"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sim_data.plot_field(\"field\", \"Hz\", \"real\", vmax=0.3)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "df067500",
+ "metadata": {},
+ "source": [
+ "## Bayesian Optimization\n",
+ "\n",
+ "Define an objective function that computes the average broadband transmission\n",
+ "power in the fundamental mode based on simulation results. This serves as\n",
+ "the figure of merit to be maximized during optimization.\n",
+ "\n",
+ "For reference, the initial (unoptimized) device achieves a mean broadband transmission of 12.8%.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3bceea0e-1718-417c-bf53-d8a1140a7fc5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Transmission = 12.83%\n"
+ ]
+ }
+ ],
+ "source": [
+ "def cal_transmission(sim_data):\n",
+ " amp = sim_data[\"mode\"].amps.sel(mode_index=0, direction=\"+\").values\n",
+ " T = np.abs(amp) ** 2\n",
+ " return np.mean(T)\n",
+ "\n",
+ "\n",
+ "print(f\"Transmission = {1e2 * cal_transmission(sim_data):.2f}%\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2d3be624",
+ "metadata": {},
+ "source": [
+ "Configure `tidy3d.plugins.design` to maximize transmission by sweeping `theta`, `d_tip`, and `l_gap` within bounds using a UCB acquisition function.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "13a67494-9617-47c5-9089-9fb68f1cff17",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "21:11:29 Eastern Daylight Time Running 10 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:11:29 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m10\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:11:58 Eastern Daylight Time Best Fit from Initial Solutions: 0.322 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:11:58 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mBest Fit from Initial Solutions: \u001b[1;36m0.322\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:12:49 Eastern Daylight Time Latest Best Fit on Iter 0 : 0.355 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:12:49 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m0\u001b[0m: \u001b[1;36m0.355\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:14:06 Eastern Daylight Time Latest Best Fit on Iter 1 : 0.361 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:14:06 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m1\u001b[0m: \u001b[1;36m0.361\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:14:07 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:14:07 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:15:23 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:15:23 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:16:12 Eastern Daylight Time Latest Best Fit on Iter 3 : 0.373 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:16:12 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m3\u001b[0m: \u001b[1;36m0.373\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:17:31 Eastern Daylight Time Latest Best Fit on Iter 4 : 0.374 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:17:31 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m4\u001b[0m: \u001b[1;36m0.374\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:18:19 Eastern Daylight Time Latest Best Fit on Iter 5 : 0.379 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:18:19 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m5\u001b[0m: \u001b[1;36m0.379\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:18:20 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:18:20 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:19:04 Eastern Daylight Time Latest Best Fit on Iter 6 : 0.381 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:19:04 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m6\u001b[0m: \u001b[1;36m0.381\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:20:25 Eastern Daylight Time Latest Best Fit on Iter 7 : 0.387 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:20:25 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m7\u001b[0m: \u001b[1;36m0.387\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:20:26 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:20:26 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:21:14 Eastern Daylight Time Latest Best Fit on Iter 8 : 0.389 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:21:14 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m8\u001b[0m: \u001b[1;36m0.389\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:21:15 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:21:15 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:22:36 Eastern Daylight Time Latest Best Fit on Iter 9 : 0.395 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:22:36 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m9\u001b[0m: \u001b[1;36m0.395\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:23:57 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:23:57 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:25:17 Eastern Daylight Time Latest Best Fit on Iter 11 : 0.4 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:25:17 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m11\u001b[0m: \u001b[1;36m0.4\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:25:18 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:25:18 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:26:38 Eastern Daylight Time Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:26:38 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:28:00 Eastern Daylight Time Latest Best Fit on Iter 13 : 0.401 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:28:00 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m13\u001b[0m: \u001b[1;36m0.401\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Running 1 Simulations \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mRunning \u001b[1;36m1\u001b[0m Simulations \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:29:22 Eastern Daylight Time Latest Best Fit on Iter 14 : 0.401 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:29:22 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mLatest Best Fit on Iter \u001b[1;36m14\u001b[0m: \u001b[1;36m0.401\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Best Result: 0.401350274778198 \n",
+ " Best Parameters: d_tip: 0.13292462551997172 \n",
+ " l_gap: 0.1 theta: 0.08726646259971647 \n",
+ " \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mBest Result: \u001b[1;36m0.401350274778198\u001b[0m \n",
+ "\u001b[2;36m \u001b[0mBest Parameters: d_tip: \u001b[1;36m0.13292462551997172\u001b[0m \n",
+ "\u001b[2;36m \u001b[0ml_gap: \u001b[1;36m0.1\u001b[0m theta: \u001b[1;36m0.08726646259971647\u001b[0m \n",
+ "\u001b[2;36m \u001b[0m \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import tidy3d.plugins.design as tdd\n",
+ "\n",
+ "# define optimization method\n",
+ "method = tdd.MethodBayOpt(\n",
+ " initial_iter=10,\n",
+ " n_iter=15,\n",
+ " acq_func=\"ucb\",\n",
+ " kappa=0.3,\n",
+ " seed=1,\n",
+ ")\n",
+ "\n",
+ "# define optimization parameters\n",
+ "parameters = [\n",
+ " tdd.ParameterFloat(name=\"theta\", span=(np.deg2rad(5), np.deg2rad(20))),\n",
+ " tdd.ParameterFloat(name=\"d_tip\", span=(0.05, 0.2)),\n",
+ " tdd.ParameterFloat(name=\"l_gap\", span=(0.1, 0.3)),\n",
+ "]\n",
+ "\n",
+ "# define a design space\n",
+ "design_space = tdd.DesignSpace(\n",
+ " method=method, parameters=parameters, task_name=\"bay_opt\", path_dir=\"./data\"\n",
+ ")\n",
+ "\n",
+ "# run the design optimization\n",
+ "results = design_space.run(make_sim, cal_transmission, verbose=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "973bf527",
+ "metadata": {},
+ "source": [
+ "Rebuild the simulation with the best parameters from optimization.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "876fceb2-8ba4-413a-9429-6275d26c4fe9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAEQCAYAAAA9ETkjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgTklEQVR4nO2dCZgcVbn+v6rqbZbMBELIwhLCLvsOEbzIJdcoyKJeBASJ7CAoERUEAwEFo6CyL1cQAUVZvGwXMYgIsoMQ9A+CyBIgELKwJLP3UnX+z3uqq7u6p3umu6eXmu73l6cy3dW1nK5zqs9b3/m+7xhKKSWEEEIIIWTcYza6AIQQQgghpDpQ2BFCCCGENAkUdoQQQgghTQKFHSGEEEJIk0BhRwghhBDSJFDYEUIIIYQ0CRR2hBBCCCFNAoUdIYQQQkiTQGFHCCGEENIkUNgRQpqSRx55RAzD0H9Jc7F06VKJxWLyxBNP1P3cyWRSNthgA7n66qvrfm5CSoHCjhAyrkEHe+ONN8p45Le//a1ceumlEgQcx5GLLrpIZs6cqUXTdtttJ7/73e9K2vf999+X733ve7LPPvvIhAkTigrqgYEBueqqq+Qzn/mMTJs2TW+74447yjXXXCO2bZdc1h/84Aey++67y5577in1JhwOy+mnny4XXnihDA0N1f38hIwGhR0hpCmF3X/8x3/I4OCg/htUgiTsvv/978uZZ54p//Vf/yVXXHGFbLjhhvKVr3xFbr311lH3ffXVV+UnP/mJvPfee7LtttsW3e7NN9+Ub3zjG4IpyiGOfvrTn2oh+fWvf12OOeaYksq5atUquemmm+Skk06SRnH00UfLBx98oOuPkKBhKNxhhJBxTX9/v3R0dEgrss0228g666wzLodcP//5z8tLL70kb731VkPLAUEGgXXCCSfIlVdeqdeha9h7771lyZIlunyWZRXdv7e3Vw9Rrr322vL73/9eDjnkEHn44Yfl05/+dM52EEMrVqyQrbfeOmc9RN2vfvUree2112TTTTcdsayXXHKJFqErV66Uzs5OaRQHHHCArFmzRh599NGGlYGQQtBiR0jAQCd77LHHyvTp0yUajeoO9+STT5ZEIqE/h3UKQ11//etftaVj3XXXlfXXXz/HgoWOE/viGKeccoqsXr065xzoQL/0pS/J1KlT9bAb9j/ssMN0R+Xx4IMPyl577SUTJ07UHegWW2whZ5999qjlL2W/eDwuCxYs0J04ygmfpTPOOEOvz+c3v/mN7LbbbtLe3i5rrbWWtsD96U9/0p9ttNFG8s9//lNfC1wTLJ6YKOZjd8cdd8jOO+8sbW1tWhAeeeSR+pr7+drXvqbLjvUHH3ywfj158mT5zne+U9KQ4T333CP7779/pg432WQT+eEPf5izL8r5hz/8Qd5+++1M2fF9ioEyedvlL+edd96oZRqtvBBmaE8eOC7a3bvvvitPPfXUiPtjSBWibjRwvfNFHfjCF76g/77yyiujHuPuu+/Ww7D5og7XDtcoH1xnv8D02sXtt98u559/vqy33nq6/P/93/+t2z/a4Lx58/R9hXPAOleoXcKy+fjjj8tHH300apkJqSehup6NEDIiy5Yt0yIGQgzWky233FKLC1hB4J8UiUQy26IThtg499xztcUOoINHZzV79mzdKWOIDP5Lf/vb37SjOfyDIBDnzJmjOysMi0Hc4Rz33XefPm93d7cWS7Amwc8K/kwQJ6+//vqozuql7AdfrgMPPFB3iviOn/jEJ+TFF1/Ulph///vfuuP2wHfBd/rkJz+pj4fv/8wzz8hf/vIX7aeFYUx8B3TAsOKAKVOmFC0fRDE66l133VUWLlyorUeXXXaZLt8LL7ygxagHRBiuE0QEhgz//Oc/y89+9jMt0nBtRwLnQZkw3Ii/KC/qqaenRy6++GK9DcoLIQHhhO8ORrJAnXjiibpe/SxatEhuueUWLUL8VrFSgJhB/QB8d1h8URd+0Ba9zyHWa8Xy5cszwm8kID7Rlke7/qWA+oe4h28g2iiGn3F/mKYpH3/8sW53Tz/9tK5LPFyh/vzg4QBWzSeffFK3eUICA4ZiCSHB4KijjlKmaaq//e1vwz5zHEf//dWvfgX3CbXXXnupVCqV+XzlypUqEomoz3zmM8q27cz6K6+8Um9/ww036PcvvPCCfn/HHXcULccll1yit1m1alVZ5S9lv1//+tf6Oz722GM566+99lq97xNPPKHfv/baa3q7L3zhCznfx38twNZbb6323nvvYed5+OGH9fHwFyQSCbXuuuuqbbbZRg0ODma2u++++/R25557bmbd3Llz9bof/OAHOcfccccd1c477zzqdRgYGBi27sQTT1Tt7e1qaGgos27//fdXM2bMUJWA69Pd3a3+67/+K6cdoNylLGhH/nJsvPHGw87R39+vt/3e975XcrnQrvzXfTTi8bjaaqut1MyZM1UymRxx29dff10f+4orrhj2Ga4j6i0ftA1/+/DaBdoB2oTH4YcfrgzDUJ/73Ody9p81a1bBOlq2bJk+zk9+8pOSvich9YJDsYQEBFiyYK2C784uu+wy7HMMH/k5/vjjc/yeYFGCNQ7DSLA6+Lfr6urSw34AFjnwwAMPaCtgITzLFYboUK5SKWU/DIXCMgRrJKxL3vKf//mf+nP4ZgFcCxwDlhL/9yl0LUrhueee035ZsHRi+NkDQ6Yoi3d9/OQ76H/qU5/SAQCjAUuQ3/8M3w/74nr/61//krECCy2GLzE0jchVfzvAUHgpC6yRHggy8ax3frzrhM9rxamnniovv/yy9u0LhUYeRPrwww/1X3zvsXLUUUdpC50HLLPQxflBHFiP9CqpVCpnvVeGUi2khNQLDsUSEhAQ7YehOgQDlAKGh/zAVwvAp80Phi833njjzOfYD0OEP//5z/UwHgQHhkbha+aJvkMPPVSuv/56Oe644/RQ1b777itf/OIXtR9SvsjyU8p+8O+DLxWGkQsB8QXeeOMNvc9WW20l1aDY9QEQdhgazhc1+WVEZ45hutHAkPT8+fP1ECzq1I/fj7FSINZxfTAMOGnSpJzP8odrSwFCtJAfmZfOwy9UqwmGpa+77jrtf7jffvuVvF81Yv4Q9evHa/vw98xfjwcM1Jv/WntlqOQhg5BaQmFHyDhlLJ0tfMXgaA7LGgIRvvnNb2qfI/gUIZACx0a0H6xnsGTBl+u2227TVjVsXyxCspT90EkiJQaEZSHyO9ZGMVIU6EjATxHRpLCSwi8QPnkQiYsXL9bpRMqxgBYCPoGw0iGoZIcddijqrzYaECxeG0JOOdQZxIpfqCA/HUAQSLWB7xquB6yiEMGl4AmrUsS1R/53Gq1+i63PF5NeGUbzCySk3nAolpCAAOsQxADSX1TCjBkz9F8ETPjB8CxSVnife0BcoUOFEHvsscd0AMW1116b+RzWMljcIMAwVIaErLBAeUOlxRhtPwgdRBJiG1iX8hfPoobtIIJwjJEo1WJS7Pp46/KvT6Ug6hJDhhAup512mnasx/cqNHxYrrUH9YTIXAy3H3HEEQW3gUgrZYHg9oBAxDBxflQqAlW8z6sJHihg1YU1FwmLy7GyQYyiPRcCw975IECmFnhlyA84IaTRUNgREhAgiJBa4//+7/+0P1i5w08QDxh2vfzyy3O2/eUvf6mHkeBLBjA0mO8vBJGH83vDcYVSOHide6EhO49S9vvyl7+sRSSG4PKBL5cX4YtrgTLB6pVv5fJ/P0Rz5qdzKQT8FhE9CvHq/w5//OMftaDxrs9Y8Sw+/jJCXBeaggplL3VoFtYzXDtEp3qRtYWoxMfuoIMO0v5m/jKi/LhWSAeCqGR/OeAniAjVSsCDBFLrIG0NXAFGGtrPB2VEPRa6PwDSsvhng8CQOIb+a5Gu9fnnn9fCfNasWVU/NiFjgUOxhASIH/3oR3rIEkN5XioQdKQIOIAPmD8dRyGL31lnnaVThHz2s5/VfnOwRKGzRnoP+NABWM/gsI4ksptvvrkWeb/+9a+1IEFuOwAxhQ4YYgeWLPi94TgYph0p7UUp+331q1/VOcQwBAcrHqaFQmoRiAWsR1AHOm/kuENKEPhfwQ8Q1h04+CPdBYYGMXTspZ1ASpcLLrhA7wPx5gVi5IsCzI6AdCe4vocffngm3QlyoH3rW9+SagARBOvc3Llz9RA3On9c30LiAmWH5Qw+j6gjpDtB8EwhcCz4YSLfX/5sEEgvg6VSHzvUD6yAEIwQbCgLgldgIYT48g9Poo1h5gdYrPx593D9PTEF8J09v0VvqBV+jmiXuCbwu0S7LvY9igERinaBBxRYuP1A4KPuYc3E50hhgrQusIL/z//8j04ZUy0gjtF2830cCWk4dYu/JYSUxNtvv63TnkyePFlFo1GdhuKUU07RaSH86U4KpUTx0ptsueWWKhwOqylTpqiTTz5Zffzxx5nP33zzTXXMMceoTTbZRMViMbX22murffbZR/35z3/ObPPQQw+pgw46SE2fPl2nUMFfpIP497//PWLZS90PaSaQJgKpSvAd11prLZ1G5Pzzz1dr1qzJ2RZpWpBmxNsOqSsefPDBzOfLly/X6TomTJigr4uX2iI/3YnHbbfdljkevvsRRxyh3n333ZxtkDajo6Nj2PdbsGCBPuZoIGXLHnvsodra2vQ1OOOMM9QDDzwwrDx9fX3qK1/5ipo4caL+bKTUJ/hexVKXoFxjBSllfvSjH+kyoO5QN7/5zW+GbeelglmyZEnO+pFSq3h4dTKW77FixQoVCoV02hw/KDfq8qSTTtJtAXU7f/58de+99+r3SAPkL0N+up9i95VX5/4UPqtXr9bX6Prrrx+1vITUG04pRgghZFyBmVmQzBoWRQ9YDzHDRKF5g6sNEmNfdNFFOjK5VhHDhFQKfewIIYSMKzAdnTebSr3BUDUCgzC8TFFHggh97AghhIwrEB3rD5KoJ/DVfOeddxpybkJKgRY7QgghhJAmgT52hBBCCCFNAi12hBBCCCFNAoUdIYQQQkiTwOCJEkHm+2XLlulkl5z0mRBCCCH1Al5zmDIPydlHm62Fwq5EIOqQxTwUqs0ly594Gpn4K6l4TExdqdskvpv/+2HapXq7YEI0Y3YBD8yKkD/9VT3A1FzezQNRjymh6g3rIwvrw4X1kYX1kYX1Mfb6MAxDzxhTDcNNNfrzYjMTLV26VM8UMxIUdiUCS53bcMNiSI0sdt5hlYgZsiraf/I6U90c7hVipk+L+1HlTs9ZNwwTN5n72qnO/TCmaxGEMrA+WB8erI/hZWB9sD7GXB9GuvwqIP15HipdMGiR0aCwKxFPxWtRV+uR2DEc39StupI9FWKkMwUwTOV+Z1XnYWeUAYs+r0rfaHhdz3L4r4UEoAysD9aHd2rWx/AysD5YH9WqD6f6l61KxzPS17IUiyKFHcm9Kf03Qc66Ot+U3jkz6/SbBlyLIJSB9eG+DEoZWB/uy6CUgfXhvgxKGVq5PoIBo2JbniI3pXdzeDdGI25KybtBq2YjL+daBKEMrA/WB+ujeBlYH6yPINRHcKCwa2mK3JSZj+t0cxa8KaXON+dI1yIIZWB9BKsMrI9glYH1EawytFp9BAsKu5ZllJuyXjfniDdlvW7OUq5FEMrA+ghWGVgfwSoD6yNYZWiV+ggeFHYtSYk3Za1vzpJuylrfnOVciyCUgfURrDKwPoJVBtZHsMrQ7PURTCjsWo4yb8pa3Zxl3ZS1ujkruRZBKAPrI1hlYH0Eqwysj2CVoVnrI7hQ2I0h6eD4o8Kbsto3Z0U3ZbVvzrFciyCUgfURrDKwPoJVBtZHsMrQbPURbCjsyqXcdhQYxnhTVuvmHNNNWa2bsxrXIghlYH0Eqwysj2CVgfURrDI0S30EHwq7MsBULeOTKt2UY705q3JTjvXmrOa1CEIZWB/BKgPrI1hlYH0EqwzjvT7GBxR2ZaDnvRt39V/lm7LSm7OqN2WlN2ctrkUQysD6CFYZWB/BKgPrI1hlGK/1MX6gsGtqanRTlntz1uSmLPfmrOW1CEIZWB/BKgPrI1hlYH0EqwxBrY/mgMKuaanxTVnqzVnTm7LUH6p6XIsglIH1EawysD6CVQbWR7DKEMD6CDJlFJHCrimp00052s1Zl5tytB+qel6LIJSB9RGsMrA+glUG1kewyhDA+mgCQo0uAKk2db4pM6ctYM6u202ZOaH725T5QZAGXIsglIH1EawysD6CVQbWR7DKEKD6kAAPx5ZRNAq7ZsNM175Tx5uy2M1Z15sy74fK9P1Q1fMHyl8GnJ/1wfrwYH3kloH1wfoIXH00BxyKJYQQQghpEmixazaQak8/bOHpTz+G1e/c2pzvMxl7fht1ferylUE16lqkywBYH6wPD9ZHbhkA64P1Eaj6aA4o7MrNYxd0DN9N0Ij7wX8TqrwfjbpQ5Pu3XBnSsD4CUoY0rI+AlCEN6yMgZQhKfQSYMq4DhV0ZrF69WtZZe4qYZvqxwvA3QP9VH+mzapJ3HrgkJMMcYSeEEELKwhEjnAhOf55XhnLMShR2lU4plqmAQk6mUFgqz7Rs1LAR+I9tiigKO0IIIaRkdDdqFDZd1r0/H64pVBlTmlIBVEJJ4eC1nK6kQSlNCCGEkJbDGFf9eeCE3aOPPioHHHCATJ8+XQzDkLvvvnvUfR555BHZaaedJBqNyqabbio33njjsG2uuuoq2WijjSQWi8nuu+8uzz77bNllQ3kMS8qogFo0Boo6QgghpL4Y46Y/D5yw6+/vl+23314LsVJYsmSJ7L///rLPPvvI3//+d5k3b54cd9xx8sADD2S2ue222+T000+XBQsWyOLFi/Xx58yZIytXriyrbBCO5ecZqmZjoKgjhBBCGoMxLvpzQwU41BMWsrvuuksOPvjgotuceeaZ8oc//EFeeumlzLrDDjtMBzosWrRIv4eFbtddd5Urr7wy4yu3wQYbyDe+8Q353ve+V1JZenp6ZP78+TKxa5KYptmAShxtf3eMXiUhPgOn1wkhhJDgYiB4Il6iD12t+/PhQLf88MLzZM2aNdLV1TXituNeATz11FMye/bsnHWwxmE9SCQS8vzzz+dsA2GG9942hYjH41rM+RccqzFKn5Y6QgghJBgYge7Px72wW758uUyZMiVnHd5DiA0ODsoHH3wgtm0X3Ab7FmPhwoXS3d2dWWDha0xjoKgjhBBCgoUR2P583Au7WnHWWWdpk6e3LF26tAGNgaKOEEIICSZGIPvzcZ/HburUqbJixYqcdXiPMei2tjaxLEsvhbbBviMFSuhgiVpPuuxN/FzQZ46ijhBCCAkuRuD683FvsZs1a5Y89NBDOesefPBBvR5EIhHZeeedc7aBEyLee9sET+lT1BFCCCHjAyNQ/XnghF1fX59OW4LFS2eC1++8805miPSoo47KbH/SSSfJm2++KWeccYb861//kquvvlpuv/12+da3vpXZBqlOrrvuOrnpppvklVdekZNPPlmnVTn66KMleI2Boo4QQggZXwSnPw/cUOxzzz2nc9L5RRmYO3euTjz8/vvvZ0QemDlzpk53AiF32WWXyfrrry/XX3+9joz1OPTQQ2XVqlVy7rnn6oCJHXbYQadCyQ+oCIQZ14OijhBCCBlHGIHozwOdxy5IIMoWVsF115lWYR670VAiZroqnErz4jCPHSGEEFLbPHa17s/HlscucBa71iRP3Rd1wCwdOxyXvmlLctZ1vj9TLAg/QgghpIUIGUmZHM0NolwVnyIpFQ58f14uNO00HF8jgLJ3ajXRMCGEEEKavT+nsGsohRwrazHRMCGEEEJaoT+nsGsYI0XLUNwRQggh4wMVqP6cwq4hlBICTXFHCCGEBBsVuP6cwq7ulJPXhuKOEEIICSYqkP05hV1dqSRZIcUdIYQQEixUYPtzCrsyCIXGkh1mLBmoKe4IIYSQYKAC3Z9T2JUp7IyKUtFUY1oRijtCCCGksajA9+cUdmWQSqXEwBXzJx8clWrOFUdxRwghhDQGNS76cwq7MoWdcgrMA1eUWkwATHFHCCGE1Bc1bvpzCrsy0TProiJGFXe1aAQeFHeEEEJIfVDjqj+nsKsEVMKI4q6WjcCD4o4QQgipLSoQ/Xk5/v0UdlUXd/VoBIUaQw1PQwghhDQ9KiD9eZ64M5Tr318iY8nfQXIqIV0PdWsE/sZQbkAHIYQQQnJJG2vQqTa6P8eiX7vvlV36USjsqinu8NLzwaurCQ2NIX1+QgghhFSGCkJ/ni6DmRWWSjv4lwaHYqtBzvWudyPwn5cQQggh478/9523zAE5WuzGjM9kmjHj+ix59YJDsYQQQsjY8Cx1je7Pta5IF6bM/p3CbkwUcaysd2PImI1ptSOEEELGRMP787So87l6MXiikaJO1bkx+J0sCSGEEFI5nrWuof25T9RVECBJYVcRo4RA16sx5DQCutkRQgghYyMI/Xn+OQxRNoVdbSklBLrWjWFYI6DJjhBCCKk6de/Px0Ygo2Kvuuoq2WijjSQWi8nuu+8uzz77bNFtb7zxRjEMI2fBfn4QJnzuuefKtGnTpK2tTWbPni2vvfZaRWXLjHOXEgI96gwVwWgEhBBCCGmO/jxwwu62226T008/XRYsWCCLFy+W7bffXubMmSMrV64suk9XV5e8//77meXtt9/O+fyiiy6Syy+/XK699lp55plnpKOjQx9zaGiorLJFIhFfkILRmMZAUUcIIYTUHzU++vPACbuf//zncvzxx8vRRx8tW221lRZj7e3tcsMNNxTdB1a6qVOnZpYpU6bkWOsuvfRSmT9/vhx00EGy3Xbbyc033yzLli2Tu+++u6yymaaZzv5sNKYxUNQRQgghjUMFvz8PlLBLJBLy/PPP66FSv5jC+6eeeqrofn19fTJjxgzZYIMNtHj75z//mflsyZIlsnz58pxjdnd36yHekY4Zj8elp6cnZ8G6hjUGijpCCCGk8ahg9+eBEnYffPCB2LadY3EDeA9xVogttthCW/Puuece+c1vfiOO48gnP/lJeffdd/Xn3n7lHBMsXLhQC0BvgWgsZ0qPqjYGijpCCCEkOKjg9ueBEnaVMGvWLDnqqKNkhx12kL333lvuvPNOmTx5svzP//zPmI571llnyZo1azLL0qVLG9MYKOoIIYSQ4KGC2Z8HKt3JOuusI5ZlyYoVK3LW4z1850ohHA7LjjvuKK+//rp+7+2HYyAq1n9MiMFiRKNRvTQ0dJqijhBCCAkuKnj9eaAsdog63XnnneWhhx7KrMPQKt7DMlcKGMp98cUXMyJu5syZWtz5jwl/OUTHlnrMhih9ijpCCCEk+Khg9eeBstgBpDqZO3eu7LLLLrLbbrvpiNb+/n4dJQsw7LreeutpHzjwgx/8QPbYYw/ZdNNNZfXq1XLxxRfrdCfHHXdcJmJ23rx5csEFF8hmm22mhd4555wj06dPl4MPPjiYSp+ijhBCCBk/qOD054ETdoceeqisWrVKJxRGcAOGSxctWpQJfnjnnXd0pKzHxx9/rNOjYNu11lpLW/yefPJJnSrF44wzztDi8IQTTtDib6+99tLHzE9kHIjG4L2mqCOEEELGD6r6/bllmXoRcUrex1BjDvVsDTB8C4E4bdp0EWWKcqp82fwm3IoaAfYXUcmoLp8djkvftCU5W3S+P1MsfE4IIYS0ECEjKZOjuf77q+JTJKXC7hvDESMcT8/OadSsP8coomkZErJMvUC0hSwjI+BCodx13p4DQwk57qR5OpgTkzKM+F3HVvrWY/2p3dIei4ijlKRsJbbtZJbse/dvyvea+pkQQghpPgzDyBFjStD/2/hA2mNhmdAey3xu+sRaraCwqxDTMCQSMkRCo8efQNI5jiooACH+huIJSaZsMcTUgtHxTK4ciiWEEELqjmG6VjW/YMu+N8UKZT83TSMj1nr7h6Snb0jW6erQ7/Hadmxpb0tbBusAhV0dQIVbpiGWaYmErZzP0AhStiFrT+yUCR2uz18PGkbvoLS3RSUWCWcEoBaDTvp1Cq+zFkFCCCGEFCcSMaUtFpG2tpC0xcKyYdt60tbRIZ3tYT10+vQ/Xtefx6Ih3WeXiyfqujpjmf4cYB3wr6slFHYNpFgj6OqIaTGIz8IhUyZ0jtwYMMo7lEjKwGBS9tppcx1c8lH/Gvmn6pFEwpZ4IqX/dgy0SbzXkHhcT3hLCCGEjGtisbB0doSlsz0inR0R6fD/bY9Iu/4sKp0xJeGht3J37txYxHL9zj9a0y+LX7YkHDKqKuoyBps6ijsKuwZRrBFU0hgMw7UIQgRuuH63rN3dIX2pTnH63svZbrfOXaQz1KmHfSEC+/sT0j+YkL5+VxT2DyR8S0oG9GcJSaVoESSEEFIHDJGONggzCLZo+m9EOjpcoabf4y/WtUV0sEFJ2GOY672O/XlDhN2SJUvkscce07niBgYG9PRdmOkByX4DkT5kHDBaI6h1YwiHLOmegKW04yUSKekfSEqfFnwQgQktCvsGkzKQXgcxiM8hEB2bgSKEEEJc4IPWnhZo+Za19jb8DUsHrGrt+BvR248Xehvcn49J2N1yyy1y2WWXyXPPPadzyiHBb1tbm3z00UfyxhtvaFF3xBFHyJlnnikzZsyoWYHHO6U2gkaacfOJREJ6WWti26jbIvp3KA4hmBV8etEi0BOA7l/9fjCRDi8nhBAyXoClDNYzLci0MPOsaVHp7HT/eta2WDQ8rsTaeO/PSxJ2sMhhuq+vfe1r8r//+7+ywQYb5Hwej8flqaeekltvvVXPGHH11VfLIYccIs0Y0lzPRhAkcVfONYJTKpZ11h59e0QLDwxlhV7GKqjFICyDrvjzPhsaStXjaxBCSMsRDpvS0eFazrzhzuF/XTEXi1pj7hPHM70B7s9LEnY//vGPZc6cOUU/j0aj8ulPf1ovF154obz1Vp6DYpOA75lK2iKx+jWC8SjuygFPcdo03x4paXv4+yFRY9Ya6FoC+wbi7rqMCHTFIYJGCCGkVYnFQr7hTn9ggevDpoVa+i9GZsj4789LqsWRRF0+kyZN0ksz4jiOrOkb0lE4kXCobo2g2cVdueZ/XEcspZBM2hnB5waLJAsOE+Mz+AcyUIQQMt4jQTvSkaD4C59qUj3GQ39esTxfuXKlXiB2/Gy33XbSrCQSCTFsW1auXCNrxcIS1vO3jUx/IiV9iZR0RkISTaYksbpvTGVAYHa7IbL64z5J9Q9JR/oJK5nOc7fmH2+KEQtLvzEo/aHlOfuuTr0mSTW6n9x4wIiGJNQRE6s9JiFk9e6IiVlAbIfDlkzsxhIryT8wnrBdq186OCTjC+izELpi0H1d9anlCCGtxyiRoJ0+oQbrGxLj1gI7kRJ7YEhs5FdN/1WJJnF/UQmx7NxMEbaVFDHc0aI1Q0n93ZNxE2kmGtqfFyKVTNVO2D3//PMyd+5ceeWVVzLTZGGcHa/x18Y0Gk1MbGBQ4qGQfBhPSpdjj3gBBw1DBgxT2pUj4aG4JKpUBuSvjhmG9CRSklKOtGF6M1S8YcpHT74kSeXIYDgpfevlCrsP30vIQLJ+2a/rjRENS6g9qkUeBB/+atEH8dcRFau9TSz87WgTKxrRmcVz9jcMnZgSy6SJ7SX5B2YCRXzpY3KHiSEQIRST2peQgSKEtAYjRYJmcqylh0RrFQmKB097MJ4r1gaGJIXZEAbddXrBOog4uBo1KYaRkkjsw5x1iaGVopTbi/capqRi7WIop+DPdD3780Ik84xoVRV2xxxzjGy++ebyy1/+UkfHtprzJL5tl+NIj2lKj2kVFXf+RlCsosaCe0xHnwN/w5yLVlQ8KUksH5fwFGWaYvlEIKx/ruWvkDCMihkKFf7hbsMTdFgml1A+WFQx3JvJGahFIIRh2j8wM1TsppRhoAghwY8EzQq2+kSCOqmUK9LSgsweiEuqf1DsflfAZddDtGFSe/YNpVJMOtW7Py90Dkw6WjNh9+abb+rI2E033VRaldHEXa0bQaHGEBVH6ElRBpiOrW9QL6VgxiIZAajFX1tMrM7coeDMkHA0XPCBB3MKTuiM6qUUvETSAyXkEMSSTNI/kJCxRoJ6Qq1ekaAY7bLjCbFhRfMsap440xa1uKQGXOEGixseYEltSCHZv5KG9+f54g6P+AOWVTtht++++8o//vGPlhZ2I4m7ejWC/MbQb5gS45NZzXCGEnpJftQz6rZGyHItfvkWQc8SmBaAEIihtqgYRW7YihNJpyODs8Eh7nCx6zeY9RnkHMOkmSNBM3nV0j5r9YwEdVK2HgL1W9L8Q54ZS1vfoDiDcVG8FwPTr/eZloQa3J/7xR1EHTSGqWo4FHv99ddrH7uXXnpJttlmGwmHc322DjzwQGlVcYfh0IRh1K0ReOBctjiSarFh8aCiUrakevr1UgpmWzTHH1C/9iyD7W05foNmJFTUYlB+ImlEDCMa2LX8eTOH6CFhnzUQ6/AZ/QNJI2lrgxgLS2db/SNBcb84cde53vNRc/3V4hnB5g84wEMgGX+ElIhtqIb35564S4mSpGGIJUqiZcQvlC3skIj4iSeekD/+8Y/DPmuF4Ili4u4j09KNIKJUXRuBB6x1A2WMwZPggCd2LElZU5I1MNSZZ/nzhogzlsD0ujYEiJgjJJIO6UWktECRwSEvGCSbHsabSs7LJ+jNPTyEQBFCAhwJCitZCoEF/mFPiDZtVUuv9/mr4YGNNDfoQTu1saax/blrqXOFpaQ1RjmPCmULu2984xty5JFHyjnnnKODJ4jIkM+CAnWdyhujrwcw1yrquqYHnUtydb9eRgVPerD2pS1+ng+gJwo9gThSuhgPOIG7Q1uRkgJFUrYjg9rSN3wWkUy0sM9vMB5np9kqkaCezxrEWrWDC9x0HWl/tDzB5lnUvPV4mKIVmuQTD0h/jnP7NUY5jzVll/fDDz+Ub33rWxR1afxj8LCajRYtW6tGAL+ASBV+pR5KfCzLVUJmh9eSKWZps0GQgIIh+rTVQVaVYA2MZHMD6sUn/Nx0MT5hGIsOSxfjJ1RBoEh26Ne1+rn5BNN/B5Paakgai2kZ2srmF2zuzDEYJq1+JKhCkNNgYlhAgX6NdB15AQfNnK6DDMcQR0yxRYlZlfBBW4soUzp8/XmvacoE3Z/Xx3Li+dRh+BWWuqG0xgibpf/+la09vvjFL8rDDz8sm2yyibQ6hRwrS0mFUqtGAP+AsbIo+ZE8mlojN8VXyJ6hLtkvMkl2tjrFpP9e04NEpMlEX4XpYqIS8vIE+oaER0oX4wc+URO7sLTebCqthk7XkfFRy4sA1ak70q91njWm6yD5eDIuJZaR0q8TKlYVYZcy4NaU25/3moYWd92Orc+gtMAz6iLqDJ/PXV8Rt5pClK07kMPurLPOkscff1y23XbbYcET3/zmN6UVKBYtU2qeu2o3gnYHwRPV8UHBkwlSNP4p+bH8JblaZlgxOSA8SfYNT5S1zeZNcExqly7GiEVcyx/EICyBbXniL/03vPaElsuN2QzAspb4qDcjyDLiLEe4MV0HGQuQbo6EjKRY2raGoMHqBsmElOuv7oFfIgg69OdrzJB0O0kJi9JjY5CXrsirnajzgMZIlvGAU1FUbGdnp/z1r3/Vix/8IFdD2F111VVy8cUXy/Lly2X77beXK664Qnbbbbei299xxx3a5++tt96SzTbbTH7yk5/IfvvtlxPRtGDBArnuuutk9erVsueee8o111yjt62E0UKg6yHu8htBKQMQK+2k9KdGdsEcFDQoQ7qMkHQZInHlyBJ7SC6135Ub4svl06GJ8rnIWrKt1cEOmJSMQqoYnS5m5O02O/MrtXoYJjUE4u3t6+5rdDFIk1rnEB8aMmz9Gj1uSgs6w5e6FxJrtHQgquA6bz8cDf1p/nZuf56SNWZYL3gd0f0kel3s7Z59LD9cI4k6j2gtZ55YsmSJ1JLbbrtNTj/9dLn22mtl9913l0svvVTmzJkjr776qqy77rrDtn/yySfl8MMPl4ULF8rnP/95+e1vfysHH3ywLF68WKdjARdddJFcfvnlctNNN8nMmTO1CMQxX375ZYnFyhv6iZumJEvIa1NLcVdKIyjEWb1vyXujCDt8I7/dL2qYMtkwxVZK+pQt9yY/kD8mP5LNrDY5MDJJ9glPlE6DqZEJIYRUC6WtclbaOoc+Dj1drqDztjQkZCQkNErcqF2gp4xKHDFmmoRhiSFt2iroCrwsMHbAcrfGtKTHDOn+PKxLhP4SgssVd95Sj/58JKoWP/7+++9rATVWfv7zn8vxxx8vRx99tGy11VZa4LW3t8sNN9xQcPvLLrtMPvvZz8p3v/td+cQnPiE//OEPZaeddpIrr7wyY62DOJw/f74cdNBBst1228nNN98sy5Ytk7vvvrussoVCIS3sSs1r44k7VBgqrhoTRI2lEQykFf8Ewyq6dBmWTDKGS1DLMKTbDMm6RljaDFNesQfkx4NL5bDeV+SKwffkNXswM3cwIYQQUi6wf0GgxYxBiRpDWtSl7XVpH7rhPR6GY0dbioNhVcO3Xa5Ayy7ZYVmvP0+mh2LdIdlsIAcWdw/VEFFX8VyxhXj77bfl2WeflTPOOKPiwiQSCXn++ee1D5+HaZoye/ZsnT+vEFgPC58fWOM80QYLI4Z0cQyP7u5ubQ3EvocddljB48bjcb149PT06OSvUZWSNlRYiTWgxZ2ypccIaetdl0ITrUwApcTQx8ETBY6TOxJqiBiIy4bPky1GOCURI1t+sE40KTHHka4qyXnXiheXv8gyeSK1XLYw2+SgyDqyU6izOicgLUdycNWI0bYkmKTigyLhgUYXg4xTtLQy0De6vnMQTBBO1fLLUDornCESyu0TJeyeA/ZByCFlOCJYivTRWtyJLWuMsPRY6M9dnzv3HB6uwNOvVPFh2pH78wLUMir2448/znmPhMSYP/aVV16Rq6++WsbCBx98oI+Xn0oF7//1r38V3AeirdD2WO997q0rtk0hMLR7/vnn56w7f/43pS3aK2KWF1LvijuRHrtTesSSLqtP+wuUQ0pZen9LhvT+wxqBskRUWGSdl0VCAxIxlcyI5TbiUzZLSUopCVXZNw7HxG0DQ3a3uQxTKVT1+KR1WPXycp1/j4wvMIWWbLCi0cUg4xZHlKEkmRZ11Xa0ddIBD8P6bscTj4bYqXaRNRNEGUlRo/TP/v58gtUv4bzt02dLY5TfnxfAdGo4V+xdd91VcP2FF16orWQnnniiNAOwGvotgbDY3fyLH7uVpMo3eWlxZw5Ij9MhPalO6bIGShZ3biNoF8uAtQ3zS5jDHyiQnRiLExaxI+IoR1JO7uBvT9LRAixchRF4ZA7CsfAPzxxTjLBMNyMyEefniCypEDM8odFFIBVhi9i5D/2ElIqb0MP9Pzv4Wc3UIo57nPzRAC2W0uewQ+ks/6Of0+3P+3V/3pvqLCDuivvaldSfj5GqBWsigOGCCy4Y0zHWWWcdsSxLVqzIffLD+6lTpxbcB+tH2t77i3XTpk3L2WaHHXYoWpZoNKqXYaDiK2xnUOWuuGuXHrtDuqx+CWmzb3FSytTbWobtNoKi0j7dGNFQtY+cMyyvz5Bjy4CCmXjkVgThV8iqBx86SMVUOnK20wjJDDMq65lRiXmpVkpzLSCkIGYIwUy02I07VErEqXd+ftJMeN2Ga7PzomH9Ak+K/DZkhWAxjLQHnHZX8uNk0w6b2nqX3aP0/rxDeu0OmWANaHE3UvBE6f15AcqYWqpqd+I//vEP2XHHHcd0jEgkIjvvvLM89NBDOrIVOI6j35966qkF95k1a5b+fN68eZl1Dz74oF4PEAULcYdtPCEH69szzzwjJ598clnl0/kBTW8MvjJ0YzB6XTOu0z7isKxW9g6UfapEc60jEh7UQ7GGoSRi5g7FbtNmSnyUxoHI1yFBOHe2kauMdQ7h4IZ0G5aso9OhhMTU16K0XGaEjEZycCWF3ThEz6MaKWGaO0JKAH2Nm0wEaEmWkXz5QNS5dr7RMczcUSxlZSWQnXKFH/zs/EOxxqj9eY+sqUl/nkctExTnByp41q977rlH9t9//5zPEeFayfHnzp0ru+yyi85dh4jW/v5+HSULjjrqKFlvvfW0Dxw47bTTZO+995af/exn+vy33nqrPPfcc/KLX/xCfw5FDNEHayLy1nnpTqZPn54Rj6WCijAgZCDuxoBrxu2RntQE13IX6pVQ3th/yrHSyj6lPx+1ETjYAMETSZFQQgu7kJHbiKdhup9RhpHfQ647HZkEi59nHjcknBZ0E4yQhHVh8Gk50xITkotu0pjY3TR1wIRhmmIneijsxiMYCZiAEQNHlO3Aa9x93ehykXGN136yLSkr7dw1br9XSpoRA9vliy4zKxaR7lhb9LD4AhW8iFhvTe75XbrM3ur254XKX4bsKFvYvfDCCwXX77rrrrJy5Uq96EJU6AB96KGHyqpVq+Tcc8/VwQ2wsi1atCgT/PDOO+/oSFmPT37ykzp3HdKZnH322Vq8wdfPy2EHEKkLcXjCCSfoBMV77bWXPma5OexsW0Tpcfix/1xpcWcMSY9ql55kd86wbI651hgSA35rowHBhgCKwS4RKyKO6ciAmRulFhlszzM3D2dpskeWOQmxDNc6t44R1jNPwIeO04qR0TAsS4yQJWbY/WuEQmKGTDHCIXc91unPQunoV7apZiE2MX+N0iIP1jwEV6hkKvvaW5Le+5QrCAkpQG6P69rnkCLESyuCLLEYvB0ZR0wrdxTLseFuld7PjmVdmXwGEM8W6P+lyheRVe/PC6C08aY0DMXkYyWB4dsrf3q2TIyUNxnvaODqwzxrK0TLukMZuWPwpR0HjSepwrJnxz9lgjUkKdOR1R25wm5if7uERhF2i1N9sspJyAZmTDawojq3HWld8IDmCrSsINNCDcIsnBZqPgEnVZrWzkVJynYklXIX/lA1HvwehSxLwmFTrGoLc+VkRZ8WfK4Q1GIwmRWD3jacQ7a1yWaZczIeeSNv7xQUdp4g7LVj8kT/1hI2kjm+77mBHPXpzwuRdAw55ZwrZM2aNdLV1TXitvR2bTD+gAqM0wMMoY61EVTK9laHiIWGSEtKs2JYEGaeKHMFWva9K+BMrMdrDJVWrfNWYjsqLdRsSaYcvWTeI2o7LeSSKVv/pZoLLrC4hkOmhEKu0AuFzOx7/dr9GwpbEsIQwGjtyDDFRF4xzD8+asaktDUwmcqxAGasfxlLYHqhNbDpyA6/mjU/z3jrz0sSdpjZ4bzzzpM99thjxO16e3t1LjvMJXvKKadUq4xNDyq83YxLD4Z5xX3dKF1FQTcOge+ntph51jP/UGhapOG95a6vplUNwU0pv0CzXVGWI9gyrx1R8L0iTQHqMpGw9TIq0GuWK/JyRV8BIQjL76idqeEO+6NNl1JYx2cNTKXFYLK4GCRkPPfnJQm7Qw45RL70pS/pGRsOOOAAHdiA4AP4qCFhMeZcffzxx+X+++/XAQwXX3xx7UveRGAYtdduz0TT4HUpqVBI84JAgqz1zLOk+YZB/Ra2UOGpdipBp7Sxs9YzV5S51rOMQEs6krTddY5NoUZKwMFQkqPb1agx9BjuTQu9jBUwXxDiNUQhxF1J2V1NMSOmSKQU/yaV6wuoBaDPMuj3C8RnHBImAevPSxJ2xx57rBx55JFyxx13yG233aYjTjHOC3BTYU5XTOP1t7/9Tc/XSkonP68NKCfPHRk/5AYP+IY784Y/sU05oe0jo3JEmTfEmfM6I+AcsTH8SUgjUaIfHrCUgpU/BJxvBdQC0LUOmiVZq+FXGhIrVJqnkkL0b6HhX+0b6AsYgQhEBB5pWlIB6c9L9rFDsl6IOywAwm5wcFAmTZokYfhEtALaTaR6GXizGajRCPoz5lovozU+K32GinS5EGaNXD1mdr66DDqHT239EVoJbSlIW9DMtN+aK8xM9Dbp4c+0P5tllViHKXEwY8gI97/rp2bnBBbYaWuIbSst2Oz0Z9i21OaK5qdHwQgZTzgiqYS7DI2yqWkZ2tqnhR4sgpbhBoIgICRkuIEhIbw3xSxnzmLEDUVFrCju8xHudZ0FxhN5riBEugUnCet3rigUfE5rYBVxCqQ78fWJyp2nttIs+9XtzwtQRnOsOHgCw7JYWgn4kesEh2PMY5fNa9Mplom8Nj05Y/Du3LKrpSfVJT1Om/48Py/OMBCmjRDtWI9IqF/PnNIeys1jZ8aSdEYvYQgUF0+LtnRuNVSOTs2h16c/x/tMPr/c65xpHXZ6GSXdH368Hcf7q8Tx/joquy69Xv/Qj1CHmW4Fv1WRMV8OQpoT3ENJd0kOuS+HiULD0OLO9P7qWx+Cz/2d0D8J+Kt/Iip0hdBJ7/V0P4UfuXHP65yA+Otk3yvHt973noyIGjZXrK/WU0mRfuSyQx9vN7Y/L4AxSkYLP4yKLQMEVilMmzPGp6icueKMwYJ5bdy8OIPSozrSeXFGUfpeHrsh5LELu3nsjFxvltBQ26h57JoN/YPrs6Z51jNDW9rSUaGW4fqvpUXcWIEA8yxmrlXN9VvTFrT0sGfmcwQU8PeYkHGNNt6nh4PdYV9Y/3zvMSxsmWIhQrgcS2A54CEwY/VLDw/78whinfe57sxa7YfHEcPMfcpWTsSXx66tYB67hvTnBVCNmFKsJdD3gWepGcMYvJ5WxJEua9C1AI04XcmgbjQw5bqNoZi1EMIOGfwjYmAY1nTEyZs+xTSj7oTDTYCOhvPlU6tlug43oKBQIEFuUIG3rrSAApRplGEbQsi4IYl+WqdJ836jsQK2wNEjhDPBIBVFCPsOXbJXlJcuJi9fYKF0MU2SKsYwlJh5OWgdI5aZg9VQaZGHPtlodH9egDJ0OIVdmYTaY/oGrISkbUjfQEgiESXd7Y6YRntJ+62tRNYMmNLnTJCJ7SkJWwVq2DbESZnSufkG0tVmS0olZTDpzgLiMSG8roSMFvGHHBEvlxqiO+Gkbbt/84ILPLHGgAJCSGAihNMBIRVHCA9LF9MiPhvKFkliykIf4S5YCdyPBy2xXopIKBQq3MfWsz8vVPwSg4kAhV0ZOEZYT4FYCWgEqwdCEjLRCFLaP6NUsC32WTMQ0scopzG0BiodNJC2otkFEt96oi0t4OhrSAhptQjhbPqYUiOEyXjsz8sWdnPnztXpT/7jP/5DWg9D+uJhiYTtsipyLI2gVcVdfuLbZKEh0LS1LWWnHYgJIaSFsTMjDLluOMVEYGhEIZh97Z+fvdUZD/152cIOaU5mz54tM2bMkKOPPloLvfXWW09aAUMlJYWpQgZCJVdoNRpBM4g7+Knl5lBDYIGdTnbrDkv4ZyqgUCOEkNqLwNzZUwuDqOCsT6AnCL2p5LwhYS9VTJXnEA4QyXHSn5ct7O6++25ZtWqV/PrXv5abbrpJFixYoIUerHgHHXRQU+e0w8x0E2JJGUhEShJ31WwEQRN3XkDB8Hk/88RbOjKUfmqEEDI+QbqlRDwliXiZcwinh33HNIdwQEiOo/68Ih+7yZMny+mnn66XxYsXy69+9Sv56le/queIRQLjr3/967LZZptJs4Ecs5YalAnhuPTE2+XjPpHuaOHJfZO2qbexzKRMCA+IQh7KKpZlQlhkjS6DKV1RROOIOHZI4r1vy1BiSByxJWK7ma89ElafpIpGYSJPmjsE6uZN8792J2/P5FZL51QrOZ9aOk8TIYSQFswVmH45LFhE5wL08gQaYum8gP732dduwuixqClHxM5LKmqtyqQ7icdjYtsd4khKJ3xvZH8etoYbQuzRR9erEzzx/vvvy4MPPqgXZO7eb7/95MUXX9RTjF100UXyrW99S5oJaBnDcDOUd5sJWTMUlZ5Ep3TFhnLUu24EiaiELCVdsYSYyItTZXC67raE9AzFpCfRIR2RhA61tsKdYkUigpaXEluLNSS21GmLUhFRjqlzqDmwttmuYMN7LIXPMj6epgghhDQbubNAYEYQiD38hbUPM/4gT2DmvQnLoPt3WISwckTS03xlD9jupjfBSyciKScsEaSy801C0Ij+vDsWzxF36Mf7ktGSj1d2CZPJpNx7773aSvenP/1JtttuO5k3b5585Stfka6uLr3NXXfdJcccc0zTCTuIeMMM68aEmWPWshxtPu2Nt2dMszDX9sTdcOnudgRZVC+UXBvJ9OwDbhJcvG4LJ6UvHpGewaiErZS8vRyV6kjSsSUR824It4GHBiwxkYCREEIIaVoh6AyPEA6JtFl2Zko5+AJaoYkSQnJ6w5QQxpiMkPQnLIlEat+f5wN5ObHD0cOyPfG2zLAsRF3vQEhKSo9aqbCbNm2aHqI7/PDD5dlnn5Uddthh2Db77LOPTJw4UZodXHRcfIg7VEZH1JY1g6WPwesm6Am19PRRnnjTws2bZioj6ArXbEglJanadSMcHExJzLLFyUvESAghhLRqhLBhONJm5Q4GD9pxUcrUIjApMXHsbknYIfmw15JYKCkDyYhYpiOdUUzHCS97TCtZuzLn+9x1t6WkP25JyjFkQmyUuSnHIuwuueQSOeSQQyQWixXdBqJuyZIl0gp44u7j/rCsHoCZ2A2wwOwDqQqFWrmgoUXNIUmq0k21hBBCCBEtABOYbs1xJGwMSSIVlUQqLKZhS0QGpd83gmvgn55D2J2y0p0+3J1fXP9Nzx3srqtc3K0egKZwndPX6kiWlSmibGGHIIlWJpFCQIE7v6cr1hAdakoqZWGSFrENR3rteE1VPSGEEELqj5J0AGEJ27oi0Cf0fCIQGsFd54nC6pWRM0+USSKRkpSvAmxlStyOimHYEjUTErdjMuS0Scx0I1XrAURm3InpufAIIYQQUj5KGZJ0onqu9UgV+nNXBLqvSomihdDDiYbsmDYctYfjkrDD8lGfJe3h0uNwmU56DLiirk2P3aPiLYg7a1CP2aMxVGmkdURwDvdchlglPUMQQgghJB9bEE2rGtafI0tFfzIqKduQsDEgjp0QS/WL49jSM1i6HY4WuzLArCqobPjR2Y4lCScqlpmSdqs/o+ZxQUOGLQN2uyRUVNrN7GfVBg1twOnQr9tCA6LElPZwn7SFBkUZjthmrqOoFcbsGdTyhBBCWgtDlLbC+THNlA6I0K9TbWKKI9HQoITS6U4a1Z93hPrEMrMWupDZK31J97NxJ+wQTICZLK677jpZvXq17LnnnnLNNdeMmOz4vPPOk/PPPz9n3RZbbCH/+te/Mu+Hhobk29/+ttx6660Sj8dlzpw5cvXVV8uUKVPKKp87Ju6Io0wZtNu1yEMF5Fe0aTnSYfTJQKpTb1dom6o0ArtTP03o4yMVjQpL1IpLzBrSws4xknnlMijsCCGEtB6GklBen6jz1Sm3c0a/HjaTYhlK9/ON7M9DPlHnFlSkI9w3PoUdkhpffvnleqqymTNnyjnnnKNF2MsvvzxiFO7WW28tf/7znzPvQ6Hcr4V8en/4wx/kjjvukO7ubjn11FPli1/8ojzxxBNllc+2RfvTJRx3+DVsJCTpFM9rEzbjeqi2J9ldVZ+77PAr8ukNiqMsPSzsqJB8PDRJBq1OcUxbUmZvzn6hoQnMY0cIIaTlKJzuxO1HwZAdFVuFtE+cpayG9ucJe/j5y5k+PRQka92ll14q8+fP13POgptvvllb1TA/7WGHHVZ0Xwi5qVOnFvxszZo18stf/lJ++9vfyn/+53/qdUiu/IlPfEKefvpp2WOPPUovoxjamRKOlaVUrGU4uqLQGKoVUJHfCHAOQgghhNSO8dSfB2ZcDnnvli9fLrNnz86sg3Vt9913l6eeemrEfV977TWZPn26bLzxxnLEEUfIO++8k/ns+eef17Nl+I+75ZZbyoYbbjjicTFk29PTk7MoA3ltVFkV6jWGajhgUtQRQgghjcEaJ/15YIQdRB3I93vDe++zQkD43XjjjbJo0SLtjweB+KlPfUp6e91hSOwbiUSGzYQx2nEXLlyohaW3bLDBBtpmF6lApVejMVDUEUIIIY3FGgf9ecOE3S233CKdnZ2ZBVa1Svjc5z6nZ8LAnLXwx7v//vt14MXtt98+pvKdddZZehjXW5YuXSqmSlZseh1LY6CoI4QQQoKBFfD+vGE+dgceeKC2tvmHPsGKFSv0fLQeeF9oPtpiwDK3+eaby+uvv67fw/cukUhosee32uG4xfzyQDQa1Uujx+gp6gghhJBgYQW4P2+YsJswYYJe/METEFoPPfRQRsjBr+2ZZ56Rk08+ueTj9vX1yRtvvJGZ+mznnXeWcDisj/ulL31Jr3v11Ve1H96sWbPKKzSSQutscZWDuedMa0BH42C2iLYRGoM/+XCbNTBiI0CGa0eUhMyUhMykOIYtRnryYw/LSOrAD0IIIaTVomItI7dPRF/pRcWGdCQs+nd3aWR/XnB/GYdRsZgrbd68eXLBBRfovHVeuhMERRx88MGZ7fbdd1/5whe+oFOWgO985ztywAEHyIwZM2TZsmU6D55lWXL44Yfrz+Efd+yxx8rpp58ua6+9tnR1dck3vvENLerKiYgFlilp4TQ2cRRON6j+VKckVEQ6rOF5cdAI8DmYEO4ZntcmDwNpTJRId+xD6UCyYkOJE8rLY9cWFyOds4cQQghpJUJ5wq5N9Wde96faJdSX0rnuRutva92fF8JwzPEn7MAZZ5wh/f39csIJJ+ih07322ksHRfhz2MEa98EHH2Tev/vuu1rEffjhhzJ58mS9D9KY4LXHJZdcIqZpaoudP0FxudiOSMoJVW1qkagZ10ofeXH8Sh/HH3TadMJE5N1RypJkgbw2OWVTpqRUSNYMTZK41aEtdnZbbkJDa7BTzAL5eQghhJBmxtBTfw7lrBtyYr48djHdv2NkDn1uI/vzQthl6A5DYQyUjAqGha/86dkSi4bENGo33yyoZAzeS1C8SefrErPiboLi9rwExQNMUEwIIaT1MEpIUPxG36ZiGqmKfd+q1Z8XAgmKvz3/Mh3MiZHHcWOxa0XyHTABAyUIIYSQ8YUVkP48MHnsWhm3MQxpUy0WvKaoI4QQQsYXVgD6cwq7AIDB8IRvzlm85gA5IYQQMr5QAejPKewajD+vTcwa1Es1pishhBBCSOv15xR2DaRQssJqzkVHCCGEkNbqzxk8UQaWJRI2k2KZY68dL68NAmw7CuS1wXkGUp2SLJIXJx/bsSSpRNaKfSjtOo+dI46VyNnGjA2JkY4AIoQQQloGQ+kcdX7aVJ9IOrfrQKpdrIGNJGygj7cb2p8XwnZK34nCrszKgzOkMUbZjd0H7A59rHZrQEwkE84TXFiH7NQDdrv0pSZIu9U/YmNwMCeGMiRuR8U0HC3s7FBuOS07RmFHCCGk5TAwP5OZ2/9p/zctx0T3nehDHcMoq5+sRX9eCKeMyQUo7MrAcZCnxhLlVM9ci0alkyIWIWLGdeh0n5ow4lx0bh47SwaSneI4YTePHVJi+wglmceOEEJI62HoUayR89ihD005ShtGGtmfF8tjVyo039SRSiYAps8dIYQQEixUgPtzCrsyUIZV10bgQXFHCCGEBAMV8P6cwq4MlIQk6YTr2gg8KO4IIYSQxqLGQX9OYVcGhqQk6UQkUYa4q0Yj8KC4I4QQQhqDGif9OYVdGRjKlrCZKFncVbMReFDcEUIIIfVFjaP+nFGxZYBI6Zg1JCnlSNyJiqVQKfHiIdBOh37dEeorOy/OaJUWMmwdOp1QUWk3ETptSsoxpD3cJ22hQTfdiZkbAWSFIU6p5QkhhLReupOImZfb1Uxl0p2YqTYxDVtCZmqYaKt/fz58O+axqxG42MgR12YNimE7OmwZIdSxPHHn5rXp1CocjSA/WWE1MC1HOow+nfRw0G7XU5cYhtJCE+JTJyjOS8ZoWuXl5yGEEEKaNUGxYTqZBMXIPQeRh//RzzeyP8d58sXdkIqVfDwKuzKwbdHBE7bCGLYSy0jKYKpd562JmMmC5lrkxUnYtcsdF/by4jghCRkp+XhokgxanW4eO7M3Z9vQEPPYEUIIaT2MtFFmpDx2cLNKOZjnNdHQ/rwn2Z2T5w6uXwk7UvJxaL4ZAxBzfp+7WozBlz5Gb4gjFG2EEEJIJZjiSAoiquH9edbnDmWBxoDWKBVa7MaIZ6nDhU9KRI/W16sReOBcESsuKVV+KhZCCCGEiB6CDZlOw/tznBOWO0xVBiDq8oeRR4IWuyqASYM94HxZz0aQPa+eLbbu5yWEEEKahbCRanh/jnPi3NkylS7qAC12Y8Qz10LZoyIwlyxMp54lr14knRBcPjPv4UsX6ZtY1zIQQgghQUQpUwZSHaNsIxJXsYb35zgnzm0Ztvbrg8aIGLn+gSNBYTcGCo3Be+PhoF6NAeeEX0C4BtE6hBBCSCvgiKX91WOhxvbnnk8dzmkrUw/LJlRbycegsCsHw82FY+aIOkParIGMuTZmJvTnCSei/+bnzak2OE/KiegGgHQnyMETqvPTBSGEEDKeCSkEHyqdLiycHgZtVH8e1aLOPRcsh6Y1IAOpcSrs7rzzTrn22mvl+eefl48++kheeOEF2WGHHUbd74477pBzzjlH3nrrLdlss83kJz/5iey3336Zz5VSsmDBArnuuutk9erVsueee8o111yjty0Hy5RM8sL+VKdeNyHcMyyvTdhKiGXHZMiOiSUp3VBqAY6fVCFpCw1ox0oET3THPpSO0EBNzkcIIYQ0I/2pdon0JtxABV+f3oj+PP8cCIs0fD5340rY9ff3y1577SVf/vKX5fjjjy9pnyeffFIOP/xwWbhwoXz+85+X3/72t3LwwQfL4sWLZZttttHbXHTRRXL55ZfLTTfdJDNnztQicM6cOfLyyy9LLFZ60j/bEUnaIelXbTqZIXLiKGVJskBeG0sc7YSJPHe2znOXqLqyx4Lj4lwYik2pkKwZmiRxa2Q/AkIIIYTkCiv4tRk61YnV0P48WSBnXTnTjRkK5qyAAcsbBFgpFrtDDz1UC8L77rsvs26PPfbQ+8H6h683ffp0+fa3vy3f+c539Odr1qyRKVOmyI033iiHHXZYwePG43G9ePT09MjNv/ixGKEJejC21BDo/PHyalDomBiHd1RINul8fdhMGIQQQggpDhIUv9G3qZjG8CnF6t2fF8JRIt+ef5nWL11dXc2d7uSpp56S2bNn56yDNQ7rwZIlS2T58uU523R3d8vuu++e2aYQsABiO2/ZYIMNxDHC4iijrLw2+UmMx0otGhYhhBBCmqM/H/fCDqIN1jc/eI/13ufeumLbFOKss87Sythbli5dqqMnotZQ2XltqtUYKOoIIYSQxhEZB/15w4TdLbfcIp2dnZnlsccekyARjUa1udO/GCqZMzlwPRsDRR0hhBDSeCIB788bFjxx4IEH6uFQj/XWW6+i40ydOlVWrFiRsw7vsd773Fs3bdq0nG1Kibj1M9aZHfzTj/nfjwZFHSGEEBIcIgHuzxtmsZswYYJsuummmaWtrfQcLX5mzZolDz30UM66Bx98UK8HCMKAuPNvg0CIZ555JrNNkJU+RR0hhBASPCIB7c8Dle4EueveeecdWbZsmX7/6quv6r8QZp7l7aijjtLWPQQ3gNNOO0323ntv+dnPfib777+/3HrrrfLcc8/JL37xC/25YRgyb948ueCCC3TeOi/dCSJlkRalHCwLk/EmxTLHaLmzEjJkp3Q2aUfnxYkXjdKxVTid12bkSFfbsSSpRNaKfSjtzGNHCCGElMxAql2sgY30vKxWGbM41aI/L4TtYKKzcSjs7r33Xjn66KMz771UJEgufN555+nXEH6mmTU0fvKTn9S56+bPny9nn322Fm933313JocdOOOMM3RKlBNOOEEnKEauvEWLFpWVww4gMQzy1xlVyBADtY6pyIZsb0qy3IqO21GJO1GJmnG9Lc47Eg4GipWh96vUD5AQQghpReJ2VPehjmGIMUp/W+v+vBDIyDGu89gFEQzfXvnTsyUWDYlZ+vWtyDRbibmWeewIIYSQ2uWxq1d/PtY8doGy2AUdJYZW2tVUwpZhi2MkJWFHMoocs0hgvld8BsFWCigX9o8XyFhNCCGEkOLEM32w2fD+vBDlmOAo7MrANrtk0DZrJhrjaedLA1OKOKYknWjZMbvvDMwQ06hMesIMbYuVOZopthhVtE6WVgYMK1v6egBLl6H+RmUtlNM3uH7VgOFt1kcW1odXBtaHB+sjC+tj7PXhwDDiRNN7qgb352ODwq7MykKDHWvak0KgMWbP496c5ZYNTQhPBUaFNzV+GGzbbRIYbg6bKRyy7qScUOZpJ2TZDfmRslVIB6QAw8QPZaruZWB9ZGF9ZGF9uLA+srA+xl4fhhbG6H3H3sePtT8vhCdWS4HCrmxU1Z9CMPEwqh7K3j2D2wwg0sosmm7ElfywwESMJwrLdPRExHE7JgkVlZgxWLenLjxtDSmkvTGkLTSkJ0VGmcqZwq0awCcC0UuIdgLwjzCVqmu6GdZHFtaHC+sjC+sjC+ujOvXh6D2RSWNserRq/Xke5YRDjPspxcY7aAQq3QhQ8driJo5ryNYNpB5lMHWoNix9MRM3ga1vBh3l4yDKp043peNFFLllQFlQJpRtLL4J5ZDv6FrtuQFLgfWRhfXhwvrIwvrIwvoIVn3YAejPAS12ZWBkFH11WmrK8RqBLSFf3pyQkUp/ZomtVM5nRUGRDPepoJwcPDDfJ/STVkrarf7M0xUaRsiwZcBu109e7Wb2s1rclANOh37dEerLKX/I7JUBu0OXsd0aKOu7lQtC0lMqLDFrKCdcPWQiR5Gj/S8s5QwLZa8mrI8srA8X1kcW1kcW1kd168N2LN23a3erCvr4qvbnBTDKSHdCYVcO2kRbzkh3cZLpikYjCBeoaKxLOtBrlqQc9/1o6LH8MoZi0dgG7XYtBnFD5N94puVIh9EnA6lOvV2hbapyU9qd+kkLxx/W6A2RTqNX+tNlaDcKbFOlUHfc/DFrsGC6mLbQoBj4sfSeTGvwY8n6yML6cGF9ZGF9ZGF9VL8+VLpwngGn0f15PuX4/VHYlRtxg8pX1TTXOkUTD+IzW6E6LUk6bmBE0bKlExQntb+FVZb5PGy4pvtihM243rYn2Z02b0tNzOeOsiRhFy47ygj/ib5kV9V9WPzDGUhmg1D1QuAzy0jKYKpdO+hW04eF9ZGF9eHC+sjC+sjC+qhNfThIZaYTFMM61tj+vBDltCD62NWZ/DH40ajFGH2+T8RoNxoaZLV9Job7RIzcbFHGWvhMlJs8shY+LKyPLKwPF9ZHFtZHFtZHsOrDDkB/XggKu7Iw6toIatEYyr0pa3FzlntT1urmrDQjeDV/LFkfWVgfLqyPLKyPLKyPYNWHHYD+vBgUdmVRuYddpY2gmo2h0puymjdnpTdltW/OsU7zUo0fS9ZHFtaHC+sjC+sjC+sjWPVhB6A/HwkKuzLB+Hg5k/FWoxFUozGM9aasxs051puyWjdntebuG8uPJesjC+vDhfWRhfWRhfURrPqwA9CfjwaFXVm4DcmRbGbrejWCsTSGat2UY7k5q3VTjvXmrNaP5Fh+LFkfWVgfLqyPLKyPLKyPYNWHHYD+vBQYFVsmhqREQdghtFlhupLirTLlawTI6VMtcKyUcjNa28p9n0llZ2CtyrspY2IatrRVMSIJxzOtARm02yTuxEY8dvamNKQNuYSqFSFmiLSbAzLotOnv2DbKDY9M5CknIlH9I+lmaa8GMR2d5h4ff0c6NusjC+vDhfWRhfWRhfVR3/qIpFPCFEt3Uu/+vEBxSz9m1UrXAqDh6emFEd6tInrCY0OlxDSHNzSEl6OiMBEyEkZWm7DhuHPipZMeQvmbhilhM5l5kkCeITyNYF0tcgjheS9kJnWOoISKSIc1/By4KfE5mBDuqUlOp7BK6HMgIWfBXEY671NMkiokbaEBndCz6mWwEmLZMX0eS1IFz8H6yML6cGF9ZGF9ZGF91L8+kjplC7zonWEJiuvdnxc6B6yVpUJhVwZoZEhiiH+4GWwJSUpCYjm5lju/ssfTRTkVUg7usfVZ9F+EdiCPnds4TP00hGTFESOhn/xqRdSM63MhT5H/yQvXC09DyA+Ep1OlLEkWyTM0VvAdB1Wb9Ca7hj0J48kUC55MLXEkWSTv01jBscNGSueNsnXeqOyTMOuD9cH6YH14sD6CVx8p5QorDHihB29kf448d37LHVy/dNlKhMKuTFRmyFPEUq64w6JguTPUsDH4Wk+Th3PAfItz4n+dpFjcJy34D0TNIS1Ga1kOPN1ErSF9zgGnXfsuAL9PBLZxqjJnR7FC4AdiSJ8TGcY9Pwy/jwqeDmtahvQTKH6i405E/4VPi99HhfXB+mB9sD5YH8Grj4gRl4TgOoREAtCfY3gW711RB6nGmSfqgl/c4cIrpbQht1qOlZU0Bpj3cTNUy9G1XIdY3Jy4IUG1HF3LdYjF+VEO+HHgxqyW43GpeOfCDzSyoWNhfbA+WB8urA8X1kfw6sNIBzIEpT93Z6pAJeD/0oeAGRVbFb8794K7jcD1d6s3MJnj3O4ThhfxU98yuDfnkDadY8Hret2U+T+WuAa4FqiLev5IeuCc7g3K+mB9uLA+srA+XFgfAasPgSiyG96fu9GyrrDU7yVVlr2Swq4K+Me+tetlmXnuqlIGreyzJFV1po8pB/hEwDfEA6+rMX1Mufi/O54+qzV9TDngnDh3oTLVC9ZHFtZHFtaHC+sjC+sji+vWFIT+PHvecvzrAIdiSwRmWRdMFOxLJ6IbARZHG3BRAa4ZF5/Up1W6tjpUvJK2kPvEg4mhDcOQSA0ieAqBb4oIKx2SHnLDxodSURly2nWZ6nVrJJyQDiCJWMjXBMfgmDbvx0Lxuj39uT4qUe0X0h4akqQTYn2wPlgfaVgfWVgfAaoPAz04+nIjMP05rIcoiT+JmV9/FMNQpWxF5N1335UNNtig0cUghBBCSIuydOlSWX/99UfchsKuRBzHkWXLlsmECRP0k0yj6Onp0QITldvV1SWtCK8BrwHgNeA18OB14DVo9muglJLe3l6ZPn26mObIw/Ucii0RXMjRVHI9QaNttoZbLrwGvAaA14DXwIPXgdegma9Bd3d3SdsxeIIQQgghpEmgsCOEEEIIaRIo7MYZ0WhUFixYoP+2KrwGvAaA14DXwIPXgdcA8Bq4MHiCEEIIIaRJoMWOEEIIIaRJoLAjhBBCCGkSKOwIIYQQQpoECjtCCCGEkCaBwq7B3HnnnfKZz3xGJk2apGe0+Pvf/17SfnfccYdsueWWEovFZNttt5X7778/53PExJx77rkybdo0aWtrk9mzZ8trr70mQeSqq66SjTbaSH+X3XffXZ599tmW+e7g0UcflQMOOEBnFEcbuPvuu0fd55FHHpGddtpJR39tuummcuONN475ujaShQsXyq677qpndll33XXl4IMPlldffXXU/ZqpLVxzzTWy3XbbZZKrzpo1S/74xz+2zPcvxI9//GN9T8ybN6+lrsN5552nv7d/wfdrpWsA3nvvPTnyyCN1/4gy43s999xzLfXbWBGIiiWN4+abb1bnn3++uu666xCdrF544YVR93niiSeUZVnqoosuUi+//LKaP3++CofD6sUXX8xs8+Mf/1h1d3eru+++W/3jH/9QBx54oJo5c6YaHBxUQeLWW29VkUhE3XDDDeqf//ynOv7449XEiRPVihUrmv67e9x///3q+9//vrrzzjt1G7jrrrtG3P7NN99U7e3t6vTTT9fX4IorrtDXZNGiRRVf10YzZ84c9atf/Uq99NJL6u9//7vab7/91IYbbqj6+vqK7tNsbeHee+9Vf/jDH9S///1v9eqrr6qzzz5bfx9ck1b4/vk8++yzaqONNlLbbbedOu2004pu14zXYcGCBWrrrbdW77//fmZZtWpVS12Djz76SM2YMUN97WtfU88884z+3XvggQfU66+/3lK/jZVAYRcQlixZUrKw+/KXv6z233//nHW77767OvHEE/Vrx3HU1KlT1cUXX5z5fPXq1Soajarf/e53Kkjstttu6pRTTsm8t21bTZ8+XS1cuLDpv3shShF2Z5xxhv7R93PooYdqcVTpdQ0aK1eu1Nfir3/9a9Ftmr0tgLXWWktdf/31Lff9e3t71WabbaYefPBBtffee48o7JrxOkDYbb/99iVv34zX4Mwzz1R77bVXWfu0wm9jKXAodhzy1FNPaTO6nzlz5uj1YMmSJbJ8+fKcbTDHHEzO3jZBIJFIyPPPP59TTszJi/fFytks330sjHYNKrmuQWPNmjX679prr110m2ZuC7Zty6233ir9/f16SLbVvv8pp5wi+++//7Dv10rXAcOkcM/YeOON5YgjjpB33nmnpa7BvffeK7vssosccsgh2j1jxx13lOuuu05a/bexFCjsxiG4QadMmZKzDu+x3vvcW1dsmyDwwQcf6A6snHI2y3cfC8WuQU9PjwwODlZ0XYOE4zjap2rPPfeUbbbZpuh2zdgWXnzxRens7NT+QSeddJLcddddstVWW7XM9wcQtIsXL9Z+l6XQjNcBggu+YYsWLdK+lxBmn/rUp6S3t7dlrsGbb76pv/tmm20mDzzwgJx88snyzW9+U2666aaW/W0slVDJW5Ixc8stt8iJJ56YeQ/HaNyshJBca81LL70kjz/+uLQaW2yxhQ6ggsXy97//vcydO1f++te/FhV3zcbSpUvltNNOkwcffFA7trcqn/vc5zKvEVADoTdjxgy5/fbb5dhjj5VWAA94sNj96Ec/0u9hscPvwrXXXqvvC1IcWuzqyIEHHqh/tL0FjbYSpk6dKitWrMhZh/dY733urSu2TRBYZ511xLKsssrZLN99LBS7BoikRORYJdc1KJx66qly3333ycMPPyzrr7/+iNs2Y1uIRCI6km/nnXfWFqvtt99eLrvsspb5/hgmW7lypY5qDIVCeoGwvfzyy/VrWFta4TrkM3HiRNl8883l9ddfL/h5M14DRO/mP9B84hOfGHFIupl/G8uBwq6OIJUDfrS9BQ2tEuBz89BDD+WswxOu54szc+ZM3Uj928AU/cwzzxT112lUJ4YOzF9OPKXhfbFyNst3HwujXYNKrmujQdwIRB2GHv/yl7/oehyNVmgLqLd4PN4y33/ffffVw9H5D8DwMcNrdMqtcB3y6evrkzfeeEOLnUI04zWAK0Z+yqN///vf2nLZSr+NFVFSiAWpGR9++KGOhEWaA1QHQrHxHuHtHl/96lfV9773vZzQ9lAopH7605+qV155RUdQFQptRwj3Pffco/7f//t/6qCDDgpkaDu+LyKzbrzxRh2efsIJJ+hyL1++vOm/uz8CEHWOBW3g5z//uX799ttv68/x/XEd8kP6v/vd7+prcNVVVxUM6R/pugaNk08+WadieOSRR3JSPAwMDGS2afa2gO+GKGBEyKOseG8YhvrTn/7UEt+/GPlRsa1wHb797W/rewFtAd9v9uzZap111tHR4q1yDZDuBt/pwgsvVK+99pq65ZZb9O/eb37zm8w2rfDbWAkUdg0GubvQmecvuDH9P2xz587N2e/2229Xm2++uc7Hg/BuCEM/CG8/55xz1JQpU3Qj3nfffXVurCCCXEPIWYbvglD0p59+umW+O3j44YcLtgHve+MvrkP+PjvssIO+BhtvvLFuR+Vc16BR6Ptj8X+vZm8LxxxzjM7bhe8yefJkXVZP1LXC9y9V2LXCdUCKjmnTpunvs9566+n3/vxtrXANwP/93/+pbbbZRpd3yy23VL/4xS9yPm+F38ZKMPBfZbY+QgghhBASJOhjRwghhBDSJFDYEUIIIYQ0CRR2hBBCCCFNAoUdIYQQQkiTQGFHCCGEENIkUNgRQgghhDQJFHaEEEIIIU0ChR0hhBBCSJNAYUcIIVXil7/8pXzmM5+p+XkWLVokO+ywg57nkhBC/FDYEUJIFRgaGpJzzjlHFixYUPNzffazn5VwOCy33HJLzc9FCBlfUNgRQkgV+P3vfy9dXV2y55571uV8X/va1+Tyyy+vy7kIIeMHCjtCCPGxatUqmTp1qvzoRz/KrHvyySclEonIQw89VHS/W2+9VQ444ICcdZ/+9Kdl3rx5OesOPvhgLco8NtpoI7ngggvkqKOOks7OTpkxY4bce++9uhwHHXSQXrfddtvJc889l3McnAvr3njjjSp8a0JIs0BhRwghPiZPniw33HCDnHfeeVo49fb2yle/+lU59dRTZd999y263+OPPy677LJLRee85JJLtKXvhRdekP3331+fD0LvyCOPlMWLF8smm2yi3yulMvtsuOGGMmXKFHnssccqOichpDmhsCOEkDz2228/Of744+WII46Qk046STo6OmThwoVFt1+9erWsWbNGpk+fXvH5TjzxRNlss83k3HPPlZ6eHtl1113lkEMOkc0331zOPPNMeeWVV2TFihU5++F8b7/9dkXnJIQ0JxR2hBBSgJ/+9KeSSqXkjjvu0EEK0Wi06LaDg4P6bywWq+hcGGr1gBUObLvttsPWrVy5Mme/trY2GRgYqOichJDmhMKOEEIKAN+1ZcuW6ZQib7311ojbTpo0SQzDkI8//njU49q2PWwdIlw9cJxi6/LTm3z00Ud66JgQQjwo7AghJI9EIqH92w499FD54Q9/KMcdd9wwa5kfBFZstdVW8vLLLw/7LH/49M0336xaehWIzx133LEqxyOENAcUdoQQksf3v/997TOHdCLwb4Of2zHHHDPiPnPmzNEBFPncc889cuedd2oRduGFF2rxB7+49957b0xlfPrpp/Xw8KxZs8Z0HEJIc0FhRwghPh555BG59NJL5de//rXOS2eapn6N6NNrrrmm6H7HHnus3H///VoQ+kGU60UXXaQteo8++qhcffXV8uyzz+pjjoXf/e53Orijvb19TMchhDQXhvLHzxNCCKkYRLHutNNOctZZZ2Xy2GHqLwjFavLBBx/IFltsodOxzJw5s6rHJoSMb2ixI4SQKnHxxRfrhMK1BsEcsPxR1BFC8qHFjhBCakStLHaEEFIMCjtCCCGEkCaBQ7GEEEIIIU0ChR0hhBBCSJNAYUcIIYQQ0iRQ2BFCCCGENAkUdoQQQgghTQKFHSGEEEJIk0BhRwghhBDSJFDYEUIIIYRIc/D/AQ8AT2hJbUZtAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sim_opt = make_sim(**results.optimizer.max[\"params\"])\n",
+ "sim_opt.plot(z=h / 2, monitor_alpha=0.2)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9a35c633",
+ "metadata": {},
+ "source": [
+ "Run the optimized simulation (cached) again and plot the real part of `Hz` on the $xy$ plane to confirm efficient coupling into the slot plasmonic mode.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "4c3b07b1-ba41-4577-9a54-911680c99b93",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "21:29:23 Eastern Daylight Time Created task 'optimal design' with task_id \n",
+ " 'fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a' and \n",
+ " task_type 'FDTD' . \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:29:23 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'optimal design'\u001b[0m with task_id \n",
+ "\u001b[2;36m \u001b[0m\u001b[32m'fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a'\u001b[0m and \n",
+ "\u001b[2;36m \u001b[0mtask_type \u001b[32m'FDTD'\u001b[0m. \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " View task using web UI at \n",
+ " 'https://tidy3d.simulation.cloud/workbench?taskId \n",
+ " =fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a' . \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \n",
+ "\u001b[2;36m \u001b[0m\u001b]8;id=707335;https://tidy3d.simulation.cloud/workbench?taskId=fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=182780;https://tidy3d.simulation.cloud/workbench?taskId=fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[2;36m \u001b[0m\u001b]8;id=707335;https://tidy3d.simulation.cloud/workbench?taskId=fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=169619;https://tidy3d.simulation.cloud/workbench?taskId=fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=707335;https://tidy3d.simulation.cloud/workbench?taskId=fdve-33c63420-9e17-4c9c-b46a-929b1a526b2a\u001b\\\u001b[32m-33c63420-9e17-4c9c-b46a-929b1a526b2a'\u001b[0m\u001b]8;;\u001b\\. \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " Task folder: 'default' . \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mTask folder: \u001b]8;id=684768;https://tidy3d.simulation.cloud/folders/639eb096-a602-4b56-a502-cac1f18f9557\u001b\\\u001b[32m'default'\u001b[0m\u001b]8;;\u001b\\. \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d7b1582d16c74fbaa7aef8462d8dda28",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " \n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:29:24 Eastern Daylight Time Maximum FlexCredit cost: 0.448 . Minimum cost \n",
+ " depends on task execution details. Use \n",
+ " 'web.real_cost(task_id)' to get the billed \n",
+ " FlexCredit cost after a simulation run. \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:29:24 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.448\u001b[0m. Minimum cost \n",
+ "\u001b[2;36m \u001b[0mdepends on task execution details. Use \n",
+ "\u001b[2;36m \u001b[0m\u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed \n",
+ "\u001b[2;36m \u001b[0mFlexCredit cost after a simulation run. \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:29:25 Eastern Daylight Time status = success \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:29:25 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mstatus = success \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "908aa64d782d4c28b140fa3a80e47569",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ " \n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "21:29:26 Eastern Daylight Time loading simulation from simulation_data.hdf5 \n",
+ " \n"
+ ],
+ "text/plain": [
+ "\u001b[2;36m21:29:26 Eastern Daylight Time\u001b[0m\u001b[2;36m \u001b[0mloading simulation from simulation_data.hdf5 \n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAHWCAYAAAAciQ/OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACS0klEQVR4nO2dB5wrVdn/n/Rk++2NDiIgVRBE8RWEV1Ck+PpHRKR3QUV8RbCAgoigdFFUREVBiih2FBGQ3vVFpXe4nXvv9vT5f37PmclOsskmu5vsTJLfV4e9aTNzppz5naedgGVZlhBCCCGEkKYk6PUOEEIIIYSQqUMxRwghhBDSxFDMEUIIIYQ0MRRzhBBCCCFNDMUcIYQQQkgTQzFHCCGEENLEUMwRQgghhDQxFHOEEEIIIU0MxRwhhBBCZpS7775b+vv7vd6NloFijhBCCCEzxt/+9jfZfffdZfZmu3q9Ky1DgNN5EUIIIWQmyOfzEuqaJ4HEbLHWviTPPfu0bLbZZl7vVtNDyxwhhBBCZoTrr79eJJuS0Hq7SmDWprL5Tv/t9S61BBRzhBBCCGk4yWRSDjv6RAktersEgmEJLdpBrMHX5cEHH/R615oeulkJIYQQ0nBCS94h+bUvSnjz/SUQCOh7uWWPizW0THKDywvvkclDyxwhhBBCGsqbb74p+eX/J6HF7ygSbcH524iVGpBbb73V0/1rdmiZI4QQQkhDCc1/m1jJfglv+v5xn+VWPy35Vf+W9OBqiUQinuxfs0PLHCGEEEIaxosvvij51c9IaPFOZT8PztkctiWJb/JfM75vrQItc4QQQghpGMFZm4gEwxLeYLeK38n3vyq51+6T/jdXSE9Pz4zuXytAyxwhhBBCGsLDDz8s1sBrElq4w4TfC/SsL4FYr8za/D0ztm+tBC1zhBBCCKk7kBeh7kUS6FogoUU7Vv1+fniV5F64TV5/9WVZsmTJjOxjq0DLHCGEEELqzu9+9zuxUv2asVoLwc55aqFbf9s9Gr5vrQYtc4QQQgipK9lsViJdcyU4b0sJzd2y5t9ZqUHJPv1r+b9/PiHbbFObCCS0zBFCCCGkzsQ2RmaqJcE5b53U7wKxbgnO3UK2e/cHGrZvrQjFHCGEEELqxuDgoOSXPyGhRTtJIDB5mRFcsJ1YI6vkr3/9a0P2rxWhm5UQQgghdQOZq9bQUglt9sEpT9GVW/mkTv2VG1olwSDtTtXgESKEEEJIXVi6dKnkV/1LgiXTdk2WIOLssmmJbrx7XfevVaFljhBCCCF1QWPk8mkJbzT9jNT8mhckt+wxGelfJYlEoi7716rQMkcIIYSQafPvf/9brLUv1FRTrhYCmDkiHJeuTVlIuBq0zBFCCCFk2gR715dAtEdC6+1St3XmB5dJ7qU7ZNWKpTJ37ty6rbfVoGWOEEIIIdPi5ZdfFmvgDQku3K6u6w1iBonEHPn5z39e1/W2GhRzhBBCCJkW6XRaJBCUQDhe/5VHOsz6SUXClT8ihBBCCKmdQDBU/3VOIyu2XaBljhBCCCGkiaFljhBCCCHTJxBoiGUO6yUTQzFHCCGEkLrQEDEnFHPVoJuVEEIIIaSJoWWOEEIIIXWBCRDeQDFHCCGEkLoQCDFmzgvoZiWEEEIIaWJomSOEEEJIXQjSzeoJtMwRQgghhDQxtMwRQgghpC6wzpw3UMwRQgghpC6wzpw30M1KCCGEENLE0DJHCCGEkLoQCNbfRsQEiOpQzBFCCCGkLjBmzhvoZiWEEEIIaWJomSOEEEJIHQgwAcIjaJkjhBBCCGliaJkjhBBCSF1ohGWOCRDVoZgjhBBCSF0IhJgA4QV0sxJCCCGENDG0zBFCCCFk+gToZvUKijlCCCGE1AXWmfMGulkJIYQQQpoYWuYIIYQQUheCjXCzss5cVWiZI4QQQghpYmiZI4QQQkhdYMycN1DMEUIIIaQuUMx5A92shBBCCCFNDC1zhBBCCJk2sJ81pM4cEyCqQjFHCCGEkDoQoJvVI+hmJYQQQghpYmiZI4QQQkhdoGXOG2iZI4QQQghpYmiZI4QQQkhdCIQakABBy1xVaJkjhBBCSN3crPVepupmvfLKK2WjjTaSeDwuu+yyizz88MM1/e6GG25QAXnggQdKs0AxRwghhJCW4sYbb5TTTjtNzj77bHn88cdlu+22k7333ltWrlw54e9efvll+d///V95z3veI80ExRwhhBBC/GuZm0KduYsvvliOO+44Oeqoo2SrrbaSq666Sjo6OuSaa66p+JtcLieHHnqofO1rX5NNNtlEmgmKOUIIIYT4VszB5ZnNZmVgYKBoSaVSZfchnU7LY489JnvttVfhvWAwqK8feOCBivt+zjnnyPz58+WYY46RZoNijhBCCCG+5s4775Te3t6i5fzzzy/73dWrV6uVbcGCBUXv4/Xy5cvL/ubee++VH/3oR/LDH/5QmhFmsxJCCCFk+gRgAWtA5mkgIHvssYfccsstRW/HYrG6rH5wcFAOO+wwFXJz586VZoRijhBCCCG+JhwOS09PT03fnTt3roRCIVmxYkXR+3i9cOHCcd9/4YUXNPFhv/32K7yXz+cL233mmWdk0003FT9DNyshhBBC6kIgGKj/Msl9iEajsuOOO8odd9xRJM7wetdddx33/S222EKefPJJ+cc//lFY9t9/f7UG4t/rr7+++B1a5gghhBDi3wK/U1jnaaedJkcccYTstNNOsvPOO8ull14qw8PDmt0KDj/8cFmyZInG3aEO3dZbb130+76+Pv1b+r5foZgjhBBCSEtx8MEHy6pVq+Sss87SpIftt99ebrvttkJSxKuvvqoZrq0CxRwhhBBC6kIjEiCmusZTTjlFl3LcddddE/72Jz/5iTQTFHOEEEIIqQuIcav/Suu/ylajdWyMhBBCCCFtCC1zhBBCCPGtZa4hSRUtBi1zhBBCCCFNDC1zhBBCCKkLQVrRPIFijhBCCCE+drPWfZUtB92shBBCCCFNDC1zhBBCCKkDZvqt+q+WprlqUMwRQgghpOWKBrcTdLMSQgghhDQxtMwRQgghpC4EGmEiommuKrTMEUIIIYQ0MbTMEUIIIaQucLYGb6CYI4QQQoh/EyAoEKtCNyshhBBCSBNDyxwhhBBC6kJj6szVf5WtBsUcIYQQQuqiuRoynVfd19h60M1KCCGEENLE0DJHCCGEkOkTEAk2IlmBCRBVoWWOEEIIIaSJoWWOEEIIIXWBMXPeQDFHCCGEkLrAbFZvoJuVEEIIIaSJoWWOEEIIIXWBM0B4A8UcIYQQQuoChZc30M1KCCGEENLE0DJHCCGEkLoQaICJiMa+6tAyRwghhBDSxNAyRwghhBDfJkCwNEl1KOYIIYQQ4uOiwVRz1aCblRBCCCGkiaFljhBCCCH+LU1Cw1xVKOYIIYQQ4t+iwVRzVaGblRBCCCGkiaFljhBCCCG+TYCgYa46tMwRQgghhDQxtMwRQgghpC6EGhEzR8tcVSjmCCGEEOJfMUc/a1XoZiWEEEIIaWJomSOEEEJIXaCb1Rso5gghhBBSF9FFMecNdLMSQgghhDQxtMwRQgghpC40xjJH01w1aJkjhBBCCGliaJkjhBBCSF0IN8AyR6tTdSjmCCGEEFIXmADhDRS8hBBCCCFNDC1zhBBCCKkLTIDwBoo5QgghhNSFULD+Dj9KuerQzUoIIYQQ0sTQMkcIIYSQOhCgm9UjaJkjhBBCCGliaJkjhBBCSF1gaRJvoJgjhBBCyLQJNErM1X2NrQfdrIQQQgghTQwtc4QQQgipC6EG+ESZAFEdijlCCCGE1AXGzHkD3ayEEEIIIU0MLXOEEEIIqQtMgPAGWuYIIYQQQpoYWuYIIYQQUhfCDbDMBRk0VxVa5ghpQ+666y7NEMNf0lq89tprEo/H5b777pvxbWcyGVl//fXlu9/97oxvm/iAgHGz1nuhlqsOxRwhLQweqj/5yU+kGbn++uvl0ksvFT+Qz+flwgsvlI033liF0rbbbiu/+MUvavrtsmXL5IwzzpA99thDuru7K4rokZERufLKK+X973+/LFq0SL+7ww47yPe+9z3J5XI17+s555wju+yyi7z73e+WmSYSichpp50m5513niSTyRnfPiHtCsUcIW0o5v7rv/5LRkdH9a9f8ZOY+9KXviRf+MIX5L//+7/liiuukA022EA+/vGPyw033FD1t88884xccMEF8sYbb8g222xT8XsvvviifOpTnxLLslQQffvb31bx+MlPflKOPvromvZz1apV8tOf/lROPPFE8YqjjjpKVq9ereePtB8NscwxBaIqFHOk5RkeHvZ6F3xHMBhUCxP+komBCLvooovk5JNPlh/84Ady3HHHye9+9zt5z3veI5///OerWs123HFHefPNN+XZZ59VkVaJhQsXypNPPim33367rveEE06QX/3qVyqOrr32Wnn++eer7uvPf/5zCYfDst9++4lX9PX1qXWxWS3CZHrQzeoN7MlJ0z1YjznmGFm8eLHEYjG1XJx00kmSTqf1czxA4Ma6++671aIxf/58WW+99YosVW9729v0t1gHHtDr1q0r2sZzzz0nH/nIR/ThCsGD33/sYx+T/v7+wnfwwN1tt930wdXV1SVvfetb5Ytf/GLV/a/ld6lUSs4++2zZbLPNdD8Rg3T66afr++Ue3jvvvLN0dHTIrFmz1NL2l7/8RT/baKON5N///rceCxwTLLvvvvuEMXM333yzio9EIiFz586VT3ziE3rM3Rx55JG673j/wAMP1H/PmzdP/vd//7cmd+BvfvMb2XfffQvncNNNN5Vzzz236LfYzz/84Q/yyiuvFPYd7akE9sn5Xuny1a9+teo+VdtfxILhenLAenHdvf766/LAAw9M+Hu4S2fPnl11OzjeuDZL+fCHP6x/n3rqqarruPXWW9XFinPiBscOx6gUHGfnmnBfFzfddJN87WtfkyVLluj+/7//9//0+sc1eOqpp+p9hW1AaJa7LmHBvPfee2XNmjVV95kQMn2YzUqahqVLl6pwgfg6/vjjZYsttlBB8ctf/lLjjaLRaOG7ePBCYJx11lkFyxwe6nhA7bXXXvoghvsL8UiPPPKIBosj3geicO+999YHFFxeEHTYxu9//3vdbm9vrwqkD33oQxo3hfgkCBJYTaoFnNfyO8Rm7b///vogRBu33HJLtdZccsklatnBw9oBbUGb3vWud+n60P6HHnpI/va3v6llBC5KtAEPXbgJwYIFCyruH4QwHs7veMc75Pzzz5cVK1bIZZddpvv3xBNPqAB1gPDCcYJwgDvwr3/9q1qvIMxwbCcC28E+wUqFv9hfnKeBgQH51re+pd/B/kI8QCyh7aBUoLiBFQvn1c1tt90m1113nQoPB7j/agECBucHoO2dnZ16LtzgWnQ+h0BvFMuXLy+IvYmA4MS1XO341wLOPwQ9Yv1wjcK1jPsDlty1a9fqdffggw/qucSACufPDQYEcBfff//9es2T9gAGNM4A4REWIU3C4YcfbgWDQeuRRx4Z91k+n9e/P/7xjy1c1rvttpuVzWYLn69cudKKRqPW+9//fiuXyxXe/853vqPfv+aaa/T1E088oa9vvvnmivtxySWX6HdWrVo1qf2v5Xc/+9nPtI333HNP0ftXXXWV/va+++7T188995x+78Mf/nBRe9zHArztbW+z3vve947bzp133qnrw1+QTqet+fPnW1tvvbU1Ojpa+N7vf/97/d5ZZ51VeO+II47Q984555yide6www7WjjvuWPU4jIyMjHvvhBNOsDo6OqxkMll4b99997U23HBDayrg+PT29lr//d//XXQdYL9rWXAdufdjk002GbeN4eFh/e4ZZ5xR837hunIf92qkUilrq622sjbeeGMrk8lM+N3nn39e133FFVeM+wzHEeetFFwb7uvDuS5wHeCacDjkkEOsQCBgfeADHyj6/a677lr2HC1dulTXc8EFF9TUTtL8PPPMM1YkFre+9pen675ss8e+vJaqQDcraQpgsYJVCrFAO+20U9WJmBHXFAqFCq9hOYLVDS4id5wYvtfT06MuPQDLG/jzn/+s1r5yOBYquN+wX7VSy+/g5oQFCFZHWJGc5X3ve59+fuedd+pfHAusAxaR0ri3qUxK/eijj8rKlSvVognXsgPcodgX5/i4KQ2yRwwZgvirAYuPw+DgoLYPv8Xxfvrpp2W6wBIL1yTczsg4dV8HcHPXssDq6IBEEcdK58Y5Tvi8UZxyyinyn//8R77zne9oLNxEIC4PoN3T5fDDD1dLnAMssNDCpYkYeB+lULLZbNH7zj7UagklrQMTILyBblbSFCBLD264rbfeuqbvw/XjBrFXADFqbuCa3GSTTQqf43dw/1188cXqooPIgNsTsWOO0Dv44IPl6quvlmOPPVbdUHvuuaf8z//8j8YVTZRQUMvvEK+H2Ci4iMsBwQVeeOEF/c1WW20l9aDS8QEQc3D7lgqZ0n3EAxwuuGrA3fzlL39Z3as4p27ccYlTBQIdxwcuvjlz5hR9VuqKrQWIz3JxYU7pDbc4rSdwOf/whz/UeMIPfvCDNf/OGCCnB7J13TjXPuI3S9/HoALnzX2snX2YysCCNDd0s3oDxRxpSabzgEXsF4LFYUFDMsGnP/1pjSFCjBCSIbDuv//972olg8UKsVk33nijWs/wfbclqHSfqv0OD0aUr4CYLEfpw9QrKrWxGog7fO9736vWUMT5IcYOwvDxxx/X0h+TsXSWAzF+sMYhMWT77bevGH9WDYgU5xpCzTecMwgUtzhB/TiARI56g1g0HA9YPyF8a8ERU7UIaofSNlU7v5XeLxWQzj5Ui/MjhNQHullJUwArEATAv/71ryn9fsMNN9S/SHpwA9frSy+9VPjcAYIKD1GIr3vuuUeTIK666qrC57CKwbIG0QU3GIqkwtLkuEErUe13EDfIAMR3YEUqXRzLGb4H4YN1TEStlpFKx8d5r/T4TBVkS8IdCLHymc98RoPj0a5yrsHJWnVwnpBRC1f6oYceWvY7EGa1LBDZDhCFcAGXZpMi2cT5vJ5gEAHrLay2KCI8GWsaBCiu53LApV0KklwagbMPpUkjpPXxU2mSK6+8UjO5MWBESMDDDz9c8buwgsMTg74IC/qlib7vNyjmSFMAEYQyGKjvhfiuybqWcGPCpXr55ZcXffdHP/qRuogQGwbg9iuN/4Gww/YdV1u5cgvOA72cO86hlt999KMfVeGIjqUUxGY5mbk4FtgnWLdKrVnu9iELs7T0SjkQh4isTwhWdxv+9Kc/qYhxjs90cSw77n2EoC43/RP2vVa3K6xkOHbIKnUyYssxlZi5Aw44QOPH3PuI/cexQukOZBO79wNxf8gsnQoYPKAMDkrMwM0/mTqA2Eecx3L3B0AJFfesDHB3w61fD7dsKY899piK8V133bXu6ybtKOYmr+ZuvPFGDZlBmSdY/rfbbju9r51QlXIDzUMOOUQH1rhX4AVBVYDS0kx+hW5W0jR84xvfUHck3HRO2Q48PJE0gJgud+mMcpa9M888U8t57LPPPhoHB4sTHtAoxYGYOAArGYLODzroINl8881V2P3sZz9TEYLacwACCg9dCBxYrNA5YD1wwU5UoqKW3x122GFa4wvuNXQqmJIJZUAgEPA+EjPwwEYNOpTvQDwVRpOw4iBIH6Up4PaDW9gpEYHyK1//+tf1NxBsTjJFqRDALAUoTYLji07NKU2Cke1nP/tZqQcQPhj1HnHEEeq+RieN41tOUGDfnQ4Z5wilSSoVw8W6EFeJenylszKgFAyWqcbM4fzA2geRCJGGfUECCiyBEFxu1yOuMczAAMuUuy4ejr8joADa7MQhOm5UxC3iusQxQRwlrutK7agEhCeuCwxKYMl2A1GPcw+rJT5HuRGUYIG1+/vf/76Wd6kXEMS4dktjFgmZKS6++GKNn0WfBjD4QnjLNddcozHLpeBedoP45ltuuUXuuOMOTQjyPdXSXQnxE6+88oqWKJk3b54Vi8W0ZMTJJ5+sJRzcpUnKlS9xSpFsscUWViQSsRYsWGCddNJJ1tq1awufv/jii9bRRx9tbbrpplY8Hrdmz55t7bHHHtZf//rXwnfuuOMO64ADDrAWL16s5U7wF6Ubnn322Qn3vdbfoSQE0vBRVgRtnDVrlpb8+NrXvmb19/cXfRclVVASxPkeykzcfvvthc+XL1+upTW6u7v1uDhlKEpLkzjceOONhfWh7Yceeqj1+uuvF30HJS46OzvHte/ss8/WdVYD5VXe+c53WolEQo/B6aefbv35z38etz9DQ0PWxz/+cauvr08/m6hMCdpVqcwI9mu6oPzLN77xDd0HnDucm5///OfjvueUbXnppZeK3p+oDIqDc06m044VK1ZY4XBYS9y4wX7jXJ544ol6LeDcfvnLX7Z++9vf6muU7HHvQ2lpnkr3lXPO3eV21q1bp8fo6quvrrq/pPVKk1x67wt1X96+137Weeedp/2fe3GXMnKD50EoFLJ+/etfF72PZ8f+++9v1cLAwIA+A373u99ZzUAA//FaUBJCCKkPmCEFBaZhOXSAlRAzPczEFFsoVn3hhRdqRnGjMn2J/8A1t/W228m37jDW53py7VdPldkyqiWm3MCFWm6Gl6VLl2oIBDLa3a5+WO4xI44T7zoRKNMETwis6e5yTX6FblZCCGkh8IBDiABm7oCrcyaBGxruLbiOKeTak0aVJtlj9z3U7emmXP3HevDNb35TwzUQR9cMQg5QzBFCSAuBrFZ3osNMgtjLV1991ZNtE38QakBROBQNRtHs0jjQSsydO1djWUuztfEaUzROBKYnhJiDFbBajKqfYDYrIYQQQlqGaDSqCVRIXnBA1j9eT5RhjfAAJJWhBmi5mYb8DC1zhBDS4rz88ste7wJpE4KNsMxNYZWnnXaaZs1DlO28884ay4nSTk52KzJUEVfnZP4jmx/TI15//fUaY+oUGEcWPRa/QzFHCCGEkGkDzRVqwNRbU1nlwQcfrOWKINAgzFDTExa3BQsW6OcIB3DXcUQJJ9S8RFmgWpIs/AbFHCGEEEJajlNOOUWXciC5oZWs1xRzNQJ/O9KdUWSTk0cTQgjxO6g8hmncUEh8MrOJTIdgg7JZycRQzNUIhJxfJjknhBBCauW1117TmUyaOZuVTAzFXI3AIgeef+GFwr8JIYQQvwKr3GabbspnVhtAMVcjjmsVN0WttW4IIYQQr5nJ0KBGZLOS6lDMEULamsAUZzS0mvyh1a7tJqQVoZgjhLSc4JgOfhIr7dr+mWy3H9rbMgQaVJqEp6gqFHMthtMJtmIHNRMdfDMet6kcFy/b6YVA8ds59vIYtNu596K99WqnH65VX2Sz1n2NrQfFXIsyU53mTHY2tW5rOm2fzm+96nib+WHVCg87CrOZp12u+XLb9MM1T/wHxVyLUcuNXs9OyY9Woamsvx7HpFGd/Ux33u32kPabUPX6GHjVfq/aPdPtnaidteyL370vjZnOy59t9RMUc21IpU5gpjq1ibbjR+uW1w/30u034hi1W4yS1+fU62NAwebPdpb7XaV9x/teX0fl8Mt0Xu0GxZzHTLaTaeTNOxNuzHqse6Y7MK/Fb63b9ct++uEBQ7FGsdYqbXW2U66NfhV0ZOahmPOIqXY+k32QNwKvRYMfjkGl7XkpItrNuuYH0QYYtzbztLJ4q7Z9d9u93qcZc7PWfY2tB8Vci3REfhA4fhV57RCv1yj88LDww/Hx+jhQtLXPuSZkKlDMtXjn5IdgWfe22yH+rBXi9bw+Ll5fJ2x/+7hL/XC+m+GaqJVQI0qTNMH58RqKOQ86DT+kuPsl0cDrDsrvLouZFsLtZoVx4/X5b9f2t5OAm2p/4/W1UTuBxkzn5b+u2XdQzHnARAGtM4VfAmf9cCz8ZMVsR/xw7r0+53Sjto+Im8nfkvaBYq4NrXR+E3R+OBbEe0FDSDvQyvcZWsbSJN5AMecxFDH+Ohat3NH6FT+cd0L82K80433BbFZvoJjzAV64GttdtDRL+2fymvDSzex1kozXsZNett/LtnsRQ+uX+GFC6klQfMbf//532W+//WTx4sWawXLrrbdW/c1dd90lb3/72yUWi8lmm20mP/nJT8Z958orr5SNNtpI4vG47LLLLvLwww9Lu4FOy1n8SD0np662eNG2qSxe4PX2vT5fXp8HL9vvt3M/E/jhnpsKfu3Hkc1a74XZrE0o5oaHh2W77bZT8VULL730kuy7776yxx57yD/+8Q859dRT5dhjj5U///nPhe/ceOONctppp8nZZ58tjz/+uK5/7733lpUrV4qfqFcH5hcB42aqwqUWYdYM7WwkjTwefhGbXp9zr4+BF+32+pwDP51rQvyM79ysH/jAB3Splauuuko23nhjueiii/T1lltuKffee69ccsklKtjAxRdfLMcdd5wcddRRhd/84Q9/kGuuuUbOOOMMaQW8FjGltFvn5+esvEa68Lx2T5Zu20sXbbu4Z73O+vbqXM90u5u1D21AmTnGzDWjZW6yPPDAA7LXXnsVvQcRh/dBOp2Wxx57rOg7wWBQXzvfKUcqlZKBgYGixW/4xRrlwFHszDHVc97Ia8UP597L+8Hr9nvhjvYSL0MmSGVCgUDdF5884nxN04u55cuXy4IFC4rew2uIr9HRUVm9erXkcrmy38FvK3H++edLb29vYVl//fVlpqilg/KLgPPDQ6zdmO65nwn3XDtDQUcImWmaXsw1ijPPPFP6+/sLy2uvvSZ+wW9CjjQfrS7ovL5HvG7/TNJObSW1lSap9+KfJ55/8V3M3GRZuHChrFixoug9vO7p6ZFEIiGhUEiXct/BbyuBzFgsfsPrh1Q7FzYmzXXuWL+OkJkn1AATER8BbWCZ23XXXeWOO+4oeu/222/X90E0GpUdd9yx6Dv5fF5fO98hU4MPypmn2YQtr5GZp9muEUJIC1rmhoaG5Pnnny8qPYKSI7Nnz5YNNthA3Z9vvPGGXHvttfr5iSeeKN/5znfk9NNPl6OPPlr+9re/yU033aTZqg4oS3LEEUfITjvtJDvvvLNceumlWgLFyW4l/sZrC0+r0g6WKy/b2E7XbTu1lcz8DBDMZ21CMffoo49qzTi3EAMQYygGvGzZMnn11VcLn6MsCYTbZz/7WbnssstkvfXWk6uvvrpQlgQcfPDBsmrVKjnrrLM06WH77beX2267bVxSBCF+Fg3N+rD0QymLVhethJD2xndibvfddxdrgo633OwO+M0TTzwx4XpPOeUUXQghZKagxar14PmcGJQSqTc84k0o5kjlOCN2Iv6mGS1AM7nPXgqbZjw3zdZeClfSKDcrL6s2SIAghBBCZgKKVeJXaJmbYVrJOtBu1g4yfdrROkeLFWkXAo0qTVL/VbYcFHMzCIVP69OMAnem95nihpDWpTFuVvYX1aCblUwLPpTHw2NSHa8EL88NmSq8doifoWWuzWin5Ip2aiupHSYHNI52aSepDE+/N9Ay10ZM9ABrNtfgdNvaau2dLnwAk2Zkpu5j3h/E79Ay1ybU0ulNdVTdaEvHZPep1n1pZDHbZoydm2naLRmCVitSK83cdwQbkK7Au6Y6FHNNxFQfBpPpGJr9gTOVTrDZ21wvKHBIPeA5be/jzNm8vIFuVlIXGtWpzFRn1QgR48eOlozB80Oa5TrBPpQuzW7BI/WFlrkWhzc78Tt+tTAQfzMTfZsX12Vpu5rq3gigNElDVkuqQDFHSJOIipnYv3aL9WONvcbQLu30g5Dz27H20a60FXSzNhl+ftDWu0PxUwdF2ve6JoQQv0PLXBPit5FYK1HvY9tulq5mhNa5xtDs7ZzpfW+VfoLZrN5Ay1wL0yqdA2n9OCHSmrCm4/Tuu4mOHe9T4oaWOeJLKwc7qvaj2S05ZOZmY2m0QPRT/cOJ6mH68X5haRJvoJibITg6JcS/0B3uDU2duTnDNMuxYjarN9DNOgPwIdHe58uvna4f95n3SnvjuGW9vA68vl/ddeQmwuvjRPwFLXOEENJiLuVWeMg3crq9VsJv4Qn+2ZP2gmKugbRCh0r8h986b9JeTHTtNaLPKxV17dKvTqa95b7jVR8RbMB2A5SIVaGbtQXdBO0MRU79aDdXa6tcO406frW4/xptbWzHfnU6SSLteLzaFVrmmvAGaZWHDiHE/7C/8dc58Pr5Uw1ms3oDxRwhTUiru1pbvX2ETJXJ3Be8h9oHulkblGlECGk+mv3e9kMmdrMfQzJ9UVHvpdWvqPvuu09SqdTMWuZeeuklueeee+SVV16RkZERmTdvnuywww6y6667Sjwel3ahUofVqsUsSXvC+muEVKfRt0hN3T6s2aXv5fMy0wT4jJoU+Xxe3ve+98ljjz0mW2+9tTRczF133XVy2WWXyaOPPioLFiyQxYsXSyKRkDVr1sgLL7ygQu7QQw+VL3zhC7LhhhtKq2Lhhqlw5wZqEFsz+WDkg5gQf8JBWfO5+Mt1pZWeBe53AxXem+g7VuE9y/n/uCzRWi4hXmf+A5pp2bJlksvl1Bp38803SygUknPPPVc+85nPSFdXl75etGiRzJ49u75iDpa3aDQqRx55pNxyyy2y/vrrF32OHXrggQfkhhtukJ122km++93vykEHHSTtht6IVcST3qTOdyC2prM916Z4z9YXxmx5D88B8QPuftYRb+5evmD7Kun785aZDcE8F8xrYC7pMZFWaslyZlBw1uZ8mreshpT9qDecAaIy5513npx99tlFRqG+vj7VTqeddprstttuhe/iujjuuOPkqquukrqJuW9+85uy9957V/w8FovJ7rvvrgt29uWXX65p421PObP4BJTe9O5R4Zg+DFQWdpWEZhN0EMQ7aOElTUlFD0perErh4q6+ED93+tic602Ispy9avNQdl5bBZObWtIKqwwUiZyA1TjR4wca8ThplUfU9773PTnnnHPkox/9qEQiEV3mz58v4XBY9ttvP1mxYoUax2C1u/fee+Xoo4+Wiy66SDo7O+sj5iYScqXMmTNHF1L/h6OOAF2/yzhDvaKOwoze8DJQGOKZsWOggnS0LLvbqdG1MNV4jqn9kBBCJoGrr4FwG3s/X/59fSNoi7CA/W+ItjGhlsubgXfeJeLKRqM5Qm1Su2sVDdQdix5pPZYvXy5HHHGELFmyZNxnuAYWLlxYeL3JJpvICSecIKtXr66fmCvHypUrdUHwnpttt912qqtsK+ph7Si94Ytewrxvhpa6BKy8WE5nVtguOi6XqEInpkuo8BUdebpdCe7tO2upZBW0VzKu4yx87vypLCZLVjXWPHZ2beGG9KKNM2GJbIdzN46SY1qxX3C+7pZENQWIufob9HV4qX/zdj9o/9tZF94LBMUq9HsBsYJ4JEKoBcxPXH2tI7IcQefs3VRTDNyibSJBZzWRqxV7xhIZlUF+AfINauXZZ5+t+fuTFnPIuICyfOqppwomaFyEzsUI8yCpP1UTK+y/E97oOuK0OzM9d3Y3YXdqxu1rfPl4S0emcDHkjWthbEOmo0NnE4IeDARMx6PrtOMAcT24O1V9z9XtYXv2+vR76FRhIRznSnb+lj5cJxkMTMsgId6IztJBnbsfmEAzBwKmXzCrKD/gK8QpW3kdsJrV288g13vF23RGny4hZ7+uFeeZB4Ilgq7SWtwxdOWOaK2CjjQvG04yObQ0P6GuYg4+3M0331x+9KMfaVYr05AbO/fehPMglrwel+3kjqkLBE3HVuiw8uM6sKKOrdy+2P+ByNM14N8qxjBaFAkFAxLSr1gSyGdFcmkRdKz5rATsDlb/oiMMReyOOSgSCqk1UDAqDqKDNZbBIqtghWM0VoPI/m+JZXDC0X+pZXDcCkq+PuGDR1oaxs01OZM9dzWEXJQOsJxnQdl7EB4cR1xZubGV6fvZQueCe7+wMe0XwqYPRL8UDJk+qnRwWrRTxa/H93vFn41rbw2CzrHOlQq6SrhFWqmgc0XKmPfdLuJAoCldro3QBE12CGoCsXNIeEBZEjfDw8MaJ3fWWWdNan2TFnMvvviiZrRuttlmk/0pmYSoq2U0XM4KV/ZndqdX6Nic9wrbmnhkqpY3uB4KKfKuz+zX6mItrNDlzkUHnsuqqFOBh8V9c2J0HIyIFYmJhKPq5rDCMclL0A40Nsckaxv4xsz46CDNtnWxPyt0JOpaNtsqaxl0tXecBaCCddD8e/xD0XTqpe+VPZSkSfCjeJ109vpEbs3Se0G/4NxZxkpfmgxg/o4lbZVaowqeGugwtdTndfAGS1kAAztsU/sCLBB2uXEDyUAgO2Yx03vRZZPC+tz9lRMLXK4t7sPg7vfK9Xe2WHTe177XqiziikqKuASdTEHQ6Tqc41mSGOGsF62eyKLnN5pNfHrFV7/6VU2AOP/88zWT1WFoaEi+9rWvNV7M7bnnnvLPf/6zbcXcG6+/Lv1dXeIH0nb/VFZcOW+4OzwndqQU16jU6VTVvWqn0+ddwb/lOi5Y5HS7sMw5rtdc2hZxGQnlsxIOBiQaCkoYSzgkkXBYM3gCofCY2xdWu2DEBB+LJZmcJdm8pfuRzuGvVaiBqf1vICDhgOh6Q0HLbENEIjryx4MkY9aZy4ztrBM7oyN9u764WgCMRTAAyyBuC1ug1WIddD/4HFFp3qqQWTwVkdDG6rBV48vKtaua9avc99wWsYIIrRDmYESNfQ+M2yH76i3EkGF9zr1g7kPcg7nCWM3cpwHXta73P/oDZz9w/xX6Hnuxd7ZcRqluJ5eVdDan9z6SvLK5vH3/T+A9KNfPFcRlGVdrQbjZgze3oLP7Pydr1Qk7Ke0DJ5KQlTJZ9b3CZ6VtL7+uQvdsh7OM6+MnAMKA+Jdrr71WTj75ZHnyySfl+9//vpaAmyqTFnNXX321xsz961//0mrFUJZu9t9/f2llVr/5piRHR8t+NuEDp1yFyCJrnMu8XsZVUPpjbOuFtWb6D4gYLOhIY6GgREIBiYUC+jeYSUogm5RAZlQCWQistI6OLQgtEAypoCpYx0JRsaIJtY6lrJCk8pYks3nJ5ixJ5SxJ58y/nT0MB0WiwZBEwwGJhQMSDQalIxKQSMCSYGrIbDc1IpIaEiubFcnYU5aEIhKAoEt0Sigal3BHt4TiXRLq7JVQvEMCsNLB3QqxFzSiD0IL+ssZHeNxgEdWNp9XK6W6PvAu3LoQcOkR02b8tXJiYduwUKbTpsZfvFMCoaBIOKZu33wkIRKJ6zEQHBMJ6cMLVkEno61SIgj2K+D6t1om0EznQacnzfWALb0myhEozbSrnihib6YqU9FGfrRWeU6dhLm7DEZRwpErpMH5TFdh/3ViVTWDHRYf46szVmnH+pXNGNcmLGS6oZwEMsliyxQsaHY/EIB1PIR7LyYShEU/pqEVzsDOndHp/F61UDkXG+7LXF5ymaxkUknJpUYkg9ILmZRkMmnJZjKStf9mcnnJoOHBkOmHsD/huFrrM/aATu9FvQ/HjnvIvr+0vwtg0Cga7hHIpnRAhz5ArYG5jAnzcCftachHeGybEWwvIvlwVMUktolBZcYeSOI9lcNjTddtoxvBfkSCzj6gTzZ9c9Dpj9Qi6ZwDO05Y3QsmxAR9EPo89MzYlhGSY7ta8EIU+poxRVfpvoTLbqZpxLCr9YZyhj322EMeeughLUuC0m633nqrzJiYQ3FgzCP2pz/9adxn7ZAAMemHWbmvj7OXl44gS9wj6IjtTtIRdui4X15nRCU6jI5ISOLhoPTFIxK3IOxCEgnaFrLMqASTg5IfHpTcUL9Y2ZRYmbRZD1wQsbgEYgkJdvWKxLpMbAo6NIiZHMScJcPprKxLZlXYYbHsHj0cCkgiEpKOcEhmd6ATFIkEQxKOBLXjREdqDa+T/MBasdKjuujQXnu/iOTiHRJMdEmwu0+saIfkE4NiRTokE4pIKmvJaDavX8cIHVsMhcI6eoFlLxoNSzwakXg0Kl3xiCSiEbFiUYkH8xKR3JgVQgP98DonFh5sELR4dyglEolKIBrXBxg6XP0cYjbaKZlAQDI5UUGLB8hoBpaCvFoC9YGLUCDLUiFrxLQZOWunHsJr428KqZnOPpmF2KGxIO2icz4udifgckG5EkXc363BFVy4lpzrqBHxf9MRenWwvE1m89PaXKXSF/rZBPaaCsH8RRZgWzTpVetYhlybdSedOUIChIOWsYjppWZbxHCvQUjogC5l7gGIClvQORY4zeAshHrYfYxlXJMY0DjljjCwcdx96UxWstmsEWPZrORy+JuTfDYjeTwD8jnJZdKSSw5LXrefHtsXDCbt/SkIq2DQDNjCGExBVJpHkyPkkoW+APeg2ANKDG8C2gdhv6J5DCaNzIGg0zVgGxB1GNRlRrXf00GlK9wkEI1KIBITC4M5oPaJqB4mCLl03gxkU3bfp4LO1f+FAwGJhzGgNYcxGjADa+0TMqNm+xjUYgCdy46FfyB4BX1tOGo8ElG0PSYhHchatlF1bABprIMQ3rZTwbmsfDbAaoibtQXVXMC+5zbddFN58MEHtfbcjjvuWHOR4GmLuU996lPyiU98Qr7yla9oAgSZANc95h5J6oiqRNAZ94BTSqSCC0RHoCb2DTzy8lq9cSKhoMztikpPR0QWd8dldiKinVosHJRwNq0WsuyK1yXfv1qSq9+U7EhSssNJe2eCEu3u0CUyd76E+uaaTjUUlnwwop3YmyMZWTuSljcGktI/kpGBZFYy2ZxaAcy2Y7rtZDYuczsjahXEtrXjyoxKbu1KyaxaJun+IUkPjprOFE0KhyXW1ymRrg4Jz10god65EtBRakjygYiOiofSeRlIZWXNaEY7Uoze8VAxgikoXdExIQnLIF53RYLaiYYyIxKTrETyaXXHhnIZiQSDOmKOQBDG4xKB6A1bEgwbC6Axq5nkDJyKrGU6cezLYConI5mcDKZzksrmJA1Ra8ezaMcdCkgnhG0kJHM7oro/ENiJcEASoYDGDMJKKjgnmRFXEDjiCY24Q+euI3Vs3w761uQQ20JZeG27gzWIWrOLa3AHO5+5lEypw6qQlFxiZanmLq4ajzURtuWx8PMyFki3S7JmV2TpZsrv+jhrUiHs0m2JLJeR6RwnOw50LKPGJdDHWapCRS5+uDEh4DScwB605O3rDu8lMya8AItlX4sQbbiuILD0WrZDGGANiocDElExZ+LVNEZN42VNWzR+TNsQHBcnlk6nJZvPSFpSxhJmhSRrBSSZExlJpmU0ndElmc6o6zPrshw5me0YxOAewzWvAxoVUSkJpIbUUm4N9UsuaQZ1Be8Afo8BVTQmgc5eCXZ0qUUO+4dvQMgNpXPSn8rKSDovQ5mc5HT7Jg4NxwLt74uH9d4z5ykoYbQV9xYs8qMDkhtcK/nUqFgp3IN26EU4ooPZYLxTgj2zbCtjUAKRDhPeoZ4JS/ufkXROhiFiYSG0t437HtvviYalI4pwj7B6JXCOgmh7ckACaOvQWsknh8UaHTbthohFmEk4JsHObm1zPt8rgUhWr42gnQiirl5XMJ3pcYxoz8P70Yoqp02wXJ1QT0+P/PGPf5RTTz1VDjzwwJkRc2+++aZ89rOfpZCbBG4h58Z5UJQKuXLFfU2NONsqp4IuJK8tH9LnQjgakpF0VuamY2aEGArK7Lh9avMZsZIjkh9aI+m162R42ZuSGRyR1EBKrWvBSFDivQmJ9nZJdxjD2bBE+uYbt0vQPFCG0llZm8zIsv6krB1Oy8BQSj0G2HYoHLS3HZeuiHG3zkrARYmdzoqVGpX86KAk3+yX5NpBSa0ZlGzaCJdgOCiZ4VGJ9XZJVziknWi4e7bko1nJh8yDDULuzeG0LB9KqZAcTJnOFA+PGERcZ8QWknntzCHy4jpSD0k+m5ZUakhG162W/OiQ5EeGTCeOzhQP00hMApGoBDu61ToYnTVPQnD3ds2SUKJbcuG45AJBdTfnAyFJWUHJ5iGcjCsFRZmtwsMXD3XT8cIVPZzOSd4K6hnDQyWOZyesEclBCaaGxVq3UvJqpYT7Ny1WakSsTEbFNBJBAnYcn3nQdInEOnQED0tFAK5gK6w+blhO1JqjRr/i6vSV43gc646pbB8oHVU7cT7qFi5crZUzhSuUn6klMN2+SCuXqnF2dGyz9t8xl6S9huIvVMMtaAtCbaytRV8prV+WL4k9K1i7nBIZtqwuiLmx4hVWCOcWcaF2lmYwrNeMCWEw1qes/RcDF7znZI/rvmIQowlBEAxwJ1YoBR4ImhCBVFpyqWHJplOSTY6qtSyTTqprM5PJSTaXVeuTikWEWmDQEEmouzEPC7ltFUvmYJUyYhIDGg23UAuVsU6pmAwGpDselnwor9Z5eAaM9c2EPFjDA5IbWKNCLj86InmYvXEs0e/E4xr2EIKFLBorXBPZnLGODWfy6hmAqBtIZnQ/cNwgmhJReCUc8WNJLByRiGMNx3WaTaqIg2fCSg5LdmhY8lmnDwpJuCOhxyWgwq5LrJARmWoZVTGX0z5QBeVoRlIQk/ZB74iGJBMN6XnB4LYbpxljLfQPuZQKORnp14E0+p/8yKDkU0ZIot2heNxYKXNZCYaiktebMqGDS9zV6touXOSmvZZTWUrbJ22Szdp6ovXHP/6x9Pb2Fl4Hg0G5/PLLdfrUv//9740Xc//zP/8jd955p5oGyeSEXCEd3XYPFN4tFXLuQGGgLrZgkaDD0Gz10n4VFOFISJJDcVnbm5aY7W5d1BU128umJT/UL8kVq2To9VWy7qU3JblmVJLrbDEXDkjH3A5JzBnWmDSkdoRmL5RAvEddphBU6ETfWJuUV1cOychgWkaHUpJD8IoObEOSHI5Jf09WO7ZIOChL8ABSdZFTIZlZs1aGl66W4RVDMrxyWDKjWd12KBqSznlJic8ekkAoIF1wOcxbLJLo1Q4MDzIIOVgEn142KP1DKRkdzohlR2Aj3i3RGZHerphsOr9LFnbHbLevGambtg9IdvUbug8jK9epeMyOInYObQ9JEG7a2d0S7e6UzIIFEuqeJcF564sV75Zs11wZycAyaKxxGJ2PYnSOB64VkBzcOdGIdMSiksASjUhvZ1x6EjHp6OmQqCAuMCZBp4SCZvbaSRlwc6VGJD+4Th8wObjAk2nJPv+MWHjAhUISDEck1JGQYCwioa4eCfbMlWB3r4RmLZQ8Hjpwice6JJMPqOsJlkLE9sA9DUGAY6HXoH0p4Xmn8UV2vLdzDZp/29nRhdqBJu7Iic+BBciJyQqomHHFZKmgwcMxX17UVEjF1Bxpp+yEs1OuhBS3Fctdrka3ZLvdnc3lyrgiJyx07cS8O0krrsxo53smJikgQSehRq1ccNuNJffo3yREAlx4SWMhhRsxBRdn3rjwwlEJxhPGlRftMEIp2qnxmVZ4zL3qRNk7GeM4H0js0fo/TiZpLiPJTE5SuZwE9Rgj/jUnYSur+xlCPFx6RLKjQxqnqlYp7F8qqWIGwlMHD07CAKzw0YTuZ7BntgRUyCX0eMMih0HSgG0dXz0C61xO1iWxDxCdJlYVFjgMqGCVnpONaqgHhB0s5yHso4ZaDEiu/03JrF4p2ZFRSQ+MFAmqaE+HRLqSZnAFt2OnsUHp9ZyDkMvogG7tcEZWD6VUUEHs4npGiEVvImIPrCLSFQ1L1IyiTDIV2j7UL9l1b0pmaERS64Yll86MbVs9E6N6LMIdXTrIMw5O9H8iQym0OSvrRtKyGv0ftm17JrpiERWwcLViyXeYGPIg4vPSSWORW7tS0iuWSmZwWFJrByULMWflJRyPSSgek8R8Yy0M41zoAC4jAcE+mOsCVkDnmsRpM8kPuHtIM3PEEUeUff+oo47SpeFiDjXmzjzzTJ03bJttthmXAPHpT39a2pWi7LRSV5Drb6UxRpGQK7Iw2B2vnWXlMLz6DQmGIhKKJSQQmK13OaxXo90mE8w8S/P6YEn3D0ty7ZAMrxiWwXVJWZdBsLElsWBA5mWH9UHRMXdA3Z4xTRQwo1OsZziVlf7RtAopCLmRdesklxpV8ReKdkgg0KujsTUjaZnTHVUrlSYjoCNFoPNwUpL9ozK6dlSG3xyVoawZcca0AgKEX14Sc4cl1jssYSQnWDnJiW0VzOS0A13bn5SRwZQu2YzZt1AoJJlUTNKpnMThWg2ILOiKSa7DEgvKBW3HSHxdvwo5CMrkuqSkBvAwM26SSEdE4muHJN7XIV3ZrMTnpUxiBFwd+T5B5Ty0Bw81dOgYma8cSKk10ozQLX1odUTD6lqe2x3TB8vcjoj0xMLG9RMNG9d3PinRzLBEJSeh4bXqCg4OD0gYoiCdMckSdjAMRmmwoOFhHTDqxYgIWBYRfxRKiUAYWJakEdOYyatLGm6gNwZT+tANhYIqekwGoiWd0bDuk7rA7WcdjgFG+0hcgfiDixwPKX046QPZPDRi8PAiHkhdPGPlZjQeqBBcni0IHnWlQzhA5FXIoIZghZUK7nZ1OcJiBeGGQHBNzEEsEYLgo7bOMxZftMVxSzoZls71rpYMLXxtCz9b0cGKZTZrxCyEGv6infpXA9edbEzbZaga04REaDsQ75XPSjA1qCLJGunXZBpYfXFONA7VKVirBzhqFLAmGETLup+x3lQqI6PJtIyk0nqvjabSMpRMSzKdltFUpvA3Y7sGTYC9sYTpAArWqXBQ3foduA8g4tIjGl6h1iBYhZIjIqMQMWnJpzP2QC5krENdXeaaj8IipE5adednbIshhBSu/VXDaVk3nJY1w2m99jHYwrGKR8LqgpzVidACWOeD0mNh8Ol0X0g6SqqLEYIGoRYIuUBShB6muP0MwbXYm1T3pPNjxOyqoIJFDuEewxBUKUnC8g0xGQoWwi+64mEdTOJ+yIVdNlucK1gih42I1G27xFzhdHUP6/nEgAvXOMojYVCUzudNH6jhJqkiIevEzo125qQT1tbCZo1FEv0PPBOptQOSQh+8ul89E1bOkkhiVCKdcQlGkEWPts+RIMIw9BoaS7TQ69p+cjg2Xj8LOZYmmRhY36qBfgchbQ3PZu3q6pK7775bl9IdqIeYu/LKK+Vb3/qWzmO23XbbyRVXXCE777xzxe/ffPPNGsP38ssvy1ve8ha54IIL5IMf/GDhc3TqZ599tvzwhz+UdevWybvf/W6d8BbfnQlqsoQXpe+XxM3pUN15MVZpbWj5S9rpRjt6zCfBOTpqXdQXL1glkM2FjhwjQgi51WtGZTk65lRWvwMxN5LLy5JlebXQRXsHpWN0RIJqPTLWnoHRjAqq4XVJGVmzWkbWLJUsMlQRK5zoEstaT0Rmaye7oDumLhDt42CZS6e08xxZNSrDK0bktZGMDGsHbYTkYiupHVvX/EFJz+qWeHrUdKR5CKicrB5Ky7L+URlYMyoj/cMyvOo1ySEGJZ+XUCQqqd75Eu+bI+Ew4lWCsn5fQjJWzMQIaduHZWSlsQyueX6tjK5Jyptw1donBbFss7qikpgVl2wyI12jKelOdEoYFpUuxPB1SCZr3L1wMy/vT8rSN4clPZqVVBLB3sZ4BAsl3N09PTGZ3RWTjeZ2yNzOqOR74yo2YkFkxWUkOdSvlpLcqjckP9yvFkNYCiF41VKRz0sYcYzxmMQ7Y9LR1y3RREziaZFoLiTxYFwi8ZSEQwmB0ca4J83ZztlWObil8IBbO5jS8wdhBwHkxN5AvAE8dJ2lyxZ5iDnCorGIkZB0w8oRCkhH3sRkhVVg5u2g7qQKG3Vdjw6odSE3MqDuYjzE8ADXayBjxyc5QkfjAhGXBKtVxCSgYECCLOZoXIKdPeqONFnVcZFYp2ZXw1qEh3YSbkg8UHGNwBUJ918up21W95sGruMaNOUs3ED4oP34CxGO7G9YsmO2GNL4M4jZELIcAxK2AhJx7ks7Bs1Y/uwsRDUsIpDdLmqrAjKvlptselSy1qjkgiOSDQ1JLhSRTDAqmUBQ0oGYZNGecKKQ6ANxNJzOy0gWrsSsxmVqm7A+uyEmLs3Z55D0WZZ0RcISVfFiZ06mk5pBnl+3Wt2a2TWr1CIFIZNNpiXviKhYxLZMpyXakxYr3ilWPFFIikjBCp3Oq3V85XBaXl49rEJucCAtuay5pnAscd2v64pqCEQsgli1gMxJhPX8YECHAUl+dFiyw8MqaNAfjK6Bm9Vct6G4HecWDEocMW2IsTNvqFVqJJPVda8YTMnK/qQMDKRUEDliLhOPqLjUazgCcZeTrFMvEvGCsEQmISQh5oZkdO2w5JKof5dXIYX14L5DqEkI/Y8r2zWdN+cAfSDOybrhjNl23sSuOedlJB2VdNxcczpgwAAtk9KEM9zjo6vWSnLNsAytGJFsCgMhS8KJiMS60+qVQNvDff0S6OjWAZFx4wdVxDlJMbjh0aSIVexa91uWuZ/yH66ss5aoB5dccknR69dee00WLVqkpbpmVMy99NJL0khuvPFGLaCHjI5ddtlFLr30Utl7773lmWeekfnz54/7/v333y+HHHKIFt770Ic+JNdff70GED7++ONaOgVceOGFqoZ/+tOfysYbb6wnC+v8z3/+I/F4fMZi5crFQxc+0L9jQq705jQPkPw46xweMOmhtRKMRCUUicvAcKd2PBAguipY2VKjkuofkdG1SVk6mpVV6bHAY2RqLktm1V3Ru3pEOuePaEwLOhR1deYtGcSDBQkIg4Myum65bq/we3S8obBue3ikQ/pHUSNKbSPaFjMiTsromlFZlczKilRWt+ngWEN61yWlYxDbThuLnmUCj9faD4/hdQMq5JJrVxR+C4mQwUMiPSKxxCayPBqS/nS3jqaNNSWrnTiE7NDKYVm9cliFLBanu4YUWpjKysJhdKqmWGpi3iyNo5PZGdVK6NDhWlk5kJRla0akf/WoJIdTkhpYK1mMpNUI0yHhWIeM9nXJQGdSkpmsbDC7UzN9Ic56opaWcFFxMzqs2b1IRhlZsVbSA3jIJdX9XBTLEwtJvA9lW+KSmNsrHQtmqyssNHexBDr7JN85SwIds2RUQpKWsAxkLBnOiqxN5yUT7ZRcIFIk3py/zr8h4py/6tLTbNxA4d9ul2zhckPyifu61ID6MYFmSt3kjWUNVh7EVkZsy5ZtddR4QPtz8ztb3Olv7bVXmY1EY5LsAHC4IoP5sf1Xq4ZWeNU9LPqNBqYX2um22JWsv3SDTtKChezDuKxYsVKyQ2slPThgroPRYUkNwYVmyt/oaATft4PcCxnjPbNNTFq8W8WqEZwmJm00bcmaZFqtULByw9oFa5CWxrAFBpILYC2d3RVV8RK229KZx4PfWME0yQYB/+tWq2sRA5n0ICxSJsQBIgoCIpwIj1nFMLDrGZZAutucVwgVtYxnZfVoRpatS8obb45IcjitoRYZWJcwoMJ1Gg1JFgO4vCWzO6LqbsVgCdZ1szLTD2RHkyrkYKWHhTyXzhnLcNysAxbaXBKWOWMZw0mBztIEiFRW+4LhoYyMDqKUSVZyWUutyBCWlsRkbWdaXZ7JHhNPp7NJYNtZtDktmZGkpAfMtrM4DghFiKHkUUBFIdy/UXgcEONnu7whsCHmhuFqHUlLciRTJCRxWQyGAjpgytihJ+oGzZpkJ2tkUFIYzK52BrRDksbgyhJJxEKSHY1JpCMswWhUOhYNa39lQhfGYkKdjGYM3pw4PtwyiN1lEsTMaol6UKqhuru71TC2ySabTGu9dbPWLlu2TEXTdLn44ovluOOOU5/xVlttpSeio6NDrrnmmrLfv+yyy2SfffaRz3/+87LlllvKueeeK29/+9vlO9/5TkEE4SR++ctflgMOOEC23XZbLdS3dOnSadV0mSzVBk6FsZYj5EqLbFYJJs8MD2qcTDadVzdAQUjm8+payYxkJTOUkQFbLBT91rJkAK6KkaxaidRd5MQdwdWCz9I5ySaHJAOXUoVtZ7BtHRUbF4GWNshl1aWBzhPuVbeQA4PZvAzBmjSaNbEkGkye180jyBruzHQ6K5nhAUkPrRu37VwayRxrVGxmkjljhXLcErAYoe3DSUmtS8nqVE5WpXJFsVT4tyPwIDjR0cOKAdc0MuHQMasFKJs3wc8jGRkZTMro2pVqoRxZ9bpZVr8uI2++IUNr+2V4ICVrBlKycjClQhgB4zqDhemBVWDnRkfUUpBaMyCjq0dkcNmQDC0fksHXB83yhlkG3hiQ4eX9ZmT/Zr/kEUA+MggVq/unSR5pPOSGZM3adbJi1SpZumyZrF07oKLabY2bcHFitJyYsVqDmJ2yKVpaAu4iR5jZmbj2Ylyqtlhz3tcNuf7tXmfh3xPvh4l1C5QVa8XCzfUdZ+o512d4II7FEJYU8nXNGOBkGL++8k1ZsXKVrHnzTRl4c7UMr1sj6cF+tT6l1w2oBSgzMCjZgUE9X7CO45pCbJ3GG7rqx5naacYSDSEHK5TGhiG8AHFaQym1emOBmw8WIog8CBxY70ztMyeZyrYe6raGjUXOFnIja5J6fWMZfdPEzaaHUipyNI4UrnFbNGJ9Zp/yMpTMysBoWq99DbXA/TTUryIWA7zUSFrSiCdNmoxPdXtqqqtzk8FFnZJ8Oiu5VEayEKjDGdPfJNHnZI3ITKE0EFyQ9mBTa0fChZ6XkVROhpN2X4B2j6YlkxyRdCotmVRO0rjPNMs8r27Rom4ml9F159EXjNrbK2w7Y78Hi6W9bZer3Jwf9IE5SWXyGiucxf2csf+mTVa73muu+FRjkUZpFhzbtKSHMpp0hjb0Iw43kzftGc5IeigtudGUCk4n+7gg5lxlakzBYvE97nuuXstU9OrFddYSfmdKc7OW45VXXpGHH35YTj/99CnvDFLjH3vsMY3Jc0Ds0F577aX17cqB991TYQCob0eoQQXDxIp1OCCDBEodv/3Yxz4mM0mpda5axt+4H1cAogZWIoxSHReT/gTxKnCxQUjlxosph1GU/IAQQqYpgqjt/dKZGLSDzatrFTFw47adhdtjxHR0mn3nDhLMaSdZaduaJWdvWzty1/FQ6xw6UHSaFbYN8JkpPoqSKWP2ULQ9n8tqh5vFw8Au/lkKtggxmx7JSHoY2X8mSLzwYLPgusyrK0c78OSQpEf6iyyUaQi0dEqC0ZgEwzFJj8ZkEFl3ebjPIE5d0ZLYr3RGRS4689RgWtKwdkBQaukVkUgyK4lRI3JMfE1Yoj1JCSdiEsKDOo06XWOdPlqNh44+eCDms3mJVDjXjoAr/NvOxAOTEnTlLGdOASwVaLBsBs3E57ZVsvi7ZsaNIoFXKuxKN2lb3kp3DW3I2HMEu7eC9jnuwFqo+K3C/KDONFOw/OW1LqFeK2nzQMY51SxNPTwBCYRtlyZqpyFTFIMVFSt2dqsd26cFalFDTbNGMYgx1mC1iuN85vK6PsRqQWSpW1gtYEbsFM/yAKuTsUapeBpN6XWWgWjAPZ6BVQkxi3YRbgidrF1I3Jms3hYyafu6R3Z2OpVV0ZQdHtD7XS1z9uwq2Y5oYTCn/Y89/Z9poymVgm1oH2HvA/YFFlS0C9ZCxNA5oQalYkrXqcWHc9rH5dMpySO2LZiRbCSi72kcn1oIi0Nb0KdoX5BBX5SXXMr0c04iFbaJ+wX7p+fUJbQ10cYq3j4seuqalaApYKz9bUmJHAza9PrAtjKSS2FQm5MRhAjY2cNIjIrheOrxwPkydTAruUyNb8YUSp9k8Z8ZpRGTtQR8oCVaTsytXTv2AAMoEoz5Wp966in57ne/O62dWb16ta6vtOwJXj/99NNlfwOhVu77eN/53Hmv0nfKkUqldHEYGBiQhuN2tzqv7bgPzeyrhqsjKn0fvY27xEEpWpoAnZIpbDTuM+3U3JXTi9afGxONZb5jSmaUnz1Bk161xmnx+vVh4J42yD0lVwnI8MNSriwH2gQxhI4SbqNK4DOt8ZUp3g93x6QB91if8+Abdxgyhc9M7JSJXxubz9EkD6jlEdvCQ0SFl/mbsuPBFFiVcnkJp3ISijkPG9Ppq+A16cLjj4XdRmdO21JKXa1Fn9XYY6prtYYJyQs4Qq6KUJsucJnaYVhms7Zlp5yQm3KQtqs2WwEMWHDOcY/g+tB7AeLLlKZxCkUXzTxQBpOsgoK4dnFcWN1sEWEyWS3JoeSO7Zp1vj8ORzypeLEHSbi/8Dtb6MNFF8J1lw+b/S2zIqe/0GvYFjWa5YkEFxVntljX9tt9jL1PFfsaPUZmXUZMQexP0LfYqNvUrrWHZ4Tug/YJcBPbyV5OX1IhSlmPow7wnIGuGShp/2Dv10QUyuE4++LqTzQmtVCg0dmgfS3odk1fhJ9oP2OLXRwn3a59ziqB79VsLW9RUJy69Dkci8V0mQkt4XcmLeZ+/etfl33/vPPOUwV7wgknSCsAvzkmuyWEEEJIbTQqGQMl0b70pS8VvYfERkxY30yUClJ4GzCHbun7KCTcUDFXCQQOfv3rX5/WOubOnavlJlasGAtyB3i9cOHCsr/B+xN93/mL95Ax4v7O9ttvX3FfYJ51m1xxoNdff31pKHYZBFMR3wQAm/drtIJoOYsyozeNXxqLGyqHBrur28UVFe76TOuLueeQKecuU/fd+O/gtyYuqcxPnZpadkbX2PvYpmuCaZStqICWtwhFCskUxZ/BjRfQrDVkKlZCsxuxn5Hi/XD3S1qyAutDUDtcZuMOgymzobW77JgtM19kYUbdsam5sC3UuYsEC39jOQSx225We55dJEGgHh8KLON7oYipReXMIDDuWDju0wrn2u1yLHU/VjFMjG2jtA5iNRz3qjubtQGUGJQL1qFyblZYRWq1RBZRmKzeRSAkQZ072NxDAWQ62veDFsTVYn3OOasM7hOdBgr12XDtILkghKxRY1Uy95fjCjf3ZNk2aCBhUK95LXuBEiS4v/A7reRr7je97nTXzD0ybn/sa0ivYbRFX+Ovud9RxkSveW2/3ce44i/LNxLHyKxLj5XtZq3Yt9joVGWa9IKZVkwRb73v9XdjBa21L6nglDMJC0FtuxbL1lKGZn+0fVUuCKdv1f21zH67969wzzn3kR07atpp+iKdsQeuf9RstI+Tbtc+Z5Vod6ucM4/pLbfcUvReOatco7REvejr6yt6TsPKi0LB7tdTmRq1bmLun//8Z9EOTQXMuYm5ye64447ClBaoQYbXp5xyStnf7Lrrrvo5psFwuP322/V9gOxVnAx8xxFvEGaY3Pakk06quC+VzLfTpfSeHJteZwo/doF6b+FwXLPLULrAufkLIgsxNijFEAyUjV1L4AESNcIBDyfHlYS9w0MFHRGyNYOR2LjYtVA4ptmc2IYzT+LYJPHmgeJsu5Q4yizY29aHjku4og1aPw4ZoRW2DfBZOBKRcMTUmSpsWjvusGbKQRR1hgIygNiqkpEjttiDEh0dEYl2RiUUi2jZDKdzNYVRTYySliCJd0m0o1djkpwSLboP8U6Jdc2SeEdUoomwdMcjEkOZEXTm7nOH/YpGJBTF9iLqYkW5Agi6cNK4b3HMsM+xvpjEumMS7UloTSpktmoZj2jMlMOwBwA6RyXKRGAaN6zHzlQFhemAbNxJEY57SN3riJ9ylfOYyC2vlBN0jqvImZ6s5HXxd+GuC2nBYX0oa22uXG2urpJdc1xcpZe201bnLx7kE66/8obHXKVOgDruLZRWiWAez5yEElkV84iHBEbMIWM0JoKpqnBNYVCiAwE7s9eu9Yfz5hTaRdkR1I/Tc4PaaSFTRw3gfkBdN3yOf5t6gHZlZ7NRnSIMAwrNcI9FNM4ymkaCUU6CqayEbF+0ZrN2RLQoddAZoDhzP9vCKGpf953RkERjYRP439mj7UJIAe7JSAL3X1AiUey73f/Y09yZNtriMhw2fQT6GbeoxIBG7/OwqfvmHtTZNQB1negnIiHt43I4njkIJdz3QX0P+6mZ2a7DYbZvizgVt0EJxVCOBK5Ssy8qanWwZKbzc+5VM6m9EZDu7ZvackYUapKNLdKK7nGdIQbXB/pU1AINax/X4RTytgL67wgKDuvxwPmyM7wr9POmKJWZC8HPdeYmPZ1fTeu0tHRHrdaqaAO0RD0tjI1g0mKuNEDQUa+/+c1vZN999y36HNkkU1k/KiPvtNNOWg8GmajDw8OFisiHH364LFmyRN2g4DOf+Yy8973vlYsuuki3f8MNN8ijjz4qP/jBD/Rz3GA4ObAaom6MU5pk8eLFU54DbSroM3eCZ6OpWmR3xjrbZsntWsU6F+nslnCiS8LoUNE5Ot2ZFvaNavp7pCsiPQOhotIk+ttAQMUMvoOOXx86Todmz/EagSCKd2ldOZQjKbdtpzPXcgmOUEXZkigeKGHpSmbHiclu1DhDfS88WGJ40KEzQ4dqHiQouBuNhiXS2SPRrr6i0iSOiI31zJZYIiKReEin9lHLANqPjhFt74yrKJq7ekQDxseVJomHdUnMTmgpEMwVC8GE7FPsKmrs4gGLYsBDHRHp6I5LMDhfrRKlpUk6+7p0VorZPTGZ3x3TUgmo16YzKGhRuoDOBBBKdEike1Ris/FgHNaHTLXSJPE5vaZKP8qmoLxFEA+hqMQwqVM0LLmYJbGsSLRQmsQEaLtrzFUSOrnJCjmHQgwgYoMgzkwAu4o4R5xBtLlGmYVHVZGAc1lei2osVotjGttX3X8nPtP179IYOlOPzSRLON/VGCadicnMc1s0uZcro1z/nc/JevPnSK4zJKmBmKT13A1LOhKRTDIl0lG5NEkgjtkVxia2N2LFWH1x76C+H8h05lWUwypWrjRJb0fErg2Ia2ssE1fLccBKqNvCvMdJneHAoVxpkkhHXO977GthAKMlX8x1j2K8PYmorO6IFGLFMpFIUWmSaCIiiXjEiEz0F1qR2jnwIZ1VIRgNG3HZkZVIZ1aCrtIkuP8hKo0V0X4s2XFiEKsdGIzFw5qxntZyIsgjiZj5oWMhiWpx7pD2VSiAXTRuhNVea+pFTT+TMOt3SpOY96JGTOkcyKFxYhLHGedjFFPo5UOSD5rSJNp2u1ajM2OK02b0o5iuC+uOdkW0DEnnaEYirtIkGMxFu6ISSsRUfKvQd2ZEsUOmzXPBLnnSBAa6SSX11YzluZaoF9iGL8TcE088Ufb9d7zjHbJy5UpdpjM/28EHHyyrVq2Ss846SwMPYU277bbbCoGJr776qmalOLzrXe/SejAoPfLFL35RBRti99x1YZBhi5N4/PHHa9Hg3XbbTdfZyBpzwNjcxi7CiofE7V6163uPSxews+ncs2WajZiiwYlZC6Wjt1N6OqPSA2ETtmuEYWqaWEJivR2SmDUii9cmtVNwFw1eEIOYCWnR4Eg3CrcmNPNOR+b2fIsQS/HubslnFmon7i4ajG0nujuksyMqvci6VOuY6XnQoUFMQSjNG81qgWJ30WCIqN7umBFRum0jJNUqh3leO6PS3ROVwb4eCQQ2UpeOu2hw3C4a3D0rLgv7EtIbDZtprPB/PNRgLZvVLV3DSZk7kJbONUnps+tglRYN7tu4T7qWzJXw7Hk66XYeMxFglBcMab24+T3xQtYaBFuqJ1a1aDBmguiMmoK7OuUVOvmEmdRbLZKRsGRHe1xFgy1jpXEVDY51xCU2a7bE+uZKbNY8ic5dKKHOPgl2z9GpzzDdEmaA6E/lpB+CeShl6nKNZorEXKlFDuBcIQMQwlktdI4QKkzuXqyn1OJrlem4bRFXEG74i9IwZYoGq9AL2hmf6IEKAhBlNXLmCq/iytXAcTvY3cTe2xZGW5A6Qs7tOi4EqKtwNdYR/BZGolLNOG7LjlUOE7dnk7JwziyRzrBYvZ1iJfvE0hkgTHuzOTPdE64xrbcWDEs2FC0qGpwJxiUD646dPYxrIRjVq03i4ZwKEpTDmNMRnbBocFcsJB22u1R7RSQkhOMSSPSYeX6DQenEWlGipLujQtHgHon2dOlk82rxtUslwR2IgsRzExHJ95nyHGtgSYqExxUN7uqK6uwnmAGmM4L6d0YYO30X+oFwIq6FefVwalLSWNFgWJ6jXR0qfox1ypwUrB/9AIQr+gJkqyPJKps2xX4hqGLxiCQ6wzKrI6rTiuHYqFvWDlWBFRFCCaI135OWOMRUfKxocKw3roIXc7SaQZxtHdMBJbYflM5YSPo6ojrzRDZsZlZBHxeJwQIf1kEkvALm2kQ5QsxcEteBVwyF2Od2FTLGY0VFg6MSn90p8VndZhaOeKc9jZ0z5Z0553q7OtPsoW22a5k15mZWS/iZsF9MhG5gBq1kCr3rrrvGvXfQQQfpUgkIy3POOUcXL6hpPmQVcoXCTMWG9ML8lc5ibuCuhRsXpvPqmj1bOnpiMrcrplM2Ob9GxxSMd6ig6VwwKnPXpSS2Lim9kdDYdF7xsHQu6JCOuZ06T2kw0VGobq9T82B6qu6oDPXFJRCca4p7uqbz6pzVK53YdndMO1OMjrXfgnCJxrQD75iXULGy/nKraDqvnr64dMxNSEznRzVCEm0M2paKuV1RWdSbkKHZaXWnhGObFk3nlYAQ7IzKorkdsqQvLr2wNNgV0U3bO6Vj/qxC5hlqbHWVTuc1O26m81pvvsTnzdW5aSXRY2YdyIkKYxzTRb1xHf3jwTLZ6by64lGJ5PISC/dJxOqScHdCgukRCQ0PSCiflmByRII5SwIoUYB5N7UmW1BCcVgMwhLEnLFd3RLC9D/xmOTxQNFOfkx2IGZHZzGwH0Dr9SXqOJ1XYMztZMF9FNPptSB4dTqvRI/+DU9yOi8pM52Ximhcf/Z0XpgWS+O0bHcXpsjCvkGIdVohezqvcB2n8zICS2Mo0d7cWH05taFn8SiFhcrMkmKskGOWSBxXiHvd74iZ4SKYgFCK63y67rlZs+GEDKUyMjzN6bwc4ZQPYq5VDFLzEoSYw+wasBD1jkh8dpXpvLCg0DMskPmsisXOqMgchB7Y8bSzMZ1X5/jpvGZ1RFRszU5EpUddw7h+zOwEsESi/eHOTon1mqnysLin84KYjHQndOCpA1DtvPISDmAmkrB0x8I6u4wTK+iezgsWO73numM6L6vjHTBxx/ZMI7BSdicKmbtFc7P2dhkx12mmNHO7eTGQi9t9IAY9yc6IJFEk2Z7Oq9u2WuI84JzgPbVe4hqGNbKrVyKzRyUxOKKWQbhzx6bzgschrkXK0T/ju8FYXHIQgq4wFxO2YplC3qroSstb+az4XEMsc/7QEtPlmGOOUQshCgXXwic/+UnVLYgBnLGYOWI6rkoKznk50ThKx3oFd6rrhrBFXKlVrnPuEo3LwYMDYqqrO6ruF4wS8XAy81li4uaERHsx+uuSzgUpjVeJr0vZHXpALXKJOQmJzepRF6NONK0mE/OQ64yhs4yqNcqIoj7JZU3sArbd0R1VUYXq7+hM8TBDB6TTzCCmpjMu8d6ETqGD0Xh01JRxQAxJ57wOFVPo5CNd6Eyj6ipCp4Vtd0VCKiRX98ZNjEokVKgPBbGDfertismSWR0yryumlooQgpqhwtD2eKeE+3qlw3ZTRXtHTYFUuHBg0VDLBIRkp0QXLJBQ9ywJdM8WK9qpD0ZsC+1Bhw5hFrOPR1arrwd1buIOTJYdjUhHDJaBmPQkYjK/p0M6Y5gAPKbf7wxZEkwPS3BkrQRgWeyPSH5oneQx0XpyWHL5jOSSabXqaPkETfpAp476ZPZMCeGoWLBaYM5PiCm7REhUPTOw/uWlOx6SWYmo1vtTC6UrjA3hSO5ZHcaK5DqJKOZB4XzHcRvhW3o9Fa7zYMEdZEpTaM0WY00uTBjvzGLiKrNTuJ6ddBCIJGeg4jyhNMvEjv0yf9XaZJfmUUuFvS8qFnRzJqDd2UyhTliZe8y5uxxR58QfmeLDdskSO0yg4F1QKy+uyLgpQ6KDFFvA5rISwkT2SUxDlTTbtov26s5g7mrn/JUJlcB6YzEjYCPxDolmLenKW9Kbyxfcq44gNfXaspKHdRCC364pB8EctrISRNweakQGLdFKdvg8GJEQLFOYbH54UCeA1+mt7AeuWq+jiMGMjrmA9eDlJBIIq7jvi0cKLmrcj3C7uucnhXDDIA4zP+BzWAodkWwOetBM2ZaAoOosJD64QwqiPR0S6UxIEEJU57S1E3kQVxYUdT9jG85cvBCTiCPEtdoVx31mBk/4XjQ8VkdRz27EhI5g/ab+W4mY6+4wA0kV3FEjxDCg1HvGDHRwD2fsc4L6f7C8QlR2xSLGMjeuzYj9i2j/E0x0a99qEk4Cpjg6hGo8JqF4TD8LdfcaqyCmr9NBA65BU0/R3It2IpV9r/raHtcIcek3wTqNWSngzsXkBdUYHBxUFy8si7VQk5hDVWSk/77zne+sunHUmsPcrSeffHJNO9DquF2tY91LUXiua5hlHowq6Eo6fhVyRQ+9gMxd3GtcfNGQzLOtcrAeofPFaF0FZDiqI774gnkFa09mELMm2GIOwq4XYq9LutabJ+G5CyTY0SM5ZKrZWZ4QMUtmxbUgKKbMGRiK4Jmi20ZA86zuqMztisti3bZxc5pky5DOtxmZPUs6F49oXEisJ6ojU21tOKgCM9bbJZ2L5kqwd44EMHk8YsFsFwesAgCdM6reozo+hAo+h+VgdmdEO/n5HTHdNpa4+iXydtt7JDx3iQQ7eyUyBxOi20Vbg2OdPKbuCia6JDprnoQ7eyTY2Sfhjh7JhmLSEwjKLMtkz6WsoKTzARnJB0xxXqcunx1biGOF+DiNMYxFVDTjoWBcJLYg1wy8tHGlIKkD1r9MWgLdIxLKZCQBawosOrag0VireJd+F+3BnJm5SLxgscK1gIcdLCR46GitvQqJv2NCpuSv+zu2mHG+HygVP3btQ0sQMI8rO2xG4qFy8W4Tj9CL6rUVZlkYew2x595R8yegnRbq9pr7wlDYUkm8W0VcA6/CcXG11fmKWnjxDb3R7CxzuOG0bbAA5lXUOSI24BaxhQrhJmxCq7TB2qjXAIS6naGpxY5tZYm5b516abZlsSjuLxSReBSuWHsqNhU7sKgaVz5ckhHE3KLuIuYATmI+Vkx5l5JsclRymNYqnZQs/qIAdi6rAkVd6sGIKWxszyQRD+O6MttJRALSGw/rDAuY0QTFhHXmibwteGxLoYZk2K/VOobziOu5s6dwiYTToxLtRRFw415X6yDcqxA+SK5QUYle0lIrO9qGPg3bw2ARoRw6B6/t5sXgFda42SrocP8Zq6Bz/GHtkq5eCWfSJoYNlm13bGpHQiTRKSFMtRbrMufXjmFWIQkXazZcSMQwFnnTFljksEDs4W9hKB6yLbJds/QYquW7d0hiswe1SLMeY6fdXb0S6kLYxGzJw3qL82AP/zVm0JWpOzaric8FHSkLZpTAXK/4i4QOGAMw28QXvvAFnZnivvvuk2QyqckamG4UyZu1ZtPWJOZgdvzIRz6iMyfst99+GlCIBALEnKGIMDZ67733yh//+EcNHMTEtqRy7FzpBMnFGa22paMUl5BzHoLrL+wyqe6hoLojIWrQoWF0OjYwxeiwQ4JdsyWay0tnLidZWOmGTeA+RI0zMg33zdFOBZ2vCjHHOhYNSyaeN25GTL4ejxRGpmbbxr0KFydGx+rm1H02gdgYmWrwPjrOeMy44PTjsMT6YJHrUJcQgvvzkVghXg8PKazPND+gMTEYHePBgxE5tq0TwqMjV/cuHjpBY0XK5SQUiambOJKImxieXEYDyNHRRxAMHcek9Qm1iAQRJ6gTu8eMKywck1ErpEV8RzJmEvRBTAWWyUkALp7ClDumY9WkD3tmBTzIkP2H/dHt26UY1JoW75Z8GMHgcQkVKp3mTHKEihR7FgTnPCMJww5qVwGHydzxGtYq+9Gh5Q1gaYS1Azd11bnjxguZwkdFX3MlAZQ+OdSdNDbNVSDgSikpzCJQY87duIFLhQlTXYlEBcFlW6wKIevulP8J2la8zuJPyrVVLTq4k41p0NyjTo3YQkFvJ9O2pOh30brsTHGnXIk9UIFjEdcQrnkIuS57Vohkxh2/aKbW0zg1+6HuThwvPojGahWG8MPuIbFJLVN2EoftgnRK5SAzGiFs0FeZQMjMRiFhfS+ZExlJpmU0ndElien5IOZc8ZSOixrXunOPGbOnsVBJtMNYVRHXiCnNogkJugpv435ASIa6heHqta8jeOAj+YB0RoKSjYdVFGl8p27fhEpA2OI9DWlACSK7dItz7jR2LZaWYCfuPcT8xcygDiAbOYbQhU4JdOC+d7KNx+LTTGIKQleM+z2bCxe2jfOgSSIRCMqxckpa5DcU0z5FDwNEK/rCeIc9ZVi+kByD/Qp2dEkeLl5Y5kJhfV7g7AYDeD6Ydaq10dH8hZHHlHID2sbN6jeuu+46tbZhOlEINgi3q6++WmP5UMwYM1RAZyGE6KMf/agmadRKuFY/7yc+8Qm5+eab1UyInenv79fPcEFj3jNMe/HII4+oyiTjb7RxgaqVSpTog6NM9+y4plwPvndsNEv/okNBJ2ZcgQgANoJCx7bhqORjXRJesJ7ku3qlo3euWFl7/lUnbd+ZBLyrV0emKmZCMRMrBeuYBhWbETCmGsLixKBhVI7kAEdQJeyOVS0NcBNGEhKcNV8iKCGA2JH0qCkIpkXbTDwfrGLB7j6xoh26r7ptWJpCEJJBSYQRi2OSEUIhZLdGJRI2Wa5xuEmjUXW1OK7OeDAvEclJEPOXYsqf9Ij+FbTbmX7JOayIG9K0Rrh+0clGzJRLIcRpmQcsLG3hoOm8IRYXdZsgcTOxhqVunXBhrk/jpsRDzdQMQ5yLfY7VmobOOmo6bn2zxA05rragLep0GW+x0gGB/T3HZThR315LYlLNuUtFwsnMO1u875OgykbdIQzj9JFzb5Q0PDDNNgbKuobtdtrnQ4dpQWM9rvogs49LqVhVV6Vt+Is4c3BqVq1ILuqaqcvlQna7iYHJiDWxjtjvwty4+HU+W7CoBpwp4Bw3q9P3IPYTrsgYAvfNgArXqboccb1KQGNsNQ4Rsxhg2i5MoZfN6lR6+XxWMpidBHMx67RYmK0kreEDOvDR9HQkGHRqXCX6oELSjB4Ek/kO4aXb1mnT8vqAQt8D0y/a1xuD6xmCytg6tSSPXQ4J/QWsg2oZR9PRT9mZtIFAryZMBeFixv455wlth4sZg8hIwmSJwwKugtDS9WEn0Adi4JjMhm2L5Fj/h2MOwef0A1ojDAZcWCTjJvYW61fxmsO5cEQsRHTI9NGwxsEqF4ppeEfB4u9kQBRqcrrdrbTNNRvrr7++zvnqBokYG220kfz+979Xq91UqTlmDjXXIOiwAIi50dFRmTNnjpoK2zIurhYKgUZl3it6wy4oq6+KHwjF0wc5oi4gG/UZQeDUF8M9D5eEE3yMr6pbJ4JStBAuMQl39ZiYHmdUrJOgh41pHyNWdOBqmQtKEIVV4bqx0GGZwGJ1r2hHasB2ECSMjkwtUVo6wWQ5akeqLpY+jdvRTtQpa2IHvofh3oii/Ea3hOJdEurslVC8QwLaoYbsjt0uxKvWqLFaYo5wCtkdubpc4H7KpSTgVAV1bBeORQsPBj0YARMjo+Uj8PCK2J25EVtwc8LRjJFxKG+KfMZCaPf4grfaydpubfNvu//VgOWx+UTNl/GQsh/o1UbULpdjLRarCS6wKt+vEx7XTZixzRcV/JxcCaHS34+9NNY/Z0BQuL9K6uc5cbMFw3vBBWdb6Yw6M0Iu2mGSUXBPI4YUFmAVcjkJZJIu1zY2mDODL83kNF4Ap99BX+OIC+P+NclHyATEc0GLetvC0rgB7RhLtTij3A7mIU7arl64fNOSVVdvRjIQfNmMZPAe5qfVarpj8YX4fUQHQVhvEPrMZCpD9dpojKdT3FiTQ8a8/ibWFDUZTV8SiGKf3PHIAZN5aifcIDlFj4F9WLBO59+a1Y7Eo5Kxl22sNZZQ+9yiGSgeDXGoBc+xDzpYdM6BYxm1zxXc7hqrZxJ6CkZdTLvmOtcmCan4Dnc8PK1cmgQu91Zlgw02UGPYRJMY1MKUEyBgCsTSbsydM0djAv1A72zz111TSQWFO57CGYE7rpUKmYXmr8vtYndIhcmmnZT7Mr93AtKd6u9aGSSXlkCuSySfkRCyHG33I6rbR1C6IBTSmAGINieWTAoj84iWbUAsDzp47Ac6eVPc1g4ztFtrAuGN+0szybQZdq0me5J3KzZWZ6tglbBdS+MC7jXY3tQBw/9CztSi+tsJTsYEcWZmu/aDw6xx7GQ1QKk0StT46YHhG+p0sJ3iwfoQd7m/nSM+Ua1jd4yf849CTCPEpi1Oxsq9WGLFy2TT2YOfwiwl6iQws5loQpMdq1gwJttzKJvYQXNTav/gPibq/jcleLRkEWpJOv3QuJk0jIiECzeN0i72fMl4rdY49ENl4okr9nOOFdNVJ7C4rfZA2YlDLun/nLmezZywdnurJNiUS7Qp10cXna+xQ1WWMY/xmGiuNWYunrA9AC1QNLiV+dOf/jTtdTCbdZIsWW+9Sc+ZNpWHZS0WwIl0Wen6ijq70vUURuhjI3GnGKu7AxubMN61DadjsS1k6gbAyB+xOepKyUogm7bjwjAyLZmgHu5NLRRsj1DtSpk684QmUpgtwtrnhLa7A/kLo9XAmKC0LHzZHr7qqNiuJ1ju4eE0wm39cgfA28dCP7XLDow/5tUsZZP5kEzbGt7E7arkQtbvj/f6jv+9y2SkQs5xz9sW/8IqKsXlVrAAa3wYBmroA5y4MJecKPUdOPdLABYxHYC5+hhbbLn7Irf3AYM8uESdONGxMAOX4Cpqc0nSjXMMXO+X3ZbbMukWchX6P22zS9QV1lej0HCfy3Lirtxnzu8Ks2m4pvaq5bYone+TtC4Ucz6gnMXDeW+iB1lplX5T48j+fZEdvoyQc8eMFALWy7uJSoWcuyMzVfRNvl5hX91zy6rVzYzu9a89C0JBwNmWMQSRI6ZM3Z5aFmAsy08r8wesCS1h4wSVY53QOMTC3pY9jkWB+hM8YN2B95W+Q1oDP1ohJ32NlVjIiq/z4KRdwc71H6hwjIoshHZcoeXMu4qBGvqEMMSWqT2ov9YYPsSw6U4WStCM+RndqqdEyNn9TCE8pYJFqPT9ov5OMcXa3fGD44qzu4Scm+kIuVpE3ETf9ydlLK6kIvfcc498//vflxdeeEF++ctf6owUP/vZz3SmKkxuMBko5nz+wJhI1JWG4WkGlXsk74qlGOdqKGy7WNQZQVd+InQntCfkWKscl6rL/F/o7DXz0hmFO321yzJQqRRFBauYNdkMRPvNQp5jNTNmDbSzYPOjuCEze/FOZDWc6EfG1evK6S8aVE70W7tfcg24Srep4s/tslWB55o6rpyL1bX6gjh0/Nt2CMZEFOIXXfeEe+3BSQi5SgKu9PtNhU+m8/I7t9xyixx22GFy6KGH6sxaqVSqkI/wjW98Q6uDTAZfz9dLan+YjlnNJvjeOCFXCMYouDcDrkVrTNklQDBVjS52ggUSHpykA3v2rOIYMRVSdvyZjsztQrPO4rxnTwzuFnJF7XbCWUr2bez9Gp9TpT9oZ2VGyEy6uO37TfsDu08wcal2H1BhcfqFQt9Qrn9w+h07iUCTpVBuRGtqugo2O3Oeuvan4OqdQPBVPC4VhFy51w7VLGwTCTn2Vq3H17/+dbnqqqvkhz/8YVES6bvf/W55/PHHJ72+SVvmMHEtSpX813/916Q3Rupr6Sh1d5aWSx1ziWgJe60pXo7yMTKFfxXFqZWjYn9fWs6h5h9O66ttQ6vGknndxpmwQrbDuRtHqVWtTGZ4PdbvjhUsqgxQyQ2r/7Gzy22hV/AGOKUgy8TKTdf+VCTWahRybs+Lb3FnC9eLFvQMPPPMM2V1FBJLMYf8ZJm0ZQ4mQBS2wyS0MAW+8cYbk95ouzPVh4UzxZCzoMCos5gSHcaapmUyijIhnAyt8stElqpyBq0pGbhoGSOEzASu/qWor3NZBJ1/Fxb93JUpq6Ejpl6m9rGon4kZa2yPBLLykZ0fcWr72YNe3fQkhV5LuFbJpMHMDs8///y49zEBwyabbNJ4MXfrrbeqgDvppJO0gDCK3X3gAx/Q4D0UkSSTYJzrcOJl/M/HPoOAMyJu4u1RVJHJwng50pRU6O/MnL/V+0LNlrcHxmF70bATnT7NLCjUHosEpSMalA78DZu/mLECxYtRZBz1N/HdsQE3ltZ1nZop7eq7tGLM3HHHHafztD700EN6jWFWCMwQ8bnPfU711WSZUgLEvHnz5LTTTtMFvt0f//jHGsiH+msoKvzJT35SLXfthjHXT3yLOpXY67K9Vu0NfEBbusF8Bs8B8QPlstmdK3OiqeSKYuTsMJjCV0vK4BbW5/rr2BadBLKmcLE2rM6ctBxnnHGGTum15557ysjIiLpcUYT785//vBx77LGTXt+0EiCWLVsmt99+uy6oCI6pKJ588kmd3uuSSy6RVmRCy5kzlc4Ey4zuKy0qhPgS3pvNN4goZ8gb84gUL2baLXv+3ArvTfQdMxOI7erFXLeYItHeVqVtlk3o53XmW3DOvvSlL8maNWvkX//6lzz44IOyatUqjZlDaZKGizm4UpFS+6EPfUg23HBDna/11FNPVRPhT3/6U/nrX/8qN910k5xzzjnSyngl1nhzkpmE1xsh1akltng6S607Mc7AoLPczDDO7Bv1XFrINJdKpeTMM8+UnXbaSTNXUYIEBrB///vf8ta3vlUuu+wy+exnP9t4N+uiRYvUNHjIIYfIww8/XHY+sT322EP6+vqkFfHCwkYImRma/d6u9zydWkB3svUYm/wYkmmguotFgyfirLPO0kLBSCS9//775aCDDpKjjjpKLXMXXXSRvoans+FiDu5TbCwet6dIKgOE3EsvvTTpnSGE1Earx5O1evsImSqTEcsU1v4D3sxrr71W9t9/f3WvbrvttpLNZuWf//xnbYW46yXmkOjQzui8fRMc8JlytfJhRwiZCWqZWpA0lmYSZZWmVWuX9lfj9ddflx133FH/vfXWW2vSA9yq0xFygDNANEjssePzhla66dv1WHp177TKtdOo41dLiEkjj2G79qtTPabterz8Ti6Xk2g0WngdDoe1Esh04dysDcS5kVrlIUH8ATto4iUz3Z+VXu/1jgv0K5Npo6/6BM7NOiEoZ3PkkUeqRQ4kk0k58cQTpbOzs+h7v/rVr2QyUMwRQsgM0+iHbysIHl8JFB/ju+PEOnNVp0R1g9q89YBibgZohY61nah359iM577dXKzEH/jh/Hsdk1zrveeHY0UmDyZZaAQUczMEBR0h/oX3pjdQkLTgsaKb1RMo5ogvH4pej47JzMPz3brU+9w2enDsVf9Trk21VE/w073TiGxWirnqMJu1hfHTDU6a55zSSkXqBTMqGy/kCAG0zDUh7BwbB+Pl2g+vszNblWZv50xb51omFCffiASIFjguDYaWuSbDzx1kvTuilujYSNNf14QQ4ndomSOkSQQFXaz1h1a5xtAu7Wy0da4W66DvjnWb9SF+gWKuxWkZ0z1pWXz3MCJNwUz0bV4kQkxF0PkHq0F15vgMqwbFHKkLjepUZ6oja8Q2KKL9Dc8PqQU/iKlK16rX+0X8A8VcEzHVG3cyI9hm7xymMlpv9jY3s7jhsW89eE7b+zg3pjQJqQbFXJtQi8iZaufgN1dHrYKukZ0hrT7VaYYq++3w8CX+o6nDY1hnzhOYzdpGTPQwabUHTbW2tlp7p0vTPjhIWzNT9zHvD+J3aJlrM9pJxLRTW0nt0CrXONqlnWQCmADhCbTMkWnBEet4eEz8+9DnuSFThdcO8TO0zM0gTR0HQWqiGc8va60RQupGPteAlTZfvzrTUMzNMLU8yJpFEDTLfhL/0G5JD4DilbQTVkOm86r/KlsNulkJIYSQGuAAlvgVWuaayB3rh+KVpLU6+pnc53a0ynkFkzxIS7lZWbuuKhRzhBDSIChwWg8Oqr0Qc+01GGt6N+uvfvUref/73y9z5syRQCAg//jHP2r63c033yxbbLGFxONx2WabbeSPf/xj0eeWZclZZ50lixYtkkQiIXvttZc899xzDWoFaUdmwhLSrNYlr+v6NetxI4SQphRzw8PDsttuu8kFF1xQ82/uv/9+OeSQQ+SYY46RJ554Qg488EBd/vWvfxW+c+GFF8rll18uV111lTz00EPS2dkpe++9tySTyQa1hNQTjoIbQzuIHC/b2E7XbTu1lUyMlcvVfaFlrsncrIcddpj+ffnll2v+zWWXXSb77LOPfP7zn9fX5557rtx+++3yne98R8UbrHKXXnqpfPnLX5YDDjhAv3PttdfKggUL5NZbb5WPfexjDWpN68NSKzNPs7l4mmlfWwXek4S0H76yzE2FBx54QN2mbmB1w/vgpZdekuXLlxd9p7e3V3bZZZfCd5qJduuoKQaaF6/PXbvdK4T4ApQmqfdCmssyNxUg1GBlc4PXeN/53Hmv0nfKkUqldHEYGBgQv+An6wytc81Jo8+Z19en19ek1+2fSdqpraQKuO2YANFelrnrrrtOurq6Css999wjfuL8889XC56zrL/++r56EHn9sPJTgHu7Md1z3+pCzmvaKdmj3c81IdLulrn9999fXZ0OS5YsmdJ6Fi5cKCtWrCh6D6/xvvO58x6yWd3f2X777Suu98wzz5TTTjutyDI3k4Jush23HzpV9z74SWy2IlO1zjbyvPjhGmznhId2E3Kc0cOPWGI1wDKH2HfiU8tcd3e3bLbZZoUFJUOmwq677ip33HFH0XtIgMD7YOONN1ZB5/4OhBmyWp3vlCMWi0lPT0/R4mfQsTmLn6x17WK186KdtZ7vRl4bfjnHXl77Xrbfi/ve6/Pt1bme6XZ7fU/5K2bOH881P+OrmLk1a9bIq6++KkuXLtXXzzzzjP6FGHMsbIcffrha8eAGBZ/5zGfkve99r1x00UWy7777yg033CCPPvqo/OAHP9DPUa/u1FNPla9//evylre8RcXdV77yFVm8eLGWMPET9eqgKq3Hy85hqnPSTuWY+LGdjXz4tLq1DXg9SPH6OLTrjA7t2m5CmlrM/fa3v5Wjjjqq8NopG3L22WfLV7/6Vf03xF4wOGZQfNe73iXXX3+9lh754he/qIINJUe23nrrwndOP/10rWF3/PHHy7p167SW3W233aZFhtsJv7llG5VMUcs6Zrr9U91eOz7MKNzoKm6nNrdCIpybRrhZmQBRnYBFZ3RNwDWLRIgVK1fW3eXazp13Ke3+IG/XxIV2P+/t2gdQvE3v+FRrC55bC+bPl/7+/oaHCj377LOy/bbbyLo7r6/7ug8/+1J5+177qWGGNIFlrh3x+iHmJ/xwLPw62m1l/HDeCfGjV6QpSz/RMucJFHMe4vVN6ifR4vWxIBSyhMxkX9ey91pDivzy+dDyM0A0I37IOvVLR+KHY+GXLL12xQ/H3etr0GtXZzuV+fCivdO5xr2+N0hzQMvcDNNOnaYfH5p+PS5+OV5eWg28rlPodYJQu7bfq3Z70d7pCDq/9Z2VsHINqDOXb462ewnF3Awz0zelH8SKnzohPxwPPx8fv7iC/CRsSvdnJijdnleivty+tGK7vRbyteDslx/7i4bHzNHNWhWKuRYRdH7ogLzuZHgM6o8fahZOtC0vHvZeHAsv6hdW20arttsP1zwhk4VirslGWX7oULwWLH44Bn44Dl4++LwWN9W25ZW7zi9uO69Enlft9qK9Xsz4Uu49v/SHBZjN6gkUcx7jpxvRD+LET8fDT8dlOsdoqrNveFUbqx5U20ajz6nXx8Cr9nvVbi/aO1MDGr8MnIi/oZhrQ7wWJ37sgLw+Jn4SP14KHa8tWl67Lv0gdr2aeq6R7Z7p9k61nZPZFz/2o8BqRGkSH/fPfoFirsXwIuXeb7R7xvB0mWlL3nTW24hjPtl11vtYeP1Ar3WdrdLumW7vdNfj737GYgKER1DMtSj+vuH9K9Ka8bhN5bhMt53T+f1MunRn4hxPZX1eCoN6tb9Z2u1Fe+vVzmbsj4g3UMy1GK1887dy29rpuHjxUJzMOr12c7Zy+71otxftbbZ7sq4wAcITKOYIIb5lJh6KpQ/7WoWEn0TfVKjUzmYSu8RnWIyZ8wqKOUJIW9OuwqFd201IK0IxRwghhJD6wAQIT6CYqxHLNvMODg56vSuEEEJIVZznlfP8Iq0Lxdwkb4rNNt3U610hhBBCJvX86u3tnZmNMQHCEyjmamTx4sXy2muvSXd3twQaHGsyMDAg66+/vm6vp6dHmplWakurtaeV2tJq7WmltrRae5qpLbDIQcjh+TVj28zVX8zRslgdirkaCQaDst56683oNtFR+L2zaMe2tFp7WqktrdaeVmpLq7WnWdoyYxY54ilBbzdPCCGEkJYBpUnqvTTQMLdmzRo59NBDVZj39fXJMcccI0NDQxN+/1Of+pS89a1vlUQiIRtssIF8+tOflv7+fvESWuYIIYQQ4uOYuQbUrrOBkFu2bJncfvvtkslk5KijjpLjjz9err/+einH0qVLdfn2t78tW221lbzyyity4okn6nu//OUvxSso5nxILBaTs88+W/82O63UllZrTyu1pdXa00ptabX2tFJb2p2nnnpKbrvtNnnkkUdkp5120veuuOIK+eAHP6hirVys4dZbby233HJL4fWmm24q5513nnziE5+QbDYr4bA3sipgMbKQEEIIIdPg2Wefle232VpW/eSsuq/7qO/cJDsd8Ak5/fTT67rea665Rj73uc/J2rVrC+9BkMXjcbn55pvlwx/+cE3rufrqq+XMM8+UVatWiVfQMkcIIYSQutCY6byMyEImsRtYR6djIV2+fLnMnz+/6D1Y1mbPnq2f1cLq1avl3HPPVdeslzABghBCCCG+5s4779TMXPdy/vnnl/3uGWecoSXEJlqefvrpae8TxOW+++6rsXNf/epXxUtomSOEEEJIHbDEytXfModosD322KMoVg1Ussp97nOfkyOPPHLCdW6yySaycOFCWblyZdH7sAAiYxWfTQTq9+2zzz5ae/bXv/61RCIR8RKKOUIIIYT4Grg/a63rN2/ePF2qseuuu8q6devksccekx133FHf+9vf/ib5fF522WWXCS1ye++9t4rJ3/72txpj5zV0s84Av/rVr+T973+/zJkzR827//jHP2r6HQIwt9hiC71QttlmG/njH/84brRy1llnyaJFi7TezV577SXPPfecNJorr7xSNtpoI90vXPAPP/xwU7bj73//u+y3336asYTzcuutt1b9zV133SVvf/vb9SbebLPN5Cc/+cm0j089gLvhHe94h44SEQNy4IEHyjPPPFP1d348N9/73vdk2223LRRlRYf7pz/9qenaUYlvfvOber2deuqpTdcmuJJK3VXYx2Zrh5s33nhDMxHRP2P72MdHH320KfsBPwDLXL2XRk3nteWWW6p17bjjjtPzc99998kpp5wiH/vYxwqZrLg+cP065w9CDs/z4eFh+dGPfqSvEV+HJdeA2S9qhWJuBsBJ32233eSCCy6o+Tf333+/HHLIIVrA8IknntCHM5Z//etfhe9ceOGFcvnll8tVV10lDz30kHR2dupoIZlMNqglIjfeeKOcdtppmpr/+OOPy3bbbafbLDVV+70dznnB/qPTrYWXXnpJ4yNg7ocgx8P42GOPlT//+c9TPj714u6775aTTz5ZHnzwwUK9JKfDqYRfzw1mWoHgwWgZD9X3ve99csABB8i///3vpmpHOVAC4fvf/76K1Ynwc5ve9ra3aV0uZ7n33nubsh0AWYzvfve71UWGAcN//vMfueiii2TWrFlN2Q/4JQGi3ksjiwZfd911Ktb23HNPLUmCZ/UPfvCDwufoSzEwHhkZ0dc4n7hOn3zySRXyGIQ4C6Z48wyUJiEzw0svvYRL0nriiSeqfvejH/2ote+++xa9t8suu1gnnHCC/jufz1sLFy60vvWtbxU+X7dunRWLxaxf/OIXVqPYeeedrZNPPrnwOpfLWYsXL7bOP//8pmpHKTgvv/71ryf8zumnn2697W1vK3rv4IMPtvbee+8pH59GsXLlSm3T3XffXfE7zXJuwKxZs6yrr766qdsxODhoveUtb7Fuv/12673vfa/1mc98puJ3/dqms88+29puu+1q/r5f2+HwhS98wdptt90m9Ztm6gdmkmeeecZKRMPWuqu/VPfl/+38NuuCCy7wuom+hpY5n/LAAw+ou8ENRnZ43xkdwqzr/g6ye2DOd75Tb9LptFpL3NvEnLV4XWmbfmzHVKnWlqkcn0bhTC2DFPtKNMO5gdvihhtuUAsj3K3N2g4AyyksOqX72mxtggsULigEkKN6/quvvtqU7QCId0Kx2IMOOkjDE3bYYQf54Q9/2DL9wIxjNcbNynK41WEChE9BB7dgwYKi9/DaqX3j/J3oO/UG9XTwcC23zUpp3n5sx1Sp1BbETIyOjqrLZrLHpxEgeBeuH7iPUK28En4+N3BhQLzB1dbV1aXZYkj/b7Z2OECQwj0DN2st+LVNEFmID8O8lHCxfu1rX5P3vOc96jZFvGaztMPhxRdf1BhNuES/+MUv6vnBPJvRaFSOOOKIpu4HvKIR2ayNiplrJSjmGuB/P+GEEwqvEYeBzo6QmbQA4eE6USyT34FYQDwSLIyY7xAPVsQFVhJ0fgZxNJ/5zGc0ltEPWW/T4QMf+EDh34j7g7jbcMMN5aabbtK4uGYDAx9Y5r7xjW/oa1jmcO8gfq+SmCPEj9DNWmf2339/fQg5izPf22RBjZsVK1YUvYfXTu0b5+9E36k3c+fOlVAoNKlt+rEdU6VSW5BxiSy4qRyfeoNMrN///vdaYBOJBBPh53MDywiCi1EuAJm6CCC/7LLLmq4dAC43BL4j+xHlFbBAmCLoH/8ulwHn9zY59PX1yeabby7PP/982c/93g4ErZcOEJDhOJHruBn6AS/J53J1X+hmrQ7FXJ2BqwEPIWfBzT0V4GK64447it7DyN6JG9p44421Y3B/B2Z+ZNlUii2qxwMWD1f3NjGyxetK2/RjO6ZKtbZM5fjUC3R2EHJwR6JOEo5rNZrp3OA4plKppmwHsuTgNi4d5CHeDP/Gg7/Z2uQwNDQkL7zwgoqicvi9HQhFKC3hgzlGYW1sxn6AtDFeZ2C0A2+++aZmsP7hD3/QDMMbbrhBXy9btqzwncMOO8w644wzCq/vu+8+KxwOW9/+9retp556SrPIIpGI9eSTTxa+881vftPq6+uzfvOb31j/93//Zx1wwAHWxhtvbI2OjjasLdh3ZJr95Cc/sf7zn/9Yxx9/vO7D8uXLm6odTnYhzgMWnJeLL75Y//3KK6/o52gH2uPw4osvWh0dHdbnP/95bcuVV15phUIh67bbbqv5+DSKk046yert7bXuuusuva6cZWRkpPCdZjk32Edk4SL7G9vE60AgYP3lL39pqnZMRGk2a7O06XOf+5xeYzg32Me99trLmjt3rmZPN1M7HB5++GHdv/POO8967rnnrOuuu07v8Z///OeF7zRTP+B5NmskbK267LS6L//z9rcym7UKFHMzwI9//GMVC6ULOjZ3537EEUcU/e6mm26yNt98cysajWoqPMSgG6T1f+UrX7EWLFigHceee+6pN1SjueKKK6wNNthA9wsp+A8++GBTtuPOO+8se16c/cdftKf0N9tvv722ZZNNNtFzO5nj0yjKtQOLe/+a5dwcffTR1oYbbqj7NG/ePN2mI+SaqR2TEXPN0iaU4Fi0aJHu05IlS/T1888/33TtcPO73/3O2nrrrXXbW2yxhfWDH/yg6PNm6gf8IOZWXnxq3Zf/2YFirhoB/Mdr6yAhhBBCmhe4p7ff+m3yygWn1H3dJ/7sT7LLx46W008/ve7rbhWYzUoIIYQQ35Ymoc2pOhRzhBBCCKkLOv1W/dfagHW2FsxmJYQQQghpYmiZI4QQQkhd7Gf5RrhZG2HsazFomSOEEEIIaWJomSOEEEJIXeDcrN5AMUcIIYSQ6YPatcxm9QS6WQkhDedHP/qRvP/972/4dm677TbZfvvtdfokQghpFyjmCCENJZlMyle+8hU5++yzG76tffbZRyKRiFx33XUN3xYhpHxpknovpDoUc4SQhvLLX/5Senp6dFLzmeDII4+Uyy+/fEa2RQgpBm7Wei+MmasOxRwhpCZWrVolCxculG984xuF9+6//36JRqNyxx13VPzdDTfcIPvtt1/Re7vvvruceuqpRe8deOCBKsQcNtpoI/n6178uhx9+uHR1dcmGG24ov/3tb3U/DjjgAH1v2223lUcffbRoPdgW3nvhhRfq0GpCCPE/FHOEkJqYN2+eXHPNNfLVr35VxdLg4KAcdthhcsopp8iee+5Z8Xf33nuv7LTTTlPa5iWXXKIWvSeeeEL23Xdf3R7E3Sc+8Ql5/PHHZdNNN9XX7gDpDTbYQBYsWCD33HPPlLZJCPGXZY4JENWhmCOE1MwHP/hBOe644+TQQw+VE088UTo7O+X888+v+P1169ZJf3+/LF68eMrbO+GEE+Qtb3mLnHXWWTIwMCDveMc75KCDDpLNN99cvvCFL8hTTz0lK1asKPodtvfKK69MaZuEENJssDQJIWRSfPvb35att95abr75ZnnsscckFotV/O7o6Kj+jcfjU9oW3KgOsLaBbbbZZtx7K1euVBewQyKRkJGRkSltkxAydRqSSU7LXFVomSOETArEoi1dulQ77ZdffnnC786ZM0cCgYCsXbu26npzudy495CZ6oD1VHqv9AGyZs0adQsTQlrBzep1q/wPxRwhpGbS6bTGqx188MFy7rnnyrHHHqtWsUogOWKrrbaS//znP+M+K3WNvvjii3UrhQLBucMOO9RlfYQQ4nco5gghNfOlL31JY+BQ+gPxaohbO/rooyf8zd57761JEKX85je/kV/96lcqvM477zwVfIhze+ONN6a1jw8++KC6fnfddddprYcQMnmsXK7uC01z1aGYI4TUxF133SWXXnqp/OxnP9O6ccFgUP+NrNHvfe97FX93zDHHyB//+EcVgW6QnXrhhReq5e7vf/+7fPe735WHH35Y1zkdfvGLX2iCRkdHx7TWQwjxSdFgirmqMAGCEFITqA2XyWSK3kMtuFKRVgrEGoQbxNqZZ55ZeH/JkiWaROHmpJNOKvy7XDxeaYkCbN/93urVq7VIcWntOUIIaWVomSOENJxvfetbWuS30UAAQjRuvPHGDd8WIWQ8rDPnDbTMEUIaDixon/rUpxq+HRQnnmqBYkIIaVYo5gghnsTfEUJaD51Lte4rrf8qWw2KOUIIIYRMH0sk3wAxRzdrdRgzRwghhBDSxNAyRwghhJC6oKVE6r5SWuaqQTFHCCGEkDpgMWbOI+hmJYQQQghpYmiZI4QQQkhdsHL1N6MxAaI6tMwRQgghhDQxtMwRQgghpC6wNIk3UMwRQgghpC5Y+QYIL2q5qtDNSgghhBDSxNAyRwghhJC6kG9IAkTdV9lyUMwRQgghpC40ps4c1Vw16GYlhBBCCGliaJkjhBBCiG/rzDEBojq0zBFCCCGENDG0zBFCCCGkLqFtjUmAoGmuGhRzhBBCCPFxAkT9V9lq0M1KCCGEENLE0DJHCCGEkLqQb8AMEHSzVodijhBCCCF1gdms3kA3KyGEEEJIE0PLHCGEEELqQr4BCRB0s1aHljlCCCGEkCaGljlCCCGE1AXGzHkDxRwhhBBCfCvm6GWtDt2shBBCCCFNDC1zhBBCCPFtAgRNc9WhmCOEEEJIXbBYNNgT6GYlhBBCCGliaJkjhBBCyPSx4GZlAoQX0DJHCCGEENLE0DJHCCGEkLpgMQHCEyjmCCGEEFIXWDTYG+hmJYQQQghpYmiZI4QQQkhdYAKEN1DMEUIIIaQOWGLlGxAzRz9rVehmJYQQQghpYmiZI4QQQoh/3ayNMPa1GLTMEUIIIYQ0MbTMEUIIIcTHpUkYM1cNijlCCCGE+LZoMLVcdehmJYQQQkhbsmbNGjn00EOlp6dH+vr65JhjjpGhoaGafmtZlnzgAx+QQCAgt956q3gJLXOEEEII8W0CRCNNc4ceeqgsW7ZMbr/9dslkMnLUUUfJ8ccfL9dff33V31566aUq5PwAxRwhhBBC6qK5GhEz1ygt99RTT8ltt90mjzzyiOy000763hVXXCEf/OAH5dvf/rYsXry44m//8Y9/yEUXXSSPPvqoLFq0SLyGblZCCCGEtB0PPPCAulYdIQf22msvCQaD8tBDD1X83cjIiHz84x+XK6+8UhYuXCh+gJY5QgghhNSFfIPMaNlsVgYGBorei8ViukyV5cuXy/z584veC4fDMnv2bP2sEp/97GflXe96lxxwwAHiF2iZI4QQQoivufPOO6W3t7doOf/888t+94wzztBYtomWp59+ekr78dvf/lb+9re/abycn6BljhBCCCF1IdcAy5wlluyxxx5yyy23FL1fySr3uc99To488sgJ17nJJpuoi3TlypXjLIDIcK3kPoWQe+GFF9Q96+YjH/mIvOc975G77rpLvIBijhBCCCF1oRHJrHnLuD9RPqQW5s2bp0s1dt11V1m3bp089thjsuOOOxbEWj6fl1122aWi1e/YY48tem+bbbaRSy65RPbbbz/xCoo5QgghhLQdW265peyzzz5y3HHHyVVXXaWlSU455RT52Mc+VshkfeONN2TPPfeUa6+9VnbeeWe12JWz2m2wwQay8cYbi1dQzBFCCCHEx27WxnHdddepgINgQxYr3KWXX3554XMIvGeeeUYzWP0MxRwhhBBC6kJDagZL45g9e/aEBYI32mgjnelhIqp9PhMwm5UQQgghpImhZY4QQggh/nWzem/48j20zBFCCCGENDG0zBFCCCGkLWPmWgWKOUIIIYT42M1KOVcNulkJIYQQQpoYWuYIIYQQMm1gP6Ob1Rso5gghhBBSFyjmvIFuVkIIIYSQJoaWOUIIIYTUBdaZ8wZa5gghhBBCmhha5gghhBBSFxgz5w0Uc4QQQgjxr5uVcq4qdLMSQgghhDQxtMwRQgghxL9uVhrmqkIxRwghhBAfu1lJNehmJYQQQghpYmiZI4QQQkhdYDarN9AyRwghhBDSxNAyRwghhJC6wBkgvIFijhBCCCHTBpor36D1komhm5UQQgghpImhZY4QQgghdYEzQHgDxRwhhBBC6gKzWb2BblZCCCGEkCaGljlCCCGE1AVms3oDLXOEEEIIIU0MLXOEEEIIqQuMmfMGijlCCCGE+DiblVSDblZCCCGEkCaGljlCCCGE+NfNStNcVSjmCCGEEFIXWDTYG+hmJYQQQghpYmiZI4QQQkhdYDarN9AyRwghhJBpEY1GJSeWjEqu7uselpyun1QmYFkMLSSEEELI9Ngw0CE9EpZ3y+y6rfMNGZW/yCp5Y9VKmTt3bt3W22rQMkcIIYSQafPHfz0iT8mQ9EumbokPD8o62UF6KeSqQMscIYQQQurCloFuSUte/lvmTXtdz8mQPCzrZOXIoCQSibrsX6tCyxwhhBBC6sLflj4rr8qorJDUtNaTFUuF3Hev/TGFXA3QMkcIIYSQurFjoE+WSlL2lwUSkMCU1vEP6ZfnZVhW5pISDNLuVA0eIUIIIYTUjbsGXtO4uZdldEq/T0pOnpABueH2P1LI1QiPEiGEEELqRnd3t1z8vSvlIVmr5Uomy+PSLwskKnvttVdD9q8VoZuVEEIIIXUlm83KvEhCtpYeeZt01/y7AcnITbJMnvi/f8o222zT0H1sJWiZI4QQQkhdCYfD8tPf3CKPyjrNbq0VJD1sJh0UcpOEljlCCCGE1B3Ii8XBhCySmOwss6p+f6Wk5HeyQl5+/TVZsmTJjOxjq0DLHCGEEELqTiAQkN889Hd5UgZlWLJVCwQ/IGtlG+mmkJsCtMwRQgghpGFsFuiUsARkd6k8i8PLMiJ3y5uyon+t9PT0zOj+tQK0zBFCCCGkYfzlhSfleRmRNyVd9vO8WJr5etGVV1DITRFa5gghhBDSULYN9Mg6ycgHZcG4z/4jg/J/MiCr0iMSiUQ82b9mh5Y5QgghhDSUO1e/JCskLa+XFBJGpisyXn/8q5so5KYBLXOEEEIIaTjvDMzSKbo+IosK03w9Iut06q+l+VFNmCBTg5Y5QgghhDScu0aXSUry8pwM62tkuMK9+usH7qKQmyYUc4QQQghpOPF4XL73s5+oNS6r7tV+2UAS8s53vtPrXWt66GYlhBBCyIyQz+dlQSghsyUiL8iIPP3cs7LZZpt5vVtNDy1zhBBCCJkRgsGg3HjHn+RZGZYtpYtCrk7QMkcIIYSQGeXuu++W7bffXnp7e73elZaAYo4QQgghpImhm5UQQgghpImhmCOEEEIIaWIo5gghhBBCmhiKOUIIIYSQJoZijhBCCCGkiaGYI4QQQghpYijmCCGEEEKaGIo5QgghhBBpXv4/hh6p7IbrnskAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sim_data_opt = web.run(sim_opt, \"optimal design\")\n",
+ "sim_data_opt.plot_field(\"field\", \"Hz\", \"real\", vmax=0.5)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "70878b72",
+ "metadata": {},
+ "source": [
+ "Finally, compute and plot power transmission from the mode monitor across the wavelength range.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "25073db1-15bb-4b39-b2f2-f9f0f2e53b18",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAveUlEQVR4nO3dCXhU5b3H8X/2sIXdIBFF2REIW0GwCtUAChek3qsItFBUWlSuCBYBQRBQEa2I9aIIFG2tKKhVaUUkpoAoIBrQC1dwA9kkCcgOGkIy9/m/MMNMMglJmDmTeef7eZ7jzDlzZubkdZL58a5RLpfLJQAAAJaIDvUFAAAABBLhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYJaTh5sMPP5S+fftK/fr1JSoqSt5+++3zPmfVqlXSvn17SUhIkMaNG8tLL73kyLUCAIDwENJwc+LECUlNTZU5c+aU6vwdO3ZInz595Fe/+pV8/vnnct9998mdd94p77//ftCvFQAAhIeoirJwptbcvPXWW9K/f/9izxk3bpy8++67smXLFs+x2267TQ4fPizLly936EoBAEBFFithZN26dZKWluZzrFevXqYGpzi5ublmcysoKJCDBw9K7dq1TaACAAAVn9bFHDt2zHRliY6OtifcZGVlSXJyss8x3T969Kj89NNPUqlSpSLPmTFjhkydOtXBqwQAAMGye/duueSSS+wJN+UxYcIEGTNmjGf/yJEjcumll5r+O9WqVZNIl5eXJytXrjT9mOLi4kJ9OdainJ1BOTuDcnYOZX2O1tpcfvnlpfruDqtwU69ePcnOzvY5pvtJSUl+a22UjqrSrbBatWqZ50U6/cWpXLmyaaaL9F+cYKKcnUE5O4Nydg5lfY775y9Nl5KwmuemS5cukpGR4XMsPT3dHAcAAAh5uDl+/LgZ0q2b0qYivb9r1y5Pk9KQIUM8548YMUK2b98uDzzwgGzbtk2ee+45WbJkiYwePTpkPwMAAKhYQhpuPvvsM2nXrp3ZlPaN0fuTJ082+/v27fMEHaVtbToUXGtrdH6cp556ShYsWGBGTAEAAIS8z0337t3N0K7i+Jt9WJ+zadOmIF8ZAAAIV2HV5wYAAOB8CDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAVgl5uJkzZ440bNhQEhMTpXPnzrJhw4YSz589e7Y0a9ZMKlWqJA0aNJDRo0fLzz//7Nj1AgCAii2k4Wbx4sUyZswYmTJlimzcuFFSU1OlV69ekpOT4/f8RYsWyfjx4835W7dulb/85S/mNR588EHHrx0AAFRMIQ03s2bNkuHDh8uwYcOkZcuWMnfuXKlcubIsXLjQ7/lr166Vq6++WgYNGmRqe3r27CkDBw48b20PAACIHLGheuNTp05JZmamTJgwwXMsOjpa0tLSZN26dX6f07VrV/n73/9uwkynTp1k+/btsmzZMvntb39b7Pvk5uaaze3o0aPmNi8vz2yRzl0GlEVwUc7OoJydQTk7h7I+pyxlELJwc+DAAcnPz5fk5GSf47q/bds2v8/RGht93i9/+UtxuVxy+vRpGTFiRInNUjNmzJCpU6cWOb5ixQpTS4Qz0tPTQ30JEYFydgbl7AzK2TmUtcjJkycrfrgpj1WrVsljjz0mzz33nOl8/O2338qoUaNk+vTp8tBDD/l9jtYMab8e75ob7YisTVpJSUkS6TQJ6y9Njx49JC4uLtSXYy3K2RmUszMoZ+dQ1lKk5aVCh5s6depITEyMZGdn+xzX/Xr16vl9jgYYbYK68847zX7r1q3lxIkT8vvf/14mTpxomrUKS0hIMFth+iGJ9A+KN8rDGZSzMyhnZ1DOzqGspUw/f8g6FMfHx0uHDh0kIyPDc6ygoMDsd+nSpdgqqcIBRgOS0mYqAACAkDZLaXPR0KFDpWPHjqaDsM5hozUxOnpKDRkyRFJSUky/GdW3b18zwqpdu3aeZimtzdHj7pADAAAiW0jDzYABA2T//v0yefJkycrKkrZt28ry5cs9nYx37drlU1MzadIkiYqKMrd79+6VunXrmmDz6KOPhvCnAAAAFUnIOxSPHDnSbMV1IPYWGxtrJvDTDQAAoEIuvwAAABBIhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArBJbnicdPnxYNmzYIDk5OVJQUODz2JAhQwJ1bQAAAMEPN//85z9l8ODBcvz4cUlKSpKoqCjPY3qfcAMAAMKqWer++++X22+/3YQbrcE5dOiQZzt48GCZL2DOnDnSsGFDSUxMlM6dO5saoZLoe95zzz1y8cUXS0JCgjRt2lSWLVtW5vcFAAB2KnPNzd69e+Xee++VypUrX/CbL168WMaMGSNz5841wWb27NnSq1cv+eqrr+Siiy4qcv6pU6ekR48e5rE33nhDUlJSZOfOnVKjRo0LvhYAABCh4UbDx2effSZXXHHFBb/5rFmzZPjw4TJs2DCzryHn3XfflYULF8r48eOLnK/HtXZo7dq1EhcXZ45prQ8AAEC5w02fPn1k7Nix8uWXX0rr1q09IcOtX79+pXodrYXJzMyUCRMmeI5FR0dLWlqarFu3zu9zli5dKl26dDHNUu+8847UrVtXBg0aJOPGjZOYmBi/z8nNzTWb29GjR81tXl6e2SKduwwoi+CinJ1BOTuDcnYOZX1OWcogyuVyuUp99tkAUuyLRUVJfn5+qV7nhx9+MM1KWgujgcXtgQcekNWrV8snn3xS5DnNmzeX77//3nRovvvuu+Xbb781t9pMNmXKFL/v8/DDD8vUqVOLHF+0aFFAmtYAAEDwnTx50lRoHDlyxAxoCmjNTeGh307S99b+NvPmzTM1NR06dDB9gJ588sliw43WDGm/Hu+amwYNGkjPnj3PWziRkoTT09NNX6bCtXAIHMrZGZSzMyhn51DWUqTlJWjz3ARCnTp1TEDJzs72Oa779erV8/scHSGl/3O9m6BatGghWVlZppkrPj6+yHN0RJVuhenrRPoHxRvl4QzK2RmUszMoZ+dQ1lKmn79cMxRrs1Hfvn2lcePGZtN+NmvWrCnTa2gQ0ZqXjIwMn5oZ3fdupvJ29dVXm6Yo79qjr7/+2oQef8EGAABEnjKHm7///e+m06/2V9G+LrpVqlRJrr/+etOPpSy0uWj+/Pny17/+VbZu3Sp33XWXnDhxwjN6SicE9O5wrI/raKlRo0aZUKMjqx577DHTwRgAAKBczVKPPvqoPPHEEzJ69GjPMQ04Oqx7+vTpprNPaQ0YMED2798vkydPNk1Lbdu2leXLl0tycrJ5fNeuXT4dmLWvzPvvv2/eu02bNqZDsgYdHS0FAABQrnCzfft20yRVmDZNPfjgg2Uu1ZEjR5rNn1WrVhU5pk1W69evL/P7AACAyFDmZimtPfHuJ+P2wQcfmMcAAADCquZG15bSZqjPP/9cunbtao59/PHH8tJLL8kzzzwTjGsEAAAIXrjRTr06VPupp56SJUuWeIZj6zpRN910U1lfDgAAIKDKNc/Nr3/9a7MBAABUNOWa5wYAACCsa25q1apl5pXRWYVr1qxp1pAqjs5DAwAAUKHDzdNPPy3VqlXz3C8p3AAAAFT4cDN06FDP/d/97nfBvB4AAABn+9xs3LhRNm/e7Nl/5513pH///mYCP128EgAAIKzCzR/+8AfT/8Y9W7EuoaDrTL3++uvywAMPBOMaAQAAghduNNjoGlBKA023bt3Mgpk6id+bb75Z1pcDAAAIbbhxuVxSUFDgWXKhd+/e5r4uvXDgwIHAXh0AAECww03Hjh3lkUcekZdffllWr14tffr0Mcd37NjhWc0bAAAgbMLN7NmzTadiXcl74sSJ0rhxY3P8jTfe8Kw1BQAAEDbLL7Rp08ZntJTbk08+KTExMYG6LgAAAGdqbnbv3i179uzx7G/YsEHuu+8++dvf/iZxcXHluwoAAIBQhZtBgwbJypUrzf2srCzp0aOHCTjaRDVt2rRAXRcAAIAz4WbLli3SqVMnc3/JkiXSqlUrWbt2rbzyyitmODgAAEBYhZu8vDxJSEjwDAXv16+fud+8eXPZt29f4K8QAAAgmOHmyiuvlLlz58qaNWskPT1dbrjhBnP8hx9+kNq1a5f15QAAAEIbbmbOnCkvvPCCdO/eXQYOHCipqanm+NKlSz3NVQAAAGEzFFxDjc5EfPToUalZs6bn+O9//3uzxhQAAEBYhRul89l4BxvVsGHDQF0TAABAcMNN+/btJSMjwwSadu3aSVRUVLHn6uzFAAAAFTrc3HTTTZ4RUv379w/2NQEAAAQ33EyZMsXvfQAAACv63LgdP35cCgoKfI4lJSVd6DUBAAA4NxR8x44d0qdPH6lSpYpUr17d9MPRrUaNGkU6GQMAAFT4mpvf/OY34nK5ZOHChZKcnFxi52IAAIAKH26++OILyczMlGbNmgXnigAAAJxslvrFL34hu3fvvpD3BAAAqDg1NwsWLJARI0bI3r17zYrgcXFxPo+3adMmkNcHAAAQ3HCzf/9++e6772TYsGGeY9rvRvvh6G1+fn5ZXxIAACB04eb22283sxS/+uqrdCgGAADhH2527txpVgBv3LhxcK4IAADAyQ7F1113nRkxBQAAYEXNTd++fWX06NGyefNmad26dZEOxf369Qvk9QEAAAQ33OhIKTVt2rQij9GhGAAAhF24KbyWFAAAQFj3ufHn8OHDgXgZAAAA58PNzJkzZfHixZ79W265RWrVqiUpKSl0NAYAAOEXbubOnSsNGjQw99PT0+WDDz6Q5cuXy4033ihjx44NxjUCAAAEr89NVlaWJ9z861//kltvvVV69uwpDRs2lM6dO5f15QAAAEJbc1OzZk3PwplaY5OWlmbu6/ILjJQCAABhV3Nz8803y6BBg6RJkyby448/muYotWnTJmYtBgAA4Rdunn76adMEpbU3TzzxhFStWtUc37dvn9x9993BuEYAAIDghRudkfiPf/xjkeM6azEAAEDYhRv1zTffyMqVKyUnJ6fIpH6TJ08O1LUBAAAEP9zMnz9f7rrrLqlTp47Uq1fPLLngpvcJNwAAIKzCzSOPPCKPPvqojBs3LjhXBAAA4ORQ8EOHDplZiQEAAKwINxpsVqxYEZyrAQAAcLpZSueyeeihh2T9+vXSunVrM3rK27333nuh1wQAAOBcuJk3b56Z22b16tVm86Ydigk3AAAgrMLNjh07gnMlAAAAoehzAwAAYN0kfnv27JGlS5fKrl275NSpUz6PzZo1K1DXBgAAEPxwk5GRIf369ZMrrrhCtm3bJq1atZLvv//erArevn37sl8BAABAKJulJkyYYNaW2rx5syQmJsqbb75pFtHs1q0b898AAIDwCzdbt26VIUOGmPuxsbHy008/mdFT06ZNk5kzZwbjGgEAAILXLFWlShVPP5uLL75YvvvuO7nyyivN/oEDB8r6cgDgLF3s9/Rpkfz8M1tp7rv33QsFu1wlb2U9x829Vp/eBvJ+dHTxtyU9Vtw5+fkSf/SoyMGDIgkJvueV9Dw4q6DA9zOsm/cx/Uzn5Ynod3owbrXCo3r1kPzoZQ43V111lXz00UfSokUL6d27t9x///2mieof//iHeQwADP3jeeKEyMmTZ24L38/NPbfpH0N/90t6zM/92Nxc6XX8uMTGxBQfVnDBdOrWG8vzRH+hp6QwFKz77msp7rY05/i7DWTgPbvFFhTI9fqZTkwsOaj4Ox5qEyeGT7jR0VDHjx8396dOnWruL168WJo0acJIKSBc/fyzyOHDIkeO+G76r/PCoaSkwOK9r6HDYfoVk+j4u6LU9Avb/QWMUn+mq0qYOuU7mrrChpv8/HwzDLxNmzaeJqq5c+de8EXMmTNHnnzyScnKypLU1FR59tlnpVOnTud93muvvSYDBw6Um266Sd5+++0Lvg4gLGn1rwaRwuGkLPsh/CN0wXQJmPh40zziSkiQn06flkrVqkmU1t7ExorobaDuezevuP+FX9xW1nP8NVUF4r5703/NF771d6wU5xbk50tOdrZcVLeuRPs7r7j3KM19DT7FXXsg7rvLprjb4h4rr7J8Jvw87oqKkrz8fIlLTDzzmS686WfyQo7Hx5/Z3L9H57sty7mXXCJhEW5iYmKkZ8+eplNxjRo1AnIBWuszZswYE5I6d+4ss2fPll69eslXX30lF110UbHP0+HnOmrrmmuuCch1ABWChowffzyzaR823c53X2tXQk3/SFapcmarXPnc/ZL2tZpd+2ucDSZF7pfmMd30j/VZp/PyJH3ZMtNkXnjdOwROfl6efHK2nKMjrZxLCkb+wsoF0s/0e3ymg98spfPabN++XS6//HIJBG3KGj58uAwbNszsa8h59913ZeHChTJ+/Phia5AGDx5smsXWrFkjh/VfoEBFo3/sNHhkZUnU3r1y8dq1Er1nz5kak+LCilNBRf/walu496b/YCm8X62abzApLqxoyKDDKCJB4X42sCPcPPLII6bGZPr06dKhQwfTNOUtKSmp1K+lo64yMzPN3Dlu0dHRkpaWJuvWrSv2eTrsXGt17rjjDhNuSpKbm2s2t6Nnvzzy8vLMFuncZUBZlIH2OdPAkp0tkp1d5Nbcz8k5c87Zz57+op2/obX0tKpaatYUqV1bXLVrn7mflCQuDSX6O3g2qLj0/tmg4rmvW9WqPjUeF0w761YAfJ6dQTk7h7I+pyxlUOpwo4FCR0Zp1ZjSWYp1FXA3naFY97VWpbR06Lien5yc7HNc93X2Y390pNZf/vIX+fzzz0v1HjNmzDA1PIWtWLFCKuu/OGGkp6dLJIvKy5PEQ4fMlqC3hw9Lgtdmjp+9ryNyJMBB5VTVqpJXrZrkJiXJKd2qVTuzue97H9db/UeFNgWVltYWRVANZ6R/np1COTuHshY5qYMVAh1uNCCMGDFCVq5cKaFy7Ngx+e1vfyvz58+XOnXqlOo5WiukfXq8a24aNGhg+g6VpZbJ5iSsvzQ9evSwsz1Xw7bWouzbJ1E//GA20dt9+zzHzO3+/YGtVdHalORkcdWrJ3LRRZJft658ffiwNL7qKonRvmR16pypcTlb6xIdEyMJImZD+Vn/ea4gKGfnUNZSpOUloOFGa2aULrMQKBpQtJNytlble9H9evqlUIhOGKgdifv27es5VnC297vOlqydkBs1auTznISEBLMVph+SSP+ghHV56OdR+6icDStFtr17z9xmZZ0bIXGhatUygUX0s1nCbVTdumdGC5wdxunugPntsmXStHdviQ2ncg5TYfd5DlOUs3MoaynTz1+mPjfezVCBEB8fb/rt6GKc/fv394QV3R85cmSR85s3b24mDPQ2adIkU6PzzDPPmBoZWECbfdwBxb1pR1zvfX08EMOX9Zfl4otF6tc/t2lIcW/u0KK1LdppFgBQ4ZUp3DRt2vS8AeegTsddBtpkNHToUOnYsaOZ20aHgp84ccIzekrXsUpJSTF9Z3ShTh2t5c09JL3wcVTQ2hbt91FcYHFvgWgi0s+pBhMNKykpvuHF+5g2CwWyYy0AILzCjfa7qR7gqZQHDBgg+/fvl8mTJ5tJ/Nq2bSvLly/3dDLetWuXGUGFMKht0X4shZuGCgeZn3668PfSkUEaTgqHFu99/fzoxGsAgIhTpr/+t912W4kT65WXNkH5a4ZSq1atKvG5L730UsCvB3465Lqbgvz1a9EtEIumahjRJiJ3cNFNZ7j03tfgwig3AEAgwk2g+9ugAoQWDSR79kjdTZvOzMuiHbuD1SFXJ4MrKbTopsG5LMObAQAIxGgpVGAaQjSwuCeT02Difet9X/u1FBSY1X27XmiH3ML9WQo3FenGsHsAQEULN+4h13CYzsjonqL/fKFFA0ugVtt1d8gtqTMuHXIBABUQPS6dojVfx46dWxSxtJs+J5C0psVrTpaCunXl2+PHpdG110rMpZfSIRcAEPb49gqUjAyRzMziQ4oOkQ/W2iAaWLS/SuFJ5fzd16HzXv2ndHK5rcuWyeW9e0tMhE8QBQCwA+EmUF57TWTBgsC8ljbz6Gy47un5ddPlJooLLDo0mg7fAAAYhJtA0QDijw5b9g4ppdl0LiH6sQAAUC6Em0AZOFCkY8eiQSUxMdRXBgBARCHcBEpq6pkNAACEFG0fAADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWqRDhZs6cOdKwYUNJTEyUzp07y4YNG4o9d/78+XLNNddIzZo1zZaWllbi+QAAILKEPNwsXrxYxowZI1OmTJGNGzdKamqq9OrVS3Jycvyev2rVKhk4cKCsXLlS1q1bJw0aNJCePXvK3r17Hb92AABQ8YQ83MyaNUuGDx8uw4YNk5YtW8rcuXOlcuXKsnDhQr/nv/LKK3L33XdL27ZtpXnz5rJgwQIpKCiQjIwMx68dAABUPLGhfPNTp05JZmamTJgwwXMsOjraNDVprUxpnDx5UvLy8qRWrVp+H8/NzTWb29GjR82tPke3SOcuA8oiuChnZ1DOzqCcnUNZn1OWMghpuDlw4IDk5+dLcnKyz3Hd37ZtW6leY9y4cVK/fn0TiPyZMWOGTJ06tcjxFStWmBoinJGenh7qS4gIlLMzKGdnUM7OoazFVGaERbi5UI8//ri89tprph+Odkb2R2uFtE+Pd82Nu59OUlKSRDpNwvpL06NHD4mLiwv15ViLcnYG5ewMytk5lLUUaXmp8OGmTp06EhMTI9nZ2T7Hdb9evXolPvdPf/qTCTcffPCBtGnTptjzEhISzFaYfkgi/YPijfJwBuXsDMrZGZSzcyhrKdPPH9IOxfHx8dKhQwefzsDuzsFdunQp9nlPPPGETJ8+XZYvXy4dO3Z06GoBAEA4CHmzlDYZDR061ISUTp06yezZs+XEiRNm9JQaMmSIpKSkmL4zaubMmTJ58mRZtGiRmRsnKyvLHK9atarZAABAZAt5uBkwYIDs37/fBBYNKjrEW2tk3J2Md+3aZUZQuT3//PNmlNV//dd/+byOzpPz8MMPO379AACgYgl5uFEjR440mz/aWdjb999/79BVAQCAcBTySfwAAAACiXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYJUKEW7mzJkjDRs2lMTEROncubNs2LChxPNff/11ad68uTm/devWsmzZMseuFQAAVGwhDzeLFy+WMWPGyJQpU2Tjxo2SmpoqvXr1kpycHL/nr127VgYOHCh33HGHbNq0Sfr372+2LVu2OH7tAACg4gl5uJk1a5YMHz5chg0bJi1btpS5c+dK5cqVZeHChX7Pf+aZZ+SGG26QsWPHSosWLWT69OnSvn17+Z//+R/Hrx0AAFQ8saF881OnTklmZqZMmDDBcyw6OlrS0tJk3bp1fp+jx7Wmx5vW9Lz99tt+z8/NzTWb25EjR8ztwYMHJS8vTyKdlsHJkyflxx9/lLi4uFBfjrUoZ2dQzs6gnJ1DWZ9z7Ngxc+tyuaRCh5sDBw5Ifn6+JCcn+xzX/W3btvl9TlZWlt/z9bg/M2bMkKlTpxY5fvnll1/QtQMAgNCEnOrVq1fccOMErRXyrukpKCgwtTa1a9eWqKgoiXRHjx6VBg0ayO7duyUpKSnUl2MtytkZlLMzKGfnUNbnaI2NBpv69evL+YQ03NSpU0diYmIkOzvb57ju16tXz+9z9HhZzk9ISDCbtxo1alzwtdtGf2ki/RfHCZSzMyhnZ1DOzqGszzhfjU2F6FAcHx8vHTp0kIyMDJ+aFd3v0qWL3+foce/zVXp6erHnAwCAyBLyZiltMho6dKh07NhROnXqJLNnz5YTJ06Y0VNqyJAhkpKSYvrOqFGjRkm3bt3kqaeekj59+shrr70mn332mcybNy/EPwkAAKgIQh5uBgwYIPv375fJkyebTsFt27aV5cuXezoN79q1y4ygcuvatassWrRIJk2aJA8++KA0adLEjJRq1apVCH+K8KVNdjrHUOGmOwQW5ewMytkZlLNzKOvyiXKVZkwVAABAmAj5JH4AAACBRLgBAABWIdwAAACrEG4AAIBVCDcW+fDDD6Vv375m9kadfbm49bb8+fjjjyU2NtaMVits79698pvf/MbM6lypUiVp3bq1GX4fqYJRzroMyUMPPWSWBdEybtSokVkUNpL7+5e1nFetWmXOK7wVXpplzpw50rBhQ0lMTJTOnTvLhg0bJNIFo6x1+o5f/OIXUq1aNbnoooukf//+8tVXX0kkC9Zn2u3xxx83j993330S6Qg3FtH5gVJTU80f77I4fPiwmU/o+uuvL/LYoUOH5OqrrzYLtr333nvy5ZdfmjmGatasKZEqGOU8c+ZMef75583q9lu3bjX7TzzxhDz77LMSqcpbzvoFum/fPs+mX6xuixcvNnNr6dDajRs3mtfXhXdzcnIkkgWjrFevXi333HOPrF+/3ky0qgtA9uzZ07xXpApGObt9+umn8sILL0ibNm0CeMVhTIeCwz76v/att94q1bkDBgxwTZo0yTVlyhRXamqqz2Pjxo1z/fKXvwzSVYa/QJVznz59XLfffrvPsZtvvtk1ePDggF6vzeW8cuVKc96hQ4eKPadTp06ue+65x7Ofn5/vql+/vmvGjBkBvd5wFqiyLiwnJ8c8Z/Xq1QG4yvAXyHI+duyYq0mTJq709HRXt27dXKNGjXJFOmpuItyLL74o27dvN/+S9Wfp0qVm9uhbbrnF/GuhXbt2Mn/+fMev0/Zy1skpdVmRr7/+2ux/8cUX8tFHH8mNN97o8JWGP23yu/jii6VHjx6mGdDt1KlTkpmZKWlpaZ5jOkGo7q9bty5EV2tnWftz5MgRc1urVi2Hri5yyllryHTGfu/PdqQL+QzFCJ1vvvlGxo8fL2vWrDH9QPzRL2RtLtGqfJ0RWqs+7733XrMumC6bgcCUsz6uq/82b97cLCarfXAeffRRGTx4sOPXG670j//cuXNNGM/NzZUFCxZI9+7d5ZNPPpH27dvLgQMHTLm6Zz930/1t27aF7LptLOvCdM1A7QeiTdzMJh/YctYliLSJVf824xzCTYTSP/KDBg2SqVOnStOmTYs9T/8o6S/WY489Zva15mbLli3mF45wE7hyXrJkibzyyitmaZErr7xSPv/8c/NloB0PKefSadasmdm8a8O+++47efrpp+Xll18O6bVFellrzYL+3dDaSASunHfv3m3WW9Q+TdpBHucQbiLUsWPHzIinTZs2yciRIz1BRpuCtXZhxYoVct1115l/ObRs2dLnuS1atJA333wzRFduZzmPHTvW1N7cdttt5hwdkbZz504z4oRwU366GK/7C7VOnTqmViw7O9vnHN2vV69eiK7QzrL2pp/7f/3rX2ak0CWXXBKSa7O1nLWZVTvDe9eW6T+oPvzwQzM4QWt79DMfiQg3ESopKUk2b97sc+y5556Tf//73/LGG2+YIclKq5ELD9/UfiGXXXaZo9drezmfPHnSZ4FYpX+UNAih/LQGTAO60qbUDh06mL5NOixZafnqvjt4IjBlrTTA//d//7e89dZbZkiz+7OOwJWzjrws/Pdl2LBhpnl73LhxERtsFOHGIsePH5dvv/3Ws79jxw7zi6Ad+C699FKZMGGCmbPmb3/7m/kiLdz2rR2GtWrT+/jo0aNNVag2S916661mTpB58+aZLVIFo5x17gvtY6PP12YpremZNWuW3H777RKpylLOavbs2eYLVMvv559/Nv0TNERq7Zib9h3TmjBtatV/AetzdHiufiFEsmCUtTZFaTPrO++8Y+a6cc/NUr16dTOXUyQKdDlruRb++1KlShUzJ1nE920K9XAtBI572GDhbejQoeZxvdVhgsXxN0RZ/fOf/3S1atXKlZCQ4GrevLlr3rx5rkgWjHI+evSoGb556aWXuhITE11XXHGFa+LEia7c3FxXpCprOc+cOdPVqFEjU361atVyde/e3fXvf/+7yOs+++yzppzj4+PN0PD169e7Il0wytrf6+n24osvuiJVsD7T3hgKfkaU/ifUAQsAACBQmOcGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg2AkHn44Yelbdu2UlFERUXJ22+/Xebn6RIluj6VriUWTLqyuc5wvWfPnqC+DxDuCDeA5XQFd52m/fTp0z7TwMfFxUn37t19ztU1gPQLXlcetlmgQ5VOm6/rKGk5B5Mu/jlkyBCZMmVKUN8HCHeEG8Byv/rVr0yY0dXJ3dasWWNqGj755BOzZo3bypUrzRo3jRo1CtHVhp9du3aZVa9/97vfOfJ+ug7WK6+8IgcPHnTk/YBwRLgBLNesWTOzirDWyrjp/Ztuusksyrd+/Xqf4xqG1Msvv2wWmNTaCA1CgwYNkpycHM9q2pdccok8//zzPu+lC37qYqE7d+40+4cPH5Y777xT6tata1ZIv+666+SLL74o8Xp1ccAWLVqYxUV1dWNdRd3t+++/NzVL//jHP8x1Vq5cWVJTU2XdunU+rzF//nxp0KCBefzXv/61WYS0Ro0a5rGXXnpJpk6daq5DX0s3Pebd9KPP0ec2adJEli5dWuL1LlmyxFxDSkpKiTVDughiw4YNPfsahnR1cl2UNjk52VzftGnTTA3b2LFjzWKKWsYvvviiz+voIor169c3q20D8I9wA0QADQJaK+Om97VJqlu3bp7jP/30k6nJcYebvLw8mT59ugkB2g9Fg4W7dkIDzMCBA82qz960RuHqq6+Wyy67zOzfcsstJhC99957kpmZKe3bt5frr7++2FoHff7kyZPNCulbt241X/wPPfSQ/PWvf/U5b+LEifLHP/7RrKjctGlTcy3uZrePP/5YRowYIaNGjTKP9+jRw7ye24ABA+T+++83IWHfvn1m02NuGnxuvfVW+d///V/p3bu3DB48uMRaEq0F0xBYHrrC8w8//CAffvihCWDa3PQf//EfUrNmTfP/Qn+OP/zhD0X62OiK5vq+AIpxdgFNABabP3++q0qVKq68vDyzAnlsbKwrJyfHtWjRIte1115rzsnIyDArFO/cudPva3z66afm8WPHjpn9TZs2uaKiojzn5+fnu1JSUlzPP/+82V+zZo0rKSnJ9fPPP/u8jq5y/MILL/hdIV0f02vyNn36dFeXLl3M/R07dphrWLBggefx//u//zPHtm7davYHDBjg6tOnj89rDB482FW9evUSV2ZX+jqTJk3y7B8/ftwce++994otW32dadOm+Rzz9/pPP/2067LLLvPs6wrQuq/l5tasWTPXNddc49k/ffq0+f/26quv+rzW6NGjzQrRAPyj5gaIAFpLc+LECfn000/Nv/i1tkObirTmxt3vRpukrrjiCtPnRmlNS9++fc2+Nk3pue4+JkqbXbT5yF17s3r1alNLo7U1Smt8tK9P7dq1pWrVqp5tx44dfjss6/Xp8TvuuMPn/EceeaTI+W3atPHc1yY35W4y05FLWrPhrfB+Sbxfu0qVKqY5zf3a/miNlzahlYfWHmktmJs2T7Vu3dqzHxMTY8qv8PtXqlRJTp48Wa73BCJBbKgvAEDwNW7c2PTf0CaoQ4cOeYKK9t3Qvilr1641j2mfGHfQ6NWrl9m0qUiDkIYa3T916pTndbXJRsPN+PHjze0NN9xgvoyVBpvCfX3c3P1fvOn57v4ynTt39nlMv+S96UgvN+0z4+4HFAjer+1+/ZJeW0cwaZmeT35+fqneqzTvr81k+v8EgH+EGyBCaF8aDRr6RawdVt2uvfZa0ydmw4YNctddd5lj27Ztkx9//FEef/xxE36U92grN+1kPGnSJFPL88Ybb5hh527avyYrK0tiY2N9OtIWR2stNGxt377dhKYL6UCtNVTeCu/Hx8f7DRvl0a5dO/nyyy+LHM/OzvbZ158rULZs2VJkGD+Ac2iWAiIo3Hz00Uemk6275kbp/RdeeMHUyLg7E2tTlAaAZ5991nwp64gh7VxcmIaWrl27mqYkDQv9+vXzPJaWliZdunQxI4JWrFhhOiRrDZF2BvYXlNydeWfMmCF//vOf5euvv5bNmzeb0ULa2ba0dL6ZZcuWmed888035mfT8Oau4XFftzaPaVno6Kjc3FwpL63N0tFahcOSBjsd/aTl9+abb5rRZxosNTheCG2O0jDZs2fPC3odwGaEGyBCaHDR/iHaRKW1JN7hRmfWdQ8ZV9rkocOjX3/9dWnZsqWpwfnTn/7k93W1lkX71+jwae0L4qZhQkOG1gzp3Czaz+e2224zw8S939+bDhvXoeAaaLTviV6bXocOWS8tHa2lNUgabnSI9vLly2X06NE+/WL+8z//0zShaZnoz/rqq69Ked14442mduqDDz7wOd6qVSsT0LRfjY740p9LA6OO8roQ77zzjgmf11xzzQW9DmCzKO1VHOqLAIBgGj58uKkxCdbw6Tlz5pjarffff98zz40On9eaoUC76qqr5N577zVNggD8o88NAOtoLZPOb6OjnbRJSufJ8Z4MMNB0LhqdsFBrwIK5BIM2od18881mXh8AxaPmBoB1dBI+7TytYUOHt2s/HJ0QzynBrLkBcH6EGwAAYBU6FAMAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAscn/A8I8MDLORZ0+AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "amp = sim_data_opt[\"mode\"].amps.sel(mode_index=0, direction=\"+\")\n",
+ "T = np.abs(amp) ** 2\n",
+ "plt.plot(ldas, T, c=\"red\", linewidth=2)\n",
+ "plt.xlabel(\"Wavelength (μm)\")\n",
+ "plt.ylabel(\"Transmission\")\n",
+ "plt.ylim(0, 1)\n",
+ "plt.grid()\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "applications": [
+ "Passive photonic integrated circuit components"
+ ],
+ "description": "This notebook demonstrates the FDTD simulation and Bayesian optimization of a silicon to plasmonic waveguide coupler using Tidy3D.",
+ "feature_image": "./img/silicon_to_plasmonic.png",
+ "features": [
+ "Global optimization"
+ ],
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "keywords": "silicon photonics, waveguide, coupler, plasmonic, photonic integrated circuits, Tidy3D, FDTD",
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.0"
+ },
+ "title": "Dielectric to Plasmonic Waveguide Coupler | Flexcompute"
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/case_studies/pic.rst b/docs/case_studies/pic.rst
index 0dded619..a8a2ee1c 100644
--- a/docs/case_studies/pic.rst
+++ b/docs/case_studies/pic.rst
@@ -11,6 +11,7 @@ Passive photonic integrated circuit (PIC) components form the backbone of many o
../../WaveguideToRingCoupling
../../WaveguideCrossing
../../EulerWaveguideBend
+ ../../DirectionalCoupler
../../EdgeCoupler
../../EffectiveIndexApproximation
../../GratingCoupler
@@ -46,4 +47,4 @@ Passive photonic integrated circuit (PIC) components form the backbone of many o
../../AnisotropicMetamaterialBroadbandPBS
../../SWGWaveguideCrossing
../../SiWaveguideTPA
- ../../DirectionalCoupler
+ ../../SiliconToPlasmonicCoupler
diff --git a/img/silicon_to_plasmonic.png b/img/silicon_to_plasmonic.png
new file mode 100644
index 00000000..593b8744
Binary files /dev/null and b/img/silicon_to_plasmonic.png differ