Skip to content

Paper Research #2

@emphasis10

Description

@emphasis10

kanban board에 있던 notion 링크를 다시 가져옵니다.
링크

아래의 두 논문을 참고해보세요

PEGASUS (2020)에서는 텍스트 요약과정과 objective가 유사할수록 높은 성능을 보여줄 것이라는 가정하에 ROUGE score에 기반하여 중요하다고 판단되는 문장을 골라 문장 단위로 마스킹하는 GSG(Gap Sentences Generation) 방식을 사용했습니다. 현 SOTA 모델인 BART (2020)(Bidirectional and Auto-Regressive Transformers)는 입력 텍스트 일부에 노이즈를 추가하여 이를 다시 원문으로 복구하는 autoencoder 형태로 학습합니다.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions