Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 24 additions & 1 deletion detic/predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from collections import deque
import cv2
import torch
import random

from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
Expand Down Expand Up @@ -37,7 +38,7 @@ def get_clip_embeddings(vocabulary, prompt='a '):
}

class VisualizationDemo(object):
def __init__(self, cfg, args,
def __init__(self, cfg, args,
instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
Expand All @@ -50,10 +51,12 @@ def __init__(self, cfg, args,
self.metadata = MetadataCatalog.get("__unused")
self.metadata.thing_classes = args.custom_vocabulary.split(',')
classifier = get_clip_embeddings(self.metadata.thing_classes)
self._default_vocabulary = None
else:
self.metadata = MetadataCatalog.get(
BUILDIN_METADATA_PATH[args.vocabulary])
classifier = BUILDIN_CLASSIFIER[args.vocabulary]
self._default_vocabulary = args.vocabulary

num_classes = len(self.metadata.thing_classes)
self.cpu_device = torch.device("cpu")
Expand All @@ -67,6 +70,26 @@ def __init__(self, cfg, args,
self.predictor = DefaultPredictor(cfg)
reset_cls_test(self.predictor.model, classifier, num_classes)

def change_vocabulary(self, vocab):
"""
Args:
vocab (str): The comma separated string of vocabulary
"""
self.metadata = MetadataCatalog.get("__unused+"+str(random.random()))
self.metadata.thing_classes = vocab.split(',')
classifier = get_clip_embeddings(self.metadata.thing_classes)
num_classes = len(self.metadata.thing_classes)
reset_cls_test(self.predictor.model, classifier, num_classes)

def set_defalt_vocabulary(self):
if not self._default_vocabulary:
raise RuntimeError("The VisualizationDemo is not initalized with buildin vocabulary")
self.metadata = MetadataCatalog.get(
BUILDIN_METADATA_PATH[self._default_vocabulary])
classifier = BUILDIN_CLASSIFIER[self._default_vocabulary]
num_classes = len(self.metadata.thing_classes)
reset_cls_test(self.predictor.model, classifier, num_classes)

def run_on_image(self, image):
"""
Args:
Expand Down