsZspEyGMmQKyMSJ+BNsitlEuQzlCA8I51j8MbbEbKF8eHky+GfgaNxRtp7bSoXwCoT5h3E47jDbz233iXsv9+LFJH73DgdKFMH/iQFgDKenfkFS3DmqJOYnMTiY5WFHicmWlfwVmwOwf9l4/BKTqGjzO/eO2U1S5mzkL9kAgL1LfyTEBlDO5nXuFbMT/6x5yFv8NkhMZNeyH8lEKKVtbufeMdsJyVGY3EVuxcTHs33FWLKRgRI2FwB/mK1kzF2SnAWr4h8by6ZVY8lDBEVtDgDmms1ky1uB7Pkj8T97lvXrxlHIZqMQ2UgkiQVmKznyVyZr3vKYU8fZuPEXitoc5CcLcSSwyGwnZ6GqZMlVGnvsEJu3TqeEzUUeIjhHHEvNTnIXrUlE9mIkHt7L1h2zKW3zkJOMnOE8y81u8paoS8YsBUk4uJNtu+ZRzuYlG+GcJIZVZi/5S99Bhky5iftzCzv+XEQlm58IwjjKGdaZfRQs35TQsGyc372eXQeWUcUWJJwQDnGajWY/BSu2JDQkEzE7VrHn8Gqq2sKEEsR+TrLFHKRwlbYEB4Rydtsy9h5dT3VblGAC2Mtxtvsfpdgt7QkwAZzesph9xzdT0xYnAD92cZRdAScoWeVejDGc3LSAAye3c5t1fm/s4DB7g85SsnJ7AI6vn8OxM39S0xZ37iVziIPBcZSo1AaAo2tmcvrcEapb5/fIRnOA46FQtEJLAA6vmsr52FNE2cLO7y2zjzMZgihcrhkAB1dMIjH+PJWt83tltdlLbKaMFCx9p+493Xu697zw3mvTrhNBQUF4E2PMMmtt1BV3WmtT5QG0Bb68pP0g8PFlx/wC1L6kPQuISs65l+zrBkQD0QULFrQi4rvOxJ6xu0/svth+bsZz9rXZr11sl/yopL3nh3sutot+WNQ+MO6Bi+38H+S3XX7ucrGd872ctvuk7hfbEf0j7NNTn77YDn0z1D4347mLbb/X/ewrs16x1lqbkJhg6Yt9Y84b1lprY+JiLH2xb89721pr7fFzxy19sQMXDrTWWnvwzEFLX+wnSz6x1lq7+8RuS1/sl8u+tNZau/XoVktf7IiVI6y11q4/tN7SFzt6zWhrrbUr9q+w9MWO3zDeWmvt4r2LLX2xkzdPttZaO3fnXEtf7K/bfrXWWvvrtl8tfbFzd8611lo7ZfMUS1/soj2LrLXWjt8w3tIXu2L/CmuttWPWjnFef+oIW6VKFUtFLH2xZMEClsqediZPO8rTzuBp1/C0QzztWp52oKd9m6dtPO36WPp4vgZLQywvX9JujKX3Je1mWJ67pN0CS89L2q2xPHVJuy2Wxy9pd8DS/ZL2/VgeuaTdEUvnS9qdPdsutLt6zrnQ7u55zgvtx7Hcc0n7KU+mC+2enswX2r0839OFdm/P93yh/TKWOy5p9/H8zPD8DPt6fqZgCfC0a3naIZ52DU87g6dd1dPO5GlX9rSzeNoVPe3snnY5Tzu3p13a087naZfwtAt62kU87SKedkFPu7innc/TLu1p5/a0y3naOTxtH7v3snXA5rvk3qt7P7bqI1jrTI9pG3TElr7k3qvR2dl2YX+1rtgKl9x7FbtjW3b4a3+Zx7GRnnsvCGzRp7APtP5rf/6e2Fs8915WsDl7Ybs3+2t/RG9slOfeKwQ29GXsc3f8td+vDzbKc++V89x7b9zm7Ivx3HtVPPdeVc+9N7CGs/+g596r5Ln3bvPce19WdvZv9dx75Tz3XkPPvTe6nLN/hefeK+m595p67r3JJZz9cz33XmHPvdfSc+/NLejsn+K593J77r02nntvRW5n/xjPvRfhuffu8dx7W7M4+7/03HsBnnvvHs+9dyCDs3/gZffePZ5772ygs/+Ny+69NvWdn+eFn+3zDbHBl9x7rRo71+PC/kebYbNccu81b+Fczwv7H2iNzXvJvdeoLbb043/tb9kBW/SSe6+e7j3de7r3fOreO3r06FX+rzltAqLtv9QPUrPHxD1AI2ttV0/7QaCatfbJS46ZDPS31s73tGcBzwNF/+vcK1GPCZH0bfXB1YQHhVM0i1PRX3toLeFB4RTOXBiANQfXkCk4E4UyF7p4fOaQzBSMcCr4qw6sImtoVgpEFABgxf4V5MyQk3yZ8gGwfP9ycofnJm/GvFhrWXFgBXnC85AnYx6SbBIrD6wkb8a85A7PTUJSAqsPriZ/pvzkzJCT+MR41hxaQ4FMBciRIQdxiXGsPbSWghEFyR6WndiEWNYdXkehiEJkC8vGufhzbDiygSKZi5AlNAsx8TFsPLKRolmKkjkkM2fjzrLp6CaKZSlGREgEZ+LOsPnoZopnLU6m4Eycij3F1mNbKZmtJOFB4Zw8f5Jtx7dRKlspMgRl4MT5E2w/vp3S2UsTFhjG8XPH2XFiB2WylyHIL4gFyxew5/QeimUsRpB/EMdjj3Pg3AGKZypOoF/gP9rHYo9x8NxBSmQqQYBfAEfOH+Hw+cOUiiiFn/Hj8PnDHDl/hNIRpTHGXGyXyez0SDh07hDH4o5ROqI0AAfOHeBU3ClKRjif7uyP2c+ZhDOUyFTiiu19MfuISYiheCbn0569Z/cSlxRH0YzOvbDn7B4SkhIokrHIFdu7z+wmiSQKhzv3ys4zO/HDj4Lhzr2x4/QOAvwCKJChwBXb209vJ8gviPwZnE97tp7aSlhAGHnDnE93tpzaQnhAOHnC8lyxvfnkZjIFZSJ3qPNpz8aTG8kalJWcoTkB2HBiA9lDspMjJAfWWjae3HixnWST2HRyEzlCcpA9JDsJSQlsObWFXKG5yBqclfikeLae2kru0NxkCc7yj3ZcYhzbTm8jT1geMgdl5nzieXac3kG+sHxkCsrEuYRz7Dyzk/wZ8pMxMOM/2jEJMew6s4sCGQoQHhjOmfgz7Dm7h0LhhQgLCON0/Gn2nt1L4fDChAaE/qN9Ku4Uf8b8SZGMRQjxD+FE3An2x+z37XsvPpZiQXnxi41l94ltJPn7kb+g0yPjwNo5mERL4SDnXtgetw+TMYLcRZ0PmPatnkUg/hQMdD752xr3JwER2chVuDIkJbF39a+E+YWQL9D55G9z7B5CsuUhR4EKkJDA7rWzyOgXRt7A7M69FruLDDkKkj1fWUxcHNvXzyKbfyZyBWQFYP35HUTkLk7WPCXh3Dl2bJxNjoDM5AjIQpJNYmPsLjLnK02WnEVJOnOKXVvmkysgK9kCIoi3CWyJ3UPWAuWJyF6QxFPH2b1tIXkCs5PFPyNxNp6tsXvJVrgSmbLkI/74YfbuXEq+wJxE+GfgXFIsO+L2kbPoLWSIyEXc0f38uXsFBQJzkdE/jLNJ59kVt5+cJaqTITwb5w/tYf+faygUlIcMfiGcToxhT/xB8pSqRUhYBDEHdnJw/3qKBOUl1C+Yk4ln+TP+EHnK3kZIcDhn/9zKoUObKR6cnyATyPHE0+yPP0L+CrcTGBDM6T2bOHJkGyWCCxBoAjiacJKDiccpUPEOAvwCOLVrHUeP7aJ0cCHn3ks4zmF7msIV7sQYw4kdqzh+4k/Khjj3wsGEYxw1MRQpfwcAx7Yu5/SZQ5QOdv4btS/+CKcCEihUtj4ARzcvISbmBCWDnd87f8Yf5kwQFCx9GwCHNy4kLvYsxYOc/2btjj9IbEgg+UvWcl5v/XyS4mMpGuT8XtoZd4CEDKHkK15D957uPd17Xnjv3VqzPgEBAXiTq/WY0FAOEREREREREUlVVytMpOaqHEuBEsaYIsaYIKADMPGyYyYCHT2rc9QATlpr9yfzXBERERERERHxcqnW98Nam2CMeQKYDvgDX1lr1xljunv2fw5MAZoCW4EYoPPVzk2trCIiIiIiIiLijlQbyuEGDeUQERERERERSXvcGsohIiIiIiIiInJVKkyIiIiIiIiIiGtUmBARERERERER16gwISIiIiIiIiKuUWFCRERERERERFyjwoSIiIiIiIiIuEaFCRERERERERFxjbHWup0hxRhjDgO7UuGpswNHUuF5xT26pr5H19T36Jr6Hl1T36Nr6nt0TX2Prqnv8dZrWsham+NKO3yqMJFajDHR1toot3NIytE19T26pr5H19T36Jr6Hl1T36Nr6nt0TX2PL15TDeUQEREREREREdeoMCEiIiIiIiIirlFhInmGuh1AUpyuqe/RNfU9uqa+R9fU9+ia+h5dU9+ja+p7fO6aao4JEREREREREXGNekyIiIiIiIiIiGvSdWHCGNPYGLPJGLPVGNP7CvuNMWawZ/9qY0yV5J4r7rjBa7rTGLPGGLPSGBN9c5PLv0nGNS1tjFlojIk1xvS6lnPFHTd4TfU+TaOScV3v9/zeXW2M+cMYUym554o7bvCa6r2aBiXjmrb0XM+VxphoY0zt5J4r7rjBa6r3aRqU3PeaMaaqMSbRGNP2Ws9Nk6y16fIB+APbgKJAELAKKHvZMU2BqYABagCLk3uuHt51TT37dgLZ3f4+9Ljma5oTqAr0A3pdy7l6eNc19ezT+zQNPpJ5XWsCWTxfN9F/U9P240auqaet92oaeyTzmobz11DvisDG5J6rh3ddU09b79M09kjue81z3G/AFKDttZybVh/pucdENWCrtXa7tTYOGA20vOyYlsAI61gEZDbG5EnmuXLz3cg1lbTpP6+ptfaQtXYpEH+t54orbuSaStqVnOv6h7X2uKe5CMif3HPFFTdyTSVtSs41PWM9f+EAGQCb3HPFFTdyTSVtSu577UngJ+DQdZybJqXnwkQ+YM8l7b2ebck5Jjnnys13I9cUnF/UM4wxy4wx3VItpVyLG3mv6X2aNt3oddH7NG261uv6ME7vtes5V26OG7mmoPdqWpSsa2qMaW2M2QhMBrpcy7ly093INQW9T9Oi/7ymxph8QGvg82s9Ny0LcDuAi8wVtl1eQfy3Y5Jzrtx8N3JNAWpZa/cZY3ICM40xG621c1M0oVyrG3mv6X2aNt3oddH7NG1K9nU1xtTH+SP2wjhnvVfTphu5pqD3alqUrGtqrR0PjDfG3Ab8H9AwuefKTXcj1xT0Pk2LknNNBwEvWGsTjfnb4V79Pk3PPSb2AgUuaecH9iXzmOScKzffjVxTrLUX/j0EjMfpDiXuupH3mt6nadMNXRe9T9OsZF1XY0xF4EugpbX26LWcKzfdjVxTvVfTpmt6r3n+QC1mjMl+refKTXMj11Tv07QpOdc0ChhtjNkJtAU+Nca0Sua5aVZ6LkwsBUoYY4oYY4KADsDEy46ZCHQ0jhrASWvt/mSeKzffdV9TY0wGY0xGAGNMBuBOYO3NDC9XdCPvNb1P06brvi56n6Zp/3ldjTEFgXHAg9bazddyrrjiuq+p3qtpVnKuaXHj+QjWOCuXBQFHk3OuuOK6r6nep2nWf15Ta20Ra21ha21hYCzwmLX25+Scm5al26Ec1toEY8wTwHScGUy/stauM8Z09+z/HGeW06bAViAG6Hy1c134NuQSN3JNgVw4XdzAeV98b62ddpO/BblMcq6pMSY3EA1kApKMMT1wZiA+pfdp2nMj1xTIjt6naVIyf//2AbLhfLIDkGCtjdJ/U9OmG7mm6L+paVIyr2kbnA9w4oFzQHvPxIl6n6ZBN3JNjTF6n6ZBybym13TuzcidEi4sHSMiIiIiIiIictOl56EcIiIiIiIiIuIyFSZERERERERExDUqTIiIiIiIiIiIa1SYEBERERERERHXqDAhIiIiIiIiIq5RYUJERERSlDHmTAo9T19jTK9kHDfcGNM2JV5TREREbj4VJkRERERERETENSpMiIiISKowxoQbY2YZY5YbY9YYY1p6thc2xmw0xnxpjFlrjPnOGNPQGLPAGLPFGFPtkqepZIz5zbP9Ec/5xhjzsTFmvTFmMpDzktfsY4xZ6nneocYYc3O/axEREblWKkyIiIhIajkPtLbWVgHqA+9fUigoDnwIVARKA/cBtYFewEuXPEdFoBlwK9DHGJMXaA2UAioAjwA1Lzn+Y2ttVWtteSAUaJ5K35uIiIikkAC3A4iIiIjPMsBbxpjbgCQgH5DLs2+HtXYNgDFmHTDLWmuNMWuAwpc8xwRr7TngnDFmNlANuA0YZa1NBPYZY3675Pj6xpjngTAgK7AOmJRq36GIiIjcMBUmREREJLXcD+QAbrHWxhtjdgIhnn2xlxyXdEk7ib///4m97Dntv2zHGBMCfApEWWv3GGP6XvJ6IiIikkZpKIeIiIiklgjgkKcoUR8odB3P0dIYE2KMyQbUA5YCc4EOxhh/Y0wenGEi8FcR4ogxJhzQSh0iIiJeQD0mREREJLV8B0wyxkQDK4GN1/EcS4DJQEHg/6y1+4wx44EGwBpgM/A7gLX2hDHmC8/2nThFDBEREUnjjLX/6AkpIiIiIiIiInJTaCiHiIiIiIiIiLhGhQkRERERERERcY0KEyIiIiIiIiLiGhUmRERERERERMQ1KkyIiIiIiIiIiGtUmBARERERERER16gwISIiIiIiIiKuUWFCRERERERERFzz/zdpK4yIdyr+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(18,5))\n", + "plt.plot(lamdas, UNITSF_coef,label = 'UNITSF', color = 'black' )\n", + "plt.plot(lamdas, BEDRMS_coef,label = 'BEDRMS', color = 'red', linestyle = '--')\n", + "plt.plot(lamdas, DINING_coef,label = 'DINING', color = 'g',linestyle = 'dotted')\n", + "plt.legend()\n", + "plt.ylabel('Coef')\n", + "plt.xlabel('lambda')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note how the discrete jumps in magnitude for the `BATHS` coefficient in the first coincide with, for example, variables `DINING` and `BEDRMS` being exactly zero. As these variables got dropped from the model, the coefficient on `BATHS` increased to pick up their effect. \n", + "\n", + "Another problem with Lasso coefficients is their instability. When multiple variables are highly correlated we may spuriously drop several of them. To get a sense of the amount of variability, in the next snippet we fix $\\lambda$ and then look at the lasso coefficients estimated during cross-validation. We see that by simply removing one fold we can get a very different set of coefficients (nonzero coefficients are in black in the heatmap below). This is because there may be many choices of coefficients with similar predictive power, so the set of nonzero coefficients we end up with can be quite unstable." + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "nobs = X.shape[0]\n", + "\n", + "nfold = 10\n", + " # Define folds indices \n", + "list_1 = [*range(0, nfold, 1)]*nobs\n", + "sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", + "foldid = [list_1[index] for index in sample]\n", + "\n", + " # Create split function(similar to R)\n", + "def split(x, f):\n", + " count = max(f) + 1\n", + " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", + "\n", + " # Split observation indices into folds \n", + "list_2 = [*range(0, nobs, 1)]\n", + "I = split(list_2, foldid)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LassoCV\n", + "\n", + "scale_X = StandardScaler().fit(X).transform(X)\n", + "lasso_coef_fold=[]\n", + "for b in range(0,len(I)):\n", + " \n", + " # Split data - index to keep are in mask as booleans\n", + " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", + " mask = np.array([(i in include_idx) for i in range(len(X))])\n", + "\n", + " # Lasso regression, excluding folds selected \n", + " \n", + " lassocv = LassoCV(random_state=0)\n", + " lassocv.fit(scale_X[~mask], Y[~mask])\n", + " lasso_coef_fold.append(lassocv.coef_)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 Fold-1Fold-2Fold-3Fold-4Fold-5Fold-6Fold-7Fold-8Fold-9Fold-10
LOT0.0410500.0407890.0391050.0373000.0411480.0431500.0371040.0353920.0373000.037464
UNITSF0.0447460.0460550.0470950.0452910.0495400.0438390.0430770.0515350.0471320.046415
BUILT0.0011110.0048450.0033850.0035640.0047570.0032200.0034490.0029870.0009290.004401
BATHS0.2005780.1896230.1958280.2004890.1924900.1980820.2036240.2000810.1980070.198827
BEDRMS0.0556050.0574720.0559820.0553940.0549810.0563350.0544750.0490820.0559940.052763
DINING0.0477360.0467480.0472690.0448500.0447510.0465150.0449340.0481290.0464150.046481
METRO0.0000000.0003560.0000000.0010810.0011900.0008810.0000000.0031890.0012220.002415
CRACKS0.0203320.0209370.0178480.0159320.0199170.0196770.0183950.0237930.0203140.019614
REGION0.0838640.0833370.0804640.0818840.0810640.0821500.0784200.0822370.0824660.082625
METRO30.0071520.0067380.0093950.0090170.0104760.0106920.0072170.0081430.0083730.007819
PHONE0.0032230.0041450.0000000.0000000.0036440.0019840.0013310.0032000.0017960.001127
KITCHEN-0.003205-0.000000-0.000955-0.002583-0.007191-0.002836-0.000000-0.003221-0.005402-0.000577
MOBILTYP-0.119085-0.103709-0.118946-0.111606-0.106277-0.113575-0.109086-0.103446-0.114251-0.115418
WINTEROVEN0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
WINTERKESP0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.0000000.0000000.000000
WINTERELSP0.0267930.0217030.0256190.0266380.0268660.0249990.0249330.0301210.0266970.027365
WINTERWOOD0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.0000000.0000000.000000
WINTERNONE-0.006475-0.007696-0.001862-0.000594-0.003744-0.001674-0.002170-0.004903-0.008437-0.001137
NEWC0.0292230.0271750.0279140.0266260.0279920.0295490.0312110.0274830.0282210.028651
DISH-0.096273-0.098615-0.095563-0.093536-0.095071-0.097641-0.094371-0.098233-0.095227-0.096898
WASH-0.001606-0.008013-0.012339-0.002369-0.016570-0.002033-0.011885-0.004852-0.007794-0.010408
DRY-0.034784-0.032210-0.029772-0.031367-0.027754-0.035728-0.029114-0.029364-0.032434-0.026725
NUNIT2-0.216673-0.229393-0.213668-0.219420-0.230576-0.219189-0.224386-0.228164-0.217753-0.218393
BURNER-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
COOK-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
OVEN-0.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.0000000.0000000.000000
REFR-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000
DENS0.0482460.0493590.0465880.0477670.0511900.0469280.0464550.0474230.0491790.048865
FAMRM0.0578220.0570130.0572380.0592080.0585180.0551230.0578170.0586040.0598950.057424
HALFB0.1039280.1027910.1051830.1043790.1036710.1068060.1127080.1043320.1044810.108234
KITCH-0.016848-0.015641-0.015128-0.014620-0.015921-0.015672-0.016561-0.013676-0.016945-0.017092
LIVING0.0051980.0023240.0039510.0048390.0061060.0056300.0034940.0039930.0045320.004339
OTHFN0.0383550.0361140.0398430.0350120.0380770.0374920.0343210.0375250.0377210.035186
RECRM0.0214840.0219370.0199650.0235020.0241590.0206790.0193800.0204460.0222420.020969
CLIMB0.0123170.0063840.0110590.0117210.0163320.0165910.0112850.0135260.0131060.010781
ELEV0.0760950.0839370.0787830.0794320.0894030.0784550.0840760.0834520.0820640.078135
DIRAC-0.003499-0.003454-0.002993-0.004058-0.003754-0.002351-0.001929-0.002463-0.001677-0.001690
PORCH-0.018848-0.015829-0.016723-0.014969-0.013677-0.014311-0.015005-0.015080-0.016535-0.013887
AIRSYS-0.049124-0.052072-0.052840-0.053260-0.051097-0.050265-0.053449-0.053212-0.052109-0.051032
WELL-0.0000000.000000-0.0000000.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000
WELDUS-0.024269-0.024428-0.025118-0.022449-0.024388-0.023465-0.022414-0.023391-0.023995-0.026031
STEAM0.0022140.0032920.0000000.0000000.0022700.0022770.0000000.0047520.0028120.000000
OARSYS0.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000
noise10.0054240.0028490.0066100.0036140.0067090.0038010.0025190.0052970.0025660.005736
noise20.000000-0.000000-0.000000-0.0000000.0000000.000000-0.0000000.0000000.000000-0.000000
noise30.000000-0.000000-0.0000000.0000000.000000-0.000000-0.000000-0.000000-0.000000-0.000000
noise40.0000000.0000000.0000000.0000000.0000000.0016880.0000000.0034420.0000000.000000
noise50.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000172
noise6-0.000805-0.001709-0.002072-0.004038-0.001111-0.003315-0.000000-0.004309-0.002370-0.000000
noise7-0.000000-0.000000-0.000000-0.0000000.0000000.000000-0.000000-0.000000-0.0000000.000000
noise80.0034410.0091920.0041160.0024520.0062970.0047240.0052670.0036110.0053800.002053
noise9-0.0000000.000000-0.000000-0.000000-0.000258-0.000000-0.000000-0.000000-0.000000-0.000000
noise10-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000000-0.000021-0.000000
noise11-0.008055-0.004641-0.005265-0.002612-0.007669-0.005447-0.007216-0.006012-0.007707-0.003743
noise12-0.006468-0.007073-0.003561-0.002931-0.006589-0.003944-0.005517-0.002839-0.007282-0.005623
noise130.0000000.0000000.0000000.0000000.0002120.0000000.0000000.0000000.0020190.000000
noise14-0.000124-0.0000000.000000-0.000000-0.000000-0.000000-0.0000000.000000-0.0000000.000000
noise150.0023320.0045050.0045890.0023730.0045350.0030800.0014900.0041660.0045090.002482
noise160.0000000.0000000.0000000.0000000.0000000.000000-0.0000000.0000000.0000000.000000
noise17-0.002321-0.001854-0.003085-0.001049-0.004635-0.000000-0.000465-0.001222-0.002072-0.002135
noise180.0002740.0000000.0000000.0007040.0000000.0000000.0000000.0000000.0012720.000000
noise190.0000000.000000-0.000000-0.000000-0.000000-0.0000000.000000-0.000000-0.0000000.000000
noise20-0.000904-0.002203-0.001322-0.000250-0.000000-0.000180-0.001053-0.001291-0.005082-0.000000
ranking-0.002614-0.003632-0.000309-0.001322-0.002222-0.000030-0.001472-0.002578-0.000000-0.000000
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index_val = ['Fold-1','Fold-2','Fold-3','Fold-4','Fold-5','Fold-6','Fold-7','Fold-8','Fold-9','Fold-10']\n", + "df = pd.DataFrame(data= lasso_coef_fold, columns=X.columns, index = index_val).T\n", + "df.style.applymap(lambda x: \"background-color: white\" if x==0 else \"background-color: black\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have seen above, any interpretation needs to take into account the joint distribution of covariates. One possible heuristic is to consider **data-driven subgroups**. For example, we can analyze what differentiates observations whose predictions are high from those whose predictions are low. The following code estimates a flexible Lasso model with splines, ranks the observations into a few subgroups according to their predicted outcomes, and then estimates the average covariate value for each subgroup. " + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "nobs = X.shape[0]\n", + "\n", + "nfold = 5\n", + " # Define folds indices \n", + "list_1 = [*range(0, nfold, 1)]*nobs\n", + "sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", + "foldid = [list_1[index] for index in sample]\n", + "\n", + " # Create split function(similar to R)\n", + "def split(x, f):\n", + " count = max(f) + 1\n", + " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", + "\n", + " # Split observation indices into folds \n", + "list_2 = [*range(0, nobs, 1)]\n", + "I = split(list_2, foldid)\n", + "\n", + "\n", + "lasso_coef_rank=[]\n", + "lasso_pred = []\n", + "for b in range(0,len(I)):\n", + " # Split data - index to keep are in mask as booleans\n", + " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", + " mask = np.array([(i in include_idx) for i in range(len(X))])\n", + "\n", + " # Lasso regression, excluding folds selected \n", + " \n", + " lassocv = LassoCV(random_state=0)\n", + " lassocv.fit(scale_X[~mask], Y[~mask])\n", + " lasso_coef_rank.append(lassocv.coef_)\n", + " lasso_pred.append(lassocv.predict(scale_X[mask]))" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "y_hat = lasso_pred\n", + "\n", + "df_1 = pd.DataFrame()\n", + "for i in [0,1,2,3,4]:\n", + " df_2 = pd.DataFrame(y_hat[i])\n", + " \n", + " b =pd.cut(df_2[0], bins =[np.percentile(df_2,0),np.percentile(df_2,25),np.percentile(df_2,50),\n", + " np.percentile(df_2,75),np.percentile(df_2,100)], labels = [1,2,3,4])\n", + " \n", + " df_1 = pd.concat([df_1, b])\n", + "df_1 =df_1.apply(lambda x: pd.factorize(x)[0])\n", + "df_1.rename(columns={0:'ranking'}, inplace=True)\n", + "df_1 =df_1.reset_index().drop(columns=['index'])" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [], + "source": [ + "import statsmodels.api as sm\n", + "from scipy.stats import norm\n", + "import statsmodels.formula.api as smf" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [], + "source": [ + "y = X\n", + "x = df_1\n", + "y = pd.DataFrame(y)\n", + "x = pd.DataFrame(x)\n", + "y['ranking'] = x\n", + "data = y" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [], + "source": [ + "data_frame = pd.DataFrame()\n", + "for var_name in covariates:\n", + " form = var_name + \" ~ \" + \"0\" + \"+\" + \"C(ranking)\"\n", + " df1 = smf.ols(formula=form, data=data).fit(cov_type = 'HC2').summary2().tables[1].iloc[1:5, :2] #iloc to stay with rankings 0,1,2,3\n", + " df1.insert(0, 'covariate', var_name)\n", + " df1.insert(3, 'ranking', ['G1','G2','G3','G4'])\n", + " df1.insert(4, 'scaling',\n", + " pd.DataFrame(norm.cdf((df1['Coef.'] - np.mean(df1['Coef.']))/np.std(df1['Coef.']))))\n", + " df1.insert(5, 'variation',\n", + " np.std(df1['Coef.'])/np.std(data[var_name]))\n", + " label = []\n", + " for j in range(0,4):\n", + " label += [str(round(df1['Coef.'][j],3)) + \" (\" \n", + " + str(round(df1['Std.Err.'][j],3)) + \")\"]\n", + " df1.insert(6, 'labels', label)\n", + " df1.reset_index().drop(columns=['index'])\n", + " index = []\n", + " for m in range(0,4):\n", + " index += [str(df1['covariate'][m]) + \"_\" + \"ranking\" + str(m+1)]\n", + " idx = pd.Index(index)\n", + " df1 = df1.set_index(idx)\n", + " data_frame = data_frame.append(df1)\n", + "data_frame;" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ranking1ranking2ranking3ranking4
LOT49713.31 (1473.048)46479.968 (1390.394)47806.63 (1427.658)47612.513 (1393.569)
UNITSF2415.869 (24.944)2434.834 (24.249)2397.706 (23.467)2471.907 (26.208)
BUILT1972.286 (0.301)1974.925 (0.294)1973.672 (0.299)1973.017 (0.299)
BATHS1.918 (0.009)1.975 (0.009)1.946 (0.009)1.928 (0.009)
BEDRMS3.218 (0.01)3.258 (0.01)3.251 (0.01)3.243 (0.01)
...............
noise160.499 (0.003)0.502 (0.003)0.498 (0.003)0.505 (0.003)
noise170.501 (0.003)0.498 (0.003)0.502 (0.003)0.498 (0.003)
noise180.502 (0.003)0.499 (0.003)0.5 (0.003)0.5 (0.003)
noise190.504 (0.003)0.502 (0.003)0.498 (0.003)0.497 (0.003)
noise200.502 (0.003)0.496 (0.003)0.501 (0.003)0.5 (0.003)
\n", + "

63 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " ranking1 ranking2 ranking3 \\\n", + "LOT 49713.31 (1473.048) 46479.968 (1390.394) 47806.63 (1427.658) \n", + "UNITSF 2415.869 (24.944) 2434.834 (24.249) 2397.706 (23.467) \n", + "BUILT 1972.286 (0.301) 1974.925 (0.294) 1973.672 (0.299) \n", + "BATHS 1.918 (0.009) 1.975 (0.009) 1.946 (0.009) \n", + "BEDRMS 3.218 (0.01) 3.258 (0.01) 3.251 (0.01) \n", + "... ... ... ... \n", + "noise16 0.499 (0.003) 0.502 (0.003) 0.498 (0.003) \n", + "noise17 0.501 (0.003) 0.498 (0.003) 0.502 (0.003) \n", + "noise18 0.502 (0.003) 0.499 (0.003) 0.5 (0.003) \n", + "noise19 0.504 (0.003) 0.502 (0.003) 0.498 (0.003) \n", + "noise20 0.502 (0.003) 0.496 (0.003) 0.501 (0.003) \n", + "\n", + " ranking4 \n", + "LOT 47612.513 (1393.569) \n", + "UNITSF 2471.907 (26.208) \n", + "BUILT 1973.017 (0.299) \n", + "BATHS 1.928 (0.009) \n", + "BEDRMS 3.243 (0.01) \n", + "... ... \n", + "noise16 0.505 (0.003) \n", + "noise17 0.498 (0.003) \n", + "noise18 0.5 (0.003) \n", + "noise19 0.497 (0.003) \n", + "noise20 0.5 (0.003) \n", + "\n", + "[63 rows x 4 columns]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "labels_data = pd.DataFrame()\n", + "for i in range(1,5):\n", + " df_mask = data_frame['ranking']==f\"G{i}\"\n", + " filtered_df = data_frame[df_mask].reset_index().drop(columns=['index'])\n", + " labels_data[f\"ranking{i}\"] = filtered_df[['labels']]\n", + "labels_data = labels_data.set_index(pd.Index(covariates))\n", + "labels_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The next heatmap visualizes the results. Note how observations ranked higher (i.e., were predicted to have higher prices) have more bedrooms and baths, were built more recently, have fewer cracks, and so on. The next snippet of code displays the average covariate per group along with each standard errors. The rows are ordered according to $Var(E[X_{ij} | G_i) / Var(X_i)$, where $G_i$ denotes the ranking. This is a rough normalized measure of how much variation is \"explained\" by group membership $G_i$. Brighter colors indicate larger values." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [], + "source": [ + "new_data = pd.DataFrame()\n", + "for i in range(0,4):\n", + " df_mask = data_frame['ranking']==f\"G{i+1}\"\n", + " filtered_df = data_frame[df_mask]\n", + " new_data.insert(i,f\"G{i+1}\",filtered_df[['scaling']])\n", + "new_data;" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApsAAAQwCAYAAACqmZVzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3gUVReA37slvfcKIYReQu9NQDqIhSKIFLGAFdAPu9jFgh0VEBGUqoB0kY703jskAUJ678nufD/uZrPJbhJQisC8z5MnM3PvuWVmdubMOefeKxRFQUVFRUVFRUVFReVGoLnVDVBRUVFRUVFRUblzUZVNFRUVFRUVFRWVG4aqbKqoqKioqKioqNwwVGVTRUVFRUVFRUXlhqEqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKporKDUAIUUUIkSWE0N7qtlSEEGKWEOK9W92OslzN+RNCKEKIiHLShgoh1t64Ft46hBBPCiG+MG2Hmc6D7ha3qdxrcTth2Q8hxPdCiDf+YTlZQojw69u6648QYpMQYnQ5aauFEMOvQx3+QogTQgj7f1uWyu2LqmyqAOaHTqr6QLg+KIoSoyiKi6IohsryCiE6CSEu3Yx23S6UPX8VvRTLkf9VUZRuN66FtwYhhB3wOvDJrW7LnY6iKE8pivJuZfls3Zume/f8jWvdjUdRlJ6Kovx8HcqJBzYCT/z7VqncrqjKpgpCiDCgPaAA/W5A+bfU6nKzudv6ezdzC671fcBJRVEu3+R6bzvu9N/hbda/X4Enb3UjVG4dqrKpAvAosBOYBQwHEELYCyHShBD1izMJIXyFELlCCD/Tfh8hxEFTvu1CiIYWeaOEEBOFEIeBbCGETgjxshDinBAiUwhxXAhxv0V+rRDiMyFEkhDighDiGUv3oBDCXQjxoxDiihDishDivfJcrKayXrWoa58QItSU1kYIsUcIkW7638Z0fLAQYm+ZcsYJIZaZtnsLIQ4IITKEEBeFEJMs8hW7Mh8TQsQAG8q6N4UQI02upEwhxHkhxJOm487AaiDI5HrLEkIECSE0FucrWQixUAjhVU5/Twgh+ljs60znsYlpf5EQIs7U5y1CiHrllDNCCPF3mWOWbkV7IcSnQogYIUS8yc3oaErzEUKsMN0LKUKIrUIIq+eLEOJtIcTXpm29ECJbCPGxad9RCJEnhPC0PH9CiPeRH0PfmM7PNxZFdhVCnBHSKv+tEELY6ouprKds5bXRRkchxM+mfCeEEP8TFpZnYfve7ieEOGbq/yYhRB1b59C0bw5dECartul+TTKVPdRWu0z0BDbbOD5KCBEr5O9jgkVdLYQQO0ztuiKE+EZI6yhC8rkQIsF0bxwWpt97RdfalP6SqbxYIcSoCtqL6X5eZrovzgohHrdIm2S6t2cL+ds4JoRoVkFZihDiOSF/Q0lCiE+K7zPTNd9m6lMKMOnf9EOUCTERQtwn5PMuQ8jfZY/y7k1R+nfjbupfohAiWgjxepk2/21qY6qQz76eFfT/Wp+rV12+ECLQdA+8aNo3W2wrK0cIUU3IZ0umEGKdkL+vXyyK3wWECyGqltc3lTscRVHUv7v8DzgLjAWaAoWAv+n4TOB9i3xPA2tM202ABKAloEUqqVGAvSk9CjgIhAKOpmMDgCDkR84gIBsINKU9BRwHQgBPYB3S0qozpS8FfgCcAT9gN/BkOf15CTgC1AIEEAl4A15AKjAM0AEPm/a9AScgE6hhUc4eYLBpuxPQwNT2hkA80N+UFmZq62xT+xwtjhW3vzdQ3dSejkAO0MSi7Etl+vAC8gMgBLA39X1eOf19E/jVYr830vpVvD8KcDWV8wVw0CJtFvCeaXsE8HeZshUgwrT9BbDMdB5dgeXAh6a0D4HvAb3prz0gbLS1M3DEtN0GOAfsskg7VOacFp+/TcBoG21bAXgAVYBEoIetvlSU10YbP0IqdJ6m83/Y8vpQ5t4GaiLv5XtNff8f8jdlV/Yc2jjnnYAiYIrp+nQ0lVWrnLbtAQZY7Befp3nIe6+BqW9dTelNgVbI+z0MOAG8YErrDuwznRMB1KHk91jRte6BvP/rm+qcW7aPZdq8GZgKOACNTO3rYkqbBOQBvZDPkQ+BnRU8qxSkS9bLdB1PF98XpmteBDxr6q/jv+lHmevUAkg3XWMNEAzUruTeLC5nNvCHqf4wU5sfs2hzIfC4qf9jgFhs/Hb+4XO1wvKL227Rrics6jL36yrK2QF8CtgB7YAM4JcybT8M9Pu37yv17/b8u+UNUP9u8Q0gHwyFgI9p/yQwzrTdFThvkXcb8Khp+zvg3TJlnQI6mrajgFGV1H0QuM+0vQEL5dFUt4J8afgD+cUPV1P6w8DGcso9VVxumePDgN1lju0ARpi2fwHeNG3XQCqfTuXU8QXwuWk7zNTWcIv04mO6cuSXAs+btjthrWyewPRCNu0Hmq6TVXlAhGVbkS6rN8up18PULnfT/iyuQtlEKiPZQHWLtNbABdP2O8gXqk2Fw0LGEalceAMvA68ClwAX4G3gK1vnj/Jf6O0s9hcCL9vqS0V5bbTxPNDdYn801srmKIv9N4CFFvsa4DLQyfIcWqRbnvNOSAXJuUzb3iinbWewUJItzlNti2MfAz+WI/8CsMS03RmpYLQCNBZ5KrvWM4GPLNJqlu2jRVooYABcLY59CMwybU8C1lmk1QVyK7h/lDL9Hwust7jmMderH2Wu0w+Yfu822rSJcpRNpGKWD9S1SHsS2GTR5rMWaU4m2YBy6ip175WT5yAlz9UKyze1fYqp3IfL61dF5SCV/iIsnpXIZ2lZZdP8/lD/7r4/1Y2uMhxYqyhKkml/rukYSAXQUQjR0uT+aAQsMaVVBSaY3HNpQog05IslyKLsi5YVCSEeFSVu9zSkRcHHlBxUJr/ldlWkxeiKhewPSAunLUKRFrOyBAHRZY5FI60UIPv+sGl7CLBUUZQcU9tbCiE2mlxh6UhLrE+Zsi5SDkKInkKInSZXYhrSklNW3pKqwBKL/p5AvrT9y2ZUFOWsKb2vEMIJGXc711SvVgjxkcnNloF8qVBJ3bbwRb5g9lm0aY3pOMgBK2eBtSYX58u2ClEUJRfYi7TgdUBavbYDbU3HbLmIKyLOYjsHqbT+27wV3Yu2jpW6rxRFMZrSg8sKlUOqoijZFvvRlP4dlcqLtJBV1B6zvBCippDhDXGm6/8BpmuvKMoG4BvgWyBeCDFNCOFG5de67Pkp+5uyJAhIURQls0x+y3NT9ro4iIrjEW321Uba9exHec+UyvBBWvssyy63/8XPGyq+j6/luXo15Q9Ffhz9VmFPyi+n+BrnWOS19ZtxBdIqqUPlDkVVNu9iTLFLA4GOppdRHDAOiBRCRJpemguRCtgQYIXFS+Mi0sXuYfHnpCjKPIsqFIu6qgLTgWcAb0VRPICjSOsDwBWky7KYUIvti0jrgI9FXW6KotiMPTTlr27jeCxSibOkCvJBC7AW8BFCNDL1ea5FvrlId1yooijuSJdx2Zg/BRsIOcL/d6Sbyd/U91UW8rbkLgI9y5xfB6X8gSHzTG2+DzhuUkBBXrf7kJZid6QlDBttB2kFcrJod4BFWhKQC9SzaI+7oiguAIqiZCqKMkFRlHCgLzBeCNGlnLZuRlrVGiPdwpuRLt0WwJZyZGye2xtERfdiMZbtKXVfCSGESab4WuVgcV6R1iBLPIWM3S2miqlMWxxGWuDKYtlGS/nvkN6KGoqiuCEtyeZrryjKV4qiNAXqmcp9iUquNfL8lK2vPGIBLyGEpYJs+Zv7J5TXVyh9Xa5nP8p7ppStsyxJSI+E5XPn3/b/Wp6rV8MkUzvnin82VdsV5DW2vMdL/WZMHw8RwKF/UL7KHYCqbN7d9Eday+oirZaNkHFbW5GDhkAqWYOQX7+Wytd04CmTxU8IIZyFHERjy+oCMiZKQcZrIYQYifwCL2Yh8LwQIlgI4QFMLE5QFOUKUhH8TAjhJuTgmepCiI7l1DUDeFcIUcPUtoZCCG+kgldTCDHEFFg/yNT3FaZ6ipBf958gY7z+sijTFfn1nieEaIFU4q4WO2Q8XiJQZAqst5yWJx7wFkK4Wxz7Hni/OKBeyMFZ91VQx3xTmWMofZ1ckYp6MlLh+aCCMg4B9YQQjYQQDsiXEGC21k0HPhclA8SChRDdTdt9hBARJkUrA3lflTft02bk/XVcUZQCSuLGLiiKkliOTDxws+YtXAi8IuRApWDki7yy/L2FEF2EEHpgAvKcbzelHwSGmKzMPZAW3LK8LYSwE0K0B/oAi8qpa1U58m8IIZyEHPw1ElhgOu6KvB5ZQojayPsDACFEc9PvV4/80MgDDJVda1N/Rwgh6poUjLfKOzGKolw0nYcPhRAOQg4ifAwZ6vFPecl0bUKB5y36Wrbu69YP4EdgpOkaa0zl1DallXtvKnLqroXI37Kr6fc8Hulmvh5U9ly9GgqRcZ/OwBxhY2BfRSiKEo30Vkwy3cOtkR+clrQAokx5Ve5CVGXz7mY48JMi5zSMK/5DutaGCiF0iqLsQr6IgpCjpgFQFGUvMlj8G6Rr7ywyrscmiqIcBz5DxkjGIwcybLPIMh2pUB4GDiBfqkWUKCyPIpW246b6fkPGMdpiCvIBvxb5ov0RGe+ZjHyRT0AqX/8D+liEEIBU1LoCi0zKZzFjgXeEEJnIATkLy+urjb5nAs+ZZFKRiuoyi/STSMvkeZMrLAj40pRnranOncjBWOXVcQV5bttQ+uU7G+m2u4w8dzsrKOM0MvZyHTI28O8yWSYir/NOk0t2HXIQFsgY13VAlqkdUxVF2VROVduRsZvFVszjSEWnPKsmyPPxkJAjYb+qIN/14B1kHOkFZJ9+QyqPNlEU5RTwCPA10kLUF+hrUqRBKkR9kS7Eoch4XUvikPdFLFIJe8p0T9hiOVDbdI9Yshl5bdYDnyqKUjyh/YvI+y0T+RuzvDfcTMdSkfdIMtL6DhVca0VRViNjljeY8mwop63FPIy0qMciw3DeUhTlrwolKuYP5MCmg8BK5O+7PK5LPxRF2Y1U4j9HDhTaTIm1srJ781nkM/Q88jc1Fxkv+q+5iufq1ZZTADyADE2aea0KJ/K+bo28h95D3mf5ZdK/v9Z2qdw5FI8kU1H5T2Gy/n2vKEpZt7eKyk1FCDEGOStBeZb0f1N2J+RAipBKslrKPIEccPLC9W7Pfx0hhIIMCThbaWaVW4YQYgFyRoy3TFblzUBjRVHybnHTVG4RqmVT5T+BkHMb9jK5t4ORLq0llcmpqFxvhJxvsK3JXVoLaQn/z9yLiqJMuxsVTZX/LqaQjOqm30wPZJz4UgBFURIURamjKpp3N7fTCgQqdzYCOfXNAmRQ/0qku1pF5WZjh5ztoBrS9T0fOU+kioqKbQKAxcgpzS4BYxRFOXBrm6TyX0J1o6uoqKioqKioqNwwVDe6ioqKioqKiorKDUN1o98gTIHsKncJTWtYzbWucgeTmpZTeSaVOwadVrXL3E2cjktPUhTFt/KcKleLqmzeQHTaa5lXV+V2Zu83j1aeSeWOYeEyNRztbsLPzfFWN0HlJnLPh8vV+UCvM+rnmoqKioqKioqKyg1DVTZVVFRUVFRUVFRuGKqyqaKioqKioqKicsO4K2M2hRBZiqK4lDnmjlxurq3p0DbkMmNVgDmmY1WQS5WlA0mKonS9Hu3RaDTs2rWHy7GX6X9fPwAaNmzIt1O/w8XZhajoKB4d9giZmZk8/PAQJkx40SzboGFDWjRvyqFDh3jn3fd45JFheHp64unhZs7zxBNPMmbMWAwGA1nZWYx56klOnDhh1Y4VK1cRGBCIVqdj299/8+yzT2M0GmnXvj1TPvucBg0bMnTIwyxe/LvNfjg4OLBy1Wru7doFo9HIipWraNmyFdu2/W3ulyVffPEVw0eMMLd1/IQXGfKwXHJcq9NRp04dAgP8yMnJYeOmzdjb2aPV6Vi8+HfeeXuSzTZ8/vmX9OjZk9ycHB57bCQHDpTE1tk6z5GRkXw79Tsc7B0oKiri2WefZs+ePdSvX59x48bz2GOjKrp014CAVs9BfgYc+KnkcGgbqNIWFAMknoQzq0rSHDygzQQ49xdEbwGtPTQfY5HuDlf2w6nlMm+9AWDnAoU5cGQ+5KdbN8M/EsI7gxDW9fk3hOr3AgpkXoEj8+TxGr3At7bsQ/IZOLXMulyAWn0h4SikXpD9qtoOnHxg4yTZJgDfuhDRHRQFFKMsKy1KplVpCyGmFTkv7YYY02qZOkeIHAoOXpCXAod+haLc0nVrdND8KflfaCD+iDxvAC6BUPcB0NpBXiocngcGi5X0yp5ngKaPw6FfrOv5Bwihoev/viU3PYm/v38DgFYjX8PVPxQAO0dnCnKz+eujpxAaLc2HjscjtAYajZao3X9xcu18ADxDa9B82Eto9XbEHdvNgd9Kpv4MadyBer0eBRTSLp9n16wPrdqh0epoPPAZ/GpEohiNHFnxE5cP/k31dn2o3qEfitFIUX4u++Z9TkZcjJW8Vm9H+7Efsvmrl1AUI+3HfoB3WB2Szh8198uSxgOeJqxVd5ZMkL+1Ks06U/veQQCyngVfkX75PK5+IbQa9bpZzsU7gKMrf+bMJut59H1rNKTRg2PRaLXkZ2Ww6csJAPR+ew6F+bkoRiOK0cC6j58GwCO4Ok0HP49Gb4diNLB/wVekRJ/CPSiMmp0HsOeXTyq/gJUhNDR9egoFGckcmf0uAHUHv4STTzAAOkdninKz2fvNCwA4B4RRs/9YdPZOKIqR/VMnYCwqpNq9j+Df+B70ji5sfXuQufiQtvcR2PxeFIORwpx0Tv7+FflpiVbNaDT6fexcPTEWylVSD/30FoXZ6biH1SOi92hcAsI4vuATEo9uB8Dew5f6Q19BCA1Cq+PyjhXE7l5js4sRvUeTeGwH6VHHCG7Vm5C2/XD0DmTbe0MpzMkEwLtOS6p1HQqKvAZnV84gPVq+Z4Lb9CWoeTdAcGXPWi5tl8+QsK5D8anTEhQjBdnpnPztSwoyU6zqb/XSdIryc8F0ffdNnWBOC27dm+BWvVGMRpJP7eX8mlkIrY6a/cfiGhwBisLZFdNJu3AUgMhR73Bs7mSK8rKv7vqqXBfuSmWzHH4EjiqK8iiAEOJtYIaiKAOARqZjs4AViqL8dj0rfu655zlx8gRubiUK4g8/TOd/E19i65YtjBgxkgkvvsSkt95k3ry5zJs3F4D69evz++KlHDp0CICVK5Yz9dtvOHHydKny582by7RpPwDQp09fPvn0M/r07mXVjocHDyIzUz44FixcxEMPDWDhwgVcjInhscdGMn78BCsZS0aOHMXSJUswGo0AfPbZpzg5OfH4409Y5W3atCkeHu6ljk357FOmfCaXZu7dpw/PP/8CqampANzbtQvZ2dnodDo2b9nKn2tWs2vXrlLyPXr2JKJGBHVq16Rly5Z88+1U2rZpXeF5/vCjybz77jv8uWYNPXr25MOPJtO1S2eOHj1KcEgIoaGhXLx4scJ+XxVV20F2AugcSo55Vge/erB9ilQ27ZxLy9TqC0mnSvYN+bDzi5L9Vs9J5Q6gZh+peMbuA6/qUKMHHF1Qqjj0TlCzF+z8Cgqzof5A8IqAlLNSKax2D+yeKhWs4ra4VwWPMNj+udxvMRY8wyH1fOmydY7gXkUqviAVyMQT0PzJ0vlSzsKO43LbJQAiH4Ftn4KLv1Q0d34tz0WTxyDpJOQkyXYln4WoTRDWCap1gjOrS5drLIK908BQIJXNFmPluUuPgXoPwemVss1BzSCsI5xbWyJb9jyDPJehreFCZct+V06Ne+4nIz4GvYOT+djOn943b0fe/ySFufLFF9qkAxqdnrUfPIFWb0+P12cQs3cjOSnxNBn0HPvmfU7yhRO0H/M+AXWbE3d8Dy6+wdTp9jAbprxAYW4W9i4eNttRp/sQ8jPTWP3OSBACOydXAKL3buDc3ysACGrQmsgHnmLr1Fet5Ku17sHlQ3+jKPL3fWrdIrR29lRv19sqr2eVmugdS33Pk50cx8YvJlCYm0VA3eY0e/gF1n/6HJkJl/jro6cAqZj3eX8elw9ZL++td3SmycDn2Dr1FXJSE636uenLFynIzih1rGH/xzm2eg5xx/cQULcFDfs/zqYvXyQ9NgonDx+cPH3JSbVW3K6FkDZ9yUm8iM6+5Poen1+ixFbvOYqifHl9hUZDnQHjObFoCtlxUegcXTEaDAAkn9zD5Z0raTm+9BLiWVfOs+/b8RgLCwhq2ZPqPUaUKt+SEwunkHm59Eqe+WmJnPz9S0Lb9S91vCAzlf3f/w/FUITWzoHmz39N0ondVsqeztEFt9BanF05A4D06BMkn9xDo8ffL5Uv7dwh9p6Qz2TngDDqPfw/dn8+Fmf/KgQ178a+qRNQDEU0HDGJ5FN7yE2+wsWti4la9ysAwa37ENZ5EKf/+M5m3w7NeM2s2BbjEd4Anzot2fPVcyiGIvTO8p0S2LwbAHu/eg69szsNR7wlFVRFIe7AJoJa9SJm0yKb9ajcGFQ3OiCEiACaAu9aHH4HaCaEqH4j6w4ODqZnr17MnPljqeM1a9Vi6xZpZVm37i/uv/8BK9lBgx9mwYL55v1du3YRFxdnla9YgQRwdnamvIn8i/PpdDrs7OzM+aKjozly5IhZiSyPh4cMYdmyP8z7GzdsKFV3MRqNho8mf8zLL08st6xBgwazYH5J37Kz5cNar9ej1+lt9qFf3/v4ZY40Qu/atQt3dw8CAgKA8s+zoii4uUrl093NndjYWHPayhUrGDhocIV9virs3cGnNlzeXfp4aCu4sFEqVwAFFl/avvUgNwWy422X6eQjrZipF+S+i59UyABSzkkltiyOXlJ5KzTVk3wW/OvL7eAWcHFHiSXP3BYFtDrQaE1WQy0UZFmX7d8Qki0+cjJjpRWxLIaCkm2tnbRwAjj7QVoMGAulxTP1fEkf/OpJJRrkf7/6ts9JcdlCK/8oLtu3RDlOPgP+DUpkyjvPCcchsJHteq4BRw8fAuu15ML21eXmCW3SgZh9GwF5OnR2DgiNBq2dHUZDEUV5OTi4eaF3cCL5grQURe1eR3DDNgCEt+nJ2S3LKMyV1yU/K81mPdVad+eEyUqKopgVs6K8kmmctHYOJdekDFWadeby4e3m/YTTByjKt54CSggNkf0f5/DS6aWOJ184bm5j8oUTOHpYzyzjV6sx2YlXyElNsF3/ob/NymF5/SyNYlby9Y7O5KYnm1Nij+4ktOk9V1FG+di7eeNduxlX9vxVbh7fBm1JOCSf5Z4RjcmOiyI7LgqAotxMeb8DGRdPUZBp/ZtJO3/EbK3MiDmFvbvPNbUxLy1B1lfmuiqGIhRDEQBCq5cfabbaX78tKWf2m/ezrpwnL836+hgKSlaj1Ortzc9oJ99QMmJOYSwsQDEaSbtwDJ+60ghgyC/xHGjtHLB955VPUMuexGz+3dyPwmzpzXH2CyXt3GHzsaK8bGnlBJJP7MI/ssM11qTyb1Etm5K6wEFFKX7rg6IoBiHEQaAecO5GVfzZlM955eWJuLi6ljp+7NhR+vbtx/Lly3jooQGEhoZayQ4YMJAHH+h/VfWMGTOW518Yh52dHd3u7VJuvpWrVtO8eQvWrFnN779fvQFXr9dTrVo40dGVzxjx9NPPsGL5cpuKMYCjoyPdu/fg+eeeNR/TaDTs3r2X6hERfPfdVHbv3m0lFxQcxKVLJVbIy5cvERwcTFxcXLnnecL4caxctYbJH3+CRqOhQ/u25rR9+/by0v8m8tmn/9LVVrsvnF4FOvvSx518wbOatEIaiuD0Csi4BFq9tN7tmy6tcLYIaARxh0r2M69IxTFmm1TGdA7SkllooQzkJEvFy8FTutj96kklEsDZ9AJrPla62M/9JZXH9BipvHY0uUkvbpcW2rJ4VpWu66vBrx7U6CmV5f0z5bGseIjoIdtsKJTKecYlmWbnAgWmj5aCTGsLsBkBrZ4HJ2/ZznTTvZAVJ933icchoKF0m0PF57koF4TO+hxeI40eHMPhpdPROdieOsenegPyMtPISrwMwKUDWwhu2Jq+7y9AZ2fPwcXfU5CTiWeVmuSmJZnlctMScfSQ18zVLwSAzuO+QGg0HFs1m7gTe0vVo3eU56x+n+H41YgkK/EK+xd9TX5mGgARHfpR854H0eh0bPrqf1bt1Gh1OPsEkpNSzsePBREd7yP2yA7yMqzdocWEt+lB3PE9VserNO1kVrzL4uoXgkaro9Pzn6Kzd+TMpiVE714HyI/Gjs98hKIonN+2kvPbZHjIgd++o8PTHxJ5/xMgNGz47HlzeSkxp6lz7yBOrVtYaZ/K7Wuf0ZxbPQudve3r6x5Wj8KsNHKTrwDg5BOMgkLDEZPQO7uTcHgrF7cuvur6ApvdS8rpfeWm13rwOTAaSTy2g+iNC8rNV4y9uw8NHn0TR+9Azq35yaYL271qHRKPWluabeFTtxXh3R9F7+zOkZ/fASA7Pppq3R6RVtyifLxqNS1lfS0OHzDk53Bwxms2y1UUaDjyHUAhdvefXNnzJwBO3kG4h9WlWrdHMBYVcm7VTDIvnyXrShTedVqScHgL9u6+uAZVx97dh8xLZyjKy0Zo9egcXaWyr3JTUC2bEgE2P6rKO267ECGeEELsFULsrTw39Ordm8SERPbv32+V9vjoxxgzdiy7du3BxdWVgoKCUuktWrQgNyeHY8eOXVXbvvtuKrVr1eDVV17m1Vdt/6ABevfqSWhIEPb29tzTufNVlQ3g4+NDWlpapfkCAwN58KGH+Oabr8vN06dPX7Zv32Z2oQMYjUaaNWtCWNVQmjdvTr161pY7IaznNVUUpcLz/OSTY3hxwnjCq1XlxQnjmTZ9hjktISGBoMCgSvtUIT51pCUw87J1mkYj3c+7vpFu3shH5PHq3SB6a2krYFkCIuHKwZL90yule7vV8/J/XprZYmKmKBdOLJHxj83HQG4qFFurhVZaS/d+D0fmStezzgEcvaXVccv78s8rQirIZbFzK22ZrYiEY9J1fvBnGb8JUoGN2iRjJZs+JpXnsu2vFEWGGWx5X7r0XUwT7R9dJGNIWz0n416N0gpS6XkuyAJ7N9tpV0Fg/ZbkZ6aRevFMuXmqNLuHmL0lypVXWG0Uo5Hlrw1m5VuPUrPzQzh7B9gWNlmOhFaLi18wG7+cwM5ZH9BsyHizclmM0Ghx8vQj6fwx/po8luSo40TeXxLicHbLMla9PZzDf8ygbo8hVlXZubhTmGPDol0GB3dvQhp34MzmpeXm8a0RSbXWPTn8R2nLp0arI6hBay4e2GxTTmi0eIbWYOt3r7Pl21eo2+MRXPxkXOSGz8fx1+SxbJ36GhHt++FTXVqvI9r34eDi71jxxlAO/v4dzYeWhALlZ6bh4O5daZ/Kw7tWMwqy0smKLd8W4RfZgfjDWy36oMG9al1OLPyMA9Mm4lOvFR7VG15Vff6NOuEaHEHMFtvK6fGFn7H3q+c4MO0V3MPq4t+4cqttfnoSe79+jl2fPUlA487obYRg2Ll6UlgmPKE8ko7vZPfnYzn6ywdUu3coADmJl4jZvJjIUe/QcMTbZF+5gGIw23W48Ncv7Pz4MeIPbia4lXVIBsCBHyay79txHJ71NsGteuEeJp//QqtF5+jC/u9e4tzqn6j7sPSWxe37i/z0JJqOnUJE79Gkx5xEsfDMFWanY+/mdVV9Urk+qMqm5BjQWIgSP4JpOxKwHklTDoqiTFMUpZmiKM2uJn+bNm3p07cvZ86e59df53HPPZ35+efZAJw6dYpePXvQsmVzFsyfx/nzpR9oAwcNZr6FC/1qWbBgPv3u619hnvz8fFYsX06/vvdddbm5ubk4ODhUmq9R48ZUrx7ByVNnOHP2PE5OTlYxpgMHDSrlQrckPT2dzZs30617D6u0y5cuExJSYgEODg4hNja2wvM87NFHWbJEPrx/+20RzZu3MMs7ODiQm/cvB4h4VJVWtfYvQ8OhMp6yvsk1n5deEnOZcVEqD3pnqSjV7CVlqrSTA3pC25SU6RIoXV6WCmx+BhyaAzu/hLOmIP+iEreWmcQTUrnd/S1kJ0q3enFbEo9JBS83VaY5+UhraXqMVMgMBTK20b2KdbnGQulmvxZSL0grpN4U63Z5j2z/nu+lNbG4bQVZYGeySNu5Vq7UFuVJa6x3Lbmfkwj7Z8hY1biDkGtypVZ2nrU6aWX9h/iE1yOoQWt6vz2HViNfw69mI1o+WhI6IjQaQiLbcXH/JvOxqs06E3d8L4rRQH5WGsnnj5mtmsWWTABHD1+zSzg3LYnYwztQjAayk+PITLiEi29wqbYUZGdQlJ9rjoW8uH8LnqERVm2O2beJoIZtrY4bCvLR6u0q7bNnSHVcfIPo9dbP9H57Djq9PT3fmmVOdw+qRvMh4/l72psUZJe2KgXUbU7qxbNma2tZctMSiTuxB0NBHgXZGSSePYxHsIxyyjOdi/ysNC4f3oZ3mLz2VVt24/JBOdDs0oEteFWtZS5Pq9djKKzgg64S3KrWxadOC1q9NJ26g1/CI7whdQaMN6cLjQbfeq1JtFA28zOSSb9wlMKcTIyFBaSc2odrUOWRWp7VI6nSaQBH5rxndhmXpcBkSTYU5JJwaDNuITWvui8FmSlkJ8TgEVbXKs1YWIBGp7/qsgDSo47h4BWI3hQXHLfvL/Z9O46D01+hMDeL3ORYK5n4Q5vxrd/G6nhx+0AqiUnHd+IWUgOA/PRkko7tACDz0hlQjOid3VCMRs6t+pG937zA0V/eR+fgXKpOjU5vDk1QuTmoyiagKMpZ4ADwusXh14H9prQbwuuvvUq1sCrUiAhn6NCH2bhxA8OHy5VofH1lPJMQgldffY1pP/xglhNC8OCDD7HwKpXNiIiSl0qv3r05e8ba0uLs7GyOb9RqtfTo2ZNTp05edV/S0tLQarXY29tXmG/1qlWEhgRRIyKcGhHh5OTkUKd2yUPRzc2NDh06lor99PHxwd1dBn47ODjQpUsXm21bvmIZjwwbBkDLli3JyEgnLi6uwvMcGxtLh47ShXpP586lzk2NGjU5dvTqLMflcnYNbPkAtn4Eh3+VStBR03VLOCYthSAVO41WxlPu+U7m3/qRHJF9foN0CxcT2EgqTZbonZCGeOSAmsvlGNeLXdA6RzkApjiONOGoVISLy3L2lbGMuWnSUio08s+zmm03enaC7ENlOFpYklyDpUW12E1d3DYHD6nkFltuE49DUFO5HdRUnrey6J1LBl9pdOBdQyrMluUiILwLXNwpdys7z3autuNOr5Ijy2ay4o0hrHxrGDt/ep+E0wfZNXuyOd2/VhMy4i+Wco/npCTgV6sRIGPYvMLqkBl/kbyMFIryc/EKqwNAWIuuXD4sX7KXD23Dr2akqatuuPoFk21y21oSe3QnfjUiTXU3JuOKHHFuqZgG1mtpdulbUpibhdBoKlU6rhzbzfJXB7HyrWGsfGsYRYX5rH57BABOnr60efwtds2eTFaCdR1Vmt1Trgsd4PLhHfhUbyDjWfX2eIfVJiMuBq2dg9mNrbVzwL92U9JjowCphPrWkJZDv5qNybTom4tfCBlXoirsT0VcWDubHZNHsfOTxzk+/xPSzh/mxKIp5nTP6o3ISbxEfkZJnGjK6f04B4Sh0dshNBo8qtUjO6HiAYgugeHU7D+Wo3PeM8cklkVoNGbFTmi0eNduTnZ8xSFN9m7eaHTyA0Ln4Ix71Trk2Lj2OYkXcfQOrLAsAEevkjwuQeFotDrzgJ7igTv27j741mttjmG1LNenTgtyEi9ZlavR26O1czRve0Y0Ijte3rtJx3eaLcOO3kEIrY7C7Aw0ejs0evku8oxohGI0kmNxnu1cPMlLqzwkROX6cbfGbDoJISzv6inAY8DXQoizyLf2DtOxW8LgwQ/z1JixACxduoRZs0qmy2nfoQOXL1/iwoULpWQ+/Ggygwc/jJOTExeiYpg580fefedtxo59hs5dulBUWEhqWiqjRo0wy+zdu59mzZrg7OzMkiV/YG9vj0arZdPGjfzwgxwV2axZMxb9thhPT0969+nLm29NolFkA8qy7q+/aNuuHRvWrwdg46bN1KpVGxcXFy5ExfDEE6P5a+1aKzlL+ve/n7/+WktOTkmcXGBgIDNnzkKr1SI0Gn77bRGrVq4E5LROANOm/cDqVavo2aMXJ0+dITcnh9GjK5+2aMxTTzBlyhfodDry8vMYM6bEtdip0z2sWr2y0jL+MZf3yOmK2owHo8F69Hh5+DcsiXUsxqs6RPQEFGkxPGExbUyrF0pGsde6D1xND/jz60qsh8mnwbumnAJIMUq3fGEOxB+WZbceJ/MlnZLW0bIknoCQViXKa5W2Mg7SzhVaj5cjy4//JgfnBDWR7ntjoVTAi4l8VCq6igFOLC0ZrHRho7QKB7eQyt+hX+Rxezeo+xAcmAn2rlB/kEkpFhB3GJJM7QxoVGKxTDgKsVcR5eIWIi261+zKv3pCm97DxTLK1dktf9D8kZfo/tp0QBC180/SY+XvfN+Cr2jxyIto9fZcOb6HuOPyXMed2It/naZ0f20GimLk0NLpZqvhvS9/bx7pfXjpDFoOn0ijB8eQn5VunvYnosN9+NdujNFgoDAnk92zP7bZ3rgT+/CpXp+EU3I6sXtemIKrfyg6e0f6vDuXPXOnEH+i/HNbt+cw7J3daDLoOYBSUxRp9fb4127KvnlflJKp3q4PAOf+XkFmfAxxx/fQ7ZVpoBg5v301GVeicPYOoO3jkwDpVo3Zu9Ecs7p37hQaPTQWjUaLoaigVPl+NRoRe7T0jBbXE7+G7c1KVTFFedlc2vYHTcdOARSST+0j5ZRsa3iPEfhHdkCjt6f1xJlc2fsXUevnUb3nCLT2jtQzuYjz0hM5OkeOBG/2zBfs/eYFhFZPw5FvIzQ6hEZD6rmDxO6Rz1rX4AjqP/IqOkcXvOs0J6zLEPZ8+QxOfqFU7zkKGSkmuLh1qU0FNfnUXoKa9+DKXjkIKrh1H6p0eAA7F0+aPfcVKaf2cWrJN/jUb01A484ohiIMRQUcn19yH9Ub+jJ6J1cUg4HTy743TzsU3n04Tr7BKEaFvLQETv8hp/Oyc/Wi1gPPcOTnd7Bz8aD+I3J2BKHREn9os3nA0pV966j9wHM0f/5rjEVFnPztSynv7EHDkZNQFIWCjORSHwGuwRFkXDxVyq2ucuMR5Y1MVvl3CCGUu21t9EaNGvHCC+MYMWL4rW7Kv8bOzo4NGzfRsUN7DBbxReVRuOrFSvPc8TQfI+cQteW+v92o1U9aVFNsOzbuxrXRPUKqU7PzQ+y2sM7ermh0eu55/jM2fP7CVSkdd/va6I2f+Igjs9+9I+amjOgzmqQTu82j1W1xz4fL911tOJzK1aG60VWuGwcPHmTTpk1oNLf/bVWlShVeffWVq1I0VUycXlEy0vt2JyuuXEXzbiXt0jkSTx9ElDNFzu2Ek6cfh5fNUK1bV8nZVTOxtzFV1e1IdlxMhYqmyo1BtWzeIO5Gy+bdjGrZvLu4Gy2bdzN3u2XzbkO1bF5/7taYzRtOgxAvVo7veauboXKT+GD6plvdBJWbyKujypn/VOWOxL7vlMozqaiolMvt7w9RUVFRUVFRUVH5z6IqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKpoqKioqKioqKyg1DHSD0H0Tr4oVXj6fQOrkDCllHNpJ14M9SeVyb9sKjwxAuf/cUxrwsNA4uePd5Djv/cLKPbyFt42xzXt+HXkPr7IFSJJfnSlw8GWNumbVuNVq87h2N3i8MITRkn/ibzD3LzWmenYdjH1IHFIX0bYvIPbsHras3Xt2eQOPoijEvm5Q132HISrHqj9Dq8XngfyT+9gF6n1A8O49EY++IYjSSsfsPck+XnljZo9OjONfrwOVvR9s8P+7tBuFYrREA6buWXrW8nX84foMnkbzqa3LP7AGNFt8HXyHxtw9u6OTdleHq7Ue/Zybh7OGNoigcXLeEPatKT/Desu9Qujz6PJ+PupfczHQCI+rS68lXTamCrYumc3r3plIyD038FE+/YKZPeNiqTo1WS6+nXicgvBYajZYjm1exY+nPAAx67UtcPHzQaLVcPHGQP3/8uNQUMbVbdeaBCR8xc+Jw4s5bT/Cus7Nn8Gtf8uvbY/GtUp0ej7+MvaMzitHAtsU/cWL7ulL5u416kYb39OHTYZ2syvILq3HN8g7OrvQe+wae/sEUFRawcuq7JF48j0anY8gb3/Lr22NRjLdwSisHd2g4WE5EryhwcRdEyyUVqdEd/OoBilym8/ACuRSp0EL9B8E9RMqc+ANSzsu13luNLV127H44sax0nUGNoVqnkn3XANj2JWTGglswNBwEGj0knpRlFxPQEGp0k3VmXoFDc637o9FB89Gw6we5YEC9B0BnL2XOrYe4QzJf/QGy/Qi5hOjhBeWvS6+zh/YvQfxROL605HiNHhDYUP5eY3ZA9Dao1lEuFAByUn8XP1g/CYoKoMUTsPuHW/r7DgkJ4cdZswjwD8BoNPLjjOl88/XXpfKMGz+ejz7+hCB/P5KTkxn88BDGTyhZx71Bw4a0bN6Mw4cO8fa77zL0kWF4enri7eFus069Xs+3331P06ZNMRqNTBg/ji2b5ZrzjZs0YcaPM3F0dGTN6tWMH/cCAJ989hkdO3YCwMnJCV8/P/x9rNeOd3BwYPmqVXTv2pX6DRrw9bff4ubqhsFg4KMPP+S3RQvNed9+910efPAhDAYD0374nm+/+aZUWQ0jI8uVDwsLY87cuXh5enHgwAFGDn+UwsJC3NzcmDV7DqGhoeh0Oj6fMoXZP89Cr9ezeu1aunftqk5Z9x/ktlM2hRBhwApFUepbHJsEZAH1gXuBcEVR8oUQPsBeRVHCiuWACUDxrMQRwGUgFzgMPAVMBxoiVxFKA3ooipIlhDAARyya0l9RlKgb0UdFMZK2ZS6FCVEIvQP+Q98lL/oIRSlybVetixf2VepTlFGyzJ1SVEj69t/Q+4Sg9w6xKjN5zVQK4y9YHS/GqUYLhFZH/JxXEDo7Ah6dTM6pHRgyknBreR+GnAziZr0ECDQOcvk/jw5DyD7xNznHt2IfWhf3dgNJWfO9VdnO9TuSe3YvKApKYQEpf35PUVo8GmcPAoa+R170EZR8uWKQ3r8aGgenctvpUK0Rdn5hxP3yGkKrx2/ga+RFHUYpyK1YXgjc2w0iL9pifjWjgfyLx3Cq1Yqck9utZW4SRoOBdbO/JP7CKewcnBg5eTYXDu8m6ZK8Xq7eflRr2JL0xJIlCBNjzjFz4nAUowFnD29Gf/orZ/ZuNStRtVp0orCCdd1rt+6KTq9nxoQh6OzseeLzBRzftpb0xCssmfIqBbly8uYHJnxEnVZdOL5drh5i5+BEs56DuHz6SLllR97Tl1O7NqIYjRTl57P860mkxl3ExdOHUZNnc/7gTvJzsgAICK+DvbNLuWX9E/k2D4wg/sJpfv/kf3gHVaX76P8x952nMRYVEXVkD3XbdOXY33/aqu7moBjh5ArIuCyVxbbPyxWcshLgwiY4Y2pb1bYQ0RWOLYbQlvLY31Pk8pvNRsP2r8CQD9s+Lym7zfMQZ+PaxB6QfwAuAdB0hFQ0QSqHR3+HtGho9hj41JIrRTn5QPXOsONbuZqTednPMoS0gLijgCKVx8Pz5cpU9m6yPUmn5ET/J5dBUb6Uqd1X9u98OctT1ugulWlLgpuBowds+UTWVdyeC5vlH4BfHQjrAIWmez/5LARGlvT9FlBUVMTEl17i4IEDuLi4sHP3HtatW8fJE/JDLSQkhC5d7yU6umT1nvnz5jJ/nlTs69Wvz++Ll3D4kFTaV65YwXfffsuxk6fKrfOx0fJDu2njRvj6+rJsxUratGqJoih8/e23jB3zFLt27mTZipV079GDP9es4SUL5Xbs008T2aixzbJHjBzJH0uWYDQayc3J4bERIzh79iyBgYHs2L2Hv9b+SXp6Oo8OH0FISCgN6tVFURTzEsyWVCT//ocf8dUXX7Jo4QK++XYqI0c9xrQfvuepsWM5ceI4D/S/Dx8fH44cP8G8ub9SWFjIxg0bGDBwkPncqfx3uBPd6Aag3HUKFUX5U1GURoqiNAL2AkNN+48CzwPxiqI0MCmzjwGFJtHcYjnTX9SN6oAxO43CBFm8UphHUUosWhcvc7pHp0dI3zpfWg6K+1WUT0HsaZSiwrLFXTVCbw9Cg9DZoRiLUPLlA9u5Xkcydy8vrgljnnzR672DyY+R61TnXzyOY3hTm+U61W5D7rl9ABSlxVFkWpPWmJ2GIScdraOrqQECj/YPk7a1/DXf9V7B5F86CYpR9jkxBoewhpXKuzTqRu7ZPRhzSlt0c8/uw6l2m8pPzg0kOy2Z+AvyxVGQl0Py5Qu4eJU8mO8dMY4Nv3yN5Zy4RQX5ZsVSZ2df6l7QOzjSou8Qtv1eZklLSxQFvb0jQqNFb+eAoaiIfJOCWaxoarRatDo9CiVldxj8JDv/mENRYTkWKaBe+x6c3iOX6Uu5EkNqnFyTOCs1iez0VJzcPAG5nnOXYc+yYc7X5Zb1T+R9QqoRdXQPAMmx0bj7BuLsLn8/p/dspl77HuWfl5tBfqZUNEEqi1kJYG+yUBUrYwBau5JtF3+pOAEUZEtlyr3MR6WTD9i5yOVKKyKoEcQelNv2rnJN+TSTonN5n1yXHqSCG729ZNnQgnJWjwlqXLJefU5SyRKo+RnSOmvnYqNverC4r0rhFiyXOU06Xfp4ldZw9q8SOVvtCWxcWrGMPyqP3ULi4uI4eEC2KSsri5MnTxIcXLIe/SefTeGVlydS3pzXgwYPZsGCkmfa7l27iIuLq7DOOnXqsnHDBgASExNJT0+jabNmBAQE4Obqxq6dOwH4Zc4c+vW7z0p+4ODBLFxg+zk8eMgQli+TlvMzZ85w9qy8L69cuUJiQoJZqXziqSf54L13zf1KTEy0Kqsi+U733MPi338DYM6c2fS7T7ZTURRcXeQ7w8XFhdSUFIqKigBY9scfPDxkSIXnRuXWcCcqm18A44QQ/8RqG4i0dAKgKMopRVHyK8h/w9G6+aD3rUpB3DkAHMKbYMhKpTAp5prK8er2BP5D38etZX+b6TlndqMU5hP0xDcEjv6CzH2rMOZnI+ylldC9zUP4D3kP797PonFyA6AgMQbHGs0BcIxohsbeEY1DGSuVRovO3Q+DhRW2GDv/cIRGR1FaAmBSCM/tx5idVm4/ChKjcagWidDZoXFwwSG0LjqTIl6evNbZE8eIZmQdXm9VXmHyRez8w8ut72bj7huIf7VaxJ6RL+8azdqTmZJIQvQZq7xBEfV4fMp8Hv9sLqunTzYrnx0HPcWu5XMpzC9/2ciTO9dTmJ/L89NX8fR3y9i1/BfyskoU8cGvfcXzM/6kIC+HkzvlS8s/rCZu3v6c3f93ueVqdDo8/INLWWGLCYyoi1anIzX+EgDNegzg9N6tZKclX8WZuXr5+Kgz1Gp5j1nG3TcAV28/ABIvniMoou5V1XdTcPQEtyC5DnsxNXpAp9eka7jYypkZC351pZvY0VMqmmVXawpqBFcOVV5nYCO4YlLI7N0hL70kLS8dHOTvG2cfcPaFVk9D62ekxbMsQgtO3pCbap3mHgoaLeRYXJ8GA6Hzm7LcqG02Giek1fPUCuskJ29ppWzznLTAOvmUTtfoZRvjLSy7mXHgEWrrLNwSqlatSmSjRuzeJUN/+vTpS+zlyxw5XP6KNgMGDGTB/PI/wG1x+PBh+vbrh1arJSwsjMZNmhISEkpQcDCXL18y57t8+RJBFoovyNXTwsKqmZVVS/R6PdWqhZeywhbTrHlz7OzsOHdOvqvCw6vz0MCBbN+5i2UrVhIREVFhmy3lvb29SU9LM7vDL1+6RFBQEADfffstterUJuriJfYdPMSE8ePMCu2xo0dp2kydi/2/yJ2obMYAfwPD/oHsTGCiEGKHEOI9IUQNizRHIcRB098SW8JCiCeEEHuFEHtTsv/9+tBCb49Pn+dJ2/wLSkEuQmeHW4t+pG//7ZrKSVk9lfg5r5Cw8F3sg2vhVKedVR67gHAUo5HY6c9y5cfxuDbphdbdFyE06Fy9yY89Tfzc18m/chaPDvLLMW3LXOyDa+M/9D3sQ+pQlJliFQuncXTFaHKRlzru7IFXjzGkrJ0GKGicPXCq0YKsg2sr7Et+zFFyLxzEb9BbePd6mvzYMyiKsUJ5W5ZgM4qCYixC6B0qrPdmoHdw5IEXP2LdT1MoyM1GZ2dPmwdGsmXBDzbzx549xvTxg/np5RG0uX84Wr0dfmE18AwIsYrfLEtQRD2MRiNfPdGLqU/3p2XfoXj4BZnT57//HF890QutTk/V+s1ACLqOGMf62V9WWK6Tqwf52ZlWx509vOn37NusmPouKAounj7Ubt2FvasX2ijFmmuR37F0Ng7Orjz2yS806zmQuAunMZpeWorRiKGoELsKQjVuGlo7aPyojK+0tPqdWQOb3pexl1XaymOX9khFsM3zUOc+SI2yjkO0VCLLwz1UurqzpHeBihY5Exqp0O36Dg7+Cg0eklZQS+ycS1zWlti7yrjUIwspZcE8shA2vCutuYGR1nJVWsu4UUsFuBiNDgxFMnzg4i5oMKB0ul9dSIsq0x4FjAYZrnCLcXZ2Zv7CRbw4fjyZmZk4Ojoy8dVXeHvSW+XKNG/RgpycHI4fO3ZNdc36aSaXL19ix67dfDrlc3bu2IGhqAghrC94WYvqgEGDWPL77xhtLOXp4+NDelqa1fGAgAB+mvUzj49+zFyevb09+Xl5tGnVkh9nzOCHGTPKbW9Z+YraeW+37hw+dIiw0BBaNG3CF19+haurtHQajUYKCgpwcSk/NEfl1nDbxWxSru+l1PEPgGXAymsqWFEOCiHCgW5AV2CPEKK1oignMLnRK5GfBkwDaBjq/e/WAdVo8e7zPNknt8t4R0Dn7ofO3ZeARz4AQOvqhf/Q94if9xbGHBsPZxOGbGl1UArzyD65HbuAcHJOlLZOOdVqI+MZjQaMuRnkx57Gzj+c3NO7MBbmmduQe3oXLvXl6inG7DSSV0jlQ+jtcYxobo6dNJ+TogKEVl/qmLBzxPe+F0nfvshssbXzC0Pn4U/gyM9M5dkRMPIz4n6aQFkydy8jc7d043j1HEtRalyF8nb+1fDu9Yw8rY6uOFSLBKPR7NoXWj2K4Z+HH1wPNFotD06YzLGtf3LKpCh6BoTg4RfEY5/8CoCbtx+jPp7DrFdGlrLmJV+OojAvF9/Q6gRF1CUgvDZjv12KRqvF2d2LoZO+49dJY0rVV69dd84f3IHRYCAnI5VLJw8RWL0uaQmx5jyGwgLO7N1KzeYduHL2GL6h1Rk66TsAXDy8GTDxUxZNfrHUIKGigny0ertSddk5OjPolc/ZPO97Ys8cBcC/Wi08A0IZ8/XvAOjtHHjq69/5/tkHrc7NtcoX5Gazcuq7Zvmx3y4t1S+tzo6iwlvqsJCKXONHpcs3/qjtPLEHpAXv7FpTnOfykrRWT8tBNsW4BsoyMy5bl2NJYKMSFzqYLJkWg0wc3CEvoyQtLUbWnZsKWYnS2pleYhnDUCiVQEt09tB0lLTKptnywChy0FC1jnB5b+kkz6rgWU0qnTp7aRktyofTq2V7iq2W8UelldSqbzaUbY0OjLf2963T6Viw6Dfmz5vLH0ulrSK8enXCwqqxZ79sc0hICDv37KVd61bEx8uPgYGDBpVyoV8tBoOhVAzmpq1bOXP2DGmpqQQHl4RfBAeHcCU2tpTswIGDeP65Z22Wm5ubi71D6Q8OV1dXli5bzltvvmm22IK0Ri5ZvBiAP5YuYfqPP9os05Z8UlIS7h4eaLVaDAYDwSEhXLkivSXDR4zgk4/lsItz585xIeoCtWrXZu8eGTpjb29PXt6/N/aoXF9uR2UzGfAsc8wLMAcqKYpyVghxECjzNKocRVGygMXAYiGEEegFWA+5vcF43TuaopRYsvavNh8rTL5E7A9Pm/cDR31O/Nw3zDGUNhEaNPZOMo9Gi2N4Y/JirF9uhsxkHELrkXNiG0Jnj31gBFkH1gCQd/4A9qF1yL94HPsq9ShMli80jYMLxrxsQMGteT+yj222KlfJzwGNRsZoGQpBo8Wn7wtkn9hK7pnd5nx5Fw4SO+0Z837w0zNsKpoIgcbeGWNeFnqfUOx8QkmJPgKKsVz5KzPHl5zXbk+Qe+GAWdHUOLjIOM5bOToZ6D3mDZIuX2D3ipLA9sSYc3w5uiS+cOy3S/np5eHkZqbj7hdERlI8itGAm08AXkFVSU+MJe78CfavlQqYu28gA1+eYqVoAqQnxVO1fjOOblmN3t6B4Jr12b1yPnoHR+wcnMhOS0ZotFRv0oaLJw6Sn5PNF491M8sPnfQd62d/ZTUaPS87E41Gi1Zvh6GwAI1Ox0MvfcyRzas4ubMkjOHc/m189XjJcq4vztlkU9H8J/L2Ti4UFuRhLCqiUZf7uHjioDkO1dHFnZyMVLOl85bRYCBkJ0DUltLHnXxKYh7968k8IF3EAvkb8q4hFcCshBK5skqkTYQcyb3zu5JD+ZlSmfOoIhXD4KZyhDdA/DFZ7uW9oHeSru+cMrNNFOVKJVejA2ORdKs3Hg6x+yCujGvYybvEpe5bVyqvZTk0r2Q7uJkMFzhtegbGHwXvCGnl9QqHbIvQHJ2DPHa4zMAQvZOMG72Fo9EBfpg+g5MnTvDlF1+Yjx07epTQoEDz/qmz52jTsgXJyfIcCSF44MGH6HpPp2uuz9HRESEEOTk5dOnalaKiIvOApMzMTFq0bMnuXbt4ZNgwpn5bMkK8Zs2aeHh6snPHDpvlpqWlodVqpdUyPx+9Xs+i33/n11/mmOMri1m27A863dOZn2f9RIeOHTlz+rRVeRXJb960iQcefIhFCxcwbNijLF8mZ0m4GBPDPZ07s+3vv/Hz86NmzVpcOC8Hk3l5eZGUmGiO4VT573DbKZumkeFXhBBdFEVZL4TwAnoAXwL3WGR9n2u0bAoh2gLHFUVJFULYAXWBTdep6VeNXVBNnOu2pyAxBv+h7wOQvm0heVEVx2MFjvocYe+I0OhwrN6MxMUfYchIxveBiaDRIjQa8mKOkX1EjgB1CG+CnX81Mnb8Ttahv/Dq9gQBj34ECLKPbaEwSQ7MSNs6H68eY9B0fARjbqbJ9Q32oXVwbzsIUMi/dIrUjbNstisv+gj2wTXJjzmGU81W2AfXQuPggnPdDgCkrP2BwsTyY1D1/tVwadCF1HUzQKPDb+AbABgLckle892/epHYh9ap9LzeaEJqR9KgYy8Sos/w2Ce/ALBp7lTOHSh/hHxo7Uha9x+O0VCEYjTy54yPyc0s37oNMv4zsHodtiyYxr4/F9Fn7Js8PmU+QsChjStIjDmLs7sXAyZ+hk6vR2i0RB/dy/61i6+pP+cP7yK0diRRR/ZQp3VXQus0xtHVnYb39AFg+bdvkxBlHYNaTEB4HZp0e4BV37//j+R9QqrR95m3UIxGki5dYOV375nTqtZvWuF5vSl4hkmlLuMKtB0nj51eLd3HtXpJpU5RIC9VjhIHsHeRI9BRpOXRUikD6ZLeW8Zy5FdXKmtnTKElXtWkdTC3jMJ4bLGc+khrmvoo8aQ8nnQKfGpC+xflb+zUCii0Dokh6bS0Riafke3wCpfu9WAZz83hBXLapIaDpbUSIWNQj5nuK7cQqNIKjlYSHnR+I0QOgbD2clqjo4tK0vzry3aU9VB4Vy/pzy2iTdu2PDJsGEcOH2b3XvmR++Ybr7Nm9eoK5dp36MDly5e4cKH0gK8PPvqIQYMfxsnJiXNR0fw080fee+cd+vTpS5NmTXln0iT8/PxYsWo1RqOR2NjLjBo+3Cz/7DNPm6c++nPNmlLtGDh4MIsWlp52rSzr/vqLtu3asWH9eh4aMJB27Tvg5eXNsEdlHaMfG8XhQ4f4ZPJkfp7zC889/zxZ2Vk89eQTADRp2pTHn3iSMU8+UaH8a6+8zJy5c3n7nXc4ePAgP82UAx4/eP89Zsz8iX0HDiKE4LVXXjEr6B073cOaNRWfV5VbgyhvBNx/GSFEXeBbSiycnyiK8qsQYhZyWqTfTPkWA00spz4qM2XSJuBFRVH2mvYfBV5E2hA0SGV1oqIoihAiS1GUqw4EaRjqrawc37PyjHcBet+quDbtaXNapFuNd5/nSd+2kKJU6wEt18Kc7dZf7Xcr/mE1adF3CMu/nnSrm2LFgy9OZuPcb0mJvbYBdmV5dVTH69SiOwC3IDnd0OFrd/fecBo/KhX5bBtW1GvAvu+U69Sg25/IRo14/oVxjBoxvPLMN5kFi37jjdde5bQNK+q1UGAw7lMURR1pdB257SybAIqiHKe0FbP4+Igy+w9YbEch5+G0TO9UZn82MBsbXIuiqVKawsRo8i8eByFsD9K5VWi05J7b968VTZXSxEedJvroPoRGU2oy+FuNRqfj1O7N/1rRVClDRiyknEN+o/+Hft9CK0MB/qWiqVKaQwcPsnnTJjQajc1BRLcKvV7Psj/++NeKpsqN4ba0bN4OqJbNuwvVsnl3oVo27y5Uy+bdhWrZvP7ciVMfqaioqKioqKio/Ee4Ld3otwN2jnpC6wVVnlHljuDdif/BeDWVG0aRUfUI3U0c++iaJzZRuY2p8ZL6PL/eqJZNFRUVFRUVFRWVG4aqbKqoqKioqKioqNwwVGVTRUVFRUVFRUXlhqHGbN4u1BsAvnXkahjbLUZGugRC3QfkOst5qXB4HhjyIaAxhFmMmHUNgJ1fylU3Ih+Rq3koRkg8AWdsTILrVQNq9pTThygGOL3SNL0JENAIqplmnsrPgCPzSiZ79m8I1e8FFDmR85F51mVrdNBkNOz9QeYLagrVusi0C+vl6iNlCWkFoa3l1EmGfDj+e8nqKuXJh7aBqu3kqiwbJ5W00aeOnOz63F8Vn/NbxPfTptOzV28SExNo1riR+XiDhg35+pupOLs4Ex0dzchHh5GZmcnghx/mhfElqy01aNCQ1i2bc/hQyWT1ixYvoVq1aqXKK0av1/PN1O9o0rQpRqORF8ePZ+uWzTg6OvLrvAWEVw/HYDCwauVK3njtVQAeGfYoH3w0mdhYuZrU91OnMuunmVZlOzg4sGzFKnp064rRaGTosGG8/LIs46OPPuDXOXOsZJ57/gVGjBpFUVERSYlJPPXEaGJi5HRF733wIT16ylkePvrgfX5btKiU7JTPv2DY8BH4enkA0LNXb5o2a8Z777xd2Wm/ZfQd+wY1m7UjOz2V78cNNh/3r1qD3k++jN7BifTEKyz+4g0KcrOp374Hbe4bZpEvgmkvDSM+6jRDXv8KF09vNFodMccPsHrGxzann/KrGkGfJ1/BzskFxWhkxsThaLU6Rrw33ZzHzduPw1tWs/anKbTqO4TGXe7DaDSQk57GsqnvkJ4YZ1Wuzs6eoa9/xexJY1CMRhp26k37h0YBsPW3mRzeZL3ORkVld3nkGWo0bQfAlkU/cny7/M2G1W/GvcOfR6vTc+XcCZZNfQ/FaKBG03YERdRl84Jp/+RS3BT8uj+JU/XGGHIyuDjrf+bjdr5V8Lv3MYTegaKMROJWfotSkItLnbZ4Nu9TKt/F2a9SkBhN4IMvo3P2AI2WvEsnSVw/0+b0cp4t7sO1QSdQjCRt+JmcKLm6k1e7gbjW7YDWwZnzX4005/fpNAzHKnUBEDp7tE5uXPhmtFW5Qqcn6MFXuLzwXVAUXOt1wLNVfwBSdy4l89gWKxmPpr1wa3gPitGIISeDhD9/oChDrgbl3eFhnMIbS/kdi8k6tRMAx9B6eHcaitDqyI+/QMKaH0Ax4hTeGIeA6qRsr2RBAJVbzh2pbAohDMARTAu8Ac8oirJdCNEJOYl7H4u8szBNBG85ybsQIgpopihKkhBiCVANcAF8KVkac6yiKDdnOZLYvRCzHRoMKn283kNSEUw9D0HNpIJ5bi3EHZB/AC4B0Gi4VP40erlEXuo5qUg2ewJ8asnVQiwpzIYDs6Qy6eIvlcMt78ul6Wr3g22fSuWtRi+o0lYqbk4+UgndPVUuY2fnbLsvwc0h4QiggM4RwrvCzq9kWqvnIOG4lLfkygG4JB88+NaFWn1h/48Vy6dFSWW6+ZOly0o6ARHd4MKmW75msi3mzJ7N91OnMuOnn0od/+77H3h54kT+3rqFR4ePYNyEF3ln0lvMnzeP+fOkUl+vfn0W/ba4lKJ5X//+ZGeVv6TpqMfkS6R5k8b4+vqydPkK2rVuBcAXn09hy+ZN6PV6Vv/5F92692Dtn3IZ098XLWTcC89X2JfhI0byx9IlGI1GPD09ee21N2jbuiWKorB9525WLl9OWlpaKZmDBw/StlVLcnNzefyJJ3n/w48YNnQIPXr2olGjxrRs1hR7e3vWrt/An2vWkJmZCUCTJk1x9/AoVdbqVSt5c9IkPvvkY3Jzy9xT/xEObVrBntUL6f9caYW4z9jXWffzl0Qf30+jzn1pc98wNs3/nqNb13B0q7wGflWqM+jlz4iPklNv/fbZK+alOQe8NJm6rbtwbFvpjyqh0XL/8++w9Mu3iI8+g6OLO0ZDEYbCAqa9ONScb/THszm5S642FnfhFNP/9yhFBfk07f4gXYc9x+9TXrXqS6PO/TixayOK0YiDixsdBz7O9P89CorC45/M4fSeLeRlZ5aSKa/sGk3aEhhemx8mDEWn1zP8nR84e2A7BXk53PfsJOZMGkvKlRg6DX6SyHt6c3D9Ms7s+5tOg59i25KfKSrI/5dX5saQcWwz6Qf+xK/X2FLH/bo/QdKmX8m7dALX+p3wbN6HlG2LyDqxjawTcglRO59QAvtPoCAxGoC45V+iFMj7OqDfC7jUbEXWqdJLTeq9g3Gp3ZqYWS+hc/EkeMBrRP84DhSF7HP7ST+wlqqPfV5KJmlTyUege+Pu2PuF2eyLW/1OZJ3ZDYqCxsEZr9YPcPGX10CB0GHvk312H8b87FIy+QlRXJzzGkpRAW6RXfHuMIT4FV/hFN4Ye79qXPz5ZYROT/CgN8m+cAilIA+/nmOIXfQehalxeLV9CNd6Hcg8uomc8wfwbjuQ1N3LUIoKrv1iqNw07lQ3eq6iKI0URYkEXgE+/DeFKYpyv6IojYDRwFZT2Y1umqIJkHrB9lJxzr5S0QS5XJx/A+s8AY0g7qDcNhZKRROkxTLjMti7W8tkxkpFEyArXlojhbYkXWsn/+sc5PJ5AMEt4OKOEkWxoPRDxkxgY6kQglR0k89ImaJcue1Ty1rGYPHi0Nphnjy6IvnMWGnttUXqeWkp/g+y7e+tpKSmWB2vUbMWf2+VloIN69fR//77rfIMHDSYhRbLzTk7O/Pc8+P46MMPyq2vdp06bNy4AYDExETS09Jp2rQZubm5bNm8CYDCwkIOHthPcHDwNfVl8MNDWL58GQD3duvG+vXrSE1NJS0tjfXr19Gte3crmS2bN5kVw927dxEcHAJAnTp12Lp1CwaDgZycHI4cPmyW12g0fPDRZF575WWr8rZu3kKv3r2vqd03k5jjB8jNyrA67hNUhejj+wE4f2g3dVpZrWNB/XbdOfr3n+b9YkVTo9Wi1eltrqFQvVFL4qPOEh8tl/zMzUq3sn56BYbi7O5FzHH5wRp1dJ9Zebt8+ghu3n42+9KgfQ9O7d5sqqcV5w/tIi8rg7zsTM4f2kX1xq2tZMor2ye0GtHH9qMYDRTm5xEffYaIxq1xcnXHUFhAypUY07nZRZ1Wnc3lRR/bR81m7W22779A3qWTGPKsP/7sPAPJuyTXL8+NPoxLzRZWeVxqtyHzZMlrp1jRRKNFaHXYmlTfpXozsk7uAEMRRemJFKbG4RAQAUD+lbMYstMqbG/ZOkul1WlH9tm9ADiFRZITfQRjXjbG/Gxyoo/gVC3SSib34nGzYph35Sw6Vy/Zf+9gci+dAMWIUphPQWI0ztUi0Ti6oBgKKUyV1u6cqCOlzk3uxeM4V29SYR9Ubj13qrJpiRtQjsZxB5AVJy19AAENwcHDOk9AZImyaYnOQSpcKWcrrsO/gVTcFIN0vZ9YAm3GQ8fXwcUPLu+W+Zx9pHWz+Vho8TR417QuS2jB0btECbR3g7y0kvT8dHnMFqGtod1EqNkLTi67dnlL0i/J9ZxvI44fO0afvn0BeODBhwgJCbXK89BDA1i4oGTajrcmvcOXX0whJ8fGh4qJI4cP07dvP7RaLVXDwmjcpAkhoSGl8ri7u9Ordx+zUgpw3/0PsHvffubOX0BISEjZYtHr9YRVq0ZMtLTCBAUFc+nSJXP65cuXCQqqWHkdMWIkf5osqYcPH6Z79x44Ojri7e1Nx46dzOdgzNinWbliOXFx1q7d/fv30rZtuwrr+S+SEHOems07AFC3TRfcfPyt8tRtey9Ht64tdWzoG18xYeZa8nOzObFzvZWMd2BVQGHoG1/x+CdzSrnki6nfrjvHt9kOM2nU5T7O7rdWPjQ6HZ7+waQnyhW53Lz8yEiKN6dnJCfg5mVbSbVVdnzUGSKatEFnZ4+jqzth9Zvh5u1PTkYaGp2OwOryY7FO6y64eZecm9hzJ6hSp1GF9fwXyU+6hHP1pgC41GyFztXbKo9r7dZklVH8gh58mWpjv8dYkEfW6V1WMlpXTwozk837RVkpaF09rfLZQufmg97dl9yYo9aJGi16Dz+zC1zn4klRZslHclFmCjqXiutxa9CJnAvSC5OfEI1TtUiEzg6NoyuOoXXRuXpjzM1EaLXY+4cD4FKzZalzkxd/Hofg2lfVH5Vbx52qbDoKIQ4KIU4CM4B3b0alQognhBB7hRB7E9Nvksvu6CIZm9jqOdDag7GodLp7KBgKpHWyVGM10HAIxGyDXGsrmhlnf+kqP/57iVxIK9jxBWx+T7rmi+M3hVYqm3u/hyNzpYtf51C6PDvn0i5yIa6+rxd3wN+T4fQqCO987fKWFGRdnVL6H+LJJ0bz5FNj2bZzFy6urhQUlHYbNW/egpzcHI4fOwZAw8hIwiOqs+yPPyos9+dZP3H50mW27dzFJ59NYeeOHRQVldxHWq2Wn+f8ytRvvyHqgowgWbVyBbVrVKdF0yZsWL+e6T/+ZFWuj48P6elp5n1h41pVtILZ4CFDaNK0GZ9/9ikA69f9xZo1q9m4ZSs/z/mVXbt2UlRURGBgIA88+BBTv/3GZjkJCYkEBt1+c94um/oOzXsMYPTHs7FzcMJQVDrkI7hGPQrz80i8eK7U8V/ffY4po3ui09tRrb71IigarZbQ2pEs/uINfnptNLVbdqJag+al8tRre28pi2kxDTr0JKh6Hbb/YR1r6+TqQV6OhYvcxk+zoutdtuzzh3ZxZv82Rn0wkwfHvc+lU0cwGg0ALJ7yGt1HjOOxj2ZRkJuN0WAwl5OTnoKrl2+59fxXSfjzB9wbdyPkkfcRdo4ohtLPcvuA6hgL8ylIulTqeOzvHxH13ViEVodjlVIrMpuwdSGurk0utVuTdXq3zThQraMbxjwL79U1Potd6rTDwT+c1D3LAciNPkLO+YOEDHmbgN7Pkhd7BsV0veOXf43PPcMIGfouxoI8sLDEG3Iy0Ll4XFPdKjefOzJmE5MbHUAI0RqYLYSoT/k/sesyQ7OiKNOAaQDNagbcnFmfcxJh/wy57eQDvmW+8Cxd6JbUfVAOFor5u/yy7d2h0aNwdH6JQupqemkX78cfhjCTspmXDunR0vqZmyrXJHbygQyLh6OhULrki8lLB8/w0nUWhwWUR9whqHP/P5cH0OpkW24jTp86Rd/ecnBMRI0a9OzZq1T6gIGDWLigxIXesmUrmjRuwsnTZ9HpdPj6+fHnX+vpfm+XUnIGg4H/vVQywGjj5q2cPVti7f72u+85d/YM33z9lflYSkrJB8rMH2fw3gfWkSq5ubk42Jd8bFy+fIn2HUoGrQUHB7N1y2abfb2ncxcmvvwK3bp0LqVUf/zRh3z8kaxr1uw5nD17lshGjQmvXp1jJ2TcsZOTE0ePn6R+XflbcHBw+M/Ga1ZE8uVofn33WQC8AquYB8oUU69tN47ZUAgBDIUFnNqzhZotOnL+8O5SaRnJ8UQfP0BuZjoAZ/ZvJyC8FheO7AHkwCSNVsuV8ydLyVVr2IJ2D47k5zeetFJ8AYoK8tHp7SzqSSCsXlPzvpu3H1HHbAz+q6Dsv3//ib9/lx8y97/wrtl1fun0EWa98QQA4ZEt8QqqYpbR2dlTmP/fjNesiMKUWGJ/k/e23jMA5/BGpdJda7exsmoWoxgKyT63H+eIpuRGHymVZshMQW9hCdS5eGHIujpnn2utNnLQka06iwoQupLrXZSZgmNoSWiSztWL3IsnbMo6VqmPV6v+XF7wDlgo1am7lpK6aykA/r2fMbvO866c4fJ8GdPsWLUBeq9As4zQ6lFs3I8q/y3uVMumGUVRdgA+yIE9yUBZu74XkHSz23XdMA/CERDeBS7utEgU0gUed6i0TER3aXE8tbz8cnUO0GSkHKmeFl1yvHjAkN5Ur1eNklHhCUfBq7rc1jvJeNKyVtOiXGkdLVY4k06BT0050EfnKLfLDlYCqbQW41sbcpKvTd6qPF8ZgnAb4esrrTVCCF5+5VWmT/vBnCaE4IEHH2SRRbzm9Gk/EB5Whdo1I+h8T0fOnDltpWgCODo64uTkBEDnLl0pKiri5An5knjr7Xdwd3fnxQnjS8kEBASYt/v07cupk6UVE4C0tDS0Wi329vYA/LV2LV273ouHhwceHh507Xovf61dayUX2agR33w7lYceuJ/ExETzcY1Gg5eXjO+q36AB9Rs0YN1fa1mzehXVqoRQu2YEtWtGkJOTY1Y0AWrUqGG29t5OOLmZHlVC0P6hUexb+3tJohDUbdOFoxaubr2DIy4eUqkQGi01mrQl+XKUVbnnDu7Ev2oEOjt7hEZL1XpNSLp4wZxev313jv5d+roEVKtJ7ydfYcFHE8jJsK2o5GVnIjRatCaF89zBnYRHtsTB2RUHZ1fCI1ty7uBOK7nyyhYaDY4uMp7cr2oE/lVrcO7grlLnRqvT07b/cPb9udgs5xVYxcraezugdSr2tAg8W91P+iHLEAiBS62WZJ4sGfwj9PZonT1MOxqcqjWiMCXWqtzsc/twqd0atDp07r7oPQPIi6skdArQewaicXAmL/aMzXRjfjYIDUKrByAn6hBOYQ3R2DujsXfGKawhOVGHrOTs/MLw6zaaK0s+xZBjEassBBoHF5nHpwp2vlXMo+bN50arw7NFPzIOrispzyuQ/KSLlfZH5dZyp1o2zQghagNapKKZDgQJIeooinJCCFEViAQO3sImXh0NhoBXuFTyOrwqR39f3iMtl6FtZJ6Eo3LUejGe1aTlz1Lhs3eXSmlWPLQyjSS+uF3GXfrWBbcQOZo9tI1U8MK7yj+A/dOlsnluHTR/Slow81Lh6EKZnnxaxmm2mSDTTq+0Pagp6TR4hMlY0aJcWV4racHh3LoSN3v1btIqmnhctsc7QrpPinLhqEmpqki+Sls5Ot/OFVqPh6STcNw0RYZXddtTPv0H+HnOL7Tv0BEfHx/Ono/i3Xfe5udZPzFw0GCeHDMGgD+WLmX2z7PMMu3ad+Dy5ctmN3dl9O7ThyZNm/Hu25Pw9fNj+cpVGI1GYi/H8tjI4YC0PL78yqucPHmCHbul1at4iqOxzzxL7z59KCoqIjUllcdHj7JZz7p1f9GmbTs2blhPamoqH37wPn9vlwrHB++/R2qqVC7eeGsS+/ftZeWKFXzw4WScXVz4dZ6MPb148SIDHrgfvV7Puo2bAMjMyGTUiOEYLNyn5dGhYyfefOO1qzovt4IHxr1H1XpNcXL14IVpK9i0YBoH1y+jfvvuNO/xEAAnd23i4IaSj8OqdRuTkZxAWvxl8zE7e0cGvTIFnV6P0GiJOrKHvSYlrGazDgRF1GHT/B/Iy85k5/K5jP54NigKZ/dv48z+beZy6rbpytz3S88y0PXR57FzcOShCR8BkJ4Ux4KPJlCW84d2UqVOIy4c3k1eVgZbf/uR0ZN/BuTURXmmgVCdBj9J7NkTnN67pdyyNVodI96TUxjl52az5Ms3zW7VNv2HUaNpO4TQsO/P34k6WvLcC6vflA2/fvtPLsVNwb/3sziG1kHr6ErYk9+QvO03Mo9uwqV2G9wbdQMg+8xuMo9uMss4htamKDOFovQE8zGN3oHA+1+Uyp7QkBtzjHSTEuZUvSkOAdVI2fYbBcmXyDq1k6ojP0UxGkhc/5PZLe7dYQiuddog9HaEPfkNGUc2krJdftS41infklpMbvRhHIJrkRtzFGNeNik7lhDyyHsApOxYbHaze7V9iLy4C+Sc24dPxyEIvQMB/eQ9VpSRzJWlnyI0OkIefgsAY34u8Su/le8RwKN5H5zDm4AQpB9cR+7Fko9Hx9C6JG9Vl5f8ryMqiqG5XbGY+ghkwMqriqKsNKW1BT4DHIBCU9pfprRNlJ76yA4oDg5ZCCyjzNRJ5dGsZoCy95tHr1uf7ihcg6Bq+xKF8WZj5wINHoZ90yvPe5U49plSeaa7kMhGjXju+Rd4bOSIW1K/n58fs2b/Qq8e3a5rua/0bXxdy7tTCKhWk1Z9h7L0q7duSf3O7l488MJ7zHl7bOWZr4EhrSOua3l3CnZ+YXg07UXC6qm3pH6tkzv+vZ8hdtH717XcGi/N36coinXAs8o/5o60bCqKoq0gbRvQqpy0ThbbYeUUselfNE0F5Mj2lHPI74Bb8LHj4AGnV9z8eu9CDh08yOZNm9BoNBhtTC5+owkNrcLLE1+66fXercRdOE3U0b0IjcbmZPI3GnefANb+/MVNr/dupSAhityLx+XgoFtguNK5eZO06ZebXq/KtXNHKpsqtwGW7v6bTcalyvOoXDcs3f03m337buF9dpdi6e6/2cSeO37L6r5bsXT332zy465iMKjKf4I7foCQioqKioqKiorKrUO1bN4oFAXyiyrPp3JHYDTeebHPKuWj0/zD+V1Vbkt8XBwqz6SiolIuqmVTRUVFRUVFRUXlhqEqmyoqKioqKioqKjcMVdlUUVFRUVFRUVG5YajKpoqKioqKioqKyg3jth8gZDGBuwAMwDOKomy3SB8HfAj4I/tbvAZYgCl/8Xp4LYAURVFcLGRHAM0URXlGCFEL+AHwAOyBrYqiPHHjevYPiBwE/nUhPws2f2I7j94RIgeDs7dck/bQfMiMq1jeLQgaDpBLTCpGOPI7pMVYl23vCpEDYfePcj+iC1RpKWWOLoFEG8tI6p2g6TBw9JIrHe2bDYW5FcsHNYIaXeWyl/HH4YRpzsywdmDIh4t7rvnU3Y78MH0GvXr3JjEhgSaNIm3m8fDwYNqMHwkPDycvP48nRo/m+LFj1KxZk1/mzjPnqxYezjuT3uLrr77i9TffZNRjo0kyLRX55huvs2a19WpLAQEBfPfDNO6/rx8AL02cyMiRozAYDIwf94LNpSg9PT35dd58qlatSnR0NEMGDyItLa1C+YcGDOTlV15Bq9WyevUqXn35ZQDGjB1LdnbOLZ1a6WbSe8zrRDRtR056KtMnPGwzj4OzK73HvoGnfzBFhQWsnPouiRdLpocRGg0jP/qZzJREFn1UsgRpsx4DadpzAEaDgbP7t7Hxl6+tynb28KbXU6+Z5Vr3H05kl34oRiNrZ37GhUPWS1E6uLhx/7j3cfcNJD3xCkumvEpedmaF8nXadKXtAyMRGm2ptjTtMYDCvFwOb7o75sh17DQKfdVIlNwMMhe+YTOPsHPC8Z5RaN38UAyF5GyciTH1MsLZC6fOo9E4uYOikH9iMwVH5NKmWu9QHDsMl2uKGw3k/j0HQ4L1ymPCyR2njiPIXv0lAPaNe2NXuz0oRnL/nkvRpaPWMvbOON07Bo2rD8bMJHLWTkUpyKlQXl+9BQ5N+oDQUBhziLydiwCwq9cFivIpOPX3vz+ZKrecO8GymasoSiNFUSKBV5CKpSUPA3uA+xVFSTblbQR8D3xevK8oSkEl9Xxlkb8OYP00vtVc3AO7plWcJ6IrZFyGzZ/CwblQr3/l8nX7wuk/YctncGoN1ClnAaXwThBteuG4+ENQY9g0GXZOgwYPIr8HyranMySdgY0fyv8RXSqW1zvJ9uz4DjZ9LBVcnxqm9u+Cau0r7v8dxJzZP9O3d68K80x85RUOHTpIsyaNeWzECKZ8/jkAp0+fpkWzprRo1pRWLZqTk5PDH0uXmuW+/vILc7otRRPg+XHjmDljBgC169Rh4MBBNGrYgL69e/HV19+g0Vg/Xl6aOJENG9ZTr05tNmxYz0sTJ1Yo7+XlxYeTJ9Oj2700jmyIn58/93TuDMCsn37i6WeeuebzdrtyeNNK5pdZRrIsbR4YQfyF08x4cSjLv57EvSNLLynZvNdgq/XSq9ZrSo3mHZgxYQjTxw9m1zLbk2S37DuEg+uWAuATUo26bbsxfdxg5r//PD1G/w9h43q37j+cqCN7+P65h4g6sofW/YdXKO/o4k7nYc8x952nmT5+MM7uXoTVbw7AoQ3LaNZr0NWcqjuCglN/k72y4pXJ7Jv0wZB0kcxFb5KzYTqObYfIBMVA3o4FZC54jcwl72FfrzMazyAAHFoNJG/vH2T+9hZ5e5fi2Gqg7bIbdif/xBYANJ5B2FVvQeaC18leOQXH9sPkRO5lZRr3oujScTLnvUzRpePYN+5dobywd8ax1UCyln9C5sLX0Ti6owuuY+r/VuwadP1H507lv8edoGxa4gakFu8IIaoDLsDrSKXz3xAImGcDVxTlSAV5bw0p56HAxlrklrj6S6UOICsBnLzk8o0VySsK6ExTf+gcIC/DdtmBDSHxpNwOqA+xB8BokBbL7CTwrGItE1C/xBJ5cY/cr0jeyRuyEqFArrlL0mlZL4ChEHJSwcNGPXcgf2/dSmpKSoV56tSpy8YNGwA4deoUVauG4efnVypP5y5dOH/+HDExNqzVFXD//Q/w559rAOjbrx8LFy6goKCAqKgozp07R/MWLaxk+vbtxy+zZwPwy+zZ9Ot3X4Xy1cLDOXvmNElJSQBsWL+e++9/AIDc3Fyio6Np1rz5NbX7duXiiQPmtcXLwyekGlFH5e8pOTYad99AnN29AHD18iOiSVsOrv+jlEyTbg+yY+nPGIoKAcjJSMUWtVp25vzBHQDUaNaB49vWYigqJD0hltS4SwRF1LOSqdm8A4c3rQSkslyzRccK5T38g0iJjSEnIw2AqCO7qdXqHgCKCvJJT7xCYETdSs/VnYDhymmU/KwK82g9gyi6LCeyN6bFoXH1QTi6oeSkY0iKlpkK8zCmXkHj7GGWE3aO5v/G7DSbZevDm1IUI19z+rDGFJzbDcYijJlJGDMS0PqFW8uENabg9DYACk5vQ1+tcYXyGjc/DOlxKHnS2l146Rj6cNMqkUUFGDOT0PpVq/xkqfznuROUTUchxEEhxElgBvCuRdrDwDxgK1BLCOFnqwAbZR0UQhwE3rFI+xzYIIRYLYQYJ4TwKCsshHhCCLFXCLE3MT333/TpxpERCwEN5LZHFXD0BEePimWOLZXWxK5vQN1+cHKldR5HLyjMkcohgIM75KaVpOely2NlsXeFfPmgIT+zRPEtTz4nCVz8ZLuFRvbFwaL96RfBS304FXP48CH6338/AM2aN6dK1aoEh4SUyjNg4CAWzp9f6thTY59m7/4D/DB9Bh4eHlblhoWFkZqaSkGBdAgEBwVz6WLJykyXLl0iKCjYSs7P35+4OBm2ERcXh69J8S1P/tzZs9SsVZuqVaui1Wrpd999hISGmvPt27eXdu3aXcspuaOJjzpDrZZSOQuMqIu7bwCu3vIc3ztyHBt++dpqGUmvoCqE1mnE8A9m8sjb3xNYvY5Vue5+QeRlZ5gVUldvXzKS483pGSkJuHr5Wsk5u3uRnZYMQHZaMk5unhXKp8Zdwju4Ku6+gQiNlprNO+Lm7W/Od+XcCUJrN/onp+aOxJB8EX21pgBo/aqhcfVG4+xZKo/G1RutTxWK4mU4Re62uTi2GojbI5/h2HoQubt+sypX4+qDkp8DRjlXtMbZE2NWyYetMSvFqh4AjaM7Sk46AEpOOsLRrUJ5Y3o8Wo9ANK7eIDToqzVB4+xV0r/EKHQBNf/RuVH5b3EnKJvFbvTaQA9gthBm+/5gYL6iKEZgMTDgKssqdrW/WZygKMpPQB1gEdAJ2CmEsLcUVhRlmqIozRRFaebr7ng9+nb9ObteuqI7TIBq7aRLXalkDeOqbeHYH7DuXal4RtpwZTm4lVgbbySFuXDkN2j6KLR5BnJSSrc/P8u2UnuX8snkyXh4eLJ77z7GPv0MBw8coKioZLEBvV5Pn759+f23khfOtO+/p07NGjRv2oS4uCtM/uRTq3IDAgPN1kYAYcOlplzDWsnlyaelpfHcM0/zy7x5bNi8mejoqFLtT0xIJDAo6KrrudPZsXQ2Ds6uPPbJLzTrOZC4C6cxGgxENGlHdnoqcedPWsloNFocnN34+dVRrJ/zFfePLxuJBC4e3mZrI4CwERJzTde7HPm87EzWTJ9M/3HvM+zdaaQnXsFY/AEL5KSn2FRq71byDqxE2Dvh+tDb2NfviiEpBsXyeaizx6nbM+RunweFeQDY17uH3O3zyPhlArnb5+HUaaRVucLJAyU3s+LK/+1a6IqCUpBDztbZOHUdg8t9r2DMTEJRSq63kpuBsLDIqty+3PYDhCxRFGWHEMIH8BVCBAA1gL9MLzI74Dzw7b8oPxaYCcwUQhwF6gP7/nXDbyZF+XJQUDFdXoec5IplQpvBsSVy+8oh28qmoVAOIComL720xdTBXR4rS35miXXT3hUKsiqXjz8u/wCqtCqtbGp0si0qAGRmZvLE6MfM+6fOniPqQslggB49enLwwAESEhLMxyy3Z86YwZI/llmVm5ubi71DybfWpcuXCAktsZiGhIRw5UqslVxCfDwBAQHExcUREBBAoqmuiuRXrljByhVyUMhjox/HYCh5GTk42JOb+x/1ItwCCnKzWTm1xLkz9tulpCXEUrftvdRo1p7qjdugs7PH3tGZfs++zbKv3yIjJYFTuzYCcOXscRSjESc3j1LKZVFBPjq9nXk/IzmhlMXRzcuPrNSSj49istNTcPbwJjstGWcPb7OLviL5s/v+5uw+OSikUdf+GC0ssTq9PUUF+f/mFN1ZFOaRu2mmeddt6CcYM0xjXjVanLs/Q+GZHRReKHlN2dVsS+62uVL83B6cOlormxQVIHR6864xOxWNS4nFUePihTEnzUrMmJuOcJLWTeHkjpKbUal8UfQhsqIPybbV6Vj6ea7VQ5H6PL8TuBMsm2aEELUBLZCMdKFPUhQlzPQXBAQLIar+w7J7CCH0pu0AwBu4fJ2afvPQOYDQyu0qrSD5nFRAKyIvA7yry22fGpCdaJ0nO1HGfxYTd1QO8NFopYvd2RdSbcQExh2DUFPMXWhzKVeZfLGrXe8IYW0hZldJeS6+kHml4v7cRbi7u6PXy5fGqMdG8/fWrWRmllgsBg4ezIIyLvSAgADz9n39+3Ps2DGrcs+cPk3VqmHm/RXLlzNw4CDs7OwICwsjIiKCPbt3W8mtWLGcRx59FIBHHn2U5cuXVSrv6ystWR4eHjz51FP89OOP5vJq1KjJsaPW7btbsXdyQaOTH32NutzHxRMHKcjNZtPcqXzzVF+mPt2fpZ+/RtTRvSz7+i0ATu/eTFgDGSfnFVgFrU5fStEESLkSg7tvoHn/zN6t1G3bDa1Oj7tfEJ6BocSetXGf7N1Cw05ykEjDTr05vWdLpfLFrnYHZ1eadn+IQxYxpl5BVUiMOXc9TtUdgbBzlM9IwK5OB4piT5ktmE4dR2JMjSX/cOlZIYw5aeiCagGgC66DIT2eshjSZfxnMYVRB7Cr3gI0OjSuPmjc/TAknLeSK4w6iF3NtrI9NdtSGHWgUnnh4GrqixP29TpTYBqUBKB1D8CQcgmV2587wbLpaIqvBDncebiiKAYhxGCgZ5m8S5Cu9cn/oJ5uwJdCiDzT/kuKosT9kwbfMJo8At4RYOcMXd+EU3/KEdpVW8v06B1ygFCjIYARMuPh0ILK5Q8vlKPWhRaMhXB4kXXdhgI5iMfJR8ZVZsXDlYPQaaJp6qLfAZPbpeFAiN4O6ZekW7/poxDaEnJT5dRHULF8/f5yOiaA02tLK79e1eSxu4DZv/xKh44d8fHx4VxUNO++/TazfprJ4088CcD0aT9Qu04dZv40C4PBwIkTJ3jy8dFmeUdHR7p07crTY54qVe4HH00mMjISRVGIjo62SgfIycnhwvlzVK9enXPnznHi+HF++20Rh44cpaioiOefe9Zskfruh2lMn/YD+/ft45PJk5k7fz4jR47i4sUYHh4kreQVyX/2+Rc0bCgHgb3/3nucOXPG3I7Wbdrw3rvvcDdw3/PvUrVeUxxdPXjm++VsXTidQxuW0fheOWDqwF+L8QmpRt9n3kIxGkm6dIGV371XabmHNi6jz5g3ePyzeRiKCln+7dtWeQrz80iLv4xnQAipcZdIunSeEzvW8cTnCzAaDfw542NzLGivp15j/9rFxJ0/wY4ls7l//AdEdu5HRlI8i6e8AlCh/L0jx+MfJmeY+HvRj6RcKflIDanVkK2Lpv+7E3mb4NTlSXRBtREOLrg98hl5e5dScHIrdnU7AVBwfBMazyCcOj8ORiOG1FizlVMbUAO7Wm0xJF/E9SF5PXN3/05RzGFyNs/Cse0QhNCgGArJ3TzLuvKiAgzpCWjc/DBmJGBMjaXg/B5cB70PioHcrb+Y3eiOHUdScHwjhsQo8g+sxOnesdjV6YAxM5mcv6YCVCzfdghabxmHnbdvGUYL5VcbUIO8fX+gcvsjriXORuXqaVbDX9k7ZeitbsbNJaABuIfAKdtT5dxw3IKhekc4MPemV21//5c3vc5bTb/7+tOkaRMmvflm5ZlvAJGNGvH8C+MYNWL4Ta/7rfub3vQ6bzU1W3QiMLw2m+d/f0vq9w+rSYu+Q1j+9aSbXvfYLtYj7e909GFN0PqGkbdn8S2pX+tdBfvI7uRsuPkfF55jZu1TFKXZTa/4DuZOsGyq/FeIOwJ2TreufjtnOHmLFN27kGV/LMXb2/uW1e/j48Pbb90aRfdu5PTuTTi63LrBd45uHmyZ/8Mtq/9uozBqP8LBpfKMNwjh6HLLFF2V64+qbKpcXyzjJ282SadvXd13KT/N/LHyTDeI9evW3bK671YObbh1Ls2ow9YxwCo3loKTWyrPdIMounT8ltWtcv1Rlc0bhVYL3rfuq1Dl5hKqXuu7iv3R1iOvVe5cfttjPRhGRUXl6rmjRqOrqKioqKioqKj8t1CVTRUVFRUVFRUVlRuGqmyqqKioqKioqKjcMFRlU0VFRUVFRUVF5Ybxnx0gJIQwAEeQE7UbgGcURdkuhAgDTgCnLLJPURRlthAiCiheHkWLXA/9XUVR8svI2QF7gccURSkUQnQCNgKjFUX50VR/Y2A/cvL2T4UQrYAvAXvT3wJFUSbdmN7/S4QO6o+SSzcKDSQfg4sbrfP5NITgdnLbUADnl0OOaULd6v3BqyYUZsNBixU+nQKgel9ZtmKE8ysgy8ZCSnoXqH4fnPxV7ge3B78mgAIXVkHaWWsZnSPUHAj2HpCfBqcWgCFPHq81GFyCIOEgXFhZIlN3eEm+uxQ7e3vm/bEaOzs7dFoda1b8wZefWK9v3e/BATzxzAsA5GRn8+b/xnPyuFyxadOew2RnZ2EwGDAUGbi/eycA6tRrwLuffI6dvT2GIgNvvTyewwf2W5Xt6+fP+1O+4olH5CTtTz03ngFDhmEwGHj3tYls3bTeSsbdw5Mvp/1ESGgVLl2M4bnHR5CRnoaHpyff/DibBo2asHj+XN5+9SWzzM+L/uDZ0cPJSE/7l2ft9kVvZ8c7PyxAb2eHVqtlx/o1LJz+hVW+9t3vo/+jcoL/vNxspk1+g+gzcm30qUu3kJuTjdFowGgwMHH4fQC07tKTgY8/T3BYBK+MvJ9zJ47YbIOHty9jXvuQD8fLRQLuHz6Gzv0GYDQamfnZ2xzaudVKxsXNnXHvf41fYAgJVy4x5dVnyM7MwMXdgxc//JbqdRuyacXv/PjpJLPMm9/M4bNXniY7M+PfnLLbGq3Ojt4Tv0Kr16PRaLmwbzP7//jJKl/1ll2J7DkEgML8XLbNmULKpZLVloTQcN+b08hJTWTtV3Jy/ab9R1G1UTsUxUhuZhpbZn5ITpr18sWO7l60H/6SWS6y11BqtuuFohjZMfcrLh/bYyVj7+xK5ycn4eITQFZSHOu/f4uCnCzsnd3oMvYdfMNqcXrbGnbMLZmjuOeEz1j/ncyncmfxX7Zs5iqK0khRlEjgFcDy7XnOlFb8N9si7R5FURoALYBwYFpZOaABEAIMtEg7Algu+j0YOGSx/zPwhEm+PrDwX/XuRqIUwbFZcGiq/POoAS4h1vnyU+HoTJnn0mapHBaTeACOz7GWCesGFzfBoe8gZgNU7Wa7DUFtIN60Hq+jL/g0gIPfwPHZEN4H+Q1RhuD2kH4eDnwp/4e0l8eNRRCzHqL+tJZJPAQBLco/F3cBBfn5DHugL307t6Nvl3a079yVRk2t5yO+GB3NkP696XNPW76Z8jHvfVZ6IvpHHuhDvy7tzYomwMQ33+GrTz+iX5f2fPHx+0x8w/ZqPaOeeoaFv/wMQETNWvTu/wA9O7Rk1MMP8vbkz9BorB81Tz47jh1bN9O1dRN2bN3Mk8+OAyA/P5/PP3qfjya9YSWzdNF8ho4cbXX8bqKwoIC3xw7lxaG9eXFoHxq37kCN+o2s8iXEXuTNpwYzYWgvfvvxG5565YNS6ZPGDOGlR/qYFU2AmHOn+eR/YzhxoOJphvoOeYx1S+UypyHVImjbrQ/jBvfg/edH8Pj/3rF5vfsPf4oje7bz7EOdObJnO/cPHyP7k5/P/B8+Z85X1h9Im1cvoftDj1R6Tu5kDEUFrPp0HEsmPcbitx8jpH4LfMPrWuXLTLrCio+fY/GkURxYPpt2w18slV7v3odIi40udezwmvksnjSKJW+P5uKhHTTua3uBhAbdBnJyywoAPAKrEt6iM7+/OYI1n79E20fGIYT19Y7sOZTLJ/ax6FX5P7KXXOTEUFjAviU/smvhd1YyZ3espe49/a/qvKjcXvyXlU1L3IDUaxFQFCULeAroL4TwKpNmAHYDwRaHYwAHIYS/EEIAPQDLGcL9gCvF8oqi/LcnATMWyP9CK62btsi8WGIRzLwIdm4laRnRUJRrLaMAWnu5rXOAgkzrPADedSHNtKygV21IOgKKQVosc1NsK79etSFBrqVLwgHwqmPqSyFkxkilsywpJ8G3ge023EXk5GQDoNPr0ev02FoZ7MDe3WaL4MF9ewkIDKq0XEVRcHGV94Wrmxvx8bZXaO3epx9bNsh5L7v26M3KpYspKCjgUkw00RfOE9nEesWdrj16sXiBXO1p8YK53NtTrqGdm5PDvt07yc+3tlav/3M1fe9/sNJ23+nk5eYAoNXp0Op05qX/LDl1ZL/ZInj66AG8/AKs8pTlctQ5YmMuVJqvVeceHNgh52Bs3uFetq1dQVFhAQmxl4i7FE1EvUgrmeYd7mXTyt8B2LTyd5p3vBeA/LxcTh7aS0F+vpXM3i3raNetb6XtudMpypfPYo1Wh0Zr+3onnDtmtggmnD+Gs6evOc3J05fQhq04tXVFKZnCvBzzts7ewbwicFnCmnbk0lH5AVK1cTvO796AsaiQrKQ4MhIu4xtex0qmSuO2nNm+BoAz29dQtbH0ohUV5BF/9giGogIrmeiD2whv2aXc86By+/KfdaNTsua5AxAIdLZIq26xHjrAs4qiWPltFEXJEEJcAGoA5gVXhRAOQEvg+TIivwEDgANIF7rl0+9z4JQQYhOwBvhZUZT/sO9WQORT4OAFcbsh61LF2f2bliiHFRG1Cuo+CmHdZR1HbSwlZu8BRXlSuQSpxGZeLEkvSAd7VyjrKdE7Q6HpYGGW3K8MQ54MG9A52laO7xI0Gg1L/9pM1Wrh/DJzBof276sw/4Ahw8zKIch3zKwFS1EUhXlzfmLBnFkAvPfGy/w0fzGvvPUuQqNhYB9rS3ZIlapkpKVRUCBfHv4BgRzcV+JWi7sSi3+AtWLr4+tLYoL8WSYmxOPt42uVpywZ6WnY2dnj4elJWuo1fX/eUWg0GibPXkZASFX+/O0Xzhw7VGH+Lv0GcmDHZvO+gsIbX/+Moij8tWSe2Up5NfgFhZCVkU5RobzeXr7+nD56wJyenBCHl6+1Yuvh5UNaciIAacmJuHtWvvpUdmYGer09Lu4eZN3FoRNCaOj/5jTc/II5vnEpiRdOVJi/VvveXDpSssBG68HPsHvR99g5WK/w1uz+0US06U5BbharPn7BKt3FJ4CC7EyMRYUAOHn4kHi+xNaSnZqIk4ePlZyjmye56SkA5Kan4OjqWWk/C3Ky0OrssHd2Iz/77g2duBP5L1s2i93otZFWxtkmiyNYu9GtA4RKsPTXFiupyUCMoiiHy+RdiFQ2HwbmWSYoivIO0AxYCwxBKpylKxLiCSHEXiHE3sS0nLLJNxlFurr3fiatiE5+5Wd1qybjKaPXVl5sQAu4sAb2fQZRq2VsZ1nsXGWsZyXNu24UZss672KMRiP9urSnXaO6RDZpQo3a1paGYlq1bc+AIcP4+N2SpR4H9enGffd2YNSQB3lk5Giat2oDwJARj/H+m6/Svkk9PnjzVT78/Bur8nz9/ElJLpnkvORnWoItS+s/JTkpEb+AwOtW3u2I0WjkpUf68GSfNkTUbUhoeM1y89Zr2orO/QbyyzeTzcdeHz2A/z3aj/dfGEWPAcOo07j5Vdft6e1HRlqKef9GX+/01CS8fPyvW3m3I4piZMnbo5n34gB8q9XBM7hauXkDazWmVrve7P5NLu0Z2rA1uZlpJEfbXmFt75IZzH9pAOd2rqNulwes0p3cvcnNTDPv27re1/OBnpeRalN5Vbm9+S8rm2YURdkB+ACVmz4sEEK4AmFA8a+sOGYzAmglhOhXpp44oBC4F7Aa0aAoyjlFUb4DugCRQgjvMunTFEVppihKM1+PW7hGuCWGPEi/IOM2beHkDxH3wcm5V2cZ9G0EKaav2uRj4BJsncdYKAcQFVOQAfYWayrbudt2vxdmy4FFIP9XprAWo9HZdrHfhWRmpLNr2990uKerzfRadevxwZSveWr4w6Usgwkm93hKUhJ/rVpBw8bS7f3AwIf5c+UyAFYtW0Jk4yZWZebn5WFvb2/ej7sSS2BwSZhEQGAQCfFXrOSSEhPx9ZNKhK+fP8lJiVfVR3t7B/Jz/8NOhZtITlYmx/bvonHrDjbTq0bUZsxrHzL5pSdLWQZTkxIAyEhNZvemtdSoa+32Lo+C/Dzs7Equd3JCHD7+JZZrb78AUpPireTSUpLw8JaPcA9vX9JTrQei2EJvZ0+BjZCKu5GC3CyunDpASH3bcepeIeG0H/ESa7951WwZ9I+oT9XINgyaPJ97nnyToNpN6DT6NSvZc7vWEdbU+j4yFBag09uZ97NTE3H2KjFeOHv62hxUlJuRiqO7jGBzdPciN/PqPBFavR2GQuuQCpXbm9tC2RRC1EaOLr+6p5OUcQGmAksVRSl1lyuKcgV4GTnwqCxvAhNNcZ2W5fW2sKzWQI6QT7va9txUdE6gdZDbGh14VIdcGy9yO3c5yvvM75B3lae2IBPcwuS2ezjkpVjnyU2WrvRiUk7KAUJCK487etl266ecBL/Gctuvsdy/GvQukJd2dXnvQLy8vXF1k8q8vYMDbTp04vxZaytGYHAIU2f+woSnnyDqfMkoVUcnJ5ydXczb7Tp15sxJ+UERHxdHyzYy1qp1+45Enbdetu/C+bMEh1Yx76//cxW9+z+AnZ0dIVWqUjW8uk23/vo/V/PAIDl69oFBQ1i3ZtVV9dfHz49LF6Mrz3iH4ubhhZOLtOTb2dvTsEVbLkdbXxcf/yBenDyVr9+awBWLOEx7B0ccnJzN25Et2xFzzrbVyxaxMRfwDSz5mNizdR1tu/VBp7fDLyiEwNAwztpw6+/dso5OvWW8bafeD7Jny19XVZ+Hty8JVyoJA7qDcXBxx85R/j61ejuC6zQj7UqMVT5nLz+6jH2XTTPeJyO+5HztXTydeS8NYMHEwWz84R1iT+5n04z3AXDzKzEWVIlsS7qNctPjLuLiUxIWEX1wG+EtOqPR6XHxCcDNP4TE89Zu/ZiD26jRpgcANdr0IObAtqvqr6O7F5lJtmPDVW5fboeYTZCu8OGKohhM+l7ZmM2ZiqJ8ZdreaFIKNcAS4N1yyl8KTBJCtLc8qCjK9nLyDwM+F0LkAEXA0LIK6X8GO1eIeACEkH9JxyDV9DLxN41Sjt8LoZ1A72QaHY6cyuiwdL1Q4yFwryYV16YT5NRJCfvh3B9QrZccdGQskvtlMRZCXqqMF81LkYpu0lFo/KxpuqSVmN0u1e+DuD2QHQuXt0LNQdKln58OpxeUlNlknByYpNHKgUTHZ8tynYMg6yJgvAEn8vbA1z+AT776Ho1Wg0ajYdUfS9j4lxy5//CjowCYN3smz06YiIenF29P/gzAPMWRj68fU3/6BQCdVseyJb+xZaM07L824TneeG8yWp2W/Px8XnuxbJizHNATEx1F1bBwoqPOc+bUSVYtW8qarbspKipi0ssTMBrl9flgytfM/XkmRw8d4Ievp/DV9J8ZMGQYsZcv8ezokpGwm/YcxsXVDb2dnnt79mbEoPs5e/oU9SMbc3DfXgyG/+ZP72bg6ePHM299gkajRWgE29etYt/fGwDo9oBU3tcunstDo5/F1d2T0RPlDALFUxy5e/nwv0++B0Cr1bL1z2Uc3CkH+7To1I3HJryFm6cXr0z5kagzx3nvuRGl6s/PyyX+cgwBIVWJuxTNpfNn2L5uJV8s+BODwcCMj98yX++nXvuQvxbP5dyJIyyZ/T0TPviGLv0GkhQfy2evPG0uc+rSLTg6u6DT62nR8V7efW44ly6cpXqdBpw5ehDjXXy9nTy86fDYq2iEBjSCC3s2cfHwDgBqd5TOuZObl9Gk7//ZO+/4KIovgH/37tJ7DwmB0HvvvSO9CQKKSFGQYi8g6k9ULAh2sYs0EQSR3nvvvUNIIL33XMrdze+PvVzKXRJQICTZ7+dzZGf2vZm5XWbv7ZvynsHW0YUOY+RdHQwGPes+nFxs2a2GT8bFNwAMgrT4aA4u/dxMRpedSUpsBM7e/qTEhJMUEULwiT0M/3AxBoOew8u+Qgj5fnd65g2u7F1P3O1rnNu8nO5TZlOnU3/SEqLZ/cN7pjJHzl2BlZ0DarWGwGYd2fLF6yRF3sazah1ibl1GGCru/S6vSPdzbo1CHi3r+omTCyvwFi3u9WRDMNR8f8X7SmBfSLwmb5VUitQc+nXJQuWYXn0H0LBJU778dM4DreedOZ+ya9sWjhzYV7LwA6Rp1ZIXt5RnWnftTfW6DVnx4xcPtJ7xr77LyQO7uHCiKB/Aw6FPo4BSrb+0qdqsE56BtTn1z28PtJ62o1/gztlDRFwx38v3YfLcwv2nhBDm+8cp/GseZc+mQlkm4Yq8QvxBkxFT6oamAuzYshE3d/eSBf8jN65eKXVDUwGO792Ok4vrA68nNOh6qRuaCnD7zAFsHZ1LFvyPJIYHl7qhqfBgUDybD4gK79msYFR0z2ZFo6J7NisaFd2zWdFQPJv3H8Wz+YBITEhj9Z9HS7sZCg+JjGxlNXxFwt5aeXRWJJ4db3m1v0L55LmF+0u7CeWOMrEaXUFBQUFBQUFBoWyiGJsKCgoKCgoKCgoPDMXYVFBQUFBQUFBQeGAoxqaCgoKCgoKCgsIDQ5nlXo7wqdeSpo9PQVKpCD6ylWs7VlqU86rZmCaPT0FSq8lOS2HfN68DYGXnQIvRr+LsFwhCcPKPz0kIuYJ/007U7/c0zj5V2D3/BRJDb1gs19bZnRajX+bQT3LM7Tq9RlGt3WMIg4Gzq78n+qp5FBkreyfajn8be3cfMhKiObpwDjnatGL1JbWGZiOm41WrMUIILm34nfBzB6nReRC6rExuH7uLGO/lgK49evHhJ5+hUqv5c+livvvKfENmgHYdOvHBJ5+h0WhISIjn8QFyVA9nZxfmf7OAuvXqI4Tg1RemcOrEcX78bTE1asmxtp1dXEhJTqZX53Zm5Xr7+DLv6+94ZtRwAKa/8jqjx4zFoNfzzsw32Ld7p5mOq6sbPy5cQuUqVQi7c4fJ458m2RhGsSh9KysrPvrsC9p17IQwGPh0zvts3rCO8c9NJiM9g5XLl/7na1kWaNSmE2NeehuVSs2+javYuOxni3J1m7XmqRffRq3RkJaUyMcvjAHA3tGJCTM+onL12iAEv37yFjcvnTXp9R09gdHTZjK1fxvSks1DC7p4eDHxzTl8MUPeKHzAmMl0GTAcg0HPsq/mcOH4QTMdBycXpn3wFZ6+/sRFhfPd/14iIzWlWH21xoqxr/6Pes1aYzAIVv/8BSf3bafnsDFkZWZwYPOa/3QdywyuNaF6fzkwR/QpCDtgWc4l0BhoQw26dLiwUM5v+Sros+VAGsIA534sqOffAar1gaOfgC7DvFwrR6g1BC7LAR+o3Bl8moMQcmCOpJvmOho7qPME2LrJgT2urpRDJhenL6mhRn85iIgQcHsnxF+GSm3k9secudcrp/AIUuaMTUmS9MAFwAo5ks9i4CshhEGSpK7A60KIAZIkjQMWAk2FEOeNuheBAUKIEEmSQoCWQog4SZIE8IUQ4jWj3OuAoxBitjE9BngTOWSmDjhhrCfpoXzpu0FS0WzEdA4smElGUhw93viWiAtHSI0qGH7Mys6BZk+8wIEfZqFNjMXG0dV0rsnjU4m6coKjCz9EUmvQGOMfp0SGcOTXD2gxyjx6TH5qdXucW4e3AODkW4WAFl3Y/vEkbF086DztU7Z+OEF+6OWjbq+RxFw/w7UdK6nTayR1e43kwvrfitWv99hoslKT2PbhBJAkrO3l0H0hR7bR9ZUvK4SxqVKp+HjeF4waOpDIiHA27z7Ati2buHGtYIhPZ2cXPpn/JU+NGEJ4WBgenl6mcx98Oo+9u3YwadwYrKyssLOzB+D5iXmRfP734SekpiRbbMPkaS+wfPHvANSqU5fBw4bTrV1LfHwrsXLtRjq2bGKKJJPL9Fde4+D+vXz31edMf/k1pr/yGh/NfrdY/Zdee5O4uFg6tWqKJEm4ucn7ea5YtoR1W3dVCGNTUqkY++p7fPbKeBJionj/1785fXAXESFBBeTsHZ145tXZzH99IvHRkTi55u19Ouald7hw7ADfvfsiao0VNra2pnPu3r40bNmBuKjwItvQd+R49m74CwC/wBq07dmft57uh6unDzO+WsSbo3sjCt3vAWMmcfnUETYu+5kBYyYxYMwk/vphfrH6g8ZOISUxnjdHP4YkSTg4uwKwf9Nq3v1hRQUxNiWoMRAuLoLsFGj6PMRfNQ87rLaV5S4tkaOuWTkUPH9hoWVD0tpZDmNcXJhf/w4QdVI+tvMCr0Zw+ls5Ql3D8XDqK0yR4HKp3Ene9/jSAfk4oDOEbC9eP6ALZKfDqa/l7527P3P0aWj8nGJslhPK4jC6VgjRVAjRAOgF9APeK0I2DHj7LsrMAoZJkuRZ+IQkSX2AV4C+xjqbA4cBn3/T+AeFe9U6pMVFkB4fhdDrCD21D79G7c3kAlp2J/zcIbSJ8kMrKy0JAI2tPV41GxFyZCsAQq8jR5sOQGp0KGkxJccm9m/akegr8sPJr1F7Qk/tw6DLISM+irS4CNyr1jHT8WvUjtvH5BjJt4/twK9x+xL1A9v24eqOFXIBQpCdLntK9DlZZCRE42ahnvJGsxYtCbl1izu3Q8jJyWHdmtU81m+AmdzQEU+weeN6wsPk+xcfJ993Rycn2rbvwPKliwHIyckhxYJROWjoMNb+vcpiG/oNHMyeXfK9e6zfANatWU12djahd24TcusWzVqYb1P3WN/+/PXnHwD89ecf9DG2uTj9UWPG8u2X8wEQQpCQEA+AVqsl9M5tmjZvcZdXrexSo15jYsJuExsRil6Xw9Gdm2jesaeZXLteAzm5fzvx0ZEApCYlAGBr70CdJi3Zt1G+l3pdDhlpqSa9J1+YxYof5lHcvsstuz7G+WPyljDNO/bk6M5N6HJyiIsMIybsNjXqNTbTad6pBwe2/APAgS3/0KJTzxL1O/d/nA1L5bC5QgiTlzU7K5PYqHCqW6in3OFUGTLjISsRhB5iL4BHPXM5r8YQd1k2NAFy0u+u/Or9ZCOwsLGYH8/6kGgcxfKoJ7dB6CErSW6bU2VzHfd6EG00DqPPyOmS9H2aQ1juVkMizzg25Mjf39EfhbJPWTQ2TQghYoBJwHRjPPTCbAQaSJJUkvWhA35GNioL8zayFzPcWKdeCLFQCHHtPzT9vmPn6mkyIAG0SbHYuZpvPO3k5Y+VvSNdXpxHjzcWUKW1/PB38PAlKy2JlmNep8eb39Ni9CuorW3N9IvC3sOXnIw0DLocY3s8CrUnDjtXM1seGyc3MlPkH8TMlARsnFyL1beyk9/cG/R/hh5vLqDthHdMOgCJd67jWaPhXbe7rOJbyY+I8LwXgMiIcCpVqmQmV71GLVxdXVm9YQtb9xxk+Eg5dnbVqtWIj4vjywU/sX3fYeZ/vQA7e/sCum3adyA2JobgW0Fm5QZUqUpyUhLZ2dkAVKpUyaw9vpX8zPQ8vb2JiY4CICY6Cg8vr2L1nZ1dAHhz1v/YtvcQP/2+FE8vb5PcubOnadOuQwlXq+zj5uVDfEyUKZ0QG4Wbl/n7rm9AIA5OLrz17VLe/20NHfoMAcDbrwopSYk8N+tTPly4lgkzPsLaVvYgNevQncS4aEJvXjUrLxfPSpVJT01Gl5Njak9CTGSJ7XF28yQ5Xu7HyfGxOLt5FKtv7yiPUgx/9mU++O0fpn/4tUkHIPjqBWo3qQB7bVs75xmQIB9bO5nL2XnInsBGE2Tvp3fTgucbPiPn++S7Zu51ZW9pehRFYuMKOq1sHIJcd4H2pMhtNGu3A+TI06DISZPTxemrjb8xVXtA0ylQd2RB72xqBLhULbqdCmWGMm1sAgghbiF/D28Lpw3AZ8CsuyhqAfCUJEkuhfIbAHcVP0uSpEmSJJ2UJOlkijbnblQeLBa8FJJajVtALQ7++C4Hvn+Leo89haOXPyqVGtfKtbh1YCO7PpuKLjuTur1G3nVVds7uJi+psaa7ak/RWNaXVGrs3byIv3WJXZ9NIz74Co2HTDKJZKUlYedS/qO7WHq3suSV0mjUNGrSjKdHPs6Tjw/m5TdmUL1GTdQaNY2aNGXJwl/o3aU9GRkZTH/5tQK6Qx4fUaRX08fXl/i4uHtuz71+H41Gg59/ZU4cO8JjXTtw6sRx/vfhxyaZuNhYfHzNjexyh6V3aQvXV6XWEFinAZ+/MYl5r05k8DNT8Q0IRK1WE1i7PrvWLufdCUPIysxg4JhJWNvYMuiZKaz5tfgIWK4eXiYvqdycB3O/VWoNHj6VuH7hFP+bOJSbF88yetpMk0xqYgJunpYe9RUUSQWOfnBpKVxcAgFdwdb4/Dv/C5z9QT7n1wacq4LKSh7avr2r+HKtnSAn//C7JV/Of3yeI+T227hAyh25rSmh8jzSXHLSLBu1CmWOMm9sGrH0PzmX5UBbSZKqFVeAECIFWAK8WGQlktRIkqSzkiQFSZJkZokJIX4WQrQUQrR0trO627bfF7RJcdi55c3Hs3P1QpucYFEu+spJ9NmZZKenEBd0ARf/6mQkxaFNiiXhtuzdCD97ANeAmnddvz4nC7WVdTHt8USbHG+ml5WaiK2zPK/M1tmdrNSkYvWz01PQZWUSfv4QAGFn9hdop0pjjd7obSvPREaE4+efN4xVyc+fqChzT0VkRAR7d+1Am5FBQkI8xw4fon7DRkRGRBAZEc6ZU/K0h43r/6FRk6YmPbVaTb8Bg1n/z2qL9WdqM7GxtTGlIyIizNoTHRVpphcXE4O3jy8gLzCKj40tVj8hIZ6M9HS2bFwvt3PdGho1bmKSs7WxJTNTW/SFKickxkTh4e1rSrt7+ZIYF2MuFxvFhWMHyM7UkpacyLVzJwioWZeE2CgSYqO4dfk8ACf2bKNq7QZ4+1fBq1Jl5ixaz+erduPu5cuHC//Bxb3gKEROViZW1nn3OyEmCnfvPCPf3cuXJAvtSUmMw8VD7scuHl6kJMYXq5+WnEiWNoNT++XpGcf3bKFqnfomOStrG7KzMu/+wpVVslNkIywXGxfITrUsl3RDHnLWZUByCDgY/5/kyuekywtunCqDrTvYuEGzafICIhtn2aNo5ViwXIMOVJqC9RRoj3MR7UnPK8vKUU4Xp6/LkBcBxV+R8+MugkO+ERGVBvSPgONG4T9T5o1NSZKqA3rA/EkHCCF0wOfAjLso7itgIpB/lvUl5HmaCCEuCCGaAlsAu3/d6AdA4p1rOHr5Y+/hi6TWENCiC5EXjpjJRZw/jGeNhkgqFWorG9yr1iU1OpSs1ES0SbE4ess/+N61m5ESecdMvyhSY8Kxd88bRou8cISAFl1Qaayw9/DF0cufhNvmMw8iLhylapteAFRt04sIY5uL04+8eBSvWrLB4V2naYFFUE7e/iRHhtx1u8sqZ0+folqNGgRUqYqVlRWDhw1n+5ZNZnJbN2+kdbsOqNVq7OzsaNayFTeuXyM2JpqI8DBq1KwFQKfOXQssLurUtTs3b1wjMiLCYv1BQTcIqJI3vLV9yyYGDxuOtbU1AVWqUq1GDZMhm5/tWzfzxOinAHhi9FNsM7a5OP0d2zbTvqMcLrBj525cz9fO6jVrcu3K5Xu6dmWRW1cv4BMQiGelyqg1VrTt2Z8zh8y9U6cP7KJ245ao1GqsbWypUb8JESFBJCfEkRAThW+A/M7doGU7IkJuEnbrOtMHtuO1Ed15bUR3EmKjeHfCUJIT4gqUGxkagqdv3ty5M4d20bZnfzRWVnhWqoxPQCBBV86btefMwd106jsUgE59h3L6wK4S9c8c2kPdZm0AqN9CbmcuvgGBhN2yvBtGuSI1XB4it3GVV2t7NYIEC9Mc4q/KHktUstfSqbK8iEhlBWrjy7/KSl7Znh4NGdFwfC6c/EL+ZKXIHsXcoe9ctHFy3bkkXJXbIKnlfDsPSLUwjz/hKvg0k499mkHClZL1E67JK+pBXrSkzfdTbucJGRZ/2hXKGGVuNXp+JEnyAn4EvhNCCMvTNgFYhLya3MKklzyEEAmSJP2FbHAa94/gE2C+JEmDhRC5veuRMjQBeXugVd/RaerHSJKKkKPbSIm6DUD1Dv0BuHVoE6nRoURdOUmvmT8hhCD4yBZSjMbZmVULaP3MTFRqDenxUZxcJi/K8GvcgabDp2Lj6EKH5+eQFB7Ewe8LzkzQZ2eSHheJg6cf6XERpETdJuz0fnrP+gVh0HN21XemlegtRr/CrYMbSQy9wbUdK2g74R0C2/ZBmxjDkYVzAIrVv7DuV1qNnYHVsOfJTkvmxB/zTe3wqN6Ay1uWPbgL/Yig1+t5+83XWP73OtRqNSv+WML1q/KD/enxEwFY+vtv3Lx+jb27drDr4DEMQrB8ySKTcfbOm6/z3c8LsbK25k5IMK9Me95U/uBhw4scQgfQZmQQEhxMYLXqhATf4vrVK2xY+zd7j55Cr9Mx641XTSvR53+9gCW//8r5s2f47svP+fH3pYwaM5bwsDAmj5O35SlOf87sd/n2x195/5PPiI+L49Xpk03taNWmHV/M/eQ+XtlHE4Nez5IvPuDNL35DUqnZv2k14cGyEdZt8CgA9qxbQcTtIC4c289HizYghIF9G1YRHiwbZ0u//JAp781HrbEiNiKMXz6ZWWR9hcnO1BITHoq3fxViwu8QHnyTY7s388myLRj0OpZ88b5pJfqEGR+xZ+2fBF+7yMZlPzPtg6/p3H848dGRfPeuPHBUnP7KH+Yx+d15PPXiLFKTEvk1XztrNWrOP79/998v6COPAYI2ynMuUckrs3ONLt9W8t+oE7JhmXgDmk+Tp1VEn5LlbNyg/pPGslQQe97yVkVFVp8DmQmyJzQzQS4z9iI0f1F+DgdtxDSMXnOw3Ja0CHmhT92R4NNCXgh01bj9XnH6Idug9nDQ2Mpe2Bv/5LXDuQrc2fOvrqDCo4V0L/NsHgUsbH20FHnbIktbH7UUQkw36r0IfA1Us7D1UZoQwtEo5wMEA5/l2/roGeB15K2PkoCLwHtCCPNxQiM1vJ3F3JFt7/O3f7Txa9wBt4BaXNq0qFTqd61cg1rdHufE0s8eet0vLjv00Ossbfr0H0jjps347KMPSqX+ho2aMGnaC7z4/LMPve6eDSreCtkWnXsRWKcBf//yVanUX7VWPfqMnMBPc9546HUv+fTu56+XGzzqyUPad0qY3/mgcKgE/u3h+t8PvWqp05xTQogKsBLt4VHmPJtCCHUx5/YCe43Hi5A9mrnnvgG+yZcOzHfsmO84GiiwLFcIsRh5P0+FYog4fwhrh2Kdxw8UawcXLm1SbtPDYuumDbi7u5cs+IBw9/AoNUO3InJq/w4cjXtelgaOLm78/etXpVZ/hSP+CmjsS5Z7UFjZl7yQSaHMUOaMTYVHm9x9OkuDmGt3tWmAwn0kd5/O0mD/3t2lVndFJXefztLg0snDpVZ3hSXaPOrbQyPJfMs1hbJLmV8gpKCgoKCgoKCg8OiieDYfEE621nSuUwH2/1MAICGtAmzHomCiupey91+FIrX8b6+loPAgUTybCgoKCgoKCgoKDwzF2FRQUFBQUFBQUHhgKMamgoKCgoKCgoLCA0OZs1lO8Rg7H5GTKW+ULAwk/jW7SFmNdzXchv+PlG0LyAqSo7ZI1vY4dZ+AxsMfBKTs/hVdVBAOrYdgW78rBm0KAOlHV5N92zxyiMreBafuE0je+CUA9i0GYFuvMwgDaQeWkX3nopmOZOOAy2NTUTl7YkiJI3nbAkRWBhrv6jh1G2cUkkg/vpbsW/IqSdfBb5K89TtEVoZZeeWdazeCSE1LRa/Xo9Pp6NC2jUW5zp27MO+LL7DSWBEfH0evHt0BcHFx4YeffqFBgwYIIZg86VmOHT3Kx5/OpX//AWTnZHMr6BaTnp1AcnKyWbm+vr58/+PPDBsyCIA33pzBuPET0Ov1vPrKy+zcsd1Mx83NjWXLV1C1alVu377NU6NHkpSURI8ePfnw44+xtrYmOzubWTNmsHevvJnz8BFPMOOtt1Cr1GzZspm335I3+X5+6lQy0jNYsnjR/bicZYqXf1pPljYDYdBj0Ov5+Y2xZjKBDVow6q3PSYoJB+DK0T3s++tX03lJpWLSvKWkJsSw/KNXAKjfvgddR07Cq3I1fnnzGSKCrlis39HNg0FT3zHpdRw2juY9B2MwGNjy6zyCzh4107FzdGb4a5/g6l2JpJhIVs2fSWZ6Kv61GjBwSm6QCIm9K3/m6rG9AIydvYC/5slyFY4us0CfJW+CLgxwuJj49S4B0O4FOLsMoozP40ZPgFd9yE6Dg3mBL/BtDDV7g6M3HP4GUixEAgKwcYKGI+CUMb5J9e5QubXclitrIe66uY6VHTR9GuzcQJsIZ5aCTiu3r+Fwo5AEN7dDtPE3oFYf8G8p6+54O6+sKh3kUJbhJ+7maik84pRJY1OSJAEsE0I8bUxrgEjgWL4N3ecB4fnUniFvr8wqQLLxEwc8C1wBrgHWwElgohAix1h+R+ALIHdVwBdCiJ8f2Be8TyT+8ykiM614IUnCsf0TZN+5UCDbsfNTZN+5QMrW70ClRtLkxUXOOLcN7ZktxRZr17QP2kt7AVC7+WFTqw0Jy2ehcnDFbcgM4pe9KUe8yId9i/5kh10m4/Qm7Jv3x775ANKP/IUuIUw2loUBlb0L7qPmEBd8BoSBzGuHsGvYg4xTG+76upQnHuvZg/h485jzubi4uPD1t98xaEA/QkND8fLKizf/+ZdfsWP7Np4c9QRWVlbY28t76u3euZN3356FXq9nzsef8MaMmbwz6y2zsl98+RUW/iYbL3Xr1WPEyJE0a9IIPz8/Nm/dTsP6dU1RgHJ5/c0Z7Nm9i/nzPuP1N97k9Tdn8M6st4iLj+PxIYOJjIykfoMGbNi0hRqBVXB3d+eTT+fSrk0r4uLi+HXh73Tr1p09e3az+Pff2bP/QIU0NgEWvzuZjFTzl4D83LlyxmQQFqbtgNHEhQVjY58XnTfmThAr576Zz/izTLtBT3Fqx1oAvCpXo2HH3ix48Qmc3L0Y+/73fDttmCkiUC4dh40j+MJxDq5ZTMdhz9Bx2Dh2Lv2WmNs3+fn1sRgMehzdPJjy5Z9cP3EAg0HPuX2badV3BAdWL7TQigrAsR8gp6QXaQnq9IfYQuGAw07C7UPQeHTB/NQoOLMYGgynWAK7QOgx+djRByo1hYPz5BjnrSfBvrmYogDlUr07xN+AW3ugejeo0R2ubZLrPPy1bKjaOEGH1yDmspyOvQx3DkHnQhGtwo5Du+mKsVlOKKvD6OlAQ0mScsNG9qKgYQmwUgjRNN/nXO4xsB54w5juaZQPMp5rBFQGngCQJMkXWA48L4SoC3QEJkuS1P9BfsGHhV3jXmQFnTR5KgEkK1us/eqQeXmfnGHQI7LvzXNoW6Ml2bdlA9amenOybhwDgw5Dahy65Gg0PtXNdGyqNSfz6kEAMq8exKZ6c/mELtsUqhK1FfkfcFnBZ7CtXbEiNd0LI0ePZt3afwgNDQUgNjYWACcnJzp27MTvC38DICcnx+S93LlzB3q9HoDjx45RuXJli2UPHTqM7dvkfVUHDhzEqpUryc7OJiQkhKCgIFq1bm2mM3DgIJYtXQLAsqVLGDRoMADnzp4lMlIOyHX50iVsbW2xtramWvXq3Lhxnbg4OVb37l27GDJsGABarZbbIbdp2arVf7xKFQ9nD29qtejA6Z1rC+THhYUQH3G7RP36bbtz87S872Wd1l24eHA7el0OSTERJESG4l+rgZlOndZdOLtnIwBn92ykbpuuAORkZ2EwyP/fNFY25I9qd+34fhp1euzffMWKQ2BH2ZuZXcixkHjLsqGaHgPpsSWX69sI4ozx2L0bQORZMOhBmwDp8eBaxVzHuwGEy6NjhJ+U0yCHv8x9hqsKPsNJugNZFjzXhhzISJC9ogplnrJqbAJsAXINvtHAn/ejUCGEHjgO5MajmwYsEkKcNp6PQ46zfveBhUsJ10Fv4PbE+9g26GrxvMrBDZvqLdBeLLg5ttrFG4M2Facez+I28gOcuk0AjbXpvH2jHriPmoNT94lINuYRJlROnhiyMsCgM9WjT00wnTekJaB2cDPXs3fGkCEbPIaMZFR2edvLaHyq4z76Y9xHf0TK3sWmB5fIygC1BsnWway88o4Qgo1btnL42HEmPvucRZlatWrj6ubG9p27OHzsOE+NeRqAatWrExsXyy+/LeToiZP88NPPJs9mfp4ZN55tW8036g8MDCQxKZHs7GwA/Pz9CQvLG44LDw/Dz888pKO3jw9RUVEAREVF4eXtbSYzdNjjnDt7huzsbIJu3qR2nbpUrVoVtVrNwEGDqVw578fn9KmTdOjQsbjLVC4RQvD0ewuYNH8pLXoNLVKucp1GPP/Fcp5692u8AvJe8PpMeI0di79BGO49XLGrtx/a9FT0uhxANlxT4qNN51PiY3B2N7+vjq7upCXKXvi0xHgcXPKeAf61GjD165VM/WoFG3/8xGR8ZqanotZYYefkcs/tLBe0mgTtX4YAy1NksHEGn4Zw58j9rdfOHXK0snEJYOsCmUl55zOT5Dyz9jjlGY5ZqWDjmHfOpQp0fB06vgaX/s4zPosjJQzczB0TCmWPMjmMbmQF8D9JkjYCjYGFQKd850cah79zaSeEKHGzNEmSbIE2wEvGrAaYh6o8acwvrDsJmARQ2a10jZ/Ev+dgSE9CsnPCdfCb6BMjyYkoOMzi2OlJ0g7/ZTacjUqFxqsqqfuXoou+hWOnp3BoMYD0Y2vIuLCb9BPrQIBD22E4dhhN6u7fCqo7uBbwlN4PdNG3SPhzFmq3Sjj3nCTPE9XLP3YGbaps0Gam39c6H3W6delEZGQkXl5ebNq6jWtXr3Lw4IECMhqNhmbNm9O3dy/s7OzYd+AQx44dlfObNefVl1/ixPHjzP/iS954cwbvz37PpDtj5lvodDr+XP6HWd2+lSoRFxtnSkuSZCYjCv+/ugvq1a/PRx9/woB+fQBISkrixenTWLr8TwwGA0ePHKFatbwfn9jYWGrXqXPP9ZR1Fr41kdTEOBxc3Hj6vQXEhYdw+/KZAjKRt67y1aSBZGdqqdW8A6NmzufbacOo3bIj6ckJRN66SmCDFvdct5ObJxnJiXkZ5rf+nu99+I1LfP/SSDwrBzL0xfe5efowuhz5RSY9OREnN0+0JUwZKHcc/Q6yUsDaUTY602Jlb2V+6g2Wh6kLD2f/V2yczD2lhbnX/p18R5476uANjUdB7FWTQ6JIstLkuaUKZZ4y69kUQpwHApG9mpstiBQeRi/J0KwhSdJZIB64Yywf5EeppV5llieE+FkI0VII0dLD0fZuv8oDwZCeJLdJm0r2rVMWh62tvKvh8tgUPMbOx6ZGK5y6PIN1teYY0hIxpCWgi5YfbFk3T6DxqmosL8X4kBFoL+3DykK56LKRNFb52pKI2ikvhrbK0R19eqKZmiEjBZW9/LassnexaLDqEyMROVnywiUjktpKHmqvYOQOO8fGxrJ+7VqLw8nhYWHs2LaNjIwM4uPjOXjwAI0bNyE8LIzwsDBOHD8OwD9//03TZs1NemOeHkvf/v0ZN3aMxbq1Wi22tnnzeMPDwgoMt/v7VyYyMsJMLyY6Gl9fX0BeYBQbE5NPx5+/Vv3NxAnjuHUr70d186aNdO7Qnq6dOnLj+nVu3rxhOmdja0OmtuJtuJ2aKBv66cmJXD221+KwdZY2nexM+drcOH0ItUaDvZMLAXWbUKdVZ17+aT3DX/uIao1aMezlu48xn5OdhcY6796nxMXg7OFjSjt7eJOaaD5Mm5aUgKObByAvMEpPNn8GxIWFkJ2pxbtKDVOextoaXXbWXbev3JBlfP5lp8mLaVwtDCe7BECTMfJiIt/GUH9Y3tD1f8GQYxzuNpKZDLaueWlb17z2FWhzqmyogtHLacFgTY+RF/44+pbcDrXG5FRQKNuUWWPTyHpgPvdnCD13zmZNoK0kSYOM+ZeAloVkWwCX70OdDwaNNZKVrenYOqAh+njzFYfxS143fbKCTpC6bzHZwacxZCSjT0tA7So/DKwD6qNLkA2HXGMQwKZ6C3QWytUlRaF28jSls4LPYFOrDag0qJw80bj4mAzZ/GQFn8G2ruyMtq3bkaxgOda5yskTJJXx2AO1my/6lDyvmsrepUC6ImBvb4+jo6PpuEevXly6dMlMbsOG9XTo2BG1Wo2dnR2tWrXm6tUrREdHExYWSq3atQHo1r07V67I/6V79X6M115/g+FDh6AtwpC7cf06VasGmtIbN25gxMiRWFtbExgYSM2aNU2GbH42btzAmKflldNjnh7Lhg3rAXkh0z/rN/DuO29z5HDBGNi5i5pcXV2Z9PzzpnmmIE8TsPS9yzNWNrZY29qbjms0bUPMHfM40o6uHqZj/1oNkCQVGanJ7Fq2gC+e689Xkwex+vO3Cb5wgjVf/e+u64+PuI2rd150tGsn9tOwY2/UGitcvf3wqBRA+A3ze3LtxD6adhsAQNNuA7h2XJ4T7urth0qlBsDFyxdP/6okxeS9qDi6epAUE3nX7SsXqK1BbZN37FlbXmRTmH0f532izsPlNRBzH/pDepy8ojyXmEvyAiGVWh5id/CU51oWJuayvLIc5L+5bbFzNz3DsXUDBy957mdJ2HtBmoXvrVDmKMvD6CAPnScLIS5IktT1fhQohIiUJGkm8BayMbsAOCZJ0hohxFlJkjyAucDduwIeMip7F1z6vQiAJKnJvH7EtNrctkE3ADIv7Sm2jLT9y3Du/TySSoM+JYaUXfKqY8f2I9F4VQEB+tQ4Uvf8bq6sy0afHIPaxRt9cgz6hHCybhzH46lPEAY9qfuWmoZgnLpNQHtpN7qYEDJOb8TlsWnY1u+MITWe5K0LALD2q4198wEIgw6EIHXvEtMqe413IDnRN+9u/k85wsfHh5Wr/wZAo9awcsWf7Ni+DYBnJ00G4Neff+La1ats37aNk6fPYjAY+P3337hsNM5eefklFi1ZirW1NcG3gpn07AQAvvr6G2xsbNi0VS7v+LFjvDBtaoH6MzIyuHUriOo1anArKIgrly/z96pVnD1/EZ1Ox0svvmBaif7DTz/zy88/cfrUKeZ/Npc//lzBuPETCA29w5OjRgIwZeo0atSoyVtvv81bb8vbnwzo24fY2Fg+/+IrGjVuDMDHH83h5o08z2a79u356MNHtis+EBxdPRg5Yx4AKrWaCwe2cfOMPGev5WOPA3By29/Ub9eDln0ex6DXo8vOYvXnxa8wB6jbpiv9nn0Dexc3nnznK6KCr7PsgxcKyORkZZIQFYa7b2USosKIDb3FpcM7mfbtKgx6PZt++cy0En3Q1Hc4ue1vIoKucHDNYka8/gnNegwmOS6KVfPkae9V6jWl47BnMOh1CINg00+fmlbZ+9WoR9j1i6Y5nBUGa0doPk4+llQQeQbijNOgAtrJf0NLmKfZ5ClwrwHWDtDtHbixXV7h7dMQ6g+R62g5EVIi4OQvBXX12ZARD/Ye8t+0aIg6B53eAIMBLv2DaXCv4Qh5zmhKGNzaLW99VLk1aJPgrLwYELdAeaW60MvP/ktr8hYv1ekPfs3kxZ/d3oHQ4/LWSLl6uccKZRrp38yrKm0kSUoTQjgWyusKvF7M1kdThRCHjbKLgI1CiNXGdKAx3dCYloCzwHQhxAFJkjoDnwNOyMPqXwkhfiiujU2reIrtb5aLBev/CuvqLbDyCiT92N8PtB7HTk+RFXyGnLDSdTRXeWVZqdZfGgwaPITmzZsz+72794rdT5o0bcpLL7/ChHHPPPS6Zw5o9tDrfJSo26YrfjXqsXt5sY/B/0yfia9x7fh+gi+U7vY3syd1LdX6SwWfhuBcGW6YLxB8KDj7ydsvnb8va3/vCanf56eEEIVHNBX+A2XSs1nY0DTm7QX2Go8XAYuK0R9XKB0CNMyXFkCTfOn9gLK/yj2QfesUKluz23Tf0cWHlbqhWVFZv24tHh4eJQs+IDw9PHm/lAzdis7VY3uxfwgrxGPuBJW6oVlhib4IVuY7VDw0rBxKz9BVuO+USWNToWxg2qezjNehUDT5508+bHbt2llqdSvA6Z3rHnwdxo3jFUqJMPN51w+N+BslyyiUGcr6AiEFBQUFBQUFBYVHGMWz+YDQC0FaprJlQ0Whlm8F3XS6gjL7pd6l3QSFh0ijp38s7SYoKJRpFM+mgoKCgoKCgoLCA0MxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQdGmVggJEmSL/AV8l6XWUAI8DJwDrgGWAMngYlCiByjjgaIAn4RQryVryxH5A3aewKZyLHQ3xBCHMu/WbwkSf2Ar4EegB3wE+AK2AAHhBCTHuR3/jd4PTYJ+xrN0GekELZohkUZlY0DXn0moXH1QehyiN32Ezlx+UJOShL+Yz5Cl5ZA9D/zAXBr/zhOjbqhN8YqTzjwF9rgs2Zlqx1c8ez9rEnPtfUgnBp1RQgD8buXoA05b6ajsnXAe8CLWLl4kZMcS8yGbzBkpRer7/v4DNQOrkgqNZlhV4nb9TsIgXOz3hhyski7WDG2Q/pg/rd07tGbhPg4hvXsYFHG2cWFD+Z/S0DVamRlZfK/11/k5rUrpvMqlYoVm3YTExXJ9PGjAahTvyHvfvIFNjY26PU65rz9BhfPnjYr29Pbh9lzvzLpTZz2MsNGjUGv1/Ppe29xeN9u8/a4ujJ/wUL8AgKICA3l9anjSUlOLlb/h6Wr8PL2Qa3WcPr4ET565w0MBgOjn3kWrTaDtX8t/28XsqxQZxh41IWcdDjxtWUZjS3UeVwOD2jQwbU1kB6dT0CCFtMgOwUuGKO7BPYEz3qAgOx0uLoaslPNy7Z2gjpD8/SqdIFKLeXoXTc2QqKFrWo0dlB/lByiMDMRLv8Juszi9RuPk+uSVJAcAtfXy23zbytHtoky/79YHlH6dwXr3+WcR96zaYzm8w+wVwhRQwhRH5gF+JAXz7wRUBl4Ip9qb2RD9AljGbn8CiQAtYQQDYBxgGe+80iS1AP4FugjhLgDfAN8KYRoKoSoZzz3yJF6aT+Rq+cWK+PadjBZMbcJXzyT2C0/4NltbIHzLs37kpMQbqaXfGoL4UtmEb5klkVDE8ClZT9Sz8thMK08/HGo247QRW8S9fdcPHuOhwK3wdie1oPQ3rlI6G+vor1zEdc2A0vUj97wDeFL3iJs0Zuo7Z1xqN1W/v4X9uLS7LFiv395Yt2q5Ux5ekSxMs9Of5Wrly7yeO9OvP3yVGbM/rjA+TETnyf45vUCea++/T4/fvkZI/p0YcH8T3h11myLZY99bip//ykbHtVr1aHvoGEM6dGeKU+P4J2P5qFSmT9eJk59mWOH9jGgcyuOHdrHxKkvl6j/+pQJDH+sM0N7tsfNw5PeA4YA8M/KP3hy/CP3zvfgiDoN5xcVL1OlK6RFwslvZaOx5oCC5yu3h4zYgnmhB2T5k99B/FUI7G657ModIMK4wbq9N3g3huNfyW2qPQg5uFrh9nSBpCA4/oX8t0qXkvUv/Sm358TX8sbe3o3k/MhT4N+++O9fjlD6dwXr3+WcR97YBLoBOUII094TQoizQGi+tB44Dvjn0xuN7Jm8A7QFkCSpBtAGeEcIOZi2EOKWEGJTrpIkSZ2AX4D+QoggY3YlwOT+E0JcuI/f776RGXYVgzFmeFFYe/ijvSPHxs5JiEDj4oXa3hkAtaM79tWbknK++LjpReFQqzUZIefk4xotSL96BPQ6dMmx5CRGY+Nb00zHvmYL0i4dACDt0gHsa7YsUV9ka2VllRrUGnJj9ApdNrqUWGx8a/yr9pc1Th07QnJSYrEyNWrV4dgh2dMbHHQD/4AqeHh6AeDj60en7r34+8+lBXSEEDg4OQHg6OxMbHSUxbJ79R3Iwb27AOjWuy9b1q8hJzub8NA73AkJplHTFmY63Xr3Zd3qFQCsW72Cbo/1K1E/PU32smk0GqysrMgNsZuZqSUi7A4NmzYv4UqVE5JDQJdRvIyDt2zUgWxU2rqClTGSl42z7BmNLBSRR5+Vd6y2NoW8NsOrISQYDRfPehBzXo51nZkI2ng5tGFhPOtB1Bn5OOoMeNYvWT+3PZIKJLUcSxvAkCPLOlmopxyi9O8K1r/LOWXB2GwInCpOQJIkW2QjcqsxbYc8/L0R+BPZ8ARoAJw1GqeWsAHWAUOEEFfz5X8J7JYkaYskSa9IkuRaRDsmSZJ0UpKkkwlpmXf15R42WTF3cKglR9608a2BxtkTtZMcctCj+9PE7/8TS782zs164//Mp3g9NgmVjYPZeY2LF4bMdNDrAFA7uaNLjTed16XFo3FyM9NT27ugT08CQJ+ehNre5a70fR+fSdWpPyKytaRfP5b3/aJuYVu5zt1ejnLPtSsX6dlX9hY3bNqcSv4B+FTyA+DN2R/z5cezMRgMBXTmzp7Fa2+/z45jF3jtnQ/46tMPzMr1D6hCSnISOdnZAPj4ViI6Is8jHh0ZgbdvJTM9D09v4mLkYd24mGg8PLzuSv/HZavZd+Y6Gelp7NiUF7nm0vmzNG/d7t4uSnkmLQo8G8jHTpVlY9NGfpmk5gAI2oJFa7JaL2j7Jvg0hRALkZls3UCnlY1DkMvMSs47n5UCNhb2mrV2zBuSz04taPgWp994HLR/Wx42j72Yl58aDi6BRX79iobSvxXKCmXB2CyOGpIknUWed3lHCJE7KXAAsEcIkQH8DQyVJEl9F+XlAIeBifkzhRC/A/WAVUBX4KgkSTaFlYUQPwshWgohWro72v7Lr/RgSTq+HrWtA/5jP8a5WW+yYkLAoMe+ujzXMzs62Ewn5ewOQn99mfDFb6FLT8Kj61NmMmoHV9OcziIRRblM7pJ8+lF/f8qdH6Yiqa2wq9LAlK/PSEHtaG7UVlR+W/A1zi6urNq6jyfHPcfVS+fR6XTGuWCxXL5wzkxn5NPj+ez9t+nVphHz3n+HD+Z9Yybj6e1LQkLey4BkYYqEuIf7XZL+82OG061lPaysbWjTobMpPyEuDm8f37uup9xzZ588T7LldPBvB6mR8pxIjzqQnQZpEZb1gnfA0c8g+qw8N7Iw1k7yXFETFobM76l/l6B/fhEc+UQevXDLN1KRkwY2TvdQT/lG6d8KZYWyYGxeAsz99TK5czZrAm0lSRpkzB8N9JQkKQTZK+qBPBx/CWgiSVJR39uAPO+zlSRJs/KfEEJECCEWCiEGAzpkj2uZQ2Rrid36E+FLZhG75QfUds7kJMdi418bhxrNCXjua7wHvIBdlQZ49ZsKyAac/EMgSD2/G5tK5sPUQpeNpLEypfWpCWiMHlMAjaMHurQkMz19RjJqB1fAaLBmJN+1vtDnkB50yjT0DiBprBA52fd6Wcot6WmpvPvadEb06cKsl6fg5u5JeOgdmrVsQ7defdl6+CzzFvxK6w6d+ORreabKoOGj2bllAwDbNq6loYXhsqxMLTY2ee9bUZER+PjlzWLxqeRncXguPi4GT28fQF6AEB8fe9f62VlZ7N2xhW69+5rybGxsyMrU3vN1Kbfos+Da3/L8y6urwNpBHnp2rioPXbd9Q16w41od6lmYDxh9Th4uL4whB1T51pNmJRf0RNo4y4uOCpOdJhuqYDRY0+5e36CDuCvGxUtGVFZyvgKg9G+FskNZMDZ3AzaSJD2XmyFJUiugam5aCBEJzATekiTJGegIVBFCBAohAoFpwGjjHMyTwPu5i4YkSaolSdLgfGVlIHtGn5IkaaJRpo8kSVbGY19k49V8FU0ZQGVjL3sLAKdG3cgMu4rI1pJ4YCV3fnqB0F9eImbjt2jvXCJ28/cAJmMQwKFWK7Lzr143kpMYhcbZy5RODzqFQ912oNagcfHCys2XrKibZnoZQadxbNAJAMcGnci4eapYfcnKJq89kgr7ak3JScjz1li5VbLYvoqKk7MzGiv5JeDx0WM5deww6WmpfD33Q3q2bkif9k15Y9qzHD90gLdeeh6A2OgoWraVV7+26dCZO8FBZuXevhWEX+UqpvTeHVvpO2gYVtbW+AdUoWpgdS6cNZ/9snfHVgYPHwXA4OGj2LN9S7H6dvYOph8vtVpNp+69CL6Zt+q5avUa3Lh21ayeCovGVp7nCPJK76Rg2QAN3g5H5sLReXB5BSTdgiurZDm7vJc6POuZLyACyIiTh9JzibsiL/CR1HK+nSekWOh3cVfAt5l87NtMThenr7bOM04lleyRzd8eO89Cq+srNkr/VigrPPJbHwkhhCRJQ4GvJEmaibxdUQjy1kf5WQvMBl4Cdgsh8s16Zx3wmXHo+1nkrY9uSpKUgXHro0J1JkiS1AfYL0lSHNAF+FqSpNyJmG8IISzPqi5FvPtPxzagHmo7J6pM/pbEQ3+TenEvTk16AJB6bhdW7v5495uCMBjIiQ8jdtsvJZbr3nk0Nt5VEYAuOZa4Hb+ZyYicLHRJ0WhcfdAlRZMTH076taMEjJ+HMOhN2xMBePZ+jpRzO8mODibp2Hp8Br6Ic6Nu6FLiiN4gb+lSlL7Kygafoa8hqa2QJBXaO5dIOZs3x8zWvzaJR9bch6v56DP3u19o1bYDru4e7Dx+kQWff8o/K5cxYsw4AFYtW0T1mnX46KvvMej1BN24xntvvFhiubNnvMTM2Z+g1mjIysri/ZmvmMlotRmE3g4mILAaoSHBBF2/yraNa1m3+wg6nY6P3nnTNFds9mdf89ey37l8/iy/LfiK+T8sZOioMUSGh/HalPEARerb29vz7cI/sLa2QaVSc/zwfv5a9rupHU1btuGHLz+7D1ezDFBvJLhWk1dot5sBwTsh6hT4tZbPRxwHey+oOwIQkB4jezlLovpjsp4wQGYSXF9nLmPIAW2CvKWSNgEyYiDmArR+2bh1kXF7IpC3R4o4Ls+vvLMPGjwJvi1lb+Yl4zY2RemrrKHh0/ILsaSCxFtyWbm4VIHbu/7tFSxTKP27gvXvco50L/MuFO6eRgEeYt1LFWcbHgD7mi2x8alG4qFVpVK/tXdVXFr0I3bLDw+97sFfb33odZY23fv0p0GjJnw77+OShR8AdRs0YuxzU5n18pSHXveFpc8/9DpLHc/64OQvz+8sDRwrQeWO8vSAh0yjp38sWaicUZH798WwxFNCiJYlSyrcLY+8Z1Oh7JBx8yRqO8dSq19t51Rqhm5FZPfWTbi6upda/W7uHnw3v3R+CCskcZfByr706rdygJBSMnQrIEr/VrifKMamwn0l9cLeUqtbe/tiyUIK95U1K5aWLPSAOHJgb6nVXWGJPFl6dSeaz/lWeLAo/VvhfqEYmw+Im9HJFXJotaIytUeDkoUUyg82ViXLKJQbqriX3oiNwsPnYljxm+kr3DtlYTW6goKCgoKCgoJCGUUxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQeGskConOBTyZ+Pv/oeTy8fDAYDq5cv5o+FP5nJjZv8Av2HDgdArdFQvWZtOjetRUpSEh/M/9YYUzeOYT07mHSmvz6Lbr37YjAYSIiP451Xp1kMVebp7cPsuV8xffxoACZOe5lho8ag1+v59L23OLxvt5mOs6sr8xcsxC8ggIjQUF6fOp6U5ORi9fsOHsZz019FCEFMdBRvvTiZpMQERj/zLFptBmv/Wv7fL+gjjoO7Nz2eext7F3eEEFzeu54LO1abyTXtO5pa7XoBoFKpcfWryqIXBpKVnkpAo9Z0fPIlJJWKK/s3cmbTHya9hj0fp1GPYRgMem6fO8LRv8z3LrV38aDL+DfZ8tUMAJr1H0O9zv0RBgMH//ia0IvHzXRsHJzoNeV9nDx9SY2LYvv3/yM7I61Y/ZptetB8wNMApCfFseunD8lMS6Zhj2HkZGVy7eDm/3g1ywDWzlBzGFg5AgKiT0HUUcuyzoEQ2EeOzqPLgEvGTbJ924JPc0AqqF+1N7jVBoMeshLh5lrQZ5qXa+UINQbBVWP/8usEPs3kYA3BmyHZPBINGjuoNQJsXCErCa7/lVd2UfoeDaFyZzk/JxVurJG/h29r0GdD7Nl/cQHLLp4+lXjtoy9x8/DCIARbVy9n/fKFZnLDnplMt35DAFBpNARUq8mTXZuSlpLMS+/Po3XnHiQlxDPt8V5F1jX4qYmkJiexe+PfODq7MPOz7/H2q0xMRBifvjGVtNRkM50W7bswacZsVCo12/9ZwaqFcuS5ovTVGg0vvvcZNes1RK1Ws2vDGlYtXADARz8t55PXp1isR6FsUyY8m5Ik6SVJOitJ0kVJkjZIkuRqzA+UJElrPJf7GWs85yhJ0g+SJAVJknRGkqRTuSEvjXoX85XfUZKk45IkXTV+JuU7N1uSpAxJkrzz5aU9tC9/l+j1OuZ/+C6Du7flqcG9GfXMRKrXqmMmt+inbxnRpwsj+nTh608/4OTRQ6QkJQGwbtVypjxtHi/59x+/5fHenRjRpwv7dm7j+ZfeMJMBGPvcVP7+cwkA1WvVoe+gYQzp0Z4pT4/gnY/moVKZ/3ebOPVljh3ax4DOrTh2aB8Tp75crL5arWbG7E+Y8MQgHu/dietXLjF6nBzJ9J+Vf/Dk+ElmdZRHhF7P4RULWDHradZ8OJmGPYbh5hdoJnd2y5+s+t8EVv1vAkdX/0Tk1bNkpaciSSo6Pf0qG794nRWznqZmm54mfb+6zajWrCMr3x3HyrfHcm7Lnxbb0KTPSK7sk2Msu/kFUrNND1a8PZaNn79Op7GvIknm97tZ/zGEXznFnzOfJPzKKZr3H1OsvqRS0/Gpl1g/9yX+encc8aFBNOw5DICrBzbRqNfj9+FqlgGEAW5vg3PfwYVfwLcV2HmZy6ltoVp/uPonnFsA1/6S8+28ZUPzwi9w7gfZuLQ17qGYFARnv4fzP4A2Hvw7WW6DX3vZSAW5bs+GcHYBXFkK1QcAkgWdjpB8C85+I//NLbtIfRVU6wuXFsntSY+WjUyAmDNQqe2/u35lGL1ez6/z5/D80B68NmYwA0aNJaB6LTO5NYt/4oWRfXlhZF8WfzOXi6eOkpYiG207163if1PGFluPSq2m15An2LtlLQAjJkzj3PFDTBrUhXPHDzFi4lRzHZWKKbPm8N7UZ5gytAed+wwyta0o/Y69+mNlbc204b15aXR/+g5/Em+/ygDs3riG/iOf/tfXSuHRpUwYm4BWCNFUCNEQSECOdZ5LkPFc7meJMf9XIBGoJYRoBvQBzHaoNcY6Xw48L4SoixxXfbIkSf3zicUBr93/r3X/iIuJ5srF8wBkpKcRfPM6Pr6VitXpN/hxtqzLC+146tgRkpPMt3xIT0s1HdvZ2yOwHHWqV9+BHNwrh5Lr1rsvW9avISc7m/DQO9wJCaZR0xZmOt1692Xd6hUArFu9gm6P9StWX5IkJEnCzl7eXNrR0cnkZc3M1BIRdoeGTZsX+73LAxnJ8cTdvg5ATqaWxIgQHNw8i9Wp1aYnN47J98e7ej2So8NJjY3EoNdx89guApt1BKBB9yGc3rQMgy4HAG1qksXyqrfowp0LxwAIbNaRm8d2YdDlkBoXSXJ0ON7V65npVGvWkWsH5S3Brh3cSrXmnYrVlyQACY2NLQDWdvakJ8YBoMvOIjUuCu9q5vWUO3LSID1SPjZkgzYuL4Z4fjwbQcIVyDZ6hnTp8l87T0gNk8NOYoCU2+BuvG7JQXIeQFqo7EW1hHs9SDLudelWF+IugtDLHsvMBHD0t6BTN88TGXtWThenb7zfqIxbS6ltINv4/DHkyLKW6inHJMbFEHRV9o1oM9IJvXUTD2/fYnW69BnEvi3rTelLp4+TmpJUrE6T1u0JunIRg14PQNtuvdi5Xh4t2bl+NW279TbTqd2wKRGhIUSF30Gny2H/1g207dq7eH0hsLWzR6VWY21ji06XQ4bxN+bY3h107ju4hCuiUBYpK8Zmfo4AxT5tJEmqAbQG3hFCGACEELFCiLkWxKcBi4QQp41yccCbwMx8MguBkZIklV44hXvAr3IAdRs05vyZU0XK2Nra0aFrD3bkeyAVxwtvvs2OYxfoP3QEC+Z/YnbeP6AKKclJ5GRnA+DjW4noiHDT+ejICLwtGL8ent7ExUQDssHs4eFVrL5Op2POrNdZs+MQu09epkbtOgU2Hr50/izNW7e7q+9UXnDy9MWzam2igy4XKaOxtiGgURtundwLgIObF+kJMabz6YmxJmPV1TcAv9pNGPbuTwye+S1e1epaqLMSWRmpJoPUwc2TtALlxeDgZu55s3NxIyM5HpANZjtnt2L1DXo9+5d8zsg5ixn71Vrc/AK5un+TSS425CqV6jQu8RqVK2xcwcEX0sLNz9l5yEPX9cdBo8ng2UTO18aAc1X5nMoK3GqBtYu5vldzSLphuU5dpmwcAtg45Rm0ANkplo1UKwfZUAb5r5VD8frCALc2QpOp0OJ1OWZ7zOk8ubQIcKpaxIUp/3j7VaZ63QZcu3CmSBkbW1tadOjKoZ33Nr2kftNW3LxywZR2dfckMU7uk4lxMbi6m7/Menj7EhcVYUrHxUTi4eNTrP7BnZvJ1GawbOdJFm07yprFP5s8sGmpyVhZWePk4npPbVd49ClTxqYkSWqgB5DfQqpRaBi9E9AAOJdraJZAA6CwVXbSmJ9LGrLB+VIJ7ZskSdJJSZJO6g2lE3Pezt6BL39azNzZswp4JAvTpVcfzpw4ZhpCL4lvP/uIXm0asemfVaZh6/x4evuSkBBvSkuS+ZCaEHd/TYrS12g0PPH0eEb07UL3lvW5fuUSz05/xSSTEBeHt0/xb/3lCY2NHY9Nn8Oh5d+Qk5lRpFzVph2IunmBrHTj/wkLI565qFRqrB2cWPPhZI6s/J7eU983k7F39Sjg8bR0vyjCA26JovRVajUNug9h1f8msOTlIcSHBtFswBiThDYlCXvX4j265QqVNdQeCSFbQZ9lfl5SgUMluPqHPDxduQvYesie0IhDUG8s1BsD6VGyYZcf/86AAeLOm5dr5ZTnJZUrstC4e3nmFaEvqeQpAud/hFPzISO64LB+Trplj24FwNbOnrc//4lf5r2PNr3omVytu/Ti8tmTJgPubnH39CY5Mb5kwXxY7LclPOdrN2yKQa/n6V6tmNCvA0PHPoevfxXT+eSEeNy9fO6pHQqPPmXF2LSTJOksEI88FJ4/QG7hYfQDhZUlSXrbaIhGFD6H/NSz1DsK530DPCNJUhFjTCCE+FkI0VII0VKtKubX/AGh0Wj48ufFbFq7ml1bNxYr23fQULas//ue69i8djU9+w00y8/K1GJjY2NKR0VG4OOX54D2qeRncVFRfFwMnt7yg8XT24f4+Nhi9es0aARA2O0QALZtXEvTFq1NcjY2NmRlau/5e5VFVGo1j02fw/UjOwg+tb9Y2ZptenDz6E5TOj0hFgd30zRk2dNpHJ5OS4wl+NQ+AGKCryCEwNbJtUB5+uws1FbWpnRaQiyOBcrzNpWXH21yIvYuHoC8wEibklisvkcVef5XSqzcdYOO78G3ZkOTnNrKGn22BaOrPCKpoM5I2RhMuGJZJitFHuo25MiLalJvg73xhzvmNFz4SV4wpNNCZj7DwquJPI/zRhHPBEMOSPnWk2alFPSMWjvnDXfnJyfduKgJ+W9OevH69sYXxSzjdJ64S+AUkCen0hinAlQs1BoNs774iT2b/+HwruIj03XuM5B9W9bdcx1ZWZlYW+c9w5MS4nDzlPukm6c3SQnm/TkuOhJPXz9T2tO7EvExMcXqd+07mFOH96HX6UhOiOfy2ZPUbJA3OmFtY0N2loUFagplmrJibGqFEE2BqoA1BedsWuIy0EQyrlAQQnxk1LdkKF4CWhbKa2Esw4QQIgl5bqf5LOlHhPfnfcOtG9dZ8sv3xco5OjnRsm0H9mzbclflVgmsbjru1qsvwTfNh9lu3wrCr3Le2+neHVvpO2gYVtbW+AdUoWpgdS6cNR/W37tjK4OHjwJg8PBR7Nm+pVj9mKhIatSqg5u7bLC069SNWzevm8qrWr0GN65dvavvVdbpOmEmSZEhnN+2slg5azsH/Oo0Jfj0QVNeTPBVXH0q4+RZCZVaQ802PQg5I58PPn0A/3ry/FoXnwDUag2ZheZtJkWF4uSZ50EOOXOQmm16oNJY4eRZCVefysTcMjeIQs4eok7HPgDU6diHYGOdRemnJ8bi5hdoMnYrN2xJYuRtU3muvgEkhAff5RUr49QYDNpYiDxStEziVXm4HJU8XO7oL3s1ATTGIWxrF/CoB3HGIVPXmvJCnqvLizbkMuPlofT89Xg2lFe827jKi40sDesnXgOvpvKxV1NIuFq8fnaqvHhIY29sW4289oPspc2IoaLx0ux5hN66ydqlvxYrZ+/oRKMWbTm6d/s91xEafJNKAYGm9LG9O+g5SN65pOeg4Rzds8NM5/qlc/hXqYaPfwAajRWd+wzk2L4dxerHRkXQpHV7AGzs7KjbqDlhwXlx7109vYiOCLvn9is82pSprY+EEMmSJL0IrJMkyXwvljy5m5IknQTmSJL0rhBCL0mSLZbHbhYAxyRJWiOEOCtJkgcwF/jAguwXwAkewevWrFUbBg0fxfUrl1i1VfZKfTP3Qw7s2cmIMeMAWLVsEQA9+gzg8P49aLUFh13nfvcLrdp2wNXdg53HL7Lg80/5Z+UyXn7rPQJr1EQYDESEhfLhLPO1UlptBqG3gwkIrEZoSDBB16+ybeNa1u0+gk6n46N33sRgkIftZn/2NX8t+53L58/y24KvmP/DQoaOGkNkeBivTRkPUKR+bHQUP3z1GYtWb0KnyyEiLJR3Xs1792jasg0/fPnZ/b68jxy+tRpRp0Mf4kODGPGBvA3KsdU/c+f8Uep3kyfYX94jezeqtehM6KUT6LLzvAXCoOfAsi8Z8PrnSCoVVw9sIjEiBICr+zfRbeJbjJyzGL1Ox+5fPzarX5edSUpMBM7e/qTEhJMYEULQid2M+ngpQq/nwNIvyJ3F0nX8DC7tWUtsyDVOb1xG72kfULdTf9ISYti+4F2AIvUzkuI5ue53hrz1LQa9ntT4KHb/ktce35qNOLn29/t/gR81nKrIxlp6FDR+Xs67s0ueX+ljfFeOPikbZkk3ockU5C2STsvzNUH2imrsjPMiN+VtQVStn+y1rG9crZwaBsGFRkYMObK30dZdXsyjjYX4S9B0ulxe8CZMg0HVB8ltSY+A8ANQ+wnwbi7P0bxuXB1flH5OKoTthQYTjIuHkiHon3zXIUA+X4Go36wVPQY+TvD1K3y7Un4ZX/ztZ5w8uIe+I+QpJVtWLQOgfffHOH1kP1nagqM7b376LY1atsPZ1Y3F24/xxw9fsP2fgi+pJw/u4fWPvjKlVy38npnzfqDXkJHERkXwyevy/zt3Lx9efG8us6ePw6DX88Mn7/LhD0tRqdTsWLuSO0HXi9XfuGIxr3zwOd+v2YmExI51fxFyQ34JqVm/MdfOnzYtUlIoP0j3Mo+utJAkKU0I4ZgvvQH4CzgAXAGu5RNfKIT4xjjcPQ/ojbyCXQusEEJ8J0lSILDRuLodSZI6A58DTsgG6VdCiB+M52YDaUKI+cb0F8ArQohix8ntrDWipk+RI+7lku59+tOgURO+nWdunDwM6jZoxNjnpjLr5SkPve6pPRqULFTOqNa8E16BdTi+pnhvy4PCs0otGvcZye6f5zz0uqdM7v7Q6yx13OuCgx+Emu+X+1Cw95W3X7q5pmTZ+0z/5yvACw3w9pc/8/uXHxNxJ6RU6p/05myO7d3BueOHSqX+XDafDz0lhCg84qnwH3jkPHSWyG9oGtP5Jw3aFaGTAkwu4lwI0DBfej/QqgjZ2YXSrwKv3kWzKxy7t27C1bX0Fuy7uXvw3fzSMXQrIsGnD2DraGFF80PC1smFE6Vk6FZIEq7mDW+XBlb2pWfoVhAWffUpbp7epWZs3r55rdQNTYUHQ5nwbJZFKqJnsyJTET2bFZkK6dmswFQUz6aCjOLZvP+UlQVCCgoKCgoKCgoKZZAyMYxeFmkQ4M7JT0eWdjMUHhL2Y4pcr6ZQDjl35972I1Qo22x6R4lqU5GQnviutJtQ7lA8mwoKCgoKCgoKCg8MxdhUUFBQUFBQUFB4YCjGpoKCgoKCgoKCwgNDmbNZnmj5JFRqCFmpsP0TyzJWdtDqKXDwBIMOTvwBKZFg5wqtnwZbZzm27a1DcFPeHJ4G/cGvESAgMxVOLIPMFPOybZ2hxWg49JOcrtsLqrWTN20+sxqiLUT2sbKHduPB3h0yEuDIQsjRgrU9tJsI7lUh5BicWZWn0+VFsHMGvTHayf4FkJUGNTrL8aJDjv3bK1im+PGnX+jTrz+xsTG0at7Uooyrqys//vwr1apXJyszi+cnPcvly5cAmDr9BcZPmIgkSfy+8DcWfPsNAP977336DxyIMBiIiY1l8rMTiIyMNCvb19eXBT/8xOND5flsr78xg2fGj0ev1/P6q6+wc4d5FBM3NzeW/PEnVatW5fbt2zz95CiSkpJwd3fnjz//okXLlixbuphXX37JpGNlZcWXX39Dp85dMBgMzP7fu6xb+w/PT5lKeno6S5cs/q+Xskzw9BtzaNS2C6lJCXw40fIcQntHZ8a+OQfPSgHocrJY8tk7RITI0VnsHJx4+vUP8KtWCyEES+a9Q/Dlcwyb/DqN23VFl5NDXGQoi+e+jTbdPPSks7snY177gO/floOoPTb6OTr0exyDQc9f337M5ZPmW9bYO7nw3Luf4+HrT3xUOL988CoZaSk4OLsw6b2vqFq3EUe3/cOKbz4y6ag1Vox68W1qN2mNEAbW/fY1Zw7soOuQJ8nK1HJk6z9m9ZRLHtTzPJfa3aHJUFg3E7LTzctWnucK95FH1rMpSZKQJGlpvrRGkqRYSZI2GtPjjOmz+T5N8h0nSJIUbDzeKUlSoCRJWmP6siRJSyRJsspXfkdJko5LknTV+JmU79zzkiRdMOoelCSp/sO9GndJyDE4UHyoSur1hqRw2PEpHF8KTR+X84UBzv0D2z6C3Z9Dzc7gZAxHeG2XLL9jLkRegvp9LZdduxsEH5aPnXwhoAVs+xj2/wDNn8BiAKe6vSD6Omz9UP5bt5ecr9fBxU1ymyxxbLHcnh1z5QcTQMgRqNml+O9fjli6dAlDBvYvVuaNGW9x/tw52rRszrMTxzHviy8BqF+/AeMnTKRzh3a0admcvv36U6NmTQC+/GI+bVo2p23rlmzZvIm33n7HYtkvvPQKvy+U97msW7cew594ghZNGzN4YH+++uZbVCrzx8trb8xg7+7dNG5Qj727d/PaGzMAyMzM5IP332PWzDfNdGbMnEVsTCxNGtaneZNGHDwgx4FfvOh3pk6bfpdXq+xzZNs/fDtzUrEyfZ6aROjNq8x5bii/f/IWT0yfZTr3xPS3uHTiILPHDWDOc8OIun0LgCunDvPBhMHMeW4o0aEh9HnyOYtl9xwxjkObVgNQqWoNWnXvywcTBvLtjEmMfvldJAv3u8/oZ7l65ij/G9uXq2eO8tjoZwHIyc5m/e/f8veP88x0+j41mdSkBN57ph/vjx/I9XMnADi0ZQ3dho65iytVTnhQz3OQjVGfupCeUHTZyvNc4T7yyBqbQDrQUJKk3E3bewGFg++uFEI0zfc5l3sMrAfeMKZ7GuWDjOcaAZWBJwAkSfJFjnv+vBCiLtARmCxJUu4v+XIhRCOj7mfIYSsfPeKCIDujeBnnShBtDLiUGg0O7mDjJHsqk4zxaHVZkBIFdsYNu3V5YQ7RWGMKS1cY/6YQZYyH7d8IQk/Jb9sZ8ZAWJ7/Vmuk0gtvGN9fbx8C/sXysz4b4W/JD6m7R58hv024W6imHHDp4gITEYn4sgHr16rFnj7wR9vVr16hatSre3t7UqVuXE8eOodVq0ev1HNy/n0GDhwCQmprn1XKwd6CovXiHDB3K9m3bABgwcBCr//qL7OxsboeEEBQURMtWrc10BgwcyB/LlgDwx7IlDBw0CICMjAyOHD5EZmammc7YZ8Yx77NPARBCEB8vrwTXarXcvn2bli0txmMod9w8f4qMlORiZSpVrcHV00cBiA4NxsPXDyc3D2ztHajVuCWHNv8NgF6XY/JeXjl5GINBDg8YfOUcbl6+Fstu1qkXl04cAKBx++6c2L0FXU4O8VHhxITfIbBuIzOdxh26c2TbWgCObFtLk449AMjO1BJ08TS67CwznfZ9h7J1+S+AfL/TU5IAyMnKJCE63GI95ZIH9TwHaDoMzq+jyGc5KM9zhfvKo2xsAmwBcg2+0cCf96NQIYQeOA74G7OmAYuEEKeN5+OAN4GZxnT+MWMHiu2hjzhJ4VC5iXzsVlUe7rBzLShj7w5ulSHhdl5ewwHQ/wOo0hIubjYv194DcjLkhxHIZWYk5p3XJpnXA3kPRpD/2jjd3fdoNQZ6zYB6jxXMT7gDXjXurowKwIXz5xk8ZCgALVu2okqVqvj7V+by5Ut06NQJd3d37OzseKxPXypXrmzSm/3+h1y/GczI0aP58P3ZZuVWDQwkKTGR7OxsAPz8/QgLCzWdjwgLw8/Pz0zP29uHqKgoAKKiovDy8i62/S4u8g/k/2Z/wOGjx1m2fAXe3nk6p0+don3Hjnd5Nco/YUHXaNZJfrcOrNsIdx8/3Dx98KwUQFpyAs+8+RGzfvqbMa99gLWtefC19n2HcfH4AbN8D19/MtJS0OXIQ51uXt4kxkaZzifFRuPm6WOm5+zmQUpCHAApCXE4lRBhzM5B7v+Dxr/ArJ9W89x7X+Lk5mE6f/vaJWo2alHSZag4/JvneaWGoE2G5MK+m/w6yvNc4f7yqBubK4BRkiTZAo2BwpM3RhYaRrcYurIwxvLaAFuNWQ2AU4XEThrzc3WmSZIUhOzZfLGIcidJknRSkqSTsSnau2nKw+fqDnleTa8ZUKuz/PYrDHnn1dbQfiKcXVPQo3lxI2z6H9w5KQ/JFMbOOW/4o0juk41+bLE8h2nPV+BZA6rm86BlpYFt6YVQfNSYP28ubq6uHD1+kuenTuPc2TPodDquXb3KF/PnsXHzVtZt2MyFC+fQ6fQmvdnvvUvtmtVY+eefPD9lmlm5vr6ViIuLM6UlyXxI7X5EJ9NoNFQOCODI4UO0b9uaY8eO8vGnn5nOx8bGUKmSuVFbUdn25y/YO7nw9s9r6Dr0KUJvXEGv16NSqwmoVZ9961fy8eTHyc7Umoa0c+n71GQMej3Hd24wK9fFw4u0pPxe9Adzv1VqNe7elQi6eIaPJw/n1qWzPP78G6bzqUnxuHgU/4JSobjX57naSjboLm4qvlzlea5wn3mkjU0hxHkgENmracGdZjaMXpKFV0OSpLNAPHDHWD7IT05LPceUJ4RYIISoAcwALE5iE0L8LIRoKYRo6eV8V3bvw0eXCSf/kOfGHF8KNo6QbtygWlJB+2fh9kkIP2dZ/87JvDfp/OhzQGWVl9Ymgb1bXtrOVX6bLkxWqjwRHeS/WeYLE8zINJajy4I7pwoO56g18pCNAiAPiU+e9CxtW7fk2Qnj8PT0IiQkGJDnPLZv25rePbuRmJBI0M0bZvorV/7J4KFDzfIztVpsbGxN6fCwcCpXDjCl/SpXtrioKCYmGl9feZjW19eX2NiYYtsfHx9Peno669etBWDN36tp2qyZ6byNrS2Z2kf0xa4UyMxIZ8lnb/PRpGEs+mQmTq7uxEeFkRQbTVJsNCFX5Ufe6f3bqVIrb+p5296DadS2C799ZD5nFiAnKwsraxtTOjE2usBwu6uXD0nx5vcyJTEeZ3dPQF5glJpU/LSP9JQksrQZnD24U27nvm0F2qmxtiEn23yqRYXlXp/nDp7g4AG9Z0K/2fJzudeb5h5I5XmucJ95pI1NI+uB+dyfIfTcOZs1gbaSJA0y5l8CCsdBbQFctlDGCmDIfWhL6WBlB5JaPq7WHmKD8jyYLZ+S5/bc2FNQx9Er79ivkTw3qDCpMfJ8oVwiLsgTylUaeUjG0avgsHx+uapt5OOqbSD8QvHtl1Rg7ZB37NcAkiPytdVbXo2pAMjD0FZW8o/G+AkTOXjwgGlOppeXfF8rBwQwaMgQ/lq5AsC0UAig/4CBXL92zazcGzeuU7Vq3o/Cpo0bGP7EE1hbW1M1MJCaNWty8sRxM71NGzfy1JixADw1ZiwbN5h70QqzedNGOnfpCkC3bt25euWK6VytWrW4dOliiWVUFOwcnFBr5Pvdsf9wbpw/SWZGOimJcSTEROETEAhA3eZtibwdBED9Vh15bNSzfP/ONHKyLBty0WEhePj6m9Lnj+yhVfe+aKys8PD1x9u/KiFXzfvu+cN7aPfYEADaPTaE84d2l/gdzh/ZS+2mrc3aCeBTOZCIYPOXogrLvT7PUyJhwyzYPFv+aJNgx2fmRqHyPFe4z5SFrY8WAslCiAuSJHW9HwUKISIlSZoJvIVszC4AjkmStEYIcVaSJA9gLvABgCRJtYQQuU+4/sCj+bRrMw68aspvt/0/gEubIeQoVO8gn791CJx85C0xhJAfRCf/kM95VIfA1vIcoF7yCmEubICoy9BoEDh5yzoZCXBqpXnd+mx50riDJ6THyWWHnobHZhm3yliFyVHcYjTcOgiJofIwUNsJUK2tPCfoyMK8MvvNBitb+QHn1wj2fy/X33mq/ICVVBBzDW4dztPxrA6Xt9znC/tosmjJMjp37oKHpyc3gkKY8+H7LF70O88+J69Y/vWXn6lTtx6/LvwdvV7P1StXmDI5b6Xx8hWrcPdwJycnh1deepGkpCQAPpzzMbVq18ZgMBB65w4vTp9qVndGRga3gm9RvUYNbgUFceXKZdasXs3pcxfQ6XS88tKLGAzycN73P/zEr7/8zOnTp/h83lyWLl/BM+PHExoaypjReSFdr1y7iZOzM9bW1gwcOJiB/fty9eoV3nn7LX5buJjP5n9OXFwck5+baNJp1649H8/58EFc3keOie/Mo3aT1ji6uPLJyt1sWPQdh7esodNA+Roe2LAS36rVGT/zUwwGPZG3g1g6712T/spvP2LCrM9Qa6yIiwxjyWdvAzDqxXfQWFnx0rzfAAi+fI7lX71foO7sTC2xEaF4+VUhNuIOkSE3ObV3G+/9vgG9Xs+Kb+YgjPd7zGsfsH/DSu5cv8S2P3/huf99SYe+j5MQE8nP779iKvOj5TuwtXdEbWVFkw49+ObN54i8HcQ/v3zB+Lc+ZcTUmaQlJ7LY2E6AGg2bsXHxggdzgR81HtTz/G5QnucK9xnpfsyzeRBIkpQmhHAslNcVeF0IMUCSpHHAPAquUJ8qhDhslF0EbBRCrDamA43phsa0BJwFpgshDkiS1Bn4HHBCHlb/Sgjxg1H2a6AnkAMkGnUuFdf+ljW8RYWLje7XGNwC4FIJ84EeFK6V5e06ji8tWfY+UxFjow8aNJhmzVvw/uz/lUr9TZo05YWXXubZCeMeet1jO9R+6HWWNk079qBK7QasX/hNqdQfULMePUY8w6JPZj70un+c0uOh11nqVODnufTEd6eEEIVHOxX+A4+sZ7OwoWnM2wvsNR4vAhYVoz+uUDoEaJgvLYAm+dL7AYt7qAghXrKUr1CIiPNg41B69Vs7lDzxXeG+sX79Otw9PEoWfEB4eHrywfvvlVr9FY2zB3fh4OxaavU7uriyoZQM3QqJ8jxXuI88ssamQhkl+Ejp1R1jPrdQ4cGy6PeFJQs9IHbv2llqdVdUcvfpLA2unCrFZ0tFRXmeK9wnysICIQUFBQUFBQUFhTKK4tl8UFipwUfZH6yi8MfzFXBOVwXm8I2okoUUyg0e438p7SYoKJRpFM+mgoKCgoKCgoLCA0MxNhUUFBQUFBQUFB4YirGpoKCgoKCgoKDwwFCMTQUFBQUFBQUFhQdGmVwgJEmSHriA3P4rwDNCiIzCG8EbN35vKYSYbkxPAl41nk4BXhVCHDSe2ws45m7kKklSS2C+EKKrcTP5dUBwvma8LoR4tPZecasFNfrJkRiiTkHofnOZyh3B27i9qKQCey848gnotEXrezaAqt1l2TM/QlqEebkA1o5QawhcWianAzqDbws54kTQJki8aa6jsYN6I8HWFTKT4MoKOdyaxg7qjwYnf4g6A0Eb83S8GkOVznIAi+wUuLoadBng10aO6Rt9+t9dvzKGd92WNB72PJJKze2jW7i+8y8zmVrdh1O5RXcAVGo1Tj4BbHp7JDkZqTQf/Sq+DdqQlZbErk8nF9Cr3mkQ1TsNQhgMRF0+xqX1v5mVbePsTvNRL3PkZ3lT99o9R1K1bR+EQc/5NT8Qc/WUmY6VvROtx83C3t2HjIRojv/+ETnaNKztnWg94V3cqtTm9rEdnP87L0pM5eZdqd1rFCDITE7g5NK5ZKenUL3TIHTZmdw5tv2/XMYyQ50W7Rk0eQYqlYrj2/5hzyrzbae6PP4Mzbv2A0Cl1uAdUI3Zo7tibWvHqNc+wsnNAyEEx7au5uC65QA07tiLXk9NwTugGt++8hRhNyxHmXFy82T4S+/x++wXAOj2xARa9x6KwWBg3Y9zuX76sJmOnaMzY976DDdvPxJjIlj2yRto01Kxd3Lh6VmfE1C7ASd3rmftD5+YdJp26UP3kc+CEKTEx7J8/iwyUpJoP2AU2VlaTu5Y95+vZVmge89efPLZ56jUapYt/p2vv5hvJjP9pVcYPnIUABqNhtp16lI7sDLajAw2btuJtY0NGo2G9Wv/Ye5HcqSt2XM+pk+//mRnZxMSfIvpz08iJdk8zrmPjy9ffvc9T44YBsDLr73BU2PHYdDrmfnGq+yxsPWYq5sbvy1eRkCVqoTeuc2EsU+RnJSEm7s7vy/7k2bNW7Dij6XMeE2OJOXo6MjG7btM+n7+/qxa8Sdvz3iDZyc/T0Z6BsuXLfnvF1Oh1Cmrnk2tEKKpMRpQNvB8SQqSJA0AJgMdhRB1jTrLJUnyzSfmLUlS3yKKOGCsM/fzaBmaSFBzIFxcAie/Aa9GsnFYmLCDcHqB/AneDskhsqFZnH56DFz+E5ItxMLNj38HiDopH9t7yWWc/EYus+YguY7CBHSGpFtw4iv5b0BnOd+gg5BdcGtrIQWVbBCfWwinv4P0aPBvK5+KOp13XN6RVDQZMY3DP73Dzk+eo3Lzbjj5VDETu7F7NXvmTWXPvKlc2rCQuJsXyMmQ4yDfPr6dQz++babjWbMJlRq1Z/fcKez6dBI3dq+22IRaXYcRclgOJefkU4XKzbuy65NJHP7xbZqMmC6/tBSids8niL1+hh1zJhB7/Qy1e8pRtvS6bK5sXsyFdQVX/UoqFY2HTeHgd2+ye+4UkiNuUb3TILn9R7dRo/Pge7hoZRdJpWLo1Fn89r+pzH9+KE279ME7oLqZ3L6/F/PlCyP58oWRbF70DbcunkKbloJBr2fjr/OZ//xQvnt1DO0HjDLpR92+yZI5rxB80fzlID+dhz7N8a3yPpveAdVp2rkP858fxq/vTmXYtFlIKvP73f2JCdw8e5zPnhvEzbPH6TZCDjWak53NtqUL2PjbFwXkVSo1gyfP4MeZz/LFtBFEhlynw0DZmDqxYy0dBz157xevDKJSqfjsi695Ythg2rdsyrART1Cnbl0zue++/pKu7dvQtX0bPnzvXQ4fPEBSYiJZWVkM6d+HLu1a06Vda3r07EXLVnK8+b27d9OhVXM6t21F0I0bvPLaGxbbMOWFF1m6SH6hqVO3LkOHj6BDq2aMGDqIeV9+g8rC/X7p1dfZv3cPrZs2ZP/ePbz86usAZGVm8smH7/Pe2wWjP6WlpZna37V9G0Lv3GHjevll4o8li3luinmoXIWySVk1NvNzAKh5F3IzgDeEEHEAQojTwGJgWj6ZecA7972FDwOnyqCNh8xEEHqIvQAe9YrX8W4MMedL1tfGgjau5DZ4NoAEY9h4j3pyGUIvl6mNl+sojEfdPE9k9Om8Og05kHJbNjrzIxn/UVvLabUNZKXk6WQmyd7Qco571Tqkx0aQER+F0OsIO72XSo3aFatTuUU3wk7vNaXjgy6aDM/8VOs4gOs7V2LQ5wCQnWbu9QDwa9KR6Cvyy0WlRu0IO70Xgz6HjIRo0mMjcK9ax0ynUsN23D4uv6fdPr7T1GZ9dhbxty5hyMkupCEZb7ctAFa2DmQmx8s6OVlkJETjVsW8nvJGldoNiYsIJSEqHL1Ox9n9W2nQrmuxOs269uHMXvllIDUxjvCgqwBkaTOIuXMLF09vAGJCg4kNL+FFEmjUoSdXTx4CoEG7rpzdvxW9LofE6HDiIkKpUruhmU79tt04uXM9ACd3rqdBu24A5GRpCbl8Bl12VkEFSb7f1rZ2ANjYO5ISH2vUySQxOoIAC/WUN5q3bEXwrSBuhwSTk5PDP6tX0bf/wGJ1ho0Yyd+r8kY30tPTAbCyskJjZUVuaOq9u3ei1+sBOHniOJX8LTyXgYGDh7Jrhzxq0Lf/QP5ZvYrs7Gzu3A4h+FYQzVuaB9zr138gK/6QR7ZW/LGMfgPkF8OMjAyOHTlMVmaWmU4u1WvUwMvLmyOHDgKg1WoJvXOb5i2UqJHlgTJtbEqSpAH6Ig+pA9hJknQ29wN8kE+8AVD41f2kMT+XI0CWJEndLFTXKX/ZkiTVsNCeSZIknZQk6WRsUsa//Vr/DhtnyMpnFGSlgLVz0fIqK3nYPO7Sv9MvjK2b7CEV8kMM60LlZafIdRTG2hGy04wyaWBlFqW0IMIAN9dDi+nQZgY4eMtD/rmkhoNz4N23u4xi6+KBNinWlNYmxWHr4lmkvNrKBp+6LQk/d7DEsh29/PGo0ZAur3xNpxfm4VrFPA64vbsP2do0k0Fq6+JZsD3Jcdi6mIeytHFyIyslAYCslARsnFyLbYsw6Dn717f0mPkjfT9YjpNPFUKObjOdT7xzA48a5d/4cPbwJikub2/P5LgYXDx8ipS3srGlTosOXDhkPgDj5u2HX4263Ll6wYKmZdx8/NGmpaDXyffbxcOH5NjofO2JxtnD20zPydWd1ET5RTU1MQ5HF/di6zHodaz57iNe+3417y7biU+V6hzf/o/pfOiNS1Rr0Pyu211WqeTnR3hYmCkdER5OJT+/IuXt7Ozo0bMXG9blXSuVSsXew8e4GhzKvt27OHXyhJnek08/w67t28zyq1QNJCkpkezs7Htqj5e3N9HR8v/T6OgoPL0sjK4VwbARI/nn71UF8s6ePk3b9h3uugyFR5eyamzaGY3Jk8AdIHdCmTb/UDfwvxLKkZBn/uVnDpa9m4WH0YMKCwghfhZCtBRCtPRytb+X7/OAKPzV8uFRB1LuGIfQ/4V+YawdISc9L21hxPyeyisKSQWVWsPp7+HYXEiLgipd8s7npION03+v51FHsnSBi76+vg3bEh98yaInszAqtRprO0f2ffkSF9f9Sutx5kPtts4eBTyeFptzH5BUaqp1HMCez6ax5X9PkhwRTJ1eI03ns9OSLBq15Q3JwgXO9VRZon6bLoRcPos2LaVAvrWtHWPf/pz1P88jS5tehLY5zu6epCcn5muPJan/3r9Vag3t+j/BV9NH8uGYnkQG36D7ExNN59OSEnD2uHsDpqxyr/f7sX79OXb0CEmJeffIYDDQtX0bGtWpQbOWrahbv34BnVffmIFer2PVyj/NyvPx9SU+Lm80y1J7KKY9/4Zhw0ewZlXBeeexsbH4Vqp0X+tRKB3KqrGZ36h8QQhReOzNEpeBFoXymhvzTQghdgO2QNma/JeVAjb5IhbZOEN2MYaFV74h9H+jXxi9TvaWFlWetTNkWSgvO002VMFosKYVX4+D8cGTKXvHiLsIzgF551Ua86H3ckhmUhx2rnk/unaunqbhZUtUbt6lwBB6cWiT4og4Lw+XJt65hhAGrB0KRsPS52Sh0lgV0CnQHhfL7clKTcTGWfZu2Ti7k5WaVGxbXCrLAwjp8ZEAhJ/dh3u1vB9NlcYKfeGh2HJIclw0rp5508tdPL1JSYgpUr5p5z6c2belQJ5KrWHs219wZu9mLh7eVYSmZXKystBYW5vSSXHRuHjleVZdPH1Mw935SU1KwMlN9rg7uXmSlpxQbD1+1eUpEfFRshft3IFtVK3XxHTeytqGnOzMe2p7WSQiPBz/ynnD237+/kRFRhYpb8lQyyUlOZlDB/bTo2dvU96oJ8fQu09fJk8YZ1EnU6vFxta22PZEWmhPbEwMPj7y/1MfH1/iYs3/T1iiQcNGqNUazp09UyDf1taGzMzyf78rAmXV2Pw3fAbMlSTJA0CSpKbAOOB7C7IfAW8+tJbdD1LDwc5DHs6W1PLinPirlmXVNuASCPFX/p2+JbRx8oryXOKvymVIarlMOw9IDTPXi78KPsZhMZ/mJdeZnQL23mBl9By71oCMfA80Ow950VA5J/HONRy9/LF390FSa6jcvCuRF49alNXY2uNZozGRF8xXC1si4sJhvGo1BeQhdZXaiuz0gvM202LDsHfPMzYiLx6lcvOuqNRW2Lv74OjlT8Lta2ZlR108StXWPQGo2ronkRePFNuWzKQ4nH2qmIxd7zrNSY0ONZ139K5MSmTIXX2vskzo9Ut4+lXBzccftUZD0859uHx0n0VZW3tHqjdqwaUjewvkP/HybGJCb7H/n6X3XH9s+G3cfPKGTS8f3UfTzn1Qa6xw8/HH068Kd65fNNO7fHQvLXvK8/Za9hzE5aN7iq0nJT4GnyrVcXB2A6B2s3bEhOZtAuLpX5WoELNBpXLHmVMnqV6jJlWqBmJlZcXQ4SPYsnmjRVknZ2fad+jElk0bTHkenp44u8h9xtbWli7dunPjutwfu/fsxYuvvsZTI4ej1Voe2Qq6eYMqVaqa0ls2b2To8BFYW1tTpWog1WvU5LSFYfktmzcy6qkxAIx6agyb87WpOB4f8QRrVpsbyzVq1uLK5Ut3VYbCo02Z3Pro3yCEWC9Jkj9wWJIkAaQCY4QQZq9nQojNkiQVfiXrZBy6z2WOEMLyMt1SwQA3N0LDZ/K2Lsowej4qGSdyRxofDp715W2IDDl3p+9RD2oOACsHaDgW0iLh4uJC1eeANgFs3WWvY0YMxF6Eli/J8zhvbsA0zFZrCEQel7dQCt0P9UaBb3PITJa3Psql9WuyYaxSg2c9uLBINizv7IYmz4LBAFlJcO3vPB3nqnC7+B+08oAwGDj39wI6TPkYVCpuH91OapS8yCOwQ38AQg5tAsCvcQdirp0y8wC2HDsTr5qNsXZ0oc/7y7iyZSm3j27j9tFtNH/yVXrM/AmDLodTf8wzq1+fnUV6fCQOnn6kx0WQGnWbsDP76THrZ4Rez7nV38nza4Fmo14m+NAmkkJvcH3nSlqNf5uqbfuQkRjD8d8/MpXZ+3+LsbJ1QKXR4Ne4HYe+n0Vq9B2ubPuDzi/Ox2DQkZEQw+k/8raA8ahWn6tbl93fi/sIYjDoWfvDJzw35wd566Pta4m+IxtdbfuNAODoZnm+W8P23bl++gg5WXmGRGD9ZrToMZDI4Ou88u1KALYs/parJw/SsF13Bk+ZiaOLGxNmf0fErWv8+u6UAvXnZGmJjwzDo1IA8ZGhRN8J4tyB7bzx0z/o9Xr++eFjhEG+38Nfeo+jm1cRduMye1YtZMxb82jVewhJsVEs/fh1U5lv/b4ZW3tH1BorGrTrxi9vP09M6C12LP+JKZ8txKDXkRgTycov3s33PZqyY/mPD+AKP1ro9XpmvPYyq9ZuQK1Ws3zpYq5dkZ0D4yY+C8Ci334FYMDAwezZvZOMjLx1Aj4+viz4+VfUajUqlYq1a/5m+1bZ0z3386+wsbHh7/Xy8+HkieO8/tILBerPyMggJPgW1apXJ/jWLa5ducK6NX9z+ORZ9Dodb776Egbj/f7qux9Y9NsvnD1zmq+/mM/CJX/w1NhxhIeFMv7pvN0Dzly6hpOTE1bW1vQbMJDhgwdw7arsXBg8bDijHjffWaJ123Z89slHZvkKZQ+puHkgCv+elnUriZM/TyxZsDzhUU9eCR5SSrtCOVSCyh3g2sN/B/jnb/O3/PJOpcbtca1ciyubF5cs/ABw8a9BzW7DOLXM3Bh+0By+EVWyUDmjYbvu+Neqx7YlC0oWfgD4Va9L52FPs2K++RziB83C/eZe+vJO/4GDaNKsOR9/MLtU6m/UuAlTX3iJKc9NeOh1J6Rnncrdc1vh/lBhPJsKD4H4K3nD26WBlX3pGboVkMjzh7G2v4cdC+4z1o4uXNmsbPj8sLh4ZDf2zi4lCz4gHFxcS83QrYhs2rAeN/fSW3zn4eHJxx++X2r1K9xfFM/mA6JCejYrMBXRs1mRqYiezYpMRfRsVmQUz+b9R/FsPiC0qVlcPHi9tJuh8JDo1cDyxsgK5ZNh31SMEJkKMik/jS/tJig8RJwn/17aTSh3VKTV6AoKCgoKCgoKCg8ZxdhUUFBQUFBQUFB4YCjGpoKCgoKCgoKCwgNDMTYVFBQUFBQUFBQeGI/kAiFJktKEEI7G437A10APYAKQBlQDOgDWxuPcpYJzkGOlzwd8kHcRPwi8CDwBtBRCTM9Xz17gdSHESUmSQpA3etcbT+8XQrwoSdIioBdQXQiRJUmSJ3BSCBH4QL78f8C//xScajZHl5HMzV9eL1KuUq/xONZohtBlEbbhezKj5QgdjtWbUKnXeJBUJJ7bRdyRdQB4dxqBW9Me6DLkOMvRe/8kLeiMWbkaB1f8+k3mzqq5AHi2G4Jbk+4gDERu/5204HNmOmpbBwKGvoKVixc5ybHc+edLDJnpxep7dxmFW6POqGwduTJ/rKks9xaPYcjJIun83n9x9coeNl3Go67SGKFNRbv6f0XKWbcfjSagEUKXTdbehRji7wCgrtwQm/ajQZLIuXqAnHPyps/WLQahqdsZoZXDi2afWIM+9IJZuZKdCzadnyFz2zcAWDXth1WdjiAEWYeXow+zEPnDxgHbHpNROXliSI0jc+ePkJ1RrL51q6FoarVHsrEn/fdppqKsGnRH5GShu37oX1y9ssdvv/3GgAEDiImJoVGjRkXKff311/Tr14+MjAzGjRvHmTNyX33sscf4+uuvUavV/Prrr8ydO9ekM336dKZPn45Op2PTpk3MmDHDrFxfX19++eUXBg4cCMDMmTOZOHEier2eF198ke3bzRdNubm5sXLlSgIDAwkJCeGJJ54gKSmpWP05c+YwduxY3NzccHJyMpU1bdo00tPTWbRo0T1fu7KIbZfxqKs0QWhTyCimf9u0f9LUvzP3/lagf9u2f9LUv7PPbQbAusVgrPL176wTfxfZv207j0O77WtZr2k/rOp0AiHIPPxHkf3brsfzpv6t3fmDqX8XpW/dahhWxv6d9vtUU1Fy/85Gd/3gv7h6Co8aj7RnU5KkHsC3QB8hxJ3cfCHENCFEU6AfEJQbJx04AKwCZggh6gD1gK2AU+Gyi6BbvpjrL+bL1yMbuo80ief3ErLi42JlHGs0w9rdlxs/vkj45p/x6yNHo0CS8HtsIiErP+bmz6/gUr8DNp7+Jr2445sI+u1Ngn5706KhCeDRZgCJZ+WYyzae/rjUb8/NX14lZMVH+PWZCJJkpuPZbghpIRe48eNLpIVcwKvdkBL1U2+cIuj3Webf/9wePFr2LfE6lRdyrh0ic/OXxcqoAxqhcvYhY+Ussg4swabT0/IJScKm41Not3xJxqp30dRsg+RaKa/sCzvQrnkf7Zr3Lf4QAVg17k3O1f1yca6V0NRoTcaq/6Hd8iU2HcdYvN/WTfuiD79CxspZ6MOvYN20X4n6utvn0P4zx/z7Xz2IVcOeJV+ocsKiRYvo06dPsTJ9+/alVq1a1KpVi0mTJvHDDz8AoFKpWLBgAX379qV+/fqMHj2aevXqAdC1a1cGDx5M48aNadiwIfPnz7dY9quvvsovv/wCQL169Rg1ahQNGjSgT58+fP/996hU5j8nM2fOZNeuXdSuXZtdu3Yxc+bMEvU3bNhA69atzcpauHAhL774oll+eSXn2iG0m78oVia3f6evfIvMA4ux7WR8+ZYkbDuOIWPLl6SvegdNzTaoXPPCjWZf2E7GmtlkrJldZP+2btybnKtySFSVqx+aGm1IX/UuGVu+wLbj0xb7t03TfujDr5C+8q0C/bs4fd3ts2T886H59796EOuGPUq+UAplgkfW2JQkqRPwC9BfCHG3wXCnAYuFEEcAhMxqIcR/DZb9FfCKJEmPpCc4l4zQK+gz04qVca7dkqQLsoGgjbiB2tYBjYMrdn41yUqMIicpBmHQk3z5ME61Wt1T/S512pB26ywATrVakXz5MEKvIyc5lqzEKOz8alpoTyuSzssPtKTz+3Cu3apEfW3EDXTpSWZlCV02Ocmx2FWqcU/tLqsYoq4jstKLldEENkV3Q46Jboi5hWRtj2TngsqrOobkGERqHBj06IKOowlsdk/1a6q1QB960VhPM3RBx8GgQ6TGYUiOQeVV3VynajN01+X26K4fNtVZnL4h5hZCm2xWFvpsRGocKq9q99TussqBAwdISEgoVmbw4MEsWSJvdH/s2DFcXV3x9fWldevW3Lx5k+DgYHJyclixYgWDB8vhAadMmcKnn35KdnY2ALGxhSP1yjz++ONs3brVVM+KFSvIzs4mJCSEmzdvWjQQBw8ezOLFcoSpxYsXM2TIkBL1jx07RlSU+T6mWq2WkJAQWrW6t+dSWUV/V/27GTnF9u9YY/8+hiaw6T3Vr6nWEp2pfzdFF3Tsrvp3jnGkIef6IawCm5eoX1z/NqTGV5j+Xd55VI1NG2AdMEQIcfUe9BoCp4o5P1KSpLO5H6Dwpq178p1/JV/+HeTh+KfvoS2PJBpHd3JS4kzpnNR4NE7uWDm5k5MSb8rXpcZj5eRuSnu0eIyaz87Dv/8UVLYOZuVauXihz0xH6HVyunB5KQkFyjO1x8HFZDjq0pPQGCPS3K1+YbSRQdgH1CtRrqIg2bthSMszUAzpiUgOrkgOroj0vHxhzM/FqkF37B6fjU2X8WBtHhVKcvKUfwgN8v2WHFwRaUWXZ9Kzczb9sAhtMpKd0z3pF0YfF4Lat1aJchUFf39/QkNDTemwsDD8/f2LzAeoXbs2nTp14ujRo+zdu5eWLc33sg4MDCQxMdFkkBZXXn58fHxMhmNUVBTe3t73pF+YkydP0qlTpxLlKgoqe7cC/caQnoDk4IbKwRVDeuF+72ZKWzfogf3j72N71/3b/Dmiuqf+fXf6hTHEhaD2rV2inMKjz6PqqcsBDgMTgZfuY7krLczZzE83IUQclvkYWA9sKqpwSZImAZMAKrmUYtjGYpAsDH3IU1uLyof409uJObgaBHh3GUmlHmMJ3/RDAUmNo5tpTqexoqKKu9uG/it9XUYKNh5+JQtWFCzeb7B4v43XN+fyXrJPbwAB1q2GYNNuJFn7Cm5yLNm7IDJTiy/v3hr6r7SENhWVq+9/rLv8YKl/CyGKzAfQaDS4ubnRtm1bWrVqxV9//UX16gW9VpUqVSrg8SyuvP/SzpKIiYmhbt26d11PucditynieW68vjmX95B9er2xfw/Ftt1IMh/Z/p2CKt/0HoWyy6Pq2TQgL+hpJUmS+eS8orkEtHgQDRJC3ATOGttVlMzPQoiWQoiWbg42D6IZ/5mc1HisnD1NaSsnD3Spicb8vDi4GicPclITAdCnJxsfVILEs7uw8zMfpha6bFQaq7x6UgqV5+xOTpr5EKAuPRmN8Q1X4+BqMljvVr8wksYKgy67RLmKgkhPQOWY5xFWObgh0pOMnsO8fMnBDZGRJOtoU0z3O+fKfsvDWLocJHXe/RbpiUiOhcqzNNVBm4JkJ8fXluxcTIsU7la/MJJaA7qcEuUqCmFhYQQEBJjSlStXJiIiosj8XJ01a9YAcOLECQwGA56engXK1Wq12NrallhPYaKjo/H1lV8GfH19iYmJuSf9wtja2qLVakuUqygYCvUblYM7Ij3J6Dks1O8t9u99RfZvCvRv8+eI4Z76993pm6G2QijP83LBo2psIoTIAAYAT0mSdLdBxr8DnpEkqU1uhiRJYyRJul+uj4+Aopd5lwFSrp/EtVFnAOz8aqHPykCXnoQ2Iggbt0pYuXghqdS41G9P6o2TACZjEMC5dmsyY0PNys1KiMTKxcuUTr1xEpf67ZHUGqxcvLBxq4Q24qZ5e26cxLVxFwBcG3ch5fqJe9IvjI17JbIstK+iogs5h6ZWewBU3tUR2RkIbTKG2GBULj5ITp6gUqOp0Rr97bMAph8LAE215hgSw83KNSRHybpG9LfPoqnRGlQaJCdPVC4+GGJvmbfn9lk0teX2aGq3R3f7zD3pF0Zy8bXYvorK+vXrGTtWXiTSpk0bkpOTiYqK4sSJE9SqVYvAwECsrKwYNWoU69evB2Dt2rV0794dgFq1amFtbU1cXMEBnuvXrxMYumiVZgABAABJREFUGFignlGjRmFtbU1gYCC1atXi+PHjFtvzzDPPAPDMM8+wbt26e9IvTO3atbl48eK9X5hyii7kLFZ31b/boLvH/q3K1791t8+iqdHmLvr3GaxqdwDAqnYHU/++W/3CqFx8lP5dTnhUh9EBEEIkSJLUB9gvSVJRw9v55aMlSRoFzJckyRvZQ7ofWHOXVe6RJCl366PzQoix+U8KIS5JknQaaH733+LhUXnwSzhUrY/Gzok6038g5sBfJJ7bg1uzXgAkntlBWtAZnGo2p/aUbzDkZBO28XtZWRiI2L6QwFFvI6lUJJ7bQ1ZcGAC+3cdg6xMICLKTYonY8rNZ3SIni+ykaKzdfMhOjCYrLoyUK0eoNekLhMFAxLbfTMM4fv0mk3B6B5lRt4g7spaAoa/g1qQ7OSlxhK6RV18Wp+/T7SlcG3REZWVNnek/kHhuNzEHVgFgX7kOMQdWP8Cr/Ohg030Sar86SLaO2D85j+xT69BdO4imnmy8667sQx96HnWVRtiP+sS09REAwkDWoT+w6/sKqFTkXDuIIVH2LFm3HYHKIwCEQKTFk7V/iXnlumwMKbFIzt6IlBgMiRHobp3A/okPwWAg69Ay0/2y6fwMOZf3Yoi7TfbZzdj2nIJV3U4Y0hLI3ClPxyhO37rNcPmHSmON/ZPz0F07QPYp2VBS+9Y0HZd3li9fTteuXfH09CQ0NJT33nuPhQsXMnnyZAB++uknNm/eTL9+/bh58yYZGRmMHy/H9Nbr9UyfPp1t27ahVqtZuHAhly9fBuRV3gsXLuTChQtkZ2ebjMP8ZGRkEBQURI0aNQgKCuLy5cv89ddfXL58GZ1Ox7Rp0zAYDAD88ssv/Pjjj5w6dYpPP/2Uv/76i4kTJ3Lnzh1GjBgBUKz+3LlzefLJJ7G3tyc0NJRff/2V999/H4AOHTqYjss7tt0nm/q3w5PzyT61jpxrB7Cq1xWAnCt70Yeex1ClMQ6jPjVufZTXvzMPLcO+76tm/dum7QhUHlWM/TuOzCL7d4xZ/3Z4Yg4Y5LLz+vc4Y/8OIevsZux6TsGhbicMafHy1kdQvH6bEab+7fDkfHKuHSD7lPxSovatVWH6d3lHupd5Ngp3TwN/d7FyWsXZlgXAqXYr7CpVJ2bfylKp39YnEM/WAwjb8N1DrzvQ82531yo/qAObofYMJPvkP6VSv8qjClaNe5O159eHXrfT5IUPvc7SZsiQIbRo0YJ33323VOpv2rQpr776qslz+zBJ+Wn8Q6+ztNEENkflWbVU+7d1495klkL/dp78+ykhhPlKOYV/zSPt2VQoW6ReP4HGrvSMLrWdE9H7S8fQrYjoQ84g2TiWWv2SrSPZJ0rnh7AisnbtWjw8PEoWfEB4enqWmqFbEdGFnMbKxnznkYeFZOtIltK/yw2KsalwX0k8t7vU6k4Psbw5scKDQ3ftQKnVrQ+/XGp1V1R+++23Uqt7586dpVZ3RSVH6d8K9wnF2HxABMUkM+TrbaXdDIWHREN/t5KFFMoNy6cokU0qEk4NKpd2ExQUyjSP7Gp0BQUFBQUFBQWFso9ibCooKCgoKCgoKDwwFGNTQUFBQUFBQUHhgaEYmwoKCgoKCgoKCg8MZYFQOeTdj+bStUdvtNoMZrw4lUsXzpnJtO3Ymbfem4OVtRUXz53lrVemo9fri9UfP3kqTzw5FoHg2pXLzHhpKtlZWWZlj5s0haTERNauWoGLqxtf//w7lQOqEBZ6hxefG0dKcpKZTuduPXhnzlzUajV//bGEn779EqBY/Tr1GzBn3lc4OjphEAaGPtaN7KwsFq9axwvPPmOxnvLIs2+8R4uO3cjK1PLNe69z6+olM5lGrdox7uW30VhZEXTlIt998CYG4/0uSn/A6PH0GjoKSZLY8c8KNiy3vLfkwCcnkJqcxN5Na3B0duH1T7/D268yMRFhzJsxjfTUFDOdZu278Ozr/0P1f/bOOjyqo4vD72SjEHfDvbgUd3d32gItXmgLHzVKW1poC8XaUqBuQAUoDsXdNbgGCHF3z+Z+f8xms8luQmjR5L7Pk2f3zp3fzOy92dlzz8jRaNi1/i/W/SI3fy5MX65KdSa+9ymlStuiZGcz/cU+ZGak89HylXz+1iST9RRHGgx6Fe+ajdFmpnP8t8+JDTSOrOVRtR71+o/HzNyc2Hs3ObFyAUp2NnYeZWj64ps4lanMhc0/c223LhiCkxtNR76Ntb0TZCvcOrKVG/tMbztTrV1/0lMSuXtiF5al7GjxykxKu3iQHB3O4R9mk5maZKTxeu55GgyahBBm+B/9h6s7/wQoUF/a2YPuH/xEYriMBhZ19yqn//gSgHavfc7h7z82WU+xpEJ3cKoC2Zlwcz0khxrncagA5buA0EByCNzcCGSDjStU7ge2XhCwB0KO5Gq8moJHQxACws5A6DHT9Xs1g6wUiDwP5jZQbTBYOUJ6HFz7C7RpxhrHylCxOyAg/CwE61a1F6S3coT6UyBVF7slKQj8N8v3NUcWXI/KM8MT92wKIRQhxAqDY3MhRKQQYotBWl8hxAUhxDUhxEUhRF+Dc78IIe4IIfx05z80OLdfCNFI9/6uEMJV9369Lv8tIUS87r2fEGKvEGKegb6cEOK2EMJRV9Z1IcR5IcQRIUS1R3xp/hVtOnSifIVKdGhan5nTX+ejzxcZ5RFCMP+r5bw+fjTd2zQjOCiQ/kOGF6r38PTipTET6NulLd3bNENjpqFn3wFGZWs0GgYOe4HN6+SP2PgpUzl26AAdmzXg2KEDjJ8y1UhjZmbGrLkLeWX4QLq2akzPfgOoXLVaoXqNRsPCpd/x/ptT6damKSP69SArU8bI3rDmT0aMHvMQrubTT8MWbfEqW4GJfdqybM4MJrz7iVEeIQSvf7SQhe9O4fXBXYgMDaJ9zwGF6stWqkqnfkN586U+vDG0G41atcerTHmjss00Gjr0GcTB7TLix4DRE7lw8iiT+rbjwsmjDBg9yVhjZsb4tz/m4ymjmDKgE6269sa3QuVC9WYaDVPnLOabT97jtUGdmTluKFpdTPT9W9fTbfCL//1iPgN41WyMnbsPW2aN5OSqxTQa+rpxJiFoMvItjv40h3/mjCU5JpwKTTsDkJGcyJk1S7m2Z00eSbZWy7m/v2Hbx6+wc/4UqrTug71nWeOizcyo2LwrAaf2APBcl6GEXT/HllmjCLt+jue6DDXRHDMaDpnC/q9nsG32K5Rr1E5fdmH6pKgQtn82ge2fTdAbmgB3T+yiSpveD37xnkWcqoCNC5z9Em5tgkq9TGQSUKU/XF8DfkshPR7c68lTWalwZysEH8krKeUuDc0L38G5ZeBcFaydjUoGM/CoD5G6beV8WkHcbdmeuNvg28p0eyr2hMsr4NzX4FYbbNzur0+LgfPL5V+OoQkQcR68Ghfteqk8tTxxYxNIBmoJIWx0x50AfTBUIURdYAHQR1GU6kBvZDjKOgZlvKkoSj2gHjI2eoXCKlQUpZ8u/xjgkKIo9XTHPYA+QogauqxfAu8rihKnOx6hKEpd4Fdg/r/7uI+Wjl17sH7NHwD4nTmNvb0Dbu4eefI4OTuTkZHB3dv+ABw5sI8uPXrfV2+u0WBtbYNGo8G6lA0RYWFG9Tdr2YbLF87rvaQdu3Zn3V+/A7Dur9/p1K2HkaZug4YE3LlNYMBdMjMz2bphHR279ihU37Jte65fucy1KzJOclxsrD7c3Z4d/9Crn7EhXBxp3LYz+7fIaKw3Lp6jtJ0dTq5uefLYOTiRmZlByL07AJw/cZhmHboVqvetUJkbF8+RkZZGtlbL5TMnaNq+i1H9dZ5vzu2rl/Ve0sZtOrFviwwXum/LWpq07WSkqVKrHqFBAYQHB5KVlcnhHZtp0rZzofr6TVtx9+Y17t68CkBifJz+fp88sItWXUqG8eFbpzl3T+wCIPruVSxL2WJtn9dIsCptT3ZmJokRshsNu3qGMvXkj3p6UhwxAdf19yuHtIQYvYc0Kz2VhLB7lHJ0JT8e1eoTc+8miu7a+9Rpzp3jOwG4c3wnvnVbGGmcy1cjKTKE5OhQsrVZ3DuzX5+vKPr8BF04RrlG7e6br1jgXB0i/OT7pCAwtwaLfIEUzG0gOwvSouVxnD+4PCffZyZDUggo2Xk1Nm6yvOxMIBvi7+ZqDHGsAEmhMg+AS3WIkPHOiTgHLjWMNXa+0nBMjwVFKw1V5+pF1+cn5hq41r5/PpWnmqfB2AT4B2noAQwD/jA4Nx34VFGUOwC618+AN02UY617Tf43jVAUJRWYBiwTQnQD7BRFWWUi60Gg8r+p41Hj4eVFaLDeVicsNAQPL+88eWKiozE3N6dW3foAdO3VBy8fn0L14WGh/LB8CQfPXuLYhRskJiRw+IDxBu4NGzfh0gU//bGrmxuREeEAREaE45LPEALw8PQmNMSgzpBgPDy9CtVXqFQZRVH4+c91bNx1kLGv5np4EuLjsLS0wtGp+O996ezuQVR4iP44OiIMZzfPPHkS4mLQmJtTqYbssJt16I6rh1eh+nv+13muQWPsHByxtLamQct2eo0h1es1wv9q7mb6ji5uxEZFAhAbFYmDs7HB4uzmQVSYYZ2hOOseaArSe5erCIrCh0t/Y+GqLfQbOV6vT05MwMLSEjsHxyJcsWcbG0dXkmMj9ccpsZFGRmF6UjxmGnOcy1YFoEyD1pRyci9yHaWdPXAqU5mou9eMzrlWrElM4E39sbWdE2kJMYA0WK3tHI00pRxdSYmNyNNmGweX++ptXTzp+u43dJi6ELdKtfTpmalJaMwtsCxtX+TP9MxiaS89lTmkJ4BVvs+dlSKHz211/bzLc2DlUHi5KeFgX04aqmYW4FRV1pUfu7JyWD4Hi9KQqZu+kJkkj43abAcZBm3OMGhzYXprJ6g7EWq9LNuWgzYNzMxlW1WeWZ6WOZt/Ah/ohs7rAD8BOf71mkjPpiGngVcNjucLIWYiDcCvFEWJ4F+iKMo2IcQrwG9AywKy9QKMwtUIIcYB4wDMzcS/bcJ/QmBcr6IoRmlvTHiZ9z7+FEsrKw7v34s2S1uo3t7BkY5de9Du+TokxMez5Idf6TNgMBv/Xp0nr5uHJ7du3niwNgsTdWLcZkM0GnMaNmlG/y5tSU1NZcXaTVy64MexQwcAiI6KxN3Ti7jY2Adqy7OGqfuFiWu38N3XeGX6+5hbWOJ3/JDe81yQPuiOP+t/+YZZy1aSlprM3RtX9RpDnF3dCLptPGew0DabuN+Y+B81xEyjoUa955n+Ym/S01L5+Jvf8b96kQsnjwIQHxONs5sHicV9nq6p74qJa3fkpznUHzgRjbkFoVfPoGQb3ztTmFtZ03Lch5xdu4ystBSj8zYOLiSE3XvQRj9gfkhNiGHjzBFkJCfgVKYKrSZ8xLbZY/RtSkuMw8bBhYzk4j5Pt4jflRtroHw3MNNIz2Z+T2Z+UqMg6LCcD6nNgJQw9N5LQyztIDXSOP1htNmQjEQ4vVAO+5f2ghrD5RC8VrcmIDNZtiUr9QHbovK08FQYm4qiXBBClEd6NbflOy0w/vXMn/amoihrhRC2wB4hRHNFUY7+hyYtBWwURbmeL32VECIVuAtMyS9SFOU74DsAawvNfb5dD4cXRo9h8AsjARgzfBBhoSF6LyWAp5c3EWHGE8rPnT7FsD5yKLVlm/ZUqCgdtQXpW7RuS9C9AGKi5VDNjq2bafB8EyNjMy0tFSsrK/1xVGQkbu4eREaE4+buQXSUcccVFhqMl7dBnd4++iH6gvRhoSGcPHqY2BjpFdm/eyc1a9fVG5tWVtakpxa/CeXdBr9I537DAPh4yiiiI8Jw9cj1XLu4exITGW6ku37hLDNeGQxAvaat8CkrZ5oUpt+9cTW7N8r7+8LkN4kON/4/Sk9Lx9LgfsdFR+LkKr2TTq5uxMdEGWmiI8Jw9TSs04uYyIhC9dHhYVw+c4LEOPnwcPbwPipWr6U3Ni2trEhPL373u0rr3lRq0R2AA8veIzU2ktJObuRc1VJObqTGRxvpou9cZc8iOb/Zs0ZD7N3vHwFHmGloOXYWd0/uIcjvsMk82sx0NBaW+uO0xFis7Z2lV9LembTEOCNNSlxkHs+qYZsL0mdnZZKhm5MbG3iTpMhQ7N19ibknH2Q1FpZoM40XJz7zeDaWcykBrq6UHkIrB0jUnbeyl4ZZfhID4ZIulKhjJTnP835EnJV/AGU75vVG5pCdKb2KOWQmy2H8zCTdq4lBxIwEsDTwrFoatLkgvaLNNSSTQ+UwvI2LnAIAsg3ZWff/TCpPLU/LMDrAJqQH84986ZeBRvnSGgBGgVMVRUkC9lOwR7KoZGPyMY8RuvmdfRVFCfyPdTwUVv78A707tKJ3h1ZEhIexZ8c2+g2Sxki9ho1ITEzQD0Mb4uwqh94sLS0ZN+UNfv9NrjQuSB8SHEi9Bo2wtpFDGc1bteHWzfy2OPjfuEG5ChX1x3t2/KNffNR/yHB2b8//LAEXzp2lXMVK+JYth4WFBT369mfPjm2F6g/t20P152phbSPnkDZu3pJbN3KH/Vzd3QkKDHiQS/lM8M/qFUwd1p2pw7oTGxXByQO7aNuzPwBVa9cnOSlRPwxtiIOT/PExt7Ck/6gJbP9bzg4pTJ+jcfX0pmm7rhzcvsmo3KA7t/AskzvkdfLgbtr1HAhAu54DOXlgl5Hm5uXzeJUpj7u3L+bmFrTs0kufryD9uWMHKFelOpbW1phpNNRs2ITA27nDuY4ubkSEBBX5Oj4r3Dy4Sb9IJjU+muCLxyjfRM5jdSlfg8zUZP0wtCFWto4AmJlbUKPTEG4d2myUJz9NXpxOQlgA1/f+XWCehLB72LrlPhgGXzimX3xUoWlngi8YP+PHBFzHzt2H0i6emGnMKduwLUG6fAXprWwdEEL+PJV28cLO3YekqNyHHWt7Z5KjjeeMP/OEncxdJJORCDHXcxf72PpCVlruMLQhOcPRQiMX4YSdun9dORpLBzl3MtJosE56Na0NDNeYa+Aup1/hXh+ijadakBgMNs5yhbnQyAVCMdcK15uXQu8RtXKSdaYZjEpZ2EJa3P0/k8pTy1Ph2dTxExCvKMpFIURbg/QFwBohxF5FUe7qPKAzgIH5CxBCmANNgCWPvrlPJ/t376Rth87sPeEnty56PXe2wQ+r1jBj2hQiwsMYO+l12nXqgpmZGb//+iPHDx8sVH/+7Bm2b9nIxl0H0WqzuHLxAn+t+MWo/gN7d7Hg62/1x98uWcRX3//KoOEvEhIcxJQx0gvr7uHJp4uWMGbEILRaLR+9O52f/1yHRqNhzR8ruXn9WqH6hPg4fvrma9Zv34eCwv7du9i/Wy40qFW3Pn5nTpsc9i1unDm8j4Yt2/HNxgNy66JZuVOZ3//qZ77++G1ioyLoO3IcjVp1wEwItq9dxcVTx+6rf3vBcuwcnMjKyuK7ee+b3Fro7NH9vDE7d8eDdT8v5815S+nYdzBRYSF8/pZcTe7k6s7kD+Yx+7XRZGu1fD/vAz5c+hsaMw27N63WG44F6ZMTE9i06gcWrNiEoiicPbKPM4f3AVCpRm1uXDxntOilOBJy6QReNRvT86Pf0Gakc2JF7jrFNpM+4eSqRaTGR1Oj02C8azdBCDNuHdxM+A0/AKztnejy9jIsrEuhKArV2vVn6+xXcPSpSIUmnYgLvk3Xd78B4Pymnwi9fDJv/ZdP0mzkO/rjKzv/pMUrM6nUvCvJMREc+WE2IIfbG4+YxoFl76FkZ3P6ryW0nTwXYWbG7WPbSQgNKFTvVrkOdXqOJDtbi5Kdzak/viAjRXrHnMtWJfrOVf0ipWJN7A25Ir3BG9LLeMtgO6oaL4D/RmmU+rQAp2pymkXoKYiXiwGxsIW640FjBSjg3TR3eLraULCwkUPut7ea3loo9iZUMVhsGXQIqg0BjwZyLun1v2S6pR1U6iO9sejKq/kSYCa9pzlD8QXpHcpD2fayLUq2XI2e4+m09ZaeW5P+H5VnBWFqvs9jbYAQSYqi2OZLawtMVxSlp+64P/ARYAFkAh8qirJOd+4XoA0QD1gCe4DXFEVRhBD7deWcFkLc1Z3P+Y9djfSm6uspqH5dmr6sonwuawuN4utse/+MxZBlP69k3scfEHDn9hOpf+acuezZ8Y9+SP1xUMun+C9GKoh3FnzLr19+Rmjg3SdS/yvTP+TUwV36IfXHwZCmT+X6wMdCy3Gz8Fv/PUmRwffP/AhoMGgSwReOEX793GOrc9iI5o+trqeO6kPh7k45tP0kqNBNenjjH9/viWg5+4yiKPlHVFX+A0/cs5nf0NSl7UcOh+ccrwPWFaAfVUjZbQ3ely8g2/78Cfnrz1+WSuHMnzMLdw/PJ2Zs3rx29bEamiWd35bMw8nN/YkZm/f8rz9WQ7Okc37DD9g4OD8xYzM+5O5jNTRLPAG7pOfySRmbKRGP1dBUeTQ8cc9mcaUkezZLIiXZs1kSKcmezZJIifZslkBUz+bD52laIKSioqKioqKiolLMeOLD6MUVKwsNVTzvs7GuSrFB9WKXLIa9dP9INyrFh46v/Pikm6Ci8kyjejZVVFRUVFRUVFQeGaqxqaKioqKioqKi8shQjU0VFRUVFRUVFZVHhjpnsxgx9aP5NG7dgbiYaCYO6GQyj62dA1M/no+XbzkyMtJZ/OF0Am7JEHC/bDtCSkoy2VotWq2W14fLbUbf+XwpvuUq6vT2JCUmMHlIN6OynVzdef3DecyaMhqAwS+/Spd+Q8jO1rJ83oecPXrQuD32Drz7+TI8vH0JDwniszcnkZQYX6DeplRp5v+8Vq939fBi39b1fDv/I3oNHUlaagq7Nq75D1fx2WHE9NnUatKaxLgYPh3bz2QeG1t7Xpg+G1fvMmRmpLNqwfuE3pWxzD9auYP01GSytdlka7V8/uoQALq/NInm3QeQpAsNuemnL7ly8pBR2fbOrgyf9hHfzJQb/3ceNoZmXfuTna1l7dLPuHraeDuiUnb2vDxzIc4e3sSEh/Dj7P+RmpRQoN7KphRTF/+m1zu6eXBq9xb+Xj6P1n2GkZGWyvEdG/79RXyWqNgHnKrKEH8XlpnOo7GGSn1lFBYlS276nRphkEFA7fEypOD132WSb3u5ITiKLNt/A2SaCIloYQsVe+fqvFvJKDCKAne3Qby/ifbYQJVBMppMehzcXJ27eXhBepda4NNapmcmwq11kJUCHo0hOwMi/R7wwj2bTJ+9gCZtOhIXE8XYvh1N5rG1d2D67IV4l5H9+YKZ/+PuLRnZbeXOY6QmJ6PN1qLNyuLVIT0AmLlgGb4VKkm9rj+fMKCLUdnOru5M++hzZr46CoBhY16l64BhZGu1LP3sA04fMd5ezs7BkZkLluHhU4bw4EBm/28iSQnxBeptSpVm8YrcXQ3dPLzYvWUdy+fOos/wUaSlpLBjw2qjelSePR7YsymEWCyEeMPgeIcQ4geD44VCiGlCiEu647ZCCEUI0csgzxZd+nohhJ8Q4pYQIl733k8I0VwIsV8Icd0gba1OO0sIEaxLuyKEGGZQrhBCzBRC3BRC3BBC7BNC1NSd2y+EyPONEkK8IYRYJoQoL4RINajLTwjxki7PXSHE3waagbqN5J86dm1cw8yJLxWaZ8iYV/G/doVJg7qw4L2pTHjrozzn3xkzhMlDuukNTYC5b73K5CHdmDykG4f3/MPRvdtNlt3/xTFs/1v+EJWtWIU2XXsxoX9HZk56ickzPsHMzPjfbfDLr+J38ghjerfB7+QRBr8yqVB9akqyvi2Th3QjIjSYI3v+AWDnhr/oM3x00S/YM87xHRtY+u6EQvN0GT6WIP9rfDauPyvmzWDgpHfynP/yfy8zd8JAvaGZw76/VzB3wkDmThho0tAEaD9wJEe2ScPfs2xFGrTtxidj+rDs3QkMfu19hIn73WnoGK6fO87Ho3pw/dxxOg99pVB9emqKvh1zJwwkJjwEv8O7ATi2fT1t+o0o2sUqDkT66SK0FIJPa0gOg4vLZbSZ8vkeCj2b5kZzySH0iMx/8RuIuwG+bUyX7dUcIs7I9zZu0ig8vxSurYAKPdGHG8zTnpaQcBvOfyVffVrdR28m23zlF9mmlHAZLxwg8pxsfwlhx4Y1vDv+hULzDB87Bf9rlxnXvxPz3n2dSe/m7c//N3oQEwZ00RuaAHOmT2LCgC5MGNCFQ7u2cXj3PybLHjhyHNvW6vrzSlVo270PY3q3593xL/DaTNP9+dAxr3LuxBFGdW/FuRNHGDrm1UL1qSnJ+rZMGNCF8JAgDu+S7dm+7k/6vfBy0S+YylPNvxlGPwo0BxAyeK0rUNPgfHPgSD5NEPBe/oIURemnKEo9YAxwSBd3vJ6iKDkukREGaYbhKRfrdH2Ab4UQFrr0V3X111UUpSrwGbBJCGGNjLk+NF8ThpIbi93foK56iqL8ZpCvUY7R+jRz6exJEhPiCs1TtmIVzp+Utyforj8e3r44OrsWuY7WnXuy/5+NJs+16NidM7qn3aZtO3Ng+2YyMzMIDw4kJPAuVWvVM9I0a9eJ3ZukwbJ701qatetcZL132fI4Ortw6awMqZeelkZ4SBBVa9Ut8ud5lvG/eIYUnRe4IDzLVeL6ueMAhAfewdnTBztHl0I1RaVeq45cPXUYgDot2nN2/z9kZWYSHRZMVMg9ylerbaSp07wdJ3bK/58TOzdSp0X7IuvdfMpi5+iC/0Vp8GSmpxETFkK5arUeyud56kkMAG1q4Xls3KRRB5AWJT2K+hjY9tIzGnE2r0abnvvezLLgsp1rQJz0iuNUHaIvgaKVHsu0GLD1MdY4Vc/1REb6yePC9AJAgJmuS9dYyXCMIMM1psdBaRP1FEMunjlBYnxcoXnKVarCuRPyOxh4xx9Pb18cXYren7fp0ot9W0335606dePU4f0AtGjXmf3bNpKZmUGYrj+uVruekaZ5u87s3CBHlnZuWEOL9l2KrPcpWwFHZ1cunjkByP48LDjIZD0qzx7/xtg8gs7YRBqZl4BEIYSTEMIKqAHE5tOcB+KFEKbHdv8liqLcBFKAnB213wamKIqSoju/E2kcjwDWAj11bUQXY90bOFyEqhYg47E/89y+cZXmHboCULVWXdy9fHD18AJAQeGTb1by1R9b6TZguJG2VoPGxEZHEXLvrtE5D58yJCXEk5mZAYCLhweR4SH681Hhobi6exrpHJ1diY2Sw3yxURE46AzfoujbduvDwR2b86TdvHyBWg0a3/c6lBSC/a9Tr6UcgitXrRbOHl44unkAoCgKk+d9x1vL/qJFj4F5dK37DOPd79YxYvpsbGztjcp18fQhJTGBrMxMABxc3ImNCNOfj40Mx8HV3Uhn5+RCQkwUAAkxUdg5OhdZ37Bdd87uz+tVv3fjMpVqNyzaxSgJpIRJoxCkUWblII1MgHJd4d5OwEQgjzIdoP40cK0NgXuNz1s5QlaaNA5BRpTJMHjQyUjIrccQi9KQmSTfZyYZGL4F6JVsuLMF6kyCBtOl8WxoHCeFgH25olyJEoH/9Su07Ci919Vq18PD2xe3nP5cUZj3/e8sW72NHoOMRwBqN2xCbHQkwffuGJ3z9ClDYp7+3IuIsFD9+ciwMP3vhiFOLq7E6PrzmKgIHJ1diqxv16MP+7dvypN24/J5aqv9ebHggY1NRVFCgCwhRFmk0XkMOAE0AxoBF4AME9I5wMwHrG6VwbD2/PwnhRANgJuKokQIIeyB0oqi5J84dBqoqShKNHAS6KpLHwr8peSGUKqUbxi9lUEZq4EGQohCw4YIIcYJIU4LIU5nZGUXlvWJseanZdjaO/D1X//Qe9ho/K9dRqvNAuB/IwcwZWgP3n/1JXoOecnIaGvbrQ8Htpt+CnZ2dSc+Nlp/LEwMqT1ItKqi6Nt06c3+f/J2TnEx0TjrjCkV2PXnD5Syteedb9bSpu8Igm5dI1srDYbFb7zIvImDWTZjIq16D9MbbYc2/cWsl7oxd/wAEqIj6T/hTaNy7Z3dSIrPfaYUwsQQqimjpgCKom/Yrhun923Lk5YYF42Di1uR6yn2hByW8yRrTwDPJnJIXckGR91cz+RQ07rAPXBuEURdlLr8WNhBVrJBwn+73wXqhRl4PC+H9M8ukMPoPgZdcVaybIsKAH/+sBRbewe++XsHfYeP5ta1S/r+/I0X+jFxUDdmTHiR3sNGUrth3vvavnsf9m0roD93cyc+Njc8pemv54N8v++vb9ett1F74mKicXFX+/PiwL9dIJTj3WwOLAJ8dO/jkZ5EIxRFOSSEIJ8Rdz9GKIpy2kT6VCHEWKAiucZjQQhye8GcofSNulfDCSH+uqF5U2iB+cC7gOkJLoCiKN8B3wE4lLJ8KuOApiQnsfiD6frjX7YdITw4EICYyHAA4mOiObp3B9Vq1dMPUZtpNDTv0JXXhvYwLhTISE/D0tJKfxwVHoabh7f+2NXDi2hd+YbExUTh5OpObFQETq7uxOu8XvfTV6haAzNzDbeuXsxTnqWVFRlpaUW7GCWAtJRkVi54X3/80codRIcFARAfLefuJcXFcOHIHspXr43/xTMkxuU+NBzZtpYJc5YalZuZkYaFwf2OiwrHycDz7OTmQXxUpJEuMTYae2dXEmKisHd2JTEupkh6n4rV0Gg0BN68kqc8C0srMjPSUdGhTYfbG3KP678hh55dastFQE5VQJjL4elK/cF/XV591AWoPgKC9uVNz84EM4Ofi4wEsDQIWmFpnzvcbUhmslxYlJmke00uXF9K9z+QrnuQib4M3i1z8wlz2RYVQPbnC2b+T3+8cucxwoJkf57TX8bFRHNk93aq166nH6I202ho2bEbEwd3N1luRlq+/jwsFHfPXE+km6cnUQYjETnERkfh7OpOTFQEzq7uxMVEF0lfsVoNNBpzbl7J159bWpGRrvbnxYF/u/VRzrzN2shh9ONIz6ap+ZqGfIKJuZv/gsWKolQDhgC/CSGsFUVJAJKFEBXz5W0A5PxCbQA66DyiNoqi5Ju8VCgrgNZA2f/W9CdLaTt7zM3lfKiu/Ydx8exJUpKTsLKxwaaUHOKysrGhQbNW+lWNAPWbtCTojr/JDgYgKOA2Ht6++uPjB3bRpmsvLCws8fApg3fZCty45GekO75/Fx17yyHcjr0HcmzfriLp23brw4F8Xk0An3IVCPC/bpReUrEpbYfGXBoJzbsP4NbFM6SlJGNpbYOVTSkALK1tqN6wOSF3bwJylXkOdVt20K9eNyQiKABng4eBC0f30aBtN8wtLHDx9MHNpyx3r1800l08tp8mnfsA0KRzHy4c3VckfcP23Ti91/g5z923HKF3jNtXYtFYg9DI9+4NISFAGqCBu6Xn8twXcGstJNzJNTStnXP1TtUhNcq43LRoOZSeQ+w1ucBHaGS6tTMkBRvrYq+DWz353q2e1BWmz0iUQ+fm8n8Th0p522Pjkm91fcmmtJ095hayP+8+cDgXT58gJTkJa4P+3NrGhobNW+fpzxs2a8W9O/5EhZv2dAcF3MbDJ7c/P7pvF22798HCwhJPnzL4lK3A9Yt+Rrpj+3bRue8gADr3HcTRfTuLpG/fvS97TXhZfctX5M5NtT8vDvwXz+b/gNuKomiBGCGEI3IO51jAZOw+RVF2CiFmI+dK/mcURVknhBgJjAS+RXofvxJCDFIUJVUI0RFoCYzX5U8SQuwHfiJ3YVBR68oUQiwG3gFMTGp68rw9dwl1GjXD3tGJFTtPsGL5Inau/4vug+SKxm1rVlKmQmWmz1lMdraWe7dv8sWHbwHg5OzG+4u/A0Bjbs7+bRs4czR3a4s2XXsbzacxJD01ldCge3iVKUdoYAD3/G9waOcWvl2/B602i2WfziQ7W04teP3DeWxbs4qbVy6w+qdlzJi/nC59hxAZFsIn0+Xq6sL0AK069+SDV0cateO5eo1Y9c0X/+1CPiOMmvE5Veo+j62DI7P/2M22X5dxbPs6WvYcDMDhLavxLFuRF9/+lOxsLWEBt1m18ANAzp0cO+tLADQaDaf3buPqKfmc2Hfs//CtXA1FgZiwYP744iOjujPSUokKCcTVuwxRIYGEBfhz7sAO3vtxE9naLFZ/9QmK7n4Nn/YRh7es5t6Ny+z68wdenrmQZl37ExsRyo+zpwEUqgdo0KYLy2dMMmpHxZr12fbb8od4VZ9iKg8E+/LSEKs/DYL2Q+RZcG8kz0ecBhtX6bEkW6469zc9TJqHMp2kEacoch7l7c3GebIzIS0WrJwhPUaWHX0Z6k6Ww/R3t6IfQKrYG8JPQ3IIhByCKoPBrYEs+4ZuG5uC9JmJ8nPVfBmytVLjvz63HXZl5PkSwIz5X1P3+WY4ODrzx55T/Lp0IdvX/UnPwbI/37J6JWUrVubtz74kW6slwP8mC3WjVk4ubsz6Sm4So9Fo2Lt1g36xD0Dbbr3Zt21DgXWnpaYSEhiAd9nyhNy7S4D/DQ5s38yPm/ai1Wr5ak5ufzzto/lsWb2CG5cv8OcPXzNz0Td07T+UiNBgZk+T/XlheoA2XXoyw8ROKjXrN+K3ZYv+03VUeToQDzKPTi8SQoNcBPSVoigzdWm/AM0URammW3yzRVGUWkKItsB0RVF66vL1Rg5jt1MUZb8uLU8eXdp+wAvIWX4ZpShKRyHELCBJUZQFunwNgd+RC5MU4APgReTQdxgwWVGUiwbl9gPWATUURbmmSysPXAUMH6F+UhTlKyHEXaCRoihRusVFd4CdiqKMKuwaOZSyVJpXMV4QU5xp3r4LlWvU5relC55I/ZWq16Tfi2NZ8N4bj79uNxOLI4o5dVp0oGzV59jy85InUr9v5eq0HzCS3+a9+9jr/nrOgMde5xPHqTqU9oagJ/SsXcpTbr+Uf+j/MVASY6O36NCVqjVr8/NXRsslHguVq9dkwMhxzHv39cde954rwWcURWn02Csuxvwrz6bOm2mfL22Uwfu7QC3d+/3AfoNzm8g3Ozx/Hl1a2wLqnpXv+AxQzSDpI91fQW1fb6L+u4BNAfnLG7xP5yF5ZYsjR/fuwM7B6f4ZHxH2js5PzNAtiVw4sofS9o5PrH5beye2/PJkDN0SSey13OHtJ4FFqSdn6JZAjuzZjr3jE+zPnZz5ZcmTMXRVHj7/yrOpcn9KomezJFMSPZslmRLp2SzBlETPZklG9Ww+fNTY6CoqKioqKioqKo8MNTb6IyI9U4t/eOHRXVSKD+1rqLMrShTqgFCJwte59JNugorKM43q2VRRUVFRUVFRUXlkqMamioqKioqKiorKI0M1NlVUVFRUVFRUVB4ZqrGpoqKioqKioqLyyPhPC4R0EXUCFEX5Qne8AwhUFGWM7nghEAy8bLDB+z6gt6Iom3V5tgALgNeBCsjoQ27IzdMBJgGfkneD91uKogzUbfA+FogELIHZiqL8oSv3F+TG8muFEM7AHuArXf35N3BfpCjKb0KIl4GpyOn/ZsB7iqJs1JXVBhn7PRt4VVGUY//l2j1qPl38Ne06dSU6KpKebZuZzGPv4Mhni7+mTPkKZKSn8+7UV7l57SoAe09dIDkpiWytliytlgFd2posY+TYicTHxbJhzZ84ODrxxbc/41OmLMGB93h93CgS4uOMNK3adeC92fPQaDSsWfUb3329GKBAfa/+gxgz6TW9vtpztejXqTVXL1/kl9UbeW3sSJP1FHe6jn+Pig1akJIQyy9vjjCZx6q0Hd3Gv4ejhy9Zmels/+YTooJu688LYcaLn/5MUmwk6z6X0UeaDxxDnfa9SU2IA+Dgn8u542f8717a0YUu497V65r0eYna7XqhZGez55dF3L1wwkhjXdqeXq/PwcHNi/jIUDZ9+R7pyYkF6i2sSzF81jd6va2zO1cOb2ffb19Qv8tAMtNSuXRg67+7gM8alfqAU1UZX/z8MtN5NNZQuS9YOYGSBbc2yvCOwhxqjZavwgyir+SNf+7ZBDwby2g+sTfg3i7jsi1soVJvuPa7PPZuBR71ZeShO9sg3t9YY24DVQbJkJTpcTKCkDatcL1LLfBtLdMzE+HmOshKke3TZkCk37+7fs8YL7/zKfWatyUhNpqZI3uZzFPK1p5X3v0Ud5+yZKan8+PcGQTfuak/L8zMmPX938RGhfPF2zKaz8RZi/EqW0GntyMlKZEPXu5rVLaDixuj35qt1/V4YRytewwkOzubVV/O4dLJw0aa0nYOTPxoMa6ePkSFBbPsgzdISUooUG9tU5oZS1fp9U5unhzbuYnfl3xKh/4jSE9L5fC2x7+Jv8rD5796NnNipCOEMANckSErczAVKz0IE/HRFUXppyhKPWAMcEhRlHq6v6O6LCMM0gYaSBfrdH2Ab4UQFoblCiEcgB3Ad4qi/KxL9jcoq57O0PTVtauloih1gKbABYOi3tTV8w4yNOZTzbq/fueVYYXvBTjh9f9x9fJFerdvwVtTxjNz9rw8518a0JM+HVsVaGhqNBoGDHuBzevWADBuylSOHTpA5+YNOHboAOOmTDXSmJmZ8eFnCxk7fCDdWzemZ78BVKparVD95nVr6NOxFX06tuLNyeMJDrzH1csyKNTGtX8yfNSYB7o2xYVLB7ay9jPja2xI074jiQi4yS9vv8C2ZR/TflTe/A27DSE65K6R7sy2P/n1nZf49Z2XTBqaAI16DOPCHhkO0cWnPNWbd+Ln6cNZ+9kbdHrlTWSXkJcmfV4i4NIpfpg6iIBLp2jS56VC9ZlpKfp2/PrOSyREhXHz5H4ALu7bTIOug+93mYoPEX5wdWXheXxbQ3IYXFgON9dDhW4yXcmCy7/K9AvLwbEy2OpiX9uXB6dq0oA9vxRCjpou27s5hJ+R723cwLUW+C2FqyugYk/yxcrQaVpC/G3w+0q++rS6j95MtvnyL7KdyeHSyASIOAdeTYt6tZ55Dv+zjoXTC+/ber00gXs3r/L+qN58/8nbjHg9709r50EvERKQ9yFg+aypfPByXz54uS+nD+zk9EETDxZA1yGjObBZ9u3e5SvRpEMP3nupBwunj+GlaR8izIy/3z1eGMfVM8d4Z3gXrp45Ro8XxhWqT0tN1rflg5f7Eh0ezOmDMp76oa1/02nAi0W7WCpPPf/V2DyCzthEGpmXgEQhhJMutGMNZFhLQ84D8UKITv+x7jwoinITSAEMQx7YAv8AvyuKcr8Ayu5AIpCkKy9JUZQ7JvIdBCr/9xY/Wk4fP0p8XP5Ln5fKVatx7JCMf3771k18ypTFxdWtyHU0bdmGKxfPo9VqAejQpTvrV0uvx/rVv9Oxaw8jTZ36DQm4c5vAe3fJzMxk64Z1dOzSo8j6nv0GsmX9Wv3xnh3/0LNfydxgO+iaH2nJCYXmcfGpQMCl0wDEhATg4OZFKQdnAGyd3ajYoDkX9xYc874wqjZux53zxwGo3Kg1147uQpuVSXxkKLFhQXhVfs5IU7lRKy4f3AbA5YPbqNKodZH1jp5lKOXgRNA1PwCyMtJJiAzFs5JxPcWSxADISi08j42bNOoA0qKkR9FCt21PdoZ8FRrp3czZv8njeQg5DIr8HpOVbLps5xoQd0u+d6oOUZekJj0O0mLA1seEpnquJzLSTx4XphcAAsx0PgONFWQk6tqfKfOaqqcYcuP8aZITCt8+z7t8Ja6ckd/B0Hu3cfX0wd7JBQAnNw/qNmvLwS1rC9Q/364bJ3ZvMXmuYZvOXDxxEID6LTtwYs9WsjIziQoNIjw4gIo16hhp6rfswOHtGwA4vH0DDVp1LLLew7ccdo4u3Dgv+6uM9DSiwoKpUKN2oddA5dngPxmbiqKEAFlCiLJIo/MYcAJoBjRCegYzTEjnADMfsLpVQgg/3Z9RDCshRAPgpqIoEQbJi4DDiqIszpe9kkFZfkKIVkgjOBy4I4T4WQhhetwCegEXTZ0QQowTQpwWQpzWZj/9G/Fdu3yJzt3lx6xTvwHevmXw9JYduaLAT39uYN2OAwx5YZRJfcPGTbh8wU9/7OrmRmREOACREeEmDVcPL2/CQoL1x2GhwXh4eRVZ371Pf7ZsyO08E+LjsLS0wtHpyYVVe5qJvHeTqo3bAuBZ6TnsXT2xc5bXtf3IqRxY9TWmoojV7zKIUfNW0nX8e1iVtjM67+DmRVpyItqsTEAaronRuV+9xJgIbJ2N718pB2eS46IBSI6LppS9U5H1NZp34vqx3XnSwm5fw7d6vftdhpJDcpg0CkEaZVYOYJkT3UpAnQnQ6E1pkCbpvoc2LmBXDmqNhZqjZfzz/Fg5QlZarkFqZQcZBoZQRoJBPQZYlIbMJPk+MynX8C1Ir2TD7S1QdxI0nA6l3CDibG6+pBDZVhUA7t26RsM20m9ToUZtXDy8cXKTkeuGvzaDv5bNR8nONqmtWrcRCbHRhAcFGJ1z9fIlJTGerEz5/XZy9SAmIkx/PjYiHCc3DyOdg5ML8dGRAMRHR2Lv5FxkfZOOPTm5d1uetLvXLlGtjhrIpzjwMBYI5Xg3c4zNYwbHJsdjFEU5BKAz8oqK4TD6mwbpU4UQ15FG7qx8mr1AHyGEe770/MPoh3Tx3rsCA4EbwGLdnNAc5gsh/IBxwCsFfK7vFEVppChKI42ZiSGlp4xvlyzG3tGRjbsP8eLL47l66QLarCwAhvXqTL/OrRkzYgAjRo+hUdPmRno3d09ioqIfqE4hjK9LUUOm1qnfkNTUFP280hyioyJx9/B6oHaUFE5s/A2r0naMnPsbDboOIvzuDbK1WjnXMz6W8DvXjTR+u9bx/WsD+OWdF0mKi6bdC68Z5Snt5EpqQq7nXJgaQn2A562i6Ks378TVIzvzpKUkxGLr5Fr0ioo7IYflPMk6E+Q8zOQwacABoMCFb+DMImmI2ui6RWEG5tZw6XsI2AlVTUxNsLDL5/E01b89yAN2AXphBp7P69q5AFLCc4feQc5XtTR++CmpbF35HaXt7Pn4pw10GvAiATevkq3Nom7ztiTExhBw43KB2qYdexbo1XR0cSPRYGTMVL/NA4S6Loq+SYfuHN+dd/51Qlw0jq75f75VnkUeRgShnHmbtZHD6IHA/4AE4KdCdJ8g50hm/cf6FyuKskAI0R/4TQhRSVEU3Qx0/gQOA9uEEO0URUksrCBFWj0ngZNCiF3Az+QasG8qilLweMQzSHJSIu++8ar+eO+pCwTek0+5EeHyKTQmKopd/2yhTv2GnD6e99khLS0VS2sr/XFUZCRu7h5ERoTj5u5BdFSkUZ1hIcF67ymAp5cPEWFhRdL36DuArev/NirTysqatLQ0o3QVyEhNYfs3c/TH45asJz4yhOrNO1G5YSsq1m+OuYUlljal6fHqLLYunUVKfIw+/4W9G+n/1gKjcrMy0tFY5t77xJgI7FxyfxTsnN1JijW+/ynxMZR2dCE5LprSji6k6AzW++ndylbGTKMxMo41FpZkZaQ/yCUp3mjTwX9D7nH9N+TQc548aZBwV87bTI2QXsUY3QNcUjCggHkpuSgnh+xMubgoh/QEsHTIPba0zx3uNiQzWS4sykzSvSYXri/lqTuvM3SiLoNPy9x8ZuayLSoApKUk8+NnM/THC1bvITI0iCYde1C/RXvqNm2NhaUV1qVtGff+fL6bLf00ZhoNDVt3YtaY/ibLzUhPw8LSUn8cExmGs7un/tjJ3YPYqAgjXXxsNA4ubsRHR+Lg4kZCbEyR9GUqVUOj0RgZxxaWVmSkq9/v4sDD8mz2BGIURdEqihIDOCKH0gtcsa0oyk7k/Mq6D6ENKIqyDjgNjMyX/gVyJfp6IYSlCSkAQghv3VB8DvUA4/GFYoSdvQMWFnJu1OARIzl9/CjJSYnYlCpF6dK2ANiUKkWLNu25ee2Kkd7/5g3Kla+oP9678x/6DR4OQL/Bw9mzY5uR5qLfWcpXrIRv2XJYWFjQo29/9uzcdl+9EIJuvfqydYOxsenm7k5wYLG+Vf8aq1K2mGmkkVCnfR+Crp4jIzWFQ38u55tXe/PdlH5s/up97l0+zdalswC5yjyHKs+3ISrwtlG5saH3cHDL9SbfOnOI6s07oTG3wMHNCyfPMoTeMv6fuXXmEDVbdwegZuvu3Dp9qEj6Gi06cy2fVxPA2assUYEmVkGXVDTWck4mgHtDOc9Tmy6NR421TDczB4eKkBolj2OugYNcnYy1i9QbGpoAadFyKD2H2GtygY/QyHRr59xheUNir4NbPfnerZ6sqzB9RqKcd2peSuZzrJTbzpz2pRgbOSWVUrZ2aMxlH96m1yCunz9NWkoya79dxLQBbZg+uAPLZ03j6tnjekMToGbD5oTeu01sZLjJcsMC7+LqmesUOHd4L0069MDcwgJXL188fMtz++oFI53fkb207NoXgJZd+3Lu8J4i6Zt27Gnk1QTwLFOe4Ds3HvzCqDx1PAzP5kXkKvTf86XZKooSJYSwLUT7CbCxiPWsEkLkzI6PUhSlo4k8HwO/CyG+N0xUFOVtIcTPwArgXXRzNg2y/KRrxwIhhDeQhtxOaUIR2/bUsWj5jzRu3hInZxcOnr3CV/M/Y+0fKxj60ssA/PnbT1SqUpXPl3xLtlbLrRvXmTFtMgCuru4s/VmuetWYm7N53VoO7dtjVMfBvbuYvyR3Yf53Sxbx5Xe/MnD4i4QGB/HaWGn3u3t48smiJYwdMQitVsvHM6bz4x/r0Gg0rP1jJbeuXytUD/B8sxaEhYYQeO9unjbUqlsfvzOn9YuUShI9p3xMmecaYGPnyISlmziy9nsu7ttM3Y79ADi/ez0uPuXpPulDsrO1RAffZfu3n9y33DYjJuNergooEB8Zys4f5hrlyUxPIy48CEcPX+LCg4gOusP1Y3t4eeEfZGu17P55AYpu+LbLuBn47V5H+O1rnNj4G73f+IQ67XqTEB3GpsVy9WxheoBqTTvw97xpRu3wqVaHo3//8K+u3zNHlYFy5bh5KWgwDYL2y/mMHro5beGnwcYVKvcHsiElEvx13aulHVTuBwgQAqIvQ5zuRzzinNxWqe4kyNbCrfXGdWdnSm+jtbNczJMaKcuoN1kO09/Zin4YvWJv2ZbkEAg+JIfl3RvIOZo3Vss8BekzE+XnqvmybvFQPPgbtMeujDxfApjw4UKq12+MrYMTi/4+wIaflnBw61ra9RkKwL6Nf+JVrhJj35uHkp1N8N1b/DTXaKMXkzTp2J0TJoy7HDLSUokICcTdpywRwfcIuXuLU3v/4dMV29BqtaxY9LF+Lujot+ewb8Of3L1+iS0rv+PVj7+gVY+BxESEsvT91wEK1QM8374bi98cZ9SOyrUbsOHnpUW+ZipPL6Ko8+VUHgxrC41S1qUwO7t4sPSnlXw++wMC7hh7vx4H782ey94d/3Ds8IEnUn8OY9vWeKL1PwmqPN8GjwrVObz6yewE5l6+Ko16DGPb0o8ee91vvt7lsdf5xHGuLhcPBe59MvWX8pTbL916/Psujnrrz8de55OmQauOlK9Wi3U/fPFE6i9bpQZdh4zmuzlvPfa6fz1844yiKOrKpIeIGkFI5T+x4JNZuHl43j/jI+LmtatP3NAsqdw8dYD4yNAnVr+NnSOHV3/3xOovccRcM57/+TixKPXkDN0SyNlDu4kKC3pi9ds5OLHuhy+fWP0qDxfVs/mIKCmeTRVJSfRslmRKpGezBFMSPZslGdWz+fB5GHM2VUxgb2NJp1q+T7oZKo+JXw+rk9hLEqqxWbJwKm11/0wqKioFog6jq6ioqKioqKioPDJUY1NFRUVFRUVFReWRoRqbKioqKioqKioqjwzV2FRRUVFRUVFRUXlk/OcFQkKIxUCALlIPQogdQKCiKGN0xwuBYOBlRVFqCSHaAvuA3oqibNbl2QIsAF4HKgC2gBtwR1fNJOBTwAvI2dj9lqIoA3Xxy8ciN2G3BGYrivKHrtxfgDZAvE6ToihKcyHEKKCRoiiT832Wl4GpyN2JzYD3FEXZmK+cbOBVRVEKjI70pHhh+mxqNWlDYlwMn4ztazJPx8Gjeb59T0CGLPMsW5G3B7YiJTGetv1eoEX3gQghOLJtLfvWrQCg56gp1GneDiVbITEumhXz3yM+2jgUob2zK8OnfcQ3M2UIzM7DxtC86wCys7WsWfoZV08fMdKUsnPg5ZkLcPHwITo8mB9n/4/UpIRC9Q3bdafL8LGgKMRHR/LLZ2+TnBBHmz7DSU9L4fiODf/1Uj4TzF6whNYdOxMTFUW/ji1M5hk9YQo9+g0EQKMxp2KVqrSqW4WEuDheeGU8A4a9hBCCtb//xsofvwFgwbIfKV+pMiCjTCUmxDOwSxujsl3dPfjo8y94ddQwAMa8+gb9h72AVqvlsw/e5egB421q7B0dWbjsJ7zLlCEkMJD/TRxNQnx8ofpuffozdso0UBQiwsN4Z8p44mJjGDZqDKkpKWxY/btRPcWSSn3AqaoM+Xh+mek83i3AtbZ8L8xkNJ7Tn0NWKng1k5uro8goPLc2gJIFzs9BmXZyQ/iL38vN2E1hYQuVesM13fX2bgUe9WWM6zvbIN5EJCdzG6gySEYJSo+Tm7pr0wrXu9QEn9ay/bE34N4ume7ZGLQZEOn3wJfuWWTo1I94rkkbkuJi+HyC6bCS7QaOomE7GZHLTGOOR5kKvD+kDSlJCbTuM4Km3QYgBBz7Zx0HN8hAHd1eepVazdqhZGeTFBfD7wvfJyHGdH8++PUP+eHDKQB0GPIKTbr0Q8nOZt3yuVw/c9RIU8rWnpdmzMfZw5uY8BB+/XQ6qUmJherrt+1GxyFjANmfr/r8XZIT4mjZaygZaamc3FXUuC8qTzMPw7OZExsdIYQZMppQTYPzzZEhLQ0JQsZFz4OiKP0URakHjAEOKYpST/eX8189wiBtoIF0sU7XB/hWCGFhcO5NA03zgj6EEMJX16aWiqLUAZoChvG43tTV8Q7wZHaxvg/Hd2xg6bvjC82ze/XPfDZhAJ9NGMDGH7/g5oXTpCTG41W+Mi26D+TzyUP5dFx/ajVtg5tPWZ3mJz4d15/PJgzg0vEDdHthosmyOwwcydFtMny8Z9lKNGzbnTljerP03fEMeW0mwsz4363z0DFcP3eCj0Z15/q5E3QeOqZQvZmZhkGT3uHL/43m03H9Cb59gzZ9ZYjLo9vX0bbfC//6+j1rbFjzOxNeGFRonp+/WcLALm0Y2KUNX8z9mNPHj5AQF0flajUYMOwlhvXsyIDOrWjTsTNlK8jQo9MnvaLX7Nq2md3/bDFZ9shxk1j7+28AVKxSjW59+tOnfXMmvDCI9z+Zj5mJ+z3m1Tc4fuQAPVo9z/EjB3jl1TcK1Ws0Gt756DNeHtSb/p1acePqZYaPHgvA+j9XMeJl46gjxZYIP7i6svA8IUfgwjfy795uGQM9K1VGEPJsAhe/1RmqQoaLBBkf/fqfkHCfkK/ezSH8jHxv4yb1fkvh6gqo2FOWaaRpCfG3we8r+erTqnC9uQ2U6wxXfoXzS6WBa68LpRlxDryaFulSFQdO7trEdzNN97U57Fv7CwteHcyCVwez9ecv8b94hpSkBDzLVaZptwEsfn048ycOomaT1rh6y/5879pfmD9xIAteHczlkwfpMsL0b0ab/i9x/B8ZHtijbEXqt+nKvPH9+Pa9iQx89T2T/XmHIa9w0+8En77Si5t+J+gw+JVC9WZmGvpNeJtlb7/C/IkDCb1zg5a95cPriZ0baNVn+L++fipPFw8rNnqOEVcTuAQkCiGchBBWQA0gNp/mPBAvhOj0EOrXoyjKTSAFGXP9QXEHEoEkXVlJiqLcMZHvIFD5XzfyEXLr4hmSE+Pvn1FHo/bdOb1Pxh/3LFuRO1fPk5meRna2lpvnT1O3hYwImpaSrNdY2tigD0uXj3qtOnHl1GEA6rRox5n928jKzCQ6LJjIkEDKV6ttpKnTvB0ndm4AZOdSt0X7wvVChtuzsrYBwLpUab2XNTM9jeiwYMqZqKc4cubEMeLj8n+1CqZ73wFs2yijr1SsXJUL506TlpaKVqvl9PGjdOjaw0jTtVdftm00jkcP0LFbLw7vl2FM23fuxj8b15GZkUFw4D3u3b1D7XoNjTTtOndj4xq5Z+HGNX/Svkv3QvVCCIQQ2JSSsbJtbe2ICA8DIC0tlZCge9Sq16DI1+CZJjFAGo5FxbU2RF3KPRZmYGYBmIHGQsYhBxl7PC36/uU514C4W/K9U3VZtqKVHsu0GLD1MaGpnuuJjPSTx4XprZwgNTo3Nnu8P7g8J99nZ8q8puophty+9GD9ef223Ti7/x8APMpWIODaBX1/fuviaeo07wBAumF/bm1DQVtt123RkatnpJ+oVrN2nDuwHW1mJjHhwUSF3qNstVpGmlrN2nFq9yYATu3eRO3m7QvXC4HQtQNkf54QHQHI/jwmPISyVY3rUXn2+M/GpqIoIUCWEKIs0ug8BpwAmgGNkN7BDBPSOcDMB6xulRDCT/c3P/9JIUQD4KaiKBEGyfMNNKsKKfs8EA7cEUL8LIToVUC+XsjY7880FlbWPNeoJX6H5BBVyN1bVK7TiNL2DlhYWVOzSSuc3HMjA/Ua/Rpzft/N8+17suWXr43Kc/H0ISUxgazMTAAcXTyIjQjTn4+LDMPR1cNIZ+fkQkJMFAAJMVHYOToXqs/WZvHXl7OZ8f0GPv1rP17lKnH0n1xj6N6Ny1SuXUKMjwfA2tqGlm07sGub/CG4df0qDZs0w8HRCWtrG1q174Snd94f8YZNmhEdGcE9E6FIfcqUJSE+jswM+dV29/IiLDRYfz48LAR3Ly8jnYurO1ER4QBERYTj7OJWqD4rK4vZM6azfvcR9p25QsUq1Vj3xwp9vsvn/WjYuNm/vSzFFzMLcKwMMVfkcUYihByFBlOh0XTISjc97F0QVo6QlSaNQwArOxnrPIeMBLC0N9ZZlIbMJPk+M0keF6ZPi5HD+VaOgJk0cC0dcvMlhYBduaK3u4RgYWVN9UYtuHBY9uehd29RsVYDStnJ/vy551vh6Jbb/3YfOYUPVuykYbse/LPCOPa4s4cPKUkJaHX9uYOLO3GRBv1xVDiOLib6c0fnPP25rYNzofpsbRZrv/6Et5b/zUe/78GjbCWO71ivzxd48woVa6n9eXHgYS0QyvFu5hibxwyOjSd2AIqiHAIQQrR6gHoMh9HfNEifKoS4jjRyZ+XTGA6jjyioYEVRtEBXYCBwA1ismw+aw3whhB8wDnjFVBlCiHFCiNNCiNOpmdoH+FiPn9rN2nL78jlSdE/O4fdus+vPH5k87wcmf/Ytwf7XydbmfobNP3/FzOEdObV3C21MDG3YO7uRFG/gZRPGQ2pKAR5RkxSgN9OY06rXEOZOGMiMIW0Jvn2DLsPG6vMkxsXg4OJe9HpKCG07deXcqRMkxMUBcPvWDX5a9hXf/7GOb1au4caVS2iz8v7Pdu+T6wnNj5u7J7Exud4wYWII9UGikxWkNzc3Z8iLoxnUtQ3tGj7HjWuXGTN5qj5PdHTUEw2X+tTiVBUSAnM9oRprcK4GZ7+AMwukZ9O1TtHLs7CDrGSDBBND5g/y/S5Ir02DO1vkPM9aL+vCY2bnZslMllMCVPJQs0kb7l72I0U33z0i8A571/zMxM++Y/yc5YTcztufb/t1CR+/2Jkz+7bSqtcwo/LsnV3z9OfCVH/8IN/vAvRmGnOa9xjMgsmD+XB4B0Lu3KDjkNyf16S4GOx1D6QqzzYPy9jMmbdZGzmMfhzp2TQ1X9OQTzAxd/NfsFhRlGrAEOA3IYT1vylEkZxUFOUzYCgwwOB0jtHaSVGUSwXov1MUpZGiKI1sLDT/pgmPjYZtu+mH0HM4tn0d8yYOYvG0kaQkxhMRbDyH6/SerdRrZTz7ITMjDXNLS/1xXFRYHs+oo5sn8VERRrrE2GjsnV0B2cElxsUUqvetLIfhokIDATh7YDsVn6unz2dhaUlGRvp9P39Jo1uffkbD4ev+XMngbu0YNbAn8XGxBNzJ9XRpNBo6duvJ9s3r8xcFyCFsK6vcqCrhoSF4euV6Rj08vYkMCzPSRUdF4OouPSKu7h7E6KZAFKSvXlNOiQgMuAvAjs0bqNeosT6flZUV6WkPMLRcUnCtDdEGAzAOFaXhlpUCSjZEXwW7MkUvLzsThMF60vSEvB5HS/vcYXlDMpPlvEuQr5nJ99fH3oBL38OlH+QQf6rBEL+ZuWyLSh7qt+mqH0LP4cSO9SycPISv3xxNcmICkSH3jHRn922jTsuORumZGelY5OnPw3F0M+iPXT2IjzHRn8fF5OnPk+JjCtX7VKoGQHSojMHud3An5WvU0+ezsLQkU+3PiwUP07PZE4hRFEWrKEoM4Ig0OAtcta0oyk7k/Mq6D6MRiqKsA04DIx9UK4Tw1g3D51APuM+M+WcT69K2VKnzPBeO5l0tbKsbwnZy96Juy46c3iuN0ZyFQgC1m7cjPNB4KmtEUAAuHrnGwsWj+2jYtjvmFha4ePrg7lOWu9eNZx9cPLaPJp37AtCkc18uHN1XqD4+KhzPcpWwdZDTcqs3bE7YvdxhXnff8oTeuflvLkuxxdbOjkZNW7BvR94fI2cX+aPg6e1Dh249+cfAGG3aqi23/W8SHmp6ZXLAbX+8fXP/L/bt2k63Pv2xsLTEp0xZylaoyEW/M0a6/bu202fQUAD6DBrKvp3/FKoPDwulUpVqODm7ANCsVTtu38wNDVquYiVuXb/2by5L8UVjBfblIMbgumTEg62vbs4m0vhMjSp6mWnRuqFtHbHX5AIfoZHp1s6QFGysi70ObvXke7d6uW0qTG+uG2rXWIPn8xBxNrc8axe5kl5Fj3UpWyrVacSlY/vypOcMYTu6eVKnRQfO7pf9ec5CIYBaTdsSYaI/jwwKwNnDW398+fh+6rfpisbCAmcPH9y8y3HvurHP5dLx/TzfsTcAz3fsrW9TQfr4qAg8y1WktK4/r9agKeGBuf25m085wu7e+lfXReXp4mHFRr+IXIX+e740W0VRooQQtoVoPwGKurfBKiFEjhsjSlEU40cy+Bj4XQjxve54vhDCcG5ojltklBCir0F6C2CBEMIbSENupTShiO16Khg9Yz5V6j6PrYMjc/7Yw9Zfl3Js+zpa9hwMwOEtqwGop5v4nZHPIzT2wy8obe+INiuL1Uvm6Lcg6jNmGh6+5VGUbGLCQ/nji4+M6s5ISyUqJBA377JEhtwjNMCfswe2M/PHTWRrtfz11RyUbDkcNnzaRxzespp7Ny6z888feGXmIpp37U9sRCg/zJ4GUKA+PjqSbSuWMXXRr2i1WcSEh7Ji/gx9OyrWrM+23wrYFqaY8fnX3/N8sxY4Oruw+9Qlli2cK72VL4wCYPXKXwDo0LUnRw/sIzU1JY9+8Xe/4ujkTFZWJp+895Z+CyKAbr378c8G0wuDAFJTUwgMuEOZ8hUIvHsH/xvX2LF5A5v2HiNLm8UnM98iW3e/P5r/JatX/MzlC3788PUXLPzmJ/oPfYHQ4CCmTRgNUKA+MjyM5Ys/59e/t5KVlUlIUCDvTX1V3476jZqwfNHnD+NyPv1UGQj25cG8FDSYBkH7pSHm0UieDz8tX51rQJx/Xg9gUjBEX4E646VnMznMIH91KN9dzqesPgJSwuQKcUOyMyE9VhqFaTGQGgnRl6HeZFnena3oh9Er9pZlJ4dA8CGoOlhuuZQRL7c+gsL1FbpBKd18wKADeRcv2ZWRn7sE8OI783Tz6B35cMUutq9cxokd62neXe5AcXTbGgBqt2jP9TNHyUjP25+Pfn8Rpewc0Gqz+Hvpp/otiHq+/Abuuv48NjyUNUtmG9WdkZ5KVEgQrl5liAoNJCzAH7+DO3nn2w1kZ2tZu/RTfX8+5I1ZHN26msCbV9jz14+MnLGAJl36ERsRxq+f/A+gQH1CTCQ7Vn7DlPk/o9VmERseyu8Lc3+uK9Ssz45V3zz8i6vy2BEPMu9Cpei429sogxpXfNLNeKzUbdGBMlVrsuXnr55I/b6Vq9NhwEh+nffuY6/7wLXQx17nk6ZD1x48V7suS+Z/+kTqr16zNiPHTeLd1wvfHuZRcGnNlMde5xPHuTqU9oZA4/1THwulPOX2S7dMzyN+lEz9yPR0kuJM7ebt8a3yHP/8arwg9HHgU6k6bfu/yKr5D2Om3YPxxY6LZxRFafTYKy7GPCzPpooK54/sobS94xOr39beic2/LHli9Zc09mzfiqOT8xOr38nZ5YkZuiWSmGvSq/qksCj15AzdEsjFo3sp9QT789L2jmz7zXilvMqzierZfESURM9mSaYkejZLMiXSs1mCKYmezZKM6tl8+Kix0VVUVFRUVFRUVB4Z6jD6IyJTm01IbMr9M6oUC9rV8L5/JpXig6ltIlWKLWfuGscOV1FRKTqqZ1NFRUVFRUVFReWRoRqbKioqKioqKioqjwzV2FRRUVFRUVFRUXlkqHM2ixGTP5hHo1btiY+J5vUhXU3mKW1nz+QPP8fTtxyZ6el8/fFb3POXEVlK2drx6vvzKFu5KigKX3/0FtcvnmPIuNfp1G8oCbEy9NjKpfM5e2S/UdlOrm5MmvkZn7wxBoD+oyfSsc9gsrXZ/LDgI/yOHTTS2No78L/Pvsbd24eIkGAWvPMqyYkJBeqtS5Xm0x9W6/UuHp4c2LaBnxbOptvgl0hPTWHv5rX/6To+Kwz/32xqNWlNYlwMn43rZzKPja09I/43G1fvMmRlpLNq4fuE6iJy2JS2Y9i0j/AuXxkFWLXgfe5ePa/Xth84in7jp/POgJYkJ8QZlW3v7MqwqR/x7ftyk/VOQ8fQrGt/uWnzss+4dvqokaaUnT2j31uIs6c3MWEh/DTnf/rgAab0VjaleGPxb3q9o6sHp/ZsYd3yebTuM4z0tFRO7NjwL6/gM0bFPjLmeWYyXCggcIHGGir1BSsnULLAfyOk6iLu1H8DtBlyE3UlGy59l1fr1RzKdYHT82RYy/xY2MoN26/rYnd4twL3+qAocHcbxPsbazQ2Ms65laMMl3lztYx/XpjepRb4tJbpmYlyX82sFPBoDNkZEOn3QJftWeXtTxbRvG0nYqOjGNW7nck8tvYOvPPJYnzKliMjPZ25703lzs3r8pydPW/NWUiFKtVBUZj73lQu+51h9OT/0XPQCOJi5Gb53y/+jOMHjbeUcnFz583ZC3hnwksAjBg3hR4DhpGdreXLT97n1OH9Rho7B0dmLfoGL58yhAYH8uHU8SQlxBeotyldmq9XbtDr3Ty92bXpb5Z89gH9R4wmNTWFf9b99V8uo8pTwn09m0KIxUKINwyOdwghfjA4XiiEmCaEuKQ7biuEUIQQvQzybNGlrxdC+Akhbgkh4nXv/YQQzYUQ+4UQ1w3S1uq0s4QQwbq0K0KIYQ/SLt37mkKIvUKIG0KIm0KI94UQwiBvXyHEBSHENSHERcPIQkKIX4QQd4QQ53X634QQuXEZnyL2bv6bj6eMKjTPwJdf5c71K0wd2o0vP5zGK9M/0J8b8+aHnDt2gCkDOjJ1aHcC7+SGCdv8+09MG96DacN7mDQ0AXqPGMOu9bJj8K1QmZade/HaoC58PGUk49/5GDMz43+3/qMmcvHUEV7t156Lp47Qf9TEQvVpKcn6dkwb3oPI0GCO790BwJ5Nq+kxtPDPX5w4sXMDy2YUHuSq87CxBPtfY+74/qz4fAYDJr2jPzdg0jtcPX2EOa/0Zu74/oQbhP10dPOkesNmxISbDlcJ0G7ASI5uk4a9Z9mKNGzbjU/H9mH5jAkMnvI+wsT97jRkDDfOHWf2qB7cOHecTkNfKVSfnprCvAkD9X8x4SGcP7wbgGPb19Om74iiX7BnnUg/uLqy8Dw+rWV0oIvL4dZ6KN8t7/krv8DFb4wNTUt7cKgkDcKC8GoOEboQpDZu0ig8vxSurYAKPTG5asqnJSTchvNfyVefVvfRm8k2X/lFfoaUcPDUBX2LPAeeTQv//MWI7etX8+bY4YXmeXH8a9y6donRfTrwyduv8dqM3GhAr703mxOH9vFi91aM7tuBAP/cML5rfv2OV/p14pV+nUwamgCDR41ny+pVAJSrVJUO3fswsmdb3hwznGkffGayPx8xdjJnjx9meNcWnD1+mBfGTi5Un5qcrG/HK/06ER4SxMFdMqzm1r//ZMALrzzYRVN5ainKMPpRoDmAEMIMGZaypsH55sjY6IYEAUbb/iuK0k9RlHrAGOCQoij1dH85LpARBmkDDaSLdbo+wLdCCIuitksIYQNsAuYqilIVGYe9OTBJp60LLAD6KIpSHeiNDFtZx6CsNxVFqQtUA84B+4QQloVdtCfBlXMnSYyPKzSPb8XKXDwlL3fw3du4e/vi4OyKTWlbnqvfmN0bpLGYlZVJii68WVFp2r4rZ48eAKBx204c3rmZrMwMIkKCCA0MoErNukaaxm06sW+LDIu4b8vfNGnbuch6rzLlcXBy4cq5kwBkpKURERpksp7iiP/FM6Qkxheax6tcJa6fOw5AeOAdnD18sHN0wbpUaSrXbsixf+S112ZlkZqce7/7T3iLjd8vorB9eOu16sjV04cBGW3kzP5/yMrMJDosmKiQe5SrVttIU7t5O07sktFpT+zaSJ3m7Yusd/Mpi52jC/4XpcGTmZ5GTFgI5arVKvQaFBsSA0CbWngeGzdp1AGkRUmPokXp+5ddrivc24k+ZKQpnGtAnO4B1Kk6RF8CRSsN1LQYsDXxDO5UPdcTGeknjwvTCwCRG8NdYwUZuv/L7EyZt/RT+az/0Dl/+jgJ8bGF5ilfqSpnjsnv4L07t/D0KYOTiyulSttSt1FTtq6VXuiszEySdCNGRaVN5x6cOCRjm7fs0IU92zaSmZlBaHAgwffuUqNOfSNNyw5d2L5Bjjxt37Calh27FlnvW64CTs4unD8t+6v0tFTCgoOoUbveA7Vb5emkKMbmEXRGHdKYuwQkCiGchBBWQA0g/zfiPBAvhOj00FoKKIpyE0gBnIrYrnPAcOCIoig7dWWkAJOBHBfPdOBTRVHu6M7fAT4D3jRRv6IoymIgDOiW//yzwN0bV2nargsAVWrWxc3TBxd3Tzx8ypAQG8OUWfNZuGoLk96fi5W1jV7XffBLLP7zHyZ/MI/SdvZG5bp7+5KcGE9WZgYALm6eRIflbnQeHR6Ks7unkc7RxZXYKLmtSGxUJA7OLkXWt+rai8O7tuZJ879ykRr1n3+ga1KcCb59nbotOwJQrlotnD28cHTzwMXLl6T4WF54cw5vLV/DsGkfYam737WatSU+OoLg29cLLNfF04eUxASyMmX8bUdXd2Ijw/Tn4yLDcXR1N9LZObmQEBMFQEJMFHaOzkXWN2zXnbMHtudJu3fzMpVqNyzy9Sj2pIRJoxCkUWblIL2WIO3IGi9CrfHgbnDNnKpJgy4lvOByrRwhK00ahwCWdjLWeQ4ZCbn1GGJRGjKT5PvMpFzDtyC9kg13tkCdSdBgujSeI87m5ksKAftyRbkSJYJb16/QunN3AGrUroeHty9unt54lylHXEw07372BT+s28lbsxdgbZPbn/cb8TI/b9zD258swtbewahcL58yJCbEk6nrz908PIkIzR3liAwLwdXDuD93cnEjOlJO24iOjMDJ2bXI+g49+rL3n0150q5fOk+dRk0e6JqoPJ3c19hUFCUEyBJClEUad8eAE0AzoBFwAcgwIZ0DzHzA9qwyGEafn/+kEKIBcFNRlIiitEtRlAykIXom32fyB2yFEPamzgOnyeslzc9ZoLqJ9o0TQpwWQpxOz9IW8SM/Xtb98g2l7R1Y9PtWug8Zye3rl8nWatFozKlYvSbb167ifyN6kp6aQv/Rckh7+9pVTOzThmnDuhMbFcnoqcaxap1c3YnXzekEMJiloOdBolUVRd+ycy8Obc/bOcXHRuPs5lHkeoo7u/78gVJ29rz9zVpa9x1B0K1rZGu1mGnM8a1Sg0Ob/+LziYPISEul05BXsLCypsuwcWz9pfB4yPbObiQZel3+4/0uir5B226c2bctT1pSbDQOLm5Fr6e4E3JYzpOsPQE8m8ghdSVbnrv8I1z8Fq6tlPMf7cpJD6JPawi6TxhICzvISjZIMLXR6INEoytAL8zA43k51H92gTSAc4beQbbBwu4B6inerPpuCXb2Dvy4fhf9X3iFm1cvoc3KQmNuTpXnarPhj18Z078zaampjBgro15t+ONXhnVqyst9OxIdGcGrb39oVK6Lu4d+TieAMHW/HuTrXQR9h+592b11Q5602JgoXE04KVSePYq6QCjHi9gcWAT46N7HI4ezjVAU5ZAQAiFEK1PnC2CEoiinTaRPFUKMBSoChitfitIuQcFfC6WA84Vpcs4bF6Yo3wHfATiVtnoq44CmJifx9Udv6Y+/3XyI8JBArKytiY4I4+YlPwCO7v6H/qPlfMB4nScKYOf6P5j5xY9G5Wakp2FpaaU/jooIxcXTS3/s4uFFbKSx5yQuOgonVzdioyJxcnUjXtfB3U9fvkoNNBpzbl+7lKc8C0srMtLSinQtSgJpKcmsWvC+/njWih1EhwVhYWVNXGQ4AdcuAuB3cCedho7B1asMLp4+vPOtHF53dPPgreVrWDB5KImxuT8+melpWBjc77jIcJzccn8UHN08iI823gg7MTYae2dXEmKisHd2JTEupkh6n4rV0Gg0BN68kqc8c0srMtLT/9W1KZZo0+H2htzj+m/kzsPM1A1HZyVD7FU5bJ2VKr2WdeSDJZb2UHs8XPo+1yMJcgjbzODnIiMBLA08Ypb2ucPdhmQmy4VFmUm61+TC9aV0/wPpugeZ6Mvg3TI3nzCXbVEBICU5ibkzpuqP/9pzktCge1jb2BAZHsrVC+cA2L9jCyN08ydjo3P78y1rVjJ3+QqjctPT0rC0yv1+R4SH4u6VG7jCzdObqIgwI11sdCQubu5ER0bg4uZOrO634376StWeQ2Ou4cblC3nKs7SyIl3tz4sFRd36KGd+ZG3kcPVxpAfR1HxNQz7BxNzNf8FiRVGqAUOA34QQ1g/QrstIT6ceIURFIElRlERT54EGwBUKpj5w9V9/midIKVs7zM3lfKhO/YZy+exJUpOTiIuOIio8FO9yMp57ncbNCbot52c5ueZ6jpq260KAbvW6ISEBd3D39tUfnzqwm5ade2FuYYm7ty9eZcpz8/J5I92pg7tp13MAAO16DuDkgV1F0rfq2otDOzYZleddtgL3/Ase/i1p2JS2Q2MujYTm3Qbgf/EMaSnJJMZGExcZhrtveQCq1m9KaIA/oXdvMmNwG2a92IVZL3YhLjKczycOymNoAkQEB+DskfvjcfHYPhq27Ya5hQUunj64+ZQl4PpFo/ZcPLafJp36ANCkUx8uHt1XJH3Ddt04s+8fo/LcfcvpV9erIFejC418794QEgKkAWpmAWa6aeZmFnIxUEqEXKl+Zj6c+0L+ZSRI76ehoQmQFi2N0hxir8kFPkIj062dISnYuD2x18GtnnzvVk/qCtNnJMqhc/NSMp9DJUjNNY6wccldXa+CrZ095hayP+85aATnTx0nJTmJmKhIIkJDKFOhEgANm7Xkrq7fdnHLnZ7SqmN37ty8ZlRu4F1/PH3K6I+P7N1Bh+59sLCwxMunDL7lKugNWUOO7N1J176DAejadzCH9+wokr5jD2OvJkCZ8hW5baJ9Ks8eD+LZ/B9wW1EULRAjhHBEDjWPBWxNiRRF2SmEmA08lFh+iqKsE0KMBEYC3xahXQCrgBlCiI6KouzWLRj6Cvhcd34BsEYIsVdRlLtCiPLADMBwgRIAuhXsUwAvYHv+80+aaZ98Sc1GTbF3dOL7bUf589sv2LNxNV0GyBWNO/7+nTIVKvPaxwvJzs4m6PZNvv74bb3++88/ZOqcxZhbWBIefI8ls+S01Zdee5cK1WqgKBAREsQ3n84wqjs9LZWwoAA8fcsRFhRA4O2bHN21lSVrd6LN0vL9vA/IzpbDeZPen8uOtavwv3qRdb8sZ/rcr+nQZzBRYSHMf1tuo1OYHqB5xx7MeX20UTuq12vIX99/+fAu6lPMqBmfU7nO89g6OPLx77vZ9tsyjm9fR4uesrM/smU1HmUr8uLbn6JotYTdu82qhbm7D6xZ+ikj352HxtyC6NBAVhp4QO9HRloqUaGBuHqXISokkLAAf84e3MGMHzaRrc1izZJPUHT3a9i0jzi8ZTWBNy6z688fePn9hTTt1p/YiFB+mj0NoFA9QP02XfjmvUlG7ahYsz7/rFj+r67fM0flgWBfXhpi9adB0H6IPAvuumfliNNg4wqV+gPZkBoptz4C6VWsOlS+F2YQdRHiH8BIz86EtFiwcob0GFl29GWoO1kO09/din4wqGJvCD8NySEQcgiqDAa3BnKO5g3dtmUF6TMT5eeq+TJka6XGf31uO+zKyPMlgA8WLqP+881xcHJm7f4z/LxkAVv//oPeQ+RWRJv++o1ylarw3tyv0GZnE3DrBnNnTtPrv5zzHu/PX4qFhQUhgff4bMYbAEyY/j5VatREURTCggNZ8OFbRnWnpaYScu8uPmXLE3zvLndv3WDfP5v5besBtNosFn88Q98fvzV7ARv/WsH1S+dZ9f3XfLT4W3oMGEZ4aDAfvDEOoFA9QLtuvXlr3AtG7ahdvzG/fL3ooV1TlSeHKMq8KiGEBrkI6CtFUWbq0n4BmimKUk1noG1RFKWWEKItMF1RlJ66fL2BjUA7RVH269Ly5NGl7UcacTnLLaMURekohJiF9EIu0OVrCPyOXAAkCmuXQdm1gSW68jXACuBjRffhhRD9gY8ACyAT+FBRlHUG5bUBEoBSSO/pu4qiBBV2zZxKWyltq5eseNlN2nWmUvXa/L584ROpv0K15+g9YgxffjDt/pkfMr7ORVjxW8yo06IDZao8x9ZfljyR+n0rVafdwJGsmPfuY697yewBj73OJ45TdSjtff/5nY+KUp5y+yX/dY+96tajvrt/pmJGq47dqFazDj98Oe+J1F+lRi0GjxrPJ29Peex1H7oedkZRlPwjnir/gSJ5NnVeQ/t8aaMM3t8Faune7wf2G5zbRL45jvnz6NLaFlD3rHzHZ5BbEOVQYLsM0i4CJsvXnV8HmOzBTJWnYpoT+3Zi5+D0xOq3d3R+YoZuSeTCkT2Utnd8YvWXdnB6YoZuiST2Wu7w9pPAotSTM3RLIId2/4O945Przx2cnPnxqydj6Ko8fIrk2VR5cEqiZ7MkUxI9myWZEunZLMGURM9mSUb1bD581NjoKioqKioqKioqjww1NvojQgCW5qotX1JYMr79k26CyuMkqPDILirFC7+A6PtnUlFRKRDVGlJRUVFRUVFRUXlkqMamioqKioqKiorKI0M1NlVUVFRUVFRUVB4ZqrGpoqKioqKioqLyyHggY1MIsVgI8YbB8Q4hxA8GxwuFENOEEJd0x22FEIoQopdBni269PVCCD8hxC0hRLzuvZ8QorkQYr8Q4rpB2lqddpYQIliXdkUIMcyg3F9056x0x65CiLsG52sKIfYKIW4IIW4KId7XRQRCCDFKCJEthKhjkP+SbrN6hBB3hRAXDdrz1YNct8fFhJlz+e6fkyz43TisXw7e5Soy+4c1rDx0hZ4jxuQ5V8rWjqmffc2iv3ay6M8dVKlVP8/5niPG8NcJ/wL30nR0ceOthd/rj/uOnMCXa/eyePUu6jZpZVJT2t6B9776lS/W7uG9r36ltJ39ffXNO/di/qptfL5yK+9+8bO+PV0GvkjbniVoS5qGw6HnJ9DpnYLz2LlDu6nQbxFUzbeIqduHUtvxLWg/PTfdwVtqOr0DzceBuTUmsbaHFuNyj6t1gq7vQ5f3wKO6aY1FKWg1CbrMlK8WNvfXl2mga+fb0HIiWOq2marUCso1KfizFzdKyv32rS/vdad3oXbv3PQSdr+XfvMd/gFBHD9tHBYyhypVq7F7/0Ei4xKZ8sbUPOccHBz47fc/Oe13kVPnLtC4ibx2P69YxeHjpzh8/BQXr93g8PFTJsv28PRk9d+50ZumTX8Lv0tXOHP+Eh06djKpcXJyYsOWbZy7eJkNW7bh6Oh4X/3AwUM4duosR0+eYd3GzTi7uAAwbsJERrz4UuEXSeWZ4UE9mzmxyBFCmAGuyNCQOZiKlR6EifjoiqL0UxSlHjAGOKQoSj3d31FdlhEGaYahIxfrdH2Ab4UQFgbntMDL+evShajcBMxVFKUqUFfXVsP4dybbaUA7g/a8Vki+J8aBLX/z2RvGIRwNSUqI55eFH7N51Y9G50ZN+4Dzxw4ybUhn3nyhJ8EGMadd3L2o07gFkaEm4h/r6DH8FfZu/AsAnwqVad6pJ/8b1pVPXx/Ny299hDAz/nfr+9IELp0+yhsDO3Dp9FH6vDShUL2ZRsOoqe/z8aQRvPVCD+7dukaXQS8CsG/zGroOHnn/C1VcCDgBh+8TqjEjBfz+hht7TJ8/sAR2fw57F+SmNRwGFzfDrrkQcgGqFbDSvko7uH1MvrfzlEbhzs/g0HKoP5h8sRwk1TtCxA3YMUe+Vu9UuF6YQd0BunbOg/hgqNxaau4eh8ptCv/8xYmScL8tS0GdPnBwKez6DKzswL2q1JSw+71qxW/079Oz0DyxsTG89b+pfPXFYqNz8xYsYvfOHTSqV5vmjRty/ZqMMT76xRG0bPo8LZs+z6YN69m8cYPJsie/9jq//PwTANWq12DAoME0blCP/r17sujLrzAz0Z9Pnf4WB/bvo37tmhzYv4+p098qVK/RaJg3fyE9unaieeOGXLp0ifET5M/yil9/YcKkyUW+XipPNw9qbB5BZ2wijcxLQKIQwknnUayBDB9pyHkgXghh+lHoX6Ioyk0gBTB0s30BTBVC5N/SaThwRFGUnTptCjAZMHQRbAFqCiGq8Yxy1e8USQlxheZJiI3G/+pFtFmZedJtSttSo/7z7N0kYxdrszJJSUrUn39p6nus+noehQUBaNKuC37HDgLwfOuOHN21hazMDCJDgwgPCqDyc3WNNI1ad+TAVhm86cDWdTzfplOheoFACLCysdG3OzYqAoCM9DQiQ4Op9Fwdo3qKJVH+0rgojPQkiL0n408XFTsPiNI9aIRfA596pvP51IXwq/K9d20IPAvZWZASA0mR4FzOWONdGwJOyvcBJ+Xx/fRCgLmlfG9uDanx8r02E1Kiwals0T/bs0xJuN+lXSExEjKSZL6IG7JeKHH3++iRw8TGFL7FVlRkJGfPnCErM29/bmdnR/OWLfntl58ByMzMJD4+3kjfb8BA1q7+y2TZvfv2Y/fOHQD06NmLv9esJiMjg4CAu9z296fR888baXr07MXvK1cA8PvKFfTs1btQvRACIQSlS5fWtzs0NASA1NRU7t0LoGEjdW/14sADGZuKooQAWUKIskij8xhwAmgGNAIuABkmpHOAmQ/YtlUGw9bz858UQjQAbiqKEmGQfA84DLyYL3tN4Ey+z+IP2AohcsZts4HPgRkFtGefQXummsoghBgnhDgthDidnvUAnf1TgLt3GRJiY5j4/ufM/W0T42d8ipW1NOgatupATGQ4ATevFah38/IlOTGBrEx5+53cPIgKD9Wfj44Iw9ndw0jn4OxKXHQkAHHRkdg7uRSq12qz+OHzD5j/+za+2XoM3wqV9QYywO2rF6lRz7gTVCmAVpOgw5tQoXluWkIoeOmMAt/6YONorCvlDJmp0lgAsHGAVIMfxtQ40zorO0hLkO/TEuRxYXolG86ulkOqPWaDvSfcOZabLzYQXCs90Ecu0Tzt9zspUhq/pZylV9u7NtgY+BPU+10kyleoSHRUFMu/+4FDx06yZNk3lCqVN9Ro8xYtiQiPwN//lpG+XLnyxMXGkZEh+3NvH2+Cg4L054ODg/Hy9jHSubm7Ex4WBkB4WBiubm6F6rOyspj6+hSOnTrLjdsBVK9RQ28gA5w7c4ZmLVr+hyuh8rTwbxYI5Xg3c4zNYwbHR00JFEU5BCCEMD1xzzSGw+hvGqRPFUJcRxq5s0zoPgXeJO9nE0BBLjnD9N+BpkKICibyGQ6jG49ZAIqifKcoSiNFURpZPWMbums05lSoVpNd61bxzku9SUtLpc/ICVhaWdNv1CRWf2vyI+txcnUnITZGf6ybDpuHBwmNWpBeozGnU/8RvPNibyb0aEbArWv0GzlRnyc+NhonV/ci11Oi2bcY9syXQ7OVWuX+iJ9eBZVbSaPE3AqytcZaGwfpRdNjYgi1wK+cKQrQCzOo1EIO/W59H+JDcodiAdITZVtU7s+zcL8zU+Hcamg6Ctq+Lr2eikF71PtdJMzNNdStV58fv/+WVs0ak5KSzDTdkHYOAwcPYe0a015NDy9PoqMi9cfCxP16oP68AL25uTmvjB1Hq6aNqVqxHJcvXeR/b76tzxMZGYGXl1eR61F5evk3FlHOvM3ayGH040jPpqn5moZ8QuFzIovKYkVRqgFDgN+EEHlmsyuKcgvwAwYbJF9Gel71CCEqAkmKoiQaaLOAhcDblDCiI0KJjgjj1uXzAJzY+w8VqtXEw7cs7t5l+HzlVpasP4CLuydzf9uEg7NrHn1GehoWlpb645iIMFw9cjsJF3dPYiMjyE98TBSOLvLp19HFjYTY6EL15avWACA8+B4Ax3dvo2qdBvp8lpZWZKSn/6drUWLI8TilJ8m5ejnDoIkRcGiZNEwCz0BylLFWmwkag9kqqXF5PVA2jrnD3YakJ8qFJiBf0xML1zv6yuOcNgSdAxeDZ0EzC9kWlfvzLNxvgNBLsHeRNI4TI6S3Mwf1fheJ4OBggoODOH1KLv7ZsH4ddevV05/XaDT07tOXdWvXmNSnpaZhZZ370xocHIyPr6/+2MfHhzDdcLchkREReHh6AnKBUVRkZKH6OnXlFIk7d24DsG7tWpo0barPZ21tTVpq2gN9dpWnk3/r2ewJxCiKolUUJQZwRBqcxwoS6eZLOiEX5/xnFEVZB5wGTK0I+QQwWG7JKqClEKIj6BcMfYUcNs/PL0BHwO1htPNZIT4miuiIULzKyh/yWo2aE3TnFoH+NxjXrTFT+rVhSr82REeE8c5LvYmPyfuDFHrvDm5euZ3J6YN7aN6pJ+YWlrh5+eJZpjy3rpw3qvf0oT206dEfgDY9+nP64O5C9TGR4fhWqIydozMAtZu0JPhO7jCQV9kKBN6+8XAvTnFEYym9WDnvPapDvG7agpWtLpOAGl3gtolnyMQIOdSZQ+hFueDDzFym27pBTICxLuQSlGss35drDCEXC9enxsnFJJa6NnlUg8Tw3PLs3HLbrVIwz8r9NmyPhQ1Uapl32oR6v4tERHg4wUFBVK4iF1e1bduea9eu6s+3a9+BGzeuExJsesHnrZs3KFsudw7utq1bGDBoMJaWlpQrV56KlSvrDVlDtm3dzPAX5Cy24S+8yNYtmwvVh4SEUL16DVxcpfOifYeOXL+eO12rcpUqXLly+T9eDZWngX8TG/0ichX67/nSbBVFiRJC2JqWAdII3FjEelYJIVJ176MUReloIs/HwO9CiO8NExVFuSyEOAs00B2nCiH6AEuEEEsBDbAC+Dp/gYqiZOi2Nvoy36l9Qoic8ZwLiqI8dXsyvDb7C55r0AQ7RyeWbT7Mmu++ZN/mNXTsJ3eI2r3+DxycXfns1w3YlLZFyVboPnQU/xvaldTkJH5e8BFTPl6MubkFESGBLJ/91n1qzCU9LZXw4Ht4+JYjPCiAoDs3ObZ7Gwv/3E62VstP82ehZMt5rONnfMqudX9w+9pFNv76DW98uoR2vQcTFRbC4hly9WFB+tioCNb+8BUfffMHWVlZRIUFs+zj3HZWq9OAtT88lTtTPXwajwS3yvLHufvHcGWbXLFbsYU8f/uInCPX4U2wsJbzHyu3hZ2fglVpaKbb+kqYSY9WzuKPMg3lMCtA8HlZZn60GdIDVtpVviaESa9j5xly2NNvDfph1YbD4PZhOd/u+i5oOhrKN5Vz9o7p5mcVpE9LgKvboe1rcng3JRZOr8xth0tFuLL9IV/Yp5SScL9B7j7gqJsPeGV7Xs9mCbrfP/26gpatWuPi6srVW7f5dPbHrPj1F14eM1ae/+F73D08OHDkGHZ29mRnZzNp8hQa169LYmIib06byg8//4qlpSV3795h0rjcre4GDBpc4MIggJSUFO7cvk3FipW4fdufa1evsP7vtZw6d56sLC3T33idbF1/vmTZN/z0w3ecO3uWxQvm88vK33lp5CgCAwMZOUL+9hSkDwsNZe6nc9i+ay+ZmZkE3rvHxHGv6NvRpGlzPvtkzqO4vCqPGfEg8y5Uio5zaSulUy3f+2csRjzfpjMVq9fir28XPZH6y1d9jh7DX2bprOn3z/yQ+evNHo+9zieOdx1wKgOXtz6Z+h195XY8p1Y8mfpLGiX4ftu/+M1jr/NJ07N3H+rXb8Dsjz58IvXXqVuPya+9zrhXCt/O71GQmJZ5RlEUdRn8Q+TfeDZVVExy6sBO7Bwcn1j9do5O913IpPIQCbmQu8H6k8Cy9JMzfEoi6v0uUWzZtBFnZ+f7Z3xEuLi4MOejWU+sfpWHi+rZfESURM9mSaZEejZVVEoIJdGzWZJRPZsPH9Wz+Yhws7dhUoea98+oUjywKyDEn0qxZO0WvyfdBJXHSGpm1pNugorKM82ztRmkioqKioqKiorKM4VqbKqoqKioqKioqDwyVGNTRUVFRUVFRUXlkaEamyoqKioqKioqKo+MYrNASAihAIsURfmf7ng6cqP5WUKIWcBYwGB3YNoC+4DRiqL4CSHMgXhgvKIoK3VlnAHGKopyVgjRDZgNlEYG9t2iKMrj39DxAdBYlaLG4GlYObohzDQEHlpP+Nk9RvnqjfsMjaUNABa2DiQG3eTyyk+xcfOh+oDXsfWuxJ2dKwg6vAEAG1cfnhuaG67e2tmTu7t/J/joJqOyfZr3Jis1kfBz+zC3seW5oW9h5eROemwEV/6YR1ZaspHGqUoDKvccgzDTEHpqJ4EH/wagYtdRuNRoTHZWFmkxoVz7+yu0acmU9iiHb8u+XP87/z78JQBza6g9VIb7E2Zw5yCEnDbO13giaHQRZCxtIf4e+P2We97eF5pOhvOrIPwiWDvIci1tAQUCT8C9AqLRlmsJmSkQclZGfakzAmycITVGlpeVaqxxrQrV+4AQEHQS7uyX6R61oXInKO0Ox7+GhCCZLjRQs79sJwpc3QSxMsQdjcaC30rT9RRjzK1L0fildyjlLL/fN/asJeDETqN8bd9YiLlVKQCs7ByJCbjOse9nYedRhkYj/oejb2Uub/mFG3vXAmBmbkHbNxZiZm6BMNMQ7HeIK9tM721ZuW0/MlISuXdyNxal7Gg6+j1KOXuQEhPO8Z/mkJmaZKTxqNGIegMmIszMuHNsO9d3yc3Fa/cZi1ftpmRnZZIcFcrpVQvITE3G3qs8VTsM5PTKBQ/r0j0z2Nvb8+tvKyhbpiwac3MWL1rIr7/+YjLvx7PnMGDAQLRaLd99+w1ff70EgNZt2rBo4WLMLSyIjo6iQ/t2AEyZ8hovvzIGIQQ//fgDX31luv987bXXiYmJYeXKFTg5OfH7H39Srlx5AgLuMmzoEOLi4ow0nbt0YdGiL9BoNPz004/M/3weAHPnfU6PHj3JzMjA/7Y/Y155mfj4eJydnflr9RoaNXqe3379lddfn6Iva/uOnQwdMthkPSrPDsXJs5kO9BdCuBZwfrGiKPUM/uLIjfMOMozm9ZxjIURpoCJwXghRCxlt6AVFUWoAtYDbj+6jPBx8mvYgOSKQM0te5/wPM6jU/WWExvj5wu+7dznz9Ruc+foNEu5dJ+qyDA+XlZLErc3fEXhofZ78qVHB+vxnlk4jOzOdqCsmIpWameHZsCPh5w8AULbNQGL9z3Nq0QRi/c9Tps1AY40wo0rv8Vz85SNOffEq7nVbU8q9DACxt/w49eVkzix5jZSoEMrq9MnhAVg5uGDlUNCtL8aUaQbJ4XD0Czj5LVTvKQ2z/JxcDse+kH/xARBxyeCkgKrdIcogzGd2NlzbAkcWwvGlULa5NADzI8zA53kI9ZPHFdpBzC04/Ll8rdjWRKMF1OgHZ36EwwvBq15u2UnhcG4FxN7JK/HVhTw8uhhOfw/VespyQBq5ZZsVepmKI5Vb9yYxLIDdcydy4Ks3qdtvnMnv9/4v/sfueRPZPW8i0XeuEHz+MAAZyYn4rV2mNzJzyM7K5MBXb7F77kR2z52IZ43ncS5f3ahcYWZG+aZdCDy9F4DqnYYQceMcO2aPJuLGOap3GmLcaGFG/UGTObz8PXZ8MpYyDdti51kWgIjrZ9n16Vh2z51AUkQQ1TsNBSAh9C42jq7YOJWoCMIATJz0KlevXqVhw/p07NCOz+cvwMLCwijfyJGjKOPrS62aNahTuyZ//fUnAA4ODixZspR+/fpQr25thg4ZDEDNmjV5+ZUxNG/WhIYN6tG9Rw8qV65sVK5Go2HUqNH88YcMGPjW2++wd+9enqtRjb179/LW2+8YaczMzPjqq6/p1bM7dWrXZOiQodSoUQOA3bt3Ua9ubRo0qMfNmzd5+513AUhLS2PWhx/w9ltvGpW3auVKJkyc9C+voMrTQnEyNrOA74CpD6A5Qq6x2Rz4BqinO24MnFUURQu8BXyiKMo1AEVRshRFWfYwGv0oUVDQWEmPpcbShqzUJJRsbYH5NZY2OFaqQ9QVGa4uMzmexOBbhWqcKtUhNSaM9LhI43MV65AU4i8NF8ClRmPCz8kfpvBze3F9romRxt63CqnRoaTFhqNos4i4cAiXGjJf7C0/fVkJgdexcnDR66KvncK9TuvCLkfxJcdjaW4pPYxKduF5nStBuEG84XItpDczw8ALlZEIibq4ydp0SI6Q3s78OFeChODcOt1rQvAZ+T74DLjXMtY4lIGUKOn5VLQQel7qQNaTYvy/hK0HRN/StS1ZejEddPvYRlwBz3oFf+ZiiqJI7yaAuZUNGSmJhX5Xza1scK9aj5ALRwFIT4oj9t4NFK2xRpuRBoCZxhyh0egjSRriXrU+cUG39GFovWs3I+DELgACTuzCu05zI41zuWokRYWQHB2Gos0i8MwBvGvLfOHXzujLir57DRvHXOMy9OJxyjRoe79LUuxQFAU7WzsAbG1tiYmJISvLeBum8RMmMGfObHL2zY6MlN+hYcOGs2HDegIDA/OkV69eg5MnTpCamopWq+XgwYP06dvPqNx27dtz7txZtLr/kV69erPit18BWPHbr/Tu3cdI07hxY/z9b3Hnzh0yMzP5a/Vf9NLl271rl76sE8eP4+sjw5KmpKRw5MgR0tLSjMrbvHkTQ4YMLeolU3lKKU7GJsBSYIQQwsSvIlOFEH66v326NEPPZnPgIJAuhLDTHeeMG9YCzjzCdj8SQo5tpbS7L03f+YVGr33FrS3fy1+oAnCt2ZQ4//No04s+HOlWpzUR5w+aPGdfrgaJIbf0x5a2jmQkxgKQkRiLha2jkcbSwYX0+Cj9cXp8FFb2Lkb5vBp2JObGWf1xYtAtHMo/V+R2FxvuHZWGWNuZ0HyaHF42ZRnk4FFTGm3adHlsZS8NwkAT8bBzsHYCO2+Iu2d8zrF87lA3yGH3jET5PiPRdMQZawdIi889TosHa/uC6wdIDJUGqTADGyc5nJ5j/Galgpk5WJQqvIxihv/Bjdh5lKHHnD/o/O63+P29vNDvt3fdFkRc9yMrLeX+hQszOr69nF6frSbi2lliAq4ZZXGp+Byx927qj63snEhLiAEgLSEGKztHI42NoyupsbkPE6lxkdg4Gn+/yzftQtiVU/rj2Hs3cK1U+/7tLmYsW/o11WtU515gMOf8LjBt2huYCsRSsWIlBg0ewvHjJ9m8ZaveS1mlSlWcHJ3YvWcvJ06c4oUXXgTg8uVLtGzVCmdnZ2xsbOjWrRtlfMsYldu8eQvOns3tZz08PAgLCwMgLCwMd3fj0Q5vbx+CAnP7hOCgIHy8fYzyjRo9mu3b7x/nPi4uDisrqycazUjlv1OsjE1FURKA34DXTJw2HEZvp8t/F7AUQngC1ZHD6KeAJkhj8+iD1C+EGCeEOC2EOB2fkvEfPsnDwalqfZJC7nB87ihOL3mDyr3G6z2dpnAvxHA0hdCY41qjMZGXTM/ls7RzJjM54QFbLUyk5e1cy7YdhJKtJcJvvz4tMzkOS/sS2Bm5VoWEENg/Rw6R1+ib6+k0hWc9CPPLPa7eG25so0ADVWMJ9V6Ea5tzDVRDrOylp/G/cr9AZsGnpFHa9DXZ5rgAvZcbkF5Zq/sYrMUMjxqNiA++zdaZw9g1dyL1B03WezpNUbZhOwLP7CvwfB6UbHbPm8jW94fjVK4a9l7ljbJY27uQnhRvrH1Q8hlP1TsPQ8nWcu907vzy9KQ4bByMjdLiTufOXTh//jxly/jQqGF9vvxyCXZ2dkb5rKysSEtLo2nTxvz4ww98/8OPAJibm9OgYQN69+pJ9+5dmfHeTKpUqcK1a9dYMP9ztm/fydZt/3Dh/AWytMYeUy9PL703tKgIYdyH5zeQ33l3BllZWfz++6oilRkZGYG3t/cDtUPl6aJYGZs6vgBeQS7kKQrHgIFAqCK/EceBFshh9Bx3z2Wg4f0KUhTlO0VRGimK0sihlOWDtvs/4920Ow0nf0HDyV9gaeeMZ4MO+rmUaTFyaLqUm+kQmuY2dtiVqUL0dROLSwrAuWpDEkP8yUyKM3k+OysdM/Pc+UUZSXFY2jkBYGnnZFKXER+VZ+6llYMr6TpvCYBH/fa4VH+eq6sX5tGZmVuSnfnkDfxHTplm0OwN+WdlDz6N5BA4QEq0HJq2NTG3EqTnz6EMRBp4qex9oe5waP2OXJxTo1/ukLYwk4Zm6Ll8czwNyM6UXsUcMpLAUvdjaGln2hBNi887JG/tAOn3eShRsuH6ZmlQn/tVLoxKyfWAY2Yu21KMqdSqFx3fXk7Ht5djbe9M+aad9fMvk3VD03Yext4pAMtSdjiVq0bo5RMPVGdmajKRty7gWcM4cp82Mx2NwfzB9MRYrHUPfNb2zqQnxhlpUuOi8sy9tHF0IzU+9/tdrnEnvGo14eSvc/PozMwt0WaaeNgpZkycOInTp89y+vRZvLy8GDlqFOvXrwPA39+fu3fvUL268fzZoKAg1q+TCyk3bFhP7dp1ZHpwEDt27CAlJYXo6GgOHzpEnTp1Afj5559o3LgR7du1JSY2hls3bxqVm5qairV1bnS08PBwPD09AfD09CQiIsJIExwchG+Z3N8ZH19fQkJD9McvvvgSPXr04KUXXyjydbG2siY1tWQtACxuFDtjU1GUGGA10uAsCkeQ8zxzVrgcA14CwnSLiADmAzOEEFUBhBBmQohpD63RD4mQ49v0C3cyEmNIj4/CsZLsWCxsHSnl6kNqTJhJrVvtFkRfO42SVfQfbPe6rQr1hKZEBGHj4qU/jr56Eo/67QFpNEZfPWmkSQi+iY2rN9ZOHgiNOe51WhF9Vf5AOlVpQJk2/bm0Yo6RYWnj6k1yeECR2/7MEngsd6FPegKkxoFLFXnO0hZKu0mj0xQedSDyKmQbeDAOzYWDur/wi3B1PUTo5nPWHCTnUAYcKrg9SRFQymBhVsQV8NE9l/k0zC3LkIQgqbFxkouZvOpKXWGYWYBGZ9i4VJHGZ7LBD52VHaTGFl7GM47/oc36hT5pCTGkxETgXrU+IFeZ27n7khwValLrW781oZdOkF2E77elrQMWNvJZ3czCEo9q9UkMDzTKlxh2D1vX3OHRkIvHKdekEwDlmnQi5KLxosHYe9exdfOhlIsnQmNOmYZtCNXl86jRiGodB3Pkuw+NDEs7d1/iQ+/et+3POsuXL6NRowY0atSA0NBQAu8F0r59BwDc3d2pWrUat28br03dtGkj7drJvrV1mzbcvCEX+23etJGWLVui0WiwsbHh+caNuXbtKgBubtLoL1OmDH379uPPP/8wKvfatatUMlg4tGXLZl58aSQAL740ks2bjXcgOXXqFJUrV6F8+fJYWFgwZPAQtujyde7ShelvvkW/vn0eyHj08PTk7t27Rc6v8vRRbLY+ysdCYHK+tKlCCMNHqb66YfQjwGJ0xqaiKKFCCA0GQ+iKolwQQrwB/CGEKIUc9Nv66Jr/cAjY+xfVBr5Ow9e+QgjB7R2/kpUi59PVGvkBN9Z9TUai9Cq412nFvQN/59Fb2DrS8NVFaKxKgZKNb4venPriVbTpqZhZWOJUuR431he8TirmxhmqD8q1ye8d+Jvnhr+FZ6NOpMdHcuV3uR2GpZ0zVftP5tKvH0N2Nrc2fUvt0bMQwoywM7tJiZA/dFV6j0dozKkz+mNALhK6uXE5AI4V6xDzAF7ZYsPtPVBrMDSfCgg5JJ6pm5PX4GW4vDbXa+hVF+4UcRjVsbw0FhNDpRcV4OZ2iMo3dy/qmtwiKYc7+6DuCPBpDGmxcH6lTLeyh5oD4exP0lC8uhEajpHe0+BTckU9SK9qjT7ScG4wGhJD5Kp1S1toNEZq0xPg4p+5ddr7yq2cClsYVQy5un0Vz7/wJp3e/RYQXNz4Ixm6aSstJszhzO+L9HMoyzRsyzXdFkM5WNk50eHNr7GwLoWiKFRu24+dn47Fxt6ZRi+8iTAzQwgzgs4dMOkRDbtyiudfelt/fH3XnzR9eSblm3YlNTaCYz/NAaSXs+HwaRz5ZiZKdjZ+a76m1aRPEcKMu8d3kBAmHxLrD3oVM3NLWr8qvZrRd69y7q+vAHCrWpewy8YPp8WdTz6ZzY8//cy5c+dBCGa8+w7R0fJhctPmLYwfN5bQ0FA+nzeX31as5PXX3yApOYnx48cCcO3aNXbs2MHZc+fJzs7m559+5PJl+QC4es1anJ1dyMrM5LXXJpvcWuj/7J13mFPF94ffSbb33oGl9957kd57EQuKgh1F/H2x964gdsECqKggRbpSpfel94VdtvfeN7m/Pyab7G6yWVBhYfe+z5MnuffOZ2Zyk5uce87MnM2bN7F4iWmJtA/ef49ffv2NBx54kKioa8bZ7YGBgXyzcBEjRwxHp9Mxa9aTbNi4Ga1Wy+LFP3D2rLyZXLDgM+zt7dm8WS7RdfDgQR5//FEALl2+gpubG3Z2dowcNYqhQwYZZuK35+DBA8aJRSp3JsLSYGOVf0/jQA9l4QM1dHZ0KZpPfZ4rmxeTl2LZ4/JfILQ2tHn4XcIW/q/sOL5bSO/e5qGtGkOb+6SRWzqsfStpMlJ6RlMvV172P+L39cdvWVu3M10fepVTfywiOym28sL/EI2NLb2f+oidnzxjnK1+q5ny1dYqafd2YMXvK3l+7v+4fPnWXV+lmTfvE9atX8uO7dtvWZvFOuWooijmY0dU/jHVLoyucntx5c+l2Lne3Ik7Dh6+XPlzSZUZmjWei5tkGLuqyI6/pYamiolTa7/DwcJqEf8lTp6+nF77XZUZmjWdF194noDAwMoL3iTOnDl9Sw1NlZuD6tm8SaiezZpFjfZs1kBUz2bNoiZ7Nmsiqmfzv0c1Nm8SNlqN4u5462ekq1QNKRtv68ylKv8xa1fXwPHBNZid527eMAGV24/5f55Sjc3/GDWMrqKioqKioqKictNQjU0VFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmUV0Xda+RfPrlNwwcMoTkpCR6dLKcXXP8xMk8NftZAHKys5nz9FOcOS3THfbrP4B3P/gYjVbLT0t+YMG8jwB4/uVXGTJsOHq9nuSkJJ6Y+TDx8ebrZvr7BzD/8y+5e8JYAJ5+9jmm3jcNvU7H3Odms2Ob+YxOD09PvlvyE7Vq1yHqWiQP3jeVDMPiwhXp/9j0FwH+AeTlywwU40cNJzkpiYdmPkJuTi7Lflpq1k61pNEY8GoMRTlw9DPLZRx9oPFYcAmCiC0Qvde0v+kkUzkHT4jcBjGGrC9BXSCos1woPfUiXP3TvG47F2g4Gs4YFm6v1QsC2ktN+AZIs7AckY2jbNfBA/LT4dyvUJx/ffrmU8HBy/RegzqDrggSjl3HybrzaTP5GfybdaYgO52dHzxisYyLXwhtpjyLe0h9zm9YQvhOU6KGer3HULvLYFAUMuMiOP7Lx+iLi3ALqkurCU9hY+dAbloCx378gOKCXLO67d28aD1xFoe+fRWABndNok7nQSiKnlOrviLpwlEzja2TCx3uewFHL3/yUhM4suQdivKyreq7Pf4BDm5exixC+79+gcLsDEJ7jEBXmE/UoS3/7kTeIUx65nWade5NdnoqHz4y1mIZv5BQJj/7JiH1m7JxyWfsXLnEeKznqKl0GTIOIeDAplXsWiOv08H3PU6Lrn1R9Hqy01P55eOXyUw1z3/u6uXDxFmv8t2rTwJw16TpdB40Br1ez+qv3uPC0X1mGicXN+594UO8/INITYhl6TtzyMvOsqp/7IPvcPPypahA/g5888IjZGek0mPEZAry8zi85Y9/cRZVbheqvWdTCKETQhwXQpwRQpwQQswWQmgMx/oIIdYbXvsLIdYbypwVQmw07A8VQpwuV+drQojbbvrxLz//yMTRI62WiYyMYMTgAfTq0pGP3n+X+Z99AYBGo+GDeQuYOHYU3Tq0YeyEiTQ25OD9/JN59OrSkT7dOvPX5o3Mef4Fi3U/+uRT/Lj4ewAaN2nCmPET6N6xLRPGjOTD+Z+i0Zh/3WbNnsOunTvo1KYFu3bu4OnZc65LP3P6NPp060yfbp1JTpI/lD8vXcLDjz52g2ftDiYhDE4vsV6mOA8ub4DoPWX35yXDsS8Mjy9lXvFkmcYO97rg3RSOfi4Nu/LaEoK7Q7xhVraTL/i2hCOfwuml0GAkIMw1tXpB+hU4/Il8rtXr+vTezUBXNkUp8ccguIv191+NuHZoCwcWvmS1TGFuFqdXfUX4jrLZwBzcvanbcxS75j3Jzg8eQWg0BLftA0DrSc9wbv337PzwUeJO7qN+v/EW667feyzXDmwCwMW/NsFte7Pj/Zkc+OZFWo1/XGaDKkfDuyaRdOk429+ZTtKl4zS4a+J16Y/+9D5/f/Q4f3/0OIXZGQBEHfyLej1HXde5qg4c3rKWhS89arVMblYmq796jx0ry/4OBNRpQJch4/hk1t189OgEmnXuhU9QbQB2/L6Yjx4dz8ePT+TsoV0MnDrTYt19xt7HgU3ye+Rfux5tew/m/ZljWPjio4x7/EWEhd/zfpOmc+n4Qd6dPoJLxw9y18Tp16X/6f25fPz4RD5+fCLZGTLr1cG/1tBz1N3XebZUbneqvbEJ5CmK0kZRlObAAGAo8KqFcm8AWxRFaa0oSjNg7q3s5H/B/r17SEuznh/68MEDRs/hkcOHCAqWuY3bdejI1SvhREZcpaioiNW/r2DIsBEAZGVlGfVOTs5QwXJZI0aNYdsWmYZsyLARrP59BYWFhVyLjODqlXDadehophk6bAS//izvuH/9+SeGDh95Q/rS5OXlEXUtknbta8iKFRkRUFRJfuGiHMiOsZ7K0bM+5KVCQbrcDuoEUbtA0ZnqsIRPc0i9JF97N4WkU1KTnwZ5KeAaYq7xbmLyRCYck7rK9Bo7COkO13aWrUtfJL2jrsHUBFKvnKYwJ8tqmcLsDNKjLqJYSO2n0WjR2tohNBq0tvbkZ8q0hy5+waSEy+hG0sVjBLXqbrHuwNbdSTwnvY8BLboSE/Y3el0RuakJ5CTH4Vm7sZkmoEVXog7LiETU4a0Etux2Q/rS6IoKyE1NwKN2I6vlqgtXTh8lNyvDapnsjFSiLp5Brysus9+/dl0iz5+kqCAfvV5H+KkjtOwmc6wX5JquZzsHx4p+zmnVvT/nj8pISIuufQn7ezO6oiJSE2JIjrtG7cYtzDQtuvbl8FaZB/3w1rW06NbvhvSlKSrIJy0hltqNrJdTuTOoCcamEUVREoEZwBNCiPJul0AgulTZk7eyb1XBPfdNY+tf0jgMDAoiJtr49omNiSEwKMi4/eKrr3Py/GXGT5rMu2+9YVZX7TqhpKenUVhYeF31leDr50dCQjwACQnx+Pj6Xpf+s68XsnPfQZ793/Nl6jt+7Bhduln+s1SpAN+WkFTq6+7oA+51oM1MaDUdXCwYcw6e0mtaYpDauUFBqT/GwkyZD708di5QmG0okw22LpXrQ++S3lVdkXl9WTHgFnrdb7Wmkp+RwuWdvzPglR8Z+PoyivNzSLogjf6suEgCWkgPcVDrXjh6+Jrpnbz8KcrNRm/4DBzdvclPN4Ve89KTcfAwzyRk7+pBgSE/e0FmKnYu7telbzt5Nr3nfEGjAWU9W+lRl/CupxoflREXcZl6Ldrh5OqOrb0DTTv2xMPX33h8yP1P8vKPf9Gu7zA2//iFmd7LP5jc7Ex0RfLzdvf2Iz0p3ng8IzkBd29/M52rhxdZqTJtbVZqMi7uXtelnzL7TZ79YjkD7p5Rpr6oS2ep26LdPzkFKrcZNcrYBFAU5QryffuVO/QF8J0QYocQ4kUhRGnLqL4hFH9cCHEcsDhgSggxQwhxRAhx5HZfLL9Hr97cc/80Xn/lRQDMbW8o/R7efv1VWjVpwO+//cpDM81DO/4BAaQkm3JjW6qvwltoC1jTP/LgNHp27sDwgXfRtVt3Jk2ZaiySlJRUpanV7jiEVnobk0qNFBEaObby+DdwdTM0m2yus3Mp6/G08HHBDVwDFemdA8DRG1LOWdYV5VRtqsw7BFtHFwJadGXrm9P469WpaO0cCGkvvU7Hf51HaI8R9Jr9GTYOjmZeMpDjNUvC2QD8y+vbmv7YT++z88NH2fPZHLzqNyekw13GIgXZ6Tc9PWZ1IDHqKjtW/MAj7y5kxltfEXvlAvpS3u5NSz7jzXsHcmzHBnqMmGKmd/PyISejVJTsJn7eP7//PB8+Oo7P50yjXvN2dLhrhLFIdnoq7t7mNz8qdx41ztg0YPbNVxTlT6AesAhoAoQJIUq+5eGGUHwbRVHaAF9bqlRRlIWKonRQFKWDRWPpNqFZ8xZ88vlX3DNpPGmp0usQGxNDcIgp7BkUHEx8nPkkoN+X/8aIUaPN9ufn5WHv4GDctlRfnIX6khIT8fcPAOQEo5Lxl9b0cXEym0d2djYrl/9Guw6msLmDgz35+fmVnwQViVdDyI4razgWZEDyWfk6K0b+Kdg6ldXpikFjW0qTCfbupm07NyiwEPItzJaGKhgM1mzrerfacnJTp2ehzcPS8Gw13VROYwN6c+NIpSw+jdqSm5JAYU4Gil5H3Mm9eIbKIQzZidEc+PpFds17kphjO8lJNr9OdUWFaGxNGdGkJ9JkBDh6+JBvGGtXmoKsdOzdpHertMFqTZ+fIcP7uoI8Yo7uLBNe19raoSsqN3ZXxSIH/1zNvCcm8cVzD5CblUlS7DWzMsd2bKRVj/5m+4sKC7CxM33eGckJePgGGLfdffzJSE0002Wlp+Lq5QPICUYl4y+t6TNS5HNBXi7Hdm4sE163sbOjqLDght63yu1JjTM2hRD1AB1gdqUoipKqKMoyRVHuBQ4D1S65eXBILZYs+41HH36Q8Mum2b5hR49Qr34DatcJxdbWljHjJ7Bp43oA6tWvbyw3ZNgwLl28YFZv+OVL1K5dx7i9aeN6xoyfgJ2dHbXrhFKvfgOOHTlsptu0cT2Tp94DwOSp97Bxwzqreq1Wi5e39GzY2NgwcMgQzp09Y6yvfoOGZbZVKsG3FSSWGzGScg486snXjt6g0UJRudnJeclyRrlRc16G44VWhtgdvSErGjNSzoO/ISzm305uW9PHHYKDH8Chj+H4IjmW8+R3pvocvSEn4V+dgppAXloinqFN0NraA+DbqA3ZiVEAxtA2QtBowBQi9m0w0+ckRePkZQp7Jpw5QHDb3mi0tjh5+ePsG0TaNfPfhfjTB6jVURoztTr2J/70fqt6odFg5yyHTwiNFv/mnciMjzDW5+wbXGZbpWJKQtgevgG07H4XYTs3AhgnCgE079KHxKirZtqk6Ei8/E3BvdMHdtK292C0trZ4+QfjG1SHaxdOm+nOHNhJx/5y3H3H/iM5vX+HVb1Go8XZzQMAjdaGZp16Exdh+l/yDa5TZlvlzqVGLX1k8FR+DXyuKIpS2vsohOgHHFAUJVcI4QrUB8xvBW9jFv6wlO49e+Lt7cOpC5d57+23+HnpYqZNfwiAxd99y3NzX8DLy4sP5y8AQFdczF29uqPT6fjfs0+zYs06tFoty35cwoVzMnT5yhtv0aBhI/R6PVHXrjFn1pNmbefm5hJx9Qp169Xj6pUrXDh3jj9WrWTfkePoiov5v9mz0OvlJJVPPv+Kxd8t4njYMRbM+4jvl/7M1PumERMdxQP3yjFaFemdnJxYsWYdtra2aLVa/t6xnaU/fG/sR6cuXfng3bdv6nm+bWgyUc4ct3WCzs9B5HaIPwqBholUcYflmMh2j4LWHlAguJuc8a0rkJ5JzwZwqdzSIvHH5LJK7Z8EvQ4urDRrGn2RnFTk4AX5qZCbKEPxHWbJcZyX12EMozccLY3G7Fg58ajpZAhoB/kZcukjsK63hlsdiNzxz87fHUa7e+fi06AVds5uDHj1Ry5s/olrB/+kTrehAETu24i9qye9Zn+KjYMTKAr1eo9mx3szSb92gbgTu+n17Ocoeh0ZMeFE7pMzy4Pb9aFudxm6jDu1l6hDf5m1rSssICc5FmefQHKS48iKjyT2+C76zv0GRa/n1O9fGCehtZ70NBH7NpARdYlL236jw/0vULvzIPLSEjmyRF6bFek1tvZ0mfk2Gq0NaDQkXwwjcv9mYz+86jbn4p8/39TzfLtwz9z3adCqA85uHrzy4xb+/OlLDv65mq5DJwCwf+MKXD29eebTX3FwckZR9PQafQ/vzxxNQW4O016eh5OrO3pdMau+eMe4BNHwB5/GNyQURdGTlhDH75+9adZ2YUEeybHR+ATWIjkuioTIcI7v+ov/fbMGvV7Hyi/eQTH8nk98+jX2bVhO9KWzbPvtO+574SM6DxpDWmI8S9+Wy+xVpLe1d2TG21+jtbFBo9FwMewgBzabfm/qNm/LXz9bDCSq3GGI231s4b9FCKEDTgG2QDHwIzBPURS9EKIPMEdRlOFCiOeABwxlNMAPiqJ8LIQIBdYritKiVJ2vAdmKonxUUbs2Wo3i7mhX0eFqybARI2ndth3vvPFalbTfslVrHntyFo8+/OAtbztl4223EtbNx7upnAkeYb5+6i3BOVDOUr/w+y1veu3qI7e8zaomoGU3PEIacn5TJctt3STcgutTv89Ywn7+8Ja3vfNc7C1vs6pp2a0fIQ2bsWnJ51XSfnD9JvQeey/LPnzxlrc9/89TRxVFqSHLmtwaqr1nU1EUrZVjO4GdhtcfAma/YoqiRAAtyu177T/sYrVhw7q1eHpV3eB9b28f3nnz9Sprv8aRcs58LOetxNap6gzdGkj8qX3YOVlYYeAWYe/sxvmNNSRhw23AqX3bcTKEuKsCZzcPNi01nymvcmdS7T2bVUVN9GzWZGqkZ7MGUxM9mzWZmujZrMmons3/nho3QUhFRUVFRUVFReXWoXo2bxKNAz2Ur6f1rOpuqNwifF0dq7oLKreQVi+uqOouqNxC9KtnVXUXVG4hYswC1bP5H6N6NlVUVFRUVFRUVG4aqrGpoqKioqKioqJy01CNTRUVFRUVFRUVlZtGtV/6qKbSZNxTeDfpSGF2BocXPFFhuYYjZuDVuD36wgLO/b6A7Nhw7N19aDrhGexcPUFRiD20meh96yzqQ7qPpCg3i4SwHdg4utB8yv/h4OlPfloCZ5a9T3F+jpnGq1E7Gg5/GDQa4g5v4drfcp3EivSeDdpQf/D9CK0Niq6Yyxt/IP2KzHrTevqbnPn5PYvt1CSChz2Ka4N2FOdmcHlRxTPjAwc8gEv9tijFBUSv+5L8hKvYunoTPPJxbJw9QFFIO76VlMObLOq9Ow5Fl5dN+uldaB2cqTXmGWzdfSnKSOLa6vnoLXwOLvVaEzjgARAa0k5sI3m/XES+Ir1zaEsC+k41ft7x238kJ1JmhQqd8lKF7VR3vvvuO4YNH05iYiKtWrassNyCBQsYMnQoubm5PDBtGmFhYYSEhLBk6VICAgLQ6/UsWriQTz/9FIDx48fz6muv0bRpUzp36sTRo0ct1hsQEMDCRYsYOUIuAD937lwenD4dnU7HrKee4q+/zBeD9/T05NfffiM0NJSIiAgmTZxIenp6hXpHR0eWr1hB/fr10el0rF+3jueffx6Axx9/nJycHBYvXvwvzuIdRNspENAMCrJh+/sVl2s5Fvybgq4Iji2DjGjrercgaDMRtHYyMcORH6HYQkpIezdoOwkOLJLbDftDnc4yfe2pVZB43lxj6wQd7wcnL8hNhcOLoSivYr3WFjpOA2cfmRQg/gyclZnrqNsDdIVw7dCNnjmV25Bq49kUQswXQjxdavtPIcS3pbY/FkLMFkLYCCGShRDvltMPF0KECSFOCCHOCiFmGva/JoSYU65shBDC5ya/pX9F3NFtnPjhNatlvBq3x9E7iIMfzeTC6i9oPPpRABS9jssbv+fQ/Mc4+uUcgrsOw8mvlpleaDQEtu9P4om/AajTezxp4Sc5+PFM0sJPUrvPePNGhYZGIx/hxA+vcWj+4/i37mWsuyJ9UU4mJ5e8yeEFT3JuxXyaTZxtrC4hbAfBXYb9k1NUrUg7uZOIX9+xWsalflvsvAK49PVTxGxcSNBgmVlK0euI3/ojlxfO5sqSF/FqNwh7n2DzCoQGz9Z9ST+zBwCfrqPJjjjFpa9nkR1xCt+uoy1oBEGDphPx2ztcXvgM7s26G+uuSK/LyyJyxftc/nYO0eu/IGSkKWNV+undeLcbeOMnqBqwePFihgwebLXMkCFDaNCwIY0aNmTmjBl8+dVXABQXFzPn2Wdp3qwZXbt04bHHH6dpU5kb/fTp04wbO5Zdu3ZZrXv27Nl8u0gaHk2bNmXS5Mm0aN6cIYMH88WXX6LRmP+dzJ07l+3bttG4USO2b9vG3LlzK9V//NFHNGvalHZt29Kte3cGG97z999/z5NPPXUDZ+wO59pB2PeN9TL+TcHFF7a+Dcd/g9YTKte3nQxn1sGODyD2FDTsZ7nuBn0gQqYXxdUfQtrC9vdg/9fQejwgzDWN7oKki7I/SRelgVmZ/vIO2PYu7PgIvOqCX1NT/+tVu4zRNZZqY2wC+4BuAEIIDeADNC91vBuwFxgIXAAmCkO+SiGELbAQGKEoSmugLYbF3u9UMiLOUJybZbWMT9MuxIdtByAz6gI2Ds7YuXpSmJVGdmw4ALrCPHISo7B3M1+s3aN+a7JirxjTlvk060z8sW0AxB/bhm+zLmYat1oNyUuJIz8tAUVXTMKJXfg07WxVnx13hcKsVAByEq6hsbVFaKVTPvnsQfxaqz9IuVHn0OVnWy3j1qgD6aekQZEXewmtgzM2zh4U56STnyDzI+sL8ylIicHGxctM7xLagrz4q8a0hG6NOpJ+Ut5opJ/8G7dGHc00jkENKEiLpyg9UaZJPLsP14YdrerzEyIozk4DoCApCqE1fd6Zl47g3rz7jZ2casLu3btJTU21WmbUqFH8uFQufH7w4EE8PDwICAggPj6esLAwALKzszl37hzBwdLoP3/+PBcvXqy0/bHjxrF582ZjO7/9+iuFhYVERERw+fJlOnXqZKYZOWoUS5bIjENLlixh1OjRVvV5eXns3LkTgKKiIsKOHSMkJASAvLw8IiIi6NjR/HtWLUm5AkW51ssEtIRrh+XrtEiwdZQeSWt6Fz9Ikb/vJF2AwNaW6w5qBYnnTO1Eh8n0tbmpkJ0MnnWs9+faYQhsaV2vK4JkQ+5zRSe9so7ucltXJMt61DZvR+WOozoZm3sxGJtII/M0kCWE8BRC2ANNgTBgCrAAmfe8xBpyRQ4pSAFQFKVAUZQLt7DvVYK9uzcF6cnG7YKMFDOj0sHDD9eg+mRGmZ8O9zpNyYq5bNy2dfGgMEsaCYVZadi6eJi36eZNfkapNjNTsHf3vm69b4tu0sDVFQNQnJ+DxsYWGyfX63zXNRcbFy+KMk3nvigrBRvXskalrbsvDv51yYu9XF6OU0hj8uKvmOpzdqc4Jx2A4px0bCxkl7F19aIoM8W4XZyVgq2hzevRuzXpTH7CVePnrc/PQWht0Tq6XOe7rlkEBQcTFRVl3I6OjjYalSXUqVOHtm3bcvDgweuuNzQ0lLS0NAoLCwEILtdOjIV2APz9/YmPjwcgPj4ePz+/69a7u7szfMQItm3bZtx39MgRevZUl5Qz4ugOeWmm7fx0k7FWEZlxEGBIihfUBhw9zMs4ecnwt153Y+04uEJBpnxdkAn2Ltevt3WEgOaQdMm0Lz0KfOpZfz8qdwTVxthUFCUWKBZC1EYanfuBg0BXoANwEtACdwHrgV+QhieKoqQCa4FIIcQvQoipBu9oCc8IIY6XPIAgS30QQswQQhwRQhzJyC28Ke/zv8RCEITS665q7Rxocc/zXFq/CF1BnllZe1dPinIy/n2r17nWq5NfbeoPnsaF1WVTmBVlp2Pvau6JUymLwZFfDtO519jaU3vss8RvXYy+0PzztnHxRJebeaOtWm3TGvY+IQT0nUrspkVl9hfnZGDj4nmD/agZWPqMS1/Tzs7O/L5yJc88/TRZWdYjH6UJDAwkKSnputv5t/3UarUs++UXPvv0U65evWrcn5iYSFCQxZ9flRIq+xzCfoF6PaDPs2BjLz2K5XFwk2M9rTf0j7tophca6HAfXNkNuaabUwqywKES41nljqDaGJsGSrybJcbm/lLb+4DhwA5FUXKBlcAYIYQWQFGUh5CG6CFgDvB9qXrnK4rSpuQBWMxdpijKQkVROiiK0sHd6fZPVZmfkYK9h2noqb27tzFcLTRaWkx9noTjO0k+s9+iXldUiMbG9D6LstPlpCLAztWToux0M01BZjIO7qXadPOmIDO1Ur29mzct732Bcyvmk58aX6ZOja0d+uLb37ivaoqyUrB1M517W1dvig2eZDRaao17lvQzu8m8YHlAvr64EKG1NW4X52TISUUgw/EWDFHZpslbbuPqTZGhTWt6G1cvao+bQ/S6LyhMTyhTp8bGDkX9vC0SEx1NrVqm8dUhISHExsqfKxsbG35fuZJlP//M6tWrb6jevLw8HBwcjNvR5doJLtVOaRISEggICADkBKPExMTr0i9cuJDLly6xYMGCMvU5ODiQl2d+I1RjycsAx1I3Xg4ekF/JDWF2Iuz7GnZ+DNHHICfZvIyuSE7esdZOnoV28rNMYXz7UgZrZfo2kyA7CcL/Lluf1lb2ReWOp7oZmyXjNlsiw+gHkJ7NkvGaU4D+QogI4CjgDfQtESuKckpRlPnAAGDcLe15FZBy7iABbeXgcLdajSnOzzWGsZuMe4qcpCii9vxRoT43MQpH70DjdvK5QwS0uwuAgHZ3kXzWPEyXFX0JR58gHDz9EVob/Fv3IvncIat6GwdnWk17lSubl5IRec6sTjsXT/LTEsz2q5Ql8+IRPFrK8a2OQQ3RFeQaw9jBwx6hIDmGlEMbKtQXJMdg5xVgqu/SETxa9QbAo1VvMi8eNtPkxYZj7xmIrbsvQqPFvVk3si4dsarX2DtRZ+JcEnb+Qm60+fANGxcPCtOTzParwNq1a7n3vvsA6Ny5MxkZGcYw9rfffcf5c+eYP3/+Ddd78eJFQkNDy7QzafJk7OzsCA0NpWHDhhw6ZH6Tsm7tWu6//34A7r//ftb+8Uel+jfffBM3d3eefvpps/oaNWrE6dOnb7j/1Zb401DbMIbVsw4U55nC2BVhVzIERUDjgXB1n3mZ7CQZSi/dTkhb0GjlfhcfOUbUWn9qd4T4U5Xrmw4FWwc4ZeEGyMVXhv1V7niqm7G5F+m9TFUURWcIj3sgDc4TQA+gtqIooYqihAKPA1OEEC5CiD6l6mkDWLiS7hyaTZ5Du0c/xMk3mK5zfyCwwwAAgjoNJqiTnN2ZcuEIeanxdJmzkMZjn+DiH3LmqnudZgS064dnvVZ0eHIBHZ5cgFfj9mZtpFw8ikdd0xysyL9/x6tBGzo/+w1eDdoQaVjSyM7Vi1bTXgVA0eu5uPZrWj/4Op2f+ZLEk3vITbxmVR/cdRiO3oHU6TfJ2B9bZxlacQ1uQEbUBeMkpZpKyKhZ1Lv/Ley9gmj8xFd4tpb3UJ5tB+DZVn722eFhFKYn0ujRTwkeOpPYzXKxBqeQxni27I1LaAvqT/+A+tM/wKV+W7M2ssPDcK7V1LidvH8NLnVb0fCRBbjUbUXy/jWADLfXmShnHaPoif3re0Inv0jDmfPJPLefguRoq3rvDoOx9wzAt8c4Y3+0hvGcDgH1yI25ZJykVJP4edky9u3fT+PGjbkWFcWDDz4IwMyZM5k5cyYAGzdu5OqVK1y6fJmFixbx+GOPAdC9e3fuu+8++vbrx7GwMI6FhTFkyBAARo8ezbWoKLp27cr6DRvYZJgEVJrc3FzCw8OpX78+AGfPnmXF8uWcOXuWTZs388Tjj6M3XIOLFi2ifXv5e/Hee+/Rf8AALly8SP8BA3jvvfes6oODg3nxpZdo1qwZR48d41hYGNOnTzf2o1v37mzduvVmnN7bjw73Qa9ZckLPoNfkskEAod3kAyDhrPRMDnhJegdP/F65PqQd9H8B+j8P+Rly1nd5dIWyXmdDJCQrHmKOw13PQ9dH4MRKjGHwNpPAw+ClvrgV/BpD/xfl88Vt1vUO7tLgdQ2AvnOg73NQp9TEUq+6cla7yh1PtcqNbgiJpwGfKorykmHfYqSx+S4wWFGUyaXKeyFnpjdAjuGsD+QBOcAsRVGOCCFeA7IVRfmolC4C6KAoioX4g6Sm5EZvcc8LhG/6gbyUqrn7bDD8YVLOHSQt/GSVtF9CTcmNXnvcHOK3/0RhWnzlhW8CAQOmkXXpCDkRVevdqom50UePHk379u15+eWXq6T9Nm3a8Mzs2dxv8NzeSmpkbvTAltKIPLexatp3D5bLLx39+ZY3reZG/++pVou6K4qiA9zK7ZtWanNxuWOpgK9hc2gFdb5mYV/oP+9l9SJ88xLsXL2qzNjMSYisckOzJhG/42dsXDyrzNgsSIqqckOzprJmzRq8vc2XQLtV+Pj48EoVGbo1krhTYOdcde3bOcM5y8klVO48qpVn83aipng2VSQ1xbOpIqmJns2aTI30bNZgVM/mf091G7OpoqKioqKioqJyG6F6Nm8SQgj1xNYg0r6aVtVdULmFHLmqzoavSfRvZZ6uV6X6Iu75WvVs/seonk0VFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmoRqbKioqKioqKioqN41qtc7m9SCE0AGnAFugGFgCfKIoit6QRegP4ArgCKwHngN2A28rirLJUMdE4EFFUQbf8jdghe+++47hw4eTmJhIy5YtKyy3YMEChg4dSm5uLtOmTSMsLAx7e3t27dqFvb29zKH8+++89tprALzxxhuMGjUKvV5PYmIi06ZNIy7OfF3NgIAAFi1axIgRIwCYO3cu06dPR6fT8dRTT/HXX3+ZaTw9Pfntt98IDQ0lIiKCiRMnkp6eXqHe0dGRFStWUL9+fXQ6HevWreP5558H4PHHHycnJ4fFixf/uxN5B+LY50Fs67RGycska3nFaxE6dr8bm9qtoLiQ3B3foUuOBK0NLqOeR2hsQKOl6MoR8o+ssai3bzkAfUEORRf3IeydcRrwKBpXH/RZyeT+9SVKYa6ZxqZWCxy73w1CQ+G5XRQcl4tEV6S3CWmGQ+cJCI0Nir6Y/P3LKY6VaUqdh8+psJ3qTrPxs/Bp2pHC7AwOzH+8wnKNRs7Ap3EHdEUFnF3+CVmx4WhsbGn/yPtotLYIrYbEU3u5smUZAH4tu1NvwN04+9bi0OezyYq5bLFeO1dPmo57khOL3wAgtM8EgjoOQFH0XFi7kNSLx8w0No4utJz6Pxw9/clLS+DUz+9RnJdToV5ja0+rqXNx9A5AUfQknz3E5c1LAAjpOhxdUT5xR2pIBqHSdLkXglvK3OMb3qy4XPuJENwcigth/1JIiwKNDQx4FrQ2IDRwLQxOrbesb9wPCnPg6kGwc4IeD4GzN+SkwJ5vwdJ1F9gMOkwEIeDyXjhr+J2vSB/QBNqMAa0WdDoIWwUJhrS0/WbBnkWW21G5o6mJns08RVHaKIrSHJkDfSjwaqnjuxVFaQu0Raa+7AY8AswTQjgIIZyBt5GpLm8rFi9ezODB1u3fIUOG0LBhQxo2bMiMGTP46iuZorKgoIB+/frRpk0b2rRpw+DBg+ncWaY3+/DDD2ndujVt27Zl/fr1vPLKKxbrnj17NosWLQKgadOmTJ48mebNmzN48GC+/PJLNBrzr9vcuXPZtm0bjRo1Ytu2bcydO7dS/UcffUTTpk1p27Yt3bt3N77n77//nqeeeuofnLk7n8ILe8jZMM9qGZvardC4+5P1y1xy/16MY8975QFdMdlrPyDr91fJ+v1VbGq1QOtXz7wCocGuSU+KLh0AwL7tUIqjz5L1y1yKo89i33aYBY3Asce95GyYT9ZvL2LXoDMazyCreiUvm5xNC8ha8TK527/F6a6HTe/z4n7sWvT7B2fozif26FbCvnvVahnvxh1w8gli34czOLfqc5qMkekq9cVFHFv4AgcXPMnBT57Cu1F73Go3BiA7IZKTS98h/eoZq3XX7jma2EN/AuDsVwv/1r3YP+8xwr57lSajH5WGTDlC+0wg9fIJ9n04g9TLJwjtM6FSfeSuVez/+FEOLpiFe2gzvA2pcmOPbKF2txE3cMaqEVf2w/bPrJcJag5ufrD2VTi4DDpNkfv1xbDtE9j4tnwENQPvuuZ6oYH6XSHisNxuPgjiz8O6V+Vzs4EWNAI6ToYdn8P6NyC0I7gFWNcXZMPfX8KGt2D/Eug2zVTf1YPQsNeNnBmVO4SaaGwaURQlEZgBPCGEEOWO5QHHgWBFUU4D64D/IQ3TpYqihN/i7lbK7t27SU1NtVpm1KhRLF26FICDBw/i4eFBQID8ccjJkR4HW1tbbG1tKVkWKysry6h3dnamouWyxo0bx2ZDXuVRo0bx66+/UlhYSEREBJcvX6ZTp04W+7NkifRcLFmyhNGjR1vV5+XlsXPnTgCKioo4duwYISEhAOTl5REREUHHjh0rPVfVDV3cRZSCbKtlbEPbUnhxnyyfeAVh74RwkjnmKS6Qzxqt9IRYwCa4qfSEGvKSy/r2AlB4cS+2dc3zqWv96qHPTESflQR6HYXhh7ANbWtVr0u5hpKbDoA+LQa0tsY+FUeEYdeg8/WckmpH+tUzFOVlWS3j27wzcUe3A5B57QI2js7YuXoCoCvMB0BobRBaLRiu49zEaHKTYypt369Fd5IvHJXtNOtCwoldKLpi8tMSyEuJw71Wowr6I/Njxx3dhm/zLlb1+qIC0q6cAkDRFZMVE469u8zPrS8qIC8tEbcQ83aqPYmXpcfRGiGt4Yq8ESTlqvQsOhgS6pW5vrUY85qXxr8xpEYZr+8y9V05ALXamGu8QyErCbKTQa+DyCNQq7V1fVo05GXI1xmx0uNa8psTc1IarCrVjhptbAIoinIFeR78Su8XQngCDYFdhl2vA3cDQ4APLNUlhJghhDgihDhy83r87wgODiYqKsq4HR0dTXBwMAAajYawsDASExPZsmULhw4dMpZ76623uHbtGlOnTrXo2QwNDSUtLY3CwsJK2ymNv78/8fEy9WF8fDx+fn7XrXd3d2fEiBFs27bNuO/IkSP07KlmbrKExtkDfbbpZkSfnYbGWRoiCIHr+Ndxv38BxdFn0CVeMdPbBDSkOCnCVJ+jO0qu/NNQcjMQjm5mGo2zZ7k2U41tXo/etl4HaeDqi2W5wlzQ2iLsqzCN3m2MvZs3+RnJxu2CjBTs3QwpJoWGzrM+pdfLP5F66TiZURevu14HT3+K87JRdPJzsHf3Jj/DtNZofkYy9u7mqSztXDwozEoDoDArDTtnj+vW2zg449O0E2mXjxv3ZUZfwqNu8+vud43CyQNy00zbuWlyH0gP5JAXYNwHEHcOUiLM9b71IfWaadvBFfIz5ev8TLB3Ndc4WmjT0eP69bXaQmq08fqmMFcanlWZJlPlplDjjU0Dpb2aPYUQJ4F4YL2iKPEAiqLkAL8BPyqKUmCpEkVRFiqK0uF2Xgy2nAMXwOip1Ov1tG3blpCQEDp16kTz5qYf9ZdeeonatWvz888/88QTT5jVERgYSFKS6c/DWjv/tp8AWq2WX375hU8//ZSrV68a9ycmJhIUFHTd7dQszM9piXcLRSHr91fJ/HE2Wr+6aDzNbwyEkztKJZ616+I6vwcazyAcOk8gb9eSsvK8TESJkaxSBmHpMy7xYil6Di54ij3vTMOtViOc/etcd732bp4U5mRYL/RvE4SU0guNhhZ3P0fUvrXkpSYY9xfmZGDv5vXv2qmJKApsegdWvyC9ke4WfiMd3WSI+0aw8Dtt0WtqCfdAaDsGDv1cdn9BFpREXFSqDTXe2BRC1AN0QKJh125FUVoBLYFHhRBtShXXGx53LNHR0dSqZcqGERISQmxsbJkyGRkZ7Ny50+L4z2XLljFu3Diz/Xl5eTg4ONxQOwAJCQnGMH5AQACJiYnXpV+4cCGXLl1iwYIFZepzcHAgLy/P8puv4ehz0tC4mP6oNS6e6A3h6hKUwjyKYy9gW9vCBDNdEcLG1lRfXoYxDC8N0czraNPL2KY1vXD2xHnQk+TuWIQ+s1y2Hq2tnAChYkZ+ZjIOhrAzSA9iQWbZoTXF+TmkXTmFd+N2112vvqgQrY2dcbsgIwUHd1/jtoO7j1k7AIXZ6cYwvp2rJ4U56delbzr2SXKTY4nas7ZMfVobW/RFFu/1VXLTwanUTZiTp9xXmqI8SLwkx22WR1ckQ9ol5GeZwvAObtIINGszzbzNkhC5Nb2jB/SaCfsXyxB8aTS2UFxU8ftUuSOp0camEMIX+Br4XCnndlMU5SLwLnKcZrVh7dq13HfffQB07tyZjIwM4uPj8fHxwd1d/vE7ODjQv39/zp8/D0CDBg2M+pEjRxr3l+bixYuEhoaWaWfy5MnY2dkRGhpKw4YNy4TlS5e7//77Abj//vv5448/KtW/+eabuLu78/TTT5vV16hRI06fPv0Pzkz1pygiDLtG3QA5llIpzJPhawdXhJ2jLKS1xTakGbo089UGdGmxaNz8S9V3HLtG3QGwa9Sdoogwc03iVTTufmhcfUCjxa5+J2O5ivTCzhGXIU+Tf/B3dPHmM6M1Tu7os5LN9qtA0tmDBLaXE6jcajemOD+Xwqw0bJ3dsHGQoUmNjR1eDdqQmxh93fXmJMXg4GkaaZR07iD+rXshtDY4ePrj6B1EhoWwvOzPXQAEtr+LpDMHK9XXH3gPNg5OXFy3yKw+J59gshOume1XAaJPQj05JhbvulCYZwhfu4Ct6fomoAlkxpvrM+PB1c9yffW6QPQJc01KpNQ4e8uxoHU6SJ01va0j9H0cjv8BSebDdXB0k7PXVaoVNW7pI8BRCHEc09JHPwIVTeP9GpgjhKirKMrVCsrcNixbtow+ffrg4+NDVFQUr776Kt9//z0zZ84E4JtvvmHjxo0MHTqUy5cvk5ubywMPPADIMPiSJUvQarVoNBqWL1/Ohg0bAHjvvfdo3Lgxer2eyMhIHnnkEbO2c3NzCQ8Pp379+oSHh3P27FmWL1/O2bNnKS4u5vHHH0evl07hRYsW8fXXX3P06FHee+89li9fzvTp07l27RoTJsjZqhXpg4ODeemllzh37hzHjsmlVj7//HO+++47ALp3787rr79+c0/0bYjTXTOxCWqCcHDB7Z6PyT+yhsLzu7Fr1geAwrM7Kb52EtvarXCd8r5c+minPGfCyR2nfg8hhAaEoDD8MMXXzP9Yiq6dwrmfaWZ4QdgGnAY8hl3TXuizUsjd8qWhPg+c+jxAzsb5oOjJ2/MzzsOelUsfXdiNPi3Wqt6uRX807v44tB+JQ/uRAGSv/wglPwutbyjFCeGmSQw1iBZTnsOzXktsnd3o8cJirmz5mdjDWwjuPASAmIObSDl/BJ/GHej2f4vQFxZwZsUnANi7etF84jOg0SCEhoSTu0k+L2cd+zbvSuNRM7FzdqfNA6+SHXeVsO/KjsvWFxWQlxqPo3cgeSlx5CRcI+Hkbro++xWKXseFP74yfiZNxz1J9IFNZMVcJnLn77ScOpfgjgPJT0/i5E/vAlSot3f3pu5dk8lJjKLzUzJqEbVvPbGH5XI67qFNubL1l5t+rm87uj8I/o2k4TjmHTi5HsL3QUPD+PRLuyH2NAS3gJFvgM6w9BGAozt0vV+GvIUGIo9CjIUb8tgzZWeGn/kTej4E9btDbirsXmSqr/M9sPML+Zkf+RX6PSnrDt8HGXHW9Y37gKsvtBgiHyBn2hdkgVdtSL5aI6/v6o64kXF0KtePEKLGndjRo0fTvn17Xn654nUebyZt2rRh9uzZRs/trSTtq2m3vM2qwGnQE+QfWIE+I6HywjcBx+53UxQRRnHMuSppv4QjV5MqL1TN8G3eFbfg+oT/9VOVtO8aVI/aPUdz5jfrS3zdDPq3qlV5oepAr5ly3cusKvp+t58gPaIl625WEeKer4/eznMv7kRqdBhd5b9lzZo1REREVFn7Pj4+VWbo1hTyD/xuWi6pCtClRle5oVlTSTqzn7y0xMoL3iRsnd2qzNCtMYStkZ7LqiI9tsoNTZWbg+rZvEnURM9mTaameDZVJDXRs1mTqTGeTRVA9WzeDGrimM1bgo1G4O3iUHlBlWrBuM/MU3GqVF/WzBpU1V1QuZX4mq8Bq6Kicv2oYXQVFRUVFRUVFZWbhmpsqqioqKioqKio3DRUY1NFRUVFRUVFReWmoRqbKioqKioqKioqN407ytgUQihCiI9Lbc8RQrxmeL1YCDG+XPlsw3OoQftkqWOfCyGmldYKIVYLIY4LIS4LITIMr48LIboJIX4WQlwQQpwWQnwvhLDlNmP+519z+nIEO/cfrrDM2AmT2L73INv3HmTdX9tp1qJlpfpmLVqyfssOduw7xNJff8fF1dVi3X7+Afz420rj9pOz57A/7BR7jhynz139LWo8PD35bc069h07yW9r1uHu4VGpfvS4CezYd4jtew+ybOUfeHl5A/Dgw48weeq9FZ+gasacNz/m910n+HbNtgrL3DVsDItWbWHRqi18+tMf1Gvc7Lr0o+9+gMXrd/HdH9uZ8eyLFuv28vHj7S9MecunPPQESzftYfH6XXTo3tuixtXdgw8W/cKSjXv4YNEvuLi5V6rvO3QUi1ZvZdGqLbz7zU+4ecj0eKPunsag0RMrfO/VDYfeD+B87yc4jX+jwjI2DbrgNO51+Rj5Ahov0yxqbUgLnCe+g/Okd7FrPdS4X+NdC6dRL+I09jWcxryCxreuxbqFozuOg2YZt+3aDMV50rs4T3wHbUhzyx2yd8Zx6LM4T3oXx6HPgp1TpXqb+p1xGv8GTuNex3HIMwh7FwBsm/fDplEPq+eoWtF8PPR5Gbo9U3GZgDbQ9Wn56PQYuASajnk3gu5zoMdzENrHXFunFwx8H2ydzI8B2LlC22mm7bp9ZF3d58i6LWHjCO0fgu7PyWcbx8r1Aa1N76Hdg6b+1OoKQeqE8OrCHWVsAgXAWCGET6UlzUkEZgkh7CoqoCjKGEVR2gAPIXOktzE89gE/A02QOdMdDWVuK35b9iNTxo22WuZaZARjhg2iX/fOzP/gPT5a8Hml+nmffcnbr71M326d2LR+LY89ZfnH75EnnuSnJT8A0KhxE0aPHU/vzu25e9wo3vv4EzQa86/bk888y+6/d9KtXSt2/72TJ5951qpeq9Xy1vsfMm74EPp178y5M6d4cIbMaPTLT0uY/shj13OqqgV/rlnO8zOnWi0TFxPFM9PG8/DYAfz09SfMfu39SvVtOnWjW79BPDymP9NH9WP5D19brHv8/TPY8PvPANSp35C+Q0cxfWQ/5s6cyqyX3rH4eU956HGOHdzD/UN7cOzgHqY89LhVvUar5fG5b/DsAxN4eOwArl48x+i7Zdarzat+Zcw906/vZFUDii7sJW+j9QXN9VlJ5K57n9yVr1IQtg6HXjIVLELg0OMecjfNJ2fFS9g06IzGIwgA+84TKDi2ltxVr1FwZDX2nSdYrNuu1UCKzv8NgMYjCJv6nclZ8TK5m+bh0ONemaGmHPZthqKLOUfOb8+jizmHXZuh1vVCg323KeSt+4Dcla+iT43GtoVMd1l0fg92htc1gtijcPQ762Xy0uDwN7D/E7iyDZqPNRwQ0HQ0HPse9s6DwNbgXCoVpb07eDeU+ooI7QnRhhTDzn7SKNw7D459J+vG/POmbh9IuQx7P5TPdftY1wsNNBkJRxbK95AVB7VlSl1ijpheq9zx3GnGZjGwELByq1chScA24P5/0rCiKBsVA8AhIOSf1HMzObBvL+lpqVbLHDl0kIz0dACOHjlEYFBwpfr6DRqyf+8eAP7esY3hI0dZrHvYyNHs2CqXABo0bDhrVv1OYWEh1yIjuXolnLbtze9SBw0dzvJl0mBZvuxnBg8bYVUvhEAIgZOzvPt1cXUjPl6mR8vLyyMqMpK27WrG3fCpowfJzEi3Wubs8SNkZ2bI1yeP4etv8nxUpB8x6T5+/fYLiooKAUhPtZynuOeAoRzesxOAbn0HsWPjHxQVFRIfE0VMVARNWrY103TrO4i/1qwA4K81K+jeb7BVfcnn7eAoP28nZ1dSkmT2ooL8fBJiomjcso3Vc1Bd0MVfRCnIsVpGnxAOhbmyfEI4wll6gTW+9dBnJKJkJYFeR3H4QWxC20iRAsJWLtMm7JxQctMt1m1TtwPFUTLNoU1oG4rDD4K+GCUrGX1GIhrfeuaaOm0purgXgKKLe7ENbVeJXsiHrb2swNYBJcfQH10h+qyUCj2v1Y60q1CUZ71MRiQUG8qkX5NGJIB7LchNgbxUUHQQfwL8TFENmoyAixsBK8tB+7WAZMMC637NZB2KThqouSmyDTNNc2kkg3z2a359eq3BB2TjIPO5A+iLZFm32+6vVuUfcKcZmwBfAFOFEP8kzcF7wLNCCO0/bdwQPr8X2PxP67hduPve+9m+tfL1Ic+fO8ugocMBGDF6LEHB5hd/7Tp1SE9Pp7BQGiiBgUHERkcbj8fFxhIYFGSm8/X1IzEhHoDEhHh8fH2t6ouLi/nf7Fns2HeYExeu0KhxE5YtXWwsd+L4MTp3U++GLTFk7GQO7d5RabmQ0Hq0bN+Jz39Zx7zFv9O4RWuzMgHBtcjOzDAapD7+ASTFxxqPJ8fH4eMfYKbz9PYhNVlmoUlNTsTDMASiIr2uuJgFbz7Pt2u2sXznMerUb8imlabc2BfOnKRVu87XeQZqFrZNelIcdQoAjbMH+hzTjaQ+J81oiBbs/wX7LhNxvvsj7LtMpODQSrO6hKuPNHT1xXLb2RN9dtn6NM4e5jpHN5Q8ebOj5GUgHF2t6xUdBXuW4jz+DZzvmYfGM4iiC7tM5ZIj0AZUEMKt6QR3NBmHDu6Qn246lp9hMkR9m8rt7LiK63L0lEasopPb9u5SU7o+Bwt/wXYuUJglXxdmgZ2zdb2ih3Nr5FCB3i+Cix/ElBrGlRkNnjXk5qKac8cZm4qiZAJLgafKH7JUvJz2KtIrefe/6MKXwC5FUXaXPyCEmCGEOCKEOKK/zfMHde/Ziyn33s9br7xUadlnHn+EBx6ewZ9/78XFxZVCg4FRGj//AFKSk43bwkJI7UayVVWkt7Gx4f7pD9O/V1daN67HuTOneWr2c8YyyUlJBAQEmmlrOm06dWPI2CksmvdOpWW1Wi0ubu48MWUE33z8Fi9/bB5G9/L1Jz3N5PG8WZ+31saGEZPuY+b4QUzs044rF88x5WHj0GvSU5Px9vO/7nZqCtrAJtg27knBwRWGPRZCnobPx7ZZXwr2/0rOsjkU7P8Vh14PmBUVTu4o+Vml9/zLHlagF1psm/UlZ+Vr5Pw0G31qNHZthpm6nJdp0ait8XjWk8bmpU1WCimgsYV6/SB8i/X67Nyg0LoXnX+bfVBRZBg9pAvsXwB/vw1Z8VC3r6lMYQ7YqwvqVwfuOGPTwCfAdMC51L4UwLNkQwjhBSRjzjvA//gH710I8SrgC8y2dFxRlIWKonRQFKWD5t/+Ft9EmjZvwceffcm0KRNJqyTsDnD50kUmjxnJoN7dWf37ciKvXjUrk5+fj4O9vXE7NjaGoBCTBzQwKIj4OPM76aSkRPwMHjA//wCSk5Ks6lu0kl62kj6sXb2Sjp27GMs52NuTl59f6XuqSdRr1JRnX/+QV558kMwMK2O0DCQlxLFnq/zTunDqOIpej7unV5kyhfl52NmZPu+k+Dh8A0yea5+AQFISE8zqTktJxstHjh3z8vEzhugr0jdoIsNwcVGRAOzcvI7mbdoby9nZ2VNQoH7epdF4heDQexp5f30GhrC79ByaPkONs6cxXG7bqBvFV2Xos/jKYbR+FjxJxUWgNc2JVHJS0biUrU9fEu4uhZKXiTDk2haO7ih5WVb1Gh8ZWlWy5O9AcfhhtP4NTBVqbVGKzW92azQuAXIy0fElUCSHUEjPoYepjIM7FGSCkzc4ekHXWdDzf9Lj2GWW9EiWRl8EmlIJBgvKeTJL6itPYbacWATyucRgrUjvarjm8wz/QwknwaOOqZzGRvZF5Y7njjQ2FUVJBZYjDc4SdgKTSk0AmgaYxQwVRTkPnAWG30ibQoiHgEHAFEVR9Dfe69uD4JAQvv/pF56YMZ0r4ZevS+PjI0PbQgieee5/LP3+W7MyVy5folZt04/EXxs3MHrseOzs7Khdpw716jcg7OgRM91fmzYw8W45SWXi3VP5c+N6q/q42FgaNW6Kt7ecI9ar711cunDeWF+9Bg05f+7MdZ6N6o9fYBCvLVjEu8/PIjryynVp9m77k7aduwMQUqceNrZ2ZJS7KYmOvEJAsGnM1b4df9F36Chsbe0ICK5FcO26nD8VZlb3vh1/MXC0nIAycPQE9u3406o+OSGeOvUbGo3d9t16ce2K6XsbElqPiEvnzdqpqQhnLxwHPE7ejkUoGSZjX590FY27P8LVBzRabOp3pjjyuDyWk442sDEA2qCm6DPMbxL0GfFoXE3zMosjj2NTvzNobBCuPmjc/dEnmX+/iiPDsG0kv0u2jbpTHBlmVa/kpKPxDEI4SINFG9IcfbrpJlXj7o8+LeZfnqVqhIMHtLkXTv0GuaV8K5nRBsPSE4RWTs5JPAfZ8bDzTdj9vnwUZMCBBdJILE1uktSWkHhO1iG0cr+TN2REmfcn6SwEGW4Gg9pD4hnr+oIMGTq3NfiNvBpCTqKpPmcfyDb/PqrcedzJudE/Bp4o2VAUZb0Qoj1wVAihA8KBRyrQvg2Y/xNa52sgEthvCPmtUhSl4jVIqoCvvltMtx698PL25tjZS3z47lv88uMS7ntQTpxf+v23zP7fC3h6efHexwsA0OmKGdSnh1X96PETeODhmQBsXPcHv/y01Kzt3NxcIiKuEFqvHhFXrnDh/DnWrlnFrkPHKC4u5vlnn0Gvlzb6x599ydLvv+VE2DE+m/cxC5f8yN333k9MdBQP338PQIX6hPg4Pn7/HVZv+ovioiKio6KY9egMYz86dunKx+9VHiquDrz44Re07tgVdw8vft12hCVffMSmVb8yfKJc/mn98h+595FncHP3ZNbL8pzoiot5bNJQq/rNq3/luTc/5ts12yguKuL9F582azs/L4/YqEiCaocSey2CyPCL7Ny8ju/X7kCn0/HZWy8aP+9nX/+Qdct/5OKZk/z67Re8PO9rhoydQmJcDG/Mlt+rivQpSQks/XI+85esQldcREJcDB+8YJof2KJtR5Z+aX2GdnXBod9MtEGNEQ4uON/9EYVH/6Dowm5sm/YBoOjcTuzaj0Q4uODQ3bAEmKInd/UboOjJ3/sTTkNmg0ZD0YU96NPkGNmCXUuw7zYFNFrQFZG/e4l548WF6DMTEW5+KJmJ6NNiKb5yGOeJb4Fe1l0SVrXvNY2iszvRJ0dQcHwjjv0fxblJT/TZKeRt/QqgQr2Sm07h0bU4jvgf6HUo2Snk7TTNyNYGNKTw6Nqbd5JvJ1pOAa960hDr9YIMfccchhDDGOXog1DvLrlUUNPRcp+ih4Ofyefzf0C76TJUHXMYcm7AaNMVQW4qOHpDXorUxp+E7s+a6i4ZpdZsHEQfgMwYuLoTWk2VIf38dDjxkyxTkb4gC8K3QsdH5PjQ/DQ4vcLUD49QeVzljkfcyLgqlevHVqtRvF0cqrobt5Qhw0fSqk1b3n/r9Sppv0Wr1sx8/EmenHnrV6VqHuJZeaFqRve7BtOoeSt++PSDKmm/QZPmjL9/Ju89X3749s1nzaxBt7zNqsYmtB0anzoUHlldJe1rvGtj12og+TvMIys3G9dQ31veZpXj1xzcguFy5ZNIbwquQVCnJ5z+7ZY3LQZ9cFRRlJqxrMkt4k72bKrcZmxavxZPL6/KC94kvLy9+eDt28rZXK3Zu20z7h5VZ2S7e3rxw2dVY+jWRIojjmFr71x5wZuEcHCh4HDVGLo1ksQzFS/4fiuwda46Q1flP0f1bN4kaqJnsyZTEz2bNZma6NmsydRIz2YNRvVs/vfckROEVFRUVFRUVFRU7gzUMPpNwtHOhhYhVRdSVrm1bP1wclV3QeUW4jv5i6rugsotJOnLf5R4TkVFxYDq2VRRUVFRUVFRUblpqMamioqKioqKiorKTUM1NlVUVFRUVFRUVG4a6pjNakbrjl1547PviIuR2R32bN3ET199YlauTeduzJzzMja2tlw6e4qPXp6DXqezqh9330MMGTcFRVG4euk8H774LEWFBWZ1j713OlkZ6WxZuxJXdw9e+uhL/INrkRATxZvPPkp2ZoaZpmOPPjw293U0Wi2bVv7Cr9/KMXEV6fsNG8PEB01r9tdr1JRHJwwm/PxZPvj2F96Y/YjFdqodXvWh/TRTurf403DZQt5j7wbQZLhM/5YRDaeWy8WVS+poNlJm9yjMgYNy4W1sHKDlRHANABQ4uRzSI83rDu0p0+TFHAVbR2h7r8wSkpcGx36E4jxzjU9jaDZKLjgddRCuGJJ9WdO7BkKLcbJfKLB3AeiLodOMitupZnTr0ZMff1nBtcgIANav+4OP33/XrFyPXr15/a13sbWz4+TxMGY9/gg6nc6q/uip82RnZ6HX6SguLmaAIdlDeWY+9gRpaaks/2UZHp6eLPrhR2rXqcO1yEgemnYPGenpZpp+/Qfw9vsfodVq+WnJYj6d/xFAhfpxEyfzxFNPG/XNWrTkrp5dOX3qJL//sYHp90+12E61w78R9H4Usg3ZgaLC4NRGC+UaQ/txcmH+lGtw4EfT9e3fCNpPkMcKsmFLqSQIQsCQ5yE3HXZ+abkPTfrJtKdXD4KdE/R8GJy9IScFdi+CwlxzTWAz6DhRXt+X98IZmSnMqt4jGDpPBVsHmSBg07vy+r5rVsXtqNwx3NaeTSGETghxXAhxQghxTAjRzbC/jxBifbmyi4UQ4w2vdwohLhh0h4UQbUqVixBCrCy1PV4IsdjwepoQIsnQZsmjmRAiVAiRZ9g+K4RYKoSw5Tbl1NFDPDJuEI+MG2TR0BRC8H9vf8Jbcx7j4dH9SYiNYeCoCVb13n4BjJ76II9NHMbDo/uj1WjpO3SkWd0arZbBYyazbcMaACY/9DhhB/cybWhPwg7uZfJDj5trNBqefPEtXnjkXqaP7EvfoaOoXb+hVf32DauNfXx/7iwSYqIIP38WgC3rVjJy8n3/5hTeWaRdhT3z5cOSoYmAVpPh+E+w+yNpxAUbVvWwcYDmY+HID/JY2I8mWbPRkHQedn0Au+dZThsnNBDSEWINCbnq9YPkS/D3+/K5fj/L/Wk+Bg5/C7s+hKC24OJvXS800HoKnF4p+3ngK9Dr5LGYY1Cn2z84cXcmB/bvpW+PLvTt0cWioSmE4POvv+XhB++jV5cOREVdY/Ld91yXfsywwfTt0aVCQ1Or1TLlnvtYuVwutP3UM3PY/fdOOrdtye6/d/LUM3PMNBqNhvc+/oTJ40bRvWNbxoyfQKPGTazqVy7/1djHx2ZM51pkJKdPnQRgxW/LePChGWbtVFsSL8HGt+XDkqGJgG73w+5vYf2bkJMK9brIQ7aO0HGKNCTXvwG7FpWVNukHGfEVty00UL8bRByW280HQ/x5WPuKfG5uYQkwIaDTFNj+Oax7HUI7gnugdb3QQPcH4ODPsp9b5smMQiCN3Ea9r/t0qdye3NbGJpCnKEobRVFaA88D5r+sFTPVoPsS+LDcsQ5CiOYV6H4ztFnyOGvYH64oShugJRACTLyBvtxWuHl4UlRUSEzkVQCO7ttFzwFDK9VptTbYOzig0Wqxd3AkJdHc+GjbuTuXzp1Cr5M/FN36DuSvNTL92F9rVtC9n/mPU+OWbYiNiiAu+hrFRUXs3PgH3fsOvG5936Gj2L7xD+P2/h1b6Dt0VKXvp8Zg5yQ9BDkG70jyRQhoKV8HtYOEUzK1HJhyJNvYy1R50YfktqKD4nzzur0byDR1Ri9Kc4g5Il/HHJHb5fGoDbkp0hur6CDuuKlcRXqfRpAVJx8gPakl6fISzkiDVQUALy9vCgsLuHJZ5pD/e/t2ho8a/Z/U3bN3H06dOI7OcH0PGTac35bJlIS/LfuJocNHmGnadehIxJVwIiMiKCoqYs3KFQwZNvy69WPHT2T178uN25s3bmDM+Dv25/e/x95ZXt9Zhpziceegdjv5um4n6Q3NTZPbBVkmnZMHBLWUnseKCGgMqVGm67tWK7iyX76+sh9qtTbXeIfKvmQnyxvCiMMQ0sq6PrAZpMfIB8gIS8ka4NEnIVRd8vJO53Y3NkvjBqT9A91+ILjcvo+AF/5JJxRF0QGHLNR529CsTXu+WfUX73z9I3XqNzI7npGWio2NDY2ayx+AXgOH4RcQZFWfkhjPisXfsGzrQZbvPEZOdhZH9+0yq7t5245cOnPKuO3p7UNqsvwRTE1OxMPL20zj4x9IYlyccTspIR5v/8Dr1vcZPIIdpYzN7MwMbO3scXP3qPgkVSc86kCP2dDhIZOHsDSFOTKE5h4itwNagaOHfO3sI70fnR+F7k9DcHu539FbGp6tJkH3Z6DlBNDamdftGSrD8iXYu5r+0AqywN7FXOPgbjJuAfLSwd7dut7ZsKh2x4dlP+v1MemL8+T7q8psJ7eQDp06s2PvQX5duYbGTZqaHU9JScbGxpbWbaXBMWL0GIKCQyrVK4rCijXr2Pr3Xu6d9qDFtjt16cqJ42HGbV9fPxISpGcsISEeHx/zxc8DA4OIiTZ9R2JjYwgMCr5u/ahx41lVytjMSE/H3t6+SrOV3VJ868Gwl6DvEyYPYWkKsuUQGK/acrtOO3AyJJlw9ZM3mwNmy3B53c4mXfuJELYK402bxbbrQ2qpoTMObpCXKV/nZcrrtTxOnibjFmSIvqQ/Fend/KRx2e9JGPoCNBto0hfmgsYW7Koue5XKv+d2H7PpKIQ4DjgAgYClmFxlDAbWlNu3HHhMCNHAQvlJQojSMaSupQ8KIRyAzsCs8kIhxAxgBoCDrfYfdPXfc+nsKe4e0Jn83Fw69ezH6599x7ShPc3KvTXnMR7936vY2tlzdN/f6HTFVvUubu506zeQewZ2JTsrk1fmfc1dw8eybf2qMvV6+/px7cqlG+qzsLTzOjNbNWnZloL8fCIuXyizPz01GW+/ADIz0m+oL3ccmdGw423QFYJvEzl+8+/3zcuF/QRNR8oxm8kXQW/wVAgtuIXAoW/ksW5PynGZGo3Mi3xmDWRcg6ajoF5fuPRn2Xrt3SA78T94I5V83kIDnnVh7yegK4LOM6WRmyK9dxRkyz+youo9ruvkieO0a96YnJwc+g8cxNJfltO5bUuzcjMevI+33v0AO3t7dm7fiq64uFL9sIH9SIiPw8fHlxV/rOfyxQvs31fW6+XvH8DFCxfM2rOGEOZX+PVmrmvXoSN5ubmcP3e2zP7kpCQCAgJJS029ob7ccaReg9UvQnEBBLWQ4zfXvmJebs+30GGCNMrizppC0BqDEbr1E7CxhUH/g+Sr4OYP+Vmyfn9zh4QRR3frYfbrpbLPW2jBr4Ecp1lcCP2fkUZuvOG7lp8FTu7yxlnljuR292yWhNGbII3GpUL+clX0zS29/2chRDTwP+CzcuV0yND68xbqKB9GL5l1UN9g+KYA1xRFOWnWuKIsVBSlg6IoHWy1t+bUjpxyP1+v/JOvV/6Jt68/uTnZ5OfKP9xDu7djY2ODm4X81edOHOOZ+8bxxOThnDxy0BhSr0jfrksP4qOjyEhLRVdczJ6tm2jetr1ZvQX5+djZ2xu301KS8fLxA8DLx4/01BQzTVJCHH6Bpjt2X/8AUhLjr0vfd+hItm9cY1annZ09BQUWwr53OnW6QY9n5MPeTf4J6QrlsaTz8kfbkocvPRIOfAn7PoXUK5BrCKnnp0PyBVlHUa485hoEeRmQnyENTYD4kybPaGl0RdJILaEgy+StsHeVRmB58jPAwcO07egBBZnW9fkZkBou+6gvku/VrVR/tLayL9WMBx+eyY49B9ix5wD+AYFkZ2WRkyP/cLf+9Sc2NrZ4WfD2Hzl0kBGD+zOob0/2793DlfBwAKv6hHgZXUhOTmLj+rW0bd/RrN78/HwcSl3fSUmJ+PsHANIQTU5OMtPExsYQHGL6rIKCgomPi70u/ZhxE8qE0Euwt7cnP78aTghr1BuGvigfju5QlC+vcYDY09J4tJSfPvkq/PUxbH5PjvHMMpzH3DRpfOoK5SSfxEvgGSI9liGtYPTb0GM6BDSRYybLoyuS11YJ+Zng6CZfO7qVDcuXkJtm8mSCDNfnpVvX56ZBwiXZR12RfK8lnloArQ0UV7/ruyZxuxubRhRF2Q/4AL5Ig6+8BeUFJJfangrUBZYBltJ9/Aj0AmpbOGaJkjGbDYAuQgjz2TFVwNpflhgnyqQkJeBZKgzVuGUbNBoNmenmow9KwtG2tnZMmv4Y65bLiSEV6RPjYmnaui32DjLfe9suPbgWftms3mtXLhFcO9S4vX/HFgaOlpOPBo6ewL4df5lpLpw+QXDtugQE18LG1pY+Q0exb8eWSvVCCHoNHM7OTWvN6vTy8SPeMKO+WhG5zzQZqCAT7EqFsdxrycH5lrx7doZwtEYrPZTXDOOmEs5Ij6HQSK+IRx3pqSzMkoZoSfjap6HlCUI5iTIUX0LiWdPko+AOsv7yZERJjaOXNI4D25jKVaRPuiBno2tsZV+96pXtj72rnPhUzfh+0TfGiTIJ8XH4+ZmGSbRt3wGNRkOqhRu4knC0nZ0dTz79LIu/lxNDKtI7OTnh7CK/I05OTvTp15/z58w/u4sXzlO3fn3j9uaNG5hkmHw06e572LRhvZkm7OgR6tZrQO06dbC1tWX0uAls3rihUr0QgpGjx7J65QqzOv38A7gWaWFlhDudi3+bJgPlZUhvfQneofL6LrDg3Su5QdPYQLNBcNEwxCnqBPg2kNeM1hZ8QqWn8vgaWP08rHkR9nwnJ+vs/cG83ow4cC01tCH6JNQzBPvqdYUoM58LpETK8L2zt/y9Ce0oddb0cWfBM1j2UWjAr6FsuwRHdzl7XeWO5XYPoxsRQjQBtEhDMwMIEkI0VRTlnBCiDtAaOF5aoyhKkRDiJSC8pGy5Y/OBucD26+2HoihxQoi5SK+ouZVTxfQaOIwRk+5Fp9NRmJ/PW3MeMx57+6ulzHvlOVKSEpj4wKN07n0XGo2Gdb8t5fjBfVb150+FseuvjXy1YjM6XTGXz51hw4qfzdo/tHsHc99bYNz+9dvPeWne1wweO5nEuBjenC2XK/L29Wf2Gx/y4qP3odfp+Oztl3lv4c9oNBo2r/6NyPCLVvUArTp0ITkhjrjoa2X60Kh5K86dPGacpFStCWwFtbvKAfy6IhkuL6HDdDi1Qhql9fqAX1NASEOzJPyckygNuR7PAopchijbEDY7swba3C0NwtxUOPmbefuJ56HNFNN2+Ha5dFGtTtKbEbZU7rd3k+M+j3wn+3pmNXR6WPYn+rDJcKxIX5wHV3dBd8PolcRzkGS4nN1DpOe2ZBJDNWbE6DFMm/4wxcXF5OfnM+MB06oLv/y+mqefeIyE+Dgen/UMAwcPQaPRsPi7RezZ9bdVva+fH4t/lp+vjY0Nq1b8xvat5isbbNvyF18u/M64/en8j/h28U9Mve9+oqOimH7/VAD8AwL55PMvmTJ+DDqdjuefe4blq9eh0Wr55cclXDh/zqoeoGv3HsTGxhAZEVGmD63btuPo4UPGSUrVmtrtoFEv+d0uLpQzzkvo+4Rc4igvA5oPgOCW0hi9uAsSDOHnzHiIOwPDXgb0cjJQRuz1tx97BrqV8nie/lMuXVS/u5z1vnuh3O/oDl3uhR2fy74e/g3uekoajuH7TIZjRfrCXDi3VY4rRYGYMxBzWh7zqg3JV2rE9V2dEdc7dqYqEELogJLZJgJ4QVGUDYZj3YGPkeM5iwzHthiO7QTmKIpyxLD9LNBMUZTpQogIoIOiKMlCCHvgKvCXoijThBDTkOH1mFLdeAyIBdYritLCUJ9AGrZPKIqy21Lf3RztlE71/P6T83Cn8dqCb1n08dvEXLtaJe0/Nvd19u/4i7CDVmZZ/sfU6Nzo7e6H8xtMoflbTdNRkHjGZEDfAmpybvTFP//GG6+8YAzN32refv8jNm9cz+6/d96yNmt0bvRej8iJRFn/xdjsf0CHiRB9wjR+8xYg7v3mqKIo6hT4/5Db2rOpKEqFs2wURdkLdKngWJ9y2x+Xeh1a6nUBEFRqezGwuIImW5QqpyA9qSoW+Hb+O3j5+lWZsRlx+cItNTRrPBc2Ss9lVRmb2fG31NCs6bz56kv4+wdUmbF57uyZW2po1niOr5bjK6vK2EyPvaWGpsrN4bb2bN7J1GTPZk2kRns2ayA12bNZE6nRns0aiOrZ/O+5YyYIqaioqKioqKio3Hnc1mH0OxmNELjYq6e3xqBTB6/XJHTq512z0Kh+GRWVf4N6BamoqKioqKioqNw0VGNTRUVFRUVFRUXlpqEamyoqKioqKioqKjcN1disRjzx6gcs3nqEBcv/tFruoede5as/dvLJb5uo16S5cX/bbr35YtU2vvpjJ2OnPWrcP3nm03y3+QDzf9nI/F820r57H4v1evr48uIC04LP4x54jK/+2MkXq7bRpmsvixoXN3de+/JHvlyzg9e+/BFnV7dK9VMfn8O3G/fxy56yGU6GTrqPfiMnWH3v1YrWk2Dg69D7Oevlmo+Bfi9A7zngHmza79sE+s6Vxxr0M9fV6wMj5oGdhfR4ILOWdJpu2m5wl6yr71zwbWxZY+sEXWZC3+fls61j5fomQ6D/yzDk3bJ1hfaAWuYpFasrn331DRcioth7+JjVcu9+OI8jJ8+y++ARWrVpY9x/14CBHAw7xZGTZ5n17JwymocfeYyDYafYdziM1956x2K9/gEB/PL7auP203Oe48jJsxwMO0W//gMsajw8PVm1biOHT5xh1bqNuHt4VKp/8dXXOXXhMtcSymaMeWjmo9x9733UGDrfA2Pfh6EvWS/XfgKMeA2GvAietUz7A5vB8FflsWYDTftbDoPR78gF1Ic8D0HNy9cocXCTudhLaDZI1jX8VQhsallj5wR9n5Tl+j5Z9vquSN9qJIx6GybMK1tXo95Qz+Lqhip3INXO2BRCBAghfhVChAshzgohNgohGgkhmgshtgshLgohLgkhXjYszl6iGy2EOCmEOC+EOCWEGF3q2GIhxHjDay8hRJgQwkIi2apl+7rfeeMJ60t0tO/eh8DadXl0VB++fOsFHnn+bQA0Gg0z//cGbzw5jSfHDaDn4JGE1G1g1K39+TuemTKUZ6YM5ejenRbrHnnPQ2xZ9SsAIXUb0GPQCJ4cP5DXn7ifR+a+icbCIPtxDzzKyUP7eGx0X04e2se4Bx6rVH941zaeu2+UWV1b/1jO8MnTKj1P1Yaow3BwofUyfk3BxQe2vwMnVkDL8YYDAlqOlfod70NQO3AxpTLEwQN8G8nMQRVRrw9EHpCvXfwhqC3sfB8OLISW42Qb5WnQD5IvwY535XODuyrXx5+F3Z9YeP8HoW5P6++/GrHspx+ZMHqE1TL9Bw2mfoMGdGjVjGeeeIyPP/kMkNf3B/MWMHHMSLq2b824CZNo3KQJAD169WbI8BH07Nyebh3b8vmC+RbrfuzJWSz94XsAGjdpwtjxE+nWoQ0TRo/gw/mfWry+n372Of7euZ2OrZvz987tPP3sc5Xq/9y4gf69e5jV9fPSxcx49PHrPFvVgCsHZEYeawQ1l6kh170Gh36GjoYl2ISADpOkfsObUKcDuAWYdOe3w6Z35SPWQkpZgCZ3yYxDILV12sOGt2SdHSbLNsrTbJDMXrTuNfncfFDl+piT8Of75nWF74NGfa2/f5U7hmplbBqMx9XATkVR6iuK0gx4AfBHppZ8T1GURsgF2bshswMhhGgNfASMUhSlCTAS+EgI0apc/e7An8BCRVEsJJKtWs4eO0R2RobVMp36DGTn+lUAXDwVhrOrK54+vjRs0Ya46EgSYqIoLi5iz5/r6NxnoNW6ytO13xCO7ZNp8Tr3GcieP9dRXFRIYmw0cdGRNGzRxrw/vQewY/3vAOxY/zud+wyoVH/xVBhpyUlmdRXm55MYG03D5jVkvf3UKzLNmzUCWkDUEfk6PVJ6GuxdwbM25CRLY1LRQWyYLFtC81FwzjzPdRkCW0HSeVM7sWGg10Feqqzbs3YF/TksX0cdNrVpTZ8eCQVZ5nXpiiA3DTwstFMN2b93D2mp1vO/Dx02gl+XyZSlRw4fws3dA/+AANp36MjVK+FERlylqKiIVb8vZ8hwabg++NAMFnz8IYWFhQAkJ5lfWwAjRo1h2xYZNRkyfASrfl9OYWEh1yIjuHolnPYdzL3MQ4aN4NefZX9+/fknhg4fWan+yOFDJMTHm9WVl5fHtchI2rWvIcsfJl2GQgt50EsT3AquHpSvUyKkZ9HBTeZRz06S+cT1Oog8CiE3+LtYu63MWQ5SG3kU9MWyzuwk2UZ5QlpJIxnkc0mb1vQpEZCfaV6XrkiW9a5zY/1WuS2pVsYm0BcoUhTl65IdiqIcBxoBexVF+cuwLxd4ApkXHWAO8I6iKFcNx68C7wKl45MuwCZgmaIoX93k93HT8PLzJznBlBs3JTEeL98AvHz9SY4vvT8OLz+Tp2vYpPv55LdNPPHqB2VC3SX4BYWQk5VBcVGh5XYS4vDy9TfTeXj7Gg3HtOQk3L18bkhfnsvnTtKsbc0JrVaKgxvkp5u289LBwV0+8krtzzfsB/BvDvkZkGklh7KjFxTlyj8ysFBfhqm+0ti7mgzHgiywc7kxfXkyosCrbuXlagiBQUHEREcbt2NjYwgMDDLsjzLtj4khMFAOqajfsCFdu3Vny87drNu8hbbt2pvVW7tOKOnpaUaDNDAwuGw7MdEEBgWZ6fz8/IyGY0J8PL6+vjekL8/xY0fp2t3c61ljcfKQN1wl5KbJfY4ekFN+f6nrqVFvGXbvfE/ZUHcJzt7yRlZfbGjHvVw76bKN8ji4mgzH/Ey5fSP68qReA98GlZdTue2pbsZmC+Cohf3Ny+9XFCUccBFCuFk6Dhwx7C9hHrBHURTLMSZACDFDCHFECHGksFj3T/p/0xGWQpsoCEshEUN2qU0rfuKRkb14ZvJQ0pITeWC2+RgiTx8/MtJMIVdr9V1XP/+hPiM15bqM0pqDpc+7ov0KaG2hYX+4sNl6tQ5ulXtdbgUF2ddnlNYQLF03imL5+i7JHmdjY4O7hycD+vTk1Ref5/sfl5mVDQgIICXZlI7UWn3/pp+VkZyUREBg4HW3U/25gd/Jkt2XdsG6V2DTO5CXCe3GmZd1dIf80tGECn4v/k0/r0efnyX7onLHU92MzYoQVPzNVio4Xn7fdmCUEKLCHJSKoixUFKWDoigd7GwqTOtepaQkxuPjb/IgePsFkJqUIPcHlN4fSGqSzIWbkZqMXq9HURS2rPrVYpi6sKAAOzt7UzsJ5drxDyQ12Ty3bnpKEp4+0tvh6eNLRmryDenLY2dnT0FBfqXlagz5GXL8ZQmOHnJffnpZz4KDh/REOPmAk5ecTHTXS9KQ6zVbeiRLoysCTamkBfkZ5epzl/vKU5BlqsveFQqzb0xfHo2N7IsKID2WwSEhxu2goGDi4+MM+02TR4KCg4k3RDJiY2JYv3YNAMeOHkGv1+Pt41Om3rz8POztTdd3bGx02XaCQ4iPizPrT2JiIv4Bcqygf0AASYYQ/fXqy2Pv4EBeXl6l5WoMuWng5GnadvKEvAwZJXC2sB+kAacogALheyyHw3WF8sbT2E56uXY8TPWVJj9L3oiCIaqSdWP68mht1eu7mlDdjM0zgHkMSO4vM9BHCFEPyFYUJcvScaAdcLbU9q/AV8BGIUS5f947h0N/b6HP8LEANGrZlpzsLNKSk7h05gSBtULxCwrBxsaWHoNGcOjvLQBGYxCgc79BXAu/aFZvbOQV/IJMfx6H/t5Cj0EjsLG1wy8ohMBaoVw6fdy8P7u20ne4nLTSd/h4Y5vXqy9PUJ26XLts3r8aS/xpqGX4anvUgaJ8afClR4GzrwyHC62cnBN/GrLi4K9XYdtb8pGfAbvmmY+ZzEmSRmnpdoLagkYr63T2hbRrFvpzxjSDvFZHqbsRfXlcfGWfVQDYtGE9k+++B4AOHTuRmZlBQnw8x44eoV79BtSuE4qtrS1jx09k8wY5JnfDurX06t0HgPoNGmJnZ1vGiwkQfukSteuYxs5t3rCeseMnYmdnR+06odSr34CjRw6b9WfzxvVMnir7M3nqPWzasO6G9OWp36Ah589WMKGlJhJzCup2lq+9Q6EoT940pkTKiUPO3vKaqtNeTsQBkzEIENIGMiwMl8lMlFpjOydlHRobud/VT461LE/0SdMM8npd5PaN6Mvj6me5fyp3HNUtn+J24B0hxMOKoiwCEEJ0BC4BLwgh+iuKslUI4Qh8Cnxg0H0ErBBCbFcUJUIIEYqcWDS+dOWKonwihAgEVgshhiqKUniL3td1MfudT2nRvgtuHp58u2k/v349n61/LGfQuKkA/LnyZ47u2UH7Hn35+o+/KcjP49PX5LBUvU7Hovdf4dUvlqLVaNm6djlRVy4BcP+s56nbqBkKComx0Xz19gtmbRfk5xEfHUlArTrER0USdeUSe7es5/Pft6DTFbPwvVfQ62WKv8dffo/Nv/9M+LlTrPrhK557/wv6j55IcnwsH/yfnI1uTX//rLn0HDwKewdHvt20n61rfuPXbz4BoEnrDvy6cMFNPc+3De3uAe8Gcmmi/q/AhT/lDO06XeXxyP2QeE7OSO/3gvQQHP9FHlP0cHoVdJkBQgNRhyA74frb1hXKSTxOPpCbLLVxx6HP/wx1r8QYGGg1ESL3QUY0XN4G7e+DWp0hLw2OLpVlrOmbDofgdtLL0f8VuHYQLhqW9/KqCxf/+nfn8Q5h0eKldO/ZC29vH05fDOe9t97kp6WLmTb9YQAWf7eILX9uYsCgwRw9dY68vFyemCmP6XQ6/u/Zp/n9j/VotVp+XrqY8+fOAXKW92dfL2Tv4WMUFhby2IyHzNrOzc3l6tWr1K1Xn6tXwjl/7hxrVv7O/qMnKC4u5v9mzzJenwu++Iofvl3E8bBjfPLxh3z/4zLuue8BoqOjeOCeKQBW9a+99Q7jJ07CycmJ0xfD+XHxD7z/zlsAdO7alQ/efevmnujbhW4PgH8jsHeB0W/DyQ1wZR80MKzAcHk3xJ6WM9JHvC6vyQM/ymOKHo78Bn2fkNf3lf2QYbgpazsGPEPk5ZWTAofMh02gK5STeFx85XNGHFw7BsNelnUf/tUUru80VfYl9Rqc/Qt6TIf63SAnFfZ8K8tY07cZA6EdwMZOvs/wfXBqgzzmWw9Ob7gpp1fl1iJuZJzNnYAQIgj4BOnhzAcigKcBB+AzIBDQAj8CbyiGEyCEGAu8DtgCRcCriqKsMhxbDKxXFOV3w/YPgBMwRVEUi0mSPZzslT5NatbYos59B1G/aQuWfflxlbRft3FzRt0znU9enn3L217z+thb3maVE9AS3EPgwqaqad8tGOr3hjALf5Y3Ga/JX9zyNquaYSNG0rptO95547Uqab9l69Y89uQsHn3owVveduqi6ZUXqm6EtAav2nByXdW07xkil1/av+SWNy2mfnVUUZQasuzBraG6eTZRFCUWmFjB4T5WdKuAVRUcm1Zu+7ZbY/N24OCOP3F196iy9t08PFn25bzKC6r8N8SfkkutVBV2znC+igzdGsiGdWvx8vKuvOBNwtvbh3feeL3K2q9xRJ8A+woSOtwK7F2qztBV+c+pdsamStWydc1vVdb2iYN7qqztGsu1g1XXdrI6NvdW8+OSqlteeOf2bVXWdo0lfF/VtR1/vuraVvnPqW4ThFRUVFRUVFRUVG4jVM/mTSIzv5A/T0dXXlCleuBkV9U9ULmFvDZWHc5Vk/hb/S1XUflXqJ5NFRUVFRUVFRWVm4ZqbKqoqKioqKioqNw0VGNTRUVFRUVFRUXlpqEamyoqKioqKioqtwFCCOU6H5uruq83QrWcICSECAG+AJohDer1hu3tQO3SC7ELIY4DM4ChwMNAUqmq+gBtgB3ASEVR1hk064GPFEXZeXPfyb+jZ6/erFi5ioiIqwD8sWYN775tnn2jd5++vPv++9jZ2RF27BiPzHgYnU7HM7OfZdIUmfHDxsaGJk2aUisogLS0NLM6Nv25hYnjx5KVlcWAgYP4aN48tBoti3/4no8+/MCsPMDH8+YzaPAQcvNymTF9OsePhwFUqH/x5Vd48MHpJCXLj+jVl1/mz82baN6iBbOefoYZD9XAhZc96kHr+yAvVW4nnYGrFpaI8awPDYbK1HVZMXBupczkUbsXBLSRZYQGnP1g15tQnAe1ekBQR0CB7Hg49zvoi83rrtVdpsmLPwY2jtDibnD0lBmCTi+TdZXHqxE0GgFCQOxhiPxb7q9I7+AJXWZDruHyzLgGF9bI122nw6kK2qlmBDdpy/Bn3iMzSWaDCT/yN4fWmC9HFNKsHT2mPIHWxpbEqxfY+u27KHod7YbeTeNuAwHQaLV4BtVh0WPDKMiR6UiF0DD5je/ITkti3bz/s9iHNoMmkp+dyfm9m7F3dmXIE2/i5hNAZnI8mz57mYLcLDNNnZad6XXv0wiNhjM713F0/U8AFepdfQK49/1lpMXJlKXxl8+wY/GHAIz+3ycVtlPdcK/bghb3vkh+qszulXx2P5HbzZeX86jXinpDHkBjY0NWTDgXVn0Kej0hPcfg37o3AEKrxck3hH1v30txXjadn1tEcUEe6PUoeh3HvnzWYh+Cu42kOC+LhLAd2Di60Gzy/2Hv6UdBWiJnf3mf4vwcM41nw3Y0GP4QQqMl7vBfRO1aCVCh3t7Dj47PfEFeUgwAmVEXuPTHVwC0evANzi6z3E51RaMRlZbR6xWfW9CV/4xqZ2wKIQRycfavFEUZJYTQAguRhmQU0BP421C2CeCqKMohIcRQYL6iKB+Vqw8gGngRuONWmN27Zw/jxoyq8LgQgm+/+54hgwdy+dIlXn71Ne659z6WLP6B+fM+Zv48mQ1o6LDhPPnULIuG5uAhQzl18iRZWVloNBo+WfApw4YOJiY6mj37D7B+/TpjarwSBg0eQv0GDWnRrAmdOnXm08+/oFePbpXqP/t0AZ/ML7tw+5nTpwkODqFWrVpERUX921N255F+FU5Yy7IhoNkEOPYt5CVDvQEQ0A7ijsC1XfIB4NNUGpjFeWDvBrW6wYF50sBscTf4t4a4o+Wq1kBgBzj8mdwO7QNpl+H431Cnt3yEl78BF9B4FIR9BwUZ0PEJSD4HOYnW9XkpcOhT87cXFwYhXSBix42fuzuQ2AsnKjQEARCCATNeYvV7s0iPj6Lz2Ido2nMIZ/9ez7GNyzi2UWZcqtu2O20GTzIamgBtBk0gNTYCO0fLi3kLjZZmvYbxy8syi0+HEfcSdeYIR9f/RPvh99B+xD3s++2rct3R0Of+Z1n9/tNkpyYy6Y1vuXpsD6mxEVb1GYkx/PLSNLM+nN/7Jy37j+HI2qU3ctruWDIiznJ66ZsVFxCCxuNncfK7l8lLiSW0/90EtL2L+KNbiN69mujdqwHwbtKR4O6jKM7LNkpPfPsixdaMdo2GgPb9OfrF0wDU7j2etPATRO1aSa1e46jVezxX/yz32yM0NBw5k5Pfv0JBZgrtHvuYlPOHyE2MsqrPT43n6OdPm3UhIWwnQV2Gcm3nius6X9WB6wk5W0xdeBtTHcPo/YB8RVF+AFAURQc8AzwI/AJMLlV2smFfZZwAMoQQA/7jvlY53t7eFBQUcPmSzIO+fetWRo8xT704cdIklv/2q8U6Jk+Zwrp1awHo2LET4eHhRFy9SlFRESuWL2f4iJFmmuEjRrDsZ5nH99Chg7h7uBMQEHDd+vJs3LCeCRMnXff7rlHYOkmDMS9ZbqdeAr8W5uX8W0PCcdO20IDGVj5rbaEg01zjWR+yYqWXFMCnGcQdk6/jjoFvc3ONWy1pOOangqKDhBNSd7368iSfk31XAcDRxR1dcRHp8fLGK+r0YRp07GNWrlGX/lzcv8W47eLpS2ibbpz5u+J76lrN2pMYeRFFrwOgXruenNstszid272J+u17mWn86zclPSGazKRY9LpiLh3YRr32Pa9bX56rx/bQuGu1+yn+x9g6uaLoislLiQUg7fJxfFp0NSvn27oXiSd23VDdnvVakR0bDoa89d5NO5EQth2AhLDt+DTrbKZxC2lIXkoc+WkJKLpiEk/uxrtp5+vWlyfl3EH8Wlf+vaguCKQTqLLHnUZ1NDabA2XcL4qiZALXgOPAaCFEiUd3ElDagnpGCHHc8CjvJnkLeMlaw0KIGUKII0KII7dLyvnOXbpw8MhR1qxdT9NmzcyOJycnY2trS7t27QEYM3YsIbVCypRxdHRkwMBBrFltMZsnXbt2I+yYPOVBwUFER5u8izEx0QQHBZlpgoKCiY4yrV0XEx1DUFBwpfpHHn2MQ0eP8fXCRXh4eBj3Hzt6lG49elg7FdUX99rQaRa0fkCGwctTlANCC67BctuvJTh4lC2jsQXvRpB4Wm4XZMK13dB9LvR4AYrzpZFq1nYdGZYvwc4FCg2eksIsuV0eBzfIzzBtF2RIT2plekcv6PQUtJsBHqGm/cV5oLEBmypMnXkLCWjQgilvL2bknI/wCq5rdjwvKx2N1ga/uk0AaNCpDy5eZb8XNnb21GnVhcuHdxr39bpnFnt+/RJFX/GPV2CjliRevWDcdnLzJDcjBYDcjBQc3TzMNC6evmSnJhq3s1MTcfb0rVTv5hvIlDd/YNyLnxPUyHQzUZCbhdbGFgcXtwr7WZ1wq92Y9k8uoOX9r+LkV8vseFFOJkKjxSW4AQA+Lbph7142wqqxtcOrYTuSz5gyAikKtHrgDdo9Po/AjoMst12nKVmxl43bdi4eFGbJ6FZhVhq2Lh5mGjt3bwoyko3bBRnJ2Lt5V6p38PSn3ROf0Prhd3APNf1XFefnILS22Di6WuxjtUPIMHpljzuNahdGR94YWPq1FEAacAa4SwiRABQpinK6VBmzMHoJiqLsNtxR9KyoYUVRFiJD9mg0osrNzeNhx2jcoB45OTkMGjyE5StW0rJ5U7Ny990zlQ8++hh7e3u2bt1CcXHZcXnDhg9n//59FkPoAJ5eXmRny9CMpTsuxYLlXVE5a/pF33zNu2+/haIovPr6G7z3wYc8MuNhABKTEgkMDLTYv2pNVgzsfR90heDdGFrdB/stfIVP/wKNhoOwkUajUi4I49MU0iNN4x5tHKWXcd8Hcl/LqXJsZ/zxsjp7V8hN5Mb4Bz+UBZmw5z0ozpVGc6t74cB80BXI44XZsi/FuTde9x1EUsQFFj8zjqKCPOq07srwp99l6XOTzcpt/uIVek59Cq2NLddOH0LR6cocr9u2B3GXThpD6KFtupGbmUZSxAWCm7StsH1nD29SYyNurNOWvDCV3I3npqfww9Njyc/OxDe0McOffpef595DYb78fHMz03D28CE/24K3vRqRHRvOgQ8eQl+Yj1ej9jS/50UOz3vErNy5Xz+kwbDpCK0taZfDUPRlr2/vJp3IjDxXJoR+/Jv/UZiViq2zO60efIPcpGgyIs6U0dm5epGbdKML2lu6vq1/3oVZqRx4fzrFeVm4BNWn+T0vcGTBE+gK5O9RUU4G9m5eFOdV/3G6UD29gNXR2DwDjCu9QwjhBtQCwjGF0hO4vhB6ad5Gjt20MEui6pn5yKM8MF1OkhkzcgRxcXHGY39u3sSCTz/D29ublJSUMrqDBw/Qv18fAO7qP4CGDRuWOT5h4iRWVBBCByguLkYIgaIoxETHEBJiuvsODg4htlQ/SoiJiS7jQQ0OCSYuLhY7O7sK9YmJJqPm++++ZdWaP4zbDg4O5OflV9jHakNIFwjqJF8f/8HkBQRIuQBitAybF5UzujKvwdFv5GuvhuBUbmx5+RC6VwMZ5i4yDMpPPCO9mOWNTX2x9IqWUJgNdq4Gr6Sr3C5PfgY4uJu27d1NIfqK9IrOZEhmxcgJUU4+Jq+qxsby5KU7nFb9x9K8jxxGsvajOeSkmzxGkSf2o7n/WRxc3MnPziiji798hpVvPQZA7Rad8Awo6xFr1OUuLuzfatwOatSKeu16ENq6K1pbO+wcnRn4yCv89fUbZXTFhQXY2Nobt3Mz03By9yY3IwUnd2/yMtPN3kN2amIZz6qLl5/xfVSk1xUXocsuAqSBnZEYg0dgbRKvynzZNrZ2FBcWVH4C7zCCugwlsIOcwHVqyRsUZqUaj6VePEpD7SPYOLmajbPMjLrA8YXPA+DZoA2OPsFljvu16kniybIh9JK6i3IySD57ANeQhmbGpr64AI2N6fouzE7HztWTwqw07Fw9KcpON3sPhRnJZTyr9u4+FGSmWtUrumKjIZkdG05+ajyOPsFkx0ivqsbGFl1RoZUzV30oCaNXN6qjAb0NcBJC3AdgmCD0MbBYUZRcYCVy5nn5EHqlKIryF+AJ3JYDxL75+iu6dOxAl44diIuLw9/f33isQ4eOaDQaM0MTwNdXhrTs7Ox4ds5zLFq40HjMzc2NHj17sW7t2grbvXTxInXr1QPgyJHDNGjQgDqhodja2jJh4kQ2rDcfA7Zh/XrunnovAJ06dSYzI5P4+Hir+oCAAKN+1KjRnD1j+mFs2LAhZ86cptoTfUBOkjn0qXmY2S1EepHKG5oAtoYJH0IrJ93EHDQd09qDZ11IOmval58ObrVNhqRXfcgpvVCDgZxEcPQ2bSefhcB28nVgO7ldnqxocPKWM8yFVhq6JeUq0ts6Y/SYOHjJNvNMf8TYuUK+Zc/7nczJrav45aVp/PLSNHLSk3Fy9zIe86/XFCGEmaEJGMPRWhtb2g+fyqnta4zH7BydCW7SlivHdhv37Vv+Nd/PGsPi2ePZ/MWrRJ89am6xFxkAAQAASURBVGZoAqTGRuLubzJkrhzbQ9OeQwBo2nNImTpLSLhyHo+AENx8A9FobWjY5S6uHNtjVe/o6oEQ8u/JzTcID/9aZCSahms4uXuTmRxv/eTdgcQe2MjRz5/m6OdPS69jqTCza0hDEBqLE3psneXNm9DaUKv3OOIOmiblae2dcK/bguSzpmteY2uP1s7R+NqzQRtyEq6Z1ZubGI2jtylilHLuEP5t+wHg37YfKecOmWkyYy7h6BOEg6c/QmuDX6uepJw7aFVv6+wmx4Yjw+mO3kHkp5o+XzsXT/LTE6ydumqFEJU/7jSqnWdTURRFCDEG+FII8TLSoN4IvGA4ni6EOAD4K4pytZz8GSHEPaW2R1to4m3gDwv7bzvGjB3HwzNnUlxcTH5ePvfdM9V4bPUf63jskRnExcXxzOw5DBk2FI1Gw6JvvuHvnabhqiNHjWbb1i3k5lYcnty0aSO9evXmSni4XDLp6Vms27ARrUbLkiWLOXdWGgwPPTwDgG8XLWTzpo0MGjyYM+cukJuXy8yHHgKwqn/73fdo1bo1iqIQGRnJk489auxD79592Lxp03938u4U/FpCcBcZFtcXyaWCSmg9TS5xVJgFdXrJUDkCYg5AWnipOlrI0Lq+yLQvMwoST0GnJ2XdWbFlDdQSUi5As1ITsyL+hpZ3yyWT8tPh1M9yv50rNB0HJxbL+i6shbYPAho5Kz4n0breo66cRa/oDfo1ppC/a7Dsb/mhAdWQBh370vKuMej1xegKC9n05avGYyPnfMS2b98jJz2ZdkOnUrdNN4RGw6ltq4k+e8xYrn6H3lw7fYjighuPBESe2M/AR14xbh9d/yNDnniT5r2Hk5WSwMbP5LB2Zw8f7npoLms/moOi17Fz6XxGPTcPjUbLmV3rSY25alUf1LgNXcY9hF5fjKLXs2Pxh8aQv1/dJsSHnzFOUqrO+LboTlDnISh6HfqiQs79+qHxWIv7X+Hiqs8pzEqlVs8xeDXpiBCC2IObSb9y0ljOp3kX0i6HoS8yeYLtXDxofs8LgFxhIPHE36RdMn1HSki9eJQmE2Ybt6/9vZJmd/8fAR0GUJCRxNll78v6XL1oNPYJTi95A/R6Lq/9hpYPvIYQGuKPbiU3Mcqq3j20OaH9p6LodSh6PZf++NIY8ncJbkBm1AXjJKXqj0B7B47JrAxhaTydyr9HoxGKvY22qrtxSwgICODb7xczfOjgKmnfzs6OLdt20K9PL3S6qvkDyts0p0ravS1oeS9c3ihnmFcFjUZIr2xpA/om8+licw9eTWHYrHfY8+uXZCTc6Fi+/4Ze98ziyrE9RJ89Wnnh/4jWtbwrL1RNaT71ea5sXkxeivlwqFtB/eEPkXLuEOnhJysv/B/R5911RxVF6XDLGiyFjUajuDjYVlouI6+wyvr4T6iOYXSVW0x8fDw/fP8trq5VM1uwVu3avPTiC1VmaNZ4wjeZZpNXBdnxt9TQrOns/e1rnD2qzvhKib5ySw3Nms6VP5di5+pVecGbRE78tVtqaFY51xFCvxPD6Kpn8yZRkzybKjXcs1kDqcmezZpITfZs1kSq1LOp1ShujnaVlkvLKbijPJvVbszm7YJWCK7HFa5STVBvLGoUh69YmCylUm1pH+pb1V1QqSEIpP1Q3VCNTRUVFRUVFRWV24RqaGuqxqaKioqKioqKyu1CdVxnUzU2VVRUVFRUVFRuB+7QCUCVoRqbKioqKioqKiq3AQKhjtlUub1Z8MXXDBg8hOSkJHp1qXiS2jsffEz/gYPIzc3lqUdncPLEcQD69R/A2+9/hFar5acli/l0vsyxPfelVxg8dDiKXk9SchJPPjKDhHjzNdf8/QOY99kXTJ0os4XOmj2HqfdNQ6fT8cL/PcuObVvNNB6eniz64Udq16nDtchIHpp2Dxnp6Vb1L7z8GhOnTMXDw4PQINPA/ekzHiE3J4dffv7xH52/O45GY2U+9KIcOPJpxeXqD5PldEVwYSVkx8r9ng2hwTCZuSPuCEQZ0tnVGwzeTUCvkykrz68EnYUFwO1codFoOG0437V6QWAHubj65fWQdtlcY+MIzSaDvQcUpMPZX6A437o+dAD4twFbR9hTKqtNUBeZEz7BfDHq6shDz79D2+59yUxL4fl7h1dY7t6nX6J1194U5Oex8O25RF6USRFadu7JvU+/iEajZee6Faz/SWYKG/fwLNr1uAtFUchMS2Hh23NJTzbPd+/u7cv0/73FvP+bCcCIe2fSe/h49HodP85/i1OH9phpnF3deeLNT/AJCCY5PobPXp5FblamVf34Gc/QY/BonF3deHiAKU97/3H3UJCXy+6Nq/7hGbyzaDD6CTwbd6AoJ4Pjn8+qsFzdoQ/h2ag9+qICLq36lJy4KwB4NGhLvWEPgdCQcHQLMbvleat91914NemEoigU5WRwedUCCrPMs2/ZunjSYPRjnPvpbQCCe43Dv11/UPRc2bCI9MvHzTQ2ji40njgHe08/CtISOf/bh+jyc6zqa/efil+bvtg4OHPgrSnGugI6D0VfmE9i2PZ/dP7uZKpjGL1ar7MphNAJIY4LIU4LIdYJITwM+0OFEHmGYyWPkvSWEUKIU6X2dytX/qwQYqkQ4rabav7rzz8yeewoq2X6DxxEvfr16dSmBc/OeoIP5ksjRaPR8N7HnzB53Ci6d2zLmPETaNS4CQCfL5hPn26d6NujC1s2b2LO/563WPcjTzzFj4t/AKBR4yaMHjeBHp3aMWnsSN6ftwCNxvzr9tQzc9j99046t23J7r938tQzcyrV/7l5I4P69jSra9mPS3j4kceu82xVAxKOwakl1st4NZI5xA/Ng4troOFIwwEBDUdI/eEF4NcKnAyGe9plOPwpHP0McpOhdm/LdYd0l0YqSK1fK1nXqSWGdiz8YNbuJdfEPDxfPtfqXbk+5TyEfW1eV/xRCO5q/f1XI3ZvXMUHs6dbLdO6a2/8Q0KZM2kA33/wMg/MeR0AodFw/7Ov8uGzD/O/qUPp2n84QaH1Adjw87e8eP9IXpo2iuN7dzD6gcct1j1k8gPsXLscgKDQ+nS5axhz7xnKh7Mf4v45ryEsXN8j7p3BmSP7eW7yQM4c2c+Ie2ZUqg/bu51XHx5vVteu9b8zcMJ913m27nwSw7Zzdql5ytDSeDZsj6N3IMc+eZTLf3xJ/RGPyANCQ70RMzmz9A3CPnsS31Y9cfQNASBmz2qOf/E0J758hrQLh6nVZ5LFuoO7jyThyBYAHH1D8G3Zg7DPnuTMktepN+IRY3rJMpqe40i/cpJjnzxG+pWThPQaV6k+9fxhTnz9nPn7P7aVwK4V31RVZ6rjOpvV2tgE8hRFaaMoSgsgFSj9KxpuOFbyWFrqWN9S+/eVLg+0BEKAibfkHdwA+/ftJS0t1WqZwUOH89svMqXh0cOHcHd3x98/gHYdOhJxJZzIiAiKiopYs3IFQ4bJCz07y5SL18nJiYrWZh0+cjTbt/4FwJBhw1mzcgWFhYVci4wk4ko47Tp0NNMMGTac35b9BMBvy35i6PARleqPHj5EQoJ5XuS8vDyuXbtG2/Z3zNJj/46MCMt50Evj3RTiw+TrrCiwcZAeSbcQmVs8Pw0UHSSelGXB4FE0pIbLjKp4wXaf5pB60dRO4klZV36arNstxHJ/Egz9SQgzpNCsRJ8VJVNulkdfJL2jrhbaqYZcOHGEnEzzPOiladfjLvZsXg1A+JkTOLm64u7tS/2mrUiIjiQpNgpdcREHtm2gfc/+AOTn5hj19o5OUMH13bH3IE4elN7v9j37c2DbBoqLikiKiyYhOpL6TVuZ96fnXezeJPuze9Nq2vfqX6k+/MwJMlLMl5YqLMgnOS6GehbaqY5kRp41pmysCK+mnUg8vhOA7OiL2Dg6Y+viiWtIQ/JT4ihIS0DRFZN0ag9eTTsDoCvIM+o1dg4oWP68vZt1Naaw9GramaRTe1B0xRSkJ5KfEidztZfXNO1EYphMd5wYtgNvQ5vW9NnRFynKNves6osKKUhLxCXYvJ3qjAA0QlT6uNOo7sZmafYDwf+2EkVRdMCh/6KuqiAwKIjYaFOaudiYGAKCgggMDCKm9P7YGAKDTG/xhZdf4/jZS4ybOJn3337TrN7adeqQkZ5GYWGhoZ1gYmLKthMYGGSm8/X1MxqOCQnx+Pj43pC+PCfCjtKla/dKy9UY7N2goJSBUpAJdm7yUX6/vbu5PrC9yaAsjYOnzE2uGLI22buXqy9DtlEeOxeT4ViYBbYuN6YvT1YMuNepvFwNwdPXn9RE041YamICXr7+FvbH4+nrb9weP+MZPln1N90GjmDltwvM6vUNDCEnK4P/Z+8sw6O4ugD83t24uweCu7tT3N0qFGpUoPq1hVKjbrRQd1qggru7FXd3Qtzdk818P+4mu8luNqEFQjb75pknO3fuuefM3J3ZM9dOQX5+sZ7EWN1QmuRS5RXh4u5V7DimJsbjoo08VFH50ty4eIYGLarJy2QFsHHxIDc1oXg/NzURWxcPbFw8yNNLz0tNxFYvClCNPg/S9uVf8G7enbDtfxuUa+vmQ0F2JoqmQO47lyovLREbF8OoQtaObsWOY35GMtaOrrckX5qMqKu41Gxcbj6zQliczSqLEEIN9AbW6CXXKdWNrt8vu1ObdshIWXZAB2CTkWNThBBHhRBHC+/RyEzGxoIoilJmehEfvjeLlo3rsXzJIh578imDvL6+/iQm6h4mxu6FW4lW9W/l4+Pj8fP3r7Ae88fYQ0kxka5HjZ5y/GTcKcOsNs5yrGhlk5dRMae0mvBv7+9lP83hhVE92L9lLX1HTzTI6+bpTXqKrtdEGPn+lNVCZtTOfymflpyEm5dPhfWYP8auo6l0Sdi2Pzk6+3HiT+/Bv+Mgg7w2zu7kZ+m9/Bl9IN+Kmf9OPj8jtUJOqblh6UavetgLIU4CiYAHsFXvWOludP34c0Xd6B300urolRWmKIpBsFZFUX5SFKWtoiht79U3j6jISAKCdN2OAYGBxEZHExUVSaB+ekAgMdFRBvLLly5hyLARBuk5OdnY2tqV0BMYWFJPjJFJRfHxcfj6+gFyglFCQvwtyZfGzs6OnJzscvNVG3JTS7ZY2rrIFsU8I+m5abp931ZyUtGFJcbLLcwHld78QgM9rpCXZiiXlyEdVdA6rBm3Jl8alZW0xQIgWyw9fPyK9z18fElOiDOS7md0EtD+LWtp17OfQXpebg7WNrY6PfExePrqXurcffxIiTcsLy05AVdP2Vvh6ulNWkriLcmXxtrWlvxcI5PVqil5aYnYunoV79u6epKXliRbDvXSbVw9yUs3HGKVcGoPno0Nxz0XFuShstKFTMwtXZ6L8fLyM1OwdnIH5ASj/MzUW5IvjcrKhsL83HLzmROWbvSqSbZ2nGVNwIaSYzZvlaIxm3WBjkKIYeXkvyfZvHE94+9/AIA27dqTlpZGbGwMJ44dpVbtutSoWRNra2tGjB7Lpg3rAahdp06x/IBBg7l62bBb9drVKwTX0HVnbtqwnhGjx2JjY0ONmjWpVbsux48eMZDbtGE94x94CIDxDzzExvXrbkm+NHXq1uPC+fO3cEXMnMSL4Ked0escDAW50tlMiwR7T9kdLtRyck7iRZnPvZ6cGX52YdmOXFaClNXX49NclmXnLstOizCUS7woHVmQ/xMv3Jp8aRy8IDO2YteiGnB83w66DhgJQJ0mLcjKyCA1MZ7rF8/gFxSCt38QaitrOvYezPF92wHwDdLdt6279Sbq5nWDcmPCQ/Hy1w2rOb5vOx17D8bK2hpv/yD8gkK4dsHg/Zvj+3bQbaC0p9vAkRzfu/2W5EvjFxxCxPUrt3BFzJuki4fxadkTAKeg+hTkZJKfkUx65BXsPf2xdfNBqK3wbtaVpIuHAbDz0Dn5Hg3bk50QaVBudkIUtm66FuSki4fxbtYVobbC1s0He09/0iMM6yHp4mF8Wt0HgE+r+0i8cPiW5Etj5xVAVlxYxS+ImWCOLZvVYukjRVFShRDPAauFEN//x7KihRAzgNco2S1f6fw4bz5dunbDw9OLUxeu8umH7/HnwvlMevRxAObP+4WtmzfRp19/Dp86R3ZWFs89I5cx0Wg0vPbKiyxZuRaVWs3fC+dz6aJ0BN6c9T516tWjsLCQiPAwXn7hOQPdWVlZhN64Tq3atblx/TqXLl5gzcrl7DtyAk1BATNefoHCQjnpZM7X3/H7vF84deI4X82ZzS+//8GDD08iIjycxyY9CGBS/q13P2D02PHYOzhw6sJV/ljwG599JJfnaN+hY/Fns6fROHCtDdYO0PFVCN0uZ2j7t5fHow9D0iU5I739S9qlj4qWjSmEq2uh2WT55Io5DlnalqV6Q6XT1/xRuZ8WDldWl9RdmC8n8dh5yOWRsuIg/iy0e167dNFaivvJ6o+EqMOQEQlhu6Hx/eDXRrZmnteOFzMlX7s/+LQAlbU8z+ijcFO7HIpLTQitHkujPDPrCxq1ao+TmztfrtzDil+/Yve6ZfQaMQGAHasWcerALlp26sHsJdvIy8nm5w/lyhGFGg0L5rzLK1/8ikqtZs+6ZUTekEtLjX/6Zfxr1KKwsJDEmCh+++xtA925OdnERYbjE1iDuMgwIm9c5dCODXz850YKNQXM/+IdFO39+diMD9ix6m9uXDzLuoU/Me29L+kxZAyJsdF8/YZ8dpiSn/DMK3TqOxQbO3u+XLmHXWuXsnLe1wDUb9aalfO+ubMX+h6h/tiXcK3VFCsHF9q+/AthOxYRd3wbfu36AxBzZDPJl4/hXr8NrV/8gcL8XK6u0C6BVljI9XU/02TS26BSE3d8G9lx4QDU7Pcw9l4BoCjkpsRzbY3hT2Jhfi45STHYefiRkxRDdlw4CWf/odVz30ChhmvrfpL3KVB3+FRijmwiI+oaEXtW0GD8K/i26UNuSgKXFn8KYFK+Zr9JeDfvhsralrYv/0LssW2E71wEgEuNhsWfqw9Vs+WyPMStjKOragghMhRFcdLbXwssAfYCF4BLetnnKYrylRAiFGirKEqCnlwIsE47qx0hB0CdBKaV6n4vxlqtUtwcbY0dMlsGDRlGi1at+Oi9dypFf7PmLXhq2nNMnWJ6eZg7Qfzal+66zkrHszE4B0Co4fqpdwUnf7n80sVld131xJlL77rOyqZN977UatCEZT/PrRT9Nes1YsCER/nxPcNlcu40T/WqZpNUkDPInQLqELb9r0rR7+hfi4DOw7myfO5d1931/dXHFEWplJlo9jZWSoiXc7n5LkanVJqN/wazbtnUdzS1+0P1du3LkAkxkhYKNNXbV4AWt8VIM2LDujV4eFTeYG4PT08+fr9yHN1qSeJ52apaWVg7wI1KcnSrIcf2bMXJ1a3S9Du7ubO8khzd6kjShUNYO5Tv9NwprBxcKs3RrWzMsGHTvJ1NC3efPxb8Xmm6d++sHt2p9xQxRytPd/K1ytNdTdm9tvJadM8e2V9+Jgu3ldhjlfcyl3rNyCoY1QRzjCBkcTYtWLBgwYIFCxbuEcxxzKbF2bxD2FmraRTgVtlmWLhLDH6umsRjtwDA+h8fqWwTLNxFXn1vdfmZLFi4DciljyrbituPxdm0YMGCBQsWLFi4FxCWbnQLFixYsGDBggULdxDzczXNf1F3CxYsWLBgwYKFKoFAoFaVv1WoLCEGCCEuCSGuatcHL33cVQixVghxSghxTghxx8YHWVo2zYj2Xe/judffRaVSs37ZX/z5s+HixzVq1WXGR3Oo37gZv8z9mEXzfig+Nmbi4wwZ+yBCCNYt/ZOlC34G4OlX3qTzff0oyM8jMuwmH898gYx0w1CCnt4+vPLebGY89TAAD055lsGj76ewUMOXH7zJkX27DGScXd2Y9cUP+AcGEx0ZztsvPklGWqpJ+S8XLMfT24fcHBm27n+PTSAlKZFRDz5CdnYWG1cs/k/XsarQpnMPpkyfhUqlZsvKRSyd951BnqCQOrzw7mzqNmrKgq8/Y8WCn4qPDXvgUfqPvh8hBJuX/83qP38F4NEXZ9K+Rx8K8vOJjrjJ3LdeJtNIfbt7+fDc25/wzrPy+TT20an0GzmewkINP37yNsf37zGQcXJxZcan3+ETEERcVAQfv/IMGempJuU/+mUxHt4+5Gnr+42nHyI1KZEhEyaRk53FttXVZM1L17oQMlCuixJ3HKL2Geax84I6I8DRH8K3Q7R2BredJ9Qbq8tn6w4ROyHmoEy385TpVnZQkANnfjAoGmsnqD0MLmmXownoBj6tQFEgdAOkGlkdQG0vy7d1g9wUuLIENDmm5RtPBmtnXfSqCwuhIBN820NhHsSfvKXLVlWp36Yzw6e8ilCpOLxlJbuW/maQxzsohHEvvENg3UZsWvANe1YsKD7WbcRDtOs3EhSFmJtXWDLnbQry8/CvVZ9RU1/Hxt6B5Ngo/v5sJrnZmQZlO7t7Mea5t/jtHbkQ/31jH6VdvxEohYWs/vETLh8/YCBj7+TCgzM+xcMngKS4KP78+BWyM9JNyj/50S+4eHiRnyfDUv78xlNkpibTech48nJyOLqt+o2XvR3d6EIINfAt0BeIAI4IIdYoiqIfYm8qcF5RlKFCCG/gkhDiT0VR8v6zAaUwy5ZNIYRGCHFS66mfEkK8JIRQaY/1FEKkao8XbX20xxQhxOd65bwshJil/dxACLFLm/+CEOIno8orCZVKxYtvfcgrTzzIw0N60HvwCGrWqW+QLy01ma/ef6OEkwlQq14Dhox9kCfHDeLREb3p1LMPQTVrAXB0/x4mD+3JI8N7ExF6jYemPGvUhnGTn2Tdkj8BqFmnPr0HDWfSkJ688vgDvPTWR6hUhl+3B5+YxvGD+3hgQBeOH9zHQ09Mq5D8e69M47GRfXlsZF9SkmS85fXLFzH6obu/oHtloFKpeHrm+7z9zCSeHtmb7gOGEVy7nkG+9LQUfvzkbVbML/l1rVm3Pv1H389LDw5l2tj+tO/em4AaIQCcOLiXZ0b3ZdrY/kTdvMG4x4xHeR058XE2L5eOR3DtenQfMJSnR/XhrWce5pmZHxit77GPTuXU4X+YMqwHpw7/w9jHnqmQ/GevPc+z4wfy7PiBpGrre+uqxQx7oLpM1BFQazBc/ANOfQuezcDe2zBbQbZ03KJLLROUkygdyDM/wJkfpSOXpA0VemWp7ljiBV16afw7Q9wx+dneGzybSlsuLoRaQzDa+RfYFdKuw6mv5P/AbhWTv7pcZ1OB1hGKPwF+HSt6wao0QqVi5NOv8evbU/n86VG07D4An+DaBvmy0lNZ/eOn7NZzMgFcPH3oMvR+vnrhAb6YOgahUtOixwAAxjz3Nht//4o5U8dy9sAOeoyeZNSG7iMncmizjDjmE1ybFt378/nTo/nlrWcY+cxMhJH7+76xj3L11CE+nTKMq6cO0XPsoxWS//uzmcx9djxznx1PZmoyAEe2rqbLsPv/xdWr+tymcJXtgauKolzXOo+LgOGl8iiAszZQjROQBBTcxlMpxiydTbQx0RVFaYL06gcB+jHY9mqPF21Fi4nlAqOEEF5GyvwKmKPN3wj4+o6ewS3SqHkrIsNCiY4IoyA/n+0bVtO1d3+DfClJiVw8ewpNQcmY1zVr1+P8qWPk5mSj0Wg4eeQg3foMBODIP7vRaDQAnDt1HG+/AKM29Og3mEN7dwLQtXd/tm9YTX5+HtGR4USGhdKoeSsDma69+7Np1RIANq1aQtc+A25JXp/cnGxiIiNo1KylyXzmQP2mLYkKDyUmMoyCgnz2bFpLx579DPKlJiVy5dxpCgpKPj+Ca9Xj0unj5ObkUKjRcObYQTr1ktf+xIG9FGrr++Lp43j6+Bm1oUufQRz9ZzcAHXv2Y8+mtRTk5xEbGU5UeCj1m7Y0kOl4X1+2rZERf7atWUbH+/rdkrw+uTk5xEZFUL9pNYiv4BQow4LmJoOigcSz4N7QMF9BJmRGyTxl4VpblpOXanjMswkknjEu59EIUmSIS9wbShsUjWyxzEmSNpbGvaGuJTL+pM7misrrU5gv8zqWk88MCK7flISocJJiItEUFHBqz2aadOxpkC8zNZmIK+coLDD0D1RqNdY2tqhUamxs7UhLjAfAO6gm18/Kl4YrJw7SrEtvozY07dKbS0f/AaBJx56c2rMZTUE+ybFRJESFE1y/qYFMk449ObZtLQDHtq2lacf7bklen/zcHJJjo8rNZ46ICvwBXkKIo3rblFLFBALhevsR2jR9vgEaAVHAGeB5RdHGEb3NmKuzWYyiKHHAFGCaKL9tugD4CXjRyDF/ZGUVlVvGE7ly8PL1Iy46sng/PiYab1/jToIxbly5RIt2HXFxc8fWzp6OPXrh42/oVA4aPYGDewwXT/cPDCY9LZX8fNn67u3rR1x0lJ49UXgZscfd05vEeBmTOzE+DncPrwrJv/bhHH5duZWHny5ZVZfOnqJ52w4VPu+qiqePHwkxuuuTEBeNp69vheVvXr1E0zYdcHZ1w9bOjrZd78Pbz98gX98R4zn2zy6DdN/AYDLSUinQ1renry8JsTp7EmOjjTqpbh5eJCfI+k5OiMNNW9/lyb/47my+XryRCVOeK1He1XOnadK6fYXPu8pi41LSOcxLBZt/Gd3FsykkGHl8OdeE/Azp+JXG1k12rxc5sTbOpexJkzaWxtpRlgnyv7VjxeTrjIBmT0Fgj5LlZUSBS83yzrDK4+rpQ2pCTPF+akIsLp4+FZZPS4xj94oFzPx9E2/8sZWczAyunJDd1jE3r9FY67g279oXNy8jz2XfALIz0oobJVw8fUjRtycxFlcj9ji5eZKeLCM9pycn4OjmUSH5sS++wwtfL6b3hCdKlBdx9Ty1mphuZDA3hKCiYzYTFEVpq7eV7m015u+Ujk/eHxl6OwBoCXwjhDByI/93qsWYTUVRrmu70Yu+3d2EECf1soxWFKVowNG3wGkhxKelipkD7BBC7Ae2AL8pipKin0H7ZjEFwNbq7vrxwsj36lbi3t+8foW/fv6WL35dTHZWJtcunkdTULJ1ZOKTz6Mp0LB17XIDeU8f3+Lu7LLsMfiam8CU/HsvTyUhLgZ7R0fe/+pX+g8fy2btuL3kpARq1q5bcUVVFKPvTbdQ3+E3rrLst+95/8c/ycnK4sblCwb1Pf7xaWg0Bexcv9JA3sPLh9Rk0/V9K98/U/KzZz5HYlws9g6OzPziR3oNGc2OdfI7mJKUSFCtOhXWU+0RanBvAOFGIsN4NZOtjcawdtZ1Z8uCjGS6hRvclPyV5ZCfDiobqD8evFpAgjaaTEGmHJdq7hhtF6n49bV3cqZJx558/OhgsjPTeei1z2h13yBO7NzA0rlvM/zJ6fS5fwrnD+6moFQvF4CLh3dxd7Y05z/e3ybk/549k7TEOGztHZg483Na9xrC8R3rAMhIScInKKTCesyF27TyUQQQrLcfhGzB1OcR4GNtCO6rQogbQEPg8G2xQA+zb9nUQ7/6SnejF49sVxQlDVgAlGhCURTlN2Rz81KgJ3BQCGFbKs9PRW8Z1uq7e2njY6Px8de1kHv7+ZMQF3tLZaxf/jePj+7HsxNHkpaaQsTN68XHBowYS6f7+vDeK8bH7+Xm5GBjq7sccbHRJVpGvf0CSIiLMZBLTozH01u+A3h6+5CclFCufNH/7MxMtq5bQaPmLYvz2djaFk8cMmcSYqPx0hvO4OXjT2Jc3C2VsWXlYp6fMJjpj44lPTWFqLAbxcd6Dx1Du+69mf3ac0Zlc3NzsLbR1XdCbAxevjp7PH39SYo3/P6lJCXg7iXr293LhxRtfZuST9R+j7OzMtm9YRX1m+m6zW1sbYsnDpk1eWlg46rbt3GFvPRbL8etLmRGQ37pCSEqcG9UtrNZmA8qvbYJA3tcjNuTnyknFoH8X6TXlHy+9n9hnuzS1+9eF1a6iUNmTGpCLK56LY6uXr7F3eAVoW7LjiTFRpKZlkyhpoCz+7dTs1FLAOIjQvnlzaf56vkHOLl7I4nREQby+bk5WFnr7u/UhNgSLaCunr6kJRnak5GSiLO7fBlwdvciMyWpXPm0RPncys3O4sTujSW6za1sbIonDlUnKtiNXh5HgHpCiFpCCBtgArCmVJ4woDeAEMIXaABc5w5QLZxNIURtQANU9Nd4LvAY4KifqChKlKIo8xRFGY7scr9nBpNcPHOSoJq18A8Mxsramt6DhvPPjs23VIabh5yR6uMfSPe+g9i2fhUgZ7k/8Pg0Xnt6Mrk52UZlw0Ov4Reoe4n6Z8dmeg8ajrW1Df6BwQTVrMWF0ycM5P7ZsYUBI8YBMGDEOPZt32xSXq1W46rtmlFbWdG5Z1+uX75UXF5wSG2uX7l4S+ddFbl87hSBNWrhGxiMlZU13QcM5dDurbdUhqu2vr39AujcewC7N8rnUJvOPRjzyNO8+/xjZTrukTev4xsQVLx/aPdWug8YipW1Db6BwQTWqMXlsycN5A7t2kqfYWMA6DNsDAd3bjUpr1KrcXFzB2R9t+veh5tXLxeXF1izFjevXTLQY3ZkRIGdh+zOFmrZFZ78L77nns2Mj8l0rQ05CdIJNEZOotRdRPJFaYNQy3Q7D8iINJRLvgTeLeVn75Y6m8uUV4GVg8wjVOBWH7L0Htv2npB9ay9VVZGIy+fwCqyBu28AaisrWnTvz/lDuyssnxIfTY0GzbG2tQOgbosOxIVLH8LRVd5PQgh6T3iCgxsNV3OIj7yJu97L3/lDu2nRvT9qK2vcfQPwCqxB+GXDF5Pzh3bTps9QANr0Gcq5g7tMyqtUahxc3ABQqa1o1K4bsTevFpfnHViTGL396kBRBKHytvJQFKUAmAZsBi4ASxRFOSeEeEoI8ZQ223tAZyHEGWA7MF1RlIQ7cV5m342unc7/A/CNoihKRZYUUBQlSQixBOlwztOWMwDYrihKvhDCD/AEjDxdKweNRsPc92Yy+9e/UanUbFi+iFDtj/Kw8XIpojWLF+Dh5c1Pyzbh6ORMYWEhYx5+gocH9yArM4P3vvoVVzd3CgrymfPua8VLEL3w5gfY2NjwxbxFAJw/dZzPZ00voT8nO5uosFACa4QQGRZK6NXL7Ny4lgXrd6PRFDDn3ZkUFspxx6++N5vVixdy6ewp/vz5G96Z8yODR99PbHQkb70gxziXJW9nb8/sX//GysoKlUrNsQN7Wbf0j2I7mrVqz+/ffHFnL/Y9QKFGw/cfvcl73y9EpVKzddViwq7J+h449iEANi79A3dPb+b+vQ4HRycKCwsZ/tBjPDWyN9mZGcz8/EdcXGV9f//hm8VLED312ntY29jwwQ9yZYGLZ07w7fszS+jPzc4mOiIM/+CaRIffJOzaZfZtWccPK7ej0RTw3YdvFNf3c29/woalf3L1/GmWzvuOGZ99T98R44mPieKjl+Uzryx5W3t73vv+D9RWVqjUak4e3Fc8Ax6gUcu2/PXD3Dt6re8NCuUs84YTpRMWdwKytS1LPm3l/7ijsvWw6RRQ2wKKnL19+lvQ5ILKGlzrwI21hsV7lTGOs1h9PuQkg60H5CZJ3YnnoMU0UAohdD3F3by1h0HsUTlRKWov1BsH3q3lGM3LcjJgmfIqK905ChWkXtfNgAdwDoaIXf/tUlYBCgs1rP7+Yx5/73tUKhVHtq4mNkx2wHUcKF/WDm5chpO7J8/N/Qs7B0eUQoWuwx/k86dGEX7pLGf+2cbzX/5NoUZD5PWLHNooh5607DGQzkPGA3B2/3aObjVcWig/N4fE6HA8/YNJjA4nNuwap/dt5eUfVlCo0bDqu49QtPf3mOfe4uCGZURcPc/OpfN4cMantO87kuT4aP746BWAMuWtbO14/L3vUKutECo1V08eKp4BDxDSqCVb//rxzl3oexEhUN2meJWKomwANpRK+0HvcxRgOLP0DiBuZdxFVUEIoUHOrLJGtkAuBL5QFKVQCNETWA3c0BN5X1GUZUKIDEVRnLRl+GrzfKooyiwhxBfAYKCoqeczRVH+oAyc7ayVViHVYGyRHt36DKRBk+b88uUnlaK/XqOmjJv8JB9MN740053E2db6ruusbDr16k/dRs1Y+O3sStFfu2ETRk58gs9ff+Gu666WsdHdG4JjAEQYThC8Kzj4yeWXrq0oP+9tpjrGRm/S6T6C6jZm88JvK0V/QO0GdBs5kcWfv3HXdX+24dQxRVHa3nXFgLO9jdK2lpFlzUqx60JUpdn4bzDLlk1FUdQmju0CXMs45qT3ORZw0Nt/CXjp9llpfuzdtrG4y7MycHX34NevKsfRrY4c2LEZZ9fKq28XN49Kc3SrJckXdV3clYG1Q+U5utWQcwd24ujsVmn6HV3c2bLQMFCFuSMwz3CVZulsWqg81i/7q/xMd4ijRiLWWLizbFm5qNJ0nzy4t9J0V1vij1ee7tQ7Mm/BggkObzFcieJuceXkwUrTXdmobtN09HsJi7NpwYIFCxYsWLBwj3C7xmzeS1iczTtEg2AP9nxWPUNtVUfqPPZLZZtg4W4Sllh+Hgtmw8bTYZVtgoVqwi2Eo6xSWJxNCxYsWLBgwYKFewSVGY7atDibFixYsGDBggUL9wiWlk0LFixYsGDBggULdwTB7Vtn817C4mxasGDBggULFizcI5hjN3qVC1cphNAIIU7qbSHa9BeFEDlCCFe9vD2FEIoQ4jG9tFbatJe1+78LIW5oyzolhOitl3eXECJM6IUdEkKsEkJk3JWTvVW8G8J9M6DXTKjby3iewNbQ42W5dXkWXHQhybCygzaT4L7p0HM6uNeU6fX7Q5+3ofv/5ObTyHjZts7Q/jHdft3e0pb7ZoB3A+My1g7Q8Um47zX539q+fHmhhuZjZfp908G/uUwP6QrB7UxfIzOi+3192Lr/GDsOneTJZ180mmfY6HGs37Wf9bv2s3T9Vho20UVYfeTJqWzcc4iNuw8y94d5xbHtBw4dwcY9h7gSk0KzFq3K1O/t48vPfywp3n/quZfYcegkW/cfo9t9vY3KuLq5M3/pKrYfPMH8patwcXUrV97a2poPZn/JtgPH2fLPUfoPGQbAxEenMHrCg+VfKHPBrxEMeBMGvg0N+xrPU6Mt9HtNbr1eAle9uOLW9tDpMRjwhtw8a+mO1e0hy+7/OjQfbrxsOxfo+pRuv2E/acuAN8G3jGeCjQN0nwYD35L/9e/vsuRVamhzv5QZ8AYEttTa2B1COpZ5ecyZLj17s2bXIdbvPcpjzzxvNM/gEWNYvmUvy7fsZeHKTdRv1KT42MTHn2bltv2s2PYPn3zzc/G9XpqHHnuKoaNldCEXNzd++nMF6/Yc4ac/V+DianR56jJtMyVfv2Fj/li1Wdq0dV+xPT//Vbae6kTRJCFTW1WjyjmbQLaiKC31tlBt+v3IwPMjS+U/A4zX258AnCqV5xVFUVoCLyBDW+qTAnQBEEK4Af7/zfw7hYBmo+DQT7DzEwhoDU6+htmykmD/t7B7NlzZKp22IpqOhPiLUn73bEiP1R27vhv2fC63uAvGTajdE25q10Zz8oWAVrDrEzj4EzQbjdGlauv2goQrsPMj+b9u7/Ll6/WB3AzY+THs/BQSZRg3wg9BrW63cM2qLiqVilmffM6j94+mf9d2DB01hrr1DR36iLBQ7h8+iME9O/PN55/yweyvAPD182fS408yol8PBvboiEqtYuiI0QBcvnieZx55kMMH/jFpw2NPT2PxH78DULd+A4aMHM2Abu15ZMIo3vnkC1Qqw8fLU8+9yP49u+ndsRX79+zmqedeLFf+mRdfITEhgT6dWtO/azsO798HwNK/FzLpiacMdJglQkDrcbD3O9j8PtRoAy5+hvkyE2HnXNjyEZzfBG31VsRoNQZizsOm9+XxtBiZ7l0PApvJtM0fwKXtxm2o3wuua78TLn5Qo7XMv/c7aDPO+C9gw74Qdwk2viv/N+pXvnyj/pCbLmU2fQDxV2T6jQNQr8ctX7qqjkql4vX3P+WZh8cxvFcnBg4fTe16Ru718DAeGTuE0f268eOXs3n7k7kA+Pj588AjU5gwpBej+nRBrVIzcNgoA3m1Ws3I8Q+yYdUyAB575gUO/bObId3bceif3Tz2zAu3ZFtZ8mq1mo+++pF3X3uJkX0688jYoRTk5wOwdsUSxj/8mIGeaoWQcevL26oaVdHZNEAIUQdwAt5AOp36hAF2QghfbQvlAGBjGUUdAAJLpS1COqgAo4C7HyutIrjXgMwE6UwqGog6AX5NDfMlh0J+tvbzTbBzk5+tbMGzNoQdkvuKBgpyDOVN4d9cOqsgdUedgEINZCdJ29xrGMr4NYXwI/Jz+BGdzabka7SHq0U/iArkZcqPmnzISgY3I3rMjBat23LzxnXCb4aSn5/PupXL6TNgsEG+40cOk5aaAsCJY0fwC9C1ZFtZWWFnZ49arcbe3oHYWOl8XLtymRvXrpZrQ/8hw9izYxsAfQYMZt3K5eTl5RERdpObN67TorVhJLU+AwazYrFc+H/F4r/oO3BIufJj73+I77/6HABFUUhOSgIgJzubyPAwmrdqU6FrVqXxCIGMBOlMFmog7DgENDfMl3hDd38n3gB7N/nZyg686kiHDWQZRfnqdoMLW6GwQO7nltFxE9QSYrQvmgHNpQ2FBdKmjARpY2kCmkOo9pkSekhnsyn5Wp3gwhZtAaXu78wk8Khp6kqZHc1atiEs9AYRYTcpyM9n45oV3NdvoEG+U8cOk5aaCsDpE0fw9de1i1hZWWFrZ4darcbO3p447b2uT/su3blw9hQajQaA+/oNZPUyGbRh9bJF3Nd/0C3ZVpZ85+73cfnCOS5fOAdAakoyhdo467u2bmTg8NH/7kKZCQJQq0S5W1WjKjqb9npd6EXhDe4H/gb2Ag2EED6lZJYBY4HOwHEgt4yyBwCrSqVtB7oLIdRIp3NxWYYJIaYIIY4KIY7Gp2bfyjn9d+xcITtFt5+TItNMEdxB10rp4Am5mdByAnR/CZqPA7WNLm+trrLrvcX4kl1hRdh7QH6W/BEzak+qcXtsnWUrBsj/Nk6m5a3s5H6DAdLONg/rZABSw8FDr3vQTPH18yc6MqJ4PyY6Cl//ABMSMO7BiezevhWA2Jhofvnua/aeOMeBM1dIT09j366KhwIMqlGTtJQU8vLypD3+AURHRersiYrE18+wE8DL25v4ONliHh8Xi6eXl0l5Zxf5nXlxxhus3raHr3+Zj6e3Lm7wmZMnaNexU4XtrrLYu8oXqSKyk2WaKWp3li2ZAE6e0ols9xD0nQ5tH9Dd304+4F0Her8MPZ83/lLo6Al5WTqHtLQ9WWXYY+cMOWnyc06a3DclX/RsaTpE2tnpUfmMKCI5TDrN1QgfP39i9O6N2Ogoo/eWPiMnTGTfTvlCHhcTze8/fsPWg6fZcewCGelpHNiz00CmVdsOnD+t6/Tz9PIhQXuvJsTF4ulpGK/blG1lydesXRdFUfjhj2Us3rCTR556tlg+LTUVGxsbXCsx7PG9gKjAVtWois6mfjd6UZf5BGCRoiiFyJbHsaVklmjTipzS0nwmhLgO/AF8WOqYBtiH7Iq31+u2N0BRlJ8URWmrKEpbb1cjDtkdxdjXTyk7u2ddqNEBLqzTiqvk+K7Q/bDnC9Dk6cZ9hv4D2z+A3Z9Dbho0HmZYnp2LrgXiTqJSg727bKHd84VsnW2iZ09uRvlOthlgtBtFKbu+O3bpxtgHHubT994GwMXVjT4DBtGzbTM6N6+Pg4MDw8eML1O+ND6+viQl6hY2N2aPYur7V4qy5K2s1PgHBnHs8EGG9+nOiaOHeW3WB8V5EhPi8Snnh9c8uMWfF+96soXw9GqtuBrcg+HaXtj6CRTkQiPtuE+VSo6t3D4bTq+SDl5p7FxKtnga/f7dgn1lyQsVOLhDwnVpZ2IotNAbGZWbXr6TbWYYvTdM3OvtOnVl1PiHmPPhLABcXF25r99ABnRuRe+2jbF3cGDIyNI/kXIMdlLSrQUruFXbANRWVrRq15EZz05h0qhB9B4whA5duhcfT0pIwMfPyBCRaoLA0o1+TyKEaA7UA7YKIUKRjmeJrnRFUWKAfKAvsqWyNK8AdZHd8PONHF8EfI10Wu9NclJ0XWYgu8eLWhRK4+wPLcbBkXmyNRJky2FOKqRoI2VEnwLXIPk5LwP5S6DIMZnGuqk1+aDSW9wgJ7WUPa4yrTS56bqWC1tnrS4T8nmZ8ocy+oxMj9KzE6QNmnzj521GxERH4R+oO28//wBiY6KN5m3QuAkfzvmGJx++n5Rk2QXdpXtPwsNukpSYSEFBAZvXr6V1uw4V1p+TnVNikkFMVCT+AboRKH4BgcTFGHbVJcTH4+0jxxJ7+/iSmJBgUj45KYmszEy2rF8LwMY1q2jSrEVxPltbO3Kzb3G4R1UkO0U6YUXYu0O2kfsJwDUA2j0A+37SvQBmJ8sykm7K/YiT4BYsP2elQIS2RSvpJqCArVPJMjX5oLbW7WeVssfB3fj9nZMuHVWQ/3PSTcsX3d+RWnvCj0snuQiVdbW4v/WJjY7CT+/e8PUPMNoNDnLizTuffclzjz1IaopsOe7YtSeR4WEkJ8l7fdvGdbRo295ANicnB1u9ezoxIQ4v7b3q5eNLYmL8LdlWlnxsdBTHDv1DSnISOTnZ7N25lUZN9e9pW3JyqsE9bQLLBKF7k/uBWYqihGi3ACBQCFF6YM9bwHRFUTTGCtG2in4JqIQQ/Usd3gt8hPFW0XuDlHBw9Jbd2UItJ9fEnDXMZ+8G7R6BE39Bpt7DIzdd/hg5artKvOrrJgjpd2P5N4N0Iw+6zHhw8NDtx5yVNqjU0iZHb9kFVpqYc7oZ5MHtdDabko89D57arjSveiXtcfKGdONOlzlx+sQxQmrXJqhGTaytrRkycjTbN28wyOcfGMT3v/3Jy1OfIPS6bhxmVGQELdu0w85etsB37taDa5cvVVj/jetXCQrWvXRs37yBISNHY2NjQ1CNmoTUrs2p40cN5LZv3sCo8Q8AMGr8A2zbtL5c+R1bNtGxS7diO69evlhcXq06dbl88XyF7a6yJN2U321HT3lP1GgNUacN8zm4Q+cn4NACyIjTpeeky65qZ+0II98GuglCUafBp7787OQjX9hKj9tMjwNHvfs76rS0QWUlbXLyhqRQQ3uizkCI9iUmpIPOZlPyUWfBp56enXr3s7MPpJr//a3P2VPHqRlSm8DgGlhZWzNw2Ch2bd1kkM8vIJA5Py/gteef5uaNa8Xp0ZERNG/VFjs7ea936NKdG1cuG8hfv3qJGiG6IUi7tm5i+Bg5XWH4mAns3GI41cGUbWXJ79+9nXoNmxSPF2/boTPXrujuaU8fH6LCq3F4UCFQV2CrapjDOpsTgNKjpVdq0w8VJSiKsr+8ghRFUYQQ7wOvApv104HZt8XaO4VSCGdXQMcpsisq/DBkaJ3FmtoxbTcPQL1+crmhZqN1cnvnyM9nV0Drh+SPWVYinJSDu2k8FFwCAUVOQDq91FC/Jk9O4nHwgqwEqTv6pFxCSSmEs8sp7mdrPg5u7ofUCDnRp83DcvxodjIcWyDzmJK/sA5aPQDWI+SP4qlFOjs8asHlLZg7Go2Gd2a8wu+LV6JSq1n210KuXJIP7PsnyW7Qv+fP49n/TcfN3Z13PvlCyhUUMKJfT04dP8qmdatZs20vmoICzp09zaKFvwHQb9AQ3vrwMzw8vfjlr6WcP3uGR8aXXOQhOyuLsNAb1KxVm5s3rnPl0kU2rF7Jpn1H0BQUMGv6y8WD/j/84mv+nj+PM6dO8MNXc/j6598Z9+DDREWEM+3xSQAm5T957y0+//Yn3nj/Y5ISEnj1+WeK7WjdvgNfzf7oDl7pewSlEI4vge5TZbPGjYM6Z7FOV/n/2j5oPBBsHaH1eJ3ctk/l5xNLocNkeX9nJsDhP2T6jQPQ7kHoP1OOuT680FC/Jk9O4nHykv/TYiD8BAx4HQq1thV1n7Z9QNqSHAYXt8pu+VqdpLN74FeZx5T86VXQYRK0HC3v7yN/6Ozwqg3nDF+qzBmNRsOHb77KD38sQ61Ws3Lxn1zTvnCNfWgyAEv/+J2nXngVNzcP3vjgM61cARMG9+bMyWNs3bCGJRt3UqDRcPHsaZb+ZdiBt2/nNj76UrcYy6/fzmX29/MYOeEhoiMj+N/TjwDg7evHO59+yTOTxpu0rSz5tNRUFv78HX+v246Cwt4dW9m7Q44lb9y8JaePHyuepFQdKepGNzdEeeMrLPw72tbzVY5+UY3WAATwaya7tC+VNdn/DuMSCHV6yFbbu0ydx3656zorm36DhtC0eSu++Pi9StHfuGlzHn16Gi9PnXLXdV/75uG7rrPSCWwuJw+dXVc5+t2C5PJLhxfcddXN/nf3nymVwdyfF/DFB7MIC71eKfqnz/qIXVs3cuifPZWiv4izEcnHFEUxXE7jLuDpZKcMaB5cbr6/DlytNBv/DebQjW7hXiHmjFymqLKwcYSLleToVkO2bFhHRPjNStPv7unJnI/frzT91Y7I03KZosrC1qnyHN1qwtyP3sXb18j6zHeJq5cuVLqjeS9gjhOEzKEb3cK9RNih8vPcKRIMxyFZuLMs+fPutzIV8c9uw+VbLNxhitbprAxiL5afx8J/IvT61RJju+82y/+uvOfJvYKAKjkmszwszuadQq0Gd8fKtsLCXSI7v/qOMaqOrDlQeT/IFu4+LWt4VbYJFu4iZyOSy890p6iis83Lw+JsWrBgwYIFCxYs3CNUxW7y8rA4mxYsWLBgwYIFC/cIVTAaZblYnE0LFixYsGDBgoV7AIFAZWnZtGDBggULFixYsHCnsHSj34MIITIURXHS258MtFUUZZpe2ingvKIo9+ul/Q6sUxRlmV5aCHAB0A+l0h54APgMiASstXkeVhQl6w6c0r/HrS7UHixHF8ceg4i9Zed1CoQWU+DiEkg8J9PUdlBvBDhoo4xcWQnp4RDSHzwagKKBnCS4vBI0RsKJWTtJ+fPaRZiDuoNva7lY8/X1kGJkUoWVPTQYB3bukJMMFxfryjYmr7aBZo/r5G1dIO4U3NgI/h3k4tNxJ271ylVJevbuy3sffYpKrebvhfP5Zu7nZeZt0ao167bu4qlHH2b9mlUAPPH0NB6YOAkFuHj+HC9OfZLc3NximaemPc9b731I0zo1jMZM9vH147Mvv2HShDEATHvxZe5/6GEKNRremPEKu3dsM5Bxc3Pnh3kLCKpRg4iwMJ58ZCKpqSllyjs6ObFqw9Zief+AAJYvWczbM1/lkSeeJCszi8V/GVmE3AzxbtiGZiOfRggVNw9t4ur2sqPnugXXp9sLczi64COiT+3D0TuItpNeKz7u4OnHpY0Lub5nFQ0GPox/004oSiG5GSmc+OtzctMMlzCzdfGgxbjnOfzL2wDU7T2emh36oyiFnFnxPfGXjhnIWDs40fbhmdh7+JKdFMvR+R+Sn51Rprza1p6uz+riZ9i5ehFxbAfnVv1ISNehaPJyCD+81UCPOdKsQzcmvvA6KpWaXWuXsu6Pn8rMW6thM2b9tIRv3nqBI7s241ejFtPenVt83CcgmOW/fMnmJfOpUa8Rj7zyDtY2tmg0Bcyf/Q7XLxhGo3L19Oax6e/zxatPAjB04pP0GDKGwkINC+e8z5nD+wxkHJ1dmfbeXLz8AkmIieTrN58nKz2tTHk7B0fe+E63hqmHtx//bFnNn19+SJ/RD5GbncXeDSv+7SWsmgjz7EY3+3U2hRCNkOfZXQhRkenh1xRFaam35WnTF2v3mwB5wPg7ZfO/Q0CdoXBuARz/Grybg7132XlD+kFyKeev9iBIvgLHv4IT30KWNpxlylU4/o1My06E4O7Giw3sAjHaEIX23uDdTNpybr60DSN3UFA3SL0Ox+bK/0VllyWvyYOT3+m23BRI1IYrjD0OAZ0qfMWqMiqVig8/+4IHx46kZ8c2DB89lnoNGpaZ9/VZ77NLz/nz8/fnsSefZmCvbvTq3A6VSsXwUWOLjwcEBtK9Zy8iTISNe3Lqs/w1X0YdqtegIcNHjeG+Tm15YMwIPpo9B5XK8PEy7cX/sW/PLrq2bcG+PbuY9uL/TMpnZmTQt3un4i0iPJwN61YDsOiPBTz25NO3fvGqIkJF89FTOfjTG+z4ZAqBrXri5FujzLyNhj5K3EWd85cZH8Hu2VPl9vmzaPJyiT4jg6pd27GMXZ89ze7ZU4k9d5gG/Y0Ho6jTYxRhB+U6tk6+NQhs1YOdnzzJwR9fp/mYqTJyWSnq9R5P/JWT7PjwMeKvnKRu73Em5TW52To7Z08lOzmO6NP/ABB+aAu1uw3/t1ewSiFUKib9720++98TTH9wEJ36DCEgpE6ZeSc883IJ5y8m7AZvTB7OG5OH8+ajI8nNyebobumkT3jmFVbO+4Y3Jg9nxS9fMeGZV4yWO3DCI+xaI19oAkLq0LH3YGY8NIjPXnqcSS/PQhi5v4dOnMK5owd4ZUI/zh09wNCHppiUz8nKLLbzjcnDSYiJ5OguGQFuz7pl9Btb/YInFEUQMrd1Ns3e2US2Si4EtgDD/mthQggrwBGoxLURjOAcBDmJkJssWyDjz4BnI+N5AzrK1sx8vfjHaltwDZEtoiDLKGphTLkGyNCBpIeDjYvxcr0aS2cVpO74M7Kc3BRpm3OQoYxHI4jVtkTGnpD7FZW385CtqWnahcUL8+X5OwUat8+MaNWmLaHXrxN2M5T8/HxWr1hG/0FDjOZ9dMrTbFi7ioT4+BLpVlZWxfGJ7R0ciI3RxZye9cEnvD/rDUxFGBs0dDg7t8sfsP6DhrB6xTLy8vIID7tJ6PXrtGpjGNyi/8DBLPn7TwCW/P0nA7Q2V0S+Vu06eHl7c2i/dD6ys7MJD7tJy9ZtyrtcVR73Gg3ITIgmKzEGRVNA5Ind+DU1/mJVu9swok/9Q25GqtHj3vVbkpUYTXayjJ1ekKvroFHb2OnCRpbCv0UX4i7I54Nf005EnthNoSafrKRYMhOica/RwEDGr2knwo/Il5zwI9vwb9a5wvKOXgHYOrmRdP0sAJr8XLKSYnGrUb/M62Qu1GnUnNiIm8RHhaMpyOfg9vW06dbHaN5+YyZyZNcW0pKNL7jfpG0n4iLDSIyNAkBRFOwdZWegvaMTyQlxRuXa9ejP6UNygfU23fpwcPt6CvLziY+OIDbiJnUaNTeQad2tN3s3rgRg78aVtOnep8LyvkE1cXH35NIp2WCRl5tDQnQktY3oMXdUQpS7VTXMwdm0F0KcLNqAd0sdHw8sBv4G7i8tbIQ6euV9q1+OtvxIwANY+99Nv43YuECu3o9LbirYOBvJ5ywduegjJdPt3CE/E+qNhJbPQN3hoLI2lPdtrXMo9bF1g4Js6RwW6SlhT5pxJ9XGUef05mfI/YrKezeXDqk+6VHgWtNQj5nh5x9AVGRE8X50VCT+/v5G8vkzcMhQFswrGU4zJjqa77/+kiNnLnLy4jXS09LYvXM7AP0GDiImOprzZ88YlFdEcI2apKakkJcnG/79/f0N7PHzDzCQ8/LxIS5WxvSOi43B09u7wvIjRo9lzYrlJdJOnTxOh05dyrTTXLBz8yQ7RfeykJOagL2rp2E+V0/8mnUmdP/6MssKbNWDiOO7SqQ1HDSJvm8tJKjNfVzcaDgswcHDl/ysDAo1+QDYu3qSo2dPdkoCdm6G9tg6uxV3yeemJWHj5Fph+cDWPYk8ubtEWkr4FTxrNy3z3MwFd29fkuJiiveT4mJw9zaM7OPu5Uvb7n3ZvurvMsvq2HswB7bpvg9/fvkhE555lbkrdnP/tBks+cFw+I23fxCZ6akU5OcX25MYq3sZTS7DHhd3L1ITZb2mJsbjoq3Tish36juEQ9tLxr2/cfEMDVpUmYiMtw0hyt+qGubgbGbrd3sDbxUdEEK0A+IVRbkJbAdaCyHcyylPvxt9ql76Ym35fsAZwKDvQQgxRQhxVAhxND4l8z+e1h2i9iAI3QKUar0QKnDyl07oye9kK2FQqe7yoB6gFEL8KcNybZwhX38Iq7G7oexWMkMqIO/dzNDZzM8ou+XVjDDWjWKsFfKdDz/lg1lvUlhYWCLd1dWN/oOG0KFlE1o1qouDgwOjxk3A3t6e5156lc8+Mh3v3NfPj8SEhFu2pywqIj981BhWLi85TjEhPh5fP0Mn2/wwcn2M3E9NRzzFhXXz5H1qrBS1Fb5NOhJ9suR47osb5rP13YlEHNtJrW5DDeRsXTzI028pNfZrdwv1XRH5wFY9iCzlFOdmpGDnYujUmhsVvZ8een4mi77/DKXQeH2rraxp3bU3h3fowvj2Hnk/f379IS+M6sGfX33I4699aCDn5ulNeopu3K6o4PevLCoiL53ikuFI05KTcPPyqbAec0Bgni2bVX6CUDncDzQUQoRq912A0cAvZUqUg6IoihBiLfAs8HGpYz8BPwG0bRhwK57VfycvDWxddfu2rpCXbpjPKVBOyAGwdgD3+vKHKT1cth5maFuXEs7J8ZRF+LQEj/pw9nfj+gsLQKX3dTKwx8W4PXmZsis8P0P+z8usmLyjn3SQM6NKlqeyAm3rizkTHRVJQKBuWIF/QCAxMTEG+Vq0as33v84HwMPDk959+6MpKMDK2prwm6EkJUqHccPaNbRt34HzZ89Qo2YI2/YeLC538+5/GNS7B/FxscXl5mTnYGtnW7wfFRVlYI9+t3wRCXFx+Pj6ERcbg4+vH4narv3y5Bs3bYbayoozp06WKM/O1o6cnOzyL1gVJyclAXs33RhsO1cvclINJ/G4BtejzcNyIpCNowu+jdqhaDTEnJVhJn0btSU18iq5GSlG9UQe30mHJ97l0qY/SqRr8vNQWdsU78uWSJ099m7G7clNT8HWxYPctKQSDmt58i4BtRAqNakRJceVq61t0OTnYe4kxcXg4eNXvO/h40eKke7uWg2bMvWdOQA4u7rTolMPCjUaju2VQxdadOxO6OVzJbrYuw4cycK57wNweMdGHp/xgUG5ebk5WNvo7u+k+Bg8fXUvde4+fqTEG9qTlpyAq6c3qYnxuHp6k5aSWCH5GnUbolKrCb10rkR51ra25OcamYxqzlTRlsvyMIeWTaMIIVTAWKC5oighiqKEAMOpWFd6eXQFrt2Gcm4f6ZFg7ym7s4VatvolGYklfPQL3ZZwDq6tg6QL0tnLTQV7bVg2t9q6CUJudaXjef5P2eJpjOwEqbuIpIvSBqGW6faekB5hKJd0EXxbyc++raQtFZH3MtKqCdL+LONjkMyJk8ePUatOHYJr1MTa2prho8awZaNh12nHlk3o0KIxHVo0Zt2aVbz28gts2rCOyIhwWrdth729PQBde/Tk6qVLXDx/jub1Q4ploqMi6d+jSwlHE+DatSsE19ANV9iycT3DR43BxsaG4Bo1qVWnDieOHTWwZ8umDYy7X05AGXf/g2zW2lye/IjRY1m9fKlBebXr1uXShfP/4gpWLVLCL+HoHYCDhy9CbUVgqx7EnjtokG/7+5PZ9t4ktr03iahT+zi9/JtiRxMgsFVPg9ZCRy/dcAW/ph3JiAs3KDczPgIHD123Z+y5gwS26oFKbY2Dhy+O3gEkh10ykIs5e5DgdnLcXnC7PsW2lCcf2LonkSd2GZTn6B1IWkyo0WtkTly/eAa/oBC8/YNQW1nTsfdgju/bbpDvpbG9eWlML14a04sjuzbz++xZxY4myK7pA1tLthYmJ8TRsFV7ABq36URMeKhBuTHhoXj568a+H9+3nY69B2NlbY23fxB+QSFcMzKD/fi+HXQbOBKAbgNHcnzv9grJd+wzhIPbDJ9ffsEhRFw3MmzLrCm/VdPSsnlv0R2IVBQlUi9tD9BYCFH0ivWjEGKu9nM4ph3R8UKIrkgHPQKYfHvN/a8USsex6SRAJWdmFzldfu3k/5gjZUoDcnmh+mNApZbLEF3WLjlRZ4hsMWw6We6nh8O1UkNWC/Plskh2HvJ/VhzEn4XWz8mW02vrKO4Grztc2pIRBRF7oOF48G0jJwJdXCzzmJIH8G4K54wseeNSA8J2VuiKVWU0Gg2vv/o//lq+GrVazaI/F3D5onTUJz7yGAALf/u1TPkTx46yfs0qNu/6hwKNhrOnT/HH/HkV1p+dlUXojRuE1KpN6I3rXL54gbWrlrPr4DE0BQXMfOWl4q772V9+y4LffuH0yRN8M+dzfvhtIRMeepjIiAienPwQgEl5gKEjRjFx3CgDO9p16MQXn3xUYburKkphIWeWf0fHJz9AqFSEHdpCeoycGFez8yAAbu7fYKoI1Na2eDdozamlX5VIbzTkUZx8gkBRyEqO5fTSrw1kNXm5ZCZE4ejlT2ZCNOkxN4k6uYf7ZvwobVv2bXHXfYvxLxC6fz2p4Ve4sn0xbSfNpEaH/mQnx3F0vmxFMyUPENCyO4d+etPADo9aTbi8+c9buHJVk0KNhgVz3uWVL35FpVazZ90yIm/IVt5eIyYAsGPVIpNl2Nja0aRdZ+Z9WvI6zvvkDR56/nXUaivy83INjgPk5mQTFxmOT2AN4iLDiLxxlUM7NvDxnxsp1BQw/4t3irvuH5vxATtW/c2Ni2dZt/Anpr33JT2GjCExNpqv33gOwKQ8QIdeA5n98hMGdtRv1pqV8765hStX9SnqRjc3xK2Mq7JQcdo2DFCO/vJYZZtxd/FsBI4BEGb4Bn5XcPSHwM5weXn5eW8zAUO/uOs6K5sBg4fSvGUrPv2g9Jy8u0PTZi2YMvVZnnvq8fIz32Z+mNyt/Exmhl+zzrgF1ePixvmVot8lsA51eo7ixJ+f3XXdSw9fv+s6K5s23ftSq0ETlv08t1L016zXiAETHuXH94wvzXQn+WP/lWOKolTKzCQ/VwfloS71ys33+cbTlWbjv8GcWzYt3G0SL4CVQ+Xpt3aAm5Xk6FZDNq1fi4eHR6Xp9/D0rDRHtzoSc2Y/Ng6VN/nO1tGFixsWVJr+6saxPVtxcnWrNP3Obu4sryRHt7IxNqGqqmNxNi3cXorW6awMUu6tYbTVgb8WVk4rF8CeXTsqTXd1JezQpkrTHX+5ekQGu5fYvdZwnPTd4uyR/ZWmuzIRAtS3KYSQEGIA8CWgBn5RFOVjI3l6AnOR0RETFEXpcVuUl8LibFqwYMGCBQsWLNwj3I4hm0IINfAt0Bc5z+SIEGKNoijn9fK4Ad8BAxRFCRNC3LF1pizO5h1Cyckn97Lh0i8WzJP4dPNffseCjmHdDaPlWDBfLkalVLYJFqoRtykcZXvgqqIo17VlLkKuyKO/fMcDwApFUcIAFEW5Y0u5mO3SRxYsWLBgwYIFC1UNUYGtAgQiV9kpIkKbpk99wF0IsUsIcUwIcceC0VtaNi1YsGDBggULFu4BBKKiYza9hBD6ixn/pA0soyvKkNLLD1kBbYDegD1wQAhxUFGUy7dic0WwOJsWLFiwYMGCBQv3AqLC3egJ5Sx9FAEE6+0HAVFG8iQoipIJZAoh9gAtgNvubFq60c0Iq66Tsbn/C6xHvmMyn7rD/diM+RDrEbMQnjXKlVe3Ho71iFlYD38L6/4vgr1r6SIl9q5Y9XlWJ9d8oNQz+n1EYBPjMjaOWPd/CevRH2Dd/yWwcShXXt1mJDbjPsVmYsnFflWN7kNVr4vJczcnfv75VyKjYjhx0jCShz5z5nzJhYuXOX78JK1ataqw/Isv/Y/8gkI8PY3Hovbz82PV6jXF+69On8GFi5c5e+4Cffv1Myrj7u7Oxk2bOX/hEhs3bcbNza1c+Xffe5/rN26SnJJWoqxnnpnKpEmTTZ67WdH6fhj0PvSeYTpf81HQ9w3oNR1cdSFAy5RvNEjmve8V6Pw02JWxvJGtC3Saotuv30fq6TMTfBoal7F2gC7PyHxdngFr+/LlGw+G/rNg6Kcly6rdDWp0MH3uZsSAp15n6k8beGS26UXse09+iSe+XMrkT//At5ZuLHF58u2GPMCriw9i72z8ee7o5snoV2cX73cY8TBPfLmUx+csJqSF8Xqwc3Rh3Otf8cTcpYx7/StsHZ3Lle82/ime+nY1L8wvubpEq/5jaNpzsMlzN1duUzf6EaCeEKKWEMIGmACsKZVnNdBNCGElhHAAOgAXbsMpGGBWzqYQIkPv8yAhxBUhRA0hxCwhxMtCiG+FECeFEOeFENnazyeFEGOEEO2FEHuEEJeEEBeFEL8IIRyEEJOFEN+U0rNLCHHPLaaqufIP+VvmmsyjCmqGytWHvGUzKfhnAVadHypXXnNmM/mrZpG/+l0Kw09j1Wqo0bLVTftSeHkvAMLNH1Xt9uSteIv8zXOx7vSg0Sl26uYDKYy+QP7y1ymMvoC6+cBy5QvDTpG31jCeb+Hlf1A37m3y/M2J+Qt+Z8jggSbzDBg4kLr16tKoYX2efvpJvvn2uwrJBwUF0adPH27evFlm2S+8+BK//vILAI0aNWL8uPG0aN6UIYMH8vXX36JSGT5eXp0+gx07dtC4UQN27NjBq9NnlCu/ft1aOncy/HH77bd5TJv2rEG62XLzMPzzg+k8vo3B0Ru2vg8nFkHLseXLX9kOOz6BnZ9BzDloOMB42fV6Qqh2ORpnXwhqDds/gv0/QIuxGP0JrN8H4i9Le+Ivy/3y5KPPwi4jQRJuHoQ63U2fvxlxdvd6ln30osk8tVt2wt0vmJ+fH8vmnz+i72OvVkje2dOHkObtSY0vexJru8H3c2rHagA8A0No1Lkv8/73AEs/fIG+j76CjAhdkg4jHubm2SP8/MJYbp49QsfhD5crf/X4Xha+/qhBWWd2rqXNgHEmz99cEUKUu5WHoigFwDRgM9KBXKIoyjkhxFNCiKe0eS4Am4DTwGHk8khn78Q5mZWzWYQQojfwNdrp/EXpiqJMVRSlJTAIuKYoSkvt/l5gKTBdUZQGQCNkBTiXLvteRom9gpKbaTKPqkZLNFdlfGIl/rpsSdS2VJYpn5+j+2xlYzjqQ4s6pA2FEWeL9RRePwyFBZCRgJIWh/CqZWhPzZZorsgfMM2V/ahqtipXXom/DtmphgZo8lAyEozqMUf27d1LUlKSyTzDhg7nj4UyrOehQ4dwdXXDz8+vXPnZn3/BazOmYyrC2MiRo9i8Wa67OHTYcBYvWUxeXh6hoaFcu3aV9u3bG8gMHTqMhQvk2pwLF8xn2LDh5cofOnSImJgYg7Kys7MJvRlKu3btTF4DsyHxGuRnmc7j3xTCtWFpk2/KlkRbF9PyBbm6z1Y2UFadB7SAWG2jh38ziDgOhRrISoLMePCoadyem4fl55uHpVx58sk3ITfNsCxNvszrXsPwmBkSceEk2RlGroMeddt159weGaY0+so57BydcHTzLFe+18MvsOvPb8p8lgPU73AfN04eLNZzYf9WNAX5pMZHkxIbgX/dxgYy9dp24+xuac/Z3Ruo1657ufLRV86RmZJoUFZBXi6p8dH41THUY84I5Dqb5W0VQVGUDYqi1FcUpY6iKB9o035QFOUHvTyfKYrSWFGUpoqizL0jJ4UZOptCiG7Az8BgRVEqusr3VGC+oigHABTJMkVRYu+UnZWGgxtKpp6DkZmMcHArV6yo61pVpyMFJ1YZZnDyQsnNks4hIBzcUTKTiw8rWckIR3cDMWHnonMcs1MRds63JF8aJeEmKr/yQ31VFwICA4iI0E1IjIyMIDCw9ITEkgwZMpSoyChOny67ez4kJISU5GTy8vIACAwIJCJcT09EJAEBhnp8fX2LHceYmBh8fHxuSb40x44do0vX6hc6skzs3SA7RbefnVr2sBd9irqug9vCBSMx1h08IC9bOocAdq6GeuyM6LF11jmOuWly/1bkS5McBp51ys9XTXB29yYtUbdaTXpiHM4e3iZl6rbpRnpSPPE3r5aZx9Xbn5zMdDQF+cV60hNK6nEyosfB1aPYccxMScTBxf2W5EsTc/0iwY1alpvPrBCyE6+8raphbs6mLXIMwghFUS7eglxTwFTom/F6Xe4nAaNd6EKIKUKIo0KIo/EZ9+i6i//yW6o5tpK8Ja9SeO0g6ka9DIt1cIWcdL0EI4WYaCUzLPDfySvZaVAB57m6YKy7xVRrpb29Pa/NnMmsWW+ZLNff35/4hPh/ree/2llEfFwcAQEBFdZTPalAPZxfD5tnQfhRqG2kq9rOBfIydPv/9dfu38rnZVTMKa0u3OJ9Y2VjS8eRk9m35Kcy8wA4unuRlaZ72TdaX7fwOP+38lmpyTi5e92CIvNAVOCvqmFuzmY+sB947DaXu7ioy13b7X7UWCZFUX5SFKWtoihtvZ3sjWWpfDKTEY568awd3VGyUiosrrl2CFVIG8MDBXmgti7eVTJLtkQKB+N6lJw0XcuLvSuK1mGtqLwBamtpiwVAthAGBekmJAYGBhEVVXpCoo46deoQElKLY8dPcuXqdYKCgjh85Bi+vr4l8mVnZ2NnZ1e8HxEZQVCwnp6gQKKjDfXExsYWd+P7+fkRFxd3S/KlsbOzIzv7Hn2xqwyyU2TrZhH2rpBtuiu2BOHHILCFYbomH1R6i5cY05NjZGhLbrquG9/WRe7finxpVFagsdzfRaQnxeHiqQv64uzpQ0ZyQpn53XyDcPXx55FP/+DJr1fi7OnNpI/n4+jqUSJfQV4uVta2JfQ4e5XWE09pslKTirvxHd08ix3WisqXxsrGhvy83HLzmRMCUInyt6qGuTmbhcA4oJ0QYuYtyJ1DrjVl9hSGnURdtxMAwru27BozNv5RD+Gie0ioarRESTEcVK6kxSKcdLOWC8NOoardXv44OHkhXH1REm4Yt6deZwDU9TpTePPkLcmXRuXqi5IcWW6+6sLadWt4aOJEADp06EBaWqrR8Y9FnD17lsAAP+rVrU29urWJiIigfbs2xMaWHFFy+fJlatYMKd5ft3YN48eNx8bGhpCQEOrWrcfhw4cNyl+3bi0TH54EwMSHJ7F27Zpbki9NvXr1OXf2joxnr5pEn4Vg7RhW95pyvLWx8Y/6OOp1Z/o3hXQjo4cy4mVXur6eoNagUst0J29IMjKZLOYs1NSO3a3ZXsrdinxpnHwgzRKZrYirR/fSpPsgAPzrNSE3K8Po+MciEsKv8e2UQfz47Eh+fHYk6YnxzJ8xiczUkmO3k6PDcPX2L6GnUee+qK2scfX2x90vmOir50sXz9Wje2naQ9rTtMcgrhzde0vypXH3r0FCeEVHw5kLApWq/K1SLBPiJSPbY0KIluXJmt06m4qiZAkhhgB7hRCxiqL8WgGxb4DDQoj1iqIcAhBCPARsu5O23m6sej6Byq8B2DlhM/5TCo6vofDKPlQNegBQeGk3hRFnUAU3w2bMhygFeRTs/a1ceXXb0QhXP1AUlIxECvYvNFRekIeSHg/OPpAeh5ISReGNo9iMehdFKaTgwJ/F3eBWXSahubgLJfEmmtMbsb7vKVT1ukJmEvk75LhlU/LqtmNQ12kPVjbYjP8UzeV9aE5Ip0X41KXwxNo7eZnvGRb+8Sc9evTEy8uLG6FhvPvOLH77bR5TpjwJwE8//cjGDRsYOGAQFy9dITsri8cff7Rc+YqQlZXF9evXqFOnDteuXeP8+fMsXbaU02fOUVBQwHPPTaOwsBCAH3/8mZ9++oFjx47x6Scf8/eixTzyyKOEh4cxYbycbWpK/qOPP2HChPtxcHDgRmgY8+b9ynvvyuW5OnfuzHvvmV7qy2xo+zB41wUbJxjwDlzYKGdoh2iX+wr9B2LPg19j6PumbAE8/lf58k2GyvtWUeQEnJNLDHVr8iAzERy9IDMB0mMg4gT0ngmKBk4to7hftNUEuPEPpITD5W3Q7hGo2RGykuGw9nljSr7JMAhuI3spBrwDoQfgopyIhmct3WczZ+hz7xLcuDX2zm48/d0a9i39mTM719Kyz0gATm5byfUT+6ndqjNPfLmMgrwcNn7/frnyFSE/N4eU2AjcfINIiY0gMeIGFw9s59HP/0Yp1LB13mwURd6fA56cycmtK4i5fpGDqxcw/IUPaH7fMNISYlg953UAk/I9HpxG4y79sLax4+nv1nB6xxr+WSZXuQhq0Jz92s/ViXu4m7ytdiv6Ig1GLrH0lBBiqaIon5YlKG5lXNW9jhAiQ1EUJ+3nYGAP8ALQCshQFGW29lgIsE5RlKZ6sp2ATwEfZAvpHuBFZEtpW0VRpunl3QW8rCiK0e50gDYh3sr+t4bfztO751HVbIXwrInm+KpK0S88glE37UfBnoq8X9xenKZUzEkzJ4YPH0HrNm14+603K0V/y5YteeGFF5k8edJd152/tBotuVSEf3NwCzI+gehu4BoIde+DY3/cddWfLjp013VWNvXa9cC3dkP2Lf6xUvT7hNSn3eD7Wf/t3X+ZnL7k0LFyFky/YwR7OCkv9G9Wbr6XFx286zYKITYDoxVFydDuOwHLgJHAMUVRylw6wKxaNoscTe3ncKBoDZzVpfKFIicF6acdAIxNa/1du+nn7flfbTVHCm+eQGXrVH7GO4WdMwWV5OhWR1avXlXmgu93A08vL95+2/REJgu3kejTJYIu3HVsnCrP0a2GXDmyu8wF3+8G9s5u7C1nIpNZUvEIQpVBDUB/0HQ+UFNRlGwhhMnBtWblbFqofIoWda8MlKjyxwBZuL3Mm3f3W5GL2L6tSo1yMQ9uHqw83fGXKk93NeX0jtIBZ+4eN8+UP2bbXKmsMZkV4C/goBCiqAFvKPC3EMIRMPkDbHE2LViwYMGCBQsW7gEE9+7MbUVR3hNCbAS6IE19Sm844YOmZC3O5h1CWKux9XerbDMs3CXq+ljW/qtONHxmfmWbYOEucnH2/ZVtgoW7yPQllTtG9x7uRgc4AUSh9R+FEDX0IzWWhcXZtGDBggULFixYuEe4V31NIcSzwNtALKBBtm4qQPPyZC3OpgULFixYsGDBwj2AEJW3jmYFeB5ooChK2Yu5loHF2bRgwYIFCxYsWLhHUN2762yGAxUI9WXIvToO1cK/odk46DULur5sOl+j4dB9BnR5CVwCdek9ZkLX/0GXF6Hz84ZytXrAwNlgXcbyJ7bO0Ea3aDi1e0k93V4Fr/rGZaztod0U6D5d/reyr7h860dKnmuNLhDYruzzNjPe/+Jr9p2+zJod+03mm/nex2z65xirtu2jcTNdb4eziwtzf/qd9XsOsW73QVq2kdfuuVdmsmrbPlZs3cMvfy/H29fPaLnePr58P39R8f4T015k0z/H2LD3MF169DIq4+rmxq+LVrBp31F+XbQCF1fXCst/+/tfJc71gUeeYOT4B0yeuznxwRff8M+ZK6zZabq+X3/vEzbvP87q7f/QuJku9KSziytf/jyfDXsPs37PIV19v/o6q7f/w8qte/l10Qp8TNT3Dwt09T3l2RfZvP84G/ceoWtPU/W9kk3/HOPXRStL1Hd58t/9/neJc33wkScYNd7kHATzouNEGP0pDC5nHds242DYOzDodXDXhXxl+Psw+A0YOBMGzNClNxsMIz+S6QNnQkAT4+XauUDPZ3T7TfpLPUNngX8j4zI2DtDrORj6jvyvv1RWefI9ni55rvV7QO1Ops/dTBGi/K2SuA7sEkK8ph9FqCKCVdrZFEJkGEmbJYR4WQgxWQjxd6ljXkKIeCGErRBilxCirTY9VAixXC/fGCHE73r7A4QQh4UQF4UQJ4UQi4UQNe7gqf07Io7C0Z9N5/FuKMPT7fkYzi2DJqNLHj/0PfwzB/Z/WTLdzhU860N2ctllh/SAcO3Aaidf8G8J+z6Do79Ak1Fg7G2tdi9IvAJ7PpH/6/SqmLxvU9CUWtYr4jCEdDV9/mbEqsV/M+XBMSbzdO/Vl5q16jCgSxvefvUF3vro8+JjM9/9mH27tjO4ewdG9unGtStyaZlfv/+aEX26Mqpvd3Zt28wzL75qtOxJT05l6V9yokydeg0YNHwUQ+/rxBMPjOGtj2ajUhk+Xp6Y9iIH9u1hQNe2HNi3hyemvVgh+b4Dh5CVmVmirBWL/uChx56swJUyD1Yu+YsnHqhAfdeuTf/OrXnrled5+2Ndfb/+3sfs3bmNQd3aM6J3V65duQzAr999xfDeXRjZtxu7tm7mmZeM1/fkJ6ey5M8FANSp34BBw0czpGdHHn9gDG999HmZ9X1w324GdGnDwX27dfVdjnzfQUPJyiz5eF9ezeqb6wdgx9em8wQ0ARcfWPM2HPoL2peayLRtDmz8EDZ9XDL94naZvvFDiDpnvOxGfeDqPvnZxQ9qtoV170mb2t1v3ONp0h9iLsLat+X/xv0qJh/cEgpKPc+v7YcG95k+fzNFCFHuVkmEAVsBG8BZbyuXKu1slsMKoK8QQr8ZbgywRlEUY4uPthVCGLziCSGaAl8DkxRFaagoSkvgTyDk9pv8H0m+DvlZpvP4NIFI7UoFKWFgZSdbJMuj0XC4tK44ZKRR/JpBwkWdnuiTUKiB7CQZ6s7NiH+ub0/kUblfnrzaRjq217aXLKswX4bbcw2mOnD00H5Skk04/0Cv/oNYvUy2Rp06fhQXV1e8fXxxdHKmbcfOLPtLhh7Nz88nPU3G0M7MSC+Wt7d3LLPO+w0ayt6d24v1bFi9gvy8PCLDwwgLvU7zVm2M2DOQ1UvkO+DqJX/Te8CgcuUdHByZ9ORUfpg7u0RZOdnZRIWH0axla9MXykw4enA/qeXUd+8Bg1i9VK++XUzVt+wNK1HfDg6UFVWu3+Bh7N0p1zbt3X8QG1Yv19bXzTLru3f/QazS1veqJX/TZ8DgcuUdHByZ/OQzfP+lYX1HRlSf+ibuKuRlms4T1AKua9c+TbwhWxLtXG6P/uBWULR2cXALuHkUCgvkszg9HjxDTNtz/aB0IsuTt7KFhr3hTKkF+zX5Mq9nzdtzPlUEAaiFKHerDBRFecfYVhFZs3U2FUVJQ4acHKqXPAH427gEs4GZRtKnAx8qinJBr+w1iqLsuV223lXsXCEnRbefkwq2esv2tJsCnV+A4A66NJ/GMl96dNnl2ntAfrZ0Do3qSZFppbF1hlztj11uOhRFIDIlX28AhO6W8ZpLkxYB7rXLtrOa4evnT0xUZPF+TFQUPn7+BNesSVJiAh/O+ZblW3bz3uwvsbfXvZc9P/0Ndhw9y9BRY/nqsw8Nyg0MrkFaagr5ebIOfP1L6omNlnpK4+nlQ3xcLADxcbF4eHqXK//cqzP5/YdvyM42fJE6e+okbTpUz642Y/j6+ROtX9/RUfj6+xNcM4SkxAQ+mvsdK7bs4b3ZX5Wo7xdmvMHOo2cZUmZ91yxZ36X1REXha6y+vUvVt5d3ufLPTX+d3374lpysbIPyzp46QdsOnW/pmpg1Dm4y5nwRWckyDQBFdmUPeA3qlurxqd9Tdrt3nGg8KpSjJ+RlSecQwN4NMkvpsXczlLNzhhz50kpOmq4hw5R886FwYZvx53niTfCua5huzlSgC/1u+5pCiLna/2uFEGtKbxUpw2ydTS1/Ix1MhBABQH1gZxl5lwCthRClv9lNgOMVUSaEmCKEOCqEOBqfVk4LY6Vh7Fuqbck4+A3snyu7rWt0kU6byhrq9IErm00Xa+sMeQajGkqpMdEqWhEUBZwDwNELYs8az5Obcfve7M0AY90tiqKgVlvRuFkLFi2Yx+h+PcjKyuKJaS8U5/nyk/fp1bYpa1cs5cFHnzAow9vXj6TEhHL1/Fc7GzZpSo1atdm2ab1RuaSE+DLHGFZLyriOVlZqGjdrwd/zf2VUv+5kZ2fxxLMvFueZ+/H73Ne2KetWLOWhR6YYlOHj61uivo3q+a92Ag2bNKNmSG22bVxnVCwpIR4fP0t9V4gts2HjR7DzGzn+0Uf703ZlD6x5EzZ8CNmp0Hq0oay9q64RAP67d1OWvHsQOHtDxCnjx3PS9Zzn6sM92I2+UPt/NvC5ka1czN3ZXAd0FUK4AOOAZYqiaMrIqwE+A14rqzAhhKd2zOZlIYTBLBxFUX5SFKWtoihtvV0qMYawKXJSwM5Nt2/nCrnaN9Gi/3kZ0plzCwYHT9lq2eUlOYHIzlVOILIp1fVemC8d02I9qaX0uOnK1yc3Xff2a+ssnUVT8u415aSmHjOh41TpeLZ/WpdPbSW7XywAsmXLL0A3CcwvIID42Bhio6OIjY7i9IljAGxZt6bEZJIi1q9cRr9BwwzSc3OysbW10+mJKqnH11/qKU1iQhzePr6AnHCSlBhvUr5lm/Y0adaCbYdO8eeqjdSsXYf5y9YW57OxsyU3J6fC18PciY2Owl+/vv0DiIuJISaqZH1vXre6xGSxItatXEbfwUMN0nNyckrUt4GegADiYgx7PhLjS9V3QrxJ+ZZt2tGkeQu2Hz7Nn6s3ElK7LguW6xxPW1s7cnIMWzyrLVkp4OCu23dwl2kgHUmQz9jwk7pu65x07Yu/IsdkGusO1+SBWu95npUMjqX0ZKcYyuWk61727Vx0DmtZ8l61waOGnMzU72Vw9oE+upcg1NbV7nkuuPdaNhVFOab9v9vYVpEyzNrZVBQlG9gEjMR0F3oRC4HuyGDzRZwDWmvLS9SO2fwJcLrd9t4V4s5DYFv52a0GFOTIB4LaBtS2Ml1tI2d/p8dARgzsmAW7P5RbTqqcQJSXXrLczASw13uYxJ2TE3xUaumsOnrJMaKm7AlsK+VMyYcdgJ3vSVsOfiv1Hv5eV56Dt7TZAgA7t2xk+JgJALRo3Zb0tDTi42JJiI8jOiqSkDqytaNjt+5c1U4QqllLNwzhvv4DuH71skG5odeuERisu012btnIoOGjsLaxITC4BjVr1Sl2bPTZsWUTw8fJSQzDx93Pjs0bTcovWjCPHq0b06dDCx4cMZCb168xaYzOGQqpXZcrly4Y6Kmu7Ni8keFj9eo7Xb++I6ilre9OXXtw7bJhfffqN5AbV68YlBt67WqJ+t6xeSODho/W1ldNE/W9kRHa+h4x7n62b95gUn7Rgnl0b9WI3u2b8+DwgYRev8rDo4cUlxdSuy5XLlrqu5iI01C7o/zsWQvysmX3tdpGjoUE+dm/EaREyX39np/glrp0fdLiZFe6vp6abUFlJdOdfSAx1LQ9tTvqWizLkr+yB1a+BqvfkC2x6XFyUlMRLj7G7TNrBCpR/nZXLRLijBDidFlbRcqoDuts/g18BLgAB01lVBQlXwgxB5gB7NAmfwqsFEIc1Bu3eW82W7Z4EDzqgI0j3PcGXNkiZ2gHa8e0hR+A+AtyRnqPGfKN8fRieczGCVpPlp+FCqJPQMKliuvW5EFWomwJzUqEjFiIOQXdXoHCQji3kuKOtqZjpdOYFgHXd0DLiRDUXr7pnpSzXU3Km8I9BK5uqbjdVZjZ3/1C+05dcPPwZOfRs3zz+ccs//sPxk98BIDFC39j9/YtdO/dl837j5OTnc3MF6cWy3/wxqt89s1PWFvbEB4WyuvaYy/NfJtadepRWFhIVGQ4s6YbrmyRnZ1FWOgNaoTUIiz0BlcvX2TT2lWs23UQjaaA92a+QmFhIQDvzf6SRQt+49zpk/zyzRy++OE3xkx4iKjICF58cjKASXlTtG7XgW+/+OS/Xsoqweff/UK7zl1x9/Bk17FzfD37Y5b/vZDxD2vre4GuvrccOEFOdlaJ+n7/9el89u3PxfU98wW5rM3/Xp9FSJ26KIUKURHhvD39RQPdxup749qVrN99CE1BAe/OfFmvvr9i8cJ5nD11kp+/mcOcH39n9P0TiY6M4IUpkwBMypuiVfsOfPPFx+XmMwu6PAq+9eU49pEfwul1coZ2vW7y+JW9EHUWApvCsHflM/iA9vlp7wLdtTP3hQpCj0C0drJP61Gy+1pRIDMJDv1pqFuTBxnx4OQt/6dGw81jMOQtUArh6CLdsKgOD0mnMSkMzm2Gbo9DnS5ysuZe7eoopuRN4V0HzhgfQmOuCLjrzmQFGFJ+FtOIWxlXda8hhChExugs4gukU5mhKMpsbR4rIBr4VVGUGXqyu4CXFUU5KoQIBdoqipIghLAFbgBbFEWZrM07GJiFnOKfiJz+/7aiKIZNPlra1vNTjn710G060yqCb1NwCYIrmypHv0uAnKV+urwG7NtPo8d+ves6K5s+AwbTpHlLvvz0g0rR36hpMyZPmcr0556667qr8nPz39Jn4BCaNG/Bl59UVn03Z/KTU5n+7N1f/qhaxkYPaiFngp+q0PyP2497kFx+af/vd121eOiHY4qitL3rioHaPi7Ke6PLXy/6oR92VJqN/4Yq3bKpKEq5wwAURSkAvI2k99T7HKL3ORcIKJV3PVC9Xq/+DbFny17w/W5g7Vh5jm41ZNum9bh5eFSafncPz0pzdKsj2zauw83dvfyMdwh3Dw++qiRHt1oScUq3OkhlYOtUeY5uJXMPtmwCIIToiFwKshFyrU01kKkoSrmzcqu0s2nhHiTicOXpTjQca2bhzlK0bmNlsH/PrkrTXV2x1Hc149o/lac75mLl6a5k7k1XE4BvkPNflgJtgYeBCq1NZXE2LViwYMGCBQsW7gEEoFLdu+6moihXhRBq7co+vwkhTMfP1WJxNu8QKWnZrN5cxlqQFsyOpdP6VrYJFu4iTZsFVbYJFu4i6uFzys9kwcJtohLDUZZHlhDCBjgphPgUOR/GsSKCZr30kQULFixYsGDBQpVBgKoCWyUxEek3TgMygWDASFQAQywtmxYsWLBgwYIFC/cAQvt3j5IA5CmKkgO8I4RQA7YVEbS0bFqwYMGCBQsWLNwjqFSi3K2S2E7JdcbtgW0VEbS0bFqwYMGCBQsWLNwj3MPzg+wURcko2lEUJUMIUaH1DqussymECAK+BRojW2jXARuAonAidYFIIBs4DcxDLuI+RK+M34F1iqIs0y7y7q/ND/C+Nl0BvlAU5X9amZcBJ0VRZt3RE/wX+DRsQ7NRT4NQEXZwE1e2LzHI4+QTRKsH/odrUB0urJ/PtZ3LAVBZWdP12dmorKwRKjVRp/ZyadMfAAS06EaDAQ/h7BvMnjnPkxJufIkhWxcPWo5/nkM/vw1AvT7jqdGhPyiFnF7xPfEXDcPZWTs40XbSTBw8fMlKiuXo7x+Sn51hUr7LtE+xc/FAk58LwP7vZ5KXkUqtrkPR5OUQdnjrf7ySVQ+n2i3w7/sICBXJp7aTcGC1QR4bzwCCBj+DnV8tYncvIvGQjDEu1NbUmvgOQm2FUKlJu3iQuL1LjerxbDcITXYGKWf3oLZzJHjki1i7epOfGk/YyjkU5mRW2Lay5K1dvak3ZQ65STJeQ3bkFaI2yUgkIfe/UaYes8e7ITQdISPChB2EqzsM8zj5QIsJ4BoEFzfA9V0y3c4NWj0Ats6AAjcPwI298phLADQbI8MbZiXBiT+gINewbFtnaDEODmsDGNTtDTU6yIgwZ1dCvJGIY9YO0GaiDDmbnQTHFkB+tmn5Ts/IkIpFMbEP/gh5GRDSFTS5EH7k312/Kkb//v2ZM/dL1Go1v/76C59+Yhgpq0GDBvw67zdat27NG2+8zheffw6Ara0tu3bvwdbWFisrK5YvX8Y7s2YVy02dNo2pU6dRUFDAhg3rmTF9ukHZfn5+/PTTzwwbJsPDTp8xg0cffQyNRsMLzz/Hli2Gkdrc3d1ZtGgxNUNCuBkayvjx40hJSTEpv33HTvz9/cnOlt+LAf37ER8fzzNTp5KVmcnvv//+Xy5jlUPAvdyNnimEaK0oynEAIURbdD6TSaqksynkVK0VwPeKogzXjhv4CeijjV1eIkKQdr9nBYp+sCi/HrnAKCHER4qiJNyeM7gDCBXNx0xl//czyU5JoMdLXxFz9iDpsSXjkedlpXNm+ff4N+tUIr2wIJ9/vp2OJi8HoVLT7fnPibtwlOSbF0mLCeXIb+/RYtxzJk2o03MUNw/IWNfOvjUIbNWDnR8/iZ2rB52f+YhtHzwuf1j0qNd7PAmXT3Jl+xLq9R5HvT7jOL92XrnyxxZ+YuD0hh3aQtfnP69+zqYQBPR/jBt/v09BWiK1H/mI9CtHyU2ILJFNk51B9NbfcK5fMjqFoskn9M93KMzPBZWa2hPfJf3aSbKjSr1UCBXuLe7j6q/yh8mr0wgyQs+QcGA1Xp2G491pBLE7S4W+M2GbKfm8lBiu/fqqwammnN2LZ+t+xO9f+R8vWlVDQLNRcPAHyE6Fbi9CzDkZ1lWfvCzpuPk3LZmuaOD8akiNBLUtdH8R4i9L+Rbj4PxaSLwGwe2hzn1wyUhwhNo94aY24q+TLwS0gl2fgK0rdHoKdnyEQUjZur0g4Yp0jOv2kg7mhXXlyx//A1IjSpYVfgi6PFstnE2VSsXX33xL/359iYiI4NDhI6xds4YLF0rGhU9KSuKF559j+IgRJdJzc3Pp07sXmZmZWFlZsWfvPjZt3MihQ4fo2bMnw4YNp2WL5uTl5eHtbRDzBIAXX3qJX36RL3mNGjVi/PgJNGvahICAALZs3UbDBvUNQoxOnzGD7Tu28+knn/Dq9OlMnzGD12bMKFd+4kMPcuxYycaI3+bNY+++f6qdswlw705G53lgqRAiCnmzBgDjKyJYVcds9gJyFEX5DUC73tOLwKMVbdK9BQqQjqxhwOB7CPeaDchMiCYrMQZFU0Dkid34lXIoAfIyUkkJv0xhocbgmCYvBwCV2gqhsqLowZ8RG05GXIRB/tIENO9C3AX5wPBr1onIE7sp1OSTlRRLZkI07jUbGMj4N+tE2BE55CPsyDb8m3W+JfkS9ufnkp0Ui1uN+uXaak7YB9QlNzmG/JQ4lEINqef341zPMNyZJiuN7OhrYKTuC7WtxEKlRqjVGItD7xTSlOyYG8UOv0v9dqSc3g1AyunduNQ31GnKtorIlybtylFcm3QpN5/Z4V4DMhNky6OigagT4NfUMF9eBqSGQ+k447np0tEE2TqYEQd2rnLf0Uc6miAdUP/mxm3wbw7x2oW2/ZpKGwo1ssUyM0HaWBq/pjrnMPyIzuaKyuujyYesZHArJ58Z0L59e65dvcqNGzfIz89n8eJFDBs+3CBffHw8R48eJT8/3+BYZqZs/be2tsba2ro4xOpTTz3Np598TF5eXnEZxhg1ajSbNsmXjmHDh7N48SLy8vIIDQ3l2tWrtG/f3kBm2LDhLJg/H4AF8+czfPiIW5LXJzs7m5uhobRrV/5zwawQoFaJcrdKohbQCnga2ApcwtiPhRGqqrPZBCjxGqQoShoyZrmp1ey7CSFOFm3AsFLH/9Q77qmX/i3woBDC1ZRRQogpQoijQoijadl5FT6Z24GdqyfZybqHRnZKAnauniYkjCBU9HzlWwa8v4j4y8dJvmmkW6wMHDx8yc/OoFDb9VVRe2yd3chNSwIgNy0JGyfXCsm3uv8ler7yLfX7PVCivJTwK3jWNvIjbMZYO3uQn5ZYvF+Qnoi18y2GkRSCOo99SsMXfiHjxhmyo64aZHEIakB2zPXifStHVwoyU6TOzBSsHAwjlpmyzZS8jasPdR79hFoPzcIhuGFxemFOJkJtjdq+EsPoVQZ2rpCdotvPSdE5i7eKvTu4BkLKTbmfHg2+TeTngBZg72ZExgPys3QvKgb2pBq3x9ZZOrog/9s4VUy+5f3Q/X9Qr9T6tanh4FGrgidadQkMDCQ8Irx4PzIigsDAwFsqQ6VScez4CWJi49i2bSuHD8vobvXq16drt27sP3CQHTt30batYXjtkJAQkpOTix3SwMBAIsJ19kREGrfH19eXmJgYAGJiYvDx8amQ/K/zfuPY8RO8/sYbJco7euwoXbt1u6XzruoI5Dqb5W2VxJtaX8sN6ItsiPu+IoJVshsdWR/GvOmy0ovYa2TMpj7GutFRFCVNCLEAeA4T4xMURfkJefGp6+taIW//dmF0jIdyiyYohez6bCpW9o60f/QtnP1qkh5zs0Kiti4e5Gak3jZ7TMkfW/gJOamJWNna0+6RNwhu15vwI9sByE1Pwck3uMJ6zANjD55brXuFa7++isrWgRpjXsbWO5jc+PASWayc3MlNjCyjgNtnW0FGMpe+fQZNdgZ2frWoOeYVrvz0Pwrz5K1XkJmKlZM7muwMk+WYF7ehjgHUNtB2MpxdpRuXeWoxNB0J9ftB7DmjLd/YuUDeXRone+JP6XyqbaHdZMhuCxHax3JuhhyXauYYcyaUW3yeFxYW0qZ1K1xdXVm+YiVNmjTh3LlzWFlZ4e7uTudOHWnXrh2LFi+hbp3aJWT9/f1J0Gvx/K/2mJKf+NCDREVF4eTkxLJly5k4cSILF8qwqPFxcTRo2NBA1ty5d3vRKXo4DAZ+UBRltRBiVkUEq2rL5jlkXM5ihBAuyAVGr90hnXOBx6jgavl3m+zUBOzddWNv7N28yNG2GN4qBdmZJF49jU8jwzfesijMz0NtbXPL9uSmp2DrIlu6bF08yNM6rKbkc1JlS1lBbjYRx3fhVkPXva6ytkGTf3dblSub/PRErF10rb5Wzp7kpyf/q7IKc7PIvHkep9otDY8V5CHU1sX7BZmpWDm6SZ2ObhRkpd2SbWXJK5qCYkcyJ+YGecmx2Hj4F5ehsrJBKahedUxOSskWRzs3yDG83iYRKuloRh6HmDO69Iw4OQln7xyIPAGZiYaymnxQ6bVN5KSWssdVppUmN107KQn5Py+jfPmi/5pciDhesttcZaWbOGTGREREEByke2kODAoiKirqX5WVmprK7t276D9gACBbSVeuWAHAkSNHKCwsxMvLq4RMdnY2tnZ2JewJCtbZExRo3J7Y2Fj8/PwAOcEoLi6uXPmi/xkZGfz991+00+tet7WzK544VH0ov1WzEls2I4UQPwLjgA1CCFsq6EdWVWdzO+AghHgYQDtB6HPgd0VRsu6EQkVRkoAlSIfzniMl7BKOXgE4ePgi1FYEtupBzNmDFZa3cXTFyl760SprG7zrtyIjNrwcKR0Z8RE4ePgW78ecPUhgqx6o1NY4ePji6BVgtFs++uxBarTrA0CNdn2IPnPApLxQqbBxlN2tQqXGr3F70qNDi8tz8g4ssV8dyI66hq27P9au3giVGtfGnUm/YtBAXyZqB2dUtnKos7CyxqlWM/KMtGDmJkRi4+FXvJ925ShuzXsA4Na8B2mXDSdumLKtLHm1g3PxCHlrNx9sPPzJT9FNhLFyciMvxfg4M7MlJRwcvWV3tlDLyTUxtxgOt8V46Vhe310yvahrGwH1+sBNI6GOM+PBQW9oRsxZaYNKLW1y9IbkMEO5mHMQrB1zF9xOZ3NZ8kIFNtr3eaEC38aym78IJ++S+2bKkSNHqFuvHiEhIVhbWzN+/ATWrllTYXkvLy9cXbVDkuzs6N27D5cuyvG2q1ev4r5evQCoV68eNjY2JCSUnPt6+fJlQkJCivfXrlnD+PETsLGxISQkhLr16hV3y+uzdu0aHp40CYCHJ01izZrVJuXVajWenvJl1MrKisGDh3DurO57Xb9+/RL71QFxG8dsCiEGCCEuCSGuCiFmmMjXTgihEUKMKafIccBmYICiKCmAB/BKRWypkt3oiqIoQoiRwHdCiDeRTvMGYOYdVv05MkzTPYdSWMjp5d/R6akPECoVYYe2FHeBh3QeBEDo/g3YOrvT439fYWXnAIpCnR4j2PHRk9i5eNDqwf/JCSJCEHlyD7Hn5cPEv1lnmo1+GhsnVzpMeZe0yOsc+OH1Evo1eblkJkTh6OVPZkI06TE3iTq5h16v/ai17dviiSUtx79A6P71pIRf4cq2xbSbPJMaHfuTnRzHkd8/AChTXmVtK89RbYUQKuIvnyD0gG7mrEetJlzaXGpGtLmjFBK1ZR4hE15HqFQkn9pJboKc0OXeSo55Sz6xFStHV+o88jEqW3tQFLzaDeLKTy9h5ehO0NCpCJUKhCD1wgHSrx43UJNx7QRBw3Rf/4QDqwge+SLuLXqRn5ZA+IovANndHjjoSW4u+dikbWXJOwY3xqf7OJRCjZTf+DMa7VJHdn61yYq8YrCqgdmjFMLZFdBxinTCwg/rZqLX1E4EvHlAth52exGs7AAFaneXM75dAqSzlxYlx0KCXBop7gIEtoIQ7aSr6DOy7NJo8uQkHgcvyEqQuqNPQs/pWtuWU9yt33ycdFhTI+DqdmjzMAR3gOxkufQRlC2vsoYOU6QTKlRywtJNvZdmj1pw2XDJHXNDo9Hw3LPT2LhpM2q1mt9+m8f58+cBePLJJwH48ccf8fX15fCRo7i4uFBYWMjzz79A0yaN8ff357ff56NWq1GpVCxduoT169cDMG/ePH79dR6nTp8hLy+PRyZPMtCflZXFtWvXqFOnDteuXeP8+fMsXbqEs+fOU1BQwLPTphbPJP/p55/58YcfOHbsGJ98/DGLFi/h0UcfIywsjPHjxgKUKe/g4MDGTZuxtrZGrVazffs2fv7552I7OnfuwrvvvHNHr/W9yO1ouNQ2wn2LHFsZARwRQqxRFOW8kXyfIJ1Ik2gb81bo7Ucj46OXb8+tjgOxUDHq+roqn99vOBvcnPFv1hnX4Hpc3DC/UvS7BtahTs9RHP/zs7uuu46P4eQYc6TG6JeJ2fEHeckxlaLfr+9k0q8cJTO0cls7mjYLqlT9lYJfM7l+56WNlaPfJRDq9IATf9111erhc+66zspmxIgRtG7ThrfefLNS9Lds2ZIXX3yJSZMevuu6CxWOKYpS8XFkt5EG/m7KD5O7l5uv18drTdoohOgEzFIUpb92/zUARVE+KpXvBSAfaId23fF/b33ZVNVudAv3INFn9pOVFFt+xjuEjaMLFzYuqDT91YGYnX9i5eReafpz48Mr3dGstsSckcsUVRY2jnCxkhzdasiqVau4GRpaafq9vLx4663KcXQrGyHK3ypAIKA/Fi5Cm6anRwQCI4EfbpftZVElu9Et3LuEHTSyGPRdIv7yiUrTXV3IS4omL6nyxswln9xeabotAGGHKk93wuXK011N+fXXXytN97ZtFQq5bXYIqOiYTC8hhP7g/J+0K+LoF1Wa0l3Zc4HpiqJo7vSkI4uzeYdwc3dk+DjTi9ZaMB9mfLi2sk2wcBdRHzRch9SC+VLDs5qt61rNCU2o3GXVKhiuMqGcrv4I5Ao9RQQBpZcQaAss0jqaXsAgIUSBoiirKm5txbA4mxYsWLBgwYIFC/cCFe8mL48jQD0hRC0gEpgAlIiCoihKcYQE7brj6+6EowkWZ9OCBQsWLFiwYOGeQCBQ3QZvU1GUAiHENOQsczUwT1GUc0KIp7TH7/g4TX0szqYFCxYsWLBgwcI9guo2xT5XFGUDcllI/TSjTqaiKJNvi9IysDibFixYsGDBggUL9wj3cLjKf02VdDaFEBrgDNL+G8BERVFShBAhwAVAP1TNF4qiLBBCOCEXZe8D5ACJwCuKohwqp7wbwPuKoryp1e2FXMT0R0VR7q0F3t3qQq1BgIC44xC513i+WoPArR4U5sPVlZAZDXae0GCcLo+tO4TvhOgD4OAHdYbKUHFKIVxfBxlGYmRbO0Gd4XBRu6h6YDfwaQ0ocGMDpBiZVGFlD/XHga0b5KbApcWgyTEt32gi2DjLRZ/Tbkp7UMCvvTynuOoxK71+684MnfIKQqXiyJZV7F72m9F8Q6e8SoO2XcjPzWHp3LeJuiYjiXQd/iDt+o1EQSEm9CrL5r5NQX4e97/6Md5BIQDYOzqTnZnOV89NMCjX2d2LUc++yfx3nweg59hHadt3OEphIWt++pQrxw8YyNg7ufDA9E9w9w0gOTaKvz5+lezMdJPyj7zzDS4e3qhUam6cP8Hq7z9CKSyk05Dx5OVkc2xbxSOrVGXqte7M4MdfRqVWc3TLSvYs/91ovsFPvEKDtl3Jz81h+dy3ibou67vzsAdp228EKAoxN6+y4stZFGhDu3YcPJ6Og8dTWKjh0tF9bP79S4Nynd29GDHtTRa+J+u7+5hHaNt3BIUaDet+/oyrJ4zX94RXP8bNJ4CUuCj+/mQ6Odr6Lkt+0qxvcHb3QqVWc/PcCdb8+DFKYSEdB8v6Pr69etS3Pt179eHtDz5FpVax+I8F/PDVF0bzvf3hp/Ts04+crGxefu4pzp0+BcDkKU8z4aHJCCFY9Mfv/Pbjd0blH3nyGVKTk1mx5G9c3dz55uffCaxRg8iwMKY+Pom01JQK21aWfItWbfjwi68A2WU897OP2LJBTrBcuGwNUx972Kie6oKA29KNfq9RVdfZzFYUpaWiKE2BJGCq3rFr2mNFW9HCi79o89ZTFKUJMBk5+6q88q4DQ/T2xyJjs99jCKg9BM4vhJPfgFczsPc2zOZWTzqWJ76Ea2ug9lCZnpMIp77Xbj9Ipy1JG2ggpB+E75LHwnZAzX7GTQjoDLHH5Gd7b2nDyW/g/AJpm7H3tcBukHpd2pN6HYK6lS9/eQmc+k4es3YAzyYyPe4E+HW89UtXBREqFcOfnsFvb09jzjOjadljAD7BtQ3yNWjbFa+AGsyeMpwV37zPiGdkkC0XT286D72fr198kLlTx6JSqWjRvT8Af386g6+em8BXz03g7P7tnNu/w6gNXUc8xJHNKwHwCa5Ni+79mfPMGOa9PZURT78mIxKVoufYR7h66jCzpwzn6qnD9Bj7SLnyf308nS+fHc+cqWNwcnGnWVcZFeno1tV0GXr/f7ySVQOhUjH0yenMf+dZvpw6mubdB+AdXMsgX/02XfAKqMEXTw5n1bfvM+zp1wBw8fCm09AJfPfSQ3z17DhUKhXNusn6rtWsLY069OTr58bz1bSx7FtpfK3aLsMf4ugWGTzEO7gWzbv158upY5j/zjSGPTXDaH13H/MI104dZs5TI7h26jA9xjxSrvyiT6bzzfMT+GraWBxc3WnaRYazPbZ1NZ2GGr70mDsqlYp3P/6cyRNG0a9LO4aNHEPd+g0M8vXs04+Q2nW4r31LXvvfc7z/qVyIvn7DRkx4aDIj+vdkUM9O9Oo7gJDadQzk1Wo14+6fyOrlSwB4+rmX+Gfvbnp1aMU/e3fz9HMv3ZJtZclfunieYX26M/i+LkyaMJIPZn+JWq0GYOXSRUx89PHbc+GqKhVYY7Mq+qJV1dnU5wClFiotjRCiDtABeENRZJw7RVGuK4qyvgLlZQMXhBBFSwyMR8ZIv7dwCpILLucmg6KBhDPg0dAwn0dDiD8pP2dEyLB21qWW9XCtDTnJkJsq9xVAbSs/W9lBXrpxGzwbQ8oVnZ6EM9KW3BRpm5ORqCseDXUtkXEnwKNR+fKaXPlfqEDoNc4X5svzdzL5dTALgus3JTE6nKTYSDQFBZzas5nGHXsa5GvcoQfHd6wDIPzSGewdnXF2l+9YKrUaaxtbVCo11rZ2pCUZxhtv1rUvJ/cYXzu1aZfeXDr2j9TTsSen9mxGU5BPcmwUidHhBNdvasSenhzfLlsxjm9fS5OO95Urn5udqbXXCrW1FWijnuXn5pAcF0VQ/SYVvm5VlaB6TUmKjiBZW9+n926mUYeeBvkadejJiZ26+rbTr2+Vfn3bk66t7w4Dx7Bn+W9oCvIByExNNmpDk869uHxsf7Ge03t19ZUUHUFQPcP6btS+Bye0378TO9YV22xKXr++raysi1cGzM/LISU2iqB65l/f+rRo3ZabodcJvxlKfn4+a1ctp+/AIQb5+g4YzIrFfwNw8tgRXFzd8Pb1pW79Bpw8doSc7Gw0Gg2H9++j/6ChBvKdu/Xg7JlTaDQaWd7AwSxfLHupli/+k36DDHWasq0s+SI7AGxt7YrvZ4BtmzYwdOTYf32tzAWVEOVuVY0q7WxqY3r2BvT7VeoIIU7qbd2AJsBJRVE0/6I8gEXABCFEEKDBcK2qysfWGfJSdft5aWBjJISijYvOiQTINZLPqxkknNbth26QrZtt/gc1+0PYViP63aAgRzqHxvTkpUobS2PtCPnaNc3yM+R+ReQbPQztpkvHM1GvoTkjClxqGuoxM1w8fUiN10VrSk2IxcXTsCXbxdOHlARdaMnUxFhcPH1IS4xn78oFzPhtIzMXbiUnK4MrJw6WkK3VpDUZKUkkRoUZlOvuG0B2Rlqxg+Li6U1KvJ6ehDhcPH0M5JzcPElPTgAgPTkBJzePCsk/+u63vPnndnKzsjjzj26x54gr56nVpHUZV8l8cPH0JlWvHtMS4nA1cn1Lfy/SEuNw8fQmLSmefasW8sqvG5gxfws5melcPSnr2yugJiGNW/PUZ/N5/MOfCazb2KBcWd/pxfXt6ulDaoLe9y/R+PevrPouT37yrG+ZuXAbudmZnN2vq+/Iqxeo2aRVOVfLvPDz9yc6UjdsKSYqEj9/f4N8vv4BREfp8kVHReLnF8ClCxdo36kLbu4e2Nnb07NPf/wDDV/I27TvyNlTuiFIXt7exMfKOoqPjcXTy8tAxpRtpuRbtm7L5r2H2bTnIK+/8kKx85mWmoKNrQ1u7h4VuzhmSNFsdIuzeW9gL4Q4iRx36QHoez+lu9HLGLhY4fIANiGD2d8PLC6rECHEFCHEUSHE0fiUrIqfzW2hIsECKKP9XS+fUINHg5IOnF97uLEJjn0OoRuhzgjDImycIT/TtIlGzLkl9OUvLIAjn4FKLVtii8jPlLaYOUYfNUar20hORcHe0ZnGHXry6WND+PDhftjY2tOy56AS2Vr0GMCpMlo1nd29S7SAGV2EWKl4hZcnP++tqXwwsS9W1jbUad6uOD0jNQkXDyPDRcwMY/WoGLm+Ru9uBewcnWnUoSeznxjCx5P7Y2NnTwttfavUauycnPnhlUls+m0uE6Z/YlCGs7sXmWn6LZ7/rb7Lk/991lQ+ntQPtbUNtathfetT4bovI9+1K5f44es5LFy2mvmLV3Lh3BkKCgoM8vr4+pGYkHBHbCvNyeNH6d+tPcP79uSZ51/Cxta2+FhiQgK+fn63ZIe5YelGv3fIVhSlJVATsKHkGEtjnANaCCHKOl+T5SmKkgccA/4HLC9LiaIoPymK0lZRlLbebg4VOY/bR24a2Ljq9m1cjHd356aCrV4+21L53OrJCUP6jqN3S934zcRzxrupC/PlBKIi8tJK6rFxNW5PfqauG9/aSae3IvJKASRdKjlcQGUFGsMHqbmRmhiHq7dv8b6rl6/RbvDUhFjcvHQPbldPma9uyw4kxUaRmZZMoaaAcwd2ULNRi+J8KpWaJp16cWrPZqP6C/JysLbR/UCkJsbh5q2nx8vHqD0ZKYnF3brO7l5kpCRVWL4gP4/zh3aXGC5gbW1Lfm6OURvNidSEOFz16tGljOtb+nvh4ulDura+k2MjyUpL0dV3w+bFMucPyHG5EVfOoRQW4uDiVqLc/LxcrKxt9PTE4uql9/3z9CUtydBRKbu+y5cvyM/j4uHdNNYbLmBlbUN+bq7xi2SmREdFlWiJ9AsIJDYmxiBfTFQk/gG6fP4BgcTGytCyS/5cwNDe3Rg/bAApKcmEXr9mIJ+Tk42tnV3xfkJ8PN6+so68fX2NOqKmbKuI/LUrl8jKyqJBQ11ruq2tLTk55n9Pm0IIUe5W1aiqziYAiqKkAs8BLwshrE3kuwYcBd4R2loSQtQTQgy/hfI+R8YQTbyd53DbyIgEew/ZnS3Usis86aJhvuRL0nkEOQayIEfXjQ3g3UyOldQnLx1cQuRn19qQk2RYbnai1F1E0kVpg1DLdHsPOUa0NEkXwUfbLebTSmdzWfIqG70xpipwrwfZej+69p6QFYu5E3H5HJ4BNXD3DUBtZUWL7v05f2iXQb7zh3bTupccKxXcoBk5WRmkJyeQEh9DjQbNsLaVPy51WrQnPvxGsVzdlh2IjwglLTHOqP74yJu4+wTo6dlFi+79UVtZ4+4bgGdADcIvnzVuT285Xqx176HFNpclb2NnX2LMYYO2XYiPCC0uzyuwJjFhhj+c5kbklXN4BgQX13fzbv25eGi3Qb6Lh3fT6j5dfefq1Xdwg2ZY2+jqO05b3xcO7ixuPfQMqIHaypqstJQS5SaUqu+Lh3bTvJt+fQUTccWwvi8e3kMr7fevVa8hXDi826R86fqu36arQX3HhlWvUKGnTxwjpFYdgmrUxNramqEjRrNtk+F0g22bNzBqvJww17JNO9LTUou7sYu6sAMCgxgweBhrViwzkL96+RIhtXS9RNs2bWD0+AcBGD3+QbZuNNRpyray5INq1CyeEBQYFEztuvWICNcN1fH28SUi7OYtXiUzQpjnmM0qufSRPoqinBBCnEKGYtqLdsymXpZ5iqJ8BTyOdBivCiGy0C59VIHyitLPcU/OQi+iEK6vh8YPy4kzscd1Tpivdm5T7FFIvixbL1u/ABrt0kdFqKzBtY6cpa7PtdVyuSShgsICuW+gPl9OKrLzkM5odjwknIVWz2qXS1pPcT9vneEQcwQyo+TyTPXHyyWOclPhsnaUQlnyamto9KB0QoVKzmCPOaqzw7mGnDlv5hQWaljzwyc8+u53qFQqjm5dTVzYdUBO+AA4tHEZl47uo2Hbrrzy8xrt0kezAAi/fJYz/2zj2bl/UVioIeraRQ5t0jXat+jev8wudJCTcxJjwvH0DyYxOpy4sOuc3ruFl75fTqFGw+rv5XI1AKOffYuDG5cRefU8u5f9xgMzPqFdvxGkxEfz50evApQpb2Nnz8NvzsXK2hqVSs2100c4tEH3Q1mzUQu2/f3jbb229yKFhRrW/vgJk2d9i1CpOL5tDXHhsr7bDxgNwOFNy7l0dB/12/yfvbMMj+LqAvB7d+PuHggECxrc3V1KsVIotKUtFCg1qLt9FKtTHFociru7uwRPiLvbJpv5fkzYTdhNAi0QSOZ9nn12584999yZ2Z09c86997Ti7dnrycnOYu1PnwMQdv0Slw/vZtzMv8nTaom4fY2T2+WZ5ad3rWfAhM+Z8PNKtLk5rJn1mYH+nOwsEqLCcPL0JSEylJjQ21w6tJOJv64mT6tl4x/6693/zU84sW014Tevsn/NAoa+/wMNO/cjOTaKZT/kX+8i5E0tLBn+8QxMTM0QKhW3L5zkxNbC13vPsj8f12l+KtFqtXz2wbssXrkOlUrFqmVLuHFNfigfNnI0AEsXzWfvzu2079SFfSfOk5mZyfsT3tC18fuCv3FwdCI3J4dPJ79tdGmh/bt3Mv23OXqZn6bzy9xFDHrhRSLCwhj38ghADrd/P/MXRg8dWGzfipJv3LQ5r094m9zcHPLy8vjk/bdJTJB9OHXq1efs6ZO6MZzlEXnpo9LuxaNHPMj4CoWHp1ENL+nU/HK2hINTAFh7Qeju0tFv7QGeLeDm2ieuesq3G5+4ztKmVvP2ePsHsOMv42v2PW68KlenVb/hrJz+yRPXrS6L/wYlULNZe7z8A9j1d+lcb8/K1WnZdzirZzz567306I0nrrM0+GPhUr7/8hOjYfYnwaff/MCubVs4ctDQa/8kCY5LOy1JUqOSaz56avs4SavHF7G8YAECpqwotT7+G57pMLrCU0bCVXnpodLCxBpCja8JqfDouXx0L4kxkaWm38rOgZ2lZOiWR64c20tSTOktxGFl51Bqhm554X9ffYabe+lNzrl+9WqpG5pPA2VxgtAzH0ZXeMqIOVN6upPL/ti9p42TO/4pudJj4ua546Wmu7xyaue6UtN9S7nej53bt25w+1bpeXGX/7Ww1HQ/LQhA/SxakyWgGJsKCgoKCgoKCk8Dz+hs85JQjM3HxJlrkZi3+aa0u6HwhNgwqVtpd0HhCdK1i2G2HIWySx3f8rvIeHlk6G+lNO8gnzJoayrGpoKCgoKCgoLC04Li2VRQUFBQUFBQUHgsKGM2FRQUFBQUFBQUHitl0NZUjM2ygo+PD/MWLsTD3YO8vDzmzZ3DLz//bFBvyNBhvPuevJZ9Wnoa48eN4+KFCwBMmDiRUaNfRpIkLl26xKsvjyY7O5vPvviC3r37kJeXR2xsLK+MHkVkpOGSNx4eHvw++0/69+0DwHuTJzNq1Gi0Wi1vT3qLnTt2GMg4Ojry97LlVKxYkZCQEIYNGUxSUlKR8jY2NuzZp18aw9vHh2V//82777zNG2PHkp6eweJFC//r6XzqsbB3oc6QdzCzdQQpj9Dj27h7aINBPc/67ajUXl7kPTc7i6trfyU18g5Wrt7UGz5FV8/KyYOb2/8i5NB6bL0qU3PAOFSmZkhaLVf/+Y3k0OsGbZvZOlJr4ATOLvgCgErtn8enSRekvDyurp9N/HXDlQlMLW2oO3wKlo5uZCbGcP6v78nNTCtWvvHr32Fu64Q2VwPA6T8/RpOeTIUWvcjVZBFxatd/O5nPAub2UHswmNkCEoQdh9DDhvU8AsGvnfxZq4Gr/0BaJFi5QN0X9PUsneDWTrh7CCp3Au8m+lSxN7dB3DXDts1soeZzcG6hvO3XDrwbyznNr22AeMPvCCaWsl5LR8hMhAt/Q27mg8kHjpT7eXSGvO3bXE5EEXGKso6VgytNR07Gws4RJIlbhzZzfZ/hyg8VG3cgoPMQAHKzMzm1fBZJ4bexdfOhxcsf6+rZOHtycfMiru9di4OPP42GvIXa1BRJq+XUip9ICDG83hZ2TjQe9jYH/5DbCegylMotuiHl5XFm1a9EXTW8DmZWtrQY/THWzu6kx0dzeN5X5OT/vouS7zBxGhb2Tmhz5DSk+36eQnZaElXb9iU3O4s7x4ynzC2ziLIZRi8z62wKITyEEMuFELeEEFeEEFuEENWEEAY51IQQC4UQA/M/7xNC3BUFrq4QYp0QIi3/s58QIlMIcU4IcV4IcUQIUf3JHdmDkZuby+T33qNendq0btmC198YS42AAIN6wcF36NShPY0a1Oe7b77htz/+AMDLy4txb46nedMmNAish1qtZtBg+SY2/ccfadSgPk0aNWTL5k189LHxRZUnTprE/LlzAagREMCgQYMJrFuH3j178NPPv6BSGX7d3ps8mT17dlMroAZ79uzmvcmTi5VPS0ujSaOGutfdkBDWrZNvwgsXLGDcm2/+95P5DJCXpyVo01wO//g6x355hwotemHt5mtQLzMhmhO/T+HI9De5vWsZNQeOByAjNpyjM8bLr5kT0eZkE33pCADVeo7i1s6lHJ0xnps7/qJaz1FG++DXpj9hJ+Q/Ams3XzwD23Doxzc4PfdTag4YK2d4uo9KHZ4n4eZ5Dv1vDAk3z1O5/fMPJH9h2VRdfzXpyQCEndxJxVZ9/sNZfIaQ8uD6Jjg6DU78Ihte1m6G9TIT4dRsODYTbu+GmgPk8ow4ODYr//WTbLTFFLg13j2k32/M0ASo2BrCT8ifrd3Aox4cmQ5n5kGNfsgBwPuo1A4SbsLhqfL7PUO4JHm3WpB7Xw708FPg26L481RGyMvTcm7tH2z96mV2Th1PlTZ9sfOoYFAvLS6K3TPeZtu3Y7i89S8aD5sEQGpMGNu/e53t373Oju/HkpuTTdj5QwAE9nuVy1sWs/2717m4eRGB/cYY7UP1jgO5fWQLAHYeFajQsB1bv36F/b9+QKPBExBGft8BXYYQfe0sm794iehrZ6nZZcgDyR9d+J2uv9lpSQDcPrKNau36//uT+IxyL4NQSa9njTJhbOYbiv8A+yRJ8pckqSbwIeD+gE0kAS3z23IAPO/bf0uSpEBJkuoBi/LbfqqIiori3NmzAKSlpREUFIS3t7dBvWNHj+o8h8ePHcPb20e3T21igqWlJWq1GisrKyIj5QWcU1NTdXWsrK0pKutU//4D2L5dTnHYu08fVq5cgUajITg4mFu3btG4SRMDmd69+/DX4sUA/LV4MX369H1g+SpVquDq5sahg3JW0czMTEJCQmjUuHHJJ+wZR5OaSGq4vK6oNjuT9JhQLOydDeolhVzVeQ6T7l4zWse5aj0y4iPJSspPbypJmFhYAWBiYU12SoLRPrjXaUlckOydcKvVjMhzB5C0uWQmRpMRF4F9hWoGMm41mxGe74kMP7ULt1rNHkq+IHk52WQmRmPvW3y9MoEmFVLzF1TXaiA9RvZ23k9yiN5zmHzXeB2nKpAZD1lJD9cHt9p6Q9S1JkSdB0krp6nNiAd7w4cdXGtBxGn5c8Rp2YgsSV5tBhVaw537EjTcS4lr50NZJyslgcRQOQd8bnYmKdF3sXRwMagXf+eKznMYd+cqlg6uBnXcq9cnLTaCjIQYQHYkm1hYA2BqYU1mcrzRPvgGtibyykkAvOu25O7pfeTl5pAeH0VqbAROfoY+F++6LbhzXI5g3Tm+A+96LR9KviDanGzS46NwqvjU+XYeO2UxN3qZMDaB9kCOJEl/3CuQJOkcEPqA8suRc6EDDACKy3doB5RimpySqVixIvUCAzlxvPhFkEeNHs32bbJxGBERwczp07h5J5iQsHCSk5PZtXOnru4XX33FzTvBDB06jC8+N8yd7OfnR2JiIhqNHOr09vImLDRMtz8sLAwvL0Pj183dnaioKEA2mF3d3B5YftCQIaxetbJQ2enTp2jVqlWxx13WsHB0w9arMkl3i/BI5ePTpAtxQacNyj3qtSHqrH5oQtCGOVTrOZo2Hy2keq/RXN+y0EDG0tGdnMw0JG2u3Ad7Z7KS43T7s5LjsbAzNGzNbB3QpMo/H01qImY2Dg8kX3vQJJpP+pnKnYYUai8l9CYOlWoVe9xlDgtHsPWWjcni8G4M8Ua+Ex71IOpc4TLf5tDsLag5UA59G9OZmykbhyAbsVnJ+v3ZycYNWzMb2VAG+d3MumR5/y4QclD2vt5PShg4VjJ2tGUWayd3HH2qEB8cVGy9yi26E3n5hEF5hUbtuXt6r2777OrfCOw/hj5fLyVwwGuc3zDXUKezB5qMVPJy5Wtg6eBMRmKMbn9mUqxR49fC1pGs/IfTrJQELGwdHki+6fD36PrBH9Tq9kKh9hLuXse1Sp1ij7vsIa+zWdLrWaOsGJu1AcN/0QdnN9BGCKFGNjpX3LffPz+Mfgt4G5hurBEhxBghxCkhxKnSyjhvbW3N8pWrePfttwt5JO+nbbt2vDRqNB99II/bc3BwoFefPlSv4o+frw/W1tYMHab/4X/2ySdUqeTHsmVLeWPcOIP2PDw9iYvTGwvGfgxFeUSN8SDygwYNZsXy5YXKYmNi8fTyemA9zzpqMwsCR3xE0IY5aLMzi6zn5F8X78ZduL5lQaFyoTbBrVZToi4c0pX5Nu/BtY1zOPDNSwRtmEPtQW8ZtGdu50ROegFjwejN7yF+BcXIX1j6I0emj+PEb+/jWKkWXg076Gpo0pKwsCtHayCqzaDecLi+AbTZRddzrAxejeHG1sLlQi17FaMv6svCjsGh/8kh9OxUqNbTsD1zO9CkF2jHmNKHud5FyNt4gpUzxF42LqdJl/tSTjAxt6Dlq59xdvVv5GZlFFnPrWo9Krfoxvn1hQ1HldoE7zrNuXtG/zBZpU1vzq75nQ0fD+Psmt9p8sK7Bu1Z2DmRnab/fQtjF+yhLnfR8kcXfsu2b19l9/RJuFapg1+TzroqWalJWBqJxpRlBGUzXWVZMTb/K1rgEDAYsJQkKfi+/ffC6P7AW8CfxhqRJOlPSZIaSZLUqDS+CyYmJqxYtZrly5ayfl3RaQRr16nDH7P/ZOCA/iQkyE+hHTp2IvhOMHFxceTm5rLun39o3ry5geyKZcvo33+AQXlmZibmFua67bDwMHx89eEuHx8fXVi+IDHR0Xh4yLl4PTw8iI2JeSD5OnXrYmJiwtkzhSehWFiYk5lZtNFVlhAqNYEjPiTy7F5i8sdbGsPG049az0/g7MIvycko/ADiUqMRKeG30OSPkwLwatiR6Itye9EXDhkNU2tzslGZmOq2s5LisLDXeyos7J11Ho6CaFKT5ElNyBOM7uktTj47RQ7zabMziTy7v1B/VKZmaHM0RR57mUKooO6LEHkOYoowxgBsPGQP5flFkHOfgeJSHVLDQZOmL9OkIf/zS/KYTGPh8LwcUBWYT5qVDBYFPJnm9pCdYiinScuf1IT8fs9gLUreoaIcJm81GRq/IU9salhgTKHKxLjHswwiVGpavvI5ISd368ZbGsPeqxJNXniHQ7M/RZNe+Bp41mpCYugNslOTdGV+TbsQdk4eehR6Zj/ORsLU2hwNahMz3XZGUhxWjvoxwpYOrmQWiETcIys1UffwZ2HnRFa+3uLk74Xxc7MzCTm1p1B4XW1qhlZTTn7fBVAhSnw9a5QVY/My0PA/trEc+BlYWUK9DUCb/6jrsTB7zlyCrl5l1syZRdbx9fVl5arVjHppJDdu6HPghobepWnTplhayiG09h06EBR0FZDHRt6jV+/eXLtmGJq7cf06FSv66bY3bdzIoEGDMTMzw8/PjypVqnDyhGGIZ9OmjQwfMQKA4SNGsHHjhgeSHzxkCCtWLDdor2rValy+VMwfcRmi1qCJpMeEEnJgXZF1LBxcqT/iIy4um0ZGnKGx7xnYhsgCIXSA7JQEHCvLoSunKvVINyKXERuOpaN+SHTMleN4BrZBqE2wdHTHysWb5LuGs5NjrhzHu1EnALwbdSLmyrFi5YVKhamV7MkSKjWuAY1JjQrRtWfl4k1age0yTc2B8ljNuweLrmPhAPVehEsr5ElB9+MRKI+VLMg9YxDkMZVp0YZy6bHyjPJ7xF6Vw/FCLYfYrZwh2ciopdgr4JV/a/ZqqPdYFiUfdgwOfAOHfoCTv8vHcLrAs72Vi/H+lUGaDH+XlKgQru1ZU2QdK0c3Wo35nKOLvic1Jtxgf4WG7Qk5tbdQWWZyHG5V6wHyeM7UWEO51JgwrJ31v+/wi0eo0LAdKhNTrJ09sHXzJiHY8H8g/OJRKjXtAkClpl0Iv3CkWHmhUmFmrf99e9VuRnJEsK49WzcfkiPvFHn8ZRIBKpUo8fWsUVaWPtoDfCuEeFWSpDkAQojGgNVDtHEQ+A5YVkK9VsCtf9XLx0iLli0Z/uKLXLxwgROn5BEFn37yMdu2buXVMa8BMOfP2Xz48Sc4OTvz08+/APIs9hbNmnLyxAnWrl3D8ZOnyM3N5dy5c8ydMweAr7/9jmrVqpGXl8fdu3d5c+wbBvozMjK4c/sW/v7+3Lp1i6tXrrB69SrOX7xEbm4uEyeMJy8vD4DfZ//JnD9nc+b0aab+8ANLly9n1KjRhIbeZejgwQDFygMMHPg8fXv3MuhH8xYt+PqrLx/hmX06cfCriXfDjqRG3qH5JHmJqxtbFxEXdAqfZt0BCDu2Ff9OQzG1siNgwFgAJK2WYz+9BYDK1BznqvW5suaXQm1fXv0TNfq+hkqlQpubw5XVhktoaXOyyYiPxMrZk4z4SNKj7xJ1/hCt3vtDt1wSkny9ag2cQOixLaSE3eTO3lXUGz4F78adyUqK5fyS7wCKlFeZmNPw1a9QqdUIoSL+xjnCjuuXQnH0C+DWzqWP9uQ+jTj4ycZaaiQ0myiX3VuiyKepvB12HCp3BFMrCOgnl0l5cDz/+qlM5clBV+8bkl61B9jmz4nMSoQrRoas5+VARgJYOsuTi9KjIfoCtHhH1hG0Hl1ctOZzstGYEg7B+6DOC/L40cwkuPCXXKc4+ZLOw+2yv9SVi39tKjXtTFL4bbp+IE9FuLBhPpGXT+DfSr7v3Tq0iVrdh2NubUejIRMA+fe943/yMCe1qTkeNRpyatnMQm2fXDqDBgPHIlRq8nI1nFw6w0C/VpNFWlwENq5epMVGkBIZQuiZ/fT4eB55eVpOr/gJKf/33XjY29w8tInEu9e5umM5LV/+mMotupGRGMPhuV8BFCmvNrWg3Zvfo1KbIFQqooLOcPvwFv15qFyLS1sWP9qT+5RzL4xe1hAPM47uaUYI4QXMRPZwZgHByCHvK0DBR+FJQE9gkyRJq4UQ+4B3JUkqtGiYECJNkiQbIYQfcBW4hvw90ABvSpJU7OwblRCSqbqsOI4fjD59+9GgYQM+//TTUtFfLzCQiW9NYvRLI5+47vKYG92tdnPsvKtwc/uSUtFv61UZvzb9ubh82hPXXS5zo7vWAjtvuGW4Xu4TwdZLnqV++f4h9Y+f5ev+y5SAZxPvei1x8q3GxU0LSq78GHDwqUKNjs9xbNEPT1z30N92n5YkqdETVwzUr+gi7fuw5CXdHF5fUGp9/DeUFc8mkiRFAIOM7DI1UraqgFy7ItqzyX8PBoxMz1S4nw3r1+HsXHqDuV1cXPjis9IxdMsjMZeOYmplW3LFx4SZtR03SsnQLZfEXgazhwkWPWJMrUvP0C2HhJ8/jLl16U3GMrex4+LGhaWmvzQpg47NsmNsKjwdLJg/r9R0795V9sNrTxvhJ0rvzz/+xrlS011uCT9ZeroTbpRcR+GRcvvI1pIrPSaigwwzkJUHRP6YzbKGYmwqKCgoKCgoKDwVPJuLtpeEYmw+Jqp7OjD/lXal3Q2FJ0TzTuVsYfFyjm+/maXdBYUnSF3fcrSWq0KpU/ZMTcXYVFBQUFBQUFB4KpBno5c9c1MxNhUUFBQUFBQUnhLK4kI2irGpoKCgoKCgoPA0IBTPpoKCgoKCgoKCwmNCoIzZfOYQQmiBiwWKlkuS9L2xhdyFEO2A9UDB3FjvAh8D30mStL1A3beAapIkjX1snf+X2PnVovqwD8hOlHOMJ1w9Rtg+wwyctV7+BrWZvHyoqbU9aeE3uLbse9TmVlQZ+Bbm9i4IlZqIw+uJPbsHALWFFf59x2HlVgEJuLXuF9JCDVOWeTTvRW5GGnHn92FiaUPVQe9g7uBGdlIM11f8iDYr3UDGoUp9/Hq8jBAqos/sIuKgnMXEqVYLfNsPxtLFh4t/vk96ROHkTWb2LgS++ROh+1YQeXg9AAEjP+f6iqlG9ZQ57CtBrRfkzC8AcVfg7l7DevVeAXV+7npTa0gNgytLwcQCqg0ACyfIy4XrayEjpoCggAZvyHmrL/9lvA/ezSEnE2LOgYklBAyW0yZmJcHV5ZCbZSjjWBX8e8j5vqNOQ+gBudylFlTsAFaucPYPSLsvVaa5PTSaACF7IOywXFZnFFxdZlxPGaNZy9bM+3s5oSFyis6tmzYwa+r3BvXWbN6BtY0NAC4urpw7c4pXXhzKa+Mn0n+gnKXLxMSEKtWqE1jVj6SkRI6cu0x6WhparRZtbi49OxrPyvvy62NJSkxkzYplODg48uv8Rfj6ViA09C5jR40gOTnJQKZdx058/u3/UKvVLFuyiN9mTQegZ9/+TJr8IVWrVad3p7ZcOHcWAB/fCuw9dppbN+Xljs6cOsmH78iZk5au3cgbo140qqesUadRMz6ZOZfocDkV6JE921g2e5ZBvR8WrMbKyhoAeycXrl86x9eTXmXAyNdo36MfACoTE3wrVWFYu0DSUpLpM2w0XZ8bihCC7WuWsf5v48vW9X3hZVKTk9izaQ02dvZM+d9vuHn5EBMRxvfvjSUtNdlApmGLtoyZ/DkqlZod/yxn1fzfAGjVuSfD3piEb6UqTHqhDzevXADAzcuHP/7ZQ3iwfH8PuniWX7/+EIBvZi/lu3ffMKqnrKJ4Np89MiVJCnyI+gclSSqUA1EI4Q8MAbYXKB4CvPffu/d4SA25StDf3xRb5/K8j3Sfqw1+n4QgOe+4R9PuZMaEcu3vbzGxsqP+hF+Iu3AASZuLX/dXSLpxlusrpiLUJqhMzQwbVqlwq9+RC3+8A4BX6wEk375IxMG1eLUegHfrAdzded9C3EJFpV5juLLoczQp8dR57X8kBp0gMzaMzOi7XFv2A5X7GKbIBPDrNpqkG2cLlcWd349Hk+6EH1hd0qkqGyQHF20I3uP8XP3ngKEQL+e9x7ctpEXKhqelC1TpDRcLZAzxbg4ZsXpD1QAVuDeEM7/lt9cGkm7LxqNvG/l15/61OIVeT3YK1H9d7k9GrJz7+8oyqNrXuLrKPQzXW4w5B55NIXS/UZGyxomjRxg19Pli6zzXs4vu8+xFf7Njyyb588+zmP2zbKx06tqdV954k6SkRF3dQX16kJgQX2S7arWawS+MoHu7lgCMfettDu/fx2+zpjN24tuMfettvvuicGIFlUrF1/+bzrABfYiMCGfT7gPs3LaFG9eCuHb1CmNGDOP76T8Z6AoJvkO3ti0MyteuXMaIl1/l5+lTiz0HZYXLZ0/yxfhRxdaZPGqg7vOH0/7g2N6dAKxdNJu1i2YD0KRtJ/oNf5m0lGQqVqlG1+eG8vYLvcnJyeGr35Zw8uBuIu4GF2pXpVbTud8gJgzpAcDzo8dx/sRhVs3/jedHj+X5l8eyYOZ3hWVUKt748Gs+fu0F4qIjmbF0I8f27ST09g1Cbl7jm0ljePOTwjIAkWEhjB/c3aB8z6a19Bz8Iivm/mKwr6xSFtfZLIPDUB85q4FeQghzgPz0lV7AodLs1KNCZWaBfeU6JAbJ2TclSUJtLns81WYW5GamIeVpUZtbYudXk5gz8sLpkjYXbVaGQXv2leqQHnkb8vOYO9VoQuxZ2dMWe3YvTgFNDWRsfKqSlRBJdmI0kjaXuIuHcKzRBIDMuDCy4iMMZAAcazQhOzGajNi7hcoTgk7gUqf1vzkdZR+1GThU1hubVm6ycQiQGQcWjrLnE8DMDpyqy57HonCsnO99zM9b71wDovMXY44+A84BhjK2PnJ+7axEkLQQe1FfLzNW7ocxnAMgK+E+zyvysbjVLfHQyyPWNja0aN2G7fnGZkH6Pvc869euMiJVNC3btOXS+XNotVoAunTvyerlfwOwevnfdO3Ry0AmsGEjgu/c5m5IMDk5OWxYu5ou3XsCcPP6NW7ffLjF2ndu3ULf54o3tssrllbW1GvSkqN7txvsa9utD/u3bgDAt1JVrl04Q3ZWFnlaLRdPH6N5B8OUu/WatODW1Uvk5V/vZu07s2uD/BC/a8NqmrXvYiBTrXYgEaHBRIXfJTc3hwPbNtKsnVwv9M5NwkNuP9QxHd+3kzbdi3j4VCgWIUQ3IcQ1IcRNIcQUI/tfEEJcyH8dEULUe1x9KevGpqUQ4lyB1+AS6re+r76/JEnxwAng3i9xCLBCMpJUXggxRghxSghxKjEj+xEfyoNj41udumOnU+PFT7B09S22rlNAM5JvX0CbnQlA1PEtWLr60PC9edQbN5M7W+eBJGHu6E5uegr+/cdT941pVO47FpWpobfLtkJAoVC3qbUDOWmy5yQnLRFTa3sDGTNbJ7KT9QaGJiUec7vi016qTM3xbj2A0H2GeZK1WekIExNMLEsvleITxa4CNBgHtUfIxmNxONeEpFugzf9+pkeBS035s603WNjLoWqQw9x3toPhV72w7oKhbjMb0KTJnzVpYGpjKGNuB9kFQmLZKbJhWxwqU/BtDSFGhgjkZoFKLYfwywENGzdh+4GjLF65lmo1jBjzBejWszeHD+wnLTW1ULmFpSXtOnZi64b1ujJJkvh7zXo27znIsJHGPWmNmjbnwvlzum0XNzdioqMBiImOxtnV1UDGw9OLiPAw3XZkRDgenl4lHqdvhYps3XeYVRu30aSZ3sOZnJyEmZkZDo7lY+3LGnUb8PPKbXzx6yIq+Fcrtm7zDt04d/wwmelphcrNLSxo2LIdh3dtASDk5jVqN2yKrb0D5hYWNGrVHlcPT4P2agY25uZV/Ug0BycXEuPkh73EuBgcnFwMZJzdPIiL0t8T4mIicXZ3L/E4Pbx9+WnFFr6ft5Ja9ZvoytNSkzE1NcPW3qHENsoEQjzYq8RmhBr4FegO1ASGCiFq3lftDtBWkqS6wFfAn4/4aHQoYfTCGITR81mGbGSuz38fbUxYkqQ/yb9YAV6OxfxDPz7SI29zZvoY8jRZOFRtQPVhUzg3a1yR9V3qtibm9E7dtkOV+qRH3uHKgk+xcPIgYOTnXAi5glCpsfaszJ0tc0gLu4Ff95dlY2/PskLtmdk6khkbdr+a4jHywzFiyxfCt8MQIo9sIE9jfJxeTnoyZraO5GamGt1fZkiLgOM/Qp4GHKtBrWFwcmbR9d3qQtQp/XboAfDvKRur6dFySF3Kkz2aOely+/aVim7PzFYOf/9nSvi5VOwIYUfk4zSGJl02WHMzH0Ffnl4uXThHs3o1yUhPp32nLsxdsow2jQOLrN/3uedZtmSRQXnnbj04efxYoRD6gO6diI6KwtnFlaVrN3Dr+nWOHz1cSM7N3YOb1w3HaReHsfFnJf2+Y6KjaFo3gKTEBOrUC2TuX8vp2KKxzmiOi4vFw8OTpMSEh+rLs8bNq5cY1a05WZkZNGrVno9nzGFMn7ZF1m/bvQ/b1y43KG/StjNXzp0iLUV+yAu9c5PVC37n69l/k5WRwZ3rV9Hmag3knFzcCL3zcJ5no+MNS7jeCbExvNS1GanJSVQJqMPHM+fwxoBOOqM5OSEeJ1d3UsvBOF3gUc0QagLclCTpNoAQYjnQF7hyr4IkSUcK1D8G+DwSzUYo657NR8U6oKMQogFgKUnSU5O01b1Jd+q+MZ26b0zH1NYRbXamzgBLunEGoTLBxMq4h8/E0hYb76okXteHSd0adCDh6jEAshKiyE6MwdLFB01KPNkp8aSFyTee+CtHsPaqbNBmXo4GlYmpbjsnPQlTG0cATG0cyUk3HOStSYnH3F7/hGxm54wmtfg/ERufalToMpL6k2bj2aw3Pq2fw6OJfryPysSMvNwiDJNnGc+msmHYYJxs6Gmz9QZY4nUQajCxMi5rYimHsOOv68u02fKkoDO/wrXVcgg9K1H2WDrXgCbvQMAgOfRefaBhm3k5oCrwzKpJk72bIL/npBnKZKfovacgezo1JTwU2PlA5a5yf7yby2NNvQoMyVCZyH0pY4x8eQzb9h9h2/4juHt4kJaaSka6PPFt764dmJia4uhkPArg4OhEYIOG7NmxzWBfn/4D2bCmcAg9OioKgPi4WLZt3khgw4YGcllZmZib6yMacTExuOV7rdzc3YmPNXzwiIwIx8tb/x/m6eVNdFRkscet0Wh0huTF8+cIuXOHyv5VdPvNzS3Iyip7DxY9B4/g5xVb+XnFVpxc3clMTyMrUx6udOrQXkxMTLBzcDQqa2vvQLXagZw8uMdgX5tuvdm/dX2hsh3/rGDikJ5MHv08qclJRNy9YyCXnZ2FmZn+eiclxOHoIkdPHF3cSEowHPISFx2Ji4fec+3i5kl8TIxBvYLk5mh0huTNqxeJDA3Bu6L+/8XM3BxNdtmfAKhDJUp+gcu9SGr+a8x9rXgDoQW2w/LLiuJlYOujPRA9Zd2z+UiQJCktfwb7fGQv51ND9ImtRJ/Qfz9MbRzISUsCwMa7KkIIcjOM/5E712pB4rVTSLn6P+nspDjsK9clNeQqptb2WLp4kZUYRW5GKpqUOCycvciKj8C+cl0yYww9mJmxYVg468MxiUEnca3fnoiDa3Gt3143EakgaeE3sHDyxNzBDU1qAi51WnFj1Yxij7vgBCef9oPRarKIKnAezGwcyEoq/gb3TBJ5XH7dw7SAQWfrDQjINRxLC4BrbUi4BlKuvkxtIRtpkhY8GsmTjbTZELxTfoHs2fRpKRuj95MRC5YFjJ34IHBvIHtM3RvI2/eTGi7LWDjKhqdrHQgqYexgwQlOFTvIfYwocB7MbOXZ72WMRfP+ZNE8fWTL1c2N2Pw/7sAGDVGpVEVO6OnVtz+7tm8jO7vwkB5bWzuatWzJhNdf1pVZWlmhUqlIT0vD0sqKNu07GJ3lfvPaNfwq+eu2d27bwsAhL/DbrOkMHPICO7ZuNpA5f+Y0fpX98a1QkajICPoMGMj4MUaDQzqcnF1ISkwgLy+PChX9qFTZn7vBwbr9bm7uhN4NKbaNZ5HNKxazecVi3bajsyuJ8bIBX612PYRKRUoBb3RBWnXpxYkDu8nRFL7eVja21GnYjB8/nFio3N7JmeSEeFw9vGjRsRvvvtjfoM3QOzfx9PXTbR/ft5NOfQayav5vdOozUDcRqSDXL5/Hu0Il3L19iY+Ook233kz9YEKxx23n6ERachJ5eXl4eFfAq2IlosL019fBxZXoiIeMmD3TPJBrM06SpEYP2YhRF7MQoj2ysdnqQRT/G8q6sWkphDhXYHubJEn3BsluFkLcs7KOIo9taH1f/a8lSbr3D7sMWIscRn9qca7ZHPcm3ZDytOTlaLi+appuX43hH3Nr/a/kpMo3K+c6rXRLDN0jbP9KqvSfQL1xMwFByI4lOmP1zuY5VB04CaE2ITsxmpv//GygP/HGGao+p7+phR9cS7XB7+LWoCOa5Diur5BnkJraOuLfdxxBf30NeXnc2TyHgBGfIVQqYs7sJjNWfiBzCmiKX49XMLW2p8bwj8mIusPVxV8Wew6svfxJDb2um6RUpnGtBZ5N5NB3Xi4EFRjDWvtFuL5O7zV0ratfYugeVq5Q4zk5zJURA9f/eTj9CTegRgGPZ+gBCBgCHg0gK1le+ghkY7BaP7i0BMiDm5ug9kj90kf3Jv04B0CVXrKHtfYIOax/yTAMXAgbL0gJRTdJqQzTo09/Xhz9CtrcXLKyMhn3yku6fYtWrOH9ieN0Hso+Awby26xpBm1069WbA3v3kJmhfyhxdXVjzhL5OVptYsL61SvZt3uXgezeXTuY9Yfe8P915nR+n7+YIcNHEB4WxhujXgTA3cOD/836lZGDn0Or1fLJ++/w1+p1qNVqVvy9hOtB8gS1bj178+UPP+Lk7MLC5Wu4cukCwwf2o2mLlrzzwcdoc3PRarV88M5EXci/bmB9zpw+qZukVJZp2bkHPQa9iDY3F012Fv+b/KZu3+e/LOSnLyaTECuPmW3TtTer85cYKkiLDl05c/QA2ZmFPcEfTpuNnb0jubk5/P7tJ0aXFjp1aC/vfjNTt71q/m9Mmfo7nfsNJjYqgu/efR0AJ1d3Jnz2A5+/+RJ5Wi2/f/cJX/2+BJVKzc51K7h7S46mNO/QldenfIm9oxOf/7KA29eu8OkbL1K7QVOGj3sHbW4ueXlafv36Q13Iv0rNuly7cEY3Salc8GjC6GFAwUkbPoDBbFshRF1gLtA9f47KY0GUNHZG4d8R4OUozX+lXWl3o1SoPmQyITsWk5VQfKjsceHX/WUSrp0g5fbFkis/Ipp3qvXEdD111BwGt7dD1mO7TxWPfw/Zg5r0cLNc/wu+/WY+MV1PG3MWL+Obzz8m+Patkis/Bj7/7n/s3LqFwwf2PTGddX3Lx2QkY3w0408WzPjWYFmkJ8WY9z/n+L6dnD9xuOTKj4gtF0JPl+A1fGw08neTTn07qMR6YsivxfZRCGECXAc6AuHASWCYJEmXC9SpAOwBRtw3fvORo4zZVHjkhOxcgqmt8XFFT4KMmLtP1NAs99zZAealOPM/PeaJGprlne++/BR3d49S03/t6pUnamiWdxbO/F43TrM0CLl57Ykamk8FDzZms1gkScoF3kReI/wqsFKSpMtCiNeFEK/nV/sUcAZ+y1+B51QRzf1nFM/mY6I8ezbLI+Xas1kOKc+ezfJIefZslkdK3bP5fUmrNIIY9Eup9fHfUNbHbJYaoQlpvLf8aGl3Q+EJMd+mqAw7CmWR0H8mllxJocxQ+XnD8ekKCo+HB1tH81lDMTYVFBQUFBQUFJ4Wyp6tqRibCgoKCgoKCgpPBQLFs6mgoKCgoKCgoPAYUYxNBQUFBQUFBQWFx0bZszXLztJHQght/tT9y0KI80KIt4UQqvx97YQQm/I/vySEiM2vGySEmHRfO/WFEJIQout95dWEEFuEEDeFEFeFECuFEO5P7ghL5oNvZ7Dx6CUWb9pXYt0adQLZfzWcdl31qeCbtm7P0m2HWL7zKMPH6BcPfmXi+yzcsIcF63cxff5ynN2MH7azqxs/zF6i2x7+2niW7zzK0m2HaNKqnVEZW3sHZixYwbIdR5ixYAW2dvYlyv+8ZC1Ltx1iwfpdLFi/CwcnOdXlgOGj6THgqV5z/5Hi3u01Ko+bTcVRU4usY12lIRVf+oEKI7+nwohvsPCurtvn0LA7FUdNpeLoqTg07F5IzqFBV/xemU7F0VNxaTvMaNtqawe8nntft+3YtC9+r87E75XpWPnVNSqjsrDGe9CH+L06A+9BH6Iyty5R3mfIp/i9Ml0+hpHfo7ayk/tYvyt2tYvOE13mqDYAmn8AjYrJxuIcAA3HQ8M3ocFYsKuo3+fdXJZtNAG8W+jLXWrLZW2+AptistmZ2cqJAu7h2waavA2N3wLHKsZlTCyh7ihoPEl+N7EoWb7ey3JZwzfll2n+d8SrmZyVqpzww8xfOXH5Flv3Hyuxbt3ABtyITKR7r766sjbtO7HryGn2HD/H6+MnGci8MnY8t2NScHQyPtPe1c2duX+t1G2/MeFt9hw/x64jp2ndvqNRGXsHRxavWseeY2dZvGoddvYOJcov/Wczu46cZtOeQ2zacwhnF/l+/uLoMQwc8kKJx14mEaLk1zNGmTE2gUxJkgIlSaoFdAZ6AJ8VUXeFJEmBQEvgIyFEwVX2hwKH8t8BEEJYAJuB3yVJqiJJUgDwO+D66A/j37Nl7QreeXloifVUKhVvvPsxJw7tK1T29mff8e6rwxjeow2devXHz78aAEvn/sZLfTowqm8njuzdyahxbxttd/Co19m48i8A/Pyr0alnP17s0ZZ3XhnGO59/j0pl+HUbPmY8p48eZGiXFpw+epDhY8Y/kPwX745jVN9OjOrbSZefd/PqZQwc8bKBjrJKyqX9hK/+rtg6GSGXCFk4mbuLphC1dTYe3eT0uWYuPtjX7cDdJR8RsmAy1v4NMHWU1060rFAT6yqNCFnwPiHz3yPx5CajbTs27kny+d1ye87e2AW0IGT+u4St+g63zi8bvSE6Ne1LRsglgudMIiPkEk7N+j6QfOSmX7i7aAp3F01Bm5ECQPLFvTg07PaQZ+0ZJvoMXCwhm1LiLTj9M5z+Ba6tger5KQit3MCzMZz5HU79As7V9WlGM6Lh8lI5VWlx+LSEyPxl+Kxcwa0unJwl96lqH4y6Yyq0kft0cob87tv2weSvrpKP4fQvkCPngifqtGwwlxNWL/+bUUMGlFhPpVLx/idfcHDv7kJlX/wwjVFDn6Nrq8b0HjCQKtX0D5qeXt60atuB8NC7Rbb78htvsvyvhQBUqVadXv2fo1vrJrw0ZABf/jDd6P389QmTOHJgPx2a1efIgf28MWHSA8lPeuMVenVoRa8OrYiPk+/nq5YtYeSrrxvoKBcoxuazgSRJMcAY4E0hir4q+amZbgKeAPl1BwIvAV3yjUyAYcBRSZI2FpDdK0nSpcdzBP+O86eOkZKcVGK95158mf07NpMYH6crC6hbn7CQO0SE3iU3J4ddm9fRqpPs3M1IT9PVs7CyoqilWdt17cnxA3sBaNWpK7s2ryMnR0Nk2F3CQu4QULe+gUzrjl3Z+o/89Lz1n5W07tTtoeQLkp2VSVR4aIn1ygqZYUFoM9OLrSPl6PMkq0zNdYlxzZy9yYq8gZSrASmPzNCr2FRtDIBDYGcSj69H0so51O8Zd/djU60JGXfOA2BdpREpV48gaXPJTY4lJykKC09Db5dN1UakXJJTZqZcOoBN1UYPJV/o2HI15CbHYuHhX2y9MkNyMOQUkff+Hnka/We1Gbofq5WbnNIzLwfIg6RgcKkp78uIhcy4+1syxKUWJMhpB3EOgJgLIGkhKxEyE8DOx1DGOQCiz8qfo8+CS8DDyRc6thzITgLbEuqVEU4eO6JL0VkcI195ne2bNxAXF6srq9egESF3bhMaEkxOTg6b/llD5249dfs//uo7vv/yE4pbZ7tbrz4c2COnLO3crSeb/lmDRqMh7G4IIXduU6+B4RKPnbv1ZM2KpQCsWbGUzt17PZR8QbIyMwkLvUvd+g1LPAdlCvGAr2eMMmlsAkiSdBv5+IpMfZCfqskCuJBf1BK4I0nSLWAfsncUoDZwuiSdQogxQohTQohTudqnM0+zi7sHbTr3YN2ywh4SV3dPYqL0aVNjoyJxdffUbY+ZNIU1+0/TpfdzzJv1P4N2PX0qkJqcRE6ORt9eZNHt3cPRxZX4WDkvdnxsDI7OLg8k/+F3M1mwfhcjxxYODwVdPE+9Rk1LPhHlCJuqjfF7eRrez00meusfAGhiQ7H0CUBlYYMwMcO6ciAmtrKny9TRE0ufGvgO/xqfoZ9i7lHZoE0Te1fystJ1BqmprRO5qfp0lbmpCZjYGIbn1Fb2aNOTANCmJ+lC4iXJe3R/nQojv8epeWFPT1bUbSx9a/yb01J2ca4ph6Frj4Dra+WyjGiw95PD2ipTcK4G5vbFtVIYC0fIzZSNQ5Blswvk0s5OBjM7QzkzG9Ckyp81qWBq82Dy1QfIIfQK7Qu3lxoO9hVRkHH38KRLj178vXBeoXIPD08iw8N025GREbh7egHQsWt3oiIjCbpctK/Ep0JFkpOS0Gjk+7m7pxcREeG6/VER4Xh4GN7PXVxdiY2Rc7XHxkTrQuIlyf9v1m9s2nOIN99+v1B7F8+dpXGz8uPNlnkAr6bi2XzqKOqKDBZCXAZuA7MkScrKLx8KLM//vJwCofQHQZKkPyVJaiRJUiMT9dN5aid++BV/TP2KvLzCxrAxB3DBp94/Z3zPc20bsmPjGga8ONqgrrOrG0kJemOhpPZKojj5L94dy8je7Rk7rC/1GjWlW7/ndXUSE+JwcSu9VHpPI2k3ThI87x0i/vkR51Zyzl1NQgQJxzfgM/gjvJ//gOzYEJDk74RQqVFZWBP618fE7f0brz5vGbRpYu1YpMdTz3/NTibLR236mZAF7xO67HMsfWpgW6u1roY2IwW1TemlRn0qib8CJ2fC5b/Br5NclhELoQeg7mioMxLSonTX+4Ews9WHsx83V1fJQwHO/Skblu6B+n2aNONGbTnlk6+/54evPjO4nxszRiRJwsLSknFvvcfMH74ptl03d3cS4ku4nz/E77s4+UlvvEL3ds0Z3LsbjZu1oP8g/d9ufFws7kaM2jJPGfRsltnZ6EKIyoAWiAEC7tu9QpKkN4UQzYHNQoitQCzwHNBHCPER8uV0FkLYApeBMjEToXrtenw+YzYA9o5ONG/bEa02l5ioCNw8vHT1XD08iYuJMpDfufEfpv75F/N/KjwpJTsrCzNz/eD/mKgI3DxLbi8xLhZnVzfiY2NwdnXThfaLk4+Llt8z09PZufEfAurWZ9u6VQCYmVuQnZX5cCelnJAZFoSZgzsqS1vyMlNJubiXlIvysAfn1kN0nsXc1HjSrp8EICvqFpIkoba0RZuZqmtLytUgTMx02zmpCTrPKICJrRO5aYYhQG1GMmprB9mrae2gM1iLk7/3LmmySL16GEvPKqRePgiAMDFFytGgYITkYLBwAhMryM2QxzxG5QdoKnWG7JIeFgqQlwOqAn8X2cmFPaPm9qAx0p4mTTZUNan5BmtayfL33rUaiDkPtr4QfU4uU5nkDwVQAKhTrz4/zZ4PgKOzM+06diFXm0tUZASe3vrhBp6eXsRERVLRrxI+FSqyea+ca9zDy5uNuw7Sr1t74mJidPWzMrMwN9dnRYuKCMfLSz95zMPLm+gow/t5XGwsrm7uxMZE4+rmrht/WZx8dFQkAOnpaWxYs5J69Rvyz8plAJibW5CVmUW54xn0XJbE0+l++48IIVyBP4BfpGLcaZIkHQWWABOBTsB5SZJ8JUnykySpIrAG6AcsBVoIIXSDXoQQ3YQQdR7jYTwWBnVswvMdGvN8h8bs276JaZ9P4eCubQRdPIevX2U8fSpgYmpKp579OLx7BwA+FSvp5Ft17ErI7ZsG7YYG38bDWz/P6vDuHXTq2Q9TUzM8fSrg61eZqxfOGsgd2rOD7v1lb1v3/oM4uHt7sfJqtRp7Rzm8qjYxoUX7zty+HqRrz9evMrdvBBnoKa+YOuhXDjB390OoTcjLNxrvhbBNbJ2xrdaY1KtHAEi7eQqrinKud1NHT4TapJChCaBJjMTUXj8/Lv3maewCWiDUJpjYu2Lq6EFWpOH3JO3maexqtwHArnYb0m6cKl5eqFBZ2srCKjXW/g3IjgvVH5+jJ5oC2+UeiwJDF2y8ZOMsN3+c571Z3eb28vjLmPMP3m5GnBxKv0d8kDzBR6jlcktnSAkzlIsPAvf8MdTu9SH+agnyKtk4BhAqcK4B6dH69qxcCm+Xc9o2rkubRnVo06gOWzeu57PJb7Nz62YunD2NX+XK+FSoiKmpKb36P8eu7Vu4dvUKTWr562SiIsLp3al1IUMT4M7tm/j4VtBt79q+hV79n8PMzAyfChXxq1yZ82dOGfRn1/YtPDdYXr3iucHD2Lltc7HyarVaNxvexMSEDl26cT3oiq69Sv5VCm2XG8pgGL0seTYthRDnAFMgF9mInP4Acj8AZ4BqwD/37VsDvCFJ0hIhRC9gphBiJpCDPM7zqUqQ/Pn03wls0gIHRyfWHjjDvJ+msnn1MvoOGQHA+uWLi5TVarVM//JDps9bhkqtZvPqZdy5eQ2A19/9iAqVqpCXl0d0RBhTP3vfQD4rM4Pw0GC8K/gRfjeYOzevsWfLBv7aegBtbi7Tv/hAF+qZ/M001i1bzLVL5/nrz5/5ctaf9Bw4jOjIcD6Z8CpAkfIWllZMn7cMtYkparWaU0cO6GbAA9Rp0JgFv0x7ZOf0acaj93isfGuitrSl0hu/En9oNSkX92IfKIdOk8/twqZaU+xqt0bSapFyNURsmKWT9+z7NmpLG8jTEr1zAXnZcpg0+cJePLq/TsVRU5Hycona8puBbiknm5ykaEwd3MlJikYTH0Zq0FEqjp4GkpaYnQt0k1Pcu40h6dwusqNuk3BsPV5938K+bntyU+KJWD8DoEh5YWqGz/MfIFRqUKnICL6kmwEPYOlTnfgjax7bOX6qCBgE9pXB1AqavQ/Bu2VPpWcTeX/kCXCtJRt1Up7sAbyyXC9fa5hsyElauLEBcvM9Rs41oWov2RitMwLSIuHiwsK683LkSTwWTpCVABkxEHsJGk+Udd3ciG7YRLX+EHEC0sLh7n6oORQ8GsrezCuyx6pIeZUJ1H1JNkKFkGewR57U98OuIgTvefTn9ilk1h/zadqyFY5Ozhw+d5VZ//uWlUuXMGykPIxp6aL5RcpqtVo+n/Iei1b8g0qtZtXSJdy49uAP4ZkZGdwNvkPFSpUJuXObG9eC2Lz+H7YfOok2N5fPJr+ru59/N/1nli6az8XzZ/njpxn8Mmchg14YQURYKONeGQlQpLyllRULV/yDqakpKpWawwf2sXzJQl0/GjZpyk8/Fr/iRpnjGQ2Tl4R4mHF0Cg+OjYWpFFjBueSKZYg2nbtTvVZd5sz8oVT0Vw2ozeDRr/H1e+OfuO75r7R74jpLG5uqjTF3r0T8oZUlV34MmLv54di4J1Gbf33iuqs1LScz4AviXBNsvSB4V+not/GUl18KWv3EVVd+/ucnrrO06dKjF7Xr1mf691+Viv6atevy8htv8s64MU9c953Y1NOSJBU/Xf4x0aiah3Tq5xEl1hPdppZaH/8NZcmzqVDKHNi5FTuH0pusYe/oxNyZhjPlFR4PaTdOorK0KTX9aktb4g6WjqFbLom/IntVSwtTK7hTSoZuOWTHlk04OBpf8P1J4OTszPTvvy41/aXKMxgmLwnF2FR4pGxatbTUdJ86cqDUdJdXUi7sLTXdGSEXS013uSXKcJzeEyPxVunpLqes/LvooVePm0P7S+/eUuqUPVtTMTYVFBQUFBQUFJ4Ons0JQCWhGJuPCT8X23I5jq+8EjBlRWl3QeEJ8s/ErqXdBYUnyO055ScNrgKIfjNLuwtlDsXYVFBQUFBQUFB4GhCASvFsKigoKCgoKCgoPC6UMLqCgoKCgoKCgsJjo+zZmoqxWZZw7/Ya1v4N0GakELLgvSLruXYciXXl+kg52URt/Z3s6GAAVOZWuHd7DXMXHyQgeusfZEXc0Mk5Nu6Fa/vh3Pz5VV0WmoKorR1w7zaGiDXy8kOOTftiX7c9SHnE7FpIRvAFAxmVhTWefSZiau9KTnIsketn6RYXL0ree+AUTGwcQaUiMyyImJ3zQZJwqN+VvJwsUi7t/7en8Jli7rx59OzZi5iYGOrVLTqZ1cxZs+jevQcZGRmMHvUSZ8/KmZzs7e2ZM2cutWrXRpIkXnl5NMeOHWPZsuVUq14dAAcHB5KSkmjYoL5Bux4eHvz55xz69OkNwOQpUxg9+mW0Wi1vTZzAjh07DGQcHR1ZvnwFFf38CAkOZvDgQSQlJRUrv2XLVjw8PTExMeHQoYO8OW4ceXl5jB03joz0dBYuXPhfTuMzQ+CQSbjXbEp2WhL7/vd6kfVq938D94DGaHOyObtsGslhciYnEwtrAoe8ha2HHyBxbtkMEkOu6uT82z1Hrb6vsu3jQWjSDVNPmts5UW/QRE7M/QyAKh0HU7FpVyQpj4trfyf22mkDGVMrGxqN+BBLJ3cyE6I5tehbcjLTipVvNuZrzO2cEGo1CbcvcWH1ryDl4deqN1pNFqEndv7bU/hsETgEPGpCdhrsLWZJtzr9wS0AtDlwdhkk52dyMrGA+kPA1kPePrsMEkOgZm/wqAV5Wjkz1Jll+gX+C2JuB4GD4PhcebtqR6jQFJDgwlqIvWYoY2oFjUaAlRNkJMCpRZCTWbx8szFgYScv5B9/Gy6slutUaiWnLL174l+cvGedsmdtPrPpKoUQWiHEOSHEJSHEKiGEVX65jxBivRDihhDilhBilhDCLH9fOyFEshDirBAiSAjxY4H2bIQQs/NlLgshDgghmubvS7tP90tCiF+e5PE+CCmX9hO+uvhsC9aVAzFz9CR4zltEb5+DW+dXdPtcO44k/c45gue9Q8iC99HEh+v2mdg6Y+VXh5zk2CLbdmzcU5fdxczZG7uAFoTMf5ewVd/h1vllo6EBp6Z9yQi5RPCcSWSEXMKpWd8S5SM3zCJk4WRC5r+H2tIO2+rNAEi+uBeHht0e8Gw9+yxauJAe3Ys/3u7du1O1SlWqV6vK66+N4dffftftmzlzFtu3b6NWzQDqB9bj6lXZ8Bg6dAgNG9SnYYP6rF27hn/+WWu07Ulvv83cuXMACAgIYPDgIdSpXYse3bvxy6+/oVIZ3l4mT5nC7j27qVG9Grv37GbylCklyg8ePIgG9QOpW6c2ri6uPP/88wAsmD+fN8dPeMiz9uxy98ROjv35cbF13AIaY+3qxe5vR3N+5SzqDnxTt6/OgNeJuXqavd+/yr6pY0mNvqvbZ+Hggmv1BmQkFJ0K0r/tAO4e2wqAjXsFvOu3Ze8Pr3Fs9kfUHThOTi95H1U7Dib2xjn2fPsysTfOUaXjoBLlTy36lv0/jmXfD69hZm2PV2BrAEKP76By674PeLbKAKEn4OifxddxCwBrV9j9LZxfCfUG6vfVGQDRV2HP97B3KqTmX9vY67Lxum8qpMVCtU7G2/ZvCyHH5M+27uBdH/b+AEdn5+sxYhBV7QhxN+T+xN2Qt0uSP7UI9v0o7zO3Bu9AufzucajU+gFOVBnj3pjNkl7PGM+ssQlkSpIUKElSbUADvC6EEMBaYJ0kSVWRU1DaAN8UkDsoSVJ9oD7QSwjRMr98LpAAVJUkqRbwEuDyZA7l0ZAZFoQ2M73YOtZVGpFyWV6PMivyJmoLK9TWDqjMLLHyCdCvm5inJS87Qyfn2mEEsfv+LrZtm2pNyLhzXq/n6hEkbS65ybHkJEVh4VnFUKZqI1Iuyf1JuXQAm6qNSpTP0+Q/KavUCLXJvSR5SLkacpNjsfAoH9ldDh48SEJCQrF1+vTty5Il8lp5x48fx8HBAQ8PD2xtbWndpg3z5s0DICcnh+TkZAP5558fxPJly4y2PWDAc2zbtk2nZ8WK5Wg0GoKDg7l18yZNmjQx7E+fvixetAiAxYsW0bdvvxLlU1NlL7qJiQlmZmbcy3qWmZlJSHAwjRs3LvYclBUSbl9Ck24YUSiIR+3mhJ2UH/gSQ4IwtbTB3M4JE3MrnCrX4e5x+XpJ2lxys/T3itr9XuPKxrnFtu1ZryUxV0/r9ISf3U+eNoeMhGjS4yJxrFDdaH9CT8oLsYee3IVnnRYlyufm33eESo3KxESX9lSbk01GQjQOFaoVf6LKCvG3QVP8/RzP2hCan84zMQRMLWWPpIk5OFeWDTaQU5Te817GXpNThN6TsXAw3rZXPYjJ93x71Ibws/ne0ARIjwPHCoYynrXhbn5/7p4Ezzoly+dmy+9CJacrvZfVUJufItXBiJ6yjniA1zPGs2xsFuQgUAXoAGRJkrQAQJIkLTAJGH3P83kPSZIygXOAtxDCH2gKfCxJ8q9QkqTbkiRtfnKH8GQwsXUiJyVet52bmoCJrROmDm5oM1Nw7/4GFUZ+h3u3MQhTcwCsqzQkNzUBTezdoprFxN6VvKx0JG0uAKa2TuSm3qfHxjAbhdrKHm16EgDa9CTUVnYPJO/9/Af4vzmbPE0WadeO6cqzom5j6VvjYU5Jmcbby5vQ0FDddlhYGN7e3lSuXJnY2Fjmz1/AqdNn+HPOHKysCmeHad26NdHR0dy8edOgXT8/PxITE9FoNLIeb2/CCuoJl/Xcj7u7O1FRUQBERUXh5ub2QPJbt24jKjqG1NRUVq/Wpys8dfoUrVqXQ+9HEVjYO5OZpI8+ZCbFYmHvjJWzB5q0ZAKHvkPbd36h3uC3UJvJv2/3Ws3ISo4nJeJOke1aObmTk5FGnjYHAEt7Z7IK6YnDwsEwPa+5rQPZKfIDUXZKAmY29g8k3+y1b+j61XJyszKJOH9IV54UegPnyrUf6pyUaSzsITNJv52ZBJb2YOUMmjSoPxTavgOBg0FtZihfoaneoCyIlRPkZMjGYVF6jBmp5raQnT8EIzsFzGweTL75a9DtK9kgjjivL08KlY3mckX+OpslvZ4xnnljUwhhAnQHLgK1gEIDhyRJSgHuIhujBeUcgarAgXy5c/nGqTEs80P254QQ54Avi+jLGCHEKSHEqcT07P9wVE8YSQKVGnP3SiSf28ndRR+Qp8nGqWlfhIkZTs36l5j/2sTaEW2G4Tiv+xT9147qPoWv+o7bv76BUJtgVUH/56PNSEFtU3opM582hJGbkiRJmJiY0KBBA/7443caNWxAenq6LqR9jyFDh7J8uXGvpqenJ3GxemOhKD3/tZ/36N69G95enpibm9OhQwddeWxMDF5eXg+sp6xj7DwiSQi1GnufKgQf3sT+aW+i1WRRpeNg1KbmVOs8hKCtxWeKMbdzQpNWwPNdhJ6H6Gix8sdmf8SOz4ahMjHFtWo9XXl2WhIWdoZGbfmliPOoUoO9DwQfhv3TIFejD2nfo1on2eMZZjjWFnM7eayoTo0x4+Y/Xu+C8kdnw/bPZM+ma1V9eXaaPJ5T4ZnnWTY2LfMNv1PIxuQ85F+esV9AwfLWQogLQBSwSZKkqAfQdS9kHyhJUiDwqbFKkiT9KUlSI0mSGjlamz/c0TwhclMTMC1wszaxdSI3LZHc1HhyUxPIipS9WGnXj2Pu7oepgzum9q5UHPU/Kr32Mya2TlQc+R1qa/tC7Uq5GoSJ/sk5JzUBE1tDPfejzUhGbe0AyBOM7hmsDyIvaXNIv3laF3oHECamSDmahz0tZZaw8DB8fX112z4+PkRERBAWFkZYWBgnTsiD79esXk2D+g109dRqNf37D2DlCuOL1WdmZmJuYaHXExaGT0E93rKe+4mOjsbDQ56w4OHhQUxMzAPLZ2dns3HjBvr01Y/bM7ewIDMzs+QTUU7ITIrD0sFVt23p4EpWSgJZSXFkJceRdFeelBFx/iAOPlWwcvHEysmDdu/9TqdPFmFh70Kbd37B3LbwA5s2R4PK1KyQHotCelzISjYc0pGdmoS5nRyRKGiwPoh8Xm4O0ZeP4VG7ua5MbWqGVvl968lKAksH/balA2SlyJ7DrGRIzI9GRZyXjc97+DYG91pw+i/j7eblgNpUv51pTI/hsBuyU2VDFeR3TdqDy+flQtRlOeR+D5WpHE4vbyhjNp8qChqA4yVJ0gCXgUYFKwkh7ABf4F5i3YOSJNUF6gBvCCEC8+XqCWFkhHsZI/3maexqtQHAwrMKedkZaNOT0KYnk5MSj6mTJwBWFWujiQ9HExfK7V9f487s8dyZPZ7c1ARCFn2ANr3wjUKTGImpvWthPQEtEGoTTOxdMXX00BmyBUm7eRq72nJ/7Gq3Ie3GqWLlham5zjhFqLD2r48mXm+UmDp6ookLvV9NuWXjhg28+OIIAJo2bUpycjJRUVFER0cTGhpKtWry+LcOHTty5eoVnVynTp0ICgoiPDzcaLvXr1/Hz8+vkJ7Bg4dgZmaGn58fVapW1RmyhfqzcQMjRo4EYMTIkWzYsL5YeWtra51xqlar6d69B0FBQbr2qlWrxuVLl/7DGSpbRF0+hk9j2YPlWLEGOZnpZKckkJ2aSGZSLNaussHhWrU+qVF3SY0MZvunQ9j11Uh2fTWSrOQ4Dkx7k+zUwg926bFhWDm567ajLx/Du35bVGpTrJzcsXb1IvGu4ezkqEvH8G0sT0DxbdyJqEtHi5VXm1nojFOhUuEW0JjUGP3v2drVm5So4Ed3wp51oi7LhiOAY0V55nd2imz0ZSaBTf492bUqpOb7VdxqQNUO8izzogy5tFg5lF5Qj3d92WNq5SRPSko0Mqwq8hJUyO9PhcbydnHyajO9cSpU4B4AaTH69mxc9f0uLwjKZBi9rC19tBv4XggxQpKkxUIINTANWChJUkbBEJMkSdeFEN8BkyVJGiqEOAV8IYT4VJIkSQhRFagpSdL6UjmSf4FH7/FY+dZEbWlLpTd+Jf7QalIu7sU+UL7ZJ5/bRfrts1hXDsTv1VlIudlEbf1DJx+7ewGevd5EqEzISY4hassfRakyQMrJJicpGlMHd3KSotHEh5EadJSKo6eBpCVm5wJdmMy92xiSzu0iO+o2CcfW49X3Lezrtic3JZ6I9TMAipRXmVrgPeA9hNoEVCoyQi6TdE6/FIqlT3Xij6x5FKfzqefvv5fStl07XFxcCLkbyheff8b8+fN57bXXAJg9ezZbtmyhe48eXL9xk4yMDF4ePUonP3HCeJb89TdmZmbcuX2b0QX2DR48hBVFhNABMjIyuHXrFv7+/ty6dYsrV66watVKLl2+Qm5uLuPflJcnAvhzzhxm//EHp0+f5ofvv2f5ipWMHv0yd+/eZfAgeWZ5UfLW1tasW78Bc3Nz1Go1e/fuYfYf+u9lixYt+fKLLx7peX1aafDiFFyq1MXM2o7Ony3h2ra/uHt8OxVb9AAg5MgWYq6cwD2gMR0/mo9Wk83Z5dN18hfX/EbDF99HpTYlPT6Sc8umF6XKAK0mm/S4CKxdPEmPiyQ1KoSIcwdoP2U2Ul4eF/OXJwKoN/gtgo9sJjn0Bjd2r6DRyA+p0LQrmYkxnFokz9UsSt7EzIImL3+O2sQUVCribpwj5Ih+6LxTpVpc3178RMUyQ8MXwaUKmFlDl88gaJs84cdPnmRF8BGIviIbaJ0+kpcJOrtcL39hjdyGUENGvLz0Eciz1NUm0OINeTshBC6sKqxbq5En8Vi7yO+pURBxDjpMka/zveWJQB4PGnxEHl95Yzc0HimPBc1MhJPyZMAi5U3MoOnLcvhcqOQZ7MFH9P1wqgTXtj/a86pQKoiHGVf1NCGESJMkycZIuS/wG1AD2XO7BXhXkqRsIUS7/M+98utaAjeBVkA8smHaAcjI335PkqST9+sSQrwENJIkSb+uyH3U9nGS1k7o8igO9ZnBpmpjzN0rlTi+83Fh7uaHY+OeRG3+9YnrLo+50fv160eDhg359JNPSkV/YGAgkya9zciRI5647vKYG92jTgscfKoStHVRqei38/bHv90Azv499Ynr7tMu4InrLHU868ih96CtpaPf3hv828GZJ/9wIfrNPC1JUqOSaz56GgV4SacWjCmxnmj+Ran18d/wzHo2jRma+eWhQO8i9u0D9hXYzgQKTpl99UF0SZK0EFj4EN0tF6TdOInK0uhleSKoLW2JO1g6hm55ZN26dTg7l95kDRcXFz79tHQM3fJI1MUjmFmV3mQNc2s7grYUP5FJ4RESeVFepL20MLOGq1tKT38pcToocrto/sWDLLsY99g78wh5Zo1NhacT3TqdpUBGyMVS011eubdOZ2mwa9euUtNdXrm3TmdpEHv9bKnpLrfcW6ezNIi9Xnq6SxFJkspkZpIyPyFGQUFBQUFBQUGh9FA8m4+JsIR03ll2tLS7ofCE0B5SwrnliT/n7CvtLig8QWqOXVjaXVBQeKZRPJsKCgoKCgoKCgqPDcXYVFBQUFBQUFBQeGwoxqaCgoKCgoKCgsJjQzE2yxATPpvKkt2n+WXVjiLr+Pj5M3XRP6w9fp3+L+rX8jI1M2fakvX8tGIrv67eybDXJ+n2vTD2HX5asY1Zy7fw5W9LcHJ1M9q2o4sbn86ar9seOHoss9fv5/d/9lC/eRujMjZ29nz5+1/MXr+PL3//C2tbuweW/3jm3ELH2nPwSDr2eb7IYy9z+PeDxu9D4Lii61i6QJ1Xodmn4NXyweR920PDd6HeG/LLoSpGMbWBGi/ot71bQ/2JUH8COFQxLmNiCTVHyvVqjgS1xYPL1xhWuK8eTcCtfpGHXtZoO3oyL85az8CvFhZZx96jAn0/+o2X/9xF3W5DdOXWTm70en8mz3+zhIFfL6J254G6fc6+Vej78e8M+GIe/T/9E9dKxteUtLR3puvE73XbgT1fYPD3Sxn07V/41G5sVMbc2pYe705j8PdL6fHuNMysbB5YvuuE7woda62OA6jWqnuRx17W+Hrazxw8f531u48UWaeSf1WWbtjOudtRjHpNv+yzmbk5yzftYu3Og2zYc4Q335mi2zfu7cnsPXWZtTsOsHbHAdp06Gy0bRc3d35bpF8k/tU3J7Ht0Gk2HzhBy7YdjMrYOzgwd9lath46xdxla7Gzt39g+V8WLC10rMNeepX+g4YVeewKzxbPrLEphOgvhJCEEDXyt/2EEJfyP7cTQiQLIc4KIYKEED8WkHMXQmwSQpwXQlwRQmwRQljk16tToN77Qog/hBAqIcRPQohLQoiLQoiTQohKT/6IS2b3xlV8Pm5ksXVSk5P484fP+GfxnELlOZpsPhozlAmDuzNhSHcatGhL9TryH/naRbOZMLgbE4f04OTB3QwZM9Fo2/2Gv8L2f+QsFb6Vq9Kma2/GDezM5+NG8sYHX6NSGX7dBo4ay4UTh3mtbzsunDjMwFFjH0i+eYduZGVkFGpr1/oV9B46inJD7Fm4sqT4OrmZcGczRBx+OPnIo3D+d/mVdMN4Ha8WEH1a/mzpCi514NwvcGUxVO6FnHftPrxbQ/JtODtLfvdp/WDyTgFyVpOCxJwFj2bFHX2Z4tqhbWyZ/l6xdbLTUziy9CcubFteqDxPq+Xoit9Y9dGLrP/6dWp26I+DV0UAmg56gzPrF7L2s5c5tW4+TQe9brTtul0HEXRgEwAOXhXxb9KRVR+PZOv092j14tsYy/Yb2OMFwq+cYcWUYYRfOUNgz+EPJO/XsA052YV/30EHN1O703MlnKWywz8rlzHmhYHF1klOSuTbT6awYPYvhco12dmMHtSXAZ1bM6BLG1q160jdBvr1vxfP+Z0BXdowoEsbDuzZeX+zALw0Zhyr/5YX8PevWp3ufQfQu0NzxrwwkE++/dHo/fyVcZM4dugA3Vs14tihA7wybtIDyXfq3ouM9PRCba1d/hfDX36t2ONXeHZ4Zo1NYChwCBhSxP6DkiTVB+oDvYQQ99w6XwI7JUmqJ0lSTWCKJElZwFvAb0LGG3gN+AAYDHgBdSVJqgP0B5Ie0zH9Jy6fOUFqclKxdZIT47lx5QK5uYY5cbMy5Zu7iYkJJiam3MsulZmepqtjbmlFUVmnWnTszunD+wFo2q4zB7ZvJDdHQ3REKJGhwVStHWgg07RdZ3ZvlNNL7t64hmbtu5Qob2FpRb/hr7Bi7s+F2srOyiImIpSqteoVew7KDCkhsjFZHDnpkBahSyX40PLF4VxTb4g61YC4iyBpITsJMhPAxsdQxqmGbCSC/O4UULK8ykw2bMP2F24rLweyE8HGm/JA1PXzZKelFFsnKzWJ2DtB5Gm1hcozk+OJD5HXLczJyiQpMgRrBzlvtoSEqaU1AGaW1mQkGV8rulLDtoRelNdd9KvfilsndpOXm0NqXCTJMeG4Vjb0iFas34rrh+W1Oa8f3oZf/VYlypuYW1K3yyDObCy8gLtWk01qXFSRnteyxunjR0hOSiy2TkJ8HJfOnyU3x/B+npEhG28mJqaYmJrq0gU/KJ179Obgvt0AdOjag63r15Kj0RAeepe7wbepU7+hgUyHrt1Zt0p2OKxbtYyO3XqUKG9lZc3IMeOYPevHQm1lZWUSHnqXOoENHqrfCk8nz6SxKYSwAVoCL1O0sQnosgSdQ58pyBMIK7D/Qv77NiASGAHMAD6XJCkxv36kJMn/1pIkheWXlzlUKhWzlm9hye4znD12kOuXzun2vTjuPeZvPUq77v34+3fDnMruXr6kpSSTmyN7n5xdPYiLitTtj4uJwtnNw0DOwdmFxLgYABLjYnBwcilRfvjYd/hnyRyyMw0NpZtXLlKrQZN/cfQKhfBoAvXGyqH2gqHue5g7QG6WbBwCmNlBdrJ+vyYZzG0N5UytISf/4SUnTd4uSb5CB4g4IhuX95MWAXYVH/boyjU2zh64VKhKzO0rABxd+jPNBr3BsGmraTZ4LCdW/2kgY+viSXZGKnn5D6nWjq6kJcTo9qcnxGLtaJj0xNLekczkeEA2eC3tHEuUb9z/ZS5sX0FudrZBe3HB1/CoVvffHnq5QqVSsXbHAQ5duM6RA/u4cPa0bt+wUa/yz85DfD3t50Kh7nt4+1YgJTmJHI18P3fz8CQqIly3PzoyAncPTwM5Zxc34mKiAYiLicbJ2bVE+fHvf8jC2b+QmZlh0N7lC+do2LT5vzl8haeMZ9LYBPoB2yRJug4kCCGKfPQRQjgCVYED+UW/AvOEEHuFEB8JIbwKVH8L+AZwlSTpXnxxJdBbCHFOCDFNCFHkIDEhxBghxCkhxClNrraoak8teXl5TBzSg1Fdm1GtdiAV/Kvp9i35dSqjuzdn39Z19BpsGKp3dHUjOTFety2EkRDqQzxZFyVfqVpNPH39OLZ3u1G5pIQ4nFzdH1iPghGiTsCZmXIIPScV/IwktDCzlb2mxfFwjhTj8lYeYOEMCVeN18lJl/ui8ECYmFvS+c2vOLLsZ3Ky5D/3mu37cnTZLyx9ZyBHl/1Cm1GTDeSsHJzJSk0qUGLs9/kwPTEu7+xbBTt3b4LPHDQqlZmSiLXDg2TyU8jLy2NAlza0b1SLOvUbUKW67BFevng+XVvUZ0CX1sTGRPP+p18byLq6e5AQr/dwG7sfFxXhMkZR8jVq1aaCX2V2b9tsVC4+LhY3d0MnhcKzx7NqbA4F7g1KWp6/fT+thRAXgChgkyRJUQCSJG0HKgNzgBrAWSGEa/6+CGAP8Pu9RiRJCgOqI4fU84DdQoiOxjolSdKfkiQ1kiSpkZmJ+r8fZSmRnpbCxVNHadiincG+/VvX06Kj4SB9TVYWZubmuu24mEhcCjz5urh5EB8bbSCXFB+Ho4s84cjRxY2khLhi5WvUa4B/zTrM3XyIHxasxqtiJb6dox+fZmZugSYr6+EPWkFPTjqy5SDJYzJtjYSp83JAVSAnhCYFzAt4SMzsQZNqvG3T/EkipjZ6g7UoeVtfsPGEBpOg9suy4VmrwLhclQloc//tkZYrhFpN5ze/4ubRnQSfPqArr9ayG3dOy0MUbp/ci5uRcHiuJhu1qZluOz0xBhsn/URBaydX0o2E3zOTE7G0dwbkCUaZKYnFyrtVqYVLxeoMnbqCPh/+gr2HL70mz9LVU5uakZtj6PFUKJrUlBROHjlE63by31Z8XCx5eXlIksSqvxdRJ9AwHJ6dmYm5uT6iER0ZgYeX/j7g7ulFTHSUgVx8XAwubvLDvoubOwnxscXK12vYhFp16rHz2Hn+WrcVv8r+LFy1UVfP3NycLOV+XiZ45oxNIYQz0AGYK4QIBt5DHld5/6PTQUmS6gJ1gDeEEIH3dkiSlCBJ0lJJkl4ETgIFpzrn5b8oUD9bkqStkiS9B3yL7FktU9g5OmFtI88ENzM3J7BpK8KCbwLgWcFPV69p286EBd8ykA8PuY2bl36M3ol9O2nTtTcmpma4e/niVaESNwqE5XX19u+iY2950H/H3s9xfN/OYuW3rvqLl7o04ZWerZg8aiARIXf48FX9SAqvipUIuXXtP5+Pco2pfsYwTgGQEWNYJzNeDqXfIyFInuAj1HK5pROkhRnKJQTpZ5C71Ze3i5OPPgmnfoQzM+DSPMiKh8sL9O1ZOkOG4UOMgiFtR00mKSKEiztWFipPT4rHs3ogAF4BDUiONrxuyVGh2LroPUwhZw/j36QjKhNTbF08sXfzIfa2ofc55NxhqrWUPePVWnYj5OyhYuWv7l3P328PYNl7g9nw7ZskR4Wy6Qf9hER7D18Sw27/53NR1nF0csbWTr6fm1tY0Lx1O27fksdX3zMGQZ6Yc+Oa4XULvn0Lb98Kuu29O7bSve8ATM3M8PatQMVK/lwsEJbX19tGv+dl30+/54eyZ/vWYuVXLJ5Pu4Y16dysHsP7dSf49i1eer63rj2/ylW4EVREVEPhmeJZTFc5EFgsSZJumpoQYj9gZDYCSJJ0XQjxHTAZGCqE6AAckyQpQwhhC/gDd4tSlh+ij5IkKULI0yXrAhce3eE8Ot797ifqNGyOnYMjC7YdY+kfM9i5bgXdBsrL02xb/TcOzq7M+HsjVtY25El59HlhNGOf64STixtvfTkdlUqFSqXi0M5NnDy4B4CXJkzBu2Jl8vLyiI0M59dvPjTQnZ2VSVToXTx9KxIZGsLd2zc4tGMzv63ZhVabyx/ff0JenmzDj//0B7au/oubVy6yesFvTP7hNzr3G0xsZATfv/8GQLHyxVGzXiOWz575iM7oU07VgWBfCUysoOE7ELoXYs6Ae/6s0+hTsuFY9zVQmwMSeDaTZ3xrs4uWr9gFrD3l+tlJcGuDoe68HMhKBAsnyEqAzFiIuwT1x8uTkW5vRhdX9e8LUSchPQLCD0K1weDWQB6jeX2FXKc4+eKwrQCh+/7jiXw26PDap3jVqI+FjT3Dpq3m9LoFXDu4mYB2fQC4um8DlnZO9P/sT8wsrZGkPGp3Hsiqj0bg5OtPtZbdiA+9xYAv5gFwcs0cQi8c48DC/9Fi2ARUKjXaHA0HF0410J2rySIlJgI7N29SYsJJjAjm9sm9DPpmMXlaLYf/mkH+sHbajHqfK3vXExd8jXOb/6bT2C+o0aYnafHR7PrtU4Bi5YvDo2odTq9f+IjO6NPN1F/n0qR5SxycnNlz6hK//Pg9a5f/xeAXZc/+iiULcHF1Y+XWPdjY2JKXJ/Hiq6/Tu11zXN09+G7mb6hUalQqFds2/sP+XfLQo3c//oIaNesgSRLhYXf5fPIkA92ZmRmEhtyhgl8l7gbf4eb1ILZvXMfGvcfQanP5+qP3dPfjL6fOYsWSBVy+cI45v85gxh8LeG7ocCLDw5j02ksAxcoXR/3GTfl1+g+P6IwqlCbiYcZdPA0IIfYB3+dP6LlXNgHoDvhKklRbCNEOeFeSpF75+y2Bm0ArZGN1FJCL7NldIEnStAJtLUQOu6/O3+6GPI7zXoz4BDA2fwZ7kThYmUutq5evsSbN2nelSkAd/vrtx5IrPwYqV69Fv+GvMP0Tw5vn42bjr8UvOVUmcQoAay8I3V06+q09wLMF3Fz7xFWXx9zofg1a4+JXnVNr55aKfucKVanbdRB753zzxHXP3HHxiessbTp260mtuoH89L8nf74BAmrVYeRr45gywfhSXI+TqxFJpyVJalRyTYUH5ZnzbEqS1M5I2U/ATwW29wH7Cmxnop+NPjX/VVT7L923vQ3YZry2QkGO7d2OnYNjqem3c3Dkr9+mlVxR4dGQcFVepL20MLGG0D2lp7+cEXzmIOY2diVXfExY2Nhzcu28UtNf3ti9bTMOjk6lpt/BybnUDF2FR88z59l8ViiPns3yTLn0bJZjyqNnszxTHj2b5RnFs/noeeYmCCkoKCgoKCgoKDw7PHNh9GeF9OwcTt6OLe1uKDwptCUPdlcoO1R0Udb2LE80quRa2l1QeIJcjUgq7S6UORTPpoKCgoKCgoKCwmNDMTYVFBQUFBQUFBQeG4qxqaCgoKCgoKCg8NhQjE0FBQUFBQUFBYXHRpmcICSEmAGESJI0M397OxAqSdIr+dvTgHDkxdoL5jacLknS4vw0mI0kSYor0OZL+WVvPpGD+A98/cOPdOzSlcyMDCaOfY2L588Z1GnVth2ffvUtKqEiPT2NiWPHEHxbTgPXolVrvvxuKqamJiTEx9O/Z1cAZvzyB527dSMuNpZ2zRsXqf/VN8aRlJjIquVLcXB0ZPaCxfhWqEjo3RDGvPQiyUlJBjLtO3bmqx+molar+XvxQn6ZIa+XWZx8QK3aTJ35M7a2tuTl5dGtfWuys7NZuX4Tr44cblRPmaRyT3CqJmf1ubYG0iMN6zhUhkrdAAFaDVxfI2f+UZtD9eflvORCBeGHIfqMLOPVAjzy8yanR8P1tSAZyUPu1RxyMyHmnLzuZo3BYOEAWUkQtBxyjeQ/cKwKlXvIOqNOQ1h+ru7i5K3coWpffTaks3/I/ak9CoKWGddTBqnR9zVcazRCm5PNxRUzSA03TB/rVKUe1XuOBpUKbXYml1bMICM+Er+2A/Bs0B4AoVJh4+bL3s+HkZOZRpsP5pObnYkk5SFptRz76S2j+iu26ktOZioRp/dgamlD3eFTsHR0IzMxhvN/fU9uZpqBjEv1htToMwahUhF2Ygd39q4CKFbextOPWs+9iYm5FZIkceynt8jLzaHRmG84t+Q7o3rKIsMnfky95m3JzspkzrdTCLl+xaBOzYbNGTL2fYRKRXZmBn9+M5mYcDkxXo36TXhhwkeoTUxIS0rk2/HDAeg66CXa9n4eJInQ29eZ++0UcjQag7a7Pj+StNRkDm9bh7WtPeO+nImLhzdxUeH88ulEMlJTDGTqNG3N8IkfoVKp2b9pFZv++hOgWHlf/+qMeu9LLKxtkPLy+PzV58jRaJg8cyE/fzLBqB6FZ4ey6tk8ArQAyE8x6QLUKrC/BXAYuCVJUmCB1+In39VHS8fOXansX4Xm9evw7sQ3+WH6LKP1fpg+i3GvjKJT62b8s3olk96dDICdvT3fT5vJyKEDadusEa+OHK6TWbF0CUOf61esfrVazdDhI1i7Sk5DOH7SOxzcv48WDepycP8+xk96x0BGpVLx3bQZDBvYjzZNGtD/ueepVr1GsfJqtZpf/5zH+5Mm0LZZIwb07EZOTg4Aq5cv46VXxjzciXtWcawm5wc/NQNurIMqfYzX8+8DQavg7K8Qex4qtJPLvZrJuc/P/goX58kGqVCDmS14N4dzv8OZn0EIcK1jpGGVbJDG5Gdw9WkDSbfh1Ez53aeNERkB/r3h8mI4/ZPcrpVrCfIqqPE83Nwg9+fCPJC08q6Yc+DZ9OHP3TOIS41GWLl4cfCHV7m8+mdqDhhntF7NAeO4sOxHjs4YT+TZ/VTuNASA4P1rOTpjPEdnjOfGlkUk3L5ETgGj7eQfH3B0xvgiDU2hUuHdpDORZ/cBUKnD8yTcPM+h/40h4eZ5Krd/3pgQAf3f4PS8zzj04xt4BrbB2s23WHmhUlF36LtcWfMrh6eN5eQfU8jTytc74vQeKjTv+W9O3zNH3WZtcff1470hnVkw9RNeevcLo/Veevdz/vjyXT4Z1ZejOzfSd+RYAKxsbBn59ufMnPI6H77Yk58/mQCAo4s7XQa+yGcvD+DDEb1QqVQ07Wh4TlVqNa17PsfRnRsB6DV8DFdOH+X9oV24cvoovYYb3meFSsWItz/jx3dfZcrwHjTr1AsvP/9i5VVqNa99MpUFP37Ghy/25LvxL5KbKz/YHt62no79h/23E6lQ6pRVY/Mw+cYmspF5CUgVQjgKIcyBACCxtDr3OOnasxcrl/0NwJlTJ7Gzt8fN3XBxeUmSsLGVs4HY2tkRFRUFwIDnB7N54wbCw8IAiIvTL9907MhhkhITitXfqm07Lp4/hzb/j6Frj16sXCr3Z+XSv+nWs7eBTP2Gjbhz+xZ3g4PJyclh3drVdO3Zq1j5dh06ceXyJa5ckhdbTkxM0OXa3b51M/2fM/KnVxZxDpCNLYDUMDCxkPOhGyCBSX7GVbUFZKfmF0v5nkJAZS57KO/lqBYqUJkC+e+aVMNmHSpDWgSQL+NcQ+8ZjT4j9+9+bH0gK17OrS5pIfainPqyOHnHKpAeJb9A7ue93OkJV8G1brGnqazgVqsZEaflrEnJd69hamGNma2RrF2ShIm5FQAmFlZkJ8cbVPGs35aos/sfSr9TlXqkhN9Cyv+tudVsRvipXQCEn9qFW61mBjL2FaqRERdBZkIUkjaXyHMHdPWKkneu1oDUyGBSI+8AkJORqvtexlw5jkd9Yw8xZY8GrTtyeNs/ANy6fB4rG1vsnQ2XYZIkCQtrawAsrW1JjIsBoHnn3pw6sIP4aDnakZqkv3+r1CaYmVugUqsxN7ckKV+mIDUbNCPk+hWdod+gdUcObpX7c3DrPzRs3clAxj+gLjFhIcRGhKLNzeHYrs00aNWpWPnajVsReusaoTeDAEhLSdJ9x84c3k3zTr0e6rwpPH2UyTC6JEkRQohcIUQFZKPzKHK6yuZAMnAB0AD+QohzBUTHS5J08N/qFUKMAcYAqIT4t838Jzw9vYgID9NtR0aE4+nlRUx0VKF674wfy9+r15KVmUVaago9OrUDoLJ/FUxNTVm7aRvWtrbM/f1XVi1f+sD6mzRtzoVzZ3Xbrq5uOt0x0VG4uBreKD29vIgID9f3OTycBo0aFytfuUoVJEli2dr1OLu4sn7NKn6dNQOA5KQkzMzNcXR0IrEE4/iZx8wWspP125oUMLeDnPtCjDfWQa0Rcqhdmw3nZsvlkceg5nBoOhnUZnB1BSDJhmXYIWjyLuTlQuJNSLppqN+uQr6xea8/NnrdOWnGDV9zO8M+2/oUL2/pLNuWtUeCqTXEXpD7B3L4XKWWQ/C5mQ9w0p5dzO2cyUrSPwBmJcdhYe+MJrXws/Ol1T/R4OXPycvRkJudwbGf3y60X2Vqjkv1hlz953ddmYREo1e/QgLCjm0l7Lhhll4Hv5qkhOm/B2a2DjrdmtREzGwcDGQs7JzJStKNSCIrOQ6HCtWLlbd28QZJouErX2JmbU/k+QME71sDQG5mGiq1KaZWtrIRWoZxcnEnIUZ/706IicbJxZ3k+MJrOM/7/mPenToHTXY2melpfPGa/LDt4euH2sSUD35egoWVNTtWLebwtnUkxkWzdfk8ZqzZhyY7m0snD3Hp5GED/VXrNCT42mXdtp2ji053cnwsdo7OBjKOru7EF+xzbBT+NesVK+/p6wcSvDdtHrYOThzbvZktS+cCkJGagompGTZ2DqSlJD3sKVR4Siirnk3QezfvGZtHC2wfya9zfxj9XxuaAJIk/SlJUiNJkhqpSsfWRBgxco2lJB0zbjwvDBxAg5pVWf73Er749gcATExMqBtYn+GDBjC0fx8mvT+Fyv5VHli/m4cHcfFxJVf8F30uiImJCU2bt2DcK6Pp27Uj3Xv1oVXbdrr9cbGxuHt6PlQ/nkke9KHGu4Uctj4xFaLOQOXucrljVXmM5/Ef4MyvUKW37Ok0sZAWaf00AAEAAElEQVS9iienyftUpuBaz7BdM1vISX8EB1JC2lyhAvuK8lCA83PAuabsVb2HJh3MSi9v95PC2G/F2Knza92PM/M+Z/83Iwk/uZMavV8ttN+tZhMSg68UCqGf+PU9js6ayJm5n1KhRU8cK9W6v1nMbZ3QpCUblJfQacMul3S51WocKtXkwtIfOf7b+7jXbo5TFf33T5OejLld6eXtfmIYO3dGLni3wS/x43uv8taANhzcsoZh4z8EZO+lX/VaTHtvDFPffpm+I8fi4euHla0dDVp15J1BHZjYrxXmFla06GI4BMfBxZWUpId8YDf6HS3+gqtM1FSr24Dfv3yXr8cOpVGbztRs2Fy3PyUxHgcXt4frh8JTRVk2Nu+N26yDHEY/huzZvDdes0ww6pXX2HXwGLsOHsPdw5OIiHC8vH10+z29vImKLDxhxNnZhVq163D29EkA1q9dTeMm8pi3iIhw9u7aSUZGBgkJ8Rw7cphadYyN1TNOVmYmFuYWuu3Y2BhdGN/N3YO4WMOsShHh4Xh5e+v77O1NVFRksfIREeEcPXSQhIR4MjMz2b1jO3XrBeraMLewICurDHq5PJtC/XHyy8wWslPkyT33MLOTywpiagXWnnKYHSDuouyRBHBvAHH5Ew6yEuTQtqULOPjLn3My5PBl/BW9TEHyckAUCJBoCngjTW0MPaxQRJ9Ti5fXpEDyHcjNkHUmXAdrL30bKhO5vIzh26InzSf9TPNJP2Nu5yR7Mh300QELexeyUgqHyE2t7bD1qkRyqDz3Mer8QRz8Cg9n8AhsYxBCz06RjQpNejLRl45in+99LEheTjYqUzPdtiY1SRfGN7N1RJOWZCAj99mlUJ+z8/tclHxWUhyJty+Rk5FCXk42sUGnsPP217WhMjEjL8dwMsuzTscBL/DVgvV8tWA9Ds5uJMRG4eSmHwbl5OauC5Hfw9bBEd8qNbh9RR43fXzPFqrWrg9AYmwUF48fRJOVSVpyItfOn8S3Sg1qNWpBbGQYqUmJaLW5nDqwg6p16hv0R5OdhamZ/nqnJMbpwvj2zq6kJBoOz0iMicK5YJ9dPXR9Lko+ISaaoHMnSUtORJOdxfmj+/GrVlPXhqm5OZrs8jEBsKxSlo3Nw0AvIEGSJK0kSQmAA7LBebQ0O/YoWTB3Np1aN6NT62ZER0WyY8tmBg19AYAGjRqTmpJiEEJPSkrE1s5O57Fs074j16/Lf0zbN2+iaYsWqNVqLC0tadCwETeuXeNBuXH9Gn6V9X8KO7ZuZtAwuT+Dhr3A9i2bDGTOnTlNZf8qVKhYEVNTU/oNGMiOLZuLld+3excBtetgaWmJWq2meatWXA8K0rXp5uZOaEjIA/f7mSHyuDyZ5+yvcqg7/iq4Bcr7bH3kEPn9Bl5Oljxe0zI/5OVQBTLyjf7sJNmwBDk8bekiG5nZyXJ7KtN8GX/INJJ+NSNW3y5AQpBswIL8Hh9kKJMaDhbOYO4oT0ZyrSPLFSefeAOsPfRjSO0ryROb7mFmK89eL2OEHtmsm9CTnZJAzOXjeDXsAIB9herkZqUbhNBzM9MwsbDCykU2xp2r1ic9JlS338TCCqfKdYi5fExXpjY1R21uqfvsXK0BaVGGv5+0mFCsnPURg5grx/FuJI+7827UiZgrxwxkUkKvY+XijaWjO0JtgmdgG2KuHC9WPu76GWw9/FCZmiNUKpwq1yEtWn8M5rYOZCZGP+hpfGbYvfZvPhnVl09G9SUpPoazh/bQslt/APxr1SMjLc0ghJ6emoKVtS0evn4A1GrUkogQeYWCMwd3U61uI1RqNWbmFvjXrEdE8C3ioyPwrxWIWb5joFbD5kQE3zboT0TwLdx9Kuq2zx7aQ+vucn9ad+/PmYO7DWRuB13E3dcPF08f1CamNOvUk7OHdxcrf/HEQXz9q+vGkNao34TwYP0qC/ZOrsRFhRvoUnh2KJNjNvO5iDwLfel9ZTaSJMUJIWwwHLM5X5Kkn/I/XxBC3Et4vRJ5nOdLQoh+Beo3kyQpjKeIXTu20bFLV46du0RmRgZvjXtdt+/vVf/w9vixREdF8u6EN5m3ZCl5eXkkJyXx1ptyvRvXr7F31072HjlBXl4efy9eSNBV2fP1+7yFtGjVBidnZ85cucHU775m2ZJFhfTv2bmdn2fP023/PH0afy5awrAXRxIeFqqb3e7u4cn0n3/jhef7o9Vq+fDdt1m2dgNqtZplfy3mWtDVYuWTk5KY/ctPbNt7EEmS2L1zO7t2yGPM6tVvwOlTJ3STlMo0idflZY8avQ15Gnl5onvUelEeq6lJld8DhsrhrNwsuJFf7+4+qPYcNHgTEHBnu+w9TM2AuMtQf6zs2UyLhMiTRvTfgOoD9duhByBgCHg0kA3Wq8vlcjNbqNoPLi8B8uDWJnn8pVBB9Gm94ViUfG4WhB2GwPzvc8J1+dgBbLwgNRTdJKUyTFzQSVwDGtF6yly0mmwurZyh29dg9OdcXv0T2SkJXF79M4EjPgIpj5zMNC6t1K9K4Va7BXHXz6DNydaVmdk6Un/kRwAIlZrIs/uJu3baiP5T1Bn6rm77zt5V1Bs+Be/GnclKiuX8ku8AMLdzotbACZyZ/zlSXh5X1/1Ow1e/QqhUhJ/YSXr03WLlczPTCD64juYTZiAhERd0irgg+ftn51OF5LvXdBNIyjLnj+6jXvO2TF2xC01WJnO//UC3752pc5j3/Uckxccw/38fM/7rn5EkifTUZOZ+J4fRI0JucfH4Ab5ZuBFJymP/xlWE37kBwMm92/ly/jrytLmEXL/K3g3LDfRfOHaA1z6Zqtve9NefjPtyFm16DiQ+OpJf8me3Ozi78fKUb5j23qvkabUsnv4l70+fh1CpObB5NeF3bhYrn5GawrYVC/h87hqQJM4f3c/5o/sAqFS9Nrcun9NNUlJ4NhEljY1T+HeYqlWSs41FyRXLIPP/Ws5Xn37EnduG6/89Cb76firbt27m0P59T0xn1Ka3S65UVgkYJhupWYYhtSdC5R6yRzTJ0DPzuNi+4WzJlcoogSM/4vrmBWTERZRc+TFQo88YYq4cJ+Hm+Sem8++jN56YrqeNCd/+yorf/kd0WOlEil6Y+BFnD+3hyuknF5BccvjGaUmSGj0xheWAshxGVyglvvn8E9w9DJdbelIEXb3yRA3Nck/wDtlzWVpkxDxRQ7O8c33LQsyNLbf0hEiLCnmihmZ5Z+XvP+JgZLmlJ0X47RtP1NBUeDwons3HRHn2bJZHyrVnsxxSnj2b5ZHy7NksjyiezUdPWR6zWarUq+zGqZkvlHY3FJ4QJu2+Le0uKDxBZo8qH4uKK8h82q9haXdB4Qmy5LDycPGoUcLoCgoKCgoKCgoKjw3F2FRQUFBQUFBQUHhsKMamgoKCgoKCgoLCY0MxNhUUFBQUFBQUFB4bT+UEISHEDCBEkqSZ+dvbgVBJkl7J354GhAPfAAXT20yXJGmxECIYaCRJUlyBNl8CpgJhgA1wG/hCkqQj+fv3Ae9KknQqf9sP2CRJUm0hhBUwB6gLCCAJ6CZJkpFcfKWNgFaTICsZTs0z3F25HXjlZ2hRqcDGHXZ+KufDDhwK5rbywt93j0HwQUPZgN6w41Pj+bDNbaHOIL1e/w7g21ReFPzyOogzkonI1BLqjwArR8hIhDOLITdTTrHYcCTY+0LYSbj8T36fTaHhCLBykduNvgLX5GxDVGwJWo1cv5ygUqk4fuIkERHh9O1jmNv4nXfeZeiwYYCcTz4gIAAPdzdcXV1Zuky/iHPlypX5/LPP+OmnWTw3cCCffvoZAQEBNG/WlNOnDRf3BvDw8GD2n3/q9E6ePIVRo0ej1WqZ9NZEduzYYSDj6OjIsuXLqVjRj5CQYIYMHkxSUhJOTk6sXLmKRo0bs2jRIiZOGK+T+eqrrxn+4os4OjriYK/Pfz527DjSM9JZtHDhvzp3zyJCqOj7yWzSE+PY+fMHBvvrdB2Mf9POAKjUauw9K/D3pH5o0lOLlG/QdzQV67dEypPISk3kwPzvyUg2XDPV0t6JViPe08nV7T6M6q17kpen5diynwm/bPi7M7O2pcNrn2Hj7EFafBR7/vgcTUYa5tZ2dHjjC1z9anDjyDaOLpUXnVebmdPx9c+xdfVGytNy98JRTq35E4CA9v3J1WRy4/C2R3AmnxGEwHf4t+SmJRD5z1SD3Q6Ne2Eb0FLeUKkxc/Lmzm9jkHI0eA/5FKE2BZWa9OvHSTiyGgCnFs9hV6cD2kw5rW38wRVk3Dln0Lba2gG3Lq/q9Do26YttnXYg5RG3ZxEZwRcMZFQW1nj0moiJvQu5yXFEbZxFXnY6KgsbPPq8hYWHPymX9xO3e6F8eCZmePR5C1N7NyRJIuPWaeIPyvcl+/pdyMvJJvXSfgM9Cs8eT6WxiZzX/HlgphBChZwJyK7A/hbAW8AtSZICH6LdFZIkvQkghGgPrBVCtJck6WoJchOBaEmS6uTLVgeezkTMlVpDWjSYFLHs0u198gvArSZUagM5mXJu6SsbICVcNjxbTYK463JbABYO4FINMhKK0d0WQvPT1dm4g1d9OPA/OQ9209dg3/fAfUtt+XeE+BtwYo9snFbpAEGbIS8Xrm0DWw/5df8xxN+SUx02ex1ca0BsEISegBbjy5WxOWHCRIKCrmJnZ2d0/7RpPzJt2o8A9OrVi4kT3yIxMZHExEQaNZQfOlQqFXdDw1i3TjboL1+6xPMDn+P33/8oVvekSW8zd+5cAAICAhg0eDB169TGy8uL7Tt2ElCjOnn3ZXmZPHkKe3bv4X//+4H335/M5MlT+OCDKWRlZfHZZ59Sq3ZtatWqXUhm06aN/PrrLwRdu16ofMGC+Rw4eKhcGZu1Oj1HUmQIphbWRvdf3L6Ci9tXAOBbrzm1Oz2vMzSLkr+4fTln1s8HoGbHAQT2HsmRv6YbtF278yCuHZTTxTp4VqRykw6s+fQlrByc6f72NFZ/9CKSVPh61+s+jIirZ7iwdSl1uw+jXvdhnFzzJ9ocDWfWzcfRuxKO3pUMjiHy2jlUahO6vzMdn9pNCLt0guuHt9B7yi/lyth0aNAdTUI4KjNLo/uTTm4i6aR8TawqN8ChUQ/ysmRHQPjKr5FyskGlxmfo56TfOUd2pJzJJ+n0FpJObS5ed6MepFzYA4Cpszc2NZpzd+F7mNg44v38R4TMmyQ7Jgrg2KQvGXcvkXRiAw5N+uDYtA/xB5YhaXNIOLwKMxdfzFx8DI4hM/QKqNR4D/oYq0r1yLhznpSL+/AZ+oVibJYRntYw+mFkgxKgFnAJSBVCOAohzIEAILEo4QdBkqS9wJ/AmAeo7onsSb0ne02SpOxi6pcOFvayARl6/MHqe9WHiPz1ArNTZUMT5PzaadFye/eo2Qeubiy+Pc+6stEH4F5LbjtPC5kJkBEPDhUMZdxr6Y3DsJPgnm9oaDWQeEc2OguSlyMbmgCSFpLD9P3My5F12fs+2PE/43h7e9OjRw/mzzPiwTbC4CFDWL7CMCVdx44duX3rFnfvyikEg4KCuH79ukG9++k/YADbt8l//H369GXlihVoNBqCg4O5desmTZo0MZDp3acPixfLKU4XL15En759AcjIyODw4cNkZWUZyBw/fpyoqCiD8szMTEJCgmncuHGJfS0LWDm64lu3GdcOFm8k3MO/SUdun9Dnri5KPicrQ/fZxMwCgwfCfPwatiHs0gkAKgS25PaJPeTl5pAWF0VKTDiulWoYyFQIbMmNI/J35MaRbVSo3wqAXE0W0Tcvos3RFKqv1WQTee0cAHnaXOLvXsfa0VW3LzUuChcjesoiahsnrCrXJ+XC3geqbxvQgrSrR3TbUn46UqFSg0ptYBiWhE3VJqQHy4vn2/g3Ii3oKGhzyU2OJScxCguPKgYy1lUaknr5AACplw9gXaWRri9Z4deQcgtfbylXIxuaAHlasqPvYGLjrNuXkxKLuYf/Q/Vb4enkqTQ2JUmKAHKFEBWQjc6jwHGgOdAIOU+5hvzc5gVerR9S1RngQe5c84HJQoijQoivhRBVH1LPk6FmX7i66cFuKipT2SMYZRgKwdIR7L0hKT89mVstOSyfGll0e5ZOkJMhG5cgG4BZSfr9WUmFjdd7mNvKhi7I7+Y2Jff9HiYWsrEaV2BNtORQcKr84G08w0yfMYMpUyYbeA+NYWlpSdeu3Vi7Zo3BvkGDh7B8uaERWhx+fn4kJiai0ch/Hl7e3oSGher2h4WF4+XtbSDn7u6uMxyjoqJwc3N7KL33c/rUaVq1etif/bNJs8FvcmL1bB4kEYfazByf2k24c+bAA8k37P8yg/+3kirNOnNm3XyD/TYuHmgyUsnLlQM61o6upCfG6vanJ8Zi5WiYZcbSzonMZDkakpmcgOVDZB4ys7TBt14LIq6e0ZXFhVzDo2rdB27jWca1wwjiDywFSv59CxMzrPzqkXajgKNBCHxHfEelsbPJDLlIdpQ+fbB9/a74jvwBt66voTI39JKb2LuizUoHrfywr7Z1JCdVP7QiNy0BtZFrqbayR5ueBIA2PQm1lfGIizFU5lZY+zcg4+4lXVl21G0sfcrHw0VZ56k0NvO55928Z2weLbB97/HtliRJgQVeB403VSSiwGdjd3AJQJKkc0Bl5DGfTsBJIUSAQWNCjBFCnBJCnIpNzrh/9+PFLQA0aZAS9mD13WvJnsOczMLlajN5rOSV9ZCbLRulVTrC9e3Ft2dhB9kFx3EKI5UeYbYqoYL6w+HOQdmbeY/sNLkvZZyePXsSExPLmTNnSq4M9OrdmyNHDpOYWDggYGpqSu/evVm9etVD6ff09CQuTm9sCGF4vZ9EdrKY2Bi8vLweu57Sxrduc7JSE4kPKdnjDFChXguib17ShdBLkj/9zzxWvD+Im8d2EtChv8F+K3tnslKTi1f6CK+3UKlpN+YTruxeS2qc/iE3KyURKwfnR6bnacWqcn20GSlkR995oPrW/g3IirimC6EDIEmELv6A4NnjMPfw14Wvk8/tImTuREIXTSE3PRGXdsMN2jOxdkCbmVqgxMj9/FH+vIUK917jSTqzndzkGF2xNiMFtU3ppUZVeHQ8rWM2QTYoWwB1kMPoocA7QAqyp/FRUB+4N14zHij4rXYCdBOM8icDrUUe55kH9Cgge6/On8iheRpV9XiyeUAdK8keyPYB8vhLUwsIHAbnlhqv7xWoD6HfQ6ig4UsQfgaiLspl1s5g5QSt35G3Leyh9SQ4PEvvkQTQ5oC6wNcpK0ke53kPCwfISjHsR3aq3rtpbisbiw9CnechPc5wEpPaVO5LGadFi5b07t2b7t27Y2FhgZ2dHYsWL2bkiBFG6w8ePNio97Jb9+6cPXuGmJgYI1JFk5mZiYW5flxweFgYvj764Qs+Pt5ERkQYyEVHR+Ph4UFUVBQeHh4Prfd+LMwtyMzMLLniM457ldpUqNcSnzrNUJuaYWZhRdtXPmL/3G+M1q/cuAO3ju9+aPnbx3fTZeL3nN2wsFC5VpON2tRMt52eGKsLb4Ps6cxIiuN+MlMSsLSXvZuW9k5kpj7Y6KdWI94hJSaMy7tWFypXm5qh1WiKkCo7WHpXx9q/AVaVAhEmpqjMLHHvMY7oLb8arW9TowWpBULoBcnLziAz9CpWfvXQxIWhzdA/NKRc2IPngPcNZXJzUJmY6ra1qQmY2uqNfBMbJ7RphtdSm5GM2tpB9mpaO6DNMHLPN4Jbl1fJSYwi+czWQuXCxBQpp+xf7/LA0+7Z7AUkSJKklSQpAXBADqUf/a+NCyHaIo/XnJNftA8YLvQumpHA3vy6LYUQjvmfzYCaQMh/7cMj5doW2PMV7P0Gzv4FcTeLNjRNLMDJH6IvFy6vO1geq3lHH3ojNQp2fS63u/cbOZx+cEZhQxP+z95Zh0d1fA34nd1s3N1IgjsEAsGtUFwLBVpaaGlLvaVuX93df22pARWkUCheKO4S3CFA3N2T3b3fH7NsArsRWiAkue/z5Nm9c8+ZOXc29+7ZM3KgIE0OpV8k5ZicE6rRynInb8iOtbQl5RgEm+bcBXe1tMkaLYbKazj+l+U5Jx9pcz3npZdeJCw0hGZNmzDl9tvYuHFDpY6mq6srffv2Y9lflv01efKVD6EDnD59mtCwMPPx8uXLmDhpEra2toSFhdGsWXP27Nljobdi+XKmTp0GwNSp01i+bNkVt12R5i1acPTY0eoF6zj7/vye+c/eysLnJ7Nx1hsknjxQqaOpc3AioGVHYg9ur5G+q2/5dIeQ8J5kJ1nepzkp8Th7lS/Uiz20gyaRN6Gx0eHs7Y+rXzBp509a6MUe3EHznkMBaN5z6CU2VUbE2HvQOTixa/5XFudc/RqRlVCzaF9dJmPrfC589wgx3z9GyoovKIo9VqmjqbF1wCG4NQXR5btGaBxc0Ng5AtJhcwxtR2mm/PGndXI3yzk170ppehyXU5aVhI1r+Y+JgugonFv1AK0NNm4+6Dz8KU4+a6FXEB2FS1uZytWlbV8KzlrfyaIinr0morFzIH3DXItzOo8Aq/ap1D1u5MjmEeQq9N8vK3NWFCVdCOGMac5mhfM/KYryhen9YVMEEmAhcp7nJCFEb8AROA+Mr7ASfRZy/uYhIYQC7AMu7i3SFPjG5IhqgJWA5eS3G5WQHvI11uSj+7eX2xAZKvxi9GgMwV0gNxF6PynLTq0qX/BTHYZSuQjI0Uu+5qdA0kHo+6zcoujon5jHXdpPhNgdcnFP9AboPBUaRUJRNuyfU17ngJekU6nRyoVDe2aBvhia3yzr7/2ElIvZXr4oyiMMTltuudOQmHH//QDM+u47AMaOG8e6dWspLLx0aoeDgwODBt3Mgw88cEn5mLFj+fzzL/Dx8WHZ8hUcOnSQ4cOGXSJTWFjIuehomjZtSnR0NMePH2fRH39w5Ogx9Ho9jz36iHku6XezvmfWd98SFRXF+++/x/z5C7h7+nTiYmOZNGmiuc6z0edwdXXF1taWMWPGMGzoEE6cOMF7773P5Ntuw9HRkQsxsfz044+88cbrAPTs2ZM3Te8bKq36ya2nTm6WjntYpz4kHNuHvtRysZU1uoyfgbt/CIpiJD8jhe2/WK5E15cWk5eWgItvEHmpCWQnXuD8vk2Mf2M2RqOBnb99Zl6J3nvaM5zctIz0mFMcXv07Nz3wKi16D6cgM4X1375mrnPie/OxdXBEo9URGt6bNZ8+TWlxIeEj7yQ7KYaxL8s4wPGNSzhtWtTk16wdB5bPsbCvIeHacRAAuYf+AaTDWBhz2LwgCMDGyQO/YQ/K7e2EIP/ULgrPyZEsr763Y+cbCoA+J43UdT9YtKGUlVCWnYLO3Y+y7BRKM+LJP7WL0Ls/QjEaSFv/s3nahM/g+8g9tJ6SlHNk7V6G/6jHcW3fH31uBsnLPzPXGXrfF2hsHRBaG5ybdSFh0bsYS4rw7DGO0owEGk19B4CcA2vJPSIXRdkHtSBzZ935qlWpHHE95lU1RLo091f2fTalts24vvi1A7dgOF1LW5O4BsmtnA7Nu+5N24z+9Lq3WduMGTuWiM4RvPLKy7XSfnh4ODOfeIK7pk277m1/d3ff695mbRPaqTfeoS2JWlqz3Q+uNl6NmtFu8EQ2//jOdW+7X6uA695mbePUrAt2fk3I3L6wVtq39Q3DPWI4qav/d93bbv7M/ChFUbpc94brMTdyZFOlrpFyFGyt7/93XbB1qj1HtwHy19KleHnV3mINb29vXn3llVprv6ERc2Abds5WdpS4Tti5uBFlZaW8yrWh4Ow+tA4utda+1sGl1hxdlauP6myqXF1qusfntSC9Zit1Va4eNd3j81rwzz//1FrbDZXTNdzj81qQeLz6+X8qV5eLw9m1QVHMkVprW+XqcyMvEFJRUVFRUVFRUanjqJHNa4SiN6BPy6teUKVeoF/0WG2boHIdsbv1y9o2QeU68uyI8No2QUWlTqNGNlVUVFRUVFRUVK4ZqrOpoqKioqKioqJyzVCdTRUVFRUVFRUVlWuGOmezHqKJnIQIbg/6UgzbZkOmlcw9zl5o+80AO0eUjFiMW38Co6F6fSHQjnwJpTAb43rLDB8Aos1AKClAid4Fto5o+s9AOHuh5Gdg3DQLSi3zxougtmgiJ4HQYDyzDeWI3MJIhEagCR8F7v4YVrwLGTJxk2gSiabdkPIKPIIwLH8LMuPRDH4C46bvrLZT7+lwC/i1lik7o36XG+dfjqMndJ0Gto6QHQ/7fgXFAM6+EHG73Cv1+Eo4W8VK1N4Pwa4fQV8Cvq1ku0JAzC44vd66TmW2db4N/NvIVKXr3y+X7zpN2gSgc4CyItj4IbgGQLMBsL+SDFn1lMFDhvDxJ5+i1Wr56acf+eiDD6zKffLpZwwdNozCwkLuvWc6Bw8cwM7OjvWbNmFna4eNjQ1//rmYN1+Xm+G379CBr/73P5ydnImJiWHanXeQl2c539zf359vvpvFuDFyE/lnnnuOu++ejsFg4MknZrJurWUyBQ8PD36bN5/Q0FBiYmK4ffIksrOz8fT0ZN7ChXTp0pVf5sxh5uNyzrOzszMbNm026wcFBzPvt994+qknefChhygoKGTunNn/tSvrBM069WDEfU8jNFqi1i1l6+LZVuWG3/cMLSJ6UVZSzJ+fv0bSOZmIY+yjr9CySx8KcjL56rFJFnq9xt7J0Ltn8u4dAynMy7Y47+zhzdiH/49f35oJQN/xd9P55jEoRgMrv/+IswcsE/k5OLsy8Zl38fANJCs1kQUfPE9xQR4OLm5Mfu4Dgpq14cCG5aycJf93bR0cufed8k3lXb39OLRpFat//JhuwydSWlLEgfXLr7DnVG5E6nRkUwjxkhDimBDisBDioBBio+n1rBAix/T+oBCipxBikxDiVIWyRZfVdUgIMe+ystlCiEIhhEuFss+FEIoQwvt6XeeVIILagasfhj//D8POX9D2sL6xvCZiPMbj/2D482UoLUQ0710jfdF6IEpOUhUGaNA064VyTqYq1LQfhpJ0EsOfL6MknUTTfqgVHYGm2+0Y1n2BYemraBp3BTe5ibKSnYBh4zeQcuYSFeXcHgzL3pR/W36C/AzIlM6LEr0L0ap/TbqrfuHXWqbrXPc2HFgA4bdal2s7Cs5uknJlhRDWXZaXFsKhxXB2QzXttIGcROloIqDjBNjxHfzzHgR3Bhe/K7MtZjds/85SZ+8c6Vxu/BASD0HiYVmemwQObuDgXk2H1B80Gg2ff/Elo0eOoGP7dkyaNJlWrVtbyA0dNoxmzZvTplVLHnrwAb78WqY4LCkpYcigQXSN6EzXiM4MHjKEyG7dAPj2u1n834svEtEpnL+WLuXJp5+2asPjTzzBTz9Ix6BV69ZMnDiJ8A7tGTViOF98+RUajeXXyTPPPceGDetp27oVGzas55nnngOguLiY1199leefvTQvd35+PpFdIsx/sTExLF26BIDZP//Mw4888i97sG4hNBpG3f88c19/jC8fmUCHPkPwadTYQq55RC+8Ahrx2QNj+evrtxj14AvmcwfWL2fu649ard/V24+m4d3ITq38Wd5rzBT2rZV979OoMe37DObLR25lzmuPMur+5xFWPu8+4+/i3OG9fPbgOM4d3kvf8XcBoC8tYf1v3/D37M8ukS8tKuR/T9xu/stOTeL4Tvn82f/PMnqMnFxlP6nUHeqssymE6IHMnd5ZUZQOwCBgiqIo4cC9wFZFUcJNfztMalMqlE2oUFdrZF/0FUJcviv5WWCMSU4DDAASruW1/RdESDhKtOkXZ9p5sHWQX8yXywW0Qrkg960znt2JCAmvXt/RHRHcHuX0tsrbD2iFkhkrU1QCIqQjyllZn1KhnUvwboySlwr56WA0YDy/FxHSUZ7LSYbclCqvWdOkK8q5veZjJe6QdFgbGgHtIc7UD1kxMhpo52op59NcOm8AsXulHkBpPmTHgdFoqVORRhGQZMpH7hkKBekyRaligPgD5fXV1LaMc9LprYqgcIivsM9i8jHp2DYQukZGEh0dzfnz5ykrK2PhwgWMGj3aQm7UqNH8+ssvAOzZvRt3N3f8/WVO84KCAgB0Oh06Gx0Xs8e1aNmSrVu2ALD+n3WMG3eLVRvGjbuFv/+WIw6jRo9m4cIFlJaWcuHCBaKjo+kaGWndnrky5/Wvc+cyevQYQKY73bF9O8XFlafUbNasGT6+vmzbuhWAoqIiYmJi6NK1/t/bwc3bkpEcR1ZKAga9niNb19I6sr+FXOvIfhzcKPc+jT99FAcnZ5w9ZBwk5vgBivJzrNY//J4nWTv7c6rKINimx02c2b/D1E5/jmxdi0FfRnZqIhnJcQQ3b2tpT7d+HNiwAoADG1bQuru0uaykmNgTB9GXllroXMQzoBHO7h7EHJdpNctKi8lKTSLISjsqdY8662wCAUC6oiglAIqipCuKkvgv67od+AVYC1z+BJ8HXByD6A9sB/T/sp1rj6M7SkGW+VApyAJH90tl7JxlFMvkEFKQhbgoU4W+JnISxqjFmHOcW0H4NkVJjykvcHCFItMDrygH7C0zUghHdyjILC8oyEY4elR9nRX1w7piPL+nvKC0ELQ2YFeL2YxqAwc3KCr/7CjKtvyhYeskh6MvfvbWZKrDq7F0SgHsrbRpb6W+mthWaXtNoCRPOrUXyYqT5Q2EwMAg4uLizMcJ8QkEBQZZygUFER9fQS4hnsAgKafRaNizL4r4pGTWr/+HvXvkPXPs2FFGjZKPvfETJhDcqJFFvWFhYWRlZVFqchaCAoOIjyufohEfH0+gFXt8/fxITk4GIDk5GR9f3xpf88TJk1n0x6UZZKKi9tG7d+8a11FXcfXyJSe9/Ed2TkYKLl4+1culp+JqRa4irSL7kpuRRvKFM5XKuPsGUpSfh0FfBoCLlw856cnm87npKbh6WX6WTm5e5GfJ+zQ/Kx0nN88qbalIh75DObJ13SVliWePE9qmU43rULlxqcvO5lqgkRDitBDif0KIfjXQ+a3CMPqHFconAQuQjuVtl+mcAXyEEB6mc/Mrq1wIMUMIsU8IsS89r/Jf7NcWYaWscuewpvoiuD0U50GGlfmfFXFwk3Pvroj/YLN3YzCUQvZlvzOK8hrUMGvl1KAfq4huWEXnaBpC/w9tXolccATE77+0rCTPulNbTxHC8h6xFpWqSs5oNBLZJYImoSF06dqVNm1lxOj+e+/lgYceYufuPTi7uJgdyor4BwSQnl7u7NfUnv/CxImTWDD/0sdtWmoaAYGBV7WdGxMrz0Rr/Wvlc6jqftbZ2tP31ntY//u3Vbbu4ulNYW75j8Pr8Xm37zOYI1svTTecn52Fq2fVzrNK3aDOLhBSFCVfCBEB9EEObS8QQjyvKMrsKtSmKIqyr2KBEKIrkKYoSowQIh74SQjhoShKhTAMfwKTgW7A/VXYNAuYBRDR2Ofq3omVIFr1R9OiDwCGdV9AYRbCycP8NS6cPKDwsqGUkny5OERoZITLyQOlMFueq0RfhEYgGnVEG9wOtDrQOaDpM10uLKqIoUxGFS9SlGuKauXI12LLhQdKYRbCqcIvYCf3cnuqQdO4K8ZzeyxPaHXSCa3PNO4NYT3k+53fmfrYAzgvyxzcZf9XpLRADmFf/Owd3KH4MpnqUIzIL0MFii+2SXmb1uqriW3WEBoI7AAbP7q0XKsDY9mV2V2HSUiIp1GFiGNQcBCJSZYDOQnx8QQHV5ALCiYp8VK5nJwctmzezJAhQzh+7BinTp1ixDA5l7p58+YMGz7cot6ioiLs7O3Mx/EJ8QQ3CjYfBwcHk2TFntSUFPz9/UlOTsbf35+01NQaXW/7Dh2wsbHhwP5Lf2TY29tRVFRUozrqMrkZKbh5l899dvPyIy8z3VIu/TI5b19yrchdxDMgGA/fQB7+TC5PcPX25cFPf+O7p6eSn51hltOXlGCjs63QTipu3v7mY1dvP/Iy0yzqL8jJwNnDm/ysdJw9vCnIybSQsYZ/WHM0Gi2J0ScvKbextaWstLYCNypXk7oc2URRFIOiKJsURXkVeAQY/y+quQ1oJYS4AEQDrlbqmQ+8CaxTFKWaCW3XF+XkJvNCGYpyUOIOIZqaHBCfxlBaVD6MXVEv+RQiLAIATbMeKLEHZXkl+sb9SzD88RyGRS9i3Pw9StJJS0cTUHKSEC7lwytK3CFEM1mfaNYDJfaQ5UWkX0C4+oKzF2i0aBp3RYmzImeBQIRFoJzfa3nKwVUuGqrPnN9WvoCmOFfOo2xkms/mESqHy0usOHTpZyHQNCc2pCskXWEO4vxUcPKS77NiwdlbrnAXWgjuVD6fsyI1te1yfFpAfop0aivi7CMXCjUQ9u3dS7NmzQgLC0On0zFx4iRWLLdcpbtixXLuuPNOACK7dSMnN4fk5GS8vb1xc5ORYHt7e24aOJBTp04B4OMjI0dCCJ5/8SW+/26WRb1nTp8mNDSsvJ3ly5k4cRK2traEhYXRrFkz87C8hT1TpwJwx9SpLF++rEbXO2nyZBYssBxEat68BceOHqtRHXWZhDPH8QpohLtvIFobG9r3GczJPZst5E7u2UL4gBEABLdoR3FBvnkY2xopMWd5f9rNfDJjFJ/MGEVueirfPDHlEkcTID0xBnff8gjyyT2bad9nMFobHe6+gXgFNCL+jOXncHLPFjrdNBKATjeN5MRuS5ut0b7vUI5s/dui3DswhNTY6BrVoXJjU2cjm0KIloBRUZSLE0/CgZjKNazWoQFuBTooipJgKhsA/B9g3o9BUZRYIcRLwD9XwfRrihJ/BBHUDu0tb4PBtHWRCc2gRzFunyudx32L0fa7DzqNQcmMQzmzvVr9mrV/FE2f6eZj45E1aPrNQNO8F0p+ptySCMDBDU2vqRj/+RIUI8Zd89DePFNufXR2O2RLR0KEhKPpdhvYO6Md9ChKZhzGdZ/Lc/7NoTBLLiyqiFcoStr58nmJDYWU4+DfGm7+PxnV3V9hc4UeM+DAfOmUHl0OXadCm+GQkyC3KwKwc4EBT4GNvRyKa9YP/nnXcsg8+Th4N5NzKBWjXMHe6wFAI1eW55nmdoX1lK8XdlRtW5ep4NMUbJ1h6GtwYrWsB+QioLjLhtABvJtLOxoIBoOBmY8/xopVq9Fqtcye/TMnjsvrv2+GHGz5ftZ3rF61iqFDh3Hi1GkKCwu57957ADkM/uNPP6PVatFoNCxa9AerVsqFJZMmT+aBBx8CYOnSJcyZ/bNF+4WFhZw/F03Tpk2Jjo7mxPHjLFr0B4eOHEWv1/P4Y49iNC0s++a7WXw/6zv2R0Xx4fvv8/v8+dx993Ti4mK5bVL5Fjynzkbj6uqKra0to8aMYcSwoZw8cQKACRNuZcyokRZ29OjZk7fefONqdesNi9FoYMWsD5j22ldoNFr2r/+L1LhzAHQdKmMhe9cs5nTUNlp06cUT3/4ltz768jVzHbc+9TaN23XB0dWdp39cxYZ537H/n79q1H5ZSTGZyfF4+geTmRxPatw5jm5fx2NfLcJo1LPiu/dRTJ/3mEdeZu+aRSSePcGWxbOZ9Mx7RAwaQ3ZaMgs+eM5c55OzlmPn6ITWRkfrbv2Z89rDpMXJkY52vQbxyxuPW9gR0jqcjfO//1d9qHJjIa72vIvrhWkI/UvAHblg5ywwQ1GUdCFEf+BpRVFGVpDfhFxUdHEMJh14C3hPUZTuFeS0QDzQGXgXWKEoyuXbJF0AuiiKUulPyIjGPsruV8f9p2usq2gGPIhx32LIq9mQ2VVvP3ISStwhlKST1QtfJWzcHK9bW7WOnSt0mQLbv6md9jVa6PMobPmi1n5QNMTc6KPHjKVzRGdee+WVWmm/Y3g4j898gul3TbvubTfE3Oituw8gsGkr1v9WO/d5QOOW9BwzhcWfXf//t7eW7Y9SFKXLdW+4HlNnI5uKokQBPSs5twnYdFlZ/0qq6n6ZnAHplALcVUn9YTW1syFijPoTHN1qzdlUshKuq6PZ4CjJhQs7wcaumoVC1wgHDzi2ouFFrmuZZX8txcvLq9ba9/b25vVXa8fRbYic2LURR5faW4Tn6OrO+t9r6QetylWnzjqbKjcwuSnV7o15LVHOVL4PqMpVIuFg7bVdkH7pNkgq142ff/qx1tpe/88NP4up3hG1bmmttR19aHetta1y9anTC4RUVFRUVFRUVFRubNTI5jVCbzCSVmt7bapcb4Knq5PYGxI/3zegtk1QuY5MHdahtk1QuY68tczKokSV/4Qa2VRRUVFRUVFRUblmqM6mioqKioqKiorKNUN1NlVUVFRUVFRUVK4Z6pzNeoRdSHtc+94BQkPh8c0URK2wkBG2DrgPfgCtixcIDQUHVlN0YitodXiNfxGh1YHQUBy9l/zdSwBw7jYe+yadQFEwFuWS/c/3GAuyLerWOLrhdtM9ZK34BACniJE4tukHipGcLb9SGmuZqUbYOeEx9GG0rt4YctPJWvMVSkkhOr8muA242yQkyNu9hJJzUWBji8ewR7Bx80UxGim5cJC8HQsBcOwwCKWsRF5PA2PIkCF8+tnnaLVafvzxBz54/30LGXd3d3788SeaNG1KcXEx994znWPHZBYQNzc3vv/+B9q2a4eiKNx7z3R27drFvHnzadGypVk/OzubiM6dLOr29/dn1qzvGT16FADPPf8806ffY96MfO3atRY6Hh4ezJ+/gNCwMGIuXGDSpIlkZ2fTtWtXvjVlsRFC8Mbrr7F06VIA/l67jkkTbyU7O/tqdFudIrBtV7pOfASh0XB22yqO/j3PQkZn70Tve17EycMXjVbLsXULid4h803rHJzoeefTuAc1RlEUdsz9kPRzx+k4chrNe4+gOD8bgANLfyThqOVKYAdXT3rc+RQbvn4JgHZDb6NZr+EoRiN7F3xJ4vF9Fjq2ji70ve9lnL38yc9IZsv3b1BamI9XWCt63PGkSUpwaMUc4g7KXSTCx0ynaffB2Dq6MO/xEea6WvYfi7602Hw99R7fVtD+Fpn/PGYXnFlvKWNjD13ukNuBCQ2c3Qixe2qm32wAtBsDq16SaWwvx84VOk2CXab56M0HQWg3mfDhyJ+QamV7OZ0jdJ0mM4oVZsLe2TJbmHuIrOsiJ9fIzGVaHXS9C5y85VZmycfguOl7q3FvmQAi1ko6YpU6R51wNoUQwcDXQBtkNHYF8IyiKKWm838Bvoqi9Kig8xpwH5AG2AJvKooyz3SuO/A5YGf6WwD8ASwBOiqKUmSSWwn8AmwEfgQaATrggqIolgmEaxMhcO0/lcylH2DIz8R70uuUnNuPPuvSfMWOHQahz0wga8WnaOxd8LnzfYpO7QBDGZlL3kMpKwGNFq/x/0fJhcOUpURTsH8l+bsXm/RvxrnrWHI3zbYwwanTMAqPbQLAxiMQhxbdSfvtBbTO7niOfY60X56VD6oKOEeMpCT+OAVRK3CKGIlzxEjydiykLCOe9AWvgmJE4+iG921vk3r+AAAF+1dTmnBC2jnueexCO1ASc5jC41vwnvByg3M2NRoNX371NUMG30x8fDy79+xl+bJlnDBlY7nICy++yMFDBxk//hZatmzJl199zeCbBwHw2Wef8/ffa5g48VZ0Oh2OjnKT+ttum2zW//Cjj8jJsUx9CvDEk0/yww/yS6l169ZMmjSZ9u3aEhgYyNp1/9CqZQtzhpmLPPf886zfsJ4P3n+fZ597jueef54Xnn+eo0ePEtm1CwaDAX9/fw4cPMTy5csxGAz89usvPPjQQ7z7zjtXrf/qAkJo6Hbb46z77BkKs9IY/sI3xB3eQU7SpUnTWg4YQ07SBTZ+/RJ2zm6MfWMO53f/g9GgJ3LSIyQc28vmWa+j0dqgtS3PdX58/SKOr1tYpQ1tbr6VM9tk1iG3gFDCutzEsten4+jmxc1PfMTSl6dyeTbfdkNvI/nkAY7+PY92Q26j3dDb2P/n92QnnGflOw+gGI04uHoy8uXviT+8A8VoJP7wTk5tXMrYN3+5pK6z21cz7NkvGoizKaDjBJk4oSgb+j8JyUch77It5Zr0ltvM7foBbJ1g0IsQFyUdt6r0HdzBp6V0CCujWX+5ny6Ai59MRbvhPbB3g14Pwbq3gcuSwrQYCGmnpWPbfKB0UI8vh7wk2PSxtMvOFW56RjqWIB3k9LMy3W2vh8C3NaSegNjd0Odx1dmsJ9zww+hCCAH8CSxVFKU50AJwBt42nXdHZvtxF0I0vkz9U0VRwoExwHdCCJ2pfA4y21A40A5YqCjKMVM7L5nqHQvoFEWZD7yBzIveUVGUNsDz1+Zq/z06v6YYslMx5KaB0UDR6V3YNelsKagoCJ0DAMLWDmNxAZicAKXMtEG3RovQaLn4IFHKylfVC50dFg8YE/ZNu1AScxgAuyadKTq9C4x6DLnpGLJT0fk1tdRp0tnsHBad2Ip9E5mvHX2pedNuYaMrb1NfKh1NAKOBstQLaJw9zecMuWno/JpU1131isjISKLPnuX8+fOUlZWxYMF8Ro8ZYyHXpnUbNqyX0Y1Tp04RFhaGr68vLi4u9Onblx9/lHsolpWVWXUqb711IvPnWUbTAG65ZTxr1kgnYPSYMSxYMJ/S0lIuXLhA9NmzREZGWuiMHj2GuXPmADB3zhzGjBkLQFFREQaDAZB5vCtmOVu2bBmTJ99W066pN3g1bkVeagL56UkYDXou7NtAo45WclooCjo7+UNBZ+dASUEeRqMBnb0jvs07cHb7KgCMBj1lRVaiWVUQ0qkPCcf2AtCoY08u7NuAUV9GfkYyeakJeDVuZaHTqGMvonfKnNfRO/+mUcfeABjKSszpDrU6Wyo+U9LPn6Ao19IJMpSVkJ+RgleYZTv1Do9QmYa3MAMUA8QfAP/2lnIKMrkCptfSQvncrE6/3Vg4Vk2e+sAO0ukDqRt/AIwG6aDmp8s2Lse/PcTK/xFi90KAqU1DWXkSBq1N+cdtKJOOJkg7c+LBwa38XGGmjIqq1HnqQmTzJqBYUZSfQWb4EUI8AZwXQrwKjAeWAynAZGSKyUtQFOWMEKIQ8ABSAV8g6WJ9wMUky28AB4QQi4D3gFGm8gBgbYX6Dl/ti/yvaJ08MORnmI+N+Zno/C2du8LD/+Axcia+079A6OzJ/vtrzHe+EHhPegOtmx+FR/6hLOWcWc+l+wQcWvXCWFpE5p8WXYzW1RulpACMenns7EFZcrT5vCE/E62TB2WX6WkcXTEWSsfGWJiDxsHVfE7n1wS3gfeidfEme913FhljhK0jdo07UXCofIi2LPU8toEtLrG9vhMUFERcfJz5OCE+nshu3SzkDh0+xLhbbmH79u107dqV0NBQgoODMRgMpKWl8dNPP9OhY0f2749i5uOPU1hYaNbt06cPKSkpnD171qLesLAwsrKyKC0tNduze9cu8/n4hHiCgoIs9Pz8/EhOlnnUk5OT8fX1NZ+LjIzkhx9/IjQ0lGlT7zQ7n9nZ2djZ2eHp6UlmZhVRmXqGo7s3BVnlGbkKs9LxbtzaQu7kxqXc9PBbTPjgD3R2jmz5/g1QFJy9AyjJy6HntGfxDG5KRuxp9i74Gn2p/CHZqv9Ymna/mYyY0+xb9A2lhfmX1Ovs5U9pYT5GfZnJHh/Szpfnpi/ISsPR3dvCHgdXD7PjWJSbib2Lu/mcd1grek57FidPP7b9/K7Z+ayKjJhT+DVrT8aFep4hzMENirLKj4uzrTt357dCt3th6OtySH3vHECpWt+/LRTnQG6iZX0XcfSUw99GQ7k9mRcurc/BDbIu07N3kRnGQL7aOZef8wiFTpNl3VG/WmYA0zlI26K3lJdlx4F3E8iOrdxWlTrBDR/ZBNoCURULFEXJBWKBZsBtwDzTn9WQhxCiM3BGUZSLT+tPgVNCiCVCiPuFEPameguBp4EtwHxFUc6Y5L8GfhRCbBRCvCSECKyknRlCiH1CiH0Z+dc5jZ+wUmYlAGkX0p6ytFhSf3qM9Pn/h2vfqQidvUleIX3+y6T+PBOdXxNsPMsdhLxdi0id/QRFp3bg2HGQRb0aR3cMRXlXblAVlKWcI/33F8lY+BrOXUbK+T3m6jW4D32QgkPrZDTXhKEoD42TxxW1U9eRwf9LURTLvn7/vffwcPcgav8BHnnkUQ4cOIBer8fGxobOnTvz7bff0CWiMwUFBTz3/KXB+8m33cb8+dajmgEBAaSnlX8GNbWnKvbs2UOH9u3oFtmV555/ATu78iHf1NRUAgOt3oL1FlHD+ymwbVcy46JZ9OytrHjrPiJvewydvSMarRbPkOac3ryMFW/fj76kmHZD5ePy1OZlLPm/O1j+1gwKczLoMuFBi3od3LzMczpNBlkx58o+4/QLJ1n2+nRWvfsg7YfejsZGV61OcV42Du61lzKzdrHSv76tICcB1rwKGz+EDuPLI53W9LU6aDEYTqyuuil7VyjJr1rmCp/nZMXAhvdh0yfQYhBoKsS6hAa6TIVzW2U09iIleXLYXqXOUxecTYH1/2qBjFQ2A7YpinIa0Ash2lWQeUIIcQrYDbx2sVBRlDeALsho5e3AmgrnlgPZwP8qlP0NNAG+B1oho58+lxukKMosRVG6KIrSxcu5shv+2mDIz0LrXP4Q1jh7Yii4/GcnOLTpQ/E5OZHfkCOH3W08L/3iVkoLKU04iV2o5UbGxad3Yt+0q0W5oi+Ti4vM9mSWD28DWmdPDFYWFRkLc9E4yoeJxtENY1GuhYw+KxGlrASdV7C5zO2m6RiyUyg89PclskKrQ9GXWtRRn4mPj6dRcCPzcVBwMImJllGLvLw87rlnOhGdOzFt2lR8fHw4f/488fHxxMfHs2ePnBu1eNEiOncqn4Kh1WoZN+4WFi5YYLX9oqIi7OztL7EnuFG5PcFB1u1JSUnB398fkAuMUlNTLWROnjxJQUEB7dqV39b29vYUFRVV2h/1kYLsNJw8yiO/jh7eFGZbpuxs1nMosQfktJS8tETy05Nx9Q+hICuNwqw00k0RwZj9W/AMaQ5AcV6WnGupKJzZttLqMLWhrAStja35uDArDSeP8kegk4cPhTkZFnpFuVk4uMrngIOrJ8V52RYyOcmx6EuL8Ai6fBaUJVqdLYayBnB/F+XIRT8XsXcHK89GQiIhyTTQVmAaNnf2q1zfyRucPOGmZ2HwK9KR6/802LlcWq+h7NIf9zW1pzhPzskE+WrNYc1PkdOkXAPKy8InQX4aRG++VFark7ao1HnqgrN5DOkYmhFCuCIX63REOpznhRAXgDDkUPpFPlUUpSUwCZh7MYIJoChKtKIo3wADgY5CiIo/l42mPyrIZyqK8ruiKHcCe4G+V+fyrg5lKefQuvuhdfUGjRaHFt0pMS2oqYghLwO74LYAaBxcsfHwR5+TisbeBWEr53qh1WHXqC36rCR56OZn1rdr3Nli0RGAITtJtm2i5PwBHFp0B40NWldvtO5+lKVEW+gVnz+AQ+s+ADi07kPxOZm5QevqLX/tAloXL2zcA9CbIpjO3ccjbB3I3fKbRX027v7oM+Kr77B6xN69e2nWvDlhYWHodDomTZrM8mWW87Hc3NzQ6eQXyL333svWLVvIy8sjJSWFuLg4WrRoAcBNAwdy/ET5EOmgQYM4efIkCQkJVts/ffo0YWFh5uPly5YxadJkbG1tCQsLo1nz5mZHtiLLly9j6rRpAEydNo1ly/4C5LC8VqsFICQkhJYtW3LhwgWznr+//yXHDYGMCydx8Q3C2csfjdaGsC43EXdop4VcQWYqAa3kDwV7Fw/c/BqRn5ZIcW4WBVmpuPrJHwEBrTqbFxdddAYBQsL7kJ143qLe3JR4nL38zcdxh3YS1uUmNDY6nL38cfENIuO85dB2/OEdNO0xBICmPYYQd2g7IIflhUbe306efrj6NSI/PbnafnD1CyY7wdK+ekd2LDh7yyFnoZWLc5KPWsoVZYOPvG+xcwZnX+lwVqafmwSrX4a1b8i/4hzY9JGMIFYkP03qXiT5qKxDo5Xlzt4yUnk5yUchxBSMCOkKyaYdSBw9zc9zHDxMdpqmwbQeDjp7OLLEsj5nH2mzSp2nLszZXA+8J4SYqijKXCGEFvgYmI0cNh+qKMpOANMCoXXA/1WsQFGUP4UQ04BpyIVCI4BVihzbaw4YkNFMqwghbgJ2KYpSKIRwAZoih/FvHBQjuZvn4jn6WdAIio5vQZ8pnQPHdjK1XuHRjeTv/Qv3QffhfdvbckuhHQtRivPRejXC/eYZcpsMoaH4zG5KLhwEwKXnRGw8AkAxYsjLIGfjbMvm9aUYclLRuvliyElFn5lA8Znd+NzxLhilbReH2dxumk7h0Y2UpZ4nP2oFHkMfxrFNXwx5GWSt/goA24AWOI0cKecMKQo5m+egFOejcfLApesY9JmJeE9+A4CCw/9QdHyzSa85eXusPLTqMQaDgccefYTVa/5Gq9Xy888/cfy4dBbvv/9+AL777jtat27N7DlzMRgMnDh+nHvvvcdcx+OPPcovv/6Gra0t58+dY/r0u83nJk2azIJKhtABCgsLiY6OpmnTpkRHR3P8+HH++GMhR48dR6/X8+gjD5tXos/6/nu++/ZboqKieP+995i/YCHTp99DbGwskybeCkDv3r159rnnKSsrw2g08sjDD5GRIaNmERER7N61yzyHs6GgGI3smf8lgx5/H6HRcnb7anKSLgDQoq+cWn56y3IOr/yFXnc9x6hXfgAEUUtmUVIgI1B75n9J73teRKu1IS89iR1zPgCg8/j78WzUFBSF/IwUdv36iUX7+tJi8tITcfEJJC8tkZykC8REbWLMaz9jNBjYPe8L80r0Hnc+xekty8mIOc3RNfPoO+MVmvUaRkFWKpu/ex0A32btaTf0NowGPYqisPv3z812dr5lBo0jB2Jja8f49xZwdtsqDq2QC8l8mrbj0PI516yfbxgUIxxeDD0fkE5azG7IMznjYaaFYRd2wKm/ofPtMOBZ+ew+trx8G6PK9GuCoVRGSp285WteMiQchIEvyAWlhxZjHnAMnyRtyY6D0/9A5F0Q2l3OGd0zW8p4NZGr0xWj6doWSTvt3aDlYLlKfsDTUvbcVrlVE4BnYzh56eiVSt1EXOlcqtpACNEIOazdChmNXQV8BWwAgpUKFyGE2A88CAwD8hVF+chUHgH8DrQ2vXYGCgE98JJpqPxiHReALoqipJuOnwHuNslqgJ8VRfm4Kps7hngpa54ZUZVIvcOuSQQ63zDydy2ulfZtvENx6jSUnHXfXfe2gx//pXqheszYsWPpHBHBKy+/fE3b+fSzz1i+bBkbNmy4pu1UR0PMjd4ovDdeoS04+NdPtdK+Z6NmtB50K9t/tlygeK1pkLnRA9qDeyM4sap22ncLktsvRVmOYF1rxLjPoxRF6VK9pEpNqQuRTRRFiaN8ZXhFLJa4KopycbLZ7svKo4CWpsPJVIGiKGGXHX8IfFhDcxssJeei0Ng7Vy94jdA4ONeao9vQWbp0KV5e137hxrGjR2vd0WyoxB3chp2Ta/WC1wg7ZzcOLqsdR7dBknRE7t1ZW9g6Vb+QSaXOUCecTZW6w8Xh7NqgNO5YrbWtgnmfzmvJDz/8cM3bUKmci/t01gZJJ6KqF1K5ulwczq4N0k7XXtsqV526sEBIRUVFRUVFRUWljqJGNq8RR+IyCXvi+s81UakdCr6/p3ohlXrD28ssd3pQqcdorG0sqqKiUlPUyKaKioqKioqKiso1Q3U2VVRUVFRUVFRUrhmqs6mioqKioqKionLNUJ1NFRUVFRUVFRWVa0aDWiAkhHgD2KIoyj9XqNcK+Bm5EfxLFzeKv9EYPGQIH3/yKVqtlp9++pGPPvjAQqZvv34s+nMJF87LlG9Lly7hnbfeqlL/19/nmVMZurm7k5OdTWSXCIu6/f39+ea7WYwbMxqAZ557jrvvno7BYODJJ2aybu1aCx0PDw9+mzef0NBQYmJiuH3yJLKzs6vUX75yFf7+/tjY2LB92zYee/QRjEYjDz70EAUFhcydM/u/dWQdQRPUFpvut4FGg+HUVgyHK9+TTniHYTvqRco2fofxgtxCRtt2INqWMuuq4dRWDMfkbSE8G6HrdYfMS2w0UrbjN5R0KykCHdzQ9Z5K2bovZX0dhqFt2QeMRvS75mFMsLIVla0TupvuRzh7oeRnULbhWygtrFJfN2QmwsENNBqMyWfQ7/wNFAVt6wGgL8VwZvu/7sO6RLNOPRhx39MIjZaodUvZuni2hUxYuwimvPgJWSkye9jxXRvZtOD7KvWH3PU4Lbv2xaAvIzM5niVfvEZxgWVOa2cPb8Y+/H/8+tZMAPqOv5vON49BMRpY+f1HnD1gmT7TwdmVic+8i4dvIFmpiSz44HmKC/Kq1J/66pe4eHij0Wq5cPwAK757H8VopNvwiZSWFHFg/fL/2JN1BJ9W0H6czAwUsxvOrq9c1r0R9JkJ++ZC0iFZ1rivzOSDgNidcG5LuXzjPtC4t8wGlHocjlvpUztX6DgR9pi2G2s2EEK7yUxwR/6EtFOWOjpH6DIVHDyhKBP2zYGyoqr1u8+QbQktZJ6T2YVQIKy3zGQUZ5nqVqXu0aAim4qivHKljqaJTOAx4IZ0MgE0Gg2ff/Elo0eOoGP7dkyaNJlWrVtbld2+bRuRXSKI7BJhdjSr0r/j9tvM8kuX/MnSpdbTQT7+xBP8ZNoHsVXr1kycOInwDu0ZNWI4X3z5FRqN5b/bM889x4YN62nbuhUbNqznmeeeq1b/9smT6BrRmU4dO+Dt48P4CTLN4eyff+bhRx75D71YhxACm55TKFv7GaWLX0bbJBLhHlC5bNfxlzh/wiMQbcu+lP71NqVLXkfTqAPC1RcAm8gJ6A8sp3TpG+j3/4UucoLVam3a3Yzh1FZZn3sA2iaRlC5+hbK/P8Om5xT5JXm5TsdhGBNPULroJYyJJ7DpOKxa/bIN31K69HVK/3wVYe+CprFM7GE4vR1t24H/rv/qGEKjYdT9zzP39cf48pEJdOgzBJ9Gja3Kxhw/wP+euJ3/PXG72dGsSv/swd189ehEvn58MhkJMfQdf7fVenuNmcK+tfLe92nUmPZ9BvPlI7cy57VHGXX/8+Zc5xXpM/4uzh3ey2cPjuPc4b30HX9XtfoLPnier2fexpePTsTJ1YN2vQYBsP+fZfQYWWU+jnqEgA7jYdcs2PA+BHUCZ7/KZVuPgtQKueld/KWjufVT2Pwh+LWVqScBvJqBfzvY9AFseh/ObrRebdN+EGvaZ9PZT9qw8X3Y9R10mCDbvZzmAyHtDGx4R742G1i9/r45sPkjaYutEwSGy/K43dCkT827TOWGpk47m0KIMCHECSHE90KIY0KItUIIByFEuBBilxDisBBiiRDCwyQ/WwgxwfT+PSHEcZPMxZSWPkKIxUKIvaa/XgCKoqQqirIXKKu1i62GrpGRREdHc/78ecrKyli4cAGjRo++6vrjJ9zKwvnzrdYxbtwt/P33GgBGjR7NwoULKC0t5cKFC0RHR9M1MtJCZ9So0fw6dy4Av86dy+jRY6rVz8uTkREbGxtsbW25mK20qKiImJgYunTtWuPrrqsIn8YouakoeelgNGA4twdNSLhVWW2bgRgv7Iei3HJ9twCMqedk5EAxYkw+jSbUlHxLUUDnIN/bOqAUZlutVxMWgTH+qHwfEo7h3B4w6lHy01FyUxE+ls6QJiQcw5kdABjO7EAT0ql6/bJik9Fa0NqYUzJjKEXJS0d4W3e66hPBzduSkRxHVkoCBr2eI1vX0jqy/1XRjz64C6NR5pqPO30UV2/rTk2bHjdxZr/87FpH9ufI1rUY9GVkpyaSkRxHcPO2Fjqtu/XjwIYVABzYsILW3ftXq19SJHN7a7Q2aG105vu7rLSYrNQkgqy0U+/wCJE5yQszQDFAwgHpIFqjSR8ZzSypEI129oOsGDCUyVzkGWchwJRyM6wXnFkPps+cUssoNgABHSH1hHzv307aYDRAYaa0zSPEUse/HcTtle/j9sqUl9Xp60vkq9CAxgbzDW4ok7LuVtpRqXPUaWfTRHPga0VR2gLZwHhgLvCcoigdgCPAqxUVhBCewDigrUnmLdOpz4FPFUXpaqrnitKVCCFmCCH2CSH2Xe+M84GBQcTFxZmPE+ITCAq0yOYJQLfu3dkbtZ9lK1bSuk2bGuv37tOH1JQUzp49a1FnWFgYWVlZlJaWAhAUGER8XLz5fHx8PIFW7PH18yM5ORmA5ORkfHx9a6S/YtVq4pOSycvL48/Fi8zlUVH76N27t9Xrrk8IRw+UgizzsVKYhXDysBR0dEcb2gnDyU2XFCtZiWj8m4OdE2ht0TZqb9bX71qALnICdpM+QBd5K2X7LFOACmdvOfxt1Mtjp8vsKchCOFraIxxcoShHHhTlIBxcaqSvGzITuymfQFkxxgv7zOXG9Bh5HfUcVy9fctJTzMc5GSm4ePlYlW3Usj0PfzaPO1/5At9GTa5Iv/PA0ZyJspyW4O4bSFF+Hga9/L3t4uVDTnqy+XxuegquXr4Wek5uXuRnpQOQn5WOk5tnjfSnvvYVz89dR2lRIcd2lA8fJ549TmibTlavu15h7w5F2eXHxTng4GZFzg3828OFHZeW5yWBVxM5rK3VgW8bWSeAs48812cm9HxYDsFfjqMnlBWWO6QOblBcwZ6i7PL6KmLnAiWmH7UluWDrXDP97vfDkDdBXwyJh8rLs+OkrSp1nvrgbJ5XFOWg6X0U0BRwVxTlYt7EOUDfy3RygWLgByHELUChqXwQ8JUQ4iCwDHAVQrjU1BBFUWYpitJFUZQu13sLYGFlyPJiRKAiB/bvp3mTxnSN6Mz/vv6KRYv/rLH+pEmTWbjAelTTPyCA9PT0K7anMqrTHzl8GKHBQdjZ2THgppvM5WmpaQQEBta4nXqFlf7VdZ9M2d7FFueUnCQMh9dgO/RJbIfOxJgRJyMggLZ1f8p2L6BkwbOU7V6Arvddlm05uqEU51Vn0L+8EEv9sr8/o2TeU6CxQRNQYXpIcS7C0f0/tlMXsPJEsfJ5J0Wf5OP7RvL1zNvYtXIBt7/4cY31+906HaPRwKHNlnN/XTy9Kcwt/zFwre/vua89wgd3DUGr09GkfflIRX52Fq6e1p3seo+17m03Fk6ssDyZnwpnN0CPB6Ujl5tovr8RGjlysfUzOVczYpplvXaul0U8rX2jXcn9XY3+ru9g7asysulT4cdjST7Yu15BOyo3KvXB2Syp8N4AuFenoCiKHogEFgNjgTWmUxqgh6Io4aa/IEVRqvtGvSFISIinUaPyX6hBwUEkJiVayOXl5VFQIIep1qxejY1Oh5eXV7X6Wq2WMePG8cfChVbbLyoqws7eznwcnxBPcKNg83FwcDBJVuxJTUnB398fkAuM0lJTa6xfUlLCiuXLGTWqfLjf3t6OoqIiqzbWJy6PZApHD6vD3cI7FNsBM7Cb+B6axhHoek5BExoOgOH0Nkr/epPSlR9ASQFKrox8aZv3kMPugPH8PjRWhsMxlCK0unJ7Ci6zx8m6PUpRbnmExsENpSiv5voGPYbYQ2b7pbE6ORWgnpObkYJbheFtNy8/8jLTLeRKigooLZb//2eitqPR2uDo4l6tfviAkbTo0odFH/+f1fb1JSXY6GzL7UlPxc3b33zs6u1HXmaahV5BTgbOHnKuoLOHNwU5mTXW15eVcnLPFlp162cus7G1pay02KqN9YribHBwLz+2d5PRzctxawQRU2HQyxDYUc7zvDjcHrsbtnwM27+C0gIoSCuvO+mwfJ8dCyhyrmRFDGWgKb+/LSKRDu7W7SnJk44qXOqw1kTfqIeUY5dOF9DqpC0qdZ764GxeTg6QJYS4OLP4TmBzRQEhhDPgpijKKmAmEG46tRZ4pIJcOHWEfXv30qxZM8LCwtDpdEycOIkVyy1XGPr5lX/hdOnaFY1GQ0ZGRrX6AwcN4tSpkyQkJFht/8zp04SGhpmPVyxfzsSJk7C1tSUsLIxmzZqxd4/lqsIVK5Zzx9SpANwxdSrLly+rUt/JycnsnGq1WoYOG8apU+UT45s3b8Gxo1ZWQdczlLQLCFc/OZyt0aJtEokx9pCFXOnCFyhZ+DwlC5/HeD6Ksh2/YYw5KE/am4L2Tp5owjpjiJafj1KYg8a/JQCagFYouamW7eekIJy9zMfG2ENom0SCxgbh7I1w9UNJs1zBbow9iLZ5TwC0zXtijD1Ytb6NXblzKjRoG7VHyU4y1ydc/TBmWf+frE8knDmOV0Aj3H0D0drY0L7PYE7u2Wwh5+xe/pkENW+L0GgozMuuUr9Zpx70GT+N395+olJHLj0xBnff8hGDk3s2077PYLQ2Otx9A/EKaET8Gcv77uSeLXS6aSQAnW4ayYndm6vUt7V3MDunGo2WFl16kR5/wVyfd2AIqbHRV9h7dZDsOHDykcPZQisX16RYea6tfwv+eVP+JR6Cw4shWc6jLh/CdpfzNRPkD0iSjoK3KXro5AMarXRGK1KQJtu+SMoxaYNGK8udfCAr1tKe5KPQyBSJbtS13JbK9LW25c6p0IBva8ir8Lxx8oHcZFTqPvV166NpwLdCCEfgHHD58koX4C8hhD0yvv+Eqfwx4GshxGFk32wBHhBC+AP7AFfAKISYCbRRFCWXGwSDwcDMxx9jxarVaLVaZs/+mRPHjwNw34z7Afh+1nfcMn48M+5/AL1eT1FxEXdOub1afYBbJ05i4fwFlbZfWFjI+XPRNG3alOjoaE4cP86iRX9w6MhR9Ho9jz/2KEajHMb55rtZfD/rO/ZHRfHh++/z+/z53H33dOLiYrlt0iSASvWdnJxYvGQpdnZ2aLVaNm3cyKzvvjPb0aNnT956842r27k3IooR/c7f0Q2dCUKD4fR2lGwZ+dW2kpEgw0lLZ6QitgMfBDtnMBrQ7/jNvAVR2bY56LrfJh/+hjLKts21VNaXYsxLQ7j4ouSlomQnYji/D9vxb8iti0zbEwHY9J6G4eQmlPQY9IdXo7vpAbQteqMUZFK2/lt5OZXp29hhe/MjMsIhBMbEk5dcl8avGfoD9X8rHKPRwIpZHzDtta/QaLTsX/8XqXHnAOg6dDwAe9cspm3PgUQOm4DRYKCstISFH71Qrf7I+5/DRqfjrtf/B0Dc6SMs/+bdS9ovKykmMzkeT/9gMpPjSY07x9Ht63jsq0UYjXrz9kQAYx55mb1rFpF49gRbFs9m0jPvETFoDNlpySz4QO42UZm+zs6BKS99go3OFo1Gw7nDe9m7pnzOcEjrcDbO//4a9vQNgmKEI4vlELjQyChlnsnpCpU/1ojZUbk+QNe7wdZRzrs8srh8C6LY3dBpMvR/Vp478LulrqFULuJx8pavecmQeBAGPG+yzbQ9EUDHSXLOaE6cXHjUZRqEdIOiLLnSHCrXt7GFyHvkwj80kH7m0uvybAyn//5XXahyYyGuZJ6NSs3RCKHotPUxcFw5o8eMpXNEZ1575ZVaab9jeDiPz3yC6XdZmYN0jcn5zvp2MfUZTWgnNN6h6KOW1kr7wqsRNu0GU7b5x+ve9tvLDlz3Nmub1t0HENi0Fet/+6ZW2g9o3JKeY6aw+LPr/3x5857Lp/03APzbg3swnKx8/95rimsQNO0PB3677k2LMZ9FKYrS5bo3XI+pr5FNlVpg2V9L8fLyql7wGuHt7c3rr9aOo9sQMcYcQNg511r7ws6l1hzdhsiJXRtxdLGyIvo64ejqzvrfa8fRbZAkH5GR0drCzglOrqq99lWuKmpk8xrRECObDZmGGNlsyDTEyGZDpkFGNhswamTz6qN6QyoqKioqKioqKtcMdRj9GtG5uR/7vppa22aoXCd6PWxlEY1KvSUmo07siKZylfi/MQ1gI3kVlWuIGtlUUVFRUVFRUVG5ZqjOpoqKioqKioqKyjVDdTZVVFRUVFRUVFSuGQ3K2RRCvCGEGPQv9KYIIQ6b/nYIITpeC/v+M14toNcz0PtZCOtftaxrMNz8Hvi1Ly8L6QU9n5R/Ib0tdUL7wuAPQFfJdhi2LtCpwqrsxgOkLb2ekbZZw8YBIu6FXs/KVxuH6vU73wM9Zko7W9+COe9uo54Q2HAWEHbrM4B5f29jwT87uWPGI1ZlOkX25O/9p5m97B9mL/uHux95slr9h597hd/XbGXO8g288/VPOLtYz03s5ePLB7N+MR/fef+jLPhnJ/P+3kZk7/5WdVzc3Pls9gLmr9vBZ7MX4OLqVq3+xz/+zuxl6/l11WaeeeN9NBr52Bp/x3SGj59cbT/VF/oPvJnNuw+wbd9hHn78KasyPXr14fiFRP7evJO/N+9k5jPPV6v/9Isvs27rbv7evJPfFi/Dz9/fWtX4+vkze94i8/HDM59m277DbN59gH43WX+surt78Pufy9m69xC//7kcNzf3avV//WMpa7fsYv2Ovbz78efmz/uue+9n4u13Vt9R9QQR1Bbd+LewnfAO2g7Dqpb1DsP2rllowiLMZdo2A9GNex3duNfRtrn089G0vgnd+LfkuS4TrFfq4IbNoEfL6+swDNsJ76Ab/xYiqK11HVsndEOeRDf+bXRDnrxk66TK9HWDZ6Ib+yq6ca9j0/MOEMJk4wA0zXtVed0qdYcG5WwqivKKoij//AvV80A/RVE6AG8Cs66uZVcDAa3Hwf4fYfvHEBAOTr6Vy7YYDumny4uc/SC4G+z6EnZ+Bj6twdG7/LydG3g1l1khKiOsL8Tvlu+dfMG/o7Rl/w/StotOYUUaD4CMs7D9A/nauH/1+od+lTbu+ETm9PXvIMsT9kqHuQGg0Wh46rV3eere25kyrC+DRo4jrJl1h/7Qvt3cNXoQd40exM9ffVKt/t7tm7lzRH+mjbqJuAvnuPOBx6zWO3n6Ayxb8CsAYc1aMHDEWO4Y3o8n77mdp19/z+wkVOTO+x9l346tTL65J/t2bOWO+x+tVv/lx2dw1+iB3DG8H+6eXgwYNgqAFYvmcevUe/5DL9YdNBoNb33wCXdOHMeAHhGMGX8rzVu2siq7Z+cOhvTrwZB+Pfjsw/eq1f/2y8+4uU83hvTrwfq/VzPzmRes1jvjoUf5fe7PADRv2Yoxt0zgpp5duOPWsbz94adWP++HZz7F9s2b6NO1I9s3b+LhmU9Vq//A9DsZ3Lc7A3t2xcvbm5FjbwFg/m9zmT7jwf/Qi3UIIdD1mELZ2s8o/fNlNE0iEe4BlcradBmPMaE8naVwD0TTsi9ly96mbOnraEI6IFzl94Hwb4k2NJyyJa9RtuRVDEetZ+jRtrsZ4+mtpvoC0DSJpPTPVyj7+zN0PaaYncJLdDoMw5h0grLFL2FMOmF2kqvSL9v4LWVLX6dsyatg74ImTAYMjKe3o20z8N/1n8oNR512NoUQYUKIE0KI74UQx4QQa4UQDkKIcCHELlMkcokQwsMkP1sIMcH0/j0hxHGTzEemMh8hxGIhxF7TXy8ARVF2KIpy0cvaBQTXxvVWiVsjKEyHokxQDJB8CHwr+fUZ0gtSjkBpfnmZky9kx4KxTKYTyzp3qX6rUXB6FeYUZdbwbQfpp0zv20obFIN0UAvTpY0WOm0hMUq+T4ySdVSnbyiRr0Ijc+1eNMlYJmVdrbRTz2jdoRPxMedJjItFX1bG+pVL6TNwyFXR37NtMwaDAYBjB6Pw9bf+JddvyAh2b90IQJ+BQ1i/cillpaUkxccSH3Oe1h0sV/D2GTiE1UsWArB6yUL6DhparX5hvvw/1drYYKOzNX/eJcVFJMXHWW2nvhEe0YUL588RG3OBsrIy/vpzEYOHjbwq+vl55SvrHRydqGzv5WGjxrBp/ToABg8byV9/LqK0tJS42BgunD9HeITlqMLgYSP4Y77MAPPH/N8YMnxktfoX7bGxsUGnszXbU1xURHxsDOGdIyzaqW8I78YouamQlw5GA8Zze9CEhFuV1bYeiCFmPxSXZ08W7gEoqedk2knFiDHpNJrQzib5/ugPrwajXgoXW99ZQRsWgTFe5jbXhIRjPLdH6uSno+SmIrwbW+hoQsMxnJHpJg1ndqAJ7VS9flmxyWgtaCpskGMoRclPt9qOSt2jTjubJpoDXyuK0hbIBsYDc4HnTJHII8CrFRWEEJ7AOKCtSeYt06nPgU8VRelqqucHK+3dA9RS/q4qsHeD4pzy4+IcsLMy/GnnKh26uF2XluengEdjOUSu0YF3K7B3l+d82sgHWX5S5e07eIC+SDqHF9spzr7UHnsr2UdsnaHU9LArzZORyprod74H+r8C+hJIOVxenhsvr6Oe4+MfQGpSovk4NTkJHz/rTmG78AhmL1vPRz/8TuNmLa9If8SE29i5eYNFeUBwCHk52ZSVlsr6/AJIubw+K06qh7cPGWmpAGSkpeLu5V0j/U9+mseKXUcpLMhn45ryXOgnjx6iY5duVq+7PhEQEEhSQrz5ODkxgYAA6593RNdI1m7ZxS8Ll9CiVesa6T/70qvsOXKKcbdO4qN337Kos1FIKDnZ2ZSaPu+AgAAr9QVa6Hn7+pKaInN6p6Yk4+XjUyP9Xxf9xcHTFyjIz2flX0vM5YcO7ieyR/0fvRBOHigF5aNISkEWwtHDUtDRHU1oJ4wnN11SrGQlIvybyyw8Wls0jdojnKS+cPVD49cc3agX0Q17BuEdZlmvszdKSaHZIRWOl9lTmGWu7xK77V2hyPQ9VJSDsHepkb5u8Exsb/8EyooxXthXLpceg8a/ufVOUqlT1Adn87yiKAdN76OApoC7oiibTWVzgMvTP+QCxcAPQohbgEJT+SDgKyHEQWAZ4CqEcLmoJIQYgHQ2n7NmiBBihhBinxBiX1pO0X++sGtCy9FwxkqEsiAVLmyCiPsg4h7IS5IRTo0OmtwE0WurrtfWFUoLKhRYGTK/omxV1ejv/xE2vyV/CXs2Ky8vzbfuZNczhJX+sRaROnX8MOP7d+Gu0QNZ/MuPvPvNzzXWn/rg4xj0etYuW2wh6+XjS3ZmRgWD/uPnXY3+k9NvY0zPjtja2hLRo3w+cVZGOt6+1ucY1ius9I+1z/vI4YN069iawX278/Osb/nxl/k10v/g7deJbN+SJX8s4O777reQ9fX3JzMj/YrtqZRq9O+YMIaI1k2xtbOlV9/+5vKM9DT8Kom0138s+9em22T0+xZb3GtKThKGw2vk/MkhM1Ey41CMRnlSowVbJ8qWv4N+7yJ0Ayw/b+HodmnE08rteWX3d9X6ZWs/o3T+U6C1QQS0LhcpygVH95q3o3LDUh+czZIK7w2Ae3UKiqLogUhgMTAWWGM6pQF6KIoSbvoLUhQlD0AI0QEZ6RyjKEqGlWpRFGWWoihdFEXp4uPmYE3k2nF55M/eDUpyLeXcgqHD7dDnebk4qPU48DENlyfshV2fw95voaxQDl07eoGDp1yQ0+d5OXez++MyIlkRY9mlQyAlOeWR0arsKc2XC4tAvl50WGuib9RD2nHwbVNeprGRttRzUpMT8a0QCfL1DyA9NdlCrjA/n6JC+Vtq5+b12NjocPPwrFZ/2LiJ9BpwM68/9bDV9ktKirG1szcfpyUn4ndZfWkplvZkpafh5SPnjnn5+JJtcmBqol9aWsK29WvpM3CouczOzp6Skhv0h91VJCkxgYCg8tk7/oFBJCdb9m9+Xh6FBfIe2vDP39jodHh4etVYf+miBQwbNdaivLioGDs7uwr2JFqpz3LkIz01FV8/+WPA18+fjLS0GuuXlJSwdvUqhgwbYS6zs7OnuKj+f95KwaWRP+HkgVKYbSGn8Q5F138Gtre+hyYsApseU8zD7cYz2yhb9iZlqz5AKSlAyU2RSgVZGGP2y3bSz0unz/6y57m+FLS6yu1xtG6PUpwLDqbvIQc3FJPDWiN9gx5j7CG0FacLaHXSFpU6T31wNi8nB8gSQvQxHd8JbK4oIIRwBtwURVkFzATCTafWAo9UkAs3vYYAfwJ3KopymhuR3Hi5oMfBQ8598e8Iqcct5ba+V/6XcgROLIE008Tyi0PY9u7g1w6SDkJ+Mmx6o1ynJEc6pBXnewIUpsm2L5J6XNogtLLc0Rty4iztSTsOgaY5WIERkHqsan2tbblzKjRyuL8grbw+Jx9pcz3n5JGDBIc1ISA4BBudjoEjxrJtvWX02dPbx/y+dYdOCI0gJyuzSv1ufQYwZcYjPPfANEqKrX+xx50/R0BQ+dzYbevXMnDEWHS2tgQEhxAc1oQThy3zh2/bsJZh4yYC0qHduv7vKvUdHB3NzqlWq6VHv4HEnDtrrq9RWBPOnT55pd1X5zi0P4rGTZrSKCQUnU7HmFsmsG7NSgs5H18/8/vwzhFoNBqyMjOq1G/cpKlZZ/CwEUSfOWVR77noMwSHhJqP161ZyZhbJmBra0ujkFAaN2nKwah9Fnrr1qzi1slTALh18hTWrl5Zpb6jk5PZOdVqtdx082DOnil/5DZp2oxTJ6081+oZSvoFhJsfOHuDRoumSSTG2EMWcqV/vEDpH89T+sfzGC9Eod/5G8bYg/KkaQgbJ080oZ3lnEnAEHMATYBcHCZc/eQP9OJLn+dKbgrC2ct8bIw9hKZJpJR19ka4+UlH9TKMsQfRNu8JgLZ5T4wxB6vWt7Erd06FBk1we4w55T86NG5+KFkJV9x/Kjce9TVd5TTgWyGEI3AOuPuy8y7AX0IIe2SA/wlT+WPA10KIw8i+2QI8ALwCeAH/E3L4R68oyo21x45ihJN/Qed7pROWsBcKTL9kg7vL1/hdlesDdJwq52wqBjixVM7BrCmGMijMAAcvKMqQbScfhl5Pm2xbinkYqM0EaUtuPJzfCB2mQFAkFGfJleZQub7WFjrdJR9aQkBm9KXX5R4G0etqbncdxWAw8OnrL/LJT/PQarWsWDSP82elkzD2Npkmdem8uQwYOopxt09Dr9dTWlLMqzMfqFb/yVffQWdry2ezFwBykdCHr1w6c6S4qJCE2AsEhYSREHuB82dPsWH1Mn5bvQWDXs8nr72A0TRs9/zbH7N03lxOHj3EL999yZufz2LkrbeTkpjA/z12H0Cl+vYOjrz/7Vx0trZotVqidm5j6bw5ZjvaR3Tlp68+voY9fWNgMBh4+dmn+G3RX2i0Whb8NpfTJ08AcMddckX+r7N/ZMTosdw5/V4MegPFxUU8dO+0avVfePUNmjRrgWI0Eh8XywtPWe4+UFRYSMz584Q1bsKF8+c4ffIEy5cuZsPOKAx6Pf/37JPmz/vDz7/ml59/4PDBA3z12cd8+9MvTL5jKgnx8Txw9x0Aleo7Ojrx028LsbOzQ6PVsGPLZn75uXzqfJduPfjkg3evXUffKChG9Dt/RzdkJkJoMJzZjpIt5zRrWvYDwHhqc1U1oLvpQbBzBsWAfudvUCpHOIxntmHT+250414Hg56yrT9ZKutLUfLSwMUX8lJRshMxnt+H7S1voChGWZ9pGNym1zQMJzehZMRgOLwa3YAH0DTvDQWZlG34Vl5OZfo2dugGPSIjmEKgJJ3EeLL8uoRvM4wHllvap1LnEFc0z0alxnRp4a80uNzovm3l/p1nrW+lcc1xCYTQPnB0wXVvuiHmRu978zBatuvA95++XyvtN2/Tjsl338+bzzxavfBVpiHmRh86YhTtO3biw3feqJX227bvyIyHHuXxB++97m1Hf3TbdW+zttGEdkJ4hWLYv7RW2heejdC2G4x+y4/XvW37e36MuuECSnWc+hrZVKkNUo+Bzqn22tc5wdlqFjKpXDW2rFuNm7uVFbLXCXcPT77/7INaa7+hsWblcjw8PWutfU8vr1pzdBsixpgDaOycqxe8Vti7oK8lR1fl6qM6mypXl4Q9tdd25pnaa7uBsvyP32ut7b3bt9Ra2w2Veb/MqV7oGrF1k+UWXCrXloubutcGSmL9n5vbkKiPC4RUVFRUVFRUVFRuENTI5rVCUaBEX9tWqFwntr8ytrZNULmOON93/eeRqdQeD87eVtsmqKjUadTIpoqKioqKioqKyjVDdTZVVFRUVFRUVFSuGaqzqaKioqKioqKics1Q52zWJ3xaQbuxclP32F1wtorVm26NoM/jEDUXkg7LssZ9IKS73Cw9ZhecN632dQ2E9hNktofCTDjwK+hLLOu0c4GOE2GPaT5bs4EQ0k1uyn50CaRZZiZB5wgRd8qUmEWZ0p6yoqr1u82Q+c81Gsg4B0cWAwqE9QZDCcTt/Te9V/cIbANdJsrP++x2OFbF/qZeoTD0Odj6A8TKVHW0ugma9wIEnNkGJ03/Lx5B0G2K/LwLMmDbT1BWbFmngyt0vwM2/k8etxsCTXvJz2vvQkiysprU1hH63gdOXrLuLd+bN5uuVP+mR2WWEY0GUs/CnnlyTnTL/vL/MHrnv+m9OsegmwfzwcefoNVqmfPzT3zy0YcWMn369mX+H38Sc+ECAMv+WsJ777xdI/3HZj7BO+99QGiQPxkZlhl5/fz9+ep/33LrLWMBeOqZZ5l6190YDAaeefIJ1v9jmUzBw8ODOb/+TkhoKLExMUydchvZ2dlV6i9ZtgJ//wBsbLTs2L6dJx5/FKPRyP0PPERBYQG/zq29FfHXk3aRvbn9sZcQGg1bVy5i1W/fW8i0DI/k0Xe+Jj0pHoCoLetYPud/Verf+uAzhPccgF5fRlpCLD++9yJF+Zb7xrp5+XDXM2/y+fMyEcTwKTPoM2I8itHIb5+/zbG9lvNYnVzceOC1T/AOCCI9KYFvXn2CwvzcKvWf+PB73L180Gi1nD4cxa+fvoFiNHLTLVMoLSpi2+o/r0JvqtQ2DSqyKYR4Qwgx6F/ojRFCHBZCHBRC7BNC9L4W9v03BLS/BXbPgo3vQ2BncParXLbNSEit4Py5+EtHc9tnsPkj8GsDTt7yXMeJcHIlbP4Qko9A0wHWq23SXzqpINsO7ASb3odds6D9eNnu5TS7CdLPwMZ35WuzgdXrR82BLR/Bpg9khozAjrI8brd0mBsCQkDkbbDhK1j+OoR1BbeAymU7j7vU+XMPlI7mqvdgxVsQ3F5mCwHofifsXwIr3oTYg9DmZuv1th4EZ7bL924BENoVlr8BG76EbrfJdi+n3VBIOgl/vSJf2w6pXn/r97DyLXnOzhlCTelNz26HVpX8L9YzNBoNn3z+BbeMGUWX8A7cOnEyrVq1tiq7Y/s2enbrQs9uXcyOZnX6QcHB3DRwELGxMZXa8OhjM5n9k/wh2apVaybcOomunToybvRIPv3iSzQay6+TJ59+lk0bNxDerg2bNm7gyaefrVZ/6pTb6BEZQdfO4Xh7e3PL+AkAzJ3zMw8+9IhFG/URodFwxxOv8Okz9/F/U0fSbeAIAkObWpU9cziK1+4Zx2v3jDM7mlXpH9+3g5fvGsWrd48hOf4CI+6YYbXewRPvYvOKhQAEhjal28DhvDxtJJ88cy93PvkKwsrnPXzKfZzYv4sXbh/Kif27GH7HfdXqf/PqTF6dPpaXp43Cxd2Trv2HArBt5WIGjr/jP/Siyo1Eg3I2FUV5RVGUf/6F6nqgo6Io4cB04IeqxWsBjxAoSJeRR8UAiQfAv5112cZ9ZDSztMKvWWc/yIqRaScVI2REg397ec7JVx4DpJ2GgA7W6w3oAGmmPNX+7aQNRoOMWBakSxsvx79deSQybm+5zVXpX4yqCo3MnX4RQxkUZoG7lXbqG15hkJcK+emyj2L2QqNKPpeWAyDmABRX+Lxd/SHtfPnnnXIGGoWbzvlBqmnP0qQTENLZer0hnSDRlMu+UQdpg1EP+RnSNq8wS53gDnDOFIk8txMadaxe/2JUVWhAa2NOk4ehDPIzrbdTz+jSNZJz0dFcOH+esrIyFv2xgBGjRl01/fc/+Ij/e/EFqsooN2bcONatldHzEaNGseiPBZSWlhJz4QLnoqPp0jXSQmfEqFH89usvAPz26y+MHD26Wv28PPl/amNjg87W1mxTUVERsTEXiOjStcbXXVdp0roDqQmxpCXFY9CXsXv9KsJ7D7wq+sf2bsdoMABw7tghPHz8rdbRpd9gju6W+2yG9x7I7vWr0JeVkZ6UQGpCLE1aWz5vOvUeyPY1SwHYvmYpnXsPqla/uLAAAK3WBhsbHYoprXFpSTEZyQk0bt2+xtetcuNSp51NIUSYEOKEEOJ7IcQxIcRaIYSDECJcCLHLFI1cIoTwMMnPFkJMML1/Twhx3CTzkanMRwixWAix1/TXC0BRlHyl/CnshDnJ9w2EvRsUZZcfF2fLMmtyAe3hwo5Ly/OSwKuJHNbW6sC3NTi4l5/zayvfB3YsL6+IgyeUFUrHx6o9OdbtsXOBEpMTVJIHts410+82Awa/IR3PxEPl5Tlx4NnYsp36hqMHFGSVHxdkg4OVbD4O7hASDmcu2wA9OxH8moOtk/y8g9qBk0f5uWCTExjauby8Is5ecvjbaNrey+EyewqzpY0W9rhCkRxWoygX7F1qpj/wUbj1Q+l4XpwGAJARA77NLNupZwQGBhIfH28+TkhIIDAwyKpsZLfu7NwTxZ9/Lad16zbV6g8fMZLExESOHjlcafuhYWFkZ2VTWlpqqi/ISn2BFnq+vn6kJCcDkJKcjI+Pb430ly5fyfm4RPLz81jy52Jz+f79UfTs1atSO+sL7t5+ZKYmmY+z0pLx8LE+UtW0bTiv/7SUJz6YRWBYsyvS7z18PEd2WSZH8A4IoiAvF31ZGQAePpb1uXtb1ufq4UVORhoAORlpuHh41kj/yY9+4LNl2ykuLGDfpvLpQBdOHaVFBzVrZH2gTjubJpoDXyuK0hbIBsYDc4HnFEXpABwBXq2oIITwBMYBbU0yb5lOfQ58qihKV1M9P1TQGSeEOAmsREY3LRBCzDANs+9Lyym6ipdYE6wMWVrziduOgeMrLM/lp8LZjdDjAenI5SbKiBfAoQXQuDf0eULO47voUFbE3hVKC/7rRdSc3bNg3Wsy0uXdvLy8JN+6U9sgsPJ5d71VDolfHrHKTZZzPAc9DgMfg6z48s9751xo2Q+GvwA6+3KHsiIOblCcX35s7d/vSn6TVae//ktY9BxobMC/VXl5cR441v/PW1iZkmAtCnnwwAHatGhKj8gIvv3f18z7Y1GV+g4ODjzz3Au89cZrVbbv7x9AenraFdtTGdXpjx01gmZhjbCztaPfgPKpEmlpaQQEWDq19Q1rM1Cs9W/M6WM8M/EmXp0+ln/+/JVH3/mqxvoj77wfo0HPrnXLLWTdvHzJy86s0p4rub+r0//k6Xt5YlwfbGxtad25u7k8NysTd2/fGrejcuNSHxYInVcU5aDpfRTQFHBXFGWzqWwO8MdlOrlAMfCDEGIlsMJUPghoU+FB6CqEcFEUJU9RlCXAEiFEX+BNk+wlKIoyC5gF0KW53/WNfhZnXxpxtHeH4lxLOfdGckEOyKiWb2vpZCQflXMe43bLc62Gl0cW81Nh13fyvZMP+LaxrNdQJh0Bsz05l9njJssupySvPLpp5wKl+TXXN+ql3f7tIP20LNPYSFvqO4VZl0YcndwvjQRfxCsU+twr39s5QVBbOc0i7hCc3SH/AMLHyGgiQG4KrP9CvnfxhSArw1j6MhkRrcweR/fy+ipSlFse3XRwLR/ar4m+UQ/xh2XUNemELNM2jM87ISGB4OBg83FQUBBJSYkWcheHoAHW/r2GT7/4Ei8vr0r1mzRpSlhYGDv3RpnKg9m2aw/9evckNSXFLF9UVIS9vX0Fe+Kt1FceubpIamoKfv7+pCQn4+fvT1paao31S0pKWLlyBSNHjmbj+vUA2NvZU1x8vX/IX3+y0lLw9C2fg+3h4092eqqF3MUhaIAju7agfeJVnN3cq9XvOXQsHXoM4KMn7rLafllJMTpbO/NxZmrN7MnNysDNy4ecjDTcvHzIy8qssb6+tJSD2zfQqfdAju+TzyWdrR2lJVYWJ6rUOepDZLPismgD4F6dgqIoeiASWAyMBdaYTmmAHoqihJv+ghRFybtMdwvQVAjhfRVsv3pkx0lH0MFTzmMM7CQdsctZ/zasf0v+JR2SK7kvyl0cwnZwl0PtiQcuLUdA80EQs+PyWqEgDRw9y4+Tj0obNFppk5MPZMVa6iUfg0amOViNupbbUpm+1lY6pSDn8Pm2ls7wRZx95LB/fScjRjqCzl6yj0K7QpyVYdAl/wdLXpJ/sQdg93zpaEL5ELajh5x/eWHvpeUIaD8cTlvJQZ6XItu+SNxhaYPGRpa7+ELGBUu9+MPQpId836SHPK5K38ZOOqUgP++gdjIqexFXPznsX8+J2reXps2aERoWhk6nY8Ktk1i1YoWFnK9f+dBkRJeuaDQaMjIyKtU/duwojUOCaNuyOW1bNichIZ7e3SMvcTQBzp45TUhoqPl41YoVTLh1Era2toSGhdG0WTP27d1jYc+qFSuYcof8cTvljjtZuXx5lfpOTk74+cs5hFqtliFDhnL6VPlCxmbNm3P82LH/0JN1g/Mnj+AXHIp3QBBaGx3dBg7n4HbL3UVcPcu/hhq3bo/QCPJzsqvUbxfZm+G338uXLzxYqSOXHHcBb//yaRoHt2+g28Dh2Oh0eAcE4RccyrkTls+bA9s30GvoWAB6DR3LgW3rq9S3c3DEzcsHAI1WS4fufUmKPWeuz69RGAnnzlxh76nciNSHyObl5ABZQog+iqJsBe4ENlcUEEI4A46KoqwSQuwCzppOrQUeAT40yYUrinJQCNEMiFYURRFCdAZsAcu9QWoTxQhH/4TuM+SXctweyDd9YYSavtxjqtkipstdcmsaoxGO/Fm+BVFQJwgzzZNKOiLrvhxDqVzE4+gNhemy7aSD0P85k22m7YkAOkyUDmtOPJxdDxFToVE3KMqSWx9B5fpaW4i8RzolQiNXsFd0fj0bw+m1V9x9dQ7FCHsWyCFwoZERyhyTk93ctCL/zNaq6+g7Q67uNhrkdkIXtyAK6yqH0UE6qNFWflzoSyEvDVx85GtOEsREwehXTfXNLx+6736HdFgzY+Ho33Lro2a9oCATtsySMpXp29hC/4dkBFNoIPnUpc6vT1M4bOl01TcMBgNPzXycpctXotVq+WXObE6ckLsL3HOvXE384w+zGDduPPfOmIFeb6CoqIi77ryjWv2aUFhYyPlz52jSpCnnzkVz4sRx/lz8B/sOHkav1/Pk449hNMppGF998x0/fj+LA/uj+OSjD5j72zym3nU38XFx3Hn7ZIBK9Z2cnFi4aAl2dnZotRo2b9rED99/Z7aje4+evPv2m1elT29kjAYDv372Jk9+9CMajYZtqxaTeEF+TfUfPQmATcsW0KX/EAaMmYzRYKC0pJhvX3+qWv0pM19GZ2vLU5/8BED08UP88vFrl7RfWlxEamIsvkEhpCbEknjhLHs3ruatuStl3abtiQDuevZNNv21gAunjrLqt+958PVP6TNiPBkpSXzzykyASvXt7B147J3/YWNri0aj4cT+3Wz6a77ZjubtO7Fs9lfXrJ9Vrh/iSubZ3GgIIcKAFYqitDMdPw04A0uBbwFH4Bxwt6IoWUKI2cgh8+3AX4A9crbYR4qizDFFK78GWiMd8S2KojwghHgOmAqUAUXAM4qiVJkst0tzP2XfJ1Ou7gXf6Pi3B7dgOLW6dtp3DYKm/eDA79e/7ezC699mbdMoHLxC4OCy2mnfoxG0GQjbZ1/3phtibvRRo8fQqXNn3njt1eqFrwEdOobz6OMzuW/6Xde97YmR1rcdqs907jOI0JZtWfLD57XSfkjz1gyeeBc/vP3cdW/7562nohRFUVcmXUXqdGRTUZQLQLsKxx9VON3divxdFQ4t9ulQFCUdmGSl/H3g/f9gasMg+YiMjNYWtk5wspYc3YZI3EE5D7S2sHeGg5aLG1SuDcuX/YWnl1f1gtcIL28v3ny9dhzdhsj+rf/g5Opea+07u3mw5Mcvaq19latLnY5s3sg0yMhmQ6YhRjYbMA0xstmQaYiRzYaMGtm8+tSHBUIqKioqKioqKio3KHV6GP1G5kRsJhGP/VLbZqhcJ6J+uq+2TVC5jgS61+J0EZXrzpvj63/WIpVyft56qnohlStCjWyqqKioqKioqKhcM1RnU0VFRUVFRUVF5ZqhOpsqKioqKioqKirXDNXZVFFRUVFRUVFRuWY0KGdTCPGGEMIip/kV6HcVQhiEEBOupl1Xix59b2Lx+p0s3biHux54zKpMRLeebD4Uze8rN/L7yo3c9+hTNda/876HiDqfhruHp8U5AG8fPz774Tfz8d0PPs7SjXtYvH4nPfoOsKrj6ubO17/8wZINu/n6lz9wcXWrVv/L2QuYt2ojC//eygtvfYhGI/+NJ069h1ETbquih+oZns2h2xPQ7SkI6Vu1rEsQ9H8LfNqVlwX3hK6PQ+Tj8n1FgnrIuiMfh6ZDrddp6wLtp5Yfh/STtnR7QtpmDRsH6Hg3dHtSvtrYV6/f4S7o+qi0pcUYZB4GIKg7+Heu+rrrEX0GDGTNtn2s23mAGY88YVUmsmdvok7H8tc/W/nrn608/OSzNdaf/uCjnE7OwcPT+v3t4+vHd78sMB/f/+iTrNt5gDXb9tG7/0CrOm7uHvy8YClrd+zn5wVLcXVzr1b/h98Xs2z9NlZu3sXr739qvr/vmH4ft0xuONvJ2YW2x3fqB/hN+wjnLiOrlNX5NSbw0TnYNytfyOQUPhjfKe/ie8e7OIUPMZfbeIfgM/EVfKe8g+eoJxG29taqROPohtfoJ83Hzl1G4TftI3ynfoBdSHurOsLOCa9xz+E37UO8xj2HsHOsVt9rzDP43v42vne8i/tNd4GQ97dTh0E4tulT5XWr1B0alLOpKMoriqL88290hRBa5Mbuf19dq64OGo2G5994j8fumsyEwb0YMnocjZu1sCp7YO8ubh8xgNtHDOD7Lz+ukb5fQCDdevcnKSGuUhum3PsASxbIFfiNm7Vg8Kix3DqkN49Om8Tzb7xv/tKoyF0PPsbe7VsZd1M39m7fyl0PPlat/vOP3MNtwwcwcUgfPDy9GTR8NADLFv7O5LsayqpwAS1Gw6HZsOcz8OsIjr6VyzYdCpkVcgw7+UFAV4j6H+z9ErxagYNpw273JuDdGvZ8AXs+h9hK0l426gVJpnzqjr7g10Hacmi2tO2iU1iR0H6QFQ27P5GvIf2q1z82T9q453PQOYGv6YsqKcrSSa6naDQaXn33Y+67fQLD+0Yyctx4mrZoaVV23+6djBnUhzGD+vD1Jx/USN8/MIhefQeQEB9bqQ13P/AIC3+dA0DTFi0ZMfYWhvfrxr23j+e19z62en/PePQJdm7dzOCendm5dTMzHn2iWv3HZ9zF6IG9GdGvO55e3gwbNQ6ARfN+Zeo9D/yL3quDCIF7/2lkLP2QlF+ew7FFD2w8AyuVdes1mZLYI+YiG69gnNoOIG3Bq6T+9hL2jcPRuvsB4DHoHnK2LyT1txcpjt6Hc+cRVqt17jyMgqObZH2egTi26E7Kr8+TsfRD3AdMMzuFFXHpMoqSuGOkzHmGkrhjuHQZVa1+5uovSf39JVJ/fQGNgysOzbsBUHh8C04dB/+r7lO58ajTzqYQIkwIcUII8b0Q4pgQYq0QwkEIES6E2CWEOCyEWCKE8DDJz74YlRRCvCeEOG6S+chU5iOEWCyE2Gv661WhuUeBxUDqdb/QGtC2Y2fiYi6QEBeDvqyMtcuX0v/mYVdN/8mX3+Lz916nqiQANw0dyY7NGwDof/Mw1i5fSllpKYnxscTFXKBtR8soVL+bh7FisYyWrFi8gP6Dh1erX5CfD4CNjQ06W505BXdxcRFJ8bG07dipxtddZ3ENhqIMKM4CxQAph6WDaI3gHpB2DErzy8scfSA3FoxlMs969nnwaSPPBXWD2M2yXoCyAuv1+rSDjNPyvXdraYNikDYVZUgbL8e7NSQfkO+TD5S3WZW+oUS+Cg1otIDpAzeWSVkXK+3UMzp0iiDm/DniYi9QVlbGyqV/MmiIdSfh3+i/+Ma7fPjmK1Xe30NGjGbLRvlbfdCQEaxc+idlpaXEx8YQc/4cHTpFWOgMHDKcJQtl+tglC39n0NAR1eoX5OcBFe5v0+ddXFREQlwMHTrV/2i2rV9T9DkpGHLTwGig8PQu7JtY9i+AU8fBFJ3di6Ew11xm4xFIafJZFH0pKEZKE07i0FTuUW7jHkBpwkkASmKP4tDM+rZODs26UhxzGAD7JhEUnt4FBj2G3DT0OSnY+lludG/ftDOFx+WP08LjW7FvGlGtvlJaLJU1WtDYcPGBruhLMeSmo/NrckV9p3JjUqedTRPNga8VRWkLZAPjgbnAc4qidACOAJfkOBNCeALjgLYmmbdMpz4HPlUUpaupnh9M8kEm+W+rMkQIMUMIsU8IsU9vMF6ly6sZvv4BpCQlmI9TkhPx8Q+wKtu+cxfmrdrIFz/Pp0nzltXq9x00hLTkJM6cOFZp+4HBIeTl5FBWWgqAj38AyRXrS0rE14o9Xt4+pKelAJCeloKnl3eN9L+as5B1+05QmJ/P+tXlubmPHzlEp64WmUrrH3ZuUJxTflySA3aulnK2ruDTFhJ2X1pekALujeWwtkYHXi3Bzl2ec/ACtzCIeBA63SeH4C/H3gP0ReUOqZ2rtOEixbnSxsvROUOpdCYozZPHNdHveBf0egkMpZB6tLw8LwHcwyzbqWf4BQSSnFh+PyQnJeAXYP3+Do+IZNn6bfzw+yKatWxVrf5Ng4eRkpTIyeNHrdYHEBwSSk52tvn+9gsIICkxvkJ9ifgFWEbevH18SEuV93daagpe3j410v9x3p/sPBpNQX4+a5YvNZcfOXSQLt3qfzRb4+yBIS/TfGzIz0Tr7GEp5+SBQ9MuFBxZf0m5PiMeu6CWaOydETa22Id1ROssp0eUZcRj30Q67A7NI9G6WE6b0Lr6YCwuAINeHjt7YMjLqGBPFhor9mgdXTEWyvvYWJiD1sG1RvpeY58h4L6vUcqKKDq7x1xemnoeu0DrEXyVukV9cDbPK4py0PQ+CmgKuCuKstlUNge4fEJbLlAM/CCEuAW4mGtwEPCVEOIgsAxwFUK4AJ8hnVdDVYYoijJLUZQuiqJ0sdFe364VVoY0rEUpTh47zMjenblt+AAWzPmBj7+bW6W+vb0D9zz8BN9++l6V7Xv7+pGVWf4wqak9lVGd/iPTJjIksh06Wzu69iyf15OVkYaPn3+N26n3NB8B0WswRwMvUpgmo5fh06Ujl59U7jgKLegcIOobOLsa2lqZB2vrAqUVI55Whswvb7NKqtE/NBt2vCtt86gQUSnNl7bUc2p6Px07fIgBXdoxemBvfvnxO/738+9V6ts7OPDgzKf5/IN3qmzfx9ePzIz0K7anMqrTv+e2W+jVsQW2tnZ0793PXJ6Znoavf0O4v63cD1b6173fHeRsn29xTp+VSF7USrzGPYfX2GcoS4+VIxhA9j/f49RhED6T30DYOpgdyopondwxFuVVbc9VvL8zln5I0g+PIrQ67Bq1NZcbC3PROLtfQTsqNyr1wdksqfDeALhXp6Aoih6IRA6LjwXWmE5pgB6KooSb/oIURckDugDzhRAXgAnA/4QQY6/WBVwNUpIS8Qsoj0D5+QeSnpJsIVeQn09RoXQStm/6BxudDe4enpXqB4eGERgcwrxVm1i+NQpf/0B+W74eL+9L5weWFBdja2dnPk5NSsS/Yn0BgaRZsScjPQ1vHzmXyNun/AutJvqlpSVs+WcN/SoM99va2VNcXFxFT9UTSnLAvkLkz84NSnIt5VyCoM1k6P6MHPZuMbp8uD0pCvZ9DQe+l1HKwozyutNMUey8eECRcyUrYiyTQ14V7akYibR3tW5PWQXn0NZFHtdU36iHjBOXThfQ6GR5PSc5MQH/wPL7wT8giNRka/d3HoWm+3vz+nXY6Gzw8PSsVD8ktDHBIaEs27CNDXsP4x8QxJK1W/D2ufT+Li4uxs6+/P5OTkwkIDC4Qn2BpCYnWdiTnpaGj6+8v318/chIT6uxfmlJCRvWrmLQ0OHmMjt7O4qL6v/9bczPvCTiqHX2xFCQbSGn822M57CH8bv7ExyadcV9wF3m4fbCY5tJm/cy6YvexlhcgD5b/r/os5LIWPoBafNfoejUTvQ5ljPDFH0pwkZnPjbkZ6J18apgjwfGfEt7DIW5aBzlfaxxdMNQlFtzfUMZxef2m6OuAMJGh6Ivq6SXVOoS9cHZvJwcIEsIcTHcdSewuaKAEMIZcFMUZRUwEwg3nVoLPFJBLhxAUZTGiqKEKYoSBiwCHlIUZek1u4J/wfHDB2gU1pjA4BBsdDoGjxrL5n/WWMhVdBLbduyERmjIzsqsVP/sqRPc3LUNo/pEMKpPBKnJiUwZNZCM9EsfUDHnowkMbmQ+3vzPGgaPGovO1pbA4BAahTXm2KH9FvZs+WcNI8dPAmDk+ElsXre6Sn0HRyezc6rVauk1YBAXossXvoQ0bkr0qRP/oSfrCHkJ4OAth7OFVi6uSbdy3bs+gl0fyr+0o3B6WbncRQfSzg2820LqIXmcfrw8eujgJeu/fN5mYbps+yLpJ6QNQivLHbwhNx4L0k+Av2lOrX+nclsq09faljunQgOeLWVU9iKO3nJKQD3nyMH9hDVpSnBIKDqdjhFjb2H92lUWchWdxA6dOqMRGrIyMyvVP33yOD3aNeOmrh24qWsHkpMSGDe4L+lpl97fF86dJahRiPl4/dpVjBh7CzpbW4JDQglr0pTDB6Is7NmwdjXjJt4OwLiJt7P+71VV6js6OpmdU61WS7+Bgzl39rS5vrAmzThzsv7f36Up57Bx90fr6gMaLY4tulN8zvL5mTL7SVJ+ln9FZ/eSvXE2xefk56C5OITt4oV90y4Untp5STkIXCLHUHBkg0W9+qxktK7e5uPic/txbNEdtDZoXX2wcfenNCXaQq/43H7zCnLHNn0ojt5fpb7Q2ZmdU4QGu7CO6DMTzfXZuPujz7DyHFGpc9TX3OjTgG+FEI7AOeDuy867AH8JIeyR8f2L+4A8BnwthDiM7JstQJ1Y/mgwGPjg1Rf4au5CtBoNf/0xj3NnZH7X8bdPA2Dx73MYOHwUE6bchcGgp6S4mBcem1Gtfk0oLiokPuYCwaGNiY85z7kzp1i3chmL1m5DbzDw/ivPYzTKYZyX3/uURb/N5sSRQ8z+5gve++oHxkycQnJiPM89fA9ApfoOjo588v0v2NrZotFo2btzG4t/m222Izwiku8///BqdOmNjWKUjmPHu+WqzqQoKDQ5CIGR8jVxT+X6AO2mgM5RDp+fWQZ6U8QoKQpa3SK3RVL0cGKRpa6xDIozwcETijJl26lHoNvMctsuDpO1HCdtyUuAmM3Q7nYI6CKjmUflMG+l+hpbaH+nXDwgNJB17tLrcguBC5fOV6uPGAwG3njxaX6c9ydarZZF837l7Cm5yGPy1OkAzJ/7E0NHjeG2afdg0OspLi7miQemV6tfE4oKC4m7cIGQsCbEXjjH2VMnWbVsKau37EGv1/P6C0+Z7++3P/6SeXN/4uihA8z68hM+nzWHCbffSVJCPI/dJ59Flek7ODry7dz56Gxt0Wq17Nq2hXlzfjLb0blrd776uOopPfUCxUj2prl4j30GhIaC41vQZ8o5t47tbwKg0IqTWBHPEY+hsXcGo4GcTXNQSuRsMYeW3XHuIHcALIreR+HxLZbN60vQ56SidfPFkJOKPjOBwjO78bvjPRTFSPbGOeahe/eB91BwZANlqefJ37cCj+GP4NS2H/q8DDJXfglQqb7Q2eE1+kmE1gaEhpK445c4v7aBLcjbveQ/dqbKjYC4knk2KjXHyU6ntAp0r20zrisDBg+nVfuOfPPxu7XSfss27Zly7wO88uTD173tqJ8aypZLFfBuI4fpz6+rnfadA6BRbzjxx3VvusVtX1/3Nmubm4eNpG2HcD57/63qha8Brdt1YPr9D/PMo/df97Y3vjD6urdZ29g3jUDn25i8nVZ+bF4HdD6hOHcaStba765728Ezf41SFKXLdW+4HlNfI5sqtcDGtatwq2TD9+uBu6cn3zSEqMeNQvpxGRmtLXROtefoNkDWrV5RaUKH64GHpxefffB2rbXf0CiOjpKR0VpC4+BC7s7Ftda+ytVFjWxeIxpiZLMh0yAjmw2YhhjZbMg0xMhmQ0aNbF591MjmNaJEb+B8qpXVuCr1kvmLqpkfqVKvmNBV3Wi6IRHUKbS2TVBRqdPUx9XoKioqKioqKioqNwiqs6mioqKioqKionLNUJ1NFRUVFRUVFRWVa4bqbKqoqKioqKioqFwzGtQCISHEG8AWRVH+uUK9/sBfwHlT0Z+Korxxda377wy8eTDvfPAxWq2WX+b8xOcff2Qh06tPX35bsIiYmAsArPhrKR++9061+vc98BD33v8gBr2etX+v5rX/e9Gibj9/fz776htumzAOgJlPP8MdU+/GYDDwwjNPsuEfy21q3D08+GnubzQKCSUuNoa777ydnOzsKvX/WLocP39/bLQ27NyxnWeeeAyj0ci99z9IYWEBv/8y9z/1Y13Bv01XOk94CKHRcG77ak6sm1+prGdISwY98wU7fnqL+ANbAWjRfxxNeg1HCEH09lWc3vgnAO7BTekyeSZanQ7FYGDfgi/IjLHc4N/e1ZOutz/J1m//D4DWg2+jSc+hKEYj+//4muQT+yx0bB1d6Dn9/3Dy8qMgI4XtP75JWVF+lfr9Hn4Xe1dPNFotaWePELXgSxTFSPN+Y9CXFHN+19//rSPrOM0792Tkfc+g0WjYu24pWxb9bCHTuF0Ed/7fp2SmyOwsx3duYMP8WVbru+et7/j17ScpKSqoUd0AI2c8S8uIXpSWFLP481dJjD5ZpW2DpjxE6279UBSFgpxMFn32KnmZafiFNqP3uDtZ/NmrV6Nr6g8ezaHpcJnYIDkK4iw3YjfjHASd7ocTCyDdlHY2sIdMpACQvA8SdlrXDeoBZUWQehBsHKD1JLB3h+JsODG/PPFDTWyrTN8lCJqPLdeP2SDT0AK0vxtOzLPejkqdpkFFNhVFeeVKHc0KbK2QM/2GczQ1Gg0ffPI5E8eNpkdER8bfOomWrVpZld25Yzv9ekTSr0ek2dGsSr93334MGzmKPt0i6Nm1E199/qnVeh969HHm/iyzfbRs1YpbJkykZ5dwbh07ig8//QKNxvLfbeZTz7B50wa6dmzL5k0bmPnUM9XqT7/zdvp270rPrp3w9vZm7C3jAfht7mxmPHj9N3SvDYTQ0GXio2z++kVWv3kPIV0G4OofUqlsx7H3XuL8uQWE0aTXcNZ98Ahr3plBYLvuOPvI3NnhY+/j2Kq5/P3uAxxZOYfwsTOs1tty4ATO7ZDpB139QwiJ6M/qt+5l89cv0GXSYwhh+Xm3HjyZlFMHWPn6XaScOkCbwZOr1d/+45v8/e79rH7rXuyc3WnUuS8A53asoUX/cf+yB+sHQqNh9APPM/u1R/js4fF07DsU30bWV8pfOH6Arx6fzFePT67U0WzZpTdJF05TUlRQ47pbRPTGKzCEj+8fw9Kv32LMgy9Wa9vWP+fw5WOT+OrxyZzcu5WbJsv/sZSYs7h5+eHm4381uqeeIKDZKDg6F/Z9AT7twdGnctkmQyCrPIUvjr7S0TzwLUR9DZ6twN7Liq4G/CIg9bA8bNQXss/B3s/ka6O+V2ZbZfoFqbD/G9j/NRydA83HYHZFUg9CQLcr7B+VukCddjaFEGFCiBNCiO+FEMeEEGuFEA5CiHAhxC4hxGEhxBIhhIdJfrYQYoLp/XtCiOMmmY9MZT5CiMVCiL2mv161eX1XQkSXrpw/F03MhfOUlZXx56KFDBs56qroT793Bp9//CGlpaUApKelWa1j1JhxrF8no0zDRo7iz0ULKS0tJTbmAufPRRPRpauFzrARo5j/268AzP/tV4aPHF2tfl5eHgA2NjbobG25uFdsUVERsTExdI6o/9ujeYa1JC8tkYKMJIwGPbFRmwjqYP3ftXn/scQd3EpJXra5zNU/hIzzJzCUlaAYjaSdOURwR6mvKGBjL/Om6+ydKMrJsFpvo/A+JB3fC0BQh17ERm3CqC+jICOZvLREPMNaWugEdejJ+d1rATi/ey1Bpjar0tcXyzR7QqNFY2NzMUsehrISCjKS8Qy1bKehENy8HRlJcWSlJGDQ6zm85W9ad+v/r+sL7z+cE7s2XVHdbbr348CGFQDEnTqCvZMLLh7eVeqXFBWY9W3tHMypDwFO7tlMhz5D/vU11DtcgqEoA4qzZGrZtCPg1dq6bFB3SDsGpeX9i6MP5MbJFLMYIec8eFvR92gC+YlSBsCrFaSY8rGn7LfeZlW2VaZ/0Q4Aje7S+jJOgG+HajpEpS5Sp51NE82BrxVFaQtkA+OBucBziqJ0AI4Al4zJCCE8gXFAW5PMxfxrnwOfKorS1VTPDxXUegghDgkhVgsh2l7LC/o3BAQGkhAfZz5OTEggICDIqmzXyG5s2bWXhUuW0ap162r1mzZvTo+evVi3aSvL16yjU+cIizpDQsPIzs4yO6QBAUEkxMdXqC+egMBACz1fX19SkpMBSElOxsfHp0b6i/5awekL8eTn5/HXkj/N5Qf3R9GjV+/Kuqne4ODuTWFWqvm4KDsNB3fLaIWDmxfBHXsRvXXFJeU5iRfwadYBWydXtDo7Atp2w9HDF4ADi/5H+LgZjH7rd8JvuZ9Dy36wqNfJy5/SwjyM+jKTPV5W7PG20LN38aA4NxOA4txM7F3ca6Tf7+H3GPf+IvTFRcQfKB9CzIw9jU+z9pV3VD3HzcuXnPQU83FORgquXtajXiEtO/DoFwuY9tpX+IZYj36GtA4nIfrEFdXt6uVLTnqy+Tg3IwVXL99q9W++82Ge/Wk14f2H8c9v35jL488eJ6xtp+ouveFg5wolOeXHJblg62opZ+sCXm0g6bI9fwtSwS1MDmtrdODZAuzcLPVdQ0zO5sX6nKFUTnGhNB90VrIJVWVbVfouwRDxKEQ8Amf+wux86otBo5W2qtQr6oOzeV5RlIOm91FAU8BdUZTNprI5wOXx/1ygGPhBCHELUGgqHwR8JYQ4CCwDXIUQLsB+IFRRlI7Al8BSa4YIIWYIIfYJIfZd78xMQgiLMms2HD54gI6tm9O3e1dmffs/fpm/qFp9Gxsb3Nw9uLl/H1596QV++uV3C1l/f38y0tOv2J5/ez0TxoykddNQ7Gzt6Nt/gLk8PS0N/4CAGrdTVxFY9g9WurfThIc4tPQHFMV4SXluSiwn182n/yPv0++Rd8lOiEYxGgBo1ncUBxZ/w7L/u50Di78hcsrTFvXau3pSkl/+JVNTe/7t9Wz++nmWvjARjY0O35bh5vLivGwc3KwNCTYQrHSbtX5PjD7JB/cM58vHJrFz+XzueMn6VBhHZ1dKiwqvqG5rgoqiVKu/7pev+WD6MA5uWk33kZPM5QXZWbh6VjZMrCKx8kE0HQHn/7Y8V5QG8VvlfMj20yA/GS57HgDSWS0rsCy/GrZdTl48RH0J+7+FRv1AVFg+Ulpg3ZlWqdPUB2ezpMJ7A+BenYKiKHogElgMjAXWmE5pgB4V5mYGKYqSpyhKrqIo+SbdVYBOCGERtlEUZZaiKF0URelizVm6liQmJBAU3Mh8HBgURHJyooVcXl4eBQXygfLP32vQ6Wzw9PKqUj8xIYEVy5YCsD9qH0ajES/vSy+/qLgIOzu7cnsS4wkKDq5QXzDJSUkW9qSmpuLnL+dn+fn7k2Yaoq+JfklJCatXrWDYiPLpAnb29hQVFVnronpFYXaaORIJ4ODuY3W42zOkBT2nv8SoN34luFNfukx6jKAOPQE4t3MNa99/kA2fPklpYR55qQkAhHUbTPxBuYgobv9mvKwMUxvKStHa2FawJ92KPekWesV5Wdi7yvza9q6eFJuG9muib9SXkXBkh9l+AK3OFoMpmt4QyUlPxc3bz3zs5uVHbqblNJeSogJKi+V9cTpqG1qtDY6u7hZyRqPB/EOvpnXnZqTg5l0+x9LVy4+8zLQa6x/avJp2PQeaj21sbSkrLbGQa7CU5F4aibRzhdI8SzmXILkgJ/Ip8Gkr51JeHLpOjoID/4NDP4C+SA59X46xDDQVnb58GZ0E+VqWf2W21US/KA2MpeBUfu+jsTENtavUJ+qDs3k5OUCWEKKP6fhOYHNFASGEM+BmchxnAuGmU2uBRyrIhZte/YXpCSyEiET2m/WJbLXE/qh9NGnajJDQMHQ6HbdMmMialSss5Hz9yh/+nSO6oNFoyMzIqFJ/5fJl9O3XH4CmzZpja6u7JIoJEH3mDCGh5Snd1qxcwS0TJmJra0tIaBhNmjYjat9eC3vWrFrB5Cl3ADB5yh2sXrm8Sn0nJyezc6rVarl58FDOnC5fKd20WXNOHj/2b7qwTpEZcwoX3yCcvPzRaG0IiehPwpEdFnIrXr2T5a/cwfJX7iD+wBb2LfiChMNSzs7ZHQBHD1+CO/YmZt8GAIpy0vFt3hEAv5adyEtLsKj3/9k76/imrvePv0+SurtCizsUdxvuOmzIYP4d88H2mzBhDhtjGxPGBkzYcJehw624W1ug7q5J7u+PmyYtSYVtUNre9+uVV3JPzuec594Tee5zLCM+EgcP02cp6twharbugUpjhYOHL07eASRHmM9gjzp3mFrt+wJQq31foy0l6TU2tkbnVKhU+DdpT0acabiHk3cgaTHhZvVUF6KuXcDTvyZuPv6oNRqad+vHpWN/m+VzLDLEIrBeE4RKkJ2eapYvITICN9/Auyr70tG9tHxoMAA1GjQjNzuTjJTEUvUefqbJbI3adychMsJ47BkQRNzNG3d/MaoqGVFg5wG2biDU8iScpMvm+Y59bnokXIDrG02zvK3kMdjYuIBnY0g4a67PTpDrKSTpMvi0kl/7tLJcZ2m2laS3dcPoeti4gp2nPFu9EGun4scKVYKquvTRFOB7IYQ9EAZMveN9J2C9EMIWubPnJUP688ACIcRZ5GuzD3gaGA08I4TQAjnAOOl+95OXgU6nY+YrL7Jq/SbUajW//7KEy5fkH5pHH3sCgCU//cjQ4SOZ9viTaHVacnNyeHzKpDL1v/+yhK+/X8jB4yfJz8/nf08+blZ/dnY24eHh1Kpdh/CwG1y+dIl1q1dx+MQZtFotM19+Ab1e7rqZv+A7Fi/6kdOnTvLl53P4+ddlTJw8lcjI20ydOB6gRL29gwO/r1iNjY0NapWafXv/ZvEi08za9h078tnHH5jZV9WQ9HpOrPia7s9+gkqlIuzwNtJjbgJQp4v8x3/jgPnNRlG6PPEO1g7O6HVaTqz42rgE0fFl8wxLKqnRa/M5vsy8y1WXn0tmYjSOXv5kJkSTHnOT2yf3MvCtn9DrdZxY/pWx677thJe5fmATKbeucmn7n3R+7C1qd+pPdko8BxfNBihRr7a2pevTs1FrrBAqFXFXTnN9/0ajHZ61m3B+S/VY6soSer2ODd9/ytT3vkWoVJzYuZ74W2EAtOs/GoBj21bRtHNv2g98GL1OR0FeLn9+9n8Wy7sSeoDazdqQHHO73GVfCT1AgzZdeGXhBgryclk9/90ybev36PN4BQSh1+tJTYhh/YIPjTbUbtaGK8f335PrVTnRw/VN0HSKaXmhbMP4Zj/DpMsY8xv5YjQeDxp7eRLP9Y2WlxZKvgYNR5uOb++DRuPAtxXkpslLF4HsDNYfDud/Ld22kvTOQdCkq9yVL0kGewxDNxz95clMWOjmV6jUiAfMZ6oyaNQqydnWquyMVYhBQ4bSomUrPnr/3Qqpv1mLFvzvuRd45vFp973ubx/tWnamKkZAi86416jPuU2W116817gG1qVhr1EcWfrpfa/77K0HqmPjP8PJzZPRL81m8axnKqR+tcaKJz5exMLXpqE3jCF+EPhoxqCKNuH+0HgChP0FuRX0+a4zUI6ApoZVTP0GRPcPT0iSVPWXNbmPVNXIpkIFsHnjBtzdK26yhoeHJx+9/16F1V/diDpzEBuHihvIb+PozLmNSyqs/qpIRkoiodvXYGPnUGx5ovuFq5cffy396oFyNKsV4dvBxqninM2s+Ap3NBXuDUpk8x5RHSOb1ZnqGNmszlTVyKaCZapNZFMBUCKb94KqOEFIQUFBQUFBQUHhAUHpRr9HhNT2JnTeIxVthsJ94tL5yLIzKVQZJn6/u6JNULiPNK9ZjddyVVD4D1AimwoKCgoKCgoKCvcMxdlUUFBQUFBQUFC4ZyjOpoKCgoKCgoKCwj1DGbNZlfBqAE2Gy4vr3joKN0oZV+ZSA7o8Dyd/hRjDbhK1ukKN9iAE3DoC4YaFlev3hZodIM+w3diVLRBvYTcJGydoPgaO/yQf13kIaraXF++9sA4SzHeUwcoOWk0GezfIToGTv0BBTun6dk+ArbN8nslhcG4NIEFwZ9DmQ2QZCxxXERxqtcCn96MIlYrUM7tJOrK+xLy2vnUInvwBUeu/JOPKUQDc2gzAtUUvBJByZjcpoVsACBj2Atbu/gCobO3R52YTvvg1szI1Dq74DniSyFWfAeDRYTiuLXoi6fXE7VxCVvgZM43K1oGAYS9i7eJFfloCUeu+RJ+XVaq+xpj/Q+PohhAqsiMvE7v9J5Ak3Fr1Q1+QR9q5v//pJaxU9OvXjy/mfYlarebnn37is8/M1xft3r07a9auIzxc3lVp3dq1fPDB7FL1n376GYMGDyY/P5+wsBs8Nm0aaWlpZmX7+vryw8KFDBs6FIDXXnudqdOmodPpeOnFF9i+fbuZxs3NjT/+/JOgoGBu3oxg3NixpKamlqrfvGULvr5+aDQaDhw4wHPTn0Wv1/O//z1LVnYWS5cs+dfXsjLg27itYXMFFWEHt3Jpx58l5nWv2YDeM77i0M8fEHlK/t2u32MEtTsPRAjBjYNbuLpnDQCugXVoM+5F1FZWSDodocu/Ivmm+W+zrbM7bSe8zP7v3wKgUd/x1O7UH0mv5+TKBcReCjXTWNs70WnaWzh4+JCVFMfBn2YbN4soSd/92Y+xdXZHpVaTcP0cJ5Z/jSTpqdd9GNq8XMKP/PXvLqTCA0G1imwKId4XQvT+h9oeQojTQogLQoi9ZSvuNwKajoRjP8Lfn0FAS3D0KTlvo0HFnT8nX9nRPDAf9n0O3o3Bocj+52H7YP8X8sOSowlQu7vspIJcd0BL2PsZHP1Rtg0L+8XX7QWJ12DPJ/JznYfK1p/8RbZx7xx5z11/eWtFbh2THebqgBD49p3G7RUfc+PHl3Fu3Blrj4AS83r3nFDM+bPxrIFri15ELH2DsJ9n4lS3FVZu8jagUevnE774NcIXv0bGlWNkXD1msVj3doNIPSPf0Fh7BODcuBNhi17h9oqP8O07Tb5puQPPDsPJvnmeGwtfJPvmeTw6DitTH7XuS8J/nknYT6+itnfGuWFHAFLP7sG9Tf9/dv0qGSqViq++/obBgwbSrGkTxo4bR6NGjSzmPXBgP21at6JN61ZGR7M0/c6dO2jRvBmtWoZw7eo1Xn/d8u5CL730MosWLQKgUaNGjBk7lubNmjJo4AC+/mYBKpX538lrr73O7l27adSwAbt37ea1114vUz9u7Fhat2pJi+bN8PLyZPTDDwOwePHPTJ/+3L+4ipUHIVS0GfMcexe8wdbZj1GzTU+cfWuWmLfF8MeLOX8ufsHU7jyQHZ9NZ9tHT+LftAOOXvLvQ8jwJ7iw5Rf++vhpzm1eSsjwJy2W26DXaMIOyTegzr41qdm6B1s/eJy9C/6PNmOfRwjz9m7UdxxxV06x+b1HibtyisZ9x5WpP/jTbP76+Cm2fvA4No6u1GjVDYCwQ9uo32PEP7yCCg8a1crZlCRpliRJO+9WJ4RwBb4FhkqS1AR4+L+27V/jWhOykiA7Wd6SLOoU+DSxnLdWF4g5Z4pUAjh6Q+ot0BfIkcTkG+Db7O5s8G0OCQZH1KeJbINeBznJsm2uFn4sfZqYIpGRx8G3adl6bZ78LFSgUkPhUrH6Ajmva427s7sSYudXl/yUOArS4kGvI/3iIZzqtbWY1631ADKuHEWbbYpWWXsEkBt9DUmbD5Ke7FsXcarfzkzr3LADaRcPWizXqUF7ssJOy6/rtSX94iEknZaCtATyU+Kw86trpnGs14a0c/K9Wtq5vUabS9Pr8w2RbpUaodZQuDawpM2nIC0BW7865bhilZt27dpx48Z1wsPDKSgoYMXy5QwdOuw/0e/YsQOdTl5E/cjRIwQEWr5pGTFyJH9t2wbA0KHDWLF8Ofn5+URERHDjxnXatTP//AwZOpRfflkKwC+/LGXosGFl6jMyMgDQaDRYW1sb2zsnJ4ebNyNo29by57wq4R7cgIyEaLKSYtDrtNw68TcBzTtbzFuvx3Bun95PXkaqMc3ZtyZJ4ZfQFeQh6fUkXDtDYAtZL0mgsZX3SreydSAnzfKasTVCuhJzUf5tDmjemVsn/kavLSArKZaMhGjcgxuYaQKadyL8qByhDj+6nQBDnaXptbnyVpVCpUal0VC49LeuII+spFjcg8zrUah8VGpnUwgRLIS4JIT40RBx3C6EsBNChAghjgghzgoh1goh3Az5lwghRhtefyKEuGjIM9eQ5iWEWC2EOG54FH67JwBrJEm6BSBJUnxFnG+p2LlAbqrpODdNTrsTW2fZibx5qHh6Riy41wYre1BZgXcjsHU1vR/cGbq9As3Hyl3fZvW7Q0G27BxatCfVsj02TpAn/7mQlyFHKsujb/ck9HlPdjxjinTXpt6Wz6OKo3FyR5th+pMoyEhC4+Rmns/RDaf6bUk5taNYel7ibexqNERt64jQWONQpyVWzsWXd7Gr0QhtVhoFKbFm5Vq5eKHLzULSaQ32uFGQkWh8X5uRhMbJ3dweBxe0WalynqxUNIYdiMrS1xjzBvWfX4g+L4eMK0eM6TkxYdjXsBzhq0r4BwRw+7Zpea3IqEj8Ayw7hR06dOTEyVNs2ryZxo0b35V+6tSpbDM4lEUJDg4mJSWF/Px8U3mRt03lRUZZLM/Hx4fYWPnzExsbi7e3d7n0W7ZuJSY2joyMDFavWmVMPxF6gi5dqn7vhZ2rJ9kppr+ZnNQE7FzNl1+yc/EgsEVnbuzfVCw9LToCr7rNsXZwRm1lg1+T9ti7ydf+1KpvCRnxJEM/WEbIyKc4s2GRWbkOHr7kZ2eg1xYY7PGwYI+nmc7WyY3c9GQActOTsXVyLZe++7OfMOLTVWhzc4g8tc+YnnzrKl517zLoofBAUqmdTQP1gAWGiGMqMAr4BXhNkqTmwDngnaICIYQ7MAJoYsjzgeGt+cA8SZLaGsop/BbWB9yEEH8LIU4IISZbMkQI8aQQIlQIEZqQlv2fnuQ/wtLmUI2Hw6VN5m9mxstjPDs8Be2fgPRoOUIKEHEIdn8E+76AvHRoNNS8XFtnyC+6vZ2FLvO72q2qDP2xhbDzPVBpwLOeKT0/E2wqbgvF+4eF62MBn96PEv/3MrNrn58URdKRDdQc9xY1x75BXvxNpDu2CHRp1In0S3fclBjQOLqhy04vw55/2d5F9LdXfMS1r59GaKxwCGpqTNdlp6FxNHeyqxrCwpAES7u/nTx5ktq1gmndqiULvvmG1WvWllv/f//3BlqtlmW//26W18/Pj8TEhLu2pyTK0g8cMIDAAH9sbGx46KGHjOnxCfH4+/uXu57KirD4+2ee1HL0/zizbhGSpC+Wnh53i8s7/qTH9E/pPv1jUqNuGL/fdbsN4dTq79jw1gROrf6Odo+8alaurbM7eZmmnpDy2vNPz2fvgtdZ939jUGms8G4QYkzPzUjFzkVZ47QqUBUmCIVLknTa8PoEUAdwlSSpcFzlUmDlHZp0IBdYJITYDBTeFvYGGhf5IXQWQjghX6fWQC/ADjgshDgiSdLVooVKkrQQWAjQpp7v/d0HNCeteCTS1kWObt6JayC0miS/tnYA74ag10Pcebh9TH4ANBhg0ucX6W6/dQTaPmZerq4A1EU+Tjmpd9jjCrnpmJGXYYpu2jiZ6iqPXq+FuAvg2wQSDU2hspK706s4cuTP9CNs5eSBNiPFLJ+tb20Chj0PgMbOGcfaLZH0OjKvhZJ2dg9pZ/cA4NVtHNqMZJNQqHBq0I7wJZbH7+m1+QiNaTtWbUYyVk6mSIWmBHu0WWloHFwNUU1XtFnp5dZLugIyr4XiWK8NWRHnZDM11kgF+ZYvUhUiKjKSGjUCjceBAYHEREeb5SvsggbYunUrX3+zAA8PjzL1kyZPZtCgQfTpY3lIe05ODrY2tsXtCTQNVwkMDLBoT1xcHL6+vsTGxuLr60t8fHy59Xl5eWzcuJEhQ4exc6c8+snWxpacnByLNlYlslMTjJFIADtXL4vd3e4169Np2psAWDu64NekHZJOR9TZQ4Qd3kbYYTlK3XzoNLJT5J6D4PZ9OblyAQC3T+6l3YSXzcrVFeSj1lgXsSfRgj2JZrrcjBRsnd3lqKazO7mGrv3y6PXaAqLOHSKgeSfiLp8EQG1ljS6/6n+/qwNVIbKZV+S1DnAtSyBJkhZoB6wGhgOF/UYqoKMkSSGGR4AkSRlAJLBNkqQsSZISgX1Ai//uFP4D0m7LE3rs3EGo5ck1cRfM8+3+CHZ/KD9izsL5NbKjCaYubFtX8GsO0afkYxsnk963mdzlfidZCXLdhcRdkG1QqeV0B095TOidxF2AQMMYrMC2JptL0qutTfYIldzdn1lkVIODl2X7qhg5MTewdvfFysULVGqcG3ci47r57NAb3z/Hje/kR/qVI8Ru/4nMa3I+tb2hC9vZA6cG7YqNzXQIbkZeUnRxB7QI+ckxct0GMq6H4ty4E0KtwcrFC2t3X3JirpvpMq+H4tKsOwAuzbobbSlJL6xs0Di4ymKhwrFOS/KTTE6JtbsfeYm376ymynH8+HHq1q1HcHAwVlZWjBk7lo0bN5jl8/ExTQps27YtKpWKpKSkUvX9+vVjxoyZDB8+rERH7urVqwQFBxuPN27cwJixY7G2tiY4OJi6detx7Jj5RLJNGzcyefIUACZPnsLGDRtK1Ts4OODrK09UU6vVDBgwgCuXTRMS69Wvz/kL5+/y6lU+km9ewck7AAcPX1RqDTVb9yDqnHkvw6Z3JrFx1kQ2zppI5Kl9hC7/iqizcj4bR1cA7N28CWzRhZuh8mS+nLREvOvJf18+DVqSkRBlVm5GfCQOHqbPUtS5Q9Rs3QOVxgoHD1+cvANIjjCfwR517jC12vcFoFb7vkZbStJrbGyxdZb/N4RKhX+T9mTEmb7PTt6BpMWE3/X1U3jwqAqRzTtJA1KEEF0lSdoPTAKKzR4XQjgC9pIkbRFCHAEK/xW3A9OBOYZ8IYao6XrgGyGEBrAG2gPz7sfJlBtJDxfWQPsn5Vm8t49BZpz8Xk159i63DpdeRuspYG0vl3VujWkJokaDwTkAkOTlic7dGSgGdPmQnQT2HvJzZhxEn4buM+XyzhuWJwJ5eaSbhyAtEq7vhtaToWY7OZp5Qp5MUKJebQ1tp8nd50IFidfhZpHzcg+Gq+ZLsFQ5JD2x23+mxtg3EEJF6tm/yU+Ux+S5hsjRqdTTpc+FCxzxMmo7JyS9jtjtPxuXIAJwbtyJ9BImBgFIBXkUpMRh5epDQWoc+YmRpF86TO3HP0fSy7YVdt37DXiKlFM7yI0NI+nwegKGv4hr854UpCcSuU7+GpWkV1nZEjh6JkKtQQgVWbcuFBt/ah/QgMQDqyzaWJXQ6XS88PxzbNm6DbVazZLFi7l48SIATz71FAALf/iBUaNG89TTT6PVasnNyeGRCePL1M//6mtsbGzY9pf8vTl69CjP/u+ZYvVnZ2cTduMGderU4caNG1y8eJFVK1dy7vwFtFotzz83Hb1e7sr9YeGPLPzhe06cOMGnn37Cn38uZ+q0ady+dYuxY8cAlKh3cHBg7br12NjYoFar2bNnDz/88L3Rjk6dOjH7/ffu4ZV+MJD0ek6s+Jruz36CSqUi7PA20mNuAlCny2AAbhzYVFoRdHniHawdnNHrtJxY8bVxCaLjy+YZllRSo9fmc3yZ+V+ZLj+XzMRoHL38yUyIJj3mJrdP7mXgWz+h1+s4sfwrY9d92wkvc/3AJlJuXeXS9j/p/Nhb1O7Un+yUeA4ukldDKEmvtral69OzUWusECoVcVdOc33/RqMdnrWbcH7LL//+gipUOOJuxtk8aAghgoFNkiQ1NRy/CjgC64DvAXsgDJgqSVKKEGIJcpf5QWQH0hZ5sNhcSZKWCiE8gQVAI2RHfJ8kSU8byp4BTAX0wCJJkr4szbY29Xylarc3um9TcAmEK+YTDO4LzgFQuxuc/uO+V10d90Z3qt8WW5/aJOxfXiH12/gE49F2ENGbFtz3upu9aeGGq4ozbPhwWrdqzaxZb1dI/SEhIbz40ks8OmXKfa/7t6cfKjtTFSOgRWfca9Tn3KbFFVK/a2BdGvYaxZGl5uvJ3mvGf7vrhCRJbe57xVWYSh3ZlCQpAmha5Hhukbc7WMj/aJFDs3U6DF3kY0uoaw6GiKdCCcSeByuHiqvf2qHiHN1qSMbV46htncrOeI/Q2DmRsH9FhdVf3Vi/bh0eHhU3WcPT05N3Zs2qsPqrG1FnDmLjUHGTLW0cnTm3cUmF1a/w31KpnU2FB5DbRyuu7sSrZedR+E9JPVvKLlX3mMJJQgr3j59/+qnC6i6cJKRw/wg7tLXC6i6cJKRQNagKE4QUFBQUFBQUFBQeUJTI5r1CANbqirZC4T7x3roTFW2Cwn0k4Zv7P25QoeKo/eqyijZBQaFSo0Q2FRQUFBQUFBQU7hmKs6mgoKCgoKCgoHDPUJxNBQUFBQUFBQWFe4bibFYlPOpD5xnQZSYE9yg9r3Mg9PkEfJqZ0mp2hk4vy4+aXUzpdfpAtzehw4vyw7Oh5TKtnaDlVNNxrZ6yLZ1nyLZZQmMHrR+HzjPlZ41d2fpWj0HHF2U7G43EuK92jU7gX32WRmvRoRtfLN/Olyt3MXTSU6Xmrd2oGcsOXqF9z/7GtAFjpjDn9y3MWbaVAWMfNabXrNuQ939cyWe/bWbG3IXY2TtaLNPVw4uZcxcaj4dNfpovV+7ii+Xbad6+q0WNg7MLb3y1hHkrd/LGV0twcHIuU//6vJ/59NeNzFm2lcdmvo9QyT9b/UZPovugUaWed1VCU6MpzuM/wnnCJ9i0HFhqXrVXLVyf+gmr2qbvg02zPjiPnY3z2A+wad6nWH6bpr3kssd+gF2Hhy2WKexdcBjwgvHYtuUgnCd8gvP4j9DUaGpZY+OA4+BXcR7/CY6DX0VY25epdxz0Mk4Pv4fz2A+w7zZZ3qTCYKN1gy5mdVRVevXpy7FT5zhx9iIvvmK+fzlA567duBkdz77Dx9h3+BgzXn+jTP2wESM5dPwUSRk5hLRsVWL9Pr6+/LlqrfH4pVdncOLsRY6dOsdDvftY1Li6ubFm4xZCz1xgzcYtuLi6lqlfuW4j+48c59DxU3wx/xtUhu/3E089w4RJk0u/SAqVhmrlbAoh3hdCWN78t3TdDCHEacPjvBBCJ4RwL1t5PxHQaASc/AkOfg5+IeDgXXLe+gOLLxXk6AOB7eHI13D4S/BqBPamvaq5uR+OfCk/Ei9jkeBuEGlY+sjBG3xbyLacXCTbhjDX1OoJSdfh4Gfyc60eZevP/CbbeOgLeW1N3+ZyetRx2WGuBgiVimmvvssnLz3GK+P707nvYAKC65aYd8KzMzlzdL8xLbB2PR4aNpY3p43ktUmDadWlJ741ggB46o2P+OPbOcycOIjjf29nyMTHLZY7aPw0dq2X17kMCK5Lpz6DeHXCAD5+cRqPzXjP6BQWZdjkpzh//DAvPdyb88cPM2zyU2Xq57/5PK9NGsKMCQNwdnOnw0MDANizcSX9x1STiTpCYN91Epmb5pH+55tY122Pys2/xLx2HR9Ge9u0raPKPQCbxt1IXz2b9BWzsApqgcpF3o5Q498Qq1otSV8+i/Tlb5F7xvJatbYt+pF/aZ9cnps/VnXbkf7nW2Ru+gL7rpOMTmExTcuBFERdJP2P1ymIuohtq0Fl6jO3f0vGyndIX/4Wws4JqzrydrZ5l/dj0+yuf74rJSqVijlfzOfhEUPp0LoFox4eS4OGlm/yDx86SLeO7ejWsR1zPvmoTP2lixeZPGEshw7st1heIc8+9wJLF/8MQIOGDRk5egwd24QwevgQ5s77yugUFuWlV2aw7+/dtGnRhH1/7+alV2aUqZ82aQJdO7SlU9uWeHh6MnykfAP52y9LeOqZZ//B1VN4EKlWzqYkSbMkSbrrxdokSZpTuF868H/AXkmSLG8aXVG41IDsRMhJBkkHsWfAu4nlvDU7Q9w5yM80pTl4y3uP6wvk7SFTwkrWl4R3U0g07Jfr3US2QdJBTopsm0sNC5omEG2YyR19Qi6jLL0uT34WKnnv9MJNsPQFcl5nC/VUMeo2bkFs5E3io2+j0xZwaMdm2nSz/Efc/+HJHNvzF+kpSca0gOC6XLtwmvy8XPQ6HZdOHqNtd3lPY7+g2lw6Je9zfe7YQdoViYYWpV3Pfpw5Ijsfbbr15tCOzWgL8kmIiSQ28iZ1G7cw07Tp2pt9W9YAsG/LGtp061OmPidb/pyq1Ro0VtYUNnh+Xi4JMZHUadz8rq5dZUTtXRt9Wjz6jATQ6yi4fgzr4JYW89o0603BjVD0Oekmvasf2rgw0OaDpEcbfQWrWnJUy6ZJT3JPbgG9FgApJ8NiuVa1W1NwS17b1Dq4JQXXj4Feiz4jEX1aPGrv2uaaWi3JvyJve5p/5SBWtVqWrS/IlZ9Vanlb2sLvtzYffUYiau9a5b9wlZTWbdoSFnaDmxHhFBQUsGbVCgYOHvKf6K9eucz1a2WvSTxk2Ah27fgLgIGDh7Bm1Qry8/O5dTOCsLAbtG7T1kwzYNAQ/vj9NwD++P03Bg4eWqY+I0P+vGk0GqytrSnc1TAnJ4dbN2/SqnX16a2qylRqZ1MIESyEuCSE+FEIcUEIsV0IYSeECBFCHBFCnBVCrBVCuBnyLxFCjDa8/kQIcdGQZ64hzUsIsVoIcdzwsBQmGw/c//0Qy8LWBXLTTMe5aWBjYfcHG2fZobt9pHh6Zhy41QIre1BZyV3ltq6m92t2go4vQZOHi3d1F2LnBtoc2TksrCc3tbg9ti7mOmtHyDf8ueVnyJHK8uhbPQY9ZoE2D+LOmtLTI+XzqOK4e/mQFB9jPE6Oj8Xdy8csn5uXD22792XH2uJLt9wOu0qjkLY4OrtibWNLSKceePj4ARB54yqtu8qOa/teA/Dw9jUr18svkKyMdLQF+Xdlj4u7J6lJCQCkJiXg7OZRLv3/fbmYH7YeJTcrkyO7TZG3sMvnaBhi/qdX1VA5uKHPMt3f6rOSEQ5uZvmEgytWtVqRd3FPsXRdchQav/oIGwfQWGNVszkqR7lzRuXqi8a/Pk4j38Jx2Guovcy/PyonT6S8bKNDKhzc0GcWt0dlyR47F6Rs+XdJyk5D2DmXS+846BVcHp0PBbkUhB03nUdCBBq/EobkVCH8/P2JirxtPI6OisLPL8Bi3rbt2rP/yHFWrt1Aw0aN7lpviZpBwaSmppCfL3+//fwCiIo0bckbHRWJn795ZN3b25u42FgA4mJj8fLyKpd+1fpNXIuIJDMzg/Vr1xjTT588QcfO1WfoRFWmUjubBuoBCyRJagKkAqOAX4DXJElqDpwD3ikqMHSBjwCaGPJ8YHhrPjBPkqS2hnIW3aGzB/oDqy0ZIoR4UggRKoQITUjL+Y9O7z+mwVC4tgVTuMBAVjxE/A2tn4DWj0FGjBzhBLh9GPZ/Kndd56VDg8Hm5Vo7Q35WkQQLXeaSZJ5WImXoT/4Eez+QIx/uRbqP8zMtO9lVDQtdltKdbQpMefEtli34DEmvL5YeHXGDDb8u5M2vl/J/X/7MzWuX0GvlG4XvP3ydfqMn8tGSddjZO6DVFpiV6+bpRXpKkeB+Oe35p+fz8YtTeWZwRzTW1jRt09GYnp6SjJtnScNFqjrm19e+8wRyjqw0+67pU2PIPbUFxyEzcBz0Mrqk26CX21uoVAhrezLWfEDO4RU49H3GrFxh71o84mnh62nJnhIpQ5+5+XPSlr4Iag2agEam88hJR2XvWv56KinC0vfBwu/n2dOnaN6oHl07tGXh99/y25+r7kpfEr6+viQmJt61PSVRln70sME0rBOEtbUN3Xr0NKYnJCTg6+dX7noUHlyqwqLu4ZIknTa8PgHUAVwlSdprSFsKrLxDkw7kAouEEJuBTYb03kDjIl8MZyGEkyRJhb+yQ4CDJXWhS5K0EFgI0Ka+7914Vv+eOyN/ti6yY3gnLoHQfIL82soBvBqCXg8JF+Qxj1GGKELd/pBniJQW7W6PPAatpmKGvkB2/ArJSyseGS3JnvxMeWJRfobhOav8er0WEi6Cd2NIvianqTSyLVWc5PhYPLxNP8Lu3r6kJMSb5avdqCkvfPAlAE4uboR07IFOpyV03072bFzJno3yV2Pc06+QlCBHJKJvhvHRC48C4FcjmJadepiVm5+Xh7WNzV3bk5aciKuHF6lJCbh6eBm79sujL8jP58T+XbTp2ptzx+SuWStra/Lzcku8TlUFfVYKKgfTMHGVgztSVqpZPrVXMA69ZWdRZeeIVVBzsvU6CiJOkX95P/mX5XF6tu1HIRkii/rMFArC5aEsuvhwkCSErRNSbhHnUpcPaivjoZSZYoyMFtqjt2CPlJOGsJejm8LeBcnQtV8uvU5LQcRprIJboY28CIBQWyHpqv73OzoqioBA03Ag/4AAYmOjzfIVdkED7PhrG3Pnzcfdw6Pc+pLIyc3Btsj3Ozo6koDAwCLlBRIbE2Omi4+Px8fXl7jYWHx8fUlISCi3Pi8vj61bNjFw0BD+3r0LABtbW3JzHtDAjcJdURUim3lFXusA17IEkiRpgXbIEcrhQGG/nAroWDg+U5KkgCKOJsA4HsQudJC7j+095e5soZYn18RfNM+3/xPTI+4cXForO5pg6sK2dQWfphBz2pDuZNJ7N4WMWPNysxPkuguJvyjbINRyur0npN021yVcBP/W8mv/1hB/oXS92tpkj1DJ3f1ZCabyHLwg04J9VYwbl87iWyMIL79A1BorOvUZxIn9u8zyPT+yJ8+N6MFzI3pwdM82fp7zDqH75GHLzm7yn72Hjx9te/Tl0PaNxdKFEIyY+iw715p/5GNuheNVpFvuxP5ddOozCI2VNV5+gfjWCOL6xTNmuhP7d9Ft4EgAug0cSej+naXqbezscfWQu+JUajUtO/Ug+maYsTy/mrW4faPs8WeVHV18OCpXb1ROnqBSY1W3HfkRp8zypf8+k/TfZ5D++wzyb4SSve9XCgz5hJ38vRGO7ljXak3+NXkyX374SWP0UOXig1BrijuagC41Vq7bQH7EKazqtgOVBpWTJypXb3TxYdxJQcRprBvIo5GsG3SmIPxU6XqNDcLecNMsVFjVbI4+1eSUqFx90SVHmtVT1Th5IpQ6depSMygYKysrRo4ew9bNm8zyefuYhpq0at0GlUpFclJSufUlcePaNWoGBRmPt27exMjRY7C2tqZmUDB16tTlROhxM922LZsY/8hEAMY/MpGtmzeWqndwcMDHVx6mo1ar6dO3P9euXjGWV7duPS5dvFBuuxUeXKpCZPNO0oAUIURXSZL2A5OAvUUzCCEcAXtJkrYIIY4A1w1vbQemA3MM+UIKo6ZCCBegOzDxvpzF3SLp4fJ6aPW47IRFHYesOPm9wA7yc+SRkvUALSbLYzYlHVxaJ4/BBHnmupNhfE1OCly0MIpAVwDZSWDnATlJct2xZ6Hzqwbb1mHsJms8WrYlPRLC90DzRyCgHeSmyDPNoWS92hpaPipHMIWA5BvFz8s1GG7suMuLV/nQ63Qsnvseb8xfjEqlZs+mlUSGy9Hd3iPGA1h0Eovy8scLcHRxQ6ctYPHcd8nKkKNOnfsMoe9o+WN+7O/t/L1plZk2LzeHuMhb+AQGERd5k8jwaxzetYXP/9iGTqdl8dx3jV33T77xETvXLCPs8nnW//IDL374FT2HPkxSbDTz3nwOoES9rZ0dM+b8gMbaGpVKzYUTh4uNP23QvDWrF339L69mJUDSk73/dxwHvwJCRf7l/ehT5EiVdeMeAORf/LvUIhz6TUdl44Ck15G9/1ek/GxZd3k/9j0fw3nsbCSdjqzdi8zF2nz06fGonL3Rp8ejT4mm4MZxnMd9CJKO7P2/Gbvu7XtMJe/CHnQJEeSe3IxD3/9h07Ab+swksrZ/C1CiXljZ4DjgBVBrEEJFQdQl8i6Yxp9qfOuRG7r+X17MBx+dTsfMV15k9fpNqNVqfv9lCZcvXQJg6mNPALD4px8ZNnwkUx9/Ep1OS05ODo9NmVSmftCQoXz6+Tw8Pb1YvmYd586eZfSw4kOjsrOzCQ8Pp1btOoSH3eDypUusW72KIyfOoNVqmfHyC+gN3+/5C75j8aIfOX3qJPM+n8PiX5cxcfJUIiNv8+hE+beoJL29gwPLVqzGxsYGlUrN/r1/8/Mi03Jq7Tt25NOPP0Ch8iPuZtzFg4YQIhjYJElSU8Pxq4AjsA74HrAHwoCpkiSlCCGWIHeZHwTWA7bIo4fmSpK0VAjhCSwAGiE74vskSXraUPajQH9JksaVx7Y29X2l0G+q2Rph3k3k9Tuv/1Ux9Tv5Q1BXOL/8vlc9btaasjNVMdp270Othk1Z8cO8Cqk/uH5jBo2fxoL3LK9BeC/5borldUSrMla1WqH2Cib3WMV81tWeNbFp3o/s3T/e97qr497og4YMJaRlKz58/90Kqb9ZixY8+9wLPP34tPted2p2/glJkpRp8P8hlTqyKUlSBNC0yPHcIm93sJD/0SKH7Sy8nwiMLaGuJcCSf2RodSH+gjwOtKKwcoDr2yuu/mrG8b07cHQxn4F8v3BydWPFwopxdKsjBeEnEbaWF/i/HwhbR3KPV7+buopi88YNuLt7VFj9Hh6efPj+exVWv8J/S6V2NhUeQKKOVVzdhZOEFO4bezasqLC6CycJKdw/Chd1rwgKJwkp3D9+Xbq4wuounCSkUDWoChOEFBQUFBQUFBQUHlCUyOY9IiwqhbFvW1yOU6EKEhqeUHYmhSrDmhPhFW2Cwn0kZftrFW2Cwn1EdJld0SZUOZTIpoKCgoKCgoKCwj1DcTYVFBQUFBQUFBTuGYqzqaCgoKCgoKCgcM9QnE0FBQUFBQUFBYV7RrVyNoUQ7wshev8DnYsQYqMQ4owQ4oIQwsLm4BVPiw7dmLdiB/NX7WbY5KdKzVunUTP+OHSV9g/1N6YNGPsoc5dtZe4fWxk47lFjelC9hsxetJI5v29h5tyF2DlYXmvP1cOLmZ+bFlwePuVp5q/azbwVO2jR3vIi2A7OLrz51VK+XLWLN79aioOTc5n6//tyMZ/9tom5f2zl8ddmI1Tyx7jf6En0GDyq1POuSnTr2Zsdh06w++hpnnruJYt52nfqwunrt9m4+wAbdx9g+iuvlakfMGQ4W/cd5VpsKs1atCyxfi9vH378zbT00dPPv8zuo6fZcegEXXv2sqhxcXVj6cp17DpyiqUr1+Hs4lqmfvGfa9i05yBb9x1l9px5qAztPWnak4wa90jpF6kKEdCkHaM++IWHP/qd5gMmlJrXM7gBUxfuIrh1d2Nak16jGPneYka+t5gmvUcb091r1GXI/33L8FmLGPrWD3jWamixTDsXd/o897HxuPmACTz80e+M+uAXApq0taixdnCi/8tzGf3hb/R/eS7W9o5l6vu9+BnD31nEyPcW02niywght3ejniOo17m/WR1VFte60Op5aPUCBJSxiYCjP3R6Fzwam9L8OkDIs9ByOvh1NKXXfAhC/gctnoHGk4tvR1wUK0doVOT7FdBVtqXV87JtltDYQZMpcr4mU0BtW7a+8STZnpbToc4Q5H1WAN924F3y749C5aJaOZuSJM2SJGnnP5A+C1yUJKkF0AP4XAhh/Z8a9y8RKhXTZrzLxy9O4+Vx/ejcdwgBtSz/IAiVignTX+PM0f3GtBq169Nr2FjemDqCmRMH06rzQ/jWCAbgqTc+ZtmCOcx4ZCDH9m5nyMQnLJY7aMJj7F4v794TUKsunfoM5pXx/fnohalMm/me0SksyvDJT3M+9BAvju7F+dBDDJv8dJn6L998jpkTB/Pq+AE4u7nTsddAAPZsXEn/MVP+2QWsZKhUKt799HOmjR9Fvy5tGTJyNHXrN7CY9/iRwwx5qAtDHurCN59/Wqb+6uWL/G/qIxw7XPo6lo89M53lvy0BoG79BgweMYr+XdsxddxI3vv0C6NTWJSnn3+JQ/v20qtDSw7t28vTz79Upv65x6cwuGdnBnRrj7uHJwOHjgBg5R+/MuWJp+/+4lVChFDR6ZEX2P7la6x+ewq12z2Eq19QiXnbjnqKqAumvavd/GvRoNtg1n/4NGvfe5wazTvi7C3vbd9u9FOc2riEde8/zsn1P9NutOVr2rTPGK7sl/fXdvULona7h1g961H++nImnR550egUFqXFgAlEXzrJqjcnEn3pJC0MTnJp+t3fv8u69x5nzTtTsXVyoVabHgBcPbiFJr2qy82kgNqD4cKvcOob8GoGdl4l5w3qCynXTUn23uDTGs4uhFPfgnt9sHWX34s6CKe/hTPfQcoVqNHDcrEBnSDuhPzazku24dQ3cOEX2bZCp7CYpiukhsHJ+fJzYNey9VdWyPac+gY09uDZRE6PPyU7zApVgkrtbAohgoUQl4QQPxoijtuFEHZCiBAhxBEhxFkhxFohhJsh/xIhxGjD60+EEBcNeeYa0ryEEKuFEMcNj86GqiTASQghkLfDTAa0FXDKJVK3cQviIm8SH30bnbaAQzs20bab5SDugDGTObpnG2nJSca0gOA6XDt/ivy8XPQ6HRdPHaNd974A+AXV4tIpebH2c0cP0r5nP4vltu/Zj9OH5UWf23brzaEdm9AW5JMQE0lc5E3qNm5hpmnTrTd7N8u7guzdvIa23fuUqc/JygRArdag0VhRuOVqfl4uCTFR1Gnc/O4uXiWkRas23AwP4/bNCAoKCti0djW9+w/6T/Q3rl0l/Mb1MkqAfoOHsm+3fO/Wu/8gNq1dTX5+PpG3bnIzPIwWrcx3e+vdfxBrlstb/61Zvow+AwaXqc/MzABAo9FgZWVtbO/cnByibt+iecvW5T7vyopXrYakx0eRkRiDXqcl7NhuaoZ0tpi3ca+RRJzcR056qjHNxa8m8WEX0eXnIel1xF49TVAr2RGQJAkrO3nnL2s7B7JTEy2WG9y6G5Hn5d+BmiGdCTu2G722gMzEWNLjo/CyEBGtGdKZa4e2AXDt0DZqtuxSpr4gV96zXajVqDVWSMjtrcvPIyMxtsTIa5XCKRBykyEvBSQdJJwD9xLO268DJF2EgixTmp0XZEaCvgDQQ1qEKeqpyzPlU1kb97Q3w6MxpBg2ynBvKNsg6SAvVbbNKdCCpqHsJIL87NGobH2hPUIFqiKrMeoL5PN3DLBsn0KlolI7mwbqAQskSWoCpAKjgF+A1yRJag6cA94pKhBCuAMjgCaGPB8Y3poPzJMkqa2hnEWG9G+Q90uPNpT3giRJ+jsNEUI8KYQIFUKE5mnN3r6nuHv7kBQXYzxOio/FzcvHLJ+blw9tu/dlx5rie/3eDrtKw5btcHR2xdrGlpaduuPh4ye/d+MabQyOa4deA/Dw9jMr18svkKyMdLQF+cZ6Eu+wx93b3B4Xd09Sk+Q1KlOTEnB28yiX/o35i1m47Rg52Vkc2b3VmB526RyNQix36VUlfHz9iImKNB7HxkTj4+dvMW/LNu3YtOcgP/+xmnoNGt613hKBNYNIT00lP19ubx8/f2Kio0zlRUfh42v+OfH08iIhPg6AhPg4PDw9y6VfvHwtxy7eICszk60b1xnTz50+RdsORboIqyj2bl5kpZjWcs1OScDBzTzSZe/qSVDLLlz+e0Ox9JTocHzrNcfGwRm1tQ01mnXAwc0bgCPLv6Hd6KcZ+9kK2j38DKGrzfced/T0JT87A722AACHO+zJSknA3oI9ds7u5KQlA5CTloydk1u59P1e/IxHvlhHQW42EaF7jemJN6/gW6/q30xi7QT5aabj/HSwcbacz6MRxB4vnp4dB85Bcre2ygrc6oN1EX3NXtDmFfBqDrd2m5dr4wraXNk5BLnuYvakWe5+t3KAAjkYQEGmafvisvSNJ0O712THM/GCKT0zWj4PhUpPVXA2wyVJOm14fQKoA7hKklT4C7UU6HaHJh3IBRYJIUYC2Yb03sA3QojTwAbAWQjhBPQDTgP+QIghj9k3X5KkhZIktZEkqY2N5v5eWmGpS8PCDeujL73FsgWfIemLO8NRETfY8MsPvPX1Ut6Yv5ib1y6j08nB2+8/eI2+oyfy8dL12Nk7oDX84RTFzdOb9JRkkz3C3B6ppDtoS+dThv6jF6by9KAOWFlb07SNydlIS0nCzdO73PVUVixdH0sRigtnz9CtdRMG9+zML4t+4Pulf9yVviS8fXxITjJFxi22l6UPYAmUpZ86dgQdmtXH2saajl1N4xCTEhPwtuDUVgcsfZ86jJvO8dULufNeOC3mFme3/UH/l+fS/8XPSLp9A0kvOxKNegzj6PIFLJ85hqPLF9Dl0Zlm5dq7eJCbkWaWfodB//xk7tD/9eVM/nhlFCqNFX6NTOP2ctNTsHetuP267x/l/H7WGgAR2zH7sc9JhMgD8rjJxpMgOxYo8pm4tQtCP4eEs+DX3rxca6fikdJ7zcVf4NgcEGpwqW1KL8gqeUypQqWiKuwgVKRPAB3gWpZAkiStEKId0AsYB0wHHkJ2vjtKkpRTNL9hQtAnkvzrfl0IEQ40BCpwI/DiJMXHGiORAB7evqQkxpnlq92oGc/Png+As6sbLTv1QKfVEbpvB3s2rmTPxpUAjHvmFZLjYwGIvhnGR88/CoBfjWBadu5pVm5+Xi5W1qZhrMnxsXjeaU9CvJkuLTkRVw8vUpMScPXwIj0lqdz6gvx8Qvftok233sZ9sq2tbcjPy6OqExsTjV+AqRvL18+fuNgYs3yFXdAAf+/aznuffo6bu3u59SWRm5OLtY2NyZ7oKPz8Td1dvv4BxMfGmukSExLw8vYhIT4OL28fkhITy63Pz8tj119b6d1/EAf37gHAxsaWvJzccttdWbkzkmnv5mWxu9szqAE9n5wFgK2jCzWatUfS6bh5+gBXD2zh6oEtALQe8TjZhshivY79OPLH1wCEh/5NlykzzMrV5eehtjJ9v7PusMehBHty0pOxc5Gjm3Yu7uRkpJRbr9Pmc+vMIYJCuhB9UR47qLayRmeIpldp8tPB2sV0bO0M+Rnm+RwDoMHD8msre3CrB5Ieki9D/En5AVCzd/HIYiGJZ6HRRLi9p3i6vqB4l3benfa4WLanIEueWFSQaXjOKr9e0kLyFbkrPu2GnKbSgP6BGrGm8A+pCpHNO0kDUoQQhdP3JgF7i2YQQjgCLpIkbQFeRI5WAmxHdjwL8xWm30J2TBFC+AANgLB7Yv0/5Mals/jWCMbLLxC1xopOfQYTum+XWb7nRvTguRHdeW5Ed47s3sZPc2YRum8HgLEL28PHj3Y9+nFw+8Zi6UIIRk6bzo61y8zKjbkVjpefyXkJ3beLTn0Go7GyxssvEN8awVy/eMZMF7p/F90HjQSg+6CRhO7bWarexs4eVw/5T0qlVtOyUw+iI0xN4VezFrfDrt719atsnD11guDatQmsGYSVlRWDR4xi119bzPJ5epuivM1btkalUpGSnFxufUmEh10nsEZN4/Guv7YweMQorK2tCawZRHDt2pw5GWqm2/XXFkaOlSeJjBw7gZ3bNpeqt3dwwMswfEKtVtOjVx/Crpnat1aduly9fLHcdldWEiKu4OwTiKOnLyq1htrtHuLWmUNm+Vb833hWvD6OFa+PI/zEXg79/iU3Tx8AwNbJFQAHd2+CW3XjxjH59yE7LQnfBiEA+DVsRXp8pFm5aXGROHr4Go9vnTlE7XYPodJY4ejpi7NPIAnhl810t04fol4neQZ5vU79uXX6YKl6jY0ddi7yRBahUlOjWXtSY24Zy3P2qUFKVDXYKjQjCuzc5e5soZYn1ySbX19OzDM9Ei9C2CZTvsIubGsXuas94Zx8XDhRCOSxlDkWxujmJMl1F5J8WbZBqOV0O3fIMP+ckHzZNIPcuyUkXS5dr7KWnVIAVOBeD7KLbP1r6yEPCVCo9FSFyKYlpgDfCyHskZ3CO5cqcgLWCyFskfsrCtd9eR5YIIQ4i3xt9gFPA7OBJUKIc4b8r0mSZHkUfQWh1+n4ee57vPHVElQqFX9vXEVkuDy4u/eI8QDsXPtHqWW8/MkCnFxc0Wm1/DznXbIy0gHo3HcIfUdPBODYnr/4e+MqM21ebg5xUbfwCQwiLvImkeHXOLxzC5//uU22bc67xq77p974iB1r/iDs8jnWL/2eFz/6mp5Dx5AYG828N2RfvyS9rZ0dM+cuRGNljUqt4kLokWLOb4PmrVi16Kt/eTUffHQ6He+9PoMly9eiUqtZtexXrl2Rf9jHT5kGwB9Lf2bA4OFMePQxdDotuTm5vPDU1DL1fQcOZtZHc3D38GTRspVcPH+OqWNHFKs/JzubWxHhBNWqzc3wMK5ducyW9WvZduA4Oq2Wd197Fb2hvT/64mv+WPoz586c4vuv5vH1j0sY88hkoiNvM/1xefWAkvR29vYs/HU51jbWqFRqjhzYx7KlPxntaNWuPV/N/ZiqjqTXcXjZfPq/OAehUnH14FZSoyMAaNh9KACX924opQTo9cz72Dg6o9dpOfT7l+Rny2PrDiydS4fx0xEqNbqCfA788rmZVpufS0ZCFE7eAWTER5EaHUF46N+Men8Jer2Ow79/aey67zJlBpf/3kDizSuc3bqMh55+h/pdBpKVHMeu798FKFGvsbGlz/SPUFtZIYSK6Munip2XT92mnNq49N9ezkqAHsI2Q5PJgEqOUOYYnDBfw8S7WPObuWI0GAdWdnKkM2wz6Aw9AEF9wM4TkCAvDW5Y+NzoCyA3RXZMc5PluhPPQ8vnZNtubMbYdV93mDxmNDMaIvdDg7Hg00ou+4q8OkmJerWVvLySSi1PEEoNK35ezjXh9t93f/kUHjjE3YyjUyg/7g42Up+mFmbrVWHadu9L7YZNWf7DFxVSf3D9xgyaMI0F77563+sODU8oO1MVo+/AwTRt3pIvPpldIfU3btqcac9M59Vnn7zvdb8xtNV9r7OiCWrZBc+gBpxY91PZme8BHjXq0rTvGPb+9NF9r/uxqXcO+68GuDeS1++8Zd5Ddl9w8AX/TnBtzX2vWnSZfUKSJPPlNBT+MVU1sqlQARzfux2nIot032+cXN1Y8cO8Cqu/urF9yyZc3dzLzniPcPPwYN4nH5SdUeE/4eapA9g4upSd8R5h4+TCiXU/V1j91Y7kS3JktKLQOFieKa9QKVEim/eI6hjZrM5Ux8hmdaY6RjarM9UyslmNUSKb/z1VcYKQgoKCgoKCgoLCA4LSjX6PSMspYOvZ2xVthsJ94tOxFtaqU6iy6HT3d9MGhQpGq6toCxQUKjVKZFNBQUFBQUFBQeGeoTibCgoKCgoKCgoK9wzF2VRQUFBQUFBQULhnVKsxm0KI94F9kiTtvEudG/Az8r7rucA0SZLO3wMT/xW9+/Tl07lfoFarWLpkMfPmzjHL06VrN/5YuZqbEREAbFy/jk8//rBUfbPmLfjy62+wsbFFq9XyyovPcSLUfEFhH19fvl7wHWNGyQuAv/zqTCY/+ig6nZ6Zr7zErp07zDRubm4s/vV3goKCuHnzJo9OnEBqamqp+jXrN+Lj64dGo+HQwQO88uLz6PV6nnz6GbKysvj911/+9bWsDNRo1o4uE15AqFRc2reJU5t/N8vj3zCE/s9/TEaivBVlWOg+TmxYUqq+49j/ERTSCb1WS1p8FHt++ti4AHhR7F086D51Jlu/fA2AloMm0qjbICS9ngO/z+f2efPdXG0cnOjzzHs4efqSkRjL9m9nGcsuST/olbnYu3igUquJuXqG/b/MQ5L0NO01koK8XK4cKP/OR5WZwKbt6DTheYRKxeV9mzmzxby9/RqE0O/5j0g3tHfEiX2c3LC0VH37Mc8QFNIJnVZLenwUe3/6hPwc8/a2c/Gg26Mz+Gv+6wCEDHqEBl3l9jq0bD6R54+baWwcnOj1zLs4efqRkRjDzm/fMbZ3SfoBL8/B3sUDoVYTe/UsB3+V27tJr5EU5OVw9cDW/+BqVgLc6kHdQfJi5zGhcHtfyXmdAqDl03DxT0i8IKcFdAS/tvLrmFCIMuw4FfSQnF64lWT4dki2sOuatRPUHw7nf5WPa3QDvzbyIvHXN0HKdXONxg4aj5N3CcpLhYt/gDa3dH2zKXJdQgVpN+HaBkAC/w6gy4e4k+W/ZgoPLNUqsilJ0qy7dTQNvAGcliSpOTAZmP/fWvbvUalUfP7lfEYNG0Lbli0Y/fBYGjRsZDHv4YMH6NKhLV06tDU6mqXpZ3/4EZ98+AFdOrTlo9nv8f6Hlndsmf78CyxZLK+D16BhI0Y9PIZ2rUIYOXQwX8z/CpXK/OP20qsz2fv3Hlo2a8Lev/fw0qszy9RPmTiBzu3b0L51CJ5eXowYNRqAX5cu4en/TTeroyoihIquk15m0xev8ucbk6jbvjdu/sEW88ZcPcvKWdNYOWua0dEsTX/7/HGWvzmFFW8/SlrsbVoNmmix3Bb9x3Jpr7ylqZt/MHXb9+LPNyez6fNX6Tr5ZYQwb++WgyYSdekEf7w+gahLJ4xll6bfvmAWK2dNZfmbk7FzcqVOu54AXN6/mWZ9Rv3TS1ipEEJFl0kvsXXeDFa+OZm67Xvh6h9kMW/M1bOseecx1rzzmNHRLE0feSGUlW89yupZU0mLiyRksOX2bt5vDJf3bQLA1T+IOu16sfKtKWz9YgZdJllu75CBjxB18STLX59A1MWThBjauzT9zm/fYfU701j11hTsnFyp3bYHILd3097Vo71BQL0hcG4pHJ8P3s3B3qvkvLX6QfI1U5K9t+xQnvwOQr8BjwZg52F6P/IgnPhGflhyNAECO8tOKsh1ezeXbTm3FOoNleu9k5rdIOUGHJ8nP9foXrb+4p+yHaFfyfu7ezWV02NPyA6zQpWgUjubQohgIcQlIcSPQogLQojtQgg7IUSIEOKIEOKsEGKtITKJEGKJEGK04fUnQoiLhjxzDWleQojVQojjhkdnQ1WNgV0AkiRdBoINe6Q/MLRp25awGzeIiAinoKCA1StXMGjwkP9EL0kSTs7OADi7uBAbE2OxjKHDR7Bz+18ADBo8hNUrV5Cfn8/NmxGE3bhBm7ZtzTSDBg9h2W/ynfOy335l8JChZeozMjIA0Gg0WFtZU7hWbE5ODrdu3aR1m6q/PJp37UakxUWRkRCDXqfl+tFdBLfs8p/oIy8cR9LLs2/jblzAwd3yn1zt1t25de4oAMEtu3D96C702gIyEmNIi4vCu7b5zU6tll24cmAbAFcObKNWq65l6gtyswFQqdWoNFbG9tbm55GRGIt3Lcs3VVUJr9qNSIs3tdeNY3fX3qXpo4q0d/yNCzi4WW7vWq27c7tIe984VqS94qPwstDeQS27cPWg3N5XD24z1lmavrC9hVqNSqMp3BQRnaG9vapBe+McCDnJ8paRkg7iz8r7m1sioKMczSyMVILsbKbflredRA+pEeDZ+O5s8GxickQ9Gsk2SDrZppxk2cY78WgEcafk13GnwLNR2XpdnvwsVKAq0tmqL5Cjo07KetVVgUrtbBqoByyQJKkJkAqMAn5B3r+8OXAOeKeoQAjhDowAmhjyFG5DMh+YJ0lSW0M5iwzpZ4CRBm07IAh4oL4Bfv4BREZGGo+jo6LwD/C3mLdd+w4cPBrK6nUbaNiocZn612a8yuyPPubitRt88PEnvDvrLbMyg4KCSU1JJT8/HwD/AH+iipQXFRWFn3+Amc7L25u42FgA4mJj8fTyKpd+7YZN3LgVRWZmBuvWrDamnzpxgo6dy/8nXFlxcPMiKzneeJyVkoCDm6fFvL51m/Dw+4sZ9PIcY/SyvPqG3QZx6+xRs3QnTz/ysjPQawsM5XmSWay8eItOi52LG9lpSQBkpyVh5+xWLv2gVz7n0a82UpCTTdjxv43pCRGX8WvQ3OJ5VyUc3DyLt1dyQolOoU/dJox672f6v/RZkfYun75B14HcPnfELN28vb2Kt1ey5c+PnYsbOYb2zinW3qXrB7wyl8nzN1CQm014kfZOjLiCb/2q395YO8t7ixeSlw42FnZvsnaWncjoO4asZMeBS7Dcra2yAo/6xfUBHaD1c1B/JGhszcu1dQNtjuwcgqwtZk+aXLeZPY6QLwcDyM8AK8fy6Zs9Ch3fAG0eJBQZoZYRBS6WI/gKlYuq4GyGS5J02vD6BPK4SldJkvYa0pYCd27/kI489nKREGIkkG1I7w18I4Q4DWwAnIUQTsAngJsh/TngFKC90xAhxJNCiFAhROj93plJCPMuDUs2nDl9iiYN6tK5fRt++O5b/lixskz9408+yf/NnEHjenX4v5kz+Oa7H8zy+vj5kpRo2kVHWOhiuZtrUpZ+xNDB1K9VE2sbG7r36GlMT0iIx8/Pr9z1VFos9GBZIiHiKr++8jArZ03l3M7V9H/+o3LrWw2ZhF6n49rh7Wbv2bt6kJORajLHwucH7qK9y9Bv/vwVlr44HLWVFQGNTbv35KSnYu9q2cmuWpTv+5R48yrLXh3D6nemcWHXGvoWtnc59C0Hy+19/bD52Gp7Vw9yi7S3xQ/QXf3kla7f+vmr/PbiCNQaa/wbFW3vFByqaXtbvMB1B0LYX+bvZSfIYzybT5PHRGbGymMlAaKPwtHP5a7r/AyoPdC8XGun4pHSe825JXD4E1Cpwa22KT0/07JTq1DpqArOZl6R1zrAtSyBJElaoB2wGhgObDO8pQI6SpIUYngESJKUIUlSuiRJUyVJCkEes+kFhFsod6EkSW0kSWpj+c/z3hEdFUlgoCnY6h8QQEy0eXd3RkYGWVnyj8j2v7ahsbLC3cOjVP34RyaxYd1aANauXkXrNubd4bk5udjYmu6Qo6KiCChSXkBAALEx0Wa6hPh4fHx9AXmCUWJCQrn1eXl5bN20iUFDTMMFbG1tyc3JNaunqpGVnICDu7fx2MHNi6yURLN8BbnZaPNyALh19ggqjQZbR5cy9Q069yeoRSd2/fC+xfp1+XmorayNx5nJCTgWK8/boj05aSnYu8hjx+xdPMhJTym3XleQT8Spg8W6j9VW1ujy86jqZKXc0V7uXmSnlt7et88eQaVWY+PoUqa+Xuf+1GzRkd0LZ1usX3tHe2elxBdvL3cvsizYk5OWgp2hve2KtHd59DptPhGnDxLcqnh7awuqfnuTn1Y8EmnjLEc378QxABqPhfavglcTeSxkYXd77Ak4uQDOLAJtNuTIEWbZiZTkR8xxy93h+oLiXdp5d9rjAvkW7MnPlB1VMDismeXXS1pIugweRbr7VRrDUACFyk5VcDbvJA1IEUJ0NRxPAvYWzSCEcARcJEnaArwIhBje2g5ML5IvxPDsKoQo/KV9HHlGu4VvWsVxIjSU2nXrEhQUjJWVFaMeHsOWzZvM8nn7mIaatm7TBpVKRXJSUqn62JgYunSVg8Pde/TkxnXzWYjXr12lZpCpu2PL5k2MengM1tbWBAUFU7tuXUKPm89W3bJ5IxMmTgJgwsRJbN60sVS9g4OD0TlVq9X06d+fq1euGMurW68eFy9euOvrV9mID7+Mq08gTp5+qNQa6rbvRcSpA2b57Fzcja+9azVCCBW5mWml6ms0a0fIwEfYOv//0JbgyKXG3sbJ09d4HHHqAHXb90KlscLJ0w9Xn0Diwy6Z6SJOH6RBl/4ANOjSn3BDnSXpNTZ2RudUqNTUbN6B1JhbxvJcfWuQHGV231flSAi/jIu3qb3qtOvFzVMHzfLZOZva28vQ3nmZaaXqA5u2I2TABP766v9KdNzT7mjvm6cOUqedqb1cvANJsNDeN08fpH5nub3rd+7PTUN7l6TX2NgZnVNL7e3iW4OUyLC7vXyVj/QoeUKPrRsItTy5Jumyeb5jn8PRufIj4YI8kzvJ0A5WDvKzjYs8/jL+jHxc6AyC3AWfFWdebnaiXHchSZdlG4RaTrfzgPRIc13SZfBpKb/2aWmypSS9yrqIPSpwry9HZQux97Rsn0Klo6oufTQF+F4IYQ+EAVPveN8JWC+EsEXur3jJkP48sEAIcRb52uwDngYaAb8IIXTAReCxe38Kd4dOp2PGSy+yduNm1GoVvy5dyuVLFwGY9vgTAPy86EeGjxjJY088hVarJTc3h6mTJ5apf+7Zp/l0zhdoNBry8nJ5YfozZvVnZ2cTHhZG7dp1CAu7weVLF1m7ehXHT51Bq9Xx6osvoNfL3Thff/s9Py9ayKmTJ5k3dw5LflvG5CmPcvv2baY8Mh6gRL29gwPLV63B2toGtVrNvr17+OnHhUY72nfoxMcffmBmX1VD0uvY/9s8Br/6ubyUzf7NpERHANC45zAALu5ZT502PWjy0HD0Oh26gjx2fPdumfquE19CrbFiyIwvAHmS0L6lnxerX5ufS3p8NM7eAaTHR5ESHcGN47sZ99GvSDod+3/9AsnQbddj6mtc2LOOhIgrnNz0G32ffZ+GXQeRmRzP9gVvA5Sot7KxZcALH6O2skaoVERdOsmFPeuNdvjWbUbousX36jI/MEh6HQd//5IBr8xFpVJxZf8WY3s16iFPqrv09wZqt+1Bo57DkHQ6tAV57Pr+vTL1nSe+iNrKmoGvyu0df+MiB34pu73Dju9hzIe/oNfpOPjbPGN7d5s6k4t71pMYcYXTm3+n9//eo2G3QWQmxbHz21kAJeqtbGzp98JHqDVye0dfOsnFou1drxkn1i+5V5f5AUIP1zfKYxmFgNiTkG0Y4+rXTn6OMV9arBhNJoDGXh53eW2DaQmi2v3AwTDUKDcFrq031+oL5Ek8tu6QmyzXnXAe2r5gWLpoI8au+/oj5DGjmVFway80Hg++reVo5sU/5Dwl6dVW0GSiHMEUAlLDio8/dQ6CiN3/4PopPGiI+z22sLqgVqkkB5uq6stbZvDQYbRs2YrZ771TduZ7QPMWIUx//gWefOzOe4t7T3XcG71Wq654BTfg2JpFZWe+B3jWrEfz/mPZvfD+31yo7/MwmQeB4FZd8QxuQGgFtbdHzXo07zeGPT9+eN/rfvLRrmVnqmp4NAYnf4j4J6sF/gc4+snLL11edd+rFj0+OiFJUtVf1uQ+Ur28IYV7yqYN63F3dy874z3Cw8ODD957t8Lqr26En9yPraOFGbL3CVsnF45XkONTHYk4uR8bx4qbrGHr6MLxNT9VWP3VjqSL8rqXFYWVPYRXkKOr8J+jRDbvEdUxslmdqY6RzepMdYxsVmeqZWSzGqNENv97quIEIQUFBQUFBQUFhQcEJfR2j3CytaJrA9+yMypUCVYcvVHRJijcR/YsfqKiTVC4jzw/a01Fm6CgUKlRIpsKCgoKCgoKCgr3DMXZVFBQUFBQUFBQuGcozqaCgoKCgoKCgsI9QxmzWYVo1ak7T8x4B5VKzY51f7Jq8XdmeZq27sBb834kLvo2AId3b+PPhV+VSz9i0pNMe/lNHukZQnpqilnZbp7ePPf2J7z/wjQARk/7H32GjUWv17Hws3c5dXifmcbR2YWZny7Axz+QuOhIPp35P7Iy0kvVv/vNUty9vFGrNVw4dYzvP34bvV7PoLFTyM3JZteGlf/iKlYe2nbpwfQ3ZqNWqdi86g/+WPSNWZ4WbTvywYLFxEbK7b1/5xZ++XZeufRjpj7NMzNnMaxjU9JTk83Kdvfy5tX35/DGM1MAmPDEdAaOGo9Or+ebD9/i+MG9ZhonF1dmffE9vgGBxEZF8t5LT5GZnlaq/tOFv+Ph5Y1ao+Fs6FHmz34DvV7P8AlTyc3JZtva5f/iKlYiXOpC8AB58ev4kxBtvmOUEQd/aPoEXFsJyfLmDPh2AO9WgID4ExB7RE4P7AHerU17Yd/eBanXzMu0coTaQ+HKMvnYvyt4twRJgogtkGZh3LLaDuo9DDaukJcK11aALrd0fcOJYOUEQgUZNyF8MyCBTzvQ50PC6bu5apWWRm06M/KZ11Cp1Bzetoady82XfarbvA1PvPcVSbFRAJw9sIttv39fqn7YEy/TtEMPtAUFJMbcZtnct8nJyjAr29ndk3EvvsvCWfKmen3GPUaHfiPR63Ws/vYTLp84ZKaxd3Lm0Tfn4u7jT3JcNIs/eJWczPRS9c98+B3O7l6o1GpunD/Jym8+RNLr6Tp0PPm5ORzdvu7fX0yFCqdKRjaFEO8LIXr/A11DIcRhIUSeEOLVO97rL4S4IoS4LoR4/b+z9r9BpVLx9OuzeXf6FJ4d1Ztu/YdSo3Y9i3kvnjrOC+MG8sK4gUZHsyy9p48fIR26EB9jYYsyA8MnPs5fa+UdI2rUrke3fkN4dnQf3n12Cs/83weoVOYft9FT/8fZYwd5algPzh47yOip/ytT/+lrz/L82AE8O7oPLm4edO4zCICd65czZPz9X9C9IlCpVLzw9ke8/uQjPDqkB70GDSOojuX2PnfiKE+M7MMTI/sYHc2y9F6+/rTp1I3Y6JLb++EpT7F5pex4BNWpx0MDhzF1SE9ee2ICL8z62GJ7T3hiOicPH2BS/y6cPHyACU9ML1P/3ktP8fiIPkwd0hNXdw+69x8CwNY1fzJy4gO3mdc9QkCtQXD5NzizADyagZ1XyXlr9oHUItvK2nnLjub5H+Hsd+BWX94dppCYw3Due/lhydEE8OskO6kg1+3RVLbl8q9Qa7Bc750EdIH0MDjzlfwc0LVs/bWVcO47OLsANA7g0UROTzglO8zVAKFS8fD0N/n+zf/x0RPDaN1jAL41a1vMe+PcST575mE+e+Zho6NZmv7KycN8/MQIPn16FAmRN+kz7nGL5fYcNZnDW1cD4FuzNq26D+DjJ4fz3ZvPMOa5txAWvt+9xz7G1VNH+WDqYK6eOkqfsY+VqV/84at8+sxoPn5yBI4ubrTs1heAI3+tpfvwCf/iKio8SFRJZ1OSpFmSJP2T1WCTkbesnFs0UQihBhYAA4DGwHghRON/beh/SL2mIcTcjiAu6jZabQH7/tpI+x59/jP946/OYvH8jyltXdZOvQZwwhCNat+jD/v+2oi2IJ+46NvE3I6gXtMQM037Hn3YtVH+Qdu1cTUdevYtU5+TlQmAWqNBo7Ey2pSXm0t89G3qNWlR7vOurDRs3pLoWxHERN5CW1DA7i3r6fxQv/9M/+zr7/LD3A/kqFMJdOs7kGP79wDQ+aF+7N6ynoKCfGKjbhN9K4KGzVuaaTo91I+/1q8A4K/1K+jcq3+Z+uyi7W1lbbQpLzeH2OjbNGwWUu7zrrQ4BsjbBualyNsPJp0Ht4aW8/q2h+RLoM0ypdl5QmakvA0heki/CW6N7s4G90YmB9atoWyDpJMjlrnJso134tbQFIlMOG2yuTS9zrA/u1CBSo1xW0R9gZzXwUI9VYygBs1IiL5FUmwkOq2Wk3u30qxTz/9Ef/nEYfR6HQARl8/g6uVjsYwWXfpwKVSOnjfr1JOTe7eiLSggOTaKhOhbBDVoZqZp1rEnx3bI218e27HeWGdp+txs+XOqUmvQWJl+zwvyckmKi6Zmg6blPm+FB5dK4WwKIYKFEJeEED8KIS4IIbYLIeyEECFCiCNCiLNCiLVCCDdD/iVCiNGG158IIS4a8sw1pHkJIVYLIY4bHp0BJEmKlyTpOFBwhwntgOuSJIVJkpQP/AkMu28XoBx4ePuSGBdjPE6Ki8HDy/LSSw2at+Kr5Vt595ul1DREL0vTt+vem6T4WCKuXiqxfh//GmSmp6EtyJfL8/IlMdZUXmJ8LB7e5va4eniSkijv+ZuSGI+ru2e59O8t+IXfdp0kJzuLQzu3GNOvXzxHk1btSrSzquDp7Ut8bLTxOCEuBk8fP4t5G4e0ZtHaHXzyw28E161fpr5Tz74kxsVy48rFEuv3DZDbu8DQ3p4+fublWWhvdw9PkhPk9k5OiMfN3aNc+s9+XMbaA2fJycpk71+bjOlXzp+hWetqsKC+tTPkp5mO89PA2sk8n5WT7BTGHS+enh0PTkGgsQOVFbjWA5siuz/5toNmz0DtYaC2NS/XxlXeW1vSGexxusOedNlGM3scoEC+WaAgUz4uj77hJGg9U3Y8k4p8DjOj5f2yqziunt6kJsQaj1MT4nDxsOwU1mrcgte+W8XTH36Hb1Cdu9J36DeCi8fNh2O4+waQk5mOtkD+K3Tx8CElIc5UXmIcrp7eZjonNw/SkxMBSE9OxMnVo1z6Zz76no9W7CU3O5vT+3cY029fvUCdpq0snrdC5aJSOJsG6gELJElqAqQCo4BfgNckSWoOnAOKbcothHAHRgBNDHkKN1GeD8yTJKmtoZyy9rwLAG4XOY40pBVDCPGkECJUCBGar9Xd5en9OyztZyJhHpW6cfk8jw3sxPNjB7DxzyW8Oe/HUvU2traMeWw6v3/3Ran1u3l5k5aSZLLH0g4rd7FbVVn6d56dzOQ+bbGytqZ5207G9NTkRNxLuFOvSli6PpaiztcunmNcr3Y8PqIPa3//mdnf/Fyq3sbWjolPPc/ir+eUWr+Hlw+pyfevvWc+MYFR3VpiZW1Nyw5djOmpyYl4elf99i43wQPg1g6487ufmwjRB6HRZHlMZHYsSHr5vbjjcGq+3IVekAlBFiLkVk7FI6Ul/GKUnzL0l3+FE3NBaMCllildmyXbUuUp3/c78vol3pnYl0+fGc2+dct4/N355db3Hf8EOp2O0F2bzPK6uHuSWWScdnl/b0qiLP13bzzNW+N6orGyon6I6eYxIzUZFw9zp1ah8lGZnM1wSZJOG16fAOoArpIkFc5CWAp0u0OTDuQCi4QQI4FsQ3pv4BshxGlgA+AshCjtF6xcv6ySJC2UJKmNJEltrDXqcpzSf0difGyxyJaHjx/JRe4kC8nJyiQ3R74MJw7sQa3R4OzqVqLeNzAIn4AafLV8K4s2H8DT248vl23G1aP4eLH83FysbWyK2BODp6+pPE9vX5Is2JOalIib4Q7XzdObVMNdcXn0Bfl5HN27g/Y9+hrTrG1syc/NLeVKVQ0S4mLw9vU3Hnv5+JEUH2uWLzsrk9xsub2P7tuNRmOFs6t7iXr/GkH4BtZk0bqd/LHzKF4+fixc/RdunsXbOy+veHsnxEablZdoob2TkxJx95Lb293LmxSDw1oefUF+Hod2by/W3W9tbUteXtVvbznyVyQSae0C+eaTOnDwh3qjoeWL4N5YHudZ2HWdcBLO/QAXF4M2B3INNwsFWcg/Z5I8JtNSd7i+AFRF5pOa2eNs2Z6CLHliEcjPhZOQyqOXtJByufhwAaExDAWo2qQmxuFapGfK1cuH9OR4s3y52Vnk5+YAcPH4ftRqDQ7OrmXq2/UZSpP23fnlE8vTDwry8tBYm77fqYmxuBW5iXf19CEtKcFMl5GShLOhd8rZ3ZOM1KRy67UF+Zw/8jfNOpqGC1hZ21CQn2fRRoXKRWVyNot+4nSAa1kCSZK0yF3gq4HhwDbDWyqgoyRJIYZHgCRJFn4pjUQCNYocBwLRJeStEK5dOIN/zVr4+NdAo7GiW78hHPt7h1m+ok5ivSYtUAkV6akpJepvXr/CpF6teXxQFx4f1IXE+BhenDCI1Dt+KKJuhuHtH2g8Pvb3Drr1G4LGyhof/xr416zFtfOnzew5tncnvYaMAqDXkFEcNdhckt7Wzt7onKrUatp07klkhGkWrH9QLW7euPLPL2Ql4fK50wQE1cI3oAYaKyseGjiMQ3u2m+Ur6iQ2bBaCECrSU5NL1Idfu8zILs0Z37s943u3JyEuhidH9SMlsXh7R0bcwDfA9JU4tGc7Dw0chpWVNb4BNQgIqsXls6fM7Dm0ezv9ho0BoN+wMRza/Vepelt7e6NzqlKrad+9F7fCTBNfAoNrE36t6rc3mdHyhB4bVxBqeXJNymXzfKe/hFOGR/JFeSZ3YT5NYRe2i9zVnnhOPi50BkEex5lt7tSQmyTXXUjKZdkGoZbTbd0hM8pcl3IFvELk114hJltK0qusi9ijkicy5SSayrPzgBwL9lUxbl05j1dAEO6+Aag1Glp1H8C5w3+b5XNy8zC+rtmgKUKlIis9tVR9ozad6T1mGj++8xwFJdyoxUfdxN3HdPN37vDftOo+AI2VFe6+AXgFBHHzyjkz3fkjf9OujzzCrF2fYZw7vKdUvbWtndE5VanUNG7blbjb4cbyvAKCiIkoYcKaQqWiMi99lAakCCG6SpK0H5gEFFtrRQjhCNhLkrRFCHEEKPyX2g5MB+YY8oUUiZpa4jhQTwhRC4gCxgEP1DQ5vU7H95/O4r1vf0GlUrNz/Qpuhclf0v6jHwFg26rf6dx7IAMfnohOpyUvN5fP/u+5MvXlIS83h9jbt/CrEUTM7ZvcCrvGge2b+Xb1TnQ6Ld9/Ii9PBPDcrE/Zuuo3rl88x6rF3/Lap9/SZ/hYEmKi+WTmMwAl6m3t7Hn7y0VorKxRq9WcOX6Irat+M9rRuEUb/vzhy//ikj7Q6HU6vvrgTT5btAyVSs3WNX8Scf0qAEPGTgJg4/Jf6d53MMPGT0an1ZKXl8vsV54pU18ecnNyiL4VgX/NYKJvRRBx/Sp7tm1k8aa/0el0xuWJAF6dPZcNf/7C1Qtn+WPRN7zzxfcMHD2O+Ogo3n3pKYAS9XZ29ny4YAlW1nJ7nzxykA3LfzHa0bRVW5YuKH2IR9VALy8P1HCSPHEm/hTkGG4AvNvIz/GhpRdRf6w8ZlPSy05o4RJENfuCg688bCEvFcI3Wqi+AHJTwMYd8pLlupMuQIvpcnkRhuWJQF4eKS4UsqIhej/UGwNereQxmlflyWEl6tVW0GCC7IQKFaSHy2UV4lQDIv/+Z5ewEqHX61j1zUf876PvUanUHPlrLbE35ZvqzoMeBuDg5pWEdO1Ll8Fj0Ot0FOTnsvSjGWXqRz/7Bhpra/73yUIAIi6dZcVXs4vVn5+bQ2LMbTz9a5AYfZvYmzc4te8v3vhxPTqd1rg8EcD4l97lwKYV3L52kR1//sTUt+bSof8IUuJjWPzBKwAl6m1s7Xniva/RWFmjUqm4evoYBzetMNpRu0kI234zX8JPofIh7mbcRUUhhAgGNkmS1NRw/CrgCKwDvgfsgTBgqiRJKUKIJcAm4CCwHrBF7gqfK0nSUiGEJ/Ls8kbIDvc+SZKeFkL4AqGAM6AHMoHGkiSlCyEGAl8CauBnSZI+LM1mV3sbqbrtjd6hZz/qNmrGb9/OLTvzPaB2gyYMn/g4X7z90n2vOzO36nft3UmX3v2p36Q5P8//rELqr9uoKQ8/+iQfv/b8fa+7Wu6N7tZQ7qaP3F0x9dv7yssv3bj/+5RXx73Rm3d+iBr1mrB5ydcVUn9gnYb0HDWZXz97477X/fWO8yckSWpz3yuuwlSKyKYkSRFA0yLHRb0Zs4XXJEl6tMih2dRkSZISgbEW0mORu8gt2bAF2GLpPQWZI3v+wtnVrcLqd3Z147dvP6+w+qsbB3Zuw9nVveyM9wgXN/cKc3SrJSmXQWNfcfVb2Veco1sNOXtwNw5OrhVWv4OLG5uXmm9UoVA5qRSRzcpIdYxsVmeqY2SzOlMtI5vVmOoY2azOKJHN/57KNEFIQUFBQUFBQUGhklEputErI3laHdfj0ivaDIX7xKXV93/coELFMemVPyraBIX7SH1fl7IzKSgolIgS2VRQUFBQUFBQULhnKM6mgoKCgoKCgoLCPUNxNhUUFBQUFBQUFO4ZypjNKkSXHr14Y/bHqFRqVv3xK4u++dIsT9uOnVmweBmRt28CsHPLRr6dN6dU/fMz3uChfgPRS3qSExP4vxefJSHOfGtEL28f3p8zn2emjAPgiekvMWr8RPR6HR++9ToH95ovW+Li6soX3/9MQGBNoiJv8dJTU0lPSytVv/D3lXh5+6LRqAk9eoTZb7yKXq9nwtQnyMnOYu3yZf/6WlYKXOvKe2ELAXEnIfpAyXkd/KHZE3B1pbyzDIBvB/BpBQiIOwGxR4pr/DpBcD84/ilos82KxMoR6gyFy4br7d8VfFrKi4OHb4G0G+YajR3Ue1jeNSYvVV7ku3Bx8ZL0jSbK+2ELFaTflBckRwLfdqDLh4TT5b5klZlm7bsy6cU3UanU/L1xJZt+W2iWp2HLdrz0yXckxEQCELp3O+sWLyhV365nf0Y89hz+QXV494nRhF8+b7F+Fw8vHnvtA76YKS/EP2TSU3QfPBq9Xsev8z7g3DHzz5+DkwvTZ3+Jp28AibFRfP32C2RnpJeqn/H5Ilw9vFFp1Fw5E8rSz99D0uvpPWoieTnZ7N9SvWeG1wnpSL9pryBUKk7tWs+htUvN8gQ1acWY1z4nNV7e6O7y0T3sX7nIYnkT3/2WFZ/OID8nq1xlA/Sb9gp1W3WmID+XDV+/R2z4lVJt6zHuaeq364akl8hKS2bDN++RmZKId806dBg6kQ3fvPdfXBqFB5gqGdkUQrwvhOj9D3QNhRCHhRB5hoXji773sxAiXghh+Ze4glGpVLz90RyefORhhvTowKBho6hTr4HFvCeOHmZkn26M7NPN6GiWpv/pu68Z3rsLI/t04++df/G/l2ZaLHfKU8+ycpn841KnXgMGDhvJkJ4deWLCaGZ9PBeVyvzj9sT0lzh8YB/9u7Th8IF9PDH9pTL1Lz01jRF9ujKkZyfcPTzoP2Q4AGv+/I2Jjz31zy9ipULI+15f+g1OLwDPZmDnVXLeoD6QatrmETtv2dE89yOc+U7eFtC2yJqZ1s7gWkd2CEvCv5PspIJct2dT2ZZLv0LtwXK9ZpoukBYGp7+SnwO6lq2/uhLOfgdnFoCVA3g0kdPjT4Gf2TK7VRKhUjHllXeY88oTvPbIQDr2Hox/cB2Lea+cCeWtR4fx1qPDjI5mafrIsGvMf2M6V04fL9WGAeOm8vcGeXcX/+A6dOg1iNcnDmTOy48z5dV3ERa+30MmPcmF0MPMGNeXC6GHGTLxyTL1X7/9Am8+OpT/mzgIZ1d32vccAMC+Tavo+/Dkf3D1qg5CpaL/EzNZ9uELfPfiGJp26YtnYC2LeW9dOsWPrz7Cj68+UqKjWbdVZ+IirpGfk1Xusuu26oS7X00WTB/J5u8+YuCTr5dp26H1v7Lw5Qn8+OojXDtxgG4PPw5A/K0bOHl44+zpY1aPQtWiSjqbkiTNkiRp5z+QJgPPA5a2wFkC9P83dt1Lmrdsza2IMCJv3aSgoIAt69fwUL+B/4k+K9O0bbydnYMcebJA34FD2L9nFwAP9RvIlvVrKMjPJ+r2LW5FhNG8ZWszzUP9BrB+hTyzd/2KP+jVf2CZ+kJ7NBoNVtbWFK4Vm5uTQ/TtWzQLaVXu8660OAZAbjLkpYCkg8Tz8g4vlvBtD0mXoCDLlGbnCRmR8jaE6OWIoXsj0/vB/eHm9hLbGpDzFzqwbg1lGySd7KDmJss2mmkamiKROCCsOAAAqwBJREFUCafl47L0ujz5WajkbQwLt0XUF8h5LdVTxajTqDlxkTdJiL6NTlvAkV2bad21/PfTpemjb94g9lZ4GSVA2+79OHt0HwCtu/bmyK7NaAsKSIiJJC7yJnUaNTfTtOrai/1b1wKwf+taWnfrXaY+N1v+nKrVGjQaKyRDe+fn5ZIYE0VtC/VUF/zrNiEl9japcVHotVouHNhBg7bd/3F5zbr15+rxvXdVdv223Tm7dzMAUdfOY+vghKOrR6n6/BzTb4+1jZ2xTQGuhe6nSee+//gcFCoHlcLZFEIECyEuCSF+FEJcEEJsF0LYCSFChBBHhBBnhRBrhRBuhvxLhBCjDa8/EUJcNOSZa0jzEkKsFkIcNzw6A0iSFC9J0nHAbIVuSZL2ITujDyTevn7ERkcZj+NiovHx87OYN6R1W9bu2M8Pv62kbv2G5dK/8Npb7A49z5CRD/PVnI/MygyoUZP0tFQK8vMB8PEzL8/b19weD09vEuLjAEiIj8Pdw6tc+h+XreLA2WtkZWby16b1xvTzZ07Tun1Hi+ddpbB2hrw003F+Gtg4WcjnBB6NIO6OqFVOPDgHyd3aKitwqwfWhuVd3BpAfgZkx5Vcv40raHNl5xDkuvOL2pMu23gnVg5QkCm/LsiUj8ujbzQJ2swEfR4kXTSlZ0aDU1DJdlYR3Lx8SI43DV1Jjo/FzctyNKhu0xA+XLKBV+cuIqBW3bvWW8LLL5CsjDS0BQXG8pLiYozvp5RQnrObJ2lJ8h7uaUkJOLt6lEs/44ufWLDpMDnZWRzbs82YHn75HA1aVN+1tp3dvUhPNH0v05PjcPKw3KMR2KAZT37+O+PfnI9XjdqW8zRsQcyNy3dVttOd+ZLi5ehkGfqeE57h+R820bRbf/b++YMxPfr6RWo2blnWqStUciqFs2mgHrBAkqQmQCowCvgFeE2SpObAOeCdogIhhDswAmhiyPOB4a35wDxJktoayrHcx3CXCCGeFEKECiFCtXr9f1Hk3dRtlmZpd6iL587Sq11zRvTpyu8/L+Sbn38rl37+px/wUJumbFyzkkemme+e4uXjS3JS4l3bUxJl6Z+YMJpuLRtibW1Nhy7djOnJiQl4+1TTnZssXd7gAXBzh/mbOYkQfRAaTZbHRGbFgqSXHc+AbnC7jG0BrZxAWyRSaqnL3KJBJVGG/tKvEDoXhAZcinTtFWTJDnUVp7zfp4grF3hpVE/efHQoO1b/yosff3tX+pJw9fAiI9V0ry0stJd0F+1dln7Oy4/x3LDOWFlb06S1aahEekoyrp7e5a6nylHOdowJu8JXTw9l4SuPcHzrch5+bY7F4uwcncnPzb6rskv8LJWh37PsO756ajDn922j7YAxxvTs9BSc3Dwt2qdQdahMzma4JEmnDa9PAHUAV0mS9hrSlgLd7tCkA7nAIiHESKBwlkNv4BshxGlgA+AshPjX/1iSJC2UJKmNJEltNBbGL91L4mKi8fU3dSf6+PkTH2s+iScrM4NsQzfVvt070FhZ4eruXm795rWr6DtwqFl6Xm4ONja2xuPYaPPyLE0qSkqMx8tbjmh4efuQbIiClEefn5fH7u1biw0XsLa1IS8316yeKkd+OtgUWWja2kWORt6Jgz/UGw0tXwSPxlB7kKm7Pf4knPsBLiwGbQ7kJoGtG9i6QvNnZI2NMzR/Sp4MVBR9gez4FZKXboqMghyVtGRPQZapLCtHU9d+efSSVt6f273IcAGVxjAUoGqTHB+Lu7fpJsrd25fUxHizfLnZWeTlyD9zZw7vRa3R4OjiVm59SeTn5WJlbWOyJyEWDx9TT4Obty+pCeblpack4mKIbrl4eJGemlRufUF+PicP7KZVkeECVjY2FORVg+93CaQnxRcb3+js7kNmcqJZvvycLApycwC4fvIQarUGOyfzhen1Op3RSSxv2Wb5PLzJTE4ot/78gW007PCQ8VhjZU1Bfl6p561Q+alMzmbRT6MOcC1LIEmSFmgHrAaGA4X9MSqgoyRJIYZHgCRJFv4ZKw/nTp8kqFYdAmrUxMrKioHDRrJn+1azfJ5epqhAs5BWCJWK1OTkUvVBtUxdMD379Sfs+lWzciNu3CCgRk3j8Z7tWxk4bCRW1tYE1KhJUK06nD11wky3e/s2ho0ZD8CwMePZ/dfWUvX29g5G51StVtO9Vx/Crl8zlhdcuy7Xrly6q2tXKcmMlif02LjK4xg9m8qO2J2c+tL0SLoIYZtN+TSGLmxrF7mrPfEcZMdD6ByTJi8dzv5g6vouJDdJrruQlMuyDUItp9u6Q2YUZqRcAa8Q+bVXCCRfLl2vsi7i6KrAtb4clS3E1kO2uYoTdvkcvoHBePkFotZY0aHXIE4e2GWWz8XdFCGq3ag5QqjITEspt74kYm9H4Olnuvk7eWAXHXoNQmNlhZdfIL6Bwdy4dNZMd/LAbroOGAFA1wEjOLl/V6l6Gzt7o3OqUqtp0bE70TfDjOX51ggmMuyaWT3VhejrF3H3q4mrtz8qjYYmXfpwNXSfWT4Hw3AFAP+6jRFCRU5Gmlm+pOibuPkE3FXZV4/vo3n3QQAE1GtKbnYmmalJperd/WoY9fXbdCMpKsJ47O5fk4RbFlauUKhSVOalj9KAFCFEV0mS9gOTgL1FMwghHAF7SZK2CCGOAIXTcbcD04E5hnwhRaKmlRKdTscHb85k0bLVqNRq1vz5O9evyn/kYydNBWD5r4vpO3gY4ydPRavVkZebwyvPPFam/uU33qFWnXro9Xqio27z7msvm9Wfk5PNrYhwagbX4lZEONevXmbbxnVs+vsIOp2W2W/MQG8YWjB77nz+/GUxF86eZtE38/ji+8WMHjeR6KhIXnrqUYAS9Xb29ixYsgxraxvUahVHDu5n+S8/G+1o1bY9C7749J5d5wcHvbw8UKNJ8sSZ+FOQI0eF8TGMaYsLLb2IBmPlMZuSXnZCdXcRMdIXyJOTbN3lyTw5CZB0AUKmy+UVLk8EUHuobEtWNETth/pjwLuVPEbzqjy7uUS92goaTpCdUKGCtHCILXJeTjUg8u/y211J0et0/DLvfWZ88RMqtZp9m1YRFS7/nD00XF5qbPe6P2nbsz+9RoxHr9WRn5/Lt++8VKa+dbc+TH7pbZxc3XllzkJuXrvEnJcfK1Z/Xm4O8VG38Q6oSXzULaLCr3N09xY++X0rep2WpV/IyxMBPPb6h+xe9wfhl8+z6deFTJ89n+6DR5MUF8PXb8nbupakt7G14+VPv0djZYVKrebiiSPsXmfaGrR+s1as/fmbe3uxH2AkvY5tiz5jwttfIVRqzuzeQMJt2Rlv1XckACe3r6FRx4do0280ep2Wgvw81sx702J5108cJKhJa1JiI8td9vWTB6nbqjPPLliLNi+XDQveL9O2hyZOx8M/CEnSk5YQy5YfPjbaENy0DddOHrw3F0zhgUHczbidikIIEQxskiSpqeH4VcARWAd8D9gDYcBUSZJShBBLgE3AQWA9YIs8KGyuJElLhRCewAKgEbLDvU+SpKeFEL5AKOAM6IFMoLEkSelCiD+AHoAnEAe8I0nSTyXZbGetkYI9q/5YsqL07j+IJs1DmP/ZhxVSf6OmzXj0yWd57fmn73vd1XJvdPeGcjd9WeM77xX2vvLyS9fv/7qLk16tfnujt+7Wh1oNmrDqxy8rpP6geo3oP24aP8yecd/rrqp7ozu6ejDs+ff4/f3pFVK/WmPF5Nk/sOTNJ5D0ugqxwRKz1oSekCSp+s5EuwdUisimJEkRQNMix0WXJjJbaE+SpEeLHLaz8H4iMNZCeiwQWIIN48ttcDVl57bNuLq7l53xHuHm7lFhjm61JPkyaOwrrn4r+4pzdKshJ/btwNHFtcLqd3J1Y3UFObpVlczUJE7tXIe1nUOx5YnuFy5evuz+7ZsHytFUuDdUishmZaQ6RjarM9UyslmNqY6RzepMVY1sKlhGiWz+91SmCUIKCgoKCgoKCgqVDCWyeY9oUdND2jZjUEWboXCfOBGeUNEmKNxHBneqW9EmKNxHVA9X30lJ1REJlMjmf4wS2VRQUFBQUFBQULhnKM6mgoKCgoKCgoLCPUNxNhUUFBQUFBQUFO4ZirOpoKCgoKCgoKBwz6gU62zeLUKI95EXat95l7qGwGKgFfBm4XqeQogawC+AL/Ji7wslSZr/31p977Cp2QznbhNBqMi+uJesE5vM8lgHNMRt0Ivo0uWJLrk3Qsk8vt5iee7DXydl85dIBbnlKhvAudtEbIJaIGnzSN35I9qEm6Xa5th+FLa1W4Ikoc9JJ3Xnj+izUtF4BOLQcgBpO3/8Ly5NpcarYWuaDH8aoVJx68g2buxeaZbHo04z2kx7h+xkeV/52HOHuLZ9Wal6vxZdqN9vIo7eNTjw5YukRVreHtDGyY3mY17g+E/vAlCn1xhqtu+HpNdzYe13JFw5aaaxsnek1aT/w97dh+zkOE7+8jEFOZml6ts9ORtbZ3eESk1y2HnOrf4WJD3BXYagzcsl8viOf3chKws+jSBklLyTUvhhuFLKebvVhIdegSOLIeq0nFa3O9TqBAgIPwTX/5bTXQKg1VjQ2EBWEhz7BbQWdpOydYbW4+HgD/Jxgz5Qq6O849PpVRBnYbtUK3voMBXs3SE7GY78DAU5peu7PAO2LvJ5Jt6AUysACep0A20e3Dx699euEtKvXz++nD8ftVrNT4sW8emn5jujde/enXXr1xMeHg7A2jVrmD17drn0r7zyCnPmzsXL05OkpCSzsn19fVn4448MHTIEgNdff51pjz2GTqfjheefZ/v27WYaNzc3/ly+nODgYCIiIhg7Zgypqaml6rds3Yqfnx8ajYYD+/fz7LPPotfrefbZZ8nKymLJkiX/+BoqPDhUycimJEmz7tbRNJAMPA/MvSNdC7wiSVIj5EXknxVCNP6XZt4fhMC5x2SSN8wl4ffXsavfAY2bv8Ws+dFXSfzzbRL/fLtER9MmuAUFibeQCnLLXbZNUHPUrj4k/DqDtN2LcenxaJm2ZZ3cTOIfb5H459vkhp/Gse1wALRJkagd3VE5epjVU60QKpqOfJZjC9/m70+fIqBVDxx9alrMmhx2nv2fT2f/59ONjmZp+oyYm4Qunk1y2PlSTajdYyS3jmwDwNGnJgEtu7P306c5uvAtmo6aLjsLd1D3oTEkXjvNno8fJ/Haaer0GlOm/uTSj9k391n2fvY01o4u+LfoCsCto9up1XXY3V+7SomAlg/Dge/grw+hRmtw8i05b7NhEHvJlOTsJzuau+fCzk/Aryk4ynuQ03o8nNsAOz6G6LPQoJflYuv1hLBD8msnX9mG7R/B/u+g5Ri53jtp2Afir8Jfs+Xnhn3K1h9ZLNu44yOwcYTAlnJ6xGHZYa4GqFQqvlmwgIEDBtCkcWPGjR9Po0aNLObdv38/rVq2pFXLlkZHsyx9YGAgvfv04ebNmyXa8PLLL7PoR/mmvlGjRowdN46mTZowoH9/Fnz7LSqV+ff79ddfZ/euXTSoX5/du3bx+uuvl6kfO2YMLUNCaNa0KZ5eXjz88MMA/Pzzzzz3vLJ+cVWhUjibQohgIcQlIcSPQogLQojtQgg7IUSIEOKIEOKsEGKtEMLNkH+JEGK04fUnQoiLhjyFkUovIcRqIcRxw6MzgCRJ8ZIkHQcKitYvSVKMJEknDa8zgEtAwH28BP8YK5866FLj5YilXkfO1SPY1G71j8uzq9+JvPCTd1W2Te1W5FyS974tiLuBysYelb1LqXqpwBRZEVY2GPfZBnLDT2FXv/0/PoeqgGvN+mQlRpOdHIuk0xJ1ai8+Tc020/pH+sz422QlRJVZhm/zziRcPgGAT9MORJ3ai15XQE5yHFmJ0bjWrG+m8Wnakcjj8n1g5PGd+DbtWKZem5cNgFCpUamtkAyfBX1BHjkpcRbrqXK4B0Fmohx5lHRw+wT4N7Oct253OZqZl2lKc/KB5AjQFciRxMRr4N/c8J43JMr7pBN3GQJaWC43IATiDA6sfzPZBr0WspNk29yDzDX+zUyRyJtHTXWWpi+MqgoVqNSmsnQFcnTUzUI9VYx27dpx/fp1wsPDKSgoYPmffzJsWPlvrMrSfzFvHq/NnElpSx+OHDWKbdvkm8lhw4ax/M8/yc/PJyIiguvXr9OundnmfAwdNoylS5cCsHTpUoYNH16mPiMjAwCNRoO1tbXRppycHCIiImjbtm25z1vhwaVSOJsG6gELJElqAqQCo5C7tl+TJKk5cA54p6hACOEOjACaGPJ8YHhrPjBPkqS2hnIWldcIwz7tLQGzvhwhxJNCiFAhRGhSZt7dnd09Qu3ghi7T1EWiz0xG7ehmMa+1b108x3+A29BX0Lhb9qWt/OpREB9xV2WrHdzRZSYbj3WZyagd3cvUO3UYjfej87Br0InMI6b9rwviw7H2b1DGmVdt7Fw8yU01re2Zm5qInYvlaK9bcCO6vbqAdk+8b4xe3o3eYv3uPhRkZ6LXFRjK8yheXloidi6eZjobJ1fyMlIAyMtIwdrRpVz6dk9+QJ/3/0Cbl03MmQPG9NTb13CvZdzJtupi5wo5KabjnFQ57U5sXSCgOdw4UDw9PQY864K1PaitwLcJ2LuZ3vMzOK6BLcHOwu+DvQcUZMvO4d3YY+MEueny69x0+bg8+i7/gyEfy93mkadM6Sm3wLOOeT1VjICAACJv3zYeR0ZGEhBg+Te5Y8eOnDp9ms1bttC4ceMy9UOGDCE6KoqzZ8+WWH9wcDApKSnk5+cby7tdpLyoEuzx8fEhNtYwZCc2Fm9v73Lpt27bRlx8PBkZGaxatcqYfiI0lK5du5Zop0LloTI5m+GSJJ02vD4B1AFcJUnaa0hbCnS7Q5MO5AKLhBAjgWxDem/gGyHEaWAD4CyEKHNvSSGEI7AaeFGSpPQ735ckaaEkSW0kSWrj4WhzVyd3z7DQs4WFm9mC+Ajil75E4h9vkX1mB26DXrBYnMrWwRR1LGfZlvJJklSmPuPIKuKXvETOlUPYt+htTNdnp6N2cLVoX7XB4jU1T0uLvMGu2VPYN/dZIg5spO20WXelLwlbZ3fys9JKNUiy+GEoidL1xxa+xc53H0GlscKzninylp+Zio2L+13UU5WwcH1DRsld4ne+lxEnj/HsOl125FKj5AgnQOgyqNsVes0AjS1Y2qfazrl4pLS89twVRfQHvoVNb4JKA95FItd5mWBX9beOFMLC98HCF/TkyZMEBwXRMiSEb77+mrXr1pWqt7Oz440332TWrFml1u/n50dCgunmr7z2lERZ+gH9++Pv54eNjQ0PPfSQMT0+Ph5/f8vDvhQqF5XJ2SwaKtQBrmUJJEnSAu2QHcThwDbDWyqgoyRJIYZHgKF7vESEEFaGcn6XJGlNaXkfJHSZKaiLjG9UObqjy0oxyycV5CIVyJc47+ZZUKkRto7mBer1FDoG5S27MJJZiNrRHX1WSrn1uVcPY1vH1JUiNFZI2gKzfNWJnNREbF29jMe2rp7kppsP8tfmZaPLl28O4i8dR6g1WDk4l1tfErqCfNQaa5M9aXeU5+JJbpp5eXkZqdg4yZEzGyc38jPTyq3XawuIO38U3yLDBVQaa/QF+eW2u9KSk1o84mjnCjlp5vncakL7R2HAuxAYIo+FLOy6jjgCuz6DvfPlKGWGwZnIiIP938KuOXA7FLISzcvVFcgR0bu1Jy9DnlgE8nNeRvn1ei3EnDPZD7Lzqav67R0ZGUlgjRrG48DAQKKjo83yZWRkkJWVBcDWrVuxsrLCw8OjRH2dOnWoVasWp8+cISw8nMDAQE6cPImPj0+xcnNycrC1tS1mT40i5QWUYE9cXBy+vvJYYl9fX+Lj48utz8vLY+OGDcW6+21tbcnJySnlSilUFiqTs3knaUCKEKIwxj4J2Fs0gyES6SJJ0hbgRSDE8NZ2YHqRfCGUgpBvy34CLkmS9MV/YPt9oyAuDLWrD2pnT1CpsavfgbzwU2b5VPamaIGVT22EUCHlmkcytKkxqF287qrsvPBT2DXqbCi7Dvr8bPTZaaXq1S6mHz+bWq3Qpph+mDSuvhQkRf7DK1I1SLt9FQcvf+zcfRBqDQEtuxN3/ohZvkLHDuRxmkIICrLSy60viayESOzcTW0Ud/4IAS27o1JbYefug4OXP6m3rprp4i4cIbCtHKUObNubuPOHS9WrrW2N5yBUKrwbtSEz3tT2Dl4BZMSUPMmhypByS57QY+8BQi1Prok5Z55v67umR+RpeSZ3tKG71MZw82jnBv4tZMeyaDoCGvWHsDu64AEy4uUZ5YXEnJNtUGlkmxy9INlCO0SfgyDD+Oqg9vJxaXq1tck5FSq5uz8jzlSekzekxZR5uSo7x48fp169egQHB2NlZcXYcePYsGGDWb6iTmLbtm1RqVQkJSWVqD9//jy+Pj7UrlWL2rVqERkZSetWrYiLiytW7tWrVwkODjYeb9iwgbHjxmFtbU1wcDD16tXj2LFjZvZs3LCBKVOmADBlyhQ2rF9fqt7BwcHonKrVagYMHMjly6ZVDerXr8/586VPVFSoHFT2pY+mAN8LIeyBMGDqHe87AeuFELbI4biXDOnPAwuEEGeRr8E+4GkhhC8QCjgDeiHEi0BjoDmyM3vO0PUO8IbBiX2wkfSk7/0F96EzQSXIubgPbbI8+cO+aU8Ass/vwbZuW+ybPgSSHkmbT8q2BRaLy4s4g3VAI3LS4stddl7EGWyCWuA1eQ5SQT5puxaVaZtTpzFo3PxA0qPLSCJtzxKjDdaBjciLOH0PLlblQdLrubDmO9o/+QFCpeb2se1kxt0CoGbHgQDcOrwFvxZdCOo0CEmvQ1eQz8lfPylT79usE01GPIO1owvtnniPtKgwji18q1j9uvw8shNjsPf0Izsxhsy4W0Sf3k/3135A0us4b1ieCKD5mBe4eWgLaZHXuL5rBa0nv0HN9v3ISUngxC8fApSoV1vb0vaxd1FprBAqFYnXznDz0GajHe61GnN1++/39mI/CEh6OL0Suv4PhJCjlOny2DhqyzdyhB0svYyOj8tjNvV6OL3CtARRjdbyskIAUWfksu9Ely9HPB085ef0WIg8CX3fMNlW2A3eerzssKbclrvuO0yD4A7yGM3DP8t5StJrbKDTk7ITKlSQcLW48+tRGy5u/SdXsFKh0+l4bvp0tv31F2q1msU//8zFixcBeOqppwD44YcfGD16NE8/8wxarZacnBzGjxtXpr48ZGdnc+PGDerUqcONGze4ePEiK1es4MLFi2i1WqYblicC+PHHH/n+++85ceIEn3zyCctXrGDaY49x69Ytxhhmlpekd3BwYP2GDdjY2KBWq9mzezfff/+90Y5OnTvz3nvv/SfXVKFiEXcz7kKh/LSo6SFtmzGoos34z1HZu+Da5ymS139WQQZo8Bj1BkmrPjCNOXsAOBGeUHamKoZvs064BNblytZfKqR+54A61O4+gtPL7lyp7N4zuFPd+15nhePfHNxqwIXNZee9F7gGyssvHf/1vletevib+15nRTN8+HBat27N22+/XSH1h4SE8NLLLzNl8uT7XrcEJyRJanPfK67CVPbIpsJ9Rp+dRvaFvxFWtsWWJ7pfqJ08yDi04oFyNKsrsecOYWVf5ry6e4a1g3OFObrVkuizYO1QcfVbO1Sco1sNWbduHR4eFbeesaenJ7MqyNFV+H/2zjs8quJrwO/spgfSewIJvUMooXdQekdAEQULdrCjn+0nVhTFXgAVsALSqyggvYTeexLSGwnpbTPfH7NkA7spIBCS3Pd58uzeuefMnDt3b/bsmXJuPlpk8xZRVSObGpapjpHN6ky1jGxWY6pjZLM6o0U2bz6VeYGQhoaGhoaGhobGHY42jH6LsNbr8HVxqGgzNG4TNlba77bqRFaqth1LdUIb/9PQ+G9o35AaGhoaGhoaGhq3DM3Z1NDQ0NDQ0NDQuGVozqaGhoaGhoaGhsYtQ5uzWZXwawrtxqjNkM/tgON/lSzrHgj9p8G2uXDxgCpr3BsadAEEnN0OpzapctcA6HCfSlcnC2HP75Acbl6nvRN0vB82f6OOm/eDel2UTugiiLWwqbCNA3R/FBzdITMZts6BvKzS9Xs/o/Ij63SQcA72/q4SezfqCQW5cH7XDXRe1cG9YVsaD5uMEDqi9m4g/N/FZjKudVsQ/OAbZKeozCEJx3Zy4Z/fLdbXbvL7HJz/Dobc7HLVDdBo6GN4Nm6HIT+XY4tmkR59vlTb6t19P17NOiKlJC8jleOLZpGbdokaPoEEdh/J8UWzbkbXVGp0Ac2w6XgvCB0Fp7dRcKTkzc11HkHYDv0/8jZ9jyF8PwBWzfpg1ag7CCg4tY2C4/8AINxqYdP1foTeGllYSP7OXylMDDOv1N4Z224PkLvhS1VfqwFYNewGspC8Xb9TGH3cXMfWEdvejyFquCMzksnd+F3R812Svm2/ZxEO6vk2xJ0lf+evICVWTXsh8/MwnC1j8/oqQr9+/fj888/R6/XMnTuXGTNmmMn06NGDFStWEBam7tfSpUt55513yqX/wgsvMHPmTDw8PEhONk8t6+Pjw5w5cxgyZAgAr7zyCg8//DAGg4EpU6awYcMGMx1XV1cWLlxIUFAQ4eHhjBkzhtTU1FL1161bh6+vL1ZWVmzbto2njBu+P/XUU2RmZjJv3rwb7kONO4cqGdkUQkwXQvS9Ab3GQohdQohcIcSLxcrthBB7hRCHhRDHhRB3XkoDIaD9vbDpK1j1NgSFgLNvybJtRlzt/Ln4KUdz7Yew+l0IaKFSwwG0GQlH1sCa9+DQKnVsiSZ94coXgbMvBIbAqumw6UvocK9q91qa94fYU7DiTfXarF/Z+tvmwJp31TnbGhDYVpWf2wGNe11fv1U1hI4mI57gwA9vseOTJ/AN7o6jVy2Loqnhx9n92TPs/uyZEh1Nj8YhpMeGYcjNLnfdHo3b4ejhx/aPHuXEki9pOuKpMm0L37KEXbOeZvdnz5B0ci91+94LQEZcBHbOHlflTa+WCIFN5/Hk/vUZOUvewKpee4RLyc+3dftRVzl/wtUPq0bdyVnxHjlL30ZfuyXCST3fNu1Hk39gFTnLppO/fwXW7UdbrNa6xV0UnNqm6nPxxapue3KWvEnu+s+w6TLe4vNt3WoAhuiT5Cx+DUP0SaxbDShTP3fTd+Qse5ucJW8h7Gqir6N2oCk4vQPrZn1urP8qGTqdjq+//poBAwbQtGlT7r33Xpo0aWJRdtu2bbRu3ZrWrVsXOZpl6QcEBHDXXXcREVFyqtfnn3+eOXPmANCkSRPGjRtHs2bN6N+/P9988w06nbn78Morr7Bx40YaNmzIxo0beeWVV8rUHzNmDMHBwTRv3hxPT0/uMWYd+vHHH5kyZcoN9J7GnUiVdDallG9KKf+5AdVLqFSW16YkyQV6SylbofKr9xdCdPxvVt5k3INU/uKMJCg0QEQo1GppWbZRL4g4CDnppjInH0gMA0O+iiTGn4VawcaTEqzt1FsbO8hOtVxv7dYQY/yCq9VS2VBYABnJyjb3IHOdgJZwwRiJvLALarUqW//KZvJCB3orFdUEZXvGJcvtVBOcazUkKymG7EtxSEMBcYe34tXsxj+qvq17knB893XV7dm0IzEHVFT88sXTWNk7YlPTtVR9Q65pdbfexs50T4HEE3vwadX9hq+hKqDzrINMS0Cmq+e74MJe9IHBFmWtmvbBEHYAmZ1m0nfxpTDxgko7KQsxxJ5BH9TGeFYibOwBEDb2yMxUi/Xqg9piiFJ5qvWBwRRc2AuFBciMJGRaAjrPOuY6tYMpOLsTgIKzO9EHti5bv+j51iP0xQbfDHkUZiRZbKeq0b59e86dO0dYWBj5+fn88ccfDBs27Kbpz5o1i5dffpnS9tkeNWoU69evB2DYsGH88ccf5OXlER4ezrlz52jfvr2ZzrBhw5g/fz4A8+fPZ/jw4WXqp6er7yErKytsbGyKbMrOziY8PJyQkJByX7fGnUulcDaFEEFCiJNCiDnGyOIGIYS9ECJYCLFbCHFECLFMCOFqlJ8nhBhtfP+hEOKEUWamscxTCLFECBFq/OsCIKVMkFKGAvnF25eKDOOhtfHvztoNw8EVMlNMx5mpYO9qLmfvArWD4ezWq8tTY8C7gcrSobcG/+bgaNQPXQxtR8HI96HtaDi43LzeGu5qeKywwNjONfZkpSobzexxgitfitlpYFezfPp9noF7PlZfTFemAQAkR4BX9d1w287ZnZzLSUXHOZeTsHWynAXEuXZjOj37JW0eehtH79oWZVyCmpIWfe666rZzdicn1bTJfU5qEnbO7mXq1+/3AN3/bx6+rXtybsMvReVpUWdxrdOsjCuv2ggHV2Sx50FmpiAsPE/CwQV9UGsKTv17VXlhSgw6nwZg6wh6G/S1WiCMz3fe7oVYtx+N3biPsO5wD/n7lpjXW8Pjque73PbYO0H2ZXWQfRlhX7Nc+rb9n8X+/k+ReTkYwvaZriMpQl1HFcff35/IyMii46ioKPz9/S3KdurUiUOHDrF27VqaNm1apv6QIUOIjo7myJEjJbYfFBRESkoKeXl512WPt7c3cXFxAMTFxeHl5VUu/fXr15OQkEB6ejp//vlnUfm+ffvo1q1biXZqVB4qhbNppAHwtZSyGZAKjAIWANOklC2Bo8BbxRWEEG7ACKCZUeZd46nPgVlSyhBjPXPLalwIoRdCHAISgL+llHssyEwWQuwTQuxLTL/9qRzNseAPh9wDB5ZdFTkCIC1OzfHsOxX6TIGUKFNKyEbdYd9iWPp/6rXTBPN67Z0hJ8N0bGHE/Lr887L0N34Jf04DnRX4NDaV56SDg3P526lyWOw4M9Kiz7Htg0ns+uwZLu5cRfCDr1uUs3aoUSzqWL66Lcmpj1vp+uf+WsDW9ycSe/BfanceUlSel3m5RIe52lDO58m64zjy9y4xe75laiz5h9djN+B5bPs/S+GlSChUz7dVk57k715Izh8vk797ITbdJpo37+CMzC42EnKLn+/c9Z+R/dsLoLdC52ca/pXZaQgHl/K3U0kRFqYkWIpCHjhwgMDAQIKDg/nyyy9Zvnx5qfr29va89tprvPnmm6W27+vrS2Ki6Qdjee0pibL0+/fvj6+vL7a2tvTu3buoPCEhAT8/v3K3o3HnUpmczTAp5SHj+/1APcBFSrnFWDYfuHasLQ3IAeYKIUYCxpUn9AW+MjqPKwEnIUSpSZ6llAYpZTAQALQXQjS3IDNbStlOStnOs6bd9V7ffyMrxRSJBHB0sTzc7R4I3R6BEe+pYe8O40xD1+d2wtr3YcMnkJsJaQmqvG4nuHhQvY/Yb3mYuiBfRURLssfBRUUnryU7TUU3Qb1eGdovj35hAUQdgYBWpjK9lRpOr6bkXE7Cztmj6NjO2YPcNPPJ/4bcbAx56gdR0ql96HRWWDs4mclJQ2HRXLry1p1zOemqOZZ2LkquvPqxB//Fu0XnomOdlTWG/NxSr7uqIzNTiiKRAMLRFWnhedJ5BmLTezJ2Yz9EX6ctNl3GFw23G85sJ2f5O+Su+QhyM5FpanGYVYNOGMLV6IAhbJ/FYWppyAMr0/NdXntkdpr6IQpgb3JYy6VvKMBw8TD62sEmOb01FOSZtVPViIqKolYt03zogIAAYmJizOTS09PJzMwE1EIba2tr3N3dS9SvV68ederU4fDhw4SFhREQEMCBAwfw9va+qt7s7Gzs7EzfYeW1Jz4+Hh8fH0AtMEpISCi3fm5uLitXrrxquN/Ozo7sbC2BQlWgMjmbxb9tDIBLWQpSygKgPbAEGA6sN57SAZ2klMHGP38pZXoJ1VxbZyrwL9C/vIbfFpIj1IKeGu6g06vFNZEWhkmWvQ7LXlN/Fw/Cnj8g8rA6d2UI28FVOaLhoeo4OxW8G6r3Po3U/MlrSY9XbV8h8oiyQWelymt6WV7BHnVEObOgXqOOlK5vZWtyToVODfenxZnqc/JWUwKqKWlRZ3Dw8Mfe1Ruht8KnVXcSTpgF4bGpYfqid6rVEIQgPyvNTC4zMQp7N5/rqjvxxB782qjohHPtRhRkZ5KXnlKqvoOHKXrh2bQjmQlRRccOHv5kxJe8kKE6UJgYjnDyVsPZOj1WddtjiDhsJpez8FVyFr5CzsJXMITtJ2/HrxgiDqmTxudbOLqhD2pDwfm9AMisy+h8GwGg82uMTDN/vuXleESx59sQcRiruu1BZ4Wo4YFw8ra4gt1w8RBWDdQPB6sGnTFcPFS6vpWtyTkVOvS1WiAvxxbVJ5y9KUyJvr7Oq4SEhobSoEEDgoKCsLa2Zty4caxcudJMrriTGBISgk6nIzk5uUT9Y8eO4e3tTZ06dahTpw5RUVG0adOG+Pj4q+o9c+YMQUFBRccrV65k3Lhx2NjYEBQURIMGDdi7d6+ZPStXruTBBx8E4MEHH2TFihWl6js6OhY5p3q9noEDB3Lq1Kmi+ho2bMixY8duvCM17hgq89ZHl4EUIUQ3KeU2YAKwpbiAEKIG4CClXCuE2A2cM57aADwNfGyUCy4WNTVDCOEJ5EspU4UQ9qjIqPk+FBWJLIS9C9UQuNCpKOWVf9INjHNezm4rvY7uk9Xq7kKD2k7oyhZEu36BkDEg9FCYD7t/NdctyIP0RKjpqV4vx6oo6NC3jPX9YRra63g/nNkKly7Csb/U1kf1u0DmJdg6W8mUpG9lAz2fVBFMoYO406quK3jWgyOrb7wfKzmysJBTK76lzSPvIHQ6okP/JjP+IgABHdVK4Kjd6/Bu2YVaHQciCw0Y8vM48ttHFutLOhWKW70WRCfHlrvupFOheDRuR9dpczHk5XJ88awybWswYCKOnv5IKclJSeDE0q+LbHCr15Kkk6G3psMqC7KQvJ2/YTvgWbX10ZkdSOOPKqvGPQAoOLWllArAtu8TCOPznbfz16LnO2/bfGw6qS2VpCGf3G0LzJUL8pBpiQgnL7VQKTWGgrB92I2eDoWFqj7j823T7UEKTv5LYVIE+YfXYdv7cawadUVmXCJ303fqckrSt7bF9u6nVQRTCAwxpyg4abouvXd98g+s+q+9ecdjMBh4+umn+euvv9Dr9fz444+cOKF2D3nssccA+P777xk9ejRPPPEEBQUFZGdnM27cuDL1y0NWVhbnz5+nXr16nD9/nhMnTrBo0SJOnDhBQUFB0fZEAHPmzOG7775j//79fPjhhyxatIiHH36YixcvFq0sL0nf0dGRlStXYmtri16vZ9OmTXz33XdFdnTp0oW3377zNn/RuH7E9cy7qCiEEEHAaillc+Pxi0ANYDnwHeAAXAAmSSlThBDzgNXADmAFYIeaJTRTSjlfCOEBfA00QTncW6WUjwshfIB9gBNQCGQATYEg1DC9HhUVXSSlnF6aze3qeMp900fdpB6oJNQKBvfacMj8F/htwbUWNO0DO+bd9qY3HI0sW6gSYlPTlRZjX2D/XMtzOm81Qm9FyOMzCP32JaTxy+1OoGvDErYdqsLoA1uj8wgkf//yCmlfuNfCuvnd5G354ba37fjo7W+zohk+fDht27bljTfeqJD2g4ODef7553nggQcqovn9Usp2FdFwVaVSRDallOFA82LHxbcmMtt7RUo5sdih2f4MUsokYKyF8jjUnMxrOQK0LrfB1ZXIQ2q1a0VhV0PtA6px08hLTyFq73r0tvZXbU90u7B39eLsunl3lKNZXTFEHFTPWAUh7GpWmKNbHVm+fDnu7hW3MM/Dw6PCHF2Nm0+liGxWRqplZLMaU1UjmxqWqY6RzepMdYxsVnO0yOZNpjItENLQ0NDQ0NDQ0KhkVIph9EqJjRX4W9jEXKNK8uqb5htha1RdLmdV/e13NEzEfWFhb2GNKovPlJ8r2oQqhxbZ1NDQ0NDQ0NDQuGVozqaGhoaGhoaGhsYtQ3M2NTQ0NDQ0NDQ0bhmas1mVcGsIHZ6Hji9CYI/SZWsGQK/3wLNY1s2AztB+KrR/FgK6mMpr+EDbJ9S5lg+A3tZynTY1oeWDpuPAHsqWDs+DWwPLOlb2EPwQdHxBvVrZla3fahKETFF2NhpOUaJl/07g27b0665CdOremyUbd7F8814mPj7FokzbDp3Zcvg8v63ZzG9rNvPoMy+Uqf/E86/wx7p/+W3NZr5esAgPL29LVePh6c1nc00b/E96YirLN+9lycZddOrey6KOk7MLX/+8mGWb9vD1z4up6eRcpv6X8xby+9rNLPprG6+++zE6nfq3NeaBhxky+t5y9FTVoHuvPmzYsY+Nuw/y2DPPWZTp0LkrB89eZOXGbazcuI2nn3+5TP1np73G6s07WLlxG/MWLsPL28di3Z5e3sz+ZWHR8eNTnmfj7oNs2LGPbj37WNRxdnFl3qLl/LPrAPMWLcfJ2aVM/R9/X8KqTdtZt2U30z+aVXS/Jzz0KKPGjS+7o6o4NrVb4H7/DNwnfIxD28EWZaz9G+M5+Tvcxr2D27h3cAwZZlEOwHX4Kwhru3LXDVCz+/24T/gYt3vfxcozsEzbHDuMwu3ed3Eb9w4uw15C5+gCgJV7AE59H72ey9eopFRJZ1MIMV0I0fcG9BoLIXYJIXKNG8dfe14vhDgohLgDU9QIaDQUDv8Ee2aBVytw8CpZtn5/SD5rKnL0Br8Q2PcNhH4BHo3B3rjHWuNRcH497P0cEo9D7WtT0Bup1RVijCnMHLyUDXtmKZsaDaPIKSxOYA9IOQ+7P1GvgT3L1j/2m7Jx72dg7QheLVR57D7lMFcDdDodr0z/kCkTxzH67i70GzqCOvUbWpQ9GLqb+wb14r5BvZjz5Sdl6i+Y/RXjBvTkvkG92Lbpbx6dYvYoADD+kcdZtlBNpK9TvyF3DxnOPf268syDY3ll+owiJ6E4E5+YQuiObYzo3YHQHduY+MSUMvVfefph7h3YizH9uuHq5kHfgUMBWLnoN8ZNrB5fVDqdjv99+AkP3zea/t3aM3jEKOo3bGRRNnTPLob26cbQPt346tOPytSf+/UXDO7VhaF9urHp7/U8/cI0i/U+9PjTLPplPgD1GzZi0PCRDOjegYfuHcXbMz6xeL8fe+Y5dm3bQt9Obdi1bUuRk1ua/pRHJzKkd1cG9OiIm7sHA4aOAGDx77/w4COP/4derAIIQc2eD5C6cibJv76CXcOO6F39LIrmx5zh0h9vcOmPN8gMXWFRxiaoFflJF5H5OeWu2yawJXoXb5J/fon0TT/h1HNimbZlHVjDpd9f59Ifb5AbdgjHkOEAFCRHoavhhq5Gxe3nqXF7qJLOppTyTSnlPzegegmYAsws4fxU4OQNG3YrcaoFWcmQkwLSAAmHwbOJZdmAzpBwDPIzTGUOnpAWqdJRykJIDQPPZsZzHuoY4NI58GpmuV6v5pB8Rr33bKJskAZlU1aysvFaPJpC7AH1PvaAOi5L35CrXoVO5YHHuFdsYb6SrWlpX/6qRbNWbYiMCCc6MoKC/Hw2rFpOz7sG3BT9zAzT58Le3sGUZvQaevcfzM4tmwDoedcANqxaTn5eHjFRF4mMCKdZqzZmOj3uGsDqJSo6tnrJQnrePbBM/Sv2WFlZYW1jXWROTk42sVEXadaq6udbaNWmLRFhF4iMCCc/P581y5fSt/+gm6KfkZFeJOfg4EhJey/3GzyUrZvUv9W+/QexZvlS8vLyiLoYQUTYBVq1MR9V6Nt/IEsX/gbA0oW/cdeAQWXqX7HHysoKGxvrIntysrOJioygZWvzz1V1wdq7HobUBAxpiVBoIOfMbmzr3nh/2DXsTG7Ygeuq27ZuG3JO7gAgP/48wtYBnYNzqfoyP6dIX1jbUvQ/G8gNO4hdww43fA0alYNK4WwKIYKEECeFEHOEEMeFEBuEEPZCiGAhxG4hxBEhxDIhhKtRfp4QYrTx/YdCiBNGmZnGMk8hxBIhRKjxrwuAlDJBShkK5FuwIQAYBMy9bRd+Pdg6Qe5l03FuGtg6m8vZOIFnU4jec3V5Zjy41AErB9BZg3sjk35mPHgYHVevFmDrYl6vnSvkZyvnEJRuTnF7LisbzeypAXnGL7u8dHVcHv1Wk6Dr61CQqxznK6RFgUuQeTtVDC8fX+Jjo4uO4+Ni8PSxvNF4izbt+H3tZr746Q/qNmhULv0nX/w/1uw4RP9ho/h21gyzOv0CapN++TL5eWoLIE8fX+KK1xcbg5cFe9w9PElKjAcgKTEeN3ePcul/NX8Rf+87SVZGBhvXmdKhnjh6mNYhZknEqhzePn7Expj6Jy4mGu8S7nfrtu1ZtWk7P/z2Jw0aNS6X/vOvvsG2A8cZOuoePv/oPbM6A2oHkpaaSp7xfnv7+BIbHWWqLzYGbx/zKJiHpyeJCep+JybE4+7hWS79n/5Yyp7j58nIyGD9quVF5UcPHyKkQ/UYvbCEztGVwozkouPCjEvoa1jeYs/apz5u976Ly9AX0Lv5W5Sx8W1AQUL4ddWtd3TDkHGp6NiQcUlFJ8vQd+w4Go+Js7Bv1JmM3UuLygsSwrDxsxyl16g6VApn00gD4GspZTMgFRgFLACmSSlbAkeBt4orCCHcgBFAM6PMu8ZTnwOzpJQhxnrK40B+BryMypluESHEZCHEPiHEvsTUrOu4tFuEpQhFw8FqSJxrzmUlQsQWaP0QBE+CjFgV4QQ4uQQCOkG7p9V8zSsOZXFsakJ+ZlkG3chVWNY//BPseB90VuBaz1Sen2nZqa1iCGE+JcFSROrU8SMM7tqGewf2YuH8uXzy/YJy6X8z830GdQlm/YoljH3gYTNZDy9vUi6ZvljKa09JlKX/9INj6Ne+OdY2toR07lZUnpKciGcJcwyrEhb7x8LzdPzIYXq0bc6Q3l1Z8MP3fDvvt3Lpf/rBO3Rr04yVSxYz4aHJZrKeXt5cSk4q3Z6beL8njRtJp5YNsbGxpVNX0/zzS0mJePlU/ftdIhZmIln6t1qQEE7S/Oe49PvrZB3+G5dBUy1XZ+doijqWs27LcrJM/czdf5I07zmyT+/EoZVpllthVlrRHE6NqktlcjbDpJSHjO/3A/UAFynlFmPZfODayYRpQA4wVwgxErjiAfYFvhJCHAJWAk5CiJolNSyEGAwkSCn3l2aglHK2lLKdlLKdp4tD+a/sZnBtJNPWCfLSzOVq+kOze6HTy2pxUKNhpqHr2H0Q+hUcmA35WZBtdCayEuHQj7DvK4g/bCovTmG+cvyK7LkMdsXtcYbcdHO9vAzlqIJ6zcsov35hASSdVJHaK+islC1VnPjYGLx9TdEKbx8/kuLjzOQyMzLIzlI/Anb8+w9W1la4uLqVW3/dyiX07m++UCA3JwcbW9NCsYTYGHyK1+frR6KF+pKTEvHwVAuOPDxNDkx59PPyctn6z3p6FJsuYGNrR05ODlWduNhofP1M/ePj509CnHn/ZmSkk2W831s2/o2VlRWubm7l1l+5dDH9Bg81K8/NycG22P2Oi43B1980XcXH14+E+FgzvaTERDyNC8w8vbxJTkost35ebi4b/1pL3/4Di8psbG2rxf0uicKMlKvmN+pquGHITDGTk/k5yHw13Sgv4ghCp0dYymtfWMgVL7G8dRsyLqGv4VZ0rK/hRmFmSrn1c87swq5eSNGxsLJGFlT9/9nVncrkbOYWe28AXMpSkFIWAO2BJcBwYL3xlA7oJKUMNv75SykteEJFdAGGCiHCgT+A3kKIX677Cm4l6VFqbqWdKwi9WlyTZGF66a6PYddH6i/xGJxeAUkn1DlrR/Vq66zma8YfurocAUG9zIfgAbKSVNtXSDqpbBB6Ve7goeaEXkvSSfA1zgvybWOypSR9vY3JORU6NdyfmWiqz94DMuLL02OVmhNHDlIrqA5+AbWxsrbm7iHD2fLPejM5dw/TIrFmrVqjEzpSUy6Vql8rqG6RTo++/Qm/cM6s3oiw8/gFmObgbvlnPXcPGY61jQ1+AbWpFVSH44cPmOlt/Wc9g0eNBWDwqLFs+Xtdqfr2Do5Fzqler6dLr76EnzctbKtdpx7nT9+Z06hvJkcOHiCwbj0CagdibW3NoOEj2fjXWjM5D0/T/W7Zug06nY6US5dK1Q+sY7rfffoN4MLZs2b1hl04h3+t2kXHG/9ay6DhI7GxsSGgdiCBdetx+ID5b/GNf61j5Nj7ABg59j7+Wb+2VH0HB8ci51Sv19Oz791cOHemqL469epz5lTVv98lkR9/Ab2LNzonD9DpsWvYkdywg2ZyOgfTD3Ur77ogdMicDDO5gtRY9M6e11V3bthB7Jqo3Uqsvesh87IozLpcqr7e2bSjhW2dNhSkxBQd6118KEiOQqNqU5nTVV4GUoQQ3aSU24AJwJbiAkKIGoCDlHKtEGI3cOVbcwPwNPCxUS64WNTUDCnlq8CrRtmewItSyvtv6tX8V2QhnFmptg8SAmL2QWaCOufXXr1eWSleEi3Gg7WD+rV7ZiUUGCMI3q3UMDooBzXWQoC3MF9FPO3d1WtmAiQcgY7PqfpOr6BoTKXxSOWwpkerofvm94JvO8hJVSvNoWR9nY3afkmnB3RqBXtMMefXJRDCN15//1UyDAYDH731Kl8tWIRep2PF4t+5cPY0AKPuU9tPLfltPn0GDmH0+IkYDAXk5uTw6pTJZeo/8/IbBNath5SFxEZH8f5r5qvRc7KziIoIJyCwDlERYVw4e5q/16zkzw3bKTAYmPHmKxQWqmkYb3w4iz9/ncfJo4eZ9+0XfPjVXIaNGU9cTBTTnlJD9CXp2zs48Omcn7GxtUGn0xO6aztLfp1XZEdw2/bM+fzjW9bPdwoGg4G3X32Rn/5Yil6vZ/Hvv3D29CkA7n3gIQB+X/AjA4YM474HH6bAeL+nPvZQmfovvf42devXp7CwkJioSN54yXxbpeysLC5GhBMYVJeI8AucPX2KtSuXs37bXgoKCvjfKy8U3e/3P/2S3+b/yLHDB/n+y0/5Ys587rlvAjHRUTzziPpslqRv7+jA9wv+wMbWBr1Oz64dW/lt/o9FdrQN6ciXMz+8dR19pyMLSd+yANehL4NOkHNiK4ZLai6ufXO1XVj2sc3Y1g/BoXlvpCxEFuRxef3XFqvLCz+MjX8Tsi8nlLvuvPDD2Aa2wv2Bj5H5eaRtnFumbTU6j8HK1RcpCylMTyZt87wiG2wCmpAbfugWdJbGnYS4nnk2FYUQIghYLaVsbjx+EagBLAe+AxyAC8AkKWWKEGIesBrYAawA7FBjBTOllPOFEB7A10ATlMO9VUr5uBDCB9gHOKHmZmYATaWURePRxZzNkjchA9o18pX7vp14E66+EuHRFJz84cLfFdN+DV+o3Q1OLLrtTbd9+M5cN3Yr6XX3QBq3aMW3n3xQIe03atqC8Y88zpvPP3Xb266OudHvGjCY5q2CmfXhu2UL3wKaNm/JQ48/xYtPP3bb297xesn7VFZmdA7OON31GKkrPqogA6xwHfV/pPz5rmmNwB2Az5Sf90sp21W0HVWJShHZlFKGA82LHRffmshsKaqUcmKxw/YWzicBYy2UxwGl7psjpfwX+Ld0i6spSSdUZLSisHaECxsqrv1qxuYNa3F2dStb8Bbh4ubGt59U4yjXbebvdatxdau4++3q5s6sGeYr5TVunMKsy2Qf/xdhbXfV9kS3C31NdzJ2LrqjHE2NW0OlcDY1KhGx+yqu7RTzuYUat5blCytu6vKe7VvKFtK4qSz6dUGFtb1j6+YKa7sqk3uujOlVtxDD5XgMl6v+HHuNyrVASENDQ0NDQ0NDo5KhRTZvEQfOxGHXr4LmwWjcdnLWvVTRJmjcRuYttLAjg0aV5dBFC9u9aWholBstsqmhoaGhoaGhoXHL0JxNDQ0NDQ0NDQ2NW4bmbGpoaGhoaGhoaNwyNGdTQ0NDQ0NDQ0PjllElFwgJIaajNmr/5zr1GgM/AW2A14rv52lMVZmOSpVZcCdu+HrX3f345NNZ6PV6fvrxB2Z+bL5AqXv3Hixeuozw8DAAVixbxvvvvVuqfstWrfjy62+ws7OjoKCAqc88zb7QULO6fXx8+Oa72YwcrnIrv/TyNCZOegiDwcDzzz3LP3+b74Hp6urKL7/9QWBgIBEREYy/dyypqaml6q9cvRYfXx+s9Fbs2LGdqc88TWFhIY8/+SRZmVksmD/vP/dlpcC9ITQcojJGRYeqbEwl4RQAIU/C0d8g4Zgqq9UF/EMAAdF7IXKHKq97lzHfvFS56o8vhjwL2VxtakKTkXB4vjoO6gl+7UBKOL0SLpmnPcTKHlrcB/aukJ2i7CnILl0/eBLYOqn0pKlhcMqYTSqgExjyLGe0qkb4Nwuh/binETo9Z7et4ej6381kfBq2ovdT75KRrPKhRxzYxuHVlrcx6vfCJ2z6+g3yc7LKVTdA+3HPENCiAwV5OWz/aQaXLp4t1bbWwyZRK7gLSEl2Wgrbf5pB9uVkXPzr0PzuMWz/acbN6JpKjUejtjQeOhmh0xG1dwNhmxeXKOsU0ICOz3zC4V9mEH9UPce1uw4loEM/BIKoPX8RsX0FADV969B01FPobezJTonnyG8fY8jNNqvTpqYrzUZP4eBPbwNQp9c9BLS/G1lYyMkV35N8xjwdrbV9DVre/wr2rl5kpyRw+JcPKcjOKFW/7SPTsa3pitDpSQk7zoll34IspHbnwRTk5RCz77q+xjXuUKpkZFNK+eb1OppGLgFTgJklnO9lzKV+xzmaOp2Oz7/4kmFDBhHcsjljxo2jcZMmFmV3bN9Oh3Zt6dCubZGjWZr++x/M4L133qFDu7ZM/9//eP8DyxtpT3n2OX78QWXSadykCfeMHUvrVi0YOnggX3z5FTqd+cftxZensXnTRpo3bczmTRt58eVpZeqPv3cs7du2oU1wSzw8PBk1+h4A5v/0E08+/fR/6MXKhIBGw+DQT7BrFvgEg6NXybL1B0CyKcc0jt7K0dz7Nez5HDwaq1SjABFbVdmeLyDpFNTtY7na2l0hxvijw9FLpTXdNQsO/giNh6t2ryWoJ1w6BztnqtegHmXrH/1N2bN7FtjUAO8WqjxmH9TuUs7+qpoIoaPDfVP5+/NXWP7mROq074Ozb6BF2fhzR1k5/VFWTn+0REczoEVHLkWeJz8nq9x1+zfvgJOXP0tfu59dP39Cp/HPlWnbsb8WsvLtR1g5/VGijuwmeMgDAKRGh+Hg4omjW0mf5WqC0NFkxBPs/+Etts98At/g7jh61SpRtuGgSSSdNjl/NbwDCejQj91fPM/OWU/j2bQ9Dh5+ADS7Zwpn1s5j56dPkXBsF3V6jrJYbVD3EUTt/QsAR69a+AZ3Z/vMJ9g/902ajnxS/fi7hjq97+HSucNs/2gyl84dpm6ve8rUP/TzB+yc9Qw7PnkSmxrO+LTsCkBU6N8Edh16Y/2nccdRKZxNIUSQEOKkEGKOEOK4EGKDEMJeCBEshNgthDgihFgmhHA1ys8TQow2vv9QCHHCKDPTWOYphFgihAg1/nUBkFImSClDgfwKu9gbJKR9e86fP09YWBj5+fksXriQIUPK/6CWpi+lxMnJCQBnZ2diY2It1jFixEg2/LUegCFDhrJ44ULy8vIIDw/n/PnzhLQ3S+bEkCFD+eVn9cX3y88LGDp0WJn66ekqymZlZYWNjQ1XUq5mZ2cTER5Bu5CQcl93pcW5lspBn30JpAHiDxujkRao1RkSjkJepqnM0QsuR6qc9rJQRQy9mqlzhlyTnN6mZBu8mkOSyqeOZ1NlgzRAToqyzdnCl6NnU4g1finGHgDPZmXrX7FH6EDoTXUV5qvoqFOpSb+qNB51GpOeGENGUiyFhgLCQjdRO/jGHfC6HfoSeWjHddVdO7gL53erUYfECyexcXDE3tmtVP38nKwifStbO4qnTY48sos6Ib1v+BqqAs61G5KVFEP2pTikoYDYQ1vxamaWLA+AwC5DiD+6g7zMy0Vljt61uBxxmsL8XGRhIZcuHMWreSd1zjOAlAtqdCP5zEG8W1j+vHi36ELSKZWkw6tZR2IPbUUaCshOiScrKQbn2g3NdLyadiTaGImM3vdPkc2l6V+JqgqdHqG3AtRnoTA/l+yUeJxrmbejUfmoFM6mkQbA11LKZkAqMApYAEyTUrYEjgJvFVcQQrgBI4BmRpkrSX0/B2ZJKUOM9ZQnsbUENggh9gshJlsSEEJMFkLsE0Lsu90Z5/38/ImKiiw6jo6Oxs/f36Jsh44d2bv/ACtWraFJ06Zl6r/4wnN88OEMzl0I54MZH/HG6/9nVmdQUBApqSnk5amc0X7+/kRFRRWrLwo/P3N7vLy9iYtTQ3txcXF4enmVS3/VmnVExsSRkZ7O0iV/FpUf2L+PLl26ltRNVQdbJ8gxfbmQc1mVWZLzagZR1+wLmREHLkEqvajOGtwbgZ2L6Xy9u6HrKypiet5Crns7VzX8LQ3F7Ekt2x6bGqYh+bx0dVwe/dYPQfc3lOMZf9RUnhYFLnXM26kmOLh4kHkpoeg4MyURBxcPi7KedZsy9M259J3yIS5+QRZlvOo3IynizHXV7eB6rVwSDi4eZeq3Hv4w98xYSN0OfTm44qei8uTw03g3aFHGlVdt7JzcyUlNKjrOuZyEnbO7mZytkztezTsRuWvdVeUZcRG41m2OtUNNdNa2eDZuh52zJwDpcRF4Gp1A71ZdsXM2v6f2rt7kZ2cgDQXKHmd3ci4XtycZOydze2xqupCXngJAXnoKNjVcyqXf9pHp9HrrNwy52cQd2VFUnhZ5Dpc6zUroJY3KRGVyNsOklIeM7/cD9QAXKeWViWrzge7X6KQBOcBcIcRI4MrP6b7AV0KIQ8BKwEkIUbOM9rtIKdsAA4CnhBDXtoWUcraUsp2Usp2FAcRbihDmLRaPFlzh4MEDNKxXh/Zt2/DN11+x+M+lZepPfuxxXnrxBerXDeLlF1/gu9lzzGR9fH1JSjT9MymvPTd6PUMGDSColj82trb06mWKgiQmJuLr51fudiov5fyENRwMZ9dxJVpQRFaimuPZ+mHlyGXEXp2f+PwG2P4hxB2CWp3M67WteXWktLz2lEgZ+gd/hG3vgc4K3OqZyvMyLDu11QULz4nZvQaSL57lz1fGsXL6I5zctIzeT75jsTpbRycKrszfK2fdFu+dLFv/4PIfWDxtLBf2/EOT3iOKyrPTU7AvwWGuNlj8/2cu1njoZM6s/ckst3hmQiRhm/+k3aPv0vaR6aTHhCEL1Q/D44s+o3bnQXSc+jlWtvYUGh3K4tg6uZFfLFJa/s9C+a+nuP7+uW/y7zv3o7Oyxr1+y6LyvIxU7Jzcyt+Oxh1LZXI2i43tYQBcylKQUhYA7YElwHBgvfGUDuhknH8ZLKX0l1JaWAFxVV0xxtcEYJmx3juG6OgoAgJMw5b+/v7ExsSYyaWnp5OZqZyEv9avw9raGnd391L175/wAMuXKad0yZ+LaRdifunZ2dnY2dma7ImKIiDANLzp7x9AbKy5PQnx8fj4+ABqgVFiQkK59XNzc1mzehWDh5qmC9ja2ZKTbT7ZvcqRexnsnE3Hds6Qm2Yu5xSgFuR0maaGvRsPNw23x+yDvV/C/u8hPxuyksz14w4pvWspLAC99TX2uJRtT16GWlgE6jUvo/z6hQWQeOLq6QJ6azWcXk3JSkm8an6jo6snWanm2W7yc7IoyM0BIPrYHnR6K2xrmDvphQZDkWNQ3rrN5TzIupxUbv0LezYS2Mb0211vbYMhL9dMrjqRczkJu2IOt52zB7lp5n3nVKs+rcZPo/urP+LdogtNRj5ZNHQdHbqBXZ9PJfTbaeRnpZOVpP5/ZiZGsX/OG+z+fCqxB7eQnWw+LcqQn4vOyvR856QmXRUBtXN2JyftkpleXnoqNjVdAbXAKC8jtdz6hQX5JBzfc9V0AZ21DYb8vJI7SqPSUJmczWu5DKQIIboZjycAVy3HFULUAJyllGuBZ4Fg46kNwNPF5IIpBSGE45XIpxDCEbgbOPafr+Amsi80lPr16xMUFIS1tTX3jB3L6tWrzOS8vb2L3rcLCUGn05GcnFyqfmxMDN27q4UcvXr15tw581XGZ8+cITAwqOh49epV3DN2LDY2NgQFBVG/fn1C9+4101u9ehX3T1CLA+6f8ACrVq0sVd/R0bHIOdXr9fTrP4DTp08V1degQUOOHz9+vd1X+UiLUgt67FzVPEbvVsoRu5YdH8GOGeov4RicWm6Ss3ZUr7bOaqg97rA6ti82PObZFDITzevNTFRtXyHxhLJB6FW5vbuaE3otiSfAt41679vGZEtJ+nobk3MqdGq4v7g9Dh5qSkA1JSn8FE5e/tTw8EGnt6JOSG8iD+80k7N3Mt0rj6DGIAS5GeY/BtLiI6np4XtddUce3km9jncD4Fm3CXnZmWRfvlSqfk0v05SYWsGduRx3sejY2bsWqTFhN9gjVYO0yDM4ePhj7+qN0FvhG9ydhBPmKVK3ffAwWz94iK0fPET80R2cXPoNCcd3A2DjqH6M2rl44tWiM7GHtlxVjhDU7TuOyN3rzOrNSozG3tX0XZFwYg++wd0ReivsXb1x8PDn8sUzZnoJJ/bg364vAP7t+pJwYnep+nobuyLnVOh0eDRuR2aCafqUg4c/GXER191/GncelX3roweB74QQDsAFYNI152sCK4QQdqixnueM5VOAr4UQR1B9sBV4XAjhA+wDnIBCIcSzQFPAA1hmHNq1An6TUq7nDsJgMPDs1CmsWrMOvV7P/Hk/cfKE+iJ/ZPJjAMyd/T0jRo1i8uTHKTAUkJ2dzYT77ytT/8knHmPmp7OwsrIiJyeHp5543Kz9rKwsLlw4T9169bhw/jwnT5xgyeLFHDpyTG2XNOUZCgvVUM+3389mzuzvObB/PzM/msGvv//BxEkPERl5kfvGjQUoUd/R0ZE/ly3H1tYWvU7Pv/9uZs733xfZ0alzZ957Z/qt6+g7BVmotgdq/ZBywmL2QaZxfpx/B/UaXUb+7pb3qzmbslBtJ3RlC6IGA5QTJ6WaR3lqmbluYb5axGPvrl4zEyD+CHR63mibcXsigCajIGo3pEerofsW96mV8DmpcORXJVOSvt4GWj2ghs+FDlLOX31dzoFwofpujSILC9n92xfc9exHCKHj3I51pMaEA9CoxxAATm9ZRWDbHjTqOQxpMGDIz2XLHMvD6JFHduPTKJj0xJhy1x11dDf+LTow8r1fMOTlsn3ejDJtaztyMs4+tZCykMzkeHb9MqvIBp9GwUQe2X0LeqvyIAsLObn8W9o++g5CpyN6799kxiuHPKDjAACiLDiJxQl+4P+wdnRCGgo4uezboi2IfFr3oHbnwQDEH91JdKj5nGxDfi5ZybE4uPuSlRxLZvxF4g5vp+tL3yENBk4u+6Zo6L7Z6ClE7l5LWtQ5wjYvptX9r+Afchc5qYkc/vkDgBL19TZ2tJn0Jjora4TQkXzuCJG71xbZ4RrUhPN///Yfe1PjTkBczzw6jfKjE0LaWFXmwPH1M3TYcNq0acP/3nqzQtpvFRzM1Gef46GJD972tnPWvXTb26xwPJuBk7+a31kR1PRT2y8dX3Tbm563sAxHvpJi7+xGt4deZcOsivk866ysGfDSZ6yd8QyysLBshduEr4tDRZtw2/Fq3gkn//qc++vnCmm/pl9dgrqP4Ogfn9z2tvvPXLv/TtzisDJT2SObGncQK1csx93dfIXi7cLD3YO3K8jRrZYkHleR0YrC2sHySnmNGyb78iXObFuDtZ3DVdsT3S4c3bzYv2T2HeVoVlcSju3C2qGsdbO3DhtHJ85WkKOrcfPRIpu3iOoY2azOVMvIZjWmqkY2NSxTHSOb1Rktsnnz0bwhDQ0NDQ0NDQ2NW4Y2jH6LaBPkwb7pltOAaVQ9Jr+3oqJN0LiNzH6uf0WboHEbcbjny4o2QUOjUqNFNjU0NDQ0NDQ0NG4ZmrOpoaGhoaGhoaFxy9CcTQ0NDQ0NDQ0NjVtGlZyzKYSYDmyVUl7Xbs9CiMbAT0Ab4DUp5cxi51yAuUBz1G7VD0kpd900o28Gfk2h3Ri1+fW5HXD8r5Jl3QOh/zTYNhcuHlBljXtDgy6AgLPb4dQmVe7qDx3Gg5UtZCbD9h8hP8e8Tnsn6Hg/bP5GHTfvB/W6qM1/QxdBrIUMNzYO0P1RcHRXdW+dA3lZpev3fgbsnUGng4RzsPd3tQF5o55QkAvn76zbcqtoFtKVsU//Hzq9ju1r/mT973PNZBq2CuGpd78mKU5l5Tiw7R/WLPimVP1Rj71Iq869KMjPJzEmknkz/o/sTPNsrs5unkx4cTpf/d8TAPS/71G6DhxFoaGQP756jxOhO8x0HGo6M/nNT3H38Sc5LprZbz9HljGTTUn6U2bMxtndE73eirNH9vHb5+8gCwvpNfw+cnOy2bnewqbzVRHPxtBihEonGbEHzm0sWdalFnR7FvYtgFhjZqg63SGwIyDg4i64sFWVO/lBy3tU6k9ZCEf+hNSL5nXaOkGrMbDX+Dmr3wcCO6hn7+hSSDxtrmPtAO0eAHs3yL4E++ar1Kil6XecrNoSerh0QdmDhKCuYMiDSPNMZFWRu+7ux8effIper2fejz/yycyPzGS6de/Boj+XEhGuMi6tWL6cD95/t1T9115/k0kPPUxSksrE9dabb/DXevMN4n18fPj62+8ZNWIYAC++NI0HJ03CYDDw4vPP8c/f5vvrurq6suDX3wkMDCQiIoIJ940jNTW1VP0Vq9bg7eODlZUVO3ds51ljAo/Hn3iSzMxMfl4w/z/2pMadQJWMbEop37xeR9PIJVR2oZkWzn0OrJdSNgZaASf/g4k3HyGg/b2w6StY9TYEhYCzb8mybUZc7fy5+ClHc+2HsPpdCGgBNY15jTtOgAPLYPU7cPEQNL3Lcr1N+sJZo4Ph7AuBIbBqOmz6EjrcW5Rz+Sqa94fYU7DiTfXarF/Z+tvmwJp31TnbGhDYVpWf2wGNe11Xt1VWhE7HfVPf4ItXJvPWxCGE9BmEb2A9i7Jnj+7nnUdH8s6jI4sczdL0T+7fyf8mDWX6I8OJjwpnwPjJFuvte8+DbFuzGADfwHqE9B7I/yYN4fNpjzJ+6psInfm/lwH3PcqpA7t4Y0J/Th3YRf/7Hi1Tf/bbz/HOIyP436Qh1HRxo10PtThnx7ql9B55/3/oxcqEgJajYPds2DQD/FtDDe+SZZsMgQRTGldq+ihHc9ss2PIxeDcDR2Ou6qZD4cxfsGUmnFoHTYdYrrZeD7hozOxTw1vZsHkG7P4eWo5W7V5Lgz6QeBY2va9e6/cpW3/ffGXLvzPAxhH8glV55B6o2828jSqITqdj1udfMHzoYNq0asE9Y8fSuHETi7I7d2ynY/t2dGzfrsjRLEv/yy8/L9Kx5GgCPDP1OX76Uf2waNy4CaPHjKFtcEuGDRnEZ198ic7C8/3CS9P4d9MmWjZrwr+bNvHCS9PK1L//vnF0DGlLu9at8PDwZOSo0QDMn/cTTz71tFkbGpWTSuFsCiGChBAnhRBzhBDHhRAbhBD2QohgIcRuIcQRIcQyIYSrUX6eEGK08f2HQogTRpmZxjJPIcQSIUSo8a8LgJQyQUoZCuRf074T0B34wSiXJ6VMvX09UA7cgyA9ATKSoNAAEaFQq6Vl2Ua9IOIg5BSLVjn5QGIYGPJVdCP+LNQKNp7zhgRjPvTYk1C7jeV6a7eGGGNe8lotlQ2FBZCRrGxzDzLXCWgJF4yRyAu7oFarsvWvRFWFDvRWKjICyvaMS5bbqWLUadyShJiLJMVGYSjIJ3TTWlp16X1T9E/s20lhoQGACycO4+pp2alp0/1uju/dBkCrLr0J3bSWgvx8kuOiSYi5SJ3G5p+/Vp17s+svtXJ/118rCO7Sp0z9nKxMAPR6K/RW1khjGsy83ByS42IIatyi3NddaXGtDZlJkJUM0gDRB8GnuWXZut1UNDM3w1RWwxtSIkzPd/I58L1yfyRY2am31naQc9lyvb6tIMH4G9unubKh0ABZl5RtrrXNdXyaQ2Soeh8ZCr4tytYvyFWvQqfSlFLs+c66BC4W2qlitAtpz/nz5wkPCyM/P58/Fy1i8JCht00fYPiIEWz4S42ODR4ylD8XLSIvL4+I8HDOnz9Pu5D2ZjqDhwzh118WAPDrLwsYMnRomfrp6ep7yMrKChsbG67s/Z2dnU1ERATt2oVcl90adyaVwtk00gD4WkrZDEgFRgELgGlSypbAUeCt4gpCCDdgBNDMKPOu8dTnwCwpZYixHvPxx6upCyQCPwkhDgoh5gohHG/OZd0kHFwhM8V0nJkK9q7mcvYuUDsYzm69ujw1BrwbqEiC3hr8m4Ojq+lcgNEJDGxjKi9ODXc1/F1YYGznGnuyUpWNZvY4QbYaRiU7Dexqlk+/zzNwz8fK8bwyDQAgOQK86pu3U8Vw8fDiUkJc0XFqYjyuHpadwrpNg3lj7jKmfPg9vkH1r0u/y4CRHNuzzazc3cefrIw0CvLV7zJXD29SitWXkhiPi4eXmZ6TmzuXL6nhu8uXEqnp6lYu/akfzWHmsu3kZGeyf4tpekjE6WM0aNHW4nVXKexcIDvVdJxzWU0lMZNzBp8WEL7z6vL0WHCvq4a19dbg1VTVCXBsmYpu3vWmej25xrxeBzfIz1LOIai2c4rZk51qqq84tjUh1/h856aBTY3y6Xd8DPq9AwU5EHPYVJ4aqa6jiuPn50d0ZGTRcXR0FH7+fhZl23foyO7Q/SxfuZomTZqWS//xx59kz74DfPf9HFxcXMzqDAwKIjUlhby8PFWfvx9RUab6YqKi8PMzt8fLy5u4OPUcx8XF4enpVS79FavXEhEVS3p6OsuWLikqP7B/P527drV43RqVi8rkbIZJKQ8Z3+8H6gEuUsotxrL5qOhjcdKAHGCuEGIkcCX/Wl/gKyHEIWAl4CSEKC0vlxVqHue3UsrWQCbwyrVCQojJQoh9Qoh9iekW5jTedixkhwq5Rw2JX5s5Ki1OzfHsOxX6TIGUKBUBAdi1ABr1gIGvqsjHFYeyOPbOkFMskmJhRM2iPSVRlv7GL+HPaSry4dPYVJ6TDg4WvoSrGMLClARL2cAunj3Bq+P68M4jI9i07FeefOercusPHP8YhQYDe/5ZZSbr7O5Jeuql4gZZsPJ67nfp+p+//CgvjeqOtbUNjVt3LCpPS72EswWntlpgqXubD4eTq81PZiTAuU3Q6QnlyKXFmJ7voC5wfDn8PR2Or4Dgceb12jpBXrHn2+IDej3Z6MrQ3/09bHhLPd+eDUzluRlg53Qd7VROyvt8Hzp4gMYN6tIxpC3ffvM1C/9cUqb+nNnf0axJQzqGtCUuLo4PZ3xsJuvj40tSUtJ123Oj1zNs8EDqBgZga2tLz16mEZrExAR8fS072RqVi8rkbOYWe28AXMpSkFIWAO2BJcBwYL3xlA7oJKUMNv75SynNV0CYiAKipJRXctT9iXI+r21vtpSynZSynWdNu7LMu7lkpVwdcXR0uToScgX3QOj2CIx4Tw17dxhnGro+txPWvg8bPoHcTEhLUOVp8bDxC1j7AYSFQnqSeb0F+SpiUpI9Di4qOnkt2Wkqugnq9crQfnn0Cwsg6ogp6gpqWN2QT1UnJTEeNy+fomMXT29SkxPM5HKyMsk15rg+tmcreisraji5lKnfqd8wWnTqyQ/vWU7DmZ+bi7WNbTF74nAtVp+rpzepxgUIxUm7lIyzmyegFhilp1wqt35Bfh6Hd24iuNh0AWsbG/Jzc6ny5KSqUYkr2DlbHu52rgVtH4C+b4BfKzXP88pw+8U9sPUT2PEV5GVCprF/a4VA7BH1PuaQ5WFqQz7oij3f10Yi7V0s25ObrhxVuNphLY9+YQHEH796uoDeulo839HR0fjXqlV07O8fQGxMrJlceno6mZlqmslf69dhbWWNu7t7qfoJCQkUFhYipeTHH+fSNsR8mDonOxtbW9N3WHRUNAEBpvr8AgKIjTW3JyEhHh8f9Rz7+PiQmJhQbv3c3FzWrF7F4CGmOcO2dnbkZGdb6iKNSkZlcjav5TKQIoS4MmN8ArCluIAQogbgLKVcCzwLBBtPbQCeLiYXTClIKeOASCFEI2NRH8DC0uoKJDlCLeip4Q46vVpcE3nEXG7Z67DsNfV38SDs+QMijcNUV4awHVyVIxoeenU5AloMhDNbzaolPV61fYXII8oGnZUqr+kFyeHmelFHoG4n9b5uJ3Vcmr6Vrck5FTo13J9mGn7FyVsN+1dxwk8dxcs/EHcff/RW1oT0HsjhnZvN5JxcPYreBzVugU4IMtJSS9VvFtKVfuMe4evXniQv13KEPj4qHHcf/6Ljwzs3E9J7IFbW1rj7+OPlH0jYKfPP3+Gdm+jUT61u7dRvGId3bipV39bOocg51en0NO/Qg7iLF4rq8w4IIibs7PV2X+UjNRIcPdVwttCrxTXxx83lNr4L/7yj/mIOw5ElEHdMnSsawnZR8zWjjdNPctLA3bi4zKOByQktTmaiavsK8ceVDTq9Knf0hBQLK9jjjilnFtTrFVtK0tfbmJxToQOvJmq+9hUcPa9+3qso+/eFUr9+fQKDgrC2tmb0mDGsWW0+wuDtbZr60q5dCDqdjuTk5FL1rziDAEOHDefEcfPP0dmzZwgMDCw6XrN6FaPHjMHGxobAoCDq16/PvlDzXQHWrF7N+PsfAGD8/Q+wetWqUvUdHR2L7NHr9fTrP4Azp027GjRo0IDjx49dV99p3JlU9q2PHgS+E0I4ABeASdecrwmsEELYocZtnjOWTwG+FkIcQfXBVuBxIYQPsA9wAgqFEM8CTaWUacAzwK9CCJsS2qpYZCHsXaiGwIVORSkvG385NjD642fN595dRffJanV3oUFtJ3RlC6KgEDWMDspBPb/TXLcgD9IToaaner0cCxH7Yehbxvr+MA3dd7xfOayXLsKxv9TWR/W7QOYl2DpbyZSkb2UDPZ9UEUyhg7jTVzu/nvXgyOob68NKRGGhgd+/eJdnP5qLTqdjx7qlxIafA6D7kLEAbF21kLY97qbHsHsxGArIz81l9jsvlKl/79TXsbK24bmZPwBqkdCvs96+qv28nGwSYy7i6VebxJiLxIafY//m9bz902oMBgO/G7cnApjw4jtsXfkHEWeOs/73uUx+61O6DBzNpYQYvv+feiRL0rext+ep977GytoGnV7PqQO72bJyYZEd9Zu3YfX8r29hT98hyEI4ukQNgQudilKmG52uwM7qNcLCc1mckElqq7FCg6rryhZEhxdC8xGq3sICOLzIXNeQpxbxOHqo1/Q4FQXt9YrRNuP2RACtxqo5o5cj4exGaPcg1O4A2SlqpTmUrG9lA+0fVs83Okg6e/V1udVRK+erOAaDgeefncrK1WvR6/UsmDePkydVfOORR9XuEHPnzGbEyFE8MvkxCgoKyMnO4YEJ48vUf/f9D2nZqhVSSi5GRPDMU0+YtZ+VlcWFsAvUrVePC+fPc/LkCZb++ScHDh+loKCA56ZOodD4fH/z7ffMnTObAwf288nHM/j5tz94cNIkIiMjuf9e9b+oJH1HR0cWL1mGja0ter2eLf9uZs7s74vs6NSpM++/+86t62iN24a4nnkXGuWnXR1PWe1yo9cKBvfacGhlxbTvWgua9oEd825705N/3FK2UBUjuGtfAhs2Y8WPn1dI+7XqN+Gueyby4wfTbnvb1TI3uk8LcAlQ2yNVBE7+UK8nHPz1tjddHXOjDx06jNZt2vL2/96skPZbtQrmmanP8shDE29729l5hv1Syna3veEqTGWPbGrcSUQeAtsKXKRvVwMOmQ81adwaDm3/hxpOLhXWfg1n1wpzdKslcUdVZLSisHWEU2srrv1qxsqVK3Bzdy9b8Bbh7uHB9LffKltQo1KgOZsaN5dz5lljbhuxd9Y++9WB7Wv/rLC2T+4vY9hY4+ZzcU/ZMreKxDMV13Y1Zd5PP1ZY25s23kheFo07lcq8QEhDQ0NDQ0NDQ+MOR5uzeYtwtLWWTfxcKtoMjdvEvs+qS9pEDYDaD82paBM0biMXv7+z1oNq3FrEPV9pczZvMlpkU0NDQ0NDQ0ND45ahOZsaGhoaGhoaGhq3DM3Z1NDQ0NDQ0NDQuGVozmYVolP33izZuItlm/fy4ONTLMq07dCZfw+f59c1m/l1zWYeeeaFMvX7DBzKwr+2sfd8PE1atLJULQDunt7MmmvaA2/iE1NZtnkvSzbuomP3XhZ1nJxd+PrnxSzdtIevf15MTSfnMvW/mLeQ39ZuZuFf23j13Y/R6dTHeMwDDzNk9L1l9FIVwqsx9HkV+vwfNOhTuqxLLRj6CfgWu391u0Ovl6HXNPX+Ck5+0G0q9HwRejxvOX0hqEwvHR4xHTfoo2zp8yp4NrKsY+0AnR5Xcp0eB2v7svU7Tla29JoGLe+hKK92na5Qu33p112F6NG7L5v3HGBr6GGenPq8RZmOXbpxLCyadf/uZN2/O5n64itl6v/f/95l0+4D/LV1N7MX/I5TsWewOF7e3vz02+Ki46eefYGtoYfZvOcA3XtZ/vw5u7jy65KVbNl7iF+XrMTZ2aVM/QWLlrF+yy7+2RHK+zM/L3q+H3zkMe65rxrNjfZuAv1eh/5vQqO7Spd1rQ2jPgf/YFNZ/R5w16tw1/9B/Z6mcmd/6PU89J0GvV8C18Bra1PYOUGXx0zHje5StvR7HbwbW9axdoBuT0G/N9Rr8ee7JP2uT0DfV5SdrcdS9HzX6w6BHUq/bo1KQ5V0NoUQ04UQfW9Ar7EQYpcQIlcI8WKx8kZCiEPF/tKM2YXuGHQ6HdOmf8iUieO45+4u9Bs6gjr1G1qUPRi6m/GDejF+UC/mfvlJmfrnT5/k5ScmcnDvrlJtGP/I4yxf+DMAdeo35O4hwxnTryvPPDiWV6bPKPrSKM7EJ6awd8c2RvbuwN4d25j4xJQy9V99+mHuG9iLsf264ermQd+BQwFYseg3xk189AZ6rzIiVN7rXbNh0wyV+q+md8myTYdAwilTUU0fCOwIW2fBvx+DTzOVHQag2VA4/Rf8OxNOroNmQyxXW68HROw21uetbNg8A3Z9D61GU/SlUZwGfVRWmI3vq9crTnJp+vvmK1s2z1B7LV75Qr24B+p0M2+jCqLT6Xj3o095cMxI+nRux9CR99CgkeUv/NBdOxnQszMDenbm85kflqm/7d9N3NUlhH7dOxJ2/ixPPfeCxXofeeIZfvt5HgANGjVmyIjR9O0SwgP3jOC9j2dZfL6fmvo8O7b+S4/2wezY+i9PPvt8mfpPPvwA/Xt0om+XENw8PBg0bCQAC39dwKRHzbPdVE0EtL4Htn8Lf70HtdqqZ7Yk2RbDIK7Y1m9OvlCnM2yaCf98CL7NoYZK+0rLYXByPfwzA06sUceWaNALLhi3F6vpo2zY8D5s+xZaj8Hi8934Lkg4A3+9o14b31W2/u6flI1/v68y2AW0VuXhu5TDrFElqJLOppTyTSnljWzSdQmVynLmNfWdllIGSymDgbZAFrDsPxt6E2nWqg2REeFER0ZQkJ/PhlXL6XHXgJuiH37+LBEXzpdZR+/+g9m5ReW67nHXADasWk5+Xh4xUReJjAinWas2Zjo97hrA6iUq/eDqJQvpeffAMvUzMzIA0FtZYWVjXZQFMzcnm5ioizRr1brc111pca2t0gZmJYM0QPRB8GluWbZuN4g9DLkZprKa3pASAYZ8lS4w6ZzKlw2otIF26q21HeRctlyvXytIMH7B+TRXNhQaIOuSss3VQkTUtzlcDFXvL4aCb4uy9Qty1avQgc7KlPbUkA/Zl0qOvFYhgtu0IzzsAhcjwsnPz2fVsj+5e8Cgm6K/7d9NGAwGAA7sC8XH199iHQOHDGPLxr8BuHvAIFYt+5O8vDwiL0YQHnaB4Dbmi3fvGjiIP/9Qox1//vErdw8cXKZ+Rno6AFZWVthYWxfd75zsbKIiL9KqTdtyX3elxS0QMpIg0/h8R+4HvxaWZev3gOhD5s/3pfBiz/dZ8DM+35Jiz7c9ZJfwfPsHQ7zx+fZroWwoLFD/czKSlI3X4tcCIox7sUbsMbVZmn5BjnoVOtDpTXUZ8tX/gpIirxqVikrhbAohgoQQJ4UQc4QQx4UQG4QQ9kKIYCHEbiHEESHEMiGEq1F+nhBitPH9h0KIE0aZmcYyTyHEEiFEqPGvC4CUMkFKGQrkl2JOH+C8lDLiFl/2deHl40t8bHTRcUJcDF4+vhZlW7Rpx29rN/P5T39Qt0Gj69a3hF9AbdIvXyY/L89yfbGW63Pz8CQ5MR6A5MR4XN09yqX/5fxF/L3vJFkZGWxcZ0qPefLoYYJDOpbb7kqLnQtkp5qOsy+DnYXhTztn5dCFXbMBelosuNdVw156a/BuCvYu6tzRZSq6efeb6vXEGvN6HdwgP0s5h1faucqeVGXjtdjWhNw09T43DWxqlE+/02PQ/x31xRRz2FSeGqmuo4rj4+tHTHRU0XFsTDTevn4WZduEtGf9ll3MX7iUho2aXJf+2Psm8O/GDWbltWoHcjk1lTzj8+1toT4fC/V5eHqREK+e74T4eDw8PMul//Pi5Rw8HUZGRgZrVpp+1x85dID2HTtbvO4qhb2LyiV/hexU0/NZHDtn8G8J57dfXZ4WCx71VcYnvbUauXBwVecOL1HRzIHToeVwOGYhvbCDu/H5Lrg+e2xrQo7x+c5JU8fl0e/6JAz5QP2wjDpoKk+5CB71zNvRqHRUCmfTSAPgayllMyAVGAUsAKZJKVsCR4GrclsJIdyAEUAzo8y7xlOfA7OklCHGeuZehx3jgN8tnRBCTBZC7BNC7CswFF5HlTcBYT6kYWkP1VPHjzCkaxvuG9iLRfPnMvP7BdelXxIeXt6kXEq+bntKpAz9Zx4cQ//2zbGxsSWks2ko9VJyIp7eJQ03VSEsjGBZpPlwOLEaFc4oRkYCnN0EnZ+Ajo/B5RgVAQGo0wWOLYcN0+HYCmg9zrxeW6erIykW7pdZm6VRlv6u7+Gvt1Rk07OBqTw3Q80tq+KIcj5Px44colNwU/r36MS8Od8x5+ffy63/9PMvUWAwsGzxQjNZL28fkpOTSrfnOu53WfoT7hlOu6b1sbG1pUt301BqcmIi3tfxI7hqYaF/g0fB0ZXm59Lj4fTf0O1p5cilRpue77pd4fBSWPumem073rxe+2ue7/Lac10U09/+Dax+TT3fXsWmf+VmgL3lOcQalYvK5GyGSSkPGd/vB+oBLlLKLcay+UD3a3TSgBxgrhBiJGr4G6Av8JUQ4hCwEnASQtQsywAhhA0wFFhs6byUcraUsp2Usp2V/vZ2bUJsDN7Fhr+8fPxIjI8zk8vMyCA7KxOAHf/+g5W1Fc6ubuXWL4ncnBxsbW1LtsfXcn2XkhJx91RzDd09vUkxfqGVRz8vL5ct/6y/arqAra0duTk55ba70nJtZMDe2fJwt0staPcA3PWGGvZuNco03H5xD2z5BHZ8BfmZkJGoymuFQOwR9T7mkOVh6sJ8FTEp0R4Xy/bkpitHFdRrXkb59QsLIO741dMFdNZquK2KExsTjZ9/QNGxr58/CXGxZnIZ6elkZarne/M/G7CytsbVzb1M/dHj7qPP3f2Z8thDFtvPycnG1tau6DjOQn3xseb2JCUm4OWtnm8vb2+SkhLLrZ+bm8s/69dw14DBRWW2dnbkVJvn29V0bO9iebjbtTZ0mAgD/gcBwWou5JWh6/DdsPEj2PK5ilKmG5/voA4QbRwdiDoIbhaeb4Ol57sc9uSmm3782Tmp4/LqFxZA7FGT/aCcT0OeeTsalY7K5GzmFntvAFzKUpBSFgDtgSXAcGC98ZQO6HRlHqaU0l9KmV4OGwYAB6SU8ddj+O3gxJGD1Aqqg19Abaysrbl7yHC2/rPeTM7dw6vofbNWrdEJHZdTLpVbvyQiws7jG1Cr6HjrP+u5e8hwrG1s8AuoTa2gOhw/fMBMb8s/6xk8aiwAg0eNZcvf60rVt3dwLHJO9Xo9XXr1Jfz82aL6atepx/nT1SBHemokOHqq4WyhV4tr4o6by/3zLvz9jvqLOayG0OKOqXNXhrDtXdR8zWjj/clJA3fj0JVHA8hMNK83I1G1fYW448oGnV6VO3qqIbBriT0GtUPU+9oh6rg0fb2NyTkVOrVCNyPBVF8NT0gv/4+iysrhg/upU7cetWoHYm1tzZARo/l73VozOU8v0/Pdqk1bdDodKZeSS9Xv0bsvT0x5nofHjyUnO9ti+xfOnyOgtskp+XvdWoaMGI2NjQ21agdSp249Dh3YZ6b397q1jB6nImejx43n77VrStV3cHQsck71ej29+vbj/FlTTvQ69epz+uSJ6+2+ykfKRfXZdnBXz3ettsoRu5Z1/zP9RR2Cg4sgxvhD0fbK8+2qfmhGGu9P9mXwrK/eezU0/cgsTnrC1c937FFlg85K2VTDEy5ZmEkWc9S0gjywgzouTV9vY3JOhU4N96cX+3qt6QWXzX/EaFQ+rCragP/AZSBFCNFNSrkNmABsKS4ghKgBOEgp1wohdgPnjKc2AE8DHxvlgotFTUvjXkoYQq9oDAYDH7/1Kl8uWIRep2Pl4t+5cPY0AKPuexCAJb/Np8/AIYwaPxGDoYDcnBz+b8rkMvV73j2Ql/73Aa5u7nz242+cOXGcZx4cc1X7OdlZREWEExBYh6iIMC6cPc0/a1ayeMN2DAYDH735CoWFahjn9Q9nseTXeZw8epj5337BB1/NZdiY8cTFRPHKUw8DlKhv7+DAp3N+xsbWBp1Oz75d21ny67wiO1q1bc/szz++pX19RyAL4cgSNZdR6FSU8orTFWSc0xa+s2R9gPaT1JyuQoOqK9/oaBxaCC1GqHoLC+DQInNdQ55axOPooV7T41QUtPcrRtv+pGiYLHissiU1Es5uhJAHoXYHNYcrdL6SKUnfygY6PKy+pIROLXQofl1uddTK+SqOwWDgjWkv8PPi5ej1ehb+9jNnjD+q7p+onplf5v3AwKEjmDDpEQoKCsjJyebpRyaWqf/OjE+wsbXl1yVq7t7BfaH834tTr2o/OyuLi+FhBNapS0TYBc6cPsnqFUvZuHMfBYYCXn/5+aLne8ZnX/HrvB84cugg33z+Kd/+uICx4x8gJjqKxydNAChR38HBkR9+XYSNjS16vZ4d27bwy0+mWU7t2nfks48+uHUdfacgC+HQYuj2pJpiEr4b0ozPd90u6vXCjtLr6PSI8fkuVM/wled7/+9q+F3o1QjF/j/Mda99vtPiIOoA3P1/JtuuPN9t74UL2yElUg3dd3wIgjqq53vXj0qmJH0rW+g82fR8J55RdV3BvS6cWHejvahxB1EpcqMLIYKA1VLK5sbjF4EawHLgO8ABuABMklKmCCHmAauBHcAKwA41y22mlHK+EMID+BpognK4t0opHxdC+AD7ACegEMgAmkop04QQDkAkUFdKWcLyPRPVMTd6z7sH0qRFK779pGK+DBo1bcH4Rx7nzeefuu1tV8vc6L4twDkATlXQl4GzP9TrCQd+LVP0ZlMdc6P3GzSEFq1aM/P96RXSfrMWLXn0yWd49onbv71ZtcyN7tcSXGvBcQsLBG8HLgFq+6XQn29701pu9JtPpYhsSinDgebFjotvTWS29FhKObHYodmuz1LKJGCshfI4IODacuO5LMC9vDZXR/7dsBZnV7eyBW8RLm5ufPvJhxXWfrUj9qhazV5R2DjCSfOhZI1bw19rVuFagc+3m7s7M99/p8Lar3bEHFHPWEVh41hxjq7GTadSRDYrI9UxslmdqZaRzWpMdYxsVmeqZWSzGqNFNm8+lWmBkIaGhoaGhoaGRiWjUgyjV0ay8wo4Gnmpos3QuF042FS0BRq3kQ/HaDmbqxN/7blQ0SZoaFRqtMimhoaGhoaGhobGLUNzNjU0NDQ0NDQ0NG4ZmrOpoaGhoaGhoaFxy9DmbFYh7u7Xj08+nYVer+fHH39g5kcfmcl079GDP5cuIzwsDIDly5fx/rvvlqr/wYwZDBo0mLy8PC5cuMCjDz/E5cvmW436+Pjw7fezGTFsKAAvTZvGpEkPYTAYeP65Z/l7wwYzHVdXV379/Q8CAwOJiIjgvnFjSU1NLVV/1Zq1+Pj4YGVlxY7t25nyzNMUFhbyxJNPkpmZxYL58/5zX1YK3BtCo6Fq0+foUAj/t2RZpwBo/xQc+Q0SjFk9anWBgPaAgOi9cNG4mXINX2gyQmX3yEmBo3+AIde8Tpua0HQUHJqnjoN6gn8ISAmnV0LyGXMdK3toOV5lNclOgSO/QkF26fqtHwLbmmoT6tQwOLkckFCrk0qrF2OeuaY64ds0hLZjnkIIHed3rOXEBvNNur0atKL7E9PJTFIbg0ce2s6xtZb3L+z97Ey2fvcmBTlZ5aoboO2Yp/Br1oGCvFx2L/iIlMizpdrWcshE/Ft2AVlITnoquxd8RPblZJz96tCk7z3sXmD+v0tD4dGoLY2HTkbodETt3UDYZvPsya51W9B64htkp6hsPAlHd3L+H8v5SNo99j4H572DITe7XHUDNB72GJ6N22HIz+XowlmkR58v1bb6/e7Hq1lHpJTkZaRybOEsctMuUcMnkKAeIzm2cNbN6BqNO5gqGdkUQkwXQvS9Ab3GQohdQohc48bxxc89J4Q4LoQ4JoT4XQhhV1I9FYFOp+PzL75k6OBBtGrRnLFjx9G4SROLsju2b6d9u7a0b9e2yNEsTX/jP//QulVL2rVpzdmzZ3j5lVcs1jv1uef4ca7K9tG4SRPGjBlLcMsWDBk0kC++/Aqdzvzj9tK0aWzatJFmTRqzadNGXpo2rUz9+8aNJaRtG1q3aomHpyejRt8DwLyffuKpp5/+D71YmRDQeDgc/BF2fgo+rcDRq2TZBgOudv4cvZWjuecr2P0ZeDRWaeRAOZDn1qnyhOMQ1MNytYHdlJMKqm2fVsqWAz8o2xDmOnV6wqVzsONj9RrUs2z9I7/C7s9h16dg7QjextzJ0fugVudy9FXVRQgd7cZNYfNXr7Jm+kMEhvTGySfQomziuWOse/8x1r3/WImOpl/zDqRGnacgJ6vcdfs1a09NrwBWvfUAe3/7lJB7p5Zp24m/F7HuvUdZ9/5jRB/bTfOBKrPQ5ZgwHFw9cHAt6bNczRE6mox4gv0/vMX2mU/gG9wdR69aFkVTwo6za9Yz7Jr1TImOpkfjENJjwjDkZpe7bo/G7XDw8GPbjEc5/ueXNB35VJm2hf27hJ2fPs2uWc+QeGIv9freC0BGXAR2zh7YuXjehM7RuJOpks6mlPJNKeU/N6B6CZgCFN80HiGEv7G8nTGLkR4Y958NvYmEtG/P+fPnCQsLIz8/n0WLFjJk6NCbov/P339jMBgA2LN7D/7+Fve9Z8SIkfz1l8qnPmToUBYtWkheXh7h4eGcP3+ekPZm++szZMhQflmwAIBfFixg6NBhZeqnp6s09lZWVtjY2HBlr9js7GwiIiJoFxJS7uuutDjXgqxkyL4E0gBxh8GzqWXZ2l0g/hjkZZjKHL3g8kWVrk4WQkoYeBrzJjh6qmOA5LPg1dy8TlDlSSqlKZ5NlQ3SoKKhWcnKxmvxbAYx+9X7mP3g1axs/StRVaFTudOvpMkrzFeyTpY/j9UB96DGZCRGk5kUS6GhgIh9mwlodeMOeFD7PkQd3nlddfu36kLYbjXqkBx2EhuHGtg5uZWqX5CTVaRvZWNH0T0Foo/sJrBdrxu+hqqMc+2GZCXFkH0pDmkoIPbQVryameU1KTd+bXqScHz3ddXt1awjMfs3AXD54mms7Ryxqelaqr4hN7tIX29jhyx2vxNO7MEnuPsNX4NG5aBSOJtCiCAhxEkhxBxjdHGDEMJeCBEshNgthDgihFgmhHA1ys8TQow2vv9QCHHCKDPTWOYphFgihAg1/nUBkFImSClDgXwLZlgB9kIIK1R6zJjbcvHlxM/Pn8jIyKLj6Kho/P38Lcp26NiR0P0HWLl6DU2aNr0u/YmTJvHX+vVm5UFBQaSkpJCXlweAv58/UZFRReejoqLws1Cfl7c3cXFqaC8uLg5PL69y6a9eu46o2DjS09NZuuTPovL9+/fRtWtXi9ddpbB1htxU03HuZVVmJuekHLqo3VeXZ8aDSx2VAUhnDR6NwM6onxFvcly9W4Kdi3m9dq5q+FsaTPbkFJtaUZI9NjUgT/1YIC/dlKGkLP3WD0OPN6AgF+KPmsrTosC1jnk71QR7Fw8yUxKLjrNSEnFw8bAo61GnKQNem03Ppz/A2ddy9NOzbnMuXTxzXXU7uHiQZUGuLP2WQx9i2Hu/E9S+D0dWzSsqT444jVf9FmVcefXEzsmdnNSkouOcy0nYOVtObOcS2JjOz31Jm4ffxtG7tmWZoKakRZ+7rrptndzJSU00kytLv37/B+j+2jx82/Tk3F+/FJWnRZ3FtU6zsi5do5JTKZxNIw2Ar6WUzYBUYBSwAJgmpWwJHAXeKq4ghHADRgDNjDLvGk99DsySUoYY65lbWsNSymhUtPMiEAtcllKaTUAUQkwWQuwTQuy73XmZhDAfsrSUHerggQM0qFuHkLZt+Obrr/hzydJy60979VUKCgr4/TfzXNQ+vr4kJZn+0ZTXnpIoS3/wwAEEBvhja2tLr969i8oTExLx9fMrdztVCwv922gInF1nfi4zAcK3QJtHoM1DkBGrIpwAxxer+ZAdngErWygsMK/X1gnyMk3HFkbMLdpTEmXpH/wBtr4HOitwq28qz8tUtlRXLPSbpefsUuRZVrx+L+vem8yZzcvo/rjl/OY2jjUpuBKFKmfdlpDIMvWPrPyRFa/dS/jejTTsObyoPDc9FXsXLTOwRSz+XzQXS4s+x9b3J7Fz1jNc3LGK1g++brE6a/sapqhjOeu29L8ZWbb+ufUL2PreRGIP/EvtLkOKyvMyLmPrpN3vqk5lcjbDpJSHjO/3A/UAFynlFmPZfODaWHwakAPMFUKMBK6M3fQFvhJCHAJWAk5CiJolNWyMmA4D6gB+gKMQwiw/oZRytpSynZSyncXvzltIdHQUtWqZhi39A/yJiTUPvqanp5OZqZyE9evWYWVtjbu7e5n69094gIGDBvHgBMtpGbOzs7G1sy06joqOIqCWaXgzICCAWAv2JMTH4+PjA6gFRokJCeXWz83NZfWqVQwZYpouYGdnS3Z2NlWe3Mtg62I6tnWG3DRzOacAaHEvdJ0GXi2gyXBT1DImFPZ8Afu+h/wsyDL+WMhKVPMm93wJcYfUUP21FOYrx+8KOZdNkdHS7MnLUAuLQL1ecVjLo19YAIknrp4uoLNSi4SqKdkpSTi6mua7Obh6kn052UyuICeLgtwcAGKO70XorbB1NHfSZaGhyGkob91ZqUk4XCuXmlxu/fDQjdRq3a3oWGdtQ0GehQVpGipaWCw6bOfsQW6aeZ8acrMx5Kn7nXRqHzq9FdYOlu53YdH9Lm/dSs7zKrmctORy68ce/BfvFqbpGDorawrztftd1alMzmbxT6MBcClLQUpZALQHlgDDgSvjvzqgk5Qy2PjnL6VML6WqvihnN1FKmQ8sBe6olQn7QkOpX78+QUFBWFtbM2bMWFavWmUm5+3tXfS+XUgIOp2O5OTkUvXv7tePF196iVHDh5foyJ09c4bAwKCi49WrVjFmzFhsbGwICgqifv36hO7da6a3evUq7n/gAQDuf+ABVq1aWaq+o6NjkXOq1+vpP2AAp0+fKqqvQYOGHD92/Dp7rxKSFqUW9Ni5qlXaPq0g8aS53PYZpr+Eo2old+IJdc7aOIRt56LmX8YdvrocAXV6mw/BA2QmqhXlV0g8qWwQemWTgztcjjTXSzwBfm3Ve7+2kHi8dH29jck5FTq1kCkrwVSfg4ca9q+mJEecoqaXP47uPuj0VgS260X0kZ1mcnZOpnvlHtgIIQS5meY/BtLiI6nh4XtddUcf2Umdjneruus0IT87k5y0S6Xq1/Q0TYkJaNmZtDjTZ8XJO4DLMeE31iFVnLTIMzh4+GPv6o3QW+Eb3J2EE3vM5Gxqmu63c62GIAT5Web3OzMxCgc3n+uqO+H4HvzaqtEk59qNKMjJJC89pVR9Bw/TaJNXs45kJpimSDl6+pMRF3GDPaJRWajMWx9dBlKEEN2klNuACcCW4gJCiBqAg5RyrRBiN3DOeGoD8DTwsVEuuFjU1BIXgY5CCAcgG+gD3FH7rRgMBp6dOoXVa9eh1+uZN+8nTp5QTsWjkx8DYM7s7xk5ahSTH3ucgoICsnOymTD+vjL1P/v8C2xsbVm7/i8A9u7Zw9NPPXlV+1lZWYRdOE+9evU4f/48J0+c4M8/F3P46DEKCgqYOuUZCgvVMO23389mzuzvObB/Px/PmMFvf/zBpEkPERl5kXvHjgUoUd/R0ZEly5Zja2uLXq/n382bmf3990V2dOrcmXffsTxEWKWQhXB6BbR5WDlhMaFqHiZAgDGVYpT5F8VVtJqg5mxKA5xabtqCyCdYDaMDJByzvLVQYT5kXQJ7d8hOVm3HH4HOLyjbTq2gaBi86SjlsKZFq+2ZWoxXWxxlp8IR49ytkvT1NhD8oIpgCp1awV78ulyC4MKNrAWsGsjCQvb98SW9npmB0Om4sHMdl2PVF3f9boMBOLdtNbVbd6d+96HIQgOG/Fx2/PCuxfpiju7Bu2EwGYkx5a475tge/Jp3YMj0nzHk5bB7wcdl2tZqxCM4eddCFkqyLsWz97fPimzwbhhMzLEyPrvVFFlYyMnl39L20XcQOh3Re/8mM/4iAAEdBwAQtXsdPi26UKvTQOP9zuPIr5a3kko8FYprvRZkJceWu+6kU6F4NmlHt1fmYsjL5diiWWXa1nDgRBw8/UFKslMSOLHk6yIb3Oq1JPFk6K3pMI07BnE98+gqCiFEELDauBIc47ZENYDlwHeoBTsXgElSyhQhxDxgNbADWAHYoWYQzZRSzhdCeABfA01QDvdWKeXjQggflBPpBBQCGUBTKWWaEOJtYCxQABwEHpFSlhj71wkhrfWVKXD83xk6bDht2rbhf2++WSHttwoOZuqzz/HQxAdve9u5614sW6iq4dkMnPzhvPn+qbeFmn5QuxscX3jbm/5t6R31W/OmYefkRqeJr7D5i5crpH2dlTV9n/+Uv2dOVUO8dwjuNe6one5uGjY1XWkx7gX2z7E8p/NWI/RWtH9iBnu/eemOut/9Z67dL6VsV9F2VCUqRWRTShkONC92XHxrIrO9GaSUE4sdmu23I6VMQjmO15bHARb3UZFSvsU1C5A0rmbliuW4u1fcRG8PDw/efqtiHN1qSeJxsHGouPatHSvO0a2i5KRd4vz2NVjZOVy1PdHtwtHVi0PL5t5RjkdVJi89hag969Hb2l+1PdHtwt7VizNr52n3uxpQKSKblZHqGNmszlTLyGY1pqpGNjUsU1UjmxqW0SKbNx/NG9LQ0NDQ0NDQ0LhlaJHNW4ReJ6S9TaWYpaBxE7gnpG5Fm6BxG/np0Z4VbYLG7cTVsWwZjSqDGDpLi2zeZLTIpoaGhoaGhoaGxi1DczY1NDQ0NDQ0NDRuGZqzqaGhoaGhoaGhccvQnE0NDQ0NDQ0NDY1bRpVcwSKEmI7aqP26UosIIRoDPwFtgNeK7+cphJgKPIraHH6OlPKzm2fxzaHvXXfz0Sefotfrmf/Tj3w682MzmW7du/PH4qVEhIcDsHLFMj58/71y6U959jne//AjAv19SE42z3nr7ePDV998xz0jhwPwwksv88DESRgMBl56/jk2/vO3mY6rqyvzf/mN2oGBXIyI4IHx95Kamlqq/rKVq/Hx8cXKSs/OHTt4bqrKLvTY40+SmZXJLwvm32gXViqat+/GfVNfQ6fTsXX1Ytb+OsdMplFwe6Z88A1JsSo93P6tf7Ny3tel6o958mWCO/eioCCfhOiL/PDBq2RnmGdzdXb3ZOLL7/D5tMcBGHT/ZLoNGk1hYSG/ff4ux/ZuN9NxrOnME2/PwsPHn6S4aL5581myMtJK1X9+5lyc3T3R6/WcObyfn2e9jSwspM/I8eTmZLN97dKb0JuVAL9mEDJGZVI6tx2O/VWyrHsgDHgFts6BiwdUWePe0KCryoV9djuc3KjKXQOg43jQW0NhIez5DZLDzeu0d4JOE2CTMftL8/5Qv4vK+BS6EGJOmOvYOED3R6GGO2QkK3vyskrX7zNFtaXTQ/xZ2Ps7SAmNekJBHpw3T5lZJfFsDM2Hq/t9cTec21SyrHMt6DYV9i+A2COqrE43qN1R3e+I3RC2VZW3mQA1vNR7a3vIz4atn5jXaVsTWo2BvT+o4/p9oHYHdb+OLYPE0+Y61g7QdgLYu0H2JWVPfnbp+h0mg60T6HSQfAGOLgEkBHUFQy5EatmFqgJVMrIppXzzeh1NI5eAKUDxTeMRQjRHOZrtgVbAYCFEg/9s6E1Ep9Px6edfMHLYENoFt+SeMeNo3LiJRdmdO7bTuUM7OndoV+RolqXvHxBA7z59uXix5By2z0x5lnk/qn9MjRs3YfQ9Ywlp3YoRQwcz64sv0enMP27Pv/gy/27eRHDzpvy7eRPPv/hymfoPjL+XTu3bEtImGA8PD0aOGg3Agvk/8cSTT99A71U+hE7HhOffZNaLj/DahEF06DsYv6B6FmXPHNnHWw8N562Hhhc5mqXpHw/dwesPDubNiUOJjwxn8P2PWay339hJbF21GAC/oHq07zOI1x8YxKcvPsKE599CWLjfA++fzIn9u3jlvn6c2L+LQfdPLlP/mzen8takYbz+wGBqurgS0qs/ANvWLKHvqAn/oRcrEUJAh3th45ew8n8QFALOviXLthkJMcdNZS5+ytFc+wGsegcCWkBNo8PRdhQcXg2r34XDK6HtSMv1Nr1LOamg2g5qByvfho1fQIf7VLvX0rw/xJ2C5W+q1+b9y9bfOlvZsvJtsKsJgW1V+bkd0KTX9fRaJUZAi5GwZzZsngF+baCGd8myTQdDQjHnr6aPcjS3fwZbZoJ3U3D0UOcO/Kycy62fKMc09qjlauv2VE4qqLb9WsO/M2D3bGgxSrV7LfV7Q9JZ2PyBeq3fp2z9/fNh60z49yOwrQF+rVR55B7lMGtUCSqFsymECBJCnBRCzBFCHBdCbBBC2AshgoUQu4UQR4QQy4QQrkb5eUKI0cb3HwohThhlZhrLPIUQS4QQoca/LgBSygQpZSiQf40JTYDdUsosKWUBKgf7iNvWAeWgXUh7Lpw/T3hYGPn5+fy5eCGDhgy5afozPprJ6//3KqVtlTVsxAj+3qCiLYOGDOHPxQvJy8sjIjycC+fP0y7ELJkTg4YM4ddffgbg119+ZvDQoWXqp6erKJuVlRXWNjZFNmVnZ3MxIpy27ULKfd2VlbpNWpIQHUFibBSGgnz2blxD6659bor+8dAdFBoMAJw/fghXTx+LdbTtcTdH96hoSeuufdi7cQ0F+fkkxUaREB1B3SYtzXRad+3DjvXLAdixfjmtu/UtUz8nKxMAvd4KK2trFeUC8nJzSIqLpk6TFuW+7kqLex1IT4CMJCg0QPg+qNXKsmzj3nDxIOQUi0Y7+0BSGBjyVWQp7gzUDjaelGBjr95a20P2Zcv11m4N0UYHtlYrZUNhgYpYpicoG6+lVis4v0u9P7/LZHNp+vk56lXoQFds8M2Qr2Tdg0rpqCqCa23ITIKsSyANEHMQfJpblq3TTTmNecXudw1vSIkw3e/k8+Bj4TnxawUxByzX69sSEk+p9z7NlQ2FBhWxzExSNl6LT3NTJDIy1GRzafoFxqzPQgdCb6rLkA9ZKeBioR2NSkelcDaNNAC+llI2A1KBUcACYJqUsiVwlGvSSQoh3FBOYTOjzLvGU58Ds6SUIcZ65pbR9jGguxDCXQjhAAwEal0rJISYLITYJ4TYd7u3L/Xz8yMqKqroODo6Gj8/f4uy7Tt0ZNfe/SxdsYomTZqWqT9w0GBiYmI4dvRIie0HBgWRmpJKXl6esT5/C/X5mel5eXkTHxcHQHxcHJ6eXuXSX75qDWGRMWRkpLNs6ZKi8gMH9tO5S5cS7awquHp6cykhruj4UmI8rh6WIx/1mwXz9k8reO7jOfgF1b8u/W6DRhU5lMXx8A0gK/0yBfnqd5mrxzX1JcTj6mlen7OrO5eTEwG4nJyIk6tbufRf+GQun6/aSU5WJqH/moaPw08do2HLarAdnoMLZKaYjrNSVNm12LtArWA4s+Xq8tQY8G4Ato5quDygBTiqvid0kYpujvoA2o2CA8vM663hroa/Cwss25NZkj1OkK2mSZCdpiKV5dHvOwXGzISCHIjYbypPjgDv+ubtVDXsnCE71XSck6rKLMn5toDwa6YWpMeCe101rK23Bq8m6rNRHLe6kJuhHL9rsXeD/CzlHFq057Jle2xrQq7R6c1NB5sa5dPvMBnunq4cz5jDpvLLkeBm4UeMRqWjMs3ZDJNSHjK+3w/UA1yklFf+q84HFl+jkwbkAHOFEGuA1cbyvkBTYRr2cRJC1JRSmk9MA6SUJ4UQM4C/gQzgMFBgQW42MBvUpu7XfYX/AWFhCMtSFPLQwYM0bViPzMxM7u7Xn98X/0lw86Yl6tvb2/PStFcZNnhAqe37+PiSlJR43faURFn6w4cMwtbWlh/nLaBHr15s3qjmnyUmJtKwYaNyt1N5sdA/mPdvxJnjvHhPb3Kzs2jZsTtT3v+aV+7rVy79wRMex2AwsGvDSjNZF3dP0lOLOQv/8X6Xpf/JC49gZWPDY2/MpEmbjpzYp75c01KT8a1dDTbUtzBiaZGQMXBgaVH0t4jLcWqOZ99n1Rf6pUiTI9Gwh3I4Lx5UQ9adH4C/P7ta394ZcjLKMOh6/uWVof/PFyqq2e1h8GkMsSdVeU46OFmOtFctytm/zYbBidXm5zIS4Nxm6PS4ut9pMSrCWRz/1hBdQlTTzgnyMm/E8Btjz2x1v9vcDx4NIOmMKs/NMM0v1ajUVKbIZm6x9wbApSwF45B3e2AJMBxYbzylAzpJKYONf/4lOZrF6vpBStlGStkdNbfz7PVfwq0jOjqagICAomN/f39iY2PM5NLT08nMVP9ENvy1Hmtra9zd3UvUr1u3HkFBQewK3c/x02fx9w9g++69eHlfHbXKzs7Gzs6UPzg6OspCfbFm9iQkxOPto748vH18SExMKLd+bm4ua9asZvDgoUVldrZ25ORkl9JTVYOUxDjcvExfum6e3qQmJZjJ5WRlkputFmQc2b0VvZUVNZxdy9Tv0n84rTr3ZPZ0yznf83JzsLaxKdkeL8v2XE5JxtndE1ALjNJSLpVbvyAvj0M7NtGm2HQBaxtb8nNzqfJkpoKjq+nYwRWyUs3l3AOh+yMw8j0IbKPmeV4Zuj63A9a8B3/NVFHKdGP/1uukHE1QUURLw9SGfNAXi01kpVxtj6MrZFkYfs9OU9FNUK9XhvbLo19YAJGHr54uoLdWtlR1clKvjkTauUBOmrmcSy21IKfP6+DbSs2FvDJ0HbkHtn4KO79WUcoMUzAAoVPD5DGHLLdvyL96CkPO5WvscVZl15KbrqKboF7zMsqvX1gAcceuni6gs6oe97saUJmczWu5DKQIIa7MIJ6AmktZhBCiBuAspVwLPAsEG09tAJ4uJhdMGQghvIyvtYGRwO//yfqbzP59odSrX5/AoCCsra0Zfc9Y1q5ebSZX3Els2y4EnU5HcnJyifrHjx+jTm1/mjVqQLNGDYiOjqJrx/YkxMdfVe+5s2eoHRhYdLx29WpG3zMWGxsbAoOCqFe/PvtC95rZs3b1asbfrxZ5jL9/AmtWrSpV39HRscg51ev19OvXnzOnTRPj6zdowInjx83aqWqEnTqKV0AQHr4B6K2sad9nEAe3m69WdXLzKHpfp0kLhE5HxuWUUvWbt+/GgPGP8sWrT5CXm2Ox/bjIcDx8TNM0Dm7fRPs+g7CytsbDNwCvgCAunDSfdnFoxya69B8OKIf24PaNperb2jsUOac6vZ6WHXsQe/FCUX0+tYKICjtznb1XCUkOVwt6arirVdpB7ZQjdi3LXoOlxr+IA7Dnd5PclSFsR1c1/zLMOLcuKxW8G6r3Po1NTmhx0uJV21eIPKxs0Fmp8ppekBxmrhd1RDmzoF6v2FKSvpWtyTkVOjXcf9k0vQInb0iNLk+PVW5SI8HRUw1nC71aXBN3zFxu43uw8V31F3tYreS+IndlCNveRQ21xxw06Xk0VNFPSw4jQGYiOLiZjuOOKRt0emWToyekXDTXizsOtYxz5muFmGwpSV9vY3JOhU4N92cU+/zV8FRTAjQqPZVpGN0SDwLfGedRXgAmXXO+JrBCCGGHGpd4zlg+BfhaCHEE1QdbgceFED7APsAJKBRCPAs0lVKmAUuEEO6oxUNPSSlTuIMwGAy88OxUlq9ag16v5+f58zh5Um0l8vAjasXvD3NnM2LEKB6ZPJmCAgPZ2dlMnHB/mfrlISsri7ALF6hbtx4XLpzn5MkTLF2ymH2HjlBQUMDzU6dQWKiGcb769nt+mDObgwf28+nMj1jw6+88MHESUZGRTLhvHECJ+o6Ojiz6cxm2trbo9Tq2/Psvc+d8X2RHx06d+eC9d25Kn97JFBoM/DprOi98MhedTs+2NUuICT8HQM9hqg//XfEHIT370Wv4vRgMBvJzc/juf8+XqX//c29gbW3Di5/+BMD544dZ8MlV06HJy8kmISYSL//aJERfJCb8HKGb1vHez2sxGAz88ul0pPF+T5r2LpuX/0H46WOs+WU2T07/jO6DRpOcEMs3b0wFKFHf1s6eqR98i5WNDTqdjpMHdrN5xR9FdjRo0YYVP319C3v6DkEWwt4/oO9U49ZHO+Cy8Uu4YXf1esZ8bu1V9HhMzdksNCgn9MoWRLt/hpCxql5DAez6xVy3IA/Sk6CmJ6QnqrYj9sOw/5nquzJ032mCsiU5Ao6th+6T1RZHmSmwxfislqRvZQO9nlJRVKGDuNNXX5dnPTi86kZ7sfIgC+HYUug4WfVD5F7IMP7ADzQ67xG7Sq+j3US19VRhIRxdatqCCMA/uOQhdABDnprL6eABWUmq7dhD0HOa0Tbj9kQALcdAxE64HAXnNkLbB6BWB8hOUVsfQcn6ehto/7D60SF0agV7RLH5p2514MyG8vaaxh2MuK55VRrlRq8T0t6msvvy18eQocNo3aYN0//3VtnCt4CWrYJ5ZuqzPPrQxNve9j0h1WDe4DW06daXoEbNWTr3swppv3aDJvQbO4k5775829v+6dGet73NCqdWsBqmP7SiYtp3qwVN+sKOn25/266Ot7/NisanBTgHwOl1FdO+kz/U6wEHf7vtTYuhs/ZLKavBysPbR/XyhjRuKatWrsDN3b1swVuEu4c777xdMY5udeTAtn+o4exSYe3XcHZl6dzPK6z9akfkIRUZrShsa8Ah88VqGreIuKMqMlpR2DjCqQpydDVuOlpk8xZRHSOb1ZnqGNmszlTLyGZ1pjpGNqsxWmTz5lOZFwhpaGhoaGhoaGjc4Wiht1uElV6Ht5N9RZuhcZv46cOxFW2Cxm1k1LMWFtFoVFlGttU2FtfQ+C9okU0NDQ0NDQ0NDY1bhuZsamhoaGhoaGho3DI0Z1NDQ0NDQ0NDQ+OWUSWdTSHEdCFE3xvQGy+EOGL82ymEaFXsXH8hxGkhxDkhxCs31+KbQ/deffl753427TnEY888Z1GmQ+euHDoXyapN21m1aTtPvzCtTP1X3nqHDTv2sebfnXw771dqOjlbrNvTy5s5vywqOn58yvNs2nOIv3fup1uvPhZ1nF1cmb94ORt3H2T+4uU4FdtKpyT9n/5YyurNO1i3dQ/vfDwLnU59jCc8NJlR48aX3VFVBZf60GYKtJkK/t1Kl63hB53/B+5NTWW+HSH4KWj9NPh2ulret4Oqu/XTEHi35Tqta0CTYv3t303Z0maKss0SVvbQ7EEl1+xB0NuVrd90AgQ/qWypN4SivNE+7cGrdenXXYUI7tSdL/78h6+WbmLEg49blGnWpgMLNh9m5q+rmfnrau555Jky9Tv1GcBnC9ezeM856jVpUWL7Lu6evPrp3KLjEROf4Kulm/jiz38I7mj581fDyZk3v1rAV0s28eZXC3Cs6VSm/utf/MQnv67hs4XrmfzKu0XP94B7JtBryOgyeqnq49s0hCH/m8fQ6Qto2m+cRRmvhq24Z9YKBrz2PQNe+57mAyeUWF+fZ2diZedQ7roB2o55iqHTFzDw9Tm41mpQpm0th0xk4OtzGPDa9/SeMgN7Z7VFnotfHTo+ePv3ydW4/VRJZ1NK+aaU8p8bUA0DekgpWwLvALMBhBB64GtgANAUuFcI0bTEWioAnU7H/2Z8wkP3jqJf1xCGjBxN/YaNLMqG7t7FkN5dGdK7K199MqNM/e1bNjOgewcG9exM2PlzPDH1eYv1PvzE0yz8ZR4A9Rs2YvCIUfTv1p5J40by9oxPi740ivP4lOfYuXULfTq2ZufWLTw+5bky9Z955EEG9+rCgO4dcHP3YODQEQAs/v1nHnzU8pdw1UNA3cFw/Gc4+BV4tgB7z5JlA++GlHOmIgcv8G4LR2bDwW/ArSHYGdPTOdcBt8Zw8GtVd8wOy9X6d4b4/eq9vaey4eBXcHyBsu2KU3iVTjdIvQAHPlevAd3K1j+9CA59o85ZOYBHM1WecFA5zNUAnU7Hoy+/zXtTJ/HsmH50vXsIAXUsO/QnD4by4vjBvDh+MIvnflmm/sXzZ/jo5Sc4cdA8nWxxho5/mH+Wq+xNAXXq0/WuwTw7tj/vTpnIo9OmW3y+Rzz4OEdDd/L0qN4cDd3JiAefKFP/k1ef4YXxg3h2bH+cXd3o1GcgABtXLmbg2AdvoPeqDkLoCLl3Cpu/epXVbz9EUEhvnHwDLcomnj3GuvceY917j3Fs7c8WZfyadyAl+jwFOVnlrtuveXucvAJY+eYD7Pn1U9rfN7VM2078vYi17z7KuvceI/robloMUs5vakwYDi4eOLh63Yzu0biDqRTOphAiSAhxUggxRwhxXAixQQhhL4QIFkLsNkYilwkhXI3y84QQo43vPxRCnDDKzDSWeQohlgghQo1/XQCklDuLpaHcDQQY37cHzkkpL0gp84A/gGG3sw/KolWbdkSEXSAyIpz8/HxWL1tC3/6Dbor+9n83YTAYADi0PxQfP3+LdfQbPJStm5SP37f/IFYvW0JeXh5RFyOICLtAqzbm25b17T+IpQtVhoilC3/jrgGDy9TPyEgHwMrKCmtrG67sFZuTnU105EVatm5b7uuutNQMgJxLkJsC0gCJR5WDaAnfjpB8AvIzTWX2npARBYX5QCFcDjdFPX1CIGqbqheu1iuOe1NIOaveuzVWNkgD5KYq22oGWNBprJxEUK/uTcrWN+SqV6FTae2uUJivrr+G5c9jVaJ+s1bERUYQHx1JQUE+2/9eTUiPu26KfnT4eWIiLOQ1v4aOvftzcJdKHRnS4y62/72agvw8EmKiiIuMoH6zVmY6IT3uYvPqJQBsXr2E9j3vKlM/OzMDAL3eCitra6QxLWJebg6JMVHUb9qy3Ndd1XAPakx6QjQZSbEUGgqICN1MrZadb7i+Ou37EHV453XVHdCyCxd2qxSSyWEnsbGvgZ2TW6n6BTlZRfpWNnYU3987+uhugkJ63fA1aFQOKoWzaaQB8LWUshmQCowCFgDTjJHIo8BV6WOEEG7ACKCZUeZd46nPgVlSyhBjPXMx52HgSvoCfyCy2LkoY9kdg7ePL7HRUUXHcbExePv6WZRt3a49qzfv4Mffl9CgUePr0h997wS2bPzbrDygdiBpqank5eWp+nz9iI2JNtUXE423j6+ZnoenJ4kJKudvYkI87h4e5dL/aeEy9p44T2ZGButWLS8qP3roICEdrxkSrorY1IS8y6bjvDSwdbIs594E4kKvLs+KB6dANaytswbXhmBj1LdzV+daTobmD6kh+GuxdYGCHJNDaut0jT2XVdvXYu0I+cqZID9DHZdHv+kD0H6acjyTjpvKM2KUrVUcN08fkuJji44vxcfi7ultUbZRi9Z88usaXvv8R2rVbXDd+pbw8gsgI+0yBfnq+Xb39CY5PqbofHJCHG6ePmZ6Lm4epCYnApCanIizq3u59N/4Yh4/bgglOzOT3RtNWWTOnzxKk9Yh5ba7qmHv6kFWSmLRcVZqIvauHhZlPeo2ZeDrs+n19Ac4lxD99KzXnEsRZ66rbgcXczkHF48y9VsNe4jh7/9OUPs+HFk1r6j8UsRpPOuXPH1Do2pQmZzNMCnlIeP7/UA9wEVKucVYNh/ofo1OGpADzBVCjASu/LzqC3wlhDgErASchBBF32xCiF4oZ/PKhEYL44GYpV4SQkwWQuwTQuwrLLy9mZmEsGCihexQx48cpnvbZgzu1YUFc7/nu/m/l1v/yWdfxGAoYMWfC81Evby9uZScXKo90rzLSqQs/UljR9CxRUNsbG3o1K1HUXlyUiJeFpzaqkf57jd1BkD4Bsw+rtlJELVdzZtsOgGy4oBCY9U65YQemQ3hf0EjC3uI2tQsOeJ5KzixAPZ+DEIPzsWyNeVnWnZqqxiWH0/z+33h9HEeH9qNF8YPYt3CBUz7+Pvr0i8JVw8v0lIvlWVQuesrS/+dKRN5ZEAHrG1saN7OFF27nJKM23U4yVUNS19Elvr90sWzLH/tXta+O5nT/y6j+xPTLdZn41iTgtzs66q7BMEy9Q+v+JHl/3cv4Xs30rDn8KLynPTUojmcGlWXyuRs5hZ7bwBcylKQUhaghsCXAMOB9cZTOqCTlDLY+OcvpUwHEEK0REU6h0kpr3hPUUCtYlUHADFcg5RytpSynZSynU5n8dG7ZcTFxuDrbxq29PH1Iz4u1kwuIyOdrEzlJPy7cQNWVla4urmVqT9y7H30urs/zz3xiMX2c7JzsLG1NdkTE41vseF2n/9v796Do6ruAI5/f7vJJiQCIYGER0wggihQyqNCa9UClrR2ogWxarW+HR8jRVtxxDpWrI6vUlDQThRlzDCDg3ZAOwKGAlVKscirvMMrhFcaSLI8k2wem9M/7iabsMkmyG5ukv19ZjLJZu+558f9sZvfPeeeu337cbKoKKBdSXExvZKtPx69klMoLSlpdfuqykpW565odLlATEwslRWeJmPsVKrOgqvBQi1XN6g6F7jdZf1g8K9g9O+g5xDrWsi66faTW2BbNuxcANUVUFHq33fpbuvn88etPxhRF3xGcm114yntygvj6d50PNVl1sIisL7XFaytaW9qwL3Xmoqv44iC2prAfjqZ0pNF9Ezxn0QlpvTBXXIyYLuKsvN4Kqxz6i3rv8IZFUXX7j1a3b45VR4P0S7/67v0ZBFJKf4R76Tk3rhLTgS0O+0uISHJupY4IakXZ06Vtrp9dVUVG9euYsxP/Gs9o10xVHki4PXdjPJTJcT18F+bHZfQi4rTpQHb1XjKqam0jlPhzm9xOKOIiQ+c+aj1eusL/9buu6ntyk+Xtrp9wcbVpI30LwhzRrnwVlcGbKc6l45UbF7oDHBKROr+194DfN1wAxG5DOhujFkOPAWM8D21EpjaYLsRvu9pwBLgHmPMvga72ggMEpEBIuIC7sQaEW03tm/dTP+MDFLT0omOjiZr8hRW5y4P2K5nsv9C7OEjR+NwODjldgdtf8P4n/LI1Kd49J478FRUNNn/ofwDpF6eVv94de5ysiZPweVykZqWTv+MDLZt2RTQbnXucm694y7AKmhXfbksaPu4+Pj64tTpdDLuxonk7/enasAVA9mXt/tiD1/Hc+44dEm0prPFaS2ucecFbrd5jv+rZDfkf+Hfrm4K29Xdmmov3mE9du+BBN/oYWwSOJxQU954vxWlVt913HlWDOK0ft8lEc4dI4A7z7+CPHkklOYFb+9w+YtTHJA4CMr9U3XEJlmXBHRyB3Zvp09af5L7phIVFc11E7PYtDZwDWRCkn/acuCQ4YjDwbkzp1rdvjmFRw6R3Md/Mrpp7Squm5hFVLSL5L6p9Enrz4Fd2wLabVq7ivFZUwAYnzWFjV//I2j72C5x9cWpw+lk1I/HcbzgYP3++qYN4MjBfQH9RIrSw3l0Te5HfFJvHM4o0q8Zz7Ht6wO2i+3Wo/7npP6DEREqy84GbHfuxFEu69nnovZ9bPt6Mn5o3aEiacDVVHnK8Jx1B23fNdk/cNBv+LWcPeG/Kq1rSipnCgu+2wFRHUZH/7jK+4BsEYkD8oEHLni+K/C5iMRiDf7X3c9nGvCuiGzHOgZrgceAPwJJwF9907g1vpHKGhGZCuQCTmCBMWYX7YjX6+WlGc/w0eKlOJxO/rZoIfv3Wn/If33fgwB8nLOAm7Imcdf9D+H11uCp8PDkow+02H7m67NwuVzkfPo5YC0SeuGZxrdWqigv50jBIdIHZHD4UD779+ax/POlfLluI96aGmY+O53aWmua9tXZ8/g4ZwE7tm0le+4c5s3/iNvvvpfCY0eZ+rC12rS59l3i4nh/4WJcMS4cDif/WbeWRTkf1scxasxY5s56LYxHur2ohfxlMPRewGGNUlb4irDevoVYRYHFfSOD74ToLmB8+/L6RoxObIWBk6zbIhkv7F/SRPfV4DllrWD3uK2+S3bCyN9asR1cRv3U/cBfWteMni+0Fh4NvgNSRkHlGdjruySjufbOaOv2Sg6nNb1/Or/xv6tbGhz96uIPXwdT6/XywZszeWFuDg6ngzV//5Sj+dbirMxbrZO1lUsW8aMJN/Gz2+7GW+OlqtLDnOentdh+zLhMHp7+It16JPKHOR9SsG83L0+7v1H/lZ4Kio4foXdqOkXHDnM0fz/rVy3j7U9y8Xq9zH/zxfrX9+PPv8bKJYs4uGcHS3Kyefq1d7jxltspPlHIX2Y8AdBs+5gucTw3ez7R0S4cTgc7Nn5D7pJF9XFc9f3RfDJ/bliPdXtmamvZtHgeE6a9gTgcHFy/gjP/OwzAoOutxZX7//UFaaNuYNANt2BqvXirKln3wStN7u/4zg2kXDmC88WFrd534c4N9Bs2llteXoi3ysM3OX9uMbYRkx6mW8rlGGMoc5/g20Vv1ceQMngEx3dsCMvxUu2HXMx1O6r1YqKdJrVHvN1htKnMX2QxbPhIZr/+si39Dxk2nAcfn8r0Jx5p874PLn2qzfu0XeLV1uKhI6vt6T++N/S9tuliOMwi8bPRx4zL5IqrhvFx9mxb+h9w5RBuvvsh5r74dJv33Vk/Gz22WyLXPjCDNW/bc69LR1Q0E38/m5WznsT4Tlbag9+8t2azMSbw9inqO+voI5uqHVm5/AsSeiTa1n+PpCTmvN70GbwKA/cea2TULlHxcGSNff1HmG+/WknXBh+60Na6JiTaVuh2Vp6zbg6sW0ZUbFyj2xO1lfjEZLZ+9kG7KjRVeOjIZphE4shmJIvIkc0IFokjm5Gss45sqqbpyGbodeQFQkoppZRSqp3Tkc0wEZFi4LDdcdigJ1BidxCqzWi+I4vmO7JEar7TjTHNff6v+g602FQhJSKbdPohcmi+I4vmO7JovlWo6DS6UkoppZQKGy02lVJKKaVU2GixqULtfbsDUG1K8x1ZNN+RRfOtQkKv2VRKKaWUUmGjI5tKKaWUUipstNhUSimllFJho8WmCkpEUkRkkYjki8hmEflGRCaLSJKI/FNEzovIO3bHqS5dkFxP9D3e4fs+we5Y1aULku8xIvJf39c2EZlsd6zq0jWX7wbPp/nez6fbGafqnLTYVM0SEQE+A9YaYzKMMaOBO4FUwAO8AOgbUyfQQq5LgJuNMd8D7gMW2haoCokW8r0T+IExZgTwc+A9EYmyK1Z16VrId505wAobwlMRQN9AVDATgCpjTHbdL4wxh4F5vofrRGSgLZGpUGsp13V2AbEiEmOMqWzLAFVItTbfsYCuIu34guZbRCYB+UCZLdGpTk9HNlUwQ4Etdgeh2kRrcz0F2KqFZocXNN8iMlZEdgE7gMeMMTVtFpkKh2bzLSLxwLPAS20akYooOrKpWk1E3gWuwzpDvsbueFT4NJVrERkKvAFk2hmbCr0L822M2QAMFZGrgRwRWWGM8dgbpQqVhvkGvgbmGGPOW7PtSoWeFpsqmF1YI1kAGGOeEJGewCb7QlJhEjTXIpIKLAXuNcYctCdEFUKtem0bY/aISBkw7MLnVIcSLN9jgdtE5E0gAagVEY8xRhd+qpDRaXQVzBqs6/Meb/C7OLuCUWHVbK5FJAFYBjxnjPm3DbGp0AuW7wF1C4JEJB0YDBS0eYQqlJrNtzHmemNMf2NMf+At4FUtNFWo6ScIqaBEpA/WKsWxQDHWBeTZxpjFIlIAdANcwGkg0xiz26ZQ1SVqLtfAIOA5YH+DzTONMSfbPEgVMkHy7QJmANVALfAnY8xnNoWpQiTYe3mDbWYC540xs2wJUnVaWmwqpZRSSqmw0Wl0pZRSSikVNlpsKqWUUkqpsNFiUymllFJKhY0Wm0oppZRSKmy02FRKKaWUUmGjxaZSSimllAobLTaVUkoppVTY/B/WhYPFPn3eLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "features = covariates\n", + "ranks = ['G1','G2','G3','G4']\n", + "harvest = np.array(round(new_data,3))\n", + "labels_hm = np.array(round(labels_data))\n", + "\n", + "fig, ax = plt.subplots(figsize=(10,15))\n", + "\n", + "# getting the original colormap using cm.get_cmap() function\n", + "orig_map = plt.cm.get_cmap('copper')\n", + " \n", + "# reversing the original colormap using reversed() function\n", + "reversed_map = orig_map.reversed()\n", + "im = ax.imshow(harvest, cmap=reversed_map, aspect='auto')\n", + "\n", + "# make bar\n", + "bar = plt.colorbar(im, shrink=0.2)\n", + " \n", + "# show plot with labels\n", + "bar.set_label('scaling')\n", + "\n", + " \n", + "# Setting the labels\n", + "ax.set_xticks(np.arange(len(ranks)))\n", + "ax.set_yticks(np.arange(len(features)))\n", + "# labeling respective list entries\n", + "ax.set_xticklabels(ranks)\n", + "ax.set_yticklabels(features)\n", + "\n", + "# Rotate the tick labels and set their alignment.\n", + "plt.setp(ax.get_xticklabels(), ha=\"right\",\n", + " rotation_mode=\"anchor\")\n", + "\n", + "# Creating text annotations by using for loop\n", + "for i in range(len(features)):\n", + " for j in range(len(ranks)):\n", + " text = ax.text(j, i, labels_hm[i, j],\n", + " ha=\"center\", va=\"center\", color=\"w\")\n", + "\n", + "ax.set_title(\"Average covariate values within group (based on prediction ranking)\")\n", + "fig.tight_layout()\n", + "\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "As we just saw above, houses that have, e.g., been built more recently (`BUILT`), have more baths (`BATHS`) are associated with larger price predictions.\n", + "\n", + "This sort of interpretation exercise did not rely on reading any coefficients, and in fact it could also be done using any other flexible method, including decisions trees and forests." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Decision Tree" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This next class of algorithms divides the covariate space into \"regions\" and estimates a constant prediction within each region.\n", + "\n", + "To estimate a decision tree, we following a recursive partition algorithm. At each stage, we select one variable $j$ and one split point\n", + "$s$, and divide the observations into “left” and “right” subsets, depending on whether $X_{ij} \\leq s$ or $X_{ij} > s$. For regression problems, the variable and split points are often selected so that the sum of the variances of the outcome variable in each “child” subset is smallest. For classification problems, we split to separate the classes. Then, for each child, we separately repeat the process of finding variables and split points. This continues until a minimum subset size is reached, or improvement falls below some threshold.\n", + "\n", + "At prediction time, to find the predictions for some point $x$, we just follow the tree we just built, going left or right according to the selected variables and split points, until we reach a terminal node. Then, for regression problems, the predicted value at some point $x$ is the average outcome of the observations in the same partition as the point $x$. For classification problems, we output the majority class in the node.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "import graphviz\n", + "from sklearn import tree\n", + "from sklearn.tree import export_graphviz \n", + "from sklearn.metrics import accuracy_score\n", + "from pandas import Series\n", + "from simple_colors import *\n", + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf\n", + "from scipy.stats import norm\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn import metrics\n", + "from sklearn.metrics import r2_score\n", + "import matplotlib.pyplot as plt\n", + "from sklearn import tree\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "#Here we define our X and Y variable\n", + "Y = data.loc[:,outcome]\n", + "XX = data.loc[:,covariates]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# we split data in train and test\n", + "x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy(), Y, test_size=.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "dt = DecisionTreeRegressor( max_depth=15, random_state=0)\n", + "#x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy(), Y, test_size=.3)\n", + "tree1 = dt.fit(x_train,y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point, we have not constrained the complexity of the tree in any way, so it's likely too deep and probably overfits. Here’s a plot of what we have so far (without bothering to label the splits to avoid clutter)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Text(0.6937715956946345, 0.96875, 'X[12] <= 0.0\\nsquared_error = 0.981\\nsamples = 20108\\nvalue = 11.814'),\n", + " Text(0.45393733459285945, 0.90625, 'X[1] <= 2436.5\\nsquared_error = 0.774\\nsamples = 19386\\nvalue = 11.889'),\n", + " Text(0.23878549020890355, 0.84375, 'X[3] <= 1.5\\nsquared_error = 0.631\\nsamples = 13895\\nvalue = 11.687'),\n", + " Text(0.11155233658026083, 0.78125, 'X[19] <= 1.5\\nsquared_error = 0.705\\nsamples = 5094\\nvalue = 11.392'),\n", + " Text(0.05217431774271454, 0.71875, 'X[29] <= 0.5\\nsquared_error = 0.677\\nsamples = 2626\\nvalue = 11.544'),\n", + " Text(0.02204757687972951, 0.65625, 'X[14] <= -3.0\\nsquared_error = 0.82\\nsamples = 1133\\nvalue = 11.421'),\n", + " Text(0.0019320560296248591, 0.59375, 'X[47] <= 0.904\\nsquared_error = 15.873\\nsamples = 7\\nvalue = 9.561'),\n", + " Text(0.0016100466913540493, 0.53125, 'X[30] <= 1.5\\nsquared_error = 0.743\\nsamples = 6\\nvalue = 11.155'),\n", + " Text(0.0012880373530832394, 0.46875, 'X[44] <= 0.392\\nsquared_error = 0.256\\nsamples = 5\\nvalue = 10.829'),\n", + " Text(0.0006440186765416197, 0.40625, 'X[1] <= 1536.402\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.234'),\n", + " Text(0.00032200933827080985, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.342'),\n", + " Text(0.0009660280148124296, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", + " Text(0.0019320560296248591, 0.40625, 'X[57] <= 0.52\\nsquared_error = 0.027\\nsamples = 3\\nvalue = 11.226'),\n", + " Text(0.0016100466913540493, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", + " Text(0.0022540653678956688, 0.34375, 'X[58] <= 0.333\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 11.337'),\n", + " Text(0.0019320560296248591, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.385'),\n", + " Text(0.002576074706166479, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.0019320560296248591, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.782'),\n", + " Text(0.0022540653678956688, 0.53125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.04216309772983416, 0.59375, 'X[1] <= 2431.402\\nsquared_error = 0.705\\nsamples = 1126\\nvalue = 11.432'),\n", + " Text(0.021499154725487038, 0.53125, 'X[15] <= 1.5\\nsquared_error = 0.461\\nsamples = 976\\nvalue = 11.488'),\n", + " Text(0.00612824021896635, 0.46875, 'X[49] <= 0.024\\nsquared_error = 1.171\\nsamples = 184\\nvalue = 11.304'),\n", + " Text(0.0038641120592497183, 0.40625, 'X[1] <= 1495.0\\nsquared_error = 21.608\\nsamples = 5\\nvalue = 9.292'),\n", + " Text(0.003542102720978908, 0.34375, 'X[1] <= 750.0\\nsquared_error = 0.028\\nsamples = 4\\nvalue = 11.615'),\n", + " Text(0.0032200933827080985, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.0038641120592497183, 0.28125, 'X[49] <= 0.003\\nsquared_error = 0.006\\nsamples = 3\\nvalue = 11.703'),\n", + " Text(0.003542102720978908, 0.21875, 'X[38] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.756'),\n", + " Text(0.0032200933827080985, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.0038641120592497183, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", + " Text(0.004186121397520528, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.599'),\n", + " Text(0.004186121397520528, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.008392368378682982, 0.40625, 'X[50] <= 0.067\\nsquared_error = 0.484\\nsamples = 179\\nvalue = 11.361'),\n", + " Text(0.0056351634197391726, 0.34375, 'X[48] <= 0.202\\nsquared_error = 4.939\\nsamples = 7\\nvalue = 10.455'),\n", + " Text(0.005313154081468363, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.075'),\n", + " Text(0.005957172758009982, 0.28125, 'X[61] <= 0.559\\nsquared_error = 0.136\\nsamples = 6\\nvalue = 11.351'),\n", + " Text(0.005152149412332958, 0.21875, 'X[2] <= 1945.0\\nsquared_error = 0.049\\nsamples = 4\\nvalue = 11.559'),\n", + " Text(0.0045081307357913375, 0.15625, 'X[55] <= 0.564\\nsquared_error = 0.019\\nsamples = 2\\nvalue = 11.364'),\n", + " Text(0.004186121397520528, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.503'),\n", + " Text(0.004830140074062148, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", + " Text(0.005796168088874577, 0.15625, 'X[6] <= 4.0\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 11.754'),\n", + " Text(0.005474158750603767, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.0061181774271453875, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.813'),\n", + " Text(0.006762196103687007, 0.21875, 'X[50] <= 0.045\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 10.935'),\n", + " Text(0.006440186765416197, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.007084205441957816, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.01114957333762679, 0.34375, 'X[1] <= 775.0\\nsquared_error = 0.268\\nsamples = 172\\nvalue = 11.397'),\n", + " Text(0.008211238125905651, 0.28125, 'X[46] <= 0.405\\nsquared_error = 0.917\\nsamples = 7\\nvalue = 10.553'),\n", + " Text(0.007889228787634841, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.412'),\n", + " Text(0.008533247464176462, 0.21875, 'X[50] <= 0.602\\nsquared_error = 0.178\\nsamples = 6\\nvalue = 10.91'),\n", + " Text(0.0077282241184994365, 0.15625, 'X[49] <= 0.622\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 10.362'),\n", + " Text(0.007406214780228627, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.008050233456770247, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.127'),\n", + " Text(0.009338270809853486, 0.15625, 'X[0] <= 6500.0\\nsquared_error = 0.014\\nsamples = 4\\nvalue = 11.184'),\n", + " Text(0.008694252133311866, 0.09375, 'X[46] <= 0.652\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 11.079'),\n", + " Text(0.008372242795041056, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", + " Text(0.009016261471582675, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.009982289486395105, 0.09375, 'X[24] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.29'),\n", + " Text(0.009660280148124296, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.010304298824665915, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.014087908549347931, 0.28125, 'X[57] <= 0.867\\nsquared_error = 0.208\\nsamples = 165\\nvalue = 11.433'),\n", + " Text(0.01175334084688456, 0.21875, 'X[52] <= 0.013\\nsquared_error = 0.195\\nsamples = 140\\nvalue = 11.481'),\n", + " Text(0.010948317501207535, 0.15625, 'X[47] <= 0.342\\nsquared_error = 0.12\\nsamples = 2\\nvalue = 10.473'),\n", + " Text(0.010626308162936726, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.011270326839478345, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", + " Text(0.012558364192561584, 0.15625, 'X[1] <= 912.5\\nsquared_error = 0.181\\nsamples = 138\\nvalue = 11.496'),\n", + " Text(0.011914345516019964, 0.09375, 'X[60] <= 0.831\\nsquared_error = 0.122\\nsamples = 14\\nvalue = 11.195'),\n", + " Text(0.011592336177749154, 0.03125, 'squared_error = 0.064\\nsamples = 12\\nvalue = 11.301'),\n", + " Text(0.012236354854290775, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 10.558'),\n", + " Text(0.013202382869103205, 0.09375, 'X[8] <= 3.5\\nsquared_error = 0.176\\nsamples = 124\\nvalue = 11.53'),\n", + " Text(0.012880373530832394, 0.03125, 'squared_error = 0.161\\nsamples = 114\\nvalue = 11.495'),\n", + " Text(0.013524392207374013, 0.03125, 'squared_error = 0.174\\nsamples = 10\\nvalue = 11.932'),\n", + " Text(0.016422476251811303, 0.21875, 'X[62] <= 0.43\\nsquared_error = 0.198\\nsamples = 25\\nvalue = 11.165'),\n", + " Text(0.015134438898728063, 0.15625, 'X[43] <= 0.366\\nsquared_error = 0.2\\nsamples = 10\\nvalue = 11.448'),\n", + " Text(0.014490420222186443, 0.09375, 'X[52] <= 0.181\\nsquared_error = 0.253\\nsamples = 4\\nvalue = 11.084'),\n", + " Text(0.014168410883915633, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.014812429560457254, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", + " Text(0.015778457575269682, 0.09375, 'X[48] <= 0.25\\nsquared_error = 0.019\\nsamples = 6\\nvalue = 11.69'),\n", + " Text(0.015456448236998873, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", + " Text(0.016100466913540494, 0.03125, 'squared_error = 0.005\\nsamples = 4\\nvalue = 11.779'),\n", + " Text(0.01771051360489454, 0.15625, 'X[60] <= 0.278\\nsquared_error = 0.108\\nsamples = 15\\nvalue = 10.976'),\n", + " Text(0.017066494928352924, 0.09375, 'X[0] <= 25034.602\\nsquared_error = 0.027\\nsamples = 3\\nvalue = 10.514'),\n", + " Text(0.01674448559008211, 0.03125, 'squared_error = 0.01\\nsamples = 2\\nvalue = 10.617'),\n", + " Text(0.017388504266623733, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.018354532281436162, 0.09375, 'X[47] <= 0.262\\nsquared_error = 0.062\\nsamples = 12\\nvalue = 11.091'),\n", + " Text(0.01803252294316535, 0.03125, 'squared_error = 0.011\\nsamples = 4\\nvalue = 11.388'),\n", + " Text(0.01867654161970697, 0.03125, 'squared_error = 0.021\\nsamples = 8\\nvalue = 10.943'),\n", + " Text(0.03687006923200773, 0.46875, 'X[34] <= 2.154\\nsquared_error = 0.286\\nsamples = 792\\nvalue = 11.53'),\n", + " Text(0.02849782643696667, 0.40625, 'X[47] <= 0.991\\nsquared_error = 0.347\\nsamples = 81\\nvalue = 11.265'),\n", + " Text(0.028175817098695863, 0.34375, 'X[46] <= 0.888\\nsquared_error = 0.282\\nsamples = 80\\nvalue = 11.295'),\n", + " Text(0.024150700370310738, 0.28125, 'X[46] <= 0.465\\nsquared_error = 0.247\\nsamples = 69\\nvalue = 11.216'),\n", + " Text(0.02157462566414426, 0.21875, 'X[60] <= 0.197\\nsquared_error = 0.203\\nsamples = 43\\nvalue = 11.374'),\n", + " Text(0.020286588311061022, 0.15625, 'X[8] <= 3.5\\nsquared_error = 0.137\\nsamples = 6\\nvalue = 10.849'),\n", + " Text(0.0196425696345194, 0.09375, 'X[51] <= 0.46\\nsquared_error = 0.013\\nsamples = 3\\nvalue = 11.196'),\n", + " Text(0.019320560296248592, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 11.119'),\n", + " Text(0.01996457897279021, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.02093060698760264, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 10.501'),\n", + " Text(0.02060859764933183, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.02125261632587345, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", + " Text(0.0228626630172275, 0.15625, 'X[47] <= 0.935\\nsquared_error = 0.162\\nsamples = 37\\nvalue = 11.459'),\n", + " Text(0.02221864434068588, 0.09375, 'X[44] <= 0.052\\nsquared_error = 0.126\\nsamples = 35\\nvalue = 11.506'),\n", + " Text(0.02189663500241507, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.463'),\n", + " Text(0.02254065367895669, 0.03125, 'squared_error = 0.097\\nsamples = 34\\nvalue = 11.537'),\n", + " Text(0.02350668169376912, 0.09375, 'X[34] <= 0.5\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 10.624'),\n", + " Text(0.023184672355498308, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.859'),\n", + " Text(0.02382869103203993, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.389'),\n", + " Text(0.026726775076477218, 0.21875, 'X[48] <= 0.556\\nsquared_error = 0.211\\nsamples = 26\\nvalue = 10.956'),\n", + " Text(0.02543873772339398, 0.15625, 'X[51] <= 0.711\\nsquared_error = 0.184\\nsamples = 16\\nvalue = 10.775'),\n", + " Text(0.02479471904685236, 0.09375, 'X[56] <= 0.506\\nsquared_error = 0.144\\nsamples = 13\\nvalue = 10.653'),\n", + " Text(0.02447270970858155, 0.03125, 'squared_error = 0.09\\nsamples = 6\\nvalue = 10.381'),\n", + " Text(0.025116728385123167, 0.03125, 'squared_error = 0.074\\nsamples = 7\\nvalue = 10.886'),\n", + " Text(0.026082756399935597, 0.09375, 'X[62] <= 0.298\\nsquared_error = 0.012\\nsamples = 3\\nvalue = 11.305'),\n", + " Text(0.02576074706166479, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 11.379'),\n", + " Text(0.02640476573820641, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.028014812429560457, 0.15625, 'X[62] <= 0.479\\nsquared_error = 0.118\\nsamples = 10\\nvalue = 11.245'),\n", + " Text(0.02737079375301884, 0.09375, 'X[54] <= 0.347\\nsquared_error = 0.045\\nsamples = 6\\nvalue = 11.44'),\n", + " Text(0.027048784414748027, 0.03125, 'squared_error = 0.004\\nsamples = 3\\nvalue = 11.245'),\n", + " Text(0.027692803091289648, 0.03125, 'squared_error = 0.011\\nsamples = 3\\nvalue = 11.634'),\n", + " Text(0.028658831106102078, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.086\\nsamples = 4\\nvalue = 10.954'),\n", + " Text(0.028336821767831265, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", + " Text(0.028980840444372886, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.396'),\n", + " Text(0.03220093382708099, 0.28125, 'X[2] <= 1970.0\\nsquared_error = 0.216\\nsamples = 11\\nvalue = 11.788'),\n", + " Text(0.030912896473997746, 0.21875, 'X[54] <= 0.653\\nsquared_error = 0.112\\nsamples = 6\\nvalue = 12.113'),\n", + " Text(0.030590887135726937, 0.15625, 'X[1] <= 1050.0\\nsquared_error = 0.032\\nsamples = 5\\nvalue = 12.244'),\n", + " Text(0.029946868459185316, 0.09375, 'X[50] <= 0.725\\nsquared_error = 0.007\\nsamples = 3\\nvalue = 12.371'),\n", + " Text(0.029624859120914507, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.429'),\n", + " Text(0.030268877797456125, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.255'),\n", + " Text(0.031234905812268555, 0.09375, 'X[43] <= 0.796\\nsquared_error = 0.01\\nsamples = 2\\nvalue = 12.053'),\n", + " Text(0.030912896473997746, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.155'),\n", + " Text(0.031556915150539364, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.951'),\n", + " Text(0.031234905812268555, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.462'),\n", + " Text(0.03348897118016422, 0.21875, 'X[49] <= 0.805\\nsquared_error = 0.06\\nsamples = 5\\nvalue = 11.397'),\n", + " Text(0.03316696184189342, 0.15625, 'X[48] <= 0.568\\nsquared_error = 0.018\\nsamples = 4\\nvalue = 11.504'),\n", + " Text(0.03252294316535179, 0.09375, 'X[2] <= 1990.0\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 11.628'),\n", + " Text(0.03220093382708099, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", + " Text(0.032844952503622606, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.033810980518435035, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.379'),\n", + " Text(0.03348897118016422, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.03413298985670585, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.408'),\n", + " Text(0.033810980518435035, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.968'),\n", + " Text(0.02881983577523748, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.923'),\n", + " Text(0.04524231202704879, 0.40625, 'X[8] <= 3.5\\nsquared_error = 0.27\\nsamples = 711\\nvalue = 11.56'),\n", + " Text(0.04053292545483819, 0.34375, 'X[42] <= 1.5\\nsquared_error = 0.261\\nsamples = 642\\nvalue = 11.533'),\n", + " Text(0.03823860891965867, 0.28125, 'X[62] <= 0.829\\nsquared_error = 0.356\\nsamples = 113\\nvalue = 11.317'),\n", + " Text(0.03687006923200773, 0.21875, 'X[2] <= 1919.5\\nsquared_error = 0.309\\nsamples = 94\\nvalue = 11.235'),\n", + " Text(0.035743036548059895, 0.15625, 'X[6] <= 4.0\\nsquared_error = 0.18\\nsamples = 6\\nvalue = 10.371'),\n", + " Text(0.03509901787151828, 0.09375, 'X[43] <= 0.405\\nsquared_error = 0.08\\nsamples = 3\\nvalue = 10.006'),\n", + " Text(0.034777008533247465, 0.03125, 'squared_error = 0.006\\nsamples = 2\\nvalue = 10.201'),\n", + " Text(0.03542102720978908, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.03638705522460151, 0.09375, 'X[48] <= 0.894\\nsquared_error = 0.014\\nsamples = 3\\nvalue = 10.737'),\n", + " Text(0.0360650458863307, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.82'),\n", + " Text(0.036709064562872325, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.571'),\n", + " Text(0.03799710191595556, 0.15625, 'X[5] <= 1.5\\nsquared_error = 0.263\\nsamples = 88\\nvalue = 11.294'),\n", + " Text(0.037675092577684755, 0.09375, 'X[59] <= 0.019\\nsquared_error = 0.234\\nsamples = 87\\nvalue = 11.314'),\n", + " Text(0.03735308323941394, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.03799710191595556, 0.03125, 'squared_error = 0.213\\nsamples = 86\\nvalue = 11.33'),\n", + " Text(0.03831911125422637, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.039607148607309614, 0.21875, 'X[0] <= 269841.5\\nsquared_error = 0.389\\nsamples = 19\\nvalue = 11.722'),\n", + " Text(0.0392851392690388, 0.15625, 'X[9] <= 5.5\\nsquared_error = 0.161\\nsamples = 18\\nvalue = 11.607'),\n", + " Text(0.03896312993076799, 0.09375, 'X[56] <= 0.846\\nsquared_error = 0.112\\nsamples = 17\\nvalue = 11.55'),\n", + " Text(0.038641120592497184, 0.03125, 'squared_error = 0.078\\nsamples = 14\\nvalue = 11.457'),\n", + " Text(0.0392851392690388, 0.03125, 'squared_error = 0.04\\nsamples = 3\\nvalue = 11.983'),\n", + " Text(0.039607148607309614, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.578'),\n", + " Text(0.03992915794558042, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.786'),\n", + " Text(0.04282724199001771, 0.28125, 'X[1] <= 1060.0\\nsquared_error = 0.229\\nsamples = 529\\nvalue = 11.579'),\n", + " Text(0.041539204636934474, 0.21875, 'X[52] <= 0.971\\nsquared_error = 0.178\\nsamples = 162\\nvalue = 11.447'),\n", + " Text(0.040573176622122044, 0.15625, 'X[56] <= 0.006\\nsquared_error = 0.161\\nsamples = 159\\nvalue = 11.465'),\n", + " Text(0.04025116728385123, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", + " Text(0.04089518596039285, 0.09375, 'X[2] <= 2000.0\\nsquared_error = 0.147\\nsamples = 158\\nvalue = 11.455'),\n", + " Text(0.040573176622122044, 0.03125, 'squared_error = 0.132\\nsamples = 152\\nvalue = 11.43'),\n", + " Text(0.04121719529866366, 0.03125, 'squared_error = 0.107\\nsamples = 6\\nvalue = 12.086'),\n", + " Text(0.0425052326517469, 0.15625, 'X[49] <= 0.168\\nsquared_error = 0.201\\nsamples = 3\\nvalue = 10.523'),\n", + " Text(0.04218322331347609, 0.09375, 'X[56] <= 0.292\\nsquared_error = 0.014\\nsamples = 2\\nvalue = 10.833'),\n", + " Text(0.04186121397520528, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.951'),\n", + " Text(0.0425052326517469, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.04282724199001771, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.04411527934310095, 0.21875, 'X[39] <= 1.5\\nsquared_error = 0.241\\nsamples = 367\\nvalue = 11.637'),\n", + " Text(0.04379327000483014, 0.15625, 'X[56] <= 0.999\\nsquared_error = 0.234\\nsamples = 366\\nvalue = 11.633'),\n", + " Text(0.04347126066655933, 0.09375, 'X[62] <= 0.053\\nsquared_error = 0.229\\nsamples = 365\\nvalue = 11.629'),\n", + " Text(0.04314925132828852, 0.03125, 'squared_error = 0.176\\nsamples = 14\\nvalue = 11.983'),\n", + " Text(0.04379327000483014, 0.03125, 'squared_error = 0.226\\nsamples = 351\\nvalue = 11.615'),\n", + " Text(0.04411527934310095, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.039'),\n", + " Text(0.04443728868137176, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.305'),\n", + " Text(0.04995169859925938, 0.34375, 'X[22] <= 1.5\\nsquared_error = 0.281\\nsamples = 69\\nvalue = 11.816'),\n", + " Text(0.047818386733215264, 0.28125, 'X[61] <= 0.94\\nsquared_error = 0.208\\nsamples = 54\\nvalue = 11.971'),\n", + " Text(0.04669135404926743, 0.21875, 'X[62] <= 0.646\\nsquared_error = 0.182\\nsamples = 52\\nvalue = 11.937'),\n", + " Text(0.04540331669618419, 0.15625, 'X[45] <= 0.63\\nsquared_error = 0.123\\nsamples = 26\\nvalue = 12.108'),\n", + " Text(0.04475929801964257, 0.09375, 'X[45] <= 0.186\\nsquared_error = 0.071\\nsamples = 15\\nvalue = 12.273'),\n", + " Text(0.04443728868137176, 0.03125, 'squared_error = 0.004\\nsamples = 4\\nvalue = 11.956'),\n", + " Text(0.04508130735791338, 0.03125, 'squared_error = 0.046\\nsamples = 11\\nvalue = 12.388'),\n", + " Text(0.04604733537272581, 0.09375, 'X[44] <= 0.637\\nsquared_error = 0.105\\nsamples = 11\\nvalue = 11.884'),\n", + " Text(0.045725326034455, 0.03125, 'squared_error = 0.007\\nsamples = 3\\nvalue = 12.236'),\n", + " Text(0.046369344710996616, 0.03125, 'squared_error = 0.078\\nsamples = 8\\nvalue = 11.752'),\n", + " Text(0.04797939140235067, 0.15625, 'X[1] <= 1310.0\\nsquared_error = 0.183\\nsamples = 26\\nvalue = 11.765'),\n", + " Text(0.047335372725809045, 0.09375, 'X[47] <= 0.536\\nsquared_error = 0.156\\nsamples = 14\\nvalue = 11.539'),\n", + " Text(0.04701336338753824, 0.03125, 'squared_error = 0.121\\nsamples = 7\\nvalue = 11.264'),\n", + " Text(0.04765738206407986, 0.03125, 'squared_error = 0.04\\nsamples = 7\\nvalue = 11.814'),\n", + " Text(0.04862341007889229, 0.09375, 'X[10] <= 1.5\\nsquared_error = 0.086\\nsamples = 12\\nvalue = 12.029'),\n", + " Text(0.048301400740621475, 0.03125, 'squared_error = 0.04\\nsamples = 11\\nvalue = 12.097'),\n", + " Text(0.0489454194171631, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.0489454194171631, 0.21875, 'X[59] <= 0.209\\nsquared_error = 0.061\\nsamples = 2\\nvalue = 12.859'),\n", + " Text(0.04862341007889229, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.106'),\n", + " Text(0.049267428755433905, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", + " Text(0.05208501046530349, 0.28125, 'X[58] <= 0.37\\nsquared_error = 0.144\\nsamples = 15\\nvalue = 11.257'),\n", + " Text(0.05055546610851715, 0.21875, 'X[45] <= 0.784\\nsquared_error = 0.022\\nsamples = 5\\nvalue = 10.835'),\n", + " Text(0.04991144743197553, 0.15625, 'X[60] <= 0.356\\nsquared_error = 0.005\\nsamples = 3\\nvalue = 10.936'),\n", + " Text(0.04958943809370472, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.035'),\n", + " Text(0.050233456770246335, 0.09375, 'X[18] <= -4.0\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 10.887'),\n", + " Text(0.04991144743197553, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", + " Text(0.05055546610851715, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.859'),\n", + " Text(0.051199484785058764, 0.15625, 'X[45] <= 0.898\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 10.683'),\n", + " Text(0.05087747544678796, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.768'),\n", + " Text(0.05152149412332958, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.05361455482208984, 0.21875, 'X[45] <= 0.849\\nsquared_error = 0.071\\nsamples = 10\\nvalue = 11.468'),\n", + " Text(0.05280953147641282, 0.15625, 'X[45] <= 0.41\\nsquared_error = 0.048\\nsamples = 8\\nvalue = 11.377'),\n", + " Text(0.052165512799871194, 0.09375, 'X[51] <= 0.308\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.694'),\n", + " Text(0.05184350346160039, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.613'),\n", + " Text(0.052487522138142007, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.053453550152954436, 0.09375, 'X[58] <= 0.812\\nsquared_error = 0.017\\nsamples = 6\\nvalue = 11.271'),\n", + " Text(0.053131540814683624, 0.03125, 'squared_error = 0.006\\nsamples = 5\\nvalue = 11.222'),\n", + " Text(0.05377555949122525, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.054419578167766866, 0.15625, 'X[46] <= 0.191\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.831'),\n", + " Text(0.054097568829496054, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", + " Text(0.05474158750603768, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.813'),\n", + " Text(0.06282704073418129, 0.53125, 'X[59] <= 0.013\\nsquared_error = 2.146\\nsamples = 150\\nvalue = 11.071'),\n", + " Text(0.06160441152793431, 0.46875, 'X[4] <= 2.5\\nsquared_error = 28.394\\nsamples = 2\\nvalue = 5.329'),\n", + " Text(0.0612824021896635, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.657'),\n", + " Text(0.06192642086620512, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.06404966994042827, 0.46875, 'X[11] <= 1.5\\nsquared_error = 1.339\\nsamples = 148\\nvalue = 11.148'),\n", + " Text(0.06257043954274674, 0.40625, 'X[50] <= 0.995\\nsquared_error = 0.5\\nsamples = 146\\nvalue = 11.223'),\n", + " Text(0.0605780067621961, 0.34375, 'X[62] <= 0.943\\nsquared_error = 0.389\\nsamples = 143\\nvalue = 11.253'),\n", + " Text(0.05820318789244888, 0.28125, 'X[49] <= 0.07\\nsquared_error = 0.359\\nsamples = 134\\nvalue = 11.304'),\n", + " Text(0.05683464820479794, 0.21875, 'X[61] <= 0.706\\nsquared_error = 1.462\\nsamples = 8\\nvalue = 10.542'),\n", + " Text(0.05602962485912091, 0.15625, 'X[0] <= 8250.0\\nsquared_error = 0.459\\nsamples = 6\\nvalue = 11.15'),\n", + " Text(0.055385606182579296, 0.09375, 'X[53] <= 0.44\\nsquared_error = 0.038\\nsamples = 3\\nvalue = 10.517'),\n", + " Text(0.055063596844308484, 0.03125, 'squared_error = 0.006\\nsamples = 2\\nvalue = 10.386'),\n", + " Text(0.05570761552085011, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.779'),\n", + " Text(0.05667364353566253, 0.09375, 'X[57] <= 0.517\\nsquared_error = 0.08\\nsamples = 3\\nvalue = 11.782'),\n", + " Text(0.056351634197391726, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.15'),\n", + " Text(0.05699565287393334, 0.03125, 'squared_error = 0.019\\nsamples = 2\\nvalue = 11.599'),\n", + " Text(0.05763967155047496, 0.15625, 'X[33] <= 0.5\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 8.72'),\n", + " Text(0.057317662212204155, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.923'),\n", + " Text(0.05796168088874577, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.05957172758009982, 0.21875, 'X[48] <= 0.996\\nsquared_error = 0.25\\nsamples = 126\\nvalue = 11.353'),\n", + " Text(0.059249718241829015, 0.15625, 'X[45] <= 0.924\\nsquared_error = 0.218\\nsamples = 125\\nvalue = 11.369'),\n", + " Text(0.05860569956528739, 0.09375, 'X[45] <= 0.844\\nsquared_error = 0.21\\nsamples = 119\\nvalue = 11.397'),\n", + " Text(0.058283690227016585, 0.03125, 'squared_error = 0.201\\nsamples = 111\\nvalue = 11.367'),\n", + " Text(0.0589277089035582, 0.03125, 'squared_error = 0.142\\nsamples = 8\\nvalue = 11.813'),\n", + " Text(0.05989373691837063, 0.09375, 'X[38] <= 1.5\\nsquared_error = 0.065\\nsamples = 6\\nvalue = 10.82'),\n", + " Text(0.05957172758009982, 0.03125, 'squared_error = 0.0\\nsamples = 4\\nvalue = 10.994'),\n", + " Text(0.060215746256641445, 0.03125, 'squared_error = 0.015\\nsamples = 2\\nvalue = 10.474'),\n", + " Text(0.05989373691837063, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.306'),\n", + " Text(0.06295282563194332, 0.28125, 'X[53] <= 0.76\\nsquared_error = 0.221\\nsamples = 9\\nvalue = 10.494'),\n", + " Text(0.06263081629367252, 0.21875, 'X[50] <= 0.901\\nsquared_error = 0.108\\nsamples = 8\\nvalue = 10.369'),\n", + " Text(0.06182579294799549, 0.15625, 'X[57] <= 0.575\\nsquared_error = 0.013\\nsamples = 6\\nvalue = 10.535'),\n", + " Text(0.061181774271453875, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.003\\nsamples = 3\\nvalue = 10.636'),\n", + " Text(0.06085976493318306, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", + " Text(0.06150378360972468, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.06246981162453711, 0.09375, 'X[52] <= 0.83\\nsquared_error = 0.002\\nsamples = 3\\nvalue = 10.433'),\n", + " Text(0.062147802286266304, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.463'),\n", + " Text(0.06279182096280791, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.373'),\n", + " Text(0.06343583963934954, 0.15625, 'X[54] <= 0.47\\nsquared_error = 0.065\\nsamples = 2\\nvalue = 9.871'),\n", + " Text(0.06311383030107873, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.127'),\n", + " Text(0.06375784897762035, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.06327483497021413, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.493'),\n", + " Text(0.06456287232329738, 0.34375, 'X[48] <= 0.548\\nsquared_error = 3.655\\nsamples = 3\\nvalue = 9.772'),\n", + " Text(0.06424086298502657, 0.28125, 'X[50] <= 0.997\\nsquared_error = 0.086\\nsamples = 2\\nvalue = 11.114'),\n", + " Text(0.06391885364675576, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.06456287232329738, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.408'),\n", + " Text(0.06488488166156818, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.09'),\n", + " Text(0.0655289003381098, 0.40625, 'X[52] <= 0.705\\nsquared_error = 32.469\\nsamples = 2\\nvalue = 5.698'),\n", + " Text(0.06520689099983899, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.396'),\n", + " Text(0.06585090967638062, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.08230105860569957, 0.65625, 'X[1] <= 524.5\\nsquared_error = 0.548\\nsamples = 1493\\nvalue = 11.638'),\n", + " Text(0.06919175656094027, 0.59375, 'X[35] <= -2.0\\nsquared_error = 16.388\\nsamples = 7\\nvalue = 9.87'),\n", + " Text(0.06886974722266946, 0.53125, 'X[53] <= 0.574\\nsquared_error = 0.176\\nsamples = 6\\nvalue = 11.515'),\n", + " Text(0.06806472387699243, 0.46875, 'X[1] <= 420.0\\nsquared_error = 0.058\\nsamples = 4\\nvalue = 11.765'),\n", + " Text(0.0674207052004508, 0.40625, 'X[60] <= 0.1\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 11.993'),\n", + " Text(0.06709869586218001, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.101'),\n", + " Text(0.06774271453872162, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.884'),\n", + " Text(0.06870874255353406, 0.40625, 'X[22] <= 1.5\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.537'),\n", + " Text(0.06838673321526324, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.06903075189180487, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", + " Text(0.06967477056834648, 0.46875, 'X[55] <= 0.597\\nsquared_error = 0.038\\nsamples = 2\\nvalue = 11.016'),\n", + " Text(0.06935276123007567, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.212'),\n", + " Text(0.06999677990661729, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.06951376589921107, 0.53125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.09541036065045887, 0.59375, 'X[8] <= 3.5\\nsquared_error = 0.458\\nsamples = 1486\\nvalue = 11.646'),\n", + " Text(0.07988850426662374, 0.53125, 'X[4] <= 2.5\\nsquared_error = 0.406\\nsamples = 1324\\nvalue = 11.619'),\n", + " Text(0.07288480115923361, 0.46875, 'X[49] <= 0.973\\nsquared_error = 0.444\\nsamples = 259\\nvalue = 11.473'),\n", + " Text(0.07138544517791016, 0.40625, 'X[46] <= 0.989\\nsquared_error = 0.245\\nsamples = 255\\nvalue = 11.499'),\n", + " Text(0.06967477056834648, 0.34375, 'X[10] <= 1.5\\nsquared_error = 0.234\\nsamples = 250\\nvalue = 11.483'),\n", + " Text(0.06818547737884399, 0.28125, 'X[34] <= 0.5\\nsquared_error = 0.22\\nsamples = 248\\nvalue = 11.493'),\n", + " Text(0.06617291901465143, 0.21875, 'X[43] <= 0.707\\nsquared_error = 0.42\\nsamples = 20\\nvalue = 11.141'),\n", + " Text(0.06504588633070359, 0.15625, 'X[62] <= 0.787\\nsquared_error = 0.127\\nsamples = 16\\nvalue = 11.39'),\n", + " Text(0.06440186765416198, 0.09375, 'X[61] <= 0.331\\nsquared_error = 0.067\\nsamples = 14\\nvalue = 11.487'),\n", + " Text(0.06407985831589116, 0.03125, 'squared_error = 0.038\\nsamples = 6\\nvalue = 11.301'),\n", + " Text(0.06472387699243277, 0.03125, 'squared_error = 0.043\\nsamples = 8\\nvalue = 11.627'),\n", + " Text(0.06568990500724521, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.708'),\n", + " Text(0.0653678956689744, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.06601191434551602, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.06729995169859926, 0.15625, 'X[61] <= 0.586\\nsquared_error = 0.355\\nsamples = 4\\nvalue = 10.145'),\n", + " Text(0.06697794236032845, 0.09375, 'X[45] <= 0.556\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 9.808'),\n", + " Text(0.06665593302205763, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.903'),\n", + " Text(0.06729995169859926, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.06762196103687007, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.07019803574303655, 0.21875, 'X[55] <= 0.776\\nsquared_error = 0.19\\nsamples = 228\\nvalue = 11.524'),\n", + " Text(0.0689099983899533, 0.15625, 'X[54] <= 0.991\\nsquared_error = 0.182\\nsamples = 184\\nvalue = 11.48'),\n", + " Text(0.0682659797134117, 0.09375, 'X[49] <= 0.844\\nsquared_error = 0.175\\nsamples = 181\\nvalue = 11.469'),\n", + " Text(0.06794397037514088, 0.03125, 'squared_error = 0.166\\nsamples = 149\\nvalue = 11.426'),\n", + " Text(0.0685879890516825, 0.03125, 'squared_error = 0.17\\nsamples = 32\\nvalue = 11.666'),\n", + " Text(0.06955401706649493, 0.09375, 'X[57] <= 0.353\\nsquared_error = 0.095\\nsamples = 3\\nvalue = 12.171'),\n", + " Text(0.06923200772822412, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", + " Text(0.06987602640476574, 0.03125, 'squared_error = -0.0\\nsamples = 2\\nvalue = 12.388'),\n", + " Text(0.07148607309611979, 0.15625, 'X[58] <= 0.953\\nsquared_error = 0.186\\nsamples = 44\\nvalue = 11.708'),\n", + " Text(0.07084205441957817, 0.09375, 'X[58] <= 0.29\\nsquared_error = 0.147\\nsamples = 42\\nvalue = 11.753'),\n", + " Text(0.07052004508130735, 0.03125, 'squared_error = 0.144\\nsamples = 12\\nvalue = 11.471'),\n", + " Text(0.07116406375784898, 0.03125, 'squared_error = 0.103\\nsamples = 30\\nvalue = 11.866'),\n", + " Text(0.0721300917726614, 0.09375, 'X[58] <= 0.961\\nsquared_error = 0.048\\nsamples = 2\\nvalue = 10.75'),\n", + " Text(0.0718080824343906, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.968'),\n", + " Text(0.07245210111093221, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.532'),\n", + " Text(0.07116406375784898, 0.28125, 'X[60] <= 0.31\\nsquared_error = 0.362\\nsamples = 2\\nvalue = 10.218'),\n", + " Text(0.07084205441957817, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.07148607309611979, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.07309611978747384, 0.34375, 'X[50] <= 0.751\\nsquared_error = 0.088\\nsamples = 5\\nvalue = 12.326'),\n", + " Text(0.07245210111093221, 0.28125, 'X[49] <= 0.373\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 12.635'),\n", + " Text(0.0721300917726614, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.692'),\n", + " Text(0.07277411044920302, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.578'),\n", + " Text(0.07374013846401546, 0.28125, 'X[0] <= 27684.602\\nsquared_error = 0.038\\nsamples = 3\\nvalue = 12.121'),\n", + " Text(0.07341812912574465, 0.21875, 'X[50] <= 0.797\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 12.256'),\n", + " Text(0.07309611978747384, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.211'),\n", + " Text(0.07374013846401546, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", + " Text(0.07406214780228626, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", + " Text(0.07438415714055707, 0.40625, 'X[2] <= 1962.5\\nsquared_error = 10.278\\nsamples = 4\\nvalue = 9.798'),\n", + " Text(0.07406214780228626, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.248'),\n", + " Text(0.07470616647882788, 0.34375, 'X[1] <= 1600.0\\nsquared_error = 0.015\\nsamples = 3\\nvalue = 11.648'),\n", + " Text(0.07438415714055707, 0.28125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.736'),\n", + " Text(0.0750281758170987, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.472'),\n", + " Text(0.08689220737401385, 0.46875, 'X[48] <= 0.923\\nsquared_error = 0.39\\nsamples = 1065\\nvalue = 11.654'),\n", + " Text(0.08168974400257607, 0.40625, 'X[6] <= 1.5\\nsquared_error = 0.261\\nsamples = 995\\nvalue = 11.675'),\n", + " Text(0.07748349702141362, 0.34375, 'X[59] <= 0.989\\nsquared_error = 0.414\\nsamples = 244\\nvalue = 11.542'),\n", + " Text(0.07623571083561423, 0.28125, 'X[29] <= 1.5\\nsquared_error = 0.255\\nsamples = 242\\nvalue = 11.57'),\n", + " Text(0.07470616647882788, 0.21875, 'X[10] <= 1.5\\nsquared_error = 0.239\\nsamples = 223\\nvalue = 11.538'),\n", + " Text(0.07438415714055707, 0.15625, 'X[1] <= 2250.0\\nsquared_error = 0.231\\nsamples = 221\\nvalue = 11.528'),\n", + " Text(0.07374013846401546, 0.09375, 'X[51] <= 0.039\\nsquared_error = 0.227\\nsamples = 174\\nvalue = 11.579'),\n", + " Text(0.07341812912574465, 0.03125, 'squared_error = 0.079\\nsamples = 3\\nvalue = 10.67'),\n", + " Text(0.07406214780228626, 0.03125, 'squared_error = 0.215\\nsamples = 171\\nvalue = 11.595'),\n", + " Text(0.0750281758170987, 0.09375, 'X[52] <= 0.04\\nsquared_error = 0.2\\nsamples = 47\\nvalue = 11.341'),\n", + " Text(0.07470616647882788, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.07535018515536951, 0.03125, 'squared_error = 0.16\\nsamples = 46\\nvalue = 11.31'),\n", + " Text(0.0750281758170987, 0.15625, 'squared_error = -0.0\\nsamples = 2\\nvalue = 12.612'),\n", + " Text(0.07776525519240057, 0.21875, 'X[0] <= 21000.0\\nsquared_error = 0.278\\nsamples = 19\\nvalue = 11.954'),\n", + " Text(0.07696023184672356, 0.15625, 'X[57] <= 0.187\\nsquared_error = 0.115\\nsamples = 13\\nvalue = 12.188'),\n", + " Text(0.07631621317018193, 0.09375, 'X[59] <= 0.893\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.585'),\n", + " Text(0.07599420383191112, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.562'),\n", + " Text(0.07663822250845274, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.608'),\n", + " Text(0.07760425052326518, 0.09375, 'X[56] <= 0.858\\nsquared_error = 0.057\\nsamples = 11\\nvalue = 12.298'),\n", + " Text(0.07728224118499437, 0.03125, 'squared_error = 0.023\\nsamples = 10\\nvalue = 12.358'),\n", + " Text(0.07792625986153598, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.0785702785380776, 0.15625, 'X[51] <= 0.414\\nsquared_error = 0.257\\nsamples = 6\\nvalue = 11.448'),\n", + " Text(0.07824826919980679, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.468'),\n", + " Text(0.07889228787634842, 0.09375, 'X[51] <= 0.632\\nsquared_error = 0.058\\nsamples = 5\\nvalue = 11.244'),\n", + " Text(0.0785702785380776, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.07921429721461923, 0.03125, 'squared_error = 0.016\\nsamples = 4\\nvalue = 11.35'),\n", + " Text(0.07873128320721301, 0.28125, 'X[55] <= 0.782\\nsquared_error = 8.133\\nsamples = 2\\nvalue = 8.15'),\n", + " Text(0.0784092738689422, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.298'),\n", + " Text(0.07905329254548382, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", + " Text(0.08589599098373853, 0.34375, 'X[9] <= 1.5\\nsquared_error = 0.204\\nsamples = 751\\nvalue = 11.719'),\n", + " Text(0.08372242795041056, 0.28125, 'X[1] <= 1650.0\\nsquared_error = 0.283\\nsamples = 50\\nvalue = 12.071'),\n", + " Text(0.08211238125905651, 0.21875, 'X[53] <= 0.291\\nsquared_error = 0.208\\nsamples = 28\\nvalue = 11.802'),\n", + " Text(0.08082434390597328, 0.15625, 'X[43] <= 0.598\\nsquared_error = 0.116\\nsamples = 7\\nvalue = 11.342'),\n", + " Text(0.08018032522943165, 0.09375, 'X[58] <= 0.359\\nsquared_error = 0.035\\nsamples = 4\\nvalue = 11.084'),\n", + " Text(0.07985831589116084, 0.03125, 'squared_error = 0.015\\nsamples = 3\\nvalue = 10.995'),\n", + " Text(0.08050233456770246, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.08146836258251489, 0.09375, 'X[53] <= 0.108\\nsquared_error = 0.017\\nsamples = 3\\nvalue = 11.687'),\n", + " Text(0.08114635324424409, 0.03125, 'squared_error = 0.005\\nsamples = 2\\nvalue = 11.606'),\n", + " Text(0.0817903719207857, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.849'),\n", + " Text(0.08340041861213975, 0.15625, 'X[61] <= 0.952\\nsquared_error = 0.145\\nsamples = 21\\nvalue = 11.956'),\n", + " Text(0.08275639993559814, 0.09375, 'X[57] <= 0.024\\nsquared_error = 0.096\\nsamples = 19\\nvalue = 12.029'),\n", + " Text(0.08243439059732732, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.794'),\n", + " Text(0.08307840927386895, 0.03125, 'squared_error = 0.067\\nsamples = 18\\nvalue = 11.987'),\n", + " Text(0.08404443728868137, 0.09375, 'X[6] <= 3.5\\nsquared_error = 0.065\\nsamples = 2\\nvalue = 11.258'),\n", + " Text(0.08372242795041056, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.08436644662695218, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", + " Text(0.0853324746417646, 0.21875, 'X[51] <= 0.121\\nsquared_error = 0.168\\nsamples = 22\\nvalue = 12.414'),\n", + " Text(0.0850104653034938, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.592'),\n", + " Text(0.08565448398003542, 0.15625, 'X[60] <= 0.89\\nsquared_error = 0.107\\nsamples = 21\\nvalue = 12.358'),\n", + " Text(0.0853324746417646, 0.09375, 'X[61] <= 0.932\\nsquared_error = 0.049\\nsamples = 20\\nvalue = 12.303'),\n", + " Text(0.0850104653034938, 0.03125, 'squared_error = 0.017\\nsamples = 19\\nvalue = 12.344'),\n", + " Text(0.08565448398003542, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.08597649331830623, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", + " Text(0.0880695540170665, 0.28125, 'X[1] <= 1306.5\\nsquared_error = 0.189\\nsamples = 701\\nvalue = 11.694'),\n", + " Text(0.08726453067138946, 0.21875, 'X[0] <= 445841.5\\nsquared_error = 0.122\\nsamples = 164\\nvalue = 11.561'),\n", + " Text(0.08694252133311867, 0.15625, 'X[34] <= 0.5\\nsquared_error = 0.098\\nsamples = 163\\nvalue = 11.573'),\n", + " Text(0.08662051199484785, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.08726453067138946, 0.09375, 'X[53] <= 0.24\\nsquared_error = 0.09\\nsamples = 162\\nvalue = 11.566'),\n", + " Text(0.08694252133311867, 0.03125, 'squared_error = 0.07\\nsamples = 38\\nvalue = 11.705'),\n", + " Text(0.08758654000966028, 0.03125, 'squared_error = 0.089\\nsamples = 124\\nvalue = 11.523'),\n", + " Text(0.08758654000966028, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.582'),\n", + " Text(0.08887457736274353, 0.21875, 'X[1] <= 1318.5\\nsquared_error = 0.202\\nsamples = 537\\nvalue = 11.734'),\n", + " Text(0.08855256802447271, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.872'),\n", + " Text(0.08919658670101432, 0.15625, 'X[16] <= -3.5\\nsquared_error = 0.194\\nsamples = 536\\nvalue = 11.73'),\n", + " Text(0.08855256802447271, 0.09375, 'X[55] <= 0.725\\nsquared_error = 1.046\\nsamples = 3\\nvalue = 10.653'),\n", + " Text(0.0882305586862019, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.08887457736274353, 0.03125, 'squared_error = 0.008\\nsamples = 2\\nvalue = 11.374'),\n", + " Text(0.08984060537755595, 0.09375, 'X[0] <= 11001.5\\nsquared_error = 0.183\\nsamples = 533\\nvalue = 11.736'),\n", + " Text(0.08951859603928514, 0.03125, 'squared_error = 0.2\\nsamples = 251\\nvalue = 11.654'),\n", + " Text(0.09016261471582676, 0.03125, 'squared_error = 0.156\\nsamples = 282\\nvalue = 11.809'),\n", + " Text(0.09209467074545162, 0.40625, 'X[58] <= 0.054\\nsquared_error = 2.127\\nsamples = 70\\nvalue = 11.357'),\n", + " Text(0.09112864273063918, 0.34375, 'X[6] <= 4.0\\nsquared_error = 14.257\\nsamples = 5\\nvalue = 9.141'),\n", + " Text(0.09080663339236839, 0.28125, 'X[52] <= 0.613\\nsquared_error = 0.093\\nsamples = 4\\nvalue = 11.025'),\n", + " Text(0.09016261471582676, 0.21875, 'X[48] <= 0.958\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 10.733'),\n", + " Text(0.08984060537755595, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.645'),\n", + " Text(0.09048462405409757, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.09145065206891, 0.21875, 'X[48] <= 0.954\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 11.316'),\n", + " Text(0.09112864273063918, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.225'),\n", + " Text(0.09177266140718081, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.408'),\n", + " Text(0.09145065206891, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 1.609'),\n", + " Text(0.09306069876026404, 0.34375, 'X[49] <= 0.04\\nsquared_error = 0.787\\nsamples = 65\\nvalue = 11.527'),\n", + " Text(0.09241668008372243, 0.28125, 'X[51] <= 0.683\\nsquared_error = 9.845\\nsamples = 2\\nvalue = 8.213'),\n", + " Text(0.09209467074545162, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.09273868942199323, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.075'),\n", + " Text(0.09370471743680567, 0.28125, 'X[44] <= 0.009\\nsquared_error = 0.14\\nsamples = 63\\nvalue = 11.632'),\n", + " Text(0.09338270809853486, 0.21875, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.612'),\n", + " Text(0.09402672677507648, 0.21875, 'X[47] <= 0.069\\nsquared_error = 0.112\\nsamples = 61\\nvalue = 11.6'),\n", + " Text(0.09273868942199323, 0.15625, 'X[0] <= 13125.0\\nsquared_error = 0.096\\nsamples = 7\\nvalue = 12.0'),\n", + " Text(0.09209467074545162, 0.09375, 'X[45] <= 0.36\\nsquared_error = 0.025\\nsamples = 5\\nvalue = 11.837'),\n", + " Text(0.09177266140718081, 0.03125, 'squared_error = 0.004\\nsamples = 2\\nvalue = 11.672'),\n", + " Text(0.09241668008372243, 0.03125, 'squared_error = 0.009\\nsamples = 3\\nvalue = 11.947'),\n", + " Text(0.09338270809853486, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 12.409'),\n", + " Text(0.09306069876026404, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", + " Text(0.09370471743680567, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.09531476412815972, 0.15625, 'X[59] <= 0.031\\nsquared_error = 0.091\\nsamples = 54\\nvalue = 11.548'),\n", + " Text(0.09467074545161809, 0.09375, 'X[42] <= -2.0\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 12.254'),\n", + " Text(0.09434873611334729, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", + " Text(0.0949927547898889, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.09595878280470134, 0.09375, 'X[58] <= 0.616\\nsquared_error = 0.074\\nsamples = 52\\nvalue = 11.521'),\n", + " Text(0.09563677346643053, 0.03125, 'squared_error = 0.044\\nsamples = 34\\nvalue = 11.408'),\n", + " Text(0.09628079214297215, 0.03125, 'squared_error = 0.061\\nsamples = 18\\nvalue = 11.735'),\n", + " Text(0.110932217034294, 0.53125, 'X[59] <= 0.829\\nsquared_error = 0.833\\nsamples = 162\\nvalue = 11.868'),\n", + " Text(0.10380776042505233, 0.46875, 'X[22] <= 1.5\\nsquared_error = 0.362\\nsamples = 137\\nvalue = 11.968'),\n", + " Text(0.09801159233617775, 0.40625, 'X[10] <= -3.0\\nsquared_error = 0.273\\nsamples = 103\\nvalue = 12.114'),\n", + " Text(0.09628079214297215, 0.34375, 'X[45] <= 0.451\\nsquared_error = 0.281\\nsamples = 3\\nvalue = 10.997'),\n", + " Text(0.09595878280470134, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.09660280148124295, 0.28125, 'X[59] <= 0.474\\nsquared_error = 0.067\\nsamples = 2\\nvalue = 11.341'),\n", + " Text(0.09628079214297215, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.599'),\n", + " Text(0.09692481081951376, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.082'),\n", + " Text(0.09974239252938336, 0.34375, 'X[2] <= 1935.0\\nsquared_error = 0.234\\nsamples = 100\\nvalue = 12.147'),\n", + " Text(0.0983738528417324, 0.28125, 'X[50] <= 0.73\\nsquared_error = 0.096\\nsamples = 9\\nvalue = 12.684'),\n", + " Text(0.09756882949605539, 0.21875, 'X[52] <= 0.701\\nsquared_error = 0.014\\nsamples = 7\\nvalue = 12.839'),\n", + " Text(0.09692481081951376, 0.15625, 'X[0] <= 2275.0\\nsquared_error = 0.004\\nsamples = 5\\nvalue = 12.9'),\n", + " Text(0.09660280148124295, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", + " Text(0.09724682015778457, 0.09375, 'X[47] <= 0.569\\nsquared_error = 0.001\\nsamples = 4\\nvalue = 12.87'),\n", + " Text(0.09692481081951376, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.899'),\n", + " Text(0.09756882949605539, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.841'),\n", + " Text(0.09821284817259701, 0.15625, 'X[51] <= 0.57\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 12.689'),\n", + " Text(0.0978908388343262, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.09853485751086781, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.612'),\n", + " Text(0.09917887618740943, 0.21875, 'X[50] <= 0.776\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 12.139'),\n", + " Text(0.09885686684913862, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.09950088552568025, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.073'),\n", + " Text(0.1011109322170343, 0.28125, 'X[1] <= 1050.0\\nsquared_error = 0.216\\nsamples = 91\\nvalue = 12.094'),\n", + " Text(0.10078892287876348, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.1014329415553051, 0.21875, 'X[0] <= 21780.0\\nsquared_error = 0.183\\nsamples = 90\\nvalue = 12.114'),\n", + " Text(0.10014490420222187, 0.15625, 'X[29] <= 1.5\\nsquared_error = 0.169\\nsamples = 79\\nvalue = 12.052'),\n", + " Text(0.09950088552568025, 0.09375, 'X[21] <= 1.5\\nsquared_error = 0.17\\nsamples = 66\\nvalue = 11.991'),\n", + " Text(0.09917887618740943, 0.03125, 'squared_error = 0.149\\nsamples = 65\\nvalue = 11.972'),\n", + " Text(0.09982289486395106, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.218'),\n", + " Text(0.10078892287876348, 0.09375, 'X[49] <= 0.233\\nsquared_error = 0.052\\nsamples = 13\\nvalue = 12.36'),\n", + " Text(0.10046691354049267, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.96'),\n", + " Text(0.1011109322170343, 0.03125, 'squared_error = 0.024\\nsamples = 12\\nvalue = 12.31'),\n", + " Text(0.10272097890838834, 0.15625, 'X[61] <= 0.597\\nsquared_error = 0.051\\nsamples = 11\\nvalue = 12.561'),\n", + " Text(0.10207696023184672, 0.09375, 'X[55] <= 0.805\\nsquared_error = 0.025\\nsamples = 5\\nvalue = 12.76'),\n", + " Text(0.10175495089357592, 0.03125, 'squared_error = 0.007\\nsamples = 3\\nvalue = 12.876'),\n", + " Text(0.10239896957011753, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 12.586'),\n", + " Text(0.10336499758492997, 0.09375, 'X[55] <= 0.389\\nsquared_error = 0.013\\nsamples = 6\\nvalue = 12.396'),\n", + " Text(0.10304298824665915, 0.03125, 'squared_error = 0.003\\nsamples = 4\\nvalue = 12.467'),\n", + " Text(0.10368700692320078, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 12.254'),\n", + " Text(0.1096039285139269, 0.40625, 'X[57] <= 0.303\\nsquared_error = 0.373\\nsamples = 34\\nvalue = 11.527'),\n", + " Text(0.10698760264047658, 0.34375, 'X[55] <= 0.598\\nsquared_error = 0.519\\nsamples = 10\\nvalue = 11.058'),\n", + " Text(0.10578006762196104, 0.28125, 'X[44] <= 0.865\\nsquared_error = 0.285\\nsamples = 7\\nvalue = 10.715'),\n", + " Text(0.10497504427628401, 0.21875, 'X[51] <= 0.386\\nsquared_error = 0.083\\nsamples = 5\\nvalue = 10.434'),\n", + " Text(0.10433102559974239, 0.15625, 'X[9] <= 1.5\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.756'),\n", + " Text(0.10400901626147158, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", + " Text(0.1046530349380132, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.10561906295282564, 0.15625, 'X[46] <= 0.275\\nsquared_error = 0.006\\nsamples = 3\\nvalue = 10.219'),\n", + " Text(0.10529705361455483, 0.09375, 'X[22] <= 2.5\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 10.265'),\n", + " Text(0.10497504427628401, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.222'),\n", + " Text(0.10561906295282564, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.10594107229109644, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.127'),\n", + " Text(0.10658509096763806, 0.21875, 'X[0] <= 24434.602\\nsquared_error = 0.102\\nsamples = 2\\nvalue = 11.417'),\n", + " Text(0.10626308162936725, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.097'),\n", + " Text(0.10690710030590887, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.736'),\n", + " Text(0.10819513765899211, 0.28125, 'X[47] <= 0.545\\nsquared_error = 0.148\\nsamples = 3\\nvalue = 11.86'),\n", + " Text(0.1078731283207213, 0.21875, 'X[44] <= 0.523\\nsquared_error = 0.027\\nsamples = 2\\nvalue = 12.115'),\n", + " Text(0.1075511189824505, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.278'),\n", + " Text(0.10819513765899211, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.951'),\n", + " Text(0.10851714699726292, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.11222025438737723, 0.34375, 'X[61] <= 0.992\\nsquared_error = 0.182\\nsamples = 24\\nvalue = 11.723'),\n", + " Text(0.11189824504910642, 0.28125, 'X[58] <= 0.692\\nsquared_error = 0.061\\nsamples = 23\\nvalue = 11.796'),\n", + " Text(0.11012719368861697, 0.21875, 'X[57] <= 0.599\\nsquared_error = 0.054\\nsamples = 16\\nvalue = 11.706'),\n", + " Text(0.10883915633553373, 0.15625, 'X[46] <= 0.167\\nsquared_error = 0.044\\nsamples = 8\\nvalue = 11.561'),\n", + " Text(0.10819513765899211, 0.09375, 'X[57] <= 0.438\\nsquared_error = 0.021\\nsamples = 2\\nvalue = 11.839'),\n", + " Text(0.1078731283207213, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.983'),\n", + " Text(0.10851714699726292, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.10948317501207536, 0.09375, 'X[38] <= 1.5\\nsquared_error = 0.017\\nsamples = 6\\nvalue = 11.468'),\n", + " Text(0.10916116567380454, 0.03125, 'squared_error = 0.004\\nsamples = 5\\nvalue = 11.415'),\n", + " Text(0.10980518435034615, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.736'),\n", + " Text(0.11141523104170022, 0.15625, 'X[48] <= 0.45\\nsquared_error = 0.022\\nsamples = 8\\nvalue = 11.852'),\n", + " Text(0.11077121236515859, 0.09375, 'X[55] <= 0.461\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 12.052'),\n", + " Text(0.11044920302688778, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.128'),\n", + " Text(0.1110932217034294, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.977'),\n", + " Text(0.11205924971824183, 0.09375, 'X[44] <= 0.655\\nsquared_error = 0.009\\nsamples = 6\\nvalue = 11.785'),\n", + " Text(0.11173724037997101, 0.03125, 'squared_error = 0.001\\nsamples = 4\\nvalue = 11.851'),\n", + " Text(0.11238125905651264, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.653'),\n", + " Text(0.11366929640959587, 0.21875, 'X[52] <= 0.39\\nsquared_error = 0.019\\nsamples = 7\\nvalue = 12.0'),\n", + " Text(0.11302527773305426, 0.15625, 'X[51] <= 0.094\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 12.18'),\n", + " Text(0.11270326839478345, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.155'),\n", + " Text(0.11334728707132506, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.1143133150861375, 0.15625, 'X[2] <= 1989.0\\nsquared_error = 0.007\\nsamples = 5\\nvalue = 11.928'),\n", + " Text(0.11399130574786669, 0.09375, 'X[28] <= 0.5\\nsquared_error = 0.002\\nsamples = 4\\nvalue = 11.966'),\n", + " Text(0.11366929640959587, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.925'),\n", + " Text(0.1143133150861375, 0.03125, 'squared_error = 0.001\\nsamples = 2\\nvalue = 12.007'),\n", + " Text(0.11463532442440831, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.11254226372564805, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.043'),\n", + " Text(0.11805667364353566, 0.46875, 'X[59] <= 0.836\\nsquared_error = 3.056\\nsamples = 25\\nvalue = 11.316'),\n", + " Text(0.11705039446143937, 0.40625, 'X[53] <= 0.732\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 5.569'),\n", + " Text(0.11672838512316858, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.521'),\n", + " Text(0.11737240379971019, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.617'),\n", + " Text(0.11906295282563194, 0.40625, 'X[53] <= 0.918\\nsquared_error = 0.2\\nsamples = 23\\nvalue = 11.816'),\n", + " Text(0.11801642247625181, 0.34375, 'X[61] <= 0.909\\nsquared_error = 0.128\\nsamples = 21\\nvalue = 11.729'),\n", + " Text(0.11688938979230398, 0.28125, 'X[54] <= 0.096\\nsquared_error = 0.079\\nsamples = 18\\nvalue = 11.815'),\n", + " Text(0.11656738045403317, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", + " Text(0.11721139913057478, 0.21875, 'X[51] <= 0.453\\nsquared_error = 0.051\\nsamples = 17\\nvalue = 11.858'),\n", + " Text(0.11592336177749155, 0.15625, 'X[27] <= 0.5\\nsquared_error = 0.043\\nsamples = 6\\nvalue = 12.061'),\n", + " Text(0.11527934310094992, 0.09375, 'X[52] <= 0.412\\nsquared_error = 0.009\\nsamples = 4\\nvalue = 11.932'),\n", + " Text(0.11495733376267912, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.783'),\n", + " Text(0.11560135243922073, 0.03125, 'squared_error = 0.003\\nsamples = 3\\nvalue = 11.982'),\n", + " Text(0.11656738045403317, 0.09375, 'X[62] <= 0.356\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 12.318'),\n", + " Text(0.11624537111576236, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.11688938979230398, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.429'),\n", + " Text(0.11849943648365803, 0.15625, 'X[52] <= 0.223\\nsquared_error = 0.02\\nsamples = 11\\nvalue = 11.747'),\n", + " Text(0.1178554178071164, 0.09375, 'X[47] <= 0.216\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 11.981'),\n", + " Text(0.1175334084688456, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.11817742714538722, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", + " Text(0.11914345516019964, 0.09375, 'X[51] <= 0.959\\nsquared_error = 0.009\\nsamples = 9\\nvalue = 11.695'),\n", + " Text(0.11882144582192884, 0.03125, 'squared_error = 0.005\\nsamples = 6\\nvalue = 11.747'),\n", + " Text(0.11946546449847045, 0.03125, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.593'),\n", + " Text(0.11914345516019964, 0.28125, 'X[51] <= 0.156\\nsquared_error = 0.112\\nsamples = 3\\nvalue = 11.216'),\n", + " Text(0.11882144582192884, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.653'),\n", + " Text(0.11946546449847045, 0.21875, 'X[45] <= 0.473\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.998'),\n", + " Text(0.11914345516019964, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.84'),\n", + " Text(0.11978747383674127, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.12010948317501208, 0.34375, 'X[58] <= 0.612\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 12.727'),\n", + " Text(0.11978747383674127, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.506'),\n", + " Text(0.12043149251328289, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.948'),\n", + " Text(0.17093035541780713, 0.71875, 'X[42] <= -2.5\\nsquared_error = 0.684\\nsamples = 2468\\nvalue = 11.231'),\n", + " Text(0.15910783287715344, 0.65625, 'X[8] <= 3.5\\nsquared_error = 0.913\\nsamples = 1001\\nvalue = 11.053'),\n", + " Text(0.14441112542263726, 0.59375, 'X[6] <= 1.5\\nsquared_error = 0.919\\nsamples = 947\\nvalue = 11.016'),\n", + " Text(0.13016221220415392, 0.53125, 'X[1] <= 686.0\\nsquared_error = 0.981\\nsamples = 484\\nvalue = 10.859'),\n", + " Text(0.12294719046852359, 0.46875, 'X[10] <= 1.5\\nsquared_error = 5.368\\nsamples = 25\\nvalue = 9.989'),\n", + " Text(0.12262518113025278, 0.40625, 'X[54] <= 0.08\\nsquared_error = 1.261\\nsamples = 24\\nvalue = 10.405'),\n", + " Text(0.12139752052809531, 0.34375, 'X[45] <= 0.171\\nsquared_error = 1.325\\nsamples = 2\\nvalue = 7.366'),\n", + " Text(0.1210755111898245, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.215'),\n", + " Text(0.12171952986636612, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.12385284173241023, 0.34375, 'X[8] <= 1.5\\nsquared_error = 0.339\\nsamples = 22\\nvalue = 10.681'),\n", + " Text(0.12236354854290775, 0.28125, 'X[47] <= 0.334\\nsquared_error = 0.045\\nsamples = 3\\nvalue = 9.915'),\n", + " Text(0.12204153920463694, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.12268555788117855, 0.21875, 'X[47] <= 0.477\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.065'),\n", + " Text(0.12236354854290775, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.043'),\n", + " Text(0.12300756721944936, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.086'),\n", + " Text(0.12534213492191273, 0.28125, 'X[53] <= 0.247\\nsquared_error = 0.278\\nsamples = 19\\nvalue = 10.802'),\n", + " Text(0.1239735952342618, 0.21875, 'X[59] <= 0.368\\nsquared_error = 0.067\\nsamples = 5\\nvalue = 10.295'),\n", + " Text(0.12365158589599098, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.12429560457253261, 0.15625, 'X[48] <= 0.644\\nsquared_error = 0.028\\nsamples = 4\\nvalue = 10.19'),\n", + " Text(0.1239735952342618, 0.09375, 'X[52] <= 0.635\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 10.286'),\n", + " Text(0.12365158589599098, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.309'),\n", + " Text(0.12429560457253261, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.24'),\n", + " Text(0.12461761391080341, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.12671067460956367, 0.21875, 'X[55] <= 0.796\\nsquared_error = 0.23\\nsamples = 14\\nvalue = 10.983'),\n", + " Text(0.12590565126388664, 0.15625, 'X[54] <= 0.417\\nsquared_error = 0.166\\nsamples = 11\\nvalue = 11.146'),\n", + " Text(0.12526163258734505, 0.09375, 'X[8] <= 2.5\\nsquared_error = 0.02\\nsamples = 4\\nvalue = 10.763'),\n", + " Text(0.12493962324907422, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.002'),\n", + " Text(0.12558364192561583, 0.03125, 'squared_error = 0.001\\nsamples = 3\\nvalue = 10.684'),\n", + " Text(0.12654966994042827, 0.09375, 'X[53] <= 0.614\\nsquared_error = 0.118\\nsamples = 7\\nvalue = 11.364'),\n", + " Text(0.12622766060215745, 0.03125, 'squared_error = 0.046\\nsamples = 3\\nvalue = 11.018'),\n", + " Text(0.12687167927869908, 0.03125, 'squared_error = 0.015\\nsamples = 4\\nvalue = 11.623'),\n", + " Text(0.1275156979552407, 0.15625, 'X[57] <= 0.32\\nsquared_error = 0.012\\nsamples = 3\\nvalue = 10.388'),\n", + " Text(0.1271936886169699, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.545'),\n", + " Text(0.12783770729351152, 0.09375, 'squared_error = -0.0\\nsamples = 2\\nvalue = 10.309'),\n", + " Text(0.12326919980679439, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.13737723393978427, 0.46875, 'X[48] <= 0.051\\nsquared_error = 0.698\\nsamples = 459\\nvalue = 10.906'),\n", + " Text(0.1312993076799227, 0.40625, 'X[62] <= 0.028\\nsquared_error = 2.904\\nsamples = 22\\nvalue = 10.172'),\n", + " Text(0.13097729834165192, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.248'),\n", + " Text(0.13162131701819352, 0.34375, 'X[49] <= 0.028\\nsquared_error = 1.292\\nsamples = 21\\nvalue = 10.454'),\n", + " Text(0.1312993076799227, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.908'),\n", + " Text(0.13194332635646433, 0.28125, 'X[56] <= 0.461\\nsquared_error = 0.696\\nsamples = 20\\nvalue = 10.632'),\n", + " Text(0.12960875865400096, 0.21875, 'X[47] <= 0.404\\nsquared_error = 0.711\\nsamples = 7\\nvalue = 9.85'),\n", + " Text(0.12880373530832395, 0.15625, 'X[26] <= 1.5\\nsquared_error = 0.206\\nsamples = 3\\nvalue = 9.019'),\n", + " Text(0.12848172597005314, 0.09375, 'X[60] <= 0.674\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 8.72'),\n", + " Text(0.12815971663178233, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.12880373530832395, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.923'),\n", + " Text(0.12912574464659476, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.13041378199967799, 0.15625, 'X[57] <= 0.364\\nsquared_error = 0.184\\nsamples = 4\\nvalue = 10.473'),\n", + " Text(0.12976976332313636, 0.09375, 'X[0] <= 5250.0\\nsquared_error = 0.059\\nsamples = 2\\nvalue = 10.839'),\n", + " Text(0.12944775398486555, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.13009177266140717, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.082'),\n", + " Text(0.1310578006762196, 0.09375, 'X[55] <= 0.9\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 10.106'),\n", + " Text(0.1307357913379488, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.13137981001449042, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.1342778940589277, 0.21875, 'X[47] <= 0.261\\nsquared_error = 0.182\\nsamples = 13\\nvalue = 11.053'),\n", + " Text(0.13298985670584446, 0.15625, 'X[20] <= 1.5\\nsquared_error = 0.072\\nsamples = 4\\nvalue = 11.526'),\n", + " Text(0.13234583802930286, 0.09375, 'X[45] <= 0.366\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.787'),\n", + " Text(0.13202382869103205, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.871'),\n", + " Text(0.13266784736757367, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.704'),\n", + " Text(0.13363387538238608, 0.09375, 'X[0] <= 6015.0\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.264'),\n", + " Text(0.13331186604411527, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.277'),\n", + " Text(0.1339558847206569, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.252'),\n", + " Text(0.13556593141201095, 0.15625, 'X[22] <= 1.5\\nsquared_error = 0.087\\nsamples = 9\\nvalue = 10.842'),\n", + " Text(0.13492191273546933, 0.09375, 'X[46] <= 0.199\\nsquared_error = 0.033\\nsamples = 6\\nvalue = 11.013'),\n", + " Text(0.13459990339719852, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.669'),\n", + " Text(0.13524392207374014, 0.03125, 'squared_error = 0.012\\nsamples = 5\\nvalue = 11.082'),\n", + " Text(0.13620995008855258, 0.09375, 'X[41] <= 0.5\\nsquared_error = 0.018\\nsamples = 3\\nvalue = 10.501'),\n", + " Text(0.13588794075028177, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.597'),\n", + " Text(0.1365319594268234, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.1434551601996458, 0.40625, 'X[15] <= -3.5\\nsquared_error = 0.559\\nsamples = 437\\nvalue = 10.943'),\n", + " Text(0.14313315086137499, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.226'),\n", + " Text(0.1437771695379166, 0.34375, 'X[8] <= 1.5\\nsquared_error = 0.535\\nsamples = 436\\nvalue = 10.935'),\n", + " Text(0.1405570761552085, 0.28125, 'X[35] <= -2.5\\nsquared_error = 0.764\\nsamples = 54\\nvalue = 10.562'),\n", + " Text(0.13830301078731283, 0.21875, 'X[52] <= 0.096\\nsquared_error = 0.422\\nsamples = 39\\nvalue = 10.789'),\n", + " Text(0.137175978103365, 0.15625, 'X[47] <= 0.602\\nsquared_error = 0.113\\nsamples = 4\\nvalue = 11.817'),\n", + " Text(0.13685396876509417, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", + " Text(0.1374979874416358, 0.09375, 'X[47] <= 0.806\\nsquared_error = 0.041\\nsamples = 2\\nvalue = 12.121'),\n", + " Text(0.137175978103365, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.1378199967799066, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.324'),\n", + " Text(0.13943004347126067, 0.15625, 'X[52] <= 0.954\\nsquared_error = 0.323\\nsamples = 35\\nvalue = 10.671'),\n", + " Text(0.13878602479471905, 0.09375, 'X[47] <= 0.944\\nsquared_error = 0.241\\nsamples = 32\\nvalue = 10.765'),\n", + " Text(0.13846401545644824, 0.03125, 'squared_error = 0.186\\nsamples = 31\\nvalue = 10.809'),\n", + " Text(0.13910803413298986, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.393'),\n", + " Text(0.1400740621478023, 0.09375, 'X[58] <= 0.235\\nsquared_error = 0.107\\nsamples = 3\\nvalue = 9.672'),\n", + " Text(0.13975205280953149, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.1403960714860731, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.903'),\n", + " Text(0.14281114152310417, 0.21875, 'X[49] <= 0.718\\nsquared_error = 1.173\\nsamples = 15\\nvalue = 9.973'),\n", + " Text(0.14200611817742714, 0.15625, 'X[53] <= 0.844\\nsquared_error = 0.58\\nsamples = 11\\nvalue = 10.46'),\n", + " Text(0.14136209950088552, 0.09375, 'X[49] <= 0.435\\nsquared_error = 0.285\\nsamples = 9\\nvalue = 10.738'),\n", + " Text(0.1410400901626147, 0.03125, 'squared_error = 0.106\\nsamples = 6\\nvalue = 10.417'),\n", + " Text(0.14168410883915633, 0.03125, 'squared_error = 0.024\\nsamples = 3\\nvalue = 11.38'),\n", + " Text(0.14265013685396877, 0.09375, 'X[2] <= 1919.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 9.21'),\n", + " Text(0.14232812751569796, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.14297214619223958, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.1436161648687812, 0.15625, 'X[60] <= 0.215\\nsquared_error = 0.359\\nsamples = 4\\nvalue = 8.635'),\n", + " Text(0.1432941555305104, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 9.21'),\n", + " Text(0.14393817420705202, 0.09375, 'X[48] <= 0.396\\nsquared_error = 0.055\\nsamples = 2\\nvalue = 8.059'),\n", + " Text(0.1436161648687812, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.824'),\n", + " Text(0.1442601835453228, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.294'),\n", + " Text(0.1469972629206247, 0.28125, 'X[4] <= 4.5\\nsquared_error = 0.48\\nsamples = 382\\nvalue = 10.988'),\n", + " Text(0.14619223957494767, 0.21875, 'X[61] <= 0.99\\nsquared_error = 0.454\\nsamples = 375\\nvalue = 10.97'),\n", + " Text(0.14587023023667686, 0.15625, 'X[7] <= 1.5\\nsquared_error = 0.439\\nsamples = 374\\nvalue = 10.976'),\n", + " Text(0.14522621156013524, 0.09375, 'X[48] <= 0.975\\nsquared_error = 0.52\\nsamples = 48\\nvalue = 10.683'),\n", + " Text(0.14490420222186443, 0.03125, 'squared_error = 0.366\\nsamples = 45\\nvalue = 10.777'),\n", + " Text(0.14554822089840605, 0.03125, 'squared_error = 0.721\\nsamples = 3\\nvalue = 9.278'),\n", + " Text(0.1465142489132185, 0.09375, 'X[62] <= 0.017\\nsquared_error = 0.413\\nsamples = 326\\nvalue = 11.02'),\n", + " Text(0.14619223957494767, 0.03125, 'squared_error = 0.431\\nsamples = 6\\nvalue = 11.807'),\n", + " Text(0.1468362582514893, 0.03125, 'squared_error = 0.401\\nsamples = 320\\nvalue = 11.005'),\n", + " Text(0.1465142489132185, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.14780228626630174, 0.21875, 'X[21] <= 1.5\\nsquared_error = 0.889\\nsamples = 7\\nvalue = 11.971'),\n", + " Text(0.14748027692803092, 0.15625, 'X[1] <= 1466.0\\nsquared_error = 0.209\\nsamples = 6\\nvalue = 11.627'),\n", + " Text(0.1471582675897601, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.14780228626630174, 0.09375, 'X[58] <= 0.559\\nsquared_error = 0.051\\nsamples = 5\\nvalue = 11.81'),\n", + " Text(0.14748027692803092, 0.03125, 'squared_error = 0.015\\nsamples = 3\\nvalue = 11.976'),\n", + " Text(0.14812429560457252, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.561'),\n", + " Text(0.14812429560457252, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.036'),\n", + " Text(0.1586600386411206, 0.53125, 'X[62] <= 1.0\\nsquared_error = 0.801\\nsamples = 463\\nvalue = 11.18'),\n", + " Text(0.1583380293028498, 0.46875, 'X[4] <= 2.5\\nsquared_error = 0.77\\nsamples = 462\\nvalue = 11.189'),\n", + " Text(0.15482611495733375, 0.40625, 'X[50] <= 0.991\\nsquared_error = 0.663\\nsamples = 188\\nvalue = 11.001'),\n", + " Text(0.15315569151505393, 0.34375, 'X[45] <= 0.97\\nsquared_error = 0.482\\nsamples = 186\\nvalue = 11.032'),\n", + " Text(0.1507808726453067, 0.28125, 'X[9] <= 1.5\\nsquared_error = 0.435\\nsamples = 180\\nvalue = 11.0'),\n", + " Text(0.14941233295765577, 0.21875, 'X[6] <= 2.5\\nsquared_error = 0.072\\nsamples = 7\\nvalue = 11.759'),\n", + " Text(0.14876831428111414, 0.15625, 'X[53] <= 0.818\\nsquared_error = 0.003\\nsamples = 2\\nvalue = 12.153'),\n", + " Text(0.14844630494284333, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.14909032361938496, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.101'),\n", + " Text(0.1500563516341974, 0.15625, 'X[21] <= 1.5\\nsquared_error = 0.013\\nsamples = 5\\nvalue = 11.602'),\n", + " Text(0.14973434229592658, 0.09375, 'X[51] <= 0.691\\nsquared_error = 0.002\\nsamples = 2\\nvalue = 11.735'),\n", + " Text(0.14941233295765577, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.1500563516341974, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.1503783609724682, 0.09375, 'squared_error = -0.0\\nsamples = 3\\nvalue = 11.513'),\n", + " Text(0.15214941233295765, 0.21875, 'X[59] <= 0.022\\nsquared_error = 0.426\\nsamples = 173\\nvalue = 10.969'),\n", + " Text(0.15134438898728064, 0.15625, 'X[47] <= 0.667\\nsquared_error = 0.378\\nsamples = 3\\nvalue = 12.089'),\n", + " Text(0.15102237964900983, 0.09375, 'X[49] <= 0.118\\nsquared_error = 0.008\\nsamples = 2\\nvalue = 12.52'),\n", + " Text(0.15070037031073902, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.612'),\n", + " Text(0.15134438898728064, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.429'),\n", + " Text(0.15166639832555145, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", + " Text(0.15295443567863468, 0.15625, 'X[54] <= 0.994\\nsquared_error = 0.404\\nsamples = 170\\nvalue = 10.949'),\n", + " Text(0.15231041700209305, 0.09375, 'X[2] <= 1987.5\\nsquared_error = 0.383\\nsamples = 168\\nvalue = 10.933'),\n", + " Text(0.15198840766382224, 0.03125, 'squared_error = 0.355\\nsamples = 165\\nvalue = 10.953'),\n", + " Text(0.15263242634036386, 0.03125, 'squared_error = 0.67\\nsamples = 3\\nvalue = 9.821'),\n", + " Text(0.1535984543551763, 0.09375, 'X[4] <= 1.5\\nsquared_error = 0.179\\nsamples = 2\\nvalue = 12.342'),\n", + " Text(0.1532764450169055, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.1539204636934471, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.15553051038480115, 0.28125, 'X[2] <= 1955.0\\nsquared_error = 0.906\\nsamples = 6\\nvalue = 12.003'),\n", + " Text(0.15488649170825955, 0.21875, 'X[54] <= 0.745\\nsquared_error = 0.191\\nsamples = 4\\nvalue = 11.386'),\n", + " Text(0.15456448236998874, 0.15625, 'X[57] <= 0.891\\nsquared_error = 0.007\\nsamples = 3\\nvalue = 11.634'),\n", + " Text(0.15424247303171792, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.695'),\n", + " Text(0.15488649170825955, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.15520850104653036, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.641'),\n", + " Text(0.15617452906134277, 0.21875, 'X[59] <= 0.327\\nsquared_error = 0.049\\nsamples = 2\\nvalue = 13.238'),\n", + " Text(0.15585251972307196, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.017'),\n", + " Text(0.15649653839961358, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", + " Text(0.15649653839961358, 0.34375, 'X[58] <= 0.555\\nsquared_error = 9.064\\nsamples = 2\\nvalue = 8.117'),\n", + " Text(0.15617452906134277, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.106'),\n", + " Text(0.1568185477378844, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.127'),\n", + " Text(0.1618499436483658, 0.40625, 'X[62] <= 0.034\\nsquared_error = 0.803\\nsamples = 274\\nvalue = 11.318'),\n", + " Text(0.15850909676380615, 0.34375, 'X[49] <= 0.166\\nsquared_error = 8.605\\nsamples = 14\\nvalue = 10.385'),\n", + " Text(0.15818708742553533, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.15883110610207696, 0.28125, 'X[1] <= 1650.0\\nsquared_error = 0.333\\nsamples = 13\\nvalue = 11.183'),\n", + " Text(0.15794558042183224, 0.21875, 'X[60] <= 0.356\\nsquared_error = 0.184\\nsamples = 10\\nvalue = 10.95'),\n", + " Text(0.1571405570761552, 0.15625, 'X[46] <= 0.591\\nsquared_error = 0.035\\nsamples = 4\\nvalue = 10.547'),\n", + " Text(0.15649653839961358, 0.09375, 'X[53] <= 0.674\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 10.708'),\n", + " Text(0.15617452906134277, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.1568185477378844, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.15778457575269683, 0.09375, 'X[62] <= 0.02\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 10.386'),\n", + " Text(0.15746256641442602, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.15810658509096764, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.463'),\n", + " Text(0.15875060376750927, 0.15625, 'X[46] <= 0.059\\nsquared_error = 0.103\\nsamples = 6\\nvalue = 11.219'),\n", + " Text(0.15842859442923846, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.15907261310578008, 0.09375, 'X[1] <= 1225.0\\nsquared_error = 0.007\\nsamples = 5\\nvalue = 11.079'),\n", + " Text(0.15875060376750927, 0.03125, 'squared_error = 0.002\\nsamples = 4\\nvalue = 11.042'),\n", + " Text(0.15939462244405087, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.225'),\n", + " Text(0.15971663178232168, 0.21875, 'X[43] <= 0.66\\nsquared_error = 0.044\\nsamples = 3\\nvalue = 11.961'),\n", + " Text(0.15939462244405087, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.1600386411205925, 0.15625, 'X[54] <= 0.711\\nsquared_error = 0.012\\nsamples = 2\\nvalue = 12.095'),\n", + " Text(0.15971663178232168, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.983'),\n", + " Text(0.1603606504588633, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.16519079053292546, 0.34375, 'X[52] <= 0.995\\nsquared_error = 0.333\\nsamples = 260\\nvalue = 11.368'),\n", + " Text(0.16486878119465465, 0.28125, 'X[0] <= 90200.0\\nsquared_error = 0.303\\nsamples = 259\\nvalue = 11.357'),\n", + " Text(0.16293672516502977, 0.21875, 'X[54] <= 0.762\\nsquared_error = 0.235\\nsamples = 230\\nvalue = 11.309'),\n", + " Text(0.16164868781194655, 0.15625, 'X[60] <= 0.973\\nsquared_error = 0.225\\nsamples = 177\\nvalue = 11.362'),\n", + " Text(0.16100466913540493, 0.09375, 'X[60] <= 0.667\\nsquared_error = 0.214\\nsamples = 174\\nvalue = 11.376'),\n", + " Text(0.16068265979713411, 0.03125, 'squared_error = 0.2\\nsamples = 122\\nvalue = 11.3'),\n", + " Text(0.16132667847367574, 0.03125, 'squared_error = 0.204\\nsamples = 52\\nvalue = 11.554'),\n", + " Text(0.16229270648848818, 0.09375, 'X[15] <= 1.5\\nsquared_error = 0.231\\nsamples = 3\\nvalue = 10.575'),\n", + " Text(0.16197069715021736, 0.03125, 'squared_error = 0.008\\nsamples = 2\\nvalue = 10.911'),\n", + " Text(0.162614715826759, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.16422476251811302, 0.15625, 'X[48] <= 0.197\\nsquared_error = 0.225\\nsamples = 53\\nvalue = 11.132'),\n", + " Text(0.1635807438415714, 0.09375, 'X[50] <= 0.973\\nsquared_error = 0.15\\nsamples = 15\\nvalue = 11.433'),\n", + " Text(0.16325873450330058, 0.03125, 'squared_error = 0.064\\nsamples = 14\\nvalue = 11.513'),\n", + " Text(0.1639027531798422, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.16486878119465465, 0.09375, 'X[49] <= 0.885\\nsquared_error = 0.205\\nsamples = 38\\nvalue = 11.013'),\n", + " Text(0.16454677185638383, 0.03125, 'squared_error = 0.159\\nsamples = 34\\nvalue = 10.934'),\n", + " Text(0.16519079053292546, 0.03125, 'squared_error = 0.098\\nsamples = 4\\nvalue = 11.681'),\n", + " Text(0.1668008372242795, 0.21875, 'X[46] <= 0.99\\nsquared_error = 0.685\\nsamples = 29\\nvalue = 11.733'),\n", + " Text(0.1664788278860087, 0.15625, 'X[61] <= 0.937\\nsquared_error = 0.474\\nsamples = 28\\nvalue = 11.823'),\n", + " Text(0.1661568185477379, 0.09375, 'X[48] <= 0.6\\nsquared_error = 0.34\\nsamples = 27\\nvalue = 11.749'),\n", + " Text(0.16583480920946708, 0.03125, 'squared_error = 0.205\\nsamples = 19\\nvalue = 11.971'),\n", + " Text(0.1664788278860087, 0.03125, 'squared_error = 0.265\\nsamples = 8\\nvalue = 11.222'),\n", + " Text(0.1668008372242795, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 13.816'),\n", + " Text(0.1671228465625503, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.16551279987119627, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.226'),\n", + " Text(0.1589820479793914, 0.46875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 7.313'),\n", + " Text(0.17380454033166962, 0.59375, 'X[60] <= 0.881\\nsquared_error = 0.36\\nsamples = 54\\nvalue = 11.711'),\n", + " Text(0.1705039446143938, 0.53125, 'X[47] <= 0.2\\nsquared_error = 0.271\\nsamples = 50\\nvalue = 11.789'),\n", + " Text(0.16808887457736274, 0.46875, 'X[20] <= 1.5\\nsquared_error = 0.098\\nsamples = 7\\nvalue = 11.268'),\n", + " Text(0.16776686523909193, 0.40625, 'X[53] <= 0.085\\nsquared_error = 0.049\\nsamples = 6\\nvalue = 11.171'),\n", + " Text(0.16744485590082112, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.714'),\n", + " Text(0.16808887457736274, 0.34375, 'X[58] <= 0.552\\nsquared_error = 0.009\\nsamples = 5\\nvalue = 11.263'),\n", + " Text(0.16776686523909193, 0.28125, 'X[54] <= 0.382\\nsquared_error = 0.001\\nsamples = 4\\nvalue = 11.308'),\n", + " Text(0.16744485590082112, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.362'),\n", + " Text(0.16808887457736274, 0.21875, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.29'),\n", + " Text(0.16841088391563355, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", + " Text(0.16841088391563355, 0.40625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.849'),\n", + " Text(0.1729190146514249, 0.46875, 'X[55] <= 0.026\\nsquared_error = 0.248\\nsamples = 43\\nvalue = 11.874'),\n", + " Text(0.17259700531315408, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.434'),\n", + " Text(0.1732410239896957, 0.40625, 'X[44] <= 0.869\\nsquared_error = 0.204\\nsamples = 42\\nvalue = 11.908'),\n", + " Text(0.17034293994525843, 0.34375, 'X[57] <= 0.046\\nsquared_error = 0.129\\nsamples = 35\\nvalue = 12.008'),\n", + " Text(0.1700209306069876, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.947'),\n", + " Text(0.1706649492835292, 0.28125, 'X[62] <= 0.664\\nsquared_error = 0.099\\nsamples = 34\\nvalue = 12.04'),\n", + " Text(0.16873289325390436, 0.21875, 'X[51] <= 0.093\\nsquared_error = 0.091\\nsamples = 19\\nvalue = 12.16'),\n", + " Text(0.16792786990822733, 0.15625, 'X[51] <= 0.079\\nsquared_error = 0.002\\nsamples = 3\\nvalue = 12.554'),\n", + " Text(0.16760586056995652, 0.09375, 'X[55] <= 0.725\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 12.525'),\n", + " Text(0.1672838512316857, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.525'),\n", + " Text(0.16792786990822733, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.525'),\n", + " Text(0.16824987924649815, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.612'),\n", + " Text(0.1695379165995814, 0.15625, 'X[1] <= 1150.0\\nsquared_error = 0.074\\nsamples = 16\\nvalue = 12.087'),\n", + " Text(0.16889389792303977, 0.09375, 'X[43] <= 0.455\\nsquared_error = 0.02\\nsamples = 9\\nvalue = 12.235'),\n", + " Text(0.16857188858476896, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.977'),\n", + " Text(0.16921590726131058, 0.03125, 'squared_error = 0.002\\nsamples = 7\\nvalue = 12.309'),\n", + " Text(0.17018193527612302, 0.09375, 'X[47] <= 0.493\\nsquared_error = 0.077\\nsamples = 7\\nvalue = 11.896'),\n", + " Text(0.1698599259378522, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.513'),\n", + " Text(0.1705039446143938, 0.03125, 'squared_error = 0.026\\nsamples = 5\\nvalue = 12.049'),\n", + " Text(0.17259700531315408, 0.21875, 'X[0] <= 16500.0\\nsquared_error = 0.066\\nsamples = 15\\nvalue = 11.887'),\n", + " Text(0.17179198196747705, 0.15625, 'X[46] <= 0.916\\nsquared_error = 0.029\\nsamples = 11\\nvalue = 12.006'),\n", + " Text(0.17146997262920624, 0.09375, 'X[56] <= 0.445\\nsquared_error = 0.013\\nsamples = 10\\nvalue = 11.964'),\n", + " Text(0.17114796329093543, 0.03125, 'squared_error = 0.003\\nsamples = 4\\nvalue = 11.857'),\n", + " Text(0.17179198196747705, 0.03125, 'squared_error = 0.006\\nsamples = 6\\nvalue = 12.036'),\n", + " Text(0.17211399130574787, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 12.429'),\n", + " Text(0.17340202865883111, 0.15625, 'X[44] <= 0.502\\nsquared_error = 0.019\\nsamples = 4\\nvalue = 11.557'),\n", + " Text(0.1727580099822895, 0.09375, 'X[17] <= 1.5\\nsquared_error = 0.007\\nsamples = 2\\nvalue = 11.432'),\n", + " Text(0.17243600064401868, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.513'),\n", + " Text(0.1730800193205603, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.17404604733537274, 0.09375, 'X[21] <= 1.5\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.683'),\n", + " Text(0.17372403799710193, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.67'),\n", + " Text(0.17436805667364352, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.695'),\n", + " Text(0.176139108034133, 0.34375, 'X[0] <= 7275.0\\nsquared_error = 0.274\\nsamples = 7\\nvalue = 11.405'),\n", + " Text(0.17501207535018515, 0.28125, 'X[17] <= 1.5\\nsquared_error = 0.072\\nsamples = 4\\nvalue = 10.993'),\n", + " Text(0.17436805667364352, 0.21875, 'X[55] <= 0.66\\nsquared_error = 0.006\\nsamples = 2\\nvalue = 11.231'),\n", + " Text(0.17404604733537274, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.17469006601191434, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.306'),\n", + " Text(0.17565609402672677, 0.21875, 'X[62] <= 0.215\\nsquared_error = 0.025\\nsamples = 2\\nvalue = 10.756'),\n", + " Text(0.17533408468845596, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", + " Text(0.17597810336499758, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.17726614071808083, 0.28125, 'X[49] <= 0.531\\nsquared_error = 0.016\\nsamples = 3\\nvalue = 11.954'),\n", + " Text(0.17694413137981002, 0.21875, 'X[55] <= 0.62\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 12.044'),\n", + " Text(0.1766221220415392, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", + " Text(0.17726614071808083, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.044'),\n", + " Text(0.17758815005635165, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.17710513604894543, 0.53125, 'X[50] <= 0.287\\nsquared_error = 0.448\\nsamples = 4\\nvalue = 10.742'),\n", + " Text(0.17678312671067462, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.752'),\n", + " Text(0.17742714538721624, 0.46875, 'X[41] <= 0.5\\nsquared_error = 0.144\\nsamples = 3\\nvalue = 10.405'),\n", + " Text(0.17710513604894543, 0.40625, 'X[1] <= 860.0\\nsquared_error = 0.027\\nsamples = 2\\nvalue = 10.656'),\n", + " Text(0.17678312671067462, 0.34375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.82'),\n", + " Text(0.17742714538721624, 0.34375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.491'),\n", + " Text(0.17774915472548705, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.903'),\n", + " Text(0.1827528779584608, 0.65625, 'X[57] <= 0.999\\nsquared_error = 0.491\\nsamples = 1467\\nvalue = 11.352'),\n", + " Text(0.18243086862018998, 0.59375, 'X[54] <= 0.001\\nsquared_error = 0.465\\nsamples = 1466\\nvalue = 11.356'),\n", + " Text(0.17863468040573177, 0.53125, 'X[46] <= 0.496\\nsquared_error = 9.56\\nsamples = 2\\nvalue = 8.198'),\n", + " Text(0.17831267106746096, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.106'),\n", + " Text(0.17895668974400258, 0.46875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.1862270568346482, 0.53125, 'X[1] <= 512.5\\nsquared_error = 0.438\\nsamples = 1464\\nvalue = 11.36'),\n", + " Text(0.1796007084205442, 0.46875, 'X[45] <= 0.977\\nsquared_error = 9.075\\nsamples = 13\\nvalue = 10.277'),\n", + " Text(0.1792786990822734, 0.40625, 'X[1] <= 122.0\\nsquared_error = 0.297\\nsamples = 12\\nvalue = 11.133'),\n", + " Text(0.17823216873289324, 0.34375, 'X[1] <= 99.5\\nsquared_error = 0.109\\nsamples = 2\\nvalue = 12.098'),\n", + " Text(0.17791015939462243, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.429'),\n", + " Text(0.17855417807116405, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.768'),\n", + " Text(0.18032522943165352, 0.34375, 'X[56] <= 0.449\\nsquared_error = 0.111\\nsamples = 10\\nvalue = 10.94'),\n", + " Text(0.17919819674770568, 0.28125, 'X[58] <= 0.595\\nsquared_error = 0.028\\nsamples = 7\\nvalue = 11.133'),\n", + " Text(0.17855417807116405, 0.21875, 'X[52] <= 0.519\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 11.318'),\n", + " Text(0.17823216873289324, 0.15625, 'X[47] <= 0.502\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 11.302'),\n", + " Text(0.17791015939462243, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.314'),\n", + " Text(0.17855417807116405, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.17887618740943487, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.1798422154242473, 0.21875, 'X[27] <= 0.5\\nsquared_error = 0.004\\nsamples = 4\\nvalue = 10.993'),\n", + " Text(0.1795202060859765, 0.15625, 'X[60] <= 0.421\\nsquared_error = 0.001\\nsamples = 3\\nvalue = 10.964'),\n", + " Text(0.17919819674770568, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.915'),\n", + " Text(0.1798422154242473, 0.09375, 'X[46] <= 0.574\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.988'),\n", + " Text(0.1795202060859765, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.99'),\n", + " Text(0.18016422476251812, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.985'),\n", + " Text(0.18016422476251812, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.082'),\n", + " Text(0.18145226211560136, 0.28125, 'X[46] <= 0.713\\nsquared_error = 0.017\\nsamples = 3\\nvalue = 10.492'),\n", + " Text(0.18113025277733055, 0.21875, 'X[58] <= 0.406\\nsquared_error = 0.0\\nsamples = 2\\nvalue = 10.584'),\n", + " Text(0.18080824343905974, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.597'),\n", + " Text(0.18145226211560136, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.571'),\n", + " Text(0.18177427145387215, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.179922717758815, 0.40625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.19285340524875222, 0.46875, 'X[6] <= 1.5\\nsquared_error = 0.35\\nsamples = 1451\\nvalue = 11.37'),\n", + " Text(0.18630252777330542, 0.40625, 'X[43] <= 0.004\\nsquared_error = 0.342\\nsamples = 603\\nvalue = 11.246'),\n", + " Text(0.18402833682176784, 0.34375, 'X[58] <= 0.356\\nsquared_error = 1.332\\nsamples = 2\\nvalue = 13.072'),\n", + " Text(0.18370632748349702, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.18435034616003865, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 14.226'),\n", + " Text(0.18857671872484302, 0.34375, 'X[29] <= 0.5\\nsquared_error = 0.328\\nsamples = 601\\nvalue = 11.239'),\n", + " Text(0.18499436483658027, 0.28125, 'X[54] <= 0.64\\nsquared_error = 0.357\\nsamples = 403\\nvalue = 11.181'),\n", + " Text(0.18290130413782, 0.21875, 'X[62] <= 0.02\\nsquared_error = 0.315\\nsamples = 253\\nvalue = 11.281'),\n", + " Text(0.18209628079214296, 0.15625, 'X[53] <= 0.751\\nsquared_error = 2.213\\nsamples = 2\\nvalue = 10.005'),\n", + " Text(0.18177427145387215, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.493'),\n", + " Text(0.18241829013041377, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.18370632748349702, 0.15625, 'X[46] <= 0.386\\nsquared_error = 0.287\\nsamples = 251\\nvalue = 11.292'),\n", + " Text(0.1830623088069554, 0.09375, 'X[58] <= 0.068\\nsquared_error = 0.284\\nsamples = 98\\nvalue = 11.414'),\n", + " Text(0.18274029946868459, 0.03125, 'squared_error = 0.265\\nsamples = 2\\nvalue = 9.725'),\n", + " Text(0.1833843181452262, 0.03125, 'squared_error = 0.224\\nsamples = 96\\nvalue = 11.449'),\n", + " Text(0.18435034616003865, 0.09375, 'X[57] <= 0.016\\nsquared_error = 0.273\\nsamples = 153\\nvalue = 11.213'),\n", + " Text(0.18402833682176784, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.788'),\n", + " Text(0.18467235549830946, 0.03125, 'squared_error = 0.258\\nsamples = 152\\nvalue = 11.203'),\n", + " Text(0.18708742553534052, 0.21875, 'X[44] <= 0.992\\nsquared_error = 0.381\\nsamples = 150\\nvalue = 11.011'),\n", + " Text(0.1862824021896635, 0.15625, 'X[59] <= 0.101\\nsquared_error = 0.334\\nsamples = 148\\nvalue = 11.033'),\n", + " Text(0.18563838351312187, 0.09375, 'X[56] <= 0.228\\nsquared_error = 0.443\\nsamples = 7\\nvalue = 10.326'),\n", + " Text(0.18531637417485108, 0.03125, 'squared_error = 0.103\\nsamples = 4\\nvalue = 9.815'),\n", + " Text(0.18596039285139268, 0.03125, 'squared_error = 0.086\\nsamples = 3\\nvalue = 11.006'),\n", + " Text(0.18692642086620512, 0.09375, 'X[46] <= 0.73\\nsquared_error = 0.302\\nsamples = 141\\nvalue = 11.068'),\n", + " Text(0.1866044115279343, 0.03125, 'squared_error = 0.267\\nsamples = 100\\nvalue = 11.182'),\n", + " Text(0.18724843020447593, 0.03125, 'squared_error = 0.281\\nsamples = 41\\nvalue = 10.791'),\n", + " Text(0.18789244888101755, 0.15625, 'X[43] <= 0.454\\nsquared_error = 1.176\\nsamples = 2\\nvalue = 9.379'),\n", + " Text(0.18757043954274674, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.463'),\n", + " Text(0.18821445821928837, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.294'),\n", + " Text(0.19215907261310577, 0.28125, 'X[0] <= 1950.0\\nsquared_error = 0.247\\nsamples = 198\\nvalue = 11.359'),\n", + " Text(0.19030751891804862, 0.21875, 'X[0] <= 1775.0\\nsquared_error = 0.3\\nsamples = 17\\nvalue = 11.728'),\n", + " Text(0.1895024955723716, 0.15625, 'X[1] <= 1575.0\\nsquared_error = 0.157\\nsamples = 15\\nvalue = 11.581'),\n", + " Text(0.18885847689583, 0.09375, 'X[1] <= 1250.0\\nsquared_error = 0.014\\nsamples = 5\\nvalue = 11.181'),\n", + " Text(0.18853646755755918, 0.03125, 'squared_error = 0.0\\nsamples = 3\\nvalue = 11.273'),\n", + " Text(0.18918048623410078, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.042'),\n", + " Text(0.1901465142489132, 0.09375, 'X[55] <= 0.629\\nsquared_error = 0.109\\nsamples = 10\\nvalue = 11.782'),\n", + " Text(0.1898245049106424, 0.03125, 'squared_error = 0.07\\nsamples = 7\\nvalue = 11.622'),\n", + " Text(0.19046852358718402, 0.03125, 'squared_error = 0.002\\nsamples = 3\\nvalue = 12.154'),\n", + " Text(0.19111254226372565, 0.15625, 'X[32] <= 0.5\\nsquared_error = 0.004\\nsamples = 2\\nvalue = 12.826'),\n", + " Text(0.19079053292545484, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.887'),\n", + " Text(0.19143455160199646, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.19401062630816293, 0.21875, 'X[50] <= 0.503\\nsquared_error = 0.228\\nsamples = 181\\nvalue = 11.325'),\n", + " Text(0.1927225889550797, 0.15625, 'X[50] <= 0.465\\nsquared_error = 0.166\\nsamples = 87\\nvalue = 11.207'),\n", + " Text(0.19207857027853809, 0.09375, 'X[46] <= 0.004\\nsquared_error = 0.129\\nsamples = 81\\nvalue = 11.254'),\n", + " Text(0.19175656094026727, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.405'),\n", + " Text(0.1924005796168089, 0.03125, 'squared_error = 0.114\\nsamples = 80\\nvalue = 11.24'),\n", + " Text(0.1933666076316213, 0.09375, 'X[54] <= 0.195\\nsquared_error = 0.248\\nsamples = 6\\nvalue = 10.579'),\n", + " Text(0.1930445982933505, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 9.616'),\n", + " Text(0.19368861696989212, 0.03125, 'squared_error = 0.075\\nsamples = 5\\nvalue = 10.772'),\n", + " Text(0.19529866366124618, 0.15625, 'X[48] <= 0.926\\nsquared_error = 0.261\\nsamples = 94\\nvalue = 11.433'),\n", + " Text(0.19465464498470456, 0.09375, 'X[60] <= 0.247\\nsquared_error = 0.24\\nsamples = 91\\nvalue = 11.404'),\n", + " Text(0.19433263564643374, 0.03125, 'squared_error = 0.19\\nsamples = 24\\nvalue = 11.151'),\n", + " Text(0.19497665432297537, 0.03125, 'squared_error = 0.227\\nsamples = 67\\nvalue = 11.495'),\n", + " Text(0.1959426823377878, 0.09375, 'X[47] <= 0.49\\nsquared_error = 0.103\\nsamples = 3\\nvalue = 12.313'),\n", + " Text(0.195620672999517, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.19626469167605862, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 12.087'),\n", + " Text(0.199404282724199, 0.40625, 'X[50] <= 0.005\\nsquared_error = 0.338\\nsamples = 848\\nvalue = 11.458'),\n", + " Text(0.19739172436000643, 0.34375, 'X[45] <= 0.431\\nsquared_error = 8.712\\nsamples = 4\\nvalue = 9.713'),\n", + " Text(0.19706971502173562, 0.28125, 'X[43] <= 0.513\\nsquared_error = 0.019\\nsamples = 3\\nvalue = 11.416'),\n", + " Text(0.1967477056834648, 0.21875, 'X[0] <= 28600.0\\nsquared_error = 0.001\\nsamples = 2\\nvalue = 11.32'),\n", + " Text(0.19642569634519402, 0.15625, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.29'),\n", + " Text(0.19706971502173562, 0.15625, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.35'),\n", + " Text(0.19739172436000643, 0.21875, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.608'),\n", + " Text(0.19771373369827724, 0.28125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 4.605'),\n", + " Text(0.20141684108839156, 0.34375, 'X[9] <= 1.5\\nsquared_error = 0.283\\nsamples = 844\\nvalue = 11.467'),\n", + " Text(0.19835775237481887, 0.28125, 'X[4] <= 1.5\\nsquared_error = 0.463\\nsamples = 60\\nvalue = 11.87'),\n", + " Text(0.19803574303654806, 0.21875, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.344'),\n", + " Text(0.19867976171308968, 0.21875, 'X[53] <= 0.938\\nsquared_error = 0.366\\nsamples = 59\\nvalue = 11.828'),\n", + " Text(0.19787473836741265, 0.15625, 'X[61] <= 0.122\\nsquared_error = 0.248\\nsamples = 57\\nvalue = 11.767'),\n", + " Text(0.19723071969087103, 0.09375, 'X[52] <= 0.503\\nsquared_error = 0.197\\nsamples = 4\\nvalue = 11.048'),\n", + " Text(0.1969087103526002, 0.03125, 'squared_error = 0.027\\nsamples = 3\\nvalue = 10.806'),\n", + " Text(0.19755272902914184, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.775'),\n", + " Text(0.19851875704395427, 0.09375, 'X[60] <= 0.696\\nsquared_error = 0.21\\nsamples = 53\\nvalue = 11.822'),\n", + " Text(0.19819674770568346, 0.03125, 'squared_error = 0.15\\nsamples = 38\\nvalue = 11.957'),\n", + " Text(0.1988407663822251, 0.03125, 'squared_error = 0.201\\nsamples = 15\\nvalue = 11.48'),\n", + " Text(0.1994847850587667, 0.15625, 'X[53] <= 0.968\\nsquared_error = 0.623\\nsamples = 2\\nvalue = 13.555'),\n", + " Text(0.1991627757204959, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 14.344'),\n", + " Text(0.19980679439703752, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.766'),\n", + " Text(0.20447592980196425, 0.28125, 'X[0] <= 80520.0\\nsquared_error = 0.256\\nsamples = 784\\nvalue = 11.436'),\n", + " Text(0.202382869103204, 0.21875, 'X[4] <= 2.5\\nsquared_error = 0.236\\nsamples = 701\\nvalue = 11.404'),\n", + " Text(0.20109483175012074, 0.15625, 'X[54] <= 0.839\\nsquared_error = 0.261\\nsamples = 243\\nvalue = 11.278'),\n", + " Text(0.20045081307357912, 0.09375, 'X[1] <= 1850.0\\nsquared_error = 0.196\\nsamples = 202\\nvalue = 11.334'),\n", + " Text(0.20012880373530834, 0.03125, 'squared_error = 0.192\\nsamples = 157\\nvalue = 11.39'),\n", + " Text(0.20077282241184993, 0.03125, 'squared_error = 0.158\\nsamples = 45\\nvalue = 11.138'),\n", + " Text(0.20173885042666237, 0.09375, 'X[47] <= 0.469\\nsquared_error = 0.493\\nsamples = 41\\nvalue = 11.002'),\n", + " Text(0.20141684108839156, 0.03125, 'squared_error = 0.61\\nsamples = 16\\nvalue = 10.514'),\n", + " Text(0.20206085976493318, 0.03125, 'squared_error = 0.169\\nsamples = 25\\nvalue = 11.314'),\n", + " Text(0.20367090645628724, 0.15625, 'X[1] <= 958.5\\nsquared_error = 0.209\\nsamples = 458\\nvalue = 11.472'),\n", + " Text(0.20302688777974562, 0.09375, 'X[0] <= 3700.0\\nsquared_error = 0.176\\nsamples = 27\\nvalue = 11.098'),\n", + " Text(0.2027048784414748, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.206'),\n", + " Text(0.20334889711801643, 0.03125, 'squared_error = 0.133\\nsamples = 26\\nvalue = 11.055'),\n", + " Text(0.20431492513282884, 0.09375, 'X[48] <= 0.957\\nsquared_error = 0.202\\nsamples = 431\\nvalue = 11.495'),\n", + " Text(0.20399291579455806, 0.03125, 'squared_error = 0.193\\nsamples = 413\\nvalue = 11.479'),\n", + " Text(0.20463693447109965, 0.03125, 'squared_error = 0.248\\nsamples = 18\\nvalue = 11.874'),\n", + " Text(0.20656899050072453, 0.21875, 'X[50] <= 0.928\\nsquared_error = 0.351\\nsamples = 83\\nvalue = 11.702'),\n", + " Text(0.2059249718241829, 0.15625, 'X[26] <= 1.5\\nsquared_error = 0.293\\nsamples = 79\\nvalue = 11.654'),\n", + " Text(0.2056029624859121, 0.09375, 'X[61] <= 0.951\\nsquared_error = 0.255\\nsamples = 78\\nvalue = 11.631'),\n", + " Text(0.20528095314764128, 0.03125, 'squared_error = 0.231\\nsamples = 75\\nvalue = 11.664'),\n", + " Text(0.2059249718241829, 0.03125, 'squared_error = 0.121\\nsamples = 3\\nvalue = 10.798'),\n", + " Text(0.2062469811624537, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.459'),\n", + " Text(0.20721300917726615, 0.15625, 'X[45] <= 0.841\\nsquared_error = 0.54\\nsamples = 4\\nvalue = 12.654'),\n", + " Text(0.20689099983899534, 0.09375, 'X[48] <= 0.393\\nsquared_error = 0.063\\nsamples = 3\\nvalue = 12.248'),\n", + " Text(0.20656899050072453, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.918'),\n", + " Text(0.20721300917726615, 0.03125, 'squared_error = 0.012\\nsamples = 2\\nvalue = 12.413'),\n", + " Text(0.20753501851553696, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 13.87'),\n", + " Text(0.1830748872967316, 0.59375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 5.106'),\n", + " Text(0.3660186438375463, 0.78125, 'X[1] <= 1581.0\\nsquared_error = 0.509\\nsamples = 8801\\nvalue = 11.858'),\n", + " Text(0.2880914405892771, 0.71875, 'X[19] <= 1.5\\nsquared_error = 0.59\\nsamples = 2586\\nvalue = 11.65'),\n", + " Text(0.2612602640476574, 0.65625, 'X[29] <= 0.5\\nsquared_error = 0.538\\nsamples = 2247\\nvalue = 11.685'),\n", + " Text(0.2408705321204315, 0.59375, 'X[21] <= 1.5\\nsquared_error = 0.557\\nsamples = 1847\\nvalue = 11.652'),\n", + " Text(0.22988951054580584, 0.53125, 'X[0] <= 301467.0\\nsquared_error = 0.534\\nsamples = 1817\\nvalue = 11.662'),\n", + " Text(0.21970093382708097, 0.46875, 'X[0] <= 1537.5\\nsquared_error = 0.53\\nsamples = 1788\\nvalue = 11.653'),\n", + " Text(0.21027209789083884, 0.40625, 'X[44] <= 0.033\\nsquared_error = 2.919\\nsamples = 53\\nvalue = 11.306'),\n", + " Text(0.2096280792142972, 0.34375, 'X[56] <= 0.728\\nsquared_error = 31.115\\nsamples = 2\\nvalue = 5.578'),\n", + " Text(0.2093060698760264, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.20995008855256803, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.21091611656738046, 0.34375, 'X[47] <= 0.036\\nsquared_error = 0.476\\nsamples = 51\\nvalue = 11.531'),\n", + " Text(0.21059410722910965, 0.28125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.517'),\n", + " Text(0.21123812590565128, 0.28125, 'X[2] <= 1965.0\\nsquared_error = 0.301\\nsamples = 50\\nvalue = 11.591'),\n", + " Text(0.209145065206891, 0.21875, 'X[59] <= 0.558\\nsquared_error = 0.801\\nsamples = 7\\nvalue = 11.013'),\n", + " Text(0.20850104653034937, 0.15625, 'X[61] <= 0.223\\nsquared_error = 0.302\\nsamples = 2\\nvalue = 9.76'),\n", + " Text(0.20817903719207856, 0.09375, 'squared_error = 0.0\\nsamples = 1\\nvalue = 10.309'),\n", + " Text(0.20882305586862018, 0.09375, 'squared_error = -0.0\\nsamples = 1\\nvalue = 9.21'),\n", + " Text(0.20978908388343262, 0.15625, 'X[62] <= 0.133\\nsquared_error = 0.121\\nsamples = 5\\nvalue = 11.515'),\n", + " Text(0.2094670745451618, 0.09375, 'squared_error = 0.0\\nsamples = 2\\nvalue = 11.918'),\n", + " Text(0.21011109322170343, 0.09375, 'X[0] <= 1300.0\\nsquared_error = 0.02\\nsamples = 3\\nvalue = 11.246'),\n", + " Text(0.20978908388343262, 0.03125, 'squared_error = 0.005\\nsamples = 2\\nvalue = 11.154'),\n", + " Text(0.21043310255997424, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.43'),\n", + " Text(0.21333118660441153, 0.21875, 'X[53] <= 0.309\\nsquared_error = 0.156\\nsamples = 43\\nvalue = 11.685'),\n", + " Text(0.21204314925132828, 0.15625, 'X[59] <= 0.162\\nsquared_error = 0.1\\nsamples = 6\\nvalue = 11.21'),\n", + " Text(0.21139913057478668, 0.09375, 'X[48] <= 0.799\\nsquared_error = 0.021\\nsamples = 3\\nvalue = 11.489'),\n", + " Text(0.21107712123651587, 0.03125, 'squared_error = 0.002\\nsamples = 2\\nvalue = 11.39'),\n", + " Text(0.21172113991305747, 0.03125, 'squared_error = -0.0\\nsamples = 1\\nvalue = 11.687'),\n", + " Text(0.2126871679278699, 0.09375, 'X[60] <= 0.217\\nsquared_error = 0.025\\nsamples = 3\\nvalue = 10.932'),\n", + " Text(0.2123651585895991, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 11.156'),\n", + " Text(0.21300917726614071, 0.03125, 'squared_error = 0.0\\nsamples = 2\\nvalue = 10.82'),\n", + " Text(0.21461922395749478, 0.15625, 'X[47] <= 0.635\\nsquared_error = 0.122\\nsamples = 37\\nvalue = 11.762'),\n", + " Text(0.21397520528095315, 0.09375, 'X[27] <= 0.5\\nsquared_error = 0.083\\nsamples = 19\\nvalue = 11.959'),\n", + " Text(0.21365319594268234, 0.03125, 'squared_error = 0.062\\nsamples = 16\\nvalue = 11.885'),\n", + " Text(0.21429721461922396, 0.03125, 'squared_error = 0.011\\nsamples = 3\\nvalue = 12.355'),\n", + " Text(0.2152632426340364, 0.09375, 'X[61] <= 0.947\\nsquared_error = 0.079\\nsamples = 18\\nvalue = 11.555'),\n", + " Text(0.2149412332957656, 0.03125, 'squared_error = 0.049\\nsamples = 17\\nvalue = 11.511'),\n", + " Text(0.21558525197230718, 0.03125, 'squared_error = 0.0\\nsamples = 1\\nvalue = 12.301'),\n", + " Text(0.22912976976332314, 0.40625, 'X[28] <= 0.5\\nsquared_error = 0.453\\nsamples = 1735\\nvalue = 11.664'),\n", + " Text(0.22311222025438737, 0.34375, 'X[2] <= 1935.0\\nsquared_error = 0.478\\nsamples = 1559\\nvalue = 11.645'),\n", + " Text(0.22025438737723393, 0.28125, 'X[8] <= 3.5\\nsquared_error = 0.273\\nsamples = 76\\nvalue = 11.921'),\n", + " Text(0.2184833360167445, 0.21875, 'X[51] <= 0.689\\nsquared_error = 0.249\\nsamples = 69\\nvalue = 11.853'),\n", + " Text(0.21719529866366125, 0.15625, 'X[0] <= 4856.0\\nsquared_error = 0.186\\nsamples = 39\\nvalue = 12.018'),\n", + " ...]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAQAAAEeCAYAAAAdEse1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gd1Zm43+9alkbFQrItWza2JcCNYgy4QYJt0hupS9omm55N2U02PZu2yaaXTdmUTSHZVPJL2Wx6L4tBTgEcCAQCxghjHCMRYcu2LF3JVzq/P86Zq7mjmbkz984tks/7PPeR7txTvvOd/p0yopTCYrFYLBaLxWKxWCwWy6lFptYCWCwWi8VisVgsFovFYqk+1iBgsVgsFovFYrFYLBbLKYg1CFgsFovFYrFYLBaLxXIKYg0CFovFYrFYLBaLxWKxnIJYg4DFYrFYLBaLxWKxWCynINYgYLFYLBaLxWKxWCwWyymINQhYLBaLxWKxWCwWi8VyCmINAhaLxWKxWCwWi8VisZyCWIOAxWKxWCwWi8VisVgspyDWIGCxWCwWi8VisVgsFsspiDUIWCwWi8VisVgsFovFcgpiDQIWi8VisVgsllOG5ubmARFRcT/Nzc0DtZbZYrFYKoUopWotg8VisVgsFovFUhVERLnj3927d5PJZJiammLBggUopRgbG2NiYoIdO3a47lFKSS1ltlgslkphDQIWi8VisVgsllMGr0HgyJEjdHZ25v+GuLcGAYvFMmdpqLUAFovFYrFYLBZLGoiIAG3AQt9nked/9uzZw8jICACtra10dXVx880309HRgVKK8fFxstksvb29brhvBQ6HfI4ppaaql0qLxWJJD2sQsFgsFovFYrHUFSKSAU5j5sQ+zidL+OR9EGDTpk309fUxODjIyMgIo6OjrF+/nlwuR39/P1NTen7f09PjiuQA5zHTuLAQaBWRYRP+AxFx+z/DSqnJNPVmsVgsSbFHBiwWi8VisVgsFUFEGoAOkk/qO4ARgifSUZPuI0qpiSIyqSTj32JHBkRkfolpPA04HpGWsDQfUUqdjJ0Ai8ViicAaBCwWi8VisVgskYhII9BJ8Umuf/W8DThKaavnuQqlRSml2LVrF729vRw8eJC2tjYcxyGbzTI8PAzAzp07XfcVuUNAROZR2i6ITmCM+LrMf5RS2bTTYbFYZjfWIGCxWCwWi8VyiiAiDvEm8v6PQwkTUOBovZ2vb25uHshms0vjunccZ3BsbKy7kjIlwdyTsID4eed1lyP+bgvvZzTRtgqLxTJrsAYBi8VisVgsllmEmRC2EH8i6P3MI9lKvet2xE4IZzeechN3d4e/3CQtM4eB47bcWCz1jTUIWCwWi8VisdQAM0Frp7SL8/wrvXHP2Y/ZCZolKSLSTLwjI37DggMcobSdJfbCRYulCliDgMVisVgsFksZlHAW3J0wdQKjJN++fcSeBbfMBhLcPeH/LACOUVrdqMjdExbLXMUaBCwWi8VisVjI34gfNXkJ21LdTuHkJe7H3hZvsQRg6uJpJD8W0wGcIPnRhiNKqfGqJM5iqTOsQcBisVgsFsucQkSaKG0bfivxtzcfYXpCYd8nb7HUASKSofAYziK0kS+OYWGc5Ea9B5RSY9VJncVSGaxBwGKxWCwWS91hztc3U9rEvpFkq4PeC9CmqpJAi8VSN5j2po3kx34WAVMkNyQcxl7UaakTrEHAYrFYLBZLxSgy0C62agfBE/di54lP2IG2xWKpNGUaLptIfkfCYeCYNVxa0sQaBCwWi8VisRTFbMVNcnGefytukgHvYeCw3YprsVjmKuZok//OkjhHG1qBYeLvfHI/9miTJRBrELBYLBaL5RTCXNbVQbIJ/SK0MWCE0i7Os5d1WSwWSwqIyHzit+FeA0M7cJzSLly0l5/OYaxBwGKxWCyWBDQ3Nw9ks9mlcd07jjM4NjbWnbYcEa/zKrbC1AYcJcGlWUyvLtnXeVksFssspITXo7qfTmCMEu5JqNTrUeulH54rWIOAxWKxWCwJEBGllGL37t10dnbS0dHB5OQkbW1t3H333UxOTjI1NcXatWvp7OxERFBKSUR4pZ4/dYi+ET9s6+hRe/7UYrFYLHEw9yQsINmxBtfdSUq7cHE06h4Ybz+cyWSYmppiwYIFKKVoamri6NGjbNu2zes+sh8+1bEGAYvFYrFYEuAORI4cOUJ7ezsnTpygvb09yn1+ICIinwJeANzJ9IApQ7IL89zPcXtxnsVisVjqEWNIaCH50YaFwDym+7pJYB3Q4t6B4O2HOzs7838jZLEGgQgaai2AxWKxWCz1hrnsaXHIhz179jAyMgJAa2srXV1d7N+/n46ODpRSNDc3k81maW5udsN7DTAE3AV8GfgB0A/cS5GVEIvFYrFYZhumXzthPvcm8Wt2zrlH4lYDD/JfiHjNNdfQ2toa2he7ZLMVObUwp7A7BCwWi8UypzHnJhcyc2LfFfDM/TjoCXzQ521KKfr6+hgcHMRxHBYsWMC6devI5XIcOHCAXC5HY2Mj27ZtQy+S8LGQeBoj4vlb0PNKncm0WCwWi2U24O4QcPvhrq4ujh8/zubNm8nlcgwNDZHL5di0aZPr3u4QiMAaBCwWi8UyazBbENuJnsz7J/unoV/RFDrJZuYkPHQ7vjsQSSBz6EBERJwi6QhKz8kAeaPSc9heBmixWCyWuYDZwZdNqx+2WIOAxWKxWGqIiLSQbOV+Efq24ySr6kfSfPeyaxDYtWsXvb29HDx4kLa2NhzHIZvNMjw8jOM4+QuN0hyIGINIG8l01ol+1VTsXQjYiwctFovFUkeYYwQvBt4AnB7UD09NTXHs2DEcx6G7u5uenh7XL8CLgK8qpSZqlog6xRoELBaLxZIK5t3Ii0i2ep9helIaZ7X7gVp35rPtdUcikkEbBZLsQmhFX+ZULE+8+WbvQrBYLBZLqohIG/BS4LXAH4B3OY7z44T98OFsNvtHYA3wfuCLSqnxigg8C7EGAYvFYrHMIGISGTXZb0XfkJ9kJdpOIusQEWlk5r0LxQw9GZLl/QN2QGaxWCyWIESkHfgn4FXALuDdSqmbywzzEuBtwPnAB4ErlVJjZYo667EGAYvFYpnj+LaZx1297wSOkeys+jG7zfzUJeT4RzGDknv8I+7dDqke/7BYLBZLfSEiHcArgVcAvwDeo5S6LeU4NqMNA1uADwOfUUqdSDOO2YQ1CFgsFsssI+IiuqjJ/gTJzt3bi+gsFcVzQWSSXQgdTF8QGWcXwhDaUGUHOxaLxVLHiMgi4NXAy4AfAu9VSu2tcJwbgbcCO4CPAp9SSh2vZJz1iDUIWCwWSw0RkQamt2bHXb2fT/zJ0BD2VXWWOYKpL8XuQ/DXo6hXSAbWI7uF1GKxWKqDiCxB3w/wIuA7wPuVUv1VluFc4C3AI4CPA59QSg1XU4ZaYg0CFovFkhLm3P1pxJ+oLEavkB4mxmV6TE9YRuyKp8USD/OKKveyy7iXXk6SbBfCA0qpk1VLlMViscxyRGQZ8HrgecD/Az6glDpQY5nWAW8GHgd8GviYUuqBWspUDaxBwGKxWAIw25m9Z6LjTCIWAidINpEYtmeiLZb6wdT9VpIdy1kIjBBzBwLTdd/euWGxWE4pRGQl+tWBzwK+AnxIKfXX2kpViIicBbwJeDJwJfBhpdTfaitV5bAGAYvFckpgbk1Pss14sfGa5JV4h2v9SjyLxVJ9PLuDogyH/t8WULg7KM4rHu3uIIvFMisRkV70JPupwBfQk+yBmgpVBBHpAd4IPAP4IvAfSqn7aitV+liDgMVimXWIyDxmniMutoLfQuG2+6IreEqp0aolymKxnFKIyHwKX+0Yx5gwj2S7EIbsqx0tFkutEZF+YBnwEeCjSqmhGouUCBFZgT7e8DLgOqXUpTUWKVWsQcBisdSUkJvGi62sdQBHiX9j/hBw1K6sWSyW2Yx5teMikr1hZJz4uxDcnU72GJPFYkkNEXkp8Cel1O9qLUs5iMgjgS6l1FW1liVNrEHAYpmDNDc3D2Sz2aVx3TuOMzg2NtadRtwi0kyywap/wFps0Po39LvIc2nIa7FYLHOV2WhwrWX/ZbFYwrF1M5i5oBdrELBY5iAikh+b7d69m4aGBlauXMnk5CQNDQ1MTOhj7j09Pa57lFISEI67pTXu6/AWAw3Em9R7b+e2r8SzWCyWOiDgSFacowzN6CNZcXchhB7Jiuq/2tra2Lt3L93d3UX7L4vFki5u3dy9ezednZ10dHTkx5V79+4FYP78+UxOTrJ9+/ZTpm569SIi9Pb2Mjk5SWNjI7fffjsiQmNjIxdffLHrvu70Yg0CFsscxDugOnLkCO3t7Zw4cYL29vYw9/nGSUR2AZegb8v3X3oVZ6XIXnplsVgspxCeVzvG3R3WBUyh38zQBTS6r20sp/+yWCyVw62bceqlcX9K1M25oJeGWgtgsVjSw2zXPwNgz549jIyMANDa2kpXVxc33ngjHR0dKKUYHx9nYmKCVatWuX4XKKWOA68GTgd2Y1+LZbFYLJYimIsLD5lPUTyvdT0D2OgaA1yuueYaWltbZ/Rh+/fvz/dhzc3NDA8Pp5oOi8USTbG6CZDNZslmT62Nn0FjblcnjuMAcOzYMRYvXhwVTM2wOwQsllmEGUR1A2f6PmeZvwuB/cA6pRR9fX0MDg7iOA4LFixg3bp15HI5Dhw4wMTEBI7jsG3bNnSwjJpPv+dzl+f/v9qLpiwWi8WSFiJyGnA+sBG4wPzd7O2/urq6OH78OJs3byaXy7Fv3z4Aent76enpcfuvnwB/Mp+bgH22v7JY0sVdCQ+rm0NDQziOw7p161z3dbcSXgn8evGPufv7+2lsbGTbtm2u+7rTizUIWCx1hrlF+gxmTvrPNM+PUThp934OKaWmvFsuY8YJkAGWhMR7Jnpb54GwuJVSx8pItsVisVjmKMaY3cv0pN81ACwBbqFwMr+7hP7ryQHh3uoJ80/AzWYXnMViKYFSxpb1NvGtBHNBL9YgYLFUGRHJoN/FGjbx7kCv8vsn3XcB+5VSIzHiUEopdu3aRW9vLwcPHqStrQ3HcchmswwPD9Pd3Z3IiisiDtATIK+7OyEbILP7OWjfCmCxWCxzH3N07TwKV/3PB45TOEH/EwEr+VH9l3tEYOHChaxZs8Z1P6P/EpF2E6cb/0bgXOA+T9yuLAfsvTcWS3G8E19//ZyamiKTyZDNZvOXftbjxLcSRLVZAwMDOI5DJpNhy5Ytrvu604s1CFgsFUBE2ghf5e8FhgmfPN9X7rn9ar8Cxaz+dBFu5FgK3Ev47oLhUuO2WCwWS/XxHGG7gOlJ90Z033cHhRPvPymlhuKEW6n+S0QagDUU7iTYiH5Dws0UGiputW+/sVgKmQuv16sEc0Ev1iBgsZSAWeU/nfAJ8ALgboInwPuVUidqIHbNMDdQB+0ucHcYnCTcQHKv/8Ipi8VisVQP8wra9RROpDeij5r5V/3/opSaqImgJSAiSyg0aGxEGw7uonAnwZ+UUoM1EtNiqUtE5FXAu5RSC2otS70gIq3AUeBZSqlv1lqeONi3DFgsIYjIAsIn/D3o1/F5t/P/zPN90N7OP425gXqv+RRgVpkWUajfrcAzzP/LROSvhO8uOFyNNFgsFsupgIgsZOYEeT36Dhl3gvxR8/fQbN9ur5S6H/il+QB5I/Y5TBtAHgNsFJEJZhpA7rBH4iynMBmgrra/1wEtQA5orbUgcbEGAcspi4jMI3qVv43CyecdwE+ZXuUfrYHYcw4zmBwyn+v8v4tII7CK6bsKzgS2mL9nicgk4bsLDtjdBRaLxTITs9PtLGZuoe9AX/R3E/A74DPAn0+lnW3GiH2j+QB54/UKpvX0ZODfgdNF5DYKdxPcbI/CWU4RBGsQ8NOC3vnaXGtB4mINApY5jblYKGzCvwo9CfVOIH9C4Sr/rF75mAuYraf7zKcAM0BbSGG+bgaeZv5fLiKHCDcYHLZ5bLFY5jrmXpsNFK76b0DvdLsJPZH9kvn/brvDbSamr7jXfH7oPvfo9gK0Xp8JbBCRIQp3EvwJq1vL3MPuEJhJMzCBNgzMCuwdApZZjbkkaAXhk36H8Mngfntp0NzGnHtdRfjdBUJ4+bhnNp2DtVgsFs8qtv+s/wrgL8x8Dd+Rmgg6xzE7EL27L9z8OA19gaF3N8Gf7Y5Dy2xFRK4BLlVKZWotS70gIi8D/gu4TSl1bq3liYM1CFjqHhHpIHzCvxIYJHxS9ze7AmwJQ0Q6CS9bK4ABwsvWkC1bFoulVvjOuXs/OQpXpm8C9trjU7VHRBYx83WI65i+n+EmpvNt1t/PYJn7iMhz0buL2pVSx2ssTl0gIkuB/wD+Ryn1/VrLEwdrELDUHLPKv5LwVdz5zJyM3cX0Ku54DcS2zHGKlMszgUZmlkfv7gJbLi0WSyqISBczz/qvQbc3BRNJpdRAbaS0lIK5J8d9g4M3j6HwuMFNwO1255qlnjC7kl6klLqy1rJYSscaBCxVwa7EWuYaZufKGRRedmh3rlgslpIxW83XMnNy2MLMyeGt9tjb3MRMspYx0wjUi77g2G8EeqAWcloslrmBNQhYUqHIWe0zgXnMXEW1Z7UtcxJ7t4XFYimGufT2fAonfOeiDeT+7eP3WCOiRURagPOYeUzkGDMvMNynlJqsjaQWi2U2YQ0Cc5Tm5uaBbDa7NK57x3EGx8bGusN+N9bqToJXQ88ElgP2NneLJQYichp6d0Hct194P0XffpF2/bdYTnWS1Cl/fTL9Zw+F58YvAJYCf6Zw1f8WpdSxNGW3zG3M6yN7mbmboIvp8nWT+XsLMKaUyrn+bX9hiYstKzNpbm4eUEotHR+Pf0q0HvViDQJzFBHJzxl2796NiHDy5Ek6OztRStHU1MTRo0fZtm2b6x6llJj/LwbeCNxJ4UQFwlf57fveLZYUMFuGTyd8d0ErhXVvKfBdpdS3PWEopRS7d++ms7OTjo4OJicnaWhoYO/evQB0d3fT0dHB0qVLC+q/xWKZibdONTQ0sHLlynydmpjQG9x6enpct97+9BCwCG3k86/632lXcC2Vwhxrc3egeF812QQ47j03Yf0FwKFDh8hmsziOQ29vr+0vTnFERPX09HDPPffEct/U1EQ2m53TZUVEFIC3f+ju7ubo0aMopRgbG0PbhPW4q6enpy7rkDUIzFG8BoEjR47Q2dmZ/xvi3juAeSPwOvQNmfmJh309kcVSe0RkAYW7C/4Z+I1S6kUeN0opxZEjR2hvb+fEiRO0t7dHhVl3nZPFUk8kqVO+/vQR6HtwbqymvBZLEKb/2KKU+o3nme0vLLFwJ7+7du2itbWVkZERAFpbW+nq6mL//v10dHSglGJ8fJyLL754zpcVr0EgznzL+Kk7vTTUWgBL5bjmmmuKVtjm5mYGBgovJFZKfQD4QA1EtlgsRTCv9bnZfAA+EuRuz549RTvrXC7H0qWxd/9ZLKc0xepUc3Mzo6OFr5NXSv2yFrJaLEGY/uM3/udxxovj4+Nks/Z6Gwvs2LGDvr4+hoaG6OrqYnBwkJUrV7J69WqOHz/O+vXray1i1YlbhxzHqbGkwdgdAnMQETkLfZkMfX19DA4O0tXVxfHjx9m8eTO5XI6BgQFGRkZYtmwZa9eudbeztCmlTtRYfIvFkhARaQU2ARcD24CneOu/4zgsWLCAdevWkc1mOXjwIFNTU6xatSq/fQ14KfB79M3lufDYLJZTDxFR1157bWB/2t/fz9TUFD09PfT29tbl6o/FEoa7QyBsvOiW79NPP53Vq1fb8n0K410Nj+l+zpcVr06i6pDjOGzZssX1U3d6sQaBOYCINAM7gceYzwKgO0nemgnBCPA74KfAz9Dvu7UFxGKpI8wFUmuZnvxfbL7fAvwBPan/egn1/0smrBXAHk9Yf1BKHUotARbLLMFc/vn3wIuBC5MMgoGHALtsH2qpZ8wroQ+X0F9kbNk+9fAbBHbt2kVvby8HDx6kra0tvwp+wQUX0NTUVJcT37RJaiQxfupOL9YgMEsRkTXAo9EGgEvRFxT91Hz+BEwqpWZUVsdxyGazZLNZMplMgbUKOA14GNOGhRzaMPBT9Bnlkeqm0mKxiMgi9MTfnfxvBY5gJuvm703uBVHGj4qq/8PDwwDs3LnTde8989xh4nDjuxg44Yvvj0qpsUqn3WKpNuaNAA9CGwGeBPwCuBL4xdVXXz2jPg0PD9PW1saJEyfYunWrGwbArejL2z4PfEkpNViD5FgsgYhIL/Bq4B+AzrD+wu0rstlsQX8BXI++Z+p/7Y6yuY+ILAHeDrw86aWC4+PjC+by/MFrEAiqQ95j2UFjrnrBGgRmCebds5cxPVlvYXqy/iv/hX/lvhrEDIrO9cS3BT0ZcI0Of7HWYYslXUSkEX0rtHf1fwl68OVdsb8/Kpw0Xw1k2oKzfDKdA/yFQiPBPtsmWGYrIrIYeA7wIiCDNgJ81a1rSV87mM1ml6Hry4uBp6DPbX8e+IV9s4ClVojIRcDrgUeiy+PHHcfZk7S/yGazLzHhLAc+Cvy3PXI69zBzj1ebz1WO4zwjm80uievfcZxsNps9Avw78IW5aDyyrx20VBQzCF/D9IT8wcCNeHYBVHPwbW6m9e4eUB5ZfmMuqrFYLDExdXwlhRPtjei3euQn/2jjW11NIMwxpQsplL2NQrmvs28msdQz5vjNQ9GT9kcB30dPkvrS7F9FpB14holnCfDfwBeVUgfSisNiCcP0NY9GT+DXAB8DrlRKHUsh7EvQb6XaAXwW+ITdDTP7Ma8/fg7wTnSf/ial1L4Sw9oMfAj9iuQ3Aj+a64sHIrIL6AZWKaWaay1PHKxBoI4wlriHMD3pdijcBTBcO+mmMZ3L2UzLuQ24jmlZb53rld1iSYqItAGbmZ5Ab0OvRHpX2W+YrcY1EXFXRN20bQb+ik6Xm8Zb5uIKgWV2ISLLgecDLwSOoXcDXFWNPlZELkDvQngmuk5ciR4gn6x03JZTC7Pj7O/RE/Yceov/NytR1swx1tegDV/fBj6ilLo97XgslUdEHomewJ8AXqeU+m0KYQrwOOCDwP3A65VS15cbbr0iItegDQI9SqmmWssTB2sQqCGmgqxj+i6AB6Ev83JX3m+ZDRNrM9F5KNMGggzTxoFfp2GFtlhmE2blcT2F5/BXo+/38K6i3zMb6ngpiEgD+miBm/5twCr0Tqe8EUQp9deaCWk5ZTDl8dHoVfrt6EnLlcCeWtRBswBwBdo4sAb4MvD5UlfhLBYXcw/MS4BXou+y+BB6Uani5VxEuoB/Al6OvqT6Q8DuudrPzSVEZCM6v84A/hV9P0Sq+Wba4RcA7wB2AW9WSt2dZhz1gIj0oXdE9CilGmstTxysQaDKmNeDeSfP85k2APxaKXW0huKVjTFyrGc6fRcDNzCdxj/bjsEy1zCDIO/Ff1uAIQon/3/yXvx3KmJubd9CoZFgnMJdBHuUUqOhgVgsCTCXp70QvSPgXvSRgG/W0yVXIrIebRh4DvBntIz/q5SyL323xEZEVgGvAp4H/Bj4D6XUn2okSwvwXOC1wN/QuxO+V2/H3ywgIiuAd6PH7O8CPlvpHUtmIfG1aKPVl4D3KKUOVzLOaiIiu5k2CMyvtTxxsAaBCnOqT5BNpfceg5hP4TGIWW0AsZx6mG2YF1C4PX4x+uI/d2J7nVLqb7WScbZg2sczKdTlecAdFB6luFMpNVUrOS2zC1NHn4jeDXARcBV69f2WmgpWBJ/cF6LlvlIpdWtNBbPUNeYYyuuAxwJfBD6mlLq3pkIZzFn0J6HvL1gMfAT91g1r9K0xxkD/RvRuks8CH6j2mNwcNXwH+uLV9wOfnAsLJyLyW/Tcr7Pe3iYQhjUIVAAzCXYv4Hs0MI/CXQCn5Bb6kCMSf2RaNzfPZeOIZfZhymwPhZfnnQ/cSeHq/+12wpoOIuKgDS7eXQSnoe8pcfX9h7m0mmBJBxFZx/RK+23oIwGzcqVdRM5Ab619AXAAnZZv2pvcLZDvmx6BnmifA/wn8Ll6uWvKj5H3wWh5LwH+C/iUNZxXHxGZjzYCvBW9QPe2WhuQROQc4APoBYE3o9u6WTumcl9FaFha7M1Q9YA1CKSAaejOYXoVfCt68PpTdGWzl+wFYI5PXEadX6JoOXUwb9PYQuGKtaJwS/sN9bTd+FRARJZSmCdbgAEKdxHcbC9mO/Uwb7y4Ar2qvha9/fQLSqk7aylXWpgzt49Bp+9Sanz3gaW2mF0kT0fvCMigt+L/P6XURE0FS4Ax3L0WeCrwDfQFhHOivtY7InIVeo7SD7yhVkdKwhCRy9Blej56HvDamgpUIiLybPRisCilvlRjcWJhDQIlYl/Dly5FXrP4M+AmO/ixpInZyng2hav/ZwA3Ubj6f68te/WFL+/c/HPzzmskOGjzbu5hVrjOZfq2/uvQk+QfzmWjkIicjj4f/iJgGJ3m/5kNq0+W8jBbqz+P3qG2F335289nc/tmDL3/DLwUOAq8VSn1jdpKNXcxxtNjwCuVUp+utTxhmEuZPwY8Sym1qMbinDJYg0BMjJX+bKa3u29BDzpdI8BfZnPDXG+YC2kuY9pA0IrnzQXAYatvSxI8q8zei/8GKJz83zybVlos05h3vW+m0MAzyczXOtot17McETmBztuPAP+tlDpQY5GqihkwPwxtGHga8F6l1FtqK5WlkojIi4FPAA9SSv2x1vKkidkt+jP0Ytrbay2PxXIqckoZBJqbmwey2ezSuO4dxxkcGxvrFpFLgN8C9wA/QU9K/89uG64eIrKaaePAI4D7lVKnu7+XmrfpS2pJkyT56s1TEelEv/N2EdOryB2Y8+dMX/z3QCXkttQe3/0PrpHAvf/BNRKMo7fbKrDtSDUpR9cicjGwTyk1VDEBZwlmfHKnq4ukegVbjquJbWPiYctxOKdqGarXdDc3Nw+g7wlgfDzefYiO40yNjY3Nq6xkyTilDAIiopRS7N69G8dxGBkZobOzE6UUY2NjiAjbtm3zukcpJWZ76hOA78/mSy7mCsY4sEgp9QfPs4K8zWazLFiwAKUUS5Ys4cCBA3R3d9PT0+O6Z7bc/Hkq481XEeHkyZP5OtvU1MTRo0fzddabpyLyFeAfgM8wPfnba+vvqY2INAEb0QaCS4BnAE9QSv3Q/J7feJS0zFmS4a/bvb29TE5O0tbWxt69e1FK5Z8vXbrU6jom/jKcZKxTK5lPJbzlvqGhgVwulx+ruHkDsHbtWjo7O0/ZvPGX44aGBlauXMnkpH5r4aFDhwrGdMbPKaErv26mpqaYmpqa8/2Ut+5kMhmWL1/O0aNHA9Ns3Fcl3d4LBOPOqesxT05Jg8CRI0fo7OzM/41wX3cZZgnG5u3cJEm++vNUvL2mxRKAv4x4v5ZS5izx8dbt9vZ2Tpw4QXt7e5R7q+sYJC3Dxo/VbZWwY5V4+MuxbSOmOVX7qXqtO16DwK5du2htbWVkRG8gb21tpauri/3799PR0YG7i+Diiy+uuzxpqLUA1WbPnj1FM6qjo4OWlpYaS2pJSpy8zWazLFu2rMaSWpIQJ1+DsMYASzGCysg111xTtEMXEbLZWfcmu7ojqm47jgPA4cOHWb58eS3FnHXEKcNuu9ndPet3Es864ubPqd7GxNFTc3Mz999/P0uWLKmxtNUlqO28+eab6ejoAMBxHIaGhlixYkUNpUyfYn1GNptleHiY3t7emsi3Y8cO+vr6GBoaoquri8HBQVauXMnq1as5fvw469evr4lccTjldghce+21DA4O0tXVxfHjx9m8eTO5XI7+/n4cx2Hx4sWcccYZrvu6s+BYgnEth319fQwODuI4DgsWLGDdunXkcjmGhoYYHh5m2bJlrF271ubtLKFYnZ2ammLVqlWcccYZNk8tZeNvR/xlbt++fQD09vbS09Njy1wZFGuz9+3bh+M4c27ba6UpVob7+/tpbGxk+fLlrFy50vVjdVsliuXPgQMHyOVyLFmyhHXr1p2yeeNdBQ9rIwYGBsjlcqdcG1Gs7XTr+FzTS5x0d3d3s2bNGte9PTKQgFPOIJAkvfWYYZZgbN7OTZLkq81TSymYG66fBDwbeHTSdgR4Pfpiwr9WQr65im2zK0MpJ6WsbquHLffxsOU4nFO1DNVruv0GgV27dtHb28vBgwdpa2tjYmKCqakpstlsXS8mnBJHBkRkDfBB97s/s7zbTJqbm9m6dWsNpbWUQ1jeHjt2jPb2djZu3FhrES0xEZEnuP+H5Ws2m/VfFjlPKTVZM6EtswLzGtmHo40AlwO7ga+iXysb2Ud4V60N64FbRORG4CrgO0qpo1VN0Cwmqm4vXbq0Zls/ZztBeh0eHmZqaoqJiQl27txZaxFPecLyCPC3MacU5iLvPFF6ymazp2xZ9utldHSUTCZDNpvN75yci/jTPTU1xbFjxwB9BGrdunVVlcdxnMFsNrvUnejHoampqcJSJWdOGwREZCHwb+hB34ccx7nEvIs8Fk1NTZMi8nPgdUqpWyolp6V8HMcZTJK3juMMVlIeS+mIyOnAx4ENjuMcMa8QLIrjOCez2ezvROTFSqk/VVZKy2zDvIZwM7o/eAZwN/A14DVKqfsBmpubP5K0HRkbG3uRiPwz+jWXzwY+avqNq4CfKqUmUk7KnMC22ekjImc4jnNSROYn8ec4zt8qJZOlEFvuoxGRTcBnSyzHORF5sFJqd4XEqwtO1TJUr+keGxvrbm5uHrjnnntiyyYidZcnmVoLUAlEpFFEXgXcDjQB5yilPjA2NtatlJK4n/Hx8Rbgx8CvReSzSQqipbqYd43uANz3gRbkJXABMAScoZSSufBO1rmGiGRE5OXATcCtwPljY2ML49bXbDbrAJ8FfikiHxQRezOoBRE5S0T+DbgD+DpwGLhUKXWxUuqTrjEAdDuSpI9w2xGlVFYp9R2l1JOBM4BfAa8BDonIZ0TkUhGZk/1tqbi6Bt4HfD2gzX4lcDWQsW12cUTkqcAfstnsG4F5ccovelHozdlsVnl3ZFkqRzabfRB6nPLYiHx5OnAvsOJUKfcicpqIfBw95v5ENpttStIWA5lsNvss4FsicqWILKptiipHNps9G92f/VOEPh6DLmer50oZMuloQs/tnuzPf3S/+2p//1wt2QLy4DrgV1Fjh3piTg1QRPMk9GTikcBDlFIv8w74kqCUmlBKfRxYB4wAt4rIm0WkOTWhLakgIu3AV4B/DMpvs2L8QeAr/u1oltojIhvQ27b/HtiplPo3pVSiK5aVUlNKqS8AG4AVwJ9F5FHpS2upd0SkS0T+WUR+B/wWWIxevV+rlPp3pdSdlYpbKXVYKfU5pdROYBNwD9pQ1S8i7xGRcyoV92xDRNYDLwZeF/Dzp4EO4JnVlGm2ISItIvI54L3AY5RSH1VKTcXxq5SaVEq9D3gy8HER+YSIOJWU91TG7Fr9CfBOpdRPw9wppb4F/BfwQxFpq5Z8tcCM258G3AY0A+cqpb6sVLILBJTmW8A5QBY9Xn+uxN3DPUsQkUbgf9C7z/4rzJ1S6mfAO4Efx91lOUt4NdAPfN/70JSXfwbeKiL18loaMZ9ZwZy5VNBsM/oIsBC9xf/nFYhjNfB+YAvwJuAbcTteS2URkS8CE0qpl0S4mQf8Gt2QfqBqwllCMca1t6EnBW8FrkyrTonIo9GDqt+jrcZ1t0XLkh5mR8gTgWcBl6JXmr6GttCfrLFsAmw0sv09MGhk+4ZS6lAtZasVRie/BH6klPpYiJtL0IPfs5VSx6oo3qxARM4DvgncCLy8HB2JSAfweWA18HSl1B2pCGkBQESagJ8DNyilggxgfvcCfA5YBjxJKZWrsIhVR0TOAj6FNuC/VCnVl2LYm9GG2OPAy5RSf0kr7FphysTn0Qbup6gY9yWJyEfQO2QfrWb58TURWQX8EdimlLorxM170TuBa25IFpHrgWNKqYfVWpY4zPodAiKyQkS+AvwIPcC6sBLGAACl1D6l1BXolaZXA78TkQdXIi5LfETkKegJwGuj3JnG87nAa0XkwmrIZglHRB4G3AKcBZyvlPpsmgY2YyHfABxEX/r2wrm2WnCqIyINIvJIEfky8Fd0/f4GsEIp9Syl1E9rbQyA/OrVTUqp1wOr0G8mOA+9ivVLs5LVXlspq85TgS7gk2EOlFK/A34GvKNKMs0KzKrqS4D/Q+98+4dyDSZKqWF0nnwa6JuLq6u1wujxSuAB4A1x/JgVz5cDjcDH5lJeiEiTiLwV+AN6kebCNI0BAEqpG4CtwHeAa8zurNl+jPCNwIXAs+IYAwyvRxtFPjMHytBHgU+EGQMM7wEuMePLWpNhFs2zZ+0OAbON6g3APwGfAd6vlDpexfgz6K2M70M3am9USvVXK36LRkS2A98FLldK/T6mn2cD70IfKdlfQfEsAYhIF/BhYCd6VevHVYjzAvSAbBR4iVLq9krHaakMZlBzEXq1/Znos7ZXAd9USg3UUrakmB0yl6ONzJcBP0Ubtn9eD4aMSmGOCF2LbrcjJwKmvbgT+Fel1GeqIV89U42VfN/Og5dVc2w11zBjxfeh6/dDlFKjCf2fBvSh8+M9SbfS1xsi8hC00Wkv8Aql1D1ViHM5ejK5GX3u/meVjjNtROTF6EvSL1YJX3Fr5kvXoPuXt87GMiQiH0Tvrltd7DipOTr+OeAipdTBKogXJscksE8pVd3XHpTIrLFcuIjIPBF5IboxORNtWXxLtTssc175KvQrp24CrhORD5nO2lI9Pgwcj2sMMFwFnA68uTIiWYIwZ11fAfwZfcHjudUwBgAopW4CLkavFvSJyLtFZEU14rakg4icISJvQZ81/Rb6XpfLlFJblVL/OduMAQBKqTGl1LeVUk9E92dXA/+KvozwUyJyyRxY1QniMcDJOKuCSqm/obeJPrniUtU5IvIu9NjnEHpiUJFt/UqpP6OPRp4A9onIGysRzynCa9GLV09IagwAUPoVpo9HL2I8N2XZqoaI9JrdvF9Gt3FPrIYxAEApdUgp9XT0AuKnRORb5gjwrMAYUD8HPCepMQBAKTUCPAE95v3HlMWrFo9DG8rj3C31A6AVbYSrJX8E1tRYhtjMqh0CIvIfwCPQ219eo5S6rsYi5RGRbvQFHk8C9qPPuMwe5c5SRERK0bM7yLZ5VD1E5NfAQ4AtSqk9NZRjJXpXT7NSai5dtjPnEH1T9NPQuwHWoQ0BXwN+P5frroicgV4NeTZ6y/BVwFX2XPepjYh8H20Af3YV4/wOkDMTKktCzOrscqXU3jLDORe4K+aEqK4wd3zdgL7T541mglorWZqBt6O33z+6UkeM08SMV881hrpywlkLHJiNZWg2YuaFF8yWHSmzxiAgIguAY2hr60frdTAoIo9Hb03utZXOYpnGPb9XyipJBWSZD7QppY7UWhZLIWbA9ni0EeAyTpFt9EEEHI84yPRlhPaSTIvFUveYC50fDFxbL2N3EbkUuG62X7RnsaTFrDEIWCwWi2XuYrZw3gScBK5Hr4p/194urxGRBvQOm2ejt39OAm9RSn22poJZLBaLxWKZ1dTkDoHm5uYBEVFxPs3NzbPuXKifJOmdK2kul0rrzOZJ6cxF3SVN02xJVy0oo3zMQ19idqFS6pFKv4vaGgMMSqmcUuqXSqnnou9A+TX6fdt56qFuVkKGuTZmqId8KpXZLHta1EoHta4Hcznvq522Wo056i0PK6GHWqSxubl5wHGcJHHGfUtE1ajJDgERfex79+7ddHR0MDQ0RGdnJ0opzjzzTG677TaWLl1Kb28vIoJSalZfquRNb2dnJx0dHUxOTtLY2Mjtt99Oc3MzSim2bdvmup/1aS4XV2cAu3fvJpfLsWbNGiYndR06dOgQ3d3d9PT0uO4T6cybJw0NDXR3d3P06FGUUoyNjSEiZLNZ1q9fz9KlS22eePDqznEcRkZG8vXX1Z1blo37utedN00iQm9vL5OTk2QyGR544AGOHNEnC5qbm2loaOCiiy6aFemqBV5dNjc3093dHVpvjXurx5Twt2srV65kcnKShoYGJib0zthK697fdnvLQJAccWQQEdXX1xfYVk9MTNDV1cXixYvp6uqaFeXJr6NMJsPy5cvz6WpqauLo0aN1OSbwljGAXC6Xb/+bmpq4//772bFjh9d93cieFmFjOoD+fv2yKcdxWLt2LZ2dnanpwBvv1NQUU1NTBbqvdJnxx5/JZFiwYAFKKXp7exkeHgaS1e16odJjzmLxNTQ0kMvl8vp027bm5ma2bNmSSpxuvH19feRyOYCCsdvExATz5s1jxYoVVcvDsLrU0NDA3r17Wbp0KUePHqW3t5elS5fGksk/njt58uSMMSqQal0REQUQd05dj3WjpgaBI0eO0NnZmf8b4rbulJYUb3rb29s5ceIE7e3hr5yeC2kuF29jGUdvpRoE4pTBUsKfy8xF3SWto8ZP3aerFtj2rnbUg+4r0XaLiDp8+PCca2+AWTcOmovtf1JqVc9qPXaey3lf6TFnsfiqpc8kbWlacRaTJ+2xVy3KqWsQuOGGGxgZ0Xdmtra20tXVxf79++no6KC3t5c77riDhoYGNm3aVHd1o6FWEe/ZsydUaUopjh49SktLS63ES51i6R0fHyeXy9HV1VVjSeuHIJ3deOONBTpraWmhsbExtfC9eSIiDA8P09vbm1aS5gxxyvPExETeojsbuOaaa2htbS3aLnV3d8+ptqkSxK1b3d3dNZZ07hGnbgIVrZtRbffo6CgTExNkMplEMvT398dK12yhWHvjOA4Ahw8frqWYgcSp3yMjI3N6PBOnvxgfHyebTfdu6Sjdu6v27upvJYjbvszGtr3YmLO5uZnDhw+zbNmyVOKL0wa4uy6WL1+eSpwQ3ZYCjI+P09TUlG+DKk0cPWSzWUZGRlixIt7boqPKqavXTCbD4sWLU03Lpk2b6OvrY3BwkJGREUZHR1m/fj25XI777ruPrVu3phpfmtRsh8C1117L4OAgXV1dHD9+nM2bN5PL5RgaGuLYsWMsWbKEdevWzSoLYxiutcotJI7jsGDBAtatW5dPszs4nitpLpdiOrv33nsZHx+nt7eXnp6ekncIROVJNptl+fLlrFy50uaJh2L116s3477udee11oeViYGBAXK5XF1u460nosrHwMAAIyMj9PT05A1tVo/pUaxdq0YZLibDgQMH2LJlCw0NDbFlKFampqamUt1WW2n8OvKn6dChQ3R0dLBmzRrXfd2kKSovDhw4wMTExJyv38Xy78CBA3mDV5pHX4vVrcHBQS666CLXbdXr9r59+3AcZ1b2kXHSlslk2L59u+s+tR0CUePQEydO8KAHPSiVOOOk0x3DVSsP4+ph/vz5nHPOObFk8ofZ39+fb4+8/dDmzZuZP3++PTJgqOmRgZhu605pSUmSXuN+1qe5XCqtM5snpTMXdZc0TcZP3aer2ohIB3BkrpWP2UI91M1KyDDXxgz1kE+lMptlT4ta6aDW9WAu532101arMUe95WEl9FCLNHoNArt27aK3t5eDBw/S1tbG1NQUExMT+V2za9eurcu6UbMjA36FuVtCcrkcra2trF+/vlaiVYywNLtbgnbu3FlbAeuQSussLHz3Y/MknKi88a4SzDZOxbapXETkNOBfgFe6z6Lq1sTERH6lxfg/Tyn15xqIPieph7oZJMPAgL7MuaWlJb+iX054s729mc1pCpLd7ZeBupY9LWqlg6AJx7Fjx3Acp2B3XqWISvdsHzdFpa2xsZELL7yw4nG6E0igYvnpj3N0dJRMJsPExAQrVqzgjDPOSD3OpDK5fUZjYyMTExOJy1VQGhcuXMjAwEB+d3GauLuV49DU1JRq3GlQdYOAiDyuqalJXXbZZbG05jjOUKVlqjSO4wyKSOzDko7jDFZSntlApXVm86Q0ROS8pqamSRGZF9fPbNBd0vLg+qmUPLMFEVkAvAJ4NfBT4BLHca5NWLeOZ7PZX4vI/wH/rpT6S4XEndOISLPjOOMiEnukUYkyXIm21XGcwcsuuyxWmLOhXs7m/mc2y54GItLtOM6EiMS+vMhxnBMiMk8pVdarxpLofrbU7Xqh2mmr1Zij3vKwEnqoRRodxxm85557YscpIvVXN5RSVfkAArwKOARcEtPPC4FB4GHVkrOCaf8mcGXI743A74E31lrWevkAPcBfgSdFuNkO3A9sSCnOIeBdtU57vX6Ay42+nxXT/TnAPuADwLxay58gneuBAaDJfBfgL8DOWstWLx+gFXiDaZ+/DqwvM7w24F9N+foasLbWaZxNH2AhcK3Ji8YibgV4E3B3ufmWQL4DwGfKDOMq4GMBzxuBPwHPq3U+lJCmBmCvf4wDfBd4da3lS5COk8CTay1HFdJ5mRmXvCNunwYsA3YBvwSWVEAmFXdMXSGd/Br4Xa3zJoV0XG76/dA2EVhl2rJnV0iG64HHA4NVSvNTgZ+Y/98PvLPGefBV4G2+Z28FvppC2D8C7qxyenLAY2qp0ySfDFVAROYDnwFegG64fhfHn1LqC8DTgatE5CUVFLHSvBJYjV5Jm4FSagJdMV8lIg+ppmD1iDmH/BPgQ0qp74W5U0pdi96m/CMRSeMKVoHq1InZhGheD3wWeLxS6qo4/pRStwHbgK3A98xq8mzgn9HGu3EApVv2TxJSf08lRKRFRF4D3AVsBh6qlPp7pdTt5YSrlBpRSr0f3U7eDvxWRL4kImeVL/XcRkRWoY0Bf0APVCei3CvN+9CTmqtF5JLKS4mYT2meRZ6Mbkfe7P/NpPe5wIdEJN4V1PXDs4H7gN/4nr8deKOItFZfpJKY032niGRE5E3A/wOer5R6h4q52q+Uug94GHqyt0dELk1RLrdO1VL3ZdXtesDkyX8DT4jqy5RSB4BHAx8WkcemLEMGOBvdljeJSLrX3wfzKODn5v+fm+81QUTORuv2P30/fRx4lPm9HOabTzWZVXWj4o2IiHQCPwNOBx6slLoniX+l1NXApcCrReRjSbYq1wMi8mD0IOYKpVTo+2eUUvcC/4A2fpxeLfnqDbMN7zvAr5RSHyvmXin1/9DGph+nMOGcVZW3GoiIA3wJeAawTSn1hyT+lVIPAI9Er6r8VkSqfzAtASLSDvw9ukx5+QrwUBGp7OHMOkVEHBF5JXrHx3bgkUqppymlbk0zHqXUMaXUu9GGgXuA60Tk8yLSm2Y8cwUR2QDsBj6vlHqdUmoqrl+l1JeB5wHfF5EnVEhEl5LbVjMw/hR6B8BokBul1E3AJ4ArPZOkusYslPwbekWs4AYspdTNwDXAP9VCthKYs32niCwEfoheQd6ilPpF0jCUUjml1JuBlwHfEZHXplRO56N3CFR7ouMlwyzOexE5Hz3mfLZS6rpi7s1CxxOBL4vIg1IUZRUwrJQaBm5D77CsGKb8PZJpg8BvgbNFZFEl443g34CPKqWOeR+a7x8xv5dDLQwCs6puVNQgICJr0FvhbwKeqJQ6Xko4Sql9wCXAucAPzKC97jFnWL6JtijfXcy9UupX6JXIbyc5nzZXMA3U54DjwGsSeH0/cAPwDREp516MOb3KkRQR6UavXLUAO5RSB0sJRyl1Ej0Q+izaKLAjPSlT53nAL5VSf/U+NG3X19DpOGUQkSYReTnaEPBw4HKl1JPNhKViKKWGlVJvB9agt3HuEZHPnKoGmSBE5DLgV8DrlFIfLSUMpdTPgMcCn6nwLrwMpbetnwS+rpTaXcTd+4ClwPNLjKfaPA+4Syl1Tcjv7wBeO0t2Vs2qgW9cRGQr8Ef0kbHLSu0DXZRSP0Lvmns68L9mN2Q51INBYNaOm8wCxU+AVyYx9Cilfo9ewPuuiJyXkjjnAq6B/VbzvZK4tyPfAWB2RF6D7uerioicCzwUbdQN4pPoBZlydF1Vg4DZ8QEwexaxK3UWAZ25g8CLUwxzPvBp4Bagt1KypyTrIuB36EuykvjLAD9ATz5mzbnrFPSVQZ81vw5oLbFs/Az4AkXO0EbEr4Av1loX9fABLkSv0L4DyKQY7iPQ58RfVOs0Bsi2AH3m67Ehv58HTAJn1FrWKuiiEXgJ+rzkj9ErY7WUZzF6wvcAenBweq11VGN9PN30rw9JKbyzgDuBd2JeR5yyvGPAoRL8fczI1RzT/QbgCPC4WudRETlXGZ08uIi7nwHX11reIjIuM33nS2stS4ppEvTRsfupwN0IQBN68nMXcFEZ4VxgdF+z+xvQxuLJWudZCXKfadqWfyojjL8H7gXOSUGeG4B95v9fUuF7BNA7y/b5nn0D89rgKuaDmL4s8v4CMxYdLLV/MvVEAS1VSlejie9L1dRnWTJXSBE/AUbSGqwEFJ5XAhPAy2utwAg5v2QKQ+JJPdBl/F5R63RUUV9vMGleWkYY7SaMz5Xo/whVvnSkHj/AlWaw+rQKhb8ObWy4v9Zp9cnVBuwJm3ygjUa/Bc6stawV1MF89GWud6O3El5ca5l88i0BPgQcRk8Wu2stUw108CvTv55fAd3eid62mrbMCr0dNKm/0WIDxQA/twH/V+t8KiLjNqC/2PgAvQp5Q63lLSKjoA2lP6i1LCmlZynwN/TOgLMqHNfTzbjj2hL9zzN16/M11JcCfl/rfCtR7p+kEM5nMFcNlRnOUzCGTPT9PP9Y4fS/FHi679kFwPurnA8CHKTIRcLoY4R/pXSDwGuA91UxXetNGdtUTX2W8xEjeKqIyAeBO5S+FLAiiMhHgRuVUl+pVBzlYO46yCi9XboU/81AVlUig+oQEWkDliml7iwznFXAqFIq8esqRWQjMKWUuqUcGWY7IvJOtA7fX8E4NqHf6JDqxTyW0jDnZB8PvA1trHm7UqqvtlKFY46zvBF9mdx/o42Ae2srVXUQkdehV3a+V4Gwz0av9P5LyuFeAXy/1P7QUt+IyE708YeyttTXA6Zv+jraGHqkCvE9B71Kva1E/48C/qiU+lu6ksWO/xHAn5RS99ci/lIxF3jvVkUuYY0Rzjz0cZJfpyOZZS5gjkA/TSn1zVrLEpeKGAQsFovFMnsQkUm0lf45SqldtZYnLubtIm8H/hH96jb/be0Wi8VisVgslgisQcBisVhOcURkLXCPMq9anG2IyDnA7SrBLfsWi8VisVgslhg3gzY3Nw+IiEryaW5uHqiG8KXKWKp81dRFtdJUSWqVhmLxOo6jHMdJmo+x3jlcb8yGclSv9deNZza0geWkD0AptXe2GgNAvwrKawyYDeW+FDmrKWsS2bwyNTc3TxZzX0L7GzvN9ZD3achQD+kISVvR/K2HumVkrUsdliJzieOWVNNTz3lfy7Y0SdxBeVipfI0jV6XLVLXbQjc91a4r9Vw34lJ0h4CIKKUUu3fvpqGhge7ubo4ePYpSirGxMUSEXC7HihUr6Onpcf2glKraK2hERPX19dHZ2UlHRweTk5O0tbVx9913c/LkSXp7e7n99ttZuHAhGzZsKFk+VxdAoD6WLFnCgQMHWLp0Kb29va6fVOLK5XKsWbOGyUk9Lz106BDd3d0103kcgvS1cuVKJicnaWhoYGJCH91KOw3+MpvL5ViwYEG+zF5yySUAJNkdU4/6jYM/DzKZDMuXL8+X2aamJo4ePcq2bdtc91VPpze/RISTJ0/S2dlZ0MYsXLiQjo4Ourq6yq5TbrnIZrMF8bjlccOGDXR2dubjCSrH/jKVyWQQEXp7e8uSsRyq1Q7OBqLanra2Nvbu3VsX7WdUOx/URlZTVm99yWQyTExMzKiXQe2G15/jOGSz2XxdcfvIiy++GNdNc3Mzx48fLwg7k8kwb948Fi9eTE9PT6I010Pf6dVBLpcDyKfP3+aGyeAPo7e3t2DsNTExQWtrK6tWrapqm+PVb0z3NWtn6qEsJMVtx/314oILLgBqO27x69NxHEZGRmK1C5Umqs659UUpxfr161m6dGmq8vnHML29vQVlDCCbzZLJZNixYwd+t6effjoqpL8qZ6xcbP7W0tLCxo0bi7bFACtXrmTZsmWJdZbGPKDYmF5EO1+1ahXLly/XF+TpcCLbz6VLl7JkyZKC8V7cdEXp2jsGa2hoYO/e6euN3PJXD22Nn9gGgSNHjtDZ2Zn/W8RP1Q0Chw8fpr29nRMnTtDe3l7MfdmT9Lj6SCuuYmmry8JVozQUK7Nu47Fr1y5aW1sZGRkBoLW1la6uLvbv309HRwe9vb3ccccdNDQ0sGnTprrTbxySltlaGgSqVaeSxlPNel8O1WoHZwOzpf1MKqfxU9WJX9J2I44/d7BWifpUD3mfRptWrXYxKSKiZkvfWQ9lISluO+7P83oYt9TzeKKWcxVv3DHLWIHb0047jUqU01q3xV4ZyklbCX1RxdMVls5668eT0BDH0Z49e0IbH8dxGB4ezlu/tm/fXlGBw+jv7w+VUSlFc3MzAwMD+ZX7UrnmmmsiG2NXHxMTE0xNlXecNUjvN954Yz5NIsLw8DDLli0rK55KUkxfSinGx8fJZrOpxhtVZl127NgBQF9fH4ODg4yMjDA6Osr69evJ5XLcd999bN26NVW5akGQLm6++eYC/QMsX768rmT0lhERYWRkhBUrVpQVT5zy6NarJP4AxsfHGRsbK0u+crnllltKSt9cpFj76Zb7RYsW1VLMRGWy2m19sXo5Pj6eX0FK4q+YG7cfBWhsbExFbn/feeLECZYsWZI47HJkCOr3ovI0jo46OjoYGKju7tPZ1HfGKQvZbLbm7YCXoPGsS611H3dM5zhOxWQoR7bm5maGhoYKdFqtuF2jjr9MxvHv7rZKOlaOakPa2tpixT01NZVfyS+FqDroTVfUGDRue+qmJ46f5uZmhoeHUxv7Fovv6NGjdHR0sHDhwlTiS5vYOwRAN0D9/f35SfW6devI5XJks1nOOussr5+q7xC49tprGRwcpKuri+PHj7N582ZyuRxDQ0NMTEywePFizjjjjLLk8+ticHAQx3FYsGBB6rpw4wqLZ2hoiOHhYVatWsUZZ5xRl9Ymfxr8ebNv3z66u7tZt26d6z5Va22Y7txJZbGy7wuz7vQbh2K6OHDgQP4YwcqVK2u6QyBMxrvuugulFDt37nTdp1Kn/OVxYGCAXC43Y7ujf4tsWDv4wAMPcP7555clYznESV9jYyPt7e2Jt2HPNuKW+0WLFrF69eq62CFQTNZqb8MtpsODBw/S3t7O2WefHbhDwE1TUF1ZsWIFxdyUWp+Kyb1v3z6AstuTcmQ4dOgQ4+PjXHrppaEyJB17VbtcJHBf8x0CQfmQzWY5ePAgp512Guedd17NZS0ms1tea6n7OGM6x3FqemQAwtvSu+66i6amptTlixP3wYMH2bp1K5lMBn/+Xn755RTzf+DAARYvXsyaNWsS7xBww41qi8PydGhoCMdxSh6nF2sLBwYGuOiii/LGklLawmw2y/79+9m+fTvz5s0r2CEQNYfasGFD3qCd1g6BsPj6+/tpbGys6fHcYiQyCMQOtAYGgWo0ktXUxWzqdMOoVRqKxes2PEopdu3aRW9vLwcPHqStrY2JiQna29u5//77WbFiRdlGpFozG8pRvdbfMINAJWUsh9mQ19VituiinstWEtnCDAJF3CeRpaQjA2mHnSDMsmWoh3SExKPC+s6pqSmmpqZYvnx5XZzLr1cdFpEhUOZi45Zq6L6e9VnLtrSEtrLosxhhJDIIJJEnjbiTyFAs/FL0W+l0Bfiv27oRl1hHBoAZDZC7hSSbzdLb21tw6VGt8MvobkUZHh4usFpWIq6pqSmOHTvG8uXLWbNmTcXiqWSaKkVYGkZHR5mYmMhbvqsVL5BfIY1LU1NTRWSsFmG6cD+VyoM0ZHS3DqclYzm68PsdHR2lpaWF4eHhgt0utaRaepwNBOlieHiYyclJTp48WVe6CMs3d7Bfq7Y+TK5MJsPhw4dDdRjkz7+1Pag+TUxMsHDhwvxOlmrLnSZRbc3ExESsI5ZhY6+JiQmWLFlS9TanqakpUd/pOM5gBcWJRVg7AHpgXi/HG7z4ZYbk45ZK6T5Mnx0dHdx///01OzocJZu70FPpeh9V1rzb/b3uovxPTU2RyWQYHh6mp6enpGPPQWXJL0+Qu9HRUTKZTP5o09q1axPHHZUu9xjCkiVL8otvScJw+5SWlhZGR0cD8zZKn+WmKYmM7hGaep6zFTUIOI4zKCJLkwRazQ5ARB7W1NQ0JSJFX6HoUqp81dRF0rjqodP1U6s0FIu3qamJe+65J1GYIlJ3+o3DbChH1ZKx1HjqvQ30xlnveV0NRGSj4ziTIjIvrh/HcY5VUqaIeOu2bCWRzStTHH+VnFTWQz1IQ4Z6SEcQpi+MXS7Gxsa6KyxSZPz1qMNiMgTJnHTckrbuRaTVcZysiMS+HMBxnGMlbbErgVq2pUniDmr7KtUe1rotjitDsfBL0W+1DZezsa2ZgVIq8Qf4D2CgFL9pfQABXgkMAJfF9LMOuB34ODA/RVlGgFeknL7HmbSdHeFmKXAn8PJa5kWRPPo68A3M8ZQAN+uB+4GdFZTj+8DfAT8Gnhjw+0ZTLgQ4BJxRa91VIB9+AfxrwG9nA0NAT63lNPJsAO4BMub7l4F/qWB8fwdMlOh3GHhTrXXmkef5wIGo8gtkgCuB/wOaay1zyukX4IXA34C/T+DvXOAvwH8DLTVOwzuBD5n/Xwx8o8bynG/02R1QjvqAl8UM50ogW8TNH4GfpFQO/hf4RMjvK0zfur0K+ptv4lrv+76uxPCuA35R4zKxBPgr8PCQ3//T6D+wz6+RzBcA9wGtvrzZBzyk1vJFyP0F4DXm/81mvCee318IjFVBjjXALaY/jtVGAmuBW00aqt7XmHp+v2kPDvvbsArH/T7gPeb/ZwPfL+J+BPgnz/flpt1dC+xPWba9wNcDngtwA/B3vmd9wLNSjP/xwE+AUaCtxDC+BLzUlMt7i7U1po9XwAngpRXK87WmbX9EhJsnmbazp1plMckn9qq6DzGfmiAijcDn0AOmS5RSV8fxp5S6A7gYXYh+JiJpXSubqj5E5MHAF9GT17+EuVNKDQKPAt4sIs9IK/4UeRtwFvB8ZWqDH6XU7cDfA98UkdUVkuMi4Eb0gHNTwO+XAL8zMv4OeFCF5KgVzwUWAx/2/2DK10eBz0oSc2rleCZ6EuS+ouP/octHpRCYne2gFxF5JvBu9CD97jB3Rq8vRXdK3xWR2X0WxiAiLeg28zXADqXU1+P6VUrdCmwBHOD3IpLuHsJkPBFtwAT4IfAo099VHbPD4nPAW5RSBXv9TTl6CfBOEYlzRXMz0FhkJ19a9emVwCrgdUE/KqUOoo1nXxeRyr1mQPN44E7Tz6GUOomeVL2oxPBqPfbKoAfjX1FK/SrE2RuAXnQ7Uy+8G3ifUuqE+8DkxduB99ZJ31eAiMxHTyD+xzzaA8xDGzfyzqhweRCRJwC7gf8CnqeUGo3jTym1F9gGtAJ9ItJbMSGD2QpcZ8Z11xtZqsWTmG7Hfww8RERaI9xnKMxHd8y6D1goImleSx9WZh4DNAHfdR8Y3f078LYkO+6KcAZwN7AfOLPEMHYA16L102DCjGI+MMVMPaeCiCxG5/NblFK/DHOnlPoeekH9xyJyWtpylEupA+GKKDUOZkvGb9ATnAdFDX6DUEoNA5ejJ4d/EJFz0xCLlPQhIhvQ1vVnK6X+UMy9UqofeCzwcRF5VBoypIGIPB1tvX6iUiryXWxmYPEO4EciEv3i2ORyLAEWoBugG4ELA5w9CPit+f+3aAPBnEBElgEfBF5gBkBBfBDoRluya4YZlD0TbQRw+TVwhoicFeyr/Ggpve7WhUFARJ6MNuo8ygzCIlFKTQLPQ69KfMMMPGctIrIO+AN6sLw1yogahlJqBHgW8Glgt4g8NV0pi2MGzMvQRknMJPx2oFYXHbwUyAGfD/rRGFI+i14RLsYCYBxoi3BTdn0Ska3AW4CnKaXGw9wppX4KfBX4apLjhiXwIvTuCC+fB55ToqGn1m3Oq4BO4N/CHBi9PwNtLNpQJblCEZEHoXeefTbg52+gy+bjqipUPB4G3KGUOgD5ydm3AG/bVLGxuIjME5F3A58CnqCU+nTYwk4Ypl19Jrqu/b7KY9Rt6H4B87cqF0WIyHp0mboBQCl1BL2z55FR3ijMxwuBPxrD658IHreWLKIvLnfs9XbgnZ7FGJdfoXdYPC2l+M8E+s2n+MUBPkRkJVq/t5nyeA1Q7NKK+egdAqm3n+YIzfeBbyulvhDDy8eAq4H/qbexVzkrY5XsRIMjFbkIXbF+jd7WcryUcJRSk0qp16MtX/9nLKDlkEqjLCJnAD8FXqmU+kVcf0qpm4GnAF8TkZrfWGFk+CS6E4n1gmSl1GeAnwHfSrmSuA2rQhuBLgpwcwlmEG7+zhmDADofrlRK3RTmwBgKXgD8R9IzeClzMTCG7gCBvGzfRg8wK0E5dbdmhlEXEXkM8BngsUqpP8f1p5TKoXdezAe+kqL1v6oYw2Mf8AngOd4VwKQozafRKyUfEJGPV3l1/gnAj43BxuUH5nlVMav+7wD+MWCA6OU9wAUicnmRINvR2zUXREVLGeMKY0z+JvASYygvxr+hdy68qdQ4i8izCj0p+R/vc6XUncBt6N0gSanlYswm4F/Rx3HCjMtAfnX49WiDY0s15AvCTHTeg57ozDAQmbr2VuDdFTYMlcLT0AYAL98GnubZ0VARA5HZPfsT4MHAJqXU70sNy7SrH0On54si8tYq6dpvEKjW2PiJ6CMC3nbze+hdA2H4274L0QtYEL6QVSpB7eyj0Mba7/gde3YJvDWlcUJZBgH07oBrPMapXRQ3mrsGgQwpzl09O6buRbcjRTFyvwptIP90Xe1OKuWcAXAXJZ67LfUDPB19puaKlMPdChxEryokPvOG3g6l0NvRypHjLMq8D4Dpewe2VDNvfDJsQW9HfnwJfueht918hZTueEBPLu8w/zeYvHqo5/cd5lmj+b7YfD+nVjpMMS8+YcqUE9P9+42+UrtfI6G8hwg4a4deEVGVkAu9CqqAZSX4nQT21DB/H4U+I3lxGWE4wC/R2+0ba5WWEuRuQhu79gEXViD8TrTV/w9U6byfKU9v8T17qCmfVbvbAD14+gvw7pjuH4ZeQTo3wo0yn3+IcHM/JZ6HBlrQqy4fS+jvdPTZ8tTv4QH+jB64Bv32xlLGUEbW8WqVBU+869B3uzwtgR8BrkJPLBuqLbOR4SOmXIXGb+S8i4Bz1bX6mHI5YxxiZD0JvMp8fzmQSznuTejt3B9MO9/QZ+N3o49DdVRQf0uN/taa7+eZ7wurkHfK356g76lSwJIQP1PALvO/O059rPl+FTCaonx3o1ez3e9N6N2CL4zwI8Zf2XXEpO256In8YAn+H8AzTkTPe1SROv52Tx/0m5T0OA+9O66PmGNsn/829CLle6mT+1ZKVcRbjWIzVRFSF8RB4IIKhb/cZMx4KQ0gelXzujJlUOjVoXLT8jYT1rxqFSJf/Dng12X4bzfyvz8leZ4OPNLz/d3AaZ7vnZhLvMx3QW+/TlzB6+2DNqB9IIH75Ub362sk7yeBSwOet6FXSlNvNE24uaRho1cWVVQnWmFdPdzEH3qBTYKwWoFjwJ9qkZYS5L0MfaHj/3rrcgXiEfQq5zHgs1VI1xeA033PmtDbmqvS15o4e9AD1NMT+HkAeGPE768C3gwsiHCjgB+UKPPr8Rh2E/r9MGbhJmU9fhp4cshvq4CflxCmAn5arbLgifeHwPES/C0zMl9WbZlN/F9E75Ar5u59wPdqIWOIPO5q7YxxHPAhzKIGekejAhanFO8vTXuX6sKbL45G9MXeIyS4/DVhHPNMHO7lxBn0AknF21H08YjFAfJ8A2gKcN9h8vApvjx2F6nWYi6WTEk+heeCV9P/300RYwl6p81XU4j/rSbOiyjhskLTj1zo+e4Anynip5tpg8ATU9Ljm8qte0wb/v6xUuUxyUeMUIkw2ySeqJT6bmLPJSAi7o3B/1fBOE5HW+IerZTKFnPv87sZOKzibVMMC2Mn+mK7iVLDMOFk0Lfm/rqccMqIfxVwUEVvMy0WxlLgmCpy94DFUi5ma/SZSqm+Evw+BfiuKqURLRMRWYCu5z9IKbwz0BPAxHqoNiLyfPQRlx3V0L2IfBC9g+QfKh3XqYyIPBroU/rccRJ/7pbLjCo8bpEkjHml+q0mRke/VUpV9TWZ5bw6rlqvnTsVEZEe4JlKqfenFN53gF8pfXSqoojIt9Gr4p+sdFz1TjXHEiLyAmCfUuqaSsdVT5i7ljLA/6ahZ3MUqksplewd5jPDOQP4a7lzvzQoySBgsVgsFovFUmvshNNisVgslvKwBgGLxWKxWCwWi8VisVhORYqdKXAcZ6Cpqck9e1H04zjOZLHw4oZlwhuo9jmKMBldPcTRRxKdVSKtaeq5FnmWJM4oXcfJs6R5VYsyWY38qHQ+lxD+ZNrylBpmJWSph3pWTvxpyFDrNFdTR2m1afVWx71hxu0jHcepqR7SyNNSdJnET1wdVTPt9RRHWuHWqg0qpT1IUiaqUX5q1a7GaVProQ0NksHNl2qMSU2bU3ZYabR1SdJUzG0x3TU1NZVU/mdDW5BmvP5P0R0CIqIAirnzuEcpFfoaBXd33+7du8nlcvT29nL06FGUUjQ1NXH06FG2bdsWO7xK4JWxoaGBbDZLZ2cnGzdu1ErTMhULI+9m9+7dNDc3093dzeTkJG1tbezdu5fu7m56enr8flJJa1galFKMjY0xPq7fwLN+/XqWLl0aGbc3rM7OTjo6OpicnMRxHG677TYcx0EpxcUXX5xaOvzy53I5FixYkC8n999/Pzt27PDGB5B3393dzdGjR2fkWVB4F1xwAUHpa2xs5Pbbb8dxHIB8uaxFmfQiIqqvrw8Robe3l8lJffS1v78/n7bu7m5OnDjBRRddFFveYmVmYmICpVSsMhMVPkzn08qVK0PrRFSejY2N0dnZycDAABdeeCHt7e2x5Akryw0NDezduzfv7vzzz6ezszMfptef4zgsW7aswJ9bRnp7e0vSTZRsbW1t3HHHHZw8eZKpqamS9R83fqhemxUnPxzHKUuvaRJVhgEOHToUqqOovm9sbAwRIZvNcv7557Nw4cJ82W9ubub48eOBdXHDhg0sXLiw5DrutpPecAHWrFnDsmXLEtepSy+9dEZ7C5DL5Qrkv+SSS/DqAij43b0W4OKLLyaOztauXRtb3ij5w3Td1NTEqlWrWLZsWT5PgYL2yd9eum5cf34/3va7sbGRvXv3MjWlr97JZDLs2LGjqI46Ojo488wzmT9/ftlpDyoPrn6TlrOwOLx1HHR9cUlax/11UUQ4efJkXkf+8WRYuFFjjbT0XIpeJiYm8u19d3d37LGnJ/zIOlhuf54m/rzM5XKsWbMmtF0NalOjxnVB+ToxMUFHRwcrV64s6OvjyuofC7j99Pj4OM3NzaxZs6agHXfbiMsuu2xGG+lvd4rJ3tLSwtjYWKyyDYTG463jUeUgTjvR3NxMV1dXYFvX0NCQb8vdPI4aXxQb+0X1HxdccEFebn+ZippvBsnsT6c75ky7zsTRbzXmxbENAjfccAMjI/qun9bWVrq6uti/fz8dHR309vZyxx130NDQwKZNm2IZBI4cOUJnZ2f+b4T7mhkE/DK6hVREIvWhlOLCCy/MF8YjR47Q3t7OiRMnaG9vj4o3dYNAGnr2hlWtdCSR39tJRuVZWHje36qdT6UgIurw4cOxZDXuE3V0laqb3k4/jq6j8qxUeUoty9WoA7WoZ0HxQ/XarFqnOSnl6KiUNi3tuliJOu4N0x0AF5M/bvoqpYcw+ePE4cYDJJbN66cW7V+An4qPxypVx/11MWadCjUIVHtMmkQv3nHMrl27aG1tjRx/jo+P5ydg9TzW9sRdytggsk2tRhtaSh2O00amJbvXIFBOWKXUEX+8/nF6lO7K6T/cuN343fjitA9p6KoU6mVe3BDX4aZNm+jr62NwcJCRkRFGR0dZv349uVyO++67j61bt8aOdM+ePZGNmYgwPDxMb29v4gSlxTXXXDOj0XWfQ7Q+jh8/HhpGWFpXrVqVehqK6fno0aNkMhmWLFlSdljj4+Nks9lU8yyu/BCuazecqPCi/AflVT3Q398fKz/cFa24FNOD4zhl6SCpnqPKAOjV44GBgUTpjNv+dHd3J/JXqs6TypbNZlm6dGnJcUQRN3+y2ewM/ZRKNfSaJnF0FNYexvUL8crCyMhIvp2LSxx9t7S00NjYmFgn7v/F4omri6T6LpU4cTQ3N3P//fcX1L2oNE5NTTExMcHExESBLpOUgST1sZJpFxHmz59fchxxynIul2PTpk1lh3vzzTcnbjuKydfc3Mzw8HDq7W7c9t51C7Bjxw76+voYGhqiq6uLwcFBVq5cyerVqzl+/Djr16+PHX49ta1Bst54440Fujhx4gSLFy8u6s8d18VJ/8TEROJ8jdteBMngPitHdndH4vDwMIsWLSpJt962OJvNFh2/xxmLDQ8Ps3z58kA/YWF487i5uZmBgYFY8UWN+aPi87YPQXPNOGNggKGhoaJ6T0LcuprWuCuImh0ZcCfTjuOwYMEC1q1bRy6XY2BggFwuV9Pt2X4Zu7q6OH78OJdffnmBZa9IGASFsXnzZnK5HAcOHGBiYoJly5axdu1ar59UdwiE6fnAgQM0NDSwZcuWonEXC2vfvn04jpNqnsWJs6WlhS1bthTkh9/9zp07C/IsKDx3O15YXg0NDTE8PJzPq3pZpYzK25aWFhYuXMjKlStLWnEJC3twcJBzzz2XpqamkncIhOl5//795HI5du7c6boPzTM3XzZs2JA3CiVZzYxqfyYnJ/MGTv9KhKub/v7+fCfi1c1FF10UW5ZSZHOPg3i21VVkh0CYDHfddRdNTU2p1fViae7v7yeTydDV1VVXdQ/CdRTWHsbxOzAwwKZNm4qW/QMHDpDJZBLnQxx9A2zfvj12uN50eVcyo+qL2+ZG6WJwcNDdcRjaZvT39+M4Tqx+LI78YbIcPHiQrVu35leRvKtJYWkMahNcP2Hp2bdvH93d3axbty6yX3PDv++++9i8eXPZaQ+TZ3h4mGPHjrFo0aKS61+c/qqtrY0NGzYkSkexcIeGhshms7GPDISFc++99zI+Pu7vl1JbFQyLd//+/SxZsoQ1a9YE1qsY4RftPx3HYd26dammqxTi9H0jIyMz8iCqX3bHflF9mVIqcb7GbcfPO++8/HFar7ugeURS2d0xaTHZvfO3KFnPP//8vMEvaodAWBgjIyP59sENwx/vFVdcUbS9dNvZTCYTKfOKFSsix/wuxXR4/vnnR7bpYf379u3byWQyVWsLqlVXY+8QANi1axe9vb0cPHiQtra2vNXiggsuoKmpKVHEk5OTbN68OR/W8PAw2WyW8fFxTp48mSisSuGVccWKFTN+j9JHWBhuOt2zmq4xoBpp8OrZXbkoNyzXmlfOCkXSOLPZLE1NTZx22mkFbt38EBHa2trylryo8NwBMMCll17Krl276Onp4eDBgwwMDOTDaGlpKWuFpBKE6SaTyTA1NcXKlStLCjdIj26H3NDQkLiuR8ntrRO5XI62trZY6XTz5vrrry84W1WKDF7d5XK5yLIcppvR0dG8YaJcwmQbGRlh2bJlBefTK0VUvatEXQ+Kb3h4uMAYUE8ElYP9+/fT0KC71KgyGeTXvavEr9uoOl4OYeE2NjaWnL+7du0KfBZUX4r9Pjo6WtA/hbUZU1NT+XP3aRBWDhsaGrjuuusC89WfhtHR0bxxM2z3Rlh6gBk7sMJ0lM1mU+uTguRx5ZiYmEil/kXVce8237TCzWazgWOApOGICC0tLSXLV2q8uVyOw4cPB/rxjz3d1dlMJsO8efPyRqio8EGXNXeSUQ9E5WVUmxc19gsLc9GiRWXVn7A+IJfLzRgneWUoFs7o6Gio7O7dEqXs6gga+2YyGbLZLHfffXesOh4kT0tLCwMDA4hIYBiun7D0Tk1N5XdFdHd3F7QFUXOOoLDijPkPHTpEJpNheHiYe+65J3BXRFgfnclkcBwntbFeMVnd9GYymfyusUoSa4dAT08P99xzT6wAzYCx6A6B2ALWcIdAiCz09vbG0keSdHrCT3WHQBpx1yLPksQZZTWPY1lPYnX3uK+LVcqY7hNbvtMMt8zwU5Wn1DRWow7Uum1MGn8aMtQ6zUkpR0dptWlRccRwl7q+i+0QiAg3bvypyhvgp6Q8hWR9fFI/9Zj2eoojrXBr1QaV0h60trYWTBiLMVva1kr0y/XQhgbJUM0xaXNz80A2m11ablil5A8Ulr9SdreU8ruI4M5ZK9k+e+SoaluQZrx+iu4QcBxn8J577ol9wEZEBouFJyKxw3McJzK8ShAmo7tNOg5J3HrjTeShSFhp6bkWeZYkzihdu7/FcZNEttiOK0Cl8qPS+VxC+FMiEtsUG0eeUtNYjTpQ67YxafxpyFDrNCelHB2l1aZFxRHHXdr69oYZp731uitGNdrmcvK0FF3Wugz4/czWdi2tcGvVBlWyPTDhp95/VopK9Mv10IYGyVDNMenY2Fh3c3PzQLnlu9T88fpJc/5UTHf33HNPyTqs97YgzXhnoFTydxUCB4DPlOj3TcDNQEeEm53A/cBFpcRRiQ/wPuAgsM33/KnAcWBdhN8NwF+B+ea7A/wNOKsKci8EjgBLPM9+DTyzxPB+4/UL/CPw/SqkQ9Dv4IxVJoycbwZ+EfDbF4G7gJPAEwLK3p+Z3j3zUFNepdZlMCAd7wK+EfD8+cB1QCaFON4D/K0Csj8S2OP5/lLg2zH8/RC4KYX4nwH0efMVeAPw9QRhfBP4S8p6Oc+0DasCfnsisA9orULZ2grsB+aZ7wLcAjysQvF9Gvio79l84A7gMZVObwnyPgK4G2jxPe8yfdfGmOFcAUyE9YfAJSYf5nuePRX4XRptEvAE4MfAHmBrivq5CfgO8DLgBcAY8F3glgg/LwVGi4T7BuCjwH8B/1LB/G0GpoCzE/q7GfheTLdnmrLSaL7/PfDTIn5eB+QAJ+X0PstfpoAmU8Z3pBhPBngAWA58FnhliuEeAtaY73uAnWWEd0eSvqBM2TuMTno8zx4C3E5EHw48HZiIGUczcAJoQY//HluNtCXUgwC/Al4T8NuzgBuBhhjhzJifABcB/UyP6z4PvC4luW8GHmz+/xbwwiLuR/z1HPiRaTN/6W8DjV4GgZXAH4GLy5T3VcAngL8AG0oMYz+wDj2GemgCf5PAo8z/rwf+E/gHAsaxPn9NwDh6zD4v4PeXA19Az3eO+csJ8DVgL3ANcGcCeR8EXA+cm8RfiTpdaPL5Qt/zFqPvh1QyfqUUpR6EEPNJ5knkBegJ5KOVUsNh7pRSu9CDgx+JyOoSZUybRcBR89dLG7qgLojw+3LgSqXUSQClVBY9KX1ZBeT083zgx0qp+z3PPgm8ImlAInIesB490HO5CniwiJxRlpTFcXezxD30tRo9wFkT8FvGfILK8YuBzytTE4Gr0RVySxJhK42IrEGXn9cG/PxldMP5ojSiooS6HoPno+uAyzeAR4hIsStzy5bHrJq8GXivJ58BPmNkCCozFZHFJ9d84EvAm5VSB/y/K6W+jy7T700rzgheAXxKKTVp4lbAx4F/STsiETkX+Du0gSuPaS9fB3xYRBLdd1NJRMQBPgW8QilVsH9XKfU34K3AZ2KuzjWjJ3itIb+/Gfig23cY/hfoBC5LKHoQa4A70YOlNA8Tr0JPaHqYrifF6kuc+rQR+JP5bCxfzFDmow3QSQ8ZJ2kTnoMeCLuXJXwP2CYiy8O9xBpvJEJEmtB171+97aFSahx4G/ABSbo8Hc464JhS6hDwW/SAOw02AUeVUnea799HG1BLpVL9XhAvBX6ilPKeQ70aPd58UoS/JDJuQhuvR9F9yCXJxaw4z0ZPij4e8NvXgSHi9T9Bevl74P95yvfXgWeWKOd0RHrcuxT4vXkUWe5Mn9CMrsdBMrcBjb7+zr0M6iBwA+WPRdej2+bbgbOTehaRLrQR684S5PHmzWbjP04Yy9CT5cNofft5MLBbKXUYuBc4PyTeRrRxIS6b0cbF24FuEelI4Dcp7wb+Ryl1o/ehqbOvBj5pxogVo2oGARF5Anq18VGmM4hEKfW/wDuAn4tI5d6zEJ+F6MK40Pd8AZBlZgUHQETa0Zbcz/l++izwXBFpTllOb9zz0MaIT/h++iGwQkQumukrklcAn/UMYFBKnUBPYl5ehqhxmI9esSlaIYxOl6AHHMtFxP/+LLf8ukYB118ncDnwVfeZUmoKbXlMY3KdCmZw9gngfUqpv/p/NzL/E/CuGBPsYhToKA2Mnh+D7pQBMAbCn6A77kjvlN5uuTwOPQn7qfehUuoYeuXxDTHDSVs3b0QPej4f4eZfgL8TkZ0pxluAaW8vD5DjKuASETkr5Sj/A3iP6cz9/Ai4D22oqxfeCPxZKfWjkN9dvcVpM1rQZXFGPyAiG9ED+f/2PjdGmvcDb4krcARr0caAOwk2niZGRBagB11/QRsGTjWDQNH2yUwMnoM23gL5gd930auhYbQRMd4okZegJ4u7An77OrqMPimluB4E7Db/70YP5NPgCejJmMsPgCeUYchIvd8LwhgX/wX4oPe5mbh+AHhjRBqSjMMvQY+HoA4NAmac8iHgJUqpnP93o4+XAW8SkZ5iwVE4rpuHnvxf5XGzCz3BW095PBH4kWs4R49hLhORMANvOzAKnBYicwd6B4H39y3A9UYH15OOQeAv5lOKEXgLenfnVAnyeNvHLcb/HcBiEfHPrbwsR+8AOoQ2Dvh5MNHtihuvQ3KDwA0mf29C7zRJHTMXewraABvE99CGjldWIn6XUgfW7gprLERkO3qQ9Hil1N64/pRSn0NPNn8mIv4KVG0WoQfr/kJbrIN+NvBrvxFEKXUXujI8LWU5vTwabcS4zhd3Dr1F95/iBmQmcU9DGzL8fAp4fkQjmAZJBmhnAvvNCse95rsX7+DUW46fhd7K9YDP/ZeAK0QkzUFYOTwZbTUOsqQDoJS6Cb2l/X1lxpXGBNzPM9BHOfwTwC+idw4Uk6fkgZoZXL2FmbsDXD6OnnDHeUVDaroRkfPRA8MXhcgFgNHZS4EvVrA8vgT4plLqiC/uUfTkNHa7UQwReTRwFro9moHRxWuBt9dBH4DZsfYKIlaqzEDppcC7RWRJkSBb0EcGgq4xfzPwEbOjzM9VwGoRSf6KjUJcg8Be838arEJv2z1AoUGg2LghchJmJk9nAbehj6+cXcEVE9cAnXRnStyJ5IPRE4M/+p5/Gb1QEBZG5AJEUozx5s3mMwNTlt8EvDelXToPZnpiehfQJCKrUgj3CWgjgMuf0KuBpU74KtHvBfFc9OTqloDfvo+eIIYZf5PIeAnaEAB6NXurmSjXCx9E9znXhzlQSu0DPgJ8qoihx9/ObAfuV0rd5glrEj0+KneXwJPQkzU33CPocf0jQtx3oHd+dPieu21kp/m90/ObO3GGdAwCZ1PGDgGfPNfFlcdT3uYZA9AiYK9pY/6InnyHsYwQg4CIrEDvsHPnlkEGAbdddswnLpvQOxhA7xSIkrEkjHH4k8BbQxZF3HHQK9EGsagdZOVR4lkHRZGzbh63D0Zv9XhEiXGJUdYuYHEpYaTxMWm+D985EvQZuyngWwF+HPPbU0LCfD76TE3Rc1ElypwF3hTy2xIj2yUxw/oD2lIW9vsdBJzXTzEtF5s8uDyG289jztahV98+7fv9/0xYCni6eeYaHJ4REmZ/3DJf4XJ4NrrDuCyG2w60QSiwDMSM76tGL2XfR2DCy5jwZpyzA+ahjzq8IsL/CWCojPg/jD6vGXU28+vAPTHCug7TVpepk2705On5Cfx8GX1+L5V88YR7ummTNoX8fpZpN85LIS73GNaTY7j9JhHnz6vxQa8sHADeENP9x9GT16iy9mdTH17ve/489Nbwtgi/b0Vvvy41PW6b91D06ptKSU8fN2XkESb8t5i/N0fFgd4RqIDTQn7/F6//sHYkpTSsNOG/LaG/B4ATMd19NeB5Bm0gem2IvzEjV8ltui+8G9FHCqPcuPeH/LDMuNy2/wrPs6MUOT8cI9wnm3Dn+Z7/GfhjiWEq4LeVKFueODpNf/fICDdvQPd5M+4LAf7HyBl5lwh695HCcxeE+f6ySqYvgR7eiZ4jtMdw24i+R+fKInn3U8/3oaAyBjzWuG0uUe5LjP8FvudXoY+vBPl5KdNjz3bP81+gJ+jub6/ypefd5v/TzPcLSpR5m5tmtOFflRBGDvhP87/bh+yM4c9Bjy3+Dm3YOen57Xb0rrswv32mjDwA/CpA38c93x9qZGryPPsW+hy+q9+uGPKea9x2mu9fBLIVKP/fRrevRcdy6N2U++K4LUmWEhNwkBgXjTHdAbylTIXNM4Wh6CC9Uh/0RRwPw2fYQF+O9hYCLh9Cry70EXIJGLpDuLZimavPofVE/P4jQgb+AW4/DTwn4veXAx+uoP7nmbL06RhuNwDPNf8/DzjX97t7zkiht3u5ZfXX+Bp3j5+XAG+vVfnzyPFCUxdiXSiGtl7/pIz47gQeSFF+QW+r6wz5/WNEXHiEGQSVEf97gI8XcfNw4NoYYZ0A7khBJy9HDwxjXxLn6awWpVy+Vpo2acbFPZ78+7W/TpUY12ZTlptiuH0McCDNtJYg7xq0kTWWYRptvBsn4gI4YAd6cLTI9/zFwHeKhH8GEYOomDK+w7Stbegz5GnoaS3a2N1g+sb/M3rIRsmL7ivHIn7vwTNRRk+Wllcor59k6leiRQjj55sx3H0R2BLy24cJMXyjVzTfSowBbUx5bybECO5z9ybgNynE9xFvfUCvkD+8zDDX4LuQ1Dx/PCVePIlebRypRNnyxNFt9B/a/gErCLnUmOlFkpVF4hH0RZwNnmdvAs6sZPoS6OEGkl3m+wGgP+L3gvkJeuw6o66hJ6jfD+vrYsixHPhcwPMNwH+E+DkN+Gd8RmX0JFuZNu1l3v4AvY18qef7+yjxUlG0Uftt5v829H1FScN4M7DC8/1dhBhxff7cMcv/AhfgMUih51ah7RB6YfnRpk77L3Z/KJ7FFLSR4j+9dQa9G0uhdxv+a1B9CtHV+1236P42lYsoPXEI+ujGv8V0v9akJdVLZd2Pm9BEmIs0TlN6W3Ixtw8CfqdKiagwnA7gdKXUreWEY5m9iMhD0Bb/o2WGcxHa0vh04MtKqZq+yqyeEZFzAJRnu10tEZEW4FKl1C/qQJatwCGl1MFay2Kx1CtmS+cytIHgHhVyh5DZOr5EKXVD0O/VxGzjfJxS6ocJ/T0KuEYpNVYZySzVwC2zKmILez0gIk9QSv2guMtThyTzk3pBRB6KNgJ8u9ayVApzzOONwBeUvny3mnFfDKxVSn2lmvHONkoyCFgsFovFYrFYLBaLxWKZ3VTj0hSLxWKxWCwWi8VisVgs9UbUeQLHcQYA1dTU5F7EUPB/nI/jOANpnW9w5alk3EFp9qa9HF14ZUqSlqB0JNVFsbhLzddK5YnjOJPFwgrLI198+efu/0lkrUaZq1T5LiG8kstzuekIK5NJymUa8ofJXmLYRctwqeWn1LJSThlL4jfNfqKa7X6acfjD9JbncvVTbl6U03dFpc+4K1pfoup20udplIOkddW0WaF+SpHVq880yklaZbqEcCJ1Wa5uUg57Mqk/x3Emq9Gm+MtDlIzF5E+jvtdDm+oN19vepFk+S9FbVBvr/807Fo1Tz9OqL0nCSUOeYmPuOP1S3HbQPy/z67fSafXqvtTy7/dfi7FQ5JEBEVFKKUQE1537/+7du2lubub48eN0dnailGJsbIyJiQlaW1tZvHgxPT09rvtU3ufqyrN7925yOf2qUjfuqakp5s2bx9jYGN3d3SXHHZTm3bt3s3DhQs455xyAfPovvfTSSF2ICBMTE6xevZply5Z59Sciovr6+hARTp48GekvKB2unK58LS0tjI6OsmDBApRSNDU1cfToUbZt2+b1k4/blbuhoYFsNstll12GV7cNDQ2JwwpKy8TEBE1NTVx00UXMnz8/dp540xfhpiCPGhoauPjii/Gmzf3uvqXG+1t3dzdHjx4t0DvA2WefTXt7e4EfbxwrV65kcnKShoYGJiYmAOjp6SnQS7H0RaXZ1WVvb28+nr179+I4Ds3NzaxcuZLOzs6icfnLSENDA7lcLp+vY2NjtLS0MDY2xrZt22bo01/HospBVLy5XI41a9YwOalf1Xvo0KF8HXXDCMqb3t7eAv3H0F9BGfbK7uZve3s7ixcvpqurK1D+oLrR2dnJxo0bC+Tz6zGTyaCUYtWqVf66ntfD1NQUU1NTifUZktYCHS9cuJCWlpZ8efaHHVb3g+pANptl7dq1M9qeqPbX9SsirFy5kuXLlxekvVj7FJVub7ydnZ10dHQwOTlJW1sbd999NydPniSbzbJ+/XqWLl1aVrsfFMfg4GC+HnZ0dMSOw6+vyy67DCDfHkWVp5aWFoaHh1mzZk1gHxBWTr150dHRwZlnnkljY2NBvejt7aW3txe3/3HbmUwmw8GDB+no6GBoaCgf7vbt28lkMkVlCGpr3fz3p/GCCy4AoK+vb0ZZuuCCC/LyOo7DyMjIjDropiOo7JZSDvxp8eeHiJDJZNiyZYvrPp/GoPrgTUPY2ABm9jV9fX04jsPmzZtnlBN/n3DgwIG8/L29vTPSHKeux2l74rYZGzZsYOHChYjIjLLl7cP8fXRUf+rXtVuempub6e7uztfRvXv35vuMOH282067+vW21THKSkltdNKxg1fvl156aYEOQmQqiMtf37y/ZzIZJiYmZpTJUvqiuOl3HIdsNltSH+APt6+vLz/+LjYnGR8fx3GcgroWli+NjY1ks/otr545RKBbbx76y10ulwuUL6wf8PcH3vbc25YE1amlS5dy9OjRgjbADT9Inqi60dzcTFdXV77/jlOW/Prbv3//jPFbWDhu+++25d42vrm5mU2bNsXqLy+55JKCeZlfv1Fp9rZHALlcLlD3YWOesD4nbEzh5ltnZydHjhzh/PPPp7OzM1YdiNNP+dviRHVYqXBrgf5ZKUDdcMMN6uqrr1bus8OHDxf8DcO4j4wn7qcacXvT7OLGg7G6uM+SyuOVCSgrHUHyxQ0nSO5SdVupPAHUrl278uXu6quvVtdff73av3+/uvrqq9VNN90UmkdB3/15F1dWfxy5XE4dPXq07PSFpTluPHHiSlpGyilTUfHG0VlYmfS2PUFl4MYbb1S///3vVTabLas++mX3h1FG2In8JakfScJOo74m8VuqfEGftOtFteIIaov8/Uup5aKUvPDXrbhpjStDUFsbJqPrJuy3IH+V7P/L6RuSpKFYeG6eBJWTpOUyLX2VEk6UvKWkKW6fUmKai/Yzw8PD6g9/+IPas2dPyW100rGDf6wZNSaKU9+ifo8jT9JPmn2AP1zvmLXUPHfdRuVLOeUuTL6gfiBuW5K0vpQ6xo8jTzGZ4rSRxdr4uHkcVFfi+Iub1nLHS3H72bhj+krV4QaKcM011wCwadMm+vr68s9aW1sZGRkBoLW1la6uLvbv309HRweO4wDkrWdpUixupbRVaHh4uOQ49uzZExiXX4Yk8oyMjORXJV36+/sj/Y2Pj5etCzeMpUuXzkij11/QM29YExMTTE1Nkc1m8yugSeVwLa9x2bFjB6BXTQYHBxkZGWF0dJT169fnrXXF0uHKF5Zur5xTU1P5Mtvd3V2SnsslblyZTLzrP5LWlyR56S8HXoL0fOONN86oEytWrAj14+K2PUFl4Pjx4/nVxqT6W7x4cWzZk+pm1apVifXvXRWLQ1x53BWDJP5cS3Mc3aRRltJKa9I2JmnastksixYtKilMb1rixHf06FEcxyloi5LI69VHUF92yy23xC4HYTL4w/W2tVF55hLUB4alLW6aW1paaGxsDMmRcIqF3dzczMDAQH7lKyqNccM7duxYwbjAqw9Xl3Hr6/z58xOnyW0L/WOTJOE4jsPw8DCZTIapqakZ6fC7j6sbgJaWlkgZvH2K2wcX05fbz7uy+se4Qf3Mfffdx9atWyN1FFdvfpmz2WxBmQrzD3pM1NfXx9DQEF1dXQwODrJy5cqi6Y6jF68OlyxZkjitQVSq3e7v78+HD9HlaXR0lEwmU6DnOOMTtx8r5tYtq0FtrDuXCOoHvPOMqDQUS5873xoZGSnom4LkiTN3i0p33LLkylQsHH87ERR22HwsTCZvWovpzkyyy9K9W3a9aY6r7yRtcDF9+uvw8uXLY4XnpeQjAzA9UXMchwULFrBu3TpyuRwHDhwgk8l4tyGnemTAjberq4vjx4+zefNmcrkcAwMDTE1NFWzrSxp3UJrd+K644gqARLro7++nsbExcOvutddeG5iOe++9FxGJPPrg3Y4VlQ+LFy9mzZo1M+L26tFxHC6//HL8z/zpuPTSS/OTi7Cw/GnZt28fjuOUtC0sqmwG6b+/v5/nPve5Bem44oor8g28m3dR+tqyZQsNDQ358P1+/OkbGhpieHiY3t7eso/IFNPl8PAwQ0NDLFu2jLVr1yY6MhCVrxdffLH3OEds9548CCybYWEMDAwAegAWpme3TLrPY+ovVtvU0NAQ2kaEyb5z586iYR8+fJgNGzbMkCcsP922YcmSJZxxxhmh+ozK27Cw7733XsbHxzn99NNZvXr1jPoalY79+/ezdevWGUd8iuXrvn37ANi5c2fRtO/fv59cLsfOnTuLprtYWoeGhjh27BgrVqzgjDPOKKvdjyqzo6OjbN++PXY++cP09h9+/fjjGxoaYsOGDXnDX9xy6vofHh6msbGRNWvWhPZlcer61NRUaB75y9L27dtntLVh4bsGhqi6VqwO9vf35wf4QXWwlCMDUWXbPTrhhh2VxrA0uOEdPHiQhoaG0DbQq8sk7U6S+jo8PMzw8DBLly4taCPCdBOl94GBgYK0RMW7YsWKyN8HBgY4//zzC/qYsLLi+hkZGWFqaopzzjmnqL68dasaRwai2tn29vbQ8urVu7+8hciU/+7Ppzj919DQENlsNvFYrVj6o+Lct28fbW1tbNq0KbFeg/IujfI5MDBALpcrOEYZ5Xbjxo3Mnz8/tI31hxHUD0SloVhb4s4XvPnmhh8kT1R+ZLNZzjrrrFjyRIUzNDSUX6gJk727uztwzBfWpxTrT4LqSrGy4RqJksjoH09u3rw5cDwcd47mzpX9/qPKflS/snXr1hnztPDaVEjRHQIuu3btKrBiut9FhLa2NhzHYWBggGw2mz8zXikuvfRSdu3aRU9PDwcPHmRgYADHcWhoaGB4eJg77riDdevWpRbf5OQkmzdvLni2a9eugv/DdAEUnMuKk47m5may2Sz79++PtWroynfw4EHa2toYHh4mm82SyWQ4dOhQ3iAQ5S8srEOHDuWt6XfddRerV68uGtaKFSsYHh7Op6ccXN268rS1tTE0NFSwcuDVv1+eYrK6+nJl/d3vfpcf9BdLXzabJZvNcuaZZ+at9GkQFRfA2rVrE4UXVD5d62djY2PgylJYmWpra+OWW26JVb/DwhgZGQktF0Fl0psGNywgrxPXQBIn7oaGhrz/JLL75fDq8vbbbwcIXTkOy093x41rDCiFoLC9u6PC6mtUm9XQ0BBYJoLi9Oq2paUlv+pWLO25XK6gDpeT1snJSRzHKUuPUWkbHh4ml8uVtOrsDTNufAMDA3R0dHD99deH9h1R/t065l9xCGonw8rB8PBwgSE3Cv/YICxOb/hRaSj23B/m1NRUPp/KXdkMy3/Hcbj22mvzxpFiaYwKz23H29vbQ2WIE8ftt99OS0tL3oCdNE1TU1M0NDSEthFxZfCuksWJN87vN910U95oGydM7+6EMFndct3d3R26w87fz7hjn6mpKZYvX554F1eUzLlcjrGxsaL+vWPNMDmD4ty5c2es/ssdC2Sz2cDyXS5hcWazWZYvXx46Pk0jHrdPW7hw4Qz3YfmSpCxPTEzkV7D9bsPCSJqGMBkOHTpEJpNhfHycM888MzTMoHj9YR04cID29vZ8XQqTJ6p/b2tro7+/n0wmM6N+Bcke9Js/3qj0BIUVVFfC0uGWwbBwo9oqd140MTHB3XffXXRMHjXnKIWofsU1pJRCrB0Cvb293HPPPfnncS2pJozUdwhUMu6gHQLe8CB4h0BSmZKkpdgOgTTiTpqWUtLh9VfMneM4Ks42/GLpcL+7ZTiprEFxFPNTanlPW5clhhfbfZgMpcQLwXnZ09NT0PYUo1z5w2QvQzdlyRPhrqSyUk4ZK6HNKimegN+q1u6nGYc/zLCVi1LiKzcv0iibQelz0wbRdTGqPQ6TLc0yFeA2lTbLF3fJ4ZWycu3xl7i++v36nqfaj5Srm3LiDnPvH+NG0dTURDabrVgbHeQ/Tl+Yps6D5ElKpdrtqB0CCeJJ1W1UG+v/zdv2xUlDWvUlrXTHDafYmDtOvxQ3j72/B+k3irR1X2r76/cf8ntFx0KRpmXHcQZFpODweVNTU8EKQzEcxxmM7ThGWH550o7bjSMonU1NTcB0hUuqC69MSdISlI6kuigWd6n5Wqk8EZFBIDLcsDzyPvN+LzWNlS5zXr9pxlVCeFMiEu9ygggZSk1HUJlMYgxIQ/4w2Uus66noM8xdKToup4wl8ZtmP1HNdj/NOPxhevuPcvVTbl6U03eFyeCG6e8nk8hVyvO48hZzm0ab5VJuX+PVZalpTqtMp92PVLIfLiHsxG20GZvECbss/Xv9F+sLi6U7jfqelEq12/4xeiXzPG7YUW1snN+i4kmrviQJJy15koYTNn5PWr6TlI1K6N79v9Q5WtTvFR0LKZX45tBzgFHgwZ5nNwD/AXwqaXilfIAMcBPweM8zAa4Fnl2B+L4C7AOeD/wReI953g2MA18DDptn7wL2AC9JEP6ngH81/78a+HwJMv4OeLT5/1HA7xP4FWAK+JLv+QngZQnCWQvcBzSY728G/isF/T8e+AVwPnBHEbffA272PbsN+B/P93Umva3m72Ux5fgE8A7P9/8GXl+B8vZu4Cu+Z/NMmb+ijHAdYAx4BHBtTD/vB34MfKKMvPuN+f9S4KaY/h4J3AF8xPNsBXAU+GTMMD7k5hfwFuBjCWX/F7dOAB3AMaDd8/tG9I2282KGt9CE0YRuQ1tTLDPfAp5n/r8V2JLA77VG15sTxnkD8CDgo8AbY7i/Hfgq8Koy0/o1t30Friw3vJA47gAuMG3avZjddGWG+W/A+4A+4CHm2QkT1x+AiVLrN/DPwGeA3wCPiOHebQPbzPdHANd48unCEmRYB9wFPBH4iXn2NJMuBbwdOA6cFeJfjLtNnmcPAa43/y8FhoEmz+9fAfZVIP+fBXwTOAj0JPD3KuC479kj3DSY73uAh8UI6x3At4H/Nd+3mnbjJxTpB33hLAMOA4s9z/4B0y6XqJ8fA3+M6fZa4GHAB4B/C/j9R8DTTdritqVvQo85P4wZO0W4fRyQS5C2m4Cdpm5mUipPrwG+6Pn+BUoYO5jy+EmPXncVcX8vvjEYuh89DLSY72cAQ4CTRloDZOgy4a/1PX8ycHPcPI8I/0Lgr8BHgE50u/Y14N4YfjPAgNFBBhgEzohw3wpkgQeAriJh/zNwPfBOz7P70P3lEW+bYH6708jyLqOvbwOjAeFeAPzZtA/vSqCnQeDnwJM8zx4K3A88tYhfQY8dfwD8XcDv7wKGYshwL3CmSefKgHw8DDzX9/wjRt9nmu/jwDOAjwF7CejvTD6NoudW/2KevRE9fhz01sUAvx9Ajxd/Blzu+60ZOAm8N4HeBbgaeIHv+QvM85LHFugxxXtNmWwupx4ppUhkGTW0ADnz1+VMdCd3VgnhlcIT0AOHH7kPlNbOvwNvFZF5Kccn5rME+BvTK9euLprM7xg3RVe38wFr89MT0BUN4PvA45OkQUR6gdXAr82j3wBnikj4waJC2tCDttP8QUOiMvIs4BtKqZz5/nXgaSJS2uHbabagG9bbgNNFpCPCrZtXUc/mo8vPfGKmUUSagWcCX/Q8/gLwQklqeo+OZwXwMnSDlEcpNQm8DviAiDSVGPx6oB894DkvptynA3ejBxGl8Him6+nvgRUisiqGvy505+A9CN2JnlB0lhD3j9D1KklePRXdKaOUGkYPwC73/O4tR3HYBNyolBpHd+gXJpAlFNNWPAxtNAPd6T86QRDd6IFK+GsjZsbZDJwN3IjO10uKuBegB53ukg/7i0gDOm0/No9+iM7n1BCRlWjjzc3oQZpCGwbK5Vy0seZW8z9Mt0vzmNmvJuEc4C/oNvLcIm5hZtndjjZUgC7npRxC3AjcAvzJ/A+FbW8rup9ZEOLf7fO89elJ6D4RpdQguvw81PN7UHufBmvQeX+n+T8uQfI8HW1ccPmmeVaMlSZ+t710xxsNAXFE8Urg60qpIc+zbwCrRWRTgnC8xNK7iMxHt3PXo9uJiwOcnYNuR+4nfttwAbqc3UTxdjR2GTHty1q0sXMIPbYtC9P2PQ/4kufxl4DnlzB28KYlTrqC3DwP+JZSahRAKXU3Wo9PSihLXN6OLn97fc+/h54YP7/M8BehJ3qL0G3HFLotiaPbTejFvLuVUlPAT4HHRrg/HW18OIiun1EsRU98va9ocfOjlZnt4Gnm47ppBpoCdjOci27n47b1iIhjwr4T3Q+7tKMn+v6xf1BaRtAG36A6mqGIvkWkC53mu9ELq/6LqMJk6TRxu+M+Vz9dGMNMQHSrTTx3mv+9/hqIHrOdj+7HbjH/+2XMBsgYxSPQY6uv+J5/BV02HpkgLD9r0UaRu5lOZ8mUYhBwLSTNACLSiVbwjZQx0IuLaUD/Dfh3YwTw8mt0AXla2tEybRA4xHQBbEYPcLwd9FLjJu7tRhehC9hfAJRS/eiOsfhtTtM8DfiOUuqkCeMk8B3i66EDXeGCDAJxO1IBno1eAcTIsR/daCWZnASxBbjOGBpuRDfiYQQ1TGEGgUaPn2I8Gb0i4t2391vz90Ex/MflPcBnlFL3+n9QSv0KvXr38hLD3gDcopT6G7rcnh7Dzwr0CmYctwWYjuxy9KQNk38/pXBSHUYXuh74DQJHiWEQEJE16Mb7j+bRzeh8Pzum7KejB6q/9Dz+NtpI4JLUILAZPTAGPeAsdTDuZwvwV6WUe7vOz0nWyXQDB4hpxDRsAm5VSo2hB/rbigxul6KNOXuB3gTx+LkEOKCUcm8g+jWwRUSSdNDFeBh69XTK9DG/Ns/K5Vz0hNZrEMiYTwOefrUEzjHh3mb+L0aQQeBa83+pBoHz0ZO0e4A2EVnEdHusmF5daw3x7w7m50O+T3kSeuLg8n30DgSXShkEVpOCQcAYw5+M3sHj8i3gKWayHMUq9KDUnXi0oMtIbIOAiLQDL0avpOcxY4SPAa+PE04ARScAhvOBu5VSx9C7YAraCRFpQQ+W+9FlN1b7jDYI3IieyG6MdJmsjKwGDimlTqDr6nkx/UVxEbrMX+t51ocef0TfMjcT7wJGhuJjl4J8Mn3yC4DP+9x9HnhhQlmKIiLr0cavd/p/M23ra4F3ikiYkTAOC9GLB65BQBHfIPA4po3LmP8fF+F+BXqV+yDFx0Tdxp23XxV0vufQ4279UNeJTnR+uQtVp6FXw/23Rrpt/a3Ea+tBtyUH0W2zd0HmNPROmOAbTqfpRU8691NoUMgngeL6vhC9IKLQ4zK/Ia8dvarvLwv+cZ9bpoPGiC5u+72P6fbblXE+0cflN6DHizeb//0yngiQMRCTr+8F3upZKAXy4+G3Ae8tY1FxLXp8vpdk/VQgpe4QOMn0SsaZ6MZ8P9BTgdV5P5ej5f6+/wdT0N4JvC1lOdyGdym6MfDuEDiJruCuLpeiK13cwfUTgO/7jBs/MM/j8gwKVyAw358R0/9p6K3M/kF13E4ftOV/HN1Je/ka2lBQEqaiuDsEMH9nXj/s8cLMch1kEJhC51/cCd0L0TsC8pg8+wIpdaQichF6Ivf+CGevB94kIjOvzS3OeegBJuZvnMHO6cZtYoMAeiB0TCl1p+dZ3BXdxehV68WeZ53oFYU4OwQeD/zIWP3dvEqymvx3wA+UUhOeZ98HHuoZvBRMYGKwCW0IwPxNOhgM41FM7w4AuAa4IM4kWUTa0IOneylcySjGxegBPmhjAhQONPz0ovuI/ZRnELicwp1hJ9CD63Ks7H4ezvRuK4BfmWclYyaGZ6ENet6JhneHgLdfTco5TK8axTUITAHzjWxbmDZwXgtsL2GQcj7wJ1PX3NUVtz1W6IFtlvDBlN9IsRGtk1s9br4HPMGzahZnUlQKa9CDyX0kW3nx9z8PQ2/vd+uIayjfR3Ej00r0oLTDrPC54435xE/zi4FfmlVgP1cCD0+wk9BL3LHBxWiDIcZgOUKhPtehj3zk0IsiRcuuabNWogfCtwOrRCTMyJSXNWZ5LqWPLMbzgC+7fRHk+6Mvmd+S4NV7KTsEHoIe6+3xufsecKGIpL2o9yHgA77dKXmUUjegd7S+oYw4FqF37i6kfIPAL4BLjaEqiNPRE+u/UnxMtBTd3/kNAs2YcYynTC5Ar44/YH7PoCefx5k5WXcNAnei51xxdoz2oOclB5i5QyAoDj+9RPffcdqDi5heoAnbITBCsEHAO+5z29igMaKLd4eX2964MjYyvRhYgBlXt6N1dTPBOwRGKK4vl6eYOL8T8rv7/O9ihpfHlJ01aGNAKgaBUs4sfAFd4X5qvn8VPRF0O/3HJw0zQdzuGeh/iHAj6Mz8RorxfhNdkRTwv+ZvBn1EQaEL5XGmV0L+H6bNLxKu6/65vud/Z543xAjjHzBbpHzP55nnz40RxptNfAryb55YYL6/O6aOBoHvBjxfYsJJfCbV+H+yT67PAycj3J/A3OfgeTaM51ynJ70PM3+fWUSGpxpdNgX8ttKEcX6ZZawJ3Rm8Iobbr5HgDKnH3xTwcfP/fmBPEfcdJm07zd8VCeO7HbjB92yZCeucIn6H0cYl5ZZt9IR+zFseIvwr4C2+Z6+NUy89/l8d8PxvwLfN/w9H77RYGiO8BhOme8/H0+Oko1RZ0Z3WF2P4vcL43wU8kCDOceALnu/HiWhz0VuUx5i+d2FBCel0+5in+55fhe/cdhm6dI2E2z3PzjfPFpUR7gvcsoeefLsTZGXK+r3m/1tLCPvBxm+TN+wYfsbRg7t/9dYLpvulyHbRF9484+cx5vtB9L02/8B03/KA+fvVkDAWmfrk1pHbCWij0Ktr7p0730TvGCk77wPKwBbgv4CpBH7fCGQ934eBrwW4uwoYjgin08hwtvn7NLRBUqHHN/tjyLIcmAQeFOHma+gV8aQ6uo0Ybalph77p08f3PN+/A4yY/7/r/l8kzDf5yqsi4h4B9NZcBTTGCHuvWweNbsbLLEsrTNznBfzm5m1PgvAU2tANekw6WcT9IJ47qdDtdOC9TmhDcuJxRUTcH0L3lzPGTT53q9B9wxNLjOdWk07FdH/2N289DPH3UOO2yff8BHqXZpCfW9Ar5begd74Uy6v/Nn8znmfuuEYBZ5vnT/Q8+ynaaON+f4EnTLdtvsIT3otj6Oinpu69yld3bkUbaQeK+P8Tesz43KB676ljoXduoPubr5j/3bF3o+f3q9EGzyMBehxFG+m7zPdXeXQ5HBDXUfRdK+54swe9s3zU1WuIjO90f0MvkCg8d96gd/CG+veFtdDEFzknRi9SjZJwfIHexef2+z8khTFQKZWvF/ggcK75fi5mgIa+OCW1i7IC4l6Atgq3F3H3DuDKFON1C9GLTSF5jXm+BH0BxSFPxrzaPH9pzLC/gG9wjB6QfDGm/03AR0N++zAxLhdDW9j+EXil7/kY8LuYcvwnsDXguaA71kSTSZ9sb/F8XwW8NsL9DGOMyZuveL67g62nmb8zBmw+/w8GPhfymwD/Q4JOPSScRZjtTzHcPpwinVGIv38Blpn/H4YZeEe4F/SOhPzfhPG9Bnh4QJifBU4r4vfJ6O1ar/I8OxdtLPvnGHF/Et9E3eg41iWX6NWbGXlh6slzzP+fMOXnUTHDfA/TF2424blsqMyy8zFgYYCcReUybc0r0CthT0kQ5+u9ZR69C2hHhPvz0YY1ocglYEXi/TzmMixfuYh9yU+R8AV9EVGD51nGPCv58iv0QObVnvDe4WmH3M8HgEtLCNvBtJGesIsZzN7taQPPwdemorcynp5Qjn/3lO9Hm8+vPOn7Odr4sDrE/07j7kpPGQu6MOptmEkupm9OI+99cbzV6HI5yS7WvcWkod18/zgBxmJTHz5epBy+wfx9BXrL+dnoSdZ4nDSj+8o/ELGwYHT+8xL0k6OIQdm4ezWwxvP96cBDPd+3AE8z/68BXhQjzDPw9AFGP70R7jfgmXwVCftJbh1Ej3Vj531IeJ3o1fcZbYcpX98lwUQAPdYcMP8rilwMadwc9Xz/OmbsHuD2McB/lpNeX3jfIP449vfAG0qMZwd6cv8KdL+q0AZuVcTfcjyXFnue/xMhfSd6h8V29AWfjykS/j+jF1Ve43k2gN5d8FJTN1xDgWPcv9T8rtCT3n/CZ9xFt02N5v9XEW9BYjN64rmAwjHVdvQulccW8f9w4DL07oUZ42/0SvzhImHk6ynagPwu3+8XosctTwjIjyehjwkJ2mjwM5P2c4EnB8T1HPSdWcJ0W77X6PVdmDFcgL/VTF9YLOi+dJ7n9270kd0XxtC5e49BMYNYk3G3tliYAf5cw/haYiz+Fvu4q66WCMzFO+uUUl8P+f0s9K3Bn6uuZJVFRC5AV/IDxdzWC2Zr5YOUUr/xPHs4+gbtCc+zR6O3h10C/EUpdbjqwlpmNWbr6suA/1C2IbWUgIg8BnNRnFLqp1WMtxk9QPsP5dnKXIF4lqIngX8E/qz05ZxhbgVtRLxS6TPnccKP7JurjYj0oAfXn65gHFvRN6H7jwlWDRG5GL3VP3AreL1h6tnPZns7bbb0tyilbhWR7eg3Kh2NcP9c9N1Ht4S5mWuIyMOA3ei3R/2s1vJ4MXOFJqXUbRFu1gA7lVL+ex7qFiPzPKXU7VWIazNwUCk1kNDfGcAjlVKfrYxksx9rELBYLBaLxWKxWCwWi+UUpBKX8VgsFovFYrFYLBaLxWKpd6LOEziOM9DU1KQA5f71foKeRX0cx4m8uMJxnIFyw0sSRpj/pqYm5U+3+8z7iaOHJDoKc5tGGP7fg+RPKx1Gt5NpuY/Si/83x3EC3QS5LaccJylnScN34yiljpSaxrjludS0xZErSZksV8ZS/PvLVlK5Sm0v45a1tPO4lLT4nydNc7nlqZr6TBJ2U1OTchyn4G9S2aPCjuE/lfQWy3fHcfJxFQsvjkze8KPa8Kg8STLeSNouJE1DnOdRY41SZQ3SR9x6UCyNcdqJUtrgUtIdt4ykMZ51dVrCuLXo2Mivt7j1N0l5LEP+kvyUO+73919p1pFi/VbcvjAs38LcePMsTv+ctM4EzWPK0YNX7qTyBeVfHFm9ZTqJfFH9bJLxaJptRSllP434i/WFse4QEBEFaIciKKXYvXs3nZ2ddHR0cPrpp+efNTQ0kMvlWLBgAUopxsbGmJiYoKmpibPPPpv29nY3jNBXU4iI8obX3d3N0aNH8+G5b+i46KKLmD9/fmB43jByuRxr1qxhcnISgEOHDtHd3U1PT4/rNtC/+39fXx+XXnppPv1+3HhcN7t378ZxHJYtW8bk5CQNDQ0sX77cvQAin66VK1fmf5+Y0Mfae3p6CnScy+lXVnZ2drJx48aC5w0NDXk9n3nmmdx2220sXbqU3t7egjCCdHjJJZfMyE9vGsPKgz/csLxetWoVy5YtKwjLlbu3tzcviyu3mx9R4V9wwQWBv23cuDGfD0FyAlx66aUz8iwqbV69e9M2b948VqxYkZfVm/9h+gDYsGEDCxcuLJApl8vNCF9EWL16NcuWLQstm2759Oo1k8kwMTGRD8+vKzf/vWUoSAa3XPjLc5A+xsfHcRyH7u5uent7Q8v+3r17cRwHgIsvvjjQ3apVqwLj9ZdJv9ze9ITpP5PJcNZZZ7F8+XL6+voKyqDffzabnZEnTU1NBWmMqh9h5c+rZzdv3LxbvHgxCxYsCGwLvGXAn+dh7Zorp+vO29a0tbUVlEOvroP0JyIFeeYvB95yFqbXqakpduzYEdkejY+P09zczPr16719RGjZc+telGxjY2O0tLRw5MgR1q9fz9KlSwP1GVV2lFJcdtll9PX1BZZrAMdxWLt2LZ2dnYFh+8urH9ediNDb28vk5CSZTIaDBw+ilGJ8fJxMJsP27dtntDlJ6oI/L8P6Vr9Oo8qYX263Hnvl9OZlc3Mzx48fD21zwuQGOPPMM1myZEmB3uIQd7zh1hcgXy/cZ1NTU0xNTeXlbmpq4ujRo2zbtq0gra77qDGHv09088Gr01wux2WXXRZYVkLSNyMv3DK6dOlSBgcHC8qQVx9x6oGI5OuwK3exPieo7/bX697e3oJ0R41VwsZDrjyO4zAyMlJQz5K000H5EFRe3fx267wbjhtfVB/Y3NzMypUrvW1FqHuAyy67rEBv/rw+efLkjD7ZLTdR/VrQGNrrJ6zNzWazXHjhhfk22h9PUHuybds2v74D66K3HLa0tDA6OpovP/765u2/ktaRoDKeyWRQSs1o+1z9u2XM31960+st//5xS1D+Bc0p/OOLOHOBOHUmqhwF5bXr359u97u3ferr64vURVBb0NfXh4jw4Ac/eEa5C5M1SHdu+P5+LZvNzmg/g+qad9zpn1N4ZYzTdgXpMZPJMDY2Fjj+CCr7rn79Y7a9e/eGpjGqHLjl2tf3FH8Np1KRtxgq7UTl/x4+fFjlcjl19OjRgmfev2EY95HxlRtekJxJ/bufw4cPF6Tf/3HjiYrT/S2OTGHpT6KXYm6D8tP77IYbblBXX321uvrqq9X111+v9u/fr66++upS8zoVuaP04pfZ79afZ7t27ZqRxlLSlmaeRPgJrSNh4ZVahsLKc5K0xS3bXndh8QaV0yTp8cedRp2Kqh833XSTGh4ejlWOg/QQEe+MPA/zV8xd0jwutU5GfY/bbhRzX06dShJHnHyKE3ZU/xE3/HLqQlI3xcpYWD0OGzMExZm0Dga19/46eOONN6rf//73KpvNxh5veONO0m9501pMb1FhF+uzwtJcShkKSn/cuhbmNk47EeSm1PIRJU+cMhLWTpfappSYD7HqmZuWuPW30mOZcvyoMsf9/v4raR2JG7b3uze+sHCixi1B5d/fVvrdBMlTyjiumBxR/v2y+sMMGlMVC9/bnwaVoSS6i9JHnH42Sr9eGaPiiNJjEEF1IE7/kUb8xfpC99NADPbs2ZP/OzIyAkBra2vgs66uLvbv309HRwdKaevK8PBwfuUzTlxR4Y2PjwOwfPnyksMQkfzKZRT9/f0F6Y+KJyxOgGuuuYbW1taiMoWFEzdNLlHxedPjunP/B9i0aRN9fX0MDg4yMjLC6Ogo69evLyoDQDabJZvN5vM6Trrd/CymwzC9+GUOitfLjh07AArSWIqsSf0Uc+vV3+mnnz5D7rjxhv0ex59Xx0nSFrdshuWhtxz661Qcf3Hi7u/vT9R2ufnR0tKSjwvC60cul+O+++6LDDfstxtvvJGOjg4cx2F4eJi2trYZZTdOWouFH6TfUsIrVs68fuLIPjo6ysKFCxkeHk6U1mLuXH1ms1m6u7tL0qe/3IT1b16i2qqkMrirc8XCjtO+xHETp0xEtS/etBWLM64O/O1uVB08fvw4F1xwQaC+4+RBKTIlaYfits1+gtKcRFY3Hj9xx1tJ+o6gPA5yU2q4Uf6i9FWsnU6SlydOnGDx4sWx9SgijIyMsGLFiljxePW2adOm2H7i5ql3nBZX/mw2m1/tTFJ2vLt7wkhaDoMIqyOljE+KfS82dvL+DRrH+OcUQW7i9K/F2vAgeZLUuSD3LkF9Y1T4fj9Bbr1zE78Og8YtQfrwk0SPfhmj5r5x24qRkZHQMUCccMLyIG78/vFJFImPDICeTPX39/Pc5z4XpVS+EjqOw4IFC1i3bh25XI7h4WFGRkbyW4fibuELCi+bzbJ//3527NiRr8BRWzDCZBoZGWFqaoqzzz676JGBa6+9lu3bt8+YcLu48bhuvLrp7e0FYOfOnQU66urq4vjx42zevJlcLsfAwAC5XK5gS5Rfdn8Y/jTde++9+S1a/nzyu+/u7i7IT6/8cY4MBKXRlWNoaIgNGzaQyWRmpMWf7n379rF8+XLWrFlTEH6UzEF6cfMhTM7t27fPyLOwtIXJet999zE5OVlQjr1hRZVXmN7+F+bWLQcbN26koaHBK1PokYEwWVesWBEY1+WXXx6rXASV5yB5+/v7ueSSS5g/f35k2Tx48CCZTIatW7dGlm1/3vm3i/nLnddfWNxDQ0Nks9n8lqsofQSV5wMHDrB582YaGxuL1o+wshSk46g4Dx8+zIYNGwrKQLE8v/fee/NbRqPCj8rjIFncshQnLX69us+uuOKKovk0ODjIRRddFKsu7t+/n8bGxnx5igr3wIEDNDQ0sGXLlkB9Fis77vbHqDrQ0NDAJZdcEppX/rbKSzEZ7r33Xi688EKampoK2pxi/UNQH7N58+ai8UXlt9sObtmyJTLfg44MFGtziumgs7Mzb5T26q0YSY4MJCmvbj83b968GXkSpPuRkRF27tw5o/0IG0ddccUVoWUlIH2hcbvtn+844YwjA1HpbGlpYe3atbH7jmLjjaB0xy0f/rY/KN2u4a+UdrpYH+nq5Pzzzy8Yg/rLQJCfqakpLrzwwoK4o+Jx62JYPxjmp5gs9913Hxs2bKCpqSm2/IcOHWLz5s2J0+w4DuvWrfOmOfLIQFQ7nslk8v24VwYvcepI0LhrYmKCBz3oQTPGjUHfi5XTsO3uYWMbr+xBbvz57e9fw8qNX+645chfl4PaQ7d9Kjaei+qn3HF5HFmD9OKXz6+joHIRR49+Gb3xp9FW+OtAnLFI0Jg+Tj/ljl/DjtcHEWuHgJddu3blOxeXyclJNm/ezMGDB2lra8uvykxMTNDe3p40itDwWlpauO666wrOJiUNI5vNxrJYumEkcePVTVtbG1NTUwXuXHlWrFiRlyeXyxWsAAXJHpWm4eFhTjvtNO6///6CMPyyOI7DwMDM13YGpdH168bjbWiDwr399tvp6Ojg2LFjZDKFL64ISrcrx+HDhwPl8aexmF688vqfhRHkJyyPxsfH8xP1IMLKmuM4BXkblieum6g4ouL0yhoWV5QMruHCDbeYvJOTkzQ2NhbIG6YDILQe+OUK+r+U9Lg6zWazBRMxb9zF/B87dozGxkbmz58fKoubBtePd9dRVDl2f9+5c2f+9/7+fjKZTGQZuPTSS9m1axc9PT0cPHgwH6eIFMjpT9Po6Ci33z79euBieXz77bezcOHCRGnx69V9Fuaura2NQ4cOMTExQTabZe/evaxdu7ZoWhsaGgr0HJZ/w8PDBQbHMMLaVK+OwtxE7TILK+d+ouTPZDL5gXucsMPaWm+bXKwNCktvNpvlxIkToeFEEacvCotzcnIysN/y18HR0VEymUx+h9Xq1asjZQqTr5hMw8PDTE1NsW/fvlC33vZ4ZGRkxu6UsDiD6kxUmqPiHh4ezp+LjeoHo9IJFJS/OH1HVDsRlu5i4YaVtaB0R+lrYmKCxsbG0LIeVyfXXHNNoIEvzI9/fBc33V53Sf2EyTIxMcHvf//7RPJnMhnuueeewHIUpSfXYBaXsLDcO7OC9OEnTh3xht3e3l6w6uofN/q/R5XxKLlKdROn7Lt9aVA7H4U/DG87G9V/R4UR57egOUecuZZXL35ZwupxmDylyhi3rchmszQ0NMSer4aNw8LcRPlzxw9A4Pg1ipJ2CHh+j22t97iPZbEvNbwkYQT5b25uHlBKLR0fH59hpQJ94dfAwADu755wouJIIk9FwvD/HmR16+3t5Z577gn1W0LepOI+Si89PT0zZPa69boJchvkJ46sSfwk1YXHT+Slgkniilsuksob120cuYrtECgl3jC3pfhvbW3Nb0OMIo22wONeiuV53PCT5nGpddJf/yrRbpRTp9LSZ5Kwvf2H2wal1eaUm5dpuPH3k1F1N0l8XrfevjcOjuMMjo2NzZyNT4c5I6+SyOT2l2n3794BX7E0lzNeqkS7EvZbKW1wKW1/2JggiHLHs66foLCK+Ylbz7xjsmJ+kpZHN544YafhJ2zsX0o59Len5Y7tivVbcftCf3mPGm97y2qYm2Jyxk1HsfFUknRHlbMkeoLg3b1xdBcVn78NSCJn3DFoWmP6OGU/jfij6l8BStnXDkbJ4n9FSFDa03rVWKVesRb0e5qvIAvRbVVeO1jsWZzXraT5CrA0wnfjKKWOpPG6mjTLWxK54r7yJQ0ZK5HGSpSzJG1a2nlcSlqSvK6pEuWpmvpMEra3/4j7ajR/+FFhp5GWctwEpa3U18qlkd9xXrMUpM9K9nNJ6kycMlKuTirRrkSVi7TCTaONTfNVYiWMW2O/djCNdFVA/pL8lDvuD3ttXSXKQxL9R41bosbbcdwkTU/cV/mVW+7KrZtB7Vspeomqx1FtaJLxaJptRSllvxpzb/dT1MEMD7APuBUYAL4E3OX57X+AZwFZoClp2CHx3QN8rkS/Dwd+Z/5/OfClEsNxgHHgT8CFwA+Bm4A9wG3AMaALeAA4AQjwR+DHAWG9A3g/+rjGMNAVEe9pJt4P+J4/E7gG+EkM2ecBo8A/AV8McXM/8D5gCvi6efavwN3AoyLC/jKwL4EenwpMJMi7PwLXBPz2c+DxJh/+zvfbceBVnu9rgP3Ai4Avm2dfBPqBd5k86A2I41bgw8BHEqTv08BXgK/EcPswYAw4s4y60QwcBpZ59PvLAHfrTd62eJ6JKbdvD0ujke955v/3AgeBLRHyXAT8xfz/QeDtEW5XAoPAnwN+e4uRtwH4raln3aYuPN7k5+cD/G3k/7N33vF2FNfh/+7T09NVRRUkBEj0ZqpEF9XGuIDjgo1tbGNjwL1BXBLbiZM4xWl2Etspjp24xb0T94JAwsb0DgJEEyBACAkJ6Ul6783vj3PO23PnzuzuvRJO8vu8+Xzu5+7Onjlz+jkze3evBMD+GrmN4or6n1SbO7aB7H+h9vH5CpjnAb9x5z8EXh3B3AJ8p0u9fwa4WI9fktK5g/018MvMtb8D/gm4Rs9XA39TgeuVwLeA9wD/lLg+WfW2v+tbCDyo9vAH2ndoEz0p7CS1w98DflwBdxRwk9r1Y8DuXcp0BjBc5Y/AW1Rf7+gC77uBTwEfB94XXXsKuF3t+0rgDmBTF7gXIznpb0y22t8ChuL5EuMfAl4H/DRzfZ7KZNcKHHPUb/4C+KOEvWxDcu9m1fl/ABsyuAokh85T2cyqsImngJl6vgx4fjf6ruDnX9VP/9j1/YXa1EENx78bmIDkohkNxqyL9HcZ8FyV2WRgmvrVo0heujeBY4rON9XJp3ZuN3534HHVwWeAd9bAnwKMZK69Hvgv4BwSsU1lM6L29++uvw+pn87Axc2Ez/x91HckcLPK/ZOJMbcBDzSQwTBRvQO8BqkVXt9QjqcAV+nxXwEfaTDmDNX5ALARmJqBOwSp5Y7R8z9W39u7AveNwNHAPwK/35CHP0LqwUtS8syMeT/w98CPgTOb2l0G118jNcB3gZfXwO6ntjRF9XwbsAapiz6VgP8R8FJgNrAeGF+Be5XCzNDzjwOP6PF7ld8bgEWJsb8BrnbH65C6YxiJcX8OfA+4UWE2AZ9G6u51SG5eDVwKrFcYi6dT3DwTkVpmEP3Fd0THJL32n8AF2vdhlU9LZXeS0jU/MX46EldWAAdo34e0bzcH90/Al0nUQ8B3gKuIanW9tgFYrsdDwKuVlj2075OqB6sZTAZXIzXYeOXBaouXAj/HrUu1fwQ4EfhT5b0tryFrqm+QiNnAw8Clevwoks+fRmuwyAd+AnxuO2z/s2jsVd7fn4F7H9FaCvH1HwGv7XX+9ge+m7XCfRfQhuMgpGC6D3HUHdV6oRMk0P5Ej38CnFH43+M1b7shRvEAsEDp8fwXwK7AI4ih7eT643YKcFkIYQhYDpxcMe80JFDsFPXvihTZ1a+jl7YHEoBuAg7MwBRIkt7i5pqFBMNZFbhj/dc1k1mTNg8JBG1/T6H6OxJZuF0LLKqh6VlIEXWLHns6piOOPT0xx56Kf6+G9ILYxh36XdcmIQFwUhf443YmcG0I4RE9vxRYVBRF/Jce45Fg6h8o2hnYithFzle9DTexh2cDv9TjX+h5rs1FgmvqJ71TlLYpyKbAeNrllbOjFJ+pZrhGX0lbFMUUxAfuRYrjurYXYoN7VsC8CviKO/+K9vnWjU9QFEU/sjj+jnb9BDi6KIo6P021PYHrKW08F7OsHY4knRv1OG4p+R8A3KmfAyrgcu1A4C7ETp9VAXccsvkbkE2Q4xvg9q0JTbORYiL/yuDOdhhC+0167FsRfaALW0Bkc7t+DnL95j9TU4MAiqKYhsS9ZeTzQhOZ7E+p3/2ja5OQfDiA8BUQH8vh2x0pch6h3HxPtecim1j2EprvIhtjO6LthtQvPrfOQBZqMxqMPw34VQhhC2KHJzUYM5qzNPccgixw70T0anqIbcW35yCL6A0hhE3IDYMzGsxt7WRk8z0AS6muS6A6VixCcmcqP0PJT4xjT2QxdzVwUKZW66fz3VeW428lHSMmIz5R11KybZL3fHs2kvtAFianNxhjsWsrEo9zDx3HNcN0pH5J2qXmtH2QRetvdJ4mbTHV+ku1g6nWQTftUCRe3khnzIybj1E+ho4nijNFUQwAJyD19xok1ydf2lEURR9SIz1KWYN6+8jFXk+XzT8Vsb/Y7guZqiiQGGkvpfHXJ+oHEnULUj+tRjYPU3awFxLP7kJswfNh9LTIx/k9kLWGrX1A1iWbaV+X7IFsGqRq33nI5l9cy/cpbz5PDUS0GK392j8VkcE47Y9z3e7K63zFbzHVr9f6EvzuDdyjn70j+r1u/Fopzq/zkRvYTdZlHU3pfQHw39p1KVLjp9p4YHwUI00HTerXZOt1Q6DNoGHU2fZCktht5IuMXmjsZREPcofuxwAhhHuQ4HloD3j2QBT9ACLsuJCzDYGHkI2DedCZXIqiaCEBdrl2XUZ14t1JaY7fzLgrYrhN/stxf2SRegewfybJ9iEG/xTtGwJrgZkJeGtdLWa6hJ+HBLJ5Ec27I0Xmw8iC7MjEHL4djBRXtwEHFEUxjtKmpiM7gvGGi92huo3O4FDVFiDJt8mGwERkp3NiHWBFOxfZlQUghLAZ2XV+ZQSXKuz3QwLnCuRXFKnm9TUTuRtRZQ+nURZDy4Aji6JI/0cQ7IJs+OxUFEWciKYgAXey0tyPyGmrftdtCNS9ndHjsrYbkvhW6XG2Kb27IkVWckOgKIqJwIuAr7vu7wInFUXhZditDy0BHgwh3Augxf/PkV9OpJolwFTbCym6xhdFMb0BLYch9n0jcKglXNdSdtYWfyrgcs0KzfuB6Upnqh2PLMDQ76bFr7UmtjMHKRBnV8DE7TDKTZQ498RFSre57kAkRt1Oe76dgtwVyvkelAv5+4CZuniImxVh27MhsA0poGxDYIC8jI9EFkTod25D4CWUG2Lo8Ys0tm9v2xWJifGGwHpqNgSKotgdySk3a9cvgVMbzOn9bi4ip9XIJvbBlHfB+hx83M5ECkhr/w28sMHc1k5CNgLQ75Nqbp5YsZ2KLbYhcA8wrSiKeAPN7CqONwcDt+pGz9OkC1vLB75Zjr8FeFaC7p2AqQ1uBqVucFjea7IZBLIx8zM9Xo7Eybo3azeNXeZPlremk65frC1G7kBvRXJV/dvNpJn+rkfob/K242ch8jeb3Z52KBIvb0I2x6qazyV+XZLaODoK+UWrbST+EqlZUs02AR9BahVot9eDKDcEUmsdP/8MJB7PoLR7KGO+LYJ9bWOfqciadgLpmnGe0ria9Hpgb+RX3X6ha3bedEPAr31A7G0j7euS3RGdpXx2HrL5EtNn6xvzrT46c47p1GidgsjAbwj4XLe7zrWRcuPe8kI/pexTGwJ36yeu+VuIjqDcENhE54bArkhNvWssgIbtSOBJXauCrA8PjepFT9Ow0uJvaP3ONwRMQd75QHafHgghDCJFSmrXrJfWbcEsg4piPqKYq133j+lu19zaHohDPKDHqUJuV2SR+rAep+g+Bkl4G/T8Mup/IbCR9C8EVgAzdCOmqtkdujVIUZG6u1UgyWY95d3ymTqmame82wK2anESt12RQGRB0doi5K54QHewo0Qf0/Qs5GfpTyE/idyTUnfTaefZ2t7IzwRXAns1+VWJwuyB2NuuDYrTSciitKdfCGiQOBX4dnTpy8hGgW9WUPoAuC8SvO4BFmSSvi+QZiG/NEnag999BwghPI0UFCdkWLCd7TXITrxvUygD7ngkGFsxZL8QSNlRis9UiwsrkCC6CtkUqAuouyNJ+D5gjm70xe2FtP96A/X7nwIvc3DdxreX0qnzb2l/qiXxq73uhdj4vbT7Ra4dDtwQQngC2TBbGF1Pyb/tFwI6b1M9gRSXt4QQRsjfjQEpoq/U4yvpfUOgiqY5iM02+oWAbhwdQLkhuY8WdtbijfU6+cftIMoNgQPc4mwKcgen6q7oAcAdKte76FzMQzM9+Q2B/aJYaRtvExC+Ruw4E2+OQDZ50e+ODQGV6ZnI5howutn/GHBsBZ1N23xkA8pvCDRdFJ6K3H20v1X5FfkFh29e788Cbtb8drOe+18IdORQ1fsLKe8socfP62KT5GR0QyCE8CCy0Ky6qZP0F9XrocD1ykNq097fKU39mg8SC0vlZRxaBEfjbkF8s8DlE5XNVMQOsxtkTk6xvJrUQYZjJ6Xl1zC6QX8VFb8SUfqOptwQqIpdPgeC1C3r6KxfrB2LbASAxPiBoijqNrvnIouN+0II65GbXJU391R2ByCxaLt+IaCbR5OQPJz6VVXcfIzyMXSAchFnzf96A6o3BKw+WU25IdBHeUff/0IgJR8//wwkfsyi3e79ot/idby+ssX3TnTqH8oNgUdIL0T3ofPOd7zIrtsQ8GsfIpo83HXAbn6TUGU1F8kx8YbAaFx1d/HjuOI3L0YofdkW95br/C8EHqS9jottpI/OvJb8hYDS1aKUeR8Sf1I3alO5o5vWtqmra+lfITe24xavH7qpX/Oth2ccHtBJAxIon9b+LwBb9PiLNHxWvMF8gYpnZCvGXQo8HvV9RFjuGtedyAL8S4hD/hQJfjcjO0qDSGC4GzGU7yGLz8EIz+24Z6aRgikAJ2Tm/Qe9HqL+gDwLE4AX1tD+JPALPy4Bsw5JRIHyLllQPT9egXtpN/JEniUNwNwGsFuBryr8q13/3UjBBOVPf85010fQ5w8p70qd53B+Fnm+8SG9thV9Psjh+D4S8Gzn9tQG9B5FuYMZgBfUwC9VuI5nsRvK8qcknotECpoR41n7ToptBVnM3uhkdHaEZ6b227NZASm6V2To+TDRM6VIMXJ/Bv5WpEgJRM+rIj8JC8gzoWaTf6Lf1yGbBY8lcD5PYU6ukd0oLtf3Q6QI/hIwVDP+r83uFc+5CZjBlG6RZwSDO19B4l0jmXknp+yR8q7ioYkxAViZ6D+O8q7ENuR9IGuBf8zMfbLCD+j5FqJ3kiCLkgCcGM3/UcpEfwryTHbTOBDQ51iVvtQ7Mp6LeycBUhgFKp6tTeDYV8dcXEPLr73+anCeH+k6AG935yPIhuQtyObmui5wm9+eQxkHX6TX3qfn2RyM+N5Nevw08O0EzBtydhXx8G+UOeO57tqd2vd15G7GVv0E4LAMrk/r8asVrohg/gqtM6L+pTR4TrxGpnvqnBZHJjq9bUTfR1Qx/ikvR8pC+8SaccPIRhvIAvIhPf5bHb8XEk+eRArrh6Px7ybxPD8SRz/YgO/TdJ7xru8R5NGH3Jh/1TFTov7Y5lcQvScGWZgFJIY85vo3A9/Q4weQDVU/7uDYrpF8F9B3SOjxx9z1RZQ5JPueCWThFHB5U/u3KC3bGsjxM0TvAEEK+kcqxlwQyetIpWNaAvaLeu37jtctwE8yuIeAf3bnm4Av1vDwKVz+Q+LTD2rGnEO5YbW3Hu9cJ68Mrr8yeVDWUkdWwP+BwizU782U9cNwBBuAD7vzPcy/Eng/RvlLnd9q36eRNc/p5i/II4CpOGU2t487/jOjC4mNm5CbLGc5mGuROPgpvWb9r6CMp+9281yhND1tdhHRsRa5SXOY2RUSr73Mvks+Jj+A1Infp1zrBaXxK3p+oPbZhsez3fhjtO/Tpld37V2Ov+NNP7g8iazjAvLOhYDEv4DY5RBwsZ5vc7T9gV77D+2bpv3/jNQ5NueFet1y13PQOtDRaHWB2eSTSL7OxaGz9Xv/WJYNbD8AF0V9/0HivUJKR0DfeYK8zyIAF8Zy7oqGHokeQRYHn3CCOhR4pXO0i3olKprvfuCJHsb9HvCqqG8O0Qv6GuJ6jhrsHshLmFJviX2BwpxFmbi+GeF5HdFiBSmWd8rMOx95Qc/5Uf9FyO7c26l5eSMSsA7U4/OBBdF1M+RHlb63O9hjqE6i64he3lFDy6XqqB0vP8nQvQfyIq/Jrv/lwPHu/APAdD2eqry81F1/H9ByOJ+FBM+gPL6C6GVRyJ2ps/T43XUyVrh+4D16/C6bswL+EGRhlH1hV834t5F5eQhSSB7lzm0B1u/6zgIWO3o7XmSEFO+/dDZ3IpniVvmJX7JyHPDmDPzJyK8HLqDzJS6vQF5otJPq/x3Iz7T/HPkZZAD+NoHTNtDG1cjOcHkZHYb48G4kFvjR+AUme2STK1W8fZp0obELbiGt9FZuQDjYPuTlQANRf4Ek+ZmJMZeTSBBIMWMvJnw5ZVLv2GhRmIm0v/js1cDhCR8IwF+4vrdTvvztEmSRtLPCPa8Bz29FNw6QHfQlCZjptBd6BRJXa19a6Ma8TmlKvtBLYc5DFmfnN8S5C+3F2ztQf6csdkfozCUdeszg/wDlBs0l6OIMuSN1CYmXOLmx3v9fQqLoptywflcFnosoX2p6MbqI1vMl6me/cbz9EHkZWl8C1zsdrgkkFrPIXfhLEv0nAB9oqu8ML33ICzP7Ir1diMSGxTXjL0FfvOX6Pormp8wY2zQ4T89PA56jx7PVZmxzZNReIhyHAR9K4H4/FS+BdXAziW4UIPXTiyrG2EJnUdQ/D5cHkDj/4ghmnOPnb13/G4E9nZ6fG43rQ154F79I+A8pNwPfAOwTzfV2JI9UvUDONti+HvWfjdxpP6eBHE8G3hj1LaLiBY1Ivvl9d96HvNAv9YK4hUgu39/x+grg4Azu36f9xW/nAsfV8HAI7gWKyC/P6ja0ppu/qBw/mKK/yQd5lPF8d/5BonwXwe9EuWC+Ddk4C2onr4hg/xyYHen84yn8SO39GsQfj9W+xxX3RMrcOQC8NzH+bWp3hX6fj8QWs/t3UN7wGkBix+tVR8HNZbbbooynU908RyHrk7NSdqD2e7DS8V7tuw2p3V+kc9gG+nsS41+oNrw3up5SGl+P1jeIj5k83u3lqdfeiay9Xh/h3knl8g6lbwS54RMoc9kjyM07qxkuodwc+KHiuAR9+STwZmQdcDawr/YdTbmxuoKy/vcv2b5Ead0XXcc6G3m34rWN9zWqk/gm2rsUx7tJ5LcGtv9JolpS6floAvYFyE1hi3sLkDwxEXhbL74XQhCn7aYVRfFyypeRPYAscH9ZPar3ps/lTQsh3FoL/DtqRVEcjyTrIcRRZ4YQ/j2CORF5y+jg/wCJXbWiKF6L3P24u8txhyCbNQ83hJ+DvD302h7IbErT6cDPQ4VhF0VxGJJUv56D+f+p6fPsR4UQLu9y3GHAoyGE1c8MZb21oihOo/2nudY/BVmkLvufoaz7VhTF7wGrQwhXPUP4d0I2BH/TAPY1yN2QFdsx30lI3NtcA/cc5JdL3SWgZ6jpzxxPDSH8ohZ4x815OuVLTYeQX2r0hxB+VjXud9mKojgVuCLIS3B7xTEPKT5bwGdDCBt3FH3/P7S6nKW2+S7kjuE6ZLP5fzx3Ncm1FWOXIIX7T+I4/j/ViqI4CrnBsbYWeKz9r2maS36J1OTzkUX/Do+hRVEcgGwKfqnH8f3IrzX7kEcXBpDNhqUOpkAW+PcDR/c6Vw0de+rcK5C7+T/fEXF+B9C1GPnl6qG2piyK4iDklwn3+5qhKIoTkF9VPd0Ab4Fssv6sKIq9Ed7n9bJu1bXSVdtTI/1vbl1vCIy1sTbWxtpYG2tjbayNtbE21sbaWBtrY+3/fuvlpYJjbayNtbE21sZaW2vy8s2xNtbG2lgba2NtrI21sfa/rFU9T9BqtVa3Wq0AhAkTJox+iJ55TPXVfVqt1up4rm5xGW1Vn27wxbCe5wkTJoRWq9Uxp/U3na9Ofk2Oe8GbojfWZ9UcTWS9vfqx4yo6/DXPRw425rcXmdXZSBP4bn2k1Wql3lPRCL7OHnN2XkdvEx6q5JO7Fs/vz6tsqKl9NaGhCS/bq89c/OxWxk30WMdDTnZVvlRnMznZ98rz9uqqRh+NcPVi86n+VqvVkUt2BO46+XaTF7YHT+yz3cTcFE9NdLg9dYfVG6l5t8fO6q5X5Swvv9hGticuNB1f58fd2GU8dntyUjc22FRH3eSp7ZVjr7Xb9ubkXq7t6DGpj64rVvcyv5eFxZlu4nWdbmL8dThyNYzy2VFrp+ocP1curjelOyWvOK506385++vGh1J8G03OLmpl04SWGL4q9lTFj1ye7sbeevGTJrroZX6VzeqqNX/lIwNFUQRAAN3NnxACy5cvpygKtm3bximnnGIvOmD58uXMmDGD6dOnMzw8zMDAACtWrGBgYIAQAscee6zhJoRQ+LlsnqaPMRjs8uXLabVaDA4OMnXqVEIITJgwgfXr13Pssce20TZp0iQ2bdrUAXfMMce04evv7x+lNW4e35IlS9pksmTJkjYcg4ODzJgxgxACmzdv5rjjjmsbb/NYn6fB4/LHrVaLefPmMTw8TH9/PytWrBjVgeGcO3cuCxcuHO0bGhpi4cKFLFy4cJRe02lqjqGhIfbdd9/ROXbdddfRaxMnTmTDhg1tfG3dupUJEyawxx57MG/evA5eYnxbt24FaKPR5vfj4rkOP/zwSnjjff369Rx22GFtOkvp19MHtMmx1WqxcePGpP5SurO+3XffvUNuORq9/CZOnMjChQuZM2dOh23H+m61WqPy22WXXRrZTX9/P0NDQx19ZueeTo8v9vMcD5MmTeKwww7Lyji2L8Pn7TCOM54OH1e8bFOynzJlCitWrGjjzduk998cT97WzA49zbFcLaaYLADmzJnDvHnzOviqi2lGX8oGi6KojFcef+yDZuM5OlLwM2bMaNPrjBkzOPjggzt0ZDSPjIzQ19c3Ght75dnbW1EUnHDCCZW6WrZsGUVRsHDhQoaHh+nr62PjRnlcfc2aNaPx+MQTT2TcuHFtc/r4tMceezSOu61Wq83G4/jj8aRaXa6L9bFw4cI23HEM9zCxDadinI8JVfQURcGyZcuS/Nl1bw+xbVTF3Di252wwzjVx7M3VAMccc0wbHyGEwuqNVB7x8wMMDQ0l80/K731+iHXhr+f8Mo6BKTmm8G7dupUQAocccgizZs0a1ZXRF8flVP45+eSTk7F2jz326LCNXPzzNhHbfcqnJk6cyNy5c5k/f342lvm+ZcuWZeNSqh6w3BXn8Cp+Yvpy9UeqvtuyZUtHPRznvdie45rQcmOs+yqbSdmj0erxpuSWi1k5/0zhWrZsWUd+XrFCHrOeOnUqTz/9NCeeeGJHrMjZT46fOMZU2VZO96l4FOsqptHbgfHrx6diXl1dE7fc2Kraafny5UybNo1DDz20jY/Zs2dzwAEHZOeM43xVLRHbXyyrlJ3X1Xox7pTsU7JJjYvlkcKTy+eLFy/Oxo/U+LqaFuio1QYHBznggAOYO3dum7ziOJxbs/rcXJVPU/bu53frhPwvOUOofOthEJDQtssQQghr164d/bY+Ox8aGgrr168PVU3HtM1l/ddcc0247LLLwmWXXRauvvrqcN9994XLLrss3HDDDWHdunXhqquuCtdee22Slsw8tXAe1q57nmP+Pe9+XB1NKVn5vhwuf5ySb5Ve4r5Yp03maCLruNXRnOO3aq5u4GOdpfTbRGY5ev15js8mPKVaE9nl4OvsMWfnS5curaS3G39LyTh3rSrONLHJKjnFPpvy3xxPVTLoRZ/2qYpvOyJeefxVMWDp0qUdtFT5kp1bzIptJjdPrzw38Vcvi6a+4nF5nmxcN3G3iq4YT+pTl+vqcOdychVt3drEfffdNyrfFA0xHd3G3JjWpr7Vja9EY0jpuNv8k5qv6fW62BLbSDfxpkpXTWN37A9N4orH4XlqUmfkYlncV+djTXhN2XpdzkzJqE6OTfCl4H189de7zclV/tEkZjXlvZfY2+v8PufU2VY8PoU/p6s6GutqmFRf7rxubJNcWGVDqTnjOF/lf/F3TFOKxhx9MQ05/83Jpkleycm8To45HTQZ0zQue3nl4HMxtI7vuvkdPLlPPw3a5Ze3v5z82muvHb3zMnny5FGYyZMnt/XPmTOH++67j+nTpxOC7G6sW7du9A5ybp5FixaxbNkyHn30UTZu3MimTZs44IADGBoa4pFHHuHoo4/O0hLP2Q1tMb4qeXh8vq+Opm7H++MqPnJ6SfVZf0qGOdqbyNHu0AwODrLLLrs01k/MY9VcKXpz8LHOUnBNZFanvzq92Nx1srDdvJ133rmRvL1Pefg6ncZ91k466aRKmTahKYXb05WSXayjOp3lbMH6r7/++jb7qqOhG5v38qnS55QpU9i4cSPr1q1jr732auOrKr7l8N50001tOk/BpvDneIBS356W3Pw5PIajzv/qeM6N70ZXN998c62/bNmyZfTXSTnbia91G8Ny9plqdbmuTjbWuvGRXJ/XZ0wTwMqVK2vjiM8rqbjXhNYmMt+yZUslrlSMtDvdntZU3ulWnnX5IZWnczqIYyCIjTTl1eSS0lW3sdvzbHT4uNJNnPD9VbzX5Zs6G2xiP9a8rdfRV1VnNak5m9QIKZn5XJyD66Vm60Z/TcbEeknZZavVYuLEiZV01/Hj9ebb9tTfqRxTR6Pn1/tsrK8YX+o87s/NX5ULU7RWzRnH+RQ+z0fO/qpoqsoNnoZUHI5bqk6s4j8l8yZyS+mgjs9u4nIT2BScp6mb2GI4J06cyJo1a5Ky9a3nRwZAjGnlypWcd955bX2PPvoorVaLqVOnsv/++zM0NMS6devYunUrRxxxhOEm7KBHBnJz3n333W0/38rBPfzwwxx++OGjjzUY3Nlnn52cNwVjc9TRtNtuu3XQc/bZZyfHn3jiiR39OT7s5yj+2plnnpnsi3XahHb/c5ccb2vWrOHQQw8dxduNfjy/VbzazxqbwBuvnl8P5+Ub23JT/cU4cnKL5165cuXo4xuGe9WqVRx99NEURdEhuzlz5rBhwwYWL17M0NAQK1euZGBggFmzZrHPPvu04U8dV9mFt+HUz8NSdlonnyrbjmXX5JGBOlvI2aP/mWEVDSm9xPjnzJkz2tdEn3fffTcnnngifX19XT8ykOJpcHCQVatWMTAwwFFHHdUBG8eiFL85uLr5Y1mkbCbWUex/dTynxqd01ST+xf6yZs0aBgcHR38+3jTW1cUws7EqmRmeVKvLdXWyiWN4Ex+J5Wpxr4qeujhiPwdO+XOVDr2e4lhZVUscdNBB9PX11cajBx54gNmzZ7Pvvvt6PkYfGUjlke2JOan8XpUPqnTqbaQuH6xevZqhoaHRR4muuOKKNrhY501it+c5to26OOH1Hdt6Fe/xuLgvx1dVPRDH5rlz52b5qeItVQfFuAcHB0cfg4xtvs4m4jwT675JTk7lr27seHvG5OzK1zUmX+Otbv6YHy+T2EfqdNekfkvVJDEtuRo0pa8UvSn6q8bG9pmKo2YHdfVvLC9rVbVEzv5ysquiL1ffpWSZkk1qXMx/Ck/OPlL1ae6RgSo+7VquRjjkkEPaHlPMwa5cuZKTTjopGwvrdJDCuXr16tFN5bpHBvpzF+ra0qVLWbhwYZvQfN+UKVNotVqsXr2awcFBZs6cOfrcaVPcq1atYsqUKWzatIm+vj62bt3KzjvvzP77798GPzw8zOLFi0fh161bx+DgYJZeT5vdXR0/fnwHvqqWglm6dGnH9SqaquYZHh5O4k3x4XdP/bxVfXGro71q/jvuuGP01wEpZ07hW716dQdMiqZ4rm7gq1os39iWm+qvjs8mPJkdTp8+vUN+Huduu+02SsfIiPx18z777NOBP3VcZRd1LYbL2aBPMqkx8fhuWp0tpHRld4Kb0BDjt7uiAEuWLGHp0qUsWLCgEV2rV69m48aNtFot+vrSf+QSxziglqd169YxMjIyqvsYNoU/RWcdHan5q+ZK0ZKKNfFcW7duZWBgIEmjnzPmpcrPcv5inyp6U7GuCs42uetk5vGkWiyXkZERtm7d2mG/TeJ4nd782KY2kbNL31fXqnRoeqrjxfv1dddd1xh28+bNlfKqo7mbmFNHUxWPVXSk4E1uNneVfKt4svydozslkyawdXZRZZMp2Cq+mtYPvlZKzbc9dVAd7jqcTWwhnruKnqp56/q7sf0q3tatW0er1erYHNqe+avkUkdLPHfVeY6WOvgd3eL84eeN83FTGzK8Fudz+HKtSnZV9DXF17Sl+M+1lH2krtXNl5srlxMGBwd58MEH2+aqi8EeLsdLVf3q69DZs2c34g2QXYfcx94EGqTSDwsWLGh7vsFaqq+uET3LYDhsjqafhvN0Q1Pb+YIFCzreVhnD+L66+erk1+S4F7zWvA67oX07dNwYxtO1I+Bjm03prluam+BIXe9WftsDX6fTnJ17e+jVz6vkk7sWz1tHR7f0NKGhKf7t0afFku2NaTn6Yj3m8AFh0qRJXc3fxGZSY3I09TpnU1nUtW5jTC+4Yjw+lzSVSx3uOptp6sdN6Knjz87NtlJzNaG1qS63IydRlUe2x862Jx94+aXecN207ajY7fubxJUUDj+2G/pSczSxwSo+mvKzI3JON2NyfDWxy15pbaq/7R2Tg+91/lyMakpLnW7sPLfWicek4nCuL1V7+5ogN7YbuuO+3Jx18b2J/VWd566laEjBxDTmaKqau2qOqnFV4+v4rGq95rWmfHeBm9wne8E+rejvAHv9S5v4E//9Qe5vSGpw1P412/b8LUQvf4/T61/MdHPcC95Ufze096jjrvTT5G+DuoHv9m9TepFzU/ge/h6k578drNNpN3+90q0NbM9f0fjjbm2hCqabv+9pah/PlD6f6XjVq0x7+eud3F8c7Yg5t0dudfro9m+FmtDf698FdRvDe9X/jshbTeJIE1q3VzY1ev8f/dvBXuPr9sSFpuOb+mE3sCl+e6mrmtpgrzrakXVQrzVCjv9nwma60fX2jEl9tudvB2P5dFPDNtFN07yWsrmUvnI6rIuX3dYtTWqVqlxR5X9NY3kTeqv4ytFbJc+6ubuRYy5W9WIj3dp2t7roZX6o/9vB2g2B5CCYBwwDa4E/B1YAX3HX+4CNwPHAbT3OcSRwqx5fDjy3wZhTgSuAu4H9K+B+Cfwz8IkafPsAK4FLgRdr3zdinoCfA/cBhwCTgCHgc8DTev0WYGPFPF8B/hH4VtS/DvgDYAR4q/bdAPxAjz8C3Aack8D5LOAR4B+i/uuAH0Z9M4Gngf9Qfm8FHgZeAtwI/HOG7gOVtkkNdXo7cBjwILB3BuYA4C7gR8CZKtOg/IwAUxJjPgWs0uPvATcp7dsSsN9T230PsAH4sMppsV7/NnCLHo8DngJmAb8GTs7QvKvinKfnD6lsNgH9mTFPqO4a+QcwRXX0EuC/G475Y7MPZ0vjlNbvOLiT1a6ucn0vAbYo758D7kX8YTNwisL0A4PA3wAfrKDjt8Aj7vxPVK67AS/X4wP12okqt5/qnCPANsSnb1PYjwGPRXNMRmLOROCvgI9U0HOt2uJTev4t05me/xi4NjP2fiTGnOH6tgCvQvz8aWBqA90sQPxgkAr/AV4DfA24hMiXE7AvBH6iNvxy7dsGnBXBLUJ8yt4h8yPg94DPAm9J4L0G+Emi/+24uAb8teqrD5imx/tGYx5H4sudNbzcprxfFfV/BFirx3uqPbwrMX6q6uL9wN830Mef6uca4NjE9X9HYvyBaotrKnAtVhvbivN/lcsgcBWSG0djjV5fASyrofMjwMf0eBkuLypdXwDuUJ1uyvDyFHBx1PdT4OGo7x4klh6XwHE84jPvd31nAr8CHtDzzcrT5c5HR5B4+2ntew6S3w8C7krMswqJ708Af1IjmzcBX9LjLwEX1endjT0XuBL4qp5/EPHrvwYeA05See4XjTsSyZFPo/6UwP0L4LXAg5nrX1OdjRD5H/AZ4OPAr6L+I1Q3NwGHV/B1jNriZcBzomvzkVwwNzP2aiQe/wvw7ujaVaZnPT8P+DrqmxHsTJ1nLz3/Q5Xtx1S25yMx4fejcW9Bayg9/xSwWuU0FfgiEo8XReP+C1ihxzcD31UbG0rpCMnfjwGnezkDb1AbXgg8SSL+qt18HXgH8C8VevgMcJ873x2JBWckYBcD1yMx/x9d/72UtdknkZx+DjASjX8CyS17JnB/F6l5roj6z1RZfSpD+4+BP0xcuxFYGfXtDqwhkTMysnk2GueBvVXHfe76b4GfZsbeonKYg+S0B1VGj6vNHYPEm89XzH8xEvffr+eHIb5+lOriIcqY+2UiG0fqjf8Efqbnz9W5h5AYeqnCbFRabtX+bcB7gaVILB9Bcsw3FM+/KD/fQ+ryOJ4+jPjQX+r5CO212TDwbUfnbO07WGH3RWrt24BHI55OAH6jc79M+/4byTFDSKzdBOyn3ycpzGuU1jcgtdgwcK5eewqXY3TcR9W27lJ5LFQZXa8wCxTHpSqbTcCd+hlUOf5Y+XkUt6ZTeV1AWTs/CcxQfI8Bfw/8EfCzaNwPldbZwFd1rhHgbXrd1r0jSN6ah9jg9/T6e3Su7BpU4fZC8tt8xF6T+cPJ9WE0XiC2fr/S92fKzyF67QvK+05N/M9/0g+41rd+JaiIPtYWqtCuBfYsiqL+AaDOdiLiJCAFeOcDSJ1tL8RA7kECS67tiQS/PWvw7aO47nb4Yl4BdkEUsgvlhsCAg5sOTCiKYjzpticSWGN6CmA8IuuW6zO8c5DgP4fONpNyMRvjjOmfgSyOZ7hrRcRXqhltOb7KSYtiMuLctyPJ7ogMaCxzm2NizVxFdNxHJ58gPG5G9FTo+Ub9tmZ+sT+y8HwCSUrHkG7mD+OLopiNBKA7EAfet4be/H+CtreDkMB0M7I50qR5+zC9T0eCqud3HmVgsmZ2bK+rLbRvm+tbiAThO8jzicL7B0yNhunavxUp8Py89n4TH1/6KHUTy+1Y4IYQwmak+Du5gh6PD0Q+a2n3ow69FEUxDpHVSqTo8bB9wM5IYM/5i2+7IzJ/CNkYybXDkNhwI3B4Dc4DEF3cgSxcPW2+mQ/1F/Ig6mKkILoGKYLilooZ1jzuqYgup+B8IoMra/caJ/dCNloPLNofcvdjpyFFwU4JNPsjRcbtiFzq2kHoBh1SMHWQpZ/5SJE2tSKv7aEwj9PuUzsjMfkBJBbGchgAJtTQ+RxELuj36e6axbwCkf8Q4k8pXmKbaCExVgBE5rsiRdh8OpvPGdZ2R+L23KIo+un0VYvlPjab7d0J7FIUhceX4quqnY4Ud+j36RWwcZuH+KL9BVK/0mvzxvHQ2u6IPrfRLgvfDkRqmFlFUUzNwPRR5jnf9kLy5V6J/nuRWFRV6+yL6OQuOmN0Nn+rbR+M3EC4is7cNymidU9ksTJQFEXsj3EsiGWbq2NSOi8cribj7HgGsgkxLeYVOBTJqzcDhybiTcrWrR2OxOYbyNc00FmPmD2l/PNZyKLxFtpzvY+dRtMUj1f1NoXOfG5tH2ShF9vCzsgiPpW75pOPA5Po9ImqujTVXgR8HyCEcI/ScbS7XuX7VqPOp4wtNiYoDeuQxV2uxXWu9/WZwHrKOnoCnTF6AZI3FkT0+s94xO597dFPuU7IraUslnt/KbSenoHY3T4O1vifjiyCvc2maulcHbof4s936nHMl53HcdHLa/RaURQDOu9s51/9lHWe+ccuSE1pujCaB2IZRLIZodPHDGau4pyI1Cg+B+2KxG9v27Mobcbz6/P9OEoZeniQemQz6brEt0VIfH0Y2aTYvQJ2OlozO/nFsWCm9qfWNI1arxsCpqScMR0C3BxC2IIkrP3pvp2IJFFoviGwN+WGQJxAhVApVHZFdr8X1uDbB0mkd5N2Oms7I8XEzojRbaN9Q2AWsmM0k3TbEwnSe8bkKp5tlMnXG/1sJJClgt1MZJETG0UquM5AnHiGu24LHOMr1cwOmryc8hDgjhDCVqTAOTwDF8vcnL1VMZeXiS8eU0nEePUbAsY70bijkWIIZEMgtViC9sLqUOCmIFt1N+l5qtUujKJmRcK9wJyKwtK3OZT24YOH5xfEH1YCOxdFYbZtwXwipUzNts0WU/6RatOASQ73TkjA2gkpXrZQJhTbdPALinhBkJLbychGAMByYLEmoVSLx89GEsaczHVrcxGfup/2Rbz5ywxkdzvnL77tjiwaH6Q6ERyOJP0b6SxW43YAsgC+gzLmpjbGzKf6kcXrthDCQ8jCLPUGoNycsZymIUlrKvnFRhO73wt4KISwGkms/n9q/dhp6C8yEjhsc+ROmuWfgxH/upX6DYGHED3vmsG1B1JkPEC7buP+WA4tKjYEiqKYhmwQ2Ub5z5C7azGNVih5X03x4lu8wLMF1AOk+UzFkT0Q31iD6CzWta8brO8o4OoQwjCSFxZF8/RF38mmm3Wn0b5Zcpr2N2nzkEXPXD2fQPsCw+JSLM9KP9bF8TREjisoi+s2MJ0nhX9PJPfMjeKZ3fxYSfWNjaoYXZW/D0d+xfM0kgOPjq7HC8GFSG66l866Kp7HZDuOckPgUTrrmNhOLZYZribj7DhXD4HUJjcprmHKeOPjemzr1g5H7PZG4OAKe4t5mYRsnqb881nIZsAttMci708zkM3FnQBcbt0VWWD4zS0czF5IrTktqiF2Jp+75iM2lNoQmEr7Zj+UdWnthoDmsxchd6KtfR84y4ORyBday09H+J1HGVu8ndhGR3xjzLe4zvW+HttNC7m55+lZgNjA7irjeNHah/jA+KhvSPGl6lfPt99MMBjbELwb2Nvp375TNmsbcxOR/B8vsH3bH8mdPmaleIvj4kzKO/ETKW18NqKHLYjtWY6KadgF0cUc5clvJlpN6HVsOOK84uU3D7HtR2m3E8vnd9Oe44zWWW4u76t9lBsC/Qr/OKWNWV2S2nz07Ujkl6gB2Rg4sgJ2OuLv0xP8xrqegWxQpOJVZdveDQG7Y2dCs3YIEsxAdl0P6Qa5GovfELgSKfDr7p7YhkDVrvl8JFjdDSysKbD3Ubh4Q2B0jCaAmUhBsDNloJ8A9BVFYTvAT5AISrrTNw0p5McVRTHdX1Y8Wyl3kv38c5BgmAq8s0gHwlhXIIZjTux1uovytd2/EEB2z6/X4xuo/oWAl7nf1bQgFjfPkw8WKfs2Xv2GgA/4PiAfgxRjUP0LgXhD4Ebtv5HqDYHcrxhS7WDk58XDiK0c1GCMtw+bK+YXJBiuovyZFLQHc6M1Dv5WbKbuPvk2HdkAsAC5E7KjaRsCtoi0ef2GgA98fdHHt5PQDYEQwnokkeVebxvjiP0ohR9kE2AVncV/n/K2DoktTTYEDNcqMr8Q0Nh0GHBjCOFxRE57pGC12SL4dso76yk/8PZ6FLIRAFIU7+Ni1igpCRzQab9Tad8QSPlrk7u9trGB8uPv8PuxVYl3fx27Ephf9Ss1zSt7IjZzK2nfMrptQ+Ah0gUyNN8QiO1sIu13IeJ2MvLTWntt/m+RYjDeyLJCyueNFC++TUZ+4WSLtjo+fc6wFi+OUxsC8Z0c+4UApH+h4uNklc0ciTyW9BCAfq+m+q6tb/MQ/dsiyvL4gM4fb4Zaq/Pj/ZGF9QidtmzNCsw2faku5iM2/BDtvr+X9q8kc/NDm4/RuQ2BVE49hnIz/A7kzp6vM6YhvwawsQuRBcp95DcEDNbL1jYEHqGzjon9w2zB4krVuCIak6uHIL+JX5UzLT4fgfy8+SnE3nJ5MPY5y6+5XwjcguSkgaIoLJ/4GmcGUlNOp122tiHwMJ0bebsC60MIG+j8Fe3OlDVs3HZF7oCn4sA0ZIHsN5VG82lNfQ3Ca0DirrXvI5sE1nL5eDYSgx5TGv2dX6sdbHOiakNgFyQmG+++9plFe+1ujz35tcgCZPG8UXHEv27EwfsYbfGkQPx/JBpjvAxQxiG7bmud+Je0ZgcpmzUYf3MtF1vtFwIr6Ly54GuxOC6an82krBcnITbxuH7mqDyGKW842WcXxI/sjrfRPIH2zQOjx35VF//yzMt6ruJcTaed7IrUGt5XZlHaTCo2m778LwS8jfn6tqotQn5Fj37XbQisp31DwGQW6zqVm5u1bp8x0GcUnoX8VHMYcYQNSKCx61vQdwogi8Dks3MV+F+Ne8bVPTORfU7ZwbwH+DdhLQnzpwo3Sb+PrsH3aSQ4mQJiXk/Ua7cgQeVter4GMaLnUb7U4SOJOd5gtCrM2/V4QM9/ot+Paf8TwKCDvwoYSuC9HjGSlBxvj2D/C9mtDEjhsULpH0KeGwoknosGTtFrz2+g03Xoc2DIXa0ADGRk/gngZXp8mtrTS/T8zMSYh4AtoXwuaS3y/GEAdnVwOzldLFUbDoij2XsD/hu429Fizw2ZE56WmP8CvXYIkhQu1f5PVtjhBiRAJa/n5KLH64EfNxxzlepxBNmI+Tsng2nOX7+lffauipv1/INIEN+E+EJAn7NEguCVyKI+AEckaNjNzfd7jq5h4JvIHcUR9P0ZyLPMAfGlhx3tDypsQIrgbW6OBdq/0PXdhRR5Obk8od97uvlud/J4LDHuC0rP35veKJ9d/KqzpV800M3jyHspVhL5o4N5juIcr+fbgH/PwNrPAI9HfqIcHG2vimCfj8SmWcr3dZFsPhjBBxLP/CMbtiGCC8DvI+8kCMDx0ZghxPbvrZDNjcD9erwG97wrUjgO6/E31I5S7wrZRvk8eQAuqJjvAqdPi9f9EcyXkMXHE8gd+q3A1zL4hhT+AW+DyIL3ETQ/Ic8q3qXXZjn55d47shq4LBFHLNc+iDyPfq/OHdBYlLCTj7u+fje3vUvlE3r+HTTfRHjuRIqOWP9/prL5uurmXsrngxcgvrUWeV/FSTpmgl7/LFEu0+s/UlzZ962ozaxI0JiMAZmY8Lf6fTDixwF5J0JAfnEQgH+LxlnsfDLWjV7/PvqeDbXdDrtHNmKfxuV57X8xZd0RcO/CoMyTo7Gogq/fR95hEGivBQ7TvvMT4zbj7Bux6U/p8UxnL8c6+s5C7sLF7/3YT6+/R89Ntia3gMTCEI37M9rz1ENqW1uQRXtA4vz90bgrDZfawBWO3r/LyOhCPb4fefQM5NnkgOSkwQR9FivG6fkm4OsZPfzCj0feuxOAX0dw5ounO9r+0uHfjOSOoHK4VnUzRWG+gsS+G5BfWXncH3Vy2YrGRz0fRN4zEXDvtEEWmwF4KS4X6bWFTq7HuP6rHI2H1PjdTei7wlyf2ZO9B+dG9Ln5CO4ihXuM8p0tj6lNrFeebkdsMgCTK3zkq042X9G+7yKbYY+7a8bvCZEMdtHv9yK1q720dot+rNbchtSIj+n5OsoaKCjd31fcj7hxwcFfpfw+TLm4P13t4MU69u/dmKna9yo9t/XM+5WWQTrfixCA1yP+HZC8cZvDuVy//1W/f+7i4YNKy5v12r3Iuw5s7AeQXxwFxJ69fGwTPwBvRN5TFOiUwb1OxkHHb6P9vSYWt69E6ohhJOYMqpz/RWFeo9+zkE3XgMTjHxPFZsqNAIsNpyLvpNug5/OU9yHgRxV2b+vP4/T8H6mO4xv08wCyKbBNx/9Wvzcg9YXFjxHgi1W+l5yn2wFKnC16A/BW/f5nd/18YA89PhJdCHSBfx7w3sSc+9WMewuyg7cLcF4F7tfo8TvQYJ6BPR/Z8RtHmcw+6xWn196C/HTsNJ3/I0giCkhRfhHijLMTc0xDX36k881019YjGw1/hC5EFae9+OiNSEA6O4H3KGTBfmHU/1u0oHZ9C5EC3gKsBadzkF3ht2Xk85e4hFijm9eiL9lQmSU3d4ALEcfsB95NGdhswdVRLCMvzwt6/GWF+z6Jlwiprs5BAk/Q+U5HExqSVAzXB3BJBAmgqZcaWlB+B/JypX20f2d0gR3B2+bCCO6lYg1se7YevwCXgCvGmH3YBtu5iG+8AvfyKuBspFg/n7L4Woy8/G86ZfEyT/sOUpgXAwfr8cUpO0B2U9+CLLpsYfsa1cFewBLgXZQvnDpA57CAF382Au/0dqf29Je0F7unoQVFgqarHC6j7xh08YpujiTG7aM8z8TFF6X1Zyq/06kpgnTMC5E70cegL+RJwEzCxUHglSbvDPzvU+58/z5ytyoQvYSSMomforaw2F27CLexon2/JnpxlfY/X/FMd3q9CNl4s8T0Jw7ekum2lHwj3S3R4+fgNhUQmw7IhuleSNHykgSO84D5evwmYEbFfLNQf1Aa35uAsYR/ptroWWTyEeJnuyIvZlri+o9DFsG7AK+L5aB2mH0RHpJrj0jMdaoeB6TACkgc+9MUjYjdXxf1XaTz9+n5bmobC0jnl+NVN+e6vvNV92cpr6N+q9df5vrWI/b9ATe+I9cgd96toL+wQjbnEm3Wqh2dmxsTwb4BiXVvQ3zoecjL1+5FCsEDkbw+Pxr3cqSIfDZwZALvEegmNhJTOzbPKTeIRvO89k90dvlKYEEk61n66VjQO7i3ITXJANHLN5G4G4BWxtYWuvPzgEPd+ZvVZvocrnFIgXxchOs8nccWrc9TXu1N8+eqnb0+Grcc2OzO/9jZzzmUddcpCV+9w/nEsNL7CvTFvxH8xcBEPT4JffkikpsC4scvJNpURDbCL3HnL8XF0gh2De0vFdwZyXOHJWDfS5nbzjM9KC2bKOuWMylv2CxSmH2RBd+hRC/iRnz6tY7WgyLaF9DpfwWyKOvLXHsLEl/9SwCPRH7N9Gbfn5HLRejmR9T/0YjvkICZivjBKZQ3gAJl/RqQGHgC8OYKGi5A7qZaHb5QdbMPEueWAG90+ni700+BvnBTr81BNqqD+3wDiYl/SLlJEIAPAWfo8dUOfpvisw2x17ix9lkCnKhw76BcYNvaYB6ddZ7dZPwv/bbn6W3B63X4LvRXzqiNI/X0k4g/naZjDqa9JnyJ0vJSJO78sdK6C+Kz5yL1U5/ydCbycl3v18eoXidTLpw/g9ycCtHng5T1TAD+QOmwDfZTkbh7qtJ2sYNdQxnv30H5i4K3qF4Ootw0+CPg2Yp7LeX67mMqg+fouEJ5fzVwQIXNFUh+sfi5C/DOCvgXIjZ0MmVuXae6Ow95keWRCvsm5XVhDl/uY2+Z7qrpz+TfjOy+/QpR+K9DCENdI/s/1vSnUceGEJbVwM1D3gj5n9sx177Ine8HXN/xyHMnW3rEOR1ZfF2Xuf5iJGBNDSF8vQZXCylQf90LLU2a/nz59chGzOIQwvIETIEsqpbqc5ZHI7a5ewjhhgze+YiDfyHqXwTsEkL4YZd0nghcGeQn/U3gz0XuNl4b5Ofgz2griuJU5A5W1w6vz3KdGEJYuuMpy865CLl7b3ej1lD+28CdyD8+XNYj7unIzvd9IYQ7EtcnIAXWlQ3xHYr8XPkZ12O3rSiKC4FvhhCedH2TkQXpvzSxB5XX3iGEaxPXTg0h/Coz7gTgGh+r1A6fRDaMv98DPwWyAEjO+Uy1oigORjY0v70DcfYUayrw/R7yM9I9kV/l3ZCBOwC5a71qR8xbQc/5SPG0NoRwuerurUjcuzGEcHslAsGxG1IY7kqP8Wt7WlEUeyObYfc+g3P0I4voK2qBd+y845DNtmd03lz+UNkeHUL4SmbcPOQGya16XiAbL/sj/1KRtAX11TUhhEeLongB8quLa1KwDWjPxrcu8RyI/LL04e3AcRKyiXK41Wb6jopXIr9c+Z36xu+qFUXxHGBTVT5W23gLElueQjb3ZiI3Kkd+F3Q6WnZCFrZ3ob/isBxYFMUpyC8O9gshfEf7jkLq1aOQWLcqhHBD7DeaO4eRGx+xLxXI5spXgzwymaNtCfovN1ovn4j8EmFRCOFrNXwdgSxCp4cQrt+BvjEB+fn8hBQ+tftlIYQRld8wsuCfGUL4nMrpLchNvl+aH6Toc7BrkdrkrhraOmKzxq0hJCddH0IY7I3z3prT9U+RTdabdxju/09jyFgba2NtrI21sTbWxtpYG2tjbayNtbE21ipa6kUdY22sjbWxNtbG2lgba2NtrI21sTbWxtpY+/+9NXmuoNVqDbdarQAE+54wYUL8LEdlf7dwVdfjaynYJjB1sBMmTGi7Fh+nPk3pSc0Tj0/Juoqv1LU63lqt1ug8dXLycDtaZzHPubliOcXjqvhMyauKp5zOdvSYOvl14yspXlN2mbLllF33as+57yofMluMeaiioxvZp/iv8pEUbFNfaWr33eq9CjZnY93Ya0oeOT1UydDmzV1rwl/O13ekPHMyyMWTpnaSkl2VP3ZrU7HfNPHHnO6a2mvVmJSuY1+ukn3Ox3qRTdPrVTmiG7l0o8uUvprqrlvbjvua2HSdnTShJ46RsXxzeFK+XyerGGeuPq2TW1XO6zaepOTcLT2pPJjit+64yp6a+HrT8U1sqe4T66CKNi+fOtuqojc1Zzex2tupt9UUjV5/cbyMdV0VO3P85niomjMnp9SYKv+oklmKzxz9cQzOyTCWS67mrbKP1Hesw5TccjbSre039dPc2rup/8WfVqu1erveIVAURQBkQFG0fS9fvpz+/n6GhoaYOnUqhx12WFv/3LlzWb9+PSEENm/ezJYtW2i1Whx77LHJ8QZ33HHHjV5vtVrMmzeP4eFh+vv72XXXXdvGelwzZsxg+vTpzJ8/f7RvaGiIU045xV7OMNoHMGPGjDaaJ06cyKJFi0Z5NL5VDqNwS5YsScoqJZu5c+eycOHCLI3+n1nsfNmyZSxZsqQDn/UZnoMPPjh5zeTi6fc8xP8Gk8LhZRRC4PDDD2+kM5Ox17/J2K6laM3Zl8lreHiYPfbYo01OOZl7fDndmA6b8FsUBQsXLmT+/PltMjWbmTt37ih9y5YtG4WPaU7Z84oVK9p8wtvovvvuO2onKduN6fQ8xbLM2VE8psqegTZ/MnoWLlw4auO5eb2+qnwonjv2i1RcmTRpUpsfezpzujcfy/lIzpZS8SBFU1EUHTr1ci+Kgm3btrXJMhdL45gR24LnM25VdMY+nYoZhqPKrqrG1NHlefGySNllFbyXRYrfODflcpaXQWqeVExPxTCvcy+HlD9Cp1+lYqzZVKrl6PP0VMWElDxjfeTGxHSk9F8Vu3K2VCXvnL/F8bevr4+NGzeybt26tlrB8xPrx9MMdPjtCSecMHo+MDDA0UcfnY2HXpexLaT8IK5BUjbmZbP77rszf/58li1bNjq32fuyZcuSNVFcN3l5tVotdt5559ockrPXVG6J7SCuM8yGjIeUTeXGxfZWJbec73sb8LVXqlbJ1TSxnVp/XGek6BkcHGyrRXN1S+zLXl5V9FbFgipfz8W2VA3heR4ZGWFkZKSjvo7933L3k08+2abzVC6pqxtyNmLzeTpyvp+zo9hHzedzdMR1VApfCj411mieMmUK06dPZ+HChR30pnTTZM66WqKOjyb5LcdbThe5eVOyStlnvHaqmq+JfHI4UrKwmi5Vm1fV7XHt0iRnp+pZH/99XtyyZQuHH34406ZNs3F5Add90J2FICdt32vXrm37zvXHrQ7OXx8aGgrr16/Pjk3B5mCa0Ox5BMI111wTLrvssjY4uxZ/crxV0Zga78fE83o8uWsp+j0PKbpTOLxemuqsSsZ1fABh6dKlWf17nuLjKh3mZNmUX6+zmJeYvhzNKfgq+cV20oTOKl/N6Tke0609x31V3018KEWP6bgqruRoyvHvr6d8JGdLVfPlaGoit6q4VGcLRtvSpUvbeLn66qu78umUPAxH7JuxXOK5vS5jfPfdd1/S3lP24X095r1XeVb1p+JCk3liucR8xLGqG9p9q/KXnD/GOSxHQ9V51ZiUrqto87zE31U23kQ2TWJszE8q5jSVS+q8ytdzcSSFLzeP9fm4kLLrJjVRVY3Vrb3kcksq9sd4PA/djPM0d0NnzJenoWrOupoy5/+90hP3W5yN5VVFbyo2NfH1KntMHVfxVOW3Mc9VOawu/jWJ8zk5+74U3zG+HB1V/Sleq8bGvFi/t4MUfwZTNWdKZ93wkYppOV5T8k7poqlsU7qN/bduvpxOqvqr6kr/3cu1Kj/Nfft6Np4j1XQcqU8/XbRrr5WXTF9++eWj35MnT2bjxo0ATJ48Ods/Z84c7rvvPqZPn47QVA1Xdd1osf4UbKqvW3zWFi1axLJly5JwVTKqo8fDx+crV65so8PPm+M9R5/R/+ijjybnrMIf6yR3bfr06UkevYzjazmZn3TSSdm5PE/xcYwv5jO22xTvdTboceX4XLlyZYdPVI2pk1/d2CreU9+xP+Tk5WUWy6iqz397mcdyqGuxD0KnbGP5pWjK8WE+Zvi9j6RsNUV/E52mdFMny5zP5Oa0Zr5jvDSJfak5vDx8v+H38szN7VuMb9OmTVlZxPbhfT0XQ5vKs0l/Cm+Tebw8cnnCx6puaI9zZ6rlZGnzWg6LddckLqf8O5cH/Vw52uLY5enKwTeVTTcxws9ZRUO357n4EM9VBZeTdc7/U3nH9zWhOc59MR1N+c7ZR1Udk6K3ybhcHmtS/3k+PQ1Vc1bFzip9NqUnVxP6+sj8y8urit6UXFKyTNUHcQ7M1RBN6+uU327Z0v6nWan8U1d75/jK0ZGqD3M1Q4q/Kjqq+uPrcX6LW66msXzraYxlFOfreM6qWqIJH3Edl5JZDl9sO3XzxtdyuTdeO6Xgq+iMeczRHMN1a/upcSmcKXpy9Wydj1kOzLXtfmQAygKw1Wpx5plnJvunTp3K/vvvz9DQEA888ADHH398JdzcuXOz108++WRCCKP9Z599dtv5nDlzRmFs/Iknntg1vtxPhA1fquVkYzhTfXU/D0v9fCSFN57XaPQ6rnpkIIVj5cqVoz9RiuUU63W33XbrWWdeFv47hcfLKZZZU9kar9ZfZYOxXXl51fFpPlE1pk5+5lOejg0bNrB48eK2cbHOm9hRLIeqRwa8TZx33nlJPqvmTflTVavTcU5+OdnnfoblafLXmsaDJjrN2X1KvzlbSsW1nI35VkVnKk6m8DyTjwzkZBHbssezI+RZFZviuSx/VM0Tx7BYpjn5GVzOr7w9rVmzhsMPP7xDljG9HleTnx/m+Ezll5R/pOiI9V8VY3O25HNQXf4x2TSNEcZr1c936+TSxA5je03Jqao2qJrHckHK5nP2WWXTVXppQk/Oh3M8p3wuN66JfcY+FvPqZRznrNgGcrTmYmdO7z6ONdVj00cGYrmk7KkuFqTsIZaX95VcDVGXY3I+uXLlSmbPns1BBx3UYSfWmtbeTfWV+zl4zo5yPpqjY0c/MmDzmi5T/KZkVDdnXS1Rx4eXV05mVY8MxPRXzZuSldEe22eO525gu7WRWI51tp9bXzTN2U1ilPnYI488wuLFiz1sUsD9Sal30ZYuXcrChQspioIpU6Zk+1utFqtXr2bdunW0Wq1aON+Gh4dZvHgxq1atapvD+lNwMf5e8MV8erimLcbp+a1qfr4cDTHeeI743Mulbs6UXuK5TX7r1q1r01mTsbnzuOV0FdPaFF9qTI6n1LWm9OXG5Ox9cHAwC2NtyZIlLF26lAULFrBq1SpWr17dIdsmLSe7JuNi262SzTPVUrry8qujKcdz7Dcm7x1JUxWN3dhSzkb8tZTP5PwyFSebxo0mY2KacvHE91W1HSXPuvgfy6Vqnpws4r4cXM6vvD15m0q1XH5J0dKEzyq6u+E7x1NTXqr0l5JNE39s0urk0k0Nksr5uZwbt6p5dtttt+z8KZxVNt1EL035zsm4Ll/nxvn+JvZp/alaKBU3m9JaF1dzc6fozumxKV0p/lJ0VfGVsocqHlLjU3M2qRvXrVvHwMAAjz32WAf+VA6r89um+moyPtea1pg7slXF9bh1sz7xY37XddyOaHV5LW69yKZbWprafupar/Pm5o/XFrUthGb/MkDm+YW45fq7hau6Hl9LwTaBqYMFwoIFCzqeIbFr9lmwYMHoWx6b0pObJ+6Px1bxlboW0x/PaW+urKKzybVux+bOJ02a1CHrKp78cQpfTrYhhLb+pvxU0ZYbUzdP1diq/tT1WMep77oxsUx7sefcd2pe85/4Tb05eprIoUoeMU05H0nBNvWVHExTWfYC632nip86+lLyqLKLujFVb8Ctoqcq/vYqoyb9KX9tMk/OX1Jy6Jb2HL4YZwpXSoZVtObOq8ZMmjSpg57Yl3O8pGitgq1q3cZK+45l041ccvNWxaO6ONJUP93M3xRXav5u6MnF+CqeU9eb1Cf+PJfnc3TGfOXGb288aWJPTemJY3wKX1N7auLrTcc3saW6VpcvPJzFm1SMaaKXnO/7vhzfdfR6HHU5s8nY1LwpO0j5T3w9lYdS+JvykZJh6rtO3im4XI4z3mOaU99mJ7n5UvPndFVnIzlZdnOtys+qbLKpjzlYUp9kZ+rTarVWQ/XfcFT1dwvXzd811P1NSa/46v6WJfVXFE3pScHXfTehqds563D8rnTWVF9N6W4iy174jXXeVAZN/KLXsXV/h9JE53V/FdNUNnXfuXm7tdNe9NWrr1bR361Om8pyR8D2cq0bv9veXFDHXxNb2REy6jV/9JI3urW9pjrbXh9twncvMbSp/TXxq+2JoXX8xHFiR+SrqnhUx2+3su7FhrvRSzf01OWWpuPqjqvOu5Vb01zZiy6a2FO3cu9GRk35anKtmzmbXOvWHruVRR1Mzh97kX8uhjTBVwdfZ19NdNONDTblI8d7SsZV8q6TU13M7CZO1c3RNCZU6ahXv6jSZS8xKvWp+tvBxhsCycHwn8A9wF8D24DdgWFg5wjuFuDPgM/U4LsGuAj4beb6i4EVwB9G/c8F7gQ+4fq+BKwG9nN9nwTWAbvr+VuB3wJ/HuE7FlgJfM717aW8rQfer30XAN8GbtfzTUrHCmAQOBC4H/g18EpgSzTP13X+l+r5VGAr8B7gFGAz8HOV8bDCvB3YCFwBrNC+NcCfObzPVjpPAO4Avub4/SnwzYiOYeCMCPZfgQf0+CrlbWo07veBf1I6x2V0diXwNyndA48B39bjJcDdwL+56yfpvPsBfcAI8NcRjtOA5cATer4BeLd+vgP8ysEuA65HbGwTYpObKO12F2Cu0nUTcHiC5puBy4Dfc31/r2OGgZkR/F8C/w4sTeD6OfAZ4G8rfOKTwI+AP4n6f6RzLkiMGad29LjytAa4FbgdCQpvVrv7KXA18KSOO17lcbDa2B2q+81Kxx2K53HEj/7Jzfkyxfn1iJZ7gPsQf7xL5bEeseMtSs9ngU0K/6jOcVeCrwlqAw+pTN+hPHw1I7tDlebVrm9v4CngbTr3Qzr/8Xr8PpXBRRGubyBx7Dl6/m3l63TV+xBwJvB6tbE/y9B0IBIffgk8V/vuB/41gnsIuDYx/i7gu8DrXd/z0Pjg+l4N/Ar4WYaOfwWuBc5JXPsXxBdPAqYhsf0VEcxJiD/dpzI9S2XwLcQuP2R25caYLX4zM+/ewMPAZVH/lylt9AHVxRTExj+iejzUwY8AJ0U4ngC+l6DncSTW7+P6D1M6/j5Bxwp3vo32ODBOZXBbpMev4OKp9t+g4yfo+edUbuuAP3BwrwG+qv2zMro8C/ihymZP7VuJ+NHDEewvkZj9z1GMekzhrwIWqUwLYI7qbCvQr/BHIz5yGOJLF+vc/6LXd1N6P5WhdxYSp3+UuHa60nAjMBvxrQVo/IhgTTZXA8dl5upX2u8F9srArAUeczgtLj2A2Oqw2s+twJ0KN171t0XlVKjd/b3DeyfwlWiuS5WWw1zfOuA22vP8PyJx4jkObg2SszYC73D996sc3uT6CuVhkev7LvBvpiftW43LP4jf3wAcn5DTPsrj91QWv0Ri/jbg5QozBckXq9y4w5W/hxxd9yP+9E/AQwq3CvihG3cmEu/+yPnwvzjZflWPh4Az3bgLgUeAk/X8YZX72cBWB3ez6vfNEZ+vVJ6uAS5HarnnAw8CnwaOQWxuPTAjGvunwJNEtobkq+8Af6HnN6lMnnQwbwWeTsh9uer8L5F49RmV35lK2zyF+wxwHXC2s5d/0+NliM/NdHgfBZYCH6O0/69Q2viHgP8ArtHzj6B1lp7fhsSZnziYF6tcDlHdPpng50tI/l2Pvscs45cvVNw/BV6QuD6C1Ml/pLb0i+j6AQozGbHJrWi8dTBXAzfp8Y1Ijr8Pse/VOn6a8vkLtYvb9PhAJA4u0fGnIj77ST2/Cqk/NiqehxXvKuBrOk9A7RKpz34axaUv69inFddvlc7LHdz5Ss+lrm8zcB5iiyu1788R+5mqdP8W+BNgrRv3AaX7A65vf7WdP1FatiFx4sfK761I/rhEr02mfS1k8fQoxDc3IXa2Svvb1k065+tUbp93etigMjBbe6vKZQQ4CIlHm4Epev2nSuc2Pd9brz8bqSWH0DWew/UgUl8sROL+OtXLSj1/PmK3/6jfFyjtF0U6/YBeXxDZ20SVxyPArgl7v5Jo/QscoThPVHpOA/ZQXr6iOl2icvwJYp+vVv4m5/wr9elj+1qBLNRa+j1RCR8/CiAPveyJON7eWUQCtx9i2PsX6YfsZyMCmR31z0GcZ04E+2QEOwMxqhl6vgsSFOc2wNevvPUhfIMUKncAC5Te+OPxF26ctblIkJin51bkTgUmIQrtj+a04wFE7iRwT0GMbqq7DjAfSSTzIzpiumOcKXmA6PNORM4xTmt7IYk1pfsBxDFzc5gMJlPKZlqEYw/EWScXRTGZ0ib3QIqJPRxsP6VtFno8nlK345FAcD/i2HsmaN5N59vd9Zms2mxf20IkYKZwLUQSUOqatflKSyzfnE5A7O5JxLbmO/psU2WSO58CTFX7NXlPot0eJujH9/XT/g6S2JatTaXdDqcjgdd0BaUOoLTvlP/HMDl7tjYfKepnFUVhepmGFFE7US56CiQmbNTv1PxxrIhtyT47I4XYLhma9kYK/7uRAtvz49sU/Yy2oij6ELu7HYk91lLj62Rj/KTonIMU33Notwnf9kL84B7lyfg3n07RtI/C30PJu2852fk4YXI3PU6n0+/Mtn2bSBkvrS1A7ON+2uU5E1nozorgY7uIz2fpuDhveDuxZv47O4KLcZq9mJxTLSXXOJ5b2xNZjPiYE/u5+Vk/Yj8PI/ZgeplIGZdN1n6uOM/GLZWbrXm79XEZOnW6P5J/7tTjVJurtK+iPWYDUBRFP2JLM9S/cHwUyCaPjxN2zWx1M8Kn+YnFOmsxzTtTbtSOkqFw3me8D8Zwo3RoXJuHFIFep+P02/vFQiQXLYxwGi6LqfeRjhumj3GOTtsEs1dv74IU8Du7Gs7i8BzEl4n4MLgJtPtoXO95XzLa23jQNh3JMdP13OLHaFxQ2hbQGUuh1OU4x5/PmQvJ1wjx3NZ2QzaCzAZT/pnLe1MRn4tlFsfmVI4yX07Z00Qd6+3O07CQ9tolpm8yZQywfrupNRWRXVwPgfjqdcjiMZcnDa7Kv00fOT2OR+x1FiKnx+is9b3NTdSPl7HFH+97JleLgyb/VE1m4yyGWF9ca/fpPANurJ2HaFxce6V8tg+R/1Qkn/nxMZ1ep6m6wNYTcV0Y8+PXL0TXUJoNZjzp2GqwNqf5bSw/j9t0lMorHqfX1060+6mXrV8TxP5pdLX03M/p59oJyQ070d4sn6byUa5mM1pmUMrXeBmgPRb0R+dx3VbZdsSGQKEEbkESa6DdWOchxcEtVGwIKNxgCOEehJFUoJiFJOG4UJuNGPGcCPaJCHYGuqur53MRxcRzzVF83rAsuHil26JzUOeJF+67OPypInUeYgAWpKYorimIIrdSKjh2gomURXIcqA2PL9hADO1unMG5jQwiHJ7WOUgwjQu4vRXf3SR0WxTFFMQmriG96G3RviEQzzEJSRoTFc8mOguu3ZFi40E9Llz/zcB8V+gN0B7cLSiZbvuRJHgfnYsE46dFJEOHL7Z9FN91wFy3KPWLu+vieaLWoTNts0nrxMY8pJ94Q2ArZdID8YUtlDa3jfak2EfnJoHJLvZzb8tmWzshujPfmI7EA7PNgOilP7GpFrfxyIaGXZ+P+F/VhsBDKifbqJiKBOrpistsw8eGlK/ORWzMYoXx7+ntQwr+R0hv1ED74s18po1XtY2ODQHF/RSyEPcbXSl51ckm5sc374veJnyzhepKxLdNv+bTKZoq44Xy9zCdspsITFD7MLmbHi3njAcoisIWQvZtdjghwcMeiM0+QLs8ZyEF08wIPt7kiG3EfHKGoyO2E6Mn9t8OOG11MsvBdGys6eJ3PnJnyMdjs13TnfnZeDpjCeTjhLU4z8YtlZutzUdsahpi/6bbVK3SZENgN8TOV5H2hZlIQbcRiQkmN9v8z20IzEP8fDXiS6n8lIphqfiQinup+B7HGpSnRxGZ+TxiOS3eELiazs1Ea1ZwPkBaVmYXtiHQR/kLDPOtuYhMnqbU/3xE/k8g+sgtAlq0L4jies/nnFzdApJzNlAW477O8AU7yF1J7/tQ2vc4nS+29YVkaoTE3NZ2QzZtTK6pPJfaRIVyg60VjYtjc1zPenmZPc2B0Rg0iTKvW/M0LURqqIla+8R+bjnKj/E1bFwj2LxN/JYqOFfT2c2fG4HdXL/xHyh99RE6NwS8bbQob27GNZ2Xu/EVy9/WDX6hbR+LJz4ux/hjefkNgZgv79epXF8gOlgPTNHa0+b2sSW2wdSaaCqiU1tc+jFeDwY32fHq46ltCAxS1uG+nvP2ZWvK8bTLL/Z7uzaezrwSxwevr9hPY92a7XhbMJkOUi7EfYzyvE5HYmB8A7MqH1mtv7PmamtGy06U8jVeTD4T9dxvCKTqtsq2ozYE7GdidtfNG6sVwA8gi6IJMRJt5vyQDxS28E/9QiBOsinYGUihZ4lqFySwpzYE4sLUG4jJbQFlQbmAdqMuFO/DOi4OvCDOt5L2Xwhs1u9YwVbs+uLNdjbjROLx+Gu7IklprgucVrjaLxH8XZK+oigsYK6ms1Cvu+O3J7Ir/gCwa7QgtoW4D6axzCdSFhv2M6fUhsCDlBsCxu/uStcGh9MCqcHYLpsvPBcgNnEfncneCptViGOPskN7YPJtgdKxmvYAMA+xxRWJeeI5b6UzeKTk5cdYEb8rJb/jKIOE6dr7hMnb3zUYT6ctWb/35bnKp0+4E5GAb4G9DwmU6ymThv1iYYjOXyHELfbB+Yg975r5RdGukRxA7Md2hj0uWxjMpNOfQHz5fspYMUC5weQL3J0RW8xtCPhfCPgNgbjQ2kTnXSYfb3wROw7aiiQok8uAFnNxi/nxzduWbUzmfiGwUo99kWobbbEM/d3u3C8EHgJ2ihLiZOTnehMo5W56nEa5eIX0QmgynXcuoJRnXNjPRJJ8dkPAbV7FG6eP074YNhvxsXWa0jNaoEdwXm51MTYHExdsIDFxNVI8LoiKaouHE2mXocUS+7URlDYR37U0fOZLJoO4zVY6qjYzH9Hj+A6db003BFIx25rp7HE9Nl6sULWi3ReGIHHObwiYPXob8zo3m9lZadnZwbXFPM2Nqfhu83s5LCSdr/ymDkVRTEd88ibKXzR6nFDGy4cp46VvcZFsOcVvCNgdRn+X0eejPSg3YkdrJaVnIu0FbFzDme9jcsj44XTEB6fr9RbttgqdtZtvlgdtQ8Din81TVSNMR37VMD3q3w2RvdlgbE/WchsCT9J599rna+isZweQ+N+P1Oa+RrYFw04RHXF9ex9lfPQ2WujYCbTHel97TtD54wXnlhDCWrZjQ4D2GLUAiWlP0e5X5gPzET81X/XN21z8iweLA+Pdud0MGaAzN8Y+2xfhaautKWOL4R9d6LvN7wHaY1Gfh9M2X2U0vSgK848CyTNrKDe3DccclYW/QWYttSYynU4mvUj2i2XTvcfp5WgwuYV+bEcDlHVi7Os+Po+nM174DQlo19d0NEZEuOK6LvZT+2WibRzZnLMo46FtCOQ2BnP5aD5SO/pf4+FomUYpX78h0EfnDeQ4NjRr3TxfkHiG5wkkCQb9fFi/X+dg/hvYqMdt1yJcv6R8TnQ9iWdfda47hey2/qeQHULbhZqqx48DNzi4gCxOfuzO/1O/xzm4R2weyudR3qPng8BHKA3xJUix+p/IouZeJCEEJJDersef8nQjz7wE5Nmy4J7Rsjl+Rfkco20q7Au8F1G0yXyOznunw30d4kDLFeZqx+8b9fsU90xLQJ7VeQrY4J6/CcjzyQFZoPy3m8N2+ucjiW5VQl//TunIAX3OUK8dajzo+WNOVhO17+d6/hnk+aRR+Ein/4Tc4fmxyu6D2n+6fr/bwQbksRTjKSDP0AXk2fknkefq/iMxl8F9NNLlfYhzBtyz0chCKSBBI+DeVeFotDucByfkN0+vnRXJZX89f4z0c+aXKx93Igu2p5CEuVrHPUppnyaTtyDvJQjIc2sBCU73OpinEP95Ss9HIj18zvPi5B+QZxgf0OMhShvdRvmM2TF6vjmWveKzBcIG5DnEALxBvzueIUbiyK8Q//yi9n1D592E+NEWJGmuoPTbbWYzOmZf7f8xsDmypS+44wv1+4f63fF8JGUseKPxiNjso9GzZIZzT9f/ZZXdOR6/k8He0Twf0u9XRzTspP1fi+WMFHEB2YRaQ+l3dyb4+APVwzDwKpWr0f1t/R7vxmxBnmM2u+iPcN5GaZOnRnN5fw7I87R2vJXy3Q6HaN8r3fjTHGzh+h8HfoPY/dOu/xYkt8Wy+bXTmf2M7yvu+hedDF6HFPI272rK5yPPdnR/M+JxBM1ZlHeHTkGegd6UsCeLra/ExSxk8fWg5wH4C5O7fp+h/Z9AfMVo+AfKuHU3EjueAJYr/Pf0+jf0+xOIDa/W6z+k9OmUD/yQMvbuGV3zceQfFe9i9C6+g5upMAcgz8p2xAuFuwqJk1finn921z/q+P4j4AeUMSAo797OLD/+DIlDWxBbf6fBRbz81p0frH23AQ9GOh5SfMZTQPLqOoWzesNszHTxA5Xls3H+hsTSALxYz9+s5+bfJ2v/NuBePf44pe9uScjq9x39RrPlAnvu/DLKOPrn2rcByeUjwH/pnI8i7xsxee/t5GxxzfJWQDazRuVrsnXy+3IUZ57Wsfs5vGavBfIuhQC8QL99/WdzjvoQ8suKgDyjG5AYfhXweMJ+t6I1pvY9S/vt3RwzkNz8FO7dL0jejmPOAke/ydbql+tMzpT+YDzu7sadRJk3f5GIiRarCyQObKCsWUwvn0bjCxI/DnXjR+MMsik5oZJxXgAAfzFJREFUgsSrYb3u3+P1UQd7DfBIxm9tEfRsItvW61MQ+3utzaHf73MwJ6otXIrY3Dra3ynVcjx4OT+qNrBRz/fU79sdTEDePRTQ5/6RhffN2md2uYayzrDzgMRQq8N+7vEqLptzxI0ddmPiOPMu/T5T+4aB7zu8b0BsbghZk22mtJcNEa7PRvi/rv1POHxPUa5DNiteo/PPHe2b3ZhPIHE8KC0mi7Z1k875mIPb6HA8CNzi4pHF6fMpfe9bLrZZfJqHvAcrIH72dw5ngdT8Xrdvdzw8RZkfb9O+lY43swuLEUbTsNHiZHmz8nA9ne/3sbgSgEtc/187/COI3/+N9j1Oe1wymd6j3+9M+Vfu0xgw47R/q5O+HHkpw3v1fMDBHEJZeJyPLrATuBYDz9bj04HFCZgXIC/yeE3U/zzkzsgbXd8FwHG0v1TnDQq7n56/Dtk8uDDCdwqSvC90fbY7FtCXGyFJdhzwe8CRkUEF7T+c8qUfAZjvEvxFSOA9R/tmqBxfgBQFH0KcxRvuDXr8VmQBYoHTv1DocL1+MFLcbnLyH9Bx46JkZQHVXtrzOLLQHa/jTqc9sBfA252On5vQ157AS/T4QmCSu2b8v84lqAOBCxzMfiqDecjC+Q3Aq6I5zkWS4enIS0sCsph5k85xLjBdYc9TuzhZ4V6BvERukp6/BVl874fs0MVzzUVsfSrtm16jmxW0J60CeKsen4O+/EfP5wDn6vFbgb6E/ArExgo6Xxh1AfIivCMT4w5THo9AXnRjgS0gi7iTkQV6UDznIva9j8p7PmXBbnKxRagF5/cCZ7k5z0Fs+SLjBfGN81VvFjzPBV6EFOiG/yeqB9tdHSRagCo+v1DeqLT365wdL7VE/Ghv1am9bG0h8uK/DztcH0MK6JMpE8s1kbwvQoqGsxy/b6csmEaQwupVqtsLYnpczJmF+OGbXCL4qIPpVxrfSPsCdh/lpR/3IiwkYY9EsOepTt+AbiRFdLTFnujaBcim07ORwuuDwFEJmMmIb76Ssvh4H+J7t6KLGTfm5ZS/4nlbYt7jKF885Av011D689spbe0NyEu8AvCPTlcB+IIbP05l+fpE3jhQbeIlUS46AXhDBP8UcIfTRQCe5a4vQF709TrKzbu3K99/RlnsTFD9Pg99+RjwUsr8+SqH822UdyVflrGpt6hN7EIZU8wmH3Zw8yhzzZsoF4+24XwRYv+2EXkq8rKiI5FFxeEurn9YadpAuTD5U72+L/KS2jdk6N0feI7aUBFdewVyl+8c5KWhAXg/UkyGyCffpd8DKXtyulyCxPTnJa7PVv2cg+QRyyEBKVBtkb4RLQp13MGIfzxP+Z2C2NirHe7baN9ospx3KLohr/3rKAtly/MXIDZ2hoN7AilEA/qSNaXjDMX91miugL6sFNkEfL0ev5nyzlIA3qP9uyJ2uDvOHxxOq4G2IjdgLtXz0fiA1AKnqh7naN+ZyOb4WSpr43OQ8nlai7HnufnOQG6cvE6vv4dyg+NWZNFvm+MHuXFnIi//OkbHvQmJh7ZZuBCx3ZciseEtEZ9HUW7YG3+HIJuVjyHxaJbS9rxo7KuQ/LZfpIs3KS1vcf5pC+aW9j1Xz6dHdv5G5CVhj1AW/fcief7D6IsCdY6dVfYF8mLll1Dm4dNMTq7vjYrrUe23BUmBxJ5C5bQAeV/WWsfT+foZAa7U/mOReGT6voT2vDQf9RHEds+M7czBvpPyLu87o2tWb38VibGF6cXB2MLUaurTgEMiPOejuRrxuQtor5cCkt/uplwAfxDZiJiP1Eu2njgdiTOG73KHIyDxYwRZEG5x/ba58ofAa53eL6bc4NmCbDgEJD96P3kDcmPvjUgsnKNwVyFx7bV6/U3af6DSej7lBvyAk8dk4Pwor72V8oaRfb6FLIYH9fwshZuO1HtrI/hdkZj5FtpvJMefucga7K2Um4vBzWMx+Fp37a9Vdz6n2kbXkMpzF2TT9yCV0dlojkLyUUDql3Mob5R6PzVbeBvljbJzkRj0cuXJ4vgfKp6Fkb0di8Slg9H1bhQ7ZirOGa5/Z8V5vsrkMCRvfUj1twbJQR9SGd2sc3yQLl8qaDuxPTX9yeGxIYQr9XwccHQI4dc9I/1f3IqiOAEJAstDCA8lrr8aMYgNACGEZe7aTCSJf6nLOY9AEvT9IYQbi6LYBTgthPAVB7NEaepQZlEUs4C5IYRbK+ZYEkJYVhTF8cBVIYThoij2Re7IPNINvf/TrSiKVyFvKa+k23h258cDvwkhjPQwZ4EsJgdDCL/pdvwz3YqiOBtZzBQhhJ9o31TkjvINmTH7IYX/phDCFdp3HFKULAohfKtLGg5CguMP9XwWUrQNIP9s8bT2L0ESyeMhhMcjHAWyUJuBvO39TnpsiusC5E7A5V7v6sc/DyE81hDXEiTZPxBCWN8DLVn/bTh+J0S2N/Yyfkc0peHFIYTP6/luSJGx8hmet0AS5ZdDCIPadwSyabtxB891EM4u4xjSgM7jQwjLa+C2yxYcnrOQIvK2EMKqGtgFyAb8t1xfIzo0TzyNLAC2m+4It/mo/WJgtNZ4Jpvyvh9y524Ksph+GFmYzGtKQ1EUs5F/XLqtBm4vZKGwN7Am58eqJ5B/Saq1u6IoFiH/gLSpAqYre1P4J5FfvGxCfg12TZOxOr5AFjBrkdi7Gfk1Qkc9VYNnFrBLCOG2Lv2wG9iTkV+E/VbP5yEF9t3d0JrBfTpSyE+O6pAsfeanSMH/VAhh9fbSoXgXIr/2e0Br+GNSNl4UxR7IRu29Uf9hyK9MntoR9DRtRVG8HrkDuyFzfQDZCPr3buKSxk57VnsN8kvbnZGF8QEhhC80xDMV+UeWnZE48lNk4XYbsvDbB6nrr8/p3fGwFInnO4cQrm4w97nAT0IIa1xfAZwQ2dseyJrtmw352QfZHHsIuak0DVlcz4zwHoD49hz00ebo+v7IwvxBJNbm1k37IDct1yCbcXsi8eIyWwshmzU3hRC2RPROQOrFx0MINzfgL7Um6EPy2yykvl+m13YFTgwhfM3BH4RsHJ8GfH4H58JknLacEEK4X88PRn6p90RP8+xAmsfaWBtrY22sjbWxNtbG2lgba2NtrI21sfZ/pTX9KUGr1Vo9YcKEAIT4Oz7e3r4c3tRxFS11dDY5bkJfN3LwNKWOu+ElhacpL1V4quCayKcJz1Vy3FF82Her1aqkoxcbbKrzJrLqdr5u7TIn2yqdd2ObVXZaB5OTRy+ybmJv3fpqTl7bQ1O3PPYSH5tcT/HadO5efampDdXFgzp+u40dO4rmbvzimYix3cBW0dAkTlTpplvba3ptR8iryXeOL8slvfBe5ztNxnSr+yZwTWXV1MbraKniram99aq/1HkTHnvhuZv4UoezymbqYmXd2BQd3ci5as6mPPcC2815U9vI9fVi+1W46mhqqtOmvtWNnabG+Bo6R2OdjLv13Tr/qMPXrd02jSPd8NdE3jkeq+itiglNPq1Wa3Vqnd94Q8AQ6U8W2r7j4+3ty+FNHVfRUkdn1fGCBQvakn9M36RJk9qUEOOZNGlSmwJStMXHCxYsGMUZQggLFiyo5CWFx4/Jwcf9NqZKhikcufO4L8VzCqYb+0rxWofHvr2Mm/CUso2mtt9EVnXz1c0R0xbbbU4mvt/s1V+rsosqOlN2G+OP6crJpBtZp2hJ+aOHi/20yiZTcuyFprr+7bHNKjrq8ORiXRW93YxpSn9O1il9eRttqp9nQubx3LHvVMmtG/tJ9XXjI7FvpnwsRWfdXNtreyG0+2gq9jThrwlMVazy81bJJYUvtsUm81bZVSqO1sH2EityskrZSpXvpOa2Osnn3Nx3ap4q/up8q05/Kdgqv2zKc3xsuOM5qmKX1YJxjZmSQVWcScklHhu3Kjl3axM52VT1pfp9/ZCDaaqvmJ9Wq9Vho3Ed1cT2zdbj+svX9TldNe1L8ZZbJ6RiW9WaJTWvX+ekrud8Ljevl2tV7A0htM3tx+fkkbLNlPxy/pb6TsWRJjbfxBZzcCkZNjnvpik88cf/tVPPbfny5W3H/f39DA0N9dTn/6Ekxhsf+75e6Kw6vv/++wEIIYzStHz58lF6N23KPpY3el3kTtv4qmZz5s5jXlKy8mPi+VLzL1++vGOelHxNX3Pnzu3oi89jnda1OpiYDsMf8+rnrWpbtpSPGqV48Me9yHjixM6//kzNY/TOmDEjO38KT8ynp7PKZqpayp5zdlFHZ4qGOn8xuW3YsIEZM2aM+k5O1k3ssWp+w+X9FJr7ahVNsf17/fr+lL2m8OXGVOmj1Woxb9687HVvo03srEq2VWNGRkbazlutVtt5FQ2pFsfV+++/P6m/HN4cr/445rOp3fs+oyump67lYmp87u2+ykeKomDhwoVJ2Nz4Kj2n5krJpCoH5GRouvV69f4Y852iN+czJoO6WOXPu80v3hbr4kiMuy7P+GupfJWytya2WhVfmuSSutjRJO7X4TJaYnuoa3X5qymvVTVCExjDHdtHVezqVfZNYVI+2aR+Mrqq5m66Hohzd1wP+VhidtS0xmyaW3Jy7kX+OVvvtSbLzRUfN+Uht6ZJ4bVW5791c8Z9uePUuc3t6c3FxNy1ps37aBWddf6Uqq2axuQdwYfNt23bttE6evPmzcyYMYO1a9eyzz77MGfOnDyC1C5B6kPFjsvatWvbjre3L4c3PvZ9JHZd6uisOrbP0qVLk/TFn9TcS5cuDddcc01ynlieKXx1Mh8aGhqFiemO50vNn+I3J9+m+qqSbU5WnoYmeotllupP4UnRkePB+DcZ18nKy9iPaSKrKl5zeOpk0sSOqmBSeJr4TwpvHQ0peaRwdWuPOZ5iXZqfXnbZZZU2meKhCU1N7KHO1nPnueOhoaGwfv36xnir/KmK3m7G5PwpPq6zIR9Xc/qr8s9uZF4n55g2L0sf+5v4Q1MZ5uZO0RfbQZWfp+arihPd5Ikm8jRdpuSXwut5bCqvOjtLfVJ4czrNxZGcTI2mujzTxHd9rVKnA5u3SlY52aTmz9GYkqX/rqq94r6qWqpKvjl51Om8TubdwHgezD5MZ6nYVUVTEzupoiMem9O9t5WYrjobrYsHVX3eNmKamuT91PWUDJrIuc4uesWVkmtVX10OqvKB+DznR1U1T5X86nis+9TN5XN9lR6qaGsqmzo6c/L2+SXuz9lMLi9W0Vd17ufzdXSqKTzxp+tfCFx++eUAXHvttaPfGzdu7DiePHlyz302j13LHa9cubKNFn/N91XRmcNt7aSTTkrSl5KLx2Njly1blpw/lmfcUjApmVu7+eb2l2imeIznT/Hrx5l84/EpGup0GvOT07vnMYUjpYNUfyyz+LyOB+O/au4qGcdz+2vxeUoWOVuO50j1peSQkkUVTApPUzpjvB5/Sg8pecS7mE1knZJ9jl9v9+bjKV/Nja+SSVVMa9pfZzN18Swnmzqbr5sr5r+bMSl+UscpWXt9mr7ic6+/Or7rdFjHU45mH4cXLVrURk9Kbt34dg4mhs/BxrEvblU+lKI7zhMpH6iL9Z43aNetya9p3KvSV1wzVMXAuFXZbqzbRYsWVeb81DxN8kzqWi6ONfW13LxxTdAk/uViW9xif45rjBjW93l/iu0mFSdiPFV+VEVnnc3Wyds3bx9Q1ohr1qzJ0u/nTtER05yLbbE84vNcHkjxYXqL565bDzTx25R9+nmr8lddzPbjcq0qFlStNbrBlauD4jF2nIqxsR5zMSamL+VHdTVPjq4mPNa1urmMXt/q1jAxnnhd0S2NqblSflYVy+tq6FQ8qstTuZxsNfR9993H9OnTCSGwZcsWBgcH23452tFSuwSpDxU7Lv74iiuuCN/85jfDpZde2nWf9afw5o6raKm6VkU/iR0YT7O/7uE87VW4rS8+Ts1bxYunNcaTkmUVfX5c1XzGfwqnnX/+85+v5Tkn89TcHkdKB6n+FJ4UHTFPqfMq20jx78fXySrlF1V6sDHx3aCYtiZ2VAWTwpPTSR3eOhpS8vB3CnM+W2ePVb6Rmj/FXx1fKd2k4lydPVTha2KbdbKpigUpu07BpPjoZkxu3pj+JjaUOo9h6+TZBKZbmlPHue+cTTSJsTEfTe2gys9T81XFiZy84xyQup6SZ6+yqfOR2CfreEvJJTV3Trf+uIq/nCyrapCc/GK4Knpz9MWyyskmhytFY4rXOrlV+XmdXKvkm4uBdXRWxdKmdl3FU0qOVTQ1sZOcfqpoSNVQObpy5/EYwxvXhLkapip/1vl4N7poKucqu+hWZ1W6atoX81M3vhtdVdU8VfKr47Hu081cVTxUjW0qmzo6c7ir9NOkfojlX6e7HK+G5/Of/3xYunRpWLp0aVi9enVYtWpVuOmmm+J5iT9d/0Ig1ZYuXTp6PDw8zOLFi1m1alXXfUuXLm173tHjzR33SmfueHh4ODveaK66XjVnFe5uWyyrJvTU0VfVZ+M9/yl9LVy4sO2ZmRzP3cjFX8/poE43Vbj9OH8e85eiMyXjFB0pfeX8wo+J25IlS1i6dCkLFiyoxP1MtJzOevXHuHl5TJkypXL+lK11I4eY5ia6rsNTFedS41K0pvBVnafG1flhU16b+F03Y6rm3RE2VBfLqnSRg+nVLnptKRqbxhjolEG3cXF7fMiPz707YXv8LIW3iY/EPtlL60aOveT8pmO68d06G0nh6lZWVTawI1ovdVoOT6pWadKq4m4OX50Oq8Y2bTs6FvVq41XXcrkoV/sXRdGW+3PxsMrnf1cxe0fVPd22Hb2OeCbw7shWJ+ffpR5yc+Viaje2uCPkH/tRq9Vi9erVbNq0ia1bt9YjSO0SpD5U7LjEx9vbl8ObOq6ipY7OquOxfxlIz1eFM9eX4jkF0419pXitw2PfY/8y0LnLOPYvA/U7wSk59kJTXf/22GYVHXV4crGuit5uxjSlPyfrlL7G/mVg7F8G6vDnaE3FqrF/GcjPX+dfqbnH/mVg7F8Guu1L9Y/9y0BevmP/MpC3zZT8cv6W+k7FkSY238QWc3D/k/8y0NGR+7RardXd/C/m9vQ1+c/Gbv+TshfcTenrRg51/9vZDS8pPE15qcJTBddEPk14rpLjjuLDvv1/qKbo6MUGm+q8iay6na9bu8zJtkrn3dhmlZ3WweTk0Yusm9hbt76ak9f20NQtj73ExybXU7w2nbtXX2pqQ3XxoI7fbmPHjqK5G794JmJsN7BVNDSJE1W66db2ml7bEfJq8p3jyxf73fJe5ztNxnSr+yZwTWXV1MbraKniram99aq/1HkTHnvhuZv4UoezymbqYmXd2BQd3ci5as6mPPcC2815U9vI9fVi+1W46mhqqtOmvtWNnabG+Bo6R2OdjLv13Tr/qMPXrd02jSPd8NdE3jkeq+itiglNPq1Wa/V2bQgkB8Ma4L+AQeBy4LfAZuBTen0ZsMLBHwg8Anze9RXAEHBdhPtGYBtQ6PkFwGY9vhf4nB7/E7AO2AP4JfBr4D7gGmAaMALsp/RtA45XoSy3OYEfAqv0+O3Kz0zgO8At2v9l4Ek93kd5/1s93w9YDXxJz38N3AE8recXAZuAuXp+GLAK+IyeXw9cCtwNfB0YBp4AblM8xwD3A/+k8H+sND4A/IvONwSM188w8O+qi6DjB4Ff6fgX6Pl8PV8HrAT+EFinfXup7J4C3gecCKwHTgXO1v6DnL6uUhrG6fkPlI4+PZ+hc75Dz78D3AJsAf5N6ewDfgXcozCPqQzu1ONv6RxnAeP0+CpHw5MqmyHgfdq3P7AB+Ijys03l/BOd8yGl42HtX+rwfcnp/LXARmBPPb/a+AUeBP5Zefm4Xj9fdfdmh28Ysa8LjV/tf6Py+CYHe7Tq/JN6/mFgUI8fAf4eOFj18DI37vN6/UAPq8ffB+5ROoZV5z8A/lZltBq4FbEr08cVwJXK2xcRW/m46mMEmA6sADbqHBcitj6g8lmu+r0f+IzK8DXAkMIP6FyrgM8hdvuQ4p6QiDkrEF98AvhX7fsIcBfwAgf3I+BBPV6scviw8vkJxJZPB/4K8eVhlfmjwJcdnp11jPnqE8BXlL4NwO069zbEph91/nCrw9Pm89r3SsXxWWC1639a5X45sEz7vgo8Duyl5/+A2PtCxOdHgPP02h3A1/T4HYhtvdbhfwr4rIul33HXHgdu0ONBlfedlLF3utrCO92YLyKx5o16bQXiXxZ7d1e5fcuNOQOxpWMiu5kHfEjHjkP8bhiJkbcr7SOqp8+p/F7j8P4L4o9HRrnkWp3vg9r3sOnKwTyq8hwGZiE28wMH83bFfbqe3wxc7WxsPRJb36jy+EPtG1a5Wr4YAi4BnqM0naUwaxH/ux1YotdOc/N/T3U+T88PUXm8JNLFaiTuzVe8c4E/VblZPn0+Eu/+xNnTw0rDbUrHN5TWAWA3pedTiH/eivPTCDYAR6n8vhj57+sQe3o78AXgbnftUeBhPZ6iuPd3PvGXevx3iN2e6Ma+XvG+1fV9HNji6oxB4GZ3fU8kHr0WyWlbkRrml3ptM/A1yviwDrHNv0Li6GmKNyAx82s6x1uBg1Q3Z7v5tirtU/X4PcAByudG4J3afxfwc5XlMPABpG7ZhMT8HyD2+h/AUw7/G1ROu+mYYcXxQjTeKtw5iI9eAvyr0m41wa4Ksx7Nw27c5UrfccqzxYc7lLb3qU2cAOyrfP0EuEvHP1vl9pcO5+5K56VIjtgEvAnJpw8Ai1QetyI+NKyyGJUt8Bvg53r8B4gdv0Rh/xupBzcj9nEF8J+IbR6kYz6muA/Q883K1xXADYg/mB8/huZThb0PWKvH71I9nu/0cAoS99/jYv4WJLcOAdemYq/rW68y+zDt9afPP9fpvJajVijN3m7/CDhWj5+rY36osv2hyv0oJL58Suc9y/nOiMppWOe/A6kLvktZU8xC7OMLkbw+oXhuBzZF/LXlNe37kNL1Itf3e9r3Qdd3ssr2Yj0/FalpPuZgDkdstV/hVwJ/o9f+mva65x7ELr6n1z+LxJkjTB5I/Bqk9Plbkbj1XtVnC7gMyQ1DwAsV1wyV4Ukql9nO1u7Uj9XrRyBxwuz9JO3fDHxaZWy4hoArFdeB2j8JicnDSu/7kPrE6r1NOkecE24GLtPjK4E79HijyiIgtvtayjWN1dDf0/P/pqwfrRb4FVJj/0xhvgU8pLg3OP1dh9SLFnu/SpnnVynO8ZH9vE918wASyy7ROc9RHG9TGb0asb/bkFpkA3Cxyuh7SH1hfj6CxPLHlYY7gZ8iNcSQ0rMRyQMbHR+fVxpfoHg/gsQBW/f9WOFmuhrk+67+uDzOkXr+A8Q2B5H6eAS4SeldR1lf3ILUJz42L/Xyqvv0sX2toCz8x7nzCXrdHwPMRgLObNe3E6K4WRHuWYhBTXVzFe7YaJ+BJIeZDmaSfsajRuTmtnls8RzTOQVxuKnRnB5mBmIQMx1f6xxfRfQ9JeJlVgLeeBpHuRiza7HcjPbCXV+v9ExC9DGBsliZE81nMJOLouhX+rz8bI7g+jwPMT8mgw0qG5CFw2ZEvyaDrXTqs1BahygD2QQHg8rC+m2M6cDbkuHy8xitk6I5Tc4xHd5eB5AA7/F4HW5UPm38eAffZhNFUZi+JupnWL8NNvaL2Ka8vZqtpPQwK8KV8pu4bxzt9mSyGe/Ordj38jKYGcBAURQT3Bzexr3OnqL0LePL7D2FO26Gv99dT8nP69JsZYaObzm5+fl2SeCJfb1f8ca2Uxf7Yp+HUn8mV9QfJyCbmcZviscZaHLB+bMbkxtnsjE79XJEZeLnrotlRstGnb9QnLYw9LE35j3lp1PdtSmIj/j80kcp+4EIR45fr4uikAdaZwIzivLhVuPb54xYh7EtxHkjtilvWwXQVxSFxfjxjs+d6LSnWD4p3nJx2GA8L5Opjzle1+avZmOxD6VigI/H/XTalp93FqU+UT1Mp8wfnnbDN1BBe87Ox6vMJyk+X2d4+ZkPmZ2Z3ZlvjuqQThmj/QNkcmRRFOOUhxbtuo3zrP9MdXDex3P5ys85lc76KSUrXzMNAZM0Bk2mtPN4nMkwptfbi9efj9PraNdRDOdrGoP19VFA7CSuJXw9aHWI4e2P6MzF0hkOn+fPcpPXk7WZwDTVb6pWimOGweyELI68PZreBLBTD3HO9PhSdVNMcxxTjK9+2m0rrqFaSOyYSmds9PLxPuPrV6NnJjCuKIryj9rTfhvXMDm4WG+pHNtPex7y1y0+edvwudHXWak1ga9ZvM5jvJ6OibTHNT93H+11VxGNif1tOlJP+RrRxpsuJtPuA17XcU6wvATtuW087bbl+Ta6xiObDv106t4+Nrfx52FMRp52s6NYNr7Fc3jbsRrB1hbxnBORNYpf+/ja18cNk4+treIa1Nc8Ns583NZAsV3HdVi/Hse27u0pXm+bXFI6iWNVbdsRGwJmCOMU3zBlYdqisyheQ3sQ7OjT4mAWspMTJ5/4eAayGJ5OKaDJiAGYE/ZH+AIiWFPmREfnVGR3xRfXo7y4YnI97YHI89BHqSDDucXhTMF7o4sVGssiXpj565MQffhCJp7PYCY6+U2mNDIo7zoabV4uFvz8/33ENHq9QKdccfS3HD3eZuJA7flO2ZLh8vNMoVOf3pF8gGtRFp3Yuerc8Ngbbzy/5gdbyevYy9wfp2SXGj8BcQ0fpFIyrbKtXKBOBT8Lihb4ttGZPEdUXjOQO4s+sHo6jAaziSluHvPRXGKMW0xzTn7ejmYghcAMSlsyufn5ZtNpU0az+boVrj4I+4LI5vTHRmOM22xqdEMA8ZcN+u11F483nqbTaU9Q6rpNNtHCxPNDURQtHTddr3l9+FgW21ysV4utqdgb8z7FnVtM8deMN19wW1yKfb2DX22mC5OJLQ5t08F46HfXbGPGx4PYFryNebmkNrd8EWK6sjFWaMcFppdPirc6//c6iONgjMvbMrT76ww6fcjGGH7LiXNcn/fRFA++WJmicqEoCr+Z36/xN/b3VB2RsjGzqdExbhPIy8TbWZ87t7jodejnsjxpdm86i3UzWWmZQrtucxuiOfomOpgWsuExTuGnRnMY716vsfxs3rgmWAdM1XyTkrGvDeL4Pl3lZvmhSm/G/wTac5CH9XVfQDbuUjkdR8NMyjrP4+0jHUu9X8e5yM89KseiKAZUXk/RHjNN9lMyuDto0NhbODwoD08ievW1mcnW20wfZfxP1TjQbneer34kFppt5Wooi1P9tMdUmy+uPY1GXN1cV+dYXwou7otlW2Vf/YnrfhPKZOFjvskojp19lD5v47zvpeopixN2M6HfjY1zRX903iK9yEvxY+O9P9sCu49yvTaRzhzjfdWvd2wDKObZ63i8zpGKl/YZR3sdifv2809ycH6uqg0B6PQr06e3bf+ZRGk/Ho/pKabT6Df7HqA9P/kNmQLZCHia8gZLbMN+veE3TmM4b6e2VvL1UCzr/9ENAbtLYzsc3sBatBeps5GfgMQ7f48jic2K1En6/biD9czFCeBJ2pXaotx9H9HvmTr3LNfnNwSMzinIrpEFTZOR7aa1ojlTfMXJxOOsg7cNAZ9sZyM/azJ4KyqteJnm8Nk1210b8fOp8U6kdBJbBD1JWTxA+hcCxkMbP3r3ezLy8zC/6+5lFMvAb5oM0B68JjoYm3887Xf5Z+t8k3V+g58QzePn9XIdh0tYlAnV2+tkJMi1BU8tBCY5fi3wVOnYy9wfG6zXb6rPjzG7SC0acrYF7TZpPJu/FLTbXPwLga2UgbDPwcxCFrBrdE7DYXRMd31mE1Nh9E5tvPFUFfw9DwO03zGM44rXpbfF2EY8L3MSeGI7tnktOcYF2YDekYxtKUWj6c8vVlPxLDXew8X21FcxbjKdRYDJ2XDupDzkFinezm3cWkp5+gLC7szE9h3jieOL3xDYSmcCtHliWlJzmS58PF2jn9nK6zTKu5/+LovXYWwLubzhbcLTa0XIVv22MdNI/0KgjrccjOnbFyipHORxxYs7768zSNul91O7PptS7962UvT5/NqmE9pzt9lSK4EjJxuTj9mR4d9Gu83ZdfMhszPTk22KWowy+7H5bUMztsecfU+OrtnizsdVH983RfT5wtbonxTNEc8/DkDtPJafL47NLn1NMFPHFrTXUH4zHf32NmK2Vxen41/kxPnD24nF6WlOLkR0GA22IRDfSIhx+zHm13Hc8znR26wV7nHu87LP4ba6d4L+si6OvSYvX5tZf1ybjaPd1nI0xzHKaLENf6uvcjWU/4VAi/a6AcpftKR+VWN3S01W1kwXs6K+unqIhGxz9uXzkJ/L/xLArx38xkostzimp2TrF3CxzuJfCOTqHj9Pi/b4Y/HI/HEn3RT0vmSL6km0rxf85k8co8wHTTYt7bN1j9en98c+h9f49jHNvv2vCHxNahuaNr/FogE6eU5tCPi4Gce2CbTbtv9MpjOnGU8Wt/z8cR1sMrEbKaYnk+E0pDa2DYF4HeZtLf4llbdjHxttvZ2qh2Kd+LqtWevm+YL4g+yMPqIEPIg8bxMod6ns2J6XuUkZDcBk7fuUgztD+17g+uy5+Z8LuQHtX+qOtyDPqtmzFDb2tfr9Rv0eBpYiBmIwhTveB9nRCcjzRZson6k3mCWKY5Oj53ok0AUkKF6P7DzZ9fURL3c4uU1AkspWPb9evzcjz3jehzxb9yCloo3GtcgzO0bb55F3Ldi1YcV7ueP5UOT9CgF5JuyP3PjvU7734FiV64jS9Bs9vlbpCeizx8izWYbjs8gi0M7tea2/0vNNer7JyeUp/T7PjZur36ucrOzzFeRZGjs/hTIY/la/7Rn1r+v5E8jiPiDPG93gxj+k8rLzcZHOT6K02y/ofHbtM3rtV9bnxt7uzl/i6Fitx+emYN2ziabzccjPDoOb+3vI83sjwH06xu5uPkb57outwAN6fEskxy36Mdtb72S9FXl+/hqVT1A+n0ae0zYbfJfD9xeonyLPMo/o8Y8cz0PI+xcsuJ/qaHlCaTe65idiTkBsMJb1XejztLT79F7K91Nunnspn8P6ByRoD1I+dxmAaYrrm5R2s0dCdiudnuxzpDuenvJ57TO52vgC+H039mHDod9PUj6zHpTmn1P6/INeRu74DmBYz5/j8Nsmmcnxde7aaZT+Z/RNB/5Sj+2dAuPdmOVO5/b5Q+RdMuv03HLBzQprcdyuf8rheBfiBwGx/yHK5zefRp6RC5TvbbCc8xDle0hGeUTi4U3IexWs72LkOWU7/2P9vsTLxslyreplmhszUfUwgvjxh7X/Fu0bVNrvR57nNl3eQBlfB5VH85Mr7ZrOvYv2b6B8zvP7CnOvnk9WmMeRZxIP1/PzHa0XuZx0t/GnuExGGxC7tjH/jOSZLQ7/XYi/BuBMB2vPmv5rLD+dZwSxx4DYhc3/HofjHci7HALyPLH50xZK376P9vduBDpjqOF7JfJMrp2/WK9/njJeGk0PIe/k+QSlD1p8CJR5ZyUSK45zMrmT0la/o8cWe1/t5v+I4+dDlPH2/Xq8TvXwXqeTH1HG1UHa89WzdQ7Tx2coY9b7KOsfe//IVsfvz2iPqX9Fe01wno4xHcQ11Hokntp86xC7er/DYT6yRuXmdXSkk21QvGYLDyn8RpWVPbNsND/g9LzSHa9H7GOLwzukfddR6vwWN2YT5bPYhuMaldNKh2vIzftGh/9DiN0Ep4d/0zmfNJ4p7eLTbuxzaa99jlTYj7g+X5u9j9J+VlLWYzbHBr1mdjuMPOu+FPG/m1UXlvct5/1Avx9UuBWK78JIl3/sjm92xx+P8G1RfT4IvMzBWU04nTIW/jby2xXGr/Y9jfqX67s3ku1j2udhLN6ejNQv9+p5QXvdczeuztSxv9LzH5s8KOvtbTrfRj02f/ig43MEeKXi2kfl8Qa99mrtN7tc78a9EIm5T6n+3qC0DlPGrG3AL9yY4ylrqRc4nT3gcK+hzOXfcGPfRHkjMtCe0w3nVsfj+5HcPKT9Hu+DlLXWCBIPRlS+BvMQsEb5H1SZ+ZrtHyljakDqfbPXeVE++QjluxcsLtyhtA4h9VtAnsEPlP4wiKyLghvzFJ31yw36vZSyXjNaLCa8gjI2BKVp2OH4AmU+G0Ri+QHuui3ize5Gc2SUx4ZRe0fqhKccLwGp1R6jtOtVwG/q1vFt8uwGOFKEFV+PIi+wMUG+kfJlL68FXu/GHIG8fOk81zcXKSheS7kQG6fnZwG7aN8Jin+2GteT2v8a5GU1+1AWNefpx4z8T/X8DOSFZAH4c8pk9xrE6QqkYL4Q2UX8nFPKOUhh1afKPJVyQXcY8kIWw+cNagZSXF8EzNHri5FE6OG/QvlyHh9QAlJ0HOrgn40UskGN4jzgechLbCYgCeMm2g3ydIUrkBcTfQDZYdwJeCnwKpVrQJK3D2wvQ16S9CbgWchLCi8EFig9faqvF1C+lOg84MXALD2fqWPshVyfoww0VyHFzwDOZihfXBdU9sbzgcCuOp+3myeRovAC4Pnat7vK/ieRXuyzzs3xetpfvnYOYs99yEbQRciLusw+X6h0mB4uAF6qY1+E2KSd9yv9JyK2/F6QF6QgL8zZ22C17zjkpWGv0/PTdHwfEphWAQtUpse4cedR2pcFWXtpy1baC8mAvDjxeZQL+xHKoOMXj++nLDzWuP7zgHNN1yqngNjJ8/S6JYjXIsWPBe79ccEQKUY/6s7PSsSd25BC5+2ULz16teJ6toPzPn2kyt02CO9SuR1Guei2OHEM7fFpARI3Xqu43o68SDVlS+9xc54X4Wnzee07XulYhS5ukAXsKygLxJ84vR4HHKLn56pN7Efp88fqtZspN97ORmzLZDUOsdNX6PlFwMv1eILK8jzViy+o7YWWM3B+7Gh7PrIhEBA7/bgeT0ZixxLac8FhisdeGneq0rILkg8u0rFHUxbAvmgKiC1fBCyJaDmMTp+w4v1VKuNzVM521+c85d3i3ngk5pzr8LwI8d0lDq/5575Ky5HIS6UGdQ5P77tV/pcgBeqhKoM/dTBWsB+IxFvTd4HEpxMpX362UMcfFfF6FLIZYD49oLRfCEx0OWQ/yhy2irLgscLmPCQHz0U21p6D+JXRaTT3OdgXad9c5OV6L4789yw0LiKx987I7s/R47MVj+nnXZQ3DF6D5LAlkW7iGPpS5Xk88uufFyF+Y3F3vl4/UfXmF7Gz9dzfYHgaiT+vUf2cTHv8GlR8zyaKzUrDRUrTTnrtDNo3rG53x9/VaxcieW4vpWc+ErMDZX6y/HeSzjFXx1ykOL5B5wsl91V5P4YsSKwmmKGflyL+0HI5/jwkfn+Rdrv2uWAJYn+2OfUJ4I2K4xSVm38JqG28/TPlRsDVOD92srd53qtysXh3GWWddrbS8A8K+2naN5uMzsWUC+9XIfHnIETvKd78x/JpC9lsepnq9Hl63WQ/V+k/AX3xp/IUEP8crXuJYq+LtaYH26BrOdn6z4WUMT1Q3kCwz2uQHHkh5Ubh1xCb24DofgGS++9CYs9ix+cFlJtqk5FYdB6SI6ymmIbE6jspF2lBdTyesk6YHcWr44Bnub5XIvbpc8zpSLx6lesz2b7U2f9BtNuX2UGfXj/YrtNZ9wRczEc2du5G4sqbEJtZHMnVcuTzVefTVF8f0H57ady5ev5jyvwyi7R9fZL2uPNzd/ykO/6Gznue8vcX2m/29F6V0amUtfMmpW13OnPCGxzvr3N434W89DMgC+2fIzW7p/lpxTtIJz+2iTKkMOsoY3sAbtM5X4/Y6Rwk1q1CFr7elkdfHK1jbGPzPqQufQWSXyz3/haxycXImsjTdztij+fRmdO+hLyQcCOymWbX3ufmfKnKptDv72q/bUK8G4lH8ylrwlOVvoJ2W/Oytxxp6+hXOP3dSPtGsdG7IaJ/9KZ3XENXfSxB9NSKojgLuYOxqiiKIxDDurJnhPXzHRNCuKooijnATiGEu6PrLaRYusH1LQJuCiHY84kTESV9KdQwrz/DOSKEcE2XdB5L+cb9qxrAL0KMdRqycJ6OJJMNiuMXmXHPRwqqlYlrs5AFwwTgmyGEwQZ0zAOODiF8T58dPBd502gtD902ky3icI+GEJ5MwOyGOEZ/COHn2ndMjp6iKBYA20IIDyeuTUYW3sNIQHoUccrHkIA/JYTwwx55yerhmWhFUeyKFLX3N4A9Btl9D0VRHET5jOcURBY3Ot94IaKPe5DA9SWkuAshhKvNPpBd02chAfi3sR/FOiqKYi9k4fcjPZ+KvH33q3p+BFJkLNchJyBvmu3wUbXrWSGEFU1klZDHS4HlIYRH9XwPpECaAXyhLibomPFIEbkRkWc/8kuAr/VI0x7IHfyHov5Dkbewb+oS3wxkI/WOXuhxePZHCoeA/PqgUuY67+khhK/rT+KO3lGxQ2PkasT+Hkbi5G1NfMDhyMYOB9NTzI9wjNqo+t/+SJH9m5R96U+EX4PY0jokX3XEwx7o6AMWhRCubgC7ANkw3AOx651DCL/KwD4fKQCnIv8KcL271ljvRVHsi2zsr0lc26H207Rp7h42mbn4MB29Mx7nl6IoDkc2hu8JIdzZw5zHIEXjcmTR/DASV7dk4McDh4YQrm2IfyqwRwjh1sS1vZA7sY92Qa/VUBYPpgAzQgjfjOBGc08FrnFInfFFzVEvQ34B84SDOQrJ04fo99Uep+b2PUMIt1TgPRtZTG0IIfy2hr9jKH/yPBFZFE1H7nCOJ+PHNrZBjKmFSYwZrc0cjbsi8WIohHCFgzV5HYbktTuI9BDVnKP5tKaG6vBJV1PMMPkXRTEXkdtJSNz7dZO8+ky01JogAWN1z0AI4Weufx9gfQjh8Qj+GGTDYi1SK01P6bMoilcBl4YQNqjsXofc+DvU8ova5TrkpkmBbDDcgWyMm/6+Brwc2WS5FsmB/cgvdDe5+QaQjZXrMnyejvya7O7U9armfP5qpHbuQ2rEiYhf3RFCuNvVDBuQDaZHdMyxwOMhhFuLoliI/MPHD+N6LJpzD8pHxfZDNlC+FNnxXGRD6UrkV+cr3bWzkX9We0LPZyBy3QmNt64OPBGx44lIXXxDCGFI+XlceZkUQliu68+TQgjfiuhtITeL78HVtzuqKT+/DCGsLYriFGTDahJSX/wKWcdMRDY1f4voYX2T/D86x/+Qn461sTbWxtpYG2tjbayNtbE21sbaWBtrY+1/sqV+NpD7tFqt1RMmTAhA8N9xX3z9meiL501d31HwufMq2qpg6vDUybcbXFXj40+drLrhNXdux03wb6+O/KfVajXiYUfoMsdrt3ib2F9O/zGepnaQkmHVuCZybXo9R0u38aCqvxuf69ZP6nB3Y+tV+JvaQVM7rNJTU5nnYKv8tFv/a6K3pn7cK2wVP3W2W+VvTXTaDUxTu2jy3dQeu9H/9vhzt/x0a1tNdNzE9qt0W+VrVcfdyL4Jvd2Mr9JtEz+t0kUT++pGx73YYK/22ZTGbmVeJfsqH21iT1W094KjF/669e+m/NfZVJ39NLGhHN4q3TXRde7TarWGm9pkN3GkTqc5nproM4cjNWdTWdTpshufrLPhXsZ0YzN1dlo1V5V91djR6qo1flebAYZ0wYIFAQj60422Y2vb2+fniOdLzZuiqw4+vp7jK3fuaauaO0eHH2sLqxx8nQwmTZpUO1/MqzcmP39OVjm5pnjNnXvjjPkzeqrojnWVm2fSpEmh1Wq1OVUspzobSX3X2UgKXxP5VY3L8ZobH49JydzLwY69PZg+rC9lf6njFJzhT133tl/1qZJVThd+XpOJt4Wm8s/ZUpW9pI6rdFjnR1V8eplWyaZu7kmTJmX5q5N5DjZ3rYq3nO010VuV3HYEbBU/Zstxks7JObb7HD9NdFHHS46PupyZ4qlOfr3SXifjJmO6kU1clJndeX7j8XHerKM1vuaLyiY5t84+m8ilG5ypPoujuTqlaRzwuGLbi2Vc5fd1OSaOY1V0eZ16nTSNqU1wN7XPmB7Dm7OXGL4be6qivRscxl9VXVXX18uY1LUm/MQ2bN9xvWQtjgc5eXj7g/YbJda8XXodx/r1tUar1UrSm5NFrJc6n6+yC5OLpyWOlzEvsSz9tVgmfs54vlRNGNcmXg5xrZea39tAit9U3EnV+3X+3K0/5ew0JWfPU7yu6XKDKbkx0NGR+6SQ5gxt2bJlARj99n0puFRfr8ZcpaQm+FIwnqYU3XVzp+BTY3vBX0VvU17r5FOlryr9pc5zcq7TeZ1MquZpovsm13qRTQqmiS9UyaxK7rEsqmRQRW/d+JiOnN9WySPFl29N5q3SRd18VfFpe22pSh+5+XLyzPFZx1MTvnN8xvPXyTyHv043OTqr7C8lpyYxrwkPdd9V8a3OZ+r4zOmvLv+kYLrxmTo+c/yk+Fq2bFn4zW9+0xPtObzdjEl91/lSne6axtMUXU3w5OwjdVwl+25so05WdXJK8VMlC28X3co4tuFudJniP44ZTfVfJfs6/VfZa5XNpHhropu64yrau8FRR1tOfr2sDew4t7649tprG/HTRI7x+Kby9XSm+KnCVSffOpnV6aSJDTfF2WSuOrtoIotYpk3kWkdD0/4meqr6bupPTdYuTWlr2hSW+NPRkft0Y2hr164NwOi370vBpfp6NeY646vDl4LxNKXorps7BZ8a2wv+Knqb8HrNNdeEyy67rJHhpvRVpb/UeRNHTNFQJ5OqeZrovsm1XmSTgmniC1Uyq5J7LIsqGfjza665JjsmZ385vafkEOOP6Vi6dOmoLV522WXh6quvbjRvlS7q+K6KT9trS1X6yM2Xk2eOzzqemvCd4zOev07mOfx1usnRWWV/KTk1iXlNeKj7ropvdT5Tx2dOf3X5JwXTjc/U8ZnjJ8XX2rVre6Y9h7ebManvOl+q013TeJqiqwmenH2kjqtkXyerJjjr4kcVP1Wy8HbRrYxjG+5Glyn+45jRVP9Vsq/Tf5W95sbEtVlTvpvYUxXt3eCooy0nv17WBnacW1805aeJHOPxTeTraxg7r8NlMLnznA019dMcvU3sok7XdXPFthzLpG5sXBOm6GtS6/XaXwWTsvMq2nLybmKn3dAW19D33XdfuOyyy8INN9wQ1q1bF6666qrRjbMQOtf5/WxHu/ba8iW3l19++Wjfxo0bAVi5cmVHn425/PLLmTx5crYvxuuPfZ+nIe5LwaeOYxwxjKcpRXdqbBWf8Rzx+Cr8MW9V9PrxdhzjXLRoEcuWLeuAa4K3itfcecxrqqXoNltKjambJ9Ufy6PKzlIwsZxi2cRyzvlFbnyOFw/r6fTjbZ46GfjzRYsWZcfEfKToiP02llmMP6bjpJNOAmDZsmU8+uijHTyk4ktOdzEtqflyMquTf6q/zudTvFTFhHhMUz5TfKT4aRKPzEZzY5rGH89HVXxPxbpUy+GPfcof5+JVE9h4TE4udTSnjut4S83RFCZ3PaW/VL/nM25VNrBy5cpRnXRLe04vTWuHFI6cbKr0EPNaFU/r8kDqWtxy9pGLDbkxdbLK4e/GTqr4aRoH4lZ3vW6+Kl2mYmkcM5rO22vt5edK2Wku98S1mechBR9fr6K1ivb4WpO6NUdbnc83jQm+z2SZWl804SdHa9X4+Frq2Ncw/rwKl8Hkzn2rWk9V5c9UnmtiF01jZGps3Kz+8zKpG3vSSSexbNky1qxZw5w5c5L0Nan1rOVk1ITPnIyq6oVUDRfjarp2aUqbxQyroTdt2sQBBxzA0NAQjzzyCEcffXQ1stQuQepDFztPV1xxRaO+1K5Kbicmhktdz8FV7c6kcMQwufOmczeluxf8VfQ25bVOPlX6qtJfFe46GTTRZdN5usVbx2fqOGXfdXpNya1ORrm5cjqokkGdXKvG181Zp7ecfHxrMm+VnTaZr1v5N7UlryM7rrKF3Phu+KyTTZO5c/zVybxOrk3tpIn95eTcRC/bC1vHT1NbacJbnQyrYKrssUrfTfRRJz8/Vze018m4yZhuZdONvTXRbZV8c3hS9DW1zyZy6QZnnZ1U8VMlC4+7WxnXzVennziWNhlXZ3+96L+pzOvk0kQ3dcdVtHeDo462nPy6uV6nB5PhN7/5zUb8NJFjTvZN9F9FexWuJrbcxCab0FslmyY4m8zVxP7rZBHLtIlcm8q6qU03kVHqO1XD5WymG1rq9NukKSzxZ7t+IZBrw8PDACxdurSjzzd/varv/3r7385TU/qawP1v5/WZain7jluVbLqR25IlS3qeZ0e2HT3P0qVLWbhwIatWrWLKlCnP+Lwez47mxdtDE9uoGp9rv8v42Q3eKrnuCPrq8srvsj0TPlDX18ucv0s5+bma0F7Hz/ba+fbq6P9STtteWXVjJ93ozWJ7r7iawqRazJPh2ZF1Ty+w1qpk/ru0vf+p3LEj8tjw8DCLFy/uakxd60UeOTv/XeSJ/x+brwlz1/+3tqax9Jmuo1utFoODgwwODjJ37lwWLFiQH5zaJUh9xv5lIL0LPPYvA/kdu9S5Haf4G/uXgfS4sX8ZqI8bKfmM/ctAMzv0fI79y0B3Y2K6x/5lICSPm9BeJ+MmY7qRzdi/DDST69i/DPQW+5r4VxU9hnfsXwbqfT5Ff4rusX8ZqLbhlFzG/mWgWkZ1dl/nTzk7TcnZ8/Q/+i8DIcimQJP/SoyvPxN9uf90rPruFT53XkVbFUwdnjr5doOranzO4XKy6obX3LkviOrwb6+OIgdoxMOO0GWO127xNrG/nP5jPE3tICXDqnFN5Nr0eo6WbuNBVX83Ptetn9Th7sbWq/A3tYOmdlilp6Yyz8FW+Wm3/tdEb039uFfYKn7qbLfK35rotBuYpnbR5LupPXaj/+3x52756da2mui4ie1X6bbK16qOu5F9E3q7GV+l2yZ+WqWLJvbVjY57scFe7bMpjd3KvEr2VT7axJ6qaO8FRy/8devfTfmvs6k6+2liQzm8Vbprouvcp9VqDTe1yW7iSJ1Oczw10WcOR2rOprKo02U3Pllnw72M6cZm6uy0aq4q+6qxo+RGQE8bAkkEsA64HbgRuAL4NbAF+KJeexT4HHAasAnYG7gcuAGYo7AvBv4W2KA4NwJ/BbxUr88CbgIuA/ZVPCcDnwdWA4uU4UFghcLdDNwKPAmsAT4DPAfYDLwSGAG2Af8GDOu4Hyru7wH3AVuBPwBeAwwB1wO/UhzPAR4CvqVj9tNrNysPtwI/Bw7U698GVgFn6Pjdgd8AVwNvA55Wmg4C1gKfUjwvVhnMUZldrrw+qPyvBT4JPF/5vxy4C9iq4/fR+U8F/kP1sR64TXU2DLwOeB+wLaHfbypsUFlt1ePPApucDfwDcKbSsAyxg7cDwwrziMpgGNhFefqM8jwE3I3Y0VMK+y2F3Vn1skLH3IXY2aDO9w86//6KawXwI+X5WOAJ4MsKv6vj6z3ABh2zn9Jyv87xQeDchM6/Cjym8vs4cJbinQtcCyxX2fwH8LTOsx74e+A7wErlaQi4B/hv4C+AjQr7FPB3wO8pHTvr/Fc4nf9AeVusfH+Rdvu4AvGxTYjPfQ54TPGfoHi2OnlvVBk8AvwzYn8jwCQnq6sN1vX9m5PXh4BXK1/XAktVXmcozieAL6nuXqbzz4z08HHl/zHgY5lYM0Fp+yzi08Mqj/uAccrbG4F367W7VMabgKOQWPAhPf+swkxQ3Cdp//6q71uAGUrr2YrrVuBxHTcnou0inf9WxF/WKt//TNrnd0Vs578UdhiYr3B/AvwUseVtKvufqm4sljxIu8/frbTupn3PAz4NrFX6BoE/An4GXKN4P0/pAwcg9vRPiM/fC4zo2J1Vzy9CbNhs8HDgUp37LNX/m/TaCBIfv6fnh6ku7gImKuznnMw3IT7/qI79mcKaz99O6VP3I/76OOKTg8ACJOZ42b5Q+VmnsLcCdyj+tymtQXF/Q2EtX9ym/SPAW4A3K+xk7TO9rQH+DPGj/1S5TlHY+4GvRv4yKluF/YzJWeGO0LGbgX9XuPE65ntIrtukcOuBL6iMZiM5cilljjxF5fk1xfdLJJ6cr3j7Ed/5DuIfm5yOfqHyerXiD8AxSJz4kqP3KZXTtYjvBcR3blNZDgO7K+yfAptdzviS0jFJx71J9TICFIj9/JfK7mHt/5Xinq7ye4XKf5OLt5+gzEXLgd8ivvFy4KMR7Bd17k3AncByvWY8mP/sR2mXKxA7GKI91q9W/Q47/iyO34DkRYvjl+qcPwBWRrHk9Ur7SiSXDSNx8VYkbwwhtjGM5PDLkTy/GbHjx/TajxR+Aok8j/jE1/Wa6fEGB/t+yjpijc55us6zJ2JPv47i+KGUNdRDKrNNiK8PIb5/F/BDx+++CrdB8fwasad5KocvU9Y5qyjjt/njEGKnH1J5z1UeTla8G4F36Vw3UObIzcr/aqQ+2qxyvBy4MdLJn6kM/oMynw4Bl6i+RhD/+7nS5/UwQ2EvVhu4Uun8PbTuRfz0bxB7uBtopfSg834GuN+d/xK4CvGHNhvX6/+F2Oywjt2GxDOL0w8jtrXayes/EZ+ZjvjBLyPYVSqvz1HWFHch8dXXsp9G7H0z4v+v1Pmn0ZnXjkfi+SrE/4PS+VY9LvTaV5BaZpOOfZrSvqYgfvxjx7+PzVOVxl/g6h6F+z7ic4OqU/P5DUiu3IbEkl843PcD31VafqznJo9XZuqYNcCfR32/Vbo2psYkcFiefz7wKdJ5/i7Kev1+J9tbKePpL1W/r3Swn1N9xbDPxeWqiJ6HFPY+pD65RfvPBbbo8QqFeSwx/sUq3xEk13XkjwpZzFC4rwGPa982JNYt1XkHKWPvFxRmBFmj/Joy3/l5n0BiXkBysMc1ydnPrfptvvNOxA+3Au/QvlVK3/HOVm5X3J+hfV1lOfJJyhz5tNK6DYkPP1F7+RqyFtgEHKHjTsnpqe7Tx/a3Qr8NVz/imAN6bbx+JiFCnhz1DWlfv/YZjoFoTH9izHj3MRqKxCce23LXBtzxeL0+3o0bcOPGOf4m63zjSfMwPhrbrzhT9BvdZng2LwkZDShcn5s/ptH4icfbfIUb76/1F0Vh46wZ7LCTGzpnjtdxOqYFFEVRDES0e70ZPq+v8RFsv4M1vaRswOQS62jAnXu+vMzjuT0vdXbh6SBxPEDeNj1sCq+Xm9mrXYvPvZ3HfmM8+29vd6Znk6ON8bKKbcNkPUC5yOtXmQ0pHbF/et48DeZbRkeq9btvo3sgmt90YbR6/zQeUjaRikXWN8mN60vIB8TWh2jXcypmxToeH+GMfTRlk3bd2yhRXyqm2lzjIjw5P0vFEO9fkzJjvJ3l7NPniJivoLD9tOvM24WXzTZKW4ttYRzt9JmsWwo37K6Nz8BOpCzQp0a68jzHNhXbcioGDABBYyTKs/mj2dQkx4fXhZ/TdNGfgDEfiHNQaoyPcT43QemjudgQx39vWzY+jnVBZTqs41uUfh3L2Mvd81AVQ729j+Y5hfV5xus85svweruMbTjG52OM9xObK84pvvn44fFZv4+VsTws16RkFed5X2f4OJyDHU+7b9k4T3PKlwtkUyKlA5Obz0G5OBHLBWQBGOM1fK0ILwncPpZaHIlt3PPXrzIxu5pAu93308n/gF4bcDh8TDRZWP5N2bevzbxPEuEchU/Qbvbic0uIrsd1ho+rMWxVLPB1lenU+43321TOsk0sH3snOFriGDeBvP5yeShlG7Eugju2GOpjuvdlq71xOHIt9nnrS/WnWq72NN/w8SLG7XNbvAYxHD73+pycoy/Oa7l5czz6az6mpGqtuFlsHqAztvm5R/VdFIXhnEhZW8Sw5uPelu26z9Nenrkcksqzfchif4LDHa8dJtDpd95/fcxtW98k1nK1rb8epLZ5BZsAt9G+IWCC2IYoINunTKSuD2TG2MfuKqQE1h+NneRot0AyztFuhm/KmpSAmehwx3yR4CFOPAbvF/DeQQ1PDO8Dc2oeG1dkxntH97xYom8hu4PWUjo1OsdpYoxpsAVKSldWYJsD2xxx0jLYfnfu9ZmyAb8h4HU03p1bM1wjEW6jy2jvxqZH6AxMsczjoDweGF9j90O0ByjP20BCFimdQ/vCPBX8DCbQHhtSgdwnOy8vK4pyNudp87g9XK6ZjP3CPBUXWqT91QdqLzei8RYvJtIu6+C+49jp+R9x9NbFvrhwNJvwPpHy8SJxnoov44uisCLG7Nfbc1wYGGwfQFEU4yKcuZhn9Nr3SAI21pXfEIhlEdtDnGesz/t2lbyNtj53ze7S2wLWYLc6eIMNlHeY/IJ1m8NrNjWN9iTu6fcbGz7/TNR5fRzzNpqy8yb+72GMz1RcnuhgUnHL68Tie8yX94FhStsyXxlAijG/6AsqL++jOdvyNEyM4OJcZNeN3jbfjha5ce1ApCMcraZ3wz/gYFOL/lTu9nE8FfNSedDL2S+Sfaza6mTtY6OXleX5CQ7/SITfw444PLH9xXmkcHNZDPMLTK8DX+R7m/e253XoY4uX804OrxXW5q8TaM9tNpfpz/ytj057iuN7TJvlmBbp3Gc024aX90dvjybbmLdYZ6aHLbTbqdE2Tvlps/Egtwy9Xie4uXzujxc1Vnd4fXlZGh+pDSvvqwZvm4EpOdetDYqIltT1CQkc1nJxMmcbXhex/caLfu/npscYb9xS14rou66l1k42f7x4jXVs1+I86+sQvy7xtRZFUfSFEKzGiemPNyJSMSLFYy5XpmqtuMWx2TYfW+RtPbYfo9W+Te+2IRDX8HFcjvH7XJ+LaX2Iz8abyn1ad8X5JJZdrqa2/NyH5OHGrcpou8HhGbfAZInS7uBN1v5Jrm+S9k2mVJ7t6raiMX5ncJteMwPwjusN0Bdqngb7SafNt5XSkXySsM2DybQHfKO5cGM8XzjajEeTR8yTD0BmeB5PLDef5FK8tRX0kbxMhmZI49y1eLPENzNcS7iB9l9bGM2eBjNUS1JG+wiSII2nuNjpi2CN5jhQexlakrDCxuvEgrmdW4sDjp0bnPHidW469PyazEwPI5Q72hMp7yL44OId25L9BAdrckvtznte4vPY5sxHzJZSxV+f6zPeRtwYL6s4GJn9xPKyGODntwTj7RmHd0Kkh1QzOdjCxv9CwMvMF2ixLdh8LdrpqItPsby8fIjmNL5ysc/ryPvUFCdPnwBiesyHY3/rI637ibTLYFw0t/183GwNR1NsT1Uxz8dd01Psqz6G2/zxhoD5g/lbXGTEsqnSm48dON4nOTjTmY0vMrC2ITDiYFObTLZpEOcif2wbWxNot0Pvo/5abDfe/7clYCyue31ZYRXHLY/XZOVlYfTGucnz5eO9rwn8HR5fuOTygefPz2WxM6XjqlwU5+xJlL9266dz0ej16WOR6cUW0rH/4nhKxWqj228WeN/1rY92v/f0+YWfzel17jf5vKxSeT6m1+PP6cLHsr5onLeBeHHk7+Aazda8zXvbM1z+F522IWK1g9nOZNptwm48eLw5eVksNfp8HLSWoi3OfZY/Yz14+/bxdzJl3s/Fes+XxYjUwiBl4xP0ut8wMHv1NaePp7nY423XfNsW6ak7mP5GS6pOqIrXsXzr7DAVB+MYFfuixZ7YNnzMS8Xi1K8ATPZ+Q7uqjjGZ+OZjZpOWkoktNk0msY59rLYbFz6PxbV9vJg2XXvf9TzFdaXvNx5j2435T9ljaj7f/IZAbDueJh9HTX4TaZeN0ew3BIwGv6nib075HOn593On1mnmFxPc+FSODBHOeM0dxweTR53cOlsvzxlEz29sQp67WYE8m7pKiXlMrwX9XK7fn3Z9f6zft6gQAvJMoN2NuVWPP+zG/It+X5boC8hzgXa8GQmMdr5cv3/s+jbq9+PI8yVBv9e66/fp8SMO5kr9XqPfn3E4J7jjz0VwV+n33zmYK9zxJ+xY5Xuznv+JgwnIM3//7c6vdrSbDAon78sd7GbE4Tcmxjwv0u/TTo9etlv1+xz9HgGu0+N1+v2Efr8uov0vHR021s5HHNwg8oyYH7uO0saud/r9ewdjsv5hRMdfOb4+SPls7AeRZ3W8zu/V44edzh9RuQed9wY9/nM39zY6bXlYebP57Lm0ba7Pw95UoXPj/Xv6vTYB+yk67Wou8syi/drgYeVxq9LwJPKcnPnkHk5Wt5juXd8XnVyfRmKA4TUaf+vmv1a/7bmpP3TPztl7JIzHf8rEmvlK78Mqu0GH/yKnI5PJ446WH+j352m30Tcr7l/o+Wcdzj/Q7zso7dHoPCiizf6F5VHEfnzcSfm8+cBqSv/6a0o/2Ea7v3naH6fT543PT0bXvI9uonxe2NtOQN7hYLb5tH6GkGLWbMvs0vzrG2781/T7V5Tx4QlH19cc7Duj+WO+ttDOt8UFe/b5EeS5Yk+L93+T7XWU8WQD8uzdY27co04umxzsRqXf9PK4G/dXEW32roqA+FCsR3s/yM8pfWUTpR1t0O+XK9wZlLHV9P9WN9+39PvbkQyrcuSaCPZh/X6LG/NdSlt60PX7HDOa45zdDzq9PULpA/cor1uAI12t4O0x1tdjDtcb3PXHFI+3i/fp9wrKPJLKRauQ51sD8mzxYAQ7rPIe0nEPK6336Mf0tySa/92RTPd01waVJrMvH5u30h6XHrQ5nUzfSnv82OLGGv1PRzCW5x/Wa16+b3NzmU29KoF/mLImeIAyTrzSwVoN9U/I+1BuUJotfpifr1LZmC2vi+TmbegDTm8+blleNfv9D0ofM7x/o9/3OtrNR89X3rYisbzP4f5khPsy2n0nAOMcjX9H6asBeWeB8WW69PXh4w72L2mXgX3fTBkHhijrzIA8Lxzr4blKy5eB1Y6235C28WP0+nco45fJ6NdOjt637Nvs2nQT3Ph7Ij1sc9efcDhPRZ7dN1ybKWPl+9wYi/++Ljf/97H3fHfdYC0PGD0XG4yTz1an5/c6HKN1j8J5Pn9Ku88bDw+h781wed/0b3OYPM7P1DFPAR+P+m5G67GG6y7LMVV5fh2lbQVkffYYkgefoD2efd/Rbv1PRrAXKK4pCXrWKOxq5N0ld2v/RZTvInpQYdYnxr8mkr/VloNo/qiQxb4RLxavnkJiiuUHi5/rgJdE89yL1LD3UOapzUi+3YrUzw9Qxsnddc61lP5gNPwGeXdAoL0GDiqboLKw/GD+7WUf58hAGXsfRNZzGxB//I72f1Pl8RLV09Su1/PbuRkwMUF0QF4Mc58evw15udM+yAtY5iiz5yLF5sXAs5CX1bwVWcS+FXlp3yF6fYoazDk6/mLkpTBnAhciL+3xjvjfyALEksbbgBcgLwm5GHmRjNF6JfAuSuO7hDJovgN5Mc1iykQ2ojD7IYFgtePrFcBrVDavRV4ssQvw+4gjPoC8vOsS5EUYr0QSy2mOnqnIy5Wep3iepfDTVGZ/6mA3IUXd8xTvxbTrYYHSdYnK/4WUxYEVBu9GXih1IpKE+iId/6uD88Z9qeLqQ178cgayeDcafoG8+OVdyE7YBZQv6BjQuX7q8K2lLHDe5mAvRF4u+U7aebtY5zsDsRe7Y/AAUhBdovw/gTj7xcD0aJFruCZROuXbVOeLEDs2nV9MmZjeGvG7k+rmI5T29zbElt+isJ+jnf6AvOzn2RHs6cDBkc59QblZr+2OBKEVEew5yEs4L3Y6v1B5tsQ7RCctZhP265mXOFl5mJ1cUguqx1OAI528gtJ0AGKbb1LctyMvnboYTSpKX0BeWGcLn0cz8cZgf+bm+RRSKIxHbO0YJJHHPr2HyutWleF1Sq+9VHAvhdsF8ePXIru5FyvNt9G+AXFBRNuxlDHC4tBbKX0z9vnpivthh7OltnAa8nIy6383EkvmKp7Hkfga+/w2ncPL/s2Ij74dKdAsebwH8QFLflMo/fhfHc7FiG1djNjlXSrHi5ENmpcC5yEvBgy0LzQCpS962JbydL3OvzMSIx+lLGL+jnaff1K/Z+j3BsQf71f8MxOy9fHB/DggtnE8cBylnfyrystgLQe8O4K1O2VfpVxQv0H5vFnl6vPip9U+HkPikF9wBKR4eBe6+KBcqGxFCrj3IBvMb0AS/e7K226IT91JPkfug+Snh/R8CFkIHK14xzu8eyiM2fjLER843NE6F4njZymtU9y1KxHfe3fEXwDeo/Cn0p4zbPE4oOOOU1lbzngjEhc+4nD9ldI1Sek9HPGXtytei7c+F4UKWO9nT8LoRrynf4Kj4e9ot+EbKF8qeAGyaLVxD1IfxzfZnC6WLKOsP/5Bj5+izNnvRF5wFZCFlen8Eto3+f5B9TuBRJ5HcqvlhE1u7HsQvz/Jwb6J9hpqls2jNF+D+OSutNdQASlyb1C8LeQGwUsdv5Mc7JmIH5+L5NWLkUL9CcoY8Dak/rCY+R4kX5+i9JqP/sThtZc9xznyISQGd9SnkU5sof8iZJEzTvVwosrVct+w4nnE6Wu8wi5xNFk8PZ2yJns7EiNNZx168Lk3kZ87bFyv24LonchCYgipcbyNb6CMvZuRPHkxkgNfS/tGqMXRt1EucALttheAjzmcltcOV74mUdbIltcWqnwvQO6gvhuJCRZ7x1PGhIU6Zi4Se29Seicq3rOVd3t86y7FZ/PaRlJAF6i015lHU/q8l8eozTvZb9BrT0cy+EXorGHs18wPRf1ebjs1WHvl8vw7kDj77QjnWsqNQn/T7WMqj0Nd3w8pN6Q87GX63bFAj2C3mYwobxDMjWDGReP9xvMTlC/oG80fFbI4V+E+j8Qpk8NJlDcF/edvKf33BOTFijGMfYyGM5wcA5IDYn8IDvZSlcOzte+tyA25Bao3W5u+m/KGkcUsi7lvRuoMu3YunfR9ClcTqDy+qNcWd7umLxRBz60oihcgAWoYCfyEEK4rimIXYFEI4YfbNUFzOhYhAXgOUmiOR95SOzWEcG0EOwkJKPsDPw8hbCiK4hTgwRDCPUVRLAQWhhAui8Ydg9wxuFXPd0EWFA80oG8B8vbIxyroJ6a1AnYq8EAIYWV07VD051A5XKqz64GdQwg31sw1DjgkhHBDURQ7IcHmLuTNyJszYw5OXdfnNg8PIVyv55MRB9kfKShnAJNDCNfq86DnIG/pDo5vgKEU3Xr9HmB2COFu7dsN+aeDRyLYOehbs3W+hcCeIYRfRXDHIAXfLYrr4BDCTyrk9XLg+yGELSk5IoFoAVKEXBNCGMrhSvDWpvOiKPZA3uD6aEMcE5GC60bEN0aQomsKssN7Vwjhfp3rOif3o5GkOGA2pfa8dwjhl9EcRyNvOL4l6t8beRPukyneHN4zgFtDCKsScAViE99GZLkfzj4S8KegPq3nu1P+NPHJFC25VhTFDGTROR0Jtten5i2KYgmyYJ/S0JfnIW/gfyyEcJ3rH0DeJD8vhPDdaMwCRMaP6/mhStvDIYQVNfMNAPuHEG4uimIWYlMzo7nHIYXo7iGEb0bjZwHTQgj3JnAvUl9ahBTYTwD3pGAVfiaySefteQgpsr8eQgiKawsi02NCCN8viuJUyl+3FCGEh6p4VtxnIIXbuBDCFdG1I4CbQgjDev48ZHG/s8WqCP5Q4LYQwpDjeSHyLzlPKMzBiGx/G0IYMZ0hBcViJIkPo/nH4Z6AFA7XAU9U2WhdTlGYecrzqqIoDkAK0Q0V8HsjhcVS15fNTUVRnIno+aYQwtPad4JenorE9K+FzmdO0Rc7HRhCuClHj8IVyKJrT9QuquCjsYcD/SGEazLXB5ANkc1IYTZHY/0SxM+nhhB+rM/nviyeP/YHl7fWA9fGsbkoilcgNrAyhLCyKIo9gQW+1tBYc1II4Xsu5l2O5I45Wl9NBs4IIXw7wr8b8s9GT5CJURH8OORfVH6D+NkudTWBG3s4KlvNp5NCCPfrtYXInbuZyF3MdSGEtRW4qmxsLuVPbPcNIfxcc9leVoslxhyB+PDLkIXQb0IIaxJwyfogAbcrcGgI4ccVMMchfN6uuWYIkecNDqaF5M1bo7FtObeGloW4WqWBjY/6dFEUU5F/W7pT59wX2XBZTRl7f4PLL4qjQDb9d0I2DSeGEH7hagrbbNwL2WyZhOTpXUnUCTuyxbE3cf1M5K7+E67P/Gq07nHXLKabz4/KQ2U2Wn8WRXEakuPuL4piH8TWliDy+GUIYX2CnjOQDaqHXd9RyObWTiGES7dHHopvANHXXGQtdDkSj/dA9DcZ8c3ReKa87QVcGkLYrLx52O8DL4xrAh37bIUdj9jSrBDCcl0znKKx7BQkZ0+Na2i1y2cjN7ieUDoeROwxW+Pp2AK5ifNNy+HuWgu5eWzf9yM52cfwiTqf3WyYimzgz0E23I9Gfg15EGIvx6oszlFan3YyulttZypSu63w9a2bc18kNiwrimIaslk23mTv4Pp13vGK9yVI/liLxMQbYtkoP0k91bXt3hAYa2NtrI21sTbWxtpYG2tjbayNtbE21sba/71W9/bGyjZx4sTVg4ODu0yYMGG0b8uWLVSdN4HpBkcd/hRct8d1593ymLoGNILP8ZYbX0eHb93O34TXOnpi/nvVR2qOFH+xrLbXFprKt9VqMTg42LNNdct/iudUq5OT7+tVLlX6rWuxPruVVxM64lZHY686amJ7TeKZx9F07tx8MY+9yLdubB09OTl5vL3Yf26c98U6m/p/7V17jB1ndf/N+rF3/Uhsg5W0crAj0jwJhMQlfSVuo6IUCLRVKaoKFahV1Rap6gOptEi0EkKV2orSFhXaimdbSqWmAQKEN9jOIkKJgTSxE+fhrMGJvdSx1971vry70z/mO77nnnvO952Ze+96HX8/6eremTnfeZ/zfTM7O5Oq25QfPfv6PUdaelu6e+YmS1+rPnrVv27M5TgrxjI3YvDERKO15mVLntduS75nbpG2x+yS++rkgNZTPXNJTE9vX43pGBsbmwObzvuWXVp+WjwsePpwbO5pOtd41hXemPVKQz4sy9LML69/rPkiZp91PIZWqzU+MzNzea1BqM6zyrK8jGR65h5vzXryrV92cPBzR6sGY/IBQPMJbQP2+YTlm9Q+Dd460uxMrYesnG3iL3e8yhr/X9BqtRaHh4dL+lTDy3O/aRvsfxzktoemDo8Uf/q9ffv2c/us33wc35/Sqa6NGm8vvbZf8rPs1vTm8NjXJJ4xfejYunXr3HZbfGgfz42yLMvt27d35Ksn5jHZMX9Ifq1Wq0N20xxJ5aNm97p1687VKulB36QTr12+zeVZ9Z3KLS2/pY+lfP5ptVpqXOv4y9JD85+Hb52YaDmb8mWqviyf1alBK0+99FxfmeMpeitfLT95a4fv4/ZYetB+6jsxm2Oyy7Ls0LEsO/uL5h8OT6y829JXnlxK5TuHRc97Sy/6p2qhrj2aH9atW9fVV3hfJDqtHjTfcH5SJ+q/Wl5rH56/devE6yupk8evFPtY79J8qOWQlqcavXf+5f5qtVrRHIzxSuW5p05icrX4xvhzXbhPrdildOc9kWhSuSDnBZnvNJ62+30ekIqXll9WXPhayBov4+rxvVb//KMdi9VK6mPlGcWKx1jKicVW6+OWXXIdqfVNj408D/l36mP1W802zV+ab0i2lu+0X1tHe/JWW3PE1luyPq15neD1W7BjsSz79FDBVIJq26Ojo7XH1GkUqWBoxz3FVkfnlA4e3tJPFr13v4eO5O7evbscGxtz2dfUVq9v69odo/X41cO3Tuyb5lBTG712p/xEkMeb2id/p8ZpaJJnKZ3IL3XjFNOrqX4eG/uRo6n4eHh4dGiqs0Ubk9+r7+rI9PqF51fK7tHR0fLBBx9sFAuvTv3IL9L1gQcecNP3qn+/Yp7KL0uGN9fr5paUIWWl+NW1oxd9Lb08ulg5tG/fvnL37t219alrW0xHixfpGMtzr//7YRfpk8pLqb83B7151PRYk3ysGy/pKx67OrGQvtNoPTmnQTum8Y6hbp41iV8sr2L6aD7y2JjytdcfdfIyZb/U37LHI7+unk304znvRaCF9enpXwY8uP766wct4nmBXv20b1/y+WWm3M2bN+PkyZM9yV+puFjzz2M35czevXuxfv16TE1NdR2X+wYBLmf9+vXYunUrxsbGBiKrST5Y/nm+oWkPGRT27t17vlWoDW9+Ud+9EFBH1wstZjLnl6PnyX53IWGlrjN43jXNwZVWk7yXePLyfK51znfd9xq7mO88vpdrBFrHaMc848bGxrBp0yZU53DLD4qnpp8G7iOZC9r6LiY35o8dO3b0ZFcM3GaOlbYuIvCc9+SR518Mer4gIJ0lnfnwww93jZE0dbf5vtgxTb8YYk0tplNKBw9vWWgWvbX/lltucdFJ31iFbtmn+bNOvFI61bVbA+moNfI6cfGMqRvnXnWJ0dI+76KWcub2228HAIyOjnYdl/uaxDGlD8kZHx/H1NQUpqence2110b5p3RJ6RHrC5Iv98/4uP1Ch7r6eWrJw8crO1XHsR5Sd1Kso7NFS37XaLx+svT29seUbM5f6+OWDD55N5k/PDp5feSZm3j9xugpZv2c4+vQAN32x3JX5rzW8yw0natkv/Py62VuqauvlePkr7pzlXXB2aOPxzbeK6wcjPHqda3g6ZV1a5jrY+WlpX/Tk5g6OcbB/a/R9qu+tZpOnXBrkGuVWN9O+R7oXiPQOkY7xnH77bdjdHQUx48fx9atWzE+Po4rrrgCV111FSYnJ7vWQYOek6U9mn4auI9kLmjru5RcbT24sLCAo0ePdo3xruVS9nObOb2cIzzy66xFvPrJeeDQoUPncr5uHpmI3T4gP3Dc5pDabjImxiPFP3UbRkqOR6cmNspjXnrvfg8d4f777y8/9rGPuexraqvXt3XtjtGSbU3j0iT2TXOoqY1eu1N+snKwqX1ansXGaWiSZymduM114hTTq6l+Hhv7kaOp+Hh4eHRoqrNFG5Pfq+/qyPT6JZUfko5qtG4svDr1I7+krh76XvXvV8xT+WXJ8MSwSW5JGVJWil9dO3rR19LLo0ssh+6+++7a+tS1Laajxcujn9f//bCL9EnlJdffo4MnVv041iQf68ZLyy+vztr4VP56eEhoxzTeMdTNsybxS+WVpY/mI4+NKV97/VEnL1P2S/0tezzy6+rZVD++hvD6rizP478MZPiwZ8+eNNGA5O7YsQPVqzyfXyDbLkYsLi4maXjOWb7qV17G+JDsI0eOYMOGDWi1WpiYmOiL3Dp6pMaRjhkZFrz5daH1Jk8/uRChxWvQc7HsdxcSevHN4uIidu7c2Udt+ouVph+vOU+/OF9ryJWCXnqUZ33i4SHXMdoxz9jp6Wls2bIFV199dW1b+g1vv6qzxqsjb2lpCfPz85ifn8e2bdsa2zEonO9zN7nN8292dhZDQ0OYnp7GrbfemmYau1ogP/ktA/4rTzF660nOHnptf+wJ3qmn4cqrRyn7msQzpg8dy28ZiOdIKh81u/NbBmw9NP95+NaJiZaz+S0Der5afspvGfBv57cMdPd/SZPfMpDfMmD5NpbnnjqJydXiG+PPdclvGYjXghY7SZ/fMhCPrdbH81sGLr63DBQV72bg75Ik9OP9o3V41H0HpHU89ju1XdfG2HszU/Sx92pq41N6cNSV77E1pY+0v2k8NBmxd4v2Kxe8/vW8K7pp/mn2azZrSPmJ72vqlzrv+bX08+RyKv8tPSS87yJu0ses8XX6GefhlW3JkzY28W9qbEofy0+cb5P8t8ZZ76jXbPa8LzzmR8++fs+Rlt6W7p65ydLXqo9e9a8bcznOirHMjRg8MdForXnZkue125LvmVuk7TG75L46OaD1VM9cEtPT21djOsbGxubApvO+ZZeWnxYPC54+HJt7ms41nnWFN2a90pAPy7L7YWl1/WPNFzH7rOMx1HofPMPIyMixsiwvI5meucdbs55865cdHPzc0arBmHwA0HxC24B9PmH5JrVPg7eONDtT6yErZ5v4yx2v2NWCJh8A3wLwGIApAO8GcALAYvg+AGAMwBKAswCeAPBooF0CcBTAIwCeDdtnAq/HAcyjuspxGMB+AM8FvicD30NhzK8DmDNoJwLt/kDzpjDmaQCfDLrtB/AMgP8I48tA+ziAr4XjB4LcxcB7v6B9P4DZsP39cPz/Av0ppu8igAUATwH4LIAnBe0Lg2/IB2eDvmMA/gvAewTfRwE8BOB+APeHeDwa5PE4vIv59gnh2/8U8SS+TwVdfxvAdKB/Jug7HnifFrSLwbcHgu8XARxX/PVGFgfu2ysAvDQcmwZwEMA3AHwnyDkd6H4YeD4deB4x9Pqukq9PA/hQ+P3xEK8yxO9xALsBPMz0eh+AY0GnycD3SRabO8M39w2nfTDIemuIwRKqfN/P+FLMnxAxvxvtnD6aoJUxf3eQ+yoA5lVCAP8K4Cll/0MA7hX7/g3AD4S/9gD4XyXmH0G7pg8C+Gbg8TCAz4Rj4wDe5+gxYwA+CODqSByeBvDfzF/k2zuCvvPBZ18NPH8YdJY1/xiq3KM4PQLgGUUnquPPBb68jieg1/wBAKfC+KNhzJEgfwbAbwF4C9q95Afo7iWPAngo8FgMMg6EY4uBdr8Sp4NBBtXLI8EHVC9/wmx7MMiZDH44FnjKPv1NAPsAfIGNpTp4Bu06fizIpz5NPfJ4kP+z6Kz5xwHMCn9v9/gW7f7w3jDu3nCc08pe8t7A91FGS759tIZv3wFgIsh9MfPt25kd1CM/xfb9NNo5+iQ658hjaDZHUn+kuZf4ypgeBrATdg+cCDxfxPS9I/Agf35eqY/V6OzNPNcOQJ8zuJ//BsAtip/lXHQMnT3/O6jmDKJdErRLAC4NOs4BeGOk77w0yOrIy7Dvn9Get7YF+kl09+bbwzHK+R8Ysn6fxXwXOtdQNM/9qoj5AVQ19E9Kfsh5nufHLtTLpQMA9gt9h4Vvnwn7fxx2P70x0HwI7TWYrGNem1cB+DDaPVKLA/l1XPHpr6BzjtyP7vUp+XYewBvE+B8VtGPoXMt+Kdgn+Xprj8eM7OJr2U9EclPL8Q+y459kOpBv7wvH/hrtOWVXwrf/HsZ8hMVhDZsDX6Po9lF0zmuSrzWvyd5bd157GdNhRjn+cnb8enTWwLeMmv+GYh+t3zr8McgPqvVYyh9vCbRrpD/C/puF7/YAWIt2n/7woO0Q+vwGywnqeVc5x16OzvOxMXSu874S6N4VaGSvea0S07/T+kdCj3vRuR7T1hf7w/7PUI4HemuOpHPG7wlZ70A1H1P9HO41BkPoP4hnwb5LsV0w2iFGM8Q+JaMdUsZLvpKG7yNaOd7iy4+D/R4StKWg12iH2D5JH/uUqAqZtlclaKXtlr80O6TuHJZfLNs1XlJPqcMQdJvWoP0mjCGFluvK9ZJxl3pK+yQfLk/KBKpYWLGkorZ0SOWQltNaTlo1IuurRLftmh/4MctPcr9lg2aPjA33wypBlwLRka8t2Zqv1yh86Ddg52Up9mk6WXWixdGqHU1WofCxap6Pk/mh5Ytml5YvsXzlfds7dhW65RENXTq3ah3Q60x+VjH+ssa1HJH8uA4xW6zeDvYtcxXiONdP5q0Wq7pzZOwjaVYrfGTuyTrSbOLQalXLc2kDzy+NB/cD0I55rH/z/OC2aHmm2cB7GNFTPkt+mi7ymAXi10J37XC+nN6bk9y/kn+MVh7nvuH03C+Sj+YnK16c1xp02ibptPrl0HJf+snqGWSjZy0r17R1as+KA881DVrf0tY1/FvOddR7rRyXPYbGpOpHsw3QfRRb/9Sd17QepeUf0N1bhsR+uW7R7JP+GCQ8/pA2SL3WoDvfuL2etVg/wXWmBzB4fUm2aOtLa1v2GksXuT8Fay7X+gGvKS0HYz1N62U9YRAPFbQKmAeAb4PRWI0RCh+tEICqoWuToSZTazzSBt6giJa+reARj6WITVKenBBLVPHhsq2kkvtovPRt7AKKtJPL1PyyhM6Y8m3pW6m7lMn50xhqYGvQ7UcuZ8ngCbQXfJ5FAv0mW2JxgqDhdtIVVutkTsqO+cTyveTL+ZEu9Fv6WNND6qQdt/S3dJbH+Ek/xLdc1KdAdJQb1gkF6U3bSwBGoMfDqnmrxjSdeG4Ctm9g0Gq+sHTS9JG/Yz21NPhwf2q+kXUv4yb9I2ta1q/WQ1uwa5CgLWY0P8g6lfI5vYcfBK22LeVo+qKonuSq2cdpPTJTMbcWSfRb1lCqrmhuIsgTBq0+pE2Wv+WHj5GLPjmv0f5Y/5b5vYTOk9kYumLIePJ1hzw55rzlCbIFWQ/axSS+PpCx9eSH5J9aV2j9m8Bzhh+36lTzk1Zz9KE48W2NZ925Xqtday7STjq0dSV9a+vTVM+R6wHv3CjzUdJzHaz+XqI9P2o5rsVHxtHSTa6XaX9sXpN2yTGaD3lP4D1Kxl0e13qu3B+zj+flcl0QoG/LHwSywXNBQNbxcoL7cASdvTkFbot2oUTK0HJZ6iKRWjtLGtmTY+sLaQPtk2OkjtzenjGIoA+xDykbOzHmk3jqBNM6AR9i22sMflowrL8wcp5L6LZJmwy4ndqFkNgEoe3jtqR8Z9kAdMrntmg8htg4iPHyW4uFpZe2UOP+klcl6RhdEPCccMp4WUUoIX1l5Yr0LY8t/+uQ9tcWabcmy9LfqgUt3ywf84axCgCKoqCFqeYPy09yP7dByyl+TLurAuwYz80UiLc2Cci+wH2rxUfWiaf3dPhBObHjsuvUvKxTqz679GHx1HIUyrYlKzaJarUh89cay23gx6SvlxD/iyVB9gVNN5kLEL8t/bjfeZ1oOablxypBy/XtqkWxT9Jyv8r+relbZ06y+p2n5/LFpVaHEnyhafUN3hO0vNdizv0Cg68WN067hm1ruksbNH+sRrdvpJ/5yYKsfwluG10g4zlJi2VrzpB+0OIv+Ut/SV/L/JO+0U7Iuc9kHDRfWHffEb2Ws1D2aXGU+aL1QPlHBM1Grf9pPVCrRTkvabKt/I7lpjX/ESx9gU5drIux2on6uZxmc6CWz9LPmo9i8yXEPu+8xnuU7DPyuNaf+P6YfVZeDxKpnqbVoHVBgPtG9vLlBM8BWgPUuUOAXwiTfuD+seY+qYu03+OTAkBRFIWUx3MdEHoFenkhnvcirf5lTvccr0HcIUAncUOobj8io1axY2Qkvx2caFaj8wRxDdoLrIWwvRadJxH8L8nrGO3qQMv588l6PdqFMsz4rArjpB7DYb/UeQ2jXYXq6tYQqv//WM2OL6HTD5TAXP4i8xnpTrrwRjYcPlzHtYGGP62C7OF0w4pvSVf5NBzu35LZRgsS4lEqtKTrAuw8WCXiQIucMujC/3pB8Vwr6ChnOM+16NZrCd0gXwKdMV+FzphTgfKcJr6Ux0sANjKdeF4QLeUPxWApQku5Svwo3pptMj84zSq0b8Fax2i09/RQHkqsRXduxGqEL1ypJnj+kx9oDOnZ/TSmbtAYmRukN/cB+ZH03IBOn5M8WceyQcuYcvBb8obZuFTN8wlCywH6v1yqT03HtYwfjyvvTxQnrgtf0Gk51X5nUtuPmh+I52pGx2PI90uded/h8jeiM65DAIaKoijK8M9zaMde9hMIWTKveHy43yQtrytOq/mWeEjfEh+uL/ctjxnVA9B5F8tqxo/PkVxvOUdKf8r8Ix5Ad0zXMPlWD6QFm9QX0OcQspXLseYMqqOz6Jzj1yp60Xgrh8lemksLdMbt3DzLTmi4XRI8hjzOi0E30pf/y4vs4yPMT1SXGih3SlTzo7Y+Wod2z+f8eL1b8zyPwQZhFy1A5XqL00jw+HK7eMyolvmin2ylPCPbiCevzRb0OQeBp1xvaT7l/tL6/Wp2XOYx9WNrLcv7pPQ/709aTVM8YjUdy01aF/Ec5/q3mA7Uy/haROu9Mse5DjxW3L51im4tdPqZ957YvCZ7Qt15jWoNzGYulx/X1plyv+zTBFmXWn30G3KtrPmDzzO89xD4PMPXLny9uZygnreIdk+K5bwca52P8TUJ5S23FejOW20t2gKqk/eyLLVzCeLPcze2ZhgWdLKH8os9XFcui68Hej+fH8CDIUr2OSK2l8S29mlCw7f/pwbtt9nvBXF8JiI/pc+JBjYtKrS/F6GfR/XQCZMni4eUL+PCP3MsluuU499rYFvKX9826P4Y1YMTm/BU9TLy9Uz47Yn5c4njuz06oHr4Wl0/nq1B2xXzIPeesH2DUb9nIn5aFPumHXrQZ8rwQ4l27ZUATjp7zBSAv2jgr68qdEMKXcqvBdPnauV4nbpYb4x5ANUDQj15cl2NXPDQHDR6uofnkhhbV/4XDZrLGd+31fBvCeB4GLfgoa3BN2bbU+F7BMCfSd8CeAnbt8Bs+2gPMi2aOmM+4KB9G9P3E1b8Gc3P19RFfsYdetXhy2l/DdVDqUoAuyN9528j/E6z33+I9omV/Hxc1oUh67tszBcMvR8wbDpV036r3qK5JPS9U6EvUD3g0OL7njB2MmyfTejxTijzSETfIaHjfR672OfLYvxbI7R1+DbN3blIbmr0U+z4vCYzHDvK9n0pocNMGMPjcCeAa8LvT1trij7YX3fM3wf5LzSO/yPT8S/l8bC/a/0pbCsUXe7s93mVM97SH6OB9pVh+x8Ej/crPHgdnxm0HUKf3Uw2rdPe6Rz7O6m8CHSHw7bsNZ9RYvqc0T+ujOhB6wvPeoyvRa6HY44Usp6Q9L3GYBB3CNyC6urGpahOHm8AsBnV02nPhGObgzMmgiGXoFoUn0D1VNURAJtQnXBMogrQJaiugpwK+zcA2BJ4TKK6WrIZwNcB/EygPR1kctozQeYLUD2ZdVfgeRTAZaga5wiqxNke9JgPvCaCnkXguSnoPI3q6hHRPgTgZcFW0nc902Eq6LcZVTAnUD0l9IVhPOl7D6pF5WlUJy2bUV0ROonqKbKzqE5GXhDkTKG6sEDNHwB+MuzbGMZPoHpK9U2ML/ft98M4lGU5XRTFK4N/1wT7RgH8RPD3KVQn0SNB38nAcw2q+A8Fmjnmr+eCPyjG8yIOnPYeVFe9RsOY0+GbrobxvJkN+8kX06guaGwJ4yah/0X8NlRP6QSqIuYxPxU+POYHAfxYoJkKfFcze7+CqqlOoB33Tajy7jSqvAeq4n9F8INFy2M+gepCzrZgK6c9FWh4fpAfqfYOBLlvAnBHWZb7FV8AVWO6Qtn/iqADx3UArgy2k79Oo/2Xq43h2AlUT1beiXZNzwQetwb9XhL4P2HoxXEbqjx9BtUbDWQcyF/PAvgRtH1xKaqm/gtgNV2W5VJRFD+H7rykhfUl6IzTCM0uAFCW5eNFUdwV6I+jyrkFpGv+LIBLyrI8UxTFriCT+sgsqqf2A1UNDwd9pwLfjpovy/LRoiheG/bNB50vQbve1oftObRPXi5Fu45lvXyX+fsWtGua6m0G7RykmE6jytlpNnYXOvOV6rgI/KhHnmF23QvgLklbluUxxve9qJ4kTL5dG/gvBX5ng70bgw+eCuOuQ3Xyt4nFYT7oQrRPBrpJxpdoFwKdx7f7ANxUluVMURR/hap3nEY1L6Isy0eKongdqvwfZ7b9Lqret4D2U6QvRRUfbY7U+nhsjqS3MyygO6YtVG8K+gLsHrgp6Ef4TVQXBeiJyMchUJblV4qi+CV0xppybQpV7W4KMk6iih/vHweDv7leS2GMnIs2o90TFsKnFXhp/fZTZVmWRVG8GtVcZOHtAPaiyudT6MzhfahOijYBuCfwuxPdffxLgRfVhfUXsDvQnh8+C+AXg1+m0I7j1wDcHnxHMd+IKn9fDH9+fBrAa6Gvt7Q1FJ0MnkNZll8siuKXw/EZAK3ggz8A8Hl0xozi8Lkw/AYAL0JVA1SbVMcLaM/zn0b1Fpwr0e6RpwKPTRC9pOz+K94bUPmdz5Ebw1jp27Oo1h0cHwg6WmvZk4HXArprby3a88IE2jUd66cyDodh4+XozvFD7PgN6PYt1ektaK8j7wXwGug5fgpVzyV+VwLYVJblFwEgzD9fV3S7Ht0xI9ti8xrNOUCzee0+ACjL8nhRFK8Kx8Hkfp7p+Oeo/jA1jfY6FAD+FNVFedKbz20IOb4LrCeTPwaMV6Bd05Y/vhl0/HLovfcJHn+E6mLguT5fluV+1qefHrgVnXgdqjfsrEXV51+NquY9+BdU+XwCVW3SOuos2uduQOW3l6BaP/J62E2MWEx5/QChf5RlGfPLdahygNZjE+hei8wEG3+I6pzz0rIsDwA4EHzP64HPkQvoxE+hOs+cR3wucaNg69qMjIyMjIyMjIyMjIyMjIyLBENpkoyMjIyMjIyMjIyMjIyMjOcbevqXgZGRkWMALivLEkVR0P81oHo+D6Dt5/vkN0GO135zePjNzs6i1WqdO07b8tvik/rt0UEeB9AhV7NJgo+fnZ3F8HD13Iu5uTkMDw+rx6Us+j08PIy5ublzvOkYyZ2bm+vYJ3W3/MHlyLHEU/KbnZ1VddBkWjKkLtw2AB2+0mIu/cNpNB/E8p3bxOOi+cuyN8Vf8wv5mMeU9JDg/uDQxvAc1XLXymfpB75P5l9MR81vqZ4gY0e2yjqh41btch25DbE+pOUNt1nmLtdL2uOtE86vTo+yeoBmj9aTaLysnVhPt/otrzuOWO+W+nJ9vL6QMeX+jMVD8tB8AaAj7imfE7T6knRWfLS+ovlc2q3FS+Z/rD64TZZOnvhpcrS1gPSBrG1tHUB2WLpzG6QM6TPS1fIbj3uqD1v1Fls78LFcV81fcv6VMjVfkxzNN7Inyf1ctjUHWPltrRO0uUbTT5tzYzWirRVifcPyk6azjIGnB8XyUpu/uA8s3eW6J7b+4f2M+4znu6fuY36QMeA+teb22NxKtmt8LP9Y+UuI5YUcG0Or1VqamZlZlabsxsjIyCKAIbnm5X5OrfmsdRRte+0I/MdnZmYub2BKB6RddXyJ8HwQQK/NVF/mqLMOtsZp51nWvMTXCLE+r607ub2ptTOzwx2vnv5loCiKC+b/DaxFhNa0zqdeTcdqfDwLSWty60W32DjrmLUQbyJD8iRYk7PGsx95UdemfkGbXDVoE641xoqZJ2c0P2j5F9OxCbz6efjU1Scmuxe9BpFTHvtSNc3HemszllOx/EvV5vmqO022tmjh+zmtxqvf/bBpPyfE/M2Rio/neBM9vXOC1fs4vPWYil+q1zX1QdNe1kv/I8h61PZrPKz5tomeMb/W9alnvkuhn2vIunlZp5941j/WPquHcdmDXkt71xjacY3Ge8xz3ELwSyOn0HmWNxbe9RtHnfPAXmwRfDrsquPLFJrUumcdbI2L1ZG2zfk3yVlN35ie3ngN4qGCKxJ79+5Vt+X3cqMXuXzsvn37krz5Nv3et28fpqamVP4az7p6eXnu3bsX69ev74sMLots47xJB49/eo1PHZv6BRlT0oP7YuvWrSo96SvHaNB8Y+2TftDyj/QaGxvDpk2bak1SGrRca5LTsRqxEPONdsyr1yByymNfqqZlvqVg0Vh5odFYPJrEq1+Qsvm27Ne9+LwJbdNeltJVq+GYPE/8msDrAzkXWP3Hg5iu2hoj1oeb2FIXTXyr6R07HuMh98XoPXp59PPwjPUbL/q5hrRyZWxszEWvQa57YusfOUbbrlv3/YKlp7dHafws36XyItY/duzYgYMHD2L16v6cZqXWq9wGTz5IXla+0Vpsbm6u1p0EXqT6o9TBg1ifi50XyP2e+UHKStWVtSaI6emxQ/PVTTfdZI7XkO8QyHcIYHR0FOPj43j961/fF91W0h0CZFur1cJdd93VMfb5fofA6Ogobrvttg4/bN26FZOTk9i5cycuv/zyc/TST5yHlhs0rh93CHDZGzduxDXXXIOFhQVMTk7iuuuu68kP/bpDIOaHurJX6h0ClC8WTaym+dh+3SGg1a6kWYl3CEhfkC6yv6RyaqXdIWDlh1bDu3btumDuELD6z7Zt23qSad0hoPmqqS3LeYdArB7peKx/AIO9Q8DSzyuPeBw6dAhvfvObo7Kb6lyHF+kjc5PmbYs+1cP7eYdAnbrvF5reIRBb5wK672LzkHac948TJ07gxhtvPKfXctwhwNd8tO1Zt8TybWFhAePj47j55pt7tiVmV0qHyclJXHvttX27Q0DWurUOTs0PTe4Q4HFqkrOavpqvgp/zHQIXG/bs2dN43I4dO87L4lnTpd/8yLYNGzYMTE5Kh/MBsp2wuLiInTt34siRI9i2bRsmJia6aDU/9Ss3LD9I2a1WC2NjYwO5Eh3TIzVmpdQIMJickvmyXGNj4DnbRKfzhcXFzrebarqstJxKIRZjrYZXMng8rP4zPz8/MNkXkq8I1hwhj6d4DBK99Atg5dWklZsp+n7rEAP3uZYXywmvrtZYzXepvOd8yQcTExOYmJjA0tIS9uzZo17wGwSkDU3yWbPl2LFjWLt2LQ4fPozt27cPQPM2pL+np6cxNjaGVquFLVu21OLjlWPJJkifPPvssx3zQ5O+JtcIXh2t49QfHnvssXPH6YJAHeQ7BPIdAueO9+Ovqalxy32HAEfqr//PtzsESLZV4/LqcmyM9y95Te4QiKEX3/XzDoG6+lyIdwjE+HquuMd6kZeflRex3p3SZzmh+YK2tb/ocFqN10q6QwDIzxCoI9O6Q8AjZyXeIcAh61Hbr/EY5B0Cln5eeanxKQziDgENqRqsk4+peHj+Ki11W6l3CHAdmxzzHLdQ56+0ytj8DAEhP4Umte5ZB1vjYnWkbXP+TXJW0zem57LcIdBqtcZxgbxloCiKjqc50rb8tvikfnt00Boxl6vZJMHHF0XR8dRe+QRUvo/LkvQsnh3+5fSa7pY/+DhtrOZn4ul9y4AmQ9OFg/tKi7n0D6fR7IjlO7dpud8yIGNqNRztCdXWGO3pzNJ/ch9tcz/wfTL/Yjpqfkv1BBk72l/3LQNcR+9bBrS84bK1+vC8ZSBWJ5Kft0dZPUCzJ7b4lrUT6+mxPhDLP613a/rKMSlfyJhK+aleLsdxXwDoiHvK51yO9y0DWt1xvS2fS7uteBFiT/+X8bJ08sSvyVsGtNrW1gFkh6U7t0HK0PLIepq1rHdPH07Vh+y1dd8yoMUk1fOs+MqeJPdz2dYcEMtvj/2WX7U5N1YjkkeTtwxYOmsxSPWgWF5q81esRmXs5bc1Z0mbaDtWO7G1tPSDjAH3ozW3a3pq+SX5WP6x8pfziPk+FifhlyUXoT12iNtNulnziaY3H2f1Rac+4w3M0Ph02FXTl9G3DKT6MkeddbA1TjvPis1LnH+qz3FZ0l6nv9zx6ukOgYyMjIyMjIyMjIyMjIyMjAsTQ+dbgYyMjIyMjIyMjIyMjIyMjOVHviCQkZGRkZGRkZGRkZGRkXERIl8QyMjIyMjIyMjIyMjIyMi4CJEvCGRkZGRkZGRkZGRkZGRkXITIFwQyMjIyMjIyMjIyMjIyMi5C5AsCGRkZGRkZGRkZGRkZGRkXIfIFgYyMjIyMjIyMjIyMjIyMixD5gkBGRkZGRkZGRkZGRkZGxkWIfEEgIyMjIyMjIyMjIyMjI+MiRL4gkJGRkZGRkZGRkZGRkZFxESJfEMjIyMjIyMjIyMjIyMjIuAjx/6wteNjwyhdbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn import tree\n", + "plt.figure(figsize=(18,5))\n", + "tree.plot_tree(dt)" + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "To reduce the complexity of the tree, we **prune** the tree: we collapse its leaves, permitting bias to increase but forcing variance to decrease until the desired trade-off is achieved. In `rpart`, this is done by considering a modified loss function that takes into account the number of terminal nodes (i.e., the number of regions in which the original data was partitioned). Somewhat heuristically, if we denote tree predictions by $T(x)$ and its number of terminal nodes by $|T|$, the modified regression problem can be written as:\n", + "\n", + "$$\n", + " \\widehat{T} = \\arg\\min_{T} \\sum_{i=1}^m \\left( T(X_i) - Y_i \\right)^2 + c_p |T|\n", + "$$ (pruned-tree)\n", + "\n", + "The complexity of the tree is controlled by the scalar parameter $c_p$, denoted as `ccp_alpha` in `sklearn.tree.DecisionTreeRegressor`. For each value of $c_p$, we find the subtree that solves {eq}`pruned-tree`. Large values of $c_p$ lead to aggressively pruned trees, which have more bias and less variance. Small values of $c_p$ allow for deeper trees whose predictions can vary more wildly." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "path = dt.cost_complexity_pruning_path(x_train,y_train)\n", + "alphas_dt = pd.Series(path['ccp_alphas'], name = \"alphas\").unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "# A function with a manual cross validation\n", + "#This function can replicate cp_table that R's rplot package creates to get the best complexity parameter\n", + "#This function can be used to prune the tree but it is a lar process, so if you have the computational power, you can use this function\n", + "'''\n", + "def run_cross_validation_on_trees2(X, y, tree_ccp, nfold=10):\n", + "\n", + " cp_table_error = []\n", + " cp_table_std = []\n", + " cp_table_rel_error = []\n", + " cp_table_size = []\n", + " \n", + " # Num ob observations\n", + " nobs = y.shape[0]\n", + " \n", + " # Define folds indices \n", + " list_1 = [*range(0, nfold, 1)]*nobs\n", + " sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", + " foldid = [list_1[index] for index in sample]\n", + "\n", + " # Create split function(similar to R)\n", + " def split(x, f):\n", + " count = max(f) + 1\n", + " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", + "\n", + " # Split observation indices into folds \n", + " list_2 = [*range(0, nobs, 1)]\n", + " I = split(list_2, foldid)\n", + " \n", + " for i in tree_ccp:\n", + " cv_error_list = []\n", + " cv_rel_error_list = []\n", + " \n", + " dtree = DecisionTreeRegressor( ccp_alpha= i, random_state = 0)\n", + " \n", + " # loop to save results\n", + " for b in range(0,len(I)):\n", + " \n", + " # Split data - index to keep are in mask as booleans\n", + " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", + " mask = np.array([(a in include_idx) for a in range(len(y))])\n", + " \n", + " dtree.fit(X[~mask], Y[~mask])\n", + " pred = dtree.predict(X[mask])\n", + " xerror_fold = np.mean(np.power(pred - y[mask],2))\n", + " rel_error_fold = 1- r2_score(y[mask], pred)\n", + " \n", + " cv_error_list.append(xerror_fold)\n", + " cv_rel_error_list.append(rel_error_fold)\n", + " \n", + " rel_error = np.mean(cv_rel_error_list)\n", + " xerror = np.mean(cv_error_list)\n", + " xstd = np.std(cv_error_list)\n", + "\n", + " cp_table_rel_error.append(rel_error)\n", + " cp_table_error.append(xerror)\n", + " cp_table_std.append(xstd)\n", + " cp_table_size.append(dtree.tree_.node_count)\n", + " cp_table = pd.DataFrame([pd.Series(tree_ccp, name = \"cp\"), pd.Series(cp_table_size, name = \"size\")\n", + " , pd.Series(cp_table_rel_error, name = \"rel error\"),\n", + " pd.Series(cp_table_error, name = \"xerror\"),\n", + " pd.Series(cp_table_std, name = \"xstd\")]).T \n", + " return cp_table\n", + "'''" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#Here we create a loop to get an arrange with all Mean Squared Errors for each cp_alpha\n", + "from sklearn.metrics import mean_squared_error\n", + "mse_gini = []\n", + "cp_table_size = []\n", + "for i in alphas_dt:\n", + " dtree = DecisionTreeRegressor( ccp_alpha=i, random_state = 0)\n", + " dtree.fit(x_train, y_train)\n", + " pred = dtree.predict(x_test)\n", + " mse_gini.append(mean_squared_error(y_test, pred))\n", + " cp_table_size.append(dtree.tree_.node_count)" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAFDCAYAAAAXoVT8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABHSklEQVR4nO3deVhWdf7/8RcgCDcuIG6ZAU5kBJZm6TfT3EANyzRbXG4qTQerr41RY36LxmzBUqeZlhkta8ZmhuOuZaOYiYo17Tlj5cKUJmCWmQgoi7Lc5/dHP+6LXdB7xefjurjG+3PO577fR99DhxfnfI6PaZqmAAAAAAAA3MzX3QUAAAAAAABIhBQAAAAAAMBDEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAI7RydwHO0LFjR0VGRrq7jGYrLi5WcHCwu8uAB6EnUBs9gdroCVRHP6A2egK10ROozR09kZ2drePHj9e7rUWGFJGRkfriiy/cXUazZWZmaujQoe4uAx6EnkBt9ARqoydQHf2A2ugJ1EZPoDZ39MS1117b4DZu9wAAAAAAAB6BkAIAAAAAAHgEQgoAAAAAAOARWuSaFAAAAAAAeLry8nJ9//33On36tNtqaN++vfbv3++U9w4MDFT37t3l7+/f5DmEFAAAAAAAuMH333+vtm3bKjIyUj4+Pm6p4dSpU2rbtq3D39c0TeXl5en7779Xjx49mjyP2z0AAAAAAHCD06dPKywszG0BhTP5+PgoLCys2VeJEFIAAAAAAOAmLTGgqHIux8btHh6gvn840zTdUAkAAAAAAO7DlRRu1lCy1JLTNAAAAABA8xmGocjISPn6+ioyMlKGYbi7JIcjpAAAAAAAwMMZhqGkpCTl5OTINE3l5OQoKSnpvIOKnJwcRUdHa/r06erVq5esVqsyMjI0cOBAXXbZZfrss8+0c+dO9enTR3369NHVV1+tU6dOSZIWLVqkfv366aqrrtKTTz7piMPkdg8AAAAAANztoYce0u7duxvc/sknn+jMmTM1xkpKSjRt2jS9/vrr9c7p06ePXnzxxbN+9oEDB7RmzRotXbpU/fr10/Lly/Wvf/1L77zzjubPn6/Kykr9+c9/1sCBA1VUVKTAwEC99957+vbbb/XZZ5/JNE3dcsstev/99zV48ODmHHYdXEkBAAAAAICHqx1QnG28OXr06KErr7xSvr6+io2NVVxcnHx8fHTllVcqOztbAwcO1MMPP6yXX35ZBQUFatWqld577z299957uvrqq9W3b19lZWXp22+/Pe9auJICAAAAAAA3O9sVD5GRkcrJyakzHhERoczMzPP67NatW9v/7Ovra3/t6+uriooK/d///Z9uuukmpaen67rrrlNGRoZM09Rjjz2mGTNmnNdn18aVFAAAAAAAeLjU1FRZLJYaYxaLRampqU7/7IMHD+rKK6/UnDlzdO211yorK0ujRo3SX//6VxUVFUmSjhw5omPHjp33Z3ElBQAAAAAAHs5qtUqSUlJSlJubq/DwcKWmptrHnenFF1/Ujh075Ofnp5iYGCUkJKh169bav3+/BgwYIElq06aN0tLS1Llz5/P6LEIKAAAAAAC8gNVqdXgoERERoT179thfv/nmm/Y/R0ZG1thW26xZszRr1iyH1sPtHgAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAG5imqa7S3Caczk2QgoAAAAAANwgMDBQeXl5LTKoME1TeXl5CgwMbNY8nu4BAAAAAIAbdO/eXd9//71+/vlnt9Vw+vTpZgcJTRUYGKju3bs3a47LQ4oDBw5o0aJF+uSTT7Rnzx7dcMMNyszMbHTO559/rsWLF+uDDz7QDz/8oEsuuUSTJ0/WnDlznPaXCQAAAACAM/n7+6tHjx5urSEzM1NXX321W2uozuUhxd69e5Wenq7rrrtOZWVlTZqzatUqHTx4UHPmzNFll12mr776Sr/73e/01Vdfad26dU6uGAAAAAAAuILLQ4oxY8Zo7NixkqTbb79dx48fP+ucOXPmqFOnTvbXQ4cOVWBgoGbMmKGcnBxFREQ4rV4AAAAAAOAaLl8409e3+R9ZPaCoUnU5yrFjx867JgAAAAAA4H5e+3SPjz76SL6+vrr88svdXQoAAAAAAHAAr3y6x9GjR5Wamqq77rpL7dq1q7O9uLj4rItxeoOWcAw4P0VFRfQBaqAnUBs9geroB9RGT6A2egK1eVpPeF1IUVZWpjvvvFNt2rTRH//4x3r3CQ4O1tChQ11bmBO0hGPA+cnMzKQPUAM9gdroCVRHP6A2egK10ROozdN6wqtCCtM0dffdd2vv3r368MMPFRoa6u6SAAAAAACAg3hVSJGcnKwNGzZo69atio6Odnc5AAAAAADAgbwmpHjuuef0yiuvaPXq1Ro0aJC7ywEAAAAAAA7m8pCipKRE6enpkqQjR47o5MmTWrt2rSRp9OjRslgsioqK0pAhQ/SXv/xFkrR8+XI9/vjjmjJlii6++GJ98skn9ve79NJL631EKQAAAAAA8C4uDymOHTumO+64o8ZY1etDhw4pMjJSFRUVqqystG9/7733JElvvvmm3nzzzRpzly1bpilTpji1ZgAAAAAA4HwuDykiIyNlmmaj+2RnZ9d4XV84AQAAAAAAWhZfdxcAAAAAAAAgEVIAAAAAAAAPQUgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAjEFIAAAAAAACPQEjhwQzDcHcJAAAAAAC4DCGFB0tMTHR3CQAAAAAAuAwhBQAAAAAA8AiEFAAAAAAAwCMQUrhZTEyMu0sAAAAAAMAjEFK42d69e91dAgAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BFcHlIcOHBAM2bMUO/eveXn56ehQ4eedU5ZWZlmz56tG264QUFBQfLx8XF+oQAAAAAAwKVcHlLs3btX6enp6tmzp3r27NmkOSUlJXrjjTdksVh0/fXXO7lCAAAAAADgDi4PKcaMGaPDhw9rzZo1io2NbdKckJAQnThxQlu2bNGtt97q5AoBAAAAAIA7uDyk8PU9t4/kFg8AAAAAAFo2Fs4EAAAAAAAeoZW7C3CG4uJiZWZmursMh2gpx4FzU1RURA+gBnoCtdETqI5+QG30BGqjJ1Cbp/VEiwwpgoODm/TUEG/QUo4D5yYzM5MeQA30BGqjJ1Ad/YDa6AnURk+gNk/rCW73AAAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BFcviZFSUmJ0tPTJUlHjhzRyZMntXbtWknS6NGjZbFYFBUVpSFDhugvf/mLfd7mzZtVXFys3bt3S5J9Tr9+/RQREeHagwAAAAAAAA7n8pDi2LFjuuOOO2qMVb0+dOiQIiMjVVFRocrKyhr73H///crJyakzZ9myZZoyZYpziwYAAAAAAE7n8pAiMjJSpmk2uk92dnaTxgAAAAAAQMvBmhQAAAAAAMAjEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAjEFIAAAAAAACPQEgBAAAAAAA8AiEFAAAAAADwCIQUAAAAAADAIxBSAAAAAAAAj0BIAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCO4PKQ4cOCAZsyYod69e8vPz09Dhw5t0rzCwkJNnTpVoaGhat++vaxWq/Ly8pxbLAAAAAAAcBmXhxR79+5Venq6evbsqZ49ezZ53oQJE5SZmak33nhDb775pj7//HONGzfOeYV6CIvF4u4SAAAAAABwiVau/sAxY8Zo7NixkqTbb79dx48fP+ucjz/+WFu2bNHOnTs1ePBgSdLFF1+s//mf/1FGRobi4+OdWrM7lZaWursEAAAAAABcwuVXUvj6Nv8jN2/erC5dutgDCknq37+/evTooc2bNzuyPAAAAAAA4CZesXBmVlaWoqOj64xfccUVysrKckNFAAAAAADA0bwipMjPz1dISEid8dDQUOXn57u+IAfr1q2bu0sAAAAAAMDtXL4mxbny8fGpM2aaZr3jxcXFyszMdEFVjmEYhoYNG9bgdm86FjhWUVER//6ogZ5AbfQEqqMfUBs9gdroCdTmaT3hFSFFaGiofv755zrjBQUF9V5hERwc3ORHm3qDlnQsaJ7MzEz+/VEDPYHa6AlURz+gNnoCtdETqM3TesIrbveIjo6ud+2JhtaqAAAAAAAA3scrQoqEhAQdPXpU//rXv+xjX3zxhb777jslJCS4sTIAAAAAAOAoLg8pSkpKtHbtWq1du1ZHjhzRzz//bH9dUlIiSYqKitK0adPscwYMGKBRo0bp7rvv1vr16/X222/LarVq0KBBio+Pd/UhuJxhGO4uAQAAAAAAp3P5mhTHjh3THXfcUWOs6vWhQ4cUGRmpiooKVVZW1thn5cqVSk5O1r333iubzaabb75ZL7/8ssvqdqdZs2bJarW6uwwAAAAAAJzK5SFFZGSkTNNsdJ/s7Ow6YyEhIVq2bJmWLVvmpMo8V15enrtLAAAAAADA6bxiTQoAAAAAANDyEVJ4iLi4OHeXAAAAAACAWxFSeIiMjAx3lwAAAAAAgFsRUngJnvABAAAAAGjpCCm8RGJiIkEFAAAAAKBFI6TwIikpKe4uAQAAAAAApyGk8CK5ubnuLgEAAAAAAKchpPAgPj4+jW4PDw93USUAAAAAALgeIYUHueWWWxrdPnr0aBdVAgAAAACA6xFSeJCHHnpIMTExDW5fvXq1C6sBAAAAAMC1CCk8zN69exvclpeX58JKAAAAAABwLUIKAAAAAADgEQgpPFBDC2iebWFNAAAAAAC8GSGFBzJNs1njAAAAAAC0BIQUXsYwDHeXAAAAAACAUxBSeJlZs2a5uwQAAAAAAJyCkMLL8IQPAAAAAEBLRUgBAAAAAAA8QrNDiq+++koTJkzQpZdeqtatW+vf//63JCklJUWbN292eIGoKSwszN0lAAAAAADgFM0KKTZv3qxrrrlGR48e1d13363y8nL7ttatW+uVV15xeIEXori4uAa33XnnnS6sBAAAAAAA12lWSPHYY49pypQp2rlzp1JSUmps69Onj3bv3u3I2i5YGRkZCgwMrHdbenq6i6sBAAAAAMA1mhVSZGVlacKECZIkHx+fGtvatWunEydOOK6yC9zp06frHc/JyXFxJQAAAAAAuEazQorOnTvru+++q3fb3r17FR4eftb32Ldvn+Li4mSxWNStWzfNnTtXlZWVZ523d+9ejRw5UhaLRR07dtT999+voqKi5pTvVfz8/Jo1DgAAAACAt2vVnJ0nTpyouXPnKiYmRgMGDJD0yxUV33zzjRYsWKBp06Y1Oj8/P1/x8fGKiYnRhg0bdPDgQT3yyCOy2Wx69tlnG5xXWFio4cOHq2fPnlq1apXy8vL06KOP6scff9Tbb7/dnEPwGg0FN00JdAAAAAAA8EbNCimeeeYZ7du3T0OGDFHXrl0lSWPHjtXRo0c1cuRIPf74443Of/XVV1VaWqr169erXbt2GjFihE6ePKl58+bp0UcfVbt27eqdt3jxYpWWluqf//ynQkJCJEkdOnTQ2LFj9cUXX+jaa69tzmF4hYiIiHpv7YiIiHBDNQAAAAAAOF+zbvdo3bq1Nm7cqPfee0/33HOPpk+frsmTJ2vTpk3auHGj/P39G52/efNmjRo1qkYYMXHiRJWWlmrnzp0Nztu9e7euvfZae0AhSSNHjpSPj482bdrUnEPwGqmpqbJYLDXGLBaLUlNT3VQRAAAAAADO1awrKarExcU1+pjMhmRlZWn48OE1xsLDw2WxWJSVlaUxY8bUO+/06dMKCAioMdaqVSv5+vpq//79za7DG1itVi1btkzbtm2zjw0YMEBWq9WNVQEAAAAA4DzNCin279+vwsJCXXfddZKk0tJS+y0gcXFxevDBBxudn5+fX+NqiCqhoaHKz89vcF5UVJSWL1+u8vJy+9Uau3btUmVlZb1PFCkuLlZmZmbTD8xDFBUV2et+8cUXawQUkrRt2zZFRkbqzTffdH1xcIvqPQFI9ATqoidQHf2A2ugJ1EZPoDZP64lmhRQPPPCArr/+entI8dvf/lZvvvmmbrjhBs2ZM0enT5/W7NmzG32P2o8ulSTTNOsdr/LrX/9aL730kh588EHNmzdPeXl5euCBB+Tn51fv0y6Cg4M1dOjQ5hyaR8jMzLTXHR8fX+8+OTk5Wr16tRYvXuzCyuAu1XsCkOgJ1EVPoDr6AbXRE6iNnkBtntYTzVqTYs+ePfanepSXlystLU0vvvii3n33Xc2fP19//etfG50fGhqqgoKCOuOFhYX1XmFRJTo6WkuXLtWKFSt00UUX6aqrrlL//v3Vp08fdenSpTmH4DUae4rHkiVLXFgJAAAAAACu0awrKYqLi+2LXn7yyScqLi7W+PHjJUl9+/at92kU1UVHRysrK6vG2OHDh1VcXKzo6OhG5957772aPHmyvv32W3Xu3FkdO3ZUWFiYpk+f3pxD8Bp+fn48bhQAAAAAcEFp1pUUv/rVr/TJJ59Ikt566y1dffXVCgsLkyQdP35cbdu2bXR+QkKCtmzZolOnTtnHVq1apaCgIA0ZMuSsnx8YGKgrr7xSXbp0UVpammw2m+68887mHILXSEpKcncJAAAAAAC4VLNCiuTkZD3xxBPq16+fXnrpJf3mN7+xb8vMzNRVV13V6Pz77rtPrVu31vjx45WRkaGlS5dq3rx5evjhh2s8ljQqKkrTpk2zvz558qTmzJmjTZs2acuWLfq///s/TZ8+XS+//LI6dOjQnEPwGqw5AQAAAAC40DQrpJg2bZoyMjI0ceJEvffee7rrrrvs2zp06KDk5ORG54eGhmrbtm2qrKzUmDFj9OSTTyo5OVlPPfVUjf0qKipq3Org5+en//znP7rrrrs0btw4bdu2TWvWrNGUKVOaU77XaWgx0cYWGQUAAAAAtGyGYSgyMlK+vr6KjIyUYRjuLslhmrUmhSQNHjxYXbp00ZEjR5Senm4f79+/f5Pmx8TEaPv27Y3uk52dXeN1cHCw3nvvveaW6vVM02zWOAAAAACgZTMMQ0lJSSopKZH0yxMgq5YLsFqt7izNIZoVUnz99deaNGmS9u/fX+8Pyj4+Piz2CAAAAACAk6SkpNgDiiolJSVKSUm58EKKe++9V/7+/tq4caOioqIUEBDgrLoAAAAAAEA1x48fb/Cpmrm5uS6uxjmaFVLs379f69at06hRo5xVDwAAAAAA+P9KSkq0YcMGGYahLVu2NLhfeHi4C6tynmYtnNm/f/8Wk854O19fXz3wwAPuLgMAAAAA4GAVFRXasmWL7r77bnXp0kWTJ0/W7t27lZycrPnz58tisdTY32KxKDU11U3VOlazrqRYunSpJk2aJIvFomHDhikkJKTOPrX/snDu/Pz8GlzjwzRNLVmyRBKPKwUAAAAAb2eapr744gulpaVp1apV+umnn9S+fXtNmDBBiYmJGjx4sHx9f7nOIDw8XCkpKcrNzVV4eLhSU1NbxHoUUjNDio4dOyoyMlJ33313g/uwcKbjJCUl2YOIhixdupSQAgAAAAC81IEDB2QYhgzD0LfffquAgADdfPPNslqtGj16tAIDA+vMsVqtLSaUqK1ZIUViYqI+/vhj/fa3v2XhTBdYvHix/vGPf6ioqKjBfQiFAAAAAMC7/PTTT1q1apUMw9Bnn30mHx8fDRkyRHPmzNFtt91W710LF4pmhRQ7duzQ66+/rsmTJzurHtRSXFzc6HY/Pz8XVQIAAAAAOFdFRUV6++23ZRiGtm7dqsrKSvXu3VsLFy7UpEmT1L17d3eX6BGaFVJERkay5oSLhYeHN/iIGemXW0IAAAAAAJ6nvLxcW7dulWEYevvtt1VSUqLw8HDNnj1bVqtVvXr1cneJHqdZIcWiRYv05JNPqk+fPoqMjHRSSaguNTVVSUlJKikpqbPt/vvvZz0KAAAAAPAgpmnqk08+kWEYWrVqlY4fP67Q0FDdddddslqtGjhwoH0BTNTVrJDiySefVG5urnr27KnIyMh675P57LPPHFUbJPtiKFUrt/r7++vyyy/XV1995ebKAAAAAABVsrKyZBiGli9fru+++06BgYEaM2aMEhMTdeONN7KmYxM1K6To1asXl6O4QfWVW2+++Wb98MMPbq4IAAAAAPDjjz9q5cqVMgxDu3btkq+vr4YPH67f/e53Gj9+vNq1a+fuEr1Os0KKZcuWOasONFGnTp305ZdfursMAAAAALggnTx5Um+99ZYMw9C2bdtks9nUt29fvfDCC5o4caK6devm7hK9WrNCCrhf586ddezYMZmmKR8fH3eXAwAAAAAtXllZmd59910ZhqF33nlHp0+fVo8ePfT444/LarUqOjra3SW2GIQUXqZTp04qKyvTqVOnuHQIAAAAAJzEZrPpo48+UlpamtasWaMTJ04oLCxM9957rxITE3Xdddfxi2MnIKTwMp07d5YkHTt2jJACAAAAABxs79699gUwc3JyFBQUpHHjxslqtWrkyJHy9/d3d4ktGiGFl+nUqZMk6eeff1ZUVJSbqwEAAAAA73fkyBGtWLFChmFo9+7d8vX11YgRI/Tss89q3LhxatOmjbtLvGAQUniZ6ldSAAAAAADOTUFBgdatWyfDMJSZmSnTNNW/f3+99NJLmjBhgrp06eLuEi9IhBRepvqVFAAAAACApjtz5ozS09OVlpamTZs26cyZM4qKitLcuXNltVp12WWXubvECx4hhZepCim4kgIAAAAAzs5ms+n999+XYRhau3atCgoK1LlzZ82YMUNWq1X9+vVjAUwPQkjhZYKCgtSmTRuupAAAAACARnz11VcyDEMrVqzQ4cOHFRwcrFtvvVWJiYmKi4tTq1b8OOyJfN1dAJrHMAydPn1aL774oiIjI2UYhrtLAgAAAACPkJubq+eff15XXnmlevfurT/84Q+66qqrtHz5cv3000/6xz/+oVGjRhFQeDCXhxT79u1TXFycLBaLunXrprlz56qysvKs87744guNHDlSYWFh6tChg+Lj4/Xpp5+6oGLPYRiGpk6dqoqKCklSTk6OEhMT9cADD7i5MgAAAABwjxMnTmjp0qUaMmSIIiIi9Nhjj6lt27b685//rB9++EEbN27UpEmTFBwc7O5S0QQujY/y8/MVHx+vmJgYbdiwQQcPHtQjjzwim82mZ599tsF5hw8fVnx8vPr27au///3vkqRFixZp5MiR+uqrrxQREeGqQ3CrWbNmqby8vM74kiVLNHDgQFmtVjdUBQAAAACuVVpaqo0bN8owDKWnp6u8vFzR0dF65plnNHnyZP3qV79yd4k4Ry4NKV599VWVlpZq/fr1ateunUaMGKGTJ09q3rx5evTRR9WuXbt6523atEmnTp3S+vXrFRISIkm6/vrr1bFjR6Wnp+v+++934VG4T15eXoPbUlJSCCkAAAAAtFiVlZXKzMyUYRhat26dTp48qYsuukgzZ85UYmKirr76ahbAbAFcervH5s2bNWrUqBphxMSJE1VaWqqdO3c2OK+8vFytWrVSmzZt7GNt2rRRq1atZJqmU2v2Frm5ue4uAQAAAAAcyjRN/fvf/9Yjjzyi8PBwxcfHa+3atRo/fry2bt2qw4cP6w9/+IP69u1LQNFCuDSkyMrKUnR0dI2x8PBwWSwWZWVlNTjvtttuk8Vi0SOPPKJjx47p2LFjSk5OVmhoqO644w5nl+0xwsLCGtwWHh7uwkoAAAAAwHkOHTqk1NRUxcbG6pprrtErr7yia6+9VqtXr9ZPP/2kZcuWKT4+Xn5+fu4uFQ7m8jUpqm7XqC40NFT5+fkNzuvWrZt27Nihm2++WS+//LIk6aKLLtKWLVvUqVOnOvsXFxcrMzPTUWW7TFFRUaN133fffZo/f36dq0datWqlxMRErzxmNO5sPYELDz2B2ugJVEc/oDZ6ArV5ck8UFhZqx44dysjI0N69eyVJV111lZKTkzVkyBC1b99eki64Byg4m6f1hMufu1LfJTimaTZ6ac6PP/6o22+/Xddcc43eeOMNSdKf//xn3XTTTfroo4/qXEUQHBysoUOHOrRuV8jMzGy07qFDh+qKK67QrFmz7OtTtGnTRq+++irrUbRQZ+sJXHjoCdRGT6A6+gG10ROozdN6oqSkRO+8844Mw9C7776riooKxcbGav78+Zo8efIF85AEd/K0nnDp7R6hoaEqKCioM15YWFjvFRZVFi1apIqKCq1du1Y33nijbrzxRq1bt05+fn76/e9/77yCPZDVatXx48ftIUVJSYkSExPVqlUrHkUKAAAAwONVVFRoy5Ytuvvuu9WlSxdNmjRJ//nPf5ScnKzdu3fr66+/1mOPPUZAcYFy6ZUU0dHRddaeOHz4sIqLi+usVVFdVlaWYmNj5e/vbx8LCAhQbGysDh486LR6PVlKSookyWazSfplpdslS5bom2++UUZGhjtLAwAAAIAaTNPUF198IcMwtHLlSv30009q3769JkyYoMTERA0ePFi+vi79HTo8lEu7ICEhQVu2bNGpU6fsY6tWrVJQUJCGDBnS4LyIiAjt2bNHZWVl9rEzZ85oz549ioyMdGbJHuu1116rd3zbtm0yDMPF1QAAAABAXQcOHNBTTz2l6Oho9e/fX0uWLNHAgQO1bt06HT16VG+88YaGDh1KQAE7l3bCfffdp9atW2v8+PHKyMjQ0qVLNW/ePD388MM1HksaFRWladOm2V9Pnz5dP/zwg2699VZt2rRJGzdu1Lhx4/Tjjz8qKSnJlYfgER544IFGH71adZUFAAAAALjasWPH9Morr+i6667TZZddpqeeekrdunXT66+/rqNHj2rdunUaP368AgMD3V0qPJBLb/cIDQ3Vtm3bNHPmTI0ZM0YhISFKTk7WvHnzauxXUVGhyspK++trrrlG7777rp566indddddkqQrr7xSW7duVe/evV15CB5h6dKljW7Pzc11USUAAAAA8MsTIt5++20ZhqGtW7eqsrJSvXv31sKFCzVp0iR1797d3SXCS7j86R4xMTHavn17o/tkZ2fXGYuLi1NcXJyTqvIu1QOc+tR+2gkAAAAAOFp5ebm2bt0qwzD09ttvq6SkROHh4Zo9e7asVqt69erl7hLhhVweUuD8+fn5NRpUjB492oXVAAAAALhQmKapTz/9VGlpaVq9erV+/vlnhYaG6q677pLVatXAgQNZXwLnhZDCCyUlJWnJkiUNbk9PT3dhNQAAAABauv/+978yDEPLly/XwYMHFRgYqDFjxshqtSohIUEBAQHuLhEtBCGFF1q8eLEkNRhUsCYFAAAAgPN19OhRrVy5Umlpadq1a5d8fX01fPhwPfHEExo/fnyNhx8AjkJI4aUWL16s9PR05eTk1NnGmhQAAAAAzsXJkyf11ltvyTAMbdu2TTabTX379tULL7ygiRMnqlu3bu4uES0cIYUXS01NVVJSkkpKSuxjPj4+rEkBAAAAoMnKysq0ZcsWpaWl6Z133tHp06fVo0cPPf7445o8ebKuuOIKd5eICwghhRezWq368MMPa9z2YZqmXnvtNQ0cOFBWq9WN1QEAAADwVDabTR999JEMw9Dq1at14sQJhYWF6d5775XVatWAAQPk4+Pj7jJxASKk8HJ///vf64zZbDbNmDGDkAIAAABADdnZ2UpJSZFhGMrJyVFQUJDGjRsnq9WqkSNHyt/f390l4gJHSOHliouLmzUOAAAA4MJy5MgRrVixQoZhaPfu3fL19dWIESP0zDPPaNy4cWrbtq27SwTsCCkAAAAAoIUpLCzUunXrlJaWpszMTJmmqf79+2vmzJl64okn1KVLF3eXCNSLkMLL+fr6ymaz1TsOAAAA4MJx5swZpaenyzAMbdy4UWfOnFFUVJTmzp0rq9Wqyy67TJmZmQQU8GiEFF5uxowZNRbOrD4OAAAAoGWz2Wz64IMPlJaWprVr16qgoECdO3e2r1HXr18/FsCEVyGk8HKLFy+WJHtQ4efnp6SkJPs4AAAAgJbnq6++kmEYWrFihQ4fPqzg4GDdeuutslqtio+PV6tW/KgH70TntgCLFy/W/v37VVlZqffff9/d5QAAAABwgtzcXK1YsUJpaWnas2eP/Pz8dOONN2rBggW65ZZbFBwc7O4SgfNGSNFC+Pv76/Tp0+4uAwAAAIADnThxQmvXrpVhGPZfSA4YMEB/+tOfdOedd6pTp05urhBwLEKKFsAwDO3YsUMVFRXy8fFRWFiYXnrpJVmtVneXBgAAAKCZTp8+rY0bNyotLU3p6ekqLy/X5ZdfrmeeeUaTJ0/Wr371K3eXCDgNIYWXMwxDU6dOVUVFhX0sLy9P9957ryQRVAAAAABeoLKyUpmZmTIMQ+vWrdPJkyfVtWtXzZw5U1arVX379mUBTFwQCCm8XEpKisrLy+uMl5WVKSUlhZACAAAA8FCmaWr37t32BTB/+OEHtW3bVrfddpusVquGDRsmPz8/d5cJuBQhhZfLzc09p20AAAAA3OPQoUNavny5DMPQ/v375e/vr4SEBFmtVo0ZM0ZBQUHuLhFwG0IKLxceHq6cnJwGtwEAAABwv+PHj2vNmjUyDEMffvihJGnQoEF69dVXdfvttyssLMzNFQKegZDCy6Wmpmrq1Kl1bvkICAhQamqqm6oCAAAAUFJSonfeeUeGYejdd99VRUWFYmNjNX/+fE2aNEmRkZHuLhHwOIQUXq5qzYlZs2YpLy/PPt62bVt3lQQAAABcsCoqKrR9+3alpaXprbfeUlFRkS6++GIlJyfLarXqqquuYgFMoBG+rv7Affv2KS4uThaLRd26ddPcuXNVWVnZ6Jx58+bJx8en3q/nnnvORZV7LqvVqpdeekkWi8U+lpeXp6SkJBmG4cbKAAAAgJbPNE19/vnneuihh9S9e3eNGjVK77zzjiZMmKDt27crJydHCxcuVO/evQkogLNw6ZUU+fn5io+PV0xMjDZs2KCDBw/qkUcekc1m07PPPtvgvOnTp+vGG2+sMfb2229rwYIFSkhIcHbZXiElJUUlJSU1xkpKSnjCBwAAAOAkBw8elGEYMgxD33zzjQICAnTTTTcpMTFRo0ePVmBgoLtLBLyOS0OKV199VaWlpVq/fr3atWunESNG6OTJk5o3b54effRRtWvXrt553bt3V/fu3WuMPfPMM4qOjlafPn1cULnna+hJHjzhAwAAAHCcY8eOadWqVTIMQ59++ql8fHw0ZMgQzZ49W7fddptCQ0PdXSLg1Vx6u8fmzZs1atSoGmHExIkTVVpaqp07dzb5fU6cOKGtW7dq0qRJzijTKzX0JI8OHTq4uBIAAACgZSkqKpJhGEpISFC3bt30m9/8RqWlpVq4cKFycnK0Y8cOTZ8+nYACcACXhhRZWVmKjo6uMRYeHi6LxaKsrKwmv8/atWtVXl6uiRMnOrpEr5Wamip/f/8646dOnWJdCgAAAKCZysvLlZ6eLqvVqi5duigxMVH79u3T7Nmz9fXXX+vLL7/U7Nmzdckll7i7VKBFcWlIkZ+fr5CQkDrjoaGhys/Pb/L7rFy5Un379lXPnj0dWJ13s1qt9d4uU1ZWppSUFDdUBAAAAHgX0zT1ySef6MEHH9TFF1+sm266SZs3b9Zdd92l999/X4cOHdJzzz2nXr16ubtUoMVy+SNI61vN1jTNJq9y++OPP2rnzp1asGBBg/sUFxcrMzPzXEt0m6KiovOqu/ojSKvLycnxyr8PnH9PoOWhJ1AbPYHq6AfURk80TW5urjIyMrRt2zb98MMPCggI0IABAxQfH6/+/fsrICBAlZWVev/9991d6nmjJ1Cbp/WES0OK0NBQFRQU1BkvLCys9wqL+qxevVqmaWrChAkN7hMcHKyhQ4eeW5FulJmZeV51+/n51fs4Vz8/P6/8+8D59wRaHnoCtdETqI5+QG30RMOOHj2qlStXKi0tTbt27ZKPj4+GDx+u1NRUjR8/vsFF/b0dPYHaPK0nXBpSREdH11l74vDhwyouLq6zVkVDVq5cqUGDBnHvVz3qCygaGwcAAAAuJKdOndL69etlGIa2bdsmm82mvn376oUXXtDEiRPVrVs3d5cIXPBcGlIkJCRo0aJFOnXqlNq2bStJWrVqlYKCgjRkyJCzzs/OztYnn3yixYsXO7tUrxQREaGcnJx6xwEAAIALUVlZmbZs2SLDMPTOO++otLRUPXr00OOPP67JkyfriiuucHeJAKpx6cKZ9913n1q3bq3x48crIyNDS5cu1bx58/Twww/XuJwqKipK06ZNqzN/5cqVatWqlW6//XZXlu01UlNTZbFYaoxZLBalpqa6qSIAAADA9Ww2m/71r3/p/vvv10UXXaRbbrlFGRkZmjp1qj788EMdPHhQzzzzDAEF4IFcvibFtm3bNHPmTI0ZM0YhISFKTk7WvHnzauxXUVFR7y0KK1euVFxcnDp16uSiir2L1WqVJE2ZMkUVFRWSpJKSEi1btsy+DQAAAGip9u3bJ8MwtHz5cmVnZysoKEhjx45VYmKiRo4cKX9/f3eXCOAsXP50j5iYGG3fvr3RfbKzs+sd3717t+MLamGWLVtmDyiqbNu2TfHx8crIyHBTVQAAAIBzHDlyRCtWrJBhGNq9e7d8fX01YsQIPf300xo3bpz9NnMA3sHlIQWca9u2bc0aBwAAALxNYWGh1q1bJ8MwtGPHDpmmqX79+umll17ShAkT1KVLF3eXCOAcEVIAAAAA8HhnzpxRenq6DMPQxo0bdebMGUVFRWnu3LmaPHmyevbs6e4SATgAIQUAAAAAj2Sz2fTBBx/IMAytWbNGBQUF6ty5s5KSkpSYmKh+/frJx8fH3WUCcCBCihYmLi6u3ls74uLi3FANAAAA0Hxff/210tLStGLFCh0+fFjBwcG69dZbZbVaFR8fr1at+DEGaKn4f3cLk5GRofj4+BpBRVxcHItmAgAAwKPl5ubaF8D8+uuv5efnp1GjRmnBggW65ZZbFBwc7O4SAbgAIUULlJGRoeeff16PPfaYSktLFRgY6O6SAAAAgDry8/O1Zs0aGYah999/X5I0YMAA/elPf9Kdd96pTp06ublCAK5GSNFCVV0CV/txpAAAAIA7nT59Whs3bpRhGEpPT1dZWZkuv/xyPf3005o8ebIuvfRSd5cIwI0IKVooQgoAAAB4isrKSu3cuVNpaWlat26dTp48qa5du+p///d/ZbVa1bdvXxbABCCJkKLFIqQAAACAO5mmqd27d8swDK1YsUI//PCD2rZtq/HjxysxMVHDhg2Tn5+fu8sE4GEIKVooQgoAAAC4w6FDh7R8+XIZhqH9+/fL399fCQkJslqtGjNmjIKCgtxdIgAPRkjRQhFSAAAAwFXy8vK0evVqGYahDz/8UJI0aNAgLVmyRHfccYfCwsLcXCEAb0FI0UIRUgAAAMCZSkpK9M9//lNpaWl69913VVFRoZiYGM2fP1+TJk1SZGSku0sE4IUIKVqoqpCivLzczZUAAACgpaioqND27dtlGIbWr1+voqIiXXzxxXrooYdktVrVu3dvFsAEcF4IKVoorqQAAACAI5imqV27dtkXwPzpp5/Uvn17TZgwQVarVYMHD2YBTAAO4+vuAuAchBQAAABoCsMwFBkZKV9fX0VGRsowDEnSwYMH9fTTTys6Olr9+vXT4sWLdf3112vt2rU6evSo3njjDZ7QAcDhuJKihSKkAAAAwNkYhqGkpCSVlJRIknJycjR16lQ9+eSTOnjwoCRp6NChmj17tm677TaFhoa6s1wAFwBCihaKkAIAAKDlstlsKisr0+nTp3XmzBn7V+3Xn332mfLz8xvcvmjRIntAUaW8vFy5ublasGCBJk2apEsuucRNRwngQkRI0UIRUgAAADhWRUVFo4GAs19XH3P24ugVFRV69NFHnfoZAFAfQooWipACAAB4O9M0VV5e7vQf+Jv6urKy0iHH1apVK7Vu3VqBgYFq3bq1/av667Zt26pTp04Nbm/K69atW2vv3r26/vrrG9wnKipKubm5dWoMDw93yLECQHMRUrRQhBQAAOBc2Gy2Zv8w78yrCByl9g/v9f2AHxYWdl6hQFNeBwQEuHShSdM01adPnwa3z58/v8aaFJJksViUmprqguoAoC5CihaKkAIAAO/hqNsIvvnmG/3zn/88r4DAUbcR+Pr6nvUH9qCgIIWEhDgtEKj6c0BAgHx8fBxyXC2N1WqVJKWkpCg3N1fh4eFKTU21jwOAqxFStFCEFAAANMyZtxGcy20HjrqNwM/PT4GBgU6/jaC+2wpqj7Vq1YpgwEtYrVZCCQAew+Uhxb59+/Tggw/q448/VkhIiKZPn64nn3yySZe9rV+/Xs8995z27Nkji8Wifv36ad26dQoODnZB5d6FkAIA4GnO5TYCZ64z4ChNuY2gTZs2zfoB/1xvI/jggw80dOhQhx0bAACu5tKQIj8/X/Hx8YqJidGGDRt08OBBPfLII7LZbHr22WcbnfvGG29o5syZevTRR7Vo0SLl5+dr+/bt/BDeAEIKAIBU8zYCVywsyG0EAADgfLg0pHj11VdVWlqq9evXq127dhoxYoROnjypefPm6dFHH1W7du3qnXf8+HElJyfrlVde0a9//Wv7+K233uqq0r0OIQUAuIerbyM4fvy4AgICGtxus9kcclyuehpBU24r4DYCAABaLpeGFJs3b9aoUaNqhBETJ07UnDlztHPnTo0ZM6beeatXr5Yk3XPPPS6psyXw9/eXREgB4MLgitsImvPaUZpyS0C7du100UUXOf02Alc+jQAAAFy4XBpSZGVlafjw4TXGwsPDZbFYlJWV1WBI8emnn+ryyy/XX/7yF6Wmpuqnn35S37599cc//lHXX3+9K0r3OlxJAbiGYRgX7Iro53MbgaPXHbiQbyPIzMxkDQIAANBiuHxNipCQkDrjoaGhys/Pb3De0aNH9d///lfPPvusFi5cqLCwMC1cuFA33nijvv32W3Xp0qXG/sXFxcrMzHRw9c5XVFTksLqPHj0qSdqzZ49X/l3gF47sCTheRkaGfv/739t/c56Tk6Np06Zp//79io+Pd/jnmaapgoICbdq0SeXl5SovL1dZWZnKysrsr+sbq/3ns+1ffU7t/62+3VG3Efj5+cnf318BAQEKCAiQv7+//XX1P1ssFrVv377O9tr/W317fe9X3/5V+7ryaoGqv/fzxfcJVEc/oDZ6ArXRE6jN03rC5U/3qO+3QqZpNvrbIpvNpqKiIq1Zs0Y33nijJOn6669XRESE/vSnP+mZZ56psX9wcLBX/lbJkb8NO3LkiCQpKirKK/8u8At+Q+p5KisrVVxcrKKiIlmt1jqX9p85c0avvvqqLrnkEq++jaBdu3bNXieA2wjcg+8TqI5+QG30BGqjJ1Cbp/WES0OK0NBQFRQU1BkvLCys9wqLKh06dJCkGn9x7dq10zXXXKN9+/Y5uMqWYcOGDZKkpKQkpaamXlCXoANVbDabiouLderUKRUVFdm/ar+ub6yhfUpLS8/6uXl5ebrvvvtqjDnqNoIffvhB0dHRPI0AAAAALZJLQ4ro6GhlZWXVGDt8+LCKi4sVHR3d4LwrrrhCPj4+Mk2zxrhpmvL19XVKrd7MMAz99re/tb/OyclRUlKSJBFUwGNVBQrnEhw09LqkpKTJnx8QEKA2bdrYv9q2bas2bdqoU6dOdcaqvp544gkdP368znt169ZNn3/+eY2AoGqdmPPlaUk3AAAA4EguDSkSEhK0aNEinTp1Sm3btpUkrVq1SkFBQRoyZEiD826++WY99dRT2rFjh0aPHi3pl6svdu3aVeOHcfwiJSWlzm97S0pKlJKSQkgBh7DZbCopKTnvqxKqvy4uLm7y57dq1Upt27atExqEhYXVGav9uqGxgICAZv89tGnTRklJSTXCEIvFooULF6pbt27Nfj8AAADgQufSkOK+++7Tyy+/rPHjx2vOnDn67rvvNG/ePD388MM1HksaFRWlIUOG6C9/+Ysk6dprr9XYsWM1bdo0Pf/88+rYsaMWLlwof39//e///q8rD8Er5ObmNmv8QuHqpzB4ylMfTNOsc4XC+V6lcC6BQu2QICIiollBQvXX5xIoOEPVv6cn/DsDAAAALYHL16TYtm2bZs6cqTFjxigkJETJycmaN29ejf0qKipUWVlZYywtLU2zZ8/Www8/rJKSEg0cOFDbt29XaGioC4/AO4SHhysnJ6fe8QuVYRg1fuPt7FtgzvXzTNO0X6FQVFSkAwcOqFWrVucVLhQXF9e5Vaohfn5+9jCgeihwySWXNDtIqPpq3br1+f+FejCr1UooAQAAADiIy5/uERMTo+3btze6T3Z2dp2xNm3aaMmSJVqyZImTKms5UlNT670EPTU11Y1Vudfjjz9eZ32CkpISPfjgg8rLy3P4582bN6/ez5sxY4beeeedBsOFoqKicwoUqn9179692bc7VL1mQUUAAAAA7uTykALOV/Vb3alTp6q8vFwREREXzCXo5eXl+uabb7R3717t3btXe/bs0d69exu81SU/P1+zZs1yWX3FxcX68ssv7aHAxRdf3GiQkJ2dreuuu67efVq3bk2gAAAAAKBFIaRooaxWq1577TX5+voqMzPT3eU4XEVFhQ4cOGAPI6oCiW+++UYVFRWSfnnkY1RUlGJjY3X06FEVFhbWeZ/u3bvryy+/dHh9vXv31vfff19nPCIios4TbhrDkxwAAAAAXEgIKVqwDh066LvvvnN3GeelsrJShw4dsl8RUfWVlZWlsrIySZKPj4969OihXr16aezYsYqNjVVsbKyio6MVGBgoqe4aEdIvt8A8//zz6tChg8Prfv7557nlBgAAAACaiZCiBevQoYN27drl7jKaxGazKScnp85tGvv379fp06ft+0VERCg2NlY33nijPYy44oorZLFYGn1/Vz+Fgac+AAAAAEDzEVK0YKGhoTpx4oRD37Ohx2o29XGbpmnq8OHDdW7T2L9/f43HWnbv3l2xsbEaNmyYevXqZQ8j2rZte861u/opDDz1AQAAAACah5CiBevQoYNKSkp05swZhzwGsqHHan744Yf629/+Vmc8Pz9fPXv2rBFI7Nu3TydPnrS/Z9euXdWrVy9Nnz7dfmVETEyMQkJCzrteAAAAAIB3IaRowUJDQyX98gSLrl27nvf7paSk1PtYzddee002m63O+IMPPmh/3alTJ8XGxuruu++2hxGxsbFOWQ8CAAAAAOCdCClasKoA4HxCiuq3cZimWe8+tQOK6nbs2KHY2Fh16tTpnD4fAAAAAHDhIKRowaqupDjXdSnqeyJGfXx9fesNKiIiInh8JgAAAACgyXzdXQCcp+pKioSEBPn4+MjHx0cdO3aUYRhNml/f7R31CQoKqvN0DR63CQAAAABoLkKKFuyll16SJJ06dco+lpeXp3vvvbdJQUVubm6TPqekpERLly5VRESEfHx8FBERoaVLl/JkCwAAAABAsxBStFCGYTQYRJSVlWnGjBnq2LFjnSssDMNQZGSkfH2b3hrh4eGyWq3Kzs6WzWZTdnY2AQUAAAAAoNlYk6KFSklJaXR7cXGxiouL7a/z8vJ0zz33yM/PT2VlZU3+HG7rAAAAAAA4CldStFBNvVWjusrKynoDCj8/P/ttHPfffz+3dQAAAAAAnIIrKVqo8PBw5eTkOOS9bDZbo48ZBQAAAADAEbiSooVKTU2Vv7+/Q94rPDzcIe8DAAAAAEBjCClaKKvVqmXLliksLKzJc/z8/BQQEFBjjDUnAAAAAACuQkjRglmtVh0/flymaSotLa3GWhL3339/jQAjLCxMf/vb3/TXv/6VNScAAAAAAG7BmhQXCKvVWidsWLx4cYP7AgAAAADgalxJAQAAAAAAPAIhBQAAAAAA8AiEFAAAAAAAwCMQUgAAAAAAAI9ASAEAAAAAADwCIQUAAAAAAPAIhBQAAAAAAMAj+Jimabq7CEfr2LGjIiMj3V0GAAAAAACoJTs7W8ePH693W4sMKQAAAAAAgPfhdg8AAAAAAOARCCkAAAAAAIBHIKQAAAAAAAAegZDCwfbt26e4uDhZLBZ169ZNc+fOVWVl5VnnFRYWaurUqQoNDVX79u1ltVqVl5dXZ78NGzboyiuvVGBgoGJiYrRq1SpnHAYcyFk9UVlZqQULFuiGG25QWFiYwsLCNHLkSH3++efOPBw4gLO/T1R5++235ePjo2uvvdaR5cMJnN0TeXl5mjFjhrp27aqgoCBFR0fr73//uzMOBQ7izJ4oKyvT008/raioKAUFBSkqKkpPPvmkzpw546zDwXk6l34oKyvT7NmzdcMNNygoKEg+Pj4N7sv5pfdxVk9wfum9nP19oopLzi9NOMyJEyfMiy66yIyLizPfe+89c8mSJabFYjFTUlLOOnfUqFFmZGSkuXbtWnP9+vXmZZddZg4aNKjGPh988IHp5+dnPvjgg+b27dvN3/72t6aPj4+5ZcsWZx0SzpMze+LUqVNmSEiImZycbG7atMlMT083R48ebQYEBJhffPGFMw8L58HZ3yeqlJaWmj169DC7dOliXnPNNY4+DDiQs3uisLDQjImJMfv372+uXr3a3L59u/mnP/3JfP311511SDhPzu6J5ORkMygoyHzhhRfM7du3m7///e/NwMBA8ze/+Y2zDgnn4Vz7IT8/3wwJCTFHjhxpDh8+3GzotJ/zS+/jzJ7g/NI7Ofv7RBVXnV8SUjjQ/PnzzZCQELOwsNA+tmDBAjMoKKjGWG0fffSRKcncuXOnfezTTz81JZlbt261j40cOdIcNmxYjbkJCQnmwIEDHXgUcCRn9kRFRYV54sSJGvPOnDljRkREmFOmTHHwkcBRnP19osrTTz9tDho0yLznnnsIKTycs3tizpw55qWXXmqWlJQ45wDgcM7uiS5dupgPP/xwjbnJyclm586dHXgUcJRz7QfTNE2bzWaapmm+8sorDf7wwfml93FmT3B+6Z2c/X2iiqvOL7ndw4E2b96sUaNGqV27dvaxiRMnqrS0VDt37mx0XpcuXTR48GD7WP/+/dWjRw9t3rxZknTmzBnt2LFDd955Z425EydO1Mcff6zCwkIHHw0cwZk94efnp9DQ0BrzAgICFBsbq2PHjjn4SOAozuyJKrm5uVq4cKFeeuklxx8AHM7ZPbFs2TJNmzZNQUFBzjkAOJyze6K8vFzt27evMTckJEQmT6X3SOfaD5LOeuk255feyZk9wfmld3JmT1Rx5fklIYUDZWVlKTo6usZYeHi4LBaLsrKymjVPkq644gr7vIMHD6q8vLzOfldccYVsNpu++eYbBxwBHM2ZPVGfM2fOaNeuXYqJiTn3ouFUruiJRx55RHfeeaf69u3rmKLhVM7siUOHDunYsWMKCQnR6NGjFRAQoE6dOunhhx9WWVmZYw8EDuPs7xPTp0/Xa6+9pg8//FBFRUX64IMPtGTJEs2cOdNxBwGHOdd+aArOL72TM3uiPpxfej5X9IQrzy9bOf0TLiD5+fkKCQmpMx4aGqr8/Pxzmvfdd9/Z95FUZ7+qpLOx94f7OLMn6pOamqr8/HxNnz79XMqFCzi7J3bs2KEtW7ZwYulFnNkTR48elSQ9+uijmjhxot599119+eWXevzxx9WqVSstXLjQIccAx3L294nnn39epaWlGjRokH3sgQce0Ny5c8+rbjjHufZDU99b4vzS2zizJ+rD+aXnc3ZPuPr8kpDCweq7XMY0zbNeRtPUebVfV12a2dTLdOB6zu6JKps2bVJqaqpeeOEFXX755edWLFzCWT1RUVGh3/zmN3riiSfUtWtXxxQLl3BWT9hsNklSbGysXn/9dUnS8OHDderUKc2fP1/z5s2TxWI53/LhBM78b8eiRYuUlpamV155RVdddZW+/PJL/e53v1NYWJiefvrp8y8eDneu/XCu78/5pedzdk9U4fzSezirJ9xxfsntHg4UGhqqgoKCOuOFhYX1Jltnm1dQUGCfV5Vo196v6nVj7w/3cWZPVPf5559rwoQJmjFjhh566KFzrhfO58yeeP3111VQUKB77rlHBQUFKigoUFlZmSorK1VQUKDy8nLHHAQcypk90aFDB0nSsGHDauwzfPhwnTlzRgcPHjzXsuFEzuyJ48eP64knntCCBQs0c+ZMDR48WA8++KAWLFig5557jnvOPdC59kNT31vi/NLbOLMnquP80ns4syfccX5JSOFA0dHRde75OXz4sIqLi+u9R7SxeVLNe4suvfRS+fv719kvKytLvr6+6tmzpwOOAI7mzJ6o8s033+imm25SXFycXnnlFccUDqdxZk/897//1ffff6+uXbsqNDRUoaGhWrFihXbv3q3Q0FCee++hnP3fjoCAgDr7VP2W1NeX0wBP5Mye+O6771ReXq4+ffrU2Ofqq69WRUWFcnJyzv8A4FDn2g9Nwfmld3JmT1Th/NK7OLMn3HF+ydmJAyUkJGjLli06deqUfWzVqlUKCgrSkCFDGp139OhR/etf/7KPffHFF/ruu++UkJAgSWrdurWGDRumNWvW1Ji7atUqDRgwoM4q3fAMzuwJSfrxxx81atQoXXrppVqxYoX8/PyccyBwGGf2xMyZM7Vjx44aX6NGjVLPnj21Y8cOjRgxwnkHhnPmzJ4ICAjQiBEjtH379hpzt23bJovFoqioKAcfDRzBmT0REREhSfr3v/9dY+6uXbskSZGRkY46DDjIufZDU3B+6Z2c2RMS55feyJk94ZbzS6c93PQCdOLECbNr165mfHy8uXXrVvO1114zg4ODzZSUlBr7XXrppea9995bY2zUqFFmjx49zHXr1plvvfWW2bNnT3PQoEE19vnggw9MPz8/c9asWeaOHTvM2bNnmz4+PuaWLVucfmw4N87siZKSErN3795m+/btzY0bN5off/yx/evf//63S44Pzefs7xO1Ofs51jh/zu6JTz/91PT39zenTJlibtmyxVy0aJHZunVr89lnn3X6seHcOLsnxo0bZ7Zv39588cUXze3bt5t/+MMfzHbt2pl33HGH048NzXc+/ZCenm6uWbPGnDZtminJXLNmjblmzRozOzvbvg/nl97HmT3B+aV3cvb3idqcfX5JSOFge/fuNYcNG2YGBgaaXbt2NZ944gmzoqKixj4RERHmPffcU2MsPz/fnDJlitm+fXuzbdu25qRJk8yff/65zvu/9dZbZmxsrBkQEGBefvnl5ooVK5x5OHAAZ/XEoUOHTEn1fkVERLjgyHCunP19ojpCCu/g7J549913zauvvtoMCAgwu3fvbj799NNmZWWlMw8J58mZPVFYWGg+8sgj5q9+9SszMDDQvPTSS83Zs2ebJ0+edPZh4Rydaz9ERETUe56wbNmyGvtxful9nNUTnF96L2d/n6jO2eeXPqb5/29MBQAAAAAAcCPWpAAAAAAAAB6BkAIAAAAAAHgEQgoAAAAAAOARCCkAAAAAAIBHIKQAAAAAAAAegZACAAAAAAB4BEIKAAAAAADgEQgpAAAAAACARyCkAAAAAAAAHoGQAgAAeIz3339fw4YNU5s2bdS+fXsNHTpU//nPf/Tmm2/Kx8dHn3/+uW644QYFBQWpZ8+eeuutt9xdMgAAcCBCCgAA4BEyMzMVFxcnf39//e1vf9OqVat0ww036MiRI/Z9JkyYoLFjx2r9+vW68sordccdd+jLL790Y9UAAMCRfEzTNN1dBAAAwIABA1ReXq7PP/9cPj4+Nba9+eabmjp1qlJTU/X4449Lkmw2m2JiYtSnTx+tXLnSHSUDAAAH40oKAADgdsXFxfr00091zz331Akoqrv11lvtf/b19dXYsWP12WefuaJEAADgAoQUAADA7fLz82Wapi666KJG9+vcuXOd1z/++KMzSwMAAC5ESAEAANwuNDRUvr6+Zw0cjh07Vuf12YINAADgPQgpAACA2wUHB+t//ud/9Pe//12NLZdV/WkeNptNGzZsUP/+/V1RIgAAcIFW7i4AAABAkp5//nnFx8crISFBSUlJCg4O1scff6xrr73Wvs8bb7yhgIAA9erVS6+//roOHDigFStWuLFqAADgSFxJAQAAPMLgwYO1detWlZSUKDExURMmTNDOnTvVvXt3+z4rV67UW2+9pXHjxunLL7/UqlWrdPXVV7uxagAA4Eg8ghQAAHi8qkeQnjp1Sm3atHF3OQAAwEm4kgIAAAAAAHgEQgoAAAAAAOARuN0DAAAAAAB4BK6kAAAAAAAAHoGQAgAAAAAAeARCCgAAAAAA4BEIKQAAAAAAgEcgpAAAAAAAAB7h/wHP3ShZKlHiCAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "d2 = pd.DataFrame({'acc_gini':pd.Series(mse_gini),'ccp_alphas':pd.Series(alphas_dt)})\n", + "\n", + "#plt.style.context(\"dark_background\")\n", + "\n", + "# visualizing changes in parameters\n", + "plt.figure(figsize=(18,5), facecolor = \"white\")\n", + "plt.plot('ccp_alphas','acc_gini', data=d2, label='mse', marker=\"o\", color='black')\n", + "#plt.gca().invert_xaxis()\n", + "\n", + "\n", + "#plt.xticks(np.arange(0, 0.15, step=0.01)) # Set label locations.\n", + "#plt.yticks(np.arange(0.5, 1.5, step=0.1)) # Set label locations.\n", + "plt.tick_params( axis='x', labelsize=15, length=0, labelrotation=0)\n", + "plt.tick_params( axis='y', labelsize=15, length=0, labelrotation=0)\n", + "plt.grid()\n", + "\n", + "\n", + "plt.xlabel('cp', fontsize = 15)\n", + "plt.ylabel('mse', fontsize = 15)\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "#It is a function to get the best max_depth parametor with cross-validation\n", + "def prune_max_depth(X, y, nfold=10):\n", + " cv_mean_mse = []\n", + " max_depth = []\n", + " # Num ob observations\n", + " nobs = y.shape[0]\n", + " \n", + " # Define folds indices \n", + " list_1 = [*range(0, nfold, 1)]*nobs\n", + " sample = np.random.choice(nobs,nobs, replace=False).tolist()\n", + " foldid = [list_1[index] for index in sample]\n", + "\n", + " # Create split function(similar to R)\n", + " def split(x, f):\n", + " count = max(f) + 1\n", + " return tuple( list(itertools.compress(x, (el == i for el in f))) for i in range(count) ) \n", + "\n", + " # Split observation indices into folds \n", + " list_2 = [*range(0, nobs, 1)]\n", + " I = split(list_2, foldid)\n", + " \n", + " for i in range(1,20):\n", + " max_depth.append(i)\n", + " mse_depth = []\n", + " dtree = DecisionTreeRegressor( max_depth=i, random_state = 0)\n", + " \n", + " for b in range(0,len(I)):\n", + " \n", + " # Split data - index to keep are in mask as booleans\n", + " include_idx = set(I[b]) #Here should go I[b] Set is more efficient, but doesn't reorder your elements if that is desireable\n", + " mask = np.array([(a in include_idx) for a in range(len(y))])\n", + " \n", + " dtree.fit(X[~mask], y[~mask])\n", + " pred = dtree.predict(X[mask])\n", + " mse_depth.append(mean_squared_error(y[mask],pred))\n", + " \n", + " mse = np.mean(mse_depth)\n", + " cv_mean_mse.append(mse)\n", + " \n", + " d1 = pd.DataFrame({'acc_depth':pd.Series(cv_mean_mse),'max_depth':pd.Series(max_depth)})\n", + " return d1" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "d1 = prune_max_depth(x_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAE+CAYAAADF8LicAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABK0UlEQVR4nO3deXzV1YH//9fJRgKBhD1ACCAgyCZLxLXWboLWKtXaunS1aqdj+2s7M0zrdKadfjszXZxO22ltrbXWbtqp1tJNC+627iwqICA7JOyBsCYhy/n9kQuyJMh2+eQmr+fjwSO5n/vJzfsQyL1555zzCTFGJEmSJEmS0iUr6QCSJEmSJKl9s3yQJEmSJElpZfkgSZIkSZLSyvJBkiRJkiSlleWDJEmSJElKK8sHSZIkSZKUVjlJBzhWvXr1ioMHD046hiRJkiRJOsScOXO2xBh7H3o848qHwYMHM3v27KRjSJIkSZKkQ4QQVrd03GUXkiRJkiQprSwfJEmSJElSWlk+SJIkSZKktMq4PR9aUl9fT0VFBbW1tUlHSYv8/HxKS0vJzc1NOookSZIkScesXZQPFRUVdO3alcGDBxNCSDrOSRVjpKqqioqKCoYMGZJ0HEmSJEmSjlm7WHZRW1tLz549213xABBCoGfPnu12VockSZIkqf1rF+UD0C6Lh33a89gkSZIkSe1fu1h2IUmSJEnquGbMq+S2mUtYV11D/+ICpk8ZwbQJA5KOpQNYPkiSJEmSMtaMeZXc+uB8auobAaisruHWB+cDWEC0Ie1m2cWxmDGvkvO//jhDvvBnzv/648yYV3nCj7lq1SpGjhzJjTfeyJgxY7j++ut59NFHOf/88xk+fDgvvvgiTz31FOPHj2f8+PFMmDCBnTt3AnDbbbdx1llnMW7cOL785S+fcBZJkiRJ6ihum7lkf/GwT019I7fNXJJQIrWkw818SGcrtmzZMu6//37uvPNOzjrrLO69917+9re/8Yc//IH/+q//orGxkdtvv53zzz+fXbt2kZ+fz6xZs1i6dCkvvvgiMUYuv/xynn76aS688MITHqskSZIktRd79jawcstuVm3Zw6qq3azYvJtVVbuprK5p8fzK6hrmrN7KuNJicrM75O/d25R2Vz585Y8LeW3djlbvn7emmr2NTQcdq6lv5J8feJX7XlzT4seM6t+NL79n9Jt+7iFDhjB27FgARo8ezTve8Q5CCIwdO5ZVq1ZxzTXX8A//8A9cf/31XHnllZSWljJr1ixmzZrFhAkTANi1axdLly61fJAkSZLU4dQ1NLKmag8rt+xuLhoOKBk27qg76Ny+3ToxpFcXOudls2dvY4uPd9UPn6NzXjZnDe7BeUN7ct7QXozq343sLDf1P9XaXfnwZg4tHt7s+LHo1KnT/vezsrL2387KyqKhoYEvfOELvPvd7+ahhx7inHPO4dFHHyXGyK233sonPvGJE/78kiRJktTW1Tc2UbGthlWpgmFfybByS/MshhjfOLdnlzwG9+rCW4b3ZkivLgzu2aX5ba/OdM5r/nH20NntAAW52fzru8+gZ2Eezy6v4tnlVXzt4cUAdMvP4ezTenLe0J6cO7Qnp/fpSpZlRNq1u/LhzWYonP/1x1ucljOguID/+8S56YoFwPLlyxk7dixjx47lueeeY/HixUyZMoV/+7d/4/rrr6ewsJDKykpyc3Pp06dPWrNIkiRJUro0NUXWba9JLZPYzcote1i5ZRerqvawduseGpreaBi65udwWq8uTBrUnasmlnJa7+aSYXCvLhQV5L7p59q3fL61q11MHdMPgE07anluRRXPLa/iuRVVPPLaRqC54DhnaKqMOK0nQ3p1IQTLiJOt3ZUPb2b6lBEttmLTp4xI++f+zne+wxNPPEF2djajRo3ikksuoVOnTixatIhzz20uPgoLC/nlL39p+SBJkiSpTYsxsmln3QEFwxuzGFZV7WFvwxuzywtysxncqwtn9OvKpWNL9s9gGNKrCz265J3wD/vTJgx40z38+nTL54rxA7hifPN5Fdv2NBcRqZkRf351PQAl3fL3z4o4d2hPSrt3PqFsahbigXNaMkB5eXmcPXv2QccWLVrEGWeccdSPkYnXgD3WMUqSJEnSkRzNz0UxRrbtqX+jWDikZDhwr4W87CzKenbeXyocWDD07dapTc8miDGyqmoPzy7fwrPLq3h+eRVVu/cCUNaj80FlRJ+u+QmnbdtCCHNijOWHHe+I5UMm6ghjlCRJknRqtLRPQqecLN5fXkrPwk7NJUPVHlZu3sWO2ob952RnBQZ2L2BwqlzYt0RiSK8u9C8uaDcbOcYYeX3jrv1lxAsrqvb/PQzrU7h/icY5p/Wke5e8hNO2La2VDx1u2YUkSZIkdXS3zVxyUPEAUNfQxC+eX0MI0L+ogMG9OnP5+P4HlQwDe3TuEJetDCEwoqQrI0q68rHzh9DYFHlt3Q6eXb6F51ZU8cCcCn7+3GpCgDNKuu2fGTF5SA+65r/5PhUdkeWDJEmSJHUgW3bVtbgJP0AAFv2/qeTnZp/aUG1cdlZgbGkRY0uL+MRbh1Lf2MSrFdU8u6x5v4ifP7+au/62svm8AUWcm9rAsnxQDwry/LuEdlQ+xBjb9BqiE5FpS2MkSZIktT0bttdy59MruPfF1a2e07+4wOLhKORmZzFpUA8mDerBp98xnNr6Ruau2bZ/88ofP72CHz65nNzswISy7pyburTn+LJiOuV0zL/fdlE+5OfnU1VVRc+ePdtdARFjpKqqivx8NzWRJEmSdOwqtu3hjqeW85uXKmiMkWnjB3B6SSHfeWRpIlcBbI/yc7M5b2gvzhvai38Edtc18NKqrfvLiP99fCnffWwp+blZlA/qsX9mxNgBReQcsowlEy+QcDTaxYaT9fX1VFRUUFtbm1Cq9MrPz6e0tJTcXNcOSZIkSTo6q7bs5vYnlvG7eZWEAO+bNJBPvnUoZT2bLx3ZXn/IbYu276nnhZXNRcTzK6pYvGEnAIWdcpg8pMf+PSNeX7+Tf5mx4LBS6GtXjs2Yr027vtqFJEmSJKnZ0o07uf2JZfzhlXXkZmdx7eQybr7wNPoXFyQdTSlbdtXx/Iqq/Zf1XLFlNwAhQEs/og8oLuCZL7z9FKc8Pl7tQpIkSZLasYXrtnP7E8t4eMEGCnKzufEtp3HjW4bQp6tLuNuaXoWduGxcfy4b1x+A9dtreG55Ff/wm1daPH9dKxuEZhLLB0mSJEnKYC+vreb7jy/l0UWb6Noph1suGsYNFwyhR5e8pKPpKPUrKuDKiaV8a9brLV6JpD3MWrF8kCRJkqQM9OLKrXzv8aX8dekWijvn8g/vOp2PnDeYogL3istU06eM4NYH57fLjUAtHyRJkiQpQ8QYeWZZFd97fCkvrNxKr8I8vnDJSD54ziAKO/njXabbt6lke9wING3/OkMIdwOXAZtijGNauP8K4KtAE9AAfDbG+Ld05ZEkSZKkTBVj5Iklm/je48uYt6aavt068aXLRnHt5DIK8rKTjqeTaNqEAe2ibDhUOquxe4DvAz9v5f7HgD/EGGMIYRzwG2BkGvNIkiRJUkZpaorMem0D33t8GQvX7WBAcQH/MW0MV5eX0inH0kGZI23lQ4zx6RDC4CPcv+uAm12AzLrmpyRJkiSlSWNT5E+vruP2J5bx+sZdDO7ZmW++bxzvnTCA3OyspONJxyzRRUEhhPcCXwP6AO9OMoskSZIkJa2+sYkZ8yr5wZPLWbllN8P7FPLda8bz7rH9yLF0UAZLtHyIMf4O+F0I4UKa9394Z0vnhRBuBm4GKCsrO3UBJUmSJOkUqGto5IE5FfzwyeVUbKthVL9u/PD6iUwZXUJWVkg6nnTC2sR2qKklGkNDCL1ijFtauP9O4E6A8vJyl2dIkiRJahdq6xu578U1/OipFWzYUcuZA4v5yuWjefvIPoRg6aD2I7HyIYQwDFie2nByIpAHVCWVR5IkSZJOld11Dfzy+dX8+K8r2bKrjslDenDb1eO4YFgvSwe1S+m81OZ9wEVArxBCBfBlIBcgxngHcBXw4RBCPVADfCDG6KwGSZIkSe3Wjtp6fvbMKn7yzEqq99TzluG9+NTbJnD2aT2TjialVTqvdnHtm9z/DeAb6fr8kiRJktRWbNu9l7ufWck9z65iZ20D7xjZh1vePoyJZd2TjiadEm1izwdJkiRJao8276zjrr+u4BfPr2bP3kYuGVPCLW8bxpgBRUlHk04pywdJkiRJOsk2bK/ljqeWc9+La6hvbOI9Z/bnlrcN4/S+XZOOJiXC8kGSJEmSTpK1W/fww6eW88DsCppi5L0TBvDJi4ZyWu/CpKNJibJ8kCRJkqQTtHLLbm5/Yhkz5lWSFQJXl5fyd28dysAenZOOJrUJlg+SJEmSdAxmzKvktplLWFddQ++unSgtLuDlimpys7P40LmDuPnC0+hXVJB0TKlNsXyQJEmSpKNQW9/Ib2av4T//vJi6hiYANu2sY9POOt4+sjffuOpMenftlHBKqW2yfJAkSZLU7sUY2bO3kR219eysbWBHTT07auvZUdPAztp6dhxybEfq2M59x2ob2JsqHFqyZMMuiwfpCCwfJEmSJKXdgUsV+hcXMH3KCKZNGHDUH9/UFNm1N1UQpMqBQ0uE5mMHlgcHntNAY1M84ufolJNFt4JcuuXn0DU/l6KCXAZ2L6BbQS5d83Polp/LbTOXtPix66prjunvQ+poLB8kSZIkpdWMeZXc+uB8auobAaisruGfH3iVVyq2cUZJ0f6ZBUeajbCrroF45O6ALnnZBxUFfbrmM6x3c5HQraD52IH37ysa9h3rlJP9pmO594U1VLZQNPQvdo8H6UgsHyRJkiSlxYbttcxZvY0vznijeNhnb2MTP31m9f7bIUBhp4NLgdLuBXTt1/XgoqCVIqFrfg452VlpH9P0KSMOKlIACnKzmT5lRNo/t5TJLB8kSZIknbD6xiZeW7eDuWu2MWf1NuatqW5xhsCBAvDXz7+NbgW5FOblkJUVTk3YE7BvqciJLCGROiLLB0mSJEnHrGpXHXPXVDNn9TbmrtnGqxXV1NY3b8jYvyifCYO68/ELhjBpUHc++cs5rNtee9hj9C8uoLR751Md/YRNmzDAskE6RpYPkiRJko6osSny+sad+4uGuau3sapqDwC52YFR/Yu4bvIgJg3qzsRBxfQrOnj/g3+eOtKlClIHZ/kgSZIk6SDba+qZt2Ybc9dUM3f1Nl5eW82uugYAehXmMbGsO9dOLmPioO6MHVBEfu6RN2p0qYIkywdJkiSpA4sxsnzz7v0zGuau2cbSTbuIEbICjCzpxnsnDGDioGImlfVgYI8CQjj2vRlcqiB1bJYPkiRJUgeyu66BVyqqU0VDNXPXbKN6Tz0ARQW5TCwr5j3j+jNpUHfGDSymsJM/Mkg6cX4nkSRJktqpGCMV22r279UwZ/U2Fq3fQVNsvn94n0KmjCrZv1fDab0KM+KKE5Iyj+WDJEmS1E7U1jeyoHL7/qJhzupqtuyqA6BLXjbjy4r51NuGMWFQdyYO7E5R59yEE0vqKCwfJEmSpDZqxrzKI27SuGF77QFFwzYWrttOfWPztIZBPTtz4fBeTBjUnUll3RlR0pVsZzVISojlgyRJktQGzZhXedDlKSura/j8b1/l6dc3sbcxMm9NNZXVNQB0ysnizNJibrhgCJPKujNxUHd6FXZKMr4kHcTyQZIkSWqDbpu5eH/xsE9dQxMPzltH/6J8JgzqzscvGMKkQd05o1838nKyEkoqSW/O8kGSJElqI5qaIvPWVjPrtQ1UVte2eE4Anr31Hac2mCSdIMsHSZIkKUF1DY08u7yKWQs38shrG9myq46crECnnCzqGpoOO79/cUECKSXpxFg+SJIkSafYjtp6nli8iVmvbeTJxZvYvbeRLnnZXDSyDxeP6stFI/rwxOJNB+35AFCQm830KSMSTC5Jx8fyQZIkSToFNmyv5ZFFG5m1cAPPr6iivjHSq7ATl48fwMWj+3Le0J50ysnef/6+q1oc6WoXkpQpLB8kSZKkNIgxsnzzLmYu3Mis1zbyytpqAIb06sINFwzh4lElTBhYTNYRLn85bcIAywZJ7YLlgyRJknSSHLhh5CMLN7Jiy24AzhxYzPQpI5gyui9DexcSQuuFgyS1R5YPkiRJ0globcPIc4f25GMXDOFdZ/SlpCg/6ZiSlKi0lQ8hhLuBy4BNMcYxLdx/PfD51M1dwCdjjK+kK48kSZJ0shzNhpFFBblJx5SkNiOdMx/uAb4P/LyV+1cCb40xbgshXALcCZydxjySJEnScTvWDSMlSW9IW/kQY3w6hDD4CPc/e8DN54HSdGWRJEmSjseyTTtPaMNISVKztrLnw8eBh5MOIUmSpI6tqSnyckU1sxZuZNZrG1ix2Q0jJelkSLx8CCG8jeby4YIjnHMzcDNAWVnZKUomSZKkjqCuoZHnllcx67XmDSM37zxgw8jz3TBSkk6GRMuHEMI44C7gkhhjVWvnxRjvpHlPCMrLy+MpiidJkqR2akdtPU8u2cyshRt4cslmdtU1NG8YOaIPF492w0hJOtkSKx9CCGXAg8CHYoyvJ5VDkiRJ7c+MeZXcNnMJ66pr6F9cwPQpIzh3aE8eea15/4bnlm9JbRiZx3vO7MfFo0o4d2hP8nPdMFKS0iGdl9q8D7gI6BVCqAC+DOQCxBjvAL4E9AR+kFoz1xBjLE9XHkmSJHUMM+ZVcuuD86mpbwSgsrqGz/3mZWJq/uzgnp254fwhXDy6L+MHdifbDSMlKe3SebWLa9/k/huBG9P1+SVJktRx7G1oYnXVbl7fuIt/+/2C/cXDPjFCt/wcfvvJ8xjWxw0jJelUS3zDSUmSJOlo7W1oYlXVbpZu3MXrG3eydNNOlm7cxcotu2loOvLWYDtrGxjet+spSipJOpDlgyRJktqcfSXD6xuby4WWSoYQoKxHZ4b36cq7RvVleN9Chvfpys0/n8267bWHPWb/4oJTPQxJUorlgyRJkhLTUsnw+sZdrDqkZBjUozPDUiXD6X27MqxPIcP6FLa4QeQ/Tx150J4PAAW52UyfMuKUjUuSdDDLB0mSJKXdgSXD6xt3sewIJcPwvl25OFUyDO9byNDeLZcMrZk2YQDAYVe72HdcknTqWT5IkiTppNnb0MTKLbv3z2BYunEnSzcdXDJk7Vsu0bcrU0b3ZXif4ysZjmTahAGWDZLUhlg+SJIkCWi+ROXRzhbYVzK8nioXWisZBvXswrA+hUwZ/cZyiZNZMkiSMoPlgyRJkpgxr/KgfRIqq2u49cH5NDQ2Mba0+KCS4fWNO1lVtYfGQ0qG4QeUDMP7dOW03l0sGSRJgOWDJEmSaN4f4cANGgFq6hv5pwde3X/7wJLhkjH99l9dwpJBkvRmLB8kSZLEuuqaVu/77jXjLRkkSSfE8kGSJEkUd85l2576w44PKC7givFu3ChJOjFZSQeQJElSsmYu3ED1nnqywsHHC3KzmT5lRDKhJEntiuWDJElSB/bYoo186t65jC8r5r/eO5YBxQUEmmc8fO3KsV6uUpJ0UrjsQpIkqYN6cskmPvnLuYzq142f3TCZbvm5XDO5LOlYkqR2yJkPkiRJHdBfl27m5l/M4fSSQn5+w9l0y89NOpIkqR2zfJAkSepgnl2+hRt/NpuhvQv5xQ1nU9TZ4kGSlF6WD5IkSR3ICyuq+Pg9sxnUszO//PhkunfJSzqSJKkDsHyQJEnqIOas3srH7nmJ/sX5/OrGc+hZ2CnpSJKkDsLyQZIkqQOYt2YbH7n7JUq65XPfTefQu6vFgyTp1LF8kCRJauderajmw3e/SM/CPO696Rz6dMtPOpIkqYOxfJAkSWrHFlRu54N3vUBx51zuu+kcSoosHiRJp57lgyRJUju1aP0OPviTF+ian8u9N55D/+KCpCNJkjooywdJkqR26PWNO7n+rhcoyM3mvpvOYWCPzklHkiR1YJYPkiRJ7cyyTbu47scvkJMVuPemcyjrafEgSUqW5YMkSVI7snLLbq778fMA3HfzOQzp1SXhRJIkWT5IkiS1G6urdnPtnc/T2BS576azGdq7MOlIkiQBlg+SJEntwtqte7juxy9Q19DIr246m+F9uyYdSZKk/XKSDiBJkqQTU1ldw7U/fp5ddQ3ce9PZjCzplnQkSZIO4swHSZKkDLZhey3X/fh5ttfU88uPn83o/kVJR5Ik6TBpKx9CCHeHEDaFEBa0cv/IEMJzIYS6EMI/pSuHJElSe7VpRy3X/vh5qnbt5ec3TGZsqcWDJKltSufMh3uAqUe4fyvw/wH/ncYMkiRJ7dLmnXVc++Pn2bSjlp/dcBYTyronHUmSpFalrXyIMT5Nc8HQ2v2bYowvAfXpyiBJktQeVe2q4/q7nmdddS0//dhkJg3qkXQkSZKOyD0fJEmSMsi23Xu5/q4XWLN1Dz/5aDmTh1g8SJLavowoH0IIN4cQZocQZm/evDnpOJIkSYnYvqeeD/7kBVZu2c1dHz6L84b2SjqSJElHJSPKhxjjnTHG8hhjee/evZOOI0mSdMptr6nnQ3e/wNKNu7jzw+VcMNziQZKUOTKifJAkSerIdtbW85G7X2TR+h3c8aGJvPV0fxkjScosOel64BDCfcBFQK8QQgXwZSAXIMZ4RwihBJgNdAOaQgifBUbFGHekK5MkSVKm2V3XwMd++hILKrfzg+sn8vaRfZOOJEnSMUtb+RBjvPZN7t8AlKbr80uSJGW6PXsb+Ng9LzFvbTXfv3YCF48uSTqSJEnHxWUXkiRJbVDN3kZu/NlsZq/aync+MJ5LxvZLOpIkScctbTMfJEmSdHxq6xu5+RezeW5FFf/z/jN5z5n9k44kSdIJceaDJElSG1LX0Mjf/XIOf1u2hW9eNY73TnCVqiQp81k+SJIktRF7G5q45VdzeXLJZr723rFcXT4w6UiSJJ0Ulg+SJEltQH1jE5++by6PLtrEV6eN4ZrJZUlHkiTppLF8kCRJSlhDYxOf/fXLzFy4kX9/zyg+dM6gpCNJknRSWT5IkiQlqLEp8g+/eYU/z1/Pv777DD56/pCkI0mSdNJZPkiSJCWksSky/f5X+MMr6/j81JHc+JbTko4kSVJaWD5IkiQloKkp8oXfvsqD8yr5x3edzicvGpp0JEmS0sbyQZIk6RRraop8ccYC7p9TwWfeMZxPv2N40pEkSUorywdJkqRTKMbIl/+wkPteXMMtbxvKZ99p8SBJav8sHyRJkk6RGCP/70+v8YvnV/OJC0/jny4eQQgh6ViSJKWd5YMkSdIpEGPkaw8v5qfPrOKG84fwhUtGWjxIkjoMywdJkqQ0izFy28wl3Pn0Cj5y7iD+7bIzLB4kSR2K5YMkSVKaffvRpfzgyeVcd3YZ/375aIsHSVKHY/kgSZKURt97bCn/+9hSPlA+kP+4YozFgySpQzrq8iGEcEEI4WOp93uHEIakL5YkSVLm++GTy/nWI69z5cQBfO3KsWRlWTxIkjqmoyofQghfBj4P3Jo6lAv8Ml2hJEmSMt1df13BN/6ymCvG9+e2951p8SBJ6tCOdubDe4HLgd0AMcZ1QNd0hZIkScpkP31mJf/x50W8e1w/vnX1mWRbPEiSOrijLR/2xhgjEAFCCF3SF0mSJClz/eK5VXzlj68xdXQJ3/nAeHKy3WJLkqScozzvNyGEHwHFIYSbgBuAH6cvliRJUmaYMa+S22YuYV11DUUFuVTX1PPOM/rwv9dOINfiQZIk4CjLhxjjf4cQ3gXsAEYAX4oxPpLWZJIkSW3cjHmV3PrgfGrqGwGorqknK8DU0SXk5Vg8SJK0z9FuONkFeDzGOJ3mGQ8FIYTctCaTJElq426buWR/8bBPU4RvP7o0oUSSJLVNR1vJPw10CiEMAB4FPgbck65QkiRJbVlTU+SvSzdTWV3T4v3rWjkuSVJHdbR7PoQY454QwseB78UYvxlCmJfOYJIkSW3N5p113D9nLb9+cS1rtu4hKzTPdDhU/+KCUx9OkqQ27KjLhxDCucD1wMeP8WMlSZIyVlNT5LkVVdz7whpmvbaB+sbI2UN68I8Xn059QxP/9vuFBy29KMjNZvqUEQkmliSp7TnaAuEzwBeAB2OMC0MIQ4DH0xdLkiQpWVt21fHAnAp+/eIaVlXtobhzLh85dzDXTC5jWJ/C/eflZGftv9pF/+ICpk8ZwbQJAxJMLklS23O05cMeoAm4NoTwQSAALUwylCRJylwxvjHLYebC5lkOkwf34LPvPJ2pY0rIz80+7GOmTRhg2SBJ0ps42vLhV8A/AQtoLiHeVAjhbuAyYFOMcUwL9wfgu8ClNJcbH40xzj3KPJIkSSfN1t17eWDOWu57cS0rt+ymqCCXD50zmOvOHsiwPl2TjidJUsY72vJhc4zxj8f42PcA3wd+3sr9lwDDU3/OBn6YeitJkpR2MUaeX7GVe19cw8wFG9jb2MRZg7vz6bcP49Kx/Vqc5SBJko7P0ZYPXw4h3AU8BtTtOxhjfLC1D4gxPh1CGHyEx7wC+HmMMQLPhxCKQwj9YozrjzKTJEnSMdu6ey8Pzq3g3hfXsGLzbrrl53Dd2WVcd3YZp/d1loMkSelwtOXDx4CRQC5vLLuIQKvlw1EYAKw94HZF6pjlgyRJOqlijLy4snmWw8Pzm2c5TBrUnW9dPYx3j3OWgyRJ6Xa05cOZMcaxJ/lzhxaOtbiJZQjhZuBmgLKyspMcQ5IktVfVe/bywJwK7ntxDcs376Zrfg7XTh7ItWeXMbKkW9LxJEnqMI62fHg+hDAqxvjaSfzcFcDAA26XAutaOjHGeCdwJ0B5eblX2ZAkSa2KMfLSqm3c9+Ia/jx/PXsbmphQVsxt7xvHZeP6U5DnLAdJkk61oy0fLgA+EkJYSfOeDwGIMcZxJ/C5/wB8KoTwa5o3mtzufg+SJOl4bd9Tz2/nNs9yWLppF1075XDNWQO5dnIZZ/RzloMkSUk62vJh6rE+cAjhPuAioFcIoQL4Ms17RhBjvAN4iObLbC6j+VKbHzvWzyFJkjq2GCNzVm/j3heaZznUNTRx5sBivnnVOC47sx+d8472pY4kSUqno3pGjjGuPtYHjjFe+yb3R+CWY31cSZKk7XvqeXBe8yyH1zfuorBTDleXl3Lt5DJG9y9KOp4kSTqEvw6QJEkZIcbI3DXV3PvCGv706rrmWQ6lRXz9yrG858z+dOnkyxpJktoqn6UlSVKbtr2mnhnzKrnvxTUs3rCTLnnZXDWplOsmlzFmgLMcJEnKBJYPkiSpzYkx8vLa5lkOf3x1HbX1TYwdUMTXUrMcCp3lIElSRvGZW5IknXIz5lVy28wlrKuuoX9xAdOnjGDahAHsqK3n9/Mq+dULzbMcOudl894JA7hu8iDGljrLQZKkTBWa933MHOXl5XH27NlJx5AkScdpxrxKbn1wPjX1jfuPdcrJYvzAIl6t2EFNfSOj+3fjurPLuPzM/nTNz00wrSRJOhYhhDkxxvJDjzvzQZIknVK3zVxyUPEAUNfQxIsrt/H+8oFcd3YZ40qLCCEklFCSJJ1slg+SJOmUWldd0+p933jfuFOYRJIknSqWD5Ik6ZTYsquOu/+2stX7+xcXnMI0kiTpVLJ8kCRJabWuuoY7n17Br19aQ11DE2eWFrFow07qGpr2n1OQm830KSMSTClJktLJ8kGSJKXFyi27uePJ5Tw4r4IYYdqEAXzyoqEM7V3Y6tUuJElS+2T5IEmSTqpF63fwgyeX8+dX15GTncW1k8u4+cLTKO3eef850yYMsGyQJKkDsXyQJEknxdw12/jBE8t4dNEmuuRlc9OFp/HxC4bQp2t+0tEkSVLCLB8kSdJxizHy7PIqbn9iGc8ur6K4cy6fe+fpfPS8wRR1zk06niRJaiMsHyRJ0jFraoo8tngTtz+xjJfXVtOnaye+eOkZXHd2GV06+fJCkiQdzFcHkiTpqDU2Rf706jp++ORyFm/YSWn3Av5j2hjeN6mU/NzspONJkqQ2yvJBkiS9qb0NTTw4t4I7nlrOqqo9DOtTyP+8/0wuP7M/OdlZSceTJEltnOWDJElq1Z69Dfz6xbX8+K8rWL+9lrEDirjjgxO5eFQJWVkh6XiSJClDWD5IkqTDbK+p55fPr+Ynf1vJ1t17mTykB1+/ahwXDu9FCJYOkiTp2Fg+SJKk/ap21XH3Myv5+bOr2VnXwEUjenPL24Zx1uAeSUeTJEkZzPJBkiSxfnsNdz69gvteXENdQxOXjCnh7y8axpgBRUlHkyRJ7YDlgyRJHdiqLbu546nl/HZuBU0Rpo0fwCcvOo1hfbomHU2SJLUjlg+SJHVAizfs4AdPLOdPr64jJzuLa84q4+YLT2Ngj85JR5MkSe2Q5YMkSR3IvDXbuP2J5Ty6aCNd8rK56S2n8fELhtCnW37S0SRJUjtm+SBJUjsXY+S55VXc/uQynllWRVFBLp9953A+et5gijvnJR1PkiR1AJYPkiS1UzFGHlu0idufXMa8NdX07tqJf7l0JNedPYjCTr4EkCRJp46vPCRJamcamyJ/nr+eHzyxjMUbdjKguICvThvD1ZNKyc/NTjqeJEnqgCwfJElqJ/Y2NPG7eRX88MnlrKraw9DeXfjW1Wdy+fj+5GZnJR1PkiR1YJYPkiRluJq9jfz6pTXc+fQK1m+vZXT/bvzw+olMGV1CVlZIOp4kSVJ6y4cQwlTgu0A2cFeM8euH3N8duBsYCtQCN8QYF6QzkyRJmWzGvEpum7mEddU1lBTlM7GsmOdXbKVq917OGtydr105lree3psQLB0kSVLbkbbyIYSQDdwOvAuoAF4KIfwhxvjaAaf9C/ByjPG9IYSRqfPfka5MkiRlshnzKrn1wfnU1DcCsH57LX+ev4GRJV354QcnMXlIj4QTSpIktSydC0AnA8tijCtijHuBXwNXHHLOKOAxgBjjYmBwCKFvGjNJkpSRdtTW85U/LtxfPBxoZ22DxYMkSWrT0rnsYgCw9oDbFcDZh5zzCnAl8LcQwmRgEFAKbExjLkmSMsL2PfXMem0DDy/YwF+Xbqa+MbZ43rrqmlOcTJIk6diks3xoabHpoa+avg58N4TwMjAfmAc0HPZAIdwM3AxQVlZ2clNKktSGbNu9l1mvbeCh+Rt4ZtkWGpoiA4oL+Oh5g5kxbx2bd9Ud9jH9iwsSSCpJknT00lk+VAADD7hdCqw78IQY4w7gYwCheWeslak/HHLencCdAOXl5S3/2keSpAy1ZVcdsxZu5OEF63l2eRWNTZGBPQr4+FuGcOmYfowrLSKEwOj+RQft+QBQkJvN9CkjEkwvSZL05tJZPrwEDA8hDAEqgWuA6w48IYRQDOxJ7QlxI/B0qpCQJKld27SzlpkLN/Lw/PU8v6KKpgiDe3bmExeexqVj+zG6f7fDrlgxbcIAgP1Xu+hfXMD0KSP2H5ckSWqr0lY+xBgbQgifAmbSfKnNu2OMC0MIf5e6/w7gDODnIYRG4DXg4+nKI0lS0jbuqOUvCzbw5/nreWnVVmKE03p34Za3DeOSMf04o1/XN71E5rQJAywbJElSxgkxZtYqhvLy8jh79uykY0iSdFTWVdfw8IINPDx/PXPWbCNGOL1vIZeM6ce7x/VjeJ/CNy0cJEmSMkUIYU6MsfzQ4+lcdiFJUoe0duse/rJgAw8tWM+8NdUAjCzpyufeeTqXji1hWJ+uyQaUJEk6xSwfJEk6CdZU7eGhBet5eP56XqnYDsDo/t2YPmUEl4wp4bTehQknlCRJSo7lQ5rNmFfpxmCS1E6t3LKbh+av5+EF61lQ2bxf8rjSIr5wyUguGVPCoJ5dEk4oSZLUNlg+pNGMeZUHXRKtsrqGWx+cD2ABIUkZatmmXTw8fz1/nr+exRt2AjChrJgvXnoGU8eUMLBH54QTSpIktT2WD2l028wlB12LHaCmvpHbZi6xfJCkDBFjZOmmXTw0fz0PzV/P6xt3AVA+qDv/dtkopo4pYUBxQcIpJUmS2jbLhzRaV11zTMclSW1DjJHFG3buLxyWb95NCHDW4B78+3tGMXVMP0qK8pOOKUmSlDEsH9Kof3EBlS0UDf2KfcEqSW1NjJGF63ak9nDYwMotu8kKcPaQnnz0vMFMGVNCn65+/5YkSToelg9pNH3KiIP2fNind2EeNXsbKcjLTiiZJHUsrW3+G2Pk1YrtqatUbGDN1j1kZwXOPa0nN73lNC4e3ZdehZ2Sji9JkpTxQowx6QzHpLy8PM6ePTvpGEft4Be8+ZQP6sEfXl3H2AFF/PjD5fTt5m/RJCmdDt38F6BTThbnDe3B6xt3U1ldQ05W4LxhvXj32BLeNaqEHl3yEkwsSZKUuUIIc2KM5Ycdt3w49R59bSOf+fU8CvNzuOvDZzG2tCjpSJLUbp3/9cdbXAIH8PaRfbhkTAnvGtWX4s4WDpIkSSeqtfIhK4kwHd07R/XlgU+eR05WFlf/6Fkenr8+6UiS1G61tslvAO7+6FlcXT7Q4kGSJCnNLB8Scka/bsy45XxG9evGJ381l+8/vpRMm4UiSW3dnNVbyc4KLd7X38tjSpIknTKWDwnq3bUT9950DtPG9+e/Z73O5/7vZWoP2ZxSknTs9uxt4Ct/XMj77niOwk455GUf/HRXkJvN9CkjEkonSZLU8Xi1i4Tl52bz7Q+MZ1ifQv571uus2bqHH32onN5d3V1dko7Hs8u38IXfzmfN1j185NxB/PPUkTzy2sYWr3YhSZKkU8MNJ9uQh+ev53O/eZmeXTrxk4+WM7KkW9KRJClj7Kyt5+sPL+ZXL6xhcM/OfOOqcZx9Ws+kY0mSJHUobjiZAS4Z24/7P3EeDU1NXPWDZ3ls0cakI0lSRnjq9c1M+fbT3PviGm68YAgPf+ZCiwdJkqQ2xPKhjRlbWsTvb7mA03oXcuPPZ/Pjp1e4EaUktWL7nnqm3/8KH7n7RTp3yuG3nzyPf71sFAV52UlHkyRJ0gHc86ENKinK5zefOJd/vP9l/vOhRSzbtIuvThtDXo5dkSTt88hrG/ni7+ZTtXsvt7xtKJ9++3Dycy0dJEmS2iLLhzaqIC+b7187kW/3fp3vPb6MVVW7ueODk+jexWvRS+rYtu7ey1f+uJDfv7yOkSVd+clHzmJsaVHSsSRJknQElg9tWFZW4B8vHsGwPoVMf+BVpv3gGX7ykbMY1qcw6WiSlIiH5q/nS79fwPaaej73ztP55EVDnRUmSZKUAXzFlgGuGD+A+246h911Dbz3B8/w9Oubk44kSafU5p11fPKXc/j7X82lX1EBf/z0BXzmncMtHiRJkjKEr9oyxKRB3Zlxy/kMKC7gY/e8xM+fW5V0JElKuxgjv5tXwbu+/RSPLd7E56eO5Hd/f56XIpYkScowLrvIIKXdO/PAJ8/jM/fN40u/X8iyTbv40mWjyMm2Q5LU/mzYXssXfzefxxZvYmJZMd9835kuO5MkScpQlg8ZprBTDnd+uJxv/mUxP3p6BSu37Ob7102kqCA36WiSdFLEGPnN7LX8x58WUd/UxL9dNoqPnjeY7KyQdDRJkiQdJ8uHDJSdFbj10jMY2ruQL86Yz5WpjSgH9+qSdDRJOiEV2/Zw64Pz+evSLZw9pAffuGqc39skSZLaAefrZ7D3nzWQX3z8bKp272XaD57h+RVVSUeSpOPS1BT5xXOrmPLtp5m7ehtfnTaG+246x+JBkiSpnbB8yHDnnNaT399yPj275PHBu17g/15ak3QkSTomq7bs5tofP8+//X4hEwd1Z+bnLuRD5wwiy2UWkiRJ7YbLLtqBQT278LtbzueWX83l87+dz7JNu/jCJWe4PlpSm9bYFPnpMyv571lLyM3O4ptXjePq8lJC8HuXJElSe5PWmQ8hhKkhhCUhhGUhhC+0cH9RCOGPIYRXQggLQwgfS2ee9qxbfi4//ehZfOTcQfz4ryu5+eez2VXXkHQsSWrRsk27uPqOZ/mPPy/i/KG9eORzb+X9Zw20eJAkSWqn0lY+hBCygduBS4BRwLUhhFGHnHYL8FqM8UzgIuBbIYS8dGVq73Kys/jKFWP46hWjefL1zbzvh89SsW1P0rEkab+GxiZ+8OQyLv3fv7Jiy26+84Hx3PWRckqK8pOOJkmSpDRK58yHycCyGOOKGONe4NfAFYecE4GuoflXXYXAVsBf15+gD507mHs+dhaV1TVMu/0Z5qzemnQkSWLxhh289wfP8s2/LOEdI/vwyOfeyrQJA5ztIEmS1AGks3wYAKw94HZF6tiBvg+cAawD5gOfiTE2pTFTh/GW4b353d+fT5dOOVx75wv8bl5F0pEkdVB7G5r4zqOv857v/Y111TX84PqJ/PCDk+jdtVPS0SRJknSKpLN8aOlXWfGQ21OAl4H+wHjg+yGEboc9UAg3hxBmhxBmb968+WTnbLeG9Slkxt+fz8RBxXzu/17htpmLaWo69EsgSekzv2I7l3//b3zn0aW8e2w/HvmHt3Lp2H5Jx5IkSdIpls7yoQIYeMDtUppnOBzoY8CDsdkyYCUw8tAHijHeGWMsjzGW9+7dO22B26PuXfL4+Q1nc81ZA7n9ieXccu9c9ux1ZYuk9Kqtb+Sbf1nMtB88w9bde/nxh8v5zjUT6NHFbX0kSZI6onReavMlYHgIYQhQCVwDXHfIOWuAdwB/DSH0BUYAK9KYqUPKy8nia1eOZVifQv7zoUWs/dEe7vrwWW7wJikt5q7Zxj8/8GrzFS0mlfKvl42iqCA36ViSJElKUNrKhxhjQwjhU8BMIBu4O8a4MITwd6n77wC+CtwTQphP8zKNz8cYt6QrU0cWQuDGt5zGab278Ol753H59//GXR8pZ1xpcdLRJLUTNXsb+dasJfzkmZX065bPz26YzFtPd7aaJEmSIMSYWXsAlJeXx9mzZycdI6Mt2bCTG+55iarddfzP+8e7/lrSCXthRRWf/+2rrKrawwfPKePzU0fSNd/ZDpIkSR1NCGFOjLH80OPp3PNBbdSIkq78/lPnM7p/EX//q7l877GlZFoJJalt2F3XwJd+v4AP3Pk8TRHuvels/mPaWIsHSZIkHSSdez6oDetV2Ilf3Xg2//LgfL71yOss27yLb1w1jvzc7KSjScoQf1u6hc//9lXWba/hhvOH8E9TTqdznk8rkiRJOpyvEjuw/NxsvvX+Mxnap5DbZi5hddUe7vzwJPp0dSNKSa3bUVvPf/15Eb9+aS2n9erC/Z84l/LBPZKOJUmSpDbMZRcdXAiBW942jDs+OJElG3Yy7fvPsGj9jqRjSWqjHl+8kYv/52l+M3stf/fWoTz0mbdYPEiSJOlNOfNBAEwd04/S7p258WezueqHz/LdaybwrlF9k44lKUEz5lVy28wlrKuuoaQonwHF+cxeXc2Ivl350YcmcebA4qQjSpIkKUM480H7jRlQxO8/dT7D+hRy8y9m86OnlrsRpdRBzZhXya0PzqeyuoYIrN9ey+zV1UwZ1Zc/fPp8iwdJkiQdE8sHHaRvt3z+7+ZzuXRsP7728GL++YFX2dvQlHQsSafYfz20iJr6xsOOL1i3g045bkwrSZKkY+OyCx2mIC+b710zgWG9C/nuY0tZvXUPd3xwEj265CUdTVKaxBhZULmDvyxcz8yFG9m0s67F89ZV15ziZJIkSWoPLB/UoqyswOfedTpD+xTyT/e/wrTbn+G6yQP5xfNrWFddQ//iAqZPGcG0CQOSjirpODU2RWav2spfFm5g1sKNVFbXkJ0VOHtIDzbvrGN7Tf1hH9O/uCCBpJIkScp0lg86osvP7M/A7gV86Ccv8PW/LNl/vLK6hlsfnA9gASFlkLqGRp5dXsXMBRt45LWNVO3eS15OFhcO78Vn3jmcd57Rlx5d8vbv+XDg0ouC3GymTxmRYHpJkiRlKssHvakJZd3p0imHXXUHr/+uqW/ktplLLB+kNm53XQNPLtnMzIUbeHzxJnbVNVDYKYe3jezD1NElvHVEbwo7Hfx0sO//9b6rXTjbSZIkSSfC8kFHZdOOltd/V1bXsHzzLob2LjzFiSQdybbde3l00UZmLtzI00s3s7ehiR5d8nj32H5MHVPCecN6vunGkdMmDLBskCRJ0klh+aCj0r+4gMpWNpp7x7eeYmJZMVeXD+Sycf3omp97itNJAtiwvZZZr21g5sINPL9iK41Nkf5F+Vw3uYypY0ooH9SdnGwvciRJkqRTL8QYk85wTMrLy+Ps2bOTjtHhtLb++9ZLR1Bb38T9sytYumkX+blZXDqmH+8rL+WcIT3JygoJppbav5VbdjNz4Qb+smADL6+tBuC03l2YOrqEqWNKGDugiBD8fyhJkqRTI4QwJ8ZYfuhxZz7oqLzZ+u+b3nIar1Rs5/7Za/nDK+t4cF4lA3sUcNXEUq6aWMrAHp2TjC+1GzFGXlu/g5kLNzJzwQaWbNwJwNgBRUyfMoIpo/syrE/XhFNKkiRJB3Pmg0662vpGZi7cwP2zK3hm+RZihPOG9uT95QOZMrqEgrwjrzOXdLCmpsjcNduaZzgs3MDarTWEAGcN7sHU0SVcPLovpd0t+CRJkpS81mY+WD4orSq27eHBuZXcP2cta7fW0LVTDped2Z+ry0uZMLDY6eBSK/Y2NPH8iipmLtzArNc2snlnHbnZgfOH9WLq6BLeOaovvQo7JR1TkiRJOojlgxLV1BR5YeVW7p+zlofnb6CmvpFhfQq5elIp7504gD5d85OOKCWuZm8jT73efEnMxxZtZEdtA53zsrloRG+mjC7hbSP70M0NXSVJktSGWT6ozdhZW89D89fzm9kVzFm9jeyswEWn9+bq8lLePrIveTnuxq+OY3tNPY8v3shfFmzgqdc3U1vfRHHnXN55Rl+mjC7hLcN7kZ/rUiVJkiRlBssHtUnLN+/igTkVPDi3go076ujRJY8rxvfn6kkDGdW/W9LxpLTYtLOWR15rLhyeW15FQ1Okb7dOTBldwpTRJUwe0oNcL4kpSZKkDGT5oDatobGJvy7bwgOzK3jktY3sbWxizIBuXD1pIFeM709x57ykI0pHZca8yhavCrOmag8zF25g5sINzFmzjRhhcM/OTBlTwtTRJZxZWuylaSVJkpTxLB+UMbbt3svvX67k/jkVLFy3g7zsLN41qi/vKy/lwuG9yfYHNLVRM+ZVcuuD86mpb9x/LCcr0KdrJ9ZtrwXgjH7dmDq6hKljSji9b6GbrkqSJKldsXxQRnpt3Q7un7OWGfMq2bannpJu+Vw5cQDvm1TKab0Lk46nk6i1GQOnWoyRvY1N7KlrZPfeBvbsbWR3XfPb5j8N7K474G19w/5zH5q/ntr6psMeMy87i+lTRjBldAllPb0kpiRJktovywdltL0NTTy2aCP3z6ngySWbaIpQPqg77y8fyKXj+lHYKSfpiDoBLc0YKMjN5mtXjj1iAdHQ2MSe+sY3ioL9hUGqLGixQGhg995G9tQ1v63Ze+jHNtLYdPTfFzvlZNGlUw6d87Kp2FbT4jkBWPn1dx/1Y0qSJEmZyvJB7camHbU8OK+S38xey4rNuynIzebSsf24uryUs4f0cBp7Bjrva4/tX5ZwoILcbM4f1mt/YVBz4KyDvY3sbTh8lkFrsrMCXfKy9xcFnfOa3+673SUvh4K8bLp0ar6vS142nTvl0CVv3/kHnJt6W5CbTc4BG0Oe//XHqaw+vIAYUFzAM194+/H95UiSJEkZxPJB7U6Mkblrqnlgzlr++Mp6dtU1UNajM++bVMpVk0oZUFyQdES1YuOOWuau3sbcNduYu6aaOau3tXruGf26HVAEvFEadO6Uvb8YOLBQOOjcTjl0zm0+Ny87K+3F1PHO4JAkSZLaC8sHtWs1exv5y8L13D+7gmeXVxECXDCsF++bVMqU0SXk52YnHbHD2tvQxMJ125m7ppq5a7Yxb/W2/bMc8rKzGDOgG69v3MmuusbDPjYTZwy0lb0rJEmSpCRYPqjDWLt1Dw/MqeCBORVUVtfQNT+Hy8/sz9XlAzmztIjfv7zOHw7TaMP22uYZDau3MW9tNfMrt+9fHtG/KJ8Jg7ozsaw7E8uKGdW/G51ysp0xIEmSJLUTiZQPIYSpwHeBbOCuGOPXD7l/OnB96mYOcAbQO8a4tbXHtHzQ0Wpqijy/oor751Tw0Pz11DU0UdKtE1t27aXhgA0F/SH3+NU1NLJw3Y79RcNBsxpyshg7oIiJZcVMKGsuHEqK8lt9LGcMSJIkSZnvlJcPIYRs4HXgXUAF8BJwbYzxtVbOfw/wuRjjEedYWz7oeOyoredPr6zny39YQH3j4f/me3TJ41c3nk1p9wK65ucmkDAzrN9ew9zV1cxb07xfw4J1O/bPahhQXMCEsmImlnVnwgGzGiRJkiR1HK2VD+m8PuFkYFmMcUUqwK+BK4AWywfgWuC+NOZRB9YtP5frzi7ji7+b3+L9W3fv5ZLv/hWA4s65DOzemYE9Cijt3pmB3Qso7dGZgd07U9q9oMPsH3HQrIbUfg3rD5jVMG5AER85d1DzEopB3enbrfVZDZIkSZI6tnSWDwOAtQfcrgDObunEEEJnYCrwqTTmkehfXNDipRB7F3bi3y8fzdpte1i7dQ9rt9WweP1OHl206bDLOfbu2omB3QsYmCok3igpOtOvOJ/cAy69mEn2zWqYm5rVsLByB3sb35jVMGnfXg2DujOqXzfycjJznJIkSZJOvXSWDy1d0661NR7vAZ5pba+HEMLNwM0AZWVlJyedOqTpU0a0uLHhF999Bu8e1++w85uaIpt31aUKiT1UbK1JFRQ1zFm9jT+9up7GA/aPyArQr6jgoEJiYI/moqK0ewF9u+aTlZXeyz0ejbqGRhZU7ti/fGLemur9sxo6pfZq+Oj5g/fv1+CsBkmSJEknIp3lQwUw8IDbpcC6Vs69hiMsuYgx3gncCc17PpysgOp49m1geLQbG2ZlBfp2y6dvt3zKB/c47P6GxibWb689pJjYQ8W2Gv66dDMbd9QddH5edhYDuhdQ2v2NQqK5oGhe3tGjSx4hnPxyYl11TeoKFNXMW3v4rIbywT2YmNqv4QxnNUiSJEk6ydK54WQOzRtOvgOopHnDyetijAsPOa8IWAkMjDHufrPHdcNJZZLa+kYqq2uo2FZz2OyJim01bN2996DzO+dlH1RIlHZPzaBIzZ7odshmmC1dIWLqmBIWrtu+f5+Guaur2bDjjVkN40qLUptCNl/uso+zGiRJkiSdJEldavNS4Ds0X2rz7hjjf4YQ/g4gxnhH6pyPAlNjjNcczWNaPqg92VXXQEVqGce+GRMHzp7YVddw0PlFBbnNSzqKO1PX0MDfllUddPWOECAL2HeotHtB8z4NZcVMHNSdkSXOapAkSZKUPomUD+lg+aCOIsbI9pr65mJi/0aYe/bPoli+ueWJQoWdcvjW+89kQlkxfbo6q0GSJEnSqZPEpTYlnYAQAsWd8yjunMfY0qLD7h/yhT+3uIPr7roGpowuSX9ASZIkSTpKzr+WMlT/4oJjOi5JkiRJSbF8kDLU9CkjKMjNPuhYQW4206eMSCiRJEmSJLXMZRdShjrWy4ZKkiRJUlIsH6QMNm3CAMsGSZIkSW2eyy4kSZIkSVJaWT5IkiRJkqS0snyQJEmSJElpZfkgSZIkSZLSyvJBkiRJkiSlleWDJEmSJElKK8sHSZIkSZKUViHGmHSGYxJC2AysTjrHcegFbEk6xEnSXsbSXsYBjqUtai/jAMfSVrWXsbSXcYBjaavay1jayzjAsbRF7WUc4FjagkExxt6HHsy48iFThRBmxxjLk85xMrSXsbSXcYBjaYvayzjAsbRV7WUs7WUc4FjaqvYylvYyDnAsbVF7GQc4lrbMZReSJEmSJCmtLB8kSZIkSVJaWT6cOncmHeAkai9jaS/jAMfSFrWXcYBjaavay1jayzjAsbRV7WUs7WUc4FjaovYyDnAsbZZ7PkiSJEmSpLRy5oMkSZIkSUory4c0CyHcHULYFEJYkHSWExFCGBhCeCKEsCiEsDCE8JmkMx2vEEJ+COHFEMIrqbF8JelMJyKEkB1CmBdC+FPSWU5ECGFVCGF+COHlEMLspPOciBBCcQjhgRDC4tT/mXOTznQ8QggjUl+PfX92hBA+m3Su4xFC+Fzq//uCEMJ9IYT8pDMdrxDCZ1LjWJhpX4+WnhNDCD1CCI+EEJam3nZPMuPRamUsV6e+Lk0hhIzZnbyVsdyW+h72agjhdyGE4gQjHpVWxvHV1BheDiHMCiH0TzLj0TrS68cQwj+FEGIIoVcS2Y5VK1+Xfw8hVB7w/HJpkhmPVmtflxDCp0MIS1L//7+ZVL6j1crX5P8O+HqsCiG8nGDEo9bKWMaHEJ7f95oyhDA5yYxHq5WxnBlCeC71GvmPIYRuSWY8UZYP6XcPMDXpECdBA/CPMcYzgHOAW0IIoxLOdLzqgLfHGM8ExgNTQwjnJBvphHwGWJR0iJPkbTHG8e3gkkLfBf4SYxwJnEmGfn1ijEtSX4/xwCRgD/C7ZFMduxDCAOD/A8pjjGOAbOCaZFMdnxDCGOAmYDLN/7YuCyEMTzbVMbmHw58TvwA8FmMcDjyWup0J7uHwsSwArgSePuVpTsw9HD6WR4AxMcZxwOvArac61HG4h8PHcVuMcVzq+9ifgC+d6lDH6R5aeP0YQhgIvAtYc6oDnYB7aPm18Lf3PcfEGB86xZmO1z0cMpYQwtuAK4BxMcbRwH8nkOtY3cMh44gxfuCA5/zfAg8mkOt43MPh/76+CXwlNZYvpW5ngns4fCx3AV+IMY6l+TXY9FMd6mSyfEizGOPTwNakc5yoGOP6GOPc1Ps7af5hakCyqY5PbLYrdTM39ScjNz8JIZQC76b5G5PagFQjfSHwE4AY494YY3WioU6OdwDLY4yrkw5ynHKAghBCDtAZWJdwnuN1BvB8jHFPjLEBeAp4b8KZjlorz4lXAD9Lvf8zYNqpzHS8WhpLjHFRjHFJQpGOWytjmZX6NwbwPFB6yoMdo1bGseOAm13IkOf7I7x+/Dbwz2TIOKD9vBaGVsfySeDrMca61DmbTnmwY3Skr0kIIQDvB+47paGOUytjicC+GQJFZMhzfitjGcEbhfYjwFWnNNRJZvmgYxZCGAxMAF5IOMpxSy1VeBnYBDwSY8zUsXyH5hchTQnnOBkiMCuEMCeEcHPSYU7AacBm4Kep5TB3hRC6JB3qJLiGDHkhcqgYYyXNv4laA6wHtscYZyWb6rgtAC4MIfQMIXQGLgUGJpzpRPWNMa6H5qIb6JNwHh3uBuDhpEMcrxDCf4YQ1gLXkzkzHw4TQrgcqIwxvpJ0lpPkU6klMXdnynKrVpwOvCWE8EII4akQwllJBzpBbwE2xhiXJh3kBHwWuC31//6/yYyZW61ZAFyeev9qMvw53/JBxySEUEjzVKzPHvLbhIwSY2xMTcUqBSanpjJnlBDCZcCmGOOcpLOcJOfHGCcCl9C8rOfCpAMdpxxgIvDDGOMEYDeZM428RSGEPJqf+O5POsvxSL2ovQIYAvQHuoQQPphsquMTY1wEfIPm3378BXiF5mVxUlqEEL5I87+xXyWd5XjFGL8YYxxI8xg+lXSe45EqG79IBpcnh/ghMJTm5a/rgW8lmubE5ADdaV6WPB34TWr2QKa6lgz9ZcMBPgl8LvX//nOkZqNmqBtofl08B+gK7E04zwmxfNBRCyHk0lw8/CrGmCnrwI4oNR3+STJzX47zgctDCKuAXwNvDyH8MtlIxy/GuC71dhPNa9oyYnOgFlQAFQfMpnmA5jIik10CzI0xbkw6yHF6J7Ayxrg5xlhP8zrW8xLOdNxijD+JMU6MMV5I8/TMTP7tFMDGEEI/gNTbNj9luaMIIXwEuAy4PraPa7PfS+ZOWR5Kc4H6Sup5vxSYG0IoSTTVcYoxbkz9IqgJ+DGZ+5wPzc/7D6aW9b5I82zUjNgM9FCppYlXAv+XdJYT9BHe2LPifjL431eMcXGM8eIY4ySaS6HlSWc6EZYPOiqpBvcnwKIY4/8knedEhBB679u1O4RQQPMPJosTDXUcYoy3xhhLY4yDaZ4S/3iMMSN/mxtC6BJC6LrvfeBimqeZZZwY4wZgbQhhROrQO4DXEox0MmT6b0HWAOeEEDqnvpe9gwzdBBQghNAn9baM5heJmfy1AfgDzS8USb39fYJZlBJCmAp8Hrg8xrgn6TzH65ANWS8nA5/vAWKM82OMfWKMg1PP+xXAxNRzTsbZVzimvJcMfc5PmQG8HSCEcDqQB2xJMtAJeCewOMZYkXSQE7QOeGvq/beTwSX9Ac/5WcC/Anckm+jE5CQdoL0LIdwHXAT0CiFUAF+OMWbi1J/zgQ8B8w+49M6/ZNDuxAfqB/wshJBNcwH3mxhjRl+msh3oC/wuNUsxB7g3xviXZCOdkE8Dv0otV1gBfCzhPMctNdX3XcAnks5yvGKML4QQHgDm0jx9fB5wZ7KpTshvQwg9gXrglhjjtqQDHa2WnhOBr9M8TfnjNBdFVyeX8Oi1MpatwPeA3sCfQwgvxxinJJfy6LQylluBTsAjqe/Nz8cY/y6xkEehlXFcmiqDm4DVQJsewz7t6PVja1+Xi0II42ne72kVGfIc08pY7gbuTl0ecS/wkbY+U+gI/74ybn+nVr4mNwHfTc3kqAUyYi+xVsZSGEK4JXXKg8BPE4p3UoQ2/n9DkiRJkiRlOJddSJIkSZKktLJ8kCRJkiRJaWX5IEmSJEmS0sryQZIkSZIkpZXlgyRJkiRJSivLB0mSJEmSlFaWD5IkqU0IIawKIfQ6zo/9aAih/8l4LEmSdPJZPkiSpPbgo0D/NztJkiQlw/JBkiQdJIQwOISwOIRwVwhhQQjhVyGEd4YQngkhLA0hTE79eTaEMC/1dkTqY/8hhHB36v2xqY/v3Mrn6RlCmJV6jB8B4YD7PhhCeDGE8HII4UchhOzU8V0hhG+FEOaGEB4LIfQOIbwPKAd+lTq/IPUwn06dNz+EMDKdf2eSJOnILB8kSVJLhgHfBcYBI4HrgAuAfwL+BVgMXBhjnAB8Cfiv1Md9BxgWQngv8FPgEzHGPa18ji8Df0s9xh+AMoAQwhnAB4DzY4zjgUbg+tTHdAHmxhgnAk8BX44xPgDMBq6PMY6PMdakzt2SOu+HqdySJCkhOUkHkCRJbdLKGON8gBDCQuCxGGMMIcwHBgNFwM9CCMOBCOQCxBibQggfBV4FfhRjfOYIn+NC4MrUx/05hLAtdfwdwCTgpRACQAGwKXVfE/B/qfd/CTx4hMffd9+cfZ9HkiQlw/JBkiS1pO6A95sOuN1E8+uHrwJPxBjfG0IYDDx5wPnDgV0c3R4MsYVjAfhZjPHW4/z4ffZlbsTXPJIkJcplF5Ik6XgUAZWp9z+672AIoYjm5RoXAj1T+zG05mlSyylCCJcA3VPHHwPeF0Lok7qvRwhhUOq+LGDfY14H/C31/k6g6wmMR5IkpZHlgyRJOh7fBL4WQngGyD7g+LeBH8QYXwc+Dnx9X4nQgq8AF4YQ5gIXA2sAYoyvAf8KzAohvAo8AvRLfcxuYHQIYQ7wduD/pY7fA9xxyIaTkiSpjQgxHmm2oiRJUtsRQtgVYyxMOockSTo2znyQJEmSJElp5cwHSZKUViGEjwGfOeTwMzHGW5LII0mSTj3LB0mSJEmSlFYuu5AkSZIkSWll+SBJkiRJktLK8kGSJEmSJKWV5YMkSZIkSUorywdJkiRJkpRW/z89oVqxcgfqqAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# visualizing changes in parameters\n", + "plt.figure(figsize=(18,5))\n", + "plt.plot('max_depth','acc_depth', data=d1, label='mse', marker=\"o\")\n", + "plt.xticks(np.arange(1,20))\n", + "\n", + "plt.xlabel('max_depth')\n", + "plt.ylabel('mse')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following code retrieves the optimal parameter and prunes the tree. Here, instead of choosing the parameter that minimizes the mean-squared-error, we're following another common heuristic: we will choose the most regularized model whose error is within one standard error of the minimum error." + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "# We get the best parameters\n", + "best_max_depth = d1[d1[\"acc_depth\"] == np.min(d1[\"acc_depth\"])].iloc[0,1]\n", + "best_ccp = d2[d2[\"acc_gini\"] == np.min(d2[\"acc_gini\"])].iloc[0,1]\n", + "\n", + "# Prune the tree\n", + "dt = DecisionTreeRegressor(max_depth=best_max_depth , ccp_alpha= best_ccp , random_state=0)\n", + "tree1 = dt.fit(x_train,y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting the pruned tree. See also the package [rpart.plot](http://www.milbo.org/rpart-plot/prp.pdf) for more advanced plotting capabilities.\n", + "```{r}" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Text(0.65, 0.9, 'NUNIT2 <= 3.5\\nsquared_error = 1.01\\nsamples = 20108\\nvalue = 11.812'),\n", + " Text(0.4, 0.7, 'UNITSF <= 2436.5\\nsquared_error = 0.823\\nsamples = 19378\\nvalue = 11.884'),\n", + " Text(0.2, 0.5, 'BATHS <= 1.5\\nsquared_error = 0.698\\nsamples = 13909\\nvalue = 11.68'),\n", + " Text(0.1, 0.3, 'KITCH <= 0.5\\nsquared_error = 0.782\\nsamples = 5112\\nvalue = 11.38'),\n", + " Text(0.05, 0.1, 'squared_error = 0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.15, 0.1, 'squared_error = 0.757\\nsamples = 5111\\nvalue = 11.382'),\n", + " Text(0.3, 0.3, 'UNITSF <= 1692.0\\nsquared_error = 0.567\\nsamples = 8797\\nvalue = 11.854'),\n", + " Text(0.25, 0.1, 'squared_error = 0.533\\nsamples = 3227\\nvalue = 11.684'),\n", + " Text(0.35, 0.1, 'squared_error = 0.56\\nsamples = 5570\\nvalue = 11.953'),\n", + " Text(0.6, 0.5, 'BATHS <= 2.5\\nsquared_error = 0.768\\nsamples = 5469\\nvalue = 12.402'),\n", + " Text(0.5, 0.3, 'BATHS <= 1.5\\nsquared_error = 0.739\\nsamples = 2839\\nvalue = 12.156'),\n", + " Text(0.45, 0.1, 'squared_error = 1.112\\nsamples = 328\\nvalue = 11.625'),\n", + " Text(0.55, 0.1, 'squared_error = 0.649\\nsamples = 2511\\nvalue = 12.225'),\n", + " Text(0.7, 0.3, 'UNITSF <= 3999.0\\nsquared_error = 0.664\\nsamples = 2630\\nvalue = 12.667'),\n", + " Text(0.65, 0.1, 'squared_error = 0.538\\nsamples = 1645\\nvalue = 12.495'),\n", + " Text(0.75, 0.1, 'squared_error = 0.742\\nsamples = 985\\nvalue = 12.954'),\n", + " Text(0.9, 0.7, 'MOBILTYP <= 1.5\\nsquared_error = 2.186\\nsamples = 730\\nvalue = 9.901'),\n", + " Text(0.85, 0.5, 'UNITSF <= 15977.5\\nsquared_error = 2.4\\nsamples = 417\\nvalue = 9.372'),\n", + " Text(0.8, 0.3, 'squared_error = 2.194\\nsamples = 416\\nvalue = 9.394'),\n", + " Text(0.9, 0.3, 'squared_error = -0.0\\nsamples = 1\\nvalue = 0.0'),\n", + " Text(0.95, 0.5, 'squared_error = 1.031\\nsamples = 313\\nvalue = 10.606')]" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYEAAAN0CAYAAADiQOclAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3SUVf7H8c+d9F4paUAghN57BxWxIKAoVmzYde2igmVXxbWXdW1rL4gFFfnZC01Aeu8dAoSWBAjpmbm/PyYOhIReJuX9OsezM0+5z/cZ9xyffObO9xprrQAAAAAAAAAAVZPD2wUAAAAAAAAAAE4dQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqjBAYAAAAAAAAAKowQmAAAAAAAAAAqMIIgQEAAAAAAACgCiMEBgAAAAAAAIAqzNfbBQAAAABAZWGM6RYR5PfvnILiTsUu6+/tenD6+fmY/CA/n0l784sftNYu8nY9AAAcDWOt9XYNAAAAAFDhGWM6BPv7THr6wmbB/ZrVUkSQr4wx3i4Lp5G1Vhn7CjVuQbqe/nHl3rwiZ1tr7Vpv1wUAwJHQDgIAAAAAjkJYoO/9w/ulBl3aIVGRwX4EwNWQMUaxYQG6oUc9De2SFBTg67jJ2zUBAHA0CIEBAAAA4Oj06N0oluQXkqQzGtfwC/b36evtOgAAOBqEwAAAAABwFFwu6x/sz7IqcAvx95WVgrxdBwAAR4MnGAAAAADwsg6jJsrpspr+UC8F+vlIkl74ZZXS9+TrxSEtNX1Nhu77arH+erh3qfO6/HuSXrykhbqmxOiuzxfqq7lb9Ps93dU0PlySypzXYdRE/feKVvp67hZ9PW+rJKmw2CWHMfL1cU9yHtw2Xpd2SNQzP63S4i175OfjUN+mNfXEgKYKDTz9f0L+d8JaffTXJu3OLVJEkK+u6VpX/zijQbnHTl+ToYvfnqmgks9Qkj65vr26psSc9LroBgIAqEwIgQEAAACgAsgvcuqTGZt0Y4/k4x4jMshPz/+6Wh9c2+6wxz13cQs9d3ELSdJdny9UvdgQ3XNWimf/hBU7dW23uuqdGiuny+ofYxbqqR9W6JnBzY+pHpfLKiuvSDEh/sd+MyXOb1lb13Sto7BAP23bk69L/zdLTWqH6aymNcs9vm50cJmwHACA6o52EAAAAABQAdzcK1n/nbBOeUXO4x7jsg6JmrkuU4s27zmhWs5oXEPnt6itkABfhQf56cpOSZq7cfdRn78pI1fP/bxKHUZN1A+Ltp1QLcmxIQoL9PO8dxhpQ0buCY0JAEB1w0xgAAAAAKgAOteP1rQ1Gfpo2kbd0rv+cY0RFuSnG3sm64VfVuvjYe1PWm2zN2QptXboYY8pKHbqp8XbNWZWmhZv2asBreL03rVt1TopUpK0OStPZ7745yHP/3hYe3VKji5330fTN+qJ71cot9CpOtFBuqBV7UOOs3V3vpo//rvCAn11YZt43ds3Rb4+zH8CAFRvhMAAAAAAUEE80C9V1384V1d3qXPcY9zYvZ46TpmoBZt2n5SaZq7P1Kcz0vR//+hyyGOe+WmlPpmRpubxYbqsY5I+al7L09v4b4lRQVr51NnHVcM1Xevq6i51tDw9Wz8v2a6wgPL/lE2pGarf7+uuBrEhWrsrRzd/Ml+Bfg7deWZKuccDAFBd8HUoAAAAAFQQHepFqXlCuN6ftrHUdh8foyKnq8zxRU6XZ0G3v4UG+urW3vX13C+rT7ieZVv36oaP5un1K1srpeahZwKv3Zkja62axYeraVxYmQD4ZDDGqGl8uIL8ffTib2vKPaZmeIAa1gyVw2HUsGao7j0rRT8t2X7SawEAoLJhJjAAAAAAVCDD+6Xqqvfm6JJ2CZ5t8RFB2rWvUAXFTgX4ugPW/CKndmYXKiEqqMwYw7rV1f+mrNecjVnHXce6nTm64t3ZempQU53RuMZhj33n6rbalJGrMbM364p3ZqtGWIAu65CoQW3iFRns7ue7OStPvZ6fcsgxRt/QQZ3rl98O4kBOl9X6XTlHdQ/GYY58EAAA1QAhMAAAAABUIG3qRKptnQh9OWezzm1eS5KUFB2kZvHhevanVbq/X6ok6dmfV6plYrgSIsuGwMEBvrqtd329NmGtIoL8yuw/kq278zTk7Zm656wUDWwdf1Tn1IkJ1oPnpOqBsxtq4sqdGjNrs0b9uFIvXtJCA1rHKTEqSGuf7nfMtXw2M039mtdSdLCfFm3Zqw+mbdTtfcrvmTx9TYbqxgYrITJI63fl6JXf1ui8lofuHwwAQHVBCAwAAAAAFcwD/VLV75Vppba9PbSNHv1umTqOmihJ6pgcpbeGtjnkGNd2q6u3Jq8/ruuPmbVZW3bn64nvV+iJ71dIcvf0nfxAzyOe63AYndmkps5sUlO79hVob17xcdXwt+lrMzTqx5XKL3KqVniAhnapo+u61fXsbzDiF88s4kWb9+j2zxZoT16xYkP9dVHbeN1xiMAYAIDqxFhrvV0DAAAAAFR4oQG+uybe3zMmKbrszFtUP3M3Zumq9+asyMopbOLtWgAAOBIWhgMAAAAAAACAKowQGAAAAAAAAACqMEJgAAAAAAAAAKjCCIEBAAAAAAAAoAojBAYAAACAauK+LxfphV9WebsMAABwmvl6uwAAAAAAAE7U8vS9+uf45VqQtkfhQX6aPbLPYY+fuHKnRn67VNv2FKhbSrReuayVYkL8JUnjF6Tr7SnrtWTLXg1qE6dXL2t1Om4BAIBThpnAAAAAAFAJWWvldFmv1lDsdB3VtkNxuqysPTn34Ofj0IVt4vWvAU2OeOyu7ALd8sl8/WtAEy3511mKCvbXw18v8eyPDPbTrb2SNbRLnZNSGwAA3sZMYAAAAAA4Di6X1WPjl+mbeVvldFnViw3Wp8M6qEZYgBak7dZ9Xy7Wpsw8DWgdp427cnVJ+wRd2iFRL/yySul78vXikJaSpJnrM3XHZws9M1f/88cafTojTZm5hUqODdGoQU3VMTlaknTX5wsVGuCr1Tv2afaGLP14Z1c5jNGIb5dq6da9iosI1JMDm6p7w1hJ0oZdObrz80Valr5X3VNiFeR3dPOAPpmxSW9PXq+MfYXqlhKj5y9prqhgf6Vl5qrLM5P19IXN9PJvq9WubpQa1w7V2p05KnZZTVixU29e2Vp1Y4I1/OslWpGerToxwXpyYFN1ru++h4vemKFO9aM1ccVOLU/P1tJ/naXQwBP/0zSlZqhSaoZq5vrMIx7745LtapUUob5Na0mSHuiXqm7PTlJOQbFCAnzVM9X9+a3emaPs/KITrg0AAG8jBAYAAACA4zBp1S7N3pClmSN6K8TfV0vT9yrQz6HCYpeGfThPd57ZQFd0StInf23SF7M365L2CUc1bv0aIfrhzq6KDvHX+9M26JZPF2jmiN7y83EHuN/O36rPbuygFgkRyi0sVu/n/9RjFzRW/5ZxmrEuUzd+PE9/PthLMSH+um30AnVvGKuxt3TShBU7ddMn83TnGQ0Oe/0fFm/Tu39u0KfD2is+MkiPj1+mkd8u1RtXtpHknr27eMse/fVwb1lJr09Yq5+WbNcH17XT21e1UU5hsc56aapu6FFPY2/ppF+WbNc178/RXw/3VnRJu4VxJfcQHxkoP0fZYLrRI78esr5/X9RMF7U9us/yUFZt36cmcWGe90nRQQry89G6XTlqkRBxQmMDAFAREQIDAAAAwHHw8zHKKXBqzY4ctU6K8ISH09dmyMdhdE3XupKk67vX0xuT1h31uP1bxnle39gjWS/+ulobM3KVUjNUknRei9pqnRQpSZqwYqdSaoVqYOt4SVK3lBi1rROpSSt3qmO9aC1Lz9Y3t3WWv69D5zSvpbZ1Io94/dEz0nTXmQ1ULzZEknTf2Q3V7smJcl2+v23DfX0bKtDPx/O+U/1o9WlUQ5K0dGu2XNZduyT1bxWnd6Zu0B8rduqSdu7w9rKOiUouGb88K586+4h1nojcwmLFRwSW2hYW6KucAucpvS4AAN5CCAwAAAAAx6FHw1gN7VJHD4xdrB3ZBRrcNkEjzmukHXsLFBdZOmBMiAo66nHHzErT25PXa+uefBlJ2QXFyswp9OyPP2DszVl5mrE2s9TM2SKnVdcGMdqRna+YEP9SYW3iUdSxOStPw79eooe/WerZZoy0a5+7BoeRah8UoCYcUNP2vfmlavz7utv35B9wD0f/eZwKwf6+yi4oLrVtX0GxQgJ8DnEGAACVGyEwAAAAABynm3sm6+aeydqyO09XvTtbjWuHKSk6SOm780sdt/WA98H+vsor2j/jdGd2ged1WmauRn67TF/f2kmtEiPkcBg1fvRXHbh0mjHG8zouIlC9UmP18bD2ZWpLy8xTZk6h8oucniB4y+581YsJPuw9xUUGavg5DUvNSD6wvgOv76npgNe1wgNL3a8kbcnKU++SmcIHH1+eBiN+OeS+5y5ursEn2A4itVaofliU7nm/OStPuYVO1T/M7GQAACozQmAAAAAAOA4L0nZLVmqeEK7QAF/5+jjkcBi1rxulYpfVx39t0uUdEzV6RprSD5gF2zQ+TG9PWa9te/Ll5+vQO39u8OzLLXTKGCkmxF9Oa/XaH2uVnV9c9uIl+jatqVE/rtT3C9N1TvNaclqruRt3q15MsJKig9Sodphe+X2N7ju7oSau2Km5G7PUrUH0Ye/ryo5J+s8fa9UkLkwNaoQqI6dQczZkqV+zWkf1ubStEykj6f2pG3R1lzr6ZdkOLU/P1pmNaxzx3L+tfbrfUR/7N2utCopdKip2yVqr/CKnHMbI37dsz+HzmtfSqB9W6I/lO9Q1JUYv/LJK5zSrpZAA95/ITpdVkdMlp9Mlp8s9lq/DyNfn6BbWAwCgoiEEBgAAAIDjkJ1frMe+W6ZNmXkK9vfRgFZxuqhNvHwcRu9d01b3fbVYT3y/XANbx6tz8v7gtVdqrM5uVlM9n5+i2uGBurJzkt4tCYIb1Q7TdV3rqu/LUxXg59Cw7vUO2zohLNBPn93QQY+NX67hXy+RMUatEiP03MXNJUlvXNlad32+UO/8uUE9Gsbq/Ba1j3hfA1rHKbugWNd9ME9b9+QpOthfg9rEH3UI7O/r0IfXtdND3yzVMz+vUt3oYH1wbTvPonCnyuasPHV8epLnffLDv6hL/Wh9c1tnSVKv56fozjMbaHDbBMWGBejNq9po5LdLtW1vvro1iNErl7X0nDt27hbd/cUiz/uv523VfX1TdH+/1FN6DwAAnCrGWnvkowAAAACgmgsN8N018f6eMUnRx97PdsjbMzW4bYIu7ZB4CiqDN8zdmKWr3puzIiunsIm3awEA4Ej4LQsAAAAAAAAAVGG0gwAAAACAaub1iWv10m9rymy/olOSnhzY1AsVAQCAU4kQGAAAAABOsS9v7uTtEkq5vU8D3d6ngbfLAAAApwntIAAAAAAAAACgCiMEBgAAAIBq4K7PF+rl38u2gAAAAFUf7SAAAAAAAKfN6xPX6ovZW7R1T55qhQXorjNTNKRDomf/grTduv+rxVq7M0ctEiL0n8taql5siCRp2poMPf/LKi3avFetkyL0zW2dS419uHOzcgs1fOwSTVuTIR+HUf+WtfXkwKby9WFuFACg6uO/dgAAAACA08bI6M2rWmvlk2frzava6J//t1zzNu6WJBUUOzXsw3m6pmtdLX+ir7o0iNatoxd4zg3299HVXero7rPK9jM+0rkv/LJaeYVOzRnZRxPv76E5G3brkxmbTvHdAgBQMTATGAAAAABOMZfL6rHxy/TNvK1yuqzqxQbr02EdVCMsQP/5Y40+nZGmzNxCJceGaNSgpuqYHC3J3cIhLNBXK7ft07xNu9WlfrReuaylRnyzVBNX7lKLhHC9e01bRYf4Ky0zV12emaxRg5rqhV9Xy9/XoQf7pZaaZXugn5Zs0/O/rNbW3XlqlRihFy5pqaToIOUVOXXvF4s0ceVOGRk1rBWqcbd1lsNhTspncVuf+p7XLRMj1KVBtOZuylLbupGavjZT/r4ODe1cR5J091kpemfKBq3duU8NaoSqTZ1ItakTqbFzt5QZ90jnpmXm6ZzmtRQc4KvgAF/1aVxDq7bvOyn3BABARUcIDAAAAACn2KRVuzR7Q5ZmjuitEH9fLU3fq0A/9w8z69cI0Q93dlV0iL/en7ZBt3y6QDNH9JZfSZuC/1u4TV/e3FEJkUG64L/TNej1GXrhkhb67xWtNfT9OXpv6gY90C9VkuR0Wc3btFuzRvbRki17dfk7s9S2bqRSaoaWqmdB2m6N+GapPh7WXk1qh+nNyet1+2cLNP6OLvpy9mblFjo1/7Ez5ecwmrtpt0w5+e/mrDyd+eKfh7znj4e1V6eSMPtQCotdWpC2R9d0qStJWrV9n5rEhXn2B/n5qH6NYK3c5g5yD+dI5w7tkqRPZ6RpYOs45RW6NGHFDt13dsPDjgkAQFVBCAwAAAAAp5ifj1FOgVNrduSodVKEWiREePb1bxnneX1jj2S9+OtqbczI9QS3F7SqrUa13eHmmY1ravWOfepc3x2unte8liau3FXqWvef3VBBfj7qUC9K/ZrV0g+Lt+muM1NKHTNm1mZd262up47be9fXq3+sUfqefPn5OJSVW6RNGblqVDvskEFuYlSQVj519gl9Lo99t0wpNUPVo2GMJCmnoFhhgaX/TA0L9FNOofOIYx3p3Gbx4copcKrxo7/JZaWL2sbrnGa1Tqh+AAAqC0JgAAAAADjFejSM1dAudfTA2MXakV2gwW0TNOK8RvLzcWjMrDS9PXm9tu7Jl5GUXVCszJxCz7kxoQGe14F+DsWG+h/w3ke5hcWlrhUfGXTA60Dt2FtQpp7NWXn6as4WvTFxnWeb02mVvjtfF7dL0OasPF3/4VwVFLt0dZc6uvOgEPlkeOm31Zq1IUvf3tZZpmSqcUiAr7LzS9/Pvvxihfj7HHG8I5170yfz1bZOpD65ob0Kily6/6vFevrHlRp5fuOTdEcAAFRchMAAAAAAcBrc3DNZN/dM1pbdebrq3dlqXDtMXRtEa+S3y/T1rZ3UKjFCDodR40d/lT2B62zdnaek6OCS1/lqWLNsG4W4iEAN79dQt/SuX2afJA0/J1XDz0nV6h37NPjNGWpfN0pdU2JKHbM5K0+9np9yyDpG39DBM2P5YO/8uV5fzdmi727vooggP8/21Fqh+mj6Rs/7vCKn1u3KUaPah28FcTTnLtuarVcubakgPx8F+fno0g4JevbnVYTAAIBqgRAYAAAAAE6xBWm7JSs1TwhXaICvfH0ccjiMcgudMkaKCfGX01q99sfaMrNZj9VLv63Rvy9qpmVbs/XL0u1lWkFI0hUdk3TLp/PVNSVGLRLClZ1frCmrdql/qzhNW5Oh2FB/NawZqrAAX/k6HOUuCpcYFaS1T/c75vq+nL1Zb0xcp+9u76Ka4QGl9nVtEK2CIpc+m5mmwe3i9Z8/1iq1VqinH7DLZVXodKnY6ZLLWuUXOeXjMPLzcRzx3NZJERo9M00PnZuqomKrr+ZsUePaYWXqAwCgKiIEBgAAAIBTLDu/WI99t0ybMvMU7O+jAa3idFGbePk4jK7rWld9X56qAD+HhnWvV6qdw7HycRi1TopQh1ET5e/j0JMDmyq1VtlZtG3rRuqJgU1131eLtTEjV6EBvurZMEb9W8Vp+958PTB2sbbvLVB4oK+GdqlzyBm9x+OFX1crI6dQfQ5YVO7OMxvorjNTFODro/eubav7vlyskd8uVYvECL15ZWvPcTPWZWrwWzM975Mf/kVD2ifo1ctaHfHcly9tqRHfLlWbJyZIkro2iNE/L2hy0u4LAICKzFh7Ij80AgAAAIDqITTAd9fE+3vGJEUff0h7KqVl5qrLM5O1+blzvV1KtTB3Y5auem/OiqycQpJkAECF5/B2AQAAAAAAAACAU4cQGAAAAAAAAACqMEJgAAAAAKgCkqKDaQUBAADKRQgMAAAAAAAAAFUYITAAAAAAVFIXvTFDY+du8XYZAACggvP1dgEAAAAAgMqvsNilW0fP1/xNe5S+J1+zRvRWUnSwZ//4Bel6e8p6LdmyV4PaxOnVy1odcqyCYqdGfrtMPy/ZLpe16t0oVs8Obq6wQD9J0rM/r9IPi7Zpzc59enlIS13aIdFz7hezN+vdqRu0YVeuIoJ8dV23urq9T4NTd+MAAFQCzAQGAAAAAJwUnetH652r28jHYcrsiwz20629kjW0S50jjvPB1I1atHmPJg/vqdkj+2h3brFe/m2NZ39ybLCeGNhE7etGlTk3v8ippy9spmVPnKWxt3TSJzPSNH5B+ondGAAAlRwhMAAAAAB40Uu/rdYdny0otW3oe7P1wbQNkqRHxi1Vmyf+UOojv2rQ639p5bbscsd54ZdVuu/LRZ73M9dnqsOoiZ73W3fn6doP5qjpY7+p6zOTNG7+1pN6H/6+Dt3YI1ntyglmJalnaqz6t4pTTKj/EcdKy8pTn8Y1FBPir5AAX53bopZWbd/n2T+kfaJ6N6qhQL+yf9Je07WuOtSLkp+PQ/ViQ3ROs1qaszHr+G8MAIAqgHYQAAAAAOBFF7aJV79Xpim/yKlAPx/tzi3S1DUZemlIS0lS2zqReqBfqoL8fPT0jyt19xeL9NNd3Y7pGi6X1TXvz9XgtvF65+q2Wr19n4a8PUtN48OVWiu0zPFD35utWevLD04vbBOvZwY3P/YbPQaXtE/Qv/5vhXZmFyjA16EfFm3TmU1qHNdYszdk6YpOSSe5QgAAKhdCYAAAAADwouTYENWLCdaEFTt1Xova+mnJNnWsF6UaYQGSpIvaJniOvbdviho/9pvyipwK8vM56mssSNuj3MJi3dK7viSpaXy4LmhVWz8u3qbUWilljv9kWIcTvKsTkxwbohqh/mr5rz/kMFKX+jG6+ijaSBzs9YlrlVtYrMFt409BlQAAVB6EwAAAAADgZYNax2v8wnSd16K2vluQroGt94eW//ljjb6YvVk79xXKSLJW2p1bpKCIow+BN2flaVNmnho98qtnW7HL6tL2iYc5y3se+nqJjDFa+WRf+fo4NOqHFbrr80V666o2Rz3Gl3M26/1pG/Xd7V0UeAyBOQAAVREhMAAAAAB42cA2cXrp99VKy8zTrPVZnrBz+toMfTBto768pZNSaoQoO79YjR79TdbaMmME+/sqr8jpeb8zu8DzOi4yUCk1QzTx/p5HVc8V78zWzPWZ5e4b3DZez13c4lhu75gtS8/WPwc0UXiQnyRpaOc6Gvj6X0d9/g+Lt+mpH1Zo7C2dlRgVdKrKBACg0iAEBgAAAAAvS4gMUtO4cN375SJ1T4lRZLA7/MwtcMrHYRQd4q/8Ypee/XnVIcdoGh+mt6es17Y9+fLzdeidPzd49rVJipAxRu9P3aArOyfJYYyWbt2rYH/fcnsCf3bj8bWDKCh26u98uqDY5elzLElOl1WR0yWn0yWnyyq/yClfh5GvT9nF3VonReirOZvVsV6UfH2MRs9KU+O4MM/+opIxXC736/wip/x9HHI4jKas2qUHvlqsz27oUO69AQBQHRECAwAAAEAFMKh1nEaOW6b/XtHKs61P4xrq2iBGnZ+epPBAXz3Qr+Ehz++VGquzm9VUz+enqHZ4oK7snKR3S4JgXx+HPhnWXo9/t1wv/75GxU6rJnFhemJg05N6D92fnaLNWXmSpB7PTZEkpb9wniRp7NwtuvuLRZ5jv563Vff1TdH9/VK1OStPvZ6foskP9FRiVJAe7d9YI79dpo5PT5LT5VLrpEi9XLJQniTd/9VifTlniyRp2toMPTB2ib6+pZO6psTo1T/WaG9+sQa/NdNz/OmYvQwAQEVmyvsZEQAAAACgtNAA310T7+8ZkxRNewFIczdm6ar35qzIyils4u1aAAA4krK/uwEAAAAAAAAAVBmEwAAAAAAAAABQhRECAwAAAMBRMMYU5hYWe7sMVBA5BU4ZKd/bdQAAcDQIgQEAAADgKBij6VPXZLCoCiRJk1ftKsotdP7h7ToAADgahMAAAAAAcBSy84tfePrHlXnfzt+q3EKnt8uBl2TnF+mTGZv0wbSNBQXFrv95ux4AAI6GsZYvsgEAAADgcIwx/pKulfREWIBvYE5hcZgxhj+mqqkgP0fOvgJnpqQRkr601vKtAACgQiMEBgAAAIBDKAl/r5M77Fsu6V/W2r+MMQ5J/l4tDt5SUPK/Z0n6l6QoSU9K+oIwGABQURECAwAAAMBBjDEB2h/+LpU7/J3h3apQ0RhjjNxh8D8lxcgdBn9OGAwAqGgIgQEAAACgxEHh7xK5w9+Z3q0KFV1JGHym3GFwrAiDAQAVDCEwAAAAgGqvJPy9XtLDIvzFcSoJg8+Qu01EDe0Pg4u9WhgAoNojBAYAAABQbZWEv8MkPSRpsdzh7yzvVoXK7oAw+J+Sakp6StIYwmAAgLcQAgMAAACodg4Ifx+WtEiEvzgFSsLgPnKHwbXlnhlMGAwAOO0IgQEAAABUG8aYQO2f+btQ7vB3tnerQlVXEgb3lrtNRJzcYfBnhMEAgNOFEBgAAABAlXdQ+LtA0hOEvzjdDgiD/ykpXoTBAIDThBAYAAAAQJVVEv7eIHf4O1/umb9zvFsVIBljess9Mzhe7p7BowmDAQCnCiEwAAAAgCqnJPy9UdKDkubJPfOX8BcVTkkY/E9JiXKHwZ8SBgMATjZCYAAAAABVxgHh70OS5sgd/s71blXAkZWEwY9LShJhMADgJCMEBgAAAFDpGWOCtH/mL+EvKi1jTC+5w+C62h8GF3m3KgBAZUcIDAAAAKDSKgl/b5I0XNJsucPfed6tCjhxB4XBoyR9QhgMADheDm8XAAAAAADHyhgTZIy5S9JaSX0kXWCtHUQAjKrCWjvZWnuGpOskXSlppTHmemOMn5dLAwBUQoTAAAAAACqNkvD3brnD396Szif8RVVmrZ1irT1T0jWSrpA7DB5GGAwAOBaEwAAAAAAqvIPC356SzrPWXmitne/dyoDTw1r7p7X2LLnD4MtFGAwAOAaEwAAAAAAqLGNMsDHmHknrtD/8vchau8C7lQHecUAYfLWkyyStMsbcYIzx93JpAIAKjBAYAAAAQIVTEv7eK/fM3+6SziH8Bfaz1k611vaVNFTSpXKHwTcSBgMAykMIDAAAAKDCOCj87Sqpn7V2sLV2oZdLAyqkA8LgKyVdIsJgAEA5CIEBAAAAeJ0xJsQYc59Kh78XW2sXebk0oFKw1k6z1p4t9+JxF8sdBt9EGAwAkAiBAQAAAHhRSfh7v9zhb2cR/gInxFo73VrbT+4weLDcYfDNhMEAUL0RAgMAAAA47Q4KfztJ6mutvYTwFzg5DgiDL5d0oaTVhMEAUH0RAgMAAAA4bUrC3wfkDn87an/4u9jLpQFVkrX2L2vtOXIvHjdI0hpjzC3GmADvVgYAOJ0IgQEAAACccgeFv+0lnWWtHUL4C5we1toZ1tpzJQ2RNFDumcGEwQBQTRACAwAAADhljDGhxpjhktZpf/h7qbV2iZdLA6qlA8LgSyQNkDsMvpUwGACqNkJgAAAAACddSfj7oNwzf9tKOoPwF6g4rLUzrbXnyR0GXyB3m4jbCIMBoGoiBAYAAABw0hwU/raW1Mdae5m1dql3KwNQngPC4MGSzhdhMABUSYTAAAAAAE6YMSbMGPOQ3G0fWssd/l5urV3m3coAHA1r7Sxr7flyh8HnyR0G326MCfRyaQCAk4AQGAAAAMBxKwl/H5Z75m9LSb0Jf4HKqyQM7i/pIknnyh0G30EYDACVGyEwAAAAgGN2UPjbQlIva+0VhL9A1WCtnV0SBl8oqZ8IgwGgUiMEBgAAAHDUjDHhxpgRcoe/zbU//F3u5dIAnAIlYfAFkgZJOlvSWmPMPwiDAaByIQQGAAAAcEQHhL9rJDWV1NNaeyXhL1A9WGvnWGsHSBogqa8IgwGgUiEEBgAAAHBIJeHvSLln/v4d/l5lrV3h5dIAeIG1du4BYfBZcofBdxpjgrxcGgDgMAiBAQAAAJRREv4+Inf421hSd8JfAH8rCYMHyh0Gnyl3GHwXYTAAVEyEwAAAAAA8jDERB4S/qZK6WWuHWmtXerk0ABXQAWFwf0l9RBgMABUSITAAAACAv8PfR+Xu+ft3+Hu1tXaVl0sDUAlYa+dZawdJOl9Sb7nD4LsJgwGgYiAEBgAAAKqxg8LfFBH+AjgB1tr51toL5Q6De8kdBt9jjAn2cmkAUK0RAgMAAADVkDEm0hjzmPaHv12ttdcQ/gI4GQ4Ig8+T1EOEwQDgVYTAAAAAQDVSEv4+Lnf4W1/7w9/VXi4NQBVkrV1grb1I0jmSussdBt9LGAwApxchMAAAAFANHBT+1pPU2Vp7LeEvgNPBWrvQWjtY7jC4mwiDAeC0IgQGAAAAqrCS8PefKh3+XmetXePVwgBUSweEwf0kdZU7DL7PGBPi5dIAoEojBAYAAACqIGNMlDHmX3KHv3UkdSL8BVBRWGsXWWsvljsM7ix3GHw/YTAAnBqEwAAAAEAVckD4u1pSotzh7/XW2rVeLg0AyigJgy+R1FdSJxEGA8ApQQgMAAAAVAEl4e8T2h/+drTWDiP8BVAZWGsXHxAGd5Q7DH6AMBgATg5CYAAAAKASM8ZEG2OelDv8jdf+8Hedl0sDgGNWEgYPkTsM7iB3GDzcGBPq5dIAoFIjBAYAAAAqoYPC39qSOlhrbyD8BVAVHBAGnyWpnQiDAeCEEAIDAAAAlUhJ+PuU9oe/7a21N1pr13u5NAA46ay1S6y1l0o6Q1JbucPgBwmDAeDYEAIDAAAAlYAxJuaA8LempHaEvwCqC2vtUmvtZXKHwW1EGAwAx4QQGAAAAKjASsLfUZJWaX/4e5O1doN3KwOA0++AMLiPpNaS1hljHjLGhHm3MgCo2AiBAQAAgArIGBNrjHla7vA3VoS/AOBhrV1mrb1cUm9JLeWeGfwwYTAAlI8QGAAAAKhADgh/V0qKltTWWnsz4S8AlFUSBl8hqZekFiIMBoByEQIDAAAAFUBJ+PtvlQ5/b7HWbvRyaQBQ4Vlrlx8QBjeXOwweYYwJ93JpAFAhEAIDAAAAXmSMqWGMeUbu8DdSUhvCXwA4PiVh8JWSekpqKmmNMWYkYTCA6o4QGAAAAPCCA8LfFZLC5Q5/b7XWbvJyaQBQ6VlrV1hrr5I7DG4i98xgwmAA1RYhMAAAAHAalYS/z8o98/fv8Pc2wl8AOPkOCIO7S2osdxj8CGEwgOqGEBgAAAA4DYwxNY0xz8k98zdUUivCXwA4Pay1K621Q+UOgxvJHQY/aoyJ8HJpAHBaEAIDAAAAp9BB4W+IpNbW2tuttWleLg0Aqp0DwuBukhrK3TOYMBhAlUcIDAAAAJwCJeHv83KHv8GSWhL+AkDFYK1dZa29Wu4wOEXumcGPEQYDqKoIgQEAAICT6KDwN1Du8PcOa+1mL5cGADhISRh8jaQukhpofxgc6d3KAODkIgQGAAAATgJjTC1jzAsqHf7+g/AXACo+a+3qA8Lg+nK3iXicMBhAVUEIDAAAAJwAY0xtY8yLkpZL8pfUgvAXACqnkjD4WkmdJdWTOwz+J2EwgMqOEBgAAAA4DgeEv8sk+Upqbq2901q7xculAQBOkLV2jbX2OrnD4LoiDAZQyRECAwAAAMegJPx9SaXD37ustVu9XBoA4CQ7IAzuJKmO3GHwv4wxUV4uDQCOCSEwAAAAcBSMMXHGmJflDn8dIvwFgGrDWrvWWnu93GFwoqTVxpgnCIMBVBaEwAAAAMBhHBD+LpVk5A5/7yb8BYDqpyQMHiapo6QEuWcGP2GMifZyaQBwWITAAAAAQDlKwt9X5A5/JakZ4S8AQJKstetKwuAOkuLlnhn8JGEwgIqKEBgAAAA4wEHhr0vu8Pcea226dysDAFQ0JWHwDXKHwXEiDAZQQRECAwAAAJKMMfHGmFe1P/xtaq29l/AXAHAkB4TB7SXVljsMfsoYE+Pl0gBAEiEwAAAAqjljTIIx5j+Slkgq1v7wd5uXSwMAVDLW2vXW2hsltZNUU9IqY8wowmAA3kYIDAAAgGrpgPB3saRCSU2stfcR/gIATpS1doO19ia5w+AaIgwG4GWEwAAAAKhWSsLf11Q6/L3fWrvdy6UBAKqYg8LgWLnD4KeNMbFeLg1ANUMIDAAAgGrBGJNojPmv3OFvvgh/AQCnSUkYfLOktpKiJa00xvybMBjA6UIIDAAAgCrtgPB3kaQ8ucPfBwh/AQCnm7V2o7X2FrnD4CgRBgM4TQiBAQAAUCUZY5KMMa/LHf7mSmpM+AsAqAgOCIPbSIqUOwx+xhhTw7uVAaiqCIEBAABQpRwQ/i6QtE/u8He4tXaHdysDAKA0a+0ma+2tcofB4ZJWEAYDOBUIgQEAAFAllIS/b6h0+Psg4S8AoKIrCYNv0/4weKUx5lnCYAAnCyEwAAAAKjVjTB1jzJuSFkraq/3h704vlwYAwDE5IAxuJSlU7jD4OWNMTS+XBqCSIwQGAABApXRA+Dtf0m5Jqdbahwh/AQCVnbU2zVp7u9xhcIjcbSIIgwEcN0JgAAAAVCrGmLrGmLe0P/xtZK192Fq7y7uVAQBwch0QBreUFCx3GPw8YTCAY0UIDAAAgEqhJPx9W9I8SZki/AUAVBPW2s3W2jvkDoMD5Q6DXzDG1PJyaQAqCUJgAAAAVGgHhb+75G77MILwFwBQ3ZSEwf+QOwwOkLScMBjA0SAEBgAAQIVkjKlnjPmfSoe/I621GV4uDQAArzogDG4hyV/uMPhFY0xtL5cGoIIiBAYAAECFckD4O1fSDhH+AgBQLmvtFmvtnZKaS/KVtIwwGEB5CIEBAABQIRhjko0x76h0+PsI4S8AAIdnrd1qrb1LpcPglwiDAfyNEBgAAABeVRL+vitpjqRtkhoS/gIAcOwOCoMdcofBLxtj4rxcGgAvIwQGAACAVxhj6peEv7MlbZU7/H3UWpvp5dIAAKjUSsLguyU1K9m0lDAYqN4IgQEAAHBalYS/72l/+JtqrX2M8BcAgJPLWpturb1HpcPgVwiDgeqHEBgAAACnhTGmgTHmfUmzJG2WlEL4CwDAqXdQGOySOwx+1RgT7+XSAJwmhMAAAAA4pQ4If2dK2iR324fHrbVZXi4NAIBqpSQMvldSU0lOSUsIg4HqgRAYAAAAp4QxJsUY84FKh7//JPwFAMC7rLXbDgiDi+UOg/9jjEnwcmkAThFCYAAAAJxUJeHvh5JmSNogd9sHwl8AACqYkjD4PklNJBVKWmyMeY0wGKh6CIEBAABwUhwU/q6XO/z9l7V2t1cLAwAAh2Wt3W6tvV/uMLhAhMFAlUMIDAAAgBNijGlojPlI7vB3nQh/AQColA4Kg/PlDoP/a4xJ9HJpAE4QITAAAACOywHh73RJayQ1sNY+QfgLAEDlVhIGPyCpsaRcSYsIg4HKjRAYAAAAx8QYk2qM+Vj7w98Ua+2T1to9Xi4NAACcRNbaHdba4SodBr9ujEnycmkAjhEhMAAAAI6KMaaRMeYTSdMkrRLhLwAA1cJBYfA+SQuNMW8QBgOVByEwAAAADuuA8HeqpBVyt314ivAXAIDqpSQMflBSI0l7JS0gDAYqB0JgAAAAlKsk/P1UpcPfUdbavV4uDQAAeJG1dqe19iG5ZwbvlXtm8JvGmDpeLg3AIRACAwAAoBRjTGNjzGhJf0paJsJfAABQjgPC4FRJuyXNN8a8ZYyp693KAByMEBgAAACSSoW/UyQtlbvn79OEvwAA4HCstbustQ/L3SYiS9I8wmCgYiEEBgAAqOaMMU2MMZ/JHf4ukXvmL+EvAAA4JgeFwZlyh8FvEwYD3kcIDAAAUA0YYwLL2fZ3+DtZ0iK5w99/W2uzT3uBAACgyigJg0fI3SZilw4TBpf3jALg5CMEBgAAqOKMMTdI+uqA902NMWNUOvx9hvAXAACcTNbaDGvtSJUOg/9njKl3wGF/GmP6e6VAoBox1lpv1wAAAIBTxBjTUtIfknpI8pH0qKQ+kl6S9AbBLwAAOF2MMTGS7pF0q6RvJD0tKb7kdQdr7SYvlgdUaYTAAAAAVZQxJkzSHEnvSWord/j7otzh7z5v1gYAAKovY0y03GHwbXIHwLsk9ZLUy1pb5M3agKqKEBgAAKAKMsYYSd9LaiwpVIS/AACggjkoDM6R9LO19ibvVgVUTYTAAAAAVZAxZpCkbyUVSco7YNdMa+3ZXikKAACghDFmkaS/F4ozkoIk+UpqZq1d5rXCgCqKEBgAgEqqZKZnoNx9XoED5VlrnSXtIA5eCLjAWpvvjaIAAAD+ZowJluR30GantXafMcZX7udc4EDFPMceP19vFwAAAI6NMSY4JMDnpUA/x+VFThviY+Tydk2oOKwkl8s6IoP9Zkq6x1o7y9s1AQAAHMxam3vwNmPMWZEhgc87jGnp4zBOY7xRGSoqp8s6QgL9dkt6L7egeKS1ttjbNVUmzAQGAKCSCQ/ym9AjJabLI+c3CkyODfF2OaiAcgqKNX5hukaOW7Yvr8jV3lq70ts1AQAAHI4xpmtooN9vr17fO/js1nUV6Me8RZRmrdWKLVl68NM/c5dsyvh6b27B1d6uqTI5+OeBAACgAjPGpEjq/PZVrQmAcUghAb66vGOSru9WLzDQ13GLt+sBAAA4kvAg//tHDu4YNKBDAwJglMsYoyaJ0Rp917nBhUXOIcaYSG/XVJkQAgMAULl07JwcVezrw3/CcWS9UmN8g/x9enu7DgAAgCOx1nbp0SSBBhA4orAgfzWMi8yX1NrbtVQm/AUJAEDlEhAS4Mt/v3FUgv19ZFlUBQAAVAIuK7/ggIPXiQPKFxLoJ/Gce0yYXw8AQDUT98BPmjuyt+Ijgzzb7vtqseIiAnX/2Q31xezNuvvLxRo1qKmu71a33PPu+nyR6sUGq050kIZ/vVSS5HRZFbus/s6oE6OCNPn+Hvpx8Ta98OsapWXlKsDXR62SIvT2la0VGuiruz5fpHELturAmc1f3NhB7etFnaZPQyooduqhb5ZqyuoM7c0rUqNaYXpiYBO1rRNZ5tj7xy7R6JlppT6/Gz+ZrxnrMpVf5FRSVLAePjdVfZvW9JyzY2+BRoxbqsmrdsnPx6HLOyTq0f6Ny60l7oGfFOTno78XQbm9d33d2zflpN8zAABAVdf2/k+1c2+elr16jcKC/CVJTpdLLe/9VBnZedr23s2eY8fNWqNXvp+vddv3KDzYXwM7NNDIwR31dyh9x7sT9O3MNfL1ccjH4VDTxGg9N7SHmibFSJKeGzdbWzNz9Mr1vbVp1151fHCMZ/yxf63SfR9NcV/faVXscinAz0eSlBQTJn9fH13du4mu7dPMU89jn0/Xpl3Z+vCOfmp7/6falZ0vY6TQQH8N7FBfT1zWVaf7l4HjZq3RW78s0uJNu3RhpxT994YzDnnsmKkrdM8Hkz33KUmTnxiiejXDT0epOARCYAAAUEZUsJ/+M2GtruiYqMADHt4ONrhtgga3TZAkfTF7s76et1Vf3tzRs3/dzhzd+9VifXhtO3VKjtLe/GL9umxHqTHuPitF95x1/EFnTkGxjDEK9j90nYfjdFklRQXpu9s6Kz4iUGPnbdHQ9+do9og+pcacv2m31uzYV+b8+/umKDk2RP6+Ds3ftFuXvjNbMx7qpegQ9x8b1344V10bROuVR86Qn6/Rup1lFsIuZerwHqUCegAAAByf+OhQjZ+9Tlf2dH8BP3npFoUF+SkjO89zzJfTV2nE6Kl6bVgfndmyjrZk7tNd70/Sda//qs/vOU+m5Nv5ey9op/sGtJPT5dKL4+fqrvcn6bfHBx+xhou7pOriLqmS3OHo2L9W6+sHLvDsX7hhpy554Xud07qeakeFaNHGXfpi2ipNfuKS/TXed746p8Zp7bbdGvDMeDWMi9J1ZzQrc61DKSx2Kq+wWBHBAUd9zsGiQgJ12zmtNGNVuvbmFR7x+G6N40vdJ7yPn5MCAIAymseHK6VGiD76a9MJjbN06141qBGizvWjZYxRRJCfLmmXoNDAE/8eeu7GLN331WK1fWqi0rIOH6weTrC/r+7t21CJUUFyOIyGtE+UtdL6XTmeY1wuq5HjlumpgU3LnN+odpj8S2Y/G2NUVOzStj35kqQ/VuzUrn2FGnFuI4UG+irA10dN4sKOu1YAAAAcvUu6NNTYv1Z53n81fZUuKQlkJfcz3pNfzdDwQR10bttk+fv6KLlmhN65ta+mr9iqycs2lxnTx+HQwA4NtGbb7pNSY6t6NXRFj8Z6aPRUuVxW9304WSMHd1TtqLKLQDeoHanOqbW1YkvmUY29YkumHhkzTS3v+URz1m4/oTp7NUvUgA4NFBPGZIXKipnAAACgXA/0a6gbP56voZ3rHPcs2xYJ4Vq6NVtP/bBCZzapqdZJEQo6zMziI8nIKdTYuVs0ZtZm5Rc5NaR9oibc110JJTNnv5m/VQ9/s/SQ5698su8Rr7F6xz7lFTpVNzrYs+3jGZvUMjFCzRPK/wnbbZ8t0I+Lt6ug2KUzGtfwBL0LNu1W/RohumPMQk1atUsNa4Xq34Oaqmn8oX8Kd95rf0mSujWI0b8GNFZs6PHP2AAAAKjOujaO1+g/V2hr5j5FhARo8rLNuvP8Nnr+uzmSpLXbd2vb7lyd26ZeqfNqRQSrXYNa+nPZVvVullRqX1GxU9/OWqv2DWqdtDqHD2qvXo9+pWv/+4uCAnw1tFeTco9bk75bM1Zt00MXdjjkWPvyCvXtrLUaPWW50jL2aUjXhvq/EQPVMM7dbm3GqnRd+cpPhzx/8pOXKDHmxCctzFm7Xal3fKDY8CBd26eZburb4oTHxIkhBAYAAOXqlBytJnFh+nD6Rt3Wu/5xjVEvNkRf3tRRb01Zr9EfzlNBsUtXdErUP/s39vQx+88fa/XW5PWSpITIIE24r3uZcbLzi3T/2CWavGqXzmpSU6MGNVXXBtGen+f97aI28bqoTfxx1SpJuYVO/WPMIt11VgPPbOVd+wr09pQN+vHOLoc8740rWqvY6dLUNRlaszPHU1f63gJNXrVLr17aQq9c2lIfz9ik6z6ap6nDe8qvnD5u397aSe3qRmpvfrEeGbdMd4xZpM9vPPRDPgAAAA7NYYwu7JSir2esVq3IEPVulqiQA36RlpHt/vVWzYjgMufWCA9S5r79bSNe+X6e3vh5ofKLihXo56sP7jj7pNUZHOCnp6/spitf/UnTR11W5hn3spd/lI8xigoN0KXdUnVlj/LXl7jr/Un6cd56dW0Up3suaKuzWtaRj6P0M2fn1DitfeP6k1Z7ebo2itefTw1RYnSYFm7YqWv++4tiwwJ1UeeGp/S6ODxCYAAAqhkfh1Gxy5baVuS08vUxZY4d3q+hrvlgnq7pUue4r9cxOUodk6NkrdW0tZm68eP5algz1DPmnWc2OGJP4CKn1fL0bMWE+Kt5fLhSa4WWeTg+UYXFLt3w8Tyl1grVXWc08Gwf9eNK3dKznqKC/Q97vq+PQ70b1dB70zYqOSZYZzapqUA/h+pEB2lI+0RJ0g3d6+ml39Zo7c4cNa5ddoZF5/rRkqSYEH89NaipWvzrD+UWFivYn0c2AACA4zGka6pufut31YwI1q39WpXaFx0aKEnasSdXSbGln8127s1Tndj9v966u39b3Tegnay1mrl6m6585Sd999AANa8Te1LqbJQQJYcxSomLLLPv83vOU+fUuCOOsXxzhoL8fdU8KVZNEqPLBMCnS90a+z+3NvVr6ua+LfTDvPWEwF7GXxQAAFQz8RGB2pyVpzoHtDvYlJmrHg1jyhzbrm6UWiVF6L1pG0/4usYYdU+JUbeUaK3cln1M50aH+GvKAz01Z0OWxszerJ7P/6mOyVEa0j5BfZvU9PTk/XreFg3/+tDtINaOKn/GhtNldfuYhfL3ceilS5qXCpinrsnUb8t26sXf1ni2nf3KdL08pIX6Nq1Z7ljrM9w9ihvXDtPvBy2EJ0lHE187Sg6y9vDHAQAA4NAaJ0TL4TBasSVTvZolaEvm/oV+U2pHqlZksH6av6FUu4Ide3I1d+123XV+mzLjGWPUOTVO9WtFaPLSzSctBD4Zfn1ssJalZWj0nyvU74lv1DghWpd1b6T+7esrJMBPkvTXqnRd9tIPhxxj2qhLT0o7iAM5HCd38gaODyEwAADVzIBWtfXy72uVUiNU0SF++mnJdq3Ylq0+jcp/gH3g7Ia64t3Zx3WtmesztW5njs5uVksxIf5auHmPZqzL0mP9y/8J25G0rxel9vWi9MSAJhq/MF1vT16v4V8v0Y//6Kq6McEa3DZBg9smHPO4D4xdoox9hfrshvaeNhV/++nOLnK59r9v9eQEjbmxvVJrhWrH3gLN2pClMxrHyt/HoR+XbNf0tZkacW4jSdJ5zWvpie9X6Ot5WzSodbw+mbFJEUF+ql+j7EIfK7dlq9hl1bh2mPYVFOvR75are4MYhQTwuAYAAHAi3rmlrwqKnWVmxjocRiMHd9SjY6YrKSZUZ7asoy2Z+3TX+5PUqWFt9W6WWO54c9Zu16qtWWqUEH3Ia+YXFZd6H+B7/OtiHIumSTEadUU3PT6ks36ct16jp6zQiNHT9Nk956pTwzh1SY3TxrduOOZxnS6XipwuOV0uuVxW+UXF8nU4yjw7S9IfizepVd0aig0P0qKNu/T2r4s1cnDHk3F7OAH8VQEAQDVzb9+GeubnVTr3tenal1+shjVD9dF17Q65AFnrpAh1rBelX8qZ0XokEUF++mHxdj3140rlF7lUMyxAN/SoqyHtjz2oPVBIgK8u75ikyzsmafWOfQoPOv5HmrSsPI2ZvVmBvg41++cfnu2jh7VX5/rR5X4uMSH+JQ/yxXpn6gbd+9ViGUn1YoP1xhWtPAvIRYf464Nr2uqhb5fqwW+Wqll8uD64tq2nH/AV785Wp+Ro3XVmA+3cV6gHv16i9D0FCg3wUfeGMfrv5a3KXBsAAADHprwWC3+7vHtjBfj66JlvZ+umt35XWJC/BnZsoEcu7lTq12Ev/d9c/efH+ZKkmuHBGj6ovc5qWX7LNKfLKummd0ttm/nM5Sd+I8fA39dHgzqmaFDHFG3OyJY5qt+iHdqX01fpzvcmed5/9ddqPTCwnYYP6qDNGdnqNvILzyziyUs36453Jii3oFi1o0J0S7+WuqRr6gneEU6UsfzGEACASsMYc92g1nGvvXll67JTSYGDzN2Ypaven7siK6ew/CWmAQAAKojQQP9dfz41JObg3rxAefo/PW7PzNXbLrPW/uztWioL73SIBgAAAAAAAACcFoTAAAAAAAAAAFCFEQIDAAAAAAAAQBVGCAwAAAAAAAAAVRghMAAAOO3u+2qxXvh1tbfLAAAAAE6au9+fpOfGzfZ2GUC5fL1dAAAAQFXz34lr9dbkDSp2uTSkfaL+2b+xHA5T7rHvTt2gtyav1978YjWNC9OzFzVTo9ruVbH/+X/L9fOS7dqVU6i60cEacW6qzmxSU5K0ZMte3fPlIqVl5clhjDolR+uZi5qqVnjgabtPAAAAVA9jpq7QO78t0fodexQZEqDrz2imf5zXptxjC4uduumt3zVv3Q6lZ+Vo7vNXqE5suGf/pl17dd+HUzRv3Q4FBfjqml5N9cCg9p79+/IK9ciY6fph3nq5XFZntayjt28565TfY1VHCAwAAE6ItVYuK/kcIuQ8HYqdLvn6OI647VCcLiuHkYw58Xv4Y/kOvT9to/7vjs4KDfDVkP/N0sczNunarnXLHLsgbY+e+XmVxt/WWY1qh+ml39bori8W6+e7ukqSQgN8NfqGDkqOCdaU1bt006cLNOHe7kqMClJCVKDev7adEiMDVeS0ev7X1Xrku+V6Z2j5D+MAAAA4eu5nXCsfh/d+RH/iz7guOYw5Kc+4BUVOPXNVd7VJrqHNmfs05IUflBQbpkEdU8o9vktqnO44t7X6Pz2uzL6HP52mxJhQjb77XG3bnaP+T3+nVsk1dHYr9/Pyne9PUqCfj2Y9c7nCgvy1fEvmCdcPQmAAACo9l8vqsfHL9c38rXK6rOrFBuvT69urRliAFqTt0X1fLdamzFwNaBWnjRm5uqRdgi7tkKgXfl2t9D35evGSFpKkmeszdceYRZo9orck6T8T1urTGWnKzC1UcmyIRg1sqo7JUZKkuz5fpNBAX63evk+zN2bpx390lcNII8Yt09KtexUXEagnBzZV95QYSdKGXTm68/NFWrYtW91TYhTk53NU9/bJjE16e8oGZewrVLeUaD1/cXNFBfsrLTNXXZ6doqcHNdXLv69Ru7qRalw7TGt35qjYZTVhxU69eWUr1Y0O1vBvlmpFerbqxATryQFN1Ll+tCTpojdnqlNylCau3KXl6Xu19J9nKTTwxB+Nxs7bqqGd6yg5NkSSdGuvZH0yI63cEHhzVp6a1g5T03j3zIiL2sbrzcnrPfvvP7uh53XvRjVULyZYS7bsVWJUkKKC/RUV7N5n5ZIx0oaM3BOuHwAAoCJwuaxGjpmmb2asUbHTpeRaEfrs7nNVMyJYC9bv0N0fTNbGnXs1qGMDbdixV0O6pery7o313LjZ2pqZo1eu7y1JmrEqXbf97w/Ne+EqSdIr38/TJ5OXK2NfvurXjNC/r+qmTg3jJEl3vDtBoYH+Wp2epdlrtuvnRy6Uw2H00KdTtWTTLsVHhWrUFd3Uo2mCJGn9jj26/Z0JWrY5Uz2bJCjQ/+ieJT+etExv/LJQGdn56t4kQS9d01NRoYHatGuvOj44Rs9e1UMvjJ+j9im11SQhSmu27VGx06U/Fm/S/245S3VrhOv+j6Zo+eZM1a0RrlFXdlOXVPc9DHzmO3VOjdOExWlatjlDK/9zrUKD/E/438e1fZp5XifXjNC5betpztrt5YbA/r4+uvnsloccK21Xtm7s21z+vj6qExuuLqlxWrU1S2e3qquVWzI1cUmaFr801FN3izqxJ1w/CIEBAKj0Jq3apdkbszTz4V4K8ffV0vS9CvRzqLDYpWEfzdOdZ9TXFZ2S9MmMNH0xZ4suaZdwVOPWjw3RD//oougQf70/baNuGT1fMx/uLb+SmQffzt+qz27ooBYJ4cotLFbvF6bqsf6N1b9lbc1Yl6kbP5mvP4f3VEyIv277bKG6N4zR2Fs6acKKnbrp0/m684wGh73+D4u36d2pG/Xp9e0UHxmkx8cv18hvl+mNK1tLcs/eXbxlr/56qJespNcnrtNPS7brg2vb6u0rWyunsFhnvTxNN3Svp7E3d9QvS7frmg/m6q+Heik6xP1AOW5Buj67ob3iIwPlV84sj0aP/nbI+v59UTNd1Ca+zPZV2/dpUOs4z/umceFauX1fuWP0So3RaxPXatHmPWoaF6av5m5Rr9TyH3Kzcgu1dmeOUmuFerbtzStSh6cnKbugWD7G6OUhLQ5ZLwAAQGUycWmaZq/ZrjnPXaGQAD8tSctQkL+vCouduua1X3R3/7a6qmdjfTRpucZMXakh3VKPatwGtSP10yMXKiYsUO/+vkQ3vvm75j53hfx83ZMUvp25Rl/ce55a1I1VbkGxuo/8Qv+8tIsGdKivv1ama9gbv2n605cqJixIt7z9h3o0SdC4Bwfoj0WbNOyN33R3/8P/Kuv7Oev0v98Wa8w95ykhOlSPjJmuhz6d6ml34HRZLdq4U7Ofu0LWSq/9OF8/zl2vj+88R+/e2lc5BUXq8/hXuvGsFvp2+AX6af4GXfXKT5r93BWKDnW3Bftm5hp9ce/5SogO9Ty7l/oMbnv/kPU9N7SHBndpeMj9f5u1epuu7NnkiMeV5/ozm2nczLXqnBqn9KwczVqzTbf2c4fG89fvVJ3YMD39zSx9PWONEqJD9eTlXdSt8dH9DYNDIwQGAKCS8/Mxyilwas2OHLVOilCLhAhJ0vS1GfJxGF1TMgP1+m519cakdUc9bv+WtT2vb+xRTy/+tlobM3KVUtMdQp7XorZaJ7mvNWHFLqXUDNHAkvCzW0qM2taJ1KSVO9UxOVrL0rP1za2d5O/r0DnNa6ltncgjXn/0zDTddWYD1SuZUXvf2Slq99REuVzWc8x9fVMUeMCs4k7JUerTqIYkaenWbLmsu3b3/cTpnakb9ceKnZ4g/LIOiZ4Zu+VZ+WTfI9Z5sJyCYoUdMKM4PMhXOQXF5R4b4u+rc5rV0vmv/SUrqVZ4gL6+uWOZ45wuq7s+X6RBreNUv8b+esOD/LTyyb7ak1ekMbM2K6Xmoe8FAACgMvHzcWhffqFWp2epTXJNtazr/qJ82oqt8vVx6Loz3DNTbziruV7/ecFRj3tB+/qe1zef3VLPfzdHG3dmKyUuUpJ0frtktU52r8Hw+6JNSo2P0oWd3LNduzdJUNv6NTVxSZo6NYzT0k0Z+u6hAfL39dG5bZPVrkGtI17/kynLdU//tkqu6X6OHj6wvVrd90mpZ9wHBrZXoN/+58kujeJ0RoskSdKStAy5XNYz03ZAhwb632+L9fuiTRrS1R2EX9GjserXijhkDWvfuP6IdR7Oaz/OV25BsS7peuSwuDydU+P00aRlqnfLe3K6rO7u38bzmafvztGyzZka0KGBFr88VL8t3KRrXvtFs57dH3Lj+BACAwBQyfVoGKuhnZP0wNgl2pFdoMFtEzTivFTtyC5QXGTpB6WEqKCjHnfMrDS9PWWDtu7Jl5GUXVCszJwiz/74iP1jb87K04x1maVmzhY5rbo2iNaOvfmKCfEvFdYmHkUdm7PyNPzrJXr4m6WebcYY7dpXKElyGKl2xEH3F7l/3O17CxR/0P0nRgZp+978/fcQefIfJEMCfJWdvz/0zc4vVkhA+Y9cn85M07fzt2rq8J5KjArSdwvTNeR/szX5gR6lWmYM/3qJ8otc+veFzcodJyLIT5e0T9AZL07V/Ef6HHIROgAAgMqiZ9NEXdu7qe79cIp27MnVJV1S9cjFHbVjT67iokp/8Z0QHXqIUcoaPWWF3vp1obZk5rifcfMLlbEvTymKLDPW5oxsTV+5tdTM2WKnS90ax2v7nlzFhAWWCmuTYo5cx+aMfbrv4yka/smfnm1GRjuz8yRJDmNU+6D7iz+gpm1ZOaXeu68bpm1ZOZ73x/J5HKsvpq3Ue38s1fcjBpa696PldLl06Ys/6OazW+rGs5orY1++hr3xmz6cuFTX9mmmID8f+fk4dNf5beTr49D57ZL14vi5mrNmu85uXba9Go4eITAAAFXAzT2TdXPPZG3Znaer3pujxrVDlRQdpPTd+aWO23rA+2B/H+UVOj3vd2YXel6nZeZq5Ljl+vqWjmqVGCGHw6jxY7/Jav8MhQPXl4iLDFSv1Fh9fP3+VX09Y2XlKTOnUPlFTk8QvGV3nurFBB/2nuIiAjW8X2qpGckH1lfeAhcHbqoVHlDqfv++bu9G+9stHCkqbTDy10Pue25wMw1uW/Znaam1QrV8W7b6NXPPBFm6NVuNapX/IL483X1c3ZLP4qI28Xpk3DKt3ZGj5gnuPsGPj1+u5enZ+urmjvL3PfQiIC6X1Y7sAuUUFiss0O8IdwYAAFDx3dKvlW7p10pbMvbp8pd/VOPEKNWJDVf6AYGnJG3N3N96KzjAT3mF+7+Q37k3z/N60669GjF6qr598AK1rldTDodRyu3vy1qVKz4qVL2bJWn03eeW2Ze2K1uZ+/KVX1TsCUM3Z+5TvZrhh72n+KgQPXRhh1Izkg+sr7w13A7cVDsqpNT9/n3dPiUzhQ8+vjx1b3n3kPtevKanLu5SfmuN7+es07++nKFxDw5QYkzYEa5Svqx9BdqalaPrz2wmP18f1Y4M0YUdUzRhcZqu7dNMjROjZYzKfg7McThh3lviEAAAnBQL0vZoQdpuFTtdCg3wla+PQw6HUfu6USp2ufTxX5tU5HTpw+kblb5nfyjaNC5M09ZmatuefGXkFOqdqRs8+3ILnTJGign1l9NavfrH2lKzWw/Wt0kNLU3P1veL0lXsdKmg2KnpazO0dXeekqKC1Kh2mF75Y62KnC79umy75m7cfcT7urJTkv4zYa3W7nQ/5GfkFOqXpduP+nNpWydSRtL70zaq2OnSD4u3aXl6ts5sXOOox1g76uxD/lNeACxJg9vG65MZadqwK0c7swv09pT1Gty2bO9gSWqdFKFfl+3Q5qw8WWs1fmG6Cp0u1Y1xz2h+6bfVmrRql0bf0L7MbOJJK3dqeXq2nC6rrNxCPf5/y9UyMZwAGAAAVAkL1u/Q/HU73M+4QX7y9XHIx+FQh5RaKnK69NHEZSoqdur9CUu09YBQuFlSjKau2KptWTnKyM7T278u8uzLLSiWjBQTFiSny6WXv5+n7Lyi8i4vSTq7dV0tTcvQ+Nlr3c+4RU5NW7FVWzP3KSk2TI0TovXS+HkqKnbqlwUbNGfNkZ9Vr+zZWK98P09rt+2WJGVk5+nn+RuO+nNpV7+mjDF69/clKna69P2cdVqWlqGzWtY56jE2vnXDIf85VAA8eelm3ffRFI2+61ylxkcd8RoFRU7lF7n/figscnlex4YHqU5smD6cuExOl0u79ubpu9lr1STRvXhzt0bxqh0Zotd+XCCny6VfFmzQ5oxsdTiKVhs4PGYCAwBQyWXnF+mx8cu1KTNPwf4+GtAqThe1iZePw+i9q9vqvq+W6IkfVmhgqzh1Tt7/wNYrNVZnN62pni/8qdrhAbqyU5LenbpRktSodpiu61pHfV+epgBfh4Z1r6f4yEO3cAgL9NNnw9rrsfHLNfzrpTJGapUYoecGN5ckvXFFK931xSK98+cG9WgYo/NblJ3de7ABreKUnV+s6z6cq6178hUd7K9BbeI8M2yPxN/XoQ+vbauHvlmqZ35epbrRQfrg2raeReFOlbOa1NR1XbN1/n//UrHTakj7BF3def9Dea8X/tSdZ9TX4LYJGtI+QWt35WjA638pO79YdaOD9b+r2niC3Od/XSN/H6P2oyZ5zv97BvLuvCKNGLdM2/YUKCTAR13qR+vdq9ue0nsDAAA4XfbmFeqRz6Zr4669Cgnw04AODTS4c4p8HA59eMfZuueDyXr8y790YccG6pK6f1He3s0SdU7ruuo68gvFRYVoaM/G+t9viyVJjROiNeyM5jrj8bEK8PPRjX1bKCH60GsqhAX56/N7z9OjY6br/o+myGGMWiXX0IvX9JQkvXXzmfrHuxP19m+L1KtpovqXM7v3YIM6pig7r0hXv/aLtmTuU0xooC7slKJz2tQ7qs/F39dHH995jh74eIqe/maW6tYI08d39jvl/XJf/n6e9uQWaNBz4z3bLumSqhdKPovuI7/Q3f3beELkLg+PUVqGe8ZylxGfS5J2fnCLJOn928/WyM+m6flxcxTg56O+rerqrvPdC+r5ldzf3e9P0sv/N0/1a0fow3/0UxT9gE+YsYea8w4AACocY8x1g1rHvfbmla2PawWwIW/P0uC28bq0Q+LJLg0V0NyNWbrq/bkrsnIKj2/pZgAAgNMkNNB/159PDYlJij32NgODn/8/XdyloS7v3vgUVIaKqP/T4/bMXL3tMmvtz96upbKgHQQAAAAAAAAAVGG0gwAAAF7z+sR1eun3NWW2X9ExUU8ObOqFigAAAIAT89qP8/XC+Llltl/Vs4lGXdHNCxUBhMAAAFQrX97c0dsllHJ7n/q6vc+Re6cBAAAAh/L1Axd4u4RS/nFeG/3jvDbeLgMohXYQAAAAAAAAAFCFEQIDAACvuevzRXq5nHYQAAAAQFV1x7sT9GI57SKAU4l2EAAAoNqbtiZDz/+6Wos271XrpAh9c2unUvt/XLxN//55lbbuzle7OpF6+dIWSogMkiT9d+JaffRXmnbnFioiyE/XdKmjf5zRQJI0Y12mrnxvjmcca6W8Iqd+vqurWiVGKCu3UMO/XqppazLk4zDq36K2nhzYRL4+fE8PAACAU+vSl37QjFXpnveFxS6d0TxJo+8+V9uycnTtf3/R2u17ZK1Vq3o19MxV3dUwLkqS5HJZPf7FXxozdYX8fBy6tV8r3Xk+LTAqMkJgAABQ7QX7++jqLnW0OStPk1buKrVv7c4c3fPlYn1+Ywc1TwjXP/9vhW4dvVDjb+8sSTq/RW1d06WOwgL9tG1Pvi59Z7aaxIXprCY11bl+tNaOOtsz1ncL0jXqx5VqmRAuSXrh1zXKK3Rqzsjeyi106vJ3ZuuTGWm6rlvd03fzAAAAqJa+uPf8Uu+7jfxC/dsnS5LCg/31+o1nKLlmhKysPpiwTLf9b4J+e3ywJOnDSUv15/Itmv70ZcrOK9SgZ8erSWK0+rbiObaiIgQGAKCacrmsHhu/XN/M3yqny6pebLA+vb69aoQF6D8T1urTGWnKzC1UcmyIRg1sqo7J7m/97/p8kcICfbVy+z7N27RbXepH65VLW2jEt8s0ceVOtUiI0LtXt1F0iL/SMnPV5dkpGjWwiV74bY38fR16sF9DDWmfWG5NPy3Zrud/Wa2te/LUKjFCL1zSQklRQcorcureLxdr4sqdMjJqWCtU427tJIfDnJTPok2dSLWpE6mxc7eU2Td51S51T4lRmzqRkqQ7z6iv1k9O1PpdOUqODVFybEip4x1G2pCRW+51xs7bosFt42WMu+60zFyd07yWgv19Fezvqz6Na2jV9n0n5Z4AAABQlstlNXLMNH0zY42KnS4l14rQZ3efq5oRwXrl+3n6ZPJyZezLV/2aEfr3Vd3UqWGcJHcLh7Agf63ckqW567ara6N4vTasjx789E9NWJymlnVj9cEd/RQdGqhNu/aq44Nj9O8ru+v57+bI39dHD13YQZd1b1RuTT/OW69nv52tLZn71LpeDb18XW8lxYYpr7BYd70/SRMWb5IxRqnxUfq/hwaetGfgAy1Yv0Obd2XrgnbuRZuDA/zUoHakJMnpsvJxGG3Yuddz/FfTV+v2c1qpZkSwakYE6+peTTX2r9WEwBUYITAAANXUpFW7NHtjlmY+3Esh/r5amr5XgX7uNgT1Y0P0wz+6KDrEX+9P26hbRs/XzId7y6+kTcH/LdqmL2/qoITIIF3w+l8a9MZMvXBxc/338lYa+v4cvTd1ox7o11CS+6Fx3qY9mjWit5Zs2avL352ttnUilVIztFQ9C9L2aMS3S/Xx9e3UpHaY3py8XrePXqDxd3TRl3O2KLfQqfmPniE/h9HcTbtlynn23ZyVpzNfmnrIe/74+nbqlBx9TJ+Ty1rZUu/d/7ty2z5PAPzR9I164oeVyi10qk50kC5oWbvMOLv2FWjyql365wVNPNuGdq6jT2emaWCr2sordGnC8p267+yGx1QfAAAAjt7EpWmavWa75jx3hUIC/LQkLUNB/u54rEHtSP30yIWKCQvUu78v0Y1v/q65z10hP18fSdL42ev09QP9lRgdqvNGjVP/f4/Ty9f11ps3nakrX/lJ7/y2WA9e2EGS+xl47rrtmvv8lVq8cZeGvPSD2jeopZS4yFL1LFi/Qw9+8qdG332emiZG6/WfF+rmt3/XjyMv1BfTViq3oEiLX75afj4OzVm7vfxn4Ixs9Xr0q0Pe8+i7z1Xn1LjDfi5fTl+lc9vWU2iQf6ntbe7/VOlZOXJZqxEXdfRsX7k1S02TYjzvm9WJ0Q/z1h/2GvAuQmAAAKopPx+jnAKn1uzIUeukCLVIiPDs639AiHljj3p68bfV2piR6wluL2hZW41qh0mSzmxcQ6t35KhzfXe4el7zWpq4qnRLhfvPTlGQn4861ItSv6a19MPi7brrzNIh8JhZabq2a11PHbf3rq9XJ6xV+p58+fkYZeUUalNGrhrVDjtkkJsYFaSVT/Y9wU+mtB4NY/TMz6s0e0OWWiSE69U/1soYKbfI6Tnmmq51dXWXOlqenq2fl25XWGDZR6xxC9LVIiFcDWrsnzncLD5MOQXFavzY73JZ6aI28TqnWc2TWj8AAAD28/NxaF9+oVanZ6lNck21rBvr2XdB+/qe1zef3VLPfzdHG3dme4LbAR3qq3GC+zn0rJZ1tCo9S11KwtXz2iZr4pK0UtcaPqi9gvx91bFhbZ3bup7+b+463dO/baljRv+5Qtef2dxTxz/Oba2Xv5+n9Kx98vVxKHNfvjbu3KvGCdGHDHITY8K09o3rj/szKXa6NG7WWr12Q58y++a/cJVyC4o09q/VSojZ//yek1+ksCA/z/vwIH/l5Bcddw049QiBAQCopno0jNXQzkl6YOwS7cgu0OC2CRpxXqr8fBwaMytNb0/ZoK178mUkZRcUKzNn/0NdTOj+GQKBfj6KPeh9boHzwEspvmQRNffrQO3ILihTz+bd+fpq7la9MWmdZ5vTaZW+J18Xt03Q5qw8Xf/RPBUUu3R1lzq6s2TxtVOtUa0wPTe4ue79arGycop0Q4+6Cg3wVVxEYKnjjDFqGh+uyat26cVf1+jR/o1L7R87d6su65BQattNnyxQ27qR+mRYexUUuXT/2MV6+qdVGnle+T8VBAAAwInp2TRR1/Zuqns/nKIde3J1SZdUPXJxR/n5+mj0lBV669eF2pKZ434Gzi9Uxr48pShSkhQbtv+ZNtDfp8z7nILSIWhC9P7QND46VNt3l20ZlrYrW19OW6X//rjAs83pdGlrZo6GdE3V5ox9uua1X1RY7NQ1vZvq7oNC5JNhwpI0GWPUu1n5LduCA/w0tFcTNbv7Y00ddamiQwMVEuin7Lz995udV6iQQL9yz0fFQAgMAEA1dnPPZN3cM1lbdufpqvfmqHHtUHVtEK2R45br61s6qlVihBwOo8aP/abSTRGOzdbdeUqKDi55na+GtULKHBMXEajh/Rrqll7J5Y4xvF+qhvdL1eod+zT4zZlqXzdSXRvElDpmc1aeer3w5yHrGD2svWfG8rG4qE28LmoTL0lavytHr/6xVo1rh5Z7rNNarT+oJ/DqHfu0PH2vBrRqX2r7svRsvXJpCwX5+SjIz0eXtk/Usz8TAgMAAJxKt/RrpVv6tdKWjH26/OUf1TgxSt0ax2vE6Kn69sEL1LpeTTkcRim3vy97/I/A2pK5T3Vi3QsCb83cp4bxkWWOiY8O1YMXdtBt57Qqd4yHLuyghy7soNXpWRr4zHh1SKmlbo1LTyzYnJGtbiO/OGQdn997vmfGcnm+mr5KgzunyMfhOOQx1rpn/6Zn5Sg6NFCN4qO0fHOGmpW0hFialqFG8VGHPB/eRwgMAEA1tSBtjySr5vHhCg3wla+PQw6HUW6hU8a4Z/s6rdVrf6xTdn7xCV3rpd/X6N8XNtOy9Gz9smy77jqza5ljruiYqFs+XaCuDaLVIiFc2fnFmrJ6l/q3jNO0NRmKDfVXw5qhCgvwla+PkaOchmiJUUFaO+rsY67P5bIqdLpU7LJyWav8Iqd8HMbTA3nxlj1qFheu7dkFGv71Ug3rVldRwe7Zz5/NSlO/ZrUUHeynRVv26oNpm3R7n/qlxh87d6vOaFxT0SGle6y1TorQ6Jmb9dC5DVVUbPXV3C1qHBd2zPUDAADg6CxYv0PWSi3qxio0yE++Pg75OBzKLSiWjBQTFiSny6VXf1xYaqbr8Xjhu7l67uoeWropQz8t2KB7LriozDFX9mism976Xd0ax6tl3Vhl5xVq0tLNGtChgaYu36LY8CClxkUpLNC/5Hm9bFCbGBOmjW/dcFw1ZucV6pcFG/XjyEGlts9es02S1LpeDRUUu/T8uDkKD/ZXw5LWGBd3aajXf16oXs2SlJ1XqI8nL9eL1/Q8rhpwehACAwBQTWXnF+mx8cu1KTNPwf4+GtAqThe1iZePw+i6rnXU9+VpCvB1aFj3eqXaORwrH4dR68QIdXh6kvx9HHpyQBOl1io7i7ZtnUg9MaCJ7hu7RBszchUa4KOeDWPVv2WctmcX6IGvl2j73gKFB/pqaOc6xzWj91BmrM/U4Ldmed4nj/hVQ9ol6NXLWkqSRn67TEvTsxXk56Mh7RP00DmpnmOnr83UqB9XKr/IpVrhARraJUnXda3j2W+t1Tfzt+qfF5RuDyFJLw9poRHjlqnNkxMlSV0bRJd7HAAAAE6OvXmFeuSz6dq4a69CAvw0oEMDzyzYYWc01xmPj1WAn49u7NtCCdFlf712tHwcRm2Sa6rt/aPl5+PQqMu7KbWcmbLtGtTSU5d31T0fTNaGnXsVGuinXs0SNaBDA23fnat7P5ys7XtyFR7kr2v7NDvsjN7jMX72OiXXDFfzOrGltucXOjXis6natCtbgX6+ap1cQ5/fe778SxbJu65PM63fsUedHxojPx+Hbj2nlfq2qntSa8PJZeyJzGsHAACnlTHmukGt415788rWx/9EehqlZeaqy7NTtPnZc7xdSrU0d2OWrnp/7oqsnMIm3q4FAADgcEID/Xf9+dSQmKTYyv+rqE279qrjg2O07b2bvV1KldX/6XF7Zq7edpm19mdv11JZHLrZBwAAAAAAAACg0iMEBgAAAAAAAIAqjBAYAACcMknRwbSCAAAAQLVSJzacVhCocAiBAQAAAAAAAKAKIwQGAAAn1UVvztTYuVu8XQYAAABwygx85jt9NX2Vt8sAjpqvtwsAAAA4VQqLXbp19ALNT9ut9D0FmvVwLyVFB3v2j1+YrrenrNeSLXs1qHW8Xr2s5SHHKih2auS45fp5yXa5rFXv1Fg9O7iZwgL9JElT12Ton+OXa0NmruIiAjXi3EY6t3mtMuNc9s5sTV2TQZsMAAAAnDQfTlyq135coIx9+erTPEmvXNdLEcEB5R7716p0PfLZNK3ZtluN4qP0ynW91TQpxrP/Pz/M15u/LFSR06XLujfSE5d2lcNhJEn//maWvp+7XqvTs/Tq9b11effGp+P2cBIwExgAAFRpnetH652hbeRT8uB6oMggP93aK1lDu9Q54jgfTNukRZv3aPIDPTR7RG/tzivSy7+vlSQ5XVY3fDxPN/aop9VP9tWTA5ro9s8WKjOnsNQY3y9KV16R8+TcGAAAACBp6vItemH8XH153/la9srVsi6rhz6ZWu6xWfvydc1/ftbwQe217o3rNaBDA1392s8qKnY/o/62cKPe/WOJfhh5oaY/fZmmLN2iDyct9Zxfv1aEnrq8q9o3KDvZARUbITAAACjjpd/W6I4xC0ttG/r+HH0wbaMk6ZFxy9TmyQlKffQ3DXpjhlZuzy53nBd+Xa37vlrseT9zfaY6PD3J837r7jxd+8FcNX38d3V9drLGLdh6Uu/D39ehG3vUU7u6UeXu75kaq/4t4xQT4n/EsdKy8tSnUQ3FhPgrJMBX5zavpVXb90mS9uQVaU9esS5sEy9jjHo3qqHwIF9tysz1nJ9bWKznflmtR85rdHJuDgAAACfkxfFzddv//ii17YpXftR7fyyRJD08eqpa3POx6t/2vi7493dauSWz3HGeGzdbd78/yfN+xqp0tb3/U8/7rZn7NPTVn9XoHx+q44Of6duZa07qffy2cJMu6pSiBrUjFRzgp9vPbaXxc9Yqt6CozLGz12xXUmyY+rWuJx+HQ7f1a6Xtu3M1fWW6JOmrv1brmt5NVb9WhGpGBOu2c1pp7PTVnvMv7dZIfZonKcif5gKVDf/GAABAGRe2iVO/V6crv8ipQD8f7c4t0tQ1GXrpkhaSpLZ1I/VAv4YK8vPR0z+t1N1fLNZPd3Y9pmu4XFbXfDBXg9sm6J2r22j19n0a8r/ZahoXrtRaoWWOH/r+HM1an3WIeuP1zEXNjv1Gj8El7RL0r++Xa2d2gQJ8Hfph8Xad2biGJCk6xF8Xto7TV3O36LIOiZq0cqd8jFFqrTDP+S/+ukaXtk9U7fDyf5YHAACA0+vCTik6619fK7+oWIF+vtqdU6Cpy7fqlet6S5La16+lhy7soCB/Xz01dqb+8d5E/frY4GO6hstldeWrP+mSLql6//a+WpW+Wxc//39qlhSj1PiyExWueOVHzVy1rdyxBndO0XNX9yx7DWvLvC8sdmnd9j1qXie2zL4DD7dyv1+xJVO9miVq1dYsXdQpxbO/WZ0Yrdha/jM4KhdCYAAAUEZybIjqxQRrwoqdOq9Fbf20ZJs61otSjTB3gHlRm3jPsfeelaLGj/+uvCKngvx8jvoaCzbvUW6hU7f0SpYkNY0P1wUta+vHJduUWiulzPGfXN/+BO/qxCTHBqtGaIBaPjFBDiN1qR+tq7skefYPaBWn+8Yu1oPfLJWfw+itq1or2N/9eazavk9/rNipX+/upu178711CwAAADhA/VoRSq4Zrj8Wpen8dsn6Ye56dUyppZoR7jUkBndp6Dn2/gHtlHLHB8orLD6mWbDz1+9QbkGxbjunlSSpWVKMLujQQN/PXad749uVOf6zu8875vvo0zxJd7w7QUN7NVF8VIhe/8n9i77cguIyx7ZvUEsbdu7VD3PXq2+rOnrj54UqdDqVW+g+Nie/SGFBfp7jw4P8lZNfdkYxKh9CYAAAUK5BreM0fuE2ndeitr5buE0DW8d59v1nwlp9MXuzdu4rlJFkrbQ7t0hBEUcfAm/OytOmzDw1evQ3z7Zil9Wl7RNO5m2cNA99s1TGSCufOEu+Pg6N+nGl7vp8sd66qrVWbd+n28cs1CfXt1Pn5GgtTd+raz6Yq8SoIDWLD9eIb5fq0f6N5e9LJy4AAICK5MJOKRo3a43Ob5escbPWaNABs2Bf+X6exkxdqZ178/Y/8+bkK8i/7K/WDiUtI1ubdmWrwW3ve7YVu1y6rNvJaxF2Rosk/eO81rrylZ+UV1Ss2/q10k/zNyg+OqTMsbHhQXr/9r7615czdM8Hk3RR54ZqHB+t+Cj3sSGBfsrO2x/6ZucVKiTQr8w4qHwIgQEAQLkGto7TS7+vUVpWnmatz9JbV7aWJE1fm6EPpm3Ulzd3VEqNEGXnF6vRY7/LHvQzNEkK9vdRXuH+hdB2Zu9fKC0uIlApNUM08b4eR1XPFe/O1sxDtIMY3DZezw1ufgx3d+yWpWfrnxc0VnjJzIihnZM08PUZkqSV27LVpHaYujZwr6rcIiFCbetEatraDDWLD9e0tZme/sFOa+V0WbX81x8ac2MHNYsPP6V1AwAA4NAu7JiiF8bPVdqubM1avU3v3NpXkjRtxVa998cSfTP8AqXUjlR2XqEa3P6BynnkVXCAn/IK98+63bk3z/M6PipUDWtHaspTQ46qnktf+kEzVqWXu++SLql64Zqy7SAk6dZ+rXRrP/ds48lLN6t2ZLDio8oPq3s3S1Lvf7l/0bY3t0At7/tUbZJrSpJS46O0bHOGzmlTT5K0NC1DjctpW4HKhxAYAACUKyEySE1rh+neLxere0q0IoPd4WduoVM+DqPoEH/lF7v07C+rDzlG07gwvT1lg7btyZefr0PvTN3g2dcmKUJGRu9P26grOyXKYYyWbs1WsL9PuT2BP7uhw3HdR0Gx0/OwXlDs8vQ5liSny6rI6ZLTZeW0VvlFTvk6jHx9ys7YbZ0Yoa/mbFHHelHy9TEaPTNNjePcPX+bJ4Rr5fZszVyfqU7J0Vqenq0Z67J0TZc6kqSFj57hGWfrnjz1/+8M/X5Pd0WHMKsCAADAmxJiQtU0MVp3vT9J3ZskKDLE3f4sp6BIvj4ORYcGKr/Iqae/mX3IMZolxejNXxZpW1aO/HwdevvXRZ59bevXlDHSu78v0dBeTeQw7mA1OMCv3J7AX9x7/jHfQ35RsTbu2KvU+Cit275Hj3/xl+69oJ0cDlPu8Us27VLjhGhl5xXqoU+n6qwWdTy1XNyloYZ//Kcu7JSikAA/vfnLIl3du4nn3KJip5zWyuWyKna6lF9ULH8fn0NeCxUHITAAADikQW3iNXLcMv338paebX0a1VDXBjHq/O9JCg/00wP9Gh7y/F6psTq7aU31fOFP1Q4P0JWdkvTu1I2SJF8fhz4Z1k6Pj1+ul39fo2KnVZO4MD0xoMkhxzse3Z/7U5uz3LMxejz/pyQp/flzJUlj527R3V8u9hz79bytuq9viu4/u6E2Z+Wp1wt/avL9PZQYFaRH+zfSyHHL1PHfk+R0WbVOitTLJQvlJceG6LnBzfXA2CXauidfUcH+ur13sno0dC/EUfOAxeAKip1ltgEAAMB7LurUUA+Pnqo3b9r/xf2ZLZLUtVG82g//TOFB/nrwwkNPSOjdLFHntK6rriO/UFxUiIb2bKz//eZ+xvT1ceizu8/TI59P10v/N1dFTpeaJkbrqSu6nbT6C4qcuvHN37Vx515FhgRo2JnNdd0Z+xdNvv+jKZLkmUX86g/z9fuiTfJxGJ3frr5GXb5/geezW9XVijMyde6T36rI6dJl3Rvp2t77x7rnw8n6YtoqSdLUFVt174dTNO7BC9StccVs6Yb9THk/3QQAABWTMea6Qa3jXnvzytZlG3wBB5m7MUtXvT93RVZO4clN1gEAAE6y0ED/XX8+NSQmKTbM26WgEuj/9Lg9M1dvu8xa+7O3a6ksWJ0EAAAAAAAAAKowQmAAAIAqih98AQAAoCpy8aB7zAiBAQCoXPL25he7vF0EKoecQqeMlOvtOgAAAI7E4TAF+/KLvF0GKokc9/9XeM49BoTAAABULn/NXJfp9/fiYsDh/L58R1FOgfNXb9cBAABwZHbKhCWbmN6JI8rcl68123YHSprv7VoqExaGAwCgkgkP8vuuVWJE35HnpQY1rh0mX4fxdkmoQKykXfsKNW5Bun3+l1XZeUWuNtbadd6uCwAA4HCMMe2C/H2njLqia/A5bZIVGewvY3jOxX5FTpcWbNipRz6blrtu+54Ps/MKb/d2TZUJITAAAJWMMcY/wNfxmL+P45rcwuI4l3SsT8dG+8+xJf+g4jjhfz/+Po68AF/HhL35xQ9ba5ee1OoAAABOEWNM54jggCfzCou6FTldAd6u5xRw6PQ8f5+u65xWDmNcIQF+m/KLit8uLHa9YK2lTd4xIAQGAKCaMMYESXpE0k2SHpf0trWWvhIVlDGmtaS3JRVJupkwFwAAoPIyxpwr6QlrbYfTcK2bJJ1rrb3wVF8LlQc9gQEAqAaMMWdLWiwpRVIra+0bBMAVm7V2gaSukj6TNMkYM6okyAcAAEDlc7PcX/CfDmMk9TLGxJ+m66ESYCYwAABVmDGmtqSXJHWWdLu19icvl4TjUPIA/7Kk9pJus9b+4uWSAAAAcJSMMQlyT8ioY63dd5qu+ZakLdbaJ0/H9VDxMRMYAIAqyBjjMMbcLGmRpE2SmhMAV17W2q3W2ksl3SHpLWPMZyUBPwAAACq+6yV9cboC4BL/k3SDMcbnNF4TFRghMAAAVYwxpoWkqZKukXSmtfYha22ul8vCSVAS5DeTO9hfbIy5xRjD8xwAAEAFVRLC3qjT1wpCkmStnSdph6R+p/O6qLj4owEAgCrCGBNsjHlG0gRJH0nqbq1d7OWycJJZa3OttQ9JOkPS1ZKmlgT/AAAAqHj6SdpWst7D6fa23L2IAUJgAACqgpLVhpdIqiOphbX2bWuty8tl4RQqCfi7yx34TzDGPGuMCfFyWQAAACjtdC4Id7DPJfUo6UmMao4QGACASswYE2+M+VLSfyXdYq29wlq7zdt14fSw1rqstW9LaiEpSdISY8x5Xi4LAAAAkowxiZJ6yB3GnnYlPYi/kDTMG9dHxUIIDABAJWSM8THG3CZpoaTVci/89quXy4KXWGu3WWuvkHumyWvGmC+NMfHergsAAKCau17S59baHC/W8LZYIA4iBAYAoNIxxrSWNF3S5ZJ6W2tHWmvzvFsVKoKSLwKay/3FwEJjzO088AMAAJx+Jc9gN8h7rSAkSSW9iLdJOsebdcD7CIEBAKgkjDEhxpjnJf0q6X+Sellrl3q5LFQw1to8a+1ISb3l/qJgeskXBwAAADh9zpW01Vq70NuFiAXiIEJgAAAqBWNMf0lLJdWWu/XDeyz8hsMp+YKgp6R3JP1qjHnBGBPq5bIAAACqi5vknrhREXwhqXtJj2JUU4TAAABUYMaYBGPM15JelnSDtXaotXaHt+tC5VCycNy7creIqCVpqTHmAi+XBQAAUKUZY5IkdZc7fPW6kgXiPhcLxFVrhMAAAFRAJQu//UPuhd+WSmphrf3dy2WhkrLW7rDWDpX7wf8lY8zXxpgEb9cFAABQRQ2TNMbLC8Id7O8F4ny9XQi8gxAYAIAKxhjTVtIMSRdL6mGtfcxam+/lslAFlHyR0ELuLxYWGmPuZOE4AACAk6ckZB0mLy8Id7CS3sRbxQJx1RYhMAAAFYQxJtQY85KknyS9Lqm3tXa5l8tCFWOtzbfWPiaph6TBkmaUfPEAAACAE3eupM3W2kXeLqQcLBBXjRECAwBQARhjBkpaJila7oXfPrTWWi+XhSqs5AuG3pLekPSTMeZlY0yYd6sCAACo9G5WxVkQ7mBfSOpW0rMY1QwhMAAAXmSMSTLGjJP0nKRrrLXXWmt3erksVBPW7QO5F46LknvhuEHerQoAAKByMsbUkdRFFWRBuIOV9CgeIxaIq5YIgQEA8AJjjK8x5m5J80v+aWmtnejdqlBdWWt3WmuvlXSNpGeNMeOYIQIAAHDMhkn6zFqb6+1CDoMF4qopQmAAAE4zY0x7SbMkDZDUzVr7L2ttgZfLAlTyRURLlXw5YYy5hz8QAAAAjuyABeEqaisISVJJr+I0uXsXoxohBAYA4DQxxoQbY16V9L2klyWdaa1d6eWygFKstQXW2n9J6ibpAkmzSr64AAAAwKGdJ2mTtXaxtws5Cv8TC8RVO4TAAACcYsbtIklLJYVKamat/YSF31CRlXxBcaakVyR9b4z5jzEm3LtVAQAAVFg3y91qoTL4QlKXkh7GqCYIgQEAOIWMMXUljZc0StKV1tph1toML5cFHJWSheM+ltRMUoikZcaYwcYY4+XSAAAAKoySMLWzpK+8XcvRKOlZ/JlYIK5aIQQGAOAUKFn47T5JcyXNlNTaWjvFy2UBx8Vam2GtHSbpCklPSRpf8gUHAAAApBskja7gC8Id7H+ShrH+Q/VBCAwAwElmjOkkaY6kcyR1ttY+xcJvqApKvshoLfcXG3ONMfcbY/y8WxUAAID3VJYF4Q5W0rt4k6TzvV0LTg9CYAAAThJjTIQx5nVJ4yQ9J+lsa+0a71YFnFwlC8c9JfdPHvtJmmOM6ezlsgAAALzlfEkbrLVLvF3IcXhb0k3eLgKnByEwAAAnqGTht0skLZPkJ/fCb5+x8BuqspIvOM6W+wuPb40xrxtjIrxcFgAAwOlWmRaEO9hXkjrT5qt6IAQGAOAEGGOSJf0g6XFJQ6y1N1lrM71cFnBalCwcN1ruheP85F44bggLxwEAgOrAGFNPUkdVkgXhDlbSw3i03D2NUcURAgMAcByMMX7GmAclzZb0p6S21tppXi4L8Aprbaa19iZJl0p6TNIPJV+QAAAAVGXD5F4QLs/bhZyA/0m6ngXiqj5CYAAAjpExpoukuZL6SOporf23tbbQy2UBXmetnSqprdxfjMwxxjzIwnEAAKAqKnnGGabK2wpCklTSy3iDpP5eLgWnGCEwAABHyRgTZYx5S9LXkp6WdK61dp2XywIqFGttobX233L/NLKPpHnGmK5eLgsAAOBkO1/SWmvtMm8XchK8LXdvY1RhhMAAABxBycJvl0taKslKamqt/ZyF34BDs9aulXSupFGSxhpj3jLGRHm5LAAAgJPlZrlbKVQFX0nqWNLjGFUUITAAAIdhjGkg6WdJD0sabK291Vq727tVAZVDycJxn0tqKvcXKMuMMZezcBwAAKjMSsLS9pLGermUk6Kkp/GnYoG4Ko0QGACAchhj/I0xIyTNlPS7pHbW2r+8XBZQKVlrd1trb5V0kdxfqPxc8gULAABAZXSDpE8r+YJwB/t7gTjWc6iiCIEBADiIMaa7pPmSuklqb6193lpb5OWygEqv5IuUdpL+kDTLGDPCGOPv5bIAAACOWklIer2qTisISZK1dqmkdWKBuCqLEBgAgBLGmGhjzDuSvpD0uKT+1toN3q0KqFqstUXW2ufk/gllN0nzjTE9vFwWAADA0bpA0hpr7XJvF3IKsEBcFUYIDACo9koWfrtK7oXf8uVe+G0sC78Bp461dr3cM00el/S5MeZdY0y0l8sCAAA4kpvkDkv/n737Do+q6hY4/Nsz6b1BOiQhCaGH0DtSFFQ6YkOKotjFhr18XrtiwY7YQUQ6CopKk95r6C0QQiCk9zKz7x8TE0ISOkzKep/H5yZz2jq5fDN71t5nrZpoJtBaKRVq7UDElSdJYCGEELWaUioC+Bt4ChigtX5Ea51u5bCEqBWKG8fNxNI4Lg9L47jh0jhOCCGEEFVRcXK0FTDL2rFcDdIgrmZTsshJCCFEbaSUsgfGA48BbwITtdZF1o1KiNpNKdUWS32908ADWuv9Vg5JCCGEEKKEUupNwEFr/YS1Y7lalFKNgCVAPemLUrPISmAhhBC1jlKqG7AVaAO00lp/IAlgIaxPa70eS63ghcAapdRLxRM2QgghhBBWVdwQbjQ1rCHc2YprHe/HUvtY1CCSBBZCCFFrKKV8lFLfYnnE6Xks5R/irByWEOIMWusirfUHWB61bANsK564EUIIIYSwpv7APq31HmsHcg1MQhrE1TiSBBZCCFHjFTd+G4ml8VsGlsZvc6TxmxBVV/EEzQDgOWCKUuo7pZSPlcMSQgghRO01lprbEO5sM4EYpVSYtQMRV44kgYUQQtRoSqmGWGpaPQrcpLUep7XOtHJYQogLUNw4bg6WxnHpQKxSaqQ0jhNCCCHEtVScDG0JzLZ2LNeC1joP+AlpEFejSGM4IYQQNZJSygF4FngY+D/gM6n7K0T1ppRqjWUFTgZwv9Z6r5VDEkIIIUQtoJR6C7DTWj9p7ViuFWkQV/PISmAhhBA1jlLqOmAb0ByI1lp/LAlgIao/rfVGoB0wF1illHq1eMJHCCGEEOKqUErZUQsawp2tuEHcPizluUQNIElgIYQQNYZSqo5S6gfgB2C81nqw1jre2nEJIa6c4sZxH2N5JLMFsF0p1cPKYQkhhBCi5uoP7KmlTyB9Bdxn7SDElSFJYCGEENVeceO3u4GdwGksjd/mWTksIcRVpLU+prUeBDwNfK+U+lEpVcfacQkhhBCixqlNDeHONhtoqZRqYO1AxOWTJLAQQohqrbhW1TLgfqCP1vpJrXWWdaMSQlwrxRM+jYEkLI3j7lFKyRhXCCGEEJdNKRWO5cmjWtEQ7mzFDeJ+RBrE1QjSGE4IIUS1pJRyBJ4HHgBeBb7QWpusGpQQwqqUUjFYVurkYmkct8vKIQkhhBCiGlNKvQ3YaK2fsnYs1qKUisKy6Kae1rrAyuGIyyCrJIQQQlQ7SqlewHYgCmihtf5UEsBCCK31ZqA98Cvwr1Lq9eIJIyGEEEKIi1LcEG4Utawh3Nm01nuAPUiDuGpPksBCCCGqDaWUr1JqKjAZeFxrfYvW+ri14xJCVB1aa5PW+lMsj25GATuUUr2tHJYQQgghqp+BwC6t9T5rB1IFSIO4GkCSwEIIIao8pZRBKXUvsAM4DjTRWv9u5bCEEFWY1vq41nooMA74Wik1VSnla+WwhBBCCFF93EctXwV8htlAi+IayaKakiSwEEKIKk0p1RT4F7gH6K21Hq+1zrZyWEKIaqJ4wqgJlgmkHUqp+6RxnBBCCCHOpTjZ2QyYY+1YqgKtdT6WBnH3WjsWcemkMZwQQogqSSnlBLyIZaDxMjBJ6v4KIS6HUqoFlscZTcBYrfVOK4ckhBBCiCpIKfUugNZ6vLVjqSqUUpHACiBYGsRVT7IKQgghRJWjlOqDpfRDGNBca/2FJICFEJdLa70N6ARMAZYqpd4qnnASQgghhABAKWUPjAS+tnYsVUlxbeRdWGoli2pIksBCCCGqDKWUv1LqF+Bz4CGt9W1a6xPWjksIUXMUN477AmiOZaJpZ/HEkxBCCCEEWJKcO7XW+60dSBX0FTDW2kGISyNJYCGEEFZX3PjtfmA7cBhoqrX+08phCSFqMK31Ca31rcCDwOdKqV+UUv7WjksIIYQQVjcWaQhXmTlAM6VUhLUDERdPksBCCCGsSinVHFgF3AVcp7V+TmudY+WwhBC1RPGEU1MsE1DblVIPSOM4IYQQonYqrnvbBGkIV6HiBnE/IA3iqiVpDCeEEMIqlFLOWBq+jcbSAG6y1tps3aiEELWZUqoZ8CWWhRJjtdbbrRySEEIIIa4hpdR7gFlr/Yy1Y6mqilcBr8LSIC7f2vGICyerHIQQQlxzSqkbgZ1AENBMaz1JEsBCCGvTWu8AugDfAYuVUu8WT1gJIYQQooaThnAXprhW8g6kQVy1I0lgIYQQ14xSKkApNQOYiGWV3Z1a65PWjksIIf6jtTZrrSdhKRERiKVx3E1WDksIIYQQV98gYLvW+oC1A6kGJiEN4qodSQILIYS46pRSRqXUQ8A2YC+W1b9/WTksIYSolNb6pNb6TixfcD5WSs1QSgVYOy4hhBBCXDVjga+sHUQ1MQdoUlxDWVQTkgQWQghxVSmlooE1wG1AN631i1rrXOtGJYQQF6Z4wqoZlgms7Uqph5VSRiuHJYQQQogrSCnVEGgEzLN2LNWB1roA+B5pEFetSGM4IYQQV4VSygV4FRgBPAd8J3V/hRDVmVKqMZYVQvbAfVrrrdaNSAghhBBXglLqfaBIa/2stWOpLpRS4cBqpEFctSErgYUQQlxxSql+QCxQF2iqtf5GEsBCiOpOa70L6IYlEfyXUmpC8YSXEEIIIaoppZQDloUr0hDuIhTXTt6OpZayqAYkCSyEEOKKUUoFKaVmAxOAu7XWI7TWp6wdlxBCXCnFjeO+wdI4rg4Qq5Tqb+WwhBBCCHHpBgPbtNYHrR1INfQV0iCu2pAksBBCiMtW3PjtUWArsANorrVebN2ohBDi6tFan9JajwDuBt5XSs1WSgVZOy4hhBBCXLT7kIZwl2oe0Ki4prKo4iQJLIQQ4rIopVoB67DMoHfWWr+itc6zclhCCHFNFE94NccyAbZVKfWYNI4TQgghqgelVBQQhTSEuyTSIK56kcZwQgghLolSyhX4P+B24BngBy0fKkKIWqz4i+SXgAswVmu9ycohCSGEEOIclFIfAPla6+esHUt1pZRqAKwB6slioKpNVgILIYS4aEqpgcAuwB1oorX+XhLAQojaTmu9B7gO+BRYqJT6qHjCTAghhBBVTHFDuLuQhnCXpbiW8jYsT4aKKkySwEIIIS6YUqqeUmoe8DZwl9Z6tNb6tLXjEkKIqkJbfA80wTJRtkspNUgppawbmRBCCCHOMgTYorU+ZO1AaoCvsNRWFlWYJIGFEEKcl1LKRin1BLAZ2AS00Fovs25UQghRdWmtT2utR2NZYfQWMFcpVc/KYQkhhBCi1FikIdyVMg+IKi6NJaooSQILIYQ4J6VUG2ADcBPQUWv9mtY638phCSFEtVA8YdYCywTaZqXUE0opG+tGJYQQQtRuSqlGQAQw39qx1ARa60LgO2Q1cJUmjeGEEEJUSCnlBrwB3AI8DUyRur9CCHHplFKRwBeAF3Cf1nqDlUMSQgghaiWl1IdArtb6eWvHUlMopcKAdUCwNIirmmQlsBBCiDKUxVAsjd8csTR++0kSwEIIcXm01vuAXsAHwG9KqU+UUu5WDksIIYSoVZRSjkhDuCuuuLbyZiy1lkUVJElgIYQQJZRSIcBvwGvA7VrrMVrrZOtGJYQQNUdx47ifsDSOcwRilVJDpXGcEEIIcc0MATZqrQ9bO5AaaBKWWsuiCpIksBBCCJRStkqpp4GNwGogWmu9wsphCSFEjaW1TtZajwFuxzLx9lvxRJwQQgghrq6xWJKV4sqbD0QU11wWVYwkgYUQopZTSrXHkvztDbTXWr+ptS6wclhCCFErFE+4RQNrgI1KqaeVUrbWjUoIIYSomZRSTYAGWJ5+FFdYcYO4b5EGcVWSNIYTQohaSinlAbwJDAKeAH6Rur9CCGE9Sqlw4HPAFxirtV5r5ZCEEEKIGkUp9RGQpbV+0dqx1FRKqVBgA5YGcbnWjkeUkpXAQghRyxQ3frsViAWMQGOt9TRJAAshhHVprQ8ANwBvA3OUUp8XT9gJIYQQ4jIVN4QbDky2diw1WXGt5Y1Ig7gqR5LAQghRiyilwoCFwIvAMK31WK11qpXDEkIIUay4cdw0oDGWibpdSqlbpXGcEEIIcdluATZorY9YO5Ba4CukQVyVI0lgIYSoBYobvz0LrAeWATFa61XWjUoIIURltNapWuuxWL6wvgj8UTyRJ4QQQohLcx+W5KS4+n4HGiilGls7EFFKksBCCFHDKaU6ApuBbkBbrfU7xQX7hRBCVHHFE3YxwFJgg1LqWWkcJ4QQQlyc4oZwYcACa8dSG0iDuKpJGsMJIUQNpZTyxFJX8mbgcWCG1P0VQojqq3gl8GdAMJbGcfJEhxBCCHEBlFITgXSt9UvWjqW2UEqFYKkNLA3iqghZCSyEEDVMceO3O7A0fisCmmitf5UEsBBCVG9a60PAjcBrwAyl1FfFE35CCCGEqIRSygm4E2kId00V117eAAy1ciiimCSBhRCiBlFKhQOLgGeAwVrrh7TWadaNSgghxJVS3DjuVyyN40xYGsfdIY3jhBBCiErdAqzTWsdZO5BaSBrEVSGSBBZCiBpAKWWnlHoBWAv8BbTWWq+1clhCCCGuEq11mtb6QWAQlom/v4onAoUQQghR1likIZy1/A6EFtdkFlYmSWAhhKjmlFJdgK1AB6CV1vp9afwmhBC1Q/GEX2ssT4GsVUq9oJSys3JYQgghRJWglGoG1EcawlmF1roIaRBXZUhjOCGEqKaUUl7Au0Af4DFgttT9FUKI2qu4AcunWLqfj9Var7BuREIIIYR1KaU+AVK11i9bO5baSilVH9iENIizOlkJLIQQ1Uxx47e7gF1ADtBYaz1LEsBCCFG7FTdg6Qe8BExTSk1WSnlbNyohhBDCOoobwt2BNISzquJazOuAYdaOpbaTJLAQQlQjSqlI4B/gCaC/1vpRrXWGlcMSQghRRRQ3jpsFNAFygVil1AhpHCeEEKIWGgas1VoftXYggklISQirkySwEEJUA0ope6XUy8BqLMX122it11s5LCGEEFWU1jpda/0I0B94HPineCJRCCGEqC2kIVzVsQCor5Rqau1AajNJAgshRBWnlOoObANaATFa6w+LC+wLIYQQ51Q8YdgGywTiaqXUK0opeyuHJYQQQlxVSqnmQDCw0NqxiJIGcd9gScwLK5HGcEIIUUUppXyA94BewCNa67nWjUgIIUR1ppSqB3wCNATu11ovs25EQgghxNWhlPoUSNZav2LtWIRF8ThkC5YGcTnWjqc2kpXAQghRxRQ3fhsFxAJpWBq/zbVmTEIIIao/rfVRrfUA4FngJ6XU98UTjkIIIUSNoZRyRhrCVTnFtZnXIA3irEaSwEIIUYUopaKApcDDwI1a68e11plWDksIIUQNUjyx2BjLRGOsUmq0NI4TQghRg9wKrNJaH7N2IKKcr5AGcVYjSWAhhKgClFIOSqn/ASuB2UA7rfUmK4clhBCihtJaZ2qtxwE3Ag8BS4snIoUQQojq7j5gkrWDEBX6AwhWSjWzdiC1kSSBhRDCypRSPYHtQFMgWms9UWttsnJYQgghaoHiCcd2WCYgVyqlXlNKOVg5LCGEEOKSKKVaAIFYko2iipEGcdYljeGEEMJKlFJ1gAlAN+BhrfVvVg5JCCFELaaUCgImYpmUfEBrvdjKIQkhhBAXRSn1OXBSa/0/a8ciKqaUCga2Ig3irjlZCSyEENeYUsqglLoHS+O3U0ATSQALIYSwNq11vNZ6MPAU8K1S6ielVF1rxyWEEEKci1JqsFKqfXFDuNuwrDQVVVRxrebVWGo3i2tIksBCCHENKaUaA8ux1Km6Xmv9lNY6y8phCSGEECW01vOBJlgmKncqpcYopeR7gxBCiKqqLdADSwJ4pdY63srxiPP7CikJcc3JYE4IIa4CpZS9UurDM353VEq9jiUB/AvQUWu91VrxCSGEEOeitc7SWj8JXA/cCywvnsgEQCk1XCnVyWoBCiGEEKVOAXWwJBUnKaWeVkp9auWYxLn9CQQW13AW14gkgYUQ4uoYD4QBKKWuB3YAkUALrfVn0vhNCCFEdVA8YdkRywTmv0qpN5RSjkAK8L00kRNCCFEFJGH5ruUH3ACMAN62akTinIobxE3G8oSsuEYkCSyEEFeYUqoB8BjwmlJqKpZHXR7VWg/TWidYNzohhBDi4mitTVrrz4DmQASWic2i4v/7jDVjE0IIIbAkgVsCmViam3aRkhDVwjfA7cW1nMU1IElgIYS4gpRSCvgUS9mHP4B4oKnWeqFVAxNCCCEuk9Y6QWs9DMtE5yQs3yUeVUqFWzcyIYQQtVwm4A/sB/pordOsG464EMWJ+pVIg7hrRpLAQghxZT2CpX5iDDAb8ASmKaVutGpUQgghxGUqrm8/F7gdmAu4Aa7A3OJJUCGEEMIatgITgcFa63wrxyIujjSIu4aU1traMQghRI1RXP6hMbAWSDzjv3+11qnWjE0IIYS4HMWJ3i5ACJa6i75AFJZHbyO01gXWi04IIYQQ1Y1SyggcBvprrbcqpepqrU9ZO66aSpLAQlwDSikbwAswWjsWUeVkaK2zrR2EEEII8R8Zt4hzkHGLENdQ8eSbJ2Bv7VjEVZEHpOlanphTSr2MZXL5CeC41trbyiHVWJIEFuIqUkq5ujrYTMovMg+wNShlNCiztWMSVYcGlVtgsnW2N+5Ozy16RGu93NoxCSGEqL2UUq6u9sZJ+SbzAFuDQRkMyLhFlNKo3EKzrbOdcXd6noxbhLialFLK0c7mJaXUo1prF1ujwWTtmMSVl19ksrE1GpILTeY38gqKPrN2PNeaUsoPyxNF+7E0m+0ALNZaB1k1sBpMksBCXEWuDrZr+jb1bfnCTY3s/dwdrB2OqIIKisz8sTORcb9sy8ktNLXTWu+0dkxCCCFqJ1cHmzV9Gvu0fP6GBvZ+brLoTJRXUGTmz12neXzW7pzcQrOMW4S4Slwc7F6rV8ftia8e6uvcKMgbKbteM2mt2XLoJKM+/j0nKSPnsYJC02Rrx3QtKaVCsDSGewfoCWwH+mmtW1ozrppMGsMJcZUopaKMBtX849uiJQEsKmVnY2BAdAD3dwuzc7Q1SEF8IYQQVvHfuOWjIY0kASwqZWdjoH/zuoztHCzjFiGuEqWUwaz1I98+epNz42AfSQDXYEopYhr48dn9Nzg52tk8Y+14rjWt9RGgM/AgUATcCiRZM6aaTpLAQlw9rdqHeZkMBvnQFufXKcLbxsHW2MXacQghhKi1WrULcZdxi7ggncI8bRxsDDJuEeLq8LcxGuwjArysHYe4Rjo0DCQztyCsuElarVKcCO6EpSZwGJZksLhKJAksxNVj52hnlP+NiQviaGtES8MHIYQQ1mPnZCvjFnFhHGwNMm4R4uqxs7cxSg3gWsTGaMCglAZsrR2LNWitU4DewE5AatZeRTbWDkAIcWW1fn0xyVn5KKWwtzHQNbIO7w1thptj2c+Tu75Zz7pDKWx/tTcOtkZu/3od6w6lAJBXaMLWaMBYvBrosZ7h+Lo5MGvzcWbc377Mefye/J3NL/UkwMOR+NRcXpyzk3WHUzCZNfW9nXimb0N6NfK9Njd/hid/3cbKA8nEJecw64H2dAr3qXTfQZ+vZnNcWsn9tgnxZPrY9pXuL4QQQogro+27azidXYBBKeyNii7hXrw7qCFuDmW/poz4cTvrj6Sz9bmOONgaufP7baw7kg6UH7c82r0evq72zNp6kl/viS5znoDnl7LxmQ4EuDsQn5bHS7/tZ/2RNEwa6nk58EzvMHo2vLZNyQ8k5fDaHwfYfDQDDXQI9eCNfhH4VlKWY8jXW9h8LKPkflvXc+OXu6OvXcBCCKvwGf4R2z++hwBv15LXHvv6bwK8XHhmSAem/RvLI5P+5u0R3RlzfXSFxz381SJCfT2oV8edp75dDECR2UyRyYyDreV9N8jHlVXvjGDBhgO8M3stR5MycLAzEh3qy9cP34irox0Pf7WI2Wv2cebc4cxnB9EmIuDa/DGKTf5rK1OXx7Lr2GmeGNCWZ4Z0KNm2ctcxBr01Cye70u/BU5/sT+fGwQDsiU/mqe+WsDMuiQAvF94ddV3Jtg/nreej+RtKjisym7ExGoib/BAA9e8p28Mtp6CQV2/vwkM3tioX4zuz1vDh/A3Y25Qu8j309QMYDTLveiatda5SKkZL47KrSpLAQtRAv9zXnnZhXmTnF3Hvj5v48J/9vNKvccn25KwClu1NwsnOhkWxJxkQHcC0e9uVbB/0+WrubFePoa1Km3L+sv7Yea/7yLQtxNTz5Iu7YrAxKLYdS8dkvvj38KTMfOq4Xt7ikqaB7gxpFcSj07Ze0P4ThjUvc79CCCGEuDamjW5BuxAPsvOLGDstlo+WHuHlvuEl25OzC1i+PwUnWyN/7U6mf/O6TB3VomT7kK+3cEdrf4a09Ct5bfqmE+e97mMzdtMy2I3Pb2tsGbccz7zEcUsBdVztLvq4/2TmFXFjkzpMvKURDjYGXllwgCdn72HKGfd4tvcHNSxzv0IIAeDp4sCH8zcwvHtTHOwqT/fc0imKWzpFATDt31hmrNrD7OeGlGw/mJjKo1//zZQn+tO+YQAZOfks2nK4zDmeHNiWJwe241Jl5VkmAJ3sL33xq7+nJQH+68rdFW4PqePOhg9Gl3u9sMjEXR/M54G+Mcx7YQjz1+9nxEe/sXHCaLxcHXl8QFseH9C2ZP+nvltMXkFplYK4bx4q+TkxNZsWj03m5tbhVObWzo34+N7el3KLtYokgK8+SQILUYM529vQu7EvS/eUra0+d+txGvm70bGBN7M2HWdA9JWZsd16LJ13hzTH0dYyy9k6xPOCjy0ymflr10l+XneM2IQMtrzc67JiGd0pBAAbqW0ohBBCVAvO9jb0ivJh6b7kMq/P236KKF9nOoZ5MmtrIv2b170i19san8HbAyJLxy313C/42CKTmb/3JDNt4wliT2Sx6dmOlxxHy2A3Wga7lfw+qn0ggydtueTzCSFqr2b162DWmu8Wb+eBvjGXfJ6dcUmE+3vSISoQAHdnB4Z1bnRFYtx44ARTlsUyf/0+/njlVhoGXvrTFze1sSRe/9h08KKOO3AilbScfO7ubZlsG9S+IW/PXMuCjQe567qmZfYtKDIxb91+vnn4xgrPNXP1HtqE+1O/7oV/hlwKpZQXMNDZ3qad0aCcrurFRLVTZDJn5RSYVgDztdZZle0nSWAharCM3EL+ij1J+7CyTQVmbjrOwOgAOoV7c/Mnq0jOKsDb5dJXsPwnpp4H42dt5+5OIbQJ8cLP3eG8xxw4lcW09cf4dWM89bwcub1tMF8OLx2wPDNrB3M2H6/w2LahXkwZ07bCbRfr5Xm7eHneLhr5u/JKv8Y0D7q6H+JCCCGEKCsjr4i/dp+mfWjZz+BZWxIZ2MKXTmGe9PtyE8nZBXg7X4FxS7Abz87bx+j2gbSu745fJeUXznQgKYdfNp1gxuZE6nk6cFtrfz6/rfRpq+fm7WXOtlMVHtu2vjs/jmx+3mtsiEsn0tf5nPu8suAAryw4QCM/Z17qG07zQNdz7i+EqD2eHdKBuycuYGSPZpe8yrZ5SF12Hk3if7+soHd0KC3D/HA8x8ri80nOzOXXlbuZujyWvIIibuvSmBVv3UVgcWmLmav3MP77JZUef2jSg5d03eMpWUQ9+BWuDnYM7hjF04PaYWM0YK5gwalZa/YcTy73+t9bDuNoZ1NSKuJsM1bt5p7elT+5AfDbhv0s2HiAQG9XxvVvw6D2DS/qPpRSjRxtjas6NvS1va5RgIu9ba3rHyfOIzu/iL92xN+59Ujye0qpdlrr+Ir2kySwEDXQHZPXYVSKrPwiGtRx4ZbWpWUODiZlsfVYGpNHtCLQ05FgTyfmbU3g7s4h5z3vmoPJRL7wZ6Xbvx7RiomLD/D2H3s5dDqb1vU9+fDWFoTXdSm3b2xCBi/M2cnh09kMiQlk9gMdiPAtv987Q5rxzpBmF3bjl+ilmxvR0NcVg0Hxw+o47vh6HauevQ53x1pZl18IIYS4poZ/vx2jwTJuCfNxYmjL0i/HB0/nsPV4JpPuaEqghwPBHg7M336K0R3OX8Jp7eE0ol5bUen2r+5oyifL4nj770McTs6lVbAbHwxpRHid8gusYk9k8eJv+ziSnMvgaF9mjokmom75RO1bAxry1oCL+3J/poOnc3j378N8fUeTSvd5sU8DIus6YTAoflx3nOHfb2PFE+1k3CKEAKB9w0AaB/vwzd/beOTm1pd0jlBfD2Y/N4TPF25ixIe/UVBkYni3prx2Z1dsiusAfzhvPZ8t3ARAkLcb/741vNx5MnPyGffNPyzbcZTrW4by1ojudG4UhFJln9Yc2jGKoR2jLinWykQEeLH8zTtp4OfJwcRU7vlkIY52Rsb1b0tEgBfO9rZMWrSF0T2bM3fdfo6cSiMnv7DceX5dtZuhHaMwVPCE6a5jpzlwIpUBbSMqjWNg+0hG9WyOj5sjK3fFM+rj3wnwcqVd5IU/jevmaPv9cwOiPe7pHiWPuYpKPdi7sevrczY7fffvvo+AoRXtI5WohaiBfh7Tjn1v9CHunRsZ2bE+/T9dTW6hpcHszI3HaVPfk0BPRwAGtgxg5qYKJ4nK6dDAm31v9Cnz35m8nO14tX9jVj17HZte7ImLg02lNXnTcgo4cCqLsDrONAlwI8jL8dJv+DLF1PPE2d4GR1sj93cLw9vFng1HUqwWjxBCCFGbTBnVnD0vd+Hwa90Y0S6QgV9tKRm3zNqSSOt67gR6WJ4uGtDCl1lbT17QeduHerDn5S5l/juTl5Mtr9wYzson2rNhfAdcHWwYN7PiupLpuYUcTMohzMeJJv4uBHme/2mni5WQnscd323j+T5hdAirvKRWy2C3knHL2M718Ha2Y+PRjCsejxCiajEaFIUmc5nXikxmbG3Krwp9dmgHPlu4iay8gku+XrvIAH4Y14/9X97PlCcG8Ouq3fy0bGfJ9scHtOXQpAc5NOnBChPAAIUmM7uPJePt5kjT+nVoGOhVLgF8tfh6OBMR4IXBoIgI8OKpQe1YsNFSNsLOxsgP4/oxd+0+Gj/8NX9uPki3JvUI8Cq7KCktO4+/tx7h1i4Vl8KYvmI3fVqG4e5c+WdCw0BvfD2cMRoMdGtaj2GdG11U+QqllGteoSn6jo7hkgAW53VvjyhjfqGp4tolyEpgIWo0W6OB29sG8+LcWPYmZtIiyJ1Zm4+TlJVPs1f/BqCgyEx6biGHkrIIq1N+Je6lCvBwZHSnEO7/aXOF2zuF+7Dl5V78FXuSn9cf44U5sdzcwp9bWwfRJrS0fMX4mduZuanichDtwrzKNLS7UqSMsBBCCHHt2RoN3NHan5d/38++k9k0D3Rl9taTJGUV0OLNVUDxuCWviEOnLQnZKyXA3YFR7QN54JddFW7vGObJpmc78vfuZKZtSuDF3/ZzU9M6DIvxp0390vIVz8zdW2mSul2Ie5mGdmc6nVXArd9sY2S7QO5ofXG9GqTBvBC1Q6C3K8dOZ5SpPRuXlEG3pvXK7ds63J/oUF8m/7X1sq+rlKJrk2C6NA5mT3z5cgnn4uXqyOp3R7BhfwJTlsXScfyPtIsM5Paujbm+ZSh2xQnsGav28NS3iys9z5mN2C6V4azkc4vQuix85VYATGYzrZ/4rlwd5Tlr9xEV5F1h3WKzWTNrzR7eH93zsuK4AN4u9raFjnY2l18HSdR4vu5OFJm0vVLKXmudf/Z2SQILUYOZzJrpG+JxtDVQ39uJdYdTOJmRx5KnuuJqX/o//7u/38TMTccZ3+fSH18EeGPBboa1DqZBHWfS8wqZvuEYLet5VLq/rdHATc39uam5PyfSc5m+IZ5Hpm3F1cGGv5/oCsC7Q5vz7tDz1887W0GRGbPWaKDQpMkrNGFvYyg385yeW8jWo2m0b+CFQvHjmjhOZebTuv6FN7UTQgghxOUzmTXTN53AwdZAPS9H1h9J52RmAf882gZX+9KVbvdM3cmsrSd5ulfoZV3vzUUHuaWlHw18nEjPK+LXTYm0DKq8tq6t0cCNTetwY9M6nEjP59fNJ3hsxm5cHIz89XAbAN4Z2JB3Bl7ceCojr4jbv9tGn8Y+PNi1fDLnTOm5hWyNz6R9qAcK+HF9AqcyC2hVz+2cxwkhqr8B7SKYMHc9EQFeeLs6smDjAXYfO02P5vUr3P+ZIR249d05l3SttXuPczAxjT4xYXi7OrL18EnW7D3O/27vcv6DK9AmIoA2EQG8cVc35q3bz+cLN/Hkt4tZ9L/bCKnrzi2doril08WXgygymSkymTGbNSazJq+gCFsbA0aDgZW7jhHq60GgtyuHEtOYMHcdNxc3kgPYfew0YX4eFBSZeX/OOuq4O9GzRUiZ889YuZtbK2mI92/sUYpMZnqddczZ/th0kE6NgnBxsGP1nnimr9zFlCf6X8xtKqUoX8S4mnn8pzX4ezgxvt+56yeLy6cUGk2Fsw2SBBaiBrpt0lqUUigFDeq4MHlkazyd7Ji56Tg3N/enwVkrfkd1qs/7i/ZddhI4K7+Iu75Zz6nMfBztjHQI8+bj26Iv6Fh/d0fG9YrgsZ7hbDySellxANw6aS1rDlpKOtw2aR0A61/oQT0vJz7+Zz9rD6cw7d52FJrMvLFwDwdOZWFnNNA4wI2pY9ri4SQTrUIIIcS1cPt32zAohQLCfByZfEdTPJ1smbk1kZua1qHBWSt+R7ULZMLiI5edBM7KNzHyxx2cyirA0dZAh1APPhxa8Zf9s/m72/PYdSE82r3+ZZdi+HNXErEnsjicnMt3a0uffjrwqmVCfOKyI6w7ks7UUS0oMmne+usQB5JysDMqGvu5MGVkczykHrAQNd7Tg9rzxozVXP/KL2Tm5hMZ4MXUJ/vj41bxUxEtw3xpGxnAn5sPXfS13J3s+W39fl77ZSV5BUXUdXfivhtacmuXxuc/+BxcHOy4s1sT7uzWhP0JKbg7nb8h57lMmLuO9+asK/n9g3nr+eS+3tzetQnbjpzi/i/+JCMnHx83J4Z2jOLRM2okT1uxiynLdmI2Q/dm9fjp8bKJ2SOn0tl86CQ/jOtX4bV/XbWHQe0bltRI/s+aPce57b25JauXZ63ZyyOT/qLQZKaejxvvjupBx6jz17UX1ceu46m8PGMjW+OScXe0Y9Obg8+5/5LYBJ77ZT0n03Po1NCPiSM74u1iKSny4q8bmL8pjqz8Iuq6OfBYn6bc3tEyeVFQZGLsNyvZfPg0J9Jy2Pj6IOr5XNzT3EpX0BVRCHH5lFKjB7YM+OTL4THnbu8sBLApLpU7J6/fk5pdcGHfPoUQQogrSCk1emDzup98flsTGbeI89p0NJ27fti+JzWnUMYtQlxhSqlQH1fH7Xu+GHvlavWJKs93xMcmk1m7aK3zznxdKRXq7WK/fff7w6rMvwetNWatMV5EPaIrvRK4yGQul4Cv6LXKmMxmywT0FahRfSAxnQ2HkgB4//ft50wCJ2Xk0uGVeXw+ujOdo/wY//M68gpMTL7PMvG7PzGdIC9nHO1sOHgygwET/uLXx3rSONCTgiIT3y/fR0yoD/3eX8S61wZWmAT2f3BKhf+WQFYCCyGEEEIIIYQQQghRLZjNmhdnbGD2+iMUmc2E1nFl6sM9qOvmyNa4ZMb9uIajyVkMbFWfI6czGdauAbd1bMC7v23jRFoOH97VAYC1B07x0LcrS5KWH/+5g59W7Cc5K5+wum68eWsb2oXXBeCR71fh4mDLvsR0Nh5M4o9n+2JQiud+Wc/O+FQCPJx4fVhrukT5A3A4KZOHv1vFruOpdInyw9H2wtKPP67Yxxf/7CY5M4/ODf2YMLw9ns72HD2dRbuX5/L2bW2ZsGA7rcPqEBXgwcGTGRSZzSyOTeCrezpT38eVp39ex+7jqdT3ceWNYa1pH+ELwMAJf9E+oi5LYhPYdTyVPe8Pw8Xh8p+kCfdzJ9zPnbUHTp1334Vbj9GivjfXN7esBn+mXwvavzyPrLxCXBxsifArrfn9X3r66OksGgd6Ymdj5L6elzf3KklgIYQQQgghhBBCCCGqgWW7E9hwMIkNrw/E2d6W2PhUHG2NFBSZGPXlMh7r05ThnSP48d99TFtzkGHtGlzQecPqurHwmb54u9jzzdK93Dd5BRvfGIRt8eraORuO8MujPWkW7ElOfhFdXvuNV4e0ol9MPdbsP8WYSf+y6n/98XZx4IFvVtAlyp85T/Rm8c4Exnz9L4/1aXrO6/++5ShfL9nDzw/3INDTiZdmbOS5X9bz5T2WWtQms2b7sRTWvz4IrTWfLIpl4daj/PDAdXw9pivZ+YVc98YC7rsuitmP9+bPrccY/vlS1v/fILxcLKVHZm84wi+P9CDQ07nkvs4U/vgvlcb3zu3tGNL28kpR7TuRTuPA0v5Dwd4uONoZOXwqk2b1vAB4fc5mvl6yh9xCE83redG1kf9lXfNMkgQWQgghhBBCCCGEEKIasDEayMovYn9iBi1DvEuSh6v3ncTGoBjdzdLr557rovjs710XfN5+MaVNBu/r2Yj3FmwnLimT8OLVqTe1DCa6vjcAi2MTiPBzZ2DrEAA6N/QjJtSHpbEJtAuvS2x8KnOfvAE7GyN9o4NpFepz3utPWbmfcX2bEVrH0qT16ZtbEP3cLMzm0jK2T9/UHAfb0max7SN86dEkAIDY+FS0WZeslu3Xqj6Tlu7hn53HGdY+DIA7OjYgrG7lzVQPfHjbeeO8HNn5hQR4lq285eZoR3Z+YcnvLw6K4fkBLdl05DSr9yVid4ElLi6EJIGFEEIIIYQQQgghhKgGukb5M7JLBE9OXcupjFyGtg3jxUEtOZmeg/9ZCcZArwsv9f/zqgN8uXgXx1NyUAoy8wpJzsonvHj7mcnLY8nZrNl/sszK2SKTmY6RvpxMz8Xb1aFMsjbI+/xxxCdn89TUtTwzrbTZnwKSMi2lbQ1K4edRthFioGfp74npuQScdb9BXs4kpueU/H52AvZac7a3JTOvsMxrmXmFONuXLUthMCjahNVh1rrD/LhiP3d3b3hFri9JYCHEOT0xfRv+Hg48fcOVedMRQgghhLhanpy9B383e57qdXmPawohhLg8j339NwFeLjwzpIO1Q6mR7u/VmPt7NeZ4SjZ3fLqERgEe1PNx4URqdpn9ElJKf3eytyG3oKjk96SM3JKfj57O4vnp65n9+PVE1/fGYFBEPDEdfca5zuyhFuDpRPdG/kx5qEe52I4lZ5GSlU9eoakkEXw8JZsQH9dz3pO/pxPP9G9RZkXymfFV1MPtzMZufu6OZe73v+te1zigwnuoSMhj0yrd9v4d7RjaLuzcJziPSH93ftscV/J7fEo2OflFhNat+G9j0prDSZmXdc0zSRJYCFGrfbLkAF8uP0SRSXNrmyBe7dcYg6HiT4asvCJenhfLwh2JmLWmZ6O6fDE8BoDjqbk8M2sH6w+n4O5ky4s3NWJAdOmHzeQVh/li+SEycgtpEuDG20OaEeV37g9BIYQQQogzfbo8jq9WHqPIpBnWyo9X+oZXOG6ZvTWR8XP3lfxuNmvyTWa2P9cJbxc7ABbvTebNRQc5kpxLHRc7Ph7aiHahHgBMXh3PVyuPkpFbRGN/F94e0JCGvtZdPSWEEFXFtH9jmbRoK4dPpuPhbM/dvVvw6M2tz3vch/PW88aM1fz+0i20bxh4ydffGpeM1ppmwV64ONhiYzRgMChah/lQaNL88O8+7ugUzk8r9pOQVroKtkmQJ1/+s5vEtBxsbQxMWrKnZFtOQREohberPSatmfjHTjJzCyu6PADXNwvk9Tmb+W1THH2jgzGZNZsOnyakjgvB3i5EBXjw4cLtPHVzC5bEHmfjodN0ivQ7530N7xTOx3/upHGgJw183UjOymPDwST6tAi+oL9LTKgPSsE3S/cwsmskf26PZ9fxVHo1vfC/9ZGPb7/gff+jtSa/yExhkQkN5BWaMCiwszGW2/fG6GD+b85mFu88TsdIX979bRt9WwTj4mBLocnMr2sP0i+mPi72tqzal8is9Yf58u7OJcfnF5pKEvMFRaYyifYLIUlgIWoRrTVmDcZKkpzXQpHJjM1ZNW0qeq0yJrPGoMrO+F2qf3af5NuVR/j9kU642Ntwy5dr+WFNHKM7hVS4/7jp23CwNbDm+etwtbdhT2LpjNxDP2+hTYgn349uzYYjqdzx9Toa+7sR4evC1mNpvPXHHn57uBMN/VyZ8Nc+HvtlK4vGdbnsexBCCCFqKhm3lLV4bzLfrTnO/PtjcLGz4dZvt/Lj+gRGtS//5XZwtB+Do0u/bH+6PI6l+1JKEsCxJ7IYN3M3n93amE5hnpzOKuC/kovb4jN4569DzBsbQ0NfZz5YcoRxM3fzx0PnT3AIIWomy/uxxmi4crVJL9blvx+bMSh1Rd6P8wpNvDPyOlqG+RKfnMkt78yhno8bA9tHVnpM/OkM5qzdh6/H5U+oZeQW8NKvG4lLzsLJzoYBreozpG0IRoOB78Z24/Epa3h11iYGtQ6hQ0TdkuO6N/LnhhZBdHp1Pv4eTgzvHM7XxYngqAAP7u7WkJ5vLMDe1si910WVKbVwNldHO6Y90pOXZmzkqZ/XYlCKFvW9ef/O9gB8eXdnHv5hNV8tmU7XKD9ublnvvPc1oHUImXmFjPxiGcdTs/F2sWdQm9ALTgLb2Rj54YHrGP/zOt6ct5X6dVz44f7uJU3hrpZjydm0fnFOye/1HvmZjhG+zH3yegC6/G8+j/VpytB2YdRxc2TSmC48+8sGTqbl0KmhHxNHdgQspS/mbozj1VmbMZk1QV5OvDokhuubB5Wcu+Mr8zhWvNq546vzATj15V0XHKskgYW4hsxmzUvzYpmz+ThFZk2IjzNTx7Sljqs9W4+l8cT0bRxNyWVAtD9HknO4pVUQt7UN5r1FezmRlscHt7YAYN2hFB76eQsbX+wJwMTFB/hpbRwp2QWE+TjzxqCmtA21FId/dNpWXOxt2H8qi41HUlj4WGeUUjw/eyexCRn4uzvw+sAmdI6wFGo/cjqbR6ZtZdeJDLqE+1zwrNJPa+L4cvkhkrMK6BThzfu3NMfTyY6jKTl0eGspbw1uygd/7aNViCdRfq4cPJVNkVmzZM8pvhweQz1vJ56ZuYPdJzKo7+3E/w1sQvswS9H5QZ+vpn2oN0v2nmJ3Qia7XrseF4fLf/uaufE4IzrUJ9TH8kH8QPcwflpztMIk8N7ETJbtTWLry71Krt000FIgPzu/iHWHU/jpnjbYGA10aOBNu1BvZm2O59m+UcSn5tLY343GAZYC9ENaBfLF8kOXHb8QQghxNZnNmpcX7GfOtlOYzJoQb0d+GtGcOq52bIvP4MnZeziamkf/ZnWJS8llaEs/bm3lz/v/HOZERj4TBkcBsO5IGo/8upv14y2PBH+yLI4pGxJIyS4k1MeR1/tF0La+BwDjZu7G2c7I/qQcNh5NZ8EDrTAoxQvz9xF7Igt/d3teuzmCzg0snbWPJOfy6Ixd7E7MpnMDTxxsLywZMGV9Al+uPEpKdiGdwjx5d1BDPJ1sOZaaS8cJ63izXwQfLj1Cq2B3Gvo6c/B0DiazZsm+FD6/tTH1vRx5Zu5e9pzMpp6XA/93U0TJKtohX2+hXYg7S/elsDsxi50vdsbF/gqMW7YkclfbAEK9LV/K7+8SzE+VJIHPNmvLSe7tXPolcuKyOEa0C6RruGW86OtW+gU5Pi2PRn7ONPZ3AWBwtC9frjh62fELIS6d2ax5YcpyZq3eQ5HZTKivB9OeGkBdd2e2HDrJuMl/E3cqg4HtIzlyKo1bOzfi9q5NeGfWGhJSsvj43t4ArN17nAe++JMtH90DwEfz1/Pj0p0kZ+YS5uvB2yOvo12k5WnGh79ahIuDHfsSUtiw/wSL/ncbBqV45oel7IxLIsDLhTfu6k7XJpYE3eGTaTz05SJij52ma5NgHGwv7H3vhyU7+HzhZpIzc+jSOJgP7umFp4sDR5PSafPk97wz8jren7uONuH+RAV5c+BEKiazZvG2I3z1UF9C6rrz1LeL2RV/mvp13Hnzru50iLK8L/Z/fQYdGgayeHscu46dZu8XY3F1tLvs/3+M7tm85OdQXw/6tmrAhgMnzpkEfv6n5Tx/S0ee+3HpZV+/a5Q/y1/uV+G2mFAflr9Uum3IR3+X/KyUYsKd7ZlQnKgFS1mJ/7w8OIaXB8eU/D6ub7OSnz8Z1anctaICPJjxWK8K4wjzdWPh+D4XcDdlDe8cwfDOEeVer+fjwonPh5d5bXy/FuX2axLkyYJKrvtfUvZKq+fjcs5E7IpX+pf5vUeTQNb/X/nPbhujodK/5382vTn40oL87xqXdbQQ4qIs25fEhiOprHuhB852NsQmZOBga6CgyMzd323k0V7h3NmuHj+uieOXDfHc0iro/CcFwuo4s/DRzng52/HtysOM/Wkz61/ogW3xrOjcLcf5+b52NAt0J6egiG7vLuflfo3p18KfNYeSue+HTax45jq8Xex4YOoWukT4MOuBDizZc4p7f9zEoz3Dz3n9BdtP8PWKw0wd05YAD0denhfL87N3lpRKMJk1O+LTWft8DzTw6ZID/LEzke9Ht2bSXTFkFxTRc8IK7u0SwswH2vPnzkRGfLOBtc/3wMvZ8iE9Z8txpt3XjgAPB2wrmIGOfOHPSuN7e0gzBseUf5PddzKTQS1LSzY0CXBj78mK6+1sPZZGsJcjb/+5h9mbjhPo6cir/RvTKdwHs9ZoDfqMgklmrdlbvFK4W6QPExcfYHt8Oo39XZmxMZ7ukefvjiqEEEJY0/IDKWw8msHap9rjbGckNjGrdNwydSePdqvPHW38+Wl9AtM3JzK05bkf8/xPmI8jv9/fCi9nW75bE88D03ax9un2peOW7af4eVRzmga4klNgovvH63m5bwNublqXtYfTuG9aLP8+3hZvZzsemh5L5waezBzTkiX7khk7LZZHupWvJXimhTuTmLz6GFNGtiDA3Z5XFhzghfn7+Py2JkDxuCUhi9VPtkcDny0/yp+7TvPd8KZ8eVsTsgtM9P5kA2M6BjFjTDSLdp1m5E87WP1Ue7ycLI1d5m47xdTRzQlwd8C2gpXMUa+tqDS+N/tHMjjat9zr+09lM7BF6euN/VzYdzK73H5n25GQSVxKLv2alq4G2xqfQQMfR7p/tI703CJuaOTDKzeF42hrpGu4F58sP8r245k09nNm5uZEukV4nfc6QoirZ+mOONbvT2DTB6NxdrBj59EkHG1tKCgyMfKj3xjXvw13dW/KD0t2MO3fWG7t3OiCztvAz5M/X70Vb1dHJv+1jTGfLGTzh6OxLX6MffaavUwfP4jmIXXIySuk07M/8b87utC/bQSr9xznnokLWPPeSLxdHRn7+R90bVyPuS8M5Z9tR7hn4gLG9W9zzuv/vuEAkxZt4ZenBxDo7cqLU5bzzA9LmfRQX8Dyfrz9yCk2ThiNBib+toGFmw7y0+P9mPzwjWTnFdD9hancd0NL5jw/hD82H+LOD+axccJovFwdy9xDoLcLtsbyC5zC7vu80vjeHdWDoR2jzvt3XL8vgeHdm1a6/Z9thykoMtEnJuyKJIGFuFSSBBbiGrI1GMjOL2L/qSxaBnvQLMiyknT1wWSMRsWojiEA3NM5lM+XXfhK0Zub+5f8fG/XMN7/az9xyTmE17Ws4LixuT/RwR4ALN6dRISvCwOLk5+dw31oWd+TZXtP0TbUi10JGcx5sAN2Ngb6NPWjVX3P815/yrqjjOsVQUjxitqnbogk5rXFmM2lWdEnr48ss6q4fZgX10VZvozEJmRg1pp7u1qKrPdrEcDkFUdYvPsUt7S2JMJvbxtcsmK3IvveuPhZxuwCU5kVxa4OtmTnF1W4b2J6HrtPZNK/RQBbX+nNP7tPcvf3m1jz3HV4OdvRqr4HH/6zn2f7NmTD4VTWHkqhQwPLFyZnOxv6NvXjxo9XogE/N3tmPSANEoQQQlRtNgZFVn4RB5JyiA5ypVmApZb9mkOp2BgUI4tXoN7dIYgvLmKl6E1nJCPHdApmwuIjxKXkEV7HssL1xiY+tAiyPD2zZF8yEXWcGNDckvzs1MCTmGBXlu9PoW19D3YlZjPr3paWcUvjOsQEu533+lM3JvBo9xBCvC0Jgqd6htDqndVlxi1P9AwpM25pF+JO90jLE0q7TmRh1pbYAW5uVpfJq+NZsje5JBF+W2u/khW7Fdnz8sWXhMouMOFqXxqTm4MN2QWm8x43a0si1zfywfWMMU9iRj6zt55k+j3RuDvaMGbKTj5ZFsf43mE42xnp08iHm7/YhAZ8Xe2YOablRccrhLhybI0GsnIL2X8ilZZhvjQPsbyPrtodj43RwN29LCsix1wfzacLNl3wefu1LV1xObZPS96dvZYjp9KJCLB8j7mpTTgtwyzvv/9sP0JkgBeD2lsahndpHExMAz+WbI+jfcMAYo+eZv4Lt2BnY+TGVg1oFe5f/oJn+WnpDh4f0JZQXw8Axg9uT/NHvynzfvz04PY42JW+f3VoGEiP5iEA7Dx6GrPWjO1jeY/q3zaCSX9u4Z9tRxhWnAi/o1sTwvw8Ko3h0KQHzxvnuUz8fSM5+YXc0qniZHF+YREvT13Bj49XvHK3tvlkUSwTFm4v9/rwTuG8Puzckwbi8kkSWIhrqEukDyM61OfpGTs4lZnPkJhAXrgpilMZeQS4O5bZN8jDsZKzlPfzuqN89e9hEtJyUUBmfhEp2QUl2wM8HEp+jk/NYc3BlDIrZwvNmo4NvDmVmY+3s12ZLz1BnuePIz41l6dnbufZWTtKXlMKTmflA2BQ4OfuUOaYgDPuLzE9n8Cz7jfI05HEjLwK979SnO2MZOWVJn2z8otwruRxTQdbI7ZGxSM9GmBjNHBjM38+/Hs/G+NSub6xL5/f2ZJnZu6k5f/+oUmgOzc39yspBD9l3VFmbznOqme7E+TpxLytCdzy1Vr+Hd8dx4so4i6EEEJcS13CvRjRNpCn5+4lKbOAwdG+PH9DGCczC/B3K1tfL/Csz/lzmbbxBJNWHiMhPQ+llGXcklMAWJKmAWecKz4tj7WH08qsnC00mekQ6snJzHy8nG3Ljls8zh9HfGoez8zdy/PzSxunKaU4XTx2MijLhO2ZzowpMTOfAPey24M8HUjMyK9w/yvF2c5IZn5p0jcz34Sz3bnHESazZu72UyWlOf7jYGNgWIwf9b0s46t7Owfz4ZIjjO8dxtQNCczZdpIVT7QjyMOBedtPceu3W1k2rq2MW4Swkq5N6zGqZzOe+OYfTqXnMLRTFC8N68TJtGwCPF3K7BvkfeHNp6cuj+WLPzZzPDkTpSAzt4CUrNLvYIFepec6djqT1XuOl1k5W2Qy06lRECfTsvF2dSyTrA32OX8cx05n8uS3ixn//ZKS15SCpAxLMzODUvifdX+BZ9xfYlpWmRgBgnzcSEzNqnD/K236il188/c2Frx0S5l7P9PE3zdyQ0wo4f7nX1x1Ncwa19sq163MIzc04ZEbmlg7jFpLksBCXGNju4UxtlsYx1NzuXPyeqL8XKnn7URCem6Z/Y6nlf7uZGdDbmHpoD8pq/RLxtGUHF6YG8usB9oTHeSBwaBo+OKiMqUJFKWPIQZ4ONKtoQ8/3dO2XGzHUnJIyS4o02EyPjWX+udYyQKWLzrP9GlYZkXymfFVVHz/zFf83O3L3C9Y7r97wzql+5+nfn/Yc39Uuu29oc0YUkFpjUhfV3YnZnJDU8uqndiEDBr6VjxIiPJzRVG+kcB/v9X3duaXse1KXu//yaqSa+5KyKBPE1/qe1tWMg+OCeTFOTs5eCqrpK6wEEIIURXd1zmY+zoHczwtj7t+2E6UrzP1PB04cUbCEyAhvfR3JzsjuWesUD2dVToxfSw1lxd/28fMMS1pEeiKwaBo9NqKs8YtpfzdHOga4cWPI5pztvjUPFKzC8uMW46n5ZUkNivj727P+N6hZVYknxlfheOWM17yc7Uvc7//Xbf7GSUTztd2KPzVfyvd9u7AyDJN3f4TUdeZPYlZ3NDIUlJq14ksIn3P3WDo3wMpmM2abuFlkw8NfZ0rHdPsSszmhsY+JX/HwdG+vPT7fg4m5dA04OolU4QQ5/ZA3xge6BvD8eRMbntvLo2CvKlXx52EMxKeAMdTSsvbOdnbkltQuuglKT2n5OejSek89+NS5j4/lOhQXwwGRYP7vkCf8YZ85ttEgJcL3ZvV4+cnB5SL7djpDFIyc8krKCpJhsYnZxJS99zfdQK8XHhuaIcyK5LPjO983wH9PFzK3O9/1+3R/Nxlgc5U/57PKt32/t09K13h+/uGA/zvl5XMfX4oQT6VP4WyIvYYu+OTmb5iNwCnM3K568PfeG5oh5IV3EJcK5IEFuIa2nosDa2hWaAbLg422BoVRoOidX1PikyaH9fEcXvbYKasPcqJ9NIZ2CYBbny1/BCJ6XnYGg18/e/hkm05BSYU4O1sj0lrPvnnAJl5hZXG0LtxXd5YsJvftiXQt6kfJq3ZFJdGiLcTwV5ONPR35aN/9vPk9ZEs3ZPEprhUOoV7n/O+7mhXj4mLD9DI35UGdVxIzipg45GUkuTq+cTU80Qp+GblYUZ2qM+i2JPsSsigZ6PyX84qc+itvhe873+GtArk2Vk7GBgdgLO9DV8uO8hdHSoeMHQM98bX3Z7Plh7koesasHj3KeJTc2kdYvlStf9kFgEeDhgMiilr4jiensdtbS1J4OhgDz5fdpCRHUMI9HBg/rYT5JvM502uCyGEENa0LT4DDTT1d8HF3ohN8bilVT13ikyan9Yd57bW/kzdcKJMUrixvwuTVh0jMSMfW6Pi61XxJdtyCswopfB2tsWkNZ8uiyOzklJMAL2jvHlz0UF+33GKPo19MGnYfDSd+t6OBHk60NDXmY+XxvFEzxCW7kth07EMOoade7XVHa0DmLgsjig/Fxr4OJGcXcDGoxklydXzaRnshlLw7Zp4RrQN4K/dyexOzKZHw3OPl8504NWuF7zvf4ZE+/LsvH0MaO6Ls52Rr1YeZXjbczeFm7nlJIOifbExlu2ncGsrfz5dHsctMX64O9jwzapj9CyOPzrIlS9WHGVEu0AC3e35bUcSBUXm8ybXhRBXz5ZDJ9Fa0zykLi4OttgYDRgNBtpE+FNYZOb7xdu5s1sTflq6k4SU0qRw0/p1+OKPzZxIzcLOxshXf24p2ZaTX4RC4e3qiMls5uPfNpGZW1DR5QG4ITqU/5u+ivnr93NjqwaYzGY2HkgktK47wT5uRAX58MG89Tw9qB2Lt8excf8JOjc6d4+b4d2b8uH8DTQK9iHc35PkzFzW70ugb6sGF/R3aRXuh1KKyX9tZVTP5vy5+RC7jiXRq0XIBR0PEPfNQxe873+W7zzKE9/8wy9PDyQy8Nw1038Y14+CotKJ0d4vT+OdkdfRrWm9i75ubfDI96sIrevKEzeWn/wVl0+SwEJcQ5m5Rbw0L5ajKTk42Rnp3yKAwTGBGA2Kb0a14slft/O/33YxMDqA9mGlHybdIn24oYkvXd5dhp+7A8Pb1ePrFZZEcJSfK6M7hdD7g3+xtzUypnPIOUsnuDrYMvXedrwyL5bxM3eglKJFsDvvDbW8yX5xZ0senbaNSf8uomuEDzc1O38tpwHRAWTlFTHqu40kpOXi5WzHoJaBF5wEtrMx8MPoNjwzawdv/7GX+l5OfDe6dUlTuKuld2Nf9iRmcuPEVRSZzNzaJpiRZySBu767jMd6hjOkVRC2RkuMj/+6jQ//2U8DH2e+HdUaTydLjEv3nuKjv/eTV2SmdX1Ppt/XDvvichC3tgni0Ols+n2yisy8Iup7O/H1iFa4Othe1fsTQgghLkdGXhGvLDjA0dQ8nGwN9GtWl0EtfDEaFJPvbMpTc/bw2h8HGdC8Lu1DSld7dQv35PooH7p9uA4/N3vubBPA5NWWRHBDX2dGtQ/k+k83Ym9j4J6OgecsneDqYMPUUS14ZcF+npm71zJuCXLlnYGWmpSf3dqYx2bu5uvV8XRp4MmNTepUeq7/9G9el8z8Iu7+aQcJ6ZaSEgOb173gJLCdjYHvhjfj2Xl7eeevQ9TzcuTb4U1LmsJdLb2ifBh1Mpubv9hEkVkzLMaPEW1LG9x2/2gdj3avX7KKODu/iD93JTHnvphy57qjtT9HU3K5/pMN2BoN3NS0Dg93syQkhsX4ceh0DgO+3ExmfhH1vByZdEeTMjWFhRDXVmZOPi9MWc7RpAyc7G0Z0C6CIR0bYjQY+GHczYyb/A+vTFvBoPYN6RBVOjnUvWk9+sSE0XH8j/h7unDXdU2ZtMiSCI4K8ubu3s257sWpONjacO/10QR6u1QWAq5O9kx/eiAvTlnOk98uxqAU0aF1mXB3TwC+eqgPD3/1F1/9uYWuTYO5uc25m4sDDGwfSWZuASM+/I3jKZl4uzoyuH3DC04C29kY+enxfjz93RLemLGakLru/DiuX0lTuKvlg3nrSc/JZ9Cbs0peG9opquRv0emZHxnXvy23dIrC06XsZ5zRoPB0ccDJXr4LVmUTF+3kh+X7SM0pwMPJjlFdI3m0T2nzvyd+WsOKvYnEnc5izuO96dTQ74KPtSZ15lJ/IcSVo5QaPbBlwCdfDo8593N6lbjly7UMiQnktrbBVzo0UQVtikvlzsnr96RmF1xYK18hhBDiClJKjR7YvO4nn9/W5JLGLcO+2cqQaF9ubXX+yWNR/W06ms5dP2zfk5pTKOMWIa4wpVSoj6vj9j1fjK08I3sOg9+axS2dori9q9RdrU58R3xsMpm1i9Y678zXlVKh3i7223e/P+yS/j1UN1VlJfChUxnUcXXA1dGOxLQcbvn4H14eHEPvZpbV7d8u20tUgAePfL+KiSM7lkkCn+/Yq83/wSkV/lsCWQkshBBCCCGEEEIIIUStZjZrXpyxgdnrj1BkNhNax5WpD/egrpsjH/+5g59W7Cc5K5+wum68eWsb2oVbyjc+8v0qXB1t2ZuQzqYjp+kY4cvEkR15dtp6luxKoHmwF9+O7YaXiz1HT2fR7uW5vHlrG977fTv2Ngae6R/NbR0qXv29cOtR3vltGwmpObSo58WHd3Ug2NuF3IIixv24hiW7ElBApL8785+8AYPhfFX5L0xY3bJ1ng1KcSSptP703d0tTyQZzyq3dCHHWpMkgYUQF+TTJQf44O/95V6/s109/m+gzDILIYQQour47N84PlwSV+71O1r789rN5RsQCSGEuDom/r6RCXPWlXt9ePcmvHFX92sfkKjUst0JbDiYxIbXB+Jsb0tsfCqOxY1Xw+q6sfCZvni72PPN0r3cN3kFG98YhG1xEnT+pqPMHNeLIC9nbnr3T/q9v4gPh7fn87s7cednS/l66R6e6WdphGcyazYfPs2mNwax41gKt05cTOtQH8L9yjYS3BqXzLPT1jP1oR40CvTg8793cf83K1kwvg/T1x4ip6CI7W8PwdZoYOPh0xU2EoxPyab7//1W6T1PeagH7cMr7kX03fK9/G/2ZnLyi6jn40L/VhfecPByjr2aJAksRBU14/721g6hjId7hPNwj/PXdRJCCCFE7fPrPdHWDqGMh7rW56GuVeMLlxBCXEuznxti7RDKePTm1jx6c2trhyEugI3RQFZ+EfsTM2gZ4k2zeqV9ivrFlH6m3tezEe8t2E5cUmZJ4rZ/q3pEBXgA0LNpIPsT02kf4QvAjdHBLN2VUOZaT9/cAkc7G9o2qEufFsH8vuUo4/o2K7PP1FUHuLt7w5I4Hr6+CR/+sYMTqTnYGhUpWfnEnc4iKsCj0kRukJczBz687ZL+HqO7NWRU10h2HU/jj23HcLmInj6Xc+zVJElgIYQQQgghhBBCCCFqsa5R/ozsEsGTU9dyKiOXoW3DeHFQS2yNBn5edYAvF+/ieEoOSkFmXiHJWfn8t0zMx7W0AZ6DrbHM7462NmTnF5W5VqCXU+nPnk6cTM8tF098chYz1h7k079iS14zmTUJadnc0i6MY8nZjPpyGQVFZkZ2jeCxPs3KneNyKaVoEuTJsl0JvP/7dl4Z0uqaHHu1SBJYCHFBHp22lVAfZx7vLY9QCiGEEKJ6GTdzNyFejozrEWLtUIQQotZ5+KtFhPp68OTAdtYORZzH/b0ac3+vxhxPyeaOT5fQKMCDjpG+PD99PbMfv57o+t4YDIqIJ6ajL+M6x1NyqOdj6XV3PDWHyLNKQQAEeDoxvl80D/ZuXOE5nu0fzbP9o9mfmM7AD/6idWidMg3awFIOovP/5lcaxy8P9yhZsXwuJq05fIl1fS/n2CtNksBCiGpl5YHTvL9oH9vi04kOdmfOgx1LtiWm53H39xs5lJSNBpoHufPmoKZE+Fo+XNJyCnh+9k6W7U3C1sbAIz3CGdMltOT4rcfSePLX7RxKyqJZoDsTb48mxMf5go4VQgghhDif9/85zMRlcdjZlDaS2ftyF4xnNbKZvfUkD/+6i09uacSQlqVfaDcfS+eV3w+w+2Q27g42vHJjOP2bWx6B/SM2ibf+OkRCej4xwW58OCSKQA8HhBBClFVkMtP9hankFxSx4YPRJa+Pm/wPK3cd48ipdOY+P4TOjYNLtt367hzW7i0taZBfZKJH8/r8/OSAaxr71bQ1LhmtNc2CvXBxsMXGaMBgUOQUFIFSeLvaY9KaiX/sJDO38LKuNWHhdt65vR2x8Sn8ue0Yj/ctv4r3jk7hjJ28gs4NfWkW7EVmXiHLd52gX6v6rNybiI+rA5F+7rg62GJjMJT7LAVLOYgjH99+0fFNXbWfPi2C8XK2Z/vRFL5dtpdHri/thVRQZMKsQWtNgclMXqEJexsDSqnzHmtNkgQWQlQrTnZGRnSoT3xqLkv3niqzzc3Rlk/viCbE2xkNfL/6CA9P28KicV0AeGneLpRSbH65F0eScxj82WoifV3oGlmH/CITd3+3kcd7R3BL6yA+/Hs/90/ZzJ8XcKwQQgghxIW6JcaPCYOjKt2elV/ExGVHaFjXuczrpzLzueuHHbzZP4Ibm9QhK99Eeq7l8dqDp3N4fNYepo1uQdMAF15dcIAHp+9i3tiYq3ovQghRHX355xY8nOw5WVC2REHz+nW4pVMUD3+1qNwx08cPKvN7x/E/0q9NzeqZk5FbwEu/biQuOQsnOxsGtKrPkLYhGA0G7u7WkJ5vLMDe1si910UR6Ol0/hNWwmhQRNf3Jub52djZGHhjWBsi/cuvBG4VWof/u6UNj/+0liNJmbg42NKtkT/9WtXnZHouT05Zy8mMXNwcbBnZNfKCVvReqFX7TvL6nC3kFprwdXNkZJdI7u7esGT7sI8Xs3r/SQBunbgYgI2vD6Kej8t5j7UmSQILUQ2YzZqX5sUyZ/NxisyaEB9npo5pSx1XeyYuPsBPa+NIyS4gzMeZNwY1pW2opXD6o9O24upgw97ETDYfTaNDA28+vq0Fz83eydI9STQLcuObka3xcrbjaEoOHd5ayhuDmvD+on3Y2xgY36cht7YJrjCmP3Yk8u6ivSSk5dEiyJ0Jw5oT7OVEbqGJx3/ZxtK9SSgg0teFuQ91xFDBrNyliKnnSUw9T2Zuii+3zcnOSFgdy6pfk1ljNCjiTueUbF+86ySzHuyAg62RKD9Xbmruz/QN8XSNrMPqA8nY2Ri4q4Ol4P243hFMWnGYg0lZNKjjcs5jhRBCCFE5s1nz8oL9zNl2CpNZE+LtyE8jmlPH1Y5PlsUxZUMCKdmFhPo48nq/CNrW9wAsJRxc7I3sO5nN5vhMOoS689GQRjw/fx9L96fQLMCVr+9sipeTLcdSc+k4YR2v3xzBhMWHsbMxML53KMNi/CuM6Y9dSbz/z2ES0vJpHuTKhEFRBHk6kFto4olZe1i2LwWlIKKuM3PubXnFxjEX4r1/DnNX20AWxiaVeX3Sqnh6NfRmQHPLl1xPJwOeTpZGM8v3p9C5gSctg90AeLR7fVq+vZrDyTmEel/6F3UhRPVnNmtemLKcWav3UGQ2E+rrwbSnBlDX3ZmP5q/nx6U7Sc7MJczXg7dHXke7yADAUsLB1dGePfHJbD6YSIeoQD4dez3PfL+UxdvjaB5Sh+8fuxkvV0eOJqXT5snveWtEd96bvQ47WyPPDenAbV0rfox/4cYDvD1rLceTM4kO8+WjMb0I9nEjt6CIRyf9xZLtcSgFDQO9+e3FW67oe/CJlCx+Xh7L/+7owvM/Liuz7e7eLQCwMRgqOLLUlkMniU/O4OY2NatUYtcof5a/3K/CbS8PjuHlwaUTi2c2cftkVKcy+47v16LM77d1bMBtHRuUeW10t4aM7lY+MXr2ufpGB9M3unxOYkjbUIa0vXpP5n4+uvM5t8998vpLPtaaJAksRDWwbF8SG46ksu6FHjjb2RCbkIGDreWDKayOMwsf7YyXsx3frjzM2J82s/6FHtgaLdt/23aCX+9vT5CHIzd/sooBn65mwrDmfHZHS+76Zj2TVxxmfB/Lm6/JrNkcl8aGF3uyMz6d275eR6v6noTXdSkTz9ZjaTw3ewc/3dOWRv6ufLHsEA9O3cJvj3Ti1w3x5BSY2PpKL2wNik1xaagKPrPjU3Pp8f7ySu/5p3va0i7Mq9Lt59Lq9cUkpudh1prn+pautNGAPqNwkVlr9iZaavPsO5lF4wC3km2OtkbCfJzZm5hJgzou5zxWCCGEEJVbfiCFjUczWPtUe5ztjMQmZpWOY3wc+f3+Vng52/LdmngemLaLtU+3LxnH/L4ziel3RxPoYU//LzczYNJmJgyK4pNhjRnx43a+WR3P070sXwJNZs2W+AzWje/AzoQs7vhuGzHB7oTXKZsE3RafwQvz9/HDiOY08nXmi5XHeHB6LPPvb8WMzYnkFJjY/FxHyzjmWEbF45i0PHpN3FDpPf8wohntQjwq3LZgZxJ/xCYR4G7PI93rlyR1AXYnZrHmcBov9w0vlwTeeiyDRn4u3PT5Ro6l5tExzJO3BkTi6WRb8kjqf8zFP+49mS1JYCFquaU74li/P4FNH4zG2cGOnUeTcLS1pIIa+Hny56u34u3qyOS/tjHmk4Vs/nA0tjZGAOat28fs54YQ6O3Kjf+bzk2vzeCjMb344sE+3PH+PCb9tZVnh3QAir9LHkxk80d3s+PIKW55dw6twv2ICCj7nW7LoZOM/2EpPz85gMbBPny2YBNjP/uDha/cyi8rdpGTX8TOT+/F1mhg44ETFb8Hn86g6/NTKr3nn58cQPuGgRVue3HKcsYPbo+j3aWnw2as3E3fVg1wdbS75HMIYQ2SBBaiGrA1GMjOL2L/qSxaBnvQLKj0UYmbm5eucLm3axjv/7WfuOScksRtvxb+RPm5AtCzUV32n8yifZg3AH2b+bFsT9kvGE/dEImjrZE2oV70aeLHgu0neKxX2RnOn9cdY3SnkJI4HrquAR8t3s+J9FxsjYrUnALiknOI8nOtNJEb5OnIvjf6XOZfpmKbXuxJToGJWZviCfR0LHm9W2QdPllygAnDWnD4dDYLdyTi6WT54M4uKMLFvuxboquDDdn5pvMeK4QQQojK2RgUWflFHEjKITrIlWYBriXbbmpat+TnMZ2CmbD4CHEpeSWJ25ub1qGhr6UsQo+G3uw/lU27UA8A+jauw7L9KWWu9WTPEMs4pr47NzT2YWHsKR7tHlJmn2kbTzCqfWBJHA91qcfEpXGcSM/HxqhIzSnkaEoeDX2dK03kBnk4sOflLhf9t+jfrC4j2gXg7WzHqkOp3Dt1J/7u9iWrn5+fv49XbwyvsK5hYkY+sSey+HVMNA18nHhy9h5e/n0/nwxrTNcGnrzz1yE2xKXTLMCFicuOoBTkFJgvOkYhRM1iazSQlVvI/hOptAzzpXlI6ftuv7al3/PG9mnJu7PXcuRUeknidkC7SKKCLN8de0WHsO94Kh2iLMnVG1s3YOmOuDLX+i+52jYygL4xDfh9wwEeH9C2zD5Tl+/knl4tSuJ45ObWfDB/PSdSsrA1GkjNyiXuVDpRQd6VJnKDfNw4NOnBi/5bLN95lNOZuQxsH8nKXccu+niw1BOes3Yfn46tfCWoEFWVJIGFqAa6RPowokN9np6xg1OZ+QyJCeSFm6KwNRr4ed1Rvvr3MAlpuSggM7+IlOyCkmN9XOxLfnawNeDjUpq4dLAxkl1gKnOtQI/SpGmAhwMnM/LLxROfmsOMTfF8tvRgyWsmk+ZEWh5DWwVxLDWXu7/bSL7JzMgO9Xm057WvleRkZ2R4+3o0/98/LH+6G17Odrw+qAnPztpJmzcWE+TpyKCWgew9aVnN62xnQ1Z+2ZpQWXlFONtbZsHPdawQQgghKtcl3IsRbQN5eu5ekjILGBzty/M3hGFrNDBt4wkmrTxGQnoeSinLOCanALAkgX2czxy3nDWOsTWUG8cEuDuc8bM9JzMKOFt8Wh4ztiTy+b+lCQCTWXMiI4+h0X7Ep+Zxz5Qd5JvMjGgbyCPd61+pPwWRvqV1fruGezGkpR+Ldp2mbX0PZmxOpK6rPR3DPCs81sHWQJ8mPiXJ60e61eeWb7aWnPedgQ15cvYeUnMKGdMxCBc7IwHu9hWeSwhRe3RtWo9RPZvxxDf/cCo9h6GdonhpWCdsbYxMXR7LF39s5nhyJkpBZm4BKVl5Jcf6uJV+N3SwtSnzu6OdDdl5ZZuDBXq7nvGzCyfTssvFE386k19X7uaTBRtLXjOZzCSkZDKscyOOnc5kxEe/UVBoYlTPZozr37bcOS5FYZGJF6YsZ9JDfS/rPP+VqujerN4Viau2qefjwonPh1s7jFpLksBCVBNju4UxtlsYx1NzuXPyeqL8XOkY7s0Lc2OZ9UB7ooM8MBgUDV9cVKZswcU6npZLPS/LF6+EtDwifF3K7RPg4cj4GyJ5oHuDctsAnunTkGf6NGT/ySwGf7GGVvU96BTuU2af+NRcur67rNI4fr63bcmK5UultaW5SmJ6Hl7Odvi42DN5ZKuS7Q9N3ULLYA/AUrv4+9VHSrblFpo4dDqbhsWrqM91rBBCCCHO7b7OwdzXOZjjaXnc9cN2onyd6RjmwYu/7WPmmJa0CHTFYFA0em3FZY1jEtLzCC5+CighPZ+IOuVLIfi72/N0r1Du71LxF/jxvcMY3zuM/aeyGTp5K63quZVLzMan5dH9o/WVxjF1ZPOSFcvncuaC31WHUlm+P4UWb64CIC23kNgTWew7lc1zNzSgoa8LirIrhM/8bXC0L4OjLaUlDifn8PGyuJJV1EKI2u2BvjE80DeG48mZ3PbeXBoFedOpURDP/biUuc8PJTrUF4NB0eC+L8qUlrlYx5MzqVfHvfjnLCIDyz8V6u/lwjNDOvDQja3KbQN4bmgHnhvagf0JKQx4Yyatw/3p3LhsTdj40xl0euanSuP45emBJSuW/3MiNYv9CSkMfXs2AAVFJjJzC2j80CRWvTMCTxeHik5Vzq+rdjOkYxTG89QNFqIqkiSwENXA1mNpaA3NAt1wcbDB1qgwGhQ5BSYU4O1sj0lrPvnnAJlnzcZerA/+2s/bQ5qyKyGDP2MTeaxX+aLmd7QNZuyUzXQK96FZoBuZeUUs35dEvxYBrDxwGh8XeyLruuDqYIONQVX4SGOQpyOH3rr4WVizWVNgMlNo0mgNeYUmjAZlqRl1JBWAFsHuFBSZeW/RPtwdbEpKY8QlZ+PuaIuzvQ0Ltp9gyZ5T/Du+OwAdw73JLzTz87qjDGkVyMR/DhDp60KDOuc/VgghhBCV2xafgQaa+rvgYm/EpmQcY0YphbezLSat+XRZHJlnPZVzsT5YcoS3+keyKzGLRbtO89iD5ZMMt7f254FfdtExzJNmAS5k5pv4d38KNzery6qDqfi42BFRx6l0HFNBQcogDwcOvNr1ouNbtPs0HUI9cLEzsvZIGjO3nOT7uyzNdV67OYLnbwgr2feeqTsZ3MKXW2L8ABgW48cDv8Ryb6cgQr0d+XzFUXpFlU6Y70jIpImfCyczC3hmzl7u7hBU0jhOCFF7bTl0Eq01zUPq4uJgi43RgNFgICe/CIXC29URk9nMx79tIjO3/NMTF+P9Oet4d1QPYo8m8cfmgzwxoPwq3uHdmnDvZ3/QuVEwzUPqkJlbwLKdR+nfNoIVu45Rx82JyAAvXBztMBoMFSZbg3zciPvmoYuKLdDble0Tx5T8vmH/CV7++V/+eOVWPJwtT00UFJkwmzUaKDSZySsowt7WiCr+HMjMyWfR5kP88cqtF3Xtmm7ghL+4s3M4t7QLO//OwqokCSxENZCZW8RL82I5mpKDk52R/i0CGBwTiNGgGN0phN4f/Iu9rZExnUMIOKOcw8UyGhTR9dxp/fpi7IwG/m9AEyJ9XcvtF1Pfk/8b0IQnf93GkeQcXOxt6BrpQ78WAZzKyOfpGds5mZGPm4MNIzrWv+wVvWdacyiZIV+sLfk95Nk/GNY6iIm3R5NXaOKFubEcS8nBwcZAi3oe/HxvO+xsLAOHrcfSeWluLJn5RTTyc2XqmLbUcbV84NvbGPl2dGuemL6N52fvpFmQO18OL+1+eq5jhRBCCFG5jLwiXllwgKOpeTjZGujXrC6DWvhiNChGtQ/k+k83Ym9j4J6OgWXKOVwso0ERHehG23fXYGtj4LWbI4ioW34lbEywO/+7KZyn5uwhLjkXF3sbuoR7cnOzupzMLGD83L2czCzAzcHIXW0DL2hF74Was/Ukj8/cTaFJE+zpwJv9I2lffH43BxvcHEq/ntkZDbg52JT0LOgW4cUTPUO5/bttFBaZ6Rbhxav9Sut5vjB/H7sSs3G0NXBLjB/P9r56XdOFENVHZk4+L0xZztGkDJzsbRnQLoIhHRtiNBi4u3dzrntxKg62Ntx7fTSB3uWfAr1QRoMiOsyXluO+xdbGwJt3da9wJXCrcH9eH96NcZP/5sipdFwc7OjetB7920ZwMi2bJ75ZzKm0bFyd7BjVo3m5Fb2XHp8BX4/SzwQPZ3uMSpV5bejbs1m95zgAt7wzB4DNH44uWd08f8MBQn09aFq/zhWJSVx5BUUmxn6zks2HT3MiLYeNrw+ink/pv+vcgiKemrqOhVuP4u5kx7P9o7mtQ8VPOAMcPJnBs7+sZ8OhJJzsbBjXpyn39WwEwJGkTB75YTXb45IJrevGRyM6EF3f+4KOtRZ1OUv9hRCVU0qNHtgy4JMvh8dUi+fwjqbk0OGtpRx/7yZrh1IrbYpL5c7J6/ekZhdY91NBCCFEraSUGj2wed1PPr+tSbUYt5ztWGouHSes49jr3a0dSq2w6Wg6d/2wfU9qTqGMW4S4wpRSoT6ujtv3fDH20jOy19jRpHTaPPk9J398zNqhVFu+Iz42mczaRWudd+brSqlQbxf77bvfH1Zl/z1UpZXABUUmvl++j5hQH/q9v4h1rw0skwT+36xNxB5P5Zt7u7IvMZ1hHy/mt6dvoHFg+Xr8eYUmOrw8l4eub8KdncIt/QPScojws0wK3PDWQq5rEsC4vs34Zc1BPvpjB+teG4i9rfG8x15N/g9OqfDfEoAUMRFCCCGEEEIIIYQQopaasGA7D363ssxrd362hG+W7QXg+enraf7MTBqM+4X+7y9ib0Jahed597dtPP7TmpLf1x44RavnZ5f8npCazYjPlxL15K+0e2kuczYcvqL3YWdj5L6ejWgdVvFq7RnrDvPEjc1xdbSjVWgdbmpZjzkbjlS477TVB6jn48KY66JwtLPBxcG2JIl7IDGdvYnpPN63GQ62RkZ1jcTGaGD1/pPnPdaapByEEEIIIYQQQgghhBC11KA2IfR+cyF5hSYcbI2kZeezck8iH97VAYBWoXV4pl80jnZGXp+7hUd/WM2i5268qGuYzZrhny9laNswvhnbjX0n0rnl479pEuRFpH/5BOmdny1h3YFTFZ5rcJtQ3r2j3UVdPy07n1MZuTQJ9Ch5rUmQJ6v2Jla4/5YjyQR6OTNs4j/sOJpCi/revHdHO4K9Xdh7Ip0Gdd2wtzWW7N840IO9CWlc1zjgnMdakySBhRAA1PNyklIQQgghhKiWgj0dpRSEEEJYSb067lIKopoLq+tGaF1XFu88zk0t67Fw6zHaNKhDXTdLz6EhbUvrzD91U3MinphObkERjnYXnlbcEneanPwiHuzdGLAkYPvF1GfBlqNE+jcrt//Uh3pc5l2VlV3cfNbFobRpqpujbcnrZzuRlsOqvYlMe6Qn7cPr8tb8rTz43Sp+e+oGsvOLcHUo23zVzdGu5FznOtaaJAkshBBCCCGEEEIIIUQtNrB1CPM2HeGmlvWYu+kIg9qElGz7+M8dTFt9kKSMPJQCrSEtu+CiksDxydkcPZ1F+OO/lLxWZNbc1r7yxmxXknNxo9WsvEJcHe0AyMwtLHn9bI62RtpH1KVbI38AnryxGQ0en05WnuWYzLzCMvufea5zHetyVvL4WpIksBCixKDPV3Nnu3oMbRVk7VCEEEIIIcoY8vUW7mjtz5CWftYORQghapX+r89gePemDOssvSBrskGtQ5iwYDvHkrNYf+AUk+7pAsDqfSf5ZuleZj3em3BfNzLzCgl/fDoaXe4cTvY25BaUrqxNysgt+dnf04kIP3eWv9zvguK57ZPFrK2kHMTQtqG8f2f7i7k9PJztqevmyK7jabQLrwtA7PFUGgZ4VLh/VIAHmw6fLvOaUpb/29DfnUOnMsgvNJWUhNh1PJVR3SLPe6w1SRJYCFElFRSZeWDKZjYfTeNEeh7rX+hBPS+nku3ztibw1fJD7DyewcCWAUy8Pfqc5zuYlMXzs3ey4UgqTnZGHusZzr1dLd1LV+4/zSvzd3EkOZsAd0eevzGKvs3kC6YQQgghKlZQZObB6bvYciyDExn5rHu6PcGejiXb/7fwAH/uSuJ0ViH1vRx47oYG9Gzofd7z3v7dVlYeTCtT2iIuJZfHZuxme0ImYd6OTBgcRYsgNwCmbzrBN2viOZKci7ujDaPaB/JQ1/pX/H6FEKIq+W7xdj75fSPJmbn0aFafj8b0wt3Zodx+hUUmBr89m73xyRSazDQM9OL/7uxKm4gAAJ78djEzV+0p2b+gyES4vycr3r6LpPQcnvtpGat3x5NXWETLMD/eHtGdiACva3Wb11yglzONAz0Z9+MaOjf0w8PZHoDs/EJsjAa8XOzJKzTx1rytlZ6jSZAnX/6zm8S0HGxtDExaUvr3jQnxAQXfLN3D8M4RGAyK2PhUnOxsKqwJ/MsjPS/pPvILTSXp6YIiU0mdY4Ch7UL58I8dfD2mC/sTM1iw5SjzKynRMLRdGF8u3s2qvYm0C6/LR3/upEO4Ly4OtoT7uRPp585Hf+5kXJ+mTF97kEKTmY4Rvuc91poMVr26EEKcQ/swLyaPbIXRUH7KzNPJlge6hzGiY73zniev0MSwL9fSu7Evsa9dz7rne9C9oWXmz2TW3PPDJu7tEsqBN/rwfwOb8ODPW0jJLrji9yOEEEKImqN9iDuT7mhS4TjF2c7IlFEt2PtyF17sG86Dv8QSn5Z3zvP9vuMUuQXmcq8/8EssHcM82PViZ0a0C+TuqTvJL7Lsl19k5o1+kcS+2JkZ97RkyvoE5m+veNWUEELUBCt2HeP9OeuY8cwgdn92H2ateeaHZRXuazQYeHfkdez+/D4OTXqAx/q14a4Pf0NrS4pwwt09ifvmoZL/ujYJ5uY24YAl8dk63I/lbw5n3xf306FhICM/+v1a3abVDG4Twoq9iQxsHVLyWo8mAXSM9KXNi3Pp8Mo8mterPBHevZE/N7QIotOr8xnw/l/cFB1css3GaODnh3qwat9JWj4/myZPz+DVmZvILzJd0Xvo+Mo86j3yMyazpuOr86n3yM8l257p1wIvF3uaPTuLUV8u4/Vb2tA40BOA+JRsQh6bRnxKNgCR/u5MHNmRR39YTdRTv7L7eBqfje5Ucq4vx3RhxZ4TRDwxnW+W7eW7sd1KVgWf71hrkZXAQtQwH/y9j0NJ2Xx6R8uS14ZPXk+PqLrc3TmEF+bsZMH2E2QXmGgS4MY7Q5rR0M+13HneW7SXE2l5fHBrCwDWHUrhoZ+3sPFFy2xcQlouz83eyYbDKbg72fJMn4YMbBl4xe7DzsZQslK3Il0j6wBw4FQ2GbkVF3L/zy8bjhHs5cSYLqXF7CN8LV0503MLSc8tZHBMIEopujesg5uDDXHJOXg5212BOxFCCCHEfz5ccoRDp3P4ZFjjktdG/LCd6yK9GN0hiBd/28fC2CSy80009nfhnQENifR1Lnee9/85zImMfCYMjgJg3ZE0Hvl1N+vHW7qYJ6Tn8fz8/WyIS8fD0Yane4UysIXvFbsPOxsDYzoFV7r9qV6lY47uEV6EeDuyMyGTII/yK9UAcgpMvPfPYd4fHMXgr7eUvH4gKYd9p3KYc18M9jYGRrQL5PN/j7LmcBrdI7wY0a507BXi7UifxnXYdCyd/s3rXoG7FELUJO/PWcfBxFS+eKBPyWu3vz+PXi1CuKd3C577cRm/bdhPdl4hTerVYcLdPWgYWP4JhndmrSEhJYuP7+0NwNq9x3ngiz/Z8tE9ACQkZzL+h6Ws35eAu7MDzw3twOAODa/Yffy99TCDOzSkgZ8lcffwTa0Y8MYsPrinJ072ZVdZGgyKRsE+AGitMRoMnM7IJTO3ADcn+zL7nkrPZnnsMd4acR0AIXXdub9PTMn2sX1a8vasNWTk5Jc7tia557oo7rkuqsxrRoOBT0eVTWDe3jG85Oe5T15f8rNSigl3tmfCGaUa7u9V+pkf6OXMt2O7Xemwy9j05uBKtzna2fD56M4VbgvycubIx7eXeW1g65AyCfEzhdZx5fen+1S47XzHWoskgYWoYQa1DOT6D1eUPPKQllPAqgOn+bA4mduqvifj+zTE0dbIGwv38NgvW/lzXJeLuobZrBnxzQaGtApk8shW7D+ZxS1fraVxgBuRvuUTysMnr2f94ZSK440J5J0h5TuBXklbjqYR5OnIbV+tY/vxdFoEu/PukGYEeznh5WzHoJYBzNgYz21tg1m69xRGpSpMjAshhBDi8gxsUZc+n24sHafkFrLyUGpJMjcm2J2ne4XiaGvkrb8OMW7WbhY+2PqirmE2a0b+uIMh0b58fUcT9p/K4dZvt9LE34WIuuUTyiN+2M76uPQKzzWoRV3eGnB5yYvUnEIOns4lsoJr/2fC4sMMa+WHn1vZCej9p7IJ83HE3qb0Ac5Gfi7sO5lN94jyK7E2xKVze2v/y4pXCFEzDe7QkJ4v/UxeQREOdjakZeexctcxPr63FwCtwv14dkh7HO1t+b/pq3j4q7/4+7Xbz3PWssxmzZ0fzGdopyi+e/Qm9iWkMOTt2TStV4fIwPLvWbe/P491+45XeK4hHaJ4b3SPCq9R5ndteeT/UGIaTevXqfBcN7/2K5sOJlJoMjOqZ7MKk7izVu8lJsyXMD+PCs+xfl8C/p4uNToBLGo+SQILUcOE+jgT6uPMkj2nuLGZPwt3JNImxIs6rpYPq8ExpStGnuwdQcOXDpFbaMKx+LGFC7H1WBo5BSYe6G7p4tk4wI1+zS3XqigJPGVM28u8q8uTmJ7HqgPJ/HxvW9qFefH2H3t5+OetzHu4IwADogN44tftjJ+1A1uD4qu7YnCyu/C/hxBCCCEuTKi3EyHejizdl0LfJnX4I/Y0beq7U8fVkvwcHF26WvfxHiE0+r8VFz9OOZ5BboGJ+7tYSkY19nfh5qZ1WRibxGMVJGJ/HNn8Mu+qciaz5rGZuxnYvC5hPk4V7rP/VDZL9qaw6OHWnMzML7Mtu8CE61ldy90cbMguKP/o7Gf/xpFTYGJI9JVb8SyEqDnC/DwI9fVg8bYj3NQmnAUbD9I2MoC67pb3xaEdS1d/Pj2oHQ3GfkFuQRGOdheeNtpyKJHs/EIeurEVAE3q1aF/2wh+33iAJwLLfyec9tSAi76PHs3r8/BXfzHiumb4e7nw6YKNAOTkF1Z6zO8vDyO/sIg/Nx8iv7Di0gO/rtzNiB4VL05KSs/hqe8W8/JtFa8gvcrMZk0VaCkmqgOtNVprBVT4D12SwELUQAOiA5i39QQ3NvNn/tYTDGwZULJt4uID/LL+GElZ+ShAa0jLKcDR3bHyE57lWGouR1NyiHzhz5LXisyaW9sEXcnbuGIcbI20C/MqKSHxRO8IIl5YRHZ+EcfTcnlw6hZ+uqcNHcK8iU3IYMS3GwjycqJJgJuVIxdCCCFqngHNfZm3/RR9m9Rh/o6TDDijdMEny+KYvukESVkFKKWKxylFOLpfeBI4PjWfo6l5RL22ouS1IrNmWMy1b/o6fu5e8grNvNk/stJ9np+/j5f6NsDOpny7Fmc7I5n5ZcteZeYX4XzWZPWMzYl8t+Y4c8fGlDS/EUKIsw1qH8mcdfu4qU04c9fuZVD70vemj+av5+d/d5GUnoNSxd8Ts/Jw9HK54PMfO53J0aQMwu77vOQ1k0lzW9fG5zjq4vRoHsLDN7XmjgnzyC0o4sEbY/hj0yECzhOnva0NA9pF0vW5KTQPqUtUUGmpiz3xyew9nlLm7/GfjJx8hr07h2GdG3NLp6hy26+BU9n5hTZp2fkljdqEqMzhpEzsbYyZOQVFFc6KSBJYiBpoYHQAH/y9j2MpOaw7ksKXd1nqA68+mMy3Kw8z4/4OhNd1JjOviMgXF6F1+XM42dmQe8YsaVJW6cqUAHcHwuu6sOzpC6vlc/vX61h3qOJyEENbBfLu0Ku3Agcgys+VTXGpZV77b2CzJzGTRv6udAq31IpqFuROTH0PVh04LUlgIYQQ4ioY0LwuHy45QnxqHuuPpPPFbU0AWHMole/WxjP97mjC6ziRmW8i6rUVaMoPVJzsjOSesRr2dFZpQ1d/d3vC6zix5LELexLpzu+3se5IxeUghkT78s7ASysH8eqC/exJzOLXe6IrTPD+Z9WhNPadygEsK4dNZk2LN1fx8+gWRNR15vDpXPKLzCUlIXYnZpWpBbxwZxKv/3mQmWOiK605LIQQYCkJ8f7cdRw7ncG6fQl8/fCNAKzaHc/kv7cx57khhPt7kplbQNh9X5Q0UDuTk70tuQWlk1NJ6TklPwd4uRDh78mKt++6oHhufXcOa/cmVLhtaKcoJtzds8JtD94Yw4M3Wur1Lt95FD9PZwK8LqycX6HJxOGTaWWSwL+u3M31LUPxcC77HpqTX8gd78+jTYQ/zw3tcEHnv9K01rnuTnZLP/xjR89Xh7SyVUoWBYuKmc2ad+ZvyzcY1PTK9pEksBA1UKCnI4393Xh8+jY6h3vj4WR5xDI7vwij0YCXsx15RWbe/mNvpedoEuDGV8sPkZieh63RwNf/Hi7Z1rKeB0rBNysPM7x9PQxKEZuQgZOdscJyENPubXdJ95FfZCpJUBcUmUvqB4LlS1KhyUyR2YxZa/IKTdgYFDbG8l+yhrQK5Kvlh1h14DTtQr34+J8DtA/zwsXBhmaB7uxNzGLdoRTahXmx+0QGaw+lMKpDyCXFLIQQQohzC/RwoJGfM0/M2k2nBp54OFoa+WQXmDAaFF7OtuQVmXnnr0OVnqOxvwuTVh0jMSMfW6Pi61XxJdtaBrmiFHy7Jp472wRgULDrRBZOdsYKawJPHdXiku4jv8hckiDJL9JlxikfLD7Msv0pzLkvBmf7c3/l2vpcx5KfE9Lz6fflZv5+pDVeTrbYGA1E1HVi4rI4Hu1enxmbEykwaTqEegDw74EUnp67l6mjmld4b0IIcaZAb1eaBPvw6KS/6dw4uCTpmZ1XiI3BgJerI3mFJt6csbrSczStX4cv/tjMidQs7GyMfPVnaTPLmAZ+KKWY/NdW7rquKQal2Hn0NM72thXWBJ4+ftBF30NeQRFxSelEBnhxMDGNl3/+lycGtMVgKJ8c3Xs8mRMpWXSIskycfbd4OwkpWcQ0KH0yxGzWzFqzl7dGdC9zbGGRiVEf/Y6/lwvvjLzuouO8kjJyC0f+uGL/ivmbjwZ0aehndLK3kUc+RAmtNVl5hUXLdp3QuYWm2Oz8oicr21eSwELUUANbBvDCnFg+uyO65LUeUXXp2MCbdm8uwc3Bhqf7VL6ypVukDzc08aXLu8vwc3dgeLt6fL3Ckgi2MRqYck9bXp4fy4d/76fIpGkU4Mr/DWhyRe+h09vLiE/NBaDzO8sASJxwMwAzNsYzbvq2kn1nbjrOk9dH8PQNDYlPzaXru8v4d3x3gjwdifR15aPbonnsl21k5BbSJtSLT2+3rI4O9XHmvaHNeGrmdhLScvF0suOh7g3oEulzRe9FCCGEEKUGtvDlxd/28+mwRiWvXRfpTcdQTzq8vxZXBxue7hVa6fHdwj25PsqHbh+uw8/NnjvbBDB5tSURbGM08OOI5ry64AAfLTlCkVnTyM+F/90UXun5LkWXD9YRn5YHQNcP1wGQ8KYlUfD+4iPYGRVt3l1Tsv+7AyMZHO1HfFoe3T9az7JxbQnycKCua+njvflFZoAyr31+axMem7mbL/49SqiPI9/c2bRkVfDEpXFk5BUxdPLWkv0vZ/WyEKLmG9yhIc/+uIwvHuhT8lrPFvXp1CiIVo9/h5uTHc8OqXzVa/em9egTE0bH8T/i7+nCXdc1ZdIiSyLYxmhg2lMDeHHKcibMXU+hyUTjYB/euOvCniC9EPmFRYz5ZCFxSel4ODswpncL7u5VOpn35LeLAZhwd0/MZs3//bqKAydSsTUaiAry4ecnB+DrUTpptnJ3PLn5hfRuEVLmOuv3n2DJjjgc7WwIGVNa3mLVO3cR5HNtnxjVWp9SSjXKzi9q98uagy0Bu/MeJGqbPGAtsE1XtIS/mDrHNiHEZVBKjR7YMuCTL4fHyLIMcV6b4lK5c/L6PanZBY3Ov7cQQghxZSmlRg9sXveTz29rIuMWcV6bjqZz1w/b96TmFMq4RYgrTCkV6uPquH3PF2MvvBivqPZ8R3xsMpm1i9Y6z9qxiJqr8uJUQgghhBBCCCGEEEIIIao9SQILcRXJQntxoeTfihBCCGuTjyJxoeTfihBXlwbp/iWEuOIkCSzE1ZOTkVtotnYQonrIzCtEQba14xBCCFFr5aTnFsm4RVyQrLwilJJxixBXSU5uQaGNlO6sPfIKitAaBRRYOxZRs0kSWIirZ9W6wym2OQUma8chqoFFsScLsvNNf1g7DiGEELXWqvVH0mTcIi7Iot2nZdwixNVzyqBUyqaDidaOQ1wj/2w7gpuT3TattUzGiqtKGsMJcRW5OdpOi/R16f/cjVFOjfzcsDHKUz2ilNaa01kFzNly3Pz50kPpuYWmaK31UWvHJYQQonZyc7CZFlnXuf+z14c5Rfk5Y2OQcYsopYHTWYXM3XbS/MWKo+m5hWYZtwhxldjbGke7Otp/+s7I65zaNwzE0c5o7ZDEFaaBnLxClsce5fmfludm5hYM0VrL5Jq4qiQJLMRVpJSysTGoJ5ztjffkFZqDtK7Sq+9toUY9gmLAck/51g7kHLStUWUrpf7Myi/6n9b6gLUDEkIIUXuVjFvsjPfkFZmDtNYybrl2qsm4xZCtFH9m5Ztk3CLEVaaUGuThbP90XqGpmdmsbawdzyWwBczA1X7E5L+/TdFVvs4VZzSoAjsb44b0nPy3tNaLrR2PqPkkCSyEQCk1CngeaKu1TrNuNFeOUup1oAvQS2tdaO14hBBCCHH5ZNwihBBVm1KqLrAPCLna79NKqQbAWiBYa513Na8lRHVXlWf3hRDXgFKqDfAeMLAmfZEq9gqQBUywdiBCCCGEuHwybhFCiGphJDDnWrxPa60PAluAIVf7WkJUd5IEFqIWU0r5ArOAe7XWu6wdz5WmtTYBdwJ9ilcNCSGEEKKaknGLEEJUfUopA3Af8NU1vOxXxdcUQpyDJIGFqKWUUnbATOA7rfVcK4dz1RTPPg8E3itePSSEEEKIakbGLUIIUW1cB+QC667hNecDkUqpRtfwmkJUO5IEFqL2+hBIBf5n7UCutuLVQvcCs4pXEQkhhBCiepFxixBCVA/3AV/pa9iAqriO+nfIamAhzkkawwlRCyml7gGeBtpprdOtHc+1opR6DcvMdE+tdU3pJi6EEELUaDJukXGLEKJ6KG4ItxdLQ7hr+n6tlAoFNgBB0iBOiIrJSmAhahmlVHvgLSwNVWrNF6lirwJpWFYTCSGEEKKKk3GLjFuEENXKaCwN4a75+7XW+jCwCRh6ra8tRHUhSWAhahGllB8wAxijtd5j7XiuNa21GRgO9FRK3W3teIQQQghRORm3yLhFCFF9FDeEu5dr2xDubF8BY614fSGqNEkCC1FLFDdUmQVM1lrPt3Y81lI8Kz0QeFsp1c7K4QghhBCiAjJusZBxixCiGukBZAHrrRjDb0C4UqqxFWMQosqSJLAQtcdEIAn4P2sHYm3Fq4nGADOLVxkJIYQQomqRcUsxGbcIIaqJ+4BJ17Ih3NmKG8R9izSIE6JC0hhOiFpAKXUv8ASWhioZ1o6nqlBKvQL0BnpIwxUhhBCiapBxS8Vk3CKEqKqUUr7AHqzQEK6CWP5rEBestc61ZixCVDWyEliIGk4p1RF4A0tDFfkiVdb/AaeBj60diBBCCCFk3HIeMm4RQlRVo4HZ1k4AQ0mDuI1IgzghypEksBA1mFIqAEtDlbu11nutHU9VU9xwZQTQvXjVkRBCCCGsRMYt5ybjFiFEVVRFGsKdTRrECVEBSQILUUMppeyxNFT5Qmv9u7XjqaqKVxkNBN5QSnWwcjhCCCFErSTjlgsj4xYhRBXUE8jAUoKhqvgdCFNKNbF2IEJUJZIEFqLm+gQ4Abxp7UCquuLVRncDM4pXIQkhhBDi2pJxywWScYsQoooZi5Ubwp1NGsQJUTFpDCdEDaSUGgs8CrTXWmdaO57qQin1EtAXuE5rnW/teIQQQojaQMYtl0bGLUIIa1NK+QG7gfpVrY67Uqo+sAlpECdECUkCC1HDKKU6AXOATlrr/daOpzoprmc1EzittZZZYyGEEOIqk3HLpZNxixDC2pRSzwFhWusqWadcKbUQ+EVr/aO1YxGiKpByEELUIEqpQOBXYKR8kbp4xQ1XRgKdilclCSGEEOIqkXHL5ZFxixDCms5oCDfJ2rGcwySkQZwQJSQJLEQNoZRyAGYDn2mt/7B2PNVV8WOoA4H/K16dJIQQQogrTMYtV4aMW4QQVtQLSAM2WjmOc/kdCFFKNbV2IEJUBZIEFqIGUEop4DPgKPCWlcOp9opXI40Cfi1epSSEEEKIK0TGLVeWjFuEEFYyFviqKjWEO5vWugj4BmkQJwQgNYGFqBGUUg8CDwAdtNZZ1o6nplBKPQ/0B7pJwxUhhBDiypBxy9Uh4xYhxLXy/+zdd3QUZRfA4d9k03vvPSHUUELoXZoiHUREBKQjCiiKCvb+2btipypIExFE6UjvvYSSXiAJ6T073x8bUkgCoW7Kfc7xnOzuzOzdyL65c+ed9yqK4gacpBo2hLtWUYO4g+gaxGXpOx4h9EmKwELUcIqidELXFKS9qqrn9R1PbVI0U+l3IBUYX52vcgshhBA1geQtd4/kLUKIe6XoopNvTWlKqSjKX8Dvqqr+ou9YhNAnWQ5CiBpMURQvYAkwSk6k7ryik6cxQGt0M5aEEEIIcYskb7m7JG8RQtwLNaQh3LW+Q5aEEEKKwELUVEUNVZYDn6mqul7f8dRWRbepDgReLZq9JIQQQoibJHnLvSF5ixDiHugFJKuqWp0bwl3rL8BbUZRgfQcihD5JEViIGqjodr9vgIvA+3oOp9Yrmq00GliiKIqnvuMRQgghahLJW+4tyVuEEHfZRGCuvoO4GaUaxE3SdyxC6JOsCSxEDaQoypPo/vi2U1U1U9/x1BWKorwADAY6q6qao+94hBBCiJpA8hb9kLxFCHGnKYriDpwAvFVVTdd3PDdDURRv4DDgKQ3iRF0lRWAhahhFUboAS9GdSF3Qdzx1SdFMpiVAJjBWGq4IIYQQ1yd5i/5I3iKEuNMURXkJ8FJVtUbOqFUUZQ2wXFXVn/UdixD6IMtBCFGDFF29/A0YKSdS917RydPjQEtgqp7DEUIIIao1yVv0S/IWIcSdpCiKBhhPDVsK4hpzkQZxog6TIrAQNYSiKGbACuBjVVX/1Xc8dVXRbawDgZeLZjcJIYQQ4hqSt1QPkrcIIe6gXkCiqqoH9R3IbVgHeCqK0lTfgQihD7IchBA1QNHtfPMAI2CE3M6nf4qi9EL3/6SNqqqR+o5HCCGEqC4kb6l+JG8RQtwuRVFWAX+pqvq9vmO5HYqivAY4qaoqd0iIOkeKwELUAIqiTEd3O197WcS++lAU5TngYaCTqqrZ+o5HCCGEqA4kb6meJG8RQtwqRVE8gOPo1gPO0Hc8t0NRFC/gCLrPIs1KRZ0iRWAhqjlFUboBv6JrqHJR3/GIEkUznRYDecAYmekkhBCirpO8pfqSvEUIcasURXkZ8FBVdbK+Y7kTFEX5E1ipqupP+o5FiHtJ1gQWohpTFMUH3YnUo3IiVf0UnTyNB5oB0/QcjhBCCKFXkrdUb5K3CCFuRVFDuAnU7IZw15oLTNJ3EELca1IEFqKaUhTFHFgJvK+q6kZ9xyMqVnQL0SDgxaLZT0IIIUSdI3lLzSB5ixDiFvQG4lVVPaTvQO6gdYC7oijN9R2IEPeSLAchRDVUdLvegqKHj8ntetWfoig90P0/a6uqaoS+4xFCCCHuFclbah7JW4QQVaUoyh/An6qq/qDvWO4kRVFeBVxUVX1C37EIca9IEViIakhRlGeAkUBHaahSc8j/NyGEEHWR/P2rmeT/mxDiRhRF8QSOAt41vSHctWrzZxOiMlIEFqKaURSlO7AQmZlR48hMKCGEEHWN5C01l+QtQogbURTlFcBNVdUp+o7lblAUZTXwh6qqP+o7FiHuBVkTWIhqRFEUX2ARMEJOpGqeopOniUAjYIZ+oxFCCCHuLslbajbJW4QQ11PUEG48tash3LWkQZyoU6QILEQ1UdRQZRXwnqqqm/UcjrhFRbdTDgaeL5odJYQQQtQ6krfUDpK3CCGu434gTlXVw/oO5C76G3BVFKWFvgMR4l6Q5SCEqAaKbsdbDOQDo+V2vJpPUZT70P0/bauqariewxFCCCHuGMlbah/JW4QQ16orSyXU9iUvhChNisBCVAOKojwLDAc6qaqare94xJ2hKMoMYDTQQRquCCGEqC0kb6mdJG8RQlxVqmmal6qqmfqO525SFMUDOIY0iBN1gBSBhdAzRVF6AvOBNqqqRuo7HnHnFM2Umg9ogEdlppQQQoiaTvKW2kvyFiHEVYqivAq4qKr6hL5juRcURVkFrFFV9Qd9xyLE3SRrAguhR4qi+KPrqD1cTqRqn1INV+oDM/UcjhBCCHFbJG+p3SRvEUIAKIpiSO1vCHet75AGcaIOkCKwEHqiKIoFuoYqb6mqulXP4Yi7pOg22UHAzKLZU0IIIUSNI3lL3SB5ixACeACIUVX1iL4DuYfWA86KooToOxAh7iZZDkIIPSi63e43IBt4XG63q/0URekKLAHaqap6Qb/RCCGEEFUneUvdI3mLEHWXoih/AitUVf1Z37HcS4qivAR4qqo6Wd+xCHG3SBFYCD1QFOV5YAjQWVXVHH3HI+4NRVGeAiagO6Gq1Q0WhBBC1B6St9RNkrcIUfcoiuIFHEbXJK1Ofe8VRXEHTqD77On6jkeIu0GKwELcY4qi9AZ+Blqrqhqt73jEvVM0k+pnwAzdeooyAAshhKjWJG+puyRvEaLuURTldcBBVdUn9R2LPiiKshJYp6rqd/qORYi7QdYEFuIeUhQlAF3X5YflRKruKTp5mgz4A8/pORwhhBDiuiRvqdskbxGibilqCDeOutUQ7lpz0TXIFKJWkiKwEPeIoiiW6BqqvKGq6nY9hyP0pOg22sHAjKLZVUIIIUS1I3mLAMlbhKhj+gBRqqoe03cgevQv4KgoSkt9ByLE3SDLQQhxDxTdTrcUSAPGy+10QlGUzsDvQHtVVc/rOx4hhBDiKslbxLUkbxGi9lMU5S/gd1VVf9F3LPqkKMocwEdVVZkRLGodKQILcQ8oivIiMBDoIg1VxFWKokxFd5tlO1VVM/QdjxBCCAGSt4iKSd4iRO2lKIo3cAjwUlU1S9/x6JOiKG7ASaRBnKiFpAgsxF2mKMoDwA/oGqrE6DseUX0UzbT6EbAChslMKyGEEPomeYuojOQtQtReiqK8AdipqvqUvmOpDhRFWQGsV1W1Lq+PLGohWRNYiLtIUZR6wDx0ibKcSIkyik6engC8gRf0HI4QQog6TvIWcT2StwhRO5VqCPedvmOpRuYCk4oufglRa0gRWIi7RFEUK3QNVV5RVXWHnsMR1VSphitPFs2+EkIIIe45yVtEVUjeIkSt9CAQUccbwl3rX8AOkAZxolaR5SCEuAuKrhguA5KBiXK7nLgRRVE6AiuADqqqhuk7HiGEEHWH5C3iZkneIkTtoSjKWmCJqqrz9B1LdaIoymzAT1XVCfqORYg7RYrAQtwFRR1F+wJdVVXN1Xc8omZQFGUK8CTQVpoQCCGEuFckbxG3QvIWIWo+RVF8gIOAp6qq2fqOpzpRFMUVOAX4qKqapu94hLgTZDkIIe4wRVEeRLde2hA5kRI36VtgJ/CLrD8lhBDiXpC8RdwGyVuEqPnGA4ukAFyeqqrxwEZghL5jEeJOkZnAQtxBiqIEAf8BA1VV3anveETNoyiKCbAFWKOq6tt6DkcIIUQtJnmLuF2StwhRcymKYgREAD1VVT2h73iqI0VRegH/A0JkqSRRG8hMYCHuEEVRrNE1VHlJTqTErSqahTUEeKJodpYQQghxx0neIu4EyVuEqNEeBC5IAfi6NgDWQKi+AxHiTpCZwELcAYqiGKBrjhGvqupkXf3AMAABAABJREFUfccjaj5FUdqjOznvqKrqWT2HI4QQohaRvEXcaZK3CFHzKIqyDvhVVdX5+o6lOlMU5QUgUFXV8fqORYjbJUVgIe4ARVFeAXoD3VRVzdN3PKJ2UBRlIjADXcMVaUYghBDijpC8RdwNkrcIUXMoiuIL7Ae8ZD3g6yvVIM5XVdVUfccjxO2Q5SCEuE2KovQDJgJD5URK3Emqqn4HbAfmF83aEkIIIW6L5C3ibpG8RYgaZTywUArAN1bUIG4D0iBO1AIyE1iI26AoSgNgG9BfVdXd+o5H1D5FDVc2AetVVX1D3/EIIYSouSRvEXeb5C1CVH+lGsL1UFX1pL7jqQkURekBfAi0kAZxoiaTK7RC3CJFUWzQrX32opxIibulqOHKUGBi0ewtIYQQ4qZJ3iLuBclbhKgR+gHnpQB8UzYBVkBrfQcixO2QIrAQt6DoFrcFwCZVVX/UdzyidlNVNQ7dCdWPRbO4hBBCiCqTvEXcS5K3CFHtTQTm6juImkRVVS3wHbrfnRA1liwHIcQtUBTlNaA70F3W0xP3iqIo44FngTbSlEAIIURVSd4i9EHyFiGqH0VR/IB9SEO4m6YoijNwBmkQJ2owmQksxE1SFGUgMA54SE6kxL2kquoP6G5FWiANV4QQQlSF5C1CXyRvEaJamgAskALwzVNV9RLwLzBS37EIcatkJrAQN0FRlIboGqo8qKrqXn3HI+oeRVGMgY3ARlVVX9NzOEIIIaoxyVuEvkneIkT1UdQQLhK4T1XVU/qOpyZSFKU78AnQTBrEiZpIrsgKUUWKotiia6gyS06khL4UzeJ6CBhXNLtLCCGEKEfyFlEdSN4iRLXSHwiTAvBt2QyYA230HYgQt0JmAgtRBUW3sK0GLqqq+pS+4xFCUZTWwF9AZ0nkhBBClCZ5i6huJG8RQv8URfkHmKeq6iJ9x1KTKYoyC2ioqurj+o5FiJslRWAhqkBRlDeBzkAPVVXz9R2PEACKojwOvICu4UqKnsMRQghRTUjeIqojyVuE0B9FUfyBPegawuXoO56arKhB3Fl0DeJS9ByOEDdFloMQ4gYURRkMjEbXUEVOpES1oarqz+iaEyyUhitCCCFA8hZRfUneIoReXW0IJwXg21TUIG490iBO1EAyE1iI61AUpTGwBXhAVdX9eg5HiHKKGjxsBLaqqvqyvuMRQgihP5K3iOpO8hYh7r2iBo2RQFdVVU/rO57aQFGU+4BPkQZxooaRK7BCVEJRFDt0DVVmyomUqK6KZnk9BIwumv0lhBCiDpK8RdQEkrcIoRf9gTNSAL6jNgNmQFt9ByLEzZAisBAVUBRFAywC1qqqOl/f8QhxPaqqJgCDgblFs8CEEELUIZK3iJpE8hYh7rlJwFx9B1GbFM3+/Q7d71aIGkOWgxCiAoqivA10AHrKenqiplAUZTTwEtBaVdUr+o5HCCHEvSF5i6iJJG8R4u5TFCUA2I00hLvjFEVxAsIAPxnDRE0hM4GFuIaiKEOBR5GGKqKGUVV1HrAWWFQ0K0wIIUQtJ3mLqKkkbxHinpgAzJcC8J2nquplYB3SIE7UIDITWIhSFEVpgm59n96qqh7UdzxC3Kyihiv/AjtUVZ2j73iEEELcPZK3iJpO8hYh7p5SDeG6qKp6Rt/x1EaKonQDvgCCpUGcqAlkJrAQRUo1VHlaTqRETVU0C2wYMLJodpgQQohaSPIWURtI3iLEXTUAOCUF4LtqC2AEtNNzHEJUiRSBhaC4ocqvwGpVVRfqOx4hboeqqpfQNVz5pmiWmBBCiFpE8hZRm0jeIsRdMwld8zJxl0iDOFHTyHIQQgCKorwHtEJ3O2WBvuMR4k5QFGUk8Bq6hivJeg5HCCHEHSJ5i6iNJG8R4s5RFCUQ2ImuIVyuvuOpzRRFcQTOIQ3iRA0gM4FFnacoyjDgYeBhOZEStUnR7LA/gV+l4YoQQtQOkreI2kryFiHuqAnAPCkA332qqiaia3L5mL5jEeJGZCawqNMURWkKbAR6qap6SN/xCHGnKYpiCPwD7FVV9QV9xyOEEOLWSd4iajvJW4S4fUUN4aKATqqqntV3PHWBoihdgK+BJtIgTlRnMhNY1FmKojiga6gyXU6kRG1VNEvsYWB40ewxIYQQNZDkLaIukLxFiDtiEHBCCsD31DZAA3TQdyBCXI8UgUWdVDTL4Fdghaqqi/UdjxB3k6qql9Elg18pitJM3/EIIYS4OZK3iLpE8hYhbttEpCHcPVWqQdxEfccixPXIchCiTlIU5X0gBLhf1tMTdYWiKCOAt4BWqqom6TseIYQQVSN5i6iLJG8R4uYpilIP+A/wlvWA762iO3bOA/7S3FJUVzITWNQ5iqIMB4YiDVVEHVM0e2wFuoYrhvqORwghxI1J3iLqKslbhLgl0hBOT4ouVv2FNIgT1ZjMBBZ1iqIozYF/gR6qqh7RczhC3HNFJ1F/A4dUVX1O3/EIIYSonOQtoq6TvEWIqlMUxQRdQ7gOqqqG6TueukhRlM7At0BjaRAnqiOZCSzqjKLbM1YCT8mJlKirSjVcGaIoyiP6jkcIIUTFJG8RQvIWIW7SIOCYFID1ajugAB31HYgQFZEisKgTimYRLAGWqqr6m77jEUKfim5VGgR8XjTLTAghRDUieYsQJSRvEaLKJgJz9R1EXSYN4kR1J8tBiDpBUZSPgCZAH1VVC/UdjxDVQdE6k++ia7iSqO94hBBC6EjeIkR5krcIUTlFUYLQzUL1UlU1T9/x1GWKotijaxAXKE0tRXUjM4FFrVfUWXgg8IicSAlRomh22e/AEmm4IoQQ1YPkLUJUTPIWIa5rIvCLFID1T1XVZGANMErfsQhxLZkJLGo1RVFCgPXAfaqqHtN3PEJUN4qiaIB16NYPm6nveIQQoi6TvEWI65O8RYjySjWEa6+q6jl9xyNAUZRO6JaFaCQN4kR1IjOBRa2lKIoTsAJ4Qk6khKhY0Syz4cBARVEe1Xc8QghRV0neIsSNSd4iRIUGA0elAFyt/AeoQCd9ByJEaVIEFrVSqYYqv6qq+ru+4xGiOiu6ZWkg8GnRLDQhhBD3kOQtQlSd5C1ClDMJaQhXrRTN/p2L7v+NENWGLAchaiVFUT4BGgB9ZT09IapGUZRhwPvoGq5c1nc8QghRV0jeIsTNk7xFCFAUpT6wFfCW9YCrl6IGcReAAGkQJ6oLmQksah1FUR4D+gIj5ERKiKpTVXUp8Cu6hitG+o5HCCHqAslbhLg1krcIAUhDuGqr6K6F1cBofccixFUyE1jUKoqitAT+Brqpqnpc3/EIUdMUNVxZA5xRVXWGnsMRQohaTfIWIW6P5C2iLlMUxRRdQ7i2qqqe13c8ojxFUToAPwINpUGcqA5kJrCoNRRFcUbXUGWynEgJcWuKZqGNAPoWzU4TQghxF0jeIsTtk7xF1HGDgcNSAK7WdgKFQGd9ByIESBFY1GCKjkPRz0bAUmChqqrL9RuZEDWbqqpX0DVc+VhRlFDQfccURbHVZ1xCCFGTSd4ixN0heYuow6QhXDUnDeJEdSNFYFGTDQC+Lvr5IyATeEV/4QhRexTNSpsMLC+ardYJWKzfqIQQokaTvEWIu0TyFlHXKIrSEKgP/KHvWMQNLQD6KIriqO9AhJAisKjJOgDHFEUZA9wPPCoNVYS4c4pmpy0EfgfOAO0URZG/G0IIcWskbxHiLpK8RdQxE4CfVVXN13cg4vqK7lb4A2kQJ6oB+aMoarI2wBXgA3S3gNkoimKh14iEqEUURakPvIZuttrzQApQT48hCSFETSZ5ixB3keQtoq4oagj3GPC9vmMRVTYXmKgoiqLvQETdJkVgUSMpimIItAReAD4E3gb2AUH6jEuIWuYz4CTwL/AAcAldEUMIIcRNkLxFiHtC8hZRVwwBDqqqekHfgYgq2wXkAV30HYio26QILGqq5oAJoEW3yPpGwE9V1UP6DEqIWuYBYCxwH2ALhAD99BmQEELUUM2RvEWIu03yFlFXTAK+03cQouqKGsR9hzSIE3qm6P4tClGzKIoyBXgdmAYsU1W1QM8hCVGrKYrSCPgccFJVtZm+4xFCiJpE8hYh7i3JW0RtVfRveyPgLesB1yyKotgCF4EgVVUv6zkcUUdJEVgIIYQQQgghhBCiGipaA9hGVdUERVE+AbJUVZ2j77jEzVMU5WfghKqqHyqK4gnESZNYcS9JEfgWFS3o7QZIQw9xrUIgRlXVXH0HImoeGVvEdcjYIm6ZjC3iOmRsEbdMxhZxHTK23CGKovQDRqNrBhcFtFJV9aJ+oxK3QlGUdsA8oD6wA3hKVdUD+o1K1CWG+g6gJjLUGIywNDH8QFVVewsTwwIUpJIuihUWqgbpuQUaazOjFek5BeNVVc3Wd0yiZrg6tmiLxhYFGVtEiQKtapAhY4u4BYYGyghLE80HWhV7C2NNgSJ5iyilQKsaZOQUytgiblrJ2KLqxhbJW0QpBVp0eYup4Yr03EIZW25PKuAKDAX2A3GKooxSVXW+fsMSVVXUIPZRYCGQA3RD9/80RY9hiTpIZgLfJEVRetmaG62cP76deSs/e3QXv4Uo63J6Di8sO5K9/cylzanZ+Q/qOx5R/SmK0svWzGjlvLEtzVv52snYIip0OT2XF1ecyN4elihji6gS3dhiuHLemBbmrXxsZGwRFbqcnsuLq05nbz+XLGOLqJKrY8svIxuZt/K2lrFFVOhyRh6z/zyXvf18yubU7AIZW26RoigNgVXAJWAuMBGIUFX1MX3GJapOURQDYD2QAWwF2gIPAh6qqqbpMzZRt0gR+CbZmhuvfXVAkwdGtPXVdyiimsvOK6Th7DW5OQVaL1n4XdyIrbnR2lf6NnxgRBsvfYciqrns/EIavfyvjC2iSmzNjNa+8mDQAyNae+g7FFHNZecX0ui1LTK2iCqxNTNc+/L9/g+MCHXVdyiimsvOL6TR27tzc2VsuWWKojgC59HNIE0C1gHPqaqq1Wtg4qYoimIM/ATUQ7cchBlgqkpRTtxDBvoOoKYp1Kohrf0c9B2GqAHMjDUEuVrnAMH6jkVUf4VaQlr72ek7DFEDmBlpCHK1lLFFVEmhqoa09rPVdxiiBjAz0hDkYiFji6iSQpWQ1j7W+g5D1ABmRhrqO5vL2HJ7kgFLwBT4TlXVmVIArnlUVc0DRgGbASMgWwrA4l6TNYFvkgqGJkYafYchaghTIwMAY33HIao/VVUNTQxlbBFVY6r7tyJji7ghVcXQxFCu+YuqMTWSsUVUjapiaCpji6iior9DMrbcIlVVtYqipAAvq6r6tb7jEbeuqHj/QtESOo/oORxRB0kRuIYJfX09Xz3Wkjb+jgDM3XKOrzeFsXxqRxLScpi55BC7X+qF/6zVxftk5RViZqzh6kpdiye1p4GbNe+tPcnfx+JIzynA3caUIaHePHFfPeJTs2n39r/EfDywzHsP+mI7j7bzYWio9z36tCU2n0pg9vIjxKfl0CHQkc9GtMTB0qTCbUNfX09SRi5XlyYbGOLJx8ND7mG0QuiH27NrOfBSN9xtzYqfm7n0KG42pjzbO4gl+6KZseQobw9sxNiOvhXuN/23I/g6WuBtb8asZccBKNSqFGjVqwk8nnZmbH2uM2uPxfPhP2FEJWdjYmhAMy8b5o5sgaWpIdN/O8KqQ3EYakrWCFwysTWhvvd2tvNP/4Xz695oTsWnM6N7AM/2Dirz+qW0XGavPMHWs4kYaRQeae3Fy30bAHAmPp3nlx/nRGw6bjamvDe4Me0DdXeCbDh5ic82nuNMQgYWxhoGtnBnTp/6GGoqPiE+HJXCs78f4/zlTII9bPh8eFN8HaWRuqidWr23ncSMPAwUBRNDAzoH2vP+4IZYmxmV2W7UL4fYczGFIy91xtRIw4gfD7InPAWAnPxCjDQGaAx0Y8i0bn64Wpuw/FAcSye0LHMct+f/5cCLnXC3NSX6SjYvrT7D3vAUCrUq3vZmvNA7gO4NnO7JZy9t5rKT7DifTERyNssntqR9gH2l2w6eu5+DkanFnzfUx4Yl41tWur0QtYH7S9vZ/1xr3G1KcvqZK8/iZm3Cs919WHIwgadXnOWtvgGMbete4X4zlp/B194MbztTZq0OAyrIW2xN2TKtJetOJvLhxgiiUnJ1eYuHJd8+3ABLE0NmLD/DqqOXy+Qtv40JJtT73s52nvjrKXaHp5JToMXL1oQXevrSs4Eu91BVlY82RfLrgXgycgvp18SJd/oFYFz0Oc8kZPLC6nOciM/EzdqYd/sF0t7ftkr7XutITDozV4ZxISmbYDdLPhsShK+DWYXbintDVVW5HbkWUVX1BeAFfcch6h4pAtdg32wO47st51jxZEcCnK1ISMspfu3C+/2Lf3adsZIds3sWF4Zy8gt58JOtuNqasuLJTvg5WhCTks3n/54pc4w75XJ6Dk5Wprexfy6T5u3jy8da0rGeE8//fpgXlh3h+zGtK93ntyntiwvlQogSduZGfL7pPCPaeF2d8VWhISEeDAnRrSG6ZF80yw/GsHRSm+LXL1zO5JmlR/nl8VDa+NmRllPAPycvlTnGjJ6BPN0j8JZjzcwtQFEUzI1vfYa0q40pz/Wux+8HYip8fczP+2kf4MCnL9+HkaHChcuZAOQXahnz8wEmdfZj+RRv1hyN4/FfDrDrxa7YWxiTnlvAzF71aONvT0ZOAaN/2s/cbReZ2i2g3HvkFhQy7peDzOgZyEMtPfhkwzmmLDrMuukdbvlzCVHd/TYuhDZ+dmTmFjBx0VE+3XSRVx4suQiTlJnHlrNJmBtr+OfkZfo3c2XxuJILtoPn7mdEKw+GhrgVP7dkf+wN33fa0hOEeNnwzYhgDA0UjkSnUai9+TstL6fn4mRV8cXmqgr2sGJIiCvTl56o0vYfDmlU5vMKIcDOzJAvtkYxoqXr1TvsKjS4uTODmzsDsORgAssPX2Lp2JLVBy4kZvPMijB+GdmI1j7WpOUU8u/ppDLHmNHVmxndbn2yS2ZuIYrCbeUtM+/zxs/BDGNDAw5FpzP852PsmtkKe3MjlhxMYO3JRNZNaYGRRmHUghN8sjmS53v6kl+o5fFFJ5nYwYNl45qy5kQiYxefZOczN973WrkFWsYuOsnT3bwZ2tyFT7dE8sTS06yd0uKWP5cQQojqQYrANdRXm87y47YLuiKuk+VN7fv7vkguZ+SwZkYXzIqSFE87c94fpvvDHpmUedvxZecVsuZIDIt2h1NQqLJmRpdbPta6o7E087alV2PdidGsBxrR/u1/yMwtwMJE/gkLcTOaeFij1cK8XZFM6ux3y8c5EZtGgJMlbf11M9tszIx4qOWdaTx1IOIKi/dGs+ZIHKufbEd9V6tbPlafYF3DmvUnEsq9tvHUJRIz8pjdpz4GRbPvGrrpZvycv5RJanY+Yzr4ADCguTsfrA9j3fEEHm3jxaAWJTOSzIw0DGnpwX/nksq9B8DO88kYGxrwWFvdieWMHoF8vy2c85czCLjJ8VuImsbCxJCeDZ3YfCaxzPN/HImngaslHfztWX4ojv7N7kxzqcNRqfxvUEPMii5yhfrYVnnfgkIt/5xK5Nd9MZyITefgnM63FcuYdrpGn4YGyg22FEJUprGbJaqqMn9vHBM73HqecSI+gwBHM9r42gBgY2bI0BYudyTGA1Fp/Lo/gTUnLrN6YjOCnG/9Tp/6LiX7GiiQX6gSn5aHvbkRG88m82ioK85WulUVxrZ15631F3m+py/nE7NJzS5gTBtdfjIg2IkPNkaw7mQSj4a6Xnffa+26mIqJoQEjW+nOvaZ39eL7nTGcT8wiwNH8lj8b4GNipHnL3MSokaIochIniqmqquYXahMzc/LXAH8VrZ1bhqJbP6GTubn5EFNTUx+kv1WdUFhYmJGamvovsFxV1TR9x1MbyOBbA83dco4jkSmseLIjvo43X0DYfvYyXeu7FBeA76SjUSks2h3OH4eiaeppy+j2fjzQtKRYMvK7ney9kFzhvoNaevK/h5qXe/5sQjqN3EpuxfKyN8fMyJALlzMI9rSt8Fjjf96LqkKIjx1vDmqKj9x2LUSx5+6vx4T5B3msrfctz1YJ9rDmRGwab605TfeGzjT3tikuutyKpMw8lh2I4dc9UeQUaBkW6sGmZzvhUXQHw4qDMby4ovLZdGfe6nXT73k4KhV/Jwue/PUwW84kUs/FkncHNaaRuzXaCno0aFWVM/HpFR5rX/gV6rtUPB6fTcigoVtJIdvMSIO/kzln4qUILGq/tOx81p+8TNtrGl8uOxjHoGautA+wp9/Xe0nKzMPB4vaXiwzxtuH5lacY286LUF8bXK1vfCfSucuZ/LYvlqUHYvG2N2N4qDvfjCiZQfjCylOsPBxf4b6tfW1Z8PidmR336pozvLrmDA1dLXnlwSCaekjTLSEAnu3uw8TfTjGyleut5y1ulpyIz+Ct9RfpEWRPM0/L28xb8ll++BK/HognJ1/LsBAXNj7ZEg9b3R0EK45cYvaf5yrd//RL7St9berS06w9mUhugcp9QXY0dNEVXrUqlM5OVBXi0vJIyymgohseVFXl7KXMG+5rbVq2JHD2UhYNXUvOncyMNPg5mHH20q0XgRMz84wsTY0+G9m1iUETb0cjTSXLZ4m6SVUhKT2L37afGhZxKfWooijdVVUtvkVZURTF3Nz8cxsbm8cnTpxoGhAQoDEwkH9DtZ2qqqSnp7Ny5cp+O3fufENRlDaqqt74tjBxXVIEroG2nrlMn6Zut1QABriSlUczL9vrblOoVQl6YU2Z5zLzCni0nU+F2/939jKv/XGMtJx8Hm7lw4bn7sPTrnySsHBi5QlPZTJzC8qscQpgZWZIZm5Bhdt/MyqUYE9bCgq1fLDuFI/9sIvNs7oXr7MnRF3Xxs+ehm7W/LIjgie6+d/SMXwdLVg6qTXfbr3Iol8OkFugZUQbL17r16B4XdzPN5zj2y0XAPCwM2PTzE7ljpOek8+zvx9n69nL9GjozNuDGtM+wB5FKft9HRziweCQOzPT+Kq41By2nk3ks4eb8unDzZi/K5LHfznAf893IdDZEnNjDT9sD2d0e29WH4kjPCmLrLzCcsf543Asuy8k8/agxhW+T2ZuAVbXnGBZmRqRWcGxhKgtHv3pEBoDhYzcAvwdLXhoSMkyB+cvZ3I4Oo3vRzbDw9YULzszVh9J4PH2Xjc87q4LV6j/6uZKX//u0aZ8sTmc99af40JSFqHeNnz8UGMCncpfDD4Rm86c1acJT8xiSIgbyyeFUq+CGXzvDWrIe4MaVvGT35qX+9QjyNkCAwOFebuiefSnQ/z3bHtsrllHWYi6qI2vDQ1dLPhlTxxPdPK8pWP4Opix5PFg5u6IYezik7q8JdSVV+/3L14H+POtUXy7IxoADxsTNj5Vfl3u9JwCnl0VxrZzKfSob89bfQNo72dTPm9p5szgZs63FOtXwxpQUKjy34UUziVmFR+7a6AdP+6O5cHGjhhrFH7eo6uFZOUVEuhopstbdsUwurUbfx5LJDw5h6w87Q33vbYInJlXiJVJ2QK5tamGzNxby1uy8gqJTcs33/L2COq5V742uhATeze3HPj28ua7zsSOBuaWeqm5mZnZ2BMnTpjb2d3b/iJC/6ZMmWL59NNPm/7www9vAWP1HU9NJ0XgGuijh1vw9poTvLH6OK/0b3LT+9uZG3MpLfe622gMFM6+17fMc4O+2F7p9okZuUQmZdEu0IHGHta4VGHmTVVZmBiSkZNf5rmMnMqXgmjlV7RmvpGGVwcEs3j2Gs5dSqe+q8yoEbWbxkChoLDsVJD8QrXCZmWzetdj9E8HGN3+1te+a+1nT2s/e1RVZce5JCbMP0Q9ZwtGt9ddLJrW48ZrAucXqpyKS8fBwpgm7tYEuViWO5G6W0yNNHjbmzGsle6EcnwnXz7+N4zzlzJp4GbFT2Na8tKqk3z8bxid6jnSqZ4j7jZlx7ZtZxOZs/Ikv05sVeksRgsTQ9Jzyl60ysgpwOIu3I0hRHWxaGwL2vjZkV+oZd7uaAZ8u49tM9tjZqRh2cE4Qn1s8bDVfZ8GNnNl2cG4KhWB2/nbVdgY7ip7C2Ne7RvEq32DiE3J4dnlJ5m+5AR/PVm+j0Bqdj7nL2dRz9mCRm5WeNrdudzlZrXwsin+eXJnH37bH8P+iBS9NLQT4l7RGFAubykoVDHSlM8Dnuvhw5iFJxnd+tbXzW7tY0NrHxtd3nIhlYm/naKekzmjio45rYvXDdcEzteqnE7IxMHCiMZuFgQ5m9+VvMVQo9C1nh0/7Y7Fz96M7vXtGRHqSuSVHPp+exhDA4URoa4cjc3AydIYjYHCj4824qU15/lkUyQdA2zp5G+Lm7UuN7nevteyMNaQfk3BNz23EAuTW8tbdlxIobG3o1rP3V5m5Ijr0hgYMK5nM/NT0UnDKVUE1mg0fUeOHGksBeC6a8qUKYbff/99/xtvKW5EisA1kJutKcue6MiAL7ZhaWLIM70b3NT+nYKc+PDv02TnFd6xJSEGhnjSq4kraw7H8u2Wczy75DBDWnrycBsfGrmXnNg88u1O9lxIrPAYQ0O9itclLi3IxYo1R0qaOkVfySIrrwD/KtxGrSigIPmGqBvcbUyJvpKNt0PJLPzI5Cw6BZVvktjSx45mXjb8+F/4bb+voih0rOdIh0AHzsRn3NS+9hbGbJvVmf3hV/h1bxSd399Gaz87hrXypGdD5+Ku1csPxjBr2fFKj3P+nd43HXcDV0s2nLpU7vmr53JNPW1Y/WQ7QHd3RNt3t5RZR3lf+BWmLDrMD6NCCPawKXecq4JcLJm3M6L4cXZ+IRcSM6nvKktBiNrPSGPAiFYevLz6DGcSMmjmYc2Kw/FcTs+l6ZtbAcgr1JKaXcCFxEz87+DyTe62pjze3ovJi49V+Hr7AHsOzu7EP6cu8+u+WF764zQPBrvwcEt3WvnaFm83a8VJlh+qeDmINr62ZRra3SkG9+himBD65G5tQnRKDt72JRdgIq/k0CnAtty2Lb2saeZhyU+7b/9OYEVR6BhgSwd/G04n3FwvFHtzI7ZOD2V/ZBq/Hoiny2cHaOVjzcMtXOhR3744b1lx+BKzVodVepxzr1StOWyhVuVicjagu9g/p7cfc3rrcpFF++MJdrMsvtuxqbslqyc2K96v3cf7mFS0jvKN9i0tyNmceXtLfs/Z+YVcTMomyPnWloJIyszH0+HW+zuIusXd3hIFpcyC3SYmJu4+Pj5Su6rDPD09yc3NrfyES1SZfJFqKB9HC5ZO6cDAL7ZjZWrIhC7Xn21X2kOtvPn5vwtMmreX1wcG4+toQVxqDp9vOMPU+4JufIBKmBsbMqy1N8Nae3Phcga/7o7gkW930tLXjp/GtgXg18k3vxzEA03deevPE2w8GU/7QCc+WHeK+4PdK5wJHH0li/iUbJp562Yfffj3aZytTWTdTVEn9G/mxicbzhHobIm9hRHrjidwOj6dbvXLF4EBnutdjxHf77ul99pzMZkLlzPp1dgFBwtjjkSnsvtCMq/0u7mLUleF+toR6mvHGwMKWH0kjrlbLzJr2XHWTmuPj4M5Q0I8GHILy0EUFGop0KoUalUKtCo5+YUYaQzQGCj0CXbljTWnWX4whoHN3VmwKxIbMyP8i24bPx2Xjp+TOfkFKh//G4aTpTH3Fc3KOxmbxpifD/DJsGDaBVz/1sb2Afbk5mtZvCeKIS3d+XzjeYJcLGVcEnVCoVZlyf5YTI0M8LE3Z094CglpuWyc0bbMMinj5h9h+cF4nusVcFvv9/a6MIa1dCfA0ZzUnAKW7I+lhVfldwIZaQx4sIkLDzZxIS41hyUHYpm29DiWJob8O12Xu7w/uBHvD25007HkFWjRqiqqCnmFuvHHxNCg3KzB1Ox8Dkel0dbfDgWYvyeaS+m5tPS2ven3FKIm6RfsxKdbIgl0Msfe3Ih1pxI5nZBFt6CKZ/s9192HEfMqvyB8PXvCU7mQlE2vBg44WBhxNCad3eFpvHL/rTXJDfW2JtTbmjf6FLL6+GW+3RHDrD/C+Gtyc3zszRjc3JnBzW9uOYhL6Xnsi0yjWz07jDUGrD2ZyM6LKbzYyxeAK1n5ZOQW4mlrwtHYDD7ZHMn7A0rOAU8nZOLnYEZ+oZaPN0fiZGlMtyD7Ku1bWjs/G3LytSzeH8+Q5s58sTWKICfz22oKp7lXt3ndRdO/34C7vSXPD2mr71BqtaJmzUrZ5wyUmr4G8Pjx4/H09OS1117Tdyg1koGBAWoFPVvEzZMicA0W5GrNkikdGPrVf1iYGOLjULXZM6ZGGpZP7cR7a08y8IvtZOQW4G5jytBW3rhYmxKfmn3bsfk7WTKnX2NeeLARRyKv3NaxnKxM+HZ0K2YvP0JCag7t6zny2YiSW0FnLT0EwPvDWpCRU8CzSw8TkZSJmZGGlr72zJ/QrsLb4YWobZ7pVY/31p3hgc93kJFTQD0XS+aNDcXR0qTC7Zt72dLaz471J8rPhr0RG1Mj/joaz1t/nSEnvxBnKxPGd/JlWOitrdV3lYWJIY+09uKR1l6EXcrA2uz2/kx9uuEcH/1b0pjls43n+fThpjzcyhN7C2N+HtOSF1Yc5/nlx2nsbs3PY1piVDReLNkfzeI9UWhV6BzkwC+PhxYf57ttF0nJymPKosPFz7Xxs2fxhFYAjPh+H2387ZjePRATQw0/jglh5tJjzFl5gmBPG755tPltfS4hqrvhPx7EQNHdi+PvZM4PI5thZ27EsoNxPBjsTMA1a/SObufFRxvO33YRODO3kFG/HOJSeh5mRga087fj04cqXq/7Wm42psy4z5/p3fzYH5F6W3GA7new64IuB3rkx4MA7H2+I172Zny26SJ7Ll5h8bgQ8gtV3vk7jHOXszDWKDRys2Lh2BbYmst6wKJ2e6abN//bEE6fbw+TkVtAPSdzfhnZqNLllZp5WNHK25p/TlfcZPp6bMwMWXsikbfXXySnQIuzpTHj27nzUAuXG+98HRYmGh5p6cojLV0Ju5xVbn3dm/X9zhieWXEWRQFfezO+HtaAJm66i8bJWfmMWnCCuLQ8XK2Mea67D/cFlVyIXnIwgV8PxOvylgBbfn605OLVjfZ9dN5x2vhYM62rNyaGBvz0aCNmrgzjpTXnaeJuydfDbu0iv6gZft12ku/WH+ZiQiq2FiaM7dmUaX1DK9w2r6CQiV+t48C5BOKuZHDwk8fxdiq52BqTlM6zP29iz9lYbC1MeeXhDgxsW36i2Sd/7OXt33ex5uWhtK1/Z/t+CP3bv38/48eP5+zZs4SEhDBv3jwCAirO8RITExkzZgybN2/G3d2dL774gvvvv/8eR1x3KFJNvzmWpkaJW57v7uBlf+tXQkXd0f+zral7LyYPV1X1b33HIqo3SxPDxM3Pdnbwsje78caizhvw5a7UveFXZGwRN2RpYpi4+Zl2Dl52MraIGxvwzb7UveEpMraIG7I0MUzc/FSIgz7X0hY1w28H4tkeC98/1UffoRRTVRWtqqK5idmld3omcEGhttxEpYqeq0yhVqu72HoHJln/vPEojb0caeHvQnRSOg/9bxUvDWtfYfE2r6CQnzccpWWgKw++8Tv7PhpTpgjc761ltK7nxotD27E3LI6H31/FprceKdMUMDoxjREfrSYpPYcfn3qgTBF4/7k4Hvlg9enkjOzijqxWVlbfvvXWW5OmT59+25/1TlBVFa1Wi0ZT9aU17/RM4IKCAgwNDW/4XGUKCwsxMCh/d9KdkJubS2BgIC+//DKjRo3izTff5N9//2Xv3r0Vbj9s2DAsLS358ssv2bhxIyNHjiQsLAxn55K7KXJycrC0tCwoKCiQK+S3SaZHCiGEEEIIIYQQ4p7QalVenL+FoMlz8Z/4Dd1f/pVLqbr1mQ9dSKDL7EX4jv+GGT9sYOA7y/l120kA/rd8N9O/31B8nN1nYmgx46fix5+u3kfI0z/jM/5rus1ZzJ6zJWsbPzn3H16Yt4XB767Ae9zXnIlJ5nR0EgPeXk7AxG/p9MJCtp2IKt7+YkIKfV5fis/4r3nskz/Jyi3bqLwy8zYdo82z8wic9C2Pf/YXVzJyAIi8nIbLqM/5ZeMxmjz1AxO+XMf/lu9mwpfrGPv5X/iM+5oNR8I5HZ1E3zd+x3/iN3Sbs5hdp0t64/R/axnv/r6LHi//itfYr8s1T79Vj3dvSusgd4wMNfi52PJAS3/2nYurcFtjQw2T7m9BaGD5Jo0ZOXnsPhPDjH6hGGoMaN/Ag7b13fl9x+ky281esI3ZD7UvXkP7Zmm1WqZNm4ajoyO2traEhoaSkJAA6GagNmvWDGtrayZMmMB9993HL7/8AsBrr73G+PHji4/z33//4evrW/z43Xffxc/PDysrK0JCQtixY0fxa2PGjOGpp56iR48eWFhYcPLkSU6cOEG3bt2ws7MjODiYTZs2FW9//vx5OnTogJWVFQMHDiQzs2rrj3/33XfUr18fe3t7hg4dSnKy7s6H8PBwDA0NmTt3Lh4eHgwfPpzXXnuNRx55hIceeghLS0vWrVvHiRMn6NSpE7a2toSEhLB9+/biY3ft2pWXX36ZVq1aYW5uTkbGzfVyqaotW7ZgYmLCxIkTMTU15aWXXuLEiROcPXu23LYZGRmsWrWK119/HXNzc/r160dISAirVq26K7EJKQILIYQQQgghhBDiHtl8LIK9YXEc+HgM576dzCfjumNmZEheQSGjP13D6PuCCft2Ik28ncoUQW8kwNWWv18bxoXvJjO8U0PGf7GO/ILC4tdX7DrDyw93IPyHKXg5WDHs/VWM6R7M2W8n8s6oLoz/Yi1J6bqlESd9/TftG3gQ9u0kHunciDX7zlX2tsXW7DvHd+sP89tzAzj51QScbMx5ft7m4tcLtSpHwy+x/6MxfD1F19R47YHzjOzahIvfT6FDAw8e/Wg1/VoHcubriTw9oBWPfrya5PSS5RpX7DrDd1Mf4OL3k7EwKT8p0n/iN5X+t2zn6XLbV2Tv2TgaeDhUadvSVK1uHfzS95prVZXT0SVLuGw4Ek5eQQH3h/jf9PGv+ueff9i5cycXLlwgOTmZ77//HjMzM/Ly8hg0aBCTJ08mKSmJZs2asW3btiofNygoiN27d5OSksLo0aN5+OGHyc8vKbT/+uuvvPfee6Snp+Pj48P999/P5MmTSUxM5PPPP2fYsGEkJiYCMGLECLp06UJSUhKPP/44y5cvv+H7r1ixgs8++4y1a9cSHx+Pi4sLTz75ZPHrhYWFHDx4kPPnz7NgwQIAVq5cyfjx40lLS6NLly7069ePoUOHcvnyZWbPnk2/fv1ISkoq8xl+/fVX0tLSsLAov5yora1tpf8tXry4Sr/HkydP0rRp0+LHZmZm1KtXjxMnTpTbNiwsDEtLS7y8vIqfa9asWYXbijtDisBCCCGEEEIIIYS4J4w0BmRk5xEWdwVFgaa+zliZm7AvLA5DjQFjezTFyFDD+F7NcLOreiPdfq3r4WxjgcbAgEn3tyArN5/wS2nFrz/YKpAW/i5oDAzYcDSCIHd7BrUNQmNgQKdGXoQEuLLpaARRiWmciEzk2UFtMDbU0KdlAC0DXW/4/gs2H+fpAa3wc7HF2FDDrMFtWLPvPFptSVn0ucFtMDU2xMxYd9t+u/oe3NfUBwMDheORiWhVlUn3t8DIUEP/1vVo5OnIhiPhxfuP6NIIf1dbTIwMrzZRK+PCd1Mq/W9o+xuv7fz5mv1k5ebzUIebXwfaytyE0EBXPlq1l9z8AradiGLX6djiWdS5+QW8smg7b43sctPHLs3IyIj09HROnz6Noii0aNECa2trdu3ahaGhIVOmTMHIyIgnn3wSD4+qrzc8ZMgQXFxc0Gg0TJ8+nczMTC5cuFD8+uDBgwkNDUWj0bBu3ToaNmzIww8/jEajoVu3brRp04b169cTERHBkSNHeOWVVzA2NmbAgAG0bXvjZUS+//575syZQ0BAAMbGxrz22mssX74crVZbvM2rr76KqakpZma6Zb46d+5M7969MTAw4MiRI2i1WqZPn46RkRFDhw4lODiYtWvXFu8/duxYAgMDMTExoaJmeykpKZX+N2LEiCr9HjMyMrC2LtuU18bGpsKZxzezrbgzpDGcEEIIIYQQQggh7onOTbwZ0z2YZ37cyKXULIZ2aMDLw9qTkJKJ+zVFX08Hqyofd9HWE3yz7hAxSekoCqRn55GckQ3YAeBhX3LsqMQ0dp6OwX/iN8XPFRRq6dDQk4SUTByszDA1LimXeDmWLVRVJCoxnZk/bWLWLyWzfxUFLqdlAWCgKOWK2h4OJY/jUzLxsC/7eT0drYi/kllq+6r/Pm7Wku2n+PHfI/z18kNlPvvN+PaJ+3nu500EP/UjTXyc6Nda1yQZ4PM1B+gd4kegm91txdm9e3cmT57MxIkTiY+PZ+TIkbz77rvExcXh6Vm2SbW3t3eVj/vTTz/x8ccfExUVhaIopKWlkZiYSP369QHKzFaNiIhg69at2NraFj+Xn59P165diYuLw8nJCVPTkjXTfXx8bvj+ERERTJo0iSeeeKL4OUVRuHRJ18TbwMAAd3f3MvuUjik2NrbM46vvGxsbW+H2d4qlZcm/4ZMnT2JpaUlaWlqZbdLS0spsV3rfqm4r7gwpAtdBz/x2EDcbM557oOGNNxZCiCqaufQobjamPNu7fBMJIYS4VTOXndCNLT0r7iothBC3YubKs7hZm/Bs9xsXZ8SdN+WBEKY8EEJMUjrDP/iDhp4OeDtZE3ul7AzAmOT04p/NTYzIziu5Pf9yalbxz5GX03hx/hZWzR5Ccz8XDAwUAiZ+i6qWzMIt3QTL3d6SrsHeLJ7Zv1xsUYlpJKdnk5NXUFwMjU5Kx9fZ5rqfyd3ekheHtqVf63rlXou8nEbFPbhKnnS1tSjzea++731NfSrcviI+476u9LUPx95X6QzfNfvO8fpv/7Fq9hA8q1Dwroyvsw2/Pz+o+PGDbyxlaNF7bj8RxanoJJZsPwVAYlo2j32yhheHtmNsj6YVHq8yTz/9NE8//TRRUVH06dOHJk2a4OfnR3R0dJntoqJK1nm2sLAgK6vk38zVdYRBt+buU089xebNmwkNDcXAwAA7O7tK//14enrSq1cv/vzzz3KxRUREkJiYSE5OTnEhODIykoCA6+cxnp6evPnmmwwZMqTca+Hh4RU2cSvzb9rdvcznvfq+vXv3rnD7ilyv+Dp37lweffTRcs9fO2u3UaNGfP11yb/D7OxswsLCaNy4cbl969WrR0ZGBtHR0cUF/CNHjjB8+PDrxilunRSBRa3zxYazfLsljIJClYdbe/PagOAKb5VZvj+K55YeKn6sVVVyC7Qce7MPjpYmRCZlMmvpYQ5GXMHMWMNj7X159n5d4fxAeDLv/nWSY9EpGGkM6NnYlTcHBWNpKs0qhaitvtx0nm+3XqRAq2VYqCev9WtY4dgSlZxF63e2YG5c0jH43UGNGdaqZGbCxlOXeHvtGcITs3CyMuaz4c1o62/P8oMxzFp2vHg7rVYlt1DL0Ve742hpcnc/oBBCL77ccpFvt0VQoFUZ1tKd1x4MqjhvORTHrBWnih8Xjw8vdcHR0piXV59hzbEEMnILcLYy4amuvgxvVXIb7LzdUXy1JZzkzHy6Bjnw0dBG2JhJ3iJEbfXltijm7oihoFBlWIgzr97vX+HYApCRW8Cray+w7mQSWlXlviB7vh5WUizceCaZd/65SHhyDk6Wxnw2JIg2vmULop9vieS9DRGsHN+03GvXOnQhAVVVaerrjKWpMYYaAzQGCq3quZFfoOWXjcd4tEsjFmw+TmxySYGpiY8j36w7SNyVDIwNNcz9+3Dxa1m5+SgoOFiZUajV8tmfB0jPzqs0ht7N/XhzyQ5W7w2jT8sACrVa9p+Lx8/ZBi9Haxp4OvDxH3t5blAbNh6NYH9YHB0belZ6PICRXRvzyer9NPRyJNDNjqT0bPaejeOBllVb/7ZloCuKovDDP0cY0z2Yvw9e4GRUIj2a+VZpf4CIH5+48UbX2Ho8kmd+3Mhvzw0gyMP+htvn5hdwtTaam19YplgeFpuMu70VBgYK8zcdIyYpgxGdGwEwb0Zf8kqt0dzzld/43+hudGlyc7NT9+/fj6qqtGjRAisrK4yMjNBoNLRr1478/Hzmzp3L2LFj+f7778sUhZs1a8bHH39MbGwsxsbGfPrpp8WvZWZmoigKTk5OFBYW8t5775WboVpa3759eeGFF1i2bBkDBw6ksLCQ3bt3ExAQgI+PD02aNOGtt97i1Vdf5e+//2bXrl1069btup9r/PjxvPPOOwQHBxMUFERiYiI7d+6kf//yFyoq0qZNGxRF4csvv2Ty5MmsXr2ao0eP0qdPnyrtD+ULureia9eu5OTk8OOPPzJy5EjeeecdGjVqRFBQ+YlClpaWDBgwgFdffZUvvviCzZs3c+DAAX777bfbjkNUTIrANZyqqmhV0FTyB/1eKCjUYqgxuOFzlSnUqhgoN74qVRUbTsbz0/bzrJneBUtTQx76egfzdl7k8Y7l//AOCfViSGjJH5wvNpxl06mE4kLLnBVH8bAzY/6EdsSnZjPg820087KjZ2NXUrPzebyjH10buFCoVXly4X7e/PME/3uo+W1/BiGqAxlbytp46hI/7Yjgz6faYWliyLC5e5i/K5IxHSqePaQxUDj/Tu8KXzsRm8b0347y9aPN6RDoQGJGLleXihsS4sGQkJKizZebzrPp9GUpAItaQ8aWsjaevsxPO6L484nWWJpoGPbDQebviWZMu/InxENauDGkRUk39i+3XGTTmSQcLY0BGNXWk9kPBGJmpOH85UwGz91PM09rGrpZseN8Mp9suMCKyaG4Wpvy5G/Hmf3Hab4aHnzbn0GI6qB6jC0qhhrlhs9V5o6OLWeS+Xl3LKsnNsPSRMPDPx9j/r44xrRxr3D7Z1aEYWJowI6nQ7EyMeT0pZLlB07EZTBjxVm+eqg+HfxtSczMR6uqZfaPTsnhj2OXcbEyrlJ86Vm5zFm4jcjLaZibGDKgTRBD2tdHY2DAvBkPMuOHDbz663YGtQ2iXYOSvKhrE2/uD/Gn/awFuNlZ8li3xny3/jAADTwdGNuzKd1eWoypkSETejUrs9TCtazMTVjy3EBeWriNmT9twkBRaO7nzEdj7wNg7tT7eXLuv8z9+zCdm3jRt1XgDT/XwLZBpGfnMeqTNcQkp+NgZcbgtkFVLgIbG2pY8HRfnvt5M2//vhNfZxvmz+iHvZVZlfa/VR//sY/UrFwGvbOi+LmhHerz0djuAHR4fgEz+rcqnkXc9rn5RCXqZiy3mzUfgMSF0wHYeDSCj1ftJTe/kNB6rvz+/CBMjHRlJzvLkuURQPd9tbM0wbyCBnfXk5qayowZM7h48SIWFhYMGzaMESNGoNFoWLFiBePHj+fZZ59l+PDhdO7cuXi/nj170r9/fxo2bIiHhwcTJkzgs88+A6Bx48ZMnTqVFi1aYGpqyrRp0667dIK1tTXr1q3j6aefZtKkSRgYGBAaGsrcuXMBWLx4MaNHj+bTTz+lR48eFc7uvdawYcNIS0tj4MCBREVF4ejoyCOPPFLlIrCxsTF//PEHU6ZMYc6cOfj7+7Nq1SocHG6+yd/tMDExYeXKlYwbN44nn3ySkJAQfv311+LX33nnHbZv3866desA+Oabbxg9ejSOjo64u7vz22+/4ezsfE9jrksU9ZoBXFyfpalR4pbnuzt42ZsDulkYL688ysqD0RQUqvg6WbBoYjucrEw5HHmFZ347SGRSFgNaeBCelMlDod4Mb+PDB+tOEZeazcfDQwDYcyGRqQsOsP9VXdHg83/PsGBXOMmZefg7WfD24Ga09td9eactOoClqSFhCensv5jM2qe7oCgKs5cf4URMKm62Zrw1qCkdg5wACE/M4KlFBzgZm0anek6YGmkIcLa84XIQC3Ze5NvN50jKzKVDPSc+HNYCOwtjIpMyaff2v7w7pBkf/3Oalr72NHC15vylDAq0WjadSuDbUa3wdrDg+d8Pcyo2DR9Hc94c1JS2AY4ADPpiO20DHNh0KoFTsWmcfLvPHZlFO3nePuq7WfF0L90fqCV7I1iwM5w1M268+HyX9zYwqWsgI9r6AtD1fxt5fWAwXerrBqAp8/fRxNOGqfeVv4L1z/E43l93ig3P3Vfm+f6fbU3dezF5uKqqf9/mRxO1nKWJYeLmZzs7eNnrkjytVuWV1SdZcTCWQq2Kr6M5C8e1wsnKhMNRKcxceozI5Gz6N3cjIjGLh0I9eLiVJx+uP0tcag4fDdPdUrXnYjJPLj7Cvjm6K8+fbzzHwt1RJGfl4edowdsDG9HaT3fFf/pvR7A0MSTsUgb7wq+wdlp7DBSF2StPcCI2DTcbU94c0IiO9XTf4/DETKb9dpSTcWl0DHTEzMiAACeLGy4HsWB3JHO3XiQpI48OgQ588FAT7MyNiUrOot17W3lnUGM++TeMlj52NHC15PzlTAq0KptOX+abR5vj42DOrOXHOR2XjreDOW8OaERbf91nGPz1btr427P59GVOxaVz4vUeWJre/vXOKQsPEeRqxdM9dCcAS/dFs2B3JH8+1b7ctlc/R/T7D1R4rEkLDhHobMFzVVg2o+sH25jY2Y8RbcomoQO+3JW6N/yKjC3ihixNDBM3P9POwcuu1Njy5xlWHI7XjS0OZix8vIVubIlOZeayk7qxpakrEclZPBTizsOh7nz473nd2DJUdyvfnotXeHLJcfa90AmAzzdfZOGeaJIz8/FzNOftAQ1o7WsLwPSlx4vGlkz2RaSwdmpr3djyx2lOxKXrxpZ+9ekYqPsehydlMW3JcU7GZdAx0L5kbLnBchAL9kQzd1sESZl5dAiw54MhjbAzNyIqOZt2H+zgnQEN+GTjBVp625QdW84k8c0jwfjYmzFr5SlOx2fgbW/Gm/3r09ZPt27h4Ln7aeNry+azSbqx5dWuWJrcgbFl8VGCXCx5uruuQLD0QCwLdkfz59TWN9y368c7mdjRhxGtyze9uZCYyaBv9/P+4Ib0buTM62vOoqLyWl/duob7I1IYMnc/p17rVuauhQHf7EvdG54iY4u4IUsTw8TNT4U4eNrpijparcoray+w8ugl3dhib8aCUY1xsjTmSEw6M1eGEXklh/5NnIhIzmZoCxceDnHhw40RxKXl8tEg3d/EPeGpPLXsDHuf1X0HvtgaxcJ9cSRnFeDnYMpbfQNo7aObZTpj+RksTDSEXcpmf1Qaf01qjoECc9ac50RcJm42xrzRJ4COAbYAhCdlM235WU7FZ9IxwBZTQwMCHM1uuBzEwn1xfLsjhuTMfDr42/D+gHq6seVKDu0/2cc7fQP5ZHMkLb2tqO9swfnEbAq1KpvCkvl6WAN87Ex5fvU5Tidk4m1nypsPBhTPlB3yw1Ha+FqzOewKp+IzOT677Z0ZW5acpr6zOTO66dZDXXowgQX74vhzUvNy2569lEnfuUc4OKt1he896bdTBDqZ89x1fk9jF51keEsXXlpzni+G1i8zE/i3A/Fsj4Xvn6r6bMTSBr+7goc6NOCRotmkonbbfy6ORz5YfTo5I7u4WGFlZfXtW2+9NWn69Ok3fbwePXowcuRIxowZcyfDFPdYTk4OlpaWBQUFBXIL022SmcC3acuZS+wLT2bPy72wMDbkRGwqpkYa8gq0jP1pD9N6BPFoO1/m77zIb3sjeSi0aguT+ztbsvbpLthbmPDT9vNMmreXva/0xqholsqqg9EsntSeYE9bsvIK6PLeRl7p34R+zT3YdT6Rib/sZfuLPXCwNGHK/P10CnJi+dRObDoVz4Rf9jKtR/3rvv9fR2L4ftt5Fk1qh7utOa+sOsrs5Uf4ZlQrQHel+lh0Crtf6oWqwpcbz7LuWCy/jGvLd6Nbk5lXQPcPNjGhcwDLpnbk72NxjPp+N7tf7om9hW5G28qD0fw6qT3udmYYVdCZMuiFNZXG995DzRjcsvyVubMJaQxqWXKbTmN3G87EV34bx1XHolOISMqkX/OSE6nHO/rzx6Fo2vg7EJ+azd6LSUzqWvEV4L0Xk6jveutrJwlxrS1nE9kXfoU9s7vqxpa4NEyNDMgr0DLul4NM6x7AiDZeLNgVyZJ90TwUWrXOt/5OFvw1rT32Fsb8tCOcyQsPs2d21+KxZeWhWBZPaEWwhw1ZeQV0/WA7r/RrQN+mbuy+kMyE+QfZ/nwXHCyMeWLRYTrWc2TZ5DZsOn2ZiQsOMu2+6xdp/joWzw/bw1k4LhR3WzNeXX2SOStP8PWjLYCisSUmlV0vdkUFvtp0nnXHE/j58ZbMHdmCzLwCenz8H+M7+bJschvWH09g9E/72fViV+wtdLNPVhV9Bndb0wrHlvov/VNpfO8ObszgkPK/y7MJGQxsUTJ7ppG7NWcSKr9dqlCr0vyNjRgaKPRq5MKcB+tjUXRidSgyBX8nC7p8sI3U7Hx6N3bhtf4NMTPSlDnGsZhUIpKy6Nfsxt2ohaiqLWFJ7ItIYc/zHbEw1nAiLr04bxk3/wjTuvkxorUHC/ZEs+RALA+FVDxr7Fr+jub8NbW1bmzZGcXkRUfZ80LHkrHlcDyLx7Ug2N2arLxCun68k1ceDKJvsAu7L15hwsKjbH+2vW5s+fUYHQPtWTYxlE1nEpm46CjTuvld9/3/Op7AD/9FsnBsC9xtTHl1zRnm/HGarx/RzXTVjS1p7JrVQTe2bAln3YnL/DyqGXNHNCUzr5Aen+1mfAdvlk1syfoTlxn9y2F2zepQMrYciWfx2JCisaX8TL36r24u99xV7w5swOBSs3ivOnspk4HNS77jjdysOJOQWW67ax2LSSMiKZt+TV3KPP/2ujB+2BFJTr6WYA8rOgXqJhBcO2tPq0JeocrFxCwau9+9JkOi7th67gr7I9PY/Uwr3dgSn4mpoS5vGbvoJNO6eDEi1JUF++JZciieoS1cbnxQwN/RjDWTm2NvbsTPu2OZsuQ0u2e2KjknOnqZxaOb0MTNUje2fH6AVx7wp29jR3aHpzLxt1Nsmx6Kg4URU38/Q0d/W5aNDWZT2BUm/XaKpzpf/zb0tScS+WFXLAsfa4y7jQmvrrvAnDXni5dKKNTCsdgMdj7TChWVr7ZF8/epRH5+tDHfPtyAzLxCen51iPHt3Pl9bDDrTyUxeuEJdj7TCntzo+LPsGh0E9xtTCocWxq8tbPS+N7pF8jgZuVnzIVdzmJgU6fix43cLDh7KavcdgCHozPwsjXhfxsiWHHkEh42Jrz2gD/t/W2LXk8nwNGMrp8fIDW7gN4N7Xn1Af/ivGXT2WTyCrX0auDAS2vOX/f3KYQQQr+kCHybjDQKmTkFhCWk08LbjmBPWwB2nktEY6AwpmgZgnGdAvh6U1iVj9u3WUkRYkKXQD78+zQRiZkEuugS9T5N3WnurZudsvFkAvVcrBgYoit+dqznRAsfO7acvkRrfwdOxqay8qlOGBsacH+wOy19brzOz8JdEczoWR9fR90tNM/e35CQV/9Gqy05iZh5fwNMSxUt2gY40q2hLqE7EZOKVquLHaBfcw9+2HaejScTeKiVrhD+SBsf/Jwqv0Xn7Ht9b/yLukZmbmGZK9hWZkZk5hbccL9l+yLp3cQNq1Kzkdv4O7Bg50UCnv+TQq3K9J5Bxb/z0vZcSGThrnDWTL/xbGMhqspIo5CZW8i5S5k097Ih2EM3o2Ln+SQ0Bgqj2+tmY4zt6MvXWy5U+bh9m5YUISZ08uOjf8KISMoi0Fn3XewT7EpzL1sANp2+TKCLJQOa64pAHQIdCPG2ZcuZy7T2tedkXDornmirG1uauBDibXvD91+0O4rp3QPwdbQAYGaverR8czPaR0qNLT3rlRlb2vjb062+7kTmRGw6WlUXO0DfZm58/184G09f5qGWunFzeGtP/IqOX5Ezb/W6YZzXyswrxKrU2GJtaljp2GJvYcz6GR1o7G5NfFoOM347ymt/nuKDobpiVHxaDisOxrB0UhtszIwYN+8An288z/P3l50ZvOxADL2buJQZl4S4XcVjy+VMmntaE+yhu4C580KybmwpWoZgbHtvvt4aUeXj9g0uKehM6OjNRxvOE5GcTaCT7rvYp4kzzT1149imM4kEOlswoOgCR4cAe0K8bdhyNonWvracjMtgxaRQ3djS2JkQ7+uvLQmwaE8M0+/zw9dBd6fWzB4BtHxnG9qHmxRvM7Onf9mxxc+WbvV1dzaciEtHq6pM6KjLUfo2deH7HZFsPJNYXAgfHuqBn6N5pTGcef36a/1VJDO3grElrwp5y8E4ejdywuqaOx3mPFCPF3sHcjAqlZ0XrmBcdBt61yAHpi89waOtPXC3NeXrreEAZOUVXntoIW6JoUYhI6+Qc4nZNPewJNhdl1fsupiCoYHC6KJlCMa2deeb7dHXO1QZDzZ2LP55fHsPPtoUSURyDoFOuu9in0aONPPQnR9tCrtCPSdzBgTrcoYO/raEeFqxNewKrX2sORmfwfJxTXVjS0MHQjxvfAFk0f54pnXxwtdBdzfFs/d50/L9vWXOiZ65zxtTo5KLzm18bOhaT3fOcDI+E62qMr69Lkfp28SJH3bFsulMcnEhfHiIC34Old/uf/ql8ncd3YhubCkZ76xNDMms5Psen5bLqYQs+jVx4tCsNmw8m8y4xafY8Uwo9uZGxKfnseLIZZY83gQbM0PGLz7FF1ujmNXDl9wCLa+vu8BPj9adWbqfr9nPRyv3lnt+ZNfGvP2YnA+K63v//fd54403yj0/fvz4MmsUC3G3SBH4NnUKcmZUBz+eW3KYS+k5DAn1Yk7fxlxKy8Hdtuwfc0+7yk8crrV4dzhzt5wjNiUbBYX03HySM0sWti997OgrWew6l1hm5my+Vkv7QEcupeXgYGlS5qTH0/7GcURfyeK5pYd54fcjxc8pCiRm5AJgoICrTdnPVzqm+NQcPOzKf/741JwKt79TLEw0ZJQqzGTkFBTPvqtMoVZl5aHo4qU5rj43Yu5OJnQJYHznAJIz8pjwyx7m7bjI6A4ls5FOxqYy7qe9fP1Yq+ICvRB3Qqd6jjzWzpvnlh3jUnouQ0I8mN2nPpfScnGzLbue1rXftev5dW8Uc7deJDY1BwVIzy24ZmwpOXb0lWx2n08uM3M2v1ClfYADl9JzcLAwLju2VCGO6CvZzFp+nBdXnCh+Tje26GLQjS3XfL5SMSWk5ZSJ8er7JtztscVYQ3qpsSU9t/KxxcLEkKZFxS4PWzPmPFifkT/sLy4CmxppeDjUE5+iYtXEzn58/G9YmSJwoVZl1aE4Ph4m63WKO6tToAOPtfXkueUnuZSex5AWbsx+IJBLaXm4Xee7dyO/7oth7vYIYlNyUZSrY0s+FE1Ec7cpPbbksPvClTIzZ/MLtbT3t+NSWi4OFkZlx5YqfKejU3KYteIUL646XfycoigkZpYaW6yv+Xw2pceW3DIxAnjamZKQllv82N32zq/NbWFyzdiSU4CF8Y3zllVH4vl4aMVFFwMDhVAfW1Ycimfh3hjGtPOiW31Hnujiy6hfDpOTX8jkzj6sP3kZNxtZb1zcGZ0C7BjVyo3nVoVxOSOPwc2cmd3Ll4T0vHL/zjxu4rv064F4vtsRQ2zq1bGlkOSs/OLX3UsdOzolh93hqWVmzuYXqrTzsyUhIw97c6MyxVrPKoxx0Sk5PP/HOWb/ea74OUWBxExdDLqxpeznKR1TfHpemce69zUhPj2vwu3vFN3YUlL0Tc8twMJYU+G2pkYajDQKT3b2wlCj8EAjRz7ZHMmByDR6NnDA1NCAYS2c8SlasmxCew8+2RzJrB6+fLUtip4NHAi4zgWy27XixcF37di3YlrfUKb1DdV3GKKKNmzYoO8Qypg1axazZs3SdxiiDpMi8B0wqWsgk7oGEnMli0e/20UDV2u8HSyITckus13MlZLH5iYasktdjb2cXnKSEZmUyZwVR1k+tSPNvewwMFCo/+IaVEquOJfuF+Bua0aXBs4smNCuXGxRyVkkZ+aSk19YfEIVfSULH4fKZ8ldPebzfRqWmZFcOr6KGhaUfsrVxrTM5wWIuZJF1wbOFW5fEf9Zqyt97YNhLco0dbsqyMWaU7Fp9G6im+14Iib1hss0bD1zCa0WutYvie1KVh6xKdk83tEfI40BLjamDAjxZPOphOIi8IXLGTzy7U7eGtyU+xpW7ZY2IW7GpM5+TOrsR0xKNiN/2EcDVyu87M2IS8kps11sqcfmxoZk51c8tkQlZzFn5UmWT2lDM08bDAwUGrz8D6VvEi793XazMaVLkCPzx5VPdKOSs0nOzCsztsSk5BTPwquMm60ps+6vV2ZGcun4KhxbSv3sYm1a5vOCbmztWt+pwu0rEjB7faWvvT+0SZnGbFcFuVhyKi6d3o2L7naITaO+S+V3MpRmcM1nauBqVS5I5Zontp5NRKuqdAlyRIg7bVInHyZ18iEmJYeRPx+igaslXvamxKVeM7aklh5bNGTna4sfX84oKWBEJWcz54/TLJ8USjMPa93Y8tpmSvedKP01cLMxoUuQA/PHtCgXW9SVbJIz868ZW7KLZ+FVxs3GhFm9AsrMSC4d343yFhdrkzKfV/e+OXQNKmmmcu339FoBL2+q9LX3Bzcs09TtqiBnC07FZ9C7kS4HORGXTn2X6+doW8OS0KrQpd71G70UqrrlHq6a3NmHyZ11d5FsC0vC1dqkXOFbiNsxsYMHEzt4EJOSy2MLjtPAxQJvOxPiUnPLbBdb6vG1Y8vV4ipA1JUcXlpznmXjmtLM3RIDA4WGb+2i9Oompb+VbtYmdA60Y/5jjcvFFn0lhytZBeTka4sLwTGpOfjYX/874GZtwqwevmVmJJeOr6LzmTLnRFbGZT4vQExKLl0D7Uptf/2xJfCNHZW+9n7/egxuXn45iHpO5pxOyKR3Q904cTI+kyDninO0+i7mKJQ/N7saV30Xi3IxXn2440IqpxMy+f1QAgBJmfmMXXSSWT18imd/CyGEqD6kCHybDkdeQQWCPWywNDHESKOgMVAI9bWnoFDL/B0XeaStDwt3hROXWlIUbexuw9wt54hPzcZIY8D3W0vWT8rKK0QBHCxNKFRVvvj3LOk5+eXfvEjPxq68/ecJ/jwcwwPBbhSqKgfCr+DraIGXvTn1Xa359J8zzLy/AZtPJXAgPJkOgU6VHg9gRFsfPv/3LA3drAlwtiIpI5f94cnFxdUbCfGxR1Hgx+3nGd3ej/XH4zgZm0b3RlUvll54v2pdMEsbEurFC78fZmCIBxYmhny7JYzH2l9/HcFl+yMZ3NKzTFdwR0sTvOzNmb/jIuM6B3AlK48/D8XQLlCXAMamZPPQ1//xTO8GxctwCHEnHY5KARWaeFhjaWKIocagaHaXHQValfm7InmktSeLdkeVKdw0crdi7raLxKfmYGRowPfbw4tfy8orRFHAwcJYN7ZsPE96TuW3Hfds5Mzba8+w5kgc9zdx0Y0tESn4OpjjZW9GfVcrPt1wjpm96rH59GUORFyhQ8D1l5t5tLUXn288T0M3KwKcLEnKzGN/+JXi4uqNhHjbogA//RfOqHberD95iVNx6XRvcP0xrbTz7/Su8rZXDQnx4PkVxxnY3A0LE0Pmbr3IY20rXuP9UGQKNmZG+Dmacyk9l7fXnqF345ITtGGhHny5+QLDQj2xMTPkh+3h9GhYNv5lB2IY1MK9zLgkxJ1wODpVN7a4W2FposHQQMHAAEK9bSkoVJm/O5pHWrmzaG9MmcJNIzcr5m6PID4tR5e3/BdZ/JpubFFKxpZN4dcfWxo68fa6c6w5msD9jZ0oVOFAZAq+9uZ42ZlR39WSTzddZGYPfzafSeJAZOqNx5ZWHny++SINXS0JcLLQjS0RKcXF1RsJ8bLRjS07IxnVxpP1py5zKi6D7vWrfiHm/Jv33Xijawxp4cbzK08zsJkrFsYa5m6P4LE2188rlh2MY1Bz1zLjQ36hlt8PxNE32BlLE0N2XrjCikNxxWsi5+QXEpGcTZCzBRcSs3j9r7PMuM8PgwrWHxXiVhyJSUdVoYmbZfHYolGgpZc1BVqVBXvjGN7ShUX744krNcO+kasF3+2IJj4tVze27Iwpfq04bzE3olBV+XJLVJmZ89fqWd+ed/4JZ83xy9zf0JFCVeVgVBo+9mZ42plS38Wcz7ZE8sx93mwOu8KBqHTa+9le93ONCHXl861RNHAxJ8DRnKTMfPZHphUXV2+khaeVbmzZHcuoVm78czqJUwmZ3Ff/xsvzXXXulQ5V3vaqIc2deWH1OQYEO2FhomHujhhGtqq4x0B7PxtcrIz5ens0T3TyZOPZZGJScmnppbvL8eEWzny5LZqHWjhjY2rIj7ti6B6ki/+HEQ3JLyypyj/wzSHe6RdIp6JmfHXRk3P/wc/FlpkDb9zgU4jrGTNmDIGBgbz00kv6DkXUIlIEvk3pOfm8vPIYkUmZmBsb0r+FB4NbeqExUPhxbBtm/naI11cfZ2ALD9oGlCQLXeo707uxG53e3YCrjRkj2/kWF4IbuFnzeEd/en6wGRMjA8Z3DsDdtvLZdVamRiya1J5XVx1j1tJDKIpCMy87Pni4OQDfjGrFtEUH+G7rOToHOfNg0xs3kBrQwpOMnALG/LiH2JRs7C2MGRTiWeUisLGhAfPGt+X53w/z3l8n8XGw4OdxbYqbwt0tPRu7cjrOnz6fbKWgUOXh1t6MLlUE7vzeBqb3qF88izgzt4B1x+L446nO5Y714+NteHnlUT78+zTGhgb0bOzKUz10t2sv3h1OzJVsXv/jGK//cQzQLbOx7YUed/XzibojPaeAV/44SWRyNubGGvo3c2NwC3fd2DI6hJm/H+ONNacY0Nydtn4lJxJdghzp1diZzh9sw9XalEfbevFDUSG4vqsVj7f3oecn/2FiZMC4jr7XXTrBytSIxeNb8crqU8xaflw3tnja8P5Q3RqbXz/anOm/HeH77eF0qufIg8E3bmDWv7kb6bkFPP7zQWJTs7E3N2ZgC/cqF4GNDQ345fGWvLDiBO/9fRYfe3N+HtOyuHHT3dKjkTOPx/vw4Be7KCjUMqyVJ6PalRSBu3ywjWndAxgS4sHFxEzeXXeWpIw8bM2N6N3YmTl9GhRv+2gbLyKTs+n58X8YGSr0DXbjyVIN9TJzC/j7eAKrpra9q59J1E3pOQW88ufZkrGlqQuDm7vpxpZRzZi57CRv/HWWAc1caVuqONKlnj29GjrR+cNduNqY8GhrD37YoSsE13e15PF2XvT8bDcmhgaM6+BdbtmW0qxMDVk8tgWvrDnDrJWnUBRo5mHN+4N1jcC/fqQJ05ec4Pv/IukUaM+DTW5cyO3fzFU3tsw/QmxKDvYWRgxs7lrlIrCxoQG/jG7OCytP8d7f5/FxMOPnUc3u/tjS0InHEzJ48Ku9FBSqDGvpzqhSReAuH+1k2n1+xbOIM3ML+PvEJVZNaVXmOArwx9F43lh7lkKtioetKa88GETPogtMuQVaJi8+RkRSFnbmRjze3qt4/Wch7oS0nAJeXXuByCs5mBtp6BfsyKBmzmgMFH4Y0YhnV57ljb8vMiDYibY+Jet8dwm0pVcDB7p8dgBXa2MeDXXjh126QnB9FwvGtHGn19cHdWNLW/frLp1gZWrIolGNeXXtBZ7/41zR2GLF/wboepR89VADpi8/w/e7YugUYEefRje+yNM/2In03ELGLjpJbGoe9uaGDGzqXOUisLGhAT+PbMwLq8/xv3/D8bY35acRjYqbwt0tPerbM6aNG33nHqZAqzKshQujWpWcx3X9/ADTOnsxuLkzRhpdjDNXnuXTLZH4O5rx44hG2BXFOCLUlcgrufT66hBGGoUHGzvyZFFDPbtrPofGQMHWzBDzSpaeEPdeQaGWrnMWk5tXwL6PxxQ/P+OHDfx3MprwS6msmj2Ejo3KXoA8cC6eOQu3cioqCWtzE958tBMD2wYh6p7Nmzfz6quvcuDAAVq1asWWLVv0HZK4DYp6TbdgcX2WpkaJW57v7uBVhXV1r/XQ1/8xpKUXw9v43IXIRHXU/7OtqXsvJg9XVfVvfcciqjdLE8PEzc92dvCyv/n1bIfN3cOQEA8ebiWz0uuKAV/uSt0bfkXGFnFDliaGiZufaefgdRNrh1817PsDDGnhxsOhcktvXTHgm32pe8NTZGwRN2RpYpi4+akQB0+7m19SZNhPxxjS3JmHQ2Q5tbrgtwPxbI+F75/qo+9Q7onqNhP4y78O8PeBCySkZJYpAv/07xHqezrw5Nx/+GJirzJF4ISUTDq9sJD/jelG39AAMnLyScnMwc/F9q7Hu/9cHI98sPp0ckZ2w6vPWVlZffvWW29Nmj59+l1//+qkuswE3rt3L+fOnSMiIoL169frpQick5ODpaVlQUFBgXTMvk1yn6kQQgghhBBCCCFqNK1W5cX5WwiaPBf/id/Q/eVfuZSaCcCnq/cR8vTP+Iz/mm5zFrPnbGzxfk/O/YcX529h0DvL8Rn3NcM/+IPEtCzGfb4W3/Hf0P+tZSSn65Z2jLychsuoz/lpw1EaPvEdzab/yG/bTlYa09r95+n84kICJn7LkPdWEJWYBkB2XgETvlxHwMRvCZz0LQ++sRSt9s5O0ItLzmDx1pNM71++v8fYns3o0NATQ4PyJaFv/z5Ez+Z+DGobhJGhBjtL03tSAK5OtFot06ZNw9HREVtbW0JDQ0lI0K19/e677+Ln54eVlRUhISHs2FGybveYMWOYNm0a3bt3x9LSkgcffJDLly8zbNgwrK2t6dq1K0lJSQCEh4djaGjIN998g4uLC97e3sybN6/SmFatWkXTpk2xs7OjZ8+eREREAJCdnc0jjzyCnZ0d9vb2dOzYEa1WW+lxblbr1q0ZMWIEXl5yB1FtIMtB1GFfbjzLx+tPl3v+0ba+vDm4qR4iEkLUBl9tPs/H/54r9/yINl68OaDibvZCCHEjX20J5+ONF8o9P6KVB2/2r6+HiIQQtcFX26P4ZHNkuedHtHTljQcDKthDVFebj0WwNyyOAx+PwcLUmOORlzEz0pU8Alxt+fu1YThYmfHDP0cY/8U6Dn4yBiND3dIVf+wJY8WLg/FwsKLP60t58I3f+XR8D755ojcjPlzNd/8c5oUhukbshVqVg+fjOfjpWI6FX+Kh91fRMtCNeu52ZeI5dCGBWfM2s3hmfxp5OfLVXweY9NXfrH11GL9tP0lWbj7HvxyPkcaA/efiKmw0GJ2YRufZiyr9zItn9qdt/YqXe3xp4TZmDW6DmfHNTZ48eD6Bxl6O9Hr1N6Iup9GhkRcfjOmGnWXdaSb6zz//sHPnTi5cuIClpSVHjhzBzEx3V1VQUBC7d+/G0dGRL7/8kocffpiLFy9iZKT7Pf/+++9s2LABb29v2rdvT8eOHfnhhx9YuHAhffv25fPPP+f1118HoLCwkD179hAeHs6hQ4fo3bs3bdu2pX79snnN/v37mTp1KmvWrCE4OJgPP/yQESNGsGPHDubNm0dmZiaxsbEYGRmxe/fuChtORkZG0rRp5XWeNWvW0LFjxzv1KxTVlBSB76Hfn6heX6gnuwfxZHdZ10eImm7ppDb6DqGMqd0CmNpNTpqEqOmWTmip7xDKmNrVl6ldffUdhhDiNi0dG6zvEMqY2smLqZ1khlttYKQxICM7j7C4K7Twd6Gpb8m68P1a1yv+edL9LXh/xR7CL6UVF24HtKlHA0/dWs89mvtyNiaZdg10xdU+oQFsPhZR5r1mDW6LmbEhrYPceSDEnzX7wnh6QNklIBZtPcG4Hk2L43iqbygfr95HXHIGRhoDrmTkEHEplQaeDpUWcj0drbnw3ZSb/l1sPR5JYno2A9sG8d/J6JvaN+5KBscjLrNy9mAC3eyY/v0GZi/YyjdTbr65ck1lZGREeno6p0+fplWrVrRo0aL4tSFDhhT/PH36dF577TUuXLhQXLh96KGHaNy4MQB9+vTh1KlTdOrUCYBBgwaxfv36Mu/12muvYWZmRvv27RkwYADLly9n9uzZZbb58ccfmTp1anEcs2bN4u233yYmJgYjIyOSkpK4cOECjRs3rrSQ6+3tTUpKyu39YkSNJ0VgIYQQQgghhBBC1Gidm3gzpnswz/y4kUupWQzt0ICXh7XHyFDDoq0n+GbdIWKS0lEUSM/OIzkjG9AVgR2tS3r+mBoZlnlsZmxIZk5+mffycLAs9bMVCSlZ5eKJTkxj6X+n+OKvA8XPFRZqiU3OYFjHhkQlpjPq0zXk5RcypnswM/q3KneMW5FfUMichdv4bur9t7S/mbEhD4YGFBevZ/QPZdA7K+5IbDVF9+7dmTx5MhMnTiQ+Pp6RI0fy7rvvYmRkxE8//cTHH39MVFQUiqKQlpZGYmJicRHY2bnk4oOZmVm5xxkZGWXeq/QyC15eXsTFxZWLJyIigvnz5/P+++8XP1dQUEB0dDSPPfYYERERDBo0iNzcXCZPnsyLL754x34XonaRIrAoY9qiA/g5WfB0rwY33lgIIapo+m9H8HW04OkegfoORQhRi0xfehxfB3Oe7u6v71CEELXIjOVn8LU3Y0Y3b32HIm7SlAdCmPJACDFJ6Qz/4A8aejrQoaEnL87fwqrZQ2ju54KBgULAxG9R1VtfgzcmKQNvJ+uin9MJ8rAvt42bvRXPD2nH1D4hFR7jxaHteHFoO8Jikxnw9nJCA93KNGgDXSG5w/MLK43jt+cGFM9YviruSiZhsckMfW8lAHkFhaRn59Fo6vfs+N9jN1zWoYGnQ7mlKSpaXqC2e/rpp3n66aeJioqiT58+NGnShK5du/LUU0+xefNmQkNDMTAwwM7O7rb+LUVFReHr61v8c8OGDctt4+npyRtvvMHMmTMrPMYbb7zBG2+8wenTp+natSvt2rWja9euZbaJjIykUaPKl+Zbt25d8YxlUXtJEVhUSx+sO8Vn/57B2LBkofqw9/qhMdD98Zn520H+C0skIimT5VM70qGeU/F2/4Vd5sN1pzgSnUJzLztWPlUykJ1LSOf11cc5EJ4MQLsAR94Z0gwXm7qzvpEQddmVrDxmLTvOjnNJaAwU+jZ15c0BjTDUGLD7QjKP/rCveFtVhez8Qv6e0YFmnjakZOUze+UJtpy5jLGhAU92C2B8J1+AG+4rhKjdvtoSzpIDscSm5OBibcL0+/wY1tK9+PU/jsTzwT/nSUjPxdfBnLf616eNn2722ZdbLjJvdzQpWfnYmBkxuq0nT3XzK9537fFLvPv3OWJTc2jpbcMnDzXGw1byFiHqgq+2R7H0YAKxqXm4WBkzrYsXw0Jcil8vKFR5999wfj+UQE6BlkauFqya0AyAL7dFMX9vHCnZBdiYGjKqtRtPdSmZcXgkJp2ZK8O4kJRNsJslnw0JwtfB7J5/xjvp0IUEVFWlqa8zlqbGGGoM0BgoZOXmo6DgYGVGoVbLZ38eID0777be68OVe3h/TDdORCay7uAFnrlmKQiAkV0aM+GrdXRs6ElTXyfSs/PYcjyS/q3rsf1kFE7W5gS522NpZozGwKD4XLc0T0drIn584qZi83Cw5Ojn44of7wuL45XF21n36jBsLUwAXWFYq1VRgfzCQnLyCjAx0qAoCo90asj4L9cx6f4W+LvY8sWaA/Rs7ntTMdR0+/fvR1VVWrRogZWVFUZGRmg0GjIzM1EUBScnJwoLC3nvvfdIS0u7rfd64403+Prrrzly5Ah//PEHc+bMKbfNuHHjGD58ON26daNFixakpaXx77//MnToUDZv3oyzszMNGzbE2toaQ0NDNBpNuWN4e3uXm4VcFVqtlry8PPLz89FqteTk5KDRaIrXQBY1ixSBRbU1rLU3Hw+v+KppE09bhoR6M23RgXKvmRtrGNXBj+jkLDafvlTmtbScfPo0deeLR1tiaqThlZVHefq3gyye1P6ufAYhRPXy4fowsvMK2T+nG1n5hTzy3T4W7I7k8Q6+tPW35/w7JWud/XE4lrf/OkNTD90sj1f+OImiwMGX7yMiKYtBX+8myMWSzkGON9xXCFG7KQp880gwDVwtORGXzvAfDhLoZEGItw2X0nOZvvQECx5vTscAe37bH8v4hUc5+lJnFEXhwSYujG7rhZWpIfFpOTz8/UEaulrSo6ET5y9n8vTvJ/htfAhN3K14bc1Zpvx6jNVT7swtw0KI6k1B4ethDWjgYsGJ+Ewe+fkYgU5mhHjp8ot3/r3IibhM1k9tgYulMcfjM4v3fbCxI6NbuxWNLbkM/+U4DV0t6FHfntwCLWMXneTpbt4Mbe7Cp1sieWLpadZOaVFZKDVCelYucxZuI/JyGuYmhgxoE8SQ9vXRGBgwtmdTur20GFMjQyb0alZmOYebpTFQaO7vQosZP2FkqOGdx7pUOBO4ZaArb43szIwfNhB+KRVLU2O6NvGif+t6JKRk6patSMnCytyYMfcFl5vRe+vxGeBia1H82NbCFI2ilHlu6Hsr2Xk6BoCH/rcKgIOfPI63kzVdg32YNbgtQ99bSX6hlm7B3rw1svMdia2mSE1NZcaMGVy8eBELCwuGDRvGiBEj0Gg0xWvzmpqaMm3atDLLOdwsjUZDq1at8PHxwdjYmM8++6zCmcBt2rTh008/Zfz48Zw/fx4rKyt69uzJ0KFDiYuLY+LEicTFxWFjY8PkyZPv6Izebdu20a1bt+LHZmZmjB49ml9++eWOvYe4d6QIXI1otSovrzzKyoPRFBSq+DpZsGhiO5ysTPn83zMs2BVOcmYe/k4WvD24Ga39dQvXT1t0ACtTQ87Ep3MwIpl2gY58NqIlLy47wuZTCQR72vLj2NbYW5gQmZRJu7f/5e3BTfnw79OYGBowq09DHm7tU2FM647G8v66U8SmZNPMy5aPhofgZW9Odl4hT/96kM2nE1AUCHKxYtVTnTGo4Orl3fB4R91tn4aa8u8X4mNPiI89y/aX7/J79bXSxxn4xfa7F6gQ1YBWq/LK6pOsOBhLoVbF19GcheNa4WRlwucbz7FwdxTJWXn4OVrw9sBGtPbTfUem/3akaGzJ4GBkCu387fl0eFNmrzjB5jOJBHtY88PoEOwtjIlKzqLde1t5e2AjPvwnDGNDA57vHcSwVp4VxrTueDwfrA/TjS2eNnz4UFO87M3Izi/kmSVH2XzmMgoK9VwsWfVE2zs2tkQlZ3N/ExfMTQwxNzGkWwMnziZUfEV82YEYhrT0KL79bcOpSyyf0gZTIw31Xa14sKkrS/ZH0znI8Yb7ClEbabUqr/x5hhWH43Vji4MZCx9voRtbNl9k4Z5okjPz8XM05+0BDWjtawvolnCwMjHkTEImB6NSaedvx6cPNWb2qtNsPls0toxsWjS2ZNPugx283b8+H264gLHGgOd7B5SZZVvauhOX+OCf88Sm5tDMw5oPhzbCy65obPn9BJvPJqGAbmyZFHrHxpYnuvgW/9zUw5p2/nYciEwlxNuGuNRc7MyN6BSoy9sGt3DjmWUnScrMx9HSGD9H8zLHMjBQCE/OBmBrWBIdA+1p4aW7o2BaNz+av72Ni4lZ5fYTorbQalVeWXuBlUcv6cYWezMWjGqMk6UxX2yNYuG+OJKzCvBzMOWtvgG09tF9P2YsP4OliSFnL2VyMDqddr42fDokiNl/nmdz2BWC3Sz5fkRD7M2NiLqSQ/tP9vHWgwF8tCkSY0MDZnX3KTPLtrR1JxP5cGMEsal5NPWw5KOB9fC0M9WNLSvC2BJ2BUWBek7mrBzf9M6NLZ1K8qim7pa087PhYFQ6IV7WXMnK55c9cWx5qiVu1ibF21zld82sXgOF4rFl18VUTAwNGNnKDYDpXb34fmcM5xOzCKjBY0vnJt5sf29kha+9Orwjrw4vaZhVuonbl5N6ldn2+SFtyzx+pHMjHulc9jb6sT2aMrZH03Lvc+2x+rQMoE/L8g2Th7ZvwND292YJxo6NPNn38Zgyz61+aeh195nYuzkTeze/e0FVc927d+fYsWMVvva///2P//3vf8WPSzdxu7Yw+tprr5V5PGbMGMaMGVPmuSlTpjBlSvnmf9cea8CAAQwYMKDcdiNGjGDEiBEVxnondO3a9baWuxDVixSBq5EtZy6xLzyZPS/3wsLYkBOxqZga6abx+ztbsvbpLthbmPDT9vNMmreXva/0xkijWy7hzyMxLJ3SEU87M/p+to0Bn23jo+Et+GpkKI99v4sftl1g1gO6K0qFWpWDEVfY90pvjsekMPzbnbT0sSfQxapMPIcjr/Di8iMsmNCOhm7WfLM5jCcW7OPP6V1Yui+SrLwCDr/+AEYahQMRyeXWDQKIvpLFff/bVOlnXjCxLW38yxdQANYcjmXt0Vjcbc2Y1qM+A0MqLibdjr0Xk6nvanXjDYWowbacTWRf+BX2zO6qG1vi0jA10o0d/k4W/DWtPfYWxvy0I5zJCw+zZ3bXUmNLPEsntcbD1ox+X+5k4Fe7+fChYL4c0ZzHftrPj/+F81zvIKBobIlMYe+cbhyPSeOR7/cS4mNLoHPZmRaHo1KYveIE88eF0tDVim+2XmTq4sOsfrIdS/dFk5VXyKFXumNkoHAgMqWSsSWb7h9VfgFn/rhQ2viVn5HxWDsvFu6OYkBzN7LztGw6fYmZveqV2y4xI5etZxN5rX/ZK/Gl8x+tCmfjyxeQK9tXiNpmS1gS+yJS2PN8RyyMNZyISy/JWxzN+Wtqa93YsjOKyYuOsueFjiVjy7EElo5viYedKf2+3sfAb/bx4dBGfDm8CY/9cogfd0TxXC/dSXOhVuVgVCp7X+jI8Zh0HvnxICHeNgQ6WZSJ53B0KrNXnWb+mOY0dLXkm20RTP31GKufaM3SA7G6sWVO56KxJbXyseXT3ZV+5vljmhcv41CZvAIth6PSGN1Wl7c0cbfCz9GczWcS6VzPgaUHYmniboWDRcltlPN2RfHG2jCy8grxtjejX7CuEKVVrx13dA/OJGRIEVjUWlvPXWF/ZBq7n2mlG1viMzEtWiLO39GMNZObY29uxM+7Y5my5DS7Z7YqHlvWHL/MkseD8bA1of93Rxjw/VE+GliPL4bWZ9SCE/y4K5bnuusmvxRq4VB0OnuebcXxuExG/HKcEC8rAp3KfreOxKQz58/zzHusMQ1dLPjmv2ie+P0Mqyc24/dDl8jKL+Tg860xMjDgQFRaxWNLSg49vjxY6WeeN7IxbXyvv3xUXoGWwzEZjGqtK9yeTsjERGPAH8cu8/3OGOzMDZl5nw/9g0uWyZu3J5Y3118kK0+Lt50p/ZroXjt7KYuGriVjqJmRBj8HM85eqtlFYCGEENcnReBqxEijkJlTQFhCOi287Qj2tC1+rW+zkltDJnQJ5MO/TxORmFlcuO3XzIMGbrrbgro3dCEsIZ22Abri6gPBbmy5ZlmEZ+9vgJmxhlZ+DtzfxI2/jsYyvWf9Mtss3h3B4x39i+OYel8Qn/57lriUbIw0Cley8ohIyqSBm3WlhVxPO3POvtf3pn8X/Vt4MLqDHw6WJuwIu8y4n/fgbmtWPPv5Tjh/KZ3/rT3JD4+3uWPHFKI6MtIoZOYWcu5SJs29bAj2KDnJ6NvUrfjnCZ38+OifMCKSsooLt/2auRZfKOnewJmwSxm09dcVV/s0cWHzmcQy7/Vsr3qYGWlo5WtH78Yu/HUsnundyzaD+3VvNGM6+BTHMbWrP59tPEdcag5GGgOuZOUTmZRFfVerCgu5AJ52Zpx5q1eFr11PY3drMnMLafDyv2hVGBzizv2Ny8/6WXUojmAPGwKcSgrYXYIc+XLzeT58qCkXEzNZdyweO/Pya2FVtK8QtVHx2HI5k+ae1gSXWv6kb3DJ92pCR28+2nCeiOTs4sJtv2AX6rvqviPd6zvqxpai4mqfxs5sPptU5r2e7RFQNLbY0ruxE38du8T0+/zKbPPrvljGtPMqjmNqF18+23RRN7YYXB1bsqnvallpIdfTzowzr3er8LWqeuXPMwQ6m9MpUDd+aQwUBjd3ZdyCI+QVqliZaFg0NqTMnQKj23kxqq0np+Iz+PvEJaxMdSl6p0B73vv7HPvCUwj2sOKzTRdRFMjKK7ytGIWozgw1Chl5hZxLzKa5hyXBpWa3Pti45JxjfHsPPtoUSURyTnHhtm8TJ+q76MaZ+4LsCbucVVxcfaCRA1vOpZR5r5n3+ejGFm9reje0Z+2JRKZ1LdsM7tcD8Yxp41Ycx9ROnny+NYq4tFwMDRSuZBUQmZxDfReLSgu5nramnH7p9pafe3XtBQIdzegUYAtAXFoeqTkFRF3JYe+zrTkWl8Gj83RLPtQr+n2MbuPOqNZunErI4u+TiViZ6C7UZeYVFv98lbWphsxcGVuEEKI2kyJwNdIpyJlRHfx4bslhLqXnMCTUizl9G2OkMWDx7nDmbjlHbEo2CgrpufkkZ5YsZu9oZVL8s6mRptzjzLyCMu/lYVdyhdfd1oyEtJxy8URfyeL3/ZF8tTGs+LlCrZa4lGyGhnoTlZzF2J92k1ugZXR7P6ZdU0S+HfVdS04kO9d3ZmioN38fj7tjReDYlGyGf7uTl/o1pn1gxQVsIWqLTvUceaydN88tO8al9FyGhHgwu099jDQG/Lo3irlbLxKbmoMCpOcWlBlbHCxLjyUGOFoal3qsIeuascXd1qzUz6ZcSsstF0/0lWx+3x/D15svFD9XWKgSl5LD0JYeRF/JZuwvB8gt0DKqnTfTriki346JCw4R4m3LgvGh5OZrefb3Y7yz9gxzHix7O96yAzEMv2YpizcHNuLFFSdo/fZmPO3MGNTCnTMVzASuaF8haqNOgQ481taT55af5FJ6HkNauDH7gUDd2LIvhrnbI4hNyUVRro4t+VA0Qc2hzFhS0dhSthDhXqoRmruNKZfSKxlbDsTy9dbw4ucKtSpxqbkMDXEjOiWbsQuO6MaWtp5M6+ZX7hi36+MNF9gbnsLKyaHFRd7NZxL53z/n+fOJ1jR0tWTHhWTGzDvMhhltcS6VrymKQiM3K7aeTeKjDed5uU8Q9V0seX9wQ55ZdpIrWXmM7+iNpbEhbtLQVtRinQLsGNXKjedWhXE5I4/BzZyZ3ctXN7YciOe7HTHEpl4dWwpJzsov3tex1Ax7U0ODso+Nyhc53W1MyvyckFG+WVh0Si6/H7rE1/9FFz9XPLY0dyY6JYdxi0/pxpZrmq/dKZ9sjmRvRCorxjcrHlvMiu7qmtbVC1MjA1p5W9MpwJbt51OKi8BQNLa4WrD13BU+2hTJy/f7YWGsIf2a30V6biEWJuWbSYmyvJ2sSZg/Td9hiFrA19eXgoKCG28oxB0kReBqZlLXQCZ1DSTmShaPfreLBq7WtA90ZM6Koyyf2pHmXnYYGCjUf3ENul6etybmShbeDrqr5LEp2dRzKb8kgrutGbMeaMiUbuVvlQZ4vk8jnu/TiLCEdAZ/uZ2WvvZ0qOdUZpvoK1l0fndDpXEsntS+eMby9dzJpYYvp+cy7Ov/GNPRjxFtfe/cgYWoxiZ19mNSZz9iUrIZ+cM+Grha0T7AnjkrT7J8ShuaedpgYKDQ4OV/bmNk0Y0nXvbmRT/nUM+5/GxYNxtTZvWux+Su/hUeY9b9Qcy6P4iwSxkM+WY3oT52tA8sewEo+ko2XT7YVmkci8a3Kp6xXNrJ2HQ+fbgpZkYazIw0PNzKg//9fbZMETjsUgan4tLp39ytzL6OliZ8P6qkWeXUxYdp4V12xk9l+wpRW03q5MOkTj7EpOQw8udDNHC1pL2/HXP+OM3ySaE087DWjS2vbb6t9eRiU3LwstddZIpNzaGes0W5bdxsTJnVK4DJnX0rPMasXoHM6hVI2KVMhszdT6i3De0Dyo4T0Vey6fLxrkrjWDS2RfGM5Wt9/18kvx+M5Y8prbAxKyk8nYrPoGOAHY3ddblWp0AH3GxMOBCZygONncsdp1BVuZiYXfx4cAs3BrfQjSkXE7P4bNNFGrjKnQaidpvYwYOJHTyIScnlsQXHaeBiQXs/G15ac55l45rSzN0SAwOFhm/t4naWqoxNzcXLzrT453pO5ZdCcLM24bnuPkzuWPEF3lk9fJnVw5ewy1kM/fEoLb2saO9vW2ab6JQcun5evqH1VYtGNal0FvEPO2P4/VACqyY0w8as5PS9ftE4qFD2RKmy06ZCrVq8JnCQsznz9sYWv5adX8jFpGyCnGUpCCGEqM2kCFyNHI68ggoEe9hgaWKIkUZBY6CQlVeIgm5GXqGq8sW/Z0nPyb/R4a7r4/Wnee+h5pyMSeXv43FM7xlUbpsRbXyYNH8fHQKdCPa0IT2ngK1nLtGvuQf/hV3G0dKEIBcrrEwNMTTQxXotTztzLrzf/6bjW388jnYBjliaGLLrfCK/74ti3oSSBfrzCrRoVRVVhfxCLTn5hZgYGqAoClqtSl6hlvxCFVVVyckvRGOgYKQxIC07n0e+3cH9wW5Mva/8ZxaiNjoclQIqNPGwxtLEEEONAQZXxxYFHCyMdWPLxvOk59ze1eiP/z3Hu4MbczI2nfUnEsotBQEworUXkxceon2gA8Ee1qTnFLDtbCJ9m7mx41wSjpbG1HO2xMrEEEMDgwqbq3jamXH+nd43HV9zLxsW7YnihQeCyC9Q+X1/DA2uWRd82YEY7mvohL2FcZnnI5KysDEzwsJEw19H49l8+jJbn+tcpX2FqI0OR6fqxhZ3KyxNNBgaKBgYUDS2KCVjy6bw2x9bNl7g3YENOBmXwfoTl5lewSzeEa08mLz4KO0D7Al2t9KNLWHJ9G3qwo7zyThaGFPP2QIr06uxVjK2vHnfTce3tGgG8h9TWpWZ3QvQ3NOab7dFcCY+g/quluy8kMy5y1kEFRVwFu+NoXdjJ+zNjTgak87PO6OY2tW3eP9jMWk0drMiIT2XWStOMa69d4VL0QhRWxyJSUdVoYmbZfHYolEoyVvMjShUVb7cEkV67m2OLZsjebdfICfjM1h/KpnpXbzLbfNISxemLDlNe39bgt0sSM8tZNu5K/Rt4sSOCyk4WhhRz8kcq6uxVjS22Jpy7pUONx3f0oMJfL09mlUTmuFsVTa38Hc0I9Tbmi+3RfF6H39OxGey40IKL/b0BWDx/nh6N3TA3tyQY7EZ/Lw7lqmddbOU2/nZkJOvZfH+eIY0d+aLrVEEOZnLesBF+r+1jJFdmzCs471p3CZqr65duzJ+/HhGjqy4YaEQ95oUgauR9Jx8Xl55jMikTMyNDenfwoPBLb3QGCg83tGfnh9sxsTIgPGdA3C3vfU/0BoDhebedoS+vh5jQwPeHBRMUKnlF64K8bXnzUHBzFxykPDETCxNDOlc35l+zT24lJbDc0sOkZCWg7WZEaPa+1VpRm9VrTgQxfTFB/7P3n1HR1G1cRz/zqb3CqQSCCnUQAKE3lUsIFVAQEQFEQvYfQUVewUrFhBFBTtVkab03nuogTQSQkJ6LzvvHxM3CUlIwIRNeT7ncE6yM7t7Z/Pw29m7d+4lv1DF29mad+9pT7cSjz/6yx3sCtfmIh3z1U4A9r58G01dbNgVnsiIz7cb9m323B+M6tyUT8d1ZM2xWI5fTOV8Qgbfbiu+FP1GOqqFqCvScwp4ZWUYUUnZWJubcHd7d4YHe2jZ0t2HWz/ajoWZjod6Nis1ncP1MtEpdPB2oPNbmzA30fHGkNYENCk7Wi3Ex5HXh7Tmmd+PEXklS8sWfxcGtXcnPi2H55YcIz4tF3tLU+7r1rTcEb036qPRQcxYfoLg17UFK7u3cOHVwcULuKmqyrKDseUu6nYkOpWXV4aRnlNAK3c7Fj/UmUYlOnuudV8h6qP0nAJe+fNMcbYENWF4B3ctW7p5c+snu7Ew1fFQj6alpnO4XiY6hQ5e9nR+dzvmJgpv3B1YfrY0deD1wYE8sySMyCvZ2FqYaNkS1IT4tFyeWxpGfHqeli1dvCoc0XsjZv8dzpXMPPp9VDyKeFq/5kzv35zuLZx5ol9zJnx/mCsZebg5WPDusJa0KJofeef5ZN5ae5acfD1N7My5r6sXD3Qrvpx85spTnIjLwMpMx6iOHvxvYNlV5oWoT9JyCpi1+jxRyTlYm5kwuJ0rw9o3xkSnMLGLB7d9cVDLlq4epaZzuF4mOujgaUvo7L2YmSi8fpcv/uWMhA3xtue1u1rw7PIzRCblYGthQq8WTgxq24j49DyeX3lWyxYLU+4Lda90gbfrMWdjJFey8uk/t3gU8bTe3oZ5i78YFcjTy87Q6q1deDhY8OGwAMP8yLsupPL2+gvkFGjZMiHUnQe6aFcVWJjq+HZca55ZfpaXVoXT1sOWL0ZJh2dttXDDUT5bdYAr6dn0b+fDx5NuwcGmbO3nFxQy/N3lnI65Qn6hnkBPZ94Y15vO/trfPSevgFd/3s4fe8+SX6jn/n5tmTmqe6k56gH2nonlrjd+538juvHM0NCbcozi5li3bh2PP/44sbGx9OvXj++++w5X1/L7cc6fP8/999/PgQMH8Pf355tvvqFTp043ucWiuin/5dK8hsjW0ixx8wsDXP693LmuibqSSbe3/ubih0ON3ZQG4e5PtqTuvZA0RlXVtcZui6jdbC1MEzc929vl38ud65ropCy6vbuFmPfvMHZTGoQhc3el7o1IlmwRlbK1ME3c9HQ3F2+nupot2XT7YAcx79xi7KY0CEO+3Je6NyJFskVUytbCNHHTEyEuXk51c37q6OQcun+0j+jXexm7KfXeLwcusS0Wvn7iTmM3pcpq00jgbWHRPPLFOv54aQTuTrZM/XIdVuamfPXo7WX21etVTl+8QoCnMzpFYe3BCzz1zT+c/HwyiqLw7tJd7Dkdy/dPDiI9O4+hby9l2qBO3NevreExCvV6Bs76FZ1OYWCw703vBN5/Lo57P/jjVFJGtmFUhZ2d3VdvvvnmlOnTp9/UtlSH2jQS+PLlywQEBLB48WL69+/P1KlTyc7O5rfffit3/9DQUAYOHMjMmTP57rvveOuttzh37hwWFjf+5duNysnJwdbWtqCgoEAuhfqPdMZugBBCCCGEEEIIIUR1mb18D1O/XFfqtntnr+Sbv48A8OIPm2n7xAKaT/6SQW/8zumLV8p9nPeW7mb618Vr3Ow+fZHgJ781/B57JZ3xH/5JwCPz6PzMdyzbdbpaj+PvwxEM7xZACzcnrC3MePyujvyx9xxZuWWnh9TpFFp5u2Ki07p5THQKiWnZpGfnGR5ryu3B2Ftb4Olix7g+bfhlW1ipx1iw/gjdWnoS4FF9V+LVdW+88Qb33XdfqdsGDRrE559/DsC0adPw9PTEwcGB3r17ExYWVt7D8OqrrzJp0iTD79u3b6dZs2aG32NiYhgyZAiurq74+/vzyy+/VOtxLF++nE6dOjFo0CCsra15/fXXWbFiBRkZZRe6Pn36NGFhYbz00ktYWlryyCOPYGZmxpYtW6q1TeLmk05gIYQQQgghhBBC1BvDuwWy9uB5cvK0eaNTMnPYHhbD4FBtvYqOfm7sePc+Tn/5MMG+TXh83t/X/Rx6vcq4D/+kW0tPTsydxHfT72LGoi2cuZhU7v73zl6J78NflvvvuYUbK3yOkhdv61WVvIJCzl9KqbBdg17/HY+Jcxk75w8mDmiHvbVFhY91Kqa4rfEpmXz7z1GeH9al6i9CA3Dvvffyxx9/kJOTA0BycjIbN25k5MiRAHTt2pUTJ06QkJBA586dmThx4nU/h16vZ/DgwfTu3Zu4uDiWLl3KtGnTOHnyZLn7Dxo0CEdHx3L/Pfroo+XeJywsjKCgIMPvPj4+WFtbc/bs2XL3DQgIKDXqNygoiBMnTlz3sYnaReYEbmCautjIVBBCiGrn7WwtU0EIIaqdt7OVTAUhhKh23k6WMhVEPefr5kjzJo5sOBLBXZ39+Gt/OKEB7jR20OZjH9m9eKqH54Z1ocWUr8jOK8DKvOpdJIfOx5OZm89jd4YA0KZpI+4O9WfV/nM87Vl2GoWfnx1y3cfRP8iHx+etZ0K/trg72zL3L21+6PJGAv9r1Sv3kJtfwNqDF8jNL148sX+QD1+tPUS3lh6kZuby85awUo8z66dtPHl3Z+ysb/7l/rWZn58ffn5+rFmzhmHDhrF8+XJ69OhBkyZNABg7dqxh31deeQUnJyeys7Oxsqr6VFz79u0jMzOTZ555BtA6XO+55x6WLVvGzJkzy+y/atWq6z6OjIwMvL29S93m4OBQ7kjgjIwM7O3tq7SvqFukE1gIIYQQQgghhBD1yrCuASzfc5a7OvuxYvcZhnUNMGz7+I99/LQ1jITULBQFVBVSMnKwci678GhFohPTiEpIw/fhLw23FRaqjOldfYsE9w/y4fG7OjJ2zh9k5xXw6J0hrDlwHo9K2mlhZsqQLv70fnExQc0a09LLhaeHhPLSj1vp/vwiHGwsGNo1wDB9xc5TF4m4nMqXvWSB4/KMGTOGX3/9lWHDhvHrr78yZswYw7Z33nmHhQsXEh8fj6IoqKpKUlISnp6eVX78yMhILly4gKOjo+G2goKCGxpVXBFbW1vS0tJK3ZaWloatbdlaup59Rd0incD13LDPtjGumw8jOzU1dlOEEHXY8C92M7aLNyM7Vv1kRgghKjN83n7GdvZkZIi7sZsihKhHRiw4ythObozo0NjYTRFGNLxbALNX7CE6MY09Z2L5+nHtqrUdJ2NY8PcRlr84HD93J9Kz8/B9+CvUknMlFLG2MCM7r3i0bEJqluFnD2db/N2d2PZu1Rb9Gv3+Cnafji1328gegcx5cEC52x69M4RHi0YbbzkehZuTDR7OdlV6zvxCPRfiU2np5YKNpRkfPTQAHtKe5+3fdxLcwg2AbSeiORlzhTaPLwAgLSsXExMd5+KS+XLqwCo9V302ZswYXn/9dSIjI9m+fbthvt4tW7Ywd+5cNmzYQGBgIGlpaTg6OpZbSzY2NmRlFddPfHy84WcvLy9atmzJsWPHqtSeO+64g23btpW7bfz48Xz11Vdlbm/dujVLliwx/B4VFUVmZib+/v7l7nv27Flyc3MNU0IcPXqUqVOnVql9ovaSTmBx0+QV6Jn6wz4ORiYRl5rD3pdvo6mLjWH7ykMxzNt8juMxqQwN8eLTcR0rfKzf9kbx0fpTJGbkYmVuwrBgL14Z0g4TnQLA9jMJzFpxjIgrmXg4WDJjUBvuCPKo8WMUQtS8vAI9U388xKGoVC1LZvTF29nasP2Pw3HM23qB4xfTGBrszidj2lf4WLkFhcxcHsba4/HoVZW+ga68N6ItdpbawrOd39pEYkYuOkXLlqEd3JkzKqjM44yZv5ft567IlBhC1GF5BXqm/nxMy5a0XPa+0BNv5+JLOV9ddZq1JxJIzMjDx8WKGbf7MaBlo3If62RcOq+uOsPhmDTsrUzZ97/Sl513fncbiRl5xdnSvglzRrYxbA9PyGTGylPsj0zF2tyEaf2aM7mnfKEvRF2UV6Dn0d9OcSgmnbi0PPY80xlvJ0vD9tfWnGdt2BUSM/PxcbbkxVubMSCw4kW5whOzmPlnOPuj07A2M2FaH28mdS/+kv7zbdF8uyuW1JwCmjlbsfShIBysTHlh5VmWHrls2C+/UKWFqxUbn6j4M1dd5+liRxtvV6bN/5uerb1xtNFe98ycfEx1OpztrMjJL+Tt33dV+BhtfVz5cs1B4pIzMDc1Yd7aw4ZtIS3cUBRtMbX7+rVBpygcj0rExsKMAM+yf8Nfnx963ceQk1dAZEIqAR7OhF9K4ZWftvH0kFB0RZ97Szp98QpxSRl0a6nVw8INx4hNyiCkhTZtQVxSBjqdgqu9FdtORPP9xuMsnzEcgMfuCmHigHaGx5qxaAs+jeyZPrjzdbe5PvL29iYoKIgHH3yQ/v374+TkBGjTJpiamuLq6kpOTg4vvfRShY/Rvn17PvzwQ2JjYzE3N+fjjz82bAsNDUVRFObOncvkyZPR6XQcOXIEGxsbWrUqOzp7zZo1130Mw4YN44UXXmDNmjX07duXWbNmMXTo0HJH9wYGBtKqVSvefvttZsyYwffff09eXh59+vS57ucVtYt0AoubqmsLFx7t78/dn24ts83J2pyp/fzZc/4KadkVz3EE0N3flVva9MHZxoLkzDwmf7eX73dc4MFevhTqVR5auIfXhrZjdGhTtpy+zAPf7uHArIE428j8RkLUB119nXm0ry9DPt9dZpujtRlT+zRn94Vk0nOunSULt0dyNCaVLc/3xtJUx+QfDvHR3+d4ZXDxydYvD4fSpXnFH8ZWHYkjO7/wxg9GCFFrdG3uxKO9fRjy1f4y22wtTPnxwWCau1iz9VwSDy8+ysanuuLlVHbOPzNTHcM6uDGsgxtzNpwv97l+eSiELs2dytyek1/IqK8P8mgfH767vwN6vUpsau5/PzghhNF0bebA1F5eDP36SJltNuYmLL6/Dc2drdgansKUX06y4YkQvBwty+ybk69n9MLjTO3pycLxrdHrITatOB8W7o5lxdEEfnuwHb4uVpy5nIWFqbYW/HtD/HlvSPGIv3HfHyfYq2qjSeuy4d0C+d8Pm0uNZh3Q3ocerbzo+NR32Fub878RXSu8f9+2Tbk9xJfuzy/C3cmW+/q1Yf66wwCYmuj4+dkhvLR4K3NW7CG/UE9rb1feuq/6Ospy8wuZ9NkaIhNScbSxZNKt7XnwluIBCc98uwGAOQ8OQK9XeeO3nZyLS8bMREdLLxd+euZumjhqA68uXE7l0S/XcSU9m2aNHfjs4Vtp7e0KgK2lObaW5obHtTI3xcbSHAf5/Gxw77338sQTT7B48WLDbbfffjt9+/bF19cXBwcHXn/99Qrvf+utt3L33XfTqlUrPD09mTx5Mp988gkApqam/PXXXzz11FO88cYb5OfnExQUVKqj+L9q3Lgxv/zyC48//jixsbH069eP7777zrD9kUceATCMIv7555+5//77ef/99/H392fZsmWlFooTdZN0AtcBH647xfmEDOaO72S4bfz8nfRv5caDvXyZufQIfx2NJTO3gDYeDrw3qgOBbvZlHueDNSeJS83mwzHapSR7zify2KID7J+lvSHGpmTz4pLD7LuQhIOVGS/c2ZqhIV7Vdhzmpjom9/GrcHvvQO1yrXOX0yvtBPZysi71u06ByERtkvLU7DxSs/MZ3tEbRVHo27IJ9pZmRF7Jkk5g0aB9+PdZzidkMndsB8Nt932zj/4tG/FAj2a8tOIEfx29RGZeIa3d7XhvRFsC3cp+OJi97gxxqTmGEbF7LiTx+E9H2DezH6BlyYzlJ9h7IRlHazOeHxjA0ODqG4lvbqpjcq/mFW7vHaCdzJ5NyKy0Ezg6OZt+LRvhYqOd9N7Rrgnrjsdf8z4lZeUW8P66s8wZ1Y5hX5TtkBaiIfjwn/OcT8xi7pi2htvuW3iI/oGuPNDdm5dWnuKv45fJzC2ktYct7w1rRWCTsqNOZv8drmVL0YjYPReSefzX44ZRtLEpOcxYeYq9ESk4Wpny/G1+DO3gVm3HYW6qu+Zo22dvbWH4uW+AC81crTgem15uJ7BfIxv8Gtmw50Lydbfj1/2xNHW25KEexW3xbyyn7KLh+WhTFOcTs/nsnkDDbRMWnaCfvxMPdPXgpVXhrD6RqJ23uNnw3hA/AhrblHmc2RsiiUvLZc4wbT7YPRGpPLHkNHuf1Rbuik3NZcaf59gXlYajlSnPDfBhaFD1TSNhbqorNVL3as8O8DH83NffiWYuVhyPyyy3E/jXg5do6mTBQ92KH8+/kfa5qFCv8umWaObeE0gLV+22wCZlXw+AhIw8toWn8OagFuVur08m3daeSbeVvirMRKfj80du4/MSt43tU3w1xh8vjTT8rCgKHz40gA8fKp6qYeodIYafPV3sWDj9rupveBEHG4trTjdRcgqJVt6ubHjj3gr37d7Sk8OfPFil55075baqN7KBePzxx3n88cdL3WZiYsL333/P999/b7jtgQceMPy8efNmw8+KojBv3jzmzZtnuO2pp54y/Ozt7V1quoaacPvtt3Pu3Llyt109hUSLFi3Yvn17jbZH3HxyRlkHDAvx4rY5m8jJL8TSzISUrDx2nE3ko3u1N5+OzZx5/o5WWJmb8taqE0z/6SBrn+57Xc+h16tM+HoXIzp5s+CBLpyNT+eeL7bT2sOegHI6lMfP38ne80nlt7ejF+/d0+F6D/O6/X3iElN/2EdGbgHONua8NkzrkHK2sWBYiBe/74tiTBcfNp2Kx0SnlNuZJURDMizYg4Ef7yiRJflsP3eFD4s6c0OaOvLcwACszEx4e/Vpnvz1KGum97iu59DrVe7/9gAjQjz4ekIIZ+MzGDVvr5Yl5XT63PfNPvZW0EkyLNiDd0e0LXdbdbmnkyev/XmKhPRcLEx1/HX0EgNalb68e/IPB1FV7fV5fUhrfFyKv4Sa8/c5Rnf2xM1evmASDdewDm4M/HRP6WwJT+LDka0BCGnqwHO3tdCyZe1ZnvztBGue6HJdz6HXq9z//WFGBLvx9fggzl7OZNTXB2jtblt+tiw8xN6IlArb++6w/7bwTXJWPuEJWQRU0MFSFZMXH0UFQrzteX1woCFbDkWn4eloxZgFBzkWm0Z7T3veG94K73I6m4Woz4YGNeL2Lw6Rk6/H0kxHSnY+28+nMGeYNpo1xNuO5wb4YGWm452/I3hy6RlWTw2+rufQ61XuX3yCEe0b8/W9rTibkM3ohcdo42aLf2PrMvtPWHSCvZGp5T7WsKDGvHN3xQNeqiI5K5/wxCwCGpV9boBDMRl4Olhy73fHOBabQXtPO9672w8vJ0viUnOJT88j7FIm05acxsJUx0PdPEp1GP9r+ZEEOnjZ0dxFckUIIRoS6QSuA5o3sqW5qy0bT8ZzZ5AHq4/G0rm5M43stG+Hh3f0Nuz7zMCWBM5YRXZeIVbmJlV+jsNRyWTlFTC1n3ZS1drDgcEdPFl9NK7cTuDFD3f/j0f1393axo1z7w0mIjGD3/dF42pb3AkzJNiTp385xPO/H8bMRGHe/aFYm0u5i4atuasNzVys2XgqgTvbubHm+CVCmznRyE77vzM8pPhDwtO3+tHylb/Jzi/Eyuw6siQ6lay8Ah7p6wtAaw97Brd3Y/WxSwQ0KfvBaNFDxp1nrLmrDY1szQl6bQM6Bbr5ujChW/Houy/GdaCdpz0FhSofrD/DhG/3s/GZXpjoFM7EZ7Dh5GXWP9WT+LQcIx6FEMbV3NWaZq5WbDx9hTvbNmbNicuE+jgWZ0tw8aJvTw/wpeVrm68/W2LSyMor5JHezQBo7W7H4KAmrD5xudxO4EUPXF9H0PUo1KtM/+04Q9u74et6Y53AX4xpRztPOwr0Kh+sD2fCd4fZ+FQ3THQKcWk57AxP5scHg+nS3In31p3j8V+Os3KqzMsoGpbmLlY0c7Fi09kk7mjtypqwK3Ruak8jW+3qneHti0frPtWvKa3e2nX92XIxnew8PY/01K5+bO1mw6C2rqwOS2R647JXBvxwX5syt1WXQr3K9KVnGNquMb6u5XfOXkrLZeeFVBZPaEOXZg68908Ejy85zYrJ7YlLzwNg+/kUtkzvSFxqHiO/PUpAY2t6tSg99cySw/GM73xzFuTUKQr5hYUqUHYSWyGuUlCoB4VS86wVFhYWFBQUGKtJohYoKChAp9Ppjd2O+kB6xeqIISGerDwUw51BHvxx6GKpaRo+/fs0v+yNJCE9FwUFVYWUrDyszKv+zW50chZRV7II+N8qw20Fej2jQ32uca/aoZmrLS3d7Zmx9AhfTwzlzKU0Hl20n0WTu9GthSsnYlOZ8PUuvJysaePpYOzmCmFUQzt48MeROO5s58bKw3EM6VA8TcOnG87x674YEjLyUKAoS/Kxcqj6h6mY5GyikrIJfGm94bYCvcroTtU3tUx1+t/S4yiKwuk3bsXURMdbf51i+i9H+Wq81oHUuVnRhyYzmDWoFT/v/ZtzlzMIdLNjxrITvDyoJeZFc+0J0ZANbe/GH0cucWfbxqw8Es+Q9sXTNHy66QK/7o8lIT0PRfmP2TJrk+G2Ar3K6I43f9HX55eFkZOv552hLW/4MTo3czT8POuuAH7et5lzCZkENrHFysyELs0d6e3vAsBTA3wJmLWJzNwCbCzk1F00LEPaNWLlsQTuaO3KH8cSGNKu+Gqdz7ZE8+vBeO285d9syS64rk7gmJRcopJzaPnmTsNtBXqVUcFNqvU4quL5lWfJydfz9uCKp2iwNNPRxcee3n7a+clTfZsS+OYuMnMLsSw6H5nawwtbC1P8G5syLKgxG88kl+oEPh2fyZnLWdzdzrVmD6hIUydLTu6MlA5gUSUnY65QqNefKXlbTk7OmYMHD2YDMnS9gTp+/DhWVlaXjN2O+kDOJOuIocFefLjuNNFJWey5cIWv7tdGg+w8l8i328/z+6M98WtsS3pOAQEvrkIt5zGsLUzIziv+Ui0hvXgRAQ9HK/ya2LH5hQHl3LOse7/ayZ7zieVuG9nJm/dH1dwInPIU6lUiiuYEPnUpnVbu9vTw104S23k5EtLMmR1nE6QTWDR4Q4Ld+fCfs0QnZbP3QrKhs3Nn+BUW7ojkt0e64NfIhvScAgJf/htVLZsm1uampRZCK5kl7o6W+DW2YdOzvavUnrFf72PPhfKnlhkR4sH7I9uVu626hMWl8+rdrbC3MgPgvq5NGfJ5+StEK0rpISw7wq9w5nI6AIV6LYeCXvuHnyeH0saj7BUUQtRnQ9q78eE/54lOzmZvRDJfjdX+7+48n8TCndH8Nrkjfo2stWx5dTPlRAvW5iZk5xcP8kjIyDP87O5QlC1PdatSe8Z+c5A9FUwHMSLYjfeHt676wZUw68/TnLyUwe+TO1bbF0CKov37V2ATWw5GpZbZp7xzOyHquyHtGvHRpihiknPYG5nGl6O1L192XUhh4e5Yfn2wHX6uVqTnFtLyzV1VypbEzOL1AtwdLPBrZMXGJzpWqT3jvj/OngqmgxjRvnGphdeux6urz3MqPovfHmh3zWxp2cSGg9FppW7T8kGlhasV5iZKqTz5d3tJSw5f5pZAZxyLzn1qWmcfe+KTM9UVu88wtGuAdAaLCiWkZvHRyn2ZaVl535a8XVXVZcuXL3/34MGDhISEVHR3UU/l5uby4osvZufm5n5b+d6iMtIJXEd4OlnT2sOep34+SE//Rjhaa5dBZeYWYKJTcLYxJydfz7urwyp8jDYeDszbfI5LqdmYmej4eku4YVtwUycU4Jtt4Yzv1gydonDiYirW5iblTgfx8yM3Nh1EbkGh4eQsr0BvmD8QtA6U/EI9BYUqelUlJ78QU52CqUnZE6Gl+6Pp7ueKu6MV4ZfT+eyfM/QKLOr09XTg9KV09pxPpIuvKydjU9kdnsjEHhUvJCVEQ+HpaEVrd3ue/u0oPf1ccLTWPgBk5RYWZ0mBnvfWnqnwMVp72DFv6wUupeZgZqrj620Rhm3B3g4oisK32yMY19Vby5LYNKzNTcu9ZPunyTd2eXPJLMmtIEsKC/UU6q+dJR28Hfh9fwyhzZwwNVH4cW80Ld21+cNjkrO5lJpDe28H8gtV5qw/SyM7C1o00i7/PvJK8ZdmsSnZDJq7i3+e6oWzzc35UCVEbeLpaElrd1ue/j2Mnn7O5WSLmZYt68MrfIzW7nbM2xbJpbQc7Txle5RhW7C3PQrw7c4oxoV6oVPgRFw61mYm5WfLQzf2ITG3QG/48iu3sHS2fPhPOJvPXGHF1M6VjshVVZXcAj35hSqqCjn5hegUBXNTnZYtabm097LXsuWfcBrZmRsWchoR7Mb8bZHsDE8itJkjn266QNfmTtjKKGDRAHk6WtDKzYanl5+hh6+joeMyM0+vZYt1Ubb8E1HhY7R2s2H+jhgupeVq2bLzomFbsKedli27YxnXyQ2dAmGXMrE2Myl3TuAf77+xtQq0bCn++d95jgE+3BjJ5nPJLJ8UhI3FtUcxj2jfmPk7LrLzfAqhPg58uiWarj4Ohny4q40rX+24SDsPWy6l5bHyWAJzSyysp9erLD+acFMXhDPRKTR1ssh4fN7fvLNklxrUrLGJqYlOOoOFgaqqanxKZuHes3EWJoryEfDXVdtjFEUZ17179x/btWuX7+/vb2JiYiI1VM+pqqqmpqbqN2/ebKbT6dbn5ua+bew21QdyNlmHDA3xYubSo3w+vpPhtv6tmtDdz5Uub6zH3sqM5+6oeKGTPoGNGdjGnV7v/IObgxXjuzUzdASbmuhY/HA3XllxjI/WnaZAr6eVuwNvDKveUXg93vqHmOQsAHq+8w8Alz4eBsDv+6J48ueDhn2X7I/mmYEtee6OVsQkZ9H7nX/Y+uIteDlZExabyut/HCctJx9nG3MGd/Dkf3dqo3qaN7Llg1EdePbXw8SmZONkbc5j/QPoFVB9q/wKUZcN7eDOzBVhzB1bvFJyv5aN6N7Cha5vb8be0pTnBlY8kqVPgCu3tWlM7w+24mZvybiu3iwo6gg2NdGx6KFOzFp5ko/+OUdBoUordzteH3Jjo+4q0vO9rcQkZwPQ6/2tAMTNvhOAJQcu8uSvRw37Lj0YyzO3+vHswABikrPp88FWtjzXGy8nK14e1JKZy8MIfXszhXo9Hbwd+ahoobzM3AKeW3KMyCvZWJrp6OTjxA8PdjJ0JjcusRhcbkFhmduEaGiGdnBj5srTzB1T3EnSL9CV7r5OdH1vu5Ytt1bc8dDH35nbWjWi9+xduDlYMC7UkwU7tI5gUxMdix4IZtafp/lowwUKCvVatgwOrPDxbkTP2TuISdbm+O41W7s8PO69WwH44O/zmJsodHpnm2H/94e3YkSwu5YtH+5iy9Pd8HKyIiY5h9D3ilfUbv7SRrr5OrFsSicycwt5btlJIq9kYWlmQicfB36Y2MGQLQFNbPl4VBum/36CtOwCOjdz5LPRNbtIphC12dCgRry0Kpy5I4v/v/fzd6J7cwe6fbgPOwsTnhtQ8RR2ffwcua2lC30+OYCbvTnjOrmzYJfWEWxqovDDfW15dU04H2+KokCv0qqJDa/d5Vutx9Dr4/3EpGhXTvX+5AAAsW/2AmD2xijMTRQ6z95r2P/9u/0Z3qExMSk59P30AJundcTL0RL/xtZ8NCKAJ5edIS2ngM5N7fm0xOvy9mA/nll+hqB3d+NibcaTfb3p4eto2L7zQirZ+YUMCCg9R3BNszE30efkF4wNv5SSGX4pxReo+pwdoqFIATapqnqlvI2qqi5XFMVl//79/fbv3+8GyHxsDUMWsFNV1QhjN6S+UMq71FdUzNbSLHHzCwNcvJ3LX7FViJLu/mRL6t4LSWNUVV1r7LaI2s3WwjRx07O9XbydZaorUbkhc3el7o1IlmwRlbK1ME3c9HQ3F28nyRZRuSFf7kvdG5Ei2SIqZWthmrjpiRAXLydLYzdF1AFD5h9J3ReVJtkihBBGJt+eCCGEEEIIIYQQQgghRD0mncDXTS13oSQhyiOVIq6PVIyoGqkUcV2kYEQVyTmuqDpVokVUmdSKEELUDtIJfJ10ipKdlp1f+Y5CAClZ+QqQYex2iNpPp1OyU7MLjN0MUUekZOVJtogq0emU7NQcyRZRNSnZBZItokp0imSLqLrUbPlMJIQQtYF0Al8nvcr6tcfj9MZuh6j9YlOyibySaQ4cMHZbRO2n16vr152Il2wRlYpNySYyKVuyRVSJli2XJVtEpWJTciRbRJXpVdavO3lFskVUKjY1l8ikHMkWIYSoBUyN3YC6JjO34IPPN5wdCdjeGeShc7AyQ1EUYzdL1CL5hXqORKfw5h/HM011yge5qppt7DaJ2i8zr/CDzzeFjwRs72jbROdgbYYkiyipoFDlSEwqb/51SrJFVFlmXuEHn2+JKMqWxtp5i7EbJWqVAr3KkZg03lx9RrJFVFlmXuEHX2yL0bKltavOwdIU+UgkSiooVDkSm86b6y5o2VKgl2wRQggjU2Tur+unKEpLGwuT53WKcluhXrU2dnuqmaKCgwLpQGENP5cdkAvk1fDz3FSKohSamShnUrLyPwd+VuU/magiRVFa2pibPK/T1dNsUXFQlJrPFhXslPqYLVBoZqI7k5It2SKuT/3PFtVBUZSazxZVtVMUpZ5mi3ImJbtAskVcFy1bdMWfiepXJ7B23gLpKDWdLUXnLUp9yxZFskUIIWoZ6QQWpSiKMhJ4QlXVPjfhucYD96mqOrCmn0sIYVySLUKImiDZIoSoCZItQggh6iOZE1hc7WFg3k16riVAR0VRfG/S8wkhjEeyRQhREyRbhBA1QbJFCCFEvSOdwMJAUZQWQDCw7GY8n6qqOcAiYNLNeD4hhHFItgghaoJkixCiJki2CCGEqK9kOghhoCjKu4CZqqrP3MTnbAVsBJqqqpp/s55XCHHzSLYIIWqCZIsQoiZItgghhKivZCSwAEBRFHNgIjD/Zj6vqqongTPAkJv5vEKIm0OyRQhREyRbhBA1QbJFCCFEfSadwOJfQ4BTqqqeNsJzz0ebd0sIUf9ItgghaoJkixCiJki2CCGEqLekE1j8awo3b/GDqy0Fgovm3xJC1C+SLUKImiDZIoSoCZItQggh6i3pBBYoiuIHBHGTFj+4WtFiCD8Ak43x/EKImiHZIoSoCZItQoiaINkihBCivpOF4QSKorwHmKiq+qwR29AS2Iy2GEKesdohhKg+ki1CiJog2SKEqAmSLUIIIeo7GQncwBlr8YOrqap6CjiFLIYgRL0g2SKEqAmSLUKImiDZIoQQoiGQTmAxFDihquoZYzcEbf6tKcZuhBCiWgxFskUIUf2GItkihKh+Q5FsEUIIUc9JJ7CYgpG/8S5hGdC+aD4uIUTdJtkihKgJki1CiJog2SKEEKLek07gBkxRFH+gLbDc2G0BUFU1F/geWQxBiDpNskUIURMkW4QQNUGyRQghREMhC8M1YIqivA+gqurzxm7LvxRFCQC2Ad6yGIIQdZNkixCiJki2CCFqgmSLEEKIhkJGAjdQiqJYoC1+8LWRm1JK0TxcYWjzcgkh6hjJFiFETZBsEULUBMkWIYQQDYl0AjdcQ4FjqqqeNXZDyiGLIQhRdw1FskUIUf2GItkihKh+Q5FsEUII0UBIJ3DDVZsWP7jacqBd0fxcQoi6RbJFCFETJFuEEDVBskUIIUSDIZ3ADVDRHFNtqCWLH1xNFkMQom6SbBFC1ATJFiFETZBsEUII0dDIwnANkKIoHwB6VVVfMHZbKlJ0UrYdbTGEXGO3RwhROckWIURNkGwRQtQEyRYhhBANjYwEbmCKFj+4n1q2+MHVihZDOI4shiBEnSDZIoSoCZItQoiaINkihBCiIZJO4IZnOHBUVdVzxm5IFchiCELUHZItQoiaINkihKgJki1CCCEaHOkEbngeRjuRqAuWA22KLoMSQtRuki1CiJog2SKEqAmSLUIIIRoc6QRuQBRFCQRaASuN3ZaqUFU1D1kMQYhaT7JFCFETJFuEEDVBskUIIURDJQvDNSCKoswB8lVV/Z+x21JViqL4ATuRxRCEqLUkW4QQNUGyRQhREyRbhBBCNFQyEriBUBTFEphALV/84GpF83QdRZu3SwhRy0i2CCFqgmSLEKImSLYIIYRoyKQTuOEYDhxWVTXc2A25AfPR5u0SQtQ+ki1CiJog2SKEqAmSLUIIIRos6QRuOKZQdxY/uNoKoFXR/F1CiNpFskUIURMkW4QQNUGyRQghRIMlncANgKIoLYFA6sjiB1crWgzhO+SbbyFqFckWIURNkGwRQtQEyRYhhBANnSwM1wAoivIhkKuq6ovGbsuNKloMYRfaYgg5xm6PEEKyRQhRMyRbhBA1QbJFCCFEQycjgeu5urr4wdWKFkM4jCyGIEStINkihKgJki1CiJog2SKEEEJIJ3BDMAI4qKrqeWM3pBrMR5vHSwhhfJItQoiaINkihKgJki1CCCEaPOkErv/q8uIHV1sJBBbN5yWEMC7JFiFETZBsEULUBMkWIYQQDZ50AtdjiqK0BvyBP4zdlupQtBjCQmQxBCGMSrJFCFETJFuEEDVBskUIIYTQyMJw9ZiiKB8B2aqqzjB2W6qLoigtgN3IYghCGI1kixCiJki2CCFqgmSLEEIIoZGRwPWUoihWwH3U8cUPrqaqajhwCG1eLyHETSbZIoSoCZItQoiaINkihBBCFJNO4PprJLBfVdULxm5IDZiHLIYghLFItgghaoJkixCiJki2CCGEEEWkE7j+ehht5dj66A/AX1GUVsZuiBANkGSLEKImSLYIIWqCZIsQQghRRDqB6yFFUdoALYA/jd2WmqCqaj6yGIIQN51kixCiJki2CCFqgmSLEEIIUZosDFcPKYryCZCuqupLxm5LTVEUpTmwD20xhGxjt0eIhkCyRQhREyRbhBA1QbJFCCGEKE1GAtczRYsfjAcWGLstNaloXq8DyGIIQtwUki1CiJog2SKEqAmSLUIIIURZ0glc/9wD7FVVNcLYDbkJZDEEIW4eyRYhRE2QbBFC1ATJFiGEEOIq0glc/0yh/i5+cLU/Ab+i+b6EEDVLskUIURMkW4QQNUGyRQghhLiKdALXI4qitAWaA6uM3ZaboWgxhG+BycZuixD1mWSLEKImSLYIIWqCZIsQQghRPlkYrh5RFOVTIFVV1ZeN3ZabRRZDEKLmSbZItghREyRbJFuEqAmSLZItQgghyicjgesJRVGsgXHU88UPrla0GMJ+tHm/hBDVTLJFskWImiDZItkiRE2QbJFsEUIIUTHpBK4/7gH2qKoaaeyGGME84GFjN0KIekqyRQhREyRbhBA1QbJFCCGEqIB0AtcfU9De+BuiVYCvLIYgRI2QbJFsEaImSLZItghREyRbJFuEEEJUQDqB6wFFUdoBPsBfxm6LMZRYDGGKsdsiRH0i2SLZIkRNkGyRbBGiJki2SLYIIYS4NlkYrh5QFOUzIFlV1VeM3RZjURTFBziIthhClrHbI0R9INki2SJETZBskWwRoiZItki2CCGEuDYZCVzHFS1+MJYGtvjB1Yrm/dqDLIYgRLWQbNFItghRvSRbNJItQlQvyRaNZIsQQohrkU7gum8UsFtV1ShjN6QWmI8shiBEdZFsKSbZIkT1kWwpJtkiRPWRbCkm2SKEEKJc0glc9zXkxQ+utgpopihKW2M3RIh6QLKlmGSLENVHsqWYZIsQ1UeypZhkixBCiHJJJ3AdpihKEOANrDZ2W2oDVVULgG+QxRCE+E8kW0qTbBGieki2lCbZIkT1kGwpTbJFCCFERWRhuDpMUZS5wBVVVWcZuy21hSyGIMR/J9lSlmSLEP+dZEtZki1C/HeSLWVJtgghhCiPjASuoxRFsUEWPyijaDGE3WjzggkhrpNkS/kkW4T4byRbyifZIsR/I9lSPskWIYQQ5ZFO4LprNLBDVdVoYzekFpqHXP4kxI2SbKmYZIsQN06ypWKSLULcOMmWikm2CCGEKEU6geuuh9FWfhVlrQa8i+YHE0JcH8mWikm2CHHjJFsqJtkixI2TbKmYZIsQQohSpBO4DlIUpT3gCawxdltqoxKLITxs7LYIUZdItlybZIsQN0ay5dokW4S4MZIt1ybZIoQQ4mqyMFwdpCjKF8BlVVVfNXZbaitFUZoCh9EWQ8g0cnOEqBMkWyon2SLE9ZNsqZxkixDXT7KlcpItQgghSpKRwHVM0eIHY5DFD65JVdUoYCeyGIIQVSLZUjWSLUJcH8mWqpFsEeL6SLZUjWSLEEKIkqQTuO4ZA2xXVTXG2A2pA2QxBCGqTrKl6iRbhKg6yZaqk2wRouokW6pOskUIIQQgncB10RRk8YOqWgN4Fs0XJoS4NsmWqpNsEaLqJFuqTrJFiKqTbKk6yRYhhBCAdALXKYqiBANuyOIHVSKLIQhRNZIt10eyRYiqkWy5PpItQlSNZMv1kWwRQgjxL1kYrg5RFOVLIE5V1deN3Za6QlEUL+AoshiCEBWSbLl+ki1CVE6y5fpJtghROcmW6yfZIoQQAmQkcJ2hKIotMBr41thtqUuK5gnbjvbaCSGuItlyYyRbhLg2yZYbI9kixLVJttwYyRYhhBAgncB1yRhgmyx+cEPmI4shCFERyZYbJ9kiRMUkW26cZIsQFZNsuXGSLUII0cBJJ3DdMQVtZVdx/dYA7oqidDB2Q4SohSRbbpxkixAVk2y5cZItQlRMsuXGSbYIIUQDJ53AdYCiKCFAY2CdsdtSF6mqWggsQBZDEKIUyZb/RrJFiPJJtvw3ki1ClE+y5b+RbBFCCCELw9UBiqJ8BVxUVfUNY7elriqxGEJTVVUzjN0eIWoDyZb/TrJFiLIkW/47yRYhypJs+e8kW4QQomGTkcC1nKIodsjiB/9Z0bxh29DmEROiwZNsqR6SLUKUJtlSPSRbhChNsqV6SLYIIUTDJp3Atd8YYIuqqheN3ZB6YB5y+ZMQ/5JsqT6SLUIUk2ypPpItQhSTbKk+ki1CCNFASSdw7SeLH1SfdUATRVGCjd0QIWoByZbqI9kiRDHJluoj2SJEMcmW6iPZIoQQDZR0AtdiiqJ0BFyB9cZuS31QYjGEKcZuixDGJNlSvSRbhNBItlQvyRYhNJIt1UuyRQghGi5ZGK4WUxRlHhCtquqbxm5LfaEoiidwHPCWxRBEQyXZUv0kW4SQbKkJki1CSLbUBMkWIYRomKQTuJYqWvwgCmijqmqssdtTnyiKsgL4S1XVr43dFiFuNsmWmiPZIhoyyZaaI9kiGjLJlpoj2SKEEA2PTAdRe40FNsvJTo2Yh1z+JBouyZaaI9kiGjLJlpoj2SIaMsmWmiPZIoQQDYx0AtdeDyOLH9SU9YBr0fxiQjQ0ki01R7JFNGSSLTVHskU0ZJItNUeyRQghGhjpBK6FFEXpBLggix/UiBKLITxs7LYIcTNJttQsyRbRUEm21CzJFtFQSbbULMkWIYRoeGRO4FpIUZSvgQhVVd8ydlvqK0VRPIATQFNVVdON3R4hbgbJlpon2SIaIsmWmifZIhoiyZaaJ9kihBANi3QC1zKKotgDkUBrVVXjjN2e+kxRlGXAWlVV5xu7LULUNMmWm0eyRTQkki03j2SLaEgkW24eyRYhhGg4ZDqI2mcssFFOdm6K+chiCKLhkGy5eSRbREMi2XLzSLaIhkSy5eaRbBFCiAZCOoFrEUVRFLQ3YPkW9uZYDzjLYgiivpNsuekkW0SDINly00m2iAZBsuWmk2wRQogGQjqBa5dOgAPwt7Eb0hCoqqoHvka++Rb1n2TLTSTZIhoQyZabSLJFNCCSLTeRZIsQQjQcMidwLaIoygIgXFXVd4zdloZCURR3IAzwUVU1zdjtEaImSLbcfJItoiGQbLn5JFtEQyDZcvNJtgghRMMgncC1RInFD1qpqnrJ2O1pSBRFWQqsV1V1nrHbIkR1k2wxHskWUZ9JthiPZIuozyRbjEeyRQgh6j+ZDqL2GAdskJMdo5gHTCmaf0yI+kayxXgkW0R9JtliPJItoj6TbDEeyRYhhKjnpBO4Fiix+IF862oc/wCOaPOPCVFvSLYYnWSLqJckW4xOskXUS5ItRifZIoQQ9Zx0AtcOnQE7YIOxG9IQlVgM4WFjt0WIaibZYkSSLaIek2wxIskWUY9JthiRZIsQQtR/MidwLaAoyjfAWVVV3zV2WxoqRVHcgJPIYgiiHpFsMT7JFlEfSbYYn2SLqI8kW4xPskUIIeo36QQ2MkVRHNAWP2gpc18Zl6IoS9DmIPvS2G0R4r+SbKk9JFtEfSLZUntItoj6RLKl9pBsEUKI+kumgzC+ccDfcrJTK8hiCKI+kWypPSRbRH0i2VJ7SLaI+kSypfaQbBFCiHpKOoGNSBY/qHU2oM1D1tnYDRHiv5BsqXUkW0S9INlS60i2iHpBsqXWkWwRQoh6SjqBjasLYAtsNHZDRKnFEKYYuy1C/EeSLbWIZIuoRyRbahHJFlGPSLbUIpItQghRf8mcwEakKMq3wGlVVd8zdluERlGUJsBptMUQUo3dHiFuhGRL7SPZIuoDyZbaR7JF1AeSLbWPZIsQQtRP0glsJIqiOAIRQICqqpeN2xpRkqIovwObVFX9wthtEeJ6SbbUXpItoi6TbKm9JFtEXSbZUntJtgghRP0j00EYz3hgvZzs1EqyGIKoyyRbai/JFlGXSbbUXpItoi6TbKm9JFuEEKKekU5gIyh6I30YWfygttoI2AChxm6IENdDsqXWk2wRdZJkS60n2SLqJMmWWk+yRQgh6hnpBDaOroAVsMnYDRFlyWIIog6TbKnFJFtEHSbZUotJtog6TLKlFpNsEUKI+kfmBDYCRVEWAidVVX3f2G0R5VMUpTHaYgjNZDEEUVdIttR+ki2iLpJsqf0kW0RdJNlS+0m2CCFE/SKdwDeZLH5QdyiK8iuwVVXVz43dFiEqI9lSd0i2iLpEsqXukGwRdYlkS90h2SKEEPWHTAdx890HrJWTnTphPrIYgqg7JFvqDskWUZdIttQdki2iLpFsqTskW4QQop6QTuCbqMTiB/ON3RZRJZvQ5inrYuyGCHEtki11jmSLqBMkW+ocyRZRJ0i21DmSLUIIUU9IJ/DN1Q2wQBY/qBOKFkOYjyyGIGo/yZY6RLJF1CGSLXWIZIuoQyRb6hDJFiGEqD9kTuCbSFGU74FjqqrONnZbRNUULYZwBm0xhBQjN0eIckm21D2SLaIukGypeyRbRF0g2VL3SLYIIUT9IJ3AN4miKE7ABcBfVdUEY7dHVJ2iKL8A21VVnWvstghxNcmWukuyRdRmki11l2SLqM0kW+ouyRYhhKj7ZDqIm+c+YI2c7NRJ85DFEETtJdlSd0m2iNpMsqXukmwRtZlkS90l2SKEEHWcdALXIEVRPBRFsS96o5yCLH5QV21Gm7esG4CiKC2N2hrR4Em21BubkWwRtYhkS72xGckWUYtIttQbm5FsEUKIOs3U2A2o554FIoADaK/1ZmM2RtwYVVVVRVHmAw8rinIY2AvYG7dVooGTbKkHJFtELSTZUg9ItohaSLKlHpBsEUKIuk9GAtesZKAJxd94t1AUZbhxmySuh6IozRRFGQV8BwwFWgApRmySECDZUudJtohaSrKljpNsEbWUZEsdJ9kihBD1g3QC16wEwAu4GzgGbAOsjdoicb1ygDeBp4E1wAS0v6sQxiTZUvdJtojaSLKl7pNsEbWRZEvdJ9kihBD1gEwHUbMuA8HAYeBH4AFVVVcZtUXiuqiqeklRlO7AKiAV6A6cNG6rhJBsqeskW0QtJdlSx0m2iFpKsqWOk2wRQoj6QUYC16wEoA3QDrhLTnbqJlVVE4H+aN+Aexq5OUKAZEu9INkiaiHJlnpAskXUQpIt9YBkixBC1H0yErhmJaB9U9pFVdVzxm6MuHGqqmYpijIC7fKnZGO3RzR4ki31hGSLqGUkW+oJyRZRy0i21BOSLUIIUbcpqqoauw1CCCGEEEIIIYQQQgghaohMByGEEEIIIYQQQgghhBD12H+aDkJRlGZmZmb32dvb91AUxbK6GiVqD71en52SkvKPXq//UVXVS9faV1GUZqY65T47S7MeioLUgyhFr6rZadn5/+hVfkS7LHCwnYXpPaYmiruiyBdSopiqos8r0Edk5hX+AvytXnXJiqIoXazMTMZbmulaKTKtUYOjQkFWXuGh3AL9D6qqHiu5TVEUE2CwnaXpPaY6xV1RFMkWYaCqaqlsAXy08xbTHgpy3iJK06tqdlpOwVXnLSbaeQuSLaKYiqrPK1DLZouFiXwmEmXoVQzZUtnnayGEqG43PB2EoihdrKys/pkwYYJZv379LCwt5f2tPsrMzGTNmjXZy5Yty8nKyuqmqurp8vYr6pT5Z2Rnb7Mefo0sLM3k3FiUlpVXyMaT8dmrDl/MMdEpB9wdrbpO7O5j6+FoiU5RjN08UYsU6lUir2Sp32yPyErJyvs+I7fgsX+3WZjqHrM2N33/oZ4+Fi3dbE1MdVI7DU2BXuVQdGr+97ui8rPyCifo9epSAEVRdLYWpkvdHCxvmdijma2HgyU6qQ9RgpYtmeo32yKyEjNy1ygKt48Mdjfr0cLJwsJUzltEaVn5ejadTsz+61h8jolOd8DdwaLr/V08bD3sLVDkvEWUoFdVIpOy1W93XcxKyMxfo1O4fWT7Rmbdm9tbWEq2iKtk5RWy6WxK9uqTSTnZ+foKP18LIURNuOFOYCcnp6Off/55u7Fjx1Zzk0Rt9MEHH6hvv/322uTk5DvL2+5gbX703ZHt2w3v6H2zmybqmGd+OaRuO3NZv/X5PiaWZibGbo6oxVKz8+ny1saslOz8UFVVTyiKYm9uqru87bmeFk2drY3dPGFkh6NTGfblnrScfL2zqqqFiqLc6uNivWzL831tJVvEtaRm5xP6xj/6t4a21A3v4Gbs5oha7rmlYeq2c0n6zdM7y3mLuKbU7Hy6zN6tf/uu5rphQY2M3RxRy325I1b9dGvM2tTsgnI/XwshRE24oa8mFUVxzM7Objly5Mjqbo+opR588EElMzNzgFLO0AdFURxz8gtbDmrvaYymiTrGRIdyb6iXfJASlXKwMmNIBw9T4I6im/oFedrnSgewAOjg7UAjWwuAYABLM92Qe0ObWku2iKrILdTrBrVtbOxmiDpAp1OUMR3d5LxFVElegaq7q7WLsZsh6oDRwY2UrDx9uZ+vhRCiptzo9SlOdnZ2eebm5tXamJtt0qRJvPrqq8ZuRp3g4uKCXq83Bcr7ozvZWZjmmdfxy52e/uUgH6w5aexm1HvZeYW4O1gZuxn/ydO/HuGDdXLl1s3g4Whpbmai/NtT4+zpaFnnP4U/8/txZq8/a+xm1AtN7C1UwAXAwtTEzc3Bsk6/ET396xE+WCvZUtNSsvJxsDSjrp+3PLMkjNl/hxu7GfVeTl4h7g4Wxm7Gf/LMslPM3nDB2M2o91KzC3CwMqnz2fLsynDmbIo2djPqPWdrM/SqWtHnayGEqBE3vKCOoig3No+EuGnee+895syZQ35+PhMnTmTOnDnodOWflKxbt47HH3+c2NhY+vXrx3fffYerq2upfYr+5uV/U6kg9VDLffbPGb7afJaCQpXRoU15dUi7cufLXLo/mud+O2T4Xa+q5BboOfbGnbjaWjDtxwOsOBiDqYl2X3cHK3bMvLVK9/2XfN9du3228RxfbTmv1UpnL14d3LrcWolKyiL0rY1Ymxf3y74zvC2jO2vTwry84gR/HoklI7eQxnYWPDHAj3tDtW3HL6by5C9HiE7ORqdAV19n3h3Rjib2peeX1ykKSomKkcEStd/cTef5aksEBXo9ozp58uqgluXWT3RSFqHvbC1dP8NaM6pT8VUlG04m8Nbq00RcyaaRnTmfjG5HV19nw/aih1UAFEXKozY7GZvGrD9OcDgqBXsrM/a/fEuF++YV6Jm66AAHo1KIS81h70sDKHkFwMrDsczbHM7xi2kMDfHg03uDDdsORCTzzppTHItJxcxE4dbWTXhjaFtsLUuf8kqt1H5zN0cwb1skBYUqozq6M+uugArn+c7ILWDWn2dYc+IyehX6B7rwxb3tSu2Tmp1Przm7aOlmy2+TQgy3/7A7hs+3RJCUmU/fABdmj2iFg5VZqfsqFZz+itph7tYo5m2P1molxI1Zd7Qo/30nOZsus/dgbV78eejtwQGMCtGmhXnlr7OsOpZARl4hjW3NebxPU8Z0dDfsu2BnDPN2RJOWXUBrd1vevTuAwCY2pZ5DaqX2+3zbRebtiqWgUOWeDo2ZNdCn3HpZdjSBF/48b/hdr1fJLVQ58lwnXGyKMyI1u4Denx2mZRNrfr2/NQAHotN5b0MUx+MyMTPRcUuAI6/d0Rxbi9JjGRQFFVWKRghx89SbVdVVVUWv12NiYrxBYgUFBZiamlZ6W0UKCwvR6XTV8il29erVfPbZZ+zcuRM7OztuueUWvvrqKx599NEy+16+fJnRo0ezePFi+vfvz9SpU3n00Uf57bff/nM7jEVVVfQqmBhxUaCCQj2mJrpKb6tIoV5Fp1RPp9c/YZf4dls4q6b3wdbSlHu+2MH3Oy/wQE/fMvuO6OTNiE7Fczt/9s8ZNp6ML9WJ+9TAQJ66reUN3be2kVop7Z+T8Xy7PYJVT/TA1sKUe77azfe7InmgR7Ny9zfRKZx/545yt03o5sOMu1piZWZCeEIGwz7fRQdvB1q52+PpZMXCBzrh5WRFfqHK+2tPM3P5CRbc3/E/H8PNJPVT2oaTCXy7I5I/H++CrYUpo+bv44fd0Uzs3rTc/U10CuFv3VruthOxaUz/9RhfjA2ih58LiRm56OvQ141SG6WZmeoYFuLJsBBP5qw7U+n+XVu48Gg/P+6eu6PMNidrM6b2a8Ge80mk5eSX2paanc8DPZrRN7ARhXqVx386xBurwnhvZNB/PoaaJPVS2oZTiSzcGc0fUztja2HC6AUH+WFPDBO7lb/2xNNLwrAw1bHjuR7YWZhwKj6zzD7vrQ/H17X0dEI7wpP4aMN5lk7phJu9BU/8epyZK08zd0zb/3wMNUVqpbQNp6+wcFcMf0wJxtbClNHfHuGHvbFM7Fr+NHUmOjg3q3e52+4L9eDF23y185bELEZ8fZj2nna0crPlSEwa7/19gZVTgglsbMOHGyN4cukp1jxau89bake9qIbBI9e6rSLVWi9nkvl27yVWPtQWWwsTxnwfxg/7LZkYWnZ++OFBjRheYm7nz7ddZNO5lFIdwADvb4zC16X0IIa0nAImhrrRp4UjharKtGXneOvvSN4ZVPazlxBC3EzV1gms1+t58skn+emnnygoKMDPz4+//vqLJk2asH//fh566CEuXLjA6NGjCQ8PZ8KECUycOJFXX32VmJgYFixYAMD27dsZP348ERERALzzzjvMnz+fxMRE/P39+eyzz+jRowcAEydOxM7OjpMnT7Jz50727NmDTqfj8ccf5/Dhw3h5efHJJ5/Qv39/AMPzHj16lAEDBmBlVbVL0ufPn8+cOXNISEigf//+zJ8/H2dnZyIiIvDz8+Pzzz/n9ddfp1u3brRt25bTp09TUFDAmjVr+Pnnn/H19eWRRx7h2LFj+Pr68sknn9CrVy8A+vbtS69evVi7di1Hjx4lMTEROzu7//z3WLRoEY888gh+fn4APPvss8ybN6/cTuDly5fTqVMnBg0aBMDrr7+Ov78/GRkZ2Nra3tDz6/UqLy8/yvKDMRQUqjRrZMOPD3ejkZ0lh6OSefqXg0RdyWJIsCcRVzK5p1NTxnTx4YM1J4lLzebDMdoIjT3nE3ls0QH2zxoIwKd/n2bRrgiSMvPwbWTDW8PbE+qrzbs17ccD2FqacjY+nf0Xklj9VB8URWHG0iOcuJiKu6MVbw4LomeA9mYekZjBEz8eICw2jV7+jajqXG+Ldl7gq03nuJKZSw//RsweFYyTjTlRVzLp9tbfvDOiPR+uP0XHZs60dLMn/HIGBXo9G0/G89WEzjR1seGF3w9zMjYNH1dr3hgWRNcW2qjrYZ9to2sLFzaejOdkbBphb92JraVZJS2q3JJ90Uzo0ZzmjbS/59R+fizaGVFuJ3CZ++6PYkpfvxt73ircV69XeXnlCZYfvEiBXqWZqw0/TgqlkZ0Fh6NTePrXI0QlZTOkgzsRV7K4p6MXY0K9+WDdaeJScvhwdHsA9pxP4rGfDrH/pQEAfLrhHIt2R2q14mrDW8PaEtpcG0E47efD2FqYcvZyBvsjklg9vadWK8uOcyI2DXcHS94c2oae/trfJSIxkyd+PkxYXBq9/FyrXiu7Ivlqy3muZOTRw9+F2fcE4WRtTlRSFt3e2cQ7w9vy4fozdGzmREs3O8IvZ1KgV9l46jJfjQ+hqYs1Lyw5xsm4NHxcrHljaBu6FtX7sC920rW5CxtPX+ZkbDphr99WZqTbjViy/yITuvnQ3FUb2TK1ry+LdkVV2Al8Lf5NivPj39P2qCtZtHK3x8naHCdr7eo3FT06nULklbIf2iuj16u88sdJlh2Ko1Cv0szVmsUPdiyqn1Se+f04UUlZ3N3encgrWdzT0YPRnb2Yvf4scam5zLlH+6C/50Iyj/98hH0z+gLw6cZwFu+OISkrj+auNrw1pBWhzZ0AmP7L0aKsyWRfZDKrn+iGToEZK04a6ueNIa3o6af9rSISs5j2y1HCLqXT088FKzMdUPkXI4t2RzNv6wWuZOTTw8+ZD0a2wcnanOikLLq9t423h7bio3/C6ejjSEs3W8IT/q2fRL4c1x4fZyueXxbGqbh0mrpY88bdLQ2jaId/uYcuzZ3ZdDqBk3HpnHh1QPXUz8GL3Ne1aXH99GnOomt0Al/LpxvPc383b3oHaP8Prx4lXhm9XuXlFSdYfqjofcjVhh8ndynOll+OEJWUxZAOHkXvQ95atqw9TVxqyWy5wmM/HjKMXP30n7Ols2V4uxLZckjLlvh/s6UXik5hxtJjxdkyrG3pbPnpkJYt/teZLZvDi7LFVcsWm6JseXtjUbacLc6WhAytNk5e5qv7Qoreh44WZ8uwtsXZ8vlOuvo6s/FUUba8MbBaasOvsS1+jW3Zc/5Kpfuam+qY3Lvi96feRe/j5y5nlOkE7t+q9Dy/47s25f0qTLGh16u8suoMyw9f0rLExYpFEzvQyM6CIzFpPLMkjKjkbO4OakLklWxGhrgzupMHs/8O17JkpDb6a09ECk/8cpy9/+sJwGebLrB470WSMvNp7mrNm3cHEtrMEYAnfzuBjYUJZxOy2B+Zwl+PhaJTYObK05yITcfdwYLXBwfS00+rr4grWUz77QQn4zLo6eeMpVnVOtwW74nhq21RJGXm0aOFM+8Pb4WTtRnRSdl0n72Tt4cE8tGGC3Rs6kBgExvCE7Mo1KtsPH2FL8a0xcfFiheWn+LUpQyaOlvxxuAAuhTl4Yh5++nS3IlNZ65wMi6d46/0wdaiGrLkUBz3dfGkeVGn7SO9fVi052K5ncBn4jPYfOYKB2f0Mjx3W4/S59JHL6ZxNCaNcaGeLD8Sb7j9n1OJDG3vZugcntrbh5HzD/D+8FalrlIoSa9XeWX1OZYfiddqxdmKRfcH0cjWXKuV5aeJSs7h7naNiUzKZmRwE0aHuDN7wwWtVoZrX6LviUjhid9Psve5bgB8tiWSxfvitFpxseLNwf6E+jgA8OSSk9hYmHI2IZP9UWn89UgIOkVh5p9nORGXodXKXX70bKH9XSKuZDNtyUlOXsqkZwvHKmfL4r2xfLUjmqTMfHr4OvL+0ECtVpKz6f7hHt4eHMBHGyPo2NS+qFaytVo5c4UvRrXGx9mKF1ae4VR8Bk2drHhjkB9diup9xIJDdPFxZNPZJE5eyuD4zB7VUyuH47kv1IPmLkW10tObRfsq7gS+Fv9GxaN6DectyTm0crMlJiWXVm42tHbTzm2Gd2jCV9srnzJBr1eZtTaC5ccSi+rFkh/GtdTq5WIGz6wMJzoll7vbuBCRnMPI9o0YHdyYOZuiiUvLY/aQFgDsjUzjiWXn2POU9hnps60X+fFAPElZRfVyZzM6N7UH4Mnl57A1N+FsYjb7o9NZNbmtVi9/XSDsUibu9ua8dkdzevpq9RWRlMP0Zec4GZ9JT18HLKs4ncXi/fHM2xlLUlY+3Zs78P5g36J6yaHHp4d4605fPt4STYi3HS0bWxOemE2BXmXTuRQ+H+mPj5Ml//vzPKcuZ9HUyZLX72hGFx/tGEYuPEFoUzs2n0vhZHwWx17oXGYU7Y1YeiSB+zo1obmL1g8wpYcHi/fHl9sJXOa+RxOY3NW91G3HYjM4EpvJ+I5NWH4s0XB7P3+nUvuN7diY2Rtlig0hhPFVWyfw+vXr2blzJ+fPn8fW1pYjR45gZWVFXl4ew4YNY8aMGUyaNIl58+axcOFCJkyYUKXHDQgIYPfu3bi6ujJ37lxGjx7NhQsXMDPTOsZ+/vln1q5dS3BwMJmZmbRp04bZs2czcuRItm7dyj333MOpU6dwdXVl7NixDBgwgE2bNrFmzRruueceZsyYcc3nX7ZsGZ988gmrV6/G29ubp556iscff5yffvoJ0EbvHjx4kPDwcFRV5b333mP58uWsXLmSX3/9lYyMDDp06MD06dPZuHEjK1euZPDgwYSHh+Pi4lLqGLy9vQ3HVZKjo2OF7fviiy8YO3ZsmdvDwsK49957Db+3b9+eEydOlPsYYWFhBAUVj5Dx8fHB2tqas2fPEhwcXO59KrP59GX2RSSx5+XbsDE35URsKpZmJuQV6Hnw2z1MuyWAcd2a8cPOC/yyN4p7OlWtg8C3sS2rn+qDs40F324LZ8r3e9n7ykDMikYerDgYw09TutPOy5GsvAL6vLuBV+5uy+AOnuwKT+Th7/ay7cVbcLG1YOoP++kV0Iilj/Vi48lLTP5uL9NuCbzm8/915CJfbw3nxynd8HC05pUVR5mx9AhfTugMaN9UH4tJYfdLt6GqMHfDGdYci+W7h7oy//5QMvMKGPDBRib3bsGSx3qy9lgcE77eze6Xb8XZRusUWn4whp+ndMfDyQqzcqbvCPjfqgrb9+497RnesbwPSGkM6+hl+L2NhwOnL6VV+nofi0kh8komgzuUPpGev/kc8zefo3kjW168qzW9AsourlPRfa+2+UwC+yKS2TOzf1GtpGFpptNqZeF+pt3ix7guTflhVyS/7IvhnhLHcS2+jWxYPa0nzjbmfLv9AlMWHWTvzP7FtXLoIj893IV2ng5arby/hVcGt2Zwe3d2nb/Cw98fYNsL/XCxNWfqj4fo5e/K0qnd2HjqMpN/OMC0Adfu3P7raBxfb7vAj5NC8XC04pWVJ5ix7DhfjtdO3rVaSWX3jP6owNyN51hz/BLfPdCJ+feFaLUyZxuTezVjydSurD1+iQnf7GP3jP4422idp8sPXeTnh7vg4WhZfq3MXFth+94d0Y7hIWX/Nmfi0xkW7GH4vY2HPafj0yt8nEK9SvvX/sbURMdtrRvz0l2tsCnxoe6tv06yYNsFsvP1BHk50CugeERFWnY+nd7cQHpuASaKwsdj2lf8glZg85lE9kWmsOfFPtiYm3AiLt2QNQ99f4hp/X0Z28WLRbuj+XX/Re7p6FH5gwK+rjb89URXrX52RPLIj4fZ82IfQ/0sPxTHT5M60c7Tnqy8QvrO3s4rgwIZFOTG7vNJTF50mG3P98LFxpxHfzpCT38XljwSysZTCTy8+DDT+l/7C5i/jl1iwfZIFj/YCQ9HS2b9cYqZy0/yxTjtNSrUqxy7mMau//VGBT7fdJ41xy+zcGIw88Z1IDOvkFs+2sGknj4smdKZdScuc//Cg+z6X29D/aw4HMdPkzri4WiFWTkjhAJf/qfC9r0zvDXDg8u+lmfiMxnaofj21u52nI7PqPBxCvUqHd7YhKlO4bbWjZl5Z4Chfg5FpeLrakOf2dtJzc5nYOvGvHq3NrK8KjafTtDeh2YOKCdb9jFtgD/jujblh52R/LIvmns6lT/C8Gq+jWxYPb1Xcbb8cIC9Lw24Klu6lsiWzUXZ4sGu8Cs8/MP+omyxYOrig1q2PNpdy5bv9zNtgP81n/+vo3F8vfU8P07uUjpb7rsqW2b2196HNp5jzbFLfPdgZ+bf11HLltlbmdy7OUse7aZly4K97J45oDhbDl7k54e74uFUQbbMWFNh+94d0Y7hVczpm2HvhWQCm1T+5fqWs1fYH5nC7ud7lMmSBxcdYVq/5ozt7MGiPRf59UAcI0PcK31MAF9Xa1Y92hlnG3MW7oxm6k/H2P1Cj+J6ORLPTw8G09bDTsuSj3bxyp3+DGrXhN0Xknn4x2NsfaYbLjbmPPbLcXq2cGbJ5I5sPJ3IlJ+O8UTfZtd8/tXHL7NgRzSLH+iAh4Mls1adYebKU4apErQsSWfnc921LNkcwdoTCSyc0J6v7m1HZl4ht366h0ndvfl9cgjrwhK4//sj7Hyue3GWHLnEjw8EF70Xlc2Slq9urrB9bw9tyfAOZTtfzsZnMrR98e2t3e04U0GWHI5Jw9vJivfWhbPs8CU8HS159S5/urfQOs9VVWXmytO8NjiQc5dLf9moXnV1gV6FvEKVC4lZtPEov262nEtif2Qqu5/pqtXKpQwsTYuy5acTTOvTlLGd3Fm0N5ZfD8YxMrhJhcdfkq+LNaseCcHZ2oyFuy8y9ZcT7H62a3GtHI3np/uDimvl0328cnsLBrVtxO6IFB7++QRbnwzVauW3MHq2cGLJQx3YeCaJKb+c4Ik+1z7XXn0igQW7Ylg8IQgPBwtmrT7HzD/P8sVo7QuOQj0ci01n5zNdtFrZGsXasAQWjm/HV6Nba7Uydz+Tunvx+0PtWXcykfsXHWPnM11xtjYzHMOPE4PwcKigVt7YVmH73r47gOHty76WZy9nMjSo+Dy0tZsNZ8oZCf6vQj0Ev7sTUxOFWwNdmDnQt9R5y9vrzrNgVww5+XraedjSq6hjvbefE59tieToxXRau9mw5NAl+vg5V/Q0BlvCU9gfnc6u6cHYmJsQFp9lqJeHfjnNE708GduxMYv3x/Pr4cuMbN+o0scE8HW15M/JbbV62XOJR34/y+4ng4vr5XgiP45vRVt3G7LyCun3+RFeHujDoNYu7I5MY8pvZ9j6eAecbcx4fMlZevg68PvE1mw6l8KU387wRK9rn7+vDrvCN7vjWDS+FR725ry6NoKXVl/g85EBhtf5WFwGO6aHoKLyxfZY1p5K4tt7W/LVPQFk5hVy21dHeaiLO79NbM26U8lM/OkUO6YHG+pl5fFEFo9vhYeDRbn10uqdvRW27+27mjMsqOxreSYhm6Htiqc8bN3EhjOXsyt9vY/HZRKZlMOgNsWL/qmqyszVF3jt9macS7z2Y+yPSiewsSxsLIQwvmrrBDYzMyM9PZ1Tp07RuXNnQ+fhli1bMDU1ZerUqQA8/vjjfPDBB1V+3BEjRhh+nj59Oq+++irnz58nMFDrrBs+fDidOnUCYM2aNbRq1YrRo0cD0K9fP7p06cK6devo2bMnR44cYcuWLZibmzNkyBC6du1a6fN//fXXzJw5kxYttG9hX331Vby8vNDr9YZ9Zs2ahaVl8Qil3r17M3CgNnL1yJEj6PV6pk+fDsDIkSMNncr33XcfAA8++KBhxG55UlJSKm3n1TIyMrC3tzf87uDgQEZG+SfPGRkZeHuX/vB7rf2rwsxEITOngLPx6QQ3daKdlyMAO88lYqJTmFg0AvWhXi34YmPVF0ga1L74hGRyHz9mrz1FZGImfkUf8O4M8qBDU+1kbUNYPP5N7Bgaon0Y7enfiGAfJzafukyorwthsaksf6IX5qY6bm/nQUefyk/kFu+K5MlbA2nmqo0CePb2VoTMWou+xDXKz9zestSIi64tXOnXSjtpPXExFb1eazvA4A6eLNgazoaweO7prJ2c39vFxzBitzxn3h1U+Qt1lczcwlKjLeyszMjMLaj0fkv2RTGwrTt2JUYjT+7TgteHtcPa3JTVR2OZ+M0eNj7XHx9Xm0rvWx4znY7M3ALOXs4g2NuRdl7aqISd4VcwMVGY2L0ZAA/1bM4Xm89f45FKGxRU/AF9cm9fZq8/S+SVLPwaa6/tnUHudPB2BLRL2P2b2DK0qFOrp5+rViunLxPa3Jmw2DSWP9pNq5W2bnT0cSrzfFdbvCeKJ2/xp1nR6/LswABCXt9QulZuCyhdK77O9GupfZA5EZuGXlUNo+EGt/dgwbYINpy8zD2dtJq+N9TbMOKyPGfeur3Sdl4tM6+w1Kg/O8uKa8XFxpz1T/WijYc9l1JzmP7LYV79I4wP7in+UmnmXa148Y6WHIxKYWf4FcxLXPpnb2XGmbduJzU7n5/2RNHiGnVfETMTrX7OXc6gg7cD7Ty13NsZnoSJTuH+ohGoD/bw4YvNVV8UZ1BQcefD5F7NmPP3udL1064JHby1Wt14KgG/xjYM6aDVXA8/F0KaOrL5dCKhzZ0Ii0tn2dTQovppQkhTx0qf/8c9MUwf4EuzotFpz9zmR8c3N6HXF7+2z9zqV6p+ujR3ol+g9oHHUD+9mhmO5+vtkWw4lcA9HbUcHdPZ85r1c/qNiudsrUhmbgF2Jdbus7cyrbB+nG3MWTe9m1Y/aTk8+esxXv3zFB+M1EZnX0rLYdmhWH57uDMOVmY89MMhPt1wnhduv3Yn6b/MTBQtW+IzCG5aIlv+fR8qGt3+UK/mfLG56otrDWpf3Mk9ubcvs9eduao2SmbLZfwb2zI0WHvNe/q7EtzUic2nE4qz5bHu15ctuyPLZstr/5TOloGB15ctWy+w4WS8oSP83i5Nad7oGtnydvlTwNQ2e85fYfGuSFZN71npvqYmOjJyCzmXkEkHL3tDluw6n4ypTuH+rlruPtjdmy+3Rla5DXe1K+60mtSzKXP+OU9kUjZ+Ra/vnW0b095Le66NpxPxb2zDkKLOzx4tnAnxtmfLmSuENnMkLC6DpQ931OqlTWNCijLoWn7ce5Fp/ZvTrGiU5LO3+NLxnW2l6uXpW3yvyhJH+gZoHR1hceno9SqTempZOqhdExbsiGbj6SuGjvAxnTwMI3bLc+rVvpW282qZeYXYlRj1Z29pSmZeYbn7XkrL5eSlDAa3a8yhGb3YcCqRhxYdZUdRR/VP+2Jp4WpNx6YOZTqB+wa4MP23E4wL9cTdwcLwt83KL/+5oKhW8go5l5BFBy872hV1Fu+6kKLVShft//uD3bz4sgojRf91V9viDqtJ3b2YsyGCyKQc/Bppr+2drRsV18qZJPwbWTOkqPOzh68TIV72bDmbTKiPA2GXMlg6qYNWK61dCfG2L/uEV/lxXxzT+vrQrGiE5LMDmtHxvV2la6V/s9K10syRvv7a+XPYpQz0qsqk7tr/lUFtG7Ng50WtVoK1mh7T0d0wYrc8p17uVfkLdZXrqRVnazPWPtqRNu62XErL5amlp3htTTjvDy0eBDJjoC//u7U5B2PS2HUhxXDeYmNuwu2tXRn01UFUVJrYWbDkoQ6Vts+QLYnZdPC0pa279n9/V0SqVi9FI1Af6OLOlztiq3zcd7Uu7oyc1M2dDzdHE5mci5+r9ve7s5Uz7T2196WN51Lwb2TFkLZa52eP5g4Ee9qyOTyF0Kb2hMVnsuSBNpib6hjY0pkQr8rPx346cJlpvT1p5qx9Bn6mnzed5hwoXS99vUtdsdDFx56+fo4AhMVnoVe1tgMMauPCN7vj2Hg2xdARPjq4sWHEbnlOvhhaaTuvlpVXWGpEsb2lSYX1UtKSIwnc1tIZuxLnyD8fvIyvixUdve2u2Qm8NzKNHw/Es3JSuwr3EUKIm6XaOoEHDBjAI488wsMPP8ylS5cYP34877zzDnFxcXh5lR4R0rRp1S8L/fbbb/nwww+Jjo5GURTS0tJITEw0dAKX7LyMjIxky5YtpUbO5ufn07dvX+Li4mjUqFGpzlofH59Knz8yMpIpU6aUmkZBURQuX74MgE6nw8Oj9Giokm2KjY0t08Hq4+NDbGxsuftXF1tbW9LSikd6pqWlVTi1w9X7VrZ/VfQKaMyEHs157tfDXE7PYUQnb2YOasPltBw8HEu/mXs5Vf1b0Z92RzBv8zliU7JRUEjPzScpM8+wveRjxyRnsetcYqmRs/l6Pd39XLmcloOLrUWpE1kv58rbEZOcxXO/HeZ/vx8x3KYokJiRC2iLFLk5lD6+km26lJqDp1PZ47+UmlPu/tXFxsKEjBIdMRk5BaVGPZSnUK+y/FCMYWqOf/3boQ8wNMSLJfuj2HgqvtTUEhXdtzy9AlyZ0M2H534/xuX0XEaEeDLzrpZarVz1Wnpdx2vz054o5m29UFQrkJ5bcFWtFGdBTHIWu8KTSo2czderdG/hwuX0XFxszEvXilPl7YhJzua5JUf539JjhtvK1krpy9tL10ounmX+r1hxKa2Ga8XchIycErWSW3Gt2FiYElTUsebpZMVLg1oxbsHeUp3AADqdQqdmTiw9GMOi3WWnlnCwMmNUJ2/6zd7C4VduqXDhn/L08nfhvq5NeW7JiaL68WDGnQFcTs/F3bH063v1/71r+XlvDPO2RhCbmlOifoovO/dwKFk/2ew+n1Rq5Gx+oUr3Fs5cTrvx+nl+6QleXBZmuE1RFBIztBour348SxxvfFpu2ax1tCQ+Lbf4GByvb3qFqrCxMCU9p/jDVPo1sqZU/ThaMfPOQMZ/c4APRmrbLc1MGN3JE5+iDoOHezXjw3/OVbkTuFdAIyZ09+G5349qtdHRk5l3teJyeu5/z5Yt56+RLSXfh7K1bCkxctaQLWm5uNgaI1tyys+W1JqtjZstLDaNh77bzxfjQwwd9NfSy8+ZCV08eW7ZSRLS8xge7MaM2/2IT8/F/Rr/1yrz876LzN8eRWxKDoqiFGdJUX+fh0Px1DAxKTnsPp9cauRsfqGebr5OxKfn4WxjdlW9VN6OmJQcXlh2khkrThluUxSFxMwSWWJfenqakvl2KS23TD14OVpyqWSWONRAlpibkJ57VZZUMD2DpakOMxOFx/s2w9RExx1tG/PRxgsciEqlk48jczdHsHJqp3Lv2zfAhUf7+DDhu8Pk5BcypZcP68ISyvzNS+rVwokJoR48t+I0CRl5DO/QhBm3+Wq1ctVr6Xkdr83P++OYvyOa2NRcFAXScwtJyir5vnNVrVxIKTVyNr9QpZuvI/HpuThf/b5ThZqNScnhhRVnmPFH8ZzdikIltVL8+6W0vDK14OVowaX0vHL3ry5laiW3sMJasbEwJchT67T3dLRk5kBfxv9wrFQnMBSdtzR1YNnheBbvi2NiV09+3B/H8iOX2fZUKF6Olqw8dpnRC4+weXrna16h0svXgfs6NeH5P8+TkJHP8CBXXrylKZfT83G3Ny+1r+d1vD6/HLzM/F2xxKbmGeolOSsf0PK9ZC1eTMlld0RaqZGz+YUq3ZvZa9libVaqs7Yq7YhJzeWFP88z46/iL9i1etFqVquX0sfnUeL3S+l5pX4HrV7i02q2XqzNTcioYr38q1CvsvJYomFqDoDkrHzmbrvIioeuPX942KVMJv96hrkj/A0d9EIIYUzVujDcU089xVNPPUV0dDR33nknbdu2pXnz5sTExJTaLzq6+FtxGxsbsrKyDL/HxxfP0xUREcETTzzBpk2b6NSpEzqdDicnJ9QS126VnCDey8uL2267jT///LNM2yIjI0lMTCQnJ8fQERwVFWUY4VsRLy8v3njjjVIjkku2r7wJ6kve5uHhUep4/33ef0cKX71/ea7VGTtv3jzGjRtX5vbWrVtz7Ngx7r77bkAbkdymTZtyH6N169YsWbKkVPsyMzPx96/aB+2KTOnrx5S+flxMzmLc/F20dLOnqYsNsSmlvym9mFz8u7WFCdklvo1NSC/+kBF1JZOZy46y9LGedPB2QqdTCHxxFSol66H4cT0crejTsjGLJncr07bopCySMnPJyS80nCTHJGfh41LxyKd/H/OFO1uVGpFcsn3l10Pxz24OlqWOF+BichZ9WzYud//y+D7/R4XbPhgVXGphtn8FNLHnZGwaA9tq37afuJhKoNu1R4VsOX0ZvR76Bpad6qEkXTkNrup9/zWljy9T+vhyMTmbcQv20tLNjqYu1sSmXvValagda3NTskuM1EnIKFErSVnMXHGCpVO70sHLUauVl9aVuuyz5OrNHo5W9Al0ZdFDZUcUaLWSd1WtZBs6piri4WDJC7cHlhqRXLJ95dZKiZ/dHCxKHS9ox983sHikUKW18mLFl2x/MLIdI8q5ZDugiR0nL6UzsK02MuVEbFqVLqWG8muhpEK9NgdqefSqyuX0XDLzCiodPX61Kb2bMaV3My6mZDP+mwO0dLPF29mauJScUvvFXl0/ecXvPSWzJjopi5krTrL0kc6093JAp1No+co/lLxquOTfz93Rkj4BrvzwYNnFYaKTs8vUz8WUbMNIq4q4O1jy/ED/UiOSS7avsveeJvYWZbM2JYe+gcWXQFa2gnmLmX9XuO39EW0YEVJ2OoiAJjZa/bT5d9RpOoFNqvaF4tV9/y3Lud/1LgkzpU8LpvRpoWXL13u09yFnq0qy5RrvQ0lZzFx+nKVTu9HBuyhbZq696ryk+HE9HCzpE9iIRZMqyJaM8rKlkvehf7OlfdnXv8JsKXGbm4Nl+dnSskS2VPJK+/5vdYXbPrgnqNxsuZnOJ2Rw7/zdvDmsbZk5gq/l4V4+PNzLh4spOdy38BAtm9jS1NmKuNSrs6T4d2tzk1LvRYmlsiSbl/44zZKHO9Le0x6dTqHVq5tLZ0mJn90dLOnt78IPEzuUaVtMcjbJmflXZUkOPs6VZYkFz9/qW2pEcsn2VfpeZG9R6nj/fd5/RwpD5e9Ffq9sqnDb+8NaMjy47PukfxMbTl3KYGBrrS7D4tIJqCBLAt1sUSh7Pq0oCifj0olLzeHWT/YAkJNfSG6Bnm7v72DX89oaI1N6+TCllzYwZOvZK7jZW+Bhf+3Op4d7ePNwD2+tVn44Rssm8TR1siKuROc4QGzq1bVSfCVhYkZxB290cjYvrTrLkoc60N7TTquVN7ZXmC3uDhb09nPmhwllRxbGJOdUUCvX7gh2d7Dg+VualxqRXLJ95f2dS9eKeanjBbiYmmsYKXz1MZTH77WtFW57f0ggwzuUrWP/xjacupTJwFba+1vYpQwCmlw7R4vbc+0G6VWISMo2PO7AVq6G/3PD2zfh5VVnCU/IKjMH9dUe7u7Bw909uJiay4TFJwlsbE1TJwviSnR4AsSW+N3aTFf6PDezZL3k8NLqC/w+sTXtPWzR6RRav7O39HluyXqxN6d3C0e+H1d2UeeYlFySs/LJydcbOoJjU3MNI3wr4m5vznP9vUuNSC7ZvnLrpeR7kZ15qeMFrV76FI0Uhsrf8/3f2lPhtvcG+5Za1O1fAY2sOBmfxW0t/x3BnkVA42vn6NbwFPQq9GlR3LaT8VnEpeVx21dHAcjJ15NboKf7xwfZ+aQ2COb8lWzGLz7J63c2KzNHsBBCGEvVZn2vgv3797Nv3z4KCgqws7PDzMwMExMTunXrRn5+PvPmzSM/P58vvviiVKdw+/bt2bRpE7GxsSQmJvLxxx8btmVmap1qjRo1orCwkLfffrvMiNWSBg0axJEjR1iyZAkFBQXk5uayZcsWYmJi8PHxoW3btrz55pvk5+fz559/smvXrkqPa9KkSbz99tucOaN9K56YmMgff1TcCXe1Ll26oCgKc+fOpaCggGXLlnH06FHuvPPOKj9GRkZGhf/K6wAGGD9+PPPmzSM8PJz4+HjmzJnD+PHjy9132LBh7Nu3jzVr1pCdnc2sWbMYOnTofxoJfDgqmUNRyRQU6rG1MMXMRMFEp9CpmTMFhXp+2HGB/EI9C7efJ67Eh/E2Hg7sOJfApdRsrmTk8vWW4kt0s/IKUQAXWwsKVZVP/j5N+lULwpR0axs3wi6m8ufhixQU6sktKGTnuURiU7LxdrYm0M2ej9efJr9Qz/rjcRyISKr0uMZ29eHTv88QflmbI/VKRi7rjsdV+XUJ8XFGUeCbbeEUFOr568hFwmLTGNC6avPFAZx//+4K/5XXAQwwopM3i3ZeICIxg4T0HL7afLbCff+1ZH8Uwzt6lVnpedWRi2TmFlCoV/nz8EV2nEukz1WdvRXdtzyHo1M4FJWi1YpliVrxcaKgUOWHXZFareyIKPVBvI2HPTvOXeFSag5XMvL4emvxSARDrdgU1co/Z69dK60bExabxp9HYotrJfxKca242/HxP2e1WjkRz4HI5EqPa2yXpny64RzhCdq0Klcy8lh3/FKl9/tXSFMnrVa2X9Bq5WicVivX0aFx/p07KvxXUSfNiI6eLNoVSURiJgnpuXy1OZwRHcufF+5gVDLnEzJQVZX4tBze+uskA4tqOb9Qz097okjLzkevV9l+NpFlBy/So2hBrM2nEzgZl0ahXiU5K49ZK08Q5OVw3R3Ah6NTORydasgaUxOdNoLHx5ECvZ4fdkWRX6jnu51RxJUY6dja3Y4d4Ula/WTm8fX24su7s/IKURRwsTXX6mdDOOk5FU+fcmurxpyIS2fV0UtF9aNnZ3gSsSk5eDtZEehmy8cbwrX6CbvMgciUSo9rXBcvPt14nvAErdP8SmYe605crvLrEtLUEQWFb3dEavVz7BIn49IZ0LJqcw0ChL91a4X/yusABhgR4sGi3dFEJGaRkJ7LvK0RFe57KCqF8wmZxfWz+oyh8xhgVGdPftt/kZjkbNJzCliwPYJbWlW9/eVnC0XvQyo/7IwoP1s87dlxLrEoW3LLzxbbKmZLmyaExaaWzpaS70Pudnz897/Zcqlq2dLVR8uWy/9mS+6NZcu2q7PlOt6H3r2zwn8VZYuqquTkF5JfqH11m5NfSF6Bvtx9AXILCskp6gDJK9AbfgZtVFZOfiEFhSp6w8/aY8WmZHPPV7t5+rYAwzQcVXEkJq1ElphgaqLDRKfQsakDBYUqi/bEaFmyK7pUR19rdzt2nk/mUlquliU7ir/4z8ovRFEUXGy0LPl00wXSrzEV060tXQmLS2fVsXhDluw6n0xsag5eRVnyycYLRVmSwIGo1EqPa2xnTz7dHFE6S8ISqvy6BHs7oCjw7c5oCgr1rD5+mZOXMugfWLbjpyLnXu9X4b/yOoABRgS7s2hPDBFXirJkWxQjgstfuKm7rxNN7C34YksEhXqV9WEJXEzJoWNTBzr5OLL3fz35e3oX/p7ehedubUGwtwN/Pqqt5ZCTX8iZeO19LDwhk9f/Osv0/s2veUXKkZg0DsekFdeKTsFEUejobU9BoZ5Fe2O1Wtl9sXStuNmy83xKca3sLP48lJWn1953bMy0Wtkcee1aCXQh7FIGq45fLq6VCylFtWJJYBMbPtmsnT+tP5nIgejK14EY28mdT7dEEp6ofUF6JTOPdScTK7lXsWAvexRF4dtdMVqtnEi4/lqZ1bvCf+V1AAOMaN+ERftiibiSTUJGHvO2RzOinLmDAQ5Fp3E+MavofSeXt9ef57aWWvvyC/X8tD+OtJwC7bwlPJllR+Lp4esIQAcvO9afSiQmJQdVVfnj2GXyCtRKv4g5cjGDwxczKChUsTUvkS1eduTrVRbti9fqZe+lq+rFhp0X0riUlkdSZj4LdhV/3sjKv6petsaUGg19tVsCnAiLz2TViSsUFKpavUSkEpuai5ejBYGNrflkq5Zx608ncSCm8ikB7w1pzGdbLxJeNA1CUmY+609V/lnqX8Ge2pc3C/fEUVCosjrsCifjs+jv71jlxzg7s0uF/8rrAAYY3r4Riw/EE5GUo9XLztgK9/3X0iOJDG3nimmJKc06edux56kQ1j8SxPpHgni2nzfBXrb8UTTlQ2xqLmO+D+PJPl6GaTiEEKI2qLaRwKmpqTz55JNcuHABGxsbRo0axdixYzExMWHZsmVMmjSJZ599ljFjxtC7d2/D/W699VbuvvtuWrVqhaenJ5MnT+aTTz4BoE2bNjz22GMEBwdjaWnJtGnTrjl1gr29PWvWrOGpp55iypQp6HQ6OnXqxLx58wD46aefuP/++/n444+55ZZbyh3de7VRo0aRlpbG0KFDiY6OxtXVlXvvvdcwwrYy5ubmrFy5kqlTpzJz5kx8fX1ZsWKFYVG4mnLXXXfx2GOP0bVrV/Lz85k4cSKPPPKIYXubNm2YMWMG48aNo3Hjxvzyyy88/vjjxMbG0q9fP7777rv/9PzpOfm8vPwYUVcysTY35e5gT4Z39MZEp/DNg1145pdDvPbHcYYGe9K1RfFr0SewMQPbuNPrnX9wc7BifLdmho7glu72PNDTl1s/2ISFmY5JvVvg4VjxaEw7SzN+nNKdWSuO8fxvh1AUhfbeTnwwugMAX07ozLQfDzB/yzl6BzTmrqDKPywOCfYiI6eAid/sITYlG2cbc4aFeBlG2FbG3FTH95O68sLvh3n3rzB8XGxY+FAXw6JwNeXWNm6civPlzo+2UFCoMjq0Kfd3b27Y3vvdf5h+S6ChYzgzt4A1x+JY+UTvMo81f/M5nvr5IAAtGtvxzQOh+JaYy/Va9y1PenYBL688QVRSFtbmJtzd3oPhIZ5arUzsyDO/HeW1P8MY2sGDrr7Fo0n6BLgysE0Ter2/GTcHS8Z3acrX27TOmpZudjzQoxm3frgVCzMTJvVsds2pE+wszfhxchdmrTzB80uOFdWKAx+M1KY1+HJcMNN+PsL8revo7e/KXe0q/3sP6eCh1crC/cW1EuxpGGFbGXNTHd8/0JkXlh7j3TWn8XG2ZuEDnQwL8dSUW1s34dSldO78dAcFhXpGd/bm/m7FU+f0fn8z0wf4MaKjFxGJWby9+hRXMvNwtDJjYJsmvHRXK0AbvbHycCyv/XmSQr2Kp5MVswa34raiTuKUrDxeXHaMS2m52Jib0K2FC9/cX3YkbWXScwp45Y+TRCVlF9WPG8ODPbT6mRDMM78f5/W/TjOkvTtdmxePwugT4MJtrRvRe/Z23OwtGNfFmwXbIwAIdLPjge5NufWjnViY6niop881L4+3szTlp4c68sofp3h+6QkUBdp7OfD+CO3qiy/Gtmf6r8f4etsGevm7lDsi72p3t3cnPaeAB747SGxqDs7W5gwNdi/VSXot5qY6vpsYwv+WneDdtWfxcbZi4cTgGq+fW1o15oHuGdw1dxcFhSqjOnkyoWvx+3af2duZ1t+XESEeXLiSxTtrznAlIx9Ha1MGtm7CzDsDDPuOC/UiKimbWz/aiZmJwqAgNx7vd+0F9UpKz87n5RUlsqWDB8NDvIqypRPP/HakKFs8r8qWRlq2vLdJy5auTQ0dwYZsmbNFy5ZezSvPloe7MmvFcZ7//WhxthRNmfLl+BCm/XyY+VvP0zvAlbvKuXLgalq25DNx4b4bz5YHQ3lhyVHeXXMKHxdrFj7YucZrIzo5m9A3Nxh+b/bCarq1cGH5Y90B6P3eJqbf4m/oRO7xziZiiq6c6fmuNpL00oeDAfh9fwxP/nLY8FhLDlzkmdsCeO72QH7aE8XF5Gxe+yOM1/7QplPxcrJi6wv9rtm+tJwCZv15mqjkHKzNTRjcrjHDOrhholNYcF8Qzy49yet/nWVI+yZ0beZouF8ff2dua9WIPnN24uZgybjOHiwo6ggObGLLxG5e3PbpHi1Lenhfc+oEO0tTfnwwmFmrzvDC8lNalnja895wLVc/H9OW6b+d4OsdW+jl58ydbSvPg7uDmpCeU8CDi44Sm5KDs40ZQ9u7GUbYVsbcVMfCCe3534pTvLfuHE2drfj2vqCaz5KWrkzs5s2gL/ZpWdLRnQldir9g6PvhLqb1a8bwYHfMTLQ2PrP0JB9vvICvqzXfjA/CqWhxqcZ2xedYdpammJnqcLXV2p9boOeRn44RmZSNo7UZD3TzNsz/XJG03EJm/XWOqORsrM2KaqV9E61Wxrbl2eWneX1NOEOCGpeuFT8nbmvlQp+P92rvO53dWVDUERzYxIaJXTy57fP9Wq1087rmpfB2lqb8eH8Qs1af44UVZ7Rs8bTjvaFahn4+qhXTl57i653b6dXCiTvbVP73vrtdY61WFh8nNjVXq5WgxoYRtpUxN9WxcHxb/rfyDO/9fUGrlXFtDYt81ZRbWrow8bIng746SIFez6gQNyaEFn/52PeTvUzr48PwDk24kJTNu+vPcyUzH0crU25r5crMgdr7igL8cewyb6wJp1BV8XSw4JXbW3BrS+34RwW7cT4xmyHzDpKeW0hTJ0vm39u61Byx5UnLLeTVNReISsnV6qWNC8PauWr1MjqA5/44zxvrIxjS1pUuPsVX6fVu4cCtgU70nXsYN3tzxoY05ps92hd+gY2tmdjZjYFfHcXCVMeDXdwqrZfF41vx6toIXvjzPDoF2nvY8t5g7djnjvTnyeXnWLA7jl6+DtzZqvJ1Uu5u60pGbiEP/XJaqxdrM4a0czWMsK2MuamOb+8N5MVVF3hvQzRNnSz4ZkxgzddLgBOnO7sx+OtjFOhV7unQiAmdis/L+s09zBO9PQ0dw5m5haw9lcTyB0tfUWtuqqOxXXEO2lmaYGaiw9VWa/8vBy9zMTWPN9ZH8sZ6baCBl4MFmx7vUKPHJ4QQlVHUq5fFrcqdFKV5o0aNjl6+fPmGhorecsstjB8/nokTJ97I3YWRmJmZFRYUFNiqqlrqWi9FUZq72JofPfHmXTdUD/d8sZ0RHb0Z06XyOZpF3ffE4v309HNmdOfrnwv7nq92MyLEkzGh1T+PtqidPttwjg/WnZmdW1D4nKIoDwzt4P7Zl+PaV+06z6uMmrePESHujO5s3EvVRfUZ8vnu1L0RKWNUVV3rZGO+9LUhbYbfULZ8uYsRHb0kWxqIyCtZDPlsOwdnXP8iVACjFhxkRAc3Rncqf5S7qF+m/3qcHr6OjAqp2hctJY369jAjOjRhdEjVBguIui0qKZuh8w9x4Nnr/1IbYPT3YQwPcmV0cNWv+hJ1W9PXdhUW6inz+VoIIWpKtU0HIYQQQgghhBBCCCGEEKL2qdaF4eqq999/n9dff73M7ZMmTSo1R7FoGOZuOMOH606VuX1c12a8MTzICC0StdXcjef48O+zZW4f16UpbwwtfyFGIf71+abzfPhPeJnbx4Z68caQVkZokagt5m48x4frz5S5fVyXprwx7NorkYuG5/MtEXy04UKZ28d29uD1wYFGaJGorT7fGsVHmyLK3D62kzuv3/XfFoQW9c8X2y/y0ZaYMrffG9KY1+9oXs49hBBC1HZGmQ5C1E01NR2EaFj+y3QQouGpzukgRP1TXdNBiIblv04HIRqW/zIdhGhY/ut0EKLhkekghBA3m0wHIYQQQgghhBBCCCGEEPWYdAJXwcSJE3nzzTeN3QxhJNN+PMBH68tODyFEeab9fJiPypkiQoirTf/lKB+VMx2EEFUx7edDfPR32SkjhHjytxN8vOG8sZsh6ognl5zk43KmiBCiMk8uP8fH5UwXIYQQovaSOYHrkE2bNjFr1iwOHDhA586d2bx5s7GbJG6iD9ac5JO/T2NuWvzdzdl3B2OiUwB45peDbD+bSOSVTJY+1pMe/o0M+20/m8DsNSc5EpNCB28nlj9R+hLYa91X1E2fbTzH9zsjScnKx8HajIndfHhigB8A5y5n8NqfYRyITAFVpVsLF94e3pYm9paANh/pr/tjiE3JpomdJdNv8TNM37H7/BXGfr3X8DwqkJ1XyLone9Le2/EmH6WoDrPXn+WTDedLZcuZN24xZIv7c2uxMjNB0X7lsb7NefpWrZbGLtjPngvJhvvlFejpF+jKDw9ql8Iejk7l2d+PE56YSTtPez4dHUQzV+ubdGTiZvhswzm+3xlRnDXdfXhigDa36LnLGbz2RxgHIpMBlW6+Lrw9op0ha5Iz83huyVF2nE3ERKcwqL0Hbw5tg6mJjFGoDz7fEsFvB+KITcmhib0F0/o1Y1RHD8N2j//9g5WZDqUoXB7r48NTA3wB2BGexOy/z3P0YhodvOxZOqVTqcd+dmkYO8KTiUzKZsnkELq3cL55ByZqxI7zyczeEMHRi+l08LJj6aTgUtsLCvW88/cFfj94iZwCPa3dbFnxcNl9bp27n9wCPTuf6Wq43WPm5qJa035/rFdTnurfrKYPSdwkKdkFvPTXBTaHp2BuovBYT08e6upu2L7yeCKzN0ZzOSOfZs6WvHFHM0J97AGYsymaT7dexNxUMex/6sVQwzmQEELUN9IJXIfY2NjwyCOPEBkZybp164zdHGEEo0Kb8uGYkHK3tfVyZESnpkz78UCZbdbmJkzo0ZyYpCw2nbp8XfcVddOgIHcmdvfBztKMS6k5jJq3m5budtzauglpOfnc2c6dz+7tgKWZCa+sPMFTvx7hp8ldAFAUha/Gh9DSzY4TsWmMnrcb/8a2hPg40dXXhfPv3GF4nhWHYnlr9UmCvByMdaiiGozq5MmceypecGz7873wcLQsc/tPk0p3zPT+YBt3tWsCQG6Bnoe+P8STt7Tgno4efPRPOFN/OsKaad2qt/HCqAYFuTOxR4ms+WoXLd3ttazJzufOIDc+G1uUNStO8NQvR/jpYS1rPlh3muy8Qva/fAvZ+YWMmbebH3ZF8mBPWXCoPlCAL8a0paWbLSfi0rn3m0P4NbIhpGnx+8W2Z7vj4VA2W6zNTbivqxcXk7PZfOZKme1tPewYEezO9N9O1OQhiJvI2syE+0I9uJiSw+azSWW2v73+AifiMlj3WCea2JlzPC6jzD5f74zBwcqMy+m5ZbZteyq03FoTdd+sNREoCux/uiORyTmMWHgC/0ZW9G7hyOX0PJ5afo7vx7WiZ3N7fj2UwORfz3D4uY6GL6Du6dCI2UNaGPkohBDi5qj1ncB6vZ4nn3ySn376iYKCAvz8/Pjrr79o0qQJ77zzDvPnzycxMRF/f38+++wzevToAWhTONjb23PixAn27NlDnz59+O6773jsscdYu3YtISEhLF26FBcXFyIiIvDz8+Ozzz7j1VdfxcLCgjfeeIP777+/3DatWLGCV155hejoaDp16sSCBQvw8fEhOzubBx98kLVr16IoCq1bt2br1q3odNUzoiU0NJTQ0FAWL15cLY9XF+j1Ki8vP8rygzEUFKo0a2TDjw93o5GdJZ/+fZpFuyJIyszDt5ENbw1vT6ivC6BN4WBnacrpS+kcjEyim58rn4ztyItLjrDpZDztvBz55sFQnG0siLqSSbe3/uat4UHMXnsKC1Mdz9/ZitGhPuW2ac3RWN5fc5LYlGzaezsyZ0wI3s7WZOcV8tTPB9l0Kh5FgYAmdqx4oje6m/RN8gM9tdEzpiZlny/Ex5kQH2eW7I+67vvWJXq9yssrT7D84EUK9CrNXG34cVIojews+HTDORbtjtTqxdWGt4a1JbS5NnJo2s+Hi+slKoVuLVz4ZEx7Xlx2nE2nEmjnZc8393fC2cacqKQsur2zibeGtWH2ujNavdweWOFCd2uOXeL9daeJTcmhvZcDc0YFafWSX8hTvxxh0+kEFCCgiS0rHutebfXS3LX02mk6RSHyShYAIU2dCGnqZNj2QI9mDP18l+H3x/oVnwgHeTnQvYULByKTCfEpvs+/lhyIYWSIl+FEuq7Q61Ve+eMkyw7FUahXaeZqzeIHO2q1sjGcxbtjSMrKo7mrDW8NaUVoc+3Yp/9yVKuV+AwORqXSzdeZj0e3Y8byMDadTqCdpz0LJgTjbGNOdFIW3d7bxltDWjH773OYm+p4YaA/ozp5ltumNcfj+WDdWWJTtVqZfU9bvJ2syM4v5OnfjrHpdCIKCv5NbFgxtctNy5aqOhydSkxyDne10xZP2hl+BXNTHfd11f5vPHlLC77eFkl4QiYtGtXttf30epWXV5xg+aGi9yZXG36c3EWrn3/Ols6a4e1KZM0h7CzMOB2fzsHIZC1r7u3Ai0uPFWWNA99MLJE1b2/krWFtmb3utJY1d7S8RtbE8f7aoqzxdmDOqPbF702/HmbTqaKscbNlxWM9qi9rGpWTNYmZAIT4OJXKDS1rdhp+j07K5o62bthYmGJjYUr/lo05E1+2Y6cu0etVXll1huWHL2nZ4mLFookdaGRnwWebLrB470WSMvNp7mrNm3cHEtrMEdCmcLC1NOVMfAYHo9Po1tyRj+9pw4yVp9h05grtPOz4enxQUbZk0332Tt68O5A5/5zH3ETh+dtalBplW9KaE5eZ/fd5YlNyCPKyZ86IVnj9my1Lwth8+gqKAv6NbVg+pVO11cajfZoZfg7ytKdbc0cORqWW6gSuSLC3A8HeDiw9FFfu9ondtP8H9eG85ZXV51h+JF6rF2crFt0fRCNbcz7bEsnifXFavbhY8eZgf0J9tNfuySUni+olk4MxaXRr5sjHI1sy44+zbDqbRDsPW74e2xZnazOik7Pp/uEe3hzkz5wNEZib6nj+luYVLnS3JiyB2f9EEJuaS5CnHXOGBeLlZKnVy7LTbD6TVFQv1iyfFFxt9RLsbU+wtz1LD18qsy05K5/v9lxk87TOuDtYABDkaVdqn7jUXH45cIlX7mjBy6vq/7Rcer3KrLURLD+WWFQ7lvwwrqVWO1sv8uOBeJKyimrnzmZ0bqqNfH1y+TnsLEw4fTmLQxcz6Opjz8fD/Jjx1wU2n0uhnbsN80cHFNVODj0+PcQbdzTnw80xmJsqPNffm1EdGpfbprUnk5i9KVqrHQ9bZg9pgZejBdn5hTyzIpzN51K02mlkzbIH2lRb7Ww4m8zvE1tjaaYjsLE1d7Zy5vfDCfRu4cil9DycrEzp5av93xkW5MozK8NJyirAxcasWp5fCCHqklrfCbx+/Xp27tzJ+fPnsbW15ciRI1hZWQEQEBDA7t27cXV1Ze7cuYwePZoLFy5gZqYF+u+//84///xD06ZN6d69Oz179mTBggUsXryYQYMG8emnn/Laa68BUFhYyJ49e4iIiODQoUMMHDiQrl27EhgYWKo9+/fv57HHHmPVqlW0a9eO2bNnM3bsWHbs2MH3339PZmYmsbGxmJmZsXv37nI7RqKioggKCqrwmFetWkXPnj2r6yWs0zafvsy+iCT2vHwbNuamnIhNxdLMBADfxrasfqoPzjYWfLstnCnf72XvKwMxK7qM9M8jF/ltak+8nKwY9MlWhnyylTljgvl8fCfu+3oXC7ae5/k7WgFQqFc5GJnMvlcGcvxiCmO+2klHH2f8mpQ+wTwclcyLS4+waHI3Wrnb8+Wmszy6aB9/Tu/Db/uiyMor4PBrd2BmonAgMony+sVikrPo/97GCo950cNd6eLrWu62VYdjWX00Fg9HK6bdEsjQEK8beVnrrc1nEtgXkcyemf2L6iUNSzOtHnwb2bB6Wk+cbcz5dvsFpiw6yN6Z/UvUSxy/PdIVL0crBn22gyFzdzJnVBCfjw3mvm/2smDbBZ6/XcsDrV5S2PfSAI7HpDLm6z109HHCr7FtqfYcjk7hxWXHWPRQKK3c7fhy83ke/fEQfz7Rg9/2xZCVV8jhWbdgplM4EJlSQb1k03/2lgqPedFDoXTxLf8y2O92RvD6nyfJyiukqbM1g9u7l7vf3gvJBDaxLXdbXoGew9Ep3N+97JciiRm5bDmTwGtDWlfYvtpq85lE9kWmsOfFPtiYm3AiLr04W1xt+OuJrlqt7IjkkR8Ps+fFPsW1cjSe3x7uhKejFYM/383QL3Yze2Rb5t4bxH3fHuCb7ZE8N1C7HL5Qr3IwKoW9M/pw/GIa9y7YT0hTh3JqJZUZy8P44cGOtHKz5cstETz24xH+eLwrv+2/SFZeIYde7qfVSlRqhbUy4MMdFR7zDw92pEvzsh35AKuOXmL1sXg8HC2Z1t+XIR1K18qdn2lfEvRo4cxrd7fE1daizGMsORjL7W0bY2upnVqcic+klXtxhlqZmeDras3pSxl1vhN48+kE7b1p5oDys2Z6r+Ks+eEAe18aUCJrYvltajctaz7dzpDPdjBndHs+HxfCfQv2lM2aqGT2vXQLxy+mMmb+7oqzZulxFk36N2vCeXTxQf6c1pPf9kcXZc2tRe9NyRW/N31wjayZFEqXoi9ar/bdjghe/zOsOGs6lN8ZuTciiUC34rbf182HxbsjGRLsQXZeIdj0gz0AAEn5SURBVBtOXubZgQEVv/B1wJazV9gfmcLu53uUky3WrHq0M8425izcGc3Un46x+4UehtpYdSyeXyeF4Oloyd1f7GPIV/uZM6IVn41uy4TvD/PNzmieu1X7kq5Qr3IoKpU9L/TgeGw6Y785pGXLVf+3jsSkMXPlab6/v72WLduiePSX4/wxtTO/H4gjK6+QgzN7adkSnVZ+baTkcMvHuys85u8ndqBLUWd2RfIK9ByOSWNC19LnLXfN1aYX6tHCmVcHBeBqa37Nx6lvtpxLYn9kKruf6arVy6UMLIum5vF1sWbVIyE4W5uxcPdFpv5ygt3Pdi1RLwn8+mB7PB0tuHveIYbMP8ScYYF8dk8rJiw6xjc7Y3juFm1UfaEeDkWnsee5rhyPzWDsd0cJ8bbHr1Hp6XmOxKQx84+zfD+hHa2a2PDl9mge/S2MP6aE8PvBS1q9/K9b5fXy2b4Kj/n7+9pVWi9XOxWfiYWJjpX/b+++o6OovzaAP7ubTe+995BGSKEmdJAqLYCCiIAKCDZUii+CSlGxIFiwK6CidClKk94h9E4K6QXSe3aTLe8fE3YTsgFC+UHW53MO57A7s5OZzc2dmTvfuXMhFz8dzoSNqRRTe3pjUJi2GDlnaxKm9vSGiVT34JsnvzsNAOjoa405/f2bfaztv1aMkxllODolEmaGEly+UamNHXtj/D1BuAiw7Ph1TFqbiGNvRGpj51IBVo0NgZuVEQb/fAFDfrmIhYP98PVQf4z98yqWHruOaT2ECy1KFXAmqxzH3ozExZxKPPv7ZUS5W8Df3qTe+pzLKsesLcn49dlgBDma4vsj2XhlXSI2jW+JtWfzUFmjwqlprSEVi3E6s0xn7GQVy/HEd+ca3eZfRwVp2jjUpVYL/+q+js8VBj6EOpvBx84E+5KK0dnXCmvP5qGlixlsTbVlkC2XC7DtSgFcLI3wWhc3DG6p+zyMiEgfPPZFYKlUirKyMly9ehVt27ZFZKS299OwYcM0/58yZQrmzJmD5ORkTeH2qaeeQmhoKACgf//+uHLlCjp3FnqhxsbGNmipMGfOHJiYmCAmJgaDBw/G+vXr8c4779Sb55dffsErr7yiWY8ZM2bgww8/RFZWFqRSKQoKCpCcnIzQ0NBGC7menp4oLi6+vy/mP0IqEaFCpkDijTJEetogzN1aM21AuHY03YSu/li4/SrS8is0hduB4W4IchEOFHoGOyHxRhk6+Ak79X5hLth3S1uEaX2DYGIoQVsfO/Rt6YIt57MxpVf9iwB/HkvD8518NevxSo8W+GJnAnKKqyCViFBUWY20ggoEuVg2Wsh1tzFFwscDmvxdDIp0w9iOPrAzN8LhxDy8uOw4XK1NNKOfCZCKxaiQK5CYW45ID2uE1WlRMKCVtqg1oYsvFv6biLSCSk0xZWC4C4KchdjpGeyIxBvl6FD73fYLc8a+q3n1fta0Pi1gIpWgrY8t+oY6Y8v5HEx5IqDePH8ez8DzHb016/FKdz98sTsROSV146USQc4WjRZy3W1MkPBh33v6PsbFeGNstBeu5JRh28XrMDdqmPKv5ZXjk+3x+Hlsa53LeHfTJfg7mqNzQMN43ngmG2FuVvBz0F1AfpxJJUKsJOWWI8LDCmFu2pOKAa20o6MmdPbG5zuT6sdKKycE3oyVIAck5pajQ+3vr39LJ+xNyK/3s6b19hdixdsGfUIcseXCDUzpWf87WxmXiXExnpr1eKWbD77ccw05JTJIJWIUVdQgvaASgc4WjRZy3W1MED//iSZ/FwPDXTCmgyfszA1xOKkA438/CxcrY83o5w2T26G1lzVKZQrM3ngZr648j1UT2tZbhkKpwqazOfhyRJjmvQq5AhZGknrzWZgYoKJa0eR1fNxIJSIh19woR6TnLbkmXFsAndDFFwt3JNySa1zr55rcurnGBfvib9k39Qms3TfdLtek4/lOdXONP77YlSjsm8RiFFVUI63wZq7Rvc9wtzFFwkf9dE67k3EdvTE2pjbXXGgk1+SW45Nt9XNNSzdLVMgVCJy1HSo1MCzKDX1b6h6d2FwYSMQolyuRlFeBCHfLernlZqsUABjfyROf70pGWmGVpnA7IMxJc0GuR5A9EnMrNH/v/UIdG7RFmPqEr5BbvKzRJ8QBWy/m4vXu9VtprDyRhXHR7trc0sULX+1JQU6JDAYSEYoqa5BeWIVAJ/NGC3Pu1sa4OqfbfX0v7/+TAH9HM3T21+7rNrzUGlGeVkJu2RyP11ZfxMoXdbe80lcGEjHKq5VIyqtEhLsFwly1F86ebKl9PsP4GHd8vjsVaYUyTeF2QJgDAp2E2OnRwhaJeZWa32G/EPsGLRWEAqkEbb2s0CfYDlsv5eH1bvUv8K48dR3jOrhp1uOVzp74al86ckrkMJCIa+NFhkAns9vHy7uddU67VzmlcpTIFMgokiFuegdcyC7Hs7+eR7CzGQIczHAgqRAFFTUYFOaII8lFDT6/YUIEojwshVj7Jwmvrb2Clc+HP9B1/F/T5Jr8KkS4maOli/YC0JMh2jw/PtoFi/ZlIK1IrincDgi1Q6CjEEc9AmyQmF+F9rXF1b5Btth/rbjez5razV2IHU8L9AmyxdbLBXi9S/0LOitP52JsO2fNerzc0RVfHchETqkcUrEIRZUKpBfJEehoqrOQCwBu1ka4MrNdk7+Lrn5W+OZQFhYO8kNyoQxbrxTCprbIKxGLEBtmj/Gr4lGtVMHCSILfRwdrBmoNDLXDc22cYGcmxeGUEkxcnQBXS0PNyGkiIn3z2BeBe/bsiUmTJmHixIm4fv06Ro8ejQULFkAqlWLp0qVYtGgRMjIyIBKJUFpaivz8fE0R2NFRe3XYxMSkwevy8vq3HHp4eNT7f05Ow1vQ0tLS8Ntvv+HTTz/VvKdQKJCZmYnnnnsOaWlpiI2NhVwux6RJkzBz5swH9l38F3Vu4YgxHX0wffVZ5JbJMKyNB2YNCIVUIsafx1Lxw74kZBdXQQQRyuQ1KKyo1nzW3kI7Us1YKmnw+tZChJuNdjSEq7UJbpTKGqxPZlEl1p5Mxze7tbeZKVUq5BRXYXgbT2QUVuKFpccgV6gwNsYHr99SRL4fgc7ag5EugY4Y3sYT2y/msAhcR+cW9hgT7YXpay8gt0yOYVFumPVkkBAvx9Pxw4GU2ngByuSK+vFiXjc+xPVGiBgbSFBRraz3s9ystSMgXK2NcaO0Yf+5zKJKrD2ViW/2XtO8p1SqkVMsw/DW7sgoqsILy05CrlRhbLQXXq99cNuDJBKJEOJqiX3xefj83wS8N1A7aje7uAojfzyO2U8GIcavYRwt2pmAuJRCbHwlRuddDWtPZWJkI7emP+46B9jhuQ6emL7uUm2suOKd/i0glYixMi4TPxxIRXaJrE6s1Gg+a9cgVuq/rpTXjxXXW2JFV6/CzOIqrD2VjW/3pWjeUyrVyCmRYXiUKzKLqvDCr2cgV6gwJtoDr/d4cL3r6o4C79LCHsOjXLHjUq6mCHyzwG1nZogPhoQgbO4eVFYrYGqoPYTYl5APsUiEri20FwvMjAxQdst3US5TwMzwsT/0uKPOLRwwJsYL09eeF+KntRtmPRmszTX7kxvPNRZ1cotUckv8SFAhv12uaWTfVFiFtScz8c2eJM17mvhp446Mokq8sOyEsG+K9sLrtxSRH4Q755pjmP1kMGL8tTEy4ddTaO1ljRXj20OuUGLqmvP4cMtVzB4Q/MDX73+ls78txrR3w/S/riCvrBpDI53xTl9/IbecyMKPh9KRXSyDSCTS5pbaWp99nVuTjQ3EsDczrPf61v1Q3T7dje6HimVYezoH3+5P07ynVKmRUyLH8EgXZBbJ8OLv54Xc0t4Nr91SRH4QFu9ORlxqMf56qXW9fcnNAredmSE+GBSIVh8cQGW1EqaGksYWpXc6+9lgTDtXTN8Yj7zyagyNcMI7vX2FeDmZgx8PC7fWi0RAmVyJwkrtvqhevEjFDV43iJc6/XBdrYxxo6wat8oslmHtmev49qC2fZhSpUZOqRzDI5yQWSzDi39chFypwph2rnitq+7WaQ+aSe0I19e7ecG4tpDd2c8GB5OK4G1rgve3JOHbEY3flXSzYG1nZogPBvij1YIjzT7WOvta4bk2TpjxdzLyymswtJU9Zj7hCalEjFWnc/Hj0Wxkl1RrYqeosgaAsD+xu2PsqOr9LFcr7X7K1dIQuWU1uFVWiRzrzuXhu8PZmveE2KnGsHAHZJbI8eKqeFQrVHiujTNe66K7Nda9mN/fBzP/SUb7L07D3coIsWH2iM8TRgLvSyrGp3sysGl8SwQ7muJwaileWBmPfye1gqOFIVo4as//uvhZY1i4PXZcLWIRmIj0VrM4E3vzzTfx5ptvIiMjA/3790fLli3RrVs3vPbaa9i7dy/atGkDsVgMGxsbqOveC9JEGRkZ8Pb21vw/OLjhSYi7uzvmzZuHqVOn6lzGvHnzMG/ePFy9ehXdunVDdHQ0unXrVm+e9PR0hIQ0fqCybds2zYhlAl7q5o+Xuvkjq6gSz/54FEHOlojxt8esv85j/SudEOFhA7FYhMCZ/0CNe//9ZxVVwtNOuHqdXVyFgFtaQQDCCfiMfsGY3F33CfTb/UPwdv8QJN4ow9AlB9Ha2xYdAxzqzZNZVIkuC3Y1uh5/vhSjGbF8O49ZO9DHxktdffFSV19kFVXh2Z/jEORsgRh/O8zaeAnrJ3dAhLu1EC+zd+A+0gWyiqvgaSscOGYXyxCgo52Cq7UJZvRpgcnddBfs3u4biLf7BiLxRjmGfncUrb2s0dG//u8+s6gKXT7d1+h6/DmhnWYU4e0o1Wqk1vYEBoC8Mjme/v4YxsV4Y1R7zwbz/3QgGWtOZGLzqzGwMmnYMy3xRjmuZJdhcCO3fTcHL3XxxktdvJFVXIXRv5xCkLM5YvxsMWvjFayf1Bbh7lYQi0UIem/XfWQWIZ943CFWXKyMMaOPPyZ11V2AmdEnADP6BCAxtxzDvotDGy/rBoX7zKIqdF14qNH1+OPF1pqC7u3cLrfcnHbr3866U9mIjXSp9zTtFk5m+PWotpBQVaNEcn5lvXYAzdlLXf3wUlc/Idf8dLx232SHWRsuYv3kaER41OaaWdvv69ikfq6paiTXGGNG38DGc02/ILzdL0jYN317FK29bXTkmkp0+WRfo+vx58T2d5drVGqk1vYEBm7mmqNCrulQP9dczinFl89EwMRQAhNDCUa09cAn25p3ERgAJnb2wsTOXsgqluG5ZWcQ5GSOGF8bzN4cj3UTWyPczRJisQjBc/bdZ26RwcPWRPP/AMeGbVZcrIwxvZcfJnXRXayb0dsPM3r7ITG3AsN/PIXWnlaI8aufJzKLZei26KjOzwPAH89HNHqHws+H0rH2dA42Tmqjc19yk7i2OHw/fyvN1cSOHpjY0UOIl98uIMjpBmJ8rDH7n0SsezEC4W4WQrzMP3Rf3092iQweNiaa/wfoaMvjYmmE6U/4YFIn3Rd4ZzzhgxlP+CAxrwLDfz6L1h6WiPGt/7vPLJah25dxja7HH2NbNbkdxM0Rz7funkQiEa6XypGUX4mRy4Q2AjVKNcrkCoQvOIx9U9rBxrR+3OlTrE2MccXEGFdklcgxZsUVBDqaIsbbErO3pmDtuBCEu5pDLBYhZEHcfR3zZpfI4WEjXETILq1u0AoCAFwsDTGtuwcmddR9XDi9hyem9/BEUl4Vhi+/hNYe5ojxqd8fPKtYjm7fnG10PVaMDtaMWK7LzkyKH0doB968tj4RkW7CvvLK9Qp09LFEqLMQQ519reBiaYjTmeXoG9zwmEjczJ5xQUTUVI99EfjkyZNQq9WIjIyEhYUFpFIpJBIJKioqIBKJ4ODgAKVSiY8//hilpaX39bPmzZuHb7/9FufOncOmTZswa9asBvO8+OKLGDlyJLp3747IyEiUlpZi586dGD58OPbu3QtHR0cEBwfD0tISBgYGkEgaXmH29PRsMAr5bqhUKlRXV6OmpgYqlQoymQwSiUTTA1kfnU0vghpAmJsVzI0MIJWIIBGLUFmthAjCiDylWo2vdyagTNbwqnRTLNpxFR8/FYHLWSXYfjEHU3o17Es4qr0XXvrtBDr6OyDM3QplMgX2x+diYIQbDiXmwd7cCC2cLGBhbAADsaheQeQmdxtTJH86qMnrt+NiDqL97GFuZICj1/Kx9kQGfp3QQTO9WqGCSq2GWg3UKFWQ1ShhZCCGSCSCSqVGtVKFGqUaarUasholJGKRpjfY7T7bnJzNKIZaDYS5WcLcWEe8mNXGy66k+4+XfxPx8bCWuJxdiu2XrmPKEw3bv4xq54GXVpxGR397hLlZCvGSkIeB4a44lJQvxIuj+R3ixQTJC5p+i/afx9PRJ9QZtmZSnM8swbJDqXildvRoaVUNnvnxOPq2dK73ELibVp/IwDd7r2HTqx3haKn7SdrrTmWiZ7ADbM2aZ0+9sxklAIQnzJsbGcBAIob4ZqyIADtzQyFWdiejTHZ/7QsW7bqGBbEhuJxThh2XczGlZ8PvfFQ7d0xacQ4xfraaWDmQWIABrZxxOKkA9uaGCHA0h4WRAQwkIp0nKe42Jrj2Ya8mr9+OS7mI9rWBuZEBjqUUYu2pbCx/XrglO/56GRQqNYKcLVAuV+DdTVfRyc8OZnVu9y+TKbDjci7+ebVDveXG+NlBXqPCn3GZGBbliq92J6OFk3mz7wcMNJZr0HDf9EByTQI+HhamzTW9Gl4kHtXeEy/9fgod/e0Q5mZVP9ck5sPe4maukd5+3/Rx/yav35/H0tGnpRNszQyFXHM4Ba90F+5qEHLNMfRt6YJXejS80yHCwxorjqVhZv8g1CjUWHsyo14f6eboXGYp1Gp1bW6RwEAiFvZDNUqIRCLYmQm5ZcneVJTJ7zO37E7GgiFBuJxTjh2X8zClR8OLSM+0ccXklRcQ42eDMFcLlMmVQm4Jc8Lha4VCbnEwu/1+yNoYSfO6N3n91pzKxrcH0rBxUhs4WtTvIx5/oxwKpRpBzuYolyvw3t/x6Ohnq8ktdY9bVGrc9rilWqlutsct5zJLoQbQ0sVciBexCBKRCJXVKmFfZCYV4mVf+v3Hy540LBgUgMvXK7DjSgGmdGt4YeCZNi6YvPoyYnysEeZqLsRLUiEGtHTE4eQi2JsZIsDBVNgX3S5e3u/S5PW73e/c194UbTwtsWR/OuY+6Y9LOeU4nFyEmb194WpljFMzojXLOZleirnbruHvlyJhbWKA+BsVwn7MyUyItS1J6OhrXW8/1hydyyoXYsfZDOaGdXPNLbFzIKvBXTlNtXh/Jj560heXb1Rgx9VCvD4xrME8I6Mc8fLaRHT0sURLFzMhdq6VYECoHQ6nlMDeTIoAexOYG0kgaSR23KyNkDirfZPXL61QBisTA5gZirH1ciH2JBZj36tCu49wN3P8cDQH8bmVCHQ0xdHUEiTlVyHAQShk/3u1EB28LWFuKMGxtFKsO5eHZc8ENXkdiIiai8d+71dSUoI33ngDKSkpMDMzw9NPP41Ro0ZBIpFoevMaGxvj9ddfr9fOoakkEgnatm0LLy8vGBoa4ssvv9Q5Erh9+/b44osvMH78eFy7dg0WFhbo1asXhg8fjpycHEycOBE5OTmwsrLCpEmTHuiI3gMHDqB7d+1BuImJCcaOHYvly5c/sJ/xuCmT1eDdDReQXlABU0MDDIp0w9DWHpCIRXi+ky96fbYXRlIxxnfxg6u16Z0X2AiJWIQITxu0mbsDhgZizI8NQwvnhleao7xtMT82DFNXn0ZqfgXMjQzQJdARAyPckFsqw/TVZ3CjVAZLEynGxPjc1Yjeu/XXqQxM+fMUapRqeNia4uOnwhFdZ/kjvjuMo9eEXqQjvxeevh73bm942pnh6LV8DPtGO0LQe/pmPN3WE1892/qOn21OyqoUeHfTJaQXVsLUUIJB4a4YGuUmxEtHb/RadABGUgnGd/Kud4t+UwnxYoU2H+yGoUSM+YND0ULHyPEoLxvMHxyKqWvOIbWgUoiXFvYYGO6K3FI5pq89jxulclgaG2BMjNddjbK7W0euFeCDLVchq1HCydIIY2K88EJHbwDAtovXcTG7FMn5FVh6OFXzmZvF5oX/JqCgohrd6zyQbkpPf00fUrVajfWnszB3UPN7INxNZTIF3tt8BemFVbWx4oyhka5CrMR4otfiIzAyEOPFTl71brluKolYhAh3K7T9aL8QK4OC0ULHSM4oT2vMGxSEqesuIa2gEuZGEnQJsMeAVs64USbH9PWXNLHyXAePuxrRe7c2nMnGG6svoEalgoeNCRYMDUF07fLzyqvx9vpLyCmRw9xIgk4BdljyTP0Hm/5z/jp87EwR6lo/ZxoZiPHL2EhMXXsRszZcRpibJb4b1bx7MN5UVlWDdzfWyTURrhga5a7NNZ/vF3JNZ5/7zzUe1mgzf5ewbxrSsvFcM6Qlpq6um2scanONrDbXyGBpLH0IuSYfH2y5UptrjDEm2gsvdPIGUJtrskqRnFeBpYe0rU5uFpu/GBmOmesvImLOTohEQLSfPd4fFPrA1u1RKJUp8P7f8UgvksHUUIKBYY6IjXCGRCzCuGh39P7quJBbOnrUuz2/qYTYsEK7Tw5DKhFh3sAWOkcCR3laYe6AFpi2/kptbjFA5wBbDAhzwo2yasz46wpulFULuaW9W6Mjeu/F57uSUVBRjR51Hir3endvvN7dB3ll1fi/jVeRUyKDuZEBOvnbYskI7e/+WEoRhv90WvPa9929eDrKBV88LczzzC+ncTSlGAAwaukZAMDxGR01I6Obi1K5Eu9vSUJ6URVMpbXxEu4kxEt7N/T+5qQQL9Hu9W7JbyqJGIhwt0C7z45BaiDGvCf9dceLhyXm9vfHtA3xSCusgrmRBJ39bTGgpaMQLxsTcKNMDksjAzzXzrXJI3pv51hqMYb/on0omO+cg3g60glfDBfOx74dEYK31l9F8AeH4GplhEVDgzT9keteZLA2MYBEpH0vr7wa/7cpATmltfsxPxsseap5320ACLEzZ1sK0ovlQuyE2iE2zF6InbbO6PP9eRgZiPFCe+f7jp1wV3O0X3xayDX9fBDg0PCcK8rdAnP7eWPa5mSkFcpgZiRBF18rDAi1Q25ZNWZsTkZueTUsjSQY3cZZ54jee3Uuuxzvb0tFmVyJICdT/D46CA61bd1ifKzwaic3jPvzKgoqauBsaYgFA3zhVzuaecOFfLy5MUk4v7I2wkdP+qCDN1tBEJH+Et3LrTAikcjHwcHhfG5url7c05mamgp/f38oFM3/YTUPk1QqVSoUCnO1Wl2vIaFIJPKxMzc8f+mDJ5tlPKQXVCD6w53IWjTkUa/Kf8JrK06ik78tRjTTXrLphZWIXrAXWZ89+ahX5T/h691J+GxHwkK5QjldJBI9PyTC5evvng1vFlcnMgorEf3JQWR+0udRr4reGvzNsZK41OKRarV6u42Z4fq5g0OHNtfccqv0wkpEf7QHWQub/iBRur20gkoM/voQTr/TPFtvZRRWIWbhEWR81PNRr8p/wpTVF9HR1xpPRzXPhxZmFFUhZtFxZMzv9qhXRe+lF1ZhyI9ncGqa7oftNjcZRTJ0/OoM0t+PvvPMdE885x5VKlVocH5NRPSwiB/1ChARERERERERERHRw8MiMBEREREREREREZEeYxEYgLe3N1tB/Id52pmxFQTdNU9bU7aCoLviYWvKVhB0zzxtTdkKgnTysDVhKwi6ax42JmwFQffEw8aYrSCIiPQMi8BEREREREREREREeuw/UwTu1q0bVqxY8ahXgx6R2K8PYt3J9Ee9GtRMxH57BOtOZT7q1aBmYOh3x7HuVPajXg1qJmK/OYJ1J5lb6M6G/XAS68/kPOrVoGZi2M9nsP7s9Ue9GtQMDF92CevP5T3q1SAiokfE4FGvwH/Vjh078OqrryI7Oxvdu3fH8uXLYW9vr3Pe5ORkjB07FqdOnUJAQAB++eUXtGnT5n+8xvSgVCtUmPzbCZxOK0ROiQxx7/aGp52ZZvqmM5n4YV8SLmaWYEiUO756tvEnDK+JS8fif68iv1wOE0MJYiPd8d7gMEjEIgDAoYQ8vL/xAlILKuBqZYx3BoSiXytXAMCq42n45eA1pORVwMpUiuc7+eLVni0e7sZTk1UrVJi84jROpxcL8TKrBzxtTTXTN53Nxg/7k3ExqxRDIl3x1TMRt13etbxyvPPXRZxILYKpoQRTevpjQhdfAMChxHy8v/lybbyY4J3+QegX1vBp6CN/OI6DSflsi/GYqVaoMPmPcziTUYycEjniZnaBR51Y2XwuBz8cSBViJcIFX45s1eiyZDVKzN8Sj7/PXYdCpcboDh6Y2TcAIpGQW9p+tA/55dUQ174eEuGCz59qCQBYczILX+y+hvzyaphIJRgS4Yz3BgRp8hI9HqoVKkz+/ZQ2t8zu2TC37LsmxEuUK756JvK2y7uWW453/rqgzS1PBGBCF1/klckxe8NFHL1WAFmNEhGe1vhoaBj8Hc0BAKviMjB1zTkYGWjHJeyd3hVedfaL9GhVK1R4eeUFnMkoRU6pHMdndISHrYlm+tx/ErD9ch7yy6vhZWuCmX390TNI9zHt6pPZ+OVIBlILKmFlIsW4aHe80tUbAJBfXo3Zm+NxLKUIshoVwt0t8eHgQPg7mGk+O+2vK/ViZfeU9vCyM9X1o+gRqVao8PKay7XxUo3j09rDw6ZOvGxNwvYr+cgvr4GXrTFm9vZFz0C7Oy73mWXncCi5qF5ri+OpxXhvSxKu5VeihYMZPh8aiGBnIbesPp2DaRvi68fLa23hVSd26dGqVqjwyrpEnM4qx/XSahx7IxIeNsaa6XO3p2LH1ULkV9TA08YYM5/wRM8WNjqXJatR4YN/0/DP5QLUKNUY3cYJ/9fTQ3Pc0n7xaeRX1ODmocjglvZYONivwXJG/XYZh1JK2AaDiPQWi8CPQG5uLkaMGIEVK1agR48emDx5Ml5++WWsWbNG5/wjR45Enz59sHPnTixfvhyxsbFISkqCkZHR/3jN6UHp4GeHl3sEYNBXBxpMszE1xOTuATieXIDSqprbLicmwB5PhHaFrZkRiiqqMWF5HH49nIIXOvtCqVLjxWXHMXdIGEa088T++Fw8v/Q4Tr3fB7ZmRpArVPhoWDgiPG2QVVSJEd8dgYetKQZHuj+szaZ71MHXFi9398OgJUcaTLMxlWJyN18cTylEadXte5vLapR4+vtjmNzND8tfaAuVSo3sYhkACPHy6ynMHRSCEW3dsT8hH88vP4lTs3vC1sxQs4y/z2Wjqkb5YDeQHpgOvjZ4uZsPBn97vME0axMpJnf1wbGUIpTdIbd8vScZCTfKcWhGZ5TJFXjqhxPwsjXBs+09NPOsmtAW7X0anozF+NniiWAH2JoZoqiyGhN/P4vfjqbj+Y5e97+B9EB18LPDy939MWjJ4QbTbEylmNzdD8eTC1Equ328CLnlKCZ398fyF9pBpVYju7gKAFBZrUBrLxt8ENsSNqZSfLU7Cc8vO4GDb3fXfD7Gzw5rJ/OE+3HWwccGk7t6Y8j3JxtMMzOSYMXzEfCxM8WBpEK89Md57H4zGu7Wxg3mlStU+HBwICLcLZFVLMMzv5yBh40JBrVyQoVcgdaeVvhgUCCsTQzw9b5UvPj7eex/Sxsb0b42WDM+6qFuK92/Dt7WmNzJA0N+OtNgmpmRBCvGtoKPrQkOXCvCSysvYffrbXXGy03/XMxFVY2q3ntFlTV4YcVFLB4WhJ6BdvjhcAaeX3ERB99sB6lEKPxG+1hjzQsRD3Tb6MFq72WJSR1dEbv0YoNp5kYS/D46GD62xjiYXIKX1iRg98vhcLNueA685GAWEvIqceC1CJTJlXh6+WV42RhhVGsnzTwrnwtGOy/LRtfln0sFDeKMiEjfNKt2EPPnz8dzzz1X770BAwbgm2++AQC8/vrrcHNzg5WVFbp06YLLly/rXM6cOXMwfvx4zetDhw7B29tb8zozMxODBw+Gvb09AgICsGrVqge6HRs2bECbNm0wYMAAmJqaYt68edi4cSPKy8sbzBsfH4/Lly9j9uzZMDY2xqRJkyCVSrF///4Huk7NwaIdV/HqivonH6N/PIKlB5MBALPWn0PE+9sQ8H9/Y8hXBxB/vVTncj7bdgVvrTqteX08OR9t5u7QvM4ursLYn48iZNYWRH/wLzaefrC37hoaiDGhqz9ae9vqnN4l0BEDI9xgZ26oc3pd7jamsDXTHgiJRUBavhBHJVXVKKmqwdDWwlXwbkFOsDSWIq2gEgAwtqMP2vrYQSoRw9veHH3DXHAqtfABbOHjYdHOBLz6Z/2Tj9E/x2HpoVQAwKwNFxExdycCZm3HkG+OIP56mc7lfLYjHm+tPqd5fTy5EG0+2K15nV1chbFLTyDk3R2IXrAHG89kPdDtMDQQY0IXX7T20j3yoUsLBwwMd4Wd2Z0vCq06kQEPW1OM7+wDE6kEZkYGCHASRsyUVNUI8RLlJsRLoAMsjQ008QIAFXIFPt2RgNlPBj2YjXtMLNqZhFdXnq/33nNLT2HZ4TQAwOyNlxE5fy9avLsLQ749jvgbDXM1ACz8NxFT12pPYo6nFKHtR/s0r7OLZRi37DRC3t+NmE8OYOPZB3urt6GBGBM6e6O1l7XO6V1a2GNAK2fYmd05t+y6mocJnb1haSKFm7UJRrZ1w+qTdxfb7jYm9S4ciEUipNaJo+Zu0b8JePWP0/XeG/3zcSw9lAIAmPXXRUTM2YmAd7ZhyJLDjeeW7bfmlgK0mb9L8zq7uApjf4lDyLvbEf3RQ8wt3nfILXexL1oVVye3GN7MLRYAAC87M0zs6gsHCyMYSMSY2MUXiTfK73iRUx8s3p2M11bXL2yMWX4Wy45mAABmb45H1EcHEfj+XsR+fxIJjeWWndcwdZ32mPZ4ajHafXxI8zq7RIZxv55F6Lz96PjZYWw892DbAhgaiDG+kydae1rpnD6tlx/8HMwgFovQrYUdvO1NcTFL9zHYmA7uaOtlLRx72Jmib4gDTqUVAwC87EwxoZMn7M0NYSARY0InTyTmVqBU9t94ePPiPal4be2Veu+N+e08lh0T/vZn/5OIqI+PIHDeQcT+dAYJuRU6l7Nwdwqm/nVV8/p4ajHafXZU8zq7RIZxv19A6IeH0HHRcWw8f+OBboehgRjjY9wbj5eePvCzNxXiJcAW3nYmuJitO/YBoLJaic92pWJWH996759ML4G7jTF6B9tDIhZhUkcP5JZV42hK8YPcnMfS4n2ZeG19Yr33xvxxBcuPC3/7725NQeuFJxH0URyGLr2IhFzd++DP92Zg2qZrmtdxaaVov1i7f8sukeP5P6+i5Scn0PHLM9h0If+BboehgRjjo13Q2sNC5/Sp3T3gZ28CsViErv7W8LY1xsXruuN+d2IRxke7wNLYAG5WRhgZ6Yg1Z+++7UVltRIL92bgnV68YE1E+q1ZjQR+5pln0Lp1a8hkMhgbG6OoqAh79uzBL7/8AgDo0KED5s2bB1NTU8ycORPjxo1DXFxck36GSqXCwIEDMXr0aKxbtw5XrlzBE088gfDwcAQHBzeYf8CAATh06JCOJQGjRo3Ct99+2+D9y5cvo1Ur7W24Xl5eMDU1RWJiIiIjIxvM26JFi3qjflu1aoVLly6hd+/eTdq25i42yh29P98LWY0SxlIJiiurcTgxH4ufEUaEtPa2xYx+wTAxNMCH/1zClD9PY/tb3Zr0M1QqNcb8dBTD2njg5+fbI/FGGZ769hBCXC3RwrnhlePRPx5BXLLuwmlsa3d88lREUzezyXZeuo7Jv51AuVwBWzNDzI0VYsvWzAixUe5YeyIdI9t7Ye/VG5CIRQh01n2gdSKlAM928H7o6/u/Ehvpht6LD9aPl6R8LB4RDgBo7WWDGX0DYSKV4MOtVzFl1Vlsf6Nzk36GSqXGmF9OYFhrN/w8tjUSb5TjqR+OCfHi1PB7Hv1zHOJSGomXKDd8Miys6RvaBGfSi+FuY4KRPxzH+awShHtY4dNhYfCwNYWtmSFiI12x9mQmRrbzwN74XEhE9ePl838TMKKNO5ysGh+t0xzFRrqgz5dH68RKDQ4lFWBRbXuDKC9rTO8TABOpBB9tS8Abqy9g2+tNG7WoUqkxdtkpDItyxU9jIpB4owJP/3gCIS4WaFFbiK/ruaWnEJdS1Oj6fjw0tOkb2pT1VQNqdf3XtxaoJvx2BmoAUZ5WmDcouN4t2buu5GLyH+dQLlfC1kyKuYP058KBkFsONNwXjYgAALT2ssaMfrW5ZcsVTFl5FtvfvJfcEodhrd3x87g2Qm75/uhtcsvxxvdFUW74ZHjjrT8eBG1uOYbzmbW5ZXireu1IbopLKYSLlTEsTaSa906lFSF49nbYmxthbIwXxnfxbfC55mhIuDP6fn28fm65VojPhwnHk1GeVpjeyxcmUgkWbE/CG2svY+ur7Zr0M1QqNcYuP4thkS74aXQrJOZWYMTPpxHqYoEAx4YtNcYsP4u41GKdy4qNcMaCIff3t1pUWYNreZU685ouJ9KK8UxbN93TUovhYmkES2Pt6crp9BKEztsPOzMpxnRwx/iOnve1vo+TIeGO6PvNKW28VNXgUHIxPh8q/E6iPCwxvae3EC//JuONdVex9eXGW4bpolKpMfb3ixgW4YSfRoUiMa8SI5aeQ6izue54+e084tJKdC4rtpUTFgy+vzZiRZU1QisHx8Zbeny+JxVPRznD2bL+Balb91NqAGqokZBbiS7+wkCL0xmlCP3gEOzMDTGmnSvGx+jH3W5DwuzQ74cLkNWoYCwVo7hKgcMppfi8tr1BlLs5pnX3gIlUjAW70vHmxiRsmdi0/YBKpca4P69iaCsH/DiiBRLzqjDyt8sIcTZFgEPD39eYP67gRLrui55DwuyxYMD95fWiyhpcK6hCgIPudh4qIQDqvFY3KH5PXJMAtRqIdDfH3L7e8LLVHs8u2peJpyMc4GwhBRGRPmtWRWB/f3/4+/tj27ZtiI2NxYYNG9CxY0c4OQm3eYwaNUoz73vvvQcbGxtUVVXBxOTuez+dOHECFRUVmDp1KgCh4PrUU0/hr7/+wqxZsxrM/88//zR5O8rLy+Hh4VHvPSsrK50jgcvLy2FpaXlX8+o7Hwdz+NibY8+VG+jfyhVbz2ejrY8tHCyEHfjQ1trvdGqfIAS+8w+qqpUwMZTc9c84m16EymoFJncPAACEuFphYIQbtp7P0VkEXjEx5j636v71CnVG0icDkZpfjrUnMmBvrr1gMDjSDW+tOoMZa89CKhHhh7HtYGrY8M9+ye4EVFYrMayNR4NpzZWPvRl87M2w52ou+oe5YOuF62jrbQsHC+H7GRqlPemc2isAge8mo6pGCRNpE+IloxiV1UpM7iYcdIe4WmJgK+Fn6SrUrBjftJP7B+16iQyHkwrw54R2aO9ri4+3xePVP89i06tCHA+OcMVba85jxvoLkIpF+OG5KJjW/v0k3CjD7qt52PlmZ1wvlT3KzXjgfOzN4G1nij1X89E/zAnbLt5AO28bbaxEumrmfesJPwS9v7vpsZJZgspqJSZ19QEAhLhaYGArZ2y9eENnseT3F5p2Yv+gdWthhx8PpqK9jw1KZTVYfSILldXaNiDfjgpHmJslFEo1Pvs3EWOWncaetzpq+v4+EeyIxA96ITW/EutOZ8H+LkaTNhc+DrW55Uou+tf+vQv7otp4aa0tMkzt3QKBs7c3fV+kK7eEuwr7ol66ckv7+9yq+3O9pErILRPbC7llazxe/eMMNr3Wsd58eWVyzFh3HrMHaC+qR/vZYd+MbnC3NsG5zBK8sOwE7MyNEBuluzDYnPjYm8Lb3hR74wvQr6Ujtl3KRVsva22sRGh7rr/5hC+C5+67h9xSiqoaFSZ1EUavhbhYYECYE7ZezMWUHj4N5v9tXMT9bdRtKFVqTFlzCUPCneBrf+c+vd/sTxWOPSIb9p7PL6/G2xuuYlY/f8170b422PtGB7hZG+N8Vile/P087MwMERvR8PPNkY+dKbztTLA3oRD9Qh2w7VI+2npawaE2fw4N197W/mYPbwR/cKjp8ZJVhqpqJSZ1Eo73QpzNMaClA7ZeyscUHUXg38Y8vAtISpUaU9ZdxZBWjcdLYm4F9sQXYMcrbXCjTF5vWhtPS6QVVmHbpTxNO4hqpVqzr4r2tsbe19vCzcoY57PL8OIfF2FnJkVsne+xufKxM4G3rTH2JhWhX7Adtl8pRFsPC02sxLZy0Mz7Zjd3hHx8oumxkl2OyhoVJnUUjoFCnM0wIMQOWy8XYkrXhr+v355tOFjqQVGq1HhjwzUMaWkPXzvd5/Xd/Kzw49EctPOyRKlMgTVnc1FZp7XDkmEBCHMxg0KlxsK9GRj351XsejkcErEIiXmV2JNYhO0vtcKNsuqHth1ERI+DZlUEBoT+uKtXr0ZsbCxWr16NkSNHaqYtWLAAy5Ytw40bNyASiaBWq1FYWAg3t7s/kUhLS0NKSgqsra017ykUCowbN+6BbYO5uTlKS+vfJldaWgpz84aFgKbM+18wOMoNm85kon8rV2w+k4UhUdqT7a92xmNVXBryyuQQQQS1GiiurIaJ4d1fBMgoqkR6QSVa/J+2uK9QqTCi3eN/a5C3vTmCXCzxzvpz+GlcOyRcL8XLv5/E7xOiEe1nj0vZJRjz01G425gi1E17i96auHQsO5iMTVO6wLgJB4fNweAIV2w6m4P+YS7YfDYHQ+oU877anYRVcRnIK5dDBGjjxaop8VKF9MJKtJi1XfOeQqXGiLaP50gTY6kE7X1t0aWFcHLwVq8ABMzagQq5AlnFVXj5jzP4/cW2iPa1w6XsUoxZegLutqYIdbXEzL8u4r0BwTA0aFZdhO7akAgXbD6Xg/5hTth0LgeDI1w0077acw2rT2Qhr7y6TqzUwMTq7v9eMouqkF5YhcB3tbf7K1RqjGjzeBa63nzCD+9tvoquCw/B0sQAg8Kd67WvaHuzhYAUeH9AEFa+vxtJeRUIvKWg7W1viiBnC7yz4Qp+fC7if7gFD5eQW7LRv5ULNp/NxpAI7e/xq12JWHUio3ZfhHvcF1UJ+6J3tmneE3LL43mhrkFu6R2AgHe2o0KugJmRcKhZWlWDUT8ew1Nt3DGsTqG87gjySE9rTOjii60XcvSiCAwAg1s5YdP5G+jX0hGbz9/A4DoFqK/3pmD1qRwhVkSie8stxTKkF1YhaM4+zXsKlRpPt3Zp/EMPyYy/rkCmUOGjwXceTbz2VDaWHcnAxsltGxx7lMoUGLX0DIZHuWBopHY7POs80CvCwwrjO3li+6VcvSkCA8DgVo7YdCEX/UIdsPlCLga3ctRM+3p/Glafui7si0Q3c4ui6fFSJEPQ/IOa9xQqNZ7WUYh/2GZsjIdMocRHAwManeedvxPxbl8/nccedmaG+HFUKD7YnoxpG+IxJNwJgY5mcLESLrLUixd3S4yPccf2y/l6UQQGgMEt7bD5YgH6Bdth88V8DG6pfbje1weysPpsLvLLa7SxUqVoUhE4s1iOjCI5ghdo76pVqNR4OsLhNp96ON7+OxkyhQofPtnwwtZNU7q6Y872VHRfchaWxgYYGGqPTRe17SvaemovoL7X2wshp3NxLb8KLRxN8c6WFMzu7aW3x7hERHU1yyLwvHnzkJaWhkOHDmn69e7fvx9LlizB7t27ERgYiNLSUlhbW0Nd9z6hWmZmZqis1N4ecuOGtheWu7s7goKCcOHChbtan379+uHgwYM6p40ePRrff/99g/dDQkKwbt06zev09HRUVFQgIKDhQVBISAgSExMhl8s1LSHOnz+PyZMn39X66Zshke5YtCMeGYWVOJ5SgO/HtgUAHEnKx9JDyVj7cif4O5qjTKZAi5n/oOFvHzA1kqCqzoi2vDojC1ytTeDvZIF9b/e8q/V55vsjOJ6suz/W8DYe+PTp2z9N/UFTqtRIre0JfPV6GYJdLNExQDhYC3O3RpS3LQ4n5mmKwFvOZWH+3xex/pVOcLfRv6drD4lwxaKdCUK8pBbi++eE38eRawVYeigFaydFw9/RTIiX2TugI13A1NCg3oPQ8srrxIuVMfwdzbFvete7Wp9nfjqO443csj28tRs+fci3bAc5W+BUWv0WAzdPDoR4sUBHf+GJ7mHuVojyssbhpHyEulricFKBph2AUqWGUqVG2JydWDWxPUJdG3/IRnMxOMIZi3YlIaOoCnEpxfj+2QgAwJFrhVh2OB1rXmoLfwchVgLf2914rFRr9y11c4uLlTH8Hc2wd2qnu1qfUT+fxPFG2kEMi3LFp8MebjsIU0MDLBzeUvP64+0JiPTQ3d9RJAJEt1mWUqVGih71BAaAIZFu2tySUojvnxPaEgn7olSsndxBuy+atV33vsjwNvuim7llRre7Wp9nfjx2m9zijk+fesi5xcVC09f1ppu5BRAeDvfcz3Fo7W2Lt/vdvkAovl0wNUODw52xeHcKMouqEJdajO+eEdr+HE0uwrKjmVg9Pgr+DqYokysRNGdf47FSZz+UXy+3GMHfwRR73ry7FjXPLj2D4420gxgW6YxPYu9tNN+cfxJw9UY51oyPumMhZevFXHywLQnrJrZu8DCwymolxiw/i9aeVpjR2++2y9G3WAGAwWGOWLwnDZlFMsSlleC7kSEAgKMpxVh2NAurXwyHv31tvMw/BLWOiBHiRTsCMr9c23/bxbI2Xl5ve1fr8+zy8zh+y9/2TcPCnfDJkMAmbJ3WnK1JuHqjAmteCL9tvBxOLtb0PlaqhH/hCw7jz3HhCHUxR1d/W3R9VWj9UCpToPUnRxHhprvtmVikXwEzKMwei/dnIrNYjrj0Mnz7lNCa42hqCZbH5WD12FD42RujTK5E8IITuo9bpOL6x7gVt8SKvTF2vxJxV+sz+vcrOJ6uuxf40FYO+GTgvbWDmLM9FVdvVGL12JDbxoqpoQSfDtLmjE92pyPCTfegKZFI+HfTkZRSJOYJDzMVjnGBiM9O4o/nghHq3HCEPBFRc9bsisAeHh5o1aoVXnjhBfTo0QM2NsJopPLychgYGMDe3h4ymQyzZ89udBnh4eFYtGgRsrOzYWhoiC+++EIzrV27dhCJRFiyZAkmTJgAsViMc+fOwczMTGdP4G3btjV4705iY2Px9ttvY9u2bejWrRvef/99DBkyROfo3sDAQAQHB+Ojjz7CO++8g19//RXV1dXo2vXuik76xs3GFCGulnhz5Wl0CnCAtalw21OFXAGJWARbM0PIalT4eKvuhwICQKirFX7Yl4TrJVWQSsT4ab/2gQiRnjYQAfjl4DWMjvaGWCTCpawSmBpKdLaDWDnp3tpByBVKzcFYtUKl6f8GCAcfNUoVFEo1VGo1ZDVKGIhFMJA0PPBZfzIDMf72cLE2wbXcMny9KwGdA2uLvm5WiL9ehuPJ+Wjva48r2SU4di0f4zoKV9EPxOdi+pqz+OOlGJ3bpg/cbEwQ4mKJN1efQyd/u/rxIhEL8aJQ4eNt8Y0uI9TVEj/sT8b1EpkQLwdSNNMiPa0hEgG/HErB6A6eQrxklwrxoqMdxMoJ93bL9l3Fi0p1x3gZ1toNP+xPxuGkfLT3scWXu5LQwdcW5sYGtfFSjuPJhWjva4srOaU4llyIcdHeAIDz7z+hWU5WsQwDvj6M3W91rvcAsObMzdoEIc4WeGvNBXTyt4W1qdATrrK6Tm5RqPDJjsRGlxHiYoEfDqQKsWIgxk+H0jTTIj2sIAKw9HAanm3vAbEIuJRdVhsrDXP/n+Pb3NN2yBUqzcVPeSOxolSpoFTjtrGSUyKDRCSCnbkhDiUV4PdjGVj3ktDOJLOoCtdLZAj3sEKNUo3P/02Cg4UR/Gpv511/OhsxfrZwsTLGtbwKfL0nGZ0D7Br8jOasfm6x1+aWaiUkkjr7om1XG11GqFvd3CLSnVsOpmB09F3klokd7mk77npfpLpTbnHHD/tuzS12MDc2QI1ShReXnYSLtTEWDG3Z4LN7ruSilYcV7M2NcCGzBD8dSMbM/g/vtuL/NTdrYwS7mOOtdZfR0U+bWyqqlbW5RVqbW5IaXUaIiwV+PJSO66VyIVYOZ2imRbpbQiQSYemRDDzbzg1iEXA5pxymhhKdPV7/eOHeLk7Xyy3K+rGyaFcy9iUUYMOkNpqR3405kFiA6X9dwR/PRzRYvxqlCuNXnIeLlRE+GtywuLg3Ph+t3CxhZ26IC1ml+OlQOmb29W8wX3PmZm2MYGczvPXXVXT0tYF1be/sCnltbjGtjZedKY0uI8TZHD8eytTGyxHtA44j3S2EfdHRTDzb1vXO8TLu3i4g1d8XqevHy55U7EssxIYJkXeMl7P/p724kV0ix8AfTmPnq21gW/t3dCmnHIGOQlF81t+J6BFoq9mOvQkFaOVmATszQ1zILsNPRzIxs3fjI0mbGzcrIwQ7meGtjUno6GMFaxPhu6yoVgm5xdQAMoUKn+7OaHQZIc5m+PFoDq6XVsNQIsLPR7V3/ES6mUMkEmHZ8RyMau0kxMr1SpgainX2BF7x3L3lbSFWav+vVGv6HAPA4n0Z2J9UjL9eCIWZ0e1HMeeUyoXjFjMpDqeUYMXJG1gzTriIklUsR05ZNcJdzaBQqvH5vkw4mEs1rSXOTNO24Mourcagny/g30mtNHFGRKRPml0RGBAeEPfaa69hxYoVmvf69u2Lbt26wdfXF1ZWVpg3b16jn+/VqxcGDRqE4OBguLm5YcKECfjyyy8BAAYGBtiyZQvefPNNzJ8/HzU1NWjVqlW9QvH9cnR0xKpVq/Dqq68iOzsb3bt3x/LlyzXTJ02aBACaUcQrV67E2LFj8emnnyIgIAB//fVXvQfF/dcMiXLHrPXn8c1obZGkR7ATYvzt0X7+v7A0kWJ6v8YPRLoGOqJPqAs6L9gFZysTjI721hSCDSRirJgYjfc2XsDiHfFQqFQIdrHC/NgH+8Cujh/uQmaRMDKu0wLh9vDrX8QCANaeSMcbK7VP5l13MgNT+wRher9gZBZVosuCXTgw8wm425jicnYJ5m2+iFJZDWzNDDEwwg3/11844PFxMMdnT0dg2uqzyC6ugo2pIV7p0QKdWwi3Fn6xMx4lVTUYtkQ7kv1RjF5+2IZEumLWhkv4ZlSE5r0eQY6I8bND+4/2wNLYANP7Nj6SpWsLe/QJdULnT/fB2coYo9t74qeDwsmXgUSMFS+2w3ubL2HxzkQolGoEu1pg/uAHO0qz48f7kFkkjFDo9Mk+AMD1zwcAANaezMQbq89p5l13KgtTewdgep9AZBZVocun+3BgRje425ighZMFvhgZgSmrzqG0qgZtfWyx5Bnh9+1jb4bPhodh2rrz2njp5ofOLYSRwY6W2tFaMoWqwXv6YEikC2ZtvIIlz2hPersHOiDGzxYdFuyHpbEU0/s0XnDo2sIOvUMc0GXhIThbGuHZ9h74+VAqACFWfn+xNd7ffBWLd10TYsXFHPMGPdhiV6dPDyCzSOjZ3Pkz4aGlOZ/1BSDExhtrLmrmXX86G1N7+WFa7wBkFlWh68JD2D+tE9xtTJBaUInXVp5HQUU1vO1M8eWIMAS7CMXHCrkC09dfQlpBFYylYrTxssZvz0dpioNXcsowf0s8SqsUsDWTYmArZ7zdt/HbfZurIZFumLXhIr55VpszNbnlwz2wNLlTbnEQcssne4Xc0sFTUwg2kIixYnx7vLfpEhbvTKjNLZaYP+QB55YFe7W55eO9AIDriwYCqM0tq85q5hVySwtM7xso7Is+2YcDb3eDu42pkFueicCUlWe1uWWU8L2cSCnE3vg8mEjF8JupvXB+87P7E/Lw2sozqKxWwsXKGC919cPwNo9nS517NSTcGbM3x2PJCO3vr3sLO8T42iD608OwMDbA9F6Nj3rtGmCL3sEO6Pr5EThbGePZtq74ubYQbCAR47dxEZjzTwK+2JMChVKFYGdzzB14byM0G9N54RFkFgu5pcvnRwEA2R8LFwcX7kqGoUSEth9rH5T8aWwQhka6ILNYhm6LjmLfW9FwtzbGV3tTUSpTYPhP2uOcmyOQT6aVYF9CAYylYgS8v08z/eZnDyQW4vU1l7Sx0tkLwyL/920vHrYhrRwx+58kLHlKu3/o3sIWMT7WiP78uBAvPb0b/XxXfxv0DrZD1y/ihH1RWxf8XFsINpCI8duYMMzZmoQv9qZBoVIj2NkMc/s/2GJ658XHkVksjFjv8oXQTiD7w24AgIW7U4V4+eyoZv5PBwdiaISTEC9fxmHflHZwtzaGo4X2fEd+89ijzntf70/DnoRCSEQi9Au1x7wntdtxIKkIr6+7KsSLpRFe6uiOYXrUOgQQHhA3e2sqvh6m3e7u/taI9rZC9JdnYGEkwfQejbcR6uJnhV6BNui25CycLQ0xKsoRvxy/DgAwkIjw67NBmLM9FV/szxLOiZzMMKev9wPdhi5fn9XEStevzwIAsuYKxf+FezNhKBGh3WJtvvhkoC+GtnJAVrEc3b45i32vRMDN2ghphXK8/lciCioV8LYxwuJYfwQ7CRcEyquVeHvzNaQVyWEsFaO1uwWWjwqCgUQYDuxooR3QoI0z/RjkQER0K5Gudgl3/JBI5OPg4HA+Nzf3v9mY9j9KKpUqFQqFuVqtrvdUKJFI5GNnbnj+0gdPMh7ojl5bcRKd/G0f296W9Hj5encSPtuRsFCuUE4XiUTPD4lw+fq7Z8N5bx4BAAZ/c6wkLrV4pFqt3m5jZrh+7uDQocwtdCdpBZUY/PUhnH6n86NeFWoGpqy+iI6+1ng6Sr8KiPTgpRdWYciPZ3CqzshSotvxnHtUqVShwfk1EdHDwu7nRERERERERERERHqMRWAiIiIiIiIiIiIiPXavRWClQqFgAfk/RK1WQ6VSiQEodUxWKlVqxgPdFYlYBIWy6W1o6L+pRqWCUq2urn2prFGqGDykUSPkEgUAqNVQKJSqR7tC1CxIxICCqYTuklgsQg1zC90FsVjE3EJ3Ta1WQ6VGY+fXREQPxb0W7m5UVlaKc3NzH+jK0OPr0qVLMDU1LVCr1TU6Jt+orFaK88rk//P1oubHzFiKsxnFj3o1qJk4nVZcrlSpE2tfJl3IKuXZFQEAFEoVEnMrDAFcA4AKueLC+cwS7ojojhwsjFAuVyC/vPrOM9N/nrmRAc5llT3q1aBmwMHcEOVyJfLLdZ0uEdUXn1sFE6m4sfNrIqKH4p6KwGq1Wm5kZPTPtGnTZAqF4kGvEz1mZDIZ3nrrrSq1Wv2rrulqtVpuZCD+Z96mCzKOwqLbkdUocT6jSLb+dJbiQmbJo14deswdSszHwcR8MYDNtW8dyyuTV66My1Tfy0NNSX+o1Wos2ZuiEAFJarU6BQAUKvXqtSczVcwtdCcnUoogEYmUc7ckyHncQrcjq1HiXFap7K+zNxQXslkIpts7kVYCiRjKef+mynnXG92OrEaFuTtSq6CGzvNrIqKHRXSvJ9IikcjC0tJyi1qtbtuuXbtqExMT0QNeN3oMlJeXq+Li4oylUum2kpKSEWrtbdn1iEQiCwtjgy1qNdpGetlUm0gljAfSUKuBimqF6kxakbFUItpWJlOslhqIf/G1N1O42ZhAIgLjhTQUKrU6Nb8S2SVValmNaohard53c5pIJAoyNZTstjQ2sAx2sVAZiEWMnf+YGqVafSGrVCJXKLPK5coearU66+Y0sVg0XCoR/6rNLYwP0hJyS8XN3PKMhZFkphpoG+lhVW0sFTNWSEOtBiqrlaozGSXGBhLxtnKZYrXUQPSLr52pws3KCGLue6gOpUqtTimoQk6JXC1T1OYWNdpGuJtXmxgwt5CWGmpUVKtUZ7PKjQ3Eom1lcmWj59dERA/DPReBNQsQiXwARAAwfBArRI8dOYA4tVqdfTczMx7oNurFkkgkMgIQA8ABYBGY6lEDyAZwTK1WN7jdRCQU9qIA+ACQ/I/XjR49BYB4AJd0DQlnbqHbaJBbeNxCt8HjFrpbzC3UFE06vyYiepDuuwhMRERERERERERERI+ve30wHBERERERERERERE1AywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9BiLwERERERERERERER6jEVgIiIiIiIiIiIiIj3GIjARERERERERERGRHmMRmIiIiIiIiIiIiEiPsQhMREREREREREREpMdYBCYiIiIiIiIiIiLSYywCExEREREREREREekxFoGJiIiIiIiIiIiI9Nj/AxMInh903u6+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn import tree\n", + "plt.figure(figsize=(25,16))\n", + "tree.plot_tree(dt, filled=True, rounded=True, feature_names = XX.columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, here’s how to extract predictions and mse estimates from the pruned tree." + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tree MSE estimate: 0.5442705453177679\n" + ] + } + ], + "source": [ + "y_pred = dt.predict(x_test)\n", + "mse = mean_squared_error(y_test, y_pred)\n", + "\n", + "print(\"Tree MSE estimate:\", mse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "It’s often said that trees are \"interpretable.\" To some extent, that’s true – we can look at the tree and clearly visualize the mapping from inputs to prediction. This can be important in settings in which conveying how one got to a prediction is important. For example, if a decision tree were to be used for credit scoring, it would be easy to explain to a client how their credit was scored.\n", + "\n", + "Beyond that, however, there are several reasons for not interpreting the obtained decision tree further. First, even though a tree may have used a particular variable for a split, that does not mean that it’s indeed an important variable: if two covariates are highly correlated, the tree may split on one variable but not the other, and there’s no guarantee which variables are relevant in the underlying data-generating process.\n", + "\n", + "Similar to what we did for Lasso above, we can estimate the average value of each covariate per leaf. Although results are noisier here because there are many leaves, we see somewhat similar trends in that houses with higher predictions are also correlated with more bedrooms, bathrooms and room sizes." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas import Series\n", + "from simple_colors import *\n", + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf\n", + "from scipy.stats import norm" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1;31mLOT\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] \\\n", + "Coef. 76491.899559 129102.123280 35058.201371 59815.230609 \n", + "Std.Err. 12405.242699 17921.335635 2134.642203 11159.843199 \n", + "\n", + " leaf[5] leaf[6] leaf[7] leaf[8] leaf[9] \n", + "Coef. 37474.451548 44275.523233 54379.653727 49666.380327 77444.878973 \n", + "Std.Err. 2632.981719 2282.706417 3883.339922 4296.772925 7871.645357 \n", + "\n", + "\u001b[1;31mUNITSF\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", + "Coef. 1253.436921 1919.370259 1564.492235 5085.737805 1368.844174 \n", + "Std.Err. 43.006720 151.630637 12.265223 375.593742 5.763695 \n", + "\n", + " leaf[6] leaf[7] leaf[8] leaf[9] \n", + "Coef. 2087.609012 3608.566364 3138.982620 8380.256000 \n", + "Std.Err. 5.101007 69.986674 14.813386 228.071867 \n", + "\n", + "\u001b[1;31mBUILT\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", + "Coef. 1982.409326 1986.656000 1951.951955 1949.652439 1978.756254 \n", + "Std.Err. 0.975004 1.125603 0.457493 1.686299 0.574931 \n", + "\n", + " leaf[6] leaf[7] leaf[8] leaf[9] \n", + "Coef. 1978.991221 1982.609091 1988.700535 1989.653333 \n", + "Std.Err. 0.464422 0.662736 0.685155 1.091059 \n", + "\n", + "\u001b[1;31mBATHS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.538860 2.000000 0.997174 0.993902 2.028592 2.134197 \n", + "Std.Err. 0.036718 0.027824 0.001152 0.006098 0.004457 0.007777 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 2.000000e+00 3.153743 3.634667 \n", + "Std.Err. 2.545218e-16 0.014613 0.040049 \n", + "\n", + "\u001b[1;31mBEDRMS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 2.430052 3.080000 2.72586 3.085366 2.934954 3.337793 3.620909 \n", + "Std.Err. 0.044477 0.057474 0.01540 0.057637 0.015716 0.014112 0.020111 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 4.056150 4.389333 \n", + "Std.Err. 0.025086 0.040948 \n", + "\n", + "\u001b[1;31mDINING\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.202073 0.608000 0.487989 0.713415 0.469621 0.717391 \n", + "Std.Err. 0.029896 0.050668 0.011054 0.037469 0.013947 0.010268 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.870000 0.921123 1.013333 \n", + "Std.Err. 0.013806 0.014918 0.019791 \n", + "\n", + "\u001b[1;31mMETRO\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 6.367876 6.600000 4.587376 4.658537 5.609721 5.613294 \n", + "Std.Err. 0.131099 0.129515 0.063162 0.226951 0.066153 0.050662 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 5.976364 6.164439 6.402667 \n", + "Std.Err. 0.067004 0.074326 0.091031 \n", + "\n", + "\u001b[1;31mCRACKS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.922280 1.944000 1.922280 1.932927 1.954253 1.948997 \n", + "Std.Err. 0.019322 0.020648 0.005812 0.019593 0.005588 0.004499 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.966364 1.967914 1.978667 \n", + "Std.Err. 0.005438 0.006448 0.007472 \n", + "\n", + "\u001b[1;31mREGION\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 2.766839 2.960000 2.471032 2.493902 2.869192 2.764214 \n", + "Std.Err. 0.045438 0.058365 0.015533 0.051534 0.017560 0.013070 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 2.674545 2.879679 2.826667 \n", + "Std.Err. 0.019998 0.022828 0.033958 \n", + "\n", + "\u001b[1;31mMETRO3\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.891192 2.040000 1.682525 1.646341 2.057898 1.996656 \n", + "Std.Err. 0.022473 0.083008 0.021217 0.059137 0.040916 0.028187 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 2.001818 2.060160 2.176000 \n", + "Std.Err. 0.035992 0.046038 0.073729 \n", + "\n", + "\u001b[1;31mPHONE\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.601036 0.712000 0.672162 0.682927 0.711937 0.682274 \n", + "Std.Err. 0.128542 0.142247 0.035345 0.127639 0.040607 0.032536 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.684545 0.744652 0.562667 \n", + "Std.Err. 0.047985 0.052842 0.095394 \n", + "\n", + "\u001b[1;31mKITCHEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 1.005181 1.008 1.012718 1.006098 1.003574 1.004181 1.001818 \n", + "Std.Err. 0.005181 0.008 0.002433 0.006098 0.001596 0.001320 0.001285 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 1.005348 1.000000e+00 \n", + "Std.Err. 0.002668 1.033549e-16 \n", + "\n", + "\u001b[1;31mMOBILTYP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] \\\n", + "Coef. 0.979275 2.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 \n", + "Std.Err. 0.014617 7.976078e-17 2.169102e-17 3.478375e-17 1.722204e-16 \n", + "\n", + " leaf[6] leaf[7] leaf[8] leaf[9] \n", + "Coef. -1.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00 \n", + "Std.Err. 4.541240e-18 1.272609e-16 9.749025e-17 1.033349e-16 \n", + "\n", + "\u001b[1;31mWINTEROVEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.932642 1.832000 1.943005 1.975610 1.972838 1.973244 \n", + "Std.Err. 0.052497 0.112872 0.013459 0.012082 0.012155 0.009126 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.968182 1.998663 1.946667 \n", + "Std.Err. 0.014886 0.001337 0.034084 \n", + "\n", + "\u001b[1;31mWINTERKESP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.880829 1.776000 1.940650 1.993902 1.964260 1.962375 \n", + "Std.Err. 0.054548 0.114082 0.013496 0.006098 0.012389 0.009356 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.953636 1.994652 1.936000 \n", + "Std.Err. 0.015290 0.002668 0.034452 \n", + "\n", + "\u001b[1;31mWINTERELSP\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 1.725389 1.6560 1.765897 1.817073 1.814868 1.832776 1.826364 \n", + "Std.Err. 0.058875 0.1159 0.015502 0.030281 0.015387 0.011429 0.018003 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 1.822193 1.832000 \n", + "Std.Err. 0.013989 0.037423 \n", + "\n", + "\u001b[1;31mWINTERWOOD\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.948187 1.84000 1.962789 2.000000e+00 1.977841 1.977843 \n", + "Std.Err. 0.051813 0.11268 0.013142 6.956750e-17 0.012014 0.009025 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.973636 1.998663 1.949333 \n", + "Std.Err. 0.014728 0.001337 0.033990 \n", + "\n", + "\u001b[1;31mWINTERNONE\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.243523 1.104000 1.190768 1.182927 1.163688 1.153010 \n", + "Std.Err. 0.058209 0.111195 0.015119 0.030281 0.015059 0.011251 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.145455 1.183155 1.098667 \n", + "Std.Err. 0.017512 0.014152 0.035560 \n", + "\n", + "\u001b[1;31mNEWC\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -8.844560 -8.600000 -8.962317 -9.000000e+00 -8.756969 -8.632107 \n", + "Std.Err. 0.089275 0.175977 0.013301 1.391350e-16 0.041185 0.038497 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. -8.663636 -8.358289 -8.200000 \n", + "Std.Err. 0.054385 0.089662 0.140282 \n", + "\n", + "\u001b[1;31mDISH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.606218 1.224000 1.495525 1.341463 1.105790 1.084448 \n", + "Std.Err. 0.035261 0.037441 0.010854 0.037142 0.008226 0.005687 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.046364 1.010695 1.005333 \n", + "Std.Err. 0.006343 0.003764 0.003766 \n", + "\n", + "\u001b[1;31mWASH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.093264 1.040000 1.053227 1.024390 1.015011 1.007107 \n", + "Std.Err. 0.020987 0.017598 0.004873 0.012082 0.003252 0.001718 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.003636 1.002674 1.002667 \n", + "Std.Err. 0.001816 0.001889 0.002667 \n", + "\n", + "\u001b[1;31mDRY\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.155440 1.040000 1.078662 1.060976 1.026447 1.010452 \n", + "Std.Err. 0.026148 0.017598 0.005844 0.018742 0.004292 0.002080 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.003636 1.002674 1.005333 \n", + "Std.Err. 0.001816 0.001889 0.003766 \n", + "\n", + "\u001b[1;31mNUNIT2\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 4.000000e+00 4.000000e+00 1.163919 1.04878 1.230164 1.076505 \n", + "Std.Err. 1.922963e-16 1.595216e-16 0.011039 0.02084 0.014687 0.006598 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.025455 1.030749 1.008000 \n", + "Std.Err. 0.005701 0.007363 0.005956 \n", + "\n", + "\u001b[1;31mBURNER\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -5.803109 -5.816000 -5.914743 -6.000000e+00 -5.962116 -5.976589 \n", + "Std.Err. 0.087316 0.105576 0.017701 3.478375e-16 0.014319 0.008838 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. -5.98000 -5.989305 -5.981333 \n", + "Std.Err. 0.01156 0.010695 0.018667 \n", + "\n", + "\u001b[1;31mCOOK\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.025907 1.024000 1.010834 1.000000e+00 1.005004 1.002926 \n", + "Std.Err. 0.011465 0.013744 0.002247 3.478375e-17 0.001887 0.001105 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.002727 1.001337 1.002667 \n", + "Std.Err. 0.001573 0.001337 0.002667 \n", + "\n", + "\u001b[1;31mOVEN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -5.891192 -5.888000 -5.931700 -6.000000e+00 -5.979271 -5.979515 \n", + "Std.Err. 0.062492 0.078876 0.015231 3.478375e-16 0.010372 0.007733 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. -5.993636 -5.989305 -6.000000e+00 \n", + "Std.Err. 0.006364 0.010695 2.758533e-16 \n", + "\n", + "\u001b[1;31mREFR\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 1.005181 1.008 1.006123 1.006098 1.002144 1.001672 1.000909 \n", + "Std.Err. 0.005181 0.008 0.001694 0.006098 0.001237 0.000836 0.000909 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 1.004011 1.000000e+00 \n", + "Std.Err. 0.002312 1.033446e-16 \n", + "\n", + "\u001b[1;31mDENS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 0.0 0.144000 0.099859 0.189024 0.092924 0.195652 0.272727 \n", + "Std.Err. 0.0 0.031529 0.006643 0.035210 0.007895 0.008492 0.014095 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 0.328877 0.464000 \n", + "Std.Err. 0.018781 0.032404 \n", + "\n", + "\u001b[1;31mFAMRM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.005181 0.072000 0.115874 0.182927 0.105075 0.287625 \n", + "Std.Err. 0.005181 0.025843 0.007012 0.030281 0.008447 0.009772 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.440909 0.537433 0.752000 \n", + "Std.Err. 0.017569 0.022223 0.040841 \n", + "\n", + "\u001b[1;31mHALFB\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.186528 0.096000 0.451248 0.676829 0.190136 0.408445 \n", + "Std.Err. 0.071847 0.028791 0.011710 0.045717 0.010925 0.010709 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.813636 0.568182 0.91200 \n", + "Std.Err. 0.015878 0.021217 0.03503 \n", + "\n", + "\u001b[1;31mKITCH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.000000e+00 1.008 1.002355 1.006098 1.011437 1.012960 \n", + "Std.Err. 4.807407e-17 0.008 0.001052 0.006098 0.002844 0.002313 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.009091 1.036096 1.058667 \n", + "Std.Err. 0.002863 0.007082 0.012725 \n", + "\n", + "\u001b[1;31mLIVING\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 1.00000 1.072000 1.012718 1.060976 1.017155 1.069816 1.085455 \n", + "Std.Err. 0.01039 0.025843 0.003608 0.020642 0.005965 0.006964 0.010913 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 1.160428 1.200000 \n", + "Std.Err. 0.017986 0.031595 \n", + "\n", + "\u001b[1;31mOTHFN\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 0.015544 0.0 0.069713 0.109756 0.060758 0.127926 0.223636 \n", + "Std.Err. 0.008927 0.0 0.006280 0.028704 0.007494 0.007965 0.015883 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 0.201872 0.384000 \n", + "Std.Err. 0.019956 0.036681 \n", + "\n", + "\u001b[1;31mRECRM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 0.0 0.032000 0.038625 0.091463 0.031451 0.070652 0.125455 \n", + "Std.Err. 0.0 0.015805 0.004236 0.022579 0.004882 0.005372 0.010397 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 0.212567 0.349333 \n", + "Std.Err. 0.015897 0.028163 \n", + "\n", + "\u001b[1;31mCLIMB\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 2.308571e+00 2.308571e+00 2.261089 2.280418 2.253642 2.293378 \n", + "Std.Err. 3.204938e-17 3.988039e-17 0.018633 0.019846 0.016414 0.008611 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 2.304161 2.317617 2.302415 \n", + "Std.Err. 0.004208 0.012362 0.006156 \n", + "\n", + "\u001b[1;31mELEV\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -6.000000e+00 -6.000000e+00 -5.567122 -5.908537 -5.551108 -5.880435 \n", + "Std.Err. 5.127900e-16 2.392823e-16 0.036987 0.064621 0.046704 0.018774 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. -5.960909 -5.959893 -5.981333 \n", + "Std.Err. 0.015944 0.020058 0.018667 \n", + "\n", + "\u001b[1;31mDIRAC\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.469150 1.520207 1.462422 1.425796 1.453864 1.402817 \n", + "Std.Err. 0.022588 0.024104 0.007016 0.029282 0.009189 0.008810 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.303784 1.275952 1.217845 \n", + "Std.Err. 0.016260 0.020886 0.030770 \n", + "\n", + "\u001b[1;31mPORCH\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.155440 1.088000 1.111163 1.036585 1.067191 1.047241 \n", + "Std.Err. 0.026148 0.025441 0.006824 0.014705 0.006696 0.004339 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.042727 1.028075 1.018667 \n", + "Std.Err. 0.006101 0.006044 0.006999 \n", + "\n", + "\u001b[1;31mAIRSYS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 1.398964 1.120000 1.297221 1.243902 1.065046 1.068144 \n", + "Std.Err. 0.035340 0.029182 0.009921 0.033636 0.006596 0.005153 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.041818 1.036096 1.029333 \n", + "Std.Err. 0.006038 0.006825 0.008725 \n", + "\n", + "\u001b[1;31mWELL\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -0.709845 -0.584000 -0.894960 -0.853659 -0.896355 -0.876254 \n", + "Std.Err. 0.050833 0.075506 0.010056 0.043459 0.012176 0.010065 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. -0.855455 -0.879679 -0.837333 \n", + "Std.Err. 0.015858 0.017400 0.028645 \n", + "\n", + "\u001b[1;31mWELDUS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 4.507772 4.176000 4.762600 4.689024 4.802716 4.763378 \n", + "Std.Err. 0.094403 0.144608 0.020549 0.083221 0.022765 0.019461 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 4.699091 4.763369 4.696000 \n", + "Std.Err. 0.031655 0.034293 0.054157 \n", + "\n", + "\u001b[1;31mSTEAM\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -0.129534 0.224000 -0.091851 -0.048780 -0.007148 0.035953 \n", + "Std.Err. 0.098258 0.132404 0.029913 0.109344 0.037755 0.029171 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.035455 0.163102 -0.002667 \n", + "Std.Err. 0.043003 0.053480 0.072981 \n", + "\n", + "\u001b[1;31mOARSYS\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. -1.233161 0.952000 -0.409797 0.024390 1.425304 1.349498 \n", + "Std.Err. 0.280641 0.231922 0.079011 0.268272 0.052730 0.041123 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 1.505455 1.34492 1.354667 \n", + "Std.Err. 0.048562 0.05485 0.070740 \n", + "\n", + "\u001b[1;31mnoise1\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] leaf[7] \\\n", + "Coef. 0.505618 0.508176 0.501445 0.50980 0.508980 0.498352 0.506366 \n", + "Std.Err. 0.019987 0.026851 0.006171 0.02291 0.007757 0.005849 0.008779 \n", + "\n", + " leaf[8] leaf[9] \n", + "Coef. 0.498214 0.489948 \n", + "Std.Err. 0.010782 0.015011 \n", + "\n", + "\u001b[1;31mnoise2\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.479330 0.510887 0.490818 0.506432 0.503823 0.491863 \n", + "Std.Err. 0.021813 0.024629 0.006199 0.022006 0.007677 0.005916 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.519609 0.510273 0.522781 \n", + "Std.Err. 0.008804 0.010675 0.014784 \n", + "\n", + "\u001b[1;31mnoise3\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.531553 0.520926 0.503041 0.513428 0.495849 0.502136 \n", + "Std.Err. 0.020642 0.025942 0.006234 0.024108 0.007680 0.005939 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.497612 0.507676 0.498867 \n", + "Std.Err. 0.008658 0.010623 0.014714 \n", + "\n", + "\u001b[1;31mnoise4\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.523838 0.508204 0.501693 0.490069 0.491062 0.496855 \n", + "Std.Err. 0.020465 0.025079 0.006255 0.023845 0.007588 0.005855 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.512434 0.511926 0.499861 \n", + "Std.Err. 0.008656 0.010537 0.015507 \n", + "\n", + "\u001b[1;31mnoise5\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.478568 0.523951 0.499522 0.507624 0.496674 0.500685 \n", + "Std.Err. 0.021662 0.025191 0.006281 0.022255 0.007758 0.005944 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.503707 0.486443 0.484459 \n", + "Std.Err. 0.008934 0.010450 0.015176 \n", + "\n", + "\u001b[1;31mnoise6\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.476431 0.498303 0.505307 0.499575 0.510473 0.508335 \n", + "Std.Err. 0.020660 0.026290 0.006271 0.022161 0.007732 0.005895 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.506212 0.497468 0.493743 \n", + "Std.Err. 0.008799 0.010308 0.015215 \n", + "\n", + "\u001b[1;31mnoise7\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.466509 0.532502 0.496970 0.518808 0.498091 0.503088 \n", + "Std.Err. 0.020272 0.026065 0.006161 0.023536 0.007586 0.005869 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.513389 0.509192 0.506994 \n", + "Std.Err. 0.008932 0.010350 0.014708 \n", + "\n", + "\u001b[1;31mnoise8\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.467514 0.531026 0.500346 0.504115 0.500933 0.495891 \n", + "Std.Err. 0.019916 0.023795 0.006282 0.022729 0.007797 0.005931 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.491334 0.504812 0.519548 \n", + "Std.Err. 0.008564 0.010536 0.014868 \n", + "\n", + "\u001b[1;31mnoise9\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.468098 0.526925 0.495539 0.529444 0.497031 0.505148 \n", + "Std.Err. 0.021758 0.025539 0.006286 0.022109 0.007718 0.005907 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.494763 0.507972 0.511789 \n", + "Std.Err. 0.008594 0.010442 0.014352 \n", + "\n", + "\u001b[1;31mnoise10\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.478180 0.500685 0.500060 0.472976 0.500191 0.511017 \n", + "Std.Err. 0.020324 0.026903 0.006198 0.020793 0.007517 0.005885 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.500824 0.506995 0.499019 \n", + "Std.Err. 0.008697 0.010502 0.015238 \n", + "\n", + "\u001b[1;31mnoise11\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.489795 0.488485 0.492516 0.509673 0.515484 0.508793 \n", + "Std.Err. 0.020479 0.026809 0.006266 0.022111 0.007814 0.005892 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.502809 0.505733 0.491129 \n", + "Std.Err. 0.008781 0.010552 0.014998 \n", + "\n", + "\u001b[1;31mnoise12\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.496124 0.547064 0.500455 0.471864 0.500168 0.501219 \n", + "Std.Err. 0.019757 0.025711 0.006398 0.020903 0.007672 0.005918 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.500728 0.521672 0.494793 \n", + "Std.Err. 0.008546 0.010593 0.014908 \n", + "\n", + "\u001b[1;31mnoise13\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.494888 0.535293 0.504892 0.479535 0.498929 0.497969 \n", + "Std.Err. 0.020970 0.025177 0.006226 0.022273 0.007703 0.005880 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.484956 0.488564 0.525039 \n", + "Std.Err. 0.008924 0.010471 0.014502 \n", + "\n", + "\u001b[1;31mnoise14\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.502771 0.511858 0.492756 0.485773 0.484064 0.506386 \n", + "Std.Err. 0.020405 0.026618 0.006238 0.023378 0.007688 0.005918 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.491079 0.506982 0.510278 \n", + "Std.Err. 0.008691 0.010477 0.015145 \n", + "\n", + "\u001b[1;31mnoise15\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.472543 0.528618 0.507714 0.515404 0.493721 0.504659 \n", + "Std.Err. 0.020178 0.027276 0.006296 0.022529 0.007811 0.005896 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.502755 0.505887 0.533510 \n", + "Std.Err. 0.008781 0.010675 0.014998 \n", + "\n", + "\u001b[1;31mnoise16\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.507393 0.484206 0.508391 0.476947 0.508548 0.496021 \n", + "Std.Err. 0.020754 0.023525 0.006304 0.024211 0.007776 0.005903 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.515021 0.506695 0.484385 \n", + "Std.Err. 0.008648 0.010293 0.015362 \n", + "\n", + "\u001b[1;31mnoise17\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.489426 0.471092 0.506304 0.494265 0.503826 0.502336 \n", + "Std.Err. 0.019743 0.026462 0.006370 0.021789 0.007648 0.005893 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.491715 0.520289 0.502923 \n", + "Std.Err. 0.008787 0.010738 0.014807 \n", + "\n", + "\u001b[1;31mnoise18\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.517420 0.501618 0.506690 0.514725 0.500758 0.501080 \n", + "Std.Err. 0.020522 0.026708 0.006223 0.022547 0.007592 0.005993 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.500188 0.506352 0.487323 \n", + "Std.Err. 0.008384 0.010230 0.015278 \n", + "\n", + "\u001b[1;31mnoise19\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.467595 0.508217 0.504449 0.509105 0.511728 0.498591 \n", + "Std.Err. 0.021083 0.026840 0.006173 0.022455 0.007697 0.005811 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.500900 0.514904 0.492103 \n", + "Std.Err. 0.008506 0.010683 0.014820 \n", + "\n", + "\u001b[1;31mnoise20\u001b[0m leaf[1] leaf[2] leaf[3] leaf[4] leaf[5] leaf[6] \\\n", + "Coef. 0.490588 0.465721 0.508434 0.535436 0.498242 0.507797 \n", + "Std.Err. 0.020553 0.024379 0.006266 0.022370 0.007577 0.005956 \n", + "\n", + " leaf[7] leaf[8] leaf[9] \n", + "Coef. 0.503339 0.488032 0.496959 \n", + "Std.Err. 0.008697 0.010667 0.015243 \n", + "\n" + ] + } + ], + "source": [ + "y_pred\n", + "num_leaves = len(pd.Series(y_pred).unique())\n", + "\n", + "categ = pd.Categorical(y_pred, categories= np.sort(pd.unique(y_pred)))\n", + "leaf = categ.rename_categories(np.arange(1,len(categ.categories)+1))\n", + "\n", + "data1 = pd.DataFrame(data=x_test, columns= covariates)\n", + "data1[\"leaf\"] = leaf\n", + "\n", + "for var_name in covariates:\n", + " form2 = var_name + \" ~ \" + \"0\" + \"+\" + \"leaf\"\n", + " ols = smf.ols(formula=form2, data=data1).fit(cov_type = 'HC2').summary2().tables[1].iloc[:, 0:2].T\n", + " print(red(var_name, 'bold'),ols, \"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Finally, as we did in the linear model case, we can use the same code for an annotated version of the same information. Again, we ordered the rows in decreasing order based on an estimate of the relative variance \"explained\" by leaf membership: $Var(E[X_i|L_i]) / Var(X_i)$, where $L_i$ represents the leaf.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Average covariate values within leaf')" + ] + }, + "execution_count": 227, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+MAAAJnCAYAAAD80oKqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXgURx/A8e+cJRc3kuDBnQpWpBQKlDqUUoe6u7u7K9W3TimlLrTFrUJxt2IBAoS4Xc5v3z/ucrnLXbBG4ffps0+zuzOzs3PD3s3O7KzSNA0hhBBCCCGEEELUHV19Z0AIIYQQQgghhDjaSGNcCCGEEEIIIYSoY9IYF0IIIYQQQggh6pg0xoUQQgghhBBCiDomjXEhhBBCCCGEEKKOSWNcCCGEEEIIIYSoY9IYF0IIcdRRSn2qlNJ8y+P1nZ+GQMoEAs5fU0plHEK8IQHxMg8yzuMBcT49zCwf6BiXBxxjXm0c4wDHH6yUmquUyjva65YQQoRjqO8MCCHEf6GUGgT8UWVzd03T1tVHfsTRRSmVANxesa5p2uP1lRdRe5RSQ4AhvtWVmqb9WF95aSyUUi2B34Do+s6LEEI0VNIYF0I0dpdXs+2eus2GaGSeAT70/b3zP6STADwWsP74f0hL1L8TA/7eG/D3ECo/58+AH2vgWB8Ds3x/76uB9BqaU6hsiG8BbgYs/Ld/b0IIcUSRxrgQotFSSpmB88LsGqeUul/TNHdd5ykcXz7tmqZ56jsvRzulVIymaWWapm0GNtd3fkTDomnan3V4rJ0c2Q3T5gF//61p2vR6y4kQQjRQ8sy4EKIxGwPE+f7+B9jo+zsdGFkRSCk1MuB5xY1V0kAp9XHA/mcCtkcppe5VSi1WSpUopexKqc1KqVeVUk2qpBH0zKhSqqNS6nulVCFQDsQppdr5jrVcKbVPKeVQSlmUUuuVUq8ppVLD5K21UuobpVSxLw9TlVJdlVLzAo53eZU4SUqpp5RSq5RSZUopq1Jqne8Z1ZhDKWCl1ElKqa+VUrt851+olFqqlLqnSrhYpdQjvnMrVUrZlFLblFL/U0p1+C+fhVKqt1LqC6XUGqVUrlLK6TvGSqXUE1XPqeqzuL5j/q2UsgB/+sKEfT76UI7lewZ3e5VjBz5zPCRgexel1Ie+MrH5Psu/lPeZXnUQn8N1AelOC7N/TsD+a3zbTvF9dhuVUvm+cylWSi1SSt2plDIe6Lj7Kyvfvsxw5+vb10Ip9brv+FZfXVymlLqj6rGVUglKqZcDwtqVUnuUUvOVUi8ppaIOkMdLAvLxfcD2kwK2fx6w/cyA7XMCtgc9M+5bNIJHP1wWECazmvw0VUp9orzPSluVUn8opXpXCRP2mXFV5TlvpVQ3pdRPvs/OopT6TSnVfn/lcbCUUhcopWb48ulQSu1VSk1WSvUME/ZxpdRspdRO32fp8H1GP1Sp6xVl9kRA9EurqydCCHFU0zRNFllkkaVRLsBMQPMtNwEPB6x/HRBOB+wI2NcrYF8EUOTb7gHa+banAGsC4lRdsoA2AekMCdhXBORUCZ8AnLqf9DS8DbuEgDTTgd1hwhUA2wLWLw+I0x7YtZ9jrAGSDrJ8n9hPOiur5PPf/YS1AMP/w2dx/QHKbSlgCEjn8YB9WwF31XwDnwZsezwg7kEfC5h3gLBDfOFGA9b9hPsCUAf4LOJ85agBLiAtYF+zgHO0ALG+7c8fIH8/VjlGdWUSdrtvX2bV8/VtPwEo3M+x5wARAeHnHyCv6Qcon6YBYXMDtj8SsH17wPYXA7Y/HLA98JgZvmV/+coM8++/kPD/BnMrPpsw9fTTgO2XB2zfA5SFSWsdoDuIf8OBac2rck2ctJ/zsgFnVUkrez/hPcAYX7gDldmQA+VbFllkkeVoWaRnXAjRKCnv5EAn+1ZdwNd4f1xWOFsplQigeYeHfxqw75KAv88A4n1/z9c0bavv77eB7r6/VwIXAacB3/m2Ncf77Gg48YAR78RepwC3AXa8jdD7gbG+7UOAc4CKns4M4JqAdJ7B29ACKMF7w2EUsBZoU82xvwBa+P6e60v/LLyNHXzn9Ho1cf2UUqcAjwZsmgtcCJwOPOg7lwrvABW93/uAK/E2QCuG/EYBk5RS0Yf5WawG7vKdywhgKN7HE5b49vfy7QunLd4RE+PxjpZ4q5pwFQ7lWLcQ+pjEiQHLCuUdQTERiPTtfw/vTZnxVJbhJcAV+8uUpmklwLe+VT1wQcDuC6kc6fa1pmmlvr8XALfi/SyG4f33cgne53cBRiml+uzvuIdDKRUBTMF7Awq8/2bOwFvvV/u2DQUe8oVPAQb7tu/ync8wYBzwAt76ru3vmJqm7QU2+FZTlFJdfH8HPgOe4btuAJwUsH32fpLe60vjk4Btv1P5GY8NEycBcAIX4/1ciyvy5dt2KJoCm4Bz8V5PnL7tXfHWz8N1XUBe8vBeW0YAT+Mt6whgYsU11Od14DK8n+UQvP+eHvTtU8BTvr8PVGYr/kO+hRDiyFLfdwNkkUUWWQ5nwfsjsKKnZWrA9r8Ctt8QsD0Db+9NRW+Tzrf9u4Dw43zbEvA28Cu2XwQM8i1DAEfAvk6+OEMI7v05q5p8j8f74z+3yjEqlu984XR4f8RXbL8jII0UgntaL/dt7x6wzYG3wV+R73Or7Is5QPl+ExB+KdX0wgGJBPc8j6mSz/KAfecd6mfh227AO/nTn3hHBQQer2J5JSD84wHbLQT0IgeE+TQgzOP/4VgZgfvCHOfmgP1rAj6PQVQ2fDRg4UHU+cEB4RcFbF8WsH1QwPYovA3epb665CH0XG45iDIJu923LzNg3xDftjMDtuXgbYBVnHNgeezxhY+k8t/CauB4IPIwrgkTAtK+zvdZlvrWV/n+fwkQg7dRq+G9yRU4qiKwbDKqqVOfhjn2kCpxewfse7eauhM2TYJ7sx1As4B9v4f77PZTJoFpzQvYvjRg+4sE18vlgeUYEKcr3huQ2/D2nFetSxoH0fMviyyyyCJL5SITuAkhGqvLAv6eVOXvAb6/L8f7QxhN0zJ9z4YOw9vbdLJSajHenl7wDo+u6PXuiLf3scKX+8lHN7w9V4HswNSqAZVST+IdNrs/FT1RqVQ+Dw/emwwAaJqWp7zPWx9bJW7XgL+NQHUTJhnxnuPy/eQjMK0fteonn+tA8Pwj/gmwfPncFJDPzr7th/JZgHfW6fH7yStUlltVf2madigzVf+XY4UTWI7dCX0NX4VuB0pI07QFSqkteB9F6Ku8z+IrvI1XgE2abwIypZTC+1qpkw6Q7KGcy8EKPOcmeHvow2mqlErSNK1AKfUZ3hEVPfDeXPAopXYCi4BPtIOb/GsO3h5e8N4AWI634b0F78iZnr7tuVROYLtA0zTXQZ/ZwSnVNG1pwHp+wN9Jh5jWRk3T9tRQWoECP6N7qP7tE90AlFI9gIUc+DVliXhvgAghhDgIMkxdCNHoKKUG4G1MVviyYnIgvMPLK/QNGK4K8FHA35fg7S2uGD78paZp1sPITmyYbfs0TdOq5NkI3BmwaRLeYe8n4u2ZqlBxXQ6KH2b9vwqX70CBk4rt79gHnHysGgf1WSilmhPcOH4db4//icDnAdur+z7bW832EDVwrP/iQJ9HhY8D/r6Y4GH+gWXan8qGuBvvTaBheM9lZkC4gzmXwM+/6k38lIOIvz8V530t3mHpX+Edlu7AO+rgAmCaUmrUQaQ1F2/vP3jPs2Lo+wIqbwgMJvgGxRxqXkGV9cDG/qH+e6nJtA5HxedzC5UN8c14691gKt+9XkF+VwohxCGQi6YQojG67MBBwob9Hu/kSuCdif3KgH2BDZl/8TZgKnTSNE1VXYA4TdPCPTcervGaTHCv0vWapk3z9WQmhwmfS+WzpuCdEAvwP2PbOUycDQF/W/FOBlddvueHiR9oXcDfo5VSQd8Xvp5X8JZVYK/5wIAwyUCngH2Bs6cf7GfRMuDvfE3T7tA0baav3AJfnVSdQ7mJcTjHChoxULWcCP5M/g73eVR8JgeZx8+orJuXUPncr4vgGwatAv5eqWna05qmzcHbuxm472AUBvxdMR8BSqmTCd9TGnjOOwHjfuphxXPzHk3TJmmadpGmaT186Qb21l50oExqmlaId34H8J7jON/fC4DFeIdWdyF4foGDbYwHfs5Hwm+nwM/oumo+HzPemyQQXGfe1DTtS03T/iD4OimEEOIQyTB1IUSjopSKJHjyqpfxzpgdqAdwo+/v8UqphzRNc2uaZldKTcL73Goc3ucjwdtY8Q/Z1jStyPd6pIrJuX5TSr2Ed7hrAt4eu5F4J1Hzv7brAPbhfX65ovHyrFLqF7yTaoVM3qVpmkcp9S1wlW/Tk0opB95nrO+hshc5MM4apdQSoA/eH9JzlFJv4p0UqwneyczOwNvreHLV+FV8SOXkVL2B6Uqp/+F9xrYH3rIbpWlaoVLqJyobOG8rpeLx9ujd5csHeG8u/BaQ14P6LPA+n1ohWSlV8Qz0WLw9vTXpcI5VgLfBX3Fz4g7fkHuPpml/4Z3I7Fm8w6UH+D7TL/HeaGmOd7jwGN+2xw+UQU3T9iilfsf7XHZg3ZtaZTh+4Ln0VErdiHe2/msJvkFyMP4N+PsipdQ2vI9iVDe0eSbeOtcSbyOuou7k4H0soQPeiQhXUln3tyqlfsU7RH0P3sdEBgekGVLfqzGbymH7x/r+/4evvi3C2yteMVomD++z5AcjcHj4iUqpM/B+htmapm2pJk5D9hGV5fSKb6LBJYAJ7+c2EDgb79D+TILr09W+V7ol4Z33QAghxOGq74fWZZFFFlkOZcHbQ1YxKVAxAa9HCgiTQPAka6cG7DuW0EmHbg6TRhP2/2ozDd9rjXzhh4TbXiXN56pJZ27A3/MCwlf3arMivA2rivXLA+J0YP+vNgs6xgHK+pn9pLGySj4P9GqzEWHSP9jPYnKYcC68PZ7hJsB6PNz2Kml+GhDm8cM9li/O3+HiBOw/h/2/2iwoDwfxuYwOE//MKmF0BE9mWLGU4e0lDnfu1ZVJHN6Ga9W0dhH8+rIhAXH6s/9Xm1X9zKqbEKxiGXOQZVP19YFZAfuerLLvmzDxA/dnBGzvQvjJ/D480L9/qp+orbrtlwdsn1clrbCf0X7KI2xavvrx5QHK3F8GeG/AOcLsn7ufMgt7frLIIossslQuR8JQKyHE0eWygL+nappmrxpA07QivD8SK1wesG8lwROX2QieAK4iXC7QF7gb+Advw9+Jt9fuH7wN1XMPMe+P+JaK2YhX4x1qHPYVaZqmZePtofoO76RIZXgnZRuEt0FewRIQZzPe3qwn8b5CqAxvL+ZOvA3Kh/C+S/uANE17CG+P8Hd4bwo48ZbDcgLKzJfP3sBjeHs7y/H+cM/E2wN3nKZpgc8pV8RbyUF8FsDVeJ/fzsLbqF2Ed7K32nje93CONR5vr3/Yias0TfsBOA74AO/oChvez2wL3on+rsf7eriDNRXvSIsKe/DOsh14TA/e3udPqRyVMRdvo3H9IRwLzftatdPxTs5nxzsaYCLQj+BHKQLjLMTbgHsV7yMP5XjLczvenvM7CH513gPAz3jrTBnehm8u3tf+na5p2vcHmd0/qHz9FwRPHlf10YyDrj+apm0ALsV7Ls4DBG/wNE3zaJp2MXA+3jKueLtDHt7r0vt4P/NdvvBr8L76bCHeupSNd/b6s+o880IIcQRRmqbVdx6EEEJUQymltCoXaqVUKt5GS8UQ8GM1TTvY4bZCCCGEEKIBkGfGhRCiYZutlPoK7/OceXif932Kyob4Krw9WUIIIYQQohGRnnEhhGjAlFLZQFo1u3OAYZqmra3DLAkhhBBCiBogz4wLIUTD9i7e55bz8D7TWYr3OeungW7SEBdCCCGEaJykZ1wIIYQQQgghhKhj0jMuhBBCCCGEEELUMZnArYYtyvlVhhrUspfWxtZ3Fo4Knw2u7xwI8d9dOFfVdxaOePmlUsZ1oVmCp76zcMRbdPu8+s7CEa+4LLO+s3DEK9n28RFzUTa3uqjO2lXWnZPrpdykZ1wIIYQQQgghhKhj0jMuhBBCCCGEEKJBUerI7zc+8s9QCCGEEEIIIYRoYKRnXAghhBBCCCFEg6KOgn7jI/8MhRBCCCGEEEKIBkZ6xoUQQgghhBBCNCjyzLgQQgghhBBCCCFqnPSMCyGEEEIIIYRoUKRnXAghhBBCCCGEEDVOesaFEEIIIYQQQjQoSqn6zkKtk55xIYQQQgghhBCijknPuBBCCCGEEEKIBubI7zc+8s9QCCGEEEIIIYRoYKQxLoQQQgghhBBC1DEZpi6EEEIIIYQQokGRV5sJIYQQQgghhBCixknPuBBCCCGEEEKIBkV6xoUQQgghhBBCCFHjpGdcCCGEEEIIIUSDoo6CfuMj/wyFEEIIIYQQQogGRnrGj0DffPQLv06ZzdYNmYw45yQeffOOsOGmfjWLZ+94k4hIk3/by188Sq+BPYPC7dy2m3FDbmbomQN54p27azXvjZHb4WDlG6+Rs3wZjtISops3p/uV15De74Sw4Td/+zWbvpqM22Gn+YmDOe62O9GbTGHDikrvvf09kz6fxrq12zjvgmG8//ED1Yad8PrXvPryZGxWO6POGczrb99JRISUcTgFBSXceO0LzJm5lOSUeJ54+hrOv2hESDi73cGjD37Ad9/MwWa1M/aCYbz02q0Yjd6vkY0bMrnz1tdZufxfUpok8PTz13P26MF1fToNjtvhYO1br5K3wnd9aNaCzldcQ2rf8NeHbd99zdavv8Rtt9P0xJPofkvl9WHF80+Rt3IZbpuNiMQk2p1/Ma1OO7MuT6fB8jgdbPvgVYpXL8VVVkJk0xa0uvhaEo8PLefyndvI/HQClm3/4iotpv93fwTt3/zGkxSvXobHbsOYkESz0ReTNvysujqVRkO++2pHwa7vsJVtQ/M40RtiiG0ykOikXiHhnLZ9FO2djtO6F4+7nBY9ngjan7PtExzlWf5nbvWGWNI73Von59DQWXPm47btRfO4UHozpoQemGI7hg3rcZZiy/8Hty0bpfQYYjsQmdTnkNMRh+doeGZcGuNHoJT0ZK64/QL+mbccu82x37Dde3fmg19e3G+Yl+9/jy7HdqjJLB5RNLcbc2oqg197g6jUNLIX/cOipx5n+IefEJ3eNChs9pLFbJr8JYNfeY3I5BQWPvYw6z/7hB7XXFdPuW88mjZL4d4HxzNrxmJs1urr9awZi3nlpS/5dcZrNG2WwkVjH+aZJz7hyWeljMO589bXMJmMbNv9A6tXbmHsqPvp3rM9Xbu1CQr3yotfsnzZRhav/BS328P5ox/ghWc/5+HHrsTlcnHhuQ9x1TVn88u0V/hjwSrOH/0Afy1pQ4eOLevpzBoGze0mskkq/V9+E3NqGjmL/2HZM49x0vufElXl+pCzdDFbpkyi/4uvE5GcwtInHuLfiR/T5arrAWh/4Th63nkfepOJsp07WHjPbcS160BCx071cWoNiuZ2E5GSSren3iIiJY2i5Qv595VHOea1z4hMDS5npTeQPOBk0k89h00vPBiSVvNzxtPuxvvRGU1Ys3aw7rFbiW7TkZh2Us6B5LuvdsQ2OZHE5qNQOgNOWy652z/FaG6KydwsOKDSExXfDV1yX/J3TA6bVmKz08M25I92poSe6IyDUEqP21GENXsaelMS+oiUoHCa5qY8ezqmuM6YU4cACo+r5JDTEWJ/jvzbDUehoWcM4KTT+xOfGPef05r5w3xi46PpfeIxNZCzI5PBbKbrZVcQnd4UpdPRtP8AotKbUvTvvyFhd86YRsZppxOX0QZTbCxdxl3KjunT6iHXjc+ocwZz1qgTSUqO32+4SROncdkVp9O1WxsSE2O576FL+eJzKeNwLBYrP32/gEcev4qYmCgGDOrJ6WcO4KtJM0LC/j71b264+VySkuJo0iSBG24ew8RPfwNg08ad7N2Tz823n49er2fI0OM5YUB3JodJ52hjMJvpdOmVRPmuD2kneK8PxZs3hYTNmjmNVqeeQazv+tDxksvImlFZd2Mz2lT2JCoFCsr37q6rU2nQ9JFmWl5wJZGp3nJO7D2QyNSmWLaGlrO5eSvShp+JuWWbMClBVKs26IwB5QzYsqWcq5LvvtphjExF6Xx9Zb7657IXhIaLSCE6qRfGiCZ1mb0jgt6UiFJ6ABTeMvY4S0PCOUu3oNNHYYrvjtIZUToDelPSIacjDp9Sujpb6ov0jB/l/l2zlZFdLiYuIYbTzhvKpbeej8HgvbBYSsv54MVJTPj2GX7+Un5UHyxbQQFlWVnEZmSE7CvJzKTpgEH+9fh27bAXFmAvLiYifv+NTHFwNqzL5IyzKsu4R8925OwrID+/mOQDNOSPNlv+3YVerwvqve5xTHv+XLAyJKymaWiaFrAOu7NyKS4uC9oeGH79um21ku/GzF5YgCUri9jWoQ3B0h3bSe8/0L8e19Z7fXCUFGOK89bdNW++yq6Zv+Ox24lr36Ha4e5HO0dRAda9WURV0+A+kG0fvELu3N/xOOxEt+kQdri7CCbffTWncPdUygtXomlOjJFNiYw9vNGJxdmzKM6ehSEimbi0YUTGHN6/hyORLW8hzrLNoLnRmZIwRLUICeO256IMMZRnz8Bjz0NnSiQiuV9Qg/xg0hFif6QxfhQ77oTufDn/bdJbprJt404evu4F9Ho9l912PgDvPz+Rsy4+hbTmctf1YHlcLhY/9zStTxlJXKvWIftdVivG6Gj/ujE6xre9XH6Q1BCLxUp8fGUZx8d7y7istFwa41WUWazE+cqnQlxcNKWl1pCwI07tx7tvfcfgIcfjcbt5d8J3AFjL7XTq3JomqQm8/spkbr7tfBbMW8GfC1YxeMhxdXIejYXH5WLF80/RYsRIYsJcH9xWK4boys+j4m9Xebm/Md7j1jvpftNtFG5YR/6qFZU9uMLP43Kx5fUnaTLkVMwtQsv5YLS99i7aXHU7pf+uo2TdCpSU837Jd1/NSmx+JgnNTsdRvgu7JbOyp/wQxKePwBjRBKX0lBevJX/Hl6S1vwFDRNKBIx8FIlP6E5HcD7c9F7d1L/h6uANpLgtu217MacPRm5viLF6Pdd9soluM8feIH0w64vAdDc+MH/lnKKrVPCOdZq3T0el0tO+awVV3XsicqX8B8O/abSz5YxUXXTeqnnPZeGgeD0ueewadwcCxt94eNozBbMZVbvGvOy0W3/aousjiUSE62kxJSWUZV/wdEytlXFVMtJnSgLICKC0tJzbWHBL23gfG0/PYDgzofRXDBt/EmaMGYTQaaJKagNFo4Ktvn2Hab//QrsU5vPnaFMaMHUpzuZHnp3k8rHzhaZTBQPebw0+qqa9yfaj42xAVXHeVXk9S955Y83LZ8cuPtZbnxkjzeNjy5lMog5E2V4cv54Ol9HriuvTEkZ/Lvuk/1kwGj0Dy3Vc7lNIREd0at7OEsvwlhxw/IqoFOn0ESmcgOvFYTFGtsJWGPkJwNFNKhyEyDc1djrNkY+h+nR59ZBqGqBYopccY3x3NbcfjKD6kdITYn3pvjCulHldKaQFLuVJqjVLq2mrCP+EL99R+0gi3zPOFnaeU+raatDOVUi9X2Xa5UmqZUqpUKVWolFqhlHq1Boug4VCKitGmy/9aw96d+xh1/BWc3n0cX77zA/N+/ZtLh99Wv3lsoDRNY9nLL2AvLKD/40+hM4S/ix2XkUHR1q3+9eJtW4lITJKegRrUpVsGa1ZXlvGa1VtJTUuSXvEw2ndsicvlZsvmLP+2Nau20KVr6FBGszmCV9+8nc07vmPtv1+RlBTHccd3RK/39gJ079mO6XPeZOe+X/jpt5fJ3L6HXn261Nm5NGSaprHq1RewFxXS+9Gnq70+xLZuQ8m2yrpbsnULEYlJ/l7xkHTdbizyzLifpmlsfed5nEWFdLyn+nI+5HTdLnlmvBry3Vf7NM2D2xH6zPhhpVUjqRyBNE/QxGwVdKZDHEVQTTri8Kk6/K++1Htj3KcY6O9bzgJmA+8rpS4OE/ZC3/8vCtj2YUD8/sCXQHaVbTceaqaUUg/40p4OjAEuBX4Czj7UtOqSy+XGbnPgcbvxuD3YbQ5cLndIuL9nLyU/pxCAzM27+OTVrxh8aj8ARo8fyXeLP2TinLeYOOctzrnsNAYM780bXz1Zp+fSWKx4/VVKd+5kwDPPoY+IqDZcqxEjyfz9N0oyM3GUlrLxi89pPfLUOsxp4+VyubDZ7HjcHtxuNzabHZfLFRLu4nEj+fyT39iwPpPCwlJefPZzxl0qZRxOdLSZs88ZzNNPfITFYmXhX2v49Ze/uPCSU0LC7tmdy949eWiaxuJ/1vHCs5/z0GNX+vevXb0Vm81OebmNN179iuzsfMZdJuUOsObNVyjbuYM+T+7/+tBi+Eh2TfuV0h3e68PmLz+nxSneMrQXFrJ77mxc1nI0t5ucpYvZM3c2KcceX1en0eBt/+AVrFk76PzA8/stZ03T8DjsaC4nAB6HHY/T+4YGZ3EheX/Owu0r56IVi8j7czbxPaScw5HvvprldpVRXrQGj9uOpnmwlW7BWrSGiJi2IWE1TUPzONE07+87zeNE83i/Ez1uK7bSLf795YWrcVh2EBnbvk7PpyHyuK04fa+O0zQPrvLdOC3b0Uc2DQlrjG6H256Ly7oHTfPgLFmP0keiM8UfUjpC7E9DeWbcpWnaPwHrs5VSA4DReBvWACilegEd8TbWhyml+miatkTTtCwgKyDcWMBeJc3DcTPwvqZpge8++UUp9UR1ERqCT177io9ernzNxbRv53LV3Rdx1kUjuOjEG5n8xzukt0hl6R+reOrW17FarCQ1SeDUsUO53Pe8eGRUJJFRkf40zNGRmCJMJKbIXeyqLPuy2T71Z3RGE1PHjvFvP/6Ou0jp0ZMZV17GKR9/RlRaGul9+9HxggtZcNft/netdr3sinrMfePxwrMTee6pT/3rX305kwceuZxLLz+d3j0vY+nqz2jZKo0RI/txx10XcvqI2/3vGX/oMSnj6rz21h3ceM0LtGk2mqTkOF6fcAddu7Vh1859QeW6bdserr3iWXJzCmnRMpUnn7mOYSP6+NOZPGkGn308FafTzYBBPfj591fk3e5A+b5sdv7qvT7MvOAc//Yet91Fco9jmHf1pQz58HPMqWmk9ulHu/MuYuE9t+Fx2EkfdBIdx/tueCjFjqk/subNV0DzYE5No+sNt5A+4MR6OrOGxZ6Tzb4ZP6GMJpZePdq/ve11dxPX5RhW3j6eY1+fSESTNOy52ay44Xx/mEUXDSeiSTrHv/cNANnTf2Tb+95yNjVJJ+OKW0jqK+VclXz31QZFWcESCndPBTT0xnjim52KOa4zLkcR+za/TVqHmzCYEnA7i8je9Lo/5u51T6M3JtC08x1omofifbNx2fMAHcaIFJJbX4RRXrkFKJylG7HlLwRNQ2eIJiKpL8bo1nhcZViyfiC6xTnoDDHoTPFENhmMLe9vNLcNfUQy5rRhKKVH2086ouYcDc+Mq3Cz4NZpBpR6HLhZ07SUKttnAyWapp0TsO1lvA3kDsC/wLuapt0ZJs2XgbGapmWE2TcPyNM0bWyYfZnAt5qm3e1btwDPa5r2VNWw1VmU86uMAqplL62Nre8sHBU+G1zfORDiv7twbv0NPTta5JdKGdeFZgme+s7CEW/R7fPqOwtHvOKyzPrOwhGvZNvHR8xFObXzXXXWrsrZ+Eq9lFuDud2glDL4ljil1DjgJOCHgP0KuAD4TdO0XcBvwAXq8G6ZqIDj+Zcw4ZYDtyilLlNKJR/GcYQQQgghhBBCiBANZZh6MuCssu1NTdM+D1g/EWgB3OVb/wrvc9yDgXmHeLwxYY4Xzk3Aj8CngKaU2gB8B7ysaZrM0CCEEEIIIYQQteBoGKbeUBrjxcBw398RQC/gSaVUgaZpFc9nXwRYgKm+9alAqW/7vEM83hzgvjDbfw5c0TRttVKqC3AKMBI4GXgEuFApdbymaWWHeFwhhBBCCCGEEKLBNMZdmqYtDVj/SyllBJ5VSr0FlABjgRmASSlVMSvQdGCsUupmTdMOpqe7QmGV4wGglHJU3aZpmh34xbeglLoK7wzrVwFvHMIxhRBCCCGEEEIchKOhZ7whn+F6wAS0A0YAKcA5QGHAMhZIwttzXSc0TfsIKAA619Uxq3rn6U/56v2f6uvwYTnsTi4YeD0FuUX1nZUasfbDD9j83Tf1nY0gboeD6ZePx1ZYWN9ZqRGPPfQBb7/RsMrYbndwXPfx5OQcGWUMUs51YcNH77Pt+6/rOxtB3A4Hc68ch/0IuV7s+OI99k5tWGXscTpYccslOIuPjDI+kNr6XizeupW5txzy22cbreLsmZTmLazvbATRPC6y/30Lt+vIHPBpL1iKo3hdnR/Xlr8YR8nGOj+uaFwacmO8u+//u/AORS8EhoZZcgh+53iNUUqlhtnWBIgH9tXGMQ+kMK+Y37+Zw+iA9yYvWbCSCwZez0kZ53LjOQ+wd1dOtfGLC0u57/KnGZJxLqN7XcH07+b5923ftJPLT7mdER0vYETHC7h57ENs37TTv//2ix5jaJux/mVQi9FcctJNAJgijJx50XAmTvi25k+6jtmLitgxYzptz6x8nXzO8mVMv3w8P55+CgvuvA3Lvuxq4ztKSlj46EP8eMZIfr/ofHbOnunfl79+HX/ccyc/jz6TX8aczT9PPIo1P9+/3+1wsPy1V5h67mh+Hn0mfz10P9bcXAD0JhMZp57Gv199GXLMxiY3t4gvv5jOlddWlvHcOcs4rvt4msSdwmnDb2PnjurLuKCghAvHPkRq/Ei6tDufryfPDNq/v7Tmz1vOacNvo1ny6XRtf0FQvIgIE5defhqvvdT4yxjqt5wBVi7/l1OG3kJawqm0aT6at9/0Xh+OpHK2FxWRNWs6rc8Y5d+Wt2IZc68cx29njWDhPbdRfoDrxZLHH+L3s05h9rjz2D0nuIwPJi2P08ncK8cx6+Jz/dv0JhMtTz2drV9PqoGzrF/O4kJy508ndURlGRevXsqKWy5h0UXDWffordhzqi9jZ2kJG194kEUXj2DZdWPJ/SO4jPeXlsfpYNv7L7P0yrNZfNnpbHz2Puz53muyzmgiddjp7P6h8ZfxgdTm92J8u3YYY2LY8/dftXoODYHbZcFSuIqYpN7+bbaybWT/+xa71z5N7rZPcDmKqo3vcZWTt2Myu9c+zd6Nr1JetNq/T/O4yN8xhb0bXyNrzWPYyrYHxS3eN5esNU+we90z/sXlKABA6QxEJx5Hae6fNXvCDYDHbcNZthVjbCf/Npd1D5as7ynN/Jzyvb/jcVZ/E0Jz27Hum01p5kTKdn6Ns2xr2HD2whWUbv8El3WPf5spvjuOolX+d8GLw6Grw6V+NJTGuEEpdYJvGayUugN4GPgJKML7vvEpmqbNq7oAU4BRSqmoWsjXGqXUB0qpsb58jQdmAeXAZ7VwvAP6dcos+g/rTaQ5AoCi/GLuv/JZrr1vHDM2TqbLsR14+NoXqo3/8v3vYjAa+W3dFzz+zt28eN87bNu4A4CU9CSe/fABZmz6imkbvuTEkf14+LoX/XFfn/wEc7d/61969OnMyWcP8u8fOWYIv309B4f9UJ4YaHgyp/9Oer9+6CO8ZWwvLmLh44/Q7YorOevHX0jo1JnFT1X/qvkVb76GzmjkzG9/oM+DD7PijdcoyfR+KTpLS2lz5lmcNmkKp335NYaoKJa99Lw/7pbvv6Vg/TqG/+9jzvj6O0wxMaycUPk0RMthw9kxYzpuR8gTFY3KpM9/Z+Sp/TD76nFeXhGXnPcIjzx+JbtyfuH4Xp257OLqy/jOW1/DZDKybfcPfPTZw9x+82usX7f9oNKKjjJz6eWn8/Tz14dN+/wLhzNp4nTs9sZdxlC/5ZyXV8ToM+/hqmvOZue+n1m98UuGjaj8AXqklHPWjN9J7XuC/3rhKC5i6RMP0+nyqxj53VTiO3Ri+TOPVxt/7YTX0BkNjPj6R467/xHWvPkqpb7rxcGmtfWbyUQkJIRsbz50OLtmNv7rRc7c30k8vrKMnSVFbHrpYVpddDV9PvuV6Had+PfVx6qNv/1/r6IzGOn90U90uP1Rtn/wCuU7tx9UWnt//YbSTWvp+eqn9P7fD+ijY8j86HX//pQTR5A7bxoeZ+Mu4wOpze9FgFbDRrB96i+1fh71rbxwBebYDiidEfA2zvN3fEVc2sk063ofRnMzCnZWP/qgcM+vKKWnaZd7SGp5LoW7p+K0VXbAmKJbkdRyDDpDTNj4UQndad7tIf9iMCX595kTelBeuArN46qhs20YXKWbMZhboHTeJ3M9bhvWfXMwJR5HTKuL0UWkYM2dV218W/5CUDpiWl1IZOpJ2PIW4nYEj4bxOEtwWTJRenPQdp0hCp0xAVf5rho/L3HkaCiN8XhgoW+ZBdwIvAeMB84EYoGJ1cT9AogBzqqFfD0JZABv4n1e/SlgHdBX07Tt+4lXaxbOXsZxA3r41+f9upC2nVox7OxBRESauPrui9myfjuZm0P/4VstNub++jfX3T+OqGgzx/brxokj+/H7N3MBiI2PoVmrNJRSaBro9TqyMveGzceenftY9c96Ths71L8ttVkKsfHRrF3WuIfk7Fu8iCY9j/Wv7/5jAXGtM2hx0lD0pgi6Xno5RVu3ULJzR0hcl9XK7j8W0PXyqzCYo0jp0ZNm/QewY+YMANL7nUCLk4ZijI7GEBlJu1FjyF+7xh/fkr2XtN59iExKQm+KoMXQYZRkZvr3RzVJxRgbQ8GG9bV2/nVhxrRFDBp8rH/95x8W0KVrBmPGDiUyMoIHH72cNau3sGljaBlbLFZ++n4Bjzx+FTExUQwY1JPTzxzAV5NmHFRavft24aJxI2nTtlnYvDVvkUpiYgyLFzXuMob6LecJr3/N8BF9uODiEUREmIiNjaJzlwx/+kdKOecs+YfkHsf61/f+uYDYjAyaDfZeLzqOv4KSbVsoq+Z6sffP+XS67GoM5iiSuvckrf9AsmZPP+i0yvfuYffsGbS/cFxI+uYmqRhjYija2LjLuGjFIuK6HutfL/hnAeaWbUgeMBSdKYKWF1yJZccWrFmhZey2WSlYNJ+WF12F3hxFXJeeJPYeSO786QeVln3fXhKO7YspIQmdKYKUQcMo31X59R+RnIohOpbSf+t+CGxdqs3vRYAmxxxLzopljf7G0YHYSrdgis7wr1tLNmCMTCUqvhtKZyQubSgOWzZOW25IXI/HgbVkA3FpJ6PTRxAR3RpzXCfKi1YB3t7t2JT+RES3Rh3Gz3uDMR6dPhJHedZhn19D5LJmoTenV65bdqAzJWCMboPSGYhIOBaPowB3mBEJmseJy7KDiMTjUTojhsg0DFGtcFXpHbfl/0NEUm9Q+pA09OZ0aYz/B0rp6mypL/XeGNc07XFN01TAYtI0rYOmafdpmlaqadq3vu1/VxN/sW//lIBtd2uallFN+CGapo2tZl+Gpml3B6y/rWnaKZqmNdM0LdK3/2JN0+qttbl1Yyat2zX3r2/btIP23dr4183RkTRvnc62gOHlFXZu241er6NVQPwO3dqwbVPwl+fwDhdwUqtzeOXB97ns1vPC5uP3b+ZwzAldadY6PWh7RoeWbF5XL/cpakzx9m3EtGzpXy/JzCS+XTv/usFsJqZZc0oDGskVyrJ2oXQ6YgPix7drH9QDEChvzSriMio/vzannUH+urVY8/Jw2Wzsmj2T9L79guLEtWpN8dYth3t6DcK6tdvo0LGyjDasz6R7z8oyjo4206ZdczaszwyJu+XfXej1uqD4PY5pz4b12w85rep06tyaNasadxlD/Zbz4kXrSUyKY9iJN5LRbBTnjb6fXTuDn+45Esq5NDP4elG6Yztxbdv71w1mM9FNm1O6I/QaYNntvV7EtKiMH9e2nf/acjBprX3nDTpdcS06X49lVbGtWlPSyK8X5Tu3Ym7eqnJ913aiW1fWPX2kmci05kGN5Aq2PbtAp8PcrDJ+dEZ7rL6wB0orddiZlG5cg6MgD7fdRu6CmSQcd0LQMcwtWlOeGX7o6pGitr8XzU2aoDMYKNt1ZDdanLZ9GCNS/OsuWw7GyDT/uk5nwmBKwmkPbYy77PmACopvjEwP6hk/EGvJJnavf57sfydQlr84ZL8hogkOW/WPGzRGHkchOmNc5bqzEH3AiAClM6IzxOJxFoXGdZaAUuiM8f5t+ojEoIa707IdpXQYolqGxAfQGePx+B4HECKchjKbujhIpcUWomIqh8FYLTYSkuODwkTHRVNeZg2Ja7VYiY4NHs0fHRtFuSU47KzNU7BabPz69Wyatgh5bB6A37+ew+V3XBCyPSrGTFmJ5aDPpyFylpVhiKosJ7fViqnKEFBjdDTO8vKQuC6rFWN0TEhYlzX08yjeupUNEz9jwJPP+LfFtGiJOTWV3y44F6XTE9e2DYNvuT0oniEqCmdZ455kpbiojJiAumgps5LSJCEoTHxcNGWloWVcZrESFx9cxnFx0ZSWWg85rerExERRXNy4yxjqt5z37M5l1YrN/Pz7y3Tr0ZaH73+PK8Y9yawFb/vDHwnl7Cwrw2De//XCUM01INz1whAdg8taflBp7f1zAZrbTdNBg8lbtSJs/vTmKJyWxl3GbksZ+siAMrZZMcYlBIUxREXjtobWY7fNiiEquIz1UdG4beUHlVZks5aYUtJYds05oNMT1botba6+Izg9cxQuS+nhnl6jUBffiwZzFI5GXlcPxOO2oXSmynWPA70hOiiMTh+B5rGHxNU8DnT6yKBtSh+Bx3Nwowmi4rsRk9QLnSEGR3kW+TunoNObiUqoHG2pdCY0t+1QTqnB0zwOUMbKDR4Xqko5ojOBJ/QRS01zBn1eACgT+F7gpHmc2AuWEZU+strjK53RmwdxWGQ2ddHgxMXHBDW0zdGRWMqCv/zKS8uDGuyVYc1YqjTSLWXlREWHCxvJmMtO44lbXg2ZIX3lonXk5xRy8lkDQ+KVl1mJiYsO2d6YmGJjcQX8oNCbzbjKg28wOMstGKNCpykwhAtrKcdgDi7jst1Z/PnAvRxz0y2k9DzGv33FG6/icTg464dfGPXrNJoPGsyfD9wbFNdVXo4xJvzzYI1FQmJsUAMwOsZMSZWbOCUllqCGZIWYaDOlVcKWlpYTG2s+5LSqU1ZWTnx84y5jqN9yjoyM4KxRg+jVpwuRkRE88Mjl/LNwbVDj+0goZ2NMrL/xDL7rhSX4muwqt4RcA8B7vXBWuV54w0YdMC2X1cqGD9+l20237Td/bmt5SEOosdFHx/obz+DtvXZbq5SbtRy9ObQe6yPNuKuUsdta7m/cHyit7R+8gsfpoPenv9Lvyxkk9xvMxmfuDknPEB17+CfYCNTF96LLWo6pkdfVA9HpzUENM53OhMcd3PD2uO0oXehIF29DOTis5rajq9pYrIYxMhW9MQ6ldEREtyIm+QSsVWYY1zyO0IZqI6d0Ef7GMwA6A1rVhrfHATojVSkVpiGtOf2Ne3vhCowx7dEZq//3r3nCNOiFCCCN8UamXdcMdm7d7V9v26l10LBwq8VG1o5s2nZqFRK3VdvmuF1udm6rjL9l3Xbadmod9lgej4bdaic3Oz9o+29TZjPkjP5hG/GZm3fRIWDYfGMU17YdZVmVz0zFZWRQvLVyCKLLasWyZw+xGRkhcWNatMTjdlMaEL9425agoeiWfdn8cc9ddBl/Ka1HBN9NLd66ldYjT8MUF4feZKLdOWMo3LgBe3GRP0zJzh3Et2tPY9a9Rzu2bK4soy5dM1i7urKMLRYr27ftoUvXjJC47Tu2xOVyB8Vfs2oLXbq2OeS0qrNp4w56HNO4yxjqt5y792iLUsq/v+JvTdP8246EcvZeLyqH1sa2bkPJtsph4S6rFcvePcS2Dr0uRjdvieZ2U7a7Mn7Jtq3+a8v+0rLsycK6L5uFd97CzAtGs+zJh7EV5DPzgtGUZ1fO9VG6cwdxjfx6Ed26HdY9lWUU1bIN5ZmV5eK2WbFn7yaqZWgZRzZrieZxB8W3ZG7B7At7oLQsmVtIHXoaxtg4dEYT6aefS9nmDThLivxxrFk7iMqoHLJ9JKrt70VrXh4epytoKPyRyBiZ5htu7mWITMUZMCzc43HgdhRijGgSEtcQkYyGB2dAfKdtH8bI8CMYD0iBVmWTy56LKTI9bPDGSmdK9A43r1g3JuIOGDaueZx4XKXojAmhcY1xoGl4nMX+bW5HAXqTN6zbthdnyXrKdn5F2c6v0FwWrDlzsQfMcu9xFqMLGBYvDo1CV2dLfZHGeCMzYHhvVixc618/6fT+bNu4gzlT/8Juc/DRq5Np3yWDjA6hX2jm6EiGnN6f/70wCavFxqrF61kwbRGnneedhG3R/BVsWrMVt9uNpbScNx79kNj4mKC0bFY7c375izMuGB6Sfs7ePEqKyujeq95ewV4j0vv2I3f1Sv9680GDKc7czu4F83E77GyY+BnxbdsR1yr0JobBbKb5oMGs//QjXFYreWvXsOfvv2g94hQArLm5/HHXHbQdNZq2Z40KiZ/YqRM7Zk7HWVaGx+Vi208/EpmcQkR8gj++s6SUpC5da+Xc68rIU/vxx4KV/vWzRg9m/brt/Pj9fGw2O88//Rnde7SjU+fQMo6ONnP2OYN5+omPsFisLPxrDb/+8hcXXnLKQaXl8Xiw2ew4nS40TcNms+NwVN4l37M7l8KCUvr2a9xlDPVbzuMuP51ffvqD1Ss343S6eOGZz+k/sAcJCd4ehCOlnFP7nEDB6lX+9fSBgynN3M7eP+bhdtjZPOlT4tq0I6aa60XTgYP597OPcVmtFKxbw76//6TFsJEHTCs2ow3DJn3Lie9+xInvfkTPO+4lIiGRE9/9CHMT749za14uztJSEjo37jJOOP4EStat9K8n9TuR8l3byV84D4/DTtY3nxLVuh3mFqFlrI80k9RvMLu++gi3zUrJxtUULvmTJieNPKi0Ytp3JnfedFwW7zU5e9oPGJNS/EPb7fm5uMpKiO3YrdbLoT7V5vciQO6qFTQ57jj0piO7BzEytgN2S6Z/3RzXBacth/Li9WgeJyX75mGMTMMYGdoY1+lMmOO6ULJvDh6PA7tlJ9aSjUQlVI6u0zyuyl5fzY3mcfpvgFpLNuJxW9E0DUd5FmV5izDHVf5ecztL8LitmKJa1M7J1xNDVAvcATc8DNGt8TgKcVoy0TwuHEUr0ZmS/A3sQEpnxBDdGnvhCu9kbrZ9uCw7McR4b75FpY8kqvloopqdTVSzs1F6M5EpAzDFdfGn4bZmYzAfWWUqapYK7KUQ/92inF9rtUCL8osZP+xWvln4gf/1Zovnr+SVB98jOyuHrsd35JE37qBZK++EIJ++/jUrF63j9cneV44UF5byzO1vsHj+CuKT4rjxocsYee4QAGb//CcfvPAFOXvyiDCb6HJsB2586PKgnu4Z38/nnWc+5YelHwf1egF88fZ35O0r4PYnr6nNIuCltbU7HNBeXMTsa69m5OeT/K9x2bdsKSvfeoPyfdkkdelK73vvJzq9KQAbJ00kb81qBj3/EuB9n+rSl14gZ/lSTHFxdL/6WloNGwHA+s8/ZcNnn6CPDB5VMPrXab5jF7Pq7TfJWbYUj9NFXJs29LzhJpI6ey/sm6ZMxpafzzE33lyrZQDw2eDaSzsvr4gBva9m1YZJ/tduzZ29lDtve4NdO7Lp3bcr7390P60zvGX80vMT+fvP1fww1VvGBQUl3HjNC8yZtZSk5DiefOZazr9ohD/9/aW1YP4KTh9+e1B+Bg0+lmmzva+Qe/2VyWTvzef5l2u/jGtbfZYzwP/e+5EXn5uItdxG/4E9eO2tO2nR0ttQrKtyvnCuOnCg/8BRXMSCG65i6Cdf+q8XucuXsnbC61hzskno3JVj736AKN/1YvPkiRSsWU2/ZyuvF6teeZ685UsxxsXR5arraH5yZRnvL61AeatWsPKFpxn+5Xf+bVu/noytIJ9u19duGeeX1m4ZO0uKWH3XlRw7YbK/jItWLWX7h69hz8smtkNX2t38IJGp3nLJ+u5zSjespsvDL3vjl5aw9e3nKF69FENsHK3GXU+TEyvLeH9pOUuLyfzoDYpWLUFzuYhq1YbWl99MbAfvDY7dP36JszCfjCtuqdUyAGiW4Kn1Y1SnNr8XAf568D7anHk2zQaEPv5WlxbdPq9W03e7LORsfo/0Trf6X29mK9tK0Z7fcDmKMEW1IKnFaAymRABKchZgt+ygSZvxgPc94wW7f8JeuhWdIYr49OFEJfT0p79342u4q0xElt7pdgymRPJ3foO9bCua5kZvjCM6qQ+xKZWTEZbm/onbWUZCs1NrtQyKyzJrNf2qPG4b5bt/IrrFuf7Xm7mse7Dn/4PHVYY+ogmRKYP8Q83tRatw2/YRle69WaS57djy/sRl3YPSRRCR1AtjTPiRMGW7viEyZSAGs/dtLR5XOeV7fiG65VhUmJnWa0vJto9r96Jch1r0eKLOGqpZax6rl3KTxngNq+3GOMC7z3xGYkoCF14X2rNaXxx2J+NPvoV3f3yepCqTOtW02m6MA6z98AMiEhPpcG742eTrg9vhYNa1V3HSa28SmZhY68erzcY4wOMPf0CTJoncdFvDKWO73cEJva5i+pw3SU2t/TKuC0d7Odd2Yxxg48cfYEpIoO2Y82v9WAfL7XCw4PorGfDKW0TU8vWithvjADsnvY8xPpGmZzacMvY4Hay68wq6Pz0BY3ztXy/qszEOtfe9WLxtK8tffZmhE96t0XQPR203xgGKs2ehM0QTm9K/1o91sDSPi31b3qVJ2yvQV/OO8ppS141xAHvBMpQ+ElN83Y5gseUvRmeMDeoprwvSGD880hg/QtRFY/xoVxeNcVH7jXEh6kJdNMaPdnXRGBf13xg/GtRFY/xoVx+N8aPNkdQYb9nzyTprV+1a/Wi9lJs8My6EEEIIIYQQQtQxaYwLIYQQQgghhBB1zFDfGRBCCCGEEEIIIQIpdeT3Gx/5ZyiEEEIIIYQQQjQw0jMuhBBCCCGEEKJBUUdBv/GRf4ZCCCGEEEIIIUQDIz3jQgghhBBCCCEaFHlmXAghhBBCCCGEEDVOesaFEEIIIYQQQjQo0jMuhBBCCCGEEEKIGic940IIIYQQQgghGhSZTV0IIYQQQgghhBA1TnrGhRBCCCGEEEI0LPLMuBBCCCGEEEIIIWqa9IwLIYQQQgghhGhQZDZ1IYQQQgghhBBC1DjpGRdCCCGEEEII0aAopeo7C7VOesaFEEIIIYQQQog6Jo1xIYQQQgghhBCijskwdSGEEEIIIYQQDYo6CvqNj/wzFEIIIYQQQgghGhjpGa9hx6Wk1XcWjngnpRfUdxaOCqVOW31n4Yg3ZVtkfWfhiPfgMc76zsIR795/4us7C0eFZb8U1ncWjng6JT+La5/0A4qDJ682E0IIIYQQQgghRI2TW4BCCCGEEEIIIRoWebWZEEIIIYQQQgghapr0jAshhBBCCCGEaFiOgm7jo+AUhRBCCCGEEEKIhkV6xoUQQgghhBBCNCzyzLgQQgghhBBCCCFqmvSMCyGEEEIIIYRoWKRnXAghhBBCCCGEEDVNesaFEEIIIYQQQjQsR0G38VFwikIIIYQQQgghRMMiPeNCCCGEEEIIIRoUTZ4ZF0IIIYQQQgghRE2TxrgQQgghhBBCCFHHZJi6EEIIIYQQQoiG5cgfpS4940IIIYQQQgghRF2TnnEhhBBCCCGEEA2L7sjvGpeecSGEEEIIIYQQoo5Jz7gQQgghhBBCiIZFXm0mhBBCCCGEEEKImiY940cYu93BrTe9wJzZiykoKKFd+xY8+fSNnHrawP3GGzn8BubNXYrFvhCDwVstLh//CHPnLMFisZGWnsxdd4/nyqtH18FZNHyf3/cC//6zErvVRlxKIsOuPI8BY08LG3buZ98z66OvcdrtHDNiEOc/egtGkwmA/N3ZfPPUBLav2oDBaOTYUwYx5v4b0Bv0dXk6DZLd7uSB295jwdxVFBWW0qZtU+5/YjzDRvYKCXvvLe/w3Vfz/esupwujycCWnCkA3HTlq/w5dzXl5TZS0xK58Y5zuOSKU+rsXBqyife9wOZFlXX55CvOo381dXne598z21eXew731mWDry5nb93Jd89MYNf6zcQkxnP2XdfQc/j+rztHA4fdycv3vcOSP1ZSWlhG8zZNuf7BS+k/rHfYsO8+/Smzf/oDu83O8HNO4o6nr8Vg9F6TH7/xZZb9sQpruY3k1EQuuelczh43sq5PqcHa9OqTFK1ehsdmw5iYRItzLib9lLNCwuUumMXOyR/jKCpAZzSSePwJtL32dgxR0UHhrHt2sfzWy0kZcBKd7ny0rk6jQcud9hq2navxuGzooxKJ730Osd1HhA3rLM6mYN6H2LLWovRGYroNI+nEy9FcTvLnvod152o8tlKMCU1JGDCOqDah1/ajmdOex95/3yIqvhsprc4PG6Yk9y9KchegeZxExXcjqfkolK7yp72laDXF++bgdhShN8aS1PJcIqMz6ugMGj6PsxjL7h8wRGVgTh0Sst9ZthV70Qo0VzlK6dFHtSAyuT9K5/3eczuKsOf/jdueh9JHEpHUF6OUb8068jvGpTF+pHG53LRomcbMue/TqlU6v//2F5dc+CDLVk0mI6NZ2DiTJ/2Oy+UO2X7v/Zfz/oePEBFhYuPGTE45+TqOPa4Tx/fqUtun0eCNuOYCLnrqDowmE/u27eTNy++lRZf2tOrWISjchj+XMuujKdz88QvEN0nmw9ue5PcJEzn7zqsA+OapCcQkJfD0vMlYS8p4+5oH+POrXzhp3Oh6OKuGxe1y06xFCj/MeIbmLZswe9oyrhv/InOXvEnL1mlBYV9860ZefOtG//pt176BLmBo0613j+XVd28hIsLI5k1ZnDvyIbof05Zjjm9fZ+fTUA331WWDry5PuMJbl1tWrct/LWXWh1O4yVeXP7rtSX5/eyJn3XEVbpebj259nAHnn8EN/3uOLUvX8OHNj3J3+3dIzWhRT2fWMLhdblKbp/DOD8+T1qIJC2ct5ZFrXmDivAk0bRVcjye+9Q0bV23mi/lv43Z7uHf8k3z62hSuvvcSAC699TwefO02TBFGMjfv4uZzHqBjj3Z0PkbqMUCLsePpcMv96IwmyrN2sOahW4lp25GY9p2CwsV16UHPF97BGJeA21rOlndeZscX/6PdtbcHhdv6/mvEduhch2fQ8MX3OZeU4TejDEYcBVlkf/swpiZtiEgLroOa28m+7x8j9pjTaXL63aB0uAr3ePdpbvQxKaSPfRpDXBOs25eR+9tLNBv3Bsb4tHCHPSoV7v6FCHPzavdbSzdTkjuf1LZXYTDEkbtjEsX7ZpPQdKRv/xaK9k4npdUFmKJa4HaV1lXWGw1b3t/oTSnV7tdHphHV9Ex0+kg0jxNb3l/YC5cRmdwfTfNg3TcTU1xnzOmn4rZlY903E70pEZ0xvg7PQjR2Mkz9CBMdbeaRx64lI6MZOp2OM848kYw2zVixbGPY8MXFZTz91Ic8+/wtIfu6dmtHRIT37p9SoJRi29asWs1/Y9G0fYa/dxulUEqRt2tPSLjFP83khDEjado+g6j4WEZefzGLfpzp35+/O5vjTh2MMcJEXJMkugzqzd4tO+rqNBq0qOhI7n74Ilq2TkOn0zHi9D60ykhj1Yqt+41XbrHx649/c964k/3bOnVtRUSEEaisyzu2Z9dq/huLpu0z/L3b+6vLS8LU5cW+upyzfRfFOfkMuXQMOr2ejv2Opc2x3Vj6y+y6PJUGyRwdydX3XELTVt56PPCUvjRtlcbG1VtCwv41YzHnXX02cYmxJKbEc97VZzF1cuX1om3n1pj89dj7We3O3Ftn59LQRbdqg87oq8soUGDN3h0SLqJJGsa4hMoNOh22KuFyF8zCEB1DfE/prQ1kSm6FMvjqoO8/V3HotbRs/Rz00UnEHz8KnTESncGEqUkGADpjJIn9L8IYn4ZSOqLa9sEQn4YjZ//X9qOJpWg1On0kETHtqg9TuJyYxN6YItPQGczEpw6lrHC5f3/xvtnEpw0lIroVSukwGOMxSCPRz1m2FaWPQG8O31EFoDPEoNNHVm5QCo+zBACPswjNXY4xrru3fM3N0Eek4iwLvbaL/0Cn6m6pJ9IzfoTbty+fzf/upEu3tmH3P/LQ21x7/bmkpSeH3X/LTc8z8bOpWK12jj2uE6eeLsNOK3z95Fss+mkmTpudFl3a0+3EviFh9m7ZQY+T+/vXm3dqS2l+IZaiEqIT4jhp3GiW/z6PDn16Ul5SxoY/lnD6LZfV5Wk0Grn7iti2eQ+durTab7ipP/5Ncko8/Qd1C9p+/23vMeWL2disDrof0zbscPej1TdPvcXigLrcdXBoXc7esoPuQyvrcrOAuqxpWkh4TdPYuzmzNrPdKBXkFLJr227adAqtx5qmBZWlpmnk7MmjrMRCTJx3CPVL973Db1NmY7fa6dijHf2Hhw53P5ptee8Vcmb/jsdhJ7ptB5J6nRA2XPH61ax/6l7c5RZ0EZF0eeAZ/z5XuYUdkz+ix5Ovkz3r17rKeqORP+c9ytbPQXM5MDVpizkj9Fpq3/svhrhU9v3wJPZ9mzEmtyJ56DWYUjJCwrotRTgL92BM3v+1/Wjhcdsozp5FatsrKStYVm04py0Hc1zlSEWjOR2Pqwy3qxydPhKHdTduV2f2bHwFTXNhjutCQtPT0OmMdXEaDZrmcWAvXE5U09Nwlv6737AuWzbW7BmgOUEZMKcO2294j6OwJrMqjgLSGD+COZ0uLhv/COMuPYPOnTNC9i9bup6Ff6/i1dfvIisrJ2wab719P6+/eQ//LFzDgvnL/D3lAs5/9BbGPnQj21duYMuS1RhMoV9wdquNyJjK5xDNvr9tlnKiE+Jo37snf3/7O/f2OweP20PfUSPoOWxAnZ1DY+F0urjpylc475KT6dBp/8Oev5k0l/MuHoqqMgPn829czzOvXsPSRZv4e8Fafw+jgPMeuYVzH7yRzFW+umwMU5fLbZhjw9fltDYtiU1OYM4n3zBk/Bg2L17F1qVraN/3mDo7h8bA5XTx+I0vc9r5w8jo0DJk/wkn9+br//3M8QN74vF4+ObDXwCwWe3+xvg9L9zInc9ex9qlG1n+1xpMYa47R7P2199Fu2tup2TTOorXrkAZw39nxXftSf/J07Dn55I94xciU9P9+3ZM+pD04WcS0USGTIeTfPL1JA25BvveTf7nwatyleVhy1pL6lkPktqqJyUrppLz83M0v2xCUHjN7SJ32qvEdBmKKenofqSlQlH2LGKSemMwJew3nOZxBPXaVvyteey4NRdobqzFa0lrdw0oPbmZX1CSM5eEdJkvxV64DGNsR3SGmAOGNUSmE5txKR6XBWfpJnTGWAB0xgSU3oyjeA2m+O64rXtw27LRm5vWdvaPLjKbumisPB4PV1z6KCajkTfeujfs/ltvfoFXXrvLP2FbdfR6PQMHHUtWVg7vv/dtbWW5UdLp9bTr1Z2ifbn8OWVqyP4IcyQ2S7l/veLvyOgoPB4P7177IMcMH8hLS3/iub++obyklJ9f+ajO8t8YeDwebrnqNYxGI8++du1+w+7OymXhH2s575KhYffr9Xr6DejK3t15fPa/32sju42WTq+n7fHdKcqupi5HRWIrC1+X9UYDV73xGOsXLOaRIRcy97PvOHbkYBLSqn8W72jj8Xh44qZXMJoM3PXc9WHDXH77+XTs0ZbLht3CdWfczeDTTsBgNJCYEjy0VK/Xc0y/buTuzeP7T3+ri+w3KkqvJ75rTxx5uWT//uN+w0YkNyHx+H5sfPlxAMq2baZ41VKanR1+wizhpXR6Ipt3xVWWT+nqaaH7DRFENutCVJteKL2RuF6jcdtKcRZUPuqmaR5yp7+O0htIHrr/a/vRwmHdg71sK7EpB74pr3QmPG67f73ib6WLQKe8NzxikvujN8ahN0QT12Qg1pL99wIfDdz2fNzWPZjiux9SPJ0hGoO5BdacuQAopcOcNhy3dRdlO7/EUbIWQ3QbdProA6QkRLAaa4wrpR5XSmkBS7lSao1S6tqAMBlVwgQuswLCfRqw3aWUyldK/amUul8pFV/luFXTLFNKrVJKXR0mj/N8Yf4XZl9LpZTHt39IwPZopdRTSqlNSimrUmqfUmq+Uuqqmiq7mqZpGtdd/RQ5OQVM+fYFjMbQxnZJiYVlSzcw7qIHadVsJAP7eYdGt211Bn/+sSJsum6XW54Zr4bb7SFvV+izm03bt2bPpm3+9d0btxGbnEh0QhzlxaUUZucy+OJRGE0mohPiOOGckaz/Y3FdZr1B0zSNO69/i9ycIj6cfF/Yuhzom0lz6X1CZ1q3Sd9vOLfLTeY2eWY8HI/bQ36YupxetS5vqqzL4B22fsunL/PsX99ywwfPkp+1l1Y9OoWkczTSNI1n73iTwtwinv3oQf/s6FVFmCO467kb+HnV53y75CPiEuPo1LMden34tyu4XR55Znw/NLcr7DPjoeHc2LK98yQUr12BLSebJVePZdFlo9j941fkL5zPijuurO3sNk4eN84wz4ybUlqzv2mQNU0jf+YEPOVFNDnzPpReBmoC2Mq243IUsnvjS2Stf47SvD+xFq9j778TQsIaI1Nx2ir//Ttte9EZYtAbotAZzOiN8UdFr+Khctv24nGVYdk1xduILl6DqzwTy+4fDxhXw+N/ZhxAb0oiqukZxLYeR1T6qXhcpegimtRi7o9Cqg6XelLTPePFQH/fchYwG3hfKXVxlXB3B4SrWKrOILbRt/1E4FJgri/eCqVURphjV6R5DrAK+J9SalyYcGXAuUqpquOqLgQsYcJ/B1wLTABOB24F1vr+bpBuvvF5Nm7M5PufXsVsjgwbJj4+hsys31i8fBKLl0/ip6mvA7BwyUT69utOTk4BX381g7KyctxuNzOmL2TKV9MZMrRPHZ5Jw1SaX8Sy3+Zht1jxuN1s+HMpy3+bS4d+oUNy+5w9nIXfTWfvlh2UF5cy/f0v6Tfa+xqYmMR4kluk8+dXU3G73JSXlLH4p5k06xT++f6j0X23vsvmTVl8/u3DmM0RBwz/7ZdzuWBc8PNceTlF/PjNAixlVtxuN3NnLueHb/5g0Ek9ayvbjUZpfhHLf5uHvdxXl/9ayvLfq6/L/3w/neyt3ro88/0v6Tu68pVGezZtw2l34LDamPPJN5TkFfjr+tHupXvfZse/u3jxi0eJ2E89zt2bR252PpqmsXbpRj597Sv/TOoFuUXM/GE+5RZvPf5n7jJm/jCfXoPkUQAAR1EhuQtm4baWo7ndFC5fRO4fs0noeXxI2Jx5M7Dl7kPTNGw52ez44gMSfBO1pY88m97vf8Vxr3/Mca9/TNNTR5HYqz/dH3+lrk+pwXGXF1G26Q88Diuax401cwWWTX9gbtkjJGxM5yHYszdh3bkKzeOmZMUv6M2xGH1D0fPnvIejIIvUsx9CZzjwtf1oEZPch2ad76Jph5tp2uFmYpL6EhnXidS2V4SEjU48jrKCZThtOXhcVor3zSMm8fiA/cdTlrcQt6sMj8tKae7fmOPkBqkxtjPRLc4jqtloopqNxhjbGYO5Jeb00NdEOsu24HGVoWkaHmcpjsJlGAImfHM7CtA8LjSPC0fxGu+EbrEdQtIRYn9q+lakS9O0fwLWZyulBgCjgS8Dtm+qEi4cS5Uwvyql3gcWA58AVceh+tP09bL3xtuI/6JKuPl4G/gjgcCxmBcCPwP+GwdKqQ6+cOdrmvZNQNgpquoDqQ3Ejh17+fCD74mIMNGq2an+7W+/+wADTzyOY7ufz8q1X9OqVTrp6ZVDSG02BwBpaUkYDAaUUnzw/rfcfONzeDwarVqn8/Krd3L2qJPq/JwaHAV/TpnK10++icejkdQslTH3XU/PkwdQsCeHZ8++hgd//h9JzVLpemIfhl15HhOuvBeHzcGxIwZy2s3j/Uld9fqjfP/Ce8z6+Gt0Oh0d+h7DmPvCD2E92uzamcPEj6YTEWGkZ5vL/dtffOsG+g3sxknH38z85RNo0dJ7F3rpoo3s2Z3PWWOqDO9Tis/+N437bn0Pj8dDi1apPPni1Zx6Vr86PJuGSSn46+upfP3Um2i+unzOfdfT4+QBFO7N4bmzr+GBn/9HYtNUugzqw8lXnseEK+7FaXdwzIiBnHZTZV1e8sts/vl+Gm6ni7a9unPD/56rnKX9KLZ3Vw4/fj4NU4SRs7pXlte9L93EMSd045ITb2TSH++Q3iKVrMxsnrrlVQrziklrlsIND11GvyHeH9dKKX747HdeuvcdPB4P6S1Sue2paxh8WvgJyo42SsHeaT+y5b1XwOMhIjWdtlffQnK/E7Hl7mP5zeM5fsJEIpukUb4rk8zP38NVVoohJpbEXieQMf46APQRkegjAp7DjTSjM5kwxifW16k1IIrS1dPIn/0uoGGIbULSSVcR1a4frpJcdk+8hebj38IQ1wRjUnNSTr2D/Nnv4rYWY2rSltSzH0LpjbhKcihbMx30Rnb9r7KRmTzsBmI6H92/MXQ6E+gqr5tKZ0IpA3pDNC5HEXv/fYOmHW/DYErAHNuRuCYnsm/bh2geF1Hx3YhPq7wZHZ82FI/bwp6Nr6F0BqLiexAf5l3aRxulMwS9i13pjGhKj05v9vaYZ31HdItz0Rli8DiKsBcsQfM4UDoThqiWRCRWTprpLNuCs3QTaB70kelEpZ+GUuFHMonDVI+znNcVFW4W3MNKSKnHgZs1TUupsn02UKJp2jm+Hu3twFmapoU+lFgZ51Ogu6ZpIdPEKqWuB94FumiatrG6NJVSU4CemqZ1Cdg2D8gDygGdpmnjfNs7AJuAUXgb5EM1TZunlOqDt/E/WNO0Pw6mHByepTVToKJa728sqO8sHBXOa2Or7ywc8aZsCz9yRdScvk2c9Z2FI969/8jrkupC1tz8+s7CEc8zZ119Z+GIV1i67cCBxH9Ssu3DI6YF2+HUj+usXbV52pX1Um41PoGbUsrgW+J8w8RPAn6oetyAcBXLweal4qWrB+oOaIW3kR7OZGCUUsrsW78Ib6O7avhNeIeuv66UOkUpJb+chRBCCCGEEEL8ZzXdGE8GnL6lGJgIvK1p2udVwv0UEK5iefQgj1Exg1jVd45UNPATlVK3A8cDz1eTxkzADpzpW78A+KpqIE3TSoBrgE7AdKBEKbVAKXVNQx2mLoQQQgghhBCN3lEwgVtNPzNeDAz3/R0B9AKeVEoVaJr2REC4O4A/q8Tdc5DHqK64fqqyfpumaQvCBdQ0zaWU+g64UCm1CegMfA0khQk7WSk1Azgb73PqpwAfACfj7VEXQgghhBBCCCEOSW1M4LY0YP0v36zlzyql3grYvqVKuEPR3Pf/fVW2VzTwU4GHgJeVUvM1TVtVTTpfAb8Be4E/NE3bo5QKaYwDaJqWj3fSuE985/M+cIVS6vn9pC+EEEIIIYQQ4jBoR8FA5Bp/ZjyM9YAJaFdD6Z3i+//CKtu3aJq2VNO03/AOPy+h+mHq4J1VvRC4gTBD1KujaZoTeM232vlg49Wkhx+cwJtvfHnggHXIbnfQo+tYcnKOjMnVfn7tY+Z+/n19ZyOI0+Hg6TOvojS/qL6zUiOeefRzPpjwc31nI4jd7mTQsTeSl1NU31mpMb+89jHzJjasuuxyOHj2rCOnLr/79KdMeb/q4Kz65bA7uXDg9RTkFtV3VmpE5ufvsfvnr+s7G0E8TgfLbrwER1FhfWelVhT+OZHi5XV/jS6Y/zElq6fV+XHrStHe6ZTk/lXf2QiieVzs2fQabldZfWelRtgLluAoXlvf2QiiaW4sWd/icVvrOyuigamLxnh33/93/deElFItgEeAuZqmbaounKZphcALwKlKqbAvYdU0zQM8C/wCfFvN8WIDJnkLVPESwaq987UuN7eQSRN/45prx/i3zZm9mB5dx5IQM4hThl3Pjh17q41fUFDMeWPuITH2RDq0OYuvvgz/hff0k/8jQt+H2bMWhexzOJz06DqWtq3O8G+LiDBx2RVn8/KLn/2Hs2sYSguKWPLzLAaeX3l+m/5ZwdNnXsVdvc7mzcvvoWBP9R+9paiED299grt7n81jw8ezdOoc/7783dnc2m0kd/ce5V+mvTvJv//d6x4K2nfHMWfw3GjvK3eMJhMnnDOSWR9NqYWzrlt5ucV8O2ku46+qfK/nH3NXMejYG2mTfB7nnvoQu3bmVBu/sKCUKy54lrYp59O709V8P2W+f5/D4eTqi5+nT+draBo1ir8XrAmK+/LTk2kZN4Z2TS7wLzu2ZwMQEWHkokuHM+HVhtV4PVxlBUUs/WUWA86rrMv//rOCZ8+6int6n82EKw5Ql4tL+OjWJ7i3z9k8MWI8y34Nrsu3dx/JvX1G+Zfp71XWZZfDwddPvMHDgy/gwQHn8r+bHqVoXx4ABpOJfueMZPbHjb8uF+YV8/s3cxh9aeWrJJcuWMmFA69naMa53HzOA+zdVX1dLiks5f7Ln+bkjHM5p9cVzPhunn+f0+HkwaueZUzvKxmQdibL/1odEn/T6i3cMOo+hrUZyxndxjHlA+9NAVOEkTMvGs4XE8J+vTUqzuJCcuZOJ33kKP+2olVLWXbjJfx93nDWPHQrtpzs6uOXlrD+2Qf5+/wRLLl6LDnzZ/r3eZxONjz/MEuuOY8/R51I0ZoVYdPwOJ0su/ESFl9Z+d2rM5pIG346Wd9PChunMXOXF1O2YS6xPSuv0dadq8j67CZ2TDif7G8fxlVSfb1220rJ+eU5dky4gF0fXUPZxsprtG3vJrK/f4yd745j5/uXkvPri7gslTfy43qPpnjxN2juI+9NCG6XBUvhCmKS+/q32Uq3smfTa+xa8zj7tn6Iy1H9zR23q5zczC/YteZxdm94CUth5eBMu2UnOds+Jmvd02Ste4bcHZNxO0v8+4uyZ7Nz9SPsWvuEf3HZveWudAZiEntRkhP26c5GxeO24izbgjG2sr/MZd2DJetbSjM/pXzvb3icpdXG19x2rPtmUZr5GWU7v8JZtjVsOHvhckq3f4TLujvoOOV7f6M083PKdgV/vymlxxDTEUdR6HVc7IdO1d1yAEqpU5VSm5RSW5RS94fZH6+U+kUptUoptU4pdUW4dEJO8TCKZX8MSqkTfMtgpdQdwMPAT5qmBX5TdgoIV7EcWyWtaN/2/kqp05RSTwErABtwMCf3LlAA3F1dAE3TJmiaNlrTtLxqgnQCtiqlnlZKna6UGuKbHO59YCWhz73Xus8/m8qppw3AbPZO7J6XV8QFY+/l8SeuJztvNsf36sK4ix6sNv5tN7+IyWRg197pfDrxKW656XnWrwu+0GzdmsX3382madOUsGm8+vJEUlNDR/RfeNFIvvj8V+x2x384w/q3+MeZdD2xD6bICADKCov56LYnOeOWy3j+729p1b0jn9z1bLXxv3n6bfRGA8/Mn8KlL9zH10+9xd4tmUFhXvjne15e+hMvL/2JU2+4xL/9hvef8W9/eelPtDmuK8eecqJ/f68zhrL4p1k4HY27jL/+YjYnj+yF2ewt4/y8Eq666Hnue/QSNuyexDHHt+f68S9VG//BO97HZDKwJvMz3v7kTu6/7T02rd/p3993QFcmfHwHqWnh3w189thBbM2d4l9at0n37zvn/MF8PWkOdnvj/yG4+MeZdKlSlz++/UlOv/kynv3rW1p268hnd1dfl7/11eWn5k9h/Av38U2Yuvzcwu95cclPvLjkJ0ZeX1mX53/xI5mrNnDf9+/xxNzJmGNj+P7Zd/z7e50+lCU/zcLVyOvyb1Nm0X9YbyJ8dbkov5gHrnyWa+8bx7SNk+l8bAcevfaFauO/fP+7GI1Gpq77gsffuZuX7nuHbRt3+Pcf07cbj719F8mpoXW5KL+YOy58jNHjT+X3jZP5etEH/veSA5wyZgi/fz0HRyOvy/tm/05irxPQR3jL2FlSxIbnH6b1JVdzwqRfiWnfiU0vPVZt/K3vv4rOYKTfZz/R8c5H2freK1h2Vr48Ja5rTzre8QjGxLBPqgGw+4fJYd813mTwCHLmTMPjbNz1uKqy9XMwt+mFzuAtc7e1hJypL5DY/2JaXv8FprT25Pz2crXxC+Z8ADoDLa/9lCan3kH+nPdx5Huv0R5bGbHdT6HFlR/Q4sr/oTOayZtR+SSjIToJY1ILyrctqd2TrAeWguVExnVCpzMC3sZ57o5JJKQNp0W3hzCZm5O3s/qblIW7f0EpA827PkByq/Mo2P0TDpv3hqrHbSUmqQ/NOt9Nsy73oNOZyN8VfGM5KqEHLbs/5l8MEUkB+47BUrgCzeOqhTOvO67SzRjMLfzvEve4bVj3zcKU2IuYVuPQRaRgzZ1bbXxb/t+gdMS0upjI1CHY8v7CXeUGicdZgsuSidJHBW1XOiPGmA5EJPUlHGNMO1xlm9E09388S1HXlPcF8m8DpwFdgYuUUl2rBLsJWK9p2jHAEOAVpZTpQGnXdGM8Hu/w8YXALOBG4D1gfJVwLweEq1iq3r7v7Nv+JzAJ74RprwDHaZq2gwPQNK0MeAPvJG2tDvN8tgIfAiPwzgz/G3A98DEwTNO0Or9izZj2NycOrvyx9eP3c+jarS3nnjecyMgIHnnsWlav2szGjZkhcS0WKz98P4fHnryemJgoBg46ljPPGsykL34LCnf7LS/yzHO3YDIZQ9LYvn03X076nXvuuyxkX4sWaSQkxrHonzUh+xqT9X8soX2fnv71VTP/Ir19a44bORhjhInTbhzPnk3b2LdtZ0hce7mNVTP/5IxbLiMi2ky7Xt3pPrQ/S36efcj5yN+dzdZla+l79nD/tsT0JkTFxZC5auPhnVwDMWfGcvqf2N2//ttPC+nUpSVnjRlIZKSJux+6iPVrMtm8KSskbrnFxq8/LuTeRy8hOsZMvwFdOeWMvnw72fvlajIZufbms+k3oCt6/aFf4pq1SCEhIYZli6sdfNNobPhzCe17V9bl1bP+Ir1da4711eVTD1CXV8/8k9NvuYyIKDNtj+9O9yH9WfrLwdXl/KxsOg/sTWxKIsYIE8eddhJ7t1ZeuhPSm2A+AurywtnLOG5AD//6vF8X0qZTK04+exARkSauuvtiNq/fTubm0MFhVouNeb/+zTX3jyMq2swx/boxaGQ/pn3jrctGk5ELrhvFMf26oQtTl79670f6DT2ekWOHYoowEh0TRUbHlv79qc1SiI2PZt2yxl3GhcsXEd/9WP96/sIFRLVsQ8rAoehMEbS66EosmVsozwr9aeC2WclfOJ/Wl1yF3hxFfNeeJPUdSO7c6QDojEaan30+8V17onT6sMe37dtDzvwZtBg7LmRfREoqhphYSjcdWe+ntmYuJ7J5N/96+ZaFmJJbEt1xIDqDiYQTLsSZm4mjIPQa7XHasGxZSOKAi9GZzEQ270pU2z6UbZgHQFSbXt50IqLQGSOIPfZ07Hs2BKUR2aI71u2HO7VQw2Ut/ZfI6DaV68XrMEamEZXQA6UzEp8+DKd1L05bbkhcj8dBeck64tOHo9NHEBmdgTmuC+WFKwEwx3UiKqEHOn0kOp2J2OQTsJcf8Oeyn8EUj05vxl7+nwey1iuXNQu9uWnluiUTnSkRY3QblM5ARMJxeBwFuB1FIXE1jxOXJZOIxF4onRFDZDqGqFa4yrYEhbPlLyQiqQ9UeSuzPqIJxtgO6IyxYfOmM0SDLgK3rfpRJaKKhjObel+8j0Rv0zTNgfcR51FVwmhArO+NWzF4O4UP2Fassca4pmmPa5qmAhaTpmkdNE27T9O0Ul+YzCphApf2AWldHrBdr2lakqZpAzVNe17TtOIqx61Ic2qYPD2paZpR07SdvvUhmqaN3c85rPWlNc+3Xqhp2qOapvXTNC1Z07QoTdM6+86pXh6OXrtmCx07tfavr1+/jR49O/rXo6PNtG3XnA3rtoXE3fzvTvR6PR07VsbvcUwH1geE/e6bWZhMRk47fWDY499x68s89fSN/p75qjp3zmD16s2HfF4NyZ7NmaRmtPCvZ2/dQfNObf3rEVGRpLRsyt4toV9yOTuy0Ol1QfGbd2oTEvbxEeN55ORLmPTQy5QVFldNBoDFP82iXa/uJLdID9qe1rYVezaFfr6NyYZ1O2jfobl/fdOGnXTtUfkDJSo6ktZt09m0IbSRuHXzHvR6He0C4nfrkcGm9Qf/A2Lmb0vo0vwSTup1M5998HvI/g6dWrB+zfYwMRuXkLq8ZQfNqtTl5JZNyd4aWpdzw9TlZp3akF2lLj95yngeG3YJXz4cXJdPGHMq21esozgnH4fVxrJf59BlUO+guGltW7G7kdflbRszadWusi5u37SDDt0q67I5OpLmrdPZvim0Lu/cthudXhcUv0O3NmzfdHA/oNcu20RcQgzXnnE3p3e9hHvGPUF2VvCPvIwOLdm8rnHXZcuOrZibV95Tt+zcTnSbymlo9JFmItObU74z9Dyte3ahdLqg+NEZ7bHsOvgy2frB67Qedy06U0TY/VEtWmPZHn4oa2PlyN+BMbF5wPouTCmV9VpnjMSQkI4zP7ReOwv3oJQuKL6pSZuwYQFsWeswJgf3mRiTWuDIzfyPZ9HwOG3ZGCIqRx06bDmYIiu/43U6EwZTEk576ONDLnseCoUxIL7JnO7vGa/KZsnEGBn8FmBryUay1j3N3k1vUJof+hiiMaIJTlv1jzo2Bh5HITpjfOW6sxC9qXIEgNIZ0Rli8ThDHwfwOItBqaD4+ojkoJ5xp2U7SukwRLUMiX8wdKYEPI4jY36lo0xzgh+5zqJyUvEKE4AueN8Qtgbvm708B0q4Lp4ZFzWoqKiUmNho/7qlzEp8fHRQmPj4GEpLLSFxy8rKQ8PGxVBWVu7f/8jD7/Dya3eGPfZPP8zF5XIx6pyh1eYvNjaK4qLqn8VpDKylZURGV04VYC+3Yo4JLrfImGjsltBJOBzlViKrhDXHRGMv94aNSYjn7ilv8fjMidzz9QRsFiuf3xt+COuSn2fRb9SIkO0R0WbKSxr3JCslRRaiYyvLuLzMRlx88HCvuLgoLKWhZWyxWImNCw4bGxdNWdnBTYpy1rkDWbB8Amt3fs7Lb9/Eq89N4Yevg5+Ti441U1IU+m+osbGWlhFRtS7HhtZPW5i6bA9Xl2Mrw8YkxnPnV2/x6IyJ3D1lAnaLlYn3Vdbl1IzmJDRN5bGTL+b+E85h37ZdjAx4JAMgMtqMtbRx1+XSYgtRMZVlbLXYiK5SxjFx0ZSHqZ9Wi5WY2OC6HB0bRXmYzyOc3L15/P71HG5/+lp+WP4JTVul89j1wY93RMWYKStp3HXZbSlDb64sJ4/NiiEqJiiMPioat7U8NK7Vir5KWEN0+LDh5C1cgOZ2k9J/cLVh9OYoXJbG/b1XlcduQZkq67XmtKIiguuqzhSFxxFaVw8lrCM3k+JFX5N0YvBoO53RjMfeuOttOB63DZ2u8qaO5nGg0wd3bih9JB536GMPHo8DVSWsTheJ5gkN67BmU5Izl4SmlXNZRCf0oGmn22ne9UGSWoymeN+coGfOvceOwOO2Hda5NRSaxw4qYGSnx4XSVRkprDOBJ/TxHU0LE1YZQXP60nZiL1hKRNIJh50/pYxhPzNRDaXqbFFKXauUWhqwXBuYkzC506qsj8T7GHMz4FhgglIq7kCnKI3xRiYxMY6ygIZ2dIyZkio/tEpKLMRW+TEIEBMTFRq21EJMjPdL88nH3+eScafRpk3VGz3eBtAD97/Fa2/es9/8lZaWE58QfnhOYxEVFxPUOImIMmMrC/7hZrOUBzVyKpiizNgsYcJGecNGRJtp1b0jeoOeuJREznvoJjb+vQxrWfDnsnXZWkryCoOeF69gt1iJiosJ2d6YxCfGBDW0o2IiKS0J/qFWWmoNarBXiI42U1oaXMZlpeXExISbazFUpy6tSG+WjF6vp88JXbj6pjOZ+sPfQWEspVbiEkL/DTU2UXExQTeNqqvLkWHqckS4ulxWGTYiqrIux6Ykcu5DN7Hp72XYfHX5m6fewmV38Mxf3/Dikp/oOXwg71//cJVjWzHHNu66HBsfE9TQNkdHYqlSxpbS8qAGe2VYM5YqjXRLWTlRYT6PcCIiTQw+vT9dj+voGxJ/EWuWbAhqfJeXWYmJa9x12RATG9R41kWacVmDr5lua3lQg72C3mzGXR4c1lUePmxVbpuVzM/epd21t+8/nLUcQ3Tj/t6rShcRgxbQeFZGM5ojuF57HOXoTKF19WDDOov2su/HJ0kaclXQkHgAj9OKLqJx19twdHozHo/dv650Jjye4Mav5rGj04c+ZqrTmdDc9qBtHo89pPHotOeTu/1TEpudQWR0hn+7MTIVgzEOpXRERLcmNmUA5cXBj1dobnvIzYHGRuki/I1nAHSG0Mavxwm60EcxlQoTVnP6G/f2wuUYY9pXOwz9YGiaM7TBLxoETdM+0DStd8DyQcDuLCBwOEQLvD3gga4Avte8tgDbOYg3b0ljvJHp3rM9m/+tHOrVtWtb1gQMC7dYrGzbmkWXbm1D4nbo2AqXy83mzZXx16zaTFdf2LlzlvD2W1No1WwkrZqNZNeufVxy4YO8/OJnbNm8kx2Zexh20jW0ajaSC8bey969ebRqNpLMzMq6uHFjJj17dgg5dmPSrGMbcnZUzo6Z3q510FBae7mNvF17adq+dUjc1NYt8LjcQfF3b9oWNizgvRsHIffWFv80k2NGDAzb4N+3bWfQUOPGqGv31mzdUllGnbq0ChoWXm6xkbltL526hE730K5DM9wuD9u2VNa7dWu206nr4Q0ZU0qhacEfwOZNWUHD5hurkLrcvnXQIw4VdTm9XWj9bOKry7lV6nJ6NXVZ+W4aVxTl7k3b6Dt6BNHxcRhMJk68eBQ712wKGsq+b9vOoEdAGqP2XTPYtbWyjNp0as2WgGHhVouN3TuyadMptC63atsct8vNrm2V8bes206bTtVcL6po17VN0K16pSo+g8r6nLl5V9Cw+cYoqnU7rLsrRwdGt2qDZXvlM5xumxXb3t1EtQo9T3OzlmgeN9Y9lfEt27cQ3fLAZWLdk4U9Zy+rH7iZRZeNYuPzD+EozGfRZaOw7ascyluetSNo2PyRwJTSGmdR5TXWlNwyaNi4x2nDVZwdMrwcwJjYDM3jwVlYGd+RlxkU1lWSQ/Z3jxLf73xiuoSOtnMWZGFqklEzJ9OAGM3puOyVcwabIlNxWCvnN/Z4HLjsBRgj0kLiGiJS0PDgDIjvsO7FFDAU3eUoJGfbx8SlDSU68bj95sV7zQ7+7nPaczFGNg0foZHQmZK8w80r1o2JuAOGhWseJx5XCTpj6ISMOmM8aFpQfLejAL3JG9Zt24OzZB1lO7+kbOeXaC4L1pw52ItWhaRVHY+jCJ2p+skiRRUNZzb1JUAHpVQb36RsFwJV3/24ExgGoJRKwzsR+AGfxZPGeCNz6mkDWbBguX991DlDWbd2Kz98Nwebzc4zT31Ij54d6Nw5IyRudLSZ0ecM5cnH3sdisfL3X6v45ef5XDLudACmzXyH5au/YvHySSxePolmzVJ4+90HuP7G8+jWvR1bd0z173vvg4dIS0ti8fJJtGzp/SLYvTuHwoIS+p3QI+TYjUnXE/uydUnlqyd6Dh/A3i2ZrJzxB067g2nvfkGzjm1Iaxv6IyQiKpJjRgzkt7c+x15uY9vydayZs5A+Zw8DIHP1RvZt34XH48FSVMJ3z71D+z49g4YOO2x2Vs74g36jTglJv2hfHpbiUjKOqZdX3NeYk0f2ZuEflXfkTzv7BDau38nUH//GZnPw6nNT6No9gw6dWoTEjYqO5PRRJ/DSU19SbrGxeOEGpk9dzNiLKn/Q2e1ObDbv3W2Hw4XN5vA3UKb9soiiwjI0TWPFkn/56J2pnHpmP3/cvbvzKSoso1ffTrV1+nWmy4l92bo0oC4P89blVTO9dXn6e/uvyz2HD+S3CZV1ee3chfQ+6+DqcqvuHVny8yyspRbcThd/ffUL8anJxCR6n8Ur2pdH+RFQl/sP782KhZXvsz3p9P5s27iDuVP/wm5z8PGrk2nfJYOMDqE3i8zRkZx0en/+98IkrBYbqxev549pizj1vMq67LA7sfvqstPpwh5Ql8+4cDgLfl/Iv2u34XK6+OTVrzimX1di472jDXL35lFSVEa3Xo27jJN6n0DxupX+9eQTTqR853by/p6Hx2Fn55RPic5oR1SL0JsY+kgzyScMZseXH+G2WSnZsJqCxX/SZGjlK7s8Tgceh7fHUXM58TjsaJpGdOs29PnoO457/WOOe/1j2t98H6b4RI57/WMiUlIBsOfn4iorIbZTt5BjN2bmNr2wZVXW66h2J+DI34ll8994XA6K/pmCMSUDU1LoNVpnjCSq/QkULZyMx2nDtmcD5VsXE9NlCACusnyyv3uEuGNOJ67nqSHxAWxZazFnHB92X2Nmju2IzVJ5s84c3w2nbR/lxWvRPE6K983BaE7HGNkkJK5OZyIqrivF2bPxeBzYLTuwlmwgKvFYAFzOYnK2fUxs8gnEJvcLiV9evB6Py4qmadjLd1Ga9zfmuC7+/S5nMR53ORGH+Sx0Q2GIaoHbVnmDwxDdGo+jEKdlO5rHhaNoBTpTEnpTQkhcpTNiiG6NvXC5dzI32z5clh0YYrzTWkWln0ZU8zFENRtNVLPRKH0UkSmDMMV5J9XWNM07G73mAd/fgTOne1wWNI8dfWRq7RaCqHG+SbtvBqYDG4CvNU1bp5S6Xil1vS/YU8AApdQaYDZw337e2OWnqvYIif/G4VlaqwWal1dE3+MvYd2m7/yTqM2etYjbb32JnTuy6duvG//7+DEyMpoB8MJzn/DnHyv45bc3Ae97xq+96ilmz1pEcnI8Tz97MxdeHP7LsGPbs3n3g4cYNjz0oj5/3jKuuPRRtu381b/tlZcnkr03j5deuaOmTzvI+xtrd+KLssJiXjj3Rh757WP/K6E2LVzON8+8TeGeHFr37Mwlz9xFcnPvpCszPpjM1mVrueH9ZwDve8a/fORVNi1cTnR8HGfdcSW9zzwZgGW/zuWXNz6hrKCIyOhoOg04jlF3Xk1ck8q7pMt+ncvPr33M4zM/9/d0VZj98TcU5xYw5r7rarUMAM5rU3vPjeXnlTDihNv5a827/tebLZizkgfv/IDdO3M5rk9H3vjgVlq29t7oeePFb1j013q+/Mn7+qLCglLuuP4tFsxZSWJSLA89dSljLjjJn36fzteQVeU95Ys3fEDL1mnccNnLzJ+9ErvdSdPmyVx+7WlcfeNZ/nDvvPY9+7ILeeKFq2rt/CtM2Va7wwHLCot5aeyNPPRrcF3+7llvXW7VozMXB9TlmR9MZuvytVz/nq8uF5cw+ZFX+XfhcqJ8dbnXGb66/Ntcfg2oyx37H8fZd11NXIq3LluKSvj+uXfYtHA5LqeLpu0zGH3vtbTu4W0Yzvn4G4rzCjjn3tqty32b1O5rvYryi7ls2K18vfAD/+vNlsxfySsPvkd2Vg7dju/Iw2/cQdNW3rr82etfs2rROl6d/ATgfc/4M7e/wZL5K4hPiuOGhy7jlHOH+NMf0/tKsqu8p/y7JR/50/v+09/49LWvsFvt9OzblbtfuJG05t4f8pPe/o68fQXc9uQ1tVoG9/4Tf+BA/4GzpIgVt19Jr3cn+19vVrRyKVs/eA17bjYxHbvS8dYHiUzz9ujt+uZzStavpttj3ldvOUtL2PzWcxStXIoxNo7Wl15P6kmV83EsueY87FXeU977g6/96VUoWrOCf197ir4fV74uKuv7L3EU5tP2qltq5dwDZc3Nr/VjVHBbS9gz6Q6aX/6O//Vm1p2ryJ/7Ae6SXEzpHUg55VaM8d56WLT4G+y7N5B2zqPe+LZS8ma8hW3nKnTmWBIHjiems/caXfTPVxT98xXKGHz9a33TVwC4LAXsnXwPLa54D6UPHUpcmzxzandWfLfLQvbmCTTtdKf/9Wa20i0U7PkFt6MIU1RLkluei8HXE1ucMw+7JZPUNpf74pdTkPU9ttIt6AxRJKSPJDrxGG/YfbMp3jcnZAh0y+7e7828HVOw+V6rpTfGEZvcj9iUAf5wJTl/4HaVktjs9Fotg8LS2p200+O2Ub77B6JbnOd/vZnLuht7/kI8rjL0EU2ITBnsH2puL1qJ27aPqHTvDTrNbceWtwCXdQ9KF0FEUh+MMeFHvpTtmkJkyiAM5ua+4+zFmh38hiJ9ZDpRTc8AwFG0Go+7nMjkw3/m/GCUbPvwwHODNxLtz/m8zhqqW364tF7KTRrjNay2G+MAjzz0Nk1SE7n1totr+1AHzW530Pu4i5k974Ow7yCvSbXdGAf45fWPiUlKYOilY2r9WAfL6XDwwpgbuO2zV4hNTqj149VmYxzg2UcnkpIaz7U3n12rxzkUdruTYf1u48cZz5KSmlDrx6vtxjjA1Nc/JiY5gSHjG05ddjkcvHjuDdzyae3X5dpujAO898xnJKYkcMF1Vd9yUn8cdieXnnwL7/z4PElNEmr1WLXdGAfInPg+xvhEmp99fq0f62B5nA5W3HYFPZ6dgCkhdMhrTavLxjhA4V8T0ZnjiT++bq/RBQs+xhCfTtwxtdsoDKe2G+MARXtnoDNEE9ck/Ftr6oPmcbF381uktbsGvaF25/Go7cY4gL1gKUofiSm++4ED1xFNc1O++wfMTc9Apz+4eUEOlzTGD480xo8QddEYP9rVRWNc1H5jXNRNY/xoVxeN8aNdXTTGRd03xo9GddEYP9rVRWP8aHdENcbHTKy7xvj34+ul3OSZcSGEEEIIIYQQoo4Z6jsDQgghhBBCCCFEEHXEdPJXS3rGhRBCCCGEEEKIOiaNcSGEEEIIIYQQoo7JMHUhhBBCCCGEEA3LUdBtfBScohBCCCGEEEII0bBIz7gQQgghhBBCiIZFJnATQgghhBBCCCFETZOecSGEEEIIIYQQDcuR3zEuPeNCCCGEEEIIIURdk55xIYQQQgghhBANiqY78rvGpWdcCCGEEEIIIYSoY9IzLoQQQgghhBCiYZHZ1IUQQgghhBBCCFHTpGdcCCGEEEIIIUTDcuR3jEvPuBBCCCGEEEIIUdekZ1wIIYQQQgghRMMis6kLIYQQQgghhBCipknPuBBCCCGEEEKIhkVmUxdCCCGEEEIIIURNk8a4EEIIIYQQQghRx2SYeg3r8HxhfWfhiGdYl1/fWTgq3PTFMfWdhSPebd3kElzbek3eV99ZOOJpmlbfWTgqeJKj6jsLRzxjq2b1nYUjXpo9rb6zIBqTI3+UuvSMCyGEEEIIIYQQdU26ZYQQQgghhBBCNCzyajMhhBBCCCGEEELUNOkZF0IIIYQQQgjRsEjPuBBCCCGEEEIIIWqa9IwLIYQQQgghhGhQtCO/Y1x6xoUQQgghhBBCiLomPeNCCCGEEEIIIRoWeWZcCCGEEEIIIYQQNU16xoUQQgghhBBCNCxKesaFEEIIIYQQQghRw6RnXAghhBBCCCFEwyLPjAshhBBCCCGEEKKmSc+4EEIIIYQQQoiG5SjoNj4KTlEIIYQQQgghhGhYpDEuhBBCCCGEEELUMRmmLoQQQgghhBCiYZFXmwkhhBBCCCGEEKKmSc+4EEIIIYQQQoiGRV5tJoQQQgghhBBCiJomPeONQOnCn7Asn4FjXybRPYeQPPYe/76yJb9TsmAK7rICIlp3J2nMXRjikgHQXA4Kp75L+fq/wOPG1KorSaNuwxCfgruskMJf38W+fTUehw1jWgaJp19HRMsu+82L5nKy963r0Bw2mt/3pX970cxPsW74G2fuTuKGXEzCsEtrpzBqSfGm6ZRuX4CjaBcxrQeQ2v96/76SLXMpWv8zblsRkU060aTfdRiiEgHQ3E7yln1OedYSNI+byJSOpPS9CkNUUmXaG3+neNM03LYSDNHJpA2+C1Nc07D5sBdsJ3/ZROyF29EZIkjoOor4zqcdVloN0dsTJvHZZz+xZs2/XHjR6XzyybP+fR9++C0vvvAh2dl5DBx0PB999DTNmqUC8MTjb/Pssx8QEWH0h1+56gfatm0JwKOPvMlPP81hw4ZtPPTQdTz2+E3V5qGoqITbb3+Oab//CcANN1wYFL5tmxHs25ePXu+9V9l/wHFMn/6/miuEWjZhwhd8+un3rFnzLxdddCaffvq8f9+HH37D889/QHZ2HoMGHc/HHz9Ls2ZpQfEdDgc9e55NWVk5WVkL/Nv//ns5t9/+LBs2bKVNmxa8885jDBrUu9p8LF++jttvf5bly9cTHW3mwQev47bbLgMgI+Nk9u3LQ6/XAzBgwHHMmPFxTRZDrcqZ/h0FC6Zh3bWNxAHDyLj+Qf++vLlT2ffzJJxFBcR06kGr6+7HlJgCwJYX7qFs42p/WM3lJKJZS7q+8BkA5Zmb2fXZG1h3bkVvjiLl5LNoOubysHk4UFoAOb9/Q860b3CVFGFMTqXdXc8R2bRlTRZFrcqd8R35C6Zh27WNxP7DaF21nH+ZhKuogOhOPWh97f0YA8rZsqlK2TRtSZeAcs763FfOkVEk76ecXZZSdk98k5JViwBIGT6apude6d9f9u8adk98C9ueHZiaNKXlFXcS06lnTRdFrSn95ycsKwJ+X4wJ+H2x9HdK/vD9vmjVnaRzqvy++K3K74uzb8MQ5/t98du72DMDfl+cuv/fF449myn87V0ce7egjJHEnXQRcf3PAaBolu/3Rd5O4k66mISTG9fvi6qKt8+iNOsv7KVZxDbrR+qxV/v3leycT+GW33Dbi4lM6kDqMVdiiAz4vbHuSyzZy9E0N5GJ7WnS4zIMZu9+e/FO8tZ9gaMkC2WIJK7VSSR1HBU2D3sWvYqt4F//uuZxYYpJp+VJT9fimdeeop1zKN3zF/ay3cSm9yWte+W/0eKsBRRl/o7LUYI5oT2pXa/AEJkAgOZxkrvxKyy5y72/4RLak9plvL/MrUVbyNv0FQ7LXozmFJp0Hoc5sUO1+bCV7CBv01fYS3ei05tIbHMGCa2GA5D5x324HSWgvL8tIuPb0bzXnbVUIkcO7Sh4Zlwa442APi6ZuKEXY9u8DM1p92+3bV9N0cyPSb3qJYzJzSn89V3ypzxL2jWvAFD694/Yd22g6a3vo4uIJv/H1yic+jZNLnkMzWHD1Lwjiaddhy4mAcvSaeR+/gjN7p6ILsJcbV5K/vgGfUwCroLsoO2G5GYkjLyassW/1k4h1DJDVCKJ3UZTvnc1mtvp327dt4GCVVNoNuxhjLHp5C37jJy/36LZ8EcBKN40DXveZpqf9gI6k5m8RR+St/Qz0gffAXgb8qXb5pE+5B6Mcc1xleWgM0WHzYPbVsLeuS+QfPw4mrbqh+Zx4Sov8O8/lLQaqqbNUnnwoeuYMf0vrDabf/v8+Ut4+KE3mD3nEzp0aMXttz3PJRffw9x5lQ2L8y84lYkTXwibbrv2rXj+hbt4//0pB8zDnXe+QHm5jW3bZ5CTU8CI4VfRqnUzrrjiHH+Yn35+m+HD+/+HM60/zZql8vDDNzJ9+h9YrZXXi/nzF/Pgg68yd+7ndOjQmttue4aLLrqL+fO/CIr/0ksfkZqaTFlZuX9bQUERZ599A++++zhjxpzC5MlTOeusG9i2bRaJifEhecjLK+DUU6/mtdceYOzYU3E4HGRl7QsK88sv7zF8+IAaPvu6YUxMIX30pZSsXown4JpcumEle6Z8QIeH3yAivQVZn71J5ltP0PHRtwBof99LQen8+9StxHY73r+e+faTxPceTMdH3sCRm82mJ27C3Lo9Cb0GheThQGnlzZ1K3rxfaXfPi0Q2b40jZw/66NgaOf+6UlHOpasX43EEl/Perz+g/UPect79+ZtkTniCDo+EL+fNT99KTNfKstnx9pPE9xlMh4e95fzvkzcR1bo98WHKefcXE/DY7XR7/WucJYVsefYOTCnpJJ90Oq6yEra98iAtr7yThD6DKfx7Nttevp+ur0/B0EjKWh+bTNxJF2PbsgzNVeX3xayPSb3C9/vit3fJ/+ZZ0q7y/b5Y+CP2nRtoerPv98VPvt8XF1f5fRGdgGXZNHK/eIRmd4b/feG2FJPz+YMknnY9Ud1ORHO7cBfn+ff7f18saZy/L6rSRyaQ2OEsynPXorkd/u3W/I3kb/yO5v3vwxidRt66L9m3/H2aD7gfgKLtM7EVbqXFSU+iM0SRu/oT8tZ9QXrvWwDYt+J9otOPp1n/+3GV57H772eJiGtFdPpxIXlo1i+4Ebj77+cxp+y/M6YhM0TEk9j2TMrz1wb/hivYRMGWH2jW+25MUWnkbppM9poPaNHnXgCKds7CVryVlic87i3TDZ+Ru+lLmh5zE25nGXtXTiC1yziiU4+nLHsRe1e+RetBz6E3hv72cjtK2bv8dVI6XUBMWi80jxuXrSAoTNNjbyEquWvtFoZodGSYeiMQ1W0QUV0HoosK/nK3bvyHqO6DMaVloAxG4oZegj1zDc78PQC4CrOJ7NALfUwiymgiuscQnDk7ADAkNSVu0Fj0cckonZ6YvmeguV248nZVmw9XwV4sq2YTN/jCkH0xx5+CuVNf1H4a8g1ZdMu+RLfsgz4iuIzLdy8nplU/TAktUHoDid3HYMvZiLPU27BwluVgbtoTgzkend5ETOv+OIuzANA0D4VrvyP5+PGY4luglMIYm4Y+IiZsHoo3/kZU057EthmE0hvRGc2Y4psfVloN1ZgxIxg9ehjJycENuKm/zGPs2FPo1q09JpOJhx+5ngULlrJ1686DSveyy0Zz2mknEht74JsTU3+Zxz33XElUlJmMjOZceeUYPv3k+8M4m4ZpzJhTGD16OMnJCUHbf/llLueddyrdunXAZDLxyCM3smDBkqAy3r59F1988TMPPHBtUNy//15BWloK5513Gnq9nnHjRtGkSRLffz8jbB5effVTRo4cxCWXnE1EhInY2Bi6dGlX4+daXxL7nkRCnxMxxMYFbS9e/hcJ/YZgbtEGncFI+pjLKNu4Cvu+3SFp2HP3UrZxNUmDTgnYlk3SwBEonZ6ItObEdOyJLSvzgPmpmpbm8bD3u09oMf4WzC0yUEoRkdYcQ0zcAVJqWBL6nERC7xPRV8l3yfK/SOgbUM7nHGI552WTOCC4nK3VlHPx8r9JPfMidBGRRDRpSvKQM8if/xsAln/XYoxPJLHfUJROT9KgUzDEJVC8ZH7NFUItq/b3xaZ/iOoW8PtiiO/3RcFB/r4YOBZ9rO/3RZ/9/74o/fs7Itv3JvqYYSiDCV1EFMbUVv79McedgrljX5Spcf6+qCqmaW+i049HV6VBZ9m3kpimfTDFNkfpDCR2OAtbwSaclhwAXNY8opp0xxARj05vJKZZPxyle/zxXeV5xDY/AaV0GKNTiUzqgKMs9N9EVc7yPGwF/xLbonHeHAWISetFTOpx6I3Bv4kseauISetNRIy3TJPanIWt6F+c5d4ydVrziEruVlmmaX1xlHnL1Fa0FYMpjpi03iilI7Zpf/SmWCw5y8PmoWjHTKJSuhHb9ASUzojOEIkpplntnvjR4P/s3Xd4FEUfwPHvXr9ceqUkJKH3LlKlCAIWBCkCAor6KvZesaNYEFHB3kWaiIIFVKSJVEF6h/SE9H65fvv+cfGSyyWAms58nuce2d2Z2dlf1ruZndldRS1+6ojojDdksuz6lF8GbBkJABh6jcKSeAR7YQ5OqxnjgY3o215SaVHWtDPIDhuqkOZV7i73x3cJHDETSa2ttkOo/+TST/llsBa4GhX+rYZizjqJvSQPp91CUcI29M26AeAoycVRkos1P5nE1XeTtOY+cg9+gyw7K92TOec0Co2B1F+fJWHVLNI3z8NuzP5XZTU0siwjlzuX//734cOn3et+/GEzoSH96NJ5DO+9t/w/76/8v8vvB2D6tMeICB/IyJH/48CB4/9pX/WFd4xd/z18uGyq4j33vMjcuQ+i1+vOmffvdYcPn6p0Xzt37ic4OID+/ScTHt6Pa66ZRVJSmkeaG254mLCwvlxxxc2NJsau7+QKy4ApOc4rae7WX/Bt3xVteFljLXzURHK3/oxst2NOS8J4+gh+nXudd7cVy7LlZmHLzcKcHMehu8dz+L5JpH3zKbKz8XxfVLb8j+L8R7k4nzpfnD1/Z83u/VT4DS7dbkqO/yeHUz/Jlf/2ebQvki6wfXH23O0LS/IxFHo/0j+8n5RXJpL51dPY8zOr8WAaEtnrn9Yi1wV+v6hBmPNOYTfn4XRYKE7dgU94F3fygJYjKErZjuy0Yy0+iznvDPrQ84/CFqVsQxfcFrVPWLUeSb0gy8iVnMeW0osU/s0GYc4/jd2cj9NhoSh9Jz6hXdxpPfO6yrNUcYHDXBCHQmUgZffLxG9+gLR9b2Mz5XikyTj8EXGb7yd17xtYiqoe/BIuLqIz3oDp2/Wh5PDvWNPjcNosFG76CiTJPZVdHdocVWA4aa9OIWXOWNf93ENv8CrHaTaS882rBAybhkJX+chiyZE/wOnAp5P3NL7GzKdZd4qTdmLJS8Jpt5J3+FtAQra7ppap/ZugMoSQtPouElbegq0wlaDO1wG4p5iXpB8i8spXaXr5UxgTt1N0ZnOl+3KU5FIcv5WQXjNoMfZtVL7hZGxb9K/KamhGX3kZK1f+wsGDJzCZzMx54T0kSaKkxATAxEkjOXL0BzIy/+CDD5/nxTnvsWzZv5uyOHLUQF599ROKioycPp3IZ599594PwOKvXiUu/lfiE9YzdEgfRo+6jfz8wmo5zrp05ZWD+frrdRw8eByTycwLL7xTGmPX7QLffbceu93OuHEjvPL279+DtLRMli37EZvNxhdffMeZM0nuvBWlpGTwxRereeutJ0lK2kxsbCRTppRNi1yyZB4JCRtJTNzE0KGXMnLkLY0ixv7d+5G3cxMlSWdwWi2kf/s5SJLHFOu/5W79hZDLRnusC+jZj/zdW9h30wiOPjyNkCFXYWh1/qmjFcuy5ro6MoWH/qTDq5/T5qm3yNv+GzmbG8c034DSOJv+jvN3n1cd5z9+IXiQZ5z9e7jivH/mCI49cu44+3frQ8b3S3CYSrCkp5CzZa17P4Y2nbHl55C7/Tdku52c39dhyUzDaa38/4uGRN/2PO2LkOaoAsJJmzeFlJdK2xdDztG+GFJ1+8JRmI1x/3qCrryD5g8tQRXUhOyVcytN25j5hHelOO1PLIXJOB1W8k6tASScpVPZNYYmqPQhJP72IPE/34m1+CxBbca48xvCu1F8dg9x624nefOT+EcNQhfY8rz7LUrZjl9U42zb+YR2pThjD5YiV0xz434AJPftARpDBCpdCAlbHyZu0z1YjWcJbnk1ALqA1jgs+RSd3YXstFOYtg2bKcvj1oLy7JY8is5uJ7TdZKIHvYZaH0rGoQ/d2yO63Er0wFeJGfQq+uD2pP21AIetpNKyhHIUUu196uoQ62zPwn+ma9WDgMtnkL30BdLmTUMZFIGk0aMMcD3EJvf7t5FtVprP/oaoZ7/Hp+MAsr6Y7VGG02Yha/EzaKI6EDB4SqX7cVpN5P/yMUFXV/1QrMZK36QzQV0mkLF1AUlr7kVlCENS61CWPqAte/enyA4b0eM/JHbSZxgiLyF9s+u+ZkmpASCwwzUoNQbUvmH4tb6ckrT9le5LUmrwieqNLqSV68EfXa7Dkn0Sp7XkH5fV0Fx+eV+ee+4uJk64n9iYEcTENMfPz0BkZBMAOnZsTbNm4SiVSvr378G9905j1arKp0ifz1tvPYFer6Vd29GMG3sPkyePdu8HYMCAnuj1Onx89Dz+xP8IDPRn69a91XKcdenyy/vx/PP3Mn78vURHD/WIsdFYwqOPzmPhwqcrzRsSEsSaNe/yxhufERExgJ9/3srw4f2JjIyoNL1er2XcuBFccklXdDotzz57F9u376OgoAiAAQN6uWP8xBO3Exjox9ate2rs2GuLf+deNJswk/gFT3H43olowpqi0PmgCfYccSo+fhBbfi6Blw52r7MXF3L61UdoMu5Genyxns4Lv6Hw4G6y1n93zn1WVpZC45q9FHHNVFQGP7RhTQm9fAwF+3dW49HWHb/OvWg6fibxbz7FkfsmogmtIs4nDmKvJM5nSuPc/fP1dHr73HGOnHEfCo2Wow9NJe6NJwnqdznq0v2o/AKIfXAuWeu+5tCd11J4cDd+nXqhCQ6vuYOvJbpWPQgYNoPsZS+QNn8aysDS9oV/afvih7eR7VaaP/ENUU+Xti8WV9K+WHLu9gWApNLi02EA2sh2SGoNAUOnY006itNsrNFjrG98QjsS3G4sGXsWkbjhYVQ+oShUOlQ6V3sj69CXyA4bMVcspOWo9zE06cXZ3QsAcFiLSdv9BsFtx9By9IdEXz6fkqzDFCRsPOc+TbkncVgK8G1a9cM4GzKfkA4EtxpD+oH3SNz6GCr93zF1PaAt89hXyE4bsUPepNWwd/AN70naX28BoNT40rTb3eQnrSd+y4OUZB9BH9zBnbciSaHGEN4DXUAsCqWa4JZjMBeccXe49YFtUCg1KJRagmOvRKHywZx/stKyhItLg3iAmyRJzwHPlltlAs4AC2VZ/rA0zU3AZ4CfLMvFFfLfXZpWKl0eAmwCusiyfLh0XQLwjSzLD5cuxwAXMtcsVpblhH91YNXAr+8Y/Pq6rozaslMo3LQUTUSMa/lsHAEjZqL0cd1v59dvLAUbvsRhLEBpCEC2W8n+6jmU/qEEX3tflfuwZ6dhz8sg46PSkS2HHafZSMrL19Nk1luogppUmbcxCGh7BQFtXfcbWgvPkn94NZrASAAs+UkEd5vkvnfbv91I8g59g8NciNq/KShUcIEX2zSBLfBM7Pq3jPyPy2qI7rxrKnfeNRWAkycTeOmlD+jcuXWlaSVJ8podeqGCgwP56qvX3Muzn3yTS/p0rjK9a1//cmf1zF133cBdd7lGr06ejOfFF9+jc+c2nDqVSEJCKoMGubZZrTYKCopo0mQAO3euICYmksGD+/Dnn6sAsNvttGo1gocemlnpfrp2bUf5B6BKpQtVxbExxTjsiusIu8I1O8Z8Npn01V+ii/QcncrZ+jOBl1yGUufjXmfJTEOSFIRcNgoATUg4wf2GUbB/J2EjxlGVysrSNW2BpFJXmacxqBjnjDVfoovyjHPu7z8TUCE21sw0JIWCkEFlcQ7qN4zCKuKs8vUn5q5n3MtpKz7Ep9woul+H7rSb4xr9kh12jjwwhfCrvJ+r0hD5XToGv0vLtS+2lGtfpMcRMLxc+6LvWAo2VmhfLH0OpV8owWOqbl8AqJvEQmVPTG4k3wn/REDM5QTEXA6AtTidvFM/oPFzTe+3FCUT0u46lBpXeyMgdjh5J7/DYS3CVpLtuq85cgAAKn0wvs0upSTzIAExw6rcX1HyNgxNeqFQ6apM09AFRg0jMMoVA6sxnby4H9H4umJqLUomuPU4973mAVGXk3tmDQ5rEUqNH/rgdkRd+hQAstNB4rYnCIy+otL9aP0i8Wikna+9JkHFWfBCJS6Cp6k3pJHxAqBf6ecaYAPwgSRJU2tof2fL7a8f8Pf8q7sqrD9bQ/t3kx0OZJsVnE5k2Ylss7rXWTPikWUZe34muavfxK//OBR614NYNJHtMO7/DafZiOywU7TrB5R+Ia4fSoedrKVzkNQaQiY8iqSo+lRQR8TQ/NElNL37PZre/R7B4x5A6RtI07vfQxkQVlpHu6uOsgxOV91kp6OmQ1NtZKfDNRVMdoLsxOmwutdZ85NdMTZmk737YwLajXT/GGpDWlIUvxWntcQ1jenUepT6IJQ6fxQqLb4t+lJw9EecNhP2khyKzmzEp7n3k00B/FoOpiT5Tyx5CchOO3mHv0MX1g6lxvCPy6qv7HY7ZrMFh8OJw+HEbLa41x0+fApZlklKSmPW7c9x773T3E/qXrNmI3l5BciyzO7dB1m4cAljxgx1l2uz2TCbLTidznL7qPz8O3MmiZycfBwOB+vWbeWjj1Yye7brVXZJSWls2/YXVqsVs9nC6/M+JTs7jwEDelZaVn3kGWNHhRifdMf4ttue4b77ZhAUFEDnzm1ITt7M/v2r2b9/NR9//CIRESHs37+aqCjXq/P27TuKzWajsLCYhx9+lcjICEaOHFRpHWbOvI7vvvuN/fuPYbPZmDPnXQYO7EVgoH9pjPe6Yzxv3scNLsayw47TanHdg+10uv5dus6UHIcsy1izM0j6eB5hIyeg8i17OJbTaiF/12ZCBo/yKFPXxPXKsdxt65GdTmz5OeTt2IS+ReUXpM5VlkKrI6jvMDJ+XIbDVII1J5PsjT8S0KNhvSHg75jidCKfI87Jn5TG2VAhzrs3uy9u/E1bWZx3bkIfXXmcLRmp2IsKkJ0OCvbvJHvjDzQZW/ZqrZKEk8h2O44SI6lL30UTHIZ/1z41EI2a4dG+cJ6jfbHmTfz6lWtfNK/QvthdoX2xfA6SSkPI+HO3L8D1ANiSo9tK7y23U7h5Cdrozij0vqV1bNjti4pcbQsbyK42ndNhc6+zFKYgyzI2Uw5ZBz8nIHYEytK3pugCYilK2Y7DVtreSNiIUhuIUuOHxtAEZJmi1B3IshO7uYDitN1o/Kt+laHTYcV49k/8ogbU1qHXmL/j53qOToWYFqe6Y5p57EsCWwx3Pw1dGxBD0dkd7pgWpGxyxxTAUpiE7LTjtJvIPrUSlTYIQ2jlF+/9mg3AmLkPS5ErT27cj+gC26BU+2Az5WDKP+Uqy2EjL+FnHNZidIFVf78LF48GMTJeyi7Lcvk5dhskSeoPjAWWVp7l35Nl2QK49ydJ0t+j7Ucr1KPGFWxeQuHGstcPlezfgP+wafj3v46cFa9gz01D0vrg2/MKAobf6E4XOPo28n58h7Q3bkJ22NFExBB6g2uCgSXpKOYTu5DUWlJeLBsNCLvxJXQxXTAnHCLri9lEPfs9klKJ0q/svdkKvR9ICo91ud8twLhvvXu5cPMygsc/jG/Pyq8g1jd5h78j/3DZE7WLE/4gsPN1BLQfTeb2RdiKMlGodfi1HExQ10nudCE9biBnzxck/fAgOO2oAyOJGPSAe3voJTeRtetjEr+7C4XGB/9Ww/BrOQQAU+Zx0je/SuykzwDQN+lEcPfrSd88D9luQRfWjvD+d19QWQ3FSy9+wAsvvOteXvLVDzzzzJ3cd/90pt3wKGfOJOPn58NNN43jhTn3uNOtWLGWW295CovFSmRkEx599BZuvHGse/tttz3Ll1+scS/Pnfshn3z6IjfdNI6tW/dy1ZW3U1jkmga9d+9RHnzgFfLzi2jbNprFX71Kp06uH8SiohLuunMOZ84ko9Np6N69PT+tfd/ryeT12Ysvvsfzzy9yL3/11fc8++zd3H//jUyd+lBpjA3MnHkdc+a4RqxUKhVNmpRN8Q0ODkChUHise+21j1m71vWU6FGjBvHdd++4t23duofRo/9HcfE+AIYN68fcuQ9w1VW3UVJiZuDAXixdWvpKpCIjd9zxXGmMtXTv3p516z4iJKTyqX/10dnvvnTdD14q949faXLdTYSPnkj8ohewZqah0PkQMng0zSbd4pE3f89WlD4Gj1dtASh9DLR8YA6pyz4g6dM3UGi0BPTsT9Ox0wEoPn6A068+SvfPfjlvWQBRN91P0sfzOHTXOJQ+voQOu4aQIVdVYxRqXvpqzzjnbXPFOWzURBLeKRfny0bTdKJ3nBX6yuMce/8c0pZ/QPJnpXHu0Z8m15bF+cxrj9LtU1ecS+JPkLJ4IY6SYnRNooi562n0kbHu8jJ+XEZh6fR//659iH3gpZoIRY0p2LLEdT94qZIDG/AfOg3/fteRs7Jc+6LHFQRcXq59Meo28n56h7Q3S9sX4TGETq2kfTG3XPtiern2xeLZRD39PQC6lj0IHDGTrMVP4bRZ0EZ3ImTi4+58uWsqtC+2LCN4XMNpX1SUd+qH0vvBXYpTdxDU5loCWl5B5r4PsJVkolDp8IscSHC769zpQjpeT/bhJSRtehycdjR+ke7XminUeiJ6303usZVkH1qMpFTjE96doDau+59NOSc5u/sNWo5+312eMf0vFGof9CEN95Vmf8uN/5G8uB/cy0VndxLU8hoCW4wg49CH2EqyXDFtNoDg1mPd6ULbTCLrxDKSts1Glu1ofJvTtNud7u15CT9TknMIAJ+QTjTpXna7pinvJGn73qLVMNdvoU9wB0JajyNt39vIDiu6wNZEdPkfAE6HmaxjX2EryUJSqtH6RdGsx/3ugR3hHOrwXu7aIjWEqYGl09TvlmU5tML6DUChLMvjqnuaeiV16AwcAobKsry5qrpGz11f/wPawKmOZJ8/kfCfnfqqW11XodFTSA3pemjD1GtZxvkTCf9JA2hGNAo5cQ3/wXD1nXrX+V8FJvw3kqXhzmpoKE79ekuj6cHGPvpjrf3CxL92dZ3ErUG1BCXJ3XL1AcYAg4Gb665GgiAIgiAIgiAIQrVrNJcVqtaQOuMhgK3CurdlWf6yLiojCIIgCIIgCIIgCP9WQ+qMFwDDS/+tBXoBL0iSlCvL8vN1Vy1BEARBEARBEARB+GcaUmfcLsty+RfRbpMkSQ3MlSRpIWAvXa+sJK8SEDepCIIgCIIgCIIgNADyRfAAt4b0arPKHAU0QCsgq3RdZS+9bgpk1lalalr+L59QuO3b8yesRbLdStqCm3EU59V1VapF7v7lFBxfV9fV8CA7bCT/+BAOc0FdV6VaPPnEAt56s37dZWKxWOnY4WoyM3PquirV5okn5vPmm5/XdTU8WCxW2rcf1WjinLr8AzLXfV3X1fDgtFk58tA0bAWN4zs5rZ7G+OjDjSfGAPm/fkLh9nrYvnir8bQvco6tJD/u17quhgfZYSNp0xPYLYV1XZVqkX1qFfmJ68+fsBbJThuJ257Cbm0cMRaqT0MaGa/M3y/7SwZOAxbgWuC1vxNIkqQArga21nrtaoDDmI9x3280fehz9zrzmX3kfr8QR0EWmsj2hIx/GFVQRKX5bZlJ5P6wEGvqKZSGQAJH3YpPp4EAGPdvIHfNW2WJZRnZZqHJnYvQNG9L/oYvKdy8DEmldidpes8HqIKbIqk0+PYaReHvXxN05e01cuy1xWEupCh+K1HXLABc7zjN3L4IS24cdmM2TS9/Cn1ExyrzF5z4haL437HmJ+Mb3Z/wfrPc28zZp8g7uBJLbjxICvThHQjpfSMqfdlrnSy58eTsXYwlLx6FSktgx2sJaD8aSanGr+UQ8o/+QEjPaTUXgFqQlZXL4sXfc/JU2QWPDRt2cs/dL5KUdJZLL+3Cp5/NJTq62TnLOXUqkW5dxzJ+whUsXvwqAAkJqbRqeQUGg96d7tFHb+Gpp+8A4Morb+ePrXvd26xWG+3axXLg4Gq0Wg0zZ47jtVc/4fX5j1bnIdeJrKxcvvxyNadPuxolVquVqVMfZs+ewyQmprJp05cMGXLpOctYvvwnnn9+EUlJZ2nSJJTPP3+FQYN6A/D112t59tmFpKSkExXVlLlzH2Ts2OHuvH/9dYT775/LX38dxWDQ8+STt3PffTei1Wq4+ebxvPrqR8yf/3hVu24QbIX55G79hU4LlrnXFR7eS/JnC7DmZGBo3ZHo259AG1bZdWI4OedejKePIilck7rUwaF0mr8EcL0yLemT+e60suxEtlpo/+JH+LRsR9o3n5K+ZjEKlcadpsMrn6GNaIZCrSFkyJVk/LCEyGl305DZCvPJ/eMXOr5RFuOiw3tJ/rw0xq1cMdZUEeO/mdOTOf74TAL7DCbmzqfd650WM6lL3yVv5yZkhx19i1a0fWaRR16n3cbxx2fiNJvovGgVgCvGgxtHjKG0fbH/N5o+8Ll7nfnMPnJ/LNe+uO5hVIGVty8AjAc3UbDpKxwFmSh9gwm+7mF0MV0AcFrN5P/yISWHf3e9Dq1JSyJufQOAwu3fUrRzNc6SQhQaHT6dBxM48jYkpdLVvug5isKtXxM0uoG3LyyFFKVsp8WwV93rSrKPkn1oMXZTLtqgloR3uwW1T2iVZRSl7iLv1BrsphyU2gDCu92KPqQtAMVpu8k9uRq7KQ+VPpiQ9uMxNHG93i/3xGryTv+IpChr+kdd9gJqQ7irfRE1iPwzawntOLmGjr52OKxFFJ3dQfSAuQDITjvphz7CUpiA3ZxDs14P4xPcvur8tmIyj3xBSc4RlBpfQlqPx69p2e9kQcrv5Cesw24tRB/YmvCOM1HpAgEoyT1OXtwPWIqSUKh8iBlU9neWFGr8mw8gP34doe2ur5mDb4wugpHxhtQZV0mS1Lf03xpc94w/BayRZTkdQJKkN4EXJUkKALYA/sAsoDVwIb2XtpIkTaiwzijLcr0ZIjX+9Su6dn1QqLUAOIwFZC15npBxD6Jv35f83z4ne8VLNJn1tlde2eEg66tn8e1zFeEzX8ESf5Csxc+gjohBHRqJofvlGLpf7k5f/NevFG5agrpZG/c6ny6DCZ1UeePZp9tQ0hfdQeAVM5HKNQ4bmqK4Lfg06+7RwNWFtSOg3Sgy/vCOa0UqnyCCOo2l5OxBZIfnMwedViN+rYcR0bQrSEqy93xO1s4PaDrUFVOHuZCzm14lpOc0mra4FNlpx16S687vG9OflHVPENzteiSlmobqi89XM3r0IPR6HQDZ2XlMGH8fH370AtdcM4Rnnl7IlMkPsX3HsnOWc/fdL3LJJZ0r3ZabtxOVyvsrbu3aDzyWhw29iaFD+7iXp0y9ip49xvPS3PvRahvueQzw+effcuWVg91xBhg4sCf33z+DiRPvP2/+9eu38dhjr7NixQL69OnK2bNZ7m2pqRlMm/Yoa9a8w6hRl7F27RYmTryPhISNhIeHkJ2dy6hRt7JgwRNMmDAKq9VKSkrZa8amTr2G7t2vZe7cBxt0nHO3rMO/e18UGtd3sr0wn7gFTxH9v0cJ6NmftJWfEL/wOdq/8H6VZUTddD+hQ6/2Wh888AqCB5a9SzlnyzrOfvcF+ti27nVBfYcRe9fTXnkBgvsP59gTt9Ds+ttQqBtwjH9fh3+3cjEuyifuzado8b9HCejRn7PfuGLc7hwxBkj5bAE+Lb0b4UmfzEN2OOgwbzEqXz9Miae90mT+uAyVfyBWs8ljfVD/4Rx/suHHGMC471d0bSu0L5Y9T8jYB9G360v+htL2xe2V/w6aTu8l/9dPCL1+Nprm7XAU53psz13zJjgdNL33YxR6P2xnz7i36dv3xbfHFSj0vjhKCslePoeind/hP8DVJPPpOpT0d+8gcETDbl8UpmzDJ7wrCqXrGBzWIjL2LCKs60x8IrqTe+JbMv56j8iBlf8/XZJ1hNzjK4noeQfawFiPmXJ2Ux4Z+z6kySX34hPWhZLMg2TsfZcWl89DpfUHwLfZJUT0qPyChl/zviT//iwh7cY36PZFYdo2DKFd3DEG0Ae2JrDFcNIPnvs7AiDr2FIkhZLYwW9gKUrm7P630fhFovVtjin3BLmnv6NZ74fR+ESQdWIZ6Yc+JPIS18V7hVKDX7OB+Dqt5MWv9Srbr8mlJO18gZA21yEpGm6MherVkKapBwA7Sj+/AXcC7wPTy6V5AngMGAf8AHyK617xwbIs77+AfVwDrKzwea96ql89TCf/RBfbpWz5yB+oI2Lw6XIZklpDwOXTsZ2Nw5aV5JXXlp2EoygHvwHjkRRKdK16oI3uhHHfb5Xuy/jXegzdhyNJF3ZVShUQhkLviyX5+L87uHqi5OwBdOEd3MuSUkVA+9HowtuDdP7/ZQxRfTBEXYJS6+e1zadZd3xb9EWh9kGh0hLQ9grMWSfd2wuOr8WnaVf8YgciKdUo1Ho0Ac3d21U+ISjUBszZ3o3FhuTnn7dy2eBL3MvffrueTp1aM3HiSHQ6Lc8+dycHDpzg+PG4KstYvnwtgYF+DBvWt8o055OQkMrWrXuZNn2Me11kZBOCgvzZufPAvy63vli37ncGl4uzRqPh/vtvYuDA3iiV5z+Xn312Ic88cyd9+3ZHoVDQvHkEzZu7RsVSUtIJDPRj9OjBSJLEVVcNwWDQc+aM67vnjTc+Z+TIgdxwwxi0Wg1+fr506NDKXbYrzgHs3Lm/eg+6lhUc2Ilvh+7u5fw/f0cfGUNQ36EoNFqajp+JKfE05tTE/7yvnK0/EzJo5AV/J2tCwlEZfDGePvqf912XCquK8aWuGDe5biampNOY06qOcd6ODSgNfvh16umx3pyWRMHebbS45RHU/oFICiU+se080lgy08jd9isRY7yv6TeWGENp+yKmXPvi6B+ow2Pw6Vzavhg2HVt65e0LgIKNiwkYegPaqA5ICgUq/1BU/q4RXltWMqYTOwm+9n6UBlecNc3LLiqpg5uh0PuWFSYpsOemuRdVAWEodI2gfZF5EH1I2fllPLsXtV8zfJtdgkKpJrjtWKyFyViLz1aaP/fkdwS1GYMuqBWSpEClD3LPrLObc1GofTCEd0WSJAwR3ZBUGuwlF3aXpkofjFLtgzn/zPkT12Ml2YfRB5WdW5JCRWD0CPRBbc7bhnM6LBRn7iW41VgUKh36oDYYwrpRdHYHAMbsA/hG9Ebr2xxJoSI49hrM+SexlcZYF9AS/2b9UOvDKi1fpQtGqfLBnF9120aoQJJq71NHGkRnXJbl52RZlsp9NLIst5Fl+TFZlovKpZNlWV4gy3JHWZa1siz7y7I8UpblXRXK21xazuFy62Iq7OPvT0zp9sOly5tr67grY0tPQBUa5V62ZiaiadLSvazQ6FEFN8WWUUmjRK6kQFnGlpHgtdqel4El4RCGHsM91puO7yTlxfGcfet/FO36wSufOqyFx9Xuhsian4zav2mt7MuceRxNQGTZcs5pFBoDqb8+S8KqWaRvnofdmO2RRxPQHGv+f2/Y16VDh07Rrl2Me/nokTN07VrWQDEYfGjVKoojRyq/6FBYWMxzzy7i9dcfqXIfsTEjaBE1jJtvnk12duX3Gi7+cg2DBvUiNjbSY337Di05eODEPzii+unQoZO0axf7r/I6HA727DlMVlYerVuPIDLyMu6++wVMJjMAvXt3pkOHVnz//QYcDgerV/+GVqtx/x137txPcHAA/ftPJjy8H9dcM4ukpDSPfXTo0JIDBxp249qcHIeuadl3siklHn2L1u5lpU6PNqI5ptT4KstIW/4BB267hhPP3UnR0X2VprFkpVN87ADBg0Z6rC/4azsH/ncVRx+ZQdb61V75dM2jKx3pbUjMyXFoy8XYXEWMzSmVx9hRYuTsN5/Q/IY7vbYZzxxFExrB2VWfcvD2azj22I3k797skSbli7doNuk298h8RdpGEGMAW8YFti8yvX9/ZKcDa9pJHMYC0hbcROq8qeT+uAinzQKAJeU4qoBwCjZ+ScrLEzi78DZKjnjePWg8sJHkF8eS+vIEbOlx+Pa+ymO7OqwFtvQG3r4oSkHt26Tccipa/xbuZYVKi8oQjrUo1SuvLDux5CfgsBaRuPExEn57kKxDi3E6rABoA2PR+DbDmL4PWXZiTP8LSaFG41f2Ny3JOED8L3eTtHk2BQkbvfah9muGpTC5Og+51lmKU1D7nPuWlarYjBlIkgKNoSy/xjcKa3Hpb5csI3s0puXSfXr/vaqiNjTFUtywYyxUr4Y0TV0AnOZiFNqye2FlqwmlIdAjjaQz4LSaqEgdFoXCEEjR1pX4DbgOc9x+zAmH0MV280pr3LcebUxnVMFlnVJDl8H4XnIVSt9ArMnHyVo6B4XOF0O3oWX71upxmo3VcKR1x2ktQaHSnT/hf2TJSyLv8LdEXPaQe52jJJfi3ASaDHsCTWAUufuWkbFtEc2veM6dRqHS4bSW1Hj9alJ+fhF+fgb3cnFxCWFhQR5pAgJ8KSqq/Fx65umF3HzzdURFeV80CQ0NZNfuFXTv3p6cnHzuvvtFpk17lJ9//sgr7eLF3/PkbO8pe35+BvLzG/5DVirG+Z/IyMjGZrPxzTc/s3XrEtRqFddeeycvvvgeL730AEqlkhkzrmXq1Icxmy1oNGpWrnwLg8EHgJSUDP766yjr139Kly7tePTReUyZ8iDbti1376MxxNleUoxS5+NedlpMqPwCPdIofQw4Td7fyQDNp8xC1zwGSaUib8cGzrz+OB1e/hRtRHOPdLlbf8G3fVe04WXPUQjqO4zQy8egDgjCePoocW8+jdLgS3D/souoCp0PjpLiajjSumMvKUapL4uxw2xC5R/okUapN+CoIsZnv/mYkCFXoQnxvtfZlpuFOSWewD6D6fzOtxhPHSFu3mPomsegax5D/p+/IzsdBF5yWZUXSpSNIMbwD9oXFu84O4rzwWHHdGQrEbfOB4WKrKXPUrh5KYEjZuIozMaWmYC+00CaP7IMS/Ixsr56CnVYNOpwV2fU0G0Yhm7DsOWkYty3HqWv529Co2hf2EwoVGUxdjosKDWes+iUKj1Ou9krr8NSALID49k9NO//BJJCSfqfb5N36gdC2o9HkhT4RfYnY98HyE4bkqQiotedKFSui0i+zS7BP3owSm0AlrwzpO99B4XaB7/mZbPLFEodTlvDbl847aZ/3YZzOswefx8AhUqP0+H6e/iEdiX90AcERA5G7RNBbtwPgIRcekHkQihUOpy2yr+rhEo0iGHj/+YiOMTGRaH39fghlDTeP06ypQSFRl8xK5JSRdi05zCd2EXqy9dT9McqfDpfhjLA+0Ehxv2/YegxwmOdOjwalX8IkkKJNroTfv3Hel3Zli0mFLp/1/ivLxQaQ6U/hNXJVpRO+uZXCek1A3142T2MklKDT1RvdCGtUCg1BHW5Dkv2SY/Ot9NuRqHxqazYBiMoyN+jo+3r60NhoWdjtrDQWGlHcv/+Y2zYsIP7H5hRadm+vgZ69+6MSqUiIiKUhQtns/7X7V7l//HHXtLTs5kw4QqvMoqKjAQG+v+bQ6tXKsb5n/j7PvN77plO06bhhIYG8+CDM1m7dgsAv/22nUcffZ3Nm7/Eaj3Mli2LufXWp9i//1hpfi3jxo3gkku6um49ePYutm/fR0GBezJTo4izyuCHw1z2/6dCq8dh8mzMOkxGFHrv72QAQ+uOKPU+roeBXTYa37ZdKNi/0ytd7tafCRk0ymOdPjIGTVAokkKJb9suhI+aQP6uzR5pnOYSlD6+NGQqg59HTJU6Pc5KYqysJMYlCacoOryXsNGTKi1bodEiKVU0GTsDhUqNX4fu+HbsQeGhP3GYTaQte4/IG+87Z/0cjSDGUEX7wlKhfWEu8eiwu/OW3i/v2/dalH4hKA0B+Pcfj+nkbldZag0oVQQMvgFJpUYX2xVtbDdMZ/Z6laUOaY46PJrcHxZ67rsxtC/UPjjtZTFWKLUey1B1Z1JSuGLsH3M5Kl0gSo0fAS1HUpJ5EHDdT55z7Gua9XuMlld+RLP+j5F18DMsBa7bCjR+zVHpgpAkBbrgNgTEjsB4do/HPpwOMwp1w25fKFU+/7oNp1DqvPI67SYUStffwyekA8GtxpB+4D0Stz6GSh+KQqVDpQuqrLhKOe1mFOrKfw+Ei5PojDcw6iYtsWenuJc14dFY08vuPXFaTdhzz6KOiK40v6ZJSyL+N5/Ip1YRPvNl7HnpaCIr3B+XeARHYQ4+nQedsy6SJIHsOffdlpWEummrKnI0DNrAKGyFld+vVR1sxizObpxLUOdx+MV6xlgT2AIof9+K69/lp0VZC1LRBFb+920ounZty8mTZVMdO3ZqxcGDZdPCjcYSzpxJplOn1l55t2z+k4SENGKih9Os6WXMn/8Z365aT+9eFZ+96PL3/bVyhXP1yy/WMO66Efj6ejfujh+Lo2u3dl7rG5quXdtx8mTCv8obFBRAZGSTKu9P3r//GJdd1pvevbugUCi45JKuXHppV377bbt73+WzVvZ3OHYsjm7dqn6qbUOgj2qF5WzZlEN9ZCympLIpyw6zCUtGGvrmF3i7QCXfq8UnDmHLzyHw0iHny1xhCiWYUxPRR3v/f9SQ6KJaYUkvi7EuMtZjWrjDbMKSmYYu0jvGxcf2Yc1O58i9Ezl051gyf1pB/u4tHJ99C+D6+1XFkp6CJTudUy/cw6E7xxL/5lPY8nM4dOdYLFllvxGWRhBjAHVES+w552lf5J1FHe79+6PQ+6H0D8Xz96uMJqJlpeur5HRgz/X8HbZlJaFu0sDbF/5R2IrLHmSp8WuOtdy0cKfdgs2YhcavuVdepcaAUhdU5XeytTAJfXA7dIGxrg53YEu0gS0xZR85R40qtOGK0tD6R1WRtmHQ+EViK8k4f8JKqA0RyLIDq7Esv7U4BY1v2YykwKhhRA+cS+yQBfiG90R2OtD4ev+9qmIznkXr27BjXKvEPeNCfaNvewnm+INly50GYMtIoOTwVmSblYKNS1A3iUUd1qLS/Nb0OGSbFafVTOHWlTiKcvDt6TkyWPzXr+g7DUKh9bw6WnJ0O05TEbIsY0k+TtH21eg79HNvtxdk4ywpQhvVwBvXzbpjzjzmsU522Nz3ZclOO06H1atz507rdLjSyk6Qna60TgcA9pJczm54Cf82I/BvM9wrr1/LwZQk/4klLwHZaSfv8Hfowtqh1Bjc+Z1WI7rQht3wGz16EL9v+dO9PG7ccA4fPs2qVb9iNluY88J7dO3alvbtvRtw/7ttIqdOr+Ovfav4a98qbr/9eq686jLW/fwhALt2HeTEiXicTic5Ofncd9/LDBlyCQEBZVMBTSYz33zzKzfeeK1X+ampGeTmFtC3r/ftGw3NlVcOZku5OIPrHd9ms+s+TqvVhtlsqfJcnjnzOhYuXExmZg55eQW8+eYXXH31EAAuuaQLW7fucY+E79t3lK1b97rvGZ858zq+++439u8/hs1mY86cdxk4sJd7JLwszt1r4Mhrj3/3vhQdK3vYX8All2FKjidv92acVgvp332OvkUrdM29OzB2YxGFB3bjtFqQHXZy//iV4uMH8O/axyNdzu8/E3jJYI+p2gD5e7ZiL3Z9JxtPHyXrl1UE9hro3m7NzcJuLMLQuupXMTYEAd37Ulw+xr0vw5QST375GEe1QtfMO8ahw8bQ8Y1ltJ/7Ce3nfkLo5WMI6N6PVo+5Xhnn274b6tAIMr5fguywU3ziEMXH9uHftQ/6qFg6v/2NO2+L/z2KKiCI9nM/QRMSDjSeGENp+yKhXPuiY2n74khp+2LTEtQRVbcvDD1HUrxrDY7iPJymIop2fIe+neuVUNqYLqgCwin8fRmyw4El8QiW+IPoW/cCoHjPOvd7xG2ZiRT+vgJdq+7usu2F2ThNDb994RPeFVNu2YVnQ5OeWItSKT67B6fDRt6pNWj8I9H4Vv7cGv+oQRTE/4bdUojDaqQg/lcMEa7fKm1gLKbck+6RcEtBIubck2hKO9fG9L9wWI3Isow5L46C+N/wiejhLttuysNhM6ILbNgXPHxCu2DKO+mxTnbacP79dhvZgdNhq/R3T6HU4hvek9wza3A6LJjyT2HM2o9fU1db1+mwYSlORZZlbKYcMo99SWCL4SjVrjaaLDtLy3YAsuvfTru7fLs5D4fdiC7wH16cEho1cc94A2PoMYL0RXfgtFlQqLUoDYGETX2G3B8WkbPyVTRR7Qm9/kl3+oLNy7AkHCL8Jtf7Fo37fqN4z8/gtKON7kz4zFc8XhMi26yUHP6dsKnPeO275NBmcr+dj+ywofQPxf+ySR4d+ZKDGzH0HNGgXzsC4Bc7iJR1T+K0W92vN0v+8SH3g9TSN70CQNSYt1D7hpF3ZDXmzBM0HfoYAHmHvyP/8Lfu8ooT/iCw83UEd51A0ZlN2IszyTv8LXnl0sRO+gwAfZNOBHe/nvTN85DtFnRh7Qjvf3e5srbhFzuoQb92BGD6jGvp2WM8JpMZvV5HWFgwK795k3vveYkZ0x/n0ku7snTZ6+70L8/9kK1/7GXt2g/w8dHj41M2xcvX1wedTktYWDAAcXHJPDX7LTIzc/H3NzB8RH+WLJ3nsf/VqzcQEODL0KHe79hetvQnZsy4tkG/butvM2ZcS/fuY91xBmjXbhSJia6HzYwc6RodjI/fQExMJHPnvs/WrXtYt+5jAJ5++k6ys/No29b1lPtJk0Yze7brfe2DB/fhuefuYcKEe8nIyCYsLJgnn7ydK65wdQaHDevH3LkPcNVVt1FSYmbgwF4sXVr2zuylS3/gxhvHNvg4hwwaybEnb8FptaDQaFH7B9Ly/jkkf/4mCe+8iKF1R2LvedadPn31YopPHKT1Y67XaaWt/BhzWqLr9p9mLWj54EvompV1dpxWC/m7NhF7/xyvfeft2Ejih68i22yog8OIuGYqIZeNLtu+7TdCBo1q8K/cCh40kuNPeMY49v45pHz+JgnvumIcUz7GaxZTfNwVY4VWh0JbNuVXodMjaTSoS+85l1QqWj44l6SPXiPjhyVoQiKInjXb3bFXB4a48yoN/kiSwmNd3vbfCG4EMQYwdB9B+rsV2hdTniH3x0XkfPMqmsj2hE4q177YsgxL4iHCZ7jaFwFDbsBZUkDaWzcjqTT4dL6MgMFTAddtcqFTnyN3zQIKt65AGRhByPhH3B17S9IR8n/7DNlqQmEIxKfTIAIvv8m9r5KDGzH0aATti8j+JP/+LE6HFYVSg1LrT0Svu8g+/BWZ+z5EG9iSiJ53uNPnnfoRU+5Jml36IABBba7BYS0iedPjSEo1vk37ENj6GgD0Ie0Jbnst6XvfwWEpRKn1I6j11fiEuV7/WZy2m8wDnyI77ah0QQS2vhL/qLKLd0VpO/GLHNDg2xf+TfuRtPMFd4wBErc9hd2cA0DaXwsAiB74Cmp9KLnxP2HOO0WznvcDENbhBjKPfE785gdQanwJaz8NbenIt+y0kXHoQ2wlWShUOvyaDSC49Vj3vk15J0nbW9Z2idt4B7qgtkT2dr36rCh9F35N+4vXmv0TF8F7xqWqRkSEfyd67voaD2j+r5+iMATiP+C6mt7VBZPtVs4unEXE/+Z7PXSluqmOZJ8/0X+Uu385Sl0AAe1Hnz9xLZEdNlLWPU6z4c+g1AXU+P5OfVWzI8Ozn3yT8PBg7ru/8nu/64LFYqVH9+vYvOULwsNDzp/hP1JINX899Mkn3yA8PJj777+pxvd1oSwWK926jeH335fUeJx7Lft30xX/idTlH6IOCCS8ivuS64LTZuXY4zfT9pmFqANq9ju5NpoRaSs+ROVf/2J8/ImbafN0zccYICeuZp9lApC/vrR90b+etS/emUXELTXfvlDvuvCnYv9bOce/QanxJ7Cl9/NK6orssJH8+zM06/+E+53kNUWyOGq0fICcU9+i1PgRGD3i/Ilriey0kbTjeZpf8igqTc3G+NSvtzSaHmzM87/UWkc14dmRdRI30RmvZrXRGb/Y1UZnXKj5zrhQO53xi11tdMYvdqIZUTtqozN+sauNzvjFrjY64xe7RtUZn/Nr7XXGn76iTuIm7hkXBEEQBEEQBEEQhFomhmUEQRAEQRAEQRCEekWuw6ec1xYxMi4IgiAIgiAIgiAItUx0xgVBEARBEARBEAShlolp6oIgCIIgCIIgCEL9chEMG18EhygIgiAIgiAIgiAI9YsYGRcEQRAEQRAEQRDqF/EAN0EQBEEQBEEQBEEQqpsYGRcEQRAEQRAEQRDqF4UYGRcEQRAEQRAEQRAEoZqJkXFBEARBEARBEAShfhEj44IgCIIgCIIgCIIgVDcxMi4IgiAIgiAIgiDUL41/YFyMjAuCIAiCIAiCIAhCbRMj44IgCIIgCIIgCEK9Iot7xgVBEARBEARBEARBqG5iZFwQBEEQBEEQBEGoXyQxMi4IgiAIgiAIgiAIQjUTI+OCIAiCIAiCIAhC/SLuGRcEQRAEQRAEQRAEobqJzrggCIIgCIIgCIIg1DIxTb2a5X28rK6r0Oj1ePuWuq7CRaFF15V1XYVGT9O/c11XodFb+JRPXVeh0QvVOuu6CheFYK1c11Vo9PwfCq7rKjR6F8GsY6E6XQTnixgZFwRBEARBEARBEIRaJkbGBUEQBEEQBEEQhHpFcREMG18EhygIgiAIgiAIgiAI9YsYGRcEQRAEQRAEQRDqFUncMy4IgiAIgiAIgiAIQnUTI+OCIAiCIAiCIAhCvSJGxgVBEARBEARBEARBqHZiZFwQBEEQBEEQBEGoV6SLYGhcjIwLgiAIgiAIgiAIQi0TI+OCIAiCIAiCIAhCvXIRDIyLkXFBEARBEARBEARBqG1iZFwQBEEQBEEQBEGoV8TIuCAIgiAIgiAIgiBcxCRJGiVJ0glJkk5LkvR4FWmGSJK0X5KkI5IkbbmQcsXIuCAIgiAIgiAIglCvSPVk2FiSJCXwDjACSAH+lCTpe1mWj5ZLEwi8C4ySZTlJkqTwCym7nhyiIAiCIAiCIAiCINQ7fYDTsizHybJsBZYD11ZIMxX4VpblJABZljMvpGDRGRcEQRAEQRAEQRCEyjUHksstp5SuK68tECRJ0mZJkvZKkjTjQgoW09QFQRAEQRAEQRCEeqU2H+AmSdJtwG3lVn0oy/KHf2+uJItcYVkF9AIuB/TADkmSdsqyfPJc+xWdcUEQBEEQBEEQBOGiVdrx/rCKzSlAVLnlSCCtkjTZsiwbAaMkSb8D3YBzdsbFNHVBEARBEARBEAShXlFItfc5jz+BNpIkxUqSpAEmA99XSLMGGCRJkkqSJB/gUuDY+QoWI+OCIAiCIAiCIAiCUAlZlu2SJN0N/AIogU9lWT4iSdKs0u3vy7J8TJKkn4GDgBP4WJblw+crW3TGGyFr4VFsRadxWvNQ+bZEHzaoyrROWxHmnJ04zOlIkhKVXxt0wZf843IuNqk/riJjw1qMCXGEXzacdg/MrjRd+oZ1pP2wElNaCkofA+GDRxA74zYkpQqnzcqp9+aTv38P9uJCdE0jiZ1+G8G9+9Xy0TQMxTm7KMnbj82SiU9AZ4Iix1Wazpi3j/zU75EUZV9vIS2movWNra2qNhiFh9dRdHIT1twkfFsPJGzI3ZWmKz79B/l7v8Zeko+kVOET1YOQAbeg0Ph4pLMVnCX1mwfxie1L+LD7auMQGoQfPv+BDSvXk3AigcFjhvDAGw9Wmi7hRAKfzPmYM4dOU5hXyI9Ja/9VORejlZ/8wE8rNnDmWAIjxg3mmbcfqDLtsvdXs3jRN1jMVoZe1Z9HX7sLjVYNQFpSBvMef5fDe46j1qgZds0A7p9zGyqVsrYOpd5a/OGPfLd0AyeOJnD1+Mt49b2qY/zZO6v56K1VmM1WRl7Tn+ffuNMd42lXPcH+PSfcMY1oGsIve96vlWNoCD557ydWfLWB40cSGTvpMt7+sOrv0g8WrmHR/G8xm61cdW0/Xn37DrSlcf4n5VxsPnnvJ5Z/tYFjhxMZN+kyFn5UdWzef3sNC9/4FrPJytVj+/FahRhfaDnCv1Ob94yfjyzLa4G1Fda9X2F5HjDvn5Qrpqk3QpLSB01gN9R+bc6ZTpYdlKT/gkrfFN8WkzFETULt2+ofl3Mx0gaH0mLSjTQZcdU50zktZlr97z76LfmJHvM/JP/AHpK/XQaA7HCgDQ2n28uL6L/8F2JuuJVjrz2DOeNsbRxCg6NU+eEXfhmGoB7nTavxiaRZx9nuj+iIV05pCCKw5wT82g07Zzpdk/Y0vfZFYmZ+SdSUd5BlB3l/LvNKl/3HR2jCWlVSwsUtJCKY6++dzIhJV5wznUqlYtDVg7h3XuUNugst52IU2iSEmfdfz9VTRpwz3c5Ne/ly4Tcs+uYlvtvzKalJ6Xz02hL39nmPv0tQaCA/HlzM4o0L2bf9MKs++6mmq98ghDcJ5o6HJzFh2rljvHXDX3z45iq+WPMimw5+QnJCOm+9vMQjzTPzbmd/6kr2p64UHfEKmjQN5oHHJjF5xvBzptu0/i8Wzl/FyrVz+PPYRyQmZDDvxaX/uJyLUURpbKbceO7YbFz/F2/PX8WqtXPYe/wjEuMzeG1OWYwvtBxBOBfRGW+E1IYY1IZoJIX2nOlsRadRKH3QBHRGUqiRFCqUmuB/XM7FKLT/YEL7XYbKz/+c6ZpdOY6ATt1QqNVoQ8IIH3IFhccOAaDU6YmZegu6iKZICgUhfQagi2hG0ekTtXEIDY4+oCN6/w4olPq6rkqjYYjtiyGmDwqd3znTqXxDUerKznVJUmArTPdIU3z6D5RaA/pmXWqkrg1Z/9ED6DeyP/5B545zZKtIrpg8khZto/9TORejoVf1Z/CV/QgIOvd38toVGxkzdQQt20fjH+jLzQ9M5qcVv7m3pyVlMHzMQLQ6DSHhQfQd1ov4E0k1Xf0GYeSY/oy4uh+Bwec+/75btoEJ00fQpkM0AYG+3PnoZL5buqGWatnwXTW2H6PH9CX4PHH+eskmps4YQfuOLQgM8uXBxyexYvHGf1zOxejqsf248kJi/NUmbrixXIyfmMTyr8pifKHlCP+eJNXep66IzvhFzGHJQlL5UpL+K8WJSyk5uw6HNbeuq9WoFRw+gKFF5aO01rxcSlKTq9wuXDibKZ2zx14l/eTbFGZuQZYddV2lBs+cfoyEz2aQ+Nl0jPG78O9SNivEaS0hb+8KgvveWIc1FITzizuRSOtOZd+xbTrFkpuVT0FuIQDX/28M61f/jrnETObZbHZs2EPfYT3rqroN0qljSbTvXBbj9p1jyM7MJ680xgDzn/+SPi2nMnnko+zaeqguqtngnTiWRMeuMe7ljl1iycrMJzensOpMwj9y/FgSnbrEuJc7dYklK0PEWKhe4p7xi5hsN+Iwn0UfMRylvim2gqOYMjZgiLwOSRL3x1W39N9+ouj0cdre85jXNqfdzvH5zxMxbBQ+UZWPigkXRmuIJrzNnSjVAdgtWeQmr0SSFPiJZx78J7omHYiZ+SV2Yw5Fx35D7Rvu3pa3Zzl+7Yah8g2twxoKwvmZjGZ8/Q3u5b//bSw2ERDsT49+XVjz1S9c3noSDoeTK6+/nMGjxXM8/okSoxk//7LnSfj9HeMiE0HB/jzy/E20aheFRqPmx1W/M2vKHNZsfYsWsU3rqsoNkrHYjH+5c9k/wBXz4mITwSHnniEiXBhjsRn/ABHjuiTVp5vGa4gYGb+ISQolSl0EKp9IJEmJOqAzssOC01pQ11VrdLJ3/E78F+/T5bnXUQcEemyTnU5OvDEHSaWm9SzxQKb/SqUJRqUJQpIUqHUR+IUNxlRwtK6r1WioDCHoo3qQuWEBAJbseEypBwnocnUd10wQzk9v0GEsKnEv//1vg68ep9PJ/ZOfYciV/dkUv4pfji2lKL+YRXM+q6vqNkg+Bh3F5WL8978Nfq5bjLr1boevnw8arZrrpl5Oz0s7sPnXPXVS14bM4KujqFyciwpd//b1FbdyVReDr84dVxAxFmpGg+yMS5L0nCRJcunHKUlSniRJf0qS9JIkSU0qpJVLH0X/97JakqQHJUk6LElSiSRJ2ZIk7ZIk6fFyaWJK83m1LiVJGlK6rXPNHmXNU5S7P1yoObl7d3Jq0Wt0evpVDDGeD7eSZZmTb7+CNT+Xjk+8hEIlJqtUO0kC5LquReMiO7AVZgBgPnsEe1EWyUvvIGnxrRQc/IGS+F2krnqkjispCN5atovm1JF49/KpI/EEhwUSEOxPYV4RGalZTLzlajRaNQHB/lw9eTg7fhMdxX+iTYcWHD9cFuPjh+IJDQ8kKLiKkUQJkMV39D/VrkMLjh4si/PRQwmEhQeKEdtq1L5DC44cKovxkUMJhEWIGNcmSVF7n7rSIDvjpQqAfkB/XC9e/xaYDhySJKnXOfItAl4AlgBXA7cBW4BrarS2tUiWnchOOyCDLCM77ciy0yud2tAKhyULuykNWXZiKzyKpNSh0AT8o3IuRrLDjtNqAacT2enEabUgO+xe6fIO7OX4/Bfo8MSL+Lft6LX99LuvU5KSQOenX0WpFQ/KOxdZdiA7bciy7Po4bZXeC24uOoXDXgyAzZJFUeYWdP7ta7u6DYLsdOC0W0EuPY/tVmSnd0yLT/2OvTgLWZaxFWWR9+cy9M1d1yP9OowgcvIimo2fR7Px8/DrOAJ9i540ufKp2j6cesthd2A1W3E4nDgdpf+2e8dZlmWsZit2q+u7xGq2YrPY/nE5FyO73YHFbMXpcOB0OLGYrdgric3oScP4YemvxJ9IojC/mM8WrOCq611PQg4MCaBZiwi+/XwtdruDooJi1n69weMe84vZ3zF2OJw4zhHjsZOH8c3i9Zw+nkRBfjHvvf4146ZeDkBhfjFbN/zlzvv915vZs/0IAy8X9+X/zW53YDZbcTidOB1OzFXEeeLUoSz94jdOHEsiP6+YBa9+zfXTh/3jci5G7tiUnstVxWbSDUNZUj7Gr3zN5GmVxPg85QjCuUhyA7waKUnSc8DdsiyHVlgfCPwO+ADtZFl2SJIkA/fIsrxIkiQfIB+YXfoeuPJ5Jbk0GJIkxQDxwDWyLP9YId0QYBPQpbIXufu3vLnOA2rJ24c1f7/HOk1gd9R+bTCmfIchchwKlS8ANmMCltw9yA4zSm0I2pC+KDVB5yxHewGvlqpJPd6+pU73D5Cw9BOSlnlOXWwxZSZNhl/Fnrum0/udxejCm3DgyXsoOHIQhUbjThfQsStdnp+POTOd3bdMQFJrkJRl9+i3uesRIobU/auLzjzx2/kT1aLCjE0UZW3xWOcXNhifoB5knn6H8NZ3odIEUnD2F0ryDyI7rShUBnwCu+IXPrhePgdB079uJ9jk7VlB/l8rPdYF9pyIX/thpHz9AJGTFqDyDSN391KKT23GaTGi0BrwiepJUJ8bUFbyFPa8PSuwFabXm/eML3zK5/yJatiSN75i2ZtLPdZNuX8qI66/gjsvn8W7G94nvHk4GckZ3DJgpke68MhwPt3++TnLueHBaTVa//MJ1db9RdqP5i3hk9c9X7d3y8NTuGbKCKYMupNlW9+lSaTrOQdL3/+OxQtXYTFbGHr1AB4r957xk4fjWPD0h5w+Eo9CqaTXgC48/PIdBIcF1vYheQnW1m3z4u2Xl7LoVc8Y3/3YFCZMG86Vfe9i7c53aBblivGni/5+z7iFkdf054UFrhjnZhdw68TniD+VikKhoGXbSO6ffQMDhtZtu+Jv/pq6P5fnvbiM+XOXe6x76MnJTLlxOJf1vJvf/1pEZFQY4HoH9qI3VmE2ud4z/trCO93vwK6qnEeemlI7B1IFRT24Bfi1F5fx+kuesXl49mSmzhjOwJ5388dfi4hs4Yrxe2+tYWFpjK8e24955WJcVTmP1nGMw3Rj6kGUq0fXxVtr7Yvv4PRBdRK3RtUZL902ClgHjJZl+ecKnfEwIBOYIcvy4nOUH0MD7ow3dvWhM34xqG+d8caorjvjF4P60Blv7OpDZ/xiUNed8YtBfeiMN3b1oTPe2InO+L9TV53xhjxNvSqbADvQt+IGWZazgGTgOUmSrpMk6XwvBlRIkqQq/wHq3/CaIAiCIAiCIAhCIyLeM94AybJsAbKBiCqS3AT4AauAfEmS9kiS9LAkSZpK0q4BbBU+YrhQEARBEARBEARB+E8a66Obq7y+IcvyRkmSWgFXAZcDw4F5wFhJki6TPZ9Q9gDwR4UiegHvV3N9BUEQBEEQBEEQhItIo+uMS5KkA0KAjKrSyLJcBCwHlkuut8k/DzyN64nqa8olPS3Lssc7TSRJ8q32SguCIAiCIAiCIAhudTl9vLY0umnqwFBcFxl2XEji0ieo//1k9Qbx/iNL7h6sBUfquhoeZNmBMeVbnA5TXVelWsR/8T4pa76u62p4cNqs/DlrKtb8vLquSrUoSP+N4uwL+t+01shOOxknF7pfjdYY5O5eQsGhH8+fsBbJDhspK+7FYSqo66pUi89f+Yw1H6+u62p4sFlszBp6G/nZ+XVdlWrx7oufs/yDNedPWIusFhvXD5hFblZ+XVel2rz+/Bd8/m79i/PIS2aR00ji/NIzX/Lhou/ruhoeLBYbA7vfSVZmfl1XpVq8+PSXfLCw/sW4f7fGE2Oh+jSqznjpq81eBU5Tyb3dkiSpS9NU1Kb0v1WOptcXTocZW/EZ1H7t3OvspjSMKd9SlPAlJWfX4bRV3ZGQHRZMGRsoSlhMcdLX2IrPuLc5rPkYU7+nKHEJRYlLKDn7Mw5rvnu7JW8fRfGfU5Sw2P1x2ooAkCQlKt82WPMPVf9B1zJrQR4ZG3+m6ahr3evyDuzhz1lT+WP85Rx48h7MmelV5rcVFXLkpSf4Y8Jwdt08nszNv7q3GZPi+euBW9g+eRTbJ4/i4FP3YUyKd28/9OxD/DFxhPuzddwQ9tw9AwCFWkOTEVeRvOqr6j/oWuawGynJP4AhuLd7nbk4joyTC0k78iJZ8Z9jL3fuVeS0l5CTuJy0Iy+RfmIBJfkH3dtkp52cpBWkn1hA6uHnsBTHe+S1FMeTFf85aUdfJv3EAo9tkkKFT1APirO2Vc+B1jGHqYDik1vw6zDCvc6UepCUFfeS8MlUzv7wLLairKrzm4vI+PU1Ej69gaSlsyg+vdW9zZqXTOq3j5L4+Y0kfn4jZ396Hmtesnt7+roXSfh0mvsT//FkUlY+CICkVOPbbhj5+1dX/0HXsoKcAjau2sioaaPd6/b/sZ9ZQ29jfNtxPHH942SmVP3TUpRfxIv/m8P4duOY2e9GNq/e5LH9XGXZLDYWPbGQaT2nMrnLJJ6f+RzZ6dkAqLVqhk8awTfveb66riHKyy5g3cqNjJ0xyr3uz9/3c/2AWQyOGc+d457gbHJmlfkL8op47KYXGRIznrG9ZvLLqs0e289X1vGDp5l17WMMjZ3A6E7TWPGhq7Oq0aq5espwFi/6pvoOtg7lZhewevlGJs8si/P2LQcYecksujYdz/SrnyQ1qeo45+cVcecNL9Gt2QSGdL6ZH1Zu9th+vrKO7D/N1NGP0735RPq1mc4X77k6UxqtmgnTRvDhm6uq72DrSHZWASuXbGL6LSPd67ZuOsDA7ncSGzKR60bNJvkcMc7LLWLm9XOJDZ1Er3a38u0Kz9d9XkhZVqur492j9c3udVqtmskzhrPojW+r4SjrVnZWAV8v2cSMW8ti/PumA/TvdifRwRMZN3I2yYnnjvGNk+YSEzKJnm1vZdVyzxhfSFlWq6vj3a2VZ4ynzBjOwvkNP8a1SSHV3qfOjrHudv2fqSRJ6lv6GSFJ0uPAAaApMFmWZUcleQKAOEmSFkiSNEaSpMGSJN2G62FuqcB3tVf9f8dedAqVPhJJ4brDwOkwY8rYiCaoB74tpqLQhmLK2lxlfnPODpAU+LaYjC58MObsHTisrpFWhVKPPnwovi2m4ttiCiqfFpgzPctSGWLxi5nu/ijUZQ+kV/u2xF58mspD33BkbFhHcO9+KLVaAGwF+RydO5uYabfSf9la/Fq359hrz1SZ//T781Go1PRb/D3tH3qGU+/Nx5gYB4A2OJSOj79Iv2Xr6LfkJ0L6DOT4vOfcebs8P5+BK9e7P/7tOxM2YKh7e/jgEWRs+BmnzVozB19LSvL2o/Nrg6RwvavTYTeSm7QC/4hhNO3wGBp9M3KTq+5E5J9diyQpadL+YYIiryM/7Sds5rIfRK1PC4Iir0Oh8r6rRFKoMQT2IKDJCK9tAD6BXSjJ34/stP/Ho6x7RSc3o2/RA4XKdS47zIVk/Po6QZdMpsWNn6MNa0XWhjeqzJ+z7WMkhYoW0z8mfNh9ZG/9CGuuq8Ot9AkmfMTDtLjxc1rM+BSf6N5kbii7uNFk9FPE3PyV+6OLaIuhZT/3dt/Wgyg+uRnZYauho68dv61cT++hvdHqXDEuyC1g7u0vMu2h6Sw7uII2Xdvw6l2vVJn/vafeRa1W8dVfS3n4rUd5d/Y7JJ5IvKCy1ny6muN/HWfhL+/w5Z9f4etv4INnyh5pMmTsUDZ+swGbpWHH+KcVv9Hv8t7o9K4Y5+cU8PjNc7ntsWn8enwZHbq34anbXq0y/+uPv4dKrWbtka947t2Hee2xd4k7nnhBZeXnFPDA5GcZO30Uvxxfxje7PqTPkJ7u7SOvG8LarzdibeAxBvh26QYGjyiLc25OAXdPn8v9s6fxZ/wyOvdozf03v1Zl/ucffh+1RsX2k4t5/aOHePah9zh1LPGCysrNKeCWCc8xeeYodsctZf1fHzBgWNm7x6+ZMJjvlm1o8HFe8dUGLh/ZC31pjHOyC7l5yis8+swNHEtdQreerbl9+rwq8z/xwAeoNSoOJ3zBu589yGP3vc/xo0n/qKx3F3xHaFiA1/rrJl3GyiUbsTTwGC9fvIHhozxjPHPyKzz+zA2cSHPF5bZzxPjx+z9Ao1FxONEV40crxPhCynqnihiPv/4yvm4EMRaqV0PujAfgmoq+HVgJTAC+wvX+771V5CkEXsP1ELaPgJ+BR4FfgL6yLNf7OZN2UwpKfZOyZWMiCk0gakMskkKFNrA7Tmuux4j232SnDbsxEW1QTySFGpUuApVPC+ylo+OSUotC7Yf09w0akoTTXnjBdVOoDKDQ4DBXPdLWEOTu3UlA5+7u5ewdWzC0iCVs4DAUGi3RU2/GGH+akuREr7wOs4ns7VuInnYrSr0PAZ26EdJnIJmbfgFA5euHLqJpaYxlJKUCU1pKpfUwZ5yl4OhBwoeWXd3Vhoaj8vWj8Hj9uk3hnzIXn0JriC5bLjyGWhuGPqATkkKNX/gQbOYMbBbvc8nptGIqPIpfxFAUSi1aQzQ6v3aU5B8AXKPbvqH9Ssv3vtSp8YnEJ6gbSk1QpXVTqgOQlHqspsr/Lg2JKXkf+qad3MvG+F1ogiMxtOyPQqUhsNckrDmJWPNTvfI6bWaM8bsI6j0ZhVqPrkkHfKJ7U3zKNUqg1BpQ+4W7vy8kSYG9oPIZI7aiTMzpx/Ftc5l7nco3BIXWgDnjZHUecq3bu3kPXfp2cS/vWLedFm2jGXj1IDQ6DVMfuIH4o/Ekn072ymsuMbN93TamPTwdvUFPpz6duHT4pWz6duMFlZWRnEHPy3oSFBaERqfhsjGDSTpZ9r0U2jQUQ4Avx/cdr+Eo1KwdG/bSo39ZjDf/tIOW7Vpw+ZiBaHUabn14KqePxpNwyjvGJqOZTT9t5/bHp+Fj0NP90k4MGnkp61ZuuqCylr2/mkuH9mTUhKFotGoMvj7Eto1ylx/eLBS/AAOH9zbsGAP8vn4vfQZ0di//+sMO2rRvweixrtjc8/hUjh+O58xJ7ziXGM38+v127p89DYOvnt79OjFsVB9Wr9h0QWV99s4aBg7rwZhJQ9Bo1fj6+dC6XVmcmzQPJSDQl/1/Nuw4b/z1L/oNKovx2jU7aNchijHXDUCn0/Dw7CkcPZTAqRPevz9Go5mfVu/gsWduwOCr59L+HRl5VR++WbbpgstKTMhg1fIt3PPwBK/ym0W6Yrx394kaOPLaUzHGP/0dl/GuuDzy1BSOnCPGP67ewePP3oCvr56+A1wxXrl00wWXlZiQwTfLtnDfI403xrVJvNqsnpJl+TlZlqXSj0KW5UBZlnvLsjxbluX0CmklWZYXlf7bKsvyK7IsXybLcoQsy3pZllvLsjxLluWUcnkSSvN53Wgpy/Lm0m2Ha/5IvTmteSjU/mXLtjyUmmD3sqRQo1D54bTle+e1FYIkoVCXXa1TaoO8Ou5FiUsoTvgSS85ONAFdPbbZS5IpSlyCMeU7rIXeP4oKTSBOa+6/PLr6oSQhDp/mLdzLxqR4DLGt3ctKnR5dk+Ye08v/ZkpNRlIoPPIbYlt5pd02eRRbr7uc0x+8SdSk6ZXWI2PjzwR07Iq+STOP9T5R0RjjT/+rY6sv7OZMVJpQ97LNkoW63EUmhUKDShOEvZILO3ZLDqBArS3Lr9ZHYK+k4/5vqbWh2MxV34rQUFhzk1AHlJ0/trxkNMEx7mWFWofKPwJbrnfj2laQhiQpUAeW5deGRHtMRQdI/HwGCZ9MIWfbpwT0uK7SehSf3IKuSXvU/p5vnNQERmLNTfgXR1Z/JBxPoHmrSPdy4slEYjvEupd1PjqaRDf16CT/LTUuFYVCQfOWZfljO7YksTTt+cq64vorOLbnKDnpOZhNZjav3kSvIb099hHVOor4o3HVc7B15MzxBKJbNXcvx51IpHWnsrjoDTqaRzch7kSSV96kuFSUSgUtyuVv0ymWuNLZB+cr6/DeE/gH+vK/qx5mdMcbeGja86SneE5LjWkTxakj3r8HDc2JownEtimL0+ljSbTvXBYbH4OOFrFNOH3MO84Jp1NRKBXEti7L36FLrDvt+co68OcJAoP8uP6KR+jbehq3X/8CaRVuF2jVNorjhxt2nI8dSaRVuRifOJZExy5lcTEYdES3bMKJSmIcdyoNpVLhkb9jlxhOHE2+4LJmP/ghTzw3DZ2+srf5Qpt2kRw91PBj3Lp8jI8m0amrZ1xiWjZxj3aXV1mMO3WJ4cSx5Asu68kHP+TJ56uOcdv2kRw52LBjLFSvRvc09cZOdlpBUpetcNqRlDrPRAoNOL2nwMiyDUlR4ctB0oDsmdYv+gZkpw1b8WmPab4qQyxqv3ZISh1OSxamzE1ICg1q35ZlxUlqVx0bMLuxCKXex73sMJvQ+Ad6pFEZfHGYSrzyOswmlD6+5007YPnPOMwmMjasQxvehMpkbPqZFpNu9Fqv1PtgNzbsB4w5HWYkZdm5KDusKFQ+HmkUSh1Op8Urr+y0olBqPdMqdDgd3mn/LUmhxekwV1t5dcVpMSJp9GXLNjNKnb9HGoXGB6fN+8GLss2MQuP5N5E0PsgV0kbf9CVOm5nik5tR+YVVWo/iU1sI7DHea72k0eG0eP9/1JAYC43oDWUxNpeYCQj2nJ5o8PPBZPSOsclowsff4LHOx8/gTnu+spq3jCSseTg39pmOQqkgpn0Ms+bc6ZFe76vHWGj89wdYDxQVGPHxLYuxyWgmMKRCXPwNlBRXHmODn+d5bPDzoaQ0hucrK/NsNicOneHtr+fQqkMMi174jKdnzeOjH8umpvr46ilu4DEGV5wN5eJcYjQTFOr5feHnb8BYSZyNRjN+/p5x9i2X9nxlpadlc+TAGT5b/QLtOsbw2jOf8eCtr7P8l7Kp7AY/PYUFDTvOhflGfP3KYmwsNhMS5hkXf38fiosqi7HJK8b+/gaKS2N4vrLWrtmBw+7gymv7se33yp/v4+unpyC/Yce4oGKMjWZCvM49n8rP42ITfgEVYhxgcMfwfGX9tGYHdruDq84RY4OvnoIGfh7XJvE0daHekRRaz86zQoVcsePttIJCTUWVdpRlm2fn3r0fNWq/9piytrqfkK7UBKJQ+SBJCpS6CNT+HbEbEzyLq6zD38CofP08Os9KnR57iecXp73E6NFhL5/WUSGt4xxpm44ey4kFL3o9Ib3gyAGsebmEDRjilc9hKkFlaNhv2FModciOsnNRUmqQK3S8nQ4LCoW2YlYkhQa5Qsfb6bR4ddD/C9lpQVHxIlcDpNAakK1lDQ6FWufV8XZaTSjU+opZkdQ6nFbPjrJsMyFVklah1uHX8QqyNi30ekK6Of0YjpJ8DC37euWTrWYUWu//NxoS3wBfj462zkdHSbFn3EqKSzw67H/TG/SYiqpOe76y3pm9CKvFyrKDK1h1/Dv6jerPszOe9khvKjZhqNDhb2j8A3w9Otp6gw5jxbgUlXh02MvS6r0a3cbiEnxKY3i+srQ6DYOv7EfHHm1Lp7FP4dCfxzw63yXFJnwbeIwB/AN9PWLlY9BhrHB+FheVeHTY/2Yw6CiumLawLO35ytLqNIy4ui9de7rifPfjU/hr1zGKynVajEUm/AMadpwDgnw9OtoGXx1FhZ7nZ1GRyaMz6U5r0HvFuKioBN/SGJ6rLKPRzJynvuClN247Z/2Ki0wEBDbsGAdWjLFBR1GFixvFRabKz2NfPcWFFWJcWOL+e5yrLKPRzAuzv+Dl88TYWGwioIGfx0L1Ep3xBkahCXJNN/97WR2Eo9y0cNlpw2kvQqEO9M6r9gdZxmkrayw7rLkoNd5pS0sD2Y5sP9fIleyx5LTmoyg3bb4hMsS0oiStbCquoUUsxoRyT503mzCfTcXQItYrr755FLLTgalc/uL405WmBUB24rSYseZ4TrHO2Pgzof0uq7QTX5Kc6DFtviFS6yKwW3PKlrVh2MxlT4l2Oq04rLmodN4jrSptCDLO0unqLjZzOipt5aOy/4bNko1aV/mMhYZEExKNrSDNvawOisKak+BedtrM2AvTUQdHeeVVBzRDlp3YCs6611lzEtAEeacFQJaR7VbsxhyP1UUnN2OI7VNph9+an+Ixbb4himkfS2pc2T330W2jPaaFm0vMpCem06JttFfe5i2b43A4SI0vyx9/NI7o0rTnKyv+aDzDJw7HL9APtVbNNTeN4eT+kxTkln3HJ59OJrZj2eylhqhVxxiSzpTFqGW7aI9p4SajmZTEdFq2a+GVt0XL5jjsDpLK/Y1OH4mnZbvoCyqrdcdYzydPlA7TuN6K6pJwKpk2nar4jm9A2nWKIeF02fdF6w4tOH44wb1cYjSTFH+W1h284xzTujkOu5OEM2X5jx+Od6c9X1ntOsWUPa8G3P8uH+czJ5M9pro3RB07RxN3uuxcbNehhce0cKPRTGLcWdpVEuOWbZphtzuJK/c3OnIonnYdo85bVvzpNJITM7l2+BN0ibmRW6a8QkZ6Hl1ibiQpsey399SJFI+p7g1Rh87RnDlVLsYdW3hMCzcazSTEnaV9x38Q4w5R5y0rrjTG1wx/gk4xNzJzsivGnSrE+OTxFI+p7sK5SQqp1j51RXTGGxiVTySOcveyqgzROK152IwJyE471vz9KDTBlXawJYUalSEaS94+18PczBnYjUmofFsBYDel4rDkIMtOZKcVS+5uJIXGfY+5zZiI7LAgyzIOSxa2wmOofMq+zJx2I7LTirKSDlRDEty7HwWH97mXQ/pdhjExjqxtm3FaLSQu/wxDbCt8orwb10qdntB+g0lY8jEOs4mCowfJ2fWH+yFsefv+pPjMSWSHA3uJkTMfL0Ll6+dRlsNiIWvbJiIuv9KrfEtOFvbiQvzbd/La1pBo/dpgKTerQuffAZs5E1PBUWSnjaLMLah0Eagr6WArFBr0/h0ozNyE02nFYkzCXHgCn8Bu7jSy0+6eMSLLDmSnzd2oc53fNpCdpWltHk9Od9gKcTpMaPSRNHQ+UT0xnz3qXjbE9MGam4wxbidOu5X8v1aiCYlGE9jcK69CrcMQ04e8Pctx2syY049jTNiDb5vBAJhSDmDJjkN2OnBaS8jd8TkKrQF1YFncnHYLJXE78G071Kt8uzEHp6UYXUTbGjjy2tN7WG8O7yybjthvVH8STyaybe0fWM1Wlr25lJgOMUS19r6IofPR0W9Uf5bM/wpziZmjfx5h1/qdDL1u2AWV1bZbGzau2oCx0IjdZmft4p8IjghxT23PTs+mOL+I9j3a10Ikak7/4b3Zt6PsMS2Dr+xH3PFENv64DYvZyidvLKN1hxhi2njHWG/QMeTKfnz06hJMRjMHdh/l9593MXri0Asq6+rJw9mybgcnD8dht9n57I3ldLu0I34BrtlJmWezKcwvpnOvhh1jgMEjerN7W1mcr7i6HyePJfLLGlds3nltOe06xdKqrXecfQw6RlzTj7fmLqHEaGbvzqNsWLeLsdcPvaCyxt8wnPU/7uDowThsNjvvvracXv064h/oinN6Wg4FecV0v6Rhx/nykb3ZsbXsAayjx/Tl+NEkfly9HbPZyhsvr6BD5xjatPP+/TEYdFx5bV9em7MUo9HM7h3H+OXH3UyYMvS8ZbXvFM1fJz9hw8432bDzTea/czdh4QFs2PkmzSNdz185m5pDfl4xvfq089p3QzJ8ZG92/FEW4ytL4/LDd664zJ+7go7niPFV1/bl1RdcMd61/Rg//7ibiVOHnresDp2i2XfqEzbufJONO9/kjXddMd7YCGMsVC+p/FVH4b/zb3lzjQbU6TBTkroGQ+R49+vN7KY0LDk7cdqLUWrD0IUOdL9yzJJ/AIc5A58mVwCu94ybs//AbkpDUmjRBvdCXdoZtxnjsebtw2k3IklKFNpQtMG93Q+IM2Vuxm5KA9mBQmVA7dceTUBHd92s+YdwOkzoQvrUZAjo8fYtNVq+rSCfvffN5JIPlrtfb5a3/09Ov78AS1Y6fm070u7+2egimgKQ9PWXFBw5QJfn57vyFxVy8q2Xydv/J2o/f2JvnEX4EFf8s/7YSMJXH2PJyUKp0eLbpj2xN87Ct9xId+aW9cR/8T59PvnGY6QAIPnbpVhzc2h16z01GgOAM0/8VmNlO+xGMk+/T5O297pfb2YuPkNB2lrstgI0+uYERY5FVfrE86LM37GUJBEaMw1wvWc8L3UNluI4FCo9/hHD8Qkse9hg+okFOGye06Uj2t6HShOEpTie7IQvPLZpfKIJaznTta+sbTjsRQQ2HUVN0/TvfP5E/4HDXEjqqoeJvH6h+/VmppSD5Gz7GHtxNtrw1oQOuRu1XzgA+ftWYU4/RpPRT5XmLyJ7y7uYUg+i0PoRfOkN+LYeBIAxbjt5fy7HbsxFUmnQhrUiuM8NaEJi3PsvPv0Hubu/ImrKe17ncv6BNThK8gjpd1ONxmDhUzU7Db4gt4B7R93Nh79/7H692f6t+3j/mffITMmkbY92PDD/QSKiXA+v+3rRCo7sPszzX84BXO8Zf+vhBezbug//IH9ufPwmhowtu3hxrrIK8wr54Nn32b91H3abnei20dzyzP9o193V0Fv1/jfkZubyv2fOPW3yvwrVOmu0/PycAqZffi8rd3zofu3W7i37mf/k+6SnZNKxZ1uefusBmrVwxeXzN79m/64jvLnsecD1nvGX7n+L3Vv2ERDsz52zb2Tk+CHu8s9VFsCqz9fy+YLlmE0WuvbpyKOv3klEc9eFwq/eWUV2Ri73v/C/Go0BQLC2ZttruTkFXDvoPtbv/cAd522b9/PCI++TlpxFt15teeXd+4mMdsXmvflfs2fHET75xhXn/LwinrjrLbZv3k9gsB8PP3sj10wc4i7/XGUBLP1kLe++vgJziYVefTvy3Pw7aBrpivPHb39LZnouT869tUZj4K+p2XM5J7uQ4X3vZ/uh99yv3vp9436efPBDUpKy6HFJW9768F5alMblrddWsnPbUZateRZwvQP7gVkL2bJxP8HBfsyeM4Prrh/sLv9cZZW37fdD3H3zAvad/tS97p0F35KZnsfzr9ZsG6umByBzsgsZdun97DxcFuMtG/fzxAOuuPS8pC1vf1QWlzdLY7y8XIzvu30hv2/cT1CwH0/NmcH4yWUxPldZ5W37/RB3zlzAgTNlMV70xrdkpOcx57WajXGYbkyjudO6z8o/aq2junviwDqJm+iMV7Oa7owDWHL3Iil1aALqz+ioLDsoSV2DvuloFErv6ajVqaY74wDxX36AOiCIyGsn1fi+LpTTZmXvPTfR7ZV30ARW/lqu6lSTnXGAgvTfUKoM+Ib2O3/iWiI77WSefo/QljNRVvKO8upW051xgNzdS1DqAwjocnWN7+tCyQ4bqd88RNMxc1Dqvd/FWp1qujMO8MWrnxMYEsi1t46t8X1dKJvFxj2j7uKVla8RGBpYo/uq6c44wHsvfUFQaCCTb7+2xvd1oawWG9OH3cN7q18hOCywxvdX051xgPkvfElIaAA33Vm/4nzNwHtYuvYVQmo4zjXdGQeY+8xiQsMDuO3uMTW+rwtlsdi4/NL7+O7XuYSFB9bovmpjNvBLzywmNCyA2++pXzEe2uc+1qyv+RiLzvi/IzrjjURtdMYvdrXRGRdqvjMu1E5n/GJXG53xi11tdMaF2umMX+xqozN+savDW3MvGo2pM37pN7XXGd81oW464+KecUEQBEEQBEEQBEGoZeI944IgCIIgCIIgCEK9It4zLgiCIAiCIAiCIAhCtROdcUEQBEEQBEEQBEGoZWKauiAIgiAIgiAIglCvXAwP/BMj44IgCIIgCIIgCIJQy8TIuCAIgiAIgiAIglCviAe4CYIgCIIgCIIgCIJQ7cTIuCAIgiAIgiAIglCvSBfBsPFFcIiCIAiCIAiCIAiCUL+IkXFBEARBEARBEAShXhH3jAuCIAiCIAiCIAiCUO3EyLggCIIgCIIgCIJQr0gXwdC4GBkXBEEQBEEQBEEQhFomRsYFQRAEQRAEQRCEeuUiGBgXI+OCIAiCIAiCIAiCUNvEyLggCIIgCIIgCIJQr4iRcUEQBEEQBEEQBEEQqp0YGRcEQRAEQRAEQRDqFTEyLgiCIAiCIAiCIAhCtRMj49Us5cSUuq5Co5dnya3rKlwU8jb3qusqNHp7s9V1XYVGL8bXVtdVaPTu2h5U11W4KCQvT67rKjR6yhOifVHT0jJ31XUVGr3ihDF1XYVqoxAj44IgCIIgCIIgCIIgVDfRGRcEQRAEQRAEQRCEWiamqQuCIAiCIAiCIAj1ipimLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9opDkuq5CjRMj44IgCIIgCIIgCIJQy8TIuCAIgiAIgiAIglCviHvGBUEQBEEQBEEQBEGodmJkXBAEQRAEQRAEQahXLoZR44vhGAVBEARBEARBEAShXhEj44IgCIIgCIIgCEK9Ip6mLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9Ip6mLgiCIAiCIAiCIAhCtRMj44IgCIIgCIIgCEK9cjGMGl8MxygIgiAIgiAIgiAI9YoYGRcEQRAEQRAEQRDqFXHPuCAIgiAIgiAIgiAI1U50xgVBEARBEARBEAShlolp6oIgCIIgCIIgCEK9IklyXVehxomRcUEQBEEQBEEQBEGoZWJkvBHKzS3kntveYONvewkJDeDZOTczccqwStO+89Yq3nz9a8wmC2PGDeKNRfeg1WoA+PDdNSz58leOHk5gwvVDeO+TR2rzMOq1/NwiHr1rIVs37iM4xJ9Hn5vBtZMGV5r240VreH/BKixmK6PG9OPFN+9Eq1UD0LHJJI+0ZpOV6f8bzfOv317jx9AQFOQV8fx9b7Nj8z4Cg/2596kZjJ4wxCvd6WOJvPHMJxw7cJr83CL2Zf/g3ma12Jj76Hvs2rKfwrxiolo25e7Z0xk4vHctHkn9VZxfxBdPLeDItr34BgUw/oGZXHrNUK90qScT+PrVD0k8cpri/EI+Pv6zx/bslHS+euEd4vYfQ6VR0+uKgUx+chZKlbK2DqXeKsgr4ul732bHJtd5fP8zM7iqkvP41NFE5j39CUdLz+PDuT94bF/60Y+sXraBU0cTuHL8Zbz0zgO1dAT1n62okBNvvUzevj9R+wcQe+PtRAy5witd+oZ1pH6/ElNaCkofA+GDR9DyxtuQlK7mkDE5gdPvvUHR6ROoAwJpNfNOQvtX/t1+MXJYisna+QGmtEModX4Ed5+Mb+yAc+ZJWz8Hc8ZRYqd+haTw/D6wFZ4l5cfHMLToQ/jAu2uy6g2Gw24kI34JJYXHUKoMhERei3/IJV7pCrN3kBG/BEmhdq9r1uYOfPzbeqSzmjNJOvwSvkE9aNLqppqufoMgOyxYcrbjMJ9FUmjRBPVAZWjplc6SsxO7Ma5cRidICgwtpgJgSv8FpyULJNfYpqT0waf52No4hIvGxfAAN9EZb4QevncRao2aUylfc+jAGSZd+xSdu7akQ6cYj3S//bqHBfNW8MMvr9GkWQjTJj7P3OcX8/zcWwBo0jSER56Yyob1ezGbLHVwJPXX0w+9j1qjYs+ZLzl6MJ6bJ75Ahy6xtO3QwiPdlt/+4v03vmHpTy8R0SSY26bOZcFLS3n8hRsBOJr+tTttidFM71YzuHLsuRs2F5OXH30ftVrFhqOLOXE4jnunvEDbzrG0ah/tkU6lUjLi2oFMnHklD854yWObw+6gSbNQPvn+ZZpEhvHH+j08dstrrNy6kGYtImrzcOqlpS8sQqlW8cYfy0k+foa3b3+GyPaxNG8T45FOqVLSe/RlDJl6De/c9bxXOV+98A7+wQHM37qUksJi3rj5STYt/YHhM8bWzoHUYy8+4jqPtxxfzPHDcdx5/Qu06xRL6w4VzmO1kpFjBzL5liu5d9pLXuWENQnm9ocmsW3jPixm8Z1c3qn35qNQq+n/1fcUx53i0POP4hvbGkO0ZwPbaTHT6n/34d+uI7aCfA7PeYzkb/1oMXE6ssPOkTmP03T0WLrOWUD+4f0cfuExekXH4tO8RRV7vrhk7/4USaEiesL7WPMSOLvpNTRBLdAERlWavij+D1cHpqry/vwMbYh3J+hilpm4AklS0rL7y1hKUkg79R5an+Zo9c280up8Y4nq8NA5y8tKXIHWEH3ONBcbS+4ukBT4RE7Eac3FnLkRhToYhSbQI502pC/akL5l+bK3eZWlCb4UtV+bmq6y0IiJaeqNjNFo4vvv/uCp527E11dPvwGdGX11P5Yv2eCVdtni9Uy/aRQdOsUQFOTHI0/ewNLFv7q3jxk3kKuvHUBwsF9tHkK9V2I08/OaHTz01A0YfPVc0r8jw6/sw7fLNnmlXbV0I5NmjKBthxYEBPly72PX800lfwuAtau3ERIWQJ8BnWr6EBoEk9HMhh+3c+cT0/Dx1dOjbycGj+rDj197xzmmTSTjpl1Bq/beDWa9Qcesx6bSrEUECoWCy0b2oXl0BEcPnK6Nw6jXLCVm9q7fxth7Z6Az6GnTqzPdhvVlx/cbvdI2aRnFoAmjaNa68kZddko6vUdfhlqrISAsmM6DepF2OrGmD6HeKzGaWf/Ddu550nUe9+zbiSGj+/BDJedxbJtIxk+/gtaVnMcAI67pz+VX9SNQfCd7cJhNZG/fQsy0W1HqfQjo1I2QSweSsekXr7TNrhxHYOduKNRqtKFhhA+5goKjhwAoSU7CkptD5NjrkZRKgrr1IqBjFzI2epdzMXLazRiTdxPUbRIKtQ5deHsMkb1cHe7K0ltLyD+4iuAeUyvdXpywHYXaB12TzjVZ7QbF6bBQnLefkMirUSh16P1aYwjsQlH27n9VXlHOHhRKPT7+7aq5pg2X7LThKElCE9gDSaFGqYtA6ROF3XjmvPnsJYmofFvVUk0FcHVUa+tTV0RnvJE5fTIVpVJB67aR7nWdu7bk+NEEr7THjybSuWvZFekuXVuSmZFHbk5hbVS1wYo7nYpCqaBlm+budR06x3LqWJJX2pPHkujQJdYjXXZmPnmVxHjV0o1cN2UoknQRzMm5AIlnXOdydOuyOLftFEvcce84/xM5mXkknkmttON+sclISEGhUNAktuz7IqpdS9JO/fNO9PAZY/lz7RYsJjN5Gdkc2rqHzoPErQB/n8cx5c7jdp1iOf0fz2OhTElqMpJC4TF67RvbCmNi/HnzFhw5gCHa9R0t4/2gIFmWMSbGea2/GNkKzyJJCjT+Td3rNEHR2PJTKk2fu385fm1HoNQHem1zWkvIO7CSkF7Ta6q6DZLVnImEAo2ubNaWVh+J1XS20vSWkhTO7HuUhIPPk5O2Dll2uLc5HCZyUn8iNGp8jde7IXHaC0GSUKj93euU6iCctoJz5rOXJCEpdSi0njPqrPl/YUxegSl9HQ5zeo3UWWjcRGe8kTEaTfgHGDzW+QcYKC42eaUtNpoIKJf273xFRSU1W8kGrqTYjJ+/j8c6P3+fSmNcYvRM6xfg+nfFtKnJWez64wgTplZ+b//FqMRoxrdCnH39DRgrifOFstnsPDlrPtdcP4zYNpVPq7yYmEvM6P08vy/0fgbMxn/+HdD2ki6knkrknt7X8cjgacR0akOP4f2rq6oNVmXnsd9/PI8FTw6TCaWPr8c6lY8vDtO5z+P09T9RdOo4UeOmAOATGY0mIJDkVUtx2u3k/rWbgsP7cVrELQEATrsFhdrzXFao9Tht3ueyJecM5qyTBLQbWWlZuQdW4td6KCpDSI3UtaGSnRYUSp3HOoVKj9PpfQ7qfdsQ3Xk2Lbu/QtPWt1Kcs4e8s7+5t+em/Ih/WD/U2qAar3eD4rQjSWrPdQo1stN2zmx24xlUhpYeAyaaoJ74NL8On8gJqHzbYs7ciNNWVBO1vmgpJLnWPnV2jLW9Q0mSnpMkSa7k81u5NF+UrrulijL+znNDJdum/729ijyyJEkmSZKOSZL0mCRJqgrpPi9Ns76SsvWSJBWVbr/pXwehBhkMeooKPRsgRYUl+PrqvdL6GvQUlkv7dz4/Px+vtEIZH18dxRUuWBQXVR5jH4OO4qKyhkpxaYwrpv122UZ69+tAVEyTGqhxw+Rj0GGsJM6GSuJ8IZxOJ0/d8QZqjYrHXp1VHVVs8HQ+OszFnjE2FZegM/yz7wCn08mbt86m5xUDeGffat7c8TUlhcV88/on1VndBqm6z2PBm1Kvx2EyeqyzlxhR6qs+j7N3/E7cF+/T5fnXUQcEAqBQqej01Mvk7tnBjuljSPluOWEDh6ENDavJ6jcYCpXWq+PttJlQqD3PZVl2kr37M0J6z/B6YBuAJTcBU/ohAtpfWaP1bYgkhRan0+yxzukwoVBovdKqdaGotaFIkgKtT3OCm42mOG8fAJaSZEoKjxMUIS7we1GokOUKHW/Z5vEgvIqcdiNOcwYqg+cUdaU2DEmhRpKUqH1bodSG4zBVPlNEEKpSVyPjBUC/Cp97ACRJ0gFjS9NNOUcZxVVsn1y6rTLzS/d1JbAWeAV4vIqyh0qSVPHpTlefoz71Quu2zbHbHZw5leped/hgHO07xnilbd8xmsMHy6bfHTp4hvCIIIJD/L3SCmVatm6Ow+4k/nSae92xwwm06eA97blthxYcOxRfLl08oeGBBFWI8bdLN4lR8QqiWzXHbneSeKYsziePxNPyX0wvl2WZ5+97m9ysfF7/7AnUavHsSoCImEgcDgcZCWXfFykn4mjW5p897MdYUETu2SyG3TAGtUaDb5A/A667gkO//1ndVW5wKjuPTxyJr/K+cOGf82kehexwUJKa7F5njD/tnn5eUe7enZxc+Bqdn34V3xjPxrVvbGu6v7KIAcvW0nXOG5jT0/Br26FG699QqP2bIssObIVlU6ateUmoAyM90jltJiw5cWRufZvEb2aRum42AEnf3oUp8zjmjKPYi7NJ+u5uEr+ZRcGxHzEm7yblpydq9XjqI40uHFl2YjVnutdZSlLR6JueI9ffykZsSwpPYbPmEn/gKeL2PU5e+m8U5+0n6cgrNVDrhkWh8gdZxmkru13Qac1DoQ6oMo/deAaFNgyFWjyvo7YppNr71Nkx1tF+7bIs76zwOVa67SrAH9iAq0Nc1VDhD8AVkiS5599IkhQMjAC+ryJPQum+Nsmy/BDwCzCjknQngDPAxArrJ5+j7HrBYNBzzdgBvPT8FxiNJnZuP8LaH7Yz+YbLvdJOmTacxZ//zPGjieTlFTHv5aVMnV72Khi73YHZbMXhcOJwODGbrdjtDq9yLjY+Bh0jx/TjjZeWUGI0s2fHUdb/tIvrpni/Duq6KUNZ8eV6Th1PoiCvmIWvfc2ECn+LvTuPkX42hyvHiaeol6c36Bh2VT/ee2UJJqOZ/buOsmXdLq6e5B1nWZaxmK3YbHYALGYrVkvZle+XHn6X+JMpvLXkaXR67xGGi5XWR0fPEQNY8/aXWErMnPrrCPs37KDfGO8LQ7IsY7NYcdhccbVZrNisVgD8ggIIjWzC5mU/4rA7KCksZvvq34hqJ56S7GPQMfzqfix62fV98dfOo2xau4trznUeWys/j+12B5Zy38kW8Z0MgFKnJ7TfYBKWfIzDbKLg6EGyd/1BxFDvKdJ5B/Zy7PUX6Pjki/i36+i1vTj+NE6rBYfZTPK3S7Hm5dBkuBjBBVCodBii+pB7YCVOuxlz5gmMKXvwix3omU7tQ4vx79L8qldoftUrNBn6GADNr5yLLqQ1fm0uJ2rsm+7t/m2G49O8B00vF51xhVKLb1B3clJ/xOmwYCo6gzH/IH6hfbzSGvOPYC/tUFpN6eSeXYchsAsAAWEDien6HC06P0GLzk8QEDYIQ2AnmrW9q1aPpz6SFGqUPi2w5u93PczNnIm9JNlr1Ls8e3Gc14PbZKcVuykVWXYgy07sxXE4LJkoK3nqvSCcS328Z3wKkArcjat+k6pItwNIA8o/mWJ8ad4dF7ivA0BVN46uwNX5BkCSJD9cI+rLL7DsOjN/4T2YTRZaN5/ELdPn8sbCe+nQKYbkpEyaBY0hOcl1xXX4yEu476GJXH3FI3RpPZ0WLSJ48tmyh6nMm7uECP+rWTBvBSuWbiDC/2rmzV1SV4dVr7z4xizMJiu9Wk7n3ptf58UFd9C2QwtSk7Po2GQSqclZAAwZ0YtZ91/HlCtnM6DTLTSPCueB2Z5Plv1m6UZGjemHr7g9wMuT8+7AYrYwrMM0nrhtHk/Ou4NW7aM5m5JJ/+iJnE1xnctnkzPpGzmeCQNcDY2+keMZ29c1FT0tOZNVX/zMicNxDO80g/7RE+kfPZG1KzfX1WHVKzc8czdWi5UHBlzPRw+9wrRn76F5mxhy0jK5q+dYctJcMc5JzeCObmN45urbAbij2xieGnWru5w7Fz7N4a17eKD/9Tx5xc0olAquf+L2Ojmm+ubp113n8eB203j0f/N4ev4dtO7gOo8viSo7j9OSM+nVbDzX9nedx72ajefqPmW3VHzw+gp6NRvPJ29+w49fb6ZXs/F88PqKOjmm+qbNnQ/htFrZfsM1HJv3HG3ufAhDdEvMmelsnTACc6brwUqJyz/HbjRy6LlH2DphBFsnjODgs2WvhsrY9As7pl/L9mnXkHdgL13nLECh1tTVYdU7oX1uRnbYSFw5i4w/FhLW5xY0gVHYjdnEL78JuzEbSZJQ6QPdH6XONRNMqQtAUqpQqLQe2yWVrvSp1mJWHkB49PXIThtx+x8nPe4zwqIno9U3w2bJ5fTeB7BZcgEoKTxB0uG5nN77AKmn3sU3qDvBTUcBoFBqUKkD3B+FUoskqVGJkV0AtMGXguygJGUlluzf0YZcikITiNNejDFpKU572QRbhyUL2VGCyifGsxDZiS1/PyXJKyhJXoGt6Di6sCHnHGEX/rmL4WnqkizX7g3rkiQ9h6ujXXHE2wH4ApnAe7IsPyhJ0l7AKstyvwplyLimtUcBvWVZvrx0/UZgN5ACLJRlWaqYR5blReXWLQO6ybLcsdy6z4HOwHTgCBAjy3KSJEkzcE1rb49rmv1MWZY/r3h8hbb1dfcEgItEnsV8/kTCf5ZnEU91r2l7s6u+R02oHn3Dz/1QHuG/u2u7eEBUbUhennz+RMJ/ojyRW9dVaPTSMnfVdRUaveKELxpNA27Gli211q/6cvDgOolbXV0ICAFsFT6XA+MAHWWjz8uBvpIkVX7jl2v7EEmSmpROZx/MuUeuFZIkqSRJ8pMkaQpwHfBCZQlLp80fAq4vXTUZ+BpwXtghCoIgCIIgCIIgCP+GuGe85hQAl1T47MI1RT1OluXdpemWAzLlpouXJ8vyPuAUrnu7JwGnZFnef479voWr418ILAXekWX5XJ335cDk0nvRh9MApqgLgiAIgiAIgiAI9V9dPVLYLsvynvIrJEkKxdXhfUeSpMDS1UXAn8BU4OUqyvr73m6J83eW5+Ea3Q4A7gcekCTpN1mW11aRfjkwF3gSSJVleackSb5VpBUEQRAEQRAEQRCqQV2+/7u21KcHuE3EdXHgPiCv3KcP0FmSpM5V5FuO63Vl4sPlrAAAwmdJREFUfTl/ZzxJluU9sixvwDVF/QQwT5KkSicnyLIcj+se9AdwdfoFQRAEQRAEQRAE4T+rT53xKcAxYGiFzyhcU8urmqp+DPgQ+FCW5eMXujNZlm3A00BH4JpzJJ2P6zVqX15o2TXtudmf8O7b39Z1NTxYLFZ6d76ZrMy8uq5KtXj12S/45J01dV0NDxaLjWE97yA7K7+uq1It3p7zBUver18xtlpsjOs7i9xGEuOKVs3/lPVffFfr+13x8gdsXv5Tre+3tix44QsWv1f/zuVrLp1FTiM9l+M+f5+UNV/X+n5Pf7SQtLWra32/tSV33zIKjlU1WbBuyA4byd8/hMNcUNdVqRbZyWvIS99Y19Xw4HTaSDj0AnZbUV1XpVpY8/7CVni0rqvhQZYdlKSuRnaY6roqQj1TLzrjkiRFAgOBL2RZ3lzh8wvwM67OeqVkWZ4ly/KsqrafwyrgOPDIOcr+WpblsbIs14v/q7Oz8lm+5Ddm/u8q97rNG/fRu/PNNAm4hqtHPEJSYkaV+XNzC7lhwnM0DbyGzq2nsXKZ5w/Cucp6+YUvCfEZTbOgMe5PfNxZALRaDdNuGsWbr9d+46i65WQV8O2yTdxw8yj3um2bDzCs5x20D5/A5Ctnk1L6erjK5OcWcduUuXSImMiAjrew5ust7m1/7T7OtDFP063FVHrGTOPO6a+Qme759NbD+88waeTjdGwyid4tp/Ppu65X22u1aiZNH877b6yq5iOufbnZBfy4YiPjbyyL8a7fDzCu7yz6RY3nf9c+SVpy1TEuyCviwRkv0a/FBEZ3v5l132z22H6usu66/ln36836R0/kkqbjmDjobgA0WjXXTh3BZ283/BhXVJSbz441Gxh8fdk7k4/t2MdTo2/lzu7XMm/Go+SkVv3dUZxfxDt3v8CdPa7l0WEz2PXDJve2tNOJzBl/D/f2mcC9fSYwf+bjpJ1OdG8fecsEfnp/GXZr43uyeW52AT+s2MjEm8rO5Z1bDnDNpbPo3Xw8M8ec/1y+d/pLXBI5gRFdb+anCufyucqyWmw8/+A7XNZuOv1bTuGuKS+QkZYDuM7lcTeM4NO3Gt+5bC3II2PjzzQdda17Xd7+PeyeNZWt4y9n/xP3uF9lVhlbUSGHX3yCreOHs3PmeDI2/+re5rTZODL3KXbePIEtVw8k/+BfHnmjxk8h6esvcdoa37nsMBdSFLcVvzbD3etMZw+T/P1DxC+7kbT1c7AVZ1Wd31JM+pb5xC+7iaTv7qE4fpt7m+ywk/H7ApK+u4e4r6ZgSvdsUskOG1m7Pibxm9tJ+PpW0jfNw17i+m2UlGr8Wg0m/8j31XzEtc9uK6IwZxcB4WXvZi8pPE7CoRc4vfd+Uo6/ic2SU2V+h91I2qkPOb33AeIPPEVhzp/ubabieFJOLOTMX48Qt+8xzp7+GLu17AJG3tn1JB5+kdN7HyT+wDPknV3v3qZQqPEP7Ufe2V9p6GSHGbvxDCrftu51DtNZSlJXY0xagin9F49Xl3nnt2DO3IQxaSklKauwG+MqTWfNP4Ax8UscprSy/ZjTMaX/gjFpGSUpnt+9kqRE5dsaa8GR/3iEFxfxALfaMxnXg9qqeon1V0BLSZIurc6dyrLsxHUv+kBJkvqdL319sOTLXxkxqg96vRaAnOwCpk96ntnP3URCxiq692rDzBteqjL/w/cuQq1Rcyrlaz764nEevOdtjh1JuOCyrps4mLS8792f2JZN3dsmTh7K0sXrsVis1X/gteibJRsYekVvdKUxzs0uZNYNL/PQ0zewP2kpXXu05u4bX6sy/9MPvY9ao2LPmS958+OHeOqB9zh5LAmAgnwjU2aO5I/DH7Pt6CcYfPU8fMdb7ry52YXcOO45pt48in2JS9h84AMuG9bDvf3aSYNZtXQjFkvDbgj+sGwDA4eXxTgvp4CHb5zLnU9MY/OpZXTs3prHb606xi8/+j5qtYoNRxcz9/2HmPvIe5w5nnhBZb2z4nm2J650f7pd0p7hYwa4t4+eMJgfV2zA2sBjXNG279bTZfAlaHSumBflFfDuPXMYe98M3tq1kpjObfjgwaoezQFLX1iEUq3ijT+W8795j/LV8wtJPZUAQGB4CHe8NZu3dq3kzR0r6Da0r0dZgeEhNGkZxf6NO2v0GOvC6qUbGFThXL5/xlzufmIa284so1P31jx8c9Xn8ouPuM7lLccX8+qHDzHnofc4fSzxgsr66oPvOfDncb7d+jabjn6BX4CBuY9/4N5+5fjBrFne+M7ljN/WEdy7H0qtK+a2gnyOzJ1N7LRbGbBsLX5t2nP01WeqzH/qvfko1Gr6f/U9HR5+hlPvzseYWNbgDujUlQ4PPY0mKMQrrzY4FH1kC3J2/VH9B1bHis5swad5dxQq13vVHeZC0n9/g6BuE4me9BHa4JZk/vF2lfmzd3+KpFARPeF9wgfcRdbuT7Dml72OTRfWjvABd6HUBXrlLfg/e3cdH8W1BXD8N7vZzUqc4EGCOy2FUtyKQw3aRwttqbu7u1KjLZRSo0LRAnXD2uLuDkmQoPFks37fHxs22WyCtHHO9332lZm59+6dw2GSO3dkx684ju+m7tA3qD9iIjqjhROrp/i3hzXsRta+v1Geyp3LWSdWYI1sjU6XF2NXNof3fEK1usNodP44Qq31ObL382LrH0uagabpaXTea9RqNJbjSdNx5A0GvW4bkdW70bD9izRs9xI6fShHE77211VAzfjraNxhHHWb3UX6sb/ISsl/fFN4tY5kpqzE663cMXZl70Fvroum8z0WS3ns2I8vxhh1HpZ6o9CHVsNx/O9i6ztSV4KmwxJ3JaGx3XGkrMTrTA8o43Vl4bYloenNgZW1EELCmmCMvqDItkOs8bhz9qKU5z/to6haynwwrpR6XikVW2jdW0opvVLqYDF1ZiqlNKXUyrxlreD7woso/2HBd4yfqo5S6qu8bcvzlscqpTqeou3svPJTTrmjpeTP31fTvUdb//IP85bQolVDLh/ZE5PJyBPPXMuWTfvYtWN/UN2cnFx+mLuEp5+/nrAwM126tWHwsC5Mn7rgrNsqSt246kRFh7F65RnfLVAhLf5zLZ27t/Yv//bDMpq2qM/Qy7tjMhm5/8mr2b4lkT07g9PVlmPnt++X89DTo7GGmenUtRUXD7mQOdN8s4h9BlzA0Mu7Ex5hwWwJ5frbhrF2RX68Pv1wHj0vPp/L/teb0FADYeEWmrSo599eu24skdFhrF+9sxQjUPqWLljLBV3zHwOx8KflNGpRn/6XdifUZOT2R69h19YEEnYHv1c3N8fOgp+WcecTY7CEmTn/otb0GnQhP81cdNZtJe8/yvoV2xh2VR//upp1YgmPDGPTmsqdx4Vt+XsNzTrlHzvW/bGUOk0a0HFQTwyhRi65+1oO7NjH4X3BcXLY7Kz9cymX3XsdJquZphe0oX3fi1j+g+/KGktEGLFxtdA0DaVAp9dxfP/hgDaaX9iOTX+tCmq7sluyYC0du+Xn8vwfl9O4RX0GXubLvzsfu4adWxPYtys4rrYcO3/+uIx7nvTlcoeLWtN78IX8mJfLp2vrYNJRuvXtQGyNaEJNRgZf0ZO9BY7XterGEhEVxsYqlsupa1cQ1fY8//Lx5X9hrR9P9e590RlDaXjNjeQk7MF2ICmorseey4llf9FwzM3ozRYiW7enWufuHF30OwA6g4G4S68isnV70BX9K1JU2/NJWbO8VPatPNmSN2Cq0dK/nHNgNcbIOMIaXIRObyS6/QicaUk4Mw4F1fW67eQcWEV0+6vQGUyYarTAGncBWQm+kxaaPoTIlkMw1WhRZFxd2ccx12lHiDkKnd5IWIMuuNLzf8aGWKuhM4ZhP7G7FPa87ORkbMMc3tS/nJ22AaOpNuExHdDpDFSrMxSH7RDO3OArO7weB9lpG6gWNwyd3oQ5vAnWqLZknfAdV61RrQmP6YBeb0anNxJZoxe52fknmWJq98dkrY+m6TGaa2KNahew3WCMRq+3YM9OLL0AlAFPbjL60Fr+ZbdtPzpjFCHWhmiaHkNke7yuNLyu4NselNeFx7YfY9T5aDoDelNN9JZ6uHP2BpRzpq7EGN2BwsMofWgshrDG6EKKftazLsSKpjPidRR/hYkIpCvDT3mpKDPj4gxt25JIk+b5g7Md25Jo066Rf9lqNRPfqDbbtwX/ErJn1yH0eh1NmsX517Vp14gd2xLPuK3ffl5Bg5oj6Nz+Fj79+Meg72jevD5bNu0NWl+Z7NyaRKOm+THateMALds29C9brCYaxNdidxEnKfbtOYROr6NR07r+dS3bxLN7e9EnNFYu3ULTAoPt9at3EhkdzhX9HuWC+Gu56cqXOHQg8KDdpFk9tm9O+Le7VyHs3p5Iwyb5Mdq7cz/NWsf7l81WE3ENawUMLE5K2uvL4wYF6jdrHc++vLJn09aPMxZy/kWtqNugVsD6+Gb12LW1cse4sIO7EqkVn5/XyXuSiGuR/+891GKiev3aJO8OPnYcTTyITqcLqF+veaOgsvd0GsEd7Ycz7eWPGHLb/wK21W5Uj4M7i77crzLbvS0wl/fs2E/zNvn5Z7GaqHeaXC5Yv3nrePbklT1dW1eM6c/6lds5djiFXJudn2ctpnu/wBmZRs3qsXNL1crlnMR9mOvW9y/bkhKwxjfxL+tNZky16pKzP3i/bYcOoOl0WArUD4tvTE7SmcfIUq8hOQl7/mXvKy5n+gEMEXUKLB/EGN3Av6wLMRESVhNnRvCJaFfmYTRNhzEi/2o5Y3SDgAH1qUQ06Y39+C7ctlS8bgdZiUsx120fUMYYUQdn2plNDlRUztxkjKaaBZYPE2rJ//ev04diMMXiyD0cXNd+DA1dQP1QcxzOIsoC5GbtIdRcu8htSins2XsxFtpuNNfCmXtmf2cVldeVhmaIKLCcjs4Q7V/WdAa0kPCg2W4ArzsTNA1dgfp6Q3TAwN2dkwiajhBzXFD9M6EzROJ1Vo3nK4mSUV6vNhP/UkZ6NuFh+ZfFZGfnEhsbFVAmItJKdnbwAyJycnKJiLQWW/Z0bV0+shdjbx5KjZpRrFm1g2v/9xJRkWGMHJU/qxgWbiYjPee/7GK5y8zIwVogxrbsXGJiIwPKhEdYyM4KjrEt2054hCW4bBF/H9u3JPD+GzP4ZNpT/nVHDqWwZeM+vvn+RZq3bsDrz0zh3hvG8d38/EtTreFmMjMqd4yzM3KwhBeIcY6d6GoRAWXCIqzYioibLcdOWKEYh0VYyckrezZt/TxzETc/eFXQemuYmaxKHuPCcrOyMVnz4+aw5RIWExVQxhxmxZ5jC6prt9kxhwceO8zhwWU/WP0dDpudZfP+pFqdGgHbTFYLtsyqFVOArMLHixw7MbHB+ZdzhrkcXiiXT9VWw8Z1qR1Xnb6tx6LX62jaqiFPvRn4+JSqmMvunCxCzPlx89hzMURGBZQJsYbhyQ3OZU9uLnpL4KxViKXossXRmy24s6vGg64K8jpt6Awm/7Jy29GZAvNPZ7SgXPbgum4HOkNgLusMZryuM3tYlSG8NiGWauyfcxdoOoxR9YjtdENwe87Kncsejw2dPtS/7PU60BeaRdXpzShvcIyV14FObwosG2LG63UElXXYDpGa/Ct1mt5WZD9Sk39GKUVE7EWB7elC8bgr+QPGvE40naHAshutQMzBNyD3Pce5cF03mmYIXKczoPIu3VdeF8709ZhqXBxc90xpBpS3ct/OWZbk1WaiwomKDiOrwC91YWFmsrICfzhlZdoICzMXrorVaiYr01Zs2dO11aJVA2rXqYZer6dzl9bcfvdlzJvzT0D57KxcIqMCf2mvbCKjwgJ+cbaEmcnOCoxbdlYuYeHBMbaEmYooG/z3kbg3mbFXvMBzb9zChd3yL4kPNRsZOOwi2l/QFJPJyH2Pj2Ltyh0Bg++crOCTKpVNeFQYtgInMyxWEzmF4paTZcNSRB4XVTY7y+YfEJ1pW+tXbOXEsTQuHt6NwnKycwmv5DEuzBIRFjB4DrWYsWcHxsmebQsYsJ9kspiCyuYWUzbUYqLXqKF89thbZKak57edY8MSUbViChBR+HhhDT4G5BTIz4LOJJdP1dZLD0/E4XCydO+3rD44m4uHdeH2K58PLF8FczkkLBx3gcGz3mTGYwv82eWx5aA3B+en3mzGkxtY1l1M2eJ4cm2EhIWfZa8rPp3RirfAQFsLMaFcgfnndeWiGUyFq6ILCQ0aeHtduegMwXlflBOrPkd5XTS48hPiR03BWu9Cjix8Pbg9Y+XOZb3egteTP3jW6ULxegIH3l6PHU0XHGNNF4rXW7hsLjpd4EDTaT/GoV0TqF5/JObwJhSWfnQxmSdWUafZHeh0gQNP38mBM/s7q7B0of7Bs285JHAZ36A6aNB9smzhQbpy+Qf3zvSNhFgboTP8h3//yoWW98wAIUAG45VO67aN2Lsr/xKiFq0asGVT/qWfOTm5JOw7TMtWDYLqNmlWF7fbw97d+fd7bdm0jxatGp51W0De/aGBZ6x27txPm3aN/9W+VRQt2jQkYU9+jJq1CLws3JZjJynhME1b1A+q26hJXTxuLwl78p+uuX1LIk1b5pc9uP8Yoy95lnse+x9XXN0noH7LNg0p+NZ7LW+hYJz37DpAy7bxVGZNWzUkaW9+jBo3r8+uvAcJgu++8IOJh2lcRIwbNK6L2+0NqL9rawKN8sqeaVs/Tl9I36FdihzwJ+w6EHCpe1UQ1zyeo4n5eV2nSQMO7Mj/9+6w2Tl+4DB1mgb/e6/ZMA6PxxNQ/+DOfUWWBVBehdPuIP3oCf+6w/sOENe8UZHlK7NmrQNzuUmL+uzckuhftuXYOXAWubxzawJN8sqerq2dWxK47Op+REaHYww1cM2tw9i8bhdpKfmXVO7bdSDgUveqwNqwMbmH8u/BtzSIJzsh//Yojz2X3COHsNYP3m9L3Xoojwdbgfo5CXuwNjjzGNkOJAZcFl9VhEbXx5WVf8mzMSoOR4HLwr1uO+6soxgjgy/PNUTURikPrsz8+s60/RiizuxSXkdaEuGNeqEPDUPTG4hoMRBHyl489sz89jKTMUYH/zuqTIyWujgd+W+tMJpr48jNP656PQ5cjuNFXl5uNNVAKS9Oe/4bFRy2QwGXmrscKRza+QExdQYTERv8zOOM48tIO/wncc3vxWCMDtruzD2C8V9efl1R6IxRKFd+3ugMUXhd+ZeFK68L5c5CZ4wKrhsSAUrhLVDf60xDZ/BdHem1H8aVtQPbgZnYDsxEeWzYT/yNM2PLGffP68pAV0TsRdHkaeqiwhkwqBNL/tnkXx5+aTe2b03k+zn/YLc7eePlqbRuG0+zIn7xs1rNDL+sG6+88CU5ObmsWLaVX35cxqjR/c6orZ9/WEZaWhZKKdau3sHHE+YxdHj+Q+iTD50gLTWLTp1blHIUSlefARewckn+gXXg8C7s2r6fX79fht3uZPzr02nRuiFNmgf/wLJYTQy8pAvvvDIVW46dNcu38efPK/2D7iPJKVwz7Gmuu2UIY24aHFT/yjH9+P2nFWzdtA+Xy837b86gU5dWREaF+eunp2ZzfqfmpbT3ZaP7xR1Zuyw/xn2GdmHv9iTm/7gUh93J5Lem07RVPPFN6wXVNVtN9B3ahY9en0pujp0NK7fx168r/Q9hO5O27LkO/vxhKZeM6hfU/rHDKWSmZ9OuY+XO48La9uzErlWb/csd+ncleXcia39fgsvh5MeJU4lrHk/tRsExD7WY6NC/G9+//xUOm53d67ayYcFyulzSF4CtS9exf9sevB4Pudk5zHj9YywRYdRunH8c2rVqM217dir9HS1jPS7uyJql+bncb1gX9mxP4s8ffPk3adx0mrWKp1Gz4LharCYuHtaFD1/zHS/WrdjGol9WMjwvl0/XVpvzm/LD9IVkZebgcrmZ/tkv1KgdQ3Q13y+OR5NTyEjLpn0Vy+WYjl3I2LLevxzbpSc5Sfs4vnQxXqeDpGlfYG3YGEu94JNFepOZ2C69SJz6KR57LhnbNnFi5RJq9hnoL+N1OfE6fbOXXrcbr9MRcEI0Y8sGYi4o0Ze7VAjmOudhP7rdv2yt1wln+gGy96/E63GStmkOxuj6GCPrBtXVhZiw1ruQ1I2z8Lrt2I/tJOfgGsLj81/hpTwuvB7f5bnK68brcfrjGlqtMVn7/sHrtKG8bjJ3/YneHI0+7zJ5ty0VryMbU2zToO+uTKyRrcnNyn/egDW6Pc7cZLJS1+P1ukhN/pVQc12M5lpBdXX6UMKizyPl0E94PQ5ys/aSk76J8NgLAXA70zm0832iavQkqkaPoPqZKatIOfgDdZvfg8EUG7Td7UzH47ZhCmtYcjtcDkLMcXgKnPAIsdTH60zHnZPkO2GUsQmdIdo/wC5I0xnQW+rjTN/ge5ib/Rhu2wFCrL5JJlPN/pjrXIKpznBMdYaj6c2ExlyEIdz3O5lSCqU8KFTesifgyelet813u0Fo9dIMgahktMIzm+K/yXT9WaoBTTmRQfdOd7Bu2xf+15stWrCOR+77kAP7j9HxwhZM/PRhGjT0Hcjfen0ay5du5rsfXwV87xm/+5a3WbRgHTHVInj+5Zu48uq+/vZP1daNY15l4fy1OB0u6tSN5ebbh3P73Zf7645/eyZHj6Ty6rh/88r3M5fmCL6XqiSlnshkSLf7WLxhkv91RUsWbeDZhz7m0IHjnNexGW9Nuo96DXwPUZkwbiarlm/jyznPA773jD9y5/ssWbSB6JhwHnvhei69qhcA7702jfdenYbFGngJ2rYj+e9n//rTX/jwzZnk5jrodFErXnr3durE+Q7cH783h2NH0njm9ZtKNQYAaY7SO02YlpLBqN738f2qj/0xXvHXBt54bBKHDx6nTYdmvPjh/dSp74vxZ+/OZN2KrUyY8QLgezfz8/eOZ8VfG4iKDufeZ65n8Mje/vZP1RbAr9/9xfsvfckv6z/zX31w0pcfzOH40VQefvnmUtv/k9aeKOIyuVKSlZbBi5fdxSu/f+Z/vdm2Zev49qWJpCQfI75dc2587SFi43z/3n+eNJ3da7dw/ycvA773jE956h22LVtHWFQEIx68kc7DfYPGNb/9zbzxX5F29ASG0FAatm3GiIduoF7eTHj6sRReufI+XvvzC0KMZbfPABfVKN3X9KSlZDCy5338vCY/l5cv3sCrj00i+cBx2l7QjFcm3E/dvPyb/M5M1i3fyqRZ+bn8zD3jWb54A5HR4Tzw3PUMLZDLp2orPTWT1x6fzPLFG3A53TRpWZ9HX76Zthf43q/7+ftzOHE0lUdfKd1cvmtZ2c7yuDLSWXPvDVw4ebr/9WZpG1aze9K7OI4dIbxZK1o88BSmmr4Zw6SZX5GxdSPtXnjbVz8rk53jXyNt/WoMERHEX387NXsP8Le/4saROAq9p7zzZ7Mw1ayNI/UE6x64hc6fzkRnKNtcPjA9+In8Jcljz+TgL09Q75J3/a83sx3eTMrqKbhzjhNarQnVu96BIcz38yhtyzzsx3ZQu+/jvvqObI4v/5jcw5vRhYZR7fyrCYvPvw1o/9x7cOecCPjOepe9jyGsOh5HFimrv8R2eDN43Rii6lHtgjGYYn1XIKRv/RFPbjrVOl5bqjHQ70wt1fY9rmz2b32NBu2e87/ezJaxg2P7Z+J2pGIKa0jN+GsxhPpeq5ea/Bu52Xup2+wuX313DkcTvsGWuQN9iJVqcZcSUc13kjPl0M+kJv8SdAl0kwveBSBh47O4XWloWv7josKrXUjNhlcDvveQu12ZVK8/olRjkHxsZam2rzx2cg//hLnOZf7Xm3lyk3GkrkJ5ctAZYwmN7eZ/4rkzYzNe+1FMNS/Oq+/AkbIMj/0wms6IMboDIdair+qyHfyO0Gpd0Jt9Dz702I9gPxr4rnZdaE3MtQbmfdcWlCeX0JjSPTGdnfhlOc7zlqy7ly8qs4Hqh136lEvcZDBewkp7MA7wwtOfU71GFHfee0Vpf9UZczicdLvgdn5d+DbVa5TuL2alPRgHePP5r6hWPZKb7rq01L/rTDkcLgZ3uZeZv79GbPWoUv++0hyMA3zw8lfExEYy+vaKE2Onw8X/et3DZz++TkwZxLgsB+MAc975gvBqUfS//vLTFy5BM16fTI36telzzfAy/V4o/cE4wHsvfUW12EiuvaNi5fKInvcw5afXqVbKuVzWg3GAfV9+jDEqmrhLgx/AWJr2fvoBptp1qTu07H/+lvZgHCB1/XT0pggiWw4p9e86U8rj4uDPj1NnwLPoTcGzmSWptAfjACcOfo8+JJzoWn1PX7iMeL0u9m99jbgWDxDyX+6HPgOlPRgHcKatQ9ObMES0KvXvOlNKechN/hFzrYHB7ycvYTIY/3dkMF5FlMVg/FxXFoNxUfqDcVH2g/FzUVkMxs915TEYPxeVxWD8XFcWg/FzXVkMxs91VWkwfm8ZDsbfL6fBuNwzLoQQQgghhBBClDF5z7gQQgghhBBCiApF3jMuhBBCCCGEEEKIEicz40IIIYQQQgghKpTyfP93WZGZcSGEEEIIIYQQoozJYFwIIYQQQgghhChjcpm6EEIIIYQQQogK5VyYNT4X9lEIIYQQQgghhKhQZGZcCCGEEEIIIUSFIg9wE0IIIYQQQgghRImTmXEhhBBCCCGEEBWKpqny7kKpk5lxIYQQQgghhBCiGJqmDdI0baemaXs0TXv8FOU6aZrm0TRt5Jm0KzPjQgghhBBCCCEqlIpyz7imaXpgAtAfOAis1jTtB6XUtiLKvQH8fqZty8y4EEIIIYQQQghRtAuBPUqpfUopJzAduLSIcvcA3wHHzrRhmRkXQgghhBBCCFGhVKBZ47rAgQLLB4HOBQtomlYXuBzoC3Q604Yr0D4KIYQQQgghhBBlS9O0WzVNW1Pgc2vBzUVUKfx0ufeAx5RSnrP5XpkZF0IIIYQQQghRoejK8GnqSqnJwORiNh8E6hVYjgOSC5XpCEzXNA0gFhiiaZpbKTXvVN8rg3EhhBBCCCGEEKJoq4GmmqbFA4eAUcA1BQsopeJP/lnTtCnAT6cbiIMMxoUQQgghhBBCVDAV5WnqSim3pml343tKuh74XCm1VdO02/O2T/q3bctgXAghhBBCCCGEKIZS6hfgl0LrihyEK6XGnmm7MhgvYa06LCvvLlR5KRk7yrsL54TZS68r7y5UebUs3vLuQpWXmK0v7y5UeY+0yyzvLpwb2kWWdw/OARLj0hd/+iJC5KkoM+OlSZ6mLoQQQgghhBBClDEZjAshhBBCCCGEEGVMLlMXQgghhBBCCFGhnAs3msnMuBBCCCGEEEIIUcZkZlwIIYQQQgghRIWi01R5d6HUycy4EEIIIYQQQghRxmRmXAghhBBCCCFEhSKvNhNCCCGEEEIIIUSJk5lxIYQQQgghhBAVisyMCyGEEEIIIYQQosTJzLgQQgghhBBCiApFLzPjQgghhBBCCCGEKGkyMy6EEEIIIYQQokKRe8aFEEIIIYQQQghR4mRmXAghhBBCCCFEhaLTVHl3odTJzLgQQgghhBBCCFHGZGZcCCGEEEIIIUSFIveMCyGEEEIIIYQQosTJYFwIIYQQQgghhChjcpm6EEIIIYQQQogKRV/eHSgDMjMuhBBCCCGEEEKUMZkZr4K8bhtph37Akb0XXYiFiJr9sES1CyqnvG4yjs4nN2MLyuvGEtWGyNqD0TTfeSi3M4305J9x2g6i6fSYI1oRWXuQf7vwUcqDO20NHvtR8DrRQsIIiWyH3lynyPLurJ24M7eD8qC3xBES3VFieoYSdyby2UufsnfzHjLTMvlp/y+nLL9v617GPzKeg3sOENekHveNu49GrRuXUW8rJ4lx2ZA4lz6JcemTGJc+iXHZkDhXTPIAN1EppR/+BU3TU6vFw0THXUF68s+47MeCymWdWIIrN5maTe6kZrN7cOYeJuvY3/ntJP+MPsRK7RYPUaPx7ThykshJXV2Wu1I5KAV6C8YafQmtO4KQyLa4UpbhdWcHFfXkHsaduQ1jjT6E1hmO152NO2NLOXS6cgoJCaHHsB7cO+6+05Z1OV28dPOL9LmiD9M3z6TfyH68dPOLuJyuMuhp5SUxLhsS59InMS59EuPSJzEuGxJnUV5kMF7FeL1OcjO3EV6zDzp9KKHWBpjCm2NL3xhU1p65k7BqndGFWNCHWAmr1hlb2nr/do8rHXNkazSdAb0hHFN4E1z242W5O5WCpgvBENkWXUgYmqahN9dFC7GinGlBZT22BPTWRugMkWg6IyERrfHkJJRDryunuMZxDBg1kPrNGpy27OYVm/G4vVx602UYQg1ccuOloGDTsuB/CyKfxLhsSJxLn8S49EmMS5/EuGxInCsmnabK7FNu+1hu3yxKhduRAugwhMb61xnMNXE7ih5EKwKTz+POxOuxA/gG5xlb8HqdeFyZ2LN2YwpvUmp9ryqUx45yZaEZIoO3uTLRGaP9yzpDNHjtKI+jLLt4Tti/K4n4lg3RtPxrnBq2aEjSrv3l2KuqRWJcNiTOpU9iXPokxqVPYlw2JM6iJMk941WM8jrR6UMD1ul0JrxFDPZM4U3ISVlJqDUelJfslJV5bbhAb8JoaUhO6joOb3sNUFii2mMKb1EWu1FpKeXFlbIcvTUenSEiuIDXBZohf1lnyKvnQiM0uLz413JzcrGEWwPWWSKs5GbbyqlHVY/EuGxInEufxLj0SYxLn8S4bEicy45e7hn30TTteU3TlKZpu4vZvidv+/OF1o/VNG2lpmk5mqZlapr2l6ZplxRRf0pe/ZOfLE3TVmuadkWhcr3ztrcpsC5R07S3Ciw3LNRWcZ85mqalaZpWo4j+TNY07ZimaTEFvvPkJ03TtCWapvU7k9iVNU1nDJpl9XodQQN0gPDqPTGYanFszySO7/sMc0QL0HToQqwo5SUl6WvMES2p0+oparV4FK/HTubRP8tqVyodpRSulBWg6QiJvqDoQjoDqAL3FHl9f9YKDtCF36K5ixjZ4gpGtriC56575qzqmq1mbIV+MNqybJjDLCXZxUpPYlw2JM6lT2Jc+iTGpU9iXDYkzqKiOJuZcTsQr2laR6XUmpMrNU3rBDTI206B9R8BtwATgafzvmsU8L2maY8rpd4o1P4O4Ia8P0cAY4FZmqb1UkotOYt+Hga6FFhuBEwF7gLWFVi/HdgCjAOuL9DvC4GbgBuVUqkFLkEZDewDqgEPAL9pmtZJKbXhLPpW6kJCq6Hw4nakEBJaDQCX/QghodWDymo6A1F1hhJVZygAOalrMJjqoGk6PO4cPK5MrNUuRNOFoNeFYIk+j8yjC4msNaBM96kyUErhTl0FXjuG2J5oWtHnuTRDBF5nOnpLfQC8rnTQmdCKOFkioM/lfehzeZ9/Vbd+swbMnTwHpZT/UrLEHQkMu35YSXax0pMYlw2Jc+mTGJc+iXHpkxiXDYlz5SBPUw+UAyzEN6AuaFTe+pyTKzRNuwy4HbhbKXWvUupPpdSvSqnrgTeBVzVN61C4faXUirzPH8AY4BgQNJN+KkopR4F2VgCb8jZtK7heKZUB3A9cp2laj7x+6/CdPPhHKfVloaY35dX7GbgMyMZ3sqFC0emMmCNaknlsEV6vE0fOfuyZO7FEtQ8q63Fl4nFlopTCaTtA1rG/iajRGwB9iBW9IYqc1NUo5cHrycWWthGDqVYZ71Hl4E5bg9ediSG2B5qu+HNceks8npx9eF0ZKK8TT+ZW9Nb4Muxp5aaUwml34na6AXDanbgcRT+9tO1FbdHpdfzw+fe4HC5+nPIjAO26Bv9bEPkkxmVD4lz6JMalT2Jc+iTGZUPiLMqLptTpnx6Xd/n53cCjwPNAA6WU0nyng/YDz+KbYf5QKfW8pmmLgDighVLKU6itSCAJmKOUujFv3RSgjVKqY6Gye4EflFIP5C33BhYBbZVSW/LWJQKzlVIPF9P3NsBmoI9SanER238G6gPnA7cC7wLnKaW2F/edeetXAieUUkMLthfX9oXyexxfHt97xr/Hkb0PXYiZiJoXY4lqh9uZzrE9E6jR5C5CjFE4chJJOzgXrzsHvSGS8Bq9At5H7sw9TMbh33DZj6JpGkZrPFF1hqAPCSvHvYOUjB3l+v2FKXcOjsM/AjooMCNuiO6ILrQ6jiO/ElprMFqI7/4id9aO/PeMm+sRElMx3zM+e+l15d2FIEcPHOWmbjcErKsRV4PPl00B4LnrnqH1hW246u7/AbB3y17ef3Q8B3bvp17Tetz75v00biPvAT0ViXHZkDiXPolx6ZMYlz6JcdmoSnEeWm9wlZlP/nL372U2rrq+6cByidvZDsabAEeBi5VS/2ia1hP4A6gF7AE+BF7GN2s8USn1YDHtzcU3uG2StzwFaANclFckArgReAPod3IQXUqD8XhgK/A+vsH4R0qppwpsL+o79cAB4Fel1E0F26sIg/GqrqINxquqijgYF0IIIYQQxZPB+L9TXoPxs3qaulIqXdO03/Bdmv5P3n9/y1t/slgsEIpv9rs4ScCgQusuAApeD+IFHi1qAF2SlFIJmqa9gu8kQkLef4ui1zQtBIgBngJqA3NLs29CCCGEEEIIcS6Se8aLNh0YqWlaKDAyb7kkbAc65X164bv0/RVN08aWUPunMi7vvx8qpXKLKbMB38mCo/ge8PaYUuqnMuibEEIIIYQQQogq5t+8Z/wH4FPgFcAK/Fho+wnAge8J68VpABwqtM5W8CntwN+aptUC3tQ07Ut1JtfT/0tKKWfezL7zFMVGAXuBNCBJKeUurf4IIYQQQgghxLlMr1X9u3/PemZcKZUD/ITv9V4/5i0X3O4GlgNDtSLe76RpWgTQG/j7DL5uG1Ad36Xv5W2rUmqNUmqvDMSFEEIIIYQQQvwX/+YydYCP8M2ITypm+3igGXBzEdsex/eAtg/P4HvaALlAyr/oY5WVcWQ+2SeWl3c3Aiivm6O7PsDjzi7vrpQJV/pG3Fk7S7xdrzMdx9E/S7zdymjK61/w/afzSrzdhO0JPHz5QyXebmUkMS4bEufSJzEufRLj0icxLhsSZ1GR/KvBuFJqsVLqsuIerqaUmodvoD5B07T3NE27WNO0QZqmfQE8ATyllFpXqJpV07SL8j59NE17Ft97vCcrpbyn6VIzTdNGFvoM/jf7VtF53DnY0jdijcl/C5w9ex9Hd31A8taXOZ4wBbczvdj6XreNlKTpJG99hSM738WWvsm/TXndpOyfwZGd73Joy/M4shMC6mYeXcShLS+SvO0V/8ftTAVA04VgiT6f7ONLS3aHKyDlseOxJaK35r/CwmM/guPwz9gPzsJ5bCHKnXOK+g6cJ/7BfnAW9uQf8OQk+rfpjFFoOiOe3MJ3cZxbMlIyWPjdQgaNyf9nvGHJBm7vcysjml3OE/97nGMHjxZbPys9i5dveYkRzS/nhi7Xs3jeIv+2+JbxWCOsrPxzZanuQ0UnMS4bEufSJzEufRLj0icxLhsS58pFV4af8lKa330nvsF0F+B7YBbQCLhUKfV6EeVb4Lu8fTnwC757tJ/F927z0xme137Bz0f/sf8Vki1tA6bwpmg6A+AbnKfun0FEzb7UbvkYRnMdUg/MKrZ++uFf0DQ9tVo8THTcFaQn/4zLfsy/PdRSn+i4K9AV8y5xc2Rr6rR6yv8JMcb4t1mi2mJL34DyVu2r+D05CehNtdF0vkcuKI8D14mlhES2JbTuFWjGGJwpy4qt70pfC+gIrXMZxmpdcKWtxevK8G/XWxrgyd5b2rtRoc2f9Scd+3Qk1BQKQEZqBq/e9jJjHrqWaZtm0LRdU964q6jDiM9HT0/EYAjhm3Xf8vD4R5n41ASSdua/4KH3ZX34beovpb4fFZnEuGxInEufxLj0SYxLn8S4bEicRUVzRoNxpdTzSqlT3retlIpVSj1fYFkppaYopTorpaxKqXClVC+l1A9F1B2rlNIKfMxKqVZKqdeVUs4C5Rbnbd9SYF3DQnVPfhrmbd+St7z4NP3XlFJBl84X9Z3lyZ69m1Br/rPx7JnbMYRWxxzZGk1nILxGb1z2o7gcx4Pqer1OcjO3EV6zDzp9KKHWBpjCm2NL3wj4ZrfDYrvktX/27xLQGyLR9GacuQf/9f5VBl77YXShNfzLntwDaIYI9Jb6aJqekIg2KFc6XldmUF3ldeO1HSQksi2azoAutDo6c53A2fHQGngdR1HKUxa7UyGtXbyGthe19S8v/3UZ9Zs1oPuwHhhNRq55YDQJ2xI4sOdAUF27zc6yX5cy5uFrMVvNtL6wNZ0v7syiOQv9Zdp2acvGpRtxOVxB9c8VEuOyIXEufRLj0icxLn0S47Ihca5cdFrZfcptH8vvq8W/4bYfI8SYf17E5TiOwVzLv6zTGQkxRuO2Bw/G3Y4UQIchNL++wVwTdxED9+LYs3aRvP11ju6eQHbK6qDthtBYXPYjZ9xeZeR1ZaCFhPuXlSsTnSHav6zpQtD0YagCs93+su4s0DR0hgj/Op0hOqCsFmIBNJQrq3R2oBJI3JFI3cZx/uWkXUnEt4z3L5ssJmo1qM3+XUlBdQ/tO4ROp6Nuo/z68a0akVSgbGytWPQGPQf3Ve0TR6ciMS4bEufSJzEufRLj0icxLhsSZ1HR/JtXm4ly5PXY0fRG/7LyONGFWALK6PQmvF5HUF3ldaLThwaW1ZnweoLLFsUc2RprzAXoQsJw5h4kdf9MdHoTlqj8M4yaLhSvx342u1T5eJ2Qd5sAAMoFOlNgGZ0BpYo4K6pcoBlOX1Zn8H3POSonMwez1exfttvsRMZEBpSxhlvIzckNqpubk4slwhqwzhJuDSprtlrIyTw3HjhYFIlx2ZA4lz6JcemTGJc+iXHZkDhXLuU5Y11WZGa8ktHpTShP/iBN0xtRhQbeXo8DnS60cFU0nRFVaODt9TqCBujFMZhqoDdEoGk6Qi31CavWmdzMbQFllNeBTm8qpoUqQmcEb4HBs2YIXAZQLrTCg+6TZQsPvL1FlPW6fN9zjgqLDAv44WaymLBl2wLK2LJtAT9QTzJbzeRmnb5sbo4Na0TRz0Y4F0iMy4bEufRJjEufxLj0SYzLhsRZVDQyGK9kDKaauJ35b3ozhFbHZc9/6qPX68TjTCXEVD2obkhoNRTevMvVfVz2I4SEBpc9MxqgAta4HCcwmGoVXbyK0BmifJeb59EMEXhd6f5l5XWj3NlohsigulpIOCiFt8Al6F5XekBZ5ckF5UUzhAfVP1c0bBHPoX35T5Rv0KwBCdv2+ZftNjtHko5Qv1mDoLp1G9XF4/FwKCG/fsK2fTQoUDblSApul5u4ApeanWskxmVD4lz6JMalT2Jc+iTGZUPiXLnoNVVmn/Iig/FKJjS8KY4CD/syRbTEZT9GbsY2lNdF1rG/CDHVxFDEAFunM2KOaEnmsUV4vU4cOfuxZ+7EEtXeX0Z53ai8WV6lPCivC6V8CZqbuQOvJxelFE7bQbJTVmIKb+Gv63Fl4vXkYjRX7QOQzlwbryP/CfR6cxzKlYHHdgClPLgzt6AZogLuCz9J04WgM8fhztzse5ib4zje3EPorQ39Zbz2o+hMNdE0fVnsToXUsW9HtqzY7F/uMqgrSbuSWPrLEpx2J9Pe+5aGLRtSr0m9oLomi4kug7oy9e1vsNvsbFu9lZV/rqDPFX39ZTav2ES7ru0xhBZx9cI5QmJcNiTOpU9iXPokxqVPYlw2JM6iopHBeCVjiWqPPWu3f8CsD7ESU/8qMo8uIHn7GzhtB4mpN9JfPuvY35xI/Ma/HFV7KMrr4sj2caQdnE1UnaEYTPlPBj+6+wOSt72C151FStI3JG97BU/erG9uxhaO7Hqfw9tfJe3gXMKrd8MafZ6/ri19M5ao9v5XflVVeks8Hvth/yvcNL0JQ2w33BmbcByag9eZgqFaF395d+ZWnMf/8i8boi8A5cGRPBdnynIM0RegKzAz7rEloQ9rUnY7VAH1HdGPNYtW47D7bquIrBbJk5Oe4utxXzGq7VXs3LCTRz983F9+5oczeO66Z/zLd75yF067g9HnX824e97kzlfuokHz/DPXi+ctZsjoIWW3QxWQxLhsSJxLn8S49EmMS5/EuGxInCuXc+Fp6trJWU9RMuLavlDqAc04Mh99iJWw2C6nL1xGlNfNsT0fEdvoBvTFvKO8pKRk7CjV9s+EK30jmt5ESHjzEm3X60zHlbaa0Jr9S7Tdf2P20uvK9fu/fGMKUdWiuPTmy0q03cQdCXzw+Ae8Pe+dEm23MpIYlw2Jc+mTGJc+iXHpkxiXjaoe56H1BleZx559n/RrmQ1UL21QPnGTwXgJK4vB+LmuIgzGzwXlPRgXQgghhBBnpyoNxn/cX3aD8eH1yyducpm6EEIIIYQQQghRxqr2zb1CCCGEEEIIISodec+4EEIIIYQQQgghSpzMjAshhBBCCCGEqFD0MjMuhBBCCCGEEEKIkiaDcSGEEEIIIYQQoozJZepCCCGEEEIIISoUnVb13xgtM+NCCCGEEEIIIUQZk5lxIYQQQgghhBAVyrkwa3wu7KMQQgghhBBCCFGhyMy4EEIIIYQQQogKRSevNhNCCCGEEEIIIURJk5lxIYQQQgghhBAVil5mxoUQQgghhBBCCFHSZGZcCCGEEEIIIUSFIu8ZF0IIIYQQQgghRImTmXEhhBBCCCGEEBWKPE1dCCGEEEIIIYQQJU5mxoUQQgghhBBCVCgyMy6EEEIIIYQQQogSJzPjJSwzJ6m8u1DlGULM5d2Fc0KO6xw4HVnOYk3e8u5ClZeUrS/vLlR5da2e8u7COcGsr/pPFS5vXiU/90pbiE7yWJy5c2HW+FzYRyGEEEIIIYQQokKRwbgQQgghhBBCCFHG5DJ1IYQQQgghhBAVinYO3DkiM+NCCCGEEEIIIUQZk5lxIYQQQgghhBAVyjkwMS4z40IIIYQQQgghRFmTmXEhhBBCCCGEEBWK3DMuhBBCCCGEEEKIEicz40IIIYQQQgghKpRzYdb4XNhHIYQQQgghhBCiQpGZcSGEEEIIIYQQFYqmqfLuQqmTmXEhhBBCCCGEEKKMycy4EEIIIYQQQogK5Rx4mLrMjAshhBBCCCGEEGVNZsaFEEIIIYQQQlQo8p5xIYQQQgghhBBClDiZGRdCCCGEEEIIUaGcAxPjMjMuhBBCCCGEEEKUNRmMCyGEEEIIIYQQZUwuUxdCCCGEEEIIUaHozoHr1GVmXAghhBBCCCGEKGMyM34O8boyyDn0PSGWBphr9CqyjDNjK86MzSivmxBrQ0yxXdA0fRn3tPKSGJec3776gb++m8/+XQl0G9abO8c9VGS5/TsT+fq1T0jYsoestExm7P01qMzSHxcz+4NvSUk+RlT1aO548yFadmpTyntQ8c374kd+nzmfhB2J9Lm0F4+992CxZWdPnsv0ibNx2p30GNKN+167C2OoAYAHRz7OtnU70Ot9eRxbqxpf/jO5TPahMljwzQ8smfMnh3Yl0nlYL256/eEiyy2d+yfzv/6eo4nJmMMsdB7WmxEP3oA+xBfXyQ+/wfYVG3DYHERWj2bwzSPpeeXgstyVCuv7L37kz1nzSdyRSO9Le/Hwu8Xn8pxP5jJz4mwcdifdh3Tjnlfzc/nIgaN8+OREtq/bjsFooPuQ7tzxwq3+v4Nz2Xef/8hvMxawb0ci/S7rxZPjHyi27MyP5/HtBF+Mew3tyoOv58f4pbveYu2SjdhtdmJqRHPNnSMYNnpgWe1GhTfn8x/5Le+43PeyXjxxiuPyrMlz+XaC77jcc0g3HigQ55fvHse6AnEedcdIiXOe7z77kV/ycvniy3rx1PvF5/KMj+cx9cP8XH74jfwYn0074t85BybGZWb8XGI/sQK9MbbY7W7bIZzpmzDXGkhYvStR7iycaevLsIeVn8S45ETXrMYVd42iz8gBpywXYgihy5Ce3Pba/UVu37RkHd+++QV3vPEAUzbN4flp46hZr1Yp9LjyqVYzhtH3jWLQ/04d49WL1zJtwmzemvEqU1d8zuH9R/jy7W8Cytzz8h38vPs7ft79nQzEC4mqEcPwO6+m+4hTx9mZ6+DqJ2/n/RUzeHrWe2xfsYHfPp/t3z70tv/x5sIvmbhuDvdOfJ45731F4pbdpd39SqFazRiuuXcUA06Ty2sWr2XGhNm8Pv1Vvlr+OUeSjvB1gVz+8MmJRMVGMm3tN0z8/QM2r9jMj1/+XNrdrxRia1bjuvv/x5BR/U9ZbtWitUz9cDbvznqFmas+JznpCJ+/NdW/fcy9VzJz1ef8tnsWr015hk/f+JqdG/eUdvcrjdhaMVx73ygGjzp1Lq9avJZvP5zNOzNfZfrKz0nef4Qv3srP5dH3XMX0lV/wy67ZvPLFs3z25lfs3CTHC/CdML7+gf8x9DS5vHLRWr75YDbvzXqFWat9ufzZuPxcPtN2hDgVGYyfI1zZ+9D0RvTm2qcoswdDeDP0xmg0fSjGqPa4suUH5JmSGJeszgO70WlAV8KiIk5Zrk6jOPpeNZB6TRsUuX3We98w4p5raHZ+S3Q6HTG1YompVfwJk3NJjyHd6D6oCxHR4acs98esBQweNYCGzRsQHhXOmPtG8fvM+WXUy8rvggHd6XBxV8KiTh3nPtcMo1nHNoQYDUTXjOWi4X3Ys26bf3vdpg0xGI2+BQ00DY7tP1yaXa80ug/pRtczyOU/Zy1gYIFcvub+Ufw5Kz+Xjxw4Qs9hPTCajMTUiKFj7wtI2pVU2t2vFHoN7UqPwV2IiD71Mfm3WQsZenV/4ps3IDwqjOsfGMVvM/JjHN+8gX9mUdN8iXwoSfL4pJ5DuuXF+dS5/PvMBQy5ekBenMO57v5R/Daz+DhrmkZy4pFS7Xtl0WtoV3oO7kJEzKlz+deZCxl2TX8atWhARFQYYx8cxa8FcvlM2xH/Xt4hokw+5UUG4+cA5XXiSFtPaEynU5bzutLQGaP9yzpjDMqTi/LYS7uLlZ7EuGLyejzs3bKbzNQM7u1zI3d0G8Pnz0/EaXeUd9cqlcSd+2ncKt6/3Lh1PGnH08lIzfSv++y1KVze5mruvfRhNizbVB7drHJ2rd5CnSaBJ5m+fv5Dbm9/KU8NvoXI6jG063XqY44IlLRrP40K5HKjVr5czkzz5fJlN13K4h/+xp5r58ThE6xevJaOvS8or+5WSgk7k2jcusDxolU8qYWOF+88PpH+8SMY0+N2qtWI4aJ+Hcujq5Va4q5Cx+VWwcfld5+YwMBGV3Bdz9uoViOGzhLns5KwM4kmBWLcpIhcFuK/ksH4OcCRtg5DeFN0IWGnLKe8bjSd0b988s/K6yrV/lUFEuOKKf1EOh6Xm5W/LuGFGW/xxo8TSNi6lzkfTivvrlUqubZcrBEW/7I13Opbn5MLwC1PjuWb5Z8xY+1XDB09iKfHvkhyosx0/Rf/fPcHiVt2M+jGEQHrr33+biaum8PjU9/igv7dCDEayqmHlZPdlos1PDiXbdm+XG53URuSdiVxeYsrGd3pepq1a0LXQV3Kpa+VVW6OnbC8uAKEReTFOO94AfDg63fy256ZfDjvDXoO6YJR8vis5eYEHpeLivMDr93FL7tn8f7cN+kxpKvE+Szl5tixRhSRy9m5xVURJUwrw095KZPBuKZpz2uapjRN+72IbbM1TVtcoNyJYtp4S9O0xALLY/Pa3KZpmu40ZRvmlR2maVrvvD+f8pNX70pN037QNO2QpmnZmqat1TTt6hIJShnxOFLw5B7GGNn6tGU1XUjgoNDrzFsvB+9TkRhXXEaT72THoOuGE10jhoiYSIbddDnr/1pdzj2rXMwWM7as/F8+crJsvvVWMwAtO7TAEmbBGGpg4FUX06ZTS1YulBj/W+vmL+O7tz/ngU9eIjwmMmi7Tq+nWcc2pB05waJpP5VDDysvk8Uc8Iu0LduXy5YwM16vlydHP0u3wV35ftccZm2eRlZGNp+98kV5dbdSMltN5OTFFfKPF5a848VJer2edp1bc/zwCeZ9+UuZ9rEqMFuLPi6fKs7fS5zPitlq8scVCsQ4zFxcFSHOWlnPjA/QNK2kr6lrCYw4bal864AuBT4nH2t7RaH1AA8C2cADwCXAIuBbTdPu+e/dLhse+xG87mxyDswie/90nBlbcNuSyDn0fVBZnSEarzM1v64zFU1vRtObyrLLlY7EuOIKiwynWq3Y8r0ZqApo2Lw+e7ft8y/v25ZAdPUoIou7T07TUKqMOlfFbP57DVOeHs+9k14grnn8Kct6PB6Oyz3jZ6VBs/rsKyKXI6IjyErP4njycS4dOxxjqIGI6AgGXtWfVYvWlGOPK5/45g3YuzXBv7xnWwIxpzheeDxeDsmVNGetYbPA4/Le0xyXPW4PyXJv/lmJb96APdvOPJdFyZOZ8ZKVCmwCnirhdhcDT55pYaVUplJqxckPsDNv0/pC6wGGK6WuUUrNVEotVEo9DEzDN0ivFAzhzbHGjcBS5xIsdS7BEN6cEHMc5lrBr7cwhDXGlb0bjzMd5XHgTN+IIaxJOfS6cpEYlw6P24PT4cTr9eL1enE6nHjcnqBySimcDidul++KA6fDicvh9G/vPbI/v331Axkn0snOyOKXL+bRoU/nMtuPiszj9uC058XY48VpLzrG/Uf25dfpf5C4az9Z6Vl8M346A6+6GIDsjGxWL17rrzt/ziI2r9hCp14dynp3KiyP24PLkR9nVzG5vH35BiY/8gZ3ffA0jdo1D9iWmZLOyp8XY8/JxevxsOWfNaz8eTEtLzqvjPaiYvPnsufUuXzxyL78Pv0PkvJy+dvx0+l/pS+XI2MiqVW/Jj999TMet4fsjGz+nLWARi1PfVLkXOF2e3DYnXg9HrweLw67E3cRMR44si8/T/uDxJ37yUrP5qv3ZjDof74Yp51IZ8G8v7Dl5OLxeFi1aC0L5v5Fh+7ty3p3Kqz8OHtPGecBV+bFOS+Xvx4/nUFXFRPnxWtZOO8vzu/Wrqx3p0IKyGVv8TEedGVffv72DxJ27iczPZsv353B4LxcPpt2hDgVTZXB9IWmac8DdwN34RvMtldKbc7bNhuIVUr1PllOKRX0qGNN094CRiqlGuYtjwW+AC4G5uMbOP9UTNmGQELBMgXaHQb8CMQrpRLPYF8eAZ5XSlmL2h7R6MYKPR/kSFuP15WJuUYv32zuwblY4y733+vszNiCM30zSnkIsTbAFNtV3oF9lqpKjD+df1W5fv+s8d8w+/2pAetG3juaPlcO4MGBt/HO7x8TW6cGxw4e5Z5eYwPKVa9bgw///hIAt8vNlJcmsfSHxRhCjXQZ0oPRj9+EMdRIeYs1ecv1+798eypfvfNtwLrrHryGQaP6c2PvO/h88UfUrFsDgFkfn3zPuIMeQ7px/+t3Yww1kJ6SwZPXPsf+PQfR6XXUbxzH2EevpWPP88tjl4IkZZf/v615H3zNDx8G5vIld4+mx4iBPD30Vl7+eTLV6tTgzWsfZdfaLRgK5GbTC9rw4Kcvk5mazsR7X+HAjn0or6Ja3RpcfO2l9Lqq/N8zXtda/r98fv32VL55NzCXxzxwDQNH9eeWPnfwyaKPqJGXy99N9r1n3Gl30G1IN+597W7/U6f3bt3LpOc+Yd/2feh0etp3bcvdr9xJVGxUWe9SELO+fH+9+PytqUx5O/B5G2Mfupqho/pzXa87+eqvidSM88V4xqS5fDvhOxx2B72GduOhvHczp5/I4JlbXmPvtgS8Xi8142ow8qbhDB8zqDx2KYhXlf9VVF+8NZUvCx2Xr3/wGoaM6s/1ve/gy8Uf+eM88+O5TJswG4fdQc8h3Xjwjfzj8nO3vMqebQmovDiPuOkSho0u/ziH6Mr/1+TPxk3li0K5fMNDVzP06v5c2/NOvv57IrXyYjx90lymfujL5d5Du/Hwm/nvGS+unZseGV02O1KMbjWHln8il5BdGT+VWcI0ixxWLnEr68F4DWAbsEEpNSpv238djIcDc4EwpVSXYso2pOQG43OBOKVUkZfbV/TBuBBnqrwH4+eC8h6MnwsqwmC8qqsIg/FzQXkPxs8FFWEwXtVVhMF4VSeD8X+nvAbjZXrPuFLKC7wOXKlpWrMSbPoV4CJN0/qVYJtB8tq/FJhQmt8jhBBCCCGEEOcyuWe8dHwD7AeeKKkGlVKLgaXA0yXVZmF5s+vfAt8rpaaU1vcIIYQQQgghhKj6ynwwrpRyA28CYzRNa1Bosxso7ppCfd724rwC9NY0ret/72UgTdNigF/xnUQYU9LtCyGEEEIIIYTIp2mqzD7lpTxmxgE+B44BjxVafxyI0DTNUkSd2nl1iqSU+hVYSwnPjuf15SfACAxVSuWUZPtCCCGEEEIIIc495TIYV0o5gLeAG/ENsk/6J69PwwqW1zTNCvTL234qrwCDgRJ5p46maSHALKApMFgpVezJgIrCkboGZ8bWEm/X40wlJ/mn0xc8R0ic/7tvx33Bz1/MLe9uBHA5nDzQ/xYyTqSXd1dKzKevTeG7T+aVdzcCOB0uxva8jbQqEufZb3/OH1MqWC47nTw56GYyU9LLuysl4vPXpjDn03nl3Y0AToeLm3rdRnoVyWOAj1+ZwszJ35d3NwI4HS7GdL+9yhwvJr86hVkV8Jh8bY+qc0yeVEHz+Jrut5N2PL28u1KpVKR7xjVNG6Rp2k5N0/ZomvZ4EdtHa5q2Ke+zTNO0M3pnY3nNjAN8DGQB/svKlVLbgBnAZ5qmPaZp2sWapl0D/I0vTu+fps15wFagTwn1cSIwBHgJiNE07aICn9AS+o4S4/XYcWXvxRCe/35ad24yOQfnkJX4FbbDv+J1ZRdbX3kc5B5dQFbi12Tvn4kre69/m94Yg6Yz4rbtL9V9qAwkzv9dZko6f89dQP+rh/jXbV66ngf638K1rS/jhWse4/iho8XWz07P4q3bX+S6NpdxV4/rWfLDIv82t9PFO3e9zN09r+d/jQezdcWmgLpblm/khWseY2z7Edzd8/qAbYZQI71HDuD7ybNKaE/LV3pKBn/MXsiwMfmvv1r3zwbG9ryNIY2v4MGRj3P0YPHnGDPTsnj2ppcZ2uQKrr5wLAvmLvZv27Z2B4+MeorLWv+PK9pezQu3vkrK0VT/9vVLN/LgyMe5pMWVXNP5hoB2jaEGBo3qz/QJs0tuZ8tJZmo6y+YtoPeo/Fzetnw9Tw66mdvbX8qb1z7KidPk8gd3vcjt513KI32uY8WPgbk84d6XeaTvddzYfBA7Vm4MqDvvg6+5pfVQ7jj/Mv/n2IHDABiMRnqMGMgvn8ws4T0ue+kpGcyfvZCho/PzeP2SDdzU6zYuaXIFj1x5+jx+4aaXuaTpFVzbeSwLC+Tx6dp6asyzXNpshP8zNP5Sbut3J+DL44H/68+MiZU/jwHST2Tw++yFXHpt/uuv1v6zgTHdb6d//AjuG/EERw6cOs5P3fAyAxqN4MqON/DnnMUB20/X1s5Ne7j7sscY2Hgkl7Ydw6xPfIMpY6iBIVdfzNQPK3+cTx6TLylwTF77zwau7XEbAxtdwf0jH+fIaXL56RtfZlDjK/hfp7HMLyLGxbX16OhnGdRkhP9zcYNLuaFvfi4PGdWfaVXgmJx2IoPfZgXm8Zp/NnBN99vpFz+Ce644fR4/ccPLXBw/ghEX3MAfhWJ8urZ2btrDXZc9Rv9GIxneZgwzC+Tx0FEX800VyONzkeZ7B/EEfJO+rYCrNU1rVahYAtBLKdUO39hx8pm0XW6DcaWUDXi3iE3X5a2/Fd992h8CSUB3pdSh07SpgFdLsJsD8v47Hlhe6FO7uErlxZ21mxBzHJouBPANGnOPLsQYfT5h9a9BFxpL7vHFxda3pywHTUdY/VGYavTCfmI5Hmeaf7shrDHOzJ2lvRsVnsT5v1v83XzO79UJo8l3TiszNYO373yZqx64js/WzaRx26a8d+9rxdb/7LkJhBgMTF45jXvefYRPn/mQA7uS/Nubd2zN3e88QlT16KC6JouJPlcOYMzjNxXZdvdLevP3nPm4HM7/uJfl7/eZ8+nctyOhZl+cM1IzeP6WV7jhkTHM2zqd5u2b8tLtrxdb//2nJmIwhDB741Se/PARxj8xgcSdvjhnZWQzbPQgpq74gm9XfYElzMK4B/MP6WaLicGjBnDr0zcW2Xa/y3rzx6wFOB2uEtzjsrd0zp+0K5DLWakZTLj7JS6/7zo+WDWLhm2aMumB4nP5mxc/JMQQwntLp3PLuEf5+vkPOLQ70b+9aYfW3PLmo0QWkcsAnQb35KP18/yfGvXyfzR1Ht6bZXPn43JW7lz+c+Z8OhXK4xdveYXrHxnD7C3TadauKa/eUXweT3h6IiHGEGZsmMpjHzzCB0/m5/Hp2nrlmxf5ftd3/k+rC1rSY1h3//Y+l/VmfhXIY4BfZ87nogJxTk/J4OmbXuWmx8bw0/ZpNG/flOdvf6PY+u8++REhRgPzNn/DMxMe5p3HJ5KQF+fTtZWeksEj1zzHJdcO4sdt05i2fDKdeuVf5Hjx5b35febCSh/n32YEHpPTUzJ49uZXuOnRMfywbTrN2zXlhVMck9970ndMnrNpKk99+AjvPjEhIManauvNqS/y257v/J/WHVvSu0Au97u8N7/NrPy5/OuM+XTpFxjjp258lZsfHcMv26fRon1Tnr2t+Dx++4mPMBgM/LDlG56d+DBvPzaRfTuSzqit9JQMHrr6OS69dhA/b5/GjBWTubBAHve/oje/zar8eXyOuhDYo5Tap5RyAtPxvWHLTym1TCl18hf6FUDcmTRcJoNxpdTzRb07XCn1qlJKU0r1LrDOqZR6VinVWCllUErFKKWuUErtKFR3Sl7d7ELrv81b37DAusS8dUHX/yqlfsrblljEtoZ524r6BJUvb+7cg+jNtfKXc5LQGaMwWOPRdCGERp2H15mKx5keVFd5XbhzkgiN7oCmMxBiqkmIpT7ugrO2plp47IdR6tx+p6zE+b/b8NcaWnVu619e9ftS6jVtQJchPTCGGhl53xiStidwaO+BoLp2m52Vvy/lqgevxWQ106JjGzpefBH/zFsAQIjRwNAbLqdFxzbo9MGHuCbtm9Pz8n7UqF/0+bRqtatjjQhj94YdRW6vTFYtXEO7i9r4l//5ZRkNmtWn1/AeGE1GrntoNHu3J7B/T3Ccc212/vllGWMfuRaz1UzbC1vTpX9n/vxuIQCd+3ak1/AeWMMtmMwmLr1hGFtWb/fXb3F+c/qP7Evt+rWC2gaoXieW8Mgwtq+r3HHe/PcamnfKz+W1fy6lTtMGdBrcE0OokUvvuZYDO/ZxuIhcdtjsrP1jKZffdx0mq5lmHdtwXt+LWPa9L8YhRgMDxl5Os45t0OnO/n3pMbWqY4kMY18lz+XViwLzeGleHvcc5svjax8azb5tReex3WZnyS/LuD4vj9vk5fGCvDw+m7aOHDjKllVbuXhEX/+66nViCYsMY0clz2OAFQvXcl6X/Fz++5flNGxenz7DuxNqMnLDw9ewZ1sCSbuLPl789fMybn50DBarmXadW9NtQGd+n73ojNqa+fE8LuzdgQEj+mAMNWAJs9CwWT1/+zXqxBIWZWXb2sod55WL1tC+S4Fj8q/LaNisPr2H9yDUZGTsw6PZe4oY//3LMm589Fp/jLsO6MwfsxeedVuHDxxl88qtDBiZn8s16sQSHhXGtkqey4Xz+K9flhPfvD59L/Hl3o2nyuOcvDx+zJfH7Tu3pvvA/Dw+XVszPp5H5z6nzuPwSCtbK3kelyVNK7vPadQFCibNwbx1xbkJ36TyaZXnZeqihHmdaegMEfnLrjT0xhj/sqYzoAsJx+tKD67rygRNQ2eI9K/Th0YHDCh1IVZAh9eVURrdrzQkzv/d/l0J1G6Ufww7uHs/DVrG+5dNFhM169fm4O6koLqHEw6i0+moE59/wrFBi3gOFFH236rbpB5J2xNKrL3ykrAjkXqN8+OUuGs/jVs18i+bLSbqNKhN4s7g2yIO7juETq+jXuP8v6fGreOLLAuwecUWGjarf1b9q980jr3bKnecD+5KpFaBXEzenUS95vkxDrWYqFG/Nof2BOfnkURfLhesX69FI5KLKFucjYtWcs+FI3l66K0s+jb4eRN1GtVj/459Z9xeRZS4I5G4AnmctGs/jQrksclionbD2iQVl8c6HXEFjjfxreJJ2rX/rNuaP3sBbS5sTa1CJ5jqN41jXyXPY4B92xOp1yQ/Tgk7k2jSKv+4bLaYqNugFglFxObA3uKOF0ln1NbWdTsJjwrjjuEPc0mb0Tx+3QtBtx40aFqPPZU8zvu2J1K/4DF5534aty7imLyriFwuKsat8o/JZ9PWH7MW0LZz66CTpQ2axLF3a1WI8Sny2HqKPM77uVe/UIwTisvjQm1tXevL49uHPcyw1qN59NoXgm47qAp5XFVpmnarpmlrCnxuLbi5iCpFPoJd07Q++AbjhR9UXiQZjFchyusEzZC/wutG0xkDC+mM4A2+PEYpV3BZzQgqsKymM6A8lfuSx/9K4vzf2TJzMFvzX5pgt+ViCbcGlLGEW8nNzg2qa7fZiyxrzwku+2+ZrGZysoq/77+yyM7MwRJm9i/n5uRijQh8WYU13IIt2xZUNzcnF2t44bJWcouI895tCXz93jRufaboS9KLYwmzkJ1ZueOcm5WNqVAumwvlpznMij0nOMYOmz24bHjRZYvSaXBPXv7lE8Yvn8HYl+7nh4lTWfHTooAyJquF3MzK/RKQ7MwczIXzOCg3LeQWEbeicz7/2HI2bc2fvZD+V/ULWm+2Vv48hrzjhbVAnG12rBGB+WmNKPoYkJuTS1ihOIaFW7CdjPNp2jp++AS/z1rIvS/dyqw1X1C7fi1euHNcQHmL1Ux2Vchl66lzOay4Y7KtiLIRVmw5xedycW39Pnshg4rI5apwTM4K+rkXnHthEVZ/bhZUZB5HFMjj07R17PAJfpu5kPteupXv1n5Bnfq1eOGOQnkcZiY7o3LncVnSleFHKTVZKdWxwKfgPd8HgXoFluOA5ML91TStHfApcKlSKuVM91FUEZouNHBQpwtBFR4Qep2gM1CYphl8g8yClCtw0InvMmtNX2gweY6ROP931oiwgF92TRZz0C8Mudm2gF/A88uayC1U1pZtw2QNLvtv2XNysYaHlVh75SU8MizgFw6z1YwtKzh2lrDgt0n6ygb+spKTZQv4RRLgUEIyT1z7HHe9cBvtOrfhbNiybYRFVO44WyLCAgbPJosZe+FczrEFDNhPCrWYgstmF122KHWbNCC6ZjV0ej1NOrTi4usuY+3vSwLK2HNsmAv98ljZhEWGBZyYM1uDjxe2LFvACb6AsoXy2Fbg2HKmbW1ZtZW042n0GNqdwnJzKn8eQ97xosBA22wxBR0vijoGgC+OOYWPF9k2/6DodG2Fmoz0GNyFluc1811i/eDVbFm9PWDwbcvJJayS53J4ZFjAyYyi8i+nuGOypehj8skTKGfa1qaVW0k9lkavYcG5XBWOycE/90zkFJF7liJ+vzBbzeRkFxFj//Hi1G2Fmoz0HNyFluf78viGh65mc+E8zs4lLLJy5/E5ajXQVNO0eE3TjMAo4IeCBTRNqw/MAa5VSu0604ZlMF6F6IzRvsugTy4bovE4859urLwuvO4sdIao4LqGCFAq4NJojzMVvTG/rNdtA7wBl1ifiyTO/139FvEcTsh/HmNc0/oBl4XbbXaO7j9MXNMGQXVrx8fh8XgC6idtT6BeEWX/rUN7DgRcNl9ZNWrZkIP78uPUsFn9gMvCc212khOP0LB58OXlcY3q4vF4Aurv25YQUPbowWM8Muoprr1vFP0L3Ht4pvbvPkjjVpU7znHN4zmSmB+jOk0bcKDAZeEOm53j+w9Tt0lwftZq6MvlowXqH9ixjzpFlD0TGhq+55jmS953gPotGhVTo3KIb9mQQwXysEGz+gGXhdttdg4nHaHBKfL4UKE8bpB3S8WZtvXnrAV0G9y1yIHo/t0HaVTJ8xigcauGHNibH6f45g0CLqc9ebyILyLO9Rr74nygQJz3bk2gYfMGZ9RW45bxAfdsankLBfM5afeBgEuEK6NGLRsGxKhh8/oBl4X7j8lF3PIT1zj4mLy3wDH5TNv6fdYCeg7pGnAVxElJew7SuHXljnHjVoExjm/eIPDnXo6dQ0nF5HGjunjcgXm8Z2sC8QXy+FRtNWkVH3Axc1XN47JUUe4ZV0q5gbuB34HtwEyl1FZN027XNO32vGLPAtWAiZqmbdA0bc2Z7KMMxquQEEscHvuR/GVrA7zONFw5iSivG2f6BnTGmICB30mazkCItQGOtPW+h4zZj+LO2U9IWGN/GY/9MHpTLXxP9z93SZz/u/N7d2L7ys3+5QsHdOXArkRW/rYEp8PJdx9MpX6LhtRtXC+orsli4sIBXZn53tfYbXZ2rNnKmvnL6XFZ/iV3LocTZ97T0N0uF06H0//D0Ov14nQ48bjcKAVOhxO3M//KhtQjJ8jOyKLpeS1Ka/fLzIV9O7FpRX6cuw/uSuLOJP7+eSlOu5Ov3/2WRi0bUr9JcJzNFhPdB3dlylvfkGuzs2X1Npb9sYL+eQ+vOn74BA9d9QSXjh3G8OuGBNX3er047U7cbg9KKZx2J64CcT5++ASZ6Vm07FC549yuVyd2rs6PcYf+XTm0O5E1vy/B5XDyw4SpxDWPp3YRuRxqMXFB/27Mff8rHDY7u9duZcOC5XS9NP/Ehsvp9D/Z3+1y4yqQy+vnLycnIwulFPs27WT+199zfr8u/rppR0+Qk5FFo0qey4XzuGteHv+Tl8ffvPst8cXkscliotvgrnz19jfYbXa2rt7G8j9W0C8vj8+kLUeug39+XsKAqy4Oav/E4RNkpWfRopLnMcBFfTuycfkW/3LPwV1I2JHE4p+W4rA7mfLONBq3akiDpkUfL3oO6cLn46aSa7OzedU2lvy+koEj+5xRW4NHXczfvy5n95Z9uF1uvnx3Ou0ubEV4pG+W9vjhE2SlZ9Pqgsod54v6dWLj8vxc7jG4Kwk7k/jrZ19cvnrnWxqdIsY9Bnfl83Hf+GO89PcV/oewnUlbjlwHi39awqAicvl4Xi63quS53KVfR9YXyuN9BXLvi3em0bhlMTG2mug1pAufvjmV3Bw7m4rI41O1NaRQHk95dzrtOgfmcWZ6Nq0reR6fq5RSvyilmuU9ZPyVvHWTlFKT8v58s1IqWil1Xt6n45m0qxU+iy7+m4hGN5ZbQL0eO7ZD32ONG+F/7ZY7NxlHygq87mz0odUxxXZHZwgHwJG+EY/9KJZavje4KY8D+4kluHOT0XShhMZcgKHAINF25E+M4c0JsZ7dQ5qqmnMlzp/Ov6rU2s5MzeCx4XcxfsFn/ldCbVq6ni+en8jxQ8doel5z7njzIWrE1QRg7sTp7Fi9lSe+eAnwvZv5o8feZfPSdYRFRXDNozfQ/ZI+/vbv7nk9xw8FPjTlg7+mUCOuJltXbOLF0YHP1GjVuS3PffsmAD9Mnk368VSue+pWSlusyVuq7WekZnBr/3v4askn/te8rP17PR88PYmjh47R8vzmPPruA9Sq54vz1PdnsHnVVl7/5kXA977VcQ+9x7q/1xMRHcHNT46l3+W9AfjqnW/58u2pmCymgO/8efd3AGxYtomHrnwiYFv7Lm15Z7bvVTszPvqOlKOp3Pn8LaW1+wAkZZfuSa2s1Ayev+wuXvsjP5e3LlvH1BcnkpJ8jEbtm3PTaw8RG+d7UNJPk6aza80WHvz0ZcCXy188+Q5bl/lyeeRDN3LR8PxcfqTvdaQUyuU3F0whNq4Wkx58ja1L1+F2uoiuGUufa4bR/7rL/OV+/XQWGcdTGfXEbaUag7rW0n3zQ0ZqBncOuIfP/8nP43X/rGfC05M4dvAYLc5vzkMF8njaBzPYsnIrrxTI43cezs/jG58YS9/Le/vbP1VbAIvmLebz16bw1Yov/DNdJ8366DtSj6Vy23Olm8cAZn3p/nqRnpLBTf3v5dulk/1xXvP3Bt57chJHDh2j1fnNeGL8A9TOi83X42eyaeVWxn37AuCL8+sPjGdNXpxve+p6+l/R29/+qdoCmPflL3z13nTsuQ7aXdiKB167k5p1qwMwbaLveHH3C6UbZ686/SOV/4v0lAxuHnAPUwsck9f8vZ7xT+Ufkx9/Lz8u37w/g00rt/Lm1PxcfuPB91ibF+NbnxzLxQExLr4tgAVzFzP51SlMXxWcy9MnfkfKsVTuKuVjcoiu9PP4hovvZfqy/Dxe/fcG3n1yEkcO+nLvqfEPULu+Ly5fjZ/JxhVbeXtafh6/9sB4Vv+1noiYCG5/6noGFIjxqdoCmDvlF74skMcPvZ6fx99O8MX4nlLO4241h5ZuIpeh/dk/ltm4qn7Y8HKJmwzGS1h5DsYBHKlr0fQmjJGtS7RdjzMV+4llWOsMK9F2K6tzIc6lORgHmPbWFCKqRTL0hstL9XvOhsvh5NFhd/H8tHFExkaV+veV9mAc4NPXviQ6NpIRt1xW6t91ppwOF7f2v5t357xBdCnHubQH4wDfvfMF4TFRDBhbgXLZ6eS5S+7k8alvEVEtqlS/q7QH4wCfv/4lUbGRXHHzZaX+XWfK6XBxx4C7efu7N4gqg+NFaQ/GASa/+iVRsVFcdeulpy9cRpwOFzf2u4cP5r1e6seL0h6MA3zymi+Xr6xgx+SbLr6b9+eW/jG5tAfjAB+/+iXRFTCPx/a7hwlzXye6elSpfpcMxv8dGYxXEeU9GBeipJT2YFyUzWD8XFcWg/FzXVkMxkXZDMbPdWUxGD/XlcVg/FxXlQbjB3LKbjBez1o+g3G5Z1wIIYQQQgghhChjIeXdASGEEEIIIYQQoqAqM8V/CjIzLoQQQgghhBBClDGZGRdCCCGEEEIIUaHozoGpcZkZF0IIIYQQQgghypjMjAshhBBCCCGEqFDOgYlxmRkXQgghhBBCCCHKmgzGhRBCCCGEEEKIMiaXqQshhBBCCCGEqFA0TZV3F0qdzIwLIYQQQgghhBBlTGbGhRBCCCGEEEJUKPIANyGEEEIIIYQQQpQ4mRkXQgghhBBCCFGhaOfA1LjMjAshhBBCCCGEEGVMZsaFEEIIIYQQQlQo58DEuMyMCyGEEEIIIYQQZU1mxoUQQgghhBBCVCjnwqzxubCPQgghhBBCCCFEhSIz40IIIYQQQgghKhR5mroQQgghhBBCCCFKnMyMl7DNmy4v7y5UeXsz9eXdhXNCDbO7vLtQ5V02+nh5d6HK+216bHl3ocrbnCq/SpSFhxaEl3cXqry4WufANFw5W3zzhPLuQpWXu39oeXehBFX9f5MyMy6EEEIIIYQQQpQxOZ0thBBCCCGEEKJC0WRmXAghhBBCCCGEECVNBuNCCCGEEEIIIUQZk8vUhRBCCCGEEEJUKJpW9eeNq/4eCiGEEEIIIYQQFYzMjAshhBBCCCGEqGDkAW5CCCGEEEIIIYQoYTIzLoQQQgghhBCiQpFXmwkhhBBCCCGEEKLEycy4EEIIIYQQQogKRmbGhRBCCCGEEEIIUcJkZlwIIYQQQgghRIUi7xkXQgghhBBCCCFEiZOZcSGEEEIIIYQQFYzcMy6EEEIIIYQQQogSJjPjQgghhBBCCCEqFHnPuBBCCCGEEEIIIUqczIwLIYQQQgghhKhQZGZcCCGEEEIIIYQQJU4G40IIIYQQQgghRBmTy9QrgS8//onZUxeyc2siw0f25O2P7wdg3aodvPPyVDZv2Itep+OiHm14ftyt1KgVA8C7r37LhHGzMIYa/G39tvx96sfXAmDUkKfYtS0Jp9NFXIOaPPjUNQwYdtEp++J0uhh00b3Ycuys2PlF0PYVS7YwavCT3P3IVTz87JgSikDpm/fFj/w+cz4JOxLpc2kvHnvvQf+2n7/9nekTZpF6LI22F7bi4bfvJ7ZWNQDWL93I1+9OY8+WvYRFhvHtysCYbF29jQnPf8L+3QeoVb8m9716J20vbF1kH777ZB5zP/+BjNRMzFYzvYf34LZnbkIfoufooWPc2PuOgPJ2m53bnrmJq26/ooSjUXq+/eQnvp+2gN3bEhk8oievTHgAgEP7jzLovJsxW03+sjfeO4LbHxnlX962cQ9vPPkp2zftxWwxccsDVzLm9ksC2l+9dDM3Dn+SWx66inufuvaUfXE5XVzR4x5s2XYWbJ3iX79h5XbeeOoT9u06SN36NXn6rdvpcFHRf2cV1aGVb+BI3wuaHoAQUxT1e74GgO3ENk5s+wZ3biqhUY2o0e5GDOZYAJTHxYnt08g5ug6lPJiimlC9zXWEmKIBSFr8CB5HJmi+87imqCbUufChIvuQvPod7Gm7/cvK68ZorUW9Hi8FlMtN2UnyqjeIajyMas0qRy5/Pfkn5kxdyM5tiQwb2ZM3P7ofgN079vPobe+xP+EwAG3Oa8LTb95C0xb1/XW3btjLy098wraN+zBbQrn9oSsZe4cvj7dt2sdLj05mx9ZErGFm/jd2IPc8Niro+wEcDhcvP/YJf/60HLfLQ4eLWvLiu3dSq061gHIrl2xhzNAnuePhq3jwmcpzTHY5XEx+dgIbl6wnOyOb2g1qM/qR6+nQuxMAm5Zu4JNnJ3I8+TjNzmvO3eMeoEZcTX/dz16cxMrfl+Nxu2lxQStue+VuqtWK5fihY9w34PaA77Lb7Fz/5M1cekvR+bd3yx6+ePFj9m3dS6jZxIi7rmLYDZcB8O3bX7Hqz+Uc3HOAkXePYtT9lSfGAAcmvUTOtrV4HXZCImOIHXINMb2HAeB12DkyfSIZqxahPG5M9RrT6KkPAVBKcXTmJNL++hmA6F5DqXnV7Wia75LS3KTdHP5mPPYDe9GZLMT0Hk6Ny8YW2Yejcz/n+I9fowsx+tc1efkLjDXq4Ew5yp4nrgso73XkUmvUncQOLvrfRkW08Y0XSd2wFrfdTmh0DPFXXkO9wcPxulxsfP0FMnbvxH70CJ3efJ9q7c/310ucM5Ok72fjzMwgxGSmVq++NL/lTnR636/vmXt3s33Ce2Ql7EVvsVBv8HCajLmhyD64srPY/tH7nFi9AoB6wy+n6bU3+refTVsVkdedjTttLV7HCdD06C31CIk6H+XOwpWyAuXOBkBnjCEkugM6QyQASnlwp63Dk3sQUOiMsRiiO6KFWPLbTV2F15mCprcQEn0BelOtIvvgztyOJycR5clB04WiD2tCSETLwDJZO/Fk7UJ57Wh6K4bY7ugMEaUXmEqv6s8by2C8EqhZK4a7H7mKvxesw57r9K/PSM/h6hsG8lG/DoSE6Hn2oUk8fMd4vpr7gr/MsBHdee/Ton9Zfu7Nm2naoj4hIXrWr97JmEueZdH6j/yD+aJMHj+X2OqR7M+xB21zudy88OgnnNex2X/Y2/JRrWYMo+8bxZrF63DYHf71G5dv5vPXv+TtWa9RN74OE56dzCt3vcm7370BgNliYvCoATjsDr79YGZAm5lpWTx9w0vc/9qddB/SlYXz/uLpsS/wzbLPCI8KD+pDl/6dGXjVxYRFhpGZlsULt77KnM9+4MrbLqdm3Rr8vPs7f9nD+49wXbdb6Dm0WylFpHTUqBXDrQ9dxbKF67EXiPNJyxKmExKiD1qflpLBHVc+zyOv3MyAS7rhcro4mpwSUMblcvPGE5/Q7oLmZ9SXLz6YQ0xsFLbsI/51GWlZ3DP6JZ5+604uHt6FX777m7uvfolf139KZFTYWe5t+YptNYaIej0D1nmcWRxdP4HqbcZiqXEeqbvncnT9JOK6Pg1AetJ87Ol7iOv+AroQC8e3TOHEtqnU6nC3v41aF9yLJfb0JyfqdHowYPnQyjcwxwT+UqK8bk5s/5bQyEb/djfLRY1aMdz5yFX8s2Addnv+MblmrRg++Oox6tavgdfr5ZtPfuGBG8fx07IPAEhNyeTGEc/z5Gs3MehSXx4fKZDHD978NgOGXcQ3P7/CwaRjXD3ocVq1jaffkM5Bffjyox/YsHoHPy17n/AIK0/d+yEvPvIxE6c+6S/jcrl5+fFPaF8Jj8kej4dqtWN5ecabxNapzrpFq3nr7td577eJmCwm3rzjZe587T46XtyZaW9/zdv3vM4bc98F4Kcv5rFz3Q7e/XUClggrHz0+nk+fn8Rjk56met0afLt1jv97jh44wl29b6bL4KKPpZmpGbw09hluePpWug7ujtvlIuXICf/22g3rcN3jN/L71F9LNyClpPqwMdS96TF0BiOO5CQSXr8Pc4OmmOObc+iLceD10PS1r9GHhWNP2uOvl7b4BzLXLaHJy58DGonjHsRYvQ4xfS8F4OCkF4m4oCfxT4zHefwICa/chal+EyI6dC+yH5EX9qXe7c8ErTdWq0mryb/7l53Hk9n1yDVEdOxVsoEoZY3+dy1tH3gcndFI9v4kVj16LxFNmhHesBHRrdvR8PKr2PBK8P7XuKgbdQcMxhAWjjMzkw0vP0PSvNnEj/CdiNj4+gvU7NqTC8e9T+7RI6x86E4iGjelRpfgOO+Y9AEeh51eX83CkZ7G6sfvx1yjJnEDh551WxWRO20t6EIJrXsZeJ04jy/Gk70HvbUhhthuaHoroPBk78GVsozQWoMB8GTtwutM8S3rDLhSV+FKX4cx1rffrpTl6IyxhMb2xGs/jOvEUnS1h6LpTUX2w1CtM5ohCuXOxnl8MVqIBb2lga+P2Xvx5OzDUL0nWkgEypONphmLbEecO6r+6YYqYNClXRk4/CKiYwLPnPUZcAFDL+9OeIQFsyWU628bxtoVO8643ZZt4v0DH03TcLncJB88UWz5A4lHmDt9MXc8dGWR2z95fx49+55H42ZxZ9yHiqLHkG50H9SFiOjAQfLyP1fSc1h3GjZvgMFoYMz9o9i0YgvJib6ZrxbnN6f/yL7Urh98lnTrmu1EV4+i1/Ae6PV6+o/oS2RMJP/8uqzIPtRpWJuwSN+ATymFTqeRnJhcZNk/Zy+kbefW1KpX87/sdpm7eHhX+g3tQmRM8MmIU/lq4vd07Xs+w67sjTHUgDXcQqPm9QLKfDlhLl37nE/DZnVP297BpCP8NHMxN98/MmD9hlXbqVY9ioGXdUev1zP8qj7ExEay4Mei/84qm5wjazGE1SGsdid0egMxTS7FmXUAZ7Yvn92241hi2xASGolObyCs9oU4sw/95+912U5gT91FeN0uAevTE37HEtsaY1jt//wdZWngJV3pP+wiogodkyOiwohrUBNN01AK9HodSfsO+7d/8eE8evQ7n0uv6k1oqIGwcAtNCuTxof1HGX5VL/R6PQ0a1eaCi1qye/v+IvtwMOko3fueT2yNaEJNRoaO6MGeHQcCynz+wTy69zmPRpXwmGyymBh1/xhqxNVEp9PRsV9nasbVZO/m3az4bRn1mjag69AeGEON/O/+0SRtT+DgXt/+Hzt4lPN7diCqejTGUCPdhvfiwK6kIr9n8ZwFtLqwjX9WvbAfPpvL+T060OuyPhhCDZjDLMQ1yb/Soc+Ii+nQuxNmq7nkg1AGTHHx6Ax5g4G8WW3nsUM4Du8na/1S6tzwCCERUWg6Peb4/BOdaUt+I3bQ/zDE1MAQU51qg/5H2pL8ExLOE0eI7NIfTacntGZdLM3a4TiU+J/7m77kd6zN22OsXrmOGeEN49EZ8+OsaWBLPoTOYKDhFVcR3aYd6IJPRFvq1MUQdvLnpULTNGzJ+cfk3KNHqNO3P5pej6VOXaJatyMrKaHIPhxbuYxGV16D3mTCUqs2cQOHcuj3X/5VWxWRcuegt9RH0/RoejM6U22UKwNNZ0QXEua/agM0/yz5yXo6Uy00vQlN06O3NEC5MgDwujJRzjRCItug6ULQW+qhGSLzZtGDhUS0RGeMQdN06AwR6M11fTP1+H6vc2duISTqfHSGSDRNQxcSjqYPLdW4VHaappXZp7zIYLwKWbl0C01bBA5QFvy6mvb1r6F/p7v4+tNfgurcOPJFmsWO4LI+D3NRjza069Ck2Pafe3gyjzx3LSZz8Fm8g/uPMevr+dz7eOW5bOxMKHXy/04u+/6csDPxDOoqf/n8lZC4o+hfCgEWzF3M8OYjuaLt1ezdlsCwMYOLLPfH7AUMuLLfaftQ2QxsfyP9Wo/l6bveIy0lw79+05qdREaFM2bgI/RqNoa7r36RwweP+bcnHzjGvKnzAy5rP5XXHvuY+565DpM58IegUgF/3XnrFLu3F/93VlGl7JxNwvx7ObT8VXJTfCfpnNnJhIbnHyN0IaGEWGr4B9zh9XpgT9uD256G1+MgO3kFlti2Ae0e2/gJCfPvJXnV2zgyix4oFpZ1aBmmmGYYLNX961y5J8g6uIToJpecombl1KH+1bSpMYIXH5nM7QVOXm5YvZPI6HCu6v8onRtfy63/e4nkA8f928fecQnzpi3C5XKzb/dB1q/eSdfe5xX5HVde2591K7dz9HAKuTYHP8z8i579O/i3H9p/jNnfzOfuYi5zr2zSj6eRnHCIes0acGB3Eg1bxvu3mSwmajao7R9w97tqANvXbiP1aAqOXDv/fL+I83t3LLLdxXMW0HtE8cfSXet3EBYVzhMjHmJsx6t59abnOX7oWLHlK6PkL99h6y392f34GEKiqhHW/iJse7dhiK3JsTmfs/2u4ex+6noyVi/213EcSsRUP//3BXP9JjgO5Q/cqg24kvSlv6HcbhyH92PbsxVr6wuK7UPWhmVsv3Mou5+4jpQF84otl7b0d6K6D/pP+1tetn7wNn9ccjFLbh5NaEw1ql946tsCT0pe+Cd/Xj6QhVcOIzNhD/WGXOrf1vCyKzk0/3e8bjfZB/aTvn0rsecXnetA4O8kCrKS9v3rtioafXgzPLb9KK8b5bbhzT2MzpR/0sZ+8DscB2fhTl9LSHir/HphjfA6TqA8uSivG48t0V9PuTLRQsLQdPm3e+qM0f7B+qkopfA6jqPlXQ6PxwaeXJQrA3vy9ziSf8SVsTn490RxzpHL1KuI7VsSeP+NGXwy7Sn/umFXdOeaGwYSWyOKDat3cfuY14mItHLplfmXd30++1lcLjdLFm1k766D6HRFn5/57YfluD0eBl3SheX/bA7a/vwjk3nwmdFYwyrn7EBxOvftyEt3vMGwa4cQF1+Hr9+dhqZpOHKDL7EurHXHlqQcTWXhvMX0HNqdBXMXk5x0GPsp6va7vDf9Lu/NwX2H+HP2QqKrRwWV2bRyC2nH0+k1rHJcOnYmomMimL7gHZq3bUR6aiavPjKJx299m4+/exGAo8kn2L5xL5PnvEjTVg155/kvePTmt/j6tzcBeO3xydz9xBgsZ5B/C35ajsftpd+wLqxeEpjL513YguNHUvnlu7/of0k3fpn9FwcSjpzy76wiqtZ8JMawOmhaCFmHV3F47XjqdXsBr8eO3hh4VYI+xIzX7bvtxGipRYg5hqRFD4GmwxgWR50LR/vL1mh/K6ERDQBFRuJ8Dq9+h3o9X0VvsJyyP1nJy4huPCxg3Ylt3xLT7HJ0IUVf6leZrds/DVuOnbnfLqRO/fwTEEeSU9i6aR9T5r5I89YNeOPZKTxw0zhm/OHL4z6DOvHIbe/y2Qdz8Xi83P3YKNpd0LTI72jYpC6146rTvcUN6PU6mrVqwHPjbvNvf+mxydz/VNU4Jrtdbt57YBy9R1xMXON62G12ImIiA8pYwi3k5uQCUCc+jup1anDzRdei0+to0Lwhz79wZ1C721ZtIeNEOl0GF38sTTl8gn1b9vLc16/QoEVDvnrtc9657w1em/12ye5kOapz/YPUvvY+bHu2krN9PboQI6604zgOJhDRsRfNx88hd89Wkt55jNC6DTHVaYjXnovebPW3oTNb8dpzUco3extxXhcOTn6VE7/OAK+H6peOxdKoZZHfH3lhX2J6X0JIZDS5e7ex/4Nn0FvCiOpycUC5nJ0b8WSmEdGpcl2iflLrex6i1Z33k759K6mb1udfkXAadfr2p07f/uQcOkDy/N8JjY72b6veuSubx71C4uzpKK+HxqPHEtm86DjHdryQhJlTafvwUzjSUjn4x894HI5/1VZFpAutjid7L45D3wEKnaUhOnP+lXKmuBG+wXZOAlpIfu5qIeFoIRYcyd8DGpohEkP1vBNHygUFBuK+CgaUx3ba/rgztwCgt/pOHCqP7/jktR8htNZglNeJ6/hfePQWQsIa//sdr/Lk1WYlTtO0xZqmzS5m2xpN06bk/XmKpmlK07SPT1Uub3lsXtkwTdOez/vzqT6L8+pZNU17SdO0nZqm5WqadlTTtL80TbupQNu9i2nDXcKh+dcS9yYz9ooXeO6NW7iwW/69nE1b1Kdm7Wro9XouuKglN9wxnF/nBV9uazCE0GfABfy9YB1//rwyaLstx87rz07hhQK/6BU0/5dV5GTnMnxEj5LbqQqiQ4/zuP7h0bxwy6tc0/kGatWriSXMTGzt2NPWjYyJ4KXPn2H25HmMPG80qxevpUOP86h+BnXjGtWlQfP6jH9yYtC2P2YtoMeQbpX2ssiiWMLMtD6/KSEhemJrRPPkm7ezbNF6sjN9P/BCTUb6Dr2INh2aEWoycsejV7Nh1XayMnNY/NsqbNm5DLri9Plny7HzzvNf8MQbRedyVEwE46c+xVcT59G7+bUsXbCOi3q1p2ad0/+dVSSmqMboQsxoegMRcd0wRTfFdnwTOr3JP/A+yevO9Q+Ij2/9GuV10bDf+zTq/xHWWh04vOZdf1lzdFN0eiM6fSjRjYeiM1iwp+46ZV9yU3fhcWQQVit/hiXn6Aa8bjthtS8swb2uWCxWE1ffNIhHb3uPlOPpAJjMRvoPu4h2FzQl1GTknsdHsW7lDrIyckhPzeLGEc9z92Oj2HLsO/7e9jn/LFjH1E+Cr2gCeO7Bj3A6XKxOmMrGw7MYcEkXbhrpe17Igl9XkZOVy9AqcEz2er2Mf/AtQgwh3PKC7yGWJosJW3bgL8O52Tb/MfHjZz7E6XDy5foZTNs6l84Du/Ly2OD7cRd9N5+LBp36WGo0hdJ5YBeatm/muyT+vmvYuXY7OZk5JbiX5U/T6bE2a4cr7TipC+ehM4Si6UOoccl16EIMWFuch7Xl+WRvWQ2AzmTGk5sfA2+uDZ3JjKZpuLMzSXzrEapfej2tP/2T5u/OJnvLKlIWzC3yu011G2KIjkXT6bE0bUu1ASPJXLM4qFz6kt+I6NgTvenUJ/8qMk2vJ7pNO+zHj7P/p3lnVddatx5hDRqy7cN3AHBmZrLm6YdpPHos/X+aT+9vvuPE2lXs/7HoOLe84350xlD+vvFq1j//BLV7X4wptvq/aquiUUrhPP4XekscoXEjCa1zOXhduDM2BpTTdCHow5rgSl2B8vh+FrrS1oDyEFrnckLjRqI3x+E88VdeBQN4XYW+zBUwU14Ud9YuvDmJGGN7ouU9SNX/QNXwlv5L5/XWxnjtRd+OKM4dlWFmfKymaS8qpc70xsVPgd8KLN8D9AUuL7AuM++/3wHnAy8DW4AaQE9gCPBZoXZHA/sKLFeI60oO7j/G6Eue5Z7H/scVV/c5ZVnffYzFd9vj9pKUcCRofcLeZA4mHePKgY8DvocCZWXY6Nj4OuYuHMfSvzayef0eOjb2PfE0K9OGXq9jx9ZEPp3x9H/Yu4rhsrHDuGysb1bvwN5DTB0/nfjmDc6obvsubZn4y3sAeNwexnS9iStvu/zUlfJ43B6SEwP/Phy5Dv7+aQkvfFr543pKeSdCVd4/s2atGwbcz3Pyz0opVv61ka3rd9O7he/p6dmZNnR6Hbu3JfHB1MA47d+XTPL+Y1w/9DEAXE432Zk2ere4lql/vEXd+jXp1K0t0xf4BqBut4chHW7h+rvO7O+sIlMojGF1yDqUf0LO63bgsh3HGOabPXBkHaBasyvQG33PLohscDFpu+fhcWYFzaj7aJzuUJh1aBnWmh0CZsBzU7bhyEgkccH9ef3IBU2HM+sgtS+49z/tZ0Xi9Spycx0cSU6hWvUomrduSMHb0jTy8/hA4hH0Oh2XX90XgNp1Yxk6ogeL/1zD6FuGBLW9Y0sCDz4zhqi85y9cd+swxr/yLakpmSz/ayObN+yhS9PAY/KubYlMmlZ5jh1KKSY89h4ZJ9J56osXCDH4fmWp17QBi+bM95ez2+wcSTpCvWa+43Li9gRGP3Sd/0GZQ8dewvR3vyEzNcM/o+6wO1j+6xIem3TqeDRsEXjsyf8LrBC/ApQ8jwfnsUOEn3/qK69C6zbEfmAvlsa+y33tB/YQWtc3A+g6ngw6HdF5l5MbYmoQ2bkv2RtXUK3fGRxLNS3ofiGv00HG6sXUv/flf7FTFY/yusk9fPbP41Aej/+e8dwjyWg6HXX7++Jsql6D2r36cXzVcuoPD46zMSKC9o8/61/e9fnH/pnvs22rwvE6wWNDH9bUN/jV69Fb43FnbIao8woVVqA8KE8umt6EcqYTEtXWf++2PrwZ7swtKI8DzRCBcmejvPkDcK8r3f9AtqK4s/fhztqOsUY//xPZwTcDL3cHnz1NZsbL3TYgHXjkTCsopQ4qpVac/ACHAUfBdUqpbZqmNQUGAncrpT5QSi1SSs1QSt0FjCyi6U2F2gieQi4lbrcHu92Jx+PB6/Vitztxuz0cSU7hmmFPc90tQxhzU/C9xX/8tIKMtGyUUmxYs4spk36k/1DfU3n37DzIoj/WYs914HK5mTt9EauWbuWi7m2C2mneqgHLdnzOL8vG88uy8bzxwd3E1ojil2XjqRMXy0NPj2bh+kn+7RcPuZBRYwfw1kf3lXpsSorH7cFpd+L1evF6vDjtTv+6hB2Jvte4HDrGu499wOU3Xer/Jc/r9ZV1uz2+M7N2Jy5n/lnU3Vv24na5ycmyMenFz6heO5ZOvYu+b+7nb38n7UQ6AIm79jPtw1mc3719QJklvy3HGmHlvG7tSicQpczt9uCwO/F6fHF25MVu05qdJOw+iNfrJT01k9cfn0yn7m0Jj/BdSnbZNRez4Ofl7Ni8D5fLzaRx0+lwUSsiIsO4+8nR/LT6Y2b/9T6z/3qf3oMuZMS1A3j5w+D8a9KyAX9u/sJf9oXx91CtRhSz/3qfWnV9s9/bN+3F5fIN0t9+5nNq1omlW78OQW1VVB6XDdvxLXg9LpTXQ9ah5djTdmGJbYO1Zgec2YfIPrIGr8dF2p4fMIbH+R+gZopsSNahZXhcNpTXTeb+hehDo9Abw3HlppCbthvldfvq7vsVjzMLU3TRl1EDeD1Oco6sJjwu8Bf7mGaXU7/Xa8R1f4G47i9gqXEeEfV6UqPtjcW0VLHk57EnII+XLFzP1o178Xg8ZGXaePXJz4iMCvM/pG3E6H78+eMKtm3y5fGEcTPo2KUVEVFhNGxSFwX8MOsvvF4vx4+m8cucJbRsE19kH9p2aMrcaYvIysjB5XIz9dNfqFk7hphqEdz/1Gj+XDuJH5aM54cl4+k3+EKuun4Ar0+oPMdkgI+f/pCDew7wxKfPEWrKf75D54FdObArieW/LsHpcDLz/W9p0KIhcY19cW7SrimL5y4gJzMHt8vNr1//TEzNagGXtq/8fRmWcCtturQP+t6C+l7Zn5W/Lydhm+9YPuuDabTs2BprhO+EldvlxulwopQXr9uD0+H7WV0ZuDPTSF+xAI/d5jtWbF5F+ooFWFt1wNq8PYZqNTn+01SUx03Ors3k7FhPeBvf1SzR3QaR8tsMXKnHcaWd4MSvM4ju7vs9xFjL9/eQvvxPlNeLKz2FjJWLAu4xLyhz3T94crJQSmHbu42UP74jvNBT1zPX/o3eEoa1ZeU5Fp/kSE/j8OL5uHNtKI+H42tWcnjRAmLa+/bF63TicfouF1duFx6nwz9xcuDXH3GkpwGQnZTAvunfEHO+73cIa916oHz3lCuvF0dqCof/Xkh4o6LjbEs+hDMzw9eH1Ss48OuPNL76+n/VVkWj6UPR9FY82XtQyovyOvHYEtCMUXjsR/A60/LWu3CnrwfNgJb3OjGdMcb3OjKv79+xJ3s36M1o+lB0hgg0Y7RvcK48eGwHUc509OaiH4rpyUnEnbEJY/Xe6EIC38Ci6ULQWerjztqB8rpQbhuenL3oTHVKPT6iYqvoM+O5wDvAc5qmvaqUKsmnpkTl/TdoKlhVsKcpfPDmDMa/Nt2/PHf6Yu57YhSaprE/4QjjX5/O+Nfzt2874nvF1o/f/cOjd36A0+miVp1q3P7ACEaOzntQjVK899o07r7+ADq9jvjGtflgyiO0Oc9338qqpVsZO+IFth2ZSUiInho18+9RiowJR6fT/OvCwi2Eheef/TOZjFgsJv+MTWXwzfjpfPXOt/7l+XMWcd2D1zDi5kt55e5xHE48jDnMzKD/9eeGR/PfI7tpxRYeuvIJ//LgxpfTvktb3pn9OgAzJs5m1cI1AHTqfQEvfJY/C7Np5RaeGPOc/5VlW1dv4/M3vsKek0tktUh6DevODY8Eviv7j1kLGDCyX7k+9fG/mPzWDD56c5p/+aeZi7nj0atp2LQu77/0FaknMrCGW+jS+zze/CT/HFznnu2575nruGvUC+TaHHS4qBVvTH4YAGu4BWuB/As1GzFbTUTmPRl/7fKt3HHV86w6MMt3GXzBXI4OR9O0gHVfvD+Hf/70/Z1169eB977Of1VUpeB1k7p7Ds7sw2iaDoO1NrU63OMfcNc8/05ObJvKsY2fEBrViJrn5b9zuVqL/3Fi27fs//sJ8Loxhtf1v9ZMue2c2Po1LtsxNJ2B0Ij61O70gH8WPTd1F4fXvEujAR/528s5ug5diAVzTIuALupCzOhC8i8N1umNaPpQf1sV3cRxM/igwDH3+xmLuefxUTRtUZ+XHp3MkeQUQk1G2nVoymffPUeoyXdvaJde7Xnw2Wu59aoXybU5uKBLK97Je/VkeISFCV8/zrjnvuS5Bz/CZDLSd9CF3PHwVQCsXraVm0e+wMZk3/H98Zdv4KVHP+HiDrfjcrlp1rI+E/Jea1b4mBxqNmKuZMfkYweP8se3v2IwGripwHMLbnvlHnpd1odHJj7Fp899xPgH3qLpec156IPH/WXGPnkzn74wibv63ozb6aZ+8wZBM+CLv1tA7yuCj6XbVm3h5Rue9b/+rG3X8xj9yPW8cuPzOHIdtOzYigfGP+ov/9ET77Pou/xZ+tkTZnD3uAfoO7J/SYajlGikLpxH8pdvg9eLIbYmtUffQ0QH3+0N9e97lUOfv8nxn6ZijK1J3C1PEVrHNyMY3ecSnMeT2fP0WN9yr2FE9/E9jFFvtlL/npc4OvNjkr98B50xlPDzulJ9uO/nWc7OjSS9/aj/lWUZKxZy6NM3UG4XITHVqT70Gv/A/qT0Jb8R1W1gpfzZpwH7f5rH1vffRikv5hq1aHH7PdTs6ovz3zePxn7U96vomid9x4OeX87EUqs26Vs3s3vKJ3hyczFERVGrR2+aXn8zACFWK+c/+zI7P5vEtg/eRhcaSo3OXWl8te+KmNTNG1n79CP0//4PADJ272THpPdx5WRjrVuPdo89Q3jD+DNqqzIwxHbHlb4Od+Z20DR0oTUxRJ2P13EMV9pa3z3bmh6dMQZj9d7+y8dDos7Dlb4Ox+GfQXnRDJEYq+WfDDJU64IrdSWOQ3PQ9Ja816T5rvTyOo7hPP43pjjfHJ47YzN4HTiP/umvr7c0wBDTyddW9AW4Ulf77k/XGQixNkZvrVyv9ix7FX3e+L/TynrcmXe/9gmlVNDss6Zpa4AtSqmxefeEtwH6AEnAZKXU44XL5S2PBb4AwpVS2YXafAsYqZRqWGh9BJAM7ASeAP5WSgW9PFvTtN7AIuA8YGuBTV6llLdw+aTsHyvUQL4q2psZ/PoPUfJqmIPSW5Swy0YfP30h8Z/8Nr1y3e9fGW1Orejn9auGZ/+uHCerKrO4WpVvsF/ZLL55Qnl3ocrL3T+tyiSyzb20zMZVlpBu5RK3Cn+6QSmVBbwP3KlpWvTpyp9Fu5nALUBz4HcgU9O0vzVNu0Ur+tTrBsBV4PNiSfVFCCGEEEIIIUQ+rQz/V14q/GA8z/i8/5bok32UUtOABsCNwHSgGTAZ+LaI4qOATgU+wY+5FkIIIYQQQgghzkB5XFvmBoq7zliftz2AUipN07SPgHs1TSvRl3sqpVLwXeL+haZpBuBj4AZN015XShV8J8JWpdSWkvxuIYQQQgghhBDBKuNzIs5WecyMHwdqFbOtNlDcQ9reBszAnaXRKQCllAs4+VLdFqcqK4QQQgghhBBC/FvlMRj/B7hA07S6BVdqmtYZqJm3PUjek9Q/AR7ENyj/TzRNC9c0rah2Tr6n5+h//Y6S8sZzX/LZhO/Luxtn5c+fV3L32HHl3Y1iffraFL77ZF55d6NEPXfzy6xatKa8u3FK7734JV9/VLlyedGvK3nkpjfLuxvFStk5m/SEP8q7GyXqyLoPsR3fXN7dOGNvPf8lX0ysWHntcLgY2PEOUo6nl3dXSsQ3b37Bj5/PK+9uBHA5XNzT71bS815JWRkdmfkxJ36fWd7dOCuZ65ZwYOLz5d2NM7bz80kkzqlcMT62fAkbXn2uvLtRLFf6RtxZO8u7GyXKeWIJntzD5d2NCkgrw0/5KI/L1L/CN6D+W9O0l/E9Kb0l8BywDN/D1IozDrgd36B99X/sR3PgB03TPs/7Xhu+J6Y/he9hbUv+Y/slIuV4BnOmLeKvjR8HbXvvtWm89+o0vvnhRbr3OQ+AzyZ8z5RJP5GWkonFambYiO48+fINhIQUfWfA0sUbeebBSSQfPM55HZvz1qT7iKtfAwClFK8/+yUzvvS9ouF/113M4y+NRdM0Dh04Tv9OdwW0Zcux89QrN3DLvZfTf2hnxr3wNdu3JBT7ntzykp6SwR+zF/L1kk8AcDldvHLXOHZt2s3Rg8d4e9ZrnNc1/z3eX749lanvz8BgNPjXfTL/Q+o08L0q6os3v2bp78tJ2n2AMfeN4vqHRnMquzbvYeJzk9m9eS8mi4lr7rmKETdfCsCDIx8ncWcSLqeLWvVqMfaR0XQb2AWAlKOpvPvYB+zatIeUo6lMXfE5terV9Ld79V1X8t4TE7iwT8eSCVQJSz2RwY8zFvLzmsmAL+6P3fIWWzfsIfnAMT7/4VU6dW/rL//F+3P4YfoCkg8eJzomnP/dOJQb7r2iyLY3rt7Bh69OZdvGPej1Ojp2a8sTr99K9Vox/jLbNu7hjSc/ZfumvZgtJm554ErG3O57Fc/A9jeRcjwdnd53fvK8Ti2YPOclAPoM7sz7L33Fzq0JNG9dsXLZ48gk69Ay6vfyvUrPmXWIY5s+xWXzPaU9NLIBsS2vwRjuO/eZvPod7Gm7/fWV143RWot6PXz7mrT4ETyOTNB8cTBFNaHOhQ8V+d2pu+eRtvdnNF3+j5F63V/AYPEdP+xpezixfRrO7GQMlurEthqDOaZZUDvHNn1G1qGl1O/5GgarL5+jGg3h+NavsVRvG1S+okk5kcG86YuYv953jD6YdJQ+7W7BYjX5y9xy/xXc/eioIuu3r3NVwLI918nomwfz7LjbAMi1OXj96c/5de4SXG4PLdo0ZNqvrwfUcTpdDO96Lzk5dpZs/wKA0FADI8ZczOT3vuOJV24qsf39f3v3HR5VsT5w/PvupveE0HtvUqUK0kRFvQI2xK7X3tu1XZWL+rOiXrGhXq/1ClbsBRVEBSnSlSq9lwAhPZvdnd8fs0l2N5uQQJrx/TzPPsnOmTNnzuzJ5syZVhMO7T/E7OmzeGH2q4Bd9uya4y8jKqa4jMdefTbjbjo/5P5fvfk5P3z0HVvWbub404dx45O3BWxfMXcZ/5nwIvt27qNDz47cMOlWGjSz1+Jv85bzwbPT2LhyPbEJcbw8542i/cIjwxlxzol8/NIHXHbflZV81lXPnZFO+twZdJhUvNykNz+P3e++yKGFP2A8bqKat6XNvc8D4MnOZNc7z5K5YgEAKSeMpeEZfy81/QOzvyDty3dwHzpATIduNL38bsKT7eoG3gIXu955lozFP4PHTUz7bjS55HbCU+rj2r+H9fcELqnlzc+l0fjrSD1lPAm9B7Pnw/+Qt3UDUS3aVnaxVCpX+kF2fj+DIa/bpRC9BQUsf+wBDv2xlrw9u+n7xLPU69GrxH7eggLmXnMp7rxchr8zvdT0d/04i/Vvv0Ze2l6i6jegw2VX0fC4IQDsX7aEDe+8Qcb6dYTFxzPsrQ8C9l14x01kbtmIt6CAmIaNaXfx5UXLrTUYOJh1r79C5sb1tW6tcePJw5OzmchGpwHgzU/Dfeg3vAUHAcER2YDw5N6I07a3uTNW23XEPdmIIxJnXDvCEjoXped1HbRLnxUcAkcYYbFtCUs8JvSxjcF9aDme7I0AOGPbEJbYAxHBuLPJ3/110A5uwhJ7EpbQCU/uTtwZq+xxxIkzuglhSb0Qh723DIvvTMHBRTijG1dyianartor48aYLBEZAjwCPAakYFuh3wPuDbVcmN++20XkTews6EdrA/AqcDJwLba1fSvwGvC4MabE2PWa8OE7Mxl+Uh+ioiMDwrds3MXXn/xCA7/KBsDIU/px9gUnkJgUR/qBTK696DHemPI5V9w4tkTaB9IyuOaCR3ns+Rs44ZR+PP3QO9xwyRN88sOTAEx9fQbffbGAr+dNRkS4cPQEmrduxIWXn0LT5vWL1jMH2LZ5N0N7XMOoMccVhY0+ZwjTXp/Bg09dU+LYNWnG+9/Tf0QfIv3KtFu/Lpx15RgevPrRkPsMG308/3zujpDbmrRqzJX3/p0v3v7qsMc+dOAQ91wwgWsnXsmQ0wbjLihg3660ou3XP3g1rTq0wBnmZPWSNdwx/j7e/PkV6jVMQRxC32HHct4N47hpzD9KpN2pV0dyMnNZu/wPOvZoX2J7Tft06kyOHxl4Lfca0IULrx3N7Zc9XiK+wfDwlFvp0LU12zbt4uqzJtCoaSqnnDWkRNyM9CzOvuRkBo24B2eYg0fufJn7b5jMSx8+AMDB/Ye49pyJ3PHwFZw0ehAFrgL27NwfkMZzU+9n4LCeIfN+yllD+PDNGdz7RO26ljN2zCWmfnccTruOtTMqmYa9ricsuh5gOLRlJnuWv0zzwXbxhyZ9AyshOxY8TnRK54CwRsfeRExq13IdP65xXxr2uKpEuMeVxa7Fz1K/60XENjqWrJ0L2L34WVoMexxneGxRvNwD64oeHPiLSmqDceeSd2gTUYm16wFIsOnvzGToiSW/oxdvnVbqQ1B/heuGg32gObD9xYwaO6go7L6bn8fj9vL1ry+SlBzH6hWbSqTx6uSPSamfSHZ24Oqcp58zlDGDb+a2CRcTGRleYr8/ix8+/I7ew/oQGRVYxm8v/wBnOco4pWEKZ98wnmU/LcGV5wrYlnHgEE9c+39c9+jN9BnZn2lPvc1TNz7G4x/bEWtR0VGMOOdEBp8+lI9efK9E2sePGc7tp93AhXdcSvifrIwPzvma+B4DcEQUl+uO1yeB10P7R9/GGRdP3pb1Rdt2TX0eryufjk+9jzvjIJsev5WIeo1IHnJqibSz1yxjz4ev0PruyUQ0asbu/z3LtikP0OafzwGw/9sPyV2/kvb/9zqO6Fh2vD6JXf97hhY3PUxEvYZFa5ADuPbtZN0d55PQZ2hRWOKAEzgw+zOaXHxrVRRNpdnx3dfU7zsAZ2RxGSd37U6rM8ax7OH7S91v0wfTiEhKxr07t9Q4eWn7WPHEQ/Se+Cipffqzb+E8lj08gaFvfUBkUjLOqCiannwqjYePZMO7b5fYv/O1NxHbshUOZxjpa1by6923cvx/pxJVzz4waTxsJNu++pwuN9SuMvZkb8IZ1bjoQbDxunDGtSU8qjEguNMXU3BgARH1hxXtE16vPxKehHFn4do3GwmLwRnTEoCC/fNwRDcjrMEIjCcb156ZSEQyzuimIY69AW/uDiIbjgLAtW82nrA4wuLaIWGxReuNA3jdWbh2fYkjppkvwEVYQlcckfUBLwX75+FOX1a0Brkjsh6YAryuAzgiUoIPreqwGplN3Riz0xhzqTGmoTEm3BjTzBhzo2+5scI4lxpjSjTxGWOuMsZI4RrjvrA3fGFZIeL/I3iNcV/4QWPMBGNMf2NMPWNMjDGmkzHmLmPMAb94s31p18jkbbO/W0z/wSVvjCf842XufvASwiMCn6e0bNOYxCS7FqkxBofDweaNobu9fPPZL7Tv1ILTzhhMVFQEt/zzPFb/vpn1a7cD8NE7s7jixjE0bppKoyb1uPLGMXz4v5kh0/po2g/0G9SV5i2LW2oHDD6GWTNqX7fphbMW0X1A8VPP8IhwzrpyLN36dcXhqPifxMnjRtJ/RB+i4w4/euKDlz+hz9DejDxzOBGR4cTExdCyfYui7W27tC66uRQR3G43+3baykpK/WTGXPo3OvUs2bpYqMdx3Vgw82g7jVSNOTMXc+ygwHK/6Nox9B4Qutz/ftNZdOnRjrAwJ63bN2P4qf1ZunB1yLSPP7EPJ48dTFxCDNExUZx35WkBcd968VOOG9GLv50zjIjIcGLjY2jTsXm58953UDd+/rb2lWvOvt+ITulY9N4ZHkN4TKqd8MQYRBwUZIeehqMgJ428A+uIbzqw0vOVl74eZ2QCcY37IuIgvulAnBHxZO9eXBTHeD2krZpKapfQPUmiUjqRs3dFpeetsv303WL6hfiOPhLffDqXlNRE+h5n09v4x3Zmfr2QhyZfT73URJxOJ8f0Cmyl2rZ5N5++P5trbjunRHqNm6aSkBTHsl//3N05l/y4iK79j7yXxIBRg+h/0nHEJ8WX2Db/m19o3r4lx512PBGREZx7ywVsWb2J7Ru2AdC+Z0eGnXkCDVuEnuomtXEqcYlxrFu65ojzV1OyVswntmPPovf5u7aSuXQuTS67g7CEJMThJLp18fdL5rJfSD31PByRUUTUb0zy0NM4+HPoh9AZS+eS2G8YUc1a4wgLp/6YS8hZu5z8PTsAKNi3i7hu/QhLTMEREUlS/xPI27E5ZFrpc2YQ27EHEfWLWwxjO/Uic/m8oy+EKrbv1wWkdO9Z9N4RHk6rM8eRfEx3cIR+kJSzeyc7Z31Lm/EXlpl2XtpewmPjqN93ACJCg/7H4YyKImenLeOkTl1oOnIU0Y2ahNw/vk07HM7Ce0jBuD3k7Sv+f5HSoyf7Fta+Mvbm7cIR2aDovTO6Cc6YFogjHHGE4Yxrjze/uJEjLKEzjogURBw4whNwRjcN2G482ThjW9rtYfE4Iuvb1usQPNmbcMZ3RMJibIU+viOe7JIPSAG82ZtxRNbHEWbvyZ2xrXBG24cI4ojAGdsGrystYB9HZAO8uTuPuGzqIsFRba+a8mdZ2uwva+3KLbRp3ywg7MuP5xAeHsbwk0N3R/70/R85psm59Gp1Iat/28T5fx8VMt66Ndvo3K1V0fuY2Chatm7EH2u2AvDHmq107lbcKtW5W2v+WLMtZFrTp/3AWeePCAhr17E527fsJTMj57DnWZ02rdlM87bNDh/Rz/zvFjK267n8ffi1fPbml0d87NVL1hCfHM+No2/nrO7nc+8lD7BnR2Bl6Z8XT2RUm7Fc/7fb6DmwGx0q0Mrdol1zNqzaeMT5q0p/rNpM63YlnzSXhzGGJfNW0a5Ti8NHBhb/spJ2HYvjrli0lsSkeC48+Q6GdriQG857kF3bA8v97qufYkj7C7jqzPtZ+3vgP9c2HZuzY+tesmrZtezK3E54bMlKwqbvrmfjt1eTtmoqyW1PC7lv5o5fiErpQHhM/YDwvcv/w6bvb2LnwqfIz9ha5vFz9i5n0/c3svXn+zi05YfiDQYwJii2wZW1o+hd+uZviU7pQGRC6IciEXGNcWWG/r6pTdau2kLrdiW/T4YdczmDO1/GXddN5sD+jBB7lvTx1Fmccd7wotljly9aR9PmDXj20an0a30Bpw28kW8+/SVgnwfvfIXbJ1xEVFREyDTbdmzOmt9D3yz+WWxdu5kmbUqW8dWDL+WKgRfx3B1Pk3Eg9M3z4Wz7YwutOhf/n4uKiaJhy8ZsW7el3Gk0bduczatr5/duWfK2bySicfHfX86GVYSnNmTv9NdYff3p/HHvJRz6dXbgTv5/18aQt7208zb2eyBov/wdNn7y0NPIWfcbBQfT8ObnkT7vO+K79w+Z0sG5M0gaHHgfE9mkJQVpu/HkZpfnVGtM5uYNxDYr3/+tQqtfeIYOl10V0GMhlMT2nYht0ZK98+ZgPB72/PITjvAI4tuUv+v+4vvv5Nu/ncD8m68mpXtPEjsUz10c27wVuXt24c6uXWXsLTiEhJV8sFa0PX8fEp4YcpsxpsR2Z1wH243dePEWZOB1peGIbBh6/4IMHOHJRe8dEcllVtwdsa3KzmdYYD4lPAFvQXqp+6i6qSbGjKsKyDiUTaxfi2t2Vi6THnibtz95oNR9xowbyphxQ9m0fifTp80itUFSyHg5WbmkpAZ+EcQnxJCVmes7Vh7xCbF+22LJzsrFGBOw1MDCuStJ25vOqWOPC0grNj666BziE2LKd8LVICsjm5hytGIXGnr68Zx2wSiS6yexZslaJl71CHGJsYwYO6zCx963K40/ft/AE9P+jzadWvHKw6/x8HVP8OynTxbFeeStibgL3Cz+eRnb1m+rUGt9TFw0WYdq1z/OQpmHKlbu/l58bCper5ex5488bNy1Kzfx0qR3efad+4rC9uxMY/XyDbwy/UHad2nF0xNf584rnuTtb+zEbI+9fDude7TFGMM7L3/O1WdP4LMFU0hItE+0C/OdmZFFXC26lr3uXBxhUSXCW5/4Al53Ppk75vq6rJeUufMXktv+LSCsQY+riExoCRgObf6eXb8+TfMhj+AML3nOcY36ktB8KM7IRPLTN7J76Qs4wqOJbzKAqOR2ePLTydw5n7hGfcjcuYCCnH0Yj+0i7M49QMa2H2l23IRSz80RFoWnoHY9/Agl81B20XcdQHK9BKb/8BSdu7ch/UAGE29/mduveIrXPy79Oxtg57Z9LJy7kkeev7EobPeONNat2sLJowcyZ+0bLF24lqvGPUi7Ts1p17E5334+D4/bw0mnD2TBz6EnvIuNiyajln4nlFd2RnZAz6P45ASe+PQZWndpS+bBDF6Z8CLP3DKJCW/9X4XTzsvJIyEl8P9gTHwMudmldw8OFh0XTXbmn6+MPTlZOKOK/7YLDu4jf/smEvoMpePk6eSuX8mWp+8ismkropq0Iq5bP9K+fIemV96LO+MAB3/6CuPKD5l2fPeBbHtxIinDxxDRqBl7P30DRPDm2/gRjZoTXq8ha285ExxOopq1ofFFt5RIJ3vtcjwZB0noOzQgvDDfnpwsnNGxJfarLdxZWTijy/8/Y8/cnzAeDw0HDWH/8qVlxhWnk6YjR7H8sQfxulxIeBg9732QsKjy/5899qEn8Lrd7F+6iOxtWxC/+42wGJvvguwswmJrURl7XeAIPSTE60rHnbGSiNTBIbe7M2wnV2ds8QM4Z3RTCg7MJz9zDWBwJnS1XcZDMe7AY0s4GHeJ+2Jv/l6MNx9ndOiHzZ683XiyNxHR8MTADRJuz0/50aXNVA1LTIojO6v4puDfD0/ljPHDad6qtNXhirVu14T2nVtw/61TQm6PiYsmKzPwZjcrM5c4341lbFxUwPaszBxi46JLrPn30dRZjBo9MOChAUC2r1KfkFiLvsSB+MQ4crLKf6PVqkMLUhvVw+l00rVvF868fDQ/fTn3iI4dGRXJ4FED6dSzAxFREVx06/msXLSarIzAG7mw8DD6j+jDoh+X8Mu388udfk5WLnG1rLwLJSRVrNwLTf3PF3z+3ixeePdfRBxmTObWjTu5btxE7n70So4dWNx1ODIqghGnDeCY3h2IjIrg2jvPY9nC1WT6yr3XgC5ERUcSHRPFFbeeQ3xiLEvmrSravzDf8QlxFc5/VXKEx+B154XeFhZJQoth7F3xKu78wJbZ3APr8OQfIq5RYO+a6OT2OJwROJyRJLc9DUd4DHkH1oVMPyK+KWFRyYg4iEpuR2LLkUXd0J0RcTTqfROHNn/L5lm3kpv2G9H1uuCMsi0KaaunkdLu9JCV/EJed16Z22uLhKS4ou86sJXfbr3bExbmJLVBMv968mrmzFp62B5CH787i2MHdg74bo+KjiQ8PIzr7jiXiIhw+g8+hv7Hd2POrKXkZOfxxIQ3iiZ6K012Vm6t+w6uqNjEOHL9vjuiY6Np170DzjAnSfWTufLBa1n28xJyMiv+8CYqJoqcrMD9crNyiI4tf4UmNyuX2Pg/Xxk7Y+Lx5BWfuyM8EnGG0WD0xTjCwont1JPYzr3I+t0O0Wl84c1IRCR/3HU+W5/5J0kDTiAsuX7ItOO6HkuDMy5j6/P3sfa2c4hIbYwjKobwFBt/55tP4S1w0emFL+jyygwS+gxhy1Ml52VJn/MNCX2GBDw0AIry7YypXd/JwcLj4vHklu+6dOflsvbVKXS+/pZyxU9bsoi1r06h36RnOenLWfSf9Bwrn3mcjA1/HH5nP46wMOr3HUDaooXsnVc8d7E7x+Y7PLaWlbEjArwFJYK9BZm40n4kPKlXQDf2Qu7MdXizNxOROgQRO0TAePJx7ZtNWEJXIpudQ2Tj0XjzduPOLKUMJSzw2KYAJKzEfbEnezOO6GZFk7MF5DM/jYL98whPHYQjPCFwoymw56f+UrQyXst1OqYVm9YXd+2c++MK3pjyOX3aXkyftheza3sa11/yBFOe/ijk/h63hy2bdofc1qFTc1b/Vtx9MSc7jy2bdtHe1xW4facWAdtX/7aJ9p0Cn/Ll5ebz1SdzOfuCwC7qAOvXbqNZywa1qlUcoE3nVmzfuOPwEUsjginRBbf8x/b/0i76vZT0PG4POzeXf6mLreu30bZLmyPKW1Vr37UVmzdUbCzUx//7jv8+8yH/+eRhGjVNLTPuzm17ufKM+7n6H+M5/dzA67FD19DlXtrnKAR+xhvXbqNpiwa1qlUcIDK+GQXZof++ATAG43HhyTsYEJy54xdiG/YO2aoeSAjsa1r+uNH1OtLsuAm0HvkcDbpfSUH2bqIS7bWZu38V+9d8wOaZt7B55i0AbJ/3MJk7ix88ubJ2ERFf/nH9NaVT11Zs2lD690nRZXeY74xPpv3AGecFXrcdu7YqNf7mDTvZsXUv5426m4HtL+b6Cx9l3+6DDGx/Mdu3FK/MuWHtNjrVshUtKqpVp9bs3FRGGVP233NZmrdvGdDFPC8nj91bdtO8Q8typ7FjwzZada6d37tliWreFtfubQHvyxIWl0DzaybQ6dlPaP/oWxhjiGnTudT49UaeSYcnptH5+c9I6DsU4/EQ1cyWU97WDSQfP4qwuAQc4RHUG3kmuRtX485ML9rf68rn0K+zS3RRB8jfuYXw1Ea1ulUcIL51W7J3lG+4Tc6O7eTu2cWC229g1vgxLHvwXvIP7GfW+DHk7C55H5C54Q+Su/UgsUMnxOEgsWNnEjt2Yf+SI5urx3g85Owq/jvL3raZ6IaNa1erOOAIT8K4MwPCjDsb174fCEvoGtDqXcidtRF35mrCGwxHwor/jxtPNiA4Y1sj4vBN7NYCb17o+67gbuReV3qJLvHG68aTsy1kPryug7jSfiY8pR/OqJKNarYbfFIZZ//XIyLV9qopWhmv5YafdCwL5hTPHTf184eYsfB5vvplMl/9MpmGjVN4ZPJ1XHyVnc303Te+Jc23ruwfa7by4lMfMmhoj5Bpn3z6QNat3srXn/5CXp6LyY+9S6eurWjX0Y7NO/P84bz6/Kfs3rmfPbv285/nPuHsC08ISGPG5/NJSIxl4JDuJdJfMOd3hp14bGUUQ6XqN6IvK+YHdul05RcUzbLrLnDjynMV3djNnTGPzPRMjDGsWbqWj1/7nONOGlC0b1F8r8Hj9uDKc+HxeEIee9S5JzLnm19Y//sG3AVu/vfMNI7p15W4xDi2rt/GglmLyM/Nx13g5ruPZrFiwUq6DyyeuMiV58Llsk9lC/zyXGj5vN/oN7z2lTnA8SP7sGhu4DyIrvwC8n3nUOCyvxeW+xcfzGby/73Ff6Y/dNieIHt27ufyMfcy/vLTGHfZKSW2jz1/JDO/nMea3zZSUODmpUnv0ntAFxIS49i1fS9L568qOv7rz04n/UAGvfoX32Qu+uV3Bo+sfeUaU787uQeLJ+fKSVtJ/qEtvrFvuexf8y6O8BjC44on8PF6XGTv/pX4ZoHd+Apy95N78A+M143XU8DBjV/jcWUSlRx6zoLsPUvxFGRjjCEvfSOHtnxPTIPiJXryD22xaRXksn/Ne4RFJRNT307g13zIozQb/EDRC6DxsTcT27B30f55B9b+KZY2G3rSsfzq9x29bNFaNv6xHa/Xy8EDGTx053/of3w34stonV6yYDV7du3nFL9Z1AH6DupK42apvPT0B7jdHhbPX8XCOb9z/Am96dClJT+teo3P5kzmszmTefi5G0htkMRncybTuJl9cLV7534OHcyiZ9+OoQ77p9F7WB9WLSj+zl63dA07NtgyzjyYwasPvMQxA7oTmxC6jD1uD658F16vF6/H/u5x2+/o/icfx7Z1W5j39Rxc+S7ef3YqLTu1ollb+yDI6/X64tuuqK58FwWu4pax/bvTyEzPpEOvTiGPXZvF9xhA9prlRe9jO/YgvF5D9n3xDsbjJnvdb2SvWUr8Mf0AyN+zA3fWIYzXQ+by+Ryc/Tn1R18cMm2vK5+87Rttme3fw47XJ1HvpLNxxtqxvtGtO5E+dwaenCyM283+WZ8QlpRKWHxSURoZi3/CGRNHbOfeJdLPXruM+O4DSoTXNqn9BnBgxbKAMK/LhcfXvd+4C/C48jHGENeqNcP+9xGDXnyNQS++Rtdb7yIyKZlBL75GdP2SLb2JHTtx8PcVRS3hGevXcfD3FUVjxo3Xa9P2uMEYPK58vAX22s3auoV9v87Hk5+P1+1m58wZHPh9Ocndehalf2DFMlL7hh7HX5Mc0Y3x5hfP+WLcObj2ziIsrj1hcSWXYfNkb8Z9aAUR9YcVTaZWqHDsuR0zbjCeXDw5W5FSKsTO2NZ4Mtdi3Dk2buaaEpVub+52cISXaJ33utJx7ZtNePKxIWdqBzuO3BGlS5v91eiY8VruzPNGcOqgm8nLzScqOpLkeoFdWhxOB4lJcUVdxBfNX82TD75NdnYeKamJnDZ2ELfdXzxb8Yl9r+f6f5zD2HOHUa9+IlP+dzcTbn+ZW654mp59OvDcG8XdxC74+yi2bdrNyQPsGMbxF5/IBUGTwX04dRZn+k045O+zD3/m36/eViK8pp10zgiuOvFG8nPzi5Y3u3TIVezxTeh11/l2uZHCdbx/+PQnJt02mQJXAfUbpzL+urM5eVzx2OWn7niWbz8onmX+nWff446nb2HUuSeyYsHv3HPhv/jyD9tzodfgHlx+1yX885IHyM/N45i+Xbn3eVvmxhjeevodHlq3DYfTQbPWTbh/yl106Fb8z+WUtmcU/X7pUNs9deYOO6HcmmXriI6JolOv2nnjPXr8cM4eUnwtA5ze7xp2brPlfvXZ/wLgm2Wv0rRFQ55/+G0OHchk/Mjia+hv5wxjwtN2ffuxA6/jitvG8bdzhjH97W/Zvnk3UyZNY4rfmrkLt9l1VfsP6cHN91/M9eMfIDcnn94DuvD4K3Z5uOzMXB76xxS2b95FRGQEnbq1Zsr7E0lKKf5b++qjn3js5dDrbdek+KbHsW3ORLweFw5nBN6CHNJWvYM77yDiCCcqqTWN+9yGw1ncVS57zxIcYTFEpwRWHow7j7SVb1OQsxdxhBOZ0ILGfW/FGWFvXnIPrGPXon/T5iQ77CVr1wL2/vYaxusmLCqZpDankNCsuDKZvulrcvbZClR06jE07H1D0bawyKCuediu7YVLtOWlb0KckUQl1f7WxrHnjWD04OLretvm3Tz9wNvsTztEXHwMg4b35N//LV6KcMqT77No3ir++9HEorDpU2dx0ukDiYsP7HkRHh7GS9Pu4583Pscr//6IJs0b8MRLt9C2g31gWr9h8URCScnxiEMCwj7/4EfOOH/En3pZM4BhZ57AbafdQH5ePpFRkezZtpt3Jr3Jof3pRMfF0GNwL2599s6i+B++8B6rf/2d+994CIAPnp/G+5OnFm3/8ZMfGHfz+Yy/5UIS6yVyx4v38uq/pjD51idp37Mjtz93d1HcVQt/Z8J5xe/HdxpL1/7deOhduxzjz5/OZvhZJ/zpljUDSBp0MuvvvxyvKx9HRCQSFkaLmx9hx2tPsO+Ld4hIbUizK+8lsontJZC3eS27pj6HJyeLyEbNaXbN/UQ1K66I/HHPxdQ//UKSjjsJU+Bi25QHce3diTM6hqTBp9DwrOL17huddx27/jeZdXeeb9czb9qaFjcFjvlPn/MNSYNODnl/cWj+9zS7uvSlwWqLpiNHMfe6v+PJzy9a3uynKy4gb4/t0bTon/b/ypA33yemUWMiU4rHKofHJ4DDERA258qLaHPeRTQZcRIp3XvR7sLLWPbQ/eSnHyAiMYk24y8i9Vj78OTAb8v59c6bivb97vSRJHfvSf9JzwGG9W+/RtbWzYjDSUzTZvT85wMkti++f9g1eybd76x9ZeyMaU3+nm8I87oRRxie7I0YTzbujJW4M1YWxStcZsx96Dfw5uPa851fGi0JT+mLOMIJTx2MO3055uDi4vW/E7oAduy3a99PRWk5Y9ti3Fnk7/nG974NztjAHiWenM04Y1uVuG49mWvBm0/BgYUUHFgIgDhjiGx8qu9Y+0GcpY9X/8uq+2PG5Ui726rQtmR9XukF+sTEt6hXP5HLrx9T2UlXme+/WsjH7/7AC2/dVelpb8g4/Lqyh/Pqo2+SnJrIWVeOPfoM1RITr3yYU8afRP8T+lZKeg2ivZWSjr/JD71FSmoiF13757mWZ3+zkM/fm8VTr999+MgVNPaCkmtsV9T+tR/hjIgnqfVJlZCj2mH3kheIb3Y8sQ1K9ripqG/eLXt4Q2V46oG3SKmfyGXX1Z7rOj+/gNGDbmLq149Sr35SlR7rtwNV/1z/f5PeILFeEqf/fWyVH6u8CvILuO3U63novSdISk2q8uNN+Knyx+7u/uAVwhKSSD15XKWnXVUyls4lfe63tLih7EkRj0SzRpV/47/utZeJSEqm1Zl/njLeO38uO7+fQc/7Hqz0tGdf8cJRp1GQvhxxRhEWXzsbH46EK22OrdxHh16KriJyt06rMzVYl3dxtVVUIxzH1ki5aWW8klVFZVwFqozKuDq8qqiMq0CVURlXZauOyvhfXXVUxlXVVMZVoKqojKtAlVEZV2WrS5XxAu/SaqtXhTt61Ui56ZhxpZRSSimllFKqmunjbKWUUkoppZRStUydaeQvlbaMK6WUUkoppZRS1UxbxpVSSimllFJK1SqiLeNKKaWUUkoppZSqbNoyrpRSSimllFKqVgler70u0pZxpZRSSimllFKqmmllXCmllFJKKaWUqmbaTV0ppZRSSimlVC1T99uN6/4ZKqWUUkoppZRStYy2jCullFJKKaWUqlV0aTOllFJKKaWUUkpVOm0ZV0oppZRSSilVy2jLuFJKKaWUUkoppSqZtowrpZRSSimllKpVRLRlXCmllFJKKaWUUpVMW8aVUkoppZRSStUydb/duO6foVJKKaWUUkopVctoy7hSSimllFJKqVpF1xlXSimllFJKKaVUpRNjTE3nQSmllFJKKaWU+kvRlnGllFJKKaWUUqqaaWVcKaWUUkoppZSqZloZV0oppZRSSimlqplWxv+iRKSdiLwsIstFxCMis2s6T3WJiJwjIp+JyA4RyRKRxSJyXk3nq64RkbNF5BcR2S8ieSKyVkTuE5GIms5bXSQiTX3XsxGRuJrOT10hIpf6yjT4dU1N560uEZEwEblbRP4QkXwR2S4i/67pfNUlIjK7lGvZiMjAms5fXSEi40Vkie/7eIeIvCUiTWo6X3WJiIwVkRW+74pNInJbTedJ1U26tNlfV1fgVGA+oBWXyncbsAm4FUjDlvVUEUk1xjxXozmrW+oBPwCTgHSgHzARaATcUGO5qrsmAVlAbE1npI4aAeT6vd9YUxmpo14HTgAeANYAzYEuNZqjuuc6ICEo7EGgF/Br9Wen7hGR0cA04AXgDqAx8H/AFyLSxxjjrcn81QUiMgiYDrwG/APoDzwuIl5jzDM1mTdV9+hs6n9RIuIo/MIWkQ+BVGPMsJrNVd3hq3SnBYVNBQYaY1rXULb+EkTkYeB6INnoF1ylEZHjgU+BR7CV8nhjTFbN5qpuEJFLsRVFLdMqIiKjgM+BHsaYVTWdn78KXy+l3cB7xphrazo/dYGIvAu0N8Yc6xc2Gvv93MUYs7rGMldHiMgMINoYM8Qv7GngUqCRMcZVU3lTdY92U/+L0ienVSu4Iu6zFGhQ3Xn5C9qP9vaoVCLiBJ7DtnCFuraVqu3+DszSini1GwUkY1tyVeUIBw4FhaX7fkr1ZqXO6gl8HxT2LfZa1uEWqlJpZVyp6nMcoDeCVUBEnCISIyKDgZuAKdoqXqmuAaKw3SJV1dkgIm7f3AdX13Rm6pj+wDoReV5EMkQkR0Sm6zjbKjce2AH8XNMZqUNeA44XkYtFJEFEOmC7qf+gD5sqTRQQ3Pqd7/vZuZrzouo4rYwrVQ1E5ARgDFqZqSrZvtfPwI/YcXSqEohIPeAh4DZjTEFN56eO2gXcD1wEnA4sAF4SkVtrNFd1SyNsF9Oe2AriZcCxwMcioq2JVUBEYrDX83v6cLTyGGO+xF7Lr2BbyNcCTuDMGsxWXbMe6BsU1s/3M6Wa86LqOJ3ATakqJiKtgKnAp8aYN2o2N3XWcUAM9p/lBOB57ERC6ug9DCwwxnxV0xmpq4wxM4AZfkFfi0gkcJ+ITNZhRZVCfK8xxpj9ACKyC/vwbgQwswbzVledDsShXdQrlYgMB14CJgNfAw2xE5d+LCIjjTGeGsxeXfESMEVErgQ+xN5b3O7bpuWrKpVWxpWqQiKSgv1nuRW4sIazU2cZY5b4fp0jImnAmyLylDFmQ03m689ORLpix9oOEZEkX3CM72eiiHiMMbkhd1ZH60NgHNAKnVW9MhwENhZWxH3mYLuidkEr41VhPLDeGLOopjNSxzwFfGaMuaswQESWYVcIGIOdBVwdndeAHsAUbA+EHOAu7Nwpe2owX6oO0m7qSlURXxe9L7CTiZ1mjMmu4Sz9VRRWzHXW+qPXHjtZ0DxsZeYgxUMttmNvTFTV0u69laO0GaYF0J4HlUxEEoFT0FbxqtAJWOYfYIxZi10WsW1NZKiuMcZ4jDE3APWB7tjeB/N9m+eXuqNSR0BbxpWqAiISBnyArcwMMsbsreEs/ZUM8v3cVKO5qBvmAMODwkZhWwhORVtsq9JZ2Jnrt9R0RuqIL4AHgpadHIJ92LS85rJVZ50BRKKV8aqwBejtHyAinYFoYHNNZKiuMsYUPoRGRK4DfjHGrKnZXKm6Rivjf1G+VttTfW+bAgkicrbv/VfGmJyayVmd8SK2fG8GUkRkgN+2pcaY/NC7qYoQkW+wy4+sxI7jGoQd1/WedlE/er5Ky2z/MN8cCAA/65rYlUNEPgIWAiuwEzGd63vdpOPFK80r2JUWPheRR4B44HHge2PMnBrNWd00Hliua15XiZeAf4vITorHjE/AVsR1bo9K4LtnG4ztgZAAnAec7AtTqlJpZfyvqwG25dZf4fvW6NPVo3WS7+fkENu0fCvPr9hZZVsBbmxL7T3YmxWl/izWYsfmN8d2m14FXGyMebtGc1WHGGMyRGQE8CzwLnas+KeAzlhfyUQkFTgBu0KAqnzPYq/fa7HLTqZjezHdo8PhKk0B9oHoROwwlp+xvRx/q8lMqbpJdLUJpZRSSimllFKqeukEbkoppZRSSimlVDXTyrhSSimllFJKKVXNtDKulFJKKaWUUkpVM62MK6WUUkoppZRS1Uwr40oppZRSSimlVDXTyrhSSimllFJKKVXNtDKulFJHQEQmikhaNR2rsYh8JSKHRMSIyLAy4jYVkSwRaVOF+blBRGp8Xczy5KM6P6fqIiJxvuvgUr+wzSLyZAXS6CciE0OE13h5VfRcKvG4IcvkKNIrV1ke6fn6roEbDhPnHBFZKyLOiqavlFKq6mllXCmlar97gR7AecBAYEkZce8DPjfGbKyOjKla4wzg2QrE7wf8K0T4q8DJlZKjP5/SyqSqVfSzq4iPAAEuqqL0lVJKHYWwms6AUkqpw+oELDDGfFVWJBFJAC4BxhztAUUk2hiTe7Tp1PQxaiNfK6XTGOOqrDSNMUsrKZ3twPbKSEuVT2V9dqWk7RWRt4AbgTeq6jhKKaWOjLaMK6VUFRGRY0TkSxHJ9L0+EJFGfttjReR5XzfSHBHZJCIv+CrVhXEMcAJwhq9b6uYyDjkOyAVmBeUjVUTeFJH9vuPMFpE+QXE2i8hTInK/iGwHMnzhkb48povIARH5NxAe4lxTRORlEdkjInki8ouI9A+KY0TkNhF5RkT2Ab/5wqNE5AkR2SYi+SKyXERODdq3XPkojYgMEpElvrwtE5HBftsmichGEZGgfS4TEZeIpJaS5jDfOZ0kIl+ISLaIbBWRa4LivSEii0RkrIisBPKA/r5tY3zb8kRkt68cwoP2P0tE1olIroj8hH04E5yXEl2dRWSIiPzgG7ZwyPe59/J1b3/OF8f4XrN970t0rRaR1iLyiYhk+K7jz0WkXVAcIyI3i8gjIrJPRPb6ruXIUGVXUSIyTkR+810f20TkYREJ822L8oWf7xf/UV+eRvuFPScic0tJv9Qy8YWNEJEFvs9pj4i8KCJx5cx7LxGZ7/vbWyoixwdtD/XZ3eA7z2xf2Z8goYeoOMtR5h8BvUXkmPLkVymlVPXRyrhSSlUBX2VlLhCF7SJ6KdAV+Nyv0hcDOLHd0E8B7gdGAB/4JTUQWAr84Pv9jDIOewKw0BjjCQr/BNv1+B/Audjv/h+CK1TA+cBQ4DpfPIDHgCuAh4ALgJbA7UHnGgl8D5wI3AGMBfYB34vfwwefO4DG2DK5yRf2IbZ8HgFOB34FPhORnn77HTYfZYgB/ge8BJwDpANf++XtVaC179z9XYrt8n+4cb//BVYAZwJfA1NE5G9BcVoBTwCPAqcCm0RkHDAdWAiMBh4ArvLFAUBEegPvAct96X8GvH+4E/ZV2mYCBdjeEucCPwNNgS+Bp3xRB/pe15WSTqQvnc7AldgyaQ38KCIpQdFvB5oAFwKTgKuBmw+X13Kcy0nYMliC7fXxHPZafh7AGJOHvWb8K7lDsA89gsN+LuUwpZaJiHQBvgHSgLOwXdnPx163hxMDvAm87Ns3H/hYRGLKON8zfOf4GfbvfQX2GgvlsGVujFkNHMR+PyillKpNjDH60pe+9KWvCr6AiUBaGdvfBtYCEX5h7QEPcFop+4QBgwADtPALnw18WI48rQMmBYWN8qU31C8sFltZftkvbDOwC4jyC6uHbWm/yy/MAayx/z6Kwi4HXED7oHPZ4J8fXz6WBuXvhOD8+cJ/Aj6oSD7K+JwMcL5fWBxwAHjML2wO8Kbf+zaAF/hbGWkP86X9SlD4d8B8v/dv+OL19AsTYAvwetC+f/edaz3f+/eBVYD4xbnXl96lQZ/fk37v5wGL/PcLOs4Nocou+LoGrgHcQBu/sGa+z/ueoM/2p6C0PvEvhwr8bQWfy3zgh6A4d2L/lpr53j8K/O77PQpb6X2+8PhAEmX87R2mTN4F/sAOLSgMG+c754HluPZG+IX19IWNKuN8fwW+DErrRd9+w46kzLHfIe9U9LPQl770pS99Ve1LW8aVUqpqjAQ+BrwiEubrUrsJe+Nd1EVcRC7ydV3NwrZizvFt6nAEx2yEbb3z1w/YZ4z5sTDAGJMNfAEMDoo709hWxkLdsBWbT/329fq/9xkJLMa29haeK8CP+J2rz5ch9t0NzC3c17f/TL99y5uPsnzst28WtsLcz2/7f4Gz/LoeXwrswbaIljttn+nAsRI4g/UOY8wyv/cdgBbA+0HnPQt7roVdivsBnxlj/GeNn15WZkQkFtsN/s2g/Y5EP2CJ8ZsQ0Nhx5XMpef18G/R+FbbifsR8ZdibwN4iYFvKHdgWbLAt3l18rfUDgGxgCrZ7doxfXkN2Uz+MfsDHJrDHyUfYhxTBZRCsAFsRLrTK9zNkufjOtye2Vdxf8PtC5S3zNOz3g1JKqVpEK+NKKVU1UoG7sDfj/q82QHMo6o76FrYV8xxsJaKwG3rUERyzsEXQX2NspTLYHiC4m3FwvMKb971B4cHvU7F5Dz7Xy/CdaxnHSPUdJ3jfiX77ljcfpckyJSeK24stm0LvY1vCx/mGEVwMvGWMcZcj/VD5CsOeW6FQ5w3wFYHnvckX7n/uFT3vZGzL+67DxCuPilw/6UHvXRzZdewvFTs3QHAeCt8X5mEutqV4MLZr+hxjzErgEPbaPB7bch6cx/IoUQa+ivl+SpZBsAzfg6PC/Qon7SutXOpjr519QeHB7wulB70vrczzyzimUkqpGqKzqSulVNU4gG0xfTXEtsLW63Ows6QXjdcVkeBxyxU9ZlJQ2C6gQYi4DX3x/QW3ou72/WwQFDc4vQPYLtHXhjhO8MOB4GMcAHZgx5mXprz5KE2clJy5vQF+lVVjTLaIvIttEd+CHZP+RjnTD85HA2yrqX8vhVDnDXaMeKjZtAsr5btLSb8sB7EPFhofJl557MLOdRAs1PVTFdKwDymCz7mh7+cBAGPMIRFZga109wRm+LbP8YWVNV78cEr8DflasOtR+WWwD3vt1A8KD35fUUlUz+ellFKqArRlXCmlqsZMbFfjxcaYRUGvzb440ZSsrF5wFMdci51cy98CoIGIDCkM8HXbPY3iLvGl+Q07CVbRUmki4qDk0mkzgXbA1hDn+tthjjET2/qbFWLfRRXMR1mKJr7zdUU/ETtxmr//YituE7HjbldXNG2/94tNyYn0/K3FPoRoFeq8jTH7ffF+BUb7TfoHdiK3UvmGISwALg7az58L7EzkZaXlS+dYESm6rkSkKXAch79+jpqvDBdjH1z5G4d94DDPL+xnYDi26/pPvrCfsJMXHsvhK+OllckC7GoG/sMOzsQ2aFRqGfjOdxklr+3RJWNXSCvsnBJKKaVqEW0ZV0qpIxchImeHCP8RW6FbCHwpIq9hW/iaYiuBbxhjZmPHLb8gIvdib/hP5ehmPJ5L0E27MWaGbzmn90TkbmzX2n9gHwRMKisxY8x+EXkFeEBE3MBK7IzawUs6vYWd6Gu2b4mmjdhWw37AbmPMv8s4zHfYVszvRORx3zESsK2bUcaYeyqQj9LkAg/7KuE7fecfAUwOOt8FYpceG4ydlbq8ThGRh7Gf+5nYz7jMBwXGrv98O/C22KXsvsZWBttgewmcbYzJAR7HXhvvi8h/sQ94Li9Hnu7GznD/ta/ssrGV1EXGmC+wk98B3Cwis7DdqdeGSOcN7HCLr0VkAnYStInY6/nlcuQjgNil+h4wxkyswG7/AmaIyOvYydS6YWfV/49v/Hqhn7DraWdhZ14HWwF/2vf74SrOpZXJ/2F7L3wiIlOwY7IfB2YYY+aFTuqoPAJMF5HnsWPFB2EfnoF9AFEhvjkEOmFXa1BKKVWLaMu4UkoduXjsxFLBr67GmHXYsao5wCvYytYD2Jbw9b79X8Yup3QzdlKultglk47UdOwkVi2Cws/AVnqf8eVPsDM8r+fw7gReAyYA07CV2af9I/gmfRvuO8YD2EmlJmNnjw9ufQ7gm2DsTN8xbsFWzF/GVhz9K0+HzUcZcrBjwK/DTryVDJxqjAk1pvoTbOX93XKmDXbJtd6+ff8GXG+MKW3CrSLGmPewlfae2M9lui+PS/C10vp6B4wHevnSH0vxsnNlpf0T9qFA4bJu72GXbiusvP6MfRhzM7ayH7JibYzJx06ytwbbc+BNbDf+YcaYCnV79lvOq7xj/Qvz8C22DPoAn2Ovk6ews5/7K2z5nuc31n8pkAlsMsbsOMyhQpaJb+z5Kdiu6tOxlfNpQKgHcUfNGPMxdtm/sdjPvC/2ARJAxhEkeRL2b2DG4SIqpZSqXnL0E60qpZSqLURkGXYJozJbvVVoIrIQWGuMuagccYdh13/vZoz5vYqz9qcnIsOxlcvmxpgjqVT+ZYnIfdgl7VJCTEZ4uH2nAdnGmCuqJHNKKaWOmHZTV0qpuuVhYJKI/LucM4ErQET6ACOwrZDX13B26qrjgFe1Il42EakP3IN90JODncfgLuC/R1ARb47tfdG9svOplFLq6GllXCml6pYPseOOm2K7E6vy+RW7TNQ9xphfazgvdZIx5uGazsOfhAs7xvtiIBE7m/tkjmzMdzPgmnIOSVFKKVXNtJu6UkoppZRSSilVzXQCN6WUUkoppZRSqpppZVwppZRSSimllKpmWhlXSimllFJKKaWqmVbGlVJKKaWUUkqpaqaVcaWUUkoppZRSqpppZVwppZRSSimllKpm/w/Anl7oNNSXcgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = pd.DataFrame()\n", + "for var_name in covariates:\n", + " form2 = var_name + \" ~ \" + \"0\" + \"+\" + \"leaf\"\n", + " ols = smf.ols(formula=form2, data=data1).fit(cov_type = 'HC2').summary2().tables[1].iloc[:, 0:2]\n", + " \n", + " # Retrieve results\n", + " toget_index = ols[\"Coef.\"]\n", + " index = toget_index.index\n", + " cova1 = pd.Series(np.repeat(var_name,num_leaves), index = index, name = \"covariate\")\n", + " avg = pd.Series(ols[\"Coef.\"], name=\"avg\")\n", + " stderr = pd.Series(ols[\"Std.Err.\"], name = \"stderr\")\n", + " ranking = pd.Series(np.arange(1,num_leaves+1), index = index, name = \"ranking\")\n", + " scaling = pd.Series(norm.cdf((avg - np.mean(avg))/np.std(avg)), index = index, name = \"scaling\")\n", + " data2 = pd.DataFrame(data=x_test, columns= covariates)\n", + " variation1= np.std(avg) / np.std(data2[var_name])\n", + " variation = pd.Series(np.repeat(variation1, num_leaves), index = index, name = \"variation\")\n", + " labels = pd.Series(round(avg,2).astype('str') + \"\\n\" + \"(\" + round(stderr, 3).astype('str') + \")\", index = index, name = \"labels\")\n", + " \n", + " # Tally up results\n", + " df1 = pd.DataFrame(data = [cova1, avg, stderr, ranking, scaling, variation, labels]).T\n", + " df = df.append(df1)\n", + "\n", + "# a small optional trick to ensure heatmap will be in decreasing order of 'variation'\n", + "df = df.sort_values(by = [\"variation\", \"covariate\"], ascending = False)\n", + "\n", + "df = df.iloc[0:(8*num_leaves), :]\n", + "df1 = df.pivot(index = \"covariate\", columns = \"ranking\", values = [\"scaling\"]).astype(float)\n", + "labels = df.pivot(index = \"covariate\", columns = \"ranking\", values = [\"labels\"]).to_numpy()\n", + "\n", + "# plot heatmap\n", + "ax = plt.subplots(figsize=(18, 10))\n", + "ax = sns.heatmap(df1, \n", + " annot=labels,\n", + " annot_kws={\"size\": 12, 'color':\"k\"},\n", + " fmt = '',\n", + " cmap = \"YlGnBu\",\n", + " linewidths=0,\n", + " xticklabels = ranking)\n", + "plt.tick_params( axis='y', labelsize=15, length=0, labelrotation=0)\n", + "plt.tick_params( axis='x', labelsize=15, length=0, labelrotation=0)\n", + "plt.xlabel(\"Leaf (ordered by prediction, low to high)\", fontsize= 15)\n", + "plt.ylabel(\"\")\n", + "ax.set_title(\"Average covariate values within leaf\", fontsize=18, fontweight = \"bold\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Forest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Forests are a type of **ensemble** estimators: they aggregate information about many decision trees to compute a new estimate that typically has much smaller variance.\n", + "\n", + "At a high level, the process of fitting a (regression) forest consists of fitting many decision trees, each on a different subsample of the data. The forest prediction for a particular point $x$ is the average of all tree predictions for that point.\n", + "\n", + "One interesting aspect of forests and many other ensemble methods is that cross-validation can be built into the algorithm itself. Since each tree only uses a subset of the data, the remaining subset is effectively a test set for that tree. We call these observations **out-of-bag** (there were not in the “bag” of training observations). They can be used to evaluate the performance of that tree, and the average of out-of-bag evaluations is evidence of the performance of the forest itself.\n", + "\n", + "For the example below, we’ll use the regression_forest function of the `R` package `grf`. The particular forest implementation in `grf` has interesting properties that are absent from most other packages. For example, trees are build using a certain sample-splitting scheme that ensures that predictions are approximately unbiased and normally distributed for large samples, which in turn allows us to compute valid confidence intervals around those predictions. We’ll have more to say about the importance of these features when we talk about causal estimates in future chapters. See also the grf website for more information." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.inspection import permutation_importance\n", + "from sklearn.ensemble import RandomForestRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Forest MSE: 0.5873930432041589\n" + ] + } + ], + "source": [ + "forest = RandomForestRegressor(n_estimators=200, oob_score=True)\n", + "#x_train, x_test, y_train, y_test = train_test_split(XX.to_numpy() , Y, test_size=.3)\n", + "forest.fit(x_train, y_train)\n", + "# Retrieving forest predictions\n", + "rf_pred = forest.predict(x_test)\n", + "\n", + "# Evaluation\n", + "mse = mean_squared_error(y_test, rf_pred)\n", + "\n", + "print(\"Forest MSE:\", mse)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "The fitted attribute `feature_importances_` computes the decrease in node impurity weighted by the probability of reaching that node. The node probability can be calculated by the number of samples that reach the node, divided by the total number of samples. The higher the value the more important the feature.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UNITSFNUNIT2BATHSMOBILTYPLOTnoise2noise10noise18noise14noise17
importance0.1470690.1122320.064450.0510780.0333540.0291630.0277140.0260120.0258770.024181
\n", + "
" + ], + "text/plain": [ + " UNITSF NUNIT2 BATHS MOBILTYP LOT noise2 \\\n", + "importance 0.147069 0.112232 0.06445 0.051078 0.033354 0.029163 \n", + "\n", + " noise10 noise18 noise14 noise17 \n", + "importance 0.027714 0.026012 0.025877 0.024181 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_importance = pd.DataFrame(forest.feature_importances_, index=covariates, columns= [\"importance\"])\n", + "importance = feature_importance.sort_values(by=[\"importance\"], ascending=False)\n", + "importance[:10].T" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Variable Importance')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAHtCAYAAACkkSLFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4BUlEQVR4nO3deZhkVX3/8ffHQTbFaAQVAYEoLojJT0RETQyuESHiAgquaAIawX3DDUGjxD0qm2gQUQMR3CY6iguioqIMaFREdESQVcYFBUEB+f7+uHekKLqnu3qqq27VvF/PU8903Xtu1ff0Mv3pc+89J1WFJEmSuusW4y5AkiRJq2dgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJIslnkvxgNfsPS/LbJOut4ftUkgMGPObgJL+aR7vzk7x94dUN9n5dkeRRSV407jokLS4DmySA44Htkty7f0eSJcAewCeq6k9r+D4PBE5cw9fQTT0KeNG4i5C0uAxskgA+DVwN7DXDvocCd6QJdQuSZAOAqjq9qn650NfRjZLcsg3TktYCBjZJVNVVwGeAJ8+wey/gl8BXktwzyQlJLkxydZKzk7woyV/+L0myc3vq85+SLE1yFXBYu+8mp0ST7Jrki0kuT/L7JKcnedRMNSZ5cJKzkvwxyfeS/P1c/Ury90m+2tb66yTvT7LRIJ+bnv48PMmnk/whyU/bU5FLkrwtya+SXJzkJX3HHptkeZLHJflxW/tpSbbta7dhkvckuaxtc0b/5yHJqUlOSrJfkp8BfwSOBl4KbNnWWEmObds/sP38X9LW/L0kT+17zX3aY+7Tfh3+0Nb5hBk+D49P8p0k17Sfy2VJtuzZv12Szya5sn2cmOROg3yuJc3OwCZpleOBbZLcb9WGJLcEHg98rKr+DGwGnAs8D3gM8H7gEOCVM7zefwH/Bzy2/XgmWwP/CzwdeCLwTeBzSR7c125D4CPAUcCewBVtu1kDQfsaXwYuozml+6K25g/Odswc3gecRvP5uAA4iSaIbgQ8pX3+jiQ79R23JfBO4I1tu78CTk6yfk+b9wPPAt7Uvv6FwGdnCKUPBv6N5vP9zzSf+/9u+/jA9vHGnvf9BvCvbduPAx9MsvcMfftvYGn73j8FTkiy+aqdSZ4OfAL4GfCkttafAJu0++/Wvtf6NF/LfYB7A/+bJDO8n6RBVZUPHz58AKwH/BZ4W8+23YACHjhD+wDrAK8GzuvZvnN7zLtmOKaAA2Z5/1u0r3cycEzP9oPb457Ss+3WwG+A/+jZdj7w9p7nXwe+0vceD2tfa7vVfB4OBn41Q39e37Nt23bbKX31Xwa8pWfbsW27B/Vs2xK4Hnhu+/xewA3AM/te64fAyT3bTgWuAe7UV+/bgfPn+Nqu+lq9r6/mfdr6nt2z7fZ99d0CuJjmGsbZXv/DNEF+3Z5t2wB/BnYd9/e2Dx/T8HCETRIA1dxQ8EngST2jIk+mGU06HSDJ+kkOSbIC+BNwHc2o0NZJ1ul7yc/O9Z5JNk/yoSQX04SE62guor/7DM0/2VPrVcAXgR1ned0NaUabPpZknVUPmhGy64D7zXTcHL7c8/GK9t9Temq6ATiPZhSy1+VV9c2edhcAZ/bUfn+aQHViT5sb2uf9I2xnVtVl8yk2ye3a06wX0PT5OmA/Zv7cfqHnvX8NXA6sGmG7B3BnVj8y+Qiar88NPZ/rn9OE6B3mU6+k1TOwSep1PHAX4IHtKbvdgeOrqtr9bwFeRnPt1GNowsa/t/vW73ut1d5c0F73thR4EHAQzc0N9wc+N8NrXVVV1/RtuxzYdJaXvx2wBDiCG8PKdTQh85bAFqurbRZXrPqgqq7t39a6lpvXfvkMr9Vb+6Y0/bu6r80vgQ1z06lUBrlh41iawP02mhB8f+CYGeqD1ffj9u2/l67mvTamOU17Xd/jb1jY51pSn/6/iCWt3U6hCQV70QSJjbjp3aF7Au+tqreu2pBk11leq2bZvsrdgPsCu1TV53teb4MZ2t46yQZ9oe0OzB4irmjf/2Bg2Qz7L5mjtmG6wyzbzm4/vpSmfxv2hbY7AlfXTadSmetzCjQjocCuNKefj+rZvpA/0n/d/jtbOIbm9PQngQ/MsG9i5rSTuszAJukvqurPSU6kCWabAedU1fd7mmxAM0oF/GWOtpmmApmPVcGs9/W2pLmw/vsztH88zcXxJLk18Eiakb6Z+vGHJKcD96iqNyywvmG5Q5IHrTotmuQuwPbceIrxDJogtgdwXNsm7fPT5vH6M43qrUczwtj7ud2I5gaQeYW+HufSXMP2TJobRGbyZWA7mlO2g76+pHkwsEnqdzxwAE1AOqhv3xeB/dtr2H4D7E8TDhbix8BFNHdWvo5mNO8QmnDQ7xrgTW1Qu4TmtOy6wLtX8/qvAL6c5AaaOzivpDnduyvwmqr6yQLrHtSvgA+3fbwGeAPNKdFjAarqnCTHA4cluQ3N9XH7AvekuSN0Lj8G7phkH5obFX5VVecnOQM4KMnvaW5qOBD4HXCbQYqvqhuSvAL4aJKP0nx/FM0NHMdX1XKakczv0NzZekzb581oQvWxVXXqIO8p6ea8hk1Sv2/RXCwe4IS+fc+nufvycJrroX4IHLqQN2lP9T2B5maDk2imozgU+OoMza8GnkEzncjHaa5Re0xVzXpdVVWdBjyEZuqJD9OMDr2CZsqMUU7eewHwcppQcwLwe+CfquqPPW32BT4EvI5mEuMtgd3aPszlYzTh7600o3UHt9ufQnPh/3E0wfbj7ccDq6r/ppl25Z40X6vj2o9Xtvt/AuxE83U6muY6xENoRvhWzPCSkgYUR68laXG0k9huV1XeKSlpjTjCJkmS1HEGNkmSpI7zlKgkSVLHOcImSZLUcQY2SZKkjpv6edg23njj2mqrrcZdhiRJ0pzOPPPMX1XVJv3bpz6wbbXVVixfvnzcZUiSJM0pyQUzbfeUqCRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6rh1xl3AONzv5ceNu4SBnfm2Z4y7BEmSNCaOsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSx408sCV5dJJzk6xIcuAM+++Z5FtJ/pTkZTPsX5Lku0k+M5qKJUmSxmukgS3JEuBwYBdgW2DvJNv2NfsN8ALg7bO8zAuBcxatSEmSpI4Z9QjbjsCKqjqvqq4FTgB2721QVZdX1RnAdf0HJ9kc2BX4wCiKlSRJ6oJRB7bNgAt7nl/Ubpuv/wReAdwwxJokSZI6bdSBLTNsq3kdmOwGXF5VZ86j7X5JlidZvnLlykFrlCRJ6pRRB7aLgC16nm8OXDLPYx8MPDbJ+TSnUh+W5CMzNayqo6tqh6raYZNNNlmTeiVJksZu1IHtDGCbJFsnWRfYC1g6nwOr6lVVtXlVbdUed0pVPW3xSpUkSeqGdUb5ZlV1fZIDgJOBJcAxVXV2kue2+49KcidgOXAb4IYkLwK2rarfj7JWSZKkrhhpYAOoqmXAsr5tR/V8fBnNqdLVvcapwKmLUJ4kSVLnuNKBJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnquJEHtiSPTnJukhVJDpxh/z2TfCvJn5K8rGf7Fkm+kuScJGcneeFoK5ckSRqPdUb5ZkmWAIcDjwQuAs5IsrSqftTT7DfAC4DH9R1+PfDSqjoryUbAmUm+2HesJEnS1Bn1CNuOwIqqOq+qrgVOAHbvbVBVl1fVGcB1fdsvraqz2o+vBM4BNhtN2ZIkSeMz6sC2GXBhz/OLWEDoSrIVcF/g28MpS5IkqbtGHdgyw7Ya6AWSWwMfB15UVb+fpc1+SZYnWb5y5coFlClJktQdow5sFwFb9DzfHLhkvgcnuSVNWPtoVX1itnZVdXRV7VBVO2yyySYLLlaSJKkLRh3YzgC2SbJ1knWBvYCl8zkwSYD/As6pqncuYo2SJEmdMtK7RKvq+iQHACcDS4BjqursJM9t9x+V5E7AcuA2wA1JXgRsC/wt8HTgB0m+177kq6tq2Sj7IEmSNGojDWwAbcBa1rftqJ6PL6M5VdrvNGa+Bk6SJGmqudKBJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnj1hl3ARq+X7zhPuMuYWB3OegH4y5BkqTOcoRNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp40Ye2JI8Osm5SVYkOXCG/fdM8q0kf0ryskGOlSRJmkYjDWxJlgCHA7sA2wJ7J9m2r9lvgBcAb1/AsZIkSVNn1CNsOwIrquq8qroWOAHYvbdBVV1eVWcA1w16rCRJ0jQadWDbDLiw5/lF7bbFPlaSJGlijTqwZYZtNexjk+yXZHmS5StXrpx3cZIkSV006sB2EbBFz/PNgUuGfWxVHV1VO1TVDptsssmCCpUkSeqKUQe2M4BtkmydZF1gL2DpCI6VJEmaWOuM8s2q6vokBwAnA0uAY6rq7CTPbfcfleROwHLgNsANSV4EbFtVv5/p2FHWL0mSNA4jDWwAVbUMWNa37aiejy+jOd05r2MlSZKmnSsdSJIkdZyBTZIkqeMMbJIkSR1nYJMkSeo4A5skSVLHGdgkSZI6zsAmSZLUcQY2SZKkjjOwSZIkdZyBTZIkqeMMbJIkSR1nYJMkSeq4BQW2JLskeV2So5Pcpd32kCR3Hm55kiRJWmeQxknuCCwF7gecD2wNHAX8AngW8Efg34ZboiRJ0tpt0BG29wK3Bu7ZPtKz70vAw4dUlyRJkloDjbABjwaeWVUrkizp23cRsNlwypIkSdIqC7mG7c+zbN8YuGYNapEkSdIMBg1sXwee3ze6Vu2/zwZOGUpVkiRJ+otBT4m+EjgN+CHwSZqwtm+S7YDtgJ2GW54kSZIGGmGrqh8COwDLgX1oTo8+AbgQeEBV/WTYBUqSJK3tBh1ho6pWAE9fhFokSZI0g4FG2JJskWT7WfZtn2SL4ZQlSZKkVQa96eBI4Gmz7HsKcMSalSNJkqR+gwa2nZj9TtCv4E0HkiRJQzdoYNuQG6fxmMmt1qAWSZIkzWDQwPYDYO9Z9u0NnL1m5UiSJKnfoHeJ/gfw8STrAccClwKbAs8Entg+JEmSNEQDBbaq+mSSZwKH0oSzolkA/mLgaVX1qaFXKEmStJZbyDxsH07yEeAewO2BXwPnVtXqrm2TJEnSAg0c2ADacPbjIdciSZKkGQwc2JLcGdgN2BxYv293VdUrh1GYJEmSGgMFtiSPB44HlgCXA9f2NSmaBeIlSZI0JIOOsL0Z+AKwT1X9ZhHqkSRJUp9BA9sWwPMNa5IkSaMz6MS536S5O1SSJEkjMugI20uAjya5CvgicEV/g6q6egh1SZIkqTVoYPt+++8HmX1N0SULL0eSJEn9Bg1sz2b1i79LkiRpyAZdmurYRapDkiRJsxj0pgNJkiSN2EJWOngysC9wd26+0gFVdYch1CVJkqTWQCNsSZ4CfAhYQbM01VLgM+3r/B44bB6v8egk5yZZkeTAGfYnyXva/d9Psn3PvhcnOTvJD5Mcn+RmgVGSJGnaDHpK9OXAG4H92+dHVNWzga2BXwGrndIjyRLgcGAXYFtg7yTb9jXbBdimfewHHNkeuxnwAmCHqtqO5m7UvQasX5IkaeIMGti2Ab5RVX8G/gzcBqCqrgTeAhwwx/E7Aiuq6ryquhY4Adi9r83uwHHVOB24bZJN233rABskWQfYELhkwPolSZImzqCB7XfAeu3HFwP36tkX4PZzHL8ZcGHP84vabXO2qaqLgbcDvwAuBX5XVV+Y6U2S7JdkeZLlK1eunKMkSZKkbhs0sC0H/rb9eClwUJJ9kzwTeBvw7TmOzwzb+ud1m7FNktvRjL5tDdwZuFWSp830JlV1dFXtUFU7bLLJJnOUJEmS1G2DBrZDaUa4AA4CvgMcQbPywa+A58xx/EU0C8ivsjk3P605W5tHAD+vqpVVdR3wCeBBA9YvSZI0cQYKbFV1elX9T/vxFVW1O3Br4LZV9YCq+tkcL3EGsE2SrZOsS3PTwNK+NkuBZ7R3i+5Ec+rzUpqguFOSDZMEeDhwziD1S5IkTaJBp/U4JsnWvduq6k9V9fskWyY5ZnXHV9X1NDcmnEwTtj5WVWcneW6S57bNlgHn0Uwd8n7gee2x3wZOAs4CftDWfvQg9UuSJE2iQSfO3Qc4Cvj5DPs2Bp5Js97orKpqGU0o6912VM/HxY3ThvQf+3rg9QNVLEmSNOEWsjTVbIu/bwd4S6YkSdKQzTnCluSFwAvbpwV8Ksmf+pqtD9wROHao1UmSJGlep0R/BHy8/filwFdo5kHrdS3wY+BjwytNkiRJMI/AVlVfBL6Y5BbA7YCDq+qiRa9MkiRJwGDXsN2C5qaC7RapFkmSJM1g3oGtnZLjApo1PCVJkjQig94l+hbgNUlc70mSJGlEBp2H7VHApsD5Sc4EfslNp/moqnrysIqTJEnS4IFtY+DcvueSJElaRAMFtqp66GIVIkmSpJktZKWDv0hyy2EVIkmSpJkNHNiSPCjJ55JcCfwxyZVJliV54CLUJ0mStNYb6JRokkcCn6W5ju1tNDcd3BHYAzg1ya5V9aWhVylJkrQWG/SmgzcBS4E9q6r37tA3JPk48GbAwCZJkjREg54SvQ/w/r6wtsrR7X5JkiQN0aCB7QrgrrPsu1u7X5IkSUM0aGA7ETg0ydOSrA+QZP0kT6M5XfqxYRcoSZK0thv0GrZXArcHPgR8KMlVwK3bfce3+yVJkjREg06cew3w1CRvBHYE7gRcCpxRVT9ehPokSZLWeoOOsAHQhjMDmiRJ0ggMHNiSrAvsQzPCtinNCNu3gQ9V1bVDrU6SJEmD3XSQ5F7AT4HDge2AP7f/Hg6sSLLt0CuUJElayw06wnY08DvgH6rqF6s2JrkLzQoIRwEPGV55kiRJGnRajx2Ag3rDGkD7/CDg/sMqTJIkSY1BA9v5wPqz7Fsf+MUs+yRJkrRAgwa2A4F/T/KA3o1JdgLegPOwSZIkDd2g17C9FrgN8M0klwOXA3doH78GXp3k1asaV9WOwypUkiRpbTVoYPth+5AkSdKIDLrSwbMWqxBJkiTNbNBr2CRJkjRiC1npYEfg8cBmzHDHaFU9aQh1SZIkqTVQYEvyYuAdwC+B8wCXopIkSVpkg46wvRR4N/CSqqpFqEeSJEl9Bg1s6wGfNaxpnB783gePu4SBfOP53xh3CZKkCTfoTQfHAk9YhDokSZI0i0FH2F4JHJbkS8ApwBV9+6uqjhxGYZIkSWoMGtgeBjwV2Kj9uF8BBjZJkqQhGvSU6BHAt4F7A+tV1S36HkuGX6IkSdLabdARtjsDz6uqcxajGEmSJN3coCNsXwL+bjEKkSRJ0swGDWzvAZ6T5LVJHpRk2/7HXC+Q5NFJzk2yIsmBM+xPkve0+7+fZPuefbdNclKSHyc5J8kDB6xfkiRp4gx6SvRL7b9vAA7p2xeamw5mvY4tyRLgcOCRwEXAGUmWVtWPeprtAmzTPh5AcxPDA9p97wY+X1V7JFkX2HDA+iVJkibOQu4SXZNJc3cEVlTVeQBJTgB2B3oD2+7Ace3kvKe3o2qbAn8AHgLsA1BV1+LSWJIkaS0wUGCrqlPX8P02Ay7seX4RN46era7NZsD1wErgg0n+DjgTeGFV/WENa5IkSeq0Oa9hS7IyyeXzfPxyrpebYVv/iN1sbdYBtgeOrKr70oy43ewauLbm/ZIsT7J85cqVc5QkSZLUbfMZYTucNTsN2usiYIue55sDl8yzTQEXVdW32+0nMUtgq6qjgaMBdthhB9c9lSRJE23OwFZVBw/x/c4AtkmyNXAxsBfwlL42S4ED2uvbHgD8rqouBUhyYZJ7VNW5wMO56bVvkiRJU2nQmw7WSFVdn+QA4GSau0mPqaqzkzy33X8UsAx4DLACuBp4Vs9LPB/4aHuH6Hl9+yRJkqbSSAMbQFUtowllvduO6vm4gP1nOfZ7wA6LWZ8kSVLXDDpxriRJkkbMwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjpunXEXIOmmvvqQfxx3CQP5x699ddwlSNLUc4RNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxIw9sSR6d5NwkK5IcOMP+JHlPu//7Sbbv278kyXeTfGZ0VUuSJI3PSANbkiXA4cAuwLbA3km27Wu2C7BN+9gPOLJv/wuBcxa5VEmSpM4Y9QjbjsCKqjqvqq4FTgB272uzO3BcNU4HbptkU4AkmwO7Ah8YZdGSJEnjNOrAthlwYc/zi9pt823zn8ArgBsWqT5JkqTOGXVgywzbaj5tkuwGXF5VZ875Jsl+SZYnWb5y5cqF1ClJktQZow5sFwFb9DzfHLhknm0eDDw2yfk0p1IfluQjM71JVR1dVTtU1Q6bbLLJsGqXJEkai1EHtjOAbZJsnWRdYC9gaV+bpcAz2rtFdwJ+V1WXVtWrqmrzqtqqPe6UqnraSKuXJEkag3VG+WZVdX2SA4CTgSXAMVV1dpLntvuPApYBjwFWAFcDzxpljZIkSV0z0sAGUFXLaEJZ77ajej4uYP85XuNU4NRFKE+SJKlzXOlAkiSp4wxskiRJHWdgkyRJ6jgDmyRJUscZ2CRJkjrOwCZJktRxBjZJkqSOM7BJkiR1nIFNkiSp4wxskiRJHWdgkyRJ6riRryUqae112Ev/d9wlDOyAd/zzuEuQJEfYJEmSus7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEuTSVJQ/Kmp+0x7hIG9pqPnDTuEiTNgyNskiRJHWdgkyRJ6jhPiUqS5uWcN50y7hIGdq/XPGzcJUhD4QibJElSxxnYJEmSOs7AJkmS1HFewyZJEnDwwQePu4SBTFq9WjMGNkmS1gIfO3HHcZcwkCft+Z1xl9ApnhKVJEnqOAObJElSxxnYJEmSOs5r2CRJ0kT7u5NOHncJA/u/Pf5poPaOsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSx408sCV5dJJzk6xIcuAM+5PkPe3+7yfZvt2+RZKvJDknydlJXjjq2iVJksZhpIEtyRLgcGAXYFtg7yTb9jXbBdimfewHHNluvx54aVXdC9gJ2H+GYyVJkqbOqEfYdgRWVNV5VXUtcAKwe1+b3YHjqnE6cNskm1bVpVV1FkBVXQmcA2w2yuIlSZLGYdSBbTPgwp7nF3Hz0DVnmyRbAfcFvj38EiVJkrpl1IEtM2yrQdokuTXwceBFVfX7Gd8k2S/J8iTLV65cueBiJUmSumDUge0iYIue55sDl8y3TZJb0oS1j1bVJ2Z7k6o6uqp2qKodNtlkk6EULkmSNC6jDmxnANsk2TrJusBewNK+NkuBZ7R3i+4E/K6qLk0S4L+Ac6rqnaMtW5IkaXxGuvh7VV2f5ADgZGAJcExVnZ3kue3+o4BlwGOAFcDVwLPawx8MPB34QZLvtdteXVXLRtgFSZKkkRtpYANoA9ayvm1H9XxcwP4zHHcaM1/fJkmSNNVc6UCSJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjDGySJEkdZ2CTJEnqOAObJElSxxnYJEmSOs7AJkmS1HEGNkmSpI4zsEmSJHWcgU2SJKnjRh7Ykjw6yblJViQ5cIb9SfKedv/3k2w/32MlSZKm0UgDW5IlwOHALsC2wN5Jtu1rtguwTfvYDzhygGMlSZKmzqhH2HYEVlTVeVV1LXACsHtfm92B46pxOnDbJJvO81hJkqSpM+rAthlwYc/zi9pt82kzn2MlSZKmzjojfr/MsK3m2WY+xzYvkOxHczoV4Kok5867wjWzMfCrxXjhvP2Zi/Gyg1q0/vH6mb68I7co/csLOtE3WKyvX6a7f89/57BfcUEW7WfvtR/txNdv8f5vee2ivOqgFqV/hxxyyLBfcqEWpX9PnvHX/lgszu+G2XdtOdPGUQe2i4Atep5vDlwyzzbrzuNYAKrqaODoNS12UEmWV9UOo37fUbF/k83+Ta5p7hvYv0ln/0Zj1KdEzwC2SbJ1knWBvYClfW2WAs9o7xbdCfhdVV06z2MlSZKmzkhH2Krq+iQHACcDS4BjqursJM9t9x8FLAMeA6wArgaetbpjR1m/JEnSOIz6lChVtYwmlPVuO6rn4wL2n++xHTPy07AjZv8mm/2bXNPcN7B/k87+jUCafCRJkqSucmkqSZKkjjOwSZIkdZyBTZIkqeMMbJIkSR038rtENR2S3BLYtKp+Me5ahiHJhsC/APcELqNZz/aC8Va1MEn+FtgX2IqmL5+oqs+NtaghSfJn4IFV9Z1x17JYkmwB3AE4t6qummH/xsBjquq4kRc3JEk2Au4O3I5mxZorgJ9U1ZXjrGuxtF+zLYHzq+rX465n2JKsAzwJ+GJVrRx3PdPKEbYBJbk2yf17nifJG5LcaZx1DVOS/ZP8LMmVSb6d5OkzNNse+Pmoa1tTSd6R5Cd92zYCzgL+E3gycBDwf0nuPvoK10yShwHLgacCm9DMafiZJC8da2HD05m1aoYtyXpJTgTOB74D/DbJfyX5q76mdwU+OOr6hiHJI5J8DfgNTR+/AHyRZmL03yT5WpKHj7PGhUqybpJ3Jbk0yWVJXtNuPwS4mKa/lyc5Psmtxlrs8N0K+DDNH7wTKck1ST6eZI8k64+7npkY2Aa3Djf9pXEL4DXAncdTznAl2Qt4L3A6cAjN8l/HJjkpyQZjLW44Hgp8pG/by2j+2t+3qjam+VqeD7xutKUNxSHAV4EtqmonmuXcDgNen8Sf9257JfBI4LnAA2i+L3cDlifZZpyFDUOSJ9FMfH4l8GyaPm5D87O3Y7vt98DJSfYcV51r4NXAc4D/Bo4A9k/yXuAFwPOBnYADgF3oygqnA0jyndkewCk0vxeP7tk2adYD/gH4GE2wPi7JY9rRw05wHrYBJbkB2GnVKZkkS4DrgB2q6qyxFjcESZYDp1TVK3q2PRz4KE2I2bWqfp3kAcA3q2rJeCpdmCS/AZ5eVZ/t2fZDgKrarmfb04FDqupvRl/lwrX9e2rvKdAkd6A5NXrXqpq4UdFe7c/f44Dvzaf9JJ2yT/Jj4LCqOqxn251ofoHcC3hsVX1rgn/2zgY+U1WvnKPdW4Hdqmrb0VQ2HEl+ChxRVe9qn/8DcCrwgqo6vKfdi4F/q6qJGsFvf/YuAz7PzUe61wX2pgnklwFU1bNGWuAaWvW7neYU/d7AHjRrlv8GOAk4vqq+Or4KvYZNN3cPmr/s/6Kqvtyu6/o54FtJdhlLZcOxDvDHVU+S/DXNL8PD+9qdD0ziae7bAv3XyKx6fjsm8DT2DD45jzah+Y93kkLNFsD3ezdU1WXtH0wfBr6U5KnApeMobgj+hvmtVPNZmhGpSbMZzaUVq5xF8334f33tvtu2nTRPAN5Bc0r+hVX1vVU7ktyWJuQcWlVfG0t1Q1JVZ9Ccon9JkofQ9OsJwL5JLgNOAE5o242UgW1htk6y6mLgVb8Q/ibJH/sbVtWPRlfWUPwO2Lh/Y1Wdn+RBNP+ZfhN446gLG5KfADsDX26f79b+e3JfuzvQ/GU1iXq/P2E136MT+P0J8HLg3HEXsQguoTlFeJNfeFV1HbBXkv8ETgQm9WaDn9KMjs41SvG4tu2kuRj4f9zYv79r/70PcFpPu7+l+VpPlKr6VJLPAa8AvpbkBOA17U0GU3mqrg2fX2vXMX8ETXh7NvAixvDHoKdEB9QOm/Z/0lYND1fftprA0xafBq6sqqfNsn8DmuHhXZjM/u0DvB84EvglzfUlVwL3an8xrmr3PmDLqnr0OOpcqFm+P+Hm36OT+v15k0sSpkmSY4C/qaqdV9PmVcCbmMyv3e40/3d8leY0749p7g4tmpHhewJ70vxBtUdVLR1HnQuV5CCaMHMEzbV4zwE+QXMD0CtoRtq2B94CfKD3spNJk+QuNKNtj6T54/04mv9Pd57UEbb5/t+SZF1gl6r69Ggqu5EjbIN76LgLWGQfAV6c5K+r6mYjTFV1TZLH0gSeR468ujVUVccm2RTYn+aXxFnA/n1hbRNgd5oL+CfNtH9/TrMjgCcnuf1sUz9U1aFJLmAyf/Y+neShNDfzvBe4JTf9A+I64CvAQ6vqG+Opco0cSvN/ytNp+vaBqjowycU0/1+uumHtU8AbxlTjULTXhu7Zfj3fTfOH71ox+lNV1wIjD2vgCJs0VZLctqquGHcdi2WaR9jWJu0oxV1prqsE+C3ws/aX4dRJcnuaa/guqKrLx13PMLU33u1Hc7fve6vqvDGXNLUMbEOU5D40w/q/BE6rqhvGXNLA0kxMutM4LqjUmmsvin1ZVfVPXTIVkvwjcOZME8pOoyTbAvejuSHhmPYmhLsBv5zWSWYlzcxTogNK8mya89d79m3/KLAXN96d9t0kj5jA0Y4w3ZOTvnWQ9hN4nclSmnnznkUzdcBP5jpgkqy6rb49rf0vwEO48Y67i2mujzqmqib1TkoAktwaOAZ4InA9zf/Vn6eZMuHNwC/ou5t7WrTXR+08ySs5rI79m2zj7J8jbANKcirwg6p6fs+2fwWOppl9/F00Q8NH0VzD8Opx1LlQ037KKclM01rcheYXYf/pmJq0edgAkuxIcz3UvYG3AW+qqj+Nt6rhaSd3PhrYAPgBsGoJsS2B7Wimbdm3qv5nPBWuuSRH06xS8XTgGzR92qGqzmpvnHlZ77yB0yTJE4GPTdpNFfNl/ybbOPvnCNvg7snN5+x6Os0v/P2q6s/AD9sUvh/N7NeT5k5t/XOapIlJAapq697n7SzW1wL/PA0THwNU1XfSLJ/2bzR3cO2d5DCai7r7mtaRIy9wDSR5MM2cZCfRTClwXt/+rYF/Bz6S5BdV9a0xlDkMT6CZ6+or7TVCvS6gCaeS1iIGtsHdBvjLRaNJ1qOZHfn4Nqyt8l2akZtJNK0Tk85kKoeYq6qSHEVz7dMraUZ+b9aM5u61SfJqYFlV7T3TznYlh6e2pxRfC+w6yuKGaANuPgHyKhsBf55lX2e118dOLfs32Sahfwa2wf2C5lTTqskRH0JzC/dX+tptCFwzwrqGaVonJl1rtCNRR9Dcifda4G29U5dMsAcCz5xHuw8Axy5uKYvqDOAZNNet9duDZvLqSfMnmtO7n5qj3X2BiVrWqGX/GvZvkRjYBnci8Lr2brxf0sy9cxXNxd69HgSsGHFtw3LatF7DNu2SbExz3dozaJYS272qzh9rUcO1Ps2kpHO5sm07qV5LsxTVl2j+zyngMe06lHvQ/KE4aZYD1/euqzmT9hqhSfyFb/+wf4vpFuN40wl3KM2M1ScBX6dZe3O/qvrtqgZJ1qdZvqJ/uSN117ScGv0J8HBgz6rabcrCGjT9m8/kwDszmcsbAVBVp9F8HdcDDqO5BOEQmrm8HjGh0+58G9hxHu3+QHMmY9LYv4b9WyTeJbpA7VxItwXO7Z8Pqb1+5h40E0FeMfrqFm4tuEv0Y/2baKZO+DLN5J29qqqePJLChiTJx4F9pnWOriQvormp4PFV9cVZ2jyC5jrM11bVu0dY3qJol4O7HXBFVV097noWKsktgQ2r6nfjrmUx2L/JNgn9M7ANKMkpwPOq6sfjrmUxTPvEpO20LPP+pq+qiVrqqb1w9oFTHLiX0CwLswtwSvtx77Qej6UZmfos8LhJnLx6NkluR9PHc6ZpmhZJ82NgG9BaMAL1mEHaV9WyxapFg5v270+AJLegWbvwBcBWfbvPp1nb8HjgnhO8EPUhwHpVdWD7/GE04XRDmimEHlVVZ4+xxKGY9pUc7N9k61r/DGwDmvZfiG3/ivmtdlCTNjniWjBCOtXfn/2SbE7PSgdVdVG7faIn70yyAvj3qjq2ff5dmqB2CPAm4A9V9djxVbhmZlnJ4f7txMAfA35RVRO7koP9s3+LwbtEF2aaU+7WczeZaDvTzKU3ze7b3vgyp0kdgVqlDWgXjbuORXBn4DyAJFsAfwc8p50U+Z00q6pMsnfS3En/CG5cyWGVZTTLbk3sL3zsn/1bBAa2hflUknldQzJpSxtV1QVzt1LHHcE8R0iZ/ImPp9WVwF+1Hz8M+G3PqOkfaU6NTrJpX8nB/k22TvbPwLYwXwEmenHptdw0j5ACPJVmjU1Nrq8CB7anuF9Gc/3aKncHLhxLVcMzdSs59LF/k62T/TOwLcx7pvUaoXZx9PkGmqqquy5mPYtkakdIW+dNwwXpa7kX06yZegLwPeA1PfueAUz0qWymcyWHXvZvsnWyfwY29fs4cwe27WkmL53Ukaq1foQ0yaOBIyYtkCZZyfy+79Zb7FoWU1VdTHMqdCb/xE2vqZlE07iSQy/7N9k62T/vEh3Q2nYXXq8kOwGvo5kD62zgzVV1/HirGsy0f/3m279JvYsyycEMNo/eIYtXjdZEu97tfwA70VxLWcDpwCuq6hvjrG0Y7N9k62L/DGwDSvJ64P1Vdcm4axmVJA+l+YtjZ+As4E1V9alx1rRQa0Fg2xK4tKqunaPdRAa2adZOF/CqqvrZDCty3ExVPWkEZS26aVnJYTb2b7J1qX+eEh3c2wCSzOsurXF/gddEO4nua4AH0tzavGtVzXROf+q002L8c1WdOO5aBuFdvhNtE+CW7cd3YHIvORhIVV0DXJPkdknuzpSt5GD/JluX+mdgG9xVDPYf6cSNYLSjL68G7gt8CXhoVX11vFUNzSHMMm9Xe/v2o4C9gd2BW9NcvyAtut5l0Kpq5zGWsujmWskhyUSv5GD/7N+i1OUp0cEk2YfBrqH50OJVM3xJfgjcCziVZpHtb6+u/SSPIK6S5CE0IW0P4K+BlcD/AB+pqjPGWdugkrx1nk3vAezmKdHJkOSWVXXduOsYlrVgJQf7Z/+GX5eBTb3aa7xWmfObY1J/4Se5H01IezLNrPJXASfTLEXy0EldAaCdlmXeqmraV7aYWEkeRHOTz9/T/GV/NfB14I1V9a1x1ramklwNPLqqvtau5HAB7bWlSXYFPlhVdxhvlQtn/+zfYvCUqPo9a9wFLKZ2qHtv4K7An2iWGTkB+AywPs0o28QygE2HJI8EPgucS3Pd7C+BO9J8f56aZNeq+tIYS1xT076Sg/2bbJ3sn4FtQEmOGaB5VdW/LFoxi2DSTuEuwOtoRg6/DDyrne8KgCQTPXeXpsqbgKXAnnXT0yBvSPJx4M0015dOqmlfycH+TbZO9s9TogNKMp9rmtYH7k0T2CbylOG0akfYnkzzQ/dHmlGME9p/1wN+C+w8wadEtx2kfVX9aLFq0cIluQZ4XFWdPMO+fwI+VVUbjL6y4UiyGc1KDvenWcnhSVV1abvvW8D3q+o546twzdg/+7codRnYhifJrYDnAS+hmbflQ5P2TTvH0lTXA5fTLIvz3lXfwJMoyfbAU4AnAZvTXMP2BeDxNIHt62Msb8Havwjn80Md/IOis5JcSnOt2hEz7NsfeG1VbTr6yhZfktsAf5xrLsFJZf8m2zj7Z2AbgiR/BbygfWwAfAB4W+/ptkmR5O3M/gt/CbAp8PD2+d9X1U9GUtgi6rlL9InAxsBvaEbdPlxVq71LtmuS/OMg7adoupapkuQ9wDOB/YGTquqP7dyAewCH0fwx+MJx1ihptAxsayDJxjSjac+jGbE4EnhHVa0ca2GLrB1J/Crw86rac9z1DEs7D9sjaUbedgdu7QiUxqGdXf0DwF7tpqto5gUEOB7416qaqPVEp30lB/t3U/Zv+LzpYAGSbAq8HHgOzXVQ7wLeXVVXjLOuUamqPyR5J/CecdcyZBvRzMH2MmBfYLfxljN8SW5fVb8edx1avXZ29acmeSPNdTSbApcCZ1TVj8da3MJN+0oO9m+ydb5/jrANKMmRwD7AFcA7gSOq6g/jrGkckjwcWFZVE3dnZZK9gMfR/HB+oqo+muQg4FXAum2zTwHPmMSvbTt/12Np+vepqvp6kmcAb6X5T+ka4H3AK6vq+vFVqrm0S+FsTnMj001U1bLRVyRpXAxsA+qZWPZHNBNZrlZV7bi4FY1HklcA+1bVNuOuZRBJ9qUJK2fQzLXzEOBwmhD+Rpqv631o1lA9oqpePZ5KFybJ42mW07qc5vtzS+AVNNNAvJ8b+/evNBeuv21MpWo12rt9/wfYluZyi35TdcPItK3k0M/+Tbau9M9TooM7jg4OlY5Ke+HzbjSB5l1jLmchng/8Z1W9BCDJ04APAS+sqsPaNp9Pcj3wXJo1VSfJq2humHh6VVWSl9GMrB1UVYeuapTklzQXtRvYuul9NKO9T6AJ2VN3x13/Sg7t7PJTsZID2L+xFjcEXeyfI2y6iSQrWf1dordp//0fmlAwUafUkvyBZg3Nr7TPNwJ+Bzy494cwyT8AX6yqm52K6rIkvweesGoW/CS3A34NPKSqTutptzPw2aq61Tjq1OoluQrYq6o+M+5aFkPfSg4nctOVHO4BTPRKDvbP/i1KXQa2wcyx0sFf5imrqi+MqKShSnIwq5+HbSXw9ao6Z2RFDVF7SnunVcuMtHeGXgfsUFVn9bR7APDNSTvtNO39W1sk+T+av+RPGnctiyHJd4BfcPOVHGhXcthiki8nsX/2bzF4SnRw91nNvlXzlL06yWnAY6rqqtGUNRxVdfC4axiBmQLpNP3lMu39Wxu8FHhrkrOq6rxxF7MI7gO8rv+XYetompt+Jpn9m2yd7J+BbUBVdf+52rSjF0uBfwdetNg1DVOSUwZoXlX18Lmbdc7J7TVqvb7ct22SfzaObU/99vpwew3GKp4K7bZDgc2AHyc5n+au9JuY5BEMmv7cdZZ9d2OG/k6YK7B/k+wKOti/Sf6l1FlV9e0kbwBeyYQFNppZ/ucajdkUeNA82nXRIeMuYJF9aIZtZ8/S9juLWYjWyA/bx7Q6ETi0veayfyWHNzHz9/EksX+TrZP98xq2RZLkocDnJ3GestkkuQtNCH02zZQY7+q981CS5mMaV3LoZf/s36LUZWBbHEn2AQ6dhgWak9yNZrqIp9HcVPEO4H3tbOyStCBJ7sn0rORwM/ZvsnWtfwa2RdAuXfV1mrtFnz3uehYqyb1p5lvbE7iQZj6vY6pq6uaEmjZJ/h9wAM3EwJu1my+mWQP28Kr63ngqk2407Ss52L/J1rX+GdgGNMeisEuAOwH3owk4/1BVl42ksCFKcj+aoLY78BPgP4CPVNWfx1qY5iXJy2kuWr8S+ApwQbtrS2BnmjVTX+0qBxqXaV/Jwf7Zv8XgTQeD22Q1+66n+eX4EeC4CV2H8nPAo4Dv00zceeKYS9IAkvwz8Baa0dA3V9Xv+/ZvRHN6+z+S/KiqPjuGMqVpX8nB/k22TvbPETbdRM9aqb8BblhdW4CqusPiVqRBJDkV+HlVPWuOdh8Etqqqh46kMKnHWrCSg/2bYF3tnyNs6jft015Mu/vSnA6dywnA6k7vS4vpZ8xwXdAUsX+TrZP9M7DpJqrKwDbZltCcmp/L9cAtFrkWaTbTvpKD/Ztsneyfp0SlKZLkdOBbVfXiOdq9i2bN0QeOpjLpRknOAO4C3A44nylbycH+2b/F4AibNF2OAo5O8iPgAzOthZfkX4HnAfuOujipNe0rOdi/ydbJ/jnCJk2ZJEcCzwF+CvwvN53WY1fg7jQTHz9vPBVKkgZlYJOmUJLHAS8EdgJWLY/2J+BbwLur6tNjKk2StAAGNmmKJVkCbNw+/ZWTH0vSZDKwSVMkyUEDNK+qeuOiFSNJGhoDmzRF2omPrwH+wMxLqvQqJz6WpMngXaLSdDmP5nb0M2kmx/1k//JUkqTJ48SZ0hSpqrsBDwLOBt4IXJbkE0n2TLLBeKuTJC2Up0SlKZbkIcBewBOBDYGlNFN6fG2shUmSBmJgk9YCSdYF3gS8GFhaVU8Yc0mSpAF4DZs0xZI8mGaEbQ9gI+Ak4MixFiVJGpgjbNKUSbI9TUh7MnBH4PM0NyAsraqrx1mbJGlhDGzSFElyLrA1cApNSPuEd4lK0uQzsElTpJ2H7Y8087DN+cPtPGySNBm8hk2aLoeMuwBJ0vA5wiZJktRxTpwrSZLUcQY2SZKkjjOwSZIkdZyBTZIkqeMMbJIkSR33/wHMz6lUjogebwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "sns.barplot(importance.index[:10],importance.importance[:10])\n", + "plt. xticks(rotation= 90, fontsize=15)\n", + "plt.yticks(fontsize=10)\n", + "plt.ylabel(\"Importance\",fontsize=15)\n", + "plt.title(\"Variable Importance\", fontsize=15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "All the caveats about interpretation that we mentioned above apply in a similar to forest output.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Further reading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "In this tutorial we briefly reviewed some key concepts that we recur later in this tutorial. For readers who are entirely new to this field or interested in learning about it more depth, the first few chapters of the following textbook are an acccessible introduction:\n", + "\n", + "James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer. Available for free at [the authors’ website](https://www.statlearning.com/).\n", + "\n", + "Some of the discussion in the Lasso section in particular was drawn from [Mullainathan and Spiess (JEP, 2017)](https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87), which contains a good discussion of the interpretability issues discussed here.\n", + "\n", + "There has been a good deal of research on inference in high-dimensional models, Although we won’t be covering in depth it in this tutorial, we refer readers to [Belloni, Chernozhukov and Hansen (JEP, 2014)](http://www.mit.edu/~vchern/papers/JEP.pdf). Also check out the related `R` package [`hdm`](https://cran.r-project.org/web/packages/hdm/hdm.pdf), developed by the same authors, along with Philipp Bach and Martin Spindler." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + }, + "vscode": { + "interpreter": { + "hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}