@@ -96,10 +96,9 @@ def __init__(self, processor):
9696 self .probe_SN = self .probe_info ['@probe_serial_number' ]
9797
9898 # Determine probe-model (TODO: how to determine npx 2.0 SS and MS?)
99- if processor ['@pluginName' ] == 'Neuropix-PXI' :
100- self .probe_model = 'neuropixels 1.0 - 3B'
101- elif processor ['@pluginName' ] == 'Neuropix-3a' :
102- self .probe_model = 'neuropixels 1.0 - 3A'
99+ self .probe_model = {
100+ "Neuropix-PXI" : "neuropixels 1.0 - 3B" ,
101+ "Neuropix-3a" : "neuropixels 1.0 - 3A" }[processor ['@pluginName' ]]
103102
104103 self .ap_meta = None
105104 self .lfp_meta = None
@@ -112,21 +111,21 @@ def __init__(self, processor):
112111 'recording_durations' : [],
113112 'recording_files' : []}
114113
115- self ._ap_data = None
114+ self ._ap_timeseries = None
116115 self ._ap_timestamps = None
117- self ._lfp_data = None
116+ self ._lfp_timeseries = None
118117 self ._lfp_timestamps = None
119118
120119 @property
121- def ap_data (self ):
120+ def ap_timeseries (self ):
122121 """
123122 AP data concatenated across recordings. Shape: (sample x channel)
124123 Channels' gains (bit_volts) applied - unit: uV
125124 """
126- if self ._ap_data is None :
127- self ._ap_data = np .hstack ([s .signal for s in self .ap_analog_signals ]).T
128- self ._ap_data = self . _ap_data * self .ap_meta ['channels_gains' ]
129- return self ._ap_data
125+ if self ._ap_timeseries is None :
126+ self ._ap_timeseries = np .hstack ([s .signal for s in self .ap_analog_signals ]).T
127+ self ._ap_timeseries *= self .ap_meta ['channels_gains' ]
128+ return self ._ap_timeseries
130129
131130 @property
132131 def ap_timestamps (self ):
@@ -135,15 +134,15 @@ def ap_timestamps(self):
135134 return self ._ap_timestamps
136135
137136 @property
138- def lfp_data (self ):
137+ def lfp_timeseries (self ):
139138 """
140139 LFP data concatenated across recordings. Shape: (sample x channel)
141140 Channels' gains (bit_volts) applied - unit: uV
142141 """
143- if self ._lfp_data is None :
144- self ._lfp_data = np .hstack ([s .signal for s in self .lfp_analog_signals ]).T
145- self ._lfp_data = self . _lfp_data * self .lfp_meta ['channels_gains' ]
146- return self ._lfp_data
142+ if self ._lfp_timeseries is None :
143+ self ._lfp_timeseries = np .hstack ([s .signal for s in self .lfp_analog_signals ]).T
144+ self ._lfp_timeseries *= self .lfp_meta ['channels_gains' ]
145+ return self ._lfp_timeseries
147146
148147 @property
149148 def lfp_timestamps (self ):
@@ -171,7 +170,7 @@ def extract_spike_waveforms(self, spikes, channel, n_wf=500, wf_win=(-32, 32)):
171170 if len (spikes ) > 0 :
172171 spike_indices = np .searchsorted (self .ap_timestamps , spikes , side = "left" )
173172 # waveform at each spike: (sample x channel x spike)
174- spike_wfs = np .dstack ([self .ap_data [int (spk + wf_win [0 ]):int (spk + wf_win [- 1 ]), channel_ind ]
173+ spike_wfs = np .dstack ([self .ap_timeseries [int (spk + wf_win [0 ]):int (spk + wf_win [- 1 ]), channel_ind ]
175174 for spk in spike_indices ])
176175 return spike_wfs
177176 else : # if no spike found, return NaN of size (sample x channel x 1)
0 commit comments