From b8000747cdae6771a12c142ddbc881638f29d321 Mon Sep 17 00:00:00 2001 From: Filippo Luca Ferretti Date: Wed, 22 Jan 2025 10:17:52 +0100 Subject: [PATCH 01/14] WIP --- examples/jaxsim_walking.ipynb | 436 +++++++++++++++++- src/comodo/jaxsimSimulator/jaxsimSimulator.py | 15 +- 2 files changed, 418 insertions(+), 33 deletions(-) diff --git a/examples/jaxsim_walking.ipynb b/examples/jaxsim_walking.ipynb index 39b1677..a356cbd 100644 --- a/examples/jaxsim_walking.ipynb +++ b/examples/jaxsim_walking.ipynb @@ -25,9 +25,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Enabling JAX to use 64-bit precision\n" + ] + } + ], "source": [ "# ==== Imports ====\n", "from __future__ import annotations\n", @@ -59,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -115,21 +124,161 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# ==== Set simulation parameters ====\n", "\n", "T = 6.0\n", - "js_dt = 0.000_5" + "js_dt = 0.001" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit https://github.com/coin-or/Ipopt\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.3.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 124\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 142\n", + "\n", + "Total number of variables............................: 27\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 20\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 5.2479115e-03 1.00e+00 1.95e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 3.8856028e+00 6.50e-02 1.14e+00 -1.7 1.00e+00 0.0 1.00e+00 1.00e+00h 1\n", + " 2 3.8855322e+00 2.41e-07 1.39e+00 -1.7 6.50e-02 1.3 1.00e+00 1.00e+00h 1\n", + " 3 3.8854330e+00 4.20e-08 2.31e-02 -1.7 3.25e-03 0.9 1.00e+00 1.00e+00h 1\n", + " 4 3.8854105e+00 5.91e-09 1.92e-02 -3.8 1.01e-03 1.3 1.00e+00 1.00e+00h 1\n", + " 5 3.8853778e+00 4.38e-08 1.21e-02 -3.8 1.91e-03 0.8 1.00e+00 1.00e+00h 1\n", + " 6 3.8853703e+00 5.44e-09 9.91e-03 -3.8 5.88e-04 1.2 1.00e+00 1.00e+00h 1\n", + " 7 3.8853591e+00 3.27e-08 6.10e-03 -3.8 1.09e-03 0.7 1.00e+00 1.00e+00h 1\n", + " 8 3.8853565e+00 3.90e-09 4.96e-03 -3.8 3.31e-04 1.2 1.00e+00 1.00e+00h 1\n", + " 9 3.8853524e+00 2.15e-08 3.01e-03 -3.8 6.04e-04 0.7 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 3.8853514e+00 2.43e-09 2.44e-03 -3.8 1.83e-04 1.1 1.00e+00 1.00e+00h 1\n", + " 11 3.8853499e+00 1.19e-08 1.48e-03 -3.8 3.32e-04 0.6 1.00e+00 1.00e+00h 1\n", + " 12 3.8853495e+00 1.29e-09 1.19e-03 -5.7 1.01e-04 1.1 1.00e+00 1.00e+00h 1\n", + " 13 3.8853494e+00 1.64e-10 1.10e-03 -5.7 3.48e-05 1.5 1.00e+00 1.00e+00h 1\n", + " 14 3.8853491e+00 1.10e-09 8.77e-04 -5.7 8.34e-05 1.0 1.00e+00 1.00e+00h 1\n", + " 15 3.8853491e+00 1.38e-10 8.03e-04 -5.7 2.86e-05 1.4 1.00e+00 1.00e+00h 1\n", + " 16 3.8853489e+00 8.83e-10 6.34e-04 -5.7 6.78e-05 1.0 1.00e+00 1.00e+00h 1\n", + " 17 3.8853488e+00 1.09e-10 5.77e-04 -5.7 2.32e-05 1.4 1.00e+00 1.00e+00h 1\n", + " 18 3.8853487e+00 6.66e-10 4.50e-04 -5.7 5.42e-05 0.9 1.00e+00 1.00e+00h 1\n", + " 19 3.8853487e+00 8.04e-11 4.08e-04 -5.7 1.84e-05 1.3 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 3.8853486e+00 4.70e-10 3.14e-04 -5.7 4.25e-05 0.9 1.00e+00 1.00e+00h 1\n", + " 21 3.8853486e+00 5.55e-11 2.87e-04 -5.7 1.45e-05 1.3 1.00e+00 1.00e+00h 1\n", + " 22 3.8853485e+00 3.08e-10 2.26e-04 -5.7 3.44e-05 0.8 1.00e+00 1.00e+00h 1\n", + " 23 3.8853485e+00 3.56e-11 2.05e-04 -5.7 1.17e-05 1.2 1.00e+00 1.00e+00h 1\n", + " 24 3.8853485e+00 1.87e-10 1.57e-04 -5.7 2.69e-05 0.8 1.00e+00 1.00e+00h 1\n", + " 25 3.8853485e+00 2.11e-11 1.41e-04 -5.7 9.04e-06 1.2 1.00e+00 1.00e+00h 1\n", + " 26 3.8853485e+00 1.04e-10 1.05e-04 -5.7 2.01e-05 0.7 1.00e+00 1.00e+00h 1\n", + " 27 3.8853485e+00 1.14e-11 9.25e-05 -5.7 6.68e-06 1.1 1.00e+00 1.00e+00h 1\n", + " 28 3.8853485e+00 5.27e-11 6.65e-05 -5.7 1.44e-05 0.7 1.00e+00 1.00e+00h 1\n", + " 29 3.8853485e+00 5.62e-12 5.79e-05 -5.7 4.71e-06 1.1 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 3.8853485e+00 2.42e-11 4.02e-05 -5.7 9.79e-06 0.6 1.00e+00 1.00e+00h 1\n", + " 31 3.8853485e+00 2.50e-12 3.44e-05 -5.7 3.15e-06 1.0 1.00e+00 1.00e+00h 1\n", + " 32 3.8853485e+00 3.14e-13 3.24e-05 -5.7 1.11e-06 1.5 1.00e+00 1.00e+00h 1\n", + " 33 3.8853485e+00 1.99e-12 2.73e-05 -5.7 2.81e-06 1.0 1.00e+00 1.00e+00h 1\n", + " 34 3.8853485e+00 2.46e-13 2.55e-05 -5.7 9.85e-07 1.4 1.00e+00 1.00e+00h 1\n", + " 35 3.8853485e+00 1.49e-12 2.11e-05 -5.7 2.44e-06 0.9 1.00e+00 1.00e+00h 1\n", + " 36 3.8853485e+00 1.82e-13 1.95e-05 -5.7 8.48e-07 1.4 1.00e+00 1.00e+00h 1\n", + " 37 3.8853485e+00 1.06e-12 1.58e-05 -5.7 2.06e-06 0.9 1.00e+00 1.00e+00h 1\n", + " 38 3.8853485e+00 1.25e-13 1.45e-05 -8.6 7.09e-07 1.3 1.00e+00 1.00e+00h 1\n", + " 39 3.8853485e+00 7.00e-13 1.15e-05 -8.6 1.68e-06 0.8 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 40 3.8853485e+00 8.13e-14 1.04e-05 -8.6 5.72e-07 1.3 1.00e+00 1.00e+00h 1\n", + " 41 3.8853485e+00 4.32e-13 8.01e-06 -8.6 1.32e-06 0.8 1.00e+00 1.00e+00h 1\n", + " 42 3.8853485e+00 4.93e-14 7.20e-06 -8.6 4.45e-07 1.2 1.00e+00 1.00e+00h 1\n", + " 43 3.8853485e+00 2.46e-13 5.38e-06 -8.6 9.98e-07 0.7 1.00e+00 1.00e+00h 1\n", + " 44 3.8853485e+00 2.72e-14 4.78e-06 -8.6 3.32e-07 1.2 1.00e+00 1.00e+00h 1\n", + " 45 3.8853485e+00 1.29e-13 3.46e-06 -8.6 7.22e-07 0.7 1.00e+00 1.00e+00h 1\n", + " 46 3.8853485e+00 1.40e-14 3.03e-06 -8.6 2.37e-07 1.1 1.00e+00 1.00e+00h 1\n", + " 47 3.8853485e+00 6.12e-14 2.12e-06 -8.6 4.98e-07 0.6 1.00e+00 1.00e+00h 1\n", + " 48 3.8853485e+00 6.38e-15 1.83e-06 -8.6 1.61e-07 1.1 1.00e+00 1.00e+00h 1\n", + " 49 3.8853485e+00 7.91e-16 1.73e-06 -8.6 5.70e-08 1.5 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 50 3.8853485e+00 5.19e-15 1.46e-06 -8.6 1.45e-07 1.0 1.00e+00 1.00e+00h 1\n", + " 51 3.8853485e+00 5.83e-16 1.37e-06 -8.6 5.08e-08 1.4 1.00e+00 1.00e+00h 1\n", + " 52 3.8853485e+00 4.06e-15 1.14e-06 -8.6 1.27e-07 1.0 1.00e+00 1.00e+00h 1\n", + " 53 3.8853485e+00 3.54e-16 1.06e-06 -8.6 4.42e-08 1.4 1.00e+00 1.00e+00h 1\n", + " 54 3.8853485e+00 3.07e-15 8.62e-07 -8.6 1.08e-07 0.9 1.00e+00 1.00e+00h 1\n", + " 55 3.8853485e+00 4.30e-16 7.94e-07 -8.6 3.73e-08 1.3 1.00e+00 1.00e+00h 1\n", + " 56 3.8853485e+00 1.96e-15 6.32e-07 -8.6 8.90e-08 0.9 1.00e+00 1.00e+00h 1\n", + " 57 3.8853485e+00 1.28e-16 5.76e-07 -8.6 3.04e-08 1.3 1.00e+00 1.00e+00h 1\n", + " 58 3.8853485e+00 1.41e-15 4.47e-07 -8.6 7.09e-08 0.8 1.00e+00 1.00e+00h 1\n", + " 59 3.8853485e+00 1.77e-16 4.03e-07 -8.6 2.40e-08 1.2 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 60 3.8853485e+00 7.98e-16 3.04e-07 -8.6 5.43e-08 0.7 1.00e+00 1.00e+00h 1\n", + " 61 3.8853485e+00 1.60e-16 2.71e-07 -8.6 1.81e-08 1.2 1.00e+00 1.00e+00h 1\n", + " 62 3.8853485e+00 4.75e-16 1.99e-07 -8.6 3.99e-08 0.7 1.00e+00 1.00e+00h 1\n", + " 63 3.8853485e+00 1.45e-16 1.75e-07 -8.6 1.31e-08 1.1 1.00e+00 1.00e+00h 1\n", + " 64 3.8853485e+00 1.60e-16 1.24e-07 -8.6 2.79e-08 0.6 1.00e+00 1.00e+00h 1\n", + " 65 3.8853485e+00 1.28e-16 1.07e-07 -8.6 9.08e-09 1.1 1.00e+00 1.00e+00h 1\n", + " 66 3.8853485e+00 1.18e-16 1.01e-07 -8.6 3.22e-09 1.5 1.00e+00 1.00e+00h 1\n", + " 67 3.8853485e+00 9.71e-17 8.64e-08 -8.6 8.23e-09 1.0 1.00e+00 1.00e+00h 1\n", + " 68 3.8853485e+00 6.21e-17 8.11e-08 -8.6 2.90e-09 1.4 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 68\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 3.8853484562674283e+00 3.8853484562674283e+00\n", + "Dual infeasibility......: 8.1128324724843992e-08 8.1128324724843992e-08\n", + "Constraint violation....: 6.2131411127097631e-17 6.2131411127097631e-17\n", + "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 8.1128324724843992e-08 8.1128324724843992e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 69\n", + "Number of objective gradient evaluations = 69\n", + "Number of equality constraint evaluations = 69\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 69\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 68\n", + "Total seconds in IPOPT = 0.036\n", + "\n", + "EXIT: Solved To Acceptable Level.\n", + " solver : t_proc (avg) t_wall (avg) n_eval\n", + " nlp_f | 279.00us ( 4.04us) 277.90us ( 4.03us) 69\n", + " nlp_g | 716.00us ( 10.38us) 659.49us ( 9.56us) 69\n", + " nlp_grad_f | 1.12ms ( 16.06us) 752.37us ( 10.75us) 70\n", + " nlp_hess_l | 13.40ms (197.13us) 13.44ms (197.72us) 68\n", + " nlp_jac_g | 4.18ms ( 59.70us) 4.22ms ( 60.27us) 70\n", + " total | 36.60ms ( 36.60ms) 36.23ms ( 36.23ms) 1\n", + "Initial configuration:\n", + "Base position: [-0.05783 -0.00015 0.56538]\n", + "Base orientation: [ 0. -0. 0.]\n", + "Joint positions: [ 0. 0.251 0. 0.616 0. 0.251 0. 0.616 0.50085 0.00247 -0.00135 -1. -0.49916 -0.00281 0.49921 0.00291\n", + " -0.00159 -1. -0.5008 -0.00331]\n" + ] + } + ], "source": [ "# ==== Compute initial configuration ====\n", "\n", @@ -142,13 +291,153 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:str\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mFound model 'stickBot' in SDF resource\u001b[0m\n", + "/home/fferretti-iit.local/miniforge3/envs/comodo/lib/python3.10/site-packages/rod/sdf/model.py:166: UserWarning: Gimbal lock detected. Setting third angle to zero since it is not possible to uniquely determine all angles.\n", + " switch_frame_convention(\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mModel 'stickBot' is floating-base\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mConsidering 'root_link' as base link\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_foot_rear->(r_foot_rear_ft_sensor)->r_ankle_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_foot_front->(r_foot_front_ft_sensor)->r_ankle_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_foot_rear->(l_foot_rear_ft_sensor)->l_ankle_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_foot_front->(l_foot_front_ft_sensor)->l_ankle_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_shoulder_3->(r_arm_ft_sensor)->r_shoulder_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_shoulder_3->(l_arm_ft_sensor)->l_shoulder_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_hip_3->(r_leg_ft_sensor)->r_hip_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_hip_3->(l_leg_ft_sensor)->l_hip_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hip_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hip_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_shoulder_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_shoulder_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_front' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_rear' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_front' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_rear' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hip_3' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hip_3' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_shoulder_3' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_shoulder_3' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_front' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_rear' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_front' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_rear' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_sole' is 'l_ankle_2'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_sole_fixed_joint' is 'l_ankle_2'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_sole' is 'r_ankle_2'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_sole_fixed_joint' is 'r_ankle_2'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_hand->(r_wrist_yaw)->r_wrist_1\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_hand->(l_wrist_yaw)->l_wrist_1\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_wrist_1->(r_wrist_pitch)->r_forearm\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_wrist_1->(l_wrist_pitch)->l_forearm\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_forearm->(r_wrist_prosup)->r_elbow_1\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_forearm->(l_wrist_prosup)->l_elbow_1\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: lidar->(lidar_joint)->head\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: camera_tilt->(camera_tilt_joint)->head\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: head->(neck_yaw)->neck_3\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: neck_3->(neck_roll)->neck_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: neck_2->(neck_pitch)->chest\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: chest->(torso_yaw)->torso_2\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: torso_2->(torso_pitch)->torso_1\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: torso_1->(torso_roll)->root_link\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_2' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'chest' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_2' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'head' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'camera_tilt' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'lidar' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_forearm' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_forearm' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_wrist_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_wrist_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hand' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hand' won't be part of the kinematic graph because unconnected\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_1' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_2' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'chest' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_2' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_3' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'head' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'camera_tilt' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'lidar' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_forearm' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_forearm' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_wrist_1' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_wrist_1' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hand' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hand' is unconnected and became a frame\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'camera_tilt' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'chest' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'head' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'imu_frame' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'imu_frame_fixed_joint' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_hand' is 'l_elbow_1'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_wrist_1' is 'l_elbow_1'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'lidar' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_1' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_2' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_3' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_fixed_joint' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_hand' is 'r_elbow_1'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_wrist_1' is 'r_elbow_1'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'torso_2' is 'root_link'\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", + "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mThis method is deprecated. Use 'ModelToMjcf.convert' instead.\u001b[0m\n", + "/home/fferretti-iit.local/miniforge3/envs/comodo/lib/python3.10/site-packages/rod/sdf/model.py:166: UserWarning: Gimbal lock detected. Setting third angle to zero since it is not possible to uniquely determine all angles.\n", + " switch_frame_convention(\n", + "libdecor-gtk-WARNING: Failed to initialize GTK\n", + "Failed to load plugin 'libdecor-gtk.so': failed to init\n", + "No plugins found, falling back on no decorations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Contact model in use: RelaxedRigidContacts(_solver_options_keys=('tol', 'maxiter', 'memory_size'), _solver_options_values=(1e-06, 50, 10))\n", + "Link names:\n", + "['root_link', 'l_hip_1', 'l_shoulder_1', 'r_hip_1', 'r_shoulder_1', 'l_hip_2', 'l_shoulder_2', 'r_hip_2', 'r_shoulder_2', 'l_upper_leg', 'l_upper_arm', 'r_upper_leg', 'r_upper_arm', 'l_lower_leg', 'l_elbow_1', 'r_lower_leg', 'r_elbow_1', 'l_ankle_1', 'r_ankle_1', 'l_ankle_2', 'r_ankle_2']\n", + "Frame names:\n", + "['base_link', 'base_link_fixed_joint', 'camera_tilt', 'chest', 'head', 'imu_frame', 'imu_frame_fixed_joint', 'l_foot_front', 'l_foot_rear', 'l_forearm', 'l_hand', 'l_hip_3', 'l_shoulder_3', 'l_sole', 'l_sole_fixed_joint', 'l_wrist_1', 'lidar', 'neck_1', 'neck_2', 'neck_3', 'neck_fixed_joint', 'r_foot_front', 'r_foot_rear', 'r_forearm', 'r_hand', 'r_hip_3', 'r_shoulder_3', 'r_sole', 'r_sole_fixed_joint', 'r_wrist_1', 'torso_1', 'torso_2']\n", + "Mass: 552.010583436615 N\n" + ] + } + ], "source": [ "# ==== Define JaxSim simulator and set initial position ====\n", "\n", - "js = JaxsimSimulator(dt=js_dt, contact_model_type=JaxsimContactModelEnum.RIGID)\n", + "js = JaxsimSimulator(dt=js_dt, contact_model_type=JaxsimContactModelEnum.RELAXED_RIGID)\n", "js.load_model(\n", " robot_model=robot_model_init,\n", " s=s_0,\n", @@ -170,9 +459,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MPC Initialized\n" + ] + } + ], "source": [ "# ==== Define the controller parameters and instantiate the controller ====\n", "\n", @@ -215,7 +512,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -316,9 +613,9 @@ " counter = 0\n", "\n", " # Stop the simulation if the robot fell down\n", - " if js._data.base_position()[2] < 0.5:\n", - " print(f\"Robot fell down at t={t:.4f}s.\")\n", - " break\n", + " # if js._data.base_position()[2] < 0.5:\n", + " # print(f\"Robot fell down at t={t:.4f}s.\")\n", + " # break\n", "\n", " # Log data\n", " # TODO transform mpc contact forces to wrenches to be compared with jaxsim ones\n", @@ -370,9 +667,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n_step_mpc_tsid=10, n_step_tsid_js=2\n", + "Controller faileds ====\n", + "\n", + "Running simulation took 10.51s for 6.000s simulated time. \n", + "Iteration avg time of 8.8 ms.\n", + "RTF: 57.10%\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[ERROR] [2025-01-21 18:35:53.217] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", + "[ERROR] [2025-01-21 18:35:53.242] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", + "[ERROR] [2025-01-21 18:35:53.264] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", + "[ERROR] [2025-01-21 18:35:53.295] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", + "[ERROR] [2025-01-21 18:35:53.319] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n" + ] + } + ], "source": [ "# ==== Run the simulation ====\n", "\n", @@ -392,9 +713,70 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/0AAAWbCAYAAABiQtQdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf7H8dfuZtNJgCSQntBBmnRBadJBRUTFLkV+enhnuzsVTwUsYD/w7KcCnoqg2EF6l96R3hNIQkIoKaRssvP7Y8lCTDYkEEiyvJ+PB7oz+5mZ73c2u9/5zHznOybDMAxERERERERExO2YK7oAIiIiIiIiInJ5KOkXERERERERcVNK+kVERERERETclJJ+ERERERERETelpF9ERERERETETSnpFxEREREREXFTSvpFRERERERE3JSSfhERERERERE3paRfRERERERExE0p6RcREbmCpkyZgslkYv369Re13KFDh8q8zYSEBMaOHcvmzZtLFb9jxw7Gjh17UdsqL2PHjsVkMnH8+PES44YOHUpsbOyVKZSIiEgVpKRfRESkChgwYACrVq0iLCyszMsmJCQwbty4MiX948aNq9Ckv7ReeOEFfvjhh4ouhoiISKXlUdEFEBERkQsLCQkhJCSkootRrDNnzuDr61sh265Xr16FbFdERKSq0JV+ERGRCvbzzz/TsWNHfH19qVatGr169WLVqlWFYorr3t+tWzeaNWvGunXr6Ny5M76+vtStW5fXXnsNu90OwJIlS2jXrh0Aw4YNw2QyYTKZGDt2bLFlmTJlCnfccQcA3bt3d8ZPmTKl0DaXLVtGp06d8PX1Zfjw4QBMnz6d3r17ExYWho+PD02aNOHZZ58lMzOzyHbWrFnDzTffTFBQEN7e3tSrV48nnniixP20a9cu6tatS4cOHUhOTgaK795vMpn461//yv/+9z+aNGmCr68vLVu25Ndffy2yzp9++okWLVrg5eVF3bp1mTRpkvPWAhEREXegpF9ERKQCff311wwcOJCAgACmTZvGZ599xsmTJ+nWrRsrVqy44PJJSUnce++93Hffffz888/069eP0aNH8+WXXwLQunVrJk+eDMDzzz/PqlWrWLVqFQ899FCx6xswYADjx48H4P3333fGDxgwwBmTmJjIfffdxz333MPs2bMZNWoUAHv37qV///589tlnzJkzhyeeeIIZM2Zw8803F9rG3Llz6dy5M3Fxcbzzzjv89ttvPP/88xw7dsxlPZcuXUqnTp1o0aIFixcvplatWiXul1mzZvHee+/x0ksvMXPmTGrWrMmgQYM4cOCAM2bOnDncdtttBAUFMX36dN544w2mTZvG1KlTS1y3iIhIVaLu/SIiIhXEbrfzz3/+k+bNm/Pbb79hNjvOxffv35969erxzDPP8Pvvv5e4jtTUVGbPnk379u0B6NmzJ0uWLOHrr7/mgQceICAggGbNmgGOrvDXXXddiesLCQmhQYMGAFxzzTXFxp84cYJvv/2WG2+8sdD8559/3vnaMAyuv/56mjRpQteuXdm6dSstWrQA4NFHHyU6Opo1a9bg7e3tXGbYsGHFlunLL79kxIgRPPLII/z73/927qeSZGVlsWDBAqpVqwY4Tn6Eh4czY8YMnn32WQBefPFFIiIimDt3Lp6engD07dtXAwOKiIhb0ZV+ERGRCrJ7924SEhK4//77CyWy/v7+DB48mNWrV3PmzJkS1xEaGupM+Au0aNGCw4cPX5YyA9SoUaNIwg9w4MAB7rnnHkJDQ7FYLFitVrp27QrAzp07AdizZw/79+9nxIgRhRJ+V1599VWGDh3Ka6+9xqRJk0qV8IPj1oSChB+gdu3a1KpVy7lfMjMzWb9+Pbfeeqsz4QfHvv9zzwQREZGqTFf6RUREKkhqaipAsSPyh4eHY7fbOXnyZImD5AUFBRWZ5+XlRVZWVvkV9E+KK29GRgadO3fG29ubV155hYYNG+Lr60t8fDy33XabszwpKSkAREZGlmpbX375JREREdx1111lKuOF9svJkycxDIPatWsXiStunoiISFWlpF9ERKSCFCSmiYmJRd5LSEjAbDZTo0aNK12sCypukLtFixaRkJDAkiVLnFf3AU6dOlUoruAJBEeOHCnVtubMmcOQIUPo3LkzCxcuJCYm5uILfp4aNWpgMpmKHUcgKSmpXLYhIiJSGah7v4iISAVp1KgRERERfP311xiG4ZyfmZnJzJkznSP6XyovLy+AUl/9L2s8nDsRULBsgY8//rjQdMOGDalXrx6ff/45OTk5F1xvTEwMy5cvx8vLi86dO7N3795Sl6kkfn5+tG3blh9//JHc3Fzn/IyMjGJH+RcREamqlPSLiIhUAJPJhNls5o033mDz5s3cdNNN/Pzzz3z77bd0796dU6dO8dprr5XLturVq4ePjw9fffUVS5YsYf369SQkJLiMLxj475NPPmHFihWsX7/eeSuCK506daJGjRo88sgj/PDDD/z666/cfffdbNmypUjs+++/z+HDh7nuuuv44osvWLJkCV988QX33ntvsesOCwtj6dKlhISE0KVLF/74448y1N61l156iaNHj9KnTx9+/PFHZs6cSc+ePfH399cj+0RExG0o6RcREbmCCgbmK7gifs899/Djjz+SmprKkCFDGDZsGAEBASxevJgbbrihXLbp6+vL559/TmpqKr1796Zdu3Z88sknLuPr1KnDxIkT2bJlC926daNdu3b88ssvJW4jKCiIWbNm4evry3333cfw4cPx9/dn+vTpRWL79OnDsmXLCAsL47HHHqNv37689NJLJd5LHxwczKJFi6hXrx5du3Zl/fr1pd8BLvTt25eZM2c69/1TTz3FoEGDGDhwINWrV7/k9YuIiFQGJuP8/oQiIiJyWT3++OO89957nDp1qtDo8lI52Gw2rr32WiIiIpg3b15FF0dEROSSaSA/ERGRK2DDhg2sW7eOzz//nFtuuUUJfyUxYsQIevXqRVhYGElJSXz00Ufs3LmTSZMmVXTRREREyoWSfhERkSvg9ttv5/Tp09xyyy28++67FV0cOSs9PZ1//OMfpKSkYLVaad26NbNnz6Znz54VXTQREZFyoe79IiIiIiIiIm5KA/mJiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i7i5sWPHYjKZOH78+BXf9pIlSzCZTCxZsuSCsUOHDiU2Nvayl+lSxMbGMnToUOd0QkICY8eOZfPmzRe1vor8bERE5OqhY4HL78/HCIcOHcJkMjFlypQKK5NIAY+KLoCISFXxww8/EBAQ4JxOSEhg3LhxxMbGcu2111ZcwUREREREXNCVfpFK6syZMxVdhCotKyur3NfZqlUr6tWrV+7rFRERKY6OBS7NpRwLaN+LO1HSL1IJFHS727hxI7fffjs1atQoVXJpt9t55ZVXaNSoET4+PlSvXp0WLVowadKkIrHHjh3j7rvvJjAwkNq1azN8+HBOnz5dKCY7O5vRo0dTp04dPD09iYiI4NFHH+XUqVOF4kwmE2PHji2yjT93bXNlypQpNGrUCC8vL5o0acIXX3xRbFxubi6vvPIKjRs3xsvLi5CQEIYNG0ZKSkqR7d500018//33tGrVCm9vb8aNG3fBcoCjK6G/vz/bt2+nR48e+Pn5ERISwl//+tciDf759VuyZAnt2rUDYNiwYZhMpiL7Zc2aNdx8880EBQXh7e1NvXr1eOKJJ4qUoTSfjYiIuDcdC1T8scC2bdvo3bs31apVo0ePHgCcOHGCUaNGERERgaenJ3Xr1uVf//oXOTk5pVq3SGWg7v0ilchtt93GXXfdxSOPPEJmZuYF49944w3Gjh3L888/T5cuXbDZbOzatatIwwwwePBghgwZwogRI9i2bRujR48G4PPPPwfAMAxuvfVWFi5cyOjRo+ncuTNbt25lzJgxrFq1ilWrVuHl5XXJdZwyZQrDhg1j4MCBvP3225w+fZqxY8eSk5OD2XzuPKTdbmfgwIEsX76cp59+mk6dOnH48GHGjBlDt27dWL9+PT4+Ps74jRs3snPnTp5//nnq1KmDn59fqctks9no378/Dz/8MM8++ywrV67klVde4fDhw/zyyy/FLtO6dWsmT57MsGHDeP755xkwYAAAkZGRAMydO5ebb76ZJk2a8M477xAdHc2hQ4eYN29ekXVd6LMREZGrh44FKuZYIDc3l1tuucV5LJCXl0d2djbdu3dn//79jBs3jhYtWrB8+XImTJjA5s2bmTVr1iXvC5ErwhCRCjdmzBgDMF588cUyLXfTTTcZ1157banW/cYbbxSaP2rUKMPb29uw2+2GYRjGnDlzio2bPn26ARiffPKJcx5gjBkzpsi2YmJijAcffNA5vXjxYgMwFi9ebBiGYeTn5xvh4eFG69atnds1DMM4dOiQYbVajZiYGOe8adOmGYAxc+bMQttYt26dARgffPBBoe1aLBZj9+7dJe6L4jz44IMGYEyaNKnQ/FdffdUAjBUrVrisX0FZJk+eXGS99erVM+rVq2dkZWW53HZpPxsREXF/Ohao+GOBzz//vND8jz76yACMGTNmFJr/+uuvG4Axb948l/U+ePCgy2MEkStN3ftFKpHBgweXKb59+/Zs2bKFUaNGMXfuXNLS0lzG3nLLLYWmW7RoQXZ2NsnJyQAsWrQIoEiXvDvuuAM/Pz8WLlxYprIVZ/fu3SQkJHDPPfdgMpmc82NiYujUqVOh2F9//ZXq1atz8803k5eX5/x37bXXEhoaWmQU4BYtWtCwYcOLLtu9995baPqee+4BYPHixWVe1549e9i/fz8jRozA29v7gvEX+mxEROTqoWOBc670scCf9/2iRYvw8/Pj9ttvLzS/YP+Ux/4QuRKU9ItUImFhYWWKHz16NG+99RarV6+mX79+BAUF0aNHD9avX18kNigoqNB0Qfe8gkFuUlNT8fDwICQkpFCcyWQiNDSU1NTUMpWtOAXrCA0NLfLen+cdO3aMU6dO4enpidVqLfQvKSmpyGOHyrrvzufh4VFk/xSU52LqXXCfYUFX/wu50GcjIiJXDx0LnHMljwV8fX0LPaGnoKyhoaGFTk4A1KpVCw8Pj3LZHyJXgu7pF6lE/tyoXIiHhwdPPfUUTz31FKdOnWLBggU899xz9OnTh/j4eHx9fUu9rqCgIPLy8khJSSnU2BuGQVJSknPQOnAcJBQ3gM2FGr+Cg42kpKQi7/15XnBwMEFBQcyZM6fYdVWrVq3QdFn33fny8vJITU0tdDBUUJ4/HyCVRsH+O3LkyEWXSURErk46FjjnSh4LFLdsUFAQa9aswTCMQu8nJyeTl5dHcHDwRW9P5ErSlX4RN1G9enVuv/12Hn30UU6cOMGhQ4fKtHzBKLVffvllofkzZ84kMzPT+T44RsjdunVrobhFixaRkZFR4jYaNWpEWFgY06ZNwzAM5/zDhw+zcuXKQrE33XQTqamp5Ofn07Zt2yL/GjVqVKb6XchXX31VaPrrr78GoFu3bi6XcXVFvmHDhtSrV4/PP/9co/uKiMgVo2OB8tWjRw8yMjL48ccfC80veNLA+ftDpDLTlX6RKuzmm2+mWbNmtG3blpCQEA4fPszEiROJiYmhQYMGZVpXr1696NOnD8888wxpaWlcf/31zhF7W7Vqxf333++Mvf/++3nhhRd48cUX6dq1Kzt27OC9994jMDCwxG2YzWZefvllHnroIQYNGsTIkSM5deoUY8eOLdKl76677uKrr76if//+PP7447Rv3x6r1cqRI0dYvHgxAwcOZNCgQWWqoyuenp68/fbbZGRk0K5dO+fo/f369eOGG25wuVy9evXw8fHhq6++okmTJvj7+xMeHk54eDjvv/8+N998M9dddx1PPvkk0dHRxMXFMXfu3CInGERERC6WjgXK51igOA888ADvv/8+Dz74IIcOHaJ58+asWLGC8ePH079/f3r27HnZti1SnpT0i1Rh3bt3Z+bMmXz66aekpaURGhpKr169eOGFF7BarWVal8lk4scff2Ts2LFMnjyZV199leDgYO6//37Gjx9f6BE9//znP0lLS2PKlCm89dZbtG/fnhkzZjBw4MALbmfEiBEAvP7669x2223Exsby3HPPsXTp0kID8lgsFn7++WcmTZrE//73PyZMmICHhweRkZF07dqV5s2bl6l+JbFarfz666889thjvPLKK/j4+DBy5EjefPPNEpfz9fXl888/Z9y4cfTu3RubzcaYMWMYO3Ysffr0YdmyZbz00ks89thjZGdnExkZWWQQJRERkUuhY4HLx9vbm8WLF/Ovf/2LN998k5SUFCIiIvjHP/7BmDFjLuu2RcqTyTi/X42IyFVm6NChfPfddxfsjigiIiIiUhXpnn4RERERERERN6Xu/SKVkGEY5OfnlxhjsVguaZRad2e327Hb7SXGeHjoJ1BERConHQtcOh0LiDjoSr9IJbR06dIiz6P987+pU6dWdDErteHDh19wHwJMmTJFXftFRKTS0bHApSvtsYCIu9M9/SKVUHp6Ort37y4xpk6dOhf1DPmrxaFDhzh+/HiJMW3btr1CpRERESkbHQtcOh0LiDgo6RcRERERERFxU7qJpRzY7XYSEhKoVq2a7qsSEZFKwTAM0tPTCQ8Px2zW3XyXSm29iIhUNqVt65X0l4OEhASioqIquhgiIiJFxMfHExkZWdHFqPLU1ouISGV1obZeSf9ZH3zwAW+++SaJiYk0bdqUiRMn0rlz51ItW61aNcCxswMCAi6pHDabjXnz5tG7d2+3G1xEdauaVLeqSXWresq7XmlpaURFRTnbKLk0autLR3WrmlS3qkl1q5rKs26lbeuV9APTp0/niSee4IMPPuD666/n448/pl+/fuzYsYPo6OgLLl/QzS8gIKBcDgR8fX0JCAhwyz9w1a3qUd2qJtWt6rlc9VJX9PKhtr50VLeqSXWrmlS3quly1O1Cbb2SfuCdd95hxIgRPPTQQwBMnDiRuXPn8uGHHzJhwoQrXh5Lfg7kZoJRzB+ByQJW73PTuZmuV2Qyg9XnImPPAK7GeDSBp+9FxZrtua7rBuDpd+61LQuMEp6tWig2G4wSnmVbllirLxR8cfJywJ5Xqliz3VZy3Tx8oOBem7xcsNtcr7dMsd5gtpQ9Nt8G+bmuYy1eYHH8RJiMvJLrdl4s+XmQn1PCej3BYi17rD0f8rJdx5qt4OFZ9ljDXnLdCq3XDnlZJazXAzy8zq7XANuZ8okt0/e+mFhXdauEvxFl+95ngVHC33Al+424YKyaZBEREbd3OsvG6RIOXy6Hq/4IIzc3lw0bNvDss88Wmt+7d29WrlxZ7DI5OTnk5JxLVNLS0gDHWRubrYSEqxR2HD3FTVtHwtbi38+O7UH6oC+xmMFiNhEwsR4mW/FJiD26E/n3/+yc9pjYHNOZ1OJjw64lf/iCc7Hvt8d0Or7YWCO4EXkP/34u9pNumI4X/0gZIzCKvL9uAhz754a9r2Ld8lDxsb5B5D15bj2W/92GOa74z8Cw+pL3dNy52G/uxbx/QbGxALZ/nXtci2XmSMy7fnYd+8/DzgTA8stjmLd+4zr2iV3gF4zNZqPZ0a+xvjnCdeyjG6G6o+eIeeFYLKvfdx37fysgpLEjdtkbWJa/6TI2b9g8jPDWjthV72FZNM517H0/YsTc4Ihd/xmWuc+4jr3za4wGvbHZbESeWIX1zeGuY2/7DKPJQABMO3/C43vX+yHvpv9gtLzbEbt3Hh4z7nEZm9/ndextHesyHV6Bx5e3uo69cQz2jn9zxCZsxGNyb9exnf+Jvcsz2Gw2qmUnYH0zxnXsdY9i73F2n56Kw/p+a9exbYZj7/uGYyLzONaJjV3G2lvcRf7N7zkmcjNLLIO98S3kD/7cOW0dH+46tl5P8u/6xvlb5DGxsSM5Li62kv1GAFg+74s5cXPxsWd/IwrqZp52J8SvKj62kv1GAJjnPItlw+cuY/MeXutY5hLbEee2y2k9IiIicmkMw2DtwRN8sy6e2dsSaV3TzN1XcPtXfdJ//Phx8vPzqV27dqH5tWvXJikpqdhlJkyYwLhxRROrefPm4evrW8wSpffcOgvbS/hUVu5PZfiExc7pHV52fF305lh/6CRDx87FbAKzCZaYc6npInZ3YhoPv3Yu9mtbFqEuyhCfmsGTk+ZgxnEB653MDFwNG5GansW/Pp6DGQOzCZ7OhRouYjOycnnmk9+c00+cOkFDF7G5tjwe/3gO4Lh++NfTKTR3EQvw6EfnYh9OT6KkJ7I+9ul8ck2OK6XDM45yfQmxf5+8iHSzo5vng1lQp4TYxYsXk+UVAsA1Rw/QoITY5cuWke5zAIBGiXtxnTrC77+v5JSf42+1/rFdNC0hdvXqNaRud5ykqpOynRYlxK5fv55jex1XJS80dNWmjZtIOOi4mhx+chPtSojdunUr8UcDAah9ejPXlRC7fft2DibPBiAofSc3lBC7a9cu9p10xFbPPEDXEmL37t3L7gxH7IXudj5w4AA7chyxPjkpuD6VAHGHD7N1tiPW05ZGvxJijxw5wqazsZb8HG4qITYxKZH1Z2MBBpYQm5ySwprzYvPz813+0J84cYLfz4vtm5uLl4vY06dPs+y82F5ZWbj6tUvPyGDxebHdMzJw1Rk6KyuL+efFdjl92uVvRG5uLnPOiz158iTBLmLz8/OYfV5sh5QUl79pQKHYtkmJRJQQO3fuPPItjj3V6sgRSroJbMGCBeRaHbVvEX+4xN+I5cuXg1cI8+fPLyGq9M6cKaH3iIiIiFx2Kek5zNx4hBnr4jlw/FyPysQzJgzDVS/I8mcyruTWKqGEhAQiIiJYuXIlHTt2dM5/9dVX+d///seuXbuKLFPclf6oqCiOHz9e4n1++fn55OXllfgBP/S/jWSmncLi4YEdsNsN8u0GdsPAbkC+YSKXc111vXDdN8Tg4mM9ycXVnSEGkIvnRcbaMLns5gs5lSLWCmdrZCUPM0W7GhuGwansfE7meTpjPbFhoXCXYLMJgvy8CK7mSfVq1QgJ8KFWNS9q+5mp7WcmxN+LkGpe1PS14mE57zEbVh9Hd2pwdMHPL22X/bLEXqB7v4cXmD2w2WwsmPcbPbt1xWp1kT6ejQUc3ZfzSttlvyyxF+iyb7E64ssQa7PZmD9vLr26dXZdt/PXa9hdXjUHLl/3frPF8dkVKKkb/tlYm83G/Pnz6dX1etd1u5Tu/bYzjnIXG2tydGu/qNgLd+931q3bDVg9LCXGOuVlO/4uyiP2MnXvt+HB/AUL6dWrV7kN5BccHMzp06cv+R50cezPwMDAC+7P/Pz8C/aysNlsLFu2jC5durjlvaruVjdPT0/MZjM2m43Zs2fTv39/t6lbAdWtalLdKqd8u8HyvSl8szaeBTuPkWd3HAP5elq4pWU4g1uFcXTrSgYMuPS6lbZtuuqv9AcHB2OxWIpc1U9OTi5y9b+Al5cXXl5Fr4dZrdZiPzjDMEhKSuLUqVMXLM+YbiFkZfnj4+PjckCG808aGM7/nLtj1ij4r1H4Ltrzj7ldxhRan+FiuYJFS1EO47w1GZCXn4eHxQOXZwlKcPFDUZVxSVOxLwsxcJyQic80cTDTg7x8Ozv2HsS7RhgpGbkkp+VwPCMHuwGZGRCXYYPEE643aYJgfy/HCYEAb2pV86LW2f/XPu//wf6ehU8O/FlZfjisVnB5rfZP9TV5YPULLOUPkxW8fC4cdlGx3hcOK2usyVyGugGerq6FFxfreeGYi4m1Vi99aFnqVob1Yg28TLGl/xu2+pZhAJwyfzcqIPZsouiqLSmrqnaQVNWVpa03DIPQ0FDi4+PdbqBFd6yb2WymTp06blMfEbk8jp7KYsa6eL5dH0/C6XMXn66Nqs5d7aK4qWU4/l6OC2oJ265s2a76pN/T05M2bdowf/58Bg0a5Jw/f/58Bg4sqRNt6RUcBNSqVQtfX98SGw273U5GRgb+/v6YzSUkd1WQO9XNMAzOnDlDzeRkulavTnBwMLPt++nfv7XzQDsv386JzFyOpeWQnJ5d6P8p502npDtODqSk55CSnsP2hDSX2zWd7TngOAngRa1q3tQO8CIkwJvaZ08U1A7wItjfC2tJJwdERKRcqa13cLe62e12EhISSExMJCwsrKKLIyKVTG6enYU7j/HNuniW7U1xXiwN9LEyqFUEQ9pF0SSs4nvbXfVJP8BTTz3F/fffT9u2benYsSOffPIJcXFxPPLII5e87vz8fOdBQFBQ0AXj7XY7ubm5eHt7u0VjeT53q5uPj+MKdXJyMjVqFL0L2cNidlytD/AGXF/pzLcbpGbmkHz+yYG0HI6lZzvnJaflkJKRQ77d4HiGoxfBjkTXZXOcHPAk5OxJAVc9CEKq6eSAiMilUlt/jjvWLSQkhISEBPLzS7jtR0SuKvtTMpixLp6ZG49wPOPc7bId6wZxV/so+jQNxdtawi2IV5iSfmDIkCGkpqby0ksvkZiYSLNmzZg9ezYxMa5H0y6tgvv6LnWAP6mcCj7XvLySHsNVMovZRK1q3tSqduGTA46eA47eAX/uPZCcnkPy2ffy7AbHM3I5npHLzhJODkDByYHCtxHUOtuLoFaAF0E+FuxX9cgfIiIlU1vv3jzP3n6lpF/k6pZty2f2tkS+WRfP2oPnbtsN9vfijraR3Nk2ijrBfiWsoeIo6T9r1KhRjBo16rKtX/eBuaeCz/VKjIdpMZsIqeYY+K8kdrvBiTO5zt4CKWk5HEvLJjn93P+T07JJycjBlm+QmplLamYuu5LSXa7T32phdd52+jYPp1O9ILxKGjxNROQqpbbePV3Jtl5EKp/tCaeZvi6eHzYdJT3bcaHPbIJujWoxpF0UNzauVel7zirpF3EzZrOJYH/Hff3XuHxQmuPkwMkzuUVOBhSedvQkyLDB9PVHmb7+KNW8POjWuBZ9mtamW6Na+HvpZ0RERERE3Ed6to2ftyQwfV08W4+cds6PqO7DkHZR3NE2krDA0g5GXfF0tC4XzWQy8cMPP3Drrbde1u3ExsbyxBNP8MQTT1zW7RRnypQpPPHEE6UajbmqMZtNBPl7EeTvVeIAI5lZObw3Yy6nq8WwYGcKyek5/LIlgV+2JODpYeaG+sH0aVqbnk1qE+RfhpHtRUSk0lNbLyJXC8Mw2Bh3km/WxvPr1kSybI5beqwWE72vCeWu9lFcXy8Ys7nq9epS0i8uJScn88ILL/Dbb79x7NgxatSoQcuWLRk7diwdO3YkMTGx2AHsKpoa7/Ll6WGmcXWD/v2v4ZVbPdh85BRztycxb/sxDh7PZNGuZBbtSsZs2kbb2Jr0aRpK72tqE1VT97aKiFR2autF5Gp3IjOX7zceYfq6ePYmZzjn1wvx46520dzWOqLKX9hS0i8uDR48GJvNxtSpU6lbty7Hjh1j4cKFnDjhGLgiNDS0gksoV5rZbKJ1dA1aR9fg2b6N2Zucwdw/kpi7I4k/jqax9uAJ1h48wcu/7qBpeAB9mobSp2koDWv7615XEZFKSG29iFyN7HaDlftT+WZdHPO2HyM33w6At9XMgObh3N0+ijYxNdzm+LVyjzggFebUqVOsWLGC119/ne7duxMTE0P79u0ZPXo0AwYMABxd/n788UcADh06hMlkYsaMGXTu3BkfHx/atWvHnj17WLduHW3btiUgIIDbb7+dlJQU53a6detWpCvfrbfeytChQ12W7Z133qF58+b4+fkRFRXFqFGjyMhwnJVbsmQJw4YN4/Tp05hMJkwmE2PHjgUgNzeXp59+moiICPz8/OjQoQNLliwptO4pU6YQHR2Nr68vgwYNIjU19ZL2ozszmUw0rF2Nv/VowK9/68yKZ7rz4k3X0KFOTcwm2J6Qxjvz99Bn4jK6v7WECbN3suHwCex6FICISKWgtl5tvcjVJul0Nu8t2kvXtxZz32dr+HVrIrn5dppFBPDKrc1Y+6+evH1nS9rG1nSbhB90pf+KMwzDeX9Icex2O1m5+Xjk5pX78219rJZS//H6+/vj7+/Pjz/+yHXXXYeXV+m6tIwZM4aJEycSHR3N8OHDufvuuwkICGDSpEl4e3tz5513MmbMGD766KOLrofZbObdd98lNjaWgwcPMmrUKJ5++mk++OADOnXqxMSJE3nxxRfZvXu3sy4Aw4YN49ChQ3zzzTeEh4fzww8/0LdvX7Zt20aDBg1Ys2YNw4cPZ/z48dx2223MmTOHMWPGXHQ5rzaRNXwZfkMdht9Qh9SMHBbuTGbu9iSW7zvOodQzfLzsAB8vO0BINS96XVObPk1D6Vg3CE8PnXsUEfdTUnuvtv7C1NaLSHnJy7ezeHcK36yNY/HuZOejqKt5eXBrqwiGtIuiWYTrx2a7AyX9V1iWLZ9rXpxbIdve8VIffD1L95F7eHgwZcoURo4cyUcffUTr1q3p2rUrd911Fy1atHC53D/+8Q/69OkDwOOPP87dd9/NwoULuf7667Hb7dx3331Mnz79kupx/tWCOnXq8PLLL/OXv/yFDz74AE9PTwIDAzGZTIW6JO7fv59p06Zx5MgRwsPDnWWdM2cOkydPZvz48UyaNIk+ffrw7LPPAtCwYUNWrlzJnDlzLqm8V6Mgfy/ubBfFne2iyMjJY+nuFOZuT2LxrmRS0nP4ek0cX6+Jo5q3Bzc2rkWfpqF0bRiCn54EICJuoqLae7X1autFxOFwaibT18Xz3YYjJKfnOOe3i63BXe2i6d88DB/Pq+Mx1DrCFpcGDx7MgAEDWL58OatWrWLOnDm88cYbfPrppy675J1/kFC7dm0Amjdv7pxXq1YtkpOTL6lcixcvZvz48ezYsYO0tDTy8vLIzs4mMzMTPz+/YpfZuHEjhmHQsGHDQvNzcnIICgoCYOfOnQwaNKjQ+x07dtSBwCXy9/JgQIswBrQIIzfPzsr9x5m7/RjzdxzjeEYOP21O4KfNCXh5mOncIJjeTUPp2aQ2Nf08K7roIiJuT2292noRd5Jty2fejmN8szaOlfvP3boT5OfJ4DaR3Nk2ivq1/CuwhBVDSf8V5mO1sOOlPi7ft9vtpKelUy2g2mXp8ldW3t7e9OrVi169evHiiy/y0EMPMWbMGJcHAlar1fm6oHvhn+fZ7XbntNlsxjAK3+Nts9lclufw4cP079+fRx55hJdffpmaNWuyYsUKRowYUeJydrsdi8XChg0bsFgK74eCLoF/LoeUP08PM90a1aJbo1q8cmszNsWdZO72JOZuP0bciTMs2JnMgp3JmE3Qvs7ZJwE0DSWietV5DqqICJTc3qutV1svIuVrd1I636yL44dNRzl1xvE7YTJB5wYh3NUuip5Nal/Vt5Qq6b/CTCZTid3u7HY7eZ4WfD09yv1AoDxcc801zgF9ykNISAiJiYnO6fz8fP744w+6d+9ebPz69evJy8vj7bffdu6fGTNmFIrx9PQkP7/wfZStWrUiPz+f5ORkOnfuXOy6r7nmGlavXl1o3p+npfxYzCbaxtakbWxNnuvfhN3H0pn7xzHmbk9iR2Iaqw+cYPWBE4z7ZQfNIwLp09QxDkD9WnoSgIgUtmzZMt588002bNhAYmJisc+V37lzJ8888wxLly7FbrfTtGlTZsyYQXR09GUpU0ntvdp6tfUicukyc/L4dWsC36yLZ1PcKef8sEBv7mgbxZ1tI4msoUdIg5J+cSE1NZU77riD4cOH06JFC6pVq8b69et54403GDhwYLlt58Ybb+Spp55i1qxZ1KtXj3//+98lPnO3Xr165OXl8Z///Iebb76Z33//vchAQbGxsWRkZLBw4UJatmyJr68vDRs25N577+WBBx7g7bffplWrVhw/fpxFixbRvHlz+vfvz2OPPUanTp144403uPXWW5k3b566+10hJpOJxqEBNA4N4PGeDYg/cYa525OYt/0Y6w6fYNvR02w7epq35u2hbrAfvZuG0qdpbVpGVsds1gkAkatdZmYmLVu2ZNiwYQwePLjI+/v37+eGG25gxIgRjBs3jsDAQHbu3Im3t3cFlLbyUFuvtl6kqjEMgy1HTjN9XRw/b04gM9dx8s/DbKJHk1rc1T6aLg1CsOj4sBAl/VIsf39/OnTowL///W/279+PzWYjKiqKkSNH8txzz5XbdoYPH86WLVt44IEH8PDw4Mknn3R55h/g2muv5Z133uH1119n9OjRdOnShQkTJvDAAw84Yzp16sQjjzzCkCFDSE1NZcyYMYwdO5bJkyfzyiuv8Pe//52jR48SFBREx44d6d+/PwDXXXcdn376qTO+Z8+ePP/887z88svlVl8pnaiavjzUuS4Pda7L8YwcFuxw9AD4fV8qB45n8tHS/Xy0dD+1A7zofU0ofZqG0qFuTayWynfFTEQuv379+tGvXz+X7//rX/+if//+vPHGG855devWvRJFq9TU1qutF6kqTp3J5cdNR/lmXTy7ktKd8+sE+zGkXRS3tY6gVrWr+0RuSUyGbm66ZGlpaQQGBnL69GkCAgIKvZednc3BgwepU6dOqa4o2O120tLSCAgIqJRd/i6FO9at4PONjIxk0aJF9O/fv9B9je7AZrMxe/bsSlG39GwbS84+CWDJ7hQycvKc7wX6WOnRuBa9m9amS8OQUo1eXZnqVt5Ut6qnvOtVUtvkzkwmU6Hu/Xa7ncDAQJ5++mlWrFjBpk2bqFOnDqNHjy5yC8D5cnJyyMk5N9pzWloaUVFRHD9+vNi2Pj4+ntjY2FK19YZhkJ6eTrVq1dzudiV3rFt2djaHDh0iLCyMZcuW0atXL7f67QHH78/8+fNVtyrG3es2b958qjdsy/ebjzFnxzFy8xxjhXh6mOl7TW3ubBtB+9gaVe63pjw/t7S0NIKDgy/Y1utKv4hUGdW8rdzcMpybW4aTk5fPyn2pzN2exPwdx0jNzOX7TUf5ftNRvK1mOjcIoU/TUHo2qUV1Xz0JQORqlZycTEZGBq+99hqvvPIKr7/+OnPmzOG2225j8eLFdO3atdjlJkyYwLhx44rMnzdvHr6+he8R9fDwIDQ0lIyMDHJzc0tdtvT09AsHVVHuVLfc3FyysrJYuXIlAPPnz6/gEl0+qlvV5G51S8uFtSkmViVbOL56s3N+uK9Bx1p22obk4esRT+rOeH7bWXHlvFTl8bmdOXOmVHFK+kWkSvLysNC9cS26N67Fq4MMNhwueBJAEkdOZjF/h+OxgBaziQ7OJwHUJixQTwIQuZoUjCI/cOBAnnzyScDRfXzlypV89NFHLpP+0aNH89RTTzmnC6709+7d2+WVfn9/f13pd8O6ZWdn4+PjQ6dOnXSlvwpS3aqGvHw7y/el8u2GoyzanUK+3dEZ3dfTws0twrizTQTNIwLc4nelvK/0l4aSfhGp8ixmE+3r1KR9nZo8P6AJOxLTmLv9GPO2J7ErKZ2V+1NZuT+VMT9vp2Vk4NmBAEOJqeFV0UUXkcssODgYDw8PrrnmmkLzmzRpwooVK1wu5+XlhZdX0d8Iq9Va5CAtPz8fk8mE2Wwu1e1rBSciCpZxJ+5YN7PZjMlkwsPDcdhc3N+Au1DdqqaqXLf4E2eYsT6eb9cfISkt2zm/VVQgjawnePaeG6nu754XbMrjcyvt8kr6RcStmEwmmoYH0jQ8kKd6NeRwaibzth9jzvYkNsadZMuR02w5cpo35+6mbrAfjX1MtEnLJjKoajaWIlIyT09P2rVrx+7duwvN37NnDzExMRVUKhGRq1dOXj7zth9j+rp4Vuw77pxfw9fKba0jGdIuijo1vZk9ezZ+XkpXy4P2ooi4tZggP0Z2qcvILnVJTs9mwY5k5m5PYuX+4xw4nskBLMx9ezk9m9Ti3g4x3FA/WI8BFKliMjIy2Ldvn3P64MGDbN68mZo1axIdHc0///lPhgwZQpcuXejevTtz5szhl19+YcmSJRVXaBGRq8yeY+l8szaeHzYd4eQZm3N+5wbBDGkXRa9rauPlYQEcXeCl/CjpF5GrRq1q3tzTIZp7OkSTlm1jztYEPpq/jQPpMHf7MeZuP0Z0TV/uah/FHW2iCKmm7v8iVcH69esLPQKu4F78Bx98kClTpjBo0CA++ugjJkyYwGOPPUajRo2YOXMmN9xwQ0UVWUTkqpCZk8evWxP4Zl08m+JOOeeHBnhzZ9tI7mgbRVRNX9crkHKhpF9ErkoB3lYGtQrHK3EzDdp0YcbGBGZuPELciTO8MWc3/56/h95NQ7m3fTQd6wW5xcAxIu6qW7duXOgJxMOHD2f48OFXqEQiIlcvwzDYcuQ036yN45ctCWTm5gPgYTbRo0kt7moXTZeGIVjUs/KKUdIvIle9BrX9GXtLU57p25hftibw9Zo4NsefYtbWRGZtTaROsB/3tI9mcJtIavrp8X8iIiIif3YyM5cfNh1lxvp4diWde2xnnWA/hrSL4rbWEdSqduEnnEj5U9IvInKWj6eFO9tGcWfbKHYkpPH12sP8uCmBg8czeXX2Tt6cu5t+zUO5t0MM7WJr6Oq/iIiIXNXsdoNVB1L5Zl08c/9IIjff8QQPLw8zA5qHMaRdFO3r1NQxUwVT0i+X1a5duxg6dCibN2+mcePGGjRJqoxrwgN45dbmjO7XhJ+3OK7+bzt6mp82J/DT5gTq1/J3XP1vHUmgr0b+F5Grl9p6kavPsbRsvttwhOnr4ok7ccY5/5qwAO5uH8Ut10YQ6KPjo8pCSb+4NHToUKZOnQqAxWIhPDycAQMGMH78eGrUqFGqdYwZMwY/Pz92796Nr68G6ZCqx8/Lg7vbR3N3+2i2HjnF12vi+GlzAvuSM3jp1x28PmcXA1qEcW+HGFpHV9eZbBGpUtTWi0hp2fLtLN6VzIz18SzalYz97FAq1bw8GNgqnLvaRdMsIrBiCynFUtIvJerbty+TJ08mLy+PHTt2MHz4cE6dOsW0adNKtfz+/fsZMGAAMTEx2O120tLSylyG3NxcPD11H7VUvBaR1WkRWZ3nBjThp01H+WpNHLuS0vl+41G+33iUxqHVuKdDNLe2iiDAW2e3RaRqUFsvIiU5dDyT6evj+W7DEVLSc5zz28fWZEi7KPo3D8PH01KBJZQLMVd0AaRy8/LyIjQ0lMjISHr37s2QIUOYN2+e8/3JkyfTpEkTvL29ady4MR988IHzPZPJxIYNG3jppZcwmUyMGzcOgKNHjzJkyBBq1KhBUFAQAwcO5NChQ87lhg4dyq233sqECRMIDw+nYcOGZVrurbfeIiwsjKCgIB599NFCz/nMycnh6aefJioqCi8vLxo0aMBnn33mfH/Hjh30798ff39/ateuzf3338/x48fLe7dKFRfgbeX+jrH89nhnvh/VidvbROJtNbMrKZ0Xf9pOh1cX8sx3W9kSf+qCI4qLiFQ0tfVq60X+LNuWz0+bj3L3J6vp9tYSPlyyn5T0HIL8PHm4S10W/r0rMx7pyOA2kUr4q4AKv9J/MWeDAwICLkNJrrDczOLn2+2Qlw0EXDgWwGQGq8+FYz39ylzEPztw4ABz5szBanVcwfzvf//LmDFjeO+992jVqhWbNm1i5MiR+Pn58eCDD5KYmEjPnj3p27cv//jHP/D19SUjI4MePXrQuXNnli1bhoeHB6+88gp9+/Zl69atzrP8CxcuJCAggPnz52MYBmfOnKF79+4XXG7x4sWEhYWxePFi9u3bx5AhQ7j22msZOXIkAA888ACrVq3i3XffpWXLlhw8eNDZ0CcmJtK1a1dGjhzJO++8Q1ZWFs888wx33nknixYtuuT9J+7HZDLROroGraNr8MKAa/h+0xG+XhPH3uQMpq+PZ/r6eJqGB3BvhxhuuTYcf68K/8kVqXBXXbtfXLtst4PtDOR5gqdvybEFStPeq60H1NaLXIodCWnMWB/PD5uOcjrLcTLNZIKuDUO4q10UNzaujaeHrhtXNRV+BFq9etnugTWZTOzZs4e6detexlJdAePDi51tBvxiu8MD35+b+WZ9x8FBcWJugGGzzk1PbA5nUovGjT19UcX89ddf8ff3Jz8/n+zsbADeeecdAF5++WXefvttbrvtNgDq1KnDjh07+Pjjj3nwwQcJDQ3Fw8MDf39/QkNDsdvtfPHFF5jNZj799FPn5z558mSqV6/OkiVL6N27NwB+fn58+umnzgb+888/L9VyNWrU4L333sNisdC4cWMGDBjAwoULGTlyJHv27GHGjBnMnz+fnj17AhT6O/rwww9p3bo148ePd877/PPPiYqKYs+ePc6rECLFCfS1Muz6OgztFMv6wyf5avVhZv+RxPaENJ77YRuvztrBwFYR3NNe97vJ1e2qa/eLae/NQHXAqN8L7vvu3BuX2t6rrVdbL3IR0rNt/Lwlgenr4tl65NzvSER1H+5sG8UdbSMJr+5TwhqksqvwpB/gu+++o2bNmheMMwyD/v37X4ESSYHu3bvz4YcfcubMGT799FP27NnD3/72N1JSUoiPj2fEiBHOM+sAeXl5BAa6Tmg2b97Mvn37qFatWqH52dnZ7N+/3zndvHnzQvf2bdiwoVTLNW3aFIvlXBejsLAwtm3b5ty2xWKha9euxZZtw4YNLF68GH9//yLv7d+/XwcCUiomk4l2sTVpF1uTMZm5zNzouPp/4HgmX6+J4+s1cbSMqs697aO5qWUYvp6V4mdY5IpSu1+5qK13UFsvVxPDMNgYd5Jv1sbz69ZEsmz5AFgtJnpfE8qQdlFcXz8Yi1kDFLuDCj/ajImJoUuXLgQFBZUqvm7dus4uZ1XacwnFzrbb7WRmZFKoI+M/97lej+lP3Wue2HbJRTufn58f9evXB+Ddd9+le/fujBs3jr/+9a+Ao9tfhw4dCi1zfkP8Z3a7nTZt2vDVV18VeS8kJKTQdi9muT//bZhMJux2x/NCfXxKPkNpt9u5+eabef3114u8FxYWVuKyIsWp4efJQ53rMuKGOqw6kMrXa+KYuz2JLfGn2BJ/ipdn7eC2VhHc0yGGRqHVLrxCETdw1bX7xbT3drudtPR0AgKrU+hwuoLae7X1Dmrr5WqQmpHDD5uO8s26ePYlZzjn16/lz13tohjUKoIgf68KLKFcDhWe9B88eLBM8X/88cdlKskV5uq+O7sdPPJLF1uW9ZaTMWPG0K9fP/7yl78QERHBgQMHuPfee0u9fMuWLfnxxx+pVatWme7RbN26NdOnTy/zcudr3rw5drudpUuXOrv8/XkbM2fOJDY2Fg+PCv9qiBsxmUx0qhdMp3rBHM/I4dv1R5i2No64E2eYuuowU1cdpk1MDe7tEE3/5mF4WzUgjrivq67dL65dttvBmg8e3heOLct6y4naehH3YrcbrNh3nG/WxTF/xzFs+Y5Bhn2sFm5qEcZd7aNoHV1Djx12YxqFQcqkW7duNG3alPHjxzN27FgmTJjApEmT2LNnD9u2bWPy5MnO+wCLc8cddxAcHMzAgQNZvnw5Bw8eZOnSpTz++OMcOXLE5XL33nvvRS13vtjYWB588EGGDx/Ojz/+yMGDB1myZAkzZswA4NFHH+XEiRPcfffdrF27lgMHDjBv3jyGDx9Ofn7+BdYuUjrB/l78pVs9lvyjG/8b0Z5+zUKxmE1sOHySp2ZsocP4hbz0y45CZ99FRK4ktfUi7iHhVBaTFuyl8xuLeeDztczeloQt36BlZCDjBzVn7b968OYdLWkTU1MJv5urVKc433333WLnm0wmvL29qV+/Pl26dCmxS5lcfk899RTDhg1j3759fPrpp7z55ps8/fTT+Pn50bx5c5544gmXy/r6+rJkyRJGjx7NbbfdRnp6OhEREfTo0aPEs/q+vr4sW7aMZ555pkzL/dmHH37Ic889x6hRo0hNTSU6OprnnnsOgPDwcH7//XeeeeYZ+vTpQ05ODjExMfTt2xezWefHpHyZzSY6Nwihc4MQktOymbE+nmlr4zl6KovPfz/I578fpEOdmtzTIZq+zULx8tDvnrgftfuVl9p6kaopN8/Ool3H+GZdPEv3pFDw5OAAbw9uax3JnW2juCa8Cj8RRS6KyahED5GuU6cOKSkpnDlzhho1amAYBqdOncLX1xd/f3+Sk5OpW7cuixcvJioqqqKL65SWlkZgYCCnT58u0ihlZ2dz8OBB6tSpg7e3t4s1nGO320lLSyMgIMDtGh93rFvB5xsZGcmiRYvo379/1b73tBg2m43Zs2erbldAvt1g2Z4UvloTx6Jdx7Cf/XWu6efJHW0iubt9NLHBpevSW9nqVp7ctW7lXa+S2qbKoiq1+2rrS8cd66a2vmq7WuoWdyqHGevimbnxCMczcp0xHesGcVf7KPo0Da1Stw9eLZ/bpdattG19pfo1Hj9+PO3atWPv3r2kpqZy4sQJ9uzZQ4cOHZg0aRJxcXGEhoby5JNPVnRRRUTKncVsonvjWnz6YFt+f/ZGnujZgLBAb05k5vLxsgN0e2sJ9366mtnbErHl2yu6uCKXTO2+iMjFy8rNZ22Kibs/XUuPt5fy8bIDHM/IJaSaF6PO3ko47f+uY+C1EVUq4ZfyV6m69z///PPMnDmTevXqOefVr1+ft956i8GDB3PgwAHeeOMNBg8eXIGlFBG5/MICfXiiZ0P+2r0+i3en8PWawyzZk8Lv+1L5fV8qwf5e3NnWcfU/qqZvRRdX5KKo3RcRKbs9x9L5ek0cMzceIT3bApzCbIIbG9diSLtoujcKwcNSqa7tSgWrVEl/YmIieXl5Rebn5eWRlJQEOO7FSk9Pv9JFExGpEB4WM72uqU2va2oTf+IM09fFM319PCnpOXywZD8fLt1PlwYh3NMhmh6Na6mRlypF7b6ISOnk5OUz548kvlodx9pDJ5zzg7wMHuzcgDvbxRAaeOHbi+TqVKmS/u7du/Pwww/z6aef0qpVKwA2bdrEX/7yF2688UYAtm3bRp06dSqymCIiFSKqpi//6NOIx3s2YOHOY3y1Jo7le4+zdE8KS/ekUDvAiyFtoxjSPppafpXq512kWGr3RURKduh4JtPWxvHthiOcyHTcq28xm+jVpDZD2kZwavcabupa1+3ue5fyVamOCj/77DPuv/9+2rRp4/zDzcvLo0ePHnz22WcA+Pv78/bbb1dkMUVEKpTVYqZvszD6NgvjcGom09bG8+36eI6l5fDuon28t3gfXRsG09Bkoq+90ozVKlKE2n0RkaJs+fZCJ/cLhAV6c3f7aIa0i6J2gLdjQLg9FVhQqTIqVdIfGhrK/Pnz2bVrF3v27MEwDBo3bkyjRo2cMd27d6/AEl48u12Dbrmjgs9VzzaVihIT5Mez/RrzVK+GzN2exNdr4lh1IJXFu4+zGAtz3/2dBzrGcnvbSAK8dRVAKhd3a/fV1runggddqa2Xyy3hVBbfrI3jm3XxJKfnAGAyQdeGIdzXIYZuuldfLlKlSvoL1K1bF5PJRL169fDwqJRFLDVPT0/MZjMJCQmEhITg6elZYqNht9vJzc0lOzvbbR51U8Cd6mYYBrm5uaSkpGA2m9WlSiqcp4eZm1uGc3PLcA6kZPC/VYf4Zs0hDqWe4aVfd/D2vN0MbhPJAx1jqV/Lv6KLK1JIVW/31daf4251MwyDlJQUTCZTlfzblMov326wbG8KX60u/LjeYH9P7mwbpQF7pVxUql+vM2fO8Le//Y2pU6cCsGfPHurWrctjjz1GeHg4zz77bAWXsOzMZjN16tQhMTGRhISEC8YbhkFWVhY+Pj5ud0bZHevm6+tLdHS029RH3EPdEH+e69eIJnn7OVO7OV+tiWdvcgZfrDrMF6sO07lBMEM7xdKtUS0sZv3tSsVxl3Zfbf057lg3k8lEZGQkFoseeSblJyU9hxnr45m2No4jJ7Oc8zvWDeLe66LpfU0onh5V/8SZVA6VKukfPXo0W7ZsYcmSJfTt29c5v2fPnowZM6bKNP5/5unpSXR0NHl5eeTn55cYa7PZWLZsGV26dHG7q8fuVjeLxYKHhwcmkwmbzVbRxREpwssCg9pH8WCnOqzcn8qUlYdYsPMYy/ceZ/ne40TX9OWBjjHc0TaKQJ+q/52Uqsed2n219Q7uWDer1YrFYlFbL5fMMAxWHUjlqzVxzP0jibyzl/UDfazc3sbxGF71xpPLoVIl/T/++CPTp0/nuuuuK3R2+JprrmH//v0VWLJLZzKZsFqtF2wALRYLeXl5eHt7u01jWcCd6yZSmZlMJq6vH8z19YOJP3GG/60+zPR18cSdOMMrs3by9rw9DGodwdBOsTSsXa2iiytXEXdr99XWu3fdRC7WqTO5fLfhCF+vjeNASqZzfuvo6tzbIYYBLcLwtqoniVw+lSrpT0lJoVatWkXmZ2Zmuk0XMRGRihRV05fn+jfhyZ4N+XHzUaauPMSupHS+XhPH12vi6FQviAc7xdKzSW11/ZfLTu2+iLgrwzDYGHeKr9YcZtbWRHLyHAN9+nlaGNQ6gnvax3BNeEAFl1KuFpUq6W/Xrh2zZs3ib3/7G3BulNT//ve/dOzYsSKLJiLiVnw8LdzdPpq72kWx5uAJpvx+iHk7kli5P5WV+1OJqO7D/R1juKtdFNV9PSu6uOKm1O6LiLtJz7bx4+YEvlp9mF1J6c75TcICuO+6aAZeG4G/V6VKweQqUKn+4iZMmEDfvn3ZsWMHeXl5TJo0ie3bt7Nq1SqWLl1a0cUTEXE7JpOJ6+oGcV3dII6eyuLL1Yf5Zm0cR09l8dpvu/j3/D0MahXBg51iaRKmKxJSvtTui4i72J5wmq/WxPHTpqNk5jrG9fA6+2SdeztEc21UdfVgkgpTqZL+Tp068fvvv/PWW29Rr1495s2bR+vWrVm1ahXNmzev6OKJiLi1iOo+PNO3MY/3aMDPmxOYsvIQOxLT+GZdPN+si6d9nZoM7RRL72tq6znBUi7U7otIVZaVm8+vWxP4ak0cm+NPOefXC/Hj3g4xDG4dSaCvxraQilepkn6A5s2bOx/dIyIiV5631cKd7aK4o20k6w+fZMrKQ8z5I4m1B0+w9uAJwgO9ufe6GO5uH01NP3X9l0ujdl9Eqpp9yel8tSaOmRuOkJadB4DVYqJvszDu7RBNhzo1dVVfKpUKT/rT0tJKHRsQoK6lIiJXislkol1sTdrF1iTxdBZfrY5j2to4Ek5n8+bc3UxauJdbWoYztFMszSICK7q4UkWo3ReRqignL5+524/x1erDrDl4wjk/qqYP97SP4Y62kQT7e1VgCUVcq/Ckv3r10t/fcqHn3pbVoUOHePnll1m0aBFJSUmEh4dz33338a9//QtPT129EhEpEBbowz/6NOKvN9Zn1tZEpq46xNYjp/luwxG+23CENjE1GNoplr7NQrGq67+UoCLbfRGRsopLPcO0dXHMWBdPamYuAGYT9GhSm3s7RNOlQQhmPe1GKrkKT/oXL17sfH3o0CGeffZZhg4d6hy1d9WqVUydOpUJEyaU+7Z37dqF3W7n448/pn79+vzxxx+MHDmSzMxM3nrrrXLfnohIVedttTC4TSS3tY5gU/wppq48xKytiWw4fJINh09SO8CLezs4uv6HVNMVDymqItt9EZHSyMu3s2hXMl+tiWPZ3hQMwzG/doAXd7WL5q72UYQF+lRsIUXKoMKT/q5duzpfv/TSS7zzzjvcfffdznm33HILzZs355NPPuHBBx8s12337duXvn37Oqfr1q3L7t27+fDDD5X0i4iUwGQy0Tq6Bq2ja/Cv/k34ak0cX62J41haDu/M38N7i/YxoEUYQzvF0jKqekUXVyqRimz3RURKknQ6m2/WxfHN2niS0rKd87s0DOHeDtH0aFxLA9lKlVThSf/5Vq1axUcffVRkftu2bXnooYeuSBlOnz5NzZo1S4zJyckhJyfHOV1wf6LNZsNms13S9guWv9T1VEaqW9WkulVNV7JuNXws/LVbHf7vhhjmbD/GF6vj2HLkND9sOsoPm47SMjKQ+6+Lpl/T2nh6XPrBkrt+buVdr6qwfypDuy8iVze73WD5vuN8tfowC3clk293XNav6efJnW2juLt9FDFBfhVcSpFLU6mS/qioKD766CPefvvtQvM//vhjoqKiLvv29+/fz3/+858i2/+zCRMmMG7cuCLz582bh6+vb7mUZf78+eWynspIdauaVLeq6UrXzQMYHgWHa8DyRDMbU01sOXKaLd9tY9xPW+lU2+D62nYCy2HYFHf93MqrXmfOnCmX9VxOFd3ui8jV63hGDt+uP8K0tXHEnTj3e9m+Tk3u7RBN32aheHlYKrCEIuWnUiX9//73vxk8eDBz587luuuuA2D16tXs37+fmTNnlno9Y8eOLTYpP9+6deto27atczohIYG+fftyxx13XPDqwujRo3nqqaec02lpaURFRdG7d+9LHmnYZrMxf/58evXqhdXqXs/1VN2qJtWtaqoMdfsLjoOq6euPMm1tPMfSc5h7xMTCBAt9m9bmgeuiuTYqsMyPNaoMdbscyrteZRklv6KUV7u/bNky3nzzTTZs2EBiYiI//PADt956q/P9oUOHFnksYIcOHVi9enW51ENEqgbDMFhz8ARfrYljzh+J2PIdV/WreXswuHUk93aIpkHtahVcSpHyV6mS/v79+7N3714+/PBDdu7ciWEYDBw4kEceeaRMZ/z/+te/ctddd5UYExsb63ydkJBA9+7d6dixI5988skF1+/l5YWXV9EBqqxWa7kdgJbnuiob1a1qUt2qpoquW1gNK0/0asSjNzZgzh9JTF15iPWHT/LrtiR+3ZZE84hAHuwUy00twvC2lu2KSkXX7XIpr3pVhX1TXu1+ZmYmLVu2ZNiwYQwePLjYmL59+zJ58mTntJ7SI3L1OJMHU1cd5pv1R9mXnOGc3zKqOvd2iObmFuH4eOqqvrivCk/6t27dSrNmzTCbHfd5RkZG8uqrr7qM3759O40aNcLDw3XRg4ODCQ4OLtX2jx49Svfu3WnTpg2TJ092lkNERMqP1WLm5pbh3NwynD+OnmbqykP8tCWBbUdP849vtzBh9k7ubh/NvddFa0RkN3c52v1+/frRr1+/Erfr5eVFaGjoxRVaRKocu91g7aETTF8Xx69bLNjsuwHw9bQw8NoI7u0QTbOIwAoupciVUeFJf6tWrUhKSiIkJKRU8R07dmTz5s3UrVv3kredkJBAt27diI6O5q233iIlJcX5ng4MREQuj2YRgbx5R0tG92/CtLVxfLn6MImns3lv8T4+XLqfvk1DebBTLO1ia5S5679UfhXV7i9ZsoRatWpRvXp1unbtyquvvkqtWrVcxmvQ3oujulVN7lS3+JNn+HFTIt9vTuDIyayzc000rOXHPR2iuaVFGNW8HSlQVa+vO31uf6a6lW1dF1LhSb9hGLzwwgulHgAvNze33LY9b9489u3bx759+4iMjCxSLhERuXxq+nnyaPf6PNylLvN3HGPKykOsOXiCWdsSmbUtkWvCAniwUwwDr40oc9d/qbwqot3v168fd9xxBzExMRw8eJAXXniBG2+8kQ0bNhR7ux5o0N5LpbpVTVW1bjn5sCXVxJoUE/vSzvXa9bIYtA4y6FDLTqz/aUzHt7F80bYKLOnlUVU/t9JQ3UpW2kF7Kzzp79KlC7t37y51fMeOHfHxKZ+un0OHDmXo0KHlsi4REbk4HhYz/ZqH0a95GDsT05i68hA/bj7KjsQ0npm5jQm/7eKudtHc3zGGiOrq+l/VVUS7P2TIEOfrZs2a0bZtW2JiYpg1axa33XZbscto0N6Lo7pVTVWxbna7wbrDJ/l+UwJzth/jTG4+ACYTdKxbk9taRdC7SS08TPYqV7fSqoqfW2mpbqVT2kF7KzzpX7JkSUUXQUREKokmYQG8NrgFz/ZrzPR18Xyx6jBHT2Xx0dL9fLJsP72uqc197aNQZ6yqqzK0+2FhYcTExLB3716XMRq099KoblVTVahb/IkzzNx4hJkbjxB/Iss5PzbIl9vbRDKodWShE8QF3Z+rQt0ulupWNZVH3Uq7fIUn/SIiIn9W3deTh7vW46HOdVmw8xhTVx5i5f5U5m4/xtztx4jwtZAfmcgtrSKxWjQAq5RNamoq8fHxhIWFVXRRRKQUMnPy+O2PJL7bEM/qAyec8/29PLipRRi3t4mkTYzGgRFxRUm/iIhUWhaziT5NQ+nTNJQ9x9KZuvIQ3288wtEzdv7+3TbeWbCPYdfHclf7aPy91KRdrTIyMti3b59z+uDBg2zevJmaNWtSs2ZNxo4dy+DBgwkLC+PQoUM899xzBAcHM2jQoAostYiUpGD0/e82HGH2tsRC3fevrxfM7W0i6dM0VI/aEykFHSGJiEiV0LB2NV4d1JzHb6zL2C8XsuaED0dPZfHKrJ28u3Av914Xw7BOsdQK8K7oosoVtn79erp37+6cLrgX/8EHH+TDDz9k27ZtfPHFF5w6dYqwsDC6d+/O9OnTqVatWkUVWURcKGv3fRG5MCX9IiJSpdTw9aRPpMHrwzrzy7ZkPl1+gAPHM/lwyX4+W36QW1uFM7JzXRrUVkJ3tejWrVuJT92ZO3fuFSyNiJSVuu+LXF5K+kVEpErytlq4p0M0d7WLYv7OY3yy7AAbDp9kxvojzFh/hBsb1+L/utSlQ52aOlAUEalk1H1f5MpR0i8iIlWa+bz7/jccPsEnyw4wb8cxFu1KZtGuZFpGBvJ/XerRp2ltPDTon4hIhVL3fZErT0m/iIi4jTYxNfn4/pocSMng0xUH+W7DEbYcOc2jX28kqqYPD91QlzvaRuLrqeZPRORKUfd9kYqlox4REXE7dUP8GT+oOU/1asgXqw7zv1WHiD+RxZift/PvBXt44LoYHugUS7B/0eewi4jIpbPbDdYdOsG36r4vUuGU9IuIiNsK9vfiqV4N+UvXeny7IZ5Plx8k7sQZ3l20j4+WHWBw60hGdq5D3RD/ii6qiIhbiD9xhu83HmXmxiPEnTjjnK/u+yIVR0m/iIi4PR9PCw90jOXeDjHM3Z7Ex8sOsCX+FNPWxvHNujh6NanNw13r0iamZkUXVUSkyjmTm8dv25L4bsMRVh1Idc739/JgQPMwbm8bSVt13xepMEr6RUTkqmExm+jfPIx+zUJZe9Ax6N/CXcnM23GMeTuO0Tq6Ov/XpR69rqmNxayDUxERVwq67xeMvp95Xvf9TvWCnN33NYaKSMXTt1BERK46JpOJDnWD6FA3iL3H0vl0+UF+2HSUjXGneOTLDdQJ9uOhznUY3DoSb6vuNxURKeCq+35MkC+3t45kUOsIImv4VmAJReTPlPSLiMhVrUHtarx+ewv+3rshU1Ye4svVhzl4PJN//fAH78zbw4OdYrn/uhhq+HlWdFFFRCqEuu+LVG1K+kVERIBaAd483bcxo7rXZ/q6eD5fcZCjp7J4Z/4ePliyjzvbRvHQDXWJDtIVLBFxf4ZhsPaguu+LuAN9S0VERM7j7+XBiBvq8EDHGGZvS+STZQfYnpDGF6sO8+Xqw/RrFsb/dalLy6jqFV1UEZFyp+77Iu5HSb+IiEgxrBYzA6+N4JaW4azcn8rHyw6wbE8Ks7YlMmtbIu3r1OThLnXp3qgWZg36JyJVWFqWjbUpJqZ9vo7VB0865/t5WripRbi674tUcUr6RURESmAymbi+fjDX1w9mZ2Ia/11+gJ83J7D24AnWHjxB/Vr+jOxch1tbReDloUH/RKTyOnUml73JGew5ls7eYxnsS85gb3I6x9JyAAtwUt33RdyQvsUiIiKl1CQsgHfuvJZ/9mnE5N8P8fWaOPYlZ/DMzG28NW8PQzvFcl+HGAJ9rRVdVBG5iqVm5LA3OYO9x9LP/j+DvckZHM/IcblMLW+De65vwO1to9R9X8TNKOkXEREpo7BAH57r34S/3lifaWvimPz7IZLSsnlz7m7eX7yPu9pFM/yGWB04i8hlYxgGKRk5joS+ILlPdly9P5GZ63K5iOo+NKjtT4Na/jSoVY36tf2JreHF8kXz6d+tLlarTlqKuBsl/SIiIhcpwNvKw13rMez6OvyyJYFPlh1g97F0Pv/9IFNXHWJAc8egf80iAiu6qCJSRRmGQVJatvNq/b7kdOfr01m2YpcxmSCqhi8NavlTv7Y/DWtVo0Ftf+qF+OPnVfTw32Yrfj0i4h6U9IuIiFwiTw8zg9tEclvrCJbuSeGTZQdYuT+Vn7ck8POWBK6vH8T/dalHlwbBGghLRIpltxsknM5yJPbHHPfaF7xOz8krdhmzCWKC/Khfy5+Gtc9eua/lSO59PDXGiIg4KOkXEREpJyaTiW6NatGtUS3+OHqaT5YdYNa2RH7fl8rv+1JpHFqNkZ3rcnPLcDw9zBVdXBGpAHa7wZGTWc6k3jGgnuP1mdz8YpfxMJuIDfY72yXfn/q1q9Gglj91gv3wtiq5F5GSKekXERG5DJpFBPLu3a34Z59GfP77Qaavi2dXUjp//3YLb87dzfAbYrm7fTTVvHX/rIg7yrcbxJ0447zfft/ZUfP3p2SQbbMXu4zVYqJusKNLfsE99w1q+xMb5KcThSJy0ZT0i4iIXEZRNX0Zc3NTnujRkC/XHGbKSsegf+Nn7+I/C/dxd4dohl0fS7CvmuSriSU/B3IzwSjmpI/JAlbvc9O5ma5XZDKD1eciY88Ahqtg8PS9qFizPdd13QA8/c69tmWBUXwCXDQ2G4zir4SXOdbq67jxHSAvB+zFd5//c6zZbitSN1u+nbgTWRxISWfX8Tz2pDgS/fjjp7HnFR1QzwQEepiJCK5J/doBNKjlT8MQT+oH+RBd0werpZjk3nzevs/LBXsJ9+B7eIP57NX/fBvkux7UD4sXWBy/PSYjr+TP7bxY8vMg3/WTALB4gsVa9lh7PuRlu441W8HDs+yxhr3kuhVarx3yskpYrwd4eJ1drwG2M+UTW6bvfTGxrupWCX8jyva9zwKjhL/hSvYbccFYDx/X711GOsIQERG5AgJ9rTzavT4Pda7Dj5uO8smyA+xPyeSTZQf4fMVBbm4RSsMSjoHEfby7aB9/3zoSthb//mbv9rxT61VMOI4jP467GS+j+ORmj09LJkVNPBtrYsK+gfjnny42Nt6nMe/X/y8mkwmTCf6543Zq2JKKjU3xrsMnzb/GbDKBCUZuvZvgrIPFxqZ5hTGl/S+YTWC32xm4/VWsWx4qNjbbWoMZNy7BZDJhNkHPNcOpfWJ9sbF5Fh9m37IRswnMJhNtf3+YWklLi40FWH7vPsxn69Zo6V8JivvNZez2obvA0xcTJiKWPEngnu9cxiaM3AZ+IeTl5VHn8NdY3xxR6H0rUO/sv3E5kzhihAAw2mMaD3vPcrle7lkNtZo4Xi+eAN+/5jp25CKIaON4veZDmP+i69gHf4U6nR2vN0yB2f8ooQwzoGEfACJPrML65nDXsXdMgaaDHK93/QLfDnUdO/ADaHWv4/X+hfD1na5j+78F7Uc6Xh9eCVNvch3b6yW4/nHH68TN8N8bXcd2fRa6jwagWnYC1jdjXMd2+hv0fsXx+nQ8TGrhOrbdQzDgbcfrM6nwZj3XsS3vgUEfOl7bzsD4cNex1wyEO784N11SbIPecO+3zkmPiU1cn1CIuQGGnfd3OLG5o9zFCW8F/7fk3PT7HeB0XPGxIY3h0TXnpv/bHVJ2FR8bGA1Pbjs3PbkfJGwqPtY3CJ4+4Jy0fDME4lYWH2v1hX8lnpuecT/snVd8LMDY834bf/g/2PGT69jnEs6dJPjlCdjytevYf+4Hv2DH67nPwbpPXcc+vhX8S/hsLxMl/SIiIleQl4eFIe2iuaNNFIt2JfPJ8gOsPXiCHzYnAh6cDNzDcwOaVnQx5TI6kFLC1T7gRGYuy/akOKfzvQzH5WEXsbO2njvoHetlx7+E2G/WxTunR3nlUcNF7Mkzufx3+bkkf7BnLsEuepenZdt4Z/4e53RXTxMxLmIzc/N48aftzul6npnUdhGbm2fnsWnnEoPPrae5sYTb1+//bK3z9fvWVAaUEHv7RyvJwnGl9C1rMreXEHvTf37nBAEAvORhplkJR8/9moUSHNmABrX9abtnOWx0HSsicqWYDMNw1Q9DSiktLY3AwEBOnz5NQEDAJa3LZrMxe/Zs+vfv73bPSVXdqibVrWpS3aqWTXEn+XjpfuZuT+LDe1rRt0XEJa+zPNsmKd/9uf7gceYtXETLli0xWywYBtjPHo4ZBuRjJt/shYFjvsV2BgMDu+F438DAMBzB+ZjJc8aCJc9xQsFuGGdjz39twmZyxBoGmPOyMHCs9Pz12g2wA3lmb+eylvxsDMNOwVGj/bxl7JjINXkDBnn5dhIP7ycyIgyTyYxhGNiNs2U/u1yOydtZZ0t+Dhj5zumCOM6+zsLbWXcPew4mw34uzjCc67TbIdvk7dyexZ6L+bz1nh9nGAZZeGE/u8887DbMRp4zzjCMQstlGp7YDROGYeBDDteEVaP+2VHy64Y4Rs4PC/B2PJnDwwfMZ89iXLAbflliz+uyfxm699tsNn6b9TP9evVw/btaRbv322w2Zs/6lf69uruuWxXt3u9sD3t2dV23Ktq931m3Xt2xepRwVq4Kdu+35eeX23FMadsmXekXERGpYK2ia/Cfu1ryxfdH6d4opKKLI5dZy8hAjoZ40fvaum5z4qqA40D9MP37t3PTus2mf/8SEqzzeXgCnqVb+eWKtVjPJdQXYJg8HElRaepm8Th3AqA8Y82WwolZecWazKWvm9lchvWaLk8slD22tN+3Mq3X98IxFxNrLcN97Vaf0tft/JMm5Rnr4QV4lV9sfgknGy4TDQMqIiJSSQR7g9nsor+1iIiIyEVQ0i8iIiIiIiLiptS9vxwUDIuQlpZ2yeuy2WycOXOGtLQ0t+wWp7pVPapb1aS6VT3lXa+CNklD95QPtfWlo7pVTapb1aS6VU3lWbfStvVK+stBeno6AFFRURVcEhERkcLS09MJDAys6GJUeWrrRUSksrpQW6/R+8uB3W4nISGBatWqOUZuvQRpaWlERUURHx/vdqMtq26Vw4QJE3jttdc4cOAAQUFBF4wvz7otX76cm266iV9//ZXOnTuXGPuXv/yFFStWsG3bthLjLkVV+tzKSnWresq7XoZhkJ6eTnh4OGaz7ua7VGrrS0d1q5ouZ92aN2/ODTfcwIcfOp5XX3AsMHXqVG699dZy3VZx9LlVTapb6ZS2rdeV/nJgNpuJjIws13UGBAS43R94AdWtYnl5OUYUrVatWpnKWh518/Pzc/7/QuuyWq2YTKYrsj+rwud2sVS3qqc866Ur/OVHbX3ZqG5V0+Wom8lkwmq1OtdbcCzg6+t7RfejPreqSXW7sNK09Tr1L1JFnDlTwrNd5YKyskp45q6IiIgAOt4QcUdK+kUqobFjx2Iymdi4cSO33347NWrUoF69ehdczm6388orr9CoUSN8fHyoXr06LVq0YNKkSUVijx07xt13301gYCC1a9dm+PDhnD59ulBMdnY2Y8eOBSA4OJiIiAgeffRRTp06VSjOZDI5484XGxvL0KFDL1juKVOm0KhRI7y8vGjSpAlffPFFsXG5ubm88sorNG7cGC8vL0JCQhg2bBgpKSlFtnvTTTfx/fff06pVK7y9vRk3btwFy/G///0Pk8nEqlWrirz30ksvYbVaSUhIAGD+/PkMHDiQyMhIvL29qV+/Pg8//DDHjx93LrN9+3ZMJhPffvutc96GDRswmUw0bdq00PpvueUW2rRpc8EyioiIlJeC443NmzcDEB0dXarjDXB0Uf7HP/5BnTp18PT0JCIigieeeILMzMxSLZ+dnc1TTz1FaGgoPj4+dO3alU2bNhWJ+/nnn+nYsSO+vr5Uq1aNXr16FWqn1daKXJiS/krGy8uLMWPGOLtguxPVrexuu+026tevz7fffstHH310wfg33niDsWPHcvfddzNr1iymT5/OiBEjiiTpAIMHD6Zhw4bMnDmTZ599lq+//ponn3zS+b5hGNx666385z//oUuXLvzwww889dRTTJ06lRtvvJGcnJxyqeOUKVMYNmwYTZo0YebMmTz//PO8/PLLLFq0qFCc3W5n4MCBvPbaa9xzzz3MmjWL1157jfnz59OtW7ciV/I3btzIP//5Tx577DHmzJnD4MGDi2z7z5/bkCFDCA0N5f333y8Ul5eXx8cff8ygQYMIDw8HYP/+/XTs2JEPP/yQefPm8eKLL7JmzRpuuOEGbDYbAE2bNiUsLIwFCxY417VgwQJ8fHzYsWOH8wRCXl4eS5cupWfPnpe4N13XzZ24a93ctV5SlDt/1qpb1XT//fdz/fXX8/XXX5fqeOPMmTN07dqVqVOn8thjj/Hbb7/xzDPPMGXKFG655ZZSPTXkueee48CBA3z66ad8+umnJCQk0K1bNw4cOOCM+frrrxk4cCABAQFMmzaNzz77jJMnT9KtWzdWrFgBXLitTU1NZcyYMVgslnJvayuaO/9Nqm7lzBCRSmfMmDEGYLz44otlWu6mm24yrr322lKt+4033ig0f9SoUYa3t7dht9sNwzCMOXPmFBs3ffp0AzA++eQT5zzAGDNmTJFtxcTEGA8++KBzevHixQZgLF682DAMw8jPzzfCw8ON1q1bO7drGIZx6NAhw2q1GjExMc5506ZNMwBj5syZhbaxbt06AzA++OCDQtu1WCzG7t27S9wXxRkzZozh6elpHDt2rEidly5dWuwydrvdsNlsxuHDhw3A+Omnn5zv3XfffUbdunWd0z179jRGjhxp1KhRw5g6daphGIbx+++/G4Axb968MpdXRETkYl3s8caECRMMs9lsrFu3rtD87777zgCM2bNnO+e5OhZw1fY/9NBDhmGcO0Zo3ry5kZ+f74xLT083atWqZXTq1Mk5T22tSMl0pV+kEivu6nRJ2rdvz5YtWxg1ahRz584t8XnSt9xyS6HpFi1akJ2dTXJyMoDzSvufu+ffcccd+Pn5sXDhwjKVrTi7d+8mISGBe+65p9Bo2DExMXTq1KlQ7K+//kr16tW5+eabycvLc/679tprCQ0NZcmSJUXq07BhwzKX6S9/+QsA//3vf53z3nvvPZo3b06XLl2c85KTk3nkkUeIiorCw8MDq9VKTEwMADt37nTG9ejRgwMHDnDw4EGys7NZsWIFffv2pXv37syfPx9wXJHw8vLihhtuKHN5RURELlVZjzd+/fVXmjVrxrXXXluoTe7Tpw8mk6lIm1wcV23/4sWLgXPHCPfff3+hUcn9/f0ZPHgwq1evdo4/oLZWpGRK+kUqsbCwsDLFjx49mrfeeovVq1fTr18/goKC6NGjB+vXry8S++fH9RV0MSroJp+amoqHhwchISGF4kwmE6GhoaSmppapbMUpWEdoaGiR9/4879ixY5w6dQpPT0+sVmuhf0lJSYXupYey77sCtWvXZsiQIXz88cfk5+ezdetWli9fzl//+ldnjN1up3fv3nz//fc8/fTTLFy4kLVr17J69Wqg8KCBBd0IFyxYwIoVK7DZbNx444307NnTeeJkwYIFXH/99fj4+FxUmUVERC5FWdvMY8eOsXXr1iLtcbVq1TAMo0ibXBxXbX/BsUHB/4srW3h4OHa7nZMnTwJqa0UuRI/sE6nEyvosaA8PD5566imeeuopTp06xYIFC3juuefo06cP8fHx+Pr6lnpdQUFB5OXlkZKSUijxNwyDpKQk2rVr55zn5eVV7D3+FzoxUHDiISkpqch7f54XHBxMUFAQc+bMKXZd1apVKzR9Kc/Rfvzxx/nf//7HTz/9xJw5c6hevTr33nuv8/0//viDLVu2MGXKFB588EHn/H379hVZV2RkJA0bNmTBggXExsbStm1bqlevTo8ePRg1ahRr1qxh9erVpRpoUERE5HIoa5sZHByMj48Pn3/+ucv3L8RV219wbFDw/8TExCJxCQkJmM1matSoAaitFbkQXekXcVPVq1fn9ttv59FHH+XEiRMcOnSoTMv36NEDgC+//LLQ/JkzZ5KZmel8Hxyj5W/durVQ3KJFi8jIyChxG40aNSIsLIxp06YVGvTn8OHDrFy5slDsTTfdRGpqKvn5+bRt27bIv0aNGpWpfiVp06YNnTp14vXXX+err75i6NChzucKw7mDoz8PwPLxxx8Xu76ePXuyaNEi5s+fT69evQBo2LAh0dHRvPjii9hsNrcaWEhERNzbTTfdxP79+wkKCiq2TY6Njb3gOly1/d26dQMcxwgRERF8/fXXheIyMzOZOXOmc0T/AmprRVzTlX4RN3LzzTfTrFkz2rZtS0hICIcPH2bixInExMTQoEGDMq2rV69e9OnTh2eeeYa0tDSuv/56tm7dypgxY2jVqhX333+/M/b+++/nhRde4MUXX6Rr167s2LGD9957j8DAwBK3YTabefnll3nooYcYNGgQI0eO5NSpU4wdO7ZIt7+77rqLr776iv79+/P444/Tvn17rFYrR44cYfHixQwcOJBBgwaVqY4lefzxxxkyZAgmk4lRo0YVeq9x48bUq1ePZ599FsMwqFmzJr/88ovzvsE/69GjBx988AHHjx9n4sSJheZPnjyZGjVq6BFCIiJSZTzxxBPMnDmTLl268OSTT9KiRQvsdjtxcXHMmzePv//973To0KHEdSQnJzvb/tOnTzNmzBi8vb0ZPXo04DhGeOONN7j33nu56aabePjhh8nJyeHNN9/k1KlTvPbaa4XWp7ZWxDUl/SJupHv37sycOZNPP/2UtLQ0QkND6dWrFy+88AJWq7VM6zKZTPz444+MHTuWyZMn8+qrrxIcHMz999/P+PHjC13l/uc//0laWhpTpkzhrbfeon379syYMYOBAwdecDsjRowA4PXXX+e2224jNjaW5557jqVLlxYaCMhisfDzzz8zadIk/ve//zFhwgQ8PDyIjIyka9euNG/evEz1u5Bbb70VLy8vunfvXuSEidVq5ZdffuHxxx/n4YcfxsPDg549e7JgwQKio6OLrOvGG2/EbDbj4+NDx44dnfN79uzJ5MmT6d69e6FBikRERCozPz8/li9fzmuvvcYnn3zCwYMH8fHxITo6mp49e5bqSv/48eNZt24dw4YNIy0tjfbt2/PNN99Qr149Z8w999yDn58fEyZMYMiQIVgsFq677joWL15cZMBftbUirpkMoxQP0hQRucr88ssv3HLLLcyaNYv+/ftXdHFERERERC6Kkn4RkfPs2LGDw4cP8/jjj+Pn58fGjRsvaVBAEREREZGKpKRfpAowDIP8/PwSYywWi5LTEtjtdux2e4kxHh4edOvWjd9//53WrVszdepUGjdufIVKKCIiUrF0vCHinnRji0gVsHTp0iLPwv3zv6lTp1Z0MSu14cOHX3AfAixZsgSbzcaaNWuU8IuIyFVFxxsi7klX+kWqgPT0dHbv3l1iTJ06dZzPtJWiDh06xPHjx0uMadu27RUqjYiISOWj4w0R96SkX0RERERERMRNqXu/iIiIiIiIiJvyqOgCuAO73U5CQgLVqlXTwCYiIlIpGIZBeno64eHhejZ1OVBbLyIilU1p23ol/eUgISGBqKioii6GiIhIEfHx8URGRlZ0Mao8tfUiIlJZXaitd8uk/4MPPuDNN98kMTGRpk2bMnHiRDp37uwyfunSpTz11FNs376d8PBwnn76aR555JFSb69atWqAY2cHBARcUtltNhvz5s2jd+/eztHE3YXqVjWpblWT6lb1lHe90tLSiIqKcrZRcmnU1peO6lY1qW5Vk+pWNZVn3Urb1rtd0j99+nSeeOIJPvjgA66//no+/vhj+vXrx44dO4iOji4Sf/DgQfr378/IkSP58ssv+f333xk1ahQhISEMHjy4VNss6OYXEBBQLgcC1bwsBHhbsFotxWzMAlbvc9O5mSUUzAxWn4uMPQO4GuPRBJ6+ZY612Wz4e3u4rhuAp9+517YsMEp4rnqh2GwwSniubFlirb5Q0HUzLwfseReMddTNWnLdPHygoNtNXi7Yba7XW6ZYbzBbyh6bb4P8XNexFi+weGCz2fDz8Sy5bmdjHevNg/ycEtbrCRZr2WPt+ZCX7TrWbAUPzzLF2mw2fH28S65bofXaIS+rhPV6gIeX47VhgO1M+cSW6XvviLXZbPj6+pZct0r2GwGU6nvvrJuPFauHi7qdjT233or9jShNrM3by1GvgIByPcBRV/TyUd5t/eX4rCsD1a1qUt2qJtWtarLZbPj4lG/dLtTWu13S/8477zBixAgeeughACZOnMjcuXP58MMPmTBhQpH4jz76iOjoaCZOnAhAkyZNWL9+PW+99ZbLpD8nJ4ecnHOJSlpaGuD4AG22EhKuUnhr7m5Gbx0JW4t//0D1TvzY5N9gArPJxKOrumC1F5/cJFZvw29t/ovZBJhM3LWkO962U8XGnghsypIu32A2mTABveb3xjcrodjYjID6rO33qzO27ewB+KXtKzY2xy+CHXcsx2SC/Pw8Oux6FeuWh4qNzfOuycGhmzBhAhNE/HQnPgmri421e/iQNGofJkco1X96AO9DC4uNBTj9zyRMmDCZwOenh/DY/YvLWNs/DzsTAMsvj2He+o3r2Cd2gV8wNpuNZke/xvrmCNexj26E6o4TT+aFY7Gsft917P+tgBDHM+LNy97AsvxNl7F5w+ZhhLd2xK56D8uica5j7/sRI+YGR+z6z7DMfcZ17J1fYzTojc1mI/LEKqxvDncde9tnGE0GAmDa+RMe37veD3k3/Qej5d2O2L3z8Jhxj8vY/D6vY2/rWJfp8Ao8vrzVdeyNY7B3/JsjNmEjHpN7u47t/E/sXZ5xnGTLTsD6Zozr2Osexd7j7D49FYf1/dauY9sMx973DcdE5nGsExu7jLW3uIv8m99zTORmllgGe+NbyB/8uXPaOj7cdWy9nuTf9Y3zt8hjYmNHIl1cbHQn8u//2TntMbE5pjOpxceGXUv+8AXnYt9vj+l0fLGxRnAj8h7+/VzsJ90wHS/+EVBGYBR5f93knLZ83hdz4ubiY32DyHtyt7Nu5ml3Qvyq4mOtvuQ9HXduvd/ci3n/gmJjAWz/Ovc4R8vMkZh3/ew69iJ+IwDMc57FsuFzl7F5D691LHOJ7Yhz2+W0HhEREbl0Wbn5zNmeyLfr46mea2LAFdy2WyX9ubm5bNiwgWeffbbQ/N69e7Ny5cpil1m1ahW9exdODvr06cNnn32GzWYr9uzLhAkTGDeuaGI1b948fH19i8wvi/+tszC6hE/lUOoZ3l283zn9f14GVhcndg6fOMNLs3Y5p2/2ysfbRWz8ySye+nabc3qFVy6+LmITTmUxfOpG5/Q8zywauhg3IiUjh0EfnUvcf/I0UctF7OksG70mnksUvvE8zXUuYrNtdjq9sdQ5/bk1lRtLuODX8uVFztfvW48xoITYFi8vJBsvTMAb1qPcXkJs5zcXc4oATMA4DxN1SjjJtnjxYrK8QgC45ugBGrgOZfmyZaT7HACgUeJeXKeO8PvvKznllwRA/WO7aFpC7OrVa0jd7jhJVSdlOy1KiF2/fj3H9jquSl7oLtZNGzeRcNDxXQk/uYl2JcRu3bqV+KOBANQ+vZnrSojdvn07B5NnAxCUvpMbSojdtWsX+046YqtnHqBrCbF79+5ld4Yj9kIdnw8cOMCOHEesT04Krk8lQNzhw2yd7Yj1tKXRr4TYI0eOsOlsrCU/h5tKiE1MSmT92ViAgSXEJqeksOa82Pz8fJc/9CdOnOD382L75ubi5SL29OnTLDsvtldWFq5+7dIzMlh8Xmz3jAxcXRfNyspi/nmxXU6fpoaL2NzcXOacF3vy5EmCXcTm5+cx+7zYDikphLqIBQrFtk1KJKKE2Llz55FvceypVkeOULQP2TkLFiwg1+qofYv4w9QpIXb58uXgFcL8+fNLiCq9M2dK6D0iIiIil51hGKw/fJLv1h9h1rZEMnIcx9bBXmYMw1UvyPJnMq7k1i6zhIQEIiIi+P333+nUqZNz/vjx45k6dSq7dxe90tSwYUOGDh3Kc88955y3cuVKrr/+ehISEggLCyuyTHFX+qOiojh+/Pgld/mbtGAP+/fsICoqGpPJjAHYDQO74fijsWMm1+SJ3QAwsORnOeYbwNn/n4s3k2PydE572rPOvjYwDJz/7AbkmyAXL2es1Z4F568L42ys4/9ZeJ/droGnPQfDMJzlMDhX3nzDRDaeGAbkGwZGTjpeHh7Ojr7G2Xo46gln8ALD0RHY08jBhN25roJ4R1UNMo1z3Z29yMWM6y7BWZQl1gtH/wHwxIYF1918Sxvr7+VBSPVAImr6EV3Th5hAD6KqW4kI9CG8ujdeHn86u2H1cXSnBkcX/PzSdtkvS+wFuvd7eIHZ0b1/wbzf6NmtK1ari/TxbCzg6L6cV9ou+2WJvUCXfYvVEV+GWJvNxvx5c+nVrbPrup2/XsPu8qo5cPm695stjs+uQEnd8M/G2mw25s+fT6+u17uu26V077edKfgCFxNrcnRrv6jY0nXvnz9/Pr263VD67v152Y6/i/KIvVzd+/Fg/oKF9OrVq9zu6Q8ODub06dOX3DaJY38GBgaWy/602WzMnj2b/v37u2W3VdWt6lHdqibVrfI6eiqL7zccYebGIxxKPXeMF1XTh0HXhlP95G7uv+3S61batsmtrvQX+PM9DYZhlHifQ3Hxxc0v4OXlhZdX0ethVqv1kj+4x3s2ZHbuPvr3b10l/8BLcu7L269c62YUnMQ4+/r8kxSO98+erCiIPTsPF/MLli30+vztFDM/15bHrIVLiWzUhqOnc4k/cYb4E2eIO3GG5PQcsnIg5VgmO44VTapMJggN8Caqhi9RNX2JrulLVE0fos++DqnmW/p7csuyX61WcHmttjDD5IHVL7CUn5sVvHwuHHZRsd4XDitrrMlchroBnq6uhRcX63l5Yq3VSx/qF4iHhwd5eXnk5xeTyJ4/z3KBfXZ+rPkC++GiYy+wH/LzHb0XPDzIN3titpTwuZ2/XpP13AmkS421n3dSwuRxbjyLS4zNt9kc9crPL9Uj9iwWCx4eHi5/H9ytDakKDMNw/V07j+3sZ52dnX3B2KrGHetmtVqxWEo4wSgiApzJzWPOH0nM3HiElftTnbmIn6eF/s3DuL1NJO1ia57tjVj8bY+Xi1sl/cHBwVgsFpKSkgrNT05Opnbt2sUuExoaWmy8h4cHQUFBl62sUn5MJhPnjnkrZsAqm81G/QDo3yqiyIF2ti2fIycdJwDiUs8QfzKLuPNOCpzJzSfxdDaJp7NZe+hEkXV7eZjPnQyo4XPeiQHHP38vt/oaSzmz2WwkJCS4VVdvwzAIDQ0lPj7erQapu5h6+fr6EhYWhmdZThrJZZGbm0tiYmKpvmvu+jcM7lk3k8lEZGRksRd8ROTqZhgG6w6d5LsN8czamkhm7rmTnZ3qBXF7m0j6NgvF1/Pc8XpFnA91q2zB09OTNm3aMH/+fAYNGuScP3/+fAYOLP4u2I4dO/LLL4UHdZs3bx5t27bVVRIpF95WC/VrVaN+raJ3jxuGwYnMXMdJgJNZjhMBqWeIP3uSIOFUFjl5dvYlZ7AvOaPY9Qf5eTpPAESf7SFQ0GsgLNAbD8uFrxiK+4qLi8PDw4Pw8HA8PT3d4iDcbreTkZGBv79/qa6IVxVlqZdhGOTm5pKSksLBgwdp0KCBW+2LqsZut3Pw4EEsFkupvmvu+jcM7lc3wzBISUnhyJEjxMbGVnRxRKSSOHLyDN9vPMrMjUc4fF73/eiavtzeJpJBrSKIqnlpY72VJ7dK+gGeeuop7r//ftq2bUvHjh355JNPiIuL45FHHgFg9OjRHD16lC+++AKARx55hPfee4+nnnqKkSNHsmrVKj777DOmTZtWkdWQq4TJZCLI34sgfy9aRRcdvsyWbyfhVBbxJxy9AxwnB871Ejh1xkZqZi6pmblsjj9VZHkPs4nw6j7n9Qw4d9tAVA1fqvta3SIJlOJ5eHhgt9sJDw+/5EFGKxO73U5ubi7e3t5ukVQUKGu9fHx8sFqtHD582LmcVIzc3FzsdjtRUVGl+q65698wuGfdQkJCOHToEHl5JYzfISJur6D7/ncbHN33C/h5WripRTiD20TSLrZGpTy2drukf8iQIaSmpvLSSy+RmJhIs2bNmD17NjExjsdhJSYmEhd37jFOderUYfbs2Tz55JO8//77hIeH8+6777p8XJ/IlWS1mIkJ8iMmyK/Y99Oybc7xA/58YuDIiSxy8+3OecWp5uVR5GRA5Nn/R1T3wdvV892lSnGXA28pSp9t5aLPwz0VHMC70djXIlJKhmGw9uAJvttwhNnbznXfN5nOdd/v07Rw9/3KqHKX7iKNGjWKUaNGFfvelClTiszr2rUrGzduLBosUskFeFtpGh5I0/DAIu/Z7QbH0rMLnQw4cvb/BQMMpufksSMxjR2JaUWWN5mgdjVvImt4U91mpl5SOs2ial6JaomIiIiIVJj4E+e6759/8SwmyJfbW0cyqHUEkTWqTi9Kt0z6RQTMZhNhgT6EBfrQvk7RZP38AQYL9RI4+y8zN5+ktGyS0rIBMwveX0Wj2tW45dpwbmkZXqnuUxIRERERuRSZOXn89kcS322IZ/WBc4Nr+3t5cFMLx+j7bWIqZ/f9C1HSL3KVKu0Ag3uT0vhyyVZ2nraw+1g6b87dzZtzd9Mmpga3tAxnQIswgv01orFceRaLhR9++IFbb731sm4nNjaWJ554gieeeOKybqc4U6ZM4YknnuDUqVNXfNsi4Ojaru+ZiLgru91g7aFz3ffPnNd9//p6wc7u+z6eVfuWVyX9IlLE+QMMNgvzxytxMzd078HC3an8tOUoK/ensuHwSTYcPslLv+7g+vrBDGwZTu+mtanmradeSPlITk7mhRde4LfffuPYsWPUqFGDli1b8uKLL9K0aVOOHj1aKR+tqgRCqhJX37OxY8fSsWNHEhMTqVGj6ECzFU3fMxG5FPEnzjBz4xFmbjxC/Iks5/zYoLOj77eOJKK6TwWWsHwp6ReRUgnwsXJnuyjubBdFclo2v2xN5OctCWyJP8WyPSks25OC1w9mejapzS3XhtOtUQheHlX7rKhUrMGDB2Oz2Zg6dSp169bl2LFjLFy4kBMnHF3uQkNDNXCayCUqzfdMRMQdZObkMXtbIjM3HnG77vsXoqMlESmzWgHejLihDj89ej1L/tGNp3o1pG6IHzl5dmZtS+Th/22g7SsLeOa7rfy+7zj5do14XFkYhsGZ3LwK+VeWka9PnTrFihUreP311+nevTsxMTG0b9+e0aNHM2DAAMDRvf/HH38E4NChQ5hMJmbMmEHnzp3x8fGhXbt27Nmzh3Xr1tG2bVv8/f3p27cvKSkpzu1069atSHfiW2+9laFDh7os2zvvvEPz5s3x8/MjKiqKUaNGkZGRAcCSJUsYNmwYp0+fxmQyYTKZGDt2LOB4rNvTTz9NREQEfn5+dOjQgSVLlhRa99dff01sbCy+vr4MGjSI1NRUpGq60HctKze/SnzPTCZTmb5nAQEB3H777ZX6ezZlyhSio6P1PRO5CtjtBqv2p/L3GVto9+oC/vndVlYfOIHJBJ0bBDPprmtZ96+evDa4BW1ja7plwg+60i8ilyg22I/HejTgbzfWZ3tCGj9vSeDnzQkkpWUzfX0809fHU6uaFze1CGfgteG0iAx02x/UqiDLls81L86tkG3veKlPqR9p4+/vj7+/Pz/++CPXXXcdXl6lGzdizJgxTJw4kejoaIYPH87dd99NQEAAkyZNwtfXlzvvvJMXX3yRDz/88KLrYTabeffdd4mNjeXgwYOMGjWKp59+mg8++IBOnToxceJEXnzxRXbv3u2sC8CwYcM4dOgQ33zzDeHh4fzwww/07duXbdu20aBBA9asWcNf//pXXn31VQYPHsycOXMYM2bMRZezqvrwww/58MMPOXToEABNmzblxRdfpF+/fs6YnTt38swzz7B06VLsdjtNmzZlxowZREdHu1zvzJkzeeGFF9i/fz/16tXj1VdfZdCgQZetHhX1Xavo75m3tzd33nknY8aM4aOPPrroelzO79nw4cMZP348t91221X7PRNxd3Gp57rvHzl5rvt+nWA/R/f9VhGEu1H3/QtR0i8i5cJkMtEsIpBmEYE827cxaw+d4KfNCczelkhyeg6f/36Qz38/SGyQL7dcG8EtLcOpX8u/oostlZSHhwdTpkxh5MiRfPTRR7Ru3ZquXbty11130axZM5fL/eMf/6BPnz4APP7449x9990sXLiQ66+/HoARI0YU++jWsjj/imWdOnV4+eWX+ctf/sIHH3yAp6cngYGOE1vnd4vev38/06ZN48iRI4SHhzvLOmfOHCZPnsz48eN59913ufHGG3nmmWcwm800bNiQlStXMmfOnEsqb1UTGRnJa6+9Rv369QGYOnUqAwcOZNOmTTRt2pT9+/dzww03MGLECMaNG0dgYCA7d+7E29vb5TpXrVrFkCFDePnllxk0aBA//PADd955JytWrKBDhw5XqmqVTknfsxYtWrhcrqTvmd1u57777mP69OmXVLbL9T2bNGkSffr04dlnnwW4ar9nIu4o42z3/e82HGHtwXPd96t5eXBTS0f3/dbR7tl9/0KU9ItIuTObTVxXN4jr6gYx7pamLN+bwk+bE5i/4xiHUs/w7sK9vLtwL80iAhjYMoKbWoYRFnj1nG2tSD5WCzte6lNh2y6LwYMHM2DAAJYvX86qVauYM2cOb7zxBp988gm33XZbscucn6jUrl0bgObNmxeal5ycfBGlP2fx4sWMHz+eHTt2kJaWRl5eHtnZ2WRmZuLn51fsMhs3bsQwDBo2bFhofk5OjnMwwl27dhW6mg3QsWPHqy4ZufnmmwtNv/rqq3z44YesXr2apk2b8q9//Yv+/fvzxhtvOGPq1q1b4jonTpxIr169GD16NACjR49m6dKlTJw4kWnTphW7TE5ODjk5Oc7ptLQ0AGw2GzabrVCszWbDMAzsdjt2ux0AL4uJP8b2KnbdhmGQkZ6BfzX/cj/49LKYnGUojUGDBtGvXz+WL1/O6tWrmTt3rvN7VtD9vqBeBett1qyZ83VISAjg6JFht9sxDINatWqRnJxcqBwF++f86eLmFUwvXryYCRMmsHPnzkLfs/T0dPz8/Jxx5y+/fv16l9+zmjVrYrfb2blzJ7feemuh5a677jrmzJnjcr8V1CsvLw+gyOfvDgrqpLpVLapbwej7J/l+01HmbD9Gls3xPXaMvh/Eba3C6dWkFt5nj0EKvscVqTw/t9KuQ0m/iFxWnh5mejSpTY8mtcnMyWPBzmP8tDmBZXtS+ONoGn8cTWP8bztpH1uTgddG0L95KNV9PSu62G7LZDKVuutvZeDt7U2vXr3o1asXL774Ig899BDjxo1zmfRbreeeHlGQTP153vkH9mazucg90CU1oIcPH6Z///488sgjvPzyy9SsWZMVK1YwYsSIEpez2+1YLBY2bNiAxVL45EdBt+Sy3It9tcjPz+fbb78lMzOTjh07YrfbmTVrFk8//TR9+vRh06ZN1KlTh9GjR5f4SLlVq1bx5JNPFprXp08fJk6c6HKZCRMmMG7cuCLz582bh6+vb6F5Hh4ehIaGkpGRQW5ubqnq5uNpIT8n68KBZZSefXHLdejQgQ4dOvD444/z2GOPMWbMGOf3LCsri/9n777joyj6B45/7i69k94uIaGFGkIHpYRepEtRpIjy2P2pj4pgARs8itgLKoqoqCAoKiBFuhBKgNBbKOmNQBppl7v9/RFyIZCEBC4kF77v14sX2b3v7s5kszc7O7MzWVlZxnfqCwsLjQ9B8vKK85Cfn29cp1Kp0Ov1xmWDwUBBQYFxuWQ7e3v7MjEl+4iNjeWee+7hwQcfZPr06TRo0IBdu3bx1FNPcfHiRfR6Pfn5+SiKUmafly9fRqPRsHnz5uuus5JjFRUVXZeW8vZ1tcLCQvLy8ti5cycAGzZsuLlfshmQvJmnOzFvF/JhT5qavWkqLhaUPjz1tFHo5Gmgo7uCi3UKxKewKf52pbZ6THHecnNzqxRnPnd+QgizZ29twfC2fgxv68fFy4WsOZzEn1GJ7Dl/kd3niv/N+vMIPZt6MKytH32be5pVBVXUvBYtWhgHFTMFDw8PkpKSjMt6vZ4jR44QHh5ebnxkZCRFRUXMnz/fOHPAsmXLysRYWVmh1+vLrAsLC0Ov15Oamkr37t3L3Xfz5s3Zu3dvmXW7du2qdp7qg8OHD9O1a1fy8/NxcHDg999/p0WLFiQnJ5OTk8P//vc/3nrrLd555x3Wrl3LqFGj2Lx5Mz179ix3f8nJycaeHyW8vLxITk6uMA0zZszgueeeMy5nZWWh1Wrp378/Tk5OZWLz8/OJi4vDwcGh0tcMSiiKQnZ2No6OjnWym2loaChr1qwx5tPW1hYnJyfjAyp7e3vjZyUPQBwdHXFycjI+vFKpVMYYb29v0tPTjct6vZ6TJ0/i4+NjXKdWq7GxscHJyYmTJ09SVFTExx9/bLzO/v777zLHcXJywmAwlDkX3bp1Q6/Xk5ubW+F11qpVKw4cOFBmu6ioqDLpvVZ+fj62trZ069aNbdu20a9fvzIPE+sDnU7Hhg0bJG9m5k7LW05BEX8fSeG3AwlExmQYYx1tLBjcypvRYb601db9saNMed4qelh5LbmbFkLUCld7Kx7oEsgDXQJJyMjjrysDAB5LyuKf46n8czwVOysN/Vt4MbytH3c3ccdSIxOO3CnS09MZM2YMU6dOpU2bNjg6OhIZGcm7777LsGHDTHac3r1789xzz7F69WoaNWrEBx98UOm8340aNaKoqIhPPvmEoUOHsmPHjusGK2vYsCE5OTls3LiR0NBQ7OzsaNq0KRMmTGDSpEnMnz+fsLAwLly4wKZNm2jdujWDBw/mqaee4u6772bevHmMHDmS9evX33Fd+0s0a9aMqKgoMjIyWLFiBZMnT2br1q24uLgAMHz4cGPLfdu2bdm5cycLFiyosNIPXHcTqChKpTeG1tbW5Q5sZ2lped1Nml6vR6VSoVarqzSNZElvk5JtaktF19m8efMYPny4MW0l+bp2ueTnq9dd25MGoE+fPjz33HP8/fffZa6za/NfstykSROKior47LPPjNfZl19+WeY4wcHB5OTksHnzZuN1FhISwoQJE5gyZUqF19n//d//0a1bN9577z1GjBjB+vXrWbduXZn0XkutVqNSqbCwKL5tLu9voL6QvJmn+pw3jcaCvTGZLN8Xz99HksnTFT9ULx5934N72/vTv4WXsfu+OTHFeavq9nIHLYSodX4utjzasxFr/q87G57twVO9GxPgakduoZ6VUYk8+N1eOr39D6+sPMyecxcxyBSA9Z6DgwOdO3fmgw8+oEePHrRq1YpXX32VadOm8cknn5jsOFOnTmXy5MlMmjSJnj17EhQUVGErPxRXMN9//33eeecdWrVqxZIlS5g7d26ZmG7duvHoo48ybtw4PDw8jO+eL1q0iEmTJvHf//6XZs2aMWzYMHbv3o1WqwWK3yv++OOP+fTTT2nbti3r16/nlVdeMVlezYmVlRWNGzemQ4cOzJ07l9DQUD766CPc3d2xsLCgRYsWZeKbN29ObGxshfvz9va+rlU/NTX1utb/O01l19mnn35qsuPUtets4cKFfPLJJ3f8dSZEXRaTnsuaWDXh72/n/oW7+e1AAnk6PcEe9rw4sBk7X+rN91M7MSzU1ywr/LebSpGXCG9ZVlYWzs7OZGZmVtg1rKp0Oh1r1qxh8ODB9e6JneTNPNVW3hRFISougz+iEll1KIkLOaUDavk62zC0rS/DQ/1o7nPz3WPr+3lbv349QUFBBAcHV6nLsbkwGAxkZWXh5ORUq62kpnYz+crPz+fcuXMEBQVdd45NWTbVtj59+qDVavnuu+/o1q0bjRo14ocffjB+PnLkSGxtbfnpp5/K3X7cuHFkZ2ezZs0a47pBgwbh4uJS4UB+16rs91nZeShPff0bhvqZt5Lz6+/vz6ZNm+ptmVGfy0PJm3m4kFPAqoOJrIxKJCouw7je0caCoaG+3NvenzCtS53vvn8jpjxvVS3rpXu/EKJOUqlUhAU0ICygAa8MaU7E2XT+iEpk3ZFkEjPz+XLrWb7cepYmng4Mb+vLsFA/AtzsbrxjIUSdNnPmTAYNGoRWqyU7O5tffvmFLVu2GF91eOGFFxg3bhw9evQgPDyctWvX8tdff7FlyxbjPiZNmoSfn5+xdfj//u//6NGjB++88w7Dhw/njz/+4J9//uHff/+tjSwKIYS4IqegiPVHk/kjKpF/oy+gv9KbU62Cpk4GHukfyqA2ftKaf4uk0i+EqPMsNGq6N/GgexMP3hrRii0nU/kjKpGNJ1I5nZrDe+tP8d76U4QFuDA81JchbXzxcLz+XVwhRN2XkpLCxIkTSUpKwtnZmTZt2rB27Vr69Sue/m7kyJEsWLCAuXPn8vTTT9OsWTNWrFjB3XffbdxHbGxsmVbmbt268csvv/DKK6/w6quv0qhRI5YuXUrnzp1ve/6EEOJOV1hkYPvpNFZGJbLhWDL5utKxQEL9nRne1o+BLTzYu30jg9v4YCkV/lsmlX4hhFmxsdQwsJUPA1v5kJWvY92RZP48mMiO6AsciM3gQGwGb6w6xl2N3RkW6suAVt442Zh/lzch7hTffPPNDWOmTp3K1KlTK/z86lb/Evfeey/33nvvrSRNCCHETTIYFPbFXmLlgQTWHE7iUm7pNLdB7vYMb+vL8LZ+BLnbA6aZw16Ukkq/EMJsOdlYMqaDljEdtKRm57P6UBJ/XHkPbPvpC2w/fYGXVx6hT4gnw9v60quZp3QPE0IIIYS4TU4mZ7MyKoE/oxJJyMgzrvdwtGZoG1+Gt/WljX/dn2bP3EmlXwhRL3g62vDgXUE8eFcQMemX+TMqkT8OJhKdmsPfR5L5+0gyjtYWDGzlzfC2fnRt5FbbSRZCCCGEqHcSMvKK78OiEjiRnG1c72BtwYCW3owI86VrsBsWMhXzbSOVfiFEvRPoZs9TfZrwZO/GHE/K5o+DCfwVlUhiZj6/7ovn133xuDtYM7iVF165tZ1aIYQQQgjzlpFbyJrDyayMSmDPuYvG9ZYaFb2aeTKirR99mkuPy9oilX4hRL2lUqlo4etEC18npg8IITLmEn9EJbD6cPEUgN/vigUsWJu+iwmdAxka6ou9tXwtCiGEEELcSF6hno0nUlh5IJGtp1LR6Utngu8c5MqIMD8GtfLGxc6qFlMpQCr9Qog7hFqtolOQK52CXJk1tCX/RqexIjKetUeTOJyQxUu/Heat1ccZEebL/Z0CaeFr3vOaCyGEEEKYWpHewM4z6ayMSmDdkWQuF+qNnzX3cboyjbIvvi62tZhKcS2p9Ash7jhWFmp6h3jRvZEry/6IJ9OtOcsiEzifnsuPu2L5cVcsbbUu3N85gKFtfLG1kq5oQgghhLgzKYrCwfhM/ohK4K+Dxb0lS/i52DK8rS8jwvxo6uVYi6kUlZFKvxDijuZgCWPvDuLRnk2IOJvOT7tjWXc0mai4DKLiMnhz1TFGhflxf+dAmnlLYWZOTpw4wZQpU4iKiiIkJISoqKjaTpIQ9dK111p5UyYKIczP2bQc/ohK5M+DiZy7cNm4voGdJUPa+DCirR/tAhqgVsvI+3WdVPqFEILi7v93NXbnrsbupGUX8Ou+OH7ZE0fsxVwWR8SwOCKG9oENuL9TAEPa+MhANDVsypQpLF68GACNRoOvry9Dhgxhzpw5ODs7V2kfs2bNwt7enpMnT+Lg4FCTyRXCbFV2rTVo0KBK+7j6WrOzs6vJ5Aohalhqdj5/HUzij6gEDsVnGtfbWKrp36J45P3uTTywlJH3zYpU+oUQ4hoejtY83qsxj/ZoxL/RF/hpdywbjqewL+YS+2Iu8caqY4xq58eEzgE09pTW/5oycOBAFi1aRFFREceOHWPq1KlkZGSwZMmSKm1/5swZhgwZQmBg4E2nobCwECsrGYBI1G8VXWs///xzlba/+lozGAxkZWVVOw1yrQlRe7Lzdaw9kswfUYnsPHMBw5Xx+DRqFd2buDO8rS/9W3jLYMdmzKSPaLKysqr9Twgh6iq1WkWPph4smNieiJd683z/pvi52JKZp2PRjvP0fX8bYxdEsPJAAvk6/Y13WJcUXq74ny6/GrF5VYu9CdbW1nh7e+Pv70///v0ZN24c69evN36+aNEimjdvjo2NDSEhIXz++efGz1QqFfv27eONN95ApVIxe/ZsABISEhg3bhwNGjTAzc2N4cOHc/78eeN2U6ZMYcSIEcydOxdfX1+aNm1are3ee+89fHx8cHNz44knnkCn0xljCgoKePHFF9FqtVhbW9OkSRO++eYb4+fHjh1jzJgxODk54eXlxcSJE7lw4cJN/e5uFyn3q6DCaycXikx8rd0kU15rr7/+OlD3r7XBgwfj4OBgNteaEKZWUKRn3dFknliynw5v/cMLyw/xb3RxhT8swIXXh7Vk98w+fPdgJ0aG+UuF38yZ9Oy5uLigUlX9nQ6VSsWpU6cIDg42yfEvXbrE008/zZ9//gnAsGHD+OSTT3BxcSk3XqfT8corr7BmzRrOnj2Ls7Mzffv25X//+x++vr4mSZMQon7wdLLhyd5NeKxXY7afTuOn3bFsPJHKnvMX2XP+Ig3+smR0O3/u6xxAIw8z6Eo+p5LvuCb9YcKvpcvzGhdXUMoTeDc8uLp0+cPWkJt+fdzszOvXVcPZs2dZu3YtlpaWACxevJh33nmHTz/9lLCwMA4cOMC0adOwt7dn8uTJJCUl0bdvXwYOHMjzzz+Pg4MDubm5hIeH0717d7Zt24aFhQVvvfUWAwcO5NChQ8ZWxo0bN+Lk5MSGDRtQFKXK223evBkfHx82b95MdHQ048aNo23btkybNg2ASZMmERERwccff0xoaCjnzp0zVjSSkpIIDw9n4sSJfPTRRxQUFDB9+nTGjh3Lpk2bbul3V5Nqu9w3C+Vca2rABVAa94MHlpd+cKvX2i1eZ3D9tfb1118za9asKl9rdnZ25OTk0KdPnzp7rfXs2ZNp06bx/vvvk5eXZxbXmhCmYDAo7Dl/kT+iElhzOJnMvNKHZY087BnR1o/hbf0IcJPXdOobkz+yWb58Oa6urjeMUxSFwYMHm/TY999/P/Hx8axduxaA//znP0ycOJG//vqr3Pjc3Fz279/Pq6++SmhoKJcuXeKZZ55h2LBhREZGmjRtQoj6QaNW0auZJ72aeZKcmc+yyDh+2RNLYmY+C/89x8J/z9El2JX7OwcyoKUX1hby7v/NWrVqFQ4ODuj1evLzi1tE33//fQDmzZvHvHnzGDVqFABBQUEcO3aML7/8ksmTJ+Pt7Y2FhQUODg54e3sD8O2336JWq1m4cKGxorpo0SJcXFzYsmUL/fv3B8De3p6FCxcaKxhV3a5BgwZ8+umnaDQaQkJCGDJkCBs3bmTatGmcOnWKZcuWsWHDBvr27QtQpuL7xRdfEBYWxmuvvYaTkxNqtZpvv/0WrVbLqVOnjK2gdVFtlvvCNCq71t58803mz59f5WvNYDDw/fff1+lrrV27dsyZM8e4zlyuNSFuhqIoHE/K5o+oBP48mEhSZmkPIy8na4aF+jK8rR8tfZ2q9RBXmBeTVvoDAwPp0aMHbm5uVYoPDg42Pkm+VcePH2ft2rXs2rWLzp07A8VPp7t27crJkydp1qzZdds4OzuzYcOGMus++eQTOnXqRGxsLAEBASZJmxCifvJ2tuHpPk14IrwxW0+l8tPuWDadSGXX2YvsOnsRV3srxrT3575OATR0t6/t5JY1M7Hiz1TXPKh4IbqS2GveEnvm8M2n6Rrh4eF88cUX5ObmsnDhQk6dOsVTTz1FWloaCQkJTJs2jUceecQYX1RUVOkgf/v27SM6OhpHx7LjMOTn53PmzBnjcuvWrcu8W1zV7Vq2bIlGU/q78/Hx4fDh4t9HVFQUGo2Gnj17Vpi2LVu24O/vf91nZ86cqbMVkdos981GOdeawWAgKzsbJ2cXytxi18FrLS4ujoceesjYig43vtaioqLq9LW2efPmcgf3rMvXmhDVFXcxlz8PJrLyQAKnU3OM6x1tLBjUypsRbf3oHOyGRkbevyOYtNJ/7ty5asUfOXLEZMeOiIjA2dnZWOEH6NKlC87OzuzcubPcSn95MjMzUalUFb4SAMXvihUUlM5PWfKOok6nK/NO2c0o2f5W91MXSd7Mk+Staro3cqV7I1eSMvP5dV88y/YlkJJVwJfbzvLltrN0C3ZlfEd/+oR4YmVR8yPeluRJURQMBgMGg6FsgIVt5Tu4Ot4Usdce/wYURcHOzs7YQvfhhx/Sp08fZs+ezeOPPw7Al19+WeY7H4pHH786ryX5B9Dr9bRv354ffvjhuuN5eHhgMBiMx716H1XdzsLC4rrfc8nv3trauszytfR6Pffccw+vvPIK9vb2ZVpbfHx8yt2mZH+KoqDT6cpUguD2XLO1We6bDatyHvgZDGCpBwubG8dWZ783yd7ensaNGwPw8ccfEx4ezuuvv86TTz4JFDeilHetVcRgMNC+fftyB9308PAoc9yb2e7aB0cqlcp4jdjaVv59ZTAYGDp0KO+88851n/n4+FS6rRB13cXLhaw+nMQfBxKIjLlkXG+lUdM7xJMRYb70auYpMxDdgerNiAzJycl4enpet97T05Pk5OQq7SM/P5+XXnqJ+++/Hycnpwrj5s6daxyo5mrr16832VQ11/ZAqE8kb+ZJ8lZ1jYHpLeDYJRU7U1Qcz1Cx8+xFdp69iIOlQhcPha5eBtxtbrirW2JhYUF+fj45OTkUFhbW7MFMTKfTUVRUVGbgt//+97+MGTOGCRMm4Ovry4kTJxg6dOh125Zso9frKSgoMC43b96cpUuXYmNjU+53fFZWVrnHvdntCgsLjeuCgoIwGAz8/fff9OrV67p9tGzZkr/++ouAgAAsLMoWzXq9vsIB8AoLC8nLy2Pbtm0UFRWV+Sw3t4J3w4W4gVmzZjFo0CAee+wx/Pz8OHv2LBMmTKjy9qGhoaxcuRJPT89K76eu1a5dO5YuXVrt7a7WunVrDAYDW7duNXbvv/YYK1asoGHDhtdda0KYowI9/HUoiVWHU9h2Ko2iK0Pvq1TQNdiNEW39GNDKG2fbO6yXlSijxr7tPv7443LXq1QqbGxsaNy4MT169Kj0STHA7Nmzy61gX23v3r3GfV9LUZQqvZ+i0+kYP348BoOhzKi05ZkxYwbPPfeccTkrKwutVkv//v1vupC6Oh0bNmygX79+9a4LpOTNPEnebl5JdTQhI49lkQks359AanYB/ySq+CdRzd2N3RjXwZ8+Iaaf71an07F582ZsbGxwcHDAxqaGnzCYmKWlJRYWFmW+UwcPHkzLli359NNPmT59Oi+99BIeHh4MHDiQgoICIiMjycjI4NlnnwWKWyKtra2N+3jooYf47LPPmDx5MrNnz8bf35/Y2Fh+//13nn/+efz9/cs97s1uZ2VlZVzXqlUrJk2axNNPP82HH35IaGgoMTExpKamMnbsWJ599ll++OEHHn74YaZPn46HhwfR0dEsXbqUr776qsKyMj8/H1tbW3r06HHdOb7dI+WbqtwXta9Xr160bNmSOXPmMHv2bJ5++mmcnJwYNGiQ8Vq7dOlSmXuhq40ZM4bPPvuM4cOH88Ybbxivmd9++40XXnih3NdYACZMmMC8efOqvd3VGjZsyOTJk5k6dapxIL+rr7UnnniCr7/+mvvuu48XXngBd3d3oqOj+eWXX/j666/l71OYBb1BYeeZCyyPjOPvwxoK95S+7tPKz4nhoX4MDfXF29m8yn5Rc2qs0v/BBx+QlpZGbm4uDRo0QFEUMjIysLOzw8HBgdTUVIKDg9m8eTNarbbC/Tz55JOMHz++0mM1bNiQQ4cOkZKSct1naWlpeHl5Vbq9Tqdj7NixnDt3jk2bNt2w4m5tbW3sqnk1S0tLk1UcTLmvukbyZp4kbzevoYclLw5y4tn+zdh4PJWf9sSy/XQa/0an8290Oh6O1ozt4M/4jgFoXU07Yq5KpUKtVqNW1/wrBaakUqmMab/ac889x4MPPsi+ffv46quvmD9/PtOnT8fe3p7WrVvzzDPPlNnm6n04ODiwbds2pk+fzr333kt2djZ+fn706dMHFxcX1Gp1uce92e1KHjiXrFuwYAEzZ87kySefJD09nYCAAGbOnIlarcbf35/t27fz/PPPM3jwYAoKCggMDGTgwIFYWFhU+PC65Njl/Q3f7uvVVOW+qBtKrrXo6GgWLlzIvHnzePHFF8tcaxWxs7Njy5YtzJgxg1GjRpW5Ziq7x7KzszNea9XZ7lpffPEFM2fO5PHHHy9zrQH4+vqyY8cOpk+fzoABA8pca+b2PSnuPKdTslm+P56VB4pfISymQtvAlhFhfgxv60tjT8dK9yHuTCpFUZSa2PHPP//MV199xcKFC2nUqBEA0dHRPPLII/znP//hrrvuYvz48Xh7e7N8+fIb7O3Gjh8/TosWLdi9ezedOnUCYPfu3XTp0oUTJ05U+E5/SYX/9OnTbN68ucw7Y1WVlZWFs7MzmZmZJmnpX7NmDYMHD653FSzJm3mSvNWMuIu5/LwnlmWR8VzIKS64VSro0cSD+zsH0CfEE4tbaP3X6XSsX7+eoKAggoODza6lvzIGg4GsrCzjKPf1xc3kKz8/n3PnzhEUFFRuS7+pyqaquN3l/u1W2e+zsvNQnvr6Nwz1M28l59ff359NmzZJeWhmzD1v6TkF/Hkwkd/2J3A4oXRaTmdbS4a09sIz9zyPjx1UZlDM+sDcz1tlTJm3qpb1NdbS/8orr7BixQpjwQ/QuHFj3nvvPUaPHs3Zs2d59913GT16tEmO17x5cwYOHMi0adP48ssvgeIp++65554yFf6QkBDmzp3LyJEjKSoq4t5772X//v2sWrUKvV5vfP/f1dW13l08Qoi6Q+tqx4sDQ3imb1P+OZ7CT7tj+Tf6AltPpbH1VBpeTtaM66BlXKcA/FxuMJCeEHXA7S73hRCivioo0rP5RCrL9yWw5WSq8T19C7WK8BBPRrfzIzzEE7ViYM2a8zLVnrihGqv0JyUlXTeoEBRP81JSsfb19SU7O9tkx1yyZAlPP/20cR7XYcOG8emnn5aJOXnyJJmZxU/J4uPj+fPPPwFo27ZtmbjNmzeXO9iSEEKYkpWFmsGtfRjc2ofzFy7z895YlkfGk5JVwMebovl0czS9mnlyf6cAwkM8ZWodUWfVRrkvhBD1haIoHIjL4Lf98fx1MInMvNIZWNr4OzMqrPg9fTeH0leMdbrqzYwj7lw1VukPDw/nkUceYeHChYSFhQFw4MABHnvsMXr37g3A4cOHCQoKMtkxXV1d+fHHHyuNufpthoYNG1JDbzcIIUS1NXS3Z8ag5jzXrynrjxa3/kecTWfTiVQ2nUjFx9mGcR21jOuoxcdZWv9F3VIb5b4QQpi7hIw8ft8fz2/7Ezh74bJxvZeTNSPD/BnVzo+mXvKevrg1NVbp/+abb5g4cSLt27c3vqtQVFREnz59+Oabb4DiwZHmz59fU0kQQgizZG2hYWioL0NDfTmblsPPe2JZvi+epMx8PvznNB9vPE3vEC8mdA6gR1MPaf0XdYKU+0IIUTU5BUX8fTiJ3/YnEHE23bje1lLDwFbejGrnR7dG7lK+C5OpsUq/t7c3GzZs4MSJE5w6dQpFUQgJCSnzfn14eHhNHV4IIeqFYA8HXh7Sgv/2b8a6o8n8tDuW3ecu8s/xFP45noKfiy3jO2oZ21GLl1P5A4hJj6b6qy6dWyn369b5EKZTcl7lvWlxK0qm2fttfwJrjySTp9MbP+sa7Maodn4Mau2Dg3WNVc/EHazG/6qCg4NRqVQ0atQICwv5IxZCiJthY6lheFs/hrf1Izq1tPU/ISOP+RtO8eHG0/Rt7sn9nQPp3tgdAL2++IYiNzcXW1t5HaA+ys3NBW7/9HyVuRPL/ZLfv1xr9VNhYSEAGo2mllMizNHplGxW7E9g5YEEkrPyjeuD3e0Z1c6PEWF++Dcw7XS9Qlyrxkrj3NxcnnrqKRYvXgzAqVOnCA4O5umnn8bX15eXXnqppg4thBD1WmNPB169pwUvDGjGmsNJ/LQ7lsiYS6w7msK6oyloXW0Z284PlwIFJycnUlNTgeI5sOtDS5XBYKCwsJD8/Px6MyUYVC9fiqKQm5tLamoqLi4udaIycieX+xqNBhcXlypfa/X1bxjqX94MBgNpaWnY2dnVietMmIf0nAL+OpjIbwcSOBRfdpq9oaE+jG7nT1utS70ok4V5qLFK/4wZMzh48CBbtmxh4MCBxvV9+/Zl1qxZ9brwF0KI28HGUsOodv6MaufPqZRsftody2/744m7mMf8f6LRqDREFCQzOawBXKmM1AeKopCXl4etrW29umG6mXy5uLjg7e1dwymrmju93C85D6lVuNbq698w1M+8qdVqAgIC6k1+RM0omWZvxf4ENp8oO81er2ae3Nu+eJo9awt5eCRuvxqr9K9cuZKlS5fSpUuXMl+SLVq04MyZMzV1WCGEuCM19XJk9rCWTB8YwurDSfy46zxRcZmsOZLCmiMpNPe2Z0JHfwa08MLRtu50Bb8ZOp2Obdu20aNHjzrVrf1WVTdflpaWdarl8U4v91UqFT4+Pnh6eqLT6SqNra9/w1A/82ZlZYVarb7heRV3HkVRiIrL4Lf9Cfx1KJGM3NK/kdZ+zoxud/00e0LUhhqr9KelpeHp6Xnd+suXL8uTUiGEqCG2Vhrube/P8DZefP3rGuKsG/LnwSSOJ1/mlb9O8ubfpxka6suEzgFm27VQo9FQVFSEjY1NvalUgPnnS8r9YhqN5oYPY8z9XFemPudNiBIJGXmsPJDAiv3xnE2TafZE3Vdjlf6OHTuyevVqnnrqKaB0xNOvv/6arl271tRhhRBCXOFnD9MGt+Dle1qy8kACP+6K4URyNsv3xbN8XzwtfJyY0CWAEW39sJfRgsUtknJfCFGf5RQUsfZIMiv2xbPrXDolk3XINHvCHNTYXd7cuXMZOHAgx44do6ioiI8++oijR48SERHB1q1ba+qwQgghruFgbcEDXQKZ0DmAA3EZLNkVy6pDiRxLyuLl348wd80JRoT5MqFzIM19nGo7ucJMSbkvhKhv9AaFiDPprNgfL9PsCbNWY3+h3bp1Y8eOHbz33ns0atSI9evX065dOyIiImjdunVNHVYIIUQFVCoV7QIa0C6gAa/e05zl++L5aXcsZy9c5sddsfy4K5Z2AS480CWQwa19sLGsO++Li7pPyn0hRH0RnVo6zV5SZuk0e0Hu9oyWafaEGarRx1KtW7c2Tt0jhBCi7nCxs+Lh7sE8dHcQEWfSWbI7lnVHk9kfm8H+2AzeWHWMMe39ub9zIEHu9rWdXGEmpNwXQpiri5cL+TMqocJp9ka18yfMTMfCEcKklf6srKwqxzo5SRdSIYSobSqVim6N3enW2J3U7HyW7Y3j5z1xJGTk8fX2c3y9/Rx3NXZjQudA+rXwwlJj/vNuC9ORcl8IYc6Kp9lLY8X++HKn2Rvdzo/ezWWaPWH+TFrpd3Gp+tMvvV5/4yAhhBC3jaejDU/2bsJjvRqz9VQqS3bFsulkKjui09kRnY6HozXjO2oZ3ykAPxfb2k6uqAOk3BdCmBtFUTgYn8mKffHlTrM3qp0fw2SaPVHPmLTSv3nzZuPP58+f56WXXmLKlCnGUXsjIiJYvHgxc+fONeVhhRBCmJBGraJ3iBe9Q7yIv5TLL3vi+GVvHGnZBXyyKZrPNkfTO8STCZ0D6dHUQ0YqvoNJuS+EMBeJGXmsOhJT7jR7I8L8GN3OX6bZE/WWSSv9PXv2NP78xhtv8P7773PfffcZ1w0bNozWrVvz1VdfMXnyZFMeWgghRA3wb2DH8wOa8XSfJmw4lsKS3THsPJPOP8dT+ed4Kn4uttzfOYCxHbR4OEqryJ1Gyn0hRF2Wr9PzV1QiXx1VE71ru3GaPRtLNQNbejO6vb9MsyfuCDU2kF9ERAQLFiy4bn2HDh14+OGHa+qwQgghaoCVhZohbXwY0saHM2k5/LQ7luX74knIyGPeupN8sOEUA1p5M6FzAF2D3WSgozuQlPtCiLriRHIWP++O5fcDCWTlFwHF49HINHviTlVjf+1arZYFCxYwf/78Muu//PJLtFptTR1WCCFEDWvk4cCr97TghQHNWH0oiR93x3AgNoPVh5JYfSiJYA97JnQOZHQ7P1zsrGo7ueI2kXJfCFGbcguLWHUwiZ/2xBIVl2Fc7+9iQxvHy7w4thcNPWRAUXFnqrFK/wcffMDo0aNZt24dXbp0AWDXrl2cOXOGFStW1NRhhRBC3CY2lhpGt/dndHt/jiZm8tPuWFYeSOBs2mXeXHWMd9ee4J42vjzQJYC2Ms1RvSflvhCiNhxJyOTnPbH8EZVITkERUDz6fv+WXozvGEDnQGfWrv1bBqAVd7Qaq/QPHjyY06dP88UXX3D8+HEURWH48OE8+uij8sRfCCHqmZa+zrw9sjUzBjdn5YEEftwVw4nkbFbsj2fF/nha+DgxoUsAw9v6SZfKekrKfSHE7ZJTUMSfUYn8vCeWwwmZxvUN3ewY3ymA0e38jePM6HS6inYjxB3DpHdehw4dolWrVqjVxe/N+Pv78/bbb1cYf/ToUZo1a4aFhdwACiFEfeBgbcEDXQKZ0DmAA3EZLNkVy6pDiRxLyuLl348wd80JRoT5MqFzIM19pJuluZNyXwhxuyiKwqH44lb9Pw8mkltYPA2olUbNgFbe3NdJS5cgN9QyKJ8Q1zFpqRsWFkZycjIeHh5Viu/atStRUVEEBwebMhlCCCFqmUqlol1AA9oFNODVe5qzfF88P+2O5eyFy/y4K5Yfd8XSLsCFB7oEMri1DzaWmtpOsrgJUu4LIWpaVr6OPw4k8NOeOI4nZRnXB3vYc3+nAEa188fVXsaPEaIyJq30K4rCq6++ip2dXZXiCwsLTXl4IYQQdZCLnRUPdw/mobuDiDiTzpLdsaw7msz+2Az2x2bwxqpj3NvOn/s7BxDs4VDbyRXVUBPl/hdffMEXX3zB+fPnAWjZsiWvvfYagwYNAmDKlCksXry4zDadO3dm165dFe7zu+++48EHH7xufV5eHjY2NlVKuxDi9lEUhf2xGfy8p7i3WL7OAFyZSaa1D/d1CqBjwwYyVowQVWTSSn+PHj04efJkleO7du2Kra0MqiGEEHcClUpFt8budGvsTmp2Psv2xvHznjgSMvJY+O85Fv57jrsauzGhcyD9WnhhqVHXdpLFDdREue/v78///vc/GjduDMDixYsZPnw4Bw4coGXLlgAMHDiQRYsWGbexsrpxK5+Tk9N1aZUKvxB1S0ZuIb8fSODnPbGcSskxrm/q5cB9nQIYGSazwghxM0xa6d+yZYspdyeEEKKe8nS04cneTXisV2O2nkplya5YNp1MZUd0Ojui0/FwtGZ8Ry3jOwXIiMt1WE2U+0OHDi2z/Pbbb/PFF1+wa9cuY6Xf2toab2/vau1XpVJVa5uCggIKCgqMy1lZxd2KdTrdLQ8MVrJ9fRxgTPJmnmozb4qiEBmTwdLIeP4+mkJhUXGrvo2lmsGtvBnfwZ+2Wmdjq3510yjnzTxJ3qq3rxuRkXSEEELUGo1aRe8QL3qHeBF/KZdf9sTxy9440rIL+GRTNJ9tjia8mScPdAmkR1MPNDJA0x1Fr9fz66+/cvnyZbp27Wpcv2XLFjw9PXFxcaFnz568/fbbeHp6VrqvnJwcAgMD0ev1tG3bljfffJOwsLAK4+fOncvrr79+3fr169dX+XWGG9mwYYNJ9lMXSd7M0+3MW44O9qapiEhVk5JX+t3uZ6fQ1ctAe/ci7CxiSToSS9KRWz+enDfzJHmrXG5ubpXipNIvhBCiTvBvYMfzA5rxdJ8mbDiWwpLdMew8k87GE6lsPJGKn4st93cOYGRo9Vp4hfk5fPgwXbt2JT8/HwcHB37//XdatGgBwKBBgxgzZgyBgYGcO3eOV199ld69e7Nv3z6sra3L3V9ISAjfffcdrVu3Jisri48++oi77rqLgwcP0qRJk3K3mTFjBs8995xxOSsrC61WS//+/XFyurWZJ3Q6HRs2bKBfv35YWlre0r7qGsmbebpdeVMUhd3nLvFLZDzrj6Wg0ysA2FlpuKe1N+M6+NPaz8mk7+rLeTNPkreqKemFdiNS6RdCCFGnWFmoGdLGhyFtfDiTlsNPu2NZvi+ehIw85q07yQcbTtGmgRqvlpfo3MhDBnKqh5o1a0ZUVBQZGRmsWLGCyZMns3XrVlq0aMG4ceOMca1ataJDhw4EBgayevVqRo0aVe7+unTpQpcuXYzLd911F+3ateOTTz7h448/Lncba2vrch8iWFpamuwG1JT7qmskb+appvJ2IaeA5fvi+WVPLOfTS1smW/s5c1+nAIa19cXBumarJXLezJPk7cb7qIp6NUrSpUuXmDhxIs7Ozjg7OzNx4kQyMjKqvP0jjzyCSqXiww8/rLE0CiGEqLpGHg68ek8Lds/sw/wxoYQFuFBkUNifrmb8wr0M+fhflu6NJe/KfM2ifrCysqJx48Z06NCBuXPnEhoaykcffVRurI+PD4GBgZw+fbrK+1er1XTs2LFa2wghqsdgUNh+Oo3Hl+yjy5yN/O/vE5xPz8XB2oIJnQNY9dTd/PXU3dzfOaDGK/xC3Onq1RV2//33Ex8fz9q1awH4z3/+w8SJE/nrr79uuO3KlSvZvXs3vr6+NZ1MIYQQ1WRjqWF0e39Gt/cnKiad/63YyYGLFhxLymL6isPMWXOCcR21PNA5kAA307xvLeoORVHKDKp3tfT0dOLi4vDx8anW/qKiomjdurWpkiiEuCI1K59f98Xzy95Y4i7mGde31bpwf6cAhrTxwV4q+ULcVvXmijt+/Dhr165l165ddO7cGYCvv/6arl27cvLkSZo1a1bhtgkJCTz55JOsW7eOIUOG3K4kCyGEuAktfZ24r5GBTx7qye8Hk/hhVwxxF/P4attZvt5+lt7NPJnUrSHdG7ujloH/zM7MmTMZNGgQWq2W7OxsfvnlF7Zs2cLatWvJyclh9uzZjB49Gh8fH86fP8/MmTNxd3dn5MiRxn1MmjQJPz8/5s6dC8Drr79Oly5daNKkCVlZWXz88cdERUXx2Wef1VY2hahX9AaFbafS+HlPLBtPpKI3FL+r72hjwagwP8Z3CqC5z62NhSGEuHn1ptIfERGBs7OzscIPxe/wOTs7s3Pnzgor/QaDgYkTJ/LCCy8YpwK6EZnG5+ZI3syT5M083Ql5s7eEB7sGMKmzlq2nL/Djrli2R5cO/NfQzY4JnbWMDvPF0abuvw9o6nNmruc+JSWFiRMnkpSUhLOzM23atGHt2rX069ePvLw8Dh8+zPfff09GRgY+Pj6Eh4ezdOlSHB0djfuIjY1FrS59gzEjI4P//Oc/JCcn4+zsTFhYGNu2baNTp061kUUh6o3EjDyWRcaxbG8ciZn5xvUdGzZgfMcABrf2wdZKU4spFEJAPar0Jycnlztdj6enJ8nJyRVu984772BhYcHTTz9d5WPJND63RvJmniRv5ulOytu9HtDDAf5NVrM7TcX59FzeXnOSeWtP0NFD4W5vA75m0PPfVOesqtP41DXffPNNhZ/Z2tqybt26G+5jy5YtZZY/+OADPvjgg1tNmhACKNIb2HwyjV/2xLL5ZCpXGvVxsbNkVJg/93XS0sTLsfKdCCFuqzpf6Z89e3a5Feyr7d27F6DcEZwVRalwZOd9+/bx0UcfsX///mqN/izT+NwcyZt5kryZpzs5b1OAywVF/HEwiR93x3I69TI7UlTsSFHTOagBD3QOoG+IBxaaujWWranPWVWn8RFCiKqIv5TLsr1xLI2MIyWrtMdrl2BX7usUwICW3thYSqu+EHVRna/0P/nkk4wfP77SmIYNG3Lo0CFSUlKu+ywtLQ0vL69yt9u+fTupqakEBAQY1+n1ev773//y4Ycfcv78+XK3k2l8bo3kzTxJ3szTnZo3F0tLJt8VzKRuQew6e5HvI86z/lgKu89dYve5S/g42zChcwDjOwXg7lD+3O61xVTnrL6edyHE7aPTG9h4PIWf98Sx7XQaypVWfVd7K+5t78+4jloaeTjUbiKFEDdU5yv97u7uuLu73zCua9euZGZmsmfPHuM7ert37yYzM5Nu3bqVu83EiRPp27dvmXUDBgxg4sSJPPjgg7eeeCGEELVKpVLRtZEbXRu5kZiRx0+7Y/l5TyxJmfm8t/4UH2+MZkgbHyZ1DaSt1qVavb6EEKK+ik3P5Ze9sSyLjOdCTmmr/t2N3RnfSUu/Fl5YW0irvhDmos5X+quqefPmDBw4kGnTpvHll18CxVP23XPPPWUG8QsJCWHu3LmMHDkSNzc33NzcyuzH0tISb2/vSkf7F0IIYX58XWx5fkAznurTmDWHk1i8M4aouAx+P5DA7wcSaOPvzKSuDbmnjY90URVC3HGKDLDmcDK/7k/k3+gLxvXuDtaM6eDP+I5aAt3sazGFQoibVW8q/QBLlizh6aefpn///gAMGzaMTz/9tEzMyZMnyczMrI3kCSGEqAOsLTSMDPNnZJg/B+My+D4ihr8OJXIoPpPnfz3I26uPMb5TABM6B+DfwAxG/hNCiJtQpDdwOjWHQ/EZ7I+5xOooDTm7DwGgUkGPJh7c10lLn+ZeWNaxMVCEENVTryr9rq6u/Pjjj5XGKCUvI1Wgovf4hRBC1D+hWhfma12YOTiEpZFx/BgRQ2JmPl9sOcOXW8/Qt7kXk7s1pFsjN+n6L4QwW4qiEJOey8H4DA7FZ3IoPoMjCVnk6fRXRanwcrRmbEctYzto0brKQ08h6ot6VekXQgghboabgzWP92rMf7oHs/FEKt9HnGdHdDrrj6Ww/lgKjT0dmNQ1kFHt/HGwlqJTCFG3pWblczA+k4NxGRyMz+BwQiYZubrr4hysLWjl50QrXyfUF87w7Pju2NrUrcFNhRC3Tu5chBBCiCssNGoGtPRmQEtvTqdk88OuGFbsiyc6NYfX/jjKu2tPMrqdHxO7NqSxp4xYLYSofZl5Og7HZ15pxc/gYFwmyVn518VZadQ093Ui1N+ZNv4utNU6E+zugFqtQqfTsWZNdJ2bylQIYRpS6RdCCCHK0cTLkTeGt+KFAc34bX8CiyPOczbtMosjYlgcEcPdjd2Z1DWQPs290Kil678Qoubl6/QcTcziYFxxBf9QfCZnL1y+Lk6lgiaeDoT6u9BG60KovzMh3k5YWUilXog7kVT6hRBCiEo42lgyuVtDJnUNZEd0OosjzrPxeAr/Rl/g3+gL+LnY8kCXQMZ11OJqb1XbyRVC1BNFegOnUooH2jt4pQX/VEo2RYbrx6fSutoWt977u9DG35lWfs7Yy6tIQogr5NtACCGEqAKVSsXdTdy5u4k7cRdzWbI7ll/2xpKQkcc7a0/wwT+nGBbqy+SuDWnt71zbyRVCmJGrB9o7GHdloL3ETPJ1huti3R2sjV30Q7XF/8sDRyFEZaTSL4QQQlST1tWOlwaF8EzfJvx1MJHFEec5kpDF8n3xLN8XT1iAC5O7NmRQa2+sLTS1nVwhRB2TkpVvHGSveDT9TDLzyh9or01JBd/fmTZaF3ydbWQ2ESFEtUilXwghhLhJNpYaxnTQcm97fw7EZfD9zvOsPpzEgdgMDsRG8dZqK+7rFMD9nQPwcbat7eSKOkSjL4DCy6BYXv+hSgOWNqXLhde/s10aqwZL25uMzQUqmspYBVZ2NxWrNhRWnDcAK/vSn3V5oFzfml1+bD4oetPEWtoVv/gOUFQAhqIqxaoNusrzZmEL6ivvzRcVgkFHZq6OI0mZHEnI4vCVkfRTswvIxwqF4lhLinC2MBDi7URrXyda+zvTys+FIDc71GoVWNiAWlNmvxW6OlavA31hxbEaa9AUVwdUSlHlebsqFn0R6Asq2a8VaCyrH2vQQ9H1gxAaqS3Bwqr6sYqh8ryV2a8BivIq2a8FWFyZ4UBRQJdrmthqXfflxFaUtzr4HVG96z4PlEr+huvYd8QNYy1q515AKv1CCCHELVKpVLQLaEC7gAa8PKQFv+yJZcnuWJKz8vlkUzSfbznDgJZeTOrakM5BrtJKJ7jn0DQ4VMGHTfrDhF9Ll+c1rriyEHg3PLi6dPnD1pCbXn6sbxj8Z0vp8medITO2/FiPEHhid+ny1+GQdqL8WOcAePawcfHu029jefDh8mPt3ODFs6XLP94LMf+WH2tpBy8nlS4vmwin15cfCzA7s/Tn3/8Dx/6oOHZmYmkF4K9n4OBPFce+cAbs3QFolfATlvMeqjA0//EojuQ6czA+k4b759Ln4lKcgbuu/DOygUccP8U5sA1t/F3on/otnvs/hAsU/7v2b2PaJvBrX/zz7i9gw2sVp3fyKgjqXvzzvu9gzfMVx96/DJoOAMD/YgSW86ZWHDvmO2g5svjnE3/Br1Mqjh3+OYRNKP75zEb4aWzFsYPfg07Tin+O2QmL76k4tt8bcNf/Ff+cFAVf9644tudLED4DAMf8RCznBVYc2+0p6P9W8c+ZcfBRm4pjOz4MQ+YX/5ybDvMaVRwbej+M/KL4Z10uzPGtOLbFcBj7felyZbHXfEdYfNjcrL4jWDQIEg+UH3vNd4Tml3EQu7P82Dr4HcG6mbB3YcWx/3cIHCo5tzVEKv1CCCGECXk4WvNUnyY82qsRG46lsHjneXafu8iaw8msOZxMMy9HJnULZGSYH3ZWUgwLUZ/0/3AbsYbim/8ZFjn0qeQS/3JiB/BsXryw2abiQCGEuEUqRVEq6ochqigrKwtnZ2cyMzNxcnK6pX0Vz5O6hsGDB2NpWUE3HTMleTNPkjfzJHmrW04kZ/F9RAy/708gT1fcndDRxoIx7bVM7BpIkLu9yfNlyrJJmPb3mZ6Vy4a1q+jftzd21lZYadTFXbhLmHH3fp1Ox9pVKxnYv1/Ff8d1sHu/vkhHYZGBwiIDBQY9RXqFwiKleBlrCg0KeQWF/LP1XyzctBxLzuFYYiYFRWXTno8V7o62hPo709bXnlA/e1r5ONGgvIH2ynkVoEI13L1fp9Px9+o/GdSvT8XnzUy79+t0OtasXsXgfuEV581Mu/cby42+PSvOWx37jgCqdN0b89YvHMvKxsYxw+79Or3eZOV9VcsmaWIQQgghaliItxNzRrZm+sAQlu+L54eI85xPz+XbHef4dsc5ejb1YEInf8qZiUvUQ7NXHeevQ/a8tL+0a6xGrcJSo8JSrcbSQl38s0aNlUaNpUaNpUXxcvHnV342fn5l2aJ42UKturIPNVaa0tjiz1VYqEt/Nn6mUWNlcfWyCkvN5auOY2k8roVaVekrKga1VfHNdTk3s3qDgk6np+BKBbtQD7oiKNRfqXAXGdBd+bn48yx0ekNp/NWfX/v/lZ91V+3LGK+/envlymf6K/EK+ipffDZwJu3Kz1Y42pQdaC9U64K3000MtGdhBVRxBP7qxGosSyvUN6CoLCo8b9fv16L0AYApY9WashUzU8Wq1FXPm1pdjf2qaiYWqh9b1cpjtfZrd+OYm4m1rMZ77Za2Vc+bZTV6zFQn1sIasDZdrL6Shw01RCr9QgghxG3ibGvJQ3cH8WC3hmw7ncb3ETFsPpnK1lNpbD2Vhpu1hiK/RMZ0rOTdU2H2yqtg6g3FFc98DFBJo2hdYXntAwNN8YMGC7WKyzkaPjj1r7FyfXUlveqV69pldeUBytX/W6hVKAU5dG8ZSFhgA9r4uxDkZl+2l4YQQtRBUukXQgghbjO1WkWvZp70auZJTPplftwVw9K9caTnF5U7bZeoXz4aF0o/hzX0GzAQ1Bp0V7VG6/SKsZKs0xsoMijoisp+Vvp56XKZz/QGdEXXLOsViozLivGYxuWS/RQZ0BmU0p/1CoX667vhFh9PD5TXYqWCvEq6MV+lpEJtqVEVV7AtSns3WJcsW5T2arg65ur/La/8b32j+Kv2f1288bPyezKUvoITYjavFgkhBEilXwghhKhVgW72vDykBU/1CmbOkvWMCrv9o/qK20+tAmsLNZaWFlXuNVpbFEUpfvhw5WFCSRf6In3pzyX/8gp07Ny1m7u7dsHOxuq6ynlpJV6FlUYtM1kIIcRtIJV+IYQQog6wtdLQ1UvB0UZaEEXdolKpjN35b/QquU6nI/24QseGDaQ1XAgh6gh1bSdACCGEEEIIIYQQNUNa+k2gZNbDrKysW96XTqcjNzeXrKyseveEXPJmniRv5knyZn5Mna+SMklm5jUNKeurRvJmniRv5knyZp5MmbeqlvVS6TeB7OxsALRabS2nRAghhCgrOzsbZ2fn2k6G2ZOyXgghRF11o7JepUgTwC0zGAwkJibi6Oh4ywPSZGVlodVqiYuLw8nJyUQprBskb5VbsmQJjz/+OIcOHSIw0DTTdT322GP88ccfJCYm3vQ+bjZv1cnPkCFDAFi9evVNp/NmVCdvzs7OvPTSS8yYMQOAEydO8Pvvv3P//fff1PkyxbmpjFxv5sfU+VIUhezsbHx9fVGr5W2+WyVlfdVI3m5Nbd0L1FTe6sK9wO04b9feI2zfvp177rmHVatW0b179xo5Jsj1Zq5MmbeqlvXS0m8CarUaf39/k+7Tycmp3v2Bl5C8lc/W1hYAR0dHk/1+SroMmWJ/1c1bdfKj0WiMx6gNVclbREQE/v7+xrjY2Fj+97//MWDAAFq3bl3tY5ry3FRGrjfzY8p8SQu/6UhZXz2St5tT2/cCps5bXboXqOm/SWtra+P+7e3tjf/fjutArjfzZKq8VaWsl0q/EKJeURSF/Px8442GqXTp0sWk+xNCCCFEzbjVe4Hc3Fzs7OxMnCohao/09xPCTOXm5vL8888TFBSEjY0Nrq6udOjQgZ9//vm62OjoaAYPHoyDgwNarZb//ve/FBQUlIm5ePEijz/+OH5+flhZWREcHMzLL79cJu78+fOoVCq+++67646hUqmYPXt2pWlWFIV3332XwMBAbGxsaNeuHX///Xe5sVlZWcb8WVlZ4efnxzPPPMPly5evO+6TTz7JggULaN68OdbW1ixevLjSdJQo6Uq4c+dOunTpgq2tLX5+frz66qvo9foK8/fdd98xZswYAMLDw1GpVNf9XtauXUufPn1wdnbGzs6O5s2bM3fu3OvSUJVzI4QQQpRH7gVKj3uz9wK9evWiVatWbNu2jW7dumFnZ8fUqVOB4l59DzzwAJ6enlhbW9O8eXPmz5+PwWCo0r6FqCukpb+Osba2ZtasWVhbW9d2UkxO8mZazz33HD/88ANvvfUWYWFhXL58mSNHjpCenl4mTqfTMWzYMB566CH++9//sm3bNt58802cnZ157bXXAMjPzyc8PJwzZ87w+uuv06ZNG7Zv387cuXPZv3+/yfL2+uuv8/rrr/PQQw9x7733EhcXx7Rp09Dr9TRr1swYl5ubS8+ePYmPj2fmzJm0adOGo0eP8tprr3H48GH++eefMu/Urly5ku3bt/Paa6/h7e2Np6dnldKjUqmwtbXloYce4qWXXuKNN95g9erVvPXWW1y6dIlPP/203O2GDBnCnDlzmDlzJp999hnt2rUDoFGjRgB88803TJs2jZ49e7JgwQI8PT05deoUR44cKbOfqpybmyXXm/mpr/kS16vP51rydnuZ6l7A2tqal19+mWHDhnH27Nnr7gWioqJM9q797b4XqMp5S0pK4oEHHuDFF19kzpw5qNVq0tLS6NatG4WFhbz55ps0bNiQVatW8fzzz3PmzBk+//xzk/w+bkVd/Js0FcmbiSlCiDph0aJFCqCcO3euSvGtWrVSRowYUWnM5MmTFUBZtmxZmfWDBw9WmjVrZlxesGBBuXHvvPOOAijr169XFEVRzp07pwDKokWLrjsWoMyaNavC/Fy6dEmxsbFRRo4cWWa7HTt2KIDSs2dP47q5c+cqarVa2bt3b5nY5cuXK4CyZs2aMsd1dnZWLl68WOnvojw9e/ZUAOWPP/4os37atGmKWq1WYmJiKszfr7/+qgDK5s2by2ybnZ2tODk5KXfffbdiMBgqPHZVz40QQog7h9wL9DSuu933Ahs3biyz/qWXXlIAZffu3WXWP/bYY4pKpVJOnjxZYb43b95c7j2CELVFuvcLYaY6derE33//zUsvvcSWLVvIy8srN06lUjF06NAy69q0aUNMTIxxedOmTdjb23PvvfeWiZsyZQoAGzduvOX0RkREkJ+fz4QJE8qs79at23Uj+q5atYpWrVrRtm1bioqKjP8GDBiASqViy5YtZeJ79+5NgwYNbipdjo6ODBs2rMy6+++/H4PBwLZt26q9v507d5KVlcXjjz9+wxG+q3JuhBBCiIrIvUCpW7kXaNCgAb179y6zbtOmTbRo0YJOnTqVWT9lyhQURWHTpk03dSwhaoNU+oUwUx9//DHTp09n5cqVhIeH4+rqyogRIzh9+nSZODs7O2xsbMqss7a2Jj8/37icnp6Ot7f3dZVUT09PLCwsrusmeDNK9uHt7X3dZ9euS0lJ4dChQ1haWpb55+joiKIoXLhwoUy8j4/PTafLy8urwvTcTL7T0tIAqjTKd1XOjRBCCFERuRcodSv3AuVtm56eXu56X1/fMnkRwhzIO/1CmCl7e3vje3EpKSnGJ/1Dhw7lxIkT1dqXm5sbu3fvRlGUMoV9amoqRUVFuLu7AxhvGK4d+KcqBZ+bmxsAycnJ132WnJxMw4YNjcvu7u7Y2try7bfflruvkvSUuJU5s1NSUspND5SmuTo8PDwAiI+Pv+k0CSGEEFUh9wKlbuVeoLxt3dzcSEpKum59YmJiuccXoi6Tln4h6gEvLy+mTJnCfffdx8mTJ8nNza3W9n369CEnJ4eVK1eWWf/9998bPy85jo2NDYcOHSoT98cff9zwGF26dMHGxoYlS5aUWb9z587rurPfc889nDlzBjc3Nzp06HDdv6tvCm5VdnY2f/75Z5l1P/30E2q1mh49elS4XcngK9d2pezWrRvOzs4sWLAARVFMlk4hhBCiMnIvYFp9+vTh2LFj7N+/v8z677//HpVKRXh4eI0eXwhTkpZ+IcxU586dueeee2jTpg0NGjTg+PHj/PDDD3Tt2rXac8tOmjSJzz77jMmTJ3P+/Hlat27Nv//+y5w5cxg8eDB9+/YFip+EP/DAA3z77bc0atSI0NBQ9uzZw08//XTDYzRo0IDnn3+et956i4cffpgxY8YQFxfH7Nmzr+vS98wzz7BixQp69OjBs88+S5s2bTAYDMTGxrJ+/Xr++9//0rlz52rlsSJubm489thjxMbG0rRpU9asWcPXX3/NY489RkBAQIXbtWrVCoCvvvoKR0dHbGxsCAoKws3Njfnz5/Pwww/Tt29fpk2bhpeXF9HR0Rw8eLDCGQGEEEKI6pJ7AdPcC5Tn2Wef5fvvv2fIkCG88cYbBAYGsnr1aj7//HMee+wxmjZtWmPHFsLUpNIvhJnq3bs3f/75Jx988AG5ubn4+fkxadIkXn755Wrvy8bGhs2bN/Pyyy8zb9480tLS8PPz4/nnn2fWrFllYufPnw/Au+++S05ODr1792bVqlVVeuL+xhtvYG9vz+eff84PP/xASEgICxYs4L333isTZ29vz/bt2/nf//7HV199xblz57C1tSUgIIC+ffua9Om+t7c3n332Gc8//zyHDx/G1dWVmTNn8vrrr1e6XVBQEB9++CEfffQRvXr1Qq/Xs2jRIqZMmcJDDz2Er68v77zzDg8//DCKotCwYUMmT55ssnQLIYQQci9Qczw8PNi5cyczZsxgxowZZGVlERwczLvvvstzzz1Xo8cWwtRUivQ/FULcoXr16sWFCxc4cuRIbSdFCCGEEEKIGiHv9AshhBBCCCGEEPWUdO8Xoo5RFAW9Xl9pjEajuaVRaus7vV5f6SB6KpUKjUZzG1MkhBBCVJ3cC9w6uRcQopS09AtRxyxevPi6OWmv/bd169baTmad1qdPn0p/f40aNQJgy5Yt0rVfCCFEnSP3AreuqvcCQtwJ5J1+IeqY9PR0zp07V2lMs2bNcHR0vE0pMj8nT54kOzu7ws+tra1p3br1bUyREEIIUXVyL3Dr5F5AiFJS6RdCCCGEEEIIIeop6d4vhBBCCCGEEELUUzKQnwkYDAYSExNxdHSUAVWEEELUCYqikJ2dja+vL2q1POO/VVLWCyGEqGuqWtZLpd8EEhMT0Wq1tZ0MIYQQ4jpxcXH4+/vXdjLMnpT1Qggh6qoblfVS6b/i888/Z968eSQlJdGyZUs+/PBDunfvXqVtSwZRiYuLw8nJ6ZbSodPpWL9+Pf3798fS0vKW9lXXSN7Mk+TNPEnezI+p85WVlYVWq5WBvkxEyvqqkbyZJ8mbeZK8mSdT5q2qZb1U+oGlS5fyzDPP8Pnnn3PXXXfx5ZdfMmjQII4dO0ZAQMANty/p5ufk5GSSGwE7OzucnJzq5R+45M38SN7Mk+TN/NRUvqQrumlIWV81kjfzJHkzT5I381QTebtRWS+VfuD999/noYce4uGHHwbgww8/ZN26dXzxxRfMnTv3tqdHoy+AwsuglPNHoNKApU3pcuHlinekUoOl7U3G5gIVTeygAiu7m4pVGworzhuAlX3pz7o8UAwVp7lMbD4oetPEWtpByYVTVACGoirFqg26yvNmYQsl79oUFYJBV/F+qxVrA2pN9WP1OtAXVhyrsQZN8VeESimqPG9XxaIvAn1BJfu1Ao1l9WMNeijKrzhWbQkWVtWPVQyV563Mfg1QlFfJfi3AwvrKfhXQ5ZomtlrXfTmxFeWtDn5HVO+6zwOlkr/hOvYdccNYKZKFEEKIeu1CTgErImNJu6hi8G087h1/h1FYWMi+fft46aWXyqzv378/O3fuLHebgoICCgpKKypZWVlA8VMbna6SClcVTF9xmPdPTIND5X9+yqkrS5u8h0atQqNS8VxkOJaG8is3yQ3as6HjN8WxahjxTy+sCy+VG5vl2opDA3+7EqsidEVPrC8nlBtb6NqUtAc2G9PQ4PueWKSfKjdWcdZS9OQBoPj3c/fpt7E8+HD5sXZuFD170ris+WEU6tjyz4FiaUfRi7Glsb9MQH3mn3JjAXQvXyiNXTEN9Yk/K459IcZYAdD89TTqQ79UHPvMCbB3R6fT0SrhJyznPVRx7BP7waW454h642w0uz6rOPY//4JHSHHstnfRbJ9XYWzRg+tRfNsVx0Z8imbT6xXHPrASJfDu4tjIb9Csm15x7NifUJr0R6fT4X8xAst5UyuOHfUNSvPhAKiO/4HFbxX/Horu+QQl9L7i2NPrsVh2f4Wx+gHvYOhQvC9VzL9Y/Dii4tjeszB0fao4NnE/Fov6Vxzb/QUMPaaj0+lwzE/Ecl5gxbFdnsDQ58rvNCMWy8/aVRzbfiqGge8WL1y+gOWHIRXGGtqMRz/00+KFwsuVpsEQMgz96G+Ny5ZzfCuObdQX/fhfjN9FFh+GFFeOy4sN6IZ+Yum1YPFha1S56eXH+rRFP7X0GrP4rBOqzLhyYxX3ZhQ9sqM09qteqC6cLD/2qu8IAM23A1EnRZUfe+U7oiRv6p/HQlxE+bF17DsCQL32JTT7vq0wtuiRPcXb3GI5Yjy2ifYjhBBCiJtXpDew9VQaS/fGselEKkUGhWBHNRXfhZveHV/pv3DhAnq9Hi8vrzLrvby8SE5OLnebuXPn8vrr11es1q9fj52dXTlbVN3awxrer6SXR/ylPL7ZEWNcfspawbKC3hzn03N59c9jxuW+1kVYVxB77kIuD3wbaVz+17oA/4r2e+Ey/d/dalxeb3WZphUMFpmQkUefWetQq0CtgqUaFQ0q2O+ly4X0fnOdcXmh6hIdKojN1+np/vY6VIAKeJ8L3F1+KAA95pbGvmlIpnclsfe8/w/5quKW0hn6BAZWEjvu081kqZ0AhWf0KoIqid28eTN51h4AtEg4S5NKYrdv20a27VkAmiWdpuKqI+zYsZMM++K/1cYpJ2hZSeyuXbtJP1r8kCoo7ShtKomNjIwk5XRxq+SNhq46sP8AieeK/3B9Lx2gYyWxhw4dIi7BGQCvzCi6VBJ79OhRzqWuAcAt+3il5/jEiRNEXyqOdbl8lp6VxJ4+fZqTOcWxN3rb+ezZsxwrKI61LUij4kcJEBsTw6E1xbFWuiwGVRIbHx/PgSuxGn0B91QSm5ScROSVWIDhlcSmpqWx+6pYvV5f4Rf9xYsX2XFV7MDCQqwriM3MzGTbVbH98vKo6NsuOyeHzVfFhufkUFFn6Ly8PDZcFdsjM5MGFcQWFhay9qrYS5cu4V5BrF5fxJqrYjunpeFdQSxQJrZDchJ+lcSuW7cevab4NxUWH09lL4H9888/FFoW575NXEyl3xHbt28Haw82bNhQSVTV5eZW0ntECCGEEDXqTFoOv0bGs2J/PGnZpQ3Gof7OhFhdRFEq6gVpeirldh6tDkpMTMTPz4+dO3fStWtX4/q3336bH374gRMnTly3TXkt/VqtlgsXLlT6np9er6eoqKjSE7z6UCJnTh5DG9gQRaVCMUCRoqAYFPQGBT0qCrHEoCjoDaDW56FXFAwGBYOBK+sVDIpCkVIcW7Ks1hegGJTi/SlQpBiK929QMCiQp1ihKApFBgULQwGKwYBeoXjflO5Xb4BcxZKSbFhRSEVvkShAIVbGZSt0qCrs5gsFdSLWEq7kyJIi1Fzf1VhRFDLy9VwqsjLGWqFDQ/ldgi01KpwdHPFwtsPL0RofBzVeDho8HazwdLLBw8EaD0crHKyvVM8sbYu7U0NxF3x9VbvsVyf2Bt37LaxBbYFOp+Of9X/Tt1dPLC0rqD5eiQWKuy8XVbXLfnVib9BlX2NZHF+NWJ1Ox4b16+jXq3vFebt6v4qhwlZzoOa696s1xeeuRGXd8K/E6nQ6NmzYQL+ed1Wct1vp3q/LhYq+y1Sq4m7tNxV74+79xrz1uhtLC02lsUZF+cV/F6aIraHu/Tos2PDPRvr162eygfzc3d3JzMy85XfQRfHv09nZ+Ya/T71ef8NeFjqdjm3bttGjR496+a5qfcublZUVarUanU7HmjVrGDx4cL3JWwnJm3mSvNU9OQVFrDmUxLLIOCJjSntYu9lbMaqdH2M6aAlytTFZ3qpaNt3xLf3u7u5oNJrrWvVTU1Ova/0vYW1tjbX19e1hlpaW5Z44RVFITk4mIyPjhulp00ChSWgAtrbWVRx8qXYvgpIHGMbbeaXsm7vKlRXKlc/yC/Kxtrbh6qzdzGOn6zdRKvqgstXVO8Y1KwyKQo5iTY7aniK9gZ2RB/AIaMaFHB0p2fkkZ+aTml3AxcuF5OkhK7OQuMxKKtmAvZUGL2cbvBxt8HKyxsvJ5qp/xcueTtZYV1TRqc4Xh6UlVNhWW5aissDS3rmKX0yWYG1747CbirW5cVh1Y1XqauQNsKqoLby8WKsbx9xMrKVL1UOrk7dq7BdL5xqKrfrfsKVdNQbAqfa1UQuxVyqKFZUl1WVON0n1QXXKekVR8Pb2Ji4urt4NtFgf86ZWqwkKCqo3+RFCmJaiKOw9f4llkXGsOZxEbmFxw4FaBeHNPBnbUUt4M0+sLIob9Grj9bs7vtJvZWVF+/bt2bBhAyNHjjSu37BhA8OHV9aJtupKbgI8PT2xs7OrtNAwGAzk5OTg4OCAWl1Bn3kzVZ/ypigKubm5pKam0sxFjbu7J6o4hcF9Gl93o11QpCctu4CUrHxSsq79v/hfalYB2QVFXC7UczbtMmfTKmlxBRrYWZbzMMAG76uW3R2s0ajlBkUIIW4HKeuL1be8GQwGEhMTSUpKwsfHp7aTI4SoQ5Iz81mxP57l++I5d6H03j3Y3Z4xHbSMaueHl1NVG6xq1h1f6Qd47rnnmDhxIh06dKBr16589dVXxMbG8uijj97yvvV6vfEmwM3N7YbxBoOBwsJCbGxs6kVhebX6ljdb2+IW6tTUVBo0qOgtZLC20ODfwA7/BpW3qucUFJF63QOBAlKy80nJzC/+P6uAwiIDl3J1XMrVcSI5u8L9qVXg4XjlgYCjDd7O1ld6EBT3FvC+0qPAxc5SWi+EEOIWSFlfqj7mzcPDg8TERPT6Sl77EULcEQqLDGw8nsKyyDi2nkrDcKUnsL2Vhnva+DK2oz/tAhrUuXtrqfQD48aNIz09nTfeeIOkpCRatWrFmjVrCAyseDTtqirpvnGrA/yJuqnkvBYVVTYNV9U4WFvg4OFAsIdDhTGKopCZpyP5qocDqVn5xuWSn9OyCzAoXIkpADIr3KeVRl38EMCp9IGA15VeA55O1rjZWqCv5BVrIYS400lZX79ZXXn9Sir9Qty5TiRn8WtkPL8fSODi5dLXdTs1dGVMB38Gt/bB3rruVq3rbspus8cff5zHH3+8xvZf1572CNMoOa+3azxMlUqFi50VLnZWhFQyFLneoJCeU1zhTza+QpBfdvnKeAOFegPxl/KIv1TxAHV2Gg3b8g8zsLUvPZq6Y2clXx1CCHEtKevrp9td1gsh6obMPB1/Hkzk18g4DsWXNqB5Olpzb3t/7m3vX2ljXV0id+5C1EMatQrPK+/5t6biQdQKivSkZhWQeuXVgeQrrxGkXulFkJxVPCBhbqGelQeTWHkwCRtLNd2beDCgpTd9QjxpYF+NAeiEEEIIIYSoowwGhYiz6SyLjGPtkWQKioq7u1pqVPRt7sWYDv70aOKBhca8Xl+SSr+4aSqVit9//50RI0bU6HEaNmzIM888wzPPPFOjxynPd999xzPPPFOl0ZjNkbWFBq2rHVrXiruk5hcU8vmyv8l2bsSG46nEX8pjw7EUNhxLQaNW0amhKwNaetG/pTe+LlUdiV8IIUxn27ZtzJs3j3379pGUlFRu2XT8+HGmT5/O1q1bMRgMtGzZkmXLlhEQEFA7iTYTUtYLIe4E8ZdyWb4vnl8j40nIKO392szLkbEdtYxo64ubQzVmcKpjzOsRhbitUlNTeeSRRwgICMDa2hpvb28GDBhAREQEAElJSQwaNKiWU3m97777DhcXl9pORr2hUato5AQzBzVj+4vhrHm6O//Xpwkh3o7orzwNnf3XMbr9bxNDP/mXTzed5nRKtnSDFELcNpcvXyY0NJRPP/203M/PnDnD3XffTUhICFu2bOHgwYO8+uqr2NjUjVGVa5OU9UKIO1W+Ts8fUQk8sHA33d/dzIf/nCYhIw9HGwse6BLAn0/exdpnuvPQ3UFmXeEHaekXlRg9ejQ6nY7FixcTHBxMSkoKGzdu5OLFiwB4e1fyUrmol1QqFS18nWjh68Sz/ZoSm57L+mPJrDuaTGTMJQ4nZHI4IZP31p8i2N2efi29GNDSm7b+Lqhl+kAhRA0ZNGhQpRXTl19+mcGDB/Puu+8a1wUHB9+OpNV5UtYLIe4kiqJwJCGLZZFx/BGVQFZ+6WDcdzV2Y2wHLQNaemNjqanFVJqeVPpvM0VRyNNVPPqrwWAgr1CPRWGRyae6sbXUVHmQoYyMDP7991+2bNlCz549AQgMDKRTp07GmKu7/J0/f56goCCWLl3KJ598QmRkJK1atWLJkiVkZmby2GOPceLECbp06cKSJUvw8vICoFevXrRt25YPP/zQuN8RI0bg4uLCd999V27a3n//fRYtWsTZs2dxdXVl6NChvPvuuzg4OLBlyxYefPBBY/oAZs2axezZsyksLOSVV15hyZIlZGRk0KpVK9555x169epl3Pd3333Ha6+9xoULFxgwYAB33313VX+9d6QANzse7h7Mw92DScsuYOPxFNYdTWZHdDpnL1zmy61n+XLrWTwdrenXovgBQJdgN6wspJOREOL2MBgMrF69mhdffJEBAwZw4MABgoKCmDFjRqVd1gsKCigoKDAuZ2VlAcUj9ZeM1l9Cp9OhKAoGgwGDofj9z8rKe0VRyCvUoynQmXzwv5sp6zdt2mQs67VaLR06dACKf3cajYYVK1YYy/pGjRrx888/89lnnxnL+h9++IHMzEyeeOIJY1n/448/4unpCUDv3r0JDQ3lgw8+MB575MiRuLi4sGjRIuO6kt8hwAcffMB3331nLOvvuece3nnnnQrL+tdee41Zs2ZRWFjIq6++yk8//WQs6+fOnXtdWT979mwuXLhA//79jWV9ybGvZTAYUBTFOFPPtee/PijJk+TNvEjequ7i5UL+PJTEin0JnEjJMa73dbZhdDtfRob5ojVOr21Ap6u5qatMmbeq7kMq/bdZnk5Pi9fW1cqxj70xoMqjrjs4OODg4MDKlSvp0qUL1tZV69Iya9YsPvzwQwICApg6dSr33XcfTk5OfPTRR9jY2DB27FhmzZrFggULbjofarWajz/+mIYNG3Lu3Dkef/xxXnzxRT7//HO6devGhx9+yGuvvcbJkyeNeQF48MEHOX/+PL/88gu+vr78/vvvDBw4kMOHD9OkSRN2797N1KlTmTNnDqNGjWLt2rXMmjXrptN5p/FwtGZ8pwDGdwogO1/HlpNprD+WwuYTqaRmF7BkdyxLdsfiaGNBnxBP+rf0pmdTjzo9vYkQwvylpqaSk5PD//73P9566y3eeecd1q5dy6hRo9i8ebOxsnutuXPn8vrrr1+3fv369ddNzWdhYYG3tzc5OTkUFhZP5ZRXqKfr+7tMn6EbiHiuC7ZWVWuhMhgMODg48Ouvv9KiRYsKy/q8vDyysrLIySm+UZ41axZz5szB39+fp556ivHjx+Po6Mhbb72FnZ0dDz74IDNnzuT9998Hiqe1LSwsND44KVmn0+mM6wwGA/n5+cblwsJC5syZQ0BAADExMTz//PM8++yzzJ8/31iRnzNnDnv37gXA3t6erKwspk2bRmxsLF9//TU+Pj6sWrWKwYMHs2PHDho1akRkZCQPP/wwr776KkOHDmXjxo289dZbKIpSJn1XKywsJC8vj507dwKwYcOGKv1+zZHkzTxJ3spnUOBEhordqSoOX1KhV4ofElqoFNq4KnTxVGjinIM6/xSHI05x2FSJriJTnLfc3NwqxcndtiiXhYUF3333HdOmTWPBggW0a9eOnj17Mn78eNq0aVPhds8//zwDBgwA4P/+7/+477772LhxI3fddRcGg4EHHniApUuX3lLarh7kJygoiDfffJPHHnuMzz//HCsrK5ydnVGpVGW6JJ45c4aff/6Z+Ph4fH19jWldu3YtixYtYs6cOXz00UcMGDCAl156CYCmTZuyc+dO1q5de0vpvRM52lgyNNSXoaG+FBTp2XkmnfVHiwf/u5BTwMqoRFZGJWJloaZHE3f6t/CmbwsvXGUmACGEiZW03g4fPpxnn30WgLZt27Jz504WLFhQYaV/xowZPPfcc8blrKwstFot/fv3x8nJqUxsfn4+cXFxODg4GMcJsCgsojY4OjlWa1rVb7/9lkceeYRFixbRrl07evTowbhx48qU9ba2tjg5ORkfoj///POMHDkSKC6TJ0yYwIYNG+jduzeKohjL+pLfk4WFBVZWVmV+bxYWFlhaWhrXqdVqbGxsjMvTp083xrZu3Zq8vDyeeOIJvv76awA8PT1Rq9U0adLEGHfmzBlWrFhBbGyssawPDQ1l69atLF++nLfffptvvvmG/v37Gx/qt2vXjv3797Nu3brrzmuJ/Px8bG1t6datG9u2baNfv35YWlpW+XdsDnQ6HRs2bJC8mRnJW/li0nNZsT+B36ISSckq7bHVyteJe9v5ck8bH5xta+/3ZcrzVtHDymtJpf82s7XUcOyNARV+bjAYyM7KxtHJsUa691fH6NGjGTJkCNu3byciIoK1a9fy7rvvsnDhQqZMmVLuNlffJJR04W/durVxnaenJ6mpqdVP/FU2b97MnDlzOHbsGFlZWRQVFZGfn8/ly5ext7cvd5v9+/ejKApNmzYts76goAA3NzegeGTnkpuYEl27dpVK/y2yttAQ3syT8GaevDWiFQdiL7HuaDLrjqYQezGXf46n8s/xVNS/QceGrvRv6c2All74N6h4RgEhhKgqd3d3LCwsaNGiRZn1zZs3599//61wO2tr63Jbvi0tLa+7SdPr9ahUKtRqtbHstre2rLC8r+myvjqvDIwZM4ahQ4eWKevnzZtXpqwvyVdJWtu2bWv82cfHByiuXKvVagwGg7GsvzpvJb+fq5fLW1eyXFFZn5eXh729vTHu6u2joqJQFIWQkJAyeSwp69VqNSdOnGDkyJFltuvWrRvr1q2r8Fyo1WpUKhUWFsW3zeX9DdQXkjfzJHmD3MIi1hxOZllkHHvOXTSud7GzZGSYH2Paa2nhW/6DvdpiivNW1e2l0n+bqVSqSp/AGwwGiqw02FlZmPxG4GbY2NjQr18/+vXrx2uvvcbDDz/MrFmzKqz0X/2HV3LTce26q9+ZU6vV143yXtm7KTExMQwePJhHH32UN998E1dXV/79918eeuihSrcreS9x3759aDRlH36UtFzIaPM1T6NW0aGhKx0aujJzcHNOpmSz7kgK648lczQxi93nLrL73EXeXHWMlr5ODGjpTf+WXjTzcjT5e69CiDuDlZUVHTt2NL7yVeLUqVMEBgbW2HErK++lrJeyXghx6xRFYX9sBr9GxvHXwUQuFxaPo6JWQY+mHoztoKVPc0+sLerXoHw3Qyr9olpatGjBypUrTbY/Dw8PkpKSjMt6vZ4jR44QHh5ebnxkZCRFRUXMnz/feKO0bNmyMjFWVlbo9WUHTwoLC0Ov15Oamkr37t3L3XeLFi3Ytavs+5fXLgvTUalUhHg7EeLtxP/1bULcxVzWH0th/dFk9p6/yNHELI4mZvH+hlMEutkVPwBo4UW7gAYyE4AQooycnByio6ONy+fOnSMqKgpXV1cCAgJ44YUXGDduHD169CA8PJy1a9fy119/sWXLltpLdB0mZb0Qoi5Lzc7n9/0JLIuM40zaZeP6QDc7xnbQMqqdHz7OtrWYwrpHKv2iXOnp6YwZM4apU6fSpk0bHB0diYyM5N1332X48OEmO07v3r157rnnWL16NY0aNeKDDz4gIyOjwvhGjRpRVFTEJ598wtChQ9mxY8d1gwI2bNiQnJwcNm7cSGhoKHZ2djRt2pQJEyYwadIk5s+fT1hYGBcuXGDTpk20bt2awYMH8/TTT9OtWzfeffddRowYwfr166Vr/22kdbXjobuDeOjuINJzCth4PJV1R5PZHn2BmPRcvtp2lq+2ncXdoWQmAC+6NnKTp7dCCCIjI8tUIEvexZ88eTLfffcdI0eOZMGCBcydO5enn36aZs2asWLFijt+hhYp66WsF8Jc6PQGNp9IZVlkPJtPpqI3FPfasbFUM7i1D+M6aOkU5Co9QysglX5RLgcHBzp37swHH3zAmTNn0Ol0aLVapk2bxsyZM012nKlTp3Lw4EEmTZqEhYUFzz77bIVP/qH4PcL333+fd955hxkzZtCjRw/mzp3LpEmTjDHdunXj0UcfZdy4caSnpxun7Fu0aBFvvfUW//3vf0lISMDNzY2uXbsyePBgALp06cLChQuN8X379uWVV17hzTffNFl+RdW4OVgztqOWsR21XC4oYuupNNYdTWbTiVQu5BTw855Yft4Ti6O1Bb1CPBnQ0otezTxxkJkAhLgj9erV64bdtqdOncrUqVNvU4rMg5T1UtYLUdedTs1h5cFkftsfz4WcQuP6sAAXxnbQck8bHxxt6ud4BqakUuTlpluWlZWFs7MzmZmZ5Y7oe+7cOYKCgowj+lbGYDCQlZWFk5NTnXjPz5TqY95Kzq+/vz+bNm1i8ODB9W4gFZ1Ox5o1a+pE3gqLDOw6m866o8lsOJZCanbpiKxWGjV3NXZjQMvimQDcHW48zWRdypupSd7Mj6nzVVnZJKpPyvqqqY95k7LevEnezE92vo4/DsSzcONRzueUtty7O1gxup0/Yzr409jTsRZTeGtMed6qWtZLs5gQwmxYWajp0dSDHk09eHN4K6LiM1h3NJn1R1M4d+Eym0+msflkGqrfD9MhsAEDWnozoKU3WleZCUAIIYQQoq5SFIXImEss3RvH6kNJ5On0gAqNWkXvEE/GdtDSq5kHlpr68TDxdpNKvxDCLKnVKtoFNKBdQANeGhhCdGqOcSrAwwmZ7D1/ib3nL/HW6uOEeDsaHwA095GZAIQQQggh6oLU7Hx+uzIo39mrBuULdrejlV02L43vja+rQy2msH6QSr8QwuypVCqaeDnSxMuRJ3s3ISEjjw1XHgDsOX+RE8nZnEjO5qONp9G62tK/RfEDgDa+UogIIYQQQtxORXoDW0+lsXRvHBtPlA7KZ2up4Z42PozrqKWNrwN///03Ho43fl1T3JhU+oUQ9Y6fiy1T7gpiyl1BXLpcyMYTxTMBbDuVRtzFPL759xzf/HsOV3tLWjmqaZySTUt/19pOthBCCCFEvXX+wmWWRcaxYn88KVml4zKFBbgwroOWe0J9jYMy63S62kpmvSSVfiFEvdbA3op72/tzb3t/cguL2HYqjfVHU/jneAoXL+vYdlnNtk8jaB/YgPs6BTCktQ+2VjINoBBCCCHErcrX6fn7SBJL98ax6+xF43pXeytGhvkxrqOWpl7mOyifuZBKvxDijmFnZcHAVj4MbOWDTm9g28kUPloVydEMDftiLrEv5hJv/HWUUe38ua9TAM28pRASQgghhKgORVE4kpDF0shY/ohKJDu/CACVCro38WB8Ry19m3thZSGD8t0uUukXQtyRLDVqejRxJ6eZgQ7dw1l5MJlf9sYSdzGP73ae57ud52kX4ML9nQOl9V8IIYQQ4gYyc3WsjErgl71xHE/KMq73c7FlbAct93bwx8/FthZTeOeSSr8Q4o7n6WjNE+GNeaxnI/6NvsBPu2P553gK+2Mz2B+bwet/HWVUmB/3dw6U1n8hhBBCiCsMBoWIs+ks3RvH2qPJFBYZALDSqBnQyptxHbR0a+SGWi0zJ9UmqfQLIcQVarWKHk096NHUg9SsfH7dF29s/V8cEcPiiBjaBbhwX6cA7mnjK63/QgghhLgjJWXmsTwynmX74oi7mGdcH+LtyLiOWka09aOBvVUtplBcTSr9okadOHGCKVOmEBUVRUhICFu2bKntJAlRJZ5ONmVa/3/eE8uGY6Wt/2+sOsaoMD/u6xxAiLdTbSdXCCFqjZT1QtwZCosMbDyewtLIOLadSuPKTHs4WlswrK0v4zpqae3njEolrfp1jVT6RYWmTJnC4sWLAdBoNPj6+jJkyBDmzJlDgwYNqrSPWbNmYW9vz8mTJ7Gzs6vJ5ApRI8q0/mfn82uktP4LIeoPKeuFEDdyOiWbpXvj+P1AAumXC43rOwW5Mq6DlsEy9lGdJ5V+UamBAweyaNEiioqKOHbsGFOnTiUjI4Off/65StufOXOGIUOGEBgYiMFgICsr68YbXaOwsBArK+keJGqfp2Np6/+OM8Xv/kvrvxDC3ElZL4S41uWCIlYdSmTp3jj2x2YY13s4WnNve3/GdtAS5G5fewkU1VLr8yRkZWVV+1+9UHi54n9F+VWP1eVVLfYmWVtb4+3tjb+/P/3792fcuHGsX7/e+PmiRYto3rw5NjY2hISE8Pnnnxs/U6lU7Nu3jzfeeAOVSsXrr78OQEJCAuPGjaNBgwa4ubkxfPhwzp8/b9xuypQpjBgxgrlz5+Lr60vTpk2rtd17772Hj48Pbm5uPPHEE+h0OmNMQUEBL774IlqtFmtra5o0acI333xj/PzYsWMMHjwYBwcHvLy8mDhxIhcuXLjp35+on9RqFd2bePDFA+3ZOaM3LwxohtbVluz8IhZHxDDww+2M/HwHv0bGkVeor+3kClGn3HHlfoXld67py/ubJGW9lPVCQPFUe/tiLvHi8oN0fPsfpq84zP7YDDRqFX2be7FwUgciXurN9IEhUuE3M7Xe0u/i4lKt9z5UKhWnTp0iODi4BlN1G8zxLXe1GrBvGA6TfitdOa9x8c1BeQLvhgdXly5/2Bpy06+Pm51582m94uzZs6xduxZLS0sAvv76a2bNmsWnn35KWFgYBw4cYNq0adjb2zN58mSSkpLo27cvAwcO5Pnnn8fOzo6cnBz69OlD9+7d2bZtGxYWFrz11lsMHDiQQ4cOGZ/yb9y4EScnJzZs2ICiKOTm5hIeHn7D7TZv3oyPjw+bN28mOjqacePG0bZtW6ZNmwbApEmTiIiI4OOPPyY0NJRz584ZC/qkpCR69uzJtGnTeP/998nLy2P69OmMHTuWTZs23fLvT9RP17b+/7wnlvVHUzgQm8GBK63/I8P8uF9a/4UA7sByv5zyXg24AErjfvDA8tIPbrW8l7IekLJeiOq6kFPA7/sTWBoZR3RqjnF9kLs9YztoGd3OD08nm1pMobhVtV7pB1i+fDmurq43jFMUhcGDB9+GFIkSq1atwsHBAb1eT35+cYvE+++/D8Cbb77J/PnzGTVqFABBQUEcO3aML7/8ksmTJ+Pt7Y2FhQUODg54e3tjMBj4/vvvUavVLFy40HjTt2jRIlxcXNiyZQv9+/cHwN7enoULFxoL+G+//bZK2zVo0IBPP/0UjUZDSEgIQ4YMYePGjUybNo1Tp06xbNkyNmzYQN++fQHK3ER+8cUXtGvXjjlz5hjXffvtt2i1Wk6dOmVshRCiPCWt/92bFL/7v3xfPL/siSP2Yi7fR8TwfUQMYVfe/R8q7/6LO5yU+3WLlPVS1os7j96gsO1UGkv3xvHP8RSKrozKZ2OpZkjr4kH5OjZsIIPy1RO1XukPDAykR48euLm5VSk+ODjY+PTZrM1MLHe1wWDgcs5lyrQHvhBd8X5U17yh8czhW07a1cLDw/niiy/Izc1l4cKFnDp1iqeeeoq0tDTi4uJ46KGHjE/WAYqKinB2dq5wf1FRUURHR+PoWHau8/z8fM6cOWNcbt26dZl3+/bt21el7Vq2bIlGU1qZ8vHx4fDhw8ZjazQaevbsWW7a9u3bx+bNm3FwcLjuszNnzsiNgKgyT0cbHu/VmEd7lN/6/6a0/os72B1X7pdT3hsMBrKys3FydqHM7XQtlfdS1heTsl7cCeIu5rIsMo7l++JJyix9xSjU35mxHbUMDfXFycaMv3NFuWq90n/u3LlqxR85cqSGUnKbWVXwHozBABb6qsVWZ783yd7ensaNGwPw8ccfEx4ezuuvv86TTz4JFHf769y5c5ltri6Ir2UwGGjfvj1Lliy57jMPD48yx72Z7a69MVSpVBgMBgBsbW0rTFfJMYYOHco777xz3Wc+Pj6VbitEea5u/U/LLuDXfXEVtv7f08YHO6ta/0oWosbdceV+eeWywQCWerCwuXFsdfZ7k6SsLyZlvaiv8nV61h1NZuneOHaeKX0tyMXOkpFhfozrqJVGiHpO7jBFtcyaNYtBgwbx2GOP4efnx9mzZ5kwYUKVtw8NDWXlypV4enri5FT1L5d27dqxdOnSam93tdatW2MwGNi6dauxy9+1x1ixYgUNGzbEwkIuDWFaHo7Wxtb/nWfS+WlPTNnW/7+OMbKdH/d1CqC5jxS8QojaI2W9EPXD0cRMlu2NY2VUIpl5xYNdqlRwd2N3xnbQ0r+lF9YW8rrhnaBOfdt9/PHH5a5XqVTY2NjQuHFjevToUenTZVGzevXqRcuWLZkzZw6zZ8/m6aefxsnJiUGDBlFQUEBkZCSXLl3iueeeK3f7MWPG8NlnnzF8+HDeeOMN/P39iY2N5bfffuOFF17A39+/3O0mTJjAvHnzqr3d1Ro2bMjkyZOZOnWqcXCfmJgYUlNTGTt2LE888QRff/019913Hy+88ALu7u5ER0fzyy+/8PXXX8vfnTAJtVrF3U3cubuJO2nZBSzfF8/Pe2LLtP631bpwf2dp/Rf1n5T7dZOU9UKYr8w8HX9GFQ/KdyShdPYTX2cbxnTQMqaDP/4N7GoxhaI21Km7yQ8++IC0tDRyc3Np0KABiqKQkZGBnZ0dDg4OpKamEhwczObNm9FqtbWd3DvWc889x4MPPkh0dDQLFy5k3rx5vPjii9jb29O6dWueeeaZCre1s7Njy5YtzJgxg1GjRpGdnY2fnx99+vSp9Km+nZ0d27ZtY/r06dXa7lpffPEFM2fO5PHHHyc9PZ2AgABmzpwJgK+vLzt27GD69OkMGDCAgoICAgMDGThwIGp1rc9uKeohD0drHuvViEd6BJdp/Y+KyyAqrrj1f8SVd/+l9V/UR1Lu111S1gthPhRFIeJMOkv3xvL3kWQKiopfd7HUqOjfwpuxHbXc3dgdjVoG5btTqRRFUWo7ESV+/vlnvvrqKxYuXEijRo0AiI6O5pFHHuE///kPd911F+PHj8fb25vly5ffYG+3T1ZWFs7OzmRmZl5XKOXn53Pu3DmCgoKwsbnxVBcGg4GsrCycnJzqXeFTH/NWcn79/f3ZtGkTgwcPNu8Bp8qh0+lYs2aN5O02ubb1v0R1W//rYt5Mpb7mzdT5qqxsqivMqdyXsr5q6mPepKw3b/U5b/Hp2cz9ZTOHLzsQezHPuL6ZlyNjO2oZGeaHq71VJXuou+rzeTNl3qpa1teplv5XXnmFFStWGAt+gMaNG/Pee+8xevRozp49y7vvvsvo0aNrMZVCCFFzrm39/3lPLOuOJl/X+n9fpwBa+NbNipwQVSXlvhBCVI/BoLDjzAV+3BXDP8dT0Rs0QB4O1hYMDfVhbActbbUuMtWeKKNOVfqTkpIoKiq6bn1RURHJyclAcbes7Ozs2500IYS4rcp79/+XvbHEpOfyw64Yfth15d3/TgHcEyrv/gvzJOW+EEJUzaXLhfy6L46fdsdyPr20J2CQo8IjfVsxLMxf7gVEherUX0Z4eDiPPPIICxcuJCwsDIADBw7w2GOP0bt3bwAOHz5MUFBQbSZTCCFuq6tb/yPOpvPT7mta/1dJ678wT1LuCyFExRRFYX/sJX7cFcvqw0kUXnlX39HaglHt/Bjb3pfofdsZ3M4PS8s6Va0TdUyd+uv45ptvmDhxIu3btze+31BUVESfPn345ptvAHBwcGD+/Pm1mUwhhKgVarWKuxq7c1fj4tb/FfuL3/2/uvU/VOvChE4BDGjhXtvJFeKGpNwXQojr5RQU8fuBBJbsiuFEcmlPp1Z+TjzQOZChob7YW1ug0+mIrsV0CvNRpyr93t7ebNiwgRMnTnDq1CkURSEkJIRmzZoZY8LDw2sxhTevDo2XKEyo5LzKe1PidvNwtObRno34T/crrf97Yll/NJmDcRkcjMvgjVUWhDVQE5J2mWa+LrWdXCHKVd/KfSnr6ycp68Xtciwxix93x/DHgQQuF+oBsLZQMyzUlwldAgn1d5a/Q3FT6lSlv0RwcDAqlYpGjRphYVEnk1hlJS0Xubm52Nra1nJqhKnl5ha/U2Xuf6fCfF3d+n8hp3Tk/5j0XLYnqxnw8Q66N3FncteGhId4ynQ9ok4y93Jfyvr6rbCwEACNRlPLKRH1Ub5Oz+pDSSzZHcP+2Azj+mAPex7oHMjodv4429Wv0evF7VenStbc3FyeeuopFi9eDMCpU6cIDg7m6aefxtfXl5deeqmWU1h9Go0GFxcXUlNTgeI5aCt7QmcwGCgsLCQ/P7/eTHVToj7lTVEUcnNzSU1NxcXFRW4ERJ3g7lDa+r/1ZArz/9zL0Qw1209fYPvpC2hdbZnYJZCxHbS42JnnFD6ifqkv5b6U9aXqW94MBgNpaWnY2dlJWS9M6tyFyyzZFcPy/fFk5OoAsFCrGNDKmwmdA+ga7Cat+sJk6lSlf8aMGRw8eJAtW7YwcOBA4/q+ffsya9Yssyn8r+Xt7Q1gvBmojKIo5OXlYWtrW+8u9PqYNxcXF7y9vcsdfVqI2qJWq7i7sRtZIQZad+3B0shEftkbR9zFPOasOcH7G04xoq0fk7s1pLmPDPwnak99KvelrC9WH/OmVqsJCAioN/kRtUenN/DPsRSW7I7l3+gLxvV+Lrbc10nL2I5aPB1tajGFor6qU5X+lStXsnTpUrp06VLmi7VFixacOXOmFlN2a1QqFT4+Pnh6eqLT6SqN1el0bNu2jR49ehi7C9YX9S1vlpaW8tRf1HnaBnbMGNycZ/o25c+DCXy3M4bjSVn8sjeOX/bG0amhK5O7NaR/Sy8sNebfKifMS30q96WsL1Yf82ZlZYVarb7heRWiIokZecXl7p5YUrMLAFCpoFdTDx7oEkivZvL6nahZdarSn5aWhqen53XrL1++XC+ermo0mhtWEjUaDUVFRdjY2NSbwrJEfc6bEHWdrZWGcR0DGNtBy97zl1gccZ61R5LZc/4ie85fxNvJhgmdA7ivcwDuDta1nVxxh6iP5b6U9fU3b0JUh8GgsO10Gkt2x7LxeAqGK+N8ujtYMbaDlvs6BaB1tavdRIo7Rp2q9Hfs2JHVq1fz1FNPAaWjpH799dd07dq1NpMmhBD1gkqlolOQK52CXEnOzOen3TH8tCeW5Kx85m84xSebohnSxofJ3RrSVutS28kV9ZyU+0KI+iY9p4Bf98Xz0+5YYi/mGtd3DnLlgS6BDGjpjZWF9KwTt1edqvTPnTuXgQMHcuzYMYqKivjoo484evQoERERbN26tbaTJ4QQ9Yq3sw3P9W/GE70b8/fhZL7beZ6ouAx+P5DA7wcSCNW6MLlrIEPa+GBtIa+yCNOTcl8IUR8oikJkzCV+3BXD34eTKdQbAHC0sWB0O38e6BJAY0/HWk6luJPVqUp/t27d2LFjB++99x6NGjVi/fr1tGvXjoiICFq3bl3byRNCiHrJ2kLDiDA/RoT5cTAug8UR51l1MImDcRk8F5fB26uPc1+nACZ0CcDHWaYjE6Yj5b4Qwpxl5+v4/UACS3bFcjIl27i+jb8zD3QOZGioL7ZW8tBc1L46VekHaN26tXHqnpp2/vx53nzzTTZt2kRycjK+vr488MADvPzyy1hZyXRWQog7T6jWhfe1bZk5uDlL98bx464YkjLz+XRzNF9sPcOAll5M7tqQTkGuZvvOtahbbme5L4QQpnAkIZMlu2P4IyqR3EI9ADaWaoaH+jGhSwBt/F1qN4FCXKPWK/1ZWVlVjnVyMu3UUidOnMBgMPDll1/SuHFjjhw5wrRp07h8+TLvvfeeSY8lhBDmxN3BmifCG/NIj2A2HEvhu53n2X3uImsOJ7PmcDIh3o5M7taQEW39pBVDVEttlvtCCHGz8nV6/jqYyJLdsUTFZRjXN/Z04IHOAYxs54+zrQxeKeqmWq/0u7i4VLm1SK/Xm/TYAwcOLDMvcHBwMCdPnuSLL76otNJfUFBAQUGBcbnkBkan093ydC4l29fHaWEkb+ZJ8maeTJm3viHu9A1x52RyNj/sjuOPg4mcSM5mxm+HmbvmOGPa+3F/Jy0Bt2kU4vp63kydr7r6+6nNcl8IIarrTFoOS3bFsnxfHFn5RQBYalQMbOXDA50DpOebMAu1XunfvHmz8efz58/z0ksvMWXKFOOovRERESxevJi5c+felvRkZmbi6upaaczcuXN5/fXXr1u/fv167OxMc9O7YcMGk+ynLpK8mSfJm3kydd66WULbtrA7VcX2ZDXp+UV8syOGb3ecp2UDhe7eCk2dFW7HdMP19byZKl+5ubk3DqoFda3cF0KIa+n0BtYfTWHJ7hh2nkk3rvdvYMv9nQMY016Lh6NMbyvMR61X+nv27Gn8+Y033uD999/nvvvuM64bNmwYrVu35quvvmLy5Mk1mpYzZ87wySefMH/+/ErjZsyYwXPPPWdczsrKQqvV0r9//1vuiqjT6diwYQP9+vWrd/PbSt7Mk+TNPNV03u4F9AaFbacv8MOuWLZHp3PkkoojlyDY3Y4JnQMY2dYXRxvTFzP19byZOl/V6UZ/O9VEub9t2zbmzZvHvn37SEpK4vfff2fEiBHGz6dMmXLduAGdO3dmuSLNkgABAABJREFU165dt5YZIUS9kpCRxy97Yvllbxxp2cW9etUq6B3iyYQugfRo4oHmdjzVFsLEar3Sf7WIiAgWLFhw3foOHTrw8MMPV3k/s2fPLrcl/mp79+6lQ4cOxuXExEQGDhzImDFjbngsa2trrK2vf7pnaWlpshtQU+6rrpG8mSfJm3mqybxZAv1b+dK/lS9n03L4PiKG5fviOXshlzdXn+D9DacZ3d6fSV0b0tjTwfTHr6fnzVT5MoffjanK/cuXLxMaGsqDDz7I6NGjy40ZOHAgixYtMi7LgL1CCLjyAPtUGkt2x7DpRCoGpXi9u4M14ztqua9zAH4uMnONMG91qtKv1WpZsGDBdS3tX375JVqttsr7efLJJxk/fnylMQ0bNjT+nJiYSHh4OF27duWrr76qVpqFEEJAsIcDs4e15PkBzfh9fzyLI2KITi1+EPB9RAzdm7gzqWtDeod4SiuJMDJVuT9o0CAGDRpUaYy1tTXe3t43lU4hRP1zIaeAZZFx/LQ7lvhLecb13Rq5MaFzIP1bemGpUddiCoUwnTpV6f/ggw8YPXo069ato0uXLgDs2rWLM2fOsGLFiirvx93dHXd39yrFJiQkEB4eTvv27Vm0aBFqtVzcQghxsxysLZjYtSEPdAlk55l0vtt5no3HU9h++gLbT1/Av4EtE7sEMq6jFhc7aWm905mq3K+KLVu24OnpiYuLCz179uTtt9/G09OzwngZtPfmSN7M052SN0VR2HP+Ej/vjWf9sRR0+uJmfScbC0aF+XJfRy3BHvbFGxr06Ax1ezDRO+W81TemzFtV91GnKv2DBw/m9OnTfPHFFxw/fhxFURg+fDiPPvpotZ74V1ViYiK9evUiICCA9957j7S0NONn0hoghBA3T6VScVdjd+5q7E7cxVx+3B3D0r1xxF/KY+7fJ3h/wylGtPVjcreGtPCVadnuVLer3B80aBBjxowhMDCQc+fO8eqrr9K7d2/27dtX7ut6IIP23irJm3mqr3nLLYJXv/+HHSlqkvNKe5sFOijc5WUgzK0IK85yYu9ZTtRiOm9WfT1vIHm7kaoO2lvrlf5Dhw7RqlUrYwu7v78/b7/9doXxR48epVmzZlhY3HrS169fT3R0NNHR0fj7+5f5TFGUW96/EEII0LraMWNQc57t25Q/oxL5bud5jiVlsTQyjqWRcXRq6MqkboEMaOktXSnvALVR7o8bN874c6tWrejQoQOBgYGsXr2aUaNGlbuNDNp7cyRv5qk+5k1RFPbHZrAsMp5VhxIpNBRX9m0t1QwL9eG+jlpamvlD5/p43kpI3qqmqoP21nqlPywsjOTkZDw8PKoU37VrV6KioggODr7lY0+ZMoUpU6bc8n6EEELcmI2lhrEdtYzp4M++mEt8t/M8a48ks+f8Rfacv4iXkzUTOgdyX6cAmQqpHqvNcr+Ej48PgYGBnD59usIYGbT31kjezFN9yFtyZj4r9sezYl88Zy9cvrJWRRNPeyZ2bciIMD+cbMw7j9eqD+etIpK3G++jKmq90q8oCq+++mqVu8oVFhbWcIqEEELUJJVKRYeGrnRo6EpKVj5Ldsfy0+5YUrIKeH/DKT7ZdJohrX2Y3K0hYQENaju5wsTqQrmfnp5OXFwcPj4+Jt+3EOL2KyjSs/F4Kssi49h2Ks04Ar+dlYaBLb3wL4zlyXHdZNYOcceq9Up/jx49OHnyZJXju3btiq2tTJshhBD1gZeTDc/1a8qT4Y35+0gS3+08z4HYDFZGJbIyKpFQf2cmdW3IkDY+2Fhqaju5wgRqotzPyckhOjrauHzu3DmioqJwdXXF1dWV2bNnM3r0aHx8fDh//jwzZ87E3d2dkSNH3nQ+hBC172hiJr9GxrMyKoGM3NIBzTo2bMCYDlqGtPbBSq2wZk0sKpXMHCPuXLVe6d+yZUttJ0EIIUQts7JQM7ytH8Pb+nEoPoPFO2P461AiB+Mz+e+vB5mz5jjjO2l5oEsg7na1XnSJW1AT5X5kZCTh4eHG5ZJ38SdPnswXX3zB4cOH+f7778nIyMDHx4fw8HCWLl2Ko6OjydMihKhZly4XsjIqgV8j4zmWVPo+s7eTDaPb+3Fvey1B7vbG9fVx9HchqkvunIQQQtQpbfxdmD/WhZmDQ/hlbxxLdsWQmJnPZ5vPsGDrWfqGeBAiDTbiKr169ap0AN5169bdxtQIIUxNb1DYdjqNXyPj+OdYKoV6AwBWGjX9Wnoxpr0/3Zt4oFFL4SBEeaTSL4QQok5yc7DmifDGPNIjmH+Op7B4ZwwRZ9NZdyyVdViw7avdPNKzMf1aeMmNnhBC1ENn03L4dV88v+2PJyWrwLi+pa8TYztoGRbqSwN7eU9fiBuRSr8QQog6zUKjZmArHwa28uFkcjbfbD/Div3xHIjL5NEf9xHkbs/D3YMY3c5f3vsXQggzl1NQxOpDifwaGU9kzCXj+gZ2lowI82NMey0tzHyqPSFuN6n0CyGEMBvNvB15e0RLWhNDon0Tftobz7kLl3n59yO8v/4Uk7o2ZGLXQFyl5UcIIcyGoijsPneRXyPjWXM4iTydHgC1Cno182RMe396N/fE2kIe7ApxM6TSL4QQwuw4WcH4fk14sk9TlkXGsXD7ORIy8vjgn1N8sTWasR20PHx3MAFuVZsWTgghxO2XmJHHin3xLN8fT0x6rnF9sLs9YzpoGdXODy8nm1pMoRD1g1T6hRBCmC17awsevCuIiV0CWXMkma+2neFIQhbfR8Tw464YBrby5j89GtFW61LbSRVCCAHk6/SsP5bCr5Fx/Bt9gZIxOO2tNAwN9WVMB3/aBTSQKfaEMCGp9AshhDB7Fho1w0J9GdrGh4gz6Xy1/SxbTqax5nAyaw4n0ynIlUd6BBPezBO1DPonhBC3laIoHE7I5NfIeP6ISiArv8j4WecgV8Z20DKotTd2VlI1EaImyJUlhBCi3lCpVHRr7E63xu6cTM7mq21n+fNgAnvOXWTPuYs09nRgWvcgRoT5ybuhQghRw9JzCvj9QALL98VzIjnbuN7X2YZ72/szur0/gW72tZhCIe4MUukXQghRLzXzdmT+2FBeGNCMRTvP8dOuWKJTc5i+4jDvrT/FlG4NeaBzIM52lrWdVCGEqDeK9Aa2nEzj131xbDyeSpGhuP++lYWagS29GdPBn26N3GWqVSFuI6n0CyGEqNe8nW2YMag5T4Y35pc9cXy74xxJmfnMW3eSzzZHM66jlofuDsK/gQz6J4QQNys6NZtfI+NZsT+BCzkFxvVt/J0Z00HLsDa+8pBViFoilX4hhBB3BEcbS6b1CGbKXQ3562AiX207y4nkbBbtOM/3ETEMae3Df3oE08rPubaTKoQQZiErX8eqg0n8ui+OA7EZxvVu9laMDPNjTActzbwday+BQghAKv1CCCHuMJYaNaPa+TMyzI/tpy/w1baz/Bt9gT8PJvLnwUTuauzGtO7B9GzqIaNHCyHENQwGhV1n0/l1Xzx/H0kiX2cAQKNWEd7MkzEd/Alv5omVhbqWUyqEKCGVfiGEEHcklUpFj6Ye9GjqwZGETL7efpZVh5LYEZ3Ojuh0QrwdmdY9mKGhvnLzKoS448VdzGXF/niW74sn/lKecX1jTwfGdvBnRJgfno42tZhCIURFpNIvhBDijtfKz5mPxofx4sAQvv33HL/sieVEcjb//fUg89adZOrdDRnfKQAnG3kfVQhx58jX6Vl7JJlf98WxIzrduN7R2oKhbX0Z096ftloX6RUlRB0nlX4hhBDiCj8XW169pwVP927Ckj0xLNpxnuSsfOasOcEnG6O5r3MAD97VEB9n29pOqhBC1AhFUYiKy+DXffH8FZVIdkGR8bO7Grsxpr2WAS29sbWSaU+FMBdS6RdCCCGu4Wxnyf+zd9/xUVRrA8d/syWb3klP6L2HGhSQKmChqYBeLChXXyvXjl5FLKBiAQug1wJ2URQLCES60nuTHkhCGgRIL1vm/WOTDSHZkMCGZJfn+9EPO7PPnDlPdmdnzsyZMw9e14x7r23MLztS+HjdMY5k5PLx2mN89lcCN3eMYGKfJrQO963rqgohhENkF8Mnfx1n4Y4UjmTk2uZH+ntwa9coRsdGER0oTzkRwhlJo18IIYSww6DTclu3aG7pEsXqQxl8tOYYmxLO8NOOk/y04yR9WjTg/j5N6NU0SLq3CiGcRmZuEYfSczmckcPBtBwOpmWz/YQWC4cAMOg0DGsfzq1doujZJAiNRn7fhHBm0ugXQgghLkKjUejfKpT+rULZlXSOj9cd4489qaw9dIq1h07RNsKXf/dpwg3tw9FpZdA/IUT9kFVg5HB6DgfTczicnsvBtBwOZ+RwOre4kmiFjlF+jOkWw40dw2UMEyFciDT6hRBCiBroGO3Ph7fHkpiZz6d/HWPB1mT2pWTz2Hc7eXPpQSZc25ix3aLxMsguVghxZeQWmThc2rBPz+FQyeu07EK7y0QHetAixIcWYT40DfLg7NGd3D26B3q9NPaFcDVyRCKEEEJcgpggT6YOb8ekgS34auMJ5m84zslzBbzy+35m/XmIf/VsyN29GhHiK4+wEkI4RqHRzJEM6xX7QxllV+9Pniuwu0y4nzstQn1oEepd8q8PzUK8y52YNBqNLEnZeQUyEELUBWn0CyGEEJchwMuNRwY0Z2KfJvy0/SSfrDvGsdN5zF59lE/WJTCicwT/7tOEZiE+dV1VIYSTKDKZOXYqz3bF3to9P4cTZ/JR1cqXaeBjKNewbxHqQ/NQb+mmL4SQRr8QQgjhCO56Lbf3iGFst2ji/0nn47XH2HbiLAu2JrNgazIDWoUwsU8TejQOlEH/hBAAGM0WTmTmcei8++0PpuVwPDMfs6Xy1n2Ap76sYR/mQ4sQa0M/wMvtCtdeCOEspNEvhBBCOJBGo3B92zCubxvGthNn+HjtMZbvT2fFgQxWHMigY5Qf/+7TlCHtwtDKiNhCXBXMFpWkM/m2K/YH03M5nJ7D0VO5GM2VN+593HXnXbUvu4If7O0mJw6FEDUijX4hhBCilnRpGMhH4wM5diqXT/5K4MdtyexKzuKhb7YTE+jJfb0bc2uXaDzctHVdVXGFac1FUJwHaiVdrxUt6M8bC6I4z35Bigb0HpcYmw/Y6SuOAm6elxSrsRTbzw3AzavstbEAVIv9OpeLLQTV7JhYvSeUNpxNRWAxVStWYzFWmZtF687JrCIOZ+RwOOUsCelnOZSRy7FTuRSZyudZiBsqGjzdtLQOcadlA3eah/jQLNSb5iFehPq4lzXude6gKfmdMBWDxWi/vufHmo1grmyk/hJaA2itzQFFNVX9uZ0Xi9kE5qIqynUDrb7msRYzmOwPPohGDzq3mseqlqpzK1euBUz2x0hAowOdoaRcFYz5jomt0XZfSay93Orhb0TNtvsCUKv4Dtez34iLxuo87L9Xi6TRL4QQQtSyJg28mTayPY8PasEX64/zxcYTJJ7J58Vf9vFu/CHG92zI7d0i67qa4gp5felBXtg9EXZX/v42t268HvgyiqKgUWBe6nDc1cobTQfdOzIz6l00ioKiwOtHR+Btzqo0NtmjFR+1/BSNAoqiMGnvKPyL0yqNzfRozFddfkCjWHuvjNtyK4H5xyqNzXWP4Jd+S9EoCqrFTJ/9r6HfdV+lsUZDAFtu24pOo0GrUWj5x1i80zZWGqvqPDgz6YQ1VqvgseBfaI/GVxoLwEvn5f3zv2H/L/Zjn0spawD8Ngl2fWM/9qmj4BUMQLuT36Cfca/d0Ost73O4OAiAybqveV232PqGjgpH3RuHLCayRSyR/h5o1rwOa16Hf+wUPHElRHaxvt40B+JftF/fu36Hxr2tr7fNgyVP2o+9fQG0uB6AqDMb0M+YYD/21nnQdqT19YHf4Ie77ccOnw2d77C+ProCvrnNfuywt6D7ROvrE+th/o32Ywe9DNc8Zn2duhP+199+bN9nod9kAHwKU9DPaGg/ttcjMPhV6+usJJjVwX5st/vghretr/MzYUZT+7Edb4eRc6yvjfkwLcJ+bJvhcNsXZdNVxTYfDHf8YJvUzWxt/4RCw2vhnsVl0zPbW+tdmYjO8O/VZdMf9oCsxMpjG7SChzaVTf+vH5w6UHmsXwz8Z0/Z9OdDIWVH5bGeQfB02W+N9rsxkLi+8li9JzyfWja9YDwcXl55LFyR3wiWPQdbPrEf+9hu8K7is60l0ugXQgghrpBgbwOPD27JA9c15cdtyXyyLoHEM/m8t/IIH609RpcgDa1P59Ei3L+uqypqUVpWFVc9sT5bfcvxs7ZpiwGw05v7bH4xf+wta7hPNVjwthObmVfMlxtP2KbvM5jwryL23T8P2aYHuRURqKk89lxBMc//vNc2/YubQpSd2OxCE7f/r6yh8J1bFj3txBYYLXR59U/b9Gf6U/SvolNM11fj0WoUdBoNrxpP0c9+KHd/tgWz3gOtRmFi5mmuqSL2zaUHKDIEoqDSPUuhcRWxBUYLeq1C0wbeNFW84az92J5NgiDQ036AEEI4iKKq9sYAFdWVnZ2Nn58fWVlZ+Pr6XlZZRqORJUuWMGzYMJd7Tqrk5pwkN+ckuTkHs0Vl6d40Pl57lF3J1isQd/aM4eUR7S+7bEfum4Rj/577T54lPj6e2K5d0Wi1WFSwqCqqqmK2gAUNZo2bbb5izEdVVSyqisVSGgtmVcWCglHjbn3foqIxFdjet6iqrQyLRcWsKhg1hpKyQGMqQC1Z74WxFhSKFAMWFVRVRWsusMWVK9uiYlaxxZrNFs6kJREcFIQFMJlVzKqKyaJitlj/zVfdbNMaUyGqxVIybcGslsWZLSq5FoPt72agGA32uwQX4F6D2LIzKW4Y0WK/m6+9WK1GoWGgJ81CvGkW4kPzEG+aRQbTMNgHvVZTjW74HqApOeNRky77tdC932g08sfiXxk6aID931Un7d5vNBpZsvh3hg3qZz83J+3eb9sfDuxrPzcn7d5vy21QP/S6Ks72OWH3fqPZ7LDjmOrum+RKvxBCCFFHtBqFGzqEM6x9GOuPZDD9p83c06uKLqjCJTQP8eZwgIGeLaOd/sTVhawH6qkMG3aNQ3JTLzgJUPavxfqvueJ8i4Wy98stZ6kkvmR+6bTZznyLSrHRRNLxBIb0iqV1hD9NGnhhqKoxonMDqjmifm3FavVlDeqLUBWdtVFUnc9Nqys7AeDIWI22fMPMUbGKpvq5aTQ1KFepnVioeWx1t7calVuDnig1idXX4L52vUf1czv/pIkjY3UGwHDRsGrHmqs42VBLpNEvhBBC1DFFUejeKJCJrSxEBdTNID9C1EeKoqDTKlTVtr5SrCc0jjKsQ7jLnawRQrg2O3dRCSGEEEIIIYQQwtnJlX4HKB0WITs7+7LLMhqN5Ofnk52d7XJnkSU35yS5OSfJzfk4Oq/SfZIM3eMYsq+vHsnNOUluzklyc06OzK26+3pp9DtATk4OANHR0XVcEyGEEKK8nJwc/Pz86roaTk/29UIIIeqri+3rZfR+B7BYLKSkpODj44Oi2Hn2TTVlZ2cTHR1NUlKSy422LLk5J8nNOUluzsfReamqSk5ODhEREWg0cjff5ZJ9ffVIbs5JcnNOkptzcmRu1d3Xy5V+B9BoNERFRTm0TF9fX5f7gpeS3Kpn3rx53HPPPSQkJNCoUSOHlHn33Xfz448/kpubW+NlLze3muRz3XXXAbB69epLXl9NyHfSOblqbo7MS67wO47s62tGcnMepftncHxuiqIwZcoUXnrppXLr2rJlC127dnXYeqrD1T6380luzslRuVVnXy+n/oUQQgghhBBCCBcljX4hhEtTVZWCgoK6roYQQgghhBB1Qhr99YzBYGDKlCkYDIa6rorDSW61Kz8/nyeffJLGjRvj7u5OYGAgXbt25dtvv60Qe+TIEYYNG4a3tzfR0dE88cQTFBUVlYs5c+YMDz74IK1bt0aj0dCxY0eef/75cnHHjx9HURTmzZtXYR2Koti689mjqipvvvkmDRs2xN3dndjYWP74449KY7Ozs235ubm5ERkZyaRJk8jLy6uw3ocffpi5c+fSunVrDAYD8+fPr7TM8z+3V155BZ1OR1JSUoW4CRMmEBQURGFhIQDff/89gwcPJjw8HA8PD1q3bs2zzz5bri6LFy9GURS2bNlim7dw4UIUReGGG24oV36HDh0YPXp0lX+rmqoP38na4qq5uWpeoiJX/qwlN+f12GOPVTu3tLQ07r//fqKionBzc6Nx48ZMnToVk8lUreXPnj3LPffcQ2BgIF5eXtx0000cO3asQtxnn31Gx44dbcc1I0eO5J9//rG9X519bennds011zh8X1vXXPk7Kbk5mCqEqJc+//xzFVATEhKqFX///fernp6e6jvvvKOuWrVK/f3339XXX39dff/9920xd911l+rm5qa2bt1afeutt9Q///xTffHFF1VFUdSpU6fa4goKCtQOHTqoXl5e6ltvvaUuX75cfeGFF1SdTqcOGzbMFpeQkKAC6ueff16hPoA6ZcqUKvOZMmWKCqj33nuv+scff6gff/yxGhkZqYaFhal9+/a1xeXl5amdOnVSg4OD1XfeeUf9888/1VmzZql+fn5q//79VYvFUm69kZGRaocOHdRvvvlGXblypbp3796L/v3S09NVg8GgPv/88+XmZ2Zmqh4eHupTTz1lm/fKK6+o7777rrp48WJ19erV6ty5c9XGjRur/fr1s8Xk5OSoer1enTZtmm3eAw88oHp4eKheXl5qcXGxbb2KoqizZ8++aB2FEEIIR6vp8UZqaqoaHR2tNmzYUP3oo4/UP//8U33llVdUg8Gg3n333eVi7R0LREdHqxMmTLDt+0NCQtTo6Gj17Nmztthp06apgDpu3Dh18eLF6hdffKE2adJE9fPzUw8dOqSqquxrhaguafQLUU/VdCfcrl07dcSIEVXG3HXXXSqgLliwoNz8YcOGqS1btrRNz507t9K4N954QwXU5cuXq6p6eY3+s2fPqu7u7urIkSPLLff333+rQLlG//Tp01WNRqNu2bKlXOyPP/6oAuqSJUvKrdfPz089c+ZMlX+Lytx1111qSEiIWlRUVC5njUZj93OwWCyq0WhU16xZowLqrl27bO9de+21av/+/W3TzZo1U5966ilVo9Goa9asUVVVVb/++msVsB3ACCGEEFfSpVxk8Pb2Vk+cOFFu/ltvvaUC6r59+2zz7B0L2Nv3v/rqq6qqWo8RPDw8yl1oUFVVTUxMVA0Gg3r77bfb5sm+VoiLk+79QriI7t2788cff/Dss8+yevVqu/exK4rCTTfdVG5ehw4dOHHihG165cqVeHl5ccstt5SLu/vuuwFYsWLFZdd3w4YNFBYWcscdd5Sb36tXLxo2bFhu3u+//067du3o1KkTJpPJ9v/111+PoigVRvnv378/AQEBNa7TY489RkZGBj/88ANgfUTXnDlzuOGGG8o9ceDYsWPcfvvthIWFodVq0ev19O3bF6Bct8MBAwbw999/U1BQwIkTJzhy5Ahjx46lU6dOxMfHA/Dnn38SExND8+bNa1xfIYQQ4kr7/fff6devHxEREeX2yUOHDgVgzZo1Fy3D3r5/1apVgPUYoaCgwHbcUSo6Opr+/fuXOw6Rfa0QFyeNfiFcxHvvvcczzzzDokWL6NevH4GBgYwYMYLDhw+Xi/P09MTd3b3cPIPBYLtfHSAzM5OwsLAKz6IOCQlBp9ORmZl52fUtLSMsLKzCexfOS09PZ/fu3ej1+nL/+/j4oKoqp0+fLhcfHh5+SXXq3LkzvXv35sMPPwSsBzbHjx/n4YcftsXk5ubSu3dvNm3axKuvvsrq1avZsmULP/30E0C5ky0DBw6kqKiIv/76i/j4eIKDg+ncuTMDBw7kzz//BKwnUAYOHHhJ9RVCCCGutPT0dH777bcK++S2bdsCVNgnV8bevr/02KD038r25xEREeWOQ2RfK8TF6eq6AkIIx/Dy8mLq1KlMnTqV9PR021X/m266iQMHDtSorKCgIDZt2oSqquUa/hkZGZhMJoKDgwFsJw8uHASwOicFgoKCAOtgQBdKS0srd2U9ODgYDw8PPvvss0rLKq1PqQtPVtTEo48+yq233sr27dv54IMPaNGiBYMGDbK9v3LlSlJSUli9erXt6j7AuXPnKpTVo0cPvL29+fPPPzl+/DgDBgxAURQGDBjA22+/zZYtW0hMTJQDESGEEE4jODiYDh068Nprr1X6fkRExEXLsLfvb9asGVB2jJCamlohLiUlpdx+X/a1QlycXOkXwgWFhoZy9913M27cOA4ePEh+fn6Nlh8wYAC5ubksWrSo3PwvvvjC9n7petzd3dm9e3e5uF9++eWi6+jZsyfu7u58/fXX5eavX7++3K0GADfeeCNHjx4lKCiIrl27Vvj//BMEl2vkyJHExMTwxBNP8Oeff/Lggw+WO4lQ+vrCEVc/+uijCmXp9Xr69OlDfHw8K1eutJ086N27Nzqdjv/+97+2AxMhhBDCGdx4443s3buXpk2bVrpPrk6j396+/7rrrgMgLi4ODw8Pvvrqq3JxycnJrFy5stx+U/a1QlycXOkXwkX06NGDG2+8kQ4dOhAQEMA///zDl19+SVxcHJ6enjUq68477+TDDz/krrvu4vjx47Rv356//vqLadOmMWzYMNvZckVR+Ne//sVnn31G06ZN6dixI5s3b+abb7656DoCAgJ48sknefXVV7nvvvu49dZbSUpK4qWXXqrQ7W/SpEksXLiQPn368J///IcOHTpgsVhITExk+fLlPPHEE/To0aNGOdqj1Wp56KGHeOaZZ/Dy8qpwP2GvXr0ICAjggQceYMqUKej1er7++mt27dpVaXkDBgzgiSeeALD93Tw8POjVqxfLly+nQ4cOhISEOKTuQgghRG17+eWXiY+Pp1evXjz66KO0bNmSwsJCjh8/zpIlS5g7dy5RUVFVlrF169Zy+/7nn3+eyMhIHnzwQQD8/f154YUXeO6557jzzjsZN24cmZmZTJ06FXd3d6ZMmVKuPNnXClE1afQL4SL69+/Pr7/+yrvvvkt+fj6RkZHceeedPP/88zUuy93dnVWrVvH8888zY8YMTp06RWRkJE8++WSFHe3bb78NwJtvvklubi79+/fn999/r9bV95dffhkvLy9mz57Nl19+SatWrZg7dy5vvfVWuTgvLy/WrVvH66+/zscff0xCQgIeHh7ExMQwcOBAh17pBxgzZgzPPPMM48ePx8/Pr9x7QUFBLF68mCeeeIJ//etfeHl5MXz4cL7//ntiY2MrlFV68NG8efNyAxQOHDiQVatWSXdDIYQQTiU8PJytW7fyyiuvMGPGDJKTk/Hx8aFx48YMGTKkWgPpfvrpp3z55ZeMHTuWoqIi+vXrx6xZswgMDLTFTJ48mZCQEN577z2+//57PDw8uO6665g2bVqFAflkXytE1RRVVdW6roQQQtQn77//Po8++ih79+61DUwkhBBCCCGEM5JGvxBClNixYwcJCQncf//9XHPNNRXGNBBCCCGEEMLZSKNfiHpOVVXMZnOVMVqt9rJGrHd1ZrOZqn7qFEVBq9XSqFEj0tLS6N27N19++WWljxQSQgghXJEcbwjhumT0fiHqufnz51d4Fu6F/69Zs6auq1mvDRgwoMq/X9OmTQE4fvw4hYWFxMfHS4NfCCHEVUWON4RwXXKlX4h6LjMzk4SEhCpjWrZsiY+PzxWqkfM5ePAgOTk5dt83GAy0b9/+CtZICCGEqF/keEMI1yWNfiGEEEIIIYQQwkXJI/scwGKxkJKSgo+Pj9znJIQQol5QVZWcnBwiIiLQaORuvssl+3ohhBD1TXX39dLod4CUlBSio6PruhpCCCFEBUlJSURFRdV1NZye7OuFEELUVxfb17tko3/27NnMmDGD1NRU2rZty8yZM+ndu7fd+DVr1vD444+zb98+IiIiePrpp3nggQeqvb7Se5uSkpLw9fW9rLobjUaWL1/O4MGD0ev1l1VWfSO5OSfJzTlJbs7H0XllZ2cTHR0t9986iOzrq0dyc06Sm3OS3JyTI3Or7r7e5Rr933//PZMmTWL27Nlcc801fPTRRwwdOpT9+/cTExNTIT4hIYFhw4YxceJEvvrqK/7++28efPBBGjRowOjRo6u1ztJufr6+vg45EPD09MTX19clv+CSm/OR3JyT5OZ8aisv6YruGLKvrx7JzTlJbs5JcnNOtZHbxfb1Ltfof+edd7j33nu57777AJg5cybLli1jzpw5TJ8+vUL83LlziYmJYebMmQC0bt2arVu38tZbb1W70e9oWnMRFOeBWsmXQNGC3r1sujjPfkGKBvQelxibD9gb41EBN89LitVYiu3nBuDmVfbaWACqxX6dy8UWglrFs2VrEqv3hJINRzUWYjGbUFUViwoqKqqK9X9UVJ0nFqwbr2o2Vp2bzgNK77UxFYPFaL8ONYp1B4225rFmI5iL7cdqDaC1/kQoqqnq3M6LxWwCc1EV5bqBVl/zWIsZTIX2YzV60LnVPFa1VJ1buXItYCqoolwd6Awl5apgzHdMbI22+0pi7eVWD38jarbdF4BaxXf4CvxGYCoCi8kxsa63SxZCCCHEBY5k5JJWxWFfbXCpI4zi4mK2bdvGs88+W27+4MGDWb9+faXLbNiwgcGDB5ebd/311/Ppp59iNBorPftSVFREUVFZQyU7OxuwNvyMxioaXNUw4N11rM2fCLsrf/8vJZb/aJ9DURQUYLXxdjyovNG0Q2nLI4ZXoCT2t4K78Ce70tgDmmY85PU2AArwVe5EwtSMSmNPaKL5P7/ZtuPY2VkP0dCcWGlshiaE+4M+t559UlWmnZ6Gftd9lcZmKb6M8fsaVBUVeDP3OTqa91YaW4CBQe7fogIWFd4qfpVr1O2VxgJ0VBagqtbYt3mb65VNdmPbFn1GnmptNL2ln8st2rV2Y2ML53IG6xWfV/Tfot99r91Y40Pbwd/a20Sz4iW0Gz+0H/vvv6BBK2vs2jfRrpthN9Z0z3LUiFhr7IYP0K6caj/2X4tQG15rjd36Kdplz9iPve0b1OaDMRqNRJ3ZgH7GBPuxoz5FbT0cAOWfX9D9ZP/vYLrxfdSO46yxh5ejW3C73Vjz9W9g6WotSznxF7qvRtiP7T8FS9wj1tiU7eg+H2w/tvdTWPo8g9FoxKcwBf2MhvZjez6EZUDJ3/RcIvoPY+3HdpmAZcib1om80+hntrIba+kwFvNNH1gnivOqrIOl1c2YR39mm9ZPi7Af23Qg5rHf2X6LdDNbWRvHlcXG9MI8/lfbtG5me5T8zMpjwzthnvBnWeyH3VGykiqNVYNbYrr/77LYj69DOX2w8li/aEwP77BNaz8bgiZ1Z+WxnkGY/nPQlpvm29sgaUPlsXpPTE+X/S5pv7sDzdE/K40FMD5/uix24UQ0B361H/vUCdtJAu1vj6LZ/Z392EkHwCvYWt+lz6Ld9pndWNP9m63LXOZ+xLZuB5UjhBBCiMtzJq+Y33al8NP2ZHYlZxEbpMH+kbXjuVSj//Tp05jNZkJDQ8vNDw0NJS0trdJl0tLSKo03mUycPn2a8PDwCstMnz6dqVMrNqyWL1+Op6dnhfk1cTpbW+WnUmyycKqg7MqWasDaSq9EkdlC8rmyq51mg2o/1mTh6Kmyq3wmg6XK2P2pZc88L3Izg53BIovNFnYkZZ0Xi91Yk0XlQFpZuQVVlKuqlMutSG8BbeWxAFkFZVfXTHq1yljLJT7EUlWr7lYz6sO1mNyDaeAO9xQn0K+K2HVr15LjcQyAlqmHsd90hL//Xs85L+v3u1n6AdpWEbtx4yYy91lP/DQ+tY8OVcRu3bqV9MPWv9vFhq7asX0HKQnWE2QRZ3fQrYrY3bt3k3TSD4DQrJ30rCJ23759JGQsASAo5x+urSL2wIEDHDlrjfXPO0bfKmIPHz7MwVxr7MXudj527Bj7i6yxHkWnsH8qARJPnGD3EmusmzGboVXEJicns6MkVmsu4sYqYlPTUtlaEgswvIrYjFOn2HRerNlstvuTcubMGf4+L3ZIcTEGO7FZWVmsPS92UEEB9n7tcnJzWXVebL/cXOx1hi4oKCD+vNg+WVkE2IktLi5m6XmxZ8+eJdhOrNlsYsl5sT1OnSLMTixQLrZrWiqRVcQuW7Ycs9b6l+qcnEzFG8fK/PnnnxTrrdl3SDpB4ypi161bB4YGxMfHVxFVffn5V/gyghBCCCFsikxmVh3IYOH2k6w6kIGppJGh1ShYsI68f6Uo6pVcWy1LSUkhMjKS9evXExcXZ5v/2muv8eWXX3LgwIEKy7Ro0YJ77rmHyZMn2+b9/fffXHvttaSmphIWVvEwsbIr/dHR0Zw+ffqy7/M7nJbFhrUr6d69Bzqdrqw7ecn7KlosOjdKPzWNMd/2+sJYCwoWnbtthmLMRy2ZUCnrog6gqhosOndbWYopH1VVy9Z7XiyqglnnYfuiKqYC29V5a6y1EiqgomDWeqCiYjab2bt9Cx07tMVNpwPFev+JoljPL2gUBYveEwUFjQJacyEKqvV9xfq+AihYl1H1ntZ5CmhMxWgwl8SWxJ33GjcvNKXlmItQVEv5Ms+rh6L3RNGUzDcXo2A+L64kpqS+ipsniqJgMpn4dclSYlp3JDXLyIkzeSSdLSDpTAGJZ/MpMlkoxA215CyGHhM6rA1qrUYhws+dmEBPYgI8iA7yJKpBAA2DvIkK8ECPydoV355yXfaLaxB7ke79OgNodBiNRv5c/gcDr+uLXm+n+VgSC1i7L5uq22W/JrEX6bKv1VvjaxBrNBqJX76MQdf1tp/b+eWqFrtXzYHa696v0Vo/u1JVdcMviTUajcTHxzOo7zXo9TrMZgsms4lyv/iKpqwOUHVuF8aaCsHe7kNRyte3RrFFVXfv13tgMplYv349vbrHotNWcQbv/NsRzMXW74UjYnXuZV32HRhrQsv6DRvp1asXOl3V5+QVRUGn06GtIv/s7GyCg4PJysq67H2TsP49/fz8Lvr3NJvNF+1lYTQaWbt2LX369HHJe1VdLTc3Nzc0Gg1Go5ElS5YwbNgwl8mtlOTmnCS3+kdVVXYkneOn7cn8tiuVrIKy/UG7SF9GdY5iWNsGbFq7wiG5VXff5FJX+oODg9FqtRWu6mdkZFS4ml8qLCys0nidTkdQUFClyxgMBgyGitfD9Hr9ZX9wzcP8OOxtoFWjiGqWVXkd6yOj0YiapGdw52ZOtfFWh9FoxM9DzzVtGlXIzWJRSc8pJOF0Hicy8zmemcfx817nGi0cOqty6GweUNqYs3ZL1moUIv09aBjkSeNgLxoGedE42JOGQV5EB3jiprugK0RN/q56Pdi9VluequjQe/lV83PTg8Hj4mGXFOt+8bCaxiqaGuQGuNm7Fl5ZrFvtxOr9qx2q8/TldGYm586dq3759ZyqqoSFhZF66qxLDVJnyys1tdp5+fv7ExYWVmm8q/3O1neqqpKWllatba30s05KSnKp7zC4Zm4ajYbGjRu7TD5CCMdLOpPPoh0n+WnHSRJOl12cCfU1MKJzJKM6R9EyzNq/tC5uv3OpRr+bmxtdunQhPj6ekSNH2ubHx8czfHjlHWLj4uL47bffys1bvnw5Xbt2lQMm4RAajUK4nwfhfh70alr+PYtFJSOnyHYi4Hhmfsm/1pMCBUYziWfySTyTz7rDp8uXq0BkgAeNgrxoGORJoyAv6//BXkQHemDQVXEFVFw1MjIyyMnJISQkBE9PT5c4aLVYLOTm5uLt7Y1GY+ceICdUk7xUVSU/P5+MDOvYK5XdiiaurNIGf3W2NVf9DoPr5WaxWEhJSSE1NVW2MyFEOTmFRv7Ym8ZP25PZeOyMbb6HXsuQdmGMio2kV9NgtJq6P/ZyqUY/wOOPP8748ePp2rUrcXFxfPzxxyQmJvLAAw8AMHnyZE6ePMkXX3wBwAMPPMAHH3zA448/zsSJE9mwYQOffvop3377bV2mIa4SGo1CmJ87YX7u9GxSvteGqpacECjpFZCQmceJzDwSTudzIjOP/GIzSWestxCsO1y+XEWBCD+Pkt4BZb0EGgV5Eh3oibteTghcDRRFITs7m9DQULs9l5yRxWKhuLgYd3d3l2hUlKppXh4e1l4yGRkZhISEVNnVX9Qus9lsa/BXZ1tz1e8wuGZuDRo0ICUlBbO5ilt5hBBXBbNF5a8jp/lpezLL9qVRaLTekqgoENckiFGxUQxpF4a3oX41s+tXbRxgzJgxZGZm8vLLL5Oamkq7du1YsmQJDRtaR8ZOTU0lMbFsROfGjRuzZMkS/vOf//Dhhx8SERHBe++9V2eP6xOilKIohPq6E+rrTo9KTgicyi3i+OmKtwscP51HXrGZk+cKOHmugL+OXFiu9YRAo5LbBBqV9hII9iJGTgi4lNJG4OUOMCrqr9LP1mg0SqO/DpV21ZRtzTW5ldx+JY1+Ia5eB9Ky+Wn7SRbtOElGTtl4VE0aeDE6NooRnSOJ9K/uLatXnss1+gEefPBBHnzwwUrfmzdvXoV5ffv2Zft2+497E6K+URSFEB93Qnzc6d44sNx7qqpyOre43MmA0l4Cx0/nk1tksp0Q+PtI5gXlQrivu/VkQLD1hECUv4HsKsb7E/WfK3TpF5WTz7Z+kc/DNZV+ri409rUQohpO5RTxy86T/LT9JPtTyx577u+p5+aOEYyKjaJjlJ9T/Pa7ZKNfiKuZoig08DHQwMdAt0YVTwhk5hWXu03ANsDg6TxyikykZBWSklXIhmNlJwQ0aFmRs51bu8YwoHWI9AYQQgghhBAup9BoJn5/Oj9tT2bt4dOYSx6zp9cq9G8VwqjYKPq1DKk4mHY9J41+Ia4iiqIQ7G0g2NtAl4YVTwicySvmeGZ+Sa8A68CCh9KyOZCey+pDp1l96DS+7jpu6hjB6C5RdI72d4qzm8I1abVafv75Z0aMGFGr62nUqBGTJk1i0qRJtbqeysybN49Jkya51NMXhHNRFEW2MyGES1NVlS3Hz/LT9mQW704lp8hke69TtD+jYyO5sUMEAV41eNJSPSONfiEEYD2wC/I2EORtoEvDANt8o9HI5wuXcMa3Ob/sSiU1q5CvNyXy9aZE231MIztHElGP72MSzikjI4MXXniBP/74g/T0dAICAujYsSMvvvgibdu25eTJk/VygEJpQAhnYm87e+mll4iLiyM1NZWAgICLF3SFyXYmhLhcJzLz+Gn7SX7akUzSmQLb/Eh/D0Z2jmRkbCRNG3jXYQ0dRxr9QoiLCvWAewY156khrdlwNJOF25NZujeNY6fymLHsIG8tP0ivpkGMLhmx1NNNflrE5Rs9ejRGo5H58+fTpEkT0tPTWbFiBWfOWB+LExYW5jKjgwtRV6qznQkhhKvIyjeyeE8qP21PZuuJs7b5Xm5ahrUPZ1RsFD0aB6KpB4/ZcyQ5WhJCVJtWo3Bt82DeHdOJLf8dyJu3dKBH40BUFf4+ksnjC3bR7dU/eeqHXWw8lonFIoMeiUtz7tw5/vrrL9544w369etHw4YN6d69O5MnT+aGG24ArN37Fy1aBMDx48dRFIUFCxbQu3dvPDw86NatG4cOHWLLli107doVb29vhgwZwqlTp2zrue666yp0Jx4xYgR333233bq98847tG/fHi8vL6Kjo3nwwQfJzc0FYPXq1dxzzz1kZWWhKAqKovDSSy8BUFxczNNPP01kZCReXl706NGD1atXlyv7m2++oVGjRnh6ejJy5EgyMzMRorZUZztTFKVG25mvry+33HJLvd7O5s2bR0xMjGxnQlwljGYLK/5J56Gvt9Nt2p889/Metp44i0aBPi0aMGtsJ7b+dxAzbu1IXNMgl2vwg1zpF0JcIm+Djtu6RnNb12iSzuTz0/aTLNyeTOKZfH7YlswP25KJCvBgVGwUo2MjaRjkVddVFljvWysw1s1jpzz02mqPAeHt7Y23tzeLFi2iZ8+eGAyGai03ZcoUZs6cSUxMDBMmTGDcuHH4+voya9YsPD09ue2223jxxReZM2fOJeeh0Wh47733aNSoEQkJCTz44IM8/fTTzJ49m169ejFz5kxefPFFDh48aMsF4J577uH48eN89913RERE8PPPPzNkyBD27NlD8+bN2bRpEw8//DCvvfYao0ePZunSpUyZMuWS6ynqVlXbmsVioaDYjK7Y5PDeKnW9nbm7u3PbbbcxZcoU5s6de8l51OZ2NmHCBKZNm8aoUaNkOxPCRamqyr6UbBZuT+bXnSlk5pU9iqplqA+ju0QyvFMkob7udVjLK0ca/UKIyxYd6MljA5vz6IBmbD1xloXbrAOhJJ8t4L0Vh3lvxWG6NQpgdGwUwzqE4+uur+sqX7UKjGbavLisTta9/+Xrq33rh06nY968eUycOJG5c+cSGxtL3759GTt2LO3atbO73JNPPsn1118PwGOPPca4ceNYsWIF11xzDQD33ntvpY9urYnzr1g2btyYV155hf/7v/9j9uzZuLm54ednfXzP+d2ijx49yrfffktycjIRERG2ui5dupTPP/+cadOm8d5779G/f3+eeeYZNBoNLVq0YP369SxduvSy6ivqRl1ta47azjp06GB3uaq2M4vFwr/+9S++//77y8qjtrazWbNmcf311/Pss88CyHYmhItJyypk0c6T/LQ9mUPpubb5wd5uDO8UyajYSNqE+151A1FLo18I4TCKotCtUSDdGgUy5aa2LN+fxo/bkvn7yGm2HD/LluNnmfLrPq5vG8boLlFc2ywYrQt2oRKOMXr0aG644QbWrVvHhg0bWLp0KW+++SYff/wxo0aNqnSZ8xsqoaGhALRv377cvIyMjMuq16pVq5g2bRr79+8nOzsbk8lEYWEheXl5eHlV3qNl+/btqKpKixYtys0vKiqyDUZ44MABhg4dWu79uLg4aYyIWmVvO/vkk0/sdr+/2HYWEhJSb7ezf/75h5EjR5Z7X7YzIZxbfrGJZfvS+Gn7Sf46chq15O5SN52GwW1CGR0bxbXNg9Frr94726XRL4SoFR5uWoZ3snadSssq5Ocd1u7/RzJy+XVXCr/uSiHU18CIzpHcEhtF81Cfuq7yVcFDr2X/y9fX2bpryt3dnUGDBjFo0CBefPFF7rvvPqZOnWq30a/Xl/UiKT2Lf+E8i8Vim9ZoNKhq+bEnjEaj3fqcOHGCYcOG8cADD/DKK68QGBjIX3/9xb333lvlchaLBa1Wy7Zt29Bqy/8dSrslX1gP4dyq2tYsFgs52Tn4+PrUSvf+mqpsO5syZYrdRr9sZ0KIumaxqGw8lsnC7SdZujeVvOKy26m6NQpgVGwUw9qH4+chvUtBGv1CiCsgzM+d/7uuKQ/0bcLu5Czr/VW7UkjPLuKjNcf4aM0xOkT5MTo2ips7OvdzUOs7RVGc+ukKbdq0sQ0q5ggNGjQgNTXVNm02m9m7dy/9+vWrNH7r1q2YTCbefvttW2NtwYIF5WLc3Nwwm8vfy925c2fMZjMZGRn07t270rJbt27Nli1bys3buHFjjXMS9UNV25rFYsHkpsXTTVcvn0DhyttZmzZtKmxXsp0J4TyOZOTy845kft5+kpSsQtv8mEBPRsVGMrKzjCNVmfq3pxFCuCxFUegY7c/Lw9ux6bkBzP1XLANbh6LTKOxOzmLKr/voPu1PHvhyG/H70zGaLRcvVLikzMxM+vfvz1dffcXu3btJSEjghx9+4M033+Tmm2922Hr69+/P4sWLWbx4MQcOHODBBx+s8rnfTZs2xWQy8f7773Ps2DG+/PLLCoOVNWrUiNzcXFasWMHp06fJz8+nRYsW3HHHHdx555389NNPJCQksGXLFt544w2WLFkCwCOPPMKKFSuYMWMGhw4d4oMPPrgquxzPmTOHDh064Ovri6+vL3Fxcfzxxx/lYv755x9uvvlm/Pz88PHxoWfPniQmJlZZ7sKFC2nTpg0Gg4E2bdrw888/12YaTqGq7Wz48OEOW0992s4effRR2y0MV/N2JoQzOZtXzBcbjjP8w78Z+M4aPlx1lJSsQnzcdYzrHsOPD8Sx5qnrmDSwhTT47ZBGvxCiThh0Woa0C+eTu7qy8bkBvHhjG9pG+GI0qyzdl8bEL7bSc9oKpv62j70ns6RL5lXG29ubHj168O6779KnTx/atWvHCy+8wMSJE3n//fcdtp4JEyZw1113ceedd9K3b18aN25s9+ojQKdOnXjnnXd44403aNeuHV9//TXTp08vF9OrVy8eeOABxowZQ4MGDXjzzTcB+Pzzz7nzzjt54oknaNmyJTfffDObNm0iOjoagJ49e/Lee+/xwQcf0KlTJ5YvX85///tfh+XqLKKionj99dfZunUrW7dupX///gwfPpx9+/YB1sHarr32Wlq1asXq1avZtWsXL7zwAu7u9kdg3rBhA2PGjGH8+PHs2rWL8ePHc9ttt7Fp06YrlVa9VNV29sEHHzhsPfVtO/vkk094//33r+rtTIj6rshkYVemwoPf7KT7tD958Zd97Eo6h1ajMKBVCB/eHsuW5wcyfVR7ujYKvOoG5qspRZUj6cuWnZ2Nn58fWVlZ+Pr6XlZZRqORJUuWMGzYsHL3x7kCyc05XencDqRls3BbMj/vSOF0bpFtfqswH0bHRjG8cwQhPo55vIqrf27Lly+ncePGNGnSpMoGkbOxWCxkZ2fj6+tbL7tGX6pLyauwsJCEhAQaN25c4TN25L6prgUGBjJjxgzuvfdexo4di16v58svv6z28mPGjCE7O7tcj4EhQ4YQEBDAt99+W60yqvp7VvU5VMZVv8PgmrmVfr5RUVGsXLnSZfcZrrw/lNycg8WisuX4GX7ZlcKS3amcKygbw6NthK/1NtBOEQR7V+/xovWVIz+36u7rnffGTiGES2oV5svzN7ThmSGtWHf4ND9uTyZ+fzoH0nJ4bck/vL70AH2aBzO6SxQDW4fifgmDVgkhnIPZbOaHH34gLy+PuLg4LBYLixcv5umnn+b6669nx44dNG7cmMmTJzNixAi75WzYsIH//Oc/5eZdf/31zJw50+4yRUVFFBWVnXjMzs4GrAdrFw4mZzQaUVUVi8VSbgA7e0qvt5Qu40pcMTeLxYKqqphMJqDqQQidVWlOkptzcZXcDqTl8OuuVH7fk0bqeffp++pVbukaw6jYKFqGlQ347Oz5OvJzq24Z0ugXQtRLOq2Gfq1C6NcqhKx8I7/tTuGn7clsTzzHqoOnWHXwFL7uOm7sGMHo2ChiY/yla5cQLmLPnj3ExcVRWFiIt7c3P//8M23atCEtLY3c3Fxef/11Xn31Vd544w2WLl3KqFGjWLVqFX379q20vLS0NNuj5UqFhoaSlpZmtw7Tp09n6tSpFeYvX74cT0/PcvN0Oh1hYWHk5uZSXFxc7TxzcnKqHetsXCm34uJiCgoKWL9+PQDx8fF1XKPaI7k5J2fM7UwRbDutsO2UhtSCsuM3d61Kx0CVLsEqzf1UNCRwdHsCR+uwrrXFEZ9bfn5+teKk0S+EqPf8PPX8q2dD/tWzIUdP5fLT9rJRW7/ZlMg3mxJpEuzF6C5RjOwcSYS/R11XWQhxGVq2bMnOnTs5d+4cCxcu5K677mLNmjX4+/sDMHz4cNuV+06dOrF+/Xrmzp1rt9EPVDgpqKpqlScKJ0+ezOOPP26bzs7OJjo6msGDB1favT8pKQlvb+9qde9XVZWcnBx8fHxc7mSlK+ZWWFiIh4cHvXr1Yu3atQwaNMglulKfz2g0Eh8fL7k5GWfL7UxeMX/sS+e3XalsSzxnm6/XKlzXogE3dwznuhbBuOu1TpdbTTgyt9JeaBcjjX4hhFNp2sCbp65vxRODWrLhWCYLtyXzx940jp3OY8ayg7y1/CC9mgYxOjaKIe3CnPrxdEJcrdzc3GjWrBkAXbt2ZcuWLcyaNYv3338fnU5HmzZtysW3bt2av/76y255YWFhFa7qZ2RkVLj6fz6DwYDBUPG+Ub1eX+EgzWw2oygKGo2mWvexl3Z7L13GlbhibhqNBkVR0Oms+5PKvgOuQnJzTvU5t/xiE/H70/llZwprD53CZLHeAqQo0LNxECM6RzCkbTh+npXXvz7ndrkckVt1l5ejYSGEU9JoFK5pFsw1zYJ5eYSJP/aksnB7MhuPneHvI5n8fSSTFxbtZWj7cEbHRtGjcSAajWtcdRLiaqOqKkVFRbi5udGtWzcOHjxY7v1Dhw7RsGFDu8vHxcURHx9f7r7+5cuX06tXr1qrsxBCXK2MZgt/HT7NLztPsnx/OvnFZtt77SJ9Gd4xkps6RhDm5zqDDNd30ugXQjg9b4OOW7tGc2vXaJLO5PPzjpMs3J7Micx8ftyWzI/bkokK8GBU50hGxUbRKFie4SpEffXcc88xdOhQoqOjycnJ4bvvvmP16tW2Z6k/9dRTjBkzhj59+tCvXz+WLl3Kb7/9xurVq21l3HnnnURGRtoe8/bYY4/Rp08f3njjDYYPH84vv/zCn3/+WWXvACGEENWnqirbE8/yy84Uft+dypm8svFNYgI9GdEpgps7RdAsxKeKUkRtkUa/EMKlRAd68uiA5jzSvxnbTpxl4fZkft+VSvLZAt5beYT3Vh6ha8MARneJ4vrWwXVdXSHEBdLT0xk/fjypqan4+fnRoUMHli5dyqBBgwAYOXIkc+fOZfr06Tz66KO0bNmShQsXcu2119rKSExMLNe1vFevXnz33Xf897//5YUXXqBp06Z8//339OjR44rnJ4QQruRweg6Ldp7kl50pJJ8tsM0P9nbjxg7Whn7naBlsua5Jo18I4ZIURaFro0C6Ngpkyk1tWb4/nYXbkll3+BRbT5xl64mzvKTT0MFfQ0TSObo2DpYdkhD1wKeffnrRmAkTJjBhwgS7759/1b/ULbfcwi233HI5VRNCCAGkZhXw684UFu1M4Z/UsoHkvNy0XN82jOGdI7mmaRA6rWuM6+EKpNEvhHB57notN3eM4OaOEaRnF1q7/29L5nBGLltOa7j14820i/Tlzp6NuKljBB5u2rqushBCCCFEvXEuv5g/9qaxaMdJNh8/g2odjw+dRuG6lg0Y3imSga1D5RiqnpJGvxDiqhLq684DfZtyf58mbDueyZs/bWDnWR17T2bz9MLdvLp4P7d2jeZfPRvSWO79d2oHDhzg7rvvZufOnbRq1YqdO3fWdZWEcEkXbmuV9bQQQjifQqOZFf9ksGjnSVYfzMBoVm3vdW8cyPBOEQxrF06Al1sd1lJUhzT6hRBXJUVR6Bjlxx3NLHxwXR9+3pnGV5tOkHSmgE//SuDTvxLo3TyYO+Ma0b9VCFoZ+f+Kuvvuu5k/fz4AWq2WiIgIbrjhBqZNm4afn1+1ypgyZQpeXl4cPHgQb2/v2qyuEE6rqm0tICCgWmWcv615enrWZnWFELXMZLaw/mgmv+xMYdm+NHKLTLb3WoX5MKKzdeT9SH+POqylqClp9AshrnoBnm7c37cpE3s3Yc2hU3y58QSrDmaw7vBp1h0+TaS/B7f3iGFMt2iCvSs+t1vUjiFDhvD5559jMpnYv38/EyZM4Ny5c3z99dfVWv7o0aPccMMNVT7K7WKKi4txc5MrGMK12dvWvv3222otf/62ZrFYyM7OvvhCF5BtTYi6o6oqu5KzWLTjJL/vTuV0bpHtvUh/D4Z3imB4p0hahsnI+85KRlcQQogSGo1Cv1YhfHZ3N9Y+1Y/7+zYhwFPPyXMFzFh2kF7TVzLpux1sO3EGVVUvXqC4LAaDgbCwMKKiohg8eDBjxoxh+fLltvc///xzWrdujbu7O61atWL27Nm29xRFYdu2bbz88ssoisJLL70EwMmTJxkzZgwBAQEEBQUxfPhwjh8/blvu7rvvZsSIEUyfPp2IiAhatGhRo+XeeustwsPDCQoK4qGHHsJoNNpiioqKePrpp4mOjsZgMNC8efNyg9bt37+fW2+9FV9fX0JDQxk/fjynT5928F9ViIocua1NnToVqP/b2rBhw/D29pZtTVzVjp3K5Z34Q/R7azUjPvybeeuPczq3iABPPf/qGcOPD8Sx7ul+PD2klTT4nZxDr/RfypldX19fR1ZBCCEcIjrQk8lDW/OfgS1YvDuVLzeeYGfSORaVjFbbJtyX8XENGd4pAk83J+w0VZxn/z1FC3r3asZqQO9x8Vi3yxsf4dixYyxduhS9Xg/A/PnzeeONN/jggw/o3LkzO3bsYOLEiXh5eXHXXXeRmprKwIEDGTJkCE8++STe3t7k5+fTr18/evfuzdq1a9HpdLz66qsMGTKE3bt3264yrlixAl9fX+Lj41FVtdrLrVq1ivDwcFatWsWRI0cYM2YMnTp1YuLEiYD12fEbNmzgvffeo2PHjiQkJNgaGqmpqfTr14/x48cza9YsioqKeOaZZ7jttttYuXLlZf3tapPs96uhsm3CYgFjPpjcwM2z6thS1dnWLnM7g4rb2v/+9z+mTJlS7W3N09OT3NxcBgwYUG+3tb59+zJx4kTeeecdCgoKnGJbE8JRMrIL+XVXCr/sTGHPySzbfA+9lkFtQhnROYLezRugl5H3XYpDj1T9/Wv2DEZFUTh06BBNmjRxZDWEEMJh3PVaRneJYnSXKPYkZ/HlxuP8sjOF/anZTP5pD9OW/MMtXaL4V8+GNG3gRPeNT4uw/17zwXDHD2XTM5pZGyiVaXgt3LO4bHpme8jPrBj3UlbFeRfx+++/4+3tjdlsprCwEIB33nnHWqUZM5gxYwajRo0CoHHjxuzfv5+PPvqIu+66i7CwMHQ6Hd7e3oSFhQHw2WefodFo+OSTT2z7qs8//xx/f39Wr17N4MGDAfDy8uKTTz6xNTCqu1xAQAAffPABWq2WVq1accMNN7BixQomTpzIoUOHWLBgAfHx8QwcOBCg3L5vzpw5dO7cmRdffBFfX180Gg2fffYZ0dHRHDp0yHYVtL6R/X41VLKtaQB/QG02CP71Y9kbl7utXcJ2BlVva6+88gpvv/12tbc1i8XCF198Ua+3tdjYWKZNm2ab5wzbmhCXI7vQyNK9afyy8yQbjmZiKemsqNUo9GkezPBOkQxqE4qXwQkvYohqcfgn++OPPxIYGHjROFVVGTZsmKNXL4QQtaZ9lB9v3tKR54a15sdtyXy18QTHM/P5/O/jfP73ca5tFsy/ejZkYOsQeTatA/Tr1485c+aQn5/PJ598wqFDh3jkkUc4deoUJ0+eZOLEidx///22eJPJVOUgf9u2bePIkSP4+JTvolhYWMjRo0dt0+3bty93b3F1l2vbti1abdmjisLDw9mzZw8AO3fuRKvV0rdvX7t1W716NVFRURXeO3r0aL1uiMh+3/lVta0lJSVx77332q6iw8W3tZ07d9brbW3VqlWVDu5Z37c1IWqi0Ghm9cEMftmZwooDGRSbLLb3ujQMYESnCIa1DydIxiq6Kji00d+wYUP69OlDUFBQteKbNGli6z4mhBDOwt/Tjft6N2HCNY1Zd+Q0X244wcoD6fx15DR/HTlNuJ87t3ePYUz3aEJ83C9eYF14LsX+e8oFz9h96kgVsRec3Ji059LrdAEvLy+aNWsGwHvvvUe/fv2YOnUqDz74IAAfffQRcXFx5ZY5vyFwIYvFQpcuXSodCLBBgwbl1nspy124P1MUBYvFepDl4VH1KMcWi4Ubb7yR//73v3h7e6PRlP1dw8PDq1y2Lsl+vxoq2dYsFgvZOTn4+vlTrp9EPdvWHn74YcDaxb9Hjx7llnHmbe2mm27ijTfeqPBefd7WhKgOs0Vl0zHryPtL9qaSU1g28n7zEG9GdI7k5o4RRAfKUzauNg5t9CckJNQofu/evY5cvRBCXFEajULfFg3o26IByWfz+WZTIt9vSSI1q5C34w/x3srDDGkXzvieDenWKKBG3aBrXU3u/a2t2BqaMmUKQ4cO5f777yciIoKEhATGjx9f7eVjY2P5/vvvCQkJqdF95Ze63Pnat2+PxWJhzZo1ti7HF65j4cKFxMTEEBgYWK7RX5/Jfr8aKtsmLBbQm0HnfvHYmpTrIKXb2v/93/8RGRnJsWPHuOOOO6q9fMeOHVm0aFG93tYaNWqETiddmYXzU1XYl5LN4r3p/LorhfTsspH3w/3cubmjdeT91uE+9es4RFxRznFUIYQQ9VxUgCdPD2nF+sn9mTmmE7Ex/hjNKr/tSuG2jzYwdNY6vtp4grzznncraua6666jbdu2TJ8+nWeeeYbXX3+dWbNmcejQIfbs2cPnn39uuw+5MnfccQfBwcEMHz6cdevWkZCQwJo1a3jsscdITk52+HLna9SoEXfddRcTJkxg0aJFJCQksHr1ahYsWADAQw89xJkzZ7jvvvvYvHkzx44dY/ny5UyYMAGz2VyzP5QQl6l0W5s2bRovvfQS06dPr9G2duutt9b7bW3cuHGyrQmnlnw2nw9XH2P6Li0j5mzkf+sSSM8uws9Dz7juMXz37578/Ux/Jg9rTZsIX2nwX+Vq7RTne++9V+l8RVFwd3enWbNm9OnTp8ruYTV19uxZHn30UX799VcAbr75Zt5//338/f0rjTcajfz3v/9lyZIlHDt2DD8/PwYOHMjrr79OREQVg1wJIYQdBp2WEZ0jGdE5kr0ns/h60wkW7UjhQFoO/120l9f/OMDo2Ej+1bMhzUPl8Tc19fjjj3PPPfewbds2Pv74Y95++22efvppvLy8aN++PZMmTbK7rKenJ2vXruWZZ55h1KhR5OTkEBkZyYABA6q8qnipy11ozpw5PPfcczz44INkZmYSExPDc889B0BERATr1q3jySefZOjQoRQVFdGwYUOGDBniNFf962K/L2pP6bZ25MgRPvnkE2bMmFGjbW316tVMnjy5Xm5rf//9N8888wzXX3+9U25r4uqVV2Tij71pLNyWzIZjpQN5Khh0Gga2CWV4xwj6tmyAQSe/s6I8Ra2lh003btyYU6dOkZ+fT0BAAKqqcu7cOTw9PfH29iYjI4MmTZqwatUqoqOjHbLOoUOHkpyczMcffwzAv//9bxo1asRvv/1WaXxWVha33HILEydOpGPHjpw9e5ZJkyZhMpnYunVrtdebnZ2Nn58fWVlZl/0oIqPRyJIlSxg2bJjL3fcouTknye3yZRUYWVgy8N+x02WP2YprEsT4uIYMahPq8EfjGI1Gli9fTuPGjWnSpAnu7vV0bIFLYLFYyM7Oto1y7youJa/CwkISEhJo3Lhxhc/Ykfum6qiL/f6VVNXfs6rPoTKu+h0G18yt9PONiopi5cqVsj90Ms6em8WisvFYJj9uT2bp3jTyi609UhQF4hoH0lg5xRNjBxHoU/V4Fs7G2T+3qjgyt+ru62vt13jatGl069aNw4cPk5mZyZkzZzh06BA9evRg1qxZJCYmEhYWxn/+8x+HrO+ff/5h6dKlfPLJJ8TFxREXF8f//vc/fv/9dw4ePFjpMn5+fsTHx3PbbbfRsmVLevbsyfvvv8+2bdtITEx0SL2EEMLPQ8+Eaxuz4om+fHVvDwa3CUWjwIZjmTz49XaufWMlM/88REZ2YV1XVYhLdqX3+0II4coSTufx9vKD9H5zFbd/somftp8kv9hM42Avnhzcgr+e6c/8e7rSPUTFx13GpxBVq7VvyH//+18WLlxI06ZNbfOaNWvGW2+9xejRozl27Bhvvvkmo0ePdsj6NmzYgJ+fX7nRZXv27Imfnx/r16+nZcuW1SonKysLRVHs3hIAUFRURFFR2SAZ2dnZgPWsjdFovLQESpQuf7nl1EeSm3OS3ByrRyM/ejTqSGpWId9tSWbBtmTSs4uY+edhPlh5hEGtQ7ijRzTdL3Pgv9KcVFXFYrHYRrZ2BaUd1EpzcxWXkpfFYkFVVYxGY4Vu81d6m73S+30hhHA1WQVGFu9OZeH2ZLadOGub7+Ou46aOEYyOjSI2xt92fOCKx2aidtRaoz81NRWTqeKAVSaTibS0NMB6X1VOTo5D1peWlkZISEiF+SEhIbb1XUxhYSHPPvsst99+e5XdI6ZPn87UqVMrzF++fDmeno55BEZ8fLxDyqmPJDfnJLk5XktgclvYfUZhXZqGYznwx750/tiXTpiHyrVhFroFq1zqCXydTkdhYSG5ubkUFxc7tO71gaP2H/VNTfIqLi6moKCAtWvXVtjn5ufnO7pqVbrS+30hhHAFJrOFdUdOs3BbMsv3p1Nssp701SjQp0UDRsdGMahNKO56uU9fXLpaa/T369eP+++/n08++YTOnTsDsGPHDv7v//6P/v37A7Bnzx4aN25cZTkvvfRSpQ3s823ZsgWg0qtiqqpW62qZ0Whk7NixWCwWZs+eXWXs5MmTefzxx23T2dnZREdHM3jwYIfc0x8fH8+gQYNc8v4Vyc35SG617+aSfw+k5fD15iR+3ZVKWoGZHxO0/HFSy/BO4dzRPZoWNRj4z2g0smrVKtzd3fH29nape/pVVSUnJwcfH9d6/NCl5FVYWIiHhwd9+vSp9J7+K8lR+30hhLgaHErPYeG2ZH7ecZKMnLIexC1DfRjdJZIRnSIJ8XWdfbeoW7XW6P/0008ZP348Xbp0sR1Mm0wmBgwYwKeffgqAt7c3b7/9dpXlPPzww4wdO7bKmEaNGrF7927S09MrvHfq1ClCQ0OrXN5oNHLbbbeRkJDAypUrL9pwNxgMGAyGCvP1er3DGg6OLKu+kdyck+RW+9pHB/J6dCDP3dCGn7Yl8+XGExw9lcc3m5P5ZnMy3RsHcmdcQwa3CcNNV70hWRRFQVEUlxlQC7B1fZe8yj7fyr7DV/o77aj9vjOrpbGRRR0r/Vxd6SSjqBtn8or5dedJFm4/yZ6TWbb5AZ56hneK5JYuUbSVx+uJWlBrjf6wsDDi4+M5cOAAhw4dQlVVWrVqVe7e+n79+l20nODgYIKDgy8aFxcXR1ZWFps3b6Z79+4AbNq0iaysLHr16mV3udIG/+HDh1m1ahVBQUHVyE4IIWqPr7ueu69pzF29GrHhWCZfbjjB8v3pbE44w+aEMzTwMTCuWzTjesQQ7md/tN7SZ07n5+fj4eFao/oKq9Iu/PXhpJWj9vvOqPTvL9uaayq9PUoeNykuRbHJwuqDGSzcnszKAxkYzdaTSDqNQv9WIYzuEkW/liHVPpkvxKWo9aEemzRpgqIoNG3aFJ2u9lbXunVrhgwZwsSJE/noo48A6yP7brzxxnIHHK1atWL69OmMHDkSk8nELbfcwvbt2/n9998xm822+w4DAwNxc3OrtfoKIcTFKIpCr6bB9GoaTFpWId9sTuTbzYmcyinivZVH+HD1UQa1DuXOuIbENQ2qcGVAVVV8fX3JyMgArM/AdoWrBxaLheLiYgoLC13uSn9181JVlfz8fDIyMvD3969XjZErtd+vT7RaLf7+/tXe1lz1Owyul5vFYuHUqVN4enrWq+1M1G+qqrIvJZsftyXz664UzuSVjavTLtKX0bFR3NwxgiDvij2HhagNtbY3zs/P55FHHmH+/PkAHDp0iCZNmvDoo48SERHBs88+6/B1fv311zz66KMMHjwYgJtvvpkPPvigXMzBgwfJyrJ2p0lOTubXX38FoFOnTuXiVq1axXXXXefwOgohxKUI83Pn8UEteKR/M5btS+PLDSfYlHCGpfvSWLovjaYNvBjfsyGjukTh61521TckJAStVmtrjLgCVVUpKCjAw8PDJU5ilLqUvPz9/QkLC6vlmlVPXez365PSz6E625qrfofBNXPTaDTExMS4TD6i9mTkFPLLjhQWbk/mQFrZoKUNfAyM7BzJ6NgoWoZVf3weIRyl1hr9kydPZteuXaxevZohQ4bY5g8cOJApU6bUys4/MDCQr776qsqY8++3a9Sokdx/J4RwKnqthhs7RHBjhwgOpuXw1cYT/LQ9maOn8njpt/28uewgIzpHMq5rJGDtLRAeHk5ISIjLPNrHaDSydu1a+vTpUy+6tTtKTfPS6/X16spjXez365OabGuu+h0G18zNzc0NjUbjMr+hwrEKjWb+/CedhduSWXv4NGaLtW3hptMwqE0ot8RG0bt5MDqt8/d8Ec6r1hr9ixYt4vvvv6dnz57lzoy2adOGo0eP1tZqhRDiqtEyzIdXRrTjmaGt+Hm7deC/Q+m5fLMpkW82JdLIW0th+EmGd47GXa+tVw3Ey6HVajGZTLi7u7tMowKcPy/Z71tptRff1pz9s66KK+cmRClVVdmRdI4ftyXz+64UsgvLHlcaG+PP6C5R3Ng+Aj9P2QZE/VBrjf5Tp04REhJSYX5eXp50jxJCCAfyNugYH9eIf/VsyOaEM3yx8QTL9qZxPBee+Wkfry05yKjYKO7oEUPzGjz2T4iakP2+EMLVpZwr4OcdJ1m4LZljp/Ns8yP83BkVG8Wo2EiaNPCuwxoKUblaa/R369aNxYsX88gjjwBljzn53//+R1xcXG2tVgghrlqKotCjSRA9mgSRciaX175dya4cL5LPFTJv/XHmrT9Ot0YB3N4jhqHtwnHXu8aVf1E/yH5fCOGK8otNLN2bxsLtyaw/mknpncEeei1D24UxuksUcU2C0Gjk5Kaov2qt0T99+nSGDBnC/v37MZlMzJo1i3379rFhwwbWrFlTW6sVQgiBddCgwVEq7wzpzYbj5/hmUyIrDmSw5fhZthw/y9Tf9jM6Nopx3WNoFiJXJcTlk/2+EMJVWCwqm4+fYeG2ZJbsSSWv2Gx7r0fjQG7pEsXQ9uF4G66OJ5QI51dr39RevXrx999/89Zbb9G0aVOWL19ObGwsGzZsoH379rW1WiGEEOfRaBSuaxnCdS1DSM8u5PstSXy3OZGUrEI+/SuBT/9KoEfjQG7vEcOQdmEYdHL1X1wa2e8LIZzdicw8Fm4/yU/bk0k+W2CbHxPoyeiS7vvRgZ51WEMhLk2tnp5q37697dE9Qggh6laorzuPDmjOQ/2aseZQBt9sSmTlgQw2JZxhU8IZAr3cuKWL9ep/42Cvuq6ucEKy3xdCOJucQiNL9qTy47Zkthw/a5vvY9BxQ4dwRneJomvDABmbRDg1hzb6s7Ozqx3r6+vryFULIYSoJq1GoX+rUPq3CiXlXAHfb0ni+y1JpGUX8vHaY3y89hi9mgZxe48YBrcJw00njxkSlZP9vhDCGZktKn8fOc3C7cks25dGodECgKLAtc2CuaVLFIPbhOHhJr3fhGtwaKPf39+/2mfBzGbzxYOEEELUqgh/D/4zqAWP9G/GqoOn+GbTCVYfOsX6o5msP5pJsLcbt3SJZlz3aBoGydV/UZ7s94UQzuRIRg4/bjvJoh0nScsutM1vFuLN6NgoRnaOJMzPvQ5rKETtcGijf9WqVbbXx48f59lnn+Xuu++2jdq7YcMG5s+fz/Tp0x25WiGEEJdJp9UwqE0og9qEknw233b1PyOniLlrjjJ3zVF6Nw/m9u4xDGwTil4rV/+F7PeFEPXfuXwj69IUPv1oI7uTy3on+XnoubljBLd0iaJDlJ903xcuzaGN/r59+9pev/zyy7zzzjuMGzfONu/mm2+mffv2fPzxx9x1112OXLUQQggHiQrw5InBLXlsQHNWHMjg602JrDt8inWHT7Pu8Gka+Bi4rWsUY7vFyIBGVznZ7wsh6iNVVdl47AzfbUnkj71pFJu0QDZajUK/lg0YHRtF/9YhMnituGrU2kB+GzZsYO7cuRXmd+3alfvuu6+2ViuEEMJBdFoN17cN4/q2YSSdyefbzYks2JrMqZwiPlx1lNmrj9KneQNu7xHDgFYh6OTq/1VN9vtCiLp2OreIH7cl8/2WJBJO59nmR3iq3N23FSNjo2ngY6jDGgpRN2qt0R8dHc3cuXN5++23y83/6KOPiI6Orq3VCiGEqAXRgZ48PaQV/xnUgvj96XyzKZG/jpxmzaFTrDl0ilBfA2O6RjOmewyR/h51XV1RB2S/L4SoCxaLyl9HTvPt5kTi96djsqgAeLlpublTJLfGhpO4829u6NUQvV5fx7UVom7UWqP/3XffZfTo0SxbtoyePXsCsHHjRo4ePcrChQtra7VCCCFqkV6rYVj7cIa1D+f46Ty+3ZLIj1uTSc8u4r2VR3h/1RH6tQzh9u4xXNeygVz9v4rIfl8IcSWlZRXyw9Ykvt+aRPLZAtv8jtH+3N49mhs7ROBl0GE0GknaVYcVFaIeqLVG/7Bhwzh8+DBz5szhn3/+QVVVhg8fzgMPPCBn/IUQwgU0CvZi8tDWPDGoJcv2pfHNpkQ2HMtk5YEMVh7IINzPndu6RjO2ezThfnL139XJfl8IUdtMZgurD57iuy2JrDyQQclFfXzddYzsHMnY7jG0DpfHgwpxIYc2+nfv3k27du3QaKxXdqKionjttdfsxu/bt4+WLVui09XauQchhBC1zE2n4aaOEdzUMYJjp3L5dnMiP25LJjWrkFkrDvP+ysP0bxXC7T1i6NsiBK1GRkh2FbLfF0JcCUln8lmwNYkftiaXe9Re90aBjO0ezbD24bjrZVA+Iexx6F63c+fOpKWl0aBBg2rFx8XFsXPnTpo0aeLIagghhKgjTRp48/wNbXhicNnV/00JZ/jznwz+/CeDSH8PxnSLZky3aEJ95VnIzk72+0KI2mI0W/hzfzrfbkli3eFTqCVX9QM89YyOjWJs92iahfjUbSWFcBIObfSrqsoLL7yAp2f1HuFUXFzsyNULIYSoJ9z1WoZ3imR4p0iOZJRd/T95roB34g8xa8VhBpRc/e/TvAEaufrvlGS/L4RwtITTeXy3JZGF25I5nVv2m3FNsyDGdothcNtQedSeEDXk0EZ/nz59OHjwYLXj4+Li8PCQ+zyFEMKVNQvx5oUb2/DU9S1ZsieVbzYlsvXEWZbvT2f5/nSiAjwY1z2GW7tGEeIjV/+dSW3s9+fMmcOcOXM4fvw4AG3btuXFF19k6NChANx9993Mnz+/3DI9evRg48aNdsucN28e99xzT4X5BQUFuLvLd06IulZoNLNsXxrfbk5k47EztvkNfAzc2iWKMd2iaRjkVYc1FMK5ObTRv3r1akcWJ4QQwoW467WMio1iVGwUh9Jz+GZTIj9tTyb5bAEzlh3k3fhDDGoTyu09YrimabBc/XcCtbHfj4qK4vXXX6dZs2YAzJ8/n+HDh7Njxw7atm0LwJAhQ/j8889ty7i5uV20XF9f3wonKKTBL0TdOpyew7ebk/hpRzLn8o0AKAr0bdGAsd1iGNA6BL08BUaIyyYj6QghhLjiWoT68NLNbXlmSCsW70nlm00n2J54jj/2pvHH3jQaBnkytpv16n+wt6GuqyuuoJtuuqnc9GuvvcacOXPYuHGjrdFvMBgICwurUbmKotR4GSGE4xUUm/l9dwrfbUli24mztvkRfu7c2jWa27pFE+kvPYGFcCRp9AshhKgzHm5abukSxS1dovgnNZtvNiWyaMdJTmTm88bSA7wTf5DBbcO4o3sMcU2DUBS5+n81MZvN/PDDD+Tl5REXF2ebv3r1akJCQvD396dv37689tprhISEVFlWbm4uDRs2xGw206lTJ1555RU6d+5sN76oqIiioiLbdHZ2NgBGoxGj0XhZeZUuf7nl1EeSm3O6ErntT81mwdaT/LIrldwiEwBajUL/lg24rWskvZsF257u4sh6yOfmnCS3mpV1MdLoF0IIUS+0DvfllRHtmDysFb/vSuXrzYnsSjrH4t2pLN6dSuNgL8Z1j2Z4B7la6+r27NlDXFwchYWFeHt78/PPP9OmTRsAhg4dyq233krDhg1JSEjghRdeoH///mzbtg2DofJeIa1atWLevHm0b9+e7OxsZs2axTXXXMOuXbto3rx5pctMnz6dqVOnVpi/fPnyag9ceDHx8fEOKac+ktyck6NzKzTD9tMK69M1JOWVnbQNMqjEhVro3kDFzy2F/CMpLDvi0FVXIJ+bc5Lcqpafn1+tOGn0CyGEqFc83XTc1s3axXNfSpbt6n/C6TymLTnAjGUHae+vIaBVJtc2D5V7/11Qy5Yt2blzJ+fOnWPhwoXcddddrFmzhjZt2jBmzBhbXLt27ejatSsNGzZk8eLFjBo1qtLyevbsSc+ePW3T11xzDbGxsbz//vu89957lS4zefJkHn/8cdt0dnY20dHRDB48GF9f38vKz2g0Eh8fz6BBg9Dr9ZdVVn0juTknR+amqiq7krNYsO0ki/ekkV9sBkCvVRjUOoQxXaPo2Tjwiv12y+fmnCS36inthXYx0ugXQghRb7WN8OO1ke15blhrft2VwjebEtlzMovtmRru/HwbjYI8GdMthlu6RNHAR+79dxVubm62gfy6du3Kli1bmDVrFh999FGF2PDwcBo2bMjhw4erXb5Go6Fbt25VLmMwGCrtOaDX6x12AOrIsuobyc05XU5uWflGFu08ybebEzmQlmOb36SBF+O6xTAqNpKgOhyjRT435yS5XbyM6pBGvxBCiHrPy6BjXPcYxnWPYcfxTGb8vJ5d5/QcL7n3/+3lBxnYOpRxPWLo3UxG/nc1qqqWu7/+fJmZmSQlJREeHl6j8nbu3En79u0dVUUhrkqqqrLl+Fm+25zI4j2pFJksABh0Gm5oH87Y7jF0axQg47EIUcek0S+EEMKptIv0ZUwTC7MH9GX5P6f5ZnMiO5POsXRfGkv3pRHp78GYbtHc1jWaMD95JJuzee655xg6dCjR0dHk5OTw3XffsXr1apYuXUpubi4vvfQSo0ePJjw8nOPHj/Pcc88RHBzMyJEjbWXceeedREZGMn36dACmTp1Kz549ad68OdnZ2bz33nvs3LmTDz/8sK7SFMKpnckrZuG2ZL7bksjRU3m2+a3CfBjbLZqRnaPw83TNq7NCOCNp9AshhHBKXoaye/8PpGXz3eYkftqezMlzBbwTf4iZfx6if6sQxnaL4bqWDdDJs56dQnp6OuPHjyc1NRU/Pz86dOjA0qVLGTRoEAUFBezZs4cvvviCc+fOER4eTr9+/fj+++/x8fGxlZGYmIhGU/Z5nzt3jn//+9+kpaXh5+dH586dWbt2Ld27d6+LFIVwShaLyoZjmXy7OZFl+9IwmlUAPN203NQhgrHdo+kU7S9X9YWoh6TRL4QQwum1CvPlpZvb8uzQVizZk8p3m5PYfPwMf/6TwZ//ZBDm685tXaO4rVs0UQGOGXld1I5PP/3U7nseHh4sW7bsomWsXr263PS7777Lu+++e7lVE+KqlJFdyA/bkvl+SxKJZ8pGCu8Q5cfYbjHc1DEcH3e5qi9EfSaNfiGEEC7DXa9lVGwUo2KjOJKRw3ebk1i4PZm07ELeW3mE91cdoXfzBtzePZoBrUPRy9V/IYSowGxRWXvoFN9uTmTFgQzMFutVfR+DjuGdIxjbLYZ2kX51XEshRHVJo18IIYRLahbiw39vbMNTQ1qyfF86325OZP3RTNYeOsXaQ6cI9jZwS5coxnaLplGwV11XVwgh6lxqViE/7UxgwZYkUrIKbfO7NAxgbLdobugQjqebNB+EcDay1QohhHBpBp2WmzpGcFPHCI6fzuP7rUn8sDWZ07lFzF1zlLlrjtKraRBju8dwfdtQDDptXVdZCCGuCItFJSEzj20Jmcz7R8OBjWspuaiPv6eeUZ2jGNs9mhahPlUXJISo16TRL4QQ4qrRKNiLZ4a04vFBLVjxTzrfbk5i7eFTrD+ayfqjmQR46hkdG8XY7jE0C/Gu6+oKIYRDpWcXsjPpHLuSzrEr+Ry7k7LIKTKVvGu93alnk0DGdY/h+rZhuOvlJKgQrsClGv1nz57l0Ucf5ddffwXg5ptv5v3338ff379ay99///18/PHHvPvuu0yaNKn2KiqEEKJO6bUahrQLZ0i7cJLP5rNgSxILtlrv/f/krwQ++SuBbo0CGNc9hmHtw+XAVwjhdLILjexJzirXyE/PLqoQ567X0DbclwDzGZ65tTfNw/yvfGWFELXKpRr9t99+O8nJySxduhSAf//734wfP57ffvvtossuWrSITZs2ERERUdvVFEIIUY9EBXjy+OCWPDqgOWtKBq5aeSCDLcfPsuX4WV76dR8jO0cytnsMrcN967q6QghRQZHJzD+pOdbGfdI5diaf49ipvApxGgVahPrQKdqfjtH+dIzyp0WoN6rFzJIlS2gUJOObCOGKXKbR/88//7B06VI2btxIjx49APjf//5HXFwcBw8epGXLlnaXPXnyJA8//DDLli3jhhtuuOi6ioqKKCoqO1OanZ0NgNFoxGg0XlYepctfbjn1keTmnCQ35yS5XZo+zQLp0yyQtOxCFm5P4YdtyZw8V8j8DSeYv+EEHaP8GNM1kmHtwvAyOHYX6ui8XPGzF0JY78M/eiqXXclZtiv4/6RmYzSrFWJjAj3pEOVna+S3jfCtdCA+o8V8JaouhKgjLtPo37BhA35+frYGP0DPnj3x8/Nj/fr1dhv9FouF8ePH89RTT9G2bdtqrWv69OlMnTq1wvzly5fj6emY5z/Hx8c7pJz6SHJzTpKbc5LcLl1j4MlWcDBLYUO6wp6zivUgOzmLqb/to0uwSq8QC9EOvvXfUXnl5+dfPEgIUa+pqkpqVmFJ497ayN9zMotc2334ZQK93OgY5We9gl9yFT/Qy60Oai2EqG9cptGflpZGSEhIhfkhISGkpaXZXe6NN95Ap9Px6KOPVntdkydP5vHHH7dNZ2dnEx0dzeDBg/H1vbyun0ajkfj4eAYNGoRer7+ssuobyc05SW7OSXJznBtL/j2dW1Ry9f8kJ87ksz5dYX26hrYRPtzWJYqbOoTj437pu1VH51XaC00I4Tyy8o3WAfaSz7EzKYtdyec4lVPxPnwPvZb2UX5ljfwof6ICPFAUpQ5qLYSo7+p9o/+ll16q9Kr6+bZs2QJQ6Q+dqqp2fwC3bdvGrFmz2L59e41+JA0GAwaDocJ8vV7vsANQR5ZV30huzklyc06Sm+OEB+h5eEALHuzXnI0JmXy3OYmle9PYl5LDlJR/eH3pIW7sEM64HjF0jva/5INvR+Xlqp+7EK6i0GhmX0o2u5PP2a7kJ5yueB++VqPQKsyHDlH+dIq2NvKbNfBGp9XUQa2FEM6o3jf6H374YcaOHVtlTKNGjdi9ezfp6ekV3jt16hShoaGVLrdu3ToyMjKIiYmxzTObzTzxxBPMnDmT48ePX1bdhRBCuB6NRqFX02B6NQ3mTF4xP21P5rstSRzJyOWHbcn8sC2ZlqE+jO0ezajOUfh5SuNbiKud2aJyJCOXXcllI+kfSM3BZKl4H36jIE86RvvbGvltwv3wcJMniAghLl29b/QHBwcTHBx80bi4uDiysrLYvHkz3bt3B2DTpk1kZWXRq1evSpcZP348AwcOLDfv+uuvZ/z48dxzzz2XX3khhBAuLdDLjft6N+Heaxuz9cRZvt2cyOLdqRxMz2Hqb/t5/Y8DDGsfzthu0XRvHChdb4WN1lwExXmgVnJSSNGC3r1surji1d+yWA3oPS4xNh+o2OgsCQY3z0uK1ViK7ecG4HbeCPHGAlAt9utcLrYQ1CoGnKtJrN4TSrdHUxFYKt4jX1msxmKsOjedB6qicPJcAbtPnGJ/Uia7k7PYl5pFfnH5+phxI9jbg07RfnSO8KJDpBftwn0JqHAffiFY3EFT0vA3FYOlioE6defFmo1gLrYfqzWA1tocUFRT1bmdF4vZBOaKtx2UxbqBVl/zWIsZTIX2YzV60LnVPFa1VJ1buXItYCqoolwd6Ep6/KoqGKsYP6UmsTXa7iuJtZdbPfyNqNl2XwBqFd/hevYbcdFYnYf992pRvW/0V1fr1q0ZMmQIEydO5KOPPgKsj+y78cYbyw3i16pVK6ZPn87IkSMJCgoiKCioXDl6vZ6wsLAqR/sXQgghzqcoCt0aBdKtUSBTbmrLLztP8s2mRA6k5fDzjpP8vOMkTRp4Ma5bDKNiIwnyrniLmLi63Lh7Iuy282bzwXDHD2XTM5rZbyw0vBbuWVw2PbM95GdWHhvRGf69umz6wx6QlVh5bINW8NCmsun/9YNTByqP9YuB/+yxTV57+DX0u+6rPNYzCJ4+Vjb91S1w4q/KY/We8Hxq2fSC8XB4eeWxAC9llb3++d+w/xf7sc+llDUAfpsEu76xH/vUUfCyXoBqd/Ib9DPutRv6dORXrEx353RuMZN1X/OkruSz0QDu5WPTx68mpEkn68nAVdNhwev26zBxJUR2sb7eNAfiX7Qfe9fv0Li39fW2ebDkSfuxty+AFtcDEHVmA/oZE+zH3joP2o60vj7wG/xwt/3Y4bOh8x3W10dXwDe32Y8d9hZ0n2h9fWI9zL/Rfuygl+Gax6yvU3fC//rbj+37LPSbDIBPYQr6GQ3tx/Z6BAa/an2dlQSzOtiP7XYf3PC29XV+Jsxoaj+24+0wco71tTEfplXxaPA2w+G2L8qmq4q94DdCN7O1U/1G8PlQSNlReewFvxHa78ZA4vrKY+vhbwTLnoMtn9iPfWw3eF/5R8S71M1AX3/9Ne3bt2fw4MEMHjyYDh068OWXX5aLOXjwIFlZWXZKEEIIIS6Pn4eeO+Ma8cdjvVn00DWM7RaNp5uWY6fyeG3JP/ScvoKHvtnO30dOY6mka68Qov6q5Kl45aw/lsnp3GJ0GoUGFzm5F+rjLr1/hBBXhKKqqhxxXKbs7Gz8/PzIyspyyOj9S5YsYdiwYS43CJPk5pwkN+ckudUvuUUmft2ZwndbEtmdXHbiOSbQkzHdorm1axQB7lqH5uXIfZNw7N8z8XQO8cv+4Lo+vTG46dFprWNF6BUNWq2CTqdD5+aJTqOg0ShO1b3faDSy9PdFDBlcxVMoHNC932S2UGSy/l9sNlNkVClU3Ckyma3zCgswmoopNpbGmSk2WSgyqRSZzORZ3Cg2qxSZLJiKCzAZjeXjjCpFZmtZOSY9RWaVQqOZvLxcFCrWt3GQF+2j/GgdHULHmEBah/virpgv0g3fAzQl199q0mW/Frr3G41G/lj8K0MHDbD/uTlp936j0ciSxb8zbFA/+7k5afd+2/5wYF/7udWz3wigWtu9LbdB/dDrqhjTwgm79xvNZoft76u7b3KZ7v1CCCFEfeVt0HF7jxhu7xHD3pNZfLclkV92pJB4Jp8Zyw7ybvwh+rVsQBNV4XqLinOcyhCX6s1lh/h9jxev7Nl+0VhFAZ1GQafRoNMo1pMCpa81CjqtYntfq1HQa0vmazTobK8VtBrNee8p6LTnlXHhdBXvWcvQlMwvK1unyUWnVcBi4WCOAa8TBZjUQlvDvMhkpshoodhsochosTXOS+fbXpssJY3zyt8rXfbKdpI5v4HtRoiPgY7R/nQqeVRe+yg//Dwq22q1wIX359uhc6udWK2+rEF9EaqiszaKqtMI0erKTgA4MlajLd8wc1Ssoql+bhpNDcpVaicWah5b3cZjjcr1vHjMpcTqa3Bfu96j+rnp3S8ecymxOgNQzdvyqhNrruJkQy2RRr8QQghxBbWL9OPVyPY8N6w1i3en8u3mRLYnniP+nwxAS87if5g2qmNdV1PUIk83LZ46FY1Wj9miYrJYMNrpN66qYDSrGOvgIPHSaWH/xU9oOIqbVoNBp8Gg11hf67XWaZ0Gg06LQV/22s02336cW+n0BfO1WNi2YR3jRgx2ml5GQggB0ugXQggh6oSnm45bu0Zza9doDqbl8M2m4/yw+QRD2lb+mFnhOl4b0ZZr3E4wbNj15RqPFouKqeQkgMmiYjarGC0W64kBs2o7QWAqmTZZVMwWi+0943nTJkv5923TZst575WWY7FNG80l67tw/RYV0/nvXRBrW4fZTHZOLkH+vrjrtbZG88Ua42WN7ariKjbG3bQa6y0QV4DRaORINS+wCyFEfSKNfiGEEKKOtQzz4b/DWtHecowejQLrujqijmg0Cm4aBTcnHme5bMyNOLkaLoQQ9YTz7lWEEEIIF6PXcMWuWgohhBDi6iCNfiGEEEIIIYQQwkVJ934HKH3qYXZ29mWXZTQayc/PJzs72+W6xUluzklyc06Sm/NxdF6l+yR5Mq9jyL6+eiQ35yS5OSfJzTk5Mrfq7uul0e8AOTk5AERHR9dxTYQQQojycnJy8PPzq+tqOD3Z1wshhKivLravV1S5BHDZLBYLKSkp+Pj4oCiXdy9mdnY20dHRJCUl4evr66Aa1g+Sm3NZt24dN954I3PnzuWBBx6oMrf/+7//46+//mLPnj1XuJblldb5999/p3fv3gAsX76cbdu2MXny5Arx1fnc2rdvT+vWrVmwYEGt1t3RXPE7WcpVc3N0XqqqkpOTQ0REBBqN3M13uWRfXz2Sm3Oyl1vpfnX+/PmMGDGiyjLqy7HAhUpzW7BgAbfddlu5Y4Tp06fz+uuvk5WVVce1vDRX43fSFTgyt+ru6+VKvwNoNBqioqIcWqavr6/LfcFLSW7OwcvLCwAPDw+g6txefvllsrOz6zz33r17s2HDBtq0aWOry+rVq/nwww+ZPn263eWqyk1RFHQ6XZ3ndqlc6Tt5IVfNzZF5yRV+x5F9fc1Ibs7pwtxKjwU8PT0vmnN9ORawx9PTE7DmVFpHg8EAUG/rXF1X03fSlTgqt+rs66XRL8RVKD8/37bzc4SmTZs6rKzL4evrS8+ePeu6GkIIIUS95+zHAqqqUlhYaLs4IYSwT/r7CeHiXnrpJRRFYfv27dxyyy0EBATUaMdsMpkAaNmyJb6+vgwcOJCDBw+Wi7n77rtp1KhRuXmKovDwww/z0Ucf0aJFCwwGA23atOG7776rcQ7VLWv16tUoisLq1att9frwww9tZZT+f/z4ccDaXRfg2muvxcPDA39/f3r27Mmvv/5aoQ5Lly4lNjYWDw8PWrVqxWeffVbjPIQQQoi6cLnHAkajkeeff56IiIg6PxaYO3curVu3xmAwMH/+fAD++usvBgwYgI+PD56envTq1YvFixfXeB1CuCq50l/PGAwGpkyZYutu5Eokt7o1atQoxo4dywMPPEBeXl61l3v55Zdp3749r7zyCgUFBTzzzDPcdNNN/PPPP2i12iqX/fXXX1m1ahUvv/wyXl5ezJ49m3HjxqHT6bjllltqVP9LKeuFF14gLy+PH3/8kQ0bNtjmh4eHA/DQQw8B0LVrV1599VXc3NzYvn277aRAqV27dvHEE0/w7LPPEhoayieffMK9995Ls2bN6NOnT43yuFKc4Tt5qVw1N1fNS1Tkyp+15Fa/2TsWuFhuzz33HNdccw2ffPIJ2dnZdXYssGjRItatW8eLL75IWFgYISEhrFmzhkGDBtGhQwc+/fRTDAYDs2fP5qabbuLbb79lxIgRTJkyxeVGgAfX+E7aI7k5mCqEcGlTpkxRAfXFF1+s0XKrVq1SAXXYsGHl5i9YsEAF1A0bNtjm3XXXXWrDhg3LxQGqh4eHmpaWZptnMpnUVq1aqc2aNatRXapbVmmdV61aZZv30EMPqZX91K1du1YF1Oeff77KdTds2FB1d3dXT5w4YZtXUFCgBgYGqvfff3+N8hBCCCHqgqscC/j5+alnzpwpN79nz55qSEiImpOTU24d7dq1U6OiolSLxVIul/OPEUr/LkK4OuneL8RVYvTo0Ze03M0331xuukOHDgCcOHHiossOGDCA0NBQ27RWq2XMmDEcOXKE5OTkGtXDkWUB/PHHH0DZ1f6qdOrUiZiYGNu0u7s7LVq0qNbfQAghhKgvnP1YoH///gQEBNim8/Ly2LRpE7fccgve3t7l1jF+/HiSk5Mr3IYgxNVIGv1CXCVKu7TXVFBQULnp0q5IBQUFF102LCzM7rzMzMwa1cORZQGcOnUKrVZbabkXuvBvANa/Q3X+BkIIIUR94ezHAhfW/+zZs6iqWmleERERl7QOIVyRNPqFuEpc7nOlL0VaWprdeZU1pK9UWQANGjTAbDZXWq4QQgjhipz9WODC+gcEBKDRaEhNTa0Qm5KSAkBwcHCN1iGEK5JGvxCi1qxYsYL09HTbtNls5vvvv6dp06Y1ft71pZZl72rE0KFDAZgzZ06N6iGEEEKI6nPkscCFvLy86NGjBz/99FO5/bzFYuGrr74iKiqKFi1aXNY6hHAFMnq/EKLWBAcH079/f1544QXbiL0HDhy4pEf1XGpZ7du3B+CNN95g6NChaLVaOnToQO/evRk/fjyvvvoq6enp3HjjjRgMBnbs2IGnpyePPPLIJeUshBBCiDKOPBaozPTp0xk0aBD9+vXjySefxM3NjdmzZ7N3716+/fbbOundIER9I41+IUStufnmm2nbti3//e9/SUxMpGnTpnz99deMGTPmipV1++238/fffzN79mxefvllVFUlISGBRo0aMW/ePGJjY/n000+ZN28eHh4etGnThueee+5SUxZCCCHEeRx5LFCZvn37snLlSqZMmcLdd9+NxWKhY8eO/Prrr9x4440OWYcQzk5RVVWt60oIIVyPoig89NBDfPDBB/WqLCGEEEJcGbL/FqJ+kHv6hRBCCCGEEEIIFyXd+4W4yqiqitlsrjJGq9VekXvgTCZTle9rNBo0Gjk3KYQQQjiSHAsIcXWRLUiIq8yaNWvQ6/VV/j9//vzLXo+qqhftznexekyYMKHaZQkhhBCiepzxWEAIcenknn4hrjI5OTkcPHiwypjGjRvX+Nm5l2Lr1q1Vvh8cHEyjRo1qvR5CCCHE1USOBYS4urh0o3/OnDnMmTOH48ePA9C2bVtefPFF2/O5VVVl6tSpfPzxx5w9e5YePXrw4Ycf0rZt2zqstRBCCCGEEEII4Rgu3ej/7bff0Gq1NGvWDID58+czY8YMduzYQdu2bXnjjTd47bXXmDdvHi1atODVV19l7dq1HDx4EB8fn2qvx2KxkJKSgo+PjzwLVAghRL2gqio5OTlERETI/bAOIPt6IYQQ9U119/Uu3eivTGBgIDNmzGDChAlEREQwadIknnnmGQCKiooIDQ3ljTfe4P777692mcnJyURHR9dWlYUQQohLlpSURFRUVF1Xw+nJvl4IIUR9dbF9/VUzer/ZbOaHH34gLy+PuLg4EhISSEtLY/DgwbYYg8FA3759Wb9+fZWN/qKiIoqKimzTpedNEhISatRDoDJGo5FVq1bRr18/9Hr9ZZVV30huzklyc06Sm/NxdF45OTk0btz4svdLwqr075iUlISvr+9llWU0Glm+fDmDBw92qe8wSG7OSnJzTpKbc3JkbtnZ2URHR190X+/yjf49e/YQFxdHYWEh3t7e/Pzzz7Rp04b169cDEBoaWi4+NDSUEydOVFnm9OnTmTp1aoX5GzZswNPT87Lr7OnpyaZNmy67nPpIcnNOkptzktycjyPzys/PB5Cu6A5S+nf09fV1SKPf09MTX19flzyYldycj+TmnCQ351QbuV1sX+/yjf6WLVuyc+dOzp07x8KFC7nrrrtYs2aN7f0L/0Cqql70jzZ58mQef/xx23TpGZbBgwc75EAgPj6eQYMGueQXXHJzPpKbc5LcnI+j88rOznZArYQQQgjh7Fy+0e/m5mYbyK9r165s2bKFWbNm2e7jT0tLIzw83BafkZFR4er/hQwGAwaDocL80ueJOoIjy6pvapqbqqqYLComs0qx2YLJbMFoVjGaLZgs1n+NJfPKv3fea9uyKiaLhWJTybImC0ZL6XLl440WO2WarO+ZzGXrLjZZyM/X8taBjWg0ChpFQQFQsL1WFFBQrP+eN0+jlMyjZP55rzUly5T8VxZbshyUlaUpV+755Zy/DqVCnc6vq0LJOs+rq6qqmE4rxBaYiXZAT5b6SLY35+SquTkqL1f827iKVxYfYMUOI/87vAJ3Nx3uOg3ueg1uOq31X70encEDd50Wd70WL6UId70Wd52Cm15b8lqDQa/FoNdj8PAsmafFnQIMpeVoNeUvZCga0HuUTRfnA/aGdlLAzfOSYjWWYijOA9XOd9DNq+y1sQBUi/0/VrnYQlDNjonVe1p3dgCmIrCYqhWrsRirzk3nAaWDaZmKwWK0X26NYt1Bo615rNkI5mL7sVoDaK3NAUU1VZ3bebGYTWAuqjwOQOsGWn3NYy1mMBXaj9XoQedW81jVUnVu5cq1gKmginJ1oCtpB6gqGPMdE6toQe9eNl2cV7NYe7lV2O6rKvfK/EbUbLsvALWK73A9+424aKzOw/57tcjlG/0XUlWVoqIiGjduTFhYGPHx8XTu3BmA4uJi1qxZwxtvvFHHtayfik0WCorNFBjN5BebyC95XVBsLnltoqDYQn6xyTqv5L3S13mFRk6mafgmbQtmC+Ub2ec13ssa06qt4e4cFDKLqthJODUtC2esJTbGn2HtwxnSLoyoANc8ASCEELUtI6eIv5V7Ibfy91eaOzHB+LRter/hHjyVyhtNGy2tubn4Bdv0NsP9+Ck5lcYe0DRjku+71hMEeg3vp99FA3N6pbFnPJuwqNdPtthBq4bjk3Ok0lizbzSFD+3EXW9taF57+DX0u+6rPDnPIHj6WNn0V7fAib8qj9V7wvOpZdMLxsPh5ZXHAryUVfb653/D/l/sxz6XUtYA+G0S7PrGfuxTR8ErGIB2J79BP+Ne+7GP7YaAhtbXK1+G9e/bj31wI4S0tr5e9zased1+7MSVENnF+nrTHIh/0X7sXb9D497W19vmwZIn7cfevgBaXA9A1JkN6GdMsB976zxoO9L6+sBv8MPd9mOHz4bOd1hfH10B39xmP3bYW9B9ovX1ifUw/0b7sYNehmses75O3Qn/628/tu+z0G8yAD6FKehnNLQf2+sRGPyq9XVWEszqYD+2231ww9vW1/mZMKOp/diOt8PIOdbXxnyYFmE/ts1wuO2LsumqYpsPhjt+sE3qZra2f0Kh4bVwz+Ky6ZntrfWuTERn+PfqsukPe0BWYuWxDVrBQ+fdjva/fnDqQOWxfjHwnz1l058PhZQdlcde8Buh/W4MJK6vPLYe/kaw7DnY8on92Md2g3cVn20tcelG/3PPPcfQoUOJjo4mJyeH7777jtWrV7N06VIURWHSpElMmzaN5s2b07x5c6ZNm4anpye33357XVf9kpjMlvIN7Qsb4saSeRc03AtL5pd/z0zBBQ17k8URjW8NZJ297FK0GgW9VkGv0aDXadBpFPRaDXqtgk5rnXYrN1+DTntejEZje135e6XzNbhVKNMa73becopqYcOG9cTF9UKr1aICFouKivXEropq/fe81xbV+j6lr1VK4lUsJW+Uzrvw/QvLPL8sFevy6nmvUcvqUmVZ562LkvcLik0s2XaUhByF7Ynn2J54jlcX/0PHKD+Gtg9naLswGgZ5IYQQonqeGtwc5th/v2kDbx5r3ZxCk5kiowXdDsXuBTR3nZZwD3cKjWYKjVVcOQOKTBYOpJWdECgymK1dwipxOreIl3/fb5te7laAj52nQaVmFXDtlGUA6LUKP2kVAuzE5hWZee+Pf/B20+Fl0HFjTiEhduqrYrd6QohKWBQdxZ6h1iv2pQzBUHhejwjPCNDYuXBjCCkf6xEO9i6+uYeWj3UPBW87vQg8wsvHGkLA287TUNz9obAQo9GITqej0BCMxl6szqN8uW6B9suF8rH6gIvEFoGlpMeMzq/q2CIjaEvK1vpWHVtswlhYaM2tsBCzuYreBlh77Wm12ipjqsOlH9l37733smLFClJTU/Hz86NDhw4888wzDBo0CLA2aKZOncpHH33E2bNn6dGjBx9++CHt2rWr0Xqys7Px8/MjKyvrsu/p/37zcTZt302T5q0oMqu2xnjh+VfXL7jCnl9sotBoodhc9c7eUXQaBQ83LR56LZ5uWjzcdNZ/9Vo83LQVXnu66XDXazFo4cC+PXSN7Yy7m87WqNZrlAsa7hUb1XpN2WudRkGjqV+HAUajkSVLljBs2DCX61Jbmlvstf1ZeTCTJXtS2Xz8DOf/crSN8LX1AGjawLvuKltDV8PnJrk5D0fn5ch9k3Ds39NoNLLst5+5/no7IzfXqJtv+e64alEuxWYLhUYLRSYzRUaVIpP1hEChWaVA1VtfG80YC3MpMpopMlmni0rmF5rMFJpUcsx6WzmW4jyKjBaKSt8vLd9kocikUkjZbY8GitFg/5ikAPdqx5q0HngZdHi56Qhws+BjUPBy01rnlcz3MmjxNOhw9/QpmdbhozPjrackznos4uWmRactaQxdQtddo9HI0t9/Ycjggfa3USft3m80Gvlj8a8MHTTAfm5O2r3faDSyZPHvDBtUxZNRnLR7v22/MbAvKpCQmIKlQtNOKfuuQ9Xd6msUS/mTCzWKVbF/K4A1VlVVCgoK8HB3L1elyy23zmNRUMGam4dHtQbb9ff3JywsrNLY6u6bXPpK/6efflrl+4qi8NJLL/HSSy9dmQpVw2tLDpJdqIXjhy+5DI2CraHtWdoIv7CRXtIo93DTln/tpsVDr6uwjKebztaQd9PZOX1/EUajkSUZuxnWPsylDtSvFmG+7tzVqxF39WrEqZwilu9P4489aWw4lsm+lGz2pWQzY9lBWob6MLR9GMPah9M8xFtGDhdCiEqYtQZr19Hq7A/dqt+bSjF4YwAqjjxUeywW1XbiIKegiKV/rqRbzz4UmiGvyEResYncIhN5RSZyi8zWeUVl8/KKzNbXxWXzbb0WzCrn8o2cyzdy0gF1dddr8D7vhIF3yUmBshMIOrwNZScVrO/n4mXQ4q6FsyZ99T83nRvgVr2K1VasVl/WoL4IVdFVPzetruwEgCNjNdrqf99rEqtoqp+bRlODcpXaiYUaxap6T1JTU9Hq3YiOiECjubRj9frEYrGQm5uLt7e3S+Rzvurmpqoq+fn5ZGRkAJQbh66mXLrR74wGtGpAauJRGsdE4ummL2l4Wxvh7noN7m5uuHt42hrkXkpxSWNdg7vO2ig36EoG7nHowB1m6/8WoFgG96ks9moa3KeBAe7oHMwdnYM5k1fMn4fOsnjfaf4+cpoj6ef4KP0UH/25hybBXgxuG8bgNmG0Cis5AVCPzv4DMriPDO5T89jaGtxHdsnCSWlKewC6afF2Uwj1gHaRl/coKpPZQl7xhScIzGUnCoorOWlQxYmE0vGBrL0cijmdW8VvR5V0fJn0N/1bhXJdyxC6NgpAr3WtBolwPmazmfz8fCIiIhzy+PD6wGKxUFxcjLu7u0s2+qubm4eH9dgrIyODkJCQS+7qL0cY9cybo9ujf60f2BkH48KBO3gt3KkG7pDBfVxvcJ9A4LZb53HbhJFk5RvZv+IL4raVPNIyF9hU8n+JpD5vE9XvXusJABncx/paBvcpm76aB/d5aLv994S4yui0Gvw8NPh5OKZnYJHJTF5JL4PcC04klJ4YqLQnQnHZvNxCI+nZhRzOyONwxjE+WnsMb4OOa5sF069VA65rGUKor/vFKyOEg5XeF+7mVs0eIMKplJ7IMRqN0ugXQtQ9P089cU0CYZv9mFkrDrFxyyqGtgtjjH8uza5c9YQQQlylDDotBp2WQK9LbxQZjUZ++GUJnk1iWXskkzUHT5GZV8zSfWks3ZcGQOtwX/q1bEC/ViF0jvYvG0NAiFpUOkSb3FLpmhzxubr0QH5XirMM7lPXXXetA+AsYsjgQfa7/Dlp934Z3KfqwX3yikysPXyK5fvS+fPQWXKM1r+vFjMxvloGtQnl+rZhdI72Lz9IowzuY3WZg/vYza2e/UYA1drubbkN6odeV8UZ73r0G1GdWCM6lvyxVAbyq6ccva93xcEo4erKzWJR2XMyi9UHT7HqYAa7ks+VG+TW111HnxbWHgB9WzSggc+VHGmhZq6mz82VlObWv39/kpOTady4Me7urtHbxGKxkJ2dja+vr0t2769JboWFhSQkJFT6+cpAfk6stgb3qVlsDe4HqkGsReNW/dzOb2BcNLYGP3A1idVVfzgki0YG97GWW3HAHi83GBrrx9DYZhQUm1lzKIMle9JYeSCDhGwTH29M5+ON6YT4GBjSLoyh7cLp3jgQ7fknAGRwnzI1ja3uQU49+I2o2XbvUf3c6sFvxEVjjVWcsBNC1DsajULHaH86Rvvz2MDmZOYWsfbwKVYfPMWaQ6c4l2/k992p/L7beqtRhyg/rmsZwnUtG9Axyr/8Pk4IIWqRNPqFEFeUh5uWIe3CGdIunEKjmb8On2bJ3lTi96eTkVPEFxtO8MWGEwR5uTG4bRjD2ofRs0mQDJQkhBCiXgvyNjCycxQjO0dhtqjsTDrH6oMZrDqYwd6T2exOzmJ3chbvrThMgKeevi2stwH0ad6AgMu47UAIV6bVavn5558ZMWJEra6nUaNGTJo0iUmTJtXqeiozb948Jk2axLlz52ptHdLoF0LUGXe9loFtQhnYJpRik4W/j57mjz2pLN+fTmZeMd9uTuTbzYn4e+oZ3CaUoe3DuaZp8CU/NlIIIYS4ErQahS4NA+jSMIAnBrckI6eQNQetvQDWHj7F2Xwji3amsGhnCooCnaL96dcyhH4tQ2gb4Vv+VjchXFhGRgYvvPACf/zxB+np6QQEBNCxY0defPFF2rZty8mTJwkKCqrralZwJRrqjiSNfiFEveCm09gOeF4zW9h4LJM/9qaxbG8amXnFLNiazIKtyfi46xjUJpSh7cLp3TwYd/2ljWIqhBBCXCkhPu7c2jWaW7tGYzRb2JF4jlUHM1h1IIMDaTnsSDzHjsRzvBN/iGBvQ0kvgAb0btYAP0/Xug9diPONHj0ao9HI/PnzadKkCenp6axYsYIzZ84AEBYW5nL39NcF+QsKIeodvVZD7+YNmDayPZufH8i3E3tyZ1xDGvgYyCk08dP2k0z8YitdXonn0W93sHRvKgXFVQy8JoRwObNnz7YNatSlSxfWrVtXZfyaNWvo0qUL7u7uNGnShLlz516hmgpRnl6roXvjQJ4Z0oqlk/qwYXJ/po9qz/VtQ/Fy03I6t4iF25N5+JsdxL4az21zN/DhqiPsT8lGxt8W1aGqKvnFpjr5vybf0XPnzvHXX3/xxhtv0K9fPxo2bEj37t2ZPHkyN9xwA2Dt3r9o0SIAjh8/jqIoLFiwgN69e+Ph4UG3bt04dOgQW7ZsoWvXrnh7ezNkyBBOnTplW891111Xodv+iBEjuPvuu+3W7Z133qF9+/Z4eXkRHR3Ngw8+SG5uLgCrV6/mnnvuISsrC0VRUBSFl156CYDi4mKefvppIiMj8fLyokePHqxevbpc2fPmzaNdu3Z4e3szcuRIMjPtPC7ZgeRKvxCiXtNqFOKaBhHXNIiXbmrLtsSzLNmTytK9aaRmFfLrrhR+3ZWCh15L/1YhDG0fRr+WIXgZ5OdNCFf1/fffM2nSJGbPns0111zDRx99xNChQ9m/fz8xMTEV4hMSEhg2bBgTJ07kq6++4u+//+bBBx+kQYMGjB49ug4yEKJMuJ8H47rHMK57DMUmC1uPn2HVwQxWHzzF4YxcNh8/w+bjZ5ix7CBhvu5c19L6RIBrmgXh4y69AERFBUYzbV5cVifr3v/y9Xi6Ve8YzNvbG29vbxYtWkTPnj0xGKo3MO6UKVOYOXMmMTExTJgwgXHjxuHr68usWbPw9PTktttu48UXX2TOnDmXnIdGo+G9996jUaNGJCQk8OCDD/L0008ze/ZsevXqxcyZM3nxxRc5ePCgLReAe+65h+PHj/Pdd98RERHBzz//zJAhQ9izZw/Nmzdn06ZN3HfffbzwwguMGzeO5cuXM2XKlEuuZ3XJUbEQwmloNArdGgXSrVEgL9zQhp3J51i6N40le1JJPlvA4j2pLN6TikGnoW+LBgxrH07/1iH4ykGREC7lnXfe4d577+W+++4DYObMmSxbtow5c+Ywffr0CvFz584lJiaGmTNnAtC6dWu2bt3KW2+9ZbfRX1RURFFR2eNHs7OzAesjsoyX+aSF0uUvt5z6SHK7PArQraEf3Rr68fTg5iSfLWDN4dOsOXSKjcfOkJZdyHdbkvhuSxI6jULXhv70bdGAvi2CadbA65Kf5y2fm3Mqzclksl5ht1gstv/rSk3Wr9Fo+Oyzz7j//vuZO3cusbGx9OnThzFjxtC+ffsKZZaW+/jjjzNo0CAAHnnkEe644w7i4+OJi4sDYMKECcyfP79cPUr/PudPVzavdPrRRx+1zW/YsCFTp07loYce4oMPPkCn0+Hj44OiKISEhNjiDh8+zLfffktiYiIRERG2ui5dupTPPvuM1157jZkzZzJ48GD+85//4OPjQ4sWLfj7779ZtmyZ3b+bxWJBVVWMRiNabfnbWqv7vZZGvxDCKWk0CrExAcTGBDB5aCv2nsxmyd5U/tiTyvHMfJbvT+f/2bvzuKiq/oHjn9nY9x1kR9xxz33DBVFLS0tLc8kiy8rMp6ftKS0rfcy0stJySa2s7CnzV5nmvuO+i4ogyCLIIrIvAzO/P9BRAhQQBcbv+/Xi5dx7z7lzvgzOuefcc8/ZGHEZE5WSnoFODApyZ0BzV3k2UogGrqioiMOHD/PGG2+U2R8SEsLevXsrzBMeHk5ISEiZfQMHDmTZsmVotdoK1+6ePXs27733Xrn9GzduxMKiGstQ3sKmTZtq5Tz1kcRWe+yBhx1giB1EZymIyFAQcVVBagHsi8lgX0wGc/6OxN5ETwt7PS3s9ATa6jGtwZQ38rk1THv37sXNzY2cnByKiorQ6/WET+tSJ2XR5ueSVVD1zqcBAwYQERFBeHg4Bw8eZPPmzcydO5cFCxYwevRoAPLz88nKyjIMrw8ICDB0xFpbWwOls+9f32djY8Ply5cN28XFxRQVFRm2r+/TarWGfTqdjoKCAsP2rl27mD9/PufOnSM7O5vi4mIKCgpISkrC0tKSgoIC9Hp9mXPu2bMHvV5Ps2bNysRYWFiIjY0NWVlZnD59mgcffBCA7OxsANq1a8eGDRvKnOtmRUVF5Ofns3PnToqLi8scy8vLq9LvWRr9QogGT6FQEORpS5CnLa8NbMqZpGzWn0rir5NJRKfmsuVsClvOpqBWKuje2InBQW4MaOGGtYnMjixEQ5OWlkZJSQmurq5l9ru6upKcnFxhnuTk5ArTFxcXk5aWhru7e7k8b775JtOmTTNsZ2Vl4eXlRUhICDY2NncUg1arZdOmTQwYMKDCDoeGTGK7dy6m590YBRCTQUaRjj2XFey5DBqVgs5+DvQKdKJPEyd8HS1uOQqgvsVWm+6H2Lp160ZSUhJWVlaYmZkBYFvHZasOGxsbhg0bxrBhw/jggw8ICwtjzpw5hka/ubk5NjY2hiH0dnZ2hu9hS0tLABwcHAz7zM3N0ev1hm0TExM0Gk2Z7269Xl9mn1KpxMzMDBsbGy5evMjIkSOZNGkSH374IQ4ODuzevZuwsDBDWczMzFAoFGXOaWpqikql4uDBg+XuyFtZWWFjY4NSqcTEpHSJzuujBSo6180KCgowNzenV69ehs/3uso6Cv5JGv1CCKOiUCho4WFDCw8b/hXSlPOXs/nrZDLrTyVxNjmbHZGp7IhM5a3fTtHZ1x5/pYJ+xTqM7DpACKP3zwaMXq+/ZaOmovQV7b/O1NS0wudLNRpNrTUcavNc9Y3Edvc1drOlsZstT/cMIL+ohPALaWw/l8rWsykkZOSzOyqd3VHpzFp/Dh9HC4KbutC7qTNd/R0rXfmmvsR2NxhzbGq1GoVCgVKpNIqZ7lu2bMn//d//Gbavx3U9tn++vtU+AGdnZ5KTkw3bJSUlnD59muDg4DK/r+u/wyNHjlBcXMz8+fMNx3/55Zcy72NmZkZJSUmZ/B06dKCkpIS0tDR69uxZYWwtWrRg//79Zd7v+nZln51SqUShUFT4N1zVv2lp9AshjFqgqzUvu1rzcv9AolNzDHMAnL6Uxd4LV9iLivUf72RMFx+e7OyNi43Z7U8qhKgzTk5OqFSqcnf1U1JSyt3Nv87Nza3C9Gq1ul6u/yxEdZmbqOjbzJW+zVx5b6ie6NRctl+bDHB/TDoX0/NYsTeWFXtjMVUr6RbgSHAzF/o0ccHbsXYeVxGiutLT03nssceYOHEirVu3xtramkOHDvHRRx8xdOjQWnufvn37Mm3aNNatW0dAQACffPIJV69erTR9QEAAxcXFfP755zz00EPs2bOn3Iovvr6+5OTksGXLFtq0aYOFhQVNmjRhzJgxjBs3jnnz5tGuXTvS0tLYunUrQUFBDB48mClTptCtWzc+++wzRo0axebNm9mwYUOtxVqZht8VJIQQVRTgbMULwY1ZN6UnO/8dzCv9GmNroic9t4gFW87T7b9befmnoxyNy6jrogohKmFiYkKHDh3KPZ97fYhrRbp27Vou/caNG+nYsaPR3vkT9y+FQkFjFyue6enP98905uj0EBaP7cATnbxxtzWjsFjHtnOpTP+/0/Sau42+87Yza/05zmcq0OlkSUBx71hZWdG5c2c++eQTevXqRatWrXjnnXcICwvj888/r7X3mThxIuPHj2fcuHH07t0bPz8/goODK03ftm1b5s+fz5w5c2jVqhWrVq0qN0lst27deO655xg1ahTOzs589NFHACxfvpxx48bxr3/9i6ZNmzJ06FD279+Pl5cXAF26dGHx4sUsXryY9u3bs3HjRt5+++1ai7UycqdfCHFf8na0YHIff7xyzqL2bc93++M5GJvB/x27xP8du0QbT1smdPdlcJA7puoazIYkhLhrpk2bxtixY+nYsSNdu3Zl8eLFxMXF8dxzzwGlz+MnJiby7bffAvDcc8/xxRdfMG3aNMLCwggPD2fZsmX8+OOPdRmGEPeElamakJZuhLR0Q6/XE3k5h23nUth2NoVDFzO4kJrLhdRcQMWv83fxSLtGDG/fiMYu1nVddGHkTE1NmT17doWrruh0OrRabZkh9L6+voZHs67r06dPuX0TJkxgwoQJhm2NRsPChQtZuHBhpWWJjY0ts/3KK6/wyiuvlNk3duzYMtuLFi0qtyygRqPhvffeq3Ai2OsmTpzIo48+anjGH+Bf//pXpelrgzT6hRD3NZUSBrVyY2g7L04lZrJibyy/H7vE8YRMXll9nA/XneXJLt6M7uyNi7UM/ReiPhg1ahTp6enMnDmTpKQkWrVqxV9//YWPjw8ASUlJxMXFGdL7+fnx119/8corr/Dll1/i4eHBggULKl2uTwhjpVAoaOpmTVM3a57rHUBWgZY959PYfCaZv44nkpRZwMLt0SzcHk1rT1uGt2vEQ208cLSq2vrpQoj6SRr9QghxTatGtnz8WBveGNSMnw7E8d2+i1zOKuTTzef5clsUD7b2YEI3X9p42dV1UYW4702ePJnJkydXeGzFihXl9vXu3ZsjR47c5VIJ0bDYmGkYFORO/2ZOdNXEYeLbnt9PXGb7uRROJGRyIiGTD9adoU9TF0a0b0Tf5i4y+k2IBkga/UII8Q9OVqa82DeQSb0DWH8qmRV7YjgSd5Xfjiby29FE2nnbMaGbL4NauWOilqlRhBBCNHyam0a+pecU8sfxS6w5msiJhEw2n7nM5jOXsTXX8GBrd4a396S9t90tV8wQQtQf0ugXQohKaFRKhrbxYGgbD04kXGXF3lj+PJ7E0birHI07xofWZxjT2YfRnb1xtpahj0IIIYyDo5UpE7r7MaG7H+cvZ7PmaCK/HUkkOauAVfvjWLU/Dl9HC4a39+SRdo3wcpAVAISoz+QWlRBCVEFrTzvmj2zLnjf6Mm1AE5ytTUnJLuSTzZF0/+9Wpq0+xomEq3VdTCGEEKJWBbpa83poM/a80ZdVz3RmePtGWJioiE3PY/6mSHp+tI2RX4fz04E4sgq0dV1cIUQF5E6/EEJUg7O1KVP6BfJc7wDWn0pixd5YjsZdZc3RRNYcTaS9tx1PdfcjtJUbGpX0qwohhDAOKqWC7o2d6N7YifeHFfP36WTWHElkT3QaB2KucCDmCjN+P82AFq6MaO9Jz0An1FIPClEvSKNfCCFqwEStZFjbRgxr24hj8VdZuTeWP09c4kjcVY7EHcXVxpSxXXx4opO3zHoshBDCqFiaqhne3pPh7T1Jyszn/45d4tfDCZxPyeHPE0n8eSIJJytThrX1YHj7RrRwt5Hn/4WoQ9LoF0KIO9TWy462o9ry5qBmhmcdL2cV8vHGSBZsjWJom9JZ/1s1sq3rogohhBC1yt3WnOd6BzCplz+nL2Xx65EEfj92ibScQpbtjmHZ7hiauVkzvH1pR7mrjSx/K8S9Jo1+IYSoJS42ZrwyoAmTgwNYfzKZ5XtiOJ6QyS+HE/jlcAIdfeyZ0N2XgS1l6L8QQgjjolAoaNXIllaNbHlrcHN2Rqay5kgimyIuczY5m1l/neW/68/SvbETI9p7EtLSFQsTaYoIcS/I/zQhhKhlpmoVD7drxMPtGnE0LoMVe2NZdyKJQxczOHQxA3dbM568NvTfwdKkrosrhBBC1CqNSkm/5q70a+5KZp6WdSeTWHMkgUMXM9h1Po1d59OwNFExKMid4e0b0cXPEaVShv+Lmjl79iwTJkzg2LFjNGvWjGPHjtV1keodafQLIcRd1M7bnnbe9rw1uDmr9sfxw/6LJGUWMPfvc3y25TwPt/VgfDdfWnrI0H8hhBDGx9ZCw+jO3ozu7M3F9FzWHEnkt6OJxF3JM4yE87A145H2jXiknSeNXazqusjiHpowYQIrV64EQKVS4eHhwZAhQ/jggw9QqVRVOseMGTOwtLTk3LlzWFnJ309FpNEvhBD3gKuNGdMGNOGF4ADWnUhi+Z5YTiZm8vOhBH4+lEAnPwee6ubLgBauMtuxEEIIo+TjaMkrA5owtX8ghy9m8OuRRP48cYlLmQV8uS2aL7dF08bLjhHtG/Fgaw8ZDXefCA0NZfny5RQXFxMREcHEiRPJyMjgq6++qlL+6OhohgwZgo+PT43LUFRUhImJ8f691asry6ysrGr/CCFEQ2KqVjG8vSe/v9idX5/vxkNtPFArFRyIucLzq47Q66NtLNoeTUZuUV0XVYgKSV0thLhTCoWCjr4OzB4exMH/9OfL0e3p18wFlVLB8firTP+/03SetZlnvz3EhlNJFBaX1HWRG6ai3Mp/tAXVSJtftbQ1ZGpqipubG56enoSEhDBq1Cg2bdpkOL58+XKaN2+OmZkZzZo1Y+HChYZjCoWCw4cPM3PmTBQKBe+++y4AiYmJjBo1Cnt7exwdHRk2bBixsbGGfBMmTODhhx9m9uzZeHh40KRJk2rl+/jjj3F3d8fR0ZEXXngBrVZrSFNYWMhrr72Gl5cXpqamBAYGsmzZMsPxiIgIHnvsMWxsbHB1dWXs2LGkpaXV+PdXFfXqTr+dnV21lvNQKBRERkbi7+9/F0slhBC1T6FQ0MHHng4+9iQPbs6q/Rf5YX8clzILmLPhLJ9ujuThto2Y0N2X5u42dV1cIQykrhZC1CYzjYohrd0Z0tqdtJxCfj92iTVHEziVmMXGiMtsjLiMrbmGh9q4M7y9J+28qvcddF+b5VH5scAQGPO/G9tzG4M2r+K0Pj3gqXU3tj8Ngrz08unezaxZOW9y4cIFNmzYgEajAWDJkiW89957fPHFF7Rr146jR48SFhaGpaUl48ePJykpif79+xMaGsqrr76KlZUVeXl5BAcH07NnT3bu3IlareaDDz4gNDSUEydOGO7ob9myBRsbGzZt2oRer69yvm3btuHu7s62bduIiopi1KhRtG3blrCwMADGjRtHeHg4CxYsoE2bNsTExBga9UlJSQQHBzN27Fg+++wzCgsLef311xk5ciRbt269499fZepVox/gl19+wcHB4bbp9Ho9gwcPvgclEkKIu8vN1ox/hTTlheDG/HkiieV7Yjh9KYvVh+JZfSiezn4OPNXdj/7NXWTov6gXpK4WQtwNTlamTOzhx8QefpxLzmbN0QTWHk3kclYh3++L4/t9cfg5WTL82mS5Xg4WdV1kUQv+/PNPrKysKCkpoaCgdATCvHnzAPjwww+ZN28ew4cPB8DPz4+IiAi+/vprxo8fj5ubG2q1GisrK9zc3AD45ptvUCqVLF261NBBtHz5cuzs7Ni+fTshISEAWFpasnTpUkNjvqr57O3t+eKLL1CpVDRr1owhQ4awZcsWwsLCiIyM5Oeff2bTpk30798foEyn96JFi2jXrh3Tp0/HxsYGpVLJN998g5eXF5GRkYYRB7WtXjX6fXx86NWrF46OjlVK7+/vb+gFEkKIhs5Mo+LRDp6MaN+IwxczWL43lg2nktkfc4X9MVdoZGfOuK4+jHrACzsL433uTNRvUlcLIe6Fpm7WvDmoOa8NbMbe6DR+O5LI+lPJxKTlMm9TJPM2RdLZz4ER7T0ZFOSGtZl8z5Tz1qXKjyn+MUnev6NukfYfNxymnqx5mSoQHBzMokWLyMvLY+nSpURGRvLiiy8SFxdHfHw8Tz/9tOEuOkBxcTG2tpVPgHz48GGioqKwtrYus7+goIDo6GjDdlBQUJnn+Kuar2XLlmUmGXR3d+fkydLfybFjx1CpVPTu3bvSsm3fvh1PT89yx6Kjo++PRn9MTEy10p86deoulUQIIerO9WcdO/o6kJSZz/f7Sof+J17NZ/b6s3yyOZJH2nkyoZsvTd2sb39CIWqR1NVCiHtJpVTQM9CZnoHOvP9wMRtOJbPmaAJ7o9MNneLv/N8pQlq6Mbx9I3o2dpJRcdeZWNZ92iqwtLSkcePGACxYsIDg4GBmzpzJuHHjgNIh/p07dy6T51Yz++t0Ojp06MCqVavKHXN2di7zvjXJ98+ObIVCgU6nA8Dc3LzScl1/jwcffJC3334bKysrlMobf6vu7u63zHsn6lWjXwghRFnutub8e2AzXuobyO/HL7F8TyxnkrL48UAcPx6Io6u/IxO6+9K/uSsqWeNYCCGEEbM0VTOigycjOnhy6Wo+a48l8uvhBKJTc/nj+CX+OH4JJytTHm7rwfD2nrTwkDlxGqIZM2YwaNAgxowZQ6NGjbhw4QJjxoypcv727duzevVqXFxcsLGp+t9ATfPdLCgoCJ1Ox44dOwzD+//5Hr/++ive3t44ODiUafTfTfW20b9gwYIK9ysUCszMzGjcuDG9evWq8vqNQgjRkJlpVIzs6MVjHTw5GJvBir0xbDiVTPiFdMIvpONpf23of0dvbC1kiKO4N6SuFkLUFQ87cyb3aczzvQM4mZjJmiOJ/H78Emk5hSzdHcPS3TE0c7Pm4bbuWMiCOA1Knz59aNmyJfPnz2f69OlMnToVGxsbBg0aRGFhIYcOHSIjI4Np06ZVmH/MmDHMnTuXYcOGMXPmTDw9PYmLi2PNmjX8+9//rnBo/Z3ku5mvry/jx49n4sSJhon8Ll68SEpKCiNHjuSFF15gyZIlPPPMM7zxxhu4uLgQFRXFTz/9xJIlS+5afVlvG/2ffPIJqamp5OXlYW9vj16v5+rVq1hYWGBlZUVKSgr+/v5s27YNLy+vui6uEELcEwqFgk5+DnTycyDxaunQ/x8PxJGQkc+sv87yyabzPNK+EU92un3FJMSdkrpaCFHXFAoFrT3taO1px1uDm7MjMpU1RxLYciaFs8nZ/HdDNkpU7Mw9yhOdfejdxFmG/zcAU6dO5emnn+btt99m6dKlzJ07l9deew1LS0uCgoKYOnVqpXktLCzYuXMnr7/+OsOHDyc7O5tGjRrRr1+/W97Br2m+f1q0aBFvvfUWkydPJj09HW9vb9566y0APDw82LVrF6+++qqhE8PHx4fQ0NC7ete/3jb6Z82axeLFi1m6dCkBAQEAREVFMWnSJJ599lm6d+/O448/ziuvvMIvv/xSx6UVQoh7r5GdOa+HNuPlfoH837FElu+J5WxyNj/sj+OH/XE0t1Pi3CKDboEudV1UYaSkrhZC1CcmaiUDWrgyoIUrmXla/jx5iV8OxXM0PpPNZ1PZfDYVVxtTHuvgxciOXng7yuz/dW3FihUV7h89ejQPPvggNjY2jB49mtGjR1d6jmPHjpXb5+bmxsqVK6v9vjXJ9+mnn5bZNjMzY/78+cyfP7/CcwQGBvLdd98ZZu+/F+pto//tt9/m119/NVxEADRu3JiPP/6YESNGcOHCBT766CNGjBhRh6UUQoi6Z6ZRMeoBb0Z29GJ/zBVW7IllY0QyZ64qGb3sIA/42jM5uDF9mjjL2saiVkldLYSor2wtNIzp7MPI9h5888tfXLYMYO3xJC5nFfLFtii+2BZF98aOjHrAm5AWrphp5DEkYbzqbaM/KSmJ4uLicvuLi4tJTk4GSodHZGdn3+uiCSFEvaRQKOji70gXf0eiLmcyfdVODqarOBibwVPLD9LC3YYXghsT2spNJv0TtULqaiFEQ+BmARMHNeX1wc3ZHJHCTwfj2B2Vxp6odPZEpWNnoeGRdo0Y9YAXzdxk8j9hfOrtAy3BwcFMmjSJo0ePGvYdPXqU559/nr59+wJw8uRJ/Pz86qqIQghRb/k4WDAqQMe2aT0J6+mHhYmKiKQsXvjhCAPm7+Dng/EUFevqupiigZO6WgjRkJiqVQxp7c53T3dm12vBvNwvEA9bM67maVm+J5bQT3fx8Jd7+OlAHDmF5Ts0hWio6m2jf9myZTg4ONChQwdMTU0xNTWlY8eOODg4sGzZMgCsrKyYN29eHZdUCCHqL1cbM/4zpAV7Xu/Ly/0CsTXXcCEtl9d+PUHvudtYvieG/KKSui6maKCkrhZCNFSe9ha8MqAJu17vy4qnHmBQKzfUSgXH4q/yxpqTdPpwM6//coIjcRno9fq6Lq4Qd6TeDu93c3Nj06ZNnD17lsjISPR6Pc2aNaNp06aGNMHBwXVYwuorKSlBq9XeMo1Wq0WtVlNQUEBJiXFdiBtbbBqNRpahEg2GvaUJrwxoQlgvf37cH8eSXRdIyizgvT8i+HxrFE/38OPJLj7Ymstyf6LqjLGuFkLcX1RKBX2autCnqQup2YX8djSBnw7GcyE1l9WH4ll9KJ4mrlaM7OjF8PaeOFia1HWRy7k+X490Thgnne7OR2bW20b/df7+/igUCgICAlCr631xK6TX60lOTubq1atVSuvm5kZ8fLzRTbhljLHZ2dnh5uZW18UQosqsTNWE9fJnbFcffj2SwFc7oom/ks/cv8/x1fZonuzqw8Tufjhbm9Z1UUUDYgx1tRBCOFub8myvAMJ6+nPoYgY/HYhn3clLRF7O4YN1Z/howzkGtHTl8Qe86B7ghLKezI+jVqtRKBSkpqbi7Gwck/bqdDqKioooKCi4ZzPc3ytVjU2v11NUVERqaipKpRITk5p3ONXbmjkvL4+XXnrJsGRCZGQk/v7+TJkyBQ8PD9544406LmHVXW/wu7i4YGFhccv/iDqdjpycHKysrIzyD9xYYtPr9eTl5ZGSkgKAk5NTHZdIiOox06gY09mHUR29WHcyiS+3RRF5OYdF26P5ZncMjz/gRVgvfzztZTkjUTljqquFEOI6hULBA74OPODrwIyhLfj92CVWH4znZGIm604kse5EEp725ozs6MVjHT1xtzWv0/KqVCo8PT1JSEggNja2TstSW/R6Pfn5+ZibmxtFJ8bNqhubhYUF3t7ed9R+qreN/jfffJPjx4+zfft2QkNDDfv79+/PjBkzGsyFRElJiaHB7+joeNv013t+zMzMGnzD+J+MLTZz89Iv+JSUFOzt7eu4NELUjFqlZFjbRjzU2oMtZ1P4YlsUx+OvsjL8Iqv2xzGsbSOe7xNAYxerui6qqIeMpa4WQojK2JhpeLKLD0928eFUYiY/H4rnt6OJJGTkM39TJJ9ujqR3E2dGPeBNv+YuaFR1c41rZWVFYGDgbR8lbii0Wi07d+6kV69eaDTG9ehhdWJTqVSGkRx3ot42+teuXcvq1avp0qVLmSBbtGhBdHR0HZaseq7/x7OwkLtlxuj651rRklVCNCRKpYIBLVzp39yF8Oh0vtwexZ6odH49ksCaowmEtnRjcp/GBHna1nVRRT1iLHW1EEJURatGtrRqZMtbg5uz/lQSPx2IZ3/MFbadS2XbuVScrEwZ0aERozp64e987zvLVSqV0cw3pVKpKC4uxszMzOga/XURW71t9KempuLi4lJuf25uboMc4tEQyyxuTyZOEcZGoVDQrbET3Ro7cSz+Kgu3RbEx4jLrTyWz/lQyPQOdeCG4MZ39HOR7TRhdXS2EEFVhplHxSDtPHmnnyYXUHH4+lMAvhxNIyynk6x0X+HrHBTr5OfD4A14MauWOuYlxNMRFw1Vvx1g/8MADrFu3zrB9/eJhyZIldO3ata6KJYQQ9422XnYsHteRja/04pF2jVApFew6n8bji/fx6FfhbD17WTq87nNSVwsh7nf+zla8MagZ4W/25euxHejbzAWlAg7EXGHaz8fpNGsz76w9xanEzLouqriP1ds7/bNnzyY0NJSIiAiKi4v57LPPOH36NOHh4ezYsaOuiycovbj77bffePjhh+/q+/j6+jJ16lSmTp16V9+nIitWrGDq1KlVWnlBCGPVxNWaT0a1ZdqAJny9M5qfDyVw+GIGE1ccopmbNZODGzMkyB1VPZnFWNw7UlcLIUQpjUrJwJZuDGzpRlJmPr8cSmD1oXgSMvL5bt9Fvtt3kVaNbBj1gDfD2npgY2ZcQ9ZF/VZv7/R369aNPXv2kJeXR0BAABs3bsTV1ZXw8HA6dOhQ18W7L6SkpDBp0iS8vb0xNTXFzc2NgQMHEh4eDkBSUhKDBg2q41KWt2LFCuzs7Oq6GEIYHS8HCz54OIjdrwUzqZc/liYqziZnM+XHo/Sbt52fDsRRWFxS18UU95DU1UIIUZ67rTkv9Qtk57+D+f7pzjzY2h0TlZJTiVm8s/YUnT7czLSfj3Eg5oqMmBP3RL290w8QFBRkWAZI3HsjRoxAq9WycuVK/P39uXz5Mlu2bOHKlSsAsj69EPcpFxsz3hzcnMl9GrMyPJZv9sQQm57HG2tO8unm84T18ueJTl5YmNTrKkbUEqmrhRCiYkqlgh6BTvQIdOJKbhG/HU1k9cE4Ii/nsOZIImuOJOLvZMmoB7wY3t4TZ2vTui6yMFL16k5/VlZWlX/E3XX16lV2797NnDlzCA4OxsfHh06dOvHmm28yZMgQoHR4/9q1awGIjY1FoVDw888/07NnT8zNzXnggQeIjIzk4MGDdOzYERsbGx599FFSU1MN79OnT59yw/YffvhhJkyYUGnZ5s+fT1BQEJaWlnh5eTF58mRycnIA2L59O0899RSZmZkoFAoUCgXvvvsuAEVFRbz22ms0atQIS0tLOnfuzPbt28uce8WKFXh7e2NhYcEjjzxCenr6Hf0ehTBmthYapvQLZM/rfXl7SHNcbUxJzirg/T8j6P7frSzYcp7MPONYOkjcIHW1EEJUn4OlCU/38OPvqb34bXI3Hn/ACwsTFRfScpm9/ixdZ2/hue8Os+1cCiU6ufsvale9ug1jZ2dX5dl+S0oa5hBSvV5Pvrbysut0OvKLSlAXFdf6WvbmGlWVf79WVlZYWVmxdu1aunTpgqlp1XoeZ8yYwaeffoq3tzcTJ07kiSeewMbGhs8++wwzMzNGjhzJjBkz+Oqrr2och1KpZMGCBfj6+hITE8PkyZN57bXXWLhwId26dePTTz9l+vTpnDt3zhALwFNPPUVsbCw//fQTHh4e/Pbbb4SGhnLy5EkCAwPZv38/EydOZNasWQwfPpwNGzYwY8aMGpdTiPuFpamaZ3r6M7arD78dSWTRjmgupucxf1MkX++I5smuPjzdww8Xa7O6LqqoBfdDXS2EEHeLQqGgnbc97bztefvBFqw7cYmfDsZzNO4qG04ns+F0Mu62ZjzW0YvHOnji5SDLfos7V68a/du2bTO8jo2N5Y033mDChAmGGYDDw8NZuXIls2fPrqsi3rF8bQktpv9dJ+8dMXNglYfbqtVqVqxYQVhYGF999RXt27end+/ePP7447Ru3brSfK+++ioDBw4E4OWXX+aJJ55gy5YtdO/eHZ1Ox5NPPsnq1avvKI6bRwb4+fnx/vvv8/zzz7Nw4UJMTEywtbVFoVCUefwgOjqaH3/8kYSEBDw8PAxl3bBhA8uXL2fWrFl89tlnDBw4kDfeeAOAJk2asHfvXjZs2HBH5RXifmGqVvF4J28e7eDJX6eSWbgtirPJ2Xy94wLL98QysqMnk3oFyAVMA3c/1NVCCHEvWJmqGfWAN6Me8OZccjarD8az5mgCSZkFLNhyns+3nqdHYycef8Cb/i1cMFXL0n+iZupVo793796G1zNnzmT+/Pk88cQThn1Dhw4lKCiIxYsXM378+Nueb/bs2axZs4azZ89ibm5Ot27dmDNnDk2bNjWk0ev1vPfeeyxevJiMjAw6d+7Ml19+ScuWLWs3uAZoxIgRDBkyhF27dhEeHs6GDRv46KOPWLp0aaXD72/uEHB1dQVKn/e8zsXFhZSUlDsq17Zt25g1axYRERFkZWVRXFxMQUEBubm5WFpaVpjnyJEj6PV6mjRpUmZ/YWEhjo6OAJw5c4ZHHnmkzPGuXbtKo1+IalKrlAxt48FDrd3ZejaFL7dFcSTuKt/vi+PHA/EMa+PB830CCHS1ruuiihqo7bpaCCEENHWzZvpDLXh9UFM2nr7M6oPx7I5KY9f50h8HSxOGt2vEqAe8pP4U1VavGv03Cw8Pr3AIeMeOHXnmmWeqdI4dO3bwwgsv8MADD1BcXMx//vMfQkJCiIiIMDQOP/roI+bPn8+KFSto0qQJH3zwAQMGDODcuXNYW9f+fyhzjYqImQMrPa7T6cjOysbaxvquDO+vLjMzMwYMGMCAAQOYPn06zzzzDDNmzKi00a/R3Fh+5Prwz3/u0+l0hm2lUllu1lKttvJngC9evMjgwYN57rnneP/993FwcGD37t08/fTTt8yn0+lQqVQcPnwYlars7+H68H+ZPVWI2qVQKOjX3JW+zVzYH3OFL7dFset8GmuOJrLmaCIhLVx5Ibgxbbzs6rqoooZqo64WQghxg6laxUNtPHiojQdx6Xn873A8Px+K53JWIUt3x7B0dwwdfOwZ9YAXA5s71XVxRQNRbxv9Xl5efPXVV8ybN6/M/q+//hovL68qneOfd2iXL1+Oi4sLhw8fplevXuj1ej799FP+85//MHz4cABWrlyJq6srP/zwA5MmTarwvIWFhRQWFhq2r09WpNVqyzU8tVoter0enU5naOyaqStvzOv1CopNVNV6/r6q9Hr9HTdsmzdvztq1aw2xXI/rn9vXX9+87+b3vn7MycmJS5cuGbZLSko4deoUffr0KdM5cP13eODAAYqLi5k7d66hU+T64wLX30etVlNSUlImf5s2bSgpKSE5OZmePXuWi0un09G8eXPCw8PL5Lu+POHN+/6ZT6/XU1xcDNy6w6Khuh6TxNaw1LfYOnjZ8M249pxMzOSrnTFsOpPCxojLbIy4TLcAB57v5U9nP/sqfe/Vt9hqS23HdS9+P7VRVwshhKiYt6MF/wppysv9Atl5PpWfDsSz5WwKhy9mcPhiBu+Zqmhlo8QiMpVeTV1l+L+oVL1t9H/yySeMGDGCv//+my5dugCwb98+oqOj+fXXX2t0zszMTAAcHBwAiImJITk5mZCQEEMaU1NTevfuzd69eytt9M+ePZv33nuv3P6NGzdiYVH2WVW1Wo2bmxs5OTkUFRVVuazZ2dlVTns3XLlyhQkTJjBmzBhatmyJtbU1R48e5aOPPmLQoEGGjo78/HyysrIMs+fn5uYajuXl5QGlsdw8akGv1xvSdO3albfffpv//e9/+Pn5sXDhQjIyMtBqtYY0Op2OgoICsrKycHNzo7i4mI8//pjQ0FD27dtnuMt0/X2cnZ3Jycnhjz/+oFWrVpibm+Pm5sZjjz3GuHHj+OCDD2jdujXp6ens3LmTFi1aEBISwsSJExk4cCDvv/8+Q4YMYevWrWzYsKFMef+pqKiI/Px89u7dC8CmTZtq+6OoNyS2hqk+xjbEFjq0hi2XlBxKVbA3+gp7o6/ga6WnfyMdLe31KKvQ51kfY6sNtRXX9e/gu+lu1NVCCCHKUquU9G3mSt9mrqRkF/Dr4dKl/2LT89ifqmT/d0exNlXTr7kLg4Lc6d3EGbMajPAVxqveNvoHDx7M+fPnWbRoEWfOnEGv1zNs2DCee+65Gt090Ov1TJs2jR49etCqVSsAkpOTgRvPnl/n6urKxYsXKz3Xm2++ybRp0wzbWVlZeHl5ERISgo2NTZm0BQUFxMfHY2VlhZnZ7Weu1uv1ZGdnY21tXet3+qvD1NSUbt26sXjxYqKjo9FqtXh5eREWFsabb76Jubk5AObm5tjY2BiGyFtaWhp+B9c7QKytrbGxsTHc6VcoFIY0kydPJjIyksmTJ6NWq5k6dSrBwcFoNBpDGqVSiZmZGTY2NnTv3p158+bx8ccfM3PmTHr27MmsWbOYMGGC4X0GDBjApEmTePrpp0lPT2f69OnMmDGD7777jg8//JDp06eTmJiIo6MjXbp04ZFHHsHGxoZ+/fqxePFi3nvvPebMmUO/fv14++23+eCDD8p9rtcVFBQY5ovYuXMnAwYMKPM4gzHQarVs2rRJYmtgGkJsE4GEjHyW7Ynlf4cTic3RsfSciiYuVkzq5cfgVq6oVeVHRjWE2GqituO6F0vm1XZdLYQQ4tZcrM14vk8Az/X2Z29UCl+tO8C5XHNSsgtZe+wSa49dwsJERXAzFwa1ciO4qQuWpvW2ySfukXr1F3DixAlatWpluCvs6enJhx9+WGn606dP07RpU9Tq24fx4osvcuLECXbv3l3u2D8b13q9/pYNblNT0wqXsNNoNOUu1EpKSlAoFCiVyio9o399GPn1PHXF3Nyc//73v/z3v/+tNM3Nw/X9/f3LPTrQt2/fckP6R48ezXPPPWeIzdTUlEWLFrFo0aJK3yc2NrbM9rRp08p0ugDlJov66quvyj1nampqysyZM5k5c2al7/XMM8+Uew711VdfrTS9UqlEoVAY/gYr+hswFhJbw1TfY/Nz0fDBI615uX9TvtkTw3fhF4lMyeFfv5zks63RPNc7gBEdGlU4ZLG+x1ZTtRXX3frd3M26uioyMjKYMmUKv//+O1A6ceDnn3+OnZ1dpXkmTJjAypUry+zr3Lkz+/btq5UyCSHEvaZQKOjk60Can47Q0F6cSs5h/clk1p9KJvFqPutOJLHuRBKmaiW9mzgzKMiNfs1dsTEzvnpT3F7dtSor0K5dO9LT06ucvmvXrsTFxd023UsvvcTvv//Otm3b8PT0NOy/vqTb9Tv+16WkpJS7+y+EEOLucbY25fXQZux5oy+vhjTBwdKEuCt5vPXbSXrO2caSnRfILSyu62IK7l5dXVWjR4/m2LFjbNiwgQ0bNnDs2DHGjh1723yhoaEkJSUZfv76669aK5MQQtQlpVJBBx8H3n6wBbtfD+b3F7vzXO8AfB0tKCzWsTHiMq+sPk6H9zfx1PID/Hwwnozcqj92LBq+enWnX6/X884775R7Lr4yt3tGXq/X89JLL/Hbb7+xfft2/Pz8yhz38/PDzc2NTZs20a5dO8M5d+zYwZw5c2oWhBBCiBqzNdfwYt9AJvbwY/XBeBbvvEBSZgEf/nWGL7dHMaGbL2Me8Lz9icRdU9t1dXWcOXOGDRs2sG/fPjp37gzAkiVL6Nq1K+fOnSuzJO8/mZqaGjr7q6I6k/ZWl7FORgkSW0MlsTVMlcXW3NWS5q4BTOvnz9nkHP6OuMzfpy8TlZrLtnOpbDuXiuo3BZ397Alt6cqA5i44WZUfxVyX7sfP7U7OdTv1qtHfq1cvzp07V+X0Xbt2NTxbXpEXXniBH374gf/7v//D2tracEff1tYWc3NzFAoFU6dOZdasWQQGBhIYGMisWbOwsLBg9OjRdxyPEEKImrEwUfNUdz/GdPZh7dFEFu2IJiYtl083n2fxzgt0cVLSKacQd3sZpniv1XZdXR3h4eHY2toaGvwAXbp0wdbWlr17996y0b99+3ZcXFyws7Ojd+/efPjhh7i4uFSavjqT9taUsU5GCRJbQyWxNUy3i60J0KQxJHvA8SsKjqcrSczDMJHujN8jCLCBNg46WjvosatH7f/7+XOriqpO2luvGv3bt2+v1fNdf068T58+ZfYvX77csM78a6+9Rn5+PpMnTyYjI4POnTuzceNGrK2ta7UsQgghqs9ErWTkA16M6ODJ+lNJfLktmjNJWWy9pCR4/i7GdPZhUi9/XGxuP1GqqB21XVdXR3JycoUNdRcXl3KP6t1s0KBBPPbYY/j4+BATE8M777xD3759OXz4cIVz9ED1Ju2tLmOdjBIktoZKYmuY7iS2i+l5bDhdunTuicQsorIgKkvFr7HQzsuWgS1dGdjCFU/72um0rS753KqmqpP21qtGf22rypr0CoWCd999l3fffffuF0gIIUSNqJQKHmztwZAgdzaeTmLW2iNczNGxbHcM3+27yBMPePFcnwDcbevm4kTcmXfffbfCu+o3O3jwIFB+8l24/QS8o0aNMrxu1aoVHTt2xMfHh3Xr1jF8+PAK81Rn0t6aMtbJKEFia6gktoapJrE1drPlRTdbXuzXhISMPDacKp0E8PDFDI7GZ3I0PpP/bogkqJEtg4LcGNTKHT8ny7sUQeXkc7v9OarCqBv9QgghjItCoaBvU2fyW5Vg07QTC7fHcOhiBivDL/LjgXge6+jJ830C8LSvneHX4t548cUXefzxx2+ZxtfXlxMnTnD58uVyx1JTU6s1Aa+7uzs+Pj6cP3++2mUVQghj42lvwTM9/Xmmpz+Xswr4+3Qyf51M4kDMFU4mZnIyMZOPNpyjmZs1g1q5MyjIjUAXqzpdXlxUjzT6hRBCNDgKBfRs7ERwMzfCL6SzYMt59l24wqr9caw+GM+I9p5MDg7Ax/He35UQ1efk5ISTk9Nt03Xt2pXMzEwOHDhAp06dANi/fz+ZmZl069atyu+Xnp5OfHw87u7uNS6zEEIYI1cbM8Z19WVcV1/ScgrZePoy608lER6dztnkbM4mZ/PJ5kgCnC0Z1Mqd0FZutPSwkQ6Aek4a/UIIIRoshUJBtwAnugU4sf9COp9vjWJ3VBqrD8Xzy5EEhrX14MXgxvg7W9V1UUUtaN68OaGhoYSFhfH1118D8Oyzz/Lggw+WmcSvWbNmzJ49m0ceeYScnBzeffddRowYgbu7O7Gxsbz11ls4OTnxyCOP1FUoQghR7zlZmTK6szejO3tzNa+ITRGX2XAqmV3n04hOzeWLbVF8sS0KbwcLBrVyY1CQO208baUDoB6SRr8QQgij0Nnfkc7+jhy+mMHnW8+z/Vwqa44ksvZoIg+29uClvo0JdJVJWhu6VatWMWXKFEJCQgAYOnQoX3zxRZk0586dIzMzEwCVSsXJkyf59ttvuXr1Ku7u7gQHB7N69WqZtFcIIarIzsKExzp68VhHL7IKtGw7m8JfJ5PYfi6VuCt5fL3zAl/vvICHrRmh1x4B6OBtj1IpHQD1gTT6xV119uxZJkyYwLFjx2jWrFmdzvoshLg/dPCxZ8VTnTgef5XPt0ax+cxlfj9+iT9OXGJwK3de7NuY5u53Nvu6qDsODg58//33t0xz80S+5ubm/P3333e7WEIIcd+wMdMwrG0jhrVtRG5hMdvPpbL+VBJbz6ZwKbOAb/bE8M2eGJytTQlt6cagVm508nNArVLWddHvW9LoF5WaMGECK1euBErvlHh4eDBkyBBmzZqFvb19lc4xY8YMLC0tOXfuXK2tayyEEFXRxsuOpeM7cioxky+2RrHhdDLrTiax7mQSIS1cmdIvkFaNbOu6mEIIIUSDZWmqZkhrd4a0dqdAW8LOyFQ2nEpm05nLpGYX8t2+i3y37yIOliaEtHAltJUb3QKcMFFLB8C9JI1+cUuhoaEsX76c4uJiIiIimDhxIlevXuXHH3+sUv7o6GiGDBmCj48POp2uymtJ3qyoqAgTE5Nq5xNCCIBWjWz5amwHziZn8cXWKNadTGJjROnaxP2aufBSv0DaetnVdTGFEEKIBs1MoyKkpRshLd0oKtaxJzqN9dfq3Cu5Rfx0MJ6fDsZjY6amfwtXBrdyp0egE2YaVV0X3ehJF0tdKcqt/Ke4oOpptflVS1tDpqamuLm54enpSUhICKNGjWLjxo2G48uXL6d58+aYmZnRrFkzFi5caDimUCg4fPgwM2fORKFQGNZgTkxMZNSoUdjb2+Po6MiwYcOIjY015JswYQIPP/wws2fPxsPDgyZNmlQr38cff4y7uzuOjo688MILaLVaQ5rCwkJee+01vLy8MDU1JTAwkGXLlhmOR0REMHjwYKysrHB1dWXs2LGkpaXV+PcnhKg/mrnZ8MXo9mx6pRePtGuEUgFbzqbw8Jd7GPfNAQ7FXqnrIgohhBBGwUStJLipCx892oaD/+nP9093Zkxnb5ysTMgqKGbNkUSe+fYQHd7fxEs/HmX9ySTyiorruthGS+7015VZHhXuVgKWvsEwbs2NnXMbgzav4vP49ICn1t3Y/jQI8tLLp3s3s+ZlvebChQts2LABjUYDwJIlS5gxYwZffPEF7dq14+jRo4SFhWFpacn48eNJSkqif//+hIaG8uqrr2JhYUFOTg79+vWjZ8+e7Ny5E7VazQcffEBoaCgnTpww3NHfsmULNjY2bNq0Cb1eT15eHsHBwbfNt23bNtzd3dm2bRtRUVGMGjWKtm3bEhYWBsC4ceMIDw9nwYIFtGnThpiYGEOjPikpid69exMWFsb8+fPJz8/n9ddfZ+TIkWzduvWOf39CiPqhsYs1n4xqy5R+gXy5LYrfjiayMzKVnZGpdAtwZEq/QLr4O9Z1MYUQQgijoFEp6RHoRI9AJ2YOa8Wh2CusP5XMhlPJJGcV8MfxS/xx/BJmmtKOgtBWbvQMcKjrYhsVafSLW/rzzz+xsrKipKSEgoLSEQjz588H4P3332fevHkMHz4cAD8/PyIiIvj6668ZP348bm5uqNVqrKyscHNzQ6fT8e2336JUKlm6dKlhOY/ly5djZ2fH9u3bDbMxW1pasnTpUkNj/ptvvqlSPnt7e7744gtUKhXNmjVjyJAhbNmyhbCwMCIjI/n555/ZtGkT/fv3B8Df398Q66JFi2jfvj2zZs0y7Pvmm2/w8vIiMjLSMOJACGEc/Jws+fixNkzpG8iiHVH8cjiBvdHp7I1Op5OfAy/3C6RbgKMsPSSEEELUEpVSYVhtZ/qDLTiWcJX1J5NYfyqZhIx81p9KZv2pZEzUSvwtlSTbxtK7mStNXa2lPr4D0uivK29dqnC3TqcjNyeXMvNK/zuq8vMo/vGExtSTd1y0mwUHB7No0SLy8vJYunQpkZGRvPTSS6SmphIfH8/TTz9tuIsOUFxcjK1t5RNjHTt2jKioqHLLJBUUFBAdHW3YDgoKKvMc/+HDh6uUr2XLlqhUN54Lcnd35+TJk4b3VqlU9O7du8KyHT58mG3btmFlVX497+joaGn0C2GkvB0tmD28NS/2DeSr7dGsPhjPgZgrjFm6n/bedkzpF0jvJs5ysSGEEELUIqVSQXtve9p72/PW4OacSsxi/anSDoCYtFzOZiqZvSGS2RsicbE2pUegEz0Dneje2AkXa7O6Ln6DIo3+umJiWfF+nQ7UJVVLW53z1pClpSWNGzcGYMGCBQQHB/Pee+/x4osvAqVD/Dt37lwmz82N7n/S6XR06NCBVatWlTvm7Oxc5n1rku/6owfXKRQKdDodULps063odDoeeugh5syZU+6Yu7v7LfMKIRq+RnbmvP9wK14IbsxXO6L58UAcR+KuMmH5QVp72jKlbyD9mrtI418IIYSoZQqFgiBPW4I8bfn3wKacSbzK4j92ka5x4eDFDFKyC1lzJJE1RxIBaOZmTa8mzvQMdOIBXweZDPA2pNEvqmXGjBkMGjSI559/nkaNGnHhwgXGjBlT5fxt2rRh7dq1uLi4YGNT9XWy27dvz+rVq6ud72ZBQUHodDp27NhhGN7/z/f49ddf8fX1Ra2W/xpC3K/cbM14d2hLJgcHsGTnBb7fF8eJhEye+fYQLT1seKlvY0JauKFUSuNfCCGEqG0KhYJAVyuCPfQMHtyBEpQcvpjBrvNp7DqfyulLWZxNzuZscjaLd17ARK2ks58DPRo70TPQmWZu1lJH/4PM3i+qpU+fPrRs2ZJZs2bx7rvvMnv2bD777DMiIyM5efIky5cvNzzzX5HHHnsMJycnhg0bxq5du4iJiWHHjh28/PLLJCQkVJpvzJgxNcp3M19fX8aPH8/EiRNZu3YtMTExbN++nZ9//hmAF154gStXrvDEE09w4MABLly4wMaNG5k4cSIlJSW3ObsQwti4WJvxnyEt2P16MM/3CcDSRMXpS1k89/0RBn22iz9PXKJEp6/rYgohhBBGzUyjontjJ94Y1Ix1U3py6O3+fPZ4Wx7t4ImbjRlFxTp2nU9j9vqzDF6wi06zNjP1p6P8ejiBy1kFt3+D+4DczhTVNm3aNJ566imioqJYunQpc+fO5bXXXsPS0pKgoCCmTp1aaV4LCwu2b9/Om2++yfDhw8nOzqZRo0b069fvlnfwLSws2LlzJ6+//nq18v3TokWLeOutt5g8eTLp6el4e3vz1ltvAeDh4cGePXt4/fXXGThwIIWFhfj4+BAaGopSKf1jQtyvHK1MeT20Gc/29OebPTGs2BPLucvZvPjDUQKcI3mpbyAPtnZHrZLvCSGEEOJuc7IyZVjbRgxr2wi9Xk9USo5hFMC+C1dIyyli7bFLrD1WOodaU1drw3wAnf0cMTe5/x4FkEa/qNSKFSsq3D969GhGjx5d7nVFjh07Vm6fm5sbK1eurPb71iTfp59+WmbbzMyM+fPnVzoaITAwkDVr1lR4TAhxf7O3NOFfIU15pqc/K/bEsmz3BaJTc5m6+hifbTnPC8GNGdbWA400/oUQQoh7ovRRAGsCXa2Z2MOPwuISjly8yq7zqeyOSuNkYibnLmdz7nI2y3bHYKJS0tHXnp6BpfMBtHC3uS8eBZBGvxBCCFENtuYaXu4fyMQevnwbfpGluy4Qk5bLq/87zmdbInmhT2OGt/fERC2NfyGEEOJeMlWr6BrgSNcAR14DruQWsTc6jV2RpSMBLmUWGJbnnbMBHCxN6N64dBRAz0An3G1vPfF3QyWNfiGEEKIGrM00vBDcmAndfPl+30WW7LpA/JV83lhzks+3RvFcnwBGdvTEVH3/DSMUQggh6gMHSxMebO3Bg6090Ov1XEjLZVdk6SiA8Oh0ruQW8cfxS/xxvPRRgMYuVoYOgM5+jliaGkdz2TiiEEIIIeqIpamaSb0DGNfVlx8OxPHVjmgSr+bzztpTfLk1iud6+/N4J29ZTkgIIYSoQwqFggBnKwKcrZjQ3Y+iYh3H4ksfBdh5Po2TCVeJSskhKiWH5Xti0agUtPe2p1cTZ3o0dqJVI1tUDfRRAGn0CyGEELXA3ETF0z38GNPZm9UH4/lqRzRJmQW8+0cEX26PZlIvf0Z39sbCRKpeIYQQoq6ZqJV08nOgk58D/wppytW8IvZGpxsmBUzIyGd/zBX2x1xh7t/nsLPQlD4K0NiJnk2caWTXcB4FkCuPe0Svl2WdjNH1z1WhaJi9fkKI2memUTG+my+Pd/Lil8MJLNxWeuf/g3VnWLQ9mmd6+jO2qw9WRjJkUAghhDAGdhYmDA5yZ3CQO3q9novpeYZRAPui07map2XdiSTWnUgCwN/ZsrQDINCZLgGO9bper78lMxIajQaAvLw8zM0bTm+QqJq8vDwA1Gr5rySEKMtUrWJMZx9GdvTityOJfLEtirgreczZcJavd0bzTA8/xnXzxcZMU9dFFUIIIcRNFAoFvk6W+DpZMrarL9oSHcfjrxpGARxPyORCai4XUnNZGX4RtbL0UYDrSwO29rSrV48CSEvlLlOpVNjZ2ZGSkgKUrjd/q7vCOp2OoqIiCgoKjG5teGOKTa/Xk5eXR0pKCnZ2dqhU8qyuEKJiGpWSkQ94Mbx9I34/fokvtkZxIS2XjzdGsnjnBZ7q7sfE7n5YSNtfCCGEqJc0KiUdfR3o6OvAKwOakJmvJTw6nd1Rqew6n8bF9DwOxF7hQOwV5m+KxMZMfW1VgNKlAb0cLOq0/NLovwfc3NwADA3/W9Hr9eTn52Nubm50Q8aNMTY7Ozvc3NwoLi6u66IIIeo5tUrJ8PaeDGvbiD9PlDb+z6fk8NmW8yzbHcPYzl54auu6lEIIIYS4HVtzDaGt3AhtVdrOi0vPY1dUKrsi09gbnUZWQTHrTyWz/lQyAL6OFtdGATjzgLfNPS+vNPrvAYVCgbu7Oy4uLmi1t76i02q17Ny5k169ehkeDTAWxhabRqORO/xCiGpTKRUMa9uIh1p7sOF0Mgu2nOdscjaLdsZgolSR63yRZ3s3rutiCiGEEKKKvB0tGOPow5jOPhSX6DiRmMnua48CHI27Smx6HrHpcXy/Lw6VUkFzWyWDB9+78kmj/x5SqVS3bSSqVCqKi4sxMzMziobxzYw5NiGEqC6lUsHgIHdCW7qx6cxlFmyJ5PSlbGzNpWoWQgghGiq1Skl7b3vae9szpV8g2QVa9l24wq7zqew+n8aFtFw09/hJZ7myEEIIIeqQUqlgYEs3ggMdmP/jBh5q7V7XRRJCCCFELbE20zCghSsDWrgCEJuaxcYt2+5pGRr2bGpCCCGEkVAoFDS306NRSdUshBBCGKtGdua43uNF3eTKQgghhBBCCCGEMFIyvL8W6PV6ALKysu74XFqtlry8PLKysozuuXeJrWGS2Bomia3hqe24rtdJ1+socWekrq8aia1hktgaJomtYarN2Kpa10ujvxZkZ2cD4OXlVcclEUIIIcrKzs7G1ta2rovR4EldL4QQor66XV2v0MstgDum0+m4dOkS1tbWd7z+fFZWFl5eXsTHx2Njc+/XcLybJLaG6XpsP//8MyNHjmTlypU8/PDDt8zz/PPPs3v3bk6ePHlvCllD98PnJrE1HLUdl16vJzs7Gw8PD5RKeZrvTkldXzUSW8N0p7Ht2rWLBx98sErXCPeafG4Nk8RWNVWt6+VOfy1QKpV4enrW6jltbGyM7g/8OomtYbKwsDD8e7sYZ86cSVZWVoP5XRjz5yaxNTy1GZfc4a89UtdXj8TWMNU0NktLS6Bq1wh1RT63hkliu72q1PXS6BdCkJeXZ2jU14aAgIBaO5cQQggh6k5tXyMIIe49Ge8nxH3m3XffRaFQcOTIER599FHs7e2r1UjXarX85z//wcPDAxsbG/r378+5c+fKpJkwYQK+vr5l9ikUCl588UW+/vprmjRpgqmpKS1atOCnn36qVvn79etHs2bNyk1Yotfrady4MUOGDDHse++99+jcuTMODg7Y2NjQvn17li1bVi6vl5cXJSUlhu2XXnoJhULB3LlzDfvS09NRKpV8/vnn1SqvEEII0VDMnj37jq4RbpaVlcXAgQNxdXXlwIEDwI1rkNOnT/PEE09ga2uLq6srEydOJDMzs0x+vV7PwoULadu2Lebm5tjb2/Poo49y4cKFcu+1efNm+vXrh42NDRYWFnTv3p0tW7bUqNxCGCNp9NczpqamzJgxA1NT07ouSq2T2OqX4cOH07hxY/73v//x1VdfVZruemzXZxd96623uHjxIkuXLmXx4sWcP3+ehx56qEyjuTK///47CxYsYObMmfzyyy/4+PjwxBNP8Msvv1S53C+//DLnzp0rV5mvX7+e6OhoXnjhBcO+2NhYJk2axM8//8yaNWsYPnw4L730Eu+//74htjFjxpCVlWW4IIHSiwdzc3M2bdpk2Ldlyxb0ej39+/evclnrUkP8m6wqY43NWOMS5RnzZy2xNUzXY1OpVEDVrxEqk5CQQI8ePbh48SLh4eF06tSpzPERI0bQpEkTfv31V9544w1++OEHXnnllTJpJk2axNSpU+nfvz9r165l4cKFnD59mm7dunH58mVDuu+//56QkBBsbGxYuXIlP//8Mw4ODgwcOJAtW7bcF5+bxNaw1ElseiHEfWXGjBl6QD99+vRq5du2bZse0A8ePLjM/p9//lkP6MPDww37xo8fr/fx8SmTDtCbm5vrk5OTDfuKi4v1zZo10zdu3LjK5SgpKdH7+/vrhw0bVmb/oEGD9AEBAXqdTldpPq1Wq585c6be0dHRkC43N1dvYmKinzlzpl6v1+sTEhL0gP7111/Xm5ub6wsKCvR6vV4fFham9/DwqHI5hRBCiIbmTq8R/ve//+mPHj2q9/Dw0Pfs2VOfnp5e4fk/+uijMvsnT56sNzMzM9TN4eHhekA/b968Muni4+P15ubm+tdee02v15fW4Q4ODvqHHnqoTLqSkhJ9mzZt9J06dapWHEIYK7nTL8R9asSIETXKN3To0DLbrVu3BuDixYu3zduvXz9cXV0N2yqVilGjRhEVFUVCQkKV3l+pVPLiiy/y559/EhcXB0B0dDQbNmxg8uTJZWbV3rp1K/3798fW1haVSoVGo2H69Omkp6eTkpIClE461LVrVzZv3gzApk2bsLOz49///jdFRUXs3r0bKL3731Du8gshhBB3oqbXCH///Tc9e/akV69ebNq0CQcHhwrTVXQtUVBQYKib//zzTxQKBU8++STFxcWGHzc3N9q0acP27dsB2Lt3L1euXGH8+PFl0ul0OkJDQzl48CC5ubk1ikUIYyKNfiHuU+7u7jXK5+joWGb7+tCk/Pz82+Z1c3OrdF96enqVyzBx4kTMzc0NQw6//PJLzM3NmThxoiHNgQMHCAkJAWDJkiXs2bOHgwcP8p///Kdcefv378++ffvIzc1l8+bN9O3bF0dHRzp06MDmzZuJiYkhJiZGGv1CCCHuCzW9Rli7di35+fk8//zztxy6fLtricuXL6PX63F1dUWj0ZT52bdvH2lpaYZ0AI8++mi5dHPmzEGv13PlypUaxSKEMZHZ+4W4T93pOtM1kZycXOm+f14A3IqtrS3jx49n6dKlvPrqqyxfvpzRo0djZ2dnSPPTTz+h0Wj4888/MTMzM+xfu3ZtufP169ePd955h507d7JlyxZmzJhh2L9x40b8/PwM20IIIYSxq+k1wieffMLq1asZNGgQv/32m6HzvbqcnJxQKBTs2rWrws6D6/ucnJwA+Pzzz+nSpUuF57p5hKEQ9ytp9Ash7pktW7Zw+fJlQwVcUlLC6tWrCQgIqPb611OmTGHhwoU8+uijXL16lRdffLHMcYVCgVqtNkxKBKV3EL777rty5+rUqRM2NjZ8+umnJCcnM2DAAKB0BMCcOXP4+eefadGiBR4eHtUNWQghhLhvmJmZsWbNGp588kmGDh3K6tWrGTZsWLXP8+CDD/Lf//6XxMRERo4cWWm67t27Y2dnR0RERLnrACHEDdLoF0LcM05OTvTt25d33nkHS0tLFi5cyNmzZ6u9bB9AkyZNCA0NZf369fTo0YM2bdqUOT5kyBDmz5/P6NGjefbZZ0lPT+fjjz+u8I6BSqWid+/e/PHHH/j5+RmWJ+revTumpqZs2bKFKVOm1CxoIYQQ4j6i0Wj48ccfeeaZZ3j00Uf59ttveeKJJ6p1ju7du/Pss8/y1FNPcejQIXr16oWlpSVJSUns3r2boKAgnn/+eaysrPj8888ZP348V65c4dFHH8XFxYXU1FSOHz9OamoqixYtukuRCtFwSKNfCHHPDB06lJYtW/L2228TFxdHQEAAq1atYtSoUTU636hRo1i/fn2Fvft9+/blm2++Yc6cOTz00EM0atSIsLAwXFxcePrpp8ul79+/P3/88UeZ5/ZNTU3p0aMHmzZtkuf5hRBCiCpSKpUsW7YMa2trnnzySXJzc3nmmWeqdY6vv/6aLl268PXXX7Nw4UJ0Oh0eHh507969zBKATz75JN7e3nz00UdMmjSJ7OxsXFxcaNu2LRMmTKjlyIRomBR6vV5f14UQQhg/hULBCy+8wBdffFFr5xwxYgT79u0jNjYWjUZTa+cVQgghhBDCWMidfiFEg1JYWMiRI0c4cOAAv/32G/Pnz5cGvxBCCCGEEJWQRr8Q9zm9Xk9JSckt06hUqnsy239xcfEtjyuVSpKSkujWrRs2NjZMmjSJl1566a6XSwghhLgf1adrBCFEzSnrugBCiLq1Y8eOcmvb/vNn5cqVd/w+er3+tkP7b1eOiRMn4uvri16vJzMzk0WLFpWZnV8IIYQQtedeXSMIIe4ueaZfiPtcdnY2586du2UaPz8/HB0d73pZDh06dMvjTk5O+Pr63vVyCCGEEKJ+XSMIIWpOGv1CCCGEEEIIIYSRkuH9QgghhBBCCCGEkZKJ/GqBTqfj0qVLWFtby0QmQggh6gW9Xk92djYeHh4oldLHf6ekrhdCCFHfVLWul0Z/Lbh06RJeXl51XQwhhBCinPj4eDw9Peu6GA2e1PVCCCHqq9vV9dLorwXW1tZA6S/bxsbmjs6l1WrZuHEjISEhRrf2uMTWMElsDZPE1vDUdlxZWVl4eXkZ6ihxZ6SurxqJrWGS2Bomia1hqs3YqlrXS6O/Flwf5mdjY1MrFwLWpipszFRoNBUsRaZQgcbsxnZR7i0KpgSNeQ3T5gGVzfGoABOLaqfVarVYmakrjw3AxPLGa20+6HWVl7lM2gLQ32Id2eqk1VjA9aGbxYWgu8Xa8dfSlsamuXVsanO4PuymuAh02srPW620ZqBUVT9tiRZKiipPqzIFlRqtVoulucmtY7uWtvS8xVBSeIvzmoBKU/20uhIoLqg8rVIDapNqpdVqtViYm906tjLn1UFx/i3Oqwa1aelrvR60ebWTtlr/70vTarVaLCwsbh1bPfuOAKr0/94Qm7kGjfoWSzbWo++IqqTVmpmWxmVjU6sXODIUvXZIXS91vdT1UteXppW6/lpiqetrklZtjrakpNbr+9vV9dLor2eKinU8eCIMTlSSIDAExvzvxvbcxpV/gfj0gKfW3dj+NAjy0itO69EOnt1+Y/vLzpAZV3Fa52bwwv4b20uCIfVsxWltveGVk4bNHuc/RHP8mYrTWjjCaxdubH//KFzcXXFajQX8J+nG9s9j4fzGitMCvJt54/Vvz0LE/1We9q1LN74U/pgKx3+oPO2/o8HSCYBWiT+gmft05WlfPgH2PqWvt86EvZ9XnnbyPnBpXvp61zzY8d/K04ZthUYdSl/vXwSbpleedvyf4Nez9PXhFfDXq5WnHf0zNBkIgOeVcDRzJ1ae9rEV0PKR0tdn/4D/Tag87bCF0G5M6evoLfDDyMrTDv4YOoWVvr64F1Y+WHnaATOh+8ulr5OOwZK+laft/QYEvwmAdcElNHN9Kk/b7SUI+aD0dWY8fNa68rQPPAND5pW+zkuHuQGVp20zGh5ZVPpamwezPCpP22IYjPz2xvat0v7jO0L9afMG9R3B8kFw6WjFaf/xHaH6aRTE7a04bT38juDvt+Dg0srTvnCk8mPC6Ehdf43U9aWvpa4vfS11/Y1tqesBI6zrXz4BVrf4bO8SafTXMz0/3sGtLvv2x1zhvc92oVErMVEp+K64BLNK0sam5/LDX2fQqBSYqFQ8qy3BvJK0mflajkemolEpMVErCCrRYVJJWp1eDzo9SqXcPRJCCCGEEEKI+kyh1+srG4chqigrKwtbW1syMzPveMhf0Lt/U1yQU+lxHUoKb2qOm1P5sKY7SWtGIYpKhujoUVCAKSqlAo1KgY1Ki4lKgUalvNZpoEStKu2UUKuU6NUWpfuUkJsST1P/RthbmGJjrsHaVI2tuab0tZkGGxtbw35lSUGDGvK34c//IzSkf+XDdBrwkL/1635n0IB+lcfWgIf8/bXuTwYPCK48tgY85O+vv/5icP/elcfWgIf8/fXXX6WfmxEN+dOi5q/1Gxg8eHCtPdNfW3WTqN3fp1ar5e8/fmPgwEqe52zgw/s3/LmW0JABlf8dN+Dh/VLXS10vdb0hsdT1NUl7bXj/X3/9VSv1fVXrJrnTX8/s+Fcv1v+9kV7BfUGhoqhER1GxDm1J6U9Rsf7av9e2S3RoS/Rl05To0BbrKSopKXPsRhr9tXw3n0ePtlhn2K8tNivdd1OaYl3Z/8glOj0lOj0F2pv/I+qu/dzs5i9OM/ZdqWRI0U2UCko7AcxLOwVszTXYmGluvL72Y3vTj43ZjQ4EjeoWy1NpKhsbUQG1KWBapaQ6pab0y6Qq/3nVJlDpWIp7lFaluVHJ3oZeoa56bCr1jYuC2kyrVJX9sq6ttApl1WNTKqtxXsXdSQvVTqtXqykuLqakpILKreTmC6ZbVKrl0t5mCbiCmqZV3LocBQVotVrUajUFJQpKlLdOW1YtpS3858Vr7aTVaotK4yooqPiz+ueZVCrUarU8s99AlahMq/7dc9e+Hyxun6YGaXVKk6rHpqlsDGJFaatRf0tdX0rq+lL3QV2PRkNJSQlabQUdQlLXVz/tXarrKSq6EVsV6vvaquul0V/PWJupsdKAm41ZvZupUqfTo9Vd7wSooPOhuHxnws0dCvlFWg4dO4mnXyA5RToy87Vk5mvJuvbv9Z/CYh06PYbteG7R21oJSxOVoVPA5h8dBqX71P/YvvHarLKJUIRogLRaLZcuXSIv7xZ3FxoYvV6Pm5sb8fHxRtXgrUlcFhYWuLu7Y2JSxQaAEEIIo5STk0NCQgLGMojbWOt6qH5stVHXS6NfVJlSqcBUqcL0VkNsbkGr1WKdcoLB/RrfskOjQFtCVsGNzoCs/OJKOwiyCrRk5hcb9ucUlg6nyS0qIbeohKTMWwz7qoSJWnmtk0BdrkPg5hEHNjd1IFhqFBTfYpSSEHUlLi4OtVqNh4cHJiYmRlFx6nQ6cnJysLKyQqm8zZ2FBqQ6cen1eoqKikhNTSUmJobAwECj+l0Yu/0xVziYqsDlYga+zta4WJuhknlyhBA1VFJSQkJCAhYWFjg7O0tdX89VNbbarOul0S/qHTONCjONChfragzNu6a4REd2QfE/OgUq7jy4+dj1fTp96QoKaTmFpOXc4vmzCqgVKr5N3E87b3tae9rSxssOP0dLmfBQ1Bm1Wo1Op8PDwwMLi2oM463ndDodRUVFmJmZGdWFQHXjMjc3R6PRcPHiRUM+0TD8fCiR36NUfB91EACNSoGHnTle9hZ42ptf+7Ew/OtibSp1iRCiUsXFxej1epydnTE3r8YjM/WYsdb1UL3Yaquul0a/MCpqlRJ7SxPsLas//EWv15NTWFyuk6CyDoIb28Vk5hehLYHjCZkcT7ixHIi1mZo2nnaGToC2Xna42siFubi3jK2yFDfIZ9swNXG1ItBGR77KkqTMArQlei6m53ExveLHcExUSjzszPBysPhHh0Dpa2cr6RQQ4n52fUi/MdzhF+XVRl0vjX4hrlEoFFibla4i4GlfvbxFRUV8u2Y99o3bcToph+MJVzmVmEl2QTG7o9LYHZVmSOtmY1amEyDI0xYbs/o1f4MQQoi7Z1IvP7xyzjB4cE8UShWXswtJuJJHQkY+CRn5xGfkkZBRup2UWUBRiY7Y9Dxib9Ep0KjcCIHS11725jhJp4AQQtzXpNEvRC1QKBQ4m8PgNu6M6FjagNeW6DiXnM2JhEyOx1/leMJVIi9nk5xVQHJEARsjLhvyBzhb0sbTjjZepT/N3a1rPHeCEEKIhkOtUtLIzpxGduZ0ruB4cYmO5KwCQ4dAQkYe8Vfyb+oUyKeoREdMWi4xaRUvxWWiVuJpZ46nQ0WPD5jjbGUqdwiFEMKISaNfiLtEo1LSqpEtrRrZMrqzNwC5hcWcvpTF8firHEu4yvH4qyRk5BOdmkt0ai5rjiZey6ugubuNoSOgrZct/k5WcqdGiJuoVCp+++03Hn744bv6Pr6+vkydOpWpU6fe1fepyIoVK5g6dSpXr1695+8t6ge1SnmtgV7xvBzaEh3JmQU3OgQybnQIJF7vFCjWcSEtlwuVdAqYqktHCnjZV/z4gJOVcUwCKoRoeKSurx3S6BfiHrI0VdPJz4FOfg6Gfek5hZxIyOTYtdEAJxIyuZJbxImETE4kZPLdvosAWJmqCWpka+gEaO1ph7utmVyICaOVkpLCO++8w/r167l8+TL29va0adOG6dOn07JlSxITE3F0dKzrYpYjDXVxL2lUSrwcLPBysADK/3+43ikQf60j4ObHCBIy8kjKKqCwWMeF1FwupFbcKWCmKR2N4GlvgZdD2UkGPe3NcbSUTgEhRM1IXX9vSKNfiDrmaGVKcDMXgpu5AKWTsSRk5Jd2AlzrCDiVmEVOYTHhF9IJv5BuyOtsbUobzxudAG087bC1kPkBhHEYMWIEWq2WlStX4u/vz+XLl9myZQtXrlwBwM3NTSayE+I2ynYKlFdUfH2kQN6NjoGbRgskZxVQoNUZRqRVxEyjNHQANLI1IztZgSYihUA3G7wcLDDTyONqQoiKSV1/b0ijX4h6RqFQGC7QHmrjAZQ+03k+JcfQCXA8PpNzl7NJzS5k85nLbD5zY34APydL2lybKLC1px0tPWzkgksY6PV68rUldfLe5hpVle8GXr16ld27d7N9+3Z69+4NgI+PD506dUKn05GVlVVmyF9sbCx+fn6sXr2azz//nEOHDtGqVStWrVpFZmYmzz//PGfPnqVHjx589913ODs7A9CnTx/atm3Lp59+anjvhx9+GDs7O1asWFFh2ebPn8/y5cu5cOECDg4OPPTQQ3z00UdYWVmxfft2nnrqKeDGLMozZszg3XffpaioiLfffptVq1Zx9epVWrVqxZw5c+jTp4/h3D/88AP//e9/SUtLY+DAgfTo0aOav2UhqsdErcTb0QJvx8o7BZIyr00waBglcKNz4HJ2aadAVEoOUSk513Kp+D3uGAAKBTSyM8fPyRJfR0v8nG78eNqbo1bJxbwQtU3q+vpd169YsYLp06dz5cqVe1bXS6NfiAZArVLS3N2G5u42PN6pdH6A/KISTl8qfSzgREImxxOucjE9zzCZ09pjl0rzKhU0c7cunR/g2hwBjV2sUMn8APelfG0JLab/XSfvHTFzIBYmVat2rKyssLKyYu3atXTp0gVTU9Mq5ZsxYwaffvop3t7eTJw4kSeeeAIbGxs+++wzLCwsGDlyJNOnT2fRokU1jkOpVLJgwQJ8fX2JiYlh8uTJvPbaayxcuJBu3brx6aefMn36dM6dO2eIBeCpp54iNjaWn376CQ8PD3777TdCQ0M5efIkgYGB7N+/nxdffJEPP/yQESNGsGHDBmbMmFHjcgpRG0zUSnwcLfFxtKzweGFxCUlXCwyrDsSl5bD/dDRFpnbEpueRU1hs6CDYdT6tTF61srST29Ah4GyJn6Mlvk4WeNiayzw2QtSQ1PX1u65/5plneOedd3jiiSfYuHHjPanrpdEvRANlbqKio68DHX1vzA+QkVtkmBfg+qiAtJwiTiVmcSoxi1X74wCwMFEZ5gco7QiwpZGduTyTKeoNtVrNihUrCAsL46uvvqJ9+/b07t2bxx9/nFatWlWa79VXX2XgwIEAvPzyyzzxxBNs2bKF7t27A/D0009X2qtfVTdP8uPn58f777/P888/z8KFCzExMcHW1haFQoGbm5shXXR0ND/++CMJCQl4eHgYyrphwwaWL1/OrFmzWLBgAX379uX1119HqVTSpEkT9u7dy4YNG+6ovELcTaZqFb5Olvg6lXYKaLVa/tKeZ/DgLqjVatJyiohJyyU2LZeY9FxiUnOJTS/tnC4srnzVAVO1Eh/Hax0CTqWdAddHCDhby2oDQhiD+7Gu/+yzzwgJCeGVV17BxsaGZs2a3ZO6Xhr9QhgRe0sT+jR1oU/TG/MDJF7NN3QCHIu/ysnETPKKStgfc4X9MVcMeZ2sTAzzArTxsqWNpx32liZ1FYq4S8w1KiJmDqyz966OESNGMGTIEHbt2kV4eDgbNmzgo48+YvHixQwfPrzCPK1btza8dnV1BSAoKKjMvpSUlBqU/oZt27Yxa9YsIiIiyMrKori4mIKCAnJzc7G0rPhu6JEjR9Dr9TRp0qTM/sLCQsMERWfPnmXQoEFljnft2lUa/aLBUigUOFub4mxtWmYCWwCdTk9yVgGx11YViL3W+I9JzyX+Sh6FxToiL+cQeTmn3HktTW50NPj/Y5SA1FtCSF1fn+v6M2fOlFuJ4F7U9dLoF8KIKRQKw1JPg4PcASjR6YlKybk2N0DpaICzSdmk5RSx9WwKW8/e+JL0drAgqJEN5jkKWqbnEeBqI3dXGjiFQlHlYXf1gZmZGQMGDGDAgAFMnz6dZ555hvfee6/SCwGN5sZEltf/Vv+5T6fTGbaVSiV6vb7MObRabaXluXjxIoMHD+a5557j/fffx8HBgd27d/P000/fMp9Op0OlUnH48GFUqrIXRNeHBP6zHEIYM6VSgYedOR525nRr7FTmWHGJjsSr+TdGCKTlEpOeR0xaDokZ+eQWlXD6UhanL2WVO6+tuabMvAGGjgEnS6xMG853nxB3Qup6qev/qeH8NQghaoVKqaCpmzVN3awZ2dELgAJtCRFJWaWdAPFXOZ6QSUxaLnFX8oi7kgeo+OXT3Xg5mNMz0JlegU50DXDC1lxWChD3VosWLVi7dm2tnc/Z2ZmkpCTDdklJCadOnSI4OLjC9IcOHaK4uJh58+YZZhP++eefy6QxMTGhpKTsBErt2rWjpKSElJQUevbsWeG5mzdvzsGDB8vs27dvX7VjEqKhU6tumkegadljhcUlxF+50SFwfZRAbHouSZkFZOZrOXZtZNs/OVmZXusAsMDPyQo/J4vSEQOOljLhrRD1iDHX9S1atGDfvn28/PLLhn33oq5vMI3+jIwMpkyZwu+//w7A0KFD+fzzz7Gzs6swvVar5e233+avv/7iwoUL2Nra0r9/f/773/8anrGA0tkcd+zYUSbvqFGj+Omnn+5aLELUN2YaFe297WnvbW/Yl5mn5UTiVQ7FpLPuUBSxOUrir+Tzw/44ftgfh1IBbb3sSjsBmjjRxtNOZmEWtSY9PZ3HHnuMiRMn0rp1a6ytrTl06BAfffQRQ4cOrbX36du3L9OmTWPdunUEBATwySef3HLN3YCAAIqLi/n888956KGH2LNnD1999VWZNL6+vuTk5LBlyxbatGmDhYUFTZo0YcyYMYwbN4558+bRrl070tLS2Lp1K0FBQQwePJiXXnqJHj16MHfuXB555BE2btwoQ/uF+AdTtYrGLlY0drEqdyyvqLjMhLbXRwnEpueSllNEWk4haTmFHIi9Ui6vh60Zfs5lVxjwdbLEy94CE7XUbULcDfdjXT9lyhS6devGZ599xqhRo9i8efM9qesbTKN/9OjRJCQkGH4pzz77LGPHjuWPP/6oMH1eXh5HjhzhnXfeoU2bNmRkZDB16lSGDh3KoUOHyqQNCwtj5syZhm1zc/O7F4gQDYSthYaegc508bXDP/8cvfr140h8FrvOp7HzfCoXUnM5EneVI3FX+WzLeazN1HQLcLw2EsC50uWfhKgKKysrOnfuzCeffEJ0dDRarRYvLy/CwsJ44403bjm8rjomTpzI8ePHGTduHGq1mldeeaXSnn+Atm3bMn/+fObMmcObb75Jr169mD17NuPGjTOk6datG8899xyjRo0iPT3dsIzP8uXL+eCDD/jXv/5FYmIijo6OdO3alcGDBwPQpUsXFixYwJw5c3jvvffo378/b7/9Nu+//36txCqEsbMwURtWuvmnrALtjUcFbn5sIC2XrIJiLmUWcCmzgD1R6WXyqZQKPO3N8XW0xMfBHEW6gkHyKI4QteJ+resXL17MjBkzmDNnzj2r6xX6BvAQ4ZkzZwxDITp37gyUDoPo2rUrZ8+epWnTprc5Q6mDBw/SqVMnLl68iLd36bJnFa3bWF1ZWVnY2tqSmZmJjU35iqY6tFotf/31F4MHDy7zbIoxkNgapspiS8jIY/f5NHadT2N3VBqZ+WW/mH0cLegZ6ETPQGe6BjhiY1b/fi/G/rlt3LgRPz8//P39MTMzq+si1Zrra/fa2NgYht0Zg5rEVVBQQExMDH5+fuU+49qsmxqCdevWMXPmTE6cOIGlpSW9evVizZo1huNxcXG88MILbN26FXNzc0aPHs3HH3+MiUnVJn6Tur5qGlpser2ejDwtMWk5xKSVzhsQm3ZjtEBFa52P6eTF+w8HGdWSgg3tc6uO+yG2vn37kpCQUGFd0FAZa10P1Y+tNur6BnGnPzw8HFtbW0ODH0p7SWxtbdm7d2+VG/2ZmZkoFIpyjwSsWrWK77//HldXVwYNGsSMGTOwtrau9DyFhYUUFhYatrOySieS0Wq1d9wjdT1/bfVs1ScSW8NUWWyuVhpGtHNnRDt3SnR6Tl3KYndUOruj0jgWn8nF9Dwupsfx/b44VEoFbT1t6d7YkR6NHQnysKkXjwLcD5+bXq9Hp9OVmdCmobveV309NmNRk7h0Oh16vR6tVltu0iBj/LuuzK+//kpYWBizZs2ib9++6PV6Tp48aTheUlLCkCFDcHZ2Zvfu3aSnpzN+/Hj0ej2ff/55HZZc1DWFQoGDpQkOlg508Cm7woBeryclu9DQAXA68Sqr9sex6kA8OuBDI2v4CyGMV4No9CcnJ+Pi4lJuv4uLC8nJyVU6R0FBAW+88QajR48u0wsyZswY/Pz8cHNz49SpU7z55pscP36cTZs2VXqu2bNn895775Xbv3HjRiwsamdI863ev6GT2BqmqsTmB/h5wGMucD5LwbmrCs5mKkgtgMNxVzkcd5UFW6MxV+lpYqunmZ2eprZ6HOu4U9pYPze1Wk1BQQE5OTkUFRXVdXFqXXZ2dl0X4a6oTlxFRUXk5+ezc+dOiouLyxzLy8ur7aLVS8XFxbz88svMnTuXp59+2rD/5hsCGzduJCIigvj4eMO8PvPmzWPChAl8+OGHFd4dkQ7+mjG22BzMVTh42dDBy4ZhrZwgPZYfolX8eCCeQm0Jsx5uicoIGv7G9rnd7H6Irbi42Og6+Y21gx+qH1ttdPDXaaP/3XffrbDxfLPrMxlXtEyYXq+v0vJhWq2Wxx9/HJ1Ox8KFC8scCwsLM7xu1aoVgYGBdOzYkSNHjtC+ffsKz/fmm28ybdo0w3ZWVhZeXl6EhITUypC/TZs2MWDAAKMcgiSxNTy1EVt8Rh57oq6wOyqN8AtXyCoo5vgVBcevzaXk62hBj8aO9AhwpJOfA9Zm9+arydg/t23btmFmZoaVlZXRDPeD0u/+7OxsrK2tjWoJyZrEVVBQgLm5Ob169apwyN/94MiRIyQmJqJUKmnXrh3Jycm0bduWjz/+mJYtWwKlIwZbtWpVZiLfgQMHUlhYyOHDhyt8tlM6+O+Mscb2gDMoFSV8f17JmqOXiItPYHRjHSoj+Soy1s8NjDu2vXv34ubmZpSd/MbawQ9Vj602OvjrtNH/4osv8vjjj98yja+vLydOnODy5cvljqWmpuLq6nrL/FqtlpEjRxITE8PWrVtv2yhv3749Go2G8+fPV9roNzU1xdTUtNx+jUZTaw2H2jxXfSOxNUx3Epu/iy3+LraM7eZHcYmOE4mZ1+YDSOVI3FVi0/OITc/j+/3xqJUK2nvbl84H0MSZoEa2d/0uijF/bgqFAqVSaVTPw13vFb8em7GoSVxKpRKFQlHh37Cx/k3/04ULF4DSGwnz58/H19eXefPm0bt3byIjI3FwcCA5Obnc9YK9vT0mJiaVjhiUDv6auR9ie+OJ/nQ8l860/53kUJoSV3cP5o5ohaYePLZWU/fD52bMsXXr1o2kpCSj6uQ31g5+qH5stdHBX6eNficnJ5ycnG6brmvXrmRmZnLgwAE6deoEwP79+8nMzKRbt26V5rve4D9//jzbtm3D0dHxtu91+vRptFot7u7uVQ9ECFFlapXSsDzglH6BZBVo2Redzq5rnQCx6XkciL3CgdgrzNsUia25hh6NnQydAI3sZHUNIe4HVR0NeL2z5D//+Q8jRowAYPny5Xh6evK///2PSZMmAdUfMSgd/HfG2GMb2s4LUxMNL/5whHUnk9Hp4bPH2zX45f2M/XMz1tjUarXRdfIbawc/VD+22ujgbxDP9Ddv3pzQ0FDCwsL4+uuvgdIl+x588MEyz+w1a9aM2bNn88gjj1BcXMyjjz7KkSNH+PPPPykpKTH05js4OGBiYkJ0dDSrVq1i8ODBODk5ERERwb/+9S/atWtH9+7d6yRWIe43NmYaQlq6EdLSDYC49Dx2RaWyKzKNPdGlqwKsO5nEupNJAPg7W9Ir0JmegU508XfE0rRBfI0JIaqpqqMBrw+PbNGihWG/qakp/v7+xMXFAeDm5sb+/fvL5M3IyECr1d52xKAQlRnY0o2vnuzA898fYf2pZIp/OMIXo9thqlbdPrMQQtxDDeZqedWqVUyZMoWQkBAAhg4dyhdffFEmzblz58jMzAQgISGB33//HShda/Fm27Zto0+fPpiYmLBlyxY+++wzcnJy8PLyYsiQIcyYMaPcJAlCiHvD29GCMY4+jOnsQ3GJjuMJmew6n8qu82kcjcvgQmouF1JzWbE3Fo2q9FGAXk1KOwFaedjKTMpCGImqjgbs0KEDpqamnDt3jh49egClI/1iY2Px8fEBSkcMfvjhhyQlJRlG8m3cuBFTU1M6dOhw94IQRq9fc1cWj+vAs98dZlPEZZ777jCLnuyAmUauI4UQ9UeDafQ7ODjw/fff3zLN9ZkQobT3/+btinh5ebFjx45aKZ8QovapVUo6+NjTwceeqf2bkJmvJTw6nV3nU9l5PpX4K/nsj7nC/pgrzP37HPYWGro3dqJXoDM9Ap3wkEcBhDB6NjY2PPfcc8yYMQMvLy98fHyYO3cuAI899hgAISEhtGjRgrFjxzJ37lyuXLnCq6++SlhY2B0/ny9En6YufDP+AZ759iDbzqUS9u0hlozrKA1/IUS90WAa/UIIYWuuIbSVG6GtSh8FuJiey87zaeyKTGVvdDoZeVr+PJHEnydKHwVo7GJFz8DSToDO/g5YmMhXnhDGaO7cuajVasaOHUt+fj6dO3dm69at2NvbA6BSqVi3bh2TJ0+me/fumJubM3r0aD7++OM6LrkwFj0CnVg+oRNPrzzIrvNpTFxxkKXjO0q9I4SoF+SbSAjRYPk4WjLW0ZKxXXzQlug4Hn+1tBPgfCrH468SlZJDVEoOy/fEYnJt1EDPJqWdAC3c5e6esTt79iwTJkzg2LFjNGvWjGPHjtV1kcRdotFo+Pjjj2/ZiPf29ubPP/+8h6US95uuAY6snNiJCd8cYG90OhOWH2T5hAdk7hkh7jKp72/PuKZCFELctzQqJR19HZg2oAm/Te7O0XdCWDSmPU908qaRnTlFJTrCL6Tz0YZzPPj5bjp+uJlXfj7BoVQFWfnaui6++IcJEyagUChQKBSo1Wq8vb15/vnnycjIqPI5ZsyYgaWlJefOnWPLli13sbRCCFHqAV8HvnumM9amag7EXGH8NwfILpA6RojKSH1/b0jXoxDCKNlaaBgU5M6gIHf0ej2x6XmlcwFEphEencaV3CL+PJkMqPjxv9vpGuBISAtXBrRww83WONa4behCQ0NZvnw5xcXFREREMHHiRK5evcqqVauqlD86OpohQ4YYJlZo2U0AAQAASURBVHOriaKiIkxMTGqcXwhx/2nvbc/3z3Rm7LL9HLqYwdhlB1g5sRO25sa5XJwQd6qi+j4jI4OvvvqqSvmlvr+9Kt/pz8rKqvaPEELUBwqFAj8nS8Z19WXp+I4cmxHCz5O68nwvP9zM9RTr9Ow6n8Y7/3eaLrO3MOzLPXy5LYqolOy6LvrdU5Rb+Y+2oBpp86uWtgZMTU1xc3PD09OTkJAQRo0axcaNGw3Hly9fTvPmzTEzM6NZs2YsXLjQcEyhUHD48GFmzpyJQqHg3XffBSAxMZFRo0Zhb2+Po6Mjw4YNIzY21pBvwoQJPPzww8yePRsPDw+aNGlSrXwff/wx7u7uODo68sILL6DV3rjDV1hYyGuvvYaXlxempqYEBgaybNkyw/GIiAgee+wxbGxscHV1ZezYsaSlpdXod3evyTWCEGW18bLjh7Au2FloOBZ/lbHL9nM1r6iuiyXuNw2groeK6/tNmzYZjkt9f+eqfKffzs4OhaLqS2EpFAoiIyPx9/evUcGEEOJu0aiUdPJzoJ2nNc2052nRuTdbz6WzMeIyR+IyOB5/lePxV5n79zn8nS0JaeFGSEtX2nraGc+SgLM8Kj8WGAJj/ndje25j0OZVnNanBzy17sb2p0GQl14+3buZNSvnNRcuXGDDhg1oNKV3ylauXMmcOXP44osvaNeuHUePHiUsLAxLS0vGjx9PUlIS/fv3JzQ0lFdffRUrKyvy8vIIDg6mZ8+e7Ny5E7VazQcffEBoaCgnTpww9PBv2bIFGxsbNm3ahF6vr3K+bdu24e7uzrZt24iKimLUqFG0bduWsLAwAMaNG0d4eDgLFiygTZs2xMTEGCr5pKQkgoODGTt2LJ999hmFhYW8/vrrjBw5kq1bt97R7+5ekGsEIcpr1ciWH8O6MGbpfk4kZDJ6yX6+f6YzDpbGezdR1DMNrK6H8vX9kiVLeO+996S+v0PVGt7/yy+/4ODgcNt0er2ewYMH17hQQghxL/k6WjKptx2TegeQkl3A5ogUNkYkszcqnQupuXy1I5qvdkTjbG3KgBauDGzpRld/R0zUMi3K3fTnn39iZWVFSUkJBQWldyTmz58PlM7WPnfuXIYPHw6An58fERERfP3114wfPx43NzfUajVWVla4uZWu9vDNN9+gVCpZunSpoYG6fPly7Ozs2L59OyEhIQBYWlqydOlSQ+Ve1Xz29vZ88cUXqFQqmjVrxpAhQ9iyZQthYWFERkby888/s2nTJvr37w9QpsG7aNEi2rVrx/Tp07GxsUGpVPLNN9/g5eVFZGSk4Q5EfSbXCEKU19zdhp+e7cLoJfuJSMpi9JJ9fP9MZ5ysTOu6aELUGxXV9/PmzQPgww8/ZN68eVLf36EqN/p9fHzo1asXjo6OVUrv7+9v6KERQoiGwsXajNGdvRnd2ZvsAi3bz6WyMeIy286mkJpdyA/74/hhfxzWpmr6NHNhYEtXejdxxtqsgX3fvXWp8mOKf6wt/e+oW6T9R8fH1JM1L9M/BAcHs2jRIvLy8li6dCmRkZG89NJLpKamkpiYSFhYGJMmTTKkLy4uxtbWttLzHT58mKioKKytrcvsLygoIDo62rAdFBRU5rm+quZr2bIlKtWN3527uzsnT5b+Po4dO4ZKpaJ3796Vlm379u14enqWOxYdHV3vG/1yjSBE5Zq4Wl9r+O/jbHI2Tyzex6qwzrhYy/wx4i5rAHU9VFzfv/jii8TFxREfH8/TTz9tuIsOUt/XRJUb/TExMdU68alTp6pdGCGEqE+szTQ81MaDh9p4UFhcQnh06SMAmyIuk5pdyB/HL/HH8UuYqJR0a+zIwJZu9G/uirN1A7iDY2JZ92lvw9LSksaNGwOwYMECgoODee+995g8eTIAX3/9NV27di2T5+ZK+J90Oh0dOnSocCJAZ2fnMu9bk3z/bMQqFAp0Oh0A5ubmlZbr+ns8+OCDvP3221hZWaFU3rjAcnd3v2Xe+kCuEYS4tcYuVqye1JXRS/ZxPiWHx7/exw9hXWTiWHF3NYC6Hiqu72fOnMm4ceOA0iH+nTt3LpNH6vvqkdn7hRCiCkzVKvo0daFPUxc+GNaKYwlX+ft0MhtPXyYmLZft51LZfi6VtxQnae9tT8i1xwB8nWq3YryfzZgxg0GDBjFp0iQ8PDyIiYlh7NixVc7fvn17Vq9ejYuLCzY2Nnc9382CgoLQ6XTs2LHDMNzvn+/x66+/4u3tjYODQ5mLACGEcfBzsmT1s115Ysk+LqTlMmpxOD+GdcHD7taNBCHuN9fr+zFjxtCoUSMuXLjAmDFjqpxf6vvyatToX7BgQYX7FQoFZmZmNG7cmF69et2yB0YIIRoqpVJBe2972nvb80ZoM6JTc/j79GU2nk7meEImhy9mcPhiBrPXn6WJqxUhLdwY2NKNVo1sqjXZmSirT58+tGzZktmzZ/P666/zxhtvYGtry6BBgygsLOTQoUNkZGQwbdq0CvOPGTOGuXPnMmzYMGbOnImnpydxcXGsWbOGf//73xUOtbuTfDfz9fVl/PjxTJw40TCxz8WLF0lJSWHkyJG88MILLFmyhGeeeYY33ngDFxcXoqKi+Omnn1iyZEmDqk/lGkGIynk7WpQO9V+6j4vpeYxaHM4Pz3TBy8GirosmRL1xvb6fP38+06dPZ+rUqdjY2Eh9fwdq1Oj/5JNPSE1NJS8vD3t7e/R6PVevXsXCwgIrKytSUlLw9/dn27ZteHl51XaZhRCi3lAoFDR2saaxizUvBDcmKTOfzRGX+fv0ZfZdSCfycg6Rl6P4YlsU7rZmhLRwJaSlG538HNCo5G5udU2bNo2nnnqKw4cPs3jxYubNm8drr72GpaUlQUFBTJ06tdK8FhYW7Ny5k9dff53hw4eTnZ1No0aN6Nev3y179Gua758WLVrEW2+9xeTJk0lPT8fb25u33noLAA8PD3bt2sWrr75quKjx8fEhNDS0wd31l2sEIW7Ny8GC1c+WDvWPTc/j8cX7+CGsMz6OMjJMiOumTp3K008/zdtvv83SpUuZO3eu1Pd3QKHX6/XVzfTjjz+yePFili5dSkBAAABRUVFMmjSJZ599lu7du/P444/j5ubGL7/8UuuFrm+ysrKwtbUlMzOzxkNBrtNqtfz1118MHjzY6CY5ktgaJomt5jLztGw7l8Lfp5PZEZlKXlGJ4ZituYZ+zVwIaelKrybOWJjU7tNWWq2WjRs34ufnh7+/P2ZmxvPcqE6nIysryzDrrbGoSVwFBQXExMTg5+dX7jOuzbqpOoz1GkHq+qqR2KouObOA0Uv3cSE1FzcbM358tgt+dfRImHxuDdP12Pr27UtCQkKFdUFDZax1PVQ/ttqo62t0lfn222/z66+/GipzgMaNG/Pxxx8zYsQILly4wEcffcSIESNqcnohhDAKthYaHm7XiIfbNaJAW8KeqDQ2nr7M5jOXSc8tYs3RRNYcTcRUraRnoDMhLV3p39xV1nAWDZpcIwhRNW62Zvz0bBfGLNnP+ZQcRn0dzg9hXWjsYlXXRRNCGJkaNfqTkpIoLi4ut7+4uJjk5GSgdOhCdnb2nZVOCCGMhJlGRb/mrvRr7kqJTs/hixlsPJ3M3xHJxF/JZ/OZ0s4ApQIe8HUgpKUbIS1c5TlP0eDINYIQVediXXqH/8ml+zmbnM3ji8NZ9UwXmrpZ3z6zEEJUUY3GSgQHBzNp0iSOHj1q2Hf06FGef/55+vbtC8DJkyfx8/OrnVIKIYQRUSkVdPJz4O0HW7Dz38Gsf7knr/RvQksPG3R62B9zhff/jKDnR9sY/NkuPt0cScSlLGrwNJYQ95xcIwhRPU5WpvwQ1oUW7jak5RTxxJJ9RFzKqutiCSGMSI0a/cuWLcPBwYEOHTpgamqKqakpHTt2xMHBgWXLlgFgZWXFvHnzarWwQghhbBQKBc3dbXi5fyDrpvRk12vBTH+wBV38HVAqICIpi083n2fwgl30mruN9/+MYP+FdEp00gEg6ie5RhCi+hwsTfghrDNBjWy5klvE6KX7OJWYWdfFEkIYiRoN73dzc2PTpk2cPXuWyMhI9Ho9zZo1o2nTpoY0wcHBtVZIIYS4X3g5WDCxhx8Te/hxJbeILWcuszHiMjsjU4m/ks+y3TEs2x2Dg6UJ/Zu7ENLCjR6BTphpKl/iRUYIGK/6+NnKNYIQNWNnYcL3z3Rm/DcHOBZ/ldFL9vHd051p42VX10UT9dz15YDrY50g7lxtfK53NF20v78/CoWCgIAA1OranXlaCCHudw6WJjzW0YvHOnqRV1TMzsg0NkYks+VMCldyi/j5UAI/H0rAwkRF7yalEwH2beqKrUXp7MQlJaWrBeTl5WFubl6XoYi7JC8vD6Bezkgt1whCVJ+tuYbvnu7EU8sPcuhiBk8u3c+KiZ3o4GNf10UT9dj1td2LioqkvjdCtVHX16gWzsvL46WXXmLlypUAREZG4u/vz5QpU/Dw8OCNN96ocYGEEEKUZ2GiJrSVG6Gt3NCW6DgYe4WNpy+z8XQylzILWH8qmfWnklErFXTxd6RfMyfUhXpsbGxISUkpPYeFheFuQEOm0+koKiqioKDAqJbxqU5cer2evLw8UlJSsLOzM1zw1QdyjSDEnbE207ByYieeWnGQAzFXGLestOH/gK9DXRdN1FMqlQoLCwtSU1PRaDRGUTcaa10PVY+tNuv6GjX633zzTY4fP8727dsJDQ017O/fvz8zZsy4KxV6RkYGU6ZM4ffffwdg6NChfP7559jZ2VWaZ8KECYaLjus6d+7Mvn37DNuFhYW8+uqr/Pjjj+Tn59OvXz8WLlyIp6dnrccghBC1QaNS0i3AiW4BTsx4qAWnL2WVrgRw+jLnLmezOyqN3VFpKFGxLecSE9rZob982Sga/FBaCebn52Nubm40MUHN4rKzs8PNze0ul6x66uIaQQhjY2mqZsVTD/DMykPsjU5n3LIDfDPhAboGONZ10UQ9pFAocHd3JyYmhosXL9Z1cWqFsdb1UP3YaqOur1Gjf+3ataxevZouXbqUKWiLFi2Ijo6+owJVZvTo0SQkJLBhwwYAnn32WcaOHcsff/xxy3yhoaEsX77csG1iUnb966lTp/LHH3/w008/4ejoyL/+9S8efPBBDh8+XK/unAghREUUCgWtGtnSqpEt00KaEpuWy6aIy/x54hLHEzLZei6VredScbPWMKKdOwNbutHEtWEvBaXVatm5cye9evWql8Paa6q6cWk0mnpZT9XFNYIQxsjCRM03Ex4g7NtD7DqfxlMrDrB03AP0CHSq66KJesjExITAwECKiorquii1wljreqhebLVV19eo0Z+amoqLi0u5/bm5uXelJ+bMmTNs2LCBffv20blzZwCWLFlC165dOXfuXJnJgf7J1NS00p6RzMxMli1bxnfffUf//v0B+P777/Hy8mLz5s0MHDiw1mMRQoi7ydfJkrBe/kzo6sU3v/xFuk1j1h5LIjm7kC93xvHlzjiau9vwaAdPHm7rgaOVaV0XudpUKhXFxcWYmZkZ1YWAscR1r68RhDBmZhoVS8Z1ZPKqI2w9m8LElQdZPLYDfZqW/z8mhFKpxMzMrK6LUSuMpU6sSF3EVqNG/wMPPMC6det46aWXgBszRl5viNe28PBwbG1tDQ1+gC5dumBra8vevXtv2ejfvn07Li4u2NnZ0bt3bz788EPDxcjhw4fRarWEhIQY0nt4eNCqVSv27t1baaO/sLCQwsJCw3ZWVulaqlqtFq1We0exXs9/p+epjyS2hklia5i0Wi1uFjA22I9X+jVmT3Q6a45eYtOZFM4kZfH+nxHM/usMwU2dGd7Og95NnNCoGsYzc8b6udV2XHX1+7nX1whCGDszjYpFT7bnxR+OsiniMs9+e5hFT7anX3PXui6aEKKBqFGjf/bs2YSGhhIREUFxcTGfffYZp0+fJjw8nB07dtR2GUlOTq7wroGLiwvJycmV5hs0aBCPPfYYPj4+xMTE8M4779C3b18OHz6MqakpycnJmJiYYG9fdkZUV1fXW5539uzZvPfee+X2b9y4EQsLi2pEVrlNmzbVynnqI4mtYZLYGqabYxtoDT3awdF0BQdSlVzMgU1nUth0JgUrtZ4Ozno6O+toZFmHBa4GY/3caiuu67P93mv3+hpBiPuBqVrFl6Pb8/JPR1l/Kpnnvj/M50+0J7RV/ZrTQwhRP9Wo0d+tWzf27NnDxx9/TEBAABs3bqR9+/aEh4cTFBRU5fO8++67FTaeb3bw4EGACocE6vX6Ww4VHDVqlOF1q1at6NixIz4+Pqxbt47hw4dXmu92533zzTeZNm2aYTsrKwsvLy9CQkKwsbG5ZTy3o9Vq2bRpEwMGDDC6oSwSW8MksTVMt4rtsWv/nr+cw5pjl/i/Y5dIzSliR5KCHUlKWrhbM7ydBw+1dsfB0qT8yeuYsX5utR3X9VFo91ptXSMIIcoyUStZ8EQ7Xll9jD9PJPHiD0f47PF2DGntXtdFE0LUczVeODcoKKjczPjV9eKLL/L444/fMo2vry8nTpzg8uXL5Y6lpqbi6lr1oU3u7u74+Phw/vx5ANzc3CgqKiIjI6PM3f6UlBS6detW6XlMTU0xNS3/HKxGo6m1C9DaPFd9I7E1TBJbw3Sr2Fp42tPC0543BjVn5/lUfjmcwOaIFCKSsolIOsecvyPp18yVRzt40rupc70b/m+sn1ttxVWXv5vauEYQQpSnUSn5dFRbNColvx1NZMpPRynW6RjWtlFdF00IUY9VudFfnTsGVb3b7eTkhJPT7Wcg7dq1K5mZmRw4cIBOnToBsH//fjIzM2/ZOP+n9PR04uPjcXcv7RHt0KEDGo2GTZs2MXLkSACSkpI4deoUH330UZXPK4QQDZlapaRvM1f6NnMlI7eI349f4pfDCZxMzGTD6WQ2nE7GycqUR9p58GgHL5q6NezZ/0XtuxvXCEKIiqlVSj5+rA0qpYJfDifwyupjFJfoGdFBlpsWQlSsyo1+Ozu7Ks+6W1JSUuMCVaR58+aEhoYSFhbG119/DZQu2ffggw+WmcSvWbNmzJ49m0ceeYScnBzeffddRowYgbu7O7Gxsbz11ls4OTnxyCOPAGBra8vTTz/Nv/71LxwdHXFwcODVV18lKCjIMJu/EELcT+wtTRjfzZfx3Xw5m5zFL4cSWHsskbScQpbsimHJrhiCGtnyWEdPhrbxwM6i/g3/F/deXV4jCHE/UikVfDSiNRqVgh8PxPPqL8cp0ekZ+YBXXRdNCFEPVbnRv23bNsPr2NhY3njjDSZMmGCYiTc8PJyVK1cye/bs2i8lsGrVKqZMmWKYaX/o0KF88cUXZdKcO3eOzMxMoHQphJMnT/Ltt99y9epV3N3dCQ4OZvXq1Vhb37hL9cknn6BWqxk5ciT5+fn069ePFStW1Mu1j4UQ4l5q5mbD2w+24PVBzdhxLpX/HY5ny5kUTiZmcjIxkw/+PEP/Fi481sGLnoFOqOvZ8H9x79T1NYIQ9yOlUsGHDwehVir5bt9FXvv1BFqdjjGdfeq6aEKIeqbKjf7evXsbXs+cOZP58+fzxBNPGPYNHTqUoKAgFi9ezPjx42u3lICDgwPff//9LdPo9XrDa3Nzc/7+++/bntfMzIzPP/+czz///I7LKIQQxkijUtK/hSv9W7iSnlNoGP5/+lIWf51M5q+TyThbmzK8XSMe7eBJoKsM/7/f1PU1ghD3K6VSwcxhLVGrFCzfE8t/fjtFcYme8d1867poQoh6pEa3ZcLDw+nYsWO5/R07duTAgQN3XCghhBD1k6OVKU9192PdlJ78NaUnE7v74WBpQmp2IV/vvMCAT3Yy7Ms9fLfvIpl5dbNOvKhbco0gxL2lUCiY/mALnu3lD8CM30+zdNeFOi6VEKI+qVGj38vLi6+++qrc/q+//hovL3mWSAgh7gctPGyY/lAL9r3Zj6/HdmBAC1fUSgXH46/yztpTPDBrMy/8cITt51Io0elvf0JhFOQaQYh7T6FQ8OagZrwQHADAB+vO8NWO6DoulRCivqjRkn2ffPLJ/7N33/FRlPkDxz9b03vvhU5C7yAlIl1EBfuhiKIe6ulxnh420FNRAX+2E+sJZ8eGBYREIIASeu8tkJ5AIAXStszvjyVLQgobWEh2+b5fr7yyM/ud2efZ3dmZ78wzz8P48eNZtmwZffv2BWDdunUcPnyY77//3q4FFEII0bLptWpGJIQyIiGUE6crWbQ1m+82Z7Evr5TFO3JZvCOXEG8XbuoWyYQekbQO9mzuIovLqLmOERYvXsyLL77Ijh078PDwYNCgQfzwww/W5+vraHDevHk89NBDl61MQlxJKpWKJ4a3Q6tW89byg7z62z4MRjOPDm3T3EUTQgBms8Kfh0/w9YYM9KUqRl/B176opH/06NEcPHiQefPmsXfvXhRFYdy4cTz00ENyFl8IIa5igZ4u3D8wnvuuiWN3Tgnfbc7ip23Z5JdU8v6qw7y/6jDdon2Z0COS6zuH4+PWfGPJi8ujOY4Rvv/+e6ZMmcIrr7zCtddei6Io7Ny5s07cp59+ysiRI63TPj4+l6U8QjQXlUrF34e1RadRMSf5AHNTDmAwK/z9ujY2j7AhhLCvzJNlfLc5i+82Z5FdVA5AsKu6Vn90l5vNSf+OHTtITExErbbcERAZGcnLL7/cYPzu3btp164dWu1FnVcQQgjhwFQqFYkRPiRG+DB9dHtW7ivgu81ZrNx/nK0ZRWzNKOLFX/YwIiGUCT0iGdA6EI1aDkgdVXMeIxiNRh577DFmz57NfffdZ51fc0jfar6+voSGhl7yawrR0j1ybRu0GjWv/raPt5cfxGgy888R7STxF+IKqTCYWLY7j283ZfHn4RNU5/ferlpu6BJGWHn6Fd0ebd7bduvWjby8PIKCgmyK79evH9u2bSM+Pv6iCyeEEMLxuWg1jEwMY2RiGAWlFfy0NYdvN2dyIP80P2/P4eftOYT5uHJz9wjGd48kPkia/zua5jxG2LJlC9nZ2ajVams5unbtypw5c0hISKgV+8gjj3D//fcTFxfHfffdxwMPPGA9UXG+yspKKisrrdMlJSUAGAwGDIZL66SyevlLXU9LJHVrOe7rH40ahVd+2897qYepNBh5akTbehMNR6tbU0jdHJOj1m13Tgnfbcnm5+25lFQYrfP7t/JnQvcIhncIRo2ZlJR0u9TN1nXYnPQrisJzzz2Hu7u7TfFVVVW2rloIIcRVItjLlSmD4rl/YBy7skv4dnMmP23LIbe4gv+sPMx/Vh6mR4wft/SIZEznMLxcpfm/I2jOY4QjRyy9lM+cOZM33niD2NhY5s6dy+DBgzlw4AD+/v4A/Pvf/2bo0KG4ubmxfPly/vGPf3DixAmeffbZetc7a9YsXnjhhTrzk5OTba7nhaSkpNhlPS2R1K1lCAEmxKn4Ll3DJ38e49DhdG6KNdPQBUZHqltTSd0ckyPU7YwBNp9Qsa5ATXbZuY3LT6/QJ1ihd5CZANcCyCpgeda55exRt7KyMpvibE76Bw0axP79+20uQL9+/XBzc7M5XgghxNVDpVLRKdKHTpE+PDOmA8v3FvDtpkxWHTjO5mOn2HzsFDN/2c3IhFAm9Iiif6sA1NL8v8W6HMcIM2fOrDfprmnjxo2YzWYAnnnmGcaPHw9Y7t2PjIzk22+/5cEHHwSoldx37doVgBdffLHBpH/69OlMmzbNOl1SUkJUVBTDhw/H29u78QpegMFgICUlhWHDhqHTOdeJLalbyzMa6LIxi+d+3sOqPDUR0dHMGNOh1m+qo9bNFlI3x9TS62Y2K6w9cpLvtmSTsreAKqNlX6TTqBjeIYQJPSLoF+9f762L9qxbdSu0C7E56U9NTb3YsgghhBANctFqGN0pjNGdwigoqeDHrdl8uzmLQwWnWbQth0Xbcgj3cWV8j0jGd48kwkff3EUW57kcxwiPPPIIt99+e6MxsbGxlJaWAtCxY0frfBcXF+Lj48nIyGhw2b59+1JSUkJ+fj4hISF1nndxccHFxaXOfJ1OZ7cDUHuuq6WRurUsE/vH4aLT8tQPO/hyQxZmRcUrN3WqczLVEetmK6mbY2ppdauvUz6ADmHe3NYzkhu7ReDrbttxij3qZuvy0sueEEKIFiPY25UHB7figUHxbM8q5rvNmfy8LYec4greWXGId1YcomeML4l6FcNNZlrQcYCws8DAQAIDAy8Y16NHD1xcXNi/fz/XXHMNYLmKcvToUWJiYhpcbuvWrbi6uuLr62uvIgvRot3aKwqtRsUT327n642ZGM0Kr43vLJ2oCnEBjXXKd2O3CG7tGUViRMseDUaSfiGEEC2OSqWia5QvXaN8eXZMR1L25PPd5izWHDzOpmNFbELD72/9yf3XxHFrryjc9bI7u1p5e3vz0EMPMWPGDKKiooiJiWH27NkA3HLLLQD88ssv5OXlWW8rWLlyJc888wwPPPBAvVfzhXBWN3ePRKNWMW3hdr7bnIXRZGbOLV2au1hCtEi7sotZuCmTRVuza3XKN6B1ALf2jGJEQiiuOk0zltB2cpQkhBCiRXPVaRjbJZyxXcLJK67gi3Xp/HfNYbJOlTPzlz383+8Hmdg3hnv6xxLkJQnc1Wj27NlotVomTpxIeXk5ffr0YcWKFfj5+QGW5o/vvfce06ZNw2w2Ex8fz4svvsjDDz/czCUX4sob1zUCrVrNY19vZdG2HIxmhddvTrjwgkJcBYrKqvhpWw7fbMxkT+65++XDfVyZ0DOKW3pEEuVvn85cryRJ+oUQQjiMUB9X/nZta6LPHOBMSCc+XXuMY4VlvLvyEB+uOcL47hHcd008rYNl2L+riU6nY86cOcyZM6fe50eOHMnIkSOvcKmEaLnGdA5Dq1HxyJdb+HVHLlVGEyO8mrtUQjQPs1nhz8MnWLgpi2W786yd8uk1aoYnhHBrzygGtA506FthJOkXQgjhcPQauLF3FBP7xZGyJ48PVh9ha0YRX23I5KsNmVzXIYQHB8fTM8av3jGphRDiajciIZT3/9KDv36+heQ9BRz1UePX/gSD2oag1aibu3hCXHZZp8r4dlPDnfKN6xqBn4dzdB4sSb8QQgiHpVGrGJkYxoiEUDYdO8UHq47w+95861/XKF8eHBTP8IRQhz5DL4QQl8PQDiF8eHcPHvhsMweKYfKCLQR46BndKYyxXcLpGeMnw6UKp1JhMJG8J5+FGzNrdcrn5arlxq4R3NYrioRwb6e7YCBJvxBCCIenUqnoFetPr1h/Dh8/zcdrjvD9lmy2ZRbx1y+2EBPgzv3XxDGhRxRuesfodEcIIa6EIe2C+e6BPrz2/Z/sKXWh8EwVn607xmfrjhHq7cr1nS0nADpH+jhdIiSuHruyi/l2UyaLtuVQXG6wznfETvkuhiT9QgghnEqrIE9m3dyZacPa8b+0o3y2znLf/3M/7bZ2+nd3vxgCPKXTPyGEAOgQ5sWt8WaGjRjMxowSftmew7JdeeSVVPDxH+l8/Ec60f7ujO0Sxg1dImgXKh0AiJavulO+hZsy2Z3jPJ3yXQxJ+oUQQjilIC8X/jG8HX8d0opvN2Xx8R9HyDxZzlvLD/L+qsNM6BHJ/QPjiQv0aO6iCiFEi6DTqBncNojBbYN46cZEVh04zi/bc/h9bz4ZJ8v4z8rD/GflYdqGeDK2s2VUlVj5DRUtyNXQKd/FkKRfCCGEU3PXa7mnfyx39Ylm2e58Plx9mO1ZxXyxPoMvN2QwvGMIDwxqRY8Yv+YuqhBCtBiuOg0jEkIZkRDKmUojy/cV8Mv2HFbtP86B/NPMTTnA3JQDdIrw4YYu4YzpHEa4r1tzF1tcpa6mTvkuhiT9QgghrgpajZoxncMY3SmU9ekn+XD1EVbsK2DZ7nyW7c6nR4wfDwyKZ1iHEOm4SgghavBw0XJDl3Bu6BJOcbmB5N15/Lw9h7WHC9mZXczO7GJeXrKXXrF+jO0SzqjEMIK85BYqcXldqFO+W3tGkRjhfJ3yXQxJ+oUQQlxVVCoVfeMD6BsfwMH8Uj5ac4RFW3PYfOwUD362mfhAD+4fGM/N3SOculMfIYS4GD5uOm7pGcUtPaM4cbqS33bl8cv2HDYePcnGo6fYePQUM3/eTf9WgYztEsbIhDB83HXNXWzhRK72TvkuhsMMwnnq1CkmTpyIj48PPj4+TJw4kaKiokaXUalU9f7Nnj3bGjNkyJA6z99+++2XuTZCCCFagjYhXrw+oQt/PJXE1CGt8HbVcuTEGZ7+cScDXl3B28sPcupMVXMXUwghWqRATxcm9o1h4YP9WPuva3l2TAe6RPpgVuCPQyd46vud9Hw5hfsXbOSnbdmcqTQ2d5GFgyouM7Bg7VHGvL2G69/5gwVpxyguNxDu48rfrm3NmieT+OL+vozrKifs6+MwV/rvvPNOsrKyWLp0KQAPPPAAEydO5Jdffmlwmdzc3FrTv/32G/fddx/jx4+vNX/KlCm8+OKL1mk3N7kfSQghribB3q48ObI9U5Nas3BjJp/8kU52UTlvpBzgvdRD3NozivuviSc64Oro5VcIIZoqzMeN+wfGc//AeI4VnuHXHbn8sj2HfXml/L63gN/3FuCqUzO0fQhju4QxpF2wJGeiUWYF/jxcyPdbc+t0yjfsbKd811yFnfJdDIdI+vfu3cvSpUtZt24dffr0AeCjjz6iX79+7N+/n3bt2tW7XGhoaK3pn376iaSkJOLj42vNd3d3rxMrhBDi6uPpomXyNXHc3S+GxTtz+XD1EXbnlPC/tGN8vu4YIxNDeWBQK7pG+TZ3UYUQosWKCfDg4aTWPJzUmgP5pfy6PYeft+dwtLCMxTtzWbwzF08XLcM7hjC2azjXtA5Ep3GYBsjiMsovqWBXdjGb0gv5ZquGk+s2W59rH+rFbb2iuPEq75TvYjhE0p+WloaPj4814Qfo27cvPj4+rF27tsGkv6b8/HwWL17MggUL6jz3xRdf8PnnnxMSEsKoUaOYMWMGXl4Njz9aWVlJZWWldbqkxDLuo8FgwGAwNLSYTaqXv9T1tERSN8ckdXNMUrdLNzohmFEdg1iXfpKP/zjK6oOFLNmZx5KdefSK9eO+ATEktQ2yW6d/9q6XM372QgjH0zbEi2nD2/H3YW3ZnVPCz9tz+HV7DjnFFfywNZsftmbj665jVGIYY7uE0ScuQK7cXgUURSG32JLg78ouZldOCTuzizleWlkjSoWXq5ZxXcO5rWe0dMp3CRwi6c/LyyM4OLjO/ODgYPLy8mxax4IFC/Dy8uLmm2+uNf+uu+4iLi6O0NBQdu3axfTp09m+fTspKSkNrmvWrFm88MILdeYnJyfj7m6fpp+Nvb6jk7o5JqmbY5K62cf4QOjnBitz1Ww+obJ2VhXippAUZqZnkILOThep7FWvsrIyu6xHCCHsQaVSkRjhQ2KED/8a2Z4tGaf4ZXsOi3fmcuJ0FV9tyOCrDRkEebkwplMYN3QNp1uUryR5TkBRFLKLytl1dqSHXdkl7MouprCePnPUKmgd7EnHUC+8zmTx5J1D8XJ3bYZSO5dmTfpnzpxZb/Jc08aNGwHq3eAVRbH5h+C///0vd911F66utb80U6ZMsT5OTEykTZs29OzZky1bttC9e/d61zV9+nSmTZtmnS4pKSEqKorhw4fj7e1tU3kaYjAYSElJYdiwYeh0ztXTqdTNMUndHJPU7fK4H8grqeB/aRl8tTGL/HIjXx/R8HuBnrv7RnNn7yh83C6uTPauV3UrNCGEaGnUahU9Y/3pGevPc9d3ZH36SX7ZnsNvu/I4XlrJ/LVHmb/2KBG+boztEs7YLmF0DJOrvI5AURQyT5ZbkvucYuuV/FNldVufadQq2gR7khjhQ6cIHxIjvOkQ5o27XovBYGDJkkzp98FOmjXpf+SRRy7YU35sbCw7duwgPz+/znPHjx8nJCTkgq+zZs0a9u/fzzfffHPB2O7du6PT6Th48GCDSb+LiwsuLnXHHtXpdHY7ALXnuloaqZtjkro5Jqmb/UUF6Hjm+gT+dl1bvt6QyX//TCe3uII3fj/E+6vTubVnFPddE0eU/8W1/LJXvZz1cxdCOBetRs2A1oEMaB3Ii+MSWXPwOL9szyF5Tz7ZReW8v+ow7686THyQB2M7hzO2Szitgz2bu9gCMJsVMk6Wnb16X2z9X1JRd5QGrVpF2xAva3KfGOFDhzBvSeqvkGZN+gMDAwkMDLxgXL9+/SguLmbDhg307t0bgPXr11NcXEz//v0vuPwnn3xCjx496NKlywVjd+/ejcFgICws7MIVEEIIcdXyctUxZVA8kwbE8uuOHD5YdYR9eaXMX3uU/6UdZXSnMB4c1IpOkT7NXVQhhHAIeq2aoR1CGNohhPIqEyv3F/DL9hyW7yvgyPEzvLX8IG8tP0jHMG/Gdgnn+s5hF32CVTSN2ayQXnjGeuV+Z3Yxu7NLKK1nGEadRkX7UG9rct8pwoe2IV6S4Dcjh7inv0OHDowcOZIpU6bwwQcfAJYh+66//vpanfi1b9+eWbNmcdNNN1nnlZSU8O233zJ37tw66z18+DBffPEFo0ePJjAwkD179vCPf/yDbt26MWDAgMtfMSGEEA5Pp1FzU7dIbuwawZqDJ/hozRHWHDzBrzty+XVHLv3iA3hgcDxD2gZJ01QhhLCRm17D6E5hjO4URmmFgZQ9+fyyPYc1B0+wJ7eEPbklvLZ0H92ifRnbOZwxncMI8ZZ7v+3BZFY4cvx0rfvvd+cUc6bKVCdWr1XTIdSrRhN9S4Kv18poDC2JQyT9YOlh/29/+xvDhw8H4IYbbuDdd9+tFbN//36Ki4trzfv6669RFIU77rijzjr1ej3Lly/nrbfe4vTp00RFRTFmzBhmzJiBRiNnooQQQthOpVIxqG0Qg9oGsTunmI/XpPPL9hzSjhSSdqSQtiGeTBkYz7iuEXIwJIQQTeDlquPm7pHc3D2SU2eqWLo7z/r7ujWjiK0ZRfx78R76xgUwtks4oxJDZUg3GxlNZg4dP21N7ndlF7Mnt4SyehJ8F62ajuHeJIafS/DbhHjKcIsOwGGSfn9/fz7//PNGYxRFqTPvgQce4IEHHqg3PioqilWrVtmlfEIIIUS1hHAf/u+2rvxzRDv++0c6X23I4ED+af753Q7mJO9nUv847uwTfdGd/gkhxNXKz0PPHb2juaN3NAUlFSzemcsv23PYklFkPcn6/E+7uKZNIGM7h5PUNqC5i9xiGExmDuafPnf/fU4xe3NLqDCY68S66TQkhHtbR1xIjPCmdZAnWknwHZLDJP1CCCGEown3dePZ6zvy6NA2fLUhg0//TCe/pJLXlu7j3RUHub13NJOviSPC1625iyqEEA4n2NuVewfEce+AODJPlllPAOzOKSF1/3FS9x9Hr1UT5qrhm/xNuOm1uOo1uOnO/uk1uFY/1qlrT5+Ncz3751ZjORetGrW6Zd+uVWU0cyC/1Nq53q7sYvbmlVJlrJvge+g1JISfS+47RfgQH+SJpoXXUdhOkn4hhBDiMvNx0/HQ4FZMHhDHz9tz+Gj1Efbnl/LJH+nMX3uUsZ3DuLd/dHMXUwghHFaUvzsPDW7FQ4Nbcfj4aX7dnsvP27M5fPwMx06rOHb6pF1fz1Wntp4EOP9Egou2+iSBut7nz51oODdtXV+Nkw0uWrVNfcFUGkzsyTtjHSJvZ3Yx+/NKMZjqtoL2ctGSEHG2iX6kJdGPC/Bo8ScxxKWRpF8IIYS4QvRaNRN6RDK+ewSpB47z0eojrD1cyKJtOSzalkNbHzUBHU5yTdsLD0crhBCifq2CPHnsujb8bWhrdmed4sff/6Bjp64YzFBuMFFuMFFRZTr32GCuM6+8ykRFrcdmqkznrpJXGMxUGMycou748/aiUnHuxMJ5rQ1c9Rr0atiboeEf61dgNNdN8L1dtbU62EuM8CHG310S/KuQJP1CCCHEFaZSqUhqF0xSu2B2ZhXz4ZojLNmZy4FiNeuOSNIvhBD2oFKpaBfqRWd/hdFdwtDpLq0fFaPJTIXRbD0hUPOkQHmtafO56ZonF6pMVBhrzjPXPvlQZaLMYMJ0NoFXFCirMtXbqV6NWgIKvu66c8n92Y72ovzdZNQYAUjSL4QQQjSrTpE+vHNHN6YNbcULX63iL32imrtIQggh6qHVqPHUqPF0ubwplMFUt+VBhcFcp/XB6Yoqju3fxd1jhxAT6CUJvmiQJP1CCCFECxDp58ZNsWYCPF2auyhCCCGakU6jRqdR4+3aeMsEg8HAkhM7ifCVK/qicTLmghBCCCGEEEII4aTkSr8dKIrlvpuSkpJLXpfBYKCsrIySkpJLvu+opZG6OSapm2OSujkee9erep9UvY8Sl0b29baRujkmqZtjkro5JnvWzdZ9vST9dlBaWgpAVJTchymEEKJlKS0txcfHp7mL4fBkXy+EEKKlutC+XqXIJYBLZjabycnJwcvr0jvQKCkpISoqiszMTLy9ve1UwpZB6uaYpG6OSermeOxdL0VRKC0tJTw8HLVa7ua7VLKvt43UzTFJ3RyT1M0x2bNutu7r5Uq/HajVaiIjI+26Tm9vb6f7gleTujmmxuo2c+ZMXnjhBY4fP05gYGCD65g0aRKpqakcPXr0MpXSNtXl2LFjB2Cp27vvvkvHjh258cYbm7y+1NRUkpKS+Pbbb5kwYYKdS3tprtbvpCOzZ73kCr/9yL6+aaRujulS6tbSjwVsrVt95YuNjWXIkCHMnz//8hXwEsh30jHZq2627Ovl1L8Q4qrz3HPP8eOPP9aa98orr7Bo0aLmKZAQQgghhBCXiVzpF8KJlJWV4e7u3tzFaPFatWoF2KdDLiGEEKIlkWOB2srLy5u7CEI0O7nS38K4uLgwY8YMXFycb5xmqZt9zZw5E5VKxZYtW5gwYQJ+fn7WZLYxFRUV/OMf/6Br1674+Pjg7+9Pv379+Omnn+rEqlQqnnrqKW688UZ69+6Nu7s7Xbp04ddff73g6+zbt4/4+Hj69OlDQUFBg3GKovDee+/RtWtX3Nzc8PPzY8KECRw5cuSCr1HT/PnzUalUpKSkcO+99+Lv74+Hhwdjx46ts65JkyYRGxtr/dx8fHw4c+YMCxYsQKVSoVKpGDJkiDU+OzubBx54gKioKPR6PeHh4UyYMIH8/Pxa6zUYDDzzzDOEh4fj7e3Nddddx/79+5tUD3uR7c3xOGu9RF3O/FlL3a4sex0LxMbGEhkZSXJycp1YlUrFI488wmeffUaHDh0c4lggOTmZyZMnExQURGhoKM888ww6nY7XX3+d9u3b4+LiQnBwMHfffTdZWVlNeo2WpCV+J+1F6mZnihDCIc2YMUMBlJiYGOWpp55SUlJSlEWLFl1wuaKiImXSpEnKZ599pqxYsUJZunSp8sQTTyhqtVpZsGBBrVhAiY2NVXr37q0sXLhQWbJkiTJkyBBFq9Uqhw8frlOW48ePK4qiKKmpqYqfn58ybtw45cyZM9a4e+65R4mJian1GlOmTFF0Op3yj3/8Q1m6dKny5ZdfKu3bt1dCQkKUvLw8m9+PTz/9VAGUqKgoZfLkycpvv/2mfPjhh0pwcLASFRWlnDp1qsFypKWlKW5ubsro0aOVtLQ0JS0tTdm9e7eiKIqSlZWlhIWFKYGBgcobb7yh/P7778o333yjTJ48Wdm7d6+iKIqycuVK63t11113KYsXL1a++uorJTo6WmnTpo1iNBptrocQQghhKzkWqK36WCAiIkJ54IEHlN9++0357rvvFKPRqDzwwAMKoDzyyCPK0qVLlffff18JCgpSoqKirGVuqHwxMTHKPffcY3M5hGhpJOkXwkFV71yff/75S1qP0WhUDAaDct999yndunWr9RyghISEKCUlJdZ5eXl5ilqtVmbNmlWnLMePH1c+++wzRa/XK3/7298Uk8lUa331JduAMnfu3FpxmZmZipubm/Lkk0/aXI/qHf1NN91Ua/6ff/6pAMpLL73UYDkURVE8PDzq3aFPnjxZ0el0yp49exp87eqkf/To0bXmL1y4UAGUtLQ0m+shhBBC2EqOBWqrPha4++67a83fu3evAihTp06tNX/9+vUKoDz99NMNlk9RJOkXjk+a9wvh4MaPH9/kZb799lsGDBiAp6cnWq0WnU7HJ598wt69e+vEJiUl4eXlZZ0OCQkhODiYY8eO1Yl9+eWXmTRpEq+++ipvvfXWBYcJ+/XXX1GpVPzlL3/BaDRa/0JDQ+nSpQupqalNrttdd91Va7p///7ExMSwcuXKJq8L4LfffiMpKYkOHTpcMPaGG26oNd25c2eAet8rIYQQwl7kWKC289+P6mOASZMm1Zrfu3dvOnTowPLly5v8GkI4Ekn6hXBwYWFhTYr/4YcfuPXWW4mIiODzzz8nLS2NjRs3MnnyZCoqKurEBwQE1Jnn4uJSb8c4n3/+OREREdx+++02lSU/Px9FUQgJCUGn09X6W7duHSdOnGhS3QBCQ0PrnVdYWNjkdQEcP37c5mG6zn+vqu/Vkk6EhBBCXE5yLFDb+e9H9TFAfe9TeHj4RR8jCOEopPd+IRycSqVqUvznn39OXFwc33zzTa1lKysrL7ksS5cu5bbbbmPgwIEsX76cmJiYRuMDAwNRqVSsWbOm3s5MLqaDk7y8vHrntW7dusnrAggKCnLoTn6EEEI4PzkWqO3896P6pEVubm6dE/k5OTkEBgY2+TWEcCRypV+Iq4xKpUKv19faIebl5dXbe39TxcTEWHfaAwcO5ODBg43GX3/99SiKQnZ2Nj179qzz16lTpyaX4Ysvvqg1vXbtWo4dO1arN/76NHTFYtSoUaxcubLZeuEXQggh7M3ZjwXOd+211wKWkx01bdy4kb179zJ06NBLfg0hWjK50i/EVeb666/nhx9+YOrUqUyYMIHMzEz+/e9/ExYWdsEdsy3CwsJYtWoVI0aMYNCgQaSkpJCYmFhv7IABA3jggQe499572bRpE4MGDcLDw4Pc3Fz++OMPOnXqxF//+tcmvf6mTZu4//77ueWWW8jMzOSZZ54hIiKCqVOnNrpcp06dSE1N5ZdffiEsLAwvLy/atWvHiy++yG+//cagQYN4+umn6dSpE0VFRSxdupRp06bRvn37JpVPCCGEaG7Ofixwvnbt2vHAAw/wzjvvoFarGTVqFEePHuW5554jKiqKv//975e0fiFaOkn6hbjK3HvvvRQUFPD+++/z3//+l/j4eP71r3+RlZXFCy+8YJfXCAwMZMWKFYwZM4bBgwezbNkyevbsWW/sBx98QN++ffnggw947733MJvNhIeHM2DAAHr37t3k1/7kk0/47LPPuP3226msrCQpKYm33noLf3//Rpd76623ePjhh7n99tspKytj8ODBpKamEhERwYYNG5gxYwavvvoqhYWFBAUFcc0111xwnUIIIURL5OzHAvWZN28erVq14pNPPuE///kPPj4+jBw5klmzZtXbZ4EQzkSlKIrS3IUQQohLNX/+fO699142btzY4EGFEEIIIYQQVxu5p18IIYQQQgghhHBS0rxfCCehKAomk6nRGI1G0+QefpubrfUSQgghrnZX+7GAo9VLiCtFrvQL4SRWrVpVZ3zb8/8WLFjQ3MVssgULFlywXqtWrWLSpEkoiiJN+4UQQly1rvZjASFE/eSefiGcRGlp6QWHlYuLi3O4zmoKCwtJT09vNKZdu3Z4eXldoRIJIYQQLZMcC8ixgBD1kaRfCCGEEEIIIYRwUnJPvx2YzWZycnLw8vKSe4mEEEK0CIqiUFpaSnh4OGq13M13qWRfL4QQoqWxdV8vSb8d5OTkEBUV1dzFEEIIIerIzMwkMjKyuYvh8GRfL4QQoqW60L5ekn47qL5/KDMzE29v70tal8FgIDk5meHDh6PT6exRvBZD6uaYpG6OSermeOxdr5KSEqKiouQeVzuRfb1tpG6OSermmKRujsmedbN1Xy9Jvx1UN/Pz9va2y4GAu7s73t7eTvkFl7o5HqmbY5K6OZ7LVS9pim4fsq+3jdTNMUndHJPUzTFdjrpdaF8vSX8LpDFVQtUZUOr5Eqg0oHM9N111puEVqdSgc7vI2DKgoT4eVaB3v6hYtbmq4boB6D3OPTaUg2JuuMy1YitAaWT81qbE6tyhesMxVoLZaFOs2mxovG5aN6i+18ZYBWZDw+ttUqwrqDVNjzUZwFTVcKzGBTSWnwiVYmy8bjViMRnBVNnIevWg0TU91mwCY0XDsWodaPVNj1XMjdet1nrNYCxvZL1a0LqcXa8ChjL7xDZpu68ntqG6tcDfiKZt9+WgNPIdbmG/EReMlV2yEEII4dSqjGZWHzjOkZIr+7pyhNHC3PXJRhbmTYEd9T+/070PH0S+ik6jRqtW8fKe4eiV+pObbJ8eLOnxMVqNCq1GzS0rBuNadare2FL/Tuy5/ie0GjU6jYr2Xw9Afzqr3lhTYDsMD6ahVavQqFWoPkqC4/vqL7BPNPx9p3XymoMvo9t+f/2x7gHw5JFz059PgGN/1B+rc4dncs9NL5wIB5PrjwWYWXzu8Y8PwJ6fGo59OudcAvDL47D9y4Zj/3kYPAIBSMz+Et3s+xqOfWwH+MVYHq94Eda+03Ds1HUQ3MHyeM1cWPVqw7FTVkBED8vj9fMg5fmGY+/5FeIGWh5vng9Lnmg49s6F0HYEAJEn09DNntxw7C3zIeEmy+N9v8C3kxqOHfcedLvL8vjwcvjy1oZjR8+B3lMsj4+thQXXNxw77EUY8Jjlce42+OjahmMH/wuSpgPgVZGDbnZMw7H9H4XhL1keF2fCW50bju11P4yZa3lcVgizWzUc2+VOuGme5bGhDF4Jbzi24zi49X/nphuLbTMc7vrWOql9s0PDJxRiroF7F5+bfrOTpdz1Ce8GD6Sem/5PHyjOqD82qD08vP7cdBN+I/h0FORsrT/2vN8Izde3Qcba+mNb4G8Ey56GjR83HPvwloafE0IIIYRDqjKa+fPwCRbvyCV5dx4lFUY6+qp55AqWQZL+FmZfXmmjzx8vreTXHecOZF9wUdA30Joj81QZLy/Za50e7WLEtYHYIyfOcNuH66zTf7hUENlA7OGC0wx/bql1OkVfSpsGOovMK6ng7v9bhVatRquG2eXgV3+oEEIIIYQQQji8+hL9akGeeoLdKlCUhlpB2p9KuZKv5qRKSkrw8fGhuLj4ku/z++NAPuv/WEXnbt1ApcFoNmM0KRhMZoxmBYNZRZVKb5lnNkNVGUaTGZNZsTxvssQbFTMGk4oK9NZ5auMZDCYFs1nBYFIwKgpGk9ny2AxnFJ1lWZMZtakCk8mESVEs88yWOAAFFRW4WMvsSiWqBprunh/rQhVq6jbdVakg2NOVAH8/InzdCPd1I9pbRYSPC2E+boT7uuLpct45qhbUdNdgMLD0158YOfy6hu/NcdDm/QaDgd8W/8yoYUMbrpuDNu83GAwsWfwro4clNVw3B23ebzAYWLJkCaOvG4xOp8NkMmEwmiyvZY1Vn7fexspwfmw5jTfZd7u4WEPFBZr3u2MwGFi9ejWD+vdBp2lkKLpatw1UXuA3ogmxOrcavxFVF/iNsD3WgJbVa9YwaNAgm+7x0+l0aDSaBp+3575J2P5+mkwmDIZGfofh3HfYxs/akThj3fR6PWq1+tzv6ujRTlO3alI3xyR1a1kaTfS9XBiVGMroTmF0jfBi2dLf7FI3W/dNcqW/hekT50/hXheGJMa2uC+4oijWkwtGc80TBmdPNJw3z2A6G28yYzArVFQZWJ22iYCYDuSXVJFdVG79qzKaOVoKR0tPsflY/bcg+LjprCcEIv3crI8jzj4O9HS3rcOqmonLhWhdoMZJi8aY1TrLyQVbPjetHtDbWIbLFKvRnUuoL0BRaW2vm0Z77gSAPWPVmtonb+wVq1LbXje1ugnrVV2eWGhSrKJzJ7ewkKKiItvX38IpikJoaCiZuQVO1UmdtV6ZmTbXy9fXl9DQUKd6HxyVoijk5eXZtK1dzGftKJyxbmq1mri4OKepjxDCfmxN9HvF+qNRW35DLnRi+HKQpF/YTKVSne0f4OKWNxgMVBxWGJ3UqtYJDbNZofDM2ZMAp8rJOXsiIOuU5X9OUTnF5Qbr357c+nu+0GvVRPi6Wf9qnhCI9HMjxNsVvbaRq4JCOKGCggJKS0sJDg7G3d3GE2MtnNls5vTp03h6eqJWO8823ZR6KYpCWVkZBQUFAISFhV2JIopGVCf8tmxrzvodBuerm9lsJicnh9zcXNnOhBDAxSX6zU2SftHs1GoVQV4uBHm50DXKt96Y0goDOUUVZBeVkV1UQXaNEwLZp8rJL62gymgm/cQZ0k/U3/RZpYIQL1ci/M6eELCeFHAlwtedCD+3urcQCOHAVCoVJSUlhISEEBAQ0NzFsRuz2UxVVRWurq5OkVRUa2q93Nwst0UUFBQQHBzcaFN/cXmZTCZrwm/Ltuas32FwzroFBQWRk5ODydTIbT9CCKfmiIl+TZLhCIfg5aqjXaiOdqFe9T5fZTSTV1xx7paBGi0Gat5CkFdSQV5JRaO3EFSfEIj0s/QlUH1CwHILgd4prpSKq0N1Euju7n6BSOGoqj9bg8EgSX8zqm6qKduac9LrLbfNSdIvxNXF0RP9miTpF05Br1UTHeBOdED9B1zn30KQXVRGTlGF9RaC7FNllFQYrbcQ7LXhFoKaJwRCPHWUNTb8thDNSE5UOS/5bFsW+TycU/XnKn1fC+H8nCnRr0mSfnFVuJRbCLJPWU4QXOgWAq1Kw/qqnfylXyw9Yvzk4E8IIYQQQogWzlkT/Zok6RfiLFtvIcg620qgZouBoydOk1VUwaLtuSzanku7EC/u6B3FTd0j8XFrWaMwCOEsNBoNP/74IzfeeONlfZ3Y2Fgef/xxHn/88cv6OvWZP38+jz/+uFONviAci0qlku1MCOF0roZEvyZJ+oWwUWO3EFRVVfH+wt84po9m8c489ueXMvOXPby6dB9jO4dzZ59oukb5ytV/IZqgoKCA5557jt9++438/Hz8/Pzo0qULzz//PAkJCWRnZ7fIDgolgRCOpKHtbObMmfTr14/c3Fz8/Pyau5h1yHYmhGiqqy3Rr0mSfiHsQKVSEeMFfx2dyPNjE1m0NZsv12ewP7+Ubzdn8e3mLDqEeXNXn2hu7BYhowQIYYPx48djMBhYsGAB8fHx5Ofns3z5ck6ePAlAaGio0/QOLkRzsWU7E0IIR9VYoh/o6cLoTs6b6NckR0tC2JmPm457+sey9PGBfP/XftzcLQK9Vs3e3BKeXbSL3i//zvQfdrAzq7i5iypEi1VUVMQff/zBa6+9RlJSEjExMfTu3Zvp06czZswYwNK8f9GiRQAcPXoUlUrFwoULGThwIG5ubvTq1YsDBw6wceNGevbsiaenJyNHjuT48ePW1xkyZEid5sQ33ngjkyZNarBsb7zxBp06dcLDw4OoqCimTp3K6dOnAUhNTeXee++luLgYlUqFSqVi5syZgKVF0JNPPklERAQeHh706dOH1NTUWuv+8ssviY2Nxd3dnZtuuonCwsJLeh+d2XvvvUdcXByurq706NGDNWvWNBibmppq/Txq/u3bt+8KlrjlsWU7U6lUTdrOvL29mTBhQovezubPn090dLRsZ0I4qSqjmZX7C3ji2+30fCmFez/dyHebsyipMBLo6cLd/WL4+oG+rH96KC+OS6RvfIBTJ/wgV/qFuGxUKhU9YvzpEePP82M78v2WbL5Yf4wjx8/w1YZMvtqQSedIH+7sHc3YLuF4yNV/cQUoikK5oXmGnXLTaWy+xcXT0xNPT08WLVpE3759cXFxsWm5GTNm8OabbxIdHc3kyZO544478Pb25q233sLd3Z1bb72V559/nnnz5l10PdRqNW+//TaxsbGkp6czdepUnnzySd577z369+/Pm2++yfPPP8/+/futdQG49957OXr0KF9//TXh4eH8+OOPjBw5kp07d9KmTRvWr1/PI488wssvv8z48eNZunQpM2bMuOhyOrNvvvmGxx9/nPfee48BAwbwwQcfMGrUKPbs2UN0dHSDy+3fvx9vb2/rdFBQ0GUrY2PbmtlsprzKhLbKaPfWKs29nbm6unLrrbcyY8YM3n///Yuux+XcziZPnswrr7zCzTffLNuZEE5Crug3TrIMIa4AX3c9910Tx+QBsaxPP8mX6zNYuiuPHVnF7MjayUuL93Jjt3Du7B1Dx3DvC69QiItUbjDR8fllzfLae14cgbvett2OVqtl/vz5TJkyhffff5/u3bszePBgbr/9dhITExtc7oknnmDEiBEAPPbYY9xxxx0sX76cAQMGAHDfffcxf/78S6pHzSuWcXFx/Pvf/+avf/0r7733Hnq9Hh8fH1QqVa1m0YcPH+arr74iKyuL8PBwa1mXLl3Kp59+yiuvvMLbb7/Ntddey1NPPYVaraZt27asXbuWpUuXXlJ5ndEbb7zBfffdx/333w/Am2++ybJly5g3bx6zZs1qcLng4GB8fX2vSBmba1uz13bWuXPnBpdrbDszm8385S9/4Ztvvrmkelyu7eytt95ixIgR/Otf/wKQ7UwIByaJvu0k6RfiClKpVPSND6BvfACFpyv5bnMWX23I4GhhGZ+vy+DzdRl0i/blzt7RXN85HDe9prmLLESzGT9+PGPGjGHNmjWkpaWxdOlSXn/9dT788ENuvvnmepepmaiEhIQA0KlTp1rzCgoKLqlcK1eu5JVXXmHPnj2UlJRgNBqpqKjgzJkzeHh41LvMli1bUBSFtm3b1ppfWVlp7Yxw3759jBo1qtbz/fr1k2TkPFVVVWzevNmatFUbPnw4a9eubXTZbt26UVFRQceOHXn22WdJSkpqMLayspLKykrrdElJCQAGgwGDwVAr1mAwoCgKZrMZs9kMYP1/pdUsgy1uuukmRo0axZo1a1i3bh3Lli2zbmfVze+r11m93sTEROvj6tYSCQkJmM1mFEUhODiYgoKCWuWofn9qTtc3r3p65cqVzJo1i71799bazkpLS/Hw8Kj3fd60aVOD25m/vz9ms5m9e/dy44031lqub9++LF26tMH3rbpeRqMloTj/83cG1XWSujmWq7FuVUYzaUcKWbIrn9/3FpyX6OsZmRDCyIQQesb4WRN9s8mIuXkaOdbLnp+breuQpF+IZhLg6cKDg1sxZWA8aUcK+XJ9Bst257E1o4itGUX8+9c93Nw9krv6RNMmpP5hBIVoKjedhj0vjmi2124qV1dXhg0bxrBhw3j++ee5//77eeGFFxpM+nW6c0NkVjdxPn9ezQN7tVqNoii11tHYDvTYsWOMHj2ahx56iH//+9/4+/vzxx9/cN999zW6nNlsRqPRsHnzZjSa2u9DdbPk88sh6nfixAlMJpP1pE61kJAQ8vLy6l0mLCyMDz/8kB49elBZWclnn33G0KFDSU1NZdCgQfUuM2vWLF544YU685OTk3F3rz2Ki1arJTQ0lNOnT1NVVQVYPs+0aX0vpoqXxFB+hpKKpl/R6tOnD3369OGxxx7jb3/7GzNmzLBuZ+Xl5ZSUlFjvqa+qqrKeBCkvLwegoqLCOk+lUmEymazTZrOZyspK63T1ch4eHrViqteRkZHB9ddfz7333stTTz2Fn58f69at49FHH+XkyZOYTCYqKipQFKXWOs+cOYNGo2HlypV1trPq1zIajXXKUt+6aqqqqqK8vNx6UiklJaXJ76+jkLo5Jmevm9EMB4pVbC1UsfOkinLTud84L51CV3+FrgFm4r2NqFXpFO5NZ9neZiy0jezxuZWVldkUJ0m/EM1MrVYxoHUgA1oHUlBawbebLFf/s06VM3/tUeavPUqvWD/u7BPNqMQwXC8icRKimkqlsrnpb0vUsWNHa6di9hAUFERubq512mQysWvXrgavAG/atAmj0cjcuXOt92IvXLiwVoxer8dkqn1JoVu3bphMJgoKChg4cGC96+7QoQMbN26sNW/dunVNrtPV4vz71hVFafBe9nbt2tGuXTvrdL9+/cjMzGTOnDkNJv3Tp09n2rRp1umSkhKioqIYPnx4rX4BwJI0ZmZm4unpiaurq3W+TwNlVxSF0tJSvLy8WuRQrl26dGHJkiXWerq5ueHt7W09QeXh4WF9rvoEiJeXF97e3taTVyqVyhoTGhpKYWGhddpkMrF//37CwsKs89RqNa6urnh7e7N//36MRiNvv/22dTv77bffar2Ot7c3ZrO51mfRv39/TCYTZWVlDW5niYmJbN26tdZy27Ztq1Xe81VUVODm5kb//v1ZvXo1w4YNq3Uy0RkYDAZSUlKkbg7Gmet2pqKSed+vIN8lghX7T9h0Rd9R2PNza+hk5fkc98hPCCcU7OXKw0mt+evgVqw5dIIv1h1j+b4CNh49xcajp3jhlz1M6B7JHX2iaRXk2dzFFeKyKSws5JZbbmHy5Ml07twZLy8vNm3axOuvv84NN9xgt9e59tprmTZtGosXL6ZVq1b83//9X6Pjfrdq1Qqj0cg777zD2LFj+fPPP+t0VhYbG8vp06dZvnw5Xbp0wd3dnbZt23LXXXdx9913M3fuXLp168aJEydYsWIFnTp1YvTo0Tz66KNcc801zJ49m5tuuonk5GRp2l+PwMBANBpNnav6BQUFda7+N6Zv3758/vnnDT7v4uJSb8d2Op2uzkGayWRCpVKhVqtt6pivurVJ9TLNpaHtbPbs2YwbN85atup6nT9d/bjmvPNb0gAMHTqUadOm8dtvv9Xazs6vf/V0mzZtMBqN/Oc//7FuZx988EGt14mPj+f06dOsXLnSup21b9+eu+66i0mTJjW4nT322GP079+fOXPmcOONN5KcnMyyZctqlfd8arUalUqFVms5bK7vO+AspG6OyVnqVmEwsfrAcZbuzuP3PfmUVGgAy2+9M96jb4/PzdblZcg+IVogtVrF4LZBfHh3T/586lqmDWtLuI8rRWUGPv4jnaFzV3H7h2n8vD2HSmMLuklJCDvx9PSkT58+/N///R+DBg0iMTGR5557jilTpvDOO+/Y7XUmT57MPffcw913383gwYOJi4tr9D7vrl278sYbb/Daa6+RmJjIF198UafjuP79+/PQQw9x2223ERQUxOuvvw7Ap59+yt13380//vEP2rVrxw033MD69euJiooCLEno22+/zbvvvkvXrl1JTk7m2WeftVtdnYVer6dHjx51mkWmpKTQv39/m9ezdetWwsLC7F08h9LYdvbuu+/a7XVa2nb28ccf884778h2JkQLUFph4Kdt2Uz9YjPdXkzhgc8288OWbEoqjHjpFP7SJ+qqG17vclApchPhJSspKcHHx4fi4uIGm4bZymAwsGTJEkaPHu0UZ+xqkrpdGpNZIXV/AV+uz2Dl/gLMZ7fcAA89E3pGcmfvaGIC6u9E7FLI5+aYDAYDycnJxMXFER8fX6vJsaMzm82UlJTg7e3drFdJ7e1i6lVRUUF6erp1vPqa7Llvamm++eYbJk6cyPvvv0+/fv348MMP+eijj9i9ezcxMTFMnz6d7Oxs/ve//wGW3v1jY2NJSEigqqqKzz//nFdffZXvv/++wf4hztfY+9nY51AfZ/0Og3PWrfrzjYyMZMWKFU67z3Dm/aHUrWUpPF3J73vzWborjz8PFVJlOtdCKMLXjREJoVzXPpD83WlcP8ax6mYLe35utu7rpXm/EA5Co1YxtEMIQzuEkF1UzjcbM/lmYwb5JZV8sOoIH6w6wsA2gdzZO5rrOoag0zjHwZYQQpzvtttuo7CwkBdffJHc3FwSExNZsmQJMTExAOTm5pKRkWGNr6qq4oknniA7Oxs3NzcSEhJYvHgxo0ePbq4qCCHEVSWnqJzk3Xks3Z3HhvST1otXAPFBHoxKDGVkQhiJEd6oVCpLYryn+crrbCTpF8IBRfi6MW1YW/52bWuW77Nc/V998DhrDp5gzcETBHm5cGvPSG7vFU2Uv/uFVyiEEA5m6tSpTJ06td7n5s+fX2v6ySef5Mknn7wCpRJCCFEt/cQZlu6yJPrbM4tqPZcY4c3IhFBGJobSOlhGqbrcJOkXwoFpNWpGJIQyIiGUzJNlfLUhg4WbsjheWsl/Vh7mvdTDDG4bxJ29o7m2fTBaufovhBBCCCEuA0VR2JtbytLdeSzblcf+/FLrcyoV9Izxsx63ykWpK0uSfiGcRJS/O0+ObM/j17Xl9735fLH+GH8eKiR1/3FS9x8n1NuV23pFcXvvKMJ83Jq7uEIIIYQQwsGZzQpbM4tYtjuPpbvyyDh5btx4rVpFv1YBjEwMZVjHEIK9nKd/IUcjSb8QTkavVTO6UxijO4WRfuIMX2/I4NvNWeSVVPDW8oO8s+Ig17YP5s4+0QxuGyw9oAohhBBCCJsZTWY2pJ+0XNHfnUd+SaX1ORetmsFtgxiZGMrQ9iH4uDtXJ3yOyqmT/tjYWI4dO1Zr3lNPPcWrr75qnc7IyODhhx9mxYoVuLm5ceeddzJnzhz0ev2VLq4QdhcX6MH00R2YNrwtS3fl8eX6DNann+T3vQX8vreACF83bu8Vxa29ogjxlrOvQgghhBCirgqDiT8PnWDprjxS9uZTVGawPufpouXa9sGMTAxlSLsg3PVOnWI6JKf/RF588UWmTJlinfb09LQ+NplMjBkzhqCgIP744w8KCwu55557UBTFruNAC9HcXLQaxnWNYFzXCA4VnOarDRl8tzmL7KJy5qYc4M3lB7muQzB39olhYOtA1HL1XwghhBDiqna60kjq/gKW7spj5b4CzlSZrM/5e+gZ1iGEkYmh9G8dgItW04wlFRfi9Em/l5cXoaGh9T6XnJzMnj17yMzMJDw8HIC5c+cyadIkXn75Zacb11gIgNbBnjx3fUf+OaIdS3bm8uX6DDYdO8Wy3fks251PtL87t/eO4pYeUQR5uTR3cYUQQgghxBVy6kwVv+/NZ9nuPFYfPEGV0Wx9LtTblZGJlo74esX6SQfRDsTpk/7XXnuNf//730RFRXHLLbfwz3/+09p0Py0tjcTERGvCDzBixAgqKyvZvHkzSUlJ9a6zsrKSyspz966UlJQAYDAYMBgM9S5jq+rlL3U9LZHUrWXRAGM7hTC2UwgH8kv5emMWi7bnknGyjNeX7uf/Ug4wrEMwE7qFoSiOVTdbOeLnZqvqOimKgtlsxmw2X2AJx6EoivX/1V4vs9mMoigYDAY0mtpXWZzxey2EEML+8ksqSN5tGVpv3ZGTmMyK9bnYAHdGJoYxMjGUzhE+0hrUQTl10v/YY4/RvXt3/Pz82LBhA9OnTyc9PZ2PP/4YgLy8PEJCQmot4+fnh16vJy8vr8H1zpo1ixdeeKHO/OTkZNzd7TP8REpKil3W0xJJ3Vqmnmro3Bm2FKpYm6/m2GlYsiufJbvyCXDR8GvmcnoEmgl3whFWHPlza4xWq6WiooLTp09TVVXV3MWxu9LS0kafP3DgAA8//DA7d+6kTZs2rFmz5gqV7NJcqF41VVVVUV5ezurVqzEajbWeKysra2ApIexr3759TJo0iW3bttG+fXtSU1Obu0hCiAvIKCxj6e5clu7KY0tGUa3nOoR5MzIhlJGJobQN8USlkkTf0Tlc0j9z5sx6E+6aNm7cSM+ePfn73/9unde5c2f8/PyYMGECr732GgEBAQD1fokVRWn0yz19+nSmTZtmnS4pKSEqKorhw4df8i0BBoOBlJQUhg0bhk7nXL1dSt0cw41n/+/JLeHrjVn8tD2XwkoTv2er+D1bTdtgT8Z2DmVM51Ci/Bz7DIAzfW7nMxgMrFy5EldXVzw9PXF1dayOGu+9917+97//AaDRaAgPD2f06NG8/PLL+Pr6UlpaipeXV6O/1XPmzMHb25u9e/fi6enZ4m/ZUhTFpnrVVFFRgZubG4MGDarzGVe3QhOiMZMmTWLBggXAuW1tzJgxvPLKK/j5+dm0jhkzZuDh4cH+/fvtdvFDCGFfiqJwsOA0S3dZhtbbk1t7H9E92tfadD8mwKOZSikuF4dL+h955BFuv/32RmNiY2Prnd+3b18ADh06REBAAKGhoaxfv75WzKlTpzAYDHVaANTk4uKCi0vde511Op3dEgd7rqulkbo5hi7RAXSJDmD6yHbM/TqZbE0oqw6e4EDBaeb+foi5vx+ie7Qv47pGMLpTmEPf/+9Mn9v5VCoVarUatdqx7rtTqVSMHDmSTz/9FKPRyJ49e5g8eTLFxcV88cUX1pjG6nXkyBHGjBlDXFzcRZejqqrqio3mUt2k/0L1qkmtVqNSqer9Djvrd1rYX33bWlFREV999ZVNyx8+fJgxY8YQExOD2Wy+qBNOV3JbE+JqoSgKO7KKLUPr7crjyIkz1uc0ahV94vwZmRjK8I6hhPo41sUB0TSOdRQIBAYG0r59+0b/GrqitXXrVgDCwsIA6NevH7t27SI3N9cak5ycjIuLCz169Lj8lRHCAbjpNXQPVJh3Vzc2PTOM18Z3on+rAFQq2JJRxIyfd9Pnld+Z+Ml6vt2USUmF3Ecs7MPFxYXQ0FAiIyMZPnw4t912G8nJydbnP/30Uzp06ICrqyvt27fnvffesz6nUqnYvHkzL774IiqVipkzZwKQnZ3Nbbfdhp+fHwEBAYwbN46jR49al5s0aRI33ngjs2bNIjw8nLZt2zZpuTlz5hAWFkZAQAAPP/xwrfvqKysrefLJJ4mKisLFxYU2bdrwySefWJ/fs2cPt9xyC97e3oSEhDBx4kROnDhh53dViLrsua1Vt8Zs6dva6NGj8fT0lG1NOB2TWWHdkUJm/ryb/q+uYNx//mRe6mGOnDiDXqNmaPtgXp/QmY3PXMeXU/pyd79YSfivApd0pf9izuReqeaVaWlprFu3jqSkJHx8fNi4cSN///vfueGGG4iOjgZg+PDhdOzYkYkTJzJ79mxOnjzJE088wZQpU1p8M1AhmoOPu47bekVzW69o8ksq+HVHLj9vy2Z7VjFrDp5gzcETPLNoF9e2C2Zc13CS2gfjqpMhXFqkqjMNP6fSgM7Vxlg16NwuHKu/tKaCR44cYenSpdar1wsWLOC1117j3XffpVu3bmzdupUpU6bg4eHBPffcQ25uLtdddx0jR47kiSeewNPTk7KyMpKSkhg4cCCrV69Gq9Xy0ksvMXLkSHbs2GG9yrh8+XK8vb1JSUlBURSbl1u5ciVhYWGsXLmSQ4cOcdttt9G1a1frsLF33303aWlpvP3223Tp0oX09HRropGbm0tSUhITJ07krbfeorKykqeeeopbb72VFStWXNJ719xa8rHCFVHfNmE2g6EMjHrQuzceW82Wbe0StzOou6199NFHzJgxw+Ztzd3dndOnTzN06NAWu60NHjyYKVOm8MYbb1BeXu4025q4elUazfxxpIBlu/JI2ZNP4Zlz/fi46zUktQ9mZEIoSe2D8XRxuIbewg4u6VP39fVtUscOKpWKAwcOEB8ffykvaxMXFxe++eYbXnjhBSorK4mJiWHKlCk8+eST1hiNRsPixYuZOnUqAwYMwM3NjTvvvJM5c+Zc9vIJ4ehCvF2575o47rsmjqMnzvDz9hx+2pbN4eNnWHq2B1hPFy0jEkK5oWs4A1oFyNAuLckr4Q0/12Y43PXtuenZrS0JSn1iroF7F5+bfrMTlBXWjZtZ3OQi/vrrr3h6emIymaioqADgjTfesBRp9mxmz57NzTffDEBcXBx79uzhgw8+4J577iE0NBStVounp6d12Nb//ve/qNVqPv74Y+u+69NPP8XX15fU1FSGDx8OgIeHBx9//LE1wbB1OT8/P9599100Gg3t27dnzJgxLF++nClTpnDgwAEWLlxISkoK1113HUCtfeG8efPo1q0bzz//PN7e3qjVav773/8SFRXFgQMHrFdBHVFLPla4IurZ1tSAL6C0HgZ/+e7cE5e6rV3EdgaNb2v//ve/mTt3rs3bmtls5n//+1+L3ta6d+/OK6+8Yp3nLNuauLpUGk38vief/x1U88yWVE5XnuvM1cdNx7COIYxMCOWaNoFyAUZc+j393333Hf7+/heMUxSF0aNHX+rL2ax79+6sW7fugnHR0dH8+uuvV6BEQjiv2EAP/ja0DY9e25o9uSX8vD2HX7blkFNcwfdbsvh+SxaBnnpGdwpjXNdwukf7SU+w4oKSkpKYN28eZWVlfPzxxxw4cIBHH32U48ePk52dzZQpU3jwwQet8UajER8fnwbXt3nzZg4dOoSXl1et+RUVFRw+fNg63alTp1r3Ftu6XEJCQq1h88LCwti5cycA27ZtQ6PRMHjw4AbLlpqaSmRkZJ3nDh8+7PCJSEs9VhAWjW1rmZmZ3Hfffdar6HDhbW3btm0teltbuXIlnp6edZ5zhm1NOLfqe/S/35LFz9tzKCozYDmNaCTYy4URZ3vc7x3nj04utIgaLinpj4mJYdCgQdae8C8kPj5eOhYSwompVCoSwn1ICPfhqRHt2Zxxip+2ZbNkZx4nTlfxv7Rj/C/tGBG+btzQNZxxXcNpH+pEzXgdydM5DT+nOu+KwD8PNRJ73kHF4zsvvkzn8fDwoHXr1gC8/fbbJCUl8cILLzB16lQAPvjgA/r161drmfPHqq/JbDbTo0cPa0eANQUFBdV63YtZ7vz9m0qlsnbO5+bmRmPMZjPXX389zz77LJ6enrU68qvuh8ZRXfXHCvVsa2azmZLSUrx9fKl1+rOFbWuPPPIIYGni36dPn1rLOPK2NnbsWF577bU6zzn6tiacV35JBT9uzea7zVkcKjhtnR/i5UJHz3L+en1fesYFolbLBRVRv0tK+tPT05sUv2vXrkt5OSGEA1GrVfSK9adXrD8zxibwx6ET/LIth2W788guKmde6mHmpR6mbYgn47pGMLZzONEBMtTTFdOUe38vV2wTzZgxg1GjRvHggw8SHh5Oeno6EydOtHn57t2788033xAcHNyke8YvdrmaOnXqhNlsZtWqVdYmx+e/xvfff090dDT+/v4ON9pCY676Y4X6tgmzGXQm0LpeOLYp67WT6m3tr3/9KxERERw5coS77rrL5uW7dOnCokWLWvS2Fhsbi1Yr9zaLlqvCYCJ5Tz7fbc7ij4PHMSuW+S5aNSMSQhnfI5I+MT4sW/ob3aJ9JeEXjXKeowohRIul06hJahfMG7d1ZdOzw/jPnd0Z3jEEvUbNgfzTzF62n0GzV3LTe3/y6Z/pFJRWNHeRRQs0ZMgQEhISmDVrFk899RSvvvoqb731FgcOHGDnzp18+umn1vuQ63PXXXcRGBjIuHHjWLNmDenp6axatYrHHnuMrKwsuy9XU2xsLPfccw+TJ09m0aJFpKenk5qaysKFCwF4+OGHOXnyJPfffz8bNmzgyJEjJCcnM3nyZEwmU9PeKCEuUfW29sorrzBz5kxmzZrVpG3tlltuafHb2h133CHbmmhxFEVh09GTTP9hB71e/p2/fbWV1QcsCX/PGD9evbkTG5+9jrfv6MbgtkFoJNEXNrLbKc6333673vkqlQpXV1dat27NoEGDGm0OJoRwfm56DWM6hzGmcxjF5QaW7crj5+05rD18gq0ZRWzNKOLfv+6hf6tAbugazsjEULxdnaipr7gk06ZN495772Xz5s18+OGHzJ07lyeffBIPDw86derE448/3uCy7u7urF69mqeeeoqbb76Z0tJSIiIiGDp0aKNXFS92ufPNmzePp59+mqlTp1JYWEh0dDRPP/00AOHh4axZs4YnnniCUaNGWTugHTlypFNd9ZdjBcdRva0dOnSIjz/+mNmzZzdpW0tNTWX69Oktclv7888/eeqppxgxYoTTbmvCsWSdKuPHLdn8sDWb9BPnRuaI8HVjfPcIbu4eSWzg5WvdI5yfSlEUxR4riouL4/jx45SVleHn54eiKBQVFeHu7o6npycFBQXEx8ezcuVKoqKi7PGSLUZJSQk+Pj4UFxdf8jBDBoOBJUuWMHr0aOe6pxGpm6O6UnUrKK1g8Y5cftqWw7bMIut8vVZNUrsgxnWN4Fo7DwHo7J9bcnIycXFxxMfH4+rqPGPwms1mSkpKrL3cO4uLqVdFRQXp6enExcXV+YztuW+yF0c+Vmjs/Wzsc6iPs36HwTnrVv35RkZGsmLFCqfdZzjz/rAl1u1MpZGlu/L4bnMWaUfOjcThrtcwKjGM8T0i6BsX0Giz/ZZaN3uQutnG1n293X6NX3nlFXr16sXBgwcpLCzk5MmTHDhwgD59+vDWW2+RkZFBaGgof//73+31kkIIJxLs5cq9A+JY9PAAVv1zCE8Mb0ubYE+qjGaW7c5n6hdb6PnS70xbuI3U/QUYTebmLrIQoonkWEEIcTUzmxXSDhfyj4Xb6fXy7/zj2+3WhL9ffABzb+nCxmeuY+6tXejfSjrmE/Zjt+b9zz77LN9//z2tWrWyzmvdujVz5sxh/PjxHDlyhNdff53x48fb6yWFEE4qJsCDR65tw8NJrdmXV8rP23P4eVsO2UXl/LAlmx+2ZBPgUXsIQNkxCtHyybGCEOJqdPTEGX7YksX3W7LJLiq3zo8NcGd890hu6h5BpJ90ZiwuH7sl/bm5uRiNxjrzjUYjeXl5gOU+qtLSUnu9pBDCyalUKjqEedMhzJt/Dm/H1sxT/LQth8U7cik8U8Vn647x2TrLEIBju4RzQ5dwOoR5oVLJCQAhWiI5VhBCXC1KKgws2ZHL91uy2Hj0lHW+l4uW67uEMb57JD1i/OSYRVwRdkv6k5KSePDBB/n444/p1q0bAFu3buWvf/0r1157LQA7d+4kLi7OXi8phLiKqNUqesT40yPGn+ev78ifhwv5aVs2ybvzyS4q5/1Vh3l/1WHaBHsyrms4N3SJkCEAhWhh5FhBCOHMTGaFPw+d4LvNWSzbnUel0XIroloF17QJYkKPSIZ3DLFr/0RC2MJuSf8nn3zCxIkT6dGjh7VDAqPRyNChQ/nkk08A8PT0ZO7cufZ6SSHEVUqrUTO4bRCD2wZRYTCxYl8BP2/LYcX+Ag4WnGZO8gHmJB+ga5QvN3QJ5/rOYQR7O09Hdk1lp/5aRQvkaJ+tsx8rONrnIWxT/bnKFVnRkEMFpXy3OZtFW7PJKzk37HCbYE/G94jkpm4RhFzFxyGi+dkt6Q8NDSUlJYV9+/Zx4MABFEWhffv2tGvXzhqTlJRkr5cTQggAXHUaRncKY3SnMEoqzg0B+OehE2zLLGJbZhEvLd5Dv1YBjOsSwYjEUHzcnKsX2IZUjzldVlaGm5tbM5dGXA5lZWUADtOzsbMeK1S//7KtOaeqqioAGUpS1FJUVsUv23P4bks222uMOuTrruOGLuGM7x5J50gfOVkkWgS7Jf3V4uPjUalUtGrVCq3W7qsXQogGebvquKVnFLf0jOJ4aSWLd+Tw8/YctmQU8eehQv48VMizi3YxpF0QN3QNZ1Ar/+Yu8mWlKAre3t4UFBQAljGwneHgw2w2U1VVRUVFhdMMCQZNq5eiKJSVlVFQUICvr6/DJSPOdqyg0Wjw9fW1eVtz1u8wOF/dzGYzx48fx93d3eG2M2F/BpOZ1QeO893mLJbvLaDq7EhCGrWKpHaW5vtJ7YNx0cp3RbQsdtvTlpWV8eijj7JgwQIADhw4QHx8PH/7298IDw/nX//6l71eSgghLijIy4VJA+KYNCCOzJNl1hEA9ueXkrwnn+Q9+XjoNbTzUmOOzGVoQhjero5xtbQpgoOD0Wg01mTEGSiKQnl5OW5ubk5xEqPaxdTL19eX0NDQy1wy+3HmY4Xqz8GWbc1Zv8PgnHVTq9VER0c7TX1E0+3NLeG7zVn8tC2bE6errPM7hHkzoUck47qGE+jp0owlFKJxdkv6p0+fzvbt20lNTWXkyJHW+ddddx0zZsxw6B25EMKxRfm783BS67NDAJbw8zZLC4CsU+VsKVSz5dud6H7YRb9WgQzrGMKwDiGE+jjHvXcqlYqwsDCCg4MxGAzNXRy7MBgMrF69mkGDBjlMs3ZbNLVeOp3O4a48OvOxQlO2NWf9DoNz1k2v16NWq53mN1TY5sTpSn7alsP3m7PYk1tinR/oqWdc1wjGd4+kY7h3M5ZQCNvZLelftGgR33zzDX379q11JrRjx44cPnzYXi8jhBCXpH2oN+1HevPPEe3YlH6CD35dx5EqL46cOMPqA8dZfeA4zy3aRZcoX4Z3DGF4xxBaB3s6/BUejUbjcAliQzQaDUajEVdXV6dJKsB561XT1XCsYMu25syftTPXTTi/KqOZFfvy+W5zNqn7CzCaLZ046jVqhnYIZnz3SAa3C0KncfxbV8TVxW5J//HjxwkODq4z/8yZMw5/sCyEcD4qlYquUb6MjTEzevQAMooqSdmTT/LuPLZmFrH97N/sZfuJC/Rg2NkTAN2i/dCo5TdNiIshxwpCiJZGURR2Zhfz/eYsftqeQ1HZuRYdXSJ9mNAjkrFdwvF11zdjKYW4NHZL+nv16sXixYt59NFHgXPDmnz00Uf069fPXi8jhBCXRasgT1oN9uShwa0oKK1g+d4Cknfn8eehQtJPnOHD1Uf4cPURAjz0XNchhOEJIQxoHShj7QrRBHKsIIRoKfJLKvhxazbfb87iYMFp6/wQbxdu6hbJhB4RtA72asYSCmE/dkv6Z82axciRI9mzZw9Go5G33nqL3bt3k5aWxqpVq+z1MkIIcdkFe7lyR+9o7ugdzelKI6sPHCd5dx4r9hVQeKaKbzZl8s2mTNx0Gga3DWJ4QgjXtg+WqwBCXIAcKwghmlOFwUTynny+35zFmoPHOdt6HxetmhEJoYzvEck1rQOlRZ9wOnZL+vv378+ff/7JnDlzaNWqFcnJyXTv3p20tDQ6depkr5cRQogrytNFy+hOYYzuFIbBZGZD+kmSd+eRsiefnOIKlu7OY+nuPDRqFb1j/RmeEMKwjiFE+rk3d9GFaHHkWEEIcaUpikJ6KTz70x6W7MqjtMJofa5njB8TekQyurNzjuAjRDW7Do7bqVMn6zA8QgjhbHQaNQNaBzKgdSAzb0hgd06JZfi/3Xnsyysl7UghaUcKeeGXPXQM87b0A5AQQscwb7lfWYiz5FhBCHElFJRW8P3mbBZuzCC9UAtkARDh68b47hHc3D2S2ECP5i2kEFfIJSX9JSUlFw46y9tbhrQQQjgPlUpFYoQPiRE+TBvWlsyTZdYTABuPnmRPbgl7ckt4a/lBInzdrCcAesf6o5Vef8VVRI4VhBBXitFkZtWB43y9MZMV+wowVfe+r1YY0yWCW3pG0TcuALU03xdXmUtK+n19fW2+emUymS7lpYQQokWL8nfnvmviuO+aOE6eqWLFPktHgKsPHie7qJz5a48yf+1RfN11XNsumOEJIQxqG4S73q4NroRoceRYQQhxuR0rPMPCTZl8tzmL/JJK6/zu0b5M6B6BNmc7N41NlGEkxVXrko42V65caX189OhR/vWvfzFp0iRrD7xpaWksWLCAWbNmXVophRDCgfh76JnQI5IJPSIprzLxx6ETJO/OY/m+Ak6eqeKHrdn8sDUbvVbNwNaBDE8IYWiHEAI9XZq76ELYnRwrCCEuhwqDiaW78vhmYyZpRwqt8/099NzcLYLbekXRJsQLg8HAkvztzVhSIZrfJSX9gwcPtj5+8cUXeeONN7jjjjus82644QY6derEhx9+yD333HMpLyWEEA7JTa9hWEdL534ms8LmY6dI3p1H8p58Mk6WsXxfAcv3FaBS7aRHtN/ZjgBDiZP7DIWTkGMFIYQ97c4p5puNmSzamk3J2U75VCoY1CaI23pFcV2HEPRauY1OiJrs1q40LS2N999/v878nj17cv/999vrZYQQwmFp1Cp6x/nTO86fZ8Z04ED+actIAHvz2ZFVzKZjp9h07BSvLNlHm2DPs/0AhNI5wkfuPxROQY4VhBAXo7jcwM/bc/hmYwa7ss/1ExLh68atPaOY0DOSCF+3ZiyhEC2b3ZL+qKgo3n//febOnVtr/gcffEBUVJS9XkYIIZyCSqWiXagX7UK9eHRoG3KKyvl9bz4pe/JJO1zIwYLTHCw4zXuphwnxduG6DpYTAP3iA+QKhnBYcqwghLCVoiisTz/Jwo2ZLN6ZS6XRDIBeo2ZYQgi394piQKtAOSkuhA3slvT/3//9H+PHj2fZsmX07dsXgHXr1nH48GG+//57e72MEEI4pXBfN+7uF8vd/WIpLjeQur+A5D35pO4rIL+kki/WZ/DF+gy8XLQMbhfE8IRQhrQLknGFhUORYwUhxIUUlFTw3ZYsvt2URfqJM9b5bUM8ua1XNDd1i8DfQ9+MJRTC8dgt6R89ejQHDx5k3rx57N27F0VRGDduHA899JCcvRdCiCbwcdMxrmsE47pGUGk0kXa4kOQ9llYAx0sr+XVHLr/uyEWnUdE3PoDhCaEM6xBCqI9rcxddiEbJsYIQoj5Gk5nU/Zah9lbuPzfUnodeww1dw7m1ZxRdo2wfCUQIUdslJf07duwgMTERtdrS1DQyMpKXX365wfjdu3fTrl07tFoZokoIIWzhotUwpF0wQ9oF89K4RLZnFZG8J5/k3XkcPn6GNQdPsObgCZ5btIsukT6WEwAdQ4j1k5EARMsgxwpCiIYcPXFuqL2C0nND7fWI8eO2XlGM6RSGh4v8FghxqS5pK+rWrRt5eXkEBQXZFN+vXz+2bdtGfHz8pbysEEJcldRqFd2i/egW7cdTI9tz+PhpUs6eANiaWcT2rGK2ZxUze9l+YvzdidGrcdt/nGvaBuOul4Mm0TzkWEEIUVP1UHtfb8xg3ZGT1vkBHnpu7m4Zaq91sFczllAI53NJR4GKovDcc8/h7u5uU3xVVdWlvJwQQogaWgV50mqwJw8NbkVBaQXL9xaQvDuPPw8VcuxkGcdQs/rzreg0KnrG+DOobRAD2wTSMcxbOj4SV4wcKwghAHZlF7NwU/1D7d3eK4qhMtSeEJfNJSX9gwYNYv/+/TbH9+vXDzc3GU5DCCHsLdjLlTt6R3NH72hOVxpJ3ZvHlyu2cqzKneyiCtKOFJJ2pJDXlkKgp55rWgcysI3lJECwt/QFIC4fOVYQ4upVXG7g523ZfLMpU4baE6IZXVLSn5qaaqdiCCGEsBdPFy0jEkIwHTMzatRAsksMrD5wnDUHj7P2cCEnTlexaFsOi7blANA+1ItBbYMY1CaInrF+uOo0zVwD4UzkWEGIq0v1UHvfbMxkyXlD7Q1PCOE2GWpPiCtObvIUQggnplKpiAv0IC7Qg3v6x1JlNLMl4xRrDh5n9YET7MopZl9eKfvySvlw9RFctGr6xAcwqE0gg9oG0SbYU3pLFkIIcUHVQ+0t3JjJ0cIy6/x2IV7c1iuKm7pF4CdD7QnRLCTpF0KIq4heq6ZvfAB94wP45wgoPF3JH4dOnB0F4Dj5JZWsPnCc1QeOw+K9hHq7MrBNIAPbBnFN60AZG1kIIYSV0WRm5f7jfNPAUHu39YqmS6SPnDwWoplJ0i+EEFexAE8XxnWNYFzXCBRF4UD+aUsrgIMnWH+kkLySCr7dnMW3m7NQqaBThA+DzvYF0C3aTzpdEs3mvffeY/bs2eTm5pKQkMCbb77JwIEDG4xftWoV06ZNY/fu3YSHh/Pkk0/y0EMPXcESC+E80s8Otff9eUPt9Yzx41YZak+IFke2RiGEEIDlVoB2oV60C/Xi/oHxVBhMbDx68mx/ACfYl1fKjqxidmQV8+7KQ3joNfRrFcigtoEMahNETIC7XM0RV8Q333zD448/znvvvceAAQP44IMPGDVqFHv27CE6OrpOfHp6OqNHj2bKlCl8/vnn/Pnnn0ydOpWgoCDGjx/fDDUQwvFUGEz8tiuXrzdksj699lB743tEcmvPSBlqT4gWSpJ+IYQQ9XLVac728G8ZXz2/pII1B0+w+sBx/jh0gpNnqvh9bz6/780HIMrfjYFtLB0C9m8dgLerrjmLL5zYG2+8wX333cf9998PwJtvvsmyZcuYN28es2bNqhP//vvvEx0dzZtvvglAhw4d2LRpE3PmzJGkX4gL2JVdzDcbM1m0LZvSs0PtqVUwqK1lqL1r28tQe0K0dJL0CyGEsEmItysTekQyoUckZrPCntwSVp0dFWDzsVNknizny/UZfLk+A41aRdcoX8utAG0D6RLpi0Z6ahZ2UFVVxebNm/nXv/5Va/7w4cNZu3ZtvcukpaUxfPjwWvNGjBjBJ598gsFgQKere4KqsrKSyspzzZZLSizDjRkMBgwGwyXVoXr5S11PSyR1c0zn16243MAvO3L5dnM2e3JLrXGRvq6M7x7B+O4RhPmcHe5VMWEwmK54mW11NX1uzkTq1rR1XYgk/UIIIZpMrVaRGOFDYoQPDye15kylkXVHCq0tAY6cOMPmY6fYfOwU//f7AbxdtVzTJtDSEqBtkIzLLC7aiRMnMJlMhISE1JofEhJCXl5evcvk5eXVG280Gjlx4gRhYWF1lpk1axYvvPBCnfnJycm4u7tfQg3OSUlJsct6WiKpm+NRFHjvu99JK1Cxo1CFQbGcqNWoFLr4K/QNVmjjcxp1+X62/rmfrc1c3qZy1s8NpG6Oyh51Kysru3AQkvQLIYSwAw8XLUM7hDC0gyWxyjxZxh+Hzt0KUFJhZMnOPJbstCRl8UEeDGoTxKC2gfSJC5AOn0STnd9/hKIojfYpUV98ffOrTZ8+nWnTplmnS0pKiIqKYvjw4Xh7e19ssQHLlZmUlBSGDRtWbysDRyZ1cywFpZVszyxmS8ZJFm06xonKc9tDuxBPbukRwQ1dwvBzd9yRW5zxc6smdXNM9qxbdSu0C5GjLCGEEHYX5e/OHb2juaN3NEaTme1Zxaw5aOkQcGvGKY4cP8OR42eYv/YoOo2KnjH+DDzbIWDHMG/UciuAaEBgYCAajabOVf2CgoI6V/OrhYaG1huv1WoJCAiodxkXFxdcXFzqzNfpdHY7ALXnuloaqVvLc6bSyM7sYrZnFrHt7F9ucUWNCBUeLhpu6BLB7b2i6OxkQ+056udmC6mbY7JH3WxdXpJ+IYQQl5VWo6ZHjB89Yvx4/Lq2FJcbSDt8glUHLC0BsovKSTtSSNqRQl5fup8ADz3XtAm0Dg0Y7O3a3FUQLYher6dHjx6kpKRw0003WeenpKQwbty4epfp168fv/zyS615ycnJ9OzZ02kPJsXVzWgyc7DgNNsyi6xJ/oH8UsxK7Ti1CtqGeNEpwhuX4gz+ece1+HjI7VdCOBtJ+oUQQlxRPm46RiaGMTIxDEVROFpYdnZYwOOsPVxI4ZkqftqWw0/bcgBoH+rFoLaWEwC9Yv3RNHP5RfObNm0aEydOpGfPnvTr148PP/yQjIwMHnroIcDSND87O5v//e9/ADz00EO8++67TJs2jSlTppCWlsYnn3zCV1991ZzVEMIuFEUhp7ii1hX8nVnFlNfTuV6Yjytdo3zpEuVL1yhfOkX44OGixWAwsGTJMdz1khoI4YxkyxZCCNFsVCoVcYEexAV6cE//WKqMZrZknGLNweOsPnCCXTnF7MsrZV9eKR+uPoKLVk3vWD98qlSEZhTRLSZAhoq6Ct12220UFhby4osvkpubS2JiIkuWLCEmJgaA3NxcMjIyrPFxcXEsWbKEv//97/znP/8hPDyct99+W4brEw6ppMLAjsxitmcVsTWjiO1ZRRwvrawT5+mipXOkT60kP0RaTglxVZKkXwghRIuh16rpGx9A3/gA/jkCCk9X8sehE6w5eII1B4+TX1LJmkOFgIZfP9qAq05N92g/esf50zvOn25RfrjppS3A1WDq1KlMnTq13ufmz59fZ97gwYPZsmXLZS6VEPZVZTSzP6+UbZmn2JZZzLbMUxw+fqZOnEaton2olzXB7xblS6sgT+kfRQgBSNIvhBCiBQvwdGFc1wjGdY1AURQO5J9m1f58fl2/l8wKF06VGVh7uJC1hwsB0GlUdI70tZ4E6BHjh7er3LMthGj5FEUh82Q5WzNPsf1sgr8rp4Qqo7lObJS/G10iLVfvu0b5khDuIyc8hRANkqRfCCGEQ1CpVLQL9SI+wJWQot2MHDmEjKJK1qefZEP6SdanF5JfUsnmY6fYfOwU81IPo1ZBx3BvescG0DvOn16xfgR41u2RXQghrrRTZ6rYnlVk7Wxve1YxJ89U1YnzcdNZmudH+tA12pfOkb4Eyu+YEKIJJOkXQgjhkNRqFW1CvGgT4sVf+sZYr5KtTy9kQ/pJNhw9ybHCMnZll7Aru4T//pkOQJtgT2tLgD5xAYT6yD2uQojLq8JgYk9uibWzve2ZRRwtLKsTp9eo6RDubU3wu0b5ERvg7lRD5wkhrjxJ+oUQQjgFlUpFdIA70QHu3NIzCoC84go2HD3JhrMnAg7kn+ZggeXvi/WWjt6i/d1rnATwJ9pfDrCFEBfPbFZILzzDtrOd7G3LLGJvbgkGk1InNi7Qw3IffqQPXaP96BDmhYtWmukLIexLkn4hhBBOK9THlRu6hHNDl3AATp6pYuNRy+0AG9JPsjunmIyTZWScLOO7zVkAhHi70DsuwHoSoLV0hiWEaMSJ05W1EvztmUWUVBjrxPl76K334Hc5m+j7uuubocRCiKuNJP1CCCGuGv4eekYkhDIiIRSA0goDm4+dsp4E2J5VRH5JJb9sz+GX7TkA+Lnr6BV77naADmFeaDUyTKAQV6MqE2w6dopdOafZllXEtowisovK68S5aNUkRvjU6k0/0s9NWhEJIZqFJP1CCCGuWl6uOoa0C2ZIu2DAct/t1oyis30CFLL52ClOlRlI3pNP8p58wDL2dY8YP2tLgE6RPtIcV4hmYDIrVBpNVBjMVBpNVBrMVBrNF55nNJ+df948o5kKQ/Xz5+ZVP64wmDh1RoN5w8Za5VCpoHWQp6WzvbN/7UK90MnJQSFECyFJvxBCCHGWq05Dv1YB9GsVALShymhmV06xtSXAxqMnKa0wsurAcVYdOA5Yruh1i/ald1wAfeP86RbtJ0NniauOoiicqTJxoqSc7DOwPasYk6KqnUgbzyXiFecl5LUT7poJe+3ku6JGEm40171H/vJTEezlUusKfmKkjwwNKoRo0STpF0IIIRqg16rpHu1H92g/HhrcCpNZYV9eifUkwIb0kxSeqWLdkZOsO3KStwGtWkXnSB96xwXQJ86fHrF+khAIh2E0mSkuN1BUbqCozEBJuYGi8iqKygyW+Wf/Wx5XUVRuoPjsvHNJuBZ2rL+i5dZpVLhqNbjo1LhoNbho1ei1alx1lscu1f9rzrPGnzdPq8ZFp66zPg1mtqxbw+3jhqHXy734QgjHIUm/EEIIYSONWkVCuA8J4T7cOyAORVE4fPzM2RMAhaxPP0lucQVbMorYklHE+6sOo1JBxzBv6+0AvWL9CZAxtsVlpCgKZVUma0JeVF5lTcyLaiXudZP505V1O6BrCr1WjV5lwtfD7WyirTkvgT6XRJ9LyG2c10CSrteq0VyBzjYNBgOH9ch9+UIIhyNJvxBCCHGRVCoVrYM9aR3syZ19olEUhaxT5edaAhw9SfqJM+zOKWF3Tgmf/nkUgNbBntaTAL3j/AnzcWveiogrTmOqhKozoNTTCkSlAZ0rRpOZkgojxcVFliS9wkCJNWE3UlxeRXG5iROV6rPJfBWVZacpqaiqd3g4M2oqOXeF2pVKVNSOq/4mernqcHH3xNdNj6+7jgAXE76uWnzddfi46fF21eLjrsPHVYe3ux4fbx983XVoMLP010WMHH4NOl0DLVz0HuceG8pBMTf8RtWKrQDFdHbCdPbPAMYLxdZD5265GR/AWAnmRk521IhVmw0Nf24AWjdQn72X31gFZkPD621SrCuoNU2PNRnAVNVwrMYFNJZ0QKUYG69bjVhMRjBVNrJePWh0TY81m8BY0XCsWgdafdNjFXPjdau1XjMY63bOeC5WC9qzJ24VBQxl9ok9u91bVZ1pWmxDdVOpQedWO7bB9Z4fWwY0dBuNCvTuFxfbpO2+HJRGvsNN2e6vwG/EBWO1zbO/l6RfCCGEsBOVSkWUvztR/u6M7xEJQEFJBRtqDBO4L6+UQwWnOVRwmi/XZwAQ5e9Gzxg/XEtUdCkqJzZIbgdwZpuOneL6HVNgR/3Pr1X34EHTU5Seveq+x+Ve4lT1J03rzB24veo56/Rml4cI0JVCPV+hdH1b3m39MT5uOnzddUzeeAOeFTn1FyKoPTxco4n+f/rAoX31x/pEw993AmAwmLnm4Mvott9ff6x7ADx55Nz05xPg2B/1x+rc4Zncc9MLJ8LB5PpjAWYWn3v84wOw56eGY5/OOZcA/PI4bP+y4dh/HgaPQAASs79EN/u+hmMf2wF+MZbHK16Ete80HDt1HQR3sDxeMxdWvdpw7JQVENHD8nj9PEh5vuHYe36FuIGWx5vnw5InGo69cyG0HQFA5Mk0dLMnNxx7y3xIuMnyeN8v8O2khmPHvQfd7rI8Prwcvry14djRc6D3FMvjY2thwfUNxw57EQY8Znmcuw0+urbh2MH/gqTpAHhV5KCbHdNwbP9HYfhLlsfFmfBW54Zje90PY+ZaHpcVwuxWDcd2uRNummd5bCiDV8Ibju04Dm7937npxmLbDIe7vrVOat/s0PAJhZhr4N7F56bf7GQpd33Cu8EDqeem/9MHijPqjz3/N+KjJDh+4d8IAD4dBTlb64897zdC8/VtkLG2/tgW+BvBsqdh48cNxz62Azwb+WwvE4dN+l9++WUWL17Mtm3b0Ov1FBUV1YnJyMjg4YcfZsWKFbi5uXHnnXcyZ86cWvdh7dy5k0ceeYQNGzbg7+/Pgw8+yHPPPSdNt4QQQthFsLcr13cO5/rOlp38qTNVbDp2ig3phWxIP8munBIyT5aTebIc0OC9IYvpYzo2b6HFZbUgLYN+jTxfYTBRarCtmX20vzuvDeiEj5seHzcdPt/qoIGLn3GBHsy9tcu5GTu0DcYKIYRwHg6b9FdVVXHLLbfQr18/PvnkkzrPm0wmxowZQ1BQEH/88QeFhYXcc889KIrCO+9YzrqWlJQwbNgwkpKS2LhxIwcOHGDSpEl4eHjwj3/840pXSQghxFXAz0PPsI4hDOsYAsDpSiNbjp0i7fBxkrccoW+8fzOXUFxunSK8uSnrY9pEh+Pr4XI2Ydfi46bD212Hn5sLK7y88HW3NKPXmtIbXFe4Ss1tNZvjTtvV8AurzhtC7uH1NNoct6YpK22O/aPNM4wcPqzh5v01/eW7xpv51nTrZ403x63ppg/hxnkNP6+r0dR47JswZo5Nsbsi7iTy3v82XLeaTXevfR6GTG94vTVjB/4DBvytkdgaTbn7/NVytdmW2B6ToOudDcdqzvUvkuXfj063Pdtw3WrE0n6s5Upog+ut0dFhq6G2x8b0bzxWXaNsYV1tji11Dcfwz2MN163men2iLrDeGumTe4DtsTr3xmNV54360oRY4+N7G67b+dv94zvrj6sv9jL9RnDvbzZv96bbv0Ft67C4LeA3ghGvWFqkNETrBiYby2hHDpv0v/DCCwDMnz+/3ueTk5PZs2cPmZmZhIdbrq7MnTuXSZMm8fLLL+Pt7c0XX3xBRUUF8+fPx8XFhcTERA4cOMAbb7zBtGnT5Gq/EEKIy87TRcugtkH0i/OlfdVBrmkd0NxFEpfZAwPjiCzdy+jRvW1LjDUeF46ppm9KrPuFYy4i1qzWW8phS910Tbi/teY9zPaM1boAtnWuaVbrbK+bVg81+lBolliN7tz98hegqLS2102jPXd/vz1j1Rrbv8NNiVWpba+bWt2E9aouTyw0PdaWujV5vZfnN6Jp272b7XVrAb8RNsVK0m8/aWlpJCYmWhN+gBEjRlBZWcnmzZtJSkoiLS2NwYMH4+LiUitm+vTpHD16lLi4uHrXXVlZSWXluXvrSkpKAEuvrgZDIx2r2KB6+UtdT0skdXNMUjfHJHVzPPaul7O9P0IIIYS4OE6b9Ofl5RESElJrnp+fH3q9nry8PGtMbGxsrZjqZfLy8hpM+mfNmmVtaVDTokWLcHdvwlmuRvz0UyMdSzg4qZtjkro5Jqmb47FXvcrKLJ06KUpDzS1FU1S/j9Un+i+FwWCgrKyMkpIS2670OxCpm2OSujkmqZtjsmfdqvdJF9rXt6ikf+bMmfUm0zVt3LiRnj172rS++prnK4pSa/75MdVvWGNN+6dPn860adOs09nZ2XTs2JH772/k/iohhBCiGZSWluLj49PcxXB4paWlAERFRTVzSYQQQojaLrSvb1FJ/yOPPMLtt9/eaMz5V+YbEhoayvr162vNO3XqFAaDwXo1PzQ01HrVv1pBQQFAnVYCNbm4uNS6JcDT05PMzEy8vLwuuR+AkpISoqKiyMzMxNvb+5LW1dJI3RyT1M0xSd0cj73rpSgKpaWltW5zExcvPDxc9vU2kLo5JqmbY5K6OSZ71s3WfX2LSvoDAwMJDAy0y7r69evHyy+/TG5uLmFhYYClcz8XFxd69OhhjXn66aepqqqyDuOXnJxMeHi4zScXANRqNZGRkXYpdzVvb2+n+4JXk7pdefPnz+fee+8lPT3dpu92dfzGjRtp27Yt0HDdhgwZAkBqaqodS9x09dXxyy+/pKCggMcff7zRZRuqm0ql4uGHH+bdd9+9DCW+Mlrqd9IenLVu9qyXXOG3H9nXN43UreWx5VigZt1qHgtcqJVtSzkWaExUVFStuk+aNInU1FSOHj3arOWyB0f9TtpC6nZhtuzrW1TS3xQZGRmcPHmSjIwMTCYT27ZtA6B169Z4enoyfPhwOnbsyMSJE5k9ezYnT57kiSeeYMqUKdY398477+SFF15g0qRJPP300xw8eJBXXnmF559/XnruF8JG7733XnMXAYAxY8aQlpZmPckHlqR/165dF0z6hRBCCHHxWsqxgBCifg6b9D///PMsWLDAOt2tWzcAVq5cyZAhQ9BoNCxevJipU6cyYMAA3NzcuPPOO5kz59wYiz4+PqSkpPDwww/Ts2dP/Pz8mDZtWq379YUQjevYsWNzFwGAoKAggoKCmrsYQgghxFXnSh8LmEwmjEZjrdtthRANUzd3AS7W/PnzURSlzl918yKA6Ohofv31V8rKyigsLOSdd96p8+PQqVMnVq9eTUVFBbm5ucyYMaNZr/K7uLgwY8YMp/wRk7o5ntLSUp544gnc3NyIi4vj5ptvJicnp1bMkCFDam13R48eRaVS8frrr/Pyyy8THR2Nq6srPXv2ZPny5U16/aasa/78+ahUKmszvSFDhrB48WKOHTuGSqWy/lWrrKxkzpw5BAYGEhwcTEBAAElJSaxdu7ZOOT777DM6dOiAu7s7Xbp04ddff21SPZqDs34nwXnr5qz1EnU582ctdXNMjdWttLSUv/71rwQGBhIQENCsxwIvvfQScXFxuLi4sHLlSgB+/vln+vXrh7u7O15eXgwbNoy0tLRadRs3blyTXtNRXK3fSUfXLHVThBBO79NPP1UAJT09vUnx8fHxyqOPPqosW7ZM+fjjjxU/Pz8lKSmpVuzgwYOVwYMHW6fT09MVQImKilKuueYa5fvvv1e+/fZbpVevXopOp1PWrl1rc7mbsq7z67h7925lwIABSmhoqJKWlmb9UxRFMRgMSlJSkqLVapUnnnhCWbJkifLzzz8rTz/9tPLVV19Z1wkosbGxSu/evZWFCxcqS5YsUYYMGaJotVrl8OHDNtdDCCGEaG6OfiwQERGhJCUlKd99952SnJyspKenK1988YUCKMOHD1cWLVqkfPPNN0qPHj0UvV6vrFmzptG633PPPUpMTIzN5RDCkTls834hxOU3cuRI3n77bev0yZMnefLJJ8nLyyM0NLTRZU0mEykpKbi6ugIwYsQIYmNjef7550lJSWlSOS5mXR07dsTX1xcXFxf69u1b67mvvvqKlStX8tFHH9UaanPs2LF11lNeXs7vv/+Ol5cXAN27dyc8PJyFCxfyr3/9q0n1EEIIIRxNSzkWcHV1ZdmyZdZxzc1mMwMGDKBTp0789ttvqNWWBsyjR4+mVatWPPXUU/z5559Neg0hnJXDNu8XQlx+N9xwQ63pzp07A3Ds2LELLnvzzTdbd/IAXl5ejB07ltWrV2MymZpUDnuuC+C3337D1dWVyZMnXzA2KSnJmvCDZTjP4OBgm94DIYQQwtG1lGOBG264wZrwA+zfv5+cnBwmTpxoTfjBMpT2+PHjWbduHWVlZU16DSGclST9QogGBQQE1JquvveovLz8gsvWd/Y/NDSUqqoqTp8+3aRy2HNdAMePHyc8PLzWQUJDzn8PwPI+2PIeCCGEEI6upRwL1BydB6CwsLDe+QDh4eGYzWZOnTrVpNcQwllJ0i+EuCzy8vLqnafX6/H09Gy2dYGlp/+cnBzMZnOTlxVCCCGEbey5/z6/o+3qkxG5ubl1YnNyclCr1fj5+TXpNYRwVpL0CyEuix9++IGKigrrdGlpKb/88gsDBw5Eo9FckXU1dEV+1KhRVFRUMH/+/CaVQwghhBC2s+exwPnatWtHREQEX375JYqiWOefOXOG77//3tqjvxACpCM/IcRlodFoGDZsGNOmTcNsNvPaa69RUlLCCy+8cMXW1alTJ3744QfmzZtHjx49UKvV9OzZkzvuuINPP/2Uhx56iP3795OUlITZbGb9+vV06NCB22+//WKrLYQQQoiz7HkscD61Ws3rr7/OXXfdxfXXX8+DDz5IZWUls2fPpqioiFdffdUONRDCOUjSL4S4LB555BEqKir429/+RkFBAQkJCSxevJgBAwZcsXU99thj7N69m6effpri4mIURUFRFLRaLUuWLGHWrFl89dVXvPnmm3h5edGlSxdGjhx5sVUWQgghRA32PBaoz5133omHhwezZs3itttuQ6PR0LdvX1auXEn//v3t8hpCOAOVUrM9jBBCXKKjR48SFxfH7NmzeeKJJ1rMuoQQQghxZcj+W4iWRe7pF0IIIYQQQgghnJQ07xfiKqIoygXHxdVoNHV6yL0cjEZjo8/bMpyeEEIIIZrG0Y4F5HhAiEsnW5EQV5EFCxag0+ka/Vu1atUlvUZsbCyKojTanO/o0aMXLMeLL75o07qEEEIIYTtHOxYQQlw6uadfiKtIYWEh6enpjca0a9cOLy+vy1qOqqoqduzY0WhMeHg44eHhl7UcQgghxNVGjgWEuPo4ddI/b9485s2bx9GjRwFISEjg+eefZ9SoUYCledMLL7zAhx9+yKlTp+jTpw//+c9/SEhIaMZSCyGEEEIIIYQQ9uHUSf8vv/yCRqOhdevWgKU50+zZs9m6dSsJCQm89tprvPzyy8yfP5+2bdvy0ksvsXr1avbv39+ks5tms5mcnBy8vLyuyP1PQgghxIUoikJpaSnh4eFyT6wdyL5eCCFES2Prvt6pk/76+Pv7M3v2bCZPnkx4eDiPP/44Tz31FACVlZWEhITw2muv8eCDD9q8zqysLKKioi5XkYUQQoiLlpmZSWRkZHMXw+HJvl4IIURLdaF9/VXTe7/JZOLbb7/lzJkz9OvXj/T0dPLy8hg+fLg1xsXFhcGDB7N27dpGk/7KykoqKyut09XnTdLT0y/5/ieDwcDKlStJSkpCp9Nd0rpaGqmbY5K6OSapm+Oxd71KS0uJi4u77PflXi2q38fMzEy8vb0vaV0Gg4Hk5GSGDx/uVN9hkLo5KqmbY5K6OSZ71q2kpISoqKgL7uudPunfuXMn/fr1o6KiAk9PT3788Uc6duzI2rVrAQgJCakVHxISwrFjxxpd56xZs3jhhRfqzE9LS8Pd3f2Sy+zu7s769esveT0tkdTNMUndHJPUzfHYs15lZWUA0hTdTqrfR29vb7sk/e7u7nh7ezvlwazUzfFI3RyT1M0xXY66XWhf7/RJf7t27di2bRtFRUV8//333HPPPbWGITn/DVIU5YJv2vTp05k2bZp1uvoMy/Dhw+1yIJCSksKwYcOc8gsudXM8UjfHJHVzPPauV0lJiR1KJYQQQgh7yi+p4Izhyr6m0yf9er3e2pFfz5492bhxI2+99Zb1Pv68vDzCwsKs8QUFBXWu/p/PxcUFFxeXOvOrxxS1B3uuq6WprpuiKBhMCkaz2fLfZMZoVjCYzBhrzVcwmM/OM5kxmM/+PxtjNJ1d5rz51cs2vP66y9d57TrrbzgWtGjWp6JRqVCrOftfhUatOvdYZZmu9Xz1PJUKrcby/9wyWJ+rfz0qNCrqmaeqsVzt52utp9Y6qbV89X8UM/lnQKvVOv130hlJ3RyPverljO+NEEII4ajKqox8uPoIH6w6TE9/Nbdcwdd2+qT/fIqiUFlZSVxcHKGhoaSkpNCtWzfAMl7oqlWreO2115q5lM3DZFaoMJgoN5ioOPtXXmW2Tteeb6LcYD43bf1vprzKRKWxOsbyV2kwU1ZlpKxCwz83/o7JrGAyO18fkiazggkFTM1dEnvT8lXmH4zqFMaIhFC6RfmiVkuTYSGEEEIIIRpjMit8vyWLucn7yS+x9AuXXabCaDJzpc7PO3XS//TTTzNq1CiioqIoLS3l66+/JjU1laVLl6JSqXj88cd55ZVXaNOmDW3atOGVV17B3d2dO++8s7mLbqUoClUmMxVnE+zyKhMVNRLqSoMlKa8535KIm60Jd8V5y1jXVSOBrzCYqTKZr0CNVGBu+HU0ahVatQqdRo1Wo0KrVqPTWK6A69Tnz1M3EKtGp7Ysc+6xJbax5a3rr7lMjfm6s8taHtdeFrOJ339fTtK116LWaDGZFcyKUuM/teaZFAWz+dzj6pMg9cWa63u+xvJ11wkms/nseqln+ZrrpN4ynZsH5VVGth07Seapcj5cfYQPVx8h2MuFEQmhjEwMpU+cP1qNDAcmhBBg6TjYYGi83abBYECr1VJRUYHJ5FxniZ2xbnq9Xoa9FEJclLWHTvDS4r3sybXcchfp58YTw9pAxpYrevzs1El/fn4+EydOJDc3Fx8fHzp37szSpUsZNmwYAE8++STl5eVMnTqVU6dO0adPH5KTk5u1p+Ob319H9gkNL+5ItSbmzXFB3FWnxlWnwe3sn4tOg5tOjZteg6tWg6veMt9Vp7bGuJ59zq3Gc9XrcNVp0KkU1v6xmuuGJuHmoj+bhKvPJdNnm5Y7IoPBgLceQrxdna5JrcFg4MdfluAa153f951gxb4CCkor+WzdMT5bdwxfdx3DOoQwMjGUAa0DcdVpmrvIQghxxSmKQl5eHkVFRTbFhoaGkpmZ6XQdLTpj3dRqNXFxcU5THyHE5Xeo4DSzluxl+b4CALxctTyS1Jp7+seiwcySzCtbHqdO+j/55JNGn1epVMycOZOZM2demQLZILuonPLKSjg7JGDNngPUKnDR61HrXK3JtI/WgJtWg4tejav2bFKusyTfLnotOhcP3PSW5NtDVVkjgbck8fqzSbqrXourm6flea0atbEcaOhsgwr0NUYpqCqzKdZgMHDYpYoIdzM63Xln/81n//Qe5+YZykFppPVBrdgKUBq5otCUWJ07VO/YjZVgNtoUqzYboOoMKA0k/Vo3qL5SYKwCcyNXgpoU6wpqTdNjTQYwVTUcq3EBjeUnwlVtZFRbL25I8KfS2Ip1R06Ssief5XvzKSqr4IfNFXy7OQsPvYah7QIY1cGPgW2C8HSp5ydGowfN2ffIZARTZd2Y+mLNJjBWNByr1oFW3/RYxdz451ZrvWYwljeyXi1oz261igKGMvvEqjSgcz03XXWmabEN1U2lBp2bjes9P9a27b7JsU3a7stBaeQ73MJ+Iy4Y69y7ZKdXnfAHBwfj7u7eaIJoNps5ffo0np6eTncF2dnqZjabycnJITc3t1YfUEIIUZ/C05W8+ftBvtyQgcmsoFGr+EufaB67ri3+HpbjSYPhSrSurk2OMFqY9+/sRu/PWjcc0GY43PXtuemXwxpOFmKugXsXn5t+PR7KCuuPDe8GD6Sem/5PHyjOqD82qD08XGNIqY+S4Pi++mN9ouHvO62T1xx8Gd32++uPdQ+AJ4+cm/58Ahz7o/5YnTs8k3tueuFEOJhcfyzAzOJzj398APb81HDs0znnEoBfHoftXzYc+8/D4BEIQGL2l+hm39dw7GM7wC/G8njFi7D2nYZjp66D4A6Wx2vmwqpXG46dsgIielger58HKc83HHvPrxA30PJ483xY8kTDsXcuhLYjAIg8mYZu9mTAciJq8Nm/lwBcYWHcS7yR3ZG8kgqMu39m1MG3G17vuPeg212Wx4eXw5e3Nhw7eg70nmJ5fGwtLLi+4dhhL8KAxyyPc7fBR9c2HDv4X5A0HQCvihx0s2Maju3/KAx/yfK4OBPe6txwbK/7Ycxcy+OyQpjdquHYLnfCTfMsjw1l8Ep4w7Edx8Gt/zs33Vjseb8R2jc72P4b8WanZv+N4NNRkLO1/tjzfiM0X98GGWvrj22BvxEsexo2ftxw7MNbGn5OtGgmk8ma8AcEBFww3mw2U1VVhaurq1MkxjU5Y92CgoLIyclxmtsVhBD2V2Ew8emfR3lv5SFKKy0n+K/rEML00e1pFeTZzKWTpL/F6Rbt29xFEKLJbu0ZyYSJ17Iju5j0VelwqOHY4goDPleuaEIIcdlV38Pv7u5+gUjhiPR6y9U5SfqFEOdTFIWft+fw+tL9ZBdZWoMmRnjzzOiO9Gt14ZPAV4pKURTn60L9CispKcHHx4fi4mK8vb0vaV0Gg4Flv/zIiBHD6783vEnNfFtW012DwcDSXxcxcngjY1A7aPN+S91+YuTw6xqum4M27zcYDPy2+GdGDRvacN1q3AqAyYhirOBAwWlS9uSTsiefA/ml1lADWjpHBzIqMYwRHQKJ9mmkD4DL3LzfYDCwZPGvjB6W1HDdHLR5v8FgYMmSJYy+bnDDdWthvxGATdu9tW7DktBpG/n+tKDfCFtiDWhZ8ttSRo8ebZe+Qey5bxKNv58VFRWkp6cTFxeHq6trA2s4x2w2U1JSgre3t9NcDa/mjHWr/nwjIyNZsWKF3bbRlsT6uyp1cyhSt+a16ehJ/r14L9sziwAI9XblnyPacVO3iEb7KbNn3Wzd18uV/hbIpHGxHIDa8iWoeaBq19gmXK1oQqxZrbe9bjUTjAvGXvgg66JitS7U7lmhYWa1zva6afWA3sYyXKZYje5cQn0Bikpre900WlQaT9pFedIuKpRHRsDRE2dYtjuPpbvz2JpRxJazfy8vgY5h3oxMtIwE0CbYs+H7YNUa27/DTYlVqW2vm1rdhPWqLk8sND3W1h1KC/iNaNp272Z73VrAb8QFYy/Q47sQQgghmt+xwjO8tnQfS3bmAeCu1/DXwa24f2A8bvqW2aG1JP1CiMsuNtCDBwe34sHBrcgrriB5Tx5Ld+WxPv0ke3JL2JNbwhspB4gP9GBEYigjE0LpHOkjPSULIYQQQogWobjMwDsrDrIg7SgGk4JaBbf1iuLvw9oS7NWECwbNQJJ+IcQVFerjyt39Yrm7Xywnz1Tx+958lu7K44+DJzhy4gzzUg8zL/Uw4T6uDE8IZVRiKD1j/dE46HCOQgjhyFQqFT/++CM33njjZX2d2NhYHn/8cR5//PHL+jr1mT9/Po8//rhNwy0KIa4+VUYzn687xtsrDlJUZmmVN6htEE+Pbk/7UMe4fU6SfiFEs/H30HNrzyhu7RlFaYWBlfuPs2xXHiv3F5BTXMH8tUeZv/YoAR56hieEMCIhlP6tAtFrneM+USGEaG4FBQU899xz/Pbbb+Tn5+Pn50eXLl2YOXMm/fr1Izc3Fz8/v+YuZh2SqAshLjdFUVi2O59Xf9vL0UJL30ttQzx5enQHhrQLbubSNY0k/UKIFsHLVccNXcK5oUs4FQYTaw6eYOmuPH7fm0/hmSq+2pDJVxsy8XLVMrR9MCMTQxnUNgh3vfyMCSHExRo/fjwGg4EFCxYQHx9Pfn4+y5cv5+TJkwCEhoY2cwmFEOLK25FVxEuL97Ih3fJbGOipZ9qwdtzaMxKtxvEuPjleiYUQTs9Vp2FYxxDm3tqFTc9ex+f39eEvfaMJ8nKhtMLIom05PPT5Frr/O4UHP9vEj1uzKC6XTtCEEC2HoiiUVRkb/CuvMjX6/MX+NWVQpqKiIv744w9ee+01kpKSiImJoXfv3kyfPp0xY8YAlub9ixYtAuDo0aOoVCoWLlzIwIEDcXNzo1evXhw4cICNGzfSs2dPvL29mTBhAsePH7e+zpAhQ+o027/xxhuZNGlSg2V744036NSpEx4eHkRFRTF16lROnz4NQGpqKvfeey/FxcWoVCpUKhUzZ84EoKqqiieffJKIiAg8PDzo06cPqamptdY9f/58oqOjcXd356abbqKwsNDm90wI4dyyi8p5/Out3PDun2xIP4mLVs0jSa1J/WcSd/aJdsiEH+RKvxCihdNp1FzTJvD/2bvvuKrKP4Djn7uYl40IyFQxF87KvbdWppWW5tZfpQ2zacOVac7MShuWWllpZVZmJjlzpLk1B4IgiChLlqw7zu8P5CoyBAUZft+vFy/uOec55zzPvXDP+T7nGbQPcmfGQ405FH2Zjccv8sfxi5y/nMmf/13iz/8uodOoaFvHnd6NPenRsCbu+hKOqC6EEOUg02Ci4ZQ/7/h5T8zoVeIWUHq9Hr1ez7p162jdujXW1iX73pw6dSqLFi3Cz8+P0aNH88QTT+Do6MgHH3yAjY0NgwYNYurUqXzyySe3XA61Ws3ixYsJCAggIiKC8ePH8+qrr7JkyRLatm3LokWLmDJlCqdPn7aUBWDUqFFERkby/fff4+3tzc8//0zv3r05duwYQUFB7N27l9GjRzNr1iwGDhzIxo0bmTp16i3nUwhRPaRlGVi6LZwvdkaQbcydOnhg81q83OsevJ1LMbNQJSVBvxCiylCrVbT0d6Wlvytv9G3AfxdSc6cCPH6RM3HpbA+NZ3toPG/+fIx7A1zp3ciTXo09qVUNvqyFEKKsabVaVqxYwbhx4/jkk09o0aIFnTp14vHHH6dJkyZF7vfyyy/Tq1cvAF544QWeeOIJNm/eTLt27TCbzTz55JOsXr36tvJ2fcuAwMBA3nnnHZ555hmWLFmClZUVTk65M7xc3/0gPDyc7777jvPnz+Pt7W3J68aNG1m+fDmzZs3igw8+oFevXrz++usA1KtXj927d7Nx48bbyq8Qomoymsx8/280i/4KJSE9B4BWga681a8hwT5OFZy7siNBvxCiSlKpVDSu5UTjWk681PMewuLS+fO/i/z530WOnk9hX0QS+yKSmLH+BE18nOjVyJPejT2pU0Nf0VkXQpSBJUuWMG/ePGJjY2nUqBGLFi2iQ4cORabPzs5mxowZfPPNN1y8eBEfHx/efPNNRo8eXS75s9VpODGjV6HbzGYzaalpODg6oFaXbVNRW13p5oh+5JFH6NevH3///Td79uxh48aNzJ07l2XLlhXZ/P76CoGaNWsCEBwcbFnn4eFBXFxc6TN/na1btzJr1ixOnDhBamoqRqORrKwsrly5gr29faH7HDx4EEVRqFevXr712dnZuLm5AXDy5EkGDBiQb3ubNm0k6BfiLqMoCttOxzNrw0nOxOV2HQp0t2dyn/r0aFiz2k0bLUG/EKJaqOuhp65HXSZ0qcv5yxls+u8SG/+7yL+RSRw9n8LR8ynM+/M0QR56+jTObQEQ5C4tAISoilavXs3EiRNZsmQJ7dq149NPP6VPnz6cOHECPz+/QvcZNGgQly5d4osvvqBu3brExcVhNBrLLY8qlarIZvZmsxmjlQY7K22ZB/23wsbGhh49etCjRw+mTJnC2LFjmTp1apFBv06ns7zOuzG+cZ3ZbLYsq9XqAmMNGAxFj8Ny7tw5+vbty9NPP80777yDq6srO3fuZMyYMcXuZzab0Wg0HDhwAI0mf+VHXvP/0ox5IISonk7GpvLu7yfZGZYAgLOdjhe6BTG0lX+1nSFKgn4hRLXj42LH6PaBjG4fSHxaNn+dvMTG4xfZHZ7Ambh0zmwJY/GWMHxcbGlsr+betGxquepufmAhRKWwcOFCxowZw9ixYwFYtGgRf/75J0uXLmX27NkF0m/cuJHt27dz9uxZXF1dgdx54YuTnZ1Ndna2ZTk1NRXIDVZvDDwNBgOKomA2m/MFu0XJCzzz9qlsGjRowLp16yx5yyvXjct5r69fd31QnbfN3d2dCxcuWJZNJhPHjx+nc+fO+cqf937s27cPo9HIvHnzLJUied0F8s6j1WoxmUz59m/atCkmk4mLFy8W2urDbDbToEED9uzZk2+/PXv25MtvYfspimKpJCqu4qGqyiuTlK1qkbKVTlxaNos2h/HjwRgUBXQaFcNb+/FMp9o42epAMWEwmMrsfEUpy7KV9BgS9AshqrUaDtY8cb8fT9zvR0qmgS2ncisAtofGc/5yJucvq9m8YAf9gr0Y0TaA5n6Vbz5qIcQ1OTk5HDhwwNInO0/Pnj3ZvXt3ofv8+uuv3HvvvcydO5evv/4ae3t7HnroId555x1sbQtv8TN79mymT59eYP2mTZuws7PLt06r1eLp6Ul6ejo5OTklLktaWlqJ05aHpKQkRo4cydChQ2nUqBEODg4cOnSIuXPn0qdPH0tFR2ZmJqmpqZbR869cuWLZlpGRO3d1WlpavlYLiqJY0rRp04a33nqLH374gcDAQJYsWcLly5cxGAyWNGazmaysLFJTU/H09MRoNDJ//nx69+7NP//8YxkUMO88NWrUID09nd9++43GjRtja2uLp6cnjz32GMOHD2fmzJk0adKExMREduzYQcOGDenZsyejR4+mV69evPPOO/Tr148tW7awcePGfPm9UU5ODpmZmZa/r5CQkLL+KCoNKVvVJGUrXrYJtl5QsfmCmhxzbuukZm5mHvQz424OZ9fW8Ns+x60oi7LlfQffjAT9Qoi7hpOtjgHNfRjQ3IeMHCN/HrvA4o1HiUiDdYcvsO7wBZr6OjOqbQB9g72qbRMvIaqyhIQETCaTpS95npo1a3Lx4sVC9zl79iw7d+7ExsaGn3/+mYSEBMaPH09SUhJffvlloftMnjyZSZMmWZZTU1Px9fWlZ8+eODo65kublZVFdHQ0er0eGxubm5ZBURTS0tJwcHCo0H6j1tbWtG3bls8++4zw8HAMBgO+vr6MGzeOyZMnWypEbG1tcXR0tDSRt7e3t7wHeRUgDg4OODo6Wp70q1QqS5rx48cTGhrK+PHj0Wq1TJw4kS5duqDT6Sxp1Go1NjY2ODo60q5dOxYsWMD8+fOZMWMGHTp0YNasWYwcOdJynh49evDUU08xZswYEhMTmTJlClOnTuXrr7/m3XffZcqUKcTExODm5kbr1q0ZMGAAjo6OdOvWjc8++4zp06czZ84cunXrxltvvcXMmTMLfK55srKysLW1pW3btuzYsYMePXrk685QHRgMBkJCQqRsVYyUrXhms8LPhy/w/l9hXErLbbnVzNeJyb3voYWfcxnmtnTK8nMrqrLyRhL0CyHuSnZWWh5o4oX6/CH8mrbnm33n+e3IBY5EJzNx9WHe3XCSIff7MbS1Hx4ON7+JF0LcWTcGy4qiFBlAm81mVCoVq1atwskpdzTmhQsX8uijj/Lxxx8X+rTf2tq60CnsdDpdgZs0k8mESqVCrVaXqI9+XjPyvH0qiq2tLe+99x7vvfdekWmub65fu3btAn3iu3btWqBJ/5AhQ3j66actZbO2tmbp0qUsXbq0yPNERkbmW540aVK+SheAESNG5Fv+5JNPCkwLaG1tzYwZM5gxY0aR5xo7dqyla0iel19+ucj0arUalUqFVpt721zY30B1IWWrmqRsBe0OS2Dm7yc5EZsbFPu42PJa7/o80MSr0gzSVxafW0n3l6BfCHHXa1zLkQWDmjK5b32+3xfF1/+c41JqNh9sPsOSbWH0C/ZiZLtAmvk6V3RWhbjrubu7o9FoCjzVj4uLK/D0P4+Xlxe1atWyBPyQ229dURTOnz9PUFBQueZZCCHEnREWl87sDSfZfCp3BhEHay3Pdq3LiLYB2JRydpPqRNquCiHEVe56a57tGsTO17ry4RPNaenvgsGksO7wBR7+eBcPf7yLXw7HkGOsfANvCXG3sLKyomXLlgX6QoaEhNC2bdtC92nXrh0XLlyw9EkHCA0NRa1W4+PjU675FUIIUf4S07N5e91xei3aweZTcWjUKoa38WfbK515qlOduzrgB3nSL4QQBeg0ah5s6s2DTb05dj6FFbsj+e3IBQ5HJ/PC94eZ6XCSoa38GNJKmv4LUREmTZrEsGHDuPfee2nTpg2fffYZUVFRPP3000Buf/yYmBi++uorAIYMGcI777zDqFGjmD59OgkJCbzyyiuMHj26yIH8hBBCVH5ZBhMrdkfy8ZYw0rJzZ9jo3sCD1/s0oK6HvoJzV3lI0C+EEMUI9nGyNP3/bm9u0/+4tGwW/XWGj7eG8UATb0a2DaCpNP0X4o4ZPHgwiYmJzJgxg9jYWBo3bsyGDRvw9/cHIDY2lqioKEt6vV5PSEgIzz33HPfeey9ubm4MGjSImTNnVlQRhBBC3AZFUfjtaCxz/jhFTHImAI28HXmzXwPa1nGv4NxVPhL0CyFECbjrrXmuWxBPdarDxv8usmJXBAejkvn5UAw/H4qhuZ8zI9sG0KexjPovxJ0wfvx4xo8fX+i2FStWFFhXv379aj2tlRBC3C0OnEvinfUnORydDICnow0v97qHgc1roVZXjkH6KhsJ+oUQohSstGoeaurNQ029OXo+mRW7I1l/JJZDUckcispt+v9kK3+GtPKjhkPBkb+FEEIIIUTpnUu8wpyNp9hwLHcgVzsrDU93qsO4DrWxtbq7++zfjAT9Qghxi5r4OLNwUDMm92nAd/ui+OZq0//3/wq92vTfixHS9F8IIYQQ4palZBj4cMsZVu6JxGBSUKtg0L2+TOpRDw9HGVupJCToF0KI21TDwZrnuwXxdKc6/HE8lhW7IzkUlczaQzGslab/QgghhBClZjTDij3n+HjbWZIzDAB0CHLnzX4NqO/pWMG5q1ok6BdCiDJipVXTv1kt+jerxZHoZFbujuS3oxcsTf/fdTjJk639eeJ+afovhKg+Tp06xciRIzl8+DD169dn27ZtFZ0lIUQVZjYrbDpxifeOaIjPOg1AvZp63ujbgM73eFRw7qomCfqFEKIcNPV1ZuHgZrzetz7f7Y3mm725Tf8XhoTy0ZYwHmjqxci2ATTxca7orAoh7mIjR45k5cqVAGg0Gry9venXrx+zZs3CxcWlRMeYOnUq9vb2nD59Gjs7u/LMrhCiGruSbeSng+dZsSuSswlXABVu9la81PMeBt3rg1YjrSVvlQT9QghRjjwcbHihexDPdL6h6f/BGNYejKGFnzMj2wXSp7EnOrmYCSEqQO/evVm+fDlGo5ETJ04wevRokpOT+e6770q0f3h4OP369cPf3x+z2Uxqamqp85CTk4OVlVWp9xNCVH3RSRl8tSeS7/+NJi3LCICDjZY2bjnMGdUeF71tBeew6pM7TCGEuAPymv7/PL4d6ya0Y0DzWug0Kg5GJfP8d4doP2cLH24+Q0J6dkVnVQhxl7G2tsbT0xMfHx969uzJ4MGD2bRpk2X78uXLadCgATY2NtSvX58lS5ZYtqlUKg4cOMCMGTNQqVRMnz4dgJiYGAYPHoyLiwtubm7079+fyMhIy34jR47k4YcfZvbs2Xh7e1OvXr1S7Td//ny8vLxwc3NjwoQJGAwGS5rs7GxeffVVfH19sba2JigoiC+++MKy/cSJE/Tt2xe9Xk/NmjUZNmwYCQkJZf22CiGKoSgK+yKSePrrA3Sat5XP/44gLctIbXd7ZvRvxN8vd6Sfnxm9tTyjLguV6l28lZphR0cZxEEIUbU083Wm2eBmTO5bn2/3RvHNP1FcSs1mQUgoH15t+j+qbSDBPk4VnVUhbttdf23PuVJwndkMhgwwWoGVXfFp86jUoLMtPq2V/a3n86qzZ8+yceNGdDodAJ9//jlTp07lo48+onnz5hw6dIhx48Zhb2/PiBEjiI2NpXv37vTu3ZuXX34ZOzs70tPT6datGx06dGDHjh1otVpmzpxJ7969OXr0qOWJ/ubNm3F0dCQkJARFUcjIyKBLly433W/r1q14eXmxdetWwsLCGDx4MM2aNWPcuHEADB8+nD179rB48WKaNm1KRESEJaiPjY2lU6dOjBs3joULF5KZmclrr73GoEGD2LJly22/f0KI4mUbTaw/Esvy3REcj7l2fegQ5M7odoF0qlcDtVqVryJP3L5KFfQ7OzujUqlKnF6lUhEaGkrt2rXLMVdCCFE+PBxsmNi9HuM712XDsdym/4ejrzX9b+nvwsi2AfSWpv+iCrvrr+2zvAusUgPOgFK3Bzz547UN8+rmVgYUxr89jPr92vKiYMhIzJ9mWsotZXH9+vXo9XpMJhNZWVkALFy4EIB33nmHBQsWMHDgQAACAwM5ceIEn376KSNGjMDT0xOtVoter8fT0xOz2cxXX32FWq1m2bJlls9++fLlODs7s23bNnr27AmAvb09y5YtswTzX375ZYn2c3Fx4aOPPkKj0VC/fn369evH5s2bGTduHKGhoaxZs4aQkBC6d+8OkO9vaenSpbRo0YJZs2ZZ1n355Zf4+voSGhpqaXEghChbCenZrPoniq//OWdp1WijUzOguQ+j2gVQr6ZDBeeweqtUQT/Ajz/+iKur603TKYpC375970COhBCifFlp1TzcvBYPN6/FoajLrNwdye/HYjlw7jIHzl2mpqM1w66O+u+ml1H/RdUj1/bKrUuXLixdupSMjAyWLVtGaGgozz33HPHx8URHRzNmzBjLU3QAo9GIk1PRLZEOHz5MWFgYDg75b+KzsrIIDw+3LAcHB+frx3/gwIES7deoUSM0Go1l2cvLi2PHjlnOrdFo6NSpU6F5O3DgAFu3bkWv1xfYFh4eLkG/EGXsvwspLN8Vya+HL5BjMgPg6WjD8Lb+PHGfHy72MpbHnVCpgn5/f386duyIm5tbidLXrl3b0vxMCCGqg+Z+LjT3c+GNvg1YtTeKVXtzm/7P3xTK4i1hPNjEm1HtAmhcS5r+i6rhrr+2v3GhwCqz2UxqWhqOTs7kawPxSljRx1Hd0Npn4rEyyR7kPnGvW7cuAIsXL6ZLly5Mnz6dZ599Fsht4t+qVat8+1wfdN/IbDbTsmVLVq1aVWBbjRo18p33Vva78e9DpVJhNucGE7a2xQ/4ZTabefDBB5kzZ06BbV5eXsXuK4QoGZNZ4a+Tl/hyZwR7I5Is65v7OTNKBi+uEJUq6I+IiChV+uPHj5dTToQQomJ5ONrwYo96jO9Shz+OXWT5rgiOnE/hp4Pn+engee71d2FkuwB6NZILp6jc7vpre2H97M1m0JlAa3PztKU5bhmZOnUqffr04ZlnnqFWrVqcPXuWoUOHlnj/pk2bsm7dOjw8PEo1PkOLFi1YvXp1qfe7XnBwMGazme3bt1ua9994jp9++omAgAC02kp1GyxElZeaZWDNv9Gs3BNJdFImAFq1ij7BXoxqF0ALv5JNAyrKntwpCiFEJWat1fBw81r88mx7fh7flv7NvNFpVOw/d5lnvz1Ehzlb+WjLGRJl1H8hRBnp3LkzjRo1YtasWUybNo3Zs2fzwQcfEBoayrFjx1i+fLmlz39hHnvsMdzd3enfvz9///03ERERbN++nRdeeIHz588Xud/QoUNvab/rBQQEMGLECEaPHs26deuIiIhg27ZtrFmzBoAJEyaQlJTEE088wb59+zh79iybNm1i9OjRmEym0r1RQggAIhOuMO3X/2gzazMzfz9JdFImznY6xneuw9+vdeHDJ5pLwF/BKm0V5+LFiwtdr1KpsLGxoW7dunTs2LHY5mVCCFGd5DX9f9PS9P8cF1OzLE3/H2rqzci20vRfVF5yba86Jk2axKhRowgLC2PZsmXMmzePV199FXt7e4KDg5k4cWKR+9rZ2bFt2zYmT57MwIEDSUtLo1atWnTr1q3YJ/h2dnbs2LGD1157rVT73Wjp0qW88cYbjB8/nsTERPz8/HjjjTcA8Pb2ZteuXbz22mv06tWL7Oxs/P396d27N2q1PAsToqQURWFPeCJf7opg86k4FCV3fZCHntHtA3m4WS1sreS7vLKotEH/+++/T3x8PBkZGbi4uKAoCsnJydjZ2aHX64mLi6N27dps3boVX1/fis6uEELcMdc3/d9wLJbluyI5ej6FHw+c58cD57kvwIUn7/fFpFR0ToXIT67tlc+KFSsKXT9kyBCGDBlS4HVhDh8+XGCdp6cnK1euLPV5b2W/RYsW5Vu2sbFh4cKFRbZGCAoKYu3atUWeQwhRtCyDiV8Ox7B8VySnLqZZ1net78GodgG0r+teqhlbxJ1Raas0Z82axX333ceZM2dITEwkKSmJ0NBQWrVqxQcffEBUVBSenp68+OKLFZ1VIYSoENZaDQOa+/DLhHasHd+Wh5p6o1Wr+DfyMi+sOcq7hzR8uy+aLIM0WRWVg1zbhRCiarqUmsX8P0/T9r0tvPbTMU5dTMPOSsPwNv5seakTX468jw5BNSTgr6Qq7ZP+t956i59++ok6depY1tWtW5f58+fzyCOPcPbsWebOncsjjzxSgbkUQoiKp1KpaOHnQgs/F97sl9v0/5t/Ikm8YmDqbyf5aNtZxrYPZGhrf/TWlfZrX9wF5NouhBBVy5HoZJbvimD90ViM5twmhLWcbRnZNoBB9/niZFuNZlupxirt3V9sbCxGo7HAeqPRyMWLF4HcfllpaWkF0gghxN2qpqMNk3rUY2xbP6Z/vYndl+2JTcli9h+nWLItnBFtAxjVNkDmxRUVQq7tQghR+RlNZv787xJf7orgwLnLlvX3B7gyun0A3RvURCszB1UplfbT6tKlC0899RSHDh2yrDt06BDPPPMMXbt2BeDYsWMEBgZWVBaFEKLSsrXS0NFL4a+J7Zn3aBNqu9uTkmlg8eYztJuzhZnrT3AxJauisynuMnJtF0KIyis5I4dPtofTce5WJnx7kAPnLqPTqBjYohbrn2vPmqfb0LuxlwT8VVClfdL/xRdfMGzYMFq2bIlOl9tsxGg00q1bN7744gsA9Ho9CxYsqMhsCiFEpWalVfPYvb4MbOHDn/9d5OOtYfx3IZVlOyP4as85Hmnpw9OdauPvVn5zfguRR67tQghR+YTFpbF8VyRrD8aQeXUcIHe9FUNb+TO0tR8eDjYVnENxuypt0O/p6UlISAinTp0iNDQURVGoX78+99xzjyVNly5dKjCHpaMoCkaj8aZzwBoMBrRaLVlZWdVuvtjqVjaNRoNWq5UBS0SVoFGr6BvsRZ/GnmwPjWfJ1nD2RSbx3b4oVv8bxQNNvBnfpQ71PUs+LZYQpVXdru03MpvNFZ0FUQ6Uq3ORyfVeVCdms8KOM/Es3xXJ9tB4y/qGXo6MahfAg029sdHJlHvVRaUN+vPUrl0blUpFnTp10GorfXYLlZOTQ2xsLBkZGTdNqygKnp6eREdHV7uLS3Usm52dHV5eXtWmPKL6U6lUdL7Hg873ePBvZBJLtoax9XQ8vx65wK9HLtC9gQfju9SlhZ9LRWdVVGPV4dp+PSsrK9RqNRcuXKBGjRpYWVkVe10wm83k5OSQlZVV7eaGr25lUxSF+Ph4VCpVtfhbFSIjx8jagzEs3xVBePwVAFQq6NGgJqPbB9Iq0FXua6uhSvvtlZGRwXPPPWeZqzU0NJTatWvz/PPP4+3tzeuvv17BOSwZs9lMREQEGo0Gb2/vEt0IpKeno9frq8XF8nrVqWyKopCTk0N8fDwREREEBARUdJaEKLX7AlxZPup+jseksHR7OBuOxfLXyTj+OhlHm9pujO9SR+bbFWWqulzbb6RWqwkMDCQ2NpYLFy7cNL2iKGRmZmJra1vt/r+qY9lUKhU+Pj5oNPLUU1RdMcmZfLUnku/2RpGalTugqt5ay+D7fBnRJgA/N7sKzqEoT5U26J88eTJHjhxh27Zt9O7d27K+e/fuTJ06tcrcGOTk5GA2m/H19cXO7ub/THk15DY2NlU+ML5RdSubra0tOp2Oc+fOYTAYKjo7QtyyxrWc+HhIC87Gp/PJ9nB+PhTDnrOJ7DmbSBMfJ8Z3rkvPhjVRq6vHDbyoONXl2l4YKysr/Pz8StyVb8eOHXTs2NEytkF1UR3LptPp0Gg0cq0XVY6iKByMusyXOyPZ+N9FTFen3PN3s2Nk2wAebemDg031+D8Vxau0Qf+6detYvXo1rVu3zldT3LBhQ8LDwyswZ7emOgS5oqC8zzWvv58QVVntGnrmPtqUid3r8fnfZ/luXxRHz6fw9DcHqOuhZ3znOjzY1BudjNorblFZXtuXLFnCvHnziI2NpVGjRixatIgOHTrcdL9du3bRqVMnGjduzOHDh0tbhGKpVCp0Ot1Ng12NRoPRaMTGxqbaBMZ5qnPZhKgqcoxmNhyL5ctdERw9n2JZ37aOG6PbBdKlvgcaqci/q1TaoD8+Ph4PD48C669cuVJtmosJIURl5O1sy9QHG/Fsl7os3xXJyj2RhMWlM2nNERaGhPJUpzo81tJHBvgRpVZW1/bVq1czceJElixZQrt27fj000/p06cPJ06cwM/Pr8j9UlJSGD58ON26dePSpUu3VAYhhKisEtOz+W5fFF/tOUdcWjaQO4vPgGa1GNU+QAbrvYtV2sc19913H7///rtlOe9m4PPPP6dNmzYVlS0hhLhruOmtebnXPex6vSuv9r4HN3srzl/O5O11x2k/ZyufbA8nLUuau4qSK6tr+8KFCxkzZgxjx46lQYMGLFq0CF9fX5YuXVrsfk899RRDhgyR+wghRLVy+mIar/14lDbvbWH+plDi0rLxcLDm5Z712PN6V+Y82kQC/rtcpX3SP3v2bHr37s2JEycwGo188MEH/Pfff+zZs4ft27eX+Bhr167l1KlT2Nra0rZtW+bMmZNvaiBFUZg+fTqfffYZly9fplWrVnz88cc0atSovIpWbahUKn7++Wcefvjhcj1PQEAAEydOZOLEieV6nsKsWLGCiRMnkpycfMfPLURl4WijY3znuoxqG8ia/dF8tuMsMcmZvPfHKZZsDWNk2wBGtgvE1d6qorMqKrmyuLbn5ORw4MCBAv3/e/bsye7du4vcb/ny5YSHh/PNN98wc+bMm54nOzub7Oxsy3JqaiqQ22f9dvt25+1fHfuIS9mqJilb1ZNtMLHl1CU++k/NmT17LOuDazkyso0/vRvVxEqb+3y3Kpa9un5uULZlK+kxKm3Q37ZtW3bt2sX8+fOpU6cOmzZtokWLFuzZs4fg4OASHWP79u1MmDCB++67D6PRyJtvvknPnj05ceIE9vb2AMydO5eFCxeyYsUK6tWrx8yZM+nRowenT5/GwcGhPItY6cXFxfH222/zxx9/cOnSJVxcXGjatCnTpk2jTZs2xMbG4uJS+ab1kkBdiPJha6VhRNsAhrTy45fDF1iyLYyz8VdYvCWMz/+OYEgrP8Z1qI2nk01FZ1VUUmVxbU9ISMBkMlGzZs1862vWrMnFixcL3efMmTO8/vrr/P333yWedm327NlMnz69wPpNmzaVaGDekggJCSmT41RGUraqScpWuRnMcCpZxaFEFccvq8g2qQA1ahSauil08jIToE9CFZPEXzEVnduyUR0+t6KURdlKMiU8VOKgHyA4ONgyrc+t2LhxY77l5cuX4+HhwYEDB+jYsSOKorBo0SLefPNNBg4cCMDKlSupWbMm3377LU899VShxy1N7b/BYEBRFMxmM2az+aZ5zhsQLm+fivTII49gMBhYvnw5tWvX5tKlS2zZsoWEhATMZrOlX2ZJ83k7ZSvNPnnpyuL9u9mxzGYziqJgNOZOfSK1kVWLlO3W9W9SkwcaexByMo5PdpzlvwtpfLEzgq/2RDKgmTf/6xCIfzlN/1NdP7eyLldlfX9u99qe58YxABRFKXRcAJPJxJAhQ5g+fTr16tUr8fEnT57MpEmTLMupqan4+vrSs2dPHB1vr5mswWAgJCSEHj16VLvB7qRsVZOUrfLKNpj4OyyRDccvsuV0PFeyr80OUtPBmsYOmUx+rB3+7tXrYWVV/9yKU5Zly4tDb6ZSBf0lzTRwSxfclJTc0StdXV0BiIiI4OLFi/Ts2dOSxtramk6dOrF79+4ig/7S1P5rtVo8PT1JT08nJycHRVHIMtw8GM1MTC5psUrMRqcu8UBJKSkp7Ny5k/Xr19OyZUsAXFxcqF+/PpD7Wbm4uPDNN9/Qr18/oqKiaNq0KV9++SWfffYZhw8fpkGDBnz22Wekpqby0ksvcebMGVq3bs0nn3yCu7s7AA888ADBwcHMnj3bcu6hQ4fi5OTEkiVLgNzAOisry/L38fHHH7Nq1SrOnTuHs7MzvXv3Zvr06ej1enbu3MmYMWMALPPpvvbaa7z++uvk5OQwc+ZMfvzxR1JSUmjQoAHTpk2jffv2lnN/++23zJo1i6SkJLp27Urr1q1RFKXIv82cnBwyMzMtTUqlNrJqkrLdnnF+cNpJRUiMmrBUWHMghh8OnKe5m0L3WmZq2ZfPeavr51ZW5Spp7X95K+tru7u7OxqNpsBT/bi4uAJP/wHS0tLYv38/hw4d4tlnnwWuVdhqtVo2bdpE165dC+xnbW2NtbV1gfUlGZ2/pMryWJWNlK1qkrJVDlkGE9tD49lwLJbNJ+NIzzZatnk52dCnsRf9mnjS2FPPxo1/4O/uUGXKVlpV6XMrrbIoW0n3r1RBv7Ozc4mD0pvNgXsjRVGYNGkS7du3p3HjxgCWG4bCmgieO3euyGOVpvY/KyuL6Oho9Ho9NjY2ZOQYaT6nYm5Uj0/rgZ1VyT5yOzs79Ho9ISEhdO3atdAbH8idq97R0RG9Xg9c6y7h5+fH2LFjeeqpp3B0dGTx4sXY2toyePBg5s+fbwnotVotVlZW+d43rVaLTqezrFOr1djY2FiW7ezs+PDDDwkICCAiIoJnn32Wd999l48//pju3bvz/vvvM3XqVE6ePAmAXq9Hr9fz5JNPcu7cOb777ju8vb1Zt24djz76KEeOHCEoKIi9e/dajjVgwAD+/PNPpk2bhkqlKvJGNCsryzJexI4dO6Q2soqRspWdfsAk4MC5y3yyI4JtoQkcTFRxMFFN53ruPNOpNi38nMvkXNX1cyvrcpUm2C5PZX1tt7KyomXLloSEhDBgwADL+pCQEPr3718gvaOjI8eOHcu3bsmSJWzZsoUff/yRwMDAEuVNCCHKU5bBxLbTeYH+Ja7kXPs+9HayoU+wF32DvWju64z66nR7lbVFl6h8KlXQv3XrVsvryMhIXn/9dUaOHGkZZXfPnj2sXLky31Phknr22Wc5evQoO3fuLLCtpE0E85Sm9t9kMqFSqVCr1ZafilKa81tZWbFixQrGjRvHp59+SosWLejUqROPP/44TZo0KXDMvOO+/PLL9OnTB4AXXniBJ554gs2bN9OhQwfMZjNPPvkkq1evzpePvPfn+uXC1uUtv/jii5b1derU4Z133uGZZ55h6dKl2NjYWG4wvb29LenCw8P5/vvvOX/+vGX9K6+8wp9//snKlSuZNWsWH374Ib169WLy5MkA1K9fnz179rBx48Yi3ze1Orf1RF4fUamNrJqkbGWndV0PWtf14L8LKSzdFs6GY7FsC01gW2gCrQJdmdClLh2C3Mtk6tXq+rmVVbkqy3tTHtf2SZMmMWzYMO69917atGnDZ599RlRUFE8//TSQWzkfExPDV199hVqttlT25/Hw8MDGxqbAeiGEuJNyA/04fj92kS1FBPr9mnjRzOdaoC/ErahUQX+nTp0sr2fMmMHChQt54oknLOseeughgoOD+eyzzxgxYkSJj/vcc8/x66+/smPHDnx8fCzrPT09gdwn/l5eXpb1RTURLAu2Og0nZvQqcrvZbCYtNQ0HR4cyryCwLeWc2o888gj9+vXj77//tgS/c+fOZdmyZYwcObLQfa6vEMh7D68fnMnDw4O4uLjSZ/46W7duZdasWZw4cYLU1FSMRiNZWVlcuXLFMkDjjQ4ePIiiKAX6c2ZnZ+Pm5gbAyZMn8z01AmjTpk2BsSGEEDfXyNuJj4a0ICLhCp9uD+eng+fZG5HE3oh9BNdyYkKXOvRs6Ck3MXeB8ri2Dx48mMTERGbMmEFsbCyNGzdmw4YN+Pv7AxAbG0tUVFTZFkQIIcpAZk5eoB/LllNxZFwX6NdytqVPY0/6SqAvylilCvqvt2fPHj755JMC6++9917Gjh1bomMoisJzzz3Hzz//zLZt2wo04QsMDMTT05OQkBCaN28O5PbR3r59O3PmzLn9QhRCpVIV28TebDZjtNJgZ6Wt0FYBeWxsbOjRowc9evRgypQpjB07lqlTpxYZ9F//ZCnvSd6N664fFE+tVlsG+MtTXFOlc+fO0bdvX55++mneeecdXF1dLf34i9vPbDaj0Wg4cOCApa9/nryuCTfmQwhx+wLd7XnvkSa80D2Iz3dE8N2+KI7FpPD0Nwep66HnmU51eKiZNzpNxX/fifJXFtf2POPHj2f8+PGFbluxYkWx+06bNo1p06aV6nxCCHGr8gL99cdi2VpIoN832JO+wV408y15dyghSqPSBv2+vr588sknLFiwIN/6Tz/9FF9f3xIdY8KECXz77bf88ssvODg4WPrwOzk5YWtri0qlYuLEicyaNYugoCCCgoKYNWsWdnZ2DBkypMzLVB00bNiQdevWldnxatSoQWxsrGXZZDJx/PhxunTpUmj6/fv3YzQaWbBggaVSZM2aNfnSWFlZFegX2rx5c0wmE3FxcXTo0KHQYzds2JB//vkn37obl4UQt8bLyZYpDzZkQpc6rNgdyYrdkYTFpfPSD0dYGBLKU51qM+heX2xK2SJJVC1lcW0XQoiqIDPHxNa8J/on48g05A/0+zXJ7aPf1MdJAn1R7ipt0P/+++/zyCOP8Oeff9K6dWsgNwALDw/np59+KtExli5dCkDnzp3zrV++fLnlSfWrr75KZmYm48eP5/Lly7Rq1YpNmzbh4FC9pr0orcTERB577DFGjx5NkyZNcHBwYP/+/cydO7fQgZJuVdeuXZk0aRK///47derU4f333yc5ObnI9HXq1MFoNPLhhx/y4IMPsmvXrgJPjQICAkhPT2fz5s00bdoUOzs76tWrx9ChQxk+fDgLFiygefPmJCQksGXLFoKDg+nbty/PP/88bdu2Ze7cuTz88MNs2rRJmvYLUcbc9Na81PMe/texNt/8E8UXOyOISc5kyi//sXjzGca0r82Trf1wsKkc/dFF2SqLa7sQQlRWGTlGtp7KHYxvy6nCA/1+wV40kUBf3GGVNujv27cvZ86cYenSpZw8eRJFUejfvz9PP/10iZ8GlKS5tkqlkmZ+hdDr9bRq1Yr333+f8PBwDAYDvr6+jBs3jjfeeKPMzjN69GiOHDnC8OHD0Wq1vPjii0U+5Qdo1qwZCxcuZM6cOUyePJmOHTsye/Zshg8fbknTtm1bnn76aUufz6lTpzJt2jSWL1/OzJkzeemll4iJicHNzY02bdrQt29fAFq3bs2yZcss6bt3785bb73FO++8U2blFULkcrDR8UznOoxqF8AP+6P5ZPtZYpIzmbPxFEu2hTGybQAj2wbgpi985hBRNZXFtV0IISqTjBwjW07FseFYLFtPxecL9H1cbOl3ddR9CfRFRapUQf/Ro0dp3Lixpdm2j48P7777bpHp//vvP+655x7LyOmi7FhbWzN79uxiR1O+vlIlICCgQCVL586dC6wbMmSIZXRlyO3vv2TJEssUfoWJjIzMt/ziiy/mG8EfYNiwYfmWly5damnpcf25pk+fzvTp04s81+jRoxk9enS+dS+99FKR6YUQt8dGp2FYmwAev9+PXw9fYMm2MMLjr/DhljA+//ssT9zvx7gOtfF2tq3orIpbJNd2IUR1cyX7ukD/dBxZhmvjVfm62tI3OPeJfnAtCfRF5VCprqjNmzfn4sWL1KhRo0Tp27Rpw+HDh6ldu3Y550wIIUR50mnUPNLShwHNa7HpxCU+3hrGsZgUlu+K5Jt/zjGwuQ9Pd65DoHvhM3SIykuu7UKI6qC4QN/P1c4S6Deu5SiBvqh0KlXQrygKb7/9NnZ2diVKn5OTU845EkIIcSep1Sp6N/akV6Oa7AxL4OOtYfxzNonV+6P54UA0fYO9+F/7gIrOpigFubYLIaqqK9lGNp+KY8PR3EA/23gt0Pd3uxboN/KWQF9UbpUq6O/YsSOnT58ucfo2bdpgaytNPoUQorpRqVR0CKpBh6AaHDiXxJKt4Ww+Fcf6o7GsPxpLIxc1tZqkcG+ge0VnVdyEXNuFEFVJeraRzScvseFYLNtOx0ugL6qFShX0b9u2raKzIIQQopJp6e/KFyNdORmbytJt4aw/eoH/Lqt59NO9dKpXg+e7BdHS36WisymKINd2IURllxfo/340lu2h+QP9gKuBfl8J9EUVVqmCfiGEEKIoDbwcWfxEc57tHMhb3/7NgUQN20Pj2R4aT/u67jzXtS6tartVdDaFEEJUAWlZBjafjOP3Y7mBfs51gX6guz19gz3pG+xFQy8J9EXVJ0G/EEKIKiXQ3Z6hdc3MfrIjn+88x48HzrMzLIGdYQm0CnTlhW5BtKnjJjdpQggh8iku0K/tbm95ot/Ay0GuIaJakaBfCCFEleTnasd7jzTh2a51WbotnDX7o9kbkcSQZXu519+F57sF0SHIXW7chBDiLpaaaeDfeBW/rjrE32GJhQb6/Zp4Ud9TAn1RfUnQL4QQokrzcbHj3QHBTOhSl0+3h/Pdv9HsP3eZ4V/uo6mvMy90q0uXezzkZk4IIao5k1nhTFwah6KSORR1mUNRyYTFp6MoGiAegNo17Ol39Ym+BPribiFBvxBCiGrB29mW6f0b5wb/O86yau85jkQnM3rFfhrXcuT5rkH0aFhTbvCEEKKaSEjP5nBUMoeicwP8I9HJXMkxFUhX01bh0VZ1eLBZLe6pKYG+uPtI0C/K1alTpxg5ciSHDx+mfv36MoqzEKLceTja8PYDDXm6Ux2W/X2Wr/85x/GYVP739QEaeDnyXNe69G7kiVotN31CCFFV5BjNnIhNtTzBPxR9meikzALp7K00NPV1prmfM819XWjsZc/eHZvp260uOp2uAnIuRMWToF8UaeTIkaxcuRIAjUaDt7c3/fr1Y9asWbi4lGx6rKlTp2Jvb8/p06exs7Mrz+wKIUQ+NRysmdy3AU91qsMXO8+ycvc5TsamMn7VQerV1PNs1yD6BXuhkeBfCCEqFUVRuJCSdS3Aj7rM8Qup+frj5wny0OcG+H4uNPdzJsjDId/3usFguJNZF6JSkqBfFKt3794sX74co9HIiRMnGD16NMnJyXz33Xcl2j88PJx+/frh7++P2WwmNTW11HnIycnBysqq1PsJIQSAq70Vr/Sqz7gOtflyVyTLd0UQeimd5787xKK/Qnmua10ebOKNVqOu6KwKIcRdKSPHyLHzKRyKvtYXPy4tu0A6FztdbnDv60wzP2ea+DjjZCtP74W4GbnDqSg5V4r+MWaVPK0hs2Rpb5G1tTWenp74+PjQs2dPBg8ezKZNmyzbly9fToMGDbCxsaF+/fosWbLEsk2lUnHgwAFmzJiBSqVi+vTpAMTExDB48GBcXFxwc3Ojf//+REZGWvYbOXIkDz/8MLNnz8bb25t69eqVar/58+fj5eWFm5sbEyZMyFfDm52dzauvvoqvry/W1tYEBQXxxRdfWLafOHGCvn37otfrqVmzJsOGDSMhIeGW3z8hROXhbGfFpB712PlaV17qUQ8nWx1n46/w4uojdFu4nTX7ozGYCj5FEkIIUXYURSE8Pp2fDpznrXXH6Lf4b4KnbWLwZ//w3h+n+PO/S8SlZaNVqwiu5cTwNv68P7gp217uzMG3e/DlyPt4rlsQHYJqSMAvRAnJk/6KMsu70NVqwD6gCwxfe23lvLpgyCj8OP7tYdTv15YXBUNGYsF001JuPa9XnT17lo0bN1r6Q33++edMnTqVjz76iObNm3Po0CHGjRuHvb09I0aMIDY2lu7du9O7d29efvll7OzsSE9Pp1u3bnTo0IEdO3ag1WqZOXMmvXv35ujRo5Yn+ps3b8bR0ZGQkBAURSEjI4MuXbrcdL+tW7fi5eXF1q1bCQsLY/DgwTRr1oxx48YBMHz4cPbs2cPixYtp2rQpERERlqA+NjaWTp06MW7cOBYuXEhmZiavvfYagwYNYsuWLbf9/gkhKgcnWx3PdQtiZLsAvv7nHMv+juBcYgav/niUxZvPMKFLXR5p4YOVVurFhRDidqVkGDh8/toT/MPRyaRkFmxyX9PRmhZXm+g393OhsbcTtlaaCsixENWPBP2iWOvXr0ev12MymcjKym2BsHDhQgDeeecdFixYwMCBAwEIDAzkxIkTfPrpp4wYMQJPT0+0Wi16vR5PT0/MZjNfffUVarWaZcuWWUZOXb58Oc7Ozmzbto2ePXsCYG9vz7JlyyzB/Jdfflmi/VxcXPjoo4/QaDTUr1+ffv36sXnzZsaNG0doaChr1qwhJCSE7t27A1C7dm1LWZcuXUqLFi2YNWuWZd2XX36Jr68voaGhlhYHQojqwcFGx/jOdRnRJoBVe8/x2Y6znL+cyeS1x/hw8xme6VyHx+71xUYnN51CCFESRpOZ0EvpltH0D0VdJjy+YItTa62a4FpO+frieznZVkCOhbg7SNBfUd64UOhqs9nMlfQrOF6/8pWwoo+juuFJ1MRjt52163Xp0oWlS5eSkZHBsmXLCA0N5bnnniM+Pp7o6GjGjBljeYoOYDQacXJyKvJ4hw8fJiwsDAcHh3zrs7KyCA8PtywHBwfn68d/4MCBEu3XqFEjNJprN+heXl4cO3bMcm6NRkOnTp0KzduBAwfYunUrer2+wLbw8HAJ+oWopuyttfyvYx2GtQ7gu31RfLI9nAspWbz9y398tDWMpzvV4Yn7/ST4F0KIG8SlZV2dMi83wD96PoWMQqbMC3CzswT3zXydqe/pKK2phLiDJOivKFb2ha83m0FrKlna0hz3Ftnb21O3bl0AFi9eTJcuXZg+fTrPPvsskNvEv1WrVvn2uT7ovpHZbKZly5asWrWqwLYaNWrkO++t7HfjVCwqlQqzObePrq1t8TXIZrOZBx98kDlz5hTY5uXlVey+Qoiqz9ZKw+j2gQxp5cea/dEs3RZObEoW0387wcdbw3mqY22GtvbDzkounUKIu0+20cR/F1ItT/APRSUTk1xwyjy9tZZmeVPm+TnT1McZN711BeRYCJFH7lxEqUydOpU+ffrwzDPPUKtWLc6ePcvQoUNLvH/Tpk1Zt24dHh4eODo63nyHq1q0aMHq1atLvd/1goODMZvNbN++3dK8/8Zz/PTTTwQEBKDVyr+GEHcrG52G4W0CGHyfLz8diOHjrWHEJGfy7oaTLN0ezrgOtRnWxh+9tXxPCHG3MJrMRF/OIDodTsamYWutQ6tRo1Wr0GnUaDUqdOrc33mv1VV4OlBFUTh/OTPfaPonLqSSc8NgpyoV1PNwsAT4zf1cqFNDL1OhClHJyB2LKJXOnTvTqFEjZs2axbRp03j++edxdHSkT58+ZGdns3//fi5fvsykSZMK3f+xxx7j448/pn///syYMQMfHx+ioqJYu3Ytr7zyCj4+PoXuN3ToUObNm1fq/a4XEBDAiBEjGD16tGUgv3PnzhEXF8egQYOYMGECn3/+OU888QSvvPIK7u7uhIWF8f333/P5558X24JBCFH9WGs1DGnlx2P3+vDzwRg+2hpGVFIGczae4tMd4YxtH8jwtgE42sjo0UJUdSazQlxaFtFJmZy/nHHt99XXF1OzMJkVQMv8Y3tKdEy1CrQaNTq1Kve3RoX2asWA7mqFwbX1+dMUn/bq73yvi6qAuHb+69ffeHzMJs6kqPh0RwRHYnKf5iekF5wyz9Xeiua+1wL8Jj5OOMh3oBCVngT9otQmTZrEqFGjCAsLY9myZcybN49XX30Ve3t7goODmThxYpH72tnZsW3bNiZPnszAgQNJS0ujVq1adOvWrdgn+HZ2duzYsYPXXnutVPvdaOnSpbzxxhuMHz+exMRE/Pz8eOONNwDw9vZm165dvPbaa/Tq1Yvs7Gz8/f3p3bs3arX0OxPibqXTqBl0ny8DW9Ti1yMX+GhLGGcTrjB/Uyif7TjLqHaBjG4XiJOd3PgKUVkpikJ8ejbnL2cSnZTB+cv5g/uY5EwMJqXYY1hp1diqTVhZWWM0KxhNCgazGaNJwWguuK9ZgRyjmRwACvZzr3w0cOKMZUmrVtHI29HSF7+5rwu+rraWAZWFEFWHBP2iSCtWrCh0/ZAhQxgyZEiB14U5fPhwgXWenp6sXLmy1Oe9lf0WLVqUb9nGxoaFCxdaZiC4UVBQEGvXri10mxDi7qbVqBnYwof+zWqx/ugFPtwSRlhcOh9sPsMXOyMY2TaAMe0DcbG3uvnBxG1bsmQJ8+bNIzY2lkaNGrFo0SI6dOhQaNq1a9eydOlSDh8+THZ2No0aNWLatGn06tXrDudalBdFUUjOMFiezOc9pb8+yM82mos9hlatwtvZFl9XW3yc7XJ/u1z77WytZuPGP+jbt3OBMYQURSlYEWAyYzBf/W1SMF5dbzCZMZqv/r663mBSbnh9bd+SHbMEx79h+41ptWYDrYM8aRngSnM/Zxp5O8kApkJUExL0CyGEEKWgUavo36wWDzbx5o/jF/lwyxlOXUzjo61hfLkrgmFt/BnXoTbuMnBVuVm9ejUTJ05kyZIltGvXjk8//ZQ+ffpw4sQJ/Pz8CqTfsWMHPXr0YNasWTg7O7N8+XIefPBB9u7dS/PmzSugBOJWpGYZLAH89U/r85avFDJq/PVUKvBytMHH1Q5fFzt8XGzxdb32u6aDNVpN0S37DIaCc8tfO3Zuk3mdBmypeoGywWBgw4YN9O3btECFhhCi6pOgXwghhLgFarWKfk286NPYk5CTl1i8+Qz/XUjl0+1nWbk7kidb+fO/jrXxcLSp6KxWOwsXLmTMmDGMHTsWyG3V9eeff7J06VJmz55dIP2Nrb5mzZrFL7/8wm+//SZBfyWSkWPMF9Bbfl8N7FMyiw6683g4WFuC+BsDey8nW5kmTghxV5KgXwghhLgNarWKXo086dmwJltOxbF48xmOnE9h2c4Ivv7nHE/c78dTnWrj5VT8tKGiZHJycjhw4ACvv/56vvU9e/Zk9+7dJTqG2WwmLS0NV1fXItNkZ2eTnX1tILPU1FQg94locU98SyJv/9s9TmVUXNmyDSZikrOISc4k+nImMcmZuU/rr/5OunLz98PFToeviy21nG3xcbGllostvi62+Djb4u1sU3xzdMWEwXDrfevv1s+tqpOyVU1SttId62Yk6BdCCCHKgEqloluDmnSt78GOMwl88FcoB6OSWbE7km/3RjHoPh+e6VyXWs4S/N+OhIQETCYTNWvWzLe+Zs2aXLx4sUTHWLBgAVeuXGHQoEFFppk9ezbTp08vsH7Tpk3Y2dmVLtNFCAkJKZPjVDSzAtkmyDRBphHSjSr2fPMXSdkqErPJ/Z0FqYabDwBnq1FwtQY3m6u/rXN/u9oouFmDtcYIXJ0b3gQkQHoCnCL3506oLp9bYaRsVZOUrWoqi7JlZGSUKJ0E/XeIohQ/IqyomvI+VxnJVgiRR6VS0aleDToGubM7PJEPNp9hX0QS3/wTxep/o3m0pQ/jO9fF17VsAse71Y3fu4qilOi7+LvvvmPatGn88ssveHh4FJlu8uTJ+aafTU1NxdfXl549e5Zq1pjCGAwGQkJC6NGjR6XoP51tNJOeZSAt20hqppHULCNpWQbSsoyWdWnZRtIyDbnbrr5Oy85Nm55tpKS3OXZWGnycbanlYoOPix0+zja5T+ydc5/YO9pW/PtRlMr2uZUlKVvVJGWrmsqybHmt0G5Ggv5ylvdBZmRkYGsrT3eqm7zaNa1W/pWEEPmpVCra1XWnXV13/jmbyOLNZ9gdnsh3+6JZs/88A5rXYkKXugS621d0VqsUd3d3NBpNgaf6cXFxBZ7+32j16tWMGTOGH374ge7duxeb1traGmvrgoMx6nS6MrsBLYtjKYrClRwTqZm5QXpqliHf67QsI6lXg/X8y9de32xU+xKXR6PCwUaL1pTDPT7u+LnZXxso72r/eld7qypfUV6WfwOVjZStapKyVU1lUbaS7i+RSjnTaDQ4OzsTFxcH5M43X9zFzmw2k5OTQ1ZWVrWbG746lU1RFDIyMoiLi8PZ2RmNpuqN1CuEuHNa13ajdW039kcmsXhLGDtC4/nxwHnWHjxP/2a5wb+/i4z2XxJWVla0bNmSkJAQBgwYYFkfEhJC//79i9zvu+++Y/To0Xz33Xf069fvTmS1RAwmsyX4LixoT71hW1qW4erT+KtP4rMMFDJF/C3RW2txtNHiYKPD0fbq7wLLhW9ztNFhrVVjNBqvjgLfstreqAshRFUjQf8d4OnpCWAJ/IujKAqZmZnY2tpW+ZrwG1XHsjk7O+Pp6YnRaKzorAghqoB7A1z5avT9HIq6zIdbwthyKo6fD8Ww7nAMfRt50ljqD0tk0qRJDBs2jHvvvZc2bdrw2WefERUVxdNPPw3kNs2PiYnhq6++AnID/uHDh/PBBx/QunVrSysBW1tbnJyc7nj+p/12kr8OGZi+fz2ZhoJP2c2oycbKsmxLVpHH0l1Nq1WrcLTV4WFtRH81INdba3Gw1eJgrcPBRofeRoe93sESrDvpDDhaa3Gw1qK30aJRX39tVoHVdV1QcjKAomoXzHDdAHpqcw7kXAGliKDf6rrWLYZMUIppaZAvbRYoxQzEV5q0OrvcOfwAjNlgLuY6fl1atdlQfNm0tpD3YMOYA+ZiBtkqVVobUGtKn9ZkAFNO0Wk11qDJDQdUirH4sl2XFpMRTNmFpwPQWIFGV/q0ZhMYi/57R60DrVXp0yrm4suW77hmMGYWc1wtaK9W0ioKGIrpU12atCoN6K6b7SXnSunSFlU2lRp0tvnTFnncG9MW939fmu+IG9KW6v8+E5Ri/oYr2XfETdNqK6bltwT9d4BKpcLLywsPD4+bjrBoMBjYsWMHHTt2rHY15NWtbDqdTp7wCyFuSXM/F74ceR/HzqeweMsZQk5c4vfjF/kdLanOZ3itT8OKzmKlNnjwYBITE5kxYwaxsbE0btyYDRs24O/vD0BsbCxRUVGW9J9++ilGo5EJEyYwYcIEy/oRI0awYsWKO5190rON7NWMyV0o5DJywOo+PvKaZXmKPuVod6zMhQc3OT5tMQ1fj41OnVuhPrc2JCUWfmLv5vC/bdeW3w+GlKjC09aoDxP2Xlv+vAvEFzFUnpMfvHjMstj+zLvojowtPK2dG7x69tryN4/CuZ2Fp9XZwZux15bXDIMzmwpPCzAt5drrn/8HJ34pOu0bF64FAL9NhCPfFp32lXCwdwegccy36OaNKTrtC0fBJffvkC0zYPeHRacd/w94NMh9/fcC2P5e0WnHbYFaLXNf710KIVOKTjtiPQR2yH19YAVseLnotEPWQL1eAPgk7UE3b3TRaR9bAY2utq459Rv8MLLotP2XQPOhua/DN8O3RQ+aSd/5cP+43NfndsPKB4pO22MGtHsh93XsYfi8a9FpO70OXSYD4JB1Ad08/6LTtn0Oes7MfZ0SDR80KTrtfWOh34Lc1xmJMK9O0WmbDoEBS3NfGzJglnfRaRv2h0FfXVsuLm1QTxj6g2VRu6hB0RUK/u1h1O/XlhcF5+a7MDd+R3zcqly+I1jeBy4cKjztDd8Rmu8HQ1QRM7NUwu8I/nwD/l1WdNoXjoK+mM+2nEjQfwdpNJqbBokajQaj0YiNjU21CIyvV53LJoQQtyLYx4nPh9/LiQupLN4cysb/LtGk1p1/8lwVjR8/nvHjxxe67cZAftu2beWfoVJ4tkttOF309pb+Liwfev+1Ff+poYiHYlYaNVhJBbQQQoiiqRQZVv62paam4uTkREpKSpmM6JvbF65vtQuMpWxVk5StapKyVT0Gg4HlP21g5MA+WFlZ3XyHmyjLa5Mo+2v9n7/9TK9ePQv/Gy5VM9/K1XTXYDCwcf06evcsZlTqKtq8P7dsv9C7Z/eiy1ZFm/cbDAb++P1X+vToVnTZqmjzfoPBwIbf19O3R5eiy1ZFm/dbrofdOxVdtkr2HQGU6P/eUrYeXdBpi6nYrETfESVKq7XFYDKV2X1MSa9N8qRfCCGEqCRq2soUoHcLk8Y69wa0JDd8VqWY4aFUaUsxbWQp0prVViUvm64U/VuvD4jKMq3WGijZQJpmta7kZdNaASWswCuvtBrdtYD6JhSVtuRl02ivVQCUZVq1puR/w6VJq1KXvGxqdSmOqyqftFD6tCUNHivBd0Tp/u9tS162SvAdUaK0pmIqG8pJ1R5CXQghhBBCCCGEEEWSJ/1lIK+HRGpq6m0fy2AwkJGRQWpqarVqtgpStqpKylY1SdmqnrIuV941SXrxlQ251peMlK1qkrJVTVK2qqksy1bSa70E/WUgLS0NAF9f3wrOiRBCCJFfWlpahUxLV93ItV4IIURldbNrvQzkVwbMZjMXLlzAwcHhtvtipqam4uvrS3R0dLUbeEnKVnmsWrWK8ePHc/ToUcsUV0XJKxvA1q1badGiRbHp+/XrB8Dvv/9ebLrKoKp9bqUhZat6yrpciqKQlpaGt7c3arX05rtdcq0vGSlb1XR92X777bcS3yPAtXuKktwjVIS75XOTslUdZVm2kl7r5Ul/GVCr1fj4+JTpMR0dHavdH3geKVvFs7XNHUDFwcGhVPnV6/U3Tf/pp58CVIn3IU9V+dxuhZSt6inLcskT/rIj1/rSkbJVTY6OjqW+R8hLX5J7hIpU3T83KVvVU1ZlK8m1XoJ+IUSZatiwYUVnQQghhBBCCHGVtPcTQpRYWloazzzzDO7u7ri5uTFw4EAuXLiQL03nzp3p3LmzZTkyMhKVSsXcuXN599138fPzw8bGhnvvvZfNmzeX+NyKohAUFESvXr0KbEtPT8fJyYkJEyYAkJWVxUsvvUSzZs1wcnLC1dWVNm3a8Msvv+Tbb/jw4QWO9eCDD6JSqfjhhx8s6w4ePIhKpeK3334rcX6FEEKIu1VsbCwtW7YkKCiIM2fOADBy5Ej0ej1hYWH07dsXvV6Pr68vL730EtnZ2fn2z8nJYebMmdSvXx9ra2tq1KjBqFGjiI+PL3Cu1atX06ZNG+zt7dHr9fTq1YtDhw7dkXIKUVVI0F/JWFtbM3XqVKytSzgXZBUiZauarK2t6d+/PwBjx45Fp9Px7bffMnfuXLZt28aTTz5ZouN89NFHbNy4kUWLFvHNN9+gVqvp06cPe/bsKdH+KpWK5557jpCQEMsNRJ6vvvqK1NRUS9CfnZ1NUlISL7/8MuvWreO7776jffv2DBw4kK+++sqyX/fu3QFISkoCwGg0sn37dmxtbQkJCbGk++uvv9BqtfkqMyq76v43WR3LVl3LJQqqzp+1lK1qKsuyHT9+nFatWmFtbc2ePXsICgqybDMYDDz00EN069aNX375hdGjR/P+++8zZ84cSxqz2Uz//v157733GDJkCL///jvvvfceISEhdO7cmczMTEvaWbNm8cQTT9CwYUPWrFnD119/TVpaGh06dODEiRNlXrbKRspWNVVI2RQhxF1n+fLlCqBERESUKv348ePzrZ87d64CKLGxsZZ1nTp1Ujp16mRZjoiIUADF29tbyczMtKxPTU1VXF1dle7du5c436mpqYqDg4Pywgsv5FvfsGFDpUuXLkXuZzQaFYPBoIwZM0Zp3ry5ZX1YWJgCKF999ZWiKIqyc+dOBVBeffVVJTAw0JKuR48eStu2bUucTyGEEKKqutV7hH///VcJCQlRHB0dlUcffTTfNV9RFGXEiBEKoKxZsybf+r59+yr33HOPZfm7775TAOWnn37Kl+7ff/9VAGXJkiWKoihKVFSUotVqleeeey5furS0NMXT01MZNGhQSYssRLUnT/qFECX20EMP5Vtu0qQJAOfOnbvpvgMHDsTGxsay7ODgwIMPPsiOHTswmUwlOr+DgwOjRo1ixYoVXLlyBYAtW7Zw4sQJnn322Xxpf/jhB9q1a4der0er1aLT6fjiiy84efKkJU2dOnUICAjgr7/+AiAkJITg4GCefPJJIiIiCA8PJzs7m507d1paBQghhBCioJUrV9K3b1/Gjh3LmjVr8l3z86hUKh588MF865o0aZLvPmL9+vU4Ozvz4IMPYjQaLT/NmjXD09OTbdu2AfDnn39iNBoZPnx4vnQ2NjZ06tTJkk4IIc37hRCl4Obmlm85r1nS9U3tiuLp6VnoupycHNLT00uch+eee460tDRWrVoF5HYb8PHxsXRBAFi7di2DBg2iVq1afPPNN+zZs4d///2X0aNHk5WVle943bp1s4wt8Ndff9GjRw+Cg4OpWbMmf/31F7t27SIzM1OCfiGEEKIY33//Pba2towdO7bIaS3t7OwKVAZYW1vnuzZfunSJ5ORkrKys0Ol0+X4uXrxIQkKCJR3AfffdVyDd6tWrLemEEDJ6vxDiDrl48WKh66ysrNDr9SU+Tt26denTpw8ff/wxffr04ddff2X69OloNBpLmm+++YbAwEBWr16d78bjxoGCIDfo/+KLL9i3bx979+7lrbfeAqBr166EhIRw7tw59Ho9rVu3Lk1xhRBCiLvKqlWrePvtt+nUqRObNm2iWbNmt3ScvMGCN27cWOh2BwcHSzqAH3/8EX9//1s6lxB3Cwn6hRB3xNq1a5k3b56lhj8tLY3ffvuNDh065AvYS+KFF16gZ8+ejBgxAo1Gw7hx4/JtV6lUWFlZ5Qv4L168WGD0fsgN+lUqFW+//TZqtZqOHTsCuYP8vfLKK5w7d46OHTui0+lKW2QhhBDiruHq6spff/3FAw88QJcuXfjjjz9uqcL8gQce4Pvvv8dkMtGqVasi0/Xq1QutVkt4eDiPPPLI7WRdiGpPgn4hxB2h0Wjo0aMHkyZNwmw2M2fOHFJTU5k+fXqpj9WjRw8aNmzI1q1befLJJ/Hw8Mi3/YEHHmDt2rWMHz+eRx99lOjoaN555x28vLwKjPzv4eFB48aN2bRpE126dMHOzg7IDfqTkpJISkpi4cKFt15wIYQQ4i7h4ODAxo0bGThwID169ODXX3+lS5cupTrG448/zqpVq+jbty8vvPAC999/PzqdjvPnz7N161b69+/PgAEDCAgIYMaMGbz55pucPXuW3r174+LiwqVLl9i3bx/29va3dI8hRHUkffqFEHfEs88+S48ePXj++ecZMmQIRqOR33//nXbt2t3S8QYNGmQ57o1GjRrFe++9xx9//EHfvn2ZM2cOr7/+OkOGDCn0WHn99a/vt+/n52eZZkj68wshhBAlY2tryy+//EKvXr3o27cvGzZsKNX+Go2GX3/9lTfeeIO1a9cyYMAAHn74Yd577z1sbGwIDg62pJ08eTI//vgjoaGhjBgxgl69evHqq69aWukJIXKpFEVRKjoTQojqKzIyksDAQObNm8fLL79cZse99957UalU/Pvvv2V2TCGEEEIIIaobad4vhKgyUlNTOX78OOvXr+fAgQP8/PPPFZ0lIYQQQgghKjUJ+oW4iymKgslkKjaNRqMpcuqdsmQ0GovdrlarOXjwIF26dMHNzY2pU6fy8MMPl3u+hBBCiLtRZbpHEELcHunTL8RdbOXKlQXmtr3xZ/v27bd1joCAABRFKbZpf2Rk5E3zMWPGDDp37oyiKCQkJDBt2rTbypcQQgghinYn7hGEEHeG9OkX4i6WmJhIREREsWnuuecey5y45SUnJ4ejR48Wm8bb2xtvb+9yzYcQQgghclWWewQhxO2ToF8IIYQQQgghhKimpHm/EEIIIYQQQghRTclAfmXAbDZz4cIFHBwcZDATIYQQlYKiKKSlpeHt7Y1aLXX8t0uu9UIIISqbkl7rJegvAxcuXMDX17eisyGEEEIUEB0djY+PT0Vno8qTa70QQojK6mbXegn6y0DeACbR0dE4Ojre1rEMBgObNm2iZ8+e6HS6sshepSFlq5qkbFWTlK3qKetypaam4uvrK4NslRG51peMlK1qkrJVTVK2qqksy1bSa70E/WUgr5mfo6NjmdwI2NnZ4ejoWC3/wKVsVY+UrWqSslU9BoMBa5uyL5c0RS8bZX2td7DW4GijQafTFHIyDehsri3nXCkmY2rQ2d5i2gygqPGcVWBlV+q0BoMBvY226LIBWNlfe23IBMVcdJ7zpc0CpZh540uTVmcHef8bxmwwG2+aNrdsuuLLprWFvCa2xhwwG4o+bqnS2oBaU/q0JgOYcopOq7EGjRaDwYC9rVXxZbuaNve4RjBlF3NcK9DoSp/WbAJjVtFp1TrQWpUqrcFgwM7Wpviy5TuuGYyZxRxXC1rr3NeKAoaMsklbqv/73LSW62FxZatk3xFAif7vLWWz1aHTFlG2q2mvHbdivyNKlFZri8FkKvP7mJtd6yXoF0IIISqBv8MSmH1EQ52WqTT1c6vo7Ihy9sDRcVDUTKVBPWHoD9eW59UtOljwbw+jfr+2vCgYMhILT+vdHP637dryx60gJarwtDXqw4S915Y/7wLxpwpP6+QHLx6zLLY/8y66I2MLT2vnBq+evbb8zaNwbmfhaXV28GbsteU1w+DMpsLTAkxLufb65//BiV+KTvvGhWsBwG8T4ci3Rad9JRzs3QFoHPMtunljik77wlFw8c99vWUG7P6w6LTj/wGPBrmv/14A298rOu24LVCrZe7rvUshZErRaUesh8AOua8PrIANLxeddsgaqNcLAJ+kPejmjS467WMroNGA3NenfoMfRhadtv8SaD4093X4Zvh2UNFp+86H+8flvj63G1Y+UHTaHjOg3Qu5r2MPw+ddi07b6XXoMhkAh6wL6Ob5F5227XPQc2bu65Ro+KBJ0WnvGwv9FuS+zkiEeXWKTtt0CAxYmvvakAGzipl6uGF/GPTVteXi0t7wHaFd1KBKfUewvA9cOFR42hu+IzTfD4ao3YWnrYTfEfz5Bvy7rOi0LxwF/Z2fglpG9hFCCCEqWHRSBpPWHCM+S8Wa/TEVnR0hhBBCVCMqRVGKaochSig1NRUnJydSUlLKpMnfhg0b6Nu3b7VqtgpStqpKylY1SdmqjiyDicc+2cOxmBR87RX+eKk7ejubm+94E2V5bRJlf63/87ef6dWriP6cVbx5/8b16+jds0fR/59VuHn/xvW/0Ltn96LLVoWb9//x+6/06dGt6LJV4eb9G35fT98eXYouWxVu3r9hwwb6du9UdNkq2XcEUOLm/Rs2bMj93Kph8/6yuo8p6bVJmvcLIYQQFWjar/9xLCYFFzsdo+/JxLqofpmiWjFprHNvQEtyw3f9jWqZprW7eZpbSGtWW5W8bNcHGDdNW4rKsNKk1VoD1iVKalbrSl42rRVgVcI8lFNaje5aQH0Tikpb8rJptNcqAMoyrVpT8r/h0qRVqUteNrW6FMdVlU9aKH1anQ6TyYTBUEiFkOn6ypGbXGPypb1Jo/CsW02rKj4fWVkYDAa0Wi1ZJhUmdfFp8yujtNk3VlSVUdqcnGtly8rCZCqm4gHQaDRotdrbHp9Hgn4hhBCigny/L4rv/41GpYKFjzUhNXTvzXcSQgghbpCens758+epLo24FUXB09OT6OjoajcgbWnLZmdnh5eXF1ZWJazsK4QE/ZWQxpSd2/RGqV5N/gDU5pyiywZVtskfgNpsKL5sVbTJH4BKMRZftira5A/I/RsrrmxVtMlfvrRFla0SfkeU7v8+E5Ri/oYr2XfEjWmPxaQw+9cD2GJmYrd6tK/jwobQog8lqo9fj8Ty+zk1l/dG4eeux8fFjlrOtthby22ZEKL0TCYT58+fx87Ojho1alSLINlsNpOeno5er0etrl7D0JW0bIqikJOTQ3x8PBEREQQFBd3yeyFXl0pIRvS9Skb0zX0tI/rmvpYRfa8ty4i+QNUf0TcYOKIl90q8EwxNDxZ9HFGtbD4Vx5YLarZcyP9/4WKno5aLLT7Odrm/XWyp5WybWyngYouTbdUfw0IIUfaMRiOKolCjRg1sbUvRZaYSM5vN5OTkYGNjUy2D/pKWzdbWFp1Ox7lz5yz73AoJ+oUQQggh7qCeDWtyJSEWKxdPYpKziEnOJCXTwOWM3J/jMamF7udgrbVUBuS1DvBxsb26zg4XO121eMInhCidvCb98v9fPZVFpUe1Gr3/8uXLPP/88/z6668APPTQQ3z44Yc4OzsXuc/atWv59NNPOXDgAImJiRw6dIhmzZqV6rxlOaLvlHXHiI04RfvmDQhw1+PrakctZxus80atrMLN+2VE36rZvF9G9K2azftlRF8q1XfE9Wk/2HyGT7aHY6NT8/3/2nBPTYfc06Jlwx8by2xWAhm9v2yV90w9aVkGYpIzOZ+Umfv7csbV35nEXM4k8Uox39dX2eo011UC2FLL2S7fcg29dbkHBdVtdo3rSdmqpruhbF27duX8+fMEBgbe8pPgysZsNpOamoqjo2O1fNJfmrJlZWURERFR6Od7V47eP2TIEM6fP8/GjRsB+N///sewYcP47bffitznypUrtGvXjscee4xx48bdqawWSlEUfjoUw5VsO0I2nrOsV6nA28kWX1db/F3t8XOzw9/NLve1qx1OdiX8ApMRfUufVkb0BWRE32vHrboj+pb9ccvnO6J0//e2JS9bJfiOQGvNXyeSeX97DGDD7IHNuMfX89r2wkZcFncNBxsd9T111Pcs/KYtI8fIheRMoq9WApy/fF3lwOVM4tKyyTSYOBOXzpm49EKPYaVV4+Nsm6/rQK3rWg3UdLRBo5YnhUIIUd1Um6D/5MmTbNy4kX/++YdWrVoB8Pnnn9OmTRtOnz7NPffcU+h+w4YNAyAyMrLE58rOzib7uqkZUlNzm+EZDIbCp8koIZNZ4aVuddh56BRqJw/OX84i6nImGTkmYpJzL+7/nE0qsJ+TrRY/Vzv8XOzwc82tHPBztcPP1Y6aDtaoK8kFPO+9uZ33qLKSslVNUraqqaqW7VxiBi+uOQzAsNZ+9Gvska8MZV2uqvb+iOLZWWmp6+FAXQ+HQrdnGUzEpmRZKgFurBS4mJpFjtHM2YQrnE0ovFWPVq3Cy9mm0DEFfFxs8XSyQaepXk/chBCVm0aj4eeff+bhhx8u1/MEBAQwceJEJk6cWK7nKcyKFSuYOHEiycnJ5XaOahP079mzBycnJ0vAD9C6dWucnJzYvXt3kUH/rZg9ezbTp08vsH7Tpk3Y2ZXiiVYh3ID+AQAXwSW31W+6ERKyICFLRUIWJGapSMhWkZgFqQYVKZlGjsWkcqyQPoBalYKbDbhZK7jbgJtN7m9369z1ugq4doeEhNz5k94hUraqScpWNVWlsuWYYOFxDWlZKgIdFJopZ9mw4WyhacuqXBkZxXQZEdWOjU5DoLs9ge6Ft9gxmMxcTMkiurBKgeRMYpOzMJoVopMyiU4qvBuTWgWejjaWgQVvHGjQ29nmZjN1CyFEPnFxcbz99tv88ccfXLp0CRcXF5o2bcqUKVNo1KgRMTExuLm5VXQ2C7gTgXpZqjZB/8WLF/Hw8Ciw3sPDg4sXL5bpuSZPnsykSZMsy6mpqfj6+tKzZ88y6ecXEhJCjx7F9Hu/TkaOkeikTKKSMom6nHH1dQZRV/sEGs1wKRMuZRb+tL+mo/XVVgG217UUyP3tbFu2AwKVtmxViZStapKyVU1VrWyKovDKT8eJzYjFXW/F10+3pqZjwS4EZV2uvFZoQgDoNGp8Xe3wdS384YTJrHApNetqZUCGZWwBy7gCyZnkGM1cSMniQkoWRBZ+Hg8Ha+wUDduyjlPXw4Ha7vYE1rAnwM0eG10xY3AIIe5KjzzyCAaDgZUrV1K7dm0uXbrE5s2bSUrKbd3s6elZ7fr0V4RKH/RPmzat0Kfq1/v333+BwkesVBSlzAetsba2xtq6YB9OnU5XZjegJT2Wk06Hk70tjX0LbjOazMSmZBGVlMG5xAzOJV0hKjH3dVRSBunZRi6lZnMpNZt/Iy8X2N/BRntt7AC33O4C/q52+LnZ4eVke8v9/sryfapspGxVk5StaqoqZftqTyS/HIlFo1bx0ZAW+LgV3jw7T1mVqyq8N6Ly0KhVeDvb4u1sC7gW2G42KySkZ3P+usEFbxxsMNNgIi4tG1AReehCvv3zxieqXcM+tyLA3Z7AGnpqu9vj7Xzr9xRCiIIURSHTUMyAtOXIVqcpceyVnJzMzp072bZtG506dQLA39+f+++/3zLY3fXN+yMjIwkMDGT16tV8+OGH7N+/n8aNG7Nq1SpSUlJ45plnOHXqFO3bt+frr7+mRo0aAHTu3JlmzZqxaNEiy7kffvhhnJ2dWbFiRaF5W7hwIcuXL+fs2bO4urry4IMPMnfuXPR6Pdu2bWPUqFHAtfhz6tSpTJs2jZycHN566y1WrVpFcnIyjRs3Zs6cOXTu3Nly7BUrVjBlyhSSkpLo1asX7du3L+W7XHqVPuh/9tlnefzxx4tNExAQwNGjR7l06VKBbfHx8dSsWbO8slepaa+r1W9XN/82RVG4nGHgXOKVa5UCiRlEJ+VWDlxKzSYty8jxmNRCpw7SaVT4uuQe2z+vQsDNHn83O3xd7LC1ktp8IYQ4cC6JGb+dAGByn/q0rl35migKURJqtQoPRxs8HG1o4edSYLuiKCRdyeFcQhq/bN6Ni989nEvKzB1DID6dtCyjpeXA32cS8u1rpVUT4GZHbXc9gTVyKwRqu9tTu4ZepiEU4hZkGkw0nPJnhZz7xIxe2FmVLMTU6/Xo9XrWrVtH69atC32oWpipU6eyaNEi/Pz8GD16NE888QSOjo588MEH2NnZMWjQIKZMmcLSpUtvuRxqtZrFixcTEBBAREQE48eP59VXX2XJkiW0bduWRYsWMWXKFE6fPm0pC8CoUaOIjIzk+++/x9vbm59//pnevXtz7NgxgoKC2Lt3L2PHjuXtt9/miSeeYNOmTUydOvWW81lSlT7od3d3x93d/abp2rRpQ0pKCvv27eP+++8HYO/evaSkpNC2bdvyzmaVo1KpcLW3wtXeiuaFXLwzc0xEX77WKiAq8QrnkjKISswg+nIGBpNS7GBAHg7WVysD7C2VAt5OVmQVM7OVEEJUJ/Fp2YxfdRCjWaFfsBdj2gdWdJaEKDcqlQo3vTWO1mqi3RX6dq5taW2iKAqJV3KISLhCRPwVwhPSiYi/QkTCFc4lZpBjNBN6KZ3QSwVnHXCy1eVWAlhaCOipfbW7gDxgEKJq02q1rFixgnHjxvHJJ5/QokULOnXqxOOPP07jxo2L3O/ll1+mV69eALzwwgs88cQTbN68mXbt2gEwZsyYIp/gl9T1A/oFBgbyzjvv8Mwzz7BkyRKsrKxwcnJCpVLh6XltFp7w8HC+++47zp8/j7dRxqXHAAC+DUlEQVS3tyWvGzduZPny5cyaNYsPPviAnj178uKLL+Lo6Ej9+vXZvXu3Zfa58lLpg/6SatCgAb1792bcuHF8+umnQO6UfQ888EC+Qfzq16/P7NmzGTBgAABJSUlERUVx4UJuM7S82hpPT898H+LdxtZKQ72aDtSrWbAZqsmsEJtydeyAxAxLZcC5pNyLd1qWkbi0bOLSCnYbUKHhu4t76RhUg/ZBNWju5ywjAQshqh2jycyz3x7kUmo2dT30zHm0iTytFHctlUqFu94ad7019wXk7zpgMivEXM7kbEI6EQlXOHu1MiAi4QoxyZmkZBo4HJ3M4ejkAsf1drKhdg29ZQDD3IoBPbVcpLuAuLvZ6jScmNGrws5dGo888gj9+vXj77//Zs+ePWzcuJG5c+fy2WefMXDgwEL3adKkieV1Xovu4ODgfOvi4uJuIffXbN26lVmzZnHixAlSU1MxGo1kZWVx5coV7O0LHzD14MGDKIpCvXr18q3Pzs62DEZ48uTJAjMRtGnTRoL+0li1ahXPP/88PXv2BOChhx7io48+ypfm9OnTpKSkWJZ//fVXS58MwNKVIK9fhihIo1Zdnb7HjrZ1Cm5Pzsi5OoZAbguBvO4DkYm53QYOR6dwODqFxVvCsLfS0Kq2G+3rutMhyJ26Hnq5MRZCVHlz/zzN3ogk7K00fPJkS/TW1epyK0SZ0ahVueMGudnR+YaJljJzTEQmXqsECI+/VjGQkmmwDCq4M+yG7gIaNX5udpZBBPO6CgS62+NmbyX3GaLaU6lUJW5iXxnY2NjQo0cPevTowZQpUxg7dizTp08vMui/fsyavP/nG9eZzWbLslqtRlGUfMcoblrbc+fO0bdvX55++mneeecdXF1d2blzJ2PGjCl2P7PZjEaj4cCBA2g0+Ss/8pr/35iPO6Xq/DWUgKurK998802xaW58o0eOHMnIkSPLMVd3H2c7K5ztrGjq65xvvcFg4JufN2Dt15Q9EZfZFZZA0pUctpyKY8up3Nq4mo7WtK9bg/ZBbrSr646HQ8ERroUQojLbcCyWz3bkTsc3/7Gm1PXQV3COhKiabK00NPBypIFXwZmRkq7kEJGQztn43K6Ged0FIhKvkGM0ExaXTlhcwe4CjjZaywCCea0D8loKVKUgSYjqrGHDhqxbt67MjlejRg1iY2MtyyaTiePHj9OlS5dC0+/fvx+j0ciCBQssMwesWbMmXxorKytMpvyDJTZv3hyTyURcXBwdOnQo9NgNGzbkn3/+4YUXXrCs++eff26pXKUh327ijnK1hr4tazGkdQBms8LJi6nsPJPAzrAE9kUkcSk1m58Onueng+cBqO/pQPu67rQLcqdVoKtckIUQlVpYXBqv/HAEgKc61qZPsFcF50iI6il3XCJXWvoX7C5wITnT0jrgbHx6bqXA1e4CqVlGjkQnc6SQ7gJeTjbXdRW4VjHg42KLVroiClHmEhMTeeyxxxg9ejRNmjTBwcGB/fv3M3fuXB566KEyO0/Xrl2ZNGkSv//+O3Xq1OH9998nOTm5yPR16tTBaDTy4Ycf8uCDD7Jr1y4++eSTfGkCAgJIT09n8+bNNG3aFDs7O+rVq8fQoUMZPnw4CxYsoHnz5iQkJLBlyxaCg4Pp27cvzz//PG3btuWDDz5g8ODB/PXXX+XetB8k6BcVSK1W0cjbiUbeTjzVqQ5ZBhMHzl3m7zMJ7AyL578LqZy6mMapi2ks2xmBlUZNC39nOgTVoF1dd4JrOUmfPSFEpZGebeSprw9wJcdE69quvNLrnpvvJMrM77//zowZMzh69Cj29vZ07NiRtWvXWrZHRUUxYcIEtmzZgq2tLUOGDGH+/PlYWVlVYK5FWdOoVZaZizrWq5FvW5bBxLnEDCIS0gm/buyAiIQrJF3JITYli9iULHaHJ+bbT6dR4edqR4CbHXYZKnqYzMiMmELcPr1eT6tWrXj//fcJDw/HYDDg6+vLuHHjeP3114ttSl8ao0eP5siRIwwfPhytVsuLL75Y5FN+gGbNmrFw4ULmzJnD5MmT6dixI7Nnz2b48OGWNG3btuXpp59m8ODBJCYmWrqGL1++nJkzZ/LSSy8RExODm5sbbdq0oW/fvgC0bt2azz77jKlTpzJnzhy6d+/OW2+9xTvvvFMmZS2KBP2i0rDRaWhX1512dd2B+iRdyWF3eAI7zyTw95kEYpIz+edsEv+cTWLen6dxstXRto4b7YPc6VC3Bn5udhVdBCHEXUpRFF798Qjh8VfwdLThwydayJPBO+inn35i3LhxzJo1i65du6IoCseOHbNsN5lM9OvXjxo1arBz504SExMZMWIEiqLw4YcfVmDOxZ1ko9Nwj6cD93gWHKQ4OSPH0k3g+kEFIxOvkGUwEx5/hfD4K4AGww/H+GiI/I8Lcbusra2ZPXs2s2fPLrDNbDZjMBgwmUyWJvYBAQEFump37tz5pt23dTodS5YsYcmSJUXmJTIyMt/yiy++yIsvvphv3bBhw/ItL126tMC0gDqdjunTpzN9+vQizzV69GgeffRRHB0dLWV76aWXikxfFiToF5WWq70VDzTx5oEm3iiKQmRiBjvDEth5Jp7d4YmkZBr44/hF/jh+EQBfV1va161BhyB32tZxw9lOnt4IIe6MZX9HsOHYRXQaFR8PbUENh5LNNSxun9Fo5IUXXmDevHmMGTPGsv76mXs2bdrEiRMniI6OtkyjtGDBAkaOHMm7776Lo2PBPuPi7uJsZ0ULPyta3DCNsdmsEJuaRUT8FY5EJ7EwJJSN/13ixTVHeH9QUwn8hRBVggT9okpQqVSWfnbDWvtjNJk5GpNiGQ/g4LnLRCdl8t2+KL7bF4VKBcG1nGhf1532Qe609HfBWivz+Qohyt6e8ETe23gKgCkPNKSlv8tN9hBl6eDBg8TExKBWq2nevDkXL16kWbNmzJ8/n0aNGgGwZ88eGjdubAn4AXr16kV2djYHDhwotJlndnY22dnZluXU1FQgd1Da221ymrd/WTVdrUyqY9k87LV42DvRopYdyedOsfyMlt+OXECNwpyBjatFV8Pq+LnluRvKZjQaURQFs9mcb9T6qizv6X1euaqT0pbNbDajKAoGg6HArAAl/buWoF9USVqNmhZ+LrTwc+H5bkFcyTayNyKRv88ksCssgdBL6Rw9n8LR8yks2RaOjU7N/YFudLhaCVDf00Gm7BFC3LaLKVk8991BTGaFgc1r8WRr/4rO0l3n7NncmRKmTZvGwoULCQgIYMGCBXTq1InQ0FBcXV25ePGiZS7nPC4uLlhZWXHx4sVCjzt79uxCm2du2rQJO7uy6U4WEhJSJsepjKpr2Rq7woggI8tD1fxyJJbYCzE8UcdMNYj7ger7uUH1Ltvu3bvx9PQkPT2dnJycis5OmUpLS6voLJSbkpYtJyeHzMxMduzYgdFozLctIyOjRMeQoF9UC/bWWrrWr0nX+rk3dZdSs9h5tQLg77AE4tOy2REaz47QeADc9da0r5s7LWCHoBp4OsnUgEKI0skxmnlm1QES0nOo7+nAuwOCpTKxDE2bNq3YPpEA//77r+UpyZtvvskjjzwCwPLly/Hx8eGHH37gqaeeAij0s1EUpcjPbPLkyUyaNMmynJqaiq+vLz179rzt7gAGg4GQkBB69OiRb27p6uBuKNtLg7vT9HQiL/5wjH3xagL8fHnnoYaoq3Dkfzd8btW5bG3btiU2Nha9Xo+NTfW4p1UUhbS0NBwcqt+DutKWLSsrC1tbWzp27Fjg881rhXYzEvSLaqmmow2PtPThkZY+KIpC6KV0/j4Tz66wBP45m0RCejbrDl9g3eELANT10Od2BajrTus6buit5V9DCFG8mb+f4FBUMg42Wj4d1hJbK+lCVJaeffZZHn/88WLTBAQEWJ6UNGzY0LLe2tqa2rVrExUVBYCnpyd79+7Nt+/ly5cxGAwFWgBcfwxr64JjM+h0ujILHMryWJVNdS/bQ819Uak1vPD9IdYciEGn1TDz4cZVPjip7p9bdS2bVqtFpVKhVqstA8NVdXkVunnlqk5KWza1Wo1KpSr0b7ikf9MS2YhqT6VSWUbrHduhNjlGMwejLufOChCWwLHzyYTFpRMWl86K3ZFo1Sqa+znTvm4N2ge50dTHWQbqEULks/bgeb7acw6ARYOb4e9mX8E5qn7c3d1xd3e/abqWLVtibW3N6dOnad++PZD79CsyMhJ//9zuFm3atOHdd98lNjYWLy8vILeZvrW1NS1btiy/Qohq7cGm3pjMCi+uOcyqvVFo1SqmPdSoygf+QojqR4J+cdex0qppXduN1rXdeLnXPaRkGNhzNndawJ1hCZxLzODfyMv8G3mZ9/8CB2streu40SEotyVAoLu9XNCFuIuduJDKGz/nTgf3fNe6dGtQ+JNicWc4Ojry9NNPM3XqVHx9ffH392fevHkAPPbYYwD07NmThg0bMmzYMObNm0dSUhIvv/wy48aNk5H7xW15uHktjGaFV348wso959Co1bz9QAO5TxBCVCoS9Iu7npOdjt6NvejdOPfpT3RS3tSACewKTyA5w0DIiUuEnLgEgLeTDe2D3GkfVIN2ddxw08vUXELcLVIyDDz9zQGyDGY61avBC93rVXSWBDBv3jy0Wi3Dhg0jMzOTVq1asWXLFlxccmdS0Gg0/P7774wfP5527dpha2vLkCFDmD9/fgXnXFQHj7b0wWQ289pPx/hyVwRajYrJfepL4C+EqDQk6BfiBr6udjxxvx9P3O+Hyaxw4kIqf4fFs/NMAvsjL3MhJYs1+8+zZv95ABp6OdK2jivO6RWccSFEuTKbFSatOUxUUgY+LrZ88HizajFVV3Wg0+mYP39+sUG8n58f69evv4O5EneTwff5YTQrvPnzcT7bcRatWsUrve6RwF8IUSlI0C9EMTRqFcE+TgT7ODG+c10yc0zsi0zKnRXgTAInY1M5cfVHhYYLtid4rU9DnGyr50AxQtzNPt4axuZTcVhp1XzyZEuc7awqOktCiEpkaCt/TGaFKb/8x5Jt4Wg1aib1kNZAQpS3U6dOMXLkSA4fPkz9+vU5fPhwRWep0pGgX4hSsLXS0KleDTrVqwFAfFo2u8MT2Hgslj/+u8S3+84TcjKeaQ82om+wp9TwC1FNbA+NZ+FfoQDMfLgxjWs5VXCOhBCV0fA2ARhNCjPWn2Dx5jNo1Sqe7xZU0dkSotIaOXIkK1euBHK7Ynl7e9OvXz9mzpyJRlOyWXGmTp2Kvb09p0+fRq/Xl2d2qywZklyI21DDwZr+zWqx+PGmPNvQRICbHfFp2Uz49iBjVu7n/OWMis6iEOI2RSdl8ML3h1AUeOJ+Pwbd61vRWRJCVGKj2wfyZt8GACwMCeXjrWEVnCMhKrfevXsTGxtLZGQky5Yt47fffmPChAkl3j88PJz27dvj7++Pm5vbLeUhJyfnlvarKso06E9NTS31jxDVRZCTwvoJbXi+a110GhVbTsXRY+EOlv19FqPJXNHZE0LcgiyDiWdWHSA5w0BTHyemPdTw5jvdheT6L0R+4zrW5tXe9wAw78/TfLYjvIJzJO5KOVeK/jFklSJtZsnS3iJra2s8PT3x8fGhZ8+eDB48mJCQEMv25cuX06BBA2xsbKhfvz5LliyxbFOpVBw4cIAZM2agUqmYNm0aADExMQwePBgXFxfc3Nzo378/kZGRlv1GjhzJww8/zOzZs/H29qZevXql2m/+/Pl4eXnh5ubGhAkTMBgMljTZ2dm8+uqr+Pr6Ym1tTVBQEF988YVl+4kTJ3jsscdwdHSkZs2aDBs2jISEhFt+/0qiTJv3Ozs7l6o5s0qlIjQ0lNq1a5dlNoSoMNY6DZN63sNDzbx5Y+1x9kUmMfP3k6w7HMPsAU0I9pEmwUJUJVN/+Y/jMam42OlY8mRLrLUla2p4t5HrvxAFje9cF5NJYUFIKLM2nEKjVjOmfWBFZ0vcTWZ5F70tqCcM/eHa8ry6YCiihap/exj1+7XlRcGQkVgw3bSUW8vndc6ePcvGjRvR6XLHx/r888+ZPn06H330Ec2bN+fQoUOMGzcOe3t7RowYQWxsLN27d6d37968/PLL6PV6MjIy6NKlCx06dGDHjh1otVpmzpxJ7969OXr0KFZWuWPybN68GUdHR0JCQlAUpcT7bd26FS8vL7Zu3UpYWBiDBw+mWbNmjBs3DoDhw4ezZ88eFi9eTNOmTYmIiLAE9bGxsXTp0oVhw4bxwQcfkJ2dzWuvvcagQYPYsmXLbb9/RSnzPv0//vgjrq6uN02nKAp9+/Yt69MLUSnU9XDg+/+1Zs3+aGZtOMnxmFT6f7yTkW0DmdSzHnprGU5DiMru+31RrN4fjVoFHz7RglrOthWdpUpNrv9CFPRctyAMZoXFm8/wzvoTaNUqRrQNqOhsCVGprF+/Hr1ej8lkIisrtwXCggULAHj33XdZsGABAwcOBCAwMJATJ07w6aefMmLECDw9PdFqtej1ejw9PQH48ssvUavVLFu2zFIhvXz5cpydndm2bRs9e/YEwN7enmXLllmC+ZLu5+LiwkcffYRGo6F+/fr069ePzZs3M27cOEJDQ1mzZg0hISF0794dIF8F99KlS2nevDlTpkzB0dERtVrNl19+ia+vL6GhoZYWB2WtTCMPf39/OnbsWOK+FLVr17bU4ghR3ajVKh6/349uDWryzvoT/HrkAl/uimDj8Vim929Mj4Y1KzqLQogiHIlOZsov/wHwUs97aB/kXsE5qtzk+i9E0V7sHoTJbObjreFM/fU/NGoVT7b2r+hsibvBGxeK3qa6oeXaK8WMPaG6oUf4xGO3nqdCdOnShaVLl5KRkcGyZcsIDQ3l2WefJSoqiujoaMaMGWN5ig5gNBpxciq69eyBAwcICwvDwcEh3/qsrCzCw691tQkODrYE/KXZr1GjRvkGGfTy8uLYsdz35PDhw2g0Gjp16lRk3rZt24aPj0+BbeHh4VUj6I+IiChV+uPHj5fl6YWolGo4WLP4ieYMbFGLt385TnRSJuO+2k/vRp5Me6gRnk42FZ1FIcR1kq7kMH7VQXJMZno0rMkznepUdJYqPbn+C1E0lUrFyz3vwWhS+HTHWd5adxzt1QcDQpQrK/uKT1sC9vb21K1bF4DFixfTpUsXZsyYwfDhw4HcJv6tWrXKt09xI/ubzWZatmzJqlWrCmyrUaNGvvPeyn43VlqrVCrM5tzxu2xti28VaDabeeCBB3jrrbfQ6/Wo1dcqVLy8vIrd93ZIG2Mh7pDO93iwaWInPth8hs//PsvG/y6yMyyBV3vfw9BW/mjUMr2fEBXNZFZ44ftDxCRnEuBmx4JBTVHL/6YQ4japVCpe71Mfo1nhi50RTP75GBq1isdkNhAhCpg6dSp9+vRh6NCh1KpVi7NnzzJ06NAS79+iRQtWr16Nh4cHjo6O5b7f9YKDgzGbzWzfvt3SvP/Gc/z000/4+fnh6uqaL+gvT+UW9C9evLjQ9SqVChsbG+rWrUvHjh1LPP+iENWBrZWG1/vUp38zbyavPcbhq02I1x6MYfbAYBp43doXjBCibLwfEsrfZxKw1Wn4ZFhLHG2kCXppyfVfiMKpVCre6tcAk1lhxe5IXv3pKFqNigHNCzbzFeJu1rlzZxo1asTChQuZMmUKEydOxNHRkT59+pCdnc3+/fu5fPkykyZNKnT/oUOHMm/ePPr378+MGTPw8fEhKiqKtWvX8sorrxTatP529rteQEAAI0aMYPTo0ZaB/M6dO0dcXByDBg1iwoQJfP7554wdO5bXX38dDw8PwsLC+P777/n888/L7dpYbkH/+++/T3x8PBkZGbi4uKAoCsnJydjZ2aHX64mLi6N27dps3boVX1+p5RR3lwZejvz0TFtW7T3H3I2nORydzAMf7mRsh0AmdquHrZXcDAtxp4WcuMRHV+fTfu+RYOp7SiXcrZDrvxBFU6lUTH2wIUazmW/+ieKlNUdQq1T0b1arorMmRKUyceJExowZw1tvvcWyZcuYN28er776Kvb29gQHBzNx4sQi97Wzs2PHjh289tprDBw4kLS0NGrVqkW3bt2KfYJ/q/vdaOnSpbzxxhuMHz+exMRE/Pz8eOONNwDw9vbm77//5uWXX7ZUYvj7+9O7d+9yfepfbkH/rFmz+Oyzz1i2bBl16uT2hwwLC+Opp57if//7H+3atePxxx/nxRdf5McffyyvbAhRaWnUKoa3CaBnQ0+m/fofG/+7yKfbz7LhWCwzHw6mU70aNz+IEKJMRCRcYdLqwwCMbBsgN+C3Qa7/QhRPpVIx46HGGE0K3/8bzaQ1R9Cq1fRrUn79eYWorFasWFHo+iFDhvDAAw/g6OjIkCFDGDJkSJHHOHz4cIF1np6erFy5stTnvZX9Fi1alG/ZxsaGhQsXsnDhwkKPERQUxNdff20Zvf9OKLezvPXWW7z//vuWCz5A3bp1mT9/PpMnT8bHx4e5c+eya9eu8sqCEFWCp5MNnwxryefD78XLyYbopExGfLmP5787RHxadkVnT4hqLyPHyDPfHCAt28i9/i680bdBRWepSpPrvxA3p1armDUgmEdb+mAyKzz//SE2Hr9Y0dkSQlRT5Rb0x8bGYjQaC6w3Go1cvJj7pebt7U1aWlp5ZUGIKqVHw5qETOrE6HaBqFXw65ELdFuwje/3RWE2KxWdPSGqJUVRmLz2GKcupuGut+bjoS2w0t6ZWvfqSq7/QpSMWq1iziNNGNi8FiazwrPfHiTkxKWKzpYQohoqtzubLl268NRTT3Ho0CHLukOHDvHMM8/QtWtXAI4dO0ZgYGB5ZUGIKkdvrWXKgw1ZN6EdjbwdSc0y8vraYzz+2T+ExckNshBl7as95/jl8AU0ahUfD2lOTUeZQvN2yfVfiJLTqFXMe6wpDzX1xmhWGL/qAFtPxVV0toQQ1Uy5Bf1ffPEFrq6utGzZEmtra6ytrbn33ntxdXXliy++AECv17NgwYLyyoIQVVYTH2d+mdCOt/o1wFanYV9kEn0++JuFm06TZTBVdPaEqBYOnEvinfUnAJjcpz6tartVcI6qB7n+C1E6GrWKhYOa0i/YC4NJ4alvDrA9NL6isyWEqEbKbSA/T09PQkJCOHXqFKGhoSiKQv369bnnnnssabp06VJep6+UTCYTBoOh2DQGgwGtVktWVhYmU/UK7qpb2XQ6XblOOaXVqBnboTa9G3sy5Zf/2HIqjsVbwlh/NJaZAxrTto57uZ1biOouLi2L8asOYjQr9GvixZj28tS5rMj1X4jS02rULHq8GUazmT//u8T/vtrPlyPvo11dudaLm1OpVEBulzVR/ZTF51puQX+e2rVro1KpqFOnDlptuZ+uUlIUhYsXL5KcnFyitJ6enkRHR1v+gauL6lg2Z2dnPD09y/UcPi52fDHiXjYcu8i03/7jbMIVhny+l0db+vBm3wa42FuV6/mFqG4MJjPPfnuIS6nZ1PXQM/eRJtXmO6kykeu/EKWj06j58IkWjF91gL9OxjFm5b8sH3k/bepIKyRRvLyHUDk5Odja2lZwbkRZy8jIAHIfON6qcrsKZ2Rk8Nxzz1mmPAgNDaV27do8//zzeHt78/rrr5fXqSudvIDfw8MDOzu7Ym8uzWYz6enp6PX6OzaFw51SncqmKAoZGRnExeX2u3N3L9+aeJVKRb8mXnSo587cjadYtTeKHw+cZ8upON7q14ABzWtJ0CJECc3deIp9EUnorbV88mRL7K0lIC1Lcv0X4tZZadV8PLQFT399gK2n4xm94l9Wjr6f+wNdKzprohLTaDTY2dkRHx+PTqer8vfZkBs35OTkkJWVVS3Kc72Slu36eMPZ2fm2WhiX253O5MmTOXLkCNu2baN3796W9d27d2fq1KnlctG/fPkyzz//PL/++isADz30EB9++CHOzs6FpjcYDLz11lts2LCBs2fP4uTkRPfu3Xnvvffw9vYukzyZTCZLwO/mdvOa2rw/Ahsbm2r7B15dypZXkxoXF4eLi8sdOaejjY6ZDwczoLkPb6w9xulLaUxac4SfDp5n5sPBBLrb35F8CFFV/X40ls//jgBg/mNNqOuhr+AcVT8Vcf0Xojqx1mpY+mRLxn21n7/PJDBq+T6+GnM/Lf0l8BeFU6lUeHl5ERERwblz5yo6O2VCURQyMzOxtbWtdg+2Slu2smhZXG5B/7p161i9ejWtW7fOV5iGDRsSHh5eLuccMmQI58+fZ+PGjQD873//Y9iwYfz222+Fps/IyODgwYO8/fbbNG3alMuXLzNx4kQeeugh9u/fXyZ5yuvDb2dnVybHE5VL3uda2PRU5amlvwvrn2/PZzvOsnjzGXaFJdJr0Q6e71qX/3WsI1OOCVGIsLg0XvnxCABPdapN78ZeFZyj6qkirv9CVDc2Og2fD7+XMSv/ZVdYIiO+/Jevx9xPc78785BBVD1WVlYEBQWRk5NT0VkpEwaDgR07dtCxY8fbatZeGZWmbGU1hli5Bf3x8fF4eHgUWH/lypVyqa05efIkGzdu5J9//qFVq1YAfP7557Rp04bTp0/nG0Aoj5OTEyEhIfnWffjhh9x///1ERUXh5+dXZvmrbjVUIldFDpyi06iZ0KUuDzTx4s2fj7MzLIH5m0L59cgFZg0I5t4AeSIgRJ60LAP/+/oAGTkm2tR245WeBa8Jomzc6eu/ENWVjU7DsuH3MWrFPv45m8TwL/examwrmvg4V3TWRCWlVquxsakeU89qNBqMRiM2NjbVLuiviLKVW9B/33338fvvv/Pcc88B14KjvEC8rO3ZswcnJydLwA/QunVrnJyc2L17d6FBf2FSUlJQqVRFdgkAyM7OJjs727KcmpoK5Nba3Dg6v8FgQFEUzGYzZrP5pufPCx7z9qlOqmPZzGYziqJYnvTfbHaG8uDtaMWXw5vz69GLzPrjFKGX0nn0kz0MvteHV3sG4Wh7e18meWWqiLKVNylb1VTasimKwstrjnA2/go1Ha15/7HGKGYTBnPlmkWkrD+zivrs7/T1X4jqzNZKwxcj7mPU8n/ZF5nEk8v28u241jSu5VTRWRNC3AJFUdhyOp7o9Dt73nIL+mfPnk3v3r05ceIERqORDz74gP/++489e/awffv2Mj/fxYsXC32y4OHhwcWLF0t0jKysLF5//XWGDBmCo6Njkelmz57N9OnTC6zftGlTgWb8Wq0WT09P0tPTS9XcJi0trcRpK4qLiwvffPMN/fr1K9V+pS1bkyZNeOaZZ3jmmWdKtV9Z+Pbbb5k8eXKR/aNycnLIzMxk9+7dAAVajtxJOuDlBvDLOTV749Ws3n+eDUeiGRhgprmbwu0+YKvIspU3KVvVVNKybbmg4s9zGjQqhSF+V9i7Y3M55+z2lNVnljfa7512p6//QlR39tZavhx1HyO+3MeBc5d58ou9fDu2NQ29i75XFUJULiazwh/HY/l4azgnY1Np4KzmqTt4/nIL+tu2bcuuXbuYP38+derUYdOmTbRo0YI9e/YQHBxc4uNMmzat0AD7ev/++y9QeBN6RVFK1JzQYDDw+OOPYzabWbJkSbFpJ0+ezKRJkyzLqamp+Pr60rNnzwKVBVlZWURHR6PX60vU3EZRFNLS0nBwcKjwZpBxcXFMmTKFjRs3cunSJVxcXGjSpAlTp06lTZs2xMTE4OLigrW1dYmOd6tly2uqVFxFzPVWrFjBpEmTSEpKKvE5imJjY4NKpSry3FlZWdja2tK2bVt27NhBjx49KrwJ0mPA3ogkpvx6grMJGaw8oyFS5c60Bxrg41L6aVwMBgMhISGVomxlTcpWNZWmbP+cTeK3f3LHaHn7gYYMvd/3TmTxlpT1Z5bXCu1OK6vrvxDiGr21lhWj7mPYF/s4HJ3Mk1/s5btxrbnH06GisyaEKIbBZGbdoRiWbg/nbPwVAOytNHjbmTGb71z34HKdpyg4ONgyZc+tevbZZ3n88ceLTRMQEMDRo0e5dOlSgW3x8fHUrFmz2P0NBgODBg0iIiKCLVu23DS4tLa2LjTQ1el0BW7UTCYTKpUKtVpdohHr85q95+1TkR577DEMBgMrV66kdu3aXLp0ic2bN5OcnIxarS71DAe3U7bS7JOXrizev5sdS61Wo1KpLHNQF/Y3UBHa16vJHxPdWbI1nKXbwtkemkDfD3fzYo8gRrcLRKsp/XtTWcpWHqRsVdPNyhabksnENUcxKzCwRS1GtA2s8MrUkiirz6wiP/eyuP4LIfJzsNGxcvT9DPtiL0fPpzB02T98/7/W1PWQwF+IyibLYOKH/dF8sv0sMcmZADjZ6hjZNoAn7/dh97YQ1Oo7d09SplFlampqiX9Kyt3dnfr16xf7Y2NjQ5s2bUhJSWHfvn2Wfffu3UtKSgpt27Yt8vh5Af+ZM2f466+/SjSt3t0gOTmZnTt3MmfOHLp06YK/vz/3338/kydPtjTnV6lUrFu3DoDIyEhUKhVr1qyhQ4cO2Nract999xEaGsq///7Lvffei6OjI48++ijx8fGW83Tu3JmJEyfmO/fDDz/MyJEji8zbwoULCQ4Oxt7eHl9fX8aPH096em7HmG3btjFq1CjL2AwqlYpp06YBuU3xX331VWrVqoW9vT2tWrVi27Zt+Y69YsUK/Pz8sLOzY8CAASQmJt7W+1iRrLUaXuxRjw0vdOD+QFcyDSZmbTjFQx/t4kh0ckVnT4hylWM0M37VQRKv5NDAy5F3Hw6uEgF/VVUe138hREFOtjq+Gn0/jbwdSUjP4YnP9xIef4c7BwshinQl28jnO87SYe5W3v7lP2KSM3HXW/F6n/rser0rL/aoh7Pdna+UL9Mn/c7OziW+qTKZynYApQYNGtC7d2/GjRvHp59+CuRO2ffAAw/kG8Svfv36zJ49mwEDBmA0Gnn00Uc5ePAg69evx2QyWfr/u7q6YmVlVaZ5hKvzMhqKLrvZbCYzx4Q2x1jmT/ptdZoSfz56vR69Xs+6deto3bp1iZvwT506lUWLFv2fvfsOj6JaHzj+3ZbeewKpJPSO9N4jCCheEVEQwdhFRa+KjaKComDjBygocK9Yr4oiikQ60nsJSSAJgfRCet3N7u+PJQshhQQWUng/z5MnOzNnZs7JZnfmnDnnPfj5+TFt2jQeeOABHBwc+OSTT7CysmLChAnMnj2b5cuXX3c5lEoln376KQEBAcTFxfHUU0/x8ssvs3TpUvr06cPHH3/MW2+9RVRUlKksAI888gjnzp3ju+++w8fHh19++YXQ0FBOnDhBSEgI+/btY9q0acyfP5/x48ezceNGZs+efd35bCiCPez4LqwX/zuUwLt/nCYiOZe7l/7Dw70DeGlkK+wsb2qHHyHqxTsbIjhyPhsHKzXLH+qKtcWNT3cjqlef138hbjdONhZ8Pb0nD6zYS2RKHpNW7OX7x3oT4GZb31kT4raVU6hlzZ5zfPVPHNmFxkC6Po5WPDYgiIk9/LDS1O99iFnv9rdu3Wp6fe7cOV599VWmTp1qita7Z88e1qxZw4IFC8x5WpO1a9cyY8YMRowYAcDYsWNZsmRJhTRRUVHk5OQAkJCQwG+//QZA586dK5Vl0KBBZs9jkbaMtm/9Zfbj1kbEvJHYWNTuLVer1axevZqwsDCWL19O165dGThwIBMnTqRjx47V7vfSSy8xcuRIAJ577jkeeOABNm/eTN++fdHr9Tz00EN8//33N1SOK3sGBAYG8vbbb/Pkk0+ydOlSLCwscHR0RKFQ4OXlZUoXExPDt99+S0JCgmlYwksvvcTGjRtZtWoV8+fP55NPPmHkyJG8+uqrALRs2ZLdu3ezcePGG8pvQ6BUKpjQ3ZchbTx45/cI1h1NYvXuc2w8mcLcce0Y2c7r2gcRopH4+XAC/9ljDL758cTO+LvKjfDNVt/XfyFuN862Fqx91Fjxj07N54FLFX8/V5tr7yyEMJuM/BK+3BXHf/fEk19inM0rwNWGJwe14J4uzbFQ1+9w7XJmrfQPHDjQ9HrevHksXryYBx54wLRu7NixdOjQgS+++IKHH37YnKcGjE/nv/766xrTXDmfekBAQL3Mr95Y3HvvvYwePZqdO3eyZ88eNm7cyMKFC1m5cmW13e+vbBAoj6VwZeAmDw8P0tLSbihfW7duZf78+URERJCbm4tOp6O4uJiCggJsbau+uT98+DAGg4GWLVtWWF9SUmIa0nH69GnuueeeCtt79+7dJCr95dzsLPl4YhfGd23OG+tOcv5iIY//9xAj2noyd1w7vB3rHuhPiIYkIimX1345AcCMoSEMaV1zTBdhHvV9/RfiduRqZ8naR3sx8Ys9xKQX8MAK4xh/Xxep+AtxsyXnFPH59li+O3CeYq0xblkrT3ueGtyC0R28ryt+1s100/r17tmzp8ou3HfccQePPvrozTptg2etURExb2S12/V6PXm5edg72N+U7v11ZWVlxfDhwxk+fDhvvfUWjz76KLNnz6620n9l4Kjyrp5XrysP6AfGrvpXN7zUNLd0fHw8o0aN4oknnuDtt9/GxcWFXbt2MX369Br30+v1qFQqDh06hEpV8e9Q3v3/dmoAGtDSnb+eH8CnW86wYkcsmyJS2R2TyUsjWjK5dwCqWxhYRAhzySnU8sTXhyjW6hnY0p3nhobUd5ZuS3L9F+LWcbe35NuwXkz8Yi+xGQVMWml84u/jJI34QtwM8ZkFLNsWw0+HE9CWGesOnZo78vTgYIa18bylwfnq4qY1Qfj6+lZ50f/888/x9W24UybdbAqFAhsLdY0/1haqa6a5nh9zBLFq27YtBQUFZvhLGLm7u5OcnGxaLisr4+TJk9WmP3jwIDqdjkWLFtGrVy9atmxJUlJShTQWFhaVxox26dKFsrIy0tLSCA4OrvBTPgygbdu27N27t8J+Vy83JdYWKl4Jbc3vM/rRxc+J/BIdc9ZHMH7Zbk4l5dR39oSoE73ewMwfjnL+YiHNna35ZGJnabyqJ/V1/d+wYQM9e/bE2toaNzc3xo8fX2F7eXDXK39uJL6MEA2Fh4MV34T1wt/VhgsXi3hgxV5ScorrO1tCNCnRqXk8990RBn+4je8OXEBbZqBnoAv/nd6DdU/3ZUQ7rwZb4Yeb+KT/o48+4t577+Wvv/6iV69egLECFRMTw08//XSzTivMJDMzk/vuu49p06bRsWNH7O3tOXjwIAsXLmTcuHFmO8+QIUOYOXMmGzZsoEWLFnz00UdkZ2dXm75FixbodDo+++wzxowZwz///FPppi0gIID8/Hw2b95Mp06dsLGxoWXLljz44INMmTKFRYsW0aVLFzIyMtiyZQsdOnRg1KhRzJgxgz59+rBw4ULuvvtuNm3a1KS69lentZcDPz3Rh7X7z7Pwz0iOXchm7JJ/mN4vkOeHhaBpuN9fQpj839azbI5Mw0KtZPlD3XCyMX8gVlE79XH9/+mnnwgLC2P+/PkMGTIEg8HAiRMnKqVbtWoVoaGhpmVHR8ebkh8hbjUvRyu+DevF/V/sIT6z8NIY/154OFjVd9aEaNROJOSwZOsZ/jp1eWr4Qa3ceWZwMHcEuNRjzurmpj3pHzVqFGfOnGHcuHFcvHiRzMxMxo0bR3R0NKNGjbpZpxVmYmdnR8+ePfnoo48YMGAA7du358033yQsLKxScMQbMW3aNB5++GGmTJnCwIEDCQwMZPDgwdWm79y5M4sXL+b999+nffv2rF27tlJgqD59+vDEE09w//334+7uzsKFCwHjzd6UKVN48cUXadWqFWPHjmXfvn2mJ0+9evVi5cqVfPbZZ3Tu3JlNmzbxxhtvmK2sDZlSqWByL3/+fnEgozp4UaY38MWOWEZ8tIPt0enXPoAQ9Wh7dDqL/44G4J2729O+mVTk6tOtvv7rdDqee+45PvjgA5544glatmxJq1at+Ne//lUprZOTE15eXqYfa2vpAi2aDh8na74N60UzJ2viMoxj/NPzSuo7W0I0SvvjLjLlq/2MWbKLv06lolDAne29+P3Zfqx+pEejqvADKAxmHMh8/Phx2rdvX+ux6KdOnaJVq1ao1Y17yrDc3FwcHR3JycnBwcGhwrbi4mLi4uIIDAzEyurara16vZ7c3FwcHBzMPqa/vjXFspW/v82bN2fLli2MGjWqQgyDxmrz6VTeXHeSpEvdA9s763nrX73o0cK9nnNmXlqtlj/++KPJvG9Xul3KlpKnZcySXWQXanmghx8Lxne49gEaKHO/ZzVdm8ytPq//+/fvp2fPnnz11Vd8+umnpKSk0LlzZz788EPatWtnSqdQKGjWrBnFxcUEBgYyffp0HnvssWrzXFJSQknJ5QpTbm4uvr6+ZGRk3PDfU6vVEh4ezvDhw5vk51PKVr/OXyzkoa8OkpxTTLC7LV9P746rbc29nxpL2a6HlK1xqo+yGQwGdp3NZOn2WA7GZwOgUiq4q4MXjw8IJMTDziznMWfZcnNzcXNzu+a13qy17S5dupCSkoK7e+0qBr179+bo0aMEBQWZMxtCiBs0tI0nvYJcWRwezap/4jiZpWTCiv30CHDhiUFBDG7lYZYYEULciBJtGU+uPUR2oZZOzR2ZM7ZtfWfptlWf1//Y2FgA5syZw+LFiwkICGDRokUMHDiQ6OhoXFyMT2Pefvtthg4dirW1NZs3b+bFF18kIyOj2h5dCxYsYO7cuZXWb9q0CRsb80RHDw8PN8txGiIpW/2aHgifnVJxNr2Aez7dyjNty7CrRd2iMZTteknZGqdbUTa9AU5cVBCeqORCgfH+VqUw0NPdwNBmetysLnDm4AXOmPm85ihbYWFhrdKZtdJvMBh48803a30xLC0tNefphRBmZGup5s272nJfVx9mf7uTwxdV7D93kf2rL9LK057HBwYxppMPmgY2JYm4fczdEMnJxFxcbC1Y+lA3LNV1n6FEmMfNuP7PmTOnykr3lQ4cOGCaEeb111/n3nvvBYzDuZo3b86PP/7I448/DlChct+5c2fAOL1gdZX+WbNmMXPmTNNy+ZP+ESNGyJP+GkjZGo4BAwt48MsDJOeX8nWCM/955A6cbKrOd2MrW11I2RqnW1E2XZmeDSdT+XxHLGfSjIHKrTRKJt7RnOn9AvC6STExzP2kvzbMWukfMGAAUVFRtU7fu3dvGU8nRAPXwt2WScF6Puw3iP/svcA3+84TlZrHzB+OsWhTNNP7BTKxhy82Fo17mI5oXPakKvgxNhGlAj57oAvNZHqqenUzrv/PPPMMEydOrDFNQEAAeXl5gHEGlnKWlpYEBQVx/vz5avft1asXubm5pKam4unpWWm7paUllpaWldZrNBqz3YCa81gNjZSt/rX0duLbx3oz8Ys9nE7JY9p/DvP1oz1xtK4+742lbNdDytY43YyylejK+PlwIsu3xxCfaXxSbm+pZkoff6b1DcTVrvJ3/81gjrLVdn+z3qVv27bNnIcTQjQgXg5WvD66Lc8MDuHrffGs+ieOxOwi5v0ewadbzjCldwBT+wTgco1xg0LcqOMJOfwYZ+xh8tLIVvQNdqvnHImbcf13c3PDze3a7223bt2wtLQkKiqKfv36AcanKOfOncPf37/a/Y4cOYKVlRVOTk7myrIQDU6whx3fhPVi4hd7OZGYw5Sv9vPf6T1wsGqaFUQhalJUWsZ3B87zxY5Yki/FrXK20TC9XyCTewfU2CDW2MmjOSFEnTjaaHh6cDDT+wXyv0MJrNgZS3xmIZ9uPsMXO2K4/w5fHu0fhK+Leca8CnGlCxcLefa7Y5QZFAxv48GTA1vUd5ZEPXNwcOCJJ55g9uzZ+Pr64u/vzwcffADAfffdB8D69etJSUkx9TDYunUrr7/+Oo899liVT/OFaEpaetqz9tGePLBiL8cuZDP1q/38Z3pP7CylGiBuD3nFWv67N54vd8aRWWAcXuZhb8ljA4KY1NPvtuit2vRLKIS4Kaw0Kh7q5c8DPfz482Qyy7fHcDIxlzV74vl633nu6ujN4wNa0Nbn5kYNF7eHEwk5rNgZy4YTyZTpDbhbGXh/fDsJKCkA+OCDD1Cr1UyePJmioiJ69uzJli1bcHZ2BozdH5cuXcrMmTPR6/UEBQUxb948nn766XrOuRC3RhtvB76e3pMHV+7j8PlsHlm1n9WP9MBWKv6iCcsqKGXVP3Gs3n2O3GIdAM2drXliYAv+1a05VprbJxaQfNKFEDdEpVRwV0cfRnfw5p+zmSzfHsOusxn8ejSJX48mMbClO08MbEGvIBepoIk60esNbIlMY8XOWPbFXTSt7xXozFDHdOyle6q4RKPR8OGHH/Lhhx9WuT00NJTQ0NBbnCshGpb2zRz5enpPJq3cy4FzWUxbfYBVj3S/LZ5yittLWm4xK3bGsnbfeQpLywBjjKqnBgUztvPtGYRaPuVCCLNQKBT0C3GjX4gbJxJyWL4jhj9PJLM9Op3t0el08nXiyYFBjGjrhVIplX9RvaLSMn46nMBXu+KIzTBG01UrFYzp5MP0foG08rDhjz/+qOdcCiFE49OhuSP/nd6TySv3sS/uIo+uOchXU7tz+zzvFE3ZhYuFfL4jhh8OJlCqM87s0tbbgWeGBDOynReq2/j+Uyr9Qgiz69Dckf+b1JX4zAK+2BHLj4cSOHYhmye+PkyQmy2PDQjinq7NZIo1UUF6Xgn/3XOO/+6NJ6tQC4C9lZpJPf2Y2icAb0djtHetVluf2RRCiEats68Tq6f1YMqX+9gdk0nYfw6y7IFO9Z0tIa5bTHo+S7fG8OvRRHR6AwDd/J15ZnAwg1q5S09TpNIvbrLIyEimTp3K0aNHad26tczwcJvxd7Xl3Xs68PywlqzeHcd/98QTm1HAqz+fYHF4NNP6BfJgTz/ppn2bO5Oax8qdcfxyNNHUMt/c2ZppfQOZ0N1Xgk0JIYSZdfN3ZvW0Hjz81X52nsng6W+PMdalvnMlRN2cSsph6dYY/jiZjMFY16dfsBtPDw6WYaVXkTspUa2pU6eyZs0aAFQqFT4+PowePZr58+ebgiNdy+zZs7G1tSUqKgobG4nmfrtyt7fk3yNb8+SgYL7dd54vd8WRklvMe39G8n9bzvJgL3+m9Q3Aw8GqvrMqbhGDwcDumExW7IxlW1S6aX1nXyfC+gcxsp0n6ttwzJ0QQtwq3QNc+Gpqd6au2s/2MxkkOypxbp3BgJby/SsatsPns/i/LWfZHJlmWjesjSdPD25BF7/a1VFuN1LpFzUKDQ1l1apV6HQ6IiIimDZtGtnZ2Xz77be12j8mJobRo0fj7++PXq8nNze3znkoLS3FwkLmfm8K7CzVhA0I4uE+Aaw7msjn22OISS9g+fYYvtoVx73dmvHYgBYEutnWd1bFTVKq0/P78SRW7owjItn4faBQwIi2noT1D6Kbv7O0zAshxC3SK8iVLx/uzrTVB4jOgWlrDuNqa8GoDt6M6eTDHf7OEodHNAgGg4E9MZks2XqW3TGZgPH+YXQHb54eHEwbb5ktqibSjCdqZGlpiZeXF82bN2fEiBHcf//9bNq0ybR91apVtGnTBisrK1q3bs3SpUtN2xQKBYcOHWLevHkoFArmzp0LQGJiIvfffz/Ozs64uroybtw4zp07Z9pv6tSp3H333SxYsAAfHx9atmxZp/0+/PBDvL29cXV15emnn64w/rekpISXX34ZX19fLC0tCQkJ4csvvzRtj4iIYNSoUdjZ2eHp6cnkyZPJyMgw95/1tmehVjLhDl/CXxjIF5O70dXPidIyPd/uv8CQRdt48utDHLuQXd/ZFGaUU6hl2bYY+i/cwswfjhGRnIu1RsWU3v5sfXEQn0++gzsCpCueEELcan2D3fjf4z3p66nH2UZDZkEp/90bz4TP99DnvS2883sExy5kYyjvPy3ELWQwGNh8OpXxy3YzaaUxDoVaqeC+bs3ZPHMgSyZ1lQp/LciT/vpSWlD1er0edMWAw7XTAiiUoLG+dlqLG39yGhsby8aNG9FojOOvV6xYwezZs1myZAldunThyJEjhIWFYWtry8MPP0xycjLDhg0jNDSUl156CRsbG/Lz8xk6dCj9+/dnx44dqNVq3nnnHUJDQzl+/Ljpif7mzZtxcHAgPDwcg8FAYWEhgwcPvuZ+W7duxdvbm61bt3L27Fnuv/9+OnfuTFhYGABTpkxhz549fPrpp3Tq1Im4uDhTpT45OZmBAwcSFhbG4sWLKSoq4pVXXmHChAls2bLlhv9+ojKlUsGIdl4Mb+vJgXNZLN8ew5bINP48mcKfJ1PoHeTKE4NaMCDETSqDjdSFi4V8uSuOHw5eME2b425vydQ+ATzY0w8nG+nFI4QQ9a21lz0TgvQMHzmQA+dzWX8sib9OppCSW8zKXXGs3BWHv6sNYzr6MKaTD6287Os7y6KJK9MbOJKhYNnSvUSm5AHGh0YTu/vy2IAgmjvLsOG6kEp/fZnvU+VqJWAbMBim/Hx55QfBoC2s+jj+/eCRDZeXP+4AhZmV083Jua5s/v7779jZ2VFWVkZxcTEAixcvBuDtt99m0aJFjB8/HoDAwEAiIiL4/PPPefjhh/Hy8kKtVmNnZ4eXlxd6vZ7//Oc/KJVKVq5caarErVq1CicnJ7Zt28aIESMAsLW1ZeXKlabK/FdffVWr/ZydnVmyZAkqlYrWrVszevRoNm/eTFhYGNHR0fzwww+Eh4czbNgwAIKCgkxlXbZsGV27dmX+/PmmdV999RW+vr5ER0ebehwI81MoFPQIdKFHoAtRKXl8vj2G344lsSc2kz2xmbT1duDxgUGM7uAt4wwbicPns1i5M5aNJ1O4FEiX1l72TO8XyNjOPjJzgxBCNEAalZKBLd0Z2NKdd+5uz47odNYfT+bviFTiMwtZsvUsS7aepaWnnakBIECG5AkzyS/RsS82k51nMth8OpULWSogD1sLFQ/18md6/0A87CX+0/WQSr+o0eDBg1m2bBmFhYWsXLmS6Ohonn32WdLT07lw4QLTp083PUUH0Ol0ODo6Vnu8o0ePcvbsWeztK7YQFxcXExMTY1ru0KFDhXH8hw4dqtV+7dq1Q6W6XJnw9vbmxIkTpnOrVCoGDhxYZd4OHTrE1q1bsbOzq7QtJiZGKv23SCsvexbf35kXR7Zi5c5Yvtt/gYjkXJ777igfbooirH8Q93XzxdpCKo0NTZneQHhECit2xnEoPsu0vn+IG2H9g+gvPTaEEKLRsNKoGNHOixHtvCgs1fH36TTWH0tie1Q60an5LAqPZlF4NB2aOTK2kw+jO3rj42R97QMLcUmZ3sDxhGx2nclg55kMDp/PMk25B2CtMvDogBZM799CegbeIKn015fXkqpcrdfrKcgvoMLIlH+frf44iqueej5/4oazdiVbW1uCg4MB+PTTTxk8eDBz587lmWeeAYxd/Hv27Flhnysr3VfT6/V069aNtWvXVtrm7u5e4bzXs1/50INyCoUCvd44BZi1dc0XIr1ez5gxY3j//fcrbfP29q5xX2F+zZysmT2mHTOGhPCfPfGs2XOOCxeLeOvXU3z89xmm9glgSm9/uQg0AAUlOv53KIGv/okjPtPYK0mjUjCuczMe7R9Iay8ZayeEEI2ZjYWasZ18GNvJh5wiLZtOpbD+eDL/nM3gRGIOJxJzePeP03QPcGZMJx/ubO+Nu71lfWdbNEDnMwvZcSadXWcy2B2TQW6xrsJ2Xxdr+gW70zvQiaK4w4wfElzp/l7UnVT660t1Y+z1elCX1S5tXY5rJrNnz+bOO+/kySefpFmzZsTGxvLggw/Wev9OnTqxbt06PDw8cHCofUWga9eufP/993Xe70odOnRAr9ezfft2U/f+q8/x008/ERAQgFotH42GwtnWgueGhfDYgCB+OHiBFTtjScgqYnF4NMu3xzCxux+P9g+Upwv1IDW3mNW7z/HNvvPkFBkDZjrZaHiopz9TevvLFIxCCNEEOVpruO8OX+67w5fM/BL+PJnCb8eSOHDuIgfOZXHgXBZzfjtFnxZujOnkTWg7bxxtpNJ2u8op1LI7JoOdZzPYdSaD8xcrDll2sFLTp4Ub/ULc6B/ihr+rsS6j1Wr543x95LhpkpqNqJNBgwbRrl075s+fz5w5c5gxYwYODg7ceeedlJSUcPDgQbKyspg5c2aV+99333383//9H+PGjWPevHk0b96c8+fP8/PPP/Pvf/+b5s2bV7nfgw8+yAcffFDn/a4UEBDAww8/zLRp00yB/OLj40lLS2PChAk8/fTTrFixggceeIB///vfuLm5cfbsWb777jtWrFhRYw8GcfNZW6h4+FLwtw0nklm+PZbTybl89U8c/9lzjrGdfXhiYAtaekpwoZvtdHIuK3bGsv5YEtoyYze8AFcbpvcL5N5uzbGxkEuLEELcDlztLHmolz8P9fInOaeIDceTWX88mWMXstl1NoNdZzN4Y91JBrZ0Z0wnH4a18cTWUq4RTVmpTs+R81nsOmvssn88IZsreuyjViro6udMvxBjRb9jM0eJ13QLyKdO1NnMmTN55JFHOHv2LCtXruSDDz7g5ZdfxtbWlg4dOvD8889Xu6+NjQ3btm1j1qxZjB8/nry8PJo1a8bQoUNrfIJvY2PDjh07eOWVV+q039WWLVvGa6+9xlNPPUVmZiZ+fn689tprAPj4+PDPP//wyiuvMHLkSEpKSvD39yc0NBSlUr6MGgq1Ssm4zs0Y28mH7dHpLN8ew97Yi/x8OJGfDycytLUHTwxqQfcAl/rOapNiMBjYHp3Oyp1x7Dp7eRrL7gHOPNo/iGFtPFHJXM5CCHHb8na05tH+QTzaP4jzmYWsP57E+mNJRKbk8ffpNP4+nYaVRsnQ1p6M6eTNoFYeWGnkgUpjZzAYiEnPZ0e0sZFnb2ymabaeci3cbekf4k7/EDd6BrliJw0/t5z8xUW1Vq9eXeX6SZMmMWnSpEqvq3L06NFK67y8vFizZk2dz3s9+3388ccVlq2srFi8eLFpBoKrhYSE8PPPP1e5TTQsCoWCQa08GNTKg6MXslm+LYa/IlLYHJnG5sg0uvk788TAFgxt7YFSKqPXrURXxq9Hkli5K5bo1HwAlAq4s4M3Yf2D6OzrVL8ZFEII0eD4udrw9OBgnh4czJnUPNYfS2L98WTiMgrYcCKZDSeSsbNUM6KtJ2M6+dAvxA2NPO1tNDLyS/jn0pP8XWcySMktrrDdxdaCfsHGJ/n9gt1kCGYDIJV+IUSj19nXieWTuxGTns+KHbH8fDiRQ/FZhP3nICEedjw2IIhxnZthoZYbitrKKijl673xrNkTT0Z+CQC2Firu7+7HI30D8HWR+XGFEEJcW4inPTNHtOKF4S05lZRrbAA4lkRSTjE/H0nk5yOJONlouLO9N2M6edMz0FV6jjUwxdoyDpy7aIqyH5GcW2G7hVpJjwAXUyW/rbeDPHBpYKTSL4RoMlq42/HevR2ZObwlX/4Txzd7z3MmLZ9//+84i8Ojmd4vkIk9/KRbWQ3iMgr4clcs/zuUQLHWOPOFl4MVj/QNYGIPPxytJRiTEEKIulMoFLRv5kj7Zo68EtqaIxeyWH8smd+PJ5ORX8K3+8/z7f7zuNtbMrqDN2M6+dDVz0mmeq0Her2B0ym5pkr+gXMXKdHpK6Rp4+1A/0vB97oHuMhQjQZO7nyFEE2Oh4MVs+5sw9ODg1m79zxf/RNHck4x72w4zaebzzCldwBT+wbgaClP/sE4Hu/AuSxW7Izl79OpGC4F3Gnn40BY/yBGd/SWbpdCCCHMRqlU0M3fhW7+Lrwxug374i6y/lgSf55MIT2vhNW7z7F69zmaOVlzVydvxnbyoa23gzQA3ETJOUWm7vr/nM0gs6C0wnZPB0vTuPw+LdxkSsZGRir9Qogmy8FKw5ODWvBI3wB+OZLIFztiicsoYMnWs6zYGcu9XX2wylbgEZ+Fp6MNrraWOFirb5ubCl2Znj9PprByZyzHEnJM64e09uDR/oH0DnK9bf4WQggh6odapaRvsBt9g92YN649u86ms/5YMptOpZCYXcTn22P5fHssQe62jOnow5hOPgR72NV3thu9ghIde2MzjRX9sxmcTcuvsN3GQkWvIFf6BRuf5gd72Mk9QSMmlf5bxGAwXDuRaHTK31f5EmzYrDQqHujhx4Q7fNl0KoXl22M4lpDDN/sTABVfRR8wpdWoFDjbWOBia4GbnSUutuWvLXCxtbzitUWjbSTIK9by/YELrPrnHInZRYBxPN69XZsxvV8gwR4y7aEQQohbz0KtZEhrT4a09qRYW8aWyDTWH0tiS2QasekFfLL5DJ9sPkMbbwfGdPJmTEcfiTFTS2V6A8cTso1d9s9mcDg+C90Vc+kpFdChuRP9L1Xyu/g5SyykJqRJVfqzsrKYMWMGv/32GwBjx47ls88+w8nJqdp95syZw3fffceFCxewsLCgW7duvPvuu/Ts2dMsedJojONfCwsLsbaWyJVNTWFhIQBqdZP6KDVZKqWCOzt4E9reiz2xmazdG8+puGTKNDZkFWrJL9GhLTOQlldCWl4JkHfNYzamRoKk7CJW/RPHd/svkFeiA4wRdif38mdyb3/c7KSrnhBCiIbBSqNiVAdvRnXwJq9Yy9+nU1l/LJkd0emcTs7ldHIuCzdG0dnXiTGdfLirozeeDlb1ne0G5XxmITvOpLPrTAa7YzLILdZV2O7rYm3ssh9s7LLvaCNxe5qqJlVTmTRpEgkJCWzcuBGAxx57jMmTJ7N+/fpq92nZsiVLliwhKCiIoqIiPvroI0aMGMHZs2dxd3e/4TypVCqcnJxIS0sDjPPN13TDr9frKS0tpbi4uMnNDd+UymYwGCgsLCQtLQ0nJydUKgle0pgoFAr6tHCju58jf/yRwKhR/dFoNBRry7hYUMrFglIyC0rJzC+p5rUxTWNpJDiRkMOKnbFsOJFM2aVW/RbutjzaP4h7ujST4DtCCCEaNHsrDfd0ac49XZqTVVDKX6dSWH88iT0xmRy9kM3RC9m8syGCnoEujOnkw53tvXGxtajvbN9yOYVadscYn+TvOpPB+YuFFbY7WKnp08I4lV7/EDf8XW3rKafiVmsylf7Tp0+zceNG9u7da3pKv2LFCnr37k1UVBStWrWqcr+r55hfvHgxX375JcePH2fo0KFmyZuXlxeAqeJfE4PBQFFREdbW1o2uy/C1NMWyOTk54eXlhU6nu3Zi0eBZaVT4OFnXej7ZW9lI4GpnieulBgJXO4tLry2veG1M42BlbCTQ6w2cvKhg7ZcH2H8uy3S83kGuhA0IZFBLD5lORwghRKPjbGvBxB5+TOzhR1peMX8cT2b98WQOxWexN/Yie2Mv8tavp+gX7MaYTj4MaelS31m+bgaDAYMBDOWv4dKycX1xiY6zufDR32fZHXuR4wnZXNFjH7VSQVc/Z1Mlv0MzR9QSmPe21GQq/Xv27MHR0bFCt/xevXrh6OjI7t27q630X6m0tJQvvvgCR0dHOnXqVG26kpISSkpKTMu5uca5KrVaLVqttsp93NzccHZ2RqfT1Ti+X6fTsXv3bvr06dPkuow3pbIpFArUajUqlQqdTmd636t7/xszKVv1VIC7rRp3WzVw7TGFJdoyLhZqKzQUGF9rL78uvNRIUFhKQUnZVY0E11beSAAG0vJUQBZqpYJR7b2Y1tefdj4OAJSV6Sgru65i17um+j9p7nI1tb+PEEJczcPeiql9A5naN5CErEI2HE9m/fEkTibmsj06ne3R6ViolXhYqvj83B4MKEz34VdWnitVqquoYJffvutNFfEr9wWuWDaluXQcrjqH/orKPDXko3bUQKxpqYW7rSnKfs8gV5mmWABNqNKfkpKCh4dHpfUeHh6kpKTUuO/vv//OxIkTKSwsxNvbm/DwcNzc3KpNv2DBAubOnVtp/aZNm7CxMU8wkR07dpjlOA1RUy5beHh4fWfhppGymZ8F4HXpB8tLP1c8kNDqIV976UenuPxaqyBPCwW6y6/zdVBSpjA1EgBYqQz08TQwwEuPs+UF4o9eIP7orS7lzdNU/yfNVa7ymCNCCHE7aO5sw+MDW/D4wBbEpufz+/FkfjuWxNm0fBJ0Cii4du+6xshObWBQG28GtPKgf4gb3o4SQ0xU1uAr/XPmzKmygn2lAweMkber6jJuMBiu2ZV88ODBHD16lIyMDFasWMGECRPYt29flY0IALNmzWLmzJmm5dzcXHx9fRkxYgQODg7XKlKNtFot4eHhDB8+3BQEsKmQsjVOUrbG48qeBNkFxaSePsiYO5tG2a7U1N63cuYuV3kvNCGEuN0EudsxY2gIzw4JJiIxi/V/76JHj+6o1WoUClCguPQbUIBSoUCBsS5Rvl5xaWP5stK0TUF51aLCsSocp+K+iivWKy/tbNzn8nrF1emr2FeBcWX5cXRaLdv+3sTo0R2b1PVQmF+Dr/Q/88wzTJw4scY0AQEBHD9+nNTU1Erb0tPT8fT0rHF/W1tbgoODCQ4OplevXoSEhPDll18ya9asKtNbWlpiaVk5yrVGozHbB86cx2popGyNk5St4dNoNNjZWOHnZqxA/nGm6ZStKk21bOYqV1P82wghRF0oFApaetrTxtlA/xC3Jve9qFUauMazTSGARlDpd3Nzq7GrfbnevXuTk5PD/v376dGjBwD79u0jJyeHPn361OmcBoOhwph9IYQQQgghhBCiMWrwlf7aatOmDaGhoYSFhfH5558Dxin77rrrrgpB/Fq3bs2CBQu45557KCgo4N1332Xs2LF4e3uTmZnJ0qVLSUhI4L777qv1ucsDgpijK6VWq6WwsJDc3Nym1xopZWuUpGyNk5St8TF3ucqvSTUFjxW1J9f62pGyNU5StsZJytY4mbNstb3WN5lKP8DatWuZMWMGI0aMAGDs2LEsWbKkQpqoqChycnIAUKlUREZGsmbNGjIyMnB1daV79+7s3LmTdu3a1fq8eXnGwCC+vr5mKokQQghhHnl5eTg6OtZ3Nho9udYLIYRoqK51rVcY5BHADdPr9SQlJWFvb3/D88+XBwW8cOHCDQcFbGikbDfH2rVreeqppzh+/Dj+/v5mP35tyvbkk0/y66+/kpSUVOOxRo8eDcCGDRvMns+6KM/Ht99+i6+vL9HR0Xz11Vf069eP/v371/l45e/B1q1b6dq1q7mze13k89b4mLtcBoOBvLw8fHx8UCplXuYbJdf62pGy1Y8bvRcwR9ka6r1AXctWVf4cHR159dVXq433VV8a8v/kjZKy1U5tr/VN6kl/fVEqlTRv3tysx3RwcGhy/+DlpGzmZW1tnJrF3t7+pp67prKVd0261vlVKlWt0t1s5UOAyvOhVqt57733mD17tuliXxfl74GdnV29l+1q8nlrfMxZLnnCbz5yra8bKdutZa57gRspW0O/F6ht2arLn6WlZYN738s1xP9Jc5GyXVttrvVS6RdC3Hbatm0LyJRmQgghRFNXWFhY31kQot5Jfz8hbjPp6ek89dRTtG3bFjs7Ozw8PBgyZAg7d+6skO7cuXMoFAo+/fRTADp06ICdnR29e/dm79691zzPP//8g5ubG3fddRcFBQXVpistLeWdd96hdevWWFpa4u7uziOPPEJ6enqdyjVnzhwUCgVHjhxh/PjxODg44OjoyEMPPVTpWIMGDWLQoEGm5aCgIADmzp17aW5cBVOnTjVtj4yM5IEHHsDT0xNLS0v8/PyYMmVKpVk+8vLyePLJJ3Fzc8PV1ZXx48dfs5ujEEIIcatdfS/QokULAHbv3l0hXfm9wIcffsjixYsJDAxsFPcChw8f5l//+hfOzs507twZgOLiYmbNmkVgYCAWFhY0a9aMp59+muzs7DqdQ4jGSCr9DYylpSWzZ8/G0tKyvrNidlK2huHixYsAzJ49mw0bNrBq1SqCgoIYNGgQ27Ztq5R+5cqVBAcHs2jRItauXUtBQQGjRo0yBcSsyg8//MDQoUOZMGECv/76K7a2tlWm0+v1jBs3jvfee49JkyaxYcMG3nvvPcLDwxk0aBBFRUV1Lt8999xDcHAw//vf/5gzZw7r1q1j5MiRaLXaSmktLS15/fXXWb9+PQDTp09nz5497NmzhzfffBOAY8eO0b17d/bu3cu8efP4888/WbBgASUlJZSWllY43qOPPopGo+Gbb75h4cKFbNu2jYceeqjOZTCHxvQ/WVdNtWxNtVyisqb8XkvZGoer7wVWrFhBly5dGD16dJX3Av/3f/9HeHg4H3/8caO4Fxg/fjzBwcH8+OOPLFmyhLfeeouHHnqIDz/8kMmTJ7NhwwZmzpzJmjVrGDJkSKOdqrsp/U9eTcpmZgYhRKO2atUqA2CIi4u7rv11Op1Bq9Uahg4darjnnntM6+Pi4gyAoUOHDgadTmdav3//fgNg+Pbbb03rHn74YYOtra3BYDAY3nvvPYNKpTK8//77lc41cOBAw8CBA03L3377rQEw/PTTTxXSHThwwAAYli5dWutyzJ492wAYXnjhhQrr165dawAMX3/9dbX5SE9PNwCG2bNnVzrukCFDDE5OToa0tLRqz13+Hjz11FMV1i9cuNAAGJKTk2tdDiGEEKKu5F7AqPxe4K233qqwfuPGjQbAsHDhwgrrv//+ewNg+OKLL6rNn8FgqPYeQYjGQp70C3EbWr58OV27dsXKygq1Wo1Go2Hz5s2cPn26UtrRo0ebgtoAdOzYEYD4+PgK6QwGA48//jizZ8/mm2++4eWXX75mPn7//XecnJwYM2YMOp3O9NO5c2e8vLyqfNpwLQ8++GCF5QkTJqBWq9m6dWudj1VYWMj27duZMGEC7u7u10w/duzYCsvV/a2EEEKI+taU7wXuvffeCstbtmwBqDB0D+C+++7D1taWzZs31/kcQjQmUukX4jazePFinnzySXr27MlPP/3E3r17OXDgAKGhoVV2oXN1da2wXN4V6eq0paWlfP/997Rr144777yzVnlJTU0lOzsbCwsLNBpNhZ+UlBQyMjLqXD4vL68Ky2q1GldXVzIzM+t8rKysLMrKymodsbu2fyshhBCiPjX1ewFvb+8Ky5mZmajV6koN+AqFAi8vr+u6RxCiMZHo/ULcZr7++msGDRrEsmXLKqzPy8u7oeNaWlqydetWRo4cybBhw9i4cSPOzs417lMe8G7jxo1Vbre3t69zPlJSUmjWrJlpWafTkZmZWemGpTZcXFxQqVQkJCTUeV8hhBCioWrq9wIKhaLCsqurKzqdjvT09AoVf4PBQEpKCt27d6/zOYRoTORJvxC3GYVCUSlwyPHjx9mzZ88NH7tLly5s376dhIQEBg0aRFpaWo3p77rrLjIzMykrK+OOO+6o9NOqVas652Ht2rUVln/44Qd0Ol2FaP1Xq+6JhbW1NQMHDuTHH3+8ricNQgghREPU1O8FrjZ06FDA2NhxpZ9++omCggLTdiGaKnnSL8Rt5q677uLtt99m9uzZDBw4kKioKObNm0dgYCA6ne6Gj9+mTRt27tzJsGHDGDBgAH///Xe13eMnTpzI2rVrGTVqFM899xw9evRAo9GQkJDA1q1bGTduHPfcc0+dzv/zzz+jVqsZPnw4p06d4s0336RTp05MmDCh2n3s7e3x9/fn119/ZejQobi4uODm5kZAQACLFy+mX79+9OzZk1dffZXg4GBSU1P57bff+Pzzz6/rCYQQQghRn5r6vcDVhg8fzsiRI3nllVfIzc2lb9++HD9+nNmzZ9OlSxcmT558Q8cXoqGTJ/1C3GZef/11XnzxRb788ktGjx7NypUrWb58Of369TPbOYKCgti5cycKhYL+/fsTGxtbZTqVSsVvv/3Ga6+9xs8//8w999zD3XffzXvvvYeVlRUdOnSo87l//vlnIiMjGT9+PG+99RZjxoxh06ZNWFhY1Ljfl19+iY2NDWPHjqV79+7MmTMHgE6dOrF//366devGrFmzCA0N5ZVXXsHS0vKaxxRCCCEaoqZ+L3A1hULBunXrmDlzJqtWrWLUqFGm6fu2bNnSJKeFE+JKCoPBYKjvTAghxI2aM2cOc+fOJT09HTc3t/rOjhBCCCGEEA2CPOkXQgghhBBCCCGaKBnTL0QTYTAYKCsrqzGNSqWqFNG2odPr9ej1+hrTqNXyVSaEEELIvYAQoirypF+IJmLNmjWV5re9+mf79u31nc06mzdv3jXLde7cOebMmYPBYJCu/UIIIW5bt/u9gBCiajKmX4gmIjMzk7i4uBrTtGrVqtFFm09KSiIpKanGNB07dpSgekIIIW57ci8g9wJCVEUq/UIIIYQQQgghRBMl3fuFEEIIIYQQQogmSiJemIFerycpKQl7e/tGFxhFCCFE02QwGMjLy8PHxwelUtr4b5Rc64UQQjQ0tb3WS6XfDJKSkvD19a3vbAghhBCVXLhwgebNm9d3Nho9udYLIYRoqK51rZdKvxmUB0O5cOECDg4ON3QsrVbLpk2bGDFiBBqNxhzZazCkbI2TlK1xkrI1PuYuV25uLr6+vo0uYFdDJdf62pGyNU5StsZJytY4mbNstb3WS6XfDMq7+Tk4OJjlRsDGxgYHB4cm+Q8uZWt8pGyNk5St8blZ5ZKu6OYh1/rakbI1TlK2xknK1jjdjLJd61ovlf4GSFVWAqUFYKjin0ChAo3V5eXSguoPpFCCxvo60xYC1U3soAALm+tKq9SXVl82AAvby6+1RWDQV5/nCmmLwVBmnrQaGyj/4OhKQK+rVVqlXltz2dTWUD7WRlcKem31x61TWitQquqetkwLZaXVp1VZgsr4FaEw6Gou2xVpKdNBWUkNx7UAlabuafVloCuuPq1SA2qLuqc16GsuW4Xj6kFXVMNx1aC2vHRcA2gLzZO2Tp/7KtJWV7YG+B1Rt899ERhq+B9uYN8R10wrl+RaycrKYsaMGfz2228AjB07ls8++wwnJ6cq02u1Wt544w3++OMPYmNjcXR0ZNiwYbz33nv4+PjcwpxXJNf6S+RaX8u0cq0H5FpfU1q51jeI74hrplVbV7/tJpI7jAam78Lt7NeGwfGqt+9VdWOO/RzUKgUqpZLv0+/Biqq/SM/adGZ54KdoVArUSiWvnhyNrS67yrTpDm35s/e3qJQKNEolo7eMwLao6vlQCx1DiLw3HI1SiUqpoMWPQ7HMiq4yrcHRF92M46iVxg9CvzPvojn2aNWFs3GFl2MvL3/9L4jfVXVajQ28nnx5+YfJcGZT1WkB5uRcfv3LYxDxa/VpX0u6/KWw/nk49k31af8dA7ZuALRP/AbNB9OrT/vccXD2N77eMg92f1Z92qf2gkcb4+udi2D7e9WnDdsCzboZX+9bBuFvVZ/24d8hsL/x9aHV8MdL1aed9AO0HAlA84t70Hwwrfq0962GdvcYX0euhx+nVp923FLo8qDxdcxm+GZC9WlHfQg9woyv43fDmruqTzt8HvR9zvg6+SisGFJ92oGvwuBZANgXJ6H5wL/6tH2ehRHvGF/nXIBPOlaftvujMHqR8XVhJnzQovq0nSbBPcuMr7WFML+GykfbcTDhP5eXa0obMgIe/NG0qP64TfU3Gf794JENl5c/7mDMd1V8usBj2y4v/19PyDlfdVr31vD0vsvLKwZDemTVaR394IUTl5dX3QlJR6pOe9V3hOq7++H87qrTNsDvCP56DQ6srD7t04er3yZMJk2aREJCAhs3bgTgscceY/Lkyaxfv77K9IWFhRw+fJg333yTTp06kZWVxfPPP8/YsWM5ePDgrcy6yYYTKdx9vPpr/dWfYz4IblSfY7nWy7VervWXyLXeSK71lz13HOxufYOzVPobmGJtDS1OQGFpGZEpeaZlvSVQTW+OjPwS/ncowbT8vGUZttWkTcou5q1fT5mW+1iWVps2IauQ8Usvf/g2WRTQsppgkYnZRfR7/U8A1EoF6zQKnKs5rt4ACoNBuqIKIYSo0unTp9m4cSN79+6lZ8+eAKxYsYLevXsTFRVFq1atKu3j6OhIeHh4hXWfffYZPXr04Pz58/j5+VV5rpKSEkpKLjeq5+bmAsaeA1ptDU9Za+HPk8ncXcP2s2n57N97Dn9XawJcbfGh2ks9eoOesivyo64xreGqtIZq0xoMBnRXpjXUkJbLaa/1tzFAheOqDPpq54+ulFZffdqrz63SG66dVqG9Zh5MaWv5vmt1OriUTqnXo6p12rIa0+p0OgzlacuukbasDmkvHbc2ZdOVlZmOqygrq7ESUSGtTldj2rKyMvSm49Yh7bWOqzemrU3ZyvR603HR6aipw3WFtFptjWkrfD6vlVZf8fNZc1rjcS+Xrbon7A3vOwJAZaj+81n+uS8vm8FQfdka2ncE1O5zX56PG72W1OUYCkNNf0lRK7m5uTg6OpKTk3PD4/wSMvPYsulP+vbrD0olOr0BXZkBXZmeMr2BUoMSrUJjWm8oyTe+1uvRlhko0xsoK9Oj1YNOD8UKC+P+egOK0oLLx9PrTfuVlRnQ6hUUoTEdQ6EtpOzSa61BbzpG+bELDBp0ZQa0ZQY0ZUWU6fVo9cY8assu/0sZUFCMpWnZklKUVN+dR2lhSzNna5o5WePvqKSZoxU+Tlb4OFrj42yFu60lyku9BhpSdx6tVsvG338ldMSw6sfmNNIuf1qtlj83/Madw4dWX7ZG2uVPq9Xyx4bfGTV8cPVla6Rd/rRaLX/88Qejhg1Eo9FQVlaGVldmPJcprfKq49aUh6vTFlFzNz7r60urLb5Glz8btFotO3bsYECfnmhUNVyGK3QlLLnGd0Qd0mqsr/iOKL3Gd0Tt02pRs2PnTgYMGFCrMX4ajQaVqvpbC3NemxqKr776ipkzZ5KdnV1hvZOTEx999BGPPPJIrY7z999/M2LECLKzs6v928yZM4e5c+dWWv/NN99gY2NTxR61dzBdQWJuCRnFkFGiILuECrfWepSUYGFadlQW4WoJrlYG3KzAzfLSbyuws1AYvysvUdXwnWpQKNArr0irL6nxo1mmtLyutEp9KYoabi/LVA0grdKiQpd9RQ3fO3VLqzF+XwIKvQ5lDd8ltyStQYdSX31avVKNQaG6jrRlKGv4PtMrVRgU6jqnxaBHVcN9jF6hwqCs37QGhRK98tJ3tMGASl/9vVTd0l71+azLZ/lmpZXviEtpb853hDkUFhYyadKka17r5Ul/A+PpYIWjjSV+Xm61DOzgedPzVFcGgwG9AbRl+ksNBQa0ej1FJaWs/2sLQR16kJqnJTG7iMSsIhKyi0jMKiQjvxRKy4hOzSc6Nb/KY1uolHg7WdHMydgwUN5A0MzZmuZONng7WdVcCYCKFZdrUVvCFY0WNdErNcbGhdq8b2oLuOKGrl7SqjSXK9TXYFCoa182lfpyA4A50ypVFRtvzJVWoax92ZTKOhxXcXPSQp3SGjQ2JGdmVqokNWYGgwEvLy8uJKc1qZ5BpnJduFDrcjk5OeHl5dWk/g41SUlJwcPDo9J6Dw8PUlJSanWM4uJiXn31VSZNmlTjDdKsWbOYOXOmabk8QvKIESNuuBFluFZLeHg4w4cPR6PRUKLTk5BVRPzFQuIzL/1cep2YXUSO3pqcIoitos3RSqPEz9kGf9dLP+42BFx67Wl/RUP5LaK9qmxNye1QtiGhdzbhst0lZWtEyss2dOToJls2c3yXlPdCuxap9AuzUygUqBSgUlZ8AqW1VNLMFoa29qjyH7xYW2ZqCKjqd3JOEaVletMNUdXnBi8Hq0oNAs2crGnubE0zJxusLWrqdCNE05KWlkZeXh4eHh7Y2Ng0icqhXq8nPz8fOzs7lErztZbXt7qUy2AwUFhYSFpaGgDe3t63Ios3TXVP1a904MABoOoIxYZaDg3TarVMnDgRvV7P0qVLa0xraWmJpWXlRl+NRmO2G9DyY2k00NraktY+TpXSlOr0JGQZr3vnMgs4l1HAucxC4jMLuJBVRLFWT3RaPtFplRvLLdRK/F1sCHCzvdQQYEugmy3+rjZ4O1qjuokNAub8OzU0UrbGScrWOEnZrn2M2pBKv2gwrDQqWrjb0cLdrsrtujI9KbnFlRsFsotIuPS6VKcnOaeY5JxiDsZnVXkcF1uLKnsKlDcMOFprmkTFSAiFQkFubi6enp64urrWd3bMRq/XU1paipWVVZOr9NelXNbWxmERaWlpeHh41NjVv6F75plnmDhxYo1pAgICOH78OKmpqZW2paen4+lZc883rVbLhAkTiIuLY8uWLY1myIOFWkmQux1BVVwbtWV6ErOKKjUGnMss5MLFQkp1es6k5XOmqgYBlRJfF+tLjQDGRgFj44AtPk43t0FACCHErSWVftFoqFVKmjvb0Ny56rGUer2BjIKSansKJGYVkVei42JBKRcLSjmRmFPlcWwtVDR3tqnUIGAcQmCNm92t7y4pxPUorwTe6Phj0XCVv7darbZRV/rd3Nxwc3O7ZrrevXuTk5PD/v376dGjBwD79u0jJyeHPn36VLtfeYX/zJkzbN26tck0gmlUSmNF3c0WrophqCvTk5RdbGwQyCzgXIaxQSAus8DYIFCmJya9gJj0yjFCNCoFvi42BLgaewVc2TDQzMka9bWG0QkhhGhQpNIvmgylUoGHvRUe9lZ08XOuMk1OkfaKRoBCU0+B8nUZ+aUUlJYRlZpHVGpelcewUCnxcbK63BjgZIOXg4acGuK7CVGfpOdK03W7vbdt2rQhNDSUsLAwPv/8c8A4Zd9dd91VIXJ/69atWbBgAffccw86nY5//etfHD58mN9//52ysjLT+H8XFxcsLGoZB6WRUauU+Lna4OdqwwDcK2wr0xtIyr7UQyCzkPhLvQTOZRZwPtPYIBCbXkBsFQ0CaqWxQcDf1dgoEOBqg/+lHgLNnetn/mkhhBA1k0q/uK04WmtwtNbQ1qfqbp1FpWVXNQQUVugpkJJbTGmZ/tLN0dVxBdRszjnAQ70CGNnOCwu1PAkRQghzW7t2LTNmzGDEiBEAjB07liVLllRIExUVRU6OsTdXQkICv/32GwCdO3eukG7r1q0MGjTopue5oVFdqrj7utjQP6TitjK9gZTc4kvDBQqIzywkLqOA+EuvS3R64jIKiMsoANIrHbeZkxW2eiXHlVG08XGitZc9wR52WGkab08UIYRo7KTSL8QVrC1UBHvYEexRdVwBbZmelJziSsMG4jLyOXDuIvvistgXl4WbnSX3d2/OxO5++LpI12ohbgaVSsUvv/zC3XfffVPPExAQwPPPP8/zzz9/U89TldWrV/P88883qdkXbpSLiwtff/11jWmunI04ICCgxnmeRUXGiruxJ1vf4IpDLvR6A6l5xZcaAS4HFix/XazVc/5iEaDk9D/xQDwASgUEuNrSysuelp72tPayp6WXPQGuthI7QAghbgGp9AtRBxqV0vR05EparZa1v/xBhkNLfjiUSFpeCf+3NYal22IY3MqDB3v6MaiVh9zcCFEHaWlpvPnmm/z555+kpqbi7OxMp06deOutt2jXrh2JiYkNcmy2VNRFU6VUKvB2tMbb0Zo+LSpuMxgMpOaWcDY1h9+27cPSPYAz6QVEpeSRVaglNqOA2IwC/jx5eWpFS7WSYA87WnnZ08rT3vjbyx4vB6vbbuiKEELcTFLpF8JMnC3hwaHBPDe8FZtPp/L13vPsOpvBlsg0tkSm0czJmkk9/bjvjuZ42FvVd3aFaPDuvfdetFota9asISgoiNTUVDZv3szFixcB8PLyalLR+4VozBQKBV6OVrjaqMg8bWDUqDZoNBoMBgPp+SVEpeSZfqJT84hOzadIW8appFxOJVWcZ9rBSm1qADA2BjjQytMeR5umOW2XEELcbFLpF8LMNColoe29CW3vTWx6Pt/uP8+PhxJIzC7ig7+i+Cg8mpHtvXiwpx+9g1zlaYYQVcjOzmbXrl1s27aNgQMHAuDv70+PHj3Q6/Xk5uZW6N5/7tw5AgMD+f777/nss884ePAg7du3Z+3ateTk5PDkk08SGRlJv379+O9//4u7uzGw2aBBg+jcuTMff/yx6dx33303Tk5OrF69usq8LV68mFWrVhEbG4uLiwtjxoxh4cKF2NnZsW3bNh555BHgcpC92bNnM2fOHEpLS3njjTdYu3Yt2dnZtG/fnvfff7/CmPJvvvmG9957j4yMDEaOHEm/fv3M/8cV4hZSKC4H2e0fcjmgoF5v4EJWIZEpeUSn5BGZamwQiMsoILdYx4FzWRw4V3HqXS8HK1p6GYcHlPcMkHgBQghxbVLpF+ImCnK34/XRbXlxRCv+OJHM13vjOXw+mw3Hk9lwPJkgd1se7OnPv7o2lycY4pYwGAwUacvq5dzWGlWtG7ns7Oyws7Nj3bp19OrVC0tLy1rtN3v2bD7++GP8/PyYNm0aDzzwAA4ODnzyySfY2NgwYcIE3nrrLZYtW3bd5VAqlXz66acEBAQQFxfHU089xcsvv8zSpUvp06cPH3/8MW+99RZRUVGmsgA88sgjnDt3ju+++w4fHx9++eUXQkNDOXHiBCEhIezbt49nnnmGd999l3vvvZeNGzcye/bs686nEA2ZUqnA39U4FeDIdl6m9SW6MmLSCohOzTM2CFxqDEjMNgbTTcktZkf05QCCEi9ACCGuTSr9QtwCVhoV47s2Z3zX5kQk5bJ2XzzrjiQSm17A279H8MFfkYzp6MODvfzp1NxRnv6Lm6ZIW0bbt/6ql3NHzBuJjUXtLjtqtZrVq1cTFhbG8uXL6dq1KwMHDmTixIm0b9++2v1eeuklRo4cCcBzzz3HAw88wObNm+nbty8A06dPr/YJfm1dGdAvMDCQt99+myeffJKlS5diYWGBo6PxM+zldbkiExMTw7fffktCQgI+Pj6mvG7cuJFVq1Yxf/58Pv30U4YMGcIrr7yCUqmkZcuW7N69m40bN95QfoVoTCzVKtr6OFSaZSe3WMuZ1DyiUvKJSsk1Tq0r8QKEEKJWpNIvxC3W1seBd+/pwKxRbVh3JJGv98YTmZLHj4cS+PFQAu2bOfBgT3/GdfapdQVJiKbo3nvvZfTo0ezcuZM9e/awceNGFi5cyBdffMH48eOr3Kdjx46m156engB06NChwrq0tLQbytfWrVuZP38+ERER5ObmotPpKC4upqCgAFtb2yr3OXz4MAaDgZYtW1ZYX1JSYgpGGBkZyZ133llhe+/evaXSLwTgYKWhm78L3fxdTOskXoAQQtSO1CiEqCd2lmoe6uXPgz39OHw+i7V7z/P7iWROJuYy6+cTzN9wmvFdm/FgL39aetrXd3ZFE2GtURExb2S9nbuurKysGD58OMOHD+ett97i0UcfZe7cudVW+jWayzfu5U/zrl6n1+tNy0qlstJ0blqtttr8xMfHM2rUKJ544gnefvttXFxc2LVrF9OnT69xP71ej0ql4tChQ6hUFf8O5d3/ZVo5IeqmLvEColPyiL1GvICKjQESL0AI0XRIpV+IeqZQKExPL964qy0/HUpg7b54zmUWsmZPPGv2xNMjwIUHe/kR2t4LS7XcgIjrp1AoGnUPkrZt27Ju3TqzHc/d3Z3k5GTTcllZGSdPnmTw4MFVpj948CA6nY5FixaZZg744YcfKqSxsLCgrKxi3IQuXbpQVlZGWloa/fv3r/LYbdq04cCBAxXW7d27t85lEuJ2V1O8gNhL0wiWDw+4Ol7A9hriBQS725BSCEWlZRUaE4UQoqFrvHd+QjRBLrYWhA0IYnq/QP6JyWDt3vOEn05l/7mL7D93EVdbC+67w5dJPfzwc7Wp7+wKcdNkZmZy3333MW3aNDp27Ii9vT0HDx5k4cKFjB071mznGTJkCDNnzmTDhg20aNGCjz76iOzs7GrTt2jRAp1Ox2effcaYMWP4559/WL58eYU0AQEB5Ofns3nzZjp16oSNjQ0tW7bkwQcfZMqUKSxatIguXbqQkZHBli1b6NChA6NGjeLZZ5+lX79+fPDBB9xzzz1s2rRJuvYLYUaWahVtvB1o410xXkBesZbo1HzT8IDIlNwa4gWoWXBsM252FjRztqG5szXNnayNvy8tN3O2btSNq0KIpke+kYRogJRKBf1D3Okf4k5KTjHfH7jAt/vPk5JbzPLtMXy+I4YBIe482NOPIa09UKtkrnLRtNjZ2dGzZ08++ugjYmJi0Gq1+Pr6EhYWxquvvlpjV/q6mDZtGseOHWPKlCmo1WpeeOGFap/yA3Tu3JnFixfz/vvvM2vWLAYMGMCCBQuYMmWKKU2fPn144oknuP/++8nMzDRN2bdq1SreeecdXnzxRRITE3F1daV3796MGjUKgF69evHpp5/y/vvvM3fuXIYNG8Ybb7zB22+/bZayCiGqZm+loZu/M938nU3ryuMFRKfkE5mSa2wMSM4lOiWH4jIFGfmlZOSXcuxCdpXHdLW1oJnzVY0BTpdf21rKLbgQ4taRbxwhGjgvRyueGxbC04NbsDkyjbX7zrMjOp3tl368Ha14oIcf93f3xdPBqr6zK4RZWFpasmDBAhYsWFBpm16vR6vVUlZWZupiHxAQUGlM/KBBgyqtmzp1KlOnTjUtazQali5dytKlS6vNy7lz5yosv/DCC7zwwgsV1k2ePLnC8rJlyypNC6jRaJg7dy5z586t9lwPPfQQTz31lKlcAC+++GK16YUQN8eV8QL6hbgBxngff/zxB/0GDyclX0tCVtGln0ISr3idW6wjs6CUzIJSjifkVHl8ZxvNVY0BlxoEXIzL9lYyfEAIYT5S6ReikVCrlIxs58XIdl7EZxbwzf7z/HgwgeScYhaHR/PJ5jOMaOvJgz396dPCFaXMTyyEEEKYnYO1BlcHG9r5OFa5PadIS2JWEYnZxkaA8saA8kaCnCItWYVasgpzOJFYdaOAo7XmUkNAFT0FXKxxkEYBIUQdSKVfiEbI39WWWXe2Yebwlmw8mcLXe+M5cC6LP0+m8OfJFALdbHmwpx/3dm2Os61FfWdXCCGEuG04WmtwtNbQ1sehyu15xVpjg8DFy40BxgYC43JWoZacIuPP1VMOlnOwUtPc2abSEILy147W0igghLhMKv1CNGKWahXjOjdjXOdmRKbk8s2+8/x8OJG4jALe2XCahX9FcVdHbx7q5U8XXyfTFGZCCCGEqB/2Vhpae2lo7VV1o0B+ie7ScIHCCo0B5T0FLhaUklusIyI5l4jkqhsF7C3VlxoErmwMuLzsaK2RewIhbiNS6ReiiWjt5cC8ce15JbQ1vx1L4uu98ZxKyuXnw4n8fDiRNt4OPNTLj3Gdm2EnAYSEEEKIBsnOUk0rL3taedlXub2wVFchhoAptkB2EYlZhWTkl5JXoiMyJY/IlLxqz3FlPAFvR0vSMhW0Ti+ghaeDBAgWoolp0nf+AQEBxMfHV1j3yiuv8N5775mWz58/z9NPP82WLVuwtrZm0qRJfPjhh1hYSJdo0TjZWqp5oIcfE7v7cvRCNmv3nWf9sSROJ+fy+i8nWfBHJHd38eGhXv7VPmUQQgghRMNkY6EmxNOeEM+qGwWKSstIzC7kQlZRlY0DGfkl5FfZKKDiq+h/0KgUBLnZEexh/AnxtCPEw54ANxss1apbU0ghhFk16Uo/wLx58wgLCzMt29nZmV6XlZUxevRo3N3d2bVrF5mZmTz88MMYDAY+++yz+siuEGajUCjo4udMFz9n3hjdhp8OJ7J2Xzyx6QV8vfc8X+89Tzd/Zx7q5ced7b2x0siFXAghhGjsrC1UBHvYE+xRdaNAsbas0rCB85kFHI9NJqNURZFWT1RqHlGpFXsJqJQK/F1sTA0BwR7GxoAW7nZYW8g9hBANWZOv9Nvb2+Pl5VXltk2bNhEREcGFCxfw8fEBYNGiRUydOpV3330XB4eqn4KWlJRQUlJiWs7NNY6n0mq1Nzx3dPn+5pqDuiGRstUfW42CKT2bM7lHM/bFZfHN/guEn07jUHwWh+KzmLc+gvFdfHiguy/+rjYV9m3oZbsRt0PZDAYDer0evV5fzzkyn/Jp+MrL1lRcT7n0ej0GgwGtVotKVfGmuyn+XwshbpyVRkULdztauF9+EGacjjCB0NARpBfqOJOWz9nUfM6k5XE2LZ8zafnkFeuIzSggNqOATRGppn0VCmjubE2wux0hnvaXGgOMjQIy9aAQDUOTr/S///77vP322/j6+nLffffx73//29R1f8+ePbRv395U4QcYOXIkJSUlHDp0iMGDB1d5zAULFlQ5z/KmTZuwsbGpYo+6Cw8PN8txGiIpW/0LdYDeXWBfmoLdqUqyCrV8+U88X/4TTytHPX09DbR3MaC6IsZPYynb9WiqZVOr1RQXF5Ofn09paWl9Z8fs8vKqHqva2NWlXKWlpRQVFbFjxw50Ol2FbYWFhebOmhCiiVMqFZeC/dkwuJWHab3BYCAtr4QzqfmcTcvjzKWGgLNp+VwsKOXCxSIuXCxia1R6heN5OViZegWU9wwI8bCTmYWEuMWadKX/ueeeo2vXrjg7O7N//35mzZpFXFwcK1euBCAlJQVPT88K+zg7O2NhYUFKSkq1x501axYzZ840Lefm5uLr68uIESOq7R1QW1qtlvDwcIYPH45G07RaR6VsDc8DQJnewLbodL49kMCOMxlE5SiJygFPe0sm3NGMezp5cmLfzkZXttporO9bbWi1WrZu3YqVlRV2dnZYWVnVd5bMxmAwkJeXh729fZOKPn095SouLsba2poBAwZUeo/Le6EJIcSNUigUeDpY4elgRb8QtwrbMvNLTL0Bzl76OZOWR2puCSm5xaTkFrPzTEaFfdzsLGjhfjleQHnvAHd7yyb1vS5EQ9HoKv1z5syp8in7lQ4cOMAdd9zBCy+8YFrXsWNHnJ2d+de//sX777+Pq6srQJVfLAaDocYvHEtLSywtLSut12g0Zqs4mPNYDY2UrWHRAKEdmhHaoRkXLhby7f7z/HDwAql5JXy2NZal2+No5aCkrHkGoR18sLFodF8b19QY37faUigUKJVKlMqmE4m5vOt7edmqExkZydSpUzl69CitW7fm6NGjtyiH16e25bqSUqlEoVBU+T/cVP+nhRANi6udJa52lvQMcq2wPqdIS0z65WEC5Y0CxmCCpWTkX2Rf3MUK+zhYGYMUBrtfETfA0x4fRytpDBDiBjS6u/dnnnmGiRMn1pgmICCgyvW9evUC4OzZs7i6uuLl5cW+ffsqpMnKykKr1VbqASDE7cDXxYaXQ1vz/LCWbDyVwtq98eyLu0hEtpKZP57g9XURjGjnyd2dm9EvxA2NTOkjbpKpU6eyZs0aAFQqFT4+PowePZr58+fj6OhYq2PMnj0bW1tboqKiKgRxFUIIcfM5Wmvo6udMVz/nCusLS3XEpBVUiBdwNi2f+MwCcot1pnhDV7KxUFUYIlDeM8DXxQaVUhoDhLiWRlfpd3Nzw83N7doJq3DkyBEAvL29AejduzfvvvsuycnJpnWbNm3C0tKSbt26mSfDQjRCFmolYzv5MLaTD5FJ2Xz0005OF9ly/mIRvx5N4tejSTjbaBjd0ZtxnZvRzc8ZpVx0hZmFhoayatUqdDodERERTJs2jezsbNauXVur/WNiYhg9ejT+/v7XnYfS0lKZwlUIIczIxkJNh+aOdGhesQG3WFvGucwCzqSWNwQYGwXiMgooLC3jeEIOxxNyKuxjoVbSwt3O1AgQcmlmAX9XW3kwIcQVbqjSfz3jBW90zHtt7dmzh7179zJ48GAcHR05cOAAL7zwAmPHjsXPzw+AESNG0LZtWyZPnswHH3zAxYsXeemllwgLC7tl+RSioWvhbssoPz2f3dmPUykF/Ho0id+PJ5ORX2Ka+q+ZkzVjO/swrrMPrb3ks9MolBZUv02hAo1VLdMqQWN97bQWtnXLH8ahVOWzrzRv3pz777+f1atXm7avWrWKDz/8kLi4OAICApgxYwZPPfWUMVuXuoEeOnSIefPmMXv2bObMmUNiYiIzZ85k06ZNKJVK+vXrxyeffGLqITZ16lSys7Pp2bMnn332GRYWFpw7d67W+/Xr149FixZRWlrKxIkT+fjjj03d7EtKSnjzzTf59ttvSUtLw8/Pj1dffZXp06cDEBERwQsvvMCePXuwtbVlxIgRfPTRR9fd0H2zNORrvxCi8bLSqGjt5VDpPkJbpic+s/BSvIBLQQRT84lJz6dEp+d0ci6nkyt+L6mVCgLcbAnxsCPQ1YaCDAUt0/Jp6e0kPQPEbemGKv1OTk51Gl+jUCiIjo4mKCjoRk5bK5aWlnz//ffMnTuXkpIS/P39CQsL4+WXXzalUalUbNiwgaeeeoq+fftibW3NpEmT+PDDD296/oRobBQKBV38nOni58wbo9uwJzaTX48msfFkConZRSzbFsOybTG08rRnbGdjLwFfF/PMZiFugvk+1W8LGQEP/nh5+YNg0FYTCd6/Hzyy4fLyxx2gMLNyujk5ldfVQWxsLBs3bjRVoNesWcP777/PkiVL6NKlC0eOHCEsLAxbW1sefvhhkpOTGTZsGKGhobz00kvY2dlRWFjI4MGD6d+/Pzt27ECtVvPOO+8QGhrK8ePHTU/0N2/ejIODA+Hh4RgMhlrvt3XrVry9vdm6dStnz57l/vvvp3PnzoSFhQEwZcoU9uzZw6effkqnTp2Ii4sjI8MY3Co5OZnBgwczefJkPvnkE0pKSnjllVeYMGECW7ZsuaG/nbnV97U/KyuLGTNm8NtvvwEwduxYPvvsM5ycnGq1/+OPP84XX3zBRx99xPPPP2+WPAkhbh6NSmnq2g+Xp+Eu0xtIzCqqEC/AONVgHgWlZaaggkYq1pzZjaVaSSsve9p4OdDa25423g608XLA0UZioIim7Ya79//vf//DxcXlmukMBgOjRo260dPVWteuXdm7d+810/n5+fH777/fghwJ0XSoVUr6h7jTP8Sdd+5uz5bINH49msjWyHSiUvP44K8oPvgrijv8nRnX2YfRHX1wkel5RB39/vvv2NnZUVZWRnFxMQCLFy8G4IMPPuCDDz5g/PjxAAQGBhIREcHnn3/Oww8/jJeXF2q1Gjs7O1Nvga+++gqlUsnKlStNldZVq1bh5OTEtm3bGDFiBAC2trasXLnSVJmv7X7Ozs4sWbIElUpF69atGT16NJs3byYsLIzo6Gh++OEHwsPDGTZsGECFSvCyZcvo0qULb731Fg4ODiiVSr766it8fX2Jjo6mZcuWN/VvXVf1ee2fNGkSCQkJbNy4EYDHHnuMyZMns379+mvuu27dOvbt21dhql4hROOkUirwc7XBz9WGoW0ux+IyGAyk5BabhglEp+SwLzKBtFJ1tcMEmjlZ09rrUiOAt7FBIMDVVnoFiCbjhir9/v7+DBgwwBQJ/1qCgoIkmrAQTYyVRsWoDt6M6uBNTpGWjSeT+fVoEntiMzkYn8XB+Czmro+gf4gb4zo3Y3hbT2wtG104kabntaTqtylUFZf/fbaGtFeNmXz+xPXn6SqDBw9m2bJlFBYWsnLlSqKjo3n22WdJT08nMTGRsLAwHn/8cVN6nU5XY5C/Q4cOcfbsWezt7SusLy4uJiYmxrTcoUOHCuP4a7tfu3btUKku/+28vb05ccL49zh69CgqlYqBAwdWm7dt27bRvHnzSttiYmIaVKW/Pq/9p0+fZuPGjezdu5eePXsCsGLFCnr37k1UVBStWrWqdt/ExESeeeYZ/vrrL0aPHn3Nc5WUlFBSUmJaLh/WoNVq0Wq1N1SO8v1v9DgNkZStcWpqZXOzUeMW6ETvQCe0Wk/CNfEMHTaY5DwtkSn5RKbkEZmSR1RKHgnZxSRmF5GYXcTmyDTTMaw1SkI87WjjZU8rT3tae9nT2ssOe6uGU5dpau/blaRsdTvWtdzQnXdcXFyd0p88efJGTieEaOAcrTXc392P+7v7kZpbzPpjSfx2LInjCTlsjUpna1Q61hoVw9t6Mq6zD/1D3LFQS6CdelGXMfY3K+012NraEhwcDMCnn37K4MGDmTt3rmnc/ueff07v3r0r7HNlpftqer2ebt26VRkI0N3dvcJ5r2e/qyu2CoXCNA2ftbU1NdHr9dx111288cYb2NnZVZiyrzzQbENRn9f+PXv24OjoaKrwg3FmHkdHR3bv3l1tpV+v1zN58mT+/e9/065du1qda8GCBVVOEbxp0yZsbMwzdCk8PNwsx2mIpGyNU1Mu2+a//za9bgm0dAacoUgHSYWQWKAgqbD8B4q0eo4n5HI8oWK8ABdLAz42BprZgI+t8bWbFdRnp4Cm/L5J2WpWWFjN8MuryOM2IcRN4elgxaP9g3i0fxAx6fn8djSJX48mci6zkN8uNQY42WgY1cGbcZ186B7gIjMAiBrNnj2bO++8k8cffxwfHx/i4uKYPHlyrffv2rUr33//PR4eHnUKLHe9+12pQ4cO6PV6tm/fburef/U5fvrpJ/z8/HBxcalQ6ReXpaSk4OHhUWm9h4cHKSkp1e73/vvvo1armTFjRq3PNWvWLGbOnGlazs3NxdfXlxEjRtxwYEKtVkt4eDjDhw9vcj0gpWyNk5StojK9gfjMQqJS8zht6hWQT1JOMRdLFFwsUXDyilkFbSxUtPS0o5WnPW287GjtZU9LT3vsrW5uVUvet8bJnGWrbXBds/0nfvrpp1WuVygUWFlZERwczIABA2p8CiOEaJpauNvxwvCWPD8shOMJOfx6NIn1x5NIzyvhm33n+WbfeXwcrRjT2YdxnZrRxtu+ToHCxO1h0KBBtGvXjgULFvDKK6/w6quv4ujoyJ133klJSQkHDx4kKyurQkXtSg8++CAffPAB48aNY968eTRv3pzz58/z888/8+9//7vKrvU3st+VAgICePjhh5k2bZopkF98fDxpaWlMmDCBp59+mhUrVvDoo4/y6quv4uHhwdmzZ/nuu+9YsWJFg712muvaP2fOnCqfql/pwIEDpmNfzWAwVPudcejQIT755BMOHz5cp+8VS0tLLC0tK63XaDRmuwE157EaGilb4yRlu5QWaOVjQSsfJ8ZesT6nUMvpFONsAZHJeZxOySUqJY/C0jKOXsjh6IWKsQJ8Xaxp4+VwKVaAMWaAr7ON2R9yyPvWOJmjbLXd32yV/o8++oj09HQKCwtxdnbGYDCQnZ2NjY0NdnZ2pKWlERQUxNatW/H19TXXaYUQjYhCoaCTrxOdfJ14fXQb9sZmsu5IIhtPppCUU8zn22P5fHssIR523N2lmcwAICqZOXMmjzzyCIcOHeKLL75g0aJFvPzyy9ja2tKhQ4cao7Hb2NiwY8cOXnnlFcaPH09eXh7NmjVj6NChNT65vd79rrZs2TJee+01nnrqKTIzM/Hz8+O1114DwMfHh507d/LSSy+ZGjH8/f0JDQ1t0E/9zXXtf+aZZ5g4cWKN5woICOD48eOkpqZW2paeno6np2cVe8HOnTtNUySWKysr48UXX+Tjjz/m3LlztSusEOK252ijoVeQK72CLsc00ZXpOZdZwOnkPNP0gZEpeSTnFHPhYhEXLhaxKeLy95athco4g4C3g+mnlZc9dhLvSNxEZvvvmj9/Pl988QUrV66kRYsWAJw9e5bHH3+cxx57jL59+zJx4kReeOEF/ve//5nrtEKIRkqlVNA32I2+wW68fXd7tkWl8evRJDZHpnEmLd80A0BXPyfGdW7G6I7euNlVfuommqbVq1dXuX7SpElMnDiR3Nxc2rZty0MPPVTtMY4ePVppnZeXF2vWrKnzea9nv48//rjCspWVFYsXLzbNQHC1kJAQ/vvf/5qi9zcG5rr2u7m54ebmds3z9e7dm5ycHPbv30+PHj0A2LdvHzk5OfTp06fKfSZPnlxpSMXIkSOZPHkyjzzySG2LKoQQVVKrlAR72BPsYc+YTpdnBskqKL3UKyCPyORcTqfkEp2aT0FpGYfPZ3P4fHaF4/i72ph6BbT2tqettwPNna2l56MwC7NV+t944w1++ukn00UfIDg4mA8//JB7772X2NhYFi5cyL333muuUwohmggrjYrQ9t6EtjfOAPDXqRR+O5rE7pgM04Vx3u8R9At2Y1xnH0a085IWcSEagFt97W/Tpg2hoaGEhYXx+eefA8Yp++66664KQfxat27NggULuOeee3B1da0004BGo8HLy6vGaP9CCHEjnG0t6NPCjT4tLjdo6sr0xGYUXOoRkHepV0AuqbklxGcWEp9ZyMZTl+OT2Fuqr+oVYE8rL3tsLOQeSNSN2f5jkpOT0el0ldbrdDpTcB0fHx/y8vLMdUohRBPkaK1hwh2+TLjDl7TcYn4/nsyvRxM5lpDD9uh0tkenY6U5wbA2nozr3IyBLWUGACHqS31c+9euXcuMGTMYMWIEAGPHjmXJkiUV0kRFRZGTk1PV7kIIUW/UKiUtPY1B/sZ1vrw+M7+EyJS8Co0BZ9PyySvRmaY/LqdQQICrLW287Qlxt0WXo2B4mZ4mOuxdmInZKv2DBw/m8ccfZ+XKlXTp0gWAI0eO8OSTTzJkyBAATpw4QWBgoLlOKYRo4jwcrJjWL5Bp/QKJyygwzQAQm1HA78eT+f14Mo7WGkZ18GJc52b0kBkAhLil6uPa7+Liwtdff11jGoPBUON2GccvhGhIXO0s6RtsSd/gy70CtGV6YtLzjQEDk3OJuBQrID2vhLiMAuIyCi6lVPH1+9sY0tqTEW09GdDSHVvpDSmuYrb/iC+//JLJkyfTrVs3UxRBnU7H0KFD+fLLLwGws7Nj0aJF5jqlEOI2Euhmy3PDQpgxNJiTibn8ejSR344lkZZXwrf7L/Dt/gt4OVgxtrMPYzv50M7HQcbBCXGTybVfCCFuDo1KSWsvB1p7OXB3l2am9Rn5JaaAgScSstkSkUxOkY5fjiTyy5FELNRK+gW7MbytJ0PbeOBhb1WPpRANhdkq/V5eXoSHhxMZGUl0dDQGg4HWrVtXGC83ePBgc51OCHGbUigUdGjuSIfmjswa1YZ9cZn8eiSJP04mk5JbzBc7YvliRywt3G25u3Mzxnb2wd/Vtr6zXa+u9dRTNF71/d7Ktb+ysrIytFptjWm0Wi1qtZri4mLKyspuUc5ujaZYNgsLi0YTXFM0fW52lvQPcad/iDtarZbfNyTg2a43W6Mz2BSRSnxmIVsi09gSmYZCAV18nRjRzovhbT1p4W5X39kX9cTsfT+CgoJQKBS0aNECtVq6lgghbh6VUmEKkjPv7nZsi0rnt6NJ/H06lZj0AhaFR7MoPJrOvk6M6+zDXR19cLe/fWYAKL/hLiwsxNraup5zI26GwsJCoPbz9N4scu03NsCkpKSQnZ1dq7ReXl5cuHChyfVIaoplUyqVBAYGNpnyiKZFqYDuAc70CfHgtVFtOJOWz6ZTKYRHpHIsIccUEPm9PyMJcrdlRFtjA0AXXycZEnkbMduVubCwkGeffdY0pVF0dDRBQUHMmDEDHx8fXn31VXOdSgghKrFUqxjZzouR7bzIK9by16lUfj2ayD9nMzh6IZujF7J5+/cI+ga7Ma5zM0a288RKVd+5vrkMBgMODg6kpaUBxvnmm8JNq16vp7S0lOLi4ib19K0u5TIYDBQWFpKWloaTkxMqVf38M8u1/7LyCr+Hh8c1P2t6vZ78/Hzs7Oya1P8wNL2y6fV6kpKSSE5Oxtvbu76zI0SNFAqFKVDgM0NCSMkpJvx0KuERqeyJySA2vYDl22NYvj0Gd3tLhrXxYERbL3q3cMVK08Rvim5zZqv0z5o1i2PHjrFt2zZCQ0NN64cNG8bs2bNvqwu/EKJ+2Vtp+Fe35vyrW3PS80r4/XgSvx5N4uiFbHaeyWDnmQxe/0XJ4FbueGkVDCjR4dxEw956eHigUqlMFf+mwGAwUFRUhLV105q/+HrK5eTkhJeX103OWfXk2m9UVlZmqvBfPT1gVcobeKysrJpExfhKTbFs7u7uJCUlNZnhCuL24eVoxeRe/kzu5U9usZbtUelsikhlW2Qa6VfERLK1UDGwlTvD23oypJUnjjZN857odma2Sv+6dev4/vvv6dWrV4WblbZt2xITE2Ou0wghRJ2421vySN9AHukbSHymcQaAdUcTiUkvYOOpVEDF2gVb6Xsp6M3wNp54ODSdoDcKhQJvb288PDyuOc64sdBqtezYsYMBAwbUe7d2c6pruTQaTb094S8n136j8s+WjY1NPedE3AwWFhYAUukXjZqDlYYxnXwY08mHUp2evbGZhEcYewGk5Bbzx4kU/jiRgkqpoGegCyPaejK8nRfNnGR4YFNgtkp/eno6Hh4eldYXFBQ0qScxQojGy9/VlmeHhvDMkGBOJeXy65EE1h2MI70YtkWlsy0qndd/OUkXPyeGt/VkRFsvgj2aRtAblUpV7xVEc1GpVOh0OqysrJpUpb8xlkuu/RXdjmW+HZS/r/UdOFMIc7FQKxnQ0p0BLd2ZN64dJxJz2HTK2AAQlZrH7phMdsdkMmd9BO18HEz3RG287eV7rpEyW6W/e/fubNiwgWeffRa4/AW5YsUKevfuba7TCCHEDVMoFLRv5kgrDxva6c7SqvsAtkQbW7yPXsjmyHnjz8KNUQS52TK8nXHu2y6+zhL0RogryLVfCCEaN4VCQcfmTnRs7sRLI1sRn1lAeEQqmyJSOXjuIqeScjmVlMvHf5+hmZM1I9p5MrytJz0CXFCrmsYQntuB2Sr9CxYsIDQ0lIiICHQ6HZ988gmnTp1iz549bN++3VynEUIIs1IoINjDjjbNnHl6cDCpucX8fTqVTadS2ROTSWxGAZ9vj+Xz7bG42V0KetPOkz4t3CTojbjtybVfCCGaFn9XWx7tH8Sj/YPIzC9hS2QamyJS2XkmncTsIlb9c45V/5zD0VrD0NbGe6L+Ie7YWt6eM7c0FmZrnunTpw///PMPhYWFtGjRgk2bNuHp6cmePXvo1q2buU4jhBA3laeDFQ/29GfNtB4cenMYSyZ1YVxnH+yt1GTkl/DdgQtMW32Qrm+H8+TXh/jlSAI5hU1jrLwQdSXX/qZPoVCwbt26m36egIAAPv7445t+nqqsXr0aJyenejm3EA2Zq50l993hy4opd3DkzRF8Mbkb93VrjoutBTlFWn4+ksgTXx+my9vhTFt9gO/2nyc9r6S+sy2qYNYmmQ4dOpim7RFCiMbO3krDXR19uKujMejNvjjjEIBNp4xBb/48mcKfJyXojbi9ybW/cUtLS+PNN9/kzz//JDU1FWdnZzp16sScOXPo3bs3ycnJODs713c2K1m9ejXPP/882dnZ9Z0VIW4L1hYqRrTzYkQ7L8r0Bg7FZ7HpVArhp1OJzyxkS2QaWyLTUChO0NXP+VIcAE+C3JtGbKTG7oYq/bm5ubVO6+DgcCOnEkKIemWhVtI/xJ3+Ie7MHduOk4m5bIpIITwilcgUCXojbh9y7W9a7r33XrRaLWvWrCEoKIjU1FQ2b97MxYsXAep1SkghRMOkUiroEehCj0AXXh/dhujUfMIjUtgUkcrxhBwOxWdxKD6L9/6MpIW7LSPaeTG8rSedmztJbKR6ckOVficnp1rfzMo0J0KIpkKhUNChuSMdmjvy4ggJeiNuL3Ltrx2DwUCRtury6/V6ikrLUJfqzD6XvbVGVev3Jzs7m127drFt2zYGDhwIgL+/Pz169DClUSgU/PLLL9x9992cO3eOwMBAvv/+ez777DMOHjxI+/btWbt2LTk5OTz55JNERkbSq1cv1q5di6enJwCDBg2ic+fOFbrv33333Tg5ObF69eoq87Z48WJWrVpFbGwsLi4ujBkzhoULF2JnZ8e2bdt45JFHTPkDmD17NnPmzKG0tJQ33niDtWvXkp2dTfv27Xn//fcZNGiQ6dirV6/mrbfeIiMjg5EjR9KvX7/a/nmFEFdRKBS08rKnlZc9zwwJITmniL8v3RPtjc0kJr2AZdtiWLYtBnd7S4a18bwUG8kVS7XERrpVbqjSv3XrVtPrc+fO8eqrrzJ16lRTxN49e/awZs0aFixYcGO5FEKIBqy2QW+cbDQMaWUMejOgpTs2FhL0RjQ+cu2vnSJtGW3f+uuWnzdi3shaf7fY2dlhZ2fHunXr6NWrF5aWlrXab/bs2Xz88cf4+fkxbdo0HnjgARwcHPjkk0+wsrJiwoQJzJ49m+XLl193OZRKJZ9++ikBAQHExcXx1FNP8fLLL7N06VL69OnDxx9/zFtvvUVUVJSpLACPPPII586d47vvvsPHx4dffvmF0NBQTpw4QUhICPv27WPatGnMnz+f8ePHs3HjRmbPnn3d+RRCVOTtaM3k3gFM7h1AbrGWbVHphEeksi0yjfS8Er7df55v95/H1kLFwFbujGjrxeBWHjjaNI6pahurG7rjLG8VBpg3bx6LFy/mgQceMK0bO3YsHTp04IsvvuDhhx++kVMJIUSjUB705r47fCkqLWPnGePF7u/TqWQVGoPe/HwkEUu1kn7Bboxo58nQNp642dXuZluI+ibX/qZDrVazevVqwsLCWL58OV27dmXgwIFMnDiRjh07VrvfSy+9xMiRIwF47rnneOCBB9i8eTN9+/ZFr9fz0EMP8f33399Q3p5//nnT68DAQN5++22efPJJli5dioWFBY6OjigUigrDD2JiYvj2229JSEjAx8fHlNeNGzeyatUq5s+fzyeffMLIkSN59dVXAWjZsiW7d+9m48aNN5RfIURlDlYaxnbyYWwnY2ykvbGZbIpI4e+INFJyi/njRAp/nEhBrVTQM8iF4W0kNtLNYrbHTHv27KmyRfeOO+7g0UcfNddphBCi0bgy6I2uTM+h+CzTMIDzFwvZHJnG5ktBb7qVB71p50Wgm219Z12IWpFrf/WsNSoi5o2scpterycvNw97B/ub0r2/Lu69915Gjx7Nzp072bNnDxs3bmThwoWsXLmSqVOnVrnPlQ0C5V34O3ToYFrn4eFBWlpa3TN/ha1btzJ//nwiIiLIzc1Fp9NRXFxMQUEBtrZVf0cePnwYg8FAy5YtK6wvKSnB1dUVgNOnT3PPPfdU2N67d2+p9Atxk1molQxo6c6Alu7MG2vgRGLOpXuiFKJT8/nnbCb/nL0cG2loa3ecius7102H2Sr9vr6+LF++nEWLFlVY//nnn+Pr62uu0wghRKOkVinpGeRKzyBXU9CbTaeMQW9OJOZwMD6Lg/FZLPgzkhAPO1MDQMdmjhL0RjRYcu2vnkKhqLabvV6vR2ehwsZCbfZK//WwsrJi+PDhDB8+nLfeeotHH32U2bNnV1vp12gud8MtH1N/9Tq9Xm9aViqVGAyGCsfQaquf6jQ+Pp5Ro0bxxBNP8Pbbb+Pi4sKuXbuYPn16jfvp9XpUKhWHDh1CparY+FHe/f/qfAghbj2lUkEnXyc6+Trx0shWnMswxkYKj0jlYPzl2EgahYo8l1ieGBws4/9vkNkq/R999BH33nsvf/31F7169QJg7969xMTE8NNPP5nrNEII0ehdGfTm2aEhJGUX8fdp48VuT0wmZ9LyOZOWz9JtMXjYWzK8rTEQYG8JeiMaGLn2N01t27Zl3bp1Zjueu7s7ycnJpuWysjJOnjzJ4MGDq0x/8OBBdDodixYtMjWK/PDDDxXSWFhYVAoU2aVLF8rKykhLS6N///5VHrtt27bs3bu3wrqrl4UQt1aAmy1hA4IIG2CMjbQ5Mo0fD17gwLksPtp8ll+PJ/PO3e3p08KtvrPaaJmteXnUqFGcOXOGcePGcfHiRTIzMxk3bhzR0dGMGjXKXKcRQogmx8fJmim9A/jv9J4cenM4n0zszOiO3thZqknLK2HtvvNMXXWAbm//zTPfHObXo4nkFlf/tEuIW0Wu/Y1bZmYmQ4YM4euvv+b48ePExcXx448/snDhQsaNG2e28wwZMoQNGzawYcMGIiMjeeqpp8jOzq42fYsWLdDpdHz22WfExsby3//+t9IwkoCAAPLz89m8eTMZGRkUFhbSsmVLHnzwQaZMmcLPP/9MXFwcBw4c4P333+ePP/4AYMaMGaYhDNHR0SxZskS69gvRgLjaWTLhDl/WTruDycFluNpaEJtewKQV+5j5/VEy8kvqO4uN0g096T9+/Djt27c3tcI2b96cd999t9r0p06dolWrVqjVErFaCCGq4mitYVznZozr3IwSXRl7YjJNXd7S8kr4/Xgyvx9PRqNS0CvIlRFtPRnW1hNvRwl6I24NufY3HXZ2dvTs2ZOPPvqImJgYtFotvr6+hIWF8dprr5ntPNOmTePYsWNMmTIFtVrNCy+8UO1TfoDOnTuzePFi3n//fWbNmsWAAQNYsGABU6ZMMaXp06cPTzzxBPfffz+ZmZmmKftWrVrFO++8w4svvkhiYiKurq707t3b1AjVq1cvVq5caUo/bNgw3njjDd5++22zlVcIceMUCgV3uBt4fkJfPt4Sy9f74vn5SCJ/n07l1TvbMLG7rwx/rIMbugJ36dKFlJQU3N3da5W+d+/eHD16lKCgoBs5rRBC3BYs1SoGtfJgUCsP3h7XnmMJ2aZAgGfT8tl5JoOdZzJ489dTdGzuyPA2xjgALT3t6jvrogmTa3/TYWlpyYIFC2qcXvHKMfABAQGVxsQPGjSo0rpJkybxxBNPmJY1Gg1Lly5l6dKl1Z7n3LlzFZZfeOEFXnjhhQrrJk+eXGF52bJlLFu2rMI6jUbD3LlzmTt3brXnmjZtGtOmTauw7sUXX6w2vRCi/jhYa3j77vbc2605r/9yglNJubz2ywl+PHSBd+/uQFsfh/rOYqNwQ5V+g8HAm2++iY2NTa3Sl5aW3sjphBDitqVUKuji50wXP2deDm1NbHq+qQfAofNZHE/I4XhCDovCo/F3tWFoK3eschQM1ZZVCLAlxI2Sa78QQohbrbOvE78+3Zf/7IlncXg0R85nM2bJLh7pE8Dzw1tiZym9yWpyQ3+dAQMGEBUVVev0vXv3xtpauqAKIcSNCnK34/GBdjw+sAXpeSVsvhQIcOfZDOIzC/lqdzyg4qsFW+kR6MqAEDf6h7jT0tPOFG1biOsh134hhBD1Qa1SMq1fIKM6ePP27xFsOJHMyl1xbDiRzOwx7RjZzlPucapxQ5X+bdu2mSkbQgghrpe7vSUTe/gxsYcfBSU6dp5J569TKWw+mUiuVs+O6HR2RKcDp/Gwt6RfiBsDQtzpG+yGu71lfWdfNDJy7RdCCFGfvByt+L8Hu/KvqDTe+vUkFy4W8cTXhxja2oM5Y9vh61K7nmi3k/qfHFYIIYTZ2FqqCW3vzcLx7ZnXrYw/nunDG6PbMLClO1YaJWl5Jfx8OJHnvz9K93f/5s5PdrLgj9PsPJNOsbbs2icQop5lZWUxefJkHB0dcXR0ZPLkyTVGgi93+vRpxo4di6OjI/b29vTq1Yvz58/f/AwLIYS4KQa38iD8hYE8MzgYjUrB5sg0hn+0naXbzlKq09d39hoUGfwghBBNlEIBIZ52tG3uzKP9gyjWlnE4PosdZzLYeSadU0m5nE42/ny+IxZLtZIegS70vzQUoLWXvXSTEw3OpEmTSEhIME2z9thjjzF58mTWr19f7T4xMTH069eP6dOnM3fuXBwdHTl9+jRWVla3KttCCCFuAiuNipdGtuLuLj68se4ke2MvsnBjFL8cTuSdu9vTM8i1vrPYIEilXwghbhNWGhV9gt3oE+zGq3e2JiO/hH/OGmcA2HUmg5TcYtOMABCJu70l/YLd6B/iRr8QNzzspYIk6tfp06fZuHEje/fupWfPngCsWLGC3r17ExUVRatWrarc7/XXX2fUqFEsXLjQtE5mExBCiKYj2MOeb8N68cuRRN7dcJozafnc/8Ve7uvWnFmj2uBia1HfWaxXUukXQojblJudJeM6N2Nc52YYDAbOpuWz40wGu86kszf2Iul5JfxyJJFfjiQC0NrL3tQLoEegC1YaVT2XQNxu9uzZg6Ojo6nCD8Z51x0dHdm9e3eVlX69Xs+GDRt4+eWXGTlyJEeOHCEwMJBZs2Zx9913V3uukpISSkpKTMu5ubkAaLVatFpthbRarRaDwYBer0evv3aX0vIp7sr3aUqaYtn0ej0GgwGdTgdQ6f1vCsrLJGVrXKRslY3p4En/Fi58GH6G7w8m8OOhBMIjUnl5ZAj3dmmGUln/PRjN+b7V9hhS6RdCCIFCoSDE054QT3um9wukRFfGofgsdl168n8yKYfIlDwiU/JYsTMOC7WSHgEVhwI0hAupaNpSUlLw8PCotN7Dw4OUlJQq90lLSyM/P5/33nuPd955h/fff5+NGzcyfvx4tm7dysCBA6vcb8GCBVXO9b5p06ZK0xWq1Wq8vLzIz8+v0xSFeXl5tU7b2DSlspWWllJUVMTu3bsBCA8Pr+cc3TxStsZJylZZHw14t4cfYlUkFWp5bV0EKzafYkJgGT62Zs7kdTLH+1ZYWFirdFLpF0IIUYmlWkWfFm70aeHGy6FwsaD00lCAdHaeySA5p5hdZzPYdTaDBX9G4mZnQb9gN/qFuNM/xA1PBxkKIGpvzpw5VVawr3TgwAGAKuNMGAyGauNPlD9tHjduHC+88AIAnTt3Zvfu3SxfvrzaSv+sWbOYOXOmaTk3NxdfX19GjBiBg4NDhbTFxcVcuHABOzu7WsUJMBgM5OXlYW/fNOJmREZGMm3aNI4ePUrr1q3Ztm1bkykbGN9fa2tr+vTpw44dOxg+fDgajaa+s2VWWq2W8PBwKVsjI2W7tsfL9Pxn73k+2RJDXF4Zi05qeKSPP88MDsLGon6qwuZ838p7oV2LVPqFEEJck4utBWM6+TCmkw8Gg4GY9AJTA8De2Ewy8ktZdzSJdUeTAGjlaW+KBdAz0BVrCxkKIKr3zDPPMHHixBrTBAQEcPz4cVJTUyttS09Px9PTs8r93NzcUKvVtG3btsL6Nm3asGvXrmrPZ2lpiaVl5SktNRpNpZu0srIyFAoFSqUSpfLaEyOVN0SU71Ofpk6dypo1awBQqVT4+PgwevRo5s+fj7Ozc62OMXfuXGxtbYmKijL1gmgIZTMXpVKJQqFArTbeNlf1P9BUSNkaJylbTfvD44NCGNO5OXPXn+KvU6ms2HWOP06mMmdsO4a3rfracSuY432r7f5S6RdCCFEnCoWCYA87gj3seKRvIKU6PYfPZ5kaAU4k5hCVmkdUah4rd8VhoVLSPdCZfsHGXgBtvR1kKICowM3NDTc3t2um6927Nzk5Oezfv58ePXoAsG/fPnJycujTp0+V+1hYWNC9e3eioqIqrI+Ojsbf3//GM98EhIaGsmrVKnQ6HREREUybNo3s7Gy+/fbbWu0fExPD6NGj8ff3R6/X1/rJ05VKS0uxsLi9A20JIW4eHydrPp98B5tPp/LWr6dIzC4i7D8HGd7Wkzlj29HMybq+s3hTNY0mWCGEEPXGQq2kV5Ar/x7Zmt+e6cfhN4azZFIX7r/DFx9HK0rL9PxzNpP3N0Zy12e76P7u38z49gg/HrxASk5xfWdfNCJt2rQhNDSUsLAw9u7dy969ewkLC+Ouu+6qEMSvdevW/PLLL6blf//733z//fesWLGCs2fPsmTJEtavX89TTz1VH8VocCwtLfHy8qJ58+aMGDGC+++/n02bNpm2r1q1ijZt2mBlZUXr1q1ZunSpaZtCoeDQoUPMmzcPhUJhGqaRmJjI/fffj7OzM66urowbN45z586Z9ps6dSp33303CxYswMfHh5YtW9Zpvw8//BBvb29cXV15+umnKwSzKikp4eWXX8bX1xdLS0tCQkL48ssvTdsjIiIYNWoUdnZ2eHp6MnnyZDIyMsz9ZxVCNEBD23gSPnMATw5qgVqpIDwilWGLtvPFjhi0ZU0j+GhV5Em/EEIIs3K2teCujj7c1dE4FCA2o4Cd0ensOpvBnphMMgtK+e1YEr8dMw4FCPGwo3+IO/1butEz0KXextiJxmHt2rXMmDGDESNGADB27FiWLFlSIU1UVBQ5OTmm5XvuuYfly5ezYMECZsyYQatWrfjpp5/o16/fzc9waUHldXo9aAtBZwEWNjWnLadQgsa65rQWNx6dKjY2lo0bN5q6jK5YsYLZs2ezZMkSunTpwpEjRwgLC8PW1paHH36Y5ORkhg0bRmhoKC+99BI2Njbk5+czdOhQ+vfvz44dO1Cr1bzzzjuEhoZy/Phx0xP9zZs34+DgQHh4OAaDgcLCQgYPHnzN/bZu3Yq3tzdbt27l7Nmz3H///XTu3JmwsDAApkyZwp49e/j000/p1KkTcXFxpkp9cnIyAwcOJCwsjMWLF1NUVMQrr7zChAkT2LJlyw3//YQQDZ+NhZpXQltzT5dmvP7LCQ6cy2L+H5H8dCiRd+9pzx0BLvWdRbOTOyshhBA3jUKhoIW7HS3c7Zh6aSjAkfNZ7DqbwY4zGRxPyOZMWj5n0vL56h/jUIBu/s70b+lG/2B32vnIUABRkYuLC19//XWNacqnjbvStGnTmDZt2s3KVvXm+1RapQScAEPwcHjof5c3fBBsbAyoin8/eGTD5eWPO0BhZsU0c3K4Hr///jt2dnaUlZVRXGzsfbN48WIA3n77bRYtWsT48eMBCAwMJCIigs8//5yHH34YLy8v1Go1dnZ2eHl5odfr+c9//oNSqWTlypWmYH6rVq3CycmJbdu2mRpsbG1tWblypaky/9VXX9VqP2dnZ5YsWYJKpaJ169aMHj2azZs3ExYWRnR0ND/88APh4eEMGzYMgKCgIFNZly1bRteuXZk/f75p3VdffYWvry/R0dGmHgdCiKavpac93z/Wm/8dTmDBH6eJSs3jX8v3MLG7L6+EtsbZtukMOZJKvxBCiFvGQq2kZ5ArPYNceXFEK7ILS/nnbCa7zqazIzqDxOwi9sRmsic2k4VE4WJrQd9gN/oHG4MC+jTxMXdC1IfBgwezbNkyCgsLWblyJdHR0Tz77LOkp6dz4cIFpk+fbnqKDqDT6XB0dKz2eEePHuXs2bPY29tXWF9cXExMTIxpuUOHDhXG8R86dKhW+7Vr1w6V6nJwUG9vb06cOGE6t0qlqnZWhkOHDrF161bs7OwqbYuJiZFKvxC3GaVSwYQ7fBnexpP3/ozk+4MX+O7ABTZFpPLaqDbc27VZk5iJRCr9Qggh6o2TjQWjO3ozuqM3BoOBc5mF7DxjbADYE5PBxYJS1h9LYv2loQDBHnb0CXJBfVFBz/wSvJybZrRi0YS8llRplV6vJzcvDwdHJyrcSv77bPXHUVwVhun5E2bJHhifuAcHBwPw6aefMnjwYObOncszzzwDGLv49+zZs8I+V1a6r6bX6+nWrRtr166ttM3d3b3Cea9nv6ujVSsUCtOMCNbWNTcM6vV6xowZw/vvv19pm7e3d437CiGaLmdbC97/V0f+dUdzXv/lBNGp+bz04zF+PHiBd+5uT4in/bUP0oBJpV8IIUSDoFAoCHSzJdDNlim9A9CW6Tl6IZud0emmoQBn0/I5m5YPqPjq/e0EudvS3d+F7oEu9AhwwdfFukm0yIsmpKpx9no9aMpAbXXttHU5rpnMnj2bO++8kyeffJJmzZoRGxvLgw8+WOv9O3XqxLp16/Dw8MDBwaHW+3Xt2pXvv/++zvtdqUOHDuj1erZv327q3n/1OX766ScCAgJMU/AJIUS57gEubJjRny93xfHx39Hsi7vInZ/s5LEBQTw7JKTRTkEs0fuFEEI0SBqVku4BLswc0Yp1T/flyJsjWPZgVx7o3hxva+OY7dj0Ar4/eIGXfjzGgA+20mvBZp7+5jBrdp/jVFIOZfrKY7uFEDUbNGgQ7dq1Y/78+cyZM4cFCxbwySefEB0dzYkTJ1i1apVpzH9V7rvvPtzc3Bg3bhw7d+4kLi6O7du389xzz5GQkFDtfg8++OB17XelgIAAHn74YaZNm8a6deuIi4tj27Zt/PDDDwA8/fTTXLx4kQceeID9+/cTGxvLpk2bmDZtGmVlZXX7QwkhmiSNSskTA1sQ/sJAhrXxQKc3sHRbDMM/2s7WyLT6zt51kSZOIYQQjYKjjYY7O3gzrLUbf6jP0WfQcI4l5nEg/iIH4i5yIjGH1NwSNhxPZsPxZADsrdR083eme4AL3QNc6NjcEStN42ylF+JWmjlzJo888ghnz55l5cqVfPDBB7z88svY2trSoUMHnn/++Wr3tbGxYdu2bcyaNYvx48eTl5dHs2bNGDp0aI1P8G1sbNixYwevvPJKnfa72rJly3jttdd46qmnyMzMxM/Pj9deew0AHx8f/vnnH1555RVGjhxJSUkJ/v7+hIaGolTKszAhxGW+LjasfLg7m06lMOe3UyRkFfHI6gPc2d6Lt8a0xdux8cQZkkq/EEKIRsnJRsOwtp4Ma+sJQFFpGccSsjkQd5H95y5yOD6LvGId26LS2RaVDoCFSknH5o6m4QBd/Z1xtJa4AOL2tXr16irXT5o0iUmTJlV6XZWjR49WWufl5cWaNWvqfN7r2e/jjz+usGxlZcXixYur7Y0QEhLCzz//XO05hBDiSiPaedE32I1PNp/hy11x/HkyhR3R6bwwvCVT+wSgVjX8BkOp9AshhGgSrC1U9ApypVeQKwC6Mj2RKXnsj7vIwfiL7I/LIiO/hIPxWRyMz2IZMSgU0MrTnh6BLtwRYGwI8HK0usaZhBBCCHE7sbVU89qoNtzTpRmv/3KCw+ezeWfDaX46nMj8e9rTxc+5vrNYI6n0CyGEaJLUKiXtmznSvpkj0/oFmmYHOHDOOBzgwLmLnMssJDIlj8iUPP6zJx4AXxdrU3DA7gEutHC3leCAQgghhKCNtwP/e6IP3x+8wHt/RnI6OZfxy3YzqYcfL49sjeP/t3fvQVHW/x7A37vLXpSbKMjFCxedRH7kEUGTyNuMYj/tNqdTeRwddapjJ5zRzGm0TM0CLTWdHLOJOOo0jZ7y0jH1eCBTUzFRY0uEQFEuhuRdQAIW+Jw/jNWNixDPs+yzvV8z/MHDdx++b1f2vd9nn92nu2uePchFPxER/S3cf3WA5+P6AQCuVNbgVNFN+9kAuWUVKL3xO0pv/Iqd2b8CAHp6mhAX6mc/G+AfIT4wauBUPiIiIlKeXq/Dv4/oj8SoQKTs+wU7fryEL06U4P/OlmPx5Cg8PTTE5V4s4KKfiIj+tnp7WzDp4WBMevju9bkra2z4seQWThXdQNbFG7CW3sKNO3VIz/0N6bm/AQC6GQ0YFtoDcaE9MSK8J2L690B3E+uUiIjo76SXlxlrnv8X/FtsXyz++gwKr97BvP+24stTpXj3mWgMCPDq6inaafZZSnJyMvbu3Qur1QqTyYRbt241G1NSUoKkpCR899136NatG6ZOnYrVq1fDZDLZx5w5cwZz5sxBVlYWevbsidmzZ+Ptt992uaMzRESkPm+LEWMeCsCYhwIAALX1Dcj5tcL+loBTxTdx+3cbjp2/jmPnrwMADHodokN87l4hILwn4kL90MvL3JUxiIiIyEniB/TC/84djdQjF/DRgXPILLyOf647glfGRODVcQNd4qpBml3019XV4bnnnkN8fDzS0tKa/byhoQGTJ09GQEAAjh49iuvXr2PGjBkQEaxfvx4AUFFRgQkTJmDcuHE4efIkCgoKMHPmTHh6euL11193diQiInIxZg8DYkP9EBvqh1fGDEBjo+DclSpkFd3AqT8OBJTdrsFPl27jp0u38dnRiwCAAQGed98O8MfZAH39uvFg8t9AY2NjV0+BVCAiAMC/YSJqlclDj6RxA/HkkBAs2Z2DQ/lX8dF35/E/P5Vh+dPR9hcTuopmF/3vvPMOgNYv+ZKeno7c3FyUlpYiJCQEALBmzRrMnDkTycnJ8PHxwRdffIGamhps3rwZZrMZ0dHRKCgowIcffoj58+fzwZ2IiBzo9ToMCvLGoCBvTB8ZCgC4dLP67ucC/HEQ4NyVKhRevYPCq3ewNasUABDkY0Fc2N3PBRge1hODAr2h17Nj3IXJZIJer0dZWRkCAgJgMpnafA7R2NiIuro61NTUuN214d0tm4jg6tWr0Ol08PDQ7NNmInKS/r26Y9PM4difU45l35xF8fVqzPivLDwxJBhvPxGFQJ+uuUKQ2z56HT9+HNHR0fYFPwBMnDgRtbW1OH36NMaNG4fjx49jzJgxMJvNDmMWLVqEoqIihIeHt7jv2tpa1NbW2r+vqKgAANhsNthstk7Nu+n2nd2PK2I2bWI2bWI25wn0MmJydG9Mju4NALhZXYcfi2/hZPFNnC65hZxfK1BeUYM9P1/Gnp8vAwC8LR4Y1r8Hhof6ITa0Bx7u4wu9NABQLper/Pv8Hej1eoSHh+Py5csoKyt74HgRwe+//45u3dzvDBB3zKbT6dC3b18YDF1/ii4RuT6dTod/PhyMUQ8F4MP0AmzOvIg9P1/GofyrWJD4EKbE9XH6nNx20V9eXo7AwECHbX5+fjCZTCgvL7ePCQsLcxjTdJvy8vJWF/0rVqywn2lwv/T0dHTv3l2B2QMZGRmK7McVMZs2MZs2MVvXGQJgSF+gLhgortLhQiVQWKFDUaUOlTX1OFxwDYcLrgEAPHSCUC8g3EeP4p0ZCPXu/O+vrq7u/E6o3UwmE/r374/6+no0NDS0OdZms+H777/H6NGjYTS65uWd/ip3zGY0GmEwGHggjYg6xMvsgSVPRuFfh/XBW1/n4KfSW1j2TS62n76Eib2cOxeXWvQvW7asxcX0/U6ePIm4uLh27a+lI8wi4rD9z2Pa876tRYsWYf78+fbvKyoq0K9fPyQmJsLHx6ddc2uNzWZDRkYGJkyY4DZl2YTZtInZtInZXFd9QyN+Ka/CyeKbOFV8E6eLb+H6nToUVgKFlTpEDozApPEPdfr3NJ2FRs6j0+lgNBof+P/SYDCgvr4eFotFk/+H2+LO2YiI/oroPr7Y+Z+PYmtWCd7f/wtyyipQdt2AFxsa4ayHSZda9M+ZMwdTpkxpc8yfX5lvTVBQEE6cOOGw7ebNm7DZbPZX84OCguyv+je5cuUKADQ7S+B+ZrPZ4S0BTdpT9O2l5L5cDbNpE7NpE7O5HqMRiAkzIyasF/4Ddw82X7x2Bz8UXsXXx3IwelBvRXJp8d+GiIjIHRn0OkwbGYqJ/wjCu9+chX/NJRgNzvvcE5da9Pv7+8Pf31+RfcXHxyM5ORmXL19GcPDd6y+np6fDbDYjNjbWPubNN99EXV2d/TJ+6enpCAkJaffBBSIios7Q6XSICPBCvx5meP72M2L69ejqKREREZEKArzNWPPcw9i3r9Spv1ezH6taUlICq9WKkpISNDQ0wGq1wmq1oqqqCgCQmJiIqKgoTJ8+HdnZ2Thw4AAWLFiAl19+2X4K/tSpU2E2mzFz5kzk5ORg165dSElJ4Sf3ExERERERkVtwqVf6O2LJkiXYsmWL/fuYmBgAwMGDBzF27FgYDAbs3bsXr776KhISEtCtWzdMnToVq1evtt/G19cXGRkZSEpKQlxcHPz8/DB//nyH9+u3R9PnACjx/kmbzYbq6mpUVFS43amZzKZNzKZNzKY9Sudq6qSmjqLOYde3D7NpE7NpE7Npk5LZ2tv1OuGzgU67dOkS+vXr19XTICIiaqa0tBR9+/bt6mloHrueiIhc1YO6not+BTQ2NqKsrAze3t6dfltA05UASktLO30lAFfDbNrEbNrEbNqjdC4RQWVlJUJCQqDXa/bdfC6DXd8+zKZNzKZNzKZNSmZrb9dr9vR+V6LX6xV/FcXHx8ft/oM3YTZtYjZtYjbtUTKXr6+vIvshdn1HMZs2MZs2MZs2KZWtPV3PQ/9EREREREREboqLfiIiIiIiIiI3xUW/izGbzVi6dCnMZnNXT0VxzKZNzKZNzKY97pqLmnPn+5rZtInZtInZtKkrsvGD/IiIiIiIiIjcFF/pJyIiIiIiInJTXPQTERERERERuSku+omIiIiIiIjcFBf9RERERERERG6Ki34iIiIiIiIiN8VFv8o+/vhjhIeHw2KxIDY2FkeOHGlz/OHDhxEbGwuLxYKIiAh88sknzcbs2LEDUVFRMJvNiIqKwq5du9SafpuUznb27Fk8++yzCAsLg06nw7p161ScfduUzpaamopRo0bBz88Pfn5+GD9+PLKystSM0Cqls+3cuRNxcXHo0aMHPD09MXToUHz++edqRmiVGn9vTbZt2wadTodnnnlG4Vm3j9LZNm/eDJ1O1+yrpqZGzRgtUuN+u3XrFpKSkhAcHAyLxYLBgwdj3759akVoldLZxo4d2+L9NnnyZDVjUDuw7+9h33d937Pr72HXs+vVpomuF1LNtm3bxGg0SmpqquTm5srcuXPF09NTiouLWxx/4cIF6d69u8ydO1dyc3MlNTVVjEajbN++3T4mMzNTDAaDpKSkSF5enqSkpIiHh4f88MMPzoolIupky8rKkgULFsjWrVslKChI1q5d66Q0jtTINnXqVNmwYYNkZ2dLXl6ezJo1S3x9feXSpUvOiiUi6mQ7ePCg7Ny5U3Jzc+X8+fOybt06MRgMsn//fmfFEhF1sjUpKiqSPn36yKhRo+Tpp59WOUlzamTbtGmT+Pj4yOXLlx2+nE2NbLW1tRIXFyeTJk2So0ePSlFRkRw5ckSsVquzYomIOtmuX7/ucH/l5OSIwWCQTZs2OSkVtYR9fw/7vuv7nl1/D7ueXa82rXQ9F/0qGjFihLzyyisO2yIjI2XhwoUtjn/jjTckMjLSYdvs2bNl5MiR9u+ff/55efzxxx3GTJw4UaZMmaLQrNtHjWz3Cw0N7bInAWpnExGpr68Xb29v2bJlS+cn3AHOyCYiEhMTI4sXL+7cZDtIrWz19fWSkJAgn332mcyYMaNLngiokW3Tpk3i6+ur+Fw7So1sGzdulIiICKmrq1N+wh3gjL+3tWvXire3t1RVVXV+wvSXse/vYd876oq+Z9ffw65n16tNK13P0/tVUldXh9OnTyMxMdFhe2JiIjIzM1u8zfHjx5uNnzhxIk6dOgWbzdbmmNb2qQa1srkCZ2Wrrq6GzWZDz549lZl4Ozgjm4jgwIEDyM/Px+jRo5Wb/AOomW358uUICAjAiy++qPzE20HNbFVVVQgNDUXfvn3xxBNPIDs7W/kAbVAr2+7duxEfH4+kpCQEBgYiOjoaKSkpaGhoUCdIC5z1WJKWloYpU6bA09NTmYlTh7HvHbHvHTm779n1jtj17Ho1aanruehXybVr19DQ0IDAwECH7YGBgSgvL2/xNuXl5S2Or6+vx7Vr19oc09o+1aBWNlfgrGwLFy5Enz59MH78eGUm3g5qZrt9+za8vLxgMpkwefJkrF+/HhMmTFA+RCvUynbs2DGkpaUhNTVVnYm3g1rZIiMjsXnzZuzevRtbt26FxWJBQkICzp07p06QFqiV7cKFC9i+fTsaGhqwb98+LF68GGvWrEFycrI6QVrgjMeSrKws5OTk4KWXXlJu4tRh7HtH7HtHzu57dr0jdj27Xk1a6nqPTt2aHkin0zl8LyLNtj1o/J+3d3SfalEjm6tQM9sHH3yArVu34tChQ7BYLArMtmPUyObt7Q2r1YqqqiocOHAA8+fPR0REBMaOHavcxNtByWyVlZWYNm0aUlNT4e/vr/xkO0jp+23kyJEYOXKk/ecJCQkYNmwY1q9fj48++kipabeL0tkaGxvRu3dvfPrppzAYDIiNjUVZWRlWrVqFJUuWKDz7tqn5WJKWlobo6GiMGDFCgZlSZ7Hv2x7f0nZX4K59z65ve3zTdna987Dr2x7f0nZAua7nol8l/v7+MBgMzY7yXLlypdnRnSZBQUEtjvfw8ECvXr3aHNPaPtWgVjZXoHa21atXIyUlBd9++y2GDBmi7OQfQM1ser0eAwcOBAAMHToUeXl5WLFihdOeCKiR7ezZsygqKsKTTz5p/3ljYyMAwMPDA/n5+RgwYIDCSZpz1t+bXq/H8OHDnXr0X61swcHBMBqNMBgM9jGDBw9GeXk56urqYDKZFE7SnNr3W3V1NbZt24bly5crO3HqMPa9I/b9XV3V9+x6R+x6R+x6ZWmp63l6v0pMJhNiY2ORkZHhsD0jIwOPPvpoi7eJj49vNj49PR1xcXEwGo1tjmltn2pQK5srUDPbqlWr8O6772L//v2Ii4tTfvIP4Mz7TURQW1vb+Um3kxrZIiMjcebMGVitVvvXU089hXHjxsFqtaJfv36q5bmfs+43EYHVakVwcLAyE28HtbIlJCTg/Pnz9iduAFBQUIDg4GCnPAkA1L/fvvzyS9TW1mLatGnKTpw6jH3viH3ftX3PrnfErnfErleWprr+L38EID1Q0yUc0tLSJDc3V+bNmyeenp5SVFQkIiILFy6U6dOn28c3XcLhtddek9zcXElLS2t2CYdjx46JwWCQlStXSl5enqxcubJLL+GjZLba2lrJzs6W7OxsCQ4OlgULFkh2dracO3dO89nef/99MZlMsn37dodLcFRWVmo+W0pKiqSnp0thYaHk5eXJmjVrxMPDQ1JTUzWf7c+66hN91ci2bNky2b9/vxQWFkp2drbMmjVLPDw85MSJE5rPVlJSIl5eXjJnzhzJz8+XPXv2SO/eveW9997TfLYmjz32mLzwwgtOy0JtY9+z75u4Qt+z69n1Tdj12szWRMmu56JfZRs2bJDQ0FAxmUwybNgwOXz4sP1nM2bMkDFjxjiMP3TokMTExIjJZJKwsDDZuHFjs31+9dVXMmjQIDEajRIZGSk7duxQO0aLlM528eJFAdDs68/7cQals4WGhraYbenSpU5I40jpbG+99ZYMHDhQLBaL+Pn5SXx8vGzbts0ZUZpR4+/tfl31REBE+Wzz5s2T/v37i8lkkoCAAElMTJTMzExnRGlGjfstMzNTHnnkETGbzRIRESHJyclSX1+vdpRm1MiWn58vACQ9PV3t6VMHsO/vYd93fd+z6+9h17Pr1aaFrteJ/PHJAURERERERETkVviefiIiIiIiIiI3xUU/ERERERERkZviop+IiIiIiIjITXHRT0REREREROSmuOgnIiIiIiIiclNc9BMRERERERG5KS76iYiIiIiIiNwUF/1EREREREREboqLfiIiIiIiIiI3xUU/ERERERERkZviop+IiIiIiIjITf0/En5EVlZjKecAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAYkCAYAAADDLkfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1RU19oG8GdmGIbe69BBRaUIigWNilFRsSCaRFO80Zjc5JrcFNM0N7GlmKhJNEUTvxs1xeSaxGhsUbAmsVdQUCwISG/S28Cc74+RGUa6AkN5fmuxmLPPPvvseZmBzTv77CMSBEEAERERERERERFRByPWdQeIiIiIiIiIiIjqw8QVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERdQqbNm2CSCTCmTNn7um4xMTEFp8zLS0NS5YswYULF5pVPy4uDkuWLLmnc7WWJUuWQCQSIScnp9F6s2fPhru7e/t0qgu5ceMGZDIZjh8/3qrt5uXlYebMmbCzs4NIJMLUqVNbtf3uLiQkBCEhITo59+HDhyESiXD48OEWH9uWv1NqflfUUCgU8PLywurVq1v9XERERPeDiSsiIurSJk6ciOPHj8PR0bHFx6alpWHp0qUtSlwtXbpUp4mr5nrnnXewbds2XXej03nttdcwduxYBAcHt2q77777LrZt24ZPP/0Ux48fx4oVK1q1/e5u7dq1WLt2ra670WLt+TtFKpVi0aJFWLZsGXJzc9v8fERERM3FxBUREXVptra2GDJkCGQyma67UkdpaanOzu3l5YXAwECdnf9eNRazsrKy+2pboVCgqqqqwf2XL1/G9u3b8e9//7vJtlr6s7106RK8vLzw+OOPY8iQIejVq1eLjq/P/cajK+nbty/69u2r6250eI8++ihEIhG+/vprXXeFiIhIjYkrIiLqtHbs2IHg4GAYGRnB1NQUY8eOrXMJV32XCoaEhMDX1xenT5/G8OHDYWRkBE9PT3z44YdQKpUAVJf3DBw4EAAwZ84ciEQiiEQiLFmypN6+bNq0CQ8//DAAYNSoUer6mzZt0jrnn3/+iaFDh8LIyAhPPfUUAGDLli0IDQ2Fo6MjDA0N0adPHyxYsAAlJSV1znPy5ElMnjwZ1tbWMDAwgJeXF15++eVG43TlyhV4enpi8ODByMrKAlD/pYIikQgvvPACvv/+e/Tp0wdGRkbo168fdu3aVafN33//Hf7+/pDJZPD09MSaNWvqXHrUmP3792P06NEwMzODkZERhg0bhgMHDmjVqWnv3LlzeOihh2BpaQkvLy8AgLu7OyZNmoTffvsNgYGBMDAwwNKlSwGokkDh4eGwtLSEgYEBAgIC8O2332q1XXP51vfff49XX30VTk5OkMlkuH79eoN9XrduHRwcHDB27Fit8sZ+toWFhXjttdfg4eEBfX19ODk54eWXX1b/bBMTEyESibB//35cvnxZ/bqpuayssrIS7733Hnr37g2ZTAZbW1vMmTMH2dnZWn1oLB4ZGRl49tln4ezsDH19fXh4eGDp0qVaSbqafqxatQqffPIJPDw8YGJiguDgYJw4caJOLJrzOrx27Roee+wx2NnZQSaToU+fPvjyyy8bjO+9SkhIwMyZMyGXyyGTyWBvb4/Ro0drzZS8+1LBmue7cuVKfPTRR3B3d4ehoSFCQkJw9epVKBQKLFiwAHK5HObm5oiIiFC/d2o09PvA3d0ds2fPbrTPZ86cwcyZM9XndXd3x6OPPoqkpCR1naZ+pwDNex8BwO7duxEQEACZTAYPDw+sWrWq3n7p6+tjxowZWL9+PQRBaPQ5EBERtRc9XXeAiIjoXvz44494/PHHERoaip9++gkVFRVYsWIFQkJCcODAATzwwAONHp+RkYHHH38cr776KhYvXoxt27Zh4cKFkMvl+Mc//oH+/ftj48aNmDNnDt5++21MnDgRAODs7FxvexMnTsQHH3yAt956C19++SX69+8PAOpECwCkp6fjiSeewBtvvIEPPvgAYrHq86Nr164hLCwML7/8MoyNjXHlyhV89NFHOHXqFA4ePKg+ft++fZg8eTL69OmDTz75BK6urkhMTERkZGSDz/PIkSOIiIjAiBEj8OOPP8LIyKjRuOzevRunT5/GsmXLYGJighUrViAiIgLx8fHw9PQEAOzduxfTpk3DiBEjsGXLFlRVVWHVqlXIzMxstO0aP/zwA/7xj38gPDwc3377LaRSKb7++muMGzcO+/btw+jRo7XqT5s2DTNnzsRzzz2nlcw7d+4cLl++jLfffhseHh4wNjZGfHw8hg4dCjs7O3z22WewtrbGDz/8gNmzZyMzMxNvvPGGVtsLFy5EcHAwvvrqK4jFYtjZ2TUamxEjRqh/brXV97MtLS3FyJEjkZKSgrfeegv+/v6IjY3FokWLcPHiRezfvx+Ojo44fvw45s2bh4KCAmzevBmAaoaQUqlEeHg4/vrrL7zxxhsYOnQokpKSsHjxYoSEhODMmTMwNDRsNB4ZGRkYNGgQxGIxFi1aBC8vLxw/fhzvvfceEhMTsXHjRq3n8eWXX6J3797qdY7eeecdhIWF4ebNmzA3NwfQvNdhXFwchg4dCldXV3z88cdwcHDAvn378OKLLyInJweLFy9u7CXSImFhYaiursaKFSvg6uqKnJwcHDt2DPn5+U0e++WXX8Lf3x9ffvkl8vPz8eqrr2Ly5MkYPHgwpFIpNmzYgKSkJLz22mt4+umnsWPHjlbpc2JiIry9vTFz5kxYWVkhPT0d69atw8CBAxEXFwcbG5smf6c093104MABhIeHIzg4GP/73//UsWro/RoSEoJ169bh0qVL8PPza5XnS0REdF8EIiKiTmDjxo0CAOH06dNCdXW1IJfLBT8/P6G6ulpdp6ioSLCzsxOGDh1a57ibN2+qy0aOHCkAEE6ePKl1jr59+wrjxo1Tb58+fVoAIGzcuLFZffzll18EAMKhQ4fq7Ks554EDBxptQ6lUCgqFQjhy5IgAQIiOjlbv8/LyEry8vISysrIGj1+8eLEAQMjOzha+//57QV9fX3jxxRe14iQIgvDkk08Kbm5uWmUABHt7e6GwsFBdlpGRIYjFYmH58uXqsoEDBwouLi5CRUWFuqyoqEiwtrYWmhpalJSUCFZWVsLkyZO1yqurq4V+/foJgwYNqvNcFi1aVKcdNzc3QSKRCPHx8VrlM2fOFGQymZCcnKxVPmHCBMHIyEjIz88XBEEQDh06JAAQRowY0Wh/a2RmZgoAhA8//LDOvoZ+tsuXLxfEYrFw+vRprfJff/1VACDs2bNHqw0fHx+tej/99JMAQNi6datWec3rcu3ateqyhuLx7LPPCiYmJkJSUpJW+apVqwQAQmxsrCAIgnDz5k0BgODn5ydUVVWp6506dUoAIPz000/qsua8DseNGyc4OzsLBQUFWuUvvPCCYGBgIOTl5TV4bEvk5OQIAITVq1c3Wm/kyJHCyJEj1ds1z7dfv35a743Vq1cLAIQpU6ZoHf/yyy8LALSeDwBh8eLFdc7l5uYmPPnkk+rtmtdafb8XalRVVQnFxcWCsbGxsGbNGnV5Q79TWvI+Gjx4sCCXy7V+XoWFhYKVlVW979dr164JAIR169Y12F8iIqL2xEsFiYio04mPj0daWhpmzZqlNfvFxMQE06dPx4kTJ5pcY8jBwQGDBg3SKvP399e6VKe1WVpa4sEHH6xTnpCQgMceewwODg6QSCSQSqUYOXIkANW6SgBw9epV3LhxA3PnzoWBgUGT53r//fcxe/ZsfPjhh1izZk29s4TqM2rUKJiamqq37e3tYWdnp45LSUkJzpw5g6lTp0JfX19dz8TEBJMnT26y/WPHjiEvLw9PPvkkqqqq1F9KpRLjx4/H6dOn61wiOX369Hrb8vf3r7MW1MGDBzF69Gi4uLholc+ePRulpaV1LiVtqO27paWlAUCDM7Lq+9nu2rULvr6+CAgI0Hqu48aNa9Zd5nbt2gULCwtMnjxZ6/iAgAA4ODjUOb6+eOzatQujRo2CXC7XamPChAkAVDPyaps4cSIkEolWmwDUP//mvA7Ly8tx4MABREREwMjISOu8YWFhKC8vr/fywxpKpVLrmOrq6gbrWllZwcvLCytXrsQnn3yC8+fPqy/3bY6wsDCt90afPn3Ucaitpjw5ObnZbTemuLgYb775Jnr06AE9PT3o6enBxMQEJSUl6vd8Y5r7PiopKcHp06cxbdo0rZ+Xqalpg+/Xmtd4ampqqzxXIiKi+8VLBYmIqNOpueNVfXcKlMvlUCqVuH37dqOXxVlbW9cpk8lkbbqgdX39LS4uxvDhw2FgYID33nsPvXr1gpGREW7duoVp06ap+1OzplFDlyre7YcffoCTkxNmzpzZoj42FZfbt29DEATY29vXqVdf2d1qLk966KGHGqyTl5cHY2Nj9XZDd4Ssrzw3N7fB10XN/qbaqE/N828oWVNfO5mZmbh+/TqkUmm9x+Tk5DR6zszMTOTn52slCBs7vqE+7Ny5s9l9uPvnX3NTg5a8DnNzc1FVVYXPP/8cn3/+ebPOW9tTTz2ltSbZyJEjG0zyiUQiHDhwAMuWLcOKFSvw6quvwsrKCo8//jjef/99rSRsfaysrLS2a2LdUHl5eXmj7TXXY489hgMHDuCdd97BwIEDYWZmBpFIhLCwsGb9Dmru+0gkEkGpVMLBwaHO/vrKAM1rnIv7ExFRR8HEFRERdTo1/1ynp6fX2ZeWlgaxWAxLS8v27laT6lu4/ODBg0hLS8Phw4fVs6wA1Fmfx9bWFgCQkpLSrHPt3bsXM2bMwPDhw3HgwAG4ubnde8drsbS0hEgkqnd9nIyMjCaPt7GxAQB8/vnnGDJkSL117k6ANbTge33l1tbWDb4uap+/qbbvVnNcXl5es/tiY2MDQ0NDbNiwodE2GzuntbU19u7dW+/+u5MyDfXB398f77//fr1t1CT0mqs5r0NLS0tIJBLMmjULzz//fL11PDw8Gjx+yZIleOGFF9TbTSWf3Nzc8M033wBQzQj7+eefsWTJElRWVuKrr75q9Nj7IZPJUFFRUaf87uTo3QoKCrBr1y4sXrwYCxYsUJdXVFQ0+Pq6W3PfRwqFAiKRqN73ZkPv15o+NPX6JCIiai9MXBERUafj7e0NJycn/Pjjj3jttdfU/7CXlJRg69at6jsN3q+7Z5u0dn1Ak2yoObbG3bej79WrF7y8vLBhwwbMnz+/Tv27ubm54a+//sKYMWPUyauePXs2u18NMTY2RlBQELZv345Vq1apZ6IUFxfXe/fBuw0bNgwWFhaIi4vTSk60ltGjR2Pbtm1IS0vTSsp89913MDIyavCf/Ka4ubnB0NAQN27caPYxkyZNwgcffABra+tGEzWNHV+zmPbgwYNbfHxNG3v27IGXl1erJHOb8zo0MjLCqFGjcP78efj7+zc4Y6wh7u7ude542ZL+vf3229i6dSvOnTt3T200l7u7O2JiYrTKDh48iOLi4kaPE4lEEAShTuz++9//1rkssqHfKc19H+nr62PQoEH47bffsHLlSvVsqqKiIuzcubPeYxISEgCobhBARETUETBxRUREnYpIJIJYLMaKFSvw+OOPY9KkSXj22WdRUVGBlStXIj8/Hx9++GGrnMvLywuGhobYvHkz+vTpAxMTE8jl8gZnqfj6+gIA1q9fD1NTUxgYGMDDw6Pey+9qDB06FJaWlnjuueewePFiSKVSbN68GdHR0XXqfvnll5g8eTKGDBmCV155Ba6urkhOTsa+ffvUd6OrzdHREUeOHMG4ceMwYsQIREVFqft4P5YtW4aJEydi3LhxeOmll1BdXY2VK1fCxMSkyRkjJiYm+Pzzz/Hkk08iLy8PDz30EOzs7JCdnY3o6GhkZ2dj3bp199y3xYsXq9d1WrRoEaysrLB582bs3r0bK1asUN8Zr6X09fURHBzc6NpMd3v55ZexdetWjBgxAq+88gr8/f2hVCqRnJyMyMhIvPrqq40mpGbOnInNmzcjLCwML730EgYNGgSpVIqUlBQcOnQI4eHhiIiIaLQPy5YtQ1RUFIYOHYoXX3wR3t7eKC8vR2JiIvbs2YOvvvqq2Zef1mjO63DNmjV44IEHMHz4cPzrX/+Cu7s7ioqKcP36dezcuVPrbpn3IyYmBi+88AIefvhh9OzZE/r6+jh48CBiYmK0ZjO1hVmzZuGdd97BokWLMHLkSMTFxeGLL75o8jVmZmaGESNGYOXKlbCxsYG7uzuOHDmCb775BhYWFlp1G/ud0tz30bvvvovx48dj7NixePXVV1FdXY2PPvoIxsbG9b5fT5w4AYlEghEjRrROoIiIiO4TF2cnIqJOoWax9ZoZCI899hi2b9+O3NxczJgxA3PmzIGZmRkOHTqEBx54oFXOaWRkhA0bNiA3NxehoaEYOHAg1q9f32B9Dw8PrF69GtHR0QgJCcHAgQMbnNVQw9raGrt374aRkRGeeOIJPPXUUzAxMcGWLVvq1B03bhz+/PNPODo64sUXX8T48eOxbNmyRteWsrGxwcGDB+Hl5YWRI0fizJkzzQ9AA8aPH4+tW7eqYz9//nxEREQgPDy8zj/e9XniiSdw6NAhFBcX49lnn8WYMWPw0ksv4dy5cxg9evR99c3b2xvHjh2Dt7c3nn/+eUydOhWXLl3Cxo0b8frrr99X248//jhOnTpV76WI9TE2NsZff/2F2bNnY/369Zg4cSIeeeQRfPbZZ3B2dm5yVpFEIsGOHTvw1ltv4bfffkNERASmTp2KDz/8EAYGBvDz82uyD46Ojjhz5gxCQ0OxcuVKjB8/HrNmzcKGDRsQEBBwT7OwmvM67Nu3L86dOwdfX1+8/fbbCA0Nxdy5c/Hrr7/e98+4NgcHB3h5eWHt2rV46KGHEB4ejp07d+Ljjz/GsmXLWu089Xn99dfx+uuvY9OmTZg8eTK2bt2Kn3/+uVnvgR9//BGjRo3CG2+8gWnTpuHMmTOIioqqk/Rq7HdKc99HY8eOxfbt21FYWKh+v06fPh1PPfVUvX3bvn07wsLCmvU8iIiI2oNIEARB150gIiJqyksvvYQvvvgC+fn5Ta55Q+1PoVAgICAATk5OiIyM1HV32kR5eTlcXV3x6quv4s0339R1d4ha3Y0bN9CzZ0/s27cPY8eO1XV3iIiIAHDGFRF1UEuWLIFIJGryrltt4fDhw826VT0AzJ49+57XYmkv7u7umD17tno7LS0NS5YswYULF+6pvfb+2Zw9exZfffUVNmzYgClTpjBp1UHMnTsX//vf/3DkyBFs2bIFoaGhuHz5Mt544w1dd63NGBgYYOnSpfjkk09QUlKi6+4Qtbr33nsPo0ePZtKqC+P4qu3dPe5KTEyESCTCpk2bdNYnos6Oa1wREXVx27Ztg5mZmXo7LS0NS5cuhbu7OwICAnTXsWZ66KGHUFBQgClTpuCzzz7TdXfojqKiIrz22mvIzs6GVCpF//79sWfPHowZM0bXXWtT//znP5Gfn4+EhIRmXapH1FlUVVXBy8sLCxcu1HVXiIiItDBxRUStqrS0tFXu5tZdlZWVwdDQsFXbDAwMbNX22tvNmzd13QWqx88//6zrLuiERCLhP/bUJenp6eHtt9/WdTeoARxf3Z/7GV8x9kS6x0sFieie1Uw3P3fuHB566CFYWlrCy8uryeOUSiXee+89eHt7w9DQEBYWFvD398eaNWvq1M3MzMSjjz4Kc3Nz2Nvb46mnnkJBQYFWnfLycixcuBAeHh7Q19eHk5MTnn/+eeTn52vVE4lEWLJkSZ1z3D2luyGbNm2Ct7c3ZDIZ+vTpg++++67eepWVlXjvvffQu3dvyGQy2NraYs6cOcjOzq5z3kmTJuG3335DYGCg+jKk5pg9ezZMTEwQGxuL0aNHw9jYGLa2tnjhhRfUi5jX9/wOHz6MgQMHAgDmzJkDkUhUJy4nT57E5MmTYW1tDQMDA3h5eeHll1+u04fm/GyIiIioZTi+0v346uLFiwgNDYWpqan6Zgd5eXmYN28enJycoK+vD09PT/znP/9BRUVFs9omonvHGVdEdN+mTZuGmTNn4rnnnmvWui8rVqzAkiVL8Pbbb2PEiBFQKBS4cuVKnYEQAEyfPh0zZszA3LlzcfHiRfVMhw0bNgAABEHA1KlTceDAASxcuBDDhw9HTEwMFi9ejOPHj+P48ePqu9Ddj02bNmHOnDkIDw/Hxx9/jIKCAixZsgQVFRUQizWfASiVSoSHh+Ovv/7CG2+8gaFDhyIpKQmLFy9GSEgIzpw5o/WJ37lz53D58mW8/fbb8PDwgLGxcbP7pFAoEBYWhmeffRYLFizAsWPH8N577yEpKanBO9n1798fGzduxJw5c/D2229j4sSJAABnZ2cAwL59+zB58mT06dMHn3zyCVxdXZGYmFjvYttN/WyIiIjo3nF8pZvxVWVlJaZMmaIeX1VVVaG8vByjRo3CjRs3sHTpUvj7++Ovv/7C8uXLceHCBezevfu+Y0FEjRCIiO7R4sWLBQDCokWLWnTcpEmThICAgGa1vWLFCq3yefPmCQYGBoJSqRQEQRD27t1bb70tW7YIAIT169erywAIixcvrnMuNzc34cknn1RvHzp0SAAgHDp0SBAEQaiurhbkcrnQv39/9XkFQRASExMFqVQquLm5qct++uknAYCwdetWrXOcPn1aACCsXbtW67wSiUSIj49vNBb1efLJJwUAwpo1a7TK33//fQGA8Pfffzf4/Gr6snHjxjrtenl5CV5eXkJZWVmD527uz4aIiIhajuMr3Y+vNmzYoFX+1VdfCQCEn3/+Wav8o48+EgAIkZGRDT7vmzdvNjjuIqLm4aWCRHTfpk+f3qL6gwYNQnR0NObNm4d9+/ahsLCwwbpTpkzR2vb390d5eTmysrIAAAcPHgSAOlPRH374YRgbG+PAgQMt6lt94uPjkZaWhsceewwikUhd7ubmhqFDh2rV3bVrFywsLDB58mRUVVWpvwICAuDg4FDnTjr+/v7o1avXPfft8ccf19p+7LHHAACHDh1qcVtXr17FjRs3MHfuXBgYGDRZv6mfDREREd07jq802nt8dXfsDx48CGNjYzz00ENa5TXxaY14EFHDmLgiovvm6OjYovoLFy7EqlWrcOLECUyYMAHW1tYYPXo0zpw5U6eutbW11nbNtPSysjIAQG5uLvT09GBra6tVTyQSwcHBAbm5uS3qW31q2nBwcKiz7+6yzMxM5OfnQ19fH1KpVOsrIyOjzu2nWxq72vT09OrEp6Y/9/K8a9aIqLlssClN/WyIiIjo3nF8pdGe4ysjIyOtuzHX9NXBwUErwQYAdnZ20NPTa5V4EFHDuMYVEd23u/+IN0VPTw/z58/H/PnzkZ+fj/379+Ott97CuHHjcOvWrRbducXa2hpVVVXIzs7WGlwJgoCMjAz1QuSAalBW3wKaTQ02agZ3GRkZdfbdXWZjYwNra2vs3bu33rZMTU21tlsau9qqqqqQm5urNfis6c/dA9LmqIlfSkrKPfeJiIiIWgfHVxrtOb6q71hra2ucPHkSgiBo7c/KykJVVRVsbGzu+XxE1DTOuCIinbKwsMBDDz2E559/Hnl5eUhMTGzR8TV3evnhhx+0yrdu3YqSkhL1fkB1l5mYmBitegcPHkRxcXGj5/D29oajoyN++uknCIKgLk9KSsKxY8e06k6aNAm5ubmorq5GUFBQnS9vb+8WPb+mbN68WWv7xx9/BACEhIQ0eExDM6N69eoFLy8vbNiwgXfIISIi6sQ4vmpdo0ePRnFxMbZv365VXnMHxNrxIKLWxxlXRNTuJk+eDF9fXwQFBcHW1hZJSUlYvXo13Nzc0LNnzxa1NXbsWIwbNw5vvvkmCgsLMWzYMPVdbwIDAzFr1ix13VmzZuGdd97BokWLMHLkSMTFxeGLL76Aubl5o+cQi8V499138fTTTyMiIgLPPPMM8vPzsWTJkjpT2WfOnInNmzcjLCwML730EgYNGgSpVIqUlBQcOnQI4eHhiIiIaNFzbIi+vj4+/vhjFBcXY+DAgeq7Ck6YMAEPPPBAg8d5eXnB0NAQmzdvRp8+fWBiYgK5XA65XI4vv/wSkydPxpAhQ/DKK6/A1dUVycnJ2LdvX50kGREREXUcHF+1zviqPv/4xz/w5Zdf4sknn0RiYiL8/Pzw999/44MPPkBYWBjGjBnTZucmIiauiEgHRo0aha1bt+K///0vCgsL4eDggLFjx+Kdd96BVCptUVsikQjbt2/HkiVLsHHjRrz//vuwsbHBrFmz8MEHH2jdqvn1119HYWEhNm3ahFWrVmHQoEH4+eefER4e3uR55s6dCwD46KOPMG3aNLi7u+Ott97CkSNHtBYElUgk2LFjB9asWYPvv/8ey5cvh56eHpydnTFy5Ej4+fm16Pk1RiqVYteuXXjxxRfx3nvvwdDQEM888wxWrlzZ6HFGRkbYsGEDli5ditDQUCgUCixevBhLlizBuHHj8Oeff2LZsmV48cUXUV5eDmdn5zqLuBIREVHHwvFV2zEwMMChQ4fwn//8BytXrkR2djacnJzw2muvYfHixW16biICRELteZlERNQpzJ49G7/++muT0/CJiIiIiIg6M65xRUREREREREREHRIvFSSiViMIAqqrqxutI5FI7utOL12dUqmEUqlstI6eHn91ExERdRccX90/jq+IOjfOuCKiVnPkyBFIpdJGv7799ltdd7NDe+qpp5qMIQBs2rSJlwkSERF1Axxf3b/mjq+IqGPiGldE1GqKiooQHx/faB0PDw9YW1u3U486n8TEROTk5DRaJygoqJ16Q0RERLrG8dX94/iKqHNj4oqIiIiIiIiIiDokXsjbCpRKJdLS0mBqaspry4mIiLoZQRBQVFQEuVwOsZirMDQXx09ERETdW3PHUExctYK0tDS4uLjouhtERESkQ7du3YKzs7Ouu9FpcPxEREREQNNjKCau7li7di1WrlyJ9PR0+Pj4YPXq1Rg+fHizjjU1NQWgCraZmVmr9kuhUCAyMhKhoaHdftFAxkKDsdBgLDQYCxXGQYOx0GjLWBQWFsLFxUU9HqDmacvxE8DXf22MhQrjoMFYaDAWGoyFBmOh0tZxaO4YiokrAFu2bMHLL7+MtWvXYtiwYfj6668xYcIExMXFwdXVtcnja6a3m5mZtUniysjICGZmZt36DQMwFrUxFhqMhQZjocI4aDAWGu0RC17u1jJtOX4C+PqvjbFQYRw0GAsNxkKDsdBgLFTaKw5NjaG4EAOATz75BHPnzsXTTz+NPn36YPXq1XBxccG6det03TUiIiIiIiIiom6r28+4qqysxNmzZ7FgwQKt8tDQUBw7dqzeYyoqKlBRUaHeLiwsBKDKRioUilbt36ajN3E0UYwLey5DqieBRCSCWCyq9R2q72IRxCIRxCKoH2u+o57jRBCLVXXrlNXart2Guk2tfc07X2uoiW1rx7gzYiw0GAsNxkKFcdBgLDTaMhbdNb7Lly/Hb7/9hitXrsDQ0BBDhw7FRx99BG9vb113jYiIiO5TVbUSf13PwebrYtgn3caQHnY660u3T1zl5OSguroa9vb2WuX29vbIyMio95jly5dj6dKldcojIyNhZGTUqv373yUJbhSJcTj9Vqu2297EECASAWKRapqfWASIAK2yOvvreSwSSfDJxYN12heEWo8b6EOD5Q3sEBp4jA5yLn2JBF/GHYCpFDCVAmZSQf3YVF/12EQPkHSTeZVRUVG67kKHwVioMA4ajIVGW8SitLS01dvsDI4cOYLnn38eAwcORFVVFf7zn/8gNDQUcXFxMDY21nX3iIiIqIUEQcC55HzsuJCK3RfTkVNcCUCMbRfSmbjqCO6+plIQhAavs1y4cCHmz5+v3q5ZUCw0NLTV12jIs0rE3+evwMXVDRCJUC0ASqWAakGAUilAKUD9uFopQCnUfAeqa9XTfMdd2wKqlXXL6tQVBCiVuOs4zXmaooQIEIDqpqtSC6Sj6dlslkZSWBvrw8ZEH9YmMtiY6MPGuNZjE33YmMhgZawPmV7ny3IpFApERUVh7Nix3fr6c4CxqME4aDAWGm0Zi5qZ193N3r17tbY3btwIOzs7nD17FiNGjNBRr4iIiKil4jOK8PuFVOyITkPK7TJ1uaWRFH1NKzC9v1yHvWPiCjY2NpBIJHVmV2VlZdWZhVVDJpNBJpPVKZdKpa0+GH5iiDus8uIQFtanQ//ToZ3MuvP9TqKrdpl2ck2VNLu7rL7yakFApaIKp0+fQVDQAOhJVC/d2rlFrcfQ2qjvoVZiUru8/nZEDbSDFtbXOm+Ddeo/QU15laIKh/4+Ds++/XC7rAo5xZXIKapAdnGF6nFxBfJKKlGtFHC7VIHbpQpczy5BU0wN9GBrIoONiQw2pqqEluZLHzamMvV+Q31Jk+21p7Z4/3VWjIUK46DBWGi0RSwYW5WCggIAgJWVVb3723OphZp2a3/vzhgLFcZBg7HQYCw0GAuN7hCLW7dLsTsmAztjMnA1q1hdbqQvwdg+dpjk74BBrmY4fPAAfB2MdbrcQrdPXOnr62PAgAGIiopCRESEujwqKgrh4eE67FnnIhaLIIYI0jbMZSgUCpTfEDC6t123/ydBoVAg3UJAWIC8wVgolQJul1aqE1k5xRXILqrQ2s4prkBOUSVySyqgqBZQVF6FovIqJOQ0neQy1pfAxrRWUkud8JLB9q5tY30J77ZFRNSFCYKA+fPn44EHHoCvr2+9ddpzqYXaeKmsBmOhwjhoMBYajIUGY6HR1WJRWAlcyBXhbI4YicWa/88kIgF9LQQMsBHgY1kFfcktlF6/hcPXVfvbKg7NXW6h2yeuAGD+/PmYNWsWgoKCEBwcjPXr1yM5ORnPPfecrrtGdM/EYhGsTWSwNpHBG6aN1hUEAQVlijvJrfoTW9l3ZnXlFFegokqJkspqlOSWIim36V82BlIxrI3rSWrdmcVVs21rIoOZoR6TXEREncwLL7yAmJgY/P333w3Wac+lFgBeKlsbY6HCOGgwFhqMhQZjodGVYlFUrkBkXBZ2XczAsRu5qFnpRyQChnhYYbK/A0L72sPcsO7zbOs4NHe5BSauAMyYMQO5ublYtmwZ0tPT4evriz179sDNzU3XXSNqFyKRCBZG+rAw0kdTa+4JgoDiiirNzK07yazsu7Zr9pdWVqNcoURqfhlS88sabxyAvkQMa3VyS189a6tm27bWtkU9v1yJiKh9/fvf/8aOHTvw559/wtnZucF67bnUQnu235kwFiqMgwZjocFYaDAWGp01FuWKahy6koXfL6ThYHwWKquU6n39XCwwpZ8ck/wdYW9m0Kz22ioOzW2Tias75s2bh3nz5um6G0QdnkgkgqmBFKYGUnjYNH3XqNLKKuQUVd5Zf0szi0trVted2VxFFVWorFYivaAc6QXlTbYtEYtgbawPWz0xblsnY3RfR7hYtd3lJkREpCEIAv79739j27ZtOHz4MDw8PHTdJSIiom6rqlqJYzdy8fuFNOyLzUBxRZV6n5etMcIDnDClnxzuzfgfrqNh4oqI2pSRvh5crfXgat10QqlcUa1OZOXWSmplF92V5CquQH6pAtVKAVlFFciCGLG7rmDJrivwtDVGSC87hHjbYpCHFQzacuE1IqJu7Pnnn8ePP/6I33//Haampuob3Zibm8PQ0FDHvSMiIur6BEHAueTb2HEhDbsvpiOnuFK9T25ugMkBckzpJ0dfR7NOvRwLE1dE1GEYSCVwtjSCs2XTSa7KKiXySiqRnFuE7/YeR4bIGudvFSAhuwQJ2Tex4ehNGEolCPayRoi3LUJ62TUreUZERM2zbt06AEBISIhW+caNGzF79uz27xAREVE3cSWjEL9fSMPO6DSk3NYsx2JpJMVEf0eEBzhhgKslxOLOm6yqjYkrIuqU9PXEcDA3gLWRBOlOAsLCBqG0Cjh6PQeH47Nw5Go2MgsrcPBKFg5eyQIQC08bY4z0tsXIXrYY4mnN2VhERPdBEARdd4GIiKjbuJVXih3RadhxIQ3xmUXqcmN9CUJ9HDAlQI4HethAKhHrsJdtg4krIuoyzA2lCPNzRJifIwRBwOX0Ihy+moUj8dk4m3QbCTklSMgpwcajiTCQijHE0xohvWwR4m3XKa/1JiIiIiKiriu7qAK7Y9Lwe3Qazifnq8v1JWKEeNtiSoAco3vbw1C/a38gz8QVEXVJIpEIfeVm6Cs3w7yQHigsV+DY9Rwcjs/G4fhsZBSWqx9jZxzcrY0Q4m2Hkd62COZsLCIiIiIi0oHCcgX2XcrAjug0HL2eA+WdCc4iETDUyxpT+skx3scR5kad726H94qJKyLqFswMpBjv64jxvqrZWPGZRXcSV1k4k3gbibml2HQsEZuOJUKmp5qNNbKXLUK8beFhY9ypFzMkIiIiIqKOq1xRjYNXsrDjQhoOxmehskqp3tfPxQLh/eSY5O8IOzMDHfZSd5i4IqJuRyQSobeDGXo7mOG5kV4oKlfg6PVcHLmajSPxWUgrKFc9vpqNZbsAVysj1QLv3rYI9rTp8lNxiYiIiIiobVVVK3H0Ri5+v5CKyNhMFFdUqff1sDNBeD85JveTc0kTMHFFRARTAynG+zpgvK8DBEHAtaxiHI7PwuH4bJxOzENyXim+O56E744nQV9PjMEeVgjxtkOIty08ORuLiIiIiIiaQRAEnEu+jd8vpGF3TDpySyrV+5wsDDGpnyPC+zmhj6Mp/8eohYkrIqJaRCIRetmbope9Kf45wgvFFVWqtbGuZuNIfDZS88vw17Uc/HUtB+/uAlysDFWXFPayw9Ae1jDS569VIiIiIiLSuJJRiN8vqO4ImJpfpi63MtbHRD9HTAmQY4CrJcRiJqvqw/+wiIgaYSLTQ6iPA0J9VLOxrmcVq9bGupqF0zdv41ZeGX44kYwfTiRDXyLGIA8r9WWFXrYm/KSEiIiIiKgbSs4txc6YNPx+IRVXM4vV5cb6EozzccDkADke6GEDqUSsw152DkxcERE1k0gkQk97U/S0N8UzIzxRUlGF4zdycfiq6rLClNtl+Pt6Dv6+noP3dl+Gk4XhnSSWHYZ6WcNYxl+5RERERERdVVZROXbHpGNHdBrOJ+ery/UlYoR42yI8wAkP9rbjmrktxP+iiIjukbFMD2P62mNMX3sIgoAb2SU4HJ+FI1ezcTIhD6n5Zdh8MhmbT6pmYw30sERILzuM9LZFTzvOxiIiIiIi6uwKyxXYeykDO6PTcPR6DpSCqlwsAoK9rBHezwnjfB1gbijVbUc7MSauiIhagUgkQg87E/SwM8HTwz1RWnlnNtadywpv5ZXh6PVcHL2ei/f3qGZjjeiluqRwWA8bmHA2FhERERFRp1CuqMbBK1n4/UIqDsVno7JKqd4X4GKBKf3kmOTvCDszAx32suvgf0pERG3ASF8Po/vYY3Qf1Wysmzkld5JY2TiRkIvU/DL8dCoZP51KhlQiQpCblfqywl72nI1FRERERNSRVFUrcfRGLn6/kIrI2EwUV1Sp9/WwM0F4PzmmBMjhZm2sw152TUxcERG1MZFIBE9bE3jamuCpBzxQVlmNEwm5OByfhcNXs5GUW4rjCbk4npCL5X9cgaO5AUK8bTGyl2o2lqkBpxUTEREREbU3pVLAmcQ87IhOw+6YdOSWVKr3OVkYYnI/Oab0k6OPoyk/eG5DTFwREbUzQ30JRvW2w6jedgBwZzaWam2s4zdykV5Qjp9O3cJPp25BTyzCADdLhHjbIcTbFr0d+EeRiIiIiKitCIKAKxlF2JkkxopP/0Jqfrl6n5WxPib6OWJKgBwDXC0hFnNc3h6YuCIi0jEPG2N42HhgzjAPlCtqZmNl48jVbNzMKcHJm3k4eTMPH+29AgczA4ysWRurpw3MOBuLiIiIiOi+JeWWYMeFNOyITsO1rGIAYgDlMNaXYJyPA6YEyDGshw2kErGuu9rtMHFFRNSBGEgld2ZXqWZjJeXeWRsrPgvHE3KRUViOLWduYcsZ1Wys/m6WqrWxetmhhw0XfyQiIiIiaq6swnLsjEnHjug0RN/KV5dLJSL0NqvGM6EBGOsjh6G+RHedJCauiIg6MjdrYzw51BhPDnVHuaIaJ2/m4cidOxUmZJfg1M08nLqZhxV742FvKoO3sRguqQUIdLPmJYVERERERHcpKFXgj0uqZNXxhFwIgqpcLAKGetlgSoAco3tZ4+9DUZjg6wCplEkrXWPiioiokzCQSjCyl2rR9kXoi+TcUhy5moXD8dk4diMXmUUVyCwS48+vTsLL1hjT+jsjPEAOZ0sjXXediIiIiEhnSiursP9yFnZcSMORq1lQVAvqff1dLTClnxxh/o6wM1VdwaBQKHTVVaoHE1dERJ2Uq7URZgW7Y1awajbWn/GZWPfHWcQV6OFGdglW7ovHyn3xGOxhhWn9nTDBz5FrYhERERFRt1BZpcRf17KxIzoNUXGZKK2sVu/r7WCqviOgixU/5O3omLgiIuoCDKQSjPK2RdkNJYY/OBL7r+Tit/MpOJGQp17cfdHvsRjT1x7TAp0wopctF5YkIiIioi6lWing1M087IhOxR+XMpBfqpk55WJliCn95JjSzwneDqY67CW1VLdPXL3//vvYvXs3Lly4AH19feTn5+u6S0RE98XUQIpHBrrgkYEuSM0vw/bzqdh2PhXXs4qxOyYdu2PSYW2sj8n95IgIdIK/sznXwyIiIiKiTkkQBMSkFGBHdBp2xaQhs7BCvc/WVIZJ/o6Y0k+OABcLjnk7qW6fuKqsrMTDDz+M4OBgfPPNN7ruDhFRq3KyMMTzo3pgXogXLqUW4rfzKdgZnYac4kpsOpaITccS4WVrjIhAJ0wNdOJ6WERERETUKVzPKsKOC2nYEZ2GxNxSdbmZgR4m+DpiSoAcQzytIREzWdXZdfvE1dKlSwEAmzZt0m1HiIjakEgkgp+zOfyczfGfsD7461oOfjufisjYDNzILsGqyKtYFXkVgzysMC3QCWH+XA+LiIiIiDqW1Pwy7IxOw+8X0nA5vVBdbiAVY0wfe0zpJ8dIb1vI9HgnwK6k2yeu7kVFRQUqKjTTDwsLVW8YhULR6ncfqGmPdzVgLGpjLDQYC42WxOIBL0s84GWJokm9sS8uE79fSMPJxNs4dTMPp27mYdGOWIz2tkV4gCNG9LTpVOth8TWhwVhotGUsGF8iIqK2k1NcgT0X07HjQhrOJN1Wl+uJRRjRyxbhAXKM6WMPYxnTG10Vf7L3YPny5eqZWrVFRkbCyKhtLrOJiopqk3Y7I8ZCg7HQYCw0WhoLIwCPOgDjLYEzOSKcyRYjo0yJP2Iz8UdsJoz1BPS3ETDQRglXE6CzLA3A14QGY6HRFrEoLS1tuhIRERE1W1G5AvtiM7EjOg1Hr+egWikAUI1DB3tYYUo/J0zwdYClsb6Oe0rtoUsmrpYsWVJvYqm206dPIygo6J7aX7hwIebPn6/eLiwshIuLC0JDQ2FmZnZPbTZEoVAgKioKY8eOhVTavS/bYSw0GAsNxkKjNWLxOFQLXMalF2H7hTTsupiBnOJK/JUhwl8ZYnjaGCG8nxxT+jnC2dKwdZ9AK+FrQoOx0GjLWNTMvCYiIqJ7V66oxqErWdgRnYYDV7JQWaVU7/N3NseUfnJM8pfDwdxAh70kXeiSiasXXngBM2fObLSOu7v7Pbcvk8kgk8nqlEul0jb7x6At2+5sGAsNxkKDsdBojVgEuFkjwM0ab0/ywV/Xc7DtXCoi4zKQkFOKTw9cx6cHrqvXw5rg5whzw44Xe74mNBgLjbaIBWNLRER0b6qqlTh6Ixc7LqRhX2wGiiuq1Pu8bI0xpZ8TpgTI4WFjrMNekq51ycSVjY0NbGxsdN0NIqJOT08ixihvO4zytkNRuQJ7L2Vg2/lUHE/I1VoPa2wfe0QEOmGkt22nWg+LiIiIiNqXUingXPJt7IhOw+6YdOSWVKr3yc0NMDlAjin95OjraAZRZ1mjgtpUl0xctURycjLy8vKQnJyM6upqXLhwAQDQo0cPmJiY6LZzREQdiKmBFA8HueDhIBekF5Rh+/k0bDufgquZxdh9MR27L6bDylgfk/0dEdHfGf2czTnYICIiIqI7S1EUYkd0GnZFpyM1v0y9z8pYHxP9HDElQI4BrpYQizl+JG06T1zdy7oQrbmO1KJFi/Dtt9+qtwMDAwEAhw4dQkhISKudh4ioK3E0N8S/Qrzw3EhPxKYVYtv5VPx+IQ05xRX49ngSvj2eBE8bY0QEOmFqoBNcrNrmxhVE1Hy6HnMREVH3k5hTgh3RadgRnYbrWcXqchOZHkJ97DGlnxzDenSuO1hT+9N54srCwqJFn8iLRCJcvXoVnp6erXL+TZs2YdOmTa3SFhFRdyMSieDrZA5fJ3MsnNAbf1/PwbbzqdgXm4GEnBJ8HHUVH0ddxSB3K0T0d0JYB10Pi6g70PWYi4iIuofMwnLsjE7Dzug0RKcUqMv19cR40NsOUwLkeLC3HQykEh32kjoTnSeuAODXX3+FlZVVk/UEQUBYWFg79IiIiFpKTyJGiLcdQrztUFxRdWc9rBQcu5GLU4l5OJWYh8U7YjGmjx0iAp0xspct9PX46RpRe+KYi4iI2kJ+aSX+uJSB3y+k4uTNPAiCqlwiFmGolzXCA5wQ6mMPMwN+gEktp/PElZubG0aMGAFra+tm1ff09OTde4iIOjgTmR4eGuCMhwY4I72gDL9fSMO2c6mIzyzCnosZ2HMxA5ZGUkzuJ0dEoBMCXFo2E4SIWo5jLiIiak2llVWIisvEjgtp+PNaNhTVgnpfkJslpgTIEebnCBsTmQ57SV2BzhNXN2/ebFH9S5cutVFPiIioLTiaG+K5kV54doQn4tILse1cKn6PTkN2UQW+O56E7+6shzU10AkRXA+LqM1wzEVERPerskqJI1ezsSM6DfvjMlGmqFbv6+Nohin95JjczxHOlhzPUevReeKKiIi6B5FIBB+5OXzk5lgwoTeO3sjFtnMp2BebiYScEnwSdRWfRF3FQHdLRAQ6Y6KfI8yNONuDiIiISJeqlQJOJuRiR3Qa/riUgYIyhXqfm7URpvSTY0o/OXram+qwl9SVdajE1WeffVZvuUgkgoGBAXr06IERI0ZAIuEibkREnZmeRIyRvWwxspctiiuqsO9SBradT8XRGzk4nXgbpxNvY8mOWIzuY4eIQCeEeNtxPSyiVsQxFxERNUYQBESnFGDHhTTsiklDVlGFep+dqQyT7ySr/J3NudwDtbkOlbj69NNPkZ2djdLSUlhaWkIQBOTn58PIyAgmJibIysqCp6cnDh06BBcXF113l4iIWoGJTA/TBzhj+gBnZBSU4/cLqdh2PhVXMorwx6UM/HFJtR7WJH85Ivo7IZDrYRHdN465iIioPhmlwCf7r2HPpUwk5Zaqy80NpQjzc8DkfnIM9rCGRMyxGLWfDvXx9QcffICBAwfi2rVryM3NRV5eHq5evYrBgwdjzZo1SE5OhoODA1555RVdd5WIiNqAg7kBnh3phb0vj8CeF4fjmeEesDOV4XapAt+fSMK0tcfw4MdHsGb/NSTXGkwRUctwzEVERDUyC8ux/s8bmPzlcSyP1sO6IzeRlFsKQ6kEU/rJ8d9/BOH0f8Zg+TR/DPWyYdKK2l2HmnH19ttvY+vWrfDy8lKX9ejRA6tWrcL06dORkJCAFStWYPr06TrsJRERtYe+cjP0lffFggl9cPR6DradT8XeSxm4mVOCT/dfxaf7ryLIzRIR/Z0wyU/O9bCIWoBjLiKi7q2kogr7Yu8s1XA9B8o7NwSUiASM7GWHqf2dMaaPHYz0O1TKgLqpDvUqTE9PR1VVVZ3yqqoqZGRkAADkcjmKiorau2tERKQjErEII3rZYkQvW7w3VXuQdSbpNs4k3cbSHXF4sLcdIvo74QFPS113majD45iLiKj7qVYK+Pt6jvrmOLXvCBjkZokp/Rygl3YRD4cHQirlB4LUcXSoxNWoUaPw7LPP4r///S8CAwMBAOfPn8e//vUvPPjggwCAixcvwsPDQ5fdJCIiHTGW6WFaf2dM6++MzELVeli/nVOth7U3NgN7YzNgYSiFj5kYzikF6O9uzfWwiOrRGmOuP//8EytXrsTZs2eRnp6Obdu2YerUqe3RfSIiaiZBEBCXXoht51Lxe3Qasmstsu5ubYSIQGdEBDrB1doICoUCe/Zc1GFvierXoRJX33zzDWbNmoUBAwaoM7xVVVUYPXo0vvnmGwCAiYkJPv74Y112k4iIOgB7MwP8c4QX/jnCC5fTC7HtfCq2n09FVlEFjpaJcfTrk+jtYIqHg1wQEegEK2N9XXeZqMNojTFXSUkJ+vXrhzlz5vCSQiKiDia9oAy/X0jDtnOpiM/UzJ61NJJicj85pgbyhjfUeXSoxJWDgwOioqJw5coVXL16FYIgoHfv3vD29lbXGTVqlA57SEREHVEfRzP0cTTDm+N748/4THyx+zQu5uvhSkYR3t0Vhw//uIyxfe3xcJALRvS05aKi1O21xphrwoQJmDBhQlt3lYiImqm4ogp7L2Vg2/kUHLuRC+HOulX6emKM6WOHiEBnjOxlC329DnWPNqImdajEVQ1PT0+IRCJ4eXlBT69DdpGIiDogiViEB3pYo7CnEsNGjcQfcdn45cwtxKQUYM/FDOy5mAEHMwM8NMAZDwc5w83aWNddJtKp9hxzVVRUoKJCc4lKYWEhAEChUEChULT6+WrabIu2OxvGQoVx0GAsNDp7LKqqlTh6IxfbL6Rj/5UslCuU6n1BbhaYGiDHBB97mBneWbNKqIai1tpWtXX2WLQmxkKlrePQ3HY7VFaotLQU//73v/Htt98CAK5evQpPT0+8+OKLkMvlWLBggY57SEREnYW5oRSzhrhh1hA3xKUV4pezt7DtfCoyCsvxxaHr+OLQdQzxtMIjQS6Y4OsIQ32JrrtM1G50MeZavnw5li5dWqc8MjISRkZGrX6+GlFRUW3WdmfDWKgwDhqMhUZnioUgACklwOkcMc7liFCk0MwktzMQEGSrRJCNAGuDHCArB39ntaz9zhSLtsZYqLRVHEpLS5tVr0MlrhYuXIjo6GgcPnwY48ePV5ePGTMGixcvZuKKiIjuSV+5GRbLfbBgQm/sj8vCz2du4c9r2TiRkIcTCXlY/HssJgfI8UiQC/o5m3O9B+rydDHmWrhwIebPn6/eLiwshIuLC0JDQ2FmZtbq51MoFIiKisLYsWO7/d2xGAsVxkGDsdDoTLFILyjHjuh0bL+QhuvZJepySyMpJvk7IryfI/ydzO55HNOZYtHWGAuVto5DzezrpnSoxNX27duxZcsWDBkyROvN1rdvX9y4cUOHPSMioq5ApifBRH9HTPR3RFp+GbaeTcHPZ2/hVl4ZfjyZjB9PJsPb3hQPB6nusGNtItN1l4nahC7GXDKZDDJZ3feUVCpt038K2rr9zoSxUGEcNBgLjY4ai6JyBf64mIHfzqfg5M08rXWrxva1x7RAJ4zoZQuppPXWreqosdAFxkKlreLQ3DY7VOIqOzsbdnZ2dcpLSkr46TcREbUquYUh/j26J54f1QMnbubilzMp2HMxHfGZRXhv92V8tPcKRve2x4yBLhje0wZ6rTggJNI1jrmIiDouRbUSf13Lxm/nUhEVl4mKKs26VYM9rDCtvxMm+DnCzIAJFeoeOlTiauDAgdi9ezf+/e9/A4B64PR///d/CA4O1mXXiIioixKLRRjqZYOhXjZYMsUHO6PT8MuZW4hOKcDe2Azsjc2AvZlMtaD7ABe423BBd+r8WmPMVVxcjOvXr6u3b968iQsXLsDKygqurq6t32kioi5MEARcTC3Ab+dSsTM6Dbkllep9XrbGmNbfGeEBcjhbtt2agEQdVYdKXC1fvhzjx49HXFwcqqqqsGbNGsTGxuL48eM4cuSIrrtHRERdnLmhFE8MccMTQ9xwJaMQP59OwbbzKcgsrMCXh27gy0M3MMjDCjOCXDDBzwFG+h3qzyhRs7XGmOvMmTMYNWqUertm/aonn3wSmzZtaotuExF1OSm3S/H7hTT8di4FN2qtW2VtrI/J/eSY1t8Jfk5cf5O6tw414h46dCiOHj2KVatWwcvLC5GRkejfvz+OHz8OPz8/XXePiIi6kd4OZlg0uS/enOCNA5fvLOh+NRunbubh1M08LN4Ri8n9HPFIkAsCXCw4oKROpTXGXCEhIRBqFlshIqJmKyxX4I+L6fjtXCpO3sxTl8v0xAj1ccC0QCc80NOmVdetIurMOlTiCgD8/PzUt2YmIiLSNZmeBGF+jgjzc0R6wZ0F3c+kIDmvFD+duoWfTt1CTzsTzBjogqmBTrDhgu7USXDMRUTUfhTVShyJz8a286mIupyJyjvrVolEwBAPa0T0d8IEXweYct0qojp0nrhq7u0PAbTJrZKJiIiay9HcEC882BPzQnrg5M08/HLmFvZcSse1rGK8t/syPvzjCkb3scOMgS4Y0dOWC7pTh8IxFxFR+xIEAdEpBdh2LgU7Y9KRV2vdqp52Jojo74SpAU6QWxjqsJdEHZ/OE1cWFs2/vKK6urqNe0NERNQ0sViEYC9rBHtZY0m4akH3n8+kIPpWPvbFZmJfbCbsTGWYPsAZjwS5wIMLulMHwDEXEVH7uJVXiu3nU7HtfCoScjTrVtmYyDDlzrpVPnIzLjNA1Ew6T1wdOnRI/TgxMRELFizA7Nmz1Xe0OX78OL799lssX7681c+dmJiId999FwcPHkRGRgbkcjmeeOIJ/Oc//4G+vn6rn4+IiLoeMwMpHh/shscHuyE+owg/n7mFbedTkVVUgXWHb2Dd4RsY5G6Fh4OcEebnCGOZzv/0UjelyzEXEVFXV1CqwO6L6dh2PgWnE2+ryw2kYoT2dUBEfycM72HD2dhE90Dno+eRI0eqHy9btgyffPIJHn30UXXZlClT4Ofnh/Xr1+PJJ59s1XNfuXIFSqUSX3/9NXr06IFLly7hmWeeQUlJCVatWtWq5yIioq7P28EU70zqizfH98bBK5nYcvoWjlzNxqnEPJxKzMOSHbGY3E+Oh4Nc0N+VC7pT+9LlmIuIqCuqrFLicHwWtp1PxYHLWais1qxbNdTLGhGBzhjv6wATfmhFdF861Dvo+PHj+Oqrr+qUBwUF4emnn271840fPx7jx49Xb3t6eiI+Ph7r1q1rNHFVUVGBiooK9XbNmhEKhQIKhaJV+1jTXmu32xkxFhqMhQZjocFYqHSEOIgAjPa2wWhvG2QUlmPb+TT8ei4VyXll+N/pW/jf6VvwsjXGQ/2dMDXAsc0WdO8Isego2jIWnTG+7T3mIiLqKgRBwPlb+dh2LhW7YtJwu1TzN8Db3hQR/Z0QHiCHoznXrSJqLR0qceXi4oKvvvoKH3/8sVb5119/DRcXl3bpQ0FBAaysrBqts3z5cixdurROeWRkJIyMjNqkX1FRUW3SbmfEWGgwFhqMhQZjodKR4uAGYH4v4EYRcCJLjAu5ItzILsFH+65iZWQ8fCwEDLET0MdSgKQNJmF1pFjoWlvEorS0tNXbbGsdYcxFRNSZJOeWYtv5VGy/kIqbtdatsjWVIbyfHBH9ndDXketWEbWFDpW4+vTTTzF9+nTs27cPQ4YMAQCcOHECN27cwNatW9v8/Ddu3MDnn39eZxB3t4ULF2L+/Pnq7cLCQri4uCA0NLTV78KjUCgQFRWFsWPHQirt3rdGZSw0GAsNxkKDsVDp6HF4EUBReRX2XMrAL2dTEZ1SgIu3Rbh4G7A10UdEoBzTA53gaXv/C7p39Fi0p7aMRUvu1tdR6HrMRUTUGeSXVmJXTDq2n0/FmSTNulWGUgnG+dgjor8zhnlZc90qojbWoRJXYWFhuHbtGtatW4fLly9DEASEh4fjueeea9Gnf0uWLKl3RlRtp0+fRlBQkHo7LS0N48ePx8MPP9zkFHmZTAaZrO5lHVKptM3+MWjLtjsbxkKDsdBgLDQYC5WOHAcrqRRPBHvgiWAPXM0swi9nbuG3c6nILq7E+r8Ssf6vRAS5WeKRgS6Y2AoLunfkWLS3tohFZ4xta425iIi6moqqahy6ko1t51Nw6Eq2et0qsQgY1sMGEYFOGOfjwJutELUjnb/bYmJi4OvrC7FYlaV2dnbG+++/32D92NhYeHt7Q0+v4a6/8MILmDlzZqPndXd3Vz9OS0vDqFGjEBwcjPXr17fsCRAREd2HXvam+M/Evnh9XG8cvJKFn8/cwuH4LJxJuo0zSbexdEcsJvnL8chAZ/R3teQlCHTP2mLMRUTUFQgCcC45HztiMrArJh0FZZp1q3o7mGJafyeEBzjB3sxAh70k6r50PhIJDAxERkYGbG1tm1U/ODgYFy5cgKenZ4N1bGxsYGNj06z2UlNTMWrUKAwYMAAbN25UD+aIiIjak76eGON9HTDe1wGZheXYei4Fv5xJwc2cEmw5cwtbztyCp60xHglywbT+TrAz5eCZWqYtxlxERJ2VIAi4mlmMHRdSsOW8BDknTqn32ZnKMDXQCRGBTujj2LpLwRBRy+k8cSUIAt55551mL2peWVnZaudOS0tDSEgIXF1dsWrVKmRnZ6v3OTg4tNp5iIiIWsLezADzQnrgXyO9cDrxNn4+cwu7Y9KRkF2CD/+4gpX74jHK2w4zBrogxNsWUq6tQc2gyzEXEVFHcTWzCLtj0rH7YjquZxXfKRXBSF+C8T4OiOjvhKFeNpCIOcOZqKPQeeJqxIgRiI+Pb3b94OBgGBq2zq1FIyMjcf36dVy/fh3Ozs5a+wRBaJVzEBER3SuRSIRBHlYY5GGFxZP7YndMOn4+cwvnkvOx/3Im9l/OhI2JDNP7O+HhIBf0sDPRdZepA9PlmIuISJeuZRZh98V07I5JxzV1sgrQl4jxQA9ryKsz8PqjD8LcmL/ziDoinSeuDh8+rLNzz549G7Nnz9bZ+YmIiJrL1ECKmYNcMXOQK65lFuGXsyn47VwKcoor8PWfCfj6zwQMcLPEI0HOmOgvhwkXjaW76HLMRUTU3q5nFWF3TAZ2X0zD1UxNskoqEWFET1tM9HfEmL72MJQAe/bsgZE+/24SdVR8dxIREXUyPe1N8VZYH7w+zhsHr2ThlzO3cCg+G2eTbuNs0m0s3RmHiX6OmBboCE4gJiKi7uJGdrHqMsCYdMRnFqnLpRIRhve0xUQ/VbLK3FBzN1iFQlFfU0TUgTBxRURE1ElJJWKM83HAOB8HZBWWY+u5VPxy5hYSckrwy9kU/HI2BXYGEmRZJmHGQDeYG0mbbpSIiKgTSahJVl1Mx5UMTbJKTyzC8J42mOgvx9g+9vwbSNSJMXFFRETUBdiZGeBfIV54bqQnziTdxs+nb2H3xXRklVfjgz/i8cn+a5jsL8cTQ9zQz8VC190lIiK6ZzdzSrA7Jg27L2bgcnqhulxPLMIDPW0w0c8RoX0dmKwi6iKYuCIiIupCRCIRBrpbYaC7Fd6a0AsfbI7CxVJzXMksVs/C8nMyxxNDXDGlnxMM9SW67jIREVGTEnNK1Ausx92VrBrW406yysceFkb6OuwlEbUFJq6IiIi6KBOZHh5wEPD+hGBcTC/GDyeSsTsmHRdTC/Dm1ot4b/dlPDTAGY8PduMdCYmIqMNJytUkq2LTNMkqiTpZ5YDQvg6wNGayiqgrY+KKiIioixOJRBjgZoUBblZ4e2If/HI2BZtPJuFWXhk2Hk3ExqOJCPa0xhND3BDqYw+pRKzrLhMRUTeVnFuqSlZdTMOlVO1k1VAv6zszqxxgxWQVUbfBxBUREVE3Ym0iw3MjvfDP4Z7481o2fjiRjINXMnE8IRfHE3JhayrDowNdMHOQK+QWhrruLhERdQO38krVM6suphaoyyViEYI9rTHR3xHjmKwi6raYuCIiIuqGxGIRQrztEOJth9T8Mvx0Mhn/O30L2UUV+OzgdXxx6DpG97HHE0PcMLyHDcRika67TEREXcitvFLsuai6G2BMiiZZJRYBwV7WmOgnxzgfe1ibyHTYSyLqCJi4IiIi6uacLAzx2jhvvDi6JyLjMvDDiSScSMhDVFwmouIy4WZthMcHu+LhAS5cR4SIiO5Zyu07yaqYdETflawaUmtmlQ2TVURUCxNXREREBADQ1xNjkr8ck/zluJZZhM0nk7H1bAqSckvxwZ4rWBV5FZP8HPH4EDf0d7WASMRZWERE1LjU/DLsiVHNrLpwK19dLhYBgz1UyarxvkxWEVHDmLgiIiKiOnram2LJFB+8Md4bOy6k4YeTSbiUWojfzqfit/Op6ONohllD3BAeIIexjMMJIiLSSM0vwx93LgM8n5yvLheJgMEeVpjoL8d4HwfYmjJZRURN40iTiIiIGmSkr4eZg1wxY6ALolMK8MOJJOyMTsPl9EK8te0iPthzGdP6O+GJIW7oZW+q6+4SEZGOpOWXYc/FdOy5mI5zdyWrBrlbYZK/I8b5OsDO1EB3nSSiTomJKyIiImqSSCRCgIsFAlws8PbEPvj1bAo2n0zGzZwSfHc8Cd8dT8Igdys8EeyG8T4O0NcT67rLRETUxjIKytULrJ9Nuq0uF4mAgXeSVeN9HGBnxmQVEd07Jq6IiIioRSyM9PH0cE88NcwDx27k4ocTSYi6nIlTiXk4lZgHGxN9PBLkgkcHucLFykjX3SUiolaUUVCOPy6pFlg/c3eyys1KvWaVPZNVRNRKmLgiIiKieyIWi/BATxs80NMGGQXl+OlUMv53OhmZhRVYe/gG1h25gVHedpg1xA0jetlCIuZi7kREnVFmYbl6zarTibe19g10t0SYnyMm+DrCwZzJKiJqfUxcERER0X1zMDfAK2N74YUHe+DA5Uz8cCIZf1/PwcErWTh4JQvOloZ4bLArHgly4Z2jiIg6gazCcvxxKQO7Y9JxOikPgqDZF+R2J1nl5wBHc0PddZKIugUmroiIiKjVSCVijPd1xHhfRyRkF2PzyWT8ejYFKbfLsGJvPD6NuooJvo6YFeyGIDdLiESchUVE1FFkFZVj76UM7IpJx+lE7WTVgDvJqjAmq4ionTFxRURERG3C09YE70zqi9fHeWNndBp+OJmM6Fv52BGdhh3RafC2N8UTQ1wxNdAJpgZSXXeXiKhbyi6qwN5LqssAT97UTlb1d7W4k6xyhNyCySoi0g0mroiIiKhNGUgleDjIBQ8HueBiSgF+OJGE36NTEZ9ZhHd+j8WHf1xBeKATnhjshr5yM113l4ioSytXVCMhqxh/Z4jw04bTOJV4G8payaoAFwtM8nfEBD9HODFZRUQdABNXRERE1G78nM3x0UP+eGtiH/x2LgU/nEjCjewS/HgyGT+eTMYAN0s8McQVE3wdYSCV6Lq7RESdUlW1Eqn5ZUjIKUFiTglu1vpKzS+7M6tKAkC10Ho/FwtMurNmlbMl7wZLRB0LE1dERETU7swNpZgzzAOzh7rjREIefjiRhH2xGTibdBtnk25j2c44PBLkgscGu8LN2ljX3SUi6nCUSgGZReW4mV2Cm7kluJldgsTcEiTklOBWXikU1UKDx5rI9GCrr8AjQ70xqZ8TXKyYrCKijouJKyIiItIZkUiEYC9rBHtZI6uwHFtO38JPp5KRVlCOr/9MwNd/JmBkL1s8McQND/a2g0TMxdyJqPsQBAF5JZWqhFS2asZUzeOk3FKUKaobPFamJ4aHjTHcrY3hYWsMj5rvNsYw0xfhjz/+QNgD7pBKucYgEXVs3T5xNWXKFFy4cAFZWVmwtLTEmDFj8NFHH0Eul+u6a0RERN2KnZkB/j26J/4V4oVD8dn44UQS/ryWjSNXVV9ycwM8OsgVMwa5wM7UQNfdJSJqNUXlCiTmlCIhpxiJOaW4mVOsvrSvsLyqweP0xCK4WBlpJag8bYzhbmMMRzMDiBtI9isUirZ6KkREra7bJ65GjRqFt956C46OjkhNTcVrr72Ghx56CMeOHdN114iIiLolPYkYY/vaY2xfeyTlqta/+vnMLaQVlOPjqKtYc+Aaxvk64InBbhjiaQWRiLOwiKjjK1dUIym3tNZ6U8V3klUlyCmuaPRYJwtDuNuoElQeNibwsDGCh40JnC0NIZWI2+kZEBHpRrdPXL3yyivqx25ubliwYAGmTp0KhULBabNEREQ65mZtjIVhffDK2F7441I6fjiRjLNJt7E7Jh27Y9LRw84Ejw92xbT+zjA35N9tItItRbUSKbfLkJhTUmdh9LSCmkXR62djIruTkFLNmPK8k6RyszbizSqIqFvr9omr2vLy8rB582YMHTq00aRVRUUFKio0n4oUFhYCUE25be1ptzXtcTovY1EbY6HBWGgwFiqMg0ZXioUEwCRfe0zytcfl9CL8ePoWdkSn43pWMZbujMOKvVcw2d8Rjw1ygY/crM7xbRmLrhDf+7F27VqsXLkS6enp8PHxwerVqzF8+HBdd4uozSiVAjIKy3HzruRUYk4JkvNKUaVsODtlaqB3JyGlSk551HpsZsDkOxFRfZi4AvDmm2/iiy++QGlpKYYMGYJdu3Y1Wn/58uVYunRpnfLIyEgYGbXNHTmioqLapN3OiLHQYCw0GAsNxkKFcdDoirEI1gMC+wGnc0Q4miFGepkSP59Nxc9nU+FmImCYvRKB1gL075qk0BaxKC0tbfU2O4stW7bg5Zdfxtq1azFs2DB8/fXXmDBhAuLi4uDq6qrr7hHdM0EQkFtSWeuyPs1d+27mlKCiStngsQZSsWq9KZu6X1bG+ry8mYiohbpk4mrJkiX1JpZqO336NIKCggAAr7/+OubOnYukpCQsXboU//jHP7Br164G/6gsXLgQ8+fPV28XFhbCxcUFoaGhMDOr+ynv/VAoFIiKisLYsWO7/aWLjIUGY6HBWGgwFiqMg0Z3iMU0qP7BPJucj80nb2FfXCaSioGkYgl2p+lheqATHh3kDCcz/TaLRc3M6+7ok08+wdy5c/H0008DAFavXo19+/Zh3bp1WL58uc76VVpZhcTsYmSUAjeyS6Av1YNIJIIIgEgEiO+M8UQiqMvFIpFqGwDu1FHV1xwnqlVHJBJBLAJEUJXhrjbuPo46poIyBRJr3amvJjF1M7sERRWNL4ruamWkNWPK00a1OLq9acOLohMRUct1ycTVCy+8gJkzZzZax93dXf3YxsYGNjY26NWrF/r06QMXFxecOHECwcHB9R4rk8kgk8nqlEul0jb7x6At2+5sGAsNxkKDsdBgLFQYB43uEIvgHnYI7mGHnOIK/HzmFn48mYyU22XYcCwJG44lYaiXFXpLRAgVS1o9Fl09tg2prKzE2bNnsWDBAq3y0NDQem9y055LLZy5mYt/bDwLQA/Lo4+2atv3qiahVZPcUpXVJM00j7WTZprEmNbjO+3griSZ+M5BtRN0NemT0lIJPrv+NyQisXbCTqxqV3Ws5hh1Eu7uPoo09etL/NUkBWvqi+uto+qguIm27j53TS6o9rnUz/9Ou5p41bSv2S8olbicIsLhrTFIzitHYm4pcksqG/2Zyc0N4G5tDHdrI9Xi6NZGcLc2hpOFAfQaWBS9uroK1dX38CJpR13pUvL7xVhoMBYajIVKW8ehue12ycRVTSLqXgh3VkysPbAiIiKizsHGRIZ5IT3w7Agv/Hk1Gz+cSMLB+Cwcu5GHY5Dg4dxS9HGq++ETtVxOTg6qq6thb2+vVW5vb4+MjIw69dtzqYUbhYCRngQQgJrVhpSA1rYAQKhnW/W49WfL1JxLqbU6dyMrdbc6ETLLuu9lrRoS4Jb269NMKsDWALA1FGBnIMDGALAzVH2XiosBFKsq3gZKbgOx14HY9u94m+iKl5LfK8ZCg7HQYCxU2ioOzV1uoUsmrprr1KlTOHXqFB544AFYWloiISEBixYtgpeXV4OzrYiIiKjjk4hFGNXbDqN62+FWXik2n0jEydgb6GFnouuudTl3XwYnCEK9l8a151ILAPBcK1wqKwgClILqe+1ElyAIdx4L9ZRBvU95Z6OmTFnrsVb7tdpBTb3a7TbQviBoP65pH7WOVQpAVVUVTp8+jf4DgiDRk9x5Tpq2a86nvHMCZa3+C4J22zXPSbtO3baEWvVr+oE7+zV1aseg9vmFu7Zbpz/VSiUy0tMxqK8nvOxM4WFjDFcrI5gadL9/ibrDpeTNxVhoMBYajIVKW8ehucstdL/f0rUYGhrit99+w+LFi1FSUgJHR0eMHz8e//vf/+q9FJCIiIg6HxcrI7w6tif2KK7puitdio2NDSQSSZ3ZVVlZWXVmYQG6WWqhPdrvDBQKBW5fBR7oZdetY6FQKLBnTyrCxvTq1nGoje8PDcZCg7HQYCxU2ioOzW2zWyeu/Pz8cPDgQV13g4iIiKjT0dfXx4ABAxAVFYWIiAh1eVRUFMLDw3XYMyIiIupKunXiioiIiIju3fz58zFr1iwEBQUhODgY69evR3JyMp577jldd42IiIi6CCauWkHNgu5tcTtshUKB0tJSFBYWdvspioyFBmOhwVhoMBYqjIMGY6HRlrGo+ftfMx7oTmbMmIHc3FwsW7YM6enp8PX1xZ49e+Dm5tbksW05fgL4+q+NsVBhHDQYCw3GQoOx0GAsVNo6Ds0dQ4mE7jjKamUpKSlwcXHRdTeIiIhIh27dugVnZ2ddd6PT4PiJiIiIgKbHUExctQKlUom0tDSYmprWexed+1Fzx51bt261yR13OhPGQoOx0GAsNBgLFcZBg7HQaMtYCIKAoqIiyOVyiMXiVm27K2vL8RPA139tjIUK46DBWGgwFhqMhQZjodLWcWjuGIqXCrYCsVjc5p+wmpmZdes3TG2MhQZjocFYaDAWKoyDBmOh0VaxMDc3b/U2u7r2GD8BfP3XxlioMA4ajIUGY6HBWGgwFiptGYfmjKH4sSAREREREREREXVITFwREREREREREVGHxMRVByeTybB48WLIZDJdd0XnGAsNxkKDsdBgLFQYBw3GQoOx6H74M9dgLFQYBw3GQoOx0GAsNBgLlY4SBy7OTkREREREREREHRJnXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwRUaewZMkSiEQi5OTktPu5Dx8+DJFIhMOHDzdZd/bs2XB3d2/zPhERERF1Ju7u7pg9e7Z6u2Z89euvv+quU0TUKTBxRUREREREREREHRITV0TUpkpLS3XdhU6trKxM110gIiKibohjOCLqKJi4IqJWU3M537lz5/DQQw/B0tISXl5eTR6nVCrx3nvvwdvbG4aGhrCwsIC/vz/WrFlTp25mZiYeffRRmJubw97eHk899RQKCgq06pSXl2PhwoXw8PCAvr4+nJyc8PzzzyM/P1+rnkgkwpIlS+qc4+6p7A3ZtGkTvL29IZPJ0KdPH3z33Xf11qusrMR7772H3r17QyaTwdbWFnPmzEF2dnad806aNAm//fYbAgMDYWBggKVLlzbZj++//x4ikQjHjx+vs2/ZsmWQSqVIS0sDAERFRSE8PBzOzs4wMDBAjx498Oyzz2pdghkbGwuRSIRffvlFXXb27FmIRCL4+PhotT9lyhQMGDCgyT4SERFRx3WvYzgAKCwsxGuvvaY17nr55ZdRUlLSrOPLy8sxf/58ODg4wNDQECNHjsT58+fr1NuxYweCg4NhZGQEU1NTjB07Vmvsw/ELUdfFxBURtbpp06ahR48e+OWXX/DVV181WX/FihVYsmQJHn30UezevRtbtmzB3Llz6ySaAGD69Ono1asXtm7digULFuDHH3/EK6+8ot4vCAKmTp2KVatWYdasWdi9ezfmz5+Pb7/9Fg8++CAqKipa5Tlu2rQJc+bMQZ8+fbB161a8/fbbePfdd3Hw4EGtekqlEuHh4fjwww/x2GOPYffu3fjwww8RFRWFkJCQOjOqzp07h9dffx0vvvgi9u7di+nTpzfZlxkzZsDBwQFffvmlVnlVVRW+/vprREREQC6XAwBu3LiB4OBgrFu3DpGRkVi0aBFOnjyJBx54AAqFAgDg4+MDR0dH7N+/X93W/v37YWhoiLi4OHUSrKqqCkeOHMGYMWNaHkAiIiLqcFo6histLcXIkSPx7bff4sUXX8Qff/yBN998E5s2bcKUKVMgCEKTbbz11ltISEjAf//7X/z3v/9FWloaQkJCkJCQoK7z448/Ijw8HGZmZvjpp5/wzTff4Pbt2wgJCcHff/8NgOMXoi5NICJqJYsXLxYACIsWLWrRcZMmTRICAgKa1faKFSu0yufNmycYGBgISqVSEARB2Lt3b731tmzZIgAQ1q9fry4DICxevLjOudzc3IQnn3xSvX3o0CEBgHDo0CFBEAShurpakMvlQv/+/dXnFQRBSExMFKRSqeDm5qYu++mnnwQAwtatW7XOcfr0aQGAsHbtWq3zSiQSIT4+vtFY1Gfx4sWCvr6+kJmZWec5HzlypN5jlEqloFAohKSkJAGA8Pvvv6v3PfHEE4Knp6d6e8yYMcIzzzwjWFpaCt9++60gCIJw9OhRAYAQGRnZ4v4SERFRx3GvY7jly5cLYrFYOH36tFb5r7/+KgAQ9uzZoy5raHzV0Hjq6aefFgRBM+7y8/MTqqur1fWKiooEOzs7YejQoeoyjl+IuibOuCKiVtecWUK1DRo0CNHR0Zg3bx727duHwsLCButOmTJFa9vf3x/l5eXIysoCAPWMp7sv9Xv44YdhbGyMAwcOtKhv9YmPj0daWhoee+wxiEQidbmbmxuGDh2qVXfXrl2wsLDA5MmTUVVVpf4KCAiAg4NDnTsV+vv7o1evXi3u07/+9S8AwP/93/+py7744gv4+flhxIgR6rKsrCw899xzcHFxgZ6eHqRSKdzc3AAAly9fVtcbPXo0EhIScPPmTZSXl+Pvv//G+PHjMWrUKERFRQFQfYopk8nwwAMPtLi/RERE1PG0dAy3a9cu+Pr6IiAgQGucM27cuGbfkbmh8dShQ4cAaMZds2bNglis+ffVxMQE06dPx4kTJ9TrcXH8QtQ1MXFFRK3O0dGxRfUXLlyIVatW4cSJE5gwYQKsra0xevRonDlzpk5da2trrW2ZTAZAs4h5bm4u9PT0YGtrq1VPJBLBwcEBubm5LepbfWracHBwqLPv7rLMzEzk5+dDX18fUqlU6ysjI0NrbSmg5bGrYW9vjxkzZuDrr79GdXU1YmJi8Ndff+GFF15Q11EqlQgNDcVvv/2GN954AwcOHMCpU6dw4sQJANoLwddMn9+/fz/+/vtvKBQKPPjggxgzZow6+bd//34MGzYMhoaG99RnIiIi6lhaOg7JzMxETExMnTGOqakpBEGoM86pT0PjqZrxVs33+voml8uhVCpx+/ZtABy/EHVVerruABF1PbU/NWsOPT09zJ8/H/Pnz0d+fj7279+Pt956C+PGjcOtW7dgZGTU7Lasra1RVVWF7OxsreSVIAjIyMjAwIED1WUymazeNa+aSm7VJM8yMjLq7Lu7zMbGBtbW1ti7d2+9bZmammpttzR2tb300kv4/vvv8fvvv2Pv3r2wsLDA448/rt5/6dIlREdHY9OmTXjyySfV5devX6/TlrOzM3r16oX9+/fD3d0dQUFBsLCwwOjRozFv3jycPHkSJ06caNbi8URERNQ5tHQcYmNjA0NDQ2zYsKHB/U1paDxVM96q+Z6enl6nXlpaGsRiMSwtLQFw/ELUVXHGFRF1KBYWFnjooYfw/PPPIy8vD4mJiS06fvTo0QCAH374Qat869atKCkpUe8HVHfxi4mJ0ap38OBBFBcXN3oOb29vODo64qefftJadDQpKQnHjh3Tqjtp0iTk5uaiuroaQUFBdb68vb1b9PwaM2DAAAwdOhQfffQRNm/ejNmzZ8PY2Fi9v2YwWjNLrcbXX39db3tjxozBwYMHERUVhbFjxwIAevXqBVdXVyxatAgKhYILmxIREXVjkyZNwo0bN2BtbV3vOMfd3b3JNhoaT4WEhABQjbucnJzw448/atUrKSnB1q1b1XcarMHxC1HXwxlXRKRzkydPhq+vL4KCgmBra4ukpCSsXr0abm5u6NmzZ4vaGjt2LMaNG4c333wThYWFGDZsGGJiYrB48WIEBgZi1qxZ6rqzZs3CO++8g0WLFmHkyJGIi4vDF198AXNz80bPIRaL8e677+Lpp59GREQEnnnmGeTn52PJkiV1prvPnDkTmzdvRlhYGF566SUMGjQIUqkUKSkpOHToEMLDwxEREdGi59iYl156CTNmzIBIJMK8efO09vXu3RteXl5YsGABBEGAlZUVdu7cqV7z4W6jR4/G2rVrkZOTg9WrV2uVb9y4EZaWlryVNBERUTf28ssvY+vWrRgxYgReeeUV+Pv7Q6lUIjk5GZGRkXj11VcxePDgRtvIyspSj6cKCgqwePFiGBgYYOHChQBU464VK1bg8ccfx6RJk/Dss8+ioqICK1euRH5+Pj788EOt9jh+Iep6mLgiIp0bNWoUtm7div/+978oLCyEg4MDxo4di3feeQdSqbRFbYlEImzfvh1LlizBxo0b8f7778PGxgazZs3CBx98oDXb6PXXX0dhYSE2bdqEVatWYdCgQfj5558RHh7e5Hnmzp0LAPjoo48wbdo0uLu746233sKRI0e0FiKVSCTYsWMH1qxZg++//x7Lly+Hnp4enJ2dMXLkSPj5+bXo+TVl6tSpkMlkGDVqVJ2kn1Qqxc6dO/HSSy/h2WefhZ6eHsaMGYP9+/fD1dW1TlsPPvggxGIxDA0NERwcrC4fM2YMNm7ciFGjRmktkkpERETdi7GxMf766y98+OGHWL9+PW7evAlDQ0O4urpizJgxzZpx9cEHH+D06dOYM2cOCgsLMWjQIPzvf/+Dl5eXus5jjz0GY2NjLF++HDNmzIBEIsGQIUNw6NChOjfG4fiFqOsRCbXnWxIRUae2c+dOTJkyBbt370ZYWJiuu0NERERERHRfmLgiIuoC4uLikJSUhJdeegnGxsY4d+7cfS30TkRERERE1BEwcUVEbUYQBFRXVzdaRyKRMMHSCKVSCaVS2WgdPT09hISE4OjRo+jfvz++/fZb9O7du516SERERF0Nx3BE1JHw4l4iajNHjhyBVCpt9Ovbb7/VdTc7tKeeeqrJGALA4cOHoVAocPLkSSatiIiI6L5wDEdEHQlnXBFRmykqKkJ8fHyjdTw8PGBtbd1OPep8EhMTkZOT02idoKCgduoNERERdQccwxFRR8LEFRERERERERERdUh6uu5AV6BUKpGWlgZTU1Ne501ERNTNCIKAoqIiyOVy3mK9BTh+IiIi6t6aO4Zi4qoVpKWlwcXFRdfdICIiIh26desWnJ2ddd2NToPjJyIiIgKaHkN1ycTV2rVrsXLlSqSnp8PHxwerV6/G8OHDG6x/5MgRzJ8/H7GxsZDL5XjjjTfw3HPPNft8pqamAFTBNjMzu+/+16ZQKBAZGYnQ0FD1IszdFWOhwVhoMBYajIUK46DBWGi0ZSwKCwvh4uKiHg9Q87Tl+Ang6782xkKFcdBgLDQYCw3GQoOxUGnrODR3DNXlEldbtmzByy+/jLVr12LYsGH4+uuvMWHCBMTFxcHV1bVO/Zs3byIsLAzPPPMMfvjhBxw9ehTz5s2Dra0tpk+f3qxz1kxvNzMza5PElZGREczMzLr1GwZgLGpjLDQYCw3GQoVx0GAsNNojFrzcrWXacvwE8PVfG2OhwjhoMBYajIUGY6HBWKi0VxyaGkN1uYUYPvnkE8ydOxdPP/00+vTpg9WrV8PFxQXr1q2rt/5XX30FV1dXrF69Gn369MHTTz+Np556CqtWrWrnnhMRERERERERdRwV1UBZZbVO+9ClZlxVVlbi7NmzWLBggVZ5aGgojh07Vu8xx48fR2hoqFbZuHHj8M0330ChUNSbVayoqEBFRYV6u7CwEIAqG6lQKO73aWh56tszOH1TgnfOH4RIBIjvZCLFIpF6WyQCRLXKRCKR1ra4njL1thgQQQSxCMCd9sR39tXUE9dqv6aOdluodYxIa1tzTK064rr9w50+aJ5TTR1NH5RKJZKSxIj54wr0JBL184ZI9RxqtkV3tqHervV8oMnm1vS95lhx7fJ6joPWtvb5UM/5a8e5vjZR5xwi7efU4LEiVFdXIbkYyMgvgb25Ubf+lL/mPdfa773OiLFQYRw0GAuNtowF40tERERdSWllFQ5dycbO6FQcuCxBlTwdjw3x0Fl/ulTiKicnB9XV1bC3t9cqt7e3R0ZGRr3HZGRk1Fu/qqoKOTk5cHR0rHPM8uXLsXTp0jrlkZGRMDIyuo9nUFdapgTl1SKUV1e1arudlxhIS9Z1JzoIPXx88SikIgGWMsBCJsBSH7CUqbYtZYCVvgALGSDtcnMr64qKitJ1FzoMxkKFcdBgLDTaIhalpaWt3iYRERFRe6pJVu25mI6DV7JQpqiZZSXC6cTbTFy1trtnnwiC0OiMlPrq11deY+HChZg/f756u2ZBsdDQ0FZfo8FvcBEOHP4Lw4YNg1iiB0EQIAiAUhAg4M53AaovCFAKaGYdVT1NHc1xNccq78RBqa4LCNBuXykAqNVmTXvq+uo6mn5o+qNpU6nqXL19rimrqqpGYlIS3FxdIRKL1f2G+pyq5yeo+6nqW+3t2vshNLbv7rZqnaOB89U9RrWN+tqA5nVW7zm0jrvzc1Nq+q0UBGTeLkahQgSFIEJWOZBV3vBr3MZEH3JzAziaG0BuYaj6bm4AJwtDOFoYwMpI2mlnbSkUCkRFRWHs2LHd+vpzgLGowThoMBYabRmLmpnXRERERJ1JWWU1DsVnYffFdBy8XDtZBbhYGWKCjz3M8q/jn9N8ddjLLpa4srGxgUQiqTO7Kisrq86sqhoODg711tfT04O1tXW9x8hkMshksjrlUqm01QfDLtamsDMEejqY858OhQJ79txEWFhfxkKhwJ49ezAmdDzyyqqRml+G1NtlSMsvQ1pBGVLzy5F2p6xMUY2c4krkFFciJrX+f65kemI4WRhCbmEIuYUqueV050tuYQgHcwMYSCXt/Cxbpi3ef50VY6HCOGgwFhptEQvGloiIiDqLsspqHI7Pwq4GklVhfo6Y5CeHr5MZqqqqsGfPdZ1PcuhSiSt9fX0MGDAAUVFRiIiIUJdHRUUhPDy83mOCg4Oxc+dOrbLIyEgEBQVxIEodnr6eGC5WMrhY1X+JqiAIKChT3JXYKkdq/p3H+WXIKqpARZUSCTklSMgpafBcNiYyON1JaslrJbWc7iS7rIz1df4LjYiIiIiIiLTVJKt237kMsLTWYuvOloaY6OeIif6O8HMy75D/03WpxBUAzJ8/H7NmzUJQUBCCg4Oxfv16JCcn47nnngOguswvNTUV3333HQDgueeewxdffIH58+fjmWeewfHjx/HNN9/gp59+0uXTIGoVIpEIFkb6sDDSh4/cvN46lVVKZBaWI+W2JplV/6ytCuQUVyA6paDedu6eteVkYXTne+eZtUVERERERNQVlCtqklUZOHA5UytZ5WRhiEn+jgjzc4S/c8dMVtXW5RJXM2bMQG5uLpYtW4b09HT4+vpiz549cHNzAwCkp6cjOVmzuLeHhwf27NmDV155BV9++SXkcjk+++wzTJ8+XVdPgahdqWZtGTU5a0s7sXX/s7Y0SS7O2iIiIiIiIrpfqmRVNnZfTK83WTXxTrKqXydIVtXW5RJXADBv3jzMmzev3n2bNm2qUzZy5EicO3eujXtF1DnVnrXl69TwrK2Mu5JZ9ztrS3v2FmdtERERERER3a1cUY0jV7OxO0aVrCq5K1kV5ueAif7yTpesqq1LJq6IqH3p64nham0EV+uGZ23llyruSmzdx6wtS0PVzC1zQ9ib6aOsCFDW3L6SiIiIiIioC6tJVu25mI79cdrJKrm5gXpmVYCLRadNVtXGxBURtTmRSARLY31YGjc8a6uiqhqZBRXNn7V1q/bRetic/CdC+zog1MceQzytIZWI2+W5ERERERERtbVyRTX+rElWXc5CcUWVep/c3ABhfo4I83dEYBdJVtXGxBURdQgyPck9zdpKyCrCX1ezkFlYge9PJOH7E0kwNdDD6N52CPVxwMhetjCW8VcdEdHatWuxcuVKpKenw8fHB6tXr8bw4cPrrTt79mx8++23dcr79u2L2NhYAKrlF+bMmVOnTllZGQwMDFq380RERN1QuaIaf13Lwe6YtDrJKsc7yaqJ/o4IcLaAWNy1klW18b85IuoUGpq1pVAosGPXHpj1GoiD8TmIistETnEltl9Iw/YLadDXE2N4DxuM83HA6D52sDaR6fBZEBHpxpYtW/Dyyy9j7dq1GDZsGL7++mtMmDABcXFxcHV1rVN/zZo1+PDDD9XbVVVV6NevHx5++GGtemZmZoiPj9cqY9KKiIjo3lVUVePPqznYczEdUXGZdZJVE3xVyapAl66drKqNiSsi6vT0xEBIL1uM9ZHjvakCziffRmRcJvbFZiAptxQHrmThwJUsiEVAkJsVQn3sMc7HocE7KRIRdTWffPIJ5s6di6effhoAsHr1auzbtw/r1q3D8uXL69Q3NzeHubnmQ4Lt27fj9u3bdWZYiUQiODg4NKsPFRUVqKioUG8XFhYCUH0AoVAoWvycmlLTZlu03dkwFiqMgwZjocFYaDAWGu0di4oqJf6+noO9lzKx/0q2VrLK3kyGCT72mODrgABnc3Wyqrq6CtXVDbXYOto6Ds1tl4krIupSJGIRgtytEORuhYUTeuNqZjEiYzOwLy4Dl1ILcSoxD6cS8/De7svo7WCKcT6qdbH6Opp1uWvBiYgAoLKyEmfPnsWCBQu0ykNDQ3Hs2LFmtfHNN99gzJgxcHNz0yovLi6Gm5sbqqurERAQgHfffReBgYH1trF8+XIsXbq0TnlkZCSMjNrug4SoqKg2a7uzYSxUGAcNxkKDsdBgLDTaMhZVSuBKgQgXckS4eFuE8mrN/yLmUgEB1gICrJVwN62CGAnIuJSAvZfarDuNaqs4lJaWNqseE1dE1GWJRCJ4O5jC28EU/x7dE6n5ZYiMzUBkbCZOJebhSkYRrmQUYc2Ba3C2NFQv7j7Q3QqSbjLtloi6vpycHFRXV8Pe3l6r3N7eHhkZGU0en56ejj/++AM//vijVnnv3r2xadMm+Pn5obCwEGvWrMGwYcMQHR2Nnj171mln4cKFmD9/vnq7sLAQLi4uCA0NhZmZ2T0+u4YpFApERUVh7NixkEqlrd5+Z8JYqDAOGoyFBmOhwVhotFUsKqqUOHojF3svZWD/lWwUldeaWWUqwzgfe4T52neYywDb+jVRM/u6KUxcEVG34WRhiDnDPDBnmAdul1TiwJUsRMZm4M9r2Ui5XYYNR29iw9GbsDLWVy/uPrynDQykEl13nYjovt09q1QQhGbNNN20aRMsLCwwdepUrfIhQ4ZgyJAh6u1hw4ahf//++Pzzz/HZZ5/VaUcmk0Emq7vOoFQqbdN/kNq6/c6EsVBhHDQYCw3GQoOx0GiNWFRWKfH39WzsjslAZFyGVrLKzlSmXmB9gKtlh0hW1aetXhPNbZOJKyLqliyN9fHQAGc8NMAZZZXV+PNaNiJjM3HgSibySirxy9kU/HI2BYZSCUb2ssU4X3s86G0PcyP+ESeizsXGxgYSiaTO7KqsrKw6s7DuJggCNmzYgFmzZkFfX7/RumKxGAMHDsS1a9fuu89ERESdWWWVEkev52BXTDqi4jJQWE+yKszPEUFuHTdZ1ZEwcUVE3Z6hvgTjfBwwzscBVdVKnErMQ2RsJiJjM5BWUI69sRnYG5sBPbEIgz2tMM7HAWP72sPR3FDXXSciapK+vj4GDBiAqKgoREREqMujoqIQHh7e6LFHjhzB9evXMXfu3CbPIwgCLly4AD8/v/vuMxERUWdTk6zafTEdkbHaySpbUxnCfB0w0V/OZNU9YOKKiKgWPYkYQ71sMNTLBosn90VsWqFqcffYTMRnFuHo9VwcvZ6LRb/Hop+zOUJ9HBDa1x497Ey4uDsRdVjz58/HrFmzEBQUhODgYKxfvx7Jycl47rnnAKjWn0pNTcV3332nddw333yDwYMHw9fXt06bS5cuxZAhQ9CzZ08UFhbis88+w4ULF/Dll1+2y3MiIiLStcoqJY7eyMGemHTsqydZNcHXARP9HBHENXTvCxNXREQNEIlE8HUyh6+TOeaHeiMxpwSRcarF3c8m30Z0SgGiUwqwcl88PG2MMdbHHqF9HTrMYopERDVmzJiB3NxcLFu2DOnp6fD19cWePXvUdwlMT09HcnKy1jEFBQXYunUr1qxZU2+b+fn5+Oc//4mMjAyYm5sjMDAQf/75JwYNGtTmz4eIiEhXFNV3ZlbFpCMyLhMFZQr1PhsTGcL8HBDm58gbPrUiJq6IiJrJ3cYY/xzhhX+O8EJ2UQX2X1ZdTnj0ei4Sckrw9ZEEfH0kAbamMozta4/QvvYY6mUDfT2xrrtORIR58+Zh3rx59e7btGlTnTJzc/NGb1P96aef4tNPP22t7hEREXVYimoljt3Ixe6YNOyLvTtZpY8Jvqo1qwZ5MFnVFpi4IiK6B7amMjw6yBWPDnJFUbkCR66qFnc/dCUL2UUV+PFkMn48mQxTmR5CetthnI89RvayhakBF3cnIiIiIuroqpXAX9dysC8uG/viMpBfqp2sGu/rgIl+ciar2gETV0RE98nUQIpJ/nJM8pejoqoaJxLysC82A1FxmcguqsDO6DTsjE6DvkSMoT2sMc7HAWP62MPWtO5t4YmIiIiISDcqqqpx7Hou9lxMw+5oCUpPnlPvq0lWhfk5YrCHNZNV7YiJKyKiViTTk2BkL1uM7GWL98J9cSElH/tiVeti3cwpweH4bByOz8ZboosY4GqJ0DvrYrnbGOu660RERERE3U5xRRUOXcnCvtgMHI7PRnFFzQLrIlgZSzHB1xET71wGqCfhEiC6wMQVEVEbEYtF6O9qif6ullgwvjduZBdjX6xqXazolAKcSbqNM0m38cGeK/C2N1UnsXydzHiHQiIiIiKiNpJTXIH9cZnYd2e92spqpXqfnakMY/rYwqI4Cf9+ZAwMDXiVhK4xcUVE1A5EIhF62Jmih50pnh/VA2n5Zdh/WfXH8kRCHuIzixCfWYTPD16H3NwAoT4OCPWxxyB3frJDRERERHS/buWVqq+EOJOUB6Wg2edhY4xQH3uM83FAgLMFqqursGdPIsfhHQQTV0REOiC3MMQ/gt3xj2B3FJQqcDA+E/suZeLI1WykFZRj07FEbDqWCAsjKR7sbYdxPg4Y0dMWhvoSXXediIiIiKjDEwQB8ZlF2HdJ9WFxXHqh1n5fJzOM6+uAcb4O6GlnonXFQ3V1e/eWGsPEFRGRjpkbSRER6IyIQGeUK6rx97Uc7IvNwP7LmbhdqsBv51Lx27lUGEjFGN7TFuN8HDC6tx0sjfV13XUiIiIiog5DqRRw/tZt7ItVJauSckvV+8QiYKC7FcbdubLB2dJIhz2llmDiioioAzGQSjCmrz3G9LVHVbUSZ5JuI/LOH97U/DJExWUiKi4TErEIg9ytEOpjj7F9+YeXiIiIiLqnyioljifkat3Vu4a+nhjDe9ioPvjtYwdrE65X1RkxcUVE1EHpScQY4mmNIZ7WeGdSH8SlF6qTWFcyinA8IRfHE3KxdGccfORmGNPbFiZluu41EREREVHbKqmowpGr2dgXm4GDV7JQVF6l3mcq08OoO0ttjPS2hYmMaY/Ojj9BIqJOQCQSwUduDh+5OV4Z2wvJuaWIjNMsLhmbVojYtEIAetiZcwLTAp0xqZ8cNvxUiYiIiIi6gLySSuy/rLpD95/XclBZpbkToI2JDGP72mOcjz2GetlAX4+LqnclTFwREXVCrtZGeHq4J54e7omc4gocvJyFXTGp+PtaDmJSChGTEod3d1/GiJ42mBrohNC+DlzYnYiIiIg6ldT8MkTGZmBfbAZO3dS+E6CrlRHG3bkTYKCrJSRiUcMNUafGxBURUSdnYyLDIwNdEBHggP9t34MKex/sjMlAdEoBDsVn41B8Noz1JRjv64iIQCcEe1nzDzsRERERdTiCIOB6VjH2xWZgX2wmLqYWaO3v42imTlb1djDVuhMgdV1MXBERdSFm+kBYsBueHtEDN7KL8fv5VGy7kIpbeWXYei4FW8+lwM5UhvAAOaYGOqGvoxn/4BMRERGRziiVAqJT8rEvVnUZYEJOiXqfSAQEuVlinI8Dxvk4wMWKNyTqjpi4IiLqorxsTTA/1BuvjO2Fs0m3se18KnbFpCOrqAL/99dN/N9fN9HL3gRTA50QHuAEJwtDXXeZiIiIiLoBRbUSJxPysC82A5FxGcgsrHUnQIkYw3pY37kToD1sTblma3fHxBURURcnEokQ5G6FIHcrLJ7sg8PxWdh+IRX7L2fhamYxVuyNx4q98RjiaYWIQCeM93WEuaFU190mIiIioi6krLIaR65mIzI2AweuZKGgTKHeZ6wvUd8JMMTbFqYGHIuSBhNXRETdiL6eGKE+Dgj1cUBBmQJ7L6Vj2/lUnEjIU3+983ssxvSxw9QAJ4R42/GuLERERER0T/JLK3Hgchb2xWbgz2vZKFdo7gRobax/506ADhjawxoyPd5IiOrHxBURUTdlbijFjIGumDHQFan5ZdhxIQ3bzqfgamYx9lzMwJ6LGbAwkmKin2pR9wFullwPi4iIiIgalVFQjsg41Z0ATyTkobrWrQCdLQ3V61UNcOOdAKl5WjVxVVhY2OJjzMzMWrMLRER0D5wsDPGvEC88N9ITcemF2H4+Fb9fSENWUQU2n0zG5pPJcLEyxNQAJ0wNdIKXrYmuu0zUJXEsRUREndGNbM2dAKNv5Wvt6+1gilAfB4zzseeNgeietGriysLCokUvQpFIhKtXr8LT07NVzn/79m28+OKL2LFjBwBgypQp+Pzzz2FhYVFvfYVCgbfffht79uxBQkICzM3NMWbMGHz44YeQy+Wt0icios5EJBLBR24OH7k5Fkzog+M3crHtfCr2XkrHrbwyfH7wOj4/eB3+zuaICHTCJH85F8wkakVtOZZau3YtVq5cifT0dPj4+GD16tUYPnx4vXUPHz6MUaNG1Sm/fPkyevfurd7eunUr3nnnHdy4cQNeXl54//33ERER0ez+ExFR5yQIAi6mFqiTVdezitX7RCKgv6slxvnYI7SvA9xtjHXYU+oKWv1SwV9//RVWVlZN1hMEAWFhYa167sceewwpKSnYu3cvAOCf//wnZs2ahZ07d9Zbv7S0FOfOncM777yDfv364fbt23j55ZcxZcoUnDlzplX7RkTU2UjEIjzQ0wYP9LTBe1N9EXU5E9vPp+LI1WzEpBQgJqUA7+2+jOE9bRAR6ISxfe1hpM8r0InuV1uMpbZs2YKXX34Za9euxbBhw/D1119jwoQJiIuLg6ura4PHxcfHa83osrW1VT8+fvw4ZsyYgXfffRcRERHYtm0bHnnkEfz9998YPHhws/pFRESdR1W1EqcS8xAZm4nI2AykFZSr90klIgR72WCcjz3G9rWHnamBDntKXU2r/ofh5uaGESNGwNrauln1PT09IZW2zt0CLl++jL179+LEiRPqwdL//d//ITg4GPHx8fD29q5zjLm5OaKiorTKPv/8cwwaNAjJyckNDuQqKipQUaG5XWfNtH6FQgGFQlHvMfeqpr3WbrczYiw0GAsNxkKjLWOhJwIm9LXFhL62yC2uwJ5LmdgenYaYlEIcjs/G4fhsGOlLENrHDlMCHDHU01pnaxbwNaHBWGi0ZSxas822Gkt98sknmDt3Lp5++mkAwOrVq7Fv3z6sW7cOy5cvb/A4Ozu7Bmeur169GmPHjsXChQsBAAsXLsSRI0ewevVq/PTTT3Xqt+f4qabd2t+7M8ZChXHQYCw0GAuN+mJRrqjG0eu5iLychUPx2bhdqtlnpC/BiJ42GNvHDiG9bGBW667UnT2efF2otHUcmtuuSBAEoelqHd+GDRswf/585Ofna5VbWFjg008/xZw5c5rVzv79+xEaGor8/PwG14xYsmQJli5dWqf8xx9/hJGRUYv7TkTUWWWVAWdyxDiTLUJuhSZRZSYV0N9GwEBbJZyMVFPGibqq0tJSPPbYYygoKOiQ601VVlbCyMgIv/zyi9ZlfC+99BIuXLiAI0eO1Dmm5lJBd3d3lJeXo2/fvnj77be1Lh90dXXFK6+8gldeeUVd9umnn2L16tVISkqq0ybHT0REnUNpFRB3W4SYPBEu54tQqdQM5Iz1BPhaCvC3EtDLXIA+bwRI96G5Y6guc01HRkYG7Ozs6pTb2dkhIyOjWW2Ul5djwYIFeOyxxxoN2sKFCzF//nz1dmFhIVxcXBAaGtrqA1aFQoGoqCiMHTu21WandVaMhQZjocFYaOgqFrOhumTpwq0C/B6djj2XMnC7VIHD6SIcThejh60xwvs5YnI/RzhZGLZ5f/ia0GAsNNoyFveyoHp7ysnJQXV1Nezt7bXK7e3tGxwjOTo6Yv369RgwYAAqKirw/fffY/To0Th8+DBGjBgBQDX2akmb7Tl+Avj6r42xUGEcNBgLDcZCJae4AnsvpWPL31dwvUiCqlp3AnQ0N8DYPnYI7WuHAa4W0JOIddjT9sHXhUpbx6G5Y6g2S1x99tln9ZaLRCIYGBigR48eGDFiBCSSxlO0DX06V9vp06fVbd9NEIRmLXKqUCgwc+ZMKJVKrF27ttG6MpkMMlndxYilUmmbvajbsu3OhrHQYCw0GAsNXcVikJctBnnZYvEUX/x5NRvbLqQiKi4T17NL8PH+6/h4/3UM8rBCRKATwnwdYW7Utn3ka0KDsdBoi1i0VWxbayxV+7jaGhsjeXt7ay2zEBwcjFu3bmHVqlXqxFVL29TF+Kk92u9MGAsVxkGDsdDojrHIKizH3tgM7LmYjlM386DKVYkBCOhpZ4JxPg4Y5+MAX6fueyfA7vi6qE9bxaG5bbZZ4urTTz9FdnY2SktLYWlpCUEQkJ+fDyMjI5iYmCArKwuenp44dOgQXFxcGmznhRdewMyZMxs9l7u7O2JiYpCZmVlnX3Z2dp1PA++mUCjwyCOP4ObNmzh48GCHnOZPRNRZ6OuJMaavPcb0tUdhuQJ7L2Vg+/lUHE/IxambeTh1Mw+Lf4/Fg73tMDXQCaN620Kmx3nmRHdrrbGUjY0NJBJJnZlQWVlZTY6RahsyZAh++OEH9baDg8N9t0lERO0rvaAMey9l4I+LGTidlIfaCwf5O5nBTXIb/44YgV6OFjrrI9Hd2myO3wcffICBAwfi2rVryM3NRV5eHq5evYrBgwdjzZo1SE5OhoODg9a6CPWxsbFB7969G/0yMDBAcHAwCgoKcOrUKfWxJ0+eREFBAYYOHdpg+zVJq2vXrmH//v3NXgyViIiaZmYgxSNBLvjxmSE4+uaDWDChN7ztTVFZrcTe2Aw898NZDHr/AN7adhGnE/OgVHaJZReJWkVrjaX09fUxYMCAOjekiYqKanSMdLfz58/D0dFRvR0cHFynzcjIyBa1SUREbS81vwz//SsB09YeRfDyg1i6Mw6nElVJq/6uFnh7Yh/8/eYobH1uyP+zd+dhTV35/8DfSQhhR3ZIWBRURDZRWkXrrqjUteq0M1PbzthOW6fTaW1nqu100Xbqr7vtdLGdb1u7Tcdp3RErtO77xo7iBgJZ2DHsBHJ/fwQSEFSsiWF5v56Hh9xzzz335EOAk0/OPRfTFAIGeTpau8tEHVhsxtU//vEPbNy4ESEhIcaywYMH4+2338bChQtx6dIlvPnmm1i4cKFZzhcWFoaZM2fikUcewaeffgoA+NOf/oTZs2d3mOo+bNgwrFmzBgsWLEBzczMWLVqE06dPIzExES0tLcZPDt3d3WFra2uWvhERESAfYI/HJobgsYkhOKPWYkuqElvSlCjWNuI/xwrwn2MF8Hezx/wRCsyPUWCwt5O1u0xkVeYcSy1fvhxLlixBbGws4uLi8Nlnn6GgoACPPfYYAMP6U0qlEl9//TUAwx0DBw4ciPDwcDQ1NeHbb7/Fxo0bsXHjRmObf/3rXzFhwgS88cYbmDdvHrZu3Yqff/4ZBw8eNHMkiIjoZhVW1CEp07D2aHphlbFcJAJig9wwK8IPMyN8IW+3/mh/v4Me9VwWS1yp1Wo0Nzd3Km9ubjYmh+RyOaqrq812zu+++w5PPvkk4uPjAQBz587Fhx9+2KFObm4urly5AgAoKirCtm3bAAAjRozoUG/Pnj2YNGmS2fpGREQmYX4uCPNzwd9nDsOxS+XYnKrEziwNiirr8eGeC/hwzwVEKlwxP0aBOdF+8Ha2s3aXiW47c46l7r33XpSXl2P16tVQq9WIiIhAUlISgoKCjOcqKCgw1m9qasKzzz4LpVIJe3t7hIeHY8eOHUhISDDWGTt2LP773//iH//4B1588UWEhIRgw4YNGD169K0+dSIi+hXyy2qRlKXGzkwNMpVXjOViEXDnIHckRPphRrgvfFw4rqLexWKJq8mTJ+PRRx/F//3f/yEmJgaAYYr5448/jilTpgAAMjMzMWjQILOd093dvcPaC10R2l3EO3DgwA7bRER0e0nEIowd7Imxgz3x6vwIpOQUY0uqEvvOlSJTeQWZyiv4544cjB/ihQUxCsSH+8DBts/cEJfousw9llq2bBmWLVvW5b7169d32P773/+Ov//97zdsc9GiRVi0aFG3zk9EROZ3sbQGSRmGmVVn1KY7tIlFQFyIB2ZFGJJVXs6db45B1FtYbPT/+eefY8mSJRg1apRxpfjm5mZMnToVn3/+OQDAyckJ77zzjqW6QEREvYidVII50XLMiZajvKYROzLV2JyqRGpBFfadK8W+c6VwsJVgRrgv5scoMC7Eo1/cjpn6L46liIioK+eKq5GUaZhZlVtsmnUrEYswNsQDCZF+iB/uAw8nJquob7BY4srX1xcpKSk4e/Yszp07B0EQMGzYsA7rTU2ePNlSpyciol7Mw0mGB+IG4oG4gcgvq8WWNCW2pCqRX16HzalKbE5VwtNJhrnRciyIUfTr2zRT38WxFBERAYarhs5qqrGzdc2qCyU1xn1SiQjjBnsiIdIP08N84ObIdZqp77H49RbBwcEQiUQICQmBjQ0v7yAiopsz0NMRT00bir9OHYK0wipsSVVie4YaZTWN+OJQHr44lIfB3k5YEKPA3Gg5fJ2l1u4ykVlxLEVE1P8IgoBsldYwsypLg7yyWuM+W4kYE4Z6YlaEH6aF+cDVgWMf6tssNvqpq6vDX/7yF3z11VcAgHPnziE4OBhPPvkk5HI5VqxYYalTExFRHyQSiRAT6IaYQDf8Y/ZwHDhfis2pKiRnGz55fGtXLt7alYvYoAEIkYgwrl4HTykHctR7cSxFRNS/CIKAjKIrxgXWCyrqjPtsbcSYNNQLd0f5YcowbzjbcYxD/YfFElcrV65Eeno69u7di5kzZxrLp02bhpdffpmDLSIi+tWkEjGmDPPBlGE+qG7Q4acsDbakKXH4YjlOXq7CSUiw6Y29mBbmgwUxCkwK9YatDdfDot6FYykior5PrxeQVlRluAwwUwNlVb1xn51UjCnDvDErwg+Th3nDScZZt9Q/WeyVv2XLFmzYsAFjxozpsO7I8OHDcfHiRUudloiI+hlnOykWxwZgcWwANFcasPl0Ib45kAtVHbAzS4OdWRq4OUgxp3U9rBEBA7geFvUKHEsREfVNer2AUwWVSMpU46csDdRXGoz7HGwlmDLMGwmRfpgU6sW7KRPBgomr0tJSeHt7dyqvra3lGwYiIrIIX1c7PHzXQMi1OQgeOR7bM4uxJVWJkupGfH3kMr4+chnBno6YH6PAghgFAtwdrN1lomviWIqIqO9o0Qs4kV+Bna1rVpVUNxr3OclsMDXMkKyaONQLdlKJFXtK1PNYLHF1xx13YMeOHfjLX/4CAMYB1r///W/ExcVZ6rREREQAgGG+zogMcMdzM4fh0IUybE5V4qcsDS6V1eLdlHN4N+Uc7hzojgUjFUiI9IOrPdeKoJ6FYykiot6tuUWP43kVSMpS46esYpTVmJJVznY2mD7cBwkRfrhriCeTVUTXYbHE1Zo1azBz5kzk5OSgubkZ77//PrKzs3HkyBHs27fPUqclIiLqQCIWYcJQL0wY6oXX5jfjpywNNqcqcehiGY7nV+B4fgVe3paN6a3rYU0M9YJUwvWwyPo4liIi6n10LXocuViOnVlq7MouRkVtk3Gfq70U8cN9kBDph3GDPbn+JlE3WSxxNXbsWBw6dAhvv/02QkJCkJycjJEjR+LIkSOIjIy01GmJiIiuyVFmg4Wj/LFwlD/UV+qxNU2FzaeVyC2uxo5MNXZkquHuaIs5UX64Z6Q/ovxdeUkWWQ3HUkREvUNTsx6HLpZhZ6YayTnFqKrTGfe5OUgxI9wXCZF+iAvx4IdjRL+CRVd6i4yMNN7CmYiIqCfxc7XHYxND8OiEYOSotdh0WomtaSqU1TTiqyOX8dWRywj2csQ9MQrMj1HA343rYdHtx7EUEVHP1NjcgoPny7AjU42UnGJUNzQb93k62RqTVaMHucOGySqiW2LWxJVWq+12XRcXF3OemoiI6FcRiUQIl7siXO6KlbOG4eCFMmw6rURyjgaXSmvxdvI5vJ18DqMHueOekQrMivSDix3XwyLL4FiKiKjnatC1YN+5UuzMVOOXMyWobjQlq7ycZZgVYUhW3THQHRIxZ2wTmYtZE1cDBnT/FuMtLS3mPDUREdEts5GIMSnUG5NCvVHdoDOuh3XkUjmO5VXgWF4FXtqajenDfXDPSAXGD+F6WGReHEsREfUs9U0t2JtbgqQsDXafKUZtk+lvr6+LHWZFGpJVowLdIGayisgizJq42rNnj/Fxfn4+VqxYgYceesh455sjR47gq6++wpo1a8x5WiIiIrNztpNicWwAFscGQFVVjy1pSmw+rcT5khokZqiRmKGGh6Mt5kTLcc9IBSIVXA+Lbh3HUkRE1lfb2Iw9uSXYmanB7rMlqNeZklWKAfaYFeGLWZF+iAkYwGQV0W1g1sTVxIkTjY9Xr16Nd999F7/97W+NZXPnzkVkZCQ+++wzPPjgg+Y8NRERkcXIB9hj2aTBeHxiCLKUWmxKLcL2dBXKapqw/nA+1h/Ox2BvJyxoXQ9LMcDe2l2mXopjKSIi66huaMaB7BIkZaqxN7cUjc16474Ad3skRPhhVqQfonnjFqLbzmKLsx85cgTr1q3rVB4bG4uHH37YUqclIiKyGJFIhEh/V0T6u+L5hDAcOF+KTaeVSMkpxoWSGry1KxdvJ+dizCAPLBipwKwIXzhzPSz6lTiWIiKyrNrGZuzMVGP9WTH+dmIvmtolqwZ6OCAh0g8JkX4Il7swWUVkRRZLXAUEBGDdunV45513OpR/+umnCAgIsNRpiYiIbgupRIwpw3wwZZgPtA06/JSpwcbTRTiWV4Ejl8px5FI5XtqahenDfQ3rYQ325F2F6KZwLEVEZH66Fj32nyvFljQVUnI0aNDpAYgB6BHs5Yi7I/0wK8IPYX7OTFYR9RAWS1y99957WLhwIXbt2oUxY8YAAI4ePYqLFy9i48aNljotERHRbediJ8Vv7gjAb+4IQFFlHbamqbDpdBEultZie7oK29NV8HSSYW7relj85Ja6g2MpIiLz0OsFnCqoxJZUJZIy1ais0xn3DfRwQKh9Df46/y6EKbp/gwwiun0s9tFvQkICzp8/j3nz5qGiogLl5eWYN28ezp07h4SEBEudloiIyKr83Rzw58mD8fPyidj653F4aOxAuDvaoqymEV8cysPsfx3EjLX78cnei1Bfqbd2d6kHM/dY6uOPP8agQYNgZ2eHUaNG4cCBA9esu2nTJkyfPh1eXl5wcXFBXFwcdu3a1aHO+vXrIRKJOn01NDTcdN+IiCwhV1ONN346i/Fv7sHidUfw3bECVNbp4OUswx/HDcK2J8Yh+a/jkBCgxxAfJyatiHoos864ysjIQEREBMRiQz7M398f//znP69ZPzs7G6GhobCxsdjELyIiIqsQiUSIDhiA6IABeOHuMOzLLcXmVCVSzhTjXHEN3vjpLN7cdRZjQzywIMYfMyN84STj/8P+zlJjqQ0bNuCpp57Cxx9/jHHjxuHTTz/FrFmzkJOTg8DAwE719+/fj+nTp+P111/HgAED8OWXX2LOnDk4duwYYmJijPVcXFyQm5vb4Vg7O7ubecpERGalrKrHtjQVtqYpcVZTbSx3ktlgZoQv5o2QY2yIJyStdwPU6XTXaoqIegizjpBjYmKg0Wjg5eXVrfpxcXFIS0tDcHCwObtBRETUo0glYkwb7oNpw31wpV6HnZlqbDqtxPH8Chy6UI5DF8rxjy2ZmBHuiwUxCtzF9bD6LUuNpd59910sXbrUuKj72rVrsWvXLnzyySdYs2ZNp/pr167tsP36669j69at2L59e4fElUgkgq+vb7f62tjYiMbGRuO2VqsFYHjTaIk3jm1t8k0pY9GGcTDpa7GoqtPhp+xibMtQ40R+pbFcKhFh0lAvzInyxeRQL9hJJQAAfUsz9C2GOn0tFreCsTBhLAwsHYfutmvWxJUgCHjxxRfh4ODQrfpNTU3mPD0REVGP52ovxX13BuK+OwNRWFGHLalKbEpVIq+sFlvTVNiapoKXswzzouVYMFKB4X5cD6s/scRYqqmpCadOncKKFSs6lMfHx+Pw4cPdOo9er0d1dTXc3d07lNfU1CAoKAgtLS0YMWIEXn311Q6JrfbWrFmDVatWdSpPTk7u9vP9NVJSUizWdm/DWBgwDia9ORZNLUBWpQinykQ4UyVCi2D4XymCgBAXAaM8BYzwEOBgo4JQoMLuguu315tjYW6MhQljYWCpONTV1XWrnlkTVxMmTOg0Xfx64uLiYG9vb84uEBER9RoB7g74y9QheGLKYKQVVmFzqhLb01UorW7E/x3Mw/8dzEOojzPuGanAvBEK+LryEqy+zhJjqbKyMrS0tMDHx6dDuY+PDzQaTbfO884776C2tha/+c1vjGXDhg3D+vXrERkZCa1Wi/fffx/jxo1Deno6hgwZ0qmNlStXYvny5cZtrVaLgIAAxMfHw8XFpVv9uBk6nQ4pKSmYPn06pFKp2dvvTRgLA8bBpLfGorlFjyOXKrA9Q43knBLUNrUY94X5OmNOtC9mR/rB7yb+X/bWWFgCY2HCWBhYOg5ts69vxKyJq71795qzOSIion5BJBIhJtANMYFu+Mfdw7E3twSbU5X45UwJcoursWbnWfy/n85iXIgn7hmpwIxwXzhyPaw+yZJjqatn7gmC0K3ZfN9//z1eeeUVbN26Fd7e3sbyMWPGGO92CADjxo3DyJEj8a9//QsffPBBp3ZkMhlkMlmncqlUatE3BZZuvzdhLAwYB5PeEAtBEJBWWIWtaSokZqhRVmO65NjfzR7zRsgxf4QCQ3ycb+k8vSEWtwtjYcJYGFgqDt1tk6NeIiKiHsTWRoz4cF/Eh/viSp0OiZkqbD6txMnLlTh4oQwHL5TBXpqFmRGG9bDGDTYtMEvUFU9PT0gkkk6zq0pKSjrNwrrahg0bsHTpUvzwww+YNm3adeuKxWLccccdOH/+/C33mYjoUmkNtqSpsC1Nifxy0+VE7o62uDvSD/Nj5BgZ6MbL6Yn6ASauiIiIeihXByl+PzoIvx8dhILyOmxOVWJTahEutz7enKqEj4sM80YosCBGgTA/819uRb2fra0tRo0ahZSUFCxYsMBYnpKSgnnz5l3zuO+//x5//OMf8f333+Puu+++4XkEQUBaWhoiIyPN0m8i6n9KtA3Ylm5Y7zFTecVYbi+VID7cB/NHKHDXEE9IeQMTon6FiSsiIqJeINDDAX+dNgRPTh2M0wVV2JxahO3pahRrG/HZ/kv4bP8lDPN1xsKR/pg3Qg5vF66HRSbLly/HkiVLEBsbi7i4OHz22WcoKCjAY489BsCw/pRSqcTXX38NwJC0euCBB/D+++9jzJgxxtla9vb2cHV1BQCsWrUKY8aMwZAhQ6DVavHBBx8gLS0NH330kXWeJBH1StoGHX7K0mBrmhJHLpZDLxjKJWIRJgzxxPwYBaYP94GDLd+6EvVX/O0nIiLqRUQiEUYFuWFUkBtenD0ce86WYnNqEXafLcFZTTX+mXQGa3aewbjBnpgX5Wu83Tf1b/feey/Ky8uxevVqqNVqREREICkpCUFBQQAAtVqNggLTLbc+/fRTNDc3489//jP+/Oc/G8sffPBBrF+/HgBQVVWFP/3pT9BoNHB1dUVMTAz279+PO++887Y+NyLqfRqbW7DnbCm2pinxy9kSNDXrjftGBblh/gg5EiL94OHUeV08Iup/mLgiIiLqpWQ2EsyM8MXMCF9U1jYhMVONzaeLcLqgCgfOl+HA+TLIxBIca87CvXcE4Y6BXAukP1u2bBmWLVvW5b62ZFSb7iwS/9577+G9994zQ8+IqD9o0Qs4lleOrakqJGWpUd3QbNw3xNsJ82MUmBstR4C7gxV7SUQ9ERNXREREfYCboy2WjAnCkjFByC+rNayHdboIhZX12HhahY2nVQjycMCikf64Z5Q/FAPsrd1lIiLq4wRBQLZKi61pSmxPV0OjbTDu83O1w9xoOeaOkGO4nws/WCGia+pTq9pVVlZiyZIlcHV1haurK5YsWYKqqqpuH//oo49CJBJh7dq1FusjERGRpQ30dMTT04fil6fvwpPhzVg4Ug4HWwkul9fhnZRzuOuN3bj//45ha5oSDTpeS0hEROZVUF6Hf/1yHtPe3YfZ/zqIfx/Ig0bbABc7G/z2zgB8/8gYHHpuClYmhCFc7sqkFRFdV5+acfW73/0ORUVF+OmnnwAAf/rTn7BkyRJs3779hsdu2bIFx44dg1wut3Q3iYiIbguRSIQQF+AvCRFYPS8SO7M0+OFkIY7lVeDghTIcvFAGZ5kNZkfLsTjWHzEBA/jmgYiIfpWymkbsyFBja5oSpwuqjOUyGzGmhflg7gg5JoV6QWYjsV4niahX6jOJqzNnzuCnn37C0aNHMXr0aADAv//9b8TFxSE3NxehoaHXPFapVOKJJ57Arl27unW758bGRjQ2Nhq3tVotAECn00Gn093iM+morT1zt9sbMRYmjIUJY2HCWBgwDibtY2ErlWJelA/mRfmgoKIOm1NV2JymgrKqAd8fL8D3xwsQ7OmIe2LkmD/CDz597K6Elnxd8LVGRP1VbWMzknM02JqmwoHzZWhpvSWgWASMG+yJudFyzIzwhbOd1Mo9JaLerM8kro4cOQJXV1dj0goAxowZA1dXVxw+fPiaiSu9Xo8lS5bgb3/7G8LDw7t1rjVr1mDVqlWdypOTk+HgYJnFBFNSUizSbm/EWJgwFiaMhQljYcA4mHQViyEAnh0GXNCKcKxEhPQKES6V1eLtlPN4J+Uchg0QMNpbQKSbAJs+tLCAJV4XdXV1Zm+TiKin0rXosf9cKbakqZCSo0GDznRHwGh/V8wdocCcKD9497EPQIjIevpM4kqj0cDb27tTube3NzQazTWPe+ONN2BjY4Mnn3yy2+dauXIlli9fbtzWarUICAhAfHw8XFxcbq7jN6DT6ZCSkoLp06dDKu3fn1QwFiaMhQljYcJYGDAOJjcTi+qGZuzM0mBjqgqnC6pwpkqEM1WAq70N5kT5YWGMAuFy5157KaElXxdtM6+JiPoqvV7AqYJKbElVIilTjco600zTgR4OmDdCgXkj5Aj2crJiL4mor+rxiatXXnmly9lN7Z04cQIAuhxMC4JwzUH2qVOn8P777+P06dM3NRCXyWSQyWSdyqVSqcXeJFmy7d6GsTBhLEwYCxPGwoBxMOlOLNylUvw+bhB+HzcIl0pr8OOpImw6rYRG24BvjxXi22OFCPVxxuJYf8wboYCXc+f/g72BJV4XfJ0RUV+Vq6nGljQltqWpoKyqN5Z7OskwJ9oP80coEOXPxdWJyLJ6fOLqiSeewH333XfdOgMHDkRGRgaKi4s77SstLYWPj0+Xxx04cAAlJSUIDAw0lrW0tOCZZ57B2rVrkZ+ff0t9JyIi6o2CvZzw95nD8Ex8KA5eKMOPp4qwK1uD3OJqvLbjDP7fzrOYFOqNxbH+mBzqDdu+dC0hEVE/p6yqx7Y0FbamKXFWU20sd5LZYEa4L+bHyBEX7AEbCf/2E9Ht0eMTV56envD09Lxhvbi4OFy5cgXHjx/HnXfeCQA4duwYrly5grFjx3Z5zJIlSzBt2rQOZTNmzMCSJUvwhz/84dY7T0RE1ItJxCJMHOqFiUO9cKVOh20ZKvx4qgjphVX4+Uwxfj5TDHdHW8wfocCiUf4YLjfv5fJERHR7VNU1ISlTgy1pShzPqzCWSyUiTAr1xvwRCkwN84adlHcEJKLbr8cnrrorLCwMM2fOxCOPPIJPP/0UAPCnP/0Js2fP7rAw+7Bhw7BmzRosWLAAHh4e8PDw6NCOVCqFr6/vde9CSERE1N+4OkixZEwQlowJwrniamw8VYRNqUqUVjfii0N5+OJQHsLlLlg0ynApobujrbW7TERE19HUAuzI1CAxsxj7zpVA1yIY940e5I75MQrMivDFAAf+PSci6+oziSsA+O677/Dkk08iPj4eADB37lx8+OGHHerk5ubiypUr1ugeERFRnzDUxxkrE8Lwtxmh2H++FD+cLMLPZ4qRrdIiW5WD15POYFqYDxaN8sfEoV68nISIyMr0egH55bXIUWtxRq1FlvIKjl6QoPF4hrFOmJ8L5o+QY060HPIB9lbsLRFRR30qceXu7o5vv/32unUEQbjufq5rRURE1D02EjGmDPPBlGE+qKhtwrY0JX44VYRslRY7szTYmaWBl7MM98QYLiUc4uNs7S4TEfV5dU3NOKupRo7KkKTKUWtxVl2Nel3LVTVF8B9gh3kxCswbocBQ/o0moh6qTyWuiIiIyDrcHW3x0LhBeGjcIOSotPjxVBG2pBkuJfx0/yV8uv8SogMGYNEof8yNksPVgXfiIyK6FYIgoFjbaExOtSWq8spr0dVn9TIbMYb5OmO43AVDvR1RnZ+Fx34zHra2vBSQiHo2Jq6IiIjIrIbLXfCSfDhWzBqGPbkl+OFkEfbkliC9sArphVV4NTEHM8J9sWiUP+4a7AmJmLdRJyK6Hl2LHhdLawxJKpW29ZK/alTUNnVZ38tZhuF+Lgjzc8FwuQuG+zljoIej8dJtnU6HpPIsiET8+0tEPR8TV0RERGQRtjZizAj3xYxwX5RWN2JrmhI/nCxCbnE1tqersD1dBV8XO9wz0nApYbCXk7W7TERkdVfqdcYEVdtsqvPFNWhq0XeqKxGLEOzpiOHy1iRVa7LKy1lmhZ4TEVkGE1dERERkcV7OMjw8PhhL7xqELKUWP5wqxNY0FTTaBny89yI+3nsRsUFuWDTKH3dH+cHZjpcSElHfJggCCivqDZf5tS6anqPSQllV32V9J5kNwvycMbx1FlWYnwuG+jjDTiq5zT0nIrq9mLgiIiKi20YkEiHS3xWR/q544e4w/JxTgh9PFWLfuVKcvFyJk5cr8cr2bMyK8MPiUf4YE+wBMS8lJKJerkHXgnPF1e1mUhkeVzc2d1lfMcC+wyyq4X4u8Hez599DIuqXmLgiIiIiq5DZSHB3lB/ujvJDsbYBm04r8eOpQlwsrcXmVCU2pyqhGGCPhaP8sXiUPwLcHazd5V7t448/xltvvQW1Wo3w8HCsXbsW48ePv2b9ffv2Yfny5cjOzoZcLsff//53PPbYYx3qbNy4ES+++CIuXryIkJAQ/POf/8SCBQss/VSIerSymsYOl/nlqLS4VFaLFn3nFdNtJWIM8XHqsB5VmK8Lb2BBRNQOE1dERERkdT4udnh8UggemxiM1MIq/HiqCNvTVFBW1eODX87jg1/OY/QgdyyODUBCpC8cbDmEuRkbNmzAU089hY8//hjjxo3Dp59+ilmzZiEnJweBgYGd6ufl5SEhIQGPPPIIvv32Wxw6dAjLli2Dl5cXFi5cCAA4cuQI7r33Xrz66qtYsGABNm/ejN/85jc4ePAgRo8efbufItFt16IXkFdW2+GOfjlqLUqrG7us7+5o2+lSvxAvJ0hbF0wnIqKucdRHREREPYZIJMLIQDeMDHTDS7OHY1e2Bj+eKsLBC2U4lleBY3kVeHlrFhIi/bA4NgB3DHTjXbG64d1338XSpUvx8MMPAwDWrl2LXbt24ZNPPsGaNWs61V+3bh0CAwOxdu1aAEBYWBhOnjyJt99+25i4Wrt2LaZPn46VK1cCAFauXIl9+/Zh7dq1+P7772/PEyO6TWoam3FW3W4WlboauRotGnSdF0wXiYBBHo4Ik5su8wvzc4GPi4x/r4iIfgUmroiIiKhHspNKMG+EAvNGKKCsqsfm00X48VQR8svr8MOpIvxwqghBHg5YNNIf94zyh2KAvbW73CM1NTXh1KlTWLFiRYfy+Ph4HD58uMtjjhw5gvj4+A5lM2bMwOeffw6dTgepVIojR47g6aef7lSnLdl1tcbGRjQ2mmaiaLVaAIBOp4NOp7vZp3VDbW1aou3ehrEw6E4cBEGARtuIHLUWZzU1ONP6/XJFXZf17aVihPo6I8zXGcN8nRHm54xQH6cuZ4U2N3e9npU18DVhwliYMBYmjIWBpePQ3XaZuCIiIqIeTzHAHk9MGYI/Tx6Mk5cr8cPJQuzIUONyeR3eSTmHd38+h3Ehnlgc648Z4b68y1Y7ZWVlaGlpgY+PT4dyHx8faDSaLo/RaDRd1m9ubkZZWRn8/PyuWedaba5ZswarVq3qVJ6cnAwHB8utX5aSkmKxtnsbxsKgLQ7NeqC4HlDWiqCsE0FZa3hc19L1rChXWwEKBwEKR7R+F+BpB4hF5QDKgTJAXQaoM2/jk7lFfE2YMBYmjIUJY2FgqTjU1XX9ocDVmLgiIiKiXkMkEuGOge64Y6A7Xpkbjp2ZGvxwqhBHL1Xg4IUyHLxQBmeZDWZHy7E41h8xAQN4aU6rq+MgCMJ1Y9NV/avLb6bNlStXYvny5cZtrVaLgIAAxMfHw8XFpXtPopuqG5qRq67CqRPHMX5cHOxsbWEjEUEqEUMqEcFGLDZsiw1lff1ObTqdDikpKZg+fTqk0t676LdeL0DXokdTi+G74avj46bWx03Nnes0NOlwMiMHogEKnC2uxcXSGuhaOi+YbiMWIcTL0TCLys80m8rd0dYKz9oy+sprwhwYCxPGwoSxMLB0HNpmX98IE1dERETUKznY2mDhKH8sHOWPwoo6/HjKcCmhsqoe3x8vwPfHCxDi5YhFowIwJ9Lb2t21Gk9PT0gkkk4zoUpKSjrNmGrj6+vbZX0bGxt4eHhct8612pTJZJDJZJ3KpVKp2QfDuQVa/PaL0wBs8HbmiRvWF4sAG4nYkMiyEcNG3Jrgakt2tSW6rkp82UoM343HSsSGx611pDaiLo+VSrqoaywzbNvatEuwScSGfWJTnavb606CtqtYC4KA5taEkK7ZlPjRdZEAampLAjWbtpuaOyaPmlrb6XiMqazpqmRSU/NV29ep39Vd+W6eBLhset262NmY7ubXuh7VEB8nyGz6x6xNS/z+9VaMhQljYcJYGFgqDt1tk4krIiIi6vUC3B3w9PSh+OvUITiaV44fTxYhKUuNi6W1eOOns3hr11mEuooRFVePQd79awBqa2uLUaNGISUlBQsWLDCWp6SkYN68eV0eExcXh+3bt3coS05ORmxsrHGQGRcXh5SUlA7rXCUnJ2Ps2LEWeBY3RyoRQTHADjW19ZDY2kLXIqC5RUCzXt/lDBu9ADQ169EEAE0tt72/5mAjbk20icWtyTdTkksiEkFbI8EbOfuhMyapTDOUeiuJWARpawLR1kZsTPC1JQFNZa2xEANVZSUYHz0EEYoBGC53gWKAPWdlEhH1cExcERERUZ8hFoswNsQTY0M8sWpeOJIy1fjxVBFO5FfiklYEd8f+lbRqs3z5cixZsgSxsbGIi4vDZ599hoKCAjz22GMADJfxKZVKfP311wCAxx57DB9++CGWL1+ORx55BEeOHMHnn3/e4W6Bf/3rXzFhwgS88cYbmDdvHrZu3Yqff/4ZBw8etMpzbC92oDv2PjMBSUlJSEiY3OET3bYZRs0tAnR6QwKnbcZRs3HmkCnJZSzXt9+vNybCmloENLero2u++lg9dHpDnfbtdXlsuz4061tnNulNdZpay7uaedSsNzyvBuiBxk67AYiAhoZuxc+2LdnTmvixbZf8kUoMiTFbiahDsqhDHZvOxxjqijrWt7lqu915bW+QhJJKxJDc5CWeOp3O8JqYHMIZFEREvQgTV0RERNQnOdtJce8dgbj3jkCc11ThP0n7u7zTV39w7733ory8HKtXr4ZarUZERASSkpIQFBQEAFCr1SgoKDDWHzRoEJKSkvD000/jo48+glwuxwcffICFCxca64wdOxb//e9/8Y9//AMvvvgiQkJCsGHDBowePfq2P7+bIRKJWpMfgD165+Vger3QMdnWRdKrqTUh19y6ttOJY0cx4a5xsJfZwrZdwujqJJKNuHuXHRIREd0u/XP0RkRERP3KQA9HjPAwx/o4vdeyZcuwbNmyLvetX7++U9nEiRNx+vTp67a5aNEiLFq0yBzdo5sgFotgKzbMeOoOnU6H8jNAlL8rZxoREVGv073/dkRERERERERERLcZZ1yZQdvtobt7K8ebodPpUFdXB61W2+8/IWMsTBgLE8bChLEwYBxMGAsTS8ai7f9/23iAuseS4yeAr//2GAsDxsGEsTBhLEwYCxPGwsDScejuGIqJKzOorq4GAAQEBFi5J0RERGQt1dXVcHV1tXY3eg2On4iIiAi48RhKJPDjwVum1+uhUqng7Oxs9sUstVotAgICUFhYCBcXF7O23dswFiaMhQljYcJYGDAOJoyFiSVjIQgCqqurIZfLIRZzFYbusuT4CeDrvz3GwoBxMGEsTBgLE8bChLEwsHQcujuG4owrMxCLxfD397foOVxcXPr1L0x7jIUJY2HCWJgwFgaMgwljYWKpWHCm1c27HeMngK//9hgLA8bBhLEwYSxMGAsTxsLAknHozhiKHwsSEREREREREVGPxMQVERERERERERH1SExc9XAymQwvv/wyZDKZtbtidYyFCWNhwliYMBYGjIMJY2HCWPQ//JmbMBYGjIMJY2HCWJgwFiaMhUFPiQMXZyciIiIiIiIioh6JM66IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiOiWrF+/HiKRCPn5+WZr86GHHoKTk5PZ2rsZN/N8Jk2ahEmTJlm8T7dCJBLhlVdeMW7n5OTglVde+dU/L2v+bIiIiPoLjq8mWbxPlnD1uGvv3r0QiUTYu3ev1fpE1BfYWLsDRERkOUeOHIG/v79xOycnB6tWrcKkSZMwcOBA63WMiIiIiIioG5i4IiLqAQRBQENDA+zt7c3a7pgxY8zaHhEREVFvcavjq7q6Ojg4OJi5V0R0s3ipIBHdVnV1dXj22WcxaNAg2NnZwd3dHbGxsfj+++871b1w4QISEhLg5OSEgIAAPPPMM2hsbOxQp6KiAsuWLYNCoYCtrS2Cg4PxwgsvdKiXn58PkUiE9evXdzrH1VO6uyIIAt58800EBQXBzs4OI0eOxM6dO7usq9Vqjc/P1tYWCoUCTz31FGprazud94knnsC6desQFhYGmUyGr7766rr9aDNp0iRERETgwIEDGDNmDOzt7aFQKPDiiy+ipaXlms9v/fr1WLx4MQBg8uTJEIlEneLy008/YerUqXB1dYWDgwPCwsKwZs2aTn3ozs+GiIiIbg+Or0znvdXx1f79+zF27Fg4ODjgj3/8IwCgoKAA999/P7y9vSGTyRAWFoZ33nkHer2+W20T0a3hjCsiuq2WL1+Ob775Bq+99hpiYmJQW1uLrKwslJeXd6in0+kwd+5cLF26FM888wz279+PV199Fa6urnjppZcAAA0NDZg8eTIuXryIVatWISoqCgcOHMCaNWuQlpaGHTt2mKXPq1atwqpVq7B06VIsWrQIhYWFeOSRR9DS0oLQ0FBjvbq6OkycOBFFRUV4/vnnERUVhezsbLz00kvIzMzEzz//DJFIZKy/ZcsWHDhwAC+99BJ8fX3h7e3d7T5pNBrcd999WLFiBVavXo0dO3bgtddeQ2VlJT788MMuj7n77rvx+uuv4/nnn8dHH32EkSNHAgBCQkIAAJ9//jkeeeQRTJw4EevWrYO3tzfOnTuHrKysDu1052dDREREtw/HV+YZX6nVatx///34+9//jtdffx1isRilpaUYO3Ysmpqa8Oqrr2LgwIFITEzEs88+i4sXL+Ljjz82SzyI6DoEIqJb8OWXXwoAhLy8vG7Vj4iIEObPn3/dOg8++KAAQPjf//7XoTwhIUEIDQ01bq9bt67Lem+88YYAQEhOThYEQRDy8vIEAMKXX37Z6VwAhJdffvmaz6eyslKws7MTFixY0OG4Q4cOCQCEiRMnGsvWrFkjiMVi4cSJEx3q/vjjjwIAISkpqcN5XV1dhYqKiuvGoisTJ04UAAhbt27tUP7II48IYrFYuHz58jWf3w8//CAAEPbs2dPh2OrqasHFxUW46667BL1ef81zd/dnQ0RERL8ex1cTjWW3e3z1yy+/dChfsWKFAEA4duxYh/LHH39cEIlEQm5u7jWf9549e7ocdxHRzeGlgkR0W915553YuXMnVqxYgb1796K+vr7LeiKRCHPmzOlQFhUVhcuXLxu3d+/eDUdHRyxatKhDvYceeggA8Msvv9xyf48cOYKGhgb8/ve/71A+duxYBAUFdShLTExEREQERowYgebmZuPXjBkzuryjzJQpU+Dm5var+uXs7Iy5c+d2KPvd734HvV6P/fv333R7hw8fhlarxbJlyzp8atmV7vxsiIiI6Pbh+MrkVsZXbm5umDJlSoey3bt3Y/jw4bjzzjs7lD/00EMQBAG7d+/+Veciou5j4oqIbqsPPvgAzz33HLZs2YLJkyfD3d0d8+fPx/nz5zvUc3BwgJ2dXYcymUyGhoYG43Z5eTl8fX07JVq8vb1hY2PTaXr8r9HWhq+vb6d9V5cVFxcjIyMDUqm0w5ezszMEQUBZWVmH+n5+fr+6Xz4+Ptfsz6953qWlpQDQ4Q6E19Kdnw0RERHdPhxfmdzK+KqrY8vLy7ssl8vlHZ4LEVkO17giotvK0dHRuKZBcXGx8dPBOXPm4OzZszfVloeHB44dOwZBEDoMrkpKStDc3AxPT08AMA7Qrl54tDsDDQ8PDwCGNaWuptFoMHDgQOO2p6cn7O3t8cUXX3TZVlt/2txoZtP1FBcXd9kfwNTnm+Hl5QUAKCoq+tV9IiIiIuvg+MrkVsZXXR3r4eEBtVrdqVylUnV5fiIyP864IiKr8fHxwUMPPYTf/va3yM3NRV1d3U0dP3XqVNTU1GDLli0dyr/++mvj/rbz2NnZISMjo0O9rVu33vAcY8aMgZ2dHb777rsO5YcPH+50adzs2bNx8eJFeHh4IDY2ttNX+0HYraqursa2bds6lP3nP/+BWCzGhAkTrnmcTCYDgE6XEIwdOxaurq5Yt24dBEEwWz+JiIjo9uL4yrymTp2KnJwcnD59ukP5119/DZFIhMmTJ1v0/ETEGVdEdJuNHj0as2fPRlRUFNzc3HDmzBl88803iIuLg4ODw0219cADD+Cjjz7Cgw8+iPz8fERGRuLgwYN4/fXXkZCQgGnTpgEwfHp2//3344svvkBISAiio6Nx/Phx/Oc//7nhOdzc3PDss8/itddew8MPP4zFixejsLAQr7zySqep7E899RQ2btyICRMm4Omnn0ZUVBT0ej0KCgqQnJyMZ555BqNHj76p53gtHh4eePzxx1FQUIChQ4ciKSkJ//73v/H4448jMDDwmsdFREQAAD777DM4OzvDzs4OgwYNgoeHB9555x08/PDDmDZtGh555BH4+PjgwoULSE9Pv+adComIiMj6OL4yz/iqK08//TS+/vpr3H333Vi9ejWCgoKwY8cOfPzxx3j88ccxdOhQi52biAyYuCKi22rKlCnYtm0b3nvvPdTV1UGhUOCBBx7ACy+8cNNt2dnZYc+ePXjhhRfw1ltvobS0FAqFAs8++yxefvnlDnXfeecdAMCbb76JmpoaTJkyBYmJid36lG716tVwdHTExx9/jG+++QbDhg3DunXr8Pbbb3eo5+joiAMHDuD//b//h88++wx5eXmwt7dHYGAgpk2bZtZPBH19ffHRRx/h2WefRWZmJtzd3fH8889j1apV1z1u0KBBWLt2Ld5//31MmjQJLS0t+PLLL/HQQw9h6dKlkMvleOONN/Dwww9DEAQMHDgQDz74oNn6TURERObH8ZXleHl54fDhw1i5ciVWrlwJrVaL4OBgvPnmm1i+fLlFz01EBiKB14QQEfUqkyZNQllZGbKysqzdFSIiIiIiIoviGldERERERERERNQj8VJBIjILQRDQ0tJy3ToSieSW7vTS17W0tFx3YXSRSASJRHIbe0RERETWxPHVreP4iqj344wrIjKLr776ClKp9Lpf+/bts3Y3e7SpU6deN34hISEAgL179/IyQSIion6A46tb193xFRH1XFzjiojMory8HHl5edetExoaCmdn59vUo94nNzcX1dXV19wvk8kQGRl5G3tERERE1sTx1a3j+Iqo92PiioiIiIiIiIiIeiReKkhERERERERERD0SF2c3A71eD5VKBWdnZy6MSERE1M8IgoDq6mrI5XKIxfxMsLs4fiIiIurfujuGYuKq1ccff4y33noLarUa4eHhWLt2LcaPH9+tY1UqFQICAizcQyIiIurJCgsL4e/vb+1u9BocPxERERFw4zEUE1cANmzYgKeeegoff/wxxo0bh08//RSzZs1CTk4OAgMDb3h822KIhYWFcHFxMWvfdDodkpOTER8fD6lUata2exvGwoSxMGEsTBgLA8bBhLEwsWQstFotAgICuDjyTbLk+Ang6789xsKAcTBhLEwYCxPGwoSxMLB0HLo7hmLiCsC7776LpUuX4uGHHwYArF27Frt27cInn3yCNWvW3PD4tuntLi4uFklcOTg4wMXFpV//wgCMRXuMhQljYcJYGDAOJoyFye2IBS93uzmWHD8BfP23x1gYMA4mjIUJY2HCWJgwFga3Kw43GkP1+8RVU1MTTp06hRUrVnQoj4+Px+HDh7s8prGxEY2NjcZtrVYLwPBD1el0Zu3fofMlSCsXQZSpgq3UBhKxyPAlMnwXG7+jwz5x+zpiGMtsOhwjguSqfT150N0WW3PHuDdiLEwYCxPGwoBxMGEsTCwZC8aXiIiI+qKqOh2OFIswvLwWQ3wHWK0f/T5xVVZWhpaWFvj4+HQo9/HxgUaj6fKYNWvWYNWqVZ3Kk5OT4eDgYNb+fZAlwcVqCb48l2XWdq9FBAEikeF2k2IROjwWtz4WtXvcVn51PZHxsdDlcV22cdV5jO2234YYSV/8AlN6TYCotT3Tc2j3uIty0XX23eiY9vtvWHadNkXtKlzvmC73tZbLJCIot6TAWQo4SQ3x6c9SUlKs3YUeg7EwYBxMGAsTS8Sirq7O7G0SERERWYO2QYeU7GIkZqhw4HwZmvUSuKWq8NysAVbrU79PXLW5eqaRIAjXnH20cuVKLF++3Ljddl1mfHy82ae6H2vOhnC2CC6urtAD0OuBFr1g+BIE6Dt8B/R6Ac16AXrh6jqmfdcjQARBAPSGDTPo59mU20QsAtwdbeHpaAtPZ5nxu5eTLTycDN+9nGTwcLLFAHspxH0oy6XT6ZCSkoLp06f362m8AGPRhnEwYSxMLBmLtpnXRERERL1RXVMzfjlTgu3pKuw9V4qmZr1xn8JBQICbvRV7x8QVPD09IZFIOs2uKikp6TQLq41MJoNMJutULpVKzT4YXjU3HEk2l5GQMMZsbbclu1raJbj0eqBZr29NdMGU8GqX/GrWX3WMIKClq0TaVUk14/72x7Rrs0N/rj6fsU1A19KC/Lx8BAYFQdSaeBEEU35NEIC2LUFo2wYECO0etx1jKjAdL3Roq6tyCFe1166t6/altZ32fTA9NmUIu+zz1edE6y3ESyvRJJahvLYJegEoq2lCWU0TUFxz3Z+/jVgETycZPJ0NySwvZxk8r/re9tjFzqZHXz7aniV+/3orxsKAcTBhLEwsEQvGloiIiHqbBl0L9uaWIjFDhV/OlKBe12LcF+LliDnRcswc7o3cE/uQMMq6d03u94krW1tbjBo1CikpKViwYIGxPCUlBfPmzbNizyxHLBZBDBGkEmv35ObodDokJV1CQkJYv3+TYIhFEhISJkEklqCirgll1U0orWlEaXUjyq763va4sk6HZr0AjbYBGm3DDc9jayOGl5OsdfZWa1LLybZDcqvtu6Os3/85ISIiIiIi6rGamvU4eKEUielqJOcUo6ax2bgv0N0Bs6P8MCdajmG+zhCJRNDpdMi1Yn/b8J0mgOXLl2PJkiWIjY1FXFwcPvvsMxQUFOCxxx6zdteIbshGIoa3sx28ne1uWLepWY/y2sbWJFdDa0KryZDcakt2tT6ubmhGU7Meyqp6KKvqb9i2g63ElMzqcgaXrbHMrrdlTYmIiIiIiHqh5hY9jl6qwPZ0FX7K1uBKvemmMnJXO9zdmqyKVLj22KttmLgCcO+996K8vByrV6+GWq1GREQEkpKSEBQUZO2uEZmVrY0Yfq728HO1B+B63boNupaOs7ZqTAmv9rO7SqsbUa9rQV1TCy6X1+Fy+Y0XKXa2s2mdvXX1bK6Olyp6ONlCKhGb6dkTERERERH1fXq9gBP5FUjMUGNnltqwpEwrTycZZkf5YXaUH0YGuvWK9Y+ZuGq1bNkyLFu2zNrdIOox7KQSBLg7IMD9xnfKrG1s7iLJ1TaLq6nDdlOzHtUNzahuaMal0tobtu3mIO14aeJVs7nc7CVot3YgERERERFRvyMIAtIKq7A9XY2kTHWHpWHcHKSYGeGHOdF+GD3IA5JekKxqj4krIrpljjIbOMpsMNDT8br1BEGAtqG5y/W3jAmv1sflNU1o1guorNOhsk6Hc9dZdN5WLMGOqlRMDvPBpKFe3Uq2ERERERER9WaCICBbpUVihhqJGSoUVZqWeHG2s8GMcF/MjvLDuMGevfpKFiauiOi2EYlEcLWXwtVeisHeTtetq9cLqKrXXTfJVVrdCPWVelypb8bu3FLszi0FAAR7OWLSUG9MDPXC6EHuXFOLiIiIiIj6jPPF1dierkJihhqXykxXsTjYSjAtzAdzouWYMNQTMpu+8T6IiSsi6pHEYhHcHW3h7miLUDhfs15TUxP+/eNOCD5h2H+hHKcuV+JSaS0ulebhi0N5sJOKERfsgYlDvTAp1PuGs8KIiIiIiIh6mryyWiS2Jqtyi6uN5TIbMaYM88acaDkmh3rD3rZvJKvaY+KKiHo1kUgEf0cgYcIgPDF1KLQNOhy+UIa9uaXYm1sKjbYBe3JLsSe3FNieg4EeDsYk1phgjz75h52IiIiIiHq/oso67MhQY3uGCllKrbFcKhFh4lAvzI6SY9pwHzjJ+nZqp28/OyLqd1zsDAsPzozwgyAIOFdcg725JdibW4qTlyuQX16H/COX8dWRy7C1EWP0IHdMCvXGxKFeCPFy7LG3gCUiIiIior6vWNuAHa1rVp0uqDKWS8QijBvsidlRfpgx3BeuDlLrdfI2Y+KKiPoskUiEUF9nhPo649GJIahpbDbMxjpXin25pVBW1ePA+TIcOF+GVwH4u9ljUqgXJg71xtgQDzj28U8uiIiIiIjI+sprGpGUpUFiugrH8ysgCIZykQgYPcgdc6LlmBnuCw8nmXU7aiV8V0ZE/YaTzAbx4b6ID/eFIAi4WFqDvbml2HeuFMcuVaCosh7fHi3At0cLYCsR445BbsbLCod4O3E2FhERERERmcWVOh12ZWuwPUOFwxfL0aIXjPtGBblhdpQfEiL94ONiZ8Ve9gxMXBFRvyQSiTDY2xmDvZ3x8Phg1DU148jFcuw7Z1gbq6CiDoculOPQhXK8nnQWclc7TGydjTVusAec7frP1FwiIiIiIrp1NY3NSMnRIDFdjf3nS6FrMSWrIhWumBPth7uj5FAMsLdiL3seJq6IiAA42NpgapgPpob5QBAE5JXVGpNYRy+VQ3WlAd8fL8T3xwthIxZhVJCbcW2sMD9nzsYiIiIiIqJO6ptasPtsCbanq7AntwSNzXrjvmG+zpgTLcfdkX68+/l1MHFFRHQVkUiEYC8nBHs54Q/jBqFB14Kjl8qNlxXmldXiWF4FjuVV4I2fzsLHRYaJQw2zse4a4glXe87GIiIiIiLqrxqbW7AvtxTbM9T45Uwx6ppajPuCvRwxO0qOOVF+GOLjbMVe9h5MXBER3YCdVIJJod6YFOoNALhcbpiNtS+3FIcvlqNY24j/nSzC/04WQSIWYWTgAOPaWMP9XCAWczYWEREREVFfpmvR4+CFMiSmq5GcrUF1Y7Nxn7+bPeZEyzE7yg/D/Vx4tcZNYuKKiOgmBXk44oE4RzwQNxANuhacyK/AvtxS7D1XigslNTiRX4kT+ZV4O/kcPJ1kmDDUE5NCvTF+sCfcHG2t3X0iIiIiIjKDFr2AY5fKsT1DhZ1ZGlTV6Yz7fF3scHeUH+ZEyxHt78pk1S1g4oqI6BbYSSUYP8QL44d44R8AiirrjGtjHb5QhrKaRmw6rcSm00qIRUB0wABMGuqNiaFeiFK4cjYWEREREVEvotcLOFVQicR0FXZkalBW02jc5+lki4RIP8yOkiM2yI1jfTNh4oqIyIz83Rzw+9FB+P3oIDQ163HysmE21r5zpTirqUZqQRVSC6rw3s/n4O5oiwlDPDEx1AsThnjBw0lm7e4TEREREdFVBEFAetGV1mSVGuorDcZ9AxykmBXhi9lRcowe5A4bidiKPe2bmLgiIrIQWxsxxoZ4YmyIJ1YmhEF9pd6YxDp4vgwVtU3YkqbCljQVRCIgSuFqWOQ91BsjAgZAwk9oiIiIiIisQhCAM+pq7MwpQWKGCoUV9cZ9zjIbTA/3wZxoOe4a7Akpk1UWxcQVEdFt4udqj/vuDMR9dwZC16LH6cuVxssKc9RapBddQXrRFXyw+wJc7aUYP8SwNtaEoZ7wdrazdveJiIiIiPq8CyU12JpaiA1pEpQcPWIst5dKMG24D+ZE+WHCUC/YSSVW7GX/wsQVEZEVSCVijA72wOhgD/x95jCUaBsMSaxzpThwrhRX6nVIzFAjMUMNAAiXu2BSqBcmDvXGyMABnIJMRERERGQmRZV12J6uxvZ0FXLU2tZSEWxtxJgS6o3Z0X6YMswbDrZMoVgDo05E1AN4u9hhcWwAFscGoLlFj/SiKuzNNczGylReQbZKi2yVFh/tuQhnOxuMH+JpuKxwqDd8XTkbi4iIiIjoZpRUNyApQ41t6SqcLqgyltuIRbhrsAf89cVYfu8UuDvbW6+TBICJKyKiHsdGIsaoIHeMCnLHM/GhKKtpxP7WSwoPnC9FZZ0OSZkaJGVqAADDfJ0xMdQL40Pc0SJYufNERERERD3UlToddmapsT1DhSMXy6FvHTuLRMCYQR6YO0KOmeG+cLIVISkpCc52TJn0BPwpEBH1cJ5OMtwz0h/3jPRHi15ARutsrH3nSpFeVIWzmmqc1VTj032X4CyVIEN0FotiAxEud4FIxAXeiYiIiKj/qm1sxs9nirEtTYX950uha/dJb0zgAMyJkmN2lB+8XUxXMeh0Omt0la6BiSsiol5EIhYhJtANMYFueHr6UFTUNuHA+VLsyy3FntwSVNbpsP5IAdYfKcBgbycsiFFgbrQcAe4O1u46EREREdFt0aBrwd7cUmzPUOGXM8Vo0OmN+4b5OmNOtJxj5F6k3yeu/vnPf2LHjh1IS0uDra0tqqqqrN0lIqJuc3e0xbwRCswboUBdQyPe++8uqGwU+PlsCS6U1OCtXbl4a1cu7hzojvkxCtwd6QdXB6m1u01EREREZFbNLXoculiObWkqJGdrUN3YbNw30MMBc6PlmBMtxxAfZyv2kn6Nfp+4ampqwuLFixEXF4fPP//c2t0hIvrVpBIxItwE/D0hCg0twE9ZGmxJU+LwxXIcz6/A8fwKvLItG5OHeWFBjAKTh3lDZsPb+BIRERFR76TXCzh5uRLb0pVIytSgorbJuM/P1Q6zo/wwN1qBCAWX0OjN+n3iatWqVQCA9evXW7cjRERm5GwnNd6lUHOlAVvTlNicqsRZTTV2ZRdjV3YxXOxscHeUHxbE+CM2yA1iMf+ZExEREVHPJggCMpVXsD1dhcQMNdRXGoz73B1tkRDpi7nRCo5v+5B+n7j6NRobG9HY2Gjc1mq1AAwLuJl7Ebe29rg4HGPRHmNhwliYXCsWHg4S/HFsIP44NhBnNdXYlq7Gtgw1irWN+P54Ib4/XgjFADvMjfLD3Gg/DPZ2skb3zYavCRPGwsSSsWB8iYiILO98cTW2pauwPV2F/PI6Y7mzzAYzInwxJ1qOcSEesJGIrdhLsgQmrn6FNWvWGGdqtZecnAwHB8ss7paSkmKRdnsjxsKEsTBhLExuFIsIAMOHAxe1IpwoFSG9QgRlVQM+2Z+HT/bnwd9RQKynHiM9Bbja3p4+WwJfEyaMhYklYlFXV3fjSkRERHTTCsrrsD3DkKw6q6k2lttJxZga5oO50XJMHOoFOymXv+jL+mTi6pVXXukysdTeiRMnEBsb+6vaX7lyJZYvX27c1mq1CAgIQHx8PFxcXH5Vm9ei0+mQkpKC6dOnQyrt3wsqMxYmjIUJY2Hya2PRoGvBntxSbElTY//5MhTVAkW1EmwrAMaGeGBetB+mh3nDUdY7/mXwNWHCWJhYMhZtM6+JiIjo1hVrG7AjQ41t6SqkFVYZy6USESYO9cKcaDmmhfn0mrEp3bo++ZN+4okncN999123zsCBA391+zKZDDKZrFO5VCq12BsDS7bd2zAWJoyFCWNhcrOxkEqlmBsTgLkxAaiobcKODBU2pypxuqAKBy+U4+CFcthLJZgR7oP5MQrcNdizV0zB5mvChLEwsUQsGFsiIqJbU1nbhJ1ZGmxPV+FoXjkEwVAuFgFxIR6YGy3HjHBfDHDoxZcD0K/WJxNXnp6e8PT0tHY3iIh6HXdHWyyJG4glcQNxubwWW1JV2JKmRF5ZLbakqbAlTQVPJ1vMiZZjQYwCkQpX3qGFiIiIiG5aTWMzUnI02JamwoHzZWjWC8Z9IwMHYG60HAlRfvB2trNiL6kn6JOJq5tRUFCAiooKFBQUoKWlBWlpaQCAwYMHw8mpdy9QTER0K4I8HPHXaUPw5NTBSC+6gi2pSmxLV6GspglfHsrHl4fyEezliAUjFJgfo0CAu2XW+CMiIiKivqFB14I9Z0uwPUOFX86UoLFZb9w33M8Fc6LlmB3lx3ElddDvE1cvvfQSvvrqK+N2TEwMAGDPnj2YNGmSlXpFRNRziEQijAgYgBEBA/DC3WE4cL4Um1NVSM7W4FJpLd5JOYd3Us7hjoFumB+jwN2RfpzGTUREREQAAF2LHgcvlGF7mgrJOcWoaWw27gv2dMScaDnmRPthsLezFXtJPZnVE1e/ZkFTcy6Avn79eqxfv95s7RER9WVSiRhThvlgyjAfVDfosCu7GFtSlTh0sQwn8itxIr8Sr2zLxuRQbyyIUWDyMG/e5YWoh7D2mIuIiPoPvV7A8fwKbEtXYWemGpV1OuM+uatda7JKjnC5C5edoBuyeuJqwIABN/VCFYlEOHfuHIKDgy3YKyIiuhFnOykWjfLHolH+0FxpwPZ0w6LuOWotknOKkZxTDGc7G9wd6Yf5MQrcOdAdYjEHJkTWwjEXERFZkiAISC+6gu3pKiRmqFCsbTTu83SyRUKkH+ZGyzEy0I1jQropVk9cAcCPP/4Id3f3G9YTBAEJCQm3oUdERHQzfF3t8MiEYDwyIRi5mmpsSVNia6oSqisN+O+JQvz3RCHkrnaYF6PAghgFhvpwKjiRNXDMRURE5parqca2dCW2p6tRUFFnLHe2s8GsCF/MiZYjLtijV9yVmnomqyeugoKCMGHCBHh4eHSrfnBwMG87TUTUg4X6OuO5mcPwt/hQHMurwJZUJZIy1VBdacAney/ik70XMdzPBfeMVGButBzeLrxTDNHtwDEXERGZy+XyWmxPV2FbugrnimuM5fZSCaYN98HcaDkmDPWEzIZLRtCts3riKi8v76bqZ2VlWagnRERkTmKxCHEhHogL8cCqeeHYfbYEm1OV2Jtbghy1Fjk7tHg96QzGDfbE/BEKzIjwhZPM6v+WiPosjrmIiOhWaK40IDFDhe3pKqQXXTGWSyUiTBzqjbkj5JgW5g0HW47nyLz4iiIiIouzk0qQEOmHhEg/VNY2YUemGptTlTh1uRIHzpfhwPkyvLAlE/HDfbEgRoG7hnhCyunkRERERFZVXtOInVkabEtX4UR+BQTBUC4WAeMGe2JOtBwzhvvC1YEzdMlyelTi6oMPPuiyXCQSwc7ODoMHD8aECRMgkXC6IRFRb+XmaIv7xwTh/jFBKCivw5Y0JbakKnGprBbbWqecezjaYk60HAtiFIjyd+XdZojMzBxjrv379+Ott97CqVOnoFarsXnzZsyfP99CPSYiotuluqEZuzOKsT1dhYMXytCiF4z7YoPcMHeEHLMi/ODlLLNiL6k/6VGJq/feew+lpaWoq6uDm5sbBEFAVVUVHBwc4OTkhJKSEgQHB2PPnj0ICAiwdneJiOgWBXo44MmpQ/CXKYORUXQFm1OV2J6uQnltE9Yfzsf6w/kI9nTE/BgF5o9QINDDwdpdJuoTzDHmqq2tRXR0NP7whz9g4cKFt/kZEBGROTXoWpCcpcHnuWL87cReNDXrjfsiFC6YEyXH7Gg5FAPsrdhL6q961HUYr7/+Ou644w6cP38e5eXlqKiowLlz5zB69Gi8//77KCgogK+vL55++mlrd5WIiMxIJBIhOmAAXpkbjqPPT8WXf7gD80bIYScV41JZLd5NOYcJb+3Bwk8O45ujl1FZ22TtLhP1auYYc82aNQuvvfYa7rnnntvYcyIiMhdBEHA8rwIrN2Xgjn/+jCc3ZCCjQoymZj1CvBzx9LSh+OWZiUj8y3g8OjGESSuymh414+of//gHNm7ciJCQEGPZ4MGD8fbbb2PhwoW4dOkS3nzzTX6qR0TUh0klYkwO9cbkUG/UNDYjOVuDzalKHLpQhlOXK3HqciVWb8/GxKHeuGekAlOGecNOykvIiW6GNcZcjY2NaGxsNG5rtVoAgE6ng06nM9t52rS1aYm2exvGwoBxMGEsTPpjLPLLa7ElTY2t6WoUVdYby31dZAh3qsey2Xci0t/NuFRDf4pNm/74uuiKpePQ3XZ7VOJKrVajubm5U3lzczM0Gg0AQC6Xo7q6+nZ3jYiIrMBJZoN7RvrjnpH+KNY2YHu6CptTlchWafHzmWL8fKYYzjIbJET6YX6MAqMHuVu7y0S9gjXGXGvWrMGqVas6lScnJ8PBwXKXAaekpFis7d6GsTBgHEwYC5O+HotaHXC6XISTpWLk15jWDpWJBUR7CLjTS0CISy3EIqAo8yiKMq3Y2R6kr78uustScairq+tWvR6VuJo8eTIeffRR/N///R9iYmIAAKmpqXj88ccxZcoUAEBmZiYGDRpkzW4SEZEV+LjY4eHxwXh4fDDOFVdjS6oSW9NUUFbVY8PJQmw4WQg/VzvMifKFW/f+BxL1W9YYc61cuRLLly83bmu1WgQEBCA+Ph4uLi5mO08bnU6HlJQUTJ8+HVJp/77bFWNhwDiYMBYmfTkWjc167DtXii1pauw9Vwpdi2GRdbEIuGuwB+ZFyzE9zBv2toaZ6305FjeLsTCwdBzaZl/fSI9KXH3++edYsmQJRo0aZQxKc3Mzpk6dis8//xwA4OTkhHfeecea3SQiIisb6uOMv88chmfjQ3EivwJb0pRIzFBDfaUBnx3IB2CDpLKj+E1sAOZGK3iLZqKrWGPMJZPJIJN1vgOVVCq16JsCS7ffmzAWBoyDCWNh0ldiIQgCThdUYdPpIiRmqHGl3nQp1nA/F9wzUoG50XJ4u9hds42+EgtzYCwMLBWH7rbZoxJXvr6+SElJwdmzZ3Hu3DkIgoBhw4YhNDTUWGfy5MlW7CEREfUkYrEIo4M9MDrYAy/PCceesyXYdLoIu88WI1OpRaYyG6/uOIOZ4b5YHOuPcSGeEItFN26YqI/jmIuIqG8pKK/DptQibElVIr/cNPXcx0WG+SMUWDBSgWG+5p/dSnQ79KjEVZvg4GCIRCKEhITAxqZHdpGIiHoYO6kEsyL9MG2YJ/63NQl13uHYeFqFs5pqbEtXYVu6CooB9lg4yh+LR/kjwN1ya+oQ9Ra3MuaqqanBhQsXjNt5eXlIS0uDu7s7AgMDzd1VIiK6ypU6HXZkqrHpdBFOXq40ljvYSjAz3BcLRiowNsQTEn5oR71cj8oK1dXV4S9/+Qu++uorAMC5c+cQHByMJ598EnK5HCtWrLByD4mIqDdwkgK/iQvCw+NDkKXU4n8nC7E1TQllVT0++OU8PvjlPOKCPfCbO/wxM9zPuLYDUX9hjjHXyZMnO8zKalu/6sEHH8T69est0m8iov6uqXXdqs2pRfg5pwRNLXoAgEgE3DXYEwtiFJgR7gtHWY96q090S3rUq3nlypVIT0/H3r17MXPmTGP5tGnT8PLLLzNxRUREN0UkEiHS3xWR/q544e4wJOcU44eThTh4oQxHLpXjyKVyvCTLxuxoOX4T648RAQOMt34m6svMMeaaNGkSBEGwZDeJiAiGdavSi65g8+kibEtXobLOtG5VqI8z7hmpwLwRCvi6XnvdKqLerEclrrZs2YINGzZgzJgxHd44DB8+HBcvXrRiz4iIqLezk0owN1qOudFyKKvqsfFUEX44VYjCinp8f7wA3x8vwBBvJyyO9ceCGH94OXdeRJqor+CYi4io5yuqrMOWVCU2nVbiUlmtsdzTSYb5I+RYMFKB4X4u/NCN+rwelbgqLS2Ft7d3p/La2lr+MhIRkdkoBtjjyalD8MTkwTiaV44fTxYhKUuN8yU1eD3pLN78KReTh3njN7EBmBTqBalEbO0uE5kVx1xERD2TtkGHnZlqbDqtxLG8CmO5nVSMGeG+WBCjwF2DPWHDsQn1Iz0qcXXHHXdgx44d+Mtf/gIAxoHTv//9b8TFxVmza0RE1AeJxSKMDfHE2BBPvDIvHInpavzvZCHSCquQklOMlJxieDrJcM9IBRaP8scQH2drd5nILDjmIiLqOXQtehw4X4pNp5VIySlGY7Np3aq4YA8siFFgZoQvnO2kVu4pkXX0qMTVmjVrMHPmTOTk5KC5uRnvv/8+srOzceTIEezbt8/a3SMioj7MxU6K340OxO9GB+J8cTV+OFWETaeLUFbTiM/2X8Jn+y8hJnAAFo8KwOxoP7hw8Ei9GMdcRETWJQgCspRabEotwvZ0Fcpqmoz7Bns74Z6RCswfoYB8gL0Ve0nUM/SoxNXYsWNx6NAhvP322wgJCUFycjJGjhyJI0eOIDIy0trdIyKifmKIjzOeTwjD32aEYm9uKf53shC7z5YgtaAKqQVVWJ2YjYQIPyyODcDoQe4Q8zbT1MtwzEVEZB2qqnpsSVNi82klzpfUGMs9HG0xd4Qc98T4I0LBdauI2utRiSsAiIyMNN6a2dLy8/Px6quvYvfu3dBoNJDL5bj//vvxwgsvwNbW9rb0gYiIei6pRIzpw30wfbgPSqobsCVVif+dLMKFkhpsSlViU6oSAe72WDwqAAtH+UPBT0WpF7mdYy4iov6sprEZOzPV2JyqxJFL5Wi7IautjRjxw31wz0gFxg/hmppE12L1xJVWq+12XRcXF7Oe++zZs9Dr9fj0008xePBgZGVl4ZFHHkFtbS3efvtts56LiIh6N29nO/xpQggeGR+MtMIq/O9kERLTVSisqMe7Kefw3s/ncNdgTyyODUD8cB/YSSXW7jJRB9YccxER9TfNLXocvFCGzalK7MrWoEGnN+67c5A7Fo5UYFYklx4g6g6rJ64GDBjQ7WmQLS0tZj33zJkzMXPmTON2cHAwcnNz8cknn1w3cdXY2IjGxkbjdttAUKfTQafTmbWPbe2Zu93eiLEwYSxMGAsTxsLgdsQhws8JEXOGYeWMIUjOKcaPp5U4mleJA+fLcOB8GVzsbDA32g8LYxQIlztbbbo/XxMmloxFb4mvNcdcRET9RY5Ki02ni7A1XYXSatN7xmBPR9wzUoF5IxQIcHewYg+Jeh+rJ6727NljfJyfn48VK1bgoYceMt7R5siRI/jqq6+wZs2a29KfK1euwN3d/bp11qxZg1WrVnUqT05OhoODZf4IpaSkWKTd3oixMGEsTBgLE8bC4HbFQQrgt77A9AHA8VIxjpWIUNXQjG+PFeLbY4WQOwgY7a1HrKcAJyt9qMrXhIklYlFXV2f2Ni2hp425iIj6imJtA7amKbHptBJnNdXGcjcHKeZEy3HPSH9E+7ty3SqiX8nqiauJEycaH69evRrvvvsufvvb3xrL5s6di8jISHz22Wd48MEHLdqXixcv4l//+hfeeeed69ZbuXIlli9fbtzWarUICAhAfHy82afW63Q6pKSkYPr06ZBK+/c0UsbChLEwYSxMGAsDa8bhAQAtegFHLlVg42klks+UQFWnx+Z8CRILRZgS6oVFoxS4K8QDNrdhHQu+JkwsGYubuQTPmnrSmIuIqLera2rGrmwNNp1W4tCFMujb1q2SiDE1zBv3jPTHxKFesLXhulVEt8rqiav2jhw5gnXr1nUqj42NxcMPP9ztdl555ZUuZ0S1d+LECcTGxhq3VSoVZs6cicWLF9/wXDKZDDKZrFO5VCq12BsDS7bd2zAWJoyFCWNhwlgYWCsOUgCTw3wxOcwXV+p02JZuWNA9U3kFu3JKsCunBN7OMiwc5Y/Fo/wR7OVk+T7xNWFkiVj0xtiaa8xFRNSftOgFHLlYjk2ni/BTtgZ1TabLqmOD3HDPSH/cHekHV4fe93+BqCfrUYmrgIAArFu3rtOMp08//RQBAQHdbueJJ57Afffdd906AwcOND5WqVSYPHky4uLi8Nlnn91Un4mIiK7F1UGKJXEDsSRuIM6otfjhZBE2pxahpLoRn+y9iE/2XsQdA92weFQAEqL84CTrUf+WqQ8z15iLiKg/yNVUY1NqEbakKlGsNa1bFeThgAUxCiyIUSDIw9GKPSTq23rUCPm9997DwoULsWvXLowZMwYAcPToUVy8eBEbN27sdjuenp7w9PTsVl2lUonJkydj1KhR+PLLLyEWcyonERGZX5ifC16aMxwrZg3D7rPF+N/JIuzNLcGJ/EqcyK/EK9uzcXekHxbHBuCOgW5cB4MsylxjLiKivqqkugHb0lTYnKpEtsp0SbirvRSzo/xwz0h/jAzs/k0viOjX61GJq4SEBJw/fx6ffPIJzpw5A0EQMG/ePDz22GMW+fRPpVJh0qRJCAwMxNtvv43S0lLjPl9fX7Ofj4iIyNZGjJkRfpgZ4YdibQM2ni7CjyeLcKmsFj+cKsIPp4owyNMRi0b5Y+FIf/i62lm7y9QH3e4xFxFRb1Df1ILkHA02pypx4HwZWloXrpJKRJgc6o17RioweZg3ZDYSK/eUqH+xeuIqIyMDERERxplO/v7++Oc//3nN+tnZ2QgNDYWNza13PTk5GRcuXMCFCxfg7+/fYZ8gCLfcPhER0fX4uNhh2aTBeHxiCE5drsT/ThYiMUONvLJavLUrF+8k52LCUC/8JjYAU8M4UKZbY80xFxFRT6XXCzh/RYQVm7OwK7sENY3Nxn0xgQNwT4wCs6PkcHO0tWIvifo3q49EYmJioNFo4OXl1a36cXFxSEtLQ3Bw8C2f+6GHHsJDDz10y+0QERHdCpFIhNiB7ogd6I6X54QjKVONH04W4Xh+BfbmlmJvbincHKSYH6PA4lEBGC437x1sqX+w5piLiKgnEQQBaYVVSMxQY0eGChqtBIAKAODvZo97YhSYH6O4LTdQIaIbs3riShAEvPjii3BwcOhW/aamJgv3iIiIyHocZTZYHBuAxbEByCurxY+nCvHjqSIUaxvx5aF8fHkoHxEKF/wmNgBzo+UY4MBPgKl7OOYiov5MEARkq7TYnqHCjgw1iirrjfvsJQLmxvhj4ahAxAa5QSzmulVEPYnVE1cTJkxAbm5ut+vHxcXB3t7egj0iIiLqGQZ5OuJvM4Zh+fRQ7D9fih9OFiIlpxhZSi2ylNl4LfEM4sN98JvYAIwb7AkJB9p0HRxzEVF/IwgCcourkZiuRmKGCvnldcZ9DrYSTAvzwaxwb9RePIl5s8MhlUqt2FsiuharJ6727t1r7S4QERH1aBKxYVHYyaHeqKhtwtY0Jf53sghn1FokZqiRmKGG3NUOC0f5Y9Eof96Sm7rEMRcR9RcXSqqxPV2NHZlqXCipMZbbScWYMswbs6PkmBzqDXtbCXQ6HZLyrNhZIrohqyeuiIiIqPvcHW3xh3GD8Idxg5ClvIIfThZiS5oKqisN+NfuC/jX7gsYE+yOxaMCMG2Yh7W7S0REdFvkl9UiMUOFxAw1zmqqjeW2NmJMGuqFu6P8MC3MB44yvgUm6m34W0tERNRLRShcEaFwxcqEMKTkFOOHU0U4cL4URy9V4OilCjjKJIhyFSNIpcWIICaxiIiobymsqMOOTMNlgFlKrbFcKhFh/BAvzI7yw7ThPnCx4yWARL0ZE1dERES9nJ1UgjnRcsyJlkNVVY+Np4rww6kiFFTU4UiJGPM/OYrogAFYMiYIs6P8YCeVWLvLREREv4r6Sj12ZKixPUON9MIqY7lELMLYEA/MiZJjRrgvXB2YrCLqK5i4IiIi6kPkA+zxl6lD8OfJg3H4Qgne3XocmVUSpBdWIb2wCq8m5mDxKH/8fkwQBnlyLSwiIur5SrQNSMo0rOl48nKlsVwsAkYP8sDsaD/MDPeFh5PMir0kIkth4oqIiKgPEotFGD3IHQ8O1ePOCZOxKU2D/xwrgLKqHv93MA//dzAPdw32xP1jAjEtzAc2ErG1u0xERGRUXtOInVkaJGaocCyvAoJg2nfHQDfMjpJjVqQvvJ3trNdJIrotmLgiIiLq4zydZPjz5MF4bGII9p0rwbdHC7AntwQHL5Th4IUy+LjIcN8dgfjtnYHwdeUbACIiso6quibsytYgMUONwxfL0aI3ZatiAgdgdpQcd0f68X8VUT/DxBUREVE/IRGLMGWYD6YM80FhRR2+P16ADScKUaxtxPu/nMeHey5gepgP7h8ThLEhHhCLRdbuMhER9XHaBh2Ss4uRmKHCwfNlaG6XrIpUuGJ2lB/ujvKDv5uDFXtJRNbExBUREVE/FODugL/PHIa/ThuCn7I0+O5oAY7nV+CnbA1+ytZgkKcjfj86EItG+WOAg621u0tERH1ITWMzfjlTjO3pauw/V4qmFr1x3zBfZ8yJNsysGsi1GIkITFwRERH1azIbCeaNUGDeCAVyNdX47thlbDqtRF5ZLV7bcQZv7crF7Cg57h8TiBEBAyAScRYWERHdvPqmFuw+W4LEDBV2ny1BY7MpWTXY2wmzo/wwO0qOwd5OVuwlEfVETFwRERERACDU1xmr50XguZnDsDVNhW+PXkaOWouNp4uw8XQRwuUuWDImCHNHyOFgyyEEERFdX4OuBfvOlSIxQ41fzhSjrqnFuG+Qp6MxWTXUx4kfjBDRNXHUSURERB04ymzwu9GB+O2dAUgtrMK3Ry8jMUONbJUWKzZl4p9JZ7BwpD9+PzoQQ3ycrd1dIiLqQZqa9Thw3pCsSskpRk1js3Gfv5s9ZkfJMTvKD+FyFyariKhbmLgiIiKiLolEIowMdMPIQDe8ePdw/HCqEN8dK8Dl8jqsP5yP9YfzMXqQO+4fE4QZ4b6wtRFbu8tERGQFuhY9Dl8sR2K6CruyNdA2mJJVfq52uDvSD7Oj5Yj2d2WyiohuGhNXREREdENujrb404QQPHxXMA5eKMO3Ry/j5zPFOJZXgWN5FfB0kuHeO/zx2zsDeecnIqJ+oEUv4NilcmzPUOOnLDUq63TGfV7OMkOyKsoPIwPdeJdaIrolTFwRERFRt4nFIkwY6oUJQ72gvlKP748X4r/HC1BS3YiP9lzEJ3svYsowb/x+TBAmDvHimxUioj5ErxdwIr8CiRlq7MxSo6ymybjPw9EWsyJ9MTtKjjsGukPCv/9EZCZMXBEREdGv4udqj+XTh+IvUwbj55xifHP0Mg5fLMfPZ0rw85kSBLjb43d3BuE3sf7wcJJZu7tERPQrCIKA0wVVSMxQISlTjWJto3HfAAcpZoYbklVjgt1hI+El40RkfkxcERER0S2RSsSYFemHWZF+uFhag++OFuDHU4UorKjHGz+dxXsp5zAr0hf3jwlCbJAb1zchIurhBEFApvIKEjPU2JGhhrKq3rjP2c4G8cN9MTvaD3cN9oSUySoisjAmroiIiMhsQryc8NKc4fjbjFBsz1Dhu6OXkV50BVvTVNiapsIwX2f8fnQg5sco4GwntXZ3iYiolSAIOKOuRmKGCokZahRU1Bn3OdpKMG24D2ZHyTFhqCdkNhIr9pSI+pt+n7iaO3cu0tLSUFJSAjc3N0ybNg1vvPEG5HK5tbtGRETUa9nbSvCb2AD8JjYAmUVX8O3Ry9iarsRZTTVe3JqN/7fzLObHKHD/mCCE+blYu7tERP3WueJqJKarkJipxqXSWmO5nVSMqWE+mBPlh0mh3rCTMllFRNbR7xNXkydPxvPPPw8/Pz8olUo8++yzWLRoEQ4fPmztrhEREfUJkf6ueGNRFJ6/OwybThfh26OXcbG0Ft8dK8B3xwowKsgN948JxKwIP74xIiKyIEEQUF7bhHPqK9hVJMKH/zqE8yWmZJWtjRiTQ70wO0qOqWHecLDt928XiagH6Pd/iZ5++mnj46CgIKxYsQLz58+HTqeDVMpLGIiIiMzF1V6KP4wbhIfGDsSRS+X47mgBdmVrcOpyJU5drsSriWeweJQ/fjc6EEEejtbuLhFRr9Wga0FeWS0uldYir6wGl0prcbGsFnmlNdA2NLfWkgCohVQiwoQhXpgd7YdpYT68jJuIepx+n7hqr6KiAt999x3Gjh173aRVY2MjGhtNd9PQarUAAJ1OB51OZ9Y+tbVn7nZ7I8bChLEwYSxMGAsDxsGkJ8fijkBX3BEYiZLqofjhlBIbThZBfaUBn+6/hE/3X8KEIR743R0BmBTqZZZbqlsyFj0xvkTU9+n1AlRX6o0JqkulNbjU+lh1pR6C0PVxIhGgcLXDAFEdfj8pEgmRCrg6MFlFRD0XE1cAnnvuOXz44Yeoq6vDmDFjkJiYeN36a9aswapVqzqVJycnw8HBwSJ9TElJsUi7vRFjYcJYmDAWJoyFAeNg0tNjMQjA38KAnEoRDhWLcLZKhP3ny7H/fDkG2AoY66NHnLcAF9tbP5clYlFXV3fjSkREv5K2QWdMTLUlqS6W1iC/vBYNOv01j3Oxs0GwlxOCvRwR4uWEYE9HDPJyxEAPR0igR1JSEhJGKniVCRH1eH0ycfXKK690mVhq78SJE4iNjQUA/O1vf8PSpUtx+fJlrFq1Cg888AASExOvebvulStXYvny5cZtrVaLgIAAxMfHw8XFvAvM6nQ6pKSkYPr06f3+nwpjYcJYmDAWJoyFAeNg0ttiMaf1++WKOvz3RBE2nlaisk6HpEIJkpUiTA/zxu/uDMDoQW7X/B99LZaMRdvMayKiX0vXokdBRR3ySmtxqfXSvkultbhUVouymsZrHieViBDo7mBIUHk6ItjL0fjY3dH2mn8rdddJeBER9TR9MnH1xBNP4L777rtunYEDBxofe3p6wtPTE0OHDkVYWBgCAgJw9OhRxMXFdXmsTCaDTCbrVC6VSi32xsCSbfc2jIUJY2HCWJgwFgaMg0lvi8VgH1f8Y7Yrnp0xDDuz1Pj2aAFOXa7Ezuxi7MwuRoiXI34/OggLR/nD1f7mnpclYtGbYktE1iMIAspqmtpd0meaQVVQUYdm/TWu7QPg7SzDIE9DUirEy5CgGuTphAA3e9hIxLfxWRAR3X59MnHVloj6NYTWi8Hbr2FFREREt5+dVIIFMf5YEOOPM2otvj16GVtSlbhYWovViTl4c9dZzItW4P4xQYj0d7V2d4mIAAD1Ta0Lo5fVtM6gMq0/VW1cGL0ze6mkNTnl2Dp7yqk1QeXIBdOJqF/rk4mr7jp+/DiOHz+Ou+66C25ubrh06RJeeuklhISEXHO2FREREd1+YX4u+OeCSKyYNQxb0lT47uhlnNVUY8PJQmw4WYhof1f8fkwQ5kTJYW8rsXZ3+5WPP/4Yb731FtRqNcLDw7F27VqMHz/e2t0isqi2hdHbL4reNntKWVV/zeNEIsDfzR6DPA2X84W0Xto3yNMRvi52EJvhZhRERH1Nv05c2dvbY9OmTXj55ZdRW1sLPz8/zJw5E//973+7vBSQiIiIrMvZToolY4Jw/+hAnLpciW+OXsbOTA3Si64g/ccMvJaYg0WjAvD7MYEI8XKydnf7vA0bNuCpp57Cxx9/jHHjxuHTTz/FrFmzkJOTg8DAQGt3j+iWXanXGRJTpbXGWVRtjxubr71OlKu9tHXmlFOHGVRBHg6wkzK5TkR0M/p14ioyMhK7d++2djeIiIjoJolEIsQOdEfsQHe8NLsR/ztZhP8cv4zCinp8cSgPXxzKw7jBHrh/dBCmDfexdnf7rHfffRdLly7Fww8/DABYu3Ytdu3ahU8++QRr1qzpULexsbHDUgxti9rrdDrodDqz9utCSQ0+3nsRGo0Ye37MgEQihlgkglhkeO2IRYBYJDI+FqFtG631OtYVGR+3P7br753OgY7bnfvQebv9eXDVdvs+itr1/XrH6luaUdYA5JdWw04mhUQkgkTc7qvddlv/+qK219nVrzddix6FFfWGxFR5LfLK6pBXZvheXtt0zfbaFkYf5OGAQZ6GS/qCPR0w0NMR7g7Sa8RR3yMWRr9WLPojxsKEsTBhLAwsHYfuttuvE1dERETU+3k4yfD4pBA8OiEY+86X4rujl7H7bAkOXSjHoQvl8HaW4TejFPDi8pVm1dTUhFOnTmHFihUdyuPj43H48OFO9desWdPlXZ+Tk5Ph4OBg1r6duyLC9hwJADFOlGrM2nbvZQOkHulWTTGE1uRXuy/cYLtTmdDNejcqEzrVkbQmEyWtibsO2631ri6TQIBIBOgFEQ5/+zNK6kUoaQBK6kUobwD0uHayzkUqwNtegLc94G1n+u5uB0hEVwBcAVoAFAPFxUDxrfyYbrOUlBRrd6HHYCxMGAsTxsLAUnGoq6vrVj0mroiIiKhPEItFmBzqjcmh3iiqrMP3xwuw4UQhSqob8eHeSxBDgtix1Qj3d7d2V/uEsrIytLS0wMen44w2Hx8faDSdk0UrV67E8uXLjdtarRYBAQGIj4+Hi4uLWfs2oqoeDgoVcnPPYfCQIRCJxBAA6AVALwgQBKHdY0Bofdy2rW/dLwhC63GmbX27/bhqu3O7HbeN9dD5PNc6zrS/7Zir67e1efV52j3WA006HSCWQC8IaNYb9l2LHqLW53crP4XeNWvLwVaCgR4OGOThiEGeDq2zpxwx0NMBTrK+95ZJp9MhJSUF06dP7/d3RmUsTBgLE8bCwNJxaJt9fSN9768wERER9Xv+bg7424xh+OvUodiVrcE3R/JxubgCQ7y57pW5XX05lCAIXV4iJZPJulxDVCqVmn0wHOQlxZ8m2COpJhcJkwb36zcdgOGNR1JSEhISZhhjodcLaBEEtOhbvwQBLS2GpFZbckuvN3xvq9Os10Ovh+G7IKC55ao29B2Pu7pOh31d1tFfv05rP39dHT2aWwTU19ViWIAnQrydDXfta72Ln6+LXZ+9RPJ6LPH711sxFiaMhQljYWCpOHS3TSauiIiIqM+ytRFjTrQcM4d7YdP2pH75xtRSPD09IZFIOs2uKikp6TQLi3oesVgEMUToT+uEmxJ4o/hGlIioFxFbuwNEREREt4NdP3qDfjvY2tpi1KhRnda9SElJwdixY63UKyIiIuprOOOKiIiIiH6V5cuXY8mSJYiNjUVcXBw+++wzFBQU4LHHHrN214iIiKiPYOLKDITW1S27u7DYzdDpdKirq4NWq+33U5oZCxPGwoSxMGEsDBgHE8bCxJKxaPv/L1xvtes+6t5770V5eTlWr14NtVqNiIgIJCUlISgo6IbHWnL8BPD13x5jYcA4mDAWJoyFCWNhwlgYWDoO3R1DiYT+OMoys6KiIgQEBFi7G0RERGRFhYWF8Pf3t3Y3eg2On4iIiAi48RiKiSsz0Ov1UKlUcHZ2Nvuir223ii4sLDT7raJ7G8bChLEwYSxMGAsDxsGEsTCxZCwEQUB1dTXkcjnEYi4f2l2WHD8BfP23x1gYMA4mjIUJY2HCWJgwFgaWjkN3x1C8VNAMxGKxxT9hdXFx6de/MO0xFiaMhQljYcJYGDAOJoyFiaVi4erqavY2+7rbMX4C+Ppvj7EwYBxMGAsTxsKEsTBhLAwsGYfujKH4sSAREREREREREfVITFwREREREREREVGPxMRVDyeTyfDyyy9DJpNZuytWx1iYMBYmjIUJY2HAOJgwFiaMRf/Dn7kJY2HAOJgwFiaMhQljYcJYGPSUOHBxdiIiIiIiIiIi6pE444qIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiMxq/fr1EIlEyM/PN1ubDz30EJycnMzW3s24meczadIkTJo0yeJ9IiIiIjI3S4zh2ohEIrzyyiudznXy5Emzn4uI+h4mroiIiIiIiIiIqEdi4oqIqAcSBAH19fXW7gYREREREZFVMXFFRFZVV1eHZ599FoMGDYKdnR3c3d0RGxuL77//vlPdCxcuICEhAU5OTggICMAzzzyDxsbGDnUqKiqwbNkyKBQK2NraIjg4GC+88EKHevn5+RCJRFi/fn2nc1w9lb0rgiDgzTffRFBQEOzs7DBy5Ejs3Lmzy7pardb4/GxtbaFQKPDUU0+htra203mfeOIJrFu3DmFhYZDJZPjqq6+u2w8AePXVV2FjY4PCwsJO+/74xz/Cw8MDDQ0NAIANGzYgPj4efn5+sLe3R1hYGFasWNGhLzt27IBIJMKJEyeMZRs3boRIJMLdd9/dof2oqCgsXLjwhn0kIiKivkmj0eDRRx+Fv78/bG1tMWjQIKxatQrNzc3dOr6yshJ/+MMf4O7uDkdHR8yZMweXLl3qVO+LL75AdHS0cay4YMECnDlzxrif4xeivo2JKyKyquXLl+OTTz7Bk08+iZ9++gnffPMNFi9ejPLy8g71dDod5s6di6lTp2Lr1q344x//iPfeew9vvPGGsU5DQwMmT56Mr7/+GsuXL8eOHTtw//33480338Q999xjtj6vWrUKzz33HKZPn44tW7bg8ccfxyOPPILc3NwO9erq6jBx4kR89dVXePLJJ7Fz504899xzWL9+PebOnQtBEDrU37JlCz755BO89NJL2LVrF8aPH3/Dvjz66KOwsbHBp59+2qG8oqIC//3vf7F06VLY2dkBAM6fP4+EhAR8/vnn+Omnn/DUU0/hf//7H+bMmWM8buLEiZBKpfj555+NZT///DPs7e2xb98+6HQ6AEBJSQmysrIwbdq0mwseERER9QkajQZ33nkndu3ahZdeegk7d+7E0qVLsWbNGjzyyCPdamPp0qUQi8X4z3/+g7Vr1+L48eOYNGkSqqqqjHXWrFmDpUuXIjw8HJs2bcL777+PjIwMxMXF4fz58wA4fiHq8wQiIjP68ssvBQBCXl5et+pHREQI8+fPv26dBx98UAAg/O9//+tQnpCQIISGhhq3161b12W9N954QwAgJCcnC4IgCHl5eQIA4csvv+x0LgDCyy+/fM3nU1lZKdjZ2QkLFizocNyhQ4cEAMLEiRONZWvWrBHEYrFw4sSJDnV//PFHAYCQlJTU4byurq5CRUXFdWPRlQcffFDw9vYWGhsbOzxnsVh8zZ+DXq8XdDqdsG/fPgGAkJ6ebtx31113CVOmTDFuDx48WPjb3/4miMViYd++fYIgCMJ3330nABDOnTt30/0lIiKinudmx3CPPvqo4OTkJFy+fLlD+dtvvy0AELKzs41l1xpfXWs89dprrwmCYBh32dvbCwkJCR3qFRQUCDKZTPjd735nLOP4hajv4owrIrKqO++8Ezt37sSKFSuwd+/ea67rJBKJOswMAgxTvS9fvmzc3r17NxwdHbFo0aIO9R566CEAwC+//HLL/T1y5AgaGhrw+9//vkP52LFjERQU1KEsMTERERERGDFiBJqbm41fM2bMgEgkwt69ezvUnzJlCtzc3G66T3/9619RUlKCH374AQCg1+vxySef4O6778bAgQON9S5duoTf/e538PX1hUQigVQqxcSJEwGgw3T7qVOn4tChQ6ivr8fly5dx4cIF3HfffRgxYgRSUlIAGD7FDAwMxJAhQ266v0RERNT7JSYmYvLkyZDL5R3GObNmzQIA7Nu374ZtXGs8tWfPHgCGcVd9fb1xLNcmICAAU6ZM6TC24/iFqO9i4oqIrOqDDz7Ac889hy1btmDy5Mlwd3fH/PnzjVO/2zg4OBgveWsjk8mM6zcBQHl5OXx9fSESiTrU8/b2ho2NTafLD3+NtjZ8fX077bu6rLi4GBkZGZBKpR2+nJ2dIQgCysrKOtT38/P7VX2KiYnB+PHj8dFHHwEwDCTz8/PxxBNPGOvU1NRg/PjxOHbsGF577TXs3bsXJ06cwKZNmwCgQ8Jw2rRpaGxsxMGDB5GSkgJPT0/ExMRg2rRpxin4v/zyC6fZExER9WPFxcXYvn17p3FOeHg4AHQa53TlWuOptvFW2/euxkhyubzD2I7jF6K+y8baHSCi/s3R0RGrVq3CqlWrUFxcbJx9NWfOHJw9e/am2vLw8MCxY8cgCEKH5FVJSQmam5vh6ekJAMYE2NULu3cnseXh4QHAsK7D1TQaTYcZTp6enrC3t8cXX3zRZVtt/WlzdcLtZjz55JNYvHgxTp8+jQ8//BBDhw7F9OnTjft3794NlUqFvXv3GmdZAeiwhkSb0aNHw8nJCT///DPy8/MxdepUiEQiTJ06Fe+88w5OnDiBgoICDvyIiIj6MU9PT0RFReGf//xnl/vlcvkN27jWeGrw4MEATOMutVrdqZ5KpeowluL4hajv4owrIuoxfHx88NBDD+G3v/0tcnNzUVdXd1PHT506FTU1NdiyZUuH8q+//tq4v+08dnZ2yMjI6FBv69atNzzHmDFjYGdnh++++65D+eHDhztctggAs2fPxsWLF+Hh4YHY2NhOX+2TXLdqwYIFCAwMxDPPPIOff/4Zy5Yt65AIa3ssk8k6HHf1ou4AIJVKMWHCBKSkpGD37t3GBNj48eNhY2ODf/zjH8aBIBEREfVPs2fPRlZWFkJCQroc53QncXWt8dSkSZMAAHFxcbC3t8e3337boV5RURF2797dYSzC8QtR38UZV0RkVaNHj8bs2bMRFRUFNzc3nDlzBt988w3i4uLg4OBwU2098MAD+Oijj/Dggw8iPz8fkZGROHjwIF5//XUkJCQYP2ETiUS4//778cUXXyAkJATR0dE4fvw4/vOf/9zwHG5ubnj22Wfx2muv4eGHH8bixYtRWFiIV155pdN096eeegobN27EhAkT8PTTTyMqKgp6vR4FBQVITk7GM888g9GjR9/Uc7wWiUSCP//5z3juuefg6OjYaS2IsWPHws3NDY899hhefvllSKVSfPfdd0hPT++yvalTp+KZZ54BAGPc7O3tMXbsWCQnJyMqKgre3t5m6TsRERH1PqtXr0ZKSgrGjh2LJ598EqGhoWhoaEB+fj6SkpKwbt06+Pv7X7eNkydPdhhPvfDCC1AoFFi2bBkAYMCAAXjxxRfx/PPP44EHHsBvf/tblJeXY9WqVbCzs8PLL7/coT2OX4j6JiauiMiqpkyZgm3btuG9995DXV0dFAoFHnjgAbzwwgs33ZadnR327NmDF154AW+99RZKS0uhUCjw7LPPdhrYvPPOOwCAN998EzU1NZgyZQoSExO7NQtq9erVcHR0xMcff4xvvvkGw4YNw7p16/D22293qOfo6IgDBw7g//2//4fPPvsMeXl5sLe3R2BgIKZNm2bWGVcAcO+99+K5557DkiVL4Orq2mGfh4cHduzYgWeeeQb3338/HB0dMW/ePGzYsAEjR47s1FbbYG/IkCEdFp2fNm0a9uzZw2n2RERE/Zyfnx9OnjyJV199FW+99RaKiorg7OyMQYMGYebMmd264cznn3+Ob775Bvfddx8aGxsxefJkvP/++3B3dzfWWblyJby9vfHBBx9gw4YNsLe3x6RJk/D66693WmSd4xeivkkkCIJg7U4QEdGt+9e//oUnn3wSWVlZxoVRiYiIiIiIejMmroiIernU1FTk5eXh0Ucfxbhx4zqt8UVERERERNRbMXFFRBYhCAJaWlquW0cikdzSnfT6upaWFlzvT7RIJIJEIsHAgQOh0Wgwfvx4fPPNN13eWpqIiIioOziGI6KehncVJCKL+OqrryCVSq/7tW/fPmt3s0ebOnXqdeMXEhICAMjPz0dDQwNSUlKYtCIiIqJbwjEcEfU0nHFFRBZRXl6OvLy869YJDQ2Fs7PzbepR75Obm4vq6upr7pfJZIiMjLyNPSIiIqK+jmM4IuppmLgiIiIiIiIiIqIeycbaHegL9Ho9VCoVnJ2dea03ERFRPyMIAqqrqyGXyyEWcxWG7uL4iYiIqH/r7hiKiSszUKlUCAgIsHY3iIiIyIoKCwvh7+9v7W70Ghw/EREREXDjMRQTV2bQdn13frFkOwABAABJREFUYWEhXFxczNq2TqdDcnIy4uPjIZVKzdp2b8NYmDAWJoyFCWNhwDiYMBYmloyFVqtFQEAA13u5SZYcPwF8/bfHWBgwDiaMhQljYcJYmDAWBpaOQ3fHUH0ycfXxxx/jrbfeglqtRnh4ONauXYvx48dfs/6+ffuwfPlyZGdnQy6X4+9//zsee+yxbp+vbXq7i4uLRRJXDg4OcHFx6de/MABj0R5jYcJYmDAWBoyDCWNhcjtiwcvdbo4lx08AX//tMRYGjIMJY2HCWJgwFiaMhcHtisONxlB9biGGDRs24KmnnsILL7yA1NRUjB8/HrNmzUJBQUGX9fPy8pCQkIDx48cjNTUVzz//PJ588kls3LjxNveciIiIiIiIiIja63Mzrt59910sXboUDz/8MABg7dq12LVrFz755BOsWbOmU/1169YhMDAQa9euBQCEhYXh5MmTePvtt7Fw4cIuz9HY2IjGxkbjtlarBWDIRup0OrM+ny8P5eFQnhinEnMgFoshEonQlotsn5S8urxty/C4bUfX5e3ro0P51W2aytG+3HioqN3jzlnTq9voqm1c53noW1qQUyxC5dHLEEvEEARAgGFBt/aP9a33yRQEAQIAfdv+duX69sd2aqN9OSCgtX5rA4LQ2qZxf/vjhdb9AGBqU9+ufQimOgKEm38eMCxoW1spRrYkF4EejvB3s4f/AHv4udrB1qbP5aOvq+13zty/e70RY2HAOJgwFiaWjAXjS0RERH1NUWUddqQr8X2mBLaDSjArSmG1vvSpxFVTUxNOnTqFFStWdCiPj4/H4cOHuzzmyJEjiI+P71A2Y8YMfP7559DpdF1Oh1uzZg1WrVrVqTw5ORkODg638Aw625AlwcVqMaApMmu7vZcEuJRr7U70EGKcPni5Q4kIAlxtAQ8Z4C4T4G5n+N62PUAGSProlSwpKSnW7kKPwVgYMA4mjIWJJWJRV1dn9jaJiIiIbrfL5bXYmaXBzkw10ouutJaKkJSlYeLKXMrKytDS0gIfH58O5T4+PtBoNF0eo9Fouqzf3NyMsrIy+Pn5dTpm5cqVWL58uXG7bUGx+Ph4s6/RUOVxGQdSz2DQwIEQiyUwzL0xzfQxPBaM9a8uF7ooR6fyrtoEcI3yruq3zSJqO8r0uKu61zqncNX5O5br9QJKS0vg7e0NSeutMsUi0+wt0dWPIWrdD+NMLrFIZJzhZZgQZqrTNmOsYxumYwDDPnH7uq1l7ds0Hd92TtPsM5Ho6j5c9fhGz6P1vPqWFhxPz4ajdyCUVxqhrKxHUVU9GnR6VDUBVU3AxerOGSqJWAQ/Fxn83eyhaJ2l5e9m+FIMsIePswxice/KbOl0OqSkpGD69On9+vpzgLFowziYMBYmloxF28xrIiIiot7mUmkNdmZpkJSpRrbKNKYRiYA7gtwQgDI8NWOoFXvYxxJXba6+RE0QhOsu9tVV/a7K28hkMshksk7lUqnU7IPh340OwoDybCTMHMY3HTodkpKSkJAwkrHQ6eBUmoWEhHBjLARBQFlNE4oq61BYWW/4XmH4XlRZD2VlPZpa9CiqakBRVQOQV9mpXVuJGPIBdghwd4C/mwP83exbH9sjwM0Bnk62PXbxYUv8/vVWjIUB42DCWJhYIhaMLREREfUm54urkZSpwc4sNc5qqo3lErEIY4LdMSvCD/HhPnCzkyApKQm+LnZW7G0fS1x5enpCIpF0ml1VUlLSaVZVG19f3y7r29jYwMPDw2J9JTI3kUgEL2cZvJxliAl067RfrxdQUt3YmtiqQ1FFveF7peG7qqoBTS165JfXIb+868te7KRiU0Kri8TWAAdpj01sERERERER9UeCIOCspho7M9VIytLgQkmNcZ+NWISxgz2REOGL6cN94OFkmqTTU9bx7FOJK1tbW4waNQopKSlYsGCBsTwlJQXz5s3r8pi4uDhs3769Q1lycjJiY2P5CSr1KWKxCL6udvB1tUPsQPdO+5tb9NBoGwyJrArTrK2i1llbam0DGnR6XCip6fCHrj0nmY3x0sNOM7bcHeBix98pIiIiIiIiSxMEAdkqLZIy1diZpUFeWa1xn61EjPFDPDGzNVk1wMHWij29sT6VuAKA5cuXY8mSJYiNjUVcXBw+++wzFBQU4LHHHgNgWJ9KqVTi66+/BgA89thj+PDDD7F8+XI88sgjOHLkCD7//HN8//331nwaRLedjaRtNpUDxgR3nm3Y1KyH+kq98fJD42ytCsP3kupG1DQ246ymusN00/Zc7aVdz9Zq/e5g2+f+JBEREREREd0WgiAgrbDKsMB6lhqFFfXGfbY2Ykwa6oWESD9MCfPuVZMK+ty7xHvvvRfl5eVYvXo11Go1IiIikJSUhKCgIACAWq1GQUGBsf6gQYOQlJSEp59+Gh999BHkcjk++OADLFy40FpPgahHsrURI8jDEUEejl3ub9C1QFnV9Wytwsp6VNQ24Uq9DlfqdR0W/WvPw9HWMFvLvfPliIoB9rCTSiz5FImIiIiIiHoVvV7A6YJKJGVq8FOWGqorDcZ9dlIxpgzzxqwIP0we5g0nWe9MAfXOXt/AsmXLsGzZsi73rV+/vlPZxIkTcfr0aQv3iqhvs5NKEOLlhBAvpy731zY2o8i4aLxpba22WVvahmaU1zahvLap3a1XO/J2lnVaV8vXxRb1zZZ8ZkRERERERD1Hi17AifwK7MxU46dsDYq1jcZ9jrYSTAnzQUKELyaGevWJq1p6/zMgol7BUWaDUF9nhPo6d7n/Sr3OeAfEtsRW250RCyvrUNfUgpLqRpRUN+J0QVWHYyUiCZK1qZgdLcfUMB+42veeaa9EREREREQ30tyix7G8CiRlqrErW4OymibjPmeZDaYN98GsCF9MGOrV565UYeKKiHoEV3spXO1dES537bRPEARU1umMiaz2a2xdKKlBUWU9dueWYnduKaQSEcYPMVy7PX04k1hERERERNQ76Vr0OHyxHDtbk1WVdaa7/LnY2SA+3BcJkb4YN9gTMpu+laxqj4krov/P3n3HV1ne/x9/nXOyIXsvshiBJBCGQADZWwQtVq39Ua3WUWv9ql3aah2tpUNba6111FatrbVuZEcZKoS9AiEJkITsPUnIPr8/DuQQ2ZiTk/F+Ph55JOc6932f63w4wJX3fd/XJT2ewWDAZ4ATPgOcGBnm1em55uZmXnt/DfXeQ1mbVsrR0hNsSC9lQ3opjiYDUwb7sTAhmLkjgvB0U4glIiIiIiI9V1NrG1uOlrM6tZjktBJqTlrDKm83R+bFBbEgIZikaF+cHIx27Gn3UXAlIr2awWAgxA0WzhrMj+cPJ7OkjlUHilidWsSR0hNszChjY0YZPzelMrkjxOr5S76KiIiIiEj/0NjSxubMMtYeLObTtBLqmqyT+PoNdGJeXBALE4KZEOWDg6l/hFVnUnAlIn3K0EB3hs5x58E5QzlSUseqVEuIlVlygk0ZZWzKKOPnRgOTB/txTUIwc+MUYomIiIiISPdqaG5lU0YZq1OL2JBeSkNzW8dzgR7OLIgPZkF8EOMifTAZDXbsqf0puBKRPmtIoDsPBLrzwOyhHC2tY3VqMatTi0gvrmNzZhmbM8v4+YcGJg3245qEIOaOCMJ7gEIsERERERHpeieaWtmQXsqa1CI2ZpTS2NLe8VyIpwsLEoJZmBDE6HBvjP08rDqTgisR6RcGB7hz/yx37p81hGNlJ1h9oIhVp0KszzPL+DyzjJ9/eJBJMb4sTAhmXlwQPgqxRERERETka6htbOGzwyWsTi1mc2YZza3WsCrcx5WF8cEsSAhmVJgnBoPCqnNRcCUi/U6M/0B+OGsIP5w1hKyyE6xOLWJVajGHi2r54kg5Xxwp59GPDpIUfTrECsR3oLO9uy0iIiIiIr1AdUMzyWklrDlYzBdHymhpM3c8F+nrxsKEYBYmBBMX4qGw6hIouBKRfi3afyD3zRzCfTOHkF1ebwmxDhSRVlTLl0fL+fJoOY99fJCJ0T4dV2L5KcQSEREREZEzVNY3s/5QMasPFrP1aDmt7dawKsZ/ANckWK6sig1yV1h1mRRciYicEuU3gB/MGMwPZgwmp7y+Y2L3Q4W1bDlawZajFTz20UEmRltvJ/R3V4glIiIiItIfldU1se5QMWsOFrEtq5K2M8Kq2CB3FsRb5qwaEuhux172fgquRETOIfKMEOt4RX3HxO6pBTVsPVbB1mMV/PLjg4yP8uGahGDmxQcR4O5i726LiIiIiIgNldQ2svag5XeDHTmVmK1ZFXEhHixMCGZ+fBAx/gPt18k+RsGViMhFRPgO4PvTY/j+9BhyKxpYfdByJdaB/Bq2ZVWyLauSX644xPhIH64ZafmPSiGWiIiIiEjfUFB9kjWpRaw5WMzu41WdnhsV7sWC+CAWxAcR4TvATj3s2xRciYhchkG+btwzLYZ7psWQV9nA6lO3E+7Pr2F7diXbsyt5fMUhroq0XIm1ID6IAA+FWCIiIiIivUl5I7z6ZTbr0srYn1fd6bmxEd4siA9ifnwQYd5u9ulgP6LgSkTkCoX7uHH3tBjuPhVirTloWZ1wf141O7Ir2ZFdyROfHOKqCB8WJgSxICGYQIVYIiIiIiI9jtls5kjpCdYdLGbtoSIOFToARwAwGOCqSB8WxgcxLz6IYE9X+3a2n1FwJSLSBcJ93Lhragx3TY0hv6qBNanFrEotYl9eNTtyKtmRU8mTK9MYF+HNwoRgFsQHE+SpEEtERERExF7a283sy69m3aFi1h8qIbu8vuM5A2bLokwjQ5gXF6ipQOxIwZWISBcL83bjzqnR3Dk1uuN++NWpRezJrWZnThU7c6p48pM0xp4KsRYm6KyNiIiIiEh3aG5tZ1tWBesOFZOcVkJpXVPHc04mI5MH+zI71h8KDnDjknE4OjrasbcCCq5ERGwq1MuV710dzfeujqaw+iRrTq1Asvt4VcfXr1amMWaQ16kQK5gQL4VYIiIiIiJdpb6plc8zy1h3qJjP0kupa2zteG6gswMzYgOYFxfItKH+uLs40tLSwurSA3bssZxJwZWISDcJ8XLljilR3DEliqKak6xJtYRYu45XsSe3mj251fx61WFGD/KyTOyeEEyoQiwRERERkctWWd/Mp4dLWH+omC+OlNPU2t7xnN9AJ+aMCGRuXBCTYnxxdjDZsadyMQquRETsINjTldunRHH7lCiKaxpZc7CoI8Tam1vN3lMhVmL46RBLK5aIiIiIiFxIQfVJ1h8qZt2hYnZkV9Jutj43yMeNeXGBzIsLYvQgb0xGg/06KpdFwZWIiJ0Febrw3clRfHdyFCW1jafmxCpm5/FK9uVVsy+vmqdXH2ZUmGfH7YThPgqxRERERKR/O3MlwHVpxRwsqO30/PBgj46wKjbIHYNBYVVvpOBKRKQHCfRw4bbJUdw2OYrS2kbWHipm1YEiduRUsj+/hv35NSxfk87IUyHWNQqxRERERKQfueBKgAa4KsKHuafCKo2T+wYFVyIiPVSAhwvfSYrkO0mRlNY1su5gMatSi9iRXcmB/BoO5Nfw2zXpJIRaQqy5w/3s3WURERERkS53sZUApwzxY+6IQGaPCMRvoLMdeyq2oOBKRKQXCHB3YVlSJMuSIimra2LtoWJWHyhie3YFqQU1pBbU8Lu1EDnQRLVfHteNDsfTTUv3ioiIiEjv1NDcyuaMi68EOH1YAAOdFW30ZfrTFRHpZfzdnVk2MYJlEyMoq2ti3SHL6oTbsirIOWHg8U8O8/SaDOYMD2Tp2FCmDvHHwWS0d7dFRERERC5IKwHKuSi4EhHpxfzdnfl/EyP4fxMjKKg8we/f2cDhk55klp5gVWoRq1KL8Hd35rrEEJaODSM2yMPeXRYRERER6aCVAOViFFyJiPQRAe7OzAwx84cFSWSWneS93fms2F9IWV0Tr36RzatfZBMX4sHSMWEsSQzBV/f/i4iIiEg3u9hKgCOCPZgXF8TcuECtBCiAgisRkT7HYDAQH+pJfKgnP184nE0Zpby3O5+NGaUcKqzlUGEav1l9mOnDArhhbCgzYwNxctCthCIiIiJiG1oJUL4OBVciIn2Yk4ORuXFBzI0LorK+mRX7Cnh/TwGpBTV8eriETw+X4O3myOJRllsJE0I9dVZLRERERL42rQQoXUXBlYhIP+EzwInbJkdx2+QoMkvqeH93Ph/uLaC0rok3Uo7zRspxhgQMZOnYMK4fHUqgh4u9uywiIiIivYhWAhRb0CdFRKQfGhroziMLh/OTecP48mg57+8pYP2hYo6UnuC3a9L5/dp0pgzxZ+mYUObFBeHiqFVbRERERORsF14J0PnUSoCBWglQrliXBle1tbUX3+grPDy0wpWIiL04mIxMHxbA9GEB1JxsYXVqEe/vzmfX8So+zyzj88wy3J0dWDQqmKVjwhgb4a1bCUXsTOMtERGxN60EKN2pS4MrLy+vy/qFxmAwkJmZSXR0dFd2Q0REroCnqyPfGj+Ib40fRHZ5PR/syeeDPQUUVJ/k7R15vL0jj0hfN74xJoxvjAklzFsTZ4rYg8ZbIiLS3c5cCXB9WgmpBTWdnj+9EuC8+ECGBWolQOlaXX6r4HvvvYePj89FtzObzSxcuLCrX15ERLpAlN8AfjR3GA/OHsq27Are313AmoNF5FQ08MfkTP6YnMnEaB+WjgljYUIwAzRHgUi30nhLRERsTSsBSk/Rpb9pREREMHXqVHx9fS9p++joaBwdHbuyCyIi0oWMRgOTYvyYFOPHU0viWHuwmPf35LP1WAXbsirZllXJLz8+xIKEIG4YE8bEaF+MuhxcxKY03hIREVtpbYcvjpbzWXr5eVcCnBcXyKzhWglQuk+XBlfZ2dmXtf3Bgwe78uVFRMSGBjg7sHRsGEvHhpFf1cCHewr4YG/BqdsKC/hgTwGhXq5cPzqUpWPDiPIbYO8ui/RJthpvvfjii/zhD3+gqKiIuLg4nnvuOa6++upzbrtp0yZmzJhxVvvhw4eJjY29rP6JiIh9Nba08XlmGasOFLL+oImT2/d0PKeVAKUn6FOfuqqqKu6//35WrFgBwOLFi/nLX/6Cl5fXObdvaWnh0UcfZfXq1WRlZeHp6cns2bP57W9/S0hISDf2XESkdwnzduOHs4Zw38zB7Mmt4r3dBaw8UEhB9Ule2HiUFzYeZcwgL5aODWPRyBA8XXW1h0hP9s477/DAAw/w4osvMnnyZF5++WUWLFhAWloagwYNOu9+GRkZnSZ+9/f3747uiojI19TY0sbmzDJWpxbx2eFSTjS1nnrGgN9AJ+aMCGJeXCBJWglQegCbBVfPP//8OdsNBgMuLi4MHjyYqVOnYjJ13V+CW265hfz8fNauXQvAXXfdxbJly/jkk0/OuX1DQwN79uzhscceY9SoUVRVVfHAAw+wePFidu3a1WX9EhHpqwwGA2MjfBgb4cPj144gOa2E9/fk83lmGXtyq9mTW82Tn6QxZ0QgN4wN4+rBfjiYjPbutkif0VXjrT/+8Y/ccccdfO973wPgueeeY926dfztb39j+fLl590vICDgvCcIv6qpqYmmJustJ6dXR2xpaaGlpeWSjnE5Th/TFsfubVQLC9XBSrWw6k+1aGxp4/Mj5aw5WMLGjDLqm9s6ngvycGbucH+8T+Twveun4+LsZHnC3E5LS7t9OmxH/elzcSG2rsOlHtdmwdWf/vQnysrKaGhowNvbG7PZTHV1NW5ubgwcOJDS0lKio6PZuHEj4eHhX/v1Dh8+zNq1a9m2bRsTJkwA4NVXXyUpKYmMjAyGDRt21j6enp4kJyd3avvLX/7C+PHjyc3NveAZRhER6czF0cS1o0K4dlQIpbWNfLSvgPd3F5BRUseqA0WsOlCEv7uz5VbCMWEMC3K3d5dFer2uGG81Nzeze/duHn744U7tc+fOZevWrRd8/dGjR9PY2MiIESN49NFHz3n74GnLly/nySefPKt9/fr1uLnZblLfr471+jPVwkJ1sFItrPpqLZrb4HC1gX0VBg5VGWhqt85F6uVkJtHXzGjfdgYNbMVoqAcP2PDZp3bscc/SVz8Xl8tWdWhoaLik7WwWXP3mN7/hlVde4e9//zsxMTEAHD16lLvvvpu77rqLyZMnc/PNN/Pggw/y3nvvfe3XS0lJwdPTsyO0Apg4cSKenp5s3br1nMHVudTU1GAwGC549rA7zxgq6bVSLaxUCyvVwqon1cLb1cR3kwZx28Rw0orqeH9vISsPFFFW18Qrn2fxyudZxIW4c31iCNeODMZngFOXvXZPqoO9qRZWtqyFPevbFeOt8vJy2traCAwM7NQeGBhIcXHxOfcJDg7mlVdeYezYsTQ1NfGvf/2LWbNmsWnTJqZOnXrOfR555BEeeuihjse1tbWEh4czd+7cTrcbdpWWlhaSk5OZM2dOv5+cXrWwUB2sVAurvliLk81tbMosY92hUjZmltFwxpVVIZ4uLIgPZH5cIKPCPDEYrEFWX6zFlVItLGxdh9NZysXYLLh69NFHef/99zsGUQCDBw/mmWeeYenSpWRlZfH73/+epUuXdsnrFRcXExAQcFZ7QEDAeQddX9XY2MjDDz/MLbfccsEBlD3OGCrptVItrFQLK9XCqifWYpwBEhMgrdrAjlIDh6oNHCqs41BhBr9Zk06cl5mr/M3EeZtx6KI7CXtiHexFtbCyRS0u9WyhLXTleOvMX14AzGbzWW2nDRs2rNNJwaSkJPLy8njmmWfOG1w5Ozvj7Hz2ClSOjo42/aXA1sfvTVQLC9XBSrWw6u21aGhuZWO6Zc6qDemlnGyxhlWhXq5cMzKYhQnBZ4VV59Lba9GVVAsLW9XhUo9ps+CqqKiI1tbWs9pbW1s7gqSQkBDq6uoueJwnnnjinCHRmXbu3AmcPeCCCw+6ztTS0sLNN99Me3s7L7744gW37c4zhkp6rVQLK9XCSrWw6g21WHzqe2V9MytTi/lwbyEHC2tJrTKQWgXebo4sSgjiG6NDiQtxv6R/v7+qN9Shu6gWVrasxaWeLbSFrhhv+fn5YTKZzjrRV1paetZVWBcyceJE3nrrrUveXkREvp6G5lY2pJeyOrWIjellncKqMG9XrkmwhFUjLyGsEunJbBZczZgxg7vvvpu///3vjB49GoC9e/fy/e9/n5kzZwKQmppKVFTUBY9z3333cfPNN19wm8jISA4cOEBJSclZz5WVlV100NXS0sKNN95IdnY2GzZsuGj4ZI8zhkp6rVQLK9XCSrWw6g21CPRy5I6rY7jj6hgyiuv4YE8+H+4toLSuiX9tz+Nf2/MYGjiQpWPCuH50KAEeLpf9Gr2hDt1FtbCyRS3sWduuGG85OTkxduxYkpOTuf766zvak5OTWbJkySX3Ze/evQQHB1/hOxERkUtR33RGWJVRSuMZE6eH+7iyMCGYaxKCSQhVWCV9h82Cq9dee41ly5YxduzYjgFda2srs2bN4rXXXgNg4MCBPPvssxc8jp+fH35+fhd9vaSkJGpqatixYwfjx48HYPv27dTU1DBp0qTz7nc6tDpy5AgbN27E19f3Ut+iiIh0gWFB7jyycDg/mTeML4+W897ufNanlZBZcoLla9L53dp0rh7iz9KxYcwdEYiLo5ZkFjmtq8ZbDz30EMuWLWPcuHEkJSXxyiuvkJubyz333ANYrjYvKCjgzTffBCyrDkZGRhIXF0dzczNvvfUW77//Pu+//74N362ISP9U39TKZ+mlrD5QxKbMzmHVIB+3jrAqPtRDYZX0STYLroKCgkhOTiY9PZ3MzEzMZjOxsbGd5kO40Mozl2v48OHMnz+fO++8k5dffhmAu+66i0WLFnV6zdjYWJYvX871119Pa2srN9xwA3v27GHlypW0tbV1XCbv4+ODk1PXTRYsIiIX5mAyMn1YANOHBVBzsoVVB4p4f08+u49XsTmzjM2ZZbi7OLBoZDBLx4QxNsJbgzPp97pqvHXTTTdRUVHBU089RVFREfHx8axevZqIiAjAcktibm5ux/bNzc38+Mc/pqCgAFdXV+Li4li1ahULFy7s+jcpItIPnWhq5bPDJaxOLWJTRhlNrdawKsLXGlbFhSiskr7PZsHVadHR0RgMBmJiYnBwsO3L/fvf/+b+++9n7ty5ACxevJgXXnih0zYZGRnU1NQAkJ+fz4oVKwBITEzstN3GjRuZPn26TfsrIiLn5unqyC0TBnHLhEFkl9fzwZ58PthTQEH1Sd7ekcfbO/KI8hvAN0aHcv2YUMK8bbMwhkhv0RXjrXvvvZd77733nM+9/vrrnR7/9Kc/5ac//ekVvY6IiJxbXWMLG9JLWXWgiE2ZZTSfEVZFngqrFiqskn7IZklSQ0MDP/zhD3njjTcAyMzMJDo6mvvvv5+QkBAefvjhLn9NHx+fi04KajabO36OjIzs9FhERHqeKL8B/GjuMB6cPZRt2RW8v7uANQeLyC6v59nkTJ5NziQp2pelY8NYEB+EUxetSijSG9hjvCUiIl2nrrGFTw+XsOpAMZ8f6RxWRfsN6Airhgdf2aI1In2BzYKrRx55hP3797Np0ybmz5/f0T579mwef/xxDaREROSyGI0GJsX4MSnGj6eWxLHmYDHv784nJaui4+uXHx9k3ogAQpoNzG/XiQnp+zTeEhHpfWobW/g0zXIb4OeZ5TS3nRFW+Q/oWA0wNkhhlQjYMLj66KOPeOedd5g4cWKnv2wjRozg2LFjtnpZERHpBwY4O3DD2DBuGBtGflUDH+4p4P09+eRUNPDhviLAxPvPfs51oy2rEg4Lcrd3l0VsQuMtEZHeoeakNaz64kjnsCrmdFg1MphhgQqrRL7KZsFVWVkZAQEBZ7XX19frL6KIiHSZMG83fjhrCPfNHMye3Cr+tzOPFXvzKK5t4qXNx3hp8zGGB3tw/egQFo8KJcjTxd5dFukyGm+JiPRcNSdbSO4Iq8poabNeDT44YGDHBOtDAwfq32yRC7BZcHXVVVexatUqfvjDHwJ0/EV89dVXSUpKstXLiohIP2UwGBgb4cPIEHeuMuXgEjWWT1KL2ZBeyuGiWg4X1bJ8TTqTYny5LjGU+fFBuLs42rvbIl+LxlsiIj1LTUML69OKWZ1axJdHyzuFVUNOh1UjgxkaqKvBRS6VzYKr5cuXM3/+fNLS0mhtbeXPf/4zhw4dIiUlhc2bN9vqZUVERHA0wry4QBYlhlHd0Mzq1GI+2lvAjpxKthytYMvRCh796CBzRgRy/ehQpg71x9GkWd2l99F4S0TE/qobmll/qIRVqUVsOVpO6xnzbA4NtF5ZNURhlcgVsVlwNWnSJLZs2cIzzzxDTEwM69evZ8yYMaSkpJCQkGCrlxUREenEy82JWyYM4pYJg8irbGDF/kI+2JPPsbJ6Vh4oYuWBIrzdHLl2VAjXjQ5ldLiXLteXXkPjLRER+6iqb2Z9WjGrUovZ+pWwalig+6krq4IYHKCwSuTrsllwBZCQkNCxPLOIiIi9hfu48YMZg7l3egwHC2r5aF8BH+8rpPxEE2+mHOfNlONE+LpxXWIo140OJcpvgL27LHJRGm+JiHSPqvpm1h0qZlVqESnHKjqFVbFBlrBqYUIwgwMG2rGXIn1PlwZXtbW1l7yth4dHV760iIjIJTMYDCSEeZIQ5skjC2LZeqyCj/YWsPZQMccrGvjzZ0f482dHSAz34vrRoSwaGYzvQGd7d1sE0HhLRKQ7VZ4Kq1anFrH1WAVtXwmrTq8GGOOvsErEVro0uPLyuvTbK9ra2rrypUVERK6Ig8nI1KH+TB3qz6+bW0lOK+GDPQV8caSMfXnV7Mur5qmVaUwb6s91o0OZMzwQVyeTvbst/ZjGWyIitlVxool1hyyrAaZkdQ6rRgR7cM3IYBbEBxGtsEqkW3RpcLVx48aOn3Nycnj44Ye57bbbOla1SUlJ4Y033mD58uVd+bIiIiJdws3JgSWJoSxJDKWsromVBwr5aG8B+/Nr2JBeyob0UgY4mZgfH8z1o0NJivHFZNR8WNK9NN4SEel6FSea+CyzkNWpRWzLquwUVsWFeHTcBqhpBES6X5cGV9OmTev4+amnnuKPf/wj3/rWtzraFi9eTEJCAq+88gq33nprV760iIhIl/J3d+a7k6P47uQojpWd4OO9BXy4r4C8ypO8vyef9/fkE+DuzJJEy6TuI4I9NKm7dAuNt0REukZVfTOf7M/nX4eMPLhtM2dkVcSHngqr4oOJVFglYlc2m5w9JSWFl1566az2cePG8b3vfc9WLysiItLlYvwH8tDcYTw4Zyh7cqv4YE8BKw8UUVrXxKtfZPPqF9kMDRzIdaMtV2uFernau8vST2i8JSJyeRqaW/n0cCkf7y1gc2bZqQnWjQAkhHqeurIqiAhfhVUiPYXNgqvw8HBeeuklnn322U7tL7/8MuHh4bZ6WREREZsxGAyMjfBhbIQPj18bx6aMUj7aV8Cnh0vJLDnB79dm8Pu1GUyI8uH60aEsSAjG09XR3t2WPkzjLRGRi2tpa+fLo+V8vLeA9WklNDRb5/8bHuTOYKdqHlg6jZhATzv2UkTOx2bB1Z/+9CeWLl3KunXrmDhxIgDbtm3j2LFjvP/++7Z6WRERkW7h5GBkblwQc+OCqDnZwtqDRXy4t4Dt2ZUdX7/8+BCzhgdw3ehQpg/zx9lBk7pL19J4S0Tk3MxmM3tyq/hobyGrUouorG/ueC7cx5Ulo0JZkhhCpI8Lq1evZpCPmx17KyIXYrPgauHChRw5coS//e1vHD58GLPZzJIlS7jnnnt0BlBERPoUT1dHbrpqEDddNYjC6pN8vK+QD/fmk1lygjUHi1lzsBhPV0euGWmZ1H3sIG+MmtRduoDGWyIinWUU1/HxvgJW7C8kv+pkR7vfQCcWjQxhcWIIo8Otq7O2tLTYq6sicom6NLg6cOAA8fHxGI2We4TDwsJ4+umnz7v9oUOHGDZsGA4ONsvPREREulWIlyvfnx7DPdOiOVxUx0f7Cvh4XwEltU38Z3su/9meS5i3K9clhnLd6FAGB2gpbbk8Gm+JiHSWX9XAJ/uL+HhfAenFdR3tA5xMzIsPYkliKJNjfHEwGe3YSxG5Ul06ghk9ejTFxcX4+/tf0vZJSUns27eP6OjoruyGiIiI3RkMBkaEeDAixIOfzY9lW1YFH+4tYO3BYvKrTvLCxqO8sPEoCaGeXDc6lGtHBRPg7mLvbksvoPGWiAhU1jezOtUSVu3MqepodzQZmD4sgCWJIcyKDcTVSbfpi/R2XRpcmc1mHnvsMdzcLu3+4Obm5otvJCIi0suZjAYmD/Zj8mA/fn1dPMlpJXx0ajWj1IIaUgtqeHpVGlOG+HP96BDmjghigLOujpFz03hLRPqrhuZWktNK+HhfIZ93rAgIBgNMiPLhusRQFsQH4+mmhVFE+pIuHRVPnTqVjIyMS94+KSkJV1ctGS4iIv2Hi6OJa0eFcO2oECpONLEq1TKp+97caj7PLOPzzDJcHQ8yLy6Q60aHMmWwn25tkE403hKR/qSlrZ0vjpTx8b5C1h8q4WSLdUXAuBAPrksMZdGoYII99e+cSF/VpcHVpk2buvJwIiIifZrvQGe+kxTJd5IiySmv56N9BXy0t4CcigY+2lfIR/sK8RvoxLWjQrh+dCgJoZ4dk8lK/6Xxloj0de3tZnbnVvHxvgJWHSiiqsE6gXqErxtLRlkmWR8c4G7HXopId9F9CCIiIj1ApN8AHpg9lP+bNYR9edV8tLeATw4UUX6imX9uyeGfW3KI9h/A9acmdQ/Xst0iItLHpBfX8vG+QlbsK6Sg+uwVAZckhpB4xoqAItI/KLgSERHpQQwGA6MHeTN6kDePLhrBF0fK+HBvIesPFZNVVs+zyZk8m5zJuAhvrhsdyjUJwXgPcLJ3t0VERK5IflUDK/YX8vHeQjJKrCsCDnR2YF5cENeNDiEpWisCivRnCq5ERER6KEeTkZmxgcyMDaSusYV1hyyTum85Vs6u41XsOl7Fk58cYvqwAK4fHcrM2ABcHLV6koiI9GyV9c2sSi3i470F7DpuXRHQyWRk+jB/rtP/aSJyBgVXIiIivYC7iyM3jA3jhrFhFNc08sn+Qj7cW0BaUS3JaSUkp5Xg7uLANQnBXDc6lPGRPvbusoiISIf6ptMrAhbwxZHyTisCJkX7siQxhPlxWhFQRM6m4EpERKSXCfJ04c6p0dw5NZqM4jo+2lfAx3sLKKxp5L878/jvzjxCPF1YNDII7wZ791ZERPqrlrZ2Ps+0rAiYnNZ5RcCEUE+WJIawaGQIQZ4uduyliPR0Cq5ERER6sWFB7vxsfiw/mTuMHTmVfLS3gFWpRRTWNPLKFzmAAx8Xb2XJ6DAWJ4YQ6qXlwkVExHba283sOm5ZEXB1aucVASN93VicGMqSxBBi/AfasZci0psouBIREekDjEYDE6N9mRjtyxOL49iYXsoHe/LZkF5CeskJ0tem87u16YyP9GHJ6BAWxmtSdxER6Rpms5n04jo+3lfIJ/u/uiKgM9eOCua6xFBGhnlqRUARuWwKrkRERPoYF0cTCxKCmR3rx3srVtMWMpKVqcVsz65kR47l64kVh5g21J/FiaHMGR6Iq5MmwBURkcuTV3lqRcB9BWSWnOhod3d2YH58EEsSQ0mK8cVkVFglIldOwZWIiEgf5uYAC8eF8f+SoiiqOckn+wv5aG8haUW1fHq4lE8Pl+LmZGJeXBBLEkOYMthPS46LiMh5VZxosqwIuK+Q3V9ZEXBmbABLEkOYoRUBRaQLKbgSERHpJ4I9Xblragx3TY3hSInllo6P9xeQV3mSD/cW8OHeAnwHOLFoZDCLE0MZM8hLt3SIiAgnmlpJTivm432FfHGknLYzVgScFOPLklGhzIsPwtNVKwKKSNdTcCUiItIPDQl058fzhvGjuUPZk1vNin0FrDxQREV9M2+kHOeNlOOE+7iyZFQo140OYXCAu727LCIi3ai59dSKgPsLSU4rprGlveO5UWGeLE4MZdHIYAI9tCKgiNiWgisREZF+zGAwMDbCm7ER3jy6aARbjpazYl8h6w4Vk1d5khc2HuWFjUcZEezBdaNDuHZUCMGeWplQRKQvam83szOnko/2FbI6tYiak9YVAaP8BrAkMYTFo0KI1oqAItKNFFyJiIgIAI4mI9OHBTB9WAAnm9v49HAJH+8rYFNGGWlFtaQV1bJ8TToTonxYkhjKwvhgPN10W4iISG9mNps5XFTHx/sL+GRfIYU1jR3PBbg7c+2oEK5LDCU+1EO3j4uIXSi4EhERkbO4Opm4dpTlCquq+mZWHyzi472F7MipZFuW5euXHx9k+rAArksMZdZwTcQrItKbVDTCi5uyWJlazJHSM1YEdHFgQXwQ1yWGMiFaKwKKiP0puBIREZEL8h7gxLcnRPDtCREUVJ9kxT7L0ufpxXUkp5WQnFbCQGcH5sYFcl1iKJNifLUyoYhID2E2mymra+JQUS1phZarZ9MKasiucACOAuDkYGT28AAWjwpl+jB/nYgQkR5FwZWIiIhcslAvV74/PYbvT48ho7iOj/cV8PG+QgqqT/LBngI+2FOA30BnFo0MZkliCInhWplQRKS7tLa1k11ebwmnToVUh4tqKT/RfNa2BsxMivHjutGWFQE9XHTrt4j0TH0quKqqquL+++9nxYoVACxevJi//OUveHl5XdL+d999N6+88gp/+tOfeOCBB2zXURERkT5gWJA7P50fy4/nDmNPbhUf7Stg1YEiyk808frWHF7fmkOkrxuLE0NZkhhCjCbzFRHpMvVNraQXn3EVVWEt6cV1NLW2n7Wt0QAx/gMZEeLBiGAPhgYMoOjQdr65ZCyOjgqsRKRn61PB1S233EJ+fj5r164F4K677mLZsmV88sknF933o48+Yvv27YSEhNi6myIiIn2K0WhgXKQP4yJ9ePzaOL44UsbH+wpZf6iEnIoGnv/sCM9/doSEUE+WJFrmzdLy6SIil8ZsNlNa19QpoEorqiWnoh6z+ezt3ZxMDA+2BFSng6phQe6dbv9raWlhdWY3vgkRka+hzwRXhw8fZu3atWzbto0JEyYA8Oqrr5KUlERGRgbDhg07774FBQXcd999rFu3jmuuueair9XU1ERTU1PH49raWsDyH0BLS8v5drsip4/X1cftjVQLK9XCSrWwUi0sVAcre9Xi6hgfro7xoX5RLJ+ll/HJgSK+PFpBakENqQU1PL36MBOjfLh2ZBDzRgTi4Wr7s/22rIU+ayLSVc51q19aYS0V9Wff6gcQ6OF8RkDlyYgQDyJ83DBqQnUR6UP6THCVkpKCp6dnR2gFMHHiRDw9Pdm6det5g6v29naWLVvGT37yE+Li4i7ptZYvX86TTz55Vvv69etxc3O7sjdwEcnJyTY5bm+kWlipFlaqhZVqYaE6WNmzFg7A9b4wxwP2VRjYVW4ku85ASlYlKVmVPPbxIeK8zYz1MxPnbcbRxnO626IWDQ0NXX5MEen7vs6tfiNCPBge7IHfQGc79FxEpHv1meCquLiYgICAs9oDAgIoLi4+736/+93vcHBw4P7777/k13rkkUd46KGHOh7X1tYSHh7O3Llz8fDwuLyOX0RLSwvJycnMmTOn399/rlpYqRZWqoWVamGhOlj1tFrceOp7ftVJVh4oYsWBIo6U1nOg0sCBShjo7MC8uACuHRnMxCifLl2C3Za1OH3ltYjIudjiVj8Rkf6kxwdXTzzxxDmvbjrTzp07Ac65apHZbD7vaka7d+/mz3/+M3v27LmsFY+cnZ1xdj777Iajo6PNfjGw5bF7G9XCSrWwUi2sVAsL1cGqp9UiKsCRH8724L5ZQ0kvruOjfQV8sq+QwppG3t9TyPt7CvF3d+bakSFcNzqEhFDPLluZ0Ba16Em1FRH70q1+IiJdr8cHV/fddx8333zzBbeJjIzkwIEDlJSUnPVcWVkZgYGB59zviy++oLS0lEGDBnW0tbW18aMf/YjnnnuOnJycr9V3EREROT+DwcDwYMvtLj+bF8vOnEo+3l/I6tQiyuqa+MeWbP6xJZtovwEsTgxhSWIoUX4D7N3tPuvFF1/kD3/4A0VFRcTFxfHcc89x9dVXn3f7zZs389BDD3Ho0CFCQkL46U9/yj333NONPRaxL93qJyLSPXp8cOXn54efn99Ft0tKSqKmpoYdO3Ywfvx4ALZv305NTQ2TJk065z7Lli1j9uzZndrmzZvHsmXL+O53v/v1Oy8iIiKXxGg0MCHalwnRvjxxbRyfZ5bx0b4CPj1cQlZ5Pc99eoTnPj3CqDBPFieGcu2oYALctTJhV3nnnXd44IEHePHFF5k8eTIvv/wyCxYsIC0trdMJvtOys7NZuHAhd955J2+99RZbtmzh3nvvxd/fn6VLl9rhHYjYjm71ExGxrx4fXF2q4cOHM3/+fO68805efvllAO666y4WLVrUaWL22NhYli9fzvXXX4+vry++vr6djuPo6EhQUNAFVyEUERER23FyMDJ7RCCzRwRyoqmV9YeK+XhfIV8eLWd/fg3782t4elUak2L8WJIYwrz4IDxcdLve1/HHP/6RO+64g+9973sAPPfcc6xbt46//e1vLF++/KztX3rpJQYNGsRzzz0HWMZhu3bt4plnnlFwJb2abvUTEel5+kxwBfDvf/+b+++/n7lz5wKwePFiXnjhhU7bZGRkUFNTY4/uiYiIyGUa6OzAN8aE8Y0xYZTVNbE6tYiP9xWwJ7eaL4+W8+XRcn7x0UFmDw9g8ahQZsT64+ygqxouR3NzM7t37+bhhx/u1D537ly2bt16zn1SUlI6xlunzZs3j9dee42WlpZzzvvV1NREU1NTx+PTk9q3tLTQ0tLydd/GWU4f0xbH7m1UC4uv1qG+qZWMkhMcLqrlcHEdh4vqyCg5cd5b/aL9BjA82N3yFeTB8KCB+J7jVr+2tlba2mz7Xr4ufSasVAsr1cJKtbCwdR0u9bh9Krjy8fHhrbfeuuA25nNdz3sGzWslIiLSM/m7O3PrpEhunRRJbkUDH+8r4KN9BRwrq2d1ajGrU4txd3FgYXwwS0aHMCHKt0tXJuyrysvLaWtrO2tO0MDAwPOuzFxcXHzO7VtbWykvLyc4OPisfZYvX37OBXfWr1+Pm5vb13gHF5acnGyzY/c2faEW7WZobYfWc3xv63hsOO82Da0G/vnXzyioN1DeCGbO/jfCyWgmdACEupkJHWD5CnYFJ1MNUAO1UFsL2zO7//13tb7wmegqqoWVamGlWljYqg4NDQ2XtF2fCq5ERESkfxjk68YPZw3hvpmDOVRYy4r9hazYV0hxbSPv7MrjnV15BHm4cO2oYJYkhjLU39XeXe7xvrpy44VWZj7f9udqP+2RRx7hoYce6nhcW1tLeHg4c+fOxcPD40q7fU5ZZfW88kUWRYUFRA4Kx9HBhIPRgNFgwMFowHTqy8FowGQyYDKc8dho7PjZaLRuf+b3M9vPfK7jOKbT7cZT7XQ67pnH6Q4tLS0kJyczZ86cy14Fs7Wtnea2dppbzae+n/pqO/f3pnM+bz73Puc9jnX7llPfTx+3tf3CJ6EvV6C7M7HB7owIcu+4mmqQd9+/1e/rfCb6GtXCSrWwUi0sbF2H01dfX4yCKxEREem1DAYD8aGexId68rP5sezIruTjfQWsTi2iuLaRV7/I5tUvLCsTxroaSGpoJsCz/w5Az8XPzw+TyXTW1VWlpaXnXZk5KCjonNs7ODicNX/oac7Ozjg7n31blaOjY5cPhisaWnl/bxFgZGtJQZceu6udFYyZjJ0CNmsIdip4M1nCta/u1zkUM3a0mYwGDJjJyTWyvu4wLe2WAKqp5dwBkiUgaut43MU5UZdzcjDibDLi5HDGl+nsn50dLDWrLC1i+phhJIR5a1U/bPP3r7dSLaxUCyvVwsJWdbjUYyq4EhERkT7BZDSQFONLUowvTy6JY1NGGSv2FXasTJiDkcd6+m/hduDk5MTYsWNJTk7m+uuv72hPTk5myZIl59wnKSmJTz75pFPb+vXrGTduXI8Y4If7uPHQ7MGkZ2QQHTMEs8FAa7uZtjYzre1m2s3mTo/b2ttpM0NbezutbWba2k+3W79a29vP0975+c5t1u3Op/XUdk3n3aKrGKHs3Ld+XvIRDJwRBplwPkdQdN62TmGSqVPQ5HyOoOnMxy6OZ+/jZDLiaDJc8KrAr2ppaWH16gIWTonqEZ9TERG5NAquREREpM9xdjAxLy6IeXFB1DW2sPpAAZ9tT+33V1ecz0MPPcSyZcsYN24cSUlJvPLKK+Tm5nLPPfcAltv8CgoKePPNNwG45557eOGFF3jooYe48847SUlJ4bXXXuPtt9+259voEO7jxvenRbO6Pp2FswbbPaQwm82n5mY6I/w6Z4h2djh2rmDs7HCsnbb2U8Hb6fZTAVyb2UxzSytHMzMYGT8CV2fHM65COiN8OseVSl99zsFktGsdRUSkf1JwJSIiIn2au4sj3xgdikvRfnt3pce66aabqKio4KmnnqKoqIj4+HhWr15NREQEAEVFReTm5nZsHxUVxerVq3nwwQf561//SkhICM8//zxLly6111vo0QyG0/Nc2WfFy5aWFkuIlxRh9xBPRETkcim4EhERERHuvfde7r333nM+9/rrr5/VNm3aNPbs2WPjXomIiEh/p+t9RURERERERESkR9IVV13g9PLPl7qU4+VoaWmhoaGB2trafn9pt2phpVpYqRZWqoWF6mClWljZshan//8/PR6QS2PL8RPo838m1cJCdbBSLaxUCyvVwkq1sLB1HS51DKXgqgvU1dUBEB4ebueeiIiIiL3U1dXh6elp7270Gho/iYiICFx8DGUw6/Tg19be3k5hYSHu7u6XtSTvpaitrSU8PJy8vDw8PDy69Ni9jWphpVpYqRZWqoWF6mClWljZshZms5m6ujpCQkIwGjULw6Wy5fgJ9Pk/k2phoTpYqRZWqoWVamGlWljYug6XOobSFVddwGg0EhYWZtPX8PDw6Nd/Yc6kWlipFlaqhZVqYaE6WKkWVraqha60unzdMX4Cff7PpFpYqA5WqoWVamGlWlipFha2rMOljKF0WlBERERERERERHokBVciIiIiIiIiItIjKbjq4ZydnXn88cdxdna2d1fsTrWwUi2sVAsr1cJCdbBSLaxUi/5Hf+ZWqoWF6mClWlipFlaqhZVqYdFT6qDJ2UVEREREREREpEfSFVciIiIiIiIiItIjKbgSEREREREREZEeScGViIiIiIiIiIj0SAquRERERERERESkR1JwJSIiIiIiIiIiPZKCKxERERERERER6ZEUXImIiIiIiIiISI+k4EpERERERERERHokBVciIiIiIiIiItIjKbgSEREREREREZEeScGViIiIiIiIiIj0SAquRERERERERESkR1JwJSIiIiIiIiIiPZKCKxERERERERER6ZEUXIlIn7Jp0yYMBgPvvffeRbe97bbbiIyMtH2nLuJ0nzdt2tTRtnr1ap544okrPmZkZCSLFi36+p0TERGRfq83jq/O51zjrieeeAKDwWC/TonIBSm4EpF+67HHHuPDDz+0dzcYM2YMKSkpjBkzpqNt9erVPPnkk3bslYiIiMjl6ynjKxHpOxzs3QERkUvV0NCAm5tblx0vJiamy471dXh4eDBx4kR7d0NERET6od4+vjKbzTQ2NuLq6tqtrysi3UdXXIlIj3T6ku09e/Zwww034O3tfVkDoZaWFn7xi18QEhKCh4cHs2fPJiMjo9M257qU3WAwcN999/Hyyy8zdOhQnJ2dGTFiBP/9738v+z1c6rG+esn6bbfdxl//+teOY5z+ysnJAaC9vZ2//OUvJCYm4urqipeXFxMnTmTFihVn9WHt2rWMGTMGV1dXYmNj+cc//nHZ70NERET6hr40vnrppZcYPnw4zs7OvPHGGwB8+eWXzJo1C3d3d9zc3Jg0aRKrVq267NcQkZ5FV1yJSI/2jW98g5tvvpl77rmH+vr6S97v5z//OZMnT+bvf/87tbW1/OxnP+Paa6/l8OHDmEymC+67YsUKNm7cyFNPPcWAAQN48cUX+da3voWDgwM33HDDZfX/So712GOPUV9fz3vvvUdKSkpHe3BwMGAZEL711lvccccdPPXUUzg5ObFnz56OYOu0/fv386Mf/YiHH36YwMBA/v73v3PHHXcwePBgpk6delnvQ0RERPqO3j6++uijj/jiiy/45S9/SVBQEAEBAWzevJk5c+YwcuRIXnvtNZydnXnxxRe59tprefvtt7npppsu6zVEpOdQcCUiPdqtt956RXM9jRgxgrfeeqvjsclk4sYbb2Tnzp0XvS2vvLycnTt3EhgYCMDChQuJj4/nkUceueyB1ZUcKyYmpmP7r/b1iy++4F//+he/+MUv+PWvf93RPn/+/HO+9pYtWxg0aBAAU6dO5bPPPuM///mPgisREZF+rLePr06cOEFqaire3t4dbUlJSXh7e7Np0yYGDhwIwKJFi0hMTOTHP/4xN954oyZgF+mldKugiPRoS5cuvaL9Fi9e3OnxyJEjATh+/PhF9501a1bHoAosg7KbbrqJo0ePkp+ff1n96MpjAaxZswaAH/zgBxfdNjExsSO0AnBxcWHo0KGXVAMRERHpu3r7+GrmzJmdQqv6+nq2b9/ODTfc0BFanX6NZcuWkZ+ff9YtjSLSeyi4EpEe7fTtcZfL19e302NnZ2cATp48edF9g4KCzttWUVFxWf3oymMBlJWVYTKZznncr/pqDcBSh0upgYiIiPRdvX189dX+V1VVYTabz/m+QkJCrug1RKTnUHAlIj2aPS7pLi4uPm/bucKg7joWgL+/P21tbec8roiIiMil6O3jq6/239vbG6PRSFFR0VnbFhYWAuDn53dZryEiPYeCKxGRr/jss88oKSnpeNzW1sY777xDTEwMYWFh3XKs853BXLBgAQB/+9vfLqsfIiIiIvbUleOrrxowYAATJkzggw8+6DR2am9v56233iIsLIyhQ4d+rdcQEfvR5OwiIl/h5+fHzJkzeeyxxzpWvUlPT7+iJZuv9FgJCQkA/O53v2PBggWYTCZGjhzJ1VdfzbJly/j1r39NSUkJixYtwtnZmb179+Lm5sYPf/jDK3rPIiIiIrbUleOrc1m+fDlz5sxhxowZ/PjHP8bJyYkXX3yRgwcP8vbbb2tidpFeTMGViMhXLF68mLi4OB599FFyc3OJiYnh3//+9xUto3ylx7rlllvYsmULL774Ik899RRms5ns7GwiIyN5/fXXGTNmDK+99hqvv/46rq6ujBgxgp///OdX+pZFREREbKorx1fnMm3aNDZs2MDjjz/ObbfdRnt7O6NGjWLFihUsWrSoS15DROzDYDabzfbuhIhIT2EwGPjBD37ACy+80KOOJSIiItJbaUwkIl+H5rgSEREREREREZEeSbcKikivYDabaWtru+A2JpOpW+YvaG1tveDzRqMRo1HnBURERKRn0/hKRHoD/c0XkV5h8+bNODo6XvDrjTfe+NqvYzabL3oZ+8X6cfvtt1/ysURERETspTeOr0Sk/9EcVyLSK9TV1ZGRkXHBbaKiovD19bV5X3bt2nXB5/38/IiMjLR5P0RERES+Do2vRKQ3UHAlIiIiIiIiIiI9kua46gLt7e0UFhbi7u7eLfd/i4iISM9hNpupq6sjJCRE869cBo2fRERE+rdLHUMpuOoChYWFhIeH27sbIiIiYkd5eXmEhYXZuxu9hsZPIiIiAhcfQym46gLu7u6ApdgeHh5deuyWlhbWr1/P3LlzcXR07NJj9zaqhZVqYaVaWKkWFqqDlWphZcta1NbWEh4e3jEekEtjy/ET6PN/JtXCQnWwUi2sVAsr1cJKtbCwdR0udQyl4KoLnL683cPDwybBlZubGx4eHv36LwyoFmdSLaxUCyvVwkJ1sFItrLqjFr39drcXX3yRP/zhDxQVFREXF8dzzz3H1Vdffd7tN2/ezEMPPcShQ4cICQnhpz/9Kffcc88lv54tx0+gz/+ZVAsL1cFKtbBSLaxUCyvVwqK76nCxMZSCK5Eezmw209puprXNTGt7O61tZk42NVPTDGV1TTg6tmMwgAHLX3gDYDzV8NV2y2OD5fuZP391m17+y5eIiFyed955hwceeIAXX3yRyZMn8/LLL7NgwQLS0tIYNGjQWdtnZ2ezcOFC7rzzTt566y22bNnCvffei7+/P0uXLrXDO+issaWN0ppGTrRAfVMrA40mHEyaf0xERKQ3UnAlfYrZbKblVMDT0mamta2dtnYzLe2Wn1vOCH9av9p2Ohxqa+/Y/szA6PTxztt26ridj3eqrdPxLN8vuO9X+nluDvxy92ab1fJ8oRcGMJ4n9OKMx0ZD533ptL0lXDu9bcfrnXFc4zmOeXb4ZsCAmYGtRgwHi5k+PAgPl/57RkRE5Er98Y9/5I477uB73/seAM899xzr1q3jb3/7G8uXLz9r+5deeolBgwbx3HPPATB8+HB27drFM888c97gqqmpiaampo7HtbW1gOVsbktLS5e+n905lXz7tV2AA7/YtQEAk9GAs4MRZwcjTqe+W75M52g34exo/Eq76Yx9zmh3PLvd2cH0ldcw2jU4O13frq5zb6M6WKkWVqqFlWphpVpY2LoOl3pcBVfS5drbzTS1ttPY0sbJU1+NHV/tnGw+R9upn09+ZbvG1jbL9xbL98paE78//Dmt7WZLIPWVoOm8GU8fZMAMBgNmG71nsxnMp3+wttrmxb42IzveOYCDMZVxkd7MGBbAzNgABgcM1NVjIiIX0dzczO7du3n44Yc7tc+dO5etW7eec5+UlBTmzp3bqW3evHm89tprtLS0nPN2guXLl/Pkk0+e1b5+/Xrc3Ny+xjs4W0aNAZPBSJvZ+n9AW7uZhuY2GprbuvS1LpURMw5GcDRi+W6g82OjGQfDmY+/uo3Z8v0r2zgYztj/K/uc+VomIyQnJ9vlvfc0qoOVamGlWlipFlaqhYWt6tDQ0HBJ2ym46ifMZjPNbe00trR3hEDWUKi9U2h0ssXadnrbs9rOtd2pbZta2234TgzQ2HhZexgN4GAy4mg0WL6bDJiMBhyMlp8dTEYcjAYcTGe0GY2nHlv3Oavt1PeOtq8cz9FkxGQ0dNr3gm0djy3PmU4dw8Fkfe50W3tbK6tXr2bhwoUdvxyYzeaOsKm942dzR+50+nG7+dS2p9o4Y7v2M9rNlic6HlufO/uYX90XrH3peO5S+3PGvu3tF+9PQ2Mz72zcQ27LQLLKG9iWVcm2rEqWr0knzNuVmbEBzIgNICnaFxdH0xV+7kRE+q7y8nLa2toIDAzs1B4YGEhxcfE59ykuLj7n9q2trZSXlxMcHHzWPo888ggPPfRQx+PTE7LOnTu3y+e4Wgjc19LCuvXJTJ0xk3ZMNLVaxihNre00n/re0dbSfsZz1u3O/Gpubeu03en9m9vaaT6r3fJcS5v1hE87Bprbofm8wyTbnmgxGcwMcHbEzcmEm5MDA5xNuDqaTj22tFl/NuHqZGLAqfbTP5/efoCzQ8fPTg695xbMlpYWkpOTmTNnTr+eswZUizOpFlaqhZVqYWHrOpy++vpiFFydcrkTknaX7dmV7CozcGJXPi3tcPIrQZHle+eQ6XyBlD2uRnIyGXFxNOLiaBkAuTiYcHEy4eJgxPXUAMil48uIq+MZbV/ZzsFgZs/O7Vw9ZTIuTo6dg6ZTQZLpq0GT0YDR2PeuuGk/x8lig8HA6YuLTDYe/PYkLS0tNGe3s3DhFAprm9mYXsqGjDK2Hasgv+okb6Yc582U47g4Gpkc48f0WMvVWKFervbuuohIj/LVK1TNZvMFr1o91/bnaj/N2dkZZ2fns9odHR1t9kuB0QAebi52+6Wjvd1y4tASeLV1BFqNLecKzs4IzFraOgVgTZewffM5tm9us6ZkbWYDtY2t1Da2Ak3n7/RlcjAarGGWk4kBZwRdbs4OuDme+dwZAdmp59ycLft8tc3JZLTZVdO2/Mz1NqqFlWphpVpYqRYWtqrDpR5TwRWXPyFpd/rTp0fZnWuCo2lddkyjAUtA5GQNjVxPBUcuZwRHHW1O52g7c7tTgZSrk/ErxzNh6sLQqKWlheoMGBXmqX885JwifAdw2+QobpscRUNzK1uOVrAhvZRNGaUU1TTyWXopn6WX8hgwLNCdGadCrDGDvDRpr4j0W35+fphMprOuriotLT3rqqrTgoKCzrm9g4MDvr6+Nutrb2M0GnAxmk5d8dv9Y5fTwVldQxOr1iUzcco0mts5dctkK/VNlpOd9c2tHW0NzW00NFnaTj9n+d5GQ1MrDS2W50+HYq3t5jMCsa7jYDR0BGGWUMsaep0rHHNztl4x1ikIO6PN0dBusykWRETEdhRccfkTknan+FAP6moqCQsKxPXUZdlnXpnk3ClAMp7ddsb2LqcCJkeTQfP+SJ/n5uTAnBGBzBkRiNlsJr24jg3ppWxML2VPbhUZJXVklNTx0uZjeLo6MnWoPzNj/Zk2NACfAU727r6ISLdxcnJi7NixJCcnc/3113e0Jycns2TJknPuk5SUxCeffNKpbf369YwbN04nl3qQ08GZyc0Rb2eI8R/QZX8+LW3tZ4VdHT+fDsPOCLo6wrLmNk6eCs0sz7V2eq651RqI1TW2UtfFgZijwcR/S3YyebA/kwb7MjLMC0edvBIR6dH6fXB1JROSdueqOD+bE0MyWcyZE981Aw1zG61d+/9/t9HKDlaqhdWl1mKwnyuDp0Rw15QIqhqa+eJIBZsyy/jiSAXVJ1v4ZH8hn+wvxGCAxDBPpg31Z/pQP0YEu/eaoFefCwvVwUq1sLJlLfpCfR966CGWLVvGuHHjSEpK4pVXXiE3N5d77rkHsMxPVVBQwJtvvgnAPffcwwsvvMBDDz3EnXfeSUpKCq+99hpvv/22Pd+GdCNHkxFPVyOerl0bVLa2tZ8RdnUOwk42t1HfZG1rOONKsfqmc7edbLHsc3oO1hazgW3ZVWzLruLZZHBzMnFVpA+TYnyZFOPHiBCPLr1jQEREvr5+H1xdyYSk3bkqzmlazcBKtbBSLawutxYOwOwBMHMUHD8Bh6qMpFUZKGgwsDevhr15NTz32VE8Hc2M8LZ8DfM049wL5nfX58JCdbBSLaxsUYtLXRGnJ7vpppuoqKjgqaeeoqioiPj4eFavXk1ERAQARUVF5ObmdmwfFRXF6tWrefDBB/nrX/9KSEgIzz//PEuXLrXXW5A+wsFkxMNkxMOlawOxtnYzNfWNvLtyPS6DEtiRU01KVgWV9c1szixjc2YZAB4uDkyI9u0IsoYGaoViERF76/fB1WmXMyFpd66Ko9UMrFQLK9XCqqtrUVTTyObMcjZllrH1WAU1Le2klBpIKQVHk4HxkT5MG+rHjGF+RPoO6IJ30HX0ubBQHaxUCytb1uJSV8Tp6e69917uvffecz73+uuvn9U2bdo09uzZY+NeiXQNk9GAu4sDQW6wcHw4t06Opr3dTEZJHVuPVZByrILtWRXUNraSnFZCcloJAH4DnZgYbQmxkmJ8ifR1U5AlItLN+n1wdSUTktpjVRytZmClWlipFlZdVYtBfo4s83Nn2aQoGlva2JFdaZkbK6OU4xUNbDlWwZZjFfxmTQZRfgOYMcwywfv4KJ8esyS4PhcWqoOVamFli1qotiK9k9FoYHiwB8ODPbhjShStbe0cKqxl67EKth4rZ2dOJeUnmll5oIiVB4oACPZ0IenU1ViTYnwJ0SrFIiI21++DqyuZkFRE+gcXRxNTh/ozdag/j5tHkFVez8b0Ujakl7Iju5Ls8nqyy7P5x5ZsBjiZmDLEj5mxAUwfFkCgh4u9uy8iIiKXwcFkZFS4F6PCvfj+9BiaW9vZl1dNyqkga29uNUU1jXywp4AP9hQAEOnrRtKpq7GSon3xdz/75LaIiHw9/T64gotPSCoiYjAYiPEfSIz/QL53dTR1jS1sOVp+6mqsMsrqmlh3qIR1hyy3FsSFeDAzNoAZsQGMCvPSRK8iIiK9jJODkfFRPoyP8uH/Zg/hZHMbu49XsfVYOSlZFRzIryGnooGcilze3mGZA25o4MCO2wonRvni6aYrMkVEvi4FV1x8QlIRka9yd3Fkfnww8+ODaW83c6iwlg3ppWzIKOVAfjWHCms5VFjLXzYcxWeAE9OH+jMjNoCpQ/27fAUmERERsT3XU1dXTxniB0BdYws7cyrZerSCrccqSCuqJbPkBJklJ3h9aw4Gg+VE1ukga3ykDwOc9euXiMjl0r+cp1xoQlIRkQsxGg0khHmSEObJ/80eQvmJJjZllLExo5TPM8uorG/mg70FfLC3AJPRwNgI7465sbRakYiISO/k7uLIzNhAZsZa5sWtqm9me3bFqTmyKjhaeoKDBbUcLKjllc+zcDAaGBXuxaRTtxWOifDGxbEXLFcsImJnCq5ERLqY30Bnbhgbxg1jw2hpa2f38aqOubGOlJ5gR3YlO7Ir+d3adEK9XJkR68/M2ACSov1wddIAVkREpDfyHuDUcTU2QGltIylZFZYrsrLKyas8ye7jVew+XsVfNhzFycHI2EHeTIrxZdJgX0aGeeFo6hkLvYiI9CQKrkREbMjRZGRitC8To315ZOFw8iob2JhRysb0UrYeq6Cg+iRvbcvlrW25ODsYmRTjy4zYAGYMCyDcx83e3RcREZErFODhwpLEUJYkhgKQV9lASlZFx2TvJbVNlsdZFTybDG5OJq6K9LEEWTF+jAjx0ByZIiIouBIR6VbhPm58JymS7yRFcrK5jZSsUxO8p5dRUH2SjRllbMwoAw4xJGBgxwTvYyO8dRZWRESkFwv3cSPcx40bx4VjNpvJKq9n67EKth2zhFeV9c1szixjc2YZAB4uDkyM9rXcWhjjp+kFRKTfUnAlImInrk6mjrkxzGYzmSUnTq1SWMru41UcKT3BkdITvPx5Fu4uDkwd6s/MYQFMH+aP70Atty0iItJbnbla8bKJEbS3m8koqWPrsQpSjpWzPauS2sZW1qeVsD7NsmKx30CnU0GWH5NifInwdVOQJSL9goIrEZEewGAwMCzInWFB7nx/egw1DS18fqSMjemlbDo1wfuqA0WsOlCEwQCjwrw6JniPC/HAqFsJREREei2j0cDwYA+GB3twx5QoWtvaOVRYe2qi93J25lRSfqKZlQeKWHmgCIAQTxcmxliDrBAvVzu/CxER21BwJSLSA3m6OXLtqBCuHRVCW7uZ/fnVbDx1NdbBglr25VWzL6+aP32aib+7MzOG+TN1sC/NbfbuuYiIiHxdDiYjo8K9GBXuxfenx9DU2sb+vBq2Hisn5VgFe3OrKaxp5IM9BXywpwCASF83kk6FWBOjffF319XZItI3KLgSEenhTEYDYwZ5M2aQNz+aO4yS2kY2ZVhWKfzySDlldU38b1c+/9uVj6vJxF7SuHl8BAmhnrqFQEREpA9wdjAxPsqH8VE+PDAbTja3sft4FVuPlbP1WAUH8qvJqWggpyKXt3fkAjA0cCCTYvxIivFlYpQvnm6Odn4XIiJXRsGViEgvE+jhwk1XDeKmqwbR1NrGzuwqNmaUsvZgEQXVjfxnRz7/2ZFPbJA73xwXzvWjQ/EZ4GTvbouIiEgXcXUyMWWIH1OG+AFQ19jCzpxKth6tYOuxCtKKasksOUFmyQle35qDwQDxIZ6Wq7FifBkd6m7ndyAicukUXImI9GLODtaB60/nDOb5d9aS5xDGurQS0ovr+NXKNH675jBzRgTyzXHhTB3ir6W1RURE+hh3F8eOBV8AKuub2Z5lCbFSsio4WnqC1IIaUgtqePnzLByMBgYNMFHsmcM1o0IJ83az8zsQETk/BVciIn2E0WhgqKeZBxYm8KvWBFbsL+TdXXkcyK9hdWoxq1OLCfJwYenYUL45NpxIvwH27rKIiIjYgM8AJxYkBLMgIRiA0tpGUrIqLFdkZZWTV3mSrDoDy9dmsnxtJqPCPC3bxwcR4avxgYj0LAquRET6IE9XR5ZNjGDZxAgOF9Xy7q58PtybT3FtI3/deIy/bjzG+CgfbhoXzoKEINyc9N+BiIhIXxXg4cKSxFCWJIYCkFVaw4sfbiYPP3bmVLE/v4b9+TX8dk06cSEeLEwIZn58EDH+A+3ccxERBVciIn3e8GAPfnntCH62YBgbDpfyzq48Ps8sY0d2JTuyK3l8xSGuHRXMN8eFMzrcSxO6i4iI9HHh3m5cHWRm4cKrqG5sZ31aMWtSi0nJquBQYS2HCmv5w7oMhgW6syAhiIUJwQwJGKgxgojYhYIrEZF+wtnB1HHbQFHNST7YU8D/duVxvKKBt3fk8faOPAYHDOTGcWFcPzpMy2iLiIj0A/7uznx7QgTfnhBBZX0zyWmW6QW2HC0no6SOjJI6nvv0CDH+A1gQH8yChCBGBHsoxBKRbqPgSkSkHwr2dOUHMwZz7/QYdmRX8s6uPFanFnG09AS/WZ3O79dmMDM2gBvHhTN9mD8OJqO9uywiIiI25jPAqWPl4pqGFj49XMKag0V8nlnOsbJ6Xth4lBc2HiXC140F8cEsTAgiIdRTIZaI2JSCKxGRfsxgMDAh2pcJ0b48uTiOlQeK+N+uPPbmVrM+rYT1aSX4uzvzjTGh3DguXHNdiIiI9BOebo4sHRvG0rFh1DW2sCG9lNWpRWzKKON4RQMvbT7GS5uPEerlysKEIObHBzM63AujVi8WkS6m4EpERADLUtrfGj+Ib40fxJGSOt7dnc8He/Ipq2vi5c1ZvLw5i3ER3tw4LpyFI4MZ6Kz/QkRERPoDdxfHjsnd65ta2ZRRxuqDRWw4XEpB9Ule/SKbV7/IJsjDhfnxljmxxkZ4Y1KIJSJdQL91iIjIWYYEuvPzhcP5ybxhbEgv5d1deWzMKGPX8Sp2Ha/iiU8OcU1CMDdeFc64CG/dIiAiItJPDHB24JqRwVwzMpiTzW1szixjzcEiPjtcSnFtI69vzeH1rTn4uzszLy6QhfHBjI/y0bQDInLFFFyJiMh5OZqMzIsLYl5cEKW1jXywt4D/7cwjq7yed3fn8+7ufKL9BvDNceEsHRNKgIeLvbssIiIi3cTVycT8+CDmxwfR2NLGl0fKWXOwmOS0YsrqmnhrWy5vbcvFZ4AT8+ICWRAfTFKML44KsUTkMii4EhGRSxLg4cI902K4e2o0u49X8b9deaw8UERWeT2/W5vOM+szmD7Un2+OC2dmbABODhqUioiI9BcujiZmjwhk9ohAmlsT2HqsnDWpxaxLK6ayvrljBWNPV0fmjghkQUIQkwf74exgsnfXRaSHU3AlIiKXxWAwMC7Sh3GRPjx+bRyrUot4d1ceO3Oq+Cy9lM/SS/Ed4NQxofuQQHd7d1lERES6kZODkenDApg+LIBft8WzPauSNQeLWHeomPITzR1Xbbs7OzB7RCAL4oOYOtQfF0eFWCJyNgVXIiJyxQY4O3DjuHBuHBfOsbITvLsrn/dPTeh+eqLWxHAvbhwXzqJRwXi4ONq7yyIiItKNHE1GpgzxY8oQP55aEs/OnErWpBax5mAxpXVNfLi3gA/3FjDAycTM4YEsjA9i2jB/3Jz0q6qIWOhfAxER6RIx/gN5eEEsP547lM2ZZfxvVx6fHS5lX141+/KqeWrlIRYmBHPjuHAmRPloQncREZF+xmQ0MDHal4nRvjx+bRx7cqtYnVrM2oNFFNY08sn+Qj7ZX4iLo5EZwwJYkBDMzNgArWQs0s/pXwAREelSDiYjs4YHMmt4IGV1TXy0t4B3duVxtPQEH+wp4IM9BUT4uvHNsWEsHRtGsKervbssIiIi3cxotE498Nii4ezPr2FNahGrDxaRV3mSNQeLWXOwGCcHI9OG+rMgPohZwwPxdNXV2yL9jYIrERGxGX93Z+6cGs33ro5iX141/9uVzyf7Czle0cAz6zP5Y3ImVw/x56arwpk1PEATtIqIiPRDBoOBxHAvEsO9eHhBLIcKa1l96nbC7PJ6ktNKSE4rwdFkYMpgPxYkBDN3RCBebk727rqIdAObBle1tbWXvY+Hh4cNeiIiIvZkMBgYPcib0YO8eWzRcNakFvO/XXlsz65kc2YZmzPL8HZz5LrRlgndhwfr/wLpXzRmEhGxMBgMxId6Eh/qyU/mDSOjpI7VqcWsSS3iSOkJNmaUsTGjjJ8bDSTF+LLwVIjlO9DZ3l0XERuxaXDl5eV1WXOYGAwGMjMziY6OtmGvOouMjOT48eOd2n72s5/x29/+ttv6ICLSn7g5ObD01G2COeX1vLc7n/d251Nc28g/t+Twzy05JIR6cuO4MBYnhuqWAOkXesOYSUSkuxkMBmKDPIgN8uChOUM5UlLHmoPFrE4tIr24ji+OlPPFkXJ+8WEqE6J8WZgQxLy4IAI8XOzddRHpQja/VfC9997Dx8fnotuZzWYWLlxo6+6c01NPPcWdd97Z8XjgwIF26YeISH8T6TeAH88bxoNzhvL5kTLe3ZVHcloJqQU1pBbU8OtVh5kfH8SN48JJivbFaNSE7tJ39YYxk4iIPQ0JdGdIoDv3zxpCdnk9aw4WsSa1mNSCGlKyKkjJquCXKw5xVYQP8+ODmB8fRIiX5tIU6e1sGlxFREQwdepUfH19L2n76OhoHB27/8y6u7s7QUFBl7x9U1MTTU1NHY9PX97f0tJCS0tLl/bt9PG6+ri9kWphpVpYqRZWvb0WU6K9mRLtTWV9MysOFPHe7gIySk7w8b5CPt5XSKiXC0tHh/KNMSGEXmAQ2tvr0JVUCytb1qIrjtlbxkwiIj1FlN8A7p0+mHunDyavsoE1B4tYnVrMvrxqduRUsiOnkqdWpjF6kBcL44OZHx9EuI+bvbstIlfApsFVdnb2ZW1/8OBBG/Xkwn73u9/xq1/9ivDwcL75zW/yk5/8BCen80/0t3z5cp588smz2tevX4+bm23+MUxOTrbJcXsj1cJKtbBSLaz6Qi0CgO9HQX4ApJQa2VNuoKC6kec3HuMvG48y1NPMxAAzCT5mHI3nPkZfqENXUS2sbFGLhoaGr32M3jJmEhHpicJ93Lhragx3TY2hoPokaw9a5sTanVvF3txq9uZW8/Tqw4wM82RBfDAL4oOI9Btg726LyCXq96sK/t///R9jxozB29ubHTt28Mgjj5Cdnc3f//738+7zyCOP8NBDD3U8rq2tJTw8nLlz53b5RKktLS0kJyczZ86cfn9mVbWwUi2sVAurvlqLu4HGljbWp5Xy/p4CtmZVklFjIKMGPFwcWDwqmBvGhBIXYvn3t6/W4UqoFla2rMWVTKwuIiK2Eerlyh1TorhjShQltY2sO2SZE2tHdiUH8ms4kF/D79amMzzYg4XxQcwZ7m/vLovIRXRbcPX888+fs91gMODi4sLgwYOZOnUqJtPXXwr9iSeeOOcVUWfauXMn48aN48EHH+xoGzlyJN7e3txwww387ne/O+/l+s7Ozjg7n71qhaOjo81+MbDlsXsb1cJKtbBSLaz6Yi0cHR1ZOm4QS8cNIq+ygXd35/PerjwKaxp5a3seb23PY0SwBzeOC2NhfEDHPn2tDldKtbCyRS26+njdOWYSEenLAj1c+E5SJN9JiqSsron1acWsSS0mJauCw0W1HC6q5dnkTIJdTeS4ZXH9mHAG+ep2QpGeptuCqz/96U+UlZXR0NCAt7c3ZrOZ6upq3NzcGDhwIKWlpURHR7Nx40bCw8O/1mvdd9993HzzzRfcJjIy8pztEydOBODo0aOXPM+EiIh0n3AfNx6aM5T/mzWErcfK+d+ufNYdKiatqJYnPknj6dWHifcy4ju8kslDAi5rpTaRnqA7x0wiIv2Fv7sz354QwbcnRFBZ38ynaSWsPljElqPlFJ2EP312lD99dpTEcC8Wjwph0chgrU4o0kOcZ2aQrveb3/yGq666iiNHjlBRUUFlZSWZmZlMmDCBP//5z+Tm5hIUFNTpCqgr5efnR2xs7AW/XFzO/Y/Q3r17AQgODv7a/RAREdsxGQ1cPcSfv3xrNDt+PounlsQRF+JBS5uZvRVG/t8/drHgz1/wn+25NDS32ru7IpesO8dMIiL9kc8AJ268KpzXvzuelJ9N51sxbUyK9sFogH151Ty1Mo2Jyz/j23/fxjs7c6lp0CInIvbUbVdcPfroo7z//vvExMR0tA0ePJhnnnmGpUuXkpWVxe9//3uWLl3aXV0iJSWFbdu2MWPGDDw9Pdm5cycPPvggixcvZtCgQd3WDxER+Xq83Jw6bgXYd7yC33+wlb2VDqQX1/HzD1P57ZrD3HRVOMsmRuoWAOnxeuKYSUSkr/J0dWRigJmnFo6jqrGNVQeKWLG/kL251Ww5WsGWoxU8+tFBpg0NYHFiCLOHB+Dm1O+nihbpVt32N66oqIjW1rPPeLe2tlJcXAxASEgIdXV13dUlnJ2deeedd3jyySdpamoiIiKCO++8k5/+9Kfd1gcREelacSEe3BTdzvN3TOOj/cX8a9txjlc08OoX2fz9y2xmDgvg1kmRTBnsh9Go2wil5+mJYyYRkf4gwN2F706O4ruTo8itaOCTA4Ws2FdIRkkdnx4u4dPDJbg5mZgzIpDFo0K4eog/Tg7ddhOTSL/VbcHVjBkzuPvuu/n73//O6NGjActted///veZOXMmAKmpqURFRXVXlxgzZgzbtm3rttcTEZHu4+nqyPeujub2yVFsyizlja3H2ZxZxmfppXyWXkq0/wC+MzGCpWPDcHfRxOXSc/TEMZOISH8zyNeNH8wYzA9mDCa9uJYV+wpZsb+Q/KqTfLyvkI/3FeLl5siC+GAWjwphQpSPToiJ2Ei3BVevvfYay5YtY+zYsR2r77S2tjJr1ixee+01AAYOHMizzz7bXV0SEZF+wGg0MDM2kJmxgWSVneDNlOO8tzufrLJ6nvgkjT+sy+CGsWEsS4pkcMBAe3dXRGMmEZEeJjbIg9j5Hvxk3jD25lWzYl8hKw8UUX6iibd35PL2jlwCPZxZNDKEJYkhJIR6anEYkS7UbcFVUFAQycnJpKenk5mZidlsJjY2lmHDhnVsM2PGjO7qjoiI9EPR/gN5YnEcP543jA/35PNGynGOlp7gjZTjvJFynKuH+HFrUiQzYgMw6ayp2InGTCIiPZPBYGDMIG/GDPLm0WuGsy2rkhX7C1hzsJiS2iZe+zKb177MJtLXjcWjQlicGMLgAHd7d1uk1+v2WeWio6MxGAzExMTg4KBJ7UREpPsNdHZgWVIk/29iBFuOVvBGSg6fHi7hiyPlfHGknHAfV5ZNjODGceF4uTnZu7vST2nMJCLSczmYjEwZ4seUIX786rp4NmeU8fH+Qj47XEJORQPPbzjK8xuOMiLYg8WJIVw7KoRQL1d7d1ukV+q2meQaGhq44447cHNzIy4ujtzcXADuv/9+fvvb33ZXN0RERDoYDAamDPHj1e+M4/OfzODuqdF4ujqSV3mS36xOZ+Lyz3j4/QMcLqq1d1elH9GYSUSkd3F2MDE3Loi/3jKGXY/O4bmbEpkxzB8Ho4G0olp+uyadyb/dwA1/28qbKTmUn2iyd5dFepVuC64eeeQR9u/fz6ZNm3Bxcelonz17Nu+88053dUNEROScwn3ceGThcLY9MovfLU1geLAHjS3t/HdnHgv+/AU3vpzC6tQiWtva7d1V6eO6e8xUVVXFsmXL8PT0xNPTk2XLllFdXX3BfW677TYMBkOnr4kTJ3Z530REepuBzg5cNzqUf353PDt+MZunr49nQpQPBgPsOl7FLz8+xITffMZ3/rGD93bnU9fYYu8ui/R43Xbd+UcffcQ777zDxIkTO01UN2LECI4dO9Zd3RAREbkgVycTN101iBvHhbMzp4o3UnJYe7CYHdmV7MiuJNjThW9PGMTN4wfhN9DZ3t2VPqi7x0y33HIL+fn5rF27FoC77rqLZcuW8cknn1xwv/nz5/PPf/6z47GTk26rFRE5k88AJ749IYJvT4igqOYkK/cXsWJ/IakFNXyeWcbnmWX8/EMjs2IDWDwqhBmxAbg4muzdbZEep9uCq7KyMgICAs5qr6+v14oLIiLS4xgMBsZH+TA+yofimkb+vf04b+/IpaimkWfWZ/L8Z0dZNCqYW5MiGRXuZe/uSh/SnWOmw4cPs3btWrZt28aECRMAePXVV0lKSiIjI6PThPBf5ezsTFBQUJf2R0Skrwr2dOXOqdHcOTWarLITfLK/iI/3F5BVVs+ag8WsOVjMQGcH5sYFsiQxlMkxvjiYuu0GKZEerduCq6uuuopVq1bxwx/+EKBj4HV6cCQiItJTBXm68KO5w7hv5mBWpxbx+tbj7M+r5oM9BXywp4DEcC9umxTJgoQgnB10plS+nu4cM6WkpODp6dkRWgFMnDgRT09Ptm7desHgatOmTQQEBODl5cW0adN4+umnzxm4ndbU1ERTk3Vel9pay9xxLS0ttLR0/a0yp49pi2P3NqqFhepgpVpY2aMW4V7O3Dstku9PjSCtqI6VqcWsSi2mqKaxY2zhM8CRBXFBLBoZxJhwL4zdsNqxPhdWqoWFretwqcfttuBq+fLlzJ8/n7S0NFpbW/nzn//MoUOHSElJYfPmzd3VDRERkSvm7GDi+tFhXD86jH151by5NYeVB4rYl1fNA+/s49ernLllfDjfnhhBoIfLxQ8ocg7dOWYqLi4+Z9gUEBBAcXHxefdbsGAB3/zmN4mIiCA7O5vHHnuMmTNnsnv3bpydz30L7fLly3nyySfPal+/fj1ubm5X/iYuIjk52WbH7m1UCwvVwUq1sLJnLRKAuOGQXQe7y43sqzBQWd/Cv3fk8e8deXg7mRnjZ2aMXzuhbmDrG5b0ubBSLSxsVYeGhoZL2q7bgqtJkyaxZcsWnnnmGWJiYli/fj1jxowhJSWFhISE7uqGiIhIl0gM9yLxpkQeWTic/+7I5a3txympbeL5DUd5cdMx5sUHcdukSMZFeOuWeLksXTFmeuKJJ84ZEp1p586dAOf8fJrN5gt+bm+66aaOn+Pj4xk3bhwRERGsWrWKb3zjG+fc55FHHuGhhx7qeFxbW0t4eDhz587Fw8Pjgn29Ei0tLSQnJzNnzhwcHR27/Pi9iWphoTpYqRZWPbEWLW3tpGRV8sn+IpIPl1LV3MZnhQY+KzQS7TeARSODuHZkEJG+A7r2dXtgLexFtbCwdR1OX319Md0WXAEkJCTwxhtvdOdLioiI2JS/uzM/nDWEe6bHsP5QCW9szWFHTiWrDhSx6kARI4I9uG1SJIsTQzThqlyyrztmuu+++7j55psvuE1kZCQHDhygpKTkrOfKysoIDAy85NcLDg4mIiKCI0eOnHcbZ2fnc16N5ejoaNNfCmx9/N5EtbBQHaxUC6ueVAtHR5g1IphZI4JpbGljQ3opK/YVsiGjlKzyep7fcIznNxxjZJgni0eFsGhkCEGeXXeld0+qhb2pFha2qsOlHtOmwdWlpmeATc60iYiIdBdHk5FrRgZzzchg0gpreTMlh4/2FZBWVMtP3z/Ab9Yc5qarwlk2MYIwb9vdFiW9U1ePmfz8/PDz87vodklJSdTU1LBjxw7Gjx8PwPbt26mpqWHSpEmX3KeKigry8vIIDg6+5H1EROTiXBxNLEwIZmFCMLWNLaw7WMyK/YVsOVrOgfwaDuTX8PTqw0yI8mHxqFAWxAfhPUCrvErfYtPgysvL65Jvj2hra7NlV0RERLrNiBAPfrt0JA8viOWdnXn8a9tx8qtO8vLmLF79PIvZwwO5dVIkk2J8dRuhAPYbMw0fPpz58+dz55138vLLLwNw1113sWjRok4Ts8fGxrJ8+XKuv/56Tpw4wRNPPMHSpUsJDg4mJyeHn//85/j5+XH99dd3Wd9ERKQzDxdHvjkunG+OC6esronVqUWs2F/I7uNVbMuqZFtWJb/8+CBTh/qzJDGE2cMDGeDcrTdZidiETT/FGzdu7Pg5JyeHhx9+mNtuu61jRZyUlBTeeOMNli9fbstuiIiI2IWXmxN3T4vhe1dHsyG9lDe25vDl0XLWp5WwPq2EIQED+c6kSL4xOlQDy37OnmOmf//739x///3MnTsXgMWLF/PCCy902iYjI4OamhoATCYTqampvPnmm1RXVxMcHMyMGTN45513cHd37/L+iYjI2fzdnbl1UiS3Tookv6qBT/ZbQqzDRbVsSC9lQ3opLo5GZg8PZPGoEKYN89fKx9Jr2XSUPG3atI6fn3rqKf74xz/yrW99q6Nt8eLFJCQk8Morr3DrrbfasisiIiJ2YzIamDMikDkjAjlaWsebKcd5f3c+R0pP8NhHB/n9mnRuGBfGd5IiifLr2olWpXew55jJx8eHt95664LbmM3mjp9dXV1Zt25dl/ZBRESuXJi3G9+fHsP3p8dwpKSOFfsLWbG/kOMVDaw8UMTKA0V4uDiwID6YxYkhTIz2xWTUFd/Sexi764VSUlIYN27cWe3jxo1jx44d3dUNERERuxoc4M5TS+LZ9vNZPH7tCKL8BlDX1Mo/t+Qw45lN3PqPHWxML6W93Xzxg0mfpDGTiIhcqSGB7vxo7jA2/Xg6H/9gMrdPjiLA3Znaxlbe2ZXHt/++nYnLP+OJFYfYm1vV6cSESE/VbcFVeHg4L7300lntL7/8MuHh4d3VDRERkR7B3cWR706O4rOHpvHG7eOZGRuAwQCbM8v47us7mfnsJl77Mpuaky327qp0M42ZRETk6zIYDIwK9+KX144g5ZFZ/OfOCXxrfDiero6U1TXx+tYcrn9xK9P+sIk/rEsno7jO3l0WOa9um1DjT3/6E0uXLmXdunVMnDgRgG3btnHs2DHef//97uqGiIhIj2I0Gpg21J9pQ/05XlHPv1KO886uPHIqGvjVyjSeXZ/B9aNDuXVSJEMDNX9Qf6Axk4iIdCWT0cCkGD8mxfjx5OJ4Ps8sY8X+QpLTSsitbOCvG4/x143HGBowkBgnA4MKahk1yAejbieUHqLbgquFCxdy5MgR/va3v3H48GHMZjNLlizhnnvu0dlDERERIMJ3AI8uGsFDc4fy4d4C3tx6nIySOv69PZd/b88lKdqXWydFMnt4AA6mbrtoWrqZxkwiImIrTg5GZo8IZPaIQBqaW/n0cCkr9hWwObOMzNITZGJizUvb8Hd3ZvpQf2bEBjBliB8eLo727rr0YzYNrg4cOEB8fDxGo2VwHRYWxtNPP33e7Q8dOsSwYcNwcNDKSiIi0n+5OTnw7QkR3DJ+ENuyKnljaw7r04pJyaogJauCUC9Xvj1xEDdfNQifAU727q50AY2ZRESku7k5ObB4VAiLR4VQ3dDM6gMFvL35IMfqLbcTvrs7n3d35+NgNDAu0psZwwKYGRvA4ICBGAy6Gku6j01HO6NHj6a4uBh/f/9L2j4pKYl9+/YRHR1ty26JiIj0CgaDgaQYX5JifCmoPsm/tx3nvzvzKKg+ye/XZvDnT4+weFQIt06KJD7U097dla9BYyYREbEnLzcnvjk2jAElB5g1dwb78uvYkF7KpoxSssrr2ZZVybasSpavSSfM25UZwwKYEetPUrQfrk4me3df+jibBldms5nHHnsMNze3S9q+ubnZlt0RERHptUK9XPnp/FjunzWElQeKeGNrDqkFNR1nQ8dGeHPrpEgWxAfhqNsIex2NmUREpKdwdjAyZYgfU4b48ctrR5BTXs/GjFI2ZpSxLauC/KqT/Gvbcf617TjODkaSYnyZGRvAjGEBhPtc2v9jIpfDpsHV1KlTycjIuOTtk5KScHV1tWGPREREejcXRxM3jA1j6ZhQ9uRW88bWHFanFrH7eBW7j1cR4O7MLRMGccuEQXi76Axob6Exk4iI9FSRfgP4rl8U350cRUNzK1uPVrAho5RN6aUU1jSyKaOMTRllwCEGBwxkxjDL3FjjInxwctDJNPn6bBpcbdq0yZaHFxER6bcMBgNjI7wZG+HNo9cM5z87LBO4l9Y18dynR/jrxqPMjwtkcLu9eyqXQmMmERHpDdycHDomdzebzWSU1LExvYyNGaXsPl7F0dITHC09watfZDPQ2YGrh/gxY1gA04f5E+DhYu/uSy/Vp2f0fPrpp1m1ahX79u3DycmJ6urqs7bJzc3lBz/4ARs2bMDV1ZVbbrmFZ555BicnTXYrIiK9Q4CHCw/MHsq90wez5mARb6YcZ/fxKj45UAw4sKF6O3dcHa3bCEVERKTLGAwGYoM8iA3y4PvTY6hpaOGLo2VsSC9lc0YZFfXNrDlYzJqDxQDEh3owc1gA02MDGBXmhcmoCd7l0vTp4Kq5uZlvfvObJCUl8dprr531fFtbG9dccw3+/v58+eWXVFRUcOutt2I2m/nLX/5ihx6LiIhcOScHI0sSQ1mSGMrBghr+8WUWK/YVsD+/hvvf3kuQhwvfmWRZrdDLTSdoREREpOt4ujmyaGQIi0aG0N5u5kBBDRvTS9mYUcqB/BoOFtRysKCW5zccxWeAE9OG+jN9mD/ThvprXCIX1KeDqyeffBKA119//ZzPr1+/nrS0NPLy8ggJCQHg2Wef5bbbbuPpp5/Gw8Oju7oqIiLSpeJDPfndN+IZY8ql1GMY/9mRT3FtI79fm8Hznx1h6Zgwvjs5ksEB7vbuqoiIiPQxRqOBxHAvEsO9eHDOUMrqmticWcbG9FI+zyyjsr6ZD/cW8OHeAowGGDPImxmnJngfHuyOwaCrscSqTwdXF5OSkkJ8fHxHaAUwb948mpqa2L17NzNmzDjnfk1NTTQ1NXU8rq2tBaClpYWWlpYu7ePp43X1cXsj1cJKtbBSLaxUCwvVwaqlpQV3R/jGlEHcdXUUq1OL+efW4xwuruPf2y1zYk0d4sttSRFMGezbpweJtvxc6LMmIiJyYf7uztwwNowbxobR0tbO7uNVlpUK00vJLDnBruNV7DpexR/WZRDk4cKMWH9mDAtg8mA/Bjj369hC6OfBVXFxMYGBgZ3avL29cXJyori4+Lz7LV++vONqrjOtX7/+kpexvlzJyck2OW5vpFpYqRZWqoWVamGhOlidroUzcHckHPOBTUVGDlYZ+PxIBZ8fqSDQ1cy04Hau8jPj1IcXI7TF56KhoaHLjykiItJXOZqMTIz2ZWK0L48sGE5+VQMbM8rYlF7KlmPlFNc28vaOPN7ekYeTyciEaB+mDwtgZmwAUX4D7N19sYNeF1w98cQT5wyNzrRz507GjRt3Scc719lls9l8wbPOjzzyCA899FDH49raWsLDw5k7d26X317Y0tJCcnIyc+bMwdHRsUuP3duoFlaqhZVqYaVaWKgOVheqxf1AbmUD/9qWy7t7Cig52cb/skysL3Lk5qvC+PaEcIL60Oo/tvxcnL7yWkRERC5fmLcbyyZGsGxiBI0tbWzLqmBThmWS99zKBr44Us4XR8r51co0In3dOm4pnBDtg7NDHz7bJh16XXB13333cfPNN19wm8jIyEs6VlBQENu3b+/UVlVVRUtLy1lXYp3J2dkZZ2fns9odHR1t9kuSLY/d26gWVqqFlWphpVpYqA5W56tFTKAnTyxJ4EfzYnl3Vz7/3JpNXuVJXvo8m79/mcPChGBunxJFYrhX93faRmzxudDnTEREpGu4OJqYPiyA6cMCePzaEWSV13dM8L4ju5Kcigb+uSWHf27JwdXRxOTBfh23FYZ4udq7+2IjvS648vPzw8/Pr0uOlZSUxNNPP01RURHBwcGA5XY/Z2dnxo4d2yWvISIi0tO5uzhy+5Qobp0UyaeHS/jHl9lsz65kxf5CVuwvZGyEN7dPjmJeXCAOJqO9uysiIiL9gMFgIMZ/IDH+A/ne1dHUNbaw5WhFR5BVWtfEp4dL+PRwCQCxQe4dV2ONGeSlMUsf0uuCq8uRm5tLZWUlubm5tLW1sW/fPgAGDx7MwIEDmTt3LiNGjGDZsmX84Q9/oLKykh//+MfceeedWlFQRET6HZPRwLy4IObFBXGwoIZ/bslhxf4Cdh+vYvfxKkI8Xbh1UiQ3XzUITzddZSQiIiLdx93FkfnxQcyPD8JsNnOosJZNGaVszChjb24V6cV1pBfX8bdNx/BwcWDqUH9mxgYwbag/vgPPvmNKeo8+HVz98pe/5I033uh4PHr0aAA2btzI9OnTMZlMrFq1invvvZfJkyfj6urKLbfcwjPPPGOvLouIiPQI8aGePHvjKH62YBhvbcvl39uOU1jTyPI16Tz36RFuGBvGbZMjifEfaO+uioiISD9jMBiID/UkPtST+2YOoaq+mc+PWObF2pxZRnVDCysPFLHyQBEGA4wK82LGqQne40I8MBr77krKfVGfDq5ef/11Xn/99QtuM2jQIFauXNk9HRIREellAtxdeGjOUO6dHsOK/YX848ts0ovr+Ne24/xr23FmxgZw++QoJg/2veDCJiIiIiK24j3AiSWJoSxJDKWt3cy+vCo2pluCrLSiWvblVbMvr5o/fZqJv7sz04f6MyM2gClD/PBw0VXkPV2fDq5ERESka7g4mrhxXDjfHBtGSlYF//gym8/SS9lw6mto4EBunxzFdaNDcXHUCj8iIiJiHyajgbERPoyN8OHH84ZRXNN46pbCUr48Uk5ZXRPv7s7n3d35OBgNjIv07rgaa3DAQJ2I64EUXImIiMglMxgMTIrxY1KMH9nl9byxNYf/7cojs+QED3+Qyu/WpvPtCREsS4og0MPF3t0VERGRfi7I04Wbxw/i5vGDaG5tZ2dOJRvTS9mQUUpWWT3bsirZllXJ8jXphHm7MmNYAFcP9qGpzd49l9MUXImIiMgVifIbwBOL43hwzlDe3ZXHP7fkUFB9khc2HuXlz4+xaGQIt0+OIiHM095dFREREcHJwcjkwX5MHuzHo4tGcLyi/tQqhWWkZFWQX3WyYzoEIybeKtzGxGg/xkf6cFWkjxansRMFVyIiIvK1eLo68r2ro7ltUiTJaSX8Y0s2O3Oq+HBvAR/uLeCqSG9unxzF3LggTJoMVURERHqICN8B3DY5itsmR3GyuY2tx8rZmFHKpvRS8qsbOZBfy4H8Wl75PAuDAYYFujMx2pfxUZYgy99dqxV2BwVXIiIi0iUcTEYWJASzICGYA/nV/HNLDp/sL2RnThU7c6oI83bltkmR3HhVuCZCFRERkR7F1cnErOGBzBoeSEtLC299uBr3qER259WwPbuSrLJ60ovrSC+u4/WtOQBE+w9gQpQP46N8GB/lS6iXq33fRB+l4EpERES63MgwL/50UyIPL4jlXynH+ff24+RXneTXqw7zp+RMvjkunNsmRRLpN8DeXRURERE5i48zLEwM4YarIgAoq2tiZ04lO7Ir2Z5dSXpxLVll9WSV1fP2jjwAQr1cO4KsCdG+RPq6abL3LqDgSkRERGwm0MOFH88bxn0zB/PR3gL+sSWbzJITvL41hzdScpgVG8DtU6JIivbVwE5ERER6LH93ZxYmBLMwIRiAmoYWdh23hFjbsys5WFBDQfVJPthbwAd7Czr2GR/l0xFmDQ1wx6hpEy6bgisRERGxORdHEzePH8RNV4Wz5WgFr32ZxcaMMj49XMqnh0uJDXLn9ilRLB4Vgoujyd7dFREREbkgTzfHjlsLAeqbWtmTW9VxRda+vGrK6ppYdaCIVQeKLPu4OnJVpDXIigvxwMFktOfb6BUUXImIiEi3MRgMTBnix5QhfhwrO8HrW3J4b3c+6cV1/PS9A/xuTTrfnhjB/5s4iAB3F3t3V0REROSSDHB24Ooh/lw9xB+AxpY2DuTXsD2rgh05lew+XkXNyRY+PVzCp4dLLPs4mRgT4d0x4fvIME+cHXQC76sUXImIiIhdxPgP5FfXxfPjucP4785c3tiaQ2FNI89/doS/bTrKtaNCuH1yFPGhnvbuqoiIiMhlcXE0nZq03QeAlrZ2DhXWsiO7gh3Zlrmyahtb+eJIOV8cKQfAycHI6HCvU1dk+TImwgs3J8U2qoCIiIjYlaebI3dPi+GOKVGsPVTMP77MZk9uNR/sKeCDPQVMiPLh9ilRzB4eiEnzQoiIiEgv5GgykhjuRWK4F3dNjaG93UxGSV1HiLU9u4LyE80dc2bBURyMBuJDPTtuLRwX6YOna/9bmVnBlYiIiPQIDiYji0aGsGhkCHtzq/jnlhxWpxZ1DODCfVy5bVIUN44Lw92l/w3aREREpO8wGg0MD/ZgeLAHt06KxGw2k1Vebw2ysioorGlkX141+/KqefnzLAwGGB7k0THh+1VRPvgNdLb3W7E5BVciIiLS44we5M3oQd48sjCWN1OO85/tueRVnuRXK9P4U3Im3xwXxncnRTHI183eXRURERH52gwGAzH+A4nxH8i3xg8CIL+qoSPI2pFdSVZ5PWlFtaQV1fL61hwAYvwHMD7Kt+OqrBAvVzu+C9tQcCUiIiI9VrCnKz+bH8v9M4fwwd58/vFlNsfK6vnnlhxe35rDnOGB3D4liglRPhgMuo1QRERE+o4wbzfCvN34xpgwAEprG9mRYw2y0ovrOFZWz7Gyet7ekXtqH1fGR/kwMcoy4XuEr1uvHyMpuBIREZEez9XJxLcnRPCtqwbxxdFy/vFlNpszy1ifVsL6tBLiQjy4fXIUi0YFazUeERER6ZMCPFw6plUAqG5oZmdOVceE7wcLa8mvOkl+lWWeUIAAd+eOWwvHR/kyJGAgxl42Z6iCKxEREek1jEYD04b6M22oP0dK6vjn1hw+2JPPocJafvTufpavSWfZxAi+PXFQv5jzQURERPovLzcn5owIZM6IQABONLWy53gV208FWfvzaiita2LlgSJWHig6tY8jV0X6dNxaOCLYAweT0Z5v46IUXImIiEivNCTQnd9cn8BP5g7j7Z25vLn1OMW1jfzp00z+uvEoSxJD+O7kKEaEeNi7qyIiIiI2N9DZgalD/Zk61B+AxpY29uVVd9xauPt4FdUNLSSnlZCcVgLAACcTY08FWROifEgI8+xxV68ruBIREZFezXuAE/dOH8ydV0ezOrWIf3yZzf78Gt7dnc+7u/NJivbl1qRw2s327qmIiIhI93FxNDEx2peJ0b4AtLS1c7CgxrJqYXYlO3MqqWts5fPMMj7PLAPA2cHI6EFejI/yZWy4B01t9nwHFgquREREpE9wNBlZkhjK4lEh7Mmt5h9bsll7sJiUrApSsirwczExfHw9sSFe9u6qiIiISLdzNBk7Vm6+e1oMbe1m0otrO61cWFHfzLasSrZlVQJgNJjIdMrk0UVxduu3gisRERHpUwwGA2MjvBkb4U1B9UneTMnh7e25NLW1EObd95aIFhEREbkSJqOBuBBP4kI8+e7kKMxmM8fK6k+FWBVsy6qguLYJ3wFOdu2ngisRERHps0K9XHlkwXDunRrJmx+tx9mhZ08+KiIiImIvBoOBwQEDGRwwkFsmDKK5uZm3PlzDwsRgu/ZLozcRERHp89ycHBg00N69EBEREek9DAYDvi7ga+eVmhVciYiIiIiIiIhIj6RbBbuA2WxZpqi2trbLj93S0kJDQwO1tbU4Ojp2+fF7E9XCSrWwUi2sVAsL1cFKtbCyZS1O//9/ejwgl8aW4yfQ5/9MqoWF6mClWlipFlaqhZVqYWHrOlzqGErBVReoq6sDIDw83M49EREREXupq6vD09PT3t3oNTR+EhEREbj4GMpg1unBr629vZ3CwkLc3d0xGAxdeuza2lrCw8PJy8vDw8OjS4/d26gWVqqFlWphpVpYqA5WqoWVLWthNpupq6sjJCQEo1GzMFwqW46fQJ//M6kWFqqDlWphpVpYqRZWqoWFretwqWMoXXHVBYxGI2FhYTZ9DQ8Pj379F+ZMqoWVamGlWlipFhaqg5VqYWWrWuhKq8vXHeMn0Of/TKqFhepgpVpYqRZWqoWVamFhyzpcyhhKpwVFRERERERERKRHUnAlIiIiIiIiIiI9koKrHs7Z2ZnHH38cZ2dne3fF7lQLK9XCSrWwUi0sVAcr1cJKteh/9GdupVpYqA5WqoWVamGlWlipFhY9pQ6anF1ERERERERERHokXXElIiIiIiIiIiI9koIrERERERERERHpkRRciYiIiIiIiIhIj6TgSkREREREREREeiQFVyIiIiIiIiIi0iMpuBIRERERERERkR5JwZWIiIiIiIiIiPRICq5ERERERERERKRHUnAlIiIiIiIiIiI9koIrERERERERERHpkRRciYiIiIiIiIhIj6TgSkREREREREREeiQFVyIiIiIiIiIi0iMpuBIRERERERERkR5JwZWI9GmbNm3CYDDw3nvvXXTb2267jcjISNt3SkRERKQPupxxl4jIpVJwJSJyymOPPcaHH35o726IiIiIiIjIKQ727oCIyJVqaGjAzc2ty44XExPTZccSERER6Uu6etwlInKpdMWViPQKTzzxBAaDgT179nDDDTfg7e19WUFTS0sLv/jFLwgJCcHDw4PZs2eTkZHRaZtz3SpoMBi47777ePnllxk6dCjOzs6MGDGC//73v5fV/1mzZhEbG4vZbO7UbjabGTx4MNdcc01H25NPPsmECRPw8fHBw8ODMWPG8Nprr3Xa9yc/+Qmenp60tbV1tP3whz/EYDDwhz/8oaOtoqICo9HIX/7yl8vqr4iIiPRfX3fcdaba2lrmzZtHYGAgO3bs6HT8Q4cO8a1vfQtPT08CAwO5/fbbqamp6bS/2WzmxRdfJDExEVdXV7y9vbnhhhvIyso667U+/fRTZs2ahYeHB25ubkyePJnPPvvsivotIj2HgisR6VW+8Y1vMHjwYN59911eeumlS97v5z//OcePH+fvf/87r7zyCkeOHOHaa6/tFPycz4oVK3j++ed56qmneO+994iIiOBb3/rWZc3f8H//939kZGScNXhas2YNx44d4wc/+EFHW05ODnfffTf/+9//+OCDD/jGN77BD3/4Q371q191bDN79mxqa2s7BoBgGay5urqSnJzc0fbZZ59hNpuZPXv2JfdVREREBK583HVafn4+U6ZM4fjx46SkpDB+/PhOzy9dupShQ4fy/vvv8/DDD/Of//yHBx98sNM2d999Nw888ACzZ8/mo48+4sUXX+TQoUNMmjSJkpKSju3eeust5s6di4eHB2+88Qb/+9//8PHxYd68eQqvRHo7s4hIL/D444+bAfMvf/nLy9pv48aNZsC8cOHCTu3/+9//zIA5JSWlo+3WW281R0REdNoOMLu6upqLi4s72lpbW82xsbHmwYMHX3I/2trazNHR0eYlS5Z0al+wYIE5JibG3N7eft79WlpazE899ZTZ19e3Y7v6+nqzk5OT+amnnjKbzWZzfn6+GTD/7Gc/M7u6upobGxvNZrPZfOedd5pDQkIuuZ8iIiIiX3fc9e6775r37t1rDgkJMV999dXmioqKcx7/97//faf2e++91+zi4tIx3klJSTED5meffbbTdnl5eWZXV1fzT3/6U7PZbBkX+fj4mK+99tpO27W1tZlHjRplHj9+/GW9DxHpWXTFlYj0KkuXLr2i/RYvXtzp8ciRIwE4fvz4RfedNWsWgYGBHY9NJhM33XQTR48eJT8//5Je32g0ct9997Fy5Upyc3MBOHbsGGvXruXee+/FYDB0bLthwwZmz56Np6cnJpMJR0dHfvnLX1JRUUFpaSkAbm5uJCUl8emnnwKQnJyMl5cXP/nJT2hububLL78ELFdh6WorERERuRJXOu5at24dV199NVOnTiU5ORkfH59zbneu8VljY2PHeGflypUYDAb+3//7f7S2tnZ8BQUFMWrUKDZt2gTA1q1bqays5NZbb+20XXt7O/Pnz2fnzp3U19df0XsREftTcCUivUpwcPAV7efr69vpsbOzMwAnT5686L5BQUHnbauoqLjkPtx+++24urp2XGr/17/+FVdXV26//faObXbs2MHcuXMBePXVV9myZQs7d+7kF7/4xVn9nT17Ntu2baO+vp5PP/2UmTNn4uvry9ixY/n000/Jzs4mOztbwZWIyP9n777jm67zP4C/srvTke5JW+gGymoLskTKUhAExcGJAwd6nnLe/cTTcx2HAxXFA1G5A8WBA1BZtrIUKXvTBYXSlXS36UzT9vv7I23S0gIFmqbj9Xw8+mjyySeffL5vU/nknc8gohtyo+OuzZs3o6amBk8++aRxzNWea43P8vPzIQgC3N3dIZPJWv0cOHAARUVFxnoAMHv27Db13nrrLQiCgJKSkhu6FiKyPJ4qSEQ9SsuZSV1Fo9FcsezyAdfVKJVKPPjgg/jss8/w/PPP43//+x/uu+8+ODo6Gut88803kMlk2LJlC6ysrIzlmzdvbtPehAkT8PLLL+O3337Dzp078corrxjLExIS0K9fP+N9IiIiout1o+Ou999/Hxs2bMCUKVOwadMm45dy10ulUkEkEuH3339vNwHWXKZSqQAAK1asQGxsbLtttZw9T0Q9CxNXRETXsHPnTuTn5xsHPA0NDdiwYQOCgoLg4+NzXW0988wzWLlyJWbPno2ysjI8/fTTrR4XiUSQSqWQSCTGspqaGnzxxRdt2hoxYgQcHBywfPlyaDQaTJw4EYBhJtZbb72Fb7/9FuHh4fDy8rreSyYiIiK6YVZWVti4cSMeeOABTJ8+HRs2bMCMGTOuu53bb78db775JnJzc3H33Xdfsd6oUaPg6OiI5OTkNmMrIur5mLgiIroGlUqFW2+9FS+//DJsbW2xcuVKpKam4ptvvrnutgYMGIDJkydj+/btuOWWWzBo0KBWj0+bNg3vvfce7rvvPjz22GMoLi7GsmXL2v2WUSKRYOzYsfj555/Rr18/4zHVo0aNgkKhwM6dO/HMM8/c2EUTERER3QSZTIavv/4ajz76KGbPno3PP/8c995773W1MWrUKDz22GN46KGHcOTIEYwZMwa2trZQq9XYt28foqKi8OSTT8LOzg4rVqzAgw8+iJKSEsyePRtubm4oLCzEyZMnUVhYiFWrVpnpSonI3Ji4IiK6hunTpyMiIgIvvfQSsrKyEBQUhC+//BL33HPPDbV3zz33YPv27e1+I3jrrbfiv//9L9566y3ccccd8Pb2xoIFC+Dm5oZHHnmkTf3bbrsNP//8c6t9rBQKBW655RYkJiZyfysiIiKyGLFYjDVr1sDe3h4PPPAAqqqq8Oijj15XG6tXr0ZsbCxWr16NlStXorGxEV5eXhg1ahRGjBhhrPfAAw/Az88Pb7/9Nh5//HFUVFTAzc0NgwcPxvz58zv5yoioK4kEQRAs3Qkiou5KJBLhqaeewkcffdRpbd511104cOAAMjMzIZPJOq1dIiIiIiKi3oYzroiIuoBOp8OxY8dw6NAhbNq0Ce+99x6TVkRERERERNfAxBUR9UiCIKChoeGqdSQSSZecQlhfX3/Vx8ViMdRqNUaOHAkHBwc8/vjj+POf/2z2fhERERF1hu407iKivkds6Q4QEd2IvXv3QiaTXfVn3bp1N/06giBcc5ngtfrx8MMPIyAgAIIgoLy8HKtWrWp1aiARERFRd9ZV4y4iovZwjysi6pEqKiqQlpZ21Tr9+vWDi4uL2fty5MiRqz6uUqkQEBBg9n4QERERmUN3GncRUd/DxBUREREREREREXVL3OOqEzQ2NiIvLw/29vZc101ERNTHCIKAiooKeHl5QSzmLgwdxfETERFR39bRMRQTV50gLy8Pvr6+lu4GERERWVB2djZ8fHws3Y0eg+MnIiIiAq49hupxiauVK1finXfegVqtRkREBJYvX47Ro0dfsf7evXuxaNEinD17Fl5eXvj73/+OJ554olWdH374AS+//DIyMjIQFBSEJUuWYObMmR3uk729PQBDsB0cHG7swq5Ar9cjISEB8fHxkMlkndp2T8NYmDAWJoyFCWNhwDiYMBYm5oyFVquFr6+vcTxAHWPO8RPA939LjIUB42DCWJgwFiaMhQljYWDuOHR0DNWjElcbNmzAs88+i5UrV2LUqFFYvXo1pkyZguTkZPj5+bWpf/HiRUydOhULFizA+vXr8ccff2DhwoVwdXXFXXfdBQBISkrCPffcgzfeeAMzZ87Epk2bcPfdd2Pfvn2IiYnpUL+ap7c7ODiYJXFlY2MDBweHPv0HAzAWLTEWJoyFCWNhwDiYMBYmXRELLne7PuYcPwF8/7fEWBgwDiaMhQljYcJYmDAWBl0Vh2uNoXrURgzvvfceHnnkETz66KMICwvD8uXL4evri1WrVrVb/+OPP4afnx+WL1+OsLAwPProo3j44YexbNkyY53ly5dj4sSJWLx4MUJDQ7F48WJMmDABy5cv76KrIiIiIiIiIiKi9vSYGVd1dXU4evQoXnjhhVbl8fHx2L9/f7vPSUpKQnx8fKuySZMmYc2aNdDr9ZDJZEhKSsJzzz3Xps7VElc6nQ46nc54X6vVAjBkI/V6/fVc1jV9dyQL+3JEyNpzHgq5DDKJCDKJGFKx4XfzfZlEBGnzfbG4bVmL3y2f25O+HW6ObWfHuCdiLEwYCxPGwoBxMGEsTMwZC8a3+ynQ1mLN7xdQohHBJr0Qfi728Hayhp2ixwx9iYiIqEmP+de7qKgIDQ0NcHd3b1Xu7u4OjUbT7nM0Gk279evr61FUVARPT88r1rlSmwCwdOlSvPbaa23KExISYGNj09FL6pA1ZyTIqJBgW/aFTm23mVgkQCoCJC1/xIBUBIhFgFTc8jEBkqYyschQRyJu/dzWZUKr9iSX1W9d1k7blz1H2vR4YmKiWWLREzEWJoyFCWNhwDiYMBYm5ohFdXV1p7dJN+d8QSVW/34RgATfXTxuLHewksLL0Ro+TtbwcjT8eLf47WavgFjcc77UIyIi6gt6TOKq2eUzhARBuOqsofbqX15+vW0uXrwYixYtMt5v3lAsPj6+0/doyLbNwB+nzsHd0wv1jYC+oRH1jYLhd4OAuoZG6BsE1Dc2Ql9v+F3XIKC+qbxlfX2D0Kb9RkGEurbFV9A9BnI2cgnsraSwV0gNv62ksLeStS1TSGFnvC0zltsppJD08EGpXq9HYmIiJk6c2KfXXAOMRUuMhQHjYMJYmJgzFs0zr6n7cLFTYF6sH06kZaJeoYRaW4uyaj20tfXQaiqQqqlo93kyiQgeSqtWyazm2833reWSLr4aIiKivq3HJK5UKhUkEkmbmVAFBQVtZkw18/DwaLe+VCqFi4vLVetcqU0AUCgUUCgUbcplMlmnD4YfHxsE36o0TJ068KbbFgShVRKrOfmlb2hEXYvbzY/XN5W3vH15nebEWF19Y6vbzYk0fWNTvaYyU1Kt9e3mJFx7/alvbJ1Zq65rQHVdA/Khu8KVXputXGJKdrVMfFnJ4NBOWXM9h6bbdgoppBLLbxFnjvdcT8VYmDAWBoyDCWNhYo5YMLbdT4iHPf45LRTbRBcwdWocZDIZKnX1UJfVILfpJ6+sBnlltcgtNdzXaGuhbxCQXVKD7JKaK7btbCuHl+OVk1sqO3mP2oqBiIiou+sxiSu5XI6hQ4ciMTERM2fONJYnJiZixowZ7T4nLi4OP//8c6uyhIQEDBs2zDjIjIuLQ2JiYqt9rhISEjBy5EgzXIVliUQi4z5XPYkgCNA3CKiu1WHLjgTE3DIWNfVARW09KmoN3542327923Rb23RbV98IAKiqa0BVXQM0N/EluXHm12UJLofm24r2E2AOVjI4WHef5BcREVFfYKeQor+7Pfq7t3/kdkOjgHxtLfIuS27lljYluMpqUKmrR0lVHUqq6nAmt/1BhFwqbkpkWbVKaPk0/fZ0tIJCyllbREREHdVjElcAsGjRIsybNw/Dhg1DXFwcPvnkE2RlZeGJJ54AYFjCl5ubi88//xwA8MQTT+Cjjz7CokWLsGDBAiQlJWHNmjX4+uuvjW3+5S9/wZgxY/DWW29hxowZ+PHHH/Hrr79i3759FrlGakskEkEuFUGkkMJeBgS42N7wt9t19Y1tElvaKyS7KnQtkl41+jbJL+PML+2Nz/y60eSXtRTQN97wyxIREdFlJGKRMck07Ap1ymv0TTO1Wia3apFbWo28slrkV9Sirr4RF4uqcLGo6oqv5WqvaJqtZdVmKaK3ozUcbWSctUVERNSkRyWu7rnnHhQXF+P111+HWq1GZGQktm3bBn9/fwCAWq1GVlaWsX6/fv2wbds2PPfcc/jPf/4DLy8vfPjhh7jrrruMdUaOHIlvvvkGL730El5++WUEBQVhw4YNiImJ6fLrI/OTS8VwsVPAxa7tUs+OuuHkV4sZYbX6m09+iSHBJxf3I8JbiXBPB4R7OSDc0wFOtvIbvjYiIiK6MqW1DEprGcI829/TtK6+Efna2taztcprkNsiuVWjb0BhhQ6FFTqczG7/dWzkkhbJrLbJLQ+lVY+bQU9ERHSjelTiCgAWLlyIhQsXtvvY2rVr25SNHTsWx44du2qbs2fPxuzZszuje9QHdFbyq1LXciljO0mvFmXay5Jj2hrDzK/0gkqkF1Ri0/FcY9teSitDEsvLkNCK8HKAj5M1v7klIiIyM7lUDF9nG/g6t3/KtCAIKKvWG2drGZYhNiW3Sg0JrqJKHarrGnC+oBLnCyrbbUckAtztreDt1HKmlpXhdlOZgxX3XiMiot6hxyWuiHoDuVQMZ6kczjc4O6qurg5fb94Oj/DhSMuvQnKeFslqLbJKqpFXXou88lr8mlJgrG9vJW01KyvcywH93ewhl/LbWiIioq4iEongZCuHk60ckd7KduvU6hugLm+x19Zlya28slrUNTRCo62FRluLo5dK223HXiE1JrE8HOSoyhdBllyAQHd7+DnbwEbOjwFERNQz8F8soh5IJBLBUQHcGuKKSZFexnJtrR4pTUms5mRWen4FKmrrcfBiCQ5eLDHWlUlE6O9mj3Avw6yscE8HhHk58BtaIiIiC7KSSdBPZYt+Ktt2H29sFFBcVddqOWJui3238spqUFqtR4WuHqmaCqRqKpqeKcGPl04Y23GzV8DfxQZ+zrYIcLGBn4sN/F0Mtx1tuO0AERF1H0xcEfUiDlYyxAS6ICbQxVhWV9+I8wWVxmTW2bxyJKu1qKitN5Sptfj+qKkNX2drRHgqW83O8lRacakhERFRNyAWi+Bqr4CrvQKDfR3brVNdV9+UyDLM3MoqqsTBsxnQWzkiq6QG5TV6FFToUFChw+HMtjO2HKyk8Hexhb+LjeHHufm2LdzsFRCLOSYgIqKuw8QVUS8nl4qb9rxyAIYaygRBQE5pDc62mJ2VotYit6wG2SWGnx1nNcY2nGxkxkRWhJchqRWosoWUG8MSERF1OzZyKYLd7BHsZg8A0Ov12KY/h6lTYyGTyVBWXYdLxdW4VFKNrOIqZBZXI6u4GpdKqpCv1UFbW4/TueU4nVvepm2FVGycqeXvYtM0W8sW/s428Hay5qbxRETU6Zi4IuqDRCKRcfPYyZEexvLSqjqkqLUtZmdpcb6wEqXVevxxvhh/nC821lVIxQjxsDcuMwz3ckCohwNsFfzfChERUXfmaCOHo40cg9qZsVVT14CskmpcKq5qSm41/S6uRm5ZjeFwmPxKpOe33TheIhbB29G61UwtPxcbBLjYws/ZBtZySRdcHRER9Tb8hElERk62cowMVmFksMpYVqtvwLn8SiSryw0ztJpmZ1XVNeBUTjlO5Zi+jRWJgH4utggzzs4yJLTc7K0scTlERER0nazlEoR42CPEw77NY/qGRuSV1TTN0DIktDKLq5HVlNzS1Tciq6QaWSXV+P1c27bd7BWGJJaLDfydbeCvMszU8ue+WkREdBVMXBHRVVnJJIjyUSLKx3T6UWOjgKyS6qalhuXGjeDztTpcKKrChaIqbD2lNtZX2SmMSazm2VkBLraQcI8MIiKiHkMmETftfWULwLXVY42NAgoqdIaZWi1mbGWVVCOzqAra2nrjvlqHMkvatK20ljUtQbRpndzivlpERH0eE1dEdN3EYhECVLYIUNli2kBPY3lhhe6ypYbluFBUhaJKHfamF2JveqGxro1cglAP+6ZklhIRXg4I8bCHlYzLCIiIiHoasVgED6UVPJRWrQ6Jada8r1ZmcVXTflqm5FZBhQ7lNfo2M7mbWcnE8HM2nYDo37SvVoCLDbwcua8WEVFvx8QVEXUawylHrhgzwPQtbHVdPdI0Fa02gk/VaFFd14BjWWU4llVmrCsWAUGudi1mZxk2gne25fIBIiKinuxq+2pV19U37atl2CQ+s7jKeD+3rAa1+o7vq9W8n5Y/99UiIuo1mLgiIrOykUsR7eeEaD8nY1lDo4CLRZWtklnJeVoUV9XhXEElzhVUYvOJPGN9T6WVcYlh88mGvs7WEIm4bICIiKins5FLEephOOTlcvqGRuSW1rSaoWX4MSS3rrWvlruDwrhJvK+jFSpKRIhvaIRM1gUXRkREnYKJKyLqchKxyHhM94zB3gAAQTDsjdG8X9bZPMPeWZnF1VCX10JdXoudqQXGNuwVUoR5OiDUww5CkQhDtLXwdeEolIiIqDeRScTG7QmutK+WaflhVdPG8YZZWxW19cjX6pCvbbmvlgQZX5/AqgeGcXsCIqIegokrIuoWRCIR3B2s4O5ghfGhbsbySl09UtVa44mGyWot0jQVqNDV41BmSdNAVIIv3vkN/i42iOnnjJh+LogJdIaPk43lLoiIiIjMquW+WrGX7aslCALKqvWtZmpdLKzAlpN52J1WhD+tOYTP5g+DgxW/9CIi6u6YuCKibs1OIcWwAGcMC3A2lukbGpFRWInkPC1OZZdi56lLyK0WGZcPfHskBwDg7WiNmEBnYzLL38WGywuJiIj6AJFIBCdbOZxs5RjctK+WXq+Hrz4b/z1vhUOZJZi7+gDWPTwCrvYKy3aWiIiuiokrIupxZBKxcS+MO6LcEY0LGH3rRJzMrcSBi8U4eKEEp3PLkVtWg43HcrHxWC4Awz4XzbOxYvq5IMjVloksIiKiPiTIAfjykWF45PPjSFZrMefj/fjikRj4OnOWNhFRd8XEFRH1CvZWMowPdTMuM6zS1eNYVikOXijBwYvFOJldjnytDj+dzMNPJw0bv6vs5BjRYmnhADd7iMVMZBEREfVm4Z4O+P6JODyw5iAyi6sxuyl5NcDd3tJdIyKidjBxRUS9kq1CitH9XTG6v2Ej11p9gzGRdehiCY5llaKosg7bTmuw7bQGAOBoI8OIAGfEBLogpp8zwjwdIGEii4iIqNcJUNni+ydG4k//PYj0/ErcvToJ/5s/vNUpyERE1D0wcUVEfYKVTIKRQSqMDFIBAHT1DTiVU46DF4px8GIJjmSWoqxaj4TkfCQk5wMA7K2kGB7QtEdWoAsivRwglYgteRlERETUSTyUVvj28TjM/99hnMguw/2fHcTqeUONX3oREVH3wMQVEfVJCqkEwwOcMTzAGU/DsOH76dxyHLpYgoMXinEksxQVtfXYlVqAXakFAABbuQRD/J0Q2zQja6CPI+RSJrKIiIh6KkcbOb58NAZPrD+K388V4eG1h/HB3GhMjfK0dNeIiKgJE1dERDBs+D7EzwlD/JzwxNggNDQKSM7T4uDFYhy4UILDmSUor9Hj93NF+P1cEQDASmZ4Tkw/F4zo54xoP0dYySQWvhIiIiK6HrYKKT57cBgWbTiJrafVeOqrY/j3zCjcO8LP0l0jIiIwcUVE1C6JWIQoHyWifJR4dHQgGhsFpGoqcOiiYWnhoYslKK6qw/6MYuzPKAYAyCViDPZ1NJ5aOMTfETZy/m+WiIiou1NIJfjw3mgobWT46mAWFm88jdLqOjw5NognEBMRWRg/URERdYBYLEK4lwPCvRwwf1Q/CIKA8wWVONC0tPDgxRIUVuhwKLMEhzJLsALnIRWLMNBHiZhAw4ysYf5OsLeSWfpSiIiIqB0SsQhL7oyEk40M/9mdgbd3pKGsWo/FU0KZvCIisiAmroiIboBIJEJ/d3v0d7fHvFh/CIKAzOJqYxLr4IVi5JXX4lhWGY5llWHVngyIRUCkt9Kw2Xs/FwwPcIbShoksIiKi7kIkEuFvk0LhaC3Hkm0p+OS3CyitqsPSWVE8oIWIyEKYuCIi6gQikQj9VLbop7LF3BF+EAQBOaU1OHCh2LDh+8USZJVU41ROOU7llOPT3y9CJAJCPRwQ088ZsYHOGNHPBc62cktfChERUZ+3YEwglDYyvPDDKXx3NAflNXp8eG8097IkIrIAJq6IiMxAJBLB19kGvs42mDPMFwCQV1bTlMQqxsELJbhQVIUUtRYpai3W7s8EAAxwt0NMPxfEBDpjRD9nuNlbWfAqiIiI+q67h/lCaS3Dn78+joTkfDy89jA++dMw2Cn4EYqIqCv1mPmupaWlmDdvHpRKJZRKJebNm4eysrIr1tfr9fi///s/REVFwdbWFl5eXvjTn/6EvLy8VvXGjRsHkUjU6mfu3Llmvhoi6ou8HK1xZ7Q3ls4aiF3Pj8OhFydgxb3RmBfrjwHudgCA9PxKfHHgEp7+6jhGLNmJW5ftweKNp7D5eC7U5TUWvgIiIqK+ZVKEB9Y+NBx2Cin2ZxTjvk8PoLhSZ+luERH1KT3m64L77rsPOTk52LFjBwDgsccew7x58/Dzzz+3W7+6uhrHjh3Dyy+/jEGDBqG0tBTPPvsspk+fjiNHjrSqu2DBArz++uvG+9bW1ua7ECKiJm4OVrhjkBfuGOQFACiu1OFwZgkOXDAsLUzVaHGhqAoXiqrw9aFsAICfsw1i+hlmY8UGusDHyZobxhIREZnRyCAVvl4Qiwf/dwincsoxZ3US1j8SAy9HfmYgIuoKPSJxlZKSgh07duDAgQOIiYkBAHz66aeIi4tDWloaQkJC2jxHqVQiMTGxVdmKFSswYsQIZGVlwc/Pz1huY2MDDw+PDvdHp9NBpzN906LVagEYZnnp9frrurZraW6vs9vtiRgLE8bCpDfFwkEhxoQQFSaEqAAA5TV6HLlUisOZpTiUWYqzeVpklVQjq6Qa3x3NAQB4Kq0wIsAJIwKcEO1jD0HoHbG4Gb3pPXGzGAsTc8aC8SXq/aJ8lPj28Tj8ac1BXCiswuxV+/H5IzEIdrOzdNeIiHq9HpG4SkpKglKpNCatACA2NhZKpRL79+9vN3HVnvLycohEIjg6OrYq//LLL7F+/Xq4u7tjypQpeOWVV2Bvb3/FdpYuXYrXXnutTXlCQgJsbGw6dlHX6fIkXF/GWJgwFia9ORYDAQz0A2q9gAsVIpzXipChFSGrClCX1+LHk2r8eFINAHBWSPDtxZ0IcxQwwEGAVY/4v7x59Ob3xPViLEzMEYvq6upOb5OIup9gNzt89+RIzGtKXt29OglrHxqOgT6Olu4aEVGv1iM+0mg0Gri5ubUpd3Nzg0aj6VAbtbW1eOGFF3DffffBwcHBWH7//fejX79+8PDwwJkzZ7B48WKcPHnyqgPbxYsXY9GiRcb7Wq0Wvr6+iI+Pb9V2Z9Dr9UhMTMTEiRMhk8k6te2ehrEwYSxM+nIsquvqcTy7HIculuJQZglO5pSjRAfszxdhfz4gFYsw1N8Ro4NVGNNfhVAPuz6xrLAvvycux1iYmDMWzTOviaj383a0xnePx+GhtYdxKqcc935yAJ8+OAwjg1SW7hoRUa9l0cTVq6++2u7MpZYOHz4MAO1+2BIEoUMfwvR6PebOnYvGxkasXLmy1WMLFiww3o6MjET//v0xbNgwHDt2DEOGDGm3PYVCAYVC0aZcJpOZ7YOBOdvuaRgLE8bCpC/GQimTYVyoNcaFGpY6l1fV4D/fJaJGGYDfzxcjs7gaBy+W4uDFUixLPAc3ewXGDHDF2AGuGN1fBUcbuYWvwLz64nviShgLE3PEgrEl6ltc7BT4akEsFqw7gqQLxZj/v8NYcW80JkV0fOsRIiLqOIsmrp5++ulrnuAXEBCAU6dOIT8/v81jhYWFcHd3v+rz9Xo97r77bly8eBG7du265oyoIUOGQCaT4dy5c1dMXBERdUc2cikinARMnRoGmUyGzKIq/HauEHvTCrE/oxgFFTp8fzQH3x/NgVgEDPJ1xLgBbhgb4ooobyUk4t4/G4uIiKgz2Cmk+N9Dw/HM18eRkJyPJ9cfxVt3DcScYb6W7hoRUa/T4cTVjUyDv1aSSKVSQaW69rTauLg4lJeX49ChQxgxYgQA4ODBgygvL8fIkSOv+LzmpNW5c+ewe/duuLi4XPO1zp49C71eD09Pz2vWJSLqzgJUtghQ2eJPcQHQ1TfgSGYp9qYbEllp+RU4nlWG41lleP/XdDjZyDC6f9NsrAEquNlbWbr7RH2aOcZdRNS5rGQSrLx/CBZvPI3vjubgb9+fQnmNHo+ODrR014iIepUOJ64cHR2va28UkUiE9PR0BAbe/P+4w8LCMHnyZCxYsACrV68GADz22GO4/fbbW23MHhoaiqVLl2LmzJmor6/H7NmzcezYMWzZsgUNDQ3G/bCcnZ0hl8uRkZGBL7/8ElOnToVKpUJycjL++te/Ijo6GqNGjbrpfhMRdRcKqQSjglUYFazCi1PDoC6vwd60QuxNL8S+c0Uordbjp5N5+OlkHgAgwssBY5uWFQ7xd4JMIrbwFRD1LZYcdxFRx0klYrw9eyAcbWT49PeL+NfWFJRU1eFvk0L6xL6SRERd4bqWCn7//fdwdna+Zj1BEDB16tQb7lR7vvzySzzzzDOIj48HAEyfPh0fffRRqzppaWkoLy8HAOTk5OCnn34CAAwePLhVvd27d2PcuHGQy+XYuXMnPvjgA1RWVsLX1xfTpk3DK6+8AolE0qn9JyLqTjyV1pg7wg9zR/hB39CIE9llxkTW6dxynM3T4myeFiv3ZMBeIcWoYBXGhrhizABXeDtaW7r7RH2CJcddHREQEIBLly61Kvu///s/vPnmm13eFyJLEolEeHFqGJxs5Xh7RxpW7slAWY0eb8yI5DJ8IqJO0OHElb+/P8aMGdOh5XYAEBgY2KmblTo7O2P9+vVXrSMIgvF2QEBAq/vt8fX1xd69ezulf0REPZVMIsbwAGcMD3DG85NCUFSpw+9Ne2P9dq4IJVV12HFWgx1nDbNW+7vZGWZjhbhieIAzrGRM9BN1NkuPuzrq9ddfb3XQjZ2dXZf3gag7EIlEWDguGI7Wcvxj82l8dTAL5TV6vH/3YMilnLVMRHQzOpy4unjx4nU1fObMmevuDBERWZ7KToGZ0T6YGe2DxkYBp3PLDXtjpRfieFYpzhVU4lxBJT7bdxFWMjHiAl0wLsQNYwe4IkBla+nuE/UKPWXcZW9vDw+Pjp2kptPpoNPpjPeb9/HS6/XQ6/Wd3rfmNs3Rdk/DWBh0RRzmDPGEnVyEv35/GltPqVFeXYeP5g6CrcKiZ2K1wfeECWNhwliYMBYG5o5DR9vtXv8HJSKibkUsFmGQryMG+TrimQn9UV6tx77zRdibXoC96YXI1+qwO60Qu9MKAQD+LjbGvbHiglxgI+c/M0S92VtvvYU33ngDvr6+mDNnDv72t79BLpe3W3fp0qV47bXX2pQnJCTAxsbGbH1MTEw0W9s9DWNh0BVxeHSACGvSxNh3vhh3Lt+Jx0IbYNv1kyKvie8JE8bChLEwYSwMzBWH6urqDtW7oU8UH374YbvlIpEIVlZWCA4OxpgxY7hPFBFRL6O0kWHaQE9MG+gJQRCQll+BPWmGZYVHLpXgUnE1Pk+6hM+TLkEuEWN4P6emRJYbBrjbcaNaohvQXcddf/nLXzBkyBA4OTnh0KFDWLx4MS5evIjPPvus3fqLFy/GokWLjPe1Wi18fX0RHx9vlhMR9Xo9EhMTMXHiRIsso+xOGAuDrozDVAC3Zpfh0S+OIbOyHv/LUuK/Dw6Fh0P3OLWX7wkTxsKEsTBhLAzMHYeOnqJ8Q4mr999/H4WFhaiuroaTkxMEQUBZWRlsbGxgZ2eHgoICBAYGYvfu3fD19b2RlyAiom5OJBIh1MMBoR4OeGJsECp19UjKKMbe9ALsSStETmkN/jhfjD/OF+Pf21LhqbQyzsYaGayC0rrvDgKIrkdXjrteffXVdmdFtXT48GEMGzYMzz33nLFs4MCBcHJywuzZs/HWW2+1uzeXQqGAQqFoUy6Tycz6ocDc7fckjIVBV8VheKArvntiJOatOYhzBVW497PDWP9ITLdaVs/3hAljYcJYmDAWBuaKQ0fbvKGdAv/9739j+PDhOHfuHIqLi1FSUoL09HTExMTggw8+QFZWFjw8PFoNaIiIqHezU0gxMdwd/7ozCr//fTx2/XUsXrkjHONCXKGQiqEur8U3h7Px5JfHMOSNRMz5eD8+2nUOp3PK0dh49cM0iPqyrhx3Pf3000hJSbnqT2RkZLvPjY2NBQCcP3/+pvtB1FsMcLfH90+MRICLDXJKazD74yQk53VshgERERnc0Iyrl156CT/88AOCgoKMZcHBwVi2bBnuuusuXLhwAW+//TbuuuuuTusoERH1HCKRCIGudgh0tcNDo/qhVt+AgxdLsDetEHvTC5BRWIXDmaU4nFmKZQnpcLGVY0zTbKzR/VVwsWs7K4Oor+rKcZdKpYJKpbqh5x4/fhwA4OnpedP9IOpNfJ1t8N0TI/Hgfw8hWa3FPZ8kYc2DwzGin7Olu0ZE1CPcUOJKrVajvr6+TXl9fT00GsNx6V5eXqioqLi53hERUa9gJZMYlwkC4cguqcZv5wx7Y/1xvgjFVXXYdDwXm47nQiQCBnorDfVDXDHIxxFSCY8Sp76rO467kpKScODAAYwfPx5KpRKHDx/Gc889h+nTp8PPz6/L+kHUU7jaK/DN47F4dO0RHMoswbw1B7HqgSG4NdTd0l0jIur2buiTwPjx4/H4448bv1kDDN+yPfnkk7j11lsBAKdPn0a/fv06p5dERNSr+Drb4P4Yf3zyp2E4/s94fPNYLJ4cF4RwTwcIAnAypxwf7jqPu1YlYcgbiXjqy2P49nA2NOW1lu46UZfrjuMuhUKBDRs2YNy4cQgPD8c///lPLFiwAF9//XWX9YGop3GwkuHzR0ZgQqgbdPWNWPD5UWw+nmvpbhERdXs3NONqzZo1mDdvHoYOHWrcTKu+vh4TJkzAmjVrAAB2dnZ49913O6+nRETUK8mlYsQGuiA20AX/NzkUBdpa7E0vxN70Qvx+rgjlNXpsPa3G1tNqAECohz3Ghhhmbw3zd4ZcytlY1Lt1x3HXkCFDcODAgS57PaLewkomwcfzhuLv35/CpuO5eHbDCZRV12H+KH7hT0R0JTeUuPLw8EBiYiJSU1ORnp4OQRAQGhqKkJAQY53x48d3WieJiKjvcHOwwpxhvpgzzBcNjQJO5pQ17Y1ViJM5ZUjVVCBVU4HVey/ARi7ByCAVxoa4YtwAV/g621i6+0SdjuMuot5FJhHj3TmDoLSWYe3+TLz6czJKq/V49rb+EIlElu4eEVG3c0OJq2aBgYEQiUQICgqCVHpTTREREbUhEYswxM8JQ/yc8NzEASitqsPv54uMiayiSh1+TcnHryn5AIBAlS1uCXaBTZkIt9U3gqcXU2/CcRdR7yEWi/DKHeFwtpXjvcR0fLDzHMqq6/DKHREQi5m8IiJq6YbWV1RXV+ORRx6BjY0NIiIikJWVBQB45pln8Oabb3ZqB4mIiJo52coxfZAX3r17EA69OAFb/nwL/jYpBCP6OUMqFuFCURU+P5CFj1MliHtrD/723UnsSSuAvqHR0l0numEcdxH1TiKRCM9M6I/XZ0RAJALWJV3Cc9+e4L9ZRESXuaHE1eLFi3Hy5Ens2bMHVlZWxvLbbrsNGzZs6LTOERERXYlYLEKktxJPjQ/Gt4/H4dg/J+LjB4binmE+cJAJ0NbW47ujOZj/v8MYvuRXvPDDKew7V4R6fiCgHobjLqLe7U9xAVh+z2BIxSL8eCIPj31+BDV1DZbuFhFRt3FD88w3b96MDRs2IDY2ttU67PDwcGRkZHRa54iIiDrKwUqGyZEemBDiglhpJtwiYrHjbCG2n1GjqLIO3xzOxjeHs+FiK8fkSA9MG+iJmH4ukHBJBnVzHHcR9X4zBnvDwUqGJ788it1phfjTfw/isweHQ2nNNe9ERDc046qwsBBubm5tyquqqrihIBERWZxYBIwIcMYbd0bi4Iu34atHY3BfjB+cbeUorqrDlwezcN+nBxHz7534549ncPBCMRobBUt3m6hdHHcR9Q3jQ93wxSMxsLeS4nBmKeZ+cgAFFbWW7hYRkcXdUOJq+PDh2Lp1q/F+86Dp008/RVxcXOf0jIiIqBNIxCKMDFbh3zOjcOjFCfjikRGYO9wXjjYyFFXq8HnSJdzzyQHEvbkTr/50FkcvlTCJRd0Kx11EfcfwAGd8+3gcVHYKpKi1mPNxErJLqi3dLSIii7qhpYJLly7F5MmTkZycjPr6enzwwQc4e/YskpKSsHfv3s7uIxERUaeQSsQY3d8Vo/u74o07I/HH+SJsOaXGL2c1yNfqsHZ/Jtbuz4SX0gpTozwxbaAnBvs6clYLWRTHXUR9S5inA354Mg4PrDmIS8XVuGvVfnzxSAxCPOwt3TUiIou4oRlXI0eOxB9//IHq6moEBQUhISEB7u7uSEpKwtChQzu7j0RERJ1OJhFjXIgbls0ZhCMv3YY1Dw7DrGhv2CmkyCuvxWf7LmLmyv245a3dWLotBadzyiEInIlFXY/jLqK+x9/FFt8/MRIh7vYoqNDh7tVJOHqp1NLdIiKyiBuacQUAUVFRWLduXWf2hYiIyCIUUgkmhLljQpg7avUN+C29EFtOqfFrSj5yy2qw+rcLWP3bBfi72GBa00yscE8HzsSiLsNxF1Hf4+5ghW8fj8NDaw/hWFYZHvjsID6eNxRjB7haumtERF2qw4krrVbb4UYdHBxuqDNERESWZiWTID7CA/ERHqjVN2B3agG2nFZjV0oBLhVXY+WeDKzck4FAlS2mDTQksULc7ZnEok7FcRcRAYDSRob1j8bgifXH8Ft6IR5ddxjv3T0YdwzysnTXiIi6TIcTV46OHd/jo6Gh4YY7RERE1F1YySSYEuWJKVGeqK6rx67UAmw5qcbutAJcKKrCil3nsWLXeQS72WFalCfuGOSJYDfuQUI3j+MuImpmI5fisz8Nw6JvT2DLKTWe+eY4tLV63B/jb+muERF1iQ4nrnbv3m28nZmZiRdeeAHz5883nmaTlJSEdevWYenSpZ3fSyIiIguzkUtx+0Av3D7QC5W6euxMyceWU2rsTSvE+YJKfLDzHD7YeQ4h7va4vWkmVqCrnaW7TT0Ux11E1JJcKsYHc6OhtJbhy4NZ+MemMyir1mPhuCDO+CWiXq/DiauxY8cab7/++ut47733cO+99xrLpk+fjqioKHzyySd48MEHO7eXRERE3YidQooZg70xY7A3tLV6/Jqcj62n1PjtXCHS8iuQlliBdxPTEe7pgGkDPXH7QE/4u9hautvUg3DcRUSXk4hF+NedkXC2lWPFrvN455c0lFbV4cWpYRCLmbwiot7rhk4VTEpKwrBhw9qUDxs2DIcOHbrpTrWntLQU8+bNg1KphFKpxLx581BWVnbV58yfPx8ikajVT2xsbKs6Op0Of/7zn6FSqWBra4vp06cjJyfHLNdARES9j4OVDLOG+GDN/OE48o+JeGf2QIwd4AqpWIRktRbv/JKGse/swR0r9mH13gxkl1RbusvUw1hi3EVE3ZNIJMJf40Pw8u3hAIDP9l3E374/hfqGRgv3jIh6I0EQkFkBFFfVWbQfN5S48vX1xccff9ymfPXq1fD19b3pTrXnvvvuw4kTJ7Bjxw7s2LEDJ06cwLx58675vMmTJ0OtVht/tm3b1urxZ599Fps2bcI333yDffv2obKyErfffjv3iyAiouumtJFhzjBfrHt4BA7/4za8OSsKo/urIBGLcDq3HEu3p2L027tx53/+wGe/X0BeWY2lu0w9gCXGXUTUvT1ySz+8O2cQJGIRfjiWgye/PIZaPT+/EFHnyCquxge/nkP8B3/g/TNSbDqeZ9H+dHipYEvvv/8+7rrrLvzyyy/GGUwHDhxARkYGfvjhh07tIACkpKRgx44dOHDgAGJiYgAAn376KeLi4pCWloaQkJArPlehUMDDw6Pdx8rLy7FmzRp88cUXuO222wAA69evh6+vL3799VdMmjSp3efpdDrodDrj/eaTf/R6PfR6/Q1d45U0t9fZ7fZEjIUJY2HCWJgwFgbdJQ52chHuivbEXdGeKK6qQ0JyPrad1uBQZilOZJfhRHYZ/rU1BUP8HDE10h2TI9zh7mDVqX3oLrHoDswZC3PHt6vHXUTUM9w11AcO1jI89dUxJCbnY/7/DuHTPw2DvZXM0l0joh6ovFqPLafzsOlYLo5cKjWWy8UCqnT1FuzZDSaupk6dinPnzmHVqlVISUmBIAiYMWMGnnjiCbN885eUlASlUmlMWgFAbGwslEol9u/ff9XE1Z49e+Dm5gZHR0eMHTsWS5YsgZubGwDg6NGj0Ov1iI+PN9b38vJCZGQk9u/ff8XE1dKlS/Haa6+1KU9ISICNjc2NXuZVJSYmmqXdnoixMGEsTBgLE8bCoLvFQQngXg9gmjNwskSE40ViXKgAjmWV4VhWGZZsS0WgPRCtasQgZwEO8s577e4WC0syRyyqq827/LOrx11E1HNMDHfH5w+PwKPrjuDAhRLc9+lBrH1oOFzsFJbuGhH1AHX1jdidVoBNx3KxK7UAdU3LjkUiYFSQCtMHekDIOYFZE4It2s8OJ65OnTqFyMhIiMWG1YU+Pj5YsmTJFeufPXsWISEhkEpvKDfWikajMSabWnJzc4NGo7ni86ZMmYI5c+bA398fFy9exMsvv4xbb70VR48ehUKhgEajgVwuh5OTU6vnubu7X7XdxYsXY9GiRcb7Wq0Wvr6+iI+Ph4ODww1c4ZXp9XokJiZi4sSJkMn69rcnjIUJY2HCWJgwFgY9IQ5zm35rtLX45Ww+tp3Jx7GsMmRUABkVEmzMBEYEOGFKpAcmRbjDxfbGslg9IRZdxZyxaJ553ZksOe4iop4lNtAF3zwWiwf/ewinc8sx5+MkfPFoDLwdrS3dNSLqhgRBwLGsMmw6noMtp9QoqzbNHA/1sMfMaMMBRB5KK+j1emxTn7BcZ5t0eHQTHR0NjUYDV1fXDtWPi4vDiRMnEBgYeMU6r776arszl1o6fPgwALR7zKsgCFc9/vWee+4x3o6MjMSwYcPg7++PrVu3YtasWVd83rXaVSgUUCjafoshk8nM9sHAnG33NIyFCWNhwliYMBYGPSEOvi4yPDrGHo+OCUZeWQ22nVZjyyk1TmSX4cDFUhy4WIrXt6YiLtAFtw/0xKQIDzjdQBKrJ8Siq5gjFuaIrTnGXUTUe0V6K/HdE3GYt+YQLhRVYfaq/fjikREIdrO3dNeIqJu4VFyFTcdzsfl4LjKLTbPF3ewVmDHYCzOjfRDu1bkTcTpLhxNXgiDg5Zdf7vBSuLq6a+86//TTT2Pu3LlXrRMQEIBTp04hPz+/zWOFhYVwd3fvUH8AwNPTE/7+/jh37hwAwMPDA3V1dSgtLW0166qgoAAjR47scLtEREQ3y8vRGo+ODsSjowORXVKNbafV2HpajVM55dh3vgj7zhfhpc1nMCpYhWkDPTEp3ANKGyajeitzjLuIqHcLdLXD908aklfnCyox5+MkrH1oBAb5Olq6a0RkIWXVddhySo1Nx3NxtMW+VdYyCSZHemBmtDdGBRsOEurOOpy4GjNmDNLS0jrccFxcHKytrz49VaVSQaVSdait8vJyHDp0CCNGjAAAHDx4EOXl5deVYCouLkZ2djY8PT0BAEOHDoVMJkNiYiLuvvtuAIBarcaZM2fw9ttvd7hdIiKizuTrbIPHxwbh8bFBuFRcha2n1dhyUo1ktRZ70wuxN70Q/5Ccxuj+rpgW5YmJEe5w4Ga8vYo5xl1E1Pt5Kq3x7eNxeOh/h3Aypxz3fXoAn/xpGEYFX/szFxH1Drr6BuxOLcSm4znYnVpo3LdKLAJGBaswM9obkyI8YKvoOdsLdLine/bsMWM3ri4sLAyTJ0/GggULsHr1agDAY489httvv73VxuyhoaFYunQpZs6cicrKSrz66qu466674OnpiczMTLz44otQqVSYOXMmAECpVOKRRx7BX//6V7i4uMDZ2RnPP/88oqKijKcMEhERWZK/iy0WjgvGwnHBuFBYia2nDDOxUjUV2JVagF2pBZBvFGPMAFfcMcgTE8LcYdeDBiLUPkuOu4ioZ3O2lePLBbF4/Isj+ON8MR7632F8eG80Jke2f9I6EfV8hn2rSrHxWC62nm67b9WsIYZ9qzr7BOuu0mNGtl9++SWeeeYZ4wmA06dPx0cffdSqTlpaGsrLywEAEokEp0+fxueff46ysjJ4enpi/Pjx2LBhA+ztTWu933//fUilUtx9992oqanBhAkTsHbtWkgkkq67OCIiog4IdLXDnyf0x58n9Mf5ggpsOWXYE+t8QSV+TcnHryn5UEjFGB/ihmkDPTEm2OnajRIRUa9jp5Div/OH4y9fn8COsxos/PIo3pw1EHcP50mkRL1J875Vm47n4tJl+1bdGe2NmdHeCPPsnvtWXY8ek7hydnbG+vXrr1pHEATjbWtra/zyyy/XbNfKygorVqzAihUrbrqPREREXSXYzR7P3maPv0zoj/T8Smw9lYctp9S4UFSFHWc12HFWAyuZGGEOYjiFFmP0APerHjxCRES9i0IqwX/uH4IXN57GhiPZ+PsPp1BWU4fHxgRZumtEdBOutG+VjVyCyREemDnEGyODuv++VdejxySuiIiIqC2RSIQQD3uEeITguYkDkKKuwJamJFZWSTWOF4vxp/8dRaCrLe6P8cfsIT7c1J2IqI+QiEV4864oONrKsHrvBfx7WypKqvRYNIEnkBL1JC33rdqVWgB9g2HSTvO+VbOGGPatspH3zhRP77wqIiKiPkgkEiHcywHhXg7426QQnLhUgmWb9uNEqQwXCqvwxpZkvL0jFXcM8sIDsf4Y5KPkLCwiol5OJBJh8ZQwONnI8eb2VHy8NwMllbWI43cYRN1ay32rtpxSo7zGtG9VmKcDZkV7Y/pgrx67b9X1YOKKiIioFxKJRIj0dsDdgY34aMJYbD1TgPUHLiFVU4Hvj+bg+6M5iPR2wP0x/pgx2KvXfkNHREQGT4wNgqO1DC9uOo1vj+YixUmMftFaDPJz5pcYRN1IZpFh36rNJ1rvW+XuoMCdg70xc4g3Qj16/r5V14OjVCIiol7OTiHFA7H+uD/GD8eyyvDlgUvYclqNM7laLN54Gv/emoJZQ7xxf6w/BrjbX7tBIiLqkeaO8IPSWoZnvjmO06Vi3LnqAHydrTEl0hOTIz0w2McR4l60Lw5RT1FaVYctp9XYdCwHx7LKjOU2cgkmR3pgVrQP4oJcetW+VdeDiSsiIqI+QiQSYai/E4b6O+Hl28Px/dEcfHnwEjKLq7Eu6RLWJV3CiABn3B/rh8mRHlBIecIuEVFvMyXKE1/aSLHkhwNIq5Aiu6QGn/x2AZ/8dgEeDlaYHOmBKZEeGBbg3Gc/JBN1BcO+VQXYeCwXu9Na71t1S39XzIr2RnyEO2fFg4krIiKiPsnJVo4FYwLxyC398EdGEdYfuIRfUwpwKLMEhzJL4GIrx93DfXHfCD/4OttYurtERNSJov0c8XBII8bdNg77L5Rh+xkNdqUWQKOtxdr9mVi7PxMqOzniIwxJrNhAF8gkYkt3m6jHEwQBRy+VYuPxXGy9bN+qcE8HzBrijemDvODWB/atuh5MXBEREfVhYrEIo/u7YnR/V2jKa/HN4Sx8cygbGm0tVu3JwMd7MzB2gCseiPHH+FA3fvtORNSL2MilmBLliSlRnqjVN+CP80XYdlqDX1PyUVRZh68OZuGrg1lwtJFhYpg7pkR5YFSwijNyia7TxeZ9q47nIqvEtG+Vh4MVZkR7YVa0D0I8uF3DlTBxRURERAAAD6UVnr1tAJ4eH4ydqYbN3H8/V4Q9aYXYk1YIL6UV7h3hh3tG+MLNnt8EEhH1JlYyCSaEuWNCmDv0DY1IyijG9jMaJJzVoLiqDt8dzcF3R3Ngr5BiQpgbJkd6YuwAV1jLmcQiak9pVR22nMrDxuO5ON5i3ypbuQSTIz0xa4g3YgP77r5V14OJKyIiImpFKhFjUoQHJkV4ILOoCl8dysJ3R7KRV16LdxPT8cHOc5gU4YH7Y/0QF+jC06iIiHoZmUSMMQNcMWaAK/51ZyQOXSzBjjNq7DirQb5Wh80n8rD5RB6sZRKMD3XFlEhPjA91g52CHy+pb9PVN2BXSgE2Hs/Fnsv2rRrd3xWzhnhjYjj3rbpejBYRERFdUYDKFi9ODcOiiQOw/Ywa6w9k4eilUmw9rcbW02oEutri/hh/zB7iA6WNzNLdJSKiTiYRixAX5IK4IBe8ckcEjmeXYvtpDbaf0SC3rAbbTmuw7bQGcqkYY/q7YkqkB24Ld4fSmv8mUN8gCAKOXCrFxmO52HoqD9raeuNjEV4OmBntjemDvThb/SYwcUVERETXZCWTYGa0D2ZG+yBFrcWXBy9h07FcXCiswhtbkvH2jlTcMcgLD8T6Y5CPkrOwiIh6IbFYhKH+zhjq74x/TAvD6dxybD+jwY4zGlwsqsKvKfn4NSUfMokII4NUmBLpgfgIDzjbyi3ddaJOd7GoCpuO5WDTiVxkl9QYyz2VVpgx2BuzhnhjgDv3reoMTFwRERHRdQnzdMC/7ozCC1PCsPl4LtYfuIRUTQW+P5qD74/mINLbAQ/E+GP6YC9OhSci6qVEIhEG+jhioI8j/j4pBGn5Fdh2WoMdZ9RIz6/E3vRC7E0vxIubTiM20AVTIg1L0HlaGvVkJc37Vh3LxYnsMmO5rVyCKVGemBXtjRjuW9XpOJokIiKiG2KnkOKBWH/cH+OHY1ml+PJAFracVuNMrhYvbDyNJVtTMGuINx6I9Ud/fuPYoyxZsgRbt27FiRMnIJfLUVZW1qZOVlYWnnrqKezatQvW1ta47777sGzZMsjlnFlB1NeIRCKEejgg1MMBiyYOQEZhJXac0WDbaTXO5mmxP6MY+zOK8c+fzmKonxOmRHlicqQHvB2tLd11omuq1TdgV2oBNh4z7FtV32jYt0oiFmF0fxVmRnsjPtyDBxWYERNXREREdFNEItPSkZduD8f3R7Px5cEsXCquxrqkS1iXdAkj+jnjgVh/TIpw5zHqPUBdXR3mzJmDuLg4rFmzps3jDQ0NmDZtGlxdXbFv3z4UFxfjwQcfhCAIWLFihQV6TETdSZCrHZ4aH4ynxgcjq7gaO86qse20Bieyy3DkUimOXCrFG1uSMchHicmRnpgS6YEAla2lu01kJAgCMrTASz+exfYz+a32rYr0dsDMaB9MH+QFV3uFBXvZdzBxRURERJ3G2VaOx8YE4dFbAvFHRhHWH7iEX1MKcOhiCQ5dLIGLrRx3D/fFfSP84OtsY+nu0hW89tprAIC1a9e2+3hCQgKSk5ORnZ0NLy8vAMC7776L+fPnY8mSJXBwcOiqrhJRN+fnYoPHxgThsTFByCurwS9nDRu7H84swcmccpzMKcdbO1IR5umAKZEemBLpwVm61KUEQUC+VodkdTmS87RIVmtxPKsM6nIpgFwAhn2r7oz2xqxob74/LYCJKyIiIup0YrEIo/u7YnR/V2jKa/HN4Sx8fSgL+VodVu3JwMd7MzB2gCseiPHH+FA37gXRwyQlJSEyMtKYtAKASZMmQafT4ejRoxg/fnyb5+h0Ouh0OuN9rVYLANDr9dDr9Z3ex+Y2zdF2T8NYGDAOJpaKhautFA+M8MEDI3xQWKFDYkoBfknOx8GLpUhRa5Gi1uK9xHQEudpiUrg7JkW4IczD3qwHfvB9YdIXYqFvaMTFoiqkqCuQomn6UVegtLrtNSskAqZGeWJWtA9GBDhB3DRW6c3xuZy53xMdbZeJKyIiIjIrD6UVnr1tAJ4eH4xfUwrw5cFL+P1cEfakFWJPWiG8Ha1x7whf3D3cl0dF9xAajQbu7u6typycnCCXy6HRaNp9ztKlS40zuVpKSEiAjY35Zt8lJiaare2ehrEwYBxMLB0LRwD3uAG3OwGnS0U4WSxCWrkIGYVVWLn3AlbuvQCVQsAgFwGDnBvhZweYK4dl6Vh0J70lFrX1QG41kFslQm61CLlVIqirgXqh7ZtIDAFu1oC3rQAfWwFeNkCgvQC5JAclqTnYkWqBC+hGzPWeqK6u7lA9Jq6IiIioS0glYkyO9MDkSA9kFlXhq0NZ+PZINnLLarAsIR3Lfz2HSREeuD/WD3GBLmb9hr0vevXVV9tNHLV0+PBhDBs2rEPttfffRxCEK/53W7x4MRYtWmS8r9Vq4evri/j4eLMsLdTr9UhMTMTEiRMhk8k6vf2ehLEwYBxMumMs5jT9rqjVY1daEX45m4/fzhWhSNeInXki7MwTw1NphfhwN0yOcMcQX0fjDJib0R1jYSk9NRaCIECj1SFZrTXNpFJXILu0pt36tgoJwjzsDT+e9gjzcEB/N1soZKY9OHtqLDqbuePQPPv6Wpi4IiIioi4XoLLFi1PDsGjiAGw7rcaXB7Nw9FIptp5WY+tpNQJdbXF/jD9mD/GB0qbvDhg709NPP425c+detU5AQECH2vLw8MDBgwdblZWWlkKv17eZidVMoVBAoWi7ia1MJjPrhwJzt9+TMBYGjINJd4yFs0yG2cP8MHuYH6p09diTVojtZ9TYlVoAdXkt1iVlYV1SFlztFZgU4Y4pkZ6I6ecMqUR8U6/bHWNhKd05FvqGRpwvqDTuRdX8u7ym/SVnXkorhHs5INzTAWGeDgj3coCvk02Hk57dORZdyVxx6GibTFwRERGRxVjJJJg1xAezhvggOU+LLw9ewubjubhQWIU3tiTjnV9SccdALzwQ649Bvo6W7m6PplKpoFKpOqWtuLg4LFmyBGq1Gp6engAMS/4UCgWGDh3aKa9BRGSrkGLaQE9MG+iJWn0DfksvxI4zGiSm5KOwQof1B7Kw/kAWnGxkiA/3wOQoD4wKUkEuvbkkFnUP5TV6pLRITqWotTiXX4m6hsY2daViEYLd7BDelJxqTlQ52cot0HPqbExcERERUbcQ7uWAJTOjsHhqGDYfz8X6A5eQqqnAd0dz8N3RHER5K3F/jB+mD/aCjZxDGHPKyspCSUkJsrKy0NDQgBMnTgAAgoODYWdnh/j4eISHh2PevHl45513UFJSgueffx4LFizgiYJEZBZWMgniIzwQH+GBuvpG/JFRhB2nNUhI1qC0Wo8NR7Kx4Ug27K2kmBjmjsmRHhgzwBVWLZZ/UfckCAJySmuMyanmRFXOFZb62SukCGtKTjUnqfq720Eh5X/r3oqjPiIiIupW7BRSPBDrj/tj/HAsqxTrD2Rh62k1TueW44WNp7FkWwruGuKD+2P8eCS1mfzzn//EunXrjPejo6MBALt378a4ceMgkUiwdetWLFy4EKNGjYK1tTXuu+8+LFu2zFJdJqI+RC4VY3yIG8aHuGFJQyQOXizB9jNq/HLWMBNr4/FcbDyeCxu5BOND3TA10hPjQlxhq+DHX0urq2/EuYKKNkv9Kmrr263v7WhtTE41//ZxsuY+mH0M/3KJiIioWxKJRBjq74yh/s54+fZwfH80G18ezMKl4mqs3Z+JtfszMaKfMx6I9cfkCA8uDelEa9euxdq1a69ax8/PD1u2bOmaDhERXYFUIsaoYBVGBavw2vRIHMsqxbbTavxyRoO88lpsPaXG1lNqKKRijB3giilRHpgQ5g4HK+5bZG5l1XWtklPJeVqcL6hEfaPQpq5MIkJ/N3uEezXtRdX0w30uCehBiavS0lI888wz+OmnnwAA06dPx4oVK+Do6HjF51wpC/v222/jb3/7GwBg3Lhx2Lt3b6vH77nnHnzzzTed03EiIiK6ac62cjw2JgiP3hKIfeeL8OXBS/g1pQCHLpbg0MUSqOzkuHuYL+4d4QdfZxtLd5eIiCxAIhZheIAzhgc445+3h+NkTjm2n1Fj+2kNskqqkZCcj4TkfMgkItwSrMKUSE+MG+Bs6W73eIIgILukBsnq8lZJqrzy2nbrK61lrTZLD/d0QLCbHb+AoivqMYmr++67Dzk5OdixYwcA4LHHHsO8efPw888/X/E5arW61f3t27fjkUcewV133dWqfMGCBXj99deN962trTux50RERNRZxGIRxgxwxZgBrlCX1+CbQ9n45nAW8rU6rNyTgVV7MzBugCseiPXHuBA3SDrhqHQiIup5RCIRBvs6YrCvI16YHIpktRY7zmiw7bQaGYVV2J1WiN1phZCIRXC3kmBtzkFYy6WwlklgZfwRw0omaSoTtyhvr6xlXcNvhVTc4dPreopafQPO5VciWV2OFLVhyV+KWosKXftL/XydrZtmTykNSSovB3gprbjUj65Lj0hcpaSkYMeOHThw4ABiYmIAAJ9++ini4uKQlpaGkJCQdp/n4eHR6v6PP/6I8ePHIzAwsFW5jY1Nm7pXo9PpoNPpjPe1Wi0AQK/XQ69v/xjOG9XcXme32xMxFiaMhQljYcJYGDAOJr09FiobKZ4e1w+Pj/bH7rRCfHUoB39kFBs/jHgprXDPMB/MGeoNRyvDt7jmiEVvjS8RUW8hEokQ4aVEhJcSf40Pwbn8Cmw/o8H2MxqkqLXIqxYhr7rcLK8tl4qNSa7mpJZCJoF1c9JLKoG1/LIkmFQCa7npcSu5BFZScVM90+MKaVOSrOlxqaRzZyyVVNW12iw9OU+L84WVaGhnqZ9cIsYADzvjEr9wLyVCPe25JJM6RY9IXCUlJUGpVBqTVgAQGxsLpVKJ/fv3XzFx1VJ+fj62bt3aaqPRZl9++SXWr18Pd3d3TJkyBa+88grs7a+82evSpUvx2muvtSlPSEiAjY15lickJiaapd2eiLEwYSxMGAsTxsKAcTDpK7G42w0YZw/szxfjYKEIeeW1eH/neXyw6xwGOQsY5S6CkJCIzv6St7q6unMbJCIis+rvbo/+7vZ4ZkJ/nM8vx/fb9yIqegjqBRFq6hpQq29AbX2j4XZ9A3R60+1afQNq9I2GOsafRtQ03dbpG1HX0Gh8rbr6RtTVN6K8/QPyOpVMIoKVtCkxJhcbkl7Ns79aJM7aJtEMZVIR8HuWGJu+OIZUTSU02vaX+jnayBDRtMSveblfkKsdZJ2cOCNq1iMSVxqNBm5ubm3K3dzcoNFoOtTGunXrYG9vj1mzZrUqv//++9GvXz94eHjgzJkzWLx4MU6ePHnVQf7ixYuxaNEi432tVgtfX1/Ex8d3+hHQer0eiYmJmDhxImSyvp2tZixMGAsTxsKEsTBgHEz6aizmA9DpG7D9bD6+OpSN49nlOF4swvFi4McnhiPc26lTX6955jUREfU8/s42CHMSEB/u3mn/VjY0Ck0JLlNiq70kV42+AbrLyppv6/SGRJkhkdYiMVbfOolWqzclyfQNAvQN9VdcttcxYgBFxnsBLjamzdKblvp5OHCpH3UtiyauXn311XZnLrV0+PBhAO1vtC4IQof/YP773//i/vvvh5WVVavyBQsWGG9HRkaif//+GDZsGI4dO4YhQ4a025ZCoYBCoWhTLpPJzPbBwJxt9zSMhQljYcJYmDAWBoyDSV+MhUwmw5zh/pgz3B/JeVp8kXQRx9OzEO7t1Omx6GuxJSKiq5OIRbBVSGGrMP/HbUEQLktmXZ7YMiXOatok0VqXVevqUV2aj0kjwhHl44QQD3vYc6kfdQMWTVw9/fTTmDt37lXrBAQE4NSpU8jPz2/zWGFhIdzd3a/5Or///jvS0tKwYcOGa9YdMmQIZDIZzp07d8XEFREREfUc4V4OeH16OLZuzbR0V4iIiDqVSCQy7o11s/R6PbZt24apMX78Uoa6FYsmrlQqFVQq1TXrxcXFoby8HIcOHcKIESMAAAcPHkR5eTlGjhx5zeevWbMGQ4cOxaBBg65Z9+zZs9Dr9fD09Lz2BRAREVGPwVUNRERERD1Pj9g9LSwsDJMnT8aCBQtw4MABHDhwAAsWLMDtt9/eamP20NBQbNq0qdVztVotvvvuOzz66KNt2s3IyMDrr7+OI0eOIDMzE9u2bcOcOXMQHR2NUaNGmf26iIiIiIiIiIjoynrE5uyA4eS/Z555BvHx8QCA6dOn46OPPmpVJy0tDeXlrY8x/eabbyAIAu699942bcrlcuzcuRMffPABKisr4evri2nTpuGVV16BRNLxqZaCYDgO1Bybs+r1elRXV0Or1fb56ZqMhQljYcJYmDAWBoyDCWNhYs5YNP/73zweoI4x5/gJ4Pu/JcbCgHEwYSxMGAsTxsKEsTAwdxw6OoYSCRxl3bScnBz4+vpauhtERERkQdnZ2fDx8bF0N3oMjp+IiIgIuPYYiomrTtDY2Ii8vDzY29t3+rGgWq0Wvr6+yM7OhoODQ6e23dMwFiaMhQljYcJYGDAOJoyFiTljIQgCKioq4OXlBbG4R+zC0C2Yc/wE8P3fEmNhwDiYMBYmjIUJY2HCWBiYOw4dHUP1mKWC3ZlYLDb7N6wODg59+g+mJcbChLEwYSxMGAsDxsGEsTAxVyyUSmWnt9nbdcX4CeD7vyXGwoBxMGEsTBgLE8bChLEwMGccOjKG4teCRERERERERETULTFxRURERERERERE3RITV92cQqHAK6+8AoVCYemuWBxjYcJYmDAWJoyFAeNgwliYMBZ9D/+bmzAWBoyDCWNhwliYMBYmjIVBd4kDN2cnIiIiIiIiIqJuiTOuiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroiIiIiIiIiIqFti4oqIiIiIiIiIiLolJq6IiIiIiIiIiKhbYuKKiIiIiIiIiIi6JSauiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroiIiIiIiIiIqFti4oqIiIiIiIiIiLolJq6IiIiIiIiIiKhbYuKKiIiIiIiIiIi6JSauiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroioz3r11VchEolQVFR01Xrz589HQEBA13TqOvvx73//G5s3b76h9vbs2QORSITvv//+5jtHRERE1KSnjbGupL3+BQQEYP78+RbpD1FfxcQVEVEP8fLLL2PTpk2tym4mcUVERERERNTdSS3dASKi6upq2NjYWLob3V5QUJClu0BEREQ9CMdYrdXU1MDKygoikcjSXSGi68AZV0TUpZqnjh87dgyzZ8+Gk5NThxIytbW1+Otf/4rBgwdDqVTC2dkZcXFx+PHHH9vUFYlEePrpp/HFF18gLCwMNjY2GDRoELZs2XLN10lNTUVgYCBiYmJQUFBwxXqCIGDlypUYPHgwrK2t4eTkhNmzZ+PChQvXfI2W1q5dC5FIhMTERDz00ENwdnaGra0t7rjjjjZtXT5dXSQSoaqqCuvWrYNIJIJIJMK4ceOMj+fm5uKxxx6Dr68v5HI5vLy8MHv2bOTn57dqV6/X4x//+Ae8vLzg4OCA2267DWlpadd1HURERGRZHGO11jzGSkhIwMMPPwxXV1fY2NhAp9OhsbERb7/9NkJDQ6FQKODm5oY//elPyMnJua7XIKKuwcQVEVnErFmzEBwcjO+++w4ff/zxNevrdDqUlJTg+eefx+bNm/H111/jlltuwaxZs/D555+3qb9161Z89NFHeP311/HDDz/A2dkZM2fOvOqgZ+/evRg5ciQGDhyI3bt3w83N7Yp1H3/8cTz77LO47bbbsHnzZqxcuRJnz57FyJEj2ySGOuKRRx6BWCzGV199heXLl+PQoUMYN24cysrKrvicpKQkWFtbY+rUqUhKSkJSUhJWrlwJwJC0Gj58ODZt2oRFixZh+/btWL58OZRKJUpLS1u18+KLL+LSpUv47LPP8Mknn+DcuXO444470NDQcN3XQURERJbFMVZrDz/8MGQyGb744gt8//33kMlkePLJJ/F///d/mDhxIn766Se88cYb2LFjB0aOHHnNfbmIyAIEIqIu9MorrwgAhH/+85831U59fb2g1+uFRx55RIiOjm71GADB3d1d0Gq1xjKNRiOIxWJh6dKlbfpSWFgofPHFF4JcLheeeeYZoaGhoVV7Dz74oODv72+8n5SUJAAQ3n333Vb1srOzBWtra+Hvf/97h6/jf//7nwBAmDlzZqvyP/74QwAg/Otf/7piPwRBEGxtbYUHH3ywTbsPP/ywIJPJhOTk5Cu+9u7duwUAwtSpU1uVf/vttwIAISkpqcPXQURERJbFMVZrzWOsP/3pT63KU1JSBADCwoULW5UfPHhQACC8+OKLV+yfIAiCv79/u2MvIjIfzrgiIou46667rvs53333HUaNGgU7OztIpVLIZDKsWbMGKSkpbeqOHz8e9vb2xvvu7u5wc3PDpUuX2tRdsmQJ5s+fjzfffBMffPABxOKr/69xy5YtEIlEeOCBB1BfX2/88fDwwKBBg7Bnz57rvrb777+/1f2RI0fC398fu3fvvu62AGD79u0YP348wsLCrll3+vTpre4PHDgQANqNFREREXVvHGO1dnk8msdWl58MOGLECISFhWHnzp3X/RpEZF5MXBGRRXh6el5X/Y0bN+Luu++Gt7c31q9fj6SkJBw+fBgPP/wwamtr29R3cXFpU6ZQKFBTU9OmfP369fD29sbcuXM71Jf8/HwIggB3d3fIZLJWPwcOHLihKeYeHh7tlhUXF193WwBQWFgIHx+fDtW9PFYKhQIA2o0VERERdW8cY7V2eTyax1btxcnLy+uGx15EZD48VZCILOJ6T3NZv349+vXrhw0bNrR6rk6nu+m+7NixA/fccw9Gjx6NnTt3wt/f/6r1VSoVRCIRfv/9d2OSp6X2yq5Fo9G0WxYcHHzdbQGAq6srNxglIiLqgzjGau3yeDQn3tRqdZsv+fLy8qBSqa77NYjIvDjjioh6BJFIBLlc3mrwodFo2j3x5nr5+/sbB0ijR4/GuXPnrlr/9ttvhyAIyM3NxbBhw9r8REVFXXcfvvzyy1b39+/fj0uXLrU6JbA9V/qGc8qUKdi9ezdPByQiIqKr6u1jrMvdeuutAAwJu5YOHz6MlJQUTJgw4aZfg4g6F2dcEVGPcPvtt2Pjxo1YuHAhZs+ejezsbLzxxhvw9PS85iCoIzw9PbF3715MmjQJY8aMQWJiIiIjI9utO2rUKDz22GN46KGHcOTIEYwZMwa2trZQq9XYt28foqKi8OSTT17X6x85cgSPPvoo5syZg+zsbPzjH/+At7c3Fi5ceNXnRUVFYc+ePfj555/h6ekJe3t7hISE4PXXX8f27dsxZswYvPjii4iKikJZWRl27NiBRYsWITQ09Lr6R0RERL1Tbx9jXS4kJASPPfYYVqxYAbFYjClTpiAzMxMvv/wyfH198dxzz91U+0TU+Zi4IqIe4aGHHkJBQQE+/vhj/Pe//0VgYCBeeOEF5OTk4LXXXuuU11CpVNi1axemTZuGsWPH4pdffsGwYcParbt69WrExsZi9erVWLlyJRobG+Hl5YVRo0ZhxIgR1/3aa9aswRdffIG5c+dCp9Nh/Pjx+OCDD+Ds7HzV533wwQd46qmnMHfuXFRXV2Ps2LHYs2cPvL29cejQIbzyyit48803UVxcDFdXV9xyyy3XbJOIiIj6jt4+xmrPqlWrEBQUhDVr1uA///kPlEolJk+ejKVLl7a7hxcRWZZIEATB0p0gIuqr1q5di4ceegiHDx++4gCOiIiIiIior+IeV0RERERERERE1C1xqSARWZQgCGhoaLhqHYlEct0n5FhaR6+LiIiIyBz6+hirp10XEV0ZZ1wRkUXt3bsXMpnsqj/r1q2zdDev27p16655XXv37sX8+fMhCAKXCRIREVGn6utjLCLqPbjHFRFZVEVFBdLS0q5ap1+/fj1uo8zi4mJcvHjxqnVCQkJgb2/fRT0iIiKivoRjLI6xiHoLJq6IiIiIiIiIiKhb4h5XnaCxsRF5eXmwt7fnWmoiIqI+RhAEVFRUwMvLC2Ixd2HoKI6fiIiI+raOjqGYuOoEeXl58PX1tXQ3iIiIyIKys7Ph4+Nj6W70GBw/EREREXDtMRQTV01WrlyJd955B2q1GhEREVi+fDlGjx7doec2r5/Ozs6Gg4NDp/ZLr9cjISEB8fHxkMlkndp2T8NYmDAWJoyFCWNhwDiYMBYm5oyFVquFr68v91O5TuYcPwF8/7fEWBgwDiaMhQljYcJYmDAWBuaOQ0fHUExcAdiwYQOeffZZrFy5EqNGjcLq1asxZcoUJCcnw8/P75rPb57e7uDgYJbElY2NDRwcHPr0HwzAWLTEWJgwFiaMhQHjYMJYmHRFLLjc7fqYc/wE8P3fEmNhwDiYMBYmjIUJY2HCWBh0VRyuNYbiRgwA3nvvPTzyyCN49NFHERYWhuXLl8PX1xerVq2ydNeIiIiIiIiIiCyiUQDq6hst2oc+P+Oqrq4OR48exQsvvNCqPD4+Hvv372/3OTqdDjqdznhfq9UCMGQj9Xp9p/bvmW9O4NB5Cd5L+x1SiRgysQgSiQgSsQgysRgSsQhSsQjSpjJpy7KmulKx2HBbLIKsqV7L57csN7R1WRvN7UpEhtc3PqedepLL+iBp3YZULIJYfGPfSDfHtrNj3BMxFiaMhQljYcA4mDAWJuaMBeNLREREvUlFrR6/nytCYrIGiacl0HmqMTcmwGL96fOJq6KiIjQ0NMDd3b1Vubu7OzQaTbvPWbp0KV577bU25QkJCbCxsenU/qVlSVCsE6FYV9Op7VqSCALEIkAiAsRNP5L2fgOQiA2/m8sUEjG+ydgJpVyAoxxwlANKheG2tQToa6s0EhMTLd2FboOxMGEsDBgHE8bCxByxqK6u7vQ2iYiIiLrSpeIq7EwpwK7UAhy8WAx9g9D0iAh/ZBQzcdUdXL6mUhCEK66zXLx4MRYtWmS837yhWHx8fKfv0RAUXYadv+3H0GHDAbEE9Y0CGhoF6Bsa0WC8bfhd3yigvrHRdLtleUOL8qafhsZG1DcIxjbbq9dueavnNJpuN7Rot6lf7REgQoMAXOHha7hyZspaJoaHgxXcHRRNv63goVS0KnOxld/wjK/uRK/XIzExERMnTuzTa64BxqIlxsKAcTBhLEzMGYvmmdfd3fUcRDN//nysW7euTXl4eDjOnj0LAFi7di0eeuihNnVqampgZWXVuZ0nIiKiTlXf0Iijl0qxM7UAO1PykVFY1erxABcbjA9xhW3ZBSycFWmhXhr0+cSVSqWCRCJpM7uqoKCgzSysZgqFAgqFok25TCbr9MFwiKcjMuyBmCDXHvmho7FRgL7x8qRXY7uJrpb39Zcl3eobBejq9Nh/+Djc/AegoLIOGm0tNOW10GhrUVatR42+EReLq3Gx+MrffEvFIrg3JbI8ldbwUFrBw8HK8LvptruDFeTSnrH9mznecz0VY2HCWBgwDiaMhYk5YtETYnu9B9F88MEHePPNN4336+vrMWjQIMyZM6dVPQcHB6SlpbUqY9KKiIioeyqrrsPe9ELsTCnAnrQCaGvrjY9JxSIMD3DGhDA33BrqhkBXO+j1emzblgGZxLKfj/t84koul2Po0KFITEzEzJkzjeWJiYmYMWOGBXvWO4jFIijEkk5pS6/XQ8gSMPXWoDYfEmrqGpCvrYW6vBYabQ005TpoymtaJbcKKnSobxSQW1aD3LIaAGVXfC2Vnbx1UsvBCh5K61ZJLjtFn//zISKiHqLlQTQAsHz5cvzyyy9YtWoVli5d2qa+UqmEUqk03t+8eTNKS0vbzLASiUTw8PAwb+eJiIjohgiCgIzCSuxMKcDO1AIcvVSKhkbT0idHGxnGhxgSVWMGuEJp3T2/jOMnbwCLFi3CvHnzMGzYMMTFxeGTTz5BVlYWnnjiCUt3jTrIWi5BgMoWASrbK9bRNzSisEJnSmY1JbQuv13X0IiiyjoUVdbhTO6Vl3/YK6StZmo13/ZUGmZteSqt4WQj4/HoRERkUTdyEM3l1qxZg9tuuw3+/v6tyisrK+Hv74+GhgYMHjwYb7zxBqKjo9ttoysPt2lut+XvvoyxMGAcTBgLE8bChLEw6cmxqKtvxOFLpdiVWojdaYXILm29X3Z/N1vcGuKG8SEqDPZ1hKTFVjqXX6+549DRdpm4AnDPPfeguLgYr7/+OtRqNSIjI7Ft27Y2gzPq2WQSMbwcreHlaH3FOoIgoKSq9TLEloktdXkt8strUaGrN/wUVOJcQeUV25NLDftuNSe2TEktK7g33Xe1U0Bq4amXRETUe93IQTQtqdVqbN++HV999VWr8tDQUKxduxZRUVHQarX44IMPMGrUKJw8eRL9+/dv005XHm7TEg8nMGEsDBgHE8bChLEwYSxMekosKvRAcqkIZ0tFSC0XQddgSkZJRAL6OwiIcDL8uFiVA/XlyD97Dr+c7Vj75opDRw+4YeKqycKFC7Fw4UJLd4MsTCQSwcVOARc7BSK8lFesV6mrv2ymVo0hqdWc3NLWoqiyDnX1jcgqqUZWyZX/IMUiwNVe0bQU0bD3ljG51fTbQ2kFK1nnLLkkIqK+6XoOomlp7dq1cHR0xJ133tmqPDY2FrGxscb7o0aNwpAhQ7BixQp8+OGHbdrpysNtAB5O0BJjYcA4mDAWJoyFCWNh0t1jIQgCUjWV2JVmmFV1KrccQovDz1R2cowPccX4Aa4YGeQM2xvc5sbccejoATdMXBHdADuFFMFudgh2s7tiHV19Awq0rZcmmpJbNcjX6pCvrUV9o9B0W4eTV3lNRxuZceaWu70cQokII6v1cFV2v/+REhFR93EjB9E0EwQB//3vfzFv3jzI5fKr1hWLxRg+fDjOnTvX7uNdebhNV7bfkzAWBoyDCWNhwliYMBYm3SkWtfoG7M8ows6UAuxKLYC6vLbV45HeDrg11B0TQt0Q5a2EWNx5W9aYKw4dbZOJKyIzUUgl8HW2ga/zlZc/NDYKKKrSXZbUMixHbHm/Rt+Asmo9yqr1SNVUND1bgk1v78H4EDfMGuKN8aFuUEg5K4uIiFq7mYNo9u7di/Pnz+ORRx655usIgoATJ04gKirqpvtMREREgKa8FrtSC7ArNR/7zhehVt9ofMxKJsYtwSrcGuqOW0Pd4KHsvaf6MnFFZEFisQhu9lZws7fCQJ/26wiCAG1NfdMeWzXI19biUlEVfjycgdxqICE5HwnJ+XCwkmLaQC/MGuKNoX5OnZphJyKinu1aB9EsXrwYubm5+Pzzz1s9b82aNYiJiUFkZGSbNl977TXExsaif//+0Gq1+PDDD3HixAn85z//6ZJrIiIi6m0aGwWczi3HztQC7EzJx9m81kvpvJRWuDXMDRNC3REX5NJntpNh4oqomxOJRFDayKC0kSHEwx6AYa1xSF06goaMxs9n8vHj8TxotLX4+lAWvj6UBR8na8yM9sad0d4Icr3yckYiIuobrnUQjVqtRlZWVqvnlJeX44cffsAHH3zQbptlZWV47LHHoNFooFQqER0djd9++w0jRoww+/UQERH1FlW6evx+rgi7UvOxK7UQRZWmE3hFImCwryMmhLrh1lB3hHna98lT65m4IurBQjzsEenrjL9PCsXBC8XYeDwX20+rkVNagxW7zmPFrvMY5KPEzGhv3D7ICyq7tnuLEBFR33C1g2jWrl3bpkypVF71tJ/3338f77//fmd1j4iIqM/ILqnGrtQC/JqSj4MXSlDXYFoCaKeQYswAwxLAcSGu/AwHJq6IegWJWISRwSqMDFbhjRmRSEzJx6ZjOfjtXBFO5pTjZE453tiagrEDXDEz2hsTw937zLRSIiIiIiIiS2poFHAsq7RpY/V8pOdXtnrcz9kGE5qWAI7o5wy5VGyhnnZPTFwR9TLWcgmmD/LC9EFeKKzQYcupPGw6notTOeVNG/sVwE4hxZRID8yM9kZsoAv3wyIiIiIiIupE5TV6/JZeiF2pBdidVoCyar3xMYlYhKH+TpgQ6oYJYe4IcrXtk0sAO4qJK6JezNVegYdG9cNDo/rhfEElNh/Pxabjucgtq8F3R3Pw3dEceCqtMGOwN2ZGexv30CIiIiIiIqLrc6Gw0rgE8HBmKRoaBeNjSmsZxoW44tZQN4wd4ApHG7kFe9qzMHFF1EcEu9nh+UkhWDRxAI5cKsWm4znYckoNdXktPt6bgY/3ZiDc0wGzhnhj+iAvuDn03uNUiYiIiIiIbpa+oRGHL5ZgZ9PKlotFVa0eD3aza9pY3Q1D/Z0glXAJ4I1g4oqojxGLRRjRzxkj+jnjlTsisDu1ABuP52JPWgGS1Vokb9Xi39tSMCpYhVlDvBEf7gFbBf9XQUREREREVFJVhz1pBdiZWoDf0gpRoas3PiaTiBDTzwUTwgzJKn8XWwv2tPfgp1GiPsxKJsGUKE9MifJEaVUdtpxWY9OxHBzLKsPv54rw+7ki2MjPYFKEYT+sUcEqSLgfFhERERER9RGCICA9vxK/puRjV2oBjmWVQjCtAISLrRzjQ90wIdQNt/RXwd5KZrnO9lJMXBERAMDJVo55sf6YF+uPS8VV2NS0H9al4mrjbVd7BWYM8sKd0d6I8HLgBoJERERERNTr6PQNSCkV4fCWFOxOK0JuWU2rx8M8HZo2VnfDIB9HHnZlZkxcEVEb/i62ePa2AfjLhP44nl2GTcdy8fOpPBRW6PDZvov4bN9FDHC3w8xoH8wY7AUvR2tLd5mIiIiIiOiGZZdUY096IfamFWB/RjGq6yQAsgEACqkYo4JVuLVpvyp+/ulaTFwR0RWJRCIM8XPCED8nvHx7OPamF2LT8Rz8mlKA9PxKvLUjFW//korYfi6YOcQbUyI9ODWWiIiIiIi6PV19Aw5fLMWetALsTitARmHrjdWVMgGTB/liYrgHRgWrYC2XWKinxMQVEXWIXCrGxHB3TAx3R3mNHttPq7HxeC4OXSxB0oViJF0oxsubz2BiuDtmDfHG6P6ukPHUDCIiIiIi6iZySquxJ60Qe4yzqhqMj0nEIgzxc8S4EDfcEuSEi8f2Ydq0cMhk/GLe0pi4IqLrprSWYe4IP8wd4Yec0mr8eCIPG4/lIKOwCltOqbHllBoutnLcMcgLM6O9MdBHyf2wiIiIiIioS7WcVbUnvRDnCypbPe5qr8C4Aa6GZFV/FZTWhiSVXq9HJj++dBtMXBHRTfFxssFT44OxcFwQzuRqsfF4Dn4+mYeiyjqs3Z+JtfszEehqi5mDvXFntDd8nW0s3WUiIiIiIuqlTLOqCrE/o+iKs6rGDnBFuKcDN1bvAZi4IqJOIRKJEOWjRJSPEv+YGobfzxdh07FcJCRrcKGwCu8mpuPdxHQMD3DCzGgfTIvyhNKG026JiIiIiOjG6eobcCSzaVZVWiHOtTOrauwAV4wLccXoYFd+BumBmLgiok4nlYgxPsQN40PcUKmrx44zGmw+nos/MopwOLMUhzNL8epPZ3FrqBtmDvHGuBBXKKTc7JCIiIiIiK4tt6zGsKl6attZVWIRMMTPCeNCDEsAOauq5+u1iavMzEy88cYb2LVrFzQaDby8vPDAAw/gH//4B+RyubFeVlYWnnrqKezatQvW1ta47777sGzZslZ1iOjG2SmkmD3UB7OH+kBTXosfT+Ri0/FcpGoqsOOsBjvOaqC0luH2gZ6YNcQbQ/ycuB8WEREREREZ1dU34khmCXZfYVaVyk7RlKjirKreqNcmrlJTU9HY2IjVq1cjODgYZ86cwYIFC1BVVYVly5YBABoaGjBt2jS4urpi3759KC4uxoMPPghBELBixQoLXwFR7+OhtMLjY4Pw+NggpKi12HQ8Fz+eyEW+VocvD2bhy4NZ8HO2wZ3R3pgZ7Y1+KltLd5mIiIiIiCygeVbVnrRC7D9fhCrOquqzem3iavLkyZg8ebLxfmBgINLS0rBq1Spj4iohIQHJycnIzs6Gl5cXAODdd9/F/PnzsWTJEjg4OFik70R9QZinA8I8HfB/k0ORlFGMjcdzsOOMBlkl1fhw5zl8uPMcBvs6YtYQb9w+0AvOtpwFSURERETUWzXPqtqTXog9aQVIz287q8q4V1V/FRxt+Pmgr+i1iav2lJeXw9nZ2Xg/KSkJkZGRxqQVAEyaNAk6nQ5Hjx7F+PHj221Hp9NBp9MZ72u1WgCGIzP1en2n9rm5vc5utydiLEx6WyxiApSICVDilWkh+DWlED+dVGNfRjFOZJfhRHYZXv85GWP6q3DnYE/cGuIKhcy0H1Zvi8XNYCwMGAcTxsLEnLFgfImIiG5MXllN0wmABfijnVlV0X5OGDfAMKsqwouzqvqqPpO4ysjIwIoVK/Duu+8ayzQaDdzd3VvVc3Jyglwuh0ajuWJbS5cuxWuvvdamPCEhATY2Np3X6RYSExPN0m5PxFiY9MZYSAHMUgG3OQDHikU4UihGdhWwK60Qu9IKYSURMNhFwHBVIwIdDP+gAb0zFjeKsTBgHEwYCxNzxKK6urrT2yQiIuqN6uobceRSCfamFWJPWiHS8itaPa6yk2PMAFeMD3HjrCoy6nGJq1dffbXdpFFLhw8fxrBhw4z38/LyMHnyZMyZMwePPvpoq7rtbQItCMJVN4devHgxFi1aZLyv1Wrh6+uL+Pj4Tl9eqNfrkZiYiIkTJ0Im69sbzDEWJn0lFnObfp8rqMRPJ9X46aQaeeW1OFAgwoECMbyUVpgW6Qanigt4cMZtff5Qhb7yvrgWxsGEsTAxZyyaZ14TERFRW+pyw6yq3akF2J9RjEpdvfExsQgY7OuI8SFunFVFV9TjEldPP/005s6de9U6AQEBxtt5eXkYP3484uLi8Mknn7Sq5+HhgYMHD7YqKy0thV6vbzMTqyWFQgGFQtGmXCaTme2DgTnb7mkYC5O+EotwbyeEezvh75PDcCizBJuO5WLbaUMS69M/sgBI8VX2QUyK8EB8uDuGBThD0of/wesr74trYRxMGAsTc8SCsSUiIjLRNzTiSGapcWP1y2dVudjKMbZpU/XRwSo4cS9buoYel7hSqVRQqVQdqpubm4vx48dj6NCh+N///gexWNzq8bi4OCxZsgRqtRqenp4ADMv9FAoFhg4d2ul9J6KbIxaLEBvogthAF7w2IwI7Uwqw6Vg29qYVIKe0Bmv2XcSafRfhbCvHbWFuiA/3wC39VbBqsScWERERERF1ruZZVYa9qlrPqhKJgGhfR4wLccO4EFdEeik5q4quS49LXHVUXl4exo0bBz8/PyxbtgyFhYXGxzw8PAAA8fHxCA8Px7x58/DOO++gpKQEzz//PBYsWMATBYm6OSuZBNMGeiI+TIVNP2+DbdBQ7Ewrws6UApRU1eHbIzn49kgObOQSjB3givgId9wa4g6lDWdGEFHftHLlSrzzzjtQq9WIiIjA8uXLMXr06Hbr7tmzp91DalJSUhAaGmq8/8MPP+Dll19GRkYGgoKCsGTJEsycOdNs10BERN2DcVZVegH2phUiVdPOrKoBrhgb4oox/V05q4puSq9NXCUkJOD8+fM4f/48fHx8Wj0mCAIAQCKRYOvWrVi4cCFGjRoFa2tr3HfffVi2bJklukxEN0ghAeLD3TFtkA/0DY04fLEECcn5SDirQV55Lbaf0WD7GQ2kTTO24iPcMTHcHZ5Ka0t3nYioS2zYsAHPPvssVq5ciVGjRmH16tWYMmUKkpOT4efnd8XnpaWltfoyz9XV1Xg7KSkJ99xzD9544w3MnDkTmzZtwt133419+/YhJibGrNdDRERdT1Nea1z+t+98UZtZVYN9HTFugGFWVZQ3Z1VR5+m1iav58+dj/vz516zn5+eHLVu2mL9DRNQlZBIxRgarMDJYhVfuCMfZPC1+OatBwtl8pOVXYN/5Iuw7X4R//ngWg3yUiG/aFyvYze6qhzIQEfVk7733Hh555BHjITXLly/HL7/8glWrVmHp0qVXfJ6bmxscHR3bfWz58uWYOHEiFi9eDMBweM3evXuxfPlyfP31123q63Q66HQ64/3mTe31ej30ev2NXtoVNbdpjrZ7GsbCgHEwYSxMGAuTy2Ohb2jEsawy/HauCHvTi5CWX9mqvrOtDKODVRg7QIVbgl3g1OIEwIaGejQ0dF3fOxvfFwbmjkNH2zVr4upGTtnhEj0i6iwikQiR3kpEeivx1/gQZBZVISHZkMQ6mlWKkznlOJlTjnd+SUOgyhYTI9wRH+6BaF9HfkNERBZhjrFTXV0djh49ihdeeKFVeXx8PPbv33/V50ZHR6O2thbh4eF46aWXWi0fTEpKwnPPPdeq/qRJk7B8+fJ221q6dGm7J0MnJCTAxsbmqv24GYmJiWZru6dhLAwYBxPGwoSxMCjTAa+v/xXJZSKkl4tQ22AaE4sgwM8OCHdsRJiTAF/beohF2UBONpJyLNhpM+L7wsBccaiuru5QPbMmrhwdHa9rBoNIJEJ6ejoCAwPN2Csi6qsCVLZ4bEwQHhsThIKKWuxMKUDCWQ3+OF+MC0VVWL33AlbvvQBXewUmhrsjPtwdcUEuUEi5uTsRdQ1zjJ2KiorQ0NDQ5sRkd3d3aDSadp/j6emJTz75BEOHDoVOp8MXX3yBCRMmYM+ePRgzZgwAQKPRXFebixcvxqJFi4z3tVotfH19ER8fb5YvLvV6PRITEzFx4sQ+f/IjY2HAOJgwFiaMBXCxqArbz+Rj+1kNUjWtZ1U52cgwpr8KY/obZlU595G9qvi+MDB3HDr6hZ3Zlwp+//33cHZ2vmY9QRAwdepUc3eHiAgA4GZvhXtH+OHeEX6oqNVjb3ohEs7mY3dqAQordPjqYBa+OpgFe4UU40LdEB/ujnEhrrC36rv/cBFR1zDX2OnyhJggCFdMkoWEhCAkJMR4Py4uDtnZ2Vi2bJkxcXW9bSoUCigUijblMpnMrB8KzN1+T8JYGDAOJoyFSV+LxfmCSmw7rca20+pWG6uLIGCgjyPGh7phXIgbBvbxvar62vviSswVh462adbElb+/P8aMGQMXF5cO1Q8MDOSbgoi6nL2VDLcP9MLtA71QV9+IpAvFSDirQWJyPgoqdPj5ZB5+PpkHuUSMkcEuiA/3wG3hbnCzt7J014molzHH2EmlUkEikbSZCVVQUNBmxtTVxMbGYv369cb7Hh4eN90mERF1nfMFFdh6SoNtp9VIyzclq6RiEUYGqzA53BVCzincPSOGn8upWzFr4urixYvXVf/MmTNm6gkRUcfIpWLD0b0DXPHGjEicyClDwlnDCYUXiqqwJ60Qe9IK8Y/NwBA/J8SHuyM+wgP9VLaW7joR9QLmGDvJ5XIMHToUiYmJmDlzprE8MTERM2bM6PBrHT9+HJ6ensb7cXFxSExMbLXPVUJCAkaOHNnhNomIyLyulqwaFazCtChPxEe4w9FGDr1ej235pyzYW6L29dpTBYmIbpZYLMIQPycM8XPCC1NCcb6gAr+czUdCcj5OZpfh6KVSHL1UiqXbUzHA3Q7x4R6Ij3BHlLeSJxQSUbeyaNEizJs3D8OGDUNcXBw++eQTZGVl4YknngBg2H8qNzcXn3/+OQDDiYEBAQGIiIhAXV0d1q9fjx9++AE//PCDsc2//OUvGDNmDN566y3MmDEDP/74I3799Vfs27fPItdIREQG5/IrsLVpGWB6i5MAZRJDsmpqlCfiww3JKqKeoMsSVx9++GG75SKRCFZWVggODsaYMWMgkXATZCLqnoLd7BHsZo+nxgdDXV6DX5MNSaykjGKk51ciPf88Ptp9Hp5KK+NMrBH9nCGTiC3ddSLqgTpz7HTPPfeguLgYr7/+OtRqNSIjI7Ft2zb4+/sDANRqNbKysoz16+rq8PzzzyM3NxfW1taIiIjA1q1bW+2pNXLkSHzzzTd46aWX8PLLLyMoKAgbNmxATEzMTV45ERFdr/T8Cmw9ZUhWnStonay6xZis8oDShksAqefpssTV+++/j8LCQlRXV8PJyQmCIKCsrAw2Njaws7NDQUEBAgMDsXv3bvj6+nZVt4iIboin0hrz4gIwLy4A5dV67E4rwC9nNdibXgh1eS3WJV3CuqRLUFrLMCHUDfER7hgzwBU2ck50JaKO6eyx08KFC7Fw4cJ2H1u7dm2r+3//+9/x97///Zptzp49G7Nnz+7Q9RARUecRBAHp+ZXGmVXnL0tWje7viqlRnpgY5s5kFfV4XfYJ6t///jc++eQTfPbZZwgKCgIAnD9/Ho8//jgee+wxjBo1CnPnzsVzzz2H77//vqu6RUR005Q2MtwZ7Y07o71Rq2/AH+eL8MtZDX5NKUBJVR02Hs/FxuO5UEjFGN3fFfER7rgtzL3PHCdMRDeGYyciImpJEASk5Vdg2yk1tp5WI6OwyviYXCLG6P6GmVW3hbtDac1kFfUeXZa4eumll/DDDz8YB14AEBwcjGXLluGuu+7ChQsX8Pbbb+Ouu+7qqi4REXU6K5kEE8LcMSHMHQ2NAo5eKkXCWQ1+SdYgu6QGv6bk49eUfIhFwPAAZ8RHeCA+3B2+zjaW7joRdTMcOxERkSAISNVUYNtpQ7LqwmXJqjEDTMkqB34UVOkAAQAASURBVCsmq6h36rLElVqtRn19fZvy+vp641HKXl5eqKioaFOHiKgnkohFGNHPGSP6OeMf08KQqqlAwtl8/HJWg2S1FgcvluDgxRK8sSUZ4Z4OiI9wR3y4B8I87bm5OxFx7ERE1EcJgoAUtSFZte20GheKLk9WuWLaQA9MCGOyivqGLktcjR8/Ho8//jg+++wzREdHAzAcq/zkk0/i1ltvBQCcPn0a/fr166ouERF1GZFIhDBPB4R5OuAvt/VHdkk1EpMNSazDmSVIVmuRrNZi+a/n4OtsbTihMNwdwwKcIREziUXUF3HsRETUdwiCgGS1tilZpcHFlskqqRhjB7hiWpQnJoS5wZ7JKupjuixxtWbNGsybNw9Dhw6FTGb4Q6uvr8eECROwZs0aAICdnR3efffdruoSEZHF+Drb4OFb+uHhW/qhpKoOO1Py8cvZfPx+rhDZJTVYs+8i1uy7CGdbOW4Lc0N8uAdu6a+ClYwnrxL1FRw7ERH1boIg4Gye1jizKrO42viYXCrGuAGumDbQE7eGMllFfVuXJa48PDyQmJiI1NRUpKenQxAEhIaGIiQkxFhn/PjxXdUdIqJuw9lWjjnDfDFnmC+q6+rxW3oREs5qsDPVsLn7t0dy8O2RHNjIJRg7wLC5+60hPCGGqLfj2ImIqPdpTlZtPa3G9suSVQqpGONCDKcBTghzh52Cp1ETAV2YuGoWGBgIkUiEoKAgSKX8QyQiaslGLsXkSA9MjvSAvqERhy+W4JezGiQk50NdXovtZzTYfkYDqViE2EAXxEe4Y2K4OzyV1pbuOhGZCcdOREQ9myAIOJPblKw6o8aly5JV40PcMLVpZhWTVURtddlfRXV1Nf785z9j3bp1AID09HQEBgbimWeegZeXF1544YWu6goRUY8gk4gxMliFkcEqvDo9AmdytU1JLA3S8yux73wR9p0vwj9/PItBPkpMCHWFpMowOCKino9jJyKinksQBJzOLW+aWaVBVokpWWUla0pWRRmSVbZMVhFdVZf9hSxevBgnT57Enj17MHnyZGP5bbfdhldeeYWDLyKiqxCJRIjyUSLKR4nnJ4XgYlEVEppmYh3LKsXJnHKczCkHIMXaC3sxeoArxg5wxej+rnC2lVu6+0R0Azh2IiLqWYzJqlNqbDujRnZJjfExK5kYt4YaklXjQ5isIroeXfbXsnnzZmzYsAGxsbGtjnkPDw9HRkZGV3WDiKhX6KeyxeNjg/D42CAUVNRiZ0oBfjmjxv7zhSisrMPGY7nYeCwXIhEQ5a3E2AGuGDPAFdG+jpBKxJbuPhF1AMdORETdnyAIOJVTjm2n1dh6Wo2cUlOyylomMSWrQl1hI2eyiuhGdNlfTmFhIdzc3NqUV1VVtRqMERHR9XGzt8K9I/wwO9oTP23ZBlVYDPZfKMXe9EKkaipwKqccp3LKsWLXedhbSTEqSIWxIYZElrcj98Yi6q44diIi6p4EQcDJpmTVtiskq6YN9MS4ECariDpDl/0VDR8+HFu3bsWf//xnADAOuD799FPExcWZ9bV1Oh1iYmJw8uRJHD9+HIMHDzY+lpWVhaeeegq7du2CtbU17rvvPixbtgxyOZfWEFHPIxUDI4NcMDbUA4unhiFfW4vf0guxN70Q+84Xoaxajx1nNdhxVgMACHazw5j+rhgzQIXYQBdYySQWvgIiambJsRMREbUmCAJOZJc1Jas0yC27LFkV5oZpTcsAreUcTxF1pi5LXC1duhSTJ09GcnIy6uvr8cEHH+Ds2bNISkrC3r17zfraf//73+Hl5YWTJ0+2Km9oaMC0adPg6uqKffv2obi4GA8++CAEQcCKFSvM2icioq7g7mCFOcN8MWeYLxoaBZzKKcNv6UXYm16AE9llOF9QifMFlfjvHxehkIoxop8zxjbtjxXsZsdZHUQWZMmxExERGZJVx7PLsO2UGtvPtE5W2cibZlZFeWIck1VEZtVliauRI0fijz/+wLJlyxAUFISEhAQMGTIESUlJiIqKMtvrbt++HQkJCfjhhx+wffv2Vo8lJCQgOTkZ2dnZ8PLyAgC8++67mD9/PpYsWQIHBwez9YuIqKtJxCJE+zkh2s8Jf7mtP8qr9fgjowh70wrx27lCqMtr8fu5Ivx+rgj/2poCL6UVxjQlsUYGq6C0lln6Eoj6FEuNnYiI+rLGxqZk1Wk1tp9WI6+81viYjVyCCWHumBblgXEhbpypTtRFunTBbVRUlPFI566Qn5+PBQsWYPPmzbCxsWnzeFJSEiIjI41JKwCYNGkSdDodjh49ivHjx7fbrk6ng06nM97XarUAAL1eD71e36nX0NxeZ7fbEzEWJoyFCWNhcr2xsJEBE0NVmBiqgiCE4nxBFX4/X4TfzhXj8KVS5JXX4pvD2fjmcDYkYhEG+SgxOtgFo/urEOnlAIm4e87G4nvChLEwMWcszBnfrh47ERH1RY0CcCyrDL8kF2L7GTXULZJVtk3JqqlRhj2rmKwi6npmTVw1J3Q6orNnNwmCgPnz5+OJJ57AsGHDkJmZ2aaORqOBu7t7qzInJyfI5XJoNJortr106VK89tprbcoTEhLaTZB1hsTERLO02xMxFiaMhQljYXIzsfAAcLcbcKcLkKEVIaVMhNRyEfJrDAO6Y1ll+GBXBmylAkKUAsIcBYQ4ClB2w20B+Z4wYSxMzBGL6urqTmvLkmMnIqK+pHmD9c3HsrHpmATlBw4ZH7NTSDEhzHAa4NgBTFYRWZpZE1eOjo4d3h+loaGhQ/VeffXVdpNGLR0+fBj79++HVqvF4sWLr1q3vf4JgnDVfi9evBiLFi0y3tdqtfD19UV8fHynDyL1ej0SExMxceJEyGR9e5kOY2HCWJgwFibmjEVuWQ1+P1eM384VIelCCSp19ThWLMKxYsPjoR72TbOxXDDEzwkKqbhTX/968D1hwliYmDMW15NsuhZzjJ2IiMgkTVOBn07m4ueTamSVNH/xIIKtQoKJTTOrxjBZRdStmDVxtXv3buPtzMxMvPDCC5g/f77xJJykpCSsW7cOS5cu7XCbTz/9NObOnXvVOgEBAfjXv/6FAwcOQKFQtHps2LBhuP/++7Fu3Tp4eHjg4MGDrR4vLS2FXq9vMxOrJYVC0aZdAJDJZGb7YGDOtnsaxsKEsTBhLEzMEYsAVxkCXB0wb2Q/6BsacSK7zLg31qmccqRqKpCqqcCn+zJhI5cgLtAFY0NcMaa/KwJUtp3al47ie8KEsTAxRyw6sz1zjJ2IiPq6rOJq/HwqDz+dyENafoWx3FomwYRQV3jU5eLZeybAzsbKgr0koisxa+Jq7Nixxtuvv/463nvvPdx7773GsunTpyMqKgqffPIJHnzwwQ61qVKpoFKprlnvww8/xL/+9S/j/by8PEyaNAkbNmxATEwMACAuLg5LliyBWq2Gp6cnAMNyP4VCgaFDh3aoP0REfY1MIsbwAGcMD3DG85NCUFypw77zzZu8F6GoUoedqQXYmVoAAPB3scGY/q4YM8AVcUEusFN06faKRD2KOcZORER9Ub62FltOqfHTyTyczC4zlsskIowd4Ibpg71wW5gbZCIB27blQMEZVkTdVpd9ekhKSsLHH3/cpnzYsGF49NFHO/31/Pz8Wt23s7MDAAQFBcHHxwcAEB8fj/DwcMybNw/vvPMOSkpK8Pzzz2PBggXcN4KIqINc7BSYMdgbMwZ7o7FRQIpGi73phfgtvRBHMktxqbgaXxRfwhcHLkEmEWGovxPGDnDDmAEqhHs6dHhZFFFf09VjJyKinq6sug7bz2jw04k8HLhYDEEwlItFwMggFaYP8sKkCA8obUwzZXmACVH312WJK19fX3z88cd49913W5WvXr0avr6+XdWNViQSCbZu3YqFCxdi1KhRsLa2xn333Ydly5ZZpD9ERD2dWCxChJcSEV5KLBwXjEpdPZIyirE3vQC/pRchq6QaBy6U4MCFEry1A3C1V2B0fxXGDnDF6P6ucLbthru8E1lIdxw7ERF1N1W6eiQm5+Onk3n4Lb0Q9Y2C8bEhfo6YPsgLUwd6ws2eywCJeqouS1y9//77uOuuu/DLL78gNjYWAHDgwAFkZGTghx9+MPvrBwQEQBCENuV+fn7YsmWL2V+fiKgvslNIMTHcHRPDDfsGZhZVGWdj7c8oRmGFDhuP5WLjsVyIRECUtxJjBxiWFUb7OkIqsdwm70SWZumxExFRd1Wrb8De9EL8dDIPO1PyUatvND4W5umA6YO8cPtAT/g6m+fEdyLqWl2WuJo6dSrOnTuHVatWISUlBYIgYMaMGXjiiSf4rSERUR8RoLJFgMoWD44MgK6+AUczS7E3vRB70wuRqqnAqZxynMopx4pd52FvJcWoIJVhk/cBrvB2tLZ094m6VGePnVauXIl33nkHarUaERERWL58OUaPHt1u3Y0bN2LVqlU4ceIEdDodIiIi8Oqrr2LSpEnGOmvXrsVDDz3U5rk1NTWwsuLMBiLqXPUNjdifUYyfTubhl7MaVNTWGx8LcLHB9EFemD7YC8Fu9hbsJRGZg1kTV6dOnUJkZCTEYsM35j4+PliyZMkV6589exYhISGQSrlxLxFRb6eQSjAyWIWRwSosnhqGfG0tfks3bPD++7nC/2fvzsObqvI3gL/Z033f0r0sZWnZWpaCbCpFUGAQRcVBVGAGUUdlHAdm+Y3gKCqo1VEcnGEAR0VUcFxAoewCBcq+lKVA96b7knRLs9zfH2mTlhYo0DRp+36eJ0+Sm3tvTr4UOH1zzrmoqNHj53MF+PlcAQCgp79rwyLvvhgR5cPLVFOXZKu+08aNG/Hiiy9i1apVGDVqFFavXo1JkyYhLS2txbqgALBv3z5MmDABb7zxBjw9PbF27VpMmTIFhw8fxuDBgy37ubu74+LFi82OZWhFRO3FZBJwPLsc35/Kx9YzapRU1VteC3RXYsrAIEwZqEJssAfXzCTqwmyaEA0ePBgFBQXw8/Nr0/4JCQk4efIkoqKibNksIiJyQAHuSjwcH4qH40NhNAk4k1fZcKXCYpzILsfloipcLqrCfw5kQCEVY1ikN8b29sPY3n7o6e/KDit1CbbqO7377ruYO3euZVH3pKQkbNu2DR9//DGWL1/eYv+kpKRmz9944w189913+OGHH5oFVyKRCIGBgW1qq06ng06nszzXaDQAzAsj22Jx5MZzcuFl1qIR62DlyLUQBAFpai1+PFOArWcKkF9ZZ3nNy1mG+/oH4IEBgYgP84JYbP6/32AwXO90N+XItehorIUVa2Fm6zq09bw2Da4EQcBf//pXODu3bW5xfX39zXciIqIuTyIWYVCoJwaFeuKFe3uhskaPA1dKsK9hWqG6sg6/pJfgl/QS/H3Leag8lBjTEGINC/ewd/OJbpst+k719fU4duwYFi9e3Gx7YmIiDh482Kb3MZlM0Gq18Pb2bra9qqoK4eHhMBqNGDRoEF577bVmwVZTy5cvx9KlS1ts3759e5s/7+1ITk622bk7G9bCjHWwcqRaFNUCx0pEOF4iRlGd9csohUTAAG8BQ3wERHsYIBFnoiQtEz+nte/7O1It7I21sGItzGxVh5qamjbtZ9PgasyYMS2Gj99IQkICnJy4hgkRETXn4SzD5NggTI4NgiAIuFxUZVkb63BGGfIr6/Blag6+TM2BRCxCmIsEF2TpGNnLD3HhXnCWcwo6dQ626DuVlJTAaDQiICCg2faAgAAUFBS06X3eeecdVFdXY+bMmZZtffr0wbp16xAbGwuNRoP3338fo0aNwqlTp9CrV68W51iyZAkWLVpkea7RaBAaGorExES4u7u3qR23Qq/XIzk5GRMmTIBMJmv383cmrIUZ62DlKLVQV9Zhy5kC/HhGjXP5Wst2uVSM8b198cCAIIzr7WvT5QEcpRaOgLWwYi3MbF2HxtHXN2PTnvyePXtseXoiIuqGRCIRegW4oVeAG+aNjkJtvRGHM0qx71IJ9l4qwpXiamRoRfh4XwY+3pcBqViE2BAPDI/0wfAob8SHe8FN2X07IOTYbNl3unY6rSAIbZpiu2HDBrz66qv47rvv4O/vb9k+YsQIy9UOAWDUqFEYMmQI/vGPf+CDDz5ocR6FQgGFQtFiu0wms+kvBbY+f2fCWpixDlb2qEVplQ5bz6jx/al8pGaWW7ZLxCKM7uWLKQNUSOwf0OH/V/Pnwoq1sGItzGxVh7aek19BExFRp+Ykl2BctD/GRfsD6IfMYg3++e0e1LmFIDWrAnkVtTiRXYET2RX4594rEIuA2GAPDI/ywfBIb8RHeMPDiR0S6rp8fX0hkUhajK4qKipqMQrrWhs3bsTcuXPx9ddf4957773hvmKxGEOHDkV6evodt5mIuhZNnR7bzxXi+1P5OHC5BEaTAAAQiYChEd6YOlCFybFB8HaR27mlROSIGFwREVGXEuzphIQAAZMnx0ImkyGnrAaHM8pw+GopDmeUIbusBqdyK3EqtxKf7LsKkQjoF+SO4ZE+GBHljWGR3vB0ZseZug65XI64uDgkJydj+vTplu3JycmYNm3adY/bsGEDnn76aWzYsAH333//Td9HEAScPHkSsbGx7dJuIurc6vRG7DxfhO9P5WH3xWLUG0yW12KDPTB1oAoPDAxCkAeXiiGiG2NwRUREXVqotzNCvZ3xUFwIACC/ohaHM0px+GoZDmeUIaOkGufyNTiXr8F/DmRAJAKiA9wwomFE1rBIb/i4tpzeRNSZLFq0CLNnz0Z8fDwSEhLwySefIDs7GwsWLABgXn8qLy8Pn376KQBzaPXEE0/g/fffx4gRIyyjtZycnODhYb4AwtKlSzFixAj06tULGo0GH3zwAU6ePImPPvrIPh+SiOxObzRhf3oJvj+Vj+3nClBdb7S81tPfFVMHqjBloAqRvi52bCURdTYMroiIqFtReTph+uAQTB9sDrIKNXU4nFGGQ1dLcfhqKa4UV+NCgRYXCrRYdzATANDL39UcZEV5Y3ikD/zcGGRR5/LII4+gtLQUy5Ytg1qtRkxMDLZu3Yrw8HAAgFqtRnZ2tmX/1atXw2Aw4Nlnn8Wzzz5r2T5nzhysW7cOAFBRUYHf/OY3KCgogIeHBwYPHox9+/Zh2LBhHfrZiMi+jCYBRzLK8P2pfPx0Vo2KGuvl7YM9nTBloApTB6rQN8itTevqERFdi8EVERF1awHuSkxt6FQDQLFWhyMZZZZRWRcLtUgvqkJ6URX+eygLABDl52KZWjg80geBHkp7fgSiNlm4cCEWLlzY6muNYVSjtiwS/9577+G9995rh5YRUWcjCAJO51bi+1P5+PF0Pgo1Ostrvq4KPDAgCFMGqjAkzJNhFRHdMQZXRERETfi5KXD/gCDcPyAIAFBWXY8jGaU41DC18EKBBleLq3G1uBobjphHqET4OFuuWjg8ygfBnlyvg4iIup5LhVp8fzIfP5zOR1ZpjWW7m1KKSTGBmDowGCOivCGViO3YSiLqahhcERER3YC3ixz3xQThvhhzkFVRU4/UzHIcvlqKQxmlSMvXILO0BpmlNdh4NAcAEOLlZBmRNSLKByFeTvzGmYiIOqWcshp8fyofP5zKx4UCrWW7k0yCe/sFYOpAFcb09oVCKrFjK4moK2NwRUREdAs8neWY0C8AE/oFADBf4vtoZhkOXy3DoYwynM2rRG55LXLLc7HpeC4AQOWhxPCGxd5HRPkg3MeZQRYRETmsIk0dfjytxven8nEyp8KyXSYRYWxvP0wZqMKEfgFwlvPXSSKyPf5LQ0REdAfclTLc3ScAd/cxB1lVOoM5yMoow+GrpTidW4n8yjp8eyIP357IAwAEuCusUwsjfdDDz4VBFhER2VVljR4/nTWHVYeulsIkmLeLRUBCDx9MHajCff2D4OEss29DiajbYXBFRETUjlwVUoyL9se4aH8AQE29AcezKnA4oxSHrpbiVE4lCjU6fH8qH9+fygdgXsjWPBrLvEZWL39XBllERGRz1ToD9p4rwvcn87EvvRh6o2B5bXCYJ6YOVOH+AUHwd+NFSIjIfhhcERER2ZCzXIq7evnirl6+AIA6vRHHs8tx+Kr5yoXHsytQUqXDljNqbDmjBmBeV2tYhLdlRFafQDeIxQyyiIjoztQbTLhUqMWZ3HJ8dUmMxUf3oFZvsrzeJ9ANUwepMGWACqHeznZsKRGRFYMrIiKiDqSUSTCyhy9G9rAGWadyKsxTCzNKcSyrHGXV9fj5XAF+PlcAAPB0lmFohLdljay+Qe6QMMgiIqIb0NbpcV6txbn8SpzL1yAtX4P0Im2TUVViACaE+zhj6kAVpg5UoVeAmz2bTETUKgZXREREdqSUScwLt0f5AOiFeoMJZ/IqcOhqGQ5dNQdZFTV6JKcVIjmtEID5suNNg6z+KndeepyIqJsSBAFFWh3S8jU4l1+JNLUG5/I1yCqtaXV/d6UU/YLc4KIrxcIpCRgS4cPp6UTk0Lp8cLVlyxYsW7YMp0+fhouLC8aMGYPNmzdbXs/Ozsazzz6LXbt2wcnJCbNmzcLKlSshl8vt2GoiIuqu5FIx4sK9ERfujWfH94TeaMLZvErLYu9HM8uhrTNg14Ui7LpQBMC8rlZcuJdlauGAEA/IGGQREXU5JpOAzNJqnMs3h1Npag3S8itRUlXf6v4qDyX6qTzQX+WOfip39Fe5I9jTCQaDAVu3bsWAEA+GVkTk8Lp0cLVp0ybMnz8fb7zxBu6++24IgoAzZ85YXjcajbj//vvh5+eH/fv3o7S0FHPmzIEgCPjHP/5hx5YTERGZySRiDA7zwuAwLywY2wMGownn1VoculqKwxmlOJJRBk2dAXsvFWPvpWIAgJNMgvgIL8SHecKoAWrrjZDJeBUoIqLORGcw4lJBFdLUlZag6rxag5p6Y4t9xSKgh5+rJZzqr/JAvyB3eLnwy3gi6vy6bHBlMBjwwgsvYMWKFZg7d65le3R0tOXx9u3bkZaWhpycHKhUKgDAO++8gyeffBKvv/463N3dO7zdRERENyKViBEb4oHYEA/MHxMFo0nAhQINDjdMLTySWYaKGj1+SS/BL+klAKT46Pwu9A1yw6BQTwwO9cLgME9E+rrwW3YiIgdRWavH+YYpfufyK5GWr8HloioYTEKLfRVSMfoENQZU7ugX5I4+ge5wkkvs0HIiItvrssHV8ePHkZeXB7FYjMGDB6OgoACDBg3CypUr0b9/fwBASkoKYmJiLKEVAEycOBE6nQ7Hjh3D+PHjWz23TqeDTqezPNdoNAAAvV4PvV7frp+j8Xztfd7OiLWwYi2sWAsr1sKsO9aht58zevs5Y/bwEJhMAtKLqnAksxyHrpbi0OUiaPTA2TwNzuZp8NmhbACAh5MUA0M8MDDEA4NCPTEg2AOezl13VJYtfy66088aEd0ZQRBQqNE1WzD9nLoSOWW1re7v6SxrNoKqv8odkb4uXNeQiLqVLhtcXb16FQDw6quv4t1330VERATeeecdjB07FpcuXYK3tzcKCgoQEBDQ7DgvLy/I5XIUFBRc99zLly/H0qVLW2zfvn07nJ1tc9nY5ORkm5y3M2ItrFgLK9bCirUw6+518AFwvycwOQ6oqAcyq0TI1IqQVSVCbhVQWWvAvvRS7EsvtRzjrxQQ7iYgwlVAuKsAlTPQ1X43ssXPRU1N6wsgE1H3ZjQJyCiptiyYntYw3a+suvX1qII9nZqsRWVelyrIQ8nRsUTU7XW64OrVV19tNTRqKjU1FSaTCQDw5z//GTNmzAAArF27FiEhIfj666/x29/+FgBa/Y9AEIQb/gexZMkSLFq0yPJco9EgNDQUiYmJ7T69UK/XIzk5GRMmTOj265OwFlashRVrYcVamLEOVo21mPlA81rUG0y4WKjFqdxKnMwx37LKalBUJ0JRnQip5qWyoJSJEaNyt4zKGhjigSAPpZ0+zZ2x5c9F48hrIuq+6vRGXCzQNlzRzzya6oJai1p9y/WoJGIRejZZj6pfw3Q/T2euR0VE1JpOF1w999xzePTRR2+4T0REBLRaLQCgX79+lu0KhQJRUVHIzjZPkwgMDMThw4ebHVteXg69Xt9iJFZTCoUCCoWixXaZTGazX5Jsee7OhrWwYi2sWAsr1sKMdbC6thYyGTAkQoEhEb6WbWXV9TiVU4ETORU4kV2OkzkV0NYZcDSrAkezKgBkAQAC3ZUYHOZpXi8rzAuxwR6dal0VW/xc8OeMqHuprNHjnLrSMoIqLV+Dy8VVMLayHpWTTII+QW7NpvtFB7pBKes8/24SEdlbpwuufH194evre9P94uLioFAocPHiRdx1110AzN+2ZmZmIjw8HACQkJCA119/HWq1GkFBQQDM0/0UCgXi4uJs9yGIiIgcjLeLHOP7+GN8H38A5kuuXy2pxonscpzIqcDJ7ApcKNCgQFOHn84W4Kez5in1ErEIfQLdGsKshoXffVwgFnNqCxF1boIgIL+yriGgsgZVeRWtr0fl7SJvNoKqv8oDkb4ukPDfQyKiO9Lpgqu2cnd3x4IFC/C3v/0NoaGhCA8Px4oVKwAADz/8MAAgMTER/fr1w+zZs7FixQqUlZXh5Zdfxvz583lFQSIi6tbEYhF6+ruip78rHo4PBQDU1BtwJrfSMirrRHYFirQ6y2XarQu/yzAw1BODQz0to7M4BYaIHJnRJOBqcZV5BJXaGlSV17R+8YVQbyf0D/KwTPfrr/JAgLuC61EREdlAlw2uAGDFihWQSqWYPXs2amtrMXz4cOzatQteXl4AAIlEgi1btmDhwoUYNWoUnJycMGvWLKxcudLOLSciInI8znIphkf5YHiUDwDzaAR1ZR1OZFfgZI45yDqTV4nKWj32XSrGvkvFlmOjfF0wKKwxzPJCdKAbZF1t5Xci6hRq6404q65qCKjMt4sFGtTpTS32lTaE+E0XTO8b5A4PJ04RJiLqKF06uJLJZFi5cuUNg6iwsDD8+OOPHdgqIiKirkEkEkHl6QSVpxPuH2Cecq83mnBBrcWJnHKczDavmZVRUo2rDbfNx/MAmBd+jw32wOAwr4b1sjwR5OFkz49DRHYgCALqjSboDCbUN9yaPzaa740m6PQm1Bubb2+2v9EEnd5oOd+159HpjcgvkeClQzvRynJUcJZL0DeoYcH0hql+vQJcuR4VEZGddengioiIiDqWTCJGbIgHYkM88ESCeVt5dT1O5lY0jMyqwMnscmjqDEjNLEdqZrnl2EB3pSXEGhTqidgQDzjL2VUham+NYVHLkKgxADJCpzeHRdcLkizbmwRJuusFT62cp+nxHcs8lc/XVY5+DYul92+Y7hfuw/WoiIgcEXuDREREZFNeLnKMj/bH+OjmC7+fbLJW1sVCLQo0dfj5XAF+Ptd84ffGKxhy4Xfq7vRGE7R1Bmhq9dDU6aGpNUBTp4e2yWPza4aW26ol+PPxXZYQyVHJpWIoJGLzvdR8b34sMT+WiKGQme+bblc03b/ZPhLLdgkEnDl5DI8/MB7B3q5cj4qIqJNgcEVEREQdqunC7w/FhQCwLvxuDrMqcCKnHIUa68Lvnx82L/zurpRiUJgXBod6WtbM4sLvbbNq1SqsWLECarUa/fv3R1JSEkaPHn3d/ffu3YtFixbh3LlzUKlUeOWVV7BgwYJm+2zatAl//etfceXKFfTo0QOvv/46pk+fbuuP0mnV6Y2WwElbZw6YmoZQ5m1NA6nmr9fqjXfw7iLAYGj1lcYQSH7d8KdJcNQ0JJKIoZBJmuzTMmhq3KawnE/Syr7W97RlmKTX66HPFBDgrmRoRUTUiTC4IiIiIru7duF3AFBX1ppDrOxynMypwOncSmjqDC0Wfo/0dWlyBUMv9Aniwu/X2rhxI1588UWsWrUKo0aNwurVqzFp0iSkpaUhLCysxf4ZGRmYPHky5s+fj88++wwHDhzAwoUL4efnhxkzZgAAUlJS8Mgjj+C1117D9OnT8e2332LmzJnYv38/hg8f3tEf0eYEQUCt3thsFJO2rvkoJ8t905FPTba110gnV4UUbkop3JUyuDs13stabHNreOwkFSE15QDuvXssnJWK5qGURMxRjERE5NAYXBEREZFDCvJwQlCsEybHNl/4vfEKhidzKnC1pBoZDbfNJ8wLvyukYgwI8Wg2xdDXuXt3ed59913MnTsX8+bNAwAkJSVh27Zt+Pjjj7F8+fIW+//zn/9EWFgYkpKSAAB9+/bF0aNHsXLlSktwlZSUhAkTJmDJkiUAgCVLlmDv3r1ISkrChg0bOuaD3QKTSUB1vcEaMDWbUtd89JM1kGoeUhlaW9H7FolEgJtCCncnWUO4ZH1sDZxabmt87KqQQnqLwaxer0eeCxDh4wKZjFfDIyKizqV79+KIiIio02i68PvsaxZ+b7yCYcuF3zMAAAFuCgTIxIgfrUOwd/f6xb2+vh7Hjh3D4sWLm21PTEzEwYMHWz0mJSUFiYmJzbZNnDgRa9asgV6vh0wmQ0pKCl566aUW+zSGXdfS6XTQ6XSW5xqNBkDD9C29/lY/1g2dyq3E2z9fRF6xBG+f3wdtnQFanQHCnedOkIhFcFc2GfHU8NityWNz6CSFm0IKN6fm+7nIpXc0wkkwGaE33dqUwcb6tnedOxvWwYq1sGItrFgLK9bCzNZ1aOt5GVwRERFRp9Xawu8ZpdXNphheKNCiUKtDicgcOHQ3JSUlMBqNCAgIaLY9ICAABQUFrR5TUFDQ6v4GgwElJSUICgq67j7XO+fy5cuxdOnSFtu3b98OZ2fnW/lIN3W5EjiSJQUgAmrqmr0mEQlwlgJOEsBJCjhJhIZ7QHnN82tfd5ICcjEgEl2noy0AqG24AdA13Era9dPdvuTkZHs3wSGwDlashRVrYcVaWLEWZraqQ01NTZv26369NyIiIuqyxGIRevi5oodf84XfT2aVYcueQ1DKJHZuof1cuxi1IAg3XKC6tf2v3X4r51yyZAkWLVpkea7RaBAaGorExES4u7u37UO0UVl1PSL6FiE97QzGJgyFt6tTwwgpKRTd8GdAr9cjOTkZEyZM6NZTBVkHK9bCirWwYi2sWAszW9ehcfT1zTC4IiIioi7NWS7F0AgvFPu3wzyxTsjX1xcSiaTFSKiioqIWI6YaBQYGtrq/VCqFj4/PDfe53jkVCgUUCkWL7TKZrN07wwGeMkwdFIKt+acRH+nbrX/paMoWte6MWAcr1sKKtbBiLaxYCzNb1aGt5+Qld4iIiIi6MLlcjri4uBbD/JOTkzFy5MhWj0lISGix//bt2xEfH2/pZF5vn+udk4iIiOh2cMRVO2gcOt/WYW63Qq/Xo6amBhqNptsnvayFFWthxVpYsRZmrIMVa2Fly1o0/v8vtMfK3zayaNEizJ49G/Hx8UhISMAnn3yC7OxsLFiwAIB5Gl9eXh4+/fRTAMCCBQvw4YcfYtGiRZg/fz5SUlKwZs2aZlcLfOGFFzBmzBi89dZbmDZtGr777jvs2LED+/fvb1ObbNl/Avjz3xRrYcY6WLEWVqyFFWthxVqY2boObe5DCXTHcnJyBJiX4+SNN95444033rrpLScnx95dkhv66KOPhPDwcEEulwtDhgwR9u7da3ltzpw5wtixY5vtv2fPHmHw4MGCXC4XIiIihI8//rjFOb/++mshOjpakMlkQp8+fYRNmza1uT3sP/HGG2+88cYbb8DN+1AiQXDgrwc7CZPJhPz8fLi5ud1wkdPb0bhwaU5OTrsvXNrZsBZWrIUVa2HFWpixDlashZUtayEIArRaLVQqFcRirsLQVrbsPwH8+W+KtTBjHaxYCyvWwoq1sGItzGxdh7b2oThVsB2IxWKEhITY9D3c3d279V+YplgLK9bCirWwYi3MWAcr1sLKVrXw8PBo93N2dR3RfwL4898Ua2HGOlixFlashRVrYcVamNmyDm3pQ/FrQSIiIiIiIiIickgMroiIiIiIiIiIyCExuHJwCoUCf/vb36BQKOzdFLtjLaxYCyvWwoq1MGMdrFgLK9ai++GfuRVrYcY6WLEWVqyFFWthxVqYOUoduDg7ERERERERERE5JI64IiIiIiIiIiIih8TgioiIiIiIiIiIHBKDKyIiIiIiIiIickgMroiIiIiIiIiIyCExuCIiIiIiIiIiIofE4IqIiIiIiIiIiBwSgysiIiIiIiIiInJIDK6IiIiIiIiIiMghMbgiIiIiIiIiIiKHxOCKiIiIiIiIiIgcEoMrIiIiIiIiIiJySAyuiIiIiIiIiIjIITG4IiIiIiIiIiIih8TgioiIiIiIiIiIHBKDKyIiIiIiIiIickgMrojIYa1btw4ikQiZmZm3tP/Ro0dvuu+4ceMwbty4O2tgO2jtM37xxRdISkq67XOKRCI899xzd944IiIi6pK6Qx/relr77E8++SQiIiLs1iYiujGpvRtARGQPq1atsncTAAD3338/UlJSEBQUZNn2xRdf4OzZs3jxxRft1zAiIiKi2+AofSwi6joYXBFRt9SvXz97NwEA4OfnBz8/P3s3g4iIiKhddHQfy2g0wmAwQKFQdOj7ElHH4VRBIupytFotnnnmGfj6+sLHxwcPPvgg8vPzm+1z7TD2zMxMiEQivP3223j99dcRFhYGpVKJ+Ph47Ny585be/1bOde1w9XHjxmHLli3IysqCSCSy3BrpdDosW7YMffv2hVKphI+PD8aPH4+DBw+2aMd///tf9O3bF87Ozhg4cCB+/PHHW/ocRERERE05Uh/r73//OyIjI6FQKLB7924AwPfff4+EhAQ4OzvDzc0NEyZMQEpKyh1/biKyLwZXRNTlzJs3DzKZDF988QXefvtt7NmzB7/+9a/bdOyHH36In3/+GUlJSfjss88gFosxadKk2+r03M65Vq1ahVGjRiEwMBApKSmWGwAYDAZMmjQJr732Gh544AF8++23WLduHUaOHIns7Oxm59myZQs+/PBDLFu2DJs2bYK3tzemT5+Oq1ev3vLnICIiIgIcp4/1wQcfYNeuXVi5ciV++ukn9OnTB1988QWmTZsGd3d3bNiwAWvWrEF5eTnGjRuH/fv33/J7EJHj4FRBIupy7rvvPnzwwQeW52VlZXjllVdQUFCAwMDAGx5rNBqRnJwMpVIJAJg4cSIiIiLwf//3f0hOTr6ldtzOufr16wdPT08oFAqMGDGi2WsbNmzA7t278a9//Qvz5s2zbJ8yZUqL89TW1mLHjh1wc3MDAAwZMgQqlQpfffUVFi9efEufg4iIiAhwnD6WUqnEtm3bIJPJAAAmkwmjRo1CbGwsfvrpJ4jF5vEZkydPRo8ePfDHP/4RBw4cuKX3ICLHwRFXRNTlTJ06tdnzAQMGAACysrJueuyDDz5o6VABgJubG6ZMmYJ9+/bBaDTeUjva81wA8NNPP0GpVOLpp5++6b7jx4+3hFYAEBAQAH9//zbVgIiIiKg1jtLHmjp1qiW0AoCLFy8iPz8fs2fPtoRWAODq6ooZM2bg0KFDqKmpuaX3ICLHweCKiLocHx+fZs8bF+usra296bGtfVsYGBiI+vp6VFVV3VI72vNcAFBcXAyVStWsQ3Y919YAMNehLTUgIiIiao2j9LGaXo0ZAEpLS1vdDgAqlQomkwnl5eW39B5E5DgYXBERNVFQUNDqNrlcDldXV7udCzBfgTA/Px8mk+mWjyUiIiKyp/bsFzW9cA1gDdTUanWLffPz8yEWi+Hl5XVL70FEjoPBFRFRE5s3b0ZdXZ3luVarxQ8//IDRo0dDIpF0yLmuNzJq0qRJqKurw7p1626pHURERET21p59rGtFR0cjODgYX3zxBQRBsGyvrq7Gpk2bLFcaJKLOiYuzExE1IZFIMGHCBCxatAgmkwlvvfUWNBoNli5d2mHnio2NxebNm/Hxxx8jLi4OYrEY8fHxeOyxx7B27VosWLAAFy9exPjx42EymXD48GH07dsXjz766O1+bCIiIiKbas8+1rXEYjHefvttPP7443jggQfw29/+FjqdDitWrEBFRQXefPPNdvgERGQvDK6IiJp47rnnUFdXh9/97ncoKipC//79sWXLFowaNarDzvXCCy/g3Llz+NOf/oTKykoIggBBECCVSrF161YsX74cGzZsQFJSEtzc3DBw4EDcd999t/uRiYiIiGyuPftYrZk1axZcXFywfPlyPPLII5BIJBgxYgR2796NkSNHtst7EJF9iISmYymJiLqpzMxMREZGYsWKFXj55Zcd5lxEREREnRn7RUR0p7jGFREREREREREROSROFSQihycIAoxG4w33kUgkLa4wYwsGg+GGr4vF/D6AiIiIOofO1sdiP4uoe+LffCJyeOvXr4dMJrvhbe/evXf0HhERERAE4YZD2DMzM2/ajmXLlrXpXERERET21tn6WETUPXGNKyJyeKWlpcjIyLjhPtHR0XBzc7NpO+rr63H69Okb7qNSqaBSqWzaDiIiIqL2wD4WEXUGDK6IiIiIiIiIiMghcY2rdmAymZCfnw83N7cOmf9NREREjkMQBGi1WqhUKq6/cgvYfyIiIure2tqHYnDVDvLz8xEaGmrvZhAREZEd5eTkICQkxN7N6DTYfyIiIiLg5n0oBlftoHHOd05ODtzd3dv13Hq9Htu3b0diYiJkMlm7nruzYS2sWAsr1sKKtTBjHaxYCytb1kKj0SA0NNTma8B0NbbsPwH8+W+KtTBjHaxYCyvWwoq1sGItzGxdh7b2oRhctYPG4e3u7u42Ca6cnZ3h7u7erf/CAKxFU6yFFWthxVqYsQ5WrIVVR9SC091ujS37TwB//ptiLcxYByvWwoq1sGItrFgLs46qw836UAyuiOzIZBJgMAkwmEzme6P5sdHyWIDB2PK1uno90itFOJJZBoVMBrFYBIlIBLFIBLEYkIgbHotEkDS8JhKZt0vEDY9FjY+t+4jFMB8jEkEs5i9gRERERERE3ZXeaEJKoQgja/Tw87BfgMfgihyewWiCzmCCtrYeFTogt7wWInH9NWGPNeAxmgTojaaGe/Nzg8kEQ8Njvanpa6Ym+5jP0ew1kwCj8dpwqfVzG6553OK1JgFU42umO7qmpwQfph1trzK3SiyyhmDWMKxJMNYQeFnCsGtCsqbhmXlfNDvOEpRZjhNB0hC8iUTWczd7X3HD44bziCGgtkiEoVodVN7d99sQIiIiIiKi9qA3mvDt8Tx8sCsdueUS+KRk4Q/39bVbexhcUZsJggCdwQSd3oQ6gxF1eiN0BhPq9EbU6U3QGcz3zbcbG465zr4GY5PzmbfrrjmHoVm6IwWO/2K3GnQEsQiQisWQiEWQSkSQikWQSsQN9yJIxWKIRUB1VRWcXVxgEgCjIMBkAkyCORQzCU0emwTz46b7CAKENoRmJgEwGQUAd5SwdQAJvnh7L2KC3TGutz/G9/HDoFAvSDhqjIiIiIiIqE0MRhO+PZGHf+y6jOyyGgCAq0yAv5vCru1icNUJCYJ5BM+1IZDlvmlI1CQIqrtO6KS7TujUInwymOz90SEWCZBLJZCJxZA0hDjSJgGPRCyCTNIY+jS81vC6RCyGrMU+jceJIZM0f03WsL21c8saztf0vaUNbZJdGzo1OUfTAEpy7WsN52vLFD29Xo+tW7di8uS7bnuusdBayNUQbhkbngsNIZf5MWA0NQZg5uMsxzQ53tgQjpka9xXMUyIbjxUa9rE+bvLeTc9pEmBsPFZosq3x/A3H1uj02Hk6CznVIpzN0+BsngYf7r4MDycZRvfyxfhof4zp7Qc/O/9jS0RERERE5IgMRhP+dzIf/9iVjqxSc2Dl4yLH/NER8ClLw6+G2fcqwAyuGqxatQorVqyAWq1G//79kZSUhNGjR9u7WXj5mzM4eFGC5ef2ot4oWIKkO5tiduckYhGUUjEUMonlXiEVQ9nkXikTQyE13zffbn7c9FjlNccqZGIopZJm28SCET///BMmT57YrRfIay8ikTlA6+z0ej0G4yqGjr4HBzMqsOdiEfZdKkZlrR4/nlbjx9NqAEBssAfGRfthXDRHYxERERERERmMJnx/Kh//2HUZGSXVAABvFzl+OyYKsxPCIRMJ2Lo1zc6tZHAFANi4cSNefPFFrFq1CqNGjcLq1asxadIkpKWlISwszK5tU1fWobhOBNTprrtPWwKjpsGSUto0GBK3CJQag6MbhU4yibgDq2Cm19t/xBc5Lj83BR6KC8FDcSEwGE04mVOBPReLsedSEc7maXAmrxJn8irxj12X4eksw+hefhjX2w9jo/3g68rRWERERERE1D0YTQK+P5WHf+y8jKtNAqvfjInC7BHhcFGYoyK9Xm/PZlowuALw7rvvYu7cuZg3bx4AICkpCdu2bcPHH3+M5cuXt9hfp9NBp7MGSRqNBoD5D7W9/2BfmdAD+w4ewl0Jw+GqVDQESo0BlBhyqbiDL78tACYj9CZjB76nWWNtHeUvjz2xFlbXq8XAYDcMDHbDC3dHoVirw770EuxLL8H+y6WoqNHjh1P5+OFUPgAgNtgdY3r5YmxvXwwI9ui0o7H4c2HGOlixFla2rAXrS0RERJ2B0STgx9P5eH9nOq4WmwMrL2cZ5o+JwpyECEtg5Wgcs1UdqL6+HseOHcPixYubbU9MTMTBgwdbPWb58uVYunRpi+3bt2+Hs7Nzu7exhzugPne43c/bWSUnJ9u7CQ6DtbC6WS2cAEx0A+4dBGRqgfMVYpyvECG3WoQzeRqcydPgoz1X4SIVEO0hoJ+XgD6eAtw64axU/lyYsQ5WrIWVLWpRU1PT7uckIiIiai+NgdUHO9NxpSGw8nSWYf7oKMwZGQFXBw2sGjl26zpASUkJjEYjAgICmm0PCAhAQUFBq8csWbIEixYtsjzXaDQIDQ1FYmIi3N3d27V9er0eycnJmDBhQrdf14m1sGItrO60FkWNo7EulWD/lVJo6ww4XirC8VJAJAJiVebRWGM6wWgs/lyYsQ5WrIWVLWvROPKaiIiIyJGYTAK2nFHj/Z3puFxUBQDwcJJh/uhIzBkZATdl5+gfdvvgqtG10+0EQbjuFDyFQgGFouWaODKZzGa/GNjy3J0Na2HFWljdbi2CvWV4bLgrHhseAYPRhOPZ5gXe91wsRppag9N55tuHe67Cy1mGMb3NC7yP6eUHHwddG4s/F2asgxVrYWWLWrC2RERE5EhMJgFbz6rx/o50pDcEVu5KKeaPjsKTozpPYNWo2wdXvr6+kEgkLUZXFRUVtRiFRURdm1QixrBIbwyL9MYr9/VBkaYOey4VY8/FIvySXoLyGj2+O5mP707mQyQCBoR4YlxDkDUgxNOhR2MREREREVHXZjIJ+PlcAd7fkY6LhVoAgJtSinl3ReGpuyLg3skCq0bdPriSy+WIi4tDcnIypk+fbtmenJyMadOm2bFlRGRv/u5KzIwPxcz4UOiNJpzIrsDuhtFY59UanMqpwKmcCry/Mx3eLnKM6eWLcdH+GNPbD94ucns3n4iIiIiIugGTScD2tAIk7UjHhYKGwEohxdN3ReLpuyLh4dQ5A6tG3T64AoBFixZh9uzZiI+PR0JCAj755BNkZ2djwYIF9m4aETkIWZPRWH+8rw8KNXXYe7EYuy8WYX96Ccqq6/G/k/n4X8NorIEhnhgX7Ydx0f4YEOwBMUdjERERERFROxIEAdvOFeL9nek4rzavuemmkOKpuyIxd1QkPJw7d2DViMEVgEceeQSlpaVYtmwZ1Go1YmJisHXrVoSHh9u7aUTkoALclZg5NBQzh5pHYx3PKseeS8XYfaEIFwq0OJlTgZM5FUjaYR6NNbbJ2lheHI1FRERERES3SRAEJKcVImlHOtIaAitXhRRPjYrA3Lsi4enctX7fYHDVYOHChVi4cKG9m0FEnZBMIsbwKB8Mj/LBH+/rg4LKOuy9VITdF4qx/7J5NNa3J/Lw7Yk8iETAoFBPjOvtj3HRfojlaCwiIiIiImoDQRCw43wRknZcwrl8c2DlIpfgqVGRmDe66wVWjRhcERG1s0APJR4ZGoZHhoZBbzThWFY59lw0L/J+oUCLE9kVOJFdgfd2XIJPw2issRyNRURERERErRAEAbsuFCFpRzrO5FUCMAdWc0ZGYP7oqC7/OwSDKyIiG5JJxBgR5YMRUT5YPKkP1JW12HuxGHsumkdjlVbXY/OJPGw+kQdx42isaPNorBgVR2MREREREXVXgiBg90VzYHU61xxYOTcJrLrLBaEYXBERdaAgDyc8OiwMjw4LQ72hYTTWpSLsvViMCwVaHM+uwPHsCrybfAm+rnKM6W1e4H1ML98uO/SXiIiIiIisBEHAnkvFSNqRjlM5FQAAJ5kET4wMx29GR8HHVWHfBnYwBldERHYil4qR0MMHCT18sGRSX+RX1GLvJfOUwv3pJSipqsfm43nYfNw8GmtwmBfGNQRZ/VXuHI1FRERERNSFCIKAvQ2B1cmGwEopE+OJhAj8ZkwUfLtZYNWIwRURkYNQeTrhsWFheKxhNNbRrDLLtMKLhVocyyrHsaxyvJN8Cb6uimZXKuwql7olIiIiIupuBEHAL+kleG/HJZzIrgBgDqxmjwjHb8b0gJ9b9wysGjG4IiJyQHKpGCN7+GJkD18smWwejdW4wPuByyUoqdJh0/FcbDqeaxmNNaanD1xq7d1yIiIiIiJqC0EQcOByKd7bcQnHssoBAAqpGL8eEY7fjo2Cv5vSzi10DAyuiIg6AZWnE2YND8Os4Q2jsTLLsKdhWuGlwirLaCxAiu0VqXhkaBgmxQbCWc5/5omIiIiIHIkgCDh4pRRJOy4hNdMaWD0+PBwLxjGwuhZ/oyEi6mTkUjFG9vTFyJ6++NPkvsirqMWei0X4+Ywa+y+X4EhmOY5kluNv35/DlIFBeDg+FINDPSEScU0sIiIiIiJ7OnilBEnJ6TiSWQbA3LefNSwMC8f1gL87A6vWMLgiIurkgj2d8PjwcMwcosLn325FpVcfbDqRj+yyGmw4koMNR3LQ098VM+NDMH1wSLefI09ERERE1NFSGkZYHc5oHlg9M64HAhhY3RCDKyKiLsRLATw+LgrP39MbRzLL8NXRHGw9o8bloiq8sfUC3v75Isb38cfM+FCMi/aDTCK2d5OJiIiIiLqsw1fNa1gdutoQWEnEeHRYKBaO64lADwZWbcHfWIiIuiCxWIQRUT54d+YgpP75Xix/MBaDwzxhMAlITivE/E+PImH5Lizfeh6Xi6rs3VwicgCrVq1CZGQklEol4uLi8Msvv7TpuAMHDkAqlWLQoEG2bSAREVEnciSjDLP+dQiPfHIIh66WQS4xXyVw7yvjsGxaDEOrW8ARV0REXZybUobHhoXhsWFhSC/U4utjudh8PBclVTqs3ncVq/ddxZAwT8yMD8X9A4LgppTZu8lE1ME2btyIF198EatWrcKoUaOwevVqTJo0CWlpaQgLC7vucZWVlXjiiSdwzz33oLCwsANbTERE5JiOZpbhvR2XcOByKQBAJhFhZnwonh3fEypPJzu3rnNicEVE1I30CnDDnyb3xR8mRmP3hSJ8dTQXuy8W4Xh2BY5nV2DpD2mYHBuER4aGYmiEFxd0J+om3n33XcydOxfz5s0DACQlJWHbtm34+OOPsXz58use99vf/hazZs2CRCLB//73vxu+h06ng06nszzXaDQAAL1eD71ef+cf4hqN57TFuTsb1sKMdbBiLaxYCyvWwup2anE8uwIf7LqCA1fMgZVULMKMIcF4ZmwkghsCq85WW1v/TLT1vAyuiIi6IZlEjMT+gUjsH4gibR2+PZ6HjUdzcLW4GpuO52LT8VxE+Djj4fhQzBgSwqHMRF1YfX09jh07hsWLFzfbnpiYiIMHD173uLVr1+LKlSv47LPP8Pe///2m77N8+XIsXbq0xfbt27fD2dn51hveRsnJyTY7d2fDWpixDlashRVrYcVaWLWlFpla4KccMS5UmldiEosEDPcTMCHYBB9ZJk4dzMQpWzfUxmz1M1FTU9Om/RhcERF1c/5uSvx2bA/8ZkwUjmdX4KvUHPx4Oh+ZpTVYse0i3tl+EWN7+2FmfCju6RsAuZTLIxJ1JSUlJTAajQgICGi2PSAgAAUFBa0ek56ejsWLF+OXX36BVNq27uSSJUuwaNEiy3ONRoPQ0FAkJibC3d399j/Adej1eiQnJ2PChAmQybr3FGjWwox1sGItrFgLK9bCqi21OJVbiQ92Xca+dPMIK4lYhAcHq/DM2EiEetnuC5mOZOuficbR1zfD4IqIiAAAIpEIceFeiAv3wv9N6YetZ9T4+mgujmSWYffFYuy+WAxvFzl+NSgYM4eGoE9g+/+iSUT2c+3UYEEQWp0ubDQaMWvWLCxduhS9e/du8/kVCgUUCkWL7TKZzKa/INn6/J0Ja2HGOlixFlashRVrYdVaLU7lVCBpxyXsvlgMwBxYzRgSjOfG90KYT9cIrK5lq5+Jtp6TwRUREbXgopDi4fhQPBwfioySanx9NAebjueiUKPDfw5k4D8HMjAgxAMPx4di6kAVPJzYuSHqrHx9fSGRSFqMrioqKmoxCgsAtFotjh49ihMnTuC5554DAJhMJgiCAKlUiu3bt+Puu+/ukLYTERF1lNO5FUjakY5dF4oAmAOr6YOD8fzdPRHu42Ln1nVtDK6IiOiGIn1d8Mp9fbBoQm/8kl6Cr47mYMf5QpzOrcTp3Er8/cc03BcTiJnxoUiI8oFYzAXdiToTuVyOuLg4JCcnY/r06ZbtycnJmDZtWov93d3dcebMmWbbVq1ahV27duGbb75BZGSkzdtMRETUUc7kVuL9nZew47w5sBKLgOmDQ/D83T0R4cvAqiMwuCIiojaRSsQY38cf4/v4o7RKh/+dzMdXqTm4WKjFdyfz8d3JfAR7OuHh+BA8FBeCkC4yt5+oO1i0aBFmz56N+Ph4JCQk4JNPPkF2djYWLFgAwLw+VV5eHj799FOIxWLExMQ0O97f3x9KpbLFdiIios4qtxpY8PkJ7LxgnhIoFgG/GhSM5+/phUgGVh2KwRUREd0yH1cF5t4ViadHReBMXiW+OpqD707mI6+iFkk70vH+znSM6uGLh+NDMLF/IJQyib2bTEQ38Mgjj6C0tBTLli2DWq1GTEwMtm7divDwcACAWq1Gdna2nVtJRERkWyaTgJSrpVi7/yp2XJACKIZYBEwbFIzn7u6JHn6u9m5it8TgioiIbptIJMKAEE8MCPHEX+7vh23nCvDV0RwcuFyK/ZdLsP9yCdyVUkwbFIyZ8aGICXZvdbFnIrK/hQsXYuHCha2+tm7duhse++qrr+LVV19t/0YRERF1gEJNHb45louNqTnILqsBAIgg4IEBQXjh3mj09GdgZU/dPriKiIhAVlZWs21//OMf8eabb9qpRUREnZNSJsG0QcGYNigYOWU1+OZYLr45lou8ilr891AW/nsoC30C3TAzPhS/GhwMbxe5vZtMRERERN2UwWjCnovF+DI1B7svFsFoEgAAbgoppg4MQpguA08/NIBXWHQA3T64AoBly5Zh/vz5lueurkxTiYjuRKi3M16a0Bsv3NMLB66U4Kujudh2rgAXCrRY9mMalv90HhP6BeDh+FCM6eUHCRd0JyIiIqIOkFNWg42pOfj6WA4KNTrL9qERXnh0aBgmxwZBKjJh69YMO7aSmmJwBcDNzQ2BgYH2bgYRUZcjFoswupcfRvfyQ0VNPb4/lY+vjubgbJ4GW88UYOuZAgS6KzEjLhgPx4XyyixERERE1O50BiOS0wrx5ZEc7L9cYtnu7SLHjCHBeGRoWLPpgHq9yR7NpOuwaXCl0Whu+Rh3d3cbtOTG3nrrLbz22msIDQ3Fww8/jD/84Q+Qy68/hUWn00GnsyazjZ9Tr9dDr9e3a9saz9fe5+2MWAsr1sKKtbBy9Fq4yER4LD4Yj8UHI02twabj+fj+lBoFmjp8tPsKPtp9BUMjvPDwkGBM7O8PZ/nt/Rfl6HXoSKyFlS1r0dH17Sz9KyIiInu7XKTFl0dysPlEHsqq6wEAIhFwV09fPDo0DBP6BUAuFdu5lXQzNg2uPD09b2kRXpFIhEuXLiEqKsqGrWruhRdewJAhQ+Dl5YUjR45gyZIlyMjIwL///e/rHrN8+XIsXbq0xfbt27fD2dk2l39PTk62yXk7I9bCirWwYi2sOkst4kTAwAHAmXIRDheJcKFChNTMcqRmluOv3wkY4iNghL8J4a7mDsat6ix16AishZUtalFTU9Pu57yRztC/IiIispeaegO2nFZjY2oOjmaVW7YHuCswMz4UM+NDEeptm9/byTZsPlXwm2++gbe39033EwQBkydPbpf3fPXVV1sNlppKTU1FfHw8XnrpJcu2AQMGwMvLCw899BDeeust+Pj4tHrskiVLsGjRIstzjUaD0NBQJCYmtvs3mnq9HsnJyZgwYUK3XxSOtbBiLaxYC6vOWoupDffqyjp8eyIf3xzPQ055LVKKREgpEqOHnwseGhKMXw0Kgq+r4qbn66x1sAXWwsqWtbidEVB3yh79KyIiIkd2Nq8SG45k4/uT+dDqDAAAiViEu/v449GhoRjb2w9SCUdXdUY2Da7Cw8MxZsyY6wZA14qKimqXzuRzzz2HRx999Ib7REREtLp9xIgRAIDLly9ft90KhQIKRctfnmQymc1+MbDluTsb1sKKtbBiLaw6ay3CfGV4YUI0nr+nN45kluGroznYekaNK8XVeGvbJaxMTsfdffwxMz4U46L9ILtJx6Oz1sEWWAsrW9Sio2trr/4VERGRo9HU6fHdyXx8eSQb5/KtXySFeTvjkaGheCguBAHuSju2kNqDTYOrjIxbW4X/7Nmz7fK+vr6+8PX1va1jT5w4AQAICgpql7YQEdGtEYtFGBHlgxFRPlg6tT9+PK3GV0dzcCK7AslphUhOK4SvqwIzhgTj4fgQ9PR3s3eTiTqUvfpXREREjkAQBBzNKseXR3Kw5Uw+6hoWUpdLxJgYE4jHhoZiRJQPxLxqdZfRra8qmJKSgkOHDmH8+PHw8PBAamoqXnrpJUydOhVhYWH2bh4RUbfnppThsWFheGxYGNILtfj6WC42H89FSZUOq/ddxep9VzEkzBMz40Nx/4AguCk5qoSIiIioKyqt0mHz8Tx8mZqNK8XVlu29/F3x6LAwPDg4GF4u17/IGnVeHRZcffDBB61uF4lEUCqV6NmzJ8aMGQOJRNJRTYJCocDGjRuxdOlS6HQ6hIeHY/78+XjllVc6rA1ERNQ2vQLc8KfJffGHidHYfaEIXx3Nxe6LRTieXYHj2RVY+kMaJscG4cHBgRAEe7eWqGM4Yv+KiIiovZhMAg5cKcGXR3KwPa0AeqO5k+ckk2DKwCA8MjQMQ8Ju7aIl1Pl0WHD13nvvobi4GDU1NfDy8oIgCKioqICzszNcXV1RVFSEqKgo7N69G6GhoR3SpiFDhuDQoUMd8l5ERNQ+ZBIxEvsHIrF/IIq0ddh8PA9fHc3B1eJqbDqei03Hc+GrlKDQMxOPDouAhzNHYVHX5Yj9KyIiojtVUFmHr4/mYOPRHOSW11q2DwjxwKNDwzBlIEfadycdtqT+G2+8gaFDhyI9PR2lpaUoKyvDpUuXMHz4cLz//vvIzs5GYGBgs6v8ERER3Yi/mxILxvbAzkVjsemZBDwSHwoXuQQldSIs//kSRizfiSWbz+BigdbeTSWyCfaviIioqzAYTUhOK8TcdakY+eZOvJN8CbnltXBTSvFEQji2/O4ufP/cXZg1PIyhVTfTYSOu/vKXv2DTpk3o0aOHZVvPnj2xcuVKzJgxA1evXsXbb7+NGTNmdFSTiIioixCJRIgL90ZcuDeW3NcLy79IxokqD1wqqsKGI9nYcCQbI6K88eTICNzbN4CXQqYug/0rIiLq7LJLa7DxaDa+PpqLIq3Osn1YpDceHRqKybFBUMo45b0767DgSq1Ww2AwtNhuMBhQUFAAAFCpVNBq+a04ERHdPheFFCMDBLz2ZAKO52qx/mAmtqcV4tDVMhy6WgaVhxKPjwjHY8PC4M0FPKmTY/+KiIg6I53BiG3nCrExNRsHLpdatvu4yPFQXAhmDg1FDz9XO7aQHEmHBVfjx4/Hb3/7W/z73//G4MGDAQAnTpzAM888g7vvvhsAcObMGURGRnZUk4iIqAsTiUQYEeWDEVE+yK+oxWeHsvBlag7yK+uwYttFvL8zHVMHqjAnIQKxIR72bi7RbWH/ioiIOpP0Qi2+TM3B5uO5KK/RAwBEImB0Lz88NjQU9/QNgFzKkfHUXIcFV2vWrMHs2bMRFxcHmcw8H9VgMOCee+7BmjVrAACurq545513OqpJRETUTag8nfDKfX3wu3t64cfTaqw/mIkzeZX45lguvjmWiyFhnpgzMgKTYoLYWaJOhf0rIiJydDX1Bvx4Wo2NqTk4llVu2R7kocTD8aGYGR+CEC9nO7aQHF2HBVeBgYFITk7GhQsXcOnSJQiCgD59+iA6Otqyz/jx4zuqOURE1A0pZRI8FBeCGUOCcTy7Ap+mZGLrGTWOZ1fgePZJ/N3tPGYNC8Pjw8Pg7660d3OJbor9KyIickSCIOBsngYbUrPx/cl8VOnM09olYhHu7euPR4eGYUxvP0jEIju3lDqDDguuGkVFRUEkEqFHjx6QSjv87YmIiBoWc/dCXLgX/jy5L744ko3PD2ejWKvD+zvTsWrPZUyKCcKckREYEuYJkYidKnJs7F8REZEjqKzV4/uTedhwJAdpao1le7iPMx4ZGoqH4kLg78YvB+nWdFjPpqamBs8//zzWr18PALh06RKioqLwu9/9DiqVCosXL+6ophAREVn4uyvx4r29sXBcT/x8rgDrD2biWFY5vj+Vj+9P5SMm2B1zEiIwZaCKV7Qhh8P+FRER2ZsgCEjNLMeXqdnYekaNOr0JACCXijEpJhCPDA3FiEgfiDm6im5Thy3ksWTJEpw6dQp79uyBUmlNWO+9915s3Lixo5pBRETUKrlUjKkDVdj0zEj8+PxdeCguBHKpGGfzNPjDN6cx8s1dePvnC8ivqLV3U4ks2L8iIiJ7Ka3S4ZN9V3DPu3sxc3UKNh/PQ53ehOgAN/xtSj8c+dM9eP/RwRjZw5ehFd2RDhtx9b///Q8bN27EiBEjmk256NevH65cudJRzSAiIrqpmGAPrHx4IP40uS++TM3GZylZyK+sw6o9V/DPvVeQ2C8Qc0ZGYESUN6cRkl2xf0VERB3JZBKw/3IJvkzNRnJaIfRGAQDgLJdgygAVHh0WikGhXGaB2leHBVfFxcXw9/dvsb26upo/1ERE5JC8XeRYOK4nfjM6CjvOF2L9wSykXC3Fz+cK8PO5AkQHuOGJkeGYPjgYznKuK0Qdj/0rIiLqCOrKWnx9NBcbU3OQ12T0+cBQTzw6NBRTBqrgqmBfiGyjw36yhg4dii1btuD5558HAEtn6l//+hcSEhI6qhlERES3TCoR476YINwXE4SLBVqsT8nEt8fzcLFQiz9/exZv/XQBM+ND8URCBMJ8eDln6jjsXxERka3ojSbsulCEjak52HOxCCbz4Cq4K6V4cEgIHhkair5B7vZtJHULHRZcLV++HPfddx/S0tJgMBjw/vvv49y5c0hJScHevXs7qhlERER3JDrQDW9Mj8UfJ/bB18dy8GlKFrLLavDv/RlYcyAD46P9MWdkBEb35HoOZHvsXxERUXvLKqvBphNqfHMsF8VanWX78EhvPDYsDPfFBPKCNdShOiy4GjlyJA4cOICVK1eiR48e2L59O4YMGYKUlBTExsZ2VDOIiIjahYezDPNGR+HpUZHYc6kI6w5mYd+lYuy6UIRdF4oQ5euCJxLCMSMuBG5Kmb2bS10U+1dERNQeKmv0SD6Xj9XnxEhP2W/Z7usqx4y4EDwSH4ooP1c7tpC6sw6dhBobG2u5XDMREVFXIBaLcHefANzdJwBXiqvw35QsfHMsF1dLqvHqD2lYse0iZsSF4ImECPT0Z4eP2h/7V0REdDuuFFdh5/lC7DxfhKNZ5TCaBABiiETA2N5+eHRoKO7pGwCZRGzvplI3Z9PgSqPRtHlfd3fOjSUios6th58rXp3aHy9PjMbm47lYfzATV4qr8WlKFj5NycLoXr6YkxCB8X38IeE0QrpN7F8REdHt0BtNSM0sw87z5tHhGSXVzV7v7e+KKLkGSx4Zi3A//v9BjsOmwZWnZ9svg2k0Gm3ZFCIiog7jqpDiiYQIzB4RjgOXS7HuYCZ2XijEL+kl+CW9BKHeTpg9Ihwz40Ph6Sy3d3Opk2H/ioiI2qq8uh57LhVh5/ki7L1UDG2dwfKaXCLG8Chv3Ns3AHf38Uegmwxbt26FytPJji0masmmwdXu3bstjzMzM7F48WI8+eSTlqvcpKSkYP369Vi+fLktm0FERGQXIpEId/XyxV29fJFTVoP/HsrCxtQc5JTV4o2tF/Bu8iX8alAw5oyM4FV5qM1s1b9atWoVVqxYAbVajf79+yMpKQmjR49udd/Nmzfj448/xsmTJ6HT6dC/f3+8+uqrmDhx4u1/MCIiumOCIOBKcRV2nC/CzvOFOJZVbrkaIAD4uMgxvo8/7u3rj7t6+cFVYY0E9Hq9HVpMdHM2Da7Gjh1rebxs2TK8++67eOyxxyzbpk6ditjYWHzyySeYM2eOLZtCRERkV6HezvjT5L546d7e+O5kHtYdzMSFAi2+TM3Bl6k5GBbpjSdHRiCxXwCkXEuCbsAW/auNGzfixRdfxKpVqzBq1CisXr0akyZNQlpaGsLCwlrsv2/fPkyYMAFvvPEGPD09sXbtWkyZMgWHDx/G4MGD7/xDEhFRm9UbTDiSUYadF8zrVWWX1TR7vU+gm3lUVV9/DArx5FWPqdPpsMXZU1JS8M9//rPF9vj4eMybN6+jmkFERGRXTnIJHh0WhkeGhuJIRhk+TcnCz+cKcCSjDEcyyhDkocTjw8Pw6LAw+Loq7N1ccnDt1b969913MXfuXMsxSUlJ2LZtGz7++ONWR24lJSU1e/7GG2/gu+++ww8//HDd4Eqn00Gns15WvXGtLr1eb5Nv+RvPyREErEUj1sGKtbDqrLUora7Hvksl2HWxGL9cLkG1zjo1XCYRISHKG3dH+2FctB+Cm0z9MxoNuN4s8s5aC1tgLcxsXYe2nrfDgqvQ0FD885//xDvvvNNs++rVqxEaGtpRzSAiInIIIpEIw6N8MDzKB+rKWnx+KBsbjmRDXVmHldsv4YOdl/HAwCA8OTICA0I87d1cclDt0b+qr6/HsWPHsHjx4mbbExMTcfDgwTadw2QyQavVwtvb+7r7LF++HEuXLm2xffv27XB2dm7T+9yO5ORkm527s2EtzFgHK9bCytFrIQiAuhY4Vy7CuXIxMrWAAOvIKTeZgP5e5lu0hwCFpBAoLcSpg8CpW3wvR69FR2ItzGxVh5qampvvhA4Mrt577z3MmDED27Ztw4gRIwAAhw4dwpUrV7Bp06aOagYREZHDCfJwwssTo/Hc3T2x9Ywa6w9m4lRuJTYfz8Pm43kYFOqJJ0dGYHJsEORSTiMkq/boX5WUlMBoNCIgIKDZ9oCAABQUFLTpHO+88w6qq6sxc+bM6+6zZMkSLFq0yPJco9EgNDQUiYmJNrn6oV6vR3JyMiZMmACZTNbu5+9MWAsz1sGKtbBy5FroDCYcySzD7gvF2H2xGLkVdc1e7xvohrv7+GF8tB9iVe53PAXQkWvR0VgLM1vXoa1XSu6w4Gry5MlIT0/Hxx9/jPPnz0MQBEybNg0LFiyw2Yir119/HVu2bMHJkychl8tRUVHRYp/s7Gw8++yz2LVrF5ycnDBr1iysXLkScjmv8kRERB1LKZPgwSEheHBICE5kl2P9wUxsOaPGyZwKvLjxJP6+5TxmDQ/D48PDEOCutHdzyQG0Z//q2isVCoLQpqsXbtiwAa+++iq+++47+Pv7X3c/hUIBhaLl9FeZTGbTXwpsff7OhLUwYx2sWAsrR6lFSZUOuy+YrwL4S3oxquut8/rkUjFG9fDBPX0DcE9ffwR52Obqf45SC0fAWpjZqg5tPadNg6vTp08jJiYGYrH52+GQkBC8/vrr193/3LlziI6OhlTaPs2qr6/Hww8/jISEBKxZs6bF60ajEffffz/8/Pywf/9+lJaWYs6cORAEAf/4xz/apQ1ERES3Y3CYFwaHeeHP9/fDhiPZ+PxwFgo1OnywMx2rdl/GfTGBeHJkBOLCvdoULlDX0d79K19fX0gkkhajq4qKilqMwrrWxo0bMXfuXHz99de49957b/GTEBGRIAi4UKDFrgtF2HG+ECdzKiA0uQqgv5sC9/T1x919AjCqpw+c5R029oTIYdj0p37w4MEoKCiAn59fm/ZPSEjAyZMnERUV1S7v37iOwrp161p9ffv27UhLS0NOTg5UKhUA81D3J598Eq+//vp1h6135OKiXBTOirWwYi2sWAsr1sKsq9XBUynGM2MiMG9UGJLTivDfw9k4mlWBH0+r8eNpNfoFueHXw8MwZUAglDJJs2O7Wi3uhC1r0dH1be/+lVwuR1xcHJKTkzF9+nTL9uTkZEybNu26592wYQOefvppbNiwAffff/+tfQgiom6sTm/Eoaul2Hm+CLsuFCGvorbZ6zHB7rinj3lUVYzKg1cBpG7PpsGVIAj461//2uYFN+vr623ZnBZSUlIQExNjCa0AYOLEidDpdDh27BjGjx/f6nH2WFyUi8JZsRZWrIUVa2HFWph11TrMVgHjPYB9ajGOl4iQptbiT/87h9d/PIsR/gLuCjTB+5rZWF21FrfDFrVo68Ki7cUW/atFixZh9uzZiI+PR0JCAj755BNkZ2djwYIFAMzrU+Xl5eHTTz8FYA6tnnjiCbz//vsYMWKEZbSWk5MTPDw8bvOTERF1XUXaOssUwP2XS1DTZAqgUibGXT19cXefANzdxx+BHlwOgKgpmwZXY8aMwcWLF9u8f0JCApycbDNPtzUFBQUthsB7eXlBLpffcDHSjlxclIvCWbEWVqyFFWthxVqYdZc6/AZAeU09vj6Why+O5CCvog4780XYrRbjnj7+mD0iFHEhbtixY0eXr0Vb2PLnoq0Li7YXW/SvHnnkEZSWlmLZsmVQq9WIiYnB1q1bER4eDgBQq9XIzs627L969WoYDAY8++yzePbZZy3b58yZc92R7kRE3YkgCEhTa7DzfBF2XijCqZyKZq8Huitxd19/3NPHHyN7+MJJLmn9RERk2+Bqz5497X7OV199tdXRTk2lpqYiPj6+TedrbV2Qmy1Gao/FRbkonBVrYcVaWLEWVqyFWXeog7+HDM/e3RsLxvXCjvOFWH8wEwevlCL5fBGSzxehp58LBruKME4QwbmL16KtbPFz0dE/Z7boXwHAwoULsXDhwlZfuzaMslUbiIg6szq9EQevlFimAKorm18FcECIh2UKYH+VO9eoJGqjTrey23PPPYdHH330hvtERES06VyBgYE4fPhws23l5eXQ6/U3XYyUiIjIUUjEIkzsH4iJ/QORXqjF+pRMbD6eh8vF1bhcLMH2lfvw2LBwPJEQDpVnx41sJiIi6uoKNXXYdaEIO88XYv/lEtTpTZbXnGQS3NXLF/f08cfdffzhzysCE92WThdc+fr6wtfXt13OlZCQgNdffx1qtRpBQUEAzOtUKRQKxMXFtct7EBERdaReAW74+69i8YeJfbDxSBZW77qA0loD/rn3Cv71y1VMjg3C06MiMDjMy95NJSIi6nQEQcDZPA12XijEzvNFOJNX2ex1lUfDFMC+AUiI8mlx4RQiunWdLri6FdnZ2SgrK0N2djaMRiNOnjwJAOjZsydcXV2RmJiIfv36Yfbs2VixYgXKysrw8ssvY/78+e2+VhUREVFH8nCS4amR4fArPwdlVDzWH8rGoatl+OFUPn44lY/BYZ54elQkJsUEQioR27u5REREDqu23ogDl0uw80Ihdl0oQqHGeoV5kQgYGOKJe/qYw6q+QW6cAkjUzrp0cPV///d/WL9+veX54MGDAQC7d+/GuHHjIJFIsGXLFixcuBCjRo2Ck5MTZs2ahZUrV9qryURERO1KLALu7euPSQOCcTavEmsPZOKHU/k4kV2B57NPQOWhxBMjI/DY0DB4OHMdLCIiIgBQV9Y2TAEswoHLJdAZrFMAneUSjO7li3v6BGB8H3/4ubVc/5iI2k+XDq7WrVt30yvbhIWF4ccff+yYBhEREdlRTLAH3pk5EH+cFI3PD2Xjs0NZyK+sw5s/XcD7O9LxUFwInhwVgR5+rvZuKhERUYcymQScyqnAzob1qs7lN79ibLCnE+5pmAI4PNKbUwCJOlCXDq6IiIioJX83JV6a0BvPjOuB70/l4z/7M3ChQIv/HsrCfw9lYXy0H56+KxJ39fTldAciIuqSTCYB2WU1OJldhi+viPH3FXtRXFVveV0kAgaHeuKevuarAEYHcAogkb0wuCIiIuqmlDIJZsaH4uG4EKRcLcV/9mdg54Ui7L5YjN0Xi9E7wBVPj4rErwYH85tlIiLqtIwmARklVTibp8HZvEqcyatEWr4GWp2hYQ8xgHq4yCUY09sP9/QNwLhoP/i6cgogkSNgcEVERNTNiUQijOzhi5E9fJFRUo31BzPx1dEcXCqswuLNZ/D2tot4fHgYZo8I56W8iYjIoRmMJlwutoZUZ/MqkabWoKbe2GJfuVSMPoGu8DRU4KmJQzGylx8UUn5RQ+RoGFwRERGRRaSvC16d2h8vTeiNr1JzsO5gJvIqavGPXZfxz71X8MAAFZ4eFYnYEA97N5WIiLq5eoMJlwq15oAqvxJn8zQ4r9Y0W0i9kZNMgn4qd8So3BET7IGYYA/09HcFTEZs3boVd/X0gYyhFZFDYnBFRERELXg4yTB/TBSeGhWB5LRCrNmfgaNZ5fj2RB6+PZGHYRHeePquCEzoFwiJmGt+EBGRbdXpjbhQYA6pzuWbp/tdLNBCbxRa7OuqkKKfyh2xwR6ICXZHjMoDUX6urf5/pTe1HIlFRI6FwRURERFdl1QixqTYIEyKDcKpnAqsPZCBH0+rcSSzDEcyyxDi5YQnR0Zg5tBQuCtl9m4uERF1ATX1BpxXa5qtSZVeVAWjqWVI5a6UIjbEAzEqD/QP9kBssAfCvZ0h5pcqRF0GgysiIiJqk4Ghnkh6dDCWTO6LT1My8fnhbOSW1+LvW87jveRLeDg+FE+NikC4j4u9m0pERJ2Etk6PtHwNzuZb16S6UlyFVjIqeLvIzdP8LKOpPBDi5cSr/RF1cQyuiIiI6JYEuCvxh4l98Nz4XvjfyTz8Z38G0ouqsO5gJtanZOLevgF4elQkRkR585cJIiKyqKzRW6b5nc3X4FxeJa6WVLe6r7+bwhJSNa5JFeSh5P8rRN0QgysiIiK6LU5yCR4bFoZHh4bil/QS/OdABvZcLEZyWiGS0wrRL8gdT98ViSkDg3iVJiKibqasut4cUDVZkyqnrLbVfVUeSss0v8Y1qXgVWyJqxOCKiIiI7ohIJMKY3n4Y09sPl4uqsO5gBr45los0tQYvf30Kb/50Hr8eEY7Hh4fDz01h7+YSEVE7K9LWNUzzs073y6+sa3XfUG8nxAZ7oL/KwzKiyseV/zcQ0fUxuCIiIqJ209PfFX//VSxeTozGhiM5WH8wEwWaOiTtSMeq3VcwbZAKT42KRD+Vu72bSkREt0gQBKgrG0KqJmtSFWl1re4f6evSbE2q/ioPeDjzQh5EdGsYXBEREVG783SW45lxPTBvdCR+OluANfszcCqnAl8fy8XXx3KREOWDuXdF4u4+/rzyExGRAxIEAbnltZar+jWuSVVaXd9iX7EI6OHniphgD/RvCKn6qdzhxqvNElE7YHBFRERENiOTiDF1oApTB6pwPLsc/9mfgZ/OFiDlailSrpYiwscZT46MwEPxoXBVsFtCRO2r3mBCoaYO+RW1yCmrxv58EQoPZkEpl0IiFkEqFkEqFkMqMd9LxCLIJKKG+6bPxeZ9G/Zr9ljScB5Jw3ax+fjOtIi4ySQgq6wGZ/IqcS6vEmfzzdP+Kmv1LfaViEXo5W8OqRrXpOob5A5nOf8NJyLb4L8uRERE1CGGhHlhyCwv5FXU4tOUTGw4nI3M0hq8+kMa3km+hEeHhuKJhAiEejvbu6lE1AmYTAJKqnTIq6iFutIcTjXe51fWQV1Ri+IqHQSh6VES/C/rYoe0rzHAah6AWcMuiVgE2TVhmSX8ahKCXRuWScTiluGauCFcuyZEaxq8NX1/CEakFotw8qeLOKfWIi1fgyqdocVnkElEiA50a7YmVZ9ANyhlvOAGEXUcBldERETUoYI9nbBkUl+8cE8vbDqWi7UHMnG1pBr/+iUDa/ZnYGL/QMy9KxJx4V6dasQCEbUfQRCgqTU0hFLmICq/ohbqCuvjQk0d9EbhpueSS8VQeSgR6K5AvaYUKpUKJgAGowCDqeFmNFnujSYBeqNgvjeZn5v3NVmPadjf2HB8axrPrTOY2rk67UUCXM6yPFNIxegb5G65ql9MsAd6B7hBLhXbsY1ERAyuiIiIyE6c5VLMTojA48PDsfdSMf5zIAO/pJfgp7MF+OlsAQaEeODpUZGYHBvEX5yIupjaeiPyK2uhrmgcIdXwuLLWMnKqpt540/OIRUCAuxJBHkoEeToh2NPJ/Nij4bGnEj4ucohEIuj1emzduhWTJw+ATNZ+ay8JgjXAah6CXRN2NXlsNJms4dg1YZl1P2s4Zn7NeozlPZq+zzXv3ezc176nwYhqTSVG9g/HgBBPxIZ4oIefK2QS/ltLRI6HwRURERHZlVgswvg+/hjfxx8XC7RYeyADm0/k4XRuJV7ceBLLfzqPJxIi8NiwMHi7yO3dXCK6Cb2xcV2pOvNoKcu99XF5Tcu1k1rj7SJHkIcSKk8nqBrCqaaPA9wUkNo5bBGJGqbzdaLZc9YQr0+7hnhERLbA4IqIiIgcRnSgG96cMQB/mBiNDUey8WlKFgo1OqzYdhEf7EzHg0OC8fSoSPQKcLN3U4m6JZNJQEm1DuomoZRlbamGcKpIe+26Uq1zkUug8nQyh1ENo6RUnuaQqnHUlJO8E6VBRERkEwyuiIiIyOH4uCrw3N298JsxPbDlTD7W7M/A2TwNNhzJwYYjORjdyxdP3xWJsb38IBZzHSyi9iAIAjR1Bqgbpu01ri9lfVyHgso61BtvvmaTXCJGoIfSOlrK89pgygnuSinXsSMiopticEVEREQOSy4VY/rgEPxqUDBSM8vxn/0Z2J5WgF/SS/BLegl6+LngqVGReHBIMC/FTnQTdXojcivrG6bstbwCX35FLarbsK6USAT4uyms60hZ1pcyh1NBnkr4uigYKhMRUbtgD4+IiIgcnkgkwrBIbwyL9EZOWQ3WH8zExtQcXCmuxl/+dxYrtl3EY8PCMGdkOII8nOzdXKJ2Jwjmq9Np6wyo0hlQVWeAVqdHVeNznaHZa9bnelTW6JFdIkF1ys42vZenswwqj6ajpKyPgzyUCPRQchFvIiLqMF06uHr99dexZcsWnDx5EnK5HBUVFS32aW148scff4wFCxZ0QAuJiIjoVoV6O+MvD/TDixN64+ujOVh7IBPZZTX4594r+NcvVzE5NghPj4rA4DAvezeVCCaTgBq9sSFM0l8TPBmuEzzpmz9v2M9gasPCUddl7vM6ySTN1pEyL3RuHiXVuI2jF4mIyJF06f+V6uvr8fDDDyMhIQFr1qy57n5r167FfffdZ3nu4eHREc0jIiKiO+CqkOKpUZF4IiECO88X4j8HMnDoahl+OJWPH07lY0iYJ56+KxL39Q+0d1M7hVWrVmHFihVQq9Xo378/kpKSMHr06Ovuv3fvXixatAjnzp2DSqXCK6+80qW++DMYTajWGc2jmloLmpo917c64qmqzoCqekObFipvK5EIcJVL4aqUwlVhvXdrfK6QwVUphVuT15ykwKVTqXj4/gnwdXfiulJERNSpdOngaunSpQCAdevW3XA/T09PBAayU0tERNQZScQiJPYPRGL/QJzLr8TaA5n4/mQ+jmdX4PgXJ6DyUOLx4aHwNti7pY5r48aNePHFF7Fq1SqMGjUKq1evxqRJk5CWloawsLAW+2dkZGDy5MmYP38+PvvsMxw4cAALFy6En58fZsyYYYdP0Fyd3ojcshrkVgOHM8pQZ4A5WGoaNLUy4qnptlr9zdd6uhUSsahJuNQkaFLKrgmepC2CJ/Nr5kDKWSa55bWj9Ho9qi+bpwAytCIios6mSwdXbfXcc89h3rx5iIyMxNy5c/Gb3/wGYvH15+3rdDrodDrLc41GA8DcKdDr9e3atsbztfd5OyPWwoq1sGItrFgLM9bBqjvWorefM5b/qh9+f28PfHEkB18cyUV+ZR1WbE+HXCxBv7hy9Atu3ymEXaG+7777LubOnYt58+YBAJKSkrBt2zZ8/PHHWL58eYv9//nPfyIsLAxJSUkAgL59++Lo0aNYuXKlQwRXhzPKMOc/RwBIgdNH7+hccqm4WYjUPHSSwu26wZOsWfCkkIoZGhEREd2Gbh9cvfbaa7jnnnvg5OSEnTt34ve//z1KSkrwl7/85brHLF++3DKaq6nt27fD2dnZJu1MTk62yXk7I9bCirWwYi2sWAsz1sGqu9aiJ4AlMcDxEhH2qMWoNwFXT6Yg81T7vk9NTU37nrCD1dfX49ixY1i8eHGz7YmJiTh48GCrx6SkpCAxMbHZtokTJ2LNmjXQ6/WQyWQtjunIL/6cJOa1nGQwwMfdxRIquTQLoCTWoMmyvfk2F4U5cLpzJhgMpnY4z+3pjiF2a1gHK9bCirWwYi2sWAszW9ehreftdMHVq6++2mpo1FRqairi4+PbdL6mAdWgQYMAAMuWLbthcLVkyRIsWrTI8lyj0SA0NBSJiYlwd3dv0/u2lV6vR3JyMiZMmNBqJ7A7YS2sWAsr1sKKtTBjHaxYC7NpMIczm7buwMTE9q9FYwDTWZWUlMBoNCIgIKDZ9oCAABQUFLR6TEFBQav7GwwGlJSUICgoqMUxHf3F35uWruB1/nzqG25a89O6hltJu7fEcXTXEPtarIMVa2HFWlixFlashZmt6tDWL/86XXD13HPP4dFHH73hPhEREbd9/hEjRkCj0aCwsLBFh6yRQqGAQqFosV0mk9nsFwNbnruzYS2sWAsr1sKKtTBjHaxYCzMPuW1q0VVqe+00NkEQbji1rbX9W9veqCO/+AMY3DbFWpixDlashRVrYcVaWLEWZrauQ1u//Ot0wZWvry98fX1tdv4TJ05AqVTC09PTZu9BRERE5Ch8fX0hkUhajK4qKiq67pd4gYGBre4vlUrh4+PT6jH2+OKvI87fmbAWZqyDFWthxVpYsRZWrIWZrerQ1nN2uuDqVmRnZ6OsrAzZ2dkwGo04efIkAKBnz55wdXXFDz/8gIKCAiQkJMDJyQm7d+/Gn//8Z/zmN79ptWN1PY3fMNpiqoBer0dNTQ00Gk23/wvDWlixFlashRVrYcY6WLEWVrasReP//439gc5GLpcjLi4OycnJmD59umV7cnIypk2b1uoxCQkJ+OGHH5pt2759O+Lj49tcX1v2nwD+/DfFWpixDlashRVrYcVaWLEWZrauQ5v7UEIXNmfOHAFAi9vu3bsFQRCEn376SRg0aJDg6uoqODs7CzExMUJSUpKg1+tv6X1ycnJafR/eeOONN95446373HJycmzQm+kYX375pSCTyYQ1a9YIaWlpwosvvii4uLgImZmZgiAIwuLFi4XZs2db9r969arg7OwsvPTSS0JaWpqwZs0aQSaTCd98802b35P9J95444033njjDbh5H0okCJ3060EHYjKZkJ+fDzc3t3a/zHHj+g85OTk2Wf+hM2EtrFgLK9bCirUwYx2sWAsrW9ZCEARotVqoVCqIxe1xBTr7WLVqFd5++22o1WrExMTgvffew5gxYwAATz75JDIzM7Fnzx7L/nv37sVLL72Ec+fOQaVS4Y9//CMWLFjQ5vezZf8J4M9/U6yFGetgxVpYsRZWrIUVa2Fm6zq0tQ/F4MrBaTQaeHh4oLKyslv/hQFYi6ZYCyvWwoq1MGMdrFgLK9ai++GfuRVrYcY6WLEWVqyFFWthxVqYOUodOu/XgkRERERERERE1KUxuCIiIiIiIiIiIofE4MrBKRQK/O1vf7ulqxx2VayFFWthxVpYsRZmrIMVa2HFWnQ//DO3Yi3MWAcr1sKKtbBiLaxYCzNHqQPXuCIiIiIiIiIiIofEEVdEREREREREROSQGFwREREREREREZFDYnBFREREREREREQOicEVERERERERERE5JAZXRERERERERETkkBhcERERERERERGRQ2JwRUREREREREREDonBFREREREREREROSQGV0RERERERERE5JAYXBERERERERERkUNicEVERERERERERA6JwRURERERERERETkkBldEREREREREROSQGFwREREREREREZFDYnBFRJ3GunXrIBKJkJmZeUv7Hz169Kb7jhs3DuPGjbuzBhIRERF1EbbsdxER3QqpvRtAROQIVq1aZe8mEBERERER0TUYXBERAejXr5+9m0BERERERETX4FRBIurytFotnnnmGfj6+sLHxwcPPvgg8vPzm+1z7VTBzMxMiEQivP3223j99dcRFhYGpVKJ+Ph47Ny5s83vLQgCevXqhYkTJ7Z4raqqCh4eHnj22WcBAHV1dfj973+PQYMGwcPDA97e3khISMB3333X7LiHH34Y/fv3b7ZtypQpEIlE+Prrry3bjh8/DpFIhB9++KHN7SUiIiJqL2q1GnFxcejVqxfS09MBAE8++SRcXV1x+fJlTJ48Ga6urggNDcXvf/976HS6ZsfX19fj73//O/r06QOFQgE/Pz889dRTKC4ubvFeGzduREJCAlxcXODq6oqJEyfixIkTHfI5ici2GFwRUZc3b948yGQyfPHFF3j77bexZ88e/PrXv27TsR9++CF+/vlnJCUl4bPPPoNYLMakSZOQkpLSpuNFIhGef/55JCcnWzpsjT799FNoNBpLcKXT6VBWVoaXX34Z//vf/7BhwwbcddddePDBB/Hpp59ajrv33nuRlpYGtVoNADAYDNi7dy+cnJyQnJxs2W/Hjh2QSqVcu4uIiIg63NmzZzF8+HAoFAqkpKSgV69eltf0ej2mTp2Ke+65B9999x2efvppvPfee3jrrbcs+5hMJkybNg1vvvkmZs2ahS1btuDNN99EcnIyxo0bh9raWsu+b7zxBh577DH069cPX331Ff773/9Cq9Vi9OjRSEtL69DPTUQ2IBARdRJr164VAAgZGRm3tP/ChQubbX/77bcFAIJarbZsGzt2rDB27FjL84yMDAGAoFKphNraWst2jUYjeHt7C/fee2+b263RaAQ3NzfhhRdeaLa9X79+wvjx4697nMFgEPR6vTB37lxh8ODBlu2XL18WAAiffvqpIAiCsH//fgGA8MorrwiRkZGW/SZMmCCMHDmyze0kIiIianS7/a7U1FQhOTlZcHd3Fx566KFm/ShBEIQ5c+YIAISvvvqq2fbJkycL0dHRlucbNmwQAAibNm1qtl9qaqoAQFi1apUgCIKQnZ0tSKVS4fnnn2+2n1arFQIDA4WZM2e29SMTkYPiiCsi6vKmTp3a7PmAAQMAAFlZWTc99sEHH4RSqbQ8d3Nzw5QpU7Bv3z4YjcY2vb+bmxueeuoprFu3DtXV1QCAXbt2IS0tDc8991yzfb/++muMGjUKrq6ukEqlkMlkWLNmDc6fP2/Zp0ePHoiIiMCOHTsAAMnJyYiNjcWvf/1rZGRk4MqVK9DpdNi/fz/uvffeNrWRiIiIqD2sX78ekydPxrx58/DVV18160c1EolEmDJlSrNtAwYMaNY3+/HHH+Hp6YkpU6bAYDBYboMGDUJgYCD27NkDANi2bRsMBgOeeOKJZvsplUqMHTvWsh8RdV4Mroioy/Px8Wn2XKFQAECzIebXExgY2Oq2+vp6VFVVtbkNzz//PLRaLT7//HMA5imIISEhmDZtmmWfzZs3Y+bMmQgODsZnn32GlJQUpKam4umnn0ZdXV2z891zzz2WtbZ27NiBCRMmIDY2FgEBAdixYwcOHDiA2tpaBldERETUob788ks4OTlh3rx5EIlEre7j7OzcItBSKBTN+juFhYWoqKiAXC6HTCZrdisoKEBJSYllPwAYOnRoi/02btxo2Y+IOi9eVZCI6AYKCgpa3SaXy+Hq6trm8/Ts2ROTJk3CRx99hEmTJuH777/H0qVLIZFILPt89tlniIyMxMaNG5t19K5dqBQwB1dr1qzBkSNHcPjwYfzlL38BANx9991ITk5GVlYWXF1dMWLEiFv5uERERER35PPPP8df//pXjB07Ftu3b8egQYNu6zyNF9X5+eefW33dzc3Nsh8AfPPNNwgPD7+t9yIix8bgiojoBjZv3owVK1ZYvhXUarX44YcfMHr06GahU1u88MILSExMxJw5cyCRSDB//vxmr4tEIsjl8mahVUFBQYurCgLm4EokEuGvf/0rxGIxxowZA8C8cPsf/vAHZGVlYcyYMZDJZLf6kYmIiIhum7e3N3bs2IEHHngA48ePx08//XRbX6Q98MAD+PLLL2E0GjF8+PDr7jdx4kRIpVJcuXIFM2bMuJOmE5GDYnBFRHQDEokEEyZMwKJFi2AymfDWW29Bo9Fg6dKlt3yuCRMmoF+/fti9ezd+/etfw9/fv9nrDzzwADZv3oyFCxfioYceQk5ODl577TUEBQW1uCKhv78/YmJisH37dowfPx7Ozs4AzMFVWVkZysrK8O67797+ByciIiK6TW5ubvj555/x4IMPYsKECfj+++8xfvz4WzrHo48+is8//xyTJ0/GCy+8gGHDhkEmkyE3Nxe7d+/GtGnTMH36dERERGDZsmX485//jKtXr+K+++6Dl5cXCgsLceTIEbi4uNxWv42IHAfXuCIiuoHnnnsOEyZMwO9+9zvMmjULBoMBW7ZswahRo27rfDNnzrSc91pPPfUU3nzzTfz000+YPHky3nrrLSxevBizZs1q9VyN61c1XccqLCzMcrlprm9FRERE9uLk5ITvvvsOEydOxOTJk7F169ZbOl4ikeD777/Hn/70J2zevBnTp0/Hr371K7z55ptQKpWIjY217LtkyRJ88803uHTpEubMmYOJEyfilVdesYxAJ6LOTSQIgmDvRhAROZrMzExERkZixYoVePnll9vtvPHx8RCJREhNTW23cxIREREREXVVnCpIRGRjGo0GZ8+exY8//ohjx47h22+/tXeTiIiIiIiIOgUGV0TU6QiCAKPReMN9JBLJdS/B3J4MBsMNXxeLxTh+/DjGjx8PHx8f/O1vf8OvfvUrm7eLiIiIqD04Ur+LiLonrnFFRJ3O+vXrIZPJbnjbu3fvHb1HREQEBEG44TTBzMzMm7Zj2bJlGDduHARBQElJCV599dU7ahcRERFRR+qIfhcR0Y1wjSsi6nRKS0uRkZFxw32io6Ph5uZm03bU19fj9OnTN9xHpVJBpVLZtB1EREREtuIo/S4i6r4YXBERERERERERkUPiGlftwGQyIT8/H25ubpzbTURE1M0IggCtVguVSgWxmKswtBX7T0RERN1bW/tQDK7aQX5+PkJDQ+3dDCIiIrKjnJwchISE2LsZnQb7T0RERATcvA/F4KodNM7nzsnJgbu7e7ueW6/XY/v27UhMTIRMJmvXc3c2rIUVa2HFWlixFmasgxVrYWXLWmg0GoSGhnJ9l1tky/4TwJ//plgLM9bBirWwYi2sWAsr1sLM1nVoax+KwVU7aBze7u7ubpPgytnZGe7u7t36LwzAWjTFWlixFlashRnrYMVaWHVELTjd7dbYsv8E8Oe/KdbCjHWwYi2sWAsr1sKKtTDrqDrcrA/FhRiIiIioyzOZeC0aIiIios6II66IiIioSxMEAX/5Pg2lajHuY4DVLeSU1WDZD+egKxcjf38mQn1coPJ0QrCnE3xdFZCIOTqOiIios2BwRURERF3ah7su4+tjeRBBhLP5GsRF+tq7SWRjGSXVSD5fBECMfQWXmr0mFYsQ6KGEytMJqsb7hlAryNP83F3ZfaeFEBERORoGV0RERNRlbTqWi3eSzcHFjEgTBoR42LlF1BF6+Lvi1Sl9sf/YOTj5qlCg0SG/og4FmjoYTAJyy2uRW1573ePdFFKomgRZwZ5OCPKwPg5wV0Iu5YobREREHYHBFREREXVJBy6X4I+bTgMA5t8VgRjjZTu3iDpKsKcTHh8WCq+SM5g8eYBlQVmjSUCRtg75FbXIr2i8r0VeRR3UlebH5TV6aHUGXCzU4mKhttXzi0SAn6vCEmSpPJUI8mg+csvHRc4F+4mIiNoBgysiIiLqci4UaLDgv8dgMAl4YEAQXp7QCz//zOCqu5OIRQjycEKQhxPiwlvfp6beAHXlNaFWRS3yK81hV15FLeoNJhRpdSjS6nAyp6LV8yik4oZpiE1DLfOoLfNzJZzl7IoTERHdTJf833LVqlVYsWIF1Go1+vfvj6SkJIwePfq6++/duxeLFi3CuXPnoFKp8Morr2DBggUd2GIiIiJqLwWVdXhqbSq0OgOGRXpj5cMDIYbJ3s2iTsJZLkUPP1f08HNt9XVBEFBWXW8JsfIrahtGa5mfqytrUaTVQWcwIaOkGhkl1dd9Ly9nWctQq8ljfzclF5InIqJur8sFVxs3bsSLL76IVatWYdSoUVi9ejUmTZqEtLQ0hIWFtdg/IyMDkydPxvz58/HZZ5/hwIEDWLhwIfz8/DBjxgw7fAIiIiK6Xdo6PZ5alwp1ZR16+Lngk9lxUMok0OsZXFH7EIlE8HFVwMdVgdjrrJlWbzChUGMNspqFXA2Pq3QGlNfoUV6jR5pa0+p5JGIRAt2VUDUZqdUYapkXl3eCu5OUUxKJiKhL63LB1bvvvou5c+di3rx5AICkpCRs27YNH3/8MZYvX95i/3/+858ICwtDUlISAKBv3744evQoVq5ced3gSqfTQafTWZ5rNObOhl6vh16vb9fP03i+9j5vZ8RaWLEWVqyFFWthxjpYdbda6I0mPPPZCZxXa+DrKse/Zg+Gi0zU7P9nW9Siu9SX2k4uFSPU2xmh3s7X3UdTp28WZDVOTcxvmKZYUGleSD6vohZ5FbUAyls9j4tc0nykVsMIriBPJYI9nRDooQSXkScios6sSwVX9fX1OHbsGBYvXtxse2JiIg4ePNjqMSkpKUhMTGy2beLEiVizZg30er1lMc+mli9fjqVLl7bYvn37djg7X7+DcieSk5Ntct7OiLWwYi2sWAsr1sKMdbDqDrUQBGDDFTEOF4shFwuYE1mDMyl7cOaa/WxRi5qamnY/J3V97koZ3ANl6BPo3urrRpOAkipd81CrcUH5hlFcZdX1qK43Ir2oCulFVdd9Lz9XOVxFEuypPYNIPzdE+LogwscZ4T4u8HBq2dclIiJyJF0quCopKYHRaERAQECz7QEBASgoKGj1mIKCglb3NxgMKCkpQVBQUItjlixZgkWLFlmeazQahIaGIjExEe7urXc+btcfvjmNI+lqRIf4IsTLudkaCMHd7Io1er0eycnJmDBhQquBYnfCWlixFlashRnrYNWdavHh7is4XHwFYhHwj1lDcHe0X7PXbVmLxpHXRO1JIhYhwF2JAHclhoR5tbpPbb3RMhUxv/KagKvheZ3ehOKqehRDhIyTagDqZufwcpYh3MccZJkDLReE+zgjwscFns6ybtPPJCIix9WlgqtG1/4HKwjCDf/TbW3/1rY3UigUUCgULbbLZLJ27wynF1cjv0aE/EulAEpbvK6UiS2XXg7xMt8Hezkh2NMZwV5OCHBTQCrpWgPEbVHnzoq1sGItrFgLM9bBqqvX4ptjuXh/1xUAwLJpMZgYo7ruvraoRVeuLTk2J7kEUX6uiLrBQvLlNXpkFWvx3c4D8A6PRk55HbJKa5BRWo1ira5hna2KVq+O6K6UWsKsxhFaEb7m++705SkREdlXlwqufH19IZFIWoyuKioqajGqqlFgYGCr+0ulUvj4+NisrW317kMDsGn7Pqh6xaBAU29e56C8BnkV5ivW1OlNuFpcjavFrV+xpnFRz2AvJ4Q0hltNgi2VpxIKqaSDPxUREVH7OHC5BIs3nQYALBjbA78eEW7nFhE5DpFIBG8XOdzk7sj2FTB5bFSzoLVaZ0BWaQ2ySquR2XCfUVKNrNIaFGjqoKkz4HRuJU7nVrY4t6tCah6Z1WTaYWPA5eemYKhFRETtpksFV3K5HHFxcUhOTsb06dMt25OTkzFt2rRWj0lISMAPP/zQbNv27dsRHx/vEN+gRvm5oL+XgMnDQlu0R2cwoqCyDnnltcitqDXfl9cir8IcbKkrmi/qeeQ67+HnprCM1AqxjNiy3rsp7V8HIiKia10o0GDBf4/BYBIwZaAKr0yMtneTiDoVF4UU/VTu6KdqudRFbb0R2WU1yCytbgi0zMFWVmkN8ivNV0U8l6/BufyWU2Wd5RKEeTsj0tfFMg2xcbRWgJsSYjFDLSIiarsuFVwBwKJFizB79mzEx8cjISEBn3zyCbKzs7FgwQIA5vWp8vLy8OmnnwIAFixYgA8//BCLFi3C/PnzkZKSgjVr1mDDhg32/BhtopBKEO5j7hC0xmgSUKQ1B1t5FY2hVq3leV55LWr1RhRrdSjW6lodIg4AHk6yZkFWyDXBljeHihMRUQcrqKzDU2tTodUZMCzSGysfHsBfhonakZNcguhAN0QHurV4rU5vRG55DTJLzMFWZkOglVlajbzyWtTUG3GhQIsLBdoWxyqkYssaWhG+1vW0wn2cEeThBAn/HhMR0TW6XHD1yCOPoLS0FMuWLYNarUZMTAy2bt2K8HDz1AG1Wo3s7GzL/pGRkdi6dSteeuklfPTRR1CpVPjggw8wY8YMe32EdiMRixDk4YQgDyfEt/J647oHueU11w23Kmv1lluauvXFZ51kEqg8lQjxcm413PJ3U7ITQkRE7UZbp8eTa49AXVmHHn4u+GR2HKe9E3UgpUyCnv5u6OnfMtSqN5jMoVZpNTJLmk9DzCmvhc5gwqXCKlwqbHkVRLlEjDAf5yZTD61TEFWeyi63bisREbVNlwuuAGDhwoVYuHBhq6+tW7euxbaxY8fi+PHjNm6V42lc98DbRY4BIZ6t7lOlMzSEWDWWKYm55dZgq1irQ63eiCvF1bhynXW2pGIRgjyV5iCrYW2tximJIV7mYE0uZUeEiIhuTm80YeHnx3GhQAtfVwXWPTUMns5yezeLiBrIpeLrLhivN5qQV17bbIRW431OWQ3qjSZcLqrC5aKWoZZMIkKolzPCm4ZaDQvHh3g5QcZQi4ioy+qSwRW1H1eF9LrDxAHzUHF1ZV2LcKsx2FJXmtfZyimrRU5ZLYCyFucQiQB/yzpbzq2ut+Wi4I8qEVF3JwgC/rT5DH5JL4GTTIL/PBmPUG9nezeLiNpIJhGbF3P3bbnMhcFogrqyrmHqYQ2ySsz3maXVyC41h1pXS6pxtaQaQHGzYyViEUK8nK4ZpWW+D/V24ohMIqJOjmkA3RGlTIJIXxdEttIBAcydkEKtrlmwde2URJ3BhEKNDoUaHY5nV7R6Hk9nGVQeSijrxSj3yUZCT3/08nfleiZERN3IBzsv4+tjuRCLgA9nDb7uaGEi6nykEjFCvZ0R6u2M0b2av2Y0CSjQ1FnCrKZXP8wsrYbOYGq4OmIN9l1zXrEIUHk6IcLHBaFeSuhLRBhXb4CHA1yEiYiI2obBFdmUVCJumCLoBMC7xeuCIKC0ur7ZgvG55TXNwi1tnQEVNXpU1OgBiHH8xwsALsDDSYahEV4YFumNoRHeiAn24DBxIqIu6ptjuXhvxyUAwGu/isE9fQPs3CIi6igSscjSnxzZs/lrJpOAIq2uxdUPGwOumnojchuuvN1wNlxdfxzrnh4Gd145m4ioU2BwRXYlEong66qAr6sCA0M9W91HU6dHXnktskq0+G7vMVQq/HAypxKVtXrsOF+EHeeLAJgXiR8S7omhEd4YFuGNwWFecJJzaDgRUWe3P70EizedBgA8M64HHh8ebucWEZGjEItFCPRQItBDiRFRPs1eEwQBxVU6ZJXWIKOkGleLtFh/4CqOZ1fg8X8dxqdPD4OXC9fIIyJydAyuyOG5K2VwD5Khp68TdFcFTJ4cD4glOJevQWpGGY5kliE1swwVNXocuFyKA5dLAZgX8YwJ9sCwSHOQFR/uDQ9nfrNGRNSZnFdrsOCzYzCYBEwdqMIfEqPt3SQi6iREIhH83ZTwd1NiaIQ39Ho93CrS8e/LTjiTV4nH/nUIn80bDl9Xhb2bSkREN8DgijolmUSMQaGeGBTqifljomAyCbhcXIXDGWXmMCujDAWaOpzIrsCJ7Aqs3nsVIhEQHeBmmVo4LNIbAe5Ke38UIiK6DnVlLZ5am4oqnQHDI72x4uEBXNuQiO5IiAvw+dNDMWf9MVwo0GLm6hR8MW8EAj3YJyQiclQMrqhLEItF6B3ght4Bbpg9IhyCICC3vBZHMsyjsY5klOFqSTUuFGhxoUCLT1OyAADhPs6WEGtYhDfCfZwhEvGXIiIie9PW6fHU2lQUaOrQ098Vn8yO55XBiKhd9ApwxVe/TcDj/zqEq8XVmLk6BZ/PG86rlBIROSgGV9QliUQiy5VpZsSFAACKtToczSwzj8rKLEOaWmO5As03x3IBAP5uCgxtCLGGRXojOsCN3+4TEXUwvdGEhZ8fx4UCLXxdFVj75FBO9SaidhXp64KNv03A4/8+jOyyGjyyOgWfzx9x3StlExGR/TC4om7Dz02BSbFBmBQbBMC86PuxrHLL1MLTuZUo0uqw5bQaW06rAQDuSiniG0KsoRHeiA32gFzKKxcSEdmKIAj40+Yz+CW9BE4yCdY+OZSjIIjIJkK9nfHVbxMw69/NR171DnCzd9OIiKgJBlfUbbkrZRgf7Y/x0f4AgDq9EadyKnCkYcH341nl0NQZsOtCEXZdMF+5UCkTY3CoF4ZGemN4pDcGh3nCWc6/RkRE7eWDnZfx9bFciEXAR48PRmyIh72bRERdWKCHEht/k4DZaw7jQoEWj35yCJ8+PQwxwfy3h4jIUfA3bqIGSpkEw6N8MLzhUsoGowlpao05yMoow9GscpRV1yPlailSrpqvXCgVi9A/2APDG0ZkDY3wgqczL6tMRHQ7vj6ag/d2XAIAvParGNzdJ8DOLSKi7sDPTYEN80dgztojOJ1biVn/OoT1Tw/D4DAvezeNiIjA4IrouqQSMQaEeGJAiCfmjY6CIAi4cs2VC/Mr63AqpwKncirwyb6rAMxXLhwa6YWhEd4YHunDq9QQEbXBL+nFWLL5DADgmXE98PjwcDu3iIi6Ey8XOT6bNxxPrU3Fsaxy/Prfh/GfJ4davtAkIiL7YXBF1EYikQg9/d3Q09/N8gtVbnlNw1ULy3EkoxRXiqtxsVCLi4VafHYoGwAQ6u2EYRE+GNYQZkX6uvDKhURETZxXa/DMZ8dhMAmYOlCFPyRG27tJRNQNuStl+PTpYZj/6VEcvFKKOWuP4JPZ8RjT28/eTSMi6tYYXBHdgRAvZ4R4OWP6YPOVC0uqzFcuPJJRjtTMMpzLr0ROWS1yynKx6bj5yoW+rgpLiDUs0ht9At0h4ZULiaibUlfW4qm1qajSGTA80hsrHh7Aq7kSkd24KKT4z5NDseCzY9hzsRjz1h/FqseH4N5+nLpMRGQvDK6I2pGvqwL3xQThvhjzlQu1dXocz66wTC08mVuBkiodtp4pwNYzBQAAN4UUcRFeGBbpjWER3ogN8YBCKrHnxyAi6hCaOj2eWpuKAk0devq74pPZ8fz3j4jsTimTYPXsOPxuwwlsO1eIBZ8dw/uPDsb9A4Ls3TQiom6JwRWRDbkpZRjb2w9jG4aY1+mNOJNXaVnw/VhWObQ6A/ZcLMaei8UAAIVUjEGhnuYgK9IbQ8K84KLgX1Ui6lr0RhMWfnYcFwq08HNTYN1TQ+HhLLN3s4iIAAAKqQQfzRqC3399Ct+dzMfzG46jTj8QM+JC7N00IqJuh78NE3UgpUzScPVBbzw73nzlwgsFWkuQlZpZhtLqehzOKMPhjDIAgEQsQn+VO4ZFeGNow9UL3eScRkNEnZcgCFiy+Qz2Xy6Bs1yC/8wZihAvZ3s3i4ioGalEjHdnDoJCKsZXR3Px+69Poc5g5MUjiIg6GIMrIjuSSsSICfZATLAHnr4rsuHKhdVIzTRfufBwRhnyKmpxOrcSp3Mr8e/9GQCAnn4uiJKLMbrOAG8ZRygQUefy/s50fHMsF2IR8NGsIYgN8bB3k4iIWiURi/DmgwPgJJNgfUoW/vztWdTpTZh7V6S9m0ZE1G0wuCJyIOYrF7qip78rHhsWBgDIr6hFaqY5xErNKEN6URUuF1fjMsQ4mvQLFk2IxqNDQyGViO3ceiKim/v6aA6SdqQDAP7+q1iM7+Nv5xYREd2YWCzCq1P7m9e+2ncVr/2Yhjq9Ec+O72nvphERdQsMrogcnMrTCdMGBWPaoGAAQFl1PfZcKMCbP5xGUbUef/nfWaw/mIk/398X46L5CyAROa5f0ouxZPMZAMDCcT0wa3iYnVtERNQ2IpEIiyf1gZNcgqQd6Vix7SJq6434fWJviERcwoGIyJY4RIOok/F2kWPKgCAsHmjE/93fB17OMqQXVeHJtamYveYwLhRo7N1EIqIWzqs1eOaz4zCYBEwbpMLLidH2bhIR0S0RiUR48d7eWDypDwDgw92X8fct5yEIgp1bRkTUtTG4IuqkJGJg9ogw7PnDePxmTBTkEjF+SS/B5Pd/wZLNp1GkrbN3E4mIAADqylo8tTYVVToDhkd64+2HBkAs5ggFIuqcFoztgaVT+wMA1uzPwF/+dxYmE8MrIiJbYXBF1Ml5OMnwp8l9sWPRWNwfGwSTAGw4koPxK/bgo92XUac32ruJRNSNaer0eGptKgo0dejp74pPZsdDIZXYu1lERHdkzsgIvDUjFiIR8PnhbPzhm9MwGE32bhYRUZfUrmtcaTS3PkXJ3d29PZtA1G2F+Tjjo8eH4KnMMry25TxO5VRgxbaL+PxQFv5wXzSmDQzmCAci6lD1BhMWfnYcFwq08HNTYN1TQ+HhzCuhtgX7VESO75GhYVDKJFj01SlsOp6LOoMRSY8MgowXzCEialftGlx5enre0uKEIpEIly5dQlRUVHs2g6hbi4/wxrfPjMQPp/Px9s8XkVdRi5c2nsLaA5n4y/39MCzS295NJKJuQBAELNl8Bvsvl8BZLsHaJ4cixMvZ3s3qNDpDnyoiIgJZWVnNtv3xj3/Em2++2WFtILK3aYOCoZCK8fyGE9hyWg2d3oSPHh/MkaVERO2o3a8q+M0338Db++a/GAuCgMmTJ7f32xMRzJdtnjYoGBP7B+I/BzKwavcVnM6txMzVKbivfyAWT+qDCF8XezeTiLqwpB3p2HQ8FxKxCB89PgQxwR72blKn0xn6VMuWLcP8+fMtz11dXe3SDiJ7ui8mCJ/MluC3nx3DjvOFmLf+KD6ZHQ8nOcMrIqL20K7BVXh4OMaMGQMfH5827R8VFQWZjFMGiGxFKZNg4bieeDguFO/tuIQvj2Tj53MF2HmhEE8kROB3d/fitB0iandfHc3B+zvTAQCvTYvB+Gh/O7eo8+ksfSo3NzcEBgZ2+PsSOZrxffyx9smhmLf+KH5JL8GTa49gzZND4apo93ECRETdTrv+S5qRkXFL+589e7Y9356IrsPPTYE3psfiyZEReH3L+f9n787Do6zOPo5/ZyaTyb7vZCMJ+74TUASVgGhxQS2iVGxFrbW2pbaVt4vYVmkVl2prXatWrVXrUiuKoCCihH3ft4Ts+75Pknn/mDBDJGiQTNbf57pykXnmec6cuRnCyf2ccx/WHynkhS/SeHtHFndfPICbJsfh7qZ6DCJy/j4/Usj/vbMXgB/NSGTBpNgu7lHP1FPGVH/+85/5wx/+QExMDNdddx2/+MUvcHd3b/Pc+vp66uvrHY9P1fGyWq1YrdYO79upNl3Rdk+jWNi5Og4T4/x58eax/OCVHWxOK+Gm5zfxwsKx+Hl2v5uE+kw4KRZOioWTYmHn6ji0t13dAhDpQwaG+/Ly9yey/kghD648yOH8Sn7/wQFe2XSSpZcNZubQ8HOqqSIicroDORXc+doOGpttXDk6intSBnV1l8SFfvKTnzB27FgCAwPZsmULS5cuJS0tjeeff77N85cvX879999/xvHVq1fj5eW6+mdr1qxxWds9jWJh5+o43D4Qnj5gYldmOVf+ZS0/HNKET/fLXQH6TJxOsXBSLJwUCztXxaGmpqZd57kscfXEE0+0edxgMODh4UFSUhLTpk3DZNLab5HOdtHAUKYmBvPW9iweWX2YtKJqbntlO5P6B/HbK4aqFo2InLPc8lq+/9JWquobmZwQxEPXjlQivIN05phq2bJlbSaXTrd161bGjx/Pz372M8exkSNHEhgYyLXXXsuf//znNpc4Ll26lCVLljgeV1RUEBMTQ0pKikt2RLRaraxZs4aZM2f2+dIUioVdZ8ZhRl4lN7+0jaxqKy9l+PPyovGE+lpc+prnQp8JJ8XCSbFwUizsXB2H9u6i7LLE1WOPPUZhYSE1NTUEBgZis9koKyvDy8sLHx8fCgoKSEhIYN26dcTExLiqGyJyFm4mIzdMjOU7o6L4+2fHeH5DGpvTSvjOX7/g6jH9+MWsQUT6e3Z1N0WkB6ios3LLi1vJq6hjQJgPz9w0XjtqdaDOHFPdddddzJ8//2vPiY+Pb/P45MmTATh27FibiSuLxYLFcuYv7maz2aW/FLi6/Z5EsbDrjDiMiAnizduncOPzmzhaUM2N/9jGa7dOIiqge42t9JlwUiycFAsnxcLOVXFob5suK2rz4IMPMmHCBI4ePUpxcTElJSUcOXKESZMm8Ze//IWMjAwiIiJa3a0Tkc7nY3HjF7MGs/ae6Vw1OgqbDd7Zkc2MFZ/x6OrDVNc3dnUXRaQba2hs5s5Xd3Aor5JQXwsv3jJBmz50sM4cU4WEhDB48OCv/fLw8Gjz2p07dwIQGRl53v0Q6Q2Swnx48/Zk+gV4klZUzfXPpJJR3L5lMSIi4uSyxNVvfvMbHnvsMRITEx3HkpKSWLFiBUuXLiU6OpqHHnqIL7/80lVdEJFz0C/Ak8fnj+G/P5rKhPhA6qzNPLH2GNNXfMabWzNparZ1dRdFpJux2WwsfWcvXxwrwsvdxIuLJhAd6LpaRX1VdxxTpaam8thjj7Fr1y7S0tJ48803uf3225k7dy6xsSrIL3JKXLA3b96RTHywF1mltVz/TCrHCqq6ulsiIj2KyxJXubm5NDaeOVOjsbGRvLw8AKKioqisrHRVF0TkWxgVE8Cbtyfz9xvHEhfsRWFlPb98ew+XP7GBL44WdXX3RKQbeeyTo7y9IwuT0cDfbhyr+ngu0h3HVBaLhTfeeIPp06czdOhQfve737F48WJef/31TuuDSE/RL8CTN29PZkCYD3kVdcx/NpVDee2r6yIiIi5MXM2YMYPbb7/dMW0c7FPIf/jDH3LxxRcDsHfvXvr37++qLojIt2QwGLhsRCSrfzaN31w+BD8PNw7lVXLTC5v5/ktbOVaghLNIX/fm1kye+PQoAH+4cjgzBoV1cY96r+44pho7diybNm2irKyM2tpaDh06xLJly1y6O6BITxbm58G/b5vM0Eg/iqoamP/sJvZmlXd1t0REegSXJa5eeOEFgoKCGDdunKMY5/jx4wkKCuKFF14AwMfHh0ceeaTDXrO0tJSFCxfi7++Pv78/CxcupKys7Guveeedd5g1axYhISEYDAZ27drVYf0R6eksbiZuvTCB9b+YwaIp8bgZDaw9VMCsxzfw2/f2UVxV39VdFJEusP5IIUvf3QvAj2YksmCSloa5UleMqUSk4wX7WHh98WRGxwRQVmNlwXOb2H6ypKu7JSLS7blsV8GIiAjWrFnDoUOHOHLkCDabjcGDBzNo0CDHOTNmzOjQ11ywYAFZWVmsWrUKgNtuu42FCxfyv//976zXVFdXM3XqVK677joWL17cof0R6S0Cvd1ZNncY30uOY/lHh1hzIJ9XNp3kvZ3Z3HVxEjdPicfDrB3ERPqC/Tnl3PnqdpqabVw1Oop7UgZ980VyXrpiTCUiruHvZebVWyfx/Ze2siWthIUvbOH5m8czJTGkq7smItJtuSxxdUpCQgIGg4HExETc3Fz3cgcPHmTVqlVs2rSJSZMmAfDcc8+RnJzM4cOHWw3uTrdw4UIA0tPT2/1a9fX11Nc7Z5pUVNjXqFutVqxW67d8B2071V5Ht9sTKRZOXRWLmAALT90wis1pJTz40WEO5Fay/KNDvJKazj0pA5kzPByDwdCpfdLnwkmxsFMcnDo6FrnldXz/xa1UNzQxuX8gD1w5tM3aS92RKz8XnfVZ66wxlYi4lo/FjZdvmchtr2xjw9EibnlxK88sHMd0LbkWEWmTy0Y9NTU1/PjHP+bll18G4MiRIyQkJHD33XcTFRXFvffe26Gvl5qair+/vyNpBTB58mT8/f3ZuHHjWRNX38by5cu5//77zzi+evVql9V2WLNmjUva7YkUC6eujMXiONjmZeCDDCNZZXX89M09PP6hjavjm4j37fz+6HPhpFjYKQ5OHRGL2kb4yz4T+bUGIjxtXBlSyCerV3VA7zqXKz4XNTWu3d6+s8dUIuJ6nu4mnvveeO761w4+OVjA4n9u48kbxjJ7eERXd01EpNtxWeJq6dKl7N69m88++4zZs2c7jl966aXcd999HT7IysvLIyzszLsUYWFhjh13OsrSpUtZsmSJ43FFRQUxMTGkpKTg5+fXoa9ltVpZs2YNM2fOxGw2d2jbPY1i4dRdYnEF8MuGRl748iTPbUgjvaqZx/a5cfmICO6ZOYDoQE+X96G7xKI7UCzsFAenjopFQ2Mzi1/ZQW5tCWG+Ft64bSJRAa7/992RXPm5ODXz2lU6e0wlIp3Dw2ziqRvH8bM3drFyby4/+tcOHvvuaOaOiurqromIAGCz2dhfamBqrZWQLhxXuyxx9d577/HGG28wefLkVkuHhg4dyvHjx9vdzrJly9qc3XS6rVu3ArS5RMlms3X40qVThVG/ymw2u+yXJFe23dMoFk7dIRb+ZjNLUgZz4+R4Hll9mLe2Z7Fybx5rDhbw/an9uXNGIn4eru9jd4hFd6FY2CkOTucTC5vNxq/e3c3GEyV4uZv4x6IJxIV27E2azuSKz4WrP2cdNaYSke7H3c3IX+aPxuJm5J2d2fzk3zupszZx/fiYru6aiPRh9Y1N/HdXDs+uP86xQhN+W7O465KBXdYflyWuCgsL25wBVV1dfU6JpLvuuov58+d/7Tnx8fHs2bOH/Pz8NvsRHh7e7tcTkW8n3M+Dh64dxc1T4nlg5UE2Hi/m6fXHeXNbJj+bOZAbJsTgZnLZRqYi4iKPfXKUd3ZkYzIa+NuNYxnez7+ru9TndNSYSkS6JzeTkRXXjcLD3cS/Nmfwy//soc7axPeS47u6ayLSx5TXWHl180le2phOYaW9rrfFZOviXrkwcTVhwgRWrlzJj3/8Y8A5G+pUwfT2CgkJISTkm3fZSE5Opry8nC1btjBx4kQANm/eTHl5OVOmTPkW70BEvo1hUf68dusk1h4q4MEPD3K8sJrfvrePlzem8+s5Q5g+KFS/aIn0EG9uzeSJT48C8MerhjNDhYO7REeNqUSk+zIaDTxw1XA83Ez848s0fvff/dRZm7htWmJXd01E+oDMkhr+8WUab2zNpKahCYAIPw9uTo4lsOQA86b179L+uSxxtXz5cmbPns2BAwdobGzkL3/5C/v37yc1NZX169d3+OsNGTKE2bNns3jxYp555hkAbrvtNq644opWhdkHDx7M8uXLufrqqwEoKSkhIyODnJwcAA4fPgzYt56OiFBxRJFvw2AwcMmQcKYNDOX1LRk8tuYIxwqquOWlrVw4IIT/mzOEIZE9d6mRSF+w/kghS9/dC8BdM5K4YWJsF/eo7+rsMZWIdA2DwcBvrxiCp7uRv607zoMfHqK2oZm7L0nSTT8RcYk9WWU8+/kJPtybS3PLxKrBEb7cNi2BK0ZGYbA18eGHB7q2k4DL1u1MmTKFL7/8kpqaGhITE1m9ejXh4eGkpqYybtw4l7zma6+9xogRI0hJSSElJYWRI0fyyiuvtDrn8OHDlJeXOx6///77jBkzhssvvxyA+fPnM2bMGJ5++mmX9FGkLzGbjHwvOZ7PfjGD26cl4G4ysuFoEZc/sYF7395DQWVdV3dRRNqwP6ecO1/dTlOzjavH9OPnKV1X00C6ZkwlIl3DYDDwi1mDuafl5+5jnxzhoY8PY7N1/VIdEekdmpttrD2Uz3efSWXuX7/kgz32pNWFA0J45QcT+egnF3LN2Gjc3bpPmReXzbgCGDFihGPr5s4QFBTEq6+++rXnfPWH/qJFi1i0aJELeyUi/p5mls4Zwk2T4/jTqkOs3JPLv7dm8v7uHH54USK3XpiAp7upq7spIkB2WS23vLiV6oYmkhOC+fO8kbrT3w109phKRLrWXRcPwMNs4o8rD/L3z45T29DE764YitGon8ci8u3UWZv4765sntuQxrGCKgDcjAbmjori1gsTGBrVfVfEdGji6ly2g/bz675BERHXiAny4m8LxvL9qSX84YOD7Mos45E1R/jXlgx+MWsQV43upwGZSBcqr7Vyy4tbKKisZ0CYD08vHNet7rb1JRpTicitFybgYTbxm/f28dLGdOqsTTxw9QhMGiuJyDkoq2ng1U0neWnjSYqq7AXXfS1uLJgUy6Kp8UT6e3ZxD79ZhyauAgIC2n1XtqmpqSNfWkR6kHFxQbx75xT+tyeXP390iOyyWpa8uZsXv0zn15cPYXJCcFd3UaTPaWhs5oevbudIfhVhvhZe+v5E/D3NXd2tPktjKhEBuGlyHB5mE7/8z27+vTWTOmsTK64bpZ2aReQbZRQ7C67XWu1jhSh/D75/QX++OyEGX4+eM87r0MTVunXrHN+np6dz7733smjRIseON6mpqbz88sssX768I19WRHogg8E+LTVlaDgvfpnO39YdY292OfOf3cSsYeHce9kQ+od4d3U3RfoEm83GvW/vYePxYrzdTfxj0QT6BXT/u2+9mcZUInLKteOi8TAb+em/d/HerhzqG5v5y/wxmhErIm3alVnGc5+f4KN9zoLrQyP9uG1aApePjMTcAxPfHZq4uuiiixzf//73v+fRRx/lhhtucBybO3cuI0aM4Nlnn+Xmm2/uyJcWkR7Kw2zih9MTuW58NI9/coR/bc7g4/35fHqwgO8lx3P3JUkEeLl3dTdFerXH1hzhnZ3ZmIwG/nbjWIb38+/qLvV5GlOJyOmuGBmFu8nIXf/ayUf78qh/dTtP3TgWD7NqhIqIveD6p4cKeO7zE2xJL3Ecv2hgKLdNS2BKYnCPrlnqslRbamoq48ePP+P4+PHj2bJli6teVkR6qBAfC3+8agSrfjqN6YNCaWy28Y8v07jo4c944Ys0Ghqbu7qLIr3SG1szeGLtMQAeuGo40weFdXGP5Ks0phIRgJRhETx383gsbkbWHirg1pe3UdPQ2NXdEpEuVGdt4vUtGVz62HoW/3MbW9JLMJsMzBsbzaqfXsjL35/I1KSQHp20AhcmrmJiYnj66afPOP7MM88QExPjqpcVkR5uYLgvL90ykX9+fyKDI3wpr7Xyhw8OkPLYelbty9N20CIdaP2RQv7v3X0A/PjiJOZPjO3iHklbNKYSkVMuGhjKy9+fiJe7iS+OFXHzP7ZQWWft6m6JSCcrqW7giU+PcsGf17L0nb2cKKzG18ONOy5KZMMvL+aR60cxOKL3bN7SoUsFT/fYY48xb948Pv74YyZPngzApk2bOH78OG+//barXlZEeolpA0OZmhTCW9syWbH6COnFNdzx6nYm9g/iN5cPYWR0QFd3UaRH259Tzp2vbqep2cY1Y/qxZObAru6SnIXGVCJyuskJwbx66yRu/scWtqaXctPzm3n5+xNVWkGkDzhZXM3zG9J4a3smdVb7ipR+AZ7cMjWe+RNj8bG4LMXTpVw242rOnDkcPXqUK6+8kpKSEoqLi7nyyis5cuQIc+bMcdXLikgvYjIamD8xls9+MZ0fX5yExc3IlrQS5v71S5a8sYucstqu7qJIj5RdVsstL26luqGJ5IRg/jRvZI+fQt6baUwlIl81NjaQ1xdPJtDLzO4s++Y2p7a5F5HeZ0dGKT98dTvTV3zGK5tOUmdtZliUH3+ZP5rPfjGdWy9M6LVJK+jgGVd79uxh+PDhGI32fFh0dDQPPPDAWc/fv38/gwYNws2t9wZYRM6fj8WNn6cM4oaJsaz4+DDv7MzmnZ3ZrNybyw+mxhOn8g4i7VZea+WWF7dQUFnPwHAfnl44TjtTdUMaU4nINxnez59/35bMjc9v5lBeJfOf3cRrt04i3M+jq7smIh2gudnGmoP5PPf5CbadLHUcnz7IXnA9OaFnF1w/Fx06Uh0zZgzFxcXtPj85OZmMjIyO7IKI9GJRAZ48+t3RvH/XVCbGB1Hf2MxT60/wu+0mlv3vIIfzKru6iyLdWkNjMz98dTtH8qsI87Xw4i0T8fc0d3W3pA0aU4lIewyK8OXN2ycT6e/BsYIqrn8mlazSmq7uloichzprE69tPsklj67n9le2s+1kKWaTgevGRfPxT6fx0i0TmZLY8wuun4sOvS1ns9n47W9/i5eXV7vOb2ho6MiXF5E+YmR0AG/cPpmP9+fz0KpDnCiq5rUtmby2JZOJ/YP4XnIcKUMjNItE5DQ2m417397DxuPFeLub+MeiCfQL8OzqbslZaEwlIu2VEOrDm7cns+D5TZwsruG7z9hnXsWHeHd110TkHBRX1fPKppP8M/UkJdX2/9f9PNy4aXIcN0+J79OzKTs0cTVt2jQOHz7c7vOTk5Px9NSgWUTOncFgYPbwCC4eGMTj/17FMSL59FAhW9JK2JJWQqivhRsmxHDDpFgi/fVzRuTRNUd4Z2c2JqOBv904luH9/Lu6S/I1NKYSkXMRE+TFm7cnc+NzmzlRVM31z6Ty2q2TGBDu29VdE5FvkFZUzQtfnOCtbVnUN9oLrkcHevKDC/pz/fgYvHtx7ar26tAIfPbZZx3ZnIjINzIYDAzyt/GzOaMpqmnk9S2ZvL4lg8LKep5Ye4y/fXacmUPCWZgcx5TEvrMOXOR0b27L4sm1xwB44KrhTB8U1sU9km+iMZWInKtIf0/euD2ZhS/Ya15999lNvPKDiQyL0o0Kke5o+8kSnv38BKsP5GOz2Y+N6OfPbdMSuGx4BG4mrR45Rak7Eek1Iv09WTJzIHfNSGL1gTxeST3J5rQSVu3PY9X+PBJCvblpUhzzxkWrro/0GQdLDTy3+SAAP744ifkTY7u4RyIi4iqhvhZeXzyZ7/1jC3uzy7nh2U388weTGB0T0NVdExGgqdnGmgP5PPv5cXZklDmOXzI4jMXTEpjUP0g32tugxJWI9DrubkauGBnFFSOjOJJfySupJ3lnRxYnCqv5/QcHePjjw1w1JoqbJsfpLqT0anuyynnxiJGmZhvXjOnHkpkDu7pLIiLiYoHe7ry2eBK3vLiV7SdLuen5zfxj0QQm9g/q6q6J9Fm1DU38Z0cWL2w4QXqxfQMFd5ORq8f049YL+2tZ7zdQ4kpEerWB4b784arh/Oqywby7M5tXUtM5kl/VsqQwk7GxAXwvOZ7LRkRgcTN1dXdFzpu1qZlPDuTzry0ZbDhaBBhITgjiT/NG6g6eiEgf4edh5p/fn8itL28j9UQxN/9jC899bzwXDAjp6q6J9ClFVfX8M/Ukr6SmU1pjBcDf08zCyXF8b0ocYb59t+D6uVDiSkT6BB+LGwsnx3HTpFi2ppfyz9R0Vu3LY0dGGTsydvH7D9z57oQYFkyMJSaofbt4iXQnmSU1vL4lgze3ZVFUVQ+AwQDDApr56/xR2mVTRKSP8ba48eItE7j9le2sP1LI91/eytM3jeXiweFd3TWRXu9EYRXPf5HG29udBddjgjz5wdT+XD8hBi93pWLOhaIlIn2KwWBgYv8gJvYPoqCyjje2ZPKvLRnkltfx98+O8/T641w8KIyFyXFMGxCK0agZKtJ9WZua+fRgPq9tzuCLY0WOwp6hvhauHx/NvDGR7E39DD/VdBMR6ZM8zCae/d44fvyvnaw+kM9t/9zOEzeMYeZgzbwS6Wg2m41tJ0t59vMTfHLQWXB9VLQ/t01LZNawcBVc/5aUuBKRPivM14MfXzKAH05P5JODBby66SRfHCvi00MFfHqogNggL26aHMt142II9Hbv6u6KOGSW1PDvrfbZVYWV9Y7jFw4IYcHEWC4dGo7ZZMRqtbK3C/spIiJdz+Jm4m83jmXJm7v53+4c7vrXDh66Zji6pSHSMZqabazen8ezG06w87SC65cOCeO2aYlMiA9UuYbzpMSViPR5biYjs4dHMHt4BMcLq3htUwZvbc8ko6SGBz88xIrVR/jOyCi+lxzHKO3KI13EPruqgNe3ZPD50ULHXbwQH/vsqvkTYokN1jJXERE5k9lk5PHvjsbDzchb27P4xTv7uDbewGWn/jMRkXNW09DIf7Zn8fyGNDJKWgquuxmZN7YfP7gggaQwny7uYe+hxJWIyGkSQ3343XeGcs+sgby/K4d/pp7kQG4Fb+/I4u0dWYyM9uemyXHMHRWFh1nF3MX1MktqeGNrJm9uy6TgK7OrbpgYy6VDwlW/SkREvpHJaODP80bi6W7in6kneSvNxBePbGD28AguGx7JuLhATCqRIPKNCivreSU1nX9uOklZS8H1AC8z35scx8LkeEJ9LV3cw95HiSsRkTZ4ubsxf2Is350Qw87MMl5NPckHe3LZk1XOL/+zhwdWHuT68dHcOCmO+BDvru6u9DKNTc18eqiAf23+6uwqd64bH8P8CTHEBetzJyIi58ZoNHD/3GEEeLjxzPpj5JbX8eKX6bz4ZTqhvhZmDQvnsuGRTOofpFo8Il9xrKCKF744wds7smloKbgeG+TFrRf259px0Sq47kKKrIjI1zAYDIyNDWRsbCC/vnwIb27L4rXNJ8kqreW5DWk8tyGNaQNDWTg5josHh+lOpZyXrFLn7Kr8CufsqguS7LOrZg7V7CoRETk/BoOBH1+cSGzNYXwSx7P6YCFrDuZTWFnPq5syeHVTBoFeZmYOtSexpiaF6P8e6bNsNhtb0kp49vPjfHKwwHF8dEwAt09LIGVYhMb/nUCJKxGRdgr2sfDD6YncNi2B9UcKeCX1JJ8dKeTzlq9+AZ4smGSfpRXioynC0j6NTc2sPWSvXfXZEefsqmBv5+wqzeoTEZGOZjbCJUPCmD2yHw2NzWw8XsSqfXmsPpBPSXUDb27L4s1tWfha3Lh0aDizh0dw0cBQlUqQPqGxqZmdxQZeeHYze7IqADAY4NIh4dw2LYHxcSq43pmUuBIROUcmo4GLB4dz8eBwThZX86/NGbyxLZPssloe/vgwj39yhDkjIlk4OY5x+k9NziK7rJY3ttg/O6fPrpqaFMwNE2NJGRqhO9wiItIp3N2MTB8UxvRBYfzxqma2pJXw0b48Pt6fR0FlPe/uzObdndl4uZuYMSiM2cMjuHhwGN4W/TopvUdRVT2bThSTeryYzw4XkF1mAipwdzNy7bhofnBBfxJDVXC9K+gnjYjIeYgL9mbpnCH8bOZAVu7J5ZVNJ9mVWcZ/d+Xw3105DIn0Y+HkOK4cHaXBndDY1My6w4X22VWHC2humV0V5O3OdeOimT8xlv6aXSUiIl3IzWRkSlIIU5JCuH/uMHZklPLRvjxW7csju6yWlXtzWbk3F3c3IxcNDOWy4RFcMiQcf09zV3dd5JyU11jZlGZPVKUeL+ZwfmWr573dbNxyQSKLLkjQaooupt+iREQ6gIfZxLxx0cwbF83erHJe2ZTOf3flcDC3gv97dy/LPzzIvHHR3DQ5Tlvj9kE5ZbX8e2smb27NJK+iznF8SmLL7Kph4VjctPRCuo8HHniAlStXsmvXLtzd3SkrKzvjnIyMDH70ox+xdu1aPD09WbBgAStWrMDd3b3zOywiLmE0GhgfH8T4+CB+c/kQ9mSVtySxckkvrmHNgXzWHMjHbDIwJTGEy4ZHkDIsgiBv/RyQ7qeyzsrW9BJSjxez8XgxB3IrHCUaThkc4UtyYjAT4wKoOraNqy5JwmxWUrarKXElItLBRkT789C1o/i/OUP4z/YsXt10kvTiGl7amM5LG9OZkhjMwslxXDo0HLN27Om1mpptrGupXbXuK7Orrh0XzfwJMSRourl0Uw0NDVx33XUkJyfzwgsvnPF8U1MTl19+OaGhoXzxxRcUFxdz8803Y7PZePLJJ7ugxyLiagaDgVExAYyKCeBXswdxKK/SkcQ6kl/F+iOFrD9SyP+9u5fJCcFcNjyCWcMiCPPz6OquSx9V09DItvRSUluW/+3NLqepuXWmKjHUm+TEYKYkhjCpfxDBLTOrrFYrH6Z1Ra+lLUpciYi4SICXO7demMD3p/bni2NFvLLpJJ8ezGdjy12ecD8LCybGccPEGA3qepHc8lre2JrJG1szyS13zq5KTgjmhkmxzNLsKukB7r//fgBeeumlNp9fvXo1Bw4cIDMzk6ioKAAeeeQRFi1axAMPPICfn19ndVVEuoDBYGBIpB9DIv1YMnMgxwqqWLUvl4/25bE/p8Ix1vnd+/sZFxvI7OERXDYikn4Bnl3ddenF6qxN7MgoZdPxYlJPFLMrswxrU+tEVVywF8kJwSQnBpOcEKwxeA+hxJWIiIsZjQamDQxl2sBQsstqeX1zBv/emkF+RT2PfXKEJ9ceZdawCG6aHMfkhCAVc++BmpptfHbYPrtq7SHn7KpALzPXjovmhomxml0lvUpqairDhw93JK0AZs2aRX19Pdu3b2fGjBlnXFNfX099vXMjgooK+y5NVqsVq9Xa4X081aYr2u5pFAs7xcGpo2MRF2jh9gvjuf3CeDJKavj4QD4f7y9gd1Y5206Wsu1kKX9ceZCR/fxIGRrO7GHhxAV7dchrny99Lpx6WiwaGpvZm11O6okSNqeVsCOznIbG5lbnRPl7MCkhiMn9A5ncP4ioryRPz/Zee1osXMXVcWhvu0pciYh0on4BntwzaxA/viSJVfvyeHXTSbamlzoKnQ4I82FhchxXj+mHr4fW03d3ueW1vLk1ize2ZpBz2uyqSf2DWDApltnDIzS7SnqlvLw8wsPDWx0LDAzE3d2dvLy8Nq9Zvny5YybX6VavXo2Xl+t+gV2zZo3L2u5pFAs7xcHJVbHoB3w/BkrDYE+Jgd3FRk5Uwp7sCvZkV7BizVGivGyMCmpmdLCNiG6Qw9Lnwqm7xqLJBllVcLTCwNFyAycqDTQ0t77h62e2McDfxgA/+5/BlioMhirIzWBXLuw6x9fsrrHobK6KQ01NTbvOU+JKRKQLWNxMXDm6H1eO7sfB3Ape3XSSd3dmc7Sgit/9dz9/+ugQV4/px8LkOAZHaMlNd9LUbOPzI4W8tjmDtYfyHbOrArzMXDs2mhsmxWqrZOmWli1b1mbi6HRbt25l/Pjx7WqvrdmhNpvtrLNGly5dypIlSxyPKyoqiImJISUlxSVLC61WK2vWrGHmzJl9vrCuYmGnODh1ZixubPmzsLKeNQcL+PhAPpvTSsmpgZwaEx9lQUKIN7OGhTFraDhDI307dfa5PhdO3S0Wzc02DuZVsjmthE1pJWxNL6OqvrHVOYFeZib3D2qZVRVEQohXh3x+ulssuoqr43Bq9vU3UeJKRKSLDYn044GrR/Crywbz7o5sXtl0kmMFVby2OYPXNmcwMT6Im5LjmD0sAnc3FXPvKnnldby5zV67Krus1nH81OyqWcMi8DBrdpV0X3fddRfz58//2nPi4+Pb1VZERASbN29uday0tBSr1XrGTKxTLBYLFsuZ24mbzWaX/lLg6vZ7EsXCTnFw6sxYRAWZuXmqDzdPTaC0uoE1B/NZtS+PL44WcaKomr+vT+Pv69OIDfLisuERzB4eweiYgE5LYulz4dRVsbDZbBwtqGLjsSJSTxSzOa2EsprWS8n8PNyYlBDMlER7naqBYb4Yja77jOhzYeeqOLS3TSWuRES6CT8PMzdPied7yXFsOlHCK5vS+Xh/PlvSS9iSXkKIjzvzJ8Ryw6RYFTftJE3NNj4/Wsi/NttrV53aiSbAy8y8sfbaVUlhml0lPUNISAghISEd0lZycjIPPPAAubm5REZGAvYlfxaLhXHjxnXIa4hI7xXo7c7142O4fnwMFXVW1h4s4KN9uXx2uJCMkhqe+fwEz3x+gkh/D2YNi+Cy4RGMjw/C5MIEhXQ+m81GWlE1G1uKqW8+UUxRVUOrc3wsbkyID2RKYgjJicEMifTT56APUuJKRKSbMRgM9p1OEoPJr6jj9S0ZvL7FXsz9r+uO8dRnx7h0SDgLk+OYmhji0rtMfVV+RR1vbs3k31+ZXTUx3lm7SrOrpDfLyMigpKSEjIwMmpqa2LVrFwBJSUn4+PiQkpLC0KFDWbhwIQ8//DAlJSXcc889LF68WDsKisg58fMwc9WYflw1ph81DY18driQD/fmsu5QAbnldby0MZ2XNqYT4mNh1rBwLhseyaSEIMwmzULviTJLakg9XszG4/ZZVfkV9a2e9zAbmRAfxOSWWVUj+vnjpr/rPq9XJa5KS0u5++67ef/99wGYO3cuTz75JAEBAW2eb7Va+c1vfsOHH37IiRMn8Pf359JLL+VPf/pTq11yRES6SrifBz+9dCA/mpHEJwfy+WfqSVJPFLP6QD6rD+TTP8SbGyfFct24GLw0i/m8NDXb2NAyu+rT02ZX+XvaZ1ctmBRDUphvF/dSpHP87ne/4+WXX3Y8HjNmDADr1q1j+vTpmEwmVq5cyZ133snUqVPx9PRkwYIFrFixoqu6LCK9gJe7G3NGRDJnRCR11iY2HC3io325fHIgn6KqekcZhQAvMzOHhHPZiAimJoVoI5RuLLe8ltTjxS3JquJWNwQB3N2MjI0NIDnBPqNqVIy//j7lDL0qcbVgwQKysrJYtWoVALfddhsLFy7kf//7X5vn19TUsGPHDn77298yatQoSktL+elPf8rcuXPZtm1bZ3ZdRORrmU1GLhsRyWUjIjlWUMmrmzJ4e3sWaUXV/HHlQVasPszlIyJoLjHQsCuHEF9PArzMBHq5E+jljq+Hm2ZmnUVBhb121etbWs+umhAfyIJJsVw2PFKzq6TPeemll3jppZe+9pzY2Fg++OCDzumQiPQ5HmYTM4eGM3NoOA2NzaSeKOajvbmsPpBPSXUDb23P4q3tWfha3LhkSBizh0dy0cBQPN31f3ZXKqysJ/VEcUuyqoj04ta7xrkZDYyOCbCvLkgIZmxcoMZZ8o16TeLq4MGDrFq1ik2bNjFp0iQAnnvuOZKTkzl8+DCDBg064xp/f/8ztnV88sknmThxIhkZGcTGxrb5WvX19dTXO6c0nqqEb7VasVqtbV7zbZ1qr6Pb7YkUCyfFwqkvxiIu0INfXzaQn16cwPt7cvnX5kwO5Vfx9o4cwMS76fvOuMZosM8cCvQyE+DlToCnuSWxZW753v0rj+3HLD2wGHx7PhPNzTa+PF7M61uzWHu40DG7ys/DjavHRPHd8dEMcNSuasZqbXZ1t12iL/77OBtXxkLxFRFxLXc3IxcNDOWigaH88apmtqSXsGpfHqv25VFQWc97u3J4b1cOnmYTMwaHMnt4JBcPDsPH0mt+3e22Sqsb2HSi2JGsOlpQ1ep5owFGRAeQnGAvgzE+LhBv/b3IOeo1n5jU1FT8/f0dSSuAyZMn4+/vz8aNG9tMXLWlvLwcg8Fw1uWFAMuXL29zO+nVq1fj5eV1zn1vj68m2PoyxcJJsXDqq7HwB+7oD2khsKvYSIUVqhuhptFAdcv3Dc0Gmm1QWmOltMYK1HxTsw4Wow1vM3i5gbebDW838HYDL/NXHzu/9zBBJ+5ifVZtfSbKG2BzgYHUAiMl9c5O9ve1MTW8mVFBjbhzgqPbTnC0MzvrYn3130dbXBGLmpr2/5sSEZHz42YyMiUxhCmJISz7zjB2Zpby4V57Eiu7rJYP9+bx4d483N2MTBsQymXDI7h0SDj+qqnQISrqrGw5UeIoqH4orwKbzfm8wQBDIvwcu/5N6B+En4diL+en1ySu8vLyCAsLO+N4WFgYeXl57Wqjrq6Oe++9lwULFnxtYdGlS5eyZMkSx+OKigpiYmJISUnp8IKkVquVNWvWMHPmzD6/Dadi4aRYOCkWTmeLRX1jM2U1DZTVWCmrtSevymqs9mOnP661HyutsVJea6XZBvXNBurroaQeoH3ZKDejAf82ZnTZZ3udOubeMqvL/tjf09xhRVa/GofmZhtfnijm31uzWHuokMbTZlddNTqK+eOjGRDeO3cG1L8PJ1fG4tTMaxER6VxGo4FxcUGMiwviN5cPYW92OR/ty+OjvbmkF9fwycF8PjmYj5vRwJSkEC4bHkHK0HCCfSxd3fUeo7q+ka3pJY4ZVfuyy2m2tT5nYLgPUxJDmJwQzOSEIAK83Lums9JrdfvE1bJly9qc3XS6rVu3AvaduL7KZrO1efyrrFYr8+fPp7m5maeeeuprz7VYLFgsZ/6wM5vNLvvFwJVt9zSKhZNi4aRYOH01FmYz+HhaiA5ufxvNzTYq6xoprWmgtCXpVVLt/P70P0trTiW8GqizNtPYbKO4uoHi6oZvfqHT+FrcCPC21+U6legKdCxhdG9VsyvAy0ygtzve7qaz/owvq2vm3c0n+ffWDDJLnLWrxsUFsmBiLHNGRPaZOhj69+HkilgotiIiXc9gMDAyOoCR0QH8ctYgDuVV8tG+PFbty+VIfhWfHynk8yOF/PrdvUzqH8xlIyKYNSyCIM++MRZor4Ym2Hi8mK0ny0k9UczuzDLHTb9TEkK8mZxo3/VvckIwIUoEiot1+8TVXXfdxfz587/2nPj4ePbs2UN+fv4ZzxUWFhIeHv6111utVq6//nrS0tJYu3attnEWkT7PaDTg72XG38tMPN7tvq7O2mRPZlU7Z2/Zk1ynf9/6z/JaKzYbVNY3Ulnf2CrJ9E3cTcYzElv+niYOnjDy882fOwZavh5uzBsbzQ0TYxkUoZ0BRUREejODwcCQSD+GRPqxZOZAjhdWsWpfHh/uzWV/ToV99tCJYu57fz9jYgLwtxrZs+owRqMRmw1sgM0GzS1r4Gw2m+OYDVurczj1uI3nbNgf2M5ow/mYlvOam7+m7bNcz1f79JU+cEaf7G00tzT01ffU1NTM0QITTVu2t4pnTJCno0ZVckIIEf4ervvLE2lDt09chYSEEBIS8o3nJScnU15ezpYtW5g4cSIAmzdvpry8nClTppz1ulNJq6NHj7Ju3TqCg89hSoKIiLTiYTYR6e9JpL9nu69parZRUdt69lZJddszuk4/1tDYTENTMwWV9RRU1n+lVSNgY2xsADdMjOWKkVF9ZnaViIiItJYY6sOPZiTxoxlJZBTXsGp/Lh/ty2NnRhk7MsoAI+tyT3Z1N7sJA+F+FqYmhjC5Zee/mCDX1HEWaa9un7hqryFDhjB79mwWL17MM888A8Btt93GFVdc0aow++DBg1m+fDlXX301jY2NXHvttezYsYMPPviApqYmRz2soKAg3N21NldExNVMRgOB3u4Eerf/Z67NZqPW2mSfxVV9+iyuBooq6zh85Ch3XTmV4TFBLuy5iIiI9DSxwV7cNi2R26Ylkltey0d7cvh8xwESE/rjZjKBAQwYMBjs1T0NX3mMwdDmcYPBWbrm1HNGQ+vz7M+dfn3L4/a0be8YxtPP+dq2W19Pq8fO84wtBw1Ac1MTx/ds4eZrZup3YelWek3iCuC1117j7rvvJiUlBYC5c+fy17/+tdU5hw8fpry8HICsrCzef/99AEaPHt3qvHXr1jF9+nSX91lERM6dwWDAy90NL3c3+gW0nt1ltVr5sPawlgSKiIjI14r092Th5FiCS/YxZ/agPl+z0Gq1Unm07drRIl2pVyWugoKCePXVV7/2nFNrgcFeG+v0xyIiIiIiIiIi0n10zN7jIiIiIiIiIiIiHaxXzbjqKqdmbVVUVHR421arlZqaGioqKjR1VbFwUCycFAsnxcJOcXBSLJxcGYtT//9rFve5ceX4CfT5P51iYac4OCkWToqFk2LhpFjYuToO7R1DKXHVASorKwGIiYnp4p6IiIhIV6msrMTf37+ru9FjaPwkIiIi8M1jKINNtwfPW3NzMzk5Ofj6+nZ4IbuKigpiYmLIzMzEz8+vQ9vuaRQLJ8XCSbFwUizsFAcnxcLJlbGw2WxUVlYSFRWF0agqDO3lyvET6PN/OsXCTnFwUiycFAsnxcJJsbBzdRzaO4bSjKsOYDQaiY6Odulr+Pn59el/MKdTLJwUCyfFwkmxsFMcnBQLJ1fFQjOtzl1njJ9An//TKRZ2ioOTYuGkWDgpFk6KhZ0r49CeMZRuC4qIiIiIiIiISLekxJWIiIiIiIiIiHRLSlx1cxaLhfvuuw+LxdLVXelyioWTYuGkWDgpFnaKg5Ni4aRY9D36O3dSLOwUByfFwkmxcFIsnBQLu+4SBxVnFxERERERERGRbkkzrkREREREREREpFtS4kpERERERERERLolJa5ERERERERERKRbUuJKRERERERERES6JSWuRERERERERESkW1LiSkREREREREREuiUlrkREREREREREpFtS4kpERERERERERLolJa5ERERERERERKRbUuJKRERERERERES6JSWuRERERERERESkW1LiSkREREREREREuiUlrkREREREREREpFtS4kpERERERERERLolJa5EpNO99NJLGAwG0tPTu6wPixYtwsfH5xvPmz59OtOnT3d9h86xHzU1NSxbtozPPvvsW7V36u9g27ZtHdNBERER6XIaY3WctvpnMBhYtmxZl/RHpC9z6+oOiIjIN3vqqadaPa6pqeH+++8H6NaDPhERERERkfOhxJWISA8wdOjQru6CiIiISI9VU1ODl5dXV3dDRL4FLRUUkW6vsLCQO++8k6FDh+Lj40NYWBgXX3wxGzZsaHVeeno6BoOBFStW8Oijj9K/f398fHxITk5m06ZN3/g6X375JSEhIVxxxRVUV1ef9byGhgb++Mc/MnjwYCwWC6Ghodxyyy0UFhae0/tatmwZBoOBnTt3cs011+Dn54e/vz833XTTGW2dPl09PT2d0NBQAO6//34MBgMGg4FFixY5zj906BA33HAD4eHhWCwWYmNj+d73vkd9fX2rdisrK/nhD39ISEgIwcHBXHPNNeTk5JzT+xAREZGeqbePsXbs2MG1115LYGAgiYmJANTV1bF06VL69++Pu7s7/fr140c/+hFlZWXn9Boi0nmUuBKRbq+kpASA++67j5UrV/Liiy+SkJDA9OnT26zx9Le//Y01a9bw+OOP89prr1FdXc2cOXMoLy8/62u8+eabXHLJJVx//fX897//xdvbu83zmpubufLKK/nTn/7EggULWLlyJX/6059Ys2YN06dPp7a29pzf39VXX01SUhL/+c9/WLZsGe+99x6zZs3CarW2eX5kZCSrVq0C4Ac/+AGpqamkpqby29/+FoDdu3czYcIENm3axO9//3s++ugjli9fTn19PQ0NDa3auvXWWzGbzfzrX//ioYce4rPPPuOmm2465/cgIiIiPU9vH2Ndc801JCUl8dZbb/H0009js9m46qqrWLFiBQsXLmTlypUsWbKEl19+mYsvvviMG3wi0j1oqaCIdHuDBg1qVeOpqamJWbNmkZ6ezhNPPHFGjSdfX18++OADTCYTAFFRUUycOJGPPvqI+fPnn9H+n//8Z37961/z4IMP8stf/vJr+/Lmm2+yatUq3n77ba655hrH8VGjRjFhwgReeuklfvjDH57T+7vmmmt46KGHAEhJSSE8PJwbb7yRN998kxtvvPGM8y0WC+PGjQMgOjqayZMnt3p+yZIluLm5sWXLFsfMLKDNtmbPns0TTzzheFxSUsIvf/lL8vLyiIiIOKf3ISIiIj1Lbx9j3XzzzY6aoAAff/wxH3/8MQ899BC/+MUvAJg5cyYxMTF897vf5Z///CeLFy8+p9cQEdfTjCsR6RGefvppxo4di4eHB25ubpjNZj799FMOHjx4xrmXX365Y0AFMHLkSABOnjzZ6jybzcbtt9/Offfdx7/+9a9vHFABfPDBBwQEBPCd73yHxsZGx9fo0aOJiIj4Vrv8fTWhdP311+Pm5sa6devOua2amhrWr1/P9ddf3yppdTZz585t9fhssRIREZHeqTePsebNm9fq8dq1awFalVcAuO666/D29ubTTz8959cQEddT4kpEur1HH32UH/7wh0yaNIm3336bTZs2sXXrVmbPnt3mtPHg4OBWjy0WC8AZ5zY0NPDGG28wbNgwLrvssnb1JT8/n7KyMtzd3TGbza2+8vLyKCoqOuf399WZTW5ubgQHB1NcXHzObZWWltLU1ER0dHS7zm9vrERERKT36e1jrMjIyFaPi4uLcXNzO+PmnsFgICIi4luNvUTE9bRUUES6vVdffZXp06fz97//vdXxysrK82rXYrGwbt06Zs2axaWXXsqqVasIDAz82mtOFTE/VWPqq3x9fc+5H3l5efTr18/xuLGxkeLi4jMGh+0RFBSEyWQiKyvrnK8VERGRvqW3j7EMBkOrx8HBwTQ2NlJYWNgqeWWz2cjLy2PChAnn/Boi4nqacSUi3Z7BYHDc0Ttlz549pKamnnfbY8aMYf369WRlZTF9+nQKCgq+9vwrrriC4uJimpqaGD9+/BlfgwYNOuc+vPbaa60ev/nmmzQ2Np5RV+J0Z7vD6enpyUUXXcRbb731re5MioiISN/R28dYX3XJJZcA9oTd6d5++22qq6sdz4tI96IZVyLS7V1xxRX84Q9/4L777uOiiy7i8OHD/P73v6d///40Njaed/tDhgxhw4YNXHrppUybNo1PPvnkrEvt5s+fz2uvvcacOXP4yU9+wsSJEzGbzWRlZbFu3TquvPJKrr766nN6/XfeeQc3NzdmzpzJ/v37+e1vf8uoUaO4/vrrz3qNr68vcXFx/Pe//+WSSy4hKCiIkJAQ4uPjefTRR7nggguYNGkS9957L0lJSeTn5/P+++/zzDPPfKs7liIiItL79PYx1lfNnDmTWbNm8atf/YqKigqmTp3Knj17uO+++xgzZgwLFy48r/ZFxDU040pEur1f//rX/PznP+eFF17g8ssv5/nnn+fpp5/mggsu6LDXSEhIYMOGDRgMBi688EJOnDjR5nkmk4n333+f//u//+Odd97h6quv5qqrruJPf/oTHh4ejBgx4pxf+5133uHQoUNcc801/O53v+M73/kOq1evxt3d/Wuve+GFF/Dy8mLu3LlMmDCBZcuWAfbdd7Zs2cK4ceNYunQps2fP5le/+hUWi+Ub2xQREZG+o7ePsb7KYDDw3nvvsWTJEl588UXmzJnDihUrWLhwIWvXrj1j9pmIdA8Gm81m6+pOiIj0RcuWLeP++++nsLCQkJCQru6OiIiIiIhIt6MZVyIiIiIiIiIi0i2pxpWIdBmbzUZTU9PXnmMymc7YEaa7a25uprm5+WvPcXPTj18RERFxDY2xRKQ30YwrEekyL7/8Mmaz+Wu/1q9f39XdPGe///3vv/F9paens2zZMmw2m5YJioiISIfq62MsEeldVONKRLpMcXExaWlpX3vOoEGDetwueDk5OeTk5HztOSNHjlShdBEREXEJjbE0xhLpTZS4EhERERERERGRbkkLgDtAc3MzOTk5+Pr69rh14iIiInJ+bDYblZWVREVFYTSqCkN7afwkIiLSt7V3DKXEVQfIyckhJiamq7shIiIiXSgzM5Po6Oiu7kaPofGTiIiIwDePoZS4avHUU0/x8MMPk5uby7Bhw3j88ce58MIL23XtqbXhmZmZ+Pn5dWi/rFYrq1evJiUlBbPZ3KFt9zSKhZNi4aRYOCkWdoqDk2Lh5MpYVFRUEBMT0+NqxXzVuY6F1q9fz5IlS9i/fz9RUVH88pe/5I477mj367ly/AT6/J9OsbBTHJwUCyfFwkmxcFIs7Fwdh/aOoZS4At544w1++tOf8tRTTzF16lSeeeYZLrvsMg4cOEBsbOw3Xn9qerufn59LEldeXl74+fn16X8woFicTrFwUiycFAs7xcFJsXDqjFj05OVu5zoWSktLY86cOSxevJhXX32VL7/8kjvvvJPQ0FDmzZvXrtd05fgJ9Pk/nWJhpzg4KRZOioWTYuGkWNh1Vhy+aQylxBXw6KOP8oMf/IBbb70VgMcff5yPP/6Yv//97yxfvrxL+1ZvbaKxGZqbVUNfREREXONcx0JPP/00sbGxPP744wAMGTKEbdu2sWLFirMmrurr66mvr3c8rqioAOyDYqvV2qHvx9rUTGlVLTYbHd52T3QqBn09FoqDk2LhpFg4KRZOioWdq+PQ3nb7fOKqoaGB7du3c++997Y6npKSwsaNG9u8pjMHXre8vJ2tJ934+eY1GAzgZjRgavkyG42YjIZWx9yMBtxMBkxGo+O440/Tad+fdq2b0YDJdHo7RsxfudbZduvXdLbdxus5+tL69c72nP09nfm6p7Kv+uHhpFg4KRZOioWd4uCkWDi5MhY9Pb7fZiyUmppKSkpKq2OzZs3ihRdewGq1tnlXdvny5dx///1nHF+9ejVeXl7n8Q7OlFkFK/a6YTGa+POetQRbbARZINjDRrAFgiz2Pz362Eh4zZo1Xd2FbkFxcFIsnBQLJ8XCSbGwc1Ucampq2nVeH/vv+kxFRUU0NTURHh7e6nh4eDh5eXltXtOZA6+iEhNgT9zYbGBtsmFtOjX7qqlDX6u7MmLDZACjASwmEyv2rCXA3UaAO/hb7H/av2z4u4O7qat73Hn0g9RJsXBSLOwUByfFwskVsWjvoKu7+jZjoby8vDbPb2xspKioiMjIyDOuWbp0KUuWLHE8PlXXIiUlpcOXCn56sAD27qK+2UBuDeTWtL0EIcDTTL9AD6IDPIkO9CQm0JN+gZ6Oxx7m3jGosFqtrFmzhpkzZ/b5JS+Kg51i4aRYOCkWToqFnavjcGoS0Dfp84mrU766ptJms511nWVnDrwunF7H6k/WMu2i6RhMJhqbbTQ22WhqttHYbKOpubnlT/txx/enPdf6fPufjc3NrY85znG2d/rz1qZTx5pbt9NGX85s85vatvflbKshmzHYn7NBfTNUWCGz+uxrYAM8zUT4WQj39yDCz4MIPwsR/h6E+1laHnvg28NvseoHqZNi4aRY2CkOToqFkytj0d5BV3d3LmOhs53f1vFTLBYLFovljONms7nD/05mj+zH3qRgXn//YxJHTiSnooGskhqySmvJLK0hs6SG0horZbX2r/05lW22E+JjISbIk5hAL2KCPIkO9HJ8H+nvibvb2bfu7o5cEeueSHFwUiycFAsnxcJJsbBzVRza22bP/u29A4SEhGAymc64o1hQUHDGncRTOnPg5esFnm4Q6u/V6//BNDfbaLKdnhRrnSSrq2/go08+I2nkeAqrG8krryW3vI68lq/c8jpqrU2OQeih/KqzvpaPxY0Ifw8iW5Jbkf4ehDseexLp70GAl7nbF9rVD1InxcJJsbBTHJwUCydXxKKnx/bbjIUiIiLaPN/NzY3g4GCX9fVceJhNhHvCtAEhbf4dVdU3klVaQ2ZJrePPU0mtrNJaquobKaqqp6iqnp0ZZWdcbzRAhJ8H0UH2ZFZ0oCcxQV7EBHoSHeRFhJ8HJmP3HkeIiIj0BH0+ceXu7s64ceNYs2YNV199teP4mjVruPLKK7uwZ32P0WjAiIGzzcq3Wt2I8YFLBoe1OQC12WxU1DW2JLFqHcms/Io6R4Irt7yWirpGquobOVZQxbGCsye3LG5GeyLr1Mwtf0/H41N/hnhbMGpQKiIiPdi3GQslJyfzv//9r9Wx1atXM378+B6TyPOxuDE4wo/BEWfOlrfZbJTXWp1JrdMSW1ml9mN11mZyyuvIKa9jS1rJGW2YTQaiAjxbJbWiA1tmbQV5Eupj6fY3yERERLqDPp+4AliyZAkLFy5k/PjxJCcn8+yzz5KRkcEdd9zR1V2Tc2AwGPD3NOPvaWZQhO9Zz6uubySvwjlTK6+idaIrr7yO4uoG6hubSS+uIb347LVL3IwGwv1aklv+HkT6nUpseToSXKG+FsymnrWUQERE+pZvGgstXbqU7Oxs/vnPfwJwxx138Ne//pUlS5awePFiUlNTeeGFF3j99de78m10GIPBQICXOwFe7oyI9j/jeZvNRmFVvX3p4akliKctRcwurcXaZONkcQ0nzzKOsLgZT5uldeZSRH/P7j/zW0REpDMocQV897vfpbi4mN///vfk5uYyfPhwPvzwQ+Li4rq6a+IC3hY3EkN9SAz1Oes59Y1NFFTUk1t+ZlIrt6KO/PI6CirraGy2kV1WS3ZZ7VnbMhgg1Mdy2mwtz1bLFO31tzx6TQFYERHpeb5pLJSbm0tGRobj/P79+/Phhx/ys5/9jL/97W9ERUXxxBNPMG/evK56C53KYDAQ5utBmK8HY2MDz3i+qdlGfkUdmSU1ZH4lqZVVUkNuRR31jc0cL6zmeGF1m6/ha3Gj32mJLUeSq6XmlrdFw3gREekb9D9eizvvvJM777yzq7sh3YTFzdQyODz7LpGNTc0UVtWftgzx9GWJtY7H1iYbBZX1FFTWszur/KztBXm7O+ptnUpshfu1TnRpkCoiIq7ydWOhl1566YxjF110ETt27HBxr3omk9G+TDAqwJNJbTzf0NhMbnntacsPWy9FLKysp7K+kUN5lRzKa7twfKCXuVVSK/pUfa2Wx7ohJiIivYV+Cxb5ltxMRiL97bsKnU1zs43i6gbHksTTC8rnnrZMsc7aTEl1AyXVDRzIPfvuVL4ebvaElq8Fj1ojAwuqGNLvzDu9IiIi0n25uxmJC/YmLti7zedrG5rILjutcPxXZm2V1VgprbFSWlPOnrPcFAvztTjqakX5W6gsNBCdVc7ASH98PXpGHTIRERFQ4krEpYxGA6G+FkJ9LYzgzBoZ0FJUvraR3IqvJLVOm7WVW15HZV1jy1cVR/KrACNrntzIyGh/rhnTj++MiiLY58zdLkVERKRn8XQ3kRTmS1JY2zU7K+usbSa1slp2RaxuaHLM9t5+srTlKhOvHtsMQLifxVE2ITHUm6QwXxLDvInw81BdLRER6XaUuBLpYgaDAX8vM/5e5jZ3Njqlqr7RUVD+ZFElr3++j0PlJvZk2e+2/nHlQaYPCmPe2H5cPCQMi5uWCIiIiPRGvh5mhkaZGRrV9o6IpTXWVssP04uq2H44g7JmDwqrGsivqCe/op6Nx4tbXevlbnIksxJDfUgMsye34kO8NK4QEZEuo8SVSA/hY3EjKcyHpDAfJsX741Owh0kXXcyq/QW8szObPVnlfHIwn08O5uPn4cYVo6KYN7YfY2MDdfdURESkjzAYDAR5uxPk7c7I6AAArFYrH36Yzpw506lphBOFVS2F4as4XlDF8cIqThbXUNPQxN7scvZmt15+aDRAbJDXacksb8eMrUBv9y54lyIi0pcocSXSgwV7u7Noan8WTe3P0fxK3tmZzXs7s8ktr+NfmzP41+YM4oK9uGZMNFeP6Uds8NmLzYuIiEjv5+9pZkxsIGO+shuitamZk8U19mRWYRXHC5yJrcr6RtKLa0gvruHTQwWtrgv2dm9JaHmftvzQh36BnpiMunEmIiLnT4krkV5iQLgvv5o9mHtSBrH5RDFv78jmo325nCyu4bFPjvDYJ0eYEB/INWOjmTMiEn9PFWYVERERO7PJ6JjZfTqbzUZhZT3HTs3SapmhdaKwmuyyWoqrGyiuLmFLekmr69zdjCSEeDuWG56apZUQ6o2Xu34FERGR9tP/GiK9jMloYEpSCFOSQvjDVcP4eH8e7+zI5otjRWxNL2Vrein3vb+fmUPDmTe2HxcOCMVsMnZ1t0VERKQbMhgMhPl5EObnwZTEkFbP1TQ0cqLVkkP79yeKqmlobOZQXiWH8irPaLNfgCcJod4khTlnaCWGeRPqY1F5AxEROYMSVyK9mJe7G1ePiebqMdHkldfx313ZvL0jiyP5Vazck8vKPbmE+LjznVFRzBsbzbAoPw0YRUREpF283N0Y3s+f4f1a75zc1Gwju7SWY4WVziWHLTO2SqobyC6rJbuslg1Hi1pd5+vh1iqRldRSUys2yEs32URE+jAlrkT6iAh/D26/KJHbpiWwP6eCd3Zk8/7ubIqqGnjxy3Re/DKdgeE+XDM2mqtG9yPC36OruywiIiI9kMloIDbYi9hgLy4e3Pq5kuqGluLwVRw7bZZWZkkNlXWN7MosY1dmWatr3IwG4oK9Wu10mBRmX3bo56HSByIivZ0SVyJ9jMFgcNwdXTpnMF8cLeLtHVmsPpDPkfwq/vTRIf686hBTE0O4Zmw/Zg2LwNuiHxUiIiJy/uw7HgYxPj6o1fE6a5OzOHxBVUtNLXuR+FprU0uCqxoO5Le6LszXcmZx+DAfIv08MKo4vIhIr6DfRkX6MLPJyIzBYcwYHEZ5rZWP9ubyzo5stqSX8MWxIr44VoSX+z5mD49g3thoJicEa4cgERER6XAeZhODInwZFOHb6nhzs428irpWdbSOtRSIL6isd3ylnihudZ2Xu4mE0NY7HcYFWrA2d+a7EhGRjqDElYgA9u2x50+MZf7EWDJLanh3Zzbv7MgivbiGd3Zk886ObCL9PbhydD/mje3HgHDfb25URERE5DwYjQaiAjyJCvDkwgGhrZ6rqLPai8MXVLWqo5VeVE1NQxP7sivYl13xlRbd+NP+z4gK8CTS34NI/5Y/HY89CPfzUE0tEZFuRIkrETlDTJAXd18ygB9fnMSOjDLe2ZHF/3bnkFtex9Prj/P0+uOM6OfPNWP78Z1RUYT4WLq6yyIiItLH+HmYGR0TwOiYgFbHrU3NZJTUtNrp8FRNrcq6RoqqGiiqamBPVnmb7RoMEOpjITLAkyh/DyL8PYjy9yQywMOR7ArzteCm5JaISKdQ4kpEzspgMDAuLpBxcYH87jtDWXeogLd3ZLPuUAF7s8vZm13OAysPMn1QKFePieaSIWF4mE1d3W0RERHpw8wmo2N54OkaGhp46/2PGDbhAgqqrORV1JFTVkdueS255fY/88rrsDbZHEsQd2e2/RpGA4T7nZbUOpXgOm0mV6ivRSUWREQ6gBJXItIuFjcTs4dHMnt4JMVV9XywJ5d3dmSxO6ucTw4W8MnBAnw93LhiZBTzxvZjXFwgBoMGayIiItI9GAwGfMwwLMqP0ea2dyNsbrZRXN1AbnktOWV15LUktXLK7d/nlNWRX1FHY7OtJdlVx07K2mzLzWhwJLciW5JaEX4eRAU4lyiG+FhURF5E5BsocSUi5yzYx8LNU+K5eUo8xwqqeHdnFu/uyCanvI7Xt2Tw+pYM4oK9uHpMP64e04+4YO+u7rKIiIjINzIaDYT6Wgj1tTAyuu1zmpptFFfVk1NeR26Zc7aWPbllP5ZfWU9js43sslqyy2rP+npmkz255ai3FeBBpJ9HyzJFTyL8PQj2dldyS0T6NCWuROS8JIX58ItZg/n5zEFsSivmnR3ZfLQ3l5PFNTz+yVEe/+Qo4+MCuWZsNJePjMTfs+07nCIiIiI9gcloIMzPgzA/jzPqa53S2NRMUVUDOeW15H5lOaJ9JlcdBZX2ZYlZpbVkldYCpW225W4yEuGoteVxWu0tT8dMrkAvs2a6i0ivpcSViHQIo9HAlMQQpiSG8Psrh7HmQD5v78jmi6OFbDtZyraTpSz7335mDgnnmrH9mDYwVDv2iIiISK/kdlqyidi2z7E2NVNQWe9YguhIbp32fWFVPQ0txeYzSmrO+noWN+NXdkk87Xt/T6ICPPD3VHJLRHqmXpu4Sk9P5w9/+ANr164lLy+PqKgobrrpJn7961/j7u7uOC8jI4Mf/ehHrF27Fk9PTxYsWMCKFStanSMi58bL3Y0rR/fjytH9yK+o47+7snl7ezaH8ytZuTeXlXtzCfZ25zujopg3Nprh/fw0kBIREZE+xWwy0i/Ak34BnoyLa/uchsZm8ivqWgrJ25NZeeXO73PL6yiqqqe+sZn04hrSi8+e3PI0mxxJrTBfCzWFRqy7ckiK8Kd/sDf+XpoVLyLdU69NXB06dIjm5maeeeYZkpKS2LdvH4sXL6a6upoVK1YA0NTUxOWXX05oaChffPEFxcXF3HzzzdhsNp588skufgcivUO4nwe3TUtk8YUJHMit4N0d2by3K4eiqnpe2pjOSxvTGRDmwzVjo7lqTBSR/p5d3WURERGRbsHdzUhMkBcxQV5nPae+sYn88nrHLK2clt0RT83iyiuvo7i6gVprEyeKqjlRVN1ypZGPs/Y52gnydic+2Iv+IT4khHoTH+xN/xBv4kO88HLvtb82ikgP0Gt/As2ePZvZs2c7HickJHD48GH+/ve/OxJXq1ev5sCBA2RmZhIVFQXAI488wqJFi3jggQfw8/Nrs+36+nrq6+sdjysqKgCwWq1YrdYOfR+n2uvodnsixcKpp8ZiYKgXv5o1gJ9fmsiXx4t5d1cunxws4GhBFX9edYiHPj5Ecv8grhodRcrQMLwt3/wjqqfGwhUUCzvFwUmxcHJlLBRfEelKFjcTscFexAafPblVZ22yF45vqbOVVVJN6p4jNHsHk15cQ35FPSXVDZRUN7Ajo+yM6yP8PFqSWN4ktPzZP8Sb2CAv3N1U+kFEXKvXJq7aUl5eTlBQkONxamoqw4cPdyStAGbNmkV9fT3bt29nxowZbbazfPly7r///jOOr169Gi+vs/+HcT7WrFnjknZ7IsXCqafHIsUHLhwDu4oNbCsycqzCwMYTJWw8UcJv3rMxKsjGhFAbA/xtfNNmOj09Fh1JsbBTHJwUCydXxKKm5uxLc0REugMPs4n4loQT2BPucdWHmDNnAmazmer6RtKLq0krqiatsJq0lu/Ti6oprbGS17JcMfVEcat2jQaIDvSif0si6/SvqABPTNoNUUQ6QJ9JXB0/fpwnn3ySRx55xHEsLy+P8PDwVucFBgbi7u5OXl7eWdtaunQpS5YscTyuqKggJiaGlJSUs87S+rasVitr1qxh5syZmM19e925YuHU22Ixr+XPrNJa/rs7l/d25ZBeXMPWIgNbiyDc18LcUZFcPTqKAeE+ra7tbbE4H4qFneLgpFg4uTIWp2Zei4j0VN4WN4ZF+TMsyv+M58pqGuwJra98pRdVU93Q5Cgcv/5IYavr3E1GYoPtSa3TZ2n1D/EmzNei+qYi0m49LnG1bNmyNmc7nW7r1q2MHz/e8TgnJ4fZs2dz3XXXceutt7Y6t60fmDab7Wt/kFosFiwWyxnHzWazy34xcGXbPY1i4dTbYtE/zMxPZ/rxk0sHsjOzjHd3ZPP+7hzyK+t57ot0nvsineH9/LhmTDRzR0cR4uP8d9jbYnE+FAs7xcFJsXByRSwUWxHpzQK83BkT686Y2MBWx202G4WV9ZxoSWKdntQ6WVxDQ1MzxwqqOFZQdUabXu6m1ksPg73pH2r/PsBLm2SJSGs9LnF11113MX/+/K89Jz4+3vF9Tk4OM2bMIDk5mWeffbbVeREREWzevLnVsdLSUqxW6xkzsUSk8xgMBsbGBjI2NpDfXDGEdYcKeWdHFusOF7Avu4J92Qd44MODTB8YytyRETQ0dXWPRURERPoWg8FAmJ8HYX4eTE4IbvVcU7ONnLJa+8ys4mpOFFY7vs8sqaGmoYn9ORXszzlzxmqAl9k+M8tRHN45U6s99U9FpPfpcf/yQ0JCCAkJade52dnZzJgxg3HjxvHiiy9iNLYuHJicnMwDDzxAbm4ukZGRgL1OlcViYdy4cR3edxE5dxY3E7OHRzB7eASl1Q18sCeHt3dksyuzjE8PFfDpoQLcjSbWVO3ishGRXDw4HH9PzX4QERER6Somo8GxG+I0Qls919DYTGZpjb2WVlFLPa1Ce1Irt7yOshorOzPK2NlGkfgwX0ub9bRig72wuJk66d2JSGfrcYmr9srJyWH69OnExsayYsUKCguda64jIiIASElJYejQoSxcuJCHH36YkpIS7rnnHhYvXtzhtapE5PwFeruzMDmehcnxHC+s4t0d2by7M4vssjpWHyhg9YEC3IwGkhODSRkWQcrQcML9PLq62yIiIiLSwt3NSGKoD4mhPmc8V9PQSHpRjbNQ/GlfJdUNFFTWU1BZz+a0klbXGQ0QFeDZZj2tfgGeuJm086FIT9ZrE1erV6/m2LFjHDt2jOjo6FbP2Ww2AEwmEytXruTOO+9k6tSpeHp6smDBAlasWNEVXRaRc5AY6sM9swZx94z+PPvWR9QGD+STg4Uczq9kw9EiNhwt4rfv7WNMbACzhkUwa1gE/Vt20hEREafS0lLuvvtu3n//fQDmzp3Lk08+SUBAQJvnW61WfvOb3/Dhhx9y4sQJ/P39ufTSS/nTn/7UaqdmEZFz5eXuxtAoP4ZGnTmJoLzGSlqxvZ7WidMKxKcVVVNV30hWaS1ZpbVsOFrU6jqzyUBskHPnw1NJrYQQH8L9zqxbLCLdT69NXC1atIhFixZ943mxsbF88MEHru+QiLiEwWAgxgfmXJLEL2YPIa2omtX78/h4fx47WqaZ78wo408fHWJguA+zhkWQMjSC4f38tJuNiAiwYMECsrKyWLVqFQC33XYbCxcu5H//+1+b59fU1LBjxw5++9vfMmrUKEpLS/npT3/K3Llz2bZtW2d2XUT6EH8vM6O9AhgdE9DquM1mo6jq1M6HVaQV1ZBWVEV6UQ1pxdU0NDZzvLCa44XVZ7TpaTYRF+yFp9XIcY/jDIr0Z0C4D/HB3ri7aZaWSHfRaxNXItI39Q/x5vaLErn9okQKKupYfSCfj/fnkXq8mCP5VRzJP8aTa4/RL8CTmUPDmTUsggnxgZpCLiJ90sGDB1m1ahWbNm1i0qRJADz33HMkJydz+PBhBg0adMY1/v7+rFmzptWxJ598kokTJ5KRkUFsbGybr1VfX099fb3jcUWFvSiz1WrFarV21FtyONWmK9ruaRQLO8XBqbfFIsDDyJhoX8ZE+7Y63txsI6+ijrTiGtKLqkkvriGtuIaTxTVkltZSa23iUF4lYGTnuuOO60xGA3FBXgwI8yYpzIekUPuf/YO9sJh7by2t3va5OB+KhZ2r49Dedl2auDo1IDkXqi0lIh0lzM+DmybHcdPkOMprraw7VMDH+/P47HAh2WW1vLQxnZc2phPoZebSIfYk1gUDQvDoxQMSEemeumrMlJqair+/vyNpBTB58mT8/f3ZuHFjm4mrtpSXl2MwGM66vBBg+fLl3H///WccX716NV5eXufc9/b6apKtL1Ms7BQHp74Ui8CWrzHBQDA0NUNxPRTUGSiohbwaA3m1BvJqob4JTrQsSfz4QIGjDQM2QjwgwtNGuJf9z0gvG2Ee4N6Lho996XPxTRQLO1fFoaampl3nuTRxFRAQcE5LcQwGA0eOHCEhIcGFvRKRvsjf08xVY/px1Zh+1Fmb2HC0iI/35/HpwXxKa6y8tT2Lt7Zn4eVuYvqgUGYNi2DG4DD8PLRDoYi4XleNmfLy8ggLCzvjeFhYGHl5ee1qo66ujnvvvZcFCxZ8bTJt6dKlLFmyxPG4oqKCmJgYUlJSXHLj0mq1smbNGmbOnInZ3Ld/lisWdoqDk2Lh5IzFpZjNZmw2G3kV9RwrrOJYQTXHW/48WlBFRV0jhXVQWGdgb6mzDYMBogM8SQrzJinUx/FnYqg33paes8hJnwsnxcLO1XFo7407l/8r+s9//kNQUNA3nmez2ZgzZ46ruyMigofZxMyh4cwcGk5jUzNb0ktYvT+f1fvzyCmv48O9eXy4Nw+zycDkhOCWuljhhGmHQhFxoY4cMy1btqzN2U2n27p1K0CbCTObzdauRJrVamX+/Pk0Nzfz1FNPfe25FosFi+XMQshms9mlvxS4uv2eRLGwUxycFAun02MRG+JObIgvFw9xPm+z2SisrOdoQRVH8yvtf7Z8X1pjJbO0lszSWtYdbl0cvl+AJ0lhPgwM92FAmC9J4T4khfl065uj+lw4KRZ2ropDe9t0aeIqLi6OadOmERwc3K7zExIS9KEQkU7lZjIyJTGEKYkh3PedoezLruDjluLuRwuqnDsU/ncfY2KcOxTGa4dCEelAHT1muuuuu5g/f/7XthEfH8+ePXvIz88/47nCwkLCw8O/9nqr1cr1119PWloaa9euVbkHEenVDAYDYX4ehPl5MDUppNVzxVVfSWjl25NaRVX1ZJfVkl1Wy/ojha2uifDzYEBLEmtAmC8DW74P8HLvzLcl0iO4NHGVlpZ2Tufv27fPRT0REflmBoOBEdH+jIj2555ZgzhRWMXH++3F3XdllrEjw/61/KNDDAr3ZdawcFKGRTAsSjsUisj56egxU0hICCEhIV97DkBycjLl5eVs2bKFiRMnArB582bKy8uZMmXKWa87lbQ6evQo69ata3fCTUSkNwr2sRDsY2FyQuufhaXVDRwrPJXIquRYQRVH8ivJr6gnr6KOvIo6NhxtPUMr1NfCgDAfBoT5kBTu6/g+2OfMGasifUXPWXArItLJEkJ9+OF0H344PZG88jrWHMjj4/35bDpRzOH8Sg7nV/LE2mNEB3qSMjSCWcPCGR8fhMmoJJaI9AxDhgxh9uzZLF68mGeeeQaA2267jSuuuKJVYfbBgwezfPlyrr76ahobG7n22mvZsWMHH3zwAU1NTY56WEFBQbi7a7aAiAhAoLc7E7yDmBDfehl4ea2VYwVVHCuodMzOOlZQRXZZLYWV9RRW1rPxeHGra4K83VstObQntnwI9bHoBqr0ep2WuHriiSfaPG4wGPDw8CApKYlp06ZhMvWi7RhEpNeI8PdgYXI8C5PjKa+x8ukh+0ys9UcKySqt5R9fpvGPL9MI9nbn0iHhpAwLZ2qSdigUkXPX2WOm1157jbvvvpuUlBQA5s6dy1//+tdW5xw+fJjy8nIAsrKyeP/99wEYPXp0q/PWrVvH9OnTO6RfIiK9lb+nmXFxgYyLC2x1vKq+keOn1c6y19GqJLOklpLqBraklbAlreSMtgaE+bQsO/R1JLbC/ZTQkt6j0xJXjz32GIWFhdTU1BAYGIjNZqOsrAwvLy98fHwoKCggISGBdevWERMT01ndEhE5Z/5eZq4ZG801Y6OpbWji86OFLTsUFlBc3cAb2zJ5Y1sm3u4mpg8KI2VYuHYoFJF26+wxU1BQEK+++urXnmOz2Rzfx8fHt3osIiIdw8fixqiYAEbFBLQ6XtPQyInCao6eNkPraH4lGSU1lNda2XaylG0nS1td42txIyncp2Wpoa/j+yh/T4xaHSA9TKclrh588EGeffZZnn/+eRITEwE4duwYt99+O7fddhtTp05l/vz5/OxnP+M///lPZ3VLROS8eLqbHAXbrU3NbE0r4eP9eaw+kE9ueR0r9+aycm8uZpOBKYkhzBoWwcyh4YT6qk6BiLRNYyYRETmdl7sbw/v5M7yff6vjddYmR0LrWIGzllZ6cQ2V9Y3szChjZ0bZV9oy2ZcZhvky4LTEVnSgZye+I5Fz02mJq9/85je8/fbbjgEYQFJSEitWrGDevHmcOHGChx56iHnz5nVWl0REOpTZZGRKUghTkkJYNncYe7LKHTsUHi+sZv2RQtYfKeTX7+1lXGygI+EVG+zV1V0XkW5EYyYREWkPD7OJoVF+DI1qvatrQ2Mz6cXVHMm3z9A61rLkMK2ompqGJnZnlbM7q/wrbRlJCPEmoNmI+UABFw4Kw1erBaSb6LTEVW5uLo2NjWccb2xsdBT0jIqKorKysrO6JCLiMgaDwTHV+5ezB3OsoMo+E2t/Hruzyh1Tuh/48CCDI3wdSawhkb6qRyDSx2nMJCIi58PdzcjAcF8Ghvu2Om5tauZkcU2rovBH8is5UVRNnbWZA7mVgJGNr+/CzWhgbFwgFw0M5aKBoQyN9NMSQ+kynZa4mjFjBrfffjvPP/88Y8aMAWDnzp388Ic/5OKLLwZg79699O/fv7O6JCLSaZLCfEgKS+JHM5LILa9l9X57cffNaSUcyqvkUF4lf/n0KDFBp3YojGBcXKB2KBTpgzRmEhERVzCbjC1jUh9mD3ceb2xqJrO0lv1Zpbzx2U4yrT6kF9c4isE//PFhQnzcmTYglGkDQ7lwQAjBPip7IZ2n0xJXL7zwAgsXLmTcuHGYzfYph42NjVxyySW88MILAPj4+PDII490VpdERLpEpL8nN0+J5+Yp8ZRWN7D2UAEf78/j86OFZJbU8sIXabzwRRohPvYdCmcNi2BKUjAWN+1QKNIXaMwkIiKdyc1kpH+IN9H+7jSdbGbOnAvIrbCy/mgh6w8XsvF4EUVVDbyzM5t3dmZjMMDwKH8uGmhPZI2JDcBsMnb125BerNMSVxEREaxZs4ZDhw5x5MgRbDYbgwcPZtCgQY5zZsyY0VndERHpFgK93Zk3Lpp546KpaWjk8yNFrN6fxycH8ymqauDfWzP599ZMfCxuTB8UyqxhEcwYHIaPpdN+fItIJ9OYSUREulpssBcLg+NYODmOhsZmtp8sddRrPZhbwd7scvZml/PXdcfwtbgxNSmEaQNDmTYwhOhA1W+VjtXpv/kkJCRgMBhITEzEzU2/eImInOLl7sbs4RHMHm7foXDziVM7FOaRX1HPB3ty+WBPLu4mI1OTgpk1LIJLh4YToqnaIr2SxkwiItIduLsZSU4MJjkxmHsvG0xBRR2fHy3i8yOFbDhaSGmNlVX781i1316HMSnMh2kDQrloUCiT+gfhYdaqATk/nTYKqqmp4cc//jEvv/wyAEeOHCEhIYG7776bqKgo7r333s7qiohIt2c2GblgQAgXDAjh/rnD2J1Vxsf781m9P48TRdWsO1zIusOFGN/dy/i4IFKGhXPxoOCu7raIdACNmUREpDsL8/Pg2nHRXDsumqZmG3uzy/m8ZTbWzoxSjhXYdzL8x5dpWNyMTEoIbinyHkJiqI82IpJz1mkLUZcuXcru3bv57LPP8PDwcBy/9NJLeeONN1z62vX19YwePRqDwcCuXbtaPZeRkcF3vvMdvL29CQkJ4e6776ahocGl/RERORdGo4ExsYHce9lgPv35Raz52TTuSRnIyGh/mm2wJb2EP648yMWPfsGDu0w8+NFh1h8ppM7a1NVdF5FvoSvHTCIiIufCZDQwOiaAuy8ZwNs/nMLO36bw1I1j+e74GCL9PahvbObzI4X84YMDXPro51zw53UsfWcvq/blUlFn7eruSw/RaTOu3nvvPd544w0mT57cKsM6dOhQjh8/7tLX/uUvf0lUVBS7d+9udbypqYnLL7+c0NBQvvjiC4qLi7n55pux2Ww8+eSTLu2TiMi3YTAYGBDuy4BwX+66eAA5ZbWs3p/Hx/vz2ZJeQn4tvLjxJC9uPOm4wzVtQAgXDQwlKUx3uER6gq4cM4mIiJwPfy8zc0ZEMmdEJDabjaMFVY7ZWJvTSsguq+X1LRm8viUDk9HA2NiAltlYYQyL8sOoHbWlDZ2WuCosLCQsLOyM49XV1S79Reqjjz5i9erVvP3223z00Uetnlu9ejUHDhwgMzOTqKgoAB555BEWLVrEAw88gJ+fn8v6JSLSEaICPFk0tT+LpvanqKKGv/3nE6p8Y/niWDG55XV8fqSQz48U8seVB4ny92gpmhnK1KQQ/D3NXd19EWlDV42ZREREOpLBYGBguC8Dw3259cIEahua2JRWzPrD9vHpiaJqtqaXsjW9lBWrjxDs7c6FA0K4aFAoFw4IVR1Xcei0xNWECRNYuXIlP/7xjwEcA6/nnnuO5ORkl7xmfn4+ixcv5r333sPL68ydDVJTUxk+fLgjaQUwa9Ys6uvr2b59+1l37Kmvr6e+vt7xuKKiAgCr1YrV2rHTHU+119Ht9kSKhZNi4aRYOHm5wehgGzNnDsTNzY1jhdVsOFrEhmPFbEkvJae8zrFLocloYFS0PxcmBXPhgBCGR/lh6iV3uPSZcFIsnFwZi45usyvGTCIiIq7m6W5ixqAwZgyy35zJLKlhfctN1i+PFVFc3cB7u3J4b1cOAMP7+dmLvA8MZWxcIGZTp1U6km6m0xJXy5cvZ/bs2Rw4cIDGxkb+8pe/sH//flJTU1m/fn2Hv57NZmPRokXccccdjB8/nvT09DPOycvLIzw8vNWxwMBA3N3dycvLO2vby5cv5/777z/j+OrVq9tMkHWENWvWuKTdnkixcFIsnBQLp9NjEQFcFwpXBsHxCgMHyw0cKjOQXws7MsrYkVHGX9Yex8vNxmB/G4MD7F/+7l3X/46iz4STYuHkiljU1NR0aHudPWYSERHpCjFBXtw0OY6bJsfR0NjMjoxSx7LC/TkV7Mu2fz312XF8LG5MSQzmokGhTBsQSkyQa37vlu6p0xJXU6ZM4csvv2TFihUkJiayevVqxo4dS2pqKiNGjGh3O8uWLWszaXS6rVu3snHjRioqKli6dOnXntvWlHubzfa1U/GXLl3KkiVLHI8rKiqIiYkhJSWlw5cXWq1W1qxZw8yZMzGb+/ayHsXCSbFwUiycziUWOWW1bDhWzOdHi9h4vISq+kZ2FBvYUWx/fnC4DxcMCOHCpGDGxQVices5d7j0mXBSLJxcGYtTM687SkeNmURERHoKdzcjkxOCmZwQzC9nD6awsp4NR+2zsT4/WkRJdQOrD+Sz+kA+AAmh3lzUUgJjcv9gPN1NXfwOxJU6LXEFMGLECMfWzt/WXXfdxfz587/2nPj4eP74xz+yadMmLJbW62LHjx/PjTfeyMsvv0xERASbN29u9XxpaSlWq/WMmVins1gsZ7QLYDabXfaLgSvb7mkUCyfFwkmxcGpPLOJCzcSF+nFTcn8am5rZlVnmmKq9J7ucQ/lVHMqv4vkv0vE0m0hODHYMDuKDvXpEnR19JpwUCydXxMIVse2IMZOIiEhPFepr4Zqx0VwzNprmZhv7csods7F2ZJRxorCaE4XVvPhlOu5uRib1D2op8q4NiXojlyauzuUOZHtnKoWEhBASEvKN5z3xxBP88Y9/dDzOyclh1qxZvPHGG0yaNAmA5ORkHnjgAXJzc4mMjATsy/0sFgvjxo1rd99FRHoyN5OR8fFBjI8P4ucpgyipbmi5w1XE50cLKaysZ+2hAtYeKgAgJsjTnsQaEMqUpBB8LJ16D0SkV3LFmElERKQ3MBoNjIwOYGR0AHddPIDyWiupx4tYf6SQ9YcLySmvs9d1PVrEH1ceJNLfw3HDVRsS9Q4u/W0jICCg3ZnOpqamDn3t2NjYVo99fHwASExMJDo6GoCUlBSGDh3KwoULefjhhykpKeGee+5h8eLFGhSKSJ8V5O3OlaP7ceXofthsNg7mVvL5UfvAYNvJEjJLanl1UwavbsrAzWhgXFwg01rucA2N1DbGIt9GV46ZREREehJ/TzOzh0cye3gkNpuN44VVfHbYvqRw0wn7ztqnb0g0JibAMVYd0c9fY9UeyKWJq3Xr1jm+T09P595772XRokWOHXFSU1N5+eWXWb58uSu7cVYmk4mVK1dy5513MnXqVDw9PVmwYAErVqzokv6IiHQ3BoOBoVF+DI3y446LEqmub2TTiWLHssL04ho2p5WwOa2Ehz8+TIiPOxe27P5ywYAQbWMs0k7dfcwkIiLSHRkMBpLCfEkK8+XWCxOobWhic1oxnx8pYv2RAo4XVrPtZCnbTpby6JojBHm7c0FSCBcNDOXCgSGE+Xp09VuQdnBp4uqiiy5yfP/73/+eRx99lBtuuMFxbO7cuYwYMYJnn32Wm2++2ZVdIT4+HpvNdsbx2NhYPvjgA5e+tohIb+FtceOSIeFcMsReB/BkcXVLvYEiNh4voqiqgXd3ZvPuzmzAvo3xqWWF2sZY5Oy605hJRESkp/J0NzF9UBjTB4UBQ8kqrbGXvzhSyJfH7EXe39+dw/u7cwAYGunn2KlwXFwg7j1oQ6K+pNMKk6SmpvL000+fcXz8+PHceuutndUNERHpQHHB3ixM9mZhcjwNjc1sP1nqWFZ4INe5jfHf1jm3MT41VVvbGIu0TWMmERGRjhEd6MWCSbEsmBSLtamZnRlljiLve7PLOZBbwYHcCv7+2XG83U0kJ4Zw0aBQpvQP6Oquy2k6LXEVExPD008/zSOPPNLq+DPPPENMTExndUNERFzE3c1IcmIwyYnB/Gr2YAoq69jQUuB9Q1vbGId4O5JYkxKC8HJXkXcR0JhJRETEFcwmIxP7BzGxfxD3zBpEUVU9Xxy1F3nfcLSQoqoGPjmYzycH7WPVgf5G+o+pZGRsUBf3XDrtt4THHnuMefPm8fHHHzN58mQANm3axPHjx3n77bc7qxsiItJJwnw9mDcumnnjWm9j/PmRIrZnlHKiqJoTRdW8tDEdd5ORCf0DHTvADAr31TbG0mdpzCQiIuJ6IT4WrhrTj6vG9KO52caB3Ar7ToVHCtl+spQj5Uau/Hsq146N5ucpg4jwVz2srtJpias5c+Zw9OhR/v73v3Pw4EFsNhtXXnkld9xxh+4eioj0cl/dxriizsrGY8WOZYXZZbV8eayYL48V8+CHhwj3szBtgD2JdeGAEAK83Lv6LYh0Go2ZREREOpfRaGB4P3+G9/PnRzOSOFFQzj0vf86OYiNvbc/if3tyuO3CBG67KBEfi1YJdDaXRnzPnj0MHz4co9Fe4Cw6OpoHHnjgrOfv37+fQYMG4eamD4KISG/m52Fm9vAIZg+PwGazcaKomvWHC/n8aCGbThSTX1HPW9uzeGt7FkYDjIx2bmM8KtofNxV5l15GYyYREZHuIybQi5sHNrN0xGQeWn2UremlPLH2GP/aksmSmQO5fny0xqOdyKWjnTFjxpCXl0doaGi7zk9OTmbXrl0kJCS4slsiItKNGAwGEkN9SAz14fsX9KfO2sTW9BLHssLD+ZXsyixjV2YZT3x6FD8PNy4YEOJYVhjp79nVb0HkvGnMJCIi0v2MjgngzduT+Xh/Hn/66BDpxTX837t7eWljGkvnDGH6wFCVt+gELk1c2Ww2fvvb3+Ll1b6doxoaGlzZHRER6QE8zCYuHBDKhQNC+fXlkFtey4Yj9sKZXxwrorzWyod78/hwbx4AA8N9HMsKJ/YPwtTF/Rf5NjRmEhER6Z4MBgOzh0dy8eBwXtt8kr98epQj+VXc8uJWLkgK4f/mDGFolF9Xd7NXc2niatq0aRw+fLjd5ycnJ+PpqTvnIiLiFOnvyfUTYrh+QgyyqG2xAAAci0lEQVRNzTZ2Z5U5lhXuzizjSH4VR/KreP6LNDzMRibGBxJsNRCfW8Hw6CBMRt0Fk+5PYyYREZHuzd3NyC1T+3PN2GieWneMF79M54tjRVz+5AYVcHcxlyauPvvsM1c2LyIifYzJaGBsbCBjYwP52cyBlNU08MWxIseywryKOj4/WgyYePepTfh5uDEhPohJCUFM7B/M8Cg/1SOQbqkrx0ylpaXcfffdvP/++wDMnTuXJ598koCAgHZdf/vtt/Pss8/y2GOP8dOf/tR1HRUREekG/D3NLJ0zhJsmx/HQx4f53+4cFXB3MUVTRER6rAAvd64YGcUVI6Ow2Wwcya9i3aE8/rvpEBk1ZirqGvn0UAGfHioAwMvdxLi4QCYnBDOxfxAjo/2xuGlxofRtCxYsICsri1WrVgFw2223sXDhQv73v/9947XvvfcemzdvJioqytXdFBER6VZigrx48oYxfH9qPA9+eFAF3F1IiSsREekVDAYDgyJ8SQj2ILL8ACmzZnC0qJbNJ0rYnFbC1vQSymutbDhaxIajRQBY3IyMiQ1gUv9gJvUPYkxsIJ7uSmRJ33Hw4EFWrVrFpk2bmDRpEgDPPfccycnJHD58mEGDBp312uzsbO666y4+/vhjLr/88s7qsoiISLcyJjZQBdxdTIkrERHpldxMRkZGBzAyOoDF0xJobrZxOL+SzSeK2ZJewpa0EoqqGth0ooRNJ0oAMJsMjIwOYFL/ICb2D2J8fJCmekuvlpqair+/vyNpBTB58mT8/f3ZuHHjWRNXzc3NLFy4kF/84hcMGzasXa9VX19PfX2943FFRQUAVqsVq9V6Hu+ibafadEXbPY1iYac4OCkWToqFk2Lh9G1iccmgEC5MnMLrWzP567oTjgLuUxKDuHfWIIZE+rqquy7j6s9Ee9vVaFxERPoEo9HAkEg/hkT6sWhqf2w2G8cLq9mSVsLmtGI2nyghr6KO7SdL2X6ylKc+O47RAMP7+bcksoKZGB+Ev5e5q9+KSIfJy8sjLCzsjONhYWHk5eWd9bo///nPuLm5cffdd7f7tZYvX879999/xvHVq1e3ezfFb2PNmjUua7unUSzsFAcnxcJJsXBSLJy+TSxCgV8NhzXZRtbnGth4vIQrn9rIxFAbc2KaCbB0fD9dzVWfiZqamnadp8SViIj0SQaDgaQwH5LCfFgwKRabzUZmSS2b0oodyazMklr2ZJWzJ6uc5zakYTDAoHBfR42sif2DCPHpgaMP6fWWLVvWZpLodFu3bgVoc/mCzWY767KG7du385e//IUdO3ac09KHpUuXsmTJEsfjiooKYmJiSElJwc+v47cRt1qtrFmzhpkzZ2I29+2Es2Jhpzg4KRZOioWTYuHUEbG4FsgsreGRNcdYuTePzYUGdpe58YOp8dx6QXyPmNXv6s/EqdnX36T7R0pERKQTGAwGYoO9iA324vrxMQDklNW2JLFK2JJWzPHCag7lVXIor5KXNqYDkBjqzaQEe42sSf2DtQ2ydAt33XUX8+fP/9pz4uPj2bNnD/n5+Wc8V1hYSHh4eJvXbdiwgYKCAmJjYx3Hmpqa+PnPf87jjz9Oenp6m9dZLBYsljMTvWaz2aW/ILm6/Z5EsbBTHJwUCyfFwkmxcDrfWCSE+fO3G8dxa0apo4D73z47wRvbsntUAXdXfSba26YSVyIiImcRFeDJVWP6cdWYfgAUVtazpSWJtTmthEN5lRwvrOZ4YTX/2pwBQGyQl6NG1uSEYKIDPVWQUzpdSEgIISEh33hecnIy5eXlbNmyhYkTJwKwefNmysvLmTJlSpvXLFy4kEsvvbTVsVmzZrFw4UJuueWW8++8iIhIL6MC7udHiSsREZF2CvW1cPnISC4fGQlAWU1DSyLLPitrf045GSU1ZJTU8Nb2LAAi/T0cNbImJQSREOKtgYl0G0OGDGH27NksXryYZ555BoDbbruNK664olVh9sGDB7N8+XKuvvpqgoODCQ4ObtWO2WwmIiLia3chFBER6csMBgOzh0dy8eBwXtt8kr98etRRwP2CpBD+b84QhkZ1/NL53kCJKxERkW8pwMudlGERpAyLAKCyzsq2k6X2RNaJYvZklZNbXsd7u3J4b1cOACE+FseMrEkJQQwM88VoVCJLus5rr73G3XffTUpKCgBz587lr3/9a6tzDh8+THl5eVd0T0REpFdxdzNyy9T+XDM2mqfWHePFL9P54lgRlz+5gWvHRvPzlEEqPfEVvT5xtXLlSn7/+9+zZ88evL29mTZtGu+8847j+YyMDH70ox+xdu1aPD09WbBgAStWrMDd3b0Ley0iIj2Rr4eZGYPCmDHIvktbbUMTOzJK2dySyNqZWUZRVT0r9+aycm8uAAFeZibEBzlqZA2J9O0RtQ6k9wgKCuLVV1/92nNsNtvXPn+2ulYiIiLSNn9PM0vnDOGmyXE89PFh/rc7h7e2Z/G/PTncdmECt12U2CMKuHeGXh2Ft99+m8WLF/Pggw9y8cUXY7PZ2Lt3r+P5pqYmLr/8ckJDQ/niiy8oLi7m5ptvxmaz8eSTT3Zhz0VEpDfwdDcxNSmEqUn2WkP1jU3szix31MjafrKUshoraw7ks+aAvUC2j8WN8fGB9hlZ/YMZ0c8fdzclskRERER6o5ggL568YQzfnxrPAysPsu1kKU+sPca/tmT2qALurtRrE1eNjY385Cc/4eGHH+YHP/iB4/jptRdWr17NgQMHyMzMJCoqCoBHHnmERYsW8cADD5x1a+b6+nrq6+sdj09t4Wi1WrFarR36Pk6119Ht9kSKhZNi4aRYOCkWdt05DkZgTLQvY6J9uf3CeKxNzRzIrWRLeglb0krZnlFGZV0jnx0u5LPDhQB4mI2MjQmwJ7PiAxkd7Y/FbGrX63XnWHQ2V8ZC8RUREZHzNSY2kLfuUAH3tvTaxNWOHTvIzs7GaDQyZswY8vLyGD16NCtWrGDYsGEApKamMnz4cEfSCuy74tTX17N9+3ZmzJjRZtvLly/n/vvvP+P46tWr8fLycsn7WbNmjUva7YkUCyfFwkmxcFIs7HpSHPoBVwfDlUGQUwPHKgwcb/mqtjaz8UQJG0+UAGAy2Ij3gUQ/G4l+Nvr72rB8Qx6rJ8XC1VwRi5qamg5vU0RERPoeFXBvW69NXJ04cQKAZcuW8eijjxIfH88jjzzCRRddxJEjRwgKCiIvL4/w8PBW1wUGBuLu7k5eXt5Z2166dClLlixxPK6oqCAmJoaUlJSzztL6tqxWK2vWrGHmzJmYzeYObbunUSycFAsnxcJJsbDrTXFobrZxvLCaLSdL2ZpWypb0EgqrGjheCccrDZANbkYDw6L8mNAyI2tcbAB+nvb33Zticb5cGYtTM69FREREOoIKuLfW4xJXy5Yta3O20+m2bt1Kc3MzAL/+9a+ZN28eAC+++CLR0dG89dZb3H777QBtTrWz2WxfOwXPYrFgsVjOOG42m132i4Er2+5pFAsnxcJJsXBSLOx6SxyGRrszNDqQRVPt/z+lF9fYa2SdKGFzWgnZZbXszipnd1Y5z3+RjsEAQyP9mNg/iPGx/lRZe08sOoIrYqHYioiIiCuogLtdj3uHd911F/Pnz//ac+Lj46msrARg6NChjuMWi4WEhAQyMjIAiIiIYPPmza2uLS0txWq1njETS0REpKsZDAb6h3jTP8Sb706IBSCrtIYtaSVsPlHClvQS0oqq2Z9Twf6cCl78EsCNp49vYHRsIKNjAhgd48+wKH882lknS0RERES6Vl8v4N7jElchISGEhIR843njxo3DYrFw+PBhLrjgAsC+TCA9PZ24uDgAkpOTeeCBB8jNzSUyMhKw16myWCyMGzfOdW9CRESkg0QHehEd6MU1Y6MByK+oY0taCVvSSth0ooijBdVkltaSWVrL/3bnAPblhYMjfRkVHdCSzAogMdQHo7FvFvwUERER6Qn6agH3Hpe4ai8/Pz/uuOMO7rvvPmJiYoiLi+Phhx8G4LrrrgMgJSWFoUOHsnDhQh5++GFKSkq45557WLx4cYfXqhIREekM4X4efGdUFN8ZFYXVauU/739I5LBJ7MupZFdmObsyyyiqqmdfdgX7sit4bbN9FrKPxY2R0f6MinEms8L9+k7tBBEREZGeoC8WcO+1iSuAhx9+GDc3NxYuXEhtbS2TJk1i7dq1BAYGAmAymVi5ciV33nknU6dOxdPTkwULFrBixYou7rmIiEjH8HKDqYnBTB8cAdjrZOWU17Ero4zdWWXsyixjb1Y5VfWNbDxezMbjxY5rI/09GBUd4EhmjYj27xN1FERERES6u75UwL1Xjz7NZjMrVqz42kRUbGwsH3zwQSf2SkREpOsYDAb6BXjSL8CTy0fal8k3NjVztKCKXZll7M60J7OO5FeSW15Hbnkeq/bbd9o1GmBAmC+jYvwZHRPIqBh/BoX79uqaCiIiIiLdWV8o4N6zey8iIiLnzc1kZEikH0Mi/bhhor3oe3V9I/uy7UsLd2eVsSujjJzyOg7nV3I4v5I3t2UB4GE2MqKff6uZWdGBnr2yvoKIiIhId9WbC7grcSUiIiJn8La4MSkhmEkJwY5jBRV17M4qZ1dmKbszy9mdWUZlfSNb00vZml7qOC/Ex71VImtUdAD+XuaueBsiIiIifUpvLOCuxJWIiIi0S5ifBzOHejBzaDgAzc02ThRVO5YX7s4q42BuBUVVDXx6qIBPDxU4ru0f4t2SxPJndGwgQyJ9sbiZuuqtiIiIiPRava2AuxJXIiIi8q0YjQaSwnxICvNh3rhoAOqsTRzIrXAmszLLSC+uIa2omrSiat7dmQ2A2WRgaKSfPZnVMjMrPtgbo7Fn3QEUERER6a56SwF3Ja5ERESkw3iYTYyNDWRsbKDjWGl1g2MHw92ZZezOKqekuoHdWeXsziqH1JMA+Hm4tVpeOComgFBfS1e9FREREZFeoacXcO++PRMREZFeIdDbnemDwpg+KAwAm81GZkktu1qKvu/OKmNfdjkVdY1sOFrEhqNFjmv7BXgy+lQyKyaAEf388XTXEkMRERGRc9VTC7grcSUiIiKdymAwEBvsRWywF3NHRQFgbWrmcF4lu05bYnissIrsslqyy2pZuTcXAJPRwMBw35Zklj+jYgIYEOaLSUsMRURERNqlpxVwV+JKREREupzZZGR4P3+G9/PnpslxAFTUWdmXVe6YmbUrs4yCynoO5lZwMLeC17fYr/VyNzGinz+jYwMY3bLEMNLfo1sNuERERES6k/YUcB8Q6tnV3QSUuBIREZFuys/DzJSkEKYkhTiO5ZbXthR+L2dXZil7s8qpbmhic1oJm9NKHOeF+Voc9bJGxwQwJNyrK96CiIiISLf2dQXcrxkTxciu7iBKXImIiEgPEunvSaS/J7OHRwLQ1GzjWEEVuzPL2NmyxPBwfiUFlfWsOZDPmgP5ABgMEOZhYszUOmJDzF35FkRERES6nbYKuL+9I4f3jSaqQtL40cUDu6xvSlyJiIhIj2UyGhgU4cugCF+unxADQG1DE/tyylsls7JKaymph1Af9y7usYiIiEj3dXoB9z9+cIDtGWXYbF3bJyWuREREpFfxdDcxIT6ICfFBjmN5pVW8/sGn3XKnHBEREZHuZkxsIK/fOoGHXlvFzcmxXdoXjd5ERESk1wv2sZDg19W9EBEREek5DAYDI4JseJhNXdoPJa5ERERERERERKRb0lLBDmBrWfBZUVHR4W1brVZqamqoqKjAbO7bxWQVCyfFwkmxcFIs7BQHJ8XCyZWxOPX/v62rC0D0MK4cP4E+/6dTLOwUByfFwkmxcFIsnBQLO1fHob1jKCWuOkBlZSUAMTExXdwTERER6SqVlZX4+/t3dTd6DI2fREREBL55DGWw6fbgeWtubiYnJwdfX18MBkOHtl1RUUFMTAyZmZn4+fXt4hyKhZNi4aRYOCkWdoqDk2Lh5MpY2Gw2KisriYqKwmhUFYb2cuX4CfT5P51iYac4OCkWToqFk2LhpFjYuToO7R1DacZVBzAajURHR7v0Nfz8/Pr0P5jTKRZOioWTYuGkWNgpDk6KhZOrYqGZVueuM8ZPoM//6RQLO8XBSbFwUiycFAsnxcLOlXFozxhKtwVFRERERERERKRbUuJKRERERERERES6JSWuujmLxcJ9992HxWLp6q50OcXCSbFwUiycFAs7xcFJsXBSLPoe/Z07KRZ2ioOTYuGkWDgpFk6KhV13iYOKs4uIiIiIiIiISLekGVciIiIiIiIiItItKXElIiIiIiIiIiLdkhJXIiIiIiIiIiLSLSlxJSIiIiIiIiIi3ZISVyIiIiIiIiIi0i0pcdUFnnrqKfr374+Hhwfjxo1jw4YNX3v++vXrGTduHB4eHiQkJPD000+fcc7bb7/N0KFDsVgsDB06lHfffddV3e8wHR2H/fv3M2/ePOLj4zEYDDz++OMu7H3H6uhYPPfcc1x44YUEBgYSGBjIpZdeypYtW1z5FjpMR8finXfeYfz48QQEBODt7c3o0aN55ZVXXPkWOowrflac8u9//xuDwcBVV13Vwb12jY6OxUsvvYTBYDjjq66uzpVvo0O44nNRVlbGj370IyIjI/Hw8GDIkCF8+OGHrnoLHaKj4zB9+vQ2PxOXX365K9+GnAONn5w0hnLSGMpJYyg7jZ+cNH5y0vjJqUeOoWzSqf7973/bzGaz7bnnnrMdOHDA9pOf/MTm7e1tO3nyZJvnnzhxwubl5WX7yU9+Yjtw4IDtueees5nNZtt//vMfxzkbN260mUwm24MPPmg7ePCg7cEHH7S5ubnZNm3a1Flv65y5Ig5btmyx3XPPPbbXX3/dFhERYXvsscc66d2cH1fEYsGCBba//e1vtp07d9oOHjxou+WWW2z+/v62rKysznpb34orYrFu3TrbO++8Yztw4IDt2LFjtscff9xmMplsq1at6qy39a24IhanpKen2/r162e78MILbVdeeaWL38n5c0UsXnzxRZufn58tNze31Vd354pY1NfX28aPH2+bM2eO7YsvvrClp6fbNmzYYNu1a1dnva1z5oo4FBcXt/os7Nu3z2YymWwvvvhiJ70r+ToaPzlpDOWkMZSTxlB2Gj85afzkpPGTU08dQylx1ckmTpxou+OOO1odGzx4sO3ee+9t8/xf/vKXtsGDB7c6dvvtt9smT57seHz99dfbZs+e3eqcWbNm2ebPn99Bve54rojD6eLi4nrMoMvVsbDZbLbGxkabr6+v7eWXXz7/DrtQZ8TCZrPZxowZY/vNb35zfp11MVfForGx0TZ16lTb888/b7v55pt7xMDLFbF48cUXbf7+/h3eV1dzRSz+/ve/2xISEmwNDQ0d32EX6YyfFY899pjN19fXVlVVdf4dlvOm8ZOTxlBOGkM5aQxl9//t3U1IVF0YB/B/zsxtQFtU6jT0YZjQBBKlVk4TfUBNiz62tTAialcLixZCUWE5WeYmiaBhoJ1StpEI0QRbaBTFDFQOk1nSIiTchCKMX8+78M3zmtabzjnXGfj/wIV3zlye5+F6+XNk5jI/KcxPCvOTkqkZih8VtNHo6Cjevn2LYDA443gwGER3d/ec73n58uWs9QcPHsSbN28wNjb2xzW/O+diMzWHTGTXLEZGRjA2NoYVK1boKdwAO2YhIujo6EAikcDu3bv1Fa+ZyVlUV1cjLy8Pp0+f1l+4ASZnMTw8jIKCAqxZswaHDx9GNBrV34BGpmbR0tICv9+Ps2fPwuPxoLi4GKFQCBMTE2YaSZFd981IJILjx48jOztbT+G0YMxPCjOUwgylMENNYX5SmJ8U5iclkzMUN65sNDg4iImJCXg8nhnHPR4PBgYG5nzPwMDAnOvHx8cxODj4xzW/O+diMzWHTGTXLKqqqrB69Wrs379fT+EGmJzFjx8/kJOTA8uycOjQITQ0NODAgQP6m9DE1Cy6uroQiUQQDofNFG6AqVn4fD48fPgQLS0taGxshNvtRiAQQG9vr5lGNDA1i8+fP6O5uRkTExN49uwZLl++jPr6etTU1JhpJEV23Ddfv36N9+/f48yZM/oKpwVjflKYoRRmKIUZagrzk8L8pDA/KZmcoZxaz0Z/ZcmSJTN+F5FZx/5v/a/H53vOdGBiDpnK5Cxu376NxsZGdHZ2wu12a6jWLBOzWLZsGWKxGIaHh9HR0YELFy6gsLAQe/fu1Ve4ATpnMTQ0hIqKCoTDYeTm5uov1jDd10V5eTnKy8unXw8EAigpKUFDQwPu3r2rq2wjdM9icnIS+fn5ePDgARwOB0pLS/Ht2zfU1dXhypUrmqvXx+R9MxKJoLi4GNu3b9dQKenC/KQwQynMUAoz1BTmJ4X5SWF+UjIxQ3Hjyka5ublwOByzdjO/f/8+axfzp1WrVs253ul0YuXKlX9c87tzLjZTc8hEpmdx584dhEIhPH/+HJs3b9ZbvGYmZ5GVlYWioiIAwJYtWxCPx3Hz5s20DV0mZvHhwwf09/fjyJEj069PTk4CAJxOJxKJBDZs2KC5k9TZdb/IysrCtm3b0vo/hqZm4fV64XK54HA4ptds2rQJAwMDGB0dhWVZmjtJjelrYmRkBE1NTaiurtZbOC0Y85PCDKUwQynMUFOYnxTmJ4X5ScnkDMWPCtrIsiyUlpaivb19xvH29nbs3Llzzvf4/f5Z69va2lBWVgaXy/XHNb8752IzNYdMZHIWdXV1uH79OlpbW1FWVqa/eM3svC5EBMlkMvWiDTExC5/Ph3fv3iEWi03/HD16FPv27UMsFsPatWuN9ZMKu64LEUEsFoPX69VTuAGmZhEIBPDp06fpIA4AHz9+hNfrTcvQZfqaePToEZLJJCoqKvQWTgvG/KQwQynMUAoz1BTmJ4X5SWF+UjI6Q2n7mnf6Kz8fPxmJRKSnp0cqKyslOztb+vv7RUSkqqpKTpw4Mb3+5+Mnz58/Lz09PRKJRGY9frKrq0scDofU1tZKPB6X2tratH+cs4k5JJNJiUajEo1Gxev1ysWLFyUajUpvb6/t/c2HiVncunVLLMuS5ubmGY8mHRoasr2/+TAxi1AoJG1tbdLX1yfxeFzq6+vF6XRKOBy2vb/5MDGLX2XKU3FMzOLatWvS2toqfX19Eo1G5dSpU+J0OuXVq1e29zcfJmbx9etXycnJkXPnzkkikZCnT59Kfn6+3Lhxw/b+/pbJv49du3bJsWPHbOuF/g7zk8IMpTBDKcxQU5ifFOYnhflJydQMxY2rRXDv3j0pKCgQy7KkpKREXrx4Mf3ayZMnZc+ePTPWd3Z2ytatW8WyLFm/fr3cv39/1jkfP34sGzduFJfLJT6fT548eWK6jZTpnsOXL18EwKyfX8+TjnTPoqCgYM5ZXL161YZuUqN7FpcuXZKioiJxu92yfPly8fv90tTUZEcrKTNxr/ivTAleIvpnUVlZKevWrRPLsiQvL0+CwaB0d3fb0UrKTFwX3d3dsmPHDlm6dKkUFhZKTU2NjI+Pm24lJSbmkEgkBIC0tbWZLp8WgPlJYYZSmKEUZqgpzE8K85PC/KRkYoZaIvLvN2sRERERERERERGlEX7HFRERERERERERpSVuXBERERERERERUVrixhUREREREREREaUlblwREREREREREVFa4sYVERERERERERGlJW5cERERERERERFRWuLGFRERERERERERpSVuXBERERERERERUVrixhUREREREREREaUlblwREREREREREVFa4sYVERERERERERGlpX8AgCYJbGVj9o8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQLklEQVR4nOzdd1hTZ/sH8G8SMth7y3KgUlQQJ+46UKzWVlurda8iWq3WOlqVqm/11ddata62zlartnV0SB1VsQ7cW1wowwGyZBOynt8fSH5GhgkETkLuz3VxKSfPOed+knBy5znP4DHGGAghhBBCTAif6wAIIYQQQmobJUCEEEIIMTmUABFCCCHE5FACRAghhBCTQwkQIYQQQkwOJUCEEEIIMTmUABFCCCHE5FACRAghhBCTQwkQIYQQQkwOJUAGaOvWreDxeLh48aJejnflyhV06dIFtra24PF4WLlyJaKjo/Hll1/qdJy5c+fC29sbZmZmsLOz00tsr6pKXPrStWtXdO3aVW/HGzVqFKysrPR2PKB6MWobT2FhIb788kvExMRU6TykZpVeH0p/zMzM4O7ujg8++AD3798vU95Q3zPlXZf0jcv3ckxMDHg8nt7OnZiYCB6Ph+XLl+vleED1YtQlHi6v65Ux4zoAUvPGjBmDgoIC7Nq1C/b29vD19cV//vMfrF27Vus35e+//46vvvoKX3zxBfr06QOxWFwjsUZHR+sUl6lZt25djZ+jsLAQCxYsAAC9JoREv7Zs2YImTZpAKpXi9OnT+Oqrr3D8+HHcuXMH9vb26nKG+p4p77pkCHGZkpYtWyI2NhYBAQE1eh5Dva5TAmQCbt68ifHjx6NPnz7VOgYATJkyBS4uLvoKjeiopi9UxHgEBgaiVatWAEo+3JVKJaKiorB//36MHj1aXc5Q3zP6uC6R6rGxsUG7du24DoMzdAvMiN2/fx9Dhw6Fi4sLxGIxmjZtirVr16ofL20qVygUWL9+vbrJfNSoUepyLzelJyYmlnseX19fzJ07FwDg6uoKHo+nzuRVKhWWLVuGJk2aQCwWw8XFBSNGjMDjx4/LHGfz5s1o0aIFJBIJHBwc8M477+D27dvqx3WNCyhpRn/rrbfUz4GHhwf69u2rcX6pVIo5c+bAz88PIpEInp6emDRpErKzs1/7HMtkMvznP/9R18/Z2RmjR49Genr6a/ctFR8fj/DwcFhZWcHLywuffvopiouLq3Se8m5nPH78GIMGDYK1tTXs7Ozw4Ycf4sKFC+DxeNi6datO8SQmJsLZ2RkAsGDBAo33DDFspcnQs2fPNLYb2numoutSqZs3b+Ltt9+Gvb09JBIJgoKCsG3btjLHSU5OxrBhwzSuf19//TVUKlWV4gJKrmf/+c9/0LhxY5ibm8POzg7NmzfHqlWrNMqdOnUK3bt3h7W1NSwsLBAaGooDBw5UeNyXXbx4Ef3794eDgwMkEgmCg4Pxyy+/aLVvqRUrVsDPzw9WVlZo3749zp49W6XzVHQL7IcffoC/vz/EYjECAgLw888/Y9SoURW20lUWT1Wu67WGEYOzZcsWBoBduHChwjK3bt1itra2rFmzZuzHH39khw8fZp9++inj8/nsyy+/ZIwxlpaWxmJjYxkANmjQIBYbG8tiY2NZfHw8GzRoEAOg3hYbG8ukUmm557p8+TIbO3YsA8AOHjzIYmNj2aNHjxhjjE2YMIEBYJMnT2YHDx5kGzZsYM7OzszLy4ulp6erj7F48WIGgA0ZMoQdOHCA/fjjj6x+/frM1taW3bt3jzHGdI4rPz+fOTo6slatWrFffvmFnThxgu3evZtFRESwuLg4xhhjKpWKhYWFMTMzMzZv3jx2+PBhtnz5cmZpacmCg4M1jt2lSxfWpUsX9e9KpZL17t2bWVpasgULFrAjR46wjRs3Mk9PTxYQEMAKCwsrfR1HjhzJRCIRa9q0KVu+fDn7559/2Pz58xmPx2MLFiyo0nlejTE/P581bNiQOTg4sLVr17JDhw6xadOmMT8/PwaAbdmyRad4pFIpO3jwIAPAxo4dq/GeIYahouvDmjVrGAC2Z88eje2G9p6p6LrEGGN37txh1tbWrEGDBuzHH39kBw4cYEOGDGEA2NKlSzWO4enpyZydndmGDRvYwYMH2eTJkxkANnHixCrFxRhjS5YsYQKBgEVFRbGjR4+ygwcPspUrV6qvqYwxFhMTw4RCIQsJCWG7d+9m+/fvZ7169WI8Ho/t2rVLXe748eMMADt+/Lh627Fjx5hIJGKdOnViu3fvZgcPHmSjRo0q87yXJyEhgQFgvr6+rHfv3mz//v1s//79rFmzZsze3p5lZ2frfJ7yYvzuu+8YADZw4ED2119/sR07djB/f3/m4+PDfHx8dI5H1+t6baIEyABpkwCFhYWxevXqsZycHI3tkydPZhKJhGVlZam3AWCTJk3SKDdp0iSmS/4bFRXFAGgkNbdv32YAWGRkpEbZc+fOMQDs888/Z4wx9vz5c2Zubs7Cw8M1yiUnJzOxWMyGDh1apbguXrzIALD9+/dXWKb0Arhs2TKN7bt372YA2Pfff6/e9uoHxc6dO8v9QLlw4QIDwNatW1dpfCNHjmQA2C+//KKxPTw8nDVu3LhK53k1xrVr1zIA7O+//9bY96OPPir3w0ybeNLT0xkAFhUVVWn9CDdKrw9nz55lcrmc5eXlsYMHDzI3NzfWuXNnJpfLNcob6numvOvSBx98wMRiMUtOTtbY3qdPH2ZhYaH+UJ09ezYDwM6dO6dRbuLEiYzH47G7d+9WKa633nqLBQUFVVqmXbt2zMXFheXl5am3KRQKFhgYyOrVq8dUKhVjrPzkokmTJiw4OLjMa/TWW28xd3d3plQqKzxvacLRrFkzplAo1NvPnz/PALCdO3fqfJ5XY1QqlczNzY21bdtWY7+kpCQmFArLTYC0iUfXz5vaQrfAjJBUKsXRo0fxzjvvwMLCAgqFQv0THh4OqVRabpOovh0/fhwAyjQpt2nTBk2bNsXRo0cBALGxsSgqKipTzsvLC2+++aa6nK4aNmwIe3t7zJo1Cxs2bEBcXFyZMseOHSs3xvfeew+WlpaVnvuvv/6CnZ0d+vXrp/EcBwUFwc3NTauREzweD/369dPY1rx5cyQlJenlPCdOnIC1tTV69+6tsX3IkCFVjocYh3bt2kEoFKpff3t7e/z+++8wM6u8a6chv2eOHTuG7t27w8vLS2P7qFGjUFhYiNjYWHW5gIAAtGnTpkw5xpj6715Xbdq0wbVr1xAZGYlDhw4hNzdX4/GCggKcO3cOgwYN0hgdJxAIMHz4cDx+/Bh3794t99jx8fG4c+cOPvzwQwAoc91OSUmpcN+X9e3bFwKBQP178+bNAUD9elTnPHfv3kVqairef/99je3e3t7o0KFDleIxZJQAGaHMzEwoFAp8++23EAqFGj/h4eEAgIyMjFqJAwDc3d3LPObh4aF+XNtyurK1tcWJEycQFBSEzz//HG+88QY8PDwQFRUFuVyuPreZmZm6L0ApHo8HNze3Ss/97NkzZGdnQyQSlXmeU1NTtXqOLSwsIJFINLaJxWJIpVK9nCczMxOurq5ltpe3Tdt4iHH48ccfceHCBRw7dgwfffQRbt++XWES8zJDfs9kZmZWeJ0ofVyXcrqaM2cOli9fjrNnz6JPnz5wdHRE9+7d1VOSPH/+HIyxKp27tG/WjBkzyvydR0ZGAtDuuu3o6Kjxe+mI3KKiomqfpzR2Xd4fr4vHkNEoMCNkb2+v/sYxadKkcsv4+fnVeBylb/yUlBTUq1dP47GnT5/CycmpTLlXvVyuKpo1a4Zdu3aBMYbr169j69atWLhwIczNzTF79mw4OjpCoVAgPT1dIwlijCE1NRWtW7eu8NhOTk5wdHTEwYMHy33c2tq6ynHr6zyOjo44f/58me2pqal6iY0YrqZNm6o7Pnfr1g1KpRIbN27Eb7/9hkGDBlW4nyG/ZxwdHSu8TgDQuKZoU05XZmZmmD59OqZPn47s7Gz8888/+PzzzxEWFoZHjx7B3t4efD6/Sucu3T5nzhy8++675ZZp3LhxleLW13lKr9WvdqQHDOP9oW/UAmSELCws0K1bN1y5cgXNmzdHq1atyvy8mpW/Sh9Z+ptvvgkA2L59u8b2Cxcu4Pbt2+jevTsAoH379jA3Ny9T7vHjx+om7+rGxePx0KJFC3zzzTews7PD5cuXAUB97FfPvWfPHhQUFGic+1VvvfUWMjMzoVQqy32O9XGxqu55unTpgry8PPz9998a23ft2lXleIzpGxz5f8uWLYO9vT3mz5+vHglVHkN+z3Tv3h3Hjh1TJxOlfvzxR1hYWKiHbHfv3h1xcXHqv/OXy/F4PHTr1q3acdnZ2WHQoEGYNGkSsrKykJiYCEtLS7Rt2xZ79+7VOKZKpcL27dtRr149+Pv7l3u8xo0bo1GjRrh27Vq5f+etWrXSy5eq6pyncePGcHNzKzNaLDk5GWfOnKlyTIZ6TaEWIAN27NixcocKhoeHY9WqVejYsSM6deqEiRMnwtfXF3l5eYiPj8eff/752nvgzZo1AwAsXboUffr0gUAgQPPmzSESibSOr3HjxpgwYQK+/fZb8Pl89OnTB4mJiZg3bx68vLwwbdo0ACUXknnz5uHzzz/HiBEjMGTIEGRmZmLBggWQSCSIioqqUlx//fUX1q1bhwEDBqB+/fpgjGHv3r3Izs5Gz549AQA9e/ZEWFgYZs2ahdzcXHTo0AHXr19HVFQUgoODMXz48Arr98EHH2DHjh0IDw/H1KlT0aZNGwiFQjx+/BjHjx/H22+/jXfeeUfr56smzjNy5Eh88803GDZsGP7zn/+gYcOG+Pvvv3Ho0CEAAJ+v+3cca2tr+Pj44Pfff0f37t3h4OAAJyenGpmojuiPvb095syZg5kzZ+Lnn3/GsGHDyi1nyO+ZqKgo/PXXX+jWrRvmz58PBwcH7NixAwcOHMCyZctga2sLAJg2bRp+/PFH9O3bFwsXLoSPjw8OHDiAdevWYeLEieokRNe4+vXrp55fydnZGUlJSVi5ciV8fHzQqFEjAMCSJUvQs2dPdOvWDTNmzIBIJMK6detw8+ZN7Ny5U2NI/6u+++479OnTB2FhYRg1ahQ8PT2RlZWF27dv4/Lly/j11191er70fR4+n48FCxbgo48+wqBBgzBmzBhkZ2djwYIFcHd3r9J7A9DP502N4LQLNilX6SiPin4SEhIYYyW98MeMGcM8PT2ZUChkzs7OLDQ0lP3nP//ROB7KGW1RXFzMxo0bx5ydnRmPx9M4bnnKGwXGWMmogaVLlzJ/f38mFAqZk5MTGzZsmHqY/Ms2btzImjdvzkQiEbO1tWVvv/02u3XrVpXjunPnDhsyZAhr0KABMzc3Z7a2tqxNmzZs69atGuWKiorYrFmzmI+PDxMKhczd3Z1NnDiRPX/+XKPcq6NlGGNMLpez5cuXsxYtWjCJRMKsrKxYkyZN2EcffcTu379f4fPFWMkIGktLyzLbS5/LqpynvBiTk5PZu+++y6ysrJi1tTUbOHAgi46OZgDY77//XqV4/vnnHxYcHMzEYjEDwEaOHFlpXUntqWyUaFFREfP29maNGjVSj8wx1PdMedclxhi7ceMG69evH7O1tWUikYi1aNGi3CHiSUlJbOjQoczR0ZEJhULWuHFj9r///a/MSCpd4vr6669ZaGgoc3JyYiKRiHl7e7OxY8eyxMREjXInT55kb775JrO0tGTm5uasXbt27M8//9QoU94oMMYYu3btGnv//feZi4sLEwqFzM3Njb355ptsw4YNlT5fpaOu/ve//5V5DOWMdNPmPBXF+P3337OGDRsykUjE/P392ebNm9nbb7/NgoODqxSPrp83tYXHGGO1k2oRQmrL4sWLMXfuXCQnJ5fpn0VIeeg9QyqSnZ0Nf39/DBgwAN9//z3X4egN3QIjxMitWbMGANCkSRPI5XIcO3YMq1evxrBhw+iDjJSL3jOkIqmpqfjqq6/QrVs3ODo6IikpCd988w3y8vIwdepUrsPTK0qACDFyFhYW+Oabb5CYmIji4mJ4e3tj1qxZ6uVLCHkVvWdIRcRiMRITExEZGYmsrCx15/MNGzbgjTfe4Do8vaJbYIQQQggxOTQMnhBCCCEmhxIgQgghhJgcSoAIIYQQYnKoE3Q5VCoVnj59Cmtr60ontSKE1BzGGPLy8uDh4VHlCdhqG107COGWLtcNSoDK8fTp0zKrERNCuPHo0SOjGZpN1w5CDIM21w1KgMpRuk7Ko0ePYGNjU2lZuVyOw4cPo1evXhAKhbURHidMpZ6A6dTV0OuZm5sLLy8vvS06Wxu0vXYY+nOvT6ZSV1OpJ2DYddXlukEJUDlKm65tbGy0SoAsLCxgY2NjcG8EfTKVegKmU1djqacx3UrS9tphLM+9PphKXU2lnoBx1FWb64Zx3FgnhBBCCNEjSoAIIYQQYnIoASKEEEKIyaE+QIQQo8cYg0KhgFKp5DQOmUwGHx8fyGQySKXSCsvJ5XKYmZlBKpVyHnNNM5W6mko9Ae7rKhQKIRAIqn0cSoAIIUZNJpMhJSUFhYWFXIcClUqFDRs24NmzZ0hPT6+wHGMMbm5uePTokVF18q4KU6mrqdQT4L6uPB4P9erVg5WVVbWOQwkQIcRoqVQqJCQkQCAQwMPDAyKRiNMPH6VSiaKiIvj6+lb6DVWlUiE/Px9WVlZGM8ljVZlKXU2lngC3dWWMIT09HY8fP0ajRo2q1RJECRAhxGjJZDKoVCp4eXnBwsKC63DUtwMkEslrEyCZTAaJRGISH5amUFdTqSfAfV2dnZ2RmJgIuVxerQSobr9KhBCTUNc/cAgh/09frbx01SCEEEKIyaEEiBBCCCEmhxIgQggxUDweD/v376/x8/j6+mLlypU1fp7ybN26FXZ2dpycm5g2SoAIIYQjaWlp+Oijj+Dt7Q2xWAw3NzeEhYUhNjYWAJCSkoI+ffpwHGVZlLSQuoBGgRFCak1SZgFm7bmOr98PgqedOdfhcO69996DXC7Htm3bUL9+fTx79gxHjx5FVlYWAMDNzY3jCAmpu6gFiBBSK5IzCzHk+7M4+zALc/fdqLHzMMZQKFNw8sMY0zrOnJwcnDp1CkuXLkW3bt3g4+ODNm3aYM6cOejbty8AzVtgiYmJ4PF4+OWXX9CpUyeYm5ujdevWuHfvHi5cuIBWrVrBysoKvXv31piEsWvXrvjkk080zj1gwACMGjWqwthWrFiBZs2awdLSEl5eXoiMjER+fj4AICYmBqNHj0ZOTg54PB54PB6+/PJLACXTEsycOROenp6wtLRE27ZtERMTo3HsrVu3wtvbGxYWFnjnnXeQmZmp9XNGiD5RCxAhpMYlZxbig+9j8TRHivrOllg6sHmNnatIrkTA/EM1dvzK3IjqoXVZS0tLWFlZYf/+/WjXrh3EYrFW+0VFRWHlypXw9vbGmDFjMGTIENjY2GDVqlWwsLDA+++/j/nz52P9+vVVrQb4fD5Wr14NX19fJCQkIDIyEjNnzsS6desQGhqKlStXYv78+bh79y4AqGfkHT16NBITE7Fr1y54eHhg3759CA8Px+nTpxEcHIxz585hzJgxWLx4Md59910cPHgQUVFRVY6TkOqgBIgQUqOSMwsx5Iez6uRn1/h2cLGRcB0W58zMzLB582Z89NFH2LBhA1q2bIkuXbrggw8+QPPmFSeIM2bMQFhYGABg6tSpGDJkCI4ePYoOHToAAMaOHYutW7dWK7aXW4z8/PywaNEiTJw4EevWrYNIJIKtrS14PJ7GLboHDx5g586dePz4MTw8PNSxHjx4EDt27EBwcDBWrVqFsLAwzJ49GwDg7++PM2fO4ODBg9WKl5CqoASIEFJjHmWVJD9PsotqLfkxFwoQtzCsRs9REZGOnQoGDhyIfv364eTJk4iNjcXBgwexbNkybNy4scJbVC8nR66urgCAZs2aaWxLS0vTOfaXHT9+HIsXL0ZcXBxyc3OhUCgglUpRUFAAS0vLcve5fPkyGGPw9/fX2F5cXAwbGxsAwO3bt/HOO+9oPN6+fXtKgAgnKAEihNSIR1mF+OD7F8mPU+21/PB4PFiIuLm0VWVlbIlEgp49e6Jnz56YP38+xo0bh6ioqAoTIKFQqP5/6Yy4r25TqVTq3/l8fpm+SXK5vMJ4kpKSEB4ejoiICCxatAgODg44deoUxo4dW+l+KpUKAoEAly5d0lieQKVSqc+vSx8pQmoadYImhOjdq8nPzgl020tbAQEBKCgo0NvxnJ2dkZKSov5dqVTi5s2bFZa/ePEiFAoFvv76a7Rr1w7+/v54+vSpRhmRSFQm2QsODoZSqURaWhoaNmyo8VPaUhUQEICzZ89q7Pfq74TUFkqACCF6VV7y40rJTxlZWVno0aMHtm/fjuvXryMhIQG//vorli1bhrfffltv53nzzTdx4MABHDhwAHfu3EFkZCSys7MrLN+gQQMoFAp8++23ePjwIX766Sds2LBBo4yvry/y8/Nx9OhRZGRkoLCwEP7+/vjwww8xYsQI7N27FwkJCbhw4QKWLVuGw4cPAwCmTJmivs137949rFmzhm5/Ec5QAkQI0ZuXkx8/Sn4qZWlpiTZt2uCbb75B586dERgYiHnz5mH8+PFYs2aN3s4zZswYjBw5EiNGjECXLl3g5+eHbt26VVg+KCgIK1aswNKlSxEYGIgdO3ZgyZIlGmVCQ0MRERGBwYMHw9nZGcuWLQMAbNmyBSNGjMCnn36Kxo0bo3///jh37hw8PT0BAO3atcPGjRvx7bffIigoCIcPH8bcuXP1VldCdMFjdFO2jNzcXNja2iInJ0fdea8icrkc0dHRCA8P17gPX9eYSj0B06mrvuv5+HlJ8vP4+YvkZ3w7uNlWPfnR5u9QKpUiISEBfn5+kEi4T7SUSiWuXLmC4OBgjX4wr1KpVMjNzYWNjU2dX8neVOpqKvUEuK9rZX/3unx+1+1XiRBSK/Sd/BBCyMsYY3rvRE8JECGkWh4/Lxnq/vh5EXwdLSj5IYToFWMMT3OkePK8SK9JEOcJ0Lp169TNWCEhITh58mSFZVNSUjB06FA0btwYfD6/zPTupfbs2YOAgACIxWIEBARg3759NRQ9IabtSXYRhvxwFo+yiuDjaIGdEyj5IYToD2MMqblSZOYXI6tQhgKZ7lNNVITTBGj37t345JNP8MUXX+DKlSvo1KkT+vTpg+Tk5HLLFxcXw9nZGV988QVatGhRbpnY2FgMHjwYw4cPx7Vr1zB8+HC8//77OHfuXE1WhRCT8yS7CB98H6tOfnZNaAd3W1rglBCiP89yi5GeVwwA8LQzh5VYf3N8cToR4ooVKzB27FiMGzcOALBy5UocOnQI69evLzPqACgZerlq1SoAwObNm8s95sqVK9GzZ0/MmTMHADBnzhycOHECK1euxM6dO8vdp7i4GMXFxerfc3NzAZR0Eq1s4q/SMi//W1eZSj0B06lrder5NLsIwzZfxKPnRfB2MMdPo1vBycJMr8+ZMTz/L0/yB/z/RIiMMY3JCF/18sSAlZWrC0ylrqZST6D26pqeL0NanhQA4G4rgb2FECqVSv13J5fLyww20OW6wVkCJJPJcOnSJfWaMKV69eqFM2fOVPm4sbGxmDZtmsa2sLAwrFy5ssJ9lixZggULFpTZfvjwYVhYWGh13iNHjugUp7EylXoCplNXXev5vBj49pYAmcU8OIoZxvjm4crpY7ii57gKCwv1fET9S01NLTNJIFCy0ntlo8BK5eXl1URYBslU6moq9QRqtq65MiBbVvJ/OxEgVEqRm1uSDMlkMhQVFeHff/+FQqHQ2E+X6wZnCVBGRgaUSqV6htBSrq6uSE1NrfJxU1NTdT7mnDlzMH36dPXvubm58PLyQq9evbQaBn/kyBH07Nmzzg+ZNoV6AqZT16rUMyVHig83XUBmcRG87M2xY2xruNdQn5/SllhD5ubmpnG9USqVuH79OmxtbSsdHswYQ15eHqytrdXLWdRVplJXU6knUPN1zSqQIVtWkuy4WIvhYi3WeFwqlcLc3BydO3cudxi8tjhfC+zVJ48xVu0nVNdjisViiMXiMtuFQqHWHwy6lDVmplJPwHTqqm09U3KKMHxL6W2vkj4/HnY11+fHGJ77ipIcHo9XaQJUetvgdeXqAlOpq6nUE6jZumYVFONpzv8nP642kjKf33w+Hzwer9xrly7XDc5eJScnJwgEgjItM2lpaWVacHTh5uam92MSYupScorwwfdnkZRZCC8Hc+ys4eSHEGJ6nhfK8Ph5EQDAyar85EefOEuARCIRQkJCyvQ/OHLkCEJDQ6t83Pbt25c55uHDh6t1TEJM2avJz64J7eFJyY/BGTVqFAYMGMB1GAbF19e30v6fddnp06fRrFkzCIVCo3hfZBfK8DirpP+Oo6UI7rY1m/wAHA+Dnz59OjZu3IjNmzfj9u3bmDZtGpKTkxEREQGgpG/OiBEjNPa5evUqrl69ivz8fKSnp+Pq1auIi4tTPz516lQcPnwYS5cuxZ07d7B06VL8888/Fc4ZRAipWGqOFEMo+akR6enpiIiIgLe3N8RiMdzc3BAWFobY2NgqHW/VqlXYunWrfoMsx6hRo8Dj8cr8xMfH6+X4MTEx4PF4lS7Y+nK50h9nZ2f06dMH165d00scxm769OkICgpCQkJCrbwvqiO3SI5HWUVgAOwtRPCwM6+VflSc9gEaPHgwMjMzsXDhQqSkpCAwMBDR0dHw8fEBUDLx4atzAgUHB6v/f+nSJfz888/w8fFBYmIigJJF+nbt2oW5c+di3rx5aNCgAXbv3o22bdvWWr0IqQtSc6T44PtYJGYWop69OXaOb0fJjx6NGDECjDFs27YN9evXx7Nnz3D06FFkZWVV6Xi2trZ6jrBivXv3xpYtWzS2OTs719r5X3b37l3Y2NggOTkZU6ZMQe/evXHnzp1afT6qS6lUatWfhjEGpVIJM7PXf3Q/ePAAERERqFevXpXjkslkEIlEVd5fG3lSOZKyCsHAYGchQj372kl+AAOYCToyMhKJiYkoLi7GpUuX0LlzZ/VjW7duRUxMjEb50vVAXv4pTX5KDRo0CHfu3IFMJsPt27fx7rvv1kJNCKk7UnOkGPLDWXXys2tCO9Sz125KCM4xBsgKuPnRcpr+7OxsnD17FkuWLEG3bt3g4+ODNm3aYM6cOejbty8A4NNPP0W/fv3U+6xcuRI8Hg8HDhxQb2vcuDG+++47AGVvgXXt2hVTpkzBzJkz4eDgADc3N3z55Zcacdy5cwcdO3aERCJBQEAA/vnnH/B4POzfv7/S+EtbrF7+KR32f+LECbRp0wZisRju7u6YM2eOxlDl4uJiTJkyBS4uLpBIJOjYsSMuXLgAAEhMTFSvVG9vbw8ej4dRo0ZVGouLiwvc3NzQpk0bfP3110hNTcXZs2fLLbtixQo0a9YMlpaW8PLyQmRkJPLz89WPb926FXZ2djh06BCaNm0KKysr9O7dGykpKeoypc/z8uXL4e7uDkdHR0yaNElj/hmZTIaZM2fC09MTlpaWaNu2rcZnWel5/vrrL/WqBUlJSWXiLW3lOnToEFq1agWxWIyTJ0+CMYZly5ahfv36MDc3R4sWLfDbb7+pn0Mej4fMzEyMGTMGPB5P3QIUFxeH8PBwWFlZwdXVFcOHD0dGRob6fF27dsXkyZMxffp0ODk5oWfPnuXuN2LECGRmZmrs97r3WnZ2NiZMmABXV1dIJBIEBgbi1737kZRZCMYY4m9cwrABvWFhYQEvLy9MmTIFBQUFlb721cX5KDBCiGEpTX4SMgrULT9Gk/wAgLwQWOzBzblnPdKqmJWVFaysrPD7778jNDS03FGoXbt2xaZNm6BSqcDn83HixAk4OTnhxIkT6Nu3L1JTU3Hv3j106dKlwvNs27YN06dPx7lz5xAbG4tRo0ahQ4cO6NmzJ1QqFQYMGABvb2+cO3cOeXl5+PTTT6tcdQB48uQJwsPDMWrUKPz444+4c+cOxo8fDx6Ph8WLFwMAZs6ciT179mDbtm3w8fHBsmXLEBYWhvj4eHh5eWHPnj0YOHCgumXH3Fz7VsfSshVNhsfn87F69Wr4+voiISEBkZGRmDlzJtatW6cuU1hYiOXLl+Onn34Cn8/HsGHDMGPGDOzYsUNd5vjx43B3d8fx48cRHx+PwYMHo3nz5hg8eDAAYPTo0UhMTMSuXbvg4eGBffv2oXfv3rhx4wYaNWqkPs+SJUuwceNGODo6wsXFpcJ6zZw5E8uXL0f9+vVhZ2eHuXPnYu/evVi/fj0aNWqEf//9F8OGDYOzszM6duyIlJQUNG7cGAsXLsTgwYNha2uLlJQUdOnSBePHj8eKFStQVFSEWbNm4f3338exY8fU59q2bRsmTpyI06dPgzFW7n4zZ87E6NGjNZK6173X+vTpg7y8PGzfvh0NGjTA5Ws3kJ4vh4oxPH14FyPfH4BFixZh06ZNSE9Px+TJkzF58uQyLY16xUgZOTk5DADLycl5bVmZTMb279/PZDJZLUTGHVOpJ2OmU9fy6pmaU8S6/u8485n1FwtdcpQlZxZwFp82f4dFRUUsLi6OFRUV/f/G4nzGomw4+VEU5rALFy4whUJRad2USiXbtm0bs7e3ZxKJhIWGhrI5c+awa9euqctkZ2czPp/PLl68yFQqFXN0dGRLlixhrVu3Zowx9vPPPzNXV1d1+ZEjR7K3335b/XuXLl1Yx44dNc7bunVrNmvWLMYYY3///TczMzNjKSkp6sePHDnCALB9+/ZVGPvIkSOZQCBglpaW6p9BgwYxxhj7/PPPWePGjZlKpVKXX7NmDbOysmJyuZzl5+czoVDIduzYoX5cJpMxDw8PtmzZMsYYY8ePH2cA2PPnzyt9Dl8tl5GRwfr378+sra3Zs2fPGGOM+fj4sG+++abCY/zyyy/M0dFR/fuWLVsYABYfH6/etnbt2jLPs4+Pj8Zr/N5777H333+fPX/+nN27d4/xeDz25MkTjXN1796dzZkzR+M8V69e1aqO+/fvV2/Lz89nEomEnTlzRqPs2LFj2ZAhQ9S/29rasi1btqh/nzdvHuvVq5fGPo8ePWIA2N27dxljJe+ZoKAgjTLl7ZeUlMQAsNu3b6v3q+y9dujQIcbn89XnKSiWs5uPs9m1R8/Zg7Q8NmzYcDZhwgSN/U+ePMn4fL7m3/YL5f7dv6DL5ze1ABFCAADPcks6PCdkFMDTruS2l5eDEbX8lBJaAJ+XnZ25VvDLtuRUpH///hg0aBBOnz6N2NhYHDx4EMuWLcPGjRsxatQo2NraIigoCDExMRAKheDz+fjoo48QFRWFvLw8xMTEVNr6AwDNmzfX+N3d3R1paWkASvrOeHl5wc3NTf14mzZttIq9W7duWL9+vfp3S0tLAMDt27fRvn17jT4coaGhyM/Px+PHj5Gbmwu5XI4OHTqoHxcKhWjTpg1u376t1blfVdrHpaCgAI0aNcKvv/5aYWvK8ePHsXjxYsTFxSE3NxcKhQJSqRQFBQXqOlhYWKBBgwbqfV5+zkq98cYbGjN9u7u748aNGwCAy5cvgzEGf39/jX2Ki4vh6Oio/l0kEpV5fSrSqlUr9f/j4uIglUrVt6dKyWQyjT6yr7p06RKOHz8OKyurMo89ePBAHe/L59JmvyZNmgCo/L129epV1KtXD/7+/iiSKZCQUQAlY7AUm8HX0RKXL19CfHy8Risbe7HMRkJCApo2bVphvaqDEiBCCNJeJD8PjT35AQAeDxBZcnNupW4rVUskEvTs2RM9e/bE/PnzMW7cOERFRan7vXTt2hUxMTEQiUTo0qUL7O3t8cYbb+D06dOIiYl57ejWVyeF4/F46knsWDUmnbW0tETDhg3LbC/vmOxFvygej6fx/9ftp62TJ0/CxsYGzs7Olc7cn5SUhPDwcERERGDRokVwcHDAqVOnMHbsWI1bZuU9Z+yVvl2VPa8qlQoCgQCXLl0qsxzKy0mEubn2nX1Lk7PS4wPAgQMH4OnpqVGuvFupL+/Xr18/LF26tMxj7u7u5Z6rov1UKhXy8/PVt/OAyp+T0luTUrmyJPlRMViISpIfPr+k3EcffYQpU6aUic3b27vCOlUXJUCEmLi0vGIM33yxbiQ/Ri4gIECjA3JpPyAzMzP06NEDANClSxfs2rXrtf1/XqdJkyZITk7Gs2fP1BPFlnZGrk78e/bs0UhoYmNjYW1tDU9PTzg5OUEkEuHUqVMYOnQogJL+OhcvXlQnc6WjjpRaJpN+fn6ws7N7bbmLFy9CoVDg66+/Vo+2+uWXX3Ss4esFBwdDqVQiLS0NnTp10vvxSztNJycn6/T6t2zZEnv27IGvr69Wo8gq20+lUiE3N7dMslSR5s2b4/Hjxzh29hrq+dWHuUgAPycLCPg89Tlu3bpVblJdkzgfBUYI4U6ODBi++QIlP7UsMzMT/fv3x/bt23H9+nUkJCTg119/xbJly/D222+ry3Xu3Bl5eXn4888/0bVrVwAlSdH27dvh7OyMgICAKsfQs2dPNGjQACNHjsT169dx+vRpfPHFFwDKttBoKzIyEo8ePcLHH3+MO3fu4Pfff8eXX36JyMhI8Pl8WFpaYuLEifjss89w8OBBxMXFYfz48SgsLMTYsWMBAD4+PuDxePjrr7+Qnp6uMUqrOho0aACFQoFvv/0WDx8+xE8//YQNGzbo5dgv8/f3x4cffogRI0Zg7969SEhIwIULF7B06VJER0dX+/jW1taYMWMGpk2bhm3btuHBgwe4cuUK1q5di23btlW436RJk5CVlYUhQ4bg/PnzePjwIQ4fPowxY8ZUmmxWtN/kyZO1TlLbdeiIVu06YOr4Ybh05gSQm4bDhw7h4MGDAIBZs2YhNjYWkyZNwtWrV3H//n388ccf+Pjjj3V7cnRECRAhJiotrxhr4wR4mFEIT7uS0V6U/NQOKysrhISEYNWqVejcuTMCAwMxb948jB8/HmvWrFGXs7W1RXBwMBwcHNTJTqdOnaBSqarV+gMAAoEA+/fvR35+Plq3bo1x48Zh7ty5AFBmgUlteXp6Ijo6GufPn0eLFi0QERGBMWPGYMaMGeoy//3vfzFw4EAMHz4cLVu2RHx8PA4dOgR7e3v1MRYsWIDZs2fD1dUVkydPrlY9SwUFBWHFihVYunQpAgMDsWPHDixZskQvx37Vli1bMGLECHz66ado3Lgx+vfvj3PnzsHLy0svx1+0aBHmz5+PJUuWoGnTpggLC8Off/4JPz+/Cvfx8PDA6dOnoVQqERYWhsDAQEydOvW1C/eWt9+0adNgY2Oj1TpgMoUSCekFWL5hG5oHh+CzyLFo3iwQM2fOVCdQzZs3x4kTJ3D//n106tQJwcHBmDdvnsatuZrAY6/e3CTIzc2Fra0tcnJytFoNPjo6GuHh4UaxeGNVmUo9AdOoa5FMiXfWncad1Dy420qwe0J7eDsaVvKjzd+hVCpFQkIC/Pz8qvyhrU9KpRJXrlxBcHBwmf4fLyu9haDth0htOX36NDp27Ij4+HiNjsDVYah11TdTqSegfV3lChUeZORDplBBbCZAfWdLCAXVf24q+7vX5fOb+gARYmIYY5i7/ybupObBSsiwfUwrg0t+SO3Yt28frKys0KhRI8THx2Pq1Kno0KGD3pIfYrrkShUeZhRAplBBZMaHn5N+kh99ogSIEBOz68Ij7Ln8GHweMKqRCt5028tk5eXlYebMmXj06BGcnJzQo0cPfP3111yHRYycQqlCQkYBihVKCAV81HeyhMjMsJIfgBIgQkzK9cfZiPr9FgBgeo9G8Mqv2twrpG4YMWJEmQWnCakOhaok+ZHKX05+Kr4dzCXDS8kIITUiu1CGidsvQ6ZUoWeAKyZ08uU6JEJIHaJUqZCYUYgiuRJm/JLbXmKhYSY/ALUAEWISVCqGabuv4kl2EXwcLbD8vRaopQWXawWN5SCEW0oVQ2JGIQplCgj4PPg5WUJSQ8mPvv7eqQWIEBOw9ng8jt9Nh9iMj3UftoSted0Y3VY6Sq+wsJDjSAgxXSoVQ1JmAQpkCgh4JcmPuajmWn5kMhkAVDrSUhvUAkRIHXfyfjpW/HMPALBoQCDe8LDlOCL9EQgEsLOzU685ZGFhUeVJ/PShdF4TqVT62mHwMpkMUqnUJIZMm0JdTaWegGZdwePhaXYRCooV4PF4cLc3B1+lgFSqqLFzp6enw8LCQqcZrctDCRAhddjT7CJM3XUVjAEftPbC+630MxGbISldzPPVBSu5oFKpkJGRgcTExEo/BBljKCoq0mk9KGNlKnU1lXoC/19Xibk5nhfIUCRXgc8DHK1EeFZY831++Hw+vL29q/08UwJESB0lU6gw6efLyCqQ4Q0PG3zZ/w2uQ6oRPB4P7u7ucHFx0VjUkgv5+fno27cvLl68WO7q2aXkcjn+/fdfdO7cuc5OtlnKVOpqKvUESup6/MS/iC10xb/3MyAU8PHVgGZo4mtfK+cXiUR6aWWjBIiQOmpx9G1cSc6GjcQM6z8MqbEOiYZCIBBUu09AdclkMiQlJUEkElU6M7VAIIBCoYBEIqnzH5amUldTqScA8Hh8/HRHhQsZzyAU8PDd8GB0aOLKdVg6q9s3KgkxUX9ce4qtZxIBAN8MDqKZngkhesEYw/w/43Ahgw8Bn4dvh7TEm0aY/ACUABFS59x/lofZe64DACZ1a4DuTY3z4kQIMTzf/fsQuy8+AQ8MywcGonegG9chVRklQITUIfnFCkRsv4RCmRIdGjpies/GXIdECKkjYh9kYtnBOwCAQX4qvNW8Zldrr2mUABFSRzDGMHvPdTxIL4CbjQSrPgiGgF+3R6MQQmrHs1wpPt55GSoGvBPsgQ6uxj/5KCVAhNQR284k4q/rKTDj87D2w2A4WYm5DokQUgfIlSpM2nEZGfkyNHGzxoK3mtaJmeQpASKkDriU9Bz/OVCysOnn4U0R4uPAcUSEkLriv3/fwcWk57AWm2H9sJAaneW5NlECRIiRy8gvxqQdl6FQMfRt7o7RHXy5DokQUkdE30jBplMJAIDl77eAn5MlxxHpDyVAhBgxpYph6q4rSM2VooGzJZYObF7nZ6ElhNSOB+n5+OzXawCAj7rUR9gbxjviqzyUABFixL45cg+n4zNhIRJgw7AQWIlpblNCSPUVFCsQ8dMlFMiUaOvngM961b0RpZQAEWKkjt15hjXH4wEAS95thkau1hxHRAipCxhjmLP3Bu6n5cPFWoxvhwbDTFD30oW6VyNCTMCjrEJ8susqAGBkex+8HeTJbUCEkDrjp7NJ+OPaUwj4PKwZ2hIu1hUv62LMKAEixMhI5UpM3HEJuVIFgrzs8EXfAK5DIoTUEVeSn2PRX3EAgDl9mqCNX90dUUoJECFGZsGft3DzSS4cLEVY92FLiMzoz5gQUn2Z+cWI3HEZciVDn0A3jO3ox3VINYqunIQYkV8vPsLO84/A4wGrPgiCh5051yERQuoApYrhk91XkZIjRX0nSywbVPdHlFICRIiRiHuai7n7bwIApvXwR6dGzhxHRAipK1b9cw8n72fAXCjA+mEhsJYIuQ6pxlECRIgRyCmSY+KOSyhWqNC1sTMmd2vIdUiEkDri+J00rD72/yNKG7uZxohSSoAIMXCMMcz49RqSMgvhaWeOlYODwKdFTgkhevAoqxCf7L4KABjezgcDgk1nRCklQIQYuO/+fYgjcc8gEvCxflhL2FmIuA6JEFIHSOVKRO64jJwiOVp42WHuW025DqlWUQJEiAGLfZCJZQfvAACi+gegeT07bgMihNQZC/6Mw40nObC3EGLdhy0hNqsbi5xqixIgQgxUWq4UH++8AhUD3m3piaFtvLkOiRBSR5SMKE0Gjwes/CAYniY4opQSIEIMkFypwqSfLyMjvxhN3Kzx1YBmdX5IKiGkdrw8ovST7v7o4m+aI0opASLEAC07eAcXEp/DWmyG9cNCYC4yraZpQkjNeHVE6cdvmu6IUkqACDEwB2+m4IeTCQCA/73XAn5OlhxHRAipC14dUfrN+6Y9opQSIEIMyMP0fMz49ToAYELn+ugd6MZxRISQuuLlEaXrPmwJe0vTHlFKCRAhBqJQpsDE7ZeRX6xAGz8HzAxrzHVIhJA64tURpS287LgNyABQAkSIAWCMYe6+m7j7LA9OVmKsGRIMMwH9eRJCqu9ZrhQf77xMI0pfQVdYQgzAz+eTsffKEwj4PKwdGgwXGwnXIRFC6gC5UoXJP19GRr6MRpS+ghIgQjgWn5aPBX/EAQBmhjVG2/qOHEdECKkrlv5NI0orQgkQIRxijOHzfTcgU5YMSZ3QuT7XIRFC6ojoGynYeIpGlFaEEiBCOPTrpcc4n5AFc6EA/xkQSE3ThBC9eJCej89+vQYA+IhGlJaLEiBCOJKZX4zF0bcBANN7+qOevQXHERFC6oKSEaWXUCBToo2fAz6jEaXlogSIEI58FX0b2YVyNHW3wegOvlyHQwipAxhjmLP3Bu49y4eztRhrhtKI0orQs0IIB87EZ2Dv5Sfg8YAl7zajCxQhRC+2n03C71efQsDnYc2QYLhY04jSitBVl5BaJpUr8cWLhQhHtPNBEE1IRgjRgyvJz7Hwr5IRpbN7N6ERpa9BCRAhtWxdzAMkZBTA1UaMT+nePCFED7IKZJi04zLkSobeb7hhXCc/rkMyeJwnQOvWrYOfnx8kEglCQkJw8uTJSsufOHECISEhkEgkqF+/PjZs2FCmzMqVK9G4cWOYm5vDy8sL06ZNg1QqrakqEKK1+LR8rI+JBwB82e8N2EiEHEdECDF2ShXD1F1X8DRHCj8nS/zvveY0olQLnCZAu3fvxieffIIvvvgCV65cQadOndCnTx8kJyeXWz4hIQHh4eHo1KkTrly5gs8//xxTpkzBnj171GV27NiB2bNnIyoqCrdv38amTZuwe/duzJkzp7aqRUi5Suf8kSsZujdxoWGphBC9WHX0Pk7ez4BEyMf6YS1hTV+stGLG5clXrFiBsWPHYty4cQBKWm4OHTqE9evXY8mSJWXKb9iwAd7e3li5ciUAoGnTprh48SKWL1+OgQMHAgBiY2PRoUMHDB06FADg6+uLIUOG4Pz587VTKUIq8PKcPwvefoO+oRFCqu34nTSsPnofQMmAiiZuNhxHZDw4S4BkMhkuXbqE2bNna2zv1asXzpw5U+4+sbGx6NWrl8a2sLAwbNq0CXK5HEKhEB07dsT27dtx/vx5tGnTBg8fPkR0dDRGjhxZYSzFxcUoLi5W/56bmwsAkMvlkMvlldaj9PHXlTN2plJPoGbqmlkgw+IDJXP+TO3eAK5WQs6fS0N/TQ01rpdV9dph6M+9PplKXbmo5+PnRfhk9xUAwNA29fBWoGutnN+QX1NdYuIsAcrIyIBSqYSrq6vGdldXV6Smppa7T2pqarnlFQoFMjIy4O7ujg8++ADp6eno2LEjGGNQKBSYOHFimUTrZUuWLMGCBQvKbD98+DAsLLSbnO7IkSNalTN2plJPQL913X6fj+wiPjwtGFyy4xAdHae3Y1eXob6mhYWFXIfwWtW9dhjqc18TTKWutVVPxoC1cXzkFPHhbckQwktEdHRirZy7lCG+prpcNzi9BQagzG0AxliltwbKK//y9piYGHz11VdYt24d2rZti/j4eEydOhXu7u6YN29eucecM2cOpk+frv49NzcXXl5e6NWrF2xsKm9OlMvlOHLkCHr27AmhsO7edzWVegL6r+uZB5m4EHsJPB6wang7tKhnq4coq8/QX9PS1hRDVtVrh6E/9/pkKnWt7Xr+eukJ7p+9BYmQj80TQuHjUHszyRvya6rLdYOzBMjJyQkCgaBMa09aWlqZVp5Sbm5u5ZY3MzODo2PJfAfz5s3D8OHD1f2KmjVrhoKCAkyYMAFffPEF+Pyy/b7FYjHEYnGZ7UKhUOsXV5eyxsxU6gnop65SuRJRf5bc+hrRzget/Jz0EZpeGepraogxvaq61w5Dfe5rgqnUtTbqmZYnxdJD9wCULKPT0JWbL1WG+JrqEg9no8BEIhFCQkLKNKEdOXIEoaGh5e7Tvn37MuUPHz6MVq1aqStdWFhYJskRCARgjKlbiwipLeuOxyMxs5Dm/CGE6M2CP+OQUyRHoKcNxnSg+X6qitNh8NOnT8fGjRuxefNm3L59G9OmTUNycjIiIiIAlDQvjxgxQl0+IiICSUlJmD59Om7fvo3Nmzdj06ZNmDFjhrpMv379sH79euzatQsJCQk4cuQI5s2bh/79+0MgENR6HYnpik/Lw/oTDwDQnD+EEP34J+4ZDlxPgYDPw3/fbU7L6FQDp32ABg8ejMzMTCxcuBApKSkIDAxEdHQ0fHx8AAApKSkacwL5+fkhOjoa06ZNw9q1a+Hh4YHVq1erh8ADwNy5c8Hj8TB37lw8efIEzs7O6NevH7766qtarx8xXSoVw+d7b9KcP4QQvcmTyjHv95JldMZ19EOgp2H0JzRWnHeCjoyMRGRkZLmPbd26tcy2Ll264PLlyxUez8zMDFFRUYiKitJXiITo7LdLj3E+keb8IYToz/JDd5GSI4W3gwU+6eHPdThGj9rOCNGzjPxifBVd0vF5ek9/1LOvvdEZhJC66VLSc/x4NgkAsPidZjAXUZeO6qIEiBA9W3zgNnKK5GjqboPRHXy5DocQYuRkChXm7L0OxoCBLeuhYyPDG01qjCgBIkSPTsdnYO+VJ+DxSqalpw6KhJDq2nDiAe49y4ejpQhz+zblOpw6g67OhOiJVK7EF/tuACiZ8yfIy47bgAghRi8+LQ9rjsUDAOb3C4C9pYjjiOoOSoAI0ROa84cQok8qFcOcvTcgU6rQrbEz+rfw4DqkOoUSIEL0gOb8IYTo28/nk3Eh8TksRAL8551mNJpUzygBIqSaaM4fQoi+peZIsfTvOwCAz8Iaw9POnOOI6h5KgAipJprzhxCib1F/3EResQJBXnYY0d6X63DqJEqACKkGmvOHEKJvB2+m4NCtZzDj8/Dfgc0g4NOXqppACRAh1UBz/hBC9CmnSI75v98CAER0aYAmbjYcR1R3UQJESBXRnD+EEH377993kJZXjPpOlpj8ZkOuw6nT6IpNSBXQnD+EEH079zATO8+XLAC++N1mkAhpuYuaRAkQIVVAc/4QQvRJKldizt6SL1VD2nihXX1HjiOq+ygBIkRHNOcPIUTf1h6Px8OMAjhbizG7Dy13URsoASJEBzTnDyFE3+6k5mJ9TMmXqoX934CtOX2pqg2UABGiA5rzhxCiT0oVw+w9N6BQMfQMcKUvVbWIEiBCtERz/hBC9O2n2ERcfZQNa7EZFr0dSF+qahElQIRoieb8IYTo05PsIiw7dBcAMLNPE7jZSjiOyLRQAkSIFmjOH0KIPjHGMHffDRTKlGjlY48P23hzHZLJoas4Ia9Bc/4QQvTtz+spOH43HSIBH/8d2Ax8Wu6i1lECRMhr0Jw/hBB9el4gw4I/Spa7iOzWAA1drDmOyDRRAkRIJWjOH0KIvn0VfRuZBTI0crHCxK4NuA7HZFECREgFaM4fQoi+nbqfgd8uPQaPB/x3YDOIzWi5C65QAkRIBfZceUpz/hBC9KZIpsTnL/oTDm/ngxAfB44jMm1mXAdAiCHKkwP/ezE89dNeNOcPIaT6Vh69h+SsQrjZSPAZ9SfkHLUAEVKO3xP5yClSIMDdBqNCfbkOhxBi5G4+ycHGkwkAgEUDAmFN/Qk5RwkQIa848yATFzL4NOcPIUQvFEoVZu+9DqWKoW8zd/QMcOU6JAJKgAjRIJUrMf+PkuUuhrX1Rgua84cQUk1bTifi5pNc2EjMENU/gOtwyAuUABHyks2nE5CUVQhbIcO07g25DocQYuSSMwvx9ZGS/oRf9G0KF2ta7sJQUAJEyAs5hXJsiCmZ86efjwrWEhojQAipOsYYvth/A1K5Cu3qO+D9Vl5ch0ReQgkQIS98f/IBcqUK+LtYIcSJcR0OIcTI7b38BCfvZ0BkxseSd5vTVBoGhhIgQgCk5xVj86lEAMC0Hg1By/IQQqojM78Y/zkQBwCY2r0R/JwsOY6IvIoSIEIArD0ejyK5EkFedujexJnrcAghRm7RX3F4XihHEzdrTOhcn+twSDkoASIm7/HzQuw4lwQAmBnWmJqpCSHVcvxuGvZffQo+D/jvwOYQ0lQaBoleFWLyVv5zH3IlQ4eGjght6MR1OIQQI1ZQrMDcfTcBAKNC/RBEU2kYLEqAiEmLT8vD3suPAQAzetHU9ISQ6ll5NB5PsovgaWeOT3v5cx0OqQSN8yUmbcWRe1AxoFeAK4K97bkOhxBixJLygB9vJQMAvnonEJZi+og1ZNQCREzWjcc5iL6RCh4P+JRafwgh1SBXqrDzoQAqBgwI8kDXxi5ch0RegxIgYrL+d7hkdtZ3gjzR2M2a42gIIcZs06lEpBTyYG8hxLy3aLkLY0AJEDFJZx9m4t976TDj8/BJD7pPTwipurRcKdadeAgAmNO7MRytxBxHRLRBCRAxOYwx/O9QSevPB2284O1owXFEhBBj9s0/91EkV8HXimFAkDvX4RAtUQJETM7xu2m4lPQcEiEfU95sxHU4hBAjFp+Wh18uPgIA9PdR0jxiRoQSIGJSVCqG/x26BwAYGeoLFxtamZkQUnVLD96FUsXQvYkzGthwHQ3RBSVAxKT8dSMFt1NyYS02w8QuDbgOhxBixC4mZuFI3DPwecCnPak12dhQAkRMhlypwooXI78mdK4POwsRxxERQowVYwyLo28DAAa39kIjFyuOIyK6ogSImIzfLj1GYmYhHC1FGN3Rj+twCCFG7NCtVFxOzoZEyKeRpEaKEiBiEqRyJVb9cx8AMKlbQ1jRDK2EkCqSK1VYdrCkNXl8p/pwpb6ERokSIGIStp9NQmquFB62Egxt6811OIQQI7brwiM8zCiAg6UIEzrX5zocUkVafQ2ePn26zgeeO3cuHBwcdN6PEH3Lk8qx9ng8AOCTHv6QCAUcR0QIMVYFxQp1a/LU7o1gLRFyHBGpKq0SoJUrV6J9+/YQibTrNHrq1ClMnjyZEiBiEDadSsDzQjnqO1ni3ZaeXIdDCDFiP5x8iIz8Yvg4WmBIG2pNNmZad4TYt28fXFy0W9zN2prWVSKGIatAho0nEwAA03v5w0xAd30JIVWTlifF9/+WLHnxWVhjiMzoemLMtHr1tmzZAltbW60P+t1338HV1bXKQRGiLxtOPEB+sQJveNggPJCmqCeEVN3qo/dRKFOiRT1b9G1G1xNjp1UL0MiRI3U66NChQ6sUDCH6lJojxbYziQCAGWGNwefTFPWEkKp5kJ6PnedLlryYE96UlryoA6rVfpefn4/c3FyNH12tW7cOfn5+kEgkCAkJwcmTJystf+LECYSEhEAikaB+/frYsGFDmTLZ2dmYNGkS3N3dIZFI0LRpU0RHR+scGzFuq4/dR7FChda+9ujq78x1OIQQI/Y/9ZIXLmhX35HrcIge6JwAJSQkoG/fvrC0tIStrS3s7e1hb28POzs72Nvb63Ss3bt345NPPsEXX3yBK1euoFOnTujTpw+Sk5MrPHd4eDg6deqEK1eu4PPPP8eUKVOwZ88edRmZTIaePXsiMTERv/32G+7evYsffvgBnp7U+dWUJGYU4JcLJd/WPgtrQt/WCCFVdinpOQ7eSgWfB8zq04TrcIie6Dwb3IcffggA2Lx5M1xdXav1wbJixQqMHTsW48aNA1Ay2uzQoUNYv349lixZUqb8hg0b4O3tjZUrVwIAmjZtiosXL2L58uUYOHCgOq6srCycOXMGQmHJ8EQfH58qx0iM0zf/3INCxdC1sTPa+NFoREJI1TDGsOTFkhfvhXjB35UG+dQVOidA169fx6VLl9C4ceNqnVgmk+HSpUuYPXu2xvZevXrhzJkz5e4TGxuLXr16aWwLCwvDpk2bIJfLIRQK8ccff6B9+/aYNGkSfv/9dzg7O2Po0KGYNWsWBILy538pLi5GcXGx+vfSW3lyuRxyubzSepQ+/rpyxs6Y6nknNQ9/XHsKAPjkzQY6x2xMda0OQ6+nocb1sqpeOwz9udcnY6/rP7fTcDHpOSRCPiZ386uwHsZeT10Ycl11iUnnBKh169Z49OhRtROgjIwMKJXKMqPFXF1dkZqaWu4+qamp5ZZXKBTIyMiAu7s7Hj58iGPHjuHDDz9EdHQ07t+/j0mTJkGhUGD+/PnlHnfJkiVYsGBBme2HDx+GhYWFVvU5cuSIVuWMnTHU84c7fDDGR7CjCklXTyHpatWOYwx11QdDrWdhYSHXIbxWda8dhvrc1wRjrKuSAUuvCQDw0NFFgcunjr12H2OsZ1UZYl11uW7onABt3LgRERERePLkCQIDA9W3mUo1b95cp+O9eguNMQZzc3NIpdIyZT08PGBpaVnmMR8fHygUCkilUri5ucHe3h6rV6+GQCDAG2+8gefPn2Pz5s2YOXNmuTFMnz4dkydPVv+en5+Prl27omvXrrCyqnyFX4VCgTNnziA0NBRmZnV3fSljqeftlDw8v3kdXrY8LB4cjHr25jofw1jqWl1c1pPH48HMzKzCVlkAVRpUUdvmzJmjMVN+bm4uvLy80KtXL9jY2FS4n1wux5EjR9CzZ88y19C6xpjruuvCYzwrioO9hRDLRnWsdNZnY66nrgy5rrpcN3S+6qWnp+PBgwcYPXq0ehuPxwNjDDweD0qlUqvjODk5QSAQaLT2MMbg6uqKZcuWISEhocw+UVFREIlEGo+JxWJs2LABeXl5yM/PR1RUFHg8nkZH6rZt28LPzw8PHz7Uqs+SSqXChg0bkJWVhezs7ErLMsbg5uaGlJSUOt3R1ljqKc0rxpfdXGApFgAFmXhcoPsxjKWu1WUI9bSzs4Obm1u55ze0C2t5xGIxxGJxme1CoVCr+LUtVxcYW10LZQqsPv4AAPDxm43gYK3d3QBjq2d1GGJddYlH5wRozJgxCA4Oxs6dO6vVCVokEiEkJARHjhzBO++8A6DkFlejRo3g4eGBevXqlTm2ubk5cnNz4efnp9725MkT9ZD40jI5OTnw9fVV75+RkQE+n68u8zpKpRJFRUXw9fWt9BsqUJIs5efnw8rKCnx+3Z0V1BjqWVAsh+x5EXg8HnwdLas8S6sx1FUfuKwnYwyFhYVIS0sDALi706RyxLBsPJmA9LxieDtYYFg7GkhTF+mcACUlJeGPP/5Aw4YNq33y6dOnY/jw4WjVqhXatWuHjIwMWFlZwdvbG2KxGI8fP4ZcLlcnPO7u7sjKykJ6ejqcnJxQUFCA7Oxs1K9fHxKJBEDJbbLSMi4uLpBKpcjIyICrq6u6zOuUtmJJJBKtEiCZTAaJRFLnPywNuZ6MMTzKlYNnJoKTlRg2Vrrf+ipl6HXVF67raW5e8hqlpaXBxcXltX9rhNSWjPxifHeipPVnBi15UWfpnAC9+eabuHbtml4SoMGDByMzMxMLFy6EmZkZvvvuO/j4+KiblOVyOWQymbq8WCxGo0aN8OjRI6SlpUEoFMLLy0tj/iGRSAR/f388evQIt27dgkgkgqurK9zc3KodLzFcuVI5imRK8Hk8OFuXvSVBDFNpR2G5XE4JEDEYq4/eR4FMiWaetniLlryos3ROgPr164dp06bhxo0baNasWZn7bf3799fpeJGRkYiMjIRUKkVCQoJGp+OXb3WVsra2RkBAQKXHtLKyQtOmTXWKgxgvxhhSc0qGIjtZiSGkBU+NRl3uY0WMU0JGAX4+V9KHdE54E1pCpw7TOQGKiIgAACxcuLDMY7p0giZEX7IL5ShWKCHg8+BsLeI6HEKIEVt+6K56EtXQBk5ch0NqkM4JkEqlqok4CKkSFWN4llsyLYKztRiCOtxnhxBSs64kP8eBGyng8YDZtORFnUefFrWAx+Nh//79NX4eX19f9TIhtW3r1q2ws7Or9fNmFcggU6ogFPDhZEl9fwghVcMYw5K/7wAABrashyZuFc/jROoGrRKg1atXlzsxYUVK5+UxFenp6YiIiFCPXnNzc0NYWBhiY2MBACkpKejTpw/HUZbFVdKiL0oVQ1puSd8fF2sx3asnhFTZ0dtpOJ+QBbEZH9N7+nMdDqkFWiVA06ZN0ymhmTlzJtLT06sclLEZMWIErl+/jm3btuHevXv4448/0LVrV2RlZQEA3Nzcyp0sjVRPZkExFCoVRGZ82FtS3x9CSNUolCosPVjS+jO6gx887Ko+jQYxHlolQIwxdO/eHS1bttTqp6ioqNqBMcZQKFNw8sMY0zrO7OxsnD17FkuWLEG3bt3g4+ODNm3aYM6cOejbty8AzVtgiYmJ4PF4+OWXX9CpUyeYm5ujdevWuHfvHi5cuIBWrVrBysoKvXv31kgiu3btik8++UTj3AMGDMCoUaMqjG3FihVo1qwZLC0t4eXlhcjISOTn5wMAYmJiMHr0aOTk5IDH44HH4+HLL78EULJQ7cyZM+Hp6QlLS0u0bdsWMTExGsfeunUrvL29YWFhgXfeeQeZmZlaP2f6oFCpkJ5X0vrjaiMBn0YTEUKqaM/lx7iflg87CyEmdm3AdTiklmjVCToqKkqng7799ttwcHCoUkCliuRKBMw/VK1jVNWNqB5al7WysoKVlRV+//13hIaGat3SExUVhZUrV8Lb2xtjxozBkCFDYGNjg1WrVsHCwgLvv/8+5s+fj/Xr11e1GuDz+Vi9ejV8fX2RkJCAyMhIzJw5E+vWrUNoaChWrlyJ+fPn4+7du+q6AMDo0aORmJiIXbt2wcPDA/v27UN4eDhOnz6N4OBgnDt3DmPGjMHixYvx7rvv4uDBgzq/R6orI68YShWDRCiAnblhTcVOCDEeRTIlVhy5BwCY3K0hbOl6YjJqJAEyJWZmZli7di0++eQTfPfdd2jZsiW6dOmCDz74oNKFYWfMmIGwsDAAwNSpUzFkyBAcPXoUHTp0AACMHTsWW7durVZsL7cY+fn5YdGiRZg4cSLWrVsHkUgEW1tb8Hg8jUkiHzx4gJ07d+Lx48fw8PBQx3rw4EHs2LEDwcHBWLVqFcLCwjB79mwAgL+/P86cOYODBw9WK15tyZUqZOSXTJDpaiOhuWQIIVW2+XQCnuUWo569OYa3pyUvTInBLnVtLhQgbmEYJ+cW6Tg2rn///hg0aBBOnz6N2NhYHDx4EMuWLcPGjRsrvEX1cnLk6uoKAGjWrJnGttJ1kqrq+PHjWLx4MeLi4pCbmwuFQgGpVIqCggJYWlqWu8/ly5fBGIO/v2YnwOLiYvXq1rdv31av31aqffv2tZYApecVQ8UYLERmsJEY7FuYEGLgMvOLsT6mZMmLz8IaQ2xGs5GbEoP99ODxeLAQcRNeVSZzlEgk6NmzJ3r27In58+dj3LhxiIqKqjABenkG7dIWjFe3vTznEp/PL9M3SS6XVxhPUlISwsPDERERgUWLFsHBwQGnTp3C2LFjK91PpVJBIBDg0qVLGksTqFQq9fl16SOlbzKFEpkFJa0/bjZiav0hhFTZt8fikV+sQKCnDfo19+A6HFLLaB6gGhIQEICCggK9Hc/Z2RkpKSnq35VKJW7evFlh+YsXL0KhUODrr79Gu3bt4O/vj6dPn2qUEYlEZZK94OBgKJVKpKWloWHDhho/pS1VAQEBOHv2rMZ+r/5eU57lFoMxBiuxGawkdK+eEFI1SZkF2HEuCQAwp09TmkbDBFECVE2ZmZno378/tm/fjuvXryMhIQG//vorli1bhrfffltv53nzzTdx4MABHDhwAHfu3EFkZCSys7MrLN+gQQMoFAp8++23ePjwIX766Sds2LBBo4yvry/y8/Nx9OhRZGRkoLCwEP7+/vjwww8xYsQI7N27FwkJCbhw4QKWLVuGw4cPAwCmTJmivs137949rFmzplZuf0nlSmQXlrb+SGr8fISQuut/h+5CrmTo7O+MDg1pyQtTpHMCtHDhQhQWFpbZXlRUVO76YHWdlZUVQkJCsGrVKnTu3BmBgYGYN28exo8fjzVr1ujtPGPGjMHIkSMxYsQIdOnSBX5+fujWrVuF5YOCgrBixQosXboUgYGB2LFjB5YsWaJRJjQ0FBERERg8eDCcnZ2xbNkyAMCWLVswYsQIfPrpp2jcuDH69++Pc+fOwdPTEwDQrl07bNy4Ed9++y2CgoJw+PBhzJ07V291rcizXCkYABuJEBZig717SwgxcNceZeOv6y+WvOhNS16YKh7TsUOHQCBASkoKXFxcNLZnZmbCxcWlyouhlq4G7+fnB4mE22/3SqUSV65cQXBwsEY/mPKoVCrk5ubCxsYG/Dq8DhXX9SyUKRCfVjKHkb+rNSTCmuusyHVda4sh1LOyv/vc3FzY2toiJydH3QHf0Gkbs1wuR3R0NMLDwzX6/tVFhlZXxhiG/HAWZx9m4d2WnljxfpBejmto9axJhlxXXa4bOl/1GGPldjy9du1atef+IaQiz14seWFvIarR5IcQUrfF3E3H2YdZEJnx8WmvxlyHQzik9X0Ee3t79YzB/v7+GkmQUqlEfn4+IiIiaiRIYtryixXIk8rBAw8uNrSkCCGkapQqhv++WPB0dKgvPGnJC5OmdQK0cuVKMMYwZswYLFiwALa2turHRCIRfH190b59+xoJkpguxhhSc0oW4nWwFNI8HYSQKttz+THuPsuDrbkQkV0bch0O4ZjWCdDIkSMBlMwoHBoaanD3/UjdlCctWZ+Nz+PBhUZ+EUKqSCpXYsXhkiUvJnVrAFsL+gwzdToPpenSpQtUKhXu3buHtLQ0jcn6AKBz5856C46YNsYYUnNLWn8crUQQCupuh2RCSM3afDoBqblSeNqZY0R7X67DIQZA5wTo7NmzGDp0KJKSksrMCMzj8ao8CoyQV+UUySGVKyHg8eBsRX1/CCFV87xApl7y4tNe/jSQggCoQgIUERGBVq1a4cCBA3B3d6elCEiNYIwhLa9k5JeTtRhm1PpDCKmiNcfjkSdVoKm7DQYEeXIdDjEQOidA9+/fx2+//YaGDakDGak5eVKFuvXH0UrEdTiEECP1KKsQP8YmAgDm9GlCS14QNZ2/Vrdt2xbx8fE1EQshaun5Ja0/DpYimNXhyQgJITVr+eGSJS86NXJCZ39nrsMhBkSrFqDr16+r///xxx/j008/RWpqKpo1a1ZmNFjz5s31G6GJGTVqFLKzs7F//36uQ+FMoUyBgmIFeODB0UoMX19ffPLJJ/jkk0+4Dq3WnT59GhEREbhz5w769u1r0u8LQnR143EOfr9asgj0LFrygrxCqwQoKCgIPB5Po9PzmDFj1P8vfcwUO0GnpaVh9uzZOHbsGJ49ewZ7e3u0aNECX375ZZXmRVq1alWZzuU1YdSoUdi2bVuZ7ffv39fL7c2YmBh069YNz58/h52d3WvLlXJycsIbLYIxaeY8tGsVApGZabf+TJ8+HUFBQfj7779hZWXFdTiEGA3GGP578DYAYECQBwI9bV+zBzE1WiVACQkJNR2H0XrvvfcglUqxZcsWNGzYEM+ePcPRo0eRlZVVpeO9PMFkTevduze2bNmisc3ZmZsm4rt378LGxgbxDxMQOXkKIoe/hxu34gBYcBJPVSiVSvB4vNeuq8UYg1KphJnZ6//8Hjx4gIiICNSrV6/KcclkMohE1I+KmJZ/72fgdHwmRAJa8oKUT6uv1z4+Plr/6A1jgKyAmx8tW2Cys7Nx6tQpfPnll+jWrRt8fHzQpk0bzJkzB3379gUAfPrpp+jXr596n5UrV4LH4+HAgQPqbY0bN8Z3330HoKRlZsCAAerHunbtiilTpmDmzJlwcHCAm5sbvvzyS4047ty5g44dO0IikSAgIAD//PMPeDzea2+XiMViuLm5afyULv564sQJtGnTBmKxGO7u7pgzZw4UCoV63+LiYkyZMgUuLi6QSCTo2LEjLly4AABITExUt+qULqEyatSoSmNxcXGBm5sb/JoG4dN5i5CR9gzXLl0ot+yKFSvQrFkzWFpawsvLC5GRkcjPz1c/vnXrVtjZ2eHQoUNo2rQprKys0Lt3b6SkpKjLlD7Py5cvh7u7OxwdHTFp0iTI5XJ1GZlMhpkzZ8LT0xOWlpZo27YtYmJiypznr7/+QkBAAMRiMZKSksrEGxMTAx6Ph0OHDqFVq1YQi8U4efIkGGNYtmwZ6tevD3Nzc7Ro0QK//fab+jnk8XjIzMzEmDFjwOPxsHXrVgBAXFwcwsPDYWVlBVdXVwwfPhwZGRnq83Xt2hWTJ0/G9OnT4eTkhJ49e5a734gRI5CZmamx3+vea9nZ2ZgwYQJcXV0hkUgQGBiIv/76S/34mTNn0LlzZ5ibm8PLywtTpkxBQUFBRS87ITVCqWJYEl3S+jOivQ+8HIznixSpPTqPAvvjjz/K3c7j8SCRSNCwYUP4+flVOzDIC4HFHtU/TlXMeqRVMSsrK1hZWeHAgQN48803YW5edl2Zrl27YtOmTVCpVODz+Thx4gScnJxw4sQJ9O3bF6mpqbh37x66dOlS4Xm2bduG6dOn49y5c4iNjcWoUaPQoUMH9OzZEyqVCgMGDIC3tzfOnTuHvLw8fPrpp1WuOgA8efIE4eHhGDVqFH788UfcuXMH48ePB4/Hw+LFiwEAM2fOxJ49e7Bt2zb4+Phg2bJlCAsLQ3x8PLy8vLBnzx4MHDhQ3bJT3nPzKoVSheeFMkgkJWVfTkZexufzsXr1avj6+iIhIQGRkZGYOXMm1q1bpy5TWFiI5cuX46effgKfz8ewYcMwY8YM7NixQ13m+PHjcHd3x/HjxxEfH4/BgwcjKCgIY8eOBVBymzcpKQm7du2Ch4cH9u3bh969e+PGjRto1KiR+jxLlizBxo0b4ejoCBcXlwrrN3PmTCxfvhz169eHnZ0d5s6di71792L9+vVo1KgR/v33XwwbNgzOzs7o2LEjUlJS0LhxYyxcuBCDBw+Gra0tUlJS0KVLF4wfPx4rVqxAUVERZs2ahffffx/Hjh1Tn2vbtm2YOHEiTp8+DcZYufvNnDkTo0eP1kjqXvde69OnD/Ly8rB9+3Y0aNAAcXFx6qT5xo0bCAsLw6JFi7Bp0yakp6dj8uTJmDx5cpmWRkJq0v4rT3AnNQ82EjNMfpNGLJMKMB3xeDzG5/MZj8fT+CndxufzWefOnVlWVpZOxy0qKmJxcXGsqKioZENxPmNRNpz8KApz2IULF5hCoXht3L/88guzs7NjEomEhYaGsjlz5rBr166pH8/OzmZ8Pp9dvHiRqVQq5ujoyJYsWcJat27NGGPs559/Zq6ururyI0eOZG+//bb69y5durCOHTtqnLN169Zs1qxZjDHG/v77b2ZmZsZSUlLUjx85coQBYPv27asw7pEjRzKBQMAsLS3VP4MGDWKMMfb555+zxo0bM5VKpS6/Zs0aZmVlxeRyOcvPz2dCoZDt2LFD/bhMJmMeHh5s2bJljDHGjh8/zgCw58+fV/r8vVwuNaeInbj+gHUPC2fW1tbs2bNnjDHGfHx82DfffFPhMX755Rfm6Oio/n3Lli0MAIuPj1dvW7t2bZnn2cfHR+M1fu+999jgwYOZUqlkly9fZjwejz158kTjXN27d2dz5szROM/Vq1e1quP+/fvV2/Lz85lEImFnzpzRKDt27Fg2ZMgQ9e+2trZsy5Yt6t/nzZvHevXqpbHPo0ePGAB29+5dxljJeyYoKEijTHn7JSUlMQDs9u3b6v0qe68dOnSI8fl89XleNXz4cDZhwgSNbSdPnmR8Pv///65fUebv/iU5OTkMAMvJySl3X0OkbcwymYzt37+fyWSyWoqMO7Vd1yKZgrVf/A/zmfUXWx8T//od9IReU8Ogy3VD5xagI0eO4IsvvsBXX32FNm3aAADOnz+PuXPnYt68ebC1tcVHH32EGTNmYNOmTVXPzIQWwOdPq75/dfC1n3V44MCB6NSpE65du4Zz587h4MGDWLZsGTZu3IhRo0bB1tYWQUFBiImJgVAoBJ/Px0cffYSoqCjk5eUhJiam0tYfoOzIOnd3d6SlpQEo6Tvj5eUFNzc39eOlr8vrdOvWDevXr1f/bmlpCQC4ffs22rdvrzHJZWhoKPLz8/H48WPk5uZCLpejQ4cO6seFQiHatGmD27dva3XuV9WrVw8qBhQVFqBBw4b49ddfK2xNOX78OBYvXoy4uDjk5uZCoVBAKpWioKBAXQcLCws0aNBAvc/Lz1mpN954Q916UVrmxo0bAIBr166BMQZ/f3+NfYqLi+Ho6Kj+XSQSaT3ysVWrVur/x8XFQSqVqm9PlZLJZAgODq7wGJcuXcLx48fL7RD94MEDdbwvn0ub/Zo0KRkhU9l77erVq6hXr16Z5+Tlc8THx2u0sjHGoFKpkJCQgKZNm1ZYL0L05ddLj/E0Rwo3GwlGhfpyHQ4xYDonQFOnTsX333+P0NBQ9bbu3btDIpFgwoQJuHXrFlauXKkxSqxKeDxAZFm9Y1SVjiPZJBIJevbsibCwMMyfPx/jxo1DVFSUut9L165dERMTA5FIhC5dusDe3h5vvPEGTp8+jZiYmNcO7351qgEej6deg429GH1XFZaWluWO+CrvmOxFv6iXRwOWV6aqsfxx6CiKmAiurs4IaehZ4XGSkpIQHh6OiIgILFq0CA4ODjh16hTGjh2rccusvOeMvdK3q7LnVaVSQSAQ4NKlSxpJEgCNJMLc3FzrOpcmZ6XHB4ADBw7A01NzZlqxuOIEXKVSoV+/fli6dGmZx9zd3cs9V0X7qVQq5Ofnq2/nAZU/J6+7jalSqfDRRx9hypQpZR7z9vaudF9C9EGuVGHDiyUvJnZtQEtekErpnAA9ePAANjY2Zbbb2Njg4cOHAIBGjRppdMo0NQEBARodkEv7AZmZmaFHjx4AShaV3bVr12v7/7xOkyZNkJycjGfPnsHV1RUA1J2RqxP/nj17NBKa2NhYWFtbw9PTE05OThCJRDh16hSGDh0KoKS/zsWLF9XJXOmoI22nRbBycoeTpQ087CpPKC5evAiFQoGvv/5aPdrql19+qWpVK9S8eXMolUqkpaWhU6dOej9+aafp5ORknV7/li1bYs+ePfD19dVqFFll+6lUKuTm5pZJlirSvHlzPH78GPfu3Su3Fahly5a4desWzRJPOLPv8hM8yS6Cs7UYg1t7cR0OMXA6T7ISEhKCzz77DOnp6ept6enpmDlzJlq3bg2gZC6Z6gzbNRaZmZno0aMHdu/ejevXryMhIQG//vorli1bhrfffltdrnPnzsjLy8Off/6Jrl27AihJirZv3w5nZ2cEBARUOYaePXuiQYMGGDlyJK5fv47Tp0/jiy++AFC2hUZbkZGRePToET7++GPcuXMHv//+O7788ktERkaCz+fD0tISEydOxGeffYaDBw8iLi4O48ePR2FhoboDsY+PD3g8Hv766y+kp6drjNIqj0zBYMbnwcGi8uHaDRo0gEKhwLfffouHDx/ip59+woYNG6pUz8o0bNgQQ4cOxYgRI7B3714kJCTgwoULWLp0KaKjo6t9fGtra8yYMQPTpk3Dtm3b8ODBA1y5cgVr164td36mUpMmTUJWVhaGDBmC8+fP4+HDhzh8+DDGjBlTabJZ0X6TJ0/WOknt0qULOnfujIEDB+LIkSNISEjA33//jYMHDwIAZs2ahdjYWEyaNAlXr17F/fv38ccff+Djjz/W7ckhpAoUShXWxZSsUjChU31q/SGvpXMCtGnTJiQkJKBevXpo2LAhGjVqhHr16iExMREbN24EAOTn52PevHl6D9bQWFlZoU2bNli/fj26du2KwMBAzJs3D+PHj8eaNWvU5WxtbREcHAwHBwd1stOpUyeoVKpqtf4AgEAgwP79+5Gfn4/WrVtj3LhxmDt3LoCSW3NV4enpiejoaJw/fx4tWrRAREQExowZgxkzZqjL/Pe//8XAgQMxfPhwtGzZEvHx8Th06BDs7e3Vx1iwYAFmz54NV1dXTJ48udxzvXxbytFK/Np1eoKCgrBixQosXboUgYGB2LFjB5YsWVKler7O5s2bMWLECHz66ado3Lgx+vfvj3PnzsHLSz/fLBctWoT58+djyZIlaNq0KcLCwvDnn39WOorSw8MDp0+fhlKpRFhYGAIDAzF16lTY2tpWOv9QeftNmzYNNjY2r5236GV79uxB69atMWTIEAQEBGDmzJnqBKp58+Y4ceIE7t+/j06dOiE4OBjz5s3TuDVHSE05cCMFiZmFsLcQYmhbuuVKXo/HXu0YoQXGGA4dOoR79+6BMYYmTZqgZ8+eOl1IXyWVSpGQkAA/P78qf3Dri1KpxJUrVxAcHFym/8erSm8j6PpBUpNOnz6Njh07Ij4+XqMjcHXUVD3zpXI8zCgAn8dDEzdrg1j13RBf05pgCPWs7O8+NzcXtra2yMnJKfe2uyHSNma5XI7o6GiEh4eX6XdV19RGXVUqhrCV/+J+Wj4+C2uMSd1q/zYsvaaGQZfrhs59gICSWyu9e/dG7969qxQg0a99+/bBysoKjRo1Qnx8PKZOnYoOHTroLfmpSen5MgCAvYXIIJIfQojxOXQrFffT8mEjMcPw9nqckJfUaVolQKtXr8aECRMgkUiwevXqSsuWNwKE1Ky8vDzMnDkTjx49gpOTE3r06IGvv/6a67Beq0iuRJ5UDh4AJ2taqoEQojvGGL49VtL3Z1QHP9hIDKtFghgurRKgb775Bh9++CEkEgm++eabCsvxeDxKgDgwYsQIjBgxguswdJaRVwwAsDEXQmxGHRYJIbo7dicNcSm5sBQJMJrm/SE60HkxVFoYleiDTKFCdmHJvD3O1tpPPEkIIaVebv0Z1t4H9pbUkky0V+VOFzKZDHfv3tVYIFMfqtAnmxihzPxiMDBYis1gIapSVzRSB9DfO6mOU/EZuPooGxIhH+M71ec6HGJkdE6ASud6sbCwwBtvvIHk5GQAJX1//vvf/1Y5kNKe5IWFhVU+BjEOCpUKWQUlnZ+draj1x5SV/r0b2kgSYhxKW3+GtPGGE11LiI50/uo9Z84cXLt2DTExMRqjwHr06IGoqCjMnj27SoEIBALY2dmp1x2ysLCo8kR+1VU6r4lUKtVqGLxMJoNUKq3zQ6b1Vc/MgmIo5MUQmQkghAJSqW5Lj9Q0ek1rHmMMhYWFSEtLg52d3Wv/zgh51bmHmTifkAWRgI+POhv+iFdieHROgPbv34/du3ejXbt2GglKQEAAHjx4UK1gShf0fHXRytqmUqmQkZGBxMTE134wMMZQVFSk05pQxkhf9WSMITW3GEoVg4OlEIl5hnf7i17T2mNnZ6exkC8h2lpzvKT1571W9eBmy+3cccQ46fzpk56eXu4q3QUFBdW+iPJ4PLi7u8PFxUVjYcvalp+fj759++LixYvlrp79Mrlcjn///RedO3eu0834+qrn3zdTsPxoMpysxPhpbFuIzAyvhYVe09ohFAqp5YdUyZXk5zh5PwNmfB4iulDrD6kanROg1q1b48CBA+r1fUqTnh9++AHt27fXS1ACgYDTC6NMJkNSUhJEItFrZ6UWCARQKBSQSCR1+sNSH/VUqRjW/puMJ3lKjOjoDRsrCz1HqR/0mhJi2Na86PvzTrAnvBwM8zpCDJ/OCdCSJUvQu3dvxMXFQaFQYNWqVbh16xZiY2Nx4sSJmoiR1BHH76YhPi0f1mIzDKG1egghVXDzSQ6O3kkDnwdM7EqtP6TqdL7/EBoaitOnT6OwsBANGjTA4cOH4erqitjYWISEhNREjKSO+O7EQwDA0LbeNFsrIaRK1r7o+/NWcw/Ud668iwIhlalSD9RmzZph27Zt+o6F1GFXkp/jfGIWhAIeRneoeLVzQgipyL1nefj7ZioAYPKbtb/gKalbtE6AcnNztSpnLKs2k9r1/b8lrT9vB3nSiA1CSJWse9H60/sNN/i7WnMcDTF2WidAdnZ2lY7yYoyBx+Op59AhpFRCRgEO3ir51jahM83WSgjRXUJGAf649hQAtf4Q/dA6ATp+/Lj6/4wxhIeHY+PGjfD09KyRwEjdsfHkQzAGvNnEhb61EUKqZH1MPFQvriOBnrZch0PqAK0ToC5dumj8LhAI0K5dO9SvT9/oScUy8ovx66XHAKj1hxBSNY+yCrH38hMA1PpD9MfwZqEjdcqPZxIhU6jQwssObf0cuA6HEGKEvvv3ARQqho4NndDS257rcEgdQQkQqTGFMgV+PJsEAPioc/06vawEIaRmPMuV4pcLJa3I1PpD9KlaCZA+PtDWrVsHPz8/SCQShISE4OTJk5WWP3HiBEJCQiCRSFC/fn1s2LChwrK7du0Cj8fDgAEDqh0n0d0vFx4hu1AOH0cLhL1B6z0RQnT33YmHkClVaOPrgHb1HbkOh9QhWvcBevfddzV+l0qliIiIgKWlpcb2vXv3an3y3bt345NPPsG6devQoUMHfPfdd+jTpw/i4uLg7V12puCEhASEh4dj/Pjx2L59O06fPo3IyEg4Oztj4MCBGmWTkpIwY8YMdOrUSet4iP4olCpsPJUAABjXqT4EfGr9IYToJiO/GD+fL2lFptYfom9aJ0C2tpq97ocNG1btk69YsQJjx47FuHHjAAArV67EoUOHsH79eixZsqRM+Q0bNsDb2xsrV64EADRt2hQXL17E8uXLNRIgpVKJDz/8EAsWLMDJkyeRnZ1d7ViJbqJvpuLx8yI4WIrwXkg9rsMhhBihjScTIJWr0KKeLTo1cuI6HFLHaJ0AbdmyRa8nlslkuHTpEmbPnq2xvVevXjhz5ky5+8TGxqJXr14a28LCwrBp0ybI5XL1go4LFy6Es7Mzxo4d+9pbagBQXFyM4uJi9e+lkz7K5fLXrkpf+jiXq9fXBl3qyRjDdydKJiwb1tYLAqggl6tqND59otfUMBhqXC+r6rXD0J97fapqXbML5fgpNhEAMLGLHxQKhb5D0yt6TQ2DLjFVaSkMfcjIyIBSqYSrq6vGdldXV6Smppa7T2pqarnlFQoFMjIy4O7ujtOnT2PTpk24evWq1rEsWbIECxYsKLP98OHDsLDQbqXhI0eOaH0+Y6ZNPe/m8HDrqQBCPoNr7l1ER9+thcj0j15TbhUWFnIdwmtV99phqM99TdC1rn8/4qNAxoenBYP0wUVEP6yhwPSMXlNu6XLd4CwBKvVqR+rSGaV1KV+6PS8vD8OGDcMPP/wAJyftm0vnzJmD6dOnq3/Pzc2Fl5cXevXq9dqlPeRyOY4cOYKePXuqW6DqIl3q+du2SwAy8UFrb7z/VtPaCVCP6DU1DNouv8Olql47DP2516eq1DVPqsC8r/8FoMCsfi3QJ9DwB1HQa2oYdLlucJYAOTk5QSAQlGntSUtLK9PKU8rNza3c8mZmZnB0dMStW7eQmJiIfv36qR9XqUpuvZiZmeHu3bto0KBBmeOKxWKIxeIy24VCodYvri5ljdnr6nk7JRcn4zPB5wETujQ06ueEXlNuGWJMr6rutcNQn/uaoEtdd55KQq5UgYYuVnirRT3wjWgQBb2m3NIlHs7mARKJRAgJCSnThHbkyBGEhoaWu0/79u3LlD98+DBatWoFoVCIJk2a4MaNG7h69ar6p3///ujWrRuuXr0KLy+vGqsPKVG66Gl4M3d4OWh3+5AQQkoVyhTY9GIE6aRuDYwq+SHGhdNbYNOnT8fw4cPRqlUrtG/fHt9//z2Sk5MREREBoKR5+cmTJ/jxxx8BABEREVizZg2mT5+O8ePHIzY2Fps2bcLOnTsBABKJBIGBgRrnsLOzA4Ay24n+Pckuwp8vFiv8qHPZljZCCHmdn88lI6tABh9HC/Rr7sF1OKQO4zQBGjx4MDIzM7Fw4UKkpKQgMDAQ0dHR8PHxAQCkpKQgOTlZXd7Pzw/R0dGYNm0a1q5dCw8PD6xevbrMHECEG5tPJUChYmhf3xHN6tFihYQQ3UjlSnz3ohU5smsDmAlosQJSczjvBB0ZGYnIyMhyH9u6dWuZbV26dMHly5e1Pn55xyD6l1Mkx67zJcnqR11o0VNCiO5+ufgI6XnF8LQzxzvBNH8YqVmUXhO92HEuCQUyJZq4WaOLvzPX4RBCjIxMocKGmAcAgIgu9SEyo48nUrPoHUaqrVihxJbTiQCACbToKSGkCvZefoynOVK4WIvxXisasEJqHiVApNr2X3mC9LxiuNtK0K8FdVokhOhGoVRh3YvWnwmd60MiFHAcETEFlACRalGpmLrT4pgOfhBSp0VCiI7+vP4UyVmFcLAUYWjbsgthE1IT6NOKVMvRO2l4mF4Aa4kZPmhDzdaEEN0oVQxrjpWsHTi2ox8sRJyPzSEmghIgUi3fnShptv6wrQ+sJYY1IyghxPAdvJmKB+kFsJGYYUR7H67DISaEEiBSZZeSnuNi0nOIBHyM7uDLdTiEECOjUjF8e+w+AGB0Bz/6EkVqFSVApMq+/7ek9WdAsAdcbSQcR0MIMTZH76ThTmoeLEUC+hJFah0lQKRKHqbn43DcMwAlozYIIUQXjDGsedH6MyLUF3YWIo4jIqaGEiBSJT+cTABjQI+mLmjoYs11OIQQI/Pv/Qxce5wDiZCPsR39uA6HmCBKgIjO0vOKsefyYwDABFr0lBCiI8YYvj1a0vrzYVsfOFmJOY6ImCJKgIjOtp1JhEyhQrC3HVr72nMdDiHEyJx9mKUeQEG30AlXKAEiOikoVuCns0kAgI9o2QtCSBWsOV7S+vN+63o0gIJwhhIgopNfLz9BTpEcfk6W6BngxnU4hBAjcynpOU7HZ8KMz0NEF7qFTrhDCRDRmlIFbDld0vozrpMfBHxq/SGE6KZ05Ne7LT1Rz96C42iIKaMEiGjtSiYPT3OkcLQUYWDLelyHQwgxMjef5OD43XTweUBk14Zch0NMHCVARCuMMRx7WvJ2GRXqS6s1E0J0Vjrrc/8WHvB1suQ4GmLqKAEiWjnzMAtPCnkwF/IxrB2t10MI0c29Z3k4dOsZeDxgUjdq/SHcowSIaOWHk4kAgPdC6sHekmZsJYToZt2JBABAn0A3NHKlyVMJ9ygBIq+VnFmI0w8ywQPD6FBq/SGE6OZZERB9MxUAtf4Qw0EJEHmtvVdKZn32t2WoZ2/OcTSEEGPzzxO+eumcNzxsuQ6HEACUAJHXYIxh7+UnAIA2zozjaAghxubR80JcTC+ZMoNaf4ghoQSIVOpi0nMkZxXCUiRAMwdKgAghuvn+ZCJU4KFDA0cEe9PSOcRwUAJEKrXnUsntr96BrhDTyHdCiA5Scoqw50UL8qSutOYXMSyUAJEKSeVKHLieAgB4J8iD42gIIcZm+9kkyJUMDawZLZxMDA4lQKRCh+OeIa9YAU87c7T2oYsXIUR7CqUKv14saUHu7K7iOBpCyqIEiFSo9PbXwJae4NO6X4QQHRy/m460vGI4WAoRaE/9B4nhoQSIlOtZrhQn76cDAN6ldb8IITradT4ZQMntczP6pCEGiN6WpFy/X30CFQNCfOxpzR5CiE5Scopw/G4aAOD9EPoCRQwTJUCkDMYY9lwqGblBq74TQnT128XHUDGgja8D6jvTFyhimCgBImXcepqLu8/yIDLjo29zd67DIYQYEZWKYffFRwCAD9p4cRwNIRWjBIiUsedySefnngGusDUXchwNIcSYnH6QgcfPi2AtMUOfQPoCRQwXJUBEg1ypwh9XnwIABtHtL0KIjnadL2n9eSfYE+Yimj2VGC5KgIiGmLvpyCyQwclKjE6NnLgOhxBiRDLzi3E4rmTV9w9ae3McDSGVowSIaNj74vbXgCAPmAno7UEI0d7ey08gVzI0r2eLAA8brsMhpFL0CUfUsgtlOHq7ZOjqQBq6SgjRAWMMOy+UzP1DrT/EGFACRNT+vPYUMqUKAe42aOpO394IIdq7mPQcD9MLYC4UoF8L6vxMDB8lQEStdNXmd1t6chwJIcTY7Hwx83O/Fu6wltDoUWL4KAEiAIAH6fm4+igbAj4PbwdRAkQI0V5OkRzRN1IAAIPp9hcxEpQAEQD/v/BpV39nOFuLOY6GEGJM/rj6BFK5Cv6uVmjpbcd1OIRohRIgApWKYd+VF0tfUOdnQogOGGPY+WLunw9ae4PH43EcESHaoQSIIPZhJlJypLCRmOHNJi5ch0MIMSI3n+QiLiUXIgEf7wTT7XNiPCgBIurbX/1aeEAipJlbCSHaKx363jvQDfaWIo6jIUR7lACZuPxiBf6+WTJzK93+IoToolCmUC+d80FrWviUGBdKgEzcwZupKJIr4edkiWAvO67DIYQYkb+upyC/WAEfRwu0q+/IdTiE6IQSIBNXevtrYEtP6rxICNHJrhdz/wxu7QU+n64fxLhQAmTCHj8vROzDTADAO7TyOyFEB/ee5eFycsncYYPo+kGMECVAJmz/i6Hv7es7wtPOnONoCCHGZNeLoe/dm7jAxUbCcTSE6I4SIBPFGFMvfUGdnwkhuihWKLH3Ssnt8w/aUOdnYpwoATJRl5OzkZBRsnBhn0A3rsMhhBiRQ7eeIbtQDjcbCbr409xhxDhRAmSi9l4u+fbWJ9ANlmIzjqMhhBiT0s7P77eqBwF1fiZGihIgEySVK/HntZK5O+j2FyFEF0mZBTjzIBM8HvA+zf1DjBglQCbo6O005EoV8LCVoD3N3UEI0cHuCyWdnzs1ckY9ewuOoyGk6jhPgNatWwc/Pz9IJBKEhITg5MmTlZY/ceIEQkJCIJFIUL9+fWzYsEHj8R9++AGdOnWCvb097O3t0aNHD5w/f74mq2B0Sm9/DQj2pLk7CCFaUyhV+PXF3GE08zMxdpwmQLt378Ynn3yCL774AleuXEGnTp3Qp08fJCcnl1s+ISEB4eHh6NSpE65cuYLPP/8cU6ZMwZ49e9RlYmJiMGTIEBw/fhyxsbHw9vZGr1698OTJk9qqlkFLzytGzL10AHT7ixCim2N30pCeVwxHSxF6NHXlOhxCqoXTBGjFihUYO3Ysxo0bh6ZNm2LlypXw8vLC+vXryy2/YcMGeHt7Y+XKlWjatCnGjRuHMWPGYPny5eoyO3bsQGRkJIKCgtCkSRP88MMPUKlUOHr0aG1Vy6D9fvUJlCqGIC87NHC24jocQogRKb39NTCkHkRmnN9AIKRaOBv+I5PJcOnSJcyePVtje69evXDmzJly94mNjUWvXr00toWFhWHTpk2Qy+UQCoVl9iksLIRcLoeDg0OFsRQXF6O4uFj9e25uLgBALpdDLpdXWo/Sx19XzlCULn0xoIWbTjEbWz2rw1Tqauj1NNS4XlbVa4ehP/flScmR4vjdNADAwCB3rWM3xrpWhanUEzDsuuoSE2cJUEZGBpRKJVxdNZtRXV1dkZqaWu4+qamp5ZZXKBTIyMiAu7t7mX1mz54NT09P9OjRo8JYlixZggULFpTZfvjwYVhYaNfJ78iRI1qV49KTAuB2qhkEPAZR6k1ER9/U+RjGUE99MZW6Gmo9CwsLuQ7htap77TDU5748hx7zoGICNLBmuHPhBO7ouL8x1bU6TKWegGHWVZfrBucTwLy6ACdjrNJFOcsrX952AFi2bBl27tyJmJgYSCQVT9U+Z84cTJ8+Xf17bm4uvLy80KtXL9jY2FQav1wux5EjR9CzZ89yW6AMyZK/7wJIQo+mrnjv7SCd9jWmelaXqdTV0OtZ2ppiyKp67TD05/5VKhXDsm9OApAiolczhAd5aL2vsdW1qkylnoBh11WX6wZnCZCTkxMEAkGZ1p60tLQyrTyl3Nzcyi1vZmYGR0fN4dzLly/H4sWL8c8//6B58+aVxiIWiyEWi8tsFwqFWr+4upTlgkKpwh/XS567Qa28qxyroddTn0ylroZaT0OM6VXVvXYY6nP/qn/vpeNJthTWEjP0C6oHoVCg8zGMpa7VZSr1BAyzrrrEw1kvNpFIhJCQkDJNaEeOHEFoaGi5+7Rv375M+cOHD6NVq1Yalf7f//6HRYsW4eDBg2jVqpX+gzdCJ+9nICO/ZPRG18bOXIdDCDEipZ2f3wn2hKQKyQ8hhojTbvzTp0/Hxo0bsXnzZty+fRvTpk1DcnIyIiIiAJQ0L48YMUJdPiIiAklJSZg+fTpu376NzZs3Y9OmTZgxY4a6zLJlyzB37lxs3rwZvr6+SE1NRWpqKvLz82u9fobktxdz//QP8oBQQKM3CCHaycwvxuG4ktbjD1p7cxwNIfrDaR+gwYMHIzMzEwsXLkRKSgoCAwMRHR0NHx8fAEBKSorGnEB+fn6Ijo7GtGnTsHbtWnh4eGD16tUYOHCgusy6desgk8kwaNAgjXNFRUXhyy+/rJV6GZqcIjmOxD0DAAxsSXP/EEK0t+fyY8iVDM3r2SLAo/I+kYQYE847QUdGRiIyMrLcx7Zu3VpmW5cuXXD58uUKj5eYmKinyOqOA9dTIFOo0NjVGm/QBYwQoiXGGHa9uP1FrT+krqF7ISZgz4vbXwNDPCsdYUcIIS+7kPgcD9MLYCESoL8OI78IMQaUANVxiRkFuJT0HHweMCDIk+twCCFGZNeFki4IbzV3h5WY8xsGhOgVJUB1XOnCp50aOcPFpuK5kAgh5GU5RXJE30gBAHzQhm5/kbqHEqA6TKVi2HO5ZBFYWviUEKKLP64+gVSugr+rFYK97LgOhxC9owSoDjufmIUn2UWwFpuhVwCt3EwI0Q5jDDvP/3/nZ+o7SOoiSoDqsNKFT/s2d6fJywghWrvxJAdxKbkQmfHxbkvqO0jqJkqA6qhCmUJ9/55ufxFCdFE69L33G26wsxBxHA0hNYMSoDrq8K1nKJAp4e1ggVY+9lyHQwgxEgXFCvxx9SkA4IM2XhxHQ0jNoQSojiqd++fdljT3DyFEewdupCC/WAEfRwu083N8/Q6EGClKgOqglJwinIrPAEBLXxBCdLPrfMncP4Nbe4HPpy9PpO6iBKgO2n/lKRgD2vg5wMvBgutwCCFG4t6zPFxOzoaAz8Mg+vJE6jhKgOoYxtj/L31BozcIITrY9WLoe/cmLjRxKqnzKAGqY64/zkF8Wj4kQj7Cm7lzHQ4hxEhI5UrsvVLy5WkIzfxMTAAlQHVM6dIXYW+4wVoi5DgaQoixOBz3DNmFcrjbStDZ35nrcAipcZQA1SEyhQp/XCsZvvou3b8nhOigtPPze628IKDOz8QEUAJUhxy7k4bnhXK42ojRsaET1+EQQoxEUmYBzjzIBI8HvN+KvjwR00AJUB1SevtrQLAnfYMjhGht94uZnzs1ckY9exo5SkwDJUB1RFaBDMfvpgGguX8IIdqTK1X49cW6gUNa08zPxHRQAlRH/HH1CeRKhmaetvB3teY6HEKIkTh+Jw3pecVwtBShe1NXrsMhpNZQAlRH7L3yBADN/UMI0U3pwqeDQupBZEYfCcR00Lu9Drj/LA/XH+fAjM9DvxYeXIdDCDESKTlFiHlx6/x9uv1FTAwlQHXAby86P3dr4gJHKzHH0RBCjMWvFx9D9WLZnAbOVlyHQ0itogTIyClVDPvVt7+o8zMhRDsqFVOP/vqAWn+ICaIEyMidjs/As9xi2FkI8WYTF67DIYQYiVPxGXiSXQQbiRktm0NMEiVARq504dP+LTyoAyMhRGu7LpTM/PxOsCckQgHH0RBS++gT04jlSeU4dCsVAN3+IoRoLyO/GEfingEABremhU+JaaIEyIj9fSMVUrkKDV2s0LyeLdfhEEKMxN7LjyFXMrSoZ4sADxuuwyGEE5QAGbHS0V/vtvQEj0dLXxBCXo8xpp77h1p/iCmjBMhIPcoqxPmELPB4JffwCSFEGxcSn+NhegEsRAL0D6J5w4jpogTISO29XDL0vWNDJ7jbmnMcDSHEWOw6X9L5uV9zD1iJzTiOhhDuUAJkhBhj2Hvl/29/EUKINnKK5DhwIwUAMLgNzf1DTBslQEboYtJzJGUWwlIkQNgbblyHQwgxEr9ffYJihQqNXa0R7GXHdTiEcIoSICO090Xn5/Bm7rAQURM2IeT1GGPYeb6087MXDZwgJo8SICMTn5aPv66XNGG/S3P/EEK0dONJDm6n5EJkxqdb54QAoOYDI8AYw7mELPzw70McvVOycrOPowXa+jlwHBkhxNAVyZT4/eoTfP/vQwBAn0A32FmIOI6KEO5RAmTAFEoVom+mYuPJh7j+OAcAwOMBPZq6YlbvJuDzqQmbEFK+J9lF+Ck2CbsuJCO7UA4AsBab4aPODTiOjBDDQAmQAcovVmD3hUfYfCoBT7KLAABiMz4GhdTD2I5+qO9sxXGEhBBDxBjD+YQsbD2TiEO3UqFiJdvr2ZtjVKgv3gvxgq2FkNsgCTEQlAAZkNQcKbacScDP55KRJ1UAABwtRRjR3hfD2nnD0UrMcYSEEEMklSvxx7Wn2Ho6EXEpuertoQ0cMSrUF92bukJALcaEaKAEyADEPc3FxpMP8ce1p1C8+MpW39kS4zvVp5WaCSEVSskpwvazSdh5/hGyCmQAAImQj3eC62FUqC8au1lzHCEhhosSII4wxvDv/QxsPPkQJ+9nqLe39XPAhM710a2xC/XxIYSUwRjDpaTn2HImEQdvpkL54kuTp505RrT3weDWXtTJmRAtUAJUy4oVSvxx9Sk2nUrAndQ8AICAz0N4M3eM7+SH5vXsuA2QEGKQihVK/HUtBVvPJOLGkxz19rZ+DhjdwRc9mrrCTEAzmxCiLUqAaklOoRw7zidh6+lEpOUVAwAsRQIMbu2N0R184eVgwXGEhBBD9CxXih1nk/Dz+WRk5Jfc5hKb8TEgyBMjQ30R4GHDcYSEGCdKgGrYo6xCbDqVgF8uPkKhTAkAcLURY3QHPwxp4w1bcxqRQQgp63Lyc2w9nYjoGynqvoHuthIMb++DD1p7w8GSbnMRUh2UANWQq4+y8cO/D/H3zRT1UNQmbtaY0Lk+3mruAZEZNVUTQjTJFCpE30jBljOJuPYoW729ta89RoX6odcbrhDSbS5C9IISID1SqRj+uf0MG08m4Hxilnp7Z39njO/kh44NnWj9HUJIGWl5Uvx8Lhk7ziUj/cUtcpGAj/5BHhgV6otAT1uOIySk7qEESA9kSuDn84+wLTYZDzMKAABCAQ/9W3hiXCc/NHWne/SEkLKuP87B9vOP8df1p5ArS5qKXW3EGN7OBx+08YYTzf1FSI2hBKgaMvKLse30Q2y+LECB4jYAwEZihg/b+WBUqC9cbSQcR0gIMTRypQp/XU/BqhsCJMaeU28P8bHHqFBf9A50o9tchNQCSoCqIer3WzhwIwUAD/XsJBjbqT7eb+UFSzE9rYSQ8mXmy/DZnptQqHgQCnjo19wDI0N90cLLjuvQCDEp9EldDaM7+OJRVgFaWj7HrKEdYS6h5mpCSOXcbCUY2sYL6Y8TMG/om/BwoLX9COECtbNWQ4iPPX77qC2CHRlNQEYI0dq8vk3Q24vB2Zq+NBHCFfrUrgYej0ejugghhBAjRAkQIYQQQkwOJUCEEEIIMTmUABFCCCHE5HCeAK1btw5+fn6QSCQICQnByZMnKy1/4sQJhISEQCKRoH79+tiwYUOZMnv27EFAQADEYjECAgKwb9++mgqfEEIIIUaI02Hwu3fvxieffIJ169ahQ4cO+O6779CnTx/ExcXB29u7TPmEhASEh4dj/Pjx2L59O06fPo3IyEg4Oztj4MCBAIDY2FgMHjwYixYtwjvvvIN9+/bh/fffx6lTp9C2bVv9VoAxQFYAgbIYkBUArA4vbCqXm0Y9AdOpK5f1FFoApjqAwJSuGwD9PdVFdeTawWOMMb0cqQratm2Lli1bYv369eptTZs2xYABA7BkyZIy5WfNmoU//vgDt2/fVm+LiIjAtWvXEBsbCwAYPHgwcnNz8ffff6vL9O7dG/b29ti5c2e5cRQXF6O4uFj9e25uLry8vJCRkQEbm0qWsZAVQPg/H63rSwgpIf8sCRBZVlomNzcXTk5OyMnJqfzvkENVunbQdYOQKnvdtUOX6wZnLUAymQyXLl3C7NmzNbb36tULZ86cKXef2NhY9OrVS2NbWFgYNm3aBLlcDqFQiNjYWEybNq1MmZUrV1YYy5IlS7BgwYIy2w8fPgwLC4sK9xMoi/FWhY8SQipy6NBhKAWVz4FTWFhYS9FUXVWuHXTdIKTqXnft0OW6wVkClJGRAaVSCVdXV43trq6uSE1NLXef1NTUcssrFApkZGTA3d29wjIVHRMA5syZg+nTp6t/L/0W16tXr8ozSMZQ+OabOHbsGN58800IhXV3Ym25XGES9QRMp65c1jNMi2bs3NzcWoqm6qp07TCh6wZAf091kSFfO3S5bnD+Kr06kSBjrNLJBcsr/+p2XY8pFoshFpfNKIVCIYTC19zf5NlCKRBDaGn7+rLGTC43jXoCplNXA6+nIcb0qipfO0zlugEY/PtMb0ylnoBB11WXeDgbBebk5ASBQFCmZSYtLa1MC04pNze3csubmZnB0dGx0jIVHZMQQgghpoezBEgkEiEkJARHjhzR2H7kyBGEhoaWu0/79u3LlD98+DBatWqlzvoqKlPRMQkhhBBieji9BTZ9+nQMHz4crVq1Qvv27fH9998jOTkZERERAErurz958gQ//vgjgJIRX2vWrMH06dMxfvx4xMbGYtOmTRqju6ZOnYrOnTtj6dKlePvtt/H777/jn3/+walTpzipIyGEEEIMD6cJ0ODBg5GZmYmFCxciJSUFgYGBiI6Oho9PyRDRlJQUJCcnq8v7+fkhOjoa06ZNw9q1a+Hh4YHVq1er5wACgNDQUOzatQtz587FvHnz0KBBA+zevVv/cwARQgghxGhx3gk6MjISkZGR5T62devWMtu6dOmCy5cvV3rMQYMGYdCgQfoIjxBCCCF1EOdLYRBCCCGE1DZKgAghhBBicigBIoQQQojJoQSIEEIIISaHEiBCCCGEmBxKgAghhBBicigBIoQQQojJoQSIEEIIISaH84kQDVHpCvO5ubmvLSuXy1FYWIjc3FyDWxVXn0ylnoDp1NXQ61n691f692gMtL12GPpzr0+mUldTqSdg2HXV5bpBCVA58vLyAABeXl4cR0IIycvLg62tLddhaIWuHYQYBm2uGzxmTF+vaolKpcLTp09hbW0NHo9Xadnc3Fx4eXnh0aNHsLGxqaUIa5+p1BMwnboaej0ZY8jLy4OHhwf4fOO4W6/ttcPQn3t9MpW6mko9AcOuqy7XDWoBKgefz0e9evV02sfGxsbg3gg1wVTqCZhOXQ25nsbS8lNK12uHIT/3+mYqdTWVegKGW1dtrxvG8bWKEEIIIUSPKAEihBBCiMmhBKiaxGIxoqKiIBaLuQ6lRplKPQHTqaup1NMQmdJzbyp1NZV6AnWnrtQJmhBCCCEmh1qACCGEEGJyKAEihBBCiMmhBIgQQgghJocSIEIIIYSYHEqACCGEEGJyKAF6xbp16+Dn5weJRIKQkBCcPHmy0vInTpxASEgIJBIJ6tevjw0bNpQps2fPHgQEBEAsFiMgIAD79u2rqfC1pu96/vDDD+jUqRPs7e1hb2+PHj164Pz58zVZBa3VxGtaateuXeDxeBgwYICeo66amqhrdnY2Jk2aBHd3d0gkEjRt2hTR0dE1VQWjZCrXDYCuHZUx1muHyV43GFHbtWsXEwqF7IcffmBxcXFs6tSpzNLSkiUlJZVb/uHDh8zCwoJNnTqVxcXFsR9++IEJhUL222+/qcucOXOGCQQCtnjxYnb79m22ePFi9n/t20FIk2EcBvBHtn0FJkGpU0QMO7RABHWkJhKCaATWLSIKiQ4KdsiL7CAGmmJZRxHSHTx5UC8iEelBMa1D0SBSjIgRoUO8CYJz27+LG85NRf3eOfc+P9hh7959vA8fPPxh+6xWq3z58iVRsWKoyPnw4UPp7++X79+/y9LSkjx58kQuXrwo//79S1SsuFRkDfN6vZKXlyfV1dVy7949xUkOpyLr1taWOJ1OuXPnjnz69Em8Xq/Mzc2Jx+NJVKykp0tviLA7UrE7dO4NDkC73LhxQ5qbm6PWHA6HuFyuuPvb2trE4XBErTU1NUlFRUXk/f379+X27dtRe+rr6+XBgwcmnfroVOTcKxAISEZGhgwPD5/8wCegKmsgEJCqqioZGhqSxsbGUy8xETVZBwYGpLCwUPx+v/kHThG69IYIuyMVu0Pn3uBPYDv8fj++ffuGurq6qPW6ujosLCzE/c7nz59j9tfX1+Pr16/Y3t4+cM9+11RNVc69Njc3sb29jUuXLplz8GNQmbWzsxNZWVl4+vSp+Qc/BlVZJyYmUFlZiZaWFtjtdhQVFaGnpwfBYFBNkDNGl94A2B1A6nWH7r3BAWjH+vo6gsEg7HZ71LrdbofP54v7HZ/PF3d/IBDA+vr6gXv2u6ZqqnLu5XK5kJeXh9raWnMOfgyqss7Pz8PtdmNwcFDNwY9BVdY/f/5gbGwMwWAQ79+/R3t7O96+fYvu7m41Qc4YXXoDYHcAqdcduveG9bQPkGzS0tKi3otIzNph+/euH/WaiaAiZ9jr168xMjKCmZkZnD9/3oTTnoyZWTc2NvDo0SMMDg4iMzPT/MOekNn3NRQKITs7G+/evYPFYkFZWRlWVlbQ19eHjo4Ok09/dunSGwC7IxW7Q9fe4AC0IzMzExaLJWbqXVtbi5l2w3JycuLut1qtuHz58oF79rumaqpyhr158wY9PT2Ynp5GcXGxuYc/IhVZf/78Ca/Xi4aGhsjnoVAIAGC1WrG8vIyrV6+anORwqu5rbm4ubDYbLBZLZM/169fh8/ng9/thGIbJSc4WXXoDYHcAqdcduvcGfwLbYRgGysrKMDU1FbU+NTWFmzdvxv1OZWVlzP6PHz/C6XTCZrMduGe/a6qmKicA9PX1oaurCx8+fIDT6TT/8EekIqvD4cCPHz/g8Xgir7t376KmpgYejwf5+fnK8hxE1X2tqqrC79+/I0UNAL9+/UJubm7SlNhp0qU3AHYHkHrdoX1vJPpf18ks/Dig2+2WxcVFef78uaSnp4vX6xUREZfLJY8fP47sDz8O2NraKouLi+J2u2MeB5yfnxeLxSK9vb2ytLQkvb29p/44q4qcr169EsMwZGxsTFZXVyOvjY2NhOfbTUXWvZLhSQ4RNVn//v0rFy5ckGfPnsny8rJMTk5Kdna2vHz5MuH5kpUuvSHC7kjF7tC5NzgA7dHf3y8FBQViGIaUlpbK7Oxs5LPGxka5detW1P6ZmRkpKSkRwzDkypUrMjAwEHPN0dFRuXbtmthsNnE4HDI+Pq46xqHMzllQUCAAYl4vXrxIQJqDqbinuyVDiYWpyLqwsCDl5eVy7tw5KSwslO7ubgkEAqqjnCm69IYIuyMslbpD195IE9n59xIRERGRJvgfICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSzn9SPoHSu60YSgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHfklEQVR4nOzdeXxMV/8H8M+dPTOTiUT2iCSC2JLa0yhCLUlDLaXW2mnJ49GW/rSqJaqlKFVUtbQopeWxFA+aWJ+qWGspVYpYs0rIPpnt/P6YzM1MZiayNpjv+/XKK3PPfO+959zM8s25557LMcYYCCGEEEIcjKC2K0AIIYQQUhsoCSKEEEKIQ6IkiBBCCCEOiZIgQgghhDgkSoIIIYQQ4pAoCSKEEEKIQ6IkiBBCCCEOiZIgQgghhDgkSoIIIYQQ4pAoCSLEjosXL2LMmDEICgqCTCaDUqlE69atsXDhQmRlZdXYfgsKChAXF4cjR47U2D6qIisrC0OGDIGnpyc4jkO/fv1qu0qE8JKTkxEXF4fz58/XdlXIU0BU2xUg5Em0evVqxMbGIiQkBP/3f/+HZs2aQavV4syZM1i1ahUSExOxY8eOGtl3QUEB5syZAwDo0qVLjeyjKubOnYsdO3bgu+++Q3BwMNzc3Gq7SoTwkpOTMWfOHAQGBqJly5a1XR3yhKMkiJBSEhMTMWnSJPTo0QM7d+6EVCrln+vRowemTZuG/fv312INK0er1YLjOIhEVXvbX7p0CcHBwRg+fHg11YwQQmoJI4RY6N27NxOJROzOnTvlXufHH39kzz//PJPL5UyhULCePXuy33//3SJm1KhRTKFQsL///pu99NJLTKFQsHr16rGpU6cytVrNGGMsKSmJAbD6GTVqFL+da9eusaFDhzIPDw8mkUhYkyZN2IoVKyz2dfjwYQaAff/992zq1KnM19eXcRzHrly5YrcNmZmZbNKkSczX15eJxWIWFBTE3n///cfW7fDhw3a3GRAQwHr16sV2797NWrZsyWQyGWvSpAnbvXs3Y4yxtWvXsiZNmjC5XM7atWvHTp8+bbH+6dOn2eDBg1lAQACTyWQsICCADRkyhN26dcsiLj8/n02bNo0FBgYyqVTKXF1dWZs2bdimTZv4mBs3brDBgwczHx8fJpFImKenJ3vxxRfZuXPn7Nbfnl9//ZWJRCI2bdo0i/K1a9cyAGzNmjWP3ca+ffvYiy++yFQqFXNycmJNmjRh8+bNs4j5+eef2fPPP8+cnJyYUqlk3bt3Z8ePH7eImT17NgPALly4wAYOHMhUKhVzdXVlb7/9NtNqteyvv/5iUVFRTKlUsoCAALZgwQKL9U2vlQ0bNrC3336beXl5MZlMxjp37mz1Gq5onS5dusSGDBnCVCoV8/T0ZGPGjGGPHj2yiDUYDOzLL79kzz33HJPJZKxOnTpswIAB7MaNGxZxkZGRrHnz5uzUqVOsY8eOzMnJiQUFBbH58+czvV5v0ZbSP7Nnz37s34M4JkqCCDGj0+mYXC5n4eHh5V7nk08+YRzHsbFjx7I9e/aw7du3s4iICKZQKNjly5f5uFGjRjGJRMKaNm3KPvvsM3bgwAE2a9YsxnEcmzNnDmOMMbVazfbv388AsHHjxrHExESWmJjIrl+/zhhj7PLly8zFxYWFhoay77//nsXHx7Np06YxgUDA4uLi+H2Zvgz8/PzYwIED2a5du9iePXtYZmamzTYUFhaysLAwplAo2Geffcbi4+PZhx9+yEQiEYuJieHrlpiYyFq1asUaNGjA1y07O9vusQkICGD16tVjLVq0YJs3b2Z79+5l4eHhTCwWs1mzZrEXXniBbd++ne3YsYM1btyYeXl5sYKCAn79rVu3slmzZrEdO3awo0ePsh9//JFFRkYyDw8PlpGRwce98cYbTC6XsyVLlrDDhw+zPXv2sE8//ZQtX76cjwkJCWENGzZkGzZsYEePHmXbtm1j06ZNs0jiTEnM2rVrH/t3//TTTxkA9vPPPzPGGLt06RKTy+Xstddee+y6a9asYRzHsS5durBNmzaxAwcOsJUrV7LY2Fg+5ocffmAAWM+ePdnOnTvZTz/9xNq0acMkEgn79ddf+ThTwhESEsLmzp3LEhIS2PTp0xkANnnyZNakSRO2bNkylpCQwMaMGcMAsG3btvHrm14r/v7+rG/fvmz37t1s48aNrGHDhkylUlkkI5Wp06xZs1hCQgJbsmQJk0qlbMyYMRbHYsKECUwsFrNp06ax/fv3s02bNrEmTZowLy8vlpqaysdFRkayunXrskaNGrFVq1axhIQEFhsbywCw9evXM8YYy87O5v+GH3zwAf8avXv37mP/JsQxURJEiJnU1FQGgA0ZMqRc8Xfu3GEikYj9+9//tijPzc1l3t7ebNCgQXzZqFGjGAC2ZcsWi9iYmBgWEhLCL2dkZNj97zUqKorVq1fPKvGYPHkyk8lkLCsrizFW8sXWuXPncrVj1apVNuu2YMECBoDFx8fzZab/yMsjICCAOTk5sXv37vFl58+fZwCYj48Py8/P58t37tzJALBdu3bZ3Z5Op2N5eXlMoVCwL774gi9v0aIF69evn931Hjx4wACwpUuXllnf9evXM6FQyH+plsVgMLCYmBhWp04ddunSJdasWTPWpEkTlpeXV+Z6ubm5TKVSsY4dOzKDwWAzRq/XM19fXxYaGsr3cpjW9fT0ZB06dODLTAnH4sWLLbbRsmVLBoBt376dL9NqtczDw4O98sorfJnptdK6dWuL+ty6dYuJxWI2fvz4Stdp4cKFFnWKjY1lMpmM309iYqLNut+9e5c5OTmx6dOn82WRkZEMADt58qRFbLNmzVhUVBS/fPr06XInsoTQ1WGEVMEvv/wCnU6HkSNHQqfT8T8ymQyRkZFWV3hxHIeXX37ZoiwsLAy3b99+7L7UajUOHjyI/v37Qy6XW+wvJiYGarUaJ06csFhnwIAB5WrHoUOHoFAoMHDgQIvy0aNHAwAOHjxYru3Y0rJlS/j5+fHLTZs2BWAc9C2Xy63KzY9FXl4e3n33XTRs2BAikQgikQhKpRL5+fm4cuUKH9e+fXvs27cP7733Ho4cOYLCwkKLOri5uSE4OBiLFi3CkiVLcO7cORgMBqu6mv6OI0eOfGy7OI7D999/D2dnZ7Rt2xZJSUnYsmULFApFmesdP34cOTk5iI2NBcdxNmOuXr2K5ORkjBgxAgJByce0UqnEgAEDcOLECRQUFFis07t3b4vlpk2bguM4vPTSS3yZSCRCw4YNbb7ehg0bZlGfgIAAdOjQAYcPH650nfr06WOxHBYWBrVajfT0dADAnj17wHEcXnvtNYvXs7e3N5577jmr94+3tzfat29vtc3yvH8IsYWSIELMuLu7Qy6XIykpqVzxaWlpAIB27dpBLBZb/Pz000948OCBRbxcLodMJrMok0qlUKvVj91XZmYmdDodli9fbrWvmJgYALDan4+PT7nakZmZCW9vb6svZU9PT4hEImRmZpZrO7aUvnpMIpGUWW5+LIYNG4YVK1Zg/Pjx+OWXX3Dq1CmcPn0aHh4eFonOsmXL8O6772Lnzp3o2rUr3Nzc0K9fP/z9998AjAnLwYMHERUVhYULF6J169bw8PDAlClTkJubW+m21a1bF3369IFarUZ0dDRCQ0Mfu05GRgYAoF69enZjTMfb1t/P19cXBoMBDx8+tCi3dTxtvd4kEonN15u3t7fNMlNdKlOnunXrWiybLjIw/e3S0tLAGIOXl5fVa/rEiRNWr+fS2zNts3TSS0h50dVhhJgRCoXo1q0b9u3bh3v37pX5RQUYkyYA+M9//oOAgIAarZurqyuEQiFGjBiBf/3rXzZjgoKCLJbt9TSUVrduXZw8eRKMMYt10tPTodPp+Hb+k7Kzs7Fnzx7Mnj0b7733Hl9eVFRkNU+TQqHAnDlzMGfOHKSlpfG9Qi+//DL++usvAMaejW+//RYAcO3aNWzZsgVxcXHQaDRYtWpVpeqYkJCAr776Cu3bt8eOHTuwbdu2x/a+eXh4AADu3btnN8b0ZZ+SkmL1XHJyMgQCAVxdXStVZ3tSU1NtlpnqUhN1cnd3B8dx+PXXXy2uwjSxVUZIdaKeIEJKmTFjBhhjmDBhAjQajdXzWq0Wu3fvBgBERUVBJBLhxo0baNu2rc2fiir937KJXC5H165dce7cOYSFhdncl63/lMujW7duyMvLw86dOy3Kv//+e/75fxrHcWCMWX0RrlmzBnq93u56Xl5eGD16NIYOHYqrV69anaIBgMaNG+ODDz5AaGgofv/990rVLyUlBa+99hoiIyNx/Phx9OnTB+PGjXtsL2KHDh3g4uKCVatWgTFmMyYkJAR+fn7YtGmTRUx+fj62bduGiIgIi1OJ1WHz5s0W+7p9+zaOHz/Oz1VVE3Xq3bs3GGO4f/++zddzeXrWSrP3/iHEFuoJIqSUiIgIfPXVV4iNjUWbNm0wadIkNG/eHFqtFufOncM333yDFi1a4OWXX0ZgYCA++ugjzJw5Ezdv3kR0dDRcXV2RlpaGU6dO8T0UFeHs7IyAgAD8/PPP6NatG9zc3ODu7o7AwEB88cUX6NixIzp16oRJkyYhMDAQubm5uH79Onbv3o1Dhw5Vqs0jR47El19+iVGjRuHWrVsIDQ3FsWPHMG/ePMTExKB79+6V2m5VqFQqdO7cGYsWLeLbf/ToUXz77beoU6eORWx4eDh69+6NsLAwuLq64sqVK9iwYQP/xXzx4kVMnjwZr776Kho1agSJRIJDhw7h4sWLFr1M33//PcaOHYvvvvuuzHFBer0eQ4cOBcdx2LRpE4RCIdatW4eWLVti8ODBOHbsGH96rzSlUonFixdj/Pjx6N69OyZMmAAvLy9cv34dFy5cwIoVKyAQCLBw4UIMHz4cvXv3xhtvvIGioiIsWrQIjx49wqefflotx9hceno6+vfvjwkTJiA7OxuzZ8+GTCbDjBkzAKBG6vTCCy/g9ddfx5gxY3DmzBl07twZCoUCKSkpOHbsGEJDQzFp0qQKbTM4OBhOTk744Ycf0LRpUyiVSvj6+sLX17fC9SMOoNaGZBPyhDt//jwbNWoUq1+/PpNIJEyhULBWrVqxWbNmsfT0dIvYnTt3sq5duzKVSsWkUikLCAhgAwcOZAcOHOBjTPMElWa6ksbcgQMHWKtWrZhUKrWaJygpKYmNHTuW+fn5MbFYzDw8PFiHDh3Yxx9/zMeYrvjZunVrudubmZnJJk6cyHx8fJhIJGIBAQFsxowZ/DxBJhW9OqxXr15W5QDYv/71L4sy0zxEixYt4svu3bvHBgwYwFxdXZmzszOLjo5mly5dYgEBARbH5L333mNt27Zlrq6uTCqVsgYNGrC3336bPXjwgDHGWFpaGhs9ejRr0qQJUygUTKlUsrCwMPb5558znU7Hb6e8l8jPnDmTCQQCdvDgQYvy48ePM5FIxN58883HHpu9e/eyyMhIplAomFwuZ82aNbOaw2fnzp0sPDycyWQyplAoWLdu3dhvv/1mEWN6/ZhPGcCY/ddb6b+f+TxBU6ZMYR4eHkwqlbJOnTqxM2fOWK1flTqZjm9SUpJF+XfffcfCw8OZQqFgTk5OLDg4mI0cOdJi//Zed6NGjWIBAQEWZZs3b2ZNmjRhYrGY5gkiZeIYs9MfSwgh5Jl35MgRdO3aFVu3brW6OpCQZx2NCSKEEEKIQ6IkiBBCCCEOiU6HEUIIIcQhUU8QIYQQQhwSJUGEEEIIcUiUBBFCCCHEIdFkiXYYDAYkJyfD2dm53LceIIQQQkjtYowhNzcXvr6+Fjf7tYWSIDuSk5Ph7+9f29UghBBCSCXcvXv3sfd/fCKSoJUrV2LRokVISUlB8+bNsXTpUnTq1Mlu/NGjRzF16lRcvnwZvr6+mD59OiZOnGgRs23bNnz44Ye4ceMGgoOD8cknn6B///7lrpOzszMA40FUqVSVa5gdWq0W8fHx6NmzJ8RicbVu+2ng6O0H6BhQ+x27/QAdA0dvP1BzxyAnJwf+/v7893hZaj0J+umnn/DWW29h5cqVeOGFF/D111/jpZdewp9//on69etbxSclJSEmJgYTJkzAxo0b8dtvvyE2NhYeHh783ZsTExMxePBgzJ07F/3798eOHTswaNAgHDt2DOHh4eWql+kUmEqlqpEkSC6XQ6VSOeSL39HbD9AxoPY7dvsBOgaO3n6g5o9BeYay1HoStGTJEowbNw7jx48HACxduhS//PILvvrqK8yfP98qftWqVahfvz6WLl0KAGjatCnOnDmDzz77jE+Cli5dih49evA3/psxYwaOHj2KpUuXYvPmzf9Mwx5DqC8CNPkAs/GH54SAWFayrMm3vyFOAIidKhlbAMDeNFEcIJFXLlZbCDBDGfWQlD9WojCLVQPM/t3DKxQrlgOmN4iuCDDoqidW5ASYzkHrNIBBaztOq7Vsd1mxACCSAQJhxWP1WkCvsR8rlAJCUSVidYC+qIxYCSAU24/VakveAwJFSaxBD+jU9rcrEAMiSSViDYCujLuKVyhWBIiK72zPGKC1vkv9Y2PN22/6DKjQ+/4Z+IzQFNn/HLR4Lz+7nxGcQWf/e6BU7DP5GfEEqNUkSKPR4OzZsxZ3cQaAnj174vjx4zbXSUxMRM+ePS3KoqKi8O2330Kr1UIsFiMxMRFvv/22VYwpcXoS9L44Abho58lGPYHhW0uWFzW0/0Eb0BEY89+S5aWhQEGm7VjfVsDrR0qWvwwHsu/YjvVoAvzrZMny6q5Axl+2Y13qA2//UbK89iUg+ZztWHld4O2rJcsbBwK3j9mOFcuBmSkly1tGAH/H244FgLjsksc7Xgf+/Nl+7PvJJR+Iu98CLmyyH/t/NwCFu/HxL+8Dp9fYj33zIuAaYHx86CPg+HKbYWIAzk3mlRT8uhg4WsZduCccAvzaGB+f/ApImGU/dtQeIKj4dPLZdcDed+zHDtsCNI4yPr64Bfg51n7sq+uA5sWnlP/aDWwdbT+270qg1XDj4xsHgU2DLJ4WA+gNGN8DMZ8B7ScYn7h9HFjf2/52e3wEvPCm8XHKeWD1i/ZjI98Duhr/EcKDq8DK5+3Hdvg30PNj4+Psu8AXYfZj240Hei02Pi7IBBYF2499bhjQ/yvjY20BMM94J3OL9ps06wsM+r5keV4Zdz1/Bj4jxMnnrI8BYPyMmH6zZPkZ/oxomrIV4kVj7cfGngA8mxofP4ufES0G2X/+H1KrSdCDBw+g1+vh5eVlUe7l5YXU1FSb66SmptqM1+l0ePDgAXx8fOzG2NsmABQVFaGoqCRrzcnJAWDsrtNqy8ioK0Gr1aKsjj+DwQC92T5FAOx16hlYRWJZqVhmN5YxBp15LCsjFpaxQsbszr3AAP54arVaCJmhzFiL7Rrsx5q2VxJrvw58LKctrm85tlu8bYHBAGFZsTpduWPN6yww6MuM1el0YKZY/WNi9RWINdsup9eX+YGg0+srF6vTlRmr1+th4LdbgdjHbddQEgudrsz3nN5gqFzs497L5u/Px77vLd+fjvwZYRn7bH5GlOd7xfLz5Nn7jDD/LqhOFdlerd42Izk5GX5+fjh+/DgiIiL48k8++QQbNmzAX39Z/1fRuHFjjBkzhj/VBQC//fYbOnbsiJSUFHh7e0MikWD9+vUYOnQoH/PDDz9g3LhxUKttd5/HxcVhzpw5VuWbNm2CXC63sUbVCMvoJmQcB4NAUvOxhqIye6/1AmmlYgUGDbgyXlZ64RMQK5Dw3dcCgxZcGd3tFYsVG08pwNjVLSiju/0fiWU6CAz2Yw0CERgnrESsHoIyuvwNAiEYJ6pwLJgBwjK68Q2cEExQu7GME8AgKE5RGIPQYP/0QMVi/6H3fTV/RohExuMmMGjKjDXfrsCgNZ4etMMgfAJiBWKz972uzFNyFYsVmb2X9eDKeC//I7FMD66M9z0TCC3e9zURWxk6nf3PlIKCAgwbNgzZ2dmPHdNbqz1B7u7uEAqFVj006enpVj05Jt7e3jbjRSIR6tatW2aMvW0CxnFDU6dO5ZdNo8t79uxZIwOjExIS0KNHD4ccEOfo7QfoGFD7n/72azQa3L17FwZDGeN1ysAYg1qthkwmc8i52By9/UDVjoFAIED9+vVtvn9MZ3LKo1aTIIlEgjZt2iAhIcHi8vWEhAT07dvX5joRERHYvXu3RVl8fDzatm3LH4yIiAgkJCRYjAuKj49Hhw4d7NZFKpVCKpValYvF4hr7kKrJbT8NHL39AB0Dav/T2X7GGJKTkyESico1IZ0tBoMBeXl5UCqVlVr/aefo7QcqfwxMkxlnZGSgfv36VglURd5TtX512NSpUzFixAi0bdsWERER+Oabb3Dnzh1+3p8ZM2bg/v37+P5744DBiRMnYsWKFZg6dSomTJiAxMREfPvttxZXfb355pvo3LkzFixYgL59++Lnn3/GgQMHcOyYncF1hBBCyk2n06GgoAC+vr6VHi5gMBig0Wggk8kcMglw9PYDVTsGHh4eSE5Ohk6nq9I/ErWeBA0ePBiZmZn46KOPkJKSghYtWmDv3r0ICDCOnk9JScGdOyVXJwQFBWHv3r14++238eWXX8LX1xfLli3jL48HgA4dOuDHH3/EBx98gA8//BDBwcH46aefyj1HECGEEPv0euNYD4nkybjMmTge02tPr9c/3UkQAMTGxiI21vZld+vWrbMqi4yMxO+//17mNgcOHIiBAwdWR/UIIYTY4KhjWUjtq67XnmP2wRFCCCHE4VESRAghhBTjOA47d+6s8f00aNAAX331VY3vx5Z169ahTp06tbLvJw0lQYQQQhxGeno63njjDdSvXx9SqRTe3t6IiopCYmIiAOM41JdeeqmWa2mNEpea8USMCSKEEEL+CQMGDIBWq8X69evRoEEDpKWl4eDBg8jKygJgnGeOOA7qCSKEEOIQHj16hGPHjmHBggXo2rUrAgIC0L59e8yYMQO9evUCYHk67NatW+A4Dlu2bEGnTp3g5OSEdu3a4dq1azh9+jTatm0LpVKJ6OhoZGRk8Pvp0qUL3nrrLYt99+vXD6NHj7ZbtyVLliA0NBQKhQL+/v6IjY1FXl4eAODIkSMYM2YMsrOzwXEcOI5DXFwcAOOkldOnT4efnx8UCgXCw8Nx5MgRi22vW7cO9evXh1wuR//+/ZGZaefecQ6IkiBCCCFVwhhDgUZX4Z9Cjb5S65n/VOTOT0qlEkqlEjt37rS4V+TjzJ49Gx988AF+//13iEQiDB06FNOnT8cXX3yBX3/9FTdu3MCsWWXcsLQcBAIBli1bhkuXLmH9+vU4dOgQpk+fDsA47cvSpUuhUqmQkpKClJQUvPOO8aanY8aMwW+//YYff/wRFy9exKuvvoro6Gj8/fffAICTJ09i7NixiI2Nxfnz59G1a1d8/PHHVarrs4ROhxFCCKmSQq0ezWb9Uiv7/vOjKMgl5fsqE4lEWLduHSZMmIBVq1ahdevWiIyMxJAhQxAWFmZ3vXfeeQdRUcY7qb/55psYOnQoDh48iBdeeAEAMG7cOJvTuVSEec9RUFAQ5s6di0mTJmHlypWQSCRwcXEBx3EWp+tu3LiBzZs34969e/D19eXrun//fqxduxbz5s3DF198gaioKLz33nsAjPffPH78OPbv31+l+j4rqCeIEEKIwxgwYACSk5Oxa9cuREVF4ciRI2jdunWZSYx5gmS6B2VoaKhFWXp6epXqdfjwYfTo0QN+fn5wdnbGyJEjkZmZifz8fLvr/P7772CMoXHjxnwvl1KpxNGjR3Hjxg0AwJUrVyxuUA7AatmRUU8QIYSQKnESC/HnR1EVWsdgMCA3JxfOKucq3TbCSVzxO5HLZDL06NEDPXr0wKxZszB+/HjMnj3b7pgd8xmJTZP0lS4zv5GsQCCwOk2n1Wrt1uf27duIiYnBxIkTMXfuXLi5ueHYsWMYN25cmesZDAYIhUKcPXsWQqHlcVAqlQBQodOFjoiSIEIIIVXCcVy5T0mZGAwG6CRCyCWiWr93VrNmzap1biAPDw+kpKTwy3q9HpcuXULXrl1txp85cwY6nQ6LFy/mj8WWLVssYiQSCX+7EpNWrVpBr9cjPT0dnTp1srntZs2a4cSJExZlpZcdGZ0OI4QQ4hAyMzPx4osvYuPGjbh48SKSkpKwdetWLFy4EH379q22/bz44ov473//i//+97/466+/EBsbi0ePHtmNDw4Ohk6nw/Lly3Hz5k1s2LABq1atsogJDAxEXl4eDh48iAcPHqCgoACNGzfG8OHDMXLkSGzfvh1JSUk4ffo0FixYgL179wIApkyZgv3792PhwoW4du0aVqxYQeOBzFASRAghxCEolUqEh4fj888/R+fOndGiRQt8+OGHmDBhAlasWFFt+xk7dixGjRqFkSNHIjIyEkFBQXZ7gQCgZcuWWLJkCRYsWIAWLVrghx9+wPz58y1iOnTogIkTJ2Lw4MHw8PDAwoULAQBr167FyJEjMW3aNISEhKBPnz44efIk/P39AQDPP/881qxZg+XLl6Nly5aIj4/HBx98UG1tfdpxjE4Y2pSTkwMXFxdkZ2dDpVJV67a1Wi327t2LmJiYKt399mnl6O0H6BhQ+5/u9qvVaiQlJSEoKAgymaxS2zAYDMjJyYFKpar102G1wdHbD1TtGJT1GqzI97djHnlCCCGEODxKggghhBDikCgJIoQQQohDoiSIEEIIIQ6JkiBCCCGEOCRKggghhBDikCgJIoQQQohDoiSIEEIIIQ6JkiBCCCGEOCRKggghhJCn1DfffAN/f38IBAIsXbq0tqvz1KEkiBBCiEMYPXo0OI7DxIkTrZ6LjY0Fx3EYPXq0VTzHcRCLxWjQoAHeeecd5OfnW6y7bds2dOnSBS4uLlAqlQgLC8NHH32ErKwsu3URCoVwdXWFUCiEUqnEc889h3Xr1lWoPTk5OZg8eTLeffdd3L9/H6+//nqF1ieUBBFCCHEg/v7++PHHH1FYWMiXqdVqbN68GfXr17eKj46ORkpKCm7evImPP/4YK1euxDvvvMM/P3PmTAwePBjt2rXDvn37cOnSJSxevBgXLlzAhg0byqzLl19+ifv37+PChQsYPHgwxowZg19++aXcbblz5w60Wi169eoFHx8fyOXycq9rTqvVVmq9ZwElQYQQQhxG69atUb9+fWzfvp0v2759O/z9/dGqVSureKlUCm9vb/j7+2PYsGEYPnw4du7cCQA4deoU5s2bh8WLF2PRokXo0KEDAgMD0aNHD2zbtg2jRo0qsy4uLi7w9vZGcHAw3n//fbi5uSE+Pp5/Pjs7G6+//jo8PT2hUqnw4osv4sKFCwCAdevWITQ0FADQoEEDcByHW7duAQB2796NNm3aQCaToUGDBpgzZw50Oh2/XY7jsGrVKvTt2xcKhQIff/xxuddbs2YN+vfvD7lcjkaNGmHXrl0Wbbp8+TJ69eoFlUoFZ2dndOrUCTdu3OCfX7t2LZo2bQqZTIZmzZphzZo1/HMajQaTJ0+Gj48PZDIZAgMDMX/+/DKPYVVREkQIIaR6aPLt/2jV1rHaAjuxheXbbiWNGTMGa9eu5Ze/++47jB07tlzrOjk58T0nP/zwA5RKJWJjY23G1qlTp1zb1Ov12LJlC7KysiAWiwEAjDH06tULqamp2Lt3L86ePYvWrVujW7duyMrKwuDBg3HgwAEAxmQsJSUF/v7++OWXX/Daa69hypQp+PPPP/H1119j3bp1+OSTTyz2OXv2bPTt2xd//PEHxo4dW+715syZg0GDBuHixYuIiYnB8OHD+dN+9+/fR+fOnSGTyXDo0CGcPXsWY8eO5ROp1atXY+bMmfjkk09w5coVfPzxx5g3bx7Wr18PAFi2bBl27dqFLVu24OrVq9i4cSMCAwPLdQwrjRGbsrOzGQCWnZ1d7dvWaDRs586dTKPRVPu2nwaO3n7G6BhQ+5/u9hcWFrI///yTFRYWWj4xW2X/Z+NAi1DDx972Y7+LsdzugiDbcRU0atQo1rdvX5aRkcGkUilLSkpit27dYjKZjGVkZLC+ffuyUaNGWcWbnDx5ktWtW5cNGjSIMcbYSy+9xMLCwipcD8YYA8BkMhlTKBRMKBQyAMzNzY39/fffjDHGDh48yFQqFVOr1RbrBQcHs6+//poxxti5c+cYAJaUlMQ/36lTJzZv3jyLdTZs2MB8fHws9v3WW29ZxJR3vQ8++IBfzsvLYxzHsX379jHGGJsxYwYLCgqy+7r29/dnmzZt4pf1ej2bOXMmi4iIYIwx9u9//5u9+OKLzGAw2FzfnN3XIKvY97eoZlMsQggh5Mni7u6OXr16Yf369XyPi7u7u83YPXv2QKlUQqfTQavVom/fvli+fDkAY28Nx3GVrscnn3yC3r174/79+5g6dSrefvttNGzYEABw9uxZ5OXloW7duhbrFBYWWpxeKu3s2bM4ffq0RQ+OXq+HWq1GQUEBP26obdu2lVovLCyMf16hUMDZ2Rnp6ekAgPPnz6NTp058b5a5jIwM3L17F+PGjcOECRP4cp1OBxcXFwDGgeg9evRASEgIoqOj0bt3b/Ts2bOMI1h1lAQRQgipHu8n23+OE1ossmnXkJ2bC5WzMwSCUiMzuFLLb/1RTRUsMXbsWEyePBmAcYCyPV27dsVXX30FsVgMX19fiy/4xo0b49ixY9BqtTa/+B/Hy8sLDRs2ROPGjbF161a0atUKbdu2RbNmzWAwGODj44MjR45YrVfWaTaDwYA5c+bglVdesXpOJpPxjxUKRaXWK91OjuNgMBgAGE8VllUvwHhKLDw8nC/Ly8vjk6DWrVsjKSkJ+/btw4EDBzBo0CB0794d//nPf+xut6ooCSKEEFI9JIrHx5jHivXG36WToKpst5yio6Oh0WgAAFFRUXbjFAoF3ztT2rBhw7Bs2TKsXLkSb775ptXzjx49Kve4oIYNG2LAgAGYMWMGfv75Z7Ru3RqpqakQiUQVGhfTunVrXL161W6dq3s9c2FhYVi/fr3NpNDLywt+fn64efMmhg8fDsCYBOXk5EClUvFxKpUKgwcPxuDBgzFw4EBER0cjKysLbm5ula5XWSgJIoQQ4nCEQiGuXLnCP66M8PBwTJ8+HdOmTcP9+/fRv39/+Pr64vr161i1ahU6duxoMzmyZ9q0aXjuuedw5swZdO/eHREREejXrx8WLFiAkJAQJCcnY+/evejXr5/V6SyTWbNmoXfv3vD398err74KgUCAixcv4o8//uCvAqvO9cxNnjwZy5cvx5AhQzBjxgy4uLjgxIkTaN++PUJCQhAXF4cpU6ZApVLhpZdeQmFhIY4dOwa1Wo1p06bh888/h4+PD1q2bAmBQICtW7fC29u73IlkZdDVYYQQQhySSqWy6IWojAULFmDTpk04efIkoqKi0Lx5c0ydOhVhYWGPvUS+tNDQUHTv3h2zZs0Cx3HYu3cvOnfujLFjx6Jx48YYMmQIbt26BS8vL7vbiIqKwp49e5CQkIB27drh+eefx5IlSxAQEFDmviu7nrm6devi0KFDyMvLQ2RkJNq0aYPVq1fzvULjx4/HmjVr+Mv7u3btik2bNvE9XUqlEgsWLEDbtm3Rrl073Lp1C3v37rU+XVqNuOIR36SUnJwcuLi4IDs7u8pvktK0Wi327t2LmJiYSp1Hfto5evsBOgbU/qe7/Wq1GklJSQgKCrIYL1IR5qdCavJL7knl6O0HqnYMynoNVuT7u1ZPhz18+BBTpkzhJ1vq06cPli9fXmbXF2MMc+bMwTfffIOHDx8iPDwcX375JZo3bw4AyMrKwuzZsxEfH4+7d+/C3d0d/fr1w9y5c/nBV6R8DAYGjd4Ard4ArZ5BozM+5st0DBq9HhodK44x/hTpjPGmZY2ueJ3iOLVWh5u3Bbh15CZclVI4y0RwloqhchLDWSbifyslIggElb/yghBCCClLrSZBw4YNw71797B//34AwOuvv44RI0Zg9+7ddtdZuHAhlixZgnXr1qFx48b4+OOP0aNHD1y9ehXOzs5ITk5GcnIyPvvsMzRr1gy3b9/GxIkTkZycXKMjzCuCMQY9Awo1ehTowCcKJUkDK0k2TAlEcVLBJxTFz2n1xkTFfH2tnhUnIpbb1PDrmJIZBo1Obzth0TPoDTXZSSjAoeTrZUZwHKCUiqCSFSdHMjFUTiI4my2bJ02mZefiOJVMDKlIUKVLWAkhhDy7ai0JunLlCvbv348TJ07wl8utXr0aERERuHr1KkJCQqzWYYxh6dKlmDlzJn8Z3/r16+Hl5YVNmzbhjTfeQIsWLbBt2zZ+neDgYHzyySd47bXXoNPpIBLV7ljwI1fTMWbdaTAmAk4crNW6VJRYyEEsFPA/EiEHiahkWSyyLpMIBRCXKhNyDDduJsHT1x95Gj1y1TrkFGqNv9Va5Kh10OgMYAzIVeuQq9Y9vnJ2SISC4sTIOlky/radSJkSLqVUBJHQMbuqCSHkWVdrGUFiYiJcXFz4BAgAnn/+ebi4uOD48eM2k6CkpCSkpqZaTJ4klUoRGRmJ48eP44033rC5L9N5wbISoKKiIhQVFfHLOTk5AIzn7qv15nLM+OVemljIQSIUmCULHP/bItEoLpeYJRhikYBf3yquODExLy+9vZL9lsSVXhYLuGo7NaXVapFguIEePRrbHQ9RpNUjt0hXnBjpipMhY6KUW6RDTqHxd26h1rhcHJNXnETlFunAGKDRG5CZr0FmvqbS9VVIhFDKRHCWFidLUlFJYlWcNCllIqjMy6QlZXKJ0Ko3yvSactQbF1L7n+72a7VaMMZgMBj4+V8qyjQc1bQdR+Po7QeqdgwMBgMYY9BqtVZX91XkfVVrSVBqaio8PT2tyj09PZGammp3HQBWI+O9vLxw+/Ztm+tkZmZi7ty5dhMkk/nz52POnDlW5fHx8ZW+M68tWgMwtw0g5ACRABBxgIAznvqpFvrinzLoin8Kyw6rcQkJCRVeR1n84wMAHAB58U8pBgZo9EChHijUFf/Wc1DrSsrUeq7kOdMy/xjQGIx/lHyNHvkaPdJQZL2jchCAQSYCnISAkwiQCRmchIBKIkD82gNwkQB1JICLhKGOBJA50MQVlXkNPEue1vaLRCJ4e3sjLy+Pn2unsnJzc6upVk8nR28/ULljoNFoUFhYiP/9738WN3kFgIKCgnJvp9o/buPi4mwmE+ZOnz4NADbHapRnGvLSz9tbJycnB7169UKzZs0we/bsMrc5Y8YMTJ061WJdf39/9OzZs0auDktISECPHj2eyitDquppab9Wb+BPxxl7oLQlPVDFPVM55s+rtXwvVV5x75TewGAAhwIdUKADjHlU2a9vhVQIL2cZvFVSeLnI4O1s9lslg7eLFG5yyVM9aPxpeQ3UlKe9/TqdDklJSZBIJJX+fGSMITc3F87Ozg45bs/R2w9U7Rjk5OTAyckJL774otVZHtOZnPKo9iRo8uTJGDJkSJkxgYGBuHjxItLS0qyey8jIsDsHgre3NwBjj5CPjw9fnp6ebrVObm4uoqOjoVQqsWPHjsd+0EilUkilUqtysVhcYx9SNbntp8GT3n6xGJDLpLA/I0fZGGMo1JaMecopHvOUq9YhK7cQx8/9CWevekjP1SA1W43UHDVy1TrkF+lxsygfNx/Yv0u2WMjB01kGbxcZvFUlv71cZPApfuypkkIqqtwkcP+UJ/01UNOe1vaLRCIoFAo8ePAAEomkUpd4GwwGaDQaFBUVOeQl4o7efqDyx8BgMODBgwdQKBSQyWRWCVRF3lPVngS5u7vbvRGduYiICGRnZ+PUqVNo3749AODkyZPIzs5Ghw4dbK4TFBQEb29vJCQkoFWrVgCMXWJHjx7FggUL+LicnBxERUVBKpVi165dlZ7HgpCq4DgOcokIcokIXirL16BWq4Vr5iXExLSweMPmF+mQmqM2JkXFiZHpd1qOGinZajzIK4JWz3D/USHuPyr7pGZdhaS498g6YTKVOUtFDvufKKkcjuPg4+ODpKQku0MRHocxhsLCQjg5OTnk68/R2w9U7RgIBALUr1+/yseu1kYfNG3aFNHR0ZgwYQK+/vprAMZL5Hv37m0xKLpJkyaYP38++vfvD47j8NZbb2HevHlo1KgRGjVqhHnz5kEul2PYsGEAjD1APXv2REFBATZu3IicnBy+a8zDw6PS06MT8k9QSEUI9lAi2ENpN0arNyAjtwgp2SWJUVrpxClHDY2uZFD4nyn2u4flEqHN3iQvVUmvUl2lFMKn+PQbqX4SiQSNGjWq9JggrVaL//3vf+jcufNT2RtWVY7efqBqx6CyPZCl1eoQzB9++AFTpkzhr/bq06cPVqxYYRFz9epVZGdn88vTp09HYWEhYmNj+ckS4+Pj4ezsDAA4e/YsTp48CQBWN4JLSkqq0I3oCHkSiYUC+NZxgm8d+3dsZozhYYG2OCkqRGp2UXGvUiFSc4qQlq1GSnYhctQ6FGj0uPmg7NNvQgEHL9PYpNK9ScW/vVQyyMT0T4YjEQgEle5pFwqF0Ol0kMlkDpkEOHr7gSfjGNRqEuTm5oaNGzeWGVP6rh4cxyEuLg5xcXE247t06WK1DiGOhuM4uCkkcFNI0MzX/sDVAo3O6nRbWqnTcBm5RdAbGJKz1UjOVpe5X1e5uKQHyaw3yfjbCd4qGVRODnT5GyHkiUafRoQ4MLlEhAYeSjQo4/SbTm9ARl6R1ek207IpeSrSGfCwQIuHBVr8lWr/kleZWABvlQwSnQDHtX+igYcSAXXlqO+mQEBdORRS+lgihPwz6NOGEFImkVAAHxcn+LiUffotu1CLFFOvUrbZWCWzXqVHBVqotQbcyiwAIMC1M/estuWulCKgrtz4U5wYGX8UcJWLHXYQKSGk+lESRAipMo7jUEcuQR25BE197J9+K9TokZajxr2sPOw9ehJ16jXCvUdq3M7Mx+2sAjwq0OJBXhEe5BXh7O2HVus7S0UIcLdMjuq7KRDoLoeXs+ypnjuJEPLPoySIEPKPcZIIEeiugJ+LBJlXGGK6N7QYEJldoMXtrHzczizAnawC3HpgTI7uZBYY51Eq0uHS/Rxcum99tZtEJEB9NzkCzU6tmXqQ6rk6QUz3gCOElEJJECHkieEiFyNMXgdh9epYPVeo0ePuwwLcziww9hxlFuB2lvHxvYeF0OgMuJ6eh+vpeVbrCjjAz9UJAW4K1K9rnSjJJfRRSIgjonc+IeSp4CQRorGXMxp7OVs9p9MbkPxIjVvFp9Vum/Ug3c7Kh1prwN2sQtzNKgSuW2/bw1mKADdjr5F5D1KAmxx1aBwSIc8sSoIIIU89kVCA+nXlqF/X+m66jDGk5xbhdmYBbmXmFydGJb1J2YVaZOQWISO3CGdsjUOSiRBY19iDFOAm5x8H1lXA01lK45AIeYpREkQIeaZxHAcvlXGuovZBblbPPyrQlJxaM+tBupWZj/TcIuSqdfjjfjb+uJ9tta60eBySrR4kPxqHRMgTj5IgQohDM13V9px/HavnCjV64wBtvgepeCxSZgHuPypEkc6Av9Pz8LeNcUhCAQe/Ok7FV7CV9CAF1JXD11nyD7SMEPI4lAQRQogdThIhQrydEeJtPQ5Jqzfg/sPC4p6jfNwqTo7uFCdKRToD7mQZr3KzxUUsxE9pZxDioyoe66REIy9nqGSOeQsFQmoDJUGEEFIJYqEAge4KBLorAHhYPGcwGMchmfcg3cosOc2Wq9YhW8vh+M0sHL+ZZbGut0qGRl5KhBQPAm9UnBwpaSZtQqodvasIIaSaCQSc8eayLjI836CuxXOMMWTkFGDz7gPwaBiGGw8KcS0tF3+n5ZXckiRHjV//fmCxnl8dJz45alTcc9TQU0mX9xNSBfTuIYSQfxDHcXCVSxDoDMS0qWc5WWShFn+n5eJaWp4xMUo3Ps7ILcL9R4W4/6gQR65mmG0LqOfqZJEYNfJ0RkNPJWRiYW00j5CnCiVBhBDyhHBxEqNtoBvaBlpexfYwX4Nrabm4lp5XnCQZe44y8zX8/EcHrqTz8QIOqO8m5+dVauSlRGMvZzTwUEAqouSIEBNKgggh5AnnqpAgvEFdhJc6tfYgr4hPiPjf6bl4VKDFrcwC3MosQPyfaXy8UMAhoK7coueosZczgtwVdDk/cUiUBBFCyFPKXSmFu1KKDsHufBljDBm5RVan1K6l5SJXrcPNjHzczMjHvkup/DoiAYcgdwUaezujsWfJlWqBdeUQUXJEnmGUBBFCyDOE4zh4qmTwVMnQsZFlcpSWU4Srabn8KbVracbTa/kaPT/f0X+Rwq8jEQrQwENhcQl/Yy9n1HeTQ0gzZZNnACVBhBDiADiu5Iq1yMYll/QzxpCcrca1VLPEKN14aq1Qq8dfqbn4KzXXYltSkQANPZUl4408jclRPVcnuo0IeapQEkQIIQ6M44wzW/vVcULXJp58ucHAcP9RIa6m5uJaesm4o+vpeSjSGXA5OQeXk3MstuUkFhrnNfIsGW/UyEsJvzpOdBNa8kSiJIgQQogVgYCDv5sc/m5ydG/mxZfrDQx3swrMTqsZk6ObGfko1Opx8V42Lt6zvM+aQiK0GIjdyMsZQW4yMPZPt4oQS5QEEUIIKTehgONnyo5q7s2X6/QG3M4qKD6tllfce2RMjvI1epy/+wjn7z6y2JZcJMRP6WcQWq8Omvuq0NxXhSB3JY03Iv8YSoIIIYRUmUgoQLCHEsEeSrwUWlKu1Rtw60E+rqXlWQzKvpVZgAIdkHgzC4lmtw5xEgvRxMcZzX1VaOHrgua+LmjsraT5jUiNoCSIEEJIjRELBWhUfAqsF3z48rzCIqzbvh9uwWG4kpqPy8nZuJKSi0KtHufuPMK5O4/4WJGAQ0NPJZr7uhiTIz8XNPVxhjPdbJZUESVBhBBC/nFSkQD+Sstbh+gNDEkPjAnRn8k5uJScjcvJOXhUoOWvUtv2e8k2AuvK0dzXBc2KT6U193WBh7O0llpEnkaUBBFCCHkiCIt7fBp6KtG3pR+Akkv4L9/P5q9Iu5ycjZRsNT8r9n//KJnbyEsl5XuMTIlRPVe6Oo3YRkkQIYSQJ5b5Jfw9zQZiZ+VrcDnZLDG6n42kzHyk5RQhLScdh/4quZeaSiYqSYz8jIlRA3cFzYZNKAkihBDy9HFTSNCpkQc6NSqZ+DG/SIcrKSW9RZeTc3AtLRc5ah0Sb2Yi8WYmHysTC9DEu6S3qLmvCiHezpCJaQC2I6EkiBBCyDNBIRWhbaAb2ga68WUanQHX0nLxp1li9GdKDgpsXLYvFHBo6KHke4ua+6rQzFcFFQ3AfmZREkQIIeSZJREJ0MLPBS38XAD4AzDOhp2Umc/3GP1ZfEotK1+Dq2m5uJqWi+2/3+e3Ud9Nzl+VZhqE7eksq6UWkepESRAhhBCHIhBw/JxGfZ7zBWAcgJ2ao8al+2Y9Rsk5uP+oEHeyCnAnqwD7LqXy2/BwlvKDr03zGfm70QDspw0lQYQQQhwex3HwcXGCj4sTepjdJuRhvgZ/phgTI1OCdPNBPjJyi3DkagaOXM3gY51lIjTzUVkMwm7ooaQB2E8wSoIIIYQQO1wVErzQ0B0vNHTnywo0OlxJycWfxT1Gl5KzcS01D7lqHU4mZeFkUskM2FKRAE28ndHM7LL9pj4q0PDrJwMlQYQQQkgFyCUitAlwRZsAV75MozPgenqexam0y8nZyNfoceFeNi6Y3VRWKODQwF2OOgYBHpy4g9YBbmjqo6Ir02pBrSZBDx8+xJQpU7Br1y4AQJ8+fbB8+XLUqVPH7jqMMcyZMwfffPMNHj58iPDwcHz55Zdo3ry5zdiYmBjs378fO3bsQL9+/WqoJYQQQhyZRCRAs+KryV4tLjMYGG5nFVjNZ5SZr8Hf6fkABDj9378AAGIhhybeKjzn74KwenXQ0r8Ogj3oZrI1rVaToGHDhuHevXvYv38/AOD111/HiBEjsHv3brvrLFy4EEuWLMG6devQuHFjfPzxx+jRoweuXr0KZ2dni9ilS5fSIDVCCCG1QiDgEOSuQJC7Ar3DSgZgp+UU4cLdLOw4cgZquRf+uJ+DzHwN/rifjT/uZwO4AwBQSIRo4eeClv518Fzxj6+LjL7XqlGtJUFXrlzB/v37ceLECYSHhwMAVq9ejYiICFy9ehUhISFW6zDGsHTpUsycOROvvPIKAGD9+vXw8vLCpk2b8MYbb/CxFy5cwJIlS3D69Gn4+PhYbYsQQgj5p3EcB28XGerKPaC+wRAT0xoikQj3Hhbi4r1sXLhnnLvo0n3jqbTSY4zclRI8V8+YEIXVc8Fz9erAVSGpxRY93WotCUpMTISLiwufAAHA888/DxcXFxw/ftxmEpSUlITU1FT07NmTL5NKpYiMjMTx48f5JKigoABDhw7FihUr4O3tbbUdW4qKilBUVMQv5+TkAAC0Wi20Wm2l2miPaXvVvd2nhaO3H6BjQO137PYDdAxKt9/bWQzvpu7o2dQ4AFtvYLiRkYcL93Lwx/1sXLyfjaupeXiQp8HBv9Jx0Oy2IPXdnBDq54Ln6rkgzE+FZj4qOEme/PFFNfUaqMj2ai0JSk1Nhaenp1W5p6cnUlNTbawBvtzLy8ui3MvLC7dv3+aX3377bXTo0AF9+/Ytd33mz5+POXPmWJXHx8dDLpeXezsVkZCQUCPbfVo4evsBOgbUfsduP0DH4HHtVwB4XgQ8HwBo6gHJBcDtPA638zjcyeOQoeZwJ6sQd7IK8d8/jN+RAjD4yIH6Sob6SoYAJYO3HBA+oWfRqvs1UFBQUO7Yak+C4uLibCYT5k6fPg0ANs9rMsYee76z9PPm6+zatQuHDh3CuXPnKlJtzJgxA1OnTuWXc3Jy4O/vj549e0KlUlVoW4+j1WqRkJCAHj16QCx2vOnYHb39AB0Dar9jtx+gY1Bd7c8u1OKP+zm4eM84nujCvWxk5GlwvwC4X8AhsbjDSCYWoLmPCmHFvUWh9VxQ37V2J3esqdeA6UxOeVR7EjR58mQMGTKkzJjAwEBcvHgRaWlpVs9lZGRY9fSYmE5tpaamWozzSU9P59c5dOgQbty4YXWF2YABA9CpUyccOXLE5ralUimkUqlVuVgsrrE3aE1u+2ng6O0H6BhQ+x27/QAdg6q2310sRleVHF2bGr8fTTNfX7hrHF904e4j/HEvG7lFOpy98whn7zzi160jFxvHF9VzKR5jVAceztbfgzWtul8DFdlWtSdB7u7ucHd3f2xcREQEsrOzcerUKbRv3x4AcPLkSWRnZ6NDhw421wkKCoK3tzcSEhLQqlUrAIBGo8HRo0exYMECAMB7772H8ePHW6wXGhqKzz//HC+//HJVmkYIIYQ80cxnvo5uYUyMDAaGmw/yceHuI1y89wjn72XjSnIOHhVocfRaBo5eK5n12q+OE57zNw64DqtXB6H1XKCUPrtTCtZay5o2bYro6GhMmDABX3/9NQDjJfK9e/e2GBTdpEkTzJ8/H/379wfHcXjrrbcwb948NGrUCI0aNcK8efMgl8sxbNgwAMbeIluDoevXr4+goKB/pnGEEELIE0Ig4NDQU4mGnkoMaFMPAFCk0+Nqai4u3H2E83ezcfHeI1zPyMP9R4W4/6gQe4vHF3Ec0MhTibDiK9Ja1quDEG9nSETPxq1AajW9++GHHzBlyhT+aq8+ffpgxYoVFjFXr15FdnbJTJvTp09HYWEhYmNj+ckS4+PjreYIIoQQQohtUpEQYcW9PSMijGW5aq3xSrR72bhw13gqLTlbjWtpebiWlof/nL0HoHhiSB9V8fxFxskdg+oqIHgKJ3as1STIzc0NGzduLDOGMWaxzHEc4uLiEBcXV+79lN4GIYQQQiw5y8ToEOyODsElQ1rSc9W4aBpfVJwcZRdqcf6ucT6jknVFxafQjOOLWvrXgZdKVgutqJhn90QfIYQQQqrE01mG7s1k6N7MePERYwy3MwuKB10bk6NL97ORq9bh2PUHOHb9Ab+ul0rKT+z4XPH4IhenJ2sQPCVBhBBCCCkXjuMQ6K5AoLsCfVv6AQC0egOupeXiQvHYovN3H+FaWi7ScooQ/2ca4v8suRK8gYeCvyKtuY8SWkNttcSIkiBCCCGEVJpYKEBzXxc093XBsPD6AIACjQ6Xk3OKB14/wsV72biTVYCbGfm4mZGPHefuAwDqKYTo27v26k5JECGEEEKqlVwiQrtAN7QLdOPLsvI1/NxFF+9l4/zdh/CTF5WxlZpHSRAhhBBCapybQoKuIZ7oGmK8ZZZGo8HPe/bVap2ejQv9CSGEEPJU4TgOtX2fV0qCCCGEEOKQ6HSYHaa5hSpyI7by0mq1KCgoQE5OjkPeM8fR2w/QMaD2O3b7AToGjt5+oOaOgel7uzxzBFISZEdubi4AwN/fv5ZrQgghhJCKys3NhYuLS5kxHKPplG0yGAxITk6Gs7MzOK56pwLPycmBv78/7t69C5VKVa3bfho8Le2/dOkSVq5ciV9//RVpaWkQiUQIDg7GgAEDMHLkSLi5uT1+I3aUdQwKCgrwxRdfoGPHjujUqVNVm1HtsrKyMG3aNPzvf//DgwcP0KtXL2zatKlC23haXgM1xdHbD9TcMUhJScG6devQq1cvhIWFVdt2qxu9BmruGDDGkJubC19fXwgEZY/6oZ4gOwQCAerVq1ej+1CpVA774gee7PavXr0asbGxCAkJwbvvvotmzZpBq9XizJkzWL16Nc6dO4cdO3ZUeT+2joFGo8Gnn36K2bNno1evXlXeR3WbPXs29uzZg++++w7BwcFwc3Or9N/xSX4N/BMcvf1A9R+Da9eu4dNPP0VISAg6duxYbdutKfQaqJlj8LgeIBNKgggpJTExEZMmTUKPHj2wc+dOSKVS/rkePXpg2rRp2L9/fy3WsHK0Wi04joNIVLW3/aVLlxAcHIzhw4dXU80IIaR20NVhhJQyb948cByHb775xiIBMpFIJOjTp49F2U8//YSIiAgoFAoolUpERUXh3LlzFjGjR4+GUqnE9evXMXDgQABAs2bNMG3aNBQVGScMu3XrFjw8PAAAc+bMAcdx4DgOo0eP5rfz999/Y9iwYfD09IRUKkXTpk3x5ZdfWuzryJEj4DgOGzZswLRp0+Dn5wepVIrr16/bbXdWVhZiY2Ph5+cHiUSCBg0aYObMmRZ14zgOBw4cwJUrV/i6HTlyxO42AwMD0bt3b+zZswetWrWCk5MTmjZtyieRP/zwA5o2bQqFQoH27dvjzJkzFuufOXMGQ4YMQWBgIJycnBAYGIihQ4fi9u3bFnEFBQV45513EBQUBJlMBjc3N7Rt2xabN2/mY27evIkhQ4bA19cXUqkUXl5e6NatG86fP2+3/vaMGzcObm5uKCgosHruxRdfRPPmzcu1nZdffhkuLi6Qy+Vo2rQp5s+fb/H8rl27EBERAblcDmdnZ/To0QOJiYkWMXFxceA4DhcvXsSrr74KFxcXuLm5YerUqdDpdLh69Sqio6Ph7OyMwMBALFy40GJ902tl48aNmDp1Kry9veHk5ITIyEir13BF63T58mUMHToULi4u8PLywtixY5GdnW0RyxjDypUr0bJlSzg5OcHV1RUDBw7EzZs3LeK6dOmCFi1a4PTp0+jUqRPkcjkaNGiATz/9FAaDgW9Lu3btAABjxozhX6MVueE2cTCM/OPUajWbPXs2U6vVtV2VWvEkt1+n0zG5XM7Cw8PLvc4nn3zCOI5jY8eOZXv27GHbt29nERERTKFQsMuXL/Nxo0aNYhKJhDVt2pR9+umnbMSIEez9999nHMexOXPmMMaMx2b//v0MABs3bhxLTExkiYmJ7Pr164wxxi5fvsxcXFxYaGgo+/7771l8fDybNm0aEwgELC4ujt/X4cOHGQDm5+fHBg4cyHbt2sX27NnDMjMzbbahsLCQhYWFMYVCwT777DMWHx/PPvzwQyYSiVhMTAxft8TERNaqVSvWoEEDvm7Z2dl2j01AQACrV68ea9GiBdu8eTPbu3cvCw8PZ2KxmHXu3JlFRESw7du3sx07drDGjRszLy8vVlBQwK+/detWNmvWLLZjxw529OhR9uOPP7LIyEjm4eHBMjIy+Lg33niDyeVytmTJEnb48GG2Z88e9umnn7Lly5fzMSEhIaxhw4Zsw4YN7OjRo2zbtm1s2rRp7PDhw3zM2rVrGQC2du3aMv/mFy5cYADY6tWrLcovX77MALAvv/yyzPW/+uorBoB17tyZbdq0iR04cICtXLmSxcbG8jE//PADA8B69uzJdu7cyX766SfWpk0bJpFI2K+//srHzZ49mwFgISEhbO7cuSwhIYFNnz6dAWCTJ09mTZo0YcuWLWMJCQlszJgxDADbtm0bv77pteLv78/69u3Ldu/ezTZu3MgaNmzIVCoVu3HjRpXqNGvWLJaQkMCWLFnCpFIpGzNmDGOs5HNg7NixTCwWs2nTprH9+/ezTZs2sSZNmjAvLy+WmprKbzMyMpLVrVuXNWrUiK1atYolJCSw2NhYBoCtX7+eMcZYdnY2/zf84IMP+Nfo3bt3y/x71IYn+XPwn/IkHANKgggxk5qaygCwIUOGlCv+zp07TCQSsX//+98W5bm5uczb25sNGjSILxs1ahQDwLZs2WIRGxMTw0JCQvjljIwMBoDNnj3ban9RUVGsXr16VonH5MmTmUwmY1lZWYyxki+2zp07l6sdq1atslm3BQsWMAAsPj6eL4uMjGTNmzcv13YDAgKYk5MTu3fvHl92/vx5BoD5+Piw/Px8vnznzp0MANu1a5fd7el0OpaXl8cUCgX74osv+PIWLVqwfv362V3vwYMHDABbunRpmfVdv349EwqF/JdqWSIjI1nLli0tyiZNmsRUKhXLzc21u15ubi5TqVSsY8eOzGAw2IzR6/XM19eXhYaGMr1eb7Gup6cn69ChA19mSjgWL15ssY2WLVsyAGz79u18mVarZR4eHuyVV17hy0yvldatW1vU59atW0wsFrPx48dXuk4LFy60qFNsbCyTyWT8fhITE23W/e7du8zJyYlNnz6dL4uMjGQA2MmTJy1imzVrxqKiovjl06dPlyuRJYQxxuh0GCFV8Msvv0Cn02HkyJHQ6XT8j0wmQ2RkpNWpIo7j8PLLL1uUhYWFWZ3esUWtVuPgwYPo378/5HK5xf5iYmKgVqtx4sQJi3UGDBhQrnYcOnQICoWCP01nYjoNd/DgwXJtx5aWLVvCz8+PX27atCkA4+kNuVxuVW5+LPLy8vDuu++iYcOGEIlEEIlEUCqVyM/Px5UrV/i49u3bY9++fXjvvfdw5MgRFBYWWtTBzc0NwcHBWLRoEZYsWYJz587xp1DMmf6OI0eOfGy73nzzTZw/fx6//fYbAOOVLhs2bMCoUaOgVCrtrnf8+HHk5OQgNjbW7pWnV69eRXJyMkaMGGFxdYtSqcSAAQNw4sQJq1NxvXtb3oWyadOm4DgOL730El8mEonQsGFDm6+3YcOGWdQnICAAHTp0wOHDhytdp9KnjcPCwqBWq5Geng4A2LNnDziOw2uvvWbxevb29sZzzz1n9f7x9vZG+/btrbZZnvcPIbZQEkSIGXd3d8jlciQlJZUrPi0tDQDQrl07iMVii5+ffvoJDx48sIiXy+WQyWQWZVKpFGq1+rH7yszMhE6nw/Lly632FRMTAwBW+/Px8SlXOzIzM+Ht7W31pezp6QmRSITMzMxybceW0lMJSCSSMsvNj8WwYcOwYsUKjB8/Hr/88gtOnTqF06dPw8PDwyLRWbZsGd59913s3LkTXbt2hZubG/r164e///4bgDH5PHjwIKKiorBw4UK0bt0aHh4emDJlCj8nWEX17dsXgYGB/HisdevWIT8/H//617/KXC8jIwMAyrz61HS8bf39fH19YTAY8PDhQ4tyW8fT1utNIpHYfL15e3vbLDPVpTJ1qlu3rsWyaYyd6W+XlpYGxhi8vLysXtMnTpywej2X3p5pm6WTXkLKi64OI8SMUChEt27dsG/fPty7d++x0yS4u7sDAP7zn/8gICCgRuvm6uoKoVCIESNG2P2iDQoKslgu7xxXdevWxcmTJ8EYs1gnPT0dOp2Ob+c/KTs7G3v27MHs2bPx3nvv8eVFRUXIysqyiFUoFJgzZw7mzJmDtLQ0vlfo5Zdfxl9//QXA2LPx7bffAjBeRr1lyxbExcVBo9Fg1apVFa6fQCDAv/71L7z//vtYvHgxVq5ciW7duiEkJKTM9UwD3+/du2c3xvRln5KSYvVccnIyBAIBXF1dK1znsqSmptosM9WlJurk7u4OjuPw66+/2rwIwVYZIdWJeoIIKWXGjBlgjGHChAnQaDRWz2u1WuzevRsAEBUVBZFIhBs3bqBt27Y2fyqq9H/LJnK5HF27dsW5c+cQFhZmc1+2/lMuj27duiEvLw87d+60KP/+++/55/9pHMeBMWb1RbhmzRro9Xq763l5eWH06NEYOnQorl69avMKrsaNG+ODDz5AaGgofv/990rXcfz48ZBIJBg+fDiuXr2KyZMnP3adDh06wMXFBatWrbI7rX9ISAj8/PywadMmi5j8/Hxs27aNvzqrOm3evNliX7dv38bx48fRpUuXGqtT7969wRjD/fv3bb6eQ0NDK9wOe+8fQmyhniBCSomIiMBXX32F2NhYtGnTBpMmTULz5s2h1Wpx7tw5fPPNN2jRogVefvllBAYG4qOPPsLMmTNx8+ZNREdHw9XVFWlpaTh16hTfQ1ERzs7OCAgIwM8//4xu3brBzc0N7u7uCAwMtJhJetKkSQgMDERubi6uX7+O3bt349ChQ5Vq88iRI/Hll19i1KhRuHXrFkJDQ3Hs2DHMmzcPMTEx6N69e6W2WxUqlQqdO3fGokWL+PYfPXoU3377LerUqWMRGx4ejt69eyMsLAyurq64cuUKNmzYwH8xX7x4EZMnT8arr76KRo0aQSKR4NChQ7h48aJFL9P333+PsWPH4rvvvivXuKA6depg5MiR+OqrrxAQEGA13ssWpVKJxYsXY/z48ejevTsmTJgALy8vXL9+HRcuXMCKFSsgEAiwcOFCDB8+HL1798Ybb7yBoqIiLFq0CI8ePcKnn35a4eP5OOnp6ejfvz8mTJiA7OxszJ49GzKZDDNmzACAGqnTCy+8gNdffx1jxozBmTNn0LlzZygUCqSkpODYsWMIDQ3FpEmTKrTN4OBgODk58dMvKJVK+Pr6wtfXt8L1Iw6g1oZkE/KEO3/+PBs1ahSrX78+k0gkTKFQsFatWrFZs2ax9PR0i9idO3eyrl27MpVKxaRSKQsICGADBw5kBw4c4GNGjRrFFAqF1X5MV9KYO3DgAGvVqhWTSqUMABs1ahT/XFJSEhs7dizz8/NjYrGYeXh4sA4dOrCPP/6YjzFd8bN169ZytzczM5NNnDiR+fj4MJFIxAICAtiMGTOsLl+t6NVhvXr1sioHwP71r39ZlCUlJTEAbNGiRXzZvXv32IABA5irqytzdnZm0dHR7NKlSywgIMDimLz33nusbdu2zNXVlUmlUtagQQP29ttvswcPHjDGGEtLS2OjR49mTZo0YQqFgimVShYWFsY+//xzptPp+O2U9xJ5c0eOHGEA2KefflrudRhjbO/evSwyMpIpFAoml8tZs2bN2IIFCyxidu7cycLDw5lMJmMKhYJ169aN/fbbbxYxpteP+ZQBjNl/vZX++5leKxs2bGBTpkxhHh4eTCqVsk6dOrEzZ85YrV+VOpmOb1JSkkX5d999x8LDw5lCoWBOTk4sODiYjRw50mL/9l53o0aNYgEBARZlmzdvZk2aNGFisdjulZaEMMYY3TuMEEKqYNq0afjqq69w9+7dSp+OrE1HjhxB165dsXXrVqurAwl51tHpMEIIqYQTJ07g2rVrWLlyJd54442nMgEixNFREkQIIZVgGm/Uu3dvfPzxx7VdHUJIJdDpMEIIIYQ4JLpEnhBCCCEOiZIgQgghhDikfyQJWrlyJYKCgiCTydCmTRv8+uuvZcYfPXoUbdq0gUwmQ4MGDWzO5rpt2zY0a9YMUqkUzZo1w44dO6q8X0IIIYQ4jhpPgn766Se89dZbmDlzJs6dO4dOnTrhpZdewp07d2zGJyUlISYmBp06dcK5c+fw/vvvY8qUKdi2bRsfk5iYiMGDB2PEiBG4cOECRowYgUGDBuHkyZOV3i8hhBBCHEuND4wODw9H69at8dVXX/FlTZs2Rb9+/TB//nyr+HfffRe7du2yuEP0xIkTceHCBSQmJgIABg8ejJycHOzbt4+PMc3Uu3nz5krttzSDwYDk5GQ4OzuX+/5LhBBCCKldjDHk5ubC19cXAkHZfT01eom8RqPB2bNnLaalB4CePXvi+PHjNtdJTExEz549LcqioqLw7bffQqvVQiwWIzExEW+//bZVzNKlSyu939KSk5Ph7+9frlhCCCGEPFnu3r372Jtg12gS9ODBA+j1enh5eVmUe3l52bxjMWC8a7GteJ1OhwcPHsDHx8dujGmbldlvUVERioqK+GVTB1lSUhKcnZ3L0dry02q1OHz4MLp27QqxWFyt234aOHr7AToG1H7Hbj9Ax8DR2w/U3DHIzc1FUFBQub67/5HJEkufTmKMlXmKyVZ86fLybLMi+50/f77NG10mJiZW+92aAeMdwc3HMDkaR28/QMeA2u/Y7QfoGDh6+4GaOQYFBQUArHMAW2o0CXJ3d4dQKLTqfUlPT7fqpTHx9va2GS8Sifhp6e3FmLZZmf3OmDEDU6dO5ZdzcnLg7++Pnj17QqVSlaO15XM7swCbTt7GvTu30aRRMGRSEaQiISRCASQizvqxSACJUACpSGB8LBJAIuQg4Z/jnroxS1qtFgkJCejRo4dD/wfkyMeA2u/Y7QfoGDh6+4GaOwY5OTnljq3RJEgikaBNmzZISEhA//79+fKEhAT07dvX5joRERHYvXu3RVl8fDzatm3LH6SIiAgkJCRYjAuKj49Hhw4dKr1fqVQKqVRqVS4Wi6v1j3M/R4PvEu8CECD+flK1bFMiEkAqNCZIFsmSSGCWVFk+JxUJS5aF1s+VPBaU2r71c/xjoaBCCVl1H9unkaMfA2q/Y7cfoGPg6O0Hqv8YVGRbNX46bOrUqRgxYgTatm2LiIgIfPPNN7hz5w4mTpwIwNgDc//+fXz//fcAjFeCrVixAlOnTsWECROQmJiIb7/9lr/qCwDefPNNdO7cGQsWLEDfvn3x888/48CBAzh27Fi591tb/OrIMO6FAFy7kQTfev7Q6oEivQEanQFFOgM0Oj00OgM0egOKtMbfJc8Z+OfMmcpRZGen/yDbCZd5siWEWAg8fCDAwfw/oJCJIZcIIZcI4SQRwklseiyCXFxSLpeIIJcIITOViYUQCJ6uHjBCCCFPlhpPggYPHozMzEx89NFHSElJQYsWLbB3714EBAQAAFJSUizm7gkKCsLevXvx9ttv48svv4Svry+WLVuGAQMG8DEdOnTAjz/+iA8++AAffvghgoOD8dNPPyE8PLzc+60tDT2d8V50CPbuvYGYmOaVyn4NBmZMjkolSsZkSW/2uDh50htQpNWXijOYJVvG54pKJ1um7dlIxIrsJWTF9cp7bEImwB8PUyrcdnMysQByiYhPnCwTKVFx8lScRIlFNhKtkuTKFCsXiyCTVLxXixBCyNPnHxkYHRsbi9jYWJvPrVu3zqosMjISv//+e5nbHDhwIAYOHFjp/T7NBAIOMoGxVwSy2q2LeUJmlSCZJWVFZglbYZEGZ85dRHBIUxTpgEKtHoUaHQo0ehRo9SjU6FGg0RX/Nv6otcbfhVo9v2+11gC1VlMj7RIKOMjFQrNESsQnWjLzpEtcKokqjrVMtIzJFb8tsbBG6kwIIaRi/pEkiDy7LBKyctJqtZClXEDMC4EV7gkzGBjUuuKEiE+SjAlToda8XGeWUJknUjqLdQtLlekMxisR9QaG3CIdcot0FapfecnEAoghxOfXjsFZJoazTASlVMQ/Ni0rZcVl0uKy4mWl1Pi8kE4JEkJIpVESRJ4qAgFXfAqrZl66Wr3BMpGySK5Kls2TK5u9WFpDSbzGTi8WOORmFlSpvgqJ0CIxMiVQzlIxlHxiZfoR21yWS4R06o8Q4pAoCSLEjFgogIuTAC5O1X+1hnkvVk6BGvsPHEHLdhFQ6xly1Tr+J69IizzTcpEOuWot8oqKnysu0+iMY7HyNXrka/RIy6n8qHgBB4teKCXf62RMklSlyoxJlsgq+ZKKaBwVIeTpQkkQIf8Q814sF6kAfgqgXaBrpQbHF+n0fKKUV6RDjtqYOPHJkq0ydXGZWYzewGBgQI5ahxx11U79iYWcRVJU0utkVla87CTicDWLg/utLLgqnCxOAYqENX5fZ0IIAUBJECFPJalICKlSiLpK67mtyosxBrXWgFy1trjHqbinqXg5z6xnqqRXSoe8Uj1TeRodGAO0eoasfA2y8ss7WF2I1VfPWJXKJUKLBMr8FJ95IuUsM/VSmY2jkomgkompV4oQUi6UBBHioDiOM04ZIBHCswrbMRgY8jUlPU65atun8HLVJaf5cgo1uJeWCaFMgTyNHrlqLdRa4yk+01ir9NzKn+Ir3SvFJ1TmvVOyUomW+SlBmQhKiYjmoiLkGUdJECGkSgQCrjh5EMPHpXzraLVa7N27FzExHfnTgVq9oSRJUmv5U3a5Zo9N5aYeKfOkK7fIGFO5XilrHAcoJSKr3ifT+CmVTGSxbN4TZX4aUCKi03uEPKkoCSKEPBHEQgFcFRK4KiSV3oZ1r5QWOeqSU3vmPVR8oqXWIbfI7LFaB43eAMZQMk1CduXbJRUJLE/ryURQSIR4lCHA73v/gotcyidUzmYJlHnvlExMp/cIqQmUBBFCnhmV6ZWyRa3VW/VE8T1OpcdKmZ3u4xMttQ75GuOUCEU6A4ryivDAahp1AU5l3LHeuQ0iAWc9RoofF2VZZj6eSmUWR1MhEGKNkiBCCClFJjZOAOrhXPmB53oDs+hlMu+JephfhDMXLsEvoCHyixOu0kmWKdbAAJ2B4WGBFg8LtJWuj1DAWQ04V8lKT9JZklCpbJQpaJwUecZQEkQIITVAKODgIhfDRW49BYJWq4Xrgz8Q07NRmVMkMMaQXzxw3Pz0nnnClGf2OMc8kTJLvvQGBr2BIbtQi+xCLYDCSrXJfJyUrV4p8+TK1kzoquIB6TTTOXlSUBJECCFPKI7j+FukVPb0HmMMhXxvk3lPk67M5Kp0D5ZWz0qNk1JXul2mmc45rRBr750sPnUnNrtVjPU8U0qzKRGUxeOq6PQeqSpKgggh5BnGcSWTdHqpKn/HZbXNRMrUA2V9Gi/XRg9VUamZzgEOqXcrN+qcM810Li2Z8sAyWSqZQ0ops45TFZc7iSmZcmSUBBFCCHms6hgnpdEZ+MToYZ4aB//3G5q3bIMCLUNekf2ZzkvfPkZvKO6VKk68qtIrZRorZT6nlDGZsrxtjK179JUkXTRB59OKkiBCCCH/CIlIgLpKKeoqpfBzkeCOC0P3pp4VunUMP9N5kWWyZH41n6k8p/i3aU4p8x4q06Bzy7FSlScScGan8sRm99ezTJZMCZdczOFaNod697LhopBCITX21ikkQrp1zD+IkiBCCCFPDYuZzp0rvx3LsVKWCZT5bWTMbxuTZ5ZA8beVKb5tjM7A8KhAi0cFFRl4LsSXf560KpWKBMVJkRAKiQgKqbBkWWq8Sk8uFUIpEUEuNSZOCqkxTi4pTrIkQott0FV9tlESRAghxOFYjpWq/HYMBoYCrb7sBMo8yTJN1lmoRWrmIwgkTijQ6JFfpIPOwAAUzy2l0yArv5oaC8BJLDRLpspOnBQSYXFyVSoBk4j4dZ6VsVSUBBFCCCGVJDAbU4QKXMFXcuuYzvzpQI3OgPwiHfI1OhRo9Mgr0qGgSI98ja64XI+C4t/5RToUaHTIL9KXuU5xXoVCrR6FWj0e5FX+VjLmOA7GHqlSyZSidG+VKeniky0hvywVANnVU51KoySIEEIIeQJIRAJIRFW7dYw5xhiKihMrPkEqTpwKNDrkFf+2SKSK9MjT6Phky/z5Ao0xuWIMYAz8YHZU4WbHjV0EGFotra0cSoIIIYSQZxDHcfxVfXWraZsGA4Nap7fqgcovKk6WzBKoxydfOihElb+yrzpQEkQIIYSQchEISsZSVWW6BKDklGBtouvwCCGEEOKQKAkihBBCiEOiJIgQQgghDomSIEIIIYQ4JEqCCCGEEOKQajQJevjwIUaMGAEXFxe4uLhgxIgRePToUZnrMMYQFxcHX19fODk5oUuXLrh8+bJFTFFREf7973/D3d0dCoUCffr0wb179/jnb926hXHjxiEoKAhOTk4IDg7G7NmzodHU8qxMhBBCCHli1GgSNGzYMJw/fx779+/H/v37cf78eYwYMaLMdRYuXIglS5ZgxYoVOH36NLy9vdGjRw/k5ubyMW+99RZ27NiBH3/8EceOHUNeXh569+4NvV4PAPjrr79gMBjw9ddf4/Lly/j888+xatUqvP/++zXZXEIIIYQ8RWpsnqArV65g//79OHHiBMLDwwEAq1evRkREBK5evYqQkBCrdRhjWLp0KWbOnIlXXnkFALB+/Xp4eXlh06ZNeOONN5CdnY1vv/0WGzZsQPfu3QEAGzduhL+/Pw4cOICoqChER0cjOjqa326DBg1w9epVfPXVV/jss89qqsmEEEIIeYrUWE9QYmIiXFxc+AQIAJ5//nm4uLjg+PHjNtdJSkpCamoqevbsyZdJpVJERkby65w9exZardYixtfXFy1atLC7XQDIzs6Gm5tbVZtFCCGEkGdEjfUEpaamwtPT06rc09MTqampdtcBAC8vL4tyLy8v3L59m4+RSCRwdXW1irG33Rs3bmD58uVYvHix3foWFRWhqKjk/ic5OTkAjDNaarVau+tVhml71b3dp4Wjtx+gY0Dtd+z2A3QMHL39QM0dg4psr8JJUFxcHObMmVNmzOnTpwEY71tSGmPMZrm50s+XZx17McnJyYiOjsarr76K8ePH211//vz5NtsVHx8PuVxe5r4rKyEhoUa2+7Rw9PYDdAyo/Y7dfoCOgaO3H6j+Y1BQUFDu2AonQZMnT8aQIUPKjAkMDMTFixeRlpZm9VxGRoZVT4+Jt7c3AGNvj4+PD1+enp7Or+Pt7Q2NRoOHDx9a9Aalp6ejQ4cOFttLTk5G165dERERgW+++abMOs+YMQNTp07ll3NycuDv74+ePXtCpVKVuW5FabVaJCQkoEePHhCLxdW67aeBo7cfoGNA7Xfs9gN0DBy9/UDNHQPTmZzyqHAS5O7uDnd398fGRUREIDs7G6dOnUL79u0BACdPnkR2drZVsmISFBQEb29vJCQkoFWrVgAAjUaDo0ePYsGCBQCANm3aQCwWIyEhAYMGDQIApKSk4NKlS1i4cCG/rfv376Nr165o06YN1q5dC4Gg7OFPUqkUUqn1zeDEYnGNvUBrcttPA0dvP0DHgNrv2O0H6Bg4evuB6j8GFdlWjQ2Mbtq0KaKjozFhwgScOHECJ06cwIQJE9C7d2+LK8OaNGmCHTt2ADCeBnvrrbcwb9487NixA5cuXcLo0aMhl8sxbNgwAICLiwvGjRuHadOm4eDBgzh37hxee+01hIaG8leLJScno0uXLvD398dnn32GjIwMpKam2h0zRAghhBDHU2MDowHghx9+wJQpU/grufr06YMVK1ZYxFy9ehXZ2dn88vTp01FYWIjY2Fg8fPgQ4eHhiI+Ph7OzMx/z+eefQyQSYdCgQSgsLES3bt2wbt06CIVCAMZxPNevX8f169dRr149i/0xxmqquYQQQgh5itRoEuTm5oaNGzeWGVM6KeE4DnFxcYiLi7O7jkwmw/Lly7F8+XKbz48ePRqjR4+uaHUJIYQQ4kDo3mGEEEIIcUiUBBFCCCHEIVESRAghhBCHREkQIYQQQhwSJUGEEEIIcUiUBBFCCCHEIVESRAghhBCHREkQIYQQQhwSJUGEEEIIcUg1OmO0I9Dr9dBqtRVaR6vVQiQSQa1WQ6/X11DNnlyO3n6g6sdALBbzt4khhBBSOZQEVRJjDKmpqXj06FGl1vX29sbdu3fBcVz1V+4J5+jtB6rnGNSpUwfe3t4OewwJIaSqKAmqJFMC5OnpCblcXqEvIoPBgLy8PCiVSggEjndG0tHbD1TtGDDGUFBQgPT0dACAj49PTVSREEKeeZQEVYJer+cToLp161Z4fYPBAI1GA5lM5pBJgKO3H6j6MXBycgIApKenw9PTk06NEUJIJTjmN1AVmcYAyeXyWq4JcWSm119Fx6QRQggxoiSoCmgsBqlN9PojhJCqoSSIEEIIIQ6JkiBigeM47Ny5s8b3ExYWhi+++KLG92PLunXrUKdOnVrZNyGEkCcHJUEOJj09HW+88Qbq168PqVQKb29vREVFITExEQCQkpKCl156qZZraY0SF0IIIdWNrg5zMAMGDIBWq8X69evRoEEDpKWl4eDBg8jKygIAeHt713INCSGEkH8G9QQ5kEePHuHYsWNYsGABunbtioCAALRv3x4zZsxAr169AFieDrt16xY4jsOWLVvQqVMnODk5oV27drh27RpOnz6Ntm3bQqlUIjo6GhkZGfx+unTpgrfeesti3/369cPo0aPt1m3JkiUIDQ2FQqGAv78/YmNjkZeXBwA4cuQIxowZg+zsbHAcB47jEBcXBwDQaDSYPn06/Pz8oFAoEB4ejiNHjlhse926dahfvz7kcjn69++PzMzMKh1HQgghzwZKgqoJYwwFGl25fwo1+grFl/XDGCtXHZVKJZRKJXbu3ImioqJyt2327Nn44IMP8Pvvv0MkEmHo0KGYPn06vvjiC/z666+4ceMGZs2aVdlDBwAQCARYtmwZLl26hPXr1+PQoUOYPn06AKBDhw5YunQpVCoVUlJSkJKSgnfeeQcAMGbMGPz222/48ccfcfHiRbz66quIjo7G33//DQA4efIkxo4di9jYWJw/fx5du3bFxx9/XKW6EkIIeTbQ6bBqUqjVo9msX2pl339+FAW55PF/SpFIhHXr1mHChAlYtWoVWrdujcjISAwZMgRhYWF213vnnXcQFRUFAHjzzTcxdOhQHDx4EC+88AIAYNy4cVi3bl2V2mDecxQUFIS5c+di0qRJWLlyJSQSCVxcXMBxnMXpuhs3bmDz5s24d+8efH19+bru378fa9euxbx58/DFF18gKioK7733HgCgcePGOH78OPbv31+l+hJCCHn6UU+QgxkwYACSk5Oxa9cuREVF4ciRI2jdunWZSYx5guTl5QUACA0NtSgz3cKhsg4fPowePXrAz88Pzs7OGDlyJDIzM5Gfn293nd9//x2MMTRu3Jjv5VIqlTh69Chu3LgBALhy5QoiIiIs1iu9TAghxDFRT1A1cRIL8edHUeWKNRgMyM3JhbPKuVpuG+EkrtgtE2QyGXr06IEePXpg1qxZGD9+PGbPnm13zI5YLOYfmyboK11mMBj4ZYFAYHWKrqxZjW/fvo2YmBhMnDgRc+fOhZubG44dO4Zx48aVuZ7BYIBQKMTZs2etbhuhVCoBoNynCgkhhDgeSoKqCcdx5TolBRi/vHUSIeQS0RNx76xmzZpV69xAHh4eSElJ4Zf1ej0uXbqErl272ow/c+YMdDodFi9ezB+PLVu2WMRIJBLo9XqLslatWkGv1yM9PR2dOnWyue1mzZrhxIkTFmWllwkhhDim2v8GJv+YzMxMvPjii9i4cSMuXryIpKQkbN26FQsXLkTfvn2rbT8vvvgi/vvf/+K///0v/vrrL8TGxuLRo0d244ODg6HT6bB8+XLcvHkTGzZswKpVqyxiAgMDkZeXh4MHD+LBgwcoKChA48aNMXz4cIwcORLbt29HUlISTp8+jQULFmDv3r0AgClTpmD//v1YuHAhrl27hhUrVtB4IEIIIQBqOAl6+PAhRowYARcXF7i4uGDEiBFlfhkCxtMXcXFx8PX1hZOTE7p06YLLly9bxBQVFeHf//433N3doVAo0KdPH9y7d8/m9oqKitCyZUtwHIfz589XU8ueTkqlEuHh4fj888/RuXNntGjRAh9++CEmTJiAFStWVNt+xo4di1GjRmHkyJGIjIxEUFCQ3V4gAGjZsiWWLFmCBQsWoEWLFvjhhx8wf/58i5gOHTpg4sSJGDx4MDw8PLBw4UIAwNq1azFy5EhMmzYNISEh6NOnD06ePAl/f38AwPPPP481a9Zg+fLlaNmyJeLj4/HBBx9UW1sJIYQ8xVgNio6OZi1atGDHjx9nx48fZy1atGC9e/cuc51PP/2UOTs7s23btrE//viDDR48mPn4+LCcnBw+ZuLEiczPz48lJCSw33//nXXt2pU999xzTKfTWW1vypQp7KWXXmIA2Llz58pd9+zsbAaAZWdnWz1XWFjI/vzzT1ZYWFju7ZnT6/Xs4cOHTK/XV2r9p52jt5+x6jkGVX0d1iaNRsN27tzJNBpNbVelVjh6+xmjY+Do7Wes5o5BWd/fpdVYT9CVK1ewf/9+rFmzBhEREYiIiMDq1auxZ88eXL161V5ChqVLl2LmzJl45ZVX0KJFC6xfvx4FBQXYtGkTACA7OxvffvstFi9ejO7du6NVq1bYuHEj/vjjDxw4cMBie/v27UN8fDw+++yzmmomIYQQQp5SNZYEJSYmwsXFBeHh4XzZ888/DxcXFxw/ftzmOklJSUhNTUXPnj35MqlUisjISH6ds2fPQqvVWsT4+vqiRYsWFttNS0vDhAkTsGHDBsjl8upuHiGEEEKecjV2dVhqaio8PT2tyj09PZGammp3HaBkLhoTLy8v3L59m4+RSCRwdXW1ijGtzxjD6NGjMXHiRLRt2xa3bt16bH2LioosZlHOyckBYLy0u/Rl2lqtFowxGAwGi0vDy4sVX7Zt2oajcfT2A9VzDAwGAxhj0Gq1VlMEPOlM76mypkB4ljl6+wE6Bo7efqDmjkFFtlfhJCguLg5z5swpM+b06dMASuaUMccYs1lurvTz5VnHPGb58uXIycnBjBkzylzH3Pz58222Kz4+3qonSSQSwdvbG3l5edBoNOXeR2m5ubmVXvdZ4OjtB6p2DDQaDQoLC/G///0POp2uGmv1z0lISKjtKtQqR28/QMfA0dsPVP8xKCgoKHdshZOgyZMnY8iQIWXGBAYG4uLFi0hLS7N6LiMjw6qnx8R0S4TU1FT4+Pjw5enp6fw63t7e0Gg0ePjwoUVvUHp6Ojp06AAAOHToEE6cOAGpVGqx/bZt22L48OFYv3691b5nzJiBqVOn8ss5OTnw9/dHz549oVKpLGLVajXu3r0LpVIJmUxW5rGwhTGG3NxcODs7Pza5exY5evuB6jkGarUaTk5O6Ny5c6Veh7VJq9UiISEBPXr0sJh401E4evsBOgaO3n6g5o6B6UxOeVQ4CXJ3d4e7u/tj4yIiIpCdnY1Tp06hffv2AIw3s8zOzuaTldKCgoLg7e2NhIQEtGrVCoDxv92jR49iwYIFAIA2bdpALBYjISEBgwYNAgCkpKTg0qVL/GXTy5Yts7hJZnJyMqKiovDTTz9ZjFEyJ5VKrZImwDgzcuk/jl6vB8dxEAgElZrs0HT6w7QNR+Po7Qeq5xgIBAJwHGfzNfq0eJrrXh0cvf0AHQNHbz9Q/cegItuqsTFBTZs2RXR0NCZMmICvv/4aAPD666+jd+/eCAkJ4eOaNGmC+fPno3///uA4Dm+99RbmzZuHRo0aoVGjRpg3bx7kcjmGDRsGAHBxccG4ceMwbdo01K1bF25ubnjnnXcQGhqK7t27AwDq169vURfTLRSCg4NRr169mmoyIYQQQp4iNXrbjB9++AFTpkzhr+Tq06eP1aR8V69eRXZ2Nr88ffp0FBYWIjY2Fg8fPkR4eDji4+Ph7OzMx3z++ecQiUQYNGgQCgsL0a1bN6xbt+6pGxxKCCGEkNpTo0mQm5sbNm7cWGYMK3WDS47jEBcXh7i4OLvryGQyLF++HMuXLy9XPQIDA+lGmoQQQgix4JgDMsgz5ZtvvoG/vz8EAgGWLl1a29UhhBDylKAkyMGMHj0aHMdh4sSJVs/FxsaC4ziMHj3aKt40ALdBgwZ45513kJ+fb7Hutm3b0KVLF7i4uECpVCIsLAwfffQRsrKy7NZFKBTy21YqlXjuueewbt26CrUnJycHkydPxrvvvov79+/j9ddfr9D6hBBCHBclQQ7I398fP/74IwoLC/kytVqNzZs3Ww0qB4Do6GikpKTg5s2b+Pjjj7Fy5Uq88847/PMzZ87E4MGD0a5dO+zbtw+XLl3C4sWLceHCBWzYsKHMuqxduxYpKSm4cOECBg8ejDFjxuCXX34pd1vu3LkDrVaLXr16wcfHp9KzgzvyhGWEEOKoKAlyQK1bt0b9+vWxfft2vmz79u3w9/fnpyYwJ5VK4e3tDX9/fwwbNgzDhw/Hzp07AQCnTp3CvHnzsHjxYixatAgdOnRAYGAgevTogW3btmHUqFFl1qVOnTrw9vZGcHAw3n//fbi5uSE+Pp5/Pjs7G6+//jo8PT2hUqnw4osv4sKFCwCAdevWITQ0FADQoEEDcBzHzw6+e/dutGnTBjKZDA0aNMCcOXMsJhTkOA6rVq1C3759oVAo+CkVyrPemjVr0L9/f8jlcjRq1Ai7du2yaNPly5fRq1cvqFQqODs7o1OnTrhx4wb//Nq1a9G8eXN4e3ujWbNmWLlyJf+cRqPB5MmT4ePjA5lMhsDAQMyfP7/MY0gIIaRyKAmqbpp8+z9adQViC8sXW0ljxozB2rVr+eXvvvsOY8eOLde6Tk5OfM/JDz/8AKVSidjYWJuxderUKdc29Xo9tmzZgqysLH6OB8YYevXqhdTUVOzduxdnz55F69at0a1bN2RlZWHw4MH8TXNPnTqFlJQU+Pv745dffsFrr72GKVOm4M8//8TXX3+NdevW4ZNPPrHY5+zZs9G3b1/88ccfGDt2bLnXmzNnDgYNGoSLFy8iJiYGw4cP50/73b9/n5+88NChQzh79izGjh3LJ1KrV6/GzJkzMXfuXJw8eRIff/wxPvzwQ34Cz2XLlmHXrl3YsmULrl69io0bNyIwMLBcx5AQQkjF1OjVYQ5pnq/95xr1BIZv5Re5xY0BrZ3pvQM6AmP+W7K8NBQoyLSOi8u2LiuHESNGYMaMGbh16xY4jsNvv/2GH3/8EUeOHClzvVOnTmHTpk3o1q0bAODvv/9GgwYNKj3R1dChQyEUCqFWq6HX6+Hm5obx48cDAA4fPow//vgD6enp/ESWn332GXbu3In//Oc/eP3111G3bl0AgIeHBz/j+CeffIL33nuP74Vq0KAB5s6di+nTp2P27Nn8vocNG2aR+I0YMaJc640ePRpDhw4FAMybNw/Lly/HqVOnEB0djS+//BIuLi748ccf+WPSuHFjft25c+di8eLFeOWVV5CTk4PQ0FD89ddf+PrrrzFq1CjcuXMHjRo1QseOHcFxHAICAip1XAkhhDweJUEOyt3dHb169cL69ev5Hhd7M4Hv2bMHSqUSOp0OWq0Wffv25acnKM993cry+eefo3v37rh79y6mTp2Kt99+Gw0bNgQAnD17Fnl5eXyiY1JYWGhxeqm0s2fP4vTp0xY9OHq9Hmq1GgUFBfy4obZt21ZqvbCwMP55hUIBZ2dnpKenAwDOnz+PTp062UwKMzIycPfuXYwbNw4TJkzgy3U6HVxcXAAYE6wePXogJCQE0dHR6N27Nz/PFiGEkOpFSVB1ez/Z/nOc5WSObNo1cPZumcCVKn/rjypWzNrYsWMxefJkAMCXX35pN65r16746quvIBaL4evra/EF37hxYxw7dgxarbZSvUHe3t5o2LAhGjZsiK1bt6JVq1Zo27YtmjVrBoPBAB8fH5u9U2WdZjMYDJgzZw5eeeUVq+fM77GlUCgqtV7pdnIcx98Gw8nJqcx6AcZTYu3atUNeXh6USiUEAgE/0Wfr1q2RlJSEffv24cCBAxg0aBC6d++O//znP3a3SwghpHIoCapuEsXjY8xjy3vfqIpst5yio6Oh0WgAAFFRUXbjFAoF3ztT2rBhw7Bs2TKsXLkSb775ptXzjx49Kve4oIYNG2LAgAGYMWMGfv75Z7Ru3RqpqakQiUQVGhfTunVrXL161W6dq3s9c2FhYVi/fr3NpNDLywt+fn64efMmhg4dipycHKhUKqt7h6lUKgwePBiDBw/GwIEDER0djaysLLi5uVW6XoQQQqxREuTAhEIhrly5wj+ujPDwcEyfPh3Tpk3D/fv30b9/f/j6+uL69etYtWoVOnbsaDM5smfatGl47rnncObMGXTv3h0RERHo168fFixYgJCQECQnJ2Pv3r3o16+f1eksk1mzZqF3797w9/fHq6++CoFAgIsXL+KPP/6wuLFuda1nbvLkyVi+fDmGDBmCGTNmwMXFBSdOnED79u0REhKCuLg4TJkyBc7OzujYsSPEYjF+//13PHz4EFOnTsXnn38OHx8ftGzZEgKBAFu3boW3t3e5E0lCCCHlR1eHOTiVSgWVSlWlbSxYsACbNm3CyZMnERUVhebNm2Pq1KkICwt77CXypZluhDtr1ixwHIe9e/eic+fOGDt2LBo3bowhQ4bg1q1b8PLysruNqKgo7NmzBwkJCWjXrh2ef/55LFmy5LGDjCu7nrm6devi0KFDyMvLQ2RkJNq0aYPVq1fzvULjx4/HmjVrsH79erzwwgvo2rUr1q1bh6CgIADGm/0uWLAAbdu2Rbt27XDr1i3s3bu30neaJ4QQYh/H6KZaNuXk5MDFxQXZ2dlWSYJarUZSUhKCgoIsxoqUl8FgsHsqxBE4evuB6jkGVX0d1iatVou9e/ciJiam0lcWPs0cvf0AHQNHbz9Qc8egrO/v0hzzG4gQQgghDo+SIEIIIYQ4JEqCCCGEEOKQKAkihBBCiEOiJIgQQgghDomSoCowzQBMSG2g1x8hhFQNTZZYCRKJBAKBAMnJyfDw8IBEIqnQ/bMMBgM0Gg3UarVDXiLu6O0HqnYMGGPQaDTIyMiAQCCARCKpoVoSQsizjZKgShAIBAgKCkJKSgqSk8u4V5gdjDGoCwsgkznBdu7EweIJVtZ//DUVC8v7l1UolgGwP/0UA4fCwkI4OTmBKy6pju0+EbHmx7iMWMaAQrXaeAw4rlLblTvJUN/HCwJdoWWoSAYIimcA12sBvcb+ZoVSQCiqRKwO0BeVESsBhGL7sVothPoiQJMPCBQlsQY9oFPb365ADIgklYg1AKWPU6VjRYBIanzMGKAtqHiseftZcds5ISA2m+9Jk29/uxWKFQBip0rGFsD+65IDJPLKxWoLAU2R9TEwMb9NkLaw7M8fi1g1wPTVEyuWl7zndEWAQVc9sSIn/nZJnEFnu/02YqHTAAZtGds1e99XJLY2PyOeAJQEVZJEIkH9+vWh0+mg15fxRrJBq9VC/HWE/YCAF4CXvyhZXtXJ/oeybxvgla9Lltd0B9SPbMd6NAMGf1+yvK4PkGcniXNtAAzfUrL8wyDg4U3bsUpfYPSukuWfRgIZf9qOldWBdtQ+/O9//0Pnzp0h3j0ZSD5rO1bkBEz8tWR595vA7d9sxwLA5DMlj/e9C9w4aD/29f+VfCgnxAFX99iPHZsAyF2Nj48sAC5ttR874mfAxc/4+NhS4PxGu6Engt5G456DjJOEnfwaOL3a/nZfXQ94NTc+/n09hEc+gUiTA87Wl86oPUBQJ+Pjs+uAve/Y3+6wLUDj4vvGXdwC/BxbRh3WAc37Gx//tRvYOtp+bN+VQKvhxsc3DgKbBlk8LQbQGwAuAoj5DGg/wfjE7ePA+t72t9vjI+CF4tuwpJwHVr9oPzbyPaDrDOPjB1eBlc/bj+3wb6Bn8a1Rsu8CX4TZj203Hui12Pi4IBNYFGw/9rlhQP+vjI+1BcA8XwCl2m/SrC8wyOz9WRxrU6OewHCz1+GihvaTsYCOwJj/liwvDTXW2xbfVsDrR0qWvwwHsu/YjvVoAvzrZMny6q5Axl+2Y13qA2+b3QR67UsQJ5+zPgYAIK8LTDf7rNk4ELh9zPZ2xXJgZkrJ8pYRwN/xtmMBIC675PGO14E/f7Yf+35ySdK0+y3gwib7sf93A1C4Gx//8j5weo392DcvAq7GWeibpmyFeNFY+7GxJwDPpsbHvy4Gjn5qP3bCIcCvjfHxya+AhFn2Y5+Uz4gWg+w//w+hJKgKOI6DWCyu8EyXQqEQ4ry79gM0WYD5DMD59+x/wBUFWMYWJNv/gFO5W8YWpgD26uGksIxVp9mPFXKWsUXp9mMNBRDKZNDpdJDJZBAXPbAfK5ZbbleTZT8WsIzVPnxMrBSQFMfrssuOlYpLtq3PKTtWIiqJNeSVGWvQqo3HQCwGDAVlb1eEku0yNaDJth9LCCGkXOi2GXZUZNrtitJqtfhl9w5ERfW0nUA9C13dZXRfazlJyVTp0D2zXd1ldUlrtVrsTTiMmF69ja+BZ7Gru4zTYVqtFr/8Em98D8gc73SYRfvFjnk6TKspsj4GJg5wOkyr1WLfnl14qWc3+/9IP+Onw7QG1PptM6gnqJbohVLjG7I8f3jzN261xsofH1OZWPMPUVu0Zm/Ox8VabLcC98eqSKxICkBaA7ESAHbOe3Nay7FGZcVWZLulCcUlCUa1xopKPuwqE8tpS94D5vsUCMv/Gq5QrKBmYjmucrHm7bf3GVBj7/sn5TNCVL7PwWf4M4IJROX/HngWPyPKStT+IY55aQ4hhBBCHB71BNlhOkuYk5NT7dvWarUoKChATk6OQ9492NHbD9AxoPY7dvsBOgaO3n6g5o6B6Xu7PKN9KAmyIzc3FwDg7+9fyzUhhBBCSEXl5ubCxcWlzBgaGG2HwWBAcnIynJ2dKzQRYnnk5OTA398fd+/erfZB108DR28/QMeA2u/Y7QfoGDh6+4GaOwaMMeTm5sLX1/exk9FST5AdAoEA9erVq9F9qFQqh33xA09++y9evIjPP/8cR44cQUpKCkQiERo3bowhQ4Zg/PjxcHNzq/I+bB2DgoICLFy4EF26dEGXLl2qvI/qlpWVhdjYWBw6dAgZGRno27cvdu7cWaltPemvgZrm6O0HqvcYJCcn45tvvkG/fv3QsmXLatlmTaPXQM0cg8f1AJlQEkSIDatXr0ZsbCxCQkLwf//3f2jWrBm0Wi3OnDmDVatWITExETt27KiRfRcUFGDOnDkA8EQmQXPnzsWOHTvw3XffITg4uFqSQUKqQ3JyMubMmYPAwMCnJgkitYuSIEJKSUxMxKRJk9CjRw/s3LkTUmnJ5a49evTAtGnTsH///lqsYeVotVpwHAeRqGpv+0uXLiE4OBjDhw+vppoRQkgtYeQfp1ar2ezZs5lara7tqtSKJ739vXv3ZiKRiN25c6fc6/z444/s+eefZ3K5nCkUCtazZ0/2+++/W8SMGjWKKRQK9vfff7OoqCgmFouZn58fmzp1Kn8skpKSTDcRs/gZNWoUv51r166xoUOHMg8PDyaRSFiTJk3YihUrLPZ1+PBhBoB9//33bOrUqczX15dxHMeuXLlitw2ZmZls0qRJzNfXl4nFYhYUFMTef//9x9bt8OHDdrcZEBDAevXqxXbv3s1atmzJZDIZa9KkCdu+fTubPXs2++abb1iTJk2YXC5n7dq1Y6dPn7ZY//Tp02zw4MEsICCAyWQyFhAQwIYMGcJu3bplEZefn8+mTZvGAgMDmVQqZa6urqxNmzZs06ZNfMyNGzfY4MGDmY+PD5NIJMzT05O9+OKL7Ny5c3brb8/atWttHgsALDIy8rHr79q1iwUFBTGVSsWcnJxYkyZN2Lx58yxifv75Z/b8888zJycnplQqWffu3dnx48ctYmbPns0AsAsXLrCBAwcylUrFXF1d2dtvv820Wi3766+/WFRUFFMqlSwgIIAtWLDAYn3T62TDhg3s7bffZl5eXkwmk7HOnTtbvX4rWqdLly6xIUOGMJVKxTw9PdmYMWPYo0eP+Di1Ws1mzZrFvvjiC/bcc88xmUzG6tSpwwYMGMBu3Lhhsc3IyEjWvHlzdurUKdaxY0fm5OTEgoKC2Pz585ler7doS+mf2bNnP/bvURue9M/Bf8KTcAwoCSLEjE6nY3K5nIWHh5d7nU8++YRxHMfGjh3L9uzZw7Zv384iIiKYQqFgly9f5uNGjRrFJBIJa9q0Kfvss8/YgQMH2KxZsxjHcWzOnDmMMeOHwv79+xkANm7cOJaYmMgSExPZ9evXGWOMXb58mbm4uLDQ0FD2/fffs/j4eDZt2jQmEAhYXFwcvy/TF4Kfnx8bOHAg27VrF9uzZw/LzMy02YbCwkIWFhbGFAoF++yzz1h8fDz78MMPmUgkYjExMXzdEhMTWatWrViDBg34umVnZ9s9NgEBAaxevXqsRYsWbPPmzWzv3r0sPDycicViNmvWLPbCCy+w7du3sx07drDGjRszLy8vVlBQwK+/detWNmvWLLZjxw529OhR9uOPP7LIyEjm4eHBMjIy+Lg33niDyeVytmTJEnb48GG2Z88e9umnn7Lly5fzMSEhIaxhw4Zsw4YN7OjRo2zbtm1s2rRpFkmcKblZu3ZtmX/z9PR0vv2mnyVLljAALDY2tsx116xZwziOY126dGGbNm1iBw4cYCtXrrRY74cffmAAWM+ePdnOnTvZTz/9xNq0acMkEgn79ddf+ThTwhESEsLmzp3LEhIS2PTp0xkANnnyZNakSRO2bNkylpCQwMaMGcMAsG3btvHrm14n/v7+rG/fvmz37t1s48aNrGHDhkylUlkkI5Wp06xZs1hCQgJbsmQJk0qlbMyYMRbHYsKECUwsFrNp06ax/fv3s02bNrEmTZowLy8vlpqaysdFRkayunXrskaNGrFVq1axhIQEFhsbywCw9evXM8YYy87O5v9+H3zwAf93uXv3bpl/D+LYKAkixExqaioDwIYMGVKu+Dt37jCRSMT+/e9/W5Tn5uYyb29vNmjQIL5s1KhRDADbsmWLRWxMTAwLCQnhlzMyMuz+BxsVFcXq1atnlXhMnjyZyWQylpWVxRgr+XLr3LlzudqxatUqm3VbsGABA8Di4+P5MtN/5eUREBDAnJyc2L179/iy8+fPMwDMx8eH5efn8+U7d+5kANiuXbvsbk+n07G8vDymUCjYF198wZe3aNGC9evXz+56Dx48YADY0qVLy6zv+vXrmVAo5L9Yy+uvv/5idevWZV27dmVFRUV243Jzc5lKpWIdO3ZkBoPBZoxer2e+vr4sNDSU7+Uwrevp6ck6dOjAl5kSjsWLF1tso2XLlgwA2759O1+m1WqZh4cHe+WVV/gy0+ukdevWFvW5desWE4vFbPz48ZWu08KFCy3qFBsby2QyGb+fxMREm3W/e/cuc3JyYtOnT+fLIiMjGQB28uRJi9hmzZqxqKgofvn06dPlSmIJMaEZowmpgl9++QU6nQ4jR46ETqfjf2QyGSIjI3HkyBGLeI7j8PLLL1uUhYWF4fbt24/dl1qtxsGDB9G/f3/I5XKL/cXExECtVuPEiRMW6wwYMKBc7Th06BAUCgUGDhxoUT569GgAwMGDB8u1HVtatmwJPz8/frlpU+Ndsbt06QK5XG5Vbn4s8vLy8O6776Jhw4YQiUQQiURQKpXIz8/HlStX+Lj27dtj3759eO+993DkyBEUFlre+8vNzQ3BwcFYtGgRlixZgnPnzsFgsL4flenvOHLkyHK3LzU1FdHR0fDx8cGOHTsgkdi/XcHx48eRk5OD2NhYu1NvXL16FcnJyRgxYoTF5b1KpRIDBgzAiRMnUFBgeb+y3r17Wyw3bdoUHMfhpZde4stEIhEaNmxo87U2bNgwi/oEBASgQ4cOOHz4cKXr1KdPH4vlsLAwqNVqpKenAwD27NkDjuPw2muvWbyWvb298dxzz1m9d7y9vdG+fXurbZbnvUOIPZQEEWLG3d0dcrkcSUlJ5YpPS0sDALRr1w5isdji56effsKDBw8s4uVyOWQyy3sWSaVSqNVl3Ai0WGZmJnQ6HZYvX261r5iYGACw2p+Pj0+52pGZmQlvb2+rL2ZPT0+IRCJkZmaWazu2lL56zJQk2Cs3PxbDhg3DihUrMH78ePzyyy84deoUTp8+DQ8PD4tEZ9myZXj33Xexc+dOdO3aFW5ubujXrx/+/vtvAMbk8+DBg4iKisLChQvRunVreHh4YMqUKfzEqJWRm5uLmJgY480w9+177GW5GRkZAFDm9BumY23rb+fr6wuDwYCHDx9alNs6lrZeaxKJxOZrzdvb22aZqS6VqVPdunUtlk0XGJj+bmlpaWCMwcvLy+r1fOLECavXcuntmbZZOuElpCLo6jBCzAiFQnTr1g379u3DvXv3HjtXlLu7OwDgP//5DwICAmq0bq6urhAKhRgxYgT+9a9/2YwJCgqyWC7vRJ9169bFyZMnwRizWCc9PR06nY5v5z8pOzsbe/bswezZs/Hee+/x5UVFRcjKyrKIVSgUmDNnDubMmYO0tDS+V+jll1/GX3/9BcDYu/Htt98CAK5du4YtW7YgLi4OGo0Gq1atqnD9tFotBgwYgBs3buDXX38t17xiHh4eAIB79+7ZjTF92aekpFg9l5ycDIFAAFdX1wrXtyypqak2y0x1qYk6ubu7g+M4/PrrrxZXYJrYKiOkulFPECGlzJgxA4wxTJgwARqNxup5rVaL3bt3AwCioqIgEolw48YNtG3b1uZPRZX+j9lELpeja9euOHfuHMLCwmzuy9Z/y+XRrVs35OXlWU16+P333/PP/9M4jgNjzOrLcM2aNdDr9XbX8/LywujRozF06FBcvXrV6jQNADRu3BgffPABQkND8fvvv1eqfuPGjcORI0ewfft2hIWFlWudDh06wMXFBatWrbJ7X6OQkBD4+flh06ZNFjH5+fnYtm0bIiIiLE4jVofNmzdb7Ov27ds4fvw4P09VTdSpd+/eYIzh/v37Nl/LoaGhFW6HvfcOIfZQTxAhpUREROCrr75CbGws2rRpg0mTJqF58+bQarU4d+4cvvnmG7Ro0QIvv/wyAgMD8dFHH2HmzJm4efMmoqOj4erqirS0NJw6dYrvoagIZ2dnBAQE4Oeff0a3bt3g5uYGd3d3BAYG4osvvkDHjh3RqVMnTJo0CYGBgcjNzcX169exe/duHDp0qFJtHjlyJL788kuMGjUKt27dQmhoKI4dO4Z58+YhJiYG3bt3r9R2q0KlUqFz585YtGgR3/6jR4/i22+/RZ06dSxiw8PD0bt3b4SFhcHV1RVXrlzBhg0b+C/nixcvYvLkyXj11VfRqFEjSCQSHDp0CBcvXrToZfr+++8xduxYfPfdd2WOC1q0aBE2bNiAf//731AoFBZjsVQqFZo1a2ZzPaVSicWLF2P8+PHo3r07JkyYAC8vL1y/fh0XLlzAihUrIBAIsHDhQgwfPhy9e/fGG2+8gaKiIixatAiPHj3Cp59+WrUDa0N6evr/t3fncVGV+x/AP2d2mGHYV2URURBBRShFcyEV165a3axMc6mu1/qlmder5XXL8KqZpjc1lyS1NLe83SKVVMrdNC0VIxc2AUVA2Zn1+f0xMDDC4AAzDDDf9+vFa2bOec6Z5/swnPnyPM85B2PHjsXrr7+OwsJCLFy4EBKJBPPmzQMAi9Spb9++eOONNzB58mRcuHAB/fv3h1QqRU5ODk6ePInw8HD8/e9/b9A+O3bsCDs7O3z55Zfo0qULZDIZfHx84OPj0+D6ERthtSnZhLRwly9fZq+++irz8/NjIpGISaVSFhERwRYsWMByc3MNyh48eJDFxMQwuVzOxGIx8/f3Z88//zz78ccf9WWqrhP0qKqzaWr68ccfWUREBBOLxbWuE5SamsqmTJnC2rVrx4RCIXN3d2d9+vRhS5cu1ZepOutn7969Jsebn5/Ppk2bxry9vZlAIGD+/v5s3rx5ta7h0dCzw0aOHFlrOQD25ptvGiyrug7RypUr9cvu3LnDnnvuOebs7MwcHBzYsGHD2NWrV5m/v79Bm8ydO5dFRUUxZ2dnJhaLWWBgIHvnnXdYXl4eY4yxe/fusUmTJrGQkBAmlUqZTCZj3bp1Y6tXr2ZqtVq/H1NPka8606+uH1OuE5SQkMAGDBjApFIps7e3Z6GhobWu4XPw4EHWq1cvJpFImFQqZYMGDWKnTp0yKFP12al5uYCq+tX1WXv0d1fzOkFvv/02c3d3Z2KxmPXr149duHCh1vZNqVNV26amphos//zzz1mvXr2YVCpldnZ2rGPHjmzixIkG72/sM/fqq68yf39/g2W7du1iISEhTCgUtujrBJGWgW6gSgghNiopKQkxMTHYu3dvrTMDCbEFNCeIEEIIITaJkiBCCCGE2CQaDiOEEEKITaKeIEIIIYTYJEqCCCGEEGKTKAkihBBCiE2iiyUaodVqkZ2dDQcHB5NvPUAIIYQQ62KMobi4GD4+PgY3/K0LJUFGZGdnw9fX19rVIIQQQkgjZGZmPvaefpQEGeHg4ABA14hyudys+1apVDhy5AhiY2MhFArNuu/WwNbjB6gNKH7bjh+gNrD1+AHLtUFRURF8fX313+P1oSTIiKohMLlcbpEkyN7eHnK53CY//LYeP0BtQPHbdvwAtYGtxw9Yvg1MmcpCE6MJIYSQZsQYQ6lCjTI1oNXSpfqsiXqCCCGEEBNotQylSjVKFGqUVKhRXPlYolCjuEKF4orqdSUKw/U1y5Uo1NDlPgLMv/gjnO1FcJWK4CIVwUVW/dxVKoKrTKx/7iIVwcleBD6PTtYxF0qCCCGEtGkaLdMlIvpkRIWiCsMEpbjGOl2yoq5+rCqnUFukbnklCuSVKEwqz+MApxpJk6usMnmSig2WuUp1yZOzvRACPg36GENJECGEkBZJpdGitDIR0feyKOrocXmkl+XRXpoypcas9RLwODhIBJBJBJCJhXCQCOAgrnqte3QQVz0XQiYW6MrUWC/hAYlHDqNX/6dRqNCioFSJglIl8ksqH0uVKChVGLwuLFdBy6AvawqOAxzthNU9S1KxQW+Ti7Q6YXKTieAsFUFoQ0kTJUGEEEKaBWMMOYUVuJZdhKt3HuDX2zwc33cFpSqtQW9LcWWPTIVKa9b3Fwl4hsmKWAAHidAgOalKWOpbLxbwmnz9OJVKBQEP8JRL0N7EScEqjRYPynQJUEGJEnmlShSUKGokTdWPBaVKPChTgjHgYZkKD8tUuH2/1KT3kUsE+mG46mE5w96mmr1QYgG/KU1hVZQEEUIIMTuNliE1rwTXsouQnF2Ea9lFuJZdiAdlqhqleMC9nMfuSyLk6XtcqpOTGj0ulT0yhj0wlb0vlculYn6r/rIGACGfBw8HCTwcJCaV12iZPmmq6lEqKFUg36DHSaFPmgpKldAyoKhCjaIKNVLzTEuaHMQCuMhEBnOXqhImV1mN3qbKHiiJsOX8HigJIoQQ0iQVKg3+vFesT3SuZRfhj5xilKtqD0PxeRyC3GXo4iVDWV4WeoQFw9FeXKMHpjrZcZAIIBULbGp4xpz4PA5uMjHcZGLA8/HltVqGwnIV8h8ZhisorT1El1+qxINSJdRahuLKSeDp+WUm1ctexK9MlIRw0fAwoolxNgUlQYQQQkxWWK6q7NkpRHKOrpfnRm4JNHWc6i0R8tDFW46uPnJ09XFEqLccwV4OkAj5UKlUSEjIxIinOtjsdXJaGh6Pg7NUNy8oyOPx5RljKCpX63uTqnuYFIbJU41eJ5WGoUypQZmyHHcelCPUyeJh1YuSIEIIIbUwxpBbrND17GRVDmflFCKzoLzO8s72Ql2i41OV9MjRwU1Gp3O3YRzHwdFeCEd7IQLdH1+eMV2vUUFlT9L9wjJc++2C5StaD0qCCCHExmm1DGn5pZXDWbpenus5RcgrqfsMpHZOdjWSHUd09ZHD21FCN5sm9eI4DnKJEHKJEAFuUqhUMihSrVsnSoIIIcSGKNQa3LhXoh/SupZdhOs5RSit4zRyHgd0dJcZJDuhPnI42YusUHNCzI+SIEIIaaOKK1S4nlOsT3auZRfhZm4xVJra83fEAh5CKufvhFY+hnjJYSdqOWfyEGJulAQRQkgbkFtcoT8dvaqXJ83I2TqOdkJ9otO1na6XJ9BNSlcWJjaHkiBCCGlFtFqGzAdlBqejX8suwv3ium+74O0oqRzGctRPWG7nZEfzdwgBJUGEENJiqTRa3LhXok92kivn7xTXcQ8rjgMC3aT6uTtVZ2q5SGn+DiHGUBJECCEtQKlCjT/uVp6dlaU7Hf3PuyVQamrfOkIk4CHEy0E/pBXq44gu3g6wF9EhnZCGoL8YQghpZuVKDf54yCHz51T8UXmmVmp+KVjt+cpwkAgqkx1H/Ryeju4yuooyIWZASRAhhDSDEoUax/7IxaGrOTj+Ry7KVXzg+g2DMp5ycY3hLF3i096Z5u8QYimUBBFCiIUUlqvwY/I9/HD1Ln6+cR9KdfXQlrOIoU9nb3Rt76hPfNxkYivWlhDbQ0kQIYSYUUGpEkeu3cUPV+/i9K08g2vydHCTYniYF4aEuCP98kmMHNmN7ptFiBVREkQIIU2UW1SBw5WJz7nUAoObiXb2lGF4mDeGh3sh2NMBHMdBpVIh4zcrVpgQAoCSIEIIaZSsh+U4dPUuDl3NwYX0BwaTmrv6yDEi3BvDwrzQ0V1mvUoSQupFSRAhhJgoPb8UP1zV9fj8lvnQYF0PXyeMCPfCsK7e8HO1t04FCSENQkkQIYTU42ZuMX64okt8knOK9Ms5DnjC3wXDw70wtKsXfJzsrFhLQkhjUBJECCE1MMZwPacYh67m4Ierd3Ejt0S/js/j0DvQBcPDvBHb1RMeDhIr1pQQ0lSUBBFCbB5jDL/fKcQPlXN8at54VMjn0DfIDSPCvDE41JNuQ0FIG0JJECHEJmm1DL9mPKhMfO4i62G5fp1YwEP/zu4YEe6Fp0M84WhHp7ET0ha1iOuur1+/Hh06dIBEIkFkZCROnDhhtGxSUhI4jqv188cff9RZfvfu3eA4DmPGjLFQ7QkhrYVao8XpW3lY8N+r6L3sKJ7feAZbT6Yi62E57EV8jAz3xn9ejsCv/xqCzROjMDaiPSVAhLRhVu8J+vrrrzFz5kysX78effv2xWeffYbhw4cjOTkZfn5+RrdLSUmBXC7Xv3Z3d69VJj09HbNnz0a/fv0sUndCSMun0mhx+lY+Dl3NweFr91BQqtSvcxALMDjUE8PCvDCgszskQr4Va0oIaW5WT4I+/vhjTJ06Fa+99hoAYM2aNTh8+DA2bNiAZcuWGd3Ow8MDTk5ORtdrNBqMHz8eixcvxokTJ/Dw4UMz15wQ0lJVqDQ4eSMPP1y9i8TkuyiqUOvXOdkLERvqieFh3ugT5AqxgBIfQmyVVZMgpVKJixcvYu7cuQbLY2Njcfr06Xq3jYiIQEVFBUJDQzF//nzExMQYrF+yZAnc3d0xderUeofXqigUCigUCv3roiLdqbAqlQoqlcrUkExStT9z77e1sPX4AWoDS8RfplTj5xv5OHztHo7/eR+lCo1+natUhNhQDwzt6oknA5yr78DOtFCptEb2aDm2/vsHqA1sPX7Acm3QkP1ZNQnKy8uDRqOBp6enwXJPT0/cvXu3zm28vb2xadMmREZGQqFQYMeOHRg0aBCSkpLQv39/AMCpU6ewdetWXL582eS6LFu2DIsXL661/MiRI7C3t8yFzxITEy2y39bC1uMHqA2aGn+FGrj2kMPlfA7XH3JQaavvtu4oYujuwtDdVYtABzV4XBoKU9KQmNLUWpuPrf/+AWoDW48fMH8blJWVPb5QJasPhwEAx3EGrxljtZZVCQ4ORnBwsP51dHQ0MjMz8dFHH6F///4oLi7GK6+8gs2bN8PNzc3kOsybNw+zZs3Svy4qKoKvry9iY2MN5h6Zg0qlQmJiIoYMGWKTN0+09fgBaoOmxF9YrsLRP3Jx6No9nLyZb3CD0vZOEgzt6omhXT3RvZ0jeLy6jyPWZuu/f4DawNbjByzXBlUjOaawahLk5uYGPp9fq9cnNze3Vu9QfXr37o2dO3cCAG7duoW0tDQ888wz+vVara67WyAQICUlBR07dqy1D7FYDLFYXGu5UCi02AfUkvtuDWw9foDawNT480sUOJJ8DwlXcnDmVj7UNW5QGugmxfBwLwwP80ZXH7nRf6BaIlv//QPUBrYeP2D+NmjIvqyaBIlEIkRGRiIxMRFjx47VL09MTMTo0aNN3s+lS5fg7e0NAAgJCcGVK1cM1s+fPx/FxcX45JNP4Ovra57KE0Is6l5RBQ5dvYsfrubgfGoBauQ9CPZ00Cc+nT1lrSrxIYS0HFYfDps1axYmTJiAqKgoREdHY9OmTcjIyMC0adMA6IapsrKysH37dgC6s8cCAgLQtWtXKJVK7Ny5E/v378f+/fsBABKJBGFhYQbvUXUW2aPLrYmvUQDKUoDVkbFyfEBY43L8ylLjO+J4gNCukWXLADBjhQGRfePKqsoBVs9kU05kelmRtEbZCoBpzFNWaK+7+RMAqBWAVm2esgI7gFc56VatBLRGJuipVIZx11cWAAQSgMdveFmNCtAojZfliwG+oBFl1YBGUU9ZEcAXGi+rUlX/DfCk+rJ38ovx45UMHEm+h0sZD/TFxQBCfeQY3LU9hnbzRaC7DNBqAHUFoDIy/s8TAoLKz5pWC6jL6y7X4LICQFDZa8yY8fevr2zN+KuOAQ36u28Dxwilwvhx0OBvue0eIzit2vj3wCNl2+QxogWwehI0btw45OfnY8mSJcjJyUFYWBgSEhLg7+8PAMjJyUFGRoa+vFKpxOzZs5GVlQU7Ozt07doV33//PUaMGGGtEBpl1O+vA78bWdkpFhi/t/r1yiDjB1r/p4DJ31e/XhMOlOXXXdYnAngjqfr1p72Awoy6y7qHAG+eq369OQa4X/cFKeHoB7xTo/dt23Ag+1LdZe1dgXdqzEzd+TyQfrLuskJ74P2c6td7JgA3jtRdFgAWFVY//+YNIPm/xsu+l119QPzfTOC3r4yX/cctQFo5v+zwe8AvW4yXnfE74Kz77OLYEuD0ujqLCQE4hMRVLzixCvjp38b3+/oxoF2k7vm5DUDiAuNlX/0O6FB5bayL8UDCbONlX94DdB6qe/77HuC/042X/Ws80LWyx/aP/wF7JxkvO3o9EDFe9/zWUeCrFwxWCwGMAoDfgbz+H2IPbxgOXb0L++wz2C1aikkA8OhtuQoASJYA7jN0r3MuA5ufNl6HAXOBmHm653kpwPrexsv2+T8gdqnueWEm8Ek342WfeA0YuUr3vCwfWFl7eF2v+8vA2A2656oyIM4HgGH8eqGjgRe2V7+uLFunNnCMEGZfqt0GgO4YMed29es2fIzokrMXwpVTjJedfhbw6KJ73haPEWEvGF/fTKyeBAHA9OnTMX163Q0bHx9v8HrOnDmYM2dOg/b/6D4IIS3HJ0dvYIemAwCgd4u4hj0hxFZwjDFj/Zc2raioCI6OjigsLLTI2WGH//cNhg6NrXsCV1vo6q6n+1rFiZCQkIARI0ZACHWb7equr0tapVIhIfE4RowcpfsMtMWu7keGw9QaLZL+vI+vzmXgzO3qnggtT4gnAj0xPNwLsSHucLer55BkMGxVORxmUtmWNRymUqlw+PARw2OAjQ2HqZSK2m1QxQaGw1QqFX747lsMjx1kfCJvGx8OU2lR/V1g5rPDTP3+bhE9QbZIwxfr/iBN+cXX/MM1a9kGXP+oIWVrHkTrUvNCVo8ra7DfR8dHzFRWIIZu1om5y4oAGBn35lS6LxxTyjZkv4/iC6uTEbOWFVQf7B4jr1yDr3/JwZdn05FdqEtaOE6CEEctJsaEY1iYD5wbc2d2Ht/0zzuPZ5myHNe4spzq8ccAi/3dt5RjhMC042AbPkYwnsD074G2eIyoL1FrJpQEEULMjjGGXzMeYseZNCRcuQulRvefvLO9EOOe8MO4SB/8fuY4RvRsZ/OnBxNCrIeSIEKI2ZQrNfj2tyxsP5OOa9nVFyzr7uuEib39MbKbNyRCPlQqldHzAgghpLlQEkQIabK0vFLsPJuOvRfvoLBc18UtEvDwl+4+mBjtj27tnaxbQUIIqQMlQYSQRtFoGX76Mxfbz6QjKeW+fnl7Zzu80tsfL0T5wqUxc30IIaSZUBJECGmQB6VK7LmQiZ3n0pFZUH0W1YDO7pgY7Y+BwR7gt9B7dhFCSE2UBBFCTPL7nYfYfiYd//stGwq1bqKzXCLAC1G+eKW3PwLcGnDWESGEtACUBBFCjKpQaZBwJQfbz6TjcuZD/fKuPnJMjPbHX7q3g52Ib70KEkJIE1ASRAip5c6DMnx5LgNf/5KJglLdxdGEfA4jw70xIToAPf2c6KalhJBWj5IgQggAQKtlOHkzD9vPpOPYH/f0d233dpRgfC8/jHvCD+4OJl4wjhBCWgFKggixcYXlKuy7eAc7z6YjNa/6lgp9g1wxoXcABnfxgIBPN/UihLQ9lAQRYqOSs4uw42waDl7KRrlKdw8lB7EAz0W2xyu9/RHkIbNyDQkhxLIoCSLEhijVWhy6dhc7zqThl7QH+uXBng6YEO2PsRHtIBXTYYEQYhvoaEeIDbhbWIGvzqVj1y+ZuF+su7OzgMdhaFcvTIz2x5MdXGiiM2kwrVYLpbKeu4rXQ6VSQSAQoKKiAhpNPXdzb6NsPX6gaW0gEonA4zV9mJ6SIELaKMYYztzOx44z6TiSfA+aypnOHg5ivPSkH17u5QdPeQPupE1IDUqlEqmpqdBqtY3anjEGLy8vZGZm2mQCbuvxA01rAx6Phw4dOkAkatpV6SkJIqSNKVGo8c2vd7D9TDpu5Jbolz/ZwQUTo/0xtKsXhDTRmTQBYww5OTng8/nw9fVt1H/kWq0WJSUlkMlkZvmPvrWx9fiBxreBVqtFdnY2cnJy4Ofn16QkkpIgQtqIG/eKseNsOg78moUShRoAYC/iY2xEO0yI9keIl9zKNSRthVqtRllZGXx8fGBvb9+ofVQNpUkkEptMAmw9fqBpbeDu7o7s7Gyo1WoIhcJG14GSIEJaMbVGi8Tke9h+Jh1nbufrlwe6SzGhtz+ei2wPuaTxBwhC6lI1f6OpQxGENFbVZ0+j0VASRIityS2uwO7zmfjqXAbuFlUAAHgcMLiLJyZGB6BvkKvNzjMgzYc+Y8RazPXZs80+OEJaIcYYLqQV4O1dl9D338fwceKfuFtUAVepCG/GdMSJfz6NTROj8FQnN/pyIqSROI7DwYMHLf4+gYGB2LBhg8Xfpy7x8fFwcnKyynu3NNQTREgLV6ZU47+Xs7H9TDqu5xTpl/f0c8LE6AAMD/eCWEA3MSXEFLm5ufjXv/6FH374Affu3YOzszO6d++ORYsWITo6Gjk5OXB2drZ2NWuJj4/HzJkz8fDhQ2tXpU2hJIiQFio1rxQ7zqRj78VMFFfoJjpLhDyM7q6b6BzWztHKNSSk9XnuueegUqnwxRdfIDAwEPfu3cPRo0dRUFAAAPDy8rJyDUlzouEwQloQjZYhMfkeJmw9h5iPkvD5qVQUV6jh72qP90d0wdl5g7D8+W6UABHSCA8fPsTJkyexfPlyxMTEwN/fH08++STmzZuHkSNHAjAcDktLSwPHcdizZw/69esHOzs7PPHEE/jzzz/xyy+/ICoqCjKZDMOGDcP9+/f17zNw4EDMnDnT4L3HjBmDSZMmGa3bxx9/jPDwcEilUvj6+mL69OkoKdFd4iIpKQmTJ09GYWEhOI4Dx3FYtGgRAN31mubMmYN27dpBKpWiV69eSEpKMth3fHw8/Pz8YG9vj7FjxyI/Px9Eh3qCCGkBCkqV+PqXTOw8m46sh+UAAI4DYoI9MCHaHwM6uYPHo3k+pGVijOnvP2cqrVaLcqUGAqW6SaeI2wn5Js+Bk8lkkMlkOHjwIHr37g2xWGzSdgsXLsSaNWvg5+eHKVOm4KWXXoJcLscnn3wCe3t7vPDCC1iwYEGT5vjweDysXbsWAQEBSE1NxfTp0zFnzhysX78effr0wZo1a7BgwQKkpKToYwGAyZMnIy0tDbt374aPjw+++eYbDBs2DFeuXEGnTp1w7tw5TJkyBXFxcXj22Wdx6NAhLFy4sNH1bGsoCSLEin67U4ivfrmD737PgVKtu/Kuk70Q46J8Mb6XP/xcG3cNFkKaU7lKg9AFh63y3slLhsJeZNpXmUAgQHx8PF5//XVs3LgRPXv2xIABA/Diiy+iW7duRrebPXs2hg4dCgCYMWMGXnrpJRw9ehR9+/YFAEydOhXx8fFNiqNmz1GHDh3wwQcf4O9//zvWr18PkUgER0dHcBxnMFx369Yt7Nq1C3fu3IGPj4++rocOHcK2bdsQFxeHTz75BEOHDsXcuXMBAJ07d8bp06dx6NChJtW3raAkiJBmplRr8c2lLPzndz4yz5zTL+/W3hETevvjme4+kAhpojMhlvDcc89h5MiROHHiBM6cOYNDhw5hxYoV2LJli9HhqpoJkqenJwAgPDzcYFlubm6T6nX8+HHExcUhOTkZRUVFUKvVqKioQGlpKaRSaZ3b/Prrr2CMoXPnzgbLFQoFXF1dAQDXr1/H2LFjDdZHR0dTElSJkiBCmolCrcGeC3ew4fhNZBdWAOAg5HN4prsPJkYHoIevk7WrSEij2An5SF4ytEHbaLVaFBcVw0Hu0OThsIaSSCQYMmQIhgwZggULFuC1117DwoULjSZBNS/GVzX09uiymvdQ4/F4YIwZ7EOlUhmtT3p6OkaMGIFp06bhgw8+gIuLC06ePImpU6fWu51WqwWfz8fFixfB5xu2Q9Vw2aP1IIYoCSLEwipUGnz9SyY2JN3SX9jQ00GMJ5zLMP/lQfByqvu/PEJaC47jTB6SqqLVaqEW8WEvElj9thGhoaFmvTaQu7s7cnJy9K81Gg2uXr2KmJiYOstfuHABarUaq1at0rfFnj17DMqIRKJad1qPiIiARqNBbm4u+vXrV+e+Q0NDcfbsWYNlj762ZZQEEWIh5UoNvjqfgc9+uoXcYgUAwNtRgr8P7Ihnu3vhaOJhuErptgOENJf8/Hz89a9/xZQpU9CtWzc4ODjgwoULWLFiBUaPHm2293n66acxa9YsfP/99+jYsSNWr15d7/V9OnbsCLVajXXr1uGZZ57BqVOnsHHjRoMyAQEBKCkpwdGjR9G9e3fY29ujc+fOGD9+PCZOnIhVq1YhIiICeXl5OHbsGMLDwzFixAi8/fbb6NOnD1asWIExY8bgyJEjNBRWA50iT4iZlSnV2PzzbfRbcRwffJeM3GIF2jnZYemYMCT9YyAmRgdATHN+CGl2MpkMvXr1wurVq9G/f3+EhYXhX//6F15//XX85z//Mdv7TJkyBa+++iomTpyIAQMGoEOHDkZ7gQCgR48e+Pjjj7F8+XKEhYXhyy+/xLJlywzK9OnTB9OmTcO4cePg7u6OFStWAAC2bduGiRMn4t1330VwcDD+8pe/4Ny5c/D19QUA9O7dG1u2bMG6devQo0cPHDlyBPPnzzdbrK0dx2jAsE5FRUVwdHREYWEh5HLz3n1bpVIhISEBI0aMaNKN31qrthp/qUKNHWfTsfnn28gvVQIA2jvb4c2YIDzXsz1Egur/OdpqG5iK4m/d8VdUVCA1NRUdOnSARCJp1D60Wi2Kioogl8utPhxmDbYeP9C0NqjvM9iQ728aDiOkiYorVNh+Jh1bTtzGgzLdJEY/F3u8FROEsT3bQci3zQMcIYS0dJQEEdJIRRUqfHEqDVtOpqKwXJf8dHCT4q2YIIzu4QMBJT+EENKiURJESAMVlqnw+alU/S0tACDQXYq3n+6EUd28KfkhhJBWgpIgQkz0oFSJz0+lIv5UGooVuuSnk4cM/zeoE0aGe4NPt7UghJBWhZIgQh6joFSJLSdu44vTaShV6q7TEezpgLcHdcLwMC+6pxchhLRSlAQRYkReiQKbT9zGjjPpKKtMfrp4yzFjUBBiQyn5IYSQ1o6SIEIekVtcgU0/3cbOc+moUOkuhR/WTo4ZgzpjcBcPk+9YTQghpGWjJIiQSveKKrDxp1v46lwGFJV3dO/e3hEzBndCTDAlP4QQ0tZQEkRsXk5hOTYm3cKuXzKhrEx+IvycMGNQJwzo7E7JDyGEtFF0Li+xWVkPyzH/4BUMWJGEL86kQ6nWIsrfGTumPokDf++DgdT7Qwhp4TZt2gRfX1/weDysWbPG2tVpdSgJIjYns6AM8w5cwcCVx7HzbAaUGi16dXDBV6/1wt5p0ejXiXp/CGmLJk2aBI7jMG3atFrrpk+fDo7jMGnSpFrlOY6DUChEYGAgZs+ejdLSUoNt9+/fj4EDB8LR0REymQzdunXDkiVLUFBQYLQufD4fzs7O4PP5kMlk6N69O+Lj4xsUT1FREd566y3885//RFZWFt54440GbU8oCSI2JD2/FHP2/YaYj5Kw63wGVBqGPh1dsfuN3vj6b9HoE+RGyQ8hbZyvry92796N8vJy/bKKigrs2rULfn5+tcoPGzYMOTk5uH37NpYuXYr169dj9uzZ+vXvv/8+xo0bhyeeeAI//PADrl69ilWrVuG3337Djh076q3Lp59+iqysLPz2228YN24cJk+ejMOHD5scS0ZGBlQqFUaOHAlvb2/Y29ubvG1NKpWqUdu1BZQEkTYvNa8U7+75DU+v+gl7LtyBWsvQr5Mb9k6Lxlev90bvQFdrV5EQ0kx69uwJPz8/HDhwQL/swIED8PX1RURERK3yYrEYXl5e8PX1xcsvv4zx48fj4MGDAIDz588jLi4Oq1atwsqVK9GnTx8EBARgyJAh2L9/P1599dV66+Lo6AgvLy907NgR7733HlxcXHDkyBH9+sLCQrzxxhvw8PCAXC7H008/jd9++w0AEB8fj/DwcABAYGAgOI5DWloaAOB///sfIiMjIZFIEBgYiMWLF0OtVuv3y3EcNm7ciNGjR0MqlWLp0qUmb7dlyxaMHTsW9vb26NSpE7799luDmK5du4aRI0dCLpfDwcEB/fr1w61bt/Trt23bhi5dukAikSA0NBRbtmzRr1MqlXjrrbfg7e0NiUSCgIAALFu2rN42bCqaGE3arJu5Jfj0+E3893IWtEy3bEBnd7w9qBMi/Z2tWzlC2iJlqfF1HB8QSgzLqsoAJR949A7iHA8Q2j1+vyJpo6o5efJkbNu2DePHjwcAfP7555gyZQqSkpIeu62dnZ2+5+TLL7+ETCbD9OnT6yzr5ORkUn00Gg3279+PgoICCIVCAABjDCNHjoSLiwsSEhLg6OiIzz77DIMGDcKff/6JcePGwdfXF4MHD8b58+fh6+sLd3d3HD58GK+88grWrl2rT0CqhskWLlyof8+FCxdi2bJlWL16Nfh8vsnbLV68GCtWrMDKlSuxbt06jB8/Hunp6XBxcUFWVhb69++PgQMH4tixY5DL5Th16pQ+kdq8eTMWLlyI//znP4iIiMDFixfxxhtvwNXVFZMnT8batWvx7bffYs+ePfDz80NmZiYyMzNNasPGoiSItDk37hVj3bGb+N/v2WCVyc+gEA/836BO6OHrZNW6EdKmxfkYX9cpFhi/V/+SW9UZTqqyusv6PwVM/r769ZpwoCy/drlFhY2q5oQJEzBv3jykpaWB4zicOnUKu3fvfmwSdP78eXz11VcYNGgQAODGjRsIDAzUJy4N9dprr+Fvf/sbKioqoNFo4OLigtdeew0AcPz4cVy5cgW5ubkQi8UAgI8++ggHDx7Evn379MkDALi7u8PLywsA8OGHH2Lu3Ln6XqjAwEB88MEHmDNnjkEy8/LLL2PKlCkGbWLKdpMmTcJLL70EAIiLi8O6detw/vx5DBs2DJ9++ikcHR2xe/dufZt07txZv+0HH3yAVatW4dlnnwUA+Pv74/Lly9i8eTMmT56MjIwMdOrUCU899RQ4joO/v3+j2rUhKAkibcYfd4uw7uhNJFzN0Sc/Q0I98fbTnRDe3tG6lSOEtBhubm4YOXIkvvjiC32Pi5ubW51lv/vuO8hkMqjVaqhUKowePRrr1q0DoOutaco8wg8//BCjRo1CVlYWZs2ahXfeeQdBQUEAgIsXL6KkpESf6FQpLy83GF561MWLF/HLL7/gww8/1C/TaDSoqKhAWVmZft5QVFRUo7br1q2bfr1UKoWDgwNyc3MBAJcvX0a/fv3qTArv37+PzMxMTJ06Fa+//rp+uVqthqOj7vg8adIkDBkyBMHBwRg2bBhGjRqF2NjYelqw6SgJIq3etexCrDt6E4eu3dUvG9bVC/83KAhdfSj5IaTZvJdtfB3HN3jJ3v0ThcXFkDs4gFfXcFhNM6+YqYLVpkyZgrfeeguAboKyMTExMdiwYQOEQiF8fHwMvuA7d+6MkydPQqVSNao3yNPTE0FBQejcuTP27t2LiIgIREVFITQ0FFqtFt7e3nX2TtU3zKbVarF48WJ9b0tNEkn1cKRUajiUaOp2j8bJcRy0Wt311ezs7GBMVZnNmzejV69e+mUlJSX6JKhnz55ITU3FDz/8gB9//BEvvPACBg8ejH379hndb1NREkRarSt3CrH22A0kJt8DAHAcMCLMG/83KAghXnIr144QG9SQOToiKSDU6B4fTYKasl8TDRs2DEqlEgAwdOhQo+WkUqm+d+ZRL7/8MtauXYv169djxowZtdY/fPjQ5HlBQUFBeO655zBv3jz897//Rc+ePXH37l0IBAIEBASYtA9Al0ikpKQYrbO5t6upW7du+OKLL+pMCj09PdGuXTvcvn1bPxdLq9WiqKgIcnn18Voul2PcuHEYN24cnn/+eQwbNgwFBQVwcXFpdL3qQ0kQaXUuZz7EuqM3cPQPXRcsxwHPdPPBW08HobOng5VrRwhpDfh8Pq5fv65/3hi9evXCnDlz8O677yIrKwtjx46Fj48Pbt68iY0bN+Kpp56qMzky5t1330X37t1x4cIFDB48GNHR0RgzZgyWL1+O4OBgZGdnIyEhAWPGjKk1nFVlwYIFGDVqFHx9ffHXv/4VPB4Pv//+O65cuaI/C8yc29X01ltvYd26dXjxxRcxb948ODo64uzZs3jyyScRHByMRYsW4e2334ZcLsfw4cNRXl6OkydPoqKiAu+++y5Wr14Nb29v9OjRAzweD3v37oWXl5fJiWRjUBJEWo1fMx7gkx9v4Kc/7wMAeBwwukc7vBkThCAPmZVrRwhpbWr2QDTW8uXLERkZiU8//RQbN26EVqtFx44d8fzzzz/2FPlHhYeHY/DgwViwYAESEhKQkJCA999/H1OmTMH9+/fh5eWF/v37w9PT0+g+hg4diu+++w5LlizBihUrIBQKERISop9wbe7tanJ1dcWxY8fwj3/8AwMGDACfz0ePHj3Qt29fALqJ4Pb29li5ciXmzJkDqVSKLl26YNasWQAAmUyG5cuX48aNG+Dz+XjiiSeQkJBQe7jUjDjGqqaQkpqKiorg6OiIwsJCs/yh1KRSqZCQkIARI0Y0+qyC1qyh8V9IK8AnR2/gxI08AACfx2FMj3Z4M6YjAt1bZ/JDnwGKvzXHX1FRgdTUVHTo0MFgvkhD1BwKseSXXEtl6/EDTWuD+j6DDfn+pp4g0mKdvZ2PtUdv4PQt3amxAh6HZ3u2w/SBQQhwM/8cAUIIIbaFkiDSojDGcOZWPj45egPnUnX33RHwOPw1qj2mDwyCr0vjLgtPCCGEPIqSINIiMMZw8mYe1h69gV/SHgAAhHwOL0T54u8DO6K9MyU/hBBCzIuSIGJVjDH89Od9rD16A79mPAQAiPg8vPikL6YN6AgfJ+PXnSCEEEKaokXMxlq/fr1+clNkZCROnDhhtGxSUhI4jqv188cff+jLHDhwAFFRUXBycoJUKkWPHj0eezdf0rwYA46n3MeY9acxadsv+DXjIcQCHib3DcDPc2KwZHQYJUCEEEIsyuo9QV9//TVmzpyJ9evXo2/fvvjss88wfPhwJCcnw8/Pz+h2KSkpBrO+3d3d9c9dXFzw/vvvIyQkBCKRCN999x0mT54MDw+Pei+KRZqGMQaFWosShRqlCnXlo6bGc91jUbkS31zhI/PsJQCARMjDK7388Ub/QHjIG3emCSGk+dHJxcRazPXZs3oS9PHHH2Pq1Kn6axGsWbMGhw8fxoYNG7Bs2TKj23l4eBi9gNLAgQMNXs+YMQNffPEFTp48SUnQI5RqbXWSoqxKVAwTl5rLqsqUKjSPrFejVKmBRmvqB5ODnZCHidEBeL1/INxkYovGSQgxn6qLCyqVynpvlUCIpVRd7buxF7qsYtUkSKlU4uLFi5g7d67B8tjYWJw+fbrebSMiIlBRUYHQ0FDMnz8fMTExdZZjjOHYsWNISUnB8uXLje5PoVBAoVDoXxcVFQHQXc9DpVKZGpJJqvbXmP1qtKwyGamRhCg1+sREl6TU8WhQrnp7lcYy/8nZi/iQiviQigWQivmQiqof7YQ8lN3PxLwX+sLTSXequ7nbuKVrymegLaD4W3f8jDFIJBLk5uaCz+c36jo3jDEolUqUl5c36SakrZWtxw80vg20Wi1yc3MhkUjAGKv1d9SQvyurJkF5eXnQaDS1rn7p6emJu3fv1rmNt7c3Nm3ahMjISCgUCuzYsQODBg1CUlIS+vfvry9XWFiIdu3aQaFQgM/nY/369RgyZIjRuixbtgyLFy+utfzIkSP6u+eaQ6kKyC7jUKHhcOGrH1GhAZRaoELDQaEBFBqgovJRoeH0zyu0ukeV1jJ/LEKOQcwHxHxAUvko5lcu41Uvk/DrLiepUU7EB3icuv43bA9cPP2TRWJpTRITE61dBaui+Ftv/DweD+7u7vp/GAlpTiqVCvfv38fvv/9ea11ZWZnJ+7H6cBiAWhkgY8xoVhgcHIzg4GD96+joaGRmZuKjjz4ySIIcHBxw+fJllJSU4OjRo5g1axYCAwNrDZVVmTdvnv7S3YCuJ8jX1xexsbFmvWL08ZT7eG/npSbvR8jn9L0r9lU9LlW9LWIBZPplj/bG6J7LapS1F/Eh5DffHHmVSoXExEQMGTKkVV4t1xxsvQ0o/rYRv1arhUqlatT8DLVajdOnT6NPnz4QCFrEV1GzsvX4gca3AcdxEAqFRnsgG5KYW7Xl3dzcwOfza/X65Obm1ntvlEf17t0bO3fuNFjG4/H0d8Pt0aMHrl+/jmXLlhlNgsRiMcTi2vNShEKhWQ9SHo72CHSTQl1egnaerpBJhJCJayYvukRFt6wyYRHXXiYWNG0ctCUwd9u2RrbeBhR/64+/ruOmKVQqFdRqNWQyWatvg8aw9fgBy7VBQ/Zl1SRIJBIhMjISiYmJGDt2rH55YmIiRo8ebfJ+Ll26BG9v73rLMMYM5vxYSw9fJxye0bfyvkFRNvvhJ4QQQqzN6n1ws2bNwoQJExAVFYXo6Ghs2rQJGRkZmDZtGgDdMFVWVha2b98OQHf2WEBAALp27QqlUomdO3di//792L9/v36fy5YtQ1RUFDp27AilUomEhARs374dGzZssEqMhBBCCGl5rJ4EjRs3Dvn5+ViyZAlycnIQFhaGhIQE+Pv7AwBycnKQkZGhL69UKjF79mxkZWXBzs4OXbt2xffff48RI0boy5SWlmL69Om4c+cO7OzsEBISgp07d2LcuHHNHh8hhBBCWiarJ0EAMH36dEyfPr3OdfHx8Qav58yZgzlz5tS7v6VLl2Lp0qVNqlPVRD9LnPmgUqlQVlaGoqIimxwOs/X4AWoDit+24weoDWw9fsBybVD1vW3KhP0WkQS1RMXFxQAAX19fK9eEEEIIIQ1VXFwMR0fHestwjK57XietVovs7Gw4ODiY/UJWVaffZ2ZmmvX0+9bC1uMHqA0oftuOH6A2sPX4Acu1AWMMxcXF8PHxeeyFPKknyAgej4f27dtb9D3kcrnNfvgBih+gNqD4bTt+gNrA1uMHLNMGj+sBqtIi7iJPCCGEENLcKAkihBBCiE2iJMgKxGIxFi5c2OgrrbZ2th4/QG1A8dt2/AC1ga3HD7SMNqCJ0YQQQgixSdQTRAghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESZAbr169Hhw4dIJFIEBkZiRMnTtRb/qeffkJkZCQkEgkCAwOxcePGWmX279+P0NBQiMVihIaG4ptvvrFU9c3C3G1w7do1PPfccwgICADHcVizZo0Fa9905o5/8+bN6NevH5ydneHs7IzBgwfj/PnzlgyhScwd/4EDBxAVFQUnJydIpVL06NEDO3bssGQITWaJ40CV3bt3g+M4jBkzxsy1Nh9zxx8fHw+O42r9VFRUWDKMJrHEZ+Dhw4d488034e3tDYlEgi5duiAhIcFSITSJueMfOHBgnZ+BkSNHmq/SjDTJ7t27mVAoZJs3b2bJyclsxowZTCqVsvT09DrL3759m9nb27MZM2aw5ORktnnzZiYUCtm+ffv0ZU6fPs34fD6Li4tj169fZ3FxcUwgELCzZ882V1gNYok2OH/+PJs9ezbbtWsX8/LyYqtXr26maBrOEvG//PLL7NNPP2WXLl1i169fZ5MnT2aOjo7szp07zRWWySwR//Hjx9mBAwdYcnIyu3nzJluzZg3j8/ns0KFDzRVWg1iiDaqkpaWxdu3asX79+rHRo0dbOJLGsUT827ZtY3K5nOXk5Bj8tFSWaAOFQsGioqLYiBEj2MmTJ1laWho7ceIEu3z5cnOFZTJLxJ+fn2/wu7969Srj8/ls27ZtZqs3JUFN9OSTT7Jp06YZLAsJCWFz586ts/ycOXNYSEiIwbK//e1vrHfv3vrXL7zwAhs2bJhBmaFDh7IXX3zRTLU2L0u0QU3+/v4tOgmydPyMMaZWq5mDgwP74osvml5hM2uO+BljLCIigs2fP79plbUQS7WBWq1mffv2ZVu2bGGvvvpqi02CLBH/tm3bmKOjo9nraimWaIMNGzawwMBAplQqzV9hM2uO48Dq1auZg4MDKykpaXqFK9FwWBMolUpcvHgRsbGxBstjY2Nx+vTpOrc5c+ZMrfJDhw7FhQsXoFKp6i1jbJ/WZKk2aC2aK/6ysjKoVCq4uLiYp+Jm0hzxM8Zw9OhRpKSkoH///uarvJlYsg2WLFkCd3d3TJ061fwVNxNLxl9SUgJ/f3+0b98eo0aNwqVLl8wfgBlYqg2+/fZbREdH480334SnpyfCwsIQFxcHjUZjmUAaqbmOg1u3bsWLL74IqVRqnoqD5gQ1SV5eHjQaDTw9PQ2We3p64u7du3Vuc/fu3TrLq9Vq5OXl1VvG2D6tyVJt0Fo0V/xz585Fu3btMHjwYPNU3EwsGX9hYSFkMhlEIhFGjhyJdevWYciQIeYPooks1QanTp3C1q1bsXnzZstU3EwsFX9ISAji4+Px7bffYteuXZBIJOjbty9u3LhhmUCawFJtcPv2bezbtw8ajQYJCQmYP38+Vq1ahQ8//NAygTRScxwHz58/j6tXr+K1114zX8VBd5E3C47jDF4zxmote1z5R5c3dJ/WZok2aE0sGf+KFSuwa9cuJCUlQSKRmKG25meJ+B0cHHD58mWUlJTg6NGjmDVrFgIDAzFw4EDzVdyMzNkGxcXFeOWVV7B582a4ubmZv7IWYO7PQO/evdG7d2/9+r59+6Jnz55Yt24d1q5da65qm5W520Cr1cLDwwObNm0Cn89HZGQksrOzsXLlSixYsMDMtW86Sx4Ht27dirCwMDz55JNmqGk1SoKawM3NDXw+v1amm5ubWyvDreLl5VVneYFAAFdX13rLGNunNVmqDVoLS8f/0UcfIS4uDj/++CO6detm3sqbgSXj5/F4CAoKAgD06NED169fx7Jly1pcEmSJNrh27RrS0tLwzDPP6NdrtVoAgEAgQEpKCjp27GjmSBqnuY4BPB4PTzzxRIvsCbJUG3h7e0MoFILP5+vLdOnSBXfv3oVSqYRIJDJzJI1j6c9AWVkZdu/ejSVLlpi34qDhsCYRiUSIjIxEYmKiwfLExET06dOnzm2io6NrlT9y5AiioqIgFArrLWNsn9ZkqTZoLSwZ/8qVK/HBBx/g0KFDiIqKMn/lzaA5f/+MMSgUiqZX2sws0QYhISG4cuUKLl++rP/5y1/+gpiYGFy+fBm+vr4Wi6ehmuszwBjD5cuX4e3tbZ6Km5Gl2qBv3764efOmPgEGgD///BPe3t4tJgECLP8Z2LNnDxQKBV555RXzVhygU+Sbquq0wK1bt7Lk5GQ2c+ZMJpVKWVpaGmOMsblz57IJEyboy1edFvjOO++w5ORktnXr1lqnBZ46dYrx+Xz273//m12/fp39+9//bhWnyJuzDRQKBbt06RK7dOkS8/b2ZrNnz2aXLl1iN27caPb4HscS8S9fvpyJRCK2b98+g1NEi4uLmz2+x7FE/HFxcezIkSPs1q1b7Pr162zVqlVMIBCwzZs3N3t8prBEGzyqJZ8dZon4Fy1axA4dOsRu3brFLl26xCZPnswEAgE7d+5cs8dnCku0QUZGBpPJZOytt95iKSkp7LvvvmMeHh5s6dKlzR7f41jyb+Cpp55i48aNs0i9KQkyg08//ZT5+/szkUjEevbsyX766Sf9uldffZUNGDDAoHxSUhKLiIhgIpGIBQQEsA0bNtTa5969e1lwcDATCoUsJCSE7d+/39JhNIm52yA1NZUBqPXz6H5aCnPH7+/vX2f8CxcubIZoGs7c8b///vssKCiISSQS5uzszKKjo9nu3bubI5RGs8RxoKaWnAQxZv74Z86cyfz8/JhIJGLu7u4sNjaWnT59ujlCaTRLfAZOnz7NevXqxcRiMQsMDGQffvghU6vVlg6lUSwRf0pKCgPAjhw5YpE6c4xVzkQihBBCCLEhNCeIEEIIITaJkiBCCCGE2CRKggghhBBikygJIoQQQohNoiSIEEIIITaJkiBCCCGE2CRKggghhBBikygJIoS0GosWLUKPHj2a/X2TkpLAcRw4jsOYMWNM2mbRokX6bdasWWPR+hFCGoeSIEJIi1CVMBj7mTRpEmbPno2jR49arY4pKSmIj483qezs2bORk5OD9u3bW7ZShJBGo7vIE0JahJycHP3zr7/+GgsWLEBKSop+mZ2dHWQyGWQymTWqBwDw8PCAk5OTSWWr6lrzDuCEkJaFeoIIIS2Cl5eX/sfR0REcx9Va9uhw2KRJkzBmzBjExcXB09MTTk5OWLx4MdRqNf7xj3/AxcUF7du3x+eff27wXllZWRg3bhycnZ3h6uqK0aNHIy0trcF13rdvH8LDw2FnZwdXV1cMHjwYpaWlTWwJQkhzoSSIENKqHTt2DNnZ2fj555/x8ccfY9GiRRg1ahScnZ1x7tw5TJs2DdOmTUNmZiYAoKysDDExMZDJZPj5559x8uRJyGQyDBs2DEql0uT3zcnJwUsvvYQpU6bg+vXrSEpKwrPPPgu6HSMhrQclQYSQVs3FxQVr165FcHAwpkyZguDgYJSVleG9995Dp06dMG/ePIhEIpw6dQoAsHv3bvB4PGzZsgXh4eHo0qULtm3bhoyMDCQlJZn8vjk5OVCr1Xj22WcREBCA8PBwTJ8+3arDdYSQhqE5QYSQVq1r167g8ar/n/P09ERYWJj+NZ/Ph6urK3JzcwEAFy9exM2bN+Hg4GCwn4qKCty6dcvk9+3evTsGDRqE8PBwDB06FLGxsXj++efh7OzcxIgIIc2FkiBCSKsmFAoNXnMcV+cyrVYLANBqtYiMjMSXX35Za1/u7u4mvy+fz0diYiJOnz6NI0eOYN26dXj//fdx7tw5dOjQoRGREEKaGw2HEUJsSs+ePXHjxg14eHggKCjI4MfR0bFB++I4Dn379sXixYtx6dIliEQifPPNNxaqOSHE3CgJIoTYlPHjx8PNzQ2jR4/GiRMnkJqaip9++gkzZszAnTt3TN7PuXPnEBcXhwsXLiAjIwMHDhzA/fv30aVLFwvWnhBiTjQcRgixKfb29vj555/xz3/+E88++yyKi4vRrl07DBo0CHK53OT9yOVy/Pzzz1izZg2Kiorg7++PVatWYfjw4RasPSHEnDhG53MSQki9kpKSEBMTgwcPHph8scQqAQEBmDlzJmbOnGmRuhFCGo+GwwghxETt27fHSy+9ZFLZuLg4yGQyZGRkWLhWhJDGop4gQgh5jPLycmRlZQHQ3Q7Dy8vrsdsUFBSgoKAAgO6ss4ZOuiaEWB4lQYQQQgixSTQcRgghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESRAghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESRAghhBCb9P91yap21xQ3iwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAScCAYAAABayDwuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXzL9x8H8Nc3Se+T3tVS6iiqlDo3ylDHHMPMMNT1m9llNsxslDEbZuxwDS3bbLYxc21a1H0fVdRqaBVtla7V0itNvr8/Kkmr1UOTpmlez8cjD8033+OTtyT99JXP9/MVRFEUQUREREREREREVIUk+m4AEREREREREREZH4ZSRERERERERERU5RhKERERERERERFRlWMoRUREREREREREVY6hFBERERERERERVTmGUkREREREREREVOUYShERERERERERUZVjKEVERERERERERFWOoRQREREREREREVU5hlJERERUpcLCwiAIAs6cOfNM28XHx1f4mImJiQgJCUFUVFS51o+JiUFISMgzHYuIiIiIyoehFBERERmEF198EcePH4ebm1uFt01MTMTcuXMrFErNnTuXoRQRERGRDsn03QAiIiKi8nBycoKTk5O+m1EpWVlZsLS01HcziIiIiKoFjpQiIiIivdu+fTs6duwIS0tL2NjYoGfPnjh+/HiRdUo6fa9r167w9fXF6dOn0blzZ1haWqJBgwb4/PPPoVQqAQAHDhxA27ZtAQBjx46FIAgQBAEhISEltiUsLAxDhw4FAHTr1k29flhYmHqd9evXo2XLljA3N0ft2rUxaNAgXLlypch+goODYW1tjYsXLyIoKAg2Njbo3r07ACAjIwMTJ06Eg4MDrK2t0bt3b1y9erVYu4KDg+Hl5VWsjSEhIRAEocgyURSxYsUKtGrVChYWFqhVqxZefvll3Lhxo8h658+fR79+/eDs7AwzMzO4u7vjxRdfxO3bt0usBxEREZGuMJQiIiIivdq0aRMGDhwIW1tb/Pzzz1i3bh3S0tLQtWtXHDlypMztk5OTMXLkSLz22mvYvn07+vTpg5kzZ+LHH38EALRu3RqhoaEAgI8//hjHjx/H8ePHMWHChBL39+KLL+Kzzz4DAHz33Xfq9V988UUAwMKFCzF+/Hg0b94cW7duxfLlyxEdHY2OHTvi33//LbKvvLw8DBgwAC+88AL+/PNPzJ07F6Io4qWXXsIPP/yA999/H3/88Qc6dOiAPn36PHMNAeD111/HlClT0KNHD2zbtg0rVqzA5cuX0alTJ9y9excA8OjRI/Ts2RN3797Fd999h4iICCxbtgx169ZFZmZmpY5PREREVFE8fY+IiIj0RqlUYtq0aWjRogX++usvSCQF35f17dsX3t7emDFjBo4ePVrqPlJTU7F79260a9cOANCjRw8cOHAAmzZtwujRo2FrawtfX18AgLe3Nzp06FDq/pycnNCoUSMAQLNmzYqsn56ejk8//RR9+/bFpk2b1Mu7du2KRo0aISQkBD/99JN6uVwux+zZszF27Fj1sr///huRkZFYvnw53nnnHQBAz549YWpqilmzZpVZs5KcOHEC33//Pb788ktMnTpVvbxz585o3Lgxli5dii+++AL//PMPUlNTsW7dOgwcOFC93iuvvPJMxyUiIiKqDI6UIiIiIr2JjY1FYmIiRo0apQ6kAMDa2hpDhgzBiRMnkJWVVeo+XF1d1YGUip+fH27evKn19h4/fhzZ2dkIDg4ustzT0xMvvPAC9u3bV2ybIUOGFLkfGRkJABg5cmSR5SNGjHjmdu3cuROCIOC1115Dfn6++ubq6oqWLVviwIEDAICGDRuiVq1amDFjBlatWoWYmJhnPiYRERFRZTGUIiIiIr1JTU0FgBKvqOfu7g6lUom0tLRS9+Hg4FBsmZmZGbKzs7XTyELKaq/qcRVLS0vY2toW24dMJivWbldX12du1927dyGKIlxcXGBiYlLkduLECdy/fx8AYGdnh4MHD6JVq1b46KOP0Lx5c7i7u2POnDmQy+XPfHwiIiKiZ8HT94iIiEhvVMFMUlJSsccSExMhkUhQq1atqm7WU5XVXkdHxyLLnpyMXLWP/Px8pKamFgmmkpOTi61rbm6O3NzcYstVIZOKo6MjBEHA4cOHYWZmVmz9wstatGiBX375BaIoIjo6GmFhYZg3bx4sLCzw4YcfFtuWiIiISFc4UoqIiIj0pkmTJqhTpw42bdoEURTVyx89eoQtW7aor8hXWapQpryjp562fseOHWFhYaGeRF3l9u3b2L9/v/rqeqXp1q0bABSZewpAkTmqVLy8vJCSkqKeqBwomDx9z549Rdbr168fRFHEnTt3EBAQUOzWokWLYvsWBAEtW7bEV199BXt7e5w7d67MthMRERFpE0dKERERkV4IggCJRIJFixZh5MiR6NevH15//XXk5uZi8eLFSE9Px+eff66VY3l7e8PCwgI//fQTmjZtCmtra7i7u8Pd3b3E9VUTo69ZswY2NjYwNzdH/fr14eDggE8++QQfffQRRo8ejeHDhyM1NRVz586Fubk55syZU2ZbgoKC0KVLF0yfPh2PHj1CQEAAjh49ih9++KHYusOGDcPs2bPx6quvYtq0acjJycHXX38NhUJRZL3nnnsO//vf/zB27FicOXMGXbp0gZWVFZKSknDkyBG0aNECb7zxBnbu3IkVK1bgpZdeQoMGDSCKIrZu3Yr09HT07NnzGSpLRERE9Ow4UoqIiIiqlGrictVopBEjRmDbtm1ITU3FsGHDMHbsWNja2iIyMhLPP/+8Vo5paWmJ9evXIzU1FUFBQWjbti3WrFnz1PXr16+PZcuW4cKFC+jatSvatm2LHTt2AABmzpyJtWvX4sKFC3jppZfw1ltvoXnz5jh27Jj6qn2lkUgk2L59O0aOHIlFixbhpZdewrFjx7B79+4S2/Hnn38iPT0dL7/8MqZNm4ahQ4di9OjRxdZdvXo1vv32Wxw6dAivvvoqXnzxRcyePRuPHj1STwTfqFEj2NvbY9GiRRgwYACGDh2Kc+fOISwsDBMnTixvOYmIiIi0QhALj5UnIiIi0rF3330X3377LdLT02FjY6Pv5lQrgiBgzpw5CAkJ0XdTiIiIiHSOp+8RERFRlTh79ixOnz6N9evXY8CAAQykiIiIiIwcQykiIiKqEi+//DIePHiAAQMG4Ouvv9Z3c4iIiIhIz3j6HhERERERERERVTlOdE5ERERERERERFWOoRQREREREREREVU5hlJERERERERERFTlGEoREREREREREVGVYyhFRERERERERERVjqEUEeldSEgIBEHA/fv3q/zYBw4cgCAIOHDgQJnrBgcHw8vLS+dtqgwvLy8EBwer7ycmJiIkJARRUVHPtD99/t8QERFR+bE/pXtP9rPi4+MhCALCwsL01iYiQyfTdwOIiEh7/vjjD9ja2qrvJyYmYu7cufDy8kKrVq301zAiIiIiIqIncKQUET2zrKwsfTfBoGVnZ2t9n/7+/vD29tb6fomIiEg32J+qnMr0p1h7Iv1jKEVE5aIaEn7u3Dm8/PLLqFWrVrnCD6VSifnz56NJkyawsLCAvb09/Pz8sHz58mLr3r17F8OHD4ednR1cXFwwbtw4PHjwoMg6OTk5mDlzJurXrw9TU1PUqVMHb775JtLT04usJwgCQkJCih3jyWHXTxMWFoYmTZrAzMwMTZs2xcaNG0tcLy8vD/Pnz4ePjw/MzMzg5OSEsWPH4t69e8WO269fP2zduhX+/v4wNzfH3Llzy2wHUDDM3draGpcvX0b37t1hZWUFJycnvPXWW8U6U4Wf34EDB9C2bVsAwNixYyEIQrG6nDx5Ev3794eDgwPMzc3h7e2NKVOmFGtDef5viIiIqHTsT+m/P3Xx4kUEBQXBxsYG3bt3BwD8999/mDx5MurUqQNTU1M0aNAAs2bNQm5ubrn2TUTPjqfvEVGFDB48GK+++iomTZqER48elbn+okWLEBISgo8//hhdunSBXC7HP//8U6zTAwBDhgzBsGHDMH78eFy8eBEzZ84EAKxfvx4AIIoiXnrpJezbtw8zZ85E586dER0djTlz5uD48eM4fvw4zMzMKv0cw8LCMHbsWAwcOBBffvklHjx4gJCQEOTm5kIi0WT5SqUSAwcOxOHDhzF9+nR06tQJN2/exJw5c9C1a1ecOXMGFhYW6vXPnTuHK1eu4OOPP0b9+vVhZWVV7jbJ5XL07dsXr7/+Oj788EMcO3YM8+fPx82bN7Fjx44St2ndujVCQ0MxduxYfPzxx3jxxRcBAB4eHgCAPXv2oH///mjatCmWLl2KunXrIj4+HuHh4cX2Vdb/DREREZUf+1P66U/l5eVhwIAB6v5Ufn4+cnJy0K1bN1y/fh1z586Fn58fDh8+jIULFyIqKgq7du2qdC2IqBQiEVE5zJkzRwQgzp49u0Lb9evXT2zVqlW59r1o0aIiyydPniyam5uLSqVSFEVR/Pvvv0tcb/PmzSIAcc2aNeplAMQ5c+YUO1a9evXEMWPGqO9HRkaKAMTIyEhRFEVRoVCI7u7uYuvWrdXHFUVRjI+PF01MTMR69eqpl/38888iAHHLli1FjnH69GkRgLhixYoix5VKpWJsbGyptSjJmDFjRADi8uXLiyxfsGCBCEA8cuTIU5+fqi2hoaHF9uvt7S16e3uL2dnZTz12ef9viIiIqGzsT+m/P7V+/foiy1etWiUCEH/99dciy7/44gsRgBgeHv7U5x0XF/fUfhYRlQ9P3yOiChkyZEiF1m/Xrh0uXLiAyZMnY8+ePcjIyHjqugMGDChy38/PDzk5OUhJSQEA7N+/HwCKDRcfOnQorKyssG/fvgq1rSSxsbFITEzEiBEjIAiCenm9evXQqVOnIuvu3LkT9vb26N+/P/Lz89W3Vq1awdXVtdgVaPz8/NC4ceNnbtvIkSOL3B8xYgQAIDIyssL7unr1Kq5fv47x48fD3Ny8zPXL+r8hIiKi8mN/SqOq+1NP1n7//v2wsrLCyy+/XGS5qj7aqAcRPR1DKSKqEDc3twqtP3PmTCxZsgQnTpxAnz594ODggO7du+PMmTPF1nVwcChyXzV0XDWBZWpqKmQyGZycnIqsJwgCXF1dkZqaWqG2lUS1D1dX12KPPbns7t27SE9Ph6mpKUxMTIrckpOTi12SuaK1K0wmkxWrj6o9z/K8VXM0qE7lK0tZ/zdERERUfuxPaVRlf8rS0rLIVYpVbXV1dS0SngGAs7MzZDKZVupBRE/HOaWIqEKe/IVdFplMhqlTp2Lq1KlIT0/H3r178dFHH6FXr164desWLC0ty70vBwcH5Ofn4969e0U6UqIoIjk5WT2pN1DQAStpcsqyOhaqjlxycnKxx55c5ujoCAcHB/z9998l7svGxqbI/YrWrrD8/HykpqYW6Wiq2vNk57M8VPW7ffv2M7eJiIiIng37UxpV2Z8qaVsHBwecPHkSoigWeTwlJQX5+flwdHR85uMRUdk4UoqIqoy9vT1efvllvPnmm/jvv/8QHx9foe1VV0j58ccfiyzfsmULHj16pH4cKLg6S3R0dJH19u/fj4cPH5Z6jCZNmsDNzQ0///wzRFFUL7958yaOHTtWZN1+/fohNTUVCoUCAQEBxW5NmjSp0PMry08//VTk/qZNmwAAXbt2feo2TxvR1LhxY3h7e2P9+vW8sgwREZEBYX9Ku7p3746HDx9i27ZtRZarrhRYuB5EpH0cKUVEOtW/f3/4+voiICAATk5OuHnzJpYtW4Z69eqhUaNGFdpXz5490atXL8yYMQMZGRl47rnn1FeL8ff3x6hRo9Trjho1Cp988glmz56NwMBAxMTE4Ntvv4WdnV2px5BIJPj0008xYcIEDBo0CBMnTkR6ejpCQkKKDTd/9dVX8dNPP6Fv375499130a5dO5iYmOD27duIjIzEwIEDMWjQoAo9x6cxNTXFl19+iYcPH6Jt27bqq+/16dMHzz///FO38/b2hoWFBX766Sc0bdoU1tbWcHd3h7u7O7777jv0798fHTp0wHvvvYe6desiISEBe/bsKRaAERERkf6wP6Wd/lRJRo8eje+++w5jxoxBfHw8WrRogSNHjuCzzz5D37590aNHD50dm4gYShGRjnXr1g1btmzB2rVrkZGRAVdXV/Ts2ROffPIJTExMKrQvQRCwbds2hISEIDQ0FAsWLICjoyNGjRqFzz77rMjli6dNm4aMjAyEhYVhyZIlaNeuHX799VcMHDiwzOOMHz8eAPDFF19g8ODB8PLywkcffYSDBw8WmWxTKpVi+/btWL58OX744QcsXLgQMpkMHh4eCAwMRIsWLSr0/EpjYmKCnTt34p133sH8+fNhYWGBiRMnYvHixaVuZ2lpifXr12Pu3LkICgqCXC7HnDlzEBISgl69euHQoUOYN28e3nnnHeTk5MDDw6PYBKlERESkX+xP6Y65uTkiIyMxa9YsLF68GPfu3UOdOnXwwQcfYM6cOTo9NhEBglh4PCUREVU7wcHB+P3338scKk9ERERERGRIOKcUERERERERERFVOZ6+R0TPRBRFKBSKUteRSqWVukJKTadUKqFUKktdRybjxzQREVFNxf5U5bE/RWTYOFKKiJ7JwYMHYWJiUuptw4YN+m5mtTZu3LgyawgAYWFhPHWPiIioBmJ/qvLK258iouqJc0oR0TPJzMxEbGxsqevUr18fDg4OVdQiwxMfH4/79++Xuk5AQEAVtYaIiIiqGvtTlcf+FJFhYyhFRERERERERERVjifXPgOlUonExETY2Njw/G4iIiIjI4oiMjMz4e7uDomEMyE8DftLRERExqu8/SWjDaVWrFiBxYsXIykpCc2bN8eyZcvQuXPncm2bmJgIT09PHbeQiIiIqrNbt27Bw8ND382otthfIiIiorL6S0YZSm3evBlTpkzBihUr8Nxzz2H16tXo06cPYmJiULdu3TK3t7GxAVBQXFtbW622TS6XIzw8HEFBQUY/KR9rocFaFGAdNFgLDdZCg7XQ0GUtMjIy4Onpqe4PUMnYX6oarIUGa1GAddBgLTRYCw3WQqM69JeMMpRaunQpxo8fjwkTJgAAli1bhj179mDlypVYuHBhmdurhqDb2trqpJNlaWkJW1tbvkFYCzXWogDroBF/LwMXH1pBuJYJqVSq7+bolUKhYC0eYy00FAoF7ip0+3nBU9JKx/5S1WAtNIy5FkqliLSsPCRn5CAxLRc386xgaWUNC3MzfTdNr4z5NfEk1kKDtdCoilqU1V8yulAqLy8PZ8+exYcfflhkeVBQEI4dO1biNrm5ucjNzVXfz8jIAFDwHyiXy7XaPtX+tL1fQ8RaaLAWBViHAmdvpmHcxnPIypNi0/XL+m5ONcFaaLAWKp2cJfifDj4vjP0ziIiqjiiKeJibj7sZObibkYu7GTlIzshByuOfVctTMnMgVxS+fpUU1zdH47uRbWAq49x3RFR9GV0odf/+fSgUCri4uBRZ7uLiguTk5BK3WbhwIebOnVtseXh4OCwtLXXSzoiICJ3s1xCxFhqsRQFjrsP1DGD1FSlylQJcLETUNuMFVImexs1S1MnnRVZWltb3SUTGJ0euwL3MXCQXCpc0QZPmflaeolz7EwTAwcoMzjamuJqcgYgrKXj753P4ZnhrBlNEVG0ZXSil8uQQMlEUnzqsbObMmZg6dar6vurcyKCgIJ0MR4+IiEDPnj05lJC1UGMtChh7Hc7cTMNHG88hV6lAey97vOx8Hy/2Ns5aFGbsr4vCWAsNXdZCNWKaiKgk+QolUh/lIfnB43ApMxd3C/2c8ni0U3pW+Udd2pjL4GprDhdbczjbmql/drE1e/yvOZxszGAilUAul+PLn/7C+msm2HP5Lt7adA7fjmAwRUTVk9GFUo6OjpBKpcVGRaWkpBQbPaViZmYGM7Pi52ObmJjorNOvy30bGtZCg7UoYIx1OB3/HyZsPIdHeQo819ABK4e3QuTePTW2FgqFotynSCkUCshkMigUilIvN2sMWAuNytTCxMSk1Dm5DP09t3DhQmzduhX//PMPLCws0KlTJ3zxxRdo0qSJeh1RFDF37lysWbMGaWlpaN++Pb777js0b95cjy0n0i9RFJGeJcfdzBwkP9CcQpdc6BS65Ac5uP8wF8pyDmQ2k0ngamcOF5uiYdOTP1uaVuzPtqa1RKwa0QqTNkUhPIbBVE1Vkf6SXC6HTCZDTk4OFIryjb6rqVgLjcrUoqz+UnkZXShlamqKNm3aICIiAoMGDVIvj4iIwMCBA/XYsppBFEUoRUApilCKIkQRUCjFx/cLHi+4r1lXIYpQKgvWVYoiFKIIURSRn6+AgmcmEeF0/H8Ys/4Ush4HUmtHt4VMUOq7WTohiiKSk5ORnp5eoW1cXV1x69Yto594mrXQqGwt7O3t4erqWiPrePDgQbz55pto27Yt8vPzMWvWLAQFBSEmJgZWVlYAgEWLFmHp0qUICwtD48aNMX/+fPTs2ROxsbG86iDVSI8ez9tUeL6mkn7OU5Tv969UIsDJ2gwuduZwsSkYzeRqZw7nQj+72JjD1kKms8+Zzo0c8f3oAEzceAbhMXfx5qZz+I7BVI3A/lLlsBYa1aG/ZHShFABMnToVo0aNQkBAADp27Ig1a9YgISEBkyZN0mu7Uh/m4quIWMTFS3DszxgIgqAOc5SFgh1V4KNUoviyIsFPKUGQUhMaaYKgkvYtQqFUbVdKWx7/LGo5RHI0l8Ks/l309atj9B8YZJwKB1LPNyzoXFqYSiGX18xQStXBcnZ2hqWlZbne90qlEg8fPoS1tbXRjw5iLTSetRaiKCIrKwspKSkAADc3N101UW/+/vvvIvdDQ0Ph7OyMs2fPokuXLhBFEcuWLcOsWbMwePBgAMCGDRvg4uKCTZs24fXXX9dHs4meSV6+EimZT87XVHzupoe5+eXeZ20rU82pczaP/30cMrnYmsPFzgwOVmaQSvTfdw1s7KQOpiIYTNUY7C9VDmuhUR36S0YZSg0bNgypqamYN28ekpKS4Ovri927d6NevXp6bdejXAV+PHkLgAS4e1uvbakKEqHgWyRBECARAIkgQCoIEARAIhGQI1fgfo4Sb/58Ae1P3MIn/ZrBt46dvptNVGVOxf2H4NDigVRNpVAo1B0sBweHcm+nVCqRl5cHc3NzdixYC7XK1MLCwgJAwan9zs7OWhmaXp09ePAAAFC7dm0AQFxcHJKTkxEUFKRex8zMDIGBgTh27NhTQylerVg/WIsCaVl52HQyASevS/D7hjO491COlMwc/Peo/HWxMpOqRzU525g9HtVkph7d5GJrBkdrM5iVI9BRKvKh1NNZQU++JjrVt1efyhcRcxeTfzyD5cNaGkUwVRPfHwqFAmlpaXByckKtWrXKvZ0oisjLy4OZmZnRf9nPWmhUphZmZmZQKpW4d+8eatWqVay/VN73nVGGUgAwefJkTJ48Wd/NKMLOwgRvdW2Aa9f+RZPGjWFqIisIaAqFNuqfJULR+4LweFnBz8LjwEf1uPA48JFI8DgEenxfgDoUKhYQSYRCxxcgLbRtScd8sp2CBI+PodmPVKI5ZlnSH2ZjRuheHLgrw8m4/9D/2yMY7O+Bab2awNXOvAr+R4j058lAau2YAJib1Ow/jFW/uHR1VVOiilC9DuVyeY0OpURRxNSpU/H888/D19cXANTzbpZ0peKbN28+dV+8WrF+GXMtbmQAG/6VIj1PACABUv4r8rhUEGFnisc3EXYmj/99vMz28c/m0nwAuQAeX8xAASANENOAZBTcDMmTr4nxjQR8/48Ee/+5h2Ffh2NsYyWMIJcCULPeHzKZDK6urlAqlc904Y3MzEwdtMowsRYaz1oLpVKJ7Oxs7Nu3D/n5RUeclvdqxUYbSlVHdpYmeLd7Q+zOvYq+3bwNfiLVyrIyk6FvXSVmDX8eX+27jj/O38GWc7ex62IiXu/ijdcDG1R40kciQ3DyRirGhp02qkCqMGP/xoqqB2N5Hb711luIjo7GkSNHij1WkSsVA7xasb4Ycy2UShFrDsfh25PXoVCKqFfbAs2tHqJjq2Zwr2WlHu1Uy9LEaN7TwNNfE30BtL12H2/8FIVLacDuBy74uoaPmKqJ74+cnBzcunULNjY2MDcv/xf1oigiMzMTNjY2RvV+KAlroVHZWuTk5MDCwgJdunQp9nosb2jKv+ip2nOzM8dXw1ohuJMX5u+Kwen4NCzf9y9+OZ2AD4KaYEhrD0iqwTn7RNpg7IEUEVWdt99+G9u3b8ehQ4fg4eGhXu7q6gqgYMRU4TkiSrtSMcCrFeubsdXi/sNcTP31Ag5dvQcAeKmVO+b088GhfeHo266eUdXiaUp6TbzQ1A3fj5Zh4sYz2PfPPbz7azRWjGxTo4MpoGa9PxQKRcHZKxJJhU5PVyoL5iNVbWvMWAuNytZCIpFAEIQS32Plfc8Z9/8AGZSWnvb49fWOWDmyNerWtsTdjFxM+z0a/b89guPXU/XdPKJKKxxIdW7EQIqIdEMURbz11lvYunUr9u/fj/r16xd5vH79+nB1dS1yukteXh4OHjyITp06VXVziYo5cSMVfZcfxqGr92BuIsEXQ1rgq2GtYG3G79vLo0tjJ6wdEwAzmQR7r6Rg8k9nkZuvpwmwiMjoMZQigyIIAvq0cEPE1C6Y1bcpbMxluJyYgeHfn8D/Np5B3P1H+m4i0TM5eSMVwaGaQOr70QykqHoICQmBi4sLBEHAtm3b9N0c0oI333wTP/74IzZt2gQbGxskJycjOTkZ2dnZAAp+106ZMgWfffYZ/vjjD1y6dAnBwcGwtLTEiBEj9Nx6MmYKpYjle//FiO9PICUzFw2drfHnm89jWNu6Rn8KTkV1blQ0mHrzp3MMpogqgf2lZ8dQigySmUyKiV0a4OC0bhjTsR6kEgHhMXfRc+lBzNsRg/SsPH03kajcTjwOpLLlDKQMkSAIpd6Cg4MBAJGRkejWrRtq164NS0tLNGrUCGPGjFFPCnngwAEIgoD09PQi91XDqe3s7ODv74/p06cjKSmp1DbFx8cXaYOdnR06dOiAHTt2VOi5XblyBXPnzsXq1auRlJSEPn36VLg+VP2sXLkSDx48QNeuXeHm5qa+bd68Wb3O9OnTMWXKFEyePBkBAQG4c+cOwsPDYWNjo8eWkzFLyczBqHUn8dXeq1CKwNA2Htj+1nNo4srX5LPq3MgJ68a01YyY+pHBFOkO+0v0NAylyKDVtjLF3IG+2DOlM17wcUa+UsT6o3EIXHwA64/EIS9fqe8mEpXqxI1UjGUgZdCSkpLUt2XLlsHW1rbIsuXLl+Py5cvo06cP2rZti0OHDuHixYv45ptvYGJioj6X/2liY2ORmJiI06dPY8aMGdi7dy98fX1x8eLFMtu2d+9eJCUl4eTJk2jXrh2GDBmCS5culfu5Xb9+HQAwcOBAuLq6ljhfUHnUpEtx1wSiKJZ4U/1BABT88RASEoKkpCTk5OTg4MGD6qvzEVW1I//eR9/lh3HseiosTaVY+kpLLB7akhe80YLnGzmqg6l9/zCYIt1hf6lsxtpfYihFNUJDZxusD26LH8a3g4+rDR5kyzFvZwx6LTuE8MvJEEVR300kKub4dU0g1aWxEwOpEoiiiKy8/DJv2XmKcq1XkVt5PzdcXV3VNzs7OwiCUGxZREQE3NzcsGjRIvj6+sLb2xu9e/fG2rVrYWpqWur+nZ2d4erqisaNG+PVV1/F0aNH4eTkhDfeeKPMtjk4OMDV1RU+Pj5YsGAB5HI5IiMj1Y/fuXMHw4YNQ61ateDg4ICBAwciPj4eQMEw9P79+wPQTGKpEhoaiqZNm8Lc3Bw+Pj5YsWKF+jHVt46//vorunbtCnNzc/z444/l3m7r1q3o1q0bLC0t0bJlSxw/frzIczp69CgCAwNhaWmJWrVqoVevXkhLSwNQ8HpZtGgRGjRoACsrKzz//PP4/fff1dumpaVh5MiRcHJygoWFBRo1aoTQ0NAy60hE+pGvUGLJnliMWn8S9x/mwcfVBtvfeh6DW3uUvTGV25PB1BsMpgwO+0vsLxlyf4lfL1CN0rmRE3a944jfztzCkvCriLv/CP/74Sw6NnDArBebwreOnb6bSASgIJAaF6YJpNaMasNAqgTZcgWazd6jl2PHzOultW/hXV1dkZSUhEOHDqFLly6V2peFhQUmTZqE9957DykpKXB2di5zG7lcju+//x6A5kooWVlZ6NatGzp37oxDhw5BJpNh/vz56N27N6Kjo/HBBx/Ay8sLY8eOLTL8/fvvv8ecOXPw7bffwt/fH+fPn8fEiRNhZWWFMWPGqNebMWMGvvzyS4SGhsLMzKzc282aNQtLlixBo0aNMGvWLAwfPhzXrl2DTCZDVFQUunfvjnHjxuHrr7+GTCZDZGQkFIqCP54+/vhjbN26FStXroS3tzfCw8MxevRouLi4IDAwEJ988gliYmLw119/wdHREdeuXVPPo0RE1Uvygxy88/N5nIr/DwAwon1dzO7XjL8rdeT5Ro5YH9wW48JOY//jYGrla61hJmO9DQH7S8Wxv2Q4/SWGUlTjSCUCXm1XF/1aumPlgWv4/nAcjt9IRf9vj+Dl1h74oFcTuNia67uZZMQYSBmfoUOHYs+ePQgMDISrqys6dOiA7t27Y/To0bC1ta3w/nx8fAAUfFtWWierU6dOkEgkyM7OhlKphJeXF1555RUAwC+//AKJRIK1a9eqv9ULDQ2Fvb09Dhw4gKCgINjb2wMo6CSqfPrpp/jyyy8xePBgAAVXaouJicHq1auLdJamTJmiXqci233wwQd48cUXAQBz585F8+bNce3aNfj4+GDRokUICAgo8o1h8+bNAQCPHj3C0qVLsX//fnTs2BFKpRIjRozA2bNnsXr1agQGBiIhIQH+/v4ICAgAAHh5eVWg6kRUVSJjU/D+rxfw36M8WJvJ8NngFhjQ0l3fzarxnmtYEEyN38BgivSD/SXj7C8xlKIay9pMhmm9fDC8XV0s3hOLP6MS8dvZ29gZnYRJgd6Y2KU+5yKgKnf8eirGhp1CjlzJQKocLEykiJnXq9R1lEolMjMyYWNrA4lEe2elW2jx/0UqlSI0NBTz58/H/v37ceLECSxYsABffPEFTp06BTc3twrtTzVUvqyrTW3evBk+Pj64evUqpkyZglWrVqF27doAgLNnz+LatWvFJq7OyclRz43wpHv37uHWrVsYP348Jk6cqF6en58PO7uiI1FVHZmKbufn56f+WVWXlJQU+Pj4ICoqCkOHDi2xbTExMcjJyUHPnj2LLM/Ly4O/vz8A4I033sCQIUNw7tw5BAUF4aWXXkKnTp1K3B8RVT25Qokl4bFYffAGAKC5uy2+HdEa9R2t9Nwy4/Fcw4JT+VTB1KQfzmLVqDYMpqo59pdKxv5ScdWxv8S/yKnG86hlieWv+iO4kxfm77qCszfT8NXeq/j5VAKm9WqCQf51IJHwMsKke8eu38e4sNPIkSsR2NgJqxlIlUkQhDLDY6VSiXxTKSxNZVrtZOlCnTp1MGrUKIwaNQrz589H48aNsWrVKsydO7dC+7ly5QqAsr+58vT0RKNGjdCoUSNYW1tjyJAhiImJgbOzM5RKJdq0aYOffvqp2HZOTk4l7k81yej333+P9u3bF3lMKi36Wraysnqm7VTD5QFNJ1K1vYWFxVOfq2qdXbt2oU6dOlAqlXj48CGsra3V2/Xp0wc3b97Erl27sHfvXnTv3h1vvvkmlixZ8tT9ElHVuJOejbc3ncO5hHQAwJiO9TCzb1P+ntSD5xo6Yv2Ythi34TQiY+9h0g9nsfI19lmqM/aXSsb+0tPbVp36S9X71UikRf51a+H3SR3x7Qh/eNSyQHJGDt7/7QIGfncUJ2+k6rt5VMMxkKIn1apVC25ubnj06FGFtsvOzsaaNWvQpUuXp3aGShIYGAhfX18sWLAAANC6dWv8+++/cHZ2RsOGDYvcnvw2TsXFxQV16tTBjRs3im1Tv379px77Wbd7kp+fH/bt21fiY82aNYOZmRkSEhLU+27QoAEaNmwIT09P9XpOTk4IDg7Gjz/+iGXLlmHNmjXlPj4R6UZEzF30XX4Y5xLSYWMuw8qRrTF3oC9/T+pRp8fBlLmJBJGx9/DGj2eRI+fk51T12F+q+f0ljpQioyIIAvr5uaNHUxeEHYvHd/uv4eKdBxi25gR6N3fFh3184MUh4qRlx67dx7gNBYFU1yZOWMVvG43O6tWrERUVhUGDBsHb2xs5OTnYuHEjLl++jG+++abUbVNSUpCTk4PMzEycPXsWixYtwv3797F169YKt+P999/H0KFDMX36dIwcORKLFy/GwIEDMW/ePHh4eCAhIQFbt27FtGnT4OFR8tWtQkJC8M4778DW1hZ9+vRBbm4uzpw5g7S0NEydOvWpx37W7QqbOXMmWrRogcmTJ2PSpEkwNTVFZGQkhg4dCkdHR3zwwQd47733oFQq0alTJyQlJSE6Oho2NjYYM2YMZs+ejTZt2qB58+bIzc3Fzp070bRp0wrXkYi0Iy9fic//+gfrj8YBAFp62OHbEa3hWdtSzy0jQBNMqUdM/XiWfRjSKfaXjLO/pNVQqvAEXeW1atWqcs2ET6RN5iZSTAr0xsttPLBs71VsOpmAvy8nY98/dzGmoxfefqER7CxNyt4RURkYSBEAtGvXDkeOHMGkSZOQmJgIa2trNG/eHNu2bUNgYGCp2zZp0gSCIMDa2hoNGjRAUFAQpk6dWmQyzfLq168fvLy8sGDBAqxYsQKHDh3CjBkzMHjwYGRmZqJOnTro3r17qZOJTpgwAZaWlli8eDGmT58OKysrtGjRAlOmTCn12M+6XWGNGzdGeHg4PvroI7Rr1w4WFhZo3749hg8fDqBgclBnZ2csXLgQN27cgJ2dHVq3bo1Zs2YBAExNTTFz5kzEx8fDwsICnTt3xi+//FLu4+sL+1dUE936LwtvbTqHC7cfAAAmPF8f03v7wFTGEzmqk8LB1AEGU6Rj7C8ZZ39JEFWzf2mBRCLBK6+8Uuo5jIVt2rQJV65cQYMGDbTVhCqRkZEBOzs7PHjw4JmuAlAauVyO3bt3o2/fvkXOEzVGVVmLq3cz8dnuKzgQew8AYG9pgindG2Fkh3owkeq/c8TXRQFDq8PRa/cx/nEg1a2Jk1bnYzC0WpRHTk4O4uLiUL9+fZibl/8KmUqlEhkZGbC1ta32cyToGmuhUdlalPZ61GU/oCSG2r9if6lqGGIt/rqYhOlbopGZkw87CxN8ObQlejRzqfR+DbEWuqCLOhjqNAQ18TXB/lLlsRYa1aG/pPXT977++utyfzP3+++/a/vwRM+ksYsNwsa2w8Gr97BgVwyu3n2IkB0x2HjiJmb1bYoXfJzLvGoDUWG6DKSIyPiwf0U1QY5cgc92X8HG4zcBAK3r2uObEa1Rx758gSvpTydvR6wPbotxYadx8Oo9vP7DWYMJpoioetNqLBgZGam+dGJ5/PXXX6hTp442m0BUKYGNnbD7nc5YMMgXDlamuHHvEcZvOIPX1p1ETGKGvptHBuLoNc23id2aOGEVO21EVAnsX1FNEHf/EYasPKYOpCYFemPz6x0ZSBmQTt6OCA1uB3MTiTqY4uTnRFRZWg2lAgMDIZOVf/DV888/DzMzM202gajSZFIJRravhwPTuuKNrt4wlUlw9FoqXvzmMGb8Ho2UjBx9N5GqMVUglZuvCaTMZAykiOjZsX9Fhu7PqDvo9/VhXE7MQG0rU4SNbYsP+/hUiykSqGI6ejsgNLgdLEykOHj1Hv7HYIqIKknnV99LSUlBSkoKlEplkeV+fn66PjRRpdiYm2BGbx+MaFcXi/bEYseFRGw+cws7ohPxRqA3JnRuAAtThg2kceTfglP2cvOVeMHHGStfa81Aioh0gv0rMgQ5cgXm7riMn0/dAgC0q18bX7/qD1e78s+DQ9VPR28H9al8hx4HU2s4KpyInpHOQqmzZ89izJgxuHLlClRzqQuCAFEUIQgCFAom6mQYPGtb4pvh/gju5IVPd8Yg6lY6voy4ik2nEjC9dxMMbFkHEgnnmzJ2DKS058k/son0obq+Dtm/IkNxLeUh3tp0Dv8kZ0IQgLe7NcQ73RtBxtFRNUJHbweEjm2LsaEMpvSluv6eIuOijdehzkKpsWPHonHjxli3bh1cXFw4STQZvDb1auGPyZ2wIzoJX/z1D+6kZ+O9zRcQdjQeH/drhrZe5Z/vg2qWw//ew4QNZ5Cbr0R3H2esYCD1TExNTSGRSJCYmAgnJyeYmpqW63eHUqlEXl4ecnJyeAUV1kLtWWshiiLy8vJw7949SCQSmJqa6rCVFcf+FRmCLWdv4+Ntl5AtV8DR2gzLhrXC840c9d0s0rIODYoGUxM3nsH3owMYTOkY+0uVx1poVIf+ks5Cqbi4OGzduhUNGzbU1SGIqpwgCBjQ0h1BzVyw/mgcVkRex4XbDzB01XH0beGKD3s3RV0HS303k6oQAyntkUgkqF+/PpKSkpCYmFju7URRRHZ2NiwsLIz+D3TWQqOytbC0tETdunWrXWeV/SuqzrLy8jH7z8v4/extAEAnbwcse7UVnG14ul5NVTiYOvzvfQZTVYD9pcpjLTSqQ39JZ6FU9+7dceHCBXaaqEYyN5FicteGGNrGE0sjrmLz6QTsvpiMvTEpCH7OC292awg7CxN9N5N0TPWtYG6+Ej2aOuO7kQykKsvU1BR169ZFfn5+uU9DksvlOHToELp06QITE+N+37EWGpWphVQqhUwmq5YdVfavqLqKTc7Em5vO4VrKQ0gEYEqPxnizW0NIOcVBjdehgQPCxrZFMIOpKsP+UuWwFhrVob+ks1Bq7dq1GDNmDC5dugRfX99iT3DAgAG6OjRRlXGyMcPCwS0wplM9LNh1BYf/vY81h27gtzO38F7PxhjRri7nTqihGEjpjiAIMDExKfcvRqlUivz8fJibmxt9x4K10KiptWD/iqobURTx65lbmP3nZeTmK+Fia4blr/qjQwMHfTeNqlD7x8HU2DAGU1WF/aVnx1poVIda6CyUOnbsGI4cOYK//vqr2GOciJNqGh9XW2wc1w4Hrt7Dgl1XcC3lIWb/eRkbj9/ErL5N0bWJU7X8xp2eDQMpItIX9q+oOnmYm4+P/7iIbVEFpxAFNnbC0ldawsHaTM8tI31o38ABocEMpoioYnQ2hOOdd97BqFGjkJSUBKVSWeTGDhPVRIIgoFsTZ/z9bmd8+pIvaluZ4lrKQ4wNO43R60/hn+QMfTeRtODQ1XuYUCiQWjGyDQMpIqoy7F9RdXE58QEGfHME26ISIZUImNHbB6HBbRlIGbmCEVPtYGkqVQdTOXJ+NhHR0+kslEpNTcV7770HFxcXXR2CqFqSSSUY1aEeDkzritcDG8BUKsHhf++j7/LDmLk1GimZOfpuIj0jVSCVl69Ej6YuWDGyDUxlPD2TiKoO+1ekb6Io4ocTNzFoxTHcuP8I7nbm+PX1DnijqzcknD+KALSrX7tIMDVhA4MpIno6nf01NXjwYERGRupq90TVnq25CWb2aYq9UwPxYgs3KEXg51O30G3xAXwXeY2/nA3MwWKBVGsGUkRU5di/In3KyJHjrU3n8cm2S49/Hzpj1zud0aZebX03jaqZwsHUkWsFwVR2Hvu+RFSczuaUaty4MWbOnIkjR46gRYsWxSbNeuedd3R1aKJqpa6DJb4b2Rpj4//DpztjcOH2AyzeE4tNJxMwvXcTDGjpzvmmqrmDj+eQystXomczF3w3goEUEekH+1ekL9G30/HWpvNI+C8LMomAD/v4YPzz9dmHoadqV782NoxrhzHrT+HINc0cUxamnPaAiDR0evU9a2trHDx4EAcPHizymCAI7DSR0Qnwqo0/Jj+HHdGJ+OKvf3AnPRvv/hKF0KPx+KRfU37LWE0diE3B/344y0CKiKoF9q+oqomiiNCj8Vj41xXIFSI8alng2xGt0crTXt9NIwPQ1qtoMDVh42msHd2WwRQRqekslIqLi9PVrokMlkQiYGCrOujV3BVrD9/AigPXEXUrHUNWHseLfm74sLcPPGtb6ruZ9BgDKSKqbti/oqr0IEuOab9fQHjMXQBA7+au+OJlP9hZGPcl1KliVMFU8PpTOHotlcEUERXBv66I9MDcRIq3XmiEA9O64tW2nhAEYFd0Erp/eRAL/7qCjBy5vpto9AoHUkEMpIiIyMicS0hD368PIzzmLkylEswd0BwrX2vNQIqeSVuv2ggb1w5WplIcvZaK8RtOc44pIgKgg5FS8+bNK9d6s2fP1vahiQyOs405Ph/ih9EdvbBgdwyOXkvF6oM38NuZ23ivZ2MMb+sJmZRBSFV7MpD6loEUEekZ+1dUVZRKEWuP3MCiv2ORrxRRz8ES341oDd86dvpuGhm4wqfyHbteEEytG8MRU0TGTuuh1B9//PHUxwRBQGxsLHJycthpIiqkmbstfhzfHpGxKZi/6wpu3HuET7ZdwsZj8Zj1YlM816CWvptoNCJjU/D6xrPIUyjRq7kLvhnOQIqI9I/9K6oK/z3Kwwe/XcD+f1IAAP383LBwcAvYmHN0FGlHAIMpInqC1kOp8+fPl7g8KioKH374IS5duoSJEydq+7BEBk8QBLzg44LOjZyw6WQClu29in9THiI49DQ6N3SAr4mAXkoR7BbqDgMpIqqu2L8iXTsV9x/e+fk8kjNyYCqTIKR/cwxv58mr65HWPRlMjQs7jfXBDKaIjJXO/9qKi4vDa6+9hrZt28LOzg6XL1/GqlWrtH6c+Ph4jB8/HvXr14eFhQW8vb0xZ84c5OXlFVlPEIRiN120h+hZmUglGNPJCwc+6IaJnevDRCrg8LVUrLwiRefFB/HpzhhcvP0Aoijqu6k1SuQ/RQMpnrJHRNVZVfWvqOZTKkV8F3kNw78/geSMHDRwssKfbz6HEe3rMpAinQnwqo2N4wvmmDp+oyCYysrL13eziEgPdPYX1/379/H222/Dx8cHSUlJOHbsGDZv3oxGjRrp5Hj//PMPlEolVq9ejcuXL+Orr77CqlWr8NFHHxVbNzQ0FElJSerbmDFjdNImosqwszTBrBebYe/UQAxv6wFLmYh7D/Ow7kgc+n97BD2WHsQ3+/5FQmqWvptq8CL/ScHrPxQNpEw4lxcRVUNV3b+imu3+w1yMCT2FxXtioVCKGOxfBzveeh5N3Wz13TQyAm3qFQRT1mYyHL+RivFhZxhMERkhrZ++9+jRIyxZsgRLly5Fw4YNsWPHDgQFBWn7MMX07t0bvXv3Vt9v0KABYmNjsXLlSixZsqTIuvb29nB1dS33vnNzc5Gbm6u+n5GRAQCQy+WQy7V7lTTV/rS9X0PEWhRwtzXFJ30aIUASDzMvf+y+nIJ9/9zD9XuP8GXEVXwZcRWt69pjgJ8r+vi6oraVqb6brDO6eE1Ext7Dmz9HQa4QEdTMGV8NbQEoFZArq/cVYfj+0GAtNFgLDV3WQh/11Vf/imquY9fv491fonAvMxfmJhLMG+iLoW08ODqKqlSberWxYVxbjFl/Wj1ian1wW1iaav3PVCKqprT+bvf29kZmZibefvttDB8+HIIgIDo6uth6fn5+2j50MQ8ePEDt2rWLLX/rrbcwYcIE1K9fH+PHj8f//vc/SCRPHxWxcOFCzJ07t9jy8PBwWFpaarXNKhERETrZryFiLQrIJIAi4Tx62QCB/sCF/wScuS/g3wcCziWk41xCOubtuoKm9iICHEX41hJRU0/N19Zr4nKagHWxEihEAX61lehtk4iIPYla2XdV4ftDg7XQYC00dFGLrKyqH6FanfpXZNgUShHf7P8XX+/7F0oRaOxije9GtEYjFxt9N42MVEEwVTDH1Ikb/zGYIjIyWn+np6QUXK1j0aJFWLx4cZF5bwRBgCiKEAQBCoVuRyFcv34d33zzDb788ssiyz/99FN0794dFhYW2LdvH95//33cv38fH3/88VP3NXPmTEydOlV9PyMjA56enggKCoKtrXaHN8vlckRERKBnz54wMTHuKa1ZC42SajH48WN3M3Kw62Iy/ryQhJikTFxOE3A5DbAylSKouQsG+LmhY4PakEoM/5tPbb4m9sfeQ+jPUVCIIno1c8ZXr/gZ1Cl7fH9osBYarIWGLmuhGjFdlapL/4oMW0pGDt79JQrHb6QCAF4J8MDcAb6cYJr0rk29WgymiIyU1t/lcXFxWt1fSEhIiaOUCjt9+jQCAgLU9xMTE9G7d28MHToUEyZMKLJu4fCpVatWAIB58+aVGkqZmZnBzMys2HITExOddfp1uW9Dw1polFQLDwcTvN7VBq93bYR/72ZiW9Qd/BmViNtp2fjjfCL+OJ8IJxszDGjpjpda1YFvHVuDH5pf2dfEvit38fbPFyBXiOjj64qvh/sbVCBVGN8fGqyFBmuhoYta6KO22u5fkfE5/O89vLc5Cvcf5sHSVIoFg3wxyN9D380iUnsymBobehqhYxlMEdV0Wn2HR0dHw9fXt9RT4Qq7fPkymjRpApns6c1466238Oqrr5a6Hy8vL/XPiYmJ6NatGzp27Ig1a9aU2YYOHTogIyMDd+/ehYuLS7naTVRdNXKxwbRePvggqAnO3kzDH+fvYNfFJNzLzMW6I3FYdyQO3k5WeKlVHQxsVQd1HXRz+ml1tu/KXUz68SzkChF9W7hi+auGG0gRkXHQRf+KjEe+Qolle//FdweuQRQBH1cbfDeyNbydrPXdNKJi2tSrhY3j22H0ulM4GcdgisgYaPXd7e/vj+TkZDg5OZVr/Y4dOyIqKgoNGjR46jqOjo5wdHQs1/7u3LmDbt26oU2bNggNDS1X5+38+fMwNzeHvb19uY5BZAgEQUCAV20EeNXGnP7NcfDqPWyLuoO9MXeLTJDepl4tvNTKHS/6udfoCdJVGEgRkSHSRf+KjEPSg2y8+3MUTsX/BwAY2b4uPunXDOYmPF2Pqq/WdQuCqTGPg6ng0NMIYzBFVGNp9Z0tiiI++eSTck/+nZeXp7VjJyYmomvXrqhbty6WLFmCe/fuqR9TXWlvx44dSE5ORseOHWFhYYHIyEjMmjUL//vf/0o8PY+oJjCVSdCzmQt6NnNBZo4cf19Kxp9RiTh6/T7O3kzD2ZtpmLsjBoGNnTDQvw56NnWpkXNL7I25izd+KgikXmzhhmWvtmIgRUQGQZ/9KzJckf+kYOqvUUjLksPaTIbPh7RAPz93fTeLqFxa162FDY+DqVOPg6nQ4LawMmMwRVTTaPVd3aVLF8TGxpZ7fVU4pA3h4eG4du0arl27Bg+PoufHqyYDNTExwYoVKzB16lQolUo0aNAA8+bNw5tvvqmVNhBVdzbmJhga4ImhAZ64m5GDHRcSsS3qDi7dycC+f1Kw758UWJlK0cvXFYP866CTt2ONmCCdgRQRGTJ99q/I8MgVSizZE4vVh24AAFrUscO3I/xRz8FKzy0jqpgng6mxYQymiGoirb6jDxw4oM3dVUhwcDCCg4NLXad3797o3bt31TSIqJpzsTXHhM4NMKFzA1xLycS28wUB1e20bGw9dwdbz92pEROkR8TcxWQGUkRkwPTZvyLDcjstC2//fB7nE9IBAMGdvDCzrw/MZDVvBDQZB9WpfKNVwdTjOaYYTBHVHPzLjIjQ0NkGH/RqgsPTu+H3SR3xWoe6sLc0UU+Q3v/bI+ix9CC+2fcvElKz9N3ccnsykFrOQIqIiGqovVdS0Hf5YZxPSIetuQyrXmuDkAHNGUiRwfN/HEzZmMlwKr4gmHqUm6/vZhGRljBiJiK1whOkz+7XHIeu3sMfBjpBevjlZLy56VxBIOXnhuXDWkHGQIqIyOBl5ykQsv0ybt+S4PTOK5BJpZBJBEglAiQSAVJB869MKkAiCJBK8PjfQrdC66m2lUmEQus9sY1Q9BiF96VeTxAgkQAyiQQSCZ6+78fH1oa8fCW2xklw8HgUAKClpz2+He4Pz9rGd4Vdqrn8C4+YiueIKaKahO9iIiqRqUyCHs1c0OPxBOl7Lt/FtvN3cMwAJkhnIEVEVHPlyBXYfOYOAAmO3r2l7+ZUSrHAS0DJwVmhnwuHWxKJgNSHubidVvA7bmLn+pjWywemMv7Oo5rHv24t/DChPUatPYlT8f8hOPQUwsa2YzBFZOD4DiaiMtmYm+DlNh54uY1HtZ8gvXAg1c/PDcsYSBER1SjmJlK8+4I3Yq/+iwbeDQFBgEIUoVCIUIgilMqCfxVKFPr58U31uFKEUhSRX+hnhVKEUomi6xd6TLVtvvKJY6i3fby/Qm14fK2dp1Ido7IsZSK+erU1evny6npUs7XytC8IptadxOn4NAZTRDUA371EVCHlnSC9v587BvlX7QTp4ZeTMfmnc8hXMpAiIqqpLEyleKubN3Znx6Jvj4YwMTHRd5OeSnwcWOU/JfhSBWPKJ0MzUUS+otA2jwOwkrbJz89H6tUzeKGJk76fLlGVaOVpjx/GFw2mQse2gzWDKSKDxHcuET0z1QTp7wc1xtmbadgWdQc7o5NwLzMX64/GYf3RODRwssKgVnUwsFUd1HXQ3fwWey4n483HgVT/lu746pWWDKSIiEivhMfzWulyrnG5XI7dcbrbP1F11MrTHj+Ob4/XHgdTYxlMERks/sVGRJWmmiB9/kstcOqjHlg7OgD9/NxgJpPgxuMJ0rssjsTgFUfxw/F4/PcoT6vHZyBFREREZFxaPg6mbMxlBSOm1p/CQ16Vj8jg8K82ItIq1QTp345ojTMf98CSoS3xfENHSATgXEI6PvnzMtot2IvxYaex/UIisvMUlTpe4UBqAAMpIiIiIqNROJg6c5PBFJEh4vhGItKZwhOkp2TkYLuWJ0j/+1Iy3tqkCaSWMpAiIiIiMiotPe3x04T2GLn2pDqYChvHU/mIDAX/eiOiKuH8eIL0nW93xt6pXfBWt4bwqGWBR3kKbD13B6PWnUKHhfswb0cMLt5+ALGMSxYVDqQGtmIgRURERGSs/DwKginbxyOmxnDEFJHB4F9wRFTlVBOkH57eDb9P6ojXOtSFvaWJeoL0/t8eQfelB/HNvn+RkJpVbPs9l+8WCaS+HMpAiohIF1asWIH69evD3Nwcbdq0weHDh/XdJCKiEvl52OPHx8HU2cfBVGYOgymi6o5/xRGR3jzLBOkXUgVM+TWagRQRkY5t3rwZU6ZMwaxZs3D+/Hl07twZffr0QUJCgr6bRkRUooIRUx3UwdSEH86BuRRR9cYTbYmoWlBNkN6jmQsyc+TYc/kutp2/g2PX7+NcQjrOJaRj7g4BSqUESjCQIiLStaVLl2L8+PGYMGECAGDZsmXYs2cPVq5ciYULFxZbPzc3F7m5uer7GRkZAAC5XA65XK7Vtqn2p+39GiLWQoO1KGDsdfBxscSG4ACMCTuDcwnpuJ0ixd8PzkIQjLvPKIpK3LsnwbZU1oK10BBFJWxyBPTUwedFeT+DGEoRUbVT2gTpgID+fq5Y+kqrCk2KTkRE5ZeXl4ezZ8/iww8/LLI8KCgIx44dK3GbhQsXYu7cucWWh4eHw9LSUiftjIiI0Ml+DRFrocFaFDD2OvyvEfBdjBQpOQJSrqbquznVhARIYy0KsBYq/g6CTj4vsrKKT8NSEoZSRFStqSZIn9C5Aa7cScPW8MN4f0gLBlJERDp0//59KBQKuLi4FFnu4uKC5OTkEreZOXMmpk6dqr6fkZEBT09PBAUFwdbWVqvtk8vliIiIQM+ePWFiYqLVfRsa1kKDtSjAOmj0Tc3E9zuOoGnTZpBKpfpujl4pFArExMSgWTPWgrXQUCgUSL4Ro5PPC9WI6bIwlCIig9HQ2Rq+tUUGUkREVUQQin7eiqJYbJmKmZkZzMzMii03MTHR2R/Guty3oWEtNFiLAqwD4Olggw7OIvq2r2f0tZDL5didepm1AGtRmKoWuvi8KO/+GEo9A9Wl6sub/FWEXC5HVlYWMjIy+AZhLdRYiwKsgwZrocFaaLAWGrqsher3v6o/UBM5OjpCKpUWGxWVkpJSbPTU07C/VDVYCw3WogDroMFaaLAWGqyFRnXoLzGUegaZmZkAAE9PTz23hIiIiPQlMzMTdnZ2+m6GTpiamqJNmzaIiIjAoEGD1MsjIiIwcODAcu2D/SUiIiIqq7/EUOoZuLu749atW7CxsXnqEPZnpZp/4datW1qff8HQsBYarEUB1kGDtdBgLTRYCw1d1kIURWRmZsLd3V2r+61upk6dilGjRiEgIAAdO3bEmjVrkJCQgEmTJpVre/aXqgZrocFaFGAdNFgLDdZCg7XQqA79JYZSz0AikcDDw0Onx7C1tTX6N4gKa6HBWhRgHTRYCw3WQoO10NBVLWrqCKnChg0bhtTUVMybNw9JSUnw9fXF7t27Ua9evXJtz/5S1WItNFiLAqyDBmuhwVposBYa+uwvMZQiIiIiohJNnjwZkydP1ncziIiIqIaS6LsBRERERERERERkfBhKVTNmZmaYM2dOiZdUNjashQZrUYB10GAtNFgLDdZCg7Wo2fj/q8FaaLAWBVgHDdZCg7XQYC00qkMtBLEmX8+YiIiIiIiIiIiqJY6UIiIiIiIiIiKiKsdQioiIiIiIiIiIqhxDKSIiIiIiIiIiqnIMpYiIiIiIiIiIqMoxlCIiIiIiIiIioirHUIqIiIiIiIiIiKocQykiIiIiIiIiIqpyDKWIiIiIiIiIiKjKMZQiIiIiIiIiIqIqx1CKiIiIiIiIiIiqHEMpIiIiIiIiIiKqcgyliIiIiIiIiIioyjGUIiIiIiIiIiKiKsdQioiIiIiIiIiIqhxDKSKqdkJCQiAIAu7fv1/lxz5w4AAEQcCBAwfKXDc4OBheXl46bxMRERFRdebl5YXg4GD1fVV/6vfff9dfo4jIIDCUIiIiIiIiIiKiKsdQioi0JisrS99NMGjZ2dn6bgIREREZAfbZiKi6YChFRM9EdYrduXPn8PLLL6NWrVrw9vYuczulUon58+ejSZMmsLCwgL29Pfz8/LB8+fJi6969exfDhw+HnZ0dXFxcMG7cODx48KDIOjk5OZg5cybq168PU1NT1KlTB2+++SbS09OLrCcIAkJCQood48nh5k8TFhaGJk2awMzMDE2bNsXGjRtLXC8vLw/z58+Hj48PzMzM4OTkhLFjx+LevXvFjtuvXz9s3boV/v7+MDc3x9y5c8tsxw8//ABBEHD8+PFij82bNw8mJiZITEwEAERERGDgwIHw8PCAubk5GjZsiNdff73IaZGXL1+GIAj47bff1MvOnj0LQRDQvHnzIvsfMGAA2rRpU2YbiYiIqPp41j4bAGRkZOCDDz4o0s+aMmUKHj16VK7tc3JyMHXqVLi6usLCwgKBgYE4f/58sfW2b9+Ojh07wtLSEjY2NujZs2eRvg77K0Q1F0MpIqqUwYMHo2HDhvjtt9+watWqMtdftGgRQkJCMHz4cOzatQubN2/G+PHji4VIADBkyBA0btwYW7ZswYcffohNmzbhvffeUz8uiiJeeuklLFmyBKNGjcKuXbswdepUbNiwAS+88AJyc3O18hzDwsIwduxYNG3aFFu2bMHHH3+MTz/9FPv37y+ynlKpxMCBA/H5559jxIgR2LVrFz7//HNERESga9euxUZCnTt3DtOmTcM777yDv//+G0OGDCmzLcOGDYOrqyu+++67Isvz8/OxevVqDBo0CO7u7gCA69evo2PHjli5ciXCw8Mxe/ZsnDx5Es8//zzkcjkAoHnz5nBzc8PevXvV+9q7dy8sLCwQExOjDrjy8/Nx8OBB9OjRo+IFJCIiIr2raJ8tKysLgYGB2LBhA9555x389ddfmDFjBsLCwjBgwACIoljmPj766CPcuHEDa9euxdq1a5GYmIiuXbvixo0b6nU2bdqEgQMHwtbWFj///DPWrVuHtLQ0dO3aFUeOHAHA/gpRjSYSET2DOXPmiADE2bNnV2i7fv36ia1atSrXvhctWlRk+eTJk0Vzc3NRqVSKoiiKf//9d4nrbd68WQQgrlmzRr0MgDhnzpxix6pXr544ZswY9f3IyEgRgBgZGSmKoigqFArR3d1dbN26tfq4oiiK8fHxoomJiVivXj31sp9//lkEIG7ZsqXIMU6fPi0CEFesWFHkuFKpVIyNjS21FiWZM2eOaGpqKt69e7fYcz548GCJ2yiVSlEul4s3b94UAYh//vmn+rHXXntNbNCggfp+jx49xIkTJ4q1atUSN2zYIIqiKB49elQEIIaHh1e4vURERKQ/z9pnW7hwoSiRSMTTp08XWf7777+LAMTdu3erlz2tP/W0/tOECRNEUdT0s1q0aCEqFAr1epmZmaKzs7PYqVMn9TL2V4hqJo6UIqJKKc/onsLatWuHCxcuYPLkydizZw8yMjKeuu6AAQOK3Pfz80NOTg5SUlIAQD1S6cnT74YOHQorKyvs27evQm0rSWxsLBITEzFixAgIgqBeXq9ePXTq1KnIujt37oS9vT369++P/Px89a1Vq1ZwdXUtdkU/Pz8/NG7cuMJteuONNwAA33//vXrZt99+ixYtWqBLly7qZSkpKZg0aRI8PT0hk8lgYmKCevXqAQCuXLmiXq979+64ceMG4uLikJOTgyNHjqB3797o1q0bIiIiABR8G2lmZobnn3++wu0lIiIi/aton23nzp3w9fVFq1ativRrevXqVe4rFT+t/xQZGQlA088aNWoUJBLNn6bW1tYYMmQITpw4oZ7/iv0VopqJoRQRVYqbm1uF1p85cyaWLFmCEydOoE+fPnBwcED37t1x5syZYus6ODgUuW9mZgZAMyF4amoqZDIZnJyciqwnCAJcXV2RmppaobaVRLUPV1fXYo89uezu3btIT0+HqakpTExMitySk5OLzOUEVLx2Ki4uLhg2bBhWr14NhUKB6OhoHD58GG+99ZZ6HaVSiaCgIGzduhXTp0/Hvn37cOrUKZw4cQJA0UnVVUPc9+7diyNHjkAul+OFF15Ajx491MHe3r178dxzz8HCwuKZ2kxERET6VdF+x927dxEdHV2sT2NjYwNRFIv1a0rytP6Tqn+l+rektrm7u0OpVCItLQ0A+ytENZVM3w0gIsNW+Nuv8pDJZJg6dSqmTp2K9PR07N27Fx999BF69eqFW7duwdLSstz7cnBwQH5+Pu7du1ckmBJFEcnJyWjbtq16mZmZWYlzTJUVXKmCseTk5GKPPbnM0dERDg4O+Pvvv0vcl42NTZH7Fa1dYe+++y5++OEH/Pnnn/j7779hb2+PkSNHqh+/dOkSLly4gLCwMIwZM0a9/Nq1a8X25eHhgcaNG2Pv3r3w8vJCQEAA7O3t0b17d0yePBknT57EiRMnyjUROxEREVVPFe13ODo6wsLCAuvXr3/q42V5Wv9J1b9S/ZuUlFRsvcTEREgkEtSqVQsA+ytENRVHShGR3tjb2+Pll1/Gm2++if/++w/x8fEV2r579+4AgB9//LHI8i1btuDRo0fqx4GCq91FR0cXWW///v14+PBhqcdo0qQJ3Nzc8PPPPxeZ0PPmzZs4duxYkXX79euH1NRUKBQKBAQEFLs1adKkQs+vNG3atEGnTp3wxRdf4KeffkJwcDCsrKzUj6s6nqrRZSqrV68ucX89evTA/v37ERERgZ49ewIAGjdujLp162L27NmQy+WcNJSIiMiI9OvXD9evX4eDg0OJ/RovL68y9/G0/lPXrl0BFPSz6tSpg02bNhVZ79GjR9iyZYv6inwq7K8Q1TwcKUVEVap///7w9fVFQEAAnJyccPPmTSxbtgz16tVDo0aNKrSvnj17olevXpgxYwYyMjLw3HPPITo6GnPmzIG/vz9GjRqlXnfUqFH45JNPMHv2bAQGBiImJgbffvst7OzsSj2GRCLBp59+igkTJmDQoEGYOHEi0tPTERISUmxI+quvvoqffvoJffv2xbvvvot27drBxMQEt2/fRmRkJAYOHIhBgwZV6DmW5t1338WwYcMgCAImT55c5DEfHx94e3vjww8/hCiKqF27Nnbs2KGec+FJ3bt3x4oVK3D//n0sW7asyPLQ0FDUqlWLl1cmIiIyIlOmTMGWLVvQpUsXvPfee/Dz84NSqURCQgLCw8Px/vvvo3379qXuIyUlRd1/evDgAebMmQNzc3PMnDkTQEE/a9GiRRg5ciT69euH119/Hbm5uVi8eDHS09Px+eefF9kf+ytENQ9DKSKqUt26dcOWLVuwdu1aZGRkwNXVFT179sQnn3wCExOTCu1LEARs27YNISEhCA0NxYIFC+Do6IhRo0bhs88+KzJKaNq0acjIyEBYWBiWLFmCdu3a4ddff8XAgQPLPM748eMBAF988QUGDx4MLy8vfPTRRzh48GCRST6lUim2b9+O5cuX44cffsDChQshk8ng4eGBwMBAtGjRokLPrywvvfQSzMzM0K1bt2KBnomJCXbs2IF3330Xr7/+OmQyGXr06IG9e/eibt26xfb1wgsvQCKRwMLCAh07dlQv79GjB0JDQ9GtW7ciE5ASERFRzWZlZYXDhw/j888/x5o1axAXFwcLCwvUrVsXPXr0KNdIqc8++wynT5/G2LFjkZGRgXbt2uGXX36Bt7e3ep0RI0bAysoKCxcuxLBhwyCVStGhQwdERkYWu6gM+ytENY8gFh4nSUREBmPHjh0YMGAAdu3ahb59++q7OURERERERBXCUIqIyMDExMTg5s2bePfdd2FlZYVz585VatJ0IiIiIiIifWAoRURaIYoiFApFqetIpVKGJ6VQKpVQKpWlriOTydC1a1ccPXoUrVu3xoYNG+Dj41NFLSQiIiJDxz4bEVUnPOGWiLTi4MGDMDExKfW2YcMGfTezWhs3blyZNQSAAwcOQC6X4+TJkwykiIiIqELYZyOi6oQjpYhIKzIzMxEbG1vqOvXr14eDg0MVtcjwxMfH4/79+6WuExAQUEWtISIiopqIfTYiqk4YShERERERERERUZWT6bsBhkipVCIxMRE2NjY815qIiMjIiKKIzMxMuLu789LjpWB/iYiIyHiVt79UI0KpFStWYPHixUhKSkLz5s2xbNkydO7c+anrHzx4EFOnTsXly5fh7u6O6dOnY9KkSeU+XmJiIjw9PbXRdCIiIjJQt27dgoeHh76bUW2xv0RERERl9ZcMPpTavHkzpkyZghUrVuC5557D6tWr0adPH8TExKBu3brF1o+Li0Pfvn0xceJE/Pjjjzh69CgmT54MJycnDBkypFzHtLGxAVBQXFtbW60+H7lcjvDwcAQFBaknNTZWrIUGa1GAddBgLTRYCw3WQkOXtcjIyICnp6e6P0AlY3+parAWGqxFAdZBg7XQYC00WAuN6tBfMvhQaunSpRg/fjwmTJgAAFi2bBn27NmDlStXYuHChcXWX7VqFerWrYtly5YBAJo2bYozZ85gyZIlTw2lcnNzkZubq76fmZkJALCwsICFhYVWn49MJoOlpSUsLCyM/g3CWmiwFgVYhwKiKOKH04nYesMGWzZfgWDkpw+JSiXS0lgLgLUoTFQqUUewwkAdfF7I5XIA4ClpZVDVx9bWViehlKWlJWxtbY369wHAWhTGWgDXUjLxx7kUHL5ljZY5EjRz0O57z9DwNaHBWmiwFhpVUYuy+ksGHUrl5eXh7Nmz+PDDD4ssDwoKwrFjx0rc5vjx4wgKCiqyrFevXli3bh3kcnmJ/xELFy7E3Llziy0PDw+HpaVlJZ7B00VEROhkv4aItdBgLQoYcx1EEdh2U4IDSRIAApD5QN9NqiZYCw3WQsXUWdDJ50VWVpbW90lE9Kxup2Vhx4UkbL+QiCtJGY+XSvDa+tP45X8d0diFozqJqPoy6FDq/v37UCgUcHFxKbLcxcUFycnJJW6TnJxc4vr5+fm4f/8+3Nzcim0zc+ZMTJ06VX1fNQwtKChIJ9/8RUREoGfPnkxtWQs11qKAsddBFEV89lcsDiQlAAD6eCjQs4MfZFKpnlumX/kKBaKjo+Hnx1qwFhr5CgUSYy/o5PMiIyOj7JWIiHToXmYudl8sCKLO3kxTL5dJBDzf0AH/3r6HO4/kGL7mBDZN7IAmrgymiKh6MuhQSuXJ4WCiKJY6RKyk9UtarmJmZgYzM7Niy01MTHT2h7Eu921oWAsN1qKAMdZBFEV8uvMKwo4XBFLzBjSF3b2L6NuyjtHV4klyuRzSOxdYC7AWhcnlcuy+c0EnnxfGXlsi0o+MHDn+vpSMHRcScfTafSgL/oSBIADt69fGgJZ10MfXFdamAn77czd+vFMLMUmZGPE9gykiqr4MOpRydHSEVCotNioqJSWl2GgoFVdX1xLXl8lkcHBw0FlbiYielSiKmLczBqFH4wEAnw1qgaGt3bB790X9NkyHFAqFet6essjlcshkMuTk5EChUOi4ZdUba6FRmVqYmJhAauQjzYioesiRK7DvSgr+jLqDA7H3kKdQqh9r6WGH/i3d0c/PHa525urlcrkcVibAhuAAjN14FpfuZDCYqqHYX3o2rIVGdegvGXQoZWpqijZt2iAiIgKDBg1SL4+IiMDAgQNL3KZjx47YsWNHkWXh4eEICAjgN59EVO2UFEiNaF+33B0QQyOKIpKTk5Genl6hbVxdXXHr1i2jn3iatdCobC3s7e3h6upq9HUkoqonVyhx5N/72H4hEeGXk/EoT/OHYkNnawxs6Y7+Ld3h5WhV6n7sLU3w4/j2eG3dSVy6k4Hh35/AzwymagT2lyqHtdCoDv0lgw6lAGDq1KkYNWoUAgIC0LFjR6xZswYJCQmYNGkSgIL5oO7cuYONGzcCACZNmoRvv/0WU6dOxcSJE3H8+HGsW7cOP//8sz6fBhFRMU8LpGoyVQfL2dkZlpaW5foFp1Qq8fDhQ1hbW0Ni5FecYy00nrUWoigiKysLKSkpAFDiXJNERNqmVIo4Ff8ftl9IxF8Xk5CWpfnyqY69Bfq3dMeAlu5o6mZToT/+7C1NiwVTmya2h4+rcV+Vz9Cxv1Q5rIVGdegvGXwoNWzYMKSmpmLevHlISkqCr68vdu/ejXr16gEAkpKSkJCQoF6/fv362L17N9577z189913cHd3x9dff40hQ4bo6ykYPFEUka8UoVCKkCuUUCiffj9fISJfqSxyX6EUIVcqoVAUWk+pRH6+Ao/y9P3siPRDFEXM3RGDsGPxAICFg1tgeLuaHUgpFAp1B6sip1MrlUrk5eXB3NycHQvWQq0ytbCwsABQcHq/s7MzT+UjIp0QRREX7zzA9qhE7IxOQnJGjvoxR2tTvNjCDQNauaN13VqVGoVgb2mKn8Z3wMh1Jx6fyneSwZQBY3+p8lgLjerQXzL4UAoAJk+ejMmTJ5f4WFhYWLFlgYGBOHfunI5bVXHZeQqcupGKK2kCzGPvAYJEHejkKwoFOUoRisf3Sw97lJArxUJhT/H7+YWCoXylstDxSrqv2abwMVWTLOqCuVQKmedtDG/vZfRDK8l4GGMgBUB9SqKlpaWeW0KkeR3K5XKGUkSkVddSMrE9KhE7opMQd/+RermNuQy9m7tiQCt3dGzgAJlUe38s21ma4KfxHfDaupO4eOcBRnx/Ej9NaI+mbgymDA37S1SdaKO/VCNCqZoiJTMHY8LOApAC/5zXd3MqTSYRIJUIkEkEyKSSp96XSgSYSCXqx1T372Zk49+UR/hoWwz+jrmHzwe3gLu9hb6fFpFOPRlIfT64BV41gkCqMAbQVB3wdUhE2nQ7LQs7LiRh+4VEXEnKUC83N5Gge1MXDGjpjq5NnGAm010IbldojqmLdx5g5FoGU4aMv6eoOtDG65ChVDVibiJFY2drPHqYidq17GAilUAmeRzWSFWBzeMwRyrA5Gn3pYXCn2L3BUgLBUIm0kL7KOF+WYGS6v6TgZJEqPwLNCc3DzPW/42/75jg0NV76PXVIXzcryleCfDkhzDVSAykiIiIao77D3Ox+2IStkcl4szNNPVymURAl8ZOGNDSHT2aucDarOr+JFMFU6PWn0T07Qfqq/IxmCIifWEoVY242Jpj19udsHv3bvTt28HorwYolQh4wV3E5IEdMXPbZZxLSMeMLRex62IyR01RjSOKIkK2X8aG4zcBAF8MaYFhbRlIkf6FhIRg5cqVSElJwR9//IGXXnpJ300iIqq2MnLk2HMpGdsvJOLY9VQoHs9zIQhA+/q1MaBlHfTxdUUtK1O9tdHO0gQ/jGMwRaRN7C89O+Oe1YsMQgMnK/w2qRNm9W0KM5lEPWpq8+kEiKIOJ7QiqiKFAylBYCBlaARBKPUWHBwMAIiMjES3bt1Qu3ZtWFpaolGjRhgzZgzy8/MBAAcOHIAgCOrLO6vuC4IAiUQCOzs7+Pv7Y/r06UhKSiq1TfHx8UXaYGdnhw4dOmDHjh0Vem5XrlzB3LlzsXr1aiQlJaFPnz4Vrg8RUU2XI1dgV3QSXv/hDALm78W036Nx+N/7UChF+HnY4eMXm+L4h93xy/86YkT7unoNpFTsLE3ww/j28POwQ1qWHCO+P4GYxIyyNyR6Ruwv0dMwlCKDIJUImNilAXa/2xmt69ojMzcfM7ZcRHDoaSSmZ+u7eUTPTBRFzCkcSA32YyBlYJKSktS3ZcuWwdbWtsiy5cuX4/Lly+jTpw/atm2LQ4cO4eLFi/jmm29gYmICpVJZ6v5jY2ORmJiI06dPY8aMGdi7dy98fX1x8eLFMtu2d+9eJCUl4eTJk2jXrh2GDBmCS5culfu5Xb9+HQAwcOBAuLq6wszMrNzbFqaalJWIqKaQK5SI/CcF722OQptPI/DmpnPYc/ku8vKVaOhsjak9GyPyg67Y/tbzmNC5AVztzPXd5GLsLIoGUyPXMpgi3WF/qWzG2l9iKEUGxdvJusioqYMcNUUGTBVIbSwUSL3S1lPfzaIKcnV1Vd/s7OwgCEKxZREREXBzc8OiRYvg6+sLb29v9O7dG2vXroWpaenfmDs7O8PV1RWNGzfGq6++iqNHj8LJyQlvvPFGmW1zcHCAq6srfHx8sGDBAsjlckRGRqofv3PnDoYNG4ZatWrBwcEBAwcORHx8PICCYej9+/cHAEgkkiJz+YWGhqJp06YwNzeHj48PVqxYoX5M9a3jr7/+iq5du8Lc3Bw//vhjubfbunUrunXrBktLS7Rs2RLHjx8v8pyOHj2KwMBAWFpaolatWujVqxfS0grmahFFEYsWLUKDBg1gZWWF559/Hr///rt627S0NIwcORJOTk6wsLBAo0aNEBoaWmYdiYgAQKkUceJGKj764yLaLdiLsWGn8cf5O3iUp0AdewtMCvTG7nc6I+K9LnineyPUd7TSd5PLpAqmWjKYIh1jf4n9pafhnFJkcFSjpl5o6oxpv11QzzW1+2IyFnKuKTIQDKTKRxRFZMsVpa6jVCqRnaeALC8fEon2vmuxMJFq7aIKrq6uSEpKwqFDh9ClS5fKtcvCApMmTcJ7772HlJQUODs7l7mNXC7H999/DwDq+QqzsrLQrVs3dO7cGYcOHYJMJsP8+fPRu3dvREdH44MPPoCXlxfGjh1bZPj7999/jzlz5uDbb7+Fv78/zp8/j4kTJ8LKygpjxoxRrzdjxgx8+eWXCA0NhZmZWbm3mzVrFpYsWYJGjRph1qxZGD58OK5duwaZTIaoqCh0794d48aNw9dffw2ZTIbIyEgoFAWvkY8//hhbt27FypUr4e3tjfDwcIwePRouLi4IDAzEJ598gpiYGPz1119wdHTEtWvXkJ3N0bZE9HSiKOLSnQxsv3AHO6OTkPQgR/2Yo7UpXmzhhgGt3NG6bi2DvRCPnYUJNo5vj9HrTuLC7QcYufYEfprQAc3cOceUoWB/qYR2sb9kMP0lhlJksFSjptYficOS8Fj1qCleoY+qO1EUMfvPy/jhhGoOKT+8EsBAqiTZcgWazd6jl2PHzOsFS1Pt/JocOnQo9uzZg8DAQLi6uqJDhw7o3r07Ro8eDVvbinf6fXx8ABR8W1ZaJ6tTp06QSCTIzs6GUqmEl5cXXnnlFQDAL7/8AolEgrVr16o/L0NDQ2Fvb48DBw4gKCgI9vb2AAo6iSqffvopvvzySwwePBgAUL9+fcTExGD16tVFOktTpkxRr1OR7T744AO8+OKLAIC5c+eiefPmuHbtGnx8fLBo0SIEBAQU+cawefPmAIBHjx5h6dKl2L9/Pzp27AilUokRI0bg7NmzWL16NQIDA5GQkAB/f38EBAQAALy8vCpQdSIyJtdSHmL7hUTsuJCIuPuP1MttzGXo3dwVA1q5o2MDB8ikNePEE3Uwtf4ULtxKx4i1J7CJwZTBYH+pZOwvGUZ/iaEUGTSOmiJDw0DKOEmlUoSGhmL+/PnYv38/Tpw4gQULFuCLL77AqVOn4ObmVqH9qU5XLit837x5M3x8fHD16lVMmTIFq1atQu3atQEAZ8+exbVr12BjY1Nkm5ycHPXcCE+6d+8ebt26hfHjx2PixInq5fn5+bCzsyuyrqojU9Ht/Pz81D+r6pKSkgIfHx9ERUVh6NChJbYtJiYGOTk56NmzZ5HleXl58Pf3BwC88cYbGDJkCM6dO4egoCC89NJL6NSpU4n7IyLjcyc9GzsuJGJ7VCJikjSnsJnJJOjR1AUDWrkjsLETzE2kemyl7thZmGDjuHZFgqmfJrRHc3e7sjcm0gL2l4yzv8RQimoEjpoiQyCKIj758xJ+PJEAQQAWDfHDUAZSpbIwkSJmXq9S11EqlcjMyISNrY3Wh6NrW506dTBq1CiMGjUK8+fPR+PGjbFq1SrMnTu3Qvu5cuUKgLK/ufL09ESjRo3QqFEjWFtbY8iQIYiJiYGzszOUSiXatGmDn376qdh2Tk5OJe5PNcno999/j/bt2xd5TCotWi8rK6tn2k41XB7QdCJV21tYPP2LBtU6u3btQp06daBUKvHw4UNYW1urt+vTpw9u3ryJXbt2Ye/evejevTvefPNNLFmy5Kn7JaKa7f7DXOy+mITtUYk4czNNvVwmEdC5kSMGtHJHz2ausDYzjj+bngymRq49yWDKALC/VDL2l57eturUXzKOT1cyCqWNmvp8SAu42XHUFOmPUili9nYGUhUlCEKZQ8KVSiXyTaWwNJVptZOla7Vq1YKbmxsePXpU9sqFZGdnY82aNejSpctTO0MlCQwMhK+vLxYsWIDly5ejdevW2Lx5M5ydncs9JN7FxQV16tTBjRs3MHLkyHIf+1m3e5Kfnx/27dtXYqe0WbNmMDMzQ0JCAgIDA6FUKpGRkQFbW9sirwsnJycEBwcjODgYnTt3xrRp0xhKERmZjBw59lxKxvYLiTh2PRUKpWo0BdDOqzYGtHJHH1831LYqfWLlmqpg8vN2GLVOE0z9OL49fOswmKqu2F8qjv0lw+kvMZSiGqekUVNBSw/hk37NMDTAg6OmqMoxkKLVq1cjKioKgwYNgre3N3JycrBx40ZcvnwZ33zzTanbpqSkICcnB5mZmTh79iwWLVqE+/fvY+vWrRVux/vvv4+hQ4di+vTpGDlyJBYvXoyBAwdi3rx58PDwQEJCArZu3Ypp06bBw8OjxH2EhITgnXfega2tLfr06YPc3FycOXMGaWlpmDp16lOP/azbFTZz5ky0aNECkydPxqRJk2BqaorIyEgMHToUjo6O+OCDD/Dee+9BqVSiU6dOSEpKQnR0NGxsbDBmzBjMnj0bbdq0QfPmzZGbm4udO3eiadOmFa5jTXDo0CEsXrwYZ8+eRVJSEv744w+89NJL6sdFUcTcuXOxZs0apKWloX379vjuu+/Uc1IQGZocuQL7/0nB9qhE7I9NQV6+5vLyfh52GNDSHf383OFqZ67HVlYftuZFg6nX1jGYIt1jf8k4+0sMpahGKmnU1PQt0dh1MYmjpqhKKZUFp+z9dLIgkFr8cku83KbkX15Uc7Vr1w5HjhzBpEmTkJiYCGtrazRv3hzbtm1DYGBgqds2adIEgiDA2toaDRo0QFBQEKZOnVpkMs3y6tevH7y8vLBgwQKsWLEChw4dwowZMzB48GBkZmaiTp066N69e6nfBE6YMAGWlpZYvHgxpk+fDisrK7Ro0QJTpkwp9djPul1hjRs3Rnh4OD766CO0a9cOFhYWaN++PYYPHw6gYHJQZ2dnLFy4EDdu3ICdnR1at26NWbNmAQBMTU0xc+ZMxMfHw8LCAp07d8Yvv/xS7uPXJI8ePULLli0xduxYDBkypNjjixYtwtKlSxEWFobGjRtj/vz56NmzJ2JjY4vNq0FUXckVShy5dh87ohIRHnMXD3Pz1Y81dLbGgJbu6N/SHfUdrUrZi/FSBVOj151CVKFT+RhMka6wv2Sc/SVBVM3+9QwKzxJfXqtWrSrX5Rirs4yMDNjZ2eHBgwfPdBWA0sjlcuzevRt9+/Ytcp6oMdJWLRRKEeuO3MCS8KvIy1fCxkxmcKOm+LooYGh10GUgZWi1KI+cnBzExcWhfv36MDcv/zfVTxt2bIxYC43K1qK016Mu+wEl0XV/SxCEIiOlRFGEu7s7pkyZghkzZgAAcnNz4eLigi+++AKvv/56ufbL/lLVYC005HI5du7aDefmHbD7Ugp2X0xCWpZc/Xgdewv0b+mOAS3d0dTNxmD6gRWl7ddERo5cHUzZWZgYVDBVE98f7C9VHmuhUR36S5UaKbVt2za88sorpU6kVdimTZvw8OFDgw+lyLBIJQL+18UbL/i4YNrvF3Ceo6aoCiiVIj7+8xI2cYQUEVVSVfe34uLikJycjKCgIPUyMzMzBAYG4tixY08NpXJzc5Gbm6u+n5FRcPUyuVwOuVxe4jbPSrU/be/XELEWBe5m5GDdkTj8cU6K9BNn1MtrW5mgr68r+rVwhb+nPSSSgiAqPz//absyeNp+TVhIgfWj/TFu4zlE3XqAkWtPYENwAJq76z6Ur6ya+P6Qy+UQRRFKpVI9aXV5qMaiqLY1ZqyFRmVroVQqIYoi5HJ5scnYy/u+q/Tpe19//XW5Oz2///57ZQ9H9MwaOlvj90md1KOmONcU6cqTgdSSl1tiCAMpIqqEquxvJScnAyiYcLUwFxcX3Lx586nbLVy4sMRJVcPDw2FpaVmpNj1NRESETvZriIy1FnkK4ECSgIg7EuQpBQACzKUi/GqLaOMoopFdPqRCHO5ejsPfl/Xd2qql7dfEq65AepoU8Q/zMWLNcUxupoCntVYPoTM16f0hk8ng6uqKhw8fIi8vr8LbZ2Zm6qBVhom10HjWWuTl5SE7OxuHDh0qFvZnZWWVax+VCqUiIyNRu3btcq//119/oU6dOpU5JFGlcNQU6ZpSKWLWtkv4+RQDKSLSDn31t578skYUxVK/wJk5c2aRSVgzMjLg6emJoKAgnZy+FxERgZ49e9aYU3KelbHWQhRF/HXpLpaFX8Wd9BwAQMs6tmhjlYa3X+4GawvjnbBcl6+JoKB8jNt4FlG3HuD7a+bVfsRUTXx/5OTk4NatW7C2tq7Q6XuiKCIzMxM2NjX31NXyYi00KluLnJwcWFhYoEuXLiWevlcelQqlypps7EnPP/98ZQ5HpDUcNUW68GQg9eXQlhjcmoEUEVVOVfe3VJPCJicnw83NTb08JSWl2OipwszMzGBmZlZsuYmJic7+GNTlvg2NMdXi4u0HmLfzMk7HpwEA3OzM8WEfH/Rp5oS//voL1hbmRlOL0ujiNVHbxAQ/jG+P0etP4XxCOsaEnTWIOaZq0vtDoVBAEARIJJIKzQGkOjVLta0xYy00KlsLiUQCQRBKfI+V9z2n9avvpaSkICUlpdj5iH5+fto+FFGlPG3U1O5LSVg4mKOmqGIKAqmL+PnULQZSlVSJ628QaU11fx3qsr9Vv359uLq6IiIiAv7+/gAKhucfPHgQX3zxRaX3T/SsUjJysHhPLH4/dxuiCJibSPB6F2+8HtgAlqayGjVvUHVmY26CjePaYcz6UziXkI4R35/ATxM6oIVH9Q6maprq/nuKjIM2XodaC6XOnj2LMWPG4MqVK+qGCYKgHuqtUCi0dSgirXpy1NSB2HsI+urxqKk2HDVFZXsykFr6SksM8mcgVVGqb1OysrLKPaEzka6o5kGobt+sa6u/9fDhQ1y7dk19Py4uDlFRUahduzbq1q2LKVOm4LPPPkOjRo3QqFEjfPbZZ7C0tMSIESN08ryISpMjV2DdkTisiLyGR3kFr/GBrdwxo7cP3O35+0IfbMxNsKFQMDVyLYOpqsL+ElUn2ugvaS2UGjt2LBo3box169bBxcWFf8iTQSlx1NTv0dh9kaOmqHRKpYiP/riIX07fgkQAvmQg9cykUins7e2RkpICALC0tCzX7xKlUom8vDzk5ORwCDZrofastRBFEVlZWUhJSYG9vX2xK8nom7b6W2fOnEG3bt3U91VzQY0ZMwZhYWGYPn06srOzMXnyZKSlpaF9+/YIDw+HjY2NVp4HUXkUzBuVjM92X8HttGwAQEtPe8zu1wxt6tXSc+tIFUwFh57G2ZtpGLn2BH6c0B5+Hvb6blqNxv5S5bEWGtWhv6S1UCouLg5bt25Fw4YNtbVLoiqnGjW19vANfBnBUVNUOgZS2qeay0bV0SoPURSRnZ0NCwsLo3+PshYala2Fvb29+vVYnWirv9W1a9dSh9wLgoCQkBCEhIRU6jhEz+rSnQeYtzMGp+L+AwC42ppjRp8mGNiyDiQS4/58q05szE0QNratOph6be1JBlNVgP2lymEtNKpDf0lroVT37t1x4cIFhlJk8KQSAa8HeqN7U46aoqd7MpBa+korvOTPq4tWliAIcHNzg7Ozc7nnBpHL5Th06BC6dOlS7U61qmqshUZlamFiYlLtRkipsL9FNV1KZg6W7InFb2cL5o0yk0nweqA3Jj2eN4qqn8Kn8jGYqhrsL1UOa6FRHfpLWvtkX7t2LcaMGYNLly7B19e32BMaMGCAtg5FVCU4aoqeRqkUMXPrRWw+w0BKV6RSabl/yUmlUuTn58PcnFdbYi00amot2N+imipHrkDo0Xh8F3kND3PzAQADWrpjRh8f1OG8UdWetZmsSDA1cu1J/MRgSufYX3o2rIVGdaiF1kKpY8eO4ciRI/jrr7+KPcaJzslQcdQUPenJQOqrYa0wsBUDKSKqGuxvUU0jiiL2XE7Ggt1XcOu/gnmj/DzsMKd/M7SpV1vPraOKUAVTwetP4czjYOrH8e3R0tNe300jompMa7N6vfPOOxg1ahSSkpKgVCqL3HTRQYqPj8f48eNRv359WFhYwNvbG3PmzEFeXl6p2wUHB0MQhCK3Dh06aL19VLOoRk3N7OMDU5lEPWrq1zO3eDlWI6JUivhwazQDKSLSm6rubxHp0uXEBxj+/QlM+vEcbv2XDWcbM3w5tCW2TX6OgZSBsjaTIWxcOwTUq4XMnHy8tu4kLtxK13eziKga09pIqdTUVLz33ntwcXHR1i5L9c8//0CpVGL16tVo2LAhLl26hIkTJ+LRo0dYsmRJqdv27t0boaGh6vumpqa6bi7VAIVHTX3w2wVE3SoYNfXXxSQsHOwHVztzfTeRdEgVSP165jYDKSLSm6rubxHpwr3MXCyNiMUvp29BFAFTmQT/69wAb3T1hpUZ540ydKpgamzoKZyOT8Nr607ih/Ht0YojpoioBFr71B88eDAiIyPh7e2trV2Wqnfv3ujdu7f6foMGDRAbG4uVK1eWGUqZmZlVaIb43Nxc5Obmqu9nZGQAKJgUrLwTy5WXan/a3q8hqq61qFfLDL9MaIv1x+KxbN91RMbeQ8+vDuKjPk0wxN9dJ3NNVddaVDV91UGpFPHRn5ex5VwiJAKw5OUW6Nu8/BNL6gJfExqshQZroaHLWuizvlXd3yLSptx8BcKOxuOb/Zp5o170c8PMPj7wqGWp59aRNlmbyRA6VhNMjWIwRURPobVQqnHjxpg5cyaOHDmCFi1aFJsk65133tHWoZ7qwYMHqF277KG+Bw4cgLOzM+zt7REYGIgFCxbA2dn5qesvXLgQc+fOLbY8PDwclpa6+QUaERGhk/0aoupaizoA3m8ObLouxc2H+Zj5x2X8EHkRwxooYW+mm2NW11pUtaqsg1IEfrkuwcl7EggQ8VpDJaS3z2P37fNV1obS8DWhwVposBYauqhFVlaW1vdZXtWhv0VUUaIoIjzmLj7bfQU3UwvePy3q2GF2/2Zo68XT9GqqYsHU2pP4YQKDKSIqSqtX37O2tsbBgwdx8ODBIo8JgqDzTtL169fxzTff4Msvvyx1vT59+mDo0KGoV68e4uLi8Mknn+CFF17A2bNnYWZWcpIwc+ZMTJ06VX0/IyMDnp6eCAoKgq2trVafh1wuR0REBHr27Gn0VwIwlFqMUYrqUVMx6cCSGFOtj5oylFroWlXXQTVC6uS9ghFSX77sh35+bjo/bnnwNaHBWmiwFhq6rIVqxLQ+6Lu/RVRRV5Iy8OnOGBy7ngoAcLIxw7ReTfByaw9IJLyScU1nbSZD2Nh2CGYwRURPobVQKi4uTiv7CQkJKXFUUmGnT59GQECA+n5iYiJ69+6NoUOHYsKECaVuO2zYMPXPvr6+CAgIQL169bBr1y4MHjy4xG3MzMxKDKxMTEx01unX5b4NTXWvhQmAyd0aI6i5Gz74LRpRt9Ix84/LCI9J0fpcU9W9FlWlKuqgUIqYuS1afcreslf9MaClu06P+Sz4mtBgLTRYCw1d1EKftdVWf4tI11If5uLLiKv45VQClI/njZrYuT7e6NoQ1pw3yqhYPQ6mxoaexqn4/zBq7UlsHN8O/nVr6btpRFQNVLvfCG+99RZeffXVUtfx8vJS/5yYmIhu3bqhY8eOWLNmTYWP5+bmhnr16uHff/+t8LZEhTV0tsGWNzph7eEb+DLiqnquqU/6NcPQNh46mWuKdEOhFDFjSzR+P1swqfnyV/3RvxoGUkRERNVNXr4SG47F4+t9/yJTNW9UCzd82McHnrU5b5SxsjKTIXRsW3UwNXrdKQZTRARAC6HUvHnzyrXe7Nmzy7Weo6MjHB0dy7XunTt30K1bN7Rp0wahoaGQSCTl2q6w1NRU3Lp1C25u1eOUHDJsmiv0OatHTfEKfYZFoRQx/fdobDl3G1KJgGXDWjGQIiK903Z/i0jbRFHE3ispWLArBvGP541q7m6L2f2aoX0DBz23jqoDdTAVdhqn4hhMEVGBSodSf/zxx1MfEwQBsbGxyMnJ0XonKTExEV27dkXdunWxZMkS3Lt3T/1Y4Svr+fj4YOHChRg0aBAePnyIkJAQDBkyBG5uboiPj8dHH30ER0dHDBo0SKvtI+PW0NkGv0/qiLVH4rC00Kip2f2a4WWOmqq2GEgRUXWlr/4WUXnEJmfi050xOHLtPgDA0doM03s1wZA2HpBy3igqxMpMhtDgosHUhvHt0JrBFJHRqnQodf58yVegioqKwocffohLly5h4sSJlT1MMeHh4bh27RquXbsGDw+PIo+Joqj+OTY2Fg8ePAAASKVSXLx4ERs3bkR6ejrc3NzQrVs3bN68GTY2NlpvIxk3mVSCSYHe6NHUGe//Fo0Lt9Ix7fdo7OaoqWrpyUBq+aut0M+PgRQRVQ/66m8Rlea/R3lYGhGLTScfzxsllWDc8/XxZjdv2JhzXjsq2ZPB1BgGU0RGreLnu5UhLi4Or732Gtq2bQs7OztcvnwZq1at0vZhEBwcDFEUS7wVJooigoODAQAWFhbYs2cPUlJSkJeXh5s3byIsLAyenp5abx+RSkNnG2yZ1BEf9vGBqUyiHjX125lbxV6vpB8KpYhpv19gIEVEBqOq+ltEJcnLV2LdkTh0XRyJH08UBFK9m7ti79RAfNjHh4EUlalg8vO2aFe/NjJz8zF63SmcS0jTd7OISA+0Fkrdv38fb7/9Nnx8fJCUlIRjx45h8+bNaNSokbYOQWSwVKOmdr/zPFp62iMzJx/Tfo/GuLDTSH6Qo+/mGTVVILX13B1IJQK+ftWfgRQRVVvsb5E+iaKI/f/cRe9lh/Dpzhhk5OSjqZstfp7YAatGtUFdB05kTuVnaVoQTLWvXxsPGUwRGa1Kh1KPHj3C3Llz4e3tjWPHjmHHjh3Yt28f2rZtq432EdUoHDVVvSiUIqb9VjSQetGPFz0gouqH/S3St6t3MzF6/SmMCzuDG/cfwcHKFAsHt8DOt59HR29OZE7PxtK0YPLzwsHU2ZsMpoiMSaXnlPL29kZmZibefvttDB8+HIIgIDo6uth6fn5+lT0UUY3AuaaqB3UgdZ6BFBFVf+xvkb6kPcrDV3uv4qeTCVAoRZhIBYx7rj7efKEhbHmaHmmBKpgaG3oaJ+P+w5j1p7BhXDu0qcc5poiMQaVDqZSUFADAokWLsHjx4iKjPQRBgCiKEAQBCoWisociqlFUo6a+PxyHr3iFvir1ZCD1zXB/9G3BQIqIqi/2t6iqyRVK/HD8JpbtvYqMnHwAQFAzF3zUtym8HK303DqqaVTB1Liw0zhxQxVMtUWberX13TQi0rFKh1JxcXHaaAeRUZJJJXija8GoqQ9+14ya+utSMj4b1IKjpnRAoRTxwW8X8AcDKSIyIOxvUVWK/CcFn+6KwY17jwAAPq42mN2vGTo1dNRzy6gmszSVYX1w4WDqNIMpIiNQqVAqOjoavr6+kEjKNzXV5cuX0aRJE8hklc7CiGqURi5FR03t/ycFPb86iDn9m2NI6zr6bl6NwUCKiAwR+1tUVa6lZOLTnVdw8Oo9AICDlSneD2qCYW09IZVwBDfpniqYGh92BsdvpGL0ulPYOL4dgymiGqxSE537+/sjNTW13Ot37NgRCQkJlTkkUY2lGjW1q9AV+j747QLGbziD5Axeoa+yFEoR7/8apQ6kvmUgRUQGgv0t0rX0rDyEbL+MXssO4+DVezCRCpjYuT4ip3XFiPZ1GUhRlbI0lWFdcAA6NnDAozzF48nP/9N3s4hIRyr1FZooivjkk09gaVm+y7/m5eVV5nBERqGkUVOn4/9DUxsJHpy+hQAvRzRxtWEHsQJUgdS2qETIHo+Q6sNAiogMBPtbpCtyhRKbTibgq71XkZ4lBwD0aOqCWS82RX3OG0V6VPhUPtWIqQ3j2iHAiyOmiGqaSoVSXbp0QWxsbLnX79ixIywsLCpzSCKjUNJcU6dyJDi1/QoAwNJUipYe9mhdzx7+nrXgX9ceDtZmem519aRQipj6axT+ZCBFRAaK/S3ShYNX7+HTnTG4lvIQANDExQaf9GuG5xtx3iiqHixMpUWCKdVV+RhMEdUslQqlDhw4oKVmEFFJVKOmDsbexeZ9Z/DQ3BHRtzPwMDcfx2+k4vgNzekc9Rws4e9pj9b1asHfsxZ83GxgIq3UGboGL1+hxPu/XVAHUt+O8EdvXwZSRGRY2N8ibbp+7yHm74xBZGzBvFG1LE0wNagJhrf1hMzI+w1U/aiCqfEbTuPY9YJgKmxcO7RlMEVUY3AGTKJqTiaVoEsjRzz8V4m+fQMgkcpwLeUhziWk4XxCGs4lpONaykPcTM3CzdQsbItKBACYm0jgV8ce/o9HU7WuZw9nG+O5mh8DKSIiIo0HWXIs3/cvNh6PR75ShEwiYEwnL7zTvRHsLEz03Tyip7IwlWLdGE0wFcxgiqhGYShFZGCkEgFNXG3QxNUGw9vVBQA8yJYj6la6OqSKSkhDRk4+TsX/h1Pxmokh69hbPB5JVTCiqpmbLUxlNe9b0XyFElN/vYDtF1SBVGv09nXVd7OIiIiqXL5CiZ9PJWBpxFWkPZ43qruPM2a92BQNnKz13Dqi8lEFUxM2nsbRa5pT+RhMERk+hlJENYCdhQkCGzshsLETAECpFHHj/kOcS0jH+YSCsCr2bibupGfjTno2dlwoGE1lKpOgRR07zWl/de3hZmfY85AwkCIiIipw+N+CeaOu3i2YN6qxizU+frEZujzuLxAZEgtTKdaOZjBFVNMwlCKqgSQSAQ2dbdDQ2QavBHgCADJz5Ii+/UA9mup8QhrSsuQ4ezMNZ2+mAUfiAABudubwr2uP1nULQqrm7nYwN5Hq8+mUW75Cifd+vYAdDKSIiMiI3bj3EJ/tvoK9V1IAPJ43qmdjDG9Xl/NGkUFTBVMTN57BkWv3C+aYGtsO7eozmCIyVAyliIyEjbkJnmvoiOcaFlxVRxRFxKdmPQ6p0nA+IR3/JGci6UEOki4mY/fFZACAiVRAM3c7tK5rD/+6Baf+edSygCAI+nw6xTwZSH03sjV6NWcgRURExuNBthzf7PsXG47HQ64omDdqVMd6mNK9MewsOW8U1QwWplJ8PzpAHUwFhzKYIjJkDKWIjJQgCKjvaIX6jlYY3NoDAJCVl4/o2w/UIdX5hDTcf5iHC7fSceFWOkKPxgMAnGzMCl3pzx5+HvawMNXfaCoGUkREZMwUIrDp1C0s338d/z3KAwB0a+KEWS82Q0NnzhtFNY+FqRRrxwRgwgZNMBUa3BbtGzjou2lEVEEMpYhIzdJUhg4NHNDh8S90URRxOy27SEh1OTED9zJzER5zF+ExdwEUTL7e1M1Gfcpf67q1ULe2ZZWMpspXKDFlcxR2RidBJhGwYmRrBDGQIiKqsTJy5AhaehC5OVIsvnIIUqkEEkGARMDjfwVIJIXuP/5Z+vgxQSj4vVVsvUL7kEqKricU2r7wNqr1imxTeF+S4j9LhaLbFFtPfRzNz6r1hMfbF34s7WEOFkdLkZR1BQDQ0NkaH7/YFF2bOOv5f4pIt8xNigZTY8NOM5giMkAMpYjoqQRBgGdtS3jWtsTAVnUAADlyBS7d0YymOpeQhrsZubh0JwOX7mRg4/GbAAAHK1P4q075q2uPlh72sDLT7kdO4UDKRCrguxEMpIiIajqFQkRyRi4AAWl5OfpuTjUhwM5Chvd6NMbIDvVgwnmjyEiogqmJG8/g8L8MpogMEUMpIqoQcxMpArxqI+DxlU5EUUTSg5wiIdXlOxlIfZSHvVdS1JOsSgSgiattkUnUGzhaPfNoqnyFEu9ujsIuBlJEREbFxlyGbW90wOEjR9ChYydIpDIoRRFKpQiliIKfRREKpQjx8X3FE48pRTxev+jPisf3xcLbFF6v0HEUolhkPbHE44hQKFF8vWL706xX0I7C2zylHaptlEq4SDKwJLgznOws9f3fQ1TlzE00c0wd/vc+gkNPI2wsgykiQ8FQiogqRRAEuNtbwN3eAv383AEAufkKXE7MUIdUUQnpuJOejStJGbiSlIFNJxMAAHYWJkVCqpae9rA1L3si1nyFEh/8dlEdSK0Y2QY9m7no9HkSERmjFStWYPHixUhKSkLz5s2xbNkydO7cWa9tkkklaO5ui5vWQCtPe5iYGPcE3nK5HLt374Y9JzInI1ZSMBU6ti3aeNrqu2lEVAaGUkSkdWYyKVrXrYXWdWthPOoDAO5m5Dy+0l/B3FTRtx/gQbYcB2Lv4UDsPQCAIACNnK3h71kLresVnPrX0MkaEolmNJVCBKb+dhF/Xb7LQIqISIc2b96MKVOmYMWKFXjuueewevVq9OnTBzExMahbt66+m0dEVMSTwdTY0NP4fpS/vptFRGVgKEVEVcLF1hy9fd3Q29cNAJCXr8Q/yZrRVOcT0pHwXxau3n2Iq3cfYvOZWwAAGzMZWj2em8rP3Rob/5UgKrUgkFo5sg16MJAiItKJpUuXYvz48ZgwYQIAYNmyZdizZw9WrlyJhQsX6rl1RETFqYKp//1wFoeu3sPEH84huKGAjll5MJGJ+m6eXsnz5XgkB9JYC9aiEHm+HDkK/baBoRQR6YWpTAI/D3v4edhjTCcvAMC9zFxE3VKFVGm4cOsBMnPzcfjf+zj87/3HW0oYSBER6VheXh7Onj2LDz/8sMjyoKAgHDt2rMRtcnNzkZubq76fkZEBoOD0MrlcrtX2qfan7f0aItZCg7UoYOx1kAJY8aof3tgUhcPXUrHyihQrrxzQd7OqCRk+OnNA342oJlgLFX8HCfrr4POivJ9BDKWIqNpwsjFDz2Yu6tPx8hVKxN7NVJ/yd+5mGu6mP8JXr7ZiIEVEpEP379+HQqGAi0vRz1oXFxckJyeXuM3ChQsxd+7cYsvDw8NhaambCbgjIiJ0sl9DxFposBYFjL0OAx2AzDQJolJ5NUqisuji8yIrK6tc6zGUIqJqq2AyWzs0d7fDqA711JO5dvdx1nfTiIiMwpNXSBVF8alXTZ05cyamTp2qvp+RkQFPT08EBQXB1la7kw3L5XJERESgZ8+enOictVBjLQqwDhp95XLsCY9Ajx49jL4Wcrkce/fuZS3AWhSmqoUuPi9UI6bLwlDqGYhiwXmn5S1yRcjlcmRlZSEjI4NvENZCjbUowDposBYarIUGa6Ghy1qofv+r+gM1kaOjI6RSabFRUSkpKcVGT6mYmZnBzMxMfV9Vn+zsbK3/H6j+f7Ozs5Gfn6/VfRsa1kKDtSjAOmjI5XLkZGchLzcHolLPE+foGWuhwVpoqGqhi8+L7OxsAGX3lxhKPYPMzEwAgKenp55bQkRERPqSmZkJOzs7fTdDJ0xNTdGmTRtERERg0KBB6uUREREYOHBgufbB/hIRERGV1V9iKPUM3N3dcevWLdjY2Dx1CPuzUg11v3XrltaHuhsa1kKDtSjAOmiwFhqshQZroaHLWoiiiMzMTLi7u2t1v9XN1KlTMWrUKAQEBKBjx45Ys2YNEhISMGnSpHJtz/5S1WAtNFiLAqyDBmuhwVposBYa1aG/xFDqGUgkEnh4eOj0GLa2tkb/BlFhLTRYiwKsgwZrocFaaLAWGrqqRU0dIVXYsGHDkJqainnz5iEpKQm+vr7YvXs36tWrV67t2V+qWqyFBmtRgHXQYC00WAsN1kJDn/0lhlJEREREVKLJkydj8uTJ+m4GERER1VC8PiYREREREREREVU5hlLVjJmZGebMmVPk6jXGirXQYC0KsA4arIUGa6HBWmiwFjUb/381WAsN1qIA66DBWmiwFhqshUZ1qIUg1uTrGRMRERERERERUbXEkVJERERERERERFTlGEoREREREREREVGVYyhFRERERERERERVjqEUERERERERERFVOYZSRET0f/buPCyq8n0D+H1m2PdNdhBEXBHXFE1FxT3N1Cyt3FLLrEzNUjNTTLNcyuyba6Zpuf3KLHdx39fcURQFQQERXNhhmDm/P0ZmGEEFmWFmmPtzXVzKmbO88zDAwz3vOYeIiIiIiKjSMZQiIiIiIiIiIqJKx1CKiIiIiIiIiIgqHUMpIiIiIiIiIiKqdAyliIiIiIiIiIio0jGUIiIiIiIiIiKiSsdQioiIiIiIiIiIKh1DKSIiIiIiIiIiqnQMpYiIiIiIiIiIqNIxlCIiIiIiIiIiokrHUIqIymXlypUQBAHx8fFa2+eQIUNgZ2entf2VR3meT7t27dCuXTudj6kiBEHAtGnTVJ9HR0dj2rRpL/z10ufXhoiIqCpiL9VO52PShSd7rP3790MQBOzfv19vYyKqCsz0PQAiItKeY8eOwdfXV/V5dHQ0IiMj0a5dOwQEBOhvYERERERERE9gKEVEpAeiKCIvLw/W1tZa3W9YWJhW90dERERkiCraS+Xk5MDGxkbLoyKi8uLpe0SkUzk5ORg/fjwCAwNhZWUFFxcXNGvWDGvXri2xbmxsLLp37w47Ozv4+fnh008/RX5+vsY69+/fx6hRo+Dj4wMLCwvUqFEDkydP1lgvPj4egiBg5cqVJY7x5NTr0oiiiNmzZ6N69eqwsrJCkyZNsH379lLXzcjIUD0/CwsL+Pj4YMyYMcjOzi5x3I8++giLFy9G3bp1YWlpid9+++2Z4yjSrl07hISE4NChQwgLC4O1tTV8fHwwZcoUyOXypz6/lStXol+/fgCA9u3bQxCEEnXZsWMHIiIi4OjoCBsbG9StWxezZs0qMYayfG2IiIhI+9hLqY9b0V7q4MGDaNWqFWxsbPDuu+8CABISEvDOO+/A3d0dlpaWqFu3LubNmweFQlGmfRNRxXCmFBHp1Lhx47B69WrMmDEDjRs3RnZ2Ni5duoT09HSN9WQyGV599VUMGzYMn376KQ4ePIivv/4ajo6O+OqrrwAAeXl5aN++PW7cuIHIyEiEhobi0KFDmDVrFs6dO4etW7dqZcyRkZGIjIzEsGHD8PrrryMxMREjRoyAXC5H7dq1Vevl5OQgPDwct2/fxhdffIHQ0FBcvnwZX331FS5evIjdu3dDEATV+ps2bcKhQ4fw1VdfwdPTE+7u7mUeU0pKCvr374+JEydi+vTp2Lp1K2bMmIEHDx7gf//7X6nbvPLKK/jmm2/wxRdf4Oeff0aTJk0AAEFBQQCA5cuXY8SIEQgPD8fixYvh7u6Oa9eu4dKlSxr7KcvXhoiIiHSDvZR2eqnk5GS88847+Pzzz/HNN99AIpHg3r17aNWqFQoKCvD1118jICAAW7Zswfjx43Hjxg0sXLhQK/UgomcQiYjKYcWKFSIAMS4urkzrh4SEiK+99toz1xk8eLAIQNywYYPG8u7du4u1a9dWfb548eJS1/vuu+9EAOKuXbtEURTFuLg4EYC4YsWKEscCIE6dOvWpz+fBgweilZWV2Lt3b43tjhw5IgIQw8PDVctmzZolSiQS8dSpUxrr/vnnnyIAcdu2bRrHdXR0FO/fv//MWpQmPDxcBCD+888/GstHjBghSiQS8datW099fv/3f/8nAhD37dunsW1mZqbo4OAgtm7dWlQoFE89dlm/NkRERFQ27KXCVcsqu5fas2ePxvKJEyeKAMQTJ05oLP/ggw9EQRDEmJiYpz7vffv2ldpjEVH58PQ9ItKp5s2bY/v27Zg4cSL279+P3NzcUtcTBAE9e/bUWBYaGopbt26pPt+7dy9sbW3x+uuva6w3ZMgQAMCePXsqPN5jx44hLy8Pb7/9tsbyVq1aoXr16hrLtmzZgpCQEDRq1AiFhYWqjy5dupR6N5YOHTrA2dn5hcZlb2+PV199VWPZW2+9BYVCgYMHD5Z7f0ePHkVGRgZGjRql8Q5kacrytSEiIiLdYC+lVpFeytnZGR06dNBYtnfvXtSrVw/NmzfXWD5kyBCIooi9e/e+0LGIqOwYShGRTi1YsAATJkzApk2b0L59e7i4uOC1117D9evXNdazsbGBlZWVxjJLS0vk5eWpPk9PT4enp2eJEMXd3R1mZmYlprG/iKJ9eHp6lnjsyWV3797FhQsXYG5urvFhb28PURSRlpamsb6Xl9cLj8vDw+Op43mR533v3j0A0LhT39OU5WtDREREusFeSq0ivVRp26anp5e63NvbW+O5EJHu8JpSRKRTtra2qusK3L17V/VOX8+ePXH16tVy7cvV1RUnTpyAKIoazVRqaioKCwvh5uYGAKqG7MkLe5alsXB1dQWgvIbTk1JSUhAQEKD63M3NDdbW1vj1119L3VfReIo8b0bSs9y9e7fU8QDqMZdHtWrVAAC3b99+4TERERGR7rGXUqtIL1Xatq6urkhOTi6xPCkpqdTjE5H2caYUEVUaDw8PDBkyBAMGDEBMTAxycnLKtX1ERASysrKwadMmjeWrVq1SPV50HCsrK1y4cEFjvX/++ee5xwgLC4OVlRX++OMPjeVHjx4tcbpajx49cOPGDbi6uqJZs2YlPoo3XRWVmZmJf//9V2PZmjVrIJFI0LZt26duZ2lpCQAlpvq3atUKjo6OWLx4MURR1No4iYiISHfYS2lXREQEoqOj8d9//2ksX7VqFQRBQPv27XV6fCLiTCki0rEWLVqgR48eCA0NhbOzM65cuYLVq1ejZcuWsLGxKde+Bg0ahJ9//hmDBw9GfHw8GjRogMOHD+Obb75B9+7d0bFjRwDKd8Leeecd/PrrrwgKCkLDhg1x8uRJrFmz5rnHcHZ2xvjx4zFjxgwMHz4c/fr1Q2JiIqZNm1ZiyvmYMWPw119/oW3bthg7dixCQ0OhUCiQkJCAXbt24dNPP0WLFi3K9RyfxtXVFR988AESEhJQq1YtbNu2DcuWLcMHH3wAf3//p24XEhICAFi6dCns7e1hZWWFwMBAuLq6Yt68eRg+fDg6duyIESNGwMPDA7GxsTh//vxT7+hHRERElYu9lHZ6qdKMHTsWq1atwiuvvILp06ejevXq2Lp1KxYuXIgPPvgAtWrV0tmxiUiJoRQR6VSHDh3w77//4ocffkBOTg58fHwwaNAgTJ48udz7srKywr59+zB58mTMmTMH9+7dg4+PD8aPH4+pU6dqrDtv3jwAwOzZs5GVlYUOHTpgy5YtZXrHbfr06bC1tcXChQuxevVq1KlTB4sXL8bcuXM11rO1tcWhQ4fw7bffYunSpYiLi4O1tTX8/f3RsWNHrb675+npiZ9//hnjx4/HxYsX4eLigi+++AKRkZHP3C4wMBDz58/Hjz/+iHbt2kEul2PFihUYMmQIhg0bBm9vb3z33XcYPnw4RFFEQEAABg8erLVxExERUcWwl9KdatWq4ejRo5g0aRImTZqEjIwM1KhRA7Nnz8a4ceN0emwiUhJEnrdBRGTQ2rVrh7S0NFy6dEnfQyEiIiIiItIaXlOKiIiIiIiIiIgqHU/fI6IXIooi5HL5M9eRSqUVuktKVSeXy595kXFBECCVSitxRERERFRZ2EtVHHspIuPHmVJE9EJ+++03mJubP/PjwIED+h6mQYuIiHhm/YKCggAA+/fv56l7REREVQx7qYoray9FRIaL15QioheSnp6OuLi4Z65Tu3Zt2NvbV9KIjE9MTAwyMzOf+rilpSUaNGhQiSMiIiKiysJequLYSxEZP4ZSRERERERERERU6Xj6HhERERERERERVTqTvdD5woULMWfOHCQnJ6N+/fqYP38+2rRpU6ZtFQoFkpKSYG9vzwsPEhERmRhRFJGZmQlvb29IJHx/72nYLxEREZmusvZLJhlKrV+/HmPGjMHChQvx8ssvY8mSJejWrRuio6Ph7+//3O2TkpLg5+dXCSMlIiIiQ5WYmAhfX199D8NgsV8iIiKi5/VLJnlNqRYtWqBJkyZYtGiRalndunXx2muvYdasWc/d/tGjR3ByckJiYiIcHBy0OjaZTIZdu3ahc+fOMDc31+q+jQ1rocZaKLEOavn5BdiwJQqt27aGudS0ayGTy3D44GHWAqxFcTK5DCePHEafV7T/8yIjIwN+fn54+PAhHB0dtbrvqoT9UuVgLdRMuRaiKEImF5ErkyM7Nx9HDh3Aa91Nrw5PMuXXxJNYCzXWQk2XtShrv2RyM6UKCgpw5swZTJw4UWN5586dcfTo0VK3yc/PR35+vurzojs8WFtbw9raWqvjMzMzg42NDaytrU3+G4S1UGMtlFgHpdTMfAxdfQnXUh0wJ+aCvodjIFgLNdaiSCt3O7ytg58XMpkMAHhK2nMU1cfBwUEnoZSNjQ0cHBxM+vcBwFoUZ4i1kCtE5MnkyJPJkSuTI0+mKPZ/OXILlP/PlymQW3y5TI68AuX6Gstk6mW5BXLkF6r3oSg21UACexT43scH7YP19+QNgCG+JvSFtVBjLdQqoxbP65dMLpRKS0uDXC6Hh4eHxnIPDw+kpKSUus2sWbMQGRlZYvmuXbtgY2Ojk3FGRUXpZL/GiLVQYy2UTLkOjwqAn6OluJsrQCKIMOPfxERPZSbRzc+LnJwcre+TiCqPKIookCuQV1Ay8NEIfgqKf64OlVSB0eNAqHhwVLReboEceYUKFBQqKv35SQRAIQr4buc1CBIJRoYHVfoYiIjKyuRCqSJPpnWiKD41wZs0aRLGjRun+rxoGlrnzp118s5fVFQUOnXqxNSWtVBhLZRMvQ6pmfkY+Osp3M3NgaeDJUYEZWNAT9OsRXGm/roojrVQ02UtMjIytLo/Iqq4pIe5WHIgFhevSfDvg7MokIuPgyF1cKQKjGRy6OMCJpZmEliZS2FtLoW1hRSWZhJYWyg/L1puZS6FlblEtY6VxmPK5VYWUliZFT3+eF1zKSwf/wtFIUYv3YEdt6X4dvtViCLwQTsGU0RkmEwulHJzc4NUKi0xKyo1NbXE7KkilpaWsLS0LLHc3NxcZ02/LvdtbFgLNdZCyRTrkJqRh4ErTuNmWg68Ha2w6t1muHx8v0nW4mlYCzXWQk0XtWBtiQzLhdsPMey307iXmQ9AAqTfK/O2UomgCnyKB0Pq8EczONIIiJ4IjTT2Y6G5rpWZFBJJ5UxvlskEdPMTUSs4CAv23cB3O64CYDBFRIbJ5EIpCwsLNG3aFFFRUejdu7dqeVRUFHr16qXHkRERlS41Iw/9lx3HzXvZ8Ha0wrr3WsLLwRyX9T0wHRFFEYWFhZDL5WVaXyaTwczMDHl5eWXepqpiLdQqUgupVAozMzNeM4rICOy8nIJP1p1FnkyBWu52qG/zCE1CG8DO2hxWZspgybq04OjxbCNzqVBlv9c/7hAEqVSKH3Zfw3c7rkKEiFHtaup7WKQl7JdeHGuhZgj9ksmFUgAwbtw4DBw4EM2aNUPLli2xdOlSJCQkYOTIkfoeGhGRhtSMPPRfehw309SBlL+rjepCy1VNQUEBkpOTy3XNHlEU4enpicTExCr7h0VZsRZqFa2FjY0NvLy8YGFhoYPREVFFiaKIZYduYtbj09PCa1XDD/0a4NDeXej+ki9nND72SUflhc5/2H0Ns3fEAACDqSqA/VLFsBZqhtAvmWQo9eabbyI9PR3Tp09HcnIyQkJCsG3bNlSvXl3fQzMqoihCrhBRqBChePx/hQKQP/6/XCFCLopQPPH/wsefq7YRRcgVQKFCodpeoRBRKC9EdtX8u5uoTO5m5GHA40DKx8kaa0eEwd9VNzdXMAQKhQJxcXGQSqXw9vaGhYVFmX45KhQKZGVlwc7ODhKJpBJGarhYC7UXrYUoiigoKMC9e/cQFxeH4OBgk68lkaGRyRWY+u9lrDmRAAB4J8wf03rWh6gw7RkPT/NJx2AIAvB9lDKYEkXgw/YMpowV+6WKYy3UDKFfMslQCgBGjRqFUaNG6XsYGh7lyLDq6E1cuS3gxt4bgCAoAxxVsANVkFOoeLxMVP+rCoKKBT5yEZArFCUCI4UoolBefL1i+5EX7Q/FwiZRcyyiWCkXiLSSSnHfOQ7D2wbBylyq+wMSGQhTC6QA5bt+CoUCfn5+5bqzqUKhQEFBAaysrNhYsBYqFamFtbU1zM3NcevWLdU+iMgwZOTJ8OEf/+HQ9TQIAjC5e10Max0IQRAgYyj1VKMjlDOmvo+6hjk7lTOmGEwZJ/ZLFcdaqBlCv2SyoZQhephbgHm7YwFIgcQb+h5OhUklgvJDUP4rEYote7xc8sQ6yvWU/z7MKUDig1zMjbqONScT8VnX2ujV0KfSLhJJpC9PBlLr3guDn0vVDqSKM/XmgAwDX4dEhuf2gxy8u/IUrt3NgrW5FD/2b4TO9T31PSyjMToiGAKAeQymqgT+niJDoI3XIUMpA2JvZY6+TbyRdPs2qlf3h4WZVBXQFIU1ZpLHQY4gQCpBsf+XDHU0AqFi20glEuW2QimBkEaIJMBMKmisJ5EAZhIJJBKUsm/NsKmi8vML8PXqHdidaoOkR3kYu/48lh+Owxfd66JVkJsWKk5keO4+voZUnIkGUkRERKU5l/gQw387jbSsfLjbW2L54JfQwNdR38MyOh8/njHFYIqIDAVDKQPiYmuBb3uHYNu2BHTvXs/kL9AokQh4qZqICW+1xuqTt7Fw3w1cupOBt5adQEQdd0zsVgfBHvb6HiaR1qQ8ysOAZQykiIiIitt+MRljN5xDnkyBOp72+HXIS/B2stb3sIzWxxHKa0zN3aUMpkRRxEcdgvU9LCIyUZzzRwbPylyKUe1qYv9n7TCoZXVIJQL2XE1Fl/kH8cXfF3EvM1/fQySqMAZSZKimTZsGDw8PCIKATZs26Xs4RGRCRFHE4gM38MEf/yFPpkD72tXw5wetGEhpwUcdgjG+cy0AynDqf3uv63lERMaN/dKLYyhFRsPNzhLTe4Vg19i26FzPAwoRWHMiAe3m7MOCPdeRU1Co7yESvRAGUsZNEIRnfgwZMgQAsG/fPrRv3x4uLi6wsbFBcHAwBg8ejMJC5c+u/fv3QxAEPHz4UONzQRAgkUjg6OiIxo0b4/PPP0dycvIzxxQfH68xBkdHR4SFhWHz5s3lem5XrlxBZGQklixZguTkZHTr1q3c9SEiehEyuQKTNl7Et9uvAgAGt6yOZYOawc6SJ3poy0cdgvFZl9oAGEyR7rFfoqdhKEVGJ6iaHZYOaoYN77dEQ19HZBfI8X3UNbSfux8bTidCrqiE2wISaUnKozz0X3qMgZQRS05OVn3Mnz8fDg4OGst+/PFHXL58Gd26dcNLL72EgwcP4uLFi/jpp59gbm4OhULxzP3HxMQgKSkJp06dwoQJE7B7926EhITg4sWLzx3b7t27kZycjBMnTqB58+bo27cvLl26VObnduOG8qYbvXr1gqenJywtLcu8bXEymeyFtiMi0/QoV4ahK05h3alESARgas96iOwVAjMp/3TRtg/b19QIpn7aw2CKdIP90vOZar/En+xktJoHuuDvUS9jwYDG8HW2xt2MfHz+5wW8suAQDl67p+/hET1XUSAVn54DX2cGUqURRRE5BYXP/cgtkJdpvfJ8iGLZAm5PT0/Vh6OjIwRBKLEsKioKXl5emD17NkJCQhAUFISuXbvil19+gYWFxTP37+7uDk9PT9SqVQv9+/fHkSNHUK1aNXzwwQfPHZurqys8PT1Rp04dzJw5EzKZDPv27VM9fufOHbz55ptwdnaGq6srevXqhfj4eADKaeg9e/YEoLyziiCob2CxYsUK1K1bF1ZWVqhTpw4WLlyoeqzoXccNGzagXbt2sLKywu+//17m7TZu3Ij27dvDxsYGDRs2xLFjxzSe05EjRxAeHg4bGxs4OzujS5cuePDgAQDl62X27NmoUaMGbG1t0bp1a/z555+qbR88eIC3334b1apVg7W1NYKDg7FixYrn1pGIKk/i/Ry8vugoDsemwcZCimWDmmHoy4H6HlaVVjyYmhfFYMoYsV9iv2TM/RLnv5JRk0gEvNrQG13qe2DV0Vv4ae91XE3JxKBfT6JtrWqY1K0O6no56HuYRCUkP8rFgKXHVYHU2hEMpEqTK5Oj3lc79XLs6OldYGOhnV+Tnp6eSE5OxsGDB9G2bdsK7cva2hojR47E2LFjkZqaCnd39+duI5PJsGzZMgBQ3UQjJycH7du3R5s2bXDw4EGYmZlhxowZ6Nq1Ky5cuIDx48cjICAAQ4cO1Zj+vmzZMkydOhX/+9//0LhxY5w9exYjRoyAra0tBg8erFpvwoQJmDdvHlasWAFLS8sybzd58mTMnTsXwcHBmDx5MgYMGIDY2FiYmZnh3LlziIiIwLvvvosFCxbAzMwM+/btg1wuBwB8+eWX2LhxIxYtWoSgoCDs2rULgwYNgoeHB8LDwzFlyhRER0dj+/btcHNzQ2xsLHJzcyv09SAi7Tmb8AAjVp1GWlYBPByUd9gL8eEd9ipD0R345uyMwbyoaxABjI7gxc+NBfulktgvGU+/xFCKqgRLMylGtK2B15v64qe9sVh9PB4Hr93Doev30K+pLz7tXBseDlb6HiYRgJKB1Lr3wuDrzECqKuvXrx927tyJ8PBweHp6IiwsDBERERg0aBAcHMofnNepUweA8t2yZzVZrVq1gkQiQW5uLhQKBQICAvDGG28AANatWweJRIJffvlF9a7eihUr4OTkhP3796Nz585wcnICoGwSi3z99deYN28e+vTpAwAIDAxEdHQ0lixZotEsjRkzRrVOebYbP348XnnlFQBAZGQk6tevj9jYWNSpUwezZ89Gs2bNNN4xrF+/PgAgOzsb33//Pfbu3YuWLVtCoVDgrbfewpkzZ7BkyRKEh4cjISEBjRs3RrNmzQAAAQEB5ag6EenS1gvJGLfhHPILFajn5YBfh7wET0f2bpXpw/Y1IQjA7B0x+D7qGgAGU1S52C+ZZr/EUIqqFGdbC3zVsx4Gt6qO2TtisPViMjacvo3N55Mxok0g3gsP4gUySa+SH+Wi/9LjuMVAqkyszaWInt7lmesoFApkZmTC3sEeEon2zkq3NpdqbV9SqRQrVqzAjBkzsHfvXhw/fhwzZ87Ed999h5MnT8LLy6tc+yuaKl98inhp1q9fjzp16uDatWsYM2YMFi9eDBcXFwDAmTNnEBsbC3t7e41t8vLyVNdGeNK9e/eQmJiIYcOGYcSIEarlhYWFcHTUnM1Q1MiUd7vQ0FDV/4vqkpqaijp16uDcuXPo169fqWOLjo5GXl4eOnXqpLG8oKAAjRs3BgB88MEH6Nu3L/777z907twZr732Glq1alXq/oiocoiiiIX7b2DOzhgAQEQddywY0Bi27Nf0YlQ75YypomBKFIFPOjKYMnTsl0rHfqkkQ+yX+NOeqqTqrrb4+e0mePfWA3yz7QrO3HqABXtjseZkIsZ1qoU3mvnyYplU6YoHUn4uylP2GEg9myAIz50SrlAoUGghhY2FmVabLF3w8fHBwIEDMXDgQMyYMQO1atXC4sWLERkZWa79XLlyBcDz37ny8/NDcHAwgoODYWdnh759+yI6Ohru7u5QKBRo2rQp/vjjjxLbVatWrdT9FV1kdNmyZWjRooXGY1KpZlNqa2v7QtsVTZcH1E1k0fbW1k+/DXzROlu3boWPjw8UCgWysrJgZ2en2q5bt264desWtm7dit27dyMiIgIffvgh5s6d+9T9EpHuFBQq8OWmi9hw+jYAYEirAEzpUQ9SybP/gCTdGtWuJgQI+G7HVfywWzljisGUYWO/VDr2S08fmyH1S4b9aiSqoKbVnfHnyJZY9HYTVHe1QVpWPr74+yK6/ngIe6/eLfOF+YgqKukhAynS5OzsDC8vL2RnZ5dru9zcXCxduhRt27Z9ajNUmvDwcISEhGDmzJkAgCZNmuD69etwd3dHzZo1NT6efDeuiIeHB3x8fHDz5s0S2wQGPv1CxC+63ZNCQ0OxZ8+eUh+rV68eLC0tkZCQoNp3jRo1ULNmTfj5+anWq1atGoYMGYLff/8d8+fPx9KlS8t8fCLSnkc5MgxZcRIbTt+GRAAiX62Paa/WZyBlID5oF4QJXZWnPv2w+xrmPw6niCob+6Wq3y9xphRVeYIgoFsDL0TU9cAfJ27hxz3XEZuahXdXnkarIFd80b0uL6JJOpX0MBcDlqkDqXXvtYSP09PfwaCqZ8mSJTh37hx69+6NoKAg5OXlYdWqVbh8+TJ++umnZ26bmpqKvLw8ZGZm4syZM5g9ezbS0tKwcePGco/j008/Rb9+/fD555/j7bffxpw5c9CrVy9Mnz4dvr6+SEhIwMaNG/HZZ5/B19e31H1MmzYNo0ePhoODA7p164b8/HycPn0aDx48wLhx45567BfdrrhJkyahQYMGGDVqFEaOHAkLCwvs27cP/fr1g5ubG8aPH4+xY8dCoVCgVatWSE5OxoULF2Bvb4/Bgwfjq6++QtOmTVG/fn3k5+djy5YtqFu3brnrSEQVk5Ceg6ErT+LGvWzYWkjxv7eaoH2d51+EmCrXB+2CIAjAt9uvYv5u5R35xnSspedRUVXGfsk0+yWGUmQyLMwkGPpyIPo08cXC/bFYcSQeR2+ko8dPh9GnsQ/Gd6kNbwYFpGVFM6QS7jOQMmXNmzfH4cOHMXLkSCQlJcHOzg7169fHpk2bEB4e/sxta9euDUEQYGdnhxo1aqBz584YN26cxsU0y6pHjx4ICAjAzJkzsXDhQhw8eBATJkxAnz59kJmZCR8fH0RERDzzYqLDhw+HjY0N5syZg88//xy2trZo0KABxowZ88xjv+h2xdWqVQu7du3CF198gebNm8Pa2hotWrTAgAEDACgvDuru7o5Zs2bh5s2bcHR0RJMmTTB58mQAgIWFBSZNmoT4+HhYW1ujTZs2WLduXZmPT0QVd+bWA7y36jTSswvg5WiF5YNfQj1v3inZUI0MDwKgDqZEERjbicEU6Qb7JdPslwRRi+cvFb9qfFktXry4TLdnNCQZGRlwdHTEo0ePXuguAM8ik8mwbds2dO/eXeM8UVOk61ok3s/B3F0x+OdcEgDA0kyCd1sH4oN2QXCwMqza83WhZGx1KB5I+bvYYO17YVoLpIytFmWRl5eHuLg4BAYGwsqq7HdcUigUyMjIgIODg8FfI0HXWAu1itbiWa9HXfYBpTHW/or9UuUwplpsPp+ET//vPAoKFQjxccDywS9p9e7IxlQLXdJFHZYcuIFZ268CAD6JCDaaYKoqvibYL1Uca6FmCP2SVr8CmzZtgoWFBRwdHcv0sXXrVmRlZWlzCERl5udigx/7N8a/H72MFoEuyC9UYNH+G2g3Zz9WHYuHTK7Q9xDJiN3RYSBFRKaF/RUZO1EU8b+91/Hx2rMoKFSgY10PbHi/pVYDKdKt98ODMKmb8hpTP+65jh+ieI0pItIOrZ++t2DBgjK/M/fnn39q+/BE5Rbq64R174Vh95VUzNp+BTfvZeOrfy5j5ZF4TOhWB53reTz3NqJExd15mIsBxQKpde+F8dRQIqoQ9ldkrAoKFZi08SL++k95h71hrQPxRfe6vKC5EXo/XHmNqW+2XcWPe5TXmDKWGVNEZLi0Gkrt27cPLi4uZV5/+/bt8PHx0eYQiF6IIAjoVM8D7WpXw7pTiZgfdQ0307Lx/uozaB7ggi9eqYtGfk76HiYZAeUMqWNIvJ/LQIqItIL9FRmrhzkFGPn7GRy/eR9SiYBpr9bHwLDq+h4WVcB7bZXXmCoKpkQAYzsG8w1cInphWj19Lzw8HGZmZc+5WrduDUtLS20OgahCzKUSDAyrjv2ftcNH7WvC0kyCk/H38drPR/Dx2rNIvJ+j7yGSASseSFV3ZSBFRNrB/oqM0a30bPRZeBTHb96HnaUZlg9uxkCqinivbRAmd1feiWvBnuv4Yfd1aPEyxURkYnR+973U1FSkpqZCodC8Pk9oaKiuD030wuytzDG+S228HeaPuTuvYePZ29h8Pgk7L6VgcKvq+Kh9MBxtqsbFEkk7bj/IwYBlx1WB1NoRDKReFBtbMgSG/jpkf0WG7HT8fYxYdRoPcmTwdrTCr0NfQh1P3mGvKhnRtgYAYOa2K1hQdCofZ0xVKkP/PUWmQRuvQ51dav7MmTMICQmBl5cXQkND0ahRIzRu3Fj1L5Ex8HK0xrw3GmLLx63xck1XFMgVWHYoDm3n7MPyw3EoKOTF0KlkIMUZUi+m6K44OTmckUj6V/Q6NLS7NWmrvzp48CB69uwJb29vCIKATZs2aTwuiiKmTZsGb29vWFtbo127drh8+bKWnw1VRf+cu4O3lp3AgxwZQn0dsenDlxlIVVEj2tbAl68UmzEVdY1BSSVgv0SGRBv9ks5mSg0dOhS1atXC8uXL4eHBC0WTcavv7Yjfh7XA/mv3MGvbFVy7m4Wvt0Tjt6PxmNC1Dro38ORr3ESVFkh5OTKQehFSqRROTk5ITU0FANjY2JTp+0qhUKCgoAB5eXm8rS9rofKitRBFETk5OUhNTYWTkxOkUqkOR1l+2uqvsrOz0bBhQwwdOhR9+/Yt8fjs2bPx/fffY+XKlahVqxZmzJiBTp06ISYmBvb29hV9GlQFiaKIBXti8cNu5V3ZutT3wA9vNoKNhc5PzCA9Gt5GOWNqxtYrWLA3FoDy4ufsi3WH/VLFsRZqhtAv6ey3RFxcHDZu3IiaNWvq6hBElUoQBLSv7Y42Nd3w55nbmBd1DQn3c/Dhmv/QxN8Jk1+pi6bVy34hWjJ+tx/koP/S47j9IBcBrjZYy0Cqwjw9PQFA1WiVhSiKyM3NhbW1tck3wayFWkVr4eTkpHo9GhJt9VfdunVDt27dSn1MFEXMnz8fkydPRp8+fQAAv/32Gzw8PLBmzRq8//77FTo2VT35hXJM+usiNp69AwB4r20NTOxaBxLeYc8kPBlMiQDGMZjSKfZLFcNaqBlCv6SzUCoiIgLnz59nKEVVjplUgv7N/dGzoTeWHbqJJQdu4r+Eh+i76Bi6hXhiQtc6CHCz1fcwSccYSOmGIAjw8vKCu7s7ZDJZmbaRyWQ4ePAg2rZta3CnWlU21kKtIrUwNzc3uBlSRSqjv4qLi0NKSgo6d+6sWmZpaYnw8HAcPXr0qaFUfn4+8vPzVZ9nZGQAUH4tyvr9XFZF+9P2fo2RvmvxIKcAH649j1PxD5R32OtRF/1f8oVcXgi5vHLHou9aGAp91GFwmB8UCgW+2R6Dn/bGQi5XYExEkN7/4K/Krwk3Nzc4OzujsLCwTKdNFhYW4ujRo2jVqlW5bp5RFbEWai9aC0EQYGZmBqlUisLCwlLXKev3nc6+Ar/88gsGDx6MS5cuISQkpERD+Oqrr+rq0ESVwtbSDGM61sJbzf3xfdQ1bDidiO2XUhAVfRfvhFXH6IhguNha6HuYpAOJ95Wn7DGQ0h2pVFrmUKDol6GVlZXJBzGshVpVrUVl9FcpKSkAAA8PD43lHh4euHXr1lO3mzVrFiIjI0ss37VrF2xsbCo8rtJERUXpZL/GSB+1SM0Fll6V4l6eACupiKG15HC4dwHbtl2o9LEUx9eFUmXXwQPAa9UFbLolxcIDNxEbG4vufgoYwkQUvibUDh48qO8hGAzWQk0XtSjrdc90FkodPXoUhw8fxvbt20s8JggC5JX91gmRjrg7WOHbvqEY+nIgZm2/gv0x97DyaDz++u82PmpfE4NbBcDK3DDfcafyezKQWvdeS3g6Wul7WERkIiqzv3pyhoMois+c9TBp0iSMGzdO9XlGRgb8/PzQuXNnODho90LXMpkMUVFR6NSpU5UKHV+EvmpxKv4Bpq45h4d5Mvg4WWHpO41Ry0O/1xvj60JJn3XoDqDe0Vv4ZnsMdt2RIKhmEMZG1NTbjCm+JtRYCzXWQk2XtSiaMf08OgulRo8ejYEDB2LKlCkl3mkjqopqe9pj5dDmOHw9DTO3XcGV5AzM2n4Vq47dwudda6NnqDevrWDkEu8rT9m785CBFBHpR2X0V0XXhkhJSYGXl5dqeWpq6jOPaWlpCUtLyxLLzc3Nddb063LfxqYya/H32duY8OdFFMgVaOjriGWDm8Hd3nB+H/J1oaSvOrwXXhNSqRRfb4nGogNxkEgkGN+5tl5P5eNrQo21UGMt1HRRi7LuT2eXmk9PT8fYsWMZSJHJaR3shi0ft8bcfg3h6WCFOw9z8cm6c3ht4REcv5mu7+HRCyoeSAW62TKQIiK9qIz+KjAwEJ6enhqnuxQUFODAgQNo1aqVzo5Lhk8URfwQdQ1j159HgVyBbiGeWPdeS4MKpMgwDGsdiCk96gEAft53A3N3xZTpukdEZHp0Fkr16dMH+/bt09XuiQyaVCLg9aa+2De+HT7rUht2lma4cPsR+i89juG/nUZsapa+h0jl8GQgtXZEGAMpItILbfVXWVlZOHfuHM6dOwdAeXHzc+fOISEhAYIgYMyYMfjmm2/w999/49KlSxgyZAhsbGzw1ltvVfjYZJzyC+UYu/4cftxzHQAwMjwIP7/VBNYWvEQBlW5Y60B8VSyYmrOTwRQRlaSz0/dq1aqFSZMm4fDhw2jQoEGJqVujR4/W1aGJDIa1hRQftq+JN1/yw4+7r2PNyQTsvnIX+2JSMaC5H8Z0rAU3u5KnOpDhYCBFRIZEW/3V6dOn0b59e9XnRdeCGjx4MFauXInPP/8cubm5GDVqFB48eIAWLVpg165dsLfX7zWDSD/uZxfg/dWncSr+AcwkAma8FoL+zf31PSwyAu+2DgQATN8SjYX7bwAAPuui31P5iMiw6PTue3Z2djhw4AAOHDig8ZggCAylyKS42Vni69dCMLhVAL7dfhW7r9zF78cTsOlsEj5oF4R3Xw7kO40GqOQpe2HwcGAgRUT6o63+ql27ds+csSAIAqZNm4Zp06ZVZLhUBdy8l4WhK0/hVnoO7K3MsOjtpmgd7KbvYZERebd1IAQBiNysDKZEAJ8zmCKix3QWSsXFxelq10RGq6a7HX4Z3AzHb6bjm21XcOH2I8zZGYPVx25hfJfa6N3YB1JeDN0gFA+karjZYi0DKSIyAOyvqDIdv5mO91efwaNcGXydrbFiyEsI1vMd9sg4DX1ZOWMqcnM0Fj2eMcVgiogAHV5TioieLqyGKzaNehk/9m8EHydrpGTkYfz/nUfPnw7j8PU0fQ/P5CWkM5AiIiLT9teZ2xi4/AQe5crQyM8Jf496mYEUVcjQlwMxrafyGlOL9t/Adzt4jSki0sFMqenTp5dpva+++krbhyYyKhKJgF6NfNClvid+OxqP/+2LRXRyBt5ZfgLtalfDpG51UduTzV9lS0jPwYBlDKSIyLCwv6LKIooivo+6hp/2xgIAXmnghXlvNISVOS8zQBU35PGMqWmbo7H4gHLG1ISunDFFZMq0Hkr9/fffT31MEATExMQgLy9P601TfHw8vv76a+zduxcpKSnw9vbGO++8g8mTJ8PCwkJjDE9atGgRRo4cqdXxEJWVlbkU74cH4Y1mfliw9zpWH7uF/TH3cPDaPbzRzA/jOtWCszUbwcqgnCF1DEmP8lDj8TWk3BlIEZEB0Fd/RaYlTybHZ39ewObzSQCAUe2CML5zbUh4aQHSoiEvB0IQBEz99zIWH7gBESImdq3DYIrIRGk9lDp79mypy8+dO4eJEyfi0qVLGDFihLYPi6tXr0KhUGDJkiWoWbOm6jjZ2dmYO3euxrorVqxA165dVZ87OjpqfTxE5eVsa4GpPetjcMsAzN55FdsupmDdqUT8cy4Jw1tXh6dM3yOs2jQCqWq2WDeCgRQRGQ599VdkOtKz8vHe6jM4c0t5h71v+jTAG8389D0sqqIGtwoAAEz99zKWHLgJAAymiEyUzi50XiQuLg5TpkzB+vXr0adPH1y+fBnBwcFaP07Xrl01gqYaNWogJiYGixYtKhFKOTk5wdPTU+tjINKGADdbLHy7Kc7cuo8ZW6/gbMJD/LTvJiSQYsfDM+j5+JQ/R2vz5++MyoSBFBEZm8rqr8g0xKZm4d2Vp5BwPwcOVmZY/E5TtKrJO+yRbg1uFQBBAL76h8EUkSnTWSiVlpaGyMhILF26FK1bt8bRo0fx0ksv6epwpXr06BFcXFxKLP/oo48wfPhwBAYGYtiwYXjvvfcgkTz9mu/5+fnIz89XfZ6RkQEAkMlkkMm0O32laH/a3q8xMvVahHrbY/3wl7Dj8l0sPngT0clZOBSbjkOx6Zj890W0DXbDKw080aF2Ndha6jxfNgi6eE3cup+Dgb+eRvLjU/ZWD20GZ2upwb/uTP37ozjWQo21UNNlLfRZX0Por6hqORqbhpG/n0FGXiH8XKyxYkhz1HS30/ewyEQMahkAoFgwJQITuzGYIjIlWv9Ltuh0ue+//x41a9bE5s2b0blzZ20f5rlu3LiBn376CfPmzdNY/vXXXyMiIgLW1tbYs2cPPv30U6SlpeHLL7986r5mzZqFyMjIEst37doFGxsbrY8dAKKionSyX2PEWgDvBwCpHsDZdAH/pUmQkgvsuXoPe67eg7lERH1nEU1cRdR1EmFhApef0tZrIi0P+OmyFA8LBHhYixhS/RFOH9qjlX1XFn5/qLEWaqyFmi5qkZOTo/V9Po+h9FdUtWw4nYgvNl5EoUJEE38nLBvUDK52lvoeFpkYjWDq4OMZUwymiEyG1kOpoKAgZGZm4uOPP8aAAQMgCAIuXLhQYr3Q0NAy7W/atGmlBkLFnTp1Cs2aNVN9npSUhK5du6Jfv34YPny4xrrFw6dGjRoBUN7R5lmh1KRJkzBu3DjV5xkZGfDz80Pnzp3h4OBQpudRVjKZDFFRUejUqRPMzU379CzWQq2oFnOHdoS5uTmu3c3E1ot3sfViCm7dz8G5dAHn0gFbCyk61nXHKw088XKQKyzMnj4D0Bhp8zVx634O3ll+Cg8L8lHDzRa/v9sM1eyNpxHn94caa6HGWqjpshZFM6Yrk7b7KzJtCoWIubtisHC/8u5nPRt6Y87robzDHunNoJYBEABMeRxMiQAmMZgiMglaD6VSU1MBALNnz8acOXMgiqLqMUEQIIoiBEGAXC4v0/4++ugj9O/f/5nrBAQEqP6flJSE9u3bo2XLlli6dOlz9x8WFoaMjAzcvXsXHh4epa5jaWkJS8uSf6yam5vrrOnX5b6NDWuhVlSL+r4uqO/rgs+61sHlpAxsPp+ELReScedhLv45n4x/zifD0docXet7omdDb4TVcIGZtOoEVBV9TdxKz8bAX08jJSMfQdVssfa9MLjbG+c1pPj9ocZaqLEWarqohT5qq+3+ikxXnkyOT//vPLZeSAYAfNyhJsZ2rMU77JHeDXw8Y2rKP5ex9PGMKQZTRFWf1kOpuLg4re7Pzc0Nbm5lu9DinTt30L59ezRt2hQrVqx45nWiipw9exZWVlZwcnKq4EiJKp8gCAjxcUSIjyMmdK2Ds4kPsPl8MrZeTMa9zHysP52I9acT4WZngW4hXujZ0BvNqjubdOMZn5aNAcuOI/lRHmq622HNiBZGG0gRkenQdn9FpiktKx8jVp3G2YSHMJcKmNUnFK839dX3sIhUBrYMAAQBUzZdwtKDNyGKIr7oXpfBFFEVptVQ6sKFCwgJCSlTGAQAly9fRu3atWFmVvFhJCUloV27dvD398fcuXNx79491WNFd9rbvHkzUlJS0LJlS1hbW2Pfvn2YPHky3nvvvVJnQhEZE4lEQNPqLmha3QVTetTDibh0bLmQjO0Xk5GWVYDVx29h9fFb8HSwwiuhyoCqoa+jSf2SZyBFRMZIn/0VVR2xqZkYuvIUEu/nwtHaHIvfaYqWQa76HhZRCQPDqgMApmy6hGWHlIE8gymiqkur3Urjxo2RkpKCatWqlWn9li1b4ty5c6hRo0aFj71r1y7ExsYiNjYWvr6a7/gUTXE3NzfHwoULMW7cOCgUCtSoUQPTp0/Hhx9+WOHjExkSqURAqyA3tApyQ+Sr9XEkNg1bLiRj56UUpGTkYfnhOCw/HAc/F2v0CPVGz1Bv1PWyr9K/7OPTstF/6XGkZCgDqbUjwozqGlJEZLr02V9R1XDk8R32MvMKUd3VBr8OeQlB1XiHPTJcA8OqQwDw5eNgShSBya8wmCKqirQaSomiiClTppT5jnQFBQVaO/aQIUMwZMiQZ67TtWtXdO3aVWvHJDIG5lIJ2tV2R7va7pjxWggOXruHzReSsTv6LhLv52LR/htYtP8GgqrZKgOqht5V7lbQDKSIyJjps78i47fuZAK+3HQJhQoRzao7Y+mgZnCxtdD3sIie653HM6a+3HQJvxxWzphiMEVU9Wg1lGrbti1iYmLKvH7RaXREVDmszKXoXN8Tnet7IqegEHuvpmLz+STsi7mHG/ey8eOe6/hxz3XU9XJAj1Av9Az1hr9r2f4IMlRxadkY8DiQCna3wxoGUkRkZNhf0YtQKETM3hmDxQeUd9jr1cgb3/XlHfbIuLwTVh2CAEz+WxlMiQC+ZDBFVKVoNZTav3+/NndHRDpkY2GGHqHe6BHqjcw8GaKi72Lz+SQcup6GK8kZuJKcgTk7Y9DQzwk9Q73wSqgXvByN648cBlJEVBWwv6LyypPJMW7DOWy7mAIA+CQiGGM6BvMPeTJKb7dQzpia/PclLH88Y4rBFFHVwStgEhHsrczRp4kv+jTxxYPsAuy8nILNF5Jw7EY6zic+xPnEh5ix9QqaB7igZ0MvdGvgBTc7ww534tKy0X/pMdzNyGcgRUREJuNeZj6GrzqN84nKO+x91zcUfZrwDntk3N5uUR0CBHzx90UsP6y8xtSUHgymiKoChlJEpMHZ1gL9m/ujf3N/3MvMx/ZLydh8Pgmn4h/gZPx9nIy/j6n/XkarIDf0bOiFLvU94WRjWNemeDKQWvtemMGHaERERBV17W4mhq44hTsPc+FkY44l7zRFixq8wx5VDW+18AcAfPH3Rfx6RDljisEUkfFjKEVET1XN3hKDWgZgUMsAJD3MxbaLyoDq/O1HOBybhsOxafhy0yW0Ca6Gng290LGuB+ytzPU65pv3sjBg2XHczchHLQ/lDCkGUkREVNUdjk3H6HXnkZlfiABXG6wY2hyBbrb6HhaRVj0ZTIkQ8VWPegymiIwYQykiKhNvJ2sMb1MDw9vUwK30bGy5oAyorqZkYu/VVOy9mgoLMwk61HZHz4be6FDHHdYWlXsxVQZSRERkio7eFfDnif8gV4hoHuCCJQObwpl32KMq6q0W/hAEYNLGi1hxJB4AGEwRGTGGUkRUbtVdbfFh+5r4sH1NxKZmYvN5ZUB1My0bOy6nYMflFNhYSNGxrgd6NvRG21pusDTTbUB1814W+i89jtRMBlJERFXZoxwZGn29C4IoxfiTURAEARIBkAgCJIIAQfV/PP5cgFTyrMdLeUwCSB9vW+q+Jep9S4rtTxAESB8/LjzepuRxSm4rlTz78aJ9qx6XqP8fm5qJ/7spBSCid2MffNu3gc5/5xLp24DmyhlTDKaIjB9DKSKqkJru9hjbyR5jOgYjOjkDm88nY8uFJNx+kIt/zyfh3/NJsLcyQ5f6nujZ0ButglxhLpVodQzFA6naHvb4Y0QLBlJERFWUQhQhioAIAQq5CEDU95AMwugOQRjbqTb/KCeTwWCKqGpgKEVEWiEIAup7O6K+tyMmdK2Nc4kPsfl8MrZeTMLdjHz8eeY2/jxzGy62Fuga4omeod5oHugCqaRijQMDKSIi0+JobY5jE8IRtXsP2nfoAKnUTBVUKUQRCrEouBIhVxQtK/1xhQgoFMp/iz6Xq9YXoVCotxGLbVtifwqx9H1rbFv8cUBebJvSHi8al+q5FF9XUfy5KOCak4iP2wfxj3EyOQOa+0MAMPFxMCWKwNSeDKaIjAlDKSLSOkEQ0NjfGY39nfHlK3VxKv4+Nl9IwvaLKUjPLsCaEwlYcyIB7vaW6N7ACz0beqOJv1O5G4gb97IwoFggtWZEC7gykCIiqtIkEgFudpZwtAA8Haxgbq7fG2zom0wmw7ZtCfoeBpHe9H88Y2rixotYeTQeAIMpImPCUIqIdEoiEdCihita1HDFtJ71cexmOjafT8KOSylIzczHyqPxWHk0Hj5O1ugRqgyo6ns7PLeRYCBFRERERIAymBIEYMJfmsEUERk+7V7YhYjoGcykErQJrobZrzfE6S87YfngZnitkTdsLaS48zAXSw7eRI+fDqPDvAOYtysG1+5mlrqfm/eyVYFUHU8GUkREurJw4UIEBgbCysoKTZs2xaFDh/Q9JCKiUr35kj++69sAggCsPBqPyM3REEVec47I0HGmFBHphYWZBBF1PRBR1wN5Mjn2XU3F5gtJ2HMlFXFp2fhpbyx+2huL2h726BHqhR4NveHraIG7ucCMX0/hXlYB6nja44/hDKSIiHRh/fr1GDNmDBYuXIiXX34ZS5YsQbdu3RAdHQ1/f399D4+IqIQ3X/KHAAETNl7AyqPxkMvlaMqz+IgMGkMpItI7K3MpujXwQrcGXsjKL8SeK3ex+XwSDly7h5i7mYiJysS8qGsI8XZAwj0pMmQMpIiIdO3777/HsGHDMHz4cADA/PnzsXPnTixatAizZs3S8+iIiEr3xkt+AIAJGy9g9YlERLtJkHIkHlKJVM8j0y+5Qo4rSQKSWQvWohi5Qo70BwK663EMDKWIyKDYWZqhVyMf9Grkg0c5Muy8nILNF5Jw9EY6LiVlABBQ28MOa0aEwcXWQt/DJSKqkgoKCnDmzBlMnDhRY3nnzp1x9OjRUrfJz89Hfn6+6vOMjAwAygtxy2QyrY6vaH/a3q8xYi3UWAsl1gHo3cgThXI5Jm+6jDNpEpzZcU3fQzIQUvxzi7VQYi2KNHYVdPLzoqz7ZChFRAbL0cYcb7zkhzde8kNaVj62nL+DA6cv49vBzRhIERHpUFpaGuRyOTw8PDSWe3h4ICUlpdRtZs2ahcjIyBLLd+3aBRsbG52MMyoqSif7NUashRproWTqdbAFMKKOgHPpAnhpKaKnq24v6uTnRU5OTpnWYyhFREbBzc4Sbzf3g3PaRQZSRESV5Mk7oYqi+NS7o06aNAnjxo1TfZ6RkQE/Pz907twZDg4OWh2XTCZDVFQUOnXqBHNzc63u29iwFmqshRLroNaJtVDh60KNtVDTZS2KZkw/D0OpF1B0F4eyFrk8ZDIZcnJykJGRwW8Q1kKFtVBiHdRYCzXWQo21UNNlLYp+/1fluzq5ublBKpWWmBWVmppaYvZUEUtLS1haqq/zV1Sf3NxcrX8Nir6+ubm5KCws1Oq+jQ1rocZaKLEOaqyFGmuhxlqo6bIWubm5AJ7fLzGUegGZmcrb1Pv5+el5JERERKQvmZmZcHR01PcwdMLCwgJNmzZFVFQUevfurVoeFRWFXr16lWkf7JeIiIjoef0SQ6kX4O3tjcTERNjb2z91CvuLKprqnpiYqPWp7saGtVBjLZRYBzXWQo21UGMt1HRZC1EUkZmZCW9vb63u19CMGzcOAwcORLNmzdCyZUssXboUCQkJGDlyZJm2Z79UOVgLNdZCiXVQYy3UWAs11kLNEPolhlIvQCKRwNfXV6fHcHBwMPlvkCKshRprocQ6qLEWaqyFGmuhpqtaVNUZUsW9+eabSE9Px/Tp05GcnIyQkBBs27YN1atXL9P27JcqF2uhxloosQ5qrIUaa6HGWqjps19iKEVEREREpRo1ahRGjRql72EQERFRFSXR9wCIiIiIiIiIiMj0MJQyMJaWlpg6darG3WtMFWuhxloosQ5qrIUaa6HGWqixFlUbv75qrIUaa6HEOqixFmqshRproWYItRDEqnw/YyIiIiIiIiIiMkicKUVERERERERERJWOoRQREREREREREVU6hlJERERERERERFTpGEoREREREREREVGlYyhFRERERERERESVjqEUERERERERERFVOoZSRERERERERERU6RhKERERERERERFRpWMoRURERERERERElY6hFBERERERERERVTqGUkREREREREREVOkYShERERERERERUaVjKEVERERERERERJWOoRQREREREREREVU6hlJEVCErV66EIAiIj4/X2j6HDBkCOzs7re2vPMrzfNq1a4d27drpfExEREREFaGLfq2IIAiYNm1aiWOdPn1a68cioqqHoRQREREREREREVU6hlJERAZAFEXk5ubqexhERERERESVhqEUEVWqnJwcjB8/HoGBgbCysoKLiwuaNWuGtWvXllg3NjYW3bt3h52dHfz8/PDpp58iPz9fY5379+9j1KhR8PHxgYWFBWrUqIHJkydrrBcfHw9BELBy5coSx3hyynlpRFHE7NmzUb16dVhZWaFJkybYvn17qetmZGSonp+FhQV8fHwwZswYZGdnlzjuRx99hMWLF6Nu3bqwtLTEb7/99sxxAMDXX38NMzMzJCYmlnjs3XffhaurK/Ly8gAA69evR+fOneHl5QVra2vUrVsXEydO1BjL1q1bIQgCTp06pVr2119/QRAEvPLKKxr7Dw0NRd++fZ87RiIiIjJ+KSkpeP/99+Hr6wsLCwsEBgYiMjIShYWFZdr+wYMHGDp0KFxcXGBra4uePXvi5s2bJdb79ddf0bBhQ1Vf2Lt3b1y5ckX1OHsVoqqNoRQRVapx48Zh0aJFGD16NHbs2IHVq1ejX79+SE9P11hPJpPh1VdfRUREBP755x+8++67+OGHH/Ddd9+p1snLy0P79u2xatUqjBs3Dlu3bsU777yD2bNno0+fPlobc2RkJCZMmIBOnTph06ZN+OCDDzBixAjExMRorJeTk4Pw8HD89ttvGD16NLZv344JEyZg5cqVePXVVyGKosb6mzZtwqJFi/DVV19h586daNOmzXPH8v7778PMzAxLlizRWH7//n2sW7cOw4YNg5WVFQDg+vXr6N69O5YvX44dO3ZgzJgx2LBhA3r27KnaLjw8HObm5ti9e7dq2e7du2FtbY0DBw5AJpMBAFJTU3Hp0iV07NixfMUjIiIio5OSkoLmzZtj586d+Oqrr7B9+3YMGzYMs2bNwogRI8q0j2HDhkEikWDNmjWYP38+Tp48iXbt2uHhw4eqdWbNmoVhw4ahfv362LhxI3788UdcuHABLVu2xPXr1wGwVyGq8kQiogpYsWKFCECMi4sr0/ohISHia6+99sx1Bg8eLAIQN2zYoLG8e/fuYu3atVWfL168uNT1vvvuOxGAuGvXLlEURTEuLk4EIK5YsaLEsQCIU6dOferzefDggWhlZSX27t1bY7sjR46IAMTw8HDVslmzZokSiUQ8deqUxrp//vmnCEDctm2bxnEdHR3F+/fvP7MWpRk8eLDo7u4u5ufnazxniUTy1K+DQqEQZTKZeODAARGAeP78edVjrVu3Fjt06KD6vGbNmuJnn30mSiQS8cCBA6IoiuIff/whAhCvXbtW7vESERGRfpW3X3v//fdFOzs78datWxrL586dKwIQL1++rFr2tF7qab3TjBkzRFFU9ljW1tZi9+7dNdZLSEgQLS0txbfeeku1jL0KUdXFmVJEVKmaN2+O7du3Y+LEidi/f/9Tr6MkCILGjB5AOSX71q1bqs/37t0LW1tbvP766xrrDRkyBACwZ8+eCo/32LFjyMvLw9tvv62xvFWrVqhevbrGsi1btiAkJASNGjVCYWGh6qNLly4QBAH79+/XWL9Dhw5wdnYu95g++eQTpKam4v/+7/8AAAqFAosWLcIrr7yCgIAA1Xo3b97EW2+9BU9PT0ilUpibmyM8PBwANKbFR0RE4MiRI8jNzcWtW7cQGxuL/v37o1GjRoiKigKgfEfS398fwcHB5R4vERERGZctW7agffv28Pb21uhpunXrBgA4cODAc/fxtN5p3759AJQ9Vm5urqpvK+Ln54cOHTpo9HHsVYiqLoZSRFSpFixYgAkTJmDTpk1o3749XFxc8Nprr6mmaBexsbFRnYZWxNLSUnW9JABIT0+Hp6cnBEHQWM/d3R1mZmYlTgl8EUX78PT0LPHYk8vu3r2LCxcuwNzcXOPD3t4eoigiLS1NY30vL68XGlPjxo3Rpk0b/PzzzwCUjWN8fDw++ugj1TpZWVlo06YNTpw4gRkzZmD//v04deoUNm7cCAAaYWDHjh2Rn5+Pw4cPIyoqCm5ubmjcuDE6duyomiq/Z88eTocnIiIyEXfv3sXmzZtL9DT169cHgBI9TWme1jsV9VZF/5bWD3l7e2v0cexViKouM30PgIhMi62tLSIjIxEZGYm7d++qZk317NkTV69eLde+XF1dceLECYiiqBFMpaamorCwEG5ubgCgCreevEh6WUIrV1dXAMprKzwpJSVFY2aSm5sbrK2t8euvv5a6r6LxFHkyTCuP0aNHo1+/fvjvv//wv//9D7Vq1UKnTp1Uj+/duxdJSUnYv3+/anYUAI3rOBRp0aIF7OzssHv3bsTHxyMiIgKCICAiIgLz5s3DqVOnkJCQwEaPiIjIRLi5uSE0NBQzZ84s9XFvb+/n7uNpvVPNmjUBqHus5OTkEuslJSVp9E3sVYiqLs6UIiK98fDwwJAhQzBgwADExMQgJyenXNtHREQgKysLmzZt0li+atUq1eNFx7GyssKFCxc01vvnn3+ee4ywsDBYWVnhjz/+0Fh+9OhRjVMJAaBHjx64ceMGXF1d0axZsxIfxQOsiurduzf8/f3x6aefYvfu3Rg1apRGyFX0f0tLS43tnrxAOgCYm5ujbdu2iIqKwt69e1XhVps2bWBmZoYvv/xS1fgRERFR1dejRw9cunQJQUFBpfY0ZQmlntY7tWvXDgDQsmVLWFtb4/fff9dY7/bt29i7d69G38Fehajq4kwpIqpULVq0QI8ePRAaGgpnZ2dcuXIFq1evRsuWLWFjY1OufQ0aNAg///wzBg8ejPj4eDRo0ACHDx/GN998g+7du6veLRMEAe+88w5+/fVXBAUFoWHDhjh58iTWrFnz3GM4Oztj/PjxmDFjBoYPH45+/fohMTER06ZNKzEtfcyYMfjrr7/Qtm1bjB07FqGhoVAoFEhISMCuXbvw6aefokWLFuV6jk8jlUrx4YcfYsKECbC1tS1xPYZWrVrB2dkZI0eOxNSpU2Fubo4//vgD58+fL3V/ERER+PTTTwFAVTdra2u0atUKu3btQmhoKNzd3bUydiIiIjJs06dPR1RUFFq1aoXRo0ejdu3ayMvLQ3x8PLZt24bFixfD19f3mfs4ffq0Ru80efJk+Pj4YNSoUQAAJycnTJkyBV988QUGDRqEAQMGID09HZGRkbCyssLUqVM19sdehahqYihFRJWqQ4cO+Pfff/HDDz8gJycHPj4+GDRoECZPnlzufVlZWWHfvn2YPHky5syZg3v37sHHxwfjx48v0cjMmzcPADB79mxkZWWhQ4cO2LJlS5lmL02fPh22trZYuHAhVq9ejTp16mDx4sWYO3euxnq2trY4dOgQvv32WyxduhRxcXGwtraGv78/OnbsqNWZUgDw5ptvYsKECRg4cCAcHR01HnN1dcXWrVvx6aef4p133oGtrS169eqF9evXo0mTJiX2VdTcBQcHa1zAvWPHjti3bx+nwxMREZkQLy8vnD59Gl9//TXmzJmD27dvw97eHoGBgejatWuZbtSyfPlyrF69Gv3790d+fj7at2+PH3/8ES4uLqp1Jk2aBHd3dyxYsADr16+HtbU12rVrh2+++abEBcvZqxBVTYIoiqK+B0FEROX3008/YfTo0bh06ZLqwqNERERERETGgqEUEZGROXv2LOLi4vD+++/j5ZdfLnFNLSIiIiIiImPAUIqItEIURcjl8meuI5VKK3THuapOLpfjWT+SBUGAVCpFQEAAUlJS0KZNG6xevbrUWy4TERERPYn9GhEZGt59j4i04rfffoO5ufkzPw4cOKDvYRq0iIiIZ9YvKCgIABAfH4+8vDxERUUxkCIiIqIyY79GRIaGM6WISCvS09MRFxf3zHVq164Ne3v7ShqR8YmJiUFmZuZTH7e0tESDBg0qcURERERUlbBfIyJDw1CKiIiIiIiIiIgqnZm+B2CMFAoFkpKSYG9vz/OtiYiITIwoisjMzIS3tzckEl4J4WnYLxEREZmusvZLVSKUWrhwIebMmYPk5GTUr18f8+fPR5s2bZ66/oEDBzBu3DhcvnwZ3t7e+PzzzzFy5MgyHy8pKQl+fn7aGDoREREZqcTERPj6+up7GAaL/RIRERE9r18y+lBq/fr1GDNmDBYuXIiXX34ZS5YsQbdu3RAdHQ1/f/8S68fFxaF79+4YMWIEfv/9dxw5cgSjRo1CtWrV0Ldv3zIds+gc68TERDg4OGj1+chkMuzatQudO3eGubm5VvdtbFgLNdZCiXVQYy3UWAs11kJNl7XIyMiAn58fr7nyHOyXKgdrocZaKLEOaqyFGmuhxlqoGUK/ZPSh1Pfff49hw4Zh+PDhAID58+dj586dWLRoEWbNmlVi/cWLF8Pf3x/z588HANStWxenT5/G3LlzyxxKFU1Bd3Bw0EmTZWNjAwcHB36DsBYqrIUS66B28uY97E+zw+1TqZCa+OlDcoUCsawFANaiOLlCgfw8W53+vOApac/GfqlysBZqrAVQKFfg8PVUnHxkiy4WNnCwt9b3kPSKrwk11kKNtVCrjFo8r18y6lCqoKAAZ86cwcSJEzWWd+7cGUePHi11m2PHjqFz584ay7p06YLly5dDJpOV+oXIz89Hfn6+6vOMjAwAyi+gTCar6NPQULQ/be/XGLEWaqyFEuugtP1SCsZuuAi5KMHOOzf1PRwDwVqosRZFWrkLOvl5Yeo/g4jIsMgVIk7G3ceWC0nYcSkF6dkFAKSIW3UGq4a1gIOVaf/RTUSGzahDqbS0NMjlcnh4eGgs9/DwQEpKSqnbpKSklLp+YWEh0tLS4OXlVWKbWbNmITIyssTyXbt2wcbGpgLP4OmioqJ0sl9jxFqosRZKplyHs+kCVl2TQAEBtR0VcDftN0CJnqmGvaiTnxc5OTla3ycRUXkoFCLOJDzAlvNJ2HYpBfcy1W+gO9uYIy+/AOcSH2HQ8pNYNaw5gykiMlhGHUoVeXI6mCiKz5wiVtr6pS0vMmnSJIwbN071edG5kZ07d9bJdPSoqCh06tSJUwlZCxXWQsnU67D9UgpWn7gIBUT0CvVEO5vb6NLZNGtRnKm/LopjLdR0WYuiGdNERJVJFEWcTXyILeeTse1iMlIy8lSPOVqbo2t9T7wS6oWX/B3w68YdWHbdGucSHzKYIiKDZtShlJubG6RSaYlZUampqSVmQxXx9PQsdX0zMzO4urqWuo2lpSUsLS1LLDc3N9dqo5tfKMe1e7lIzAKu3M2BIJVCFEUoROW7IQoRUIji44/H/y+2vGhduUJ8/DnU6yqe2K7EtoBcLLbd48fkqv0+7Zjq4ylEqNaVK1ByO1GEQgGNdeUltlN/LooiqgsCukrNTP6PqyLafs0ZK1Osw5YLSRj7fxchV4jo28QXM3vVxc4dt6tsLeRyeZlPkZLL5TAzM4NcLn/m7WZNAWuhVpFamJubQyqVPvNxIqLKIIoiLt55hK0XkrHlQjLuPMxVPWZvaYZO9T3QM9QbL9d0g4WZ8medTCaDry3w29CmGLzyDIOpKqw8/ZJMJoOZmRny8vIgl8t1PDLDxlqoVaQWz+uXysqoQykLCws0bdoUUVFR6N27t2p5VFQUevXqVeo2LVu2xObNmzWW7dq1C82aNdN7k5nyKA+vLToOwAy4eEKvYzEUpyHF3dX/4fs3G8Hd3krfwyHSiy0XkvDJunOqQGr266FQyAv1PSydEEURKSkpePjwYbm28fT0RGJioslfeJq1UKtoLZycnODp6WnydSSiyieKIqKTM7D1QjK2XkzGrXT1KcO2FlJ0rOeBHqHeaFvLDZZmT/+DsJ6XA/4Y3gJv/3IC5xIfYuDyk1jNYKpKYL9UMayFmiH0S0YdSgHAuHHjMHDgQDRr1gwtW7bE0qVLkZCQgJEjRwJQnnp3584drFq1CgAwcuRI/O9//8O4ceMwYsQIHDt2DMuXL8fatWv1+TQAAGZSCTzsLZGfnwcba2tIJAKkEgESQYAgABJBgLTY/yWSx/8KAiRCsf8XW67aTqJcR3i8rlQiPP7/E9s+Zd9F60ofLy+5H6i3lzxlv8XWlZYyPuGJ9ePSMvFD1DUcjk1H9x8PYU6/hmhf213fXyaiSlU8kHq9qS++6xsKqUSAooq+qVPUYLm7u8PGxqZMv+AUCgWysrJgZ2dn8rODWAu1F62FKIrIyclBamoqAJR6rUkiIl24djcTW84nYcuFZNxMy1YttzaXokNdd/QM9UK72u6wMi/7zIT63o6qYOo8g6kqg/1SxbAWaobQLxl9KPXmm28iPT0d06dPR3JyMkJCQrBt2zZUr14dAJCcnIyEhATV+oGBgdi2bRvGjh2Ln3/+Gd7e3liwYAH69u2rr6eg4uNkjcOfh2Pbtm3o3r2t3mdu6ZtM5gZpyhVsTHFCzN0sDF1xCu++HIgJ3Wo/810hoqpi8/kkjFlfMpCqquRyuarBetrp1KVRKBQoKCiAlZUVGwvWQqUitbC2Vt5BIDU1Fe7u7lqZmk5EVJob97Kw5Xwytl5MwrW7WarllmYStK/tjldCvRBR1x02Fi/+Z1t9b0esGR6Gt345rgqmVr3bHI7Wpv23hrFiv1RxrIWaIfRLRh9KAcCoUaMwatSoUh9buXJliWXh4eH477//dDwq0gZPG+Cv91tg7u4bWHk0Hr8eicPxm+lYMKAxarrb6Xt4RDpTPJDq19QX31bxQAqA6poIurqrKVF5FL0OZTIZQyki0qpb6dnY8vgaUVeS1TdOsJBK0LaWG3qEeqNjPQ/YWWrvT7V63g5YMzwMbz8Opgb9ymDKWLFfIkOijX6pSoRSVLVZmksx7dX6aBPshs/+vIDo5Az0/Okwpvashzdf8jP584Cp6nkykPqubygkVTyQKo7f02QI+DokIm1KvJ+DbReVQdTFO49Uy80kAloHK4OoTvU8dBoS1fN2wB/Fg6nlJ7BqWAsGU0aKv6fIEGjjdchQioxGRF0P7PikDcZtOI/DsWmYuPEiDl6/h1m9Q+Fow1+mVDVsPp+ET9adhUKESQZSREREVUXyo1zVXfPOJT5ULZdKBLQKckWPUC90qe8JJxuLShuTRjB1+xGDKSLSO4ZSZFTcHayw6t3mWHboJubsjMG2iyk4l/AQ8/s3RvNAF30Pj6hC/j2fhDEMpIiIiIxWakaeakbU6VsPVMsFAQgLdEWPhl7oWt8TrnaWehsjgykiMiSmfVUvMkoSiYD3w4OwcVQrBLjaIOlRHvovPYbvo66hUK7Q9/CIXkjxQOqNZgykyHBMmzYNHh4eEAQBmzZt0vdwiIgMTlpWPlYfv4X+S4+hxaw9mLY5WhVIvRTgjMhX6+PEFxFY+14Y3m5RXa+BVJF63g5YMyIMzjbmOH/7EQYuP4FHuTJ9D4vIaLFfenEMpchohfo6YcvoNujbxBcKEViw5zr6Lz2O2w9y9D00onL559wdjUDq2z4MpIyJIAjP/BgyZAgAYN++fWjfvj1cXFxgY2OD4OBgDB48GIWFhQCA/fv3QxAEPHz4UONzQRAgkUjg6OiIxo0b4/PPP0dycvIzxxQfH68xBkdHR4SFhWHz5s3lem5XrlxBZGQklixZguTkZHTr1q3c9SEiqooeZBdg3ckEvPPLCTSfuRtTNl3C8Zv3IYpAY38nTOlRD8cnReD/RrbC4FYBcLe30veQS6jrpQymXGwtcKEomMphMEW6wX6JnoahFBk1O0szzHujIX7s3wj2lmY4fesBuv14CFsuJOl7aERl8s+5Oxi7/hwDKSOWnJys+pg/fz4cHBw0lv3444+4fPkyunXrhpdeegkHDx7ExYsX8dNPP8Hc3BwKxbNneMbExCApKQmnTp3ChAkTsHv3boSEhODixYvPHdvu3buRnJyMEydOoHnz5ujbty8uXbpU5ud248YNAECvXr3g6ekJS8sXe3e/6E5BRETG7FGuDP93OhGDfz2Jl2buxsSNF3E4Ng0KEQj1dcQX3evg8IT2+HvUyxjWOhCejoYXRD2prpcD/hjeQh1M/cpginSD/dLzmWq/xFCKqoRejXyw7ZM2aOzvhMy8Qny05iw+//M8svML9T00oqcqHki92cyPgVQpRFFETkHhcz9yC+RlWq88H6IolmmMnp6eqg9HR0cIglBiWVRUFLy8vDB79myEhIQgKCgIXbt2xS+//AILi2df4Nbd3R2enp6oVasW+vfvjyNHjqBatWr44IMPnjs2V1dXeHp6ok6dOpg5cyZkMhn27dunevzOnTt488034ezsDFdXV/Tq1Qvx8fEAlNPQe/bsCQCQSCQad1dZsWIF6tatCysrK9SpUwcLFy5UPVb0ruOGDRvQrl07WFlZ4ffffy/zdhs3bkT79u1hY2ODhg0b4tixYxrP6ciRIwgPD4eNjQ2cnZ3RpUsXPHigPE1GFEXMnj0bNWrUgK2tLVq3bo0///xTte2DBw/w9ttvo1q1arC2tkZwcDBWrFjx3DoSkenKzJPh77O3MWzlKTSbEYXP/ryAA9fuoVAhop6XAz7vWhsHPmuHfz9qjffaBsHX2UbfQy435YwpdTD1DmdMGR32S+yXjLlf4oXOqcrwc7HBhvdb4sfd1/Hz/lhsOH0bp+MfYMGAxgjxcdT38Ig0PBlIzerTgIFUKXJlctT7aqdejh09vQtsLLTza9LT0xPJyck4ePAg2rZtW6F9WVtbY+TIkRg7dixSU1Ph7u7+3G1kMhmWLVsGADA3V17INicnB+3bt0ebNm1w8OBBmJmZYcaMGejatSsuXLiA8ePHIyAgAEOHDtWY/r5s2TJMnToV//vf/9C4cWOcPXsWI0aMgK2tLQYPHqxab8KECZg3bx5WrFgBS0vLMm83efJkzJ07F8HBwZg8eTIGDBiA2NhYmJmZ4dy5c4iIiMC7776LBQsWwMzMDPv27YNcLgcAfPnll9i4cSMWLVqEoKAg7Nq1C4MGDYKHhwfCw8MxZcoUREdHY/v27XBzc0NsbCxyc3Mr9PUgoqonO78Qe66mYsv5JOy/dg8FheoZGrU97PFKqBd6hHqhRjU7PY5Su+p4KoOpt5adwMU7ymDq92EteIdrI8F+qST2S8bTLzGUoirFXCrB+C610TrYDWPXn8PNtGz0XngEn3epg2GtA/lHPxmETWfvYNwGZSDV/yU/fNObgVRV169fP+zcuRPh4eHw9PREWFgYIiIiMGjQIDg4OJR7f3Xq1AGgfLfsWU1Wq1atIJFIkJubC4VCgYCAALzxxhsAgHXr1kEikeCXX35Rvau3YsUKODk5Yf/+/ejcuTOcnJwAKJvEIl9//TXmzZuHPn36AAACAwMRHR2NJUuWaDRLY8aMUa1Tnu3Gjx+PV155BQAQGRmJ+vXrIzY2FnXq1MHs2bPRrFkzjXcM69evDwDIzs7G999/j71796Jly5ZQKBR46623cObMGSxZsgTh4eFISEhA48aN0axZMwBAQEBAOapORFVZboEc+2JSsfVCMvZcvYs8mTqIqlHNFj1CvdEj1Au1POz1OErdYjBF+sZ+yTT7JYZSVCWF1XDF9k/aYMJfF7Dz8l3M3HYFB6/fw7w3GhrkhSbJdDCQKh9rcymip3d55joKhQKZGZmwd7CHRKK9s9KtzaVa25dUKsWKFSswY8YM7N27F8ePH8fMmTPx3Xff4eTJk/Dy8irX/oqmyhefIl6a9evXo06dOrh27RrGjBmDxYsXw8XFBQBw5swZxMbGwt5e8w+svLw81bURnnTv3j0kJiZi2LBhGDFihGp5YWEhHB01Z6QWNTLl3S40NFT1/6K6pKamok6dOjh37hz69etX6tiio6ORl5eHTp06aSwvKChA48aNAQAffPAB+vbti//++w+dO3fGa6+9hlatWpW6PyKq+vJkchy8dg9bLiRj95W7yCmQqx6r7mqDHqFe6BHqjTqe9s/9eVtV1PF0wNoRYRiw7Dgu3nmEt5cfxx/DwhhMGTj2S6Vjv1SSIfZLDKWoynKyscDid5pizckEfL0lGoeup6H7j4cwp19DtK/9/OmbRNr299nb+HTDeShEYEBzP8x8jYHU8wiC8Nwp4QqFAoUWUthYmGm1ydIFHx8fDBw4EAMHDsSMGTNQq1YtLF68GJGRkeXaz5UrVwA8/50rPz8/BAcHIzg4GHZ2dujbty+io6Ph7u4OhUKBpk2b4o8//iixXbVq1UrdX9FFRpctW4YWLVpoPCaVajaltra2L7Rd0XR5QN1EFm1vbW391OdatM7WrVvh4+MDhUKBrKws2NnZqbbr1q0bbt26ha1bt2L37t2IiIjAhx9+iLlz5z51v0RUtRQUKnA49h62nE9GVPRdZBa7/qiPkzV6NPRCjwbeCPFxMJkg6km1Pe2xdkQY3lp2HJfuZODt5cfx+7AWcLJ59jV9SH/YL5WO/dLTx2ZI/RJDKarSBEHA2y2qo3mACz5eexZXUzIxdMUpvPtyICZ0qw1LM+0l+0TPwkCKnuTs7AwvLy9kZ2eXa7vc3FwsXboUbdu2fWozVJrw8HCEhIRg5syZ+PHHH9GkSROsX78e7u7uZZ4S7+HhAR8fH9y8eRNvv/12mY/9ots9KTQ0FHv27Cm1Ka1Xrx4sLS2RkJCA8PBwKBQKZGRkwMHBQaP5rlatGoYMGYIhQ4agTZs2+OyzzxhKEVVxMrkCR2+kY8v5JOy8nIKMPHUQ5elgpbpGVCM/J5MNop5U29Mea4oFU0Wn8jGYosrGfqn8jK1fYihFJiHYwx6bPnwZ326/ipVH4/HrkTgcv5mOBQMao6Z71blIJRkmzUDKHzNfC2EgZWKWLFmCc+fOoXfv3ggKCkJeXh5WrVqFy5cv46effnrmtqmpqcjLy0NmZibOnDmD2bNnIy0tDRs3biz3OD799FP069cPn3/+Od5++23MmTMHvXr1wvTp0+Hr64uEhARs3LgRn332GXx9fUvdx7Rp0zB69Gg4ODigW7duyM/Px+nTp/HgwQOMGzfuqcd+0e2KmzRpEho0aIBRo0Zh5MiRsLCwwL59+9CvXz+4ublh/PjxGDt2LBQKBVq1aoXk5GRcuHAB9vb2GDx4ML766is0bdoU9evXR35+PrZs2YK6deuWu45VwcGDBzFnzhycOXMGycnJ+Pvvv/Haa6+pHhdFEZGRkVi6dCkePHiAFi1a4Oeff1Zdk4LI0MkVIo7fTMeWC8nYcSkZD4rdTa6avSVeaaAMopr4O/N38lM8GUy9/csJ/DGcwRTpDvsl0+yXKhRKFb8gV1ktXry4TFe+J9I2K3Mppr1aH22C3fDZnxcQnZyBnj8dxtSe9fDmS358Z4x04u+ztzFuw3mIDKRMWvPmzXH48GGMHDkSSUlJsLOzQ/369bFp0yaEh4c/c9vatWtDEATY2dmhRo0a6Ny5M8aNG6dxMc2y6tGjBwICAjBz5kwsXLgQBw8exIQJE9CnTx9kZmbCx8cHERERz3wncPjw4bCxscGcOXPw+eefw9bWFg0aNMCYMWOeeewX3a64WrVqYdeuXfjiiy/QvHlzWFtbo0WLFhgwYAAA5cVB3d3dMWvWLNy8eROOjo5o0qQJJk+eDACwsLDApEmTEB8fD2tra7Rp0wbr1q0r8/H1RRf9VnZ2Nho2bIihQ4eib9++JR6fPXs2vv/+e6xcuRK1atXCjBkz0KlTJ8TExJS4rgaRoZArRMRmANM2X8HO6LtIyypQPeZqa4FuDTzRI9QbLwW4QMrfxWVS29Mea98Lw4Clx3E5icEU6Rb7JdPslwSx6OpfL0AikeCNN9545jmLxa1ZswZXrlxBjRo1XvSQBiEjIwOOjo549OjRC90F4FlkMhm2bduG7t27a5wnaop0WYvUjDyM23Aeh2PTAADdG3hiVu9Qg72II18XSsZWh43/3can/6cMpN5q4Y8ZvbQXSBlbLcoiLy8PcXFxCAwMhJVV2W9I8LRpx6aItVCraC2e9XrUZR9QGl33W4IgaMyUEkUR3t7eGDNmDCZMmAAAyM/Ph4eHB7777ju8//77pe4nPz8f+fn5qs8zMjLg5+eHtLQ0nfRLUVFR6NSpU5X5GfiiWAugUK7A+tO3sehAHO5mql+DTtbm6FLfHd1CPNEiwBlmUtP4uaiL18T1u1kYuOI00rMLUM/LHr8NaQYnA+2bi6uK3x95eXlITExEQEBAufolURSRmZkJe3vTuXD/07AWahWtRV5eHuLj4+Hn51dqv+Tm5vbcfqnCp+8tWLCgzDOf/vzzz4oejkgr3B2ssOrd5lh26Cbm7IzBtospOJfwEPP7N0bzQBd9D4+qAF0GUkRkeiqz34qLi0NKSgo6d+6sWmZpaYnw8HAcPXr0qaHUrFmzSr1+xa5du2BjY1OhMT1NVFSUTvZrjEy1FtEPBGy6JcHdXOXvWGupiAYuIpq4iqjlWAip5BYexdzCrhg9D1QPtP2aGFET+F+0FNHJmei9YC9G1ZXD1khynqr0/WFmZgZPT09kZWWhoKDg+Rs8ITMzUwejMk6shdqL1qKgoAC5ubk4ePAgCgsLNR7Lyckp0z4qFErt27dPdavEsti+fTt8fHwqckgirZFIBLwfHoSWQa4YvfYs4tNz0H/pMXzUIRijO9Q0mXfTSPv+OnMb4/9UBlJvt/DH1wykiKgCKrvfSklJAaC84GpxHh4euHXr1lO3mzRpksb1LopmSnXu3JkzpXTIVGtx7W4mvt1xDYdi0wEAzjbm+Cg8EE73o9Gti2nV4km6fE20Tc3CwF9P43Z2AVbfdsZvQ5vC2YBP5auK3x9FM6Xs7Ow4U+oFsRZq2pgpZW1tjbZt25Y6U6osKhRKPe+8zie1bt26Iocj0olQXydsGd0GU/+5jL/+u40Fe67jaGwa5vdvBF9n3byzS1UXAyki0jZ99VtPNqeiKD6zYbW0tISlpWWJ5ebm5jr7Y1CX+zY2plKLtKx8/BB1DWtPJkAhAuZSAUNfDsSH7WvCxgzYti3aZGrxPLqoQz0fZ6x7LwwDlh3HlZRMDFn5H/4Y3gLOtoYbTAFV6/tDLpdDEARIJJJynZ6uUCgAQLWtKWMt1CpaC4lEAkEQSv0eK+v3nNbvvpeamorU1FTVkysSGhqq7UMRaY2dpRnmvdEQbWu54cu/L+H0rQfo9uMhzOrTAD1CvfU9PDISf565jc8eB1LvhPlj+qsMpF5EBS51SKQ1hv461GW/VXRR2JSUFHh5eWkc88nZU0SVJU8mx8qj8fh5bywy85WniHQL8cTEbnVQ3dUWgHJWDOlesIc91o4Iw4BlJxCdrL74uaEHU1WNof+eItOgjdeh1kKpM2fOYPDgwbhy5YpqYIIgqN5Vk8vl2joUkc70auSDJv7OGL3uLM4mPMRHa87i4LV7mNqzPmwttZ7hUhXCQKriit5NycnJKfMFnYl0peg6CIb2znpl9FuBgYHw9PREVFQUGjduDEB5zYgDBw7gu+++q/D+icpDFEVsu5iCb3dcQeL9XABAAx9HTOlRj9cB1SNlMNVCFUy99csJrGEwVSnYL5Eh0Ua/pLW/socOHYpatWph+fLl8PDwMPlzM8l4+bnYYMP7LfHj7uv4eX8sNpy+jdPxD7BgQGOE+Djqe3hkgP7vdCI+/+uCKpD6ulcIfwa+AKlUCicnJ6SmpgIAbGxsylRHhUKBgoIC5OXlcQo2a6HyorUQRRE5OTlITU2Fk5MTpFKpDkdZftrqt7KyshAbG6v6PC4uDufOnYOLiwv8/f0xZswYfPPNNwgODkZwcDC++eYb2NjY4K233tLWUyF6rnOJDzFjSzRO33oAAPBwsMTnXeqgd2MfvvFjAII97LHuvRbov/QErjwOpv4Y3gIuDKZ0iv1SxbEWaobQL2ktlIqLi8PGjRtRs2ZNbe2SSG/MpRKM71IbrYPdMHb9OdxMy0bvhUfweZc6GNY6kI0QqTCQ0q6i04aKGq2yEEURubm5sLa2NvnasxZqFa2Fk5OT6vVoSLTVb50+fRrt27dXfV50gfLBgwdj5cqV+Pzzz5Gbm4tRo0bhwYMHaNGiBXbt2gV7e/sKHZeoLJIe5mL2jqvYdC4JAGBtLsX74TXwXtsasLHgzHVDUtNdM5h6m8FUpWC/VDGshZoh9Eta+6keERGB8+fPM5SiKiWshiu2f9IGE/66gJ2X72Lmtis4eP0e5r3REO72Zb/bBVVNG04nYsLjQGpgWHVM71Xf5H+xVZQgCPDy8oK7u3uZrw0ik8lw8OBBtG3b1uBOtapsrIVaRWphbm5ucDOkimir32rXrt0zrwMhCAKmTZuGadOmVeg4ROWRnV+IJQduYOmhm8iTKa+X1reJLz7rUhuejuy7DNWTwdRby45jzYgwBlM6xH6pYlgLNUPol7QWSv3yyy8YPHgwLl26hJCQkBJP6NVXX9XWoYgqlZONBRa/0xRrTibg6y3ROHQ9Dd1/PIQ5/RqifW13fQ+P9ISBlG5JpdIy/5KTSqUoLCyElZWVyTcWrIVaVa0F+y2qiuQKEX/9dxtzd8YgNTMfANA80AVTXqmHBr68dIIxUAZTYei/9DiupmQymKok7JdeDGuhZgi10FoodfToURw+fBjbt28v8RgvdE7GThAEvN2iOpoHuODjtWdxNSUTQ1ecwrsvB2JCt9qwNDPMd9RJNzacSsSEjcpAalDL6oh8lYEUEVUO9ltU1Ry7kY6vt0QjOjkDAODvYoMvutdBl/qe/N1qZGq622Hde2EYsIzBFBGVndau6jV69GgMHDgQycnJUCgUGh9skKiqCPawx6YPX8aQVgEAgF+PxKH3z0cRm5ql34FRpWEgRUT6xH6Lqoq4tGy8t+o0Biw7jujkDNhbmWFy97qIGtcWXUO8+LvVSNV0t8PaEWGoZm+pCqbuZxfoe1hEZMC0Fkqlp6dj7Nix8PDw0NYunyk+Ph7Dhg1DYGAgrK2tERQUhKlTp6Kg4Nk/9IYMGQJBEDQ+wsLCKmXMVDVYmUsx7dX6WD64GVxsLRCdnIGePx3GupMJz7w+Bxm/4oHUYAZSRKQHld1vEWnboxwZvt4Sjc4/HMCu6LuQSgQMalkdBz5rjxFta3D2eRXAYIqIykNroVSfPn2wb98+be3uua5evQqFQoElS5bg8uXL+OGHH7B48WJ88cUXz922a9euSE5OVn1s27atEkZMVU1EXQ/s+KQNWtd0Q65MjokbL+LDNf/hUU7ZLjZIxuXJQGoaAyki0oPK7reItEUmV2DlkTiEz92H5YfjIJOLaF+7GnZ80gbTe4XwFK8qpuhUvuLBVHpWvr6HRUQGSGvXlKpVqxYmTZqEw4cPo0GDBiUukjV69GhtHQqAMljq2rWr6vMaNWogJiYGixYtwty5c5+5raWlpUHe5pmMj7uDFVa92xzLDt3EnJ0x2HYxBecSHmJ+/8ZoHuii7+GRlhQPpIa0CsDUnvUYSBGRXlR2v0VUUaIoYu/VVMzcdgU372UDAGp52OHLV+qhba1qeh4d6VJQtcfXmHp88fO3fzmBP4a3gKudpb6HRkQGRKt337Ozs8OBAwdw4MABjccEQaiUJunRo0dwcXl+ELB//364u7vDyckJ4eHhmDlzJtzdn34Xtfz8fOTnq5P9jAzlhRhlMlmZb8FZVkX70/Z+jZEx1eLdVv54qbojxm64iFv3c9B/6TGMCq+BD9vVgJm04hMSjakWuqSPOvzfmdv4YlM0AGBgmD++6BqMwsLCSjv+0/A1ocZaqLEWarqshT7rawj9FlFZXUnOwMytV3A4Ng0A4GprgXGda+HNZn5a6Y/I8AVVs8NaBlNE9AxaC6Xi4uK0tasXcuPGDfz000+YN2/eM9fr1q0b+vXrh+rVqyMuLg5TpkxBhw4dcObMGVhalv7DcdasWYiMjCyxfNeuXbCxsdHK+J8UFRWlk/0aI2OqxaiawF9xEpy8J8H/9t/E1jM3MChYDhct/d41plroUmXV4dhdAetuKq9t0dZTgaa4ie3bb1bKscuKrwk11kKNtVDTRS1ycnK0vs+y0ne/RVQWqZl5+H7XNWw4nQiFCFhIJXi3dSA+bB8EeyvTvv26KXoymHpr2QmsGcFgioiUtBZKacu0adNKDYCKO3XqFJo1a6b6PCkpCV27dkW/fv0wfPjwZ2775ptvqv4fEhKCZs2aoXr16ti6dSv69OlT6jaTJk3CuHHjVJ9nZGTAz88PnTt3hoODQ1meVpnJZDJERUWhU6dOJabkmxpjrUUfAJsvJOOrf68gLrMQ30dbYcar9dC9wYufMmqstdC2yqzDhtO3se6YcobUoDB/fNm9tkGdssfXhBprocZaqOmyFkUzpolIU55MjuWH47BwXyyyC5R3g3wl1AsTu9aBn4tu3sgl41B0Kl//pccRc1cZTP0xogXcGEwRmbwKh1LTp08v03pfffVVmdb76KOP0L9//2euExAQoPp/UlIS2rdvj5YtW2Lp0qVlOkZxXl5eqF69Oq5fv/7UdSwtLUudRWVubq6zpl+X+zY2xliLPk398VKgG0avO4uzCQ/xyYYLOHLzPqb2rA9byxf/tjPGWuiCruuw7mQCJv+jDKSGvhyAr3oY7jWk+JpQYy3UWAs1XdRCH7XVdr9FpE2iKGLzhWR8t/0q7jzMBQA09HPCVz3qoml1XmOTlGo8EUy9zWCKiKCFUOrvv/9+6mOCICAmJgZ5eXllbpLc3Nzg5uZWpnXv3LmD9u3bo2nTplixYgUkkvKfm56eno7ExER4eXmVe1uiZ/FzscGG91vix93X8fP+WGw4fRun4x9gwYDGCPFx1Pfw6CnWnkzApI0XARh+IEVEpkPb/RaRtvyX8ABfb4nG2YSHAAAvRytM6FoHrzb0hkTC35+kqSiYGrCsaMbUcawZEcZgisiEVTiUOnv2bKnLz507h4kTJ+LSpUsYMWJERQ9TQlJSEtq1awd/f3/MnTsX9+7dUz1W/M56derUwaxZs9C7d29kZWVh2rRp6Nu3L7y8vBAfH48vvvgCbm5u6N27t9bHSGQulWB8l9poHeyGsevP4WZaNnovPILPu9TBsNaBbNYMDAMpIjJU+uq3iJ7m9oMczN4Rg3/PJwEAbCyk+CA8CMPb1IC1hVTPoyNDVqOaHdaOUAZT1+5mMZgiMnFav+1FXFwc3nnnHbz00ktwdHTE5cuXsXjxYm0fBrt27UJsbCz27t0LX19feHl5qT6Ki4mJwaNHjwAAUqkUFy9eRK9evVCrVi0MHjwYtWrVwrFjx2Bvb6/1MRIVCavhiu2ftEGX+h6QyUXM3HYFg1ecRGpmnr6HRo+tOaEOpN59OZCBFBEZtMrqt4ielJVfiNk7rqLDvAP493wSBAF4o5kv9o1vh48jghlIUZkoZ0y1hIeDpSqYSsvKf/6GRFTlaC2USktLw8cff4w6deogOTkZR48exfr16xEcHKytQ2gYMmQIRFEs9aM4URQxZMgQAIC1tTV27tyJ1NRUFBQU4NatW1i5ciX8/Px0Mkai4pxsLLD4naaY2TsEVuYSHLqehu4/HsK+mFR9D83krTmRgC/+VgdSU3rUZSBFRAapsvstoiJyhYh1JxPQbs5+LNx/AwWFCoTVcMHmj1pj9usN4eFgpe8hkpEJdLPVCKYGLGUwRWSKKhxKZWdnIzIyEkFBQTh69Cg2b96MPXv24KWXXtLG+IiqFEEQ8HaL6tj8UWvU8bRHWlYBhq44hembo5FfKNf38EzSHyduqQKpYa0ZSBGRYWK/Rfp0JDYNryw4hIkbLyItKx8BrjZYOrAp1o4I43UyqUKKgilPBytcT1UGU/cyGUwRmZIKX1MqKCgImZmZ+PjjjzFgwAAIgoALFy6UWC80NLSihyKqMoI97LHpw5fx7farWHk0Hr8eicPxm+lYMKAxarrb6Xt4JuOPE7cw+e9LAJSB1JevMJAiIsPEfov04ca9LHyz9Qr2XFXO6nawMsMnHWthYFh1WJhp/SogZKIC3Wyx9r0wDFh6HNdT1deYqmbPa0wRmYIKh1KpqcpfUrNnz8acOXM0Tp8TBAGiKEIQBMjlnAVCVJyVuRTTXq2PNsFu+OzPC4hOzkDPnw5jas96ePMlP4YjOvb78Vv4cpMykBreOhCTGUgRkQFjv0WV6UF2AX7ccx2/H7+FQoUIM4mAd8Kq45OIYDjbWuh7eFQFKWdMhaE/gykik1PhUCouLk4b4yAyWRF1PbDjkzYYt+E8DsemYeLGizh4/R5m9Q6Fo425vodXJTGQIiJjw36LKkNBoQKrj9/Cgj3X8ShXBgDoWNcdk7rXRVA1zuQm3Qp4IpgasOw41jKYIqryKhRKXbhwASEhIZBIyjZ99/Lly6hduzbMzCqchRFVKe4OVlj1bnMsO3QTc3bGYNvFFJxLeIj5/RujeaCLvodXpaw+fgtTHgdSI9oE4ovuDKSIyLCx3yJdE0URUdF3MWv7VcSlZQMA6nja48tX6qF1sJueR0empCiYGrDsOGIfB1NrRrSAuz0vpE9UVVXoZPDGjRsjPT29zOu3bNkSCQkJFTkkUZUlkQh4PzwIG0e1QoCrDZIe5aH/0mP4PuoaCuUKfQ+vSmAgRUTGiP0W6dKlO4/w1rITeG/1GcSlKZ/EXAABAABJREFUZcPNzhLf9mmAraPbMJAivQhws8XaEWHwcrRCbGoW3lp2AqmZefoeFhHpSIXeQhNFEVOmTIGNjU2Z1i8oKKjI4YhMQqivE7aMboOp/1zGX//dxoI913Hk+j00sBLQ+FEe/N14St+LWH0sHlP+uQwAeK9tDUzqVoeBFBEZBfZbpAupGXmYszMGf/53G6IIWJhJMKJNID5oVxN2lpxlR/pV/FS+2Md35Vv7XhhnTBFVQRX6jdO2bVvExMSUef2WLVvC2tq6IockMgl2lmaY90ZDtK3lhi//voQzCQ9xBlKsnHsQng5WaOzvhMb+Tmji74wQH0dYmUv1PWSDxkCKiIwZ+y3SptwCOZYduonFB24gp0B5YfyeDb0xoWtt+DqXLfgkqgzVXdXB1I172QymiKqoCoVS+/fv19IwiKg0vRr5oIm/M5YeiMW+SwlIzpUgJSMP2y+lYPulFACAmURAPW8HNPZzQpPqzmjs5ww/F2uGLo+tOhaPrx4HUu+3rYGJDKSIyMiw3yJtUChE/Hs+Cd/tuIrkR8pToRr7O+HLV+qhaXVnPY+OqHRFwdSA4sHUiDC4OzCYIqoqODeXyMD5udjgqx510UwSh3YdI3D1bg7OJj7E2YQH+C/hIe5l5uPC7Ue4cPsRfjt2CwDgZmeBRn7OqhlVDX2dYGuCU/EZSBEREQGn4+/j6y3ROH/7EQDAx8kaE7rVQc9QL/5eJINX3dUWa4sHU8sYTBFVJab3VyqREbOxMEOLGq5oUcMVgPI6I3ce5uJswkP8l/AAZxMe4nLSI6RlFWD3lbvYfeUuAEAiALU9HZQh1eMZVYGutpBIqm4jqhFIhdfAxK4MpIiIyLQk3s/Bt9uvYuvFZACArYUUo9rXxLDWgTz1n4yKcsZUS/Rfegw37mWj/7LjWMdgiqhKYChFZMQEQYCvsw18nW3Qs6E3ACBPJsflpAycTXignFF16wGSHuXhSnIGriRnYM0J5R2ZHK3N0chPeV2qxv5OaOjnBEfrqnERdQZSRERkyjLyZPh5XyxWHI5HgVwBiQC8+ZIfxnaqxevxkNHyd7VRBVM3GUwRVRkMpYiqGCtzKZpWd9a4PkTKozycS3ygmlF14fYjPMqV4cC1ezhw7Z5qvZrudmji74TGj4OqYHd7SI1sNtVvR+Mx9V9lIDUyPAgTutZmIEVERCahUK7AulOJ+CHqGtKzlXdhfLmmK758pR7qejnoeXREFVcUTA1YdpzBFFEVwVCKyAR4Olqhq6MXuoZ4AQBkcgWuJmc+PuVPOaPqVnoOYlOzEJuahQ2nbwNQ3gWwoZ8jGvs5o0l1JzTyc4aLrYU+n8ozMZAiIiJTdSg2Dd/uuIZrd7MAADWq2WJy97roUMedvwupSvF3tcHaEWHqYGrpcax7j8EUkbFiKEVkgsylEjTwdUQDX0cMbhUAAEjLyse5hIc4+3hG1fnEh8jKL8SR2HQciU1XbRvgaoPG/s6qGVW1Pe1hLpXo6ZmorTwSh2mbowEAH7QLwuddGEgREVVFj3JlaD5zN0SFFJP/2wupRIBUIkAiCJBKADOJBBIJIBUESCQCpELxx5XLzB4vl0ig8diT2zy5b439PP7XTKLeRr0tnrGfYutKoLmfYmN8ctxF66qe3+N1HmTnYfEVCa4c+w8A4GRjjjERwXg7rLpB/H4m0gXljKkw9F96HDfTlMHU2vfC4MFgisjoMJQiIgCAm50lOtbzQMd6HgAAuULEtbuZOJtQdKe/B7hxLxvx6TmIT8/B32fvAACszCUI9XV6fBF15Yyqyr5eBQMpIiLTIVeIyC9UABBQkF+o7+EYCAnMJAIGtwrAxx1qwsnGcGc1E2mLn4tmMDWAwRSRUWIoRUSlkkoE1PVyQF0vB7zVwh8A8ChHhnO3H+K/W8pT/s4lPEBGXiFOxt3Hybj7qm19nKzR2F99EfV63g6wNNPNXX5WHIlD5ONAalS7IHzGQIqIqEpztDbHvnFtsHffPrRpGw6JVAq5QhlWKUQRcoWIwmL/VyhEyIv+L4ol1lV9iOp1Fapl0Ni+6EO1rWpdaCyTyzX3p3k8PP/Yj8dZfFnhE8cu+lcUAX/rfMwb1AbBnk76/vIQVSoGU0TGj6EUEZWZo405wmtVQ3itagCUzfLNtCz8l/BQNaPq2t1M3HmYizsPc7HlgvIW1BZSCer7OKhCqsb+zvB2tKpweMRAiojI9EglAnydreFmBQS62cLcvGrcOfZFyWQybNu2DQGutvoeCpFeMJgiMm4MpYjohUkkAmq626Omuz3eaOYHAMjKL8SFxIc4m6ieUXU/u+BxaPVQta2HgyUa+ylDqibVndHAxxFW5mWfTVU8kPqwfRDGd2YgRURERGSKngymii5+7mKtm5n6RKQ9DKWISKvsLM3QqqYbWtV0AwCIooiE+zmP7/SnDKaikzNwNyMfOy6nYMflFACA2ePTBYuf9ufvYlNq0LTy2C3M3BYDgIEUEZEuLVy4EHPmzEFycjLq16+P+fPno02bNvoeFhFRCcWDqbjHwdSqoU31PSwieg6GUkSkU4IgoLqrLaq72qJ3Y18AQG6BHBfvPMLZx0HVfwkPkJqZj4t3HuHinUdYdewWAMDV1kJ1ul9jPyfU9bTF/mQBfx9TBlIfta+JTzvXYiBFRKQD69evx5gxY7Bw4UK8/PLLWLJkCbp164bo6Gj4+/vre3hERCUUBVMDlimDqYG/nsbQ6voeFRE9C0MpIqp01hZSNA90QfNAFwDK2VRJj/KUd/m79RBnEx/g8p0MpGcXYPeVVOy+kgoAkAiAQlROw2YgRUSkW99//z2GDRuG4cOHAwDmz5+PnTt3YtGiRZg1a1aJ9fPz85Gfn6/6PCMjA4DymkcymUyrYyvan7b3a4xYCzXWQsnU6+Bpb47VQ5th4K+nEJ+eg9mPpFideASm3jKKIpCVJcVPsawFa6EmioCfmQSddPDzoqw/gxhKEZHeCYIAHydr+DhZo0eoNwAgv1COy0kZqguon014iDsPcwEAH4QHMpAiItKhgoICnDlzBhMnTtRY3rlzZxw9erTUbWbNmoXIyMgSy3ft2gUbGxudjDMqKkon+zVGrIUaa6Fk6nUYVgP46bIU9/MFxN7L1vdwDIQA5LIWSqxFEXtX3fy8yMnJKdN6DKWIyCBZmknRxN8ZTfydAQQCAG6nZ2Lzzr0Y3jGYgRQRkQ6lpaVBLpfDw8NDY7mHhwdSUlJK3WbSpEkYN26c6vOMjAz4+fmhc+fOcHBw0Or4ZDIZoqKi0KlTJ959j7VQYS2UWAe1V7vkYeU/e9GkaTOYmZn2n76FhYU4c+YMmjZtylqwFiqFhYWIuXBaJz8vimZMP49pfwWIyKh4OFjBm3e8JiKqNE++ASCK4lPfFLC0tISlpWWJ5ebm5jr7w1iX+zY2rIUaa6HEOgAONkBNR6B1LXeTr4VMJkNGrMhagLUoTlkL3fy8KOv+GEq9AFEUAZQ9+SsPmUyGnJwcZGRk8BuEtVBhLZRYBzXWQo21UGMt1HRZi6Lf/0X9QFXk5uYGqVRaYlZUampqidlTT8N+qXKwFmqshRLroMZaqLEWaqyFmiH0SwylXkBmZiYAwM/PT88jISIiIn3JzMyEo6OjvoehExYWFmjatCmioqLQu3dv1fKoqCj06tWrTPtgv0RERETP65cYSr0Ab29vJCYmwt7eXuvXtSm6/kJiYqLWr79gbFgLNdZCiXVQYy3UWAs11kJNl7UQRRGZmZnw9vbW6n4Nzbhx4zBw4EA0a9YMLVu2xNKlS5GQkICRI0eWaXv2S5WDtVBjLZRYBzXWQo21UGMt1AyhX2Io9QIkEgl8fX11egwHBweT/wYpwlqosRZKrIMaa6HGWqixFmq6qkVVnSFV3Jtvvon09HRMnz4dycnJCAkJwbZt21C9evUybc9+qXKxFmqshRLroMZaqLEWaqyFmj77JYZSRERERFSqUaNGYdSoUfoeBhEREVVREn0PgIiIiIiIiIiITA9DKQNjaWmJqVOnlnpLZVPDWqixFkqsgxprocZaqLEWaqxF1cavrxprocZaKLEOaqyFGmuhxlqoGUItBLEq38+YiIiIiIiIiIgMEmdKERERERERERFRpWMoRURERERERERElY6hFBERERERERERVTqGUkREREREREREVOkYShERERERERERUaVjKEVERERERERERJWOoRQREREREREREVU6hlJERERERERERFTpGEoREREREREREVGlYyhFRERERERERESVjqEUERERERERERFVOoZSRERERERERERU6RhKERERERERERFRpWMoRURERERERERElY6hFBEZtf3790MQBPz555/PXXfIkCEICAjQ/aCeo2jM+/fvVy3btm0bpk2b9sL7DAgIQI8ePSo+OCIiIjIpxthLPU1pPda0adMgCIL+BkVEz8RQiohMxpQpU/D333/rexho0qQJjh07hiZNmqiWbdu2DZGRkXocFREREdGzGUovRURVh5m+B0BE9DQ5OTmwsbHR2v6CgoK0tq+KcHBwQFhYmL6HQURERFWcsfdSoigiLy8P1tbWlXpcIqo8nClFRAahaGr1f//9h9dffx3Ozs7lanxkMhkmT54Mb29vODg4oGPHjoiJidFYp7Qp54Ig4KOPPsKSJUtQq1YtWFpaol69eli3bl25n0NZ9/Xk1PIhQ4bg559/Vu2j6CM+Ph4AoFAo8NNPP6FRo0awtraGk5MTwsLC8O+//5YYw44dO9CkSRNYW1ujTp06+PXXX8v9PIiIiMj4VKVeavHixahbty4sLS3x22+/AQAOHz6MiIgI2Nvbw8bGBq1atcLWrVvLfQwiMiycKUVEBqVPnz7o378/Ro4ciezs7DJv98UXX+Dll1/GL7/8goyMDEyYMAE9e/bElStXIJVKn7ntv//+i3379mH69OmwtbXFwoULMWDAAJiZmeH1118v1/hfZF9TpkxBdnY2/vzzTxw7dky13MvLC4CyAfz9998xbNgwTJ8+HRYWFvjvv/9UoVWR8+fP49NPP8XEiRPh4eGBX375BcOGDUPNmjXRtm3bcj0PIiIiMk7G3ktt2rQJhw4dwldffQVPT0+4u7vjwIED6NSpE0JDQ7F8+XJYWlpi4cKF6NmzJ9auXYs333yzXMcgIsPBUIqIDMrgwYNf6NpK9erVw++//676XCqV4o033sCpU6eee6pcWloaTp06BQ8PDwBA9+7dERISgkmTJpW7kXqRfQUFBanWf3Kshw4dwurVqzF58mTMmDFDtbxr166lHvvIkSPw9/cHALRt2xZ79uzBmjVrGEoRERGZCGPvpbKysnDx4kU4OzurlrVs2RLOzs7Yv38/7OzsAAA9evRAo0aNMH78eLzxxhu8mDmRkeLpe0RkUPr27ftC27366qsan4eGhgIAbt269dxtIyIiVE0UoGzC3nzzTcTGxuL27dvlGoc29wUA27dvBwB8+OGHz123UaNGqkAKAKysrFCrVq0y1YCIiIiqBmPvpTp06KARSGVnZ+PEiRN4/fXXVYFU0TEGDhyI27dvlzjNkIiMB0MpIjIoRaeslZerq6vG55aWlgCA3Nzc527r6en51GXp6enlGoc29wUA9+7dg1QqLXW/T3qyBoCyDmWpAREREVUNxt5LPTn+Bw8eQBTFUp+Xt7f3Cx2DiAwHQykiMij6mHqdkpLy1GWlBT2VtS8AqFatGuRyean7JSIiInqSsfdST47f2dkZEokEycnJJdZNSkoCALi5uZXrGERkOBhKEZHJ27NnD+7evav6XC6XY/369QgKCoKvr2+l7Otp70Z269YNALBo0aJyjYOIiIiosmizl3qSra0tWrRogY0bN2r0SQqFAr///jt8fX1Rq1atCh2DiPSHFzonIpPn5uaGDh06YMqUKao7xly9evWFbmX8ovtq0KABAOC7775Dt27dIJVKERoaijZt2mDgwIGYMWMG7t69ix49esDS0hJnz56FjY0N/p+9+w5r6nz7AP5NQgh7740IouBguAdaK2pra6tVq9Y6qnVVq9YOa7Vqtf5qW9+2tm6rdmpr1baOVqx7K4oDXMhUQWTJhpCc949IIoIKCCSQ7+e6uCQn55w8uU3Cnfs8Y8qUKTV6zkRERES1pTZzqcosXrwYvXr1Qo8ePTBz5kwYGhpi+fLluHTpEn799VdOck7UgLEoRUR678UXX0RAQAA++ugjJCUlwcfHBz///HONlheu6bmGDRuGo0ePYvny5ViwYAEEQUB8fDy8vLywYcMGBAcHY926ddiwYQOMjY3RokULfPjhhzV9ykRERES1pjZzqcqEhYVh3759+PjjjzFq1CgolUq0bt0af/31F/r161crj0FE2iESBEHQdiOIiLRFJBJh8uTJ+Pbbb3XqXEREREQNAfMfInoanFOKiIiIiIiIiIjqHYfvEZFOEgQBCoXisftIJJJ6mUOgtLT0sfeLxWKIxazxExERke5gLkVEDQHf+USkkw4ePAipVPrYn40bNz714wiC8MTu5k9qx5gxY6p8LiIiIqL60BBzKSLSP5xTioh0Um5uLq5evfrYfby9vWFra1vnbTlz5sxj77ezs4OXl1edt4OIiIioqphLEVFDwKIUERERERERERHVO84pVQNKpRK3b9+Gubl5vYzBJiIiIt0hCAJyc3Ph4uLCOVAeg/kSERGR/qpqvsSiVA3cvn0b7u7u2m4GERERaVFycjLc3Ny03QydxXyJiIiInpQvsShVA+bm5gBUwbWwsKjVc8vlcuzZswfh4eGQSqW1eu6GhrHQYCxUGAcNxkKDsdBgLDTqMhY5OTlwd3dX5wNUOeZL9YOx0GAsVBgHDcZCg7HQYCw0dCFfYlGqBsq6oFtYWNRJkmViYgILC4s6e4MIggC5QkCpUgm5QoBcoUTp/X/lCiVKlQJKSlX/qrep7y87rrJjBZTe31+uLPv9oXMoBchLlShVKlFyf/9ShYAShWqbvFSAXKnaVqpQwlQww83TaWjXxA5BHlawMNLPD436eF00BIyDBmOhwVhoMBYa9RELDkl7vIaeL+myjLxiHI/LwLEbGTifnAU7wQz9jE1hbmKk7aZplb6/LsowDhqMhQZjocFYaOhCvsSilA7JLijBj8fiEZ0swpW916EURBWKQBUKPcryBSF1oUddWKpYPCpVNqS57cW4fiAO3x2Ig0gENHM0R4inNUI8rRHqaQN3G2N+KSAiIqJGLadIjlNxmTh2IwPHbqTjSmruQ3uIMXj1KawcEQJPW1OttJGIiKgmWJTSIfcK5fhybywACXAzvl4f20AsglQihoFE9a9UIoKBWAxDAzEMxCIYSMQwlKj+NRCL1NtV+5Y/TioRw0D8wO8PnVNqIIb0/jmlkofOcf84A4kYitJSbPnvOErM3XDu5j0kZhTgSmourqTm4ueTSQAAe3MZQjysEeqlKlQFuFjC0ICTzhIREVHDVViiQGRiFo7eSMexGxm4eDMbD19T9HcyRycfO3jYGOHz3TG4nJqLfsuO4ItBrdE7wEk7DSciIqomFqV0iIWRFK8EuyLlVjKaeHvBSCpRFW7UBaPKCz2VFYEM7+//pAJS2XG62NtILpcjxVHAc8+1hFQqRVpuEc4mZiEyMQtnErNw6dY93M0txj/RqfgnOhUAIDMQo7WbFUK8rBHioSpUWZsaavmZEBERET1aSakS529m41isqifUuaRslCiU5fbxtjNFRx9bdPaxQ4cmNrA1kwFQ5UuiWxfxZ7odziZlY/yPkXizWxO827sZpBJeqCMiIt3GopQOsTY1xOKXA7BrVyKee85f78e3PszB3Ah9Ap3RJ9AZAFAkV+DirXs4k6AqVEUmZiKrQI5TCZk4lZCpPq6JvSlC7w/3C/a0ho+9qU4W4YiIiEg/KJQCYm7n4Nj9nlCnEzJRUKIot4+zpRE6+dihk48tOvrYwsXK+JHns5IBP40JxdK9N7D2SDxWH4rDuaQsfDssGI4W+j3PFFFjplAoIJfLq7SvXC6HgYEBioqKoFAonnxAI8ZYaDxNLKRSKSQSyVO3gUUparCMpBK09bJBWy8bAKoJ3OPS81UFqoQsnEnMxI27+Yi7//PbmZsAAGsTKUI8rRF8v1DVys0SRtKnfzMRERERVUYQBMSm5annhDoRl4l7heW/SNqYGqKjjy06+diik48dvGxNqnURTSoR46N+LRDqZY13f7+A0wlZeP6bw/jm1SB0ampX20+JiLRIEASkpqYiOzu7Wsc4OTkhOTlZ7y/QMxYaTxsLKysrODk5PVUcWZSiRkMkEsHH3gw+9mYYHOoOAMjKL8HZJNVwv8jELJxPzkZWgRx7L6dh7+U0AIBUIkKAiyVC70+gHuJlDQdzXlUkIiKimkvOLMCxG+k4GqtaJS89r7jc/eYyA7RvYoOO93tDNXM0h1j89F+O+gQ6o5mTBSb+FIkrqbl4bd1JvBPeDBPDfGrl/ESkfWUFKQcHB5iYVK2ArVQqkZeXBzMzM4jF+j20l7HQqGksBEFAQUEB0tJU36mdnZ1r3AYWpahRszY1RM/mjujZ3BGAas6G6Nv37g/3UxWr7uYWIyo5G1HJ2Vh7RDXBvIeNiWaVPy9r+DqYQ8JEjoiIiB4hLacIx+MycDRWNSTvZlZhuftlBmK09bJRzQvV1A6BLhYwqKM5n7ztTLF9cmfM2X4Jv0fexOf/XsWZhEz835A2sDLhXJtEDZlCoVAXpGxtbat8nFKpRElJCYyMjFiIYSzUniYWxsaqYeVpaWlwcHCo8VA+FqVIrxgaiBHkYY0gD2uM7aqq8N7MKsSZxExVkSohC1fv5CIpswBJmQXYdu4WANXVzCBPa/VKf23crWAq49uHiIgap8WLF2Pr1q24cuUKjI2N0alTJ3z22Wdo1qyZtpumM7ILSnAiLuP+kLwMxKbllbvfQCxCG3crdGqq6gkV5GEFmUH9TRdgJJXg80Gt0dbLBnP+vIT9V+/i+W+OYPnwYLR2t6q3dhBR7SqbQ8rExETLLSHSvA7lcjmLUtW1fPlyfP7550hJSUFAQAC++uordO3aVdvNonomEongbmMCdxsTvBzkBgDIKZIjKin7/pC/TJxLykZucSkOXbuLQ9fuAgDEIqC5swVCy+am8rKB62MmICUiImpIDh48iMmTJ6Nt27YoLS3F7NmzER4ejpiYGJiammq7eVqRX1yKUwmZOH5/Xqjo2zkQBM39IhEQ4GKBzj526Ohji7ZeNjpxAWtwW3cEuFpg0s9nkZhRgEErj2NOv+Z4rYOn3s+lQtSQ8f1LuqA2Xofa/0upBZs3b8a0adOwfPlydO7cGatWrULfvn0RExMDDw8PbTePtMzCSIpufvbo5mcPAChVKHElNVc1N9X9lf5uZRci+nYOom/nYOPxRACqVXJUk6erJlBv7mxeZ93yiYiI6tI///xT7vb69evh4OCAyMhIdOvWrdJjiouLUVysmTcpJycHgOrqaVVXh6qqsvPV9nkfVCxXIOrmPRyPy8SJuEycv3kPpUqh3D5N7U3RsYkNOjSxQTsvG1iZPLhyslCn7StTlVj42Ztg24T2+GBbNPbEpGHOn9E4GZeBhf1b6EThrLbUx+uiIWAcNBpjLORyOQRBgFKphFKprPJxwv0qetmx+oyx0HjaWCiVSgiCUGlPqaq+70SCIAhP3q1xad++PYKDg7FixQr1tubNm+Oll17C4sWLK+xfWZLl7u6O9PR0WFhY1Grb5HI5IiIi0KtXL0il0icf0IjpcixS7hXhXFI2IpOycS45GzEpuVA8lKgaS8Vo7WaJYA9rBHtYIsjdChbGNXseuhyL+sQ4qCiVAjYcS8CfJ6/Czs4OIj0fCy8olUhPT2cswFg8SFAqYV96F5+8/mytf17k5OTAzs4O9+7dq/U8QFfFxsbC19cXFy9eRGBgYKX7zJs3D/Pnz6+w/ZdffmkQw0wUApCcB1zPEeHaPRHic0SQC+WvANvKBPhaCvC1UP1r2cCmZxIE4ECKCH8liqGECI7GAsb4KeCk+/89RHSfgYEBnJyc4O7uDkPDBvYh1Ij973//w/fff4+7d+/ip59+wvPPP6/tJtWLkpISJCcnIzU1FaWlpeXuKygowLBhw56YL+ldUaqkpAQmJib4/fff8fLLL6u3v/3224iKisLBgwcrHNPQkyyqe8UKIClPhPhcIC5XhIRcEQoV5RNZEQQ4GQPe5gK8LQR4mwmwM1J19yeqqhIF8PMNMaIy9LvgQFQVnRyUGOJT+1dAq5pkNRaCIKB///7IysrC4cOHH7lfQ7uIp1QKuJaWh+NxmTgel4FTCVnIL1aU28fezBAdmtioe0O5W+te3leTWJxJzMK0zRdwJ7cYxlIxFvYPwIuta75ykq7gxSsVxkGjMcaiqKgIycnJ8PLygpFR1VcMFwQBubm5MDc318rQvyfNN/T6669j/fr12L9/PxYuXIjz58+jqKgIrq6u6NixI9auXQsDAwMcOHAAPXv2REZGBqysrNS3AdVQMnNzczRp0gTPPvsspk2bVumqcGWxyMjIQNOmTdXbLSws0Lx5c8yaNQsvvPBClZ/b5cuXERgYiD/++AMdOnSAtbU1ZDJZlY/Xpqd9XRQVFSEhIQHu7u4VXo9VvYjXePrrVlF6ejoUCgUcHR3LbXd0dERqamqlx8yaNQszZsxQ3y5LssLDw3UyyWosGnIslEoBN+7mIzIpG2eTs3E2MRuJmQVIKQRSCkU4plo5E3Zmhghyt0KwhxVCPKzQwsUCMoOKxYaGHIvapO9xSLlXhIm/nEN0Ri4MxCKEu5aic1BAjScVbCwUCgWio6MREMBYMBYaCoUCd+Mu1cnnRdmwNH3x1ltv4cKFCzhy5Mhj95PJZJUm4VKptM4+s6tzbkEQkJBRgKOx6Th+IwPH4zKQmV9Sbh9LYyk6NLFB5/uTk/vYmzWYeVuqE4uOTR2w8+2ueHvTORyNzcA7Wy4i6mYOPurXvF4nY68rdfmaa0gYB43GFAuFQgGRSASxWFyt1dLKhmaVHVvfUlJS1L9v3rwZc+fOxdWrV9XbjI2NcfnyZTz//POYOnUqli1bBmNjY1y/fh1btmwBgHLPuez3sttXr16FhYUFcnJycPbsWSxZsgTff/89Dhw4gJYtW5Zry4OxAIC9e/ciICAA2dnZWL58OQYNGoSzZ88+smfww+LjVSu4v/zyy0/1N0Mul9f76/RpXxdisRgikajS91hVn4veFaXKPPxiEQThkS8gXU+yGruGGosWboZo4WaNEfdv380txtkk1ZxUkYlZuHjzHtLzShBxOQ0Rl1VVKkMDMVq5WiLESzUvVbCHFWzNNK+9hhqL2qaPcYhKzsabP5xBWm4xbEwNsezVVkiPOYHn2nroXSweJpfLsevuJcYCjMWDymJRF58X+hTbKVOm4K+//sKhQ4fg5uam7eZU2+3swvur46kKUSn3isrdb2IoQTtvG3TysUUnHzs0d7aARNwwilBPy85Mhh/GtMfXe6/hm32x+PFEIs7fzMZ3w4LhbqN7PcKI6NEEQUChXPHYfZRKJQpLFDAoKa3VopSxVFKlQoyTk5P6d0tLS4hEonLbANX8hc7OzliyZIl6m4+PD/r06fPE8zs4OMDKygpOTk7w8/ND//79ERQUhIkTJz7xooqtrS2cnJzg5OSERYsWYdmyZdi/f7+6KHXr1i3MmDEDe/bsgVgsRpcuXfD111/Dy8ur3KiqsriWDUZbv349lixZgvj4eHh5eWHq1KmYNGkSACAhIQHe3t7YvHkzli9fjhMnTmDFihUYPXp0lY77448/sGzZMpw8eRK+vr5YuXIlOnbsqH5OR48exYcffojTp09DJpOhXbt22LRpE6ytrSEIAj7//HOsXLkSKSkp8PHxwdy5czF48GAAQFZWFt566y3s2bMHeXl5cHNzw4cffojRo0c/8f+hJvSuKGVnZweJRFKhV1RaWlqF3lNEtcneXIbeAU7oHaD68C2SK3Dp1j1EJmbdX+kvC5n5JThz//YqxAEAmtiZItjDCn76PQefXvsz6hbe23IBxaVK+DmaYd3ItnAyl2JXjLZbRkSNlSAImDJlCrZt24YDBw7A29tb202qkoy8YhyPy8CxGxk4fiMD8en55e43lIgR7GmFTj6qnlCt3KxgWEkPZX0hEYswI7wZgjytMX1zFC7cvId+y47g/4a0xjP+zIuJGopCuQIt5v6rlceOWdAbJoa1U1ZwcnJCSkoKDh069MhFNarK2NgYEyZMwPTp05GWlgYHB4cnHiOXy7FmzRoAmgtQBQUF6NGjB7p27YpDhw7BwMAACxcuRJ8+fXDhwgXMnDkTXl5eGD16dLneYGvWrMHHH3+Mb7/9FkFBQTh37hzGjRsHU1NTjBw5Ur3f+++/jy+//BLr16+HTCar8nGzZ8/GF198AV9fX8yePRtDhw5FbGwsDAwMEBUVhZ49e2LMmDH45ptvYGBggP3790OhUBUuP/roI2zduhUrVqyAj48P9uzZg9dffx2Ojo4ICwvDnDlzEBMTg927d8POzg6xsbEoLCx8qv+Px9G7opShoSFCQkIQERFRbk6piIgI9O/fX4stI31jJJUg1MsGoV42GA/NsIIzCZnq3lTX0/IQl56PuPR8yMQSOPqlon+wu7abTvVEqRTwf3uvYdm+WABAT38HfPVqG5gbSRvVKjJEpHsmT56MX375BX/++SfMzc3VF/MsLS1hbGys5dZp5BbJcfZ6pro31JXU3HL3i0VAKzcrdU+oUC9rGEkb/vC02tajmQN2Tu2KST+fxfnkbIzZcAaTe/hg+rN+XEmYiOrNoEGD8O+//yIsLAxOTk7o0KEDevbsiddff71G0+b4+/sDUPUuelxRqlOnThCLxSgsLIRSqYSXl5e619CmTZsgFouxdu1adY+w9evXq+ezCg8Ph5WVFYDyvcE++eQTfPnllxgwYAAAwNvbGzExMVi1alW54tK0adPU+1TnuJkzZ6onU58/fz4CAgIQGxsLf39/LFmyBKGhoVi+fLl6/4CAAABAfn4+li5din379qFjx45QKpUYNmwYIiMjsWrVKoSFhSEpKQlBQUEIDQ0FAHh5eVUj6tWnd0UpAJgxYwZGjBiB0NBQdOzYEatXr0ZSUhImTJig7aaRHhOJRPC2M4W3nSkGhaoKT9kFJTiXlI1VB2NxIj4Lb/92Aedu5uDD55rr9ZVdfZBfXIoZv0Xh3+g7AIDxYU3wXm9/vRlWQkTaVbZCcffu3cttX79+PUaNGlX/DXpAWm4Rvj8ch90XJZh+Yj8eWvwW/k7m6p5Q7ZrYwMJIf4ZbPg1XK2P8Nr4DPt15GRuPJ+K7/TdwNjEb3wwNgr15w5iwl0hfGUsliFnQ+7H7KJVK5ObkwtzCvNaH79UWiUSC9evXY+HChdi3bx9OnDiBRYsW4bPPPsOpU6cqnbT8ccqG0T1peOHmzZvh7++Pa9euYdq0aVi5ciVsbGwAAJGRkYiNjYW5uXm5Y4qKinDjxo1Kz3f37l0kJyfjjTfewLhx49TbS0tLYWlpWW7fssJPdY9r1aqV+veyuKSlpcHf3x9RUVEYNGhQpW2LiYlBUVERevXqVW57SUkJgoKCAAATJ07EwIEDcfbsWYSHh+Oll15Cp06dKj1fbdDLotSQIUOQkZGBBQsWICUlBYGBgdi1axc8PT213TSicqxMDNHD3wEdvCwxZc0e7L0lxoZjCTh/MxvLhwfD2VJ3rlZT7bmVXYixG8/gckoODCVifDqgJV4JaXhzuRBRw6XLizOLIMLKQ/EAVF8yvO1M0dHHFp197NChiU25uRipemQGEszvH4gQLxt88McFHI/LwPPfHMa3w4LRzttG280jokcQiURPHEKnVCpRaiiBiaGBViY6rw5XV1eMGDECI0aMwMKFC+Hn54eVK1eq526qqsuXLwN4ck8fd3d3+Pr6wtfXF2ZmZhg4cCBiYmLg4OAApVKJkJAQ/PzzzxWOs7e3r/R8ZZOHr1mzBu3bty9338ML0ZiamtbouAfntywrupUd/7gezWX77Ny5E66urlAqlcjLy4OZmZn6uL59+yIxMRE7d+7E3r170bNnT0yePBlffPHFI8/7NPSyKAUAkyZNUk8WRqTrDCRivOChxKAeIXh3y0WcS8rG898cwdevtkFX38o/DKlhikzMwvgfI5GeVww7M0OsGhGCEE9+ESAiKmNvLsP4rt7IS4nF+Jd6wMPO/MkHUbW82NoFLZzNMfGns7ieloeha07g/T7NMK5rkwazGiERNQ7W1tZwdnZGfn7+k3d+QGFhIVavXo1u3bo9snhUmbCwMAQGBmLRokX4+uuvERwcjM2bN8PBwaHKQwgdHR3h6uqKuLg4DB8+vMqPXdPjHtaqVSv8999/lRbxWrRoAZlMhqSkJISFhUGpVCInJwcWFhblipX29vYYNWoURo0aha5du+Ldd9+ts6KUbpdIiaicZ5rZY+fUrgh0tUBmfgle//4UvvnvOpQPj12gBmnr2ZsYuvoE0vOK4e9kju2TO7MgRURUiZnhvmhnL8DZ0kjbTWm0mjqY48+3OuOlNi5QKAV8uusKxv8YiXuFnNOQiOrGqlWrMHHiROzZswc3btxAdHQ03n//fURHR+OFF1547LFpaWlITU3F9evXsWnTJnTu3Bnp6enq4ejV8c4772DVqlW4desWhg8fDjs7O/Tv3x+HDx9GfHw8Dh48iLfffhs3b9585DnmzZuHxYsX4+uvv8a1a9dw8eJFrF+/HkuXLn3sY9f0uAfNmjULp0+fxqRJk3DhwgVcuXIFK1asQHp6OszNzTFz5kxMnz4dGzduxI0bN3DhwgUsX74cGzduBADMnTsXf/75J2JjYxEdHY0dO3agefPmVX786mJRiqiBcbcxwZYJnTC0nQcEAVgacQ2jN5xGVn6JtptGNaRUCvjf7iuY8dt5lCiUCG/hiD8mdoKbNZfkJiIi7TExNMD/DWmDRS8HwlAixp6YO3hh2RFcunVP200jokaoXbt2yMvLw4QJExAQEICwsDCcOHEC27dvR1hY2GOPbdasGVxcXBASEoL//e9/ePbZZ3Hp0iW0aNGi2u3o168fvLy8sGjRIpiYmODQoUPw8PDAgAED0Lx5c4wZMwaFhYWP7Tk1duxYrF27Fhs2bEDLli0RFhaGDRs2PHE125oe9yA/Pz/s2bMH58+fR7t27dCxY0f8+eefMDBQDZT75JNPMHfuXCxevBgBAQEYOHAg/v77b/VjGBoaYtasWWjVqhW6desGiUSCTZs2Vfnxq6vKw/cenBG+qlauXFmlpReJqHqMpBIsHtASIZ7W+Gj7RRy8dhf9lh3Bd8OD0cbdStvNo2rIKy7FtE1R2HtZNaH5pO4+mBneDGJOaE5E1cA8jeqKSCTC8PaeaOVqhYk/RyIpswADVhzDghcDMKStO4fzEVG1lQ0Le1hQUBB+/PHHxx7bvXv3cvMePny7Ory8vCo9ViQS4cqVK+rbTk5O6l5ElXnppZcqPc+wYcMwbNiwaj12TY6zsrKqsC0sLAxHjx6t9BwikQhTp07F1KlTKx2+99FHH+Gjjz6q9Ni6UOWeUtu3b4ehoSEsLS2r9LNz507k5eXVZduJ9N4rIW7YNqkzvO1McSu7EINWHsOPxxN0eoJa0kjOLMArK45h7+U7MDQQ46shbfBeH38WpIio2pinUV1r6WaJHVO6oKe/A0pKlfhg60XM/P0CCksU2m4aERE1YNWa6Pybb76p8hW1LVu21KhBRFQ9zZ0t8OdbnfHe7xfwT3Qq5vwZjTOJWfj05ZYwlentWgY673RCJib8GImM/BLYmcmw+vUQBHtYa7tZRNSAMU+jumZlYog1r4di5aEb+OLfq/jj7E1E376H5cOD0cTeTNvNIyKiBqjKPaX2798PG5uqT7i7e/duuLq61qhRRFQ9FkZSrHgtGB893xwSsQh/Rt3GS98dRWxarrabRpX4/Uwyhq05gYz8EgS4WOCvtzqzIEVET4V5GtUXsViESd2b4uexHWBnJsOV1Fy8+O1R7LqYou2mERFRA1TlolRYWJh6Yqyq6NKlC2QyWY0aRUTVJxKJMLZrE2x6swMcLWS4npaHF789ir/P39Z20+g+hVLAop0xeHfLBcgVAvoGOuH3CR3hYmWs7aYRUQPHPI3qW0cfW+ya2gXtvG2QV1yKST+fxfy/o1FSqtR204iIqAF5qrE9aWlpSEtLg1JZ/o9Pq1atnqpRRFRzbb1ssGNKV7y96RyO3cjAlF/PITIxCx8+1xyGBlxwU1tyi+R4e1MU9l1JAwBMfaYppj3rx/mjiKjOME+juuZgYYRfxrbHF3uuYeXBG1h/NAFRydn4blgwL7gQ1THOIUu6oDZehzUqSkVGRmLkyJG4fPmyuhEikQiCIEAkEkGh4ISHRNpkby7Dj2+0x9KIq/hu/w1sOKZKEpcPZ5KoDUkZBRj7w2lcu5MHmYEYXwxqjRdau2i7WUTUSDFPo/pkIBHjg77+CPG0xozfonAuKRv9lh3BV0PaoJufvbabR9ToSKVSAEBBQQGMjZnXk3YVFBQA0Lwua6JGRanRo0fDz88P69atg6OjI5eCJdJBErEI7/b2R7CHNaZvjkJUcjae/+Ywvn41iEliPToRl4GJP0Uiq0AOB3MZ1rweitbuVtpuFhE1YszTSBt6tXDEzildMemXSFy6lYOR60/h7Z6+mPKMLyTsFUxUayQSCaysrJCWpup9b2JiUqXPeaVSiZKSEhQVFUEs1u/RE4yFRk1jIQgCCgoKkJaWBisrK0gkkhq3oUZFqfj4eGzduhVNmzat8QMTUf3o2dwRO6d2xcSfNUnitJ5+mPJMUw4dq2ObTiXho+2XUKoU0NLVEmteD4WTpZG2m0VEjRzzNNIWD1sTbJnQCQt2xOCXk0n4au91RCZm4etXg2Bjaqjt5hE1Gk5OTgCgLkxVhSAIKCwshLGxsd5frGAsNJ42FlZWVurXY03VqCjVs2dPnD9/nskOUQPhbqNKEuf/HYNfTyXh//ZeQ2RSFr4a0oZJYh0oVSixaNdlrD+aAAB4vpUzvnilNYwNa34FgYioqpinkTYZSSX49OWWCPW0xofbLuLw9XQ8/81hfDc8mCvNEtUSkUgEZ2dnODg4QC6XV+kYuVyOQ4cOoVu3bk811KoxYCw0niYWUqn0qXpIlalRUWrt2rUYOXIkLl26hMDAwAqNf/HFF5+6YURUu4ykEiweoEoSZ2+/iEPX7qLfN4ex/LUQtOFwslqTUyTHW7+cw6FrdwEAM3qpeqXp+1UYIqo/zNNIFwwIdkOAiyUm/hSJuPR8DF55HB8+1xyjO3vxbyJRLZFIJFUuCkgkEpSWlsLIyEjvCzGMhYYuxKJGRaljx47hyJEj2L17d4X7OIEmkW4bGOKGAFcLTPzpLOLT8zFo5THM6dcCIzp4Mkl8Sgnp+Xhj42ncuJsPI6kYSwe3wXMtnbXdLCLSM8zTSFc0czLHX1O64P0/LmDnhRQs2BGDM4mZ+GxgK5gb6fcXQSIiUqnRrF5Tp07FiBEjkJKSAqVSWe6HiQ6R7vN3ssBfb3VG30AnyBUC5v4Zjbc3RSG/uFTbTWuwjsWmo/93R3Hjbj6cLIywZUInFqSISCuYp5EuMZMZ4NuhQZj3QgtIJSLsupiK/t8exZXUHG03jYiIdECNilIZGRmYPn06HB0da7s9RFRPzI2kWD48GB893xwGYhH+On8b/b87iti0XG03rcH56UQiXv/+FO4VytHa3Qp/vdUZga6W2m4WEekp5mmka0QiEUZ19sbm8R3hYmmEuPR8vPTdUfwReVPbTSMiIi2rUVFqwIAB2L9/f223hYjqmUgkwtiuTbDpzQ5wtJAhNi0PL357FH+dv63tpjUIpQolPv7zknqFvf5tXLD5zQ5wsOAKe0SkPczTSFcFe1hjx9Su6OZnjyK5Eu/8fh6ztl5AkZw9+IiI9FWN5pTy8/PDrFmzcOTIEbRs2bLChFhTp06tlcYRUf0I9bLBzqldMfXXczh2IwNTfz2HyIRMzH6+BQwNalS7bvTuFcgx+ZezOBKbDgB4t3czTOruw3m5iEjrmKeRLrMxNcSGUW3x7f5Y/N/ea/j1VDIu3LyH5cOD4Wlrqu3mERFRPavx6ntmZmY4ePAgDh48WO4+kUjEZAeAQqGo8vKcD5LL5TAwMEBRUZHez/vAWGhUNxY1WZ7TzkyGH99oj6URV/Hd/hvYeDwR52/ew3fDg+FqZVzTpjdKN+7mYezGM4hPz4exVIL/G9IGfQKdtN0sIiIAzNNI94nFIkzt6YsgDyu8vSkK0bdz0G/ZEXw5qDXCA/j3lIhIn9SoKBUfH1/b7Wg0BEFAamoqsrOza3y8k5MTkpOT9b7HBWOhUZNYWFlZwcnJqVqxk4hFeLe3P4I9rDF9cxSikrPR75vD+PrVIHTzs69p8xuVw9fvYvLPZ5FTVAoXSyOsGRmKABfOH0VEuoN5GjUUXX3tsXNqF7z1yzlEJmbhzR8jMb5bE7zbuxkMJOypTUSkD2pUlKJHKytIOTg4wMTEpNrFFKVSiby8PJiZmUEs1u8/xoyFRnViIQgCCgoKkJaWBgBwdq7+CnA9mzti59SumPhzJC7dysHI9afwdk9fTH3GF2KxfhYIBUHAD8cTsWBHDBRKAcEeVlg1IhT25jJtN42IiKjBcrY0xqY3O+Cz3Vew9kg8Vh2Kw7mkbHw7LIhzNBIR6YFqFaUWLFhQpf3mzp1bo8Y0dAqFQl2QsrW1rdE5lEolSkpKYGRkxEIMY6FW3VgYG6uG26WlpcHBwaHaQ/kAwN3GBFsmdMKCHTH45WQSvtp7HWeTsvHVkDawMTWs9vkaMrlCiXl/RePnk0kAgAHBrlg8oCVkBtWPKxFRXWGeRg2VVCLGR/1aIMTTGu9uuYBTCZl47psj+GZoG3TysdN284iIqA5Vqyi1bdu2R94nEolw9epVFBUV6W2yUzaHlImJiZZbQqR5Hcrl8hoVpQDASCrBpy+3RKinNT7cdhGHrt1Fv28O47vhwQjysK7N5uqsrPwSTPr5LI7HZUAkAt7v44/x3Zro/ZBSItI9zNOooevb0hn+zhaY+FMkrqTm4rW1J/FOeDNMDPPR257aRESNXbWKUufOnat0e1RUFD744ANcunQJ48aNq5WGNWT8skq6oDZfhwOC3dDCxQITfzqL+PR8DF51HB893wKvd/Rs1K/32LRcvLHxDBIzCmBqKMFXrwahVwtHbTeLiKhSzNOoMfC2M8W2SZ0x589L2BJ5E5//exWRiVlYOrg1rEz0q6c2EZE+eKoxUfHx8XjttdfQtm1bWFpaIjo6GitXrqytthGRDvF3ssBfb3XGcy2dIFcI+PivaEzdFIX84lJtN61OHLiahpe/O4bEjAK4WRvjj0mdWJAiogaFeRo1VMaGEnwxqDWWDGwFmYEY+66k4flvjuDCzWxtN42IiGpZjYpS6enpmDJlCvz9/ZGSkoJjx45h8+bN8PX1re32EZEOMTeS4rthwZjTrwUMxCL8ff42+n93FLFpudpuWq0RBAHrjsRjzIbTyC0uRVsva/w5uTP8nSy03TQioiphnkaNxeC27tg6qRM8bU1wK7sQr6w4jh9PJEIQBG03jYiIakm1ilL5+fmYP38+fHx8cOzYMfz999/477//0LZt27pqH9FTmzdvHhwdHSESibB9+3ZtN6fBE4lEeKOLNza92QGOFjLEpuXhxW+P4s+oW9pu2lMrKVVi1taL+GRHDJQCMCjEDT+NbQ9bM66wR0S6j3kaNUYBLpb4e0oX9A5wRIlCiTnbL2H65sbbU5uISN9Uqyjl4+ODJUuWYOLEifj+++/h5OSECxcuVPihhkUkEj32Z9SoUQCA/fv3o0ePHrCxsYGJiQl8fX0xcuRIlJaqkoIDBw5AJBIhOzu73G2RSASxWAxLS0sEBQXhvffeQ0pKymPblJCQAIlEAmtra0gkElhaWqJDhw74+++/q/XcLl++jPnz52PVqlVISUlB3759qx0fqlyolw12Tu2KTj62KChR4O1NUZj75yUUlyq03bQaycwvwWvrTmLT6WSIRcBHzzfHkldacYU9ImowmKdRY2VhJMXK10Iw+7nmkIhF2B51Gy81sp7aRET6qlpFqbS0NBQWFmLJkiUIDg5GmzZt1D9BQUHqf6lhSUlJUf989dVXsLCwKLft66+/RnR0NPr27Yu2bdvi0KFDuHjxIpYtWwapVAqlUvnY81+9ehW3b9/G6dOn8f7772Pv3r0IDAzExYsXn9i27du349atWzh58iTatWuHgQMH4tKlS1V+bjdu3AAA9O/fH05OTpDJatbjpWxlRSrPzkyGH99oj7d6NAUA/HA8EYNXncCt7EItt6x6rt3JRf/vjuBUfCbMZAZYN7ItxnblCntE1LDURZ62fPlyeHt7w8jICCEhITh8+HAdtZ7o8UQiEcZ1a4JNb3aAg7kM1+/31P7r/G1tN42IiJ5CtYpS8fHx6p+4uLhKb8fFxdVVWxskQRBQUFJarZ/CEkW1j6nsp6rj7Z2cnNQ/lpaWEIlEFbZFRETA2dkZS5YsQWBgIHx8fNCnTx+sXbsWhoaPXwnFwcEBTk5O8PPzw6uvvoqjR4/C3t4eEydOfGLbbGxs4OTkBH9/fyxatAhyuRz79+9X33/r1i0MGTIE1tbWsLW1Rf/+/ZGQkABANWzvhRdeAACIxeJyBYb169ejefPmMDIygr+/P5YvX66+LyEhASKRCL/99hu6d+8OIyMj/PTTT1U+buvWrejRowdMTEzQunVrHD9+vNxzOnr0KMLCwmBiYgJra2v07t0bWVlZAFSvlyVLlqBJkyYwNjZG69atsWXLFvWxWVlZGD58OOzt7WFsbAxfX1+sX7/+iXGsSxKxCDN7N8P3o0JhaSzF+eRs9PvmMA5eu6vVdlXVvit3MGD5MSRnFsLDxgTbJnVCD38HbTeLiKjaajtP27x5M6ZNm4bZs2fj3Llz6Nq1K/r27YukpKQ6fBZEj9f2oZ7aU38916B7ahMR6TuDqu544cIFBAYGQiyuWh0rOjoazZo1g4FBlR+iUSqUK9Bi7r9aeeyYBb1hYlg78XdyckJKSgoOHTqEbt26PdW5jI2NMWHCBEyfPh1paWlwcHhyAUAul2PNmjUAAKlUCgAoKChAjx490LVrVxw6dAgGBgZYuHAh+vTpgwsXLmDmzJnw8vLC6NGjyw0XXLNmDT7++GN8++23CAoKwrlz5zBu3DiYmppi5MiR6v3ef/99fPnll1i/fj1kMlmVj5s9eza++OIL+Pr6Yvbs2Rg6dChiY2NhYGCAqKgo9OzZE2PGjME333wDAwMD7N+/HwqFKpH66KOPsHXrVqxYsQK+vr44dOgQXnvtNezevRtBQUGYO3cuYmJisHv3btjZ2SE2NhaFhbrRK+kZf0fsmNIFk34+i4u37mHU+lOY+owvpvb0hUSsez2OBEHAmsNxWLz7CgQBaO9tgxWvhcDGlMtNE1HDUxd52tKlS/HGG29g7NixAICvvvoK//77L1asWIHFixdX2L+4uBjFxcXq2zk5OQBUf8Nru8dx2fnYk1k/Y2FlJMb3rwfjm303sPxgHH44noiopCx8OTAAgH7FojL6+Jp4mFIp4OqdPBy/kY5j8WKc2RFT5c/HxkqpVCIpkbEAGIsHKZVKKNJF6FUHnxdV/QyqcsUiKCgIqampsLe3r9L+HTt2RFRUFJo0aVLVhyAdNmjQIPz7778ICwuDk5MTOnTogJ49e+L111+HhUX1VyXz9/cHoOpd9LiiVO/evSEWi1FYWAilUgkvLy8MHjwYALBp0yaIxWKsXbtW3Qtq/fr1sLKywoEDBxAeHg4rKysAqqJamU8++QRffvklBgwYAADw9vZGTEwMVq1aVa64NG3aNPU+1Tlu5syZeP755wEA8+fPR0BAAGJjY+Hv748lS5YgNDS0XA+rgABVApWfn4+lS5di37596NixIwCgSZMmOHLkCFavXo0VK1YgKSkJQUFBCA0NBQB4eXlVNeT1wt3GBL9P6IhPdsTg55NJ+Pq/6ziblIWvXw3SqWJPcakCH227hN8jbwIAhrZzx/wXA2FooN9/lIio4artPK2kpASRkZH44IMPym0PDw/HsWPHKj1m8eLFmD9/foXte/bsgYmJSZXaVV0RERF1ct6GSB9j0QzAeH8RfowV48KtHPT/7hg6OYpx6be98DYTYCrVdgu1S59eEwoBuJUPxOaIcOP+T6Gi7KKoGEi9qdX26Q7GQoOxKBNkK6qTz4uCgoIq7VflopQgCJgzZ06Vk4qSkpKqnrpRM5ZKELOgd5X3VyqVyM3JhbmF+VNXbY2ltTdBs0Qiwfr167Fw4ULs27cPJ06cwKJFi/DZZ5/h1KlTcHZ2rtb5yoYWPmnOnnXr1iE4OBixsbGYNm0aVq5cCRsbGwBAZGQkYmNjYW5uXu6YoqIi9VxSD7t79y6Sk5PxxhtvYNy4certpaWlsLS0LLdvWeGnuse1atVK/XtZXNLS0uDv74+oqCgMGjSo0rbFxMSgqKgIvXr1Kre9pKREPQfIhAkTMGjQIJw9exbh4eF46aWX0KlTp0rPpy1GUgkWvdwSIZ7W+HDbRRy+no5+3xzGd8ODEeRhre3mIT2vGBN+jMSZxCyIRcCcfi0wqpMX548iogattvO09PR0KBQKODo6ltvu6OiI1NTUSo+ZNWsWZsyYob6dk5MDd3d3hIeH1+gC1uPI5XJERESgV69e6h7U+krfY/EcgKHZhZi66Twu3MrB3tsi4P40U03tTRHiaYUQD2sEe1rBw9pYL/7e68NroqRUiUu3c3A6IQunEjIRmZSN/OLyQzhNDSUIcreErDAdPk28IdHzHjEKpRLx8fHw9mYsGAsNhVKJ4jtxdfJ5UdZj+kmqXJTq1q0brl69WuUGdOzYEcbGxlXev7ESiUTVGkKnVCpRaiiBiaGBTnYldHV1xYgRIzBixAgsXLgQfn5+WLlyZaVXRh/n8uXLAJ7c08fNzQ2+vr5o1qwZzMzMMHDgQMTExMDBwQFKpRIhISH4+eefKxz3qCvFZZOyr1mzBu3bty93n0RSvohnampao+MefDOXJT5lxz/uPVG2z86dO+Hq6lrpOfv27YvExETs3LkTe/fuRc+ePTF58mR88cUXjzyvtgwIdkOAiyUm/hSJuPR8DF51HLOfa46RWiwAXU7JwdiNZ3AruxDmRgb4dlgwwvyq1quAiEiX1VWe9vDntSAIj/wMl8lklS4oIpVK6+yLcV2eu6HR51h42Uvx+8RO+OvcTfxx+ALSlGaISy9A7N18xN7Nx+YztwAA9uYyhHpaI8TTGm29bNDCxQJSie7l27WlMb0miuQKRCVn42RcJk4lZCAyMQtF8vKLLZkbGaCdlw3aN7FBO29bBLpYQFAqsGvXLjzXu1mjiUVNyeVy7Np1g7EAY/GgsljUxedFVc9X5WrJgQMHatoWaqSsra3h7OyM/Pz8ah1XWFiI1atXo1u3blUeZgAAYWFhCAwMxKJFi/D1118jODgYmzdvhoODQ5WvwDo6OsLV1RVxcXEYPnx4lR+7psc9rFWrVvjvv/8qLeK1aNECMpkMSUlJCAsLK3efUqlUV5rt7e0xatQojBo1Cl27dsW7776rk0UpAGjmZI4/3+qM9/+4gF0XUzHv7xhEJmXjfwNawlRWv/PN7YlOxbTNUSgoUcDL1gRrR7ZFUwezem0DEVFdqe08zc7ODhKJpEKvqLS0tAq9p4h0gcxAgpfauMDwdhSee64LcksERCZm4UxCJs4kZuHizXu4m1uM3ZdSsfuS6nVtLJWgjbsVQr1UhapgT2tYGOn3F1RdUVBSirOJ2TgZn4GT8ZmISs5GSWn5IpS1iRTtvG3Q3tsW7bxt0NzZosI8pnIlJ8An0nX6PQs5VdmqVasQFRWFl19+GT4+PigqKsIPP/yA6OhoLFu27LHHpqWloaioCLm5uYiMjMSSJUuQnp6OrVu3Vrsd77zzDgYNGoT33nsPw4cPx+eff47+/ftjwYIFcHNzQ1JSErZu3Yp3330Xbm5ulZ5j3rx5mDp1KiwsLNC3b18UFxfjzJkzyMrKKjfsoLaOe9CsWbPQsmVLTJo0CRMmTIChoSH279+PQYMGwc7ODjNnzsT06dOhVCrRpUsX5OTk4NixYzAxMcHLL7+Mjz/+GKGhoQgICEBxcTF27NiB5s2bVzuO9cncSIrvhgXj+6MJWLzrMv4+fxsxt+9h5Wsh8HU0f/IJnpIgCFhx8AY+//cqBAHo5GOL5cODYWWiO3NcERHpGkNDQ4SEhCAiIgIvv/yyentERAT69++vxZYRVY2NqSF6tXBErxaqImqRXIGLt+7hTIKqUBWZlIXsAjmOx2XgeFwGAEAkApo5mqOtlw1CvawR6mUDVyuO/KgPuUVynEnMwsm4TJyMz8DFm/dQqiy/kridmQztm9igg7cN2jexRVN7M4h1cDEdIqoeFqWoStq1a4cjR45gwoQJuH37NszMzBAQEIDt27dX6NXzsGbNmkEkEsHMzAxNmjRBeHg4ZsyYUW7y8arq168fvLy8sGjRIixfvhyHDh3C+++/jwEDBiA3Nxeurq7o2bPnY3tOjR07FiYmJvj888/x3nvvwdTUFC1btsS0adMe+9g1Pe5Bfn5+2LNnDz788EO0a9cOxsbGaN++PYYOHQpANZm6g4MDFi9ejLi4OFhZWSE4OFg90ayhoSFmzZqFhIQEGBsbo2vXrti0aVOVH19bRCIR3ujijdZulpj8y1ncuJuP/t8dxeIBLdG/jeuTT1BDRXIFPtx6EVvPqbrtv9bBAx+/ENCou+oTEdWWGTNmYMSIEQgNDUXHjh2xevVqJCUlYcKECdpuGlG1GUklaOtlg7ZeNgB8oFQKuHE3D2cSs1SFqsRMJGYU4EpqLq6k5uLHE4kAAGdLI/VwvxBP60p741D1ZReU4FR8Jk7FZ+JkfCaib9/DQzUouFgaoX0T2/u9oWzgbWeqF3OCEekbFqWonLJhYQ8LCgrCjz/++Nhju3fvrp7AvLLb1eHl5QWFQlFhcjSRSIQrV66obzs5OWHjxo2PPM9LL71UaRuGDRuGYcOGPfKxH9Xu6h5nZWVVYVtYWBiOHj1a6TlEIhGmTp2KqVOnltteNnxv9uzZmDNnTqXHNgShXjbYObUr3t50DkdjM/D2piicScjCR/2aQ2ZQexPzA0BabhHG/xiJc0nZkIhFmPdCC4zo6FWrj0FE1JgNGTIEGRkZWLBgAVJSUhAYGIhdu3bB09NT200jempisQi+jubwdTTH0HYeAFS5Q2RClqpQlZiF6Fv3kHKvCDsupGDHhRQAgJnMAEEeVupCVRt3q3qfkqAhSs8rVhehTsRl4OqdXDycbnvYmKD9/V5Q7b1t4KYnE9MT6bsG8wm6aNEi7Ny5E1FRUTA0NER2dnaFfZKSkjB58mTs27cPxsbGGDZsGL744gsYGmqG6Vy8eBFvvfUWTp06BRsbG4wfPx5z5szhBx5RPbEzk+GHMe3x1d5rWLYvFj+eSMSFW/fw3bAguFnXzpLh0bfvYdzGM7h9rwgWRgZYPjwEXXztauXcRET6ZNKkSZg0aZK2m0FULxzMjdC3pTP6tlStnlxYoppcu2xeqrOJWcgtLsXh6+k4fD0dACARi9DC2QIhntYI9VIVqhwtjLT5NHTCnZwinIhTzQd1Kj4TsWl5FfbxsTdFO29bdGhig3beNnC25FBJIn3UYIpSJSUlGDRoEDp27Ih169ZVuF+hUOD555+Hvb09jhw5goyMDIwcORKCIKjnPMrJyUGvXr3Qo0cPnD59GteuXcOoUaNgamqKd955p76fEpHekohFeCe8GYI9rDFtcxTOJ2ej37Ij+GpIG3Rv5vBU5/7nUgqmbz6PQrkCTexMsXZkKJrYc0JzIiIiqh5jQwk6+tiio48tAEChFHDtTu79IX+ZOJOQhVvZhbh46x4u3rqHDccSAABu1sbq4X5tvWzg69D45z66mVWgng/qZLxqKOTD/J3My01Mbm9ecbVOItI/DaYoVbZa2YYNGyq9f8+ePYiJiUFycjJcXFwAAF9++SVGjRqFRYsWwcLCAj///DOKioqwYcMGyGQyBAYG4tq1a1i6dClmzJjB3lJE9ayHvwN2TOmCyb+cxYWb9zB6w2lMecYXb/f0rfZ8DYIg4Nt9sfgy4hoAoKuvHb4dGgxLE66iQ0RERE9PIhahubMFmjtbYEQH1TDWlHuFOJOQhcjELJxOyMTllBzczCrEzaxb2HZ/TksLIwMEPzAvVRt3KxhJa3fagvokCAISMgpwKj7jfiEqE7eyC8vtIxYBLVws1AWodl42sDblIjNEVFGDKUo9yfHjxxEYGKguSAFA7969UVxcjMjISPTo0QPHjx9HWFgYZDJZuX3KJo729vau9NzFxcUoLi5W3y6b50gul0Mul6u3l5aWQhAEKBQKKJXKCuepirL5hwRBqPE5GgvGQqMmsVAoFBAEAaWlpeVep7rGyVyKX95oi0W7ruDX0zfxzX/XEZmQiaWDWsLmoeSl7Hk8/HyK5ArM2haNHRdVSzy/3sEDs/r4wUBScd/G4lGx0EeMhQZjoVGXsWB8iaiMs6UxXmhtjBdaq76D5BWX4lySZvL0c0nZyCkqxYGrd3Hg6l0AgFQiQoCLJUI9VSv8hXpZw85Md3sNCYKA2LQ8nCibmDwuA2m5xeX2kYhFaOlqeX91PFuEeFnDwogXBonoyRpNUSo1NRWOjo7ltllbW8PQ0BCpqanqfby8vMrtU3ZMamrqI4tSixcvVvfUetCePXtgYqKZA0ckEsHZ2RmZmZkwN3+6pe5zc3Of6vjGhLHQqE4scnNzkZ+fj3379tV4wvn61MEAkDQVYXOcGEdvZKD30v0Y7aeAVyVvpYiICPXv90qAtVckSMoXQSwSMMhbiRBRHPb8G1ePrdeeB2Oh7xgLDcZCoy5iUVBQcVgKERGgmgi9q689uvraAwBKFUpcSc3F6fvzUp1JyMSdnGJEJWcjKjkba4/EAwC87UzvD/ezRoinDXzstbfSnFIp4EpqrmooXlwmTiVkIjO/pNw+hhIx2rhbqYbjNbFBsIc1J3wnohrR6ifHvHnzKi32POj06dMIDQ2t0vkq++AWBKHc9of3Kfuy/rgP/VmzZmHGjBnq2zk5OXB3d0d4eDgsLCzK7Xvnzh3k5OTAyMgIJiYm1f5jIggC8vPzYWrKJU8ZC43qxEIQBBQUFCA3NxfOzs5o06ZN/TSyFjwHYOidXLz163nEZxTg28tSfNCnGUa0d4dIJIJcLkdERAR69eoFqVSKS7dyMOGXc7iTXwwrYymWvdoaHZrYaPtp1IuHY6HPGAsNxkKjLmPx8MqwRESPYiARI9DVEoGulhjd2RuCIOBmVqF6uF9kYhau3slFfHo+4tPzsSXyJgDA2kSKEE+b+5OnWyPQ1bLWVyouU6pQIiYlRz0n1Kn4TOQUlZbbx0gqRrCHtXpOqCCPhj0EkYh0h1aLUm+99RZeffXVx+7zcM+mR3FycsLJkyfLbcvKyoJcLlf3hnJyclL3miqTlpYGABV6WT1IJpOVG/JXRiqVVkh0XV1dIZFIkJ6eXqV2P0wQBBQWFsLYmEugMhYaNYmFtbU1nJycGlzsAtxs8NeULnj/jwvYdTEVn+y8gnPJ9/C/ga0gu/9+k0ql2HM5He/8HoUiuRJNHcyw9vVQeNmZarn19a+yzyF9xVhoMBYadRELxpaIakokEsHdxgTuNiZ4KcgVAHCvUI6zSZrJ08/fzEZWgRx7L9/B3st3AACGBmK0crVUDffztEaIp3WN52gqKVXi4q1snIzPxMk4VWEsr7h8EcrUUIIQLxu091b9tHKzgqGB+OmePBFRJbRalLKzs4OdXe0s096xY0csWrQIKSkpcHZWLeO6Z88eyGQyhISEqPf58MMPUVJSAkNDQ/U+Li4uVS5+PUnZED4HB4cazTkhl8tx6NAhdOvWTe+TXsZCo7qxkEqlkEga7tUrcyMpvhsWjPVHE/DprsvYcSEFl1NysGxIawgCsGzfDXyz/wYAoHsze3wzNIjzFhAREVGDZGksRY9mDuhxfwXiklIlom/fK9ebKj2vRDX8LzFLfVxTBzP1cL9QT2t42lY+SqNIrkBUcvb9oXgZiEzMQpG8/Byl5kYGaOelGorX3tsWAS4WMJCwCEVEda/BDPxNSkpCZmYmkpKSoFAoEBUVBQBo2rQpzMzMEB4ejhYtWmDEiBH4/PPPkZmZiZkzZ2LcuHHqIXbDhg3D/PnzMWrUKHz44Ye4fv06Pv30U8ydO7fWe5NIJJIaFQUkEglKS0thZGSk94UYxkJDH2MhEokwpos3WrtbYvLP53Djbj4GrjoBdxMxrt1TFaTe6OKND59rXu2V+oiIiIh0laGBGEEe1gjysMbYrk0gCAISMwrUBarTCZm4cTcfsWl5iE3Lw6+nkgEAdmYyhHpaI9jDEnczRbi6NxZnklRzV5WUli9C2Zgaop2XjXpOKH8nC+ZTRKQVDaYoNXfuXGzcuFF9OygoCACwf/9+dO/eHRKJBDt37sSkSZPQuXNnGBsbY9iwYfjiiy/Ux1haWiIiIgKTJ09GaGgorK2tMWPGjHLzRRGRbgnxtMGOqV3w9qZzOBqbgWv3xJBKRFj4UiCGtPXQdvOIiIiI6pRIJIKXnSm87EwxKNQdAJCZX4LIRNUKf5EJWbhw8x7S84rxT3Qq/olOBSABrmoWfbE3l6mG4jWxRXtvGzS1N4OYRSgi0gENpii1YcMGbNiw4bH7eHh4YMeOHY/dp2XLljh06FAttoyI6pqdmQw/jGmPr/dexV+nYrFoSCg6+z56HjgiIiKixszG1BC9WjiiVwtVPlQkV+DSrXs4nZCF0/EZiElKQ3s/F3T0sUM7bxt423HhICLSTQ2mKEVE+k0iFmFKDx/4FF5FOy/9WGGPiIiIqCqMpBLVJOheNhjb2QO7du3Cc8+11JtpH4io4WJRqgYEQQBQN0tCy+VyFBQUICcnR+//iDAWGoyFCuOgwVhoMBYajIVGXcai7O9/WT5AlWO+VD8YCw3GQoVx0GAsNBgLDcZCQxfyJRalaiA3NxcA4O7uruWWEBERkbbk5ubC0tJS283QWcyXiIiI6En5kkjgZb5qUyqVuH37NszNzWt9bHZOTg7c3d2RnJysXjVQXzEWGoyFCuOgwVhoMBYajIVGXcZCEATk5ubCxcUFYjGXTH8U5kv1g7HQYCxUGAcNxkKDsdBgLDR0IV9iT6kaEIvFcHNzq9PHsLCw0Ps3SBnGQoOxUGEcNBgLDcZCg7HQqKtYsIfUkzFfql+MhQZjocI4aDAWGoyFBmOhoc18iZf3iIiIiIiIiIio3rEoRURERERERERE9Y5FKR0jk8nw8ccfQyaTabspWsdYaDAWKoyDBmOhwVhoMBYajEXjxv9fDcZCg7FQYRw0GAsNxkKDsdDQhVhwonMiIiIiIiIiIqp37ClFRERERERERET1jkUpIiIiIiIiIiKqdyxKERERERERERFRvWNRioiIiIiIiIiI6h2LUkREREREREREVO9YlCIiIiIiIiIionrHohQREREREREREdU7FqWIiIiIiIiIiKjesShFRERERERERET1jkUpIiIiIiIiIiKqdyxKERERERERERFRvWNRioiIiIiIiIiI6h2LUkREREREREREVO9YlCIiIiIiIiIionrHohQRNSoHDhyASCTCli1bnrjvqFGj4OXlVfeNIiIiImrgqpNjERFVFYtSRKS35syZg23btmm7GURERERERHrJQNsNICKqqoKCApiYmNTa+Xx8fGrtXEREREQNVW3nWEREVcWeUkSkk+bNmweRSISzZ8/ilVdegbW1dbWKSHK5HLNnz4aLiwssLCzw7LPP4urVq+X2qWz4nkgkwltvvYVVq1bBz88PMpkMLVq0wKZNm6rV/p49e8Lf3x+CIJTbLggCmjZtiueff169bf78+Wjfvj1sbGxgYWGB4OBgrFu3rtyx7777LiwtLaFQKNTbpkyZApFIhM8//1y9LSMjA2KxGMuWLatWe4mIiEg/PG2O9aCcnBz07t0bjo6OOHXqVLnzR0dHY+jQobC0tISjoyPGjBmDe/fulTteEAQsX74cbdq0gbGxMaytrfHKK68gLi6uwmPt3bsXPXv2hIWFBUxMTNC5c2f8999/NWo3EekOFqWISKcNGDAATZs2xe+//46VK1dW+bgPP/wQiYmJWLt2LVavXo3r16/jhRdeKFfUeZS//voL33zzDRYsWIAtW7bA09MTQ4cOrdYcCm+//TauXr1aIVnavXs3bty4gcmTJ6u3JSQkYPz48fjtt9+wdetWDBgwAFOmTMEnn3yi3ufZZ59FTk6OOuEDVMmZsbExIiIi1Nv+++8/CIKAZ599tsptJSIiIv1T0xyrzM2bN9GlSxckJibi+PHjaNeuXbn7Bw4cCD8/P/zxxx/44IMP8Msvv2D69Onl9hk/fjymTZuGZ599Ftu3b8fy5csRHR2NTp064c6dO+r9fvrpJ4SHh8PCwgIbN27Eb7/9BhsbG/Tu3ZuFKaKGTiAi0kEff/yxAECYO3dutY7bv3+/AEB47rnnym3/7bffBADC8ePH1dtGjhwpeHp6ltsPgGBsbCykpqaqt5WWlgr+/v5C06ZNq9wOhUIhNGnSROjfv3+57X379hV8fHwEpVL5yOPkcrmwYMECwdbWVr1ffn6+YGhoKCxYsEAQBEG4efOmAEB4//33BWNjY6GoqEgQBEEYN26c4OLiUuV2EhERkX552hzr999/F86dOye4uLgIXbt2FTIyMio9/5IlS8ptnzRpkmBkZKTObY4fPy4AEL788sty+yUnJwvGxsbCe++9JwiCKgeysbERXnjhhXL7KRQKoXXr1kK7du2q9TyISLewpxQR6bSBAwfW6LgXX3yx3O1WrVoBABITE594bM+ePeHo6Ki+LZFIMGTIEMTGxuLmzZtVenyxWIy33noLO3bsQFJSEgDgxo0b+OeffzBp0iSIRCL1vvv27cOzzz4LS0tLSCQSSKVSzJ07FxkZGUhLSwMAmJiYoGPHjti7dy8AICIiAlZWVnj33XdRUlKCI0eOAFD1nmIvKSIiInqSmuZY//77L7p27Ypu3bohIiICNjY2le5XWS5WVFSkzm127NgBkUiE1157DaWlpeofJycntG7dGgcOHAAAHDt2DJmZmRg5cmS5/ZRKJfr06YPTp08jPz+/Rs+FiLSPRSki0mnOzs41Os7W1rbcbZlMBgAoLCx84rFOTk6P3JaRkVHlNowZMwbGxsbqLvHfffcdjI2NMWbMGPU+p06dQnh4OABgzZo1OHr0KE6fPo3Zs2dXaO+zzz6LEydOID8/H3v37sUzzzwDW1tbhISEYO/evYiPj0d8fDyLUkRERPRENc2xtm/fjsLCQkycOFGdX1XmSbnYnTt3IAgCHB0dIZVKy/2cOHEC6enp6v0A4JVXXqmw32effQZBEJCZmVmj50JE2sfV94hIpz3Yo6i+pKamPnLbwwnW41haWmLkyJFYu3YtZs6cifXr12PYsGGwsrJS77Np0yZIpVLs2LEDRkZG6u3bt2+vcL6ePXtizpw5OHToEP777z98/PHH6u179uyBt7e3+jYRERHR49Q0x/q///s/bN68GX379sW2bdvUF9eqy87ODiKRCIcPH660uFW2zc7ODgCwbNkydOjQodJzPdjDnYgaFhaliIge8t9//+HOnTvqBEehUGDz5s3w8fGBm5tbtc41depULF++HK+88gqys7Px1ltvlbtfJBLBwMAAEolEva2wsBA//vhjhXO1a9cOFhYW+Oqrr5CamopevXoBUPWg+uyzz/Dbb7+hRYsWcHFxqe5TJiIiIqoSIyMjbN26Fa+99hpefPFFbN68Gf3796/2efr164f//e9/uHXrFgYPHvzI/Tp37gwrKyvExMRUyKOIqOFjUYqI6CF2dnZ45plnMGfOHJiammL58uW4cuUKNm3aVO1z+fn5oU+fPti9eze6dOmC1q1bl7v/+eefx9KlSzFs2DC8+eabyMjIwBdffFHpFUOJRIKwsDD8/fff8Pb2Vi/f3LlzZ8hkMvz333+YOnVqzZ40ERERURVJpVL8+uuvGDt2LF555RX88MMPGDp0aLXO0blzZ7z55psYPXo0zpw5g27dusHU1BQpKSk4cuQIWrZsiYkTJ8LMzAzLli3DyJEjkZmZiVdeeQUODg64e/cuzp8/j7t372LFihV19EyJqK6xKEVE9JAXX3wRAQEB+Oijj5CUlAQfHx/8/PPPGDJkSI3ON2TIEOzevbvSq3vPPPMMvv/+e3z22Wd44YUX4OrqinHjxsHBwQFvvPFGhf2fffZZ/P333+XmjZLJZOjSpQsiIiI4nxQRERHVC7FYjHXr1sHc3ByvvfYa8vPzMXbs2GqdY9WqVejQoQNWrVqF5cuXQ6lUwsXFBZ07d0a7du3U+7322mvw8PDAkiVLMH78eOTm5sLBwQFt2rTBqFGjavmZEVF9EgmCIGi7EUREukIkEmHy5Mn49ttva+2cAwcOxIkTJ5CQkACpVFpr5yUiIiIiImrI2FOKiKgOFBcX4+zZszh16hS2bduGpUuXsiBFRERERET0ABaliKhBEAQBCoXisftIJJJ6Wa2vtLT0sfeLxWKkpKSgU6dOsLCwwPjx4zFlypQ6bxcRERFRdelSjkVE+kes7QYQEVXFwYMHIZVKH/uzcePGp34cQRCeOHTvSe0YM2YMvLy8IAgC7t27hxUrVpRbXY+IiIhIV9RXjkVEVBnOKUVEDUJubi6uXr362H28vb1ha2tb5205c+bMY++3s7ODl5dXnbeDiIiI6GnpUo5FRPqHRSkiIiIiIiIiIqp3nFOqBpRKJW7fvg1zc3OOrSYiItIzgiAgNzcXLi4uEIs5E8KjMF8iIiLSX1XNl1iUqoHbt2/D3d1d280gIiIiLUpOToabm5u2m6GzmC8RERHRk/IlFqVqwNzcHIAquBYWFrV6brlcjj179iA8PFzvl49nLDQYCxXGQYOx0GAsNBgLjbqMRU5ODtzd3dX5AFWO+VL9YCw0GAsVxkGDsdBgLDQYCw1dyJdYlKqBsi7oFhYWdZJkmZiYwMLCgm8QxgIAUFyqwI2b2TAyZiz4mtBgLDQYCw3GQqM+YsEhaY/HfKl+MBYqOUVy3MyWw9CIseBrQoOx0GAsNBgLDV3Il1iUItJRV1JzsPl0Mrafu4WsAjkCrcXo1VsJPf/cJCIiIj0nCALi0/MRmZiFs0lZOJuYjWtpuRAEwMlYAu+gewj2stN2M4mIqApYlCLSITlFcvwVdRu/n0nG+Zv3yt13KUuMqZvOY8WIEMgMJFpqIREREVH9KigpRVRyNs4lZSMyMQvnkrKQVSCvsJ+hgRiphUoMWn0Kk7r7YMozvjA04GIERES6jEUpIi0TBAEn4zPx2+lk7LqUgiK5EgAglYjwbHNHDG7rDkGhwPgfI7Hv6l1M+ukslr8WzMIUERERNTqCIOBmViHOJmWpe0JdTsmFQimU209mIEYrN0sEe1oj2EP1IyhLMWH1PpzNEGPZvlhExNzBl4NbI8DFUkvPhoiInoRFKSItuZNThC2RN/H7mWQkZBSot/s6mGFIW3e8HOQKWzMZANVY33H+Sqy7LsV/V9JYmKJGT6FQQC6veBW8MnK5HAYGBigqKoJCoajjluk2xkLjaWIhlUohkfDzlag+FMkVuHTr3gNFqGzczS2usJ+LpRGCPK0R4mGNYE9rtHC2qNALSi4XY6SfEqM82mDejiu4kpqL/t8exdSevpjY3QdSCXtNUePCfKlmGAsNXciXWJQiqkdyhRL/XU7Db2eSceBqGsou+pkaSvBCaxcMbuuOIHerSieDa2YlYNVrQRj/0zn8dyUNE386ixUsTFEjIwgCUlNTkZ2dXa1jnJyckJycrPcTTzMWGk8bCysrKzg5Oel9HIlqW+q9InUPqMjELETfvge5onwvKKlEhAAXSwR7WCPE0xrBnlZwtjSu8mP0DXRCJ18HfLTtEv6JTsXSiGvqXlN+jlw1kxo+5ktPh7HQ0IV8qdEVpQ4dOoTPP/8ckZGRSElJwbZt2/DSSy+p7xcEAfPnz8fq1auRlZWF9u3b47vvvkNAQID2Gk2NXmxaHn47k4ytZ28iPa9Evb2tlzUGh7rjuZbOMJU9+e3Y2ccW349qizEbTmMfC1PUCJUlWA4ODjAxManSHzilUom8vDyYmZlBLNbvq+CMhUZNYyEIAgoKCpCWlgYAcHZ2rqsmEjV6coUSMbdzHpiQPAu37xVV2M/OTIYQTyt1ESrQ1RJG0qfLbezMZFjxWjD+On8bc/+MxsVb99DvmyOYEe6HcV2bQCLW7y+i1LAxX3o6jIWGLuRLja4olZ+fj9atW2P06NEYOHBghfuXLFmCpUuXYsOGDfDz88PChQvRq1cvXL16FebmvHJCtSe/uBQ7LtzGb2duIjIxS73dzkyGgSGuGBzqDh97s2qft3NTO3w/qi3e2MjCFDUuCoVCnWDZ2tpW+TilUomSkhIYGRkxsWAs1J4mFsbGqh4ZaWlpcHBw4FA+oipKzyvG2cQsRCZl4VxiNs7fzEZxqbLcPmIR0NzZQl2ACvG0hpu1cZ30VhCJROjfxhUdmthi1taL2HclDf/bfQX/Rqfii0Gta5SHEWkb86Wnx1ho6EK+1OiKUn379kXfvn0rvU8QBHz11VeYPXs2BgwYAADYuHEjHB0d8csvv2D8+PGVHldcXIziYs3Y9pycHACq8ZdVHcNbVWXnq+3zNkQNMRaCIOBc8j38HnkLuy6loqBENS5XIhYhzNcOg0JcEeZnp57ToDpjwB/8t52nJVYND8L4n89h35U0vPnDGXw3tA1kjXyFmYb4mqgrjTEWxcXFEAQBRkZGUCqVTz7gPkEQ1P9W57jGiLHQeNpYGBkZQRAEFBYWQiaTlbuvMb3viGpKoRRwNTUXkfd7QJ1NykLiA3NklrEykd6fiNwKwZ7WaO1mVaXe4bXJ0cII60aG4vfIm/jk7xicS8rGc18fxnt9/DG6kxfE7DVFDUjZ3yATExMtt4RI8zqUy+UsSlVFfHw8UlNTER4ert4mk8kQFhaGY8eOPbIotXjxYsyfP7/C9j179tTZh0FERESdnLchagixyJUDp++KcCJNjDuFmsTG3khABwcl2toLsDRMQUl8CiLia/44D8fiDV8RVl8R4+C1dAz+eg/GNFNC2rjrUgAaxmuivjSmWBgYGMDJyQn5+fk1+tKfm5tbB61qmBgLjZrGoqSkBIWFhTh48CBKS0vL3VdQUPGLN1Fjl11QgnNJ2apheElZiErKRn5J+UlxRSLVgi0hntYIut8TqomdqU7M2SISiTA41B1dmtrh/T8u4PD1dHyyIwb/XkrF54NawdPWVNtNJKoWXXhfEdXG61CvilKpqakAAEdHx3LbHR0dkZiY+MjjZs2ahRkzZqhv5+TkwN3dHeHh4bCwsKjVNsrlckRERKBXr16QSqW1eu6GRtdjUapQ4nBsBn6PvIX9V++i9P6s5cZSMfoEOmFQsCtCPSuftLy6HhWL5wC0j8vAmz+dQ0w28HeWA757tTVkTzkPg67S9ddEfWqMsSgqKkJycjLMzMxgZGRU5eMEQUBubi7Mzc31PkFjLDSeNhZFRUUwNjZGt27dKrwey3pMEzVWSqWAG3fzyq2IF5uWV2E/c5kB2nio5oIK9rRGG3crWBrr9t8kFytj/DCmHX45lYRFOy/jVEIm+n59GLP6+mN4e0/2miIiqmd6VZQq83ByKgjCYxNWmUxWoes+oFoCsa6+DNbluRsaXYtFQno+fjuTjD/O3sSdHM2wzjbuVhjS1h39WjnD3Kj+Xhfdmjnh+5FtMWbjaRy8lo63Nl/AytdCnnqCUF2ma68JbWpMsVAoFBCJRBCLxdUa0142NKvsWH3GWGg8bSzEYjFEIlGl77HG8p4jKpNbJMf55HvqItS5pCzkFJVW2M/bzrTcini+DuYNcsJwkUiE4e090c3XHu9uOY8TcZmY82c0/olOxWcDW8HNmsOiiIjqi14VpZycnACoekw9ODt8Wlpahd5TRA8qLFFg96UUbD6djJPxmertNqaGeDlINWl5MyftTZTf6f7k52M2nMaBq3cx4afIRl+YIqL6MW/ePKxYsQJpaWkVVrQlooZHEAQkZhSoV8SLTMzCtTu5uN/hW81YKkErN0tVAcrDGkEeVrA1q3iRtiFztzHBL2M74IfjCfjfP1dwNDYDfb46jI+eb44hbd31vscpEVUd86Wa06vLqN7e3nBycio3B0tJSQkOHjyITp06abFlpIsEQcD55Gx8uO0i2i3aixm/ncfJ+EyIRECYnz2WDw/GiVk9MadfC60WpMp08lEVpoykYhy4ehfjf4xEkVzx5AOJ6KmIRKLH/owaNQoAsH//fvTo0QM2NjYwMTGBr68vRo4cqZ6v6MCBAxCJRMjOzi53u6ynj6WlJYKCgvDee+8hJSXlsW1KSEgo1wZLS0t06NABf//9d7We2+XLlzF//nysWrUKKSkpj1xIhIh0V2GJAifjMrD8QCzGbjyD0IV70f2LA3jn9/P4+WQSrqSqClJu1sZ4sbUL5r8YgL/f6oIL88KxeXxHvNfHH8+2cGx0BakyYrEIozp7Y/fb3RDiaY284lJ8sPUiRm84jdR7RdpuHlGjwXyJHqXR9ZTKy8tDbGys+nZ8fDyioqJgY2MDDw8PTJs2DZ9++il8fX3h6+uLTz/9FCYmJhg2bJgWW026JCu/BNvO3cJvZ5JxJVUzQa67jTEGh7hjYIgbXKyMtdjCR+vkY4f1o9ph9IZTOHhNVZhaNYI9pojq0oMJz+bNmzF37lxcvXpVvc3Y2BjR0dHo27cvpk6dimXLlsHY2BjXr1/Hli1bnrgy3NWrV2FhYYGcnBycPXsWS5Yswbp163DgwAG0bNnyscfu3bsXAQEByM7OxvLlyzFw4ECcPXsWgYGBVXpuN27cAAD079//qXoMyOVyDnkjqgeCIOBWdiHOJmWrV8SLuZ2jnveyjKFEjEBXC4R4Wqt7QjlYVH0uv8bI284Uv43viHVH4vDFnms4cPUuwv/vIOa9GICXg1zZa4roKTFfejJ9zZcaXU+pM2fOICgoCEFBQQCAGTNmICgoCHPnzgUAvPfee5g2bRomTZqE0NBQ3Lp1C3v27IG5ufZ7upD2KJQCDl27i8m/nEX7T//Dgh0xuJKaC0MDMfq3ccEvY9vj4MwemNLTV2cLUmU6+thi/ah2MJZK1IUp9piihkoQBBSUlD7xp7BEUaX9qvMjCMKTGwjV0PCyH0tLS4hEogrbIiIi4OzsjCVLliAwMBA+Pj7o06cP1q5dC0NDw8ee38HBAU5OTvDz88Orr76Ko0ePwt7eHhMnTnxi22xtbeHk5AR/f38sWrQIcrkc+/fvV99/69YtDBkyBNbW1rC1tUX//v2RkJAAQNUN/YUXXgCgmV+pzPr169G8eXMYGRnB398fy5cvV99XdtXxt99+Q/fu3WFkZISffvqpysdt3boVPXr0gImJCVq3bo3jx4+Xe05Hjx5FWFgYTExMYG1tjd69eyMrKwuA6vWyZMkSNGnSBKampujSpQu2bNmiPjYrKwvDhw+Hvb09jI2N4evri/Xr1z8xjkS6QKEUkF9ciru5xUjOLMC1O7k4n5yN43EZ2H9bhLd+jUKHxf+hy2f7MfXXc9hwLAEXbt5DqVKAo4UMfQOd8NHzzfHHxE64OD8cWyd1xuznW6BPoLPeF6TKSMQivNnNB7umdkFrN0vkFJVixm/n8eaPkbibW/zkExBpCfMl5ksNOV9qdD2lunfv/tg3hkgkwrx58zBv3rz6axTprOTMAvweeRN/RN7ErexC9fZAVwsMCXXHi61dYWnS8KrVHX1s1XNMHbx2F2/+GInV7DFFDVChXIEWc//VymPHLOgNE8Pa+TPp5OSElJQUHDp0CN26dXuqcxkbG2PChAmYPn060tLS4ODg8MRj5HI51qxZA0AzSXdBQQF69OiBrl274tChQzAwMMDChQvRp08fXLhwATNnzoSXlxdGjx5d7urmmjVr8PHHH+Pbb79FUFAQzp07h3HjxsHU1BQjR45U7/f+++/jyy+/xPr16yGTyap83OzZs/HFF1/A19cXs2fPxtChQxEbGwsDAwNERUWhZ8+eGDNmDL755hsYGBhg//79UChUhfePPvoIW7duxYoVK+Dj44M9e/bg9ddfh6OjI8LCwjBnzhzExMRg9+7dsLOzQ2xsLAoLNZ/9RDUlVyhRKFegqESBQvn9n5L7Pw/cLlL/rkSBvPSB/ZXl7i8o+/2B40tKH9dLQAIgTfWbWIQAFwv1injBHlZwtTJmT59qaOpgjj8mdsKqQ3H4au81RMTcwZmETHzyUiD6tXLRdvOIKmC+VBHzpYaTLzW6ohTRkxTJFdgTcwe/nU7G0RvpKKthWhpL8VIbFwxu644AF0vtNrIWdPSxxfrRbTF6/WkcYmGKSKsGDRqEf//9F2FhYXByckKHDh3Qs2dPvP7667CwsKj2+fz9/QGorpY9Lsnq1KkTxGIxCgsLoVQq4eXlhcGDBwMANm3aBLFYjLVr16q/rK5fvx5WVlY4cOAAwsPDYWVlBUCzUAgAfPLJJ/jyyy8xYMAAAKr5GmNiYrBq1apyydK0adPU+1TnuJkzZ+L5558HAMyfPx8BAQGIjY2Fv78/lixZgtDQ0HJXDAMCAgAA+fn5WLp0Kfbt24eOHTtCqVRi2LBhiIyMxKpVqxAWFoakpCQEBQUhNDQUAODl5VWNqFNDJAgCShRKFN0vApUVeYruF4Y0BaOy+5QP3P9AcemBf4sqKTo9PDyurhlLJTA2lMBYKoHMQAwTRS76hDZDW29btHKzgrEh/9Y/LQOJGJN7NMUz/g5457fziEnJwVu/nMPui6n45KVA2Jg+vtcGEVUf8yX9zJdYlCK9EX37Hn4/cxPbzt3CvUK5envnprYYHOqO3gFOja5g06EJC1PUsBlLJYhZ0Pux+yiVSuTm5MLcwhxice2NSjeuxfeJRCLB+vXrsXDhQuzbtw8nTpzAokWL8Nlnn+HUqVPlVoStirIewU/q+bB582b4+/vj2rVrmDZtGlauXAkbGxsAQGRkJGJjYysMXy8qKlLPjfCwu3fvIjk5GW+88QbGjRun3l5aWgpLy/LF/LJEprrHtWrVSv17WVzS0tLg7++PqKgoDBo0qNK2xcTEoKioCL169Sq3vaSkRD2kf+LEiep5IsLDw/HSSy9xoZMGKKdIjk93xuBGvBi7fo1CsUJQ9zIqKFd0Uv1en/UiseiBgtH9opGxVAIjafnb6t8N79/30LYH/334WCNp+eEhcrkcu3btwnPdvPVyLpK61tzZAtsnd8a3+2Px3f5Y7LyYgpPxGVj0ckv0DnB68gmI6gHzpcoxX6pIF/MlFqWoUbtXKMdfUbew+UwyLt3KUW93sTTCK6HuGBTiBncbEy22sO49XJga98MZrHk9lIUpahBEItETu4QrlUqUGkpgYmhQq0lWXXB1dcWIESMwYsQILFy4EH5+fli5ciXmz59frfNcvnwZwJOvXLm7u6sX9jAzM8PAgQMRExMDBwcHKJVKhISE4Oeff65wnL29faXnK5tkdM2aNWjfvn25+ySS8p8ppqamNTruwS/VZUlk2fHGxo+e069sn507d8LV1RVKpRJ5eXkwMzNTH9e3b18kJiZi586d2Lt3L3r27InJkyfjiy++eOR5G6N58+ZVeM05OjoiNTUVgCqJnz9/PlavXo2srCy0b98e3333nfoqq7YplQI2nb4JQAykp1X5OKlEVKEAVHbbxFACo4eKRg/eZyx9+H4xjKSqzx11schQDEOJmMPkGiFDAzFm9PJDr+aOeOf3KFy7k4fxP0bi5SBXzHshoEFO9UCNC/OlyjFfenTbdClfYlGKGh2lUsCJ+Az8djoZuy+lovj+HAxSiQjhLZwwuK07ujS1g0SsP0ljhya22DC6LUatP43D19NZmCLSAdbW1nB2dkZ+fn61jissLMTq1avRrVu3RyZDlQkLC0NgYCAWLVqEr7/+GsHBwdi8eTMcHByq3CXe0dERrq6uiIuLw/Dhw6v82DU97mGtWrXCf//9V2lS2qJFC8hkMiQlJSEsLAxKpRI5OTmwsLAol3zb29tj1KhRGDVqFLp27Yp3331X74pSgKob/969e9W3H0x2lyxZgqVLl2LDhg3w8/PDwoUL0atXL1y9elUnFoYxMTTA1Gd8kHjjGoJaBsDUyPCRvYweLCZJJbr9JYx0X0s3S/w9pQu+2nsdqw7ewLZzt3DsRjr+N6AVevg/eb4aIqo+5kvV19DyJRalqNFIuVeILWdu4vfIm0jKLFBvb+ZojsFt3fFykKtej/9vf78wNXoDC1NE9W3VqlWIiorCyy+/DB8fHxQVFeGHH35AdHQ0li1b9thj09LSUFRUhNzcXERGRmLJkiVIT0/H1q1bq92Od955B4MGDcJ7772H4cOH4/PPP0f//v2xYMECuLm5ISkpCVu3bsW7774LNze3Ss8xb948TJ06FRYWFujbty+Ki4tx5swZZGVlYcaMGY987Joe96BZs2ahZcuWmDRpEiZMmABDQ0Ps378fgwYNgp2dHWbOnInp06dDqVSiU6dOSElJwYULF2Bubo6RI0di7ty5CAkJQUBAAIqLi7Fjxw40b9682nFsDAwMDMrNfVFGEAR89dVXmD17tno+i40bN8LR0RG//PILxo8f/8hzFhcXo7hYs0JZTo6qh7JcLodcLn/UYdUmAjChiwciCq+iV7Bz1YasKRWQKxvnSrRlsa3NGDdU9RELMYAZPX3Qw88WH2y9hLj0AozecBqvBLviw75+MDfSfq8pviY0GmMs5HI5BEGAUqlU93qpirKhbGXHalPZ4z/cjlWrVuH8+fN46aWX1PnSjz/+iOjoaHz99dflnnPZ72W3U1NTUVBQoM6XvvjiC6Snp2PLli0VHufBWDx4rjLTp0/HkCFDMHPmTAwdOlSdL82bN0+dL23btg0zZ86Em5tbpc9n7ty5mDZtGszNzdGnTx913pOdna3OVSp77Joc9/C2999/H61bt8bEiRMxfvz4CvnSO++8g+nTp6O0tBSdO3dGamoqzp8/DzMzM4wcORIff/wxgoOD1fnS33//jebNm1f6ulEqlRAEAXK5vEJvrqq+71iUogatpFSJ/y7fweYzyTh07a563ghzmQFeaOOCwaHuaO1mya7097VvYov1o1iYIqpv7dq1w5EjRzBhwgTcvn0bZmZmCAgIwPbt2xEWFvbYY5s1awaRSAQzMzM0adIE4eHhmDFjRqUFhSfp168fvLy8sGjRIixfvhyHDh3C+++/jwEDBiA3Nxeurq7o2bPnY68Ejh07FiYmJvj888/x3nvvwdTUFC1btsS0adMe+9g1Pe5Bfn5+2LNnDz788EO0a9cOxsbGaN++PYYOHQpANTmog4MDFi9ejLi4OFhaWiI4OBizZ88GABgaGmLWrFlISEiAsbExunbtik2bNlX58RuT69evw8XFBTKZDO3bt8enn36KJk2aID4+HqmpqQgPD1fvK5PJEBYWhmPHjj22KLV48eJKr8ru2bMHJiZ1M1Q+IiKiTs7bEDEWGvUVi4lNgJ1SMQ6miLDl7C3svXQTw3yUaGZVvxPfPwpfExqNKRZlFxXy8vJQUlJS7eNzc3ProFXVU1RUBEEQ1BcvygQEBODAgQOYMGECUlNTYWpqCn9/f/z0008ICgpCTk4OCgpUnQ9yc3MhFovVt5s3b67Olzw9PdGjRw9MnjwZjo6OFR6nTFnvq/z8/HL7dOvWDR4eHpg3bx6+/PJL/P3335g3bx4GDhyIvLw8ODs7q/O3nJwc9cp0D55j8ODBEIlEWLZsGd5//32YmJigRYsWmDhxInJycpCXl1fpY9fkuLL/04KCAuTk5MDJyQlbt27FggUL0KFDBxgZGSE0NBT9+vVDTk4OZs6cCQsLCyxevBgJCQmwtLRE69atMX36dOTk5EAQBMyaNQtJSUkwMjJCx44dsXr16krjWFJSgsLCQhw6dAilpaXl7iv7v3kSkVBWHtSCB2eZr6qVK1dWaTnHupSTkwNLS0vcu3evRqsAPI56ssrnntP7ySofF4trd3Lx2+lkbDt3Cxn5mg/jdt42GBLqjudaOjeqlWdq+3VxKj4To9afQkGJAl197RpMYYrvD43GGIuioiLEx8fD29sbRkZGVT7uUd2O9RFjofG0sXjc67Eu84DK1Ha+tHv3bhQUFMDPzw937tzBwoULceXKFURHR+Pq1avo3Lkzbt26BRcXF/Uxb775JhITE/Hvv49ecryynlLu7u5IT0+vk3wpIiICvXr1ajSfgTXFWGhoKxanE7LwwbZLSMpUfTEd1s4N74X7wVSmnev/fE1oNMZYFBUVITk5GV5eXtXKlwRBQG5uLszNzfX+gj1jofG0sSgqKkJCQgLc3d0rzZfs7OyemC9ptafU9u3bMXjw4MdOxPWgX375BXl5eVovSpF25BbJseNCCjafTkZUcrZ6u4O5DAND3DA41B3edqaPPgGptfO2wYbR7TBq/Skcvp6OsRvPYO3IhlGYIiLSN7WdL/Xt21f9e8uWLdGxY0f4+Phg48aN6NChA4CKKxUJgvDEZFUmk0Emk1XYLpVK6+zLYF2eu6FhLDTqOxadfB3wz7Ru+N/uK/jheCJ+OXUTR2Iz8fkrrdC+iW29teNhfE1oNKZYKBQKiEQiiMXial10KRt6VXasPmMsNJ42FmKxaoGPyt5jVX3PaX343jfffFPlItOWLVvquDWkawQBOJOYhT/OpWDnhRQUylXzQRiIRXjG3wFD2rojzM8eBpy8tNoeLEwdiVUVpta8HtqoepgRETUWdZkvlQ2lvH79Ol566SUAqrk5Hlx6Oy0tDY6OjtU6L5E+MTE0wIL+gegd4IT3tlxAUmYBXl1zAqM6eeG93v7Mr4iIHkGrRan9+/fDxsamyvvv3r0brq6uddgiqi+lCiXyixXILylFfnEp8opLUVCiQF6x6nZ+iQJ3sgvwW5QEaSdOq49rYm+KIaHuGBDsBnvzildjqXraedtg45h2GPm9qjBVNscUEyciIt1R1/lScXExLl++jK5du8Lb2xtOTk6IiIhAUFAQANV8EQcPHsRnn31W7bYT6ZvOTe3wz7SuWLTzMjadTsb6owk4cPUuvhjUGiGe1tpuHhGRztFqUepJk7s+rEuXLnXUEnocQRBQXKpEQYnifsGorJCkQMH9glJZISm/kuJSvvr3UuQXq+4rKa3qig8imBhK0K+VMwaHuiPE01rvx/3WtrZeqsLUqPuFqbE/nMba19uyMEVEpCNqO1+aOXMmXnjhBXh4eCAtLQ0LFy5ETk4ORo4cCZFIhGnTpuHTTz+Fr68vfH198emnn8LExATDhg17mqdBpDfMjaT438BW6B3ohA/+uID49HwMWnkM47o1wfRn/ThdAhHRA7Q+fO9haWlpSEtLq7DcYKtWrbTUooZHEAQUylXFn4L7RaCygpLqd1VB6cECU9l+ZYWj/IeKSqXKupkP31AihqlMAlOZAUwNDcr9bmIohuG9ZLw/7BlYm1VtHg2qmbZeNthwvzB1NDaDhSnSKm0vU0wE6P7r8GnypZs3b2Lo0KFIT0+Hvb09OnTogBMnTsDT0xMA8N5776GwsBCTJk1CVlYW2rdvjz179sDc3LxOngtRY9WjmQP2TAvD/B3R2Hr2FlYdjMO+y2n4cnBrtHKz0nbzqIHT9b9TpB9q43WoM0WpyMhIjBw5EpcvX0bZgoAikUg9saZCodByC+teSakS8XfzkZQHnIjLRLECyC8pLVdcKt8jqayXkmYYXNnvdbWmopFUDDOZAUxlBjAxNIDZIwpKprL7tx/8XWYAM5kBTAwl9/81gKHBo+eCUq0ulgQzLa1com/KekyNZGGKtMTQ0BBisRi3b9+Gvb09DA0Nq9QzUqlUoqSkBEVFRZyskrFQq2ksBEFASUkJ7t69C7FYDENDwzpsZfXVRr60adOmx94vEokwb948zJs3rzaaTKTXLE2kWDq4DfoGOmPW1ou4npaHl5cfw6TuPpjyjO9jc2GiyjBfenqMhYYu5Es6821/9OjR8PPzw7p16+Do6KiXQ7SSMgvQ+5ujAAyAi2dq5Zymhg8Ug+4XiVS/3y8oGT7w+4MFpfvHPVhQMjU0gESsf/8v+iT0ocLUGxtPY91IFqaofojFYnh7eyMlJQW3b9+u8nGCIKCwsBDGxsZ6+bfjQYyFxtPGwsTEBB4eHjqXrDJfImqYerVwRKinNeb+FY2/z9/Gsn2x2Hs5DV8Oao0WLo9eKp3oYcyXnh5joaEL+ZLOFKXi4+OxdetWNG3aVNtN0RpzIwOYGxlAopTD1tJM3SPpwSJRWQ8jU5mkQnHp4X2NpRKIWUSianqwMHXsBgtTVL8MDQ3h4eGB0tLSKveQlcvlOHToELp169ZolnuuKcZC42liIZFIYGBgoJOJKvMloobL2tQQy4YGoU+AE+b8eQmXU3Lw4rdHMLWnLyZ294GUq0lTFTFfejqMhYYu5Es6U5Tq2bMnzp8/r9dJlqOFEc7Ofga7du3Cc8911vs3CGlPqJcNfnijHV5fx8IU1T+RSASpVFrlz0CJRILS0lIYGRnp/ecmY6HRWGPBfImo4Xu+lTPaedvgo+0X8W/0HSyNuIaImDv4cnBr+Dly7jaqGuZLNcdYaOhCLHSmKLV27VqMHDkSly5dQmBgYIWAvPjii1pqGZF+CvEsX5gas+E0vh/FwhQRkTYxXyJqHOzNZVj5Wgj+jLqNj/+KxsVb99DvmyOYEe6HcV2bcMoMItIbOlOUOnbsGI4cOYLdu3dXuE9fJjon0jVlhamR35/G8ThVYWrdqFCYGOrMRwcRkV5hvkTUeIhEIrwU5IqOPraYtfUi9l1Jw/92X8Ge6FR8Mag1mtibabuJRER1TmcGLk+dOhUjRoxASkoKlEpluR8mWETaE+Jpg41j2sJMZoDjcRl4Y8MZFJSUartZRER6ifkSUePjaGGEdSNDseSVVjCXGeBsUjb6fn0Y647EQ6msoyW1iYh0hM4UpTIyMjB9+nQ4OjpquylE9BBVYaqdujA1ZsNpFqaIiLSA+RJR4yQSiTA41B3/TO+Grr52KC5V4pMdMXh1zQkkZRRou3lERHVGZ4pSAwYMwP79+7XdDCJ6hBBPa3Vh6kRcJgtTRERawHyJqHFztTLGD2PaYdHLgTAxlOBUfCb6fH0IP55IhCCw1xQRNT46MzGMn58fZs2ahSNHjqBly5YVJu6cOnWqllpGRGXKClMjvz+lLkx9P6ot55giIqonzJeIGj+RSITh7T3RzdceM38/j5PxmZiz/RL+vZSKz15pBVcrY203kYio1ujMN8m1a9fCzMwMBw8exMGDB8vdJxKJmGQR6YgQT2v1qnwn4jIxev1prB/NwhQRUX1gvkSkP9xtTPDruA7YeDwBn/1zBUdi09H7/w5hTr/mGBzqDpGIK/QRUcOnM98i4+Pjtd0EIqqiYA9VYWrkulM4Gc/CFBFRfWG+RKRfxGIRRnf2RpifqtfU2aRsvP/HRfxzKRX/G9gKjhZG2m4iEdFT0Zk5pYioYQn2sMbGN9rBXGaAk/GZGLWec0wRERER1YUm9mb4fUInzOrrD0MDMfZfvYteSw9i27mbnGuKiBo0rXdrWLBgQZX2mzt3bh23hIiqq6zH1OvrTuHU/cLU+lFtYSrT+kcLEVGjwnyJiCRiEcaH+eAZfwfM/P08zt+8h+mbz2P3xVQserkl7M1l2m4iEVG1af2b47Zt2x55n0gkwtWrV1FUVMQki0hHBT1UmBq9gYUpIqLaxnyJiMr4Oprjj4mdsPLgDXz933XsibmD0wmZ+OSlQPRr5aLt5hERVYvWvzWeO3eu0u1RUVH44IMPcOnSJYwbN66eW0VE1VGhMHV/jikWpoiIagfzJSJ6kIFEjLee8cUz/o545/fzuJySg7d+OYfdl1Ix97lm2m4eEVGV6dycUvHx8XjttdfQtm1bWFpaIjo6GitXrtR2s4joCYI8rPHj2PYwlxngVIKqMJVfzDmmiIjqAvMlIgKAFi4W+HNyZ0x9pikkYhF2XkjBc8uO4UKmiHNNEVGDoDNFqfT0dEyZMgX+/v5ISUnBsWPHsHnzZvj6+tbJ4y1fvhze3t4wMjJCSEgIDh8+XCePQ6RP2rhbqQpTRixMERHVhfrOl4hI9xkaiDEjvBm2T+oMP0czZOSXYN1VCXr+3xEs3nUZZ5OyoFSyQEVEuknrRan8/HzMnz8fPj4+OHbsGP7++2/8999/aNu2bZ095ubNmzFt2jTMnj0b586dQ9euXdG3b18kJSXV2WMS6Ys27lb48Q1NYWrU+lMsTBERPSVt5EtE1LC0dLPE31O6YHxXb0jFApKzCrHqUBwGLD+GTv/bh3l/ReP4jQwoWKAiIh2i9QlffHx8kJubiylTpmDo0KEQiUS4cOFChf1atWpVa4+5dOlSvPHGGxg7diwA4KuvvsK///6LFStWYPHixbX2OET6qo27FX56oz1eW3cSpxOyMGr9Kawf3Q5mnGOqVqTcK8S+mFTsTxQjZs91iCVav76gVUqFEjcYCwCMxYOUCiXkGSI8p+2G1BJt5EtE1PDIDCSYGe4Ln+LrMG4SgojLd7HvShpSc4qw4VgCNhxLgK2pIcIDHNE7wAmdfOxgaKDffy+ISLu0/g0xLS0NALBkyRJ8/vnn5cY+i0SqsdAikQgKhaJWHq+kpASRkZH44IMPym0PDw/HsWPHKj2muLgYxcXF6ts5OTkAALlcDrlcXivtKlN2vto+b0PEWGg0xFi0cDLFhpEhGLUxUlWY+v4k1owIfqrCVEOMQ20oKVUiMikLB6+l4/D1DFxLy7t/jxh7b8drtW26g7HQYCzKdHIQ1cnnhTY+g+o7XyKihk0mAfoEOOKFNm4okitwNDYd/1xKRcTlO8jIL8Gvp5Lx66lkWBgZ4NnmjugT6IRufvYwkkq03XQi0jNaL0rFx9dv4pyeng6FQgFHR8dy2x0dHZGamlrpMYsXL8b8+fMrbN+zZw9MTEzqpJ0RERF1ct6GiLHQaIixGOcLrIiR4ExiNgZ8/R8mNFfA6CnznYYYh+rKKAIuZ4twOVuEa/dEKFGK1PeJIMDTDPAwEyAWPeYkRHrOy1yok8+LgoKCWj/nk9R3vkREjYeRVIKezR3Rs7kj5AolTsZl4p/oFPwbfQd3c4ux9dwtbD13CyaGEvRo5oA+gU7o4e/AHu5EVC+0+klz4cIFBAYGQiyuWpfR6OhoNGvWDAYGT99skaj8N7myK4yVmTVrFmbMmKG+nZOTA3d3d4SHh8PCwuKp2/IguVyOiIgI9OrVC1KptFbP3dAwFhoNPRZdbt3DyA2RiM8txW+pdlj7es16TDX0ODxOsVyBU4lZOHQtHYeuZyAuPb/c/XZmhujqa4duTW3RuaktzKSiRhuL6mrMr4vqYiw06jIWZT2m64s28yUialykEjG6+Nqhi68d5r8YiLNJWfjnUir+uZSKW9mF2HkxBTsvpsDQQIxuvnboE+iMZ5s7wMrEUNtNJ6JGSqvZSlBQEFJTU2Fvb1+l/Tt27IioqCg0adKkxo9pZ2cHiURSoVdUWlpahd5TZWQyGWQyWYXtUqm0zpL+ujx3Q8NYaDTUWAR72eHnse3x2tqTiEzKxrgfz2HDmJrPMdVQ4/CwxIx8HLh6FweupuF4XAaK5Er1fRKxCMEeVujezAFhfvZo4WwB8QPdosqGDzWWWNQGxkKDsdCoi1jUd2y1kS8RUeMnEYvQ1ssGbb1s8NHzzXHx1j3svl+gik/Px97Ladh7OQ0GYhE6+tiiT6ATwls4wd684vciIqKa0mpRShAEzJkzp8pD4EpKSp76MQ0NDRESEoKIiAi8/PLL6u0RERHo37//U5+fiCrXys0KP90vTJ1JzMLI709h41MUphqiwhIFTsRl4OA1VSEqIaP8ECBHCxm6+zkgrJk9Oje1g6UxiwpEpJ18iYj0i0gkQis3K7Rys8J7vZvh2p087L6Ugn8upeJKai4OX0/H4evp+Gj7JbT1tEGfQCf0CXSCi5WxtptORA2cVr8NduvWDVevXq3y/h07doSx8dN/8M2YMQMjRoxAaGgoOnbsiNWrVyMpKQkTJkx46nMT0aO1crPCz2M7YPjaE4i8X5jaMLotzI0aZ/FFEATEpat6Qx28dhcn4jJQUqrpDWUgFiHUyxrdmzmgezN7NHM0f+QwYiLSX9rKl4hIP4lEIjRzMkczJ3NMe9YP8en594f4peD8zXs4lZCJUwmZWLAjBq3dLNEn0Bl9A53gZWeq7aYTUQOk1aLUgQMHtPK4Q4YMQUZGBhYsWICUlBQEBgZi165d8PT01Ep7iPRJSzfLcoWpUetPN6rCVH5xKY7dyMDBa2k4cPUubmYVlrvf1coYYc3sEean6g2lTz3FiKhmtJUvEREBgLedKSZ298HE7j64lV2If+8P8TudmInzN+/h/M17+OyfK/B3MkefQCf0DXSGn6MZL7QRUZXo7behSZMmYdKkSdpuBpFeKitMvbbupLrH1MYx7RpkYUoQBFxPy8OBq2k4eO0uTsdnoUSh6Q1lKBGjnbcNujezR/dm9vCxZ5JGREREDZOrlTHGdPHGmC7euJtbjD0xqgLV8RsZuJKaiyupufhq73V425neL1A5oaWrJXMfInokvS1KEZF2qQpT7TF87UmcTcpuUIWp3CI5jsaqekMdvHoXt+8Vlbvfw8YE3e/3huroYwsTQ37UEhERUeNiby7D8PaeGN7eE9kFJdh7OQ3/XErBoevpiE/Px4oDN7DiwA24Whmjd4AT+rZ0QrCHNSRiFqiISIPflIhIawJdG0ZhShAEXE7JxYH7RajIxCyUKgX1/TIDMTo0sb3fG8oBXrYmvCJIREREesPKxBCvhLjhlRA35BWXYv+VNPxzKRX7r6bhVnYhvj8aj++PxsPeXIbwFo7oG+iM9k1sIJWItd10ItIyFqWISKt0tTB1r0COI7Hp6mF5abnF5e5vYmeqnhuqQxNbGEklWmopERERke4wkxnghdYueKG1C4rkChy8dhf/XkpFxOU7uJtbjJ9PJuHnk0mwMpHi2eaO6BvohC6+dpAZMJci0kcsShGR1j1cmHr9+1P4oZ4LU0qlgOjbOeoi1LnkbCge6A1lLJWgk4/t/WF5DvCwrdrS7ERERET6ykgqQe8AJ/QOcEJJqRLHbqTj3+hU7Im+g4z8EmyJvIktkTdhJjNAD38H9A10Qvdm9pz6gEiP8N1ORDrhwcLUufuFqY1j2sGiDgtTmfklOHz9Lg5evYtD1+8iPa+k3P2+DmbqIlRbb2tewSMiIiKqIUMDMbo3c0D3Zg74pL8SpxOy8M+lFPwTnYo7OcX4+/xt/H3+NmQGYoT52aNvSyc84+8IS2PdmtaBiGoXi1JEpDPKClOvrVMVpkbWcmFKoRRw4WY2Dl67iwNX7+L8zWwIms5QMDWUoHNTO3Rv5oBufnZws2ZvKCIiIqLaZiARo6OPLTr62OLjFwIQdTMb/1xKxe5LKUjOLMSemDvYE3MHUokInXzs0DfQCb1aOMLWTKbtphNRLWNRioh0SqCrJX56Q1OYen3dKfzwRs0LU+l5xTh0vwh1+PpdZBXIy93v72SOsGb26O7ngBBPaxgacMJNIiIiovoiFosQ7GGNYA9rzOrrj5iUnPsFqlTEpuXh4LW7OHjtLj7cdhHtvW3RJ1A1HNDJ0kjbTSeiWsCiFBHpnAcLU1HJmsKUcRVGz5UqlIhK1vSGunjrXrn7zY0M0NXXDt39HNDNz54JDREREZGOEIlECHCxRICLJd4Jb4bYtFx1gSr6dg6Ox2XgeFwGPv4rGsEeVugT6IS+gc5wt2HvdqKGikUpItJJD84xVVaY+v71oEr3TcspwoH7V9EOX7uLnKLSh85lgTA/e3Rv5oAgdysYcPlhIqIqWb58OT7//HOkpKQgICAAX331Fbp27artZhGRnmjqYI63njHHW8/4IjmzQD3E72xStvrn011XEOBigb6BTugT6ISmDubabjYRVQOLUkSkswJcyhemRm2MxDBnQK5QIjI5Q90b6nJKTrnjrEyk6Oprj+5+9ujqZwcHc/aGIiKqrs2bN2PatGlYvnw5OnfujFWrVqFv376IiYmBh4eHtptHRHrG3cYE47o1wbhuTXAnpwj/Rqdi98VUnIzPQPTtHETfzsEXe66hqYMZ+t4f4udnb6ztZhPRE7AoRUQ67cHC1IWbObh5V4KFFw4gr1jTG0okAlq5Wd3vDWWP1m5WkIhFWmw1EVHDt3TpUrzxxhsYO3YsAOCrr77Cv//+ixUrVmDx4sUV9i8uLkZxcbH6dk6O6oKBXC6HXC6vsP/TKDtfbZ+3IWIsNBgLFX2Ig42xBENDXTE01BUZ+SXYdyUN/0an4VhcBmLT8rBsXyyW7YuFu7URXKViHP/zEsRi/e4pr1QqkZzMWACMxYOUSiWQKUKvOvi8qOpnEItSRKTzAlws8cvYDhi25gQyC+UASmFraohufvYI87NHV187rsZCRFSLSkpKEBkZiQ8++KDc9vDwcBw7dqzSYxYvXoz58+dX2L5nzx6YmNTNfC8RERF1ct6GiLHQYCxU9CkOpgAG2AF9rIDoLBEuZIpwOVuE5KwiJEOME2m3td1EHSEG7jAWKoxFmSBbUZ18XhQUFFRpPxaliKhBaOFigd/ebIcVfx7CiD6d0MbDFmL2hiIiqhPp6elQKBRwdHQst93R0RGpqamVHjNr1izMmDFDfTsnJwfu7u4IDw+HhYVFrbZPLpcjIiICvXr1glRas9VZGwvGQoOxUNH3OLxy/9+CklLsu3wH/564iCZNmkCi53OKKhRKxMXFMRZgLB6kUChRkHqjTj4vynpMPwmLUkTUYHjbmaK7s4CWrpYsSBER1QORqPxnrSAIFbaVkclkkMkq9lqVSqV19sW4Ls/d0DAWGoyFir7HwVIqRb/WrhDfOo/nevnpdSwAVbFy165YxgKMxYPKYlEXnxdVPR+LUjUgCAKAqlf+qkMul6OgoAA5OTl8gzAWaoyFCuOgwVhoMBYajIVGXcai7O9/WT7QGNnZ2UEikVToFZWWllah99SjMF+qH4yFBmOhwjhoMBYajIUGY6GhC/kSi1I1kJubCwBwd3fXckuIiIhIW3Jzc2FpaantZtQJQ0NDhISEICIiAi+//LJ6e0REBPr371+lczBfIiIioiflSyxK1YCLiwuSk5Nhbm7+yC7sNVU2/0JycnKtz7/Q0DAWGoyFCuOgwVhoMBYajIVGXcZCEATk5ubCxcWlVs+ra2bMmIERI0YgNDQUHTt2xOrVq5GUlIQJEyZU6XjmS/WDsdBgLFQYBw3GQoOx0GAsNHQhX2JRqgbEYjHc3Nzq9DEsLCz0/g1ShrHQYCxUGAcNxkKDsdBgLDTqKhaNtYfUg4YMGYKMjAwsWLAAKSkpCAwMxK5du+Dp6Vml45kv1S/GQoOxUGEcNBgLDcZCg7HQ0Ga+xKIUEREREVVq0qRJmDRpkrabQURERI2Ufq9/SEREREREREREWsGilI6RyWT4+OOPK11SWd8wFhqMhQrjoMFYaDAWGoyFBmPRuPH/V4Ox0GAsVBgHDcZCg7HQYCw0dCEWIqExr2dMREREREREREQ6iT2liIiIiIiIiIio3rEoRURERERERERE9Y5FKSIiIiIiIiIiqncsShERERERERERUb1jUYqIiIiIiIiIiOodi1JERERERERERFTvWJQiIiIiIiIiIqJ6x6IUERERERERERHVOxaliIiIiIiIiIio3rEoRURERERERERE9Y5FKSIiIiIiIiIiqncsShERERERERERUb1jUYqIiIiIiIiIiOodi1JERERERERERFTvWJQiIr0xb948iEQipKenP3a/UaNGwcvLq34aVc12fPrpp9i+fXuNznfgwAGIRCJs2bLl6RtHREREeqmh5VOPUln7vLy8MGrUKK20h0hfsShFRKSj5syZg23btpXb9jRFKSIiIiIiov9n777DmjrfPoB/swgJU/YWURQV3HUvasFRR5111Lo7bGvVWltrW+v62Tr62uWs1bbWVWtt66pYce89cKEsBURxsENIzvsHkoAggiYkkO/nunKRnJzznCc3B7i5z3OeY06kpu4AEVmerKwsKJVKU3fD7NWsWdPUXSAiIiIzxXyqqOzsbFhbW0MkEpm6K0RUDhwpRURGVTDE+9SpU+jXrx+qVatWpmJLTk4OPvjgAzRq1AgODg5wcnJCq1at8NdffxVbVyQS4d1338Wvv/6KunXrQqlUomHDhtiyZctT93P58mUEBASgRYsWSElJeeJ6giBg0aJFaNSoERQKBapVq4Z+/frhxo0bT91HYatWrYJIJEJERARGjBgBJycn2NjYoEePHsXaenxYuUgkQmZmJn7++WeIRCKIRCJ07NhR9/6tW7fwxhtvwNfXF1ZWVvDy8kK/fv1w+/btIu2q1WpMnToVXl5esLe3x0svvYQrV66U63MQERFRxWE+VVRBPrVz506MHDkSrq6uUCqVUKlU0Gq1mDt3LoKCgiCXy+Hm5obXX38dN2/eLNc+iKhisChFRBWiT58+qFWrFn7//XcsWbLkqeurVCrcu3cPkyZNwubNm7F27Vq0bdsWffr0wS+//FJs/a1bt+L777/HjBkz8Mcff8DJyQm9e/cuNcnZu3cvWrdujQYNGiAyMhJubm5PXPfNN9/E+PHj8dJLL2Hz5s1YtGgRLl68iNatWxcr+pTFqFGjIBaLsWbNGixcuBDHjh1Dx44d8eDBgyduc/jwYSgUCnTr1g2HDx/G4cOHsWjRIgD5BakXXngBf/75JyZOnIjt27dj4cKFcHBwwP3794u088knnyAuLg4//vgjli1bhmvXrqFHjx7QaDTl/hxERERUcZhPFTVy5EjIZDL8+uuv2LhxI2QyGd5++2189NFHCAsLw99//42ZM2dix44daN269VPnwSIiExCIiIxo2rRpAgDh888/f6528vLyBLVaLYwaNUpo3LhxkfcACO7u7kJaWppuWXJysiAWi4U5c+YU68udO3eEX3/9VbCyshLGjRsnaDSaIu0NGzZMqF69uu714cOHBQDCggULiqyXkJAgKBQKYfLkyWX+HCtXrhQACL179y6y/ODBgwIAYdasWU/shyAIgo2NjTBs2LBi7Y4cOVKQyWRCVFTUE/cdGRkpABC6detWZPmGDRsEAMLhw4fL/DmIiIio4jCfKqogn3r99deLLL906ZIAQBg7dmyR5UePHhUACJ988skT+ycIglC9evUS8ywiMh6OlCKiCtG3b99yb/P777+jTZs2sLW1hVQqhUwmw4oVK3Dp0qVi64aGhsLOzk732t3dHW5uboiLiyu27uzZszF8+HB8+eWX+OabbyAWl/6rcMuWLRCJRHjttdeQl5ene3h4eKBhw4bYs2dPuT/bkCFDirxu3bo1qlevjsjIyHK3BQDbt29HaGgo6tat+9R1e/bsWeR1gwYNAKDEWBEREZH5YD5V1OPxKMijHr+DXvPmzVG3bl38999/5d4HERkXi1JEVCE8PT3Ltf6mTZswYMAAeHt7Y/Xq1Th8+DCOHz+OkSNHIicnp9j6zs7OxZbJ5XJkZ2cXW7569Wp4e3tj4MCBZerL7du3IQgC3N3dIZPJijyOHDnyTEPBPTw8SlyWmppa7rYA4M6dO/Dx8SnTuo/HSi6XA0CJsSIiIiLzwXyqqMfjUZBHlRQnLy+vZ86ziMh4ePc9IqoQ5b0TyurVq1GjRg2sX7++yLYqleq5+7Jjxw68+uqraNeuHf777z9Ur1691PVdXFwgEomwf/9+XQGnsJKWPU1ycnKJy2rVqlXutgDA1dWVE3gSERFVccynino8HgVFtaSkpGIn6xITE+Hi4lLufRCRcXGkFBGZJZFIBCsrqyLJRnJycol3iymv6tWr6xKidu3a4dq1a6Wu3717dwiCgFu3bqFZs2bFHiEhIeXuw2+//Vbk9aFDhxAXF1fkbnoledLZyq5duyIyMpJ30SMiIiKdqp5PPe7FF18EkF+MK+z48eO4dOkSOnXq9Nz7ICLD4kgpIjJL3bt3x6ZNmzB27Fj069cPCQkJmDlzJjw9PZ+a9JSFp6cn9u7di86dO6N9+/aIiIhAcHBwieu2adMGb7zxBkaMGIETJ06gffv2sLGxQVJSEg4cOICQkBC8/fbb5dr/iRMnMHr0aPTv3x8JCQmYOnUqvL29MXbs2FK3CwkJwZ49e/DPP//A09MTdnZ2qFOnDmbMmIHt27ejffv2+OSTTxASEoIHDx5gx44dmDhxIoKCgsrVPyIiIqr8qno+9bg6dergjTfewHfffQexWIyuXbsiNjYWn332GXx9fTFhwoTnap+IDI9FKSIySyNGjEBKSgqWLFmCn376CQEBAfj4449x8+ZNTJ8+3SD7cHFxwe7du/Hyyy+jQ4cO+Pfff9GsWbMS1126dClatmyJpUuXYtGiRdBqtfDy8kKbNm3QvHnzcu97xYoV+PXXXzFw4ECoVCqEhobim2++gZOTU6nbffPNN3jnnXcwcOBAZGVloUOHDtizZw+8vb1x7NgxTJs2DV9++SVSU1Ph6uqKtm3bPrVNIiIiqpqqej5VksWLF6NmzZpYsWIFfvjhBzg4OKBLly6YM2dOiXNmEZFpiQRBEEzdCSIiS7Fq1SqMGDECx48ff2LCRkREREREZAk4pxQREREREREREVU4Xr5HRBVKEARoNJpS15FIJOW+u4yplfVzERERET0vS8+nKtvnIqIn40gpIqpQe/fuhUwmK/Xx888/m7qb5fbzzz8/9XPt3bsXw4cPhyAIvHSPiIiInpml51NEVHVwTikiqlDp6em4cuVKqevUqFGj0k1EmZqaipiYmFLXqVOnDuzs7CqoR0RERFRVMZ9iPkVUVbAoRUREREREREREFY5zSj0DrVaLxMRE2NnZ8XpmIiIiCyMIAtLT0+Hl5QWxmDMhPAnzJSIiIstV1nzJYotSixYtwrx585CUlIT69etj4cKFaNeuXZm2TUxMhK+vr5F7SEREROYsISEBPj4+pu6G2WK+RERERE/LlyyyKLV+/XqMHz8eixYtQps2bbB06VJ07doVUVFR8PPze+r2BdcwJyQkwN7e3qB9U6vV2LlzJ8LDwyGTyQzadmXDWOgxFvkYBz3GQo+x0GMs9IwZi7S0NPj6+nJOk6dgvlQxGAs9xiIf46DHWOgxFnqMhZ455EsWWZT6+uuvMWrUKIwePRoAsHDhQvz7779YvHgx5syZU2x9lUoFlUqle52eng4AUCgUUCgUBu2bVCqFUqmEQqGw+B8QxkKPschX1eKg0QrIUWuQXfDI1SBbrX30VaP/WsL7mSo1Em7Z4sD2GIjFln1ZjFYrIDmZsQAYi8K0WgF2WTboZYTfF2q1GgB4SdpTFMTH3t7eKEUppVIJe3v7KvH34HkwFnqMRb79V27j3xRbtBGs4Gdv2cVzHhN6jIUeY6FXEbF4Wr5kcUWp3NxcnDx5Eh9//HGR5eHh4Th06FCJ28yZMwfTp08vtnznzp1QKpVG6WdERIRR2q2MGAs9xiJfRcRBEACNAORqgVzNo6+656ISl6u1Iqi0gFqD/K+lrK/WAGrhef+hFQN3bxvk81Z+jIUeY1GgtZvIKL8vsrKyDN4mEdHzylTl4cvtl/HrkTgAYrz203Gse6MVvBwNexKdiMiQLK4odffuXWg0Gri7uxdZ7u7ujuTk5BK3mTJlCiZOnKh7XTAMLTw83Chn/iIiIhAWFsaqLWOhw1jkKxwHiUQKVZ4WWWoNctQaZOWW9LX4+8VGI6kfG5VU8L5aA4224m5OqpCJYS2TQGklKfpVJoG1TAyFTAKFlUT31UoMxFy/hjp16kAikVRYP82RRqPBlStXGAswFoVpNBqkJ1wxyu/NtLQ0g7ZHRPS8jsXcw6TfzyL+Xn7R3EYqIP5eNgYuO4J1b7RkYYqIzJbFFaUKPD6ETBCEJw4rk8vlkMvlxZbLZDKjFQiM2XZlw1joWXIsBEHA95HXsfKEBB+d2IsctbbC9i0Ri6AsKAoVKgwpHz0vKCLlL5dCUVBUspIU205ZaPv811LIpeJyX2qlVquxLfsqurULsNhjooBarca29MuMBRiLwtRqNbZtu2yU35uWHlsiMh85ag3m/XsFPx2MgSAAXg7W+F/v+og5dxQ/xdgh/l4WC1NEZNYsrijl4uICiURSbFRUSkpKsdFTRGQe1BotPvrjHDadugVABKBoQUouFRct9lhJoJRJYW0lgUImhtJK+ljhqFCB6LEik/WjQlHh9aykvOV7RdNoNLp5e55GrVZDKpUiJycHGo3GyD0zb4yF3vPEQiaTWfxIMyIyf6fj7+OD38/ixp1MAMCAZj74tHs9KCTAwyvAb6NewGs/ndAVpta+0RLeLExVKcyXng1joWcO+ZLFFaWsrKzQtGlTREREoHfv3rrlERER6NWrlwl7RkQlyVTl4e3fTmHf1TuQiEXoUz0Pb/fuAHuldX7hSCax+AmdqxJBEJCcnIwHDx6UaxsPDw8kJCRY/MTTjIXe88bC0dERHh4eFh9HIjI/qjwNvtl1DUv2XodWANzs5PiybwheDMo/wV5QpPB0sMa6N1pi4LIjiL+XhUEsTFUZzJeeD2OhZw75ksUVpQBg4sSJGDp0KJo1a4ZWrVph2bJliI+Px1tvvWXqrhFRIXfSVRi56jjO33oIhUyCbwc2QFb0cfhWU/LymSqqIMFyc3ODUqks0x84rVaLjIwM2NraQiy27FFtjIXes8ZCEARkZWUhJSUFAODp6WmsLhIRldvFxIf4YMNZXE7Ovxv4K4288EXP+nBUWpW4vpejokhhauCyw1j3RisWpio55kvPh7HQM4d8ySKLUq+++ipSU1MxY8YMJCUlITg4GNu2bUP16tVN3TUieiTmbiaG/XQM8fey4GRjhZ+Gv4D6HjbYFm3qnpGxaDQaXYLl7Oxc5u20Wi1yc3NhbW3NxIKx0HmeWCgU+f+spaSkwM3NjZfyEZHJqTVaLN5zHd/+dw15WgHONlaY3TsYXYKf/o9gQWFq0PIjiEtlYaqyY770/BgLPXPIlyyyKAUAY8eOxdixY03dDSIqwZmEBxi56jjuZebCz0mJn0c2Rw0XmzJfM0+VU8H3V6lUmrgnRPrjUK1WsyhlZnLUGoz++STS7omxJ/s87BRWUFpJYWMlgVIuha08f25AG7kENlZS2MilUFpJYCN/9JyXfVMlc/V2Oj7YcBbnbz0EAHSp74FZvYPhYlv8RkxP4uWowNoxRQtTa8e0hE81/s2tbJgvkTkxRL5ksUUpIjJPkZdTMPa3U8hWaxDi7YCfhr8AV7uyJ11U+Vn6tf1kHngcmq9MVR4ORKcCEOPcvaRnakMhk+QXreRSXUErv2gleex1oYKWlRRKXaFLUuS10krCY4YMTqMVsHz/DXy98ypyNVo4KGSY0as+ejb0eqbjrfClfHGpWRi0/AgLU5UYf+eQOTDEcciiFBGZjQ3HEzDlz/PQaAW0r+2KxUOawEbOX1NERKSntJJift9gHD11FjVqByEnD8hS5SEzNw+ZKg2ycvOQocpDVq4GmY++ZqjykKnKg1bIbyNbrUG2WoO7GbkG6ZNIBChlBSO1HhWyCopW8kejuKwevVeokJX/uuT3rWVi/tNpwW7cycCk38/iVPwDAMCLQW6Y0ycE7vbWz9WupwMLU0RkXvjfHhGZnCAI+H53NBZEXAUA9Gnija/6NoBMYtnXeBMRUXEKKwl6NfKCLPEMurWtUeYbXwiCAFWeVleoKihi5b9+9LxQYavgvcxcfWErKzcPWYXWy8zNgyAAggBk5mqQmavBnXSVQT6nWITHRmcVvQyxoJClkIkgfmiQXZIZ0GoF/Hw4Fl/tuIwctRa2cik+71EP/Zv6GKxIWVCYGrTsCGJTszBw2RGse4OFKSIyDRaliMikNFoBn/91Ab8djQcAvBNaE5PC6/DsMJGZ+OKLL7B48WKkpKTgzz//xCuvvGLqLhE9E5FIBGuZBNYyCco+NXDpBEFAjlqrK1jpC1v6kVr5ha2ihS59Uazw6K78r1m5GgCAVgDSVXlIV+UBeFqhS4pjPx3HpM5BeMHfyUCfjipawr0sfLjxLI7cuAcAaFvLBV/1a2CUCck9HRRYy8IUkcEwX3p2LEoRkclk52owbt1pRETdhkgETO9ZH6+38jd1t4jK5WkF1GHDhmHVqlWIjIzEjBkzcPbsWeTk5MDb2xutW7fGihUrIJVKsWfPHoSGhuL+/ftwdHTUvS7Yh52dHQICAhAWFoYJEyaUeuvd2NhY1KxZU/fa3t4edevWxdSpU9GjR48yf7ZLly5h+vTp+PPPP9GyZUtUq1atzNuSedu3bx/mzZuHkydPIikpqVgCLQgCpk+fjmXLluH+/fto0aIFfvjhB9SvX990nTZDIpEICisJFFYSAIaZ/1CrFZCt1uiKWQWFrYJCVpZKP2orM1eDxPtZ2HIuEUdj7qP/ksNoF+iCiWG10diPP6+VhSAIWHssAbO3RiEzVwOFTIJPXq6L11r4GfUkXf6IqVYYuOywrjC1dkxL+DqxMEWGx3yJnoRFKSIyifuZuRj183Gcin8AK6kY3w5sVKbbGhOZm6Qk/UTL69evx+eff44rV67olikUCly8eBFdu3bFuHHj8N1330GhUODatWvYuHEjtFptqe1fuXIF9vb2SEtLw6lTpzB37lysWLECe/bsQUhISKnb7tq1C/Xr18eDBw+waNEi9O3bF6dOnUJwcHCZPtv169cBAL169Xquf4zUanWZL7GiipGZmYmGDRtixIgR6Nu3b7H3586di6+//hqrVq1C7dq1MWvWLISFheHKlSuws7MzQY8th1gs0l2iVxZqtRqNJAm4LPbHH6duYf+1u9h/7S5eDHLDhJdqI8THwcg9pueR9DAbH/1xHvuu3gEANPd3wrz+DVDd2aZC9u/hYF2kMFUwxxQLU2RozJeezlLzJU7YQkQV7ub9LPRbcgin4h/A3lqK30a3YEGKSiQIwqPLWUp/ZOdqyrReeR6CIJSpjx4eHrqHg4MDRCJRsWURERHw9PTE3LlzERwcjJo1a6JLly748ccfYWVlVWr7bm5u8PDwQO3atTFw4EAcPHgQrq6uePvtt5/aN2dnZ3h4eCAoKAizZ8+GWq1GZGSk7v1bt27h1VdfRbVq1eDs7IxevXohNjYWQP4w9IKzhGJx0QmXV65cibp168La2hpBQUFYtGiR7r3Y2FiIRCJs2LABHTt2hLW1NVavXl3m7TZt2oTQ0FAolUo0bNgQhw8fLvKZDh48iA4dOkCpVKJatWro3Lkz7t+/DyD/eJk7dy4CAgJgY2ODtm3bYuPGjbpt79+/jyFDhsDV1RUKhQKBgYFYuXLlU+NYFXXt2hWzZs1Cnz59ir0nCAIWLlyIqVOnok+fPggODsbPP/+MrKwsrFmz5oltqlQqpKWlFXkA+Um2MR7GbLuyPZzkwLRugdg5vg36NvGCRCzC7ssp6PH9AYz5+TjOJ9wzeR8r6lFZjovc3FxsOBaH8P/bh31X78BKKsaULrXxy4im8LK3qtA4OCsl+HVkM/g7K3HzfjYGLjuMmJQ0k8fI0o6J8jwEQYBWq9U9NBoNMnJyS31kqtTIztUgU6V+6rrleWg0miJ9edLDzc1N97Czs4NIJCq2bOfOnfD09MSXX36JevXqoUaNGggPD8eyZcsglUp1bQEo0jYAuLi4wM3NDbVq1cKAAQOwf/9+Xb70eF8KcryCr9WqVYObmxtq166NmTNnQq1WY/fu3br1ExISMGDAAF2+1LNnT9y4cQNarRbTpk0rli8VbLdixYoiec8PP/yge+/GjRsQiURYt26dLl/65Zdfyrzdxo0bi+RLBw8eLPIZ9+/fXyRfCg8PR2pqqu54+eqrr4rlSwXbpqamYvDgwUXypRUrVjzxeysIQqk/f0/DkVJEVKGiEtMwfOUxpKSr4OVgjZ9HNkegO8+6U8my1RrU+/xfk+w7akZnKK0M82fSw8MDSUlJ2LdvH9q3b/9cbSkUCrz11luYMGECUlJS4Obm9tRt1Go1li9fDgC6M3BZWVkIDQ1Fu3btsG/fPkilUsyaNQtdunTBuXPnMGnSJPj7+2PEiBFFzm4uX74c06ZNw/fff4/GjRvj9OnTGDNmDGxsbDBs2DDdeh999BEWLFiAlStXQi6Xl3m7qVOnYv78+QgMDMTUqVMxaNAgREdHQyqV4syZM+jUqRNGjhyJb7/9FlKpFJGRkdBo8ufg+fTTT7Fp0yYsXrwYNWvWxM6dO/H666/D3d0dHTp0wGeffYaoqChs374dLi4uiI6ORnZ29nN9P6qimJgYJCcnIzw8XLdMLpejQ4cOOHToEN58880St5szZw6mT59ebPnOnTuhVBpn1EVERIRR2q2MCmLRXg4ENQD+vSnGybsiRFxKQcSlFDRy1qKrjxYeFjAAxtyPi7RcYMMNMc7fzx8fUN1WwJBauXB/GIV/d0QZbD/ljcOI6sD3mRLcepCDvj/sw7v1NHB+vpv9mQ1zPybKQyqVwsPDAxkZGcjNzb+DaHauBq2+PmKS/hye2PLRJcxll5OTA0EQdCcvCtjb2yMpKQnbt29HmzZtStw2KysLAJCeng6xWFzsdWHDhg3DJ598guvXr8PV1bVYW5mZmbqvaWn5hdhly5YBAPLy8pCWlqbLl1q1aoUtW7ZAKpVi/vz56NKlCw4cOIAxY8bA3d0d77zzDi5fvgwASEtLw88//4wvv/wSc+fORYMGDXDu3Dm8//77EIvFGDRoEDIyMgDk50uzZs3CN998AysrK3z33Xdl2m7q1KmYMWMG5s2bh1mzZmHQoEE4deoUpFIpzp8/j7CwMAwZMgSzZs2CVCrF/v378eDBA0gkEsycORNbtmzBvHnzULNmTRw6dAivv/46bGxs0KZNG3z88ce4cOECNmzYAGdnZ9y4cQPZ2dnFvl8AkJubi+zsbOzbtw95eXklfq+ehkUpIqowh6Lv4o1fTyJDlYc67nZYNfIFeDoYfvJOInPTv39//Pvvv+jQoQM8PDzQsmVLdOrUCa+//jrs7e3L3V5QUBCA/NFFpRWlWrduDbFYjOzsbGi1Wvj7+2PAgAEAgHXr1kEsFuPHH3/UjYJauXKlbn6G8PBwODo6AsgvqhWYOXMmFixYoBthU6NGDURFRWHp0qVFikvjx48vMgqnrNtNmjQJL7/8MgBg+vTpqF+/PqKjoxEUFIS5c+eiWbNmRUZYFcxxlJmZia+//hq7d+9Gq1atoNVqMXjwYJw8eRJLly5Fhw4dEB8fj8aNG6NZs2YAAH9//3JE3XIkJycDANzd3Yssd3d3R1xc3BO3mzJlCiZOnKh7nZaWBl9fX4SHhz/TcV4atVqNiIgIhIWFWeSlDoU9KRbDAUSnZOD7yBvYeiEZZ1LFOHtPjO4hHngvtCZquFTM5WEVqTIcF9vOJ+PrLZdwP0sNmUSEcaE1MbqtP6QGvOPw88ThxU45GPrTCcSmZmFFjC1Wj3wBPtUqb65WGY6J8srJyUFCQgJsbW1hbZ1fNZTm5j1lK+Oxs7cr90k8a2triESiYn8bXn/9dezfvx/du3eHh4cHWrRogU6dOmHo0KG6dQtOctjZ2cHe3r7Y68IaNmwIAEhNTS0yd5QgCEhPT4eNTf7vwc6dOxfLlwpytI0bN0IqlWLVqlW6fOnXX3+Fk5MTTp06hfDwcF2eFBgYqNvHggULMH/+fAwaNAgAEBISgtjYWPz666948803YWtrCwCYMGEChgwZotuuc+fOZdpu0qRJ6N+/PwBg1qxZCAkJQUpKim4kerNmzXQnJAGgRYsWAPLzpUWLFmHXrl1o1aoVBEGAv78/Tp48idWrV6Nr165ITk5G06ZN0aFDBwAo9TLGnJwcKBQKtG/fXnc8FiipiFUSFqWIqEL8deYWJv1+FmqNgBY1nLDs9WZwUFSN5ICMRyGTIGpG51LX0Wq1SE9Lh529XbEzZM+7b0ORSCRYuXIlZs2ahd27d+PIkSOYPXs2vvrqKxw7dqzUSThLUjDc/GnzFqxfvx5BQUG4evUqxo8fjyVLlsDJKf/OXCdPnkR0dHSx+YFycnJ0cyM87s6dO0hISMCoUaMwZswY3fK8vDw4OBSdt6ag8FPe7Ro0aKB7XhCXgiTrzJkzugTscVFRUcjJyUFYWFiR5bm5uWjcuDEA4O2339bNExEeHo5XXnkFrVu3LrE9Kn58CYJQ6jEnl8shlxef7Fsmkxntn0Fjtl3ZlBSLut7V8MNrTfFechoWRlzDjovJ+OdcMraeT0bvxj54v1Mg/Jyr3tApczwu7mXm4rO/LmDrufyRp/U87bFgQEPU9TRswbawZ4mDr7MM699shYHLjiDmbiZe++kE1r1R+eeYMsdj4llpNBqIRCKIxWJd3mMjl5k0XyrvPEoF+3+8H2KxGKtWrcLs2bN1+dL//vc/zJ07V5cvFd62cAwKPy9Q0C+JRFLkvYJL/greLylfcnFxAQCcPn0a0dHRxfKVnJwcxMTEFOsDoM97xowZU2R0cUHeU3ibF1544Zm2a9Soke65t7c3AODu3bsQi8U4e/Ys+vfvX+L3+fLly8jJyUHnzkWPl4J8SSwWY+zYsejbty9Onz791Hyp4JLFkn7Gyvozx6IUERnd8n03MHvbJQDAyyGeWDCgIawN+A8/VV0ikeipZ9+0Wi3yrCRQWkkNmmQZg7e3N4YOHYqhQ4di1qxZqF27NpYsWVLiJU+luXQp/+fpaSN9fH19ERgYiMDAQNja2qJv376IioqCm5sbtFotmjZtit9++63YdiUNcQf0Sdzy5ct1Z9wKSCRFf6YLzj6Wd7vCCUxBsliwvULx5LP1Bets3boV3t7e0Gq1yMjIgK2trW67rl27Ii4uDlu3bsWuXbvQqVMnvPPOO5g/f/4T27VEBWd8k5OTixRMU1JSio2eosohyMMeS4Y2xYVbD7Fw11XsupSCP07dxF9nbqFfUx+8+2It+FSr3EUHcxYRdRtTNp3H3QwVJGIR3gmthXdDa8FKap5/s9ztrbHujZYYtOwIbtzNxMBlR6pEYaoqY75UMuZLT+6bOeVL5n00ElGlptUKmLklSleQGtHGH98NasyCFBHyJ9X09PTUzWdQVtnZ2Vi2bBnat2//xGSoJB06dEBwcDBmz54NAGjSpAmuXbummxS08OPxs4EF3N3d4e3tjRs3bhTbpkaNGk/c97Nu97gGDRrgv//+K/G9evXqQS6XIz4+Xtd2QEAAatWqBV9fX916rq6uGD58OFavXo2FCxfq5o4gvRo1asDDw6PIHCy5ubnYu3cvR5ZVcsHeDvhx2AvY/E4bdKjtijytgHXHExA6fw8+3XweyQ9zTN3FKuVhthoTN5zBmF9O4G6GCoFutvhzbGtMDKtttgWpAu721lj7RksEuNjg1oNsDFx2BAn3yjY/DJEhMV+q+vkSR0oRkVGo8jT4YMNZbHk0TP2TbkEY0y7guW6TSlRZLV26FGfOnEHv3r1Rs2ZN5OTk4JdffsHFixfx3XfflbptSkoKcnJykJ6ejpMnT2Lu3Lm4e/cuNm3aVO5+fPDBB+jfvz8mT56MIUOGYN68eejVqxdmzJgBHx8fxMfHY9OmTfjwww/h4+NTYhtffPEFxo0bB3t7e3Tt2hUqlQonTpzA/fv3i8wnZKjtCpsyZQpCQkIwduxYvPXWW7CyskJkZCT69+8PFxcXTJo0CRMmTIBWq0Xr1q2RlJSEc+fOwc7ODsOGDcPnn3+Opk2bon79+lCpVNiyZQvq1q1b7jhWBRkZGYiOjta9jomJwZkzZ+Dk5AQ/Pz+MHz8e//vf/3Rnjv/3v/9BqVRi8ODBJuw1GUojX0f8PLI5TsTew//tuoqD0alYfSQeG07cxJAWfni7Y0242VWRGa5NZO/VO/ho4zkkp+VALALGtA/AhJdqV6oTcwWFqcIjptaOaVklL/kk88B8yTLzJYMWpUq6rfDTLFmypEx3DiKiyiMtR403fzmJwzdSIZOIMK9fQ7zS2NvU3SIymebNm+PAgQN46623kJiYCFtbW9SvXx+bN2/WTSL5JHXq1IFIJIKtrS0CAgIQHh6OiRMnFpl8vKy6d+8Of39/zJ49G4sWLcK+ffvw0UcfoU+fPkhPT4e3tzc6depU6qTUo0ePhlKpxLx58zB58mTY2NggJCQE48ePL3Xfz7pdYbVr18bOnTvxySefoHnz5lAoFGjRooVuMtCZM2fCzc0Nc+bMwY0bN+Dg4IAmTZpg6tSpAAArKytMmTIFsbGxUCgUaNeuHdatW1fm/ZuKMfKrEydOIDQ0VPe6INEdNmwYVq1ahcmTJyM7Oxtjx47F/fv30aJFC+zcubPYHGRUuTXzd8Jvo1viyI1UfL3zKo7F3sPKg7FYeywer7fyx5vtA+BsW3yeMHqyDFUeZm+9hLXH4gEANVxsML9/QzStXs3EPXs2BZfyDXxUmBq0nIUpMh7mS5aZL4mEgtlSDUAsFmPAgAGlXsNY2Jo1a3Dp0iUEBAQYqgsVIi0tDQ4ODnj48KFR7iazbds2dOvWrcpMxvesGAu9yhSL22k5GPbTMVxOToetXIolrzVF20AXg7RdmeJgbFUxFgUTRtaoUaPY3TtKo9VqkZaWBnt7e7OfI8HYGAu9541FacejMfOAklTW/Ir5UsUwVCwEQcDB6FQsiLiC0/EPAABKKwmGt/bHG+0D4Ki0MlCPjcfUx8Xh66n4cONZ3LyfDQAY3tofH3UJgsKqYkdHGSMOKWk5usKUl4M11r3RqlIUpkx9TBgD86Xnx1jomUO+ZPDL97799tsyj3zauHGjoXdPRCYUnZKOYT8dx60H2XC1k2PViBdQ36vka62JiKjsmF+RsYlEIrQNdEGbWs7Yc/UO/i/iKs7dfIhFe67jl8NxGNm2Bka1rcE755YgO1eDr3ZcxqpDsQAAn2oKzOvXEK1qOpu2YwbkVjBiavkR3LiTiYHLDleawhQRmTeDlgUjIyN1t5oui+3bt+tuX0hElduJ2Hvou/gwbj3IRoCLDTa93ZoFKSIiA2B+RRVJJBIhtI4b/nqnDZYNbYogDztkqPLw7X/X0O6r3fjuv2vIUOWZuptm42TcPXT7dr+uIDWouR92jG9fpQpSBdzsrbFuTEsEuNog8WEOBi47jLjU8k0+TUT0OIMWpTp06ACptOyDr9q2bQu5nNepE1V2/15MxpAfj+JhthqN/Ryx8e3WvG0wEZGBML8iUxCJRAiv74Ft49ph0ZAmCHSzRVpOHhZEXEW7r3Zj8Z7ryMq13OJUjlqDOdsvof+Sw4i5mwkPe2v8PLI55vQJga286t5LqqAwVfNRYWrQsiMsTBHRczH6b8yUlBSkpKRAq9UWWd6gQQNj75qIKsCvR+Iw7a8L0ArAS3Xd8N2gJhU+dwJVLQac6pDomZn7ccj8iiqKWCxCtxBPdK7vgS3nEvHNrmu4cTcTX+24jBUHbuCtDjXxWsvqlequcs/r/M2HmLjhDK6lZAAA+jbxwec96lnMpY1u9tZYO6YlBi0/gut38u/Kt+6NlqjubGPqrlkUc/87RZbBEMeh0YpSJ0+exLBhw3Dp0iVdR0UiEQRBgEgkgkajMdauiagCCIKA+Tuv4IfI6wCAQc19MbNXMKQSy54skJ5dwQSkWVlZZZ7QmchYsrKyAMDsJsZlfkWmIhGL0KuRN14O8cRfZxLxzX/XEH8vC7O2XsKyfTfwTmgtDGzuC7m06hancvO0+D4yGj9ERkOjFeBiK8ecPiEIq+du6q5VODd7a6x9oyUGLWNhqqIxXyJzYoh8yWhFqREjRqB27dpYsWIF3N3dIRKJjLUrIqpgao0WUzadx8aTNwEAE16qjXGdavHnnJ6LRCKBo6MjUlJSAABKpbJMx5RWq0Vubi5ycnJ4BxXGQudZYyEIArKyspCSkgJHR0dIJOb1DzbzKzI1qUSMvk190LORFzaduolv/4vGrQfZmPb3RSzZex3vvlgL/Zv6wkpatX4HXU5OwwcbzuJiYhoAoHsDT8zoFQwnG/O/K6GxuNkVL0ytHdMS/i4sTBkT86Xnx1jomUO+ZLSiVExMDDZt2oRatWoZaxdEZAKZqjy8s+YU9ly5A4lYhNmvBGNgcz9Td4uqCA8PDwDQJVplIQgCsrOzoVAoLP4fdMZC73lj4ejoqDsezQnzKzIXMokYr77gh96NfbDhRAK+3x2NpIc5mPrnBSzecx3jXgxEnybelX4EdZ5Gi6X7bmDhrqtQawRUU8ow85VgdG/gZequmYWCwtTg5UcRnZKBQctZmKoIzJeeD2OhZw75ktGKUp06dcLZs2eZNBFVIXczVBi56jjO3XwIa5kYPwxugk51LW/IOhmPSCSCp6cn3NzcoFary7SNWq3Gvn370L59e7O71KqiMRZ6zxMLmUxmdiOkCjC/InNjJRXjtZbV0a+pD9Ydi8cPe67j5v1sTP7jHBbtica4ToHo1cgbEnHl+8cvOiUDk34/izMJDwAAL9V1x//6BMPNztq0HTMzbnbWWDOmha4wVXApHwtTxsN86fkwFnrmkC8ZrSj1448/YtiwYbhw4QKCg4OLfcCePXsaa9dEZASxdzMxbOUxxKVmoZpShp+Gv4DGftVM3S2qoiQSSZn/yEkkEuTl5cHa2triEwvGQq+qxoL5FZkra5kEw9vUwKsv+GH1kTgs2XsdsalZmLjhLH6IjMb4l2rj5RBPiCtBcUqrFfDTwRjM+/cKVHla2FlL8UWP+ujTxNviR1U8iZudfvJzFqYqDvOlZ8NY6JlDLIxWlDp06BAOHDiA7du3F3uPE3ESVS7nbj7AiJXHkZqZC18nBX4e0RwBrram7hYRkcVhfkXmTmElwZj2ARjcwg8/H47Fsn03cP1OJt5bexrf747GhLBAhNfzMNviVFxqJj78/RyOxd4DALSv7Yqv+obA04ETSj+Nq528WGFq7RstUYOFKSIqhdEu8h43bhyGDh2KpKQkaLXaIg8mTESVR+SVFAxcdgSpmbkI9rbHH2+3ZkGKiMhEmF9RZWEjl2Jsx1rYPzkUE8Nqw85aiiu30/HW6lPo/t0B7Iq6bVa3tBcEAb8eiUPXb/bjWOw92FhJMKdPCH4e8QILUuVQUJgKdLNFcloOBi07gpi7mabuFhGZMaMVpVJTUzFhwgS4u3O+GaLK6vcTCRj98wlk5WrQLtAF695oxXkUiIhMiPkVVTZ21jKM6xSIAx+9iHEv1oKtXIqopDSM/uUEXvnhIPZcSTF5cerWg2wMXXEMn22+gKxcDVoGOGHH+PYY1NyPl+s9A1c7OdYUKkwNXHaYhSkieiKjFaX69OmDyMhIYzVPREYkCAK+330NH248B41WQO/G3lgx7AXYyo12xS8REZUB8yuqrBwUMkwMr4P9k0PxdseaUMgkOHvzIYavPI5+Sw7jYPTdCi9OCYKADScS0OX/9uFA9F1Yy8SY1qMe1oxuCV8nZYX2paopXJi6naZiYYqInsho/2HWrl0bU6ZMwYEDBxASElJs0qxx48YZa9dE9Bw0WgFf/H0Rvx6JAwC81aEmPupSh2cKiYjMAPMrquyq2Vjhoy5BGNW2BpbuvY5fDsfhZNx9DPnxKJrXcMIHYbXRIsDZ6P1IScvBlE3n8d/lFABAEz9HzO/fkFMUGJCrnRxr32iJQcuO4FpKBgYuO4y1Y1oyxkRUhFHvvmdra4u9e/di7969Rd4TiURMmojMUI5ag3FrT2Nn1G2IRMC07vUwvE0NU3eLiIgeYX5FVYWLrRxTX66HMe0CsGjPdaw5Go9jMffw6rIjaFvLBRPCaqNpdcPf5VcQBPx9NhGf/3URD7PVsJKI8UF4bYxuFwCJmU6+Xpm52OYXpgYvP4KrtzMwaPkRFqaIqAijFaViYmKM1TQRGcGDrFyM/vkETsTdh5VUjIWvNkK3EE9Td4uIiAphfkVVjZu9Nb7oWR9vdgjAD5HRWH88AQei7+JA9F10rOOKiWG10cDH0SD7Ss1Q4dPNF7D9QjIAIMTbAQsGNERtdzuDtE8lc7HNv5SPhSkiKonR5pQiosrj1oNs9FtyGCfi7sPOWopfRzZnQYqIiIgqjKeDArNeCcHuDzri1Wa+kIhF2HPlDnp+fxCjfz6Bi4kPn6v9HReSEP5/+7D9QjKkYhEmhtXGprGtWZCqIAWFqdruBXNMHcGNOxmm7hYRmQGDj5SaMWNGmdb7/PPPDb1rInoGl5LSMHzlMdxOU8HTwRqrRjRHHQ8maERE5oT5FVkKXyclvurXAGNDa+Kb/65h8+lb2HXpNnZduo2uwR6YEFa7XIWkh1lqTPv7AjafSQQABHnYYX7/hgj2djDWR6AnKChMDVl+FFdup2PgsiNY9wZHTBFZOoMXpf78888nvicSiXDlyhXk5OQwaSIyA4eu38Wbv5xEuioPtd1tsWpEc3g5KkzdLSIiegzzK7I01Z1t8PWARngntBa+2XUN/5xLxPYLydhxMRndG3hh/EuBqPmUYkbk5RR89Mc5pKSrIBYBb3esiXGdAiGXSiroU9DjXGzl+G1MiyKFqbVvtHzq95KIqi6DF6VOnz5d4vIzZ87g448/xoULFzBmzBhD75aIyumfs4n4YMNZ5Gq0aF7DCctfbwYHhezpGxIRUYVjfkWWqqarLb4d1Di/OPXfVWw7n4x/ziZi67lEvNLYG+NeDIS/i02RbdJz8vDVX5ew/kTCozZssGBAIzTydTTBJ6DH5Y+YaoHBjwpTg1iYIrJoRp9TKiYmBq+99hpeeOEFODg44OLFi1iyZImxd0tEpfhx/w28t/Y0cjVadAvxwC8jm7MgRURUiTC/IktTx8MOi4Y0xdZxbRFWzx1aAdh06hY6fb0XH208h4R7WQCAKw9F6P79Iaw/kQCRCBjdtga2jmvHgpSZcX5UmKrjboeUdBUGLTuC65xjisgiGa0odffuXbz33nsICgpCUlISDh06hPXr1yMwMNAo+4uNjcWoUaNQo0YNKBQK1KxZE9OmTUNubm6R9eLj49GjRw/Y2NjAxcUF48aNK7YOUVWl1QqYtSUKs7ZeAgAMb+2P7wY1gbWMw9iJiCqDis6viMxNfS8HLH+9Gf5+tw1C67hCoxWw/kQCXlywB8NWncCiKAkSH+bAz0mJ9W+0wqfd6zHPMVMFhakgj/zC1EAWpogsksEv38vMzMT8+fPx9ddfo1atWvjnn38QHh5u6N0Uc/nyZWi1WixduhS1atXSDWMv6A8AaDQavPzyy3B1dcWBAweQmpqKYcOGQRAEfPfdd0bvI5EpqfI0+PD3c/j7bP5Enx93DcKb7QMgEolM3DMiInoaU+VXROaqgY8jVo5ojpNx97Fw11Xsv3YXh67fAwAMae6LT16uBxu5wf/VIQNztpXjt9EtMOTHo7ic/GiOqTEtUcuNl/IRWQqD/6auWbMm0tPT8d5772HQoEEQiUQ4d+5csfUaNGhg0P126dIFXbp00b0OCAjAlStXsHjxYl1RaufOnYiKikJCQgK8vLwAAAsWLMDw4cMxe/Zs2NvbG7RPROYiPUeNN389iUPXUyEVizC3XwP0aeJj6m4REVEZmSq/IjJ3TatXw6+jWuDojVRsOnUTzllxmNCjLmQyFqQqi8cLU4OWszBFZEkM/ts6JSUFADB37lzMmzcPgiDo3hOJRBAEASKRCBqNxtC7Lubhw4dwcnLSvT58+DCCg4N1BSkA6Ny5M1QqFU6ePInQ0NAS21GpVFCpVLrXaWlpAAC1Wg21Wm3QPhe0Z+h2KyPGQu95YnE7LQejfz2Ny8npsLGS4LtBDdGulkuljCuPCT3GQo+x0GMs9IwZC1PE15zyKyJz1CLAGU187bFtW6ypu0LPIP9SvpYYvPwIC1NEFsbgRamYmBhDN/lMrl+/ju+++w4LFizQLUtOToa7u3uR9apVqwYrKyskJyc/sa05c+Zg+vTpxZbv3LkTSqXScJ0uJCIiwijtVkaMhV55Y3E7G1hySYJ7KhHsZALerKNC+tVj2HbVSB2sIDwm9BgLPcZCj7HQM0YssrKyDN7m05hLfkVEZCxONlZFClMDlx3BujdYmCKq6gxalDp37hyCg4MhFpdt/vSLFy+iTp06kEqf3I0vvviixIJQYcePH0ezZs10rxMTE9GlSxf0798fo0ePLrJuSfPnFJxdfJIpU6Zg4sSJutdpaWnw9fVFeHi4wS/5U6vViIiIQFhYGGQyy74bGmOh9yyxOBX/ANNWn8YDlRr+zkqseL0J/JyMU0StKDwm9BgLPcZCj7HQM2YsCkZMVxRj5FdEROao5MJUC9RyszN114jISAyarTRu3BjJyclwdXUt0/qtWrXCmTNnEBAQ8MR13n33XQwcOLDUdvz9/XXPExMTERoailatWmHZsmVF1vPw8MDRo0eLLLt//z7UanWxEVSFyeVyyOXyYstlMpnRkn5jtl3ZMBZ6ZY3FzovJeG/taajytGjk64ifhr8AJxurCuhhxeAxocdY6DEWeoyFnjFiUdGxNUZ+RURkrgoKU0N+PIpLSWkYuOwoC1NEVZhBi1KCIOCzzz4r8yVtubm5T13HxcUFLi4uZWrv1q1bCA0NRdOmTbFy5cpiZxRbtWqF2bNnIykpCZ6engDyL8GTy+Vo2rRpmfZBZO5+OxqHzzZfgFYAOgW54bvBjaG04tlyIqLKyhj5FRGROXOysdJNfl5QmFo7pgUC3VmYIqpqDPqfavv27XHlypUyr9+qVSsoFAqD7DsxMREdO3aEn58f5s+fjzt37uje8/DwAACEh4ejXr16GDp0KObNm4d79+5h0qRJGDNmDO+8R5WeIAj4OuIqvtsdDQB4tZkvZvcOhlRStss9iIjIPJkyvyIiMhUnGyusGd0Cgx8VpgYtZ2GKqCoyaFFqz549hmyuXHbu3Ino6GhER0fDx6fore4L7lAjkUiwdetWjB07Fm3atIFCocDgwYMxf/58U3SZyGDUGi2m/nkeG07cBAC83ykQ418KLHWuNCIiqhxMmV8REZlStWKFqfy78rEwRVR1VJkhFMOHD4cgCCU+CvPz88OWLVuQlZWF1NRUfPfddyXOF0VUWWTl5uGNX05gw4mbEIuAOX1CMCGsNgtSRERERFTpFRSm6nra425GLgYtP4Jrt9NN3S0iMpAqU5QiskSpGSoMWnYEkVfuwFomxrKhzTCouZ+pu0VEREREZDAFhal6hQpTV1mYIqoSWJQiqqTiUjPRd/EhnL35ENWUMvw2uiVeqvfku0gSEREREVVW1R5Nfl5QmBrMwhRRlcCiFFEldO7mA/RdfAixqVnwqabAxrdbo2n1aqbuFhERERGR0RQUpup7PRoxtYyFKaLKjkUpokpm79U7GLjsCO5m5KKepz02vd0aNV1tTd0tIiIiIiKjK1yYSs1kYYqosmNRiqgS+fN0IkatOo6sXA3a1nLB+jdbws3e2tTdIiIiIiKqMI7K4oWpK8ksTBFVRixKEVUCgiAg4pYIkzddQJ5WwCuNvPDT8BdgZy0zddeIiIiIiCrc44WpwctZmCKqjFiUIjJDgiAgQ5WHWw+ycSkpDTO2XsaWeAkA4M32Afh6QCNYSfnjS0RERESWq6AwFezNwhRRZSU1dQeIqipVngZp2Xl4mK1GWo46/2u2Gmk5eflfiyzXr1ewjkYrFGlPBAGfdAvCmPa1TPSJiIiIiIjMi6PSCqtHtcBrK47iwq00DFp+BGvHtEQdDztTd42IyoBFKaIn0GgFZOQULRY9fKyQ9HixqeD5w2w1VHna5+6DTCKCg0IGFxsrtHJ4iOGtqhvgkxERERERVR0lFabWjGmBms4KU3eNiJ6CRSkzci8zFzP+voDbSWIc++cS5DIprKRiWElEkEnEsJKKIZOIIZOKIZeIIZM+Wv5omVXhdSQiyHXP9csL1pGIRab+uEYnCAKy1Y+NVsoqXGB6vKj0aNmj5+k5ec/dB5EIsJNL4aCUwd46/+GgkMFeIc3/ai2DveLJy+RSMUQiEdRqNbZt22aAqBAREZXdokWLMG/ePCQlJaF+/fpYuHAh2rVrZ+puEREV46i0wm+jWmLIiiO4cCsNg5cfxS/Dm5q6W0T0FCxKmZH0HDU2n00CIMbhlASj7kssgq5YZVWkcJVf6CqpoCUv9L6uyFVoe5lUVKQwpi+WiQoVy0reZ9GCWv4yANBogdTMXGSpVbrL3kodrVT48rgcNdQa4SmReDqFTFKkYJRfQJLB3lpa6Pmjr48VluzkUogtoABIRERVz/r16zF+/HgsWrQIbdq0wdKlS9G1a1dERUXBz8/P1N0jIirGQSnDb6Na4rUVR3H+1kMMXXkCb3DmCyKzxqKUGXFQyPBR59q4EHUJNWoGQgMR1Hla5Gq0UGu0yM0T8p/nPXqt0SK30HN1ngC1RgtVkWVaqDX52xWmFQBVntYgl5gZi0wiglojBY7uea52pGKRfjSStfRR8aigcPT0YhMnFCciIkv09ddfY9SoURg9ejQAYOHChfj333+xePFizJkzp9j6KpUKKpVK9zotLQ0AoFaroVarDdq3gvYM3W5lxFjoMRb5LD0OShmwclgTDF91EhcS0zD3nAQLo3aZultmQauRYPJxxgJgLAoLdhQjzAi/L8r6O4hFKTPiqLTC6Lb+2JYWhW6dakEmkxmsbUEQoNYIj4pbjxe1ihazCq+jKvR+8e0eFbzy9AWwkgpouYXaLHiufuz9XI0WwmODmgqPcrKTFy4mSQsVmfSXvhUuLBVeprSSQCTiaCUiIqKyys3NxcmTJ/Hxxx8XWR4eHo5Dhw6VuM2cOXMwffr0Yst37twJpVJplH5GREQYpd3KiLHQYyzyWXochngDy9IliEkXmfWJ+IolAhiLRxiLAlrBOL8vsrKyyrQei1IWQiQSwUqafxmdjdzUvSlOEARotEKRIle2KhcH9uxG7+5doLA2w04TERFVUXfv3oVGo4G7u3uR5e7u7khOTi5xmylTpmDixIm612lpafD19UV4eDjs7e0N2j+1Wo2IiAiEhYUZ9CReZcRY6DEW+RgHvZ5dcvH71l1o07YdZDLL/tdXrc7DgQP70ZaxYCwKUavzcOzQfqP8vigYMf00lv0deEbCoyE9ZQ1yeajVamRlZSEtLc1i/4iIAMgBiEVqiNRZyMrMgDpX9bTNqjQeF/kYBz3GQo+x0GMs9IwZi4K//8LjQ3yroMdHGguC8MTRx3K5HHK5vMi6AJCdnW3w70HB9zc7Oxt5ec9/Y5LKjLHQYyzyMQ56arUack0WnOQCLPzPItRiAdaMBQDGojC1WIBYbZzfF9nZ2QCeni+xKPUM0tPTAQC+vr4m7gkRERGZSnp6OhwcHEzdDaNwcXGBRCIpNioqJSWl2OipJ2G+RERERE/Ll1iUegZeXl5ISEiAnZ2dwecqKhjqnpCQYPCh7pUNY6HHWORjHPQYCz3GQo+x0DNmLARBQHp6Ory8vAzarjmxsrJC06ZNERERgd69e+uWR0REoFevXmVqg/lSxWAs9BiLfIyDHmOhx1joMRZ65pAvsSj1DMRiMXx8fIy6D3t7e4v/ASnAWOgxFvkYBz3GQo+x0GMs9IwVi6o6QqqwiRMnYujQoWjWrBlatWqFZcuWIT4+Hm+99VaZtme+VLEYCz3GIh/joMdY6DEWeoyFninzJRaliIiIiKiYV199FampqZgxYwaSkpIQHByMbdu2oXr16qbuGhEREVURLEoRERERUYnGjh2LsWPHmrobREREVEWJTd0BKkoul2PatGlF7l5jqRgLPcYiH+Ogx1joMRZ6jIUeY1G18furx1joMRb5GAc9xkKPsdBjLPTMIRYiwRLuZ0xERERERERERGaFI6WIiIiIiIiIiKjCsShFREREREREREQVjkUpIiIiIiIiIiKqcCxKERERERERERFRhWNRioiIiIiIiIiIKhyLUkREREREREREVOFYlCIiIiIiIiIiogrHohQREREREREREVU4FqWIiIiIiIiIiKjCsShFREREREREREQVjkUpIiIiIiIiIiKqcCxKERERERERERFRhWNRioiIiIiIiIiIKhyLUkREREREREREVOFYlCIiIiIiIiIiogrHohQRmY1Vq1ZBJBIhNja2XOufOHHiqet27NgRHTt2fL4OGkBJn3HNmjVYuHDhM7cpEonw7rvvPn/niIiIqNKzhHzqSUr67MOHD4e/v7/J+kREpZOaugNERBVh0aJFpu4CAODll1/G4cOH4enpqVu2Zs0aXLhwAePHjzddx4iIiIiewlzyKSKqOliUIiKLUK9ePVN3AQDg6uoKV1dXU3eDiIiIqNwqOp/SaDTIy8uDXC6v0P0SUcXh5XtEVOmlp6fj7bffhouLC5ydndGnTx8kJiYWWefx4eaxsbEQiUSYO3cuZs+eDT8/P1hbW6NZs2b477//yrX/8rT1+LDyjh07YuvWrYiLi4NIJNI9CqhUKsyYMQN169aFtbU1nJ2dERoaikOHDhXrx6+//oq6detCqVSiYcOG2LJlS7k+BxEREVkuc8qnZs2ahRo1akAulyMyMhIA8Pfff6NVq1ZQKpWws7NDWFgYDh8+/Nyfm4hMi0UpIqr0Ro8eDZlMhjVr1mDu3LnYs2cPXnvttTJt+/3332PHjh1YuHAhVq9eDbFYjK5duz5TkvMsbS1atAht2rSBh4cHDh8+rHsAQF5eHrp27YqZM2eie/fu+PPPP7Fq1Sq0bt0a8fHxRdrZunUrvv/+e8yYMQN//PEHnJyc0Lt3b9y4caPcn4OIiIgsj7nkU99++y12796N+fPnY/v27QgKCsKaNWvQq1cv2NvbY+3atVixYgXu37+Pjh074sCBA+XeBxGZD16+R0SVXpcuXfDtt9/qXt+7dw+TJ09GcnIyPDw8St1Wo9EgIiIC1tbWAIDOnTvD398fn3/+OSIiIsrVj2dpq169enB0dIRcLkfLli2LvLd27VpERkZi+fLlGD16tG55jx49irWTnZ2NXbt2wc7ODgDQpEkTeHl5YcOGDfj444/L9TmIiIjI8phLPmVtbY1///0XMpkMAKDVatGmTRuEhIRg+/btEIvzx1V069YNNWvWxEcffYSDBw+Wax9EZD44UoqIKr2ePXsWed2gQQMAQFxc3FO37dOnjy6BAgA7Ozv06NED+/btg0ajKVc/DNkWAGzfvh3W1tYYOXLkU9cNDQ3VFaQAwN3dHW5ubmWKAREREZG55FM9e/bUFaQA4MqVK0hMTMTQoUN1BSkAsLW1Rd++fXHkyBFkZWWVax9EZD5YlCKiSs/Z2bnI64LJMLOzs5+6bUln/jw8PJCbm4uMjIxy9cOQbQHAnTt34OXlVSQBe5LHYwDkx6EsMSAiIiIyl3yq8B2KASA1NbXE5QDg5eUFrVaL+/fvl2sfRGQ+WJQiIouWnJxc4jIrKyvY2tqarC0g/059iYmJ0Gq15d6WiIiIqKIYMgcqfMMXQF8sS0pKKrZuYmIixGIxqlWrVq59EJH5YFGKiCzapk2bkJOTo3udnp6Of/75B+3atYNEIqmQtp40oqlr167IycnBqlWrytUPIiIioopkyHzqcXXq1IG3tzfWrFkDQRB0yzMzM/HHH3/o7shHRJUTJzonIosmkUgQFhaGiRMnQqvV4quvvkJaWhqmT59eYW2FhIRg06ZNWLx4MZo2bQqxWIxmzZph0KBBWLlyJd566y1cuXIFoaGh0Gq1OHr0KOrWrYuBAwc+68cmIiIiMhhD5lOPE4vFmDt3LoYMGYLu3bvjzTffhEqlwrx58/DgwQN8+eWXBvgERGQqLEoRkUV79913kZOTg3HjxiElJQX169fH1q1b0aZNmwpr6/3338fFixfxySef4OHDhxAEAYIgQCqVYtu2bZgzZw7Wrl2LhQsXws7ODg0bNkSXLl2e9SMTERERGZQh86mSDB48GDY2NpgzZw5effVVSCQStGzZEpGRkWjdurVB9kFEpiESCo+BJCKyELGxsahRowbmzZuHSZMmmU1bRERERJUFcyAiel6cU4qIiIiIiIiIiCocL98jIrMjCAI0Gk2p60gkkmJ3ZzGGvLy8Ut8Xi1nbJyIiIvNT2fIp5lRElok/+URkdn7++WfIZLJSH3v37n2uffj7+0MQhFKHmsfGxj61HzNmzChTW0REREQVqbLlU0RkmTinFBGZndTUVMTExJS6Tp06dWBnZ2fUfuTm5uLcuXOlruPl5QUvLy+j9oOIiIiovJhPEVFlwKIUERERERERERFVOM4p9Qy0Wi0SExNhZ2dXIddgExERkfkQBAHp6enw8vLiHCilYL5ERERkucqaL1lsUWrRokWYN28ekpKSUL9+fSxcuBDt2rUr07aJiYnw9fU1cg+JiIjInCUkJMDHx8fU3TAq5ktERET0PJ6WL1lkUWr9+vUYP348Fi1ahDZt2mDp0qXo2rUroqKi4Ofn99TtC667TkhIgL29vUH7plarsXPnToSHh0Mmkxm07cqGsdBjLPIxDnpqtRrbd+zES2EvMRZqNXZF7GIswFgUplar8d+uXejS2fC/L9LS0uDr62v0eVhMjflS5cBY6DEW+RgHPeZLeswR9BgLPbVajV27dqGrCfMliyxKff311xg1ahRGjx4NAFi4cCH+/fdfLF68GHPmzCm2vkqlgkql0r1OT08HACgUCigUCoP2TSqVQqlUQqFQWPwPCGOhx1jkYxzynYp/gFlbL+F8oj0+PX/M1N0xE4yFHmNRoLWbLXob4feFWq0GgCp/SRrzpcqBsdBjLPIxDkDSwxz8fTYJf565het3+HdRj7HQYywKNHa2RR8T5ksWN9F5bm4ulEolfv/9d/Tu3Vu3/P3338eZM2dKvC3qF198genTpxdbvmbNGiiVSqP2l4ioQFou8E+8GMfucA4borJo7abFqzW1Bm83KysLgwcPxsOHDw0+AshcMF8iospGpQHO3xPh2B0Rrj4UQUDVPnFAZCiNnbUYXtt0+ZLFjZS6e/cuNBoN3N3diyx3d3dHcnJyidtMmTIFEydO1L0uGIYWHh5ulOHoERERCAsLs9gzGwUYCz3GIp+lxkGt0WL10QR8u/s6MlR5AIC+jT0RLEpA15c6Qia1nFiURJ2nRmTkHoSGMhaMhZ46T439e/YY5fdFWlqaQdszR8yXKg/GQo+xyGdJcdBqBRyPu48/zyRix4XbyMzV6N5rVt0RPUPcIUq6iLBO/LvIHEGPsdBT56mxz8T5ksUVpQo8PoRMEIQnDiuTy+WQy+XFlstkMqP9ojdm25UNY6HHWOSzpDgcun4XX/x9EVdvZwAAGvg4YEavYNT3sMG2bQlwtlNaTCyeRK1WQykFYwHGojC1Wg0riXF+X1hSbJkvVR6MhR5jka8qxyH2biY2nbqJTadv4eb9bN1yXycF+jT2QZ8m3qjubAO1Wo1t2y7y7yKYIxTGWOip1WrITZwvWVxRysXFBRKJpNhZvpSUlGJnA4mITCXpYTZmb72ELeeSAADVlDJ81CUIA5r5QiwW6a7RrooEQUBeXh40Gs3TV0b+H1OpVIqcnJwyb1NVMRZ6zxMLiUQCqVRa5eeMKg3zJSIyNw+z1dh2Pgl/nLyJE3H3dctt5VK8HOKJvk190Kx6NYjFlvG7m/nSs2Ms9MwhX7K4opSVlRWaNm2KiIiIInMkREREoFevXibsGRERoMrTYMWBGHz3XzSy1RqIRcBrLatjYlhtOCqtTN09o8vNzUVSUhKysrLKvI0gCPDw8EBCQoJFFxEAxqKw542FUqmEp6cnrKyq/s9dSZgvEZE5yNNosT/6Lv44eRM7o24jNy9/3huxCGgb6Iq+TbwRXs8DCiuJiXtasZgvPR/GQs8c8iWLK0oBwMSJEzF06FA0a9YMrVq1wrJlyxAfH4+33nrL1F0jIgu29+odTP/7Im7czQQANKteDdN71Ud9LwcT96xiaLVaxMTEQCKRwMvLC1ZWVmX646jVapGRkQFbW1uIxZY9CTxjofessRAEAbm5ubhz5w5iYmIQGBhosbFkvkREpnI5OQ1/nLyJzWcScSddf1fP2u626NvEB6809oa7vbUJe2g6zJeeH2OhZw75kkUWpV599VWkpqZixowZSEpKQnBwMLZt24bq1aubumtEZIES7mVh5pYo7Iy6DQBwsZXjk25B6N3Y26LO3uTm5kKr1cLX17dcd+rSarXIzc2FtbU1EwvGQud5YlFwG/W4uDhdG5aI+RIRVaS7GSr8dSYRf5y8iagk/QTJ1ZQy9Grkjb5NfBDsbW9RuVFJmC89P8ZCzxzyJYssSgHA2LFjMXbsWFN3g4gsWI5agyV7r2PxnutQ5WkhEYsworU/3n8pEHbWljvpoqUnB2QeeBzmY75ERMakytPgv0sp2HTqJvZcuYM8rQAAkElEeDHIDX2b+KBjHTdYSfk7+XH8O0XmwBDHocUWpYiITEUQBERE3caMLVG6O8a0rumML3rWR213OxP3joiIiMh4BEHA6YQH2HTqJv45m4SH2fqbtzT0cUDfpj7o0cAL1Wwsc04/IkvDohQRUQWKuZuJL/6+iL1X7wAAPB2s8enL9dAtxMPih6MTERFR1ZX4IBt/nr6FP07dxI07mbrlHvbW6N3EG32beKOWG0/OEVkaFqWIiCpAVm4evt8djR/3xyBXo4VMIsKYdgF498VaUFrxVzGZry+++AKLFy9GSkoK/vzzT7zyyium7hIREVUSmao87LiQjD9O3cThG6kQ8q/Og7VMjK7BnujTxButa7pAIuaJOarcmC89O16ISkRkRIIgYMu5RHRasBeL9lxHrkaLDrVd8e/49pjcJYgFqSpAJBKV+hg+fDgAIDIyEqGhoXBycoJSqURgYCCGDRuGvLw8AMCePXsgEonw4MGDIq9FIhHEYjEcHBzQuHFjTJ48GUlJSaX2KTY2tkgfHBwc0LJlS/zzzz/l+myXLl3C9OnTsXTpUiQlJaFr167ljg8REVkWrVbAoei7mLjhDF6YvQsf/H4Wh67nF6RaBjhhbr8GOPFpGP7v1UZoF+jKgpSFYL5ET8L/hoiIjOTq7XRM++siDt9IBQD4Oinweff6eKmuGy/Vq0IKJzzr16/H559/jitXruiWKRQKXLx4EV27dsW4cePw3XffQaFQ4Nq1a9i4cSO0Wm2p7V+5cgX29vZIS0vDqVOnMHfuXKxYsQJ79uxBSEhIqdvu2rUL9evXx4MHD7Bo0SL07dsXp06dQnBwcJk+2/Xr1wEAvXr1eq5jVq1WQyaz3Mn7iYgswY07Gfjj1E38eeoWEh/m6Jb7OyvRp4kPejf2hq9T2e8WR1UL86Wns9R8iSOliIgMLD1HjZlbotD1m/04fCMVcqkYE16qjYgJHRBWz50FqXIQBAFZuXlPfWTnasq0XnkeQsE1Bk/h4eGhezg4OEAkEhVbFhERAU9PT8ydOxfBwcGoWbMmunTpgh9//BFWVqVP5Orm5gYPDw/Url0bAwcOxMGDB+Hq6oq33377qX1zdnaGh4cHgoKCMHv2bKjVakRGRurev3XrFl599VVUq1YNzs7O6NWrF2JjYwHkD0Pv0aMHgPw7qxQ+bleuXIm6devC2toaQUFBWLRoke69grOOGzZsQMeOHWFtbY3Vq1eXebtNmzYhNDQUSqUSDRs2xOHDh4t8poMHD6JDhw5QKpWoVq0aOnfujPv37wPIP17mzp2LgIAA2NjYoG3btti4caNu2/v372PIkCFwdXWFQqFAYGAgVq5c+dQ4EhFRyR5mqbH6SBx6LzqIFxfsxQ+R15H4MAd21lIMau6HP95uhchJHTGuUyALUkbEfIn5UmXOlzhSiojIQARBwJ+nb+F/2y7jboYKABBezx2fda/HROwZZas1qPf5vybZd9SMzga7vNLDwwNJSUnYt28f2rdv/1xtKRQKvPXWW5gwYQJSUlLg5ub21G3UajWWL18OALozcFlZWQgNDUW7du2wb98+SKVSzJo1C126dMG5c+cwadIk+Pv7Y8SIEUXObi5fvhzTpk3D999/j8aNG+P06dMYM2YMbGxsMGzYMN16H330ERYsWICVK1dCLpeXebupU6di/vz5CAwMxNSpUzFo0CBER0dDKpXizJkz6NSpE0aOHIlvv/0WUqkUkZGR0Gg0AIBPP/0UmzZtwuLFi1GzZk3s3LkTr7/+Otzd3dGhQwd89tlniIqKwvbt2+Hi4oLo6GhkZ2c/1/eDiMjSqDVa7Lt6B3+cuoldUSnI1eSPYBGLgA61XdGniQ/C6rnDWiYxcU8tB/Ol4pgvVZ58iUUpIiIDuJj4ENP+uogTcflnIGq42GBaj3roWOfpfwCp6uvfvz/+/fdfdOjQAR4eHmjZsiU6deqE119/Hfb29uVuLygoCED+2bLSkqzWrVtDLBYjOzsbWq0W/v7+GDBgAABg3bp1EIvF+PHHH3Vn9VauXAlHR0fs2bMH4eHhcHR0BJCfJBaYOXMmFixYgD59+gAAatSogaioKCxdurRIsjR+/HjdOuXZbtKkSXj55ZcBANOnT0f9+vURHR2NoKAgzJ07F82aNStyxrB+/foAgMzMTHz99dfYvXs3WrVqBa1Wi8GDB+PkyZNYunQpOnTogPj4eDRu3BjNmjUDAPj7+5cj6kRElu1i4kP8cfIW/j57C3czcnXLgzzs0LeJD3o19oKbnbUJe0iVHfMly8yXWJQiInoOD7JysWDnVfx2NA5aAVBaSfDei4EY2dYfcinPED4vhUyCqBmdS11Hq9UiPS0ddvZ2EIsNd1W6woBneCUSCVauXIlZs2Zh9+7dOHLkCGbPno2vvvoKx44dg6enZ7naKxgq/7RLQdevX4+goCBcvXoV48ePx5IlS+Dk5AQAOHnyJKKjo2FnV/T22zk5Obq5ER53584dJCQkYNSoURgzZoxueV5eHhwcHIqsW5DIlHe7Bg0a6J4XxCUlJQVBQUE4c+YM+vfvX2LfoqKikJOTg7CwsCLLc3Nz0bhxYwDA22+/rZsnIjw8HK+88gpat25dYntERASkpOfg7zOJ2HjyJi4np+uWO9tYoVcjb/Rt6o16nvacmsDEmC+VjPlSceaYL7EoRUT0DDRaARtOJGDujsu4n6UGAPRo6IVPugXB00Fh4t5VHSKR6KlDwrVaLfKsJFBaSQ2aZBmDt7c3hg4diqFDh2LWrFmoXbs2lixZgunTp5ernUuXLgF4+pkrX19fBAYGIjAwELa2tujbty+ioqLg5uYGrVaLpk2b4rfffiu2naura4ntFUwyunz5crRo0aLIexJJ0aTUxsbmmbYrPMFnQRJZsL1C8eSfrYJ1tm7dCm9vb2i1WmRkZMDW1la3XdeuXREXF4etW7di165d6NSpE9555x3Mnz//ie0SEVmaHLUGuy7dxh8nb2LftbvQaPP/sbeSiPFSPTf0beKD9rVdIZOY999cS8J8qWTMl57cN3PKl1iUIiIqpzMJD/D5Xxdw7uZDAEBtd1tM7xmMVjWdTdwzqkyqVasGT09PZGZmlmu77OxsLFu2DO3bt39iMlSSDh06IDg4GLNnz8Y333yDJk2aYP369XBzcyvzkHh3d3d4e3vjxo0bGDJkSJn3/azbPa5Bgwb477//SkxK69WrB7lcjvj4eHTo0AFarRZpaWmwt7cvkny7urpi+PDhGD58ONq1a4cPP/yQRSkisniCIOBU/H1sPHkLW84lIj0nT/deYz9H9Gnigx4NPOGoLH2yaSJDY75UfpUtX2JRioiojFIzVJi74wrWn0gAANjJpRgfVhuvt6rOs4VUqqVLl+LMmTPo3bs3atasiZycHPzyyy+4ePEivvvuu1K3TUlJQU5ODtLT03Hy5EnMnTsXd+/exaZNm8rdjw8++AD9+/fH5MmTMWTIEMybNw+9evXCjBkz4OPjg/j4eGzatAkffvghfHx8Smzjiy++wLhx42Bvb4+uXbtCpVLhxIkTuH//PiZOnPjEfT/rdoVNmTIFISEhGDt2LN566y1YWVkhMjIS/fv3h4uLCyZNmoQJEyZAq9WidevWSEpKwrlz52BnZ4dhw4bh888/R9OmTVG/fn2oVCps2bIFdevWLXcciYiqioR7Wfjz9C1sOnUTsalZuuVeDtbo3cQbfZr4oKarrQl7SJaE+ZJl5kssShERPUWeRovfjsZjwc4rSHt05rBvEx981LUOJ/SkMmnevDkOHDiAt956C4mJibC1tUX9+vWxefNmdOjQodRt69SpA5FIBFtbWwQEBCA8PBwTJ04sMplmWXXv3h3+/v6YPXs2Fi1ahH379uGjjz5Cnz59kJ6eDm9vb3Tq1KnUM4GjR4+GUqnEvHnzMHnyZNjY2CAkJATjx48vdd/Pul1htWvXxs6dO/HJJ5+gefPmUCgUaNGiBQYNGgQgf3JQNzc3zJkzBzdu3ICDgwOaNGmCqVOnAgCsrKwwZcoUxMbGQqFQoF27dli3bl2Z909EVBVkqPKw7XwSNp26iSM37umWK60k6BLsgX5NfNAywBliMeeJoorFfMky8yWRUDD7lwEUnjW+rJYsWVKm2zOak7S0NDg4OODhw4fPdBeA0qjVamzbtg3dunUrcp3okwiCAK0AaAUBGq0AoeC5IEDQ6p9rhfz3NNr859pH7+kfJbShzV8uFHpeZH2t/nn+do+eCwXPBWgK9vP49iW0V6QNrQBBq4XV3St4c0DZYlGVlfe4qKpMEYdjMffw+V8XdJN71veyx4xe9dG0ulOF7P9JquIxkZOTg5iYGNSoUQPW1mUv9j1p2LElYiz0njcWpR2PxswDClSFnMqc8qWqjLHQYyzylRQHjVbAoet3senULey4kIxsdf6t4UUioFWAM/o28UGXYA/YyKvWmIWqeEwwX3p+jIWeOeRLBv2ts3nzZgwYMKDUibUKW7NmDTIyMswqgTKlm/ez0HfxIWRnSzDj3B4I0BeRCheUhEeFn4LnVZkIEjxwuIpJnYNgbcA7OxA9TUpaDv637RI2n0kEADgoZPiwcx0Mau4HCc8cEpGRMaciIkOITsnAH6duYvPpW0h6mKNbHuBig75NffBKY294O/IGLURkOgYvhX/77bdlTog2btxo6N1XaoIA3E5TARAB6lyDti0WAWKRKP8hLvRcBIjFoqKvRSJIxCKIRIDk0XsiESARFXouLml7fbsF2xc8F4vy7wogebR/3fOCbcTFnyfez8buK3fw44FY7L5yB/P6NTD56BSq+tQaLVYdjMXCXVeRmauBSAQMfMEPH3auAycbTu5JRBWHORWR5Sm4QiHv0UOjEaDWavXLNNpHXwXkabWPvj7a5tF7Oblq7EsSYcWSIzh3K03XtoNChh4NPdGniQ8a+zrq7thFRGRKBi1KRUZGwsmp7EWD7du3w9vb25BdqNTc7OXY/HZLHDp4AO3btYPcSpZfvCmhYPN4Eanwcl1BqVARqTL+0VGr1fhq9Xb8najEjTuZ6LfkMEa2qYFJ4XWgsOKoKTK8A9fu4ot/LiI6JQMA0MjXETN61UcDH0fTdoyILA5zKqLyS07LQVIWcCkpHRCLixRvNLrnhQo7j4o6Gq0AtVaARrdcv45GK0CtEaDRah99LWG7Qu+pNUULSPrtCxWXCvWppO0MQwIgDRKxCB1ru6JvUx90qusGuZQ5NBGZF4MWpZ42+djj2rZta8jdV3pyqQT1vewRZwPU8bCrMtc9P48QJwFv9W2NOTuu4Y9TN7HiQAz+u3QbX/VtgBYBzqbuHlURtx5kY/bWKGw7nwwAcLaxwkddg9CviQ8n+SQik2BORVR2SQ+zMXNLwd9xKXD2sKm7ZHAScf6JZ2nBQyIu9lzy6LlEBORkPMCANnXRp6kvXGzlpu4+EdETGX0mu5SUFKSkpECr1RZZ3qBBA2PvmqoIB4UMCwY0RPcGnpiy6TxiU7Pw6rIjGN7aH5O71IHSqmpNyEgVJ0etwY/7b+D7yGjkqLUQi4DXW/ljQlhtOChYFDYVA95/g+iZmeNxyJyKqCi1RoufD8Xi/yLyL7kXiwCFRIDSWg6ZRAyJRASZWKwr1hQUbmSSgq/iQoWegvVFkIjFunWKFIAk+e8VPC/YLv954cJQ4eUl7bt4G4X7o993fhuSR1dFlDkuBZN7t67Ok9xVmDn+nSLLY4jj0Gj/zZ88eRLDhg3DpUuXdB0ViUQQBAEikQgajcZYu6YqKjTIDTsntsf/tl7CuuMJWHUoFv9dzh811bqmi6m7R5XM7su3Mf2fKMSlZgEAmvs7YXqv+qjraZw7adHTFSTOWVlZZZ7cmchYsrLyfzeYwz90zKmIijsRew+fbtbfHbdp9WqY9nIQYk7vR7duHc3iZ5fIGJgvkTkxRL5ktKLUiBEjULt2baxYsQLu7u6Vck4jMj/21jJ82bcBuoXkj5pKuJeNwcuP4rWWfvi4a13YVrHb2JLhxaVmYuaWKOy6lAIAcLOTY+rLddGzoRd/T5mYRCKBo6MjUlLyvzdKpbJM3xOtVovc3Fzk5OTwtr6Mhc6zxkIQBGRlZSElJQWOjo6QSEw//wpzKiK91AwVvtx+Gb+fvAkAqKaUYUrXuujX1AcaTR5iTpu4g0RGxnzp+TEWeuaQLxntP/iYmBhs2rQJtWrVMtYuyIK1r+2KHePb4cvtl/Hb0XisPhKPyMt38GXfELQLdDV198gMZedqsHhPNJbsu4HcPC2kYhFGta2B9zoFsphpRjw8PABAl2iVhSAIyM7OhkKhsPh/1hkLveeNhaOjo+54NDXmVESAVitg3fEEfLXjMh5mqwEAg5r7YnLnIFR7dHdcDhokS8F86fkwFnrmkC8Z7T+xTp064ezZs0ygyGjsrGWY3TsEL4d4YvIf53DzfjaGrjiGgS/44pOX68LemsO2Kf8X7b8XkzFzyyXcepANAGhbywVf9KyPWm62Ju4dPU4kEsHT0xNubm5Qq9Vl2katVmPfvn1o3769xV+uwVjoPU8sZDKZWYyQKsCciizdhVsP8enmCziT8AAAUNfTHrNeCUbT6tVM2zEiE2G+9HwYCz1zyJeMVpT68ccfMWzYMFy4cAHBwcHFPmDPnj2NtWuyMK1rueDf8e0xd8dl/Hw4DuuOJ2Dv1Tv4X58QhNZxM3X3yISiUzIw/Z+L2H/tLgDA21GBz7rXRef6HhZ/VsTcSSSSMv+Rk0gkyMvLg7W1tcUnFoyFXlWKBXMqslTpOWos2HkVvxyOhVYAbOVSTAyrjddbVYdUYtmX3BABzJeeFWOhZw6xMFpR6tChQzhw4AC2b99e7D1OykmGZiOXYnqvYHR7NGoqLjULI1YeR7+mPvjs5XpwUFr2LxtLk6HKw3f/XcOKAzHI0wqwkojxZocAjO1YCwor8xn9QERUFsypyNIIgoB/ziVh1pYopKSrAADdG3jis+714G5vbeLeERGRIRntFMO4ceMwdOhQJCUlQavVFnkweSJjaRHgjB3vt8fINjUgEgEbT95E2P/txa6o26buGlUAQRDw15lb6LRgD5buu4E8rYBOQW7YOaE9Pgivw4IUEVVKzKnIkly/k4HXVhzFuLWnkZKuQg0XG/w6qjm+H9yEBSkioirIaEWp1NRUTJgwAe7u7sbaRRGxsbEYNWoUatSoAYVCgZo1a2LatGnIzc0tsp5IJCr2WLJkSYX0kSqGwkqCz3vUw+9vtkKAiw1S0lUY/csJjF93Gvczc5/eAFVKl5PT8OqyI3h/3RncTlOhurMSK4Y1w4rhL8DfxcbU3SMiemYVnVMRmUJ2rgbz/72CLgv34WB0KuRSMT4Iq40d49vxJjZERFWY0S7f69OnDyIjI1GzZk1j7aKIy5cvQ6vVYunSpahVqxYuXLiAMWPGIDMzE/Pnzy+y7sqVK9GlSxfdawcHhwrpI1WsZv5O2PZ+O3wdcRU/7r+BzWcScSA6FbNeCUaXYPO4oxI9v4fZavxfxFX8eiQOGq0Aa5kY74bWwuh2AbCWcWQUEVV+FZ1TEVW03Zdv4/O/LuLm/fwbkoTWccX0nsHwc1aauGdERGRsRitK1a5dG1OmTMGBAwcQEhJSbNKscePGGXR/Xbp0KVJoCggIwJUrV7B48eJiRany3rZQpVJBpVLpXqelpQHIn6m+rHc7KKuC9gzdbmVkiFhIAHwYVgthQS74+M+LuH4nE2+tPomXgz3wWfcgOD+6hbC543GRr3ActFoBm84kYt7Oq7iXmb+8cz03fNK1DrwcFQC0UKu1JuytcfGY0GMs9BgLPWPGoqLjW9E5FVFFufUgG9P/voidj6ZZ8HSwxrQe9dG5vjtvSEJEZCGMevc9W1tb7N27F3v37i3ynkgkqpAE6uHDh3Byciq2/N1338Xo0aNRo0YNjBo1Cm+88QbE4idfyThnzhxMnz692PKdO3dCqTTOGZyIiAijtFsZGSoWbwcAO6zE2H1LhK0XkrH3chL6BWjR2FkwSPsVgcdFvp/+jMDGGAliM/ITVneFgD7+WgQ5JOLMoUScMW33KhSPCT3GQo+x0DNGLLKysgzeZmnMIaciMqTcPC1WHIjBt/9dQ7ZaA6lYhFHtamDci4GwkRvt3xMiIjJDRvutHxMTY6ymy+T69ev47rvvsGDBgiLLZ86ciU6dOkGhUOC///7DBx98gLt37+LTTz99YltTpkzBxIkTda/T0tLg6+uL8PBw2NvbG7TfarUaERERCAsLs/jbUxojFr0AnL/1EB9vuoirKRlYdVWCpHpu+KJHXbjYyg2yD2PgcZEv8X4Gpvx2AIdviyEAsLGS4N3Qmni9pR+spJZ1a2geE3qMhR5joWfMWBSMmK4ops6piAzpyI1UfLb5Aq6lZAAAmvs7YeYrwajjYWfinhERkSmY/amIL774osRRSoUdP34czZo1071OTExEly5d0L9/f4wePbrIuoWLT40aNQIAzJgxo9SilFwuh1xevGAhk8mMlvQbs+3KxtCxaOLvgn/GtcUPu6OxaM91/BuVgmOx9/FFz/ro2dDLrIeLW+JxodUKOHwjFb8djcPOi7eRp80vPr3SyAtTutW1+DvxWOIx8SSMhR5joWeMWDC2ROV3J12FOdsuYdPpWwAAZxsrfNKtLvo08Tbr3IuIiIzL4EWpGTNmlGm9zz//vEzrvfvuuxg4cGCp6/j7++ueJyYmIjQ0FK1atcKyZcue2n7Lli2RlpaG27dv8642FkQulWBieB10DvbApN/P4VJSGt5fdwZbziVh9ivBcLPwQoc5SM1QYePJm1h7LB6xqfpLZfxtBcx+9QW0CeTPKxFVbYbOqYhMQaMVsOZYPObtuIy0nDyIRMDg5n6Y3DkIDkoWeImILJ3Bi1J//vnnE98TiUS4cuUKcnJyypxAubi4wJTOfXwAAI8ZSURBVMXFpUzr3rp1C6GhoWjatClWrlxZ6jxRBU6fPg1ra2s4OjqWaR9UtdT3csDf77bBosjr+D7yGiKibuNYzD183r0ez9yZgCAIOBpzD2uOxmPHhWTkavInKreVS9G7sTcGNPXCjVP70dy/+FxxRERVjaFzKqKKdu7mA3y6+QLO3XwIAAj2tsesV0LQyNfRtB0jIiKzYfCi1OnTp0tcfubMGXz88ce4cOECxowZY+jdIjExER07doSfnx/mz5+PO3fu6N4ruNPeP//8g+TkZLRq1QoKhQKRkZGYOnUq3njjjRIvzyPLIJOI8f5Lgegc7I5Jv5/FhVtp+OD3s9hyLhFz+jSAhwNHTRnbg6xc/HHqFtYcjcP1O5m65Q18HDC4uR96NPSCjVwKtVqNGybsJxFRRTJVTkX0vB5mqzH/3ytYfTQOggDYyaX4sEsdDGlRHRIxT/gREZGe0eeUiomJwWeffYb169ejT58+uHjxIgIDAw2+n507dyI6OhrR0dHw8fEp8p4g5N9dTSaTYdGiRZg4cSK0Wi0CAgIwY8YMvPPOOwbvD1U+QR72+HNsGyzbdwPf7LqGyCt3EPZ/e/HZy/XQv5kPR00ZmCAIOBV/H78djcfWc0lQ5eWPilJaSdCrkRcGN6+OEB8HE/eSiMh8VFRORfSsBEHA5jO3MHvrJdzNyAUA9G7sjSndguBmx5N8RERUnNGKUnfv3sX06dOxbNkytG3bFocOHcILL7xgrN1h+PDhGD58eKnrdOnSBV26dDFaH6jyk0nEeCe0FsLquePDjedwNuEBJv9xDlvOJ2FOnxB4OypM3cVKLy1Hjc2nb2HN0XhcTk7XLa/raY/BLfzwSiMv2FlzjgkiogIVnVMRPYtrt9Px6eYLOBpzDwBQ09UGM18JRuuaZZuGg4iILJPBi1KZmZmYP38+vv76a9SqVQv//PMPwsPDDb0bIqOq7W6HP95qhRUHYrAg4ir2Xb2Dzv+3D1O6BWFwcz+OmionQRBw7uZDrDkaj7/PJiJbrQEAWMvE6N7AC4Nb+KGxryPjSkRUCHMqqgyycvPw7X/R+HH/DeRpBVjLxBjXKRCj2wbASvr0+V2JiMiyGbwoVbNmTaSnp+O9997DoEGDIBKJcO7cuWLrNWjQwNC7JjIoqUSMNzvURKe67pi88SxOxT/A1D8vYNv5JHzZpwF8nZSm7qLZy1Dl4e8zifjtaBwuJqbplge62WJwCz/0aezDO+8QET0BcyoyZ4IgICLqNqb/E4VbD7IBAC/Vdce0HvWYIxERUZkZvCiVkpICAJg7dy7mzZunm88JyL9TjCAIEIlE0Gg0ht41kVHUcrPF72+1xsqDMZi/8woORqei88J9+LhrEF5rUR1iTthZzMXE/FFRm0/fQmZu/s+6lVSMbsEeGNKyOppVr8ZRUURET8GcisxVwr0sfPH3Rfx3Of8Y9XZU4Iue9RFWz93EPSMiosrG4EWpmJgYQzdJZHISsQij2wWgU113fLTxHI7F3sPnf13E1nNJmNuvAao725i6iyaXnavBP+cS8dvReJxNeKBbHuBig8Et/NC3iQ+q2ViZroNERJUMcyoyN6o8DX7cH4Pvdl9DjloLmUSEMe0C8N6LgVBYSUzdPSIiqoQMWpQ6d+4cgoODIRaX7frxixcvok6dOpBKjX4TQCKDqOFig3VvtMSvR+Lw5fbLOBpzD10W7seHnetgeGt/ixw1dfV2OtYcjccfp24iPScPACCTiBBe3wNDWvihVYAzR0UREZUTcyoyNwej7+Kzvy7gxp1MAECrAGfMfKU+arnZmbhnRERUmRk0c2ncuDGSk5Ph6upapvVbtWqFM2fOICAgwJDdIDIqsViEYa39EVrHDR/9cQ6Hb6RixpYobDufP2oqwNXW1F00uhy1BtsvJGHN0Xgcj72vW+7rpMDg5tXRv5kPXGzlJuwhEVHlxpyKzEVKWg5mbb2Ev88mAgBcbOX4rHtd9GzoxZNORET03AxalBIEAZ999hmUyrJNbpibm2vI3RNVKD9nJX4b3QJrjsVjzrZLOBF3H12/2Y9J4XUwsm0NSKrgqKnrdzKw9mg8Np66iQdZagD5lzaG1XXH4BZ+aFvLxSJHixERGRpzKjK1PI0Wq4/EYcHOq0hX5UEsAl5v5Y8JYbXhoOBNSoiIyDAMWpRq3749rly5Uub1W7VqBYVCYcguEFUosViE11pWR8c6rvj4j/M4EH0Xs7ddwrYLSZjXr0GVGNKem6fFvxeT8dvROBy5cU+33MvBGoOa+2HAC75wt7c2YQ+JiKoe5lRkSqfj7+PTzRd0d85t6OOAWa+EIMTHwcQ9IyKiqsagRak9e/YYsjmiSsOnmhK/jmqO9ccTMHvrJZyOf4Bu3x7A+JcC8Ua7AEglZZsTxJzEpWZi7bEE/H4iAamZ+WfgxSLgxSA3DG7hhw613arkaDAiInPAnIpM4UFWLr7acQXrjsdDEAB7ayk+6hqEgS/48W8+EREZBWfDJDIQkUiEgc390L62Kz758zz2XLmDuTuuYMeFZMzr1xB1PMx/1JRao8V/l27jt6Px2H/trm65u70cr77gh4Ev+MLLkWfiiYiIqhKtVsAfp25izvbLuPfoRFTfJj6Y0i2Ic0QSEZFRsShFZGBejgqsHP4CNp68iRlbonDu5kN0/24/xr0YiLc61oTMDEdN3byfhXXHErD+RALupKsAACIR0D7QFYNb+KFTkFulHO1FREREpbucnIbPNl/Q3biktrstZvYKRosAZxP3jIiILAGLUkRGIBKJ0L+Zb/6oqU3n8d/lFCyIuIodF/NHTdXzsjd1F5Gn0SLyyh2sORqHPVfvQBDyl7vYyjGgmQ8GNfeDr1PZJtglIiKiyiVTlYdv/ruGFQdioNEKUFpJMP6lQIxoU8MsT6AREVHVxKIUkRG521vjx2HNsPnMLXzxdxQuJqah5/cH8E5oLbwTWgtW0opP+pIf5mDd8XisP56ApIc5uuVtajljcPPqCKvnbpJ+ERERkfEJgoAdF5Ix/Z8oJKfl5wFd6nvg8x71eIk+ERFVOBaliIxMJBKhd2MftKnlgs82X8C/F2/jm/+u4d+LyZjfvyGCvY1/JxuNVsC+a3ew5mg8dl9OgUabPyyqmlKG/s18Mai5H2q42Bi9H0RERGQ6sXczMe3vi9h79Q4AwM9Jiek96yM0yM3EPSMiIkvFohRRBXGzs8aS15piy7kkTPv7Ii4np6PXDwfxdoeaeK9TLcilEoPvMyU9B7+fuIm1x+Jx8362bnnzGk4Y0sIPXYI9jLJfIiIiMh85ag2W7L2ORXuuIzdPCyuJGG91rImxHWvCWsY8gIiITIdFKaIKJBKJ0KOhF1rVdMa0vy5i6/kkfB8ZjZ1R+XNNNfR1fO59aLUCDl1PxZpjcdh58TbyHo2KsreWom9THwxp4YdabuZ/J0AiIiJ6fvuu3sHnf11AbGoWAKBtLRfM6FUfAa62Ju4ZERERi1JEJuFiK8cPQ5qg+/kkfPbXBVy9nYHeiw5iTPsATHip9jOdtUzNUGHjyfxRUQWJJwA08XPEkBbV8XIDT54NJSIishDJD3Mwc0sUtp5PAgC42cnxeY96eDnEEyKRyMS9IyIiyseiFJEJdQ3xRIsAZ0z/5yL+OpOIpXtvICLqNub1a4im1as9dXtBEHA05h7WHI3HjgvJyNVoAQB2cil6N/HG4BZ+CPIw/Z3+iIiocvH390dcXFyRZR999BG+/PJLE/WIyipPo8WqQ7H4v4iryMzVQCwChreugQlhgbCzlpm6e0REREWwKEVkYk42VvhmYGO8HOKJqZsv4MadTPRbcgij2tTAB+F1oLAqPrrpQVYu/jh1C2uOxuH6nUzd8gY+DhjSwg89GnpBacUfbyIienYzZszAmDFjdK9tbXm5l7k7EXsPn26+gMvJ6QDyR0vPfCUY9b2Mf1MVIiKiZ8H/WonMRHh9DzSv4YQZW6Kw6dQt/HggBrsu3cbcfg3R2McOggCcin+A9SduYev5JKjy8kdFKa0k6NXIG0Na+FXInfyIiMgy2NnZwcPDw9TdoDLIUANT/ryIjaduAQAclTJM6RqE/k19IRbzUj0iIjJfLEoRmRFHpRW+HtAI3Rt4Ysqm84hNzcKryw6jZwNPHLsqQdKRY7p163raY0gLP/Rq5MXh+EREZHBfffUVZs6cCV9fX/Tv3x8ffvghrKysnri+SqWCSqXSvU5LSwMAqNVqqNVqg/VLlafFjvOJOH9XBPXpm5BI9COKhVK2E0p584lvlbLRs++r5DefqX8A7qZlY/EZCbLy8gtS/Zt6Y1JYIJxsrKDR5EGjKWXjKqbgODPk8VYZMQ56jIUeY6HHWOgZMxZlbZNFKSIz9GKQO3ZOcMLsrVHYcOIm/jqbBEAEa5kYPRp4YXALPzTydeREpUREZBTvv/8+mjRpgmrVquHYsWOYMmUKYmJi8OOPPz5xmzlz5mD69OnFlu/cuRNKpdJgfctUA5+ckAKQANeiDNZu5SaCl1LAgAANaljF4cjeuKdvUoVFRESYugtmgXHQYyz0GAs9xkLPGLHIysp6+kpgUYrIbDkoZJjbryFebuCF1YdjYZ+dhE8Gh8LZ3nCJPRERWY4vvviixKJRYcePH0ezZs0wYcIE3bIGDRqgWrVq6NevH7766is4OzuXuO2UKVMwceJE3eu0tDT4+voiPDwc9vaGu+lGek4e/rp7Cvfu3YOTkxPEYnGR90s9XVPKm6JS3nzSOaDS9lXaeaPS9vWkt564hSDAWZ2Caa+9CIVcXkqPqj61Wo2IiAiEhYVBJrPcUeSMgx5jocdY6DEWesaMRcGI6adhUYrIzHWo7YrWNRyxbVsi7BWW/UuTiIie3bvvvouBAweWuo6/v3+Jy1u2bAkAiI6OfmJRSi6XQ15CUUQmkxk00XWSybB6VHNs27YN3bo15z8UajW2bdsGhVxu8bEoYOhjrrJiHPQYCz3GQo+x0DNGLMraHotSz0B4dNF/WSt/5aFWq5GVlYW0tDSL/wFhLPQYi3yMgx5jocdY6DEWesaMRcHff6G0SYDMkIuLC1xcXJ5p29OnTwMAPD09y7wN86WKwVjoMRb5GAc9xkKPsdBjLPTMIV9iUeoZpKfn32bX19fXxD0hIiIiU0lPT4eDQ9W76+nhw4dx5MgRhIaGwsHBAcePH8eECRPQs2dP+Pn5lbkd5ktERET0tHxJJFS203xmQKvVIjExEXZ2dgafaLpg/oWEhASDzr9QGTEWeoxFPsZBj7HQYyz0GAs9Y8ZCEASkp6fDy8ur2HxGVcGpU6cwduxYXL58GSqVCtWrV8fAgQMxefLkck1YznypYjAWeoxFPsZBj7HQYyz0GAs9c8iXOFLqGYjFYvj4+Bh1H/b29hb/A1KAsdBjLPIxDnqMhR5jocdY6BkrFlVxhFSBJk2a4MiRI8/dDvOlisVY6DEW+RgHPcZCj7HQYyz0TJkvVb3Te0REREREREREZPZYlCIiIiIiIiIiogrHopSZkcvlmDZtWom3VLY0jIUeY5GPcdBjLPQYCz3GQo+xqNr4/dVjLPQYi3yMgx5jocdY6DEWeuYQC050TkREREREREREFY4jpYiIiIiIiIiIqMKxKEVERERERERERBWORSkiIiIiIiIiIqpwLEoREREREREREVGFY1GKiIiIiIiIiIgqHItSRERERERERERU4ViUIiIiIiIiIiKiCseiFBERERERERERVTgWpYiIiIiIiIiIqMKxKEVERERERERERBWORSkiIiIiIiIiIqpwLEoREREREREREVGFY1GKiIiIiIiIiIgqHItSRERERERERERU4ViUIiKztWrVKohEIsTGxpZr/RMnTjx13Y4dO6Jjx47P10EiIiKiSsiYORYRUXlITd0BIiJTWLRokam7QEREREREZNFYlCIii1SvXj1Td4GIiIiIiMii8fI9Iqpy0tPT8fbbb8PFxQXOzs7o06cPEhMTi6zz+OV7sbGxEIlEmDt3LmbPng0/Pz9YW1ujWbNm+O+//8q8b0EQEBgYiM6dOxd7LyMjAw4ODnjnnXcAADk5Ofjggw/QqFEjODg4wMnJCa1atcJff/1VZLv+/fujfv36RZb16NEDIpEIv//+u27ZqVOnIBKJ8M8//5S5v0RERETPIikpCU2bNkVgYCCuXbsGABg+fDhsbW0RHR2Nbt26wdbWFr6+vvjggw+gUqmKbJ+bm4tZs2YhKCgIcrkcrq6uGDFiBO7cuVNsX+vXr0erVq1gY2MDW1tbdO7cGadPn66Qz0lExsWiFBFVOaNHj4ZMJsOaNWswd+5c7NmzB6+99lqZtv3++++xY8cOLFy4EKtXr4ZYLEbXrl1x+PDhMm0vEonw3nvvISIiQpegFfjll1+QlpamK0qpVCrcu3cPkyZNwubNm7F27Vq0bdsWffr0wS+//KLb7qWXXkJUVBSSkpIAAHl5edi7dy8UCgUiIiJ06+3atQtSqZRzZREREZFRXbhwAS1atIBcLsfhw4cRGBioe0+tVqNnz57o1KkT/vrrL4wcORL/93//h6+++kq3jlarRa9evfDll19i8ODB2Lp1K7788ktERESgY8eOyM7O1q37v//9D4MGDUK9evWwYcMG/Prrr0hPT0e7du0QFRVVoZ+biIxAICIyUytXrhQACDExMeVaf+zYsUWWz507VwAgJCUl6ZZ16NBB6NChg+51TEyMAEDw8vISsrOzdcvT0tIEJycn4aWXXipzv9PS0gQ7Ozvh/fffL7K8Xr16Qmho6BO3y8vLE9RqtTBq1CihcePGuuXR0dECAOGXX34RBEEQDhw4IAAQJk+eLNSoUUO3XlhYmNC6desy95OIiIgs07PmWMePHxciIiIEe3t7oV+/fkVyJkEQhGHDhgkAhA0bNhRZ3q1bN6FOnTq612vXrhUACH/88UeR9Y4fPy4AEBYtWiQIgiDEx8cLUqlUeO+994qsl56eLnh4eAgDBgwo60cmIjPFkVJEVOX07NmzyOsGDRoAAOLi4p66bZ8+fWBtba17bWdnhx49emDfvn3QaDRl2r+dnR1GjBiBVatWITMzEwCwe/duREVF4d133y2y7u+//442bdrA1tYWUqkUMpkMK1aswKVLl3Tr1KxZE/7+/ti1axcAICIiAiEhIXjttdcQExOD69evQ6VS4cCBA3jppZfK1EciIiKi8vr555/RrVs3jB49Ghs2bCiSMxUQiUTo0aNHkWUNGjQokodt2bIFjo6O6NGjB/Ly8nSPRo0awcPDA3v27AEA/Pvvv8jLy8Prr79eZD1ra2t06NBBtx4RVV4sShFRlePs7FzktVwuB4AiQ8GfxMPDo8Rlubm5yMjIKHMf3nvvPaSnp+O3334DkH9ZoI+PD3r16qVbZ9OmTRgwYAC8vb2xevVqHD58GMePH8fIkSORk5NTpL1OnTrp5rbatWsXwsLCEBISAnd3d+zatQsHDx5EdnY2i1JERERkNOvWrYNCocDo0aMhEolKXEepVBYrVsnl8iK5ze3bt/HgwQNYWVlBJpMVeSQnJ+Pu3bu69QDghRdeKLbe+vXrdesRUeXFu+8RERWSnJxc4jIrKyvY2tqWuZ1atWqha9eu+OGHH9C1a1f8/fffmD59OiQSiW6d1atXo0aNGli/fn2RxO7xiUCB/KLUihUrcOzYMRw9ehSffvopAODFF19EREQE4uLiYGtri5YtW5bn4xIRERGV2W+//YbPPvsMHTp0wM6dO9GoUaNnaqfgZjQ7duwo8X07OzvdegCwceNGVK9e/Zn2RUTmjUUpIqJCNm3ahHnz5unO8KWnp+Off/5Bu3btihSUyuL9999HeHg4hg0bBolEgjFjxhR5XyQSwcrKqkhBKjk5udjd94D8opRIJMJnn30GsViM9u3bA8ifBP3DDz9EXFwc2rdvD5lMVt6PTERERFQmTk5O2LVrF7p3747Q0FBs3779mU6Ide/eHevWrYNGo0GLFi2euF7nzp0hlUpx/fp19O3b93m6TkRmikUpIqJCJBIJwsLCMHHiRGi1Wnz11VdIS0vD9OnTy91WWFgY6tWrh8jISLz22mtwc3Mr8n737t2xadMmjB07Fv369UNCQgJmzpwJT0/PYnfuc3NzQ3BwMHbu3InQ0FAolUoA+UWpe/fu4d69e/j666+f/YMTERERlYGdnR127NiBPn36ICwsDH///TdCQ0PL1cbAgQPx22+/oVu3bnj//ffRvHlzyGQy3Lx5E5GRkejVqxd69+4Nf39/zJgxA1OnTsWNGzfQpUsXVKtWDbdv38axY8dgY2PzTDkaEZkPzilFRFTIu+++i7CwMIwbNw6DBw9GXl4etm7dijZt2jxTewMGDNC1+7gRI0bgyy+/xPbt29GtWzd89dVX+PjjjzF48OAS2yqYL6rwvFF+fn662zBzPikiIiKqCAqFAn/99Rc6d+6Mbt26Ydu2beXaXiKR4O+//8Ynn3yCTZs2oXfv3njllVfw5ZdfwtraGiEhIbp1p0yZgo0bN+Lq1asYNmwYOnfujMmTJ+tGiRNR5SYSBEEwdSeIiEwtNjYWNWrUwLx58zBp0iSDtdusWTOIRCIcP37cYG0SERERERFVBbx8j4jIwNLS0nDhwgVs2bIFJ0+exJ9//mnqLhEREREREZkdFqWIyOwJggCNRlPqOhKJ5Im3JjakvLy8Ut8Xi8U4deoUQkND4ezsjGnTpuGVV14xer+IiIiIysucciwiskycU4qIzN7PP/8MmUxW6mPv3r3PtQ9/f38IglDqpXuxsbFP7ceMGTPQsWNHCIKAu3fv4osvvniufhEREREZS0XkWEREpeGcUkRk9lJTUxETE1PqOnXq1IGdnZ1R+5Gbm4tz586Vuo6Xlxe8vLyM2g8iIiIiQzCXHIuILBeLUkREREREREREVOE4p9Qz0Gq1SExMhJ2dHa+vJiIisjCCICA9PR1eXl4QizkTwpMwXyIiIrJcZc2XWJR6BomJifD19TV1N4iIiMiEEhIS4OPjY+pumC3mS0RERPS0fIlFqWdQcE11QkIC7O3tDdq2Wq3Gzp07ER4eDplMZtC2KxvGQo+xyMc46DEWeoyFHmOhZ8xYpKWlwdfXl3OsPAXzpYrBWOgxFvkYBz3GQo+x0GMs9MwhX2JR6hkUDEG3t7c3SpKlVCphb29fpX5A8jRa5Gq0UKkLf9UgR/34co3udU6uGjE5NkjOFiHAzgYKK4mpP4bJVNXjorwYBz3GQo+x0GMs9CoiFrwkrXTMlyoGY5EvLUeNUwkZUEsZCx4TeoyFHmOhx1jomUO+xKJUFZen0UKVp0VuXuGvGqgee130fS1yH62je/1YwUj1hEKSKk9TQvFJC432WefTl+DHK4cBAK52clR3UsLPSQk/5/yv1Z2V8HVSwtVWzn8OiIiIiCxMaoYKKw/G4ufDsUjPyYNMLEGC4irGhgaimo2VqbtHRERPwaKUGXmYpcbvJ+Jw7pYINyKvQyOISiwYqUosJBUuDOmXPXMtyIjEIkAulUAuE8NKIoZcJoZcKtE9z/8qgRgCom/dwUONDOk5ebiTrsKddBVOxN0v1qbSSgI/p/wCVfVCRSs/JyV8qilhJeVEtERERERVRdLDbCzbdwNrj8UjR60FADgqZHiQrcbyA7FYd/wmRrcLwMi2/rCztuyREERE5oxFKTPyIDsXs7ZdASAB4q8bvH2pWAQrqRhyqfjRV8ljr8WwkkqKvJY/vt5jhaPSXlvLxLCSFC0+WUnEkErKViBSq9XYtm0bunXrjEy1gPh7WYhLzUL8vSzEp2Yh7l4mEu5lI/FhNrJyNbicnI7LyenF2hGLAE8Hha5I5eecP8LKz0mJ6k42cFAyUSEiIiKqDGLvZmLJ3uv449RNqDX5Z18b+DjgndBa6FjLCQvW7sD+B464lJyO/9t1FasOxWBsx1oY2qo6rGWWOxUEEZG5YlHKjNhZy/BysAdSbicioLofFFbSxwpGJRWSiheWCgpJj68jEVfey9sclVZwVFqhgY9jsfdUeRrcup+NuHtZSHiscBV/LwvZag1uPcjGrQfZOHwjtdj29tZSVHe2KXpZ4KNRV16OikodN6LKSqPRQK1Wl2ldtVoNqVSKnJwcaDQaI/fMvDEWes8TC5lMBomE/7wSmZPLyWlYFHkdW84l6q4EaBnghHdCa6FtLReIRCKo1WrUrybgg0EtEXHlLr6OuIobdzIxe9sl/HjgBt59MRCvNvPlCHqqMpgvPRvGQs8c8iUWpcyIk40VFr7aANu23US3bvUsftK1spJLJQhwtUWAq22x9wRBwJ0MVbFiVdy9/Od30lVIy8nD+VsPcf7Ww2LbyyQi+FQrdFngY5cG2sj5I0RkSIIgIDk5GQ8ePCjXNh4eHkhISLD4ueUYC73njYWjoyM8PDwsPo5EpnY6/j5+iLyOXZdu65a9GOSGd0Jroml1pxK3EYtF6N7AC13qe2DT6Vv4Ztc13HqQjc82X8Cyfdcx4aXa6NXImyceqdJivvR8GAs9c8iX+B81VWkikQhudtZws7MuMXHJys1Dwr1sxKVm5hes7ukLVwn3s6DWCIi5m4mYu5kltu9ia1XoskAb3XxW1Z2UcLXj5OtE5VWQYLm5uUGpVJbpZ0ir1SIjIwO2trYQiy377DdjofessRAEAVlZWUhJSQEAeHp6GquLRPQEgiDg8PVU/LAnGgej80e5i0RAtxBPjO1YE/W9HMrUjlQi/v/27ju+qXL/A/gno0n3nnRPCpRRdlkFgbJUFC5bBK/yuwwHIg5E5gVRQK6KMkQu6HWAIuJgFih7KVBWodBFS2npgO6VJuf3R2hDaYGOpEnaz/v16ovm5Jwnz/mSpt9+z3OeB6M7e2J4hxbYciYFqw/GIeVuMWb9dAFrD8XjrYggDGrD4jMZH+ZLDcNYaBhCvsSiFDVr5jIpWrpaoaWrVbXnlCoB6Xkl928DLNSMtLr/lVOkQFZBGbIKynAuOafa8aYmYk3Byt4CXvZm8HawgKe9OTztzSCX8tYQogcplcrKBMvBwaHWx6lUKpSVlcHU1JSJBWNRqSGxMDMzAwBkZGTA2dmZt/IRNRJBEHDgaga+iIpDdEoOAPWcqM+HumNaX/8aR8XXhlwqwaQePhjV2QPfnLiJdYfjcSOjAFO/O4e27jaYPagl+gQ6sjhFRoH5UsMxFhqGkC+xKEX0CBKxCO62ZnC3NUOYf/UP/NxiRdXbAu8WVk7GfjunGCUKFa7fKcD1OwXVjhWJADdrU/VtgQ6akVYV81nZmpswMaJmp2JOBHNzcz33hEjzPlQoFCxKEemYUiXgz4u3sfZQfOWiNXKpGOO6emFKHz+425pp5XXMZVJM6+uPCd298PWRBGw8lohLqbmY9N8z6Opjj9mDWqKrb823BBIZCuZLZEi0kS+xKEVUTzZmJrBxt0GIe/Uh5AqlCqn3itVFqsoJ2NWjrVLuFqGwTInbuSW4nVuC04l3qx1vJZdq5q5yMIe3nSlE5Y1xVkT6x4IsGQK+D4l0r6xche3nbmHd4XgkZRcBACzlUkwM88Y/e/rCyUquk9e1NjXBrIiWmNTDB2sPxePbUzdxJukuRq8/ifAgJ8yOaIm2HrW7RZBIX/h7igyBNt6HLEoR6YCJRAwfRwv4OFpUe04QBGQXllVZIbCiWHXzbiHu5JUiv7QcV27n4crtvMrjLKQSKFvcwrhuPpyYk4iIiIxWcZkSP55JxoajCUjLLQEA2Jmb4J89ffFimA9szBtnsR8HSzk+eLo1Xunth9UHb2DrXyk4fD0Th69nYkiIK2YNDEKgS/UpHoiISHtYlCJqZCKRCI6WcjhaytHRy67a8yUKJVLuaopVyXeLcOR6JhKyCvHBbzHY8vctLHymDTr7cHg5ERERGY/cYgW+O3UTG48l4m5hGQDAxVqOKb39MK6rl95WNXa1McXS59vi//r44bP9N/BrdCp2X07H3ivpeC7UHW8OCIKnPW+VIiLSheY9qxeRATI1kSDQxQr9W7ngn718sfDZNvjz1TA876OElakUl1Pz8I91JzFzy3mk37+6SESkKwsXLoSLiwtEIhF27Nih7+4QkRHKLijFir3X0Oujg1ixNxZ3C8vgZW+OD59viyPv9MMrvf30VpB6kLeDBVaN6YC9M/tgUBsXqARg+7lUPPXJIXyw4xLu5DHvIqKaMV+qPxaliIyAiUSMvm4CIt/oibFdPCESATuib+OpTw7hy6g4lJYr9d1FomZLJBI99mvy5MkAgKioKPTr1w/29vYwNzdHYGAgJk2ahPJy9YRxhw4dgkgkQk5OTpXHIpEIYrEYNjY2CA0NxTvvvIO0tLTH9ikpKalKH2xsbNC9e3f88ccfdTq3q1evYtGiRVi/fj3S0tIwZMiQOseHiJqv2znFWPTHFfT8+CC+jIpHfmk5glws8dnYDjj4VjjGd/MyyNWIg1yssH5iZ/w2oyd6BzpCoRTw3alk9FkehQ93Xa0c5UVEtcd8iR6FRSkiI+JgKcdHI9vh9xm90NHLFkVlSqzYG4uI/xzB/pg7EARB310kanbS0tIqvz799FNYW1tX2fbZZ5/hypUrGDJkCLp06YIjR47g0qVLWL16NUxMTKBSqR7bfmxsLG7fvo2//voL7777Lvbv34+QkBBcunTpiX3bv38/0tLScPr0aXTt2hUjR47E5cuXa31u8fHxAIDhw4fD1dUVcnn9Jh2uWCmIiJqHpKxCvLvtIsJXRGHT8SSUKFRo72GDryZ2wp43+mB4B3dIJYb/Z0h7T1v87+Vu2PJ/3dHZ2w6l5Sp8dSQBfZZH4T+R15Ffws82otpivvRkzTVfMvzfBkRUTVsPG/wyrQc+HdMBzlZy3Mwuwivf/o1Jm/5CXEaBvrtHpDWCIKCorPyJX8VlylrtV5ev2hZ5XV1dK79sbGwgEomqbYuMjISbmxuWL1+OkJAQ+Pv7Y/Dgwfj6668hk8ke276zszNcXV0RFBSEsWPH4vjx43BycsK0adOe2DcHBwe4uroiODgYS5cuhUKhQFRUVOXzqampGDNmDOzs7ODg4IDhw4cjKSkJgHoY+jPPPAMAEIvFVVZX2bRpE1q1agVTU1MEBwdjzZo1lc9VXHX86aef0LdvX5iamuK7776r9XHbt29Hv379YG5ujvbt2+PkyZNVzun48eMIDw+Hubk57OzsMGjQINy7dw+A+v2yfPly+Pn5wcLCAr169cK2bdsqj7137x4mTJgAJycnmJmZITAwEJs2bXpiHImodq6l5+G1H8/jqU8OYevfKVAoBYT5OeC7l7thx4yeiGjjCrERLtbS3c8BP08Nw6aXuqBNC2sUlJbjswM30Ht5FNYfjkdxGUesk34xX2K+ZMz5kv5v3iaiehGJRHgu1B0DWrvgy6g4bDyaiCPXMzH40yN4qacPXusfCGvTxlm9hkhXihVKtJ6/Vy+vHbN4EMxl2vk16erqirS0NBw5cgR9+vRpUFtmZmaYOnUq3nzzTWRkZMDZ2fmJxygUCmzYsAEAYGKi/lwoKipCv3790Lt3bxw5cgRSqRRLlizB4MGDcfHiRcyePRs+Pj546aWXqgx/37BhAxYsWIAvvvgCoaGhOH/+PKZMmQILCwtMmjSpcr93330Xn3zyCTZt2gS5XF7r4+bOnYuVK1ciMDAQc+fOxbhx4xAXFwepVIro6Gj0798f//znP/H5559DKpUiKioKSqX6D8IPPvgA27dvx9q1a+Hv7499+/bhxRdfhIuLC8LDwzFv3jzExMRg9+7dcHR0RFxcHIqLixv0/0FEwLnke1gTFYf9VzMqt/UPdsb0fgHo5F19URdjJBKJ0K+lM8IDnbDnSjo+2ReL+MxCLNt9DRuPJeK1pwIwposXZFJe86fGx3ypOuZLxpMvsShFZOQs5VK8OzgYYzp7YsnOGOy/moENRxPx6/lUvDM4GP/o6GGUVyWJmpJRo0Zh7969CA8Ph6urK7p3747+/fvjxRdfhLW1dZ3bCw4OBqC+Wva4JKtHjx4Qi8UoLi6GSqWCj48PRo8eDQDYsmULxGIxvv7668qreps2bYKtrS0OHTqEiIgI2NraAlAniRX+/e9/45NPPsGIESMAAL6+voiJicH69eurJEszZ86s3Kcux82ePRvDhg0DACxatAht2rRBXFwcgoODsXz5cnTu3LnKFcM2bdoAAAoLC7Fq1SocPHgQYWFhUKlUGD9+PM6ePYv169cjPDwcycnJCA0NRefOnQEAPj4+dYg6ET1IEASciM/Gl1FxOBGfDQAQiYBhbd0wvW8AWreo+2ebMRCLRRja1g0RrV2wI/o2Pt1/HbfuFWPeb1ew/kgCZg4IwvOh7pAw9yKqM+ZLzTNfYlGKqInwcbTA15O64FBsBhb/GYOEzEK8s+0ivj91EwufbYNQr6ZxpZKaFzMTCWIWD3rsPiqVCvl5+bCytoJYrL0r1GYm2pt8VyKRYNOmTViyZAkOHjyIU6dOYenSpfj4449x5swZuLm51am9iqHyDw4Rr8nWrVsRHByM69evY+bMmVi3bh3s7e0BAGfPnkVcXBysrKyqHFNSUlI5N8LDMjMzkZKSgpdffhlTpkyp3F5eXg4bG5sq+1YkMnU9rl27dpXfV8QlIyMDwcHBiI6OxqhRo2rsW0xMDEpKSjBw4MAq28vKyhAaGgoAmDZtGkaOHIlz584hIiICzz33HHr06FFje0RUM5VKwIFrGfgyKg7RKTkAAKlYhBEd3TE13B9+Tpb67WAjkUrE+EcnDzzbvgW2/pWMzw/G4da9Ysz++QLWHorDWxEtMdhIb1ck48N8qWbMl6ozxHyJRSmiJqZvS2f08HfENyeS8NmBG7hwKxfPrzmBkR098O7glnC2NtV3F4lqTSQSPXFIuEqlQrlMAnOZVKtJli64u7tj4sSJmDhxIpYsWYKgoCCsW7cOixYtqlM7V69eBfDkK1eenp4IDAxEYGAgLC0tMXLkSMTExMDZ2RkqlQqdOnXC999/X+04JyenGturmGR0w4YN6NatW5XnJJKqSamFhUW9jqsYLg9oksiK483MzB55rhX77Ny5E+7u7lCpVCgoKIClpWXlcUOGDMHNmzexc+dO7N+/H/3798eMGTOwcuXKR7ZLRGrlShV2XkrDmqh4xN7JBwDIpWKM6+qFKX384G776J/PpkwmFWNimA/+0ckT355MwtrD8YjPLMT078+hTQtrzB7UEn2DnJ74RzFRQzBfqhnzpUf3zZDyJRaliJogmVSMKX38MDy0BZbvicW2s7fwy7lb2HslHa89FYCXevpyzgMiPbOzs4ObmxsKCwvrdFxxcTG++uor9OnT55HJUE3Cw8MREhKCpUuX4rPPPkPHjh2xdetWODs713pIvIuLC9zd3ZGQkIAJEybU+rXre9zD2rVrhwMHDtSYlLZu3RpyuRzJyckIDw+HSqVCXl4erK2tqyTfTk5OmDx5MiZPnozevXvj7bffZlGK6DFKy5X49Vwq1h6Ox83sIgCAlVyKiWHe+GcvXzha1m+VqabGTCbBv8L9Ma6bFzYeTcTGY4m4cjsPL236C5297fD2oJbo5ueg724SGR3mS3VnbPkSi1JETZizlSlWjmqPCd28sPCPGFxIycGy3dew9a8UzHumNfq1fPKEf0TUcOvXr0d0dDSef/55+Pv7o6SkBN9++y2uXLmC1atXP/bYjIwMlJSUID8/H2fPnsXy5cuRlZWF7du317kfb731FkaNGoV33nkHEyZMwIoVKzB8+HAsXrwYHh4eSE5Oxvbt2/H222/Dw8OjxjYWLlyI119/HdbW1hgyZAhKS0vx999/4969e5g1a9YjX7u+xz1ozpw5aNu2LaZPn46pU6dCJpMhKioKo0aNgqOjI2bPno0333wTKpUKPXr0QFpaGi5evAgrKytMmjQJ8+fPR6dOndCmTRuUlpbizz//RKtWreocR6LmoKisHFvOpOCrIwlIzysBANiZm+DlXr6YGOYDGzMuplITa1MTvDkwCJN6+GDd4Xh8cyIJf9+8hzFfnULvQEe8Pagl2nnY6rubRAaJ+VLzzJcMvij14KRftbVu3bpHTmS2cOHCahVDFxcXpKen16t/RMYg1MsOv07rgV/O3cLHe2KRkFWIlzb9haeCnTHv6dbwdbR4ciNEVG9du3bFsWPHMHXqVNy+fRuWlpZo06YNduzYgfDw8Mce27JlS4hEIlhaWsLPzw8RERGYNWtWlck0a+vpp5+Gj48Pli5dijVr1uDIkSN49913MWLECOTn58Pd3R39+/d/7JXAV155Bebm5lixYgXeeecdWFhYoG3btpg5c+ZjX7u+xz0oKCgI+/btw/vvv4+uXbvCzMwM3bp1w7hx4wCoJwd1dnbGsmXLkJCQABsbG3Ts2BFz584FAMhkMsyZMwdJSUkwMzND7969sWXLllq/vr5oOxciepzcYgX+dzIJ/z2ehLuFZQAAV2tTTOnjh3FdPbW2ylZTZ28hw/tDW+HlXr5YffAGtpxJwdEbWTh6IwuD2rjgrYiWCHKxenJDRM0I86XmmS+JhIrZvwyUWCzG6NGjH3tf5IN++OEHXL16FX5+fjU+v3DhQmzbtg379++v3CaRSOo0pC8vLw82NjbIzc2t1yoAj6NQKLBr1y4MHTq0yn2izRFjoaHNWOSXKLD6YBw2HU+EQinARCLCy7388OpTAbCUG3aiyfeERlOMRUlJCRITE+Hr6wtT09rPffaoYcfNEWOh0dBYPO79qMs8oCbazoUaC/OlxqGtWGQVlOK/xxLxv5M3kV9aDgDwsjfHtL7+GNHRHXKp9iYz1hVDfl8kZxfh0wPX8ev5VAiCeqXC5zq4Y+aAQHg7aPfioCHHobE1xVgwX2o4xkLDEPIlw/4L9L7PP/+81lf7tm3b9sR9pFJpnSqmpaWlKC0trXycl5cHQP0hp1Aoat1ObVS0p+12jRFjoaHNWJhKgLcHBmBkBzcs3X0NR25kY93heGw/dwtvRwTi2XZuBrtSDN8TGk0xFgqFAoIgQKVSVU7CWBsV11Yqjm3OGAuNhsZCpVJBEAQoFIpqk4vq4+dO27kQUYXbOcX46kgCtvyVjBKF+mclyMUSM/oFYFhbN0glzfsPNm3xcjDHqtEdMC3cH6sir2P35XT8ej4Vf1y4jdFdPPH6U4FwteFiNETU/Bh8USoqKqpyOcba2L17N9zd3R+7z40bN9CiRQvI5XJ069YNH3744WOvJi5btqzGScL27dsHc3PzWvetLiIjI3XSrjFiLDS0HYsRDkBLiQi/JomRkV+Kt3+5jC/3XsJIXyW8DHhFZ74nNJpSLCouGBQUFKCsrKzOx+fn5+ugV8aJsdCobyzKyspQXFyMI0eOoLy8vMpzRUVF2uharekiFyJKzCrEukPx2H7+FhRKdRG3vactXu0XgP7BzgZ7gcrYBbpYYe0LnXDpVi5W7ovF4euZ+OF0MradvYUXu3tjWl9/OHDyeCJqRgy+KPWke0cf1qtXr8c+361bN3z77bcICgrCnTt3sGTJEvTo0QNXrlyBg0PNK2LMmTOnyqRieXl58PT0REREhE6Go0dGRmLgwIFNZohpfTEWGrqMxTAAb5SrsPnETaw5nICkAiVWXZbiHx3d8daAAINKjPie0GiKsSgpKUFKSgosLS3rNBxdEATk5+fDysqq2S+5zVhoNDQWJSUlMDMzQ58+fWocjt6YtJ0LUfN2NS0Paw7FY+fF21Ddn8QjzM8Brz4VgB7+Ds3+s6OxtPWwwTf/7IoziXexYu81/JV0D18fS8SPZ5Lxci9fvNLHD9amTeP3OxHR4xh8UaomGRkZyMjIqDYcv127dk88dsiQIZXft23bFmFhYfD398c333zzyNns5XI55PLqf5ibmJjo7I9BXbZtbBgLDV3FwsQEeLV/EEZ18cLHu69h+/lU/Hw2FXsu38EbAwIxqYcPTAxo+D7fExpNKRZKpRIikQhisbhO97RX/C6oOLY5Yyw0GhoLsVgMkUhU48+YIfzMNSQXWrZsGbZv345r167BzMwMPXr0wMcff4yWLVtW7jN58mR88803VY7r1q0bTp06pZ0ToEZ3LvkevjwYhwPXMiq3DWjljGl9A9DJ206PPWveuvra46d/heHw9Uys3BeLy6l5+PxgHL45eRNTw/0xqYc3J5cnoibNqD7hzp49i0mTJuHq1auVc0WIRCIIggCRSASlUlnnNitms79x44a2u0tkdFysTbFqTAdM6O6Fhb/H4FJqLpbsvIotf6Vg/tOt0Seo9gsCENVXc58LiQyDob4PtZELHT58GDNmzECXLl1QXl6OuXPnIiIiAjExMbCw0Ey4PHjwYGzatKnysUwm0/4JkU4JgoAT8dn44mAcTiZkAwDEImBYuxaY3tcfrdx0P1E/PZlIJELfls4ID3LCnsvp+CTyOuIyCvDxnmvYeCwRrz0VgLFdPY1isnlqPIb6e4qaF228D42qKPXSSy8hKCgIGzduhIuLi1aGF5eWluLq1avo3bu3FnpI1DR08rbHjhk98fPfKVixNxZxGQV48b9nMLC1C+YNaw0vB93MpUbNm0wmg1gsxu3bt+Hk5ASZTFarz3mVSoWysjKUlJRwdBBjUam+sRAEAWVlZcjMzIRYLDa4Qow2cqE9e/ZUebxp0yY4Ozvj7Nmz6NOnT+V2uVxer6W0Sf9UKgEHrmXgi6g4XEjJAQCYSEQYEeqBqX394euo3dXeSDtEIhGGtHVDRBtX7Difik8PXEfK3WIs+P0KvjqSgDcGBGJEqDsnn2/mmC81HGOhYQj5klEVpRITE7F9+3YEBATUu43Zs2fjmWeegZeXFzIyMrBkyRLk5eVh0qRJWuwpkfGTiEUY29ULQ9q64bP9N/DNySRExtzB4euZ+L/efpjez5/DyUmrxGIxfH19kZaWhtu3b9f6OEEQUFxcDDMzs2Y/FwpjodHQWJibm8PLy8vgklVt5EIPy83NBYBqk6kfOnQIzs7OsLW1RXh4OJYuXfrYFQC5WrF+PBiLcqUKuy7fwfojibieUQAAMDURY3QnD7zSywdu91d3a6pxa0rvi2fbuWBwayf8fC4Vaw4lIDWnGO9su4h1h+LwxlMBGNzG5ZGT0TelODRUU42Fp6cn7ty5g9TU1FofIwgCSkpKYGpqyhyBsajU0FiYmZmhRYsWUCqV1UZr1/bnzqj+ouzfvz8uXLjQoETs1q1bGDduHLKysuDk5ITu3bvj1KlT8Pb21mJPiZoOGzMTzH+mNcZ19cSiP2JwLC4LX0TFYdvZW5gzNBjPtm/R7D/MSXtkMhm8vLxQXl5e61uyFQoFjhw5gj59+hjEXD/6xFhoNCQWEokEUqnUID/btJELPUgQBMyaNQu9evVCSEhI5fYhQ4Zg1KhR8Pb2RmJiIubNm4ennnoKZ8+erXGeTYCrFetTuQpY9N1+HEgVI6tU/b41lQjo5Sqgr1s5rEQJOH88Aef13M/G0pTeF3YA3m4FHLsjwv5UMRKyivDGTxfhbi5gmJcKrW0FPOqjqinFoaGaaizqOg8nkTapVKrH3r5X29WKjaoo9fXXX2PSpEm4fPkyQkJCqiWZzz777BPb2LJli666R9SkBbpY4X8vd8W+mDtYsjMGKXeL8caWaHx36iYWPNMGIe42+u4iNRGPmlz6USQSCcrLy2FqatrsCzGMhUZTjYU2cqEHvfrqq7h48SKOHTtWZfuYMWMqvw8JCUHnzp3h7e2NnTt3YsSIETW2xdWK606pElBWrkKZUgWFUoWychUUSs22sge3VX5fdVt2fgm+P5WI3DJ1ZcLO3AQv9fDGhK6esDYz3tjUR1N5X9TkOQD5JeXYfPImNh5PQmqREl9dkyDU0wZvDQxEN1/NSMemHIe6Yiw0GAsNxkJDl7Go7WrFRlWUOnHiBI4dO4bdu3dXe66+E50TUe2JRCIMauOK8CAnfH00AV9GxeOvpHt45otjGNfVC7MjWsLewrDmXyEiakq0mQu99tpr+P3333HkyBF4eHg8dl83Nzd4e3s/dmEYQ12tWKUSqhR4HizsVN0moEypRFl5TQUgFUrLq28ru79dXUhSagpK5aqqbTzUTkUbKkFbkRDBxVqOf/Xxx9iuns3+9vqmtDLtg+xNTDArIhgv9fTDusPx2HwiCedTcvHCf/9GrwBHzB7UEh08bSv3b6pxqA/GQoOx0GAsNHQRi9q2Z1S/sV5//XVMnDgR8+bNg4uLi767Q9RsmZpI8OpTgRjZyQPLdl3D7xdu44fTyfjzwm3MGhiEF7p7cxJOIiId0EYuJAgCXnvtNfz66684dOgQfH19n3hMdnY2UlJS4ObmVq/X1KbcYgWmf3cWdzIl2HTrNBRKocroodKHik5K7VV+dE4mFUMuEUMmFcOk8l8RZFIJZFIxZBKR5rmK58WAPO8WPpjYG5ZmNd9aSU2LnYUMc4a2wj97+eKLg3HY8lcyjsVl4VhcFga2dsEb/fz03UUiolozqqJUdnY23nzzTRakiAyEm40ZPh8Xihe6e2PB71dwNS0PC/+IwY9nUrDgmdboEeCo7y4SETUp2siFZsyYgR9++AG//fYbrKyskJ6eDgCwsbGBmZkZCgoKsHDhQowcORJubm5ISkrC+++/D0dHRzz//PPaOpX6E4Dj8dkAREBebp0Pl0kqCj1Viz+yB/41eaAwJJc+WBzSPCd/YL9HtlP5WASZRFKlHdlDx0rFonrNY6ZQKLBrVwrkUl4Mam5crE3x7+dC8H99/PDp/hv49fwtRMbcwf6rd9DRQYygjAK0crfTdzeJiB7LqIpSI0aMQFRUFPz9/fXdFSJ6QFdfe/z5Wi9s+SsZK/fGIvZOPsZ/fRpDQlzx/tBW8LTXzQS3RETNjTZyobVr1wIA+vbtW2X7pk2bMHnyZEgkEly6dAnffvstcnJy4Obmhn79+mHr1q2wsrJqSPe1wlwuwcqRIbh88QK6dekEM7mJZtTQA4WeatvuF6MMcQJ7oobwtDfHJ6PbY1pfP6yKvI5dl9JxNkuMoV+cwKDWrpjRLwBtPTj3JxEZJqMqSgUFBWHOnDk4duwY2rZtW+0exddff11PPSMiiViECd28MaytG/4TeR3/O3UTuy+n4+C1DPwr3B/Twv1hJpPou5tEREZNG7mQIDz+djYzMzPs3bu3Qf3UJROJGMM7tIDJ7WgMaOXM+UCI7gtwtsKaCZ0QfTMb87acwKV7Yuy5ko49V9LRO9ARr/YLQFdfexZmicigGFVR6uuvv4alpSUOHz6Mw4cPV3lOJBKxKEVkAGzNZVg0PATjunlh0e8xOJmQjc8P3MC2v1Mwd1hrDG3rymSIiKiemAsR0ZO0aWGNV4JVCOzUCxuO38TvF27j6I0sHL2Rhc7edpjRLwB9WzoxHyMig2BURanExER9d4GIainY1Ro/TOmG3ZfTsXTnVaTmFGPGD+fQzdceC59tg1Zu2l0enIioOWAuRES1Fehiif+M6YA3BwRh/ZF4/Pz3Lfx98x5e2vwXWrlZY0Y/fwwJcYNEzOIUEekPZ0QkIp0RiUQY2tYN+2eFY+aAQMilYpxOvIthnx/F/N8uI6eoTN9dJCIiImrSvBzMsfT5tjj6bj/8Xx8/mMskuJqWh1d/OI8Bqw7jp79SUFau0nc3iaiZMoqRUosXL67VfvPnz9dxT4ioPsxkEswcEIR/dPLAsl3XsPNSGr49qR5O/lZES4zv6sWrdEREj8FciIgaysXaFO8PbYXpff2x+UQSNh1PQmJWId755SL+s/86/q+PH8Z28eIcoETUqIyiKPXrr78+8jmRSITY2FiUlJQwESMycB525vhyQkdMiM/Cot9jEHsnH/N2XMYPp5Ox8JnW6ObnoO8uEhEZJOZCRKQttuYyzBwQhFd6++HH08nYcDQBabklWPRHDFYfjMPLvXzxQndv2JhxEQEi0j2jKEqdP3++xu3R0dF47733cPnyZUyZMqWRe0VE9dXD3xE7X++FH84k45N913E1LQ9jvjqFp9u54f2hrdDC1kzfXSQiMijMhYhI2yzlUkzp44eJYd745dwtrDscj5S7xVixNxbrDsVjYpg3/tnLF46Wcn13lYiaMKOcUyoxMREvvPACunTpAhsbG1y5cgXr1q3Td7eIqA6kEjFeDPNB1Oy+eKG7F8Qi4M+LaXjqk0P4/MANlCiU+u4iEZHBYi5ERNpiaiLBhG7eiHqrLz4d0wFBLpbILy3HmkPx6PnRQSz8/QpSc4r13U0iaqKMqiiVlZWF1157DcHBwUhLS8OJEyewdetWBAYG6rtrRFRP9hYyLHmuLf54rRe6+tijRKHCqsjrGLDqMPZcTocgCPruIhGRwWAuRES6IpWI8VyoO/a80QdfTeyE9h42KC1XYfOJJIQvj8LbP19AfGaBvrtJRE2MURSlCgsLsWjRIvj7++PEiRP4448/cODAAXTp0kXfXSMiLWnTwgZb/9Udn48Lhau1KW7dK8bU787ihY2ncf1Ovr67R0SkV8yFiKixiMUiRLRxxY4ZPfH9K93Qw98B5SoBP5+9hQGrDmPG9+dwOTVX390koibCKOaU8vf3R35+Pl577TWMGzcOIpEIFy9erLZfu3bt9NA7ItIWkUiEZ9u3wIBWzlh7KB7rjyTgeFw2hnx2FC+GeePVcF99d5GISC+YCxFRYxOJROgZ4IieAY44l3wPa6Lisf/qHey8lIadl9LQt6UTZvQLQBcfe313lYiMmFEUpTIyMgAAy5cvx4oVK6rcziMSiSAIAkQiEZRKzkFD1BSYy6R4K6IlRnXyxNJdMdh75Q42HU/CjvOpGOAiQq9iBRxMuCIMETUfzIWISJ86etnh60mdcS09D2sPxeOPC7dxKDYTh2Iz0dXHHtP7+SM8yAkikUjfXSUiI2MURanExER9d4GI9MDLwRzrJ3bG0RuZWPRHDOIyCvBzogTbPzqEUE9b9AlyQniQE0LcbSARMwkioqaLuRARGYJgV2t8NjYUbw4Iwvoj8dh29hbOJN3FmU13EeJujRl9AzCojSvEzMuIqJYMvih18eJFhISEQCyu3fRXV65cQcuWLSGVGvypEVEt9Q50wu43emPz8QRsOHgNGSXA3zfv4e+b97Aq8jrszE3QK9AJfQIdER7kBGdrU313mYhIa5gLEZGh8XG0wLIR7fBG/yBsOJqAH04n43JqHqZ9fw7+ThaY1jcAwzu0gInEKKYwJiI9MvhsJTQ0FOnp6XBycqrV/mFhYYiOjoafn5+Oe0ZEjclEIsbkMG8437uCdmH9cCLxHo5cz8SJuGzcK1Lgjwu38ceF2wCAYFcrhN8fRdXJxw5yqUTPvSciqj/mQkRkqFxtTDHv6daY0S8Am48nYvOJJMRnFmL2zxfwn8jr+Fe4H0Z39oSpCXMxIqqZwRelBEHAvHnzYG5uXqv9y8rKdNwjItI3DzszTHC2xoRu3lAoVTifnIMj1zNx5EYmLqXm4lp6Pq6l52P9kQSYmUgQ5u+A8CAn9Alygo+DOec7ICKjwlyIiAydvYUMsyJaYkofP3x/OhlfH01Eak4x5v92BZ8fuIGXe/nhhe5esDLlnKBEVJXBF6X69OmD2NjYWu8fFhYGMzMzHfaIiAyJiUSMrr726Oprj9mDWiK7oBTH4rJw+HomjlzPQlZBKQ5ey8DBa+pJgj3tzdQFqkAn9AhwhKXc4D8GiaiZYy5ERMbCytQEU8P9MbmHD34+ewvrDsUjNacYH++5hjWH4jC5hw9e6ukLewuZvrtKRAbC4P8aO3TokL67QERGxMFSjuEd3DG8gzsEQcDVtPz7BapM/H3zLlLuFuO7U8n47lQypGIROnnbVU6Y3trNmhNzEpHBYS5ERMbG1ESCid29MbaLJ/64cBtrDsUjLqMAqw/G4eujiRjX1QtT+vjCzYYFdKLmzuCLUkRE9SUSidC6hTVat7DGtL7+KCwtx8n4bBy5oS5SJWUX4XTiXZxOvIsVe2PhaClD70An9AlyRO9AJzhayvV9CkRERERGy0QixoiOHniugzv2xaTjy6h4XErNxX+PJ+J/p5IwsqMHpob7w8fRQt9dJSI9YVGKiJoNC7kUA1q7YEBrFwDAzexCHLmeicPXs3AiPgtZBWX49Xwqfj2fCgAIcbdGn0D1XFSdvO24ggwRERFRPYjFIgwOccOgNq44eiMLX0bF4XTiXWz5KwU//Z2CYe1aYHpff7Rys9Z3V4mokbEoRUTNlreDBSaGWWBimA/KylU4e/MejtzIxOHYTMSk5eFyqvprzaF4WMqlCPN3UN/qF+gEL4faTThMRERERGoikQh97i8+83fSXaw5FI+D1zIqV1HuH+yM6f0C0MnbTt9dJaJGwqIUEREAmVSMMH8HhPk74N3BwcjIL8GxG1n3V/XLwt3CMkTG3EFkzB0AgK+jBfoEOiK8pRO6+znAXMaPUyIiIqLa6uxjj/9OtseV27lYeygeOy+l4cC1DBy4loHufvaY0S8AvQIcuWoyURPHv6KIiGrgbGWKER09MKKjB1QqAVdu56lHUV3PxLmb95CYVYjErEJ8c/ImZBIxOvtoJkwPdrViAkVERERUC21a2OCL8R0xK7MA6w8nYPv5WziVcBenEs6gnYcNpvcNQERrFy5GQ9REsShFRPQEYrEIbT1s0NbDBjP6BSC/RIET8dn356PKxK17xTgRn40T8dn4aPc1OFvJ0TvQCeEtndA7wBF2XPaYiIiI6LH8nCzx8T/a4Y0BgdhwNAE/nknGxVu5mPrdWQQ6W2JaX388274FpJzjk6hJYVGKiKiOrExNMKiNKwa1cYUgCEjMKqwsUJ1KuIuM/FL8cu4Wfjl3CyIR0M7dBuH350/o4GnLZIqIiIjoEVrYmmHBM23war8AbDqehG9OJuFGRgFm/XQBqyKvY2q4P/7RyQOmJhJ9d5WItIBFKSKiBhCJRPBzsoSfkyUm9/RFabkSfyfdw+HrmThyPRPX0vNx4VYuLtzKxecH42BlKkWvAMfKST7dbc30fQpEREREBsfBUo7Zg1ri/8L98N2pm9h4NBG37hXjgx2X8dmBG5jS2xfju3nDUs4/aYmMGX+CiYi0SC6VoGeAI3oGOOL9oa1wJ6+kchTVsbgs5BQpsPtyOnZfTgcA+DtZIDzIGX2CHNHdz4FX/YiIiIgeYG1qgul9A/BSD1/89HcK1h+Ox+3cEny46xq+jIrH5B4+mNzDh9MlEBkpFqWIiHTIxdoUozp7YlRnTyhVAi6l5lYWqc4n30N8ZiHiMxPx3+OJkEnF6OZrX3mrX6CzJSdMJyIiIgJgJpNgUg8fjOvqhd+iU7H2cDwSMgvx2YEb2HA0ARO6eeGV3n5wsTbVd1eJqA6a7cQma9asga+vL0xNTdGpUyccPXpU310ioiZOIhahg6ctXu8fiF+m9cD5+RFYO6EjxnbxRAsbU5SVq3D0RhaW7LyKiP8cQY+PDuLdbRex82IacosU+u4+ETVDzJeIyNDIpGKM6uyJyDfDsWZCR7RpYY2iMiU2HE1E74+j8P6vl5CcXaTvbhJRLTXLkVJbt27FzJkzsWbNGvTs2RPr16/HkCFDEBMTAy8vL313j4iaCRszEwxp64Yhbd0gCALiMwtwKDYTR25k4XRCNtJyS7D17xRs/TsFYhHQwdMWfYKcEB7khFYuFvruPhE1ccyXiMiQScQiDG3rhiEhrjh8PRNrouJxJukufjidjC1nkvFs+xaY0stb390koidolkWpVatW4eWXX8Yrr7wCAPj000+xd+9erF27FsuWLau2f2lpKUpLSysf5+XlAQAUCgUUCu2OXqhoT9vtGiPGQoOxUGvqcfC2M8Wk7p6Y1N0TJQol/kq6h6Nx2Th6IwtxmYU4l5yDc8k5+HT/DdiYSeEiE+PnjL+b/S1+giAgK4uxABiLBwmCAGelCAN18HnRVD+DHsZ8yTgwFhqMhVpzjENPPzv09OuMv5LuYf2RRBy+kYUd0bexI/o2fK0k/L0I5ggPYiw0BEGATZl+8yWRIAiC1l/dgJWVlcHc3Bw///wznn/++crtb7zxBqKjo3H48OFqxyxcuBCLFi2qtv2HH36Aubm5TvtLRAQA90qBazkiXMsRITZXhGJl8/4FSlQbPZxVGOOv0nq7RUVFGD9+PHJzc2Ftba319g0B8yUiMma3CoHIVDEuZIsggDkT0eOEOqgwOUh/+VKzGymVlZUFpVIJFxeXKttdXFyQnp5e4zFz5szBrFmzKh/n5eXB09MTERERWk9GFQoFIiMjMXDgQJiYmGi1bWPDWGgwFmqMg1q5UoVzN+9i99G/EBISAomkea/Yp1QqcfnyZcYCjMWDlEol7sRd0snnRcUIoKaM+ZLxYCw0GAs1xkHt/wDcSM/FD3tP8PcimCM8iLHQUCqVSL2h33yp2RWlKjw8TE8QhEcO3ZPL5ZDL5dW2m5iY6OyDXpdtGxvGQoOxUGvucTAxAbr6OSLrmoChnTybdSwAdfJtducSYwHG4kEKhQK77lzSyedFc4ot8yXjwVhoMBZqjAMQ6GqDLk7MlwDmCA9iLDQMIV9qdkUpR0dHSCSSalf5MjIyql0NfJSKOx51caVUoVCgqKgIeXl5/AFhLCoxFmqMgwZjocFYaDAWGrqMRcXv/6Y8AwLzJePBWGgwFmqMgwZjocFYaDAWGoaQLzW7opRMJkOnTp0QGRlZZY6EyMhIDB8+vFZt5OfnAwA8PT110kciIiIyfPn5+bCxsdF3N3SC+RIRERFpw5PypWZXlAKAWbNmYeLEiejcuTPCwsLw1VdfITk5GVOnTq3V8S1atEBKSgqsrKy0Plt/xfwLKSkpTXby1NpiLDQYCzXGQYOx0GAsNBgLDV3GQhAE5Ofno0WLFlpt19AwXzIOjIUGY6HGOGgwFhqMhQZjoWEI+VKzLEqNGTMG2dnZWLx4MdLS0hASEoJdu3bB29u7VseLxWJ4eHjotI/W1tbN/gekAmOhwVioMQ4ajIUGY6HBWGjoKhZNdYTUg5gvGRfGQoOxUGMcNBgLDcZCg7HQ0Ge+1CyLUgAwffp0TJ8+Xd/dICIiIjJYzJeIiIhIl8T67gARERERERERETU/LEoZGLlcjgULFtS4pHJzw1hoMBZqjIMGY6HBWGgwFhqMRdPG/18NxkKDsVBjHDQYCw3GQoOx0DCEWIiEpryeMRERERERERERGSSOlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioiIiIiIiIiIGh2LUkRERERERERE1OhYlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioh0bvPmzRCJREhKStJbHyZPngxLS8sn7te3b1/07dtX9x2qYz+KioqwcOFCHDp0qF7tVfwf/P3339rpIBERETUq5lPaU1P/RCIRFi5cqJf+EDVnUn13gIiIqluzZk2Vx0VFRVi0aBEAGHSSR0REREREVFssShERGaDWrVvruwtERERERqGoqAjm5ub67gYR1QNv3yMig5OZmYnp06ejdevWsLS0hLOzM5566ikcPXq0yn5JSUkQiURYuXIlVq1aBV9fX1haWiIsLAynTp164uscP34cjo6OePrpp1FYWPjI/crKyrBkyRIEBwdDLpfDyckJL730EjIzM+t0XgsXLoRIJML58+cxYsQIWFtbw8bGBi+88EK1th4cVp6UlAQnJycAwKJFiyASiSASiTB58uTK/a9du4Zx48bBxcUFcrkcXl5eePHFF1FaWlql3fz8fEybNg2Ojo5wcHDAiBEjcPv27TqdBxERERm+pp5PnTt3Dv/4xz9gZ2cHf39/AEBJSQnmzJkDX19fyGQyuLu7Y8aMGcjJyanTaxBR42FRiogMzt27dwEACxYswM6dO7Fp0yb4+fmhb9++Nc6p9OWXXyIyMhKffvopvv/+exQWFmLo0KHIzc195Gv89NNP6N+/P0aPHo3ffvsNFhYWNe6nUqkwfPhwfPTRRxg/fjx27tyJjz76CJGRkejbty+Ki4vrfH7PP/88AgICsG3bNixcuBA7duzAoEGDoFAoatzfzc0Ne/bsAQC8/PLLOHnyJE6ePIl58+YBAC5cuIAuXbrg1KlTWLx4MXbv3o1ly5ahtLQUZWVlVdp65ZVXYGJigh9++AHLly/HoUOH8MILL9T5HIiIiMiwNfV8asSIEQgICMDPP/+MdevWQRAEPPfcc1i5ciUmTpyInTt3YtasWfjmm2/w1FNPVbtQR0SGgbfvEZHBadmyZZU5lZRKJQYNGoSkpCR8/vnn1eZUsrKywp9//gmJRAIAaNGiBbp27Yrdu3dj7Nix1dr/+OOPMXfuXHz44Yd45513HtuXn376CXv27MEvv/yCESNGVG5v3749unTpgs2bN2PatGl1Or8RI0Zg+fLlAICIiAi4uLhgwoQJ+OmnnzBhwoRq+8vlcnTq1AkA4OHhge7du1d5ftasWZBKpThz5kzliCoANbY1ePBgfP7555WP7969i3feeQfp6elwdXWt03kQERGR4Wrq+dSkSZMq59sEgL1792Lv3r1Yvnw53n77bQDAwIED4enpiTFjxuDbb7/FlClT6vQaRKR7HClFRAZp3bp16NixI0xNTSGVSmFiYoIDBw7g6tWr1fYdNmxYZQIFAO3atQMA3Lx5s8p+giDgX//6FxYsWIAffvjhiQkUAPz555+wtbXFM888g/Ly8sqvDh06wNXVtV6r4T1cLBo9ejSkUimioqLq3FZRUREOHz6M0aNHVylIPcqzzz5b5fGjYkVERETGrynnUyNHjqzy+ODBgwBQZXoDABg1ahQsLCxw4MCBOr8GEekei1JEZHBWrVqFadOmoVu3bvjll19w6tQp/PXXXxg8eHCNw7sdHByqPJbL5QBQbd+ysjJs3boVbdq0wZAhQ2rVlzt37iAnJwcymQwmJiZVvtLT05GVlVXn83t4RJJUKoWDgwOys7Pr3Na9e/egVCrh4eFRq/1rGysiIiIybk09n3Jzc6vyODs7G1KptNpFOpFIBFdX13rlWUSke7x9j4gMznfffYe+ffti7dq1Vbbn5+c3qF25XI6oqCgMGjQIAwYMwJ49e2BnZ/fYYyomBK+Y0+lhVlZWde5Heno63N3dKx+Xl5cjOzu7WjJYG/b29pBIJLh161adjyUiIqKmq6nnUyKRqMpjBwcHlJeXIzMzs0phShAEpKeno0uXLnV+DSLSPY6UIiKDIxKJKq/OVbh48SJOnjzZ4LZDQ0Nx+PBh3Lp1C3379kVGRsZj93/66aeRnZ0NpVKJzp07V/tq2bJlnfvw/fffV3n8008/oby8vNrcDg961NVKMzMzhIeH4+eff67XVUYiIiJqmpp6PvWw/v37A1AX4x70yy+/oLCwsPJ5IjIsHClFRAbn6aefxr///W8sWLAA4eHhiI2NxeLFi+Hr64vy8vIGt9+qVSscPXoUAwYMQJ8+fbB///5H3v42duxYfP/99xg6dCjeeOMNdO3aFSYmJrh16xaioqIwfPhwPP/883V6/e3bt0MqlWLgwIG4cuUK5s2bh/bt22P06NGPPMbKygre3t747bff0L9/f9jb28PR0RE+Pj5YtWoVevXqhW7duuG9995DQEAA7ty5g99//x3r16+v19VHIiIiMm5NPZ962MCBAzFo0CC8++67yMvLQ8+ePXHx4kUsWLAAoaGhmDhxYoPaJyLd4EgpIjI4c+fOxVtvvYWNGzdi2LBh+Prrr7Fu3Tr06tVLa6/h5+eHo0ePQiQSoXfv3khISKhxP4lEgt9//x3vv/8+tm/fjueffx7PPfccPvroI5iamqJt27Z1fu3t27fj2rVrGDFiBObPn49nnnkG+/btg0wme+xxGzduhLm5OZ599ll06dIFCxcuBKBeuebMmTPo1KkT5syZg8GDB+Pdd9+FXC5/YptERETUNDX1fOphIpEIO3bswKxZs7Bp0yYMHToUK1euxMSJE3Hw4MFqo8aIyDCIBEEQ9N0JIqLmYOHChVi0aBEyMzPh6Oio7+4QERERERHpFUdKERERERERERFRo+OcUkTUaARBgFKpfOw+Eomk2moqhk6lUkGlUj12H6mUH7dERETUcMyniKgp4UgpImo033zzDUxMTB77dfjwYX13s84WL178xPNKSkrCwoULIQgCb90jIiKiemvu+RQRNS2cU4qIGk12djYSExMfu0/Lli2NbrW427dv4/bt24/dp127dpx0nIiIiBqM+RTzKaKmhEUpIiIiIiIiIiJqdLwptx5UKhVu374NKysro7tXm4iIiBpGEATk5+ejRYsWEIs5E8KjMF8iIiJqvmqbLzXbotSaNWuwYsUKpKWloU2bNvj000/Ru3fvWh17+/ZteHp66riHREREZMhSUlLg4eGh727oFPMlIiIiaogn5UvNsii1detWzJw5E2vWrEHPnj2xfv16DBkyBDExMfDy8nri8RX3Z6ekpMDa2lqrfVMoFNi3bx8iIiJgYmKi1baNDWOhwVioMQ4ajIUGY6HBWGjoMhZ5eXnw9PQ0uvla6or5knFgLDQYCzXGQYOx0GAsNBgLDUPIl5plUWrVqlV4+eWX8corrwAAPv30U+zduxdr167FsmXLqu1fWlqK0tLSysf5+fkAADMzM5iZmWm1b1KpFObm5jAzM2v2PyCMhQZjodbc45BfosDl23m4eCsPF2/l4HqKFbb8EAORuHnfFiOoBOTmMhYAY/EgQSXAS2KB4Tr4vFAoFADQ5G9JY75kHBgLDcZCrTnHoaC0HAmZhYjPLERCViFu3MlHfCp/LwLMER7EWGgIKgEusNRrvtTsJjovKyuDubk5fv75Zzz//POV29944w1ER0fXuHzqwoULsWjRomrbf/jhB5ibm+u0v0TUPJUpgdQiILlAVPmVUdK8f2kS1VUPZxXG+Ku03m5RURHGjx+P3NxcrY8AMhTMl4jIUAkCkK8A7hSLkF4MZNz/906xCLllzJWI6irUQYXJQfrLl5rdSKmsrCwolUq4uLhU2e7i4oL09PQaj5kzZw5mzZpV+bhiGFpERIROhqNHRkZi4MCBze7KxsMYCw3GQq2pxqFcqcL1jAJcSs3DpdRcXLyVhxsZBShXVb9m4GFrirbuNmjtZomclOsI7dABUolED702HOVKJaKjo9GBsWAsHlCuVCL56nmdfF7k5eVptT1DxHzJeDAWGoyFWlOJg1Il4Na9YsRlFlSOfIrPLERCZiHySsofeZyjpQz+Thbwd7KAt50ZMpKuMV8Cc4QHMRYa5UolEmP0my81u6JUhYeHkAmC8MhhZXK5HHK5vNp2ExMTnX3Q67JtY8NYaDAWasYcB5VKQFJ2IS7eysWFWzm4eCsXl1NzUVpe/eqEo6UM7Txs0c7DBu3v/+tgqf4sUigU2LUrFoNC3Iw2FtqiUCigTD7PWICxeJBCocCu5PM6+bxoTrFlvmQ8GAsNxkLNWOJQolAiPrMAcRnq4lN8hvr7xKxClClrHr0hFgGe9uYIcLJEgLMl/J0s4e9siQAnS9iYa85ZoVBgV95V/l4Ec4QHMRYahpAvNbuilKOjIyQSSbWrfBkZGdWuBhIRNYQgCEjLLcHFWzm4cCsXF+8XofJruLpnJZeirYcN2nnYor2HDdp52qKFjWmTn7PmUZRKZeV96E+iUCgglUpRUlICpVKp454ZNsZCoyGxMDExgaSZXzllvkRE2navsAxxFcWnjILK71NzivGoCWXkUjH87heeApws4e9sgQBnS/g4WMDUpHl/TgPMl+qLsdAwhHyp2RWlZDIZOnXqhMjIyCpzJERGRmL48OF67BkRGbu7hWXqAlRKbmUhKqugtNp+cqkYbVpYqwtQnupClK+DBcTNfKJFQF3IS09PR05OTp2OcXV1RUpKSrMt4lVgLDQaGgtbW1u4uro22zgyXyKi+lCpBNzOLUZcxkMjnzILcLew7JHH2ZqbVBn1FOCs/mphawYJ86NqmC81DGOhYQj5UrMrSgHArFmzMHHiRHTu3BlhYWH46quvkJycjKlTp+q7a0RkJApKy3E5NbfKKKiUu8XV9pOIRQhysVKPfrpfhApysYKJRKyHXhu+igTL2dkZ5ubmtfoFp1KpUFBQAEtLS4jFzTuujIVGfWMhCAKKioqQkZEBAHBzc9NVFw0e8yUiepSychWSsgurjXpKyCxEseLRoy3cbc0qb7Pzd7aoLETZW8iafXGgLpgvNQxjoWEI+VKzLEqNGTMG2dnZWLx4MdLS0hASEoJdu3bB29tb310jIgNUWq7E1bT8KqOg4jILahxq7udogXYPFKBau9nATMbh5bWhVCorEywHB4daH6dSqVBWVgZTU1MmFoxFpYbEwszMDID6VjVnZ+dmeysf8yUiyitRVM7xFJ95vwiVWYDku0VQ1rAgCwCYSETwcbCoHO1UMfLJz8kC5rJm+eenVjFfajjGQsMQ8qVm+6kwffp0TJ8+Xd/dICIDo1QJiMsouD8JuXoOqKtpeVAoqydeLWxM1RORe6onIg9xt4GNWfOeLLEhKuZE4NLxZAgq3ocKhaLZFqUA5ktEzYEgCMjIL33glruCyu8z8qtPQ1DBUi6tcdSTl705pBwRrjPMl8iQaCNfarZFKSIiQRCQfLdIfftdyv2V8G7noqis+rBzO3OTyknI23vaoq2HDZytTPXQ66aPw/fJEPB9SERNTblSheS7ReqCU2YB4jMKEZdZgISMAuSXVl+EpYKzlbzaqKcAZ0s4W8n5WalHjD0ZAm28D1mUIqJm405eCS7cLz5duJWDS6m5yCmqvmKJhUyCEHd18amdh3oUlIedGX/5ExERkcFTqQTcKgR+u5CGm3c1k44nZRfWOPIbAMQiwNvBAv4PjXryd7aEtSlHgROR7rAoRURNUm6RAhdT7xegUnJw4VYO7uRVH4Iuk4jRqoW1ZiJyDxv4OVlypRei+xYuXIi1a9ciIyMDv/76K5577jl9d4mIiB7hdEI2Fv1xBTFpUuDipWrPm5qIK0c7PTjqydvBHHJp871VmaihmC/VH4tSRGT0isrKceV2XuUoqIu3cpCUXVRtP7EICHS2Uo9+8rRFew9btHS1gkzKeQ+o/p40gm7SpEnYvHkzoqKisHjxYly4cAElJSVwd3dHjx49sHHjRkilUhw6dAj9+vXDvXv3YGtrW/m44jWsrKzg5+eHgQMH4s0333zsKidJSUnw9/evfGxtbY1WrVph7ty5eOaZZ2p9blevXsWiRYvw66+/onv37rCzs6v1sURE1HhS7hbho93XsPNSGgBAJhbQztMOgS7W8HfSTDrewsYMYl54Iz1gvkSPwqIUERmVchVwOTUPV9ILKiciv34nHzUtAOPtYF45+qmdhy1C3K256gtpXVpaWuX3W7duxfz58xEbG1u5zczMDFeuXMGQIUPw+uuvY/Xq1TAzM8ONGzewbds2qFSqx7YfGxsLa2tr5OXl4dy5c1i+fDk2btyIQ4cOoW3bto89dv/+/WjTpg1ycnKwZs0ajBw5EufOnUNISEitzi0+Ph4AMHz48AbdvqpQKGBiwts/iIi0rbC0HOsOx2P9kQSUlasgFgGjO3ugrZCE0cO78rOXDAbzpSdrrvkShwcQkVEoUSjx753X8O4ZCZ5fdwof7LiMn/6+hWvp6oKUi7UcA1u7YHZEEL79Z1dEzx+Iw2/3w+pxoXiltx+6+tqzIEU64erqWvllY2MDkUhUbVtkZCTc3NywfPlyhISEwN/fH4MHD8bXX38NmUz22PadnZ3h6uqKoKAgjB07FsePH4eTkxOmTZv2xL45ODjA1dUVwcHBWLp0KRQKBaKioiqfT01NxZgxY2BnZwcHBwcMHz4cSUlJANTD0CuuEorF4ipJ1qZNm9CqVSuYmpoiODgYa9asqXwuKSkJIpEIP/30E/r27QtTU1N89913tT5u+/bt6NevH8zNzdG+fXucPHmyyjkdP34c4eHhMDc3h52dHQYNGoR79+4BUC9esHz5cvj5+cHCwgK9evXCtm3bKo+9d+8eJkyYACcnJ5iZmSEwMBCbNm16YhyJiAyNSiVg+7lbeOqTQ1h9MA5l5SqE+Tlg5+u98e9nW8Oy+f1dSwaO+RLzpUfhX2hEZPBu3MnHaz+ex7X0fAAi2JhJ74+Asq28Fc/FmivhNUWCIKBYUX01xAepVCoUlykhLSuHWKy9ay1mJhKtTW7v6uqKtLQ0HDlyBH369GlYv8zMMHXqVLz55pvIyMiAs7PzE49RKBTYsGEDAFRegSsqKkK/fv3Qu3dvHDlyBFKpFEuWLMHgwYNx8eJFzJ49Gz4+PnjppZeqXN3csGEDFixYgC+++AKhoaE4f/48pkyZAgsLC0yaNKlyv3fffReffPIJNm3aBLlcXuvj5s6di5UrVyIwMBBz587FuHHjEBcXB6lUiujoaPTv3x///Oc/8fnnn0MqlSIqKgpKpfo98sEHH2D79u1Yu3Yt/P39sW/fPrz44otwcXFBeHg45s2bh5iYGOzevRuOjo6Ii4tDcXFxg/4/iIga27nke1j8RwyiU3IAAJ72Zpg7tBUGtXGFSCSCQlF9ERdq2pgv1dAv5ktGky+xKEVEBksQBPxwJhmL/4hBabkKDhYyjPQsxuzxA594tYSahmKFEq3n79XLa8csHqS10XWjRo3C3r17ER4eDldXV3Tv3h39+/fHiy++CGtr6zq3FxwcDEB9texxSVaPHj0gFotRXFwMlUoFHx8fjB49GgCwZcsWiMVifP3115XJ5KZNmyrnZ4iIiICtrS0AdZJY4d///jc++eQTjBgxAgDg6+uLmJgYrF+/vkqyNHPmzMp96nLc7NmzMWzYMADAokWL0KZNG8TFxSE4OBjLly9H586dq1wxbNOmDQCgsLAQq1atwsGDBxEWFgaVSoXx48fj7NmzWL9+PcLDw5GcnIzQ0FB07twZAODj41OHqBMR6VdabjE+3n0NO6JvA1CvFjzjqQD8s6cvTE04SXlzxnypZsyXjCNfYlGKiAxSTlEZ3vvlEvZcSQcAhAc54aPnW+PMkQNauxpD1FgkEgk2bdqEJUuW4ODBgzh16hSWLl2Kjz/+GGfOnHnsJJw1EQT1JGpP+lnYunUrgoODcf36dcycORPr1q2Dvb09AODs2bOIi4uDlZVVlWNKSkoq50Z4WGZmJlJSUvDyyy9jypQpldvLy8thY2NTZd+KRKaux7Vr167y+4q4ZGRkIDg4GNHR0Rg1alSNfYuJiUFJSQkGDhxYZXtZWRlCQ0MBANOmTaucJyIiIgLPPfccevToUWN7RESGokShxFdHErD2UHzlaJh/dPLAO4NawpkjxakJYb7UPPMlFqWIyOCcTsjGzK3RSMstgYlEhHcHB+OfPX2hVJbru2vUyMxMJIhZPOix+6hUKuTn5cPK2krrw9G1zd3dHRMnTsTEiROxZMkSBAUFYd26dVi0aFGd2rl69SqAJ1+58vT0RGBgIAIDA2FpaYmRI0ciJiYGzs7OUKlU6NSpE77//vtqxzk5OdXYXsUkoxs2bEC3bt2qPCeRVI2XhYVFvY57cILPiiSy4ngzM7NHnmvFPjt37oS7uztUKhUKCgpgaWlZedyQIUNw8+ZN7Ny5E/v370f//v0xY8YMrFy58pHtEhHpiyAI+PNiGj7afQ2pOepbZzp522HBM63RzsNWv50jg8J8qWbMlx7dN0PKl1iUIiKDUa5U4fODcfji4A2oBMDX0QKrx4UixF19ZUD5+FvlqQkSiURPHBKuUqlQLpPAXCbVapKla3Z2dnBzc0NhYWGdjisuLsZXX32FPn36PDIZqkl4eDhCQkKwdOlSfPbZZ+jYsSO2bt0KZ2fnWg+Jd3Fxgbu7OxISEjBhwoRav3Z9j3tYu3btcODAgRqT0tatW0MulyM5ORnh4eFQqVTIy8uDtbV1lfeFk5MTJk+ejMmTJ6N37954++23WZQiIoNzOTUXi/64gr+S1BMTu9mYYs7QVnimnRtHjFM1zJeqY75kPPkSi1JEZBBu3SvCzC3R+PumOvka1ckDC59tAws5P6bI+K1fvx7R0dF4/vnn4e/vj5KSEnz77be4cuUKVq9e/dhjMzIyUFJSgvz8fJw9exbLly9HVlYWtm/fXud+vPXWWxg1ahTeeecdTJgwAStWrMDw4cOxePFieHh4IDk5Gdu3b8fbb78NDw+PGttYuHAhXn/9dVhbW2PIkCEoLS3F33//jXv37mHWrFmPfO36HvegOXPmoG3btpg+fTqmTp0KmUyGqKgojBo1Co6Ojpg9ezbefPNNqFQq9OjRA2lpabh48SKsrKwwadIkzJ8/H506dUKbNm1QWlqKP//8E61atapzHImIdCUjvwQr98bi57O3IAiAqYkYU8P98a8+/jCTcd4oatqYLzXPfIl/7RGR3u28mIb3tl9Efkk5rORSLB3RFs+2b6HvbhFpTdeuXXHs2DFMnToVt2/fhqWlJdq0aYMdO3YgPDz8sce2bNkSIpEIlpaW8PPzQ0REBGbNmlVlMs3aevrpp+Hj44OlS5dizZo1OHLkCN59912MGDEC+fn5cHd3R//+/R97JfCVV16Bubk5VqxYgXfeeQcWFhZo27YtZs6c+djXru9xDwoKCsK+ffvw/vvvo2vXrjAzM0O3bt0wbtw4AOrJQZ2dnbFs2TIkJCTAxsYGHTt2xNy5cwEAMpkMc+bMQVJSEszMzNC7d29s2bKl1q9PRKQrpeVKbDqehC8OxqGgVD1dwfAOLfDu4GC0sH30rThETQnzpeaZL4mEitm/tODBWeNra926dbVantGQ5OXlwcbGBrm5ufVaBeBxFAoFdu3ahaFDh1a5T7Q5Yiw0mmosisrKsfiPGGz5KwUAEOpli8/HhsLT3rzG/ZtqHOqjKcaipKQEiYmJ8PX1halp7SdufdSw4+aIsdBoaCwe935saB7AfKnhmuJnYH0xFhrGGAtBELAv5g4+3HUVN7OLAADtPGyw4JnW6ORtX682jTEOutIUY8F8qeEYCw1DyJe0OlJqx44dGD169GMn1nrQDz/8gIKCAqNLsoio4WJu5+G1H88hPrMQIhEwo28A3hgQCBNJ8/7FQERNH/MlIgKAa+l5+PefMTgelw0AcLaS453BwRgR6g6xmPNGEVHzoPXb9z7//PNaJ03btm3T9ssTkYETBAGbTyRh2a5rKFOq4GItx3/GdEAPf0d9d42IqNEwXyJqvu4WlmFVZCx+OJ0MlQDIpGJM6e2L6X0DOJcmETU7Wv3Ui4qKgr197YeZ7t69G+7u7trsAhEZsOyCUry97SIOXssAAAxo5YLl/2gHewuZnntGRNR4mC8RNU8KpQrfnryJz/ZfR16Jet6oISGueH9oq0dOXUBE1NRptSj1pMnHHtarVy9tvjwRGbDjcVl4c2s0MvJLIZOK8cGwVpjY3ZvLGhNRs8N8iaj5iYrNwL//jEFCpnpZ+1Zu1pj/dGuE+TvouWdERPql8/GhGRkZyMjIgEqlqrK9Xbt2un5pIjIACqUKn+y7jvVH4iEIQKCzJVaPD0Wwq3YnvaWmQ4vrbxDVW2O/D5kvETVNcRkFWLIzBodiMwEADhYyvBXREmO6eELCeaOoAZgvkSHQxvtQZ0Wps2fPYtKkSbh69WplR0UiEQRBgEgkglKp1NVLE5GBuJldiNd/PI8Lt3IBABO6eeGDYa1hJpPouWdkiCpWxSkqKqr1BNBEulJUpF4FS9erNTFfImqacosU+PTAdfzv5E2UqwSYSESY3MMHr/UPhLVp01gFjvSD+RIZEm3kSzorSr300ksICgrCxo0b4eLiwlt0iJqZHedT8cGOyygoLYeNmQk+HtkWg0Pc9N0tMmASiQS2trbIyFDPOWZubl6r3x0qlQplZWUoKSnhsr6MRaX6xkIQBBQVFSEjIwO2traQSHRbRGe+RNS0lCtV+PGvFKzaF4t7RQoAwIBWzpg7rDV8HS303DtqCpgvNRxjoWEI+ZLOilKJiYnYvn07AgICdPUSRGSACkrLMX/HZWw/nwoA6Oprj0/HdEALW17JoSdzdXUFgMpEqzYEQUBxcTHMzMya/R/0jIVGQ2Nha2tb+X7UJeZLRE3H8bgsLP4jBrF38gGopyyY93Rr9Aly0nPPqKlhvtQwjIWGIeRLOitK9e/fHxcuXGCSRdSMXEjJwRtbziMpuwhiETBzQBBm9AvgnAlUayKRCG5ubnB2doZCoajVMQqFAkeOHEGfPn10fquVoWMsNBoSCxMTE52PkKrAfInI+N3MLsTSnVexL+YOAMDGzASzBgZhQjcvSCXNexQG6QbzpYZhLDQMIV/SWVHq66+/xqRJk3D58mWEhIRUO8Fnn31WVy9NRI1MpRKw4WgCVuyNRblKgLutGT4b2wGdfWq/5DnRgyQSSa1/yUkkEpSXl8PU1LTZJxaMhYaxxIL5EpHxyi9R4IuoOGw6loQypQoSsQgvdPPCzAFBsLOQ6bt71AwwX6ofxkLDEGKhs6LUiRMncOzYMezevbvac5y4k6jpyMgrwVs/X8DRG1kAgGFt3fDh821hY968P+CJiGqD+RKR8VGqBGw7m4IVe68jq6AUANA70BHznm6NIBcrPfeOiMi46Gw86euvv46JEyciLS0NKpWqyhcTLKKmIepaBoZ8dhRHb2TBzESCj0a0xRfjQ1mQIiKqJeZLRMblTOJdDP/yGN795RKyCkrh62iBjZM649t/dmVBioioHnQ2Uio7OxtvvvkmXFxcdPUSRKQnpeVKfLw7Fv89nggAaOVmjdXjQhHgbKnnnhERGRfmS0TG4da9IizbfQ07L6YBAKzkUrwxIBAvhvlAJuW8UURE9aWzotSIESMQFRUFf39/Xb0EEelBXEYBXv/xPGLS8gAAL/X0wbuDg2Fq0jiTAhMRNSXMl4gMW1FZOdYdisf6IwkoLVdBJALGdvHCWxFBcLSU67t7RERGT2dFqaCgIMyZMwfHjh1D27Ztq02a9frrr+vqpYlIBwRBwE9/p2Dh7zEoVihhbyHDylHt8FQwr+4TEdUX8yUiw6RSCfjtQio+3h2L9LwSAEB3P3vMf7oNWrew1nPviIiaDp2uvmdpaYnDhw/j8OHDVZ4TiURMsoiMSG6xAu//eqlyyHqvAEesGt0eztameu4ZEZFxY75EZHiiU3Kw6I8rOJ+cAwDwsDPD3KGtMDjEFSKRSL+dIyJqYnRWlEpMTNRV04+0dOlS7Ny5E9HR0ZDJZMjJyam2T3JyMmbMmIGDBw/CzMwM48ePx8qVKyGTcdlWopqcvXkXr/8YjdScYkjFIswe1BL/19sPYjGTMiKihtJHvkRENUvPLcHyPdew/XwqAMBcJsGMfgF4uZcvpykgItIRnRWl9KGsrAyjRo1CWFgYNm7cWO15pVKJYcOGwcnJCceOHUN2djYmTZoEQRCwevVqPfSYyHApVQK+jIrDZwduQKkS4O1gjs/GhqKDp62+u0ZERESkNSUKJb4+moAvo+JRrFCvejmyowfeGdwSLhwVTkSkU1ovSi1evLhW+82fP1/bL41FixYBADZv3lzj8/v27UNMTAxSUlLQokULAMAnn3yCyZMnY+nSpbC2rvn+8NLSUpSWllY+zstTT/CsUCigUCi0eAaobE/b7RojxkKjsWORlluC2dsu4UzSPQDA8PZuWPB0K1iZSvX6/8H3hAZjocFYaDAWGrqMhTba1Ge+RERqgiBg16V0fLjrKlJzigEAnbztMP/p1mjPi3BERI1C60WpX3/99ZHPiUQixMbGoqSkRC9J1smTJxESElJZkAKAQYMGobS0FGfPnkW/fv1qPG7ZsmWVBa8H7du3D+bm5jrpa2RkpE7aNUaMhUZjxOLiXRF+jBejqFwEuVjAKD8Vupin4OjBFJ2/dm3xPaHBWGgwFhqMhYYuYlFUVNTgNgw5XyJqDi6n5mLxHzE4k3QXAOBmY4r3hgTj2fYtOG8UEVEj0npR6vz58zVuj46OxnvvvYfLly9jypQp2n7ZWklPT4eLS9WVwuzs7CCTyZCenv7I4+bMmYNZs2ZVPs7Ly4OnpyciIiIeObqqvhQKBSIjIzFw4MBqK/A0N4yFRmPEokShxIe7Y/Fj7C0AQDt3a6wa1Q7eDropvNYH3xMajIUGY6HBWGjoMhYVI6YbwpDzJaKmLDO/FCv3xuKnsykQBMDURIx/9fHH1HB/mMk4bxQRUWPT+ZxSiYmJmDdvHrZu3YoRI0bgypUrCAwMrPXxCxcurHGU0oP++usvdO7cuVbt1XTlQxCEx14RkcvlkMvl1babmJjoLOnXZdvGhrHQ0FUsYtPz8dqP53D9TgEA4F/hfnhrYEvIpGKtv5Y28D2hwVhoMBYajIWGLmKhi9g2NF8ioscrLVdi8/EkrD4Yh4LScgDAs+1b4L0hwWhha6bn3hERNV86K0plZWVh0aJF+Oqrr9CrVy+cOHECXbp0qXM7r776KsaOHfvYfXx8fGrVlqurK06fPl1l271796BQKKqNoCJqDgRBwHenbmLJzqsoLVfByUqOVaPbo3egk767RkTULGgrXyKimgmCgMiYO1i66ypuZqtvvW3rboMFz7RGZx97PfeOiIi0XpQqLCzEypUrsWrVKgQEBOCPP/5AREREvdtzdHSEo6OjVvoWFhaGpUuXIi0tDW5ubgDU80LJ5XJ06tRJK69BZCzuFZbhnV8uIjLmDgCgX0snrBjVHo6W1UcFEhGRdmk7XyKi6mLT8/HvP2NwLC4LAOBkJcc7g1piZEcPiMWcN4qIyBBovSjl7++P/Px8vPbaaxg3bhxEIhEuXrxYbb927dpp+6WRnJyMu3fvIjk5GUqlEtHR0QCAgIAAWFpaIiIiAq1bt8bEiROxYsUK3L17F7Nnz8aUKVO0PjcUkSE7GZ+NN7dGIz2vBDKJGO8NCcZLPX04sScRUSPRZ75E1NTdKyrD6qhYfH/6JlQCIJOK8UovX0zvFwBLuc5nLyEiojrQ+qdyRkYGAGD58uVYsWIFBEGofE4kElXO36RUKrX90pg/fz6++eabysehoaEAgKioKPTt2xcSiQQ7d+7E9OnT0bNnT5iZmWH8+PFYuXKl1vtCZIgUShU+238DXx6KgyAAfk4WWD0uFG1a2Oi7a0REzYo+8yWipkqhVOFwmgjzPz2G3GL1vFFDQlzx/tBW8LQ3nIVbiIhIQ+tFqcTERG03WWubN2/G5s2bH7uPl5cX/vzzz8bpEJEBSblbhDe2nMe55BwAwJjOnljwbGuYy3jFkIiosekzXyJqShRKFS6k5OB4XDZ+i76FhCwJgHIEu1phwTNtEObvoO8uEhHRY2j1r9GLFy8iJCQEYnHtVuy6cuUKWrZsCamUfxQT6dIfF27j/e2XkF9aDitTKZaNaIun27XQd7eIiJol5ktE9ScIAq7fKcCxuCwcj8vC6YRsFJZpRhRaSAW8N7QNxnf3gYTzRhERGTytZjehoaFIT0+Hk1PtVu4KCwtDdHQ0/Pz8tNkNIrqvsLQcC3+/gp/P3gIAdPK2w6djOnAIOxGRHjFfIqqb1JxiHL9fhDoel42sgtIqz9uZm6BHgCO6+9hBmnYR/+jiwYIUEZGR0GpRShAEzJs3D+bmtfuDt6ysTJsvT0QPuJyai9d/PI+ErEKIRcCrTwXi9acCIJXU7so8ERHpBvMlosfLKSrDyfhsHIvLwon4bCRmFVZ53sxEgq6+9ugZ4ICeAY5o5WoNsVgEhUKBXbuqLxhARESGS6tFqT59+iA2NrbW+4eFhcHMzEybXSBq9lQqAf89noiP91yDQinAzcYU/xnTAd39OKcCEZEhYL5EVFWJQom/ku7ieFw2jsdl4fLtXDww9z8kYhHae9igV4AjegQ4ItTLFnKpRH8dJiIirdFqUerQoUPabI6I6iiroBSzf76AQ7GZAIBBbVzw8ch2sDWX6blnRERUgfkSNXdKlYBLqbmVt+T9ffMeyspVVfYJcrFED39H9ApwRDc/e1iZmuipt0REpEucMZOoiThyPROzfrqArIJSyKVizHu6NSZ084JIxDkViIiISH8EQUB8ZiFOxGfh2I0snErIRl5JeZV93GxM0TPAUX1Lnr8jnK1N9dRbIiJqTCxKERm5snIVVu6LxVdHEgAALV2ssHp8KIJcrPTcMyIiMkRLly7Fzp07ER0dDZlMhpycnGr7JCcnY8aMGTh48CDMzMwwfvx4rFy5EjIZR95S7dzJK8HxuCz1vFBx2UjPK6nyvLWpFGH+DpW35Pk5WvBCGhFRM8SiFJERS8wqxOs/nsel1FwAwIth3nh/aCuYmnCeBSIiqllZWRlGjRqFsLAwbNy4sdrzSqUSw4YNg5OTE44dO4bs7GxMmjQJgiBg9erVeugxGYO8EgVOJ9ytLETFZRRUeV4mFaOLj516NJS/I0LcbbhCHhERsShFZIwEQcD2c6mY99tlFJUpYWtuguUj2yGijau+u0ZERAZu0aJFAIDNmzfX+Py+ffsQExODlJQUtGjRAgDwySefYPLkyVi6dCmsra1rPK60tBSlpaWVj/Py8gAACoUCCoVCi2eAyva03a4x0lcsSstViE7JwfH4bJxMuItLqXlQqjSzk4tEQEgLa/Twc0APf3t09LKtctFMpSyHSqndPvF9ocY4aDAWGoyFBmOhoctY1LZNFqWIjEx+iQIf7LiM36JvAwC6+9njP2M6wM2GKzMREVHDnTx5EiEhIZUFKQAYNGgQSktLcfbsWfTr16/G45YtW1ZZ8HrQvn37YG5urpO+RkZG6qRdY6TrWKgEILUQuJ4rwvVcEeLzRVCoqo50cjYVEGSj/gqwFmBhchcov4ucWOBg7RecbDC+L9QYBw3GQoOx0GAsNHQRi6Kiolrtx6IUkRGJTsnBrG2XkHK3GBKxCG8OCMS0vgEc/k5ERFqTnp4OFxeXKtvs7Owgk8mQnp7+yOPmzJmDWbNmVT7Oy8uDp6cnIiIiHjm6qr4UCgUiIyMxcOBAmJg071XZdBULQRCQfK8YJ+KzcTL+Lk4l3sW9oqpXvZ0sZQi7PxKqh78D3Gz0Ozk53xdqjIMGY6HBWGgwFhq6jEXFiOknYVGKyAioVAIiU0XYc/ovlKsEeNiZ4bOxoejkbafvrhERkQFYuHBhjaOUHvTXX3+hc+fOtWqvpgmnBUF47ETUcrkccrm82nYTExOdJf26bNvYaCMWWQWlOBGfjeM3snA8Pgu37hVXed5SLkV3P3v08HdEr0BHBDpbGuTk5HxfqDEOGoyFBmOhwVho6CIWtW2PRSkiAyAIAgpKy5FbrKj8ynvg+wNX7+B0sgSAgKfbueHDEW1hbcoPUCIiUnv11VcxduzYx+7j4+NTq7ZcXV1x+vTpKtvu3bsHhUJRbQQVGbfC0nKcSdRMTn4tPb/K8yYSEUK97NArwBE9AxzQzsMWJhKxnnpLRERNEYtSRFqiUgnILy2vUkx61FfeQ9/nlZRXmRy0JjKxgEXDQzC2q7dBXpUkIiL9cXR0hKOjo1baCgsLw9KlS5GWlgY3NzcA6nmh5HI5OnXqpJXXIP1QKFW4kJKDY3FZOB6XhfPJOSh/KP9o7WaNngEO6BngiK6+9jCX8c8FIiLSHf6WIXqAUiXcLxLVrqBU+VWkQH5pOYTH15WeSCYVw8bMpNqXvbkUroXx+EdHdxakiIioQZKTk3H37l0kJydDqVQiOjoaABAQEABLS0tERESgdevWmDhxIlasWIG7d+9i9uzZmDJlitbnhiLdEgQBsXfycexGFk7EZ+N0QjYKy6oueedpb4ZeAY7o4e+IHv4OcLCsfgsmERGRrrAoRU2OQqmqOhKppLx6Qamo5mJTfml5g1/f1KR6Ycm6hkKTtakJbMyrbntwqeQq56RQYNeu+Ab3jYiIaP78+fjmm28qH4eGhgIAoqKi0LdvX0gkEuzcuRPTp09Hz549YWZmhvHjx2PlypX66jLVwa17RTgRl41jcepCVFZBaZXn7S1kCPN3UN+S5+8ILwfdrIxIRERUGyxKGZDUnGIM/+IYFKUSfBRzBBKxSP0lEkH8wL9SccVjQCIWQSwSVe5b8b3634eef3C/Bx5X7Ft928NtiTWv+VC/qrYJTT/u97dy34f6I77fx5raUinLcacYOJ+cg0KFcL/AVHNB6cGC08NXAOvDXCZ5bEGpesFJWrmfXFpzYYmIiMgQbN68GZs3b37sPl5eXvjzzz8bp0N1VKJQYvPxJFy7LcKdEzchlUggEqlzD5EIEEE9Ubv6exHEIlR+LxLdfw6AWKzZBjx4vOYYVH5f9RhUvB6geW317g9sf0w7ohpe96E2RQ+3A81+D7ZTWlaG6GwRTv0eg5MJd5GUXXUJbjMTCbr62qtHQwU4oJWrNcRctZeIiAwEi1IGRFGuQlZBGQARcnNL9N0dAyEFos/U60grubpQVFE0enRBqeqXlakJZFJO4klERGSIShRKfLTnOgAJdtyM1Xd3DIQEwC31d2IR2nvY3J+c3BGhXnbMa4iIyGCxKGVA3GxN8ceMMBw5ehRhPXpCJJZAJQhQqtRzHam/f+BLEKC6/6/medSwrerzSpVK/e8Dx6tqbBNVn3/o9SvbFlDj8TW1U9PxVfuIKu2YiFRwsDaHrfkDt7zVYgSTlakUUq4OQ0RE1ORIJWIMb++GW6mpaNGiBSASQxAECFDPoSQIgCAAqsptqPo8ANX9bcD9/R46BlWOV+cn6u0V3wv396+hnfvf44HvhfvHqFTqcxBqaAeV32v6/ah2Kvpb8b2jXIVBHbzRO9AZ3fzsYcUVeomIyEiwKGVA5FIJgl2tkGABtHW3gYlJ804o1PMo7cLQob2bfSyIiIhIzVIuxcp/tMWuXSkYOrRds88RNPlScLOPBRERGR8Wpeqh4opYXl6e1ttWKBQoKipCXl5es08sGAsNxkKNcdBgLDQYCw3GQkOXsaj4/V+RD1DNmC81DsZCg7FQYxw0GAsNxkKDsdAwhHyJRal6yM/PBwB4enrquSdERESkL/n5+bCxsdF3NwwW8yUiIiJ6Ur4kEniZr85UKhVu374NKysriETaXb0kLy8Pnp6eSElJgbW1tVbbNjaMhQZjocY4aDAWGoyFBmOhoctYCIKA/Px8tGjRAmIx5y98FOZLjYOx0GAs1BgHDcZCg7HQYCw0DCFf4kipehCLxfDw8NDpa1hbWzf7H5AKjIUGY6HGOGgwFhqMhQZjoaGrWHCE1JMxX2pcjIUGY6HGOGgwFhqMhQZjoaHPfImX94iIiIiIiIiIqNGxKEVERERERERERI2ORSkDI5fLsWDBAsjlcn13Re8YCw3GQo1x0GAsNBgLDcZCg7Fo2vj/q8FYaDAWaoyDBmOhwVhoMBYahhALTnRORERERERERESNjiOliIiIiIiIiIio0bEoRUREREREREREjY5FKSIiIiIiIiIianQsShERERERERERUaNjUYqIiIiIiIiIiBodi1I6tmbNGvj6+sLU1BSdOnXC0aNHH7v/4cOH0alTJ5iamsLPzw/r1q2rts8vv/yC1q1bQy6Xo3Xr1vj111911X2t0nYsrly5gpEjR8LHxwcikQiffvqpDnuvXdqOxYYNG9C7d2/Y2dnBzs4OAwYMwJkzZ3R5Clqj7Vhs374dnTt3hq2tLSwsLNChQwf873//0+UpaI0uPi8qbNmyBSKRCM8995yWe6192o7D5s2bIRKJqn2VlJTo8jS0QhfviZycHMyYMQNubm4wNTVFq1atsGvXLl2dgtZoOxZ9+/at8X0xbNgwXZ4GPQLzJQ3mSxrMlzSYL2kwX1JjvqTBfEnDKPMlgXRmy5YtgomJibBhwwYhJiZGeOONNwQLCwvh5s2bNe6fkJAgmJubC2+88YYQExMjbNiwQTAxMRG2bdtWuc+JEycEiUQifPjhh8LVq1eFDz/8UJBKpcKpU6ca67TqRRexOHPmjDB79mzhxx9/FFxdXYX//Oc/jXQ2DaOLWIwfP1748ssvhfPnzwtXr14VXnrpJcHGxka4detWY51WvegiFlFRUcL27duFmJgYIS4uTvj0008FiUQi7Nmzp7FOq150EYsKSUlJgru7u9C7d29h+PDhOj6ThtFFHDZt2iRYW1sLaWlpVb4MnS5iUVpaKnTu3FkYOnSocOzYMSEpKUk4evSoEB0d3VinVS+6iEV2dnaV98Ply5cFiUQibNq0qZHOiiowX9JgvqTBfEmD+ZIG8yU15ksazJc0jDVfYlFKh7p27SpMnTq1yrbg4GDhvffeq3H/d955RwgODq6y7V//+pfQvXv3ysejR48WBg8eXGWfQYMGCWPHjtVSr3VDF7F4kLe3t9EkWbqOhSAIQnl5uWBlZSV88803De+wDjVGLARBEEJDQ4UPPvigYZ3VMV3Fory8XOjZs6fw9ddfC5MmTTL4JEsXcdi0aZNgY2Oj9b7qmi5isXbtWsHPz08oKyvTfod1qDE+K/7zn/8IVlZWQkFBQcM7THXCfEmD+ZIG8yUN5ksazJfUmC9pMF/SMNZ8ibfv6UhZWRnOnj2LiIiIKtsjIiJw4sSJGo85efJktf0HDRqEv//+GwqF4rH7PKpNQ6CrWBijxopFUVERFAoF7O3ttdNxHWiMWAiCgAMHDiA2NhZ9+vTRXue1TJexWLx4MZycnPDyyy9rv+Napss4FBQUwNvbGx4eHnj66adx/vx57Z+AFukqFr///jvCwsIwY8YMuLi4ICQkBB9++CGUSqVuTkQLGutzc+PGjRg7diwsLCy003GqFeZLGsyXNJgvaTBf0mC+pMZ8SYP5koYx50ssSulIVlYWlEolXFxcqmx3cXFBenp6jcekp6fXuH95eTmysrIeu8+j2jQEuoqFMWqsWLz33ntwd3fHgAEDtNNxHdBlLHJzc2FpaQmZTIZhw4Zh9erVGDhwoPZPQkt0FYvjx49j48aN2LBhg246rmW6ikNwcDA2b96M33//HT/++CNMTU3Rs2dP3LhxQzcnogW6ikVCQgK2bdsGpVKJXbt24YMPPsAnn3yCpUuX6uZEtKAxPjfPnDmDy5cv45VXXtFex6lWmC9pMF/SYL6kwXxJg/mSGvMlDeZLGsacL0m12hpVIxKJqjwWBKHatift//D2urZpKHQRC2Oly1gsX74cP/74Iw4dOgRTU1Mt9Fa3dBELKysrREdHo6CgAAcOHMCsWbPg5+eHvn37aq/jOqDNWOTn5+OFF17Ahg0b4OjoqP3O6pC23xPdu3dH9+7dK5/v2bMnOnbsiNWrV+Pzzz/XVrd1QtuxUKlUcHZ2xldffQWJRIJOnTrh9u3bWLFiBebPn6/l3muXLj83N27ciJCQEHTt2lULPaX6YL6kwXxJg/mSBvMlDeZLasyXNJgvaRhjvsSilI44OjpCIpFUq0pmZGRUq0ZWcHV1rXF/qVQKBweHx+7zqDYNga5iYYx0HYuVK1fiww8/xP79+9GuXTvtdl7LdBkLsViMgIAAAECHDh1w9epVLFu2zGCTLF3E4sqVK0hKSsIzzzxT+bxKpQIASKVSxMbGwt/fX8tn0jCN9VkhFovRpUsXg77yp6tYuLm5wcTEBBKJpHKfVq1aIT09HWVlZZDJZFo+k4bT9fuiqKgIW7ZsweLFi7XbcaoV5ksazJc0mC9pMF/SYL6kxnxJg/mShjHnS7x9T0dkMhk6deqEyMjIKtsjIyPRo0ePGo8JCwurtv++ffvQuXNnmJiYPHafR7VpCHQVC2Oky1isWLEC//73v7Fnzx507txZ+53XssZ8XwiCgNLS0oZ3Wkd0EYvg4GBcunQJ0dHRlV/PPvss+vXrh+joaHh6eursfOqrsd4TgiAgOjoabm5u2um4DugqFj179kRcXFxlwg0A169fh5ubm0EmWIDu3xc//fQTSktL8cILL2i341QrzJc0mC9pMF/SYL6kwXxJjfmSBvMlDaPOl7Q2ZTpVU7Ek48aNG4WYmBhh5syZgoWFhZCUlCQIgiC89957wsSJEyv3r1iS8c033xRiYmKEjRs3VluS8fjx44JEIhE++ugj4erVq8JHH31kVEscazMWpaWlwvnz54Xz588Lbm5uwuzZs4Xz588LN27caPTzqwtdxOLjjz8WZDKZsG3btipLdubn5zf6+dWFLmLx4YcfCvv27RPi4+OFq1evCp988okglUqFDRs2NPr51YUuYvEwY1hNRhdxWLhwobBnzx4hPj5eOH/+vPDSSy8JUqlUOH36dKOfX13oIhbJycmCpaWl8OqrrwqxsbHCn3/+KTg7OwtLlixp9POrC13+fPTq1UsYM2ZMo50LVcd8SYP5kgbzJQ3mSxrMl9SYL2kwX9Iw1nyJRSkd+/LLLwVvb29BJpMJHTt2FA4fPlz53KRJk4Tw8PAq+x86dEgIDQ0VZDKZ4OPjI6xdu7Zamz///LPQsmVLwcTERAgODhZ++eUXXZ+GVmg7FomJiQKAal8Pt2OItB0Lb2/vGmOxYMGCRjibhtF2LObOnSsEBAQIpqamgp2dnRAWFiZs2bKlMU6lwXTxefEgY0iyBEH7cZg5c6bg5eUlyGQywcnJSYiIiBBOnDjRGKfSYLp4T5w4cULo1q2bIJfLBT8/P2Hp0qVCeXm5rk+lwXQRi9jYWAGAsG/fPl13n56A+ZIG8yUN5ksazJc0mC+pMV/SYL6kYYz5kkgQ7s9kRURERERERERE1Eg4pxQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioiIiIiIiIiIGh2LUkRERERERERE1OhYlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESN7v8B2oSEnxwaRrwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAScCAYAAABayDwuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP9f//8ft7ZzMbs83mOIdySFgUcwg5nztIEplE9SFKfYqIIZRD6aOUKPJR8hGh0lBI5ZisUpoUKTPJYZvNYYfn74/37/3+etvBZu/3e8bternsUq/X+/F6vp+vx97bHh7v1/v1tBhjjAAAAAAAAAA38ijuCQAAAAAAAOD6Q1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAAAAAABuR1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAAAAAABuR1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAGjRokWyWCy5fj399NMuec6ff/5ZsbGxOnTokEvGd5b3339fs2fPvuqe58KFC3r00UcVEREhT09PNWrUyGVzAwAAcAWv4p4AAAC4eixcuFB16tRx2FexYkWXPNfPP/+siRMnqk2bNoqMjHTJczjD+++/r7179+qJJ564qp7njTfe0Lx58zRnzhw1btxYAQEBLp0fAACAs9GUAgAAdvXr11eTJk2KexoogL1796pUqVIaPny408Y8e/asSpUq5bTxAAAA8sPH9wAAQIEtW7ZM0dHRKl26tAICAtSpUyft2bMnR9y3336rnj17Kjg4WH5+foqKitL//vc/++OLFi3SvffeK0lq27at/aOCixYtyvf5f/nlF91///2qUKGCfH19VbVqVT344IM6f/68PWbv3r3q1auXypUrJz8/PzVq1EjvvvuuwzibN2+WxWLR0qVLNXbsWFWsWFGBgYFq3769EhIS7HFt2rTRp59+qj/++MPhI402EydOVNOmTRUcHKzAwEDdcsstevvtt2WMyTH3999/X9HR0QoICFBAQIAaNWqkt99+u0DPcymLxaIFCxbo7NmzOXJ37tw5jRkzRtWrV5ePj48qVaqkYcOG6fTp0w5jREZGqnv37lq5cqWioqLk5+eniRMnSpKOHDmioUOHqkqVKvLx8VHFihXVu3dvHTt2zH58SkqKnn76aYfneeKJJ5SWlubwPMuXL1fTpk0VFBQkf39/1ahRQw899FCe5wYAAK4fXCkFAADssrKylJmZ6bDPy8taLkydOlXjxo3ToEGDNG7cOF24cEEzZsxQq1attHPnTtWrV0+StGnTJnXu3FlNmzbVm2++qaCgIH3wwQe67777lJ6erpiYGHXr1k1Tp07Vc889p9dff1233HKLJKlmzZp5zu37779Xy5YtFRISokmTJumGG27Q0aNHtWbNGl24cEG+vr5KSEhQ8+bNFRYWpv/85z8qX768lixZopiYGB07dkzPPPOMw5jPPfecWrRooQULFiglJUXPPvusevTooX379snT01Nz587V0KFD9dtvv+mjjz7KMadDhw7pkUceUdWqVSVJ27dv1+OPP64jR45o/Pjx9rjx48dr8uTJuvvuu/XUU08pKChIe/fu1R9//CFJl32eS23btk2TJ0/Wpk2btHHjRnvujDG688479cUXX2jMmDFq1aqVfvjhB02YMEHbtm3Ttm3b5Ovrax/nu+++0759+zRu3DhVr15dpUuX1pEjR3TrrbcqIyNDzz33nBo0aKATJ05o3bp1OnXqlCpUqKD09HS1bt1af/31lz3mp59+0vjx4/Xjjz/q888/l8Vi0bZt23TffffpvvvuU2xsrPz8/PTHH3/Y5wwAAK5zBgAAXPcWLlxoJOX6lZGRYQ4fPmy8vLzM448/7nBcamqqCQ8PN3369LHvq1OnjomKijIZGRkOsd27dzcREREmKyvLGGPM8uXLjSSzadOmAs3xjjvuMGXLljV///13njF9+/Y1vr6+5vDhww77u3TpYvz9/c3p06eNMcZs2rTJSDJdu3Z1iPvf//5nJJlt27bZ93Xr1s1Uq1btsvPLysoyGRkZZtKkSaZ8+fImOzvbGGPM77//bjw9Pc0DDzyQ7/EFfR6bgQMHmtKlSzvsi4uLM5LM9OnTHfYvW7bMSDJvvfWWfV+1atWMp6enSUhIcIh96KGHjLe3t/n555/zfO5p06YZDw8Ps2vXLof9H374oZFk1q5da4wxZubMmUaSPe8AAAAX4+N7AADAbvHixdq1a5fDl5eXl9atW6fMzEw9+OCDyszMtH/5+fmpdevW2rx5syTpwIED+uWXX/TAAw9IkkNs165ddfToUYePxxVUenq6vvzyS/Xp00ehoaF5xm3cuFHt2rVTlSpVHPbHxMQoPT1d27Ztc9jfs2dPh+0GDRpIkv0KpsvZuHGj2rdvr6CgIHl6esrb21vjx4/XiRMn9Pfff0uSNmzYoKysLA0bNqxAYxaF7QqkmJgYh/333nuvSpcurS+++MJhf4MGDXTjjTc67Pvss8/Utm1b1a1bN8/n+eSTT1S/fn01atTI4XvcqVMnWSwW++vh1ltvlST16dNH//vf/3TkyJEiniEAALiW8PE9AABgV7du3VxvdG67l5CtyXApDw8Ph7inn35aTz/9dK6x//zzT6HnderUKWVlZaly5cr5xp04cUIRERE59ttWEDxx4oTD/vLlyzts2z7advbs2cvOaefOnerYsaPatGmj+fPnq3LlyvLx8dGqVas0ZcoU+xjHjx+XpMvO3RlOnDghLy+vHI07i8Wi8PDwHOefW66OHz9+2bkeO3ZMBw4ckLe3d66P277Ht99+u1atWqX//Oc/9nt/3XTTTRo7dqzuv//+wpwaAAC4BtGUAgAAlxUSEiJJ+vDDD1WtWrXLxo0ZM0Z33313rjG1a9cu9PMHBwfL09NTf/31V75x5cuX19GjR3PsT0xMdJifM3zwwQfy9vbWJ598Ij8/P/v+VatWOcTZGkR//fVXjiu4nK18+fLKzMzU8ePHHRpTxhglJSXlaCrmdjP10NDQy+Y5JCREpUqV0jvvvJPn4za9evVSr169dP78eW3fvl3Tpk1Tv379FBkZqejo6MKcHgAAuMbQlAIAAJfVqVMneXl56bffftM999yTZ1zt2rV1ww036Pvvv9fUqVPzHbMwVyWVKlVKrVu31vLlyzVlypQ8m0vt2rXTRx99pMTERPvVUZL1Y4n+/v5q1qzZZZ8rt3nmNkeLxSIvLy95enra9509e1b//e9/HeI6duwoT09PvfHGG/k2YfJ6nsJo166dpk+friVLlujJJ5+071+xYoXS0tLUrl27y47RpUsX/fe//1VCQkKeDcTu3btr6tSpKl++vKpXr16gufn6+qp169YqW7as1q1bpz179tCUAgDgOkdTCgAAXFZkZKQmTZqksWPH6vfff1fnzp1Vrlw5HTt2TDt37lTp0qU1ceJESdK8efPUpUsXderUSTExMapUqZJOnjypffv26bvvvtPy5cslSfXr15ckvfXWWypTpoz8/PxUvXr1HB+ps3n55ZfVsmVLNW3aVKNHj1atWrV07NgxrVmzRvPmzVOZMmU0YcIEffLJJ2rbtq3Gjx+v4OBgvffee/r00081ffp0BQUFFfrcb775Zq1cuVJvvPGGGjduLA8PDzVp0kTdunXTyy+/rH79+mno0KE6ceKEZs6c6bC6nS13zz33nCZPnqyzZ8/q/vvvV1BQkH7++Wf9888/9rzl9TyF0aFDB3Xq1EnPPvusUlJS1KJFC/vqe1FRURowYMBlx5g0aZI+++wz3X777Xruued088036/Tp04qLi9OoUaNUp04dPfHEE1qxYoVuv/12Pfnkk2rQoIGys7N1+PBhrV+/Xk899ZSaNm2q8ePH66+//lK7du1UuXJlnT59Wq+++qq8vb3VunXrQp0bAAC4BhX3ndYBAEDxs62+d+lqapdatWqVadu2rQkMDDS+vr6mWrVqpnfv3ubzzz93iPv+++9Nnz59TFhYmPH29jbh4eHmjjvuMG+++aZD3OzZs0316tWNp6enkWQWLlyY7/P//PPP5t577zXly5c3Pj4+pmrVqiYmJsacO3fOHvPjjz+aHj16mKCgIOPj42MaNmyYY1zb6nvLly932H/w4MEc8zh58qTp3bu3KVu2rLFYLObi8umdd94xtWvXNr6+vqZGjRpm2rRp5u233zaSzMGDBx3GXrx4sbn11luNn5+fCQgIMFFRUQV+ntzktvqeMcacPXvWPPvss6ZatWrG29vbREREmMcee8ycOnXKIa5atWqmW7duuY79559/moceesiEh4cbb29vU7FiRdOnTx9z7Ngxe8yZM2fMuHHjTO3atY2Pj48JCgoyN998s3nyySdNUlKSMcaYTz75xHTp0sVUqlTJ+Pj4mLCwMNO1a1fz1Vdf5XtuAADg+mAxxphi7IkBAAAAAADgOuRR3BMAAAAAAADA9YemFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphRQCIsWLZLFYtG3337rlPH27Nmj1q1bKygoSBaLRbNnz9batWsVGxtbqHHGjRunqlWrysvLS2XLlnXK3C51tc4LyMuVvGYBAK5nq6dsX15eXoqIiFDfvn3166+/5ohv06aN2rRpc0XPFRMTo4CAgMvGpaenKzY2Vps3by7w2LnVcc52tc4LyMuVvGZxffMq7gkA17OHHnpIaWlp+uCDD1SuXDlFRkbqhRde0Ouvv17gf0yvXr1aU6ZM0dixY9WlSxf5+vq6ZK5r1669KucF5KWwr1kAgHstXLhQderU0blz5/TNN99oypQp2rRpk3755ReVK1fOHjd37lyXzyU9PV0TJ06UpAI3wHKr466XeQF5uZLXLK5vNKWAYrR3714NGTJEXbp0KdIYkjRixAiFhYU5a2pF5op5paeny9/f3yljAQCA4lW/fn01adJEkvUfr1lZWZowYYJWrVqlQYMG2ePq1atXXFPMlzPqOFdw9rwyMjLsV7QBgLPx8T3ABX799Vf169dPYWFh8vX1Vd26dfX666/bH7ddtp6Zmak33njDfvl6TEyMPe7iy9oPHTqU6/NERkZq3LhxkqQKFSrIYrHYrwrJzs7W9OnTVadOHfn6+iosLEwPPvig/vrrrxzjvPPOO2rYsKH8/PwUHBysu+66S/v27bM/XhzzatOmjerXr68tW7aoefPm8vf310MPPSRJOn36tJ566inVqFHDPkbXrl31yy+/2I+/cOGCXnjhBfvzhIaGatCgQTp+/Hiuc75Sjz76qPz8/LR79277vuzsbLVr104VKlTQ0aNH8z3+/PnzmjRpkurWrSs/Pz+VL19ebdu21datW+0x586d05gxY1S9enX5+PioUqVKGjZsmE6fPu0wVmRkpLp3765PPvlEUVFRKlWqlOrWratPPvlEkvV1V7duXZUuXVq33XZbjo+h2j7i8NNPP6ldu3YqXbq0QkNDNXz4cKWnpzvEFnZOcXFxuuWWW1SqVCnVqVNH77zzTo5cJCUl6ZFHHlHlypXl4+Oj6tWra+LEicrMzLTHHDp0SBaLRTNnztTLL7+s6tWrKyAgQNHR0dq+fbvDuRTmNQsAKH62BtWxY8cc9uf28b2//vpLvXv3VpkyZVS2bFk98MAD2rVrlywWixYtWpRj7AMHDqhr164KCAhQlSpV9NRTT+n8+fOSrH9bQkNDJUkTJ050qMtyk1cdZ7N371716tVL5cqVk5+fnxo1aqR33303xziHDx9W//79HerFWbNmKTs7u9jmtXnzZlksFv33v//VU089pUqVKsnX11cHDhyQJMXFxaldu3YKCgqSv7+/6tatq2nTpjmM8e2336pnz54KDg6Wn5+foqKi9L///S/XOV+pX3/9VYGBgbr33nsd9m/cuFGenp56/vnnLzvGjh071KNHD5UvX15+fn6qWbOmnnjiCYeYr7/+Wu3atVOZMmXk7++v5s2b69NPP3WIseV948aNGjJkiMqXL6/AwEA9+OCDSktLU1JSkvr06aOyZcsqIiJCTz/9tDIyMuzH22qb6dOna8qUKapatar8/PzUpEkTffHFFznmXZg5bdq0SY899phCQkJUvnx53X333UpMTMwx5rJlyxQdHa3SpUsrICBAnTp10p49exxibHWiM3+WAEmSAVBgCxcuNJLMrl278oz56aefTFBQkLn55pvN4sWLzfr1681TTz1lPDw8TGxsrDHGmL///tts27bNSDK9e/c227ZtM9u2bTMHDhwwvXv3NpLs+7Zt22bOnTuX63N99913ZvDgwUaSiYuLM9u2bTN//vmnMcaYoUOHGklm+PDhJi4uzrz55psmNDTUVKlSxRw/ftw+xtSpU40kc//995tPP/3ULF682NSoUcMEBQWZ/fv3G2NMscyrdevWJjg42FSpUsXMmTPHbNq0yXz55ZcmJSXF3HTTTaZ06dJm0qRJZt26dWbFihVm5MiRZuPGjcYYY7Kyskznzp1N6dKlzcSJE82GDRvMggULTKVKlUy9evVMenp6Qb/ll3X27FnTqFEjU6NGDXPq1CljjDHjx483Hh4eZv369fkem5GRYdq2bWu8vLzM008/bdauXWvWrFljnnvuObN06VJjjDHZ2dmmU6dOxsvLyzz//PNm/fr1ZubMmaZ06dImKirK4XtQrVo1U7lyZVO/fn2zdOlSs3btWtO0aVPj7e1txo8fb1q0aGFWrlxpPvroI3PjjTeaChUqOORi4MCBxsfHx1StWtVMmTLFrF+/3sTGxhovLy/TvXt3e9yVzKlevXpm8eLFZt26debee+81ksyXX35pjzt69KipUqWKqVatmpk3b575/PPPzeTJk42vr6+JiYmxxx08eNBIMpGRkaZz585m1apVZtWqVebmm2825cqVM6dPnzbGFP41CwBwn7zqqddee81IMitWrHDY37p1a9O6dWv79pkzZ0ytWrVMcHCwef311826devMk08+aapXr24kmYULF9pjbX/b6tata2bOnGk+//xzM378eGOxWMzEiRONMcacO3fOxMXFGUlm8ODBDnVZbvKq44wx5pdffjFlypQxNWvWNIsXLzaffvqpuf/++40k89JLLzmMUalSJRMaGmrefPNNExcXZ4YPH24kmccee6zY5rVp0yYjyVSqVMn07t3brFmzxnzyySfmxIkTZsGCBcZisZg2bdqY999/33z++edm7ty55l//+pf9+I0bNxofHx/TqlUrs2zZMhMXF2diYmJyfF+c4YMPPjCSzKuvvmqMsdYSFSpUMK1btzaZmZn5HhsXF2e8vb1NgwYNzKJFi8zGjRvNO++8Y/r27WuP2bx5s/H29jaNGzc2y5YtM6tWrTIdO3Y0FovFfPDBB/Y42+u5evXq5qmnnjLr1683L730kvH09DT333+/ueWWW8wLL7xgNmzYYJ599lkjycyaNct+vK22qVKlimnZsqVZsWKFWb58ubn11luNt7e32bp16xXPqUaNGubxxx8369atMwsWLDDlypUzbdu2dcjFlClTjMViMQ899JD55JNPzMqVK010dLQpXbq0+emnn+xxrvhZAowxhqYUUAgFaUp16tTJVK5c2SQnJzvsHz58uPHz8zMnT56075Nkhg0b5hA3bNgwU5h+8YQJE4wkh4bOvn37jCSHIsEYY3bs2GEkmeeee84YY8ypU6dMqVKlTNeuXR3iDh8+bHx9fU2/fv2KZV7GWAtQSeaLL75wiJ00aZKRZDZs2JDncy9dujTXonbXrl1Gkpk7d26Bz6Mgfv31VxMYGGjuvPNO8/nnnxsPDw8zbty4yx63ePFiI8nMnz8/zxjbH/bp06c77F+2bJmRZN566y37vmrVqplSpUqZv/76y74vPj7eSDIREREmLS3Nvn/VqlVGklmzZo1938CBAx2KO5spU6YYSebrr7++ojn5+fmZP/74w77v7NmzJjg42DzyyCP2fY888ogJCAhwiDPGmJkzZxpJ9qLIVrjdfPPNDgXnzp07jSR7M8+Ywr9mAQDuYauntm/fbjIyMkxqaqqJi4sz4eHh5vbbbzcZGRkO8Zc2pV5//XUjyXz22WcOcY888kiuTSlJ5n//+59DbNeuXU3t2rXt28ePHzeSzIQJEwp8HrnVcX379jW+vr7m8OHDDvu7dOli/P397W+ejB492kgyO3bscIh77LHHjMViMQkJCcUyL1tT6vbbb3eIS01NNYGBgaZly5YmOzs7z+euU6eOiYqKyvE97N69u4mIiDBZWVkFPo+CeOyxx4yPj4/Ztm2bueOOO0xYWJhJTEy87HE1a9Y0NWvWNGfPns0zplmzZiYsLMykpqba92VmZpr69eubypUr2/Ngez0//vjjDsffeeedRpJ5+eWXHfY3atTI3HLLLfZtW21TsWJFh/mkpKSY4OBg0759+yue06U19/Tp040kc/ToUWOMteb38vLKMffU1FQTHh5u+vTpY9/nyp8lXN/4+B7gROfOndMXX3yhu+66S/7+/srMzLR/de3aVefOnXP4iJGrbNq0SZJyXCp72223qW7duvZLgbdt26azZ8/miKtSpYruuOOOXC8Zdse8bMqVK6c77rjDYd9nn32mG2+8Ue3bt8/zeT755BOVLVtWPXr0cPgeNGrUSOHh4fmuBmKMcTjm4o+O5aVWrVqaP3++Vq1ape7du6tVq1YFurn2Z599Jj8/P/vHEnOzceNGSTlzdu+996p06dI5ctaoUSNVqlTJvl23bl1J1o8+XHw/Ltv+P/74I8dzPvDAAw7b/fr1k/R/378rmVPVqlXt235+frrxxhsdnvuTTz5R27ZtVbFiRYfc2+6H8eWXXzqM2a1bN3l6etq3GzRokOf5AACuTs2aNZO3t7fKlCmjzp07q1y5clq9evVl71305Zdf2o+52P33359rvMViUY8ePRz2NWjQwCV/MzZu3Kh27dqpSpUqDvtjYmKUnp6ubdu22ePq1aun2267LUecMcb+t9bd87K55557HLa3bt2qlJQU/etf/3L4SODFDhw4oF9++cVeR1xaBx89elQJCQl5zjErK8vhGNvHGPPzyiuv6KabblLbtm21efNmLVmyRBEREfkes3//fv32228aPHiw/Pz8co1JS0vTjh071Lt3b4fVGz09PTVgwAD99ddfOc6le/fuDtu2Wqtbt2459uf22rv77rsd5lOmTBn16NFDW7ZsUVZW1hXNqWfPng7bl9ZL69atU2Zmph588EGH3Pv5+al169Y5amZ3/izh+kFTCnCiEydOKDMzU3PmzJG3t7fDV9euXSVJ//zzj1vmISnXP8oVK1a0P17QOHfPyya3uOPHj6ty5cr5Ps+xY8d0+vRp+fj45Pg+JCUl5fs9+PLLL3McU5D7EHXr1k0VKlTQuXPnNGrUKIeGSV6OHz+uihUrysMj71/FJ06ckJeXl/3z+TYWi0Xh4eE5chYcHOyw7ePjk+/+c+fOOez38vJS+fLlHfaFh4fb53Ilc7p0PEny9fXV2bNn7dvHjh3Txx9/nCP3N910k6ScPzeXjmlb3fHiMQEAV7fFixdr165d2rhxox555BHt27cvz8bSxU6cOKEKFSrk2J/bPkny9/fP0Xzw9fXN8TfQGU6cOJFnnWN7vDBx7p6XzaWxtnty5leD2e4F9vTTT+f4e/6vf/1LUv51cLt27RyOye9NOxtfX1/169dP586dU6NGjdShQ4fLHlOQczl16pSMMYXKWWFqsNxee7Z669J9Fy5c0JkzZ65oTperl2zfs1tvvTXH92zZsmU5vl/u/FnC9YMlFAAnKleunP3dimHDhuUaU716dZfPw/YH6OjRozn+4CYmJiokJCRH3KUujnP3vGxyeycuNDQ015u1X8x2M8e4uLhcHy9TpkyexzZu3Fi7du1y2Gf7Q5+fRx99VKmpqbrppps0YsQItWrVymE569yEhobq66+/VnZ2dp6NqfLlyyszM1PHjx93aAIZY5SUlKRbb731snMrjMzMTJ04ccKhiElKSrLPxVVzCgkJUYMGDTRlypRcHy/I9wAAULLUrVvXfnPztm3bKisrSwsWLNCHH36o3r1753lc+fLltXPnzhz7bX+vilP58uXzrKskOdRgBYlz97xsLq3BbH/v86vBbGOMGTNGd999d64xtWvXzvP4efPmKTU1Ncd4+dm7d6/Gjx+vW2+9Vbt27dLLL7+sUaNG5XtMQc6lXLly8vDwcOv3KLfXb1JSknx8fBQQECAvLy+nz8kW/+GHH6patWpXMGug6LhSCnAif39/tW3bVnv27FGDBg3UpEmTHF+5XTVyMWdc8WH7yNuSJUsc9u/atUv79u1Tu3btJEnR0dEqVapUjri//vrLfpl3ccwrP126dNH+/fvzvay9e/fuOnHihLKysnL9HuRXEJUpUyZHvO2drrwsWLBAS5Ys0WuvvaY1a9bo9OnTDktZ53cu586dy3WVIBtbTi7N2YoVK5SWllagnBXWe++957D9/vvvS5J95SNXzKl79+7au3evatasmev37EqaUlw9BQAly/Tp01WuXDmNHz8+349utW7dWqmpqfrss88c9n/wwQdX/NzO+pvRrl07bdy4MccKZ4sXL5a/v7+aNWtmj/v555/13Xff5YizWCxq27ZtscwrL82bN1dQUJDefPNNGWNyjaldu7ZuuOEGff/997n+LW/SpEm+bwzWrl3bITYyMjLfOaWlpenee+9VZGSkNm3apOHDh2v06NHasWNHvsfdeOONqlmzpt555x37qnGXKl26tJo2baqVK1c65D47O1tLlixR5cqVdeONN+b7PIW1cuVKhyuOUlNT9fHHH6tVq1by9PR0yZw6deokLy8v/fbbb3l+zwqL+guFxZVSwBXYuHFjrh/p6tq1q1599VW1bNlSrVq10mOPPabIyEilpqbqwIED+vjjjy97j4Cbb75ZkvTSSy+pS5cu8vT0VIMGDS7bGLlY7dq1NXToUM2ZM0ceHh7q0qWLDh06pOeff15VqlTRk08+KUkqW7asnn/+eT333HN68MEHdf/99+vEiROaOHGi/Pz8NGHChGKZV36eeOIJLVu2TL169dLo0aN122236ezZs/ryyy/VvXt3tW3bVn379tV7772nrl27auTIkbrtttvk7e2tv/76S5s2bVKvXr101113FXje+fnxxx81YsQIDRw40N6Ievvtt9W7d2/Nnj07x9LCF7v//vu1cOFCPfroo0pISFDbtm2VnZ2tHTt2qG7duurbt686dOigTp066dlnn1VKSopatGihH374QRMmTFBUVJQGDBjglPOw8fHx0axZs3TmzBndeuut2rp1q1544QV16dJFLVu2lCSXzGnSpEnasGGDmjdvrhEjRqh27do6d+6cDh06pLVr1+rNN9+87Mc2L+WM1ywAwH3KlSunMWPG6JlnntH777+v/v375xo3cOBAvfLKK+rfv79eeOEF1apVS5999pnWrVsnSfl+LD4vZcqUUbVq1bR69Wq1a9dOwcHBCgkJuWxj5FITJkyw3ydx/PjxCg4O1nvvvadPP/1U06dPV1BQkCTpySef1OLFi9WtWzdNmjRJ1apV06effqq5c+fqscceszcX3D2vvAQEBGjWrFl6+OGH1b59ew0ZMkQVKlTQgQMH9P333+u1116TZL3aqUuXLurUqZNiYmJUqVIlnTx5Uvv27dN3332n5cuXF2re+Xn00Ud1+PBh7dy5U6VLl9asWbO0bds29e3bV3v27FHZsmXzPPb1119Xjx491KxZMz355JOqWrWqDh8+rHXr1tnfnJs2bZo6dOigtm3b6umnn5aPj4/mzp2rvXv3aunSpXneW+tKeXp6qkOHDho1apSys7P10ksvKSUlRRMnTrTHOHtOkZGRmjRpksaOHavff//dfm+3Y8eO2fN68fMXhLNes7iOFONN1oESx7aSRV5fBw8eNMZYV9F46KGHTKVKlYy3t7cJDQ01zZs3Ny+88ILDeMpldZTz58+bhx9+2ISGhhqLxeIwbm5yW+XOGGOysrLMSy+9ZG688Ubj7e1tQkJCTP/+/c2ff/6ZY4wFCxaYBg0aGB8fHxMUFGR69erlsARsccyrdevW5qabbsp17FOnTpmRI0eaqlWrGm9vbxMWFma6detmfvnlF3tMRkaGmTlzpmnYsKHx8/MzAQEBpk6dOuaRRx4xv/76a57zLowzZ86YOnXqmHr16jmsbGeMdeU3b2/vHKvqXOrs2bNm/Pjx5oYbbjA+Pj6mfPny5o477nBY/vfs2bPm2WefNdWqVTPe3t4mIiLCPPbYY+bUqVMOY1WrVs1069Ytx3Pk9jqzrfQyY8YM+76BAwea0qVLmx9++MG0adPGlCpVygQHB5vHHnvMnDlzJse8izKnS1dSMsa6WsuIESNM9erVjbe3twkODjaNGzc2Y8eOtT9/bvO++DwvXumlsK9ZAIB75Lea8dmzZ03VqlXNDTfcYF9lNbe/GYcPHzZ33323CQgIMGXKlDH33HOPWbt2rZFkVq9ebY+z/W27lK1Oudjnn39uoqKijK+vr5FkBg4cmO955Pb31RhjfvzxR9OjRw8TFBRkfHx8TMOGDR1WBLT5448/TL9+/Uz58uWNt7e3qV27tpkxY0aOFercOS/b6nvLly/Pdey1a9ea1q1bm9KlSxt/f39Tr14989JLLznEfP/996ZPnz4mLCzMeHt7m/DwcHPHHXeYN998M995F8b8+fNzrLRojDEHDhywr4h8Odu2bTNdunQxQUFBxtfX19SsWdM8+eSTDjFfffWVueOOO0zp0qVNqVKlTLNmzczHH3/sEJPX6zmvWvjS16SttnnppZfMxIkTTeXKlY2Pj4+Jiooy69atyzHvoszJ9v3dtGmTw/5Vq1aZtm3bmsDAQOPr62uqVatmevfubT7//PM8533peV6ssK9ZXN8sxuRx/SUA4LoSExOjDz/8UGfOnCnuqQAAUGhTp07VuHHjdPjw4UJfXQsUl0OHDql69eqaMWOGnn766eKeDuB2fHwPAAAAQIli+7hYnTp1lJGRoY0bN+o///mP+vfvT0MKAEoQmlIAAAAAShR/f3+98sorOnTokM6fP6+qVavq2Wef1bhx44p7agCAQuDjewAAAAAAAHC7wi9NAQAAAAAAABQRTSkAAAAAAAC4HfeUykV2drYSExNVpkwZWSyW4p4OAABwMmOMUlNTVbFiRXl48B6du1FrAQBwbStorUVTKheJiYmqUqVKcU8DAAC42J9//slKXcWAWgsAgOvD5WotmlK5KFOmjCRr8gIDA506dkZGhtavX6+OHTvK29vbqWOXJOTBijxYkQcr8mBFHsiBjSvzkJKSoipVqtj/5sO9qLVcjzxYkQcr8kAObMiDFXmwuhpqLZpSubBdRh4YGOiSQsnf31+BgYHX/YufPJAHG/JgRR6syAM5sHFHHvjoWPGg1nI98mBFHqzIAzmwIQ9W5MHqaqi1uIkCAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjntKAQBcKjs7WxcuXChwfEZGhry8vHTu3DllZWW5cGZXL3JgVdQ8+Pj45LsEMQAA14KsrCxlZGQUKJYaw4o8WBUlD97e3vL09CzyHGhKAQBc5sKFCzp48KCys7MLfIwxRuHh4frzzz+v25tQkwOroubBw8ND1atXl4+PjwtmBwBA8TLGKCkpSadPny7UMdQY5MGmqHkoW7aswsPDi5RDmlIAAJcwxujo0aPy9PRUlSpVCnzFSnZ2ts6cOaOAgIDr9ioXcmBVlDxkZ2crMTFRR48eVdWqVa/rghMAcG2yNaTCwsLk7+9foL911BhW5MHqSvNgjFF6err+/vtvSVJERMQVz4GmFADAJTIzM5Wenq6KFSvK39+/wMfZPu7n5+d33RYJ5MCqqHkIDQ1VYmKiMjMzr+vlngEA156srCx7Q6p8+fIFPo4aw4o8WBUlD6VKlZIk/f333woLC7vij/Jdv9kHALiU7XPpfHQKxcX22rue7xUBALg22e4hVZg3/gBns73+CnpPs9zQlAIAuBQfm0Jx4bUHALjW8bcOxckZrz+aUgAAAAAAAHA7mlIAAAAAAABwO5pSAABc49566y37CoizZ88u7ukAAABcU6i1rhxNKQAALhITEyOLxaJHH300x2P/+te/ZLFYFBMTkyPeYrHI29tbNWrU0NNPP620tDSHY1esWKE2bdooKChIAQEBatCggSZNmqSTJ0/mORdPT0/72AEBAWrYsKEWLVpUqPNJSUnR8OHD9eyzz+rIkSMaOnRooY4HAABwJmotXIymFAAAl6hSpYo++OADnT171r7v3LlzWrp0qapWrZojvnPnzjp69Kh+//13vfDCC5o7d66efvpp++Njx47Vfffdp1tvvVWfffaZ9u7dq1mzZun777/Xf//733znsnDhQh09elTff/+97rvvPg0aNEjr1q0r8LkcPnxYGRkZ6tatmyIiIq54lZ6irKoCAABwMWqtnK7XWoumFADArdIvZOb5dS4jy+mxV+KWW25R1apVtXLlSvu+lStXqkqVKoqKisoR7+vrq/DwcFWpUkX9+vXTAw88oFWrVkmSdu7cqalTp2rWrFmaMWOGmjdvrsjISHXo0EErVqzQwIED851L2bJlFR4erpo1a+q5555TcHCw1q9fb388OTlZQ4cOVVhYmAIDA3XHHXfo+++/lyQtWrRIN998sySpRo0aslgsOnTokCTp448/VuPGjeXn56caNWpo4sSJysz8v3xZLBa9+eab6tWrl0qXLq0XXnihwMctWLBAd911l/z9/XXDDTdozZo1Duf0008/qVu3bgoMDFSZMmXUqlUr/fbbb/bHFy5cqLp168rf31+33Xab3njjDftjFy5c0PDhwxURESE/Pz9FRkZq2rRp+eYQAIDrSX7103lqrRyotYq31vJy2cgAAOSi3vi833lqWztUbw9sYt9uPPlznb2kILJpWj1Yyx6Jtm+3fGmTTqZdyBF36MVuVzTPQYMGaeHChXrggQckSe+8844eeughbd68+bLHlipVyv5u13vvvaeAgAD961//yjW2bNmyBZpPVlaWVqxYoZMnT8rb21uSZIxRt27dFBwcrLVr1yooKEjz5s1Tu3bttH//ft13332qUqWK2rdvr507d6pKlSoKDQ3VunXr1L9/f/3nP/+xFym2S80nTJhgf84JEyZo2rRpeuWVV+Tp6Vng4yZOnKjp06drxowZmjNnjh544AH98ccfCg4O1pEjR3T77berTZs22rhxowIDA/XNN9/Yi6358+drwoQJeu2119SwYUNt3bpVTzzxhAICAjRw4ED95z//0Zo1a/S///1PVatW1Z9//qk///yzQDm8lpw6dUojRoywF6E9e/bUnDlz8n09rVy5UvPmzdPu3bt14sQJ7dmzR40aNXKIeeutt/T+++/ru+++U2pqqk6dOpXrmJ9++qkmTZqkH374QaVLl9btt9/u8A8LAEDxya/WalM7VLPvutG+Ta31f6i1iqfWoikFAEAuBgwYoDFjxujQoUOyWCz65ptv9MEHH1y2UNq5c6fef/99tWvXTpL066+/qkaNGvbiprDuv/9+eXp66ty5c8rKylJwcLAefvhhSdKmTZv0448/6u+//5avr68kaebMmVq1apU+/PBDDR06VOXLl5ckhYaGKjw8XJI0ZcoUjR492v7OYY0aNTR58mQ988wzDgVPv3799NBDDznkpCDHxcTE6P7775ckTZ06VXPmzNHOnTvVuXNnvf766woKCtIHH3xgz8mNN/5fcTx58mTNmjVLd999t7Kzs1W+fHkdOnRI8+bN08CBA3X48GHdcMMNatmypSwWi6pVq3ZFeS3p+vXrp7/++ktxcXGSpKFDh2rAgAH6+OOP8zwmLS1NLVq00L333qshQ4bkGpOenq7OnTurc+fOGjNmTK4xK1as0JAhQzR16lTdcccdMsboxx9/LPpJAQCuK9Ra1FoSTSkAgJv9PKlTno95WCwO27ufb1/g2K+fbVu0iV0iJCRE3bp107vvvmt/lywkJCTX2E8++UQBAQHKzMxURkaGevXqpTlz5kiyvsNmuWSuhfHKK6+offv2+vPPPzVq1Cg9+eSTqlWrliRp9+7dOnPmjL0Ysjl79qzDJdqX2r17t3bt2qUpU6bY92VlZencuXNKT0+33wuhSZMmV3RcgwYN7I+XLl1aZcqU0d9//y1Jio+PV6tWrXItHI8fP64///xTgwcPdmiaZGZmKigoSJK1COvQoYNq166tzp07q3v37urYsWM+Gbz27Nu3T3Fxcdq+fbuaNm0qyfquZ3R0tBISElS7du1cjxswYIAk2T9WkJsnnnhCkvL8B0FmZqZGjhypGTNmaPDgwfb9eT0nAMD98qu1LMbo/Nn/u0E4tRa1llS8tRZNKQCAW/n75P+nJzs7u8CxhRn3Sjz00EMaPny4JOn111/PM65t27Z644035O3trYoVKzoUATfeeKO+/vprZWRkXNE7eOHh4apVq5Zq1aql5cuXKyoqSk2aNFG9evWUnZ2tiIiIXBsI+V2qnp2drYkTJ+ruu+/O8Zifn5/9/0uXLn1Fx116nhaLxf59LVWqVL7zkqwNlqZNmyo7O1tnzpxRQECAfcxbbrlFBw8e1GeffabPP/9cffr0Ufv27fXhhx/mOe61Ztu2bQoKCrI3pCSpWbNmCgoK0tatW13aIPruu+905MgReXh4KCoqSklJSWrUqJFmzpypm266Kc/jzp8/r/Pnz9u3U1JSJFlv6ursG7vaxrtebxhrQx6syIMVebj2cpCRkSFjjLKzsx1qJ0ny88r71tHGGJ3////Nzs7ON1ZyrMvyir30+S/HGGN//piYGI0YMUKSNGfOHGVnZzs8botv06aN5s6dm6PWys7O1g033KCvv/5a58+fL3CtZYyx/39YWJhq1KihGjVqaNmyZWrcuLFuueUW1atXT1lZWYqIiNDGjRtzjFG2bFmH/F/6/7GxsbrrrrtyHOfj4+NQF12cv4Ie5+np6XCcxWJRZmam9Xvq5+eQv4vZPsI3b948NW3aVMYYpaWlqXTp0vLy8lJ2drYaNWqk3377TZ999pm++OIL9enTR+3atdPy5ctzjGf7fmVkZMjT09PhsYL+rNGUAgAgD507d9aFC9Z7J3TqlPe7jqVLl7a/o3apfv366T//+Y/mzp2rkSNH5nj89OnTBb7XQa1atXTPPfdozJgxWr16tW655RYlJSXJy8tLkZGRBRpDsjZ2EhIS8pyzs4+7WIMGDfTuu+/m2qSrUKGCKlWqpN9//10PPPCAsrOzlZKSosDAQHl4/F8hHBgYqPvuu0/33Xefevfurc6dO+vkyZMKDg6+4nmVJElJSQoLC8uxPywsTElJSS597t9//12SFBsbq5dfflmRkZGaNWuWWrdurf379+f5PZg2bZomTpyYY//69euveJWiy9mwYYNLxi1pyIMVebAiD9dODry8vBQeHq4zZ87Ya5XCSE1NdcGsCiYjI0OZmZlKSUlR8+bN7W9aREdHKyUlxX411MVvYPj6+tr/9p09e9Zh1T7bfRVfeeUVPfroozmeLzk52X4VUG7Onj1rf66wsDD16NFDzzzzjN5//33Vrl1bSUlJOnfuXK6rAqakpCgtzXrl2ZkzZ+zjNGjQQHv37tUjjzyS45gzZ87k+txFOc4Yo3PnziklJUW1a9fW0qVLdeLEiRy1VqlSpVSxYkX98ssv6tGjR67nY9OlSxf7V+/evfXHH3+oXLlyDvEXLlzQ2bNntWXLFoebsUvWWwIUBE0pAADy4OnpqX379tn//0o0bdpUzzzzjJ566ikdOXJEd911lypWrKgDBw7ozTffVMuWLXNtVuXlqaeeUsOGDfXtt9+qffv2io6O1p133qmXXnpJtWvXVmJiotauXas777wzxyXhNuPHj1f37t1VpUoV3XvvvfLw8NAPP/ygH3/80b7yizOPu9jw4cM1Z84c9e3bV2PGjFFQUJC2b9+u2267TbVr11ZsbKxGjBihwMBAderUSSdOnNAvv/yi5ORkjRo1Sq+88ooiIiLUqFEjeXh4aPny5QoPDy9wY+9qFhsbm2vj5mK7du2SpFw/plDUjy8UhO1d17Fjx+qee+6RZF3Bp3Llylq+fHmuRbQkjRkzRqNGjbJvp6SkqEqVKurYsaMCAwOdOseMjAxt2LBBHTp0uOL7i1wLyIMVebAiD9deDs6dO6c///xTAQEBDlcrX44xRqmpqSpTpozL/2bkxdvbW15eXvbf/z///LMk2be9vLzk7e1t3740/lJ33HGH/v3vf2vcuHE6ceKE7rzzTnutNW/ePLVs2dJ+NZaNLQ+StVFz8djPPvusoqKitH//fvXs2VPR0dF68MEHNW3aNHut9dlnn6lXr15q0qSJ/crygIAA+zixsbHq2bOnatSood69e9trpr1792ry5Mn257r0ua/0OIvFIj8/PwUGBmrUqFGaP3++HnnkEY0ePTpHrTVhwgQ98cQTCg0NVadOnXTy5En98ssvOn36tJ588knNnj1b4eHh9lpr7dq19pUPL36TULK+DkuVKqXbb789x+vw4gZXfmhKAQCQD2f8g/mll15S48aN9frrr+vNN99Udna2atasqd69e192meJL3XzzzWrfvr3Gjx+vtWvXau3atRo7dqweeughHT9+XOHh4br99ttVoUKFPMfo1KmTPvnkE02aNEnTp0+Xt7e36tSpY7+pp7OPu1j58uW1ceNG/fvf/1br1q3l6empRo0aqUWLFpKkhx9+WP7+/poxY4aeeeYZ+fv7q0GDBvZ7HQUEBOill17Sr7/+Kk9PT916661au3ZtjiKpJBo+fLj69u2bb0xkZKR++OEHHTt2LMdjx48fz/f77gwRERGSpHr16tn3+fr6qkaNGjp8+HCex/n6+tpvEHsxb29vl/3j0JVjlyTkwYo8WJGHaycHWVlZslgs8vDwKNTfQNubC7Zji4PFYnF4/kvfWLr08Uu3czN9+nQ1adJEr7/+uubNm+dQa8XExOQ49uKPtl2aw4YNG6p9+/aKjY11qLUefvhhh1orIiLC4diL/79Lly72mmnGjBkONdPFz3Xpc1/pcRfvCw0Ntddabdu2tddarVq1koeHh4YOHaqAgADNmDFDzz77rEOt5eHhoTJlymjGjBk5ai0vr5ztIw8PD1ksllx/rgr8c2aQQ3JyspFkkpOTnT72hQsXzKpVq8yFCxecPnZJQh6syIMVebC61vJw9uxZ8/PPP5uzZ88W6risrCxz6tQpk5WV5aKZXf3IgVVR85Dfa9CVf+td7eeffzaSzI4dO+z7tm/fbiSZX3755bLHHzx40Egye/bsyTNm06ZNRpI5deqUw/7k5GTj6+trFixYYN934cIFExYWZubNm1fgc6DWcj3yYEUerMjDtZcD6qyiIQ9WV0OtVaxvK27ZskU9evRQxYoVZbFYtGrVqnzjV65cqQ4dOig0NFSBgYGKjo7WunXrcsTNnj1btWvXVqlSpVSlShU9+eSTOnfunIvOAgAAwH3q1q2rzp07a8iQIdq+fbu2b9+uIUOGqHv37g43Oa9Tp44++ugj+/bJkycVHx9v/5hEQkKC4uPjHe5DlZSUpPj4eB04cECS9OOPPyo+Pl4nT56UZL1y8NFHH9WECRO0fv16JSQk6LHHHpMk3XvvvS4/dwAAcG0p1qZUWlqaGjZsqNdee61A8Vu2bFGHDh20du1a7d69W23btlWPHj20Z88ee8x7772n0aNHa8KECdq3b5/efvttLVu2TGPGjHHVaQAAALjVe++9p5tvvlkdO3ZUx44d1aBBA/33v/91iElISFBycrJ9e82aNYqKilK3bt0kSX379lVUVJTefPNNe8ybb76pqKgo+zLRt99+u6KiorRmzRp7zIwZM9S3b18NGDBAt956q/744w9t3Lgxx81PAQAALqdY7yllu5N7Qc2ePdthe+rUqVq9erU+/vhjRUVFSbIuk9yiRQv169dPkvXeC/fff7927tyZ57gsU+x+5MGKPFiRB6trLQ/5LVWcH/P/l+g1eSxlez0gB1ZFzYMzlim+WgUHB2vJkiX5xpiLlruWpJiYGMXExOR7TGxsrGJjY/ON8fb21syZMzVz5syCTBUAACBPJfpG59nZ2UpNTXVYfrhly5ZasmSJdu7cqdtuu02///671q5dm++NZFmmuPiQByvyYEUerK6VPJTkpYqvFuTA6krz4IxligEAAOA6JbopNWvWLKWlpalPnz72fX379tXx48fVsmVLGWOUmZmpxx57TKNHj85zHJYpdj/yYEUerMiD1bWWh/Pnz+vw4cMqXbq0SpUqVeDjzFWwVHFxIwdWRc3D2bNnVapUKbVu3TrHym8FXaYYAICr2fV8RTWKnzNefyW2KbV06VLFxsZq9erVCgsLs+/fvHmzpkyZorlz56pp06Y6cOCARo4cqYiICD3//PO5jsUyxcWHPFiRByvyYHWt5MG2LO2JEycUGhpa4KZCdna2Lly4oPPnzxfbUsXFjRxYFSUPxhidOHFCHh4eKlWqVI6P710LP2MAgOuXj4+PPDw8lJiYqNDQUPn4+BSo1rL9bT137hw1Bnm44jwYY3ThwgUdP35cHh4e8vHxueI5lMim1LJlyzR48GAtX75c7du3d3js+eef14ABA/Twww9Lkm6++WalpaVp6NChGjt27HX9ggMAd/L09FTlypX1119/6dChQwU+zhhjv8Ller1KiBxYFTUPFotFlStXztGQAgCgpPPw8FD16tV19OhRJSYmFvg4agwr8mBV1Dz4+/uratWqReqzlLim1NKlS/XQQw9p6dKl9tVjLpaenp4jIZ6enjLG5LjhJwDAtQICAnTDDTcU6qbSGRkZ2rJli26//fbr9moWcmBV1Dx4e3vTkAIAXLN8fHxUtWpVZWZmKisrq0DHUGNYkQerouTB09NTXl5eRW7qFWtT6syZMzpw4IB9++DBg4qPj1dwcLCqVq2qMWPG6MiRI1q8eLEka0PqwQcf1KuvvqpmzZopKSlJklSqVCkFBQVJknr06KGXX35ZUVFR9o/vPf/88+rZsyeFKQAUA09Pz0L9/vX09FRmZqb8/Pyu2yKBHFiRBwAA8mexWAp16wf+tlqRB6urIQ/F2pT69ttv1bZtW/u27WbjAwcO1KJFi3T06FEdPnzY/vi8efOUmZmpYcOGadiwYfb9tnhJGjdunCwWi8aNG6cjR44oNDRUPXr00JQpU9xzUgAAAAAAALisYm1KtWnTJt+P1NkaTTabN2++7JheXl6aMGGCJkyYUMTZAQAAAAAAwFW46zcAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAEAJc+rUKQ0YMEBBQUEKCgrSgAEDdPr06XyPWblypTp16qSQkBBZLBbFx8fniHnrrbfUpk0bBQYGymKx5Drm/v371atXL4WEhCgwMFAtWrTQpk2bnHNiAADgukJTCgAAoITp16+f4uPjFRcXp7i4OMXHx2vAgAH5HpOWlqYWLVroxRdfzDMmPT1dnTt31nPPPZdnTLdu3ZSZmamNGzdq9+7datSokbp3766kpKQrPh8AAHB98iruCQAAAKDg9u3bp7i4OG3fvl1NmzaVJM2fP1/R0dFKSEhQ7dq1cz3O1rQ6dOhQnmM/8cQTkqTNmzfn+vg///yjAwcO6J133lGDBg0kSS+++KLmzp2rn376SeHh4Vd2UgAA4LpEUwoAAKAE2bZtm4KCguwNKUlq1qyZgoKCtHXr1jybUs5Qvnx51a1bV4sXL9Ytt9wiX19fzZs3TxUqVFDjxo3zPO78+fM6f/68fTslJUWSlJGRoYyMDKfO0Taes8ctaciDFXmwIg/kwIY8WJEHK1fmoaBj0pQCAAAoQZKSkhQWFpZjf1hYmMs/QmexWLRhwwb16tVLZcqUkYeHhypUqKC4uDiVLVs2z+OmTZumiRMn5ti/fv16+fv7u2SuGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAADAVSA2NjbXxs3Fdu3aJcnaHLqUMSbX/c5kjNG//vUvhYWF6auvvlKpUqW0YMECde/eXbt27VJERESux40ZM0ajRo2yb6ekpKhKlSrq2LGjAgMDnTrHjIwMbdiwQR06dJC3t7dTxy5JyIMVebAiD+TAhjxYkQcrV+bBdlX05dCUAgAAuAoMHz5cffv2zTcmMjJSP/zwg44dO5bjsePHj6tChQqump4kaePGjfrkk0906tQpezNp7ty52rBhg959912NHj061+N8fX3l6+ubY7+3t7fL/jHgyrFLEvJgRR6syAM5sCEPVuTByhV5KOh4xbr63pYtW9SjRw9VrFhRFotFq1atyjd+5cqV6tChg0JDQxUYGKjo6GitW7cuR9zp06c1bNgwRUREyM/PT3Xr1tXatWtddBYAAABFFxISojp16uT75efnp+joaCUnJ2vnzp32Y3fs2KHk5GQ1b97cpXO0XYrv4eFYQnp4eCg7O9ulzw0AAK49xdqUSktLU8OGDfXaa68VKH7Lli3q0KGD1q5dq927d6tt27bq0aOH9uzZY4+5cOGCOnTooEOHDunDDz9UQkKC5s+fr0qVKrnqNAAAANymbt266ty5s4YMGaLt27dr+/btGjJkiLp37+5wk/M6deroo48+sm+fPHlS8fHx+vnnnyVJCQkJio+Pd7gPVVJSkuLj43XgwAFJ0o8//qj4+HidPHlSkhQdHa1y5cpp4MCB+v7777V//379+9//1sGDB9WtWzd3nD4AALiGFOvH97p06aIuXboUOH727NkO21OnTtXq1av18ccfKyoqSpL0zjvv6OTJk9q6dav9crFq1ao5bc4AAADF7b333tOIESPUsWNHSVLPnj1zvMmXkJCg5ORk+/aaNWs0aNAg+7bto4ITJkxQbGysJOnNN990uK/V7bffLklauHChYmJiFBISori4OI0dO1Z33HGHMjIydNNNN2n16tVq2LChS84VAABcu0r0PaWys7OVmpqq4OBg+741a9YoOjpaw4YN0+rVqxUaGqp+/frp2WeflaenZ67jsEyx+5EHK/JgRR6syIMVeSAHNlfDMsVXq+DgYC1ZsiTfGGOMw3ZMTIxiYmLyPSY2NtbeoMpLkyZNcr19AgAAQGGV6KbUrFmzlJaWpj59+tj3/f7779q4caMeeOABrV27Vr/++quGDRumzMxMjR8/PtdxWKa4+JAHK/JgRR6syIMVeSAHNsW5TDEAAABcp8Q2pZYuXarY2FitXr1aYWFh9v3Z2dkKCwvTW2+9JU9PTzVu3FiJiYmaMWNGnk0plil2P/JgRR6syIMVebAiD+TA5mpYphgAAACuUyKbUsuWLdPgwYO1fPlytW/f3uGxiIgIeXt7O3xUr27dukpKStKFCxfk4+OTYzyWKS4+5MGKPFiRByvyYEUeyIFNcS5TDAAAANcp1tX3rsTSpUsVExOj999/P9dVXlq0aKEDBw44LEu8f/9+RURE5NqQAgAAAAAAgPsVa1PqzJkzio+PV3x8vCTp4MGDio+P1+HDhyVZP1b34IMP2uOXLl2qBx98ULNmzVKzZs2UlJSkpKQkh5VlHnvsMZ04cUIjR47U/v379emnn2rq1KkaNmyYW88NAAAAAAAAeSvWptS3336rqKgoRUVFSZJGjRqlqKgo+72fjh49am9QSdK8efOUmZmpYcOGKSIiwv41cuRIe0yVKlW0fv167dq1Sw0aNNCIESM0cuRIjR492r0nBwAAAAAAgDwV6z2l2rRpk2O54ostWrTIYXvz5s0FGjc6Olrbt28vwswAAAAAAADgSiXunlIAAAAAAAAo+WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAlDCnTp3SgAEDFBQUpKCgIA0YMECnT5/O95iVK1eqU6dOCgkJkcViUXx8vMPjJ0+e1OOPP67atWvL399fVatW1YgRI5ScnFzk5wYAAMgNTSkAAIASpl+/foqPj1dcXJzi4uIUHx+vAQMG5HtMWlqaWrRooRdffDHXxxMTE5WYmKiZM2fqxx9/1KJFixQXF6fBgwcX+bkBAABy41XcEwAAAEDB7du3T3Fxcdq+fbuaNm0qSZo/f76io6OVkJCg2rVr53qcrXF06NChXB+vX7++VqxYYd+uWbOmpkyZov79+yszM1NeXl5X/Nznz5/X+fPn7dspKSmSpIyMDGVkZBQuAZdhG8/Z45Y05MGKPFiRB3JgQx6syIOVK/NQ0DFpSgEAAJQg27ZtU1BQkL0pJEnNmjVTUFCQtm7dmmdj6EokJycrMDBQXl5eRXruadOmaeLEiTn2r1+/Xv7+/k6b78U2bNjgknFLGvJgRR6syAM5sCEPVuTByhV5SE9PL1AcTSkAAIASJCkpSWFhYTn2h4WFKSkpyWnPc+LECU2ePFmPPPJIkZ97zJgxGjVqlH07JSVFVapUUceOHRUYGOi0OUvWd2Y3bNigDh06yNvb26ljlyTkwYo8WJEHcmBDHqzIg5Ur82C7KvpyaEoBAABcBWJjY3O9muhiu3btkiRZLJYcjxljct1/JVJSUtStWzfVq1dPEyZMcHjsSp7b19dXvr6+OfZ7e3u77B8Drhy7JCEPVuTBijyQAxvyYEUerFyRh4KOV6w3Ot+yZYt69OihihUrymKxaNWqVfnGr1y5Uh06dFBoaKgCAwMVHR2tdevW5Rn/wQcfyGKx6M4773TuxAEAAJxs+PDh2rdvX75f9evXV3h4uI4dO5bj+OPHj6tChQpFnkdqaqo6d+6sgIAAffTRRw5FpaufGwAAXF+K9UqptLQ0NWzYUIMGDdI999xz2fgtW7aoQ4cOmjp1qsqWLauFCxeqR48e2rFjh6Kiohxi//jjDz399NNq1aqVq6YPAADgNCEhIQoJCblsXHR0tJKTk7Vz507ddtttkqQdO3YoOTlZzZs3L9IcUlJS1KlTJ/n6+mrNmjXy8/Nz23MDAIDrT7E2pbp06aIuXboUOH727NkO21OnTtXq1av18ccfOzSlsrKy9MADD2jixIn66quvdPr0aSfNGAAAoHjVrVtXnTt31pAhQzRv3jxJ0tChQ9W9e3eHG43XqVNH06ZN01133SVJOnnypA4fPqzExERJUkJCgiTr1U/h4eFKTU1Vx44dlZ6eriVLliglJcV+P4jQ0FB5enoW+LkBAAAKokTfUyo7O1upqakKDg522D9p0iSFhoZq8ODB+uqrry47DssUux95sCIPVuTBijxYkQdyYHM1LFN8tXrvvfc0YsQIdezYUZLUs2dPvfbaaw4xCQkJSk5Otm+vWbNGgwYNsm/37dtXkjRhwgTFxsZq9+7d2rFjhySpVq1aDmMdPHhQkZGRBX5uAACAgijRTalZs2YpLS1Nffr0se/75ptv9Pbbbys+Pr7A47BMcfEhD1bkwYo8WJEHK/JADmyKc5niq1VwcLCWLFmSb4wxxmE7JiZGMTExeca3adMmxzFX+twAAAAFUWKbUkuXLlVsbKxWr15tX5o4NTVV/fv31/z58wt0TwYblil2P/JgRR6syIMVebAiD+TA5mpYphgAAACuUyKbUsuWLdPgwYO1fPlytW/f3r7/t99+06FDh9SjRw/7vuzsbEmSl5eXEhISVLNmzRzjsUxx8SEPVuTBijxYkQcr8kAObIpzmWIAAAC4TolrSi1dulQPPfSQli5dqm7dujk8VqdOHf34448O+8aNG6fU1FS9+uqrqlKlijunCgAAAAAAgDwUqCn1ww8/FHrgevXqycsr/+HPnDmjAwcO2LcPHjyo+Ph4BQcHq2rVqhozZoyOHDmixYsXS7I2pB588EG9+uqratasmZKSkiRJpUqVUlBQkPz8/FS/fn2H5yhbtqwk5dgPAABwJVxVFwEAAFxvClQdNWrUSBaLpUA3v5QkDw8P7d+/XzVq1Mg37ttvv1Xbtm3t27b7Og0cOFCLFi3S0aNHdfjwYfvj8+bNU2ZmpoYNG6Zhw4bZ99viAQAAXM1VdREAAMD1psBv2e3YsUOhoaGXjTPGFPiqpMut8nJpo2nz5s0FGje/MQAAAIrKFXURAADA9aZATanWrVurVq1a9o/CXc7tt9+uUqVKFWVeAAAAVyXqIgAAAOcoUFNq06ZNhRp07dq1VzQZAACAqx11EQAAgHN4FPcEAAAAAAAAcP0p8D2lJk2aVKC48ePHX/FkAAAASgLqIgAAgKIrcFPqo48+yvMxi8WihIQEnTt3juILAABc86iLAAAAiq7ATak9e/bkuj8+Pl6jR4/W3r17NWTIEKdNDAAA4GpFXQQAAFB0V3xPqYMHD6p///669dZbFRQUpJ9++klvvvmmM+cGAABQIlAXAQAAFF6hm1L//POPHn/8cdWpU0dHjx7V1q1btWzZMt1www2umB8AAMBVi7oIAADgyhX443tpaWmaOXOmXn75ZdWqVUsff/yxOnbs6Mq5AQAAXJWoiwAAAIquwE2pmjVrKjU1VY8//rjuv/9+WSwW/fDDDzniGjRo4NQJAgAAXG2oiwAAAIquwE2pv//+W5I0ffp0zZgxQ8YY+2MWi0XGGFksFmVlZTl/lgAAAFcR6iIAAICiK3BT6uDBg66cBwAAQIlBXQQAAFB0BW5KVatWzZXzAAAAKDGoiwAAAIquQKvv/fDDD8rOzi7woD/99JMyMzOveFIAAABXK+oiAAAA5yhQUyoqKkonTpwo8KDR0dE6fPjwFU8KAADgakVdBAAA4BwF+vieMUbPP/+8/P39CzTohQsXijQpAACAqxV1EQAAgHMUqCl1++23KyEhocCDRkdHq1SpUlc8KQAAgKsVdREAAIBzFKgptXnzZhdPAwAAoGSgLgIAAHCOAt1TCgAAAAAAAHAmmlIAAAAAAABwO5pSAAAAAAAAcDuaUgAAAAAAAHA7mlIAAAAAAABwuytqSv33v/9VixYtVLFiRf3xxx+SpNmzZ2v16tVOnRwAAMDVjroIAADgyhS6KfXGG29o1KhR6tq1q06fPq2srCxJUtmyZTV79mxnzw8AAOCqRV0EAABw5bwKe8CcOXM0f/583XnnnXrxxRft+5s0aaKnn37aqZO7Vp3PktIvZMrbWHI85mGxyM/b076dfiEzz3GKEnv2QpaMTK6xFllUyufKYs9lZCnb5B4rSf4+//eSu5BPHi6NLcy4l4st5e0pi8X6nOczs5SV7ZxYPy9PeXhYYy9kZiszO7tAsZnZ+efB18tTngUc9+LYjKxsZWTlHevj6SEvT49Cx2ZmZetCPrHenh7yvoLYbJN/Hrw8POTjZY3NyjY6n5mV57gXx2ZnG51zUqynh0W+XtbXuzFGZzOcE5vbz3Jeebiefkecy8hSRh55yC32Wvod4XnR/Arzc3+t/Y5QPudytaAuujpRa1lRa1FrUWtZeVgs8rxo21U/9yXhd4T3Rd9+Z/7cl7TfEdRa/99VUGsVuil18OBBRUVF5djv6+urtLQ0p0zqWvfMTi89s3Njro+1rR2qhYNus283nvx5nr9gm1YP1rJHou3bLV/apJNpF3KNbVA5SGuGt7Rvt3/5Sx05fTbX2BvCArRhVGv7ds/Xvtavf5/JNbZS2VL6ZvQd9u0+87bph7+Sc40NLu2j757vYN+e94un/p1HHkp5e2rf5M727ceW7NamhOO5xkrSoRe72f9/1P/itfbHpDxjf57Uyf5L87mVe7Xiu7/yjN09rr3KB/hKkl74ZJ/+u/2PPGO/eqatqgT7S5Jmrk/QW1t+zzN2/ZO368YKZSRJG4546KnJuedBklYPa6GGVcpKkhZ+c1DTPvslz9ilQ5opumZ56//vPKzxq3/KM/admCa6o04FSdKqPUf07w9/yDP29X63qFuDCEnSup+Oadj73+UZO6N3A93bpIokacuvx/XQom/zjJ3U6yY9GB0pSfotxaIn88nDmC519EjrmpKkvUeS1ev1b/KMHdnuBj3Z4UZJ0oHjZ9TxlS15xg69vYae61pXknTk9Fm1mr4pz9gBzapp8p31JUkn0y6o8Quf5xl7zy2VNatPQ0nS2Yws1Ru/Ls/YrjeHa+4Dje3bDfPJw/X0O2Lw4u+089CpXGOv9d8Ra4c3t///65sO6NUvfs0z9lr+HTGhex0F5/no1YG66OpErWVFrUWtRa1l1fXmcL3ap4F9O7/Ya/13xI7RbezbA9/ZqR0HT+Yae63/jqDWsroaaq1Cf3yvevXqio+Pz7H/s88+U7169ZwxJwAAgBKBuggAAODKWYzJ57q6XCxcuFDPP/+8Zs2apcGDB2vBggX67bffNG3aNC1YsEB9+/Z11VzdJiUlRUFBQUpOTlZgYKBTx87IyNBHH69Vp04d5e3tnePxa/1yUVtHPCMjQ6s+XquOeeTh4tjCjFuQ2KvhclFbbEZGhtZ8slbtO+adh2v5clFbbEZGhj75dK3u6JB3Hq71S8r9vD2VkZGhtWvXqk37vPNwPfyOsOXhjg6d5OmV9wW91/LvCE+Trbi4z9S1a1cZi+d1fEl5ljasi1PXrl3z/Jm4Us76W3891EWuQK1FrXUlsdRaVtRahY+1fnwvW2vXrlXXrl3zvT3Atf47wtti7HnIksd1/PE9ai1JV0WtVeiP7w0aNEiZmZl65plnlJ6ern79+qlSpUp69dVXKbwKyNfT+kPr7X359F/8w+3M2It/cTkz9uJftJfjU4g8FGbcwsTa/pA5O9bHy0M+BbwQ0cuj4HkozLgX/zJyZqzXRb8QnRnrYSl4Hjw9LAV+vXu4KNZicU2sVPA82GILM25BXQ2/I/y8PQuch2vtd0RGRkaBYwsz7sVKwu+IjIxCvW9WLIqrLjp16pRGjBihNWvWSJJ69uypOXPmqGzZsnkes3LlSs2bN0+7d+/WiRMntGfPHjVq1Mj++MmTJzVhwgStX79ef/75p0JCQnTnnXdq8uTJCgoKkiQdOnRIkydP1saNG5WUlKSKFSuqf//+Gjt2rHx8fFx2voVFrWVFrWVFrWV1vddaGRn/9w9zV/3cl4TfERfXGK76uS8JvyOotayuhlqr0E0pSRoyZIiGDBmif/75R9nZ2QoLC3P2vAAAAEqE4qiL+vXrp7/++ktxcXGSpKFDh2rAgAH6+OOP8zwmLS1NLVq00L333qshQ4bkeDwxMVGJiYmaOXOm6tWrpz/++EOPPvqoEhMT9eGHH0qSfvnlF2VnZ2vevHmqVauW9u7dqyFDhigtLU0zZ850zckCAIBr1hXd6DwzM1M33HCDQkJC7Pt//fVXeXt7KzIy0pnzAwAAuGoVR120b98+xcXFafv27WratKkkaf78+YqOjlZCQoJq166d63EDBgyQZL3aKTf169fXihUr7Ns1a9bUlClT1L9/f2VmZsrLy0udO3dW587/d+PbGjVqKCEhQW+88Ua+Tanz58/r/Pnz9u2UlBRJ1neqL3632hls4zl73JKGPFiRByvyQA5syIMVebByZR4KOmahm1IxMTF66KGHdMMNNzjs37FjhxYsWKDNmzcXdkgAAIASqTjqom3btikoKMjekJKkZs2aKSgoSFu3bs2zKXUlbPeB8Mrn/m7JyckKDs5/7Z5p06Zp4sSJOfavX79e/v7+RZ5nbjZs2OCScUsa8mBFHqzIAzmwIQ9W5MHKFXlIT08vUFyhm1J79uxRixYtcuxv1qyZhg8fXtjhAAAASqziqIuSkpJy/YhgWFiYkpLyXoK7sE6cOKHJkyfrkUceyTPmt99+05w5czRr1qx8xxozZoxGjRpl305JSVGVKlXUsWNHl9zofMOGDerQoYPTb9pakpAHK/JgRR7IgQ15sCIPVq7Mg+2q6MspdFPKYrEoNTU1x/7k5GRlZeW94gEAAMC1xpl1UWxsbK5XE11s165d9ue9lDEm1/1XIiUlRd26dVO9evU0YcKEXGMSExPVuXNn3XvvvXr44YfzHc/X11e+vr459nt7e7vsHwOuHLskIQ9W5MGKPJADG/JgRR6sXJGHgo5XsFu2X6RVq1aaNm2aQ6GVlZWladOmqWXLloUaa8uWLerRo4cqVqwoi8WiVatW5Ru/cuVKdejQQaGhoQoMDFR0dLTWrVvnEDN//ny1atVK5cqVU7ly5dS+fXvt3LmzUPMCAAAoCGfWRcOHD9e+ffvy/apfv77Cw8N17NixHMcfP35cFSpUKPI5paamqnPnzgoICNBHH32Ua1GZmJiotm3bKjo6Wm+99VaRnxMAAFyfCn2l1EsvvaTWrVurdu3aatWqlSTpq6++UkpKijZu3FiosdLS0tSwYUMNGjRI99xzz2Xjt2zZog4dOmjq1KkqW7asFi5cqB49emjHjh2KioqSJG3evFn333+/mjdvLj8/P02fPl0dO3bUTz/9pEqVKhX2dAEAAPLkzLooJCTE4WbpeYmOjlZycrJ27typ2267TZL1HlbJyclq3rx54U/iIikpKerUqZN8fX21Zs0a+fn55Yg5cuSI2rZtq8aNG2vhwoXy8Cj0e5wAAACSrqApddNNN+mHH37Qa6+9pu+//16lSpXSgw8+qOHDh1/2JpeX6tKli7p06VLg+NmzZztsT506VatXr9bHH39sb0q99957DjHz58/Xhx9+qC+++EIPPvhgruOyIoz7kQcr8mBFHqzIgxV5IAc2V8OKMJfjzLqooOrWravOnTtryJAhmjdvniRp6NCh6t69u8NNzuvUqaNp06bprrvukiSdPHlShw8fVmJioiQpISFBkhQeHq7w8HClpqaqY8eOSk9P15IlS5SSkmKviUJDQ+Xp6anExES1adNGVatW1cyZM3X8+HH784WHh7vkfAEAwLWrUE2pjIwMdezYUfPmzdPUqVNdNacCy87OVmpqar5FX3p6ujIyMvKNYUWY4kMerMiDFXmwIg9W5IEc2BTnijD5Kc666L333tOIESPUsWNHSVLPnj312muvOcQkJCQoOTnZvr1mzRoNGjTIvt23b19J0oQJExQbG6vdu3drx44dkqRatWo5jHXw4EFFRkZq/fr1OnDggA4cOKDKlSs7xBhjnHeCAADgulCoppS3t7f27t3rtJtoFtWsWbOUlpamPn365BkzevRoVapUSe3bt88zhhVh3I88WJEHK/JgRR6syAM5sLkaVoTJT3HWRcHBwVqyZEm+MZc2iWJiYhQTE5NnfJs2bS7bWLrcGAAAAIVR6I/vPfjgg3r77bf14osvumI+BbZ06VLFxsZq9erVuS6LLEnTp0/X0qVLtXnz5lzviWDDijDFhzxYkQcr8mBFHqzIAzmwKc4VYS7naqmLAAAASqJCN6UuXLigBQsWaMOGDWrSpIlKly7t8PjLL7/stMnlZdmyZRo8eLCWL1+e5xVQM2fO1NSpU/X555+rQYMGLp8TAAC4/lwNdREAAEBJVeim1N69e3XLLbdIkvbv3+/wmDsuX1+6dKkeeughLV26VN26dcs1ZsaMGXrhhRe0bt06NWnSxOVzAgAA16firosAAABKskI3pTZt2uS0Jz9z5owOHDhg3z548KDi4+MVHBysqlWrasyYMTpy5IgWL14sydqQevDBB/Xqq6+qWbNmSkpKkiSVKlVKQUFBkqwf2Xv++ef1/vvvKzIy0h4TEBCggIAAp80dAADAmXURAADA9cajKAf/9ddfOnLkyBUf/+233yoqKkpRUVGSpFGjRikqKkrjx4+XJB09elSHDx+2x8+bN0+ZmZkaNmyYIiIi7F8jR460x8ydO1cXLlxQ7969HWJmzpx5xfMEAAC4nKLWRQAAANebQl8plZ2drRdeeEGzZs3SmTNnJEllypTRU089pbFjx8rDo+B9rsut8rJo0SKH7c2bN192zEOHDhX4+QEAAIrCmXURAADA9abQTamxY8faV5lp0aKFjDH65ptvFBsbq3PnzmnKlCmumCcAAMBVh7oIAADgyhW6KfXuu+9qwYIF6tmzp31fw4YNValSJf3rX/+i+AIAANcN6iIAAIArV+hryk+ePKk6derk2F+nTh2dPHnSKZMCAAAoCaiLAAAArlyhm1INGzbUa6+9lmP/a6+9poYNGzplUgAAACUBdREAAMCVK/TH96ZPn65u3brp888/V3R0tCwWi7Zu3ao///xTa9eudcUcAQAArkrURQAAAFeu0FdKtW7dWvv379ddd92l06dP6+TJk7r77ruVkJCgVq1auWKOAAAAVyXqIgAAgCtX4Culfv/9d1WvXl0Wi0UVK1bkxp0AAOC6RV0EAABQdAW+UuqGG27Q8ePH7dv33Xefjh075pJJAQAAXM2oiwAAAIquwE0pY4zD9tq1a5WWlub0CQEAAFztqIsAAACKrtD3lAIAAAAAAACKqsBNKYvFIovFkmMfAADA9Ya6CAAAoOgKfKNzY4xiYmLk6+srSTp37pweffRRlS5d2iFu5cqVzp0hAADAVYa6CAAAoOgK3JQaOHCgw3b//v2dPhkAAICSgLoIAACg6ArclFq4cKEr5wEAAFBiUBcBAAAUHTc6BwAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAoYU6dOqUBAwYoKChIQUFBGjBggE6fPp3vMStXrlSnTp0UEhIii8Wi+Ph4h8dPnjypxx9/XLVr15a/v7+qVq2qESNGKDk5Odfxzp8/r0aNGuU6FgAAQEHQlAIAAChh+vXrp/j4eMXFxSkuLk7x8fEaMGBAvsekpaWpRYsWevHFF3N9PDExUYmJiZo5c6Z+/PFHLVq0SHFxcRo8eHCu8c8884wqVqxY5HMBAADXL6/ingAAAAAKbt++fYqLi9P27dvVtGlTSdL8+fMVHR2thIQE1a5dO9fjbE2rQ4cO5fp4/fr1tWLFCvt2zZo1NWXKFPXv31+ZmZny8vq/svGzzz7T+vXrtWLFCn322WdOOjMAAHC9oSkFAABQgmzbtk1BQUH2hpQkNWvWTEFBQdq6dWueTakrkZycrMDAQIeG1LFjxzRkyBCtWrVK/v7+BRrn/PnzOn/+vH07JSVFkpSRkaGMjAynzdc25sX/vV6RByvyYEUeyIENebAiD1auzENBx6QpBQAAUIIkJSUpLCwsx/6wsDAlJSU57XlOnDihyZMn65FHHrHvM8YoJiZGjz76qJo0aZLnVVeXmjZtmiZOnJhj//r16wvc2CqsDRs2uGTckoY8WJEHK/JADmzIgxV5sHJFHtLT0wsUR1MKAADgKhAbG5tr4+Ziu3btkiRZLJYcjxljct1/JVJSUtStWzfVq1dPEyZMsO+fM2eOUlJSNGbMmEKNN2bMGI0aNcph/CpVqqhjx44KDAx0ypxtMjIytGHDBnXo0EHe3t5OHbskIQ9W5MGKPJADG/JgRR6sXJkH21XRl1OsTaktW7ZoxowZ2r17t44ePaqPPvpId955Z57xK1eu1BtvvKH4+HidP39eN910k2JjY9WpUyeHuBUrVuj555/Xb7/9Zr8fwl133eXiswEAALhyw4cPV9++ffONiYyM1A8//KBjx47leOz48eOqUKFCkeeRmpqqzp07KyAgQB999JFDkbpx40Zt375dvr6+Dsc0adJEDzzwgN59991cx/T19c1xjCR5e3u77B8Drhy7JCEPVuTBijyQAxvyYEUerFyRh4KOV6xNqbS0NDVs2FCDBg3SPffcc9n4LVu2qEOHDpo6darKli2rhQsXqkePHtqxY4eioqIkWe+zcN9992ny5Mm666679NFHH6lPnz76+uuvHe69AAAAcDUJCQlRSEjIZeOio6OVnJysnTt36rbbbpMk7dixQ8nJyWrevHmR5pCSkqJOnTrJ19dXa9askZ+fn8Pj//nPf/TCCy/YtxMTE9WpUyctW7aMOgsAABRasTalunTpoi5duhQ4fvbs2Q7bU6dO1erVq/Xxxx/bm1KzZ89Whw4d7JeVjxkzRl9++aVmz56tpUuXOm3uAAAAxaFu3brq3LmzhgwZonnz5kmShg4dqu7duzvc5LxOnTqaNm2a/WrxkydP6vDhw0pMTJQkJSQkSJLCw8MVHh6u1NRUdezYUenp6VqyZIlSUlLsl96HhobK09NTVatWdZhLQECAJOtKfZUrV3btiQMAgGtOib6nVHZ2tlJTUxUcHGzft23bNj355JMOcZ06dcrR0LoYK8K4H3mwIg9W5MGKPFiRB3JgczWsCHO1eu+99zRixAh17NhRktSzZ0+99tprDjEJCQlKTk62b69Zs0aDBg2yb9s+KjhhwgTFxsZq9+7d2rFjhySpVq1aDmMdPHhQkZGRrjgVAABwHSvRTalZs2YpLS1Nffr0se9LSkrKcT+FChUq5LsaDSvCFB/yYEUerMiDFXmwIg/kwKY4V4S5WgUHB2vJkiX5xhhjHLZjYmIUExOTZ3ybNm1yHHM5kZGRhT4GAADApsQ2pZYuXarY2FitXr06x7LIl648c7nVaFgRxv3IgxV5sCIPVuTBijyQA5urYUUYAAAAuE6JbEotW7ZMgwcP1vLly9W+fXuHx8LDw3NcFfX333/nuxoNK8IUH/JgRR6syIMVebAiD+TApjhXhAEAAIDreBT3BApr6dKliomJ0fvvv69u3brleDw6OjrHZf7r168v8mo0AAAAAAAAcJ5ivVLqzJkzOnDggH374MGDio+PV3BwsKpWraoxY8boyJEjWrx4sSRrQ+rBBx/Uq6++qmbNmtmviCpVqpSCgoIkSSNHjtTtt9+ul156Sb169dLq1av1+eef6+uvv3b/CQIAAAAAACBXxXql1LfffquoqChFRUVJkkaNGqWoqCiNHz9eknT06FEdPnzYHj9v3jxlZmZq2LBhioiIsH+NHDnSHtO8eXN98MEHWrhwoRo0aKBFixZp2bJlatq0qXtPDgAAAAAAAHkq1iulLrfKy6JFixy2N2/eXKBxe/furd69exdhZgAAAAAAAHClEndPKQAAAAAAAJR8NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAASphTp05pwIABCgoKUlBQkAYMGKDTp0/ne8zKlSvVqVMnhYSEyGKxKD4+3uHxkydP6vHHH1ft2rXl7++vqlWrasSIEUpOTs4x1qeffqqmTZuqVKlSCgkJ0d133+3EswMAANcLmlIAAAAlTL9+/RQfH6+4uDjFxcUpPj5eAwYMyPeYtLQ0tWjRQi+++GKujycmJioxMVEzZ87Ujz/+qEWLFikuLk6DBw92iFuxYoUGDBigQYMG6fvvv9c333yjfv36Oe3cAADA9cOruCcAAACAgtu3b5/i4uK0fft2NW3aVJI0f/58RUdHKyEhQbVr1871OFvT6tChQ7k+Xr9+fa1YscK+XbNmTU2ZMkX9+/dXZmamvLy8lJmZqZEjR2rGjBkOzaq8nhMAACA/NKUAAABKkG3btikoKMjekJKkZs2aKSgoSFu3bnVqgyg5OVmBgYHy8rKWjN99952OHDkiDw8PRUVFKSkpSY0aNdLMmTN100035TnO+fPndf78eft2SkqKJCkjI0MZGRlOm69tzIv/e70iD1bkwYo8kAMb8mBFHqxcmYeCjklTCgAAoARJSkpSWFhYjv1hYWFKSkpy2vOcOHFCkydP1iOPPGLf9/vvv0uSYmNj9fLLLysyMlKzZs1S69attX//fgUHB+c61rRp0zRx4sQc+9evXy9/f3+nzfliGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAADAVSA2NjbXxs3Fdu3aJUmyWCw5HjPG5Lr/SqSkpKhbt26qV6+eJkyYYN+fnZ0tSRo7dqzuueceSdLChQtVuXJlLV++3KGBdbExY8Zo1KhRDuNXqVJFHTt2VGBgoFPmbJORkaENGzaoQ4cO8vb2durYJQl5sCIPVuSBHNiQByvyYOXKPNiuir6cYm1KbdmyRTNmzNDu3bt19OhRffTRR7rzzjvzjD969Kieeuop7d69W7/++qtGjBih2bNn54ibPXu23njjDR0+fFghISHq3bu3pk2bJj8/P9edDAAAQBEMHz5cffv2zTcmMjJSP/zwg44dO5bjsePHj6tChQpFnkdqaqo6d+6sgIAAffTRRw5FakREhCSpXr169n2+vr6qUaOGDh8+nOeYvr6+8vX1zbHf29vbZf8YcOXYJQl5sCIPVuSBHNiQByvyYOWKPBR0vGJtSqWlpalhw4YaNGiQ/d22/Jw/f16hoaEaO3asXnnllVxj3nvvPY0ePVrvvPOOmjdvrv379ysmJkaS8jwGAACguIWEhCgkJOSycdHR0UpOTtbOnTt12223SZJ27Nih5ORkNW/evEhzSElJUadOneTr66s1a9bkeEOvcePG8vX1VUJCglq2bCnJ+i7roUOHVK1atSI9NwAAuP4Ua1OqS5cu6tKlS4HjIyMj9eqrr0qS3nnnnVxjtm3bphYtWtiXJo6MjNT999+vnTt35jkuN990P/JgRR6syIMVebAiD+TA5mq4+ebVqG7duurcubOGDBmiefPmSZKGDh2q7t27O9zkvE6dOpo2bZruuusuSdLJkyd1+PBhJSYmSpISEhIkSeHh4QoPD1dqaqo6duyo9PR0LVmyRCkpKfaaKDQ0VJ6engoMDNSjjz6qCRMmqEqVKqpWrZpmzJghSbr33nvdlgMAAHBtuObuKdWyZUstWbLE/u7h77//rrVr12rgwIF5HsPNN4sPebAiD1bkwYo8WJEHcmBTnDffvFq99957GjFihDp27ChJ6tmzp1577TWHmISEBCUnJ9u316xZo0GDBtm3bR8VnDBhgmJjY7V7927t2LFDklSrVi2HsQ4ePKjIyEhJ0owZM+Tl5aUBAwbo7Nmzatq0qTZu3Khy5co5/TwBAMC17ZprSvXt21fHjx9Xy5YtZYxRZmamHnvsMY0ePTrPY7j5pvuRByvyYEUerMiDFXkgBzZXw803r1bBwcFasmRJvjHGGIftmJgY+y0NctOmTZscx+TG29tbM2fO1MyZMws0VwAAgLxcc02pzZs3a8qUKZo7d66aNm2qAwcOaOTIkYqIiNDzzz+f6zHcfLP4kAcr8mBFHqzIgxV5IAc2xXnzTQAAALjONdeUev755zVgwAA9/PDDkqSbb75ZaWlpGjp0qMaOHSsPD49iniEAAAAAAACuuQ5Nenp6jsaTp6enjDEFuiQdAAAAAAAArlesV0qdOXNGBw4csG8fPHhQ8fHxCg4OVtWqVTVmzBgdOXJEixcvtsfEx8fbjz1+/Lji4+Pl4+OjevXqSZJ69Oihl19+WVFRUfaP7z3//PPq2bOnPD093Xp+AAAAAAAAyF2xNqW+/fZbtW3b1r5tu9n4wIEDtWjRIh09elSHDx92OCYqKsr+/7t379b777+vatWq6dChQ5KkcePGyWKxaNy4cTpy5IhCQ0PVo0cPTZkyxfUnBAAAAAAAgAIp1qbU5VZ5WbRoUY59l/sInpeXlyZMmKAJEyYUdXoAAAAAAABwkWvunlIAAAAAAAC4+tGUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAChhTp06pQEDBigoKEhBQUEaMGCATp8+ne8xK1euVKdOnRQSEiKLxaL4+HiHx0+ePKnHH39ctWvXlr+/v6pWraoRI0YoOTnZIW7//v3q1auXQkJCFBgYqBYtWmjTpk1OPkMAAHA9oCkFAABQwvTr10/x8fGKi4tTXFyc4uPjNWDAgHyPSUtLU4sWLfTiiy/m+nhiYqISExM1c+ZM/fjjj1q0aJHi4uI0ePBgh7hu3bopMzNTGzdu1O7du9WoUSN1795dSUlJTjs/AABwffAq7gkAAACg4Pbt26e4uDht375dTZs2lSTNnz9f0dHRSkhIUO3atXM9zta0OnToUK6P169fXytWrLBv16xZU1OmTFH//v2VmZkpLy8v/fPPPzpw4IDeeecdNWjQQJL04osvau7cufrpp58UHh6e69jnz5/X+fPn7dspKSmSpIyMDGVkZBQuAZdhG8/Z45Y05MGKPFiRB3JgQx6syIOVK/NQ0DFpSgEAAJQg27ZtU1BQkL0hJUnNmjVTUFCQtm7dmmdT6kokJycrMDBQXl7WkrF8+fKqW7euFi9erFtuuUW+vr6aN2+eKlSooMaNG+c5zrRp0zRx4sQc+9evXy9/f3+nzfdiGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAABACZKUlKSwsLAc+8PCwpz6EboTJ05o8uTJeuSRR+z7LBaLNmzYoF69eqlMmTLy8PBQhQoVFBcXp7Jly+Y51pgxYzRq1Cj7dkpKiqpUqaKOHTsqMDDQaXOWrO/MbtiwQR06dJC3t7dTxy5JyIMVebAiD+TAhjxYkQcrV+bBdlX05RRrU2rLli2aMWOGdu/eraNHj+qjjz7SnXfemWf80aNH9dRTT2n37t369ddfNWLECM2ePTtH3OnTpzV27FitXLlSp06dUvXq1TVr1ix17drVdScDAABQBLGxsbleTXSxXbt2SbI2hy5ljMl1/5VISUlRt27dVK9ePU2YMMHhOf71r38pLCxMX331lUqVKqUFCxaoe/fu2rVrlyIiInIdz9fXV76+vjn2e3t7u+wfA64cuyQhD1bkwYo8kAMb8mBFHqxckYeCjlesTam0tDQ1bNhQgwYN0j333HPZ+PPnzys0NFRjx47VK6+8kmvMhQsX1KFDB4WFhenDDz9U5cqV9eeff6pMmTLOnj4AAIDTDB8+XH379s03JjIyUj/88IOOHTuW47Hjx4+rQoUKRZ5HamqqOnfurICAAH300UcOReXGjRv1ySef6NSpU/YrnObOnasNGzbo3Xff1ejRo4v8/AAA4PpRrE2pLl26qEuXLgWOj4yM1KuvvipJeuedd3KNeeedd3Ty5Elt3brVXkRVq1at6JMFAABwoZCQEIWEhFw2Ljo6WsnJydq5c6duu+02SdKOHTuUnJys5s2bF2kOKSkp6tSpk3x9fbVmzRr5+fk5PG67P4SHh+MCzh4eHsrOzi7ScwMAgOvPNXdPqTVr1ig6OlrDhg3T6tWrFRoaqn79+unZZ5+Vp6dnrsewIoz7kQcr8mBFHqzIgxV5IAc2V8OKMFejunXrqnPnzhoyZIjmzZsnSRo6dKi6d+/ucJPzOnXqaNq0abrrrrskSSdPntThw4eVmJgoSUpISJAkhYeHKzw8XKmpqerYsaPS09O1ZMkSpaSk2Gui0NBQeXp6Kjo6WuXKldPAgQM1fvx4lSpVSvPnz9fBgwfVrVs3d6YBAABcA665ptTvv/+ujRs36oEHHtDatWv166+/atiwYcrMzNT48eNzPYYVYYoPebAiD1bkwYo8WJEHcmBTnCvCXK3ee+89jRgxQh07dpQk9ezZU6+99ppDTEJCgpKTk+3ba9as0aBBg+zbto8KTpgwQbGxsdq9e7d27NghSapVq5bDWAcPHlRkZKRCQkIUFxensWPH6o477lBGRoZuuukmrV69Wg0bNnTJuQIAgGvXNdeUys7OVlhYmN566y15enqqcePGSkxM1IwZM/JsSrEijPuRByvyYEUerMiDFXkgBzZXw4owV6vg4GAtWbIk3xhjjMN2TEyMYmJi8oxv06ZNjmNy06RJE61bt65A8wQAAMjPNdeUioiIkLe3t8NH9erWraukpCRduHBBPj4+OY5hRZjiQx6syIMVebAiD1bkgRzYFOeKMAAAAHAdj8uHlCwtWrTQgQMHHG62uX//fkVEROTakAIAAAAAAID7FeuVUmfOnNGBAwfs2wcPHlR8fLyCg4NVtWpVjRkzRkeOHNHixYvtMfHx8fZjjx8/rvj4ePn4+KhevXqSpMcee0xz5szRyJEj9fjjj+vXX3/V1KlTNWLEiALPy3bpuisu7c/IyFB6erpSUlKu63dpyYMVebAiD1bkwYo8kAMbV+bB9je+IB9Xg/NRa7keebAiD1bkgRzYkAcr8mB1NdRaFlOM1djmzZvVtm3bHPsHDhyoRYsWKSYmRocOHdLmzZvtj1kslhzx1apV06FDh+zb27Zt05NPPqn4+HhVqlRJgwcPznf1vUv99ddfqlKlSqHPBwAAlCx//vmnKleuXNzTuO5QawEAcH24XK1VrE2pq1V2drYSExNVpkyZXJtgRWG7ifqff/7p9JuolyTkwYo8WJEHK/JgRR7IgY0r82CMUWpqqipWrCgPj2vubgZXPWot1yMPVuTBijyQAxvyYEUerK6GWuuau9G5M3h4eLj8XdPAwMDr+sVvQx6syIMVebAiD1bkgRzYuCoPQUFBTh8TBUOt5T7kwYo8WJEHcmBDHqzIg1Vx1lq8NQgAAAAAAAC3oykFAAAAAAAAt6Mp5Wa+vr6aMGGCfH19i3sqxYo8WJEHK/JgRR6syAM5sCEPuBK8bqzIgxV5sCIP5MCGPFiRB6urIQ/c6BwAAAAAAABux5VSAAAAAAAAcDuaUgAAAAAAAHA7mlIAAAAAAABwO5pSAAAAAAAAcDuaUk4wd+5cVa9eXX5+fmrcuLG++uqrfOO//PJLNW7cWH5+fqpRo4befPPNHDErVqxQvXr15Ovrq3r16umjjz5y1fSdxtl5+Omnn3TPPfcoMjJSFotFs2fPduHsncPZOZg/f75atWqlcuXKqVy5cmrfvr127tzpylNwCmfnYeXKlWrSpInKli2r0qVLq1GjRvrvf//rylNwClf8brD54IMPZLFYdOeddzp51s7n7DwsWrRIFoslx9e5c+dceRpF5orXw+nTpzVs2DBFRETIz89PdevW1dq1a111Ck7h7Dy0adMm19dDt27dXHkacCPqLCvqLCtqLStqLStqLStqLeosmxJZZxkUyQcffGC8vb3N/Pnzzc8//2xGjhxpSpcubf74449c43///Xfj7+9vRo4caX7++Wczf/584+3tbT788EN7zNatW42np6eZOnWq2bdvn5k6darx8vIy27dvd9dpFZor8rBz507z9NNPm6VLl5rw8HDzyiuvuOlsrowrctCvXz/z+uuvmz179ph9+/aZQYMGmaCgIPPXX3+567QKzRV52LRpk1m5cqX5+eefzYEDB8zs2bONp6eniYuLc9dpFZor8mBz6NAhU6lSJdOqVSvTq1cvF59J0bgiDwsXLjSBgYHm6NGjDl9XM1fk4fz586ZJkyama9eu5uuvvzaHDh0yX331lYmPj3fXaRWaK/Jw4sQJh9fB3r17jaenp1m4cKGbzgquRJ1lRZ1lRa1lRa1lRa1lRa1FnWVTUussmlJFdNttt5lHH33UYV+dOnXM6NGjc41/5plnTJ06dRz2PfLII6ZZs2b27T59+pjOnTs7xHTq1Mn07dvXSbN2Plfk4WLVqlW76oslV+fAGGMyMzNNmTJlzLvvvlv0CbuIO/JgjDFRUVFm3LhxRZusC7kqD5mZmaZFixZmwYIFZuDAgVd9oeSKPCxcuNAEBQU5fa6u5Io8vPHGG6ZGjRrmwoULzp+wi7jj98Mrr7xiypQpY86cOVP0CaPYUWdZUWdZUWtZUWtZUWtZUWtRZ9mU1DqLj+8VwYULF7R792517NjRYX/Hjh21devWXI/Ztm1bjvhOnTrp22+/VUZGRr4xeY1Z3FyVh5LEXTlIT09XRkaGgoODnTNxJ3NHHowx+uKLL5SQkKDbb7/deZN3IlfmYdKkSQoNDdXgwYOdP3Enc2Uezpw5o2rVqqly5crq3r279uzZ4/wTcBJX5WHNmjWKjo7WsGHDVKFCBdWvX19Tp05VVlaWa06kiNz1e/Ltt99W3759Vbp0aedMHMWGOsuKOsuKWsuKWsuKWsuKWos6y6Yk11k0pYrgn3/+UVZWlipUqOCwv0KFCkpKSsr1mKSkpFzjMzMz9c8//+Qbk9eYxc1VeShJ3JWD0aNHq1KlSmrfvr1zJu5krsxDcnKyAgIC5OPjo27dumnOnDnq0KGD80/CCVyVh2+++UZvv/225s+f75qJO5mr8lCnTh0tWrRIa9as0dKlS+Xn56cWLVro119/dc2JFJGr8vD777/rww8/VFZWltauXatx48Zp1qxZmjJlimtOpIjc8Xty586d2rt3rx5++GHnTRzFhjrLijrLilrLilrLilrLilqLOsumJNdZXk4d7TplsVgcto0xOfZdLv7S/YUd82rgijyUNK7MwfTp07V06VJt3rxZfn5+Tpit67giD2XKlFF8fLzOnDmjL774QqNGjVKNGjXUpk0b503cyZyZh9TUVPXv31/z589XSEiI8yfrQs5+PTRr1kzNmjWzP96iRQvdcsstmjNnjv7zn/84a9pO5+w8ZGdnKywsTG+99ZY8PT3VuHFjJSYmasaMGRo/fryTZ+88rvw9+fbbb6t+/fq67bbbnDBTXC2os6yos6yotayotayotayotaizbEpinUVTqghCQkLk6emZo/P4999/5+g42oSHh+ca7+XlpfLly+cbk9eYxc1VeShJXJ2DmTNnaurUqfr888/VoEED507eiVyZBw8PD9WqVUuS1KhRI+3bt0/Tpk27KgslV+Thp59+0qFDh9SjRw/749nZ2ZIkLy8vJSQkqGbNmk4+k6Jx1+8GDw8P3XrrrVflu3eS6/IQEREhb29veXp62mPq1q2rpKQkXbhwQT4+Pk4+k6Jx9eshPT1dH3zwgSZNmuTciaPYUGdZUWdZUWtZUWtZUWtZUWtRZ9mU5DqLj+8VgY+Pjxo3bqwNGzY47N+wYYOaN2+e6zHR0dE54tevX68mTZrI29s735i8xixurspDSeLKHMyYMUOTJ09WXFycmjRp4vzJO5E7XwvGGJ0/f77ok3YBV+ShTp06+vHHHxUfH2//6tmzp9q2bav4+HhVqVLFZedzpdz1ejDGKD4+XhEREc6ZuJO5Kg8tWrTQgQMH7AWzJO3fv18RERFXXaEkuf718L///U/nz59X//79nTtxFBvqLCvqLCtqLStqLStqLStqLeosmxJdZzntlunXKduyi2+//bb5+eefzRNPPGFKly5tDh06ZIwxZvTo0WbAgAH2eNuyi08++aT5+eefzdtvv51j2cVvvvnGeHp6mhdffNHs27fPvPjiiyVmqWJn5uH8+fNmz549Zs+ePSYiIsI8/fTTZs+ePebXX391+/kVhCty8NJLLxkfHx/z4YcfOizFmZqa6vbzKyhX5GHq1Klm/fr15rfffjP79u0zs2bNMl5eXmb+/PluP7+CckUeLlUSVoRxRR5iY2NNXFyc+e2338yePXvMoEGDjJeXl9mxY4fbz6+gXJGHw4cPm4CAADN8+HCTkJBgPvnkExMWFmZeeOEFt59fQbny56Jly5bmvvvuc9u5wD2os6yos6yotayotayotayotaizbEpqnUVTyglef/11U61aNePj42NuueUW8+WXX9ofGzhwoGndurVD/ObNm01UVJTx8fExkZGR5o033sgx5vLly03t2rWNt7e3qVOnjlmxYoWrT6PInJ2HgwcPGkk5vi4d52ri7BxUq1Yt1xxMmDDBDWdz5Zydh7Fjx5patWoZPz8/U65cORMdHW0++OADd5xKkbjid8PFSkKhZIzz8/DEE0+YqlWrGh8fHxMaGmo6duxotm7d6o5TKRJXvB62bt1qmjZtanx9fU2NGjXMlClTTGZmpqtPpUhckYf/x96dh0VV9/8ffw07iKAICK64lEtuqKVopZZrbi1WZpqo2aZpWXfpbSlWaqWW3ZZlWnp7W+ZdaloZaplZuWbSaqilaSLl7QIILiCf3x/nN/N1ZBFkZgB9Pq6Lq86ZzznzOS8GePueM+ckJycbSWbNmjXunj5KAXWWhTrLQq1lodayUGtZqLWos+zKY51lM+b/X8kKAAAAAAAA8BCuKQUAAAAAAACPoykFAAAAAAAAj6MpBQAAAAAAAI+jKQUAAAAAAACPoykFAAAAAAAAj6MpBQAAAAAAAI+jKQUAAAAAAACPoykFAAAAAAAAj6MpBaDcSkhIUIsWLTz+vOvXr5fNZpPNZtPNN99cpG0SEhIc28ycOdOt8wMAAHAFai0A7kZTCkCZZC8qCvqKj4/X448/rs8//7zU5picnKwFCxYUaezjjz+uQ4cOqUaNGu6dFAAAQBFQawEoC3xKewIAkJ9Dhw45/n/JkiWaMGGCkpOTHesCAwMVHBys4ODg0pieJCkyMlKVKlUq0lj7XL29vd07KQAAgCKg1gJQFnCmFIAyKSoqyvEVGhoqm82WZ935p5THx8fr5ptv1pQpU1S1alVVqlRJkyZNUk5Ojv7xj38oLCxMNWrU0Ntvv+30XAcPHtSdd96pypUrq0qVKurbt6/27dtX7Dl/8MEHatq0qQIDA1WlShV17txZmZmZJUwCAADA9ai1AJQFNKUAXFLWrVunlJQUbdiwQS+99JISEhLUq1cvVa5cWVu2bNEDDzygBx54QAcOHJAkZWVlqVOnTgoODtaGDRv09ddfKzg4WN27d9eZM2eK/LyHDh3SXXfdpaFDh2rnzp1av369br31Vhlj3HWoAAAAHketBcCVaEoBuKSEhYXpX//6lxo0aKChQ4eqQYMGysrK0j//+U9dccUVGjdunPz8/PTNN99Ikt577z15eXlp3rx5atq0qRo1aqT58+dr//79Wr9+fZGf99ChQ8rJydGtt96qmJgYNW3aVA899FCpnvIOAADgatRaAFyJa0oBuKRcddVV8vL6v3571apV1aRJE8eyt7e3qlSpor///luStH37du3Zs0cVK1Z02s+pU6f022+/Ffl5mzdvrhtvvFFNmzZVt27d1LVrV/Xr10+VK1cu4REBAACUHdRaAFyJphSAS4qvr6/Tss1my3ddbm6uJCk3N1etWrXSO++8k2dfERERRX5eb29vrV27Vhs3btSaNWs0a9YsjR8/Xlu2bFGdOnUu4kgAAADKHmotAK7Ex/cAXNZatmyp3bt3KzIyUvXr13f6Cg0NLda+bDab2rdvr0mTJmnHjh3y8/PT8uXL3TRzAACAso9aC0BhaEoBuKzdfffdCg8PV9++ffXVV19p7969+vLLLzV69Gj9+eefRd7Pli1bNGXKFH377bfav3+/li1bpsOHD6tRo0ZunD0AAEDZRq0FoDB8fA/AZS0oKEgbNmzQk08+qVtvvVUZGRmqXr26brzxRoWEhBR5PyEhIdqwYYNmzpyp9PR01a5dWzNmzFCPHj3cOHsAAICyjVoLQGFshntoAkCxrF+/Xp06ddKxY8dUqVKlYm0bExOjRx55RI888ohb5gYAAFDeUWsBlw8+vgcAF6lGjRq66667ijR2ypQpCg4O1v79+908KwAAgEsDtRZw6eNMKQAoppMnT+rgwYOSpODgYEVFRV1wm6NHj+ro0aOSrDvNFPfCngAAAJcLai3g8kFTCgAAAAAAAB7Hx/cAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pYBiWLBggWw2m7799luX7G/Hjh3q0KGDQkNDZbPZNHPmTK1atUoJCQnF2s9TTz2lWrVqycfHR5UqVXLJ3M5XVucFFORiXrMAAPez11P2Lx8fH0VHR6t///7avXt3nvEdO3ZUx44dL+q54uPjFRwcfMFxWVlZSkhI0Pr164u87/zqOFcrq/MCCnIxr1lc3nxKewLA5Wzo0KHKzMzUe++9p8qVKysmJkbPPfecXnvttSL/Y3rFihWaPHmyxo8frx49esjf398tc121alWZnBdQkOK+ZgEAnjV//nw1bNhQp06d0jfffKPJkyfriy++0K+//qrKlSs7xs2ePdvtc8nKytKkSZMkqcgNsPzquMtlXkBBLuY1i8sbTSmgFP30008aPny4evToUaJ9SNKoUaMUGRnpqqmVmDvmlZWVpaCgIJfsCwAAlK4mTZqodevWkqx/vJ49e1YTJ07Uhx9+qCFDhjjGNW7cuLSmWChX1HHu4Op5ZWdnO85oAwBX4+N7gBvs3r1bAwYMUGRkpPz9/dWoUSO99tprjsftp63n5OTo9ddfd5y+Hh8f7xh37mnt+/bty/d5YmJi9NRTT0mSqlatKpvN5jgrJDc3Vy+++KIaNmwof39/RUZG6p577tGff/6ZZz9vv/22mjdvroCAAIWFhemWW27Rzp07HY+Xxrw6duyoJk2aaMOGDWrXrp2CgoI0dOhQSdLx48f12GOPqW7duo593HTTTfr1118d2585c0bPPfec43kiIiI0ZMgQHT58ON85X4wTJ06oUqVKuv/++/M8tm/fPnl7e2vatGmF7uP06dN65pln1KhRIwUEBKhKlSrq1KmTNm7c6Bhz6tQpjRs3TnXq1JGfn5+qV6+uESNG6Pjx4077iomJUa9evfTxxx8rNjZWgYGBatSokT7++GNJ1uuuUaNGqlChgq655po8H0O1f8Th559/1o033qgKFSooIiJCI0eOVFZWltPY4s4pMTFRLVu2VGBgoBo2bKi33347Txapqam6//77VaNGDfn5+alOnTqaNGmScnJynHK12WyaPn26XnrpJdWpU0fBwcGKi4vT5s2bnY6lOK9ZAEDpszeo/vrrL6f1+X18788//1S/fv1UsWJFVapUSXfffbe2bdsmm82mBQsW5Nn3nj17dNNNNyk4OFg1a9bUY489ptOnT0uy/rZERERIkiZNmuRUl+WnoDrO7qefflLfvn1VuXJlBQQEqEWLFvr3v/+dZz/79+/XwIEDnerFGTNmKDc3t9TmtX79etlsNv3nP//RY489purVq8vf31979uyRJCUmJurGG29UaGiogoKC1KhRI02dOtVpH99++6369OmjsLAwBQQEKDY2Vv/973/znfPFevbZZ+Xj46MDBw7keWzo0KGqUqWKTp06Veg+tmzZot69e6tKlSoKCAhQvXr19MgjjziN+frrr3XjjTeqYsWKCgoKUrt27fTJJ584jbHnvm7dOg0fPlxVqlRRSEiI7rnnHmVmZio1NVV33HGHKlWqpOjoaD3++OPKzs52bG+vbV588UVNnjxZtWrVUkBAgFq3bq3PP/88z7yLM6cvvvhCDz74oMLDw1WlShXdeuutSklJybPPJUuWKC4uThUqVFBwcLC6deumHTt2OI2x14mu/FkCJEkGQJHNnz/fSDLbtm0rcMzPP/9sQkNDTdOmTc3ChQvNmjVrzGOPPWa8vLxMQkKCMcaYv//+22zatMlIMv369TObNm0ymzZtMnv27DH9+vUzkhzrNm3aZE6dOpXvc3333Xdm2LBhRpJJTEw0mzZtMgcOHDDGGHPfffcZSWbkyJEmMTHRvPHGGyYiIsLUrFnTHD582LGPKVOmGEnmrrvuMp988olZuHChqVu3rgkNDTW7du0yxphSmVeHDh1MWFiYqVmzppk1a5b54osvzJdffmnS09PNVVddZSpUqGCeeeYZs3r1arN06VIzevRos27dOmOMMWfPnjXdu3c3FSpUMJMmTTJr16418+bNM9WrVzeNGzc2WVlZRf2WX9Cjjz5qKlSoYI4fP+60/h//+IcJCAgw//vf/wrcNjs723Tq1Mn4+PiYxx9/3KxatcqsXLnS/POf/zSLFy82xhiTm5trunXrZnx8fMzTTz9t1qxZY6ZPn24qVKhgYmNjnb4HtWvXNjVq1DBNmjQxixcvNqtWrTJt2rQxvr6+ZsKECaZ9+/Zm2bJlZvny5ebKK680VatWdcpi8ODBxs/Pz9SqVctMnjzZrFmzxiQkJBgfHx/Tq1cvx7iLmVPjxo3NwoULzerVq83tt99uJJkvv/zSMe7QoUOmZs2apnbt2mbOnDnms88+M88++6zx9/c38fHxjnF79+41kkxMTIzp3r27+fDDD82HH35omjZtaipXruz4PhT3NQsA8JyC6qlXX33VSDJLly51Wt+hQwfToUMHx/KJEydM/fr1TVhYmHnttdfM6tWrzaOPPmrq1KljJJn58+c7xtr/tjVq1MhMnz7dfPbZZ2bChAnGZrOZSZMmGWOMOXXqlElMTDSSzLBhw5zqsvwUVMcZY8yvv/5qKlasaOrVq2cWLlxoPvnkE3PXXXcZSeaFF15w2kf16tVNRESEeeONN0xiYqIZOXKkkWQefPDBUpvXF198YSSZ6tWrm379+pmVK1eajz/+2Bw5csTMmzfP2Gw207FjR/Puu++azz77zMyePds89NBDju3XrVtn/Pz8zHXXXWeWLFliEhMTTXx8fJ7vS0n99ddfxt/f34wfP95p/ZEjR0xgYKD5xz/+Uej2iYmJxtfX1zRr1swsWLDArFu3zrz99tumf//+jjHr1683vr6+plWrVmbJkiXmww8/NF27djU2m8289957jnH213OdOnXMY489ZtasWWNeeOEF4+3tbe666y7TsmVL89xzz5m1a9eaJ5980kgyM2bMcGxvr21q1qxprr32WrN06VLz/vvvm6uvvtr4+vqajRs3XvSc6tatax5++GGzevVqM2/ePFO5cmXTqVMnpywmT55sbDabGTp0qPn444/NsmXLTFxcnKlQoYL5+eefHePc8bMEGGMMTSmgGIrSlOrWrZupUaOGSUtLc1o/cuRIExAQYI4ePepYJ8mMGDHCadyIESNMcfrFEydONJKcGjo7d+40kpyKBGOM2bJli5Fk/vnPfxpjjDl27JgJDAw0N910k9O4/fv3G39/fzNgwIBSmZcxVgEqyXz++edOY5955hkjyaxdu7bA5168eHG+Re22bduMJDN79uwiH8eF/Pbbb8bLy8u8/PLLjnUnT540VapUMUOGDCl024ULFxpJZu7cuQWOsf9hf/HFF53WL1myxEgyb775pmNd7dq1TWBgoPnzzz8d65KSkowkEx0dbTIzMx3rP/zwQyPJrFy50rFu8ODBRpJ55ZVXnJ5r8uTJRpL5+uuvL2pOAQEB5o8//nDKJywszNx///2Odffff78JDg52GmeMMdOnTzeSHEWRvXBr2rSpycnJcYzbunWrkeRo5hlT/NcsAMAz7PXU5s2bTXZ2tsnIyDCJiYkmKirKXH/99SY7O9tp/PlNqddee81IMp9++qnTuPvvvz/fppQk89///tdp7E033WQaNGjgWD58+LCRZCZOnFjk48ivjuvfv7/x9/c3+/fvd1rfo0cPExQU5HjzZOzYsUaS2bJli9O4Bx980NhsNpOcnFwq87I3pa6//nqncRkZGSYkJMRce+21Jjc3t8DnbtiwoYmNjc3zPezVq5eJjo42Z8+eLfJxXMjgwYNNZGSkOX36tGPdCy+8YLy8vMzevXsL3bZevXqmXr165uTJkwWOadu2rYmMjDQZGRmOdTk5OaZJkyamRo0ajhzsr+eHH37Yafubb77ZSDIvvfSS0/oWLVqYli1bOpbttU21atWc5pOenm7CwsJM586dL3pO59fcL774opFkDh06ZIyxan4fH588c8/IyDBRUVHmjjvucKxz588SLm98fA9woVOnTunzzz/XLbfcoqCgIOXk5Di+brrpJp06dcrpI0bu8sUXX0hSnlNlr7nmGjVq1MhxKvCmTZt08uTJPONq1qypG264Id9Thj0xL7vKlSvrhhtucFr36aef6sorr1Tnzp0LfJ6PP/5YlSpVUu/evZ2+By1atFBUVFShdwMxxjhtc+5Hx/JTt25d9erVS7Nnz5YxRpL07rvv6siRIxo5cmSh23766acKCAhwfCwxP+vWrZOUN7Pbb79dFSpUyJNZixYtVL16dcdyo0aNJFkffTj3elz29X/88Uee57z77rudlgcMGCDp/75/FzOnWrVqOZYDAgJ05ZVXOj33xx9/rE6dOqlatWpO2duvh/Hll1867bNnz57y9vZ2LDdr1qzA4wEAlE1t27aVr6+vKlasqO7du6ty5cpasWLFBa9d9OWXXzq2Odddd92V73ibzabevXs7rWvWrJlb/masW7dON954o2rWrOm0Pj4+XllZWdq0aZNjXOPGjXXNNdfkGWeMcfyt9fS87G677Tan5Y0bNyo9PV0PPfSQ00cCz7Vnzx79+uuvjjri/Dr40KFDSk5OLnCOZ8+eddrG/jHGgowePVp///233n//fUnWJSJef/119ezZs9CLu+/atUu//fabhg0bpoCAgHzHZGZmasuWLerXr5/T3Ru9vb01aNAg/fnnn3mOpVevXk7L9lqrZ8+eedbn99q79dZbneZTsWJF9e7dWxs2bNDZs2cvak59+vRxWj6/Xlq9erVycnJ0zz33OGUfEBCgDh065KmZPfmzhMsHTSnAhY4cOaKcnBzNmjVLvr6+Tl833XSTJOl///ufR+YhSdHR0Xkeq1atmuPxoo7z9Lzs8ht3+PBh1ahRo9Dn+euvv3T8+HH5+fnl+T6kpqYW+j348ssv82xzoesQjR49Wrt379batWslSa+99pri4uLUsmXLQrc7fPiwqlWrJi+vgn8VHzlyRD4+Po7P59vZbDZFRUXlySwsLMxp2c/Pr9D1519vwcfHR1WqVHFaFxUV5ZjLxczp/P1Jkr+/v06ePOlY/uuvv/TRRx/lyf6qq66SlPfn5vx92u/ueO4+AQBl28KFC7Vt2zatW7dO999/v3bu3FlgY+lcR44cUdWqVfOsz2+dJAUFBeVpPvj7+1/wmkMX48iRIwXWOfbHizPO0/OyO3+s/ZqchdVg9muBPf7443n+nj/00EOSCq+Db7zxRqdtCnvTTpJiY2N13XXXOa4h+fHHH2vfvn0XfFOwKMdy7NgxGWOKlVlxarD8Xnv2euv8dWfOnNGJEycuak4Xqpfs37Orr746z/dsyZIleb5fnvxZwuWDWygALlS5cmXHuxUjRozId0ydOnXcPg/7H6BDhw7l+YObkpKi8PDwPOPOd+44T8/LLr934iIiIvK9WPu57BdzTExMzPfxihUrFrhtq1attG3bNqd19j/0BbnhhhvUpEkTvfrqqwoODtZ3332nRYsWFbqNZB3L119/rdzc3AIbU1WqVFFOTo4OHz7s1AQyxig1NVVXX331BZ+nOHJycnTkyBGnIiY1NdUxF3fNKTw8XM2aNdPkyZPzffxC3wMAQPnTqFEjx8XNO3XqpLNnz2revHn64IMP1K9fvwK3q1KlirZu3Zpnvf3vVWmqUqVKgXWVJKcarCjjPD0vu/NrMPvf+8JqMPs+xo0bp1tvvTXfMQ0aNChw+zlz5igjIyPP/gozatQo3X777fruu+/06quv6sorr1SXLl0K3aYox1K5cmV5eXl59HuU3+s3NTVVfn5+Cg4Olo+Pj8vnZB//wQcfqHbt2hcxa6DkOFMKcKGgoCB16tRJO3bsULNmzdS6des8X/mdNXIuV5zxYf/I2/mNkW3btmnnzp268cYbJUlxcXEKDAzMM+7PP/90nOZdGvMqTI8ePbRr165CT2vv1auXjhw5orNnz+b7PSisIKpYsWKe8fZ3ugozatQoffLJJxo3bpyqVq2q22+/vUjHcurUqXzvEmRnz+T8zJYuXarMzMwiZVZc77zzjtPyu+++K0mOOx+5Y069evXSTz/9pHr16uX7PbuYphRnTwFA+fLiiy+qcuXKmjBhQqEf3erQoYMyMjL06aefOq1/7733Lvq5XfU348Ybb9S6devy3OFs4cKFCgoKUtu2bR3jfvnlF3333Xd5xtlsNnXq1KlU5lWQdu3aKTQ0VG+88YbjcgXna9Cgga644gp9//33+f4tb926daFvDDZo0MBpbGEfwbO75ZZbVKtWLT322GP67LPPCv14od2VV16pevXq6e2333bcNe58FSpUUJs2bbRs2TKn7HNzc7Vo0SLVqFFDV1555QXnVxzLli1zOuMoIyNDH330ka677jp5e3u7ZU7dunWTj4+PfvvttwK/Z8VF/YXi4kwp4CKsW7cu34903XTTTXrllVd07bXX6rrrrtODDz6omJgYZWRkaM+ePfroo48ueI2Apk2bSpJeeOEF9ejRQ97e3mrWrFmRGiN2DRo00H333adZs2bJy8tLPXr00L59+/T000+rZs2aevTRRyVJlSpV0tNPP61//vOfuueee3TXXXfpyJEjmjRpkgICAjRx4sRSmVdhHnnkES1ZskR9+/bV2LFjdc011+jkyZP68ssv1atXL3Xq1En9+/fXO++8o5tuukmjR4/WNddcI19fX/3555/64osv1LdvX91yyy1FnndRDBw4UOPGjdOGDRv01FNPFSmXu+66S/Pnz9cDDzyg5ORkderUSbm5udqyZYsaNWqk/v37q0uXLurWrZuefPJJpaenq3379vrhhx80ceJExcbGatCgQS49Dj8/P82YMUMnTpzQ1VdfrY0bN+q5555Tjx49dO2110qSW+b0zDPPaO3atWrXrp1GjRqlBg0a6NSpU9q3b59WrVqlN95444If2zyfK16zAADPqVy5ssaNG6cnnnhC7777rgYOHJjvuMGDB+vll1/WwIED9dxzz6l+/fr69NNPtXr1akkq9GPxBalYsaJq166tFStW6MYbb1RYWJjCw8OL1Bg518SJEx3XSZwwYYLCwsL0zjvv6JNPPtGLL76o0NBQSdKjjz6qhQsXqmfPnnrmmWdUu3ZtffLJJ5o9e7YefPBBR3PB0/MqSHBwsGbMmKF7771XnTt31vDhw1W1alXt2bNH33//vV599VVJ1tlOPXr0ULdu3RQfH6/q1avr6NGj2rlzp7777jvH9Z9cxdvbWyNGjNCTTz6pChUq5LneZUFee+019e7dW23bttWjjz6qWrVqaf/+/Vq9erXjzbmpU6eqS5cu6tSpkx5//HH5+flp9uzZ+umnn7R48eILNr8u5li6dOmiMWPGKDc3Vy+88ILS09M1adIkxxhXzykmJkbPPPOMxo8fr99//91xbbe//vpLW7duVYUKFZyevyhc9ZrFZaT0rrEOlD/2O1kU9GW/08fevXvN0KFDTfXq1Y2vr6+JiIgw7dq1M88995zT/pTP3VFOnz5t7r33XhMREWFsNpvTfvOT313ujDHm7Nmz5oUXXjBXXnml8fX1NeHh4WbgwIHmwIEDefYxb94806xZM+Pn52dCQ0NN3759nW4BWxrz6tChg7nqqqvy3fexY8fM6NGjTa1atYyvr6+JjIw0PXv2NL/++qtjTHZ2tpk+fbpp3ry5CQgIMMHBwaZhw4bm/vvvN7t37y5w3iURHx9vfHx8nO5+dyEnT540EyZMMFdccYXx8/MzVapUMTfccIPT7X9PnjxpnnzySVO7dm3j6+troqOjzYMPPmiOHTvmtK/atWubnj175nmO/F5n9ju9TJs2zbFu8ODBpkKFCuaHH34wHTt2NIGBgSYsLMw8+OCD5sSJE3nmXZI5nX8nJWOsu7WMGjXK1KlTx/j6+pqwsDDTqlUrM378eMfz5zfvc4/z3Du9FPc1CwDwjMLuZnzy5ElTq1Ytc8UVVzjusprf34z9+/ebW2+91QQHB5uKFSua2267zaxatcpIMitWrHCMs/9tO5+9TjnXZ599ZmJjY42/v7+RZAYPHlzoceT399UYY3788UfTu3dvExoaavz8/Ezz5s2d7gho98cff5gBAwaYKlWqGF9fX9OgQQMzbdq0PHeo8+S87Hffe//99/Pd96pVq0yHDh1MhQoVTFBQkGncuLF54YUXnMZ8//335o477jCRkZHG19fXREVFmRtuuMG88cYbhc77Yu3bt89IMg888ECxttu0aZPp0aOHCQ0NNf7+/qZevXrm0UcfdRrz1VdfmRtuuMFUqFDBBAYGmrZt25qPPvrIaUxBr+eCauHzX5P22uaFF14wkyZNMjVq1DB+fn4mNjbWrF69Os+8SzIn+/f3iy++cFr/4Ycfmk6dOpmQkBDj7+9vateubfr162c+++yzAud9/nGeq7ivWVzebMYUcP4lAKDIzpw5o5iYGF177bX673//W9rTuSjx8fH64IMPdOLEidKeCgAAxTZlyhQ99dRT2r9/f7HPrkX5NWvWLI0aNUo//fST4wYp5cm+fftUp04dTZs2TY8//nhpTwfwOD6+BwAlcPjwYSUnJ2v+/Pn666+/NHbs2NKeEgAAlzz7x8UaNmyo7OxsrVu3Tv/61780cOBAGlKXiR07dmjv3r165pln1Ldv33LZkAJAUwoASuSTTz7RkCFDFB0drdmzZ6tly5alPSUAAC55QUFBevnll7Vv3z6dPn1atWrV0pNPPqmnnnqqtKcGD7nllluUmpqq6667Tm+88UZpTwfAReLjewAAAAAAAPC44t+aAgAAAAAAACghmlIAAAAAAADwOK4plY/c3FylpKSoYsWKstlspT0dAADgYsYYZWRkqFq1avLy4j06T6PWAgDg0lbUWoumVD5SUlJUs2bN0p4GAABwswMHDnCnrlJArQUAwOXhQrUWTal8VKxYUZIVXkhIiEv3nZ2drTVr1qhr167y9fV16b7LE3KwkIOFHCzkYCEHMrBzZw7p6emqWbOm428+PItay/3IwUIOFnIgAztysJCDpSzUWjSl8mE/jTwkJMQthVJQUJBCQkIu+xc/OZCDHTlYyMFCDmRg54kc+OhY6aDWcj9ysJCDhRzIwI4cLORgKQu1FhdRAAAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx3FNKQCAW+Xm5urMmTNFHp+dnS0fHx+dOnVKZ8+edePMyi4ysJQ0Bz8/v0JvQQwAwKXg7Nmzys7OLtJYagwLOVhKkoOvr6+8vb1LPAeaUgAAtzlz5oz27t2r3NzcIm9jjFFUVJQOHDhw2V6EmgwsJc3By8tLderUkZ+fnxtmBwBA6TLGKDU1VcePHy/WNtQY5GBX0hwqVaqkqKioEmVIUwoA4BbGGB06dEje3t6qWbNmkc9Yyc3N1YkTJxQcHHzZnuVCBpaS5JCbm6uUlBQdOnRItWrVuqwLTgDApcnekIqMjFRQUFCR/tZRY1jIwXKxORhjlJWVpb///luSFB0dfdFzoCkFAHCLnJwcZWVlqVq1agoKCirydvaP+wUEBFy2RQIZWEqaQ0REhFJSUpSTk3NZ3+4ZAHDpOXv2rKMhVaVKlSJvR41hIQdLSXIIDAyUJP3999+KjIy86I/yXb7pAwDcyv65dD46hdJif+1dzteKAABcmuzXkCrOG3+Aq9lff0W9pll+aEoBANyKj02htPDaAwBc6vhbh9LkitcfTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAALnFvvvmm4w6IM2fOLO3pAAAAXFKotS4eTSkAAM4RHx8vm82mBx54IM9jDz30kGw2m+Lj4/OMt9ls8vX1Vd26dfX4448rMzPTadulS5eqY8eOCg0NVXBwsJo1a6ZnnnlGR48eLXAu3t7ejn0HBwerefPmWrBgQbGOJz09XSNHjtSTTz6pgwcP6r777ivW9gAAAK5ErYVz0ZQCAOA8NWvW1HvvvaeTJ0861p06dUqLFy9WrVq18ozv3r27Dh06pN9//13PPfecZs+erccff9zx+Pjx43XnnXfq6quv1qeffqqffvpJM2bM0Pfff6///Oc/hc5l/vz5OnTokL7//nvdeeedGjJkiFavXl3kY9m/f7+ys7PVs2dPRUdHX/RdekpyVxUAAIBzUWvldbnWWjSlAAAelXUmp8CvU9lnXT72YrRs2VK1atXSsmXLHOuWLVummjVrKjY2Ns94f39/RUVFqWbNmhowYIDuvvtuffjhh5KkrVu3asqUKZoxY4amTZumdu3aKSYmRl26dNHSpUs1ePDgQudSqVIlRUVFqV69evrnP/+psLAwrVmzxvF4Wlqa7rvvPkVGRiokJEQ33HCDvv/+e0nSggUL1LRpU0lS3bp1ZbPZtG/fPknSRx99pFatWikgIEB169bVpEmTlJPzf3nZbDa98cYb6tu3rypUqKDnnnuuyNvNmzdPt9xyi4KCgnTFFVdo5cqVTsf0888/q2fPngoJCVHFihV13XXX6bfffnM8Pn/+fDVq1EhBQUG65ppr9PrrrzseO3PmjEaOHKno6GgFBAQoJiZGU6dOLTRDAAAuJ4XVT6eptfKg1irdWsvHbXsGACAfjScU/M5TpwYRemtwa8dyq2c/08nzCiK7NnXCtOT+OMfytS98oaOZZ/KM2/d8z4ua55AhQzR//nzdfffdkqS3335bQ4cO1fr16y+4bWBgoOPdrnfeeUfBwcF66KGH8h1bqVKlIs3n7NmzWrp0qY4ePSpfX19JkjFGPXv2VFhYmFatWqXQ0FDNmTNHN954o3bt2qU777xTNWvWVOfOnbV161bVrFlTERERWr16tQYOHKh//etfjiLFfqr5xIkTHc85ceJETZ06VS+//LK8vb2LvN2kSZP04osvatq0aZo1a5buvvtu/fHHHwoLC9PBgwd1/fXXq2PHjlq3bp1CQkL0zTffOIqtuXPnauLEiXr11VfVvHlzbdy4UY888oiCg4M1ePBg/etf/9LKlSv13//+V7Vq1dKBAwd04MCBImV4KTl27JhGjRrlKEL79OmjWbNmFfp6WrZsmebMmaPt27fryJEj2rFjh1q0aOE05s0339S7776r7777ThkZGTp27Fi++/zkk0/0zDPP6IcfflCFChV0/fXXO/3DAgBQegqrtTo2iNDMW650LFNr/R9qrdKptWhKAQCQj0GDBmncuHHat2+fbDabvvnmG7333nsXLJS2bt2qd999VzfeeKMkaffu3apbt66juCmuu+66S97e3jp16pTOnj2rsLAw3XvvvZKkL774Qj/++KP+/vtv+fv7S5KmT5+uDz/8UB988IHuu+8+ValSRZIUERGhqKgoSdLkyZM1duxYxzuHdevW1bPPPqsnnnjCqeAZMGCAhg4d6pRJUbaLj4/XXXfdJUmaMmWKZs2apa1bt6p79+567bXXFBoaqvfee8+RyZVX/l9x/Oyzz2rGjBm69dZblZubqypVqmjfvn2aM2eOBg8erP379+uKK67QtddeK5vNptq1a19UruXdgAED9OeffyoxMVGSdN9992nQoEH66KOPCtwmMzNT7du31+23367hw4fnOyYrK0vdu3dX9+7dNW7cuHzHLF26VMOHD9eUKVN0ww03yBijH3/8seQHBQC4rFBrUWtJNKUAAB72yzPdCnzMy2ZzWt7+dOcij/36yU4lm9h5wsPD1bNnT/373/92vEsWHh6e79iPP/5YwcHBysnJUXZ2tvr27atZs2ZJst5hs5031+J4+eWX1blzZx04cEBjxozRo48+qvr160uStm/frhMnTjiKIbuTJ086naJ9vu3bt2vbtm2aPHmyY93Zs2d16tQpZWVlOa6F0Lp164varlmzZo7HK1SooIoVK+rvv/+WJCUlJem6667Lt3A8fPiwDhw4oGHDhjk1TXJychQaGirJKsK6dOmiBg0aqHv37urVq5e6du1aSIKXnp07dyoxMVGbN29WmzZtJFnvesbFxSk5OVkNGjTId7tBgwZJkuNjBfl55JFHJKnAfxDk5ORo9OjRmjZtmoYNG+ZYX9BzAgA8r7Bay2aMTp/8vwuEU2tRa0mlW2vRlAIAeFSQX+F/enJzc4s8tjj7vRhDhw7VyJEjJUmvvfZageM6deqk119/Xb6+vqpWrZpTEXDllVfq66+/VnZ29kW9gxcVFaX69eurfv36ev/99xUbG6vWrVurcePGys3NVXR0dL4NhMJOVc/NzdWkSZN066235nksICDA8f8VKlS4qO3OP06bzeb4vgYGBhY6L8lqsLRp00a5ubk6ceKEgoODHfts2bKl9u7dq08//VSfffaZ7rjjDnXu3FkffPBBgfu91GzatEmhoaGOhpQktW3bVqGhodq4caNbG0TfffedDh48KC8vL8XGxio1NVUtWrTQ9OnTddVVVxW43enTp3X69GnHcnp6uiTroq6uvrCrfX+X6wVj7cjBQg4Wcrj0MsjOzpYxRrm5uU61kyQF+BR86WhjjE7////m5uYWOlZyrssKGnv+81+IMcbx/PHx8Ro1apQkadasWcrNzXV63D6+Y8eOmj17dp5aKzc3V1dccYW+/vprnT59usi1ljHG8f+RkZGqW7eu6tatqyVLlqhVq1Zq2bKlGjdurLNnzyo6Olrr1q3Ls49KlSo55X/+/yckJOiWW27Js52fn59TXXRufkXdztvb22k7m82mnJwc63saEOCU37nsH+GbM2eO2rRpI2OMMjMzVaFCBfn4+Cg3N1ctWrTQb7/9pk8//VSff/657rjjDt144416//338+zP/v3Kzs6Wt7e302NF/VmjKQUAQAG6d++uM2esayd061bwu44VKlRwvKN2vgEDBuhf//qXZs+erdGjR+d5/Pjx40W+1kH9+vV12223ady4cVqxYoVatmyp1NRU+fj4KCYmpkj7kKzGTnJycoFzdvV252rWrJn+/e9/59ukq1q1qqpXr67ff/9dd999t3Jzc5Wenq6QkBB5ef1fIRwSEqI777xTd955p/r166fu3bvr6NGjCgsLu+h5lSepqamKjIzMsz4yMlKpqalufe7ff/9dkpSQkKCXXnpJMTExmjFjhjp06KBdu3YV+D2YOnWqJk2alGf9mjVrLvouRReydu1at+y3vCEHCzlYyOHSycDHx0dRUVE6ceKEo1YpjoyMDDfMqmiys7OVk5Oj9PR0tWvXzvGmRVxcnNLT0x1nQ537Boa/v7/jb9/Jkyed7tpnv67iyy+/rAceeCDP86WlpTnOAsrPyZMnHc8VGRmp3r1764knntC7776rBg0aKDU1VadOncr3roDp6enKzLTOPDtx4oRjP82aNdNPP/2k+++/P882J06cyPe5S7KdMUanTp1Senq6GjRooMWLF+vIkSN5aq3AwEBVq1ZNv/76q3r37p3v8dj16NHD8dWvXz/98ccfqly5stP4M2fO6OTJk9qwYYPTxdgl65IARUFTCgCAAnh7e2vnzp2O/78Ybdq00RNPPKHHHntMBw8e1C233KJq1appz549euONN3Tttdfm26wqyGOPPabmzZvr22+/VefOnRUXF6ebb75ZL7zwgho0aKCUlBStWrVKN998c55Twu0mTJigXr16qWbNmrr99tvl5eWlH374QT/++KPjzi+u3O5cI0eO1KxZs9S/f3+NGzdOoaGh2rx5s6655ho1aNBACQkJGjVqlEJCQtStWzcdOXJEv/76q9LS0jRmzBi9/PLLio6OVosWLeTl5aX3339fUVFRRW7slWUJCQn5Nm7OtW3bNknK92MKJf34QlHY33UdP368brvtNknWHXxq1Kih999/P98iWpLGjRunMWPGOJbT09NVs2ZNde3aVSEhIS6dY3Z2ttauXasuXbpc9PVFLgXkYCEHCzlcehmcOnVKBw4cUHBwsNPZyhdijFFGRoYqVqzo9r8ZBfH19ZWPj4/j9/8vv/wiSY5lHx8f+fr6OpbPH3++G264Qf/4xz/01FNP6ciRI7r55psdtdacOXN07bXXOs7GsrPnIFmNmnP3/eSTTyo2Nla7du1Snz59FBcXp3vuuUdTp0511Fqffvqp+vbtq9atWzvOLA8ODnbsJyEhQX369FHdunXVr18/R830008/6dlnn3U81/nPfbHb2Ww2BQQEKCQkRGPGjNHcuXN1//33a+zYsXlqrYkTJ+qRRx5RRESEunXrpqNHj+rXX3/V8ePH9eijj2rmzJmKiopy1FqrVq1y3Pnw3DcJJet1GBgYqOuvvz7P6/DcBldhaEoBAFAIV/yD+YUXXlCrVq302muv6Y033lBubq7q1aunfv36XfA2xedr2rSpOnfurAkTJmjVqlVatWqVxo8fr6FDh+rw4cOKiorS9ddfr6pVqxa4j27duunjjz/WM888oxdffFG+vr5q2LCh46Kert7uXFWqVNG6dev0j3/8Qx06dJC3t7datGih9u3bS5LuvfdeBQUFadq0aXriiScUFBSkZs2aOa51FBwcrBdeeEG7d++Wt7e3rr76aq1atSpPkVQejRw5Uv379y90TExMjH744Qf99ddfeR47fPhwod93V4iOjpYkNW7c2LHO399fdevW1f79+wvczt/f33GB2HP5+vq67R+H7tx3eUIOFnKwkMOlk8HZs2dls9nk5eVVrL+B9jcX7NuWBpvN5vT857+xdP7j5y/n58UXX1Tr1q312muvac6cOU61Vnx8fJ5tz/1o2/kZNm/eXJ07d1ZCQoJTrXXvvfc61VrR0dFO2577/z169HDUTNOmTXOqmc59rvOf+2K3O3ddRESEo9bq1KmTo9a67rrr5OXlpfvuu0/BwcGaNm2annzySaday8vLSxUrVtS0adPy1Fo+PnnbR15eXrLZbPn+XBX558wgj7S0NCPJpKWluXzfZ86cMR9++KE5c+aMy/ddnpCDhRws5GC51HI4efKk+eWXX8zJkyeLtd3Zs2fNsWPHzNmzZ900s7KPDCwlzaGw16A7/9a72y+//GIkmS1btjjWbd682Ugyv/766wW337t3r5FkduzYUeCYL774wkgyx44dc1qflpZm/P39zbx58xzrzpw5YyIjI82cOXOKfAzUWu5HDhZysJDDpZcBdVbJkIOlLNRapfq24oYNG9S7d29Vq1ZNNptNH374YaHjly1bpi5duigiIkIhISGKi4vT6tWr84ybOXOmGjRooMDAQNWsWVOPPvqoTp065aajAAAA8JxGjRqpe/fuGj58uDZv3qzNmzdr+PDh6tWrl9NFzhs2bKjly5c7lo8ePaqkpCTHxySSk5OVlJTkdB2q1NRUJSUlac+ePZKkH3/8UUlJSTp69Kgk68zBBx54QBMnTtSaNWuUnJysBx98UJJ0++23u/3YAQDApaVUm1KZmZlq3ry5Xn311SKN37Bhg7p06aJVq1Zp+/bt6tSpk3r37q0dO3Y4xrzzzjsaO3asJk6cqJ07d+qtt97SkiVLNG7cOHcdBgAAgEe98847atq0qbp27aquXbuqWbNm+s9//uM0Jjk5WWlpaY7llStXKjY2Vj179pQk9e/fX7GxsXrjjTccY9544w3FxsY6bhN9/fXXKzY2VitXrnSMmTZtmvr3769Bgwbp6quv1h9//KF169blufgpAADAhZTqNaXsV3IvqpkzZzotT5kyRStWrNBHH32k2NhYSdZtktu3b68BAwZIsq69cNddd2nr1q0F7pfbFHseOVjIwUIOlksth8JuVVwY8/9v0WsKuJXt5YAMLCXNwRW3KS6rwsLCtGjRokLHmHNudy1J8fHxio+PL3SbhIQEJSQkFDrG19dX06dP1/Tp04syVQAAgAKV6wud5+bmKiMjw+n2w9dee60WLVqkrVu36pprrtHvv/+uVatWFXohWW5TXHrIwUIOFnKwXCo5lOdbFZcVZGC52BxccZtiAAAAuE+5bkrNmDFDmZmZuuOOOxzr+vfvr8OHD+vaa6+VMUY5OTl68MEHNXbs2AL3w22KPY8cLORgIQfLpZbD6dOntX//flWoUEGBgYFF3s6UgVsVlzYysJQ0h5MnTyowMFAdOnTIc+e3ot6mGACAsuxyPqMapc8Vr79y25RavHixEhIStGLFCkVGRjrWr1+/XpMnT9bs2bPVpk0b7dmzR6NHj1Z0dLSefvrpfPfFbYpLDzlYyMFCDpZLJQf7bWmPHDmiiIiIIjcVcnNzdebMGZ0+fbrUblVc2sjAUpIcjDE6cuSIvLy8FBgYmOfje5fCzxgA4PLl5+cnLy8vpaSkKCIiQn5+fkWqtex/W0+dOkWNQQ4XnYMxRmfOnNHhw4fl5eUlPz+/i55DuWxKLVmyRMOGDdP777+vzp07Oz329NNPa9CgQbr33nslSU2bNlVmZqbuu+8+jR8//rJ+wQGAJ3l7e6tGjRr6888/tW/fviJvZ4xxnOFyuZ4lRAaWkuZgs9lUo0aNPA0pAADKOy8vL9WpU0eHDh1SSkpKkbejxrCQg6WkOQQFBalWrVol6rOUu6bU4sWLNXToUC1evNhx95hzZWVl5QnE29tbxpg8F/wEALhXcHCwrrjiimJdVDo7O1sbNmzQ9ddff9mezUIGlpLm4OvrS0MKAHDJ8vPzU61atZSTk6OzZ88WaRtqDAs5WEqSg7e3t3x8fErc1CvVptSJEye0Z88ex/LevXuVlJSksLAw1apVS+PGjdPBgwe1cOFCSVZD6p577tErr7yitm3bKjU1VZIUGBio0NBQSVLv3r310ksvKTY21vHxvaefflp9+vShMAWAUuDt7V2s37/e3t7KyclRQEDAZVskkIGFHAAAKJzNZivWpR/422ohB0tZyKFUm1LffvutOnXq5Fi2X2x88ODBWrBggQ4dOqT9+/c7Hp8zZ45ycnI0YsQIjRgxwrHePl6SnnrqKdlsNj311FM6ePCgIiIi1Lt3b02ePNkzBwUAAAAAAIALKtWmVMeOHQv9SJ290WS3fv36C+7Tx8dHEydO1MSJE0s4OwAAAAAAALgLV/0GAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAoZ44dO6ZBgwYpNDRUoaGhGjRokI4fP17oNsuWLVO3bt0UHh4um82mpKSkPGPefPNNdezYUSEhIbLZbPnuc9euXerbt6/Cw8MVEhKi9u3b64svvnDNgQEAgMsKTSkAAIByZsCAAUpKSlJiYqISExOVlJSkQYMGFbpNZmam2rdvr+eff77AMVlZWerevbv++c9/FjimZ8+eysnJ0bp167R9+3a1aNFCvXr1Umpq6kUfDwAAuDz5lPYEAAAAUHQ7d+5UYmKiNm/erDZt2kiS5s6dq7i4OCUnJ6tBgwb5bmdvWu3bt6/AfT/yyCOSpPXr1+f7+P/+9z/t2bNHb7/9tpo1ayZJev755zV79mz9/PPPioqKuriDAgAAlyWaUgAAAOXIpk2bFBoa6mhISVLbtm0VGhqqjRs3FtiUcoUqVaqoUaNGWrhwoVq2bCl/f3/NmTNHVatWVatWrQrc7vTp0zp9+rRjOT09XZKUnZ2t7Oxsl87Rvj9X77e8IQcLOVjIgQzsyMFCDhZ35lDUfdKUAgAAKEdSU1MVGRmZZ31kZKTbP0Jns9m0du1a9e3bVxUrVpSXl5eqVq2qxMREVapUqcDtpk6dqkmTJuVZv2bNGgUFBbllrmvXrnXLfssbcrCQg4UcyMCOHCzkYHFHDllZWUUaR1MKAACgDEhISMi3cXOubdu2SbKaQ+czxuS73pWMMXrooYcUGRmpr776SoGBgZo3b5569eqlbdu2KTo6Ot/txo0bpzFjxjiW09PTVbNmTXXt2lUhISEunWN2drbWrl2rLl26yNfX16X7Lk/IwUIOFnIgAztysJCDxZ052M+KvhCaUgAAAGXAyJEj1b9//0LHxMTE6IcfftBff/2V57HDhw+ratWq7pqeJGndunX6+OOPdezYMUczafbs2Vq7dq3+/e9/a+zYsflu5+/vL39//zzrfX193faPAXfuuzwhBws5WMiBDOzIwUIOFnfkUNT9lerd9zZs2KDevXurWrVqstls+vDDDwsdv2zZMnXp0kUREREKCQlRXFycVq9enWfc8ePHNWLECEVHRysgIECNGjXSqlWr3HQUAAAAJRceHq6GDRsW+hUQEKC4uDilpaVp69atjm23bNmitLQ0tWvXzq1ztJ+K7+XlXEJ6eXkpNzfXrc8NAAAuPaXalMrMzFTz5s316quvFmn8hg0b1KVLF61atUrbt29Xp06d1Lt3b+3YscMx5syZM+rSpYv27dunDz74QMnJyZo7d66qV6/ursMAAADwmEaNGql79+4aPny4Nm/erM2bN2v48OHq1auX00XOGzZsqOXLlzuWjx49qqSkJP3yyy+SpOTkZCUlJTldhyo1NVVJSUnas2ePJOnHH39UUlKSjh49KkmKi4tT5cqVNXjwYH3//ffatWuX/vGPf2jv3r3q2bOnJw4fAABcQkr143s9evRQjx49ijx+5syZTstTpkzRihUr9NFHHyk2NlaS9Pbbb+vo0aPauHGj43Sx2rVru2zOAAAApe2dd97RqFGj1LVrV0lSnz598rzJl5ycrLS0NMfyypUrNWTIEMey/aOCEydOVEJCgiTpjTfecLqu1fXXXy9Jmj9/vuLj4xUeHq7ExESNHz9eN9xwg7Kzs3XVVVdpxYoVat68uVuOFQAAXLrK9TWlcnNzlZGRobCwMMe6lStXKi4uTiNGjNCKFSsUERGhAQMG6Mknn5S3t3e+++E2xZ5HDhZysJCDhRws5EAGdmXhNsVlVVhYmBYtWlToGGOM03J8fLzi4+ML3SYhIcHRoCpI69at8718AgAAQHGV66bUjBkzlJmZqTvuuMOx7vfff9e6det09913a9WqVdq9e7dGjBihnJwcTZgwId/9cJvi0kMOFnKwkIOFHCzkQAZ2pXmbYgAAALhPuW1KLV68WAkJCVqxYoUiIyMd63NzcxUZGak333xT3t7eatWqlVJSUjRt2rQCm1LcptjzyMFCDhZysJCDhRzIwK4s3KYYAAAA7lMum1JLlizRsGHD9P7776tz585Oj0VHR8vX19fpo3qNGjVSamqqzpw5Iz8/vzz74zbFpYccLORgIQcLOVjIgQzsSvM2xQAAAHCfUr373sVYvHix4uPj9e677+Z7l5f27dtrz549Trcl3rVrl6Kjo/NtSAEAAAAAAMDzSrUpdeLECSUlJSkpKUmStHfvXiUlJWn//v2SrI/V3XPPPY7xixcv1j333KMZM2aobdu2Sk1NVWpqqtOdZR588EEdOXJEo0eP1q5du/TJJ59oypQpGjFihEePDQAAAAAAAAUr1abUt99+q9jYWMXGxkqSxowZo9jYWMe1nw4dOuRoUEnSnDlzlJOToxEjRig6OtrxNXr0aMeYmjVras2aNdq2bZuaNWumUaNGafTo0Ro7dqxnDw4AAAAAAAAFKtVrSnXs2DHP7YrPtWDBAqfl9evXF2m/cXFx2rx5cwlmBgAAAAAAAHcqd9eUAgAAAAAAQPlHUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAKCcOXbsmAYNGqTQ0FCFhoZq0KBBOn78eKHbLFu2TN26dVN4eLhsNpuSkpKcHj969KgefvhhNWjQQEFBQapVq5ZGjRqltLS0Ej83AABAfmhKAQAAlDMDBgxQUlKSEhMTlZiYqKSkJA0aNKjQbTIzM9W+fXs9//zz+T6ekpKilJQUTZ8+XT/++KMWLFigxMREDRs2rMTPDQAAkB+f0p4AAAAAim7nzp1KTEzU5s2b1aZNG0nS3LlzFRcXp+TkZDVo0CDf7eyNo3379uX7eJMmTbR06VLHcr169TR58mQNHDhQOTk58vHxuejnPn36tE6fPu1YTk9PlyRlZ2crOzu7eAFcgH1/rt5veUMOFnKwkAMZ2JGDhRws7syhqPukKQUAAFCObNq0SaGhoY6mkCS1bdtWoaGh2rhxY4GNoYuRlpamkJAQ+fj4lOi5p06dqkmTJuVZv2bNGgUFBblsvudau3atW/Zb3pCDhRws5EAGduRgIQeLO3LIysoq0jiaUgAAAOVIamqqIiMj86yPjIxUamqqy57nyJEjevbZZ3X//feX+LnHjRunMWPGOJbT09NVs2ZNde3aVSEhIS6bs2S9M7t27Vp16dJFvr6+Lt13eUIOFnKwkAMZ2JGDhRws7szBflb0hdCUAgAAKAMSEhLyPZvoXNu2bZMk2Wy2PI8ZY/JdfzHS09PVs2dPNW7cWBMnTnR67GKe29/fX/7+/nnW+/r6uu0fA+7cd3lCDhZysJADGdiRg4UcLO7Ioaj7K9ULnW/YsEG9e/dWtWrVZLPZ9OGHHxY6ftmyZerSpYsiIiIUEhKiuLg4rV69usDx7733nmw2m26++WbXThwAAMDFRo4cqZ07dxb61aRJE0VFRemvv/7Ks/3hw4dVtWrVEs8jIyND3bt3V3BwsJYvX+5UVLr7uQEAwOWlVM+UyszMVPPmzTVkyBDddtttFxy/YcMGdenSRVOmTFGlSpU0f/589e7dW1u2bFFsbKzT2D/++EOPP/64rrvuOndNHwAAwGXCw8MVHh5+wXFxcXFKS0vT1q1bdc0110iStmzZorS0NLVr165Ec0hPT1e3bt3k7++vlStXKiAgwGPPDQAALj+l2pTq0aOHevToUeTxM2fOdFqeMmWKVqxYoY8++sipKXX27FndfffdmjRpkr766isdP37cRTMGAAAoXY0aNVL37t01fPhwzZkzR5J03333qVevXk4XGm/YsKGmTp2qW265RZJ09OhR7d+/XykpKZKk5ORkSdbZT1FRUcrIyFDXrl2VlZWlRYsWKT093XE9iIiICHl7exf5uQEAAIqiXF9TKjc3VxkZGQoLC3Na/8wzzygiIkLDhg3TV199dcH9cJtizyMHCzlYyMFCDhZyIAO7snCb4rLqnXfe0ahRo9S1a1dJUp8+ffTqq686jUlOTlZaWppjeeXKlRoyZIhjuX///pKkiRMnKiEhQdu3b9eWLVskSfXr13fa1969exUTE1Pk5wYAACiKct2UmjFjhjIzM3XHHXc41n3zzTd66623lJSUVOT9cJvi0kMOFnKwkIOFHCzkQAZ2pXmb4rIqLCxMixYtKnSMMcZpOT4+XvHx8QWO79ixY55tLva5AQAAiqLcNqUWL16shIQErVixwnFr4oyMDA0cOFBz584t0jUZ7LhNseeRg4UcLORgIQcLOZCBXVm4TTEAAADcp1w2pZYsWaJhw4bp/fffV+fOnR3rf/vtN+3bt0+9e/d2rMvNzZUk+fj4KDk5WfXq1cuzP25TXHrIwUIOFnKwkIOFHMjArjRvUwwAAAD3KXdNqcWLF2vo0KFavHixevbs6fRYw4YN9eOPPzqte+qpp5SRkaFXXnlFNWvW9ORUAQAAAAAAUIAiNaV++OGHYu+4cePG8vEpfPcnTpzQnj17HMt79+5VUlKSwsLCVKtWLY0bN04HDx7UwoULJVkNqXvuuUevvPKK2rZtq9TUVElSYGCgQkNDFRAQoCZNmjg9R6VKlSQpz3oAAICL4a66CAAA4HJTpOqoRYsWstlsRbr4pSR5eXlp165dqlu3bqHjvv32W3Xq1MmxbL+u0+DBg7VgwQIdOnRI+/fvdzw+Z84c5eTkaMSIERoxYoRjvX08AACAu7mrLgIAALjcFPktuy1btigiIuKC44wxRT4r6UJ3eTm/0bR+/foi7bewfQAAAJSUO+oiAACAy02RmlIdOnRQ/fr1HR+Fu5Drr79egYGBJZkXAABAmURdBAAA4BpFakp98cUXxdrpqlWrLmoyAAAAZR11EQAAgGt4lfYEAAAAAAAAcPkp8jWlnnnmmSKNmzBhwkVPBgAAoDygLgIAACi5Ijelli9fXuBjNptNycnJOnXqFMUXAAC45FEXAQAAlFyRm1I7duzId31SUpLGjh2rn376ScOHD3fZxAAAAMoq6iIAAICSu+hrSu3du1cDBw7U1VdfrdDQUP3888964403XDk3AACAcoG6CAAAoPiK3ZT63//+p4cfflgNGzbUoUOHtHHjRi1ZskRXXHGFO+YHAABQZlEXAQAAXLwif3wvMzNT06dP10svvaT69evro48+UteuXd05NwAAgDKJuggAAKDkityUqlevnjIyMvTwww/rrrvuks1m0w8//JBnXLNmzVw6QQAAgLKGuggAAKDkityU+vvvvyVJL774oqZNmyZjjOMxm80mY4xsNpvOnj3r+lkCAACUIdRFAAAAJVfkptTevXvdOQ8AAIByg7oIAACg5IrclKpdu7Y75wEAAFBuUBcBAACUXJHuvvfDDz8oNze3yDv9+eeflZOTc9GTAgAAKKuoiwAAAFyjSE2p2NhYHTlypMg7jYuL0/79+y96UgAAAGUVdREAAIBrFOnje8YYPf300woKCirSTs+cOVOiSQEAAJRV1EUAAACuUaSm1PXXX6/k5OQi7zQuLk6BgYEXPSkAAICyiroIAADANYrUlFq/fr2bpwEAAFA+UBcBAAC4RpGuKQUAAAAAAAC4Ek0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeNxFNaX+85//qH379qpWrZr++OMPSdLMmTO1YsUKl04OAACgrKMuAgAAuDjFbkq9/vrrGjNmjG666SYdP35cZ8+elSRVqlRJM2fOdPX8AAAAyizqIgAAgIvnU9wNZs2apblz5+rmm2/W888/71jfunVrPf744y6d3KXq9Fkp60yOfI0tz2NeNpsCfL0dy1lncgrcT0nGnjxzVkYm37E22RTod3FjT2WfVa7Jf6wkBfn930vuTCE5nD+2OPu90NhAX2/ZbNZzns45q7O5rhkb4OMtLy9r7JmcXOXk5hZpbE5u4Tn4+3jLu4j7PXds9tlcZZ8teKyft5d8vL2KPTbnbK7OFDLW19tLvhcxNtcUnoOPl5f8fKyxZ3ONTuecLXC/547NzTU65aKx3l42+ftYr3djjE5mu2Zsfj/LBeVwOf2OOJV9VtkF5JDf2Evpd4T3OfMrzs/9pfY7QoUcS1lBXVQ2UWtZqLWotai1LF42m7zPWXbXz315+B3he86335U/9+XtdwS11v9XBmqtYjel9u7dq9jY2Dzr/f39lZmZ6ZJJXeqe2OqjJ7auy/exTg0iNH/INY7lVs9+VuAv2DZ1wrTk/jjH8rUvfKGjmWfyHdusRqhWjrzWsdz5pS918PjJfMdeERmstWM6OJb7vPq1dv99It+x1SsF6puxNziW75izST/8mZbv2LAKfvru6S6O5Tm/eusfBeQQ6Outnc92dyw/uGi7vkg+nO9YSdr3fE/H/4/5b5JW/Zha4Nhfnunm+KX5z2U/ael3fxY4dvtTnVUl2F+S9NzHO/WfzX8UOParJzqpZliQJGn6mmS9ueH3AseuefR6XVm1oiRp7UEvPfZs/jlI0ooR7dW8ZiVJ0vxv9mrqp78WOHbx8LaKq1fF+v+t+zVhxc8Fjn07vrVuaFhVkvThjoP6xwc/FDj2tQEt1bNZtCRp9c9/acS73xU4dlq/Zrq9dU1J0obdhzV0wbcFjn2m71W6Jy5GkvRbuk2PFpLDuB4NdX+HepKknw6mqe9r3xQ4dvSNV+jRLldKkvYcPqGuL28ocOx919fVP29qJEk6ePykrnvxiwLHDmpbW8/e3ESSdDTzjFo991mBY29rWUMz7mguSTqZfVaNJ6wucOxNTaM0++5WjuXmheRwOf2OGLbwO23ddyzfsZf674hVI9s5/v+1L/bolc93Fzj2Uv4dMbFXQ4UV+GjZQF1UNlFrWai1qLWotSw3NY3SK3c0cywXNvZS/x2xZWxHx/Lgt7dqy96j+Y691H9HUGtZykKtVeyP79WpU0dJSUl51n/66adq3LixK+YEAABQLlAXAQAAXDybMYWcV5eP+fPn6+mnn9aMGTM0bNgwzZs3T7/99pumTp2qefPmqX///u6aq8ekp6crNDRUaWlpCgkJcem+s7OztfyjVerWrat8fX3zPH6pny5q74hnZ2frw49WqWsBOZw7tjj7LcrYsnC6qH1sdna2Vn68Sp27FpzDpXy6qH1sdna2Pv5klW7oUnAOl/op5QG+3srOztaqVavUsXPBOVwOvyPsOdzQpZu8fQo+ofdS/h3hbXKVmPipbrrpJhmb92V8SvlZrV2dqJtuuqnAn4mL5aq/9ZdDXeQO1FrUWhczllrLQq1V/LHWx/dytWrVKt10002FXh7gUv8d4WszjhzOyusy/vgetZakMlFrFfvje0OGDFFOTo6eeOIJZWVlacCAAapevbpeeeUVCq8i8ve2fmh9fS8c/7k/3K4ce+4vLleOPfcX7YX4FSOH4uy3OGPtf8hcPdbPx0t+RTwR0cer6DkUZ7/n/jJy5Vifc34hunKsl63oOXh72Yr8evdy01ibzT1jpaLnYB9bnP0WVVn4HRHg613kHC613xHZ2dlFHluc/Z6rPPyOyM4u1vtmpaK06qJjx45p1KhRWrlypSSpT58+mjVrlipVqlTgNsuWLdOcOXO0fft2HTlyRDt27FCLFi0cjx89elQTJ07UmjVrdODAAYWHh+vmm2/Ws88+q9DQUEnSvn379Oyzz2rdunVKTU1VtWrVNHDgQI0fP15+fn5uO97iotayUGtZqLUsl3utlZ39f/8wd9fPfXn4HXFujeGun/vy8DuCWstSFmqtYjelJGn48OEaPny4/ve//yk3N1eRkZGunhcAAEC5UBp10YABA/Tnn38qMTFRknTfffdp0KBB+uijjwrcJjMzU+3bt9ftt9+u4cOH53k8JSVFKSkpmj59uho3bqw//vhDDzzwgFJSUvTBBx9Ikn799Vfl5uZqzpw5ql+/vn766ScNHz5cmZmZmj59unsOFgAAXLIu6kLnOTk5uuKKKxQeHu5Yv3v3bvn6+iomJsaV8wMAACizSqMu2rlzpxITE7V582a1adNGkjR37lzFxcUpOTlZDRo0yHe7QYMGSbLOdspPkyZNtHTpUsdyvXr1NHnyZA0cOFA5OTny8fFR9+7d1b37/134tm7dukpOTtbrr79eaFPq9OnTOn36tGM5PT1dkvVO9bnvVruCfX+u3m95Qw4WcrCQAxnYkYOFHCzuzKGo+yx2Uyo+Pl5Dhw7VFVdc4bR+y5YtmjdvntavX1/cXQIAAJRLpVEXbdq0SaGhoY6GlCS1bdtWoaGh2rhxY4FNqYthvw6ETyHXd0tLS1NYWOH37pk6daomTZqUZ/2aNWsUFBRU4nnmZ+3atW7Zb3lDDhZysJADGdiRg4UcLO7IISsrq0jjit2U2rFjh9q3b59nfdu2bTVy5Mji7g4AAKDcKo26KDU1Nd+PCEZGRio1teBbcBfXkSNH9Oyzz+r+++8vcMxvv/2mWbNmacaMGYXua9y4cRozZoxjOT09XTVr1lTXrl3dcqHztWvXqkuXLi6/aGt5Qg4WcrCQAxnYkYOFHCzuzMF+VvSFFLspZbPZlJGRkWd9Wlqazp4t+I4HAAAAlxpX1kUJCQn5nk10rm3btjme93zGmHzXX4z09HT17NlTjRs31sSJE/Mdk5KSou7du+v222/XvffeW+j+/P395e/vn2e9r6+v2/4x4M59lyfkYCEHCzmQgR05WMjB4o4cirq/ol2y/RzXXXedpk6d6lRonT17VlOnTtW1115brH1t2LBBvXv3VrVq1WSz2fThhx8WOn7ZsmXq0qWLIiIiFBISori4OK1evdppzNy5c3XdddepcuXKqly5sjp37qytW7cWa14AAABF4cq6aOTIkdq5c2ehX02aNFFUVJT++uuvPNsfPnxYVatWLfExZWRkqHv37goODtby5cvzLSpTUlLUqVMnxcXF6c033yzxcwIAgMtTsc+UeuGFF9ShQwc1aNBA1113nSTpq6++Unp6utatW1esfWVmZqp58+YaMmSIbrvttguO37Bhg7p06aIpU6aoUqVKmj9/vnr37q0tW7YoNjZWkrR+/XrdddddateunQICAvTiiy+qa9eu+vnnn1W9evXiHi4AAECBXFkXhYeHO10svSBxcXFKS0vT1q1bdc0110iyrmGVlpamdu3aFf8gzpGenq5u3brJ399fK1euVEBAQJ4xBw8eVKdOndSqVSvNnz9fXl7Ffo8TAABA0kU0pa666ir98MMPevXVV/X9998rMDBQ99xzj0aOHHnBi1yer0ePHurRo0eRx8+cOdNpecqUKVqxYoU++ugjR1PqnXfecRozd+5cffDBB/r88891zz335Ltf7gjjeeRgIQcLOVjIwUIOZGBXFu4IcyGurIuKqlGjRurevbuGDx+uOXPmSJLuu+8+9erVy+ki5w0bNtTUqVN1yy23SJKOHj2q/fv3KyUlRZKUnJwsSYqKilJUVJQyMjLUtWtXZWVladGiRUpPT3fURBEREfL29lZKSoo6duyoWrVqafr06Tp8+LDj+aKiotxyvAAA4NJVrKZUdna2unbtqjlz5mjKlCnumlOR5ebmKiMjo9CiLysrS9nZ2YWO4Y4wpYccLORgIQcLOVjIgQzsSvOOMIUpzbronXfe0ahRo9S1a1dJUp8+ffTqq686jUlOTlZaWppjeeXKlRoyZIhjuX///pKkiRMnKiEhQdu3b9eWLVskSfXr13fa1969exUTE6M1a9Zoz5492rNnj2rUqOE0xhjjugMEAACXhWI1pXx9ffXTTz+57CKaJTVjxgxlZmbqjjvuKHDM2LFjVb16dXXu3LnAMdwRxvPIwUIOFnKwkIOFHMjArizcEaYwpVkXhYWFadGiRYWOOb9JFB8fr/j4+ALHd+zY8YKNpQvtAwAAoDiK/fG9e+65R2+99Zaef/55d8ynyBYvXqyEhAStWLEi39siS9KLL76oxYsXa/369fleE8GOO8KUHnKwkIOFHCzkYCEHMrArzTvCXEhZqYsAAADKo2I3pc6cOaN58+Zp7dq1at26tSpUqOD0+EsvveSyyRVkyZIlGjZsmN5///0Cz4CaPn26pkyZos8++0zNmjVz+5wAAMDlpyzURQAAAOVVsZtSP/30k1q2bClJ2rVrl9Njnjh9ffHixRo6dKgWL16snj175jtm2rRpeu6557R69Wq1bt3a7XMCAACXp9KuiwAAAMqzYjelvvjiC5c9+YkTJ7Rnzx7H8t69e5WUlKSwsDDVqlVL48aN08GDB7Vw4UJJVkPqnnvu0SuvvKK2bdsqNTVVkhQYGKjQ0FBJ1kf2nn76ab377ruKiYlxjAkODlZwcLDL5g4AAODKuggAAOBy41WSjf/8808dPHjworf/9ttvFRsbq9jYWEnSmDFjFBsbqwkTJkiSDh06pP379zvGz5kzRzk5ORoxYoSio6MdX6NHj3aMmT17ts6cOaN+/fo5jZk+ffpFzxMAAOBCSloXAQAAXG6KfaZUbm6unnvuOc2YMUMnTpyQJFWsWFGPPfaYxo8fLy+vove5LnSXlwULFjgtr1+//oL73LdvX5GfHwAAoCRcWRcBAABcbordlBo/frzjLjPt27eXMUbffPONEhISdOrUKU2ePNkd8wQAAChzqIsAAAAuXrGbUv/+9781b9489enTx7GuefPmql69uh566CGKLwAAcNmgLgIAALh4xT6n/OjRo2rYsGGe9Q0bNtTRo0ddMikAAIDygLoIAADg4hW7KdW8eXO9+uqreda/+uqrat68uUsmBQAAUB5QFwEAAFy8Yn9878UXX1TPnj312WefKS4uTjabTRs3btSBAwe0atUqd8wRAACgTKIuAgAAuHjFPlOqQ4cO2rVrl2655RYdP35cR48e1a233qrk5GRdd9117pgjAABAmURdBAAAcPGKfKbU77//rjp16shms6latWpcuBMAAFy2qIsAAABKrshnSl1xxRU6fPiwY/nOO+/UX3/95ZZJAQAAlGXURQAAACVX5KaUMcZpedWqVcrMzHT5hAAAAMo66iIAAICSK/Y1pQAAAAAAAICSKnJTymazyWaz5VkHAABwuaEuAgAAKLkiX+jcGKP4+Hj5+/tLkk6dOqUHHnhAFSpUcBq3bNky184QAACgjKEuAgAAKLkiN6UGDx7stDxw4ECXTwYAAKA8oC4CAAAouSI3pebPn+/OeQAAAJQb1EUAAAAlx4XOAQAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAADKmWPHjmnQoEEKDQ1VaGioBg0apOPHjxe6zbJly9StWzeFh4fLZrMpKSnJ6fGjR4/q4YcfVoMGDRQUFKRatWpp1KhRSktLy3d/p0+fVosWLfLdFwAAQFHQlAIAAChnBgwYoKSkJCUmJioxMVFJSUkaNGhQodtkZmaqffv2ev755/N9PCUlRSkpKZo+fbp+/PFHLViwQImJiRo2bFi+45944glVq1atxMcCAAAuXz6lPQEAAAAU3c6dO5WYmKjNmzerTZs2kqS5c+cqLi5OycnJatCgQb7b2ZtW+/bty/fxJk2aaOnSpY7levXqafLkyRo4cKBycnLk4/N/ZeOnn36qNWvWaOnSpfr0009ddGQAAOByQ1MKAACgHNm0aZNCQ0MdDSlJatu2rUJDQ7Vx48YCm1IXIy0tTSEhIU4Nqb/++kvDhw/Xhx9+qKCgoCLt5/Tp0zp9+rRjOT09XZKUnZ2t7Oxsl83Xvs9z/3u5IgcLOVjIgQzsyMFCDhZ35lDUfdKUAgAAKEdSU1MVGRmZZ31kZKRSU1Nd9jxHjhzRs88+q/vvv9+xzhij+Ph4PfDAA2rdunWBZ12db+rUqZo0aVKe9WvWrClyY6u41q5d65b9ljfkYCEHCzmQgR05WMjB4o4csrKyijSOphQAAEAZkJCQkG/j5lzbtm2TJNlstjyPGWPyXX8x0tPT1bNnTzVu3FgTJ050rJ81a5bS09M1bty4Yu1v3LhxGjNmjNP+a9asqa5duyokJMQlc7bLzs7W2rVr1aVLF/n6+rp03+UJOVjIwUIOZGBHDhZysLgzB/tZ0RdSqk2pDRs2aNq0adq+fbsOHTqk5cuX6+abby5w/LJly/T6668rKSlJp0+f1lVXXaWEhAR169bNadzSpUv19NNP67fffnNcD+GWW25x89EAAABcvJEjR6p///6FjomJidEPP/ygv/76K89jhw8fVtWqVUs8j4yMDHXv3l3BwcFavny5U5G6bt06bd68Wf7+/k7btG7dWnfffbf+/e9/57tPf3//PNtIkq+vr9v+MeDOfZcn5GAhBws5kIEdOVjIweKOHIq6v1JtSmVmZqp58+YaMmSIbrvttguO37Bhg7p06aIpU6aoUqVKmj9/vnr37q0tW7YoNjZWknWdhTvvvFPPPvusbrnlFi1fvlx33HGHvv76a6drLwAAAJQl4eHhCg8Pv+C4uLg4paWlaevWrbrmmmskSVu2bFFaWpratWtXojmkp6erW7du8vf318qVKxUQEOD0+L/+9S8999xzjuWUlBR169ZNS5Ysoc4CAADFVqpNqR49eqhHjx5FHj9z5kyn5SlTpmjFihX66KOPHE2pmTNnqkuXLo7TyseNG6cvv/xSM2fO1OLFi102dwAAgNLQqFEjde/eXcOHD9ecOXMkSffdd5969erldJHzhg0baurUqY6zxY8ePar9+/crJSVFkpScnCxJioqKUlRUlDIyMtS1a1dlZWVp0aJFSk9Pd5x6HxERIW9vb9WqVctpLsHBwZKsO/XVqFHDvQcOAAAuOeX6mlK5ubnKyMhQWFiYY92mTZv06KOPOo3r1q1bnobWubgjjOeRg4UcLORgIQcLOZCBXVm4I0xZ9c4772jUqFHq2rWrJKlPnz569dVXncYkJycrLS3Nsbxy5UoNGTLEsWz/qODEiROVkJCg7du3a8uWLZKk+vXrO+1r7969iomJccehAACAy1i5bkrNmDFDmZmZuuOOOxzrUlNT81xPoWrVqoXejYY7wpQecrCQg4UcLORgIQcysCvNO8KUVWFhYVq0aFGhY4wxTsvx8fGKj48vcHzHjh3zbHMhMTExxd4GAADArtw2pRYvXqyEhAStWLEiz22Rz7/zzIXuRsMdYTyPHCzkYCEHCzlYyIEM7MrCHWEAAADgPuWyKbVkyRINGzZM77//vjp37uz0WFRUVJ6zov7+++9C70bDHWFKDzlYyMFCDhZysJADGdiV5h1hAAAA4D5epT2B4lq8eLHi4+P17rvvqmfPnnkej4uLy3Oa/5o1a0p8NxoAAAAAAAC4TqmeKXXixAnt2bPHsbx3714lJSUpLCxMtWrV0rhx43Tw4EEtXLhQktWQuueee/TKK6+obdu2jjOiAgMDFRoaKkkaPXq0rr/+er3wwgvq27evVqxYoc8++0xff/215w8QAAAAAAAA+SrVM6W+/fZbxcbGKjY2VpI0ZswYxcbGasKECZKkQ4cOaf/+/Y7xc+bMUU5OjkaMGKHo6GjH1+jRox1j2rVrp/fee0/z589Xs2bNtGDBAi1ZskRt2rTx7MEBAAAAAACgQKV6ptSF7vKyYMECp+X169cXab/9+vVTv379SjAzAAAAAAAAuFO5u6YUAAAAAAAAyj+aUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAADlzLFjxzRo0CCFhoYqNDRUgwYN0vHjxwvdZtmyZerWrZvCw8Nls9mUlJTk9PjRo0f18MMPq0GDBgoKClKtWrU0atQopaWl5dnXJ598ojZt2igwMFDh4eG69dZbXXh0AADgckFTCgAAoJwZMGCAkpKSlJiYqMTERCUlJWnQoEGFbpOZman27dvr+eefz/fxlJQUpaSkaPr06frxxx+1YMECJSYmatiwYU7jli5dqkGDBmnIkCH6/vvv9c0332jAgAEuOzYAAHD58CntCQAAAKDodu7cqcTERG3evFlt2rSRJM2dO1dxcXFKTk5WgwYN8t3O3rTat29fvo83adJES5cudSzXq1dPkydP1sCBA5WTkyMfHx/l5ORo9OjRmjZtmlOzqqDnBAAAKAxNKQAAgHJk06ZNCg0NdTSkJKlt27YKDQ3Vxo0bXdogSktLU0hIiHx8rJLxu+++08GDB+Xl5aXY2FilpqaqRYsWmj59uq666qoC93P69GmdPn3asZyeni5Jys7OVnZ2tsvma9/nuf+9XJGDhRws5EAGduRgIQeLO3Mo6j5pSgEAAJQjqampioyMzLM+MjJSqampLnueI0eO6Nlnn9X999/vWPf7779LkhISEvTSSy8pJiZGM2bMUIcOHbRr1y6FhYXlu6+pU6dq0qRJedavWbNGQUFBLpvzudauXeuW/ZY35GAhBws5kIEdOVjIweKOHLKysoo0jqYUAABAGZCQkJBv4+Zc27ZtkyTZbLY8jxlj8l1/MdLT09WzZ081btxYEydOdKzPzc2VJI0fP1633XabJGn+/PmqUaOG3n//facG1rnGjRunMWPGOO2/Zs2a6tq1q0JCQlwyZ7vs7GytXbtWXbp0ka+vr0v3XZ6Qg4UcLORABnbkYCEHiztzsJ8VfSGl2pTasGGDpk2bpu3bt+vQoUNavny5br755gLHHzp0SI899pi2b9+u3bt3a9SoUZo5c2aecTNnztTrr7+u/fv3Kzw8XP369dPUqVMVEBDgvoMBAAAogZEjR6p///6FjomJidEPP/ygv/76K89jhw8fVtWqVUs8j4yMDHXv3l3BwcFavny5U5EaHR0tSWrcuLFjnb+/v+rWrav9+/cXuE9/f3/5+/vnWe/r6+u2fwy4c9/lCTlYyMFCDmRgRw4WcrC4I4ei7q9Um1KZmZlq3ry5hgwZ4ni3rTCnT59WRESExo8fr5dffjnfMe+8847Gjh2rt99+W+3atdOuXbsUHx8vSQVuAwAAUNrCw8MVHh5+wXFxcXFKS0vT1q1bdc0110iStmzZorS0NLVr165Ec0hPT1e3bt3k7++vlStX5nlDr1WrVvL391dycrKuvfZaSda7rPv27VPt2rVL9NwAAODyU6pNqR49eqhHjx5FHh8TE6NXXnlFkvT222/nO2bTpk1q376949bEMTExuuuuu7R169YC98vFNz2PHCzkYCEHCzlYyIEM7MrCxTfLokaNGql79+4aPny45syZI0m677771KtXL6eLnDds2FBTp07VLbfcIkk6evSo9u/fr5SUFElScnKyJCkqKkpRUVHKyMhQ165dlZWVpUWLFik9Pd1RE0VERMjb21shISF64IEHNHHiRNWsWVO1a9fWtGnTJEm33367xzIAAACXhkvumlLXXnutFi1a5Hj38Pfff9eqVas0ePDgArfh4pulhxws5GAhBws5WMiBDOxK8+KbZdU777yjUaNGqWvXrpKkPn366NVXX3Uak5ycrLS0NMfyypUrNWTIEMey/aOCEydOVEJCgrZv364tW7ZIkurXr++0r7179yomJkaSNG3aNPn4+GjQoEE6efKk2rRpo3Xr1qly5couP04AAHBpu+SaUv3799fhw4d17bXXyhijnJwcPfjggxo7dmyB23DxTc8jBws5WMjBQg4WciADu7Jw8c2yKiwsTIsWLSp0jDHGaTk+Pt5xSYP8dOzYMc82+fH19dX06dM1ffr0Is0VAACgIJdcU2r9+vWaPHmyZs+erTZt2mjPnj0aPXq0oqOj9fTTT+e7DRffLD3kYCEHCzlYyMFCDmRgV5oX3wQAAID7XHJNqaefflqDBg3SvffeK0lq2rSpMjMzdd9992n8+PHy8vIq5RkCAAAAAADgkuvQZGVl5Wk8eXt7yxhTpFPSAQAAAAAA4H6leqbUiRMntGfPHsfy3r17lZSUpLCwMNWqVUvjxo3TwYMHtXDhQseYpKQkx7aHDx9WUlKS/Pz81LhxY0lS79699dJLLyk2Ntbx8b2nn35affr0kbe3t0ePDwAAAAAAAPkr1abUt99+q06dOjmW7RcbHzx4sBYsWKBDhw5p//79TtvExsY6/n/79u169913Vbt2be3bt0+S9NRTT8lms+mpp57SwYMHFRERod69e2vy5MnuPyAAAAAAAAAUSak2pS50l5cFCxbkWXehj+D5+Pho4sSJmjhxYkmnBwAAAAAAADe55K4pBQAAAAAAgLKPphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAABAOXPs2DENGjRIoaGhCg0N1aBBg3T8+PFCt1m2bJm6deum8PBw2Ww2JSUlOT1+9OhRPfzww2rQoIGCgoJUq1YtjRo1SmlpaU7jdu3apb59+yo8PFwhISFq3769vvjiCxcfIQAAuBzQlAIAAChnBgwYoKSkJCUmJioxMVFJSUkaNGhQodtkZmaqffv2ev755/N9PCUlRSkpKZo+fbp+/PFHLViwQImJiRo2bJjTuJ49eyonJ0fr1q3T9u3b1aJFC/Xq1UupqakuOz4AAHB58CntCQAAAKDodu7cqcTERG3evFlt2rSRJM2dO1dxcXFKTk5WgwYN8t3O3rTat29fvo83adJES5cudSzXq1dPkydP1sCBA5WTkyMfHx/973//0549e/T222+rWbNmkqTnn39es2fP1s8//6yoqKh893369GmdPn3asZyeni5Jys7OVnZ2dvECuAD7/ly93/KGHCzkYCEHMrAjBws5WNyZQ1H3SVMKAACgHNm0aZNCQ0MdDSlJatu2rUJDQ7Vx48YCm1IXIy0tTSEhIfLxsUrGKlWqqFGjRlq4cKFatmwpf39/zZkzR1WrVlWrVq0K3M/UqVM1adKkPOvXrFmjoKAgl833XGvXrnXLfssbcrCQg4UcyMCOHCzkYHFHDllZWUUaR1MKAACgHElNTVVkZGSe9ZGRkS79CN2RI0f07LPP6v7773ess9lsWrt2rfr27auKFSvKy8tLVatWVWJioipVqlTgvsaNG6cxY8Y4ltPT01WzZk117dpVISEhLpuzZL0zu3btWnXp0kW+vr4u3Xd5Qg4WcrCQAxnYkYOFHCzuzMF+VvSFlGpTasOGDZo2bZq2b9+uQ4cOafny5br55psLHH/o0CE99thj2r59u3bv3q1Ro0Zp5syZecYdP35c48eP17Jly3Ts2DHVqVNHM2bM0E033eS+gwEAACiBhISEfM8mOte2bdskWc2h8xlj8l1/MdLT09WzZ081btxYEydOdHqOhx56SJGRkfrqq68UGBioefPmqVevXtq2bZuio6Pz3Z+/v7/8/f3zrPf19XXbPwbcue/yhBws5GAhBzKwIwcLOVjckUNR91eqTanMzEw1b95cQ4YM0W233XbB8adPn1ZERITGjx+vl19+Od8xZ86cUZcuXRQZGakPPvhANWrU0IEDB1SxYkVXTx8AAMBlRo4cqf79+xc6JiYmRj/88IP++uuvPI8dPnxYVatWLfE8MjIy1L17dwUHB2v58uVOReW6dev08ccf69ixY44znGbPnq21a9fq3//+t8aOHVvi5wcAAJePUm1K9ejRQz169Cjy+JiYGL3yyiuSpLfffjvfMW+//baOHj2qjRs3Ooqo2rVrl3yyAAAAbhQeHq7w8PALjouLi1NaWpq2bt2qa665RpK0ZcsWpaWlqV27diWaQ3p6urp16yZ/f3+tXLlSAQEBTo/brw/h5eV8A2cvLy/l5uaW6LkBAMDl55K7ptTKlSsVFxenESNGaMWKFYqIiNCAAQP05JNPytvbO99tuCOM55GDhRws5GAhBws5kIFdWbgjTFnUqFEjde/eXcOHD9ecOXMkSffdd5969erldJHzhg0baurUqbrlllskSUePHtX+/fuVkpIiSUpOTpYkRUVFKSoqShkZGeratauysrK0aNEipaenO2qiiIgIeXt7Ky4uTpUrV9bgwYM1YcIEBQYGau7cudq7d6969uzpyRgAAMAl4JJrSv3+++9at26d7r77bq1atUq7d+/WiBEjlJOTowkTJuS7DXeEKT3kYCEHCzlYyMFCDmRgV5p3hCmr3nnnHY0aNUpdu3aVJPXp00evvvqq05jk5GSlpaU5lleuXKkhQ4Y4lu0fFZw4caISEhK0fft2bdmyRZJUv359p33t3btXMTExCg8PV2JiosaPH68bbrhB2dnZuuqqq7RixQo1b97cLccKAAAuXZdcUyo3N1eRkZF688035e3trVatWiklJUXTpk0rsCnFHWE8jxws5GAhBws5WMiBDOzKwh1hyqqwsDAtWrSo0DHGGKfl+Ph4xcfHFzi+Y8eOebbJT+vWrbV69eoizRMAAKAwl1xTKjo6Wr6+vk4f1WvUqJFSU1N15swZ+fn55dmGO8KUHnKwkIOFHCzkYCEHMrArzTvCAAAAwH28LjykfGnfvr327NnjdLHNXbt2KTo6Ot+GFAAAAAAAADyvVM+UOnHihPbs2eNY3rt3r5KSkhQWFqZatWpp3LhxOnjwoBYuXOgYk5SU5Nj28OHDSkpKkp+fnxo3bixJevDBBzVr1iyNHj1aDz/8sHbv3q0pU6Zo1KhRRZ6X/dR1d5zan52draysLKWnp1/W79KSg4UcLORgIQcLOZCBnTtzsP+NL8rH1eB61FruRw4WcrCQAxnYkYOFHCxlodaymVKsxtavX69OnTrlWT948GAtWLBA8fHx2rdvn9avX+94zGaz5Rlfu3Zt7du3z7G8adMmPfroo0pKSlL16tU1bNiwQu++d74///xTNWvWLPbxAACA8uXAgQOqUaNGaU/jskOtBQDA5eFCtVapNqXKqtzcXKWkpKhixYr5NsFKwn4R9QMHDrj8IurlCTlYyMFCDhZysJADGdi5MwdjjDIyMlStWjV5eV1yVzMo86i13I8cLORgIQcysCMHCzlYykKtdcld6NwVvLy83P6uaUhIyGX94rcjBws5WMjBQg4WciADO3flEBoa6vJ9omiotTyHHCzkYCEHMrAjBws5WEqz1uKtQQAAAAAAAHgcTSkAAAAAAAB4HE0pD/P399fEiRPl7+9f2lMpVeRgIQcLOVjIwUIOZGBHDrgYvG4s5GAhBws5kIEdOVjIwVIWcuBC5wAAAAAAAPA4zpQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUcoHZs2erTp06CggIUKtWrfTVV18VOv7LL79Uq1atFBAQoLp16+qNN97IM2bp0qVq3Lix/P391bhxYy1fvtxd03cZV+fw888/67bbblNMTIxsNptmzpzpxtm7hqszmDt3rq677jpVrlxZlStXVufOnbV161Z3HoJLuDqHZcuWqXXr1qpUqZIqVKigFi1a6D//+Y87D8El3PG7we69996TzWbTzTff7OJZu56rc1iwYIFsNluer1OnTrnzMErMHa+H48ePa8SIEYqOjlZAQIAaNWqkVatWuesQXMLVOXTs2DHf10PPnj3deRjwIOosC3WWhVrLQq1lodayUGtRZ9mVyzrLoETee+894+vra+bOnWt++eUXM3r0aFOhQgXzxx9/5Dv+999/N0FBQWb06NHml19+MXPnzjW+vr7mgw8+cIzZuHGj8fb2NlOmTDE7d+40U6ZMMT4+Pmbz5s2eOqxic0cOW7duNY8//rhZvHixiYqKMi+//LKHjubiuCODAQMGmNdee83s2LHD7Ny50wwZMsSEhoaaP//801OHVWzuyOGLL74wy5YtM7/88ovZs2ePmTlzpvH29jaJiYmeOqxic0cOdvv27TPVq1c31113nenbt6+bj6Rk3JHD/PnzTUhIiDl06JDTV1nmjhxOnz5tWrdubW666Sbz9ddfm3379pmvvvrKJCUleeqwis0dORw5csTpdfDTTz8Zb29vM3/+fA8dFdyJOstCnWWh1rJQa1motSzUWtRZduW1zqIpVULXXHONeeCBB5zWNWzY0IwdOzbf8U888YRp2LCh07r777/ftG3b1rF8xx13mO7duzuN6datm+nfv7+LZu167sjhXLVr1y7zxZK7MzDGmJycHFOxYkXz73//u+QTdhNP5GCMMbGxseapp54q2WTdyF055OTkmPbt25t58+aZwYMHl/lCyR05zJ8/34SGhrp8ru7kjhxef/11U7duXXPmzBnXT9hNPPH74eWXXzYVK1Y0J06cKPmEUeqosyzUWRZqLQu1loVay0KtRZ1lV17rLD6+VwJnzpzR9u3b1bVrV6f1Xbt21caNG/PdZtOmTXnGd+vWTd9++62ys7MLHVPQPkubu3IoTzyVQVZWlrKzsxUWFuaaibuYJ3Iwxujzzz9XcnKyrr/+etdN3oXcmcMzzzyjiIgIDRs2zPUTdzF35nDixAnVrl1bNWrUUK9evbRjxw7XH4CLuCuHlStXKi4uTiNGjFDVqlXVpEkTTZkyRWfPnnXPgZSQp35PvvXWW+rfv78qVKjgmomj1FBnWaizLNRaFmotC7WWhVqLOsuuPNdZNKVK4H//+5/Onj2rqlWrOq2vWrWqUlNT890mNTU13/E5OTn63//+V+iYgvZZ2tyVQ3niqQzGjh2r6tWrq3Pnzq6ZuIu5M4e0tDQFBwfLz89PPXv21KxZs9SlSxfXH4QLuCuHb775Rm+99Zbmzp3rnom7mLtyaNiwoRYsWKCVK1dq8eLFCggIUPv27bV79273HEgJuSuH33//XR988IHOnj2rVatW6amnntKMGTM0efJk9xxICXni9+TWrVv1008/6d5773XdxFFqqLMs1FkWai0LtZaFWstCrUWdZVee6ywfl+7tMmWz2ZyWjTF51l1o/Pnri7vPssAdOZQ37szgxRdf1OLFi7V+/XoFBAS4YLbu444cKlasqKSkJJ04cUKff/65xowZo7p166pjx46um7iLuTKHjIwMDRw4UHPnzlV4eLjrJ+tGrn49tG3bVm3btnU83r59e7Vs2VKzZs3Sv/71L1dN2+VcnUNubq4iIyP15ptvytvbW61atVJKSoqmTZumCRMmuHj2ruPO35NvvfWWmjRpomuuucYFM0VZQZ1loc6yUGtZqLUs1FoWai3qLLvyWGfRlCqB8PBweXt75+k8/v3333k6jnZRUVH5jvfx8VGVKlUKHVPQPkubu3IoT9ydwfTp0zVlyhR99tlnatasmWsn70LuzMHLy0v169eXJLVo0UI7d+7U1KlTy2Sh5I4cfv75Z+3bt0+9e/d2PJ6bmytJ8vHxUXJysurVq+fiIykZT/1u8PLy0tVXX10m372T3JdDdHS0fH195e3t7RjTqFEjpaam6syZM/Lz83PxkZSMu18PWVlZeu+99/TMM8+4duIoNdRZFuosC7WWhVrLQq1lodaizrIrz3UWH98rAT8/P7Vq1Upr1651Wr927Vq1a9cu323i4uLyjF+zZo1at24tX1/fQscUtM/S5q4cyhN3ZjBt2jQ9++yzSkxMVOvWrV0/eRfy5GvBGKPTp0+XfNJu4I4cGjZsqB9//FFJSUmOrz59+qhTp05KSkpSzZo13XY8F8tTrwdjjJKSkhQdHe2aibuYu3Jo37699uzZ4yiYJWnXrl2Kjo4uc4WS5P7Xw3//+1+dPn1aAwcOdO3EUWqosyzUWRZqLQu1loVay0KtRZ1lV67rLJddMv0yZb/t4ltvvWV++eUX88gjj5gKFSqYffv2GWOMGTt2rBk0aJBjvP22i48++qj55ZdfzFtvvZXntovffPON8fb2Ns8//7zZuXOnef7558vNrYpdmcPp06fNjh07zI4dO0x0dLR5/PHHzY4dO8zu3bs9fnxF4Y4MXnjhBePn52c++OADp1txZmRkePz4isodOUyZMsWsWbPG/Pbbb2bnzp1mxowZxsfHx8ydO9fjx1dU7sjhfOXhjjDuyCEhIcEkJiaa3377zezYscMMGTLE+Pj4mC1btnj8+IrKHTns37/fBAcHm5EjR5rk5GTz8ccfm8jISPPcc895/PiKyp0/F9dee6258847PXYs8AzqLAt1loVay0KtZaHWslBrUWfZldc6i6aUC7z22mumdu3axs/Pz7Rs2dJ8+eWXjscGDx5sOnTo4DR+/fr1JjY21vj5+ZmYmBjz+uuv59nn+++/bxo0aGB8fX1Nw4YNzdKlS919GCXm6hz27t1rJOX5On8/ZYmrM6hdu3a+GUycONEDR3Px+kapWwAAgT5JREFUXJ3D+PHjTf369U1AQICpXLmyiYuLM++9954nDqVE3PG74VzloVAyxvU5PPLII6ZWrVrGz8/PREREmK5du5qNGzd64lBKxB2vh40bN5o2bdoYf39/U7duXTN58mSTk5Pj7kMpEXfkkJycbCSZNWvWuHv6KAXUWRbqLAu1loVay0KtZaHWos6yK491ls2Y/38lKwAAAAAAAMBDuKYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphSAcishIUEtWrTw+POuX79eNptNNptNN998c5G2SUhIcGwzc+ZMt84PAADAFai1ALgbTSkAZZK9qCjoKz4+Xo8//rg+//zzUptjcnKyFixYUKSxjz/+uA4dOqQaNWq4d1IAAABFQK0FoCzwKe0JAEB+Dh065Pj/JUuWaMKECUpOTnasCwwMVHBwsIKDg0tjepKkyMhIVapUqUhj7XP19vZ276QAAACKgFoLQFnAmVIAyqSoqCjHV2hoqGw2W551559SHh8fr5tvvllTpkxR1apVValSJU2aNEk5OTn6xz/+obCwMNWoUUNvv/2203MdPHhQd955pypXrqwqVaqob9++2rdvX7Hn/MEHH6hp06YKDAxUlSpV1LlzZ2VmZpYwCQAAANej1gJQFtCUAnBJWbdunVJSUrRhwwa99NJLSkhIUK9evVS5cmVt2bJFDzzwgB544AEdOHBAkpSVlaVOnTopODhYGzZs0Ndff63g4GB1795dZ86cKfLzHjp0SHfddZeGDh2qnTt3av369br11ltljHHXoQIAAHgctRYAV6IpBeCSEhYWpn/9619q0KCBhg4dqgYNGigrK0v//Oc/dcUVV2jcuHHy8/PTN998I0l677335OXlpXnz5qlp06Zq1KiR5s+fr/3792v9+vVFft5Dhw4pJydHt956q2JiYtS0aVM99NBDpXrKOwAAgKtRawFwJa4pBeCSctVVV8nL6//67VWrVlWTJk0cy97e3qpSpYr+/vtvSdL27du1Z88eVaxY0Wk/p06d0m+//Vbk523evLluvPFGNW3aVN26dVPXrl3Vr18/Va5cuYRHBAAAUHZQawFwJZpSAC4pvr6+Tss2my3fdbm5uZKk3NxctWrVSu+8806efUVERBT5eb29vbV27Vpt3LhRa9as0axZszR+/Hht2bJFderUuYgjAQAAKHuotQC4Eh/fA3BZa9mypXbv3q3IyEjVr1/f6Ss0NLRY+7LZbGrfvr0mTZqkHTt2yM/PT8uXL3fTzAEAAMo+ai0AhaEpBeCydvfddys8PFx9+/bVV199pb179+rLL7/U6NGj9eeffxZ5P1u2bNGUKVP07bffav/+/Vq2bJkOHz6sRo0auXH2AAAAZRu1FoDC8PE9AJe1oKAgbdiwQU8++aRuvfVWZWRkqHr16rrxxhsVEhJS5P2EhIRow4YNmjlzptLT01W7dm3NmDFDPXr0cOPsAQAAyjZqLQCFsRnuoQkAxbJ+/Xp16tRJx44dU6VKlYq1bUxMjB555BE98sgjbpkbAABAeUetBVw++PgeAFykGjVq6K677irS2ClTpig4OFj79+9386wAAAAuDdRawKWPM6UAoJhOnjypgwcPSpKCg4MVFRV1wW2OHj2qo0ePSrLuNFPcC3sCAABcLqi1gMsHTSkAAAAAAAB4HB/fAwAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCimHBggWy2Wz69ttvXbK/HTt2qEOHDgoNDZXNZtPMmTO1atUqJSQkFGs/Tz31lGrVqiUfHx9VqlTJJXM7X1mdF5Cfi3m9AgA8x15T2b98fHwUHR2t/v37a/fu3XnGd+zYUR07dryo54qPj1dwcPAFx2Vl/b/27j2+5/r///j9vbOZjdlmc5xDOVRYFKNCMeTUQSWRSXQgSn2Kj7JJqFD6KCWKfJR8iqLSUEjlmI911KRImZWPwzabww7P3x+v3/v99baDzd7v9zZu18tll3q93s/X6/183ffe9vB4v96vV7YSExO1YcOGEu+7sFrO1SrqvIDCnM/rFRc3n/KeAHAxu+eee5SVlaV3331XNWrUUHR0tJ555hm98sorJf4H9YoVKzRlyhRNmDBBPXv2lL+/v1vmumrVqgo5L6AwpX29AgDKx4IFC9SsWTOdPHlSX3/9taZMmaL169fr559/Vo0aNRzj5syZ4/a5ZGdna9KkSZJU4gZYYbXcxTIvoDDn83rFxY2mFFCOfvjhBw0fPlw9e/Ys0z4kafTo0YqIiHDV1MrMHfPKzs5WYGCgS/YFAADK3+WXX662bdtKsv4Bm5eXp4SEBH344YcaOnSoY1yLFi3Ka4rFckUt5w6unldOTo7jjDYAcCU+vge4wS+//KKBAwcqIiJC/v7+at68uV555RXH4/ZT1nNzc/Xqq686Tl2Pj493jDvzlPZ9+/YV+jzR0dF68sknJUm1atWSzWZznBmSn5+v559/Xs2aNZO/v78iIiJ09913688//yywnzfffFOtWrVSQECAQkNDdfPNN2vXrl2Ox8tjXp07d9bll1+ujRs3qkOHDgoMDNQ999wjSTp27JgeffRRNWrUyLGPG2+8UT///LNj+9OnT+uZZ55xPE94eLiGDh2qQ4cOFTrn89W5c2enTM78WrhwYbHbnjp1Sk8//bSaN2+ugIAA1axZU126dNGmTZscY06ePKnx48erYcOG8vPzU506dTRy5EgdO3bMaV/R0dHq3bu3Pv74Y8XExKhKlSpq3ry5Pv74Y0nWa6558+aqWrWqrr766gIfQbV/tOHHH3/UDTfcoKpVqyo8PFyjRo1Sdna209jSzikpKUlXXnmlqlSpombNmunNN98skEVaWpruu+8+1a1bV35+fmrYsKEmTZqk3Nxcx5h9+/bJZrNpxowZeuGFF9SwYUMFBQUpNjZWW7ZscTqW0rxeAQAVh71B9ddffzmtL+zje3/++af69++vatWqqXr16rrrrru0ffv2Iv8G79mzRzfeeKOCgoJUr149Pfroozp16pQk629MeHi4JGnSpElOtVlhiqrl7H744Qf169dPNWrUUEBAgFq3bq233nqrwH7279+vQYMGOdWMM2fOVH5+frnNa8OGDbLZbPr3v/+tRx99VHXq1JG/v7/27NkjSUpKStINN9ygkJAQBQYGqnnz5po2bZrTPr755hv17dtXoaGhCggIUExMjP7zn/8UOufzZZ9nYV8lOTNs69at6tOnj2rWrKmAgAA1btxYDz/8sNOYr776SjfccIOqVaumwMBAdejQQZ988onTGHvm69at0/Dhw1WzZk0FBwfr7rvvVlZWltLS0nT77berevXqioqK0mOPPaacnBzH9vb65vnnn9eUKVNUv359BQQEqG3btvr8888LzLs0c1q/fr0eeOABhYWFqWbNmrrllluUmppaYJ9Lly5VbGysqlatqqCgIHXv3l07d+50GmOvFV35cwRIkgyAEluwYIGRZLZv317kmB9//NGEhISYK664wixatMisWbPGPProo8bLy8skJiYaY4z5+++/zebNm40k079/f7N582azefNms2fPHtO/f38jybFu8+bN5uTJk4U+13//+18zbNgwI8kkJSWZzZs3mz/++MMYY8yIESOMJDNq1CiTlJRkXnvtNRMeHm7q1atnDh065NjH1KlTjSRz5513mk8++cQsWrTINGrUyISEhJjdu3cbY0y5zKtTp04mNDTU1KtXz8yePdusX7/efPHFFyYjI8NcdtllpmrVqubpp582q1evNsuWLTNjxowx69atM8YYk5eXZ3r06GGqVq1qJk2aZNauXWvmz59v6tSpY1q0aGGys7NL+i0/px9//NEpk82bN5uuXbsab29vs2nTpiK3y8nJMV26dDE+Pj7mscceM6tWrTIrV640//znP82SJUuMMcbk5+eb7t27Gx8fH/PUU0+ZNWvWmBkzZpiqVauamJgYp/wbNGhg6tatay6//HKzZMkSs2rVKtOuXTvj6+trJk6caDp27GiWL19uPvjgA3PppZeaWrVqOeUwZMgQ4+fnZ+rXr2+mTJli1qxZYxITE42Pj4/p3bu3Y9z5zKlFixZm0aJFZvXq1ea2224zkswXX3zhGHfw4EFTr14906BBAzN37lzz2WefmcmTJxt/f38THx/vGLd3714jyURHR5sePXqYDz/80Hz44YfmiiuuMDVq1DDHjh0zxpT+9QoA8LyiaqqXX37ZSDLLli1zWt+pUyfTqVMnx/Lx48dNkyZNTGhoqHnllVfM6tWrzSOPPGIaNmxoJJkFCxY4xtr/xjVv3tzMmDHDfPbZZ2bixInGZrOZSZMmGWOMOXnypElKSjKSzLBhw5xqs8IUVcsZY8zPP/9sqlWrZho3bmwWLVpkPvnkE3PnnXcaSea5555z2kedOnVMeHi4ee2110xSUpIZNWqUkWQeeOCBcpvX+vXrjSRTp04d079/f7Ny5Urz8ccfm8OHD5v58+cbm81mOnfubN555x3z2WefmTlz5pgHH3zQsf26deuMn5+fufbaa83SpUtNUlKSiY+PL/B9Kav09PQCNdiiRYuMr6+vufHGG4vdNikpyfj6+pqWLVuahQsXmnXr1pk333zTDBgwwDFmw4YNxtfX17Rp08YsXbrUfPjhhyYuLs7YbDbz7rvvOsbZX8sNGzY0jz76qFmzZo157rnnjLe3t7nzzjvNlVdeaZ555hmzdu1a88QTTxhJZubMmY7t7fVNvXr1zDXXXGOWLVtm3nvvPXPVVVcZX19fp3qytHNq1KiReeihh8zq1avN/PnzTY0aNUyXLl2cspgyZYqx2WzmnnvuMR9//LFZvny5iY2NNVWrVjU//vijY5w7fo4AY4yhKQWUQkmaUt27dzd169Y16enpTutHjRplAgICzJEjRxzrJJmRI0c6jRs5cqQpTb84ISHBSHJq6OzatctIcioQjDFm69atRpL55z//aYwx5ujRo6ZKlSoF/nDv37/f+Pv7m4EDB5bLvIyxik9J5vPPP3ca+/TTTxtJZu3atUU+95IlSwotaLdv324kmTlz5pT4OEpr+vTpRpJ5/fXXix23aNEiI8nMmzevyDH2P+rPP/+80/qlS5cWeI4GDRqYKlWqmD///NOxLjk52UgyUVFRJisry7H+ww8/NJLMypUrHeuGDBliJJmXXnrJ6bmmTJliJJmvvvrqvOYUEBBgfv/9d8e6EydOmNDQUHPfffc51t13330mKCjIaZwxxsyYMcNIchRE9qLtiiuuMLm5uY5x27ZtM5IczTxjSv96BQB4lr2m2rJli8nJyTGZmZkmKSnJREZGmuuuu87k5OQ4jT+7KfXKK68YSebTTz91GnffffcV2pSSZP7zn/84jb3xxhtN06ZNHcuHDh0ykkxCQkKJj6OwWm7AgAHG39/f7N+/32l9z549TWBgoONNlHHjxhlJZuvWrU7jHnjgAWOz2UxKSkq5zMvelLruuuucxmVmZprg4GBzzTXXmPz8/CKfu1mzZiYmJqbA97B3794mKirK5OXllfg4SuOvv/4yjRo1Mpdddpk5evRosWMbN25sGjdubE6cOFHkmPbt25uIiAiTmZnpWJebm2suv/xyU7duXUcG9tfyQw895LT9TTfdZCSZF154wWl969atzZVXXulYttc3tWvXdppPRkaGCQ0NNV27dj3vOZ1dcz///PNGkjl48KAxxqr5fXx8Csw9MzPTREZGmttvv92xzp0/R7i48fE9wIVOnjypzz//XDfffLMCAwOVm5vr+Lrxxht18uRJp48Zucv69eslqcCpsldffbWaN2/uOBV48+bNOnHiRIFx9erV0/XXX1/oKcOemJddjRo1dP311zut+/TTT3XppZeqa9euRT7Pxx9/rOrVq6tPnz5O34PWrVsrMjKy2LuBGGOctjnz42PnsmTJEj3++ON68sknNXz48GLHfvrppwoICHB8JLEw69atk1Qwr9tuu01Vq1YtkFfr1q1Vp04dx3Lz5s0lWR95OPNaXPb1v//+e4HnvOuuu5yWBw4cKOn/vnfnM6f69es7lgMCAnTppZc6PffHH3+sLl26qHbt2k6526+D8cUXXzjts1evXvL29nYst2zZssjjAQBUbO3bt5evr6+qVaumHj16qEaNGlqxYsU5r130xRdfOLY505133lnoeJvNpj59+jita9mypVv+dqxbt0433HCD6tWr57Q+Pj5e2dnZ2rx5s2NcixYtdPXVVxcYZ4xx/M319Lzsbr31VqflTZs2KSMjQw8++KDTRwLPtGfPHv3888+OeuLsWvjgwYNKSUkpco55eXlO29g/xnguWVlZ6tWrl06ePKlPP/202Ls+7969W7/++quGDRumgICAIve3detW9e/f3+nOjd7e3ho8eLD+/PPPAsfRu3dvp2V7vdWrV68C6wt73d1yyy1O86lWrZr69OmjjRs3Ki8v77zm1LdvX6fls2um1atXKzc3V3fffbdT7gEBAerUqVOBmtmTP0e4eNCUAlzo8OHDys3N1ezZs+Xr6+v0deONN0qS/ve//3lkHpIUFRVV4LHatWs7Hi/pOE/Py66wcYcOHVLdunWLfZ6//vpLx44dk5+fX4HvQ1paWrHfgy+++KLANiW5FtH69esVHx+vu+++W5MnTz7n+EOHDql27dry8ir61/Dhw4fl4+Pj+Gy+nc1mU2RkZIG8QkNDnZb9/PyKXX/y5Emn9T4+PqpZs6bTusjISMdczmdOZ+9Pkvz9/XXixAnH8l9//aWPPvqoQO6XXXaZpII/M2fv035nxzP3CQCoHBYtWqTt27dr3bp1uu+++7Rr164iG0tnOnz4sGrVqlVgfWHrJCkwMLBAA8Lf37/A30JXOHz4cJG1jv3x0ozz9Lzszh5rvy5ncXWY/Vpgjz32WIG/6w8++KCk4mvhG264wWmb4t68s8vNzVX//v21e/durVq1qkDT7WwlOY6jR4/KGFOqvEpThxX2urPXXGevO336tI4fP35eczpXzWT/fl111VUFvl9Lly4t8L3y5M8RLh7cPgFwoRo1ajjerRg5cmShYxo2bOj2edj/AB08eLDAH9zU1FSFhYUVGHe2M8d5el52hb0LFx4eXujF2s9kv5hjUlJSoY9Xq1atyG3btGmj7du3O62z/6EvynfffaebbrpJnTp10rx584odaxceHq6vvvpK+fn5RTamatasqdzcXB06dMipCWSMUVpamq666qoSPVdJ5ebm6vDhw04FTFpammMu7ppTWFiYWrZsqSlTphT6+LnyBwBUXs2bN3dc3LxLly7Ky8vT/Pnz9f7776t///5FblezZk1t27atwHr7363yVLNmzSJrK0lOdVhJxnl6XnZn12H2v/vF1WH2fYwfP1633HJLoWOaNm1a5PZz585VZmZmgf0VZ8SIEfr888+1atUqtWrV6pzjS3IcNWrUkJeXl0e/P4W9dtPS0uTn56egoCD5+Pi4fE728e+//74aNGhwHrMGyo4zpQAXCgwMVJcuXbRz5061bNlSbdu2LfBV2JkjZ3LFWR/2j7wtXrzYaf327du1a9cu3XDDDZKk2NhYValSpcC4P//803GKd3nMqzg9e/bU7t27iz2lvXfv3jp8+LDy8vIK/R4UVwxVq1atwHj7O12F2b9/v3r27KlGjRpp2bJl8vX1Pecx2I/j5MmTxd6hz57H2XktW7ZMWVlZJcqrtN5++22n5XfeeUeSHHc8csecevfurR9++EGNGzcu9Pt1Pk0pzp4CgMrp+eefV40aNTRx4sRiP7rVqVMnZWZm6tNPP3Va/+677573c7vqb8cNN9ygdevWFbjL2aJFixQYGKj27ds7xv3000/673//W2CczWZTly5dymVeRenQoYNCQkL02muvyRhT6JimTZvqkksu0bffflvo3/S2bdsW++Zg06ZNncae6y56Tz75pBYsWKD58+cXe2mHM1166aVq3Lix3nzzTcdd485WtWpVtWvXTsuXL3fKPT8/X4sXL1bdunV16aWXluj5Smr58uVOZxxlZmbqo48+0rXXXitvb2+3zKl79+7y8fHRr7/+WuT3q7SowVBanCkFnId169YV+pGuG2+8US+99JKuueYaXXvttXrggQcUHR2tzMxM7dmzRx999NE5rw9wxRVXSJKee+459ezZU97e3mrZsmWxjZGzNW3aVCNGjNDs2bPl5eWlnj17at++fXrqqadUr149PfLII5Kk6tWr66mnntI///lP3X333brzzjt1+PBhTZo0SQEBAUpISCiXeRXn4Ycf1tKlS9WvXz+NGzdOV199tU6cOKEvvvhCvXv3VpcuXTRgwAC9/fbbuvHGGzVmzBhdffXV8vX11Z9//qn169erX79+uvnmm0s87+L07NlTx44d08svv6wff/zR6bHGjRsX+Jib3Z133qkFCxbo/vvvV0pKirp06aL8/Hxt3bpVzZs314ABA9StWzd1795dTzzxhDIyMtSxY0d99913SkhIUExMjAYPHuySY7Dz8/PTzJkzdfz4cV111VXatGmTnnnmGfXs2VPXXHONJLllTk8//bTWrl2rDh06aPTo0WratKlOnjypffv2adWqVXrttdfO+ZHNs7ni9QoA8LwaNWpo/Pjxevzxx/XOO+9o0KBBhY4bMmSIXnzxRQ0aNEjPPPOMmjRpok8//VSrV6+WpGI/Hl+UatWqqUGDBlqxYoVuuOEGhYaGKiws7JyNkbMlJCQ4rpc4ceJEhYaG6u2339Ynn3yi559/XiEhIZKkRx55RIsWLVKvXr309NNPq0GDBvrkk080Z84cPfDAA44Gg6fnVZSgoCDNnDlT9957r7p27arhw4erVq1a2rNnj7799lu9/PLLkqyznXr27Knu3bsrPj5ederU0ZEjR7Rr1y7997//1XvvvVeqeRflvffe05QpU9S/f39deumlTtdt9ff3V0xMTJHbvvLKK+rTp4/at2+vRx55RPXr19f+/fu1evVqxxt006ZNU7du3dSlSxc99thj8vPz05w5c/TDDz9oyZIlRV5X63x5e3urW7duGjt2rPLz8/Xcc88pIyNDkyZNcoxx9Zyio6P19NNPa8KECfrtt98c13X766+/tG3bNlWtWtXp+UvCVa9XXETK8SLrQKVjv5NFUV979+41xlh30bjnnntMnTp1jK+vrwkPDzcdOnQwzzzzjNP+VMidUU6dOmXuvfdeEx4ebmw2m9N+C1PYXe6MMSYvL88899xz5tJLLzW+vr4mLCzMDBo0yPzxxx8F9jF//nzTsmVL4+fnZ0JCQky/fv2cbgFbHvPq1KmTueyyywrd99GjR82YMWNM/fr1ja+vr4mIiDC9evUyP//8s2NMTk6OmTFjhmnVqpUJCAgwQUFBplmzZua+++4zv/zyS5HzLq3iXg/nuu3xiRMnzMSJE80ll1xi/Pz8TM2aNc3111/vdOvfEydOmCeeeMI0aNDA+Pr6mqioKPPAAw8UuKtMgwYNTK9evQqd39mvMftdXqZPn+5YN2TIEFO1alXz3Xffmc6dO5sqVaqY0NBQ88ADD5jjx48XmHdZ5nT2HZSMse7UMnr0aNOwYUPj6+trQkNDTZs2bcyECRMcz1/YvM88zjPv8lLa1ysAwLOKu6PxiRMnTP369c0ll1ziuNtqYX879u/fb2655RYTFBRkqlWrZm699VazatUqI8msWLHCMc7+N+5s9lrlTJ999pmJiYkx/v7+RpIZMmRIscdR2N9ZY4z5/vvvTZ8+fUxISIjx8/MzrVq1KrQu+P33383AgQNNzZo1ja+vr2natKmZPn16gTvUeXJe9rvvvffee4Xue9WqVaZTp06matWqJjAw0LRo0cI899xzTmO+/fZbc/vtt5uIiAjj6+trIiMjzfXXX29ee+21YuddGvbvX2FfDRo0OOf2mzdvNj179jQhISHG39/fNG7c2DzyyCNOY7788ktz/fXXm6pVq5oqVaqY9u3bm48++shpTFGv5aJq4bNfj/b65rnnnjOTJk0ydevWNX5+fiYmJsasXr26wLzLMif793b9+vVO6z/88EPTpUsXExwcbPz9/U2DBg1M//79zWeffVbkvM8+zjOV9vWKi5vNmCLOvQQAXDTi4+P1/vvv6/jx4+U9FQAAztvUqVP15JNPav/+/aU+yxYoD/v27VPDhg01ffp0PfbYY+U9HcDj+PgeAAAAgErH/nGxZs2aKScnR+vWrdO//vUvDRo0iIYUAFQSNKUAAAAAVDqBgYF68cUXtW/fPp06dUr169fXE088oSeffLK8pwYAKCE+vgcAAAAAAACPK/1tKQAAAAAAAIAyoikFAAAAAAAAj+OaUoXIz89XamqqqlWrJpvNVt7TAQAALmaMUWZmpmrXri0vL96j8zRqLQAALmwlrbVoShUiNTVV9erVK+9pAAAAN/vjjz+4S1c5oNYCAODicK5ai6ZUIapVqybJCi84ONil+87JydGaNWsUFxcnX19fl+67MiEHCzlYyMFCDhZyIAM7d+aQkZGhevXqOf7mw7OotdyPHCzkYCEHMrAjBws5WCpCrUVTqhD208iDg4PdUigFBgYqODj4on/xkwM52JGDhRws5EAGdp7IgY+OlQ9qLfcjBws5WMiBDOzIwUIOlopQa3ERBQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBzXlAIAuFV+fr5Onz5d4vE5OTny8fHRyZMnlZeX58aZVVxkYClrDn5+fsXeghgAgAtBXl6ecnJySjSWGsNCDpay5ODr6ytvb+8yz4GmFADAbU6fPq29e/cqPz+/xNsYYxQZGak//vjjor0INRlYypqDl5eXGjZsKD8/PzfMDgCA8mWMUVpamo4dO1aqbagxyMGurDlUr15dkZGRZcqQphQAwC2MMTp48KC8vb1Vr169Ep+xkp+fr+PHjysoKOiiPcuFDCxlySE/P1+pqak6ePCg6tevf1EXnACAC5O9IRUREaHAwMAS/a2jxrCQg+V8czDGKDs7W3///bckKSoq6rznQFMKAOAWubm5ys7OVu3atRUYGFji7ewf9wsICLhoiwQysJQ1h/DwcKWmpio3N/eivt0zAODCk5eX52hI1axZs8TbUWNYyMFSlhyqVKkiSfr7778VERFx3h/lu3jTBwC4lf1z6Xx0CuXF/tq7mK8VAQC4MNmvIVWaN/4AV7O//kp6TbPC0JQCALgVH5tCeeG1BwC40PG3DuXJFa8/mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAXOBef/11xx0QZ82aVd7TAQAAuKBQa50/mlIAAJwhPj5eNptN999/f4HHHnzwQdlsNsXHxxcYb7PZ5Ovrq0aNGumxxx5TVlaW07bLli1T586dFRISoqCgILVs2VJPP/20jhw5UuRcvL29HfsOCgpSq1attHDhwlIdT0ZGhkaNGqUnnnhCBw4c0IgRI0q1PQAAgCtRa+FMNKUAADhLvXr19O677+rEiROOdSdPntSSJUtUv379AuN79OihgwcP6rffftMzzzyjOXPm6LHHHnM8PmHCBN1xxx266qqr9Omnn+qHH37QzJkz9e233+rf//53sXNZsGCBDh48qG+//VZ33HGHhg4dqtWrV5f4WPbv36+cnBz16tVLUVFR532XnrLcVQUAAOBM1FoFXay1Fk0pAIBHZZ/OLfLrZE6ey8eejyuvvFL169fX8uXLHeuWL1+uevXqKSYmpsB4f39/RUZGql69eho4cKDuuusuffjhh5Kkbdu2aerUqZo5c6amT5+uDh06KDo6Wt26ddOyZcs0ZMiQYudSvXp1RUZGqnHjxvrnP/+p0NBQrVmzxvF4enq6RowYoYiICAUHB+v666/Xt99+K0lauHChrrjiCklSo0aNZLPZtG/fPknSRx99pDZt2iggIECNGjXSpEmTlJv7f3nZbDa99tpr6tevn6pWrapnnnmmxNvNnz9fN998swIDA3XJJZdo5cqVTsf0448/qlevXgoODla1atV07bXX6tdff3U8vmDBAjVv3lyBgYG6+uqr9eqrrzoeO336tEaNGqWoqCgFBAQoOjpa06ZNKzZDAAAuJsXVT6eotQqg1irfWsvHbXsGAKAQLSYW/c5Tl6bhemNIW8dym8mf6cRZBZFdu4ahWnpfrGP5mufW60jW6QLj9j3b67zmOXToUC1YsEB33XWXJOnNN9/UPffcow0bNpxz2ypVqjje7Xr77bcVFBSkBx98sNCx1atXL9F88vLytGzZMh05ckS+vr6SJGOMevXqpdDQUK1atUohISGaO3eubrjhBu3evVt33HGH6tWrp65du2rbtm2qV6+ewsPDtXr1ag0aNEj/+te/HEWK/VTzhIQEx3MmJCRo2rRpevHFF+Xt7V3i7SZNmqTnn39e06dP1+zZs3XXXXfp999/V2hoqA4cOKDrrrtOnTt31rp16xQcHKyvv/7aUWzNmzdPCQkJevnll9WqVStt2rRJDz/8sIKCgjRkyBD961//0sqVK/Wf//xH9evX1x9//KE//vijRBleSI4eParRo0c7itC+fftq9uzZxb6eli9frrlz52rHjh06fPiwdu7cqdatWzuNef311/XOO+/ov//9rzIzM3X06NFC9/nJJ5/o6aef1nfffaeqVavquuuuc/qHBQCg/BRXa3VuGq5ZN1/qWKbW+j/UWuVTa9GUAgCgEIMHD9b48eO1b98+2Ww2ff3113r33XfPWSht27ZN77zzjm644QZJ0i+//KJGjRo5ipvSuvPOO+Xt7a2TJ08qLy9PoaGhuvfeeyVJ69ev1/fff6+///5b/v7+kqQZM2boww8/1Pvvv68RI0aoZs2akqTw8HBFRkZKkqZMmaJx48Y53jls1KiRJk+erMcff9yp4Bk4cKDuuecep0xKsl18fLzuvPNOSdLUqVM1e/Zsbdu2TT169NArr7yikJAQvfvuu45MLr30/4rjyZMna+bMmbrllluUn5+vmjVrat++fZo7d66GDBmi/fv365JLLtE111wjm82mBg0anFeuld3AgQP1559/KikpSZI0YsQIDR48WB999FGR22RlZaljx4667bbbNHz48ELHZGdnq0ePHurRo4fGjx9f6Jhly5Zp+PDhmjp1qq6//noZY/T999+X/aAAABcVai1qLYmmFADAw356unuRj3nZbE7LO57qWuKxXz3RpWwTO0tYWJh69eqlt956y/EuWVhYWKFjP/74YwUFBSk3N1c5OTnq16+fZs+eLcl6h8121lxL48UXX1TXrl31xx9/aOzYsXrkkUfUpEkTSdKOHTt0/PhxRzFkd+LECadTtM+2Y8cObd++XVOmTHGsy8vL08mTJ5Wdne24FkLbtm3Pa7uWLVs6Hq9ataqqVaumv//+W5KUnJysa6+9ttDC8dChQ/rjjz80bNgwp6ZJbm6uQkJCJFlFWLdu3dS0aVP16NFDvXv3VlxcXDEJXnh27dqlpKQkbdmyRe3atZNkvesZGxurlJQUNW3atNDtBg8eLEmOjxUU5uGHH5akIv9BkJubqzFjxmj69OkaNmyYY31RzwkA8Lziai2bMTp14v8uEE6tRa0llW+tRVMKAOBRgX7F/+nJz88v8djS7Pd83HPPPRo1apQk6ZVXXilyXJcuXfTqq6/K19dXtWvXdioCLr30Un311VfKyck5r3fwIiMj1aRJEzVp0kTvvfeeYmJi1LZtW7Vo0UL5+fmKiooqtIFQ3Knq+fn5mjRpkm655ZYCjwUEBDj+v2rVque13dnHabPZHN/XKlWqFDsvyWqwtGvXTvn5+Tp+/LiCgoIc+7zyyiu1d+9effrpp/rss890++23q2vXrnr//feL3O+FZvPmzQoJCXE0pCSpffv2CgkJ0aZNm9zaIPrvf/+rAwcOyMvLSzExMUpLS1Pr1q01Y8YMXXbZZUVud+rUKZ06dcqxnJGRIcm6qKurL+xq39/FesFYO3KwkIOFHC68DHJycmSMUX5+vlPtJEkBPkVfOtoYo1P//7/5+fnFjpWc67Kixp79/OdijHE8f3x8vEaPHi1Jmj17tvLz850et4/v3Lmz5syZU6DWys/P1yWXXKKvvvpKp06dKnGtZYxx/H9ERIQaNWqkRo0aaenSpWrTpo2uvPJKtWjRQnl5eYqKitK6desK7KN69epO+Z/9/4mJibr55psLbOfn5+dUF52ZX0m38/b2dtrOZrMpNzfX+p4GBDjldyb7R/jmzp2rdu3ayRijrKwsVa1aVT4+PsrPz1fr1q3166+/6tNPP9Xnn3+u22+/XTfccIPee++9Avuzf79ycnLk7e3t9FhJf9ZoSgEAUIQePXro9Gnr2gnduxf9rmPVqlUd76idbeDAgfrXv/6lOXPmaMyYMQUeP3bsWImvddCkSRPdeuutGj9+vFasWKErr7xSaWlp8vHxUXR0dIn2IVmNnZSUlCLn7OrtztSyZUu99dZbhTbpatWqpTp16ui3337TXXfdpfz8fGVkZCg4OFheXv9XCAcHB+uOO+7QHXfcof79+6tHjx46cuSIQkNDz3telUlaWpoiIiIKrI+IiFBaWppbn/u3336TJCUmJuqFF15QdHS0Zs6cqU6dOmn37t1Ffg+mTZumSZMmFVi/Zs2a875L0bmsXbvWLfutbMjBQg4WcrhwMvDx8VFkZKSOHz/uqFVKIzMz0w2zKpmcnBzl5uYqIyNDHTp0cLxpERsbq4yMDMfZUGe+geHv7+/423fixAmnu/bZr6v44osv6v777y/wfOnp6Y6zgApz4sQJx3NFRESoT58+evzxx/XOO++oadOmSktL08mTJwu9K2BGRoaysqwzz44fP+7YT8uWLfXDDz/ovvvuK7DN8ePHC33usmxnjNHJkyeVkZGhpk2basmSJTp8+HCBWqtKlSqqXbu2fv75Z/Xp06fQ47Hr2bOn46t///76/fffVaNGDafxp0+f1okTJ7Rx40ani7FL1iUBSoKmFAAARfD29tauXbsc/38+2rVrp8cff1yPPvqoDhw4oJtvvlm1a9fWnj179Nprr+maa64ptFlVlEcffVStWrXSN998o65duyo2NlY33XSTnnvuOTVt2lSpqalatWqVbrrppgKnhNtNnDhRvXv3Vr169XTbbbfJy8tL3333nb7//nvHnV9cud2ZRo0apdmzZ2vAgAEaP368QkJCtGXLFl199dVq2rSpEhMTNXr0aAUHB6t79+46fPiwfv75Z6Wnp2vs2LF68cUXFRUVpdatW8vLy0vvvfeeIiMjS9zYq8gSExMLbdycafv27ZJU6McUyvrxhZKwv+s6YcIE3XrrrZKsO/jUrVtX7733XqFFtCSNHz9eY8eOdSxnZGSoXr16iouLU3BwsEvnmJOTo7Vr16pbt27nfX2RCwE5WMjBQg4XXgYnT57UH3/8oaCgIKezlc/FGKPMzExVq1bN7X8ziuLr6ysfHx/H7/+ffvpJkhzLPj4+8vX1dSyfPf5s119/vf7xj3/oySef1OHDh3XTTTc5aq25c+fqmmuucZyNZWfPQbIaNWfu+4knnlBMTIx2796tvn37KjY2VnfffbemTZvmqLU+/fRT9evXT23btnWcWR4UFOTYT2Jiovr27atGjRqpf//+jprphx9+0OTJkx3PdfZzn+92NptNAQEBCg4O1tixYzVv3jzdd999GjduXIFaKyEhQQ8//LDCw8PVvXt3HTlyRD///LOOHTumRx55RLNmzVJkZKSj1lq1apXjzodnvkkoWa/DKlWq6LrrrivwOjyzwVUcmlIAABTDFf9gfu6559SmTRu98soreu2115Sfn6/GjRurf//+57xN8dmuuOIKde3aVRMnTtSqVau0atUqTZgwQffcc48OHTqkyMhIXXfddapVq1aR++jevbs+/vhjPf3003r++efl6+urZs2aOS7q6ertzlSzZk2tW7dO//jHP9SpUyd5e3urdevW6tixoyTp3nvvVWBgoKZPn67HH39cgYGBatmypeNaR0FBQXruuef0yy+/yNvbW1dddZVWrVpVoEiqjEaNGqUBAwYUOyY6Olrfffed/vrrrwKPHTp0qNjvuytERUVJklq0aOFY5+/vr0aNGmn//v1Fbufv7++4QOyZfH193faPQ3fuuzIhBws5WMjhwskgLy9PNptNXl5epfobaH9zwb5tebDZbE7Pf/YbS2c/fvZyYZ5//nm1bdtWr7zyiubOnetUa8XHxxfY9syPtp2dYatWrdS1a1clJiY61Vr33nuvU60VFRXltO2Z/9+zZ09HzTR9+nSnmunM5zr7uc93uzPXhYeHO2qtLl26OGqta6+9Vl5eXhoxYoSCgoI0ffp0PfHEE061lpeXl6pVq6bp06cXqLV8fAq2j7y8vGSz2Qr9uSrxz5lBAenp6UaSSU9Pd/m+T58+bT788ENz+vRpl++7MiEHCzlYyMFyoeVw4sQJ89NPP5kTJ06Uaru8vDxz9OhRk5eX56aZVXxkYClrDsW9Bt35t97dfvrpJyPJbN261bFuy5YtRpL5+eefz7n93r17jSSzc+fOIsesX7/eSDJHjx51Wp+enm78/f3N/PnzHetOnz5tIiIizNy5c0t8DNRa7kcOFnKwkMOFlwF1VtmQg6Ui1Frl+rbixo0b1adPH9WuXVs2m00ffvhhseOXL1+ubt26KTw8XMHBwYqNjdXq1asLjJs1a5aaNm2qKlWqqF69enrkkUd08uRJNx0FAACA5zRv3lw9evTQ8OHDtWXLFm3ZskXDhw9X7969nS5y3qxZM33wwQeO5SNHjig5OdnxMYmUlBQlJyc7XYcqLS1NycnJ2rNnjyTp+++/V3Jyso4cOSLJOnPw/vvvV0JCgtasWaOUlBQ98MADkqTbbrvN7ccOAAAuLOXalMrKylKrVq308ssvl2j8xo0b1a1bN61atUo7duxQly5d1KdPH+3cudMx5u2339a4ceOUkJCgXbt26Y033tDSpUs1fvx4dx0GAACAR7399tu64oorFBcXp7i4OLVs2VL//ve/ncakpKQoPT3dsbxy5UrFxMSoV69ekqQBAwYoJiZGr732mmPMa6+9ppiYGMdtoq+77jrFxMRo5cqVjjHTp0/XgAEDNHjwYF111VX6/ffftW7dugIXPwUAADiXcr2mlP1K7iU1a9Ysp+WpU6dqxYoV+uijjxQTEyPJuk1yx44dNXDgQEnWtRfuvPNObdu2rcj9cptizyMHCzlYyMFyoeVQ3K2Ki2P+/y16TRG3sr0YkIGlrDm44jbFFVVoaKgWL15c7Bhzxu2uJSk+Pl7x8fHFbpOYmKjExMRix/j6+mrGjBmaMWNGSaYKAABQpEp9ofP8/HxlZmY63X74mmuu0eLFi7Vt2zZdffXV+u2337Rq1apiLyTLbYrLDzlYyMFCDpYLJYfKfKviioIMLOebgytuUwwAAAD3qdRNqZkzZyorK0u33367Y92AAQN06NAhXXPNNTLGKDc3Vw888IDGjRtX5H64TbHnkYOFHCzkYLnQcjh16pT279+vqlWrqkqVKiXezlSAWxWXNzKwlDWHEydOqEqVKurUqVOBO7+V9DbFAABUZBfzGdUof654/VXaptSSJUuUmJioFStWKCIiwrF+w4YNmjJliubMmaN27dppz549GjNmjKKiovTUU08Vui9uU1x+yMFCDhZysFwoOdhvS3v48GGFh4eXuKmQn5+v06dP69SpU+V2q+LyRgaWsuRgjNHhw4fl5eWlKlWqFPj43oXwMwYAuHj5+fnJy8tLqampCg8Pl5+fX4lqLfvf1pMnT1JjkMN552CM0enTp3Xo0CF5eXnJz8/vvOdQKZtSS5cu1bBhw/Tee++pa9euTo899dRTGjx4sO69915J0hVXXKGsrCyNGDFCEyZMuKhfcADgSd7e3qpbt67+/PNP7du3r8TbGWMcZ7hcrGcJkYGlrDnYbDbVrVu3QEMKAIDKzsvLSw0bNtTBgweVmppa4u2oMSzkYClrDoGBgapfv36Z+iyVrim1ZMkS3XPPPVqyZInj7jFnys7OLhCIt7e3jDEFLvgJAHCvoKAgXXLJJaW6qHROTo42btyo66677qI9m4UMLGXNwdfXl4YUAOCC5efnp/r16ys3N1d5eXkl2oYaw0IOlrLk4O3tLR8fnzI39cq1KXX8+HHt2bPHsbx3714lJycrNDRU9evX1/jx43XgwAEtWrRIktWQuvvuu/XSSy+pffv2SktLkyRVqVJFISEhkqQ+ffrohRdeUExMjOPje0899ZT69u1LYQoA5cDb27tUv3+9vb2Vm5urgICAi7ZIIAMLOQAAUDybzVaqSz/wt9VCDpaKkEO5NqW++eYbdenSxbFsv9j4kCFDtHDhQh08eFD79+93PD537lzl5uZq5MiRGjlypGO9fbwkPfnkk7LZbHryySd14MABhYeHq0+fPpoyZYpnDgoAAAAAAADnVK5Nqc6dOxf7kTp7o8luw4YN59ynj4+PEhISlJCQUMbZAQAAAAAAwF246jcAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAEAlc/ToUQ0ePFghISEKCQnR4MGDdezYsWK3Wb58ubp3766wsDDZbDYlJycXGPP666+rc+fOCg4Ols1mK3Sfu3fvVr9+/RQWFqbg4GB17NhR69evd82BAQCAiwpNKQAAgEpm4MCBSk5OVlJSkpKSkpScnKzBgwcXu01WVpY6duyoZ599tsgx2dnZ6tGjh/75z38WOaZXr17Kzc3VunXrtGPHDrVu3Vq9e/dWWlraeR8PAAC4OPmU9wQAAABQcrt27VJSUpK2bNmidu3aSZLmzZun2NhYpaSkqGnTpoVuZ29a7du3r8h9P/zww5KkDRs2FPr4//73P+3Zs0dvvvmmWrZsKUl69tlnNWfOHP3444+KjIw8v4MCAAAXJZpSAAAAlcjmzZsVEhLiaEhJUvv27RUSEqJNmzYV2ZRyhZo1a6p58+ZatGiRrrzySvn7+2vu3LmqVauW2rRpU+R2p06d0qlTpxzLGRkZkqScnBzl5OS4dI72/bl6v5UNOVjIwUIOZGBHDhZysLgzh5Luk6YUAABAJZKWlqaIiIgC6yMiItz+ETqbzaa1a9eqX79+qlatmry8vFSrVi0lJSWpevXqRW43bdo0TZo0qcD6NWvWKDAw0C1zXbt2rVv2W9mQg4UcLORABnbkYCEHiztyyM7OLtE4mlIAAAAVQGJiYqGNmzNt375dktUcOpsxptD1rmSM0YMPPqiIiAh9+eWXqlKliubPn6/evXtr+/btioqKKnS78ePHa+zYsY7ljIwM1atXT3FxcQoODnbpHHNycrR27Vp169ZNvr6+Lt13ZUIOFnKwkAMZ2JGDhRws7szBflb0udCUAgAAqABGjRqlAQMGFDsmOjpa3333nf76668Cjx06dEi1atVy1/QkSevWrdPHH3+so0ePOppJc+bM0dq1a/XWW29p3LhxhW7n7+8vf3//Aut9fX3d9o8Bd+67MiEHCzlYyIEM7MjBQg4Wd+RQ0v2V6933Nm7cqD59+qh27dqy2Wz68MMPix2/fPlydevWTeHh4QoODlZsbKxWr15dYNyxY8c0cuRIRUVFKSAgQM2bN9eqVavcdBQAAABlFxYWpmbNmhX7FRAQoNjYWKWnp2vbtm2Obbdu3ar09HR16NDBrXO0n4rv5eVcQnp5eSk/P9+tzw0AAC485dqUysrKUqtWrfTyyy+XaPzGjRvVrVs3rVq1Sjt27FCXLl3Up08f7dy50zHm9OnT6tatm/bt26f3339fKSkpmjdvnurUqeOuwwAAAPCY5s2bq0ePHho+fLi2bNmiLVu2aPjw4erdu7fTRc6bNWumDz74wLF85MgRJScn66effpIkpaSkKDk52ek6VGlpaUpOTtaePXskSd9//72Sk5N15MgRSVJsbKxq1KihIUOG6Ntvv9Xu3bv1j3/8Q3v37lWvXr08cfgAAOACUq4f3+vZs6d69uxZ4vGzZs1yWp46dapWrFihjz76SDExMZKkN998U0eOHNGmTZscp4s1aNDAZXMGAAAob2+//bZGjx6tuLg4SVLfvn0LvMmXkpKi9PR0x/LKlSs1dOhQx7L9o4IJCQlKTEyUJL322mtO17W67rrrJEkLFixQfHy8wsLClJSUpAkTJuj6669XTk6OLrvsMq1YsUKtWrVyy7ECAIALV6W+plR+fr4yMzMVGhrqWLdy5UrFxsZq5MiRWrFihcLDwzVw4EA98cQT8vb2LnQ/3KbY88jBQg4WcrCQg4UcyMCuItymuKIKDQ3V4sWLix1jjHFajo+PV3x8fLHbJCYmOhpURWnbtm2hl08AAAAorUrdlJo5c6aysrJ0++23O9b99ttvWrdune666y6tWrVKv/zyi0aOHKnc3FxNnDix0P1wm+LyQw4WcrCQg4UcLORABnbleZtiAAAAuE+lbUotWbJEiYmJWrFihSIiIhzr8/PzFRERoddff13e3t5q06aNUlNTNX369CKbUtym2PPIwUIOFnKwkIOFHMjAriLcphgAAADuUymbUkuXLtWwYcP03nvvqWvXrk6PRUVFydfX1+mjes2bN1daWppOnz4tPz+/AvvjNsXlhxws5GAhBws5WMiBDOzK8zbFAAAAcJ9yvfve+ViyZIni4+P1zjvvFHqXl44dO2rPnj1OtyXevXu3oqKiCm1IAQAAAAAAwPPKtSl1/PhxJScnKzk5WZK0d+9eJScna//+/ZKsj9XdfffdjvFLlizR3XffrZkzZ6p9+/ZKS0tTWlqa051lHnjgAR0+fFhjxozR7t279cknn2jq1KkaOXKkR48NAAAAAAAARSvXptQ333yjmJgYxcTESJLGjh2rmJgYx7WfDh486GhQSdLcuXOVm5urkSNHKioqyvE1ZswYx5h69eppzZo12r59u1q2bKnRo0drzJgxGjdunGcPDgAAAAAAAEUq12tKde7cucDtis+0cOFCp+UNGzaUaL+xsbHasmVLGWYGAAAAAAAAd6p015QCAAAAAABA5UdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAoJI5evSoBg8erJCQEIWEhGjw4ME6duxYsdssX75c3bt3V1hYmGw2m5KTk50eP3LkiB566CE1bdpUgYGBql+/vkaPHq309PQyPzcAAEBhaEoBAABUMgMHDlRycrKSkpKUlJSk5ORkDR48uNhtsrKy1LFjRz377LOFPp6amqrU1FTNmDFD33//vRYuXKikpCQNGzaszM8NAABQGJ/yngAAAABKbteuXUpKStKWLVvUrl07SdK8efMUGxurlJQUNW3atNDt7I2jffv2Ffr45ZdfrmXLljmWGzdurClTpmjQoEHKzc2Vj4/PeT/3qVOndOrUKcdyRkaGJCknJ0c5OTmlC+Ac7Ptz9X4rG3KwkIOFHMjAjhws5GBxZw4l3SdNKQAAgEpk8+bNCgkJcTSFJKl9+/YKCQnRpk2bimwMnY/09HQFBwfLx8enTM89bdo0TZo0qcD6NWvWKDAw0GXzPdPatWvdst/Khhws5GAhBzKwIwcLOVjckUN2dnaJxtGUAgAAqETS0tIUERFRYH1ERITS0tJc9jyHDx/W5MmTdd9995X5ucePH6+xY8c6ljMyMlSvXj3FxcUpODjYZXOWrHdm165dq27dusnX19el+65MyMFCDhZyIAM7crCQg8WdOdjPij4XmlIAAAAVQGJiYqFnE51p+/btkiSbzVbgMWNMoevPR0ZGhnr16qUWLVooISHB6bHzeW5/f3/5+/sXWO/r6+u2fwy4c9+VCTlYyMFCDmRgRw4WcrC4I4eS7q9cL3S+ceNG9enTR7Vr15bNZtOHH35Y7Pjly5erW7duCg8PV3BwsGJjY7V69eoix7/77ruy2Wy66aabXDtxAAAAFxs1apR27dpV7Nfll1+uyMhI/fXXXwW2P3TokGrVqlXmeWRmZqpHjx4KCgrSBx984FRUuvu5AQDAxaVcz5TKyspSq1atNHToUN16663nHL9x40Z169ZNU6dOVfXq1bVgwQL16dNHW7duVUxMjNPY33//XY899piuvfZad00fAADAZcLCwhQWFnbOcbGxsUpPT9e2bdt09dVXS5K2bt2q9PR0dejQoUxzyMjIUPfu3eXv76+VK1cqICDAY88NAAAuPuXalOrZs6d69uxZ4vGzZs1yWp46dapWrFihjz76yKkplZeXp7vuukuTJk3Sl19+qWPHjrloxgAAAOWrefPm6tGjh4YPH665c+dKkkaMGKHevXs7XWi8WbNmmjZtmm6++WZJ0pEjR7R//36lpqZKklJSUiRZZz9FRkYqMzNTcXFxys7O1uLFi5WRkeG4HkR4eLi8vb1L/NwAAAAlUamvKZWfn6/MzEyFhoY6rX/66acVHh6uYcOG6csvvzznfrhNseeRg4UcLORgIQcLOZCBXUW4TXFF9fbbb2v06NGKi4uTJPXt21cvv/yy05iUlBSlp6c7lleuXKmhQ4c6lgcMGCBJSkhIUGJionbs2KGtW7dKkpo0aeK0r7179yo6OrrEzw0AAFASlbopNXPmTGVlZen22293rPv666/1xhtvKDk5ucT74TbF5YccLORgIQcLOVjIgQzsyvM2xRVVaGioFi9eXOwYY4zTcnx8vOLj44sc37lz5wLbnO9zAwAAlESlbUotWbJEiYmJWrFihePWxJmZmRo0aJDmzZtXomsy2HGbYs8jBws5WMjBQg4WciADu4pwm2IAAAC4T6VsSi1dulTDhg3Te++9p65duzrW//rrr9q3b5/69OnjWJefny9J8vHxUUpKiho3blxgf9ymuPyQg4UcLORgIQcLOZCBXXnephgAAADuU+maUkuWLNE999yjJUuWqFevXk6PNWvWTN9//73TuieffFKZmZl66aWXVK9ePU9OFQAAAAAAAEUoUVPqu+++K/WOW7RoIR+f4nd//Phx7dmzx7G8d+9eJScnKzQ0VPXr19f48eN14MABLVq0SJLVkLr77rv10ksvqX379kpLS5MkValSRSEhIQoICNDll1/u9BzVq1eXpALrAQAAzoe76iIAAICLTYmqo9atW8tms5Xo4peS5OXlpd27d6tRo0bFjvvmm2/UpUsXx7L9uk5DhgzRwoULdfDgQe3fv9/x+Ny5c5Wbm6uRI0dq5MiRjvX28QAAAO7mrroIAADgYlPit+y2bt2q8PDwc44zxpT4rKRz3eXl7EbThg0bSrTf4vYBAABQVu6oiwAAAC42JWpKderUSU2aNHF8FO5crrvuOlWpUqUs8wIAAKiQqIsAAABco0RNqfXr15dqp6tWrTqvyQAAAFR01EUAAACu4VXeEwAAAAAAAMDFp8TXlHr66adLNG7ixInnPRkAAIDKgLoIAACg7ErclPrggw+KfMxmsyklJUUnT56k+AIAABc86iIAAICyK3FTaufOnYWuT05O1rhx4/TDDz9o+PDhLpsYAABARUVdBAAAUHbnfU2pvXv3atCgQbrqqqsUEhKiH3/8Ua+99por5wYAAFApUBcBAACUXqmbUv/73//00EMPqVmzZjp48KA2bdqkpUuX6pJLLnHH/AAAACos6iIAAIDzV+KP72VlZWnGjBl64YUX1KRJE3300UeKi4tz59wAAAAqJOoiAACAsitxU6px48bKzMzUQw89pDvvvFM2m03fffddgXEtW7Z06QQBAAAqGuoiAACAsitxU+rvv/+WJD3//POaPn26jDGOx2w2m4wxstlsysvLc/0sAQAAKhDqIgAAgLIrcVNq79697pwHAABApUFdBAAAUHYlbko1aNDAnfMAAACoNKiLAAAAyq5Ed9/77rvvlJ+fX+Kd/vjjj8rNzT3vSQEAAFRU1EUAAACuUaKmVExMjA4fPlzincbGxmr//v3nPSkAAICKiroIAADANUr08T1jjJ566ikFBgaWaKenT58u06QAAAAqKuoiAAAA1yhRU+q6665TSkpKiXcaGxurKlWqnPekAAAAKirqIgAAANcoUVNqw4YNbp4GAABA5UBdBAAA4BoluqYUAAAAAAAA4Eo0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBx59WU+ve//62OHTuqdu3a+v333yVJs2bN0ooVK1w6OQAAgIqOuggAAOD8lLop9eqrr2rs2LG68cYbdezYMeXl5UmSqlevrlmzZrl6fgAAABUWdREAAMD58yntBrNnz9a8efN000036dlnn3Wsb9u2rR577DGXTu5CdSpPyj6dK19jK/CYl82mAF9vx3L26dwi91OWsSdO58nIFDrWJpuq+J3f2JM5eco3hY+VpEC//3vJnS4mh7PHlma/5xpbxddbNpv1nKdy85SX75qxAT7e8vKyxp7OzVdufn6JxubmF5+Dv4+3vEu43zPH5uTlKyev6LF+3l7y8fYq9djcvHydLmasr7eXfM9jbL4pPgcfLy/5+Vhj8/KNTuXmFbnfM8fm5xuddNFYby+b/H2s17sxRidyXDO2sJ/lonK4mH5HnMzJU04RORQ29kL6HeF9xvxK83N/of2OUDHHUlFQF1VM1FoWai1qLWoti5fNJu8zlt31c18Zfkf4nvHtd+XPfWX7HUGt9f9VgFqr1E2pvXv3KiYmpsB6f39/ZWVluWRSF7rHt/no8W3rCn2sS9NwLRh6tWO5zeTPivwF265hqJbeF+tYvua59TqSdbrQsS3rhmjlqGscy11f+EIHjp0odOwlEUFaO7aTY7nvy1/pl7+PFzq2TvUq+nrc9Y7l2+du1nd/phc6NrSqn/77VDfH8tyfvfWPInKo4uutXZN7OJYfWLxD61MOFTpWkvY928vx/2P/k6xV36cVOfanp7s7fmn+c/kPWvbfP4scu+PJrqoZ5C9JeubjXfr3lt+LHPvl411ULzRQkjRjTYpe3/hbkWPXPHKdLq1VTZK09oCXHp1ceA6StGJkR7WqV12StODrvZr26c9Fjl0yvL1iG9e0/n/bfk1c8WORY9+Mb6vrm9WSJH2484D+8f53RY59ZeCV6tUySpK0+se/NPKd/xY5dnr/lrqtbT1J0sZfDumehd8UOfbpfpfp7thoSdKvGTY9UkwO43s2032dGkuSfjiQrn6vfF3k2DE3XKJHul0qSdpz6LjiXtxY5NgR1zXSP29sLkk6cOyErn1+fZFjB7dvoMk3XS5JOpJ1Wm2e+azIsbdeWVczb28lSTqRk6cWE1cXOfbGKyI15642juVWxeRwMf2OGLbov9q272ihYy/03xGrRnVw/P8r6/fopc9/KXLshfw7IqF3M4UW+WjFQF1UMVFrWai1qLWotSw3XhGpl25v6VgubuyF/jti67jOjuUhb27T1r1HCh17of+OoNayVIRaq9Qf32vYsKGSk5MLrP/000/VokULV8wJAACgUqAuAgAAOH82Y4o5r64QCxYs0FNPPaWZM2dq2LBhmj9/vn799VdNmzZN8+fP14ABA9w1V4/JyMhQSEiI0tPTFRwc7NJ95+Tk6IOPVql79zj5+voWePxCP13U3hHPycnRhx+tUlwROZw5tjT7LcnYinC6qH1sTk6OVn68Sl3jis7hQj5d1D42JydHH3+yStd3KzqHC/2U8gBfb+Xk5GjVqlXq3LXoHC6G3xH2HK7v1l3ePkWf0Hsh/47wNvlKSvpUN954o4zN+yI+pTxPa1cn6cYbbyzyZ+J8uepv/cVQF7kDtRa11vmMpdayUGuVfqz18b18rVq1SjfeeGOxlwe40H9H+NqMI4c8eV3EH9+j1pJUIWqtUn98b+jQocrNzdXjjz+u7OxsDRw4UHXq1NFLL71E4VVC/t7WD62v77njP/OH25Vjz/zF5cqxZ/6iPRe/UuRQmv2WZqz9D5mrx/r5eMmvhCci+niVPIfS7PfMX0auHOtzxi9EV471spU8B28vW4lf715uGmuzuWesVPIc7GNLs9+Sqgi/IwJ8vUucw4X2OyInJ6fEY0uz3zNVht8ROTmlet+sXJRXXXT06FGNHj1aK1eulCT17dtXs2fPVvXq1YvcZvny5Zo7d6527Nihw4cPa+fOnWrdurXj8SNHjighIUFr1qzRH3/8obCwMN10002aPHmyQkJCJEn79u3T5MmTtW7dOqWlpal27doaNGiQJkyYID8/P7cdb2lRa1motSzUWpaLvdbKyfm/f5i76+e+MvyOOLPGcNfPfWX4HUGtZakItVapm1KSNHz4cA0fPlz/+9//lJ+fr4iICFfPCwAAoFIoj7po4MCB+vPPP5WUlCRJGjFihAYPHqyPPvqoyG2ysrLUsWNH3XbbbRo+fHiBx1NTU5WamqoZM2aoRYsW+v3333X//fcrNTVV77//viTp559/Vn5+vubOnasmTZrohx9+0PDhw5WVlaUZM2a452ABAMAF67wudJ6bm6tLLrlEYWFhjvW//PKLfH19FR0d7cr5AQAAVFjlURft2rVLSUlJ2rJli9q1aydJmjdvnmJjY5WSkqKmTZsWut3gwYMlWWc7Febyyy/XsmXLHMuNGzfWlClTNGjQIOXm5srHx0c9evRQjx7/d+HbRo0aKSUlRa+++mqxTalTp07p1KlTjuWMjAxJ1jvVZ75b7Qr2/bl6v5UNOVjIwUIOZGBHDhZysLgzh5Lus9RNqfj4eN1zzz265JJLnNZv3bpV8+fP14YNG0q7SwAAgEqpPOqizZs3KyQkxNGQkqT27dsrJCREmzZtKrIpdT7s14HwKeb6bunp6QoNLf7ePdOmTdOkSZMKrF+zZo0CAwPLPM/CrF271i37rWzIwUIOFnIgAztysJCDxR05ZGdnl2hcqZtSO3fuVMeOHQusb9++vUaNGlXa3QEAAFRa5VEXpaWlFfoRwYiICKWlFX0L7tI6fPiwJk+erPvuu6/IMb/++qtmz56tmTNnFruv8ePHa+zYsY7ljIwM1atXT3FxcW650PnatWvVrVs3l1+0tTIhBws5WMiBDOzIwUIOFnfmYD8r+lxK3ZSy2WzKzMwssD49PV15eUXf8QAAAOBC48q6KDExsdCzic60fft2x/OezRhT6PrzkZGRoV69eqlFixZKSEgodExqaqp69Oih2267Tffee2+x+/P395e/v3+B9b6+vm77x4A7912ZkIOFHCzkQAZ25GAhB4s7cijp/kp2yfYzXHvttZo2bZpToZWXl6dp06bpmmuuKdW+Nm7cqD59+qh27dqy2Wz68MMPix2/fPlydevWTeHh4QoODlZsbKxWr17tNGbevHm69tprVaNGDdWoUUNdu3bVtm3bSjUvAACAknBlXTRq1Cjt2rWr2K/LL79ckZGR+uuvvwpsf+jQIdWqVavMx5SZmakePXooKChIH3zwQaFFZWpqqrp06aLY2Fi9/vrrZX5OAABwcSr1mVLPPfecOnXqpKZNm+raa6+VJH355ZfKyMjQunXrSrWvrKwstWrVSkOHDtWtt956zvEbN25Ut27dNHXqVFWvXl0LFixQnz59tHXrVsXExEiSNmzYoDvvvFMdOnRQQECAnn/+ecXFxenHH39UnTp1Snu4AAAARXJlXRQWFuZ0sfSixMbGKj09Xdu2bdPVV18tybqGVXp6ujp06FD6gzhDRkaGunfvLn9/f61cuVIBAQEFxhw4cEBdunRRmzZttGDBAnl5lfo9TgAAAEnn0ZS67LLL9N133+nll1/Wt99+qypVqujuu+/WqFGjznmRy7P17NlTPXv2LPH4WbNmOS1PnTpVK1as0EcffeRoSr399ttOY+bNm6f3339fn3/+ue6+++5C98sdYTyPHCzkYCEHCzlYyIEM7CrCHWHOxZV1UUk1b95cPXr00PDhwzV37lxJ0ogRI9S7d2+ni5w3a9ZM06ZN08033yxJOnLkiPbv36/U1FRJUkpKiiQpMjJSkZGRyszMVFxcnLKzs7V48WJlZGQ4aqLw8HB5e3srNTVVnTt3Vv369TVjxgwdOnTI8XyRkZFuOV4AAHDhKlVTKicnR3FxcZo7d66mTp3qrjmVWH5+vjIzM4st+rKzs5WTk1PsGO4IU37IwUIOFnKwkIOFHMjArjzvCFOc8qyL3n77bY0ePVpxcXGSpL59++rll192GpOSkqL09HTH8sqVKzV06FDH8oABAyRJCQkJSkxM1I4dO7R161ZJUpMmTZz2tXfvXkVHR2vNmjXas2eP9uzZo7p16zqNMca47gABAMBFoVRNKV9fX/3www8uu4hmWc2cOVNZWVm6/fbbixwzbtw41alTR127di1yDHeE8TxysJCDhRws5GAhBzKwqwh3hClOedZFoaGhWrx4cbFjzm4SxcfHKz4+vsjxnTt3Pmdj6Vz7AAAAKI1Sf3zv7rvv1htvvKFnn33WHfMpsSVLligxMVErVqwo9LbIkvT8889ryZIl2rBhQ6HXRLDjjjDlhxws5GAhBws5WMiBDOzK844w51JR6iIAAIDKqNRNqdOnT2v+/Plau3at2rZtq6pVqzo9/sILL7hsckVZunSphg0bpvfee6/IM6BmzJihqVOn6rPPPlPLli3dPicAAHDxqQh1EQAAQGVV6qbUDz/8oCuvvFKStHv3bqfHPHH6+pIlS3TPPfdoyZIl6tWrV6Fjpk+frmeeeUarV69W27Zt3T4nAABwcSrvuggAAKAyK3VTav369S578uPHj2vPnj2O5b179yo5OVmhoaGqX7++xo8frwMHDmjRokWSrIbU3XffrZdeeknt27dXWlqaJKlKlSoKCQmRZH1k76mnntI777yj6Ohox5igoCAFBQW5bO4AAACurIsAAAAuNl5l2fjPP//UgQMHznv7b775RjExMYqJiZEkjR07VjExMZo4caIk6eDBg9q/f79j/Ny5c5Wbm6uRI0cqKirK8TVmzBjHmDlz5uj06dPq37+/05gZM2ac9zwBAADOpax1EQAAwMWm1GdK5efn65lnntHMmTN1/PhxSVK1atX06KOPasKECfLyKnmf61x3eVm4cKHT8oYNG865z3379pX4+QEAAMrClXURAADAxabUTakJEyY47jLTsWNHGWP09ddfKzExUSdPntSUKVPcMU8AAIAKh7oIAADg/JW6KfXWW29p/vz56tu3r2Ndq1atVKdOHT344IMUXwAA4KJBXQQAAHD+Sn1O+ZEjR9SsWbMC65s1a6YjR464ZFIAAACVAXURAADA+St1U6pVq1Z6+eWXC6x/+eWX1apVK5dMCgAAoDKgLgIAADh/pf743vPPP69evXrps88+U2xsrGw2mzZt2qQ//vhDq1atcsccAQAAKiTqIgAAgPNX6jOlOnXqpN27d+vmm2/WsWPHdOTIEd1yyy1KSUnRtdde6445AgAAVEjURQAAAOevxGdK/fbbb2rYsKFsNptq167NhTsBAMBFi7oIAACg7Ep8ptQll1yiQ4cOOZbvuOMO/fXXX26ZFAAAQEVGXQQAAFB2JW5KGWOclletWqWsrCyXTwgAAKCioy4CAAAou1JfUwoAAAAAAAAoqxI3pWw2m2w2W4F1AAAAFxvqIgAAgLIr8YXOjTGKj4+Xv7+/JOnkyZO6//77VbVqVadxy5cvd+0MAQAAKhjqIgAAgLIrcVNqyJAhTsuDBg1y+WQAAAAqA+oiAACAsitxU2rBggXunAcAAEClQV0EAABQdlzoHAAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAACgkjl69KgGDx6skJAQhYSEaPDgwTp27Fix2yxfvlzdu3dXWFiYbDabkpOTnR4/cuSIHnroITVt2lSBgYGqX7++Ro8erfT09EL3d+rUKbVu3brQfQEAAJQETSkAAIBKZuDAgUpOTlZSUpKSkpKUnJyswYMHF7tNVlaWOnbsqGeffbbQx1NTU5WamqoZM2bo+++/18KFC5WUlKRhw4YVOv7xxx9X7dq1y3wsAADg4uVT3hMAAABAye3atUtJSUnasmWL2rVrJ0maN2+eYmNjlZKSoqZNmxa6nb1ptW/fvkIfv/zyy7Vs2TLHcuPGjTVlyhQNGjRIubm58vH5v7Lx008/1Zo1a7Rs2TJ9+umnLjoyAABwsaEpBQAAUIls3rxZISEhjoaUJLVv314hISHatGlTkU2p85Genq7g4GCnhtRff/2l4cOH68MPP1RgYGCJ9nPq1CmdOnXKsZyRkSFJysnJUU5Ojsvma9/nmf+9WJGDhRws5EAGduRgIQeLO3Mo6T5pSgEAAFQiaWlpioiIKLA+IiJCaWlpLnuew4cPa/Lkybrvvvsc64wxio+P1/3336+2bdsWedbV2aZNm6ZJkyYVWL9mzZoSN7ZKa+3atW7Zb2VDDhZysJADGdiRg4UcLO7IITs7u0TjaEoBAABUAImJiYU2bs60fft2SZLNZivwmDGm0PXnIyMjQ7169VKLFi2UkJDgWD979mxlZGRo/Pjxpdrf+PHjNXbsWKf916tXT3FxcQoODnbJnO1ycnK0du1adevWTb6+vi7dd2VCDhZysJADGdiRg4UcLO7MwX5W9LmUa1Nq48aNmj59unbs2KGDBw/qgw8+0E033VTk+OXLl+vVV19VcnKyTp06pcsuu0yJiYnq3r2707hly5bpqaee0q+//uq4HsLNN9/s5qMBAAA4f6NGjdKAAQOKHRMdHa3vvvtOf/31V4HHDh06pFq1apV5HpmZmerRo4eCgoL0wQcfOBWp69at05YtW+Tv7++0Tdu2bXXXXXfprbfeKnSf/v7+BbaRJF9fX7f9Y8Cd+65MyMFCDhZyIAM7crCQg8UdOZR0f+XalMrKylKrVq00dOhQ3Xrrreccv3HjRnXr1k1Tp05V9erVtWDBAvXp00dbt25VTEyMJOs6C3fccYcmT56sm2++WR988IFuv/12ffXVV07XXgAAAKhIwsLCFBYWds5xsbGxSk9P17Zt23T11VdLkrZu3ar09HR16NChTHPIyMhQ9+7d5e/vr5UrVyogIMDp8X/961965plnHMupqanq3r27li5dSp0FAABKrVybUj179lTPnj1LPH7WrFlOy1OnTtWKFSv00UcfOZpSs2bNUrdu3RynlY8fP15ffPGFZs2apSVLlrhs7gAAAOWhefPm6tGjh4YPH665c+dKkkaMGKHevXs7XeS8WbNmmjZtmuNs8SNHjmj//v1KTU2VJKWkpEiSIiMjFRkZqczMTMXFxSk7O1uLFy9WRkaG49T78PBweXt7q379+k5zCQoKkmTdqa9u3bruPXAAAHDBqdTXlMrPz1dmZqZCQ0Md6zZv3qxHHnnEaVz37t0LNLTOxB1hPI8cLORgIQcLOVjIgQzsKsIdYSqqt99+W6NHj1ZcXJwkqW/fvnr55ZedxqSkpCg9Pd2xvHLlSg0dOtSxbP+oYEJCghITE7Vjxw5t3bpVktSkSROnfe3du1fR0dHuOBQAAHARq9RNqZkzZyorK0u33367Y11aWlqB6ynUqlWr2LvRcEeY8kMOFnKwkIOFHCzkQAZ25XlHmIoqNDRUixcvLnaMMcZpOT4+XvHx8UWO79y5c4FtziU6OrrU2wAAANhV2qbUkiVLlJiYqBUrVhS4LfLZd545191ouCOM55GDhRws5GAhBws5kIFdRbgjDAAAANynUjalli5dqmHDhum9995T165dnR6LjIwscFbU33//XezdaLgjTPkhBws5WMjBQg4WciADu/K8IwwAAADcx6u8J1BaS5YsUXx8vN555x316tWrwOOxsbEFTvNfs2ZNme9GAwAAAAAAANcp1zOljh8/rj179jiW9+7dq+TkZIWGhqp+/foaP368Dhw4oEWLFkmyGlJ33323XnrpJbVv395xRlSVKlUUEhIiSRozZoyuu+46Pffcc+rXr59WrFihzz77TF999ZXnDxAAAAAAAACFKtczpb755hvFxMQoJiZGkjR27FjFxMRo4sSJkqSDBw9q//79jvFz585Vbm6uRo4cqaioKMfXmDFjHGM6dOigd999VwsWLFDLli21cOFCLV26VO3atfPswQEAAAAAAKBI5Xqm1Lnu8rJw4UKn5Q0bNpRov/3791f//v3LMDMAAAAAAAC4U6W7phQAAAAAAAAqP5pSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAJXM0aNHNXjwYIWEhCgkJESDBw/WsWPHit1m+fLl6t69u8LCwmSz2ZScnOz0+JEjR/TQQw+padOmCgwMVP369TV69Gilp6cX2Ncnn3yidu3aqUqVKgoLC9Mtt9ziwqMDAAAXC5pSAAAAlczAgQOVnJyspKQkJSUlKTk5WYMHDy52m6ysLHXs2FHPPvtsoY+npqYqNTVVM2bM0Pfff6+FCxcqKSlJw4YNcxq3bNkyDR48WEOHDtW3336rr7/+WgMHDnTZsQEAgIuHT3lPAAAAACW3a9cuJSUlacuWLWrXrp0kad68eYqNjVVKSoqaNm1a6Hb2ptW+ffsKffzyyy/XsmXLHMuNGzfWlClTNGjQIOXm5srHx0e5ubkaM2aMpk+f7tSsKuo5AQAAikNTCgAAoBLZvHmzQkJCHA0pSWrfvr1CQkK0adMmlzaI0tPTFRwcLB8fq2T873//qwMHDsjLy0sxMTFKS0tT69atNWPGDF122WVF7ufUqVM6deqUYzkjI0OSlJOTo5ycHJfN177PM/97sSIHCzlYyIEM7MjBQg4Wd+ZQ0n3SlAIAAKhE0tLSFBERUWB9RESE0tLSXPY8hw8f1uTJk3Xfffc51v3222+SpMTERL3wwguKjo7WzJkz1alTJ+3evVuhoaGF7mvatGmaNGlSgfVr1qxRYGCgy+Z8prVr17plv5UNOVjIwUIOZGBHDhZysLgjh+zs7BKNoykFAABQASQmJhbauDnT9u3bJUk2m63AY8aYQtefj4yMDPXq1UstWrRQQkKCY31+fr4kacKECbr11lslSQsWLFDdunX13nvvOTWwzjR+/HiNHTvWaf/16tVTXFycgoODXTJnu5ycHK1du1bdunWTr6+vS/ddmZCDhRws5EAGduRgIQeLO3OwnxV9LuXalNq4caOmT5+uHTt26ODBg/rggw900003FTn+4MGDevTRR7Vjxw798ssvGj16tGbNmlVg3KxZs/Tqq69q//79CgsLU//+/TVt2jQFBAS472AAAADKYNSoURowYECxY6Kjo/Xdd9/pr7/+KvDYoUOHVKtWrTLPIzMzUz169FBQUJA++OADpyI1KipKktSiRQvHOn9/fzVq1Ej79+8vcp/+/v7y9/cvsN7X19dt/xhw574rE3KwkIOFHMjAjhws5GBxRw4l3V+5NqWysrLUqlUrDR061PFuW3FOnTql8PBwTZgwQS+++GKhY95++22NGzdOb775pjp06KDdu3crPj5ekorcBgAAoLyFhYUpLCzsnONiY2OVnp6ubdu26eqrr5Ykbd26Venp6erQoUOZ5pCRkaHu3bvL399fK1euLPCGXps2beTv76+UlBRdc801kqx3Wfft26cGDRqU6bkBAMDFp1ybUj179lTPnj1LPD46OlovvfSSJOnNN98sdMzmzZvVsWNHx62Jo6Ojdeedd2rbtm1F7peLb3oeOVjIwUIOFnKwkAMZ2FWEi29WRM2bN1ePHj00fPhwzZ07V5I0YsQI9e7d2+ki582aNdO0adN08803S5KOHDmi/fv3KzU1VZKUkpIiSYqMjFRkZKQyMzMVFxen7OxsLV68WBkZGY6aKDw8XN7e3goODtb999+vhIQE1atXTw0aNND06dMlSbfddpvHMgAAABeGC+6aUtdcc40WL17sePfwt99+06pVqzRkyJAit+Him+WHHCzkYCEHCzlYyIEM7Mrz4psV1dtvv63Ro0crLi5OktS3b1+9/PLLTmNSUlKUnp7uWF65cqWGDh3qWLZ/VDAhIUGJiYnasWOHtm7dKklq0qSJ07727t2r6OhoSdL06dPl4+OjwYMH68SJE2rXrp3WrVunGjVquPw4AQDAhe2Ca0oNGDBAhw4d0jXXXCNjjHJzc/XAAw9o3LhxRW7DxTc9jxws5GAhBws5WMiBDOwqwsU3K6rQ0FAtXry42DHGGKfl+Ph4xyUNCtO5c+cC2xTG19dXM2bM0IwZM0o0VwAAgKJccE2pDRs2aMqUKZozZ47atWunPXv2aMyYMYqKitJTTz1V6DZcfLP8kIOFHCzkYCEHCzmQgV15XnwTAAAA7nPBNaWeeuopDR48WPfee68k6YorrlBWVpZGjBihCRMmyMvLq5xnCAAAAAAAgAuuQ5OdnV2g8eTt7S1jTIlOSQcAAAAAAID7leuZUsePH9eePXscy3v37lVycrJCQ0NVv359jR8/XgcOHNCiRYscY5KTkx3bHjp0SMnJyfLz81OLFi0kSX369NELL7ygmJgYx8f3nnrqKfXt21fe3t4ePT4AAAAAAAAUrlybUt988426dOniWLZfbHzIkCFauHChDh48qP379zttExMT4/j/HTt26J133lGDBg20b98+SdKTTz4pm82mJ598UgcOHFB4eLj69OmjKVOmuP+AAAAAAAAAUCLl2pQ6111eFi5cWGDduT6C5+Pjo4SEBCUkJJR1egAAAAAAAHCTC+6aUgAAAAAAAKj4aEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAVDJHjx7V4MGDFRISopCQEA0ePFjHjh0rdpvly5ere/fuCgsLk81mU3JystPjR44c0UMPPaSmTZsqMDBQ9evX1+jRo5Wenu40bvfu3erXr5/CwsIUHBysjh07av369S4+QgAAcDGgKQUAAFDJDBw4UMnJyUpKSlJSUpKSk5M1ePDgYrfJyspSx44d9eyzzxb6eGpqqlJTUzVjxgx9//33WrhwoZKSkjRs2DCncb169VJubq7WrVunHTt2qHXr1urdu7fS0tJcdnwAAODi4FPeEwAAAEDJ7dq1S0lJSdqyZYvatWsnSZo3b55iY2OVkpKipk2bFrqdvWm1b9++Qh+//PLLtWzZMsdy48aNNWXKFA0aNEi5ubny8fHR//73P+3Zs0dvvvmmWrZsKUl69tlnNWfOHP3444+KjIwsdN+nTp3SqVOnHMsZGRmSpJycHOXk5JQugHOw78/V+61syMFCDhZyIAM7crCQg8WdOZR0nzSlAAAAKpHNmzcrJCTE0ZCSpPbt2yskJESbNm0qsil1PtLT0xUcHCwfH6tkrFmzppo3b65FixbpyiuvlL+/v+bOnatatWqpTZs2Re5n2rRpmjRpUoH1a9asUWBgoMvme6a1a9e6Zb+VDTlYyMFCDmRgRw4WcrC4I4fs7OwSjaMpBQAAUImkpaUpIiKiwPqIiAiXfoTu8OHDmjx5su677z7HOpvNprVr16pfv36qVq2avLy8VKtWLSUlJal69epF7mv8+PEaO3asYzkjI0P16tVTXFycgoODXTZnyXpndu3aterWrZt8fX1duu/KhBws5GAhBzKwIwcLOVjcmYP9rOhzKdem1MaNGzV9+nTt2LFDBw8e1AcffKCbbrqpyPEHDx7Uo48+qh07duiXX37R6NGjNWvWrALjjh07pgkTJmj58uU6evSoGjZsqJkzZ+rGG29038EAAACUQWJiYqFnE51p+/btkqzm0NmMMYWuPx8ZGRnq1auXWrRooYSEBKfnePDBBxUREaEvv/xSVapU0fz589W7d29t375dUVFRhe7P399f/v7+Bdb7+vq67R8D7tx3ZUIOFnKwkAMZ2JGDhRws7sihpPsr16ZUVlaWWrVqpaFDh+rWW2895/hTp04pPDxcEyZM0IsvvljomNOnT6tbt26KiIjQ+++/r7p16+qPP/5QtWrVXD19AAAAlxk1apQGDBhQ7Jjo6Gh99913+uuvvwo8dujQIdWqVavM88jMzFSPHj0UFBSkDz74wKmoXLdunT7++GMdPXrUcYbTnDlztHbtWr311lsaN25cmZ8fAABcPMq1KdWzZ0/17NmzxOOjo6P10ksvSZLefPPNQse8+eabOnLkiDZt2uQooho0aFD2yQIAALhRWFiYwsLCzjkuNjZW6enp2rZtm66++mpJ0tatW5Wenq4OHTqUaQ4ZGRnq3r27/P39tXLlSgUEBDg9br8+hJeX8w2cvby8lJ+fX6bnBgAAF58L7ppSK1euVGxsrEaOHKkVK1YoPDxcAwcO1BNPPCFvb+9Ct+GOMJ5HDhZysJCDhRws5EAGdhXhjjAVUfPmzdWjRw8NHz5cc+fOlSSNGDFCvXv3drrIebNmzTRt2jTdfPPNkqQjR45o//79Sk1NlSSlpKRIkiIjIxUZGanMzEzFxcUpOztbixcvVkZGhqMmCg8Pl7e3t2JjY1WjRg0NGTJEEydOVJUqVTRv3jzt3btXvXr18mQMAADgAnDBNaV+++03rVu3TnfddZdWrVqlX375RSNHjlRubq4mTpxY6DbcEab8kIOFHCzkYCEHCzmQgV153hGmonr77bc1evRoxcXFSZL69u2rl19+2WlMSkqK0tPTHcsrV67U0KFDHcv2jwomJCQoMTFRO3bs0NatWyVJTZo0cdrX3r17FR0drbCwMCUlJWnChAm6/vrrlZOTo8suu0wrVqxQq1at3HKsAADgwnXBNaXy8/MVERGh119/Xd7e3mrTpo1SU1M1ffr0IptS3BHG88jBQg4WcrCQg4UcyMCuItwRpqIKDQ3V4sWLix1jjHFajo+PV3x8fJHjO3fuXGCbwrRt21arV68u0TwBAACKc8E1paKiouTr6+v0Ub3mzZsrLS1Np0+flp+fX4FtuCNM+SEHCzlYyMFCDhZyIAO78rwjDAAAANzH69xDKpeOHTtqz549Thfb3L17t6KiogptSAEAAAAAAMDzyvVMqePHj2vPnj2O5b179yo5OVmhoaGqX7++xo8frwMHDmjRokWOMcnJyY5tDx06pOTkZPn5+alFixaSpAceeECzZ8/WmDFj9NBDD+mXX37R1KlTNXr06BLPy37qujtO7c/JyVF2drYyMjIu6ndpycFCDhZysJCDhRzIwM6dOdj/xpfk42pwPWot9yMHCzlYyIEM7MjBQg6WilBr2Uw5VmMbNmxQly5dCqwfMmSIFi5cqPj4eO3bt08bNmxwPGaz2QqMb9Cggfbt2+dY3rx5sx555BElJyerTp06GjZsWLF33zvbn3/+qXr16pX6eAAAQOXyxx9/qG7duuU9jYsOtRYAABeHc9Va5dqUqqjy8/OVmpqqatWqFdoEKwv7RdT/+OMPl19EvTIhBws5WMjBQg4WciADO3fmYIxRZmamateuLS+vC+5qBhUetZb7kYOFHCzkQAZ25GAhB0tFqLUuuAudu4KXl5fb3zUNDg6+qF/8duRgIQcLOVjIwUIOZGDnrhxCQkJcvk+UDLWW55CDhRws5EAGduRgIQdLedZavDUIAAAAAAAAj6MpBQAAAAAAAI+jKeVh/v7+SkhIkL+/f3lPpVyRg4UcLORgIQcLOZCBHTngfPC6sZCDhRws5EAGduRgIQdLRciBC50DAAAAAADA4zhTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HU8oF5syZo4YNGyogIEBt2rTRl19+Wez4L774Qm3atFFAQIAaNWqk1157rcCYZcuWqUWLFvL391eLFi30wQcfuGv6LuPqHH788Ufdeuutio6Ols1m06xZs9w4e9dwdQbz5s3Ttddeqxo1aqhGjRrq2rWrtm3b5s5DcAlX57B8+XK1bdtW1atXV9WqVdW6dWv9+9//duchuIQ7fjfYvfvuu7LZbLrppptcPGvXc3UOCxculM1mK/B18uRJdx5Gmbnj9XDs2DGNHDlSUVFRCggIUPPmzbVq1Sp3HYJLuDqHzp07F/p66NWrlzsPAx5EnWWhzrJQa1motSzUWhZqLeosu0pZZxmUybvvvmt8fX3NvHnzzE8//WTGjBljqlatan7//fdCx//2228mMDDQjBkzxvz0009m3rx5xtfX17z//vuOMZs2bTLe3t5m6tSpZteuXWbq1KnGx8fHbNmyxVOHVWruyGHbtm3mscceM0uWLDGRkZHmxRdf9NDRnB93ZDBw4EDzyiuvmJ07d5pdu3aZoUOHmpCQEPPnn3966rBKzR05rF+/3ixfvtz89NNPZs+ePWbWrFnG29vbJCUleeqwSs0dOdjt27fP1KlTx1x77bWmX79+bj6SsnFHDgsWLDDBwcHm4MGDTl8VmTtyOHXqlGnbtq258cYbzVdffWX27dtnvvzyS5OcnOypwyo1d+Rw+PBhp9fBDz/8YLy9vc2CBQs8dFRwJ+osC3WWhVrLQq1lodayUGtRZ9lV1jqLplQZXX311eb+++93WtesWTMzbty4Qsc//vjjplmzZk7r7rvvPtO+fXvH8u2332569OjhNKZ79+5mwIABLpq167kjhzM1aNCgwhdL7s7AGGNyc3NNtWrVzFtvvVX2CbuJJ3IwxpiYmBjz5JNPlm2ybuSuHHJzc03Hjh3N/PnzzZAhQyp8oeSOHBYsWGBCQkJcPld3ckcOr776qmnUqJE5ffq06yfsJp74/fDiiy+aatWqmePHj5d9wih31FkW6iwLtZaFWstCrWWh1qLOsqusdRYf3yuD06dPa8eOHYqLi3NaHxcXp02bNhW6zebNmwuM7969u7755hvl5OQUO6aofZY3d+VQmXgqg+zsbOXk5Cg0NNQ1E3cxT+RgjNHnn3+ulJQUXXfdda6bvAu5M4enn35a4eHhGjZsmOsn7mLuzOH48eNq0KCB6tatq969e2vnzp2uPwAXcVcOK1euVGxsrEaOHKlatWrp8ssv19SpU5WXl+eeAykjT/2efOONNzRgwABVrVrVNRNHuaHOslBnWai1LNRaFmotC7UWdZZdZa6zaEqVwf/+9z/l5eWpVq1aTutr1aqltLS0QrdJS0srdHxubq7+97//FTumqH2WN3flUJl4KoNx48apTp066tq1q2sm7mLuzCE9PV1BQUHy8/NTr169NHv2bHXr1s31B+EC7srh66+/1htvvKF58+a5Z+Iu5q4cmjVrpoULF2rlypVasmSJAgIC1LFjR/3yyy/uOZAyclcOv/32m95//33l5eVp1apVevLJJzVz5kxNmTLFPQdSRp74Pblt2zb98MMPuvfee103cZQb6iwLdZaFWstCrWWh1rJQa1Fn2VXmOsvHpXu7SNlsNqdlY0yBdecaf/b60u6zInBHDpWNOzN4/vnntWTJEm3YsEEBAQEumK37uCOHatWqKTk5WcePH9fnn3+usWPHqlGjRurcubPrJu5irswhMzNTgwYN0rx58xQWFub6ybqRq18P7du3V/v27R2Pd+zYUVdeeaVmz56tf/3rX66atsu5Oof8/HxFRETo9ddfl7e3t9q0aaPU1FRNnz5dEydOdPHsXcedvyffeOMNXX755br66qtdMFNUFNRZFuosC7WWhVrLQq1lodaizrKrjHUWTakyCAsLk7e3d4HO499//12g42gXGRlZ6HgfHx/VrFmz2DFF7bO8uSuHysTdGcyYMUNTp07VZ599ppYtW7p28i7kzhy8vLzUpEkTSVLr1q21a9cuTZs2rUIWSu7I4ccff9S+ffvUp08fx+P5+fmSJB8fH6WkpKhx48YuPpKy8dTvBi8vL1111VUV8t07yX05REVFydfXV97e3o4xzZs3V1pamk6fPi0/Pz8XH0nZuPv1kJ2drXfffVdPP/20ayeOckOdZaHOslBrWai1LNRaFmot6iy7ylxn8fG9MvDz81ObNm20du1ap/Vr165Vhw4dCt0mNja2wPg1a9aobdu28vX1LXZMUfssb+7KoTJxZwbTp0/X5MmTlZSUpLZt27p+8i7kydeCMUanTp0q+6TdwB05NGvWTN9//72Sk5MdX3379lWXLl2UnJysevXque14zpenXg/GGCUnJysqKso1E3cxd+XQsWNH7dmzx1EwS9Lu3bsVFRVV4Qolyf2vh//85z86deqUBg0a5NqJo9xQZ1mosyzUWhZqLQu1loVaizrLrlLXWS67ZPpFyn7bxTfeeMP89NNP5uGHHzZVq1Y1+/btM8YYM27cODN48GDHePttFx955BHz008/mTfeeKPAbRe//vpr4+3tbZ599lmza9cu8+yzz1aaWxW7ModTp06ZnTt3mp07d5qoqCjz2GOPmZ07d5pffvnF48dXEu7I4LnnnjN+fn7m/fffd7oVZ2ZmpsePr6TckcPUqVPNmjVrzK+//mp27dplZs6caXx8fMy8efM8fnwl5Y4czlYZ7gjjjhwSExNNUlKS+fXXX83OnTvN0KFDjY+Pj9m6davHj6+k3JHD/v37TVBQkBk1apRJSUkxH3/8sYmIiDDPPPOMx4+vpNz5c3HNNdeYO+64w2PHAs+gzrJQZ1motSzUWhZqLQu1FnWWXWWts2hKucArr7xiGjRoYPz8/MyVV15pvvjiC8djQ4YMMZ06dXIav2HDBhMTE2P8/PxMdHS0efXVVwvs87333jNNmzY1vr6+plmzZmbZsmXuPowyc3UOe/fuNZIKfJ29n4rE1Rk0aNCg0AwSEhI8cDTnz9U5TJgwwTRp0sQEBASYGjVqmNjYWPPuu+964lDKxB2/G85UGQolY1yfw8MPP2zq169v/Pz8THh4uImLizObNm3yxKGUiTteD5s2bTLt2rUz/v7+plGjRmbKlCkmNzfX3YdSJu7IISUlxUgya9ascff0UQ6osyzUWRZqLQu1loVay0KtRZ1lVxnrLJsx//9KVgAAAAAAAICHcE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAlVZiYqJat27t8efdsGGDbDabbDabbrrpphJtk5iY6Nhm1qxZbp0fAACAK1BrAXA3mlIAKiR7UVHUV3x8vB577DF9/vnn5TbHlJQULVy4sERjH3vsMR08eFB169Z176QAAABKgFoLQEXgU94TAIDCHDx40PH/S5cu1cSJE5WSkuJYV6VKFQUFBSkoKKg8pidJioiIUPXq1Us01j5Xb29v904KAACgBKi1AFQEnCkFoEKKjIx0fIWEhMhmsxVYd/Yp5fHx8brppps0depU1apVS9WrV9ekSZOUm5urf/zjHwoNDVXdunX15ptvOj3XgQMHdMcdd6hGjRqqWbOm+vXrp3379pV6zu+//76uuOIKValSRTVr1lTXrl2VlZVVxiQAAABcj1oLQEVAUwrABWXdunVKTU3Vxo0b9cILLygxMVG9e/dWjRo1tHXrVt1///26//779ccff0iSsrOz1aVLFwUFBWnjxo366quvFBQUpB49euj06dMlft6DBw/qzjvv1D333KNdu3Zpw4YNuuWWW2SMcdehAgAAeBy1FgBXoikF4IISGhqqf/3rX2ratKnuueceNW3aVNnZ2frnP/+pSy65ROPHj5efn5++/vprSdK7774rLy8vzZ8/X1dccYWaN2+uBQsWaP/+/dqwYUOJn/fgwYPKzc3VLbfcoujoaF1xxRV68MEHy/WUdwAAAFej1gLgSlxTCsAF5bLLLpOX1//122vVqqXLL7/csezt7a2aNWvq77//liTt2LFDe/bsUbVq1Zz2c/LkSf36668lft5WrVrphhtu0BVXXKHu3bsrLi5O/fv3V40aNcp4RAAAABUHtRYAV6IpBeCC4uvr67Rss9kKXZefny9Jys/PV5s2bfT2228X2Fd4eHiJn9fb21tr167Vpk2btGbNGs2ePVsTJkzQ1q1b1bBhw/M4EgAAgIqHWguAK/HxPQAXtSuvvFK//PKLIiIi1KRJE6evkJCQUu3LZrOpY8eOmjRpknbu3Ck/Pz998MEHbpo5AABAxUetBaA4NKUAXNTuuusuhYWFqV+/fvryyy+1d+9effHFFxozZoz+/PPPEu9n69atmjp1qr755hvt379fy5cv16FDh9S8eXM3zh4AAKBio9YCUBw+vgfgohYYGKiNGzfqiSee0C233KLMzEzVqVNHN9xwg4KDg0u8n+DgYG3cuFGzZs1SRkaGGjRooJkzZ6pnz55unD0AAEDFRq0FoDg2wz00AaBUNmzYoC5duujo0aOqXr16qbaNjo7Www8/rIcfftgtcwMAAKjsqLWAiwcf3wOA81S3bl3deeedJRo7depUBQUFaf/+/W6eFQAAwIWBWgu48HGmFACU0okTJ3TgwAFJUlBQkCIjI8+5zZEjR3TkyBFJ1p1mSnthTwAAgIsFtRZw8aApBQAAAAAAAI/j43sAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8Lj/B/+7n0QgUAsWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# ==== Plot the results ====\n", "\n", @@ -536,9 +918,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Video saved at: /home/fferretti-iit.local/git/comodo/examples/results/2025-01-21_18-35-58simulation_comodo.mp4\n" + ] + } + ], "source": [ "# ==== Generate video ====\n", "# Create results folder if not existing\n", @@ -591,7 +981,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.15" } }, "nbformat": 4, diff --git a/src/comodo/jaxsimSimulator/jaxsimSimulator.py b/src/comodo/jaxsimSimulator/jaxsimSimulator.py index 4122635..b7a24aa 100644 --- a/src/comodo/jaxsimSimulator/jaxsimSimulator.py +++ b/src/comodo/jaxsimSimulator/jaxsimSimulator.py @@ -12,7 +12,7 @@ import jaxsim.rbda.contacts import numpy as np import numpy.typing as npt -from jaxsim import VelRepr, integrators +from jaxsim import VelRepr from jaxsim.mujoco import MujocoVideoRecorder from jaxsim.mujoco.loaders import UrdfToMjcf from jaxsim.mujoco.model import MujocoModelHelper @@ -66,7 +66,7 @@ def __init__( # Step aux dict. # This is used only for variable-step integrators. - self._step_aux_dict: dict[str, Any]= {} + self._step_aux_dict: dict[str, Any] = {} # Time step for the simulation self._dt: float = dt @@ -306,10 +306,9 @@ def step(self, n_step: int = 1, *, dry_run=False) -> None: if self._contact_model_type is JaxsimContactModelEnum.VISCO_ELASTIC: - self._data, _ = jaxsim.rbda.contacts.visco_elastic.step( + self._data = jaxsim.rbda.contacts.visco_elastic.step( model=self._model, data=self._data, - dt=self._dt, link_forces=None, joint_force_references=self._tau, ) @@ -317,15 +316,11 @@ def step(self, n_step: int = 1, *, dry_run=False) -> None: else: # All other contact models - self._data, self._step_aux_dict = js.model.step( + self._data = js.model.step( model=self._model, data=self._data, - dt=self._dt, link_forces=None, joint_force_references=self._tau, - integrator_metadata=self._step_aux_dict.get( - "integrator_metadata", None - ), ) if not dry_run: @@ -351,7 +346,7 @@ def step(self, n_step: int = 1, *, dry_run=False) -> None: with self._data.switch_velocity_representation(VelRepr.Mixed): - self._link_contact_forces = js.model.link_contact_forces( + self._link_contact_forces = js.contact_model.link_contact_forces( model=self._model, data=self._data, joint_force_references=self._tau, From 6ab8fbba01f5ded9332ab7e9fbd934c2c9f73fe6 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 12:29:28 +0100 Subject: [PATCH 02/14] Add log of compilation time in jaxsim_walking.ipynb --- examples/jaxsim_walking.ipynb | 445 +++------------------------------- 1 file changed, 38 insertions(+), 407 deletions(-) diff --git a/examples/jaxsim_walking.ipynb b/examples/jaxsim_walking.ipynb index a356cbd..b6abf0b 100644 --- a/examples/jaxsim_walking.ipynb +++ b/examples/jaxsim_walking.ipynb @@ -25,18 +25,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Enabling JAX to use 64-bit precision\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Imports ====\n", "from __future__ import annotations\n", @@ -136,149 +127,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit https://github.com/coin-or/Ipopt\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.3.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 124\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 142\n", - "\n", - "Total number of variables............................: 27\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 20\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 5.2479115e-03 1.00e+00 1.95e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.8856028e+00 6.50e-02 1.14e+00 -1.7 1.00e+00 0.0 1.00e+00 1.00e+00h 1\n", - " 2 3.8855322e+00 2.41e-07 1.39e+00 -1.7 6.50e-02 1.3 1.00e+00 1.00e+00h 1\n", - " 3 3.8854330e+00 4.20e-08 2.31e-02 -1.7 3.25e-03 0.9 1.00e+00 1.00e+00h 1\n", - " 4 3.8854105e+00 5.91e-09 1.92e-02 -3.8 1.01e-03 1.3 1.00e+00 1.00e+00h 1\n", - " 5 3.8853778e+00 4.38e-08 1.21e-02 -3.8 1.91e-03 0.8 1.00e+00 1.00e+00h 1\n", - " 6 3.8853703e+00 5.44e-09 9.91e-03 -3.8 5.88e-04 1.2 1.00e+00 1.00e+00h 1\n", - " 7 3.8853591e+00 3.27e-08 6.10e-03 -3.8 1.09e-03 0.7 1.00e+00 1.00e+00h 1\n", - " 8 3.8853565e+00 3.90e-09 4.96e-03 -3.8 3.31e-04 1.2 1.00e+00 1.00e+00h 1\n", - " 9 3.8853524e+00 2.15e-08 3.01e-03 -3.8 6.04e-04 0.7 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.8853514e+00 2.43e-09 2.44e-03 -3.8 1.83e-04 1.1 1.00e+00 1.00e+00h 1\n", - " 11 3.8853499e+00 1.19e-08 1.48e-03 -3.8 3.32e-04 0.6 1.00e+00 1.00e+00h 1\n", - " 12 3.8853495e+00 1.29e-09 1.19e-03 -5.7 1.01e-04 1.1 1.00e+00 1.00e+00h 1\n", - " 13 3.8853494e+00 1.64e-10 1.10e-03 -5.7 3.48e-05 1.5 1.00e+00 1.00e+00h 1\n", - " 14 3.8853491e+00 1.10e-09 8.77e-04 -5.7 8.34e-05 1.0 1.00e+00 1.00e+00h 1\n", - " 15 3.8853491e+00 1.38e-10 8.03e-04 -5.7 2.86e-05 1.4 1.00e+00 1.00e+00h 1\n", - " 16 3.8853489e+00 8.83e-10 6.34e-04 -5.7 6.78e-05 1.0 1.00e+00 1.00e+00h 1\n", - " 17 3.8853488e+00 1.09e-10 5.77e-04 -5.7 2.32e-05 1.4 1.00e+00 1.00e+00h 1\n", - " 18 3.8853487e+00 6.66e-10 4.50e-04 -5.7 5.42e-05 0.9 1.00e+00 1.00e+00h 1\n", - " 19 3.8853487e+00 8.04e-11 4.08e-04 -5.7 1.84e-05 1.3 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.8853486e+00 4.70e-10 3.14e-04 -5.7 4.25e-05 0.9 1.00e+00 1.00e+00h 1\n", - " 21 3.8853486e+00 5.55e-11 2.87e-04 -5.7 1.45e-05 1.3 1.00e+00 1.00e+00h 1\n", - " 22 3.8853485e+00 3.08e-10 2.26e-04 -5.7 3.44e-05 0.8 1.00e+00 1.00e+00h 1\n", - " 23 3.8853485e+00 3.56e-11 2.05e-04 -5.7 1.17e-05 1.2 1.00e+00 1.00e+00h 1\n", - " 24 3.8853485e+00 1.87e-10 1.57e-04 -5.7 2.69e-05 0.8 1.00e+00 1.00e+00h 1\n", - " 25 3.8853485e+00 2.11e-11 1.41e-04 -5.7 9.04e-06 1.2 1.00e+00 1.00e+00h 1\n", - " 26 3.8853485e+00 1.04e-10 1.05e-04 -5.7 2.01e-05 0.7 1.00e+00 1.00e+00h 1\n", - " 27 3.8853485e+00 1.14e-11 9.25e-05 -5.7 6.68e-06 1.1 1.00e+00 1.00e+00h 1\n", - " 28 3.8853485e+00 5.27e-11 6.65e-05 -5.7 1.44e-05 0.7 1.00e+00 1.00e+00h 1\n", - " 29 3.8853485e+00 5.62e-12 5.79e-05 -5.7 4.71e-06 1.1 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.8853485e+00 2.42e-11 4.02e-05 -5.7 9.79e-06 0.6 1.00e+00 1.00e+00h 1\n", - " 31 3.8853485e+00 2.50e-12 3.44e-05 -5.7 3.15e-06 1.0 1.00e+00 1.00e+00h 1\n", - " 32 3.8853485e+00 3.14e-13 3.24e-05 -5.7 1.11e-06 1.5 1.00e+00 1.00e+00h 1\n", - " 33 3.8853485e+00 1.99e-12 2.73e-05 -5.7 2.81e-06 1.0 1.00e+00 1.00e+00h 1\n", - " 34 3.8853485e+00 2.46e-13 2.55e-05 -5.7 9.85e-07 1.4 1.00e+00 1.00e+00h 1\n", - " 35 3.8853485e+00 1.49e-12 2.11e-05 -5.7 2.44e-06 0.9 1.00e+00 1.00e+00h 1\n", - " 36 3.8853485e+00 1.82e-13 1.95e-05 -5.7 8.48e-07 1.4 1.00e+00 1.00e+00h 1\n", - " 37 3.8853485e+00 1.06e-12 1.58e-05 -5.7 2.06e-06 0.9 1.00e+00 1.00e+00h 1\n", - " 38 3.8853485e+00 1.25e-13 1.45e-05 -8.6 7.09e-07 1.3 1.00e+00 1.00e+00h 1\n", - " 39 3.8853485e+00 7.00e-13 1.15e-05 -8.6 1.68e-06 0.8 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.8853485e+00 8.13e-14 1.04e-05 -8.6 5.72e-07 1.3 1.00e+00 1.00e+00h 1\n", - " 41 3.8853485e+00 4.32e-13 8.01e-06 -8.6 1.32e-06 0.8 1.00e+00 1.00e+00h 1\n", - " 42 3.8853485e+00 4.93e-14 7.20e-06 -8.6 4.45e-07 1.2 1.00e+00 1.00e+00h 1\n", - " 43 3.8853485e+00 2.46e-13 5.38e-06 -8.6 9.98e-07 0.7 1.00e+00 1.00e+00h 1\n", - " 44 3.8853485e+00 2.72e-14 4.78e-06 -8.6 3.32e-07 1.2 1.00e+00 1.00e+00h 1\n", - " 45 3.8853485e+00 1.29e-13 3.46e-06 -8.6 7.22e-07 0.7 1.00e+00 1.00e+00h 1\n", - " 46 3.8853485e+00 1.40e-14 3.03e-06 -8.6 2.37e-07 1.1 1.00e+00 1.00e+00h 1\n", - " 47 3.8853485e+00 6.12e-14 2.12e-06 -8.6 4.98e-07 0.6 1.00e+00 1.00e+00h 1\n", - " 48 3.8853485e+00 6.38e-15 1.83e-06 -8.6 1.61e-07 1.1 1.00e+00 1.00e+00h 1\n", - " 49 3.8853485e+00 7.91e-16 1.73e-06 -8.6 5.70e-08 1.5 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.8853485e+00 5.19e-15 1.46e-06 -8.6 1.45e-07 1.0 1.00e+00 1.00e+00h 1\n", - " 51 3.8853485e+00 5.83e-16 1.37e-06 -8.6 5.08e-08 1.4 1.00e+00 1.00e+00h 1\n", - " 52 3.8853485e+00 4.06e-15 1.14e-06 -8.6 1.27e-07 1.0 1.00e+00 1.00e+00h 1\n", - " 53 3.8853485e+00 3.54e-16 1.06e-06 -8.6 4.42e-08 1.4 1.00e+00 1.00e+00h 1\n", - " 54 3.8853485e+00 3.07e-15 8.62e-07 -8.6 1.08e-07 0.9 1.00e+00 1.00e+00h 1\n", - " 55 3.8853485e+00 4.30e-16 7.94e-07 -8.6 3.73e-08 1.3 1.00e+00 1.00e+00h 1\n", - " 56 3.8853485e+00 1.96e-15 6.32e-07 -8.6 8.90e-08 0.9 1.00e+00 1.00e+00h 1\n", - " 57 3.8853485e+00 1.28e-16 5.76e-07 -8.6 3.04e-08 1.3 1.00e+00 1.00e+00h 1\n", - " 58 3.8853485e+00 1.41e-15 4.47e-07 -8.6 7.09e-08 0.8 1.00e+00 1.00e+00h 1\n", - " 59 3.8853485e+00 1.77e-16 4.03e-07 -8.6 2.40e-08 1.2 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.8853485e+00 7.98e-16 3.04e-07 -8.6 5.43e-08 0.7 1.00e+00 1.00e+00h 1\n", - " 61 3.8853485e+00 1.60e-16 2.71e-07 -8.6 1.81e-08 1.2 1.00e+00 1.00e+00h 1\n", - " 62 3.8853485e+00 4.75e-16 1.99e-07 -8.6 3.99e-08 0.7 1.00e+00 1.00e+00h 1\n", - " 63 3.8853485e+00 1.45e-16 1.75e-07 -8.6 1.31e-08 1.1 1.00e+00 1.00e+00h 1\n", - " 64 3.8853485e+00 1.60e-16 1.24e-07 -8.6 2.79e-08 0.6 1.00e+00 1.00e+00h 1\n", - " 65 3.8853485e+00 1.28e-16 1.07e-07 -8.6 9.08e-09 1.1 1.00e+00 1.00e+00h 1\n", - " 66 3.8853485e+00 1.18e-16 1.01e-07 -8.6 3.22e-09 1.5 1.00e+00 1.00e+00h 1\n", - " 67 3.8853485e+00 9.71e-17 8.64e-08 -8.6 8.23e-09 1.0 1.00e+00 1.00e+00h 1\n", - " 68 3.8853485e+00 6.21e-17 8.11e-08 -8.6 2.90e-09 1.4 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 68\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.8853484562674283e+00 3.8853484562674283e+00\n", - "Dual infeasibility......: 8.1128324724843992e-08 8.1128324724843992e-08\n", - "Constraint violation....: 6.2131411127097631e-17 6.2131411127097631e-17\n", - "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 8.1128324724843992e-08 8.1128324724843992e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 69\n", - "Number of objective gradient evaluations = 69\n", - "Number of equality constraint evaluations = 69\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 69\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 68\n", - "Total seconds in IPOPT = 0.036\n", - "\n", - "EXIT: Solved To Acceptable Level.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 279.00us ( 4.04us) 277.90us ( 4.03us) 69\n", - " nlp_g | 716.00us ( 10.38us) 659.49us ( 9.56us) 69\n", - " nlp_grad_f | 1.12ms ( 16.06us) 752.37us ( 10.75us) 70\n", - " nlp_hess_l | 13.40ms (197.13us) 13.44ms (197.72us) 68\n", - " nlp_jac_g | 4.18ms ( 59.70us) 4.22ms ( 60.27us) 70\n", - " total | 36.60ms ( 36.60ms) 36.23ms ( 36.23ms) 1\n", - "Initial configuration:\n", - "Base position: [-0.05783 -0.00015 0.56538]\n", - "Base orientation: [ 0. -0. 0.]\n", - "Joint positions: [ 0. 0.251 0. 0.616 0. 0.251 0. 0.616 0.50085 0.00247 -0.00135 -1. -0.49916 -0.00281 0.49921 0.00291\n", - " -0.00159 -1. -0.5008 -0.00331]\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Compute initial configuration ====\n", "\n", @@ -291,149 +142,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:root:str\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mFound model 'stickBot' in SDF resource\u001b[0m\n", - "/home/fferretti-iit.local/miniforge3/envs/comodo/lib/python3.10/site-packages/rod/sdf/model.py:166: UserWarning: Gimbal lock detected. Setting third angle to zero since it is not possible to uniquely determine all angles.\n", - " switch_frame_convention(\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mModel 'stickBot' is floating-base\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mConsidering 'root_link' as base link\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_foot_rear->(r_foot_rear_ft_sensor)->r_ankle_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_foot_front->(r_foot_front_ft_sensor)->r_ankle_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_foot_rear->(l_foot_rear_ft_sensor)->l_ankle_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_foot_front->(l_foot_front_ft_sensor)->l_ankle_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_shoulder_3->(r_arm_ft_sensor)->r_shoulder_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_shoulder_3->(l_arm_ft_sensor)->l_shoulder_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_hip_3->(r_leg_ft_sensor)->r_hip_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_hip_3->(l_leg_ft_sensor)->l_hip_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hip_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hip_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_shoulder_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_shoulder_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_front' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_rear' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_front' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_rear' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hip_3' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hip_3' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_shoulder_3' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_shoulder_3' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_front' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_foot_rear' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_front' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_foot_rear' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_sole' is 'l_ankle_2'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_sole_fixed_joint' is 'l_ankle_2'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_sole' is 'r_ankle_2'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_sole_fixed_joint' is 'r_ankle_2'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_front -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_foot_rear -> l_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_front -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_foot_rear -> r_ankle_2\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_hand->(r_wrist_yaw)->r_wrist_1\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_hand->(l_wrist_yaw)->l_wrist_1\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_wrist_1->(r_wrist_pitch)->r_forearm\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_wrist_1->(l_wrist_pitch)->l_forearm\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: r_forearm->(r_wrist_prosup)->r_elbow_1\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: l_forearm->(l_wrist_prosup)->l_elbow_1\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: lidar->(lidar_joint)->head\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: camera_tilt->(camera_tilt_joint)->head\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: head->(neck_yaw)->neck_3\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: neck_3->(neck_roll)->neck_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: neck_2->(neck_pitch)->chest\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: chest->(torso_yaw)->torso_2\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: torso_2->(torso_pitch)->torso_1\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mINFO\u001b[0m Lumping chain: torso_1->(torso_roll)->root_link\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_2' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'chest' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_2' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_3' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'head' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'camera_tilt' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'lidar' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_forearm' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_forearm' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_wrist_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_wrist_1' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hand' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hand' won't be part of the kinematic graph because unconnected\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_1' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'torso_2' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'chest' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_2' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'neck_3' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'head' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'camera_tilt' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'lidar' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_forearm' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_forearm' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_wrist_1' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_wrist_1' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'l_hand' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mLink 'r_hand' is unconnected and became a frame\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'camera_tilt' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'chest' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'head' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'imu_frame' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'imu_frame_fixed_joint' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_hand' is 'l_elbow_1'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'l_wrist_1' is 'l_elbow_1'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'lidar' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_1' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_2' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_3' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'neck_fixed_joint' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_hand' is 'r_elbow_1'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'r_wrist_1' is 'r_elbow_1'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mNew parent of frame 'torso_2' is 'root_link'\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: l_hand -> l_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mDEBUG\u001b[0m \u001b[32mMoving collidable point: r_hand -> r_elbow_1\u001b[0m\n", - "\u001b[34mjaxsim[1705610]\u001b[0m \u001b[1;30mWARNING\u001b[0m \u001b[33mThis method is deprecated. Use 'ModelToMjcf.convert' instead.\u001b[0m\n", - "/home/fferretti-iit.local/miniforge3/envs/comodo/lib/python3.10/site-packages/rod/sdf/model.py:166: UserWarning: Gimbal lock detected. Setting third angle to zero since it is not possible to uniquely determine all angles.\n", - " switch_frame_convention(\n", - "libdecor-gtk-WARNING: Failed to initialize GTK\n", - "Failed to load plugin 'libdecor-gtk.so': failed to init\n", - "No plugins found, falling back on no decorations\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Contact model in use: RelaxedRigidContacts(_solver_options_keys=('tol', 'maxiter', 'memory_size'), _solver_options_values=(1e-06, 50, 10))\n", - "Link names:\n", - "['root_link', 'l_hip_1', 'l_shoulder_1', 'r_hip_1', 'r_shoulder_1', 'l_hip_2', 'l_shoulder_2', 'r_hip_2', 'r_shoulder_2', 'l_upper_leg', 'l_upper_arm', 'r_upper_leg', 'r_upper_arm', 'l_lower_leg', 'l_elbow_1', 'r_lower_leg', 'r_elbow_1', 'l_ankle_1', 'r_ankle_1', 'l_ankle_2', 'r_ankle_2']\n", - "Frame names:\n", - "['base_link', 'base_link_fixed_joint', 'camera_tilt', 'chest', 'head', 'imu_frame', 'imu_frame_fixed_joint', 'l_foot_front', 'l_foot_rear', 'l_forearm', 'l_hand', 'l_hip_3', 'l_shoulder_3', 'l_sole', 'l_sole_fixed_joint', 'l_wrist_1', 'lidar', 'neck_1', 'neck_2', 'neck_3', 'neck_fixed_joint', 'r_foot_front', 'r_foot_rear', 'r_forearm', 'r_hand', 'r_hip_3', 'r_shoulder_3', 'r_sole', 'r_sole_fixed_joint', 'r_wrist_1', 'torso_1', 'torso_2']\n", - "Mass: 552.010583436615 N\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Define JaxSim simulator and set initial position ====\n", "\n", @@ -459,17 +170,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MPC Initialized\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Define the controller parameters and instantiate the controller ====\n", "\n", @@ -494,11 +197,32 @@ "# Set desired quantities\n", "mpc.configure(s_init=s_0, H_b_init=H_b_0)\n", "tsid.compute_com_position()\n", - "mpc.define_test_com_traj(tsid.COM.toNumPy())\n", - "\n", + "mpc.define_test_com_traj(tsid.COM.toNumPy())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Set initial robot state and plan trajectories\n", + "\n", + "tic = time.perf_counter()\n", + "\n", "js.step(dry_run=True)\n", "\n", + "toc = time.perf_counter() - tic\n", + "\n", + "print(f\"JaxSim compilation time: {toc:.2f} s\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Reading the state\n", "s_js, ds_js, tau_js = js.get_state()\n", "H_b = js.base_transform\n", @@ -667,33 +391,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "n_step_mpc_tsid=10, n_step_tsid_js=2\n", - "Controller faileds ====\n", - "\n", - "Running simulation took 10.51s for 6.000s simulated time. \n", - "Iteration avg time of 8.8 ms.\n", - "RTF: 57.10%\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[ERROR] [2025-01-21 18:35:53.217] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", - "[ERROR] [2025-01-21 18:35:53.242] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", - "[ERROR] [2025-01-21 18:35:53.264] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", - "[ERROR] [2025-01-21 18:35:53.295] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n", - "[ERROR] [2025-01-21 18:35:53.319] [thread: 1705610] [blf] [QPTSID::advance] osqp was not able to find a feasible solution.\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Run the simulation ====\n", "\n", @@ -713,70 +413,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/0AAAWbCAYAAABiQtQdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf7H8dfuZtNJgCSQntBBmnRBadJBRUTFLkV+enhnuzsVTwUsYD/w7KcCnoqg2EF6l96R3hNIQkIoKaRssvP7Y8lCTDYkEEiyvJ+PB7oz+5mZ73c2u9/5zHznOybDMAxERERERERExO2YK7oAIiIiIiIiInJ5KOkXERERERERcVNK+kVERERERETclJJ+ERERERERETelpF9ERERERETETSnpFxEREREREXFTSvpFRERERERE3JSSfhERERERERE3paRfRERERERExE0p6RcREbmCpkyZgslkYv369Re13KFDh8q8zYSEBMaOHcvmzZtLFb9jxw7Gjh17UdsqL2PHjsVkMnH8+PES44YOHUpsbOyVKZSIiEgVpKRfRESkChgwYACrVq0iLCyszMsmJCQwbty4MiX948aNq9Ckv7ReeOEFfvjhh4ouhoiISKXlUdEFEBERkQsLCQkhJCSkootRrDNnzuDr61sh265Xr16FbFdERKSq0JV+ERGRCvbzzz/TsWNHfH19qVatGr169WLVqlWFYorr3t+tWzeaNWvGunXr6Ny5M76+vtStW5fXXnsNu90OwJIlS2jXrh0Aw4YNw2QyYTKZGDt2bLFlmTJlCnfccQcA3bt3d8ZPmTKl0DaXLVtGp06d8PX1Zfjw4QBMnz6d3r17ExYWho+PD02aNOHZZ58lMzOzyHbWrFnDzTffTFBQEN7e3tSrV48nnniixP20a9cu6tatS4cOHUhOTgaK795vMpn461//yv/+9z+aNGmCr68vLVu25Ndffy2yzp9++okWLVrg5eVF3bp1mTRpkvPWAhEREXegpF9ERKQCff311wwcOJCAgACmTZvGZ599xsmTJ+nWrRsrVqy44PJJSUnce++93Hffffz888/069eP0aNH8+WXXwLQunVrJk+eDMDzzz/PqlWrWLVqFQ899FCx6xswYADjx48H4P3333fGDxgwwBmTmJjIfffdxz333MPs2bMZNWoUAHv37qV///589tlnzJkzhyeeeIIZM2Zw8803F9rG3Llz6dy5M3Fxcbzzzjv89ttvPP/88xw7dsxlPZcuXUqnTp1o0aIFixcvplatWiXul1mzZvHee+/x0ksvMXPmTGrWrMmgQYM4cOCAM2bOnDncdtttBAUFMX36dN544w2mTZvG1KlTS1y3iIhIVaLu/SIiIhXEbrfzz3/+k+bNm/Pbb79hNjvOxffv35969erxzDPP8Pvvv5e4jtTUVGbPnk379u0B6NmzJ0uWLOHrr7/mgQceICAggGbNmgGOrvDXXXddiesLCQmhQYMGAFxzzTXFxp84cYJvv/2WG2+8sdD8559/3vnaMAyuv/56mjRpQteuXdm6dSstWrQA4NFHHyU6Opo1a9bg7e3tXGbYsGHFlunLL79kxIgRPPLII/z73/927qeSZGVlsWDBAqpVqwY4Tn6Eh4czY8YMnn32WQBefPFFIiIimDt3Lp6engD07dtXAwOKiIhb0ZV+ERGRCrJ7924SEhK4//77CyWy/v7+DB48mNWrV3PmzJkS1xEaGupM+Au0aNGCw4cPX5YyA9SoUaNIwg9w4MAB7rnnHkJDQ7FYLFitVrp27QrAzp07AdizZw/79+9nxIgRhRJ+V1599VWGDh3Ka6+9xqRJk0qV8IPj1oSChB+gdu3a1KpVy7lfMjMzWb9+Pbfeeqsz4QfHvv9zzwQREZGqTFf6RUREKkhqaipAsSPyh4eHY7fbOXnyZImD5AUFBRWZ5+XlRVZWVvkV9E+KK29GRgadO3fG29ubV155hYYNG+Lr60t8fDy33XabszwpKSkAREZGlmpbX375JREREdx1111lKuOF9svJkycxDIPatWsXiStunoiISFWlpF9ERKSCFCSmiYmJRd5LSEjAbDZTo0aNK12sCypukLtFixaRkJDAkiVLnFf3AU6dOlUoruAJBEeOHCnVtubMmcOQIUPo3LkzCxcuJCYm5uILfp4aNWpgMpmKHUcgKSmpXLYhIiJSGah7v4iISAVp1KgRERERfP311xiG4ZyfmZnJzJkznSP6XyovLy+AUl/9L2s8nDsRULBsgY8//rjQdMOGDalXrx6ff/45OTk5F1xvTEwMy5cvx8vLi86dO7N3795Sl6kkfn5+tG3blh9//JHc3Fzn/IyMjGJH+RcREamqlPSLiIhUAJPJhNls5o033mDz5s3cdNNN/Pzzz3z77bd0796dU6dO8dprr5XLturVq4ePjw9fffUVS5YsYf369SQkJLiMLxj475NPPmHFihWsX7/eeSuCK506daJGjRo88sgj/PDDD/z666/cfffdbNmypUjs+++/z+HDh7nuuuv44osvWLJkCV988QX33ntvsesOCwtj6dKlhISE0KVLF/74448y1N61l156iaNHj9KnTx9+/PFHZs6cSc+ePfH399cj+0RExG0o6RcREbmCCgbmK7gifs899/Djjz+SmprKkCFDGDZsGAEBASxevJgbbrihXLbp6+vL559/TmpqKr1796Zdu3Z88sknLuPr1KnDxIkT2bJlC926daNdu3b88ssvJW4jKCiIWbNm4evry3333cfw4cPx9/dn+vTpRWL79OnDsmXLCAsL47HHHqNv37689NJLJd5LHxwczKJFi6hXrx5du3Zl/fr1pd8BLvTt25eZM2c69/1TTz3FoEGDGDhwINWrV7/k9YuIiFQGJuP8/oQiIiJyWT3++OO89957nDp1qtDo8lI52Gw2rr32WiIiIpg3b15FF0dEROSSaSA/ERGRK2DDhg2sW7eOzz//nFtuuUUJfyUxYsQIevXqRVhYGElJSXz00Ufs3LmTSZMmVXTRREREyoWSfhERkSvg9ttv5/Tp09xyyy28++67FV0cOSs9PZ1//OMfpKSkYLVaad26NbNnz6Znz54VXTQREZFyoe79IiIiIiIiIm5KA/mJiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i4iIiIiIiLgpJf0iIiIiIiIibkpJv4iIiIiIiIibUtIvIiIiIiIi4qaU9IuIiIiIiIi4KSX9IiIiIiIiIm5KSb+IiIiIiIiIm1LSLyIiIiIiIuKmlPSLiIiIiIiIuCkl/SIiIiIiIiJuSkm/iIiIiIiIiJtS0i8iIiIiIiLippT0i7i5sWPHYjKZOH78+BXf9pIlSzCZTCxZsuSCsUOHDiU2Nvayl+lSxMbGMnToUOd0QkICY8eOZfPmzRe1vor8bERE5OqhY4HL78/HCIcOHcJkMjFlypQKK5NIAY+KLoCISFXxww8/EBAQ4JxOSEhg3LhxxMbGcu2111ZcwUREREREXNCVfpFK6syZMxVdhCotKyur3NfZqlUr6tWrV+7rFRERKY6OBS7NpRwLaN+LO1HSL1IJFHS727hxI7fffjs1atQoVXJpt9t55ZVXaNSoET4+PlSvXp0WLVowadKkIrHHjh3j7rvvJjAwkNq1azN8+HBOnz5dKCY7O5vRo0dTp04dPD09iYiI4NFHH+XUqVOF4kwmE2PHji2yjT93bXNlypQpNGrUCC8vL5o0acIXX3xRbFxubi6vvPIKjRs3xsvLi5CQEIYNG0ZKSkqR7d500018//33tGrVCm9vb8aNG3fBcoCjK6G/vz/bt2+nR48e+Pn5ERISwl//+tciDf759VuyZAnt2rUDYNiwYZhMpiL7Zc2aNdx8880EBQXh7e1NvXr1eOKJJ4qUoTSfjYiIuDcdC1T8scC2bdvo3bs31apVo0ePHgCcOHGCUaNGERERgaenJ3Xr1uVf//oXOTk5pVq3SGWg7v0ilchtt93GXXfdxSOPPEJmZuYF49944w3Gjh3L888/T5cuXbDZbOzatatIwwwwePBghgwZwogRI9i2bRujR48G4PPPPwfAMAxuvfVWFi5cyOjRo+ncuTNbt25lzJgxrFq1ilWrVuHl5XXJdZwyZQrDhg1j4MCBvP3225w+fZqxY8eSk5OD2XzuPKTdbmfgwIEsX76cp59+mk6dOnH48GHGjBlDt27dWL9+PT4+Ps74jRs3snPnTp5//nnq1KmDn59fqctks9no378/Dz/8MM8++ywrV67klVde4fDhw/zyyy/FLtO6dWsmT57MsGHDeP755xkwYAAAkZGRAMydO5ebb76ZJk2a8M477xAdHc2hQ4eYN29ekXVd6LMREZGrh44FKuZYIDc3l1tuucV5LJCXl0d2djbdu3dn//79jBs3jhYtWrB8+XImTJjA5s2bmTVr1iXvC5ErwhCRCjdmzBgDMF588cUyLXfTTTcZ1157banW/cYbbxSaP2rUKMPb29uw2+2GYRjGnDlzio2bPn26ARiffPKJcx5gjBkzpsi2YmJijAcffNA5vXjxYgMwFi9ebBiGYeTn5xvh4eFG69atnds1DMM4dOiQYbVajZiYGOe8adOmGYAxc+bMQttYt26dARgffPBBoe1aLBZj9+7dJe6L4jz44IMGYEyaNKnQ/FdffdUAjBUrVrisX0FZJk+eXGS99erVM+rVq2dkZWW53HZpPxsREXF/Ohao+GOBzz//vND8jz76yACMGTNmFJr/+uuvG4Axb948l/U+ePCgy2MEkStN3ftFKpHBgweXKb59+/Zs2bKFUaNGMXfuXNLS0lzG3nLLLYWmW7RoQXZ2NsnJyQAsWrQIoEiXvDvuuAM/Pz8WLlxYprIVZ/fu3SQkJHDPPfdgMpmc82NiYujUqVOh2F9//ZXq1atz8803k5eX5/x37bXXEhoaWmQU4BYtWtCwYcOLLtu9995baPqee+4BYPHixWVe1549e9i/fz8jRozA29v7gvEX+mxEROTqoWOBc670scCf9/2iRYvw8/Pj9ttvLzS/YP+Ux/4QuRKU9ItUImFhYWWKHz16NG+99RarV6+mX79+BAUF0aNHD9avX18kNigoqNB0Qfe8gkFuUlNT8fDwICQkpFCcyWQiNDSU1NTUMpWtOAXrCA0NLfLen+cdO3aMU6dO4enpidVqLfQvKSmpyGOHyrrvzufh4VFk/xSU52LqXXCfYUFX/wu50GcjIiJXDx0LnHMljwV8fX0LPaGnoKyhoaGFTk4A1KpVCw8Pj3LZHyJXgu7pF6lE/tyoXIiHhwdPPfUUTz31FKdOnWLBggU899xz9OnTh/j4eHx9fUu9rqCgIPLy8khJSSnU2BuGQVJSknPQOnAcJBQ3gM2FGr+Cg42kpKQi7/15XnBwMEFBQcyZM6fYdVWrVq3QdFn33fny8vJITU0tdDBUUJ4/HyCVRsH+O3LkyEWXSURErk46FjjnSh4LFLdsUFAQa9aswTCMQu8nJyeTl5dHcHDwRW9P5ErSlX4RN1G9enVuv/12Hn30UU6cOMGhQ4fKtHzBKLVffvllofkzZ84kMzPT+T44RsjdunVrobhFixaRkZFR4jYaNWpEWFgY06ZNwzAM5/zDhw+zcuXKQrE33XQTqamp5Ofn07Zt2yL/GjVqVKb6XchXX31VaPrrr78GoFu3bi6XcXVFvmHDhtSrV4/PP/9co/uKiMgVo2OB8tWjRw8yMjL48ccfC80veNLA+ftDpDLTlX6RKuzmm2+mWbNmtG3blpCQEA4fPszEiROJiYmhQYMGZVpXr1696NOnD8888wxpaWlcf/31zhF7W7Vqxf333++Mvf/++3nhhRd48cUX6dq1Kzt27OC9994jMDCwxG2YzWZefvllHnroIQYNGsTIkSM5deoUY8eOLdKl76677uKrr76if//+PP7447Rv3x6r1cqRI0dYvHgxAwcOZNCgQWWqoyuenp68/fbbZGRk0K5dO+fo/f369eOGG25wuVy9evXw8fHhq6++okmTJvj7+xMeHk54eDjvv/8+N998M9dddx1PPvkk0dHRxMXFMXfu3CInGERERC6WjgXK51igOA888ADvv/8+Dz74IIcOHaJ58+asWLGC8ePH079/f3r27HnZti1SnpT0i1Rh3bt3Z+bMmXz66aekpaURGhpKr169eOGFF7BarWVal8lk4scff2Ts2LFMnjyZV199leDgYO6//37Gjx9f6BE9//znP0lLS2PKlCm89dZbtG/fnhkzZjBw4MALbmfEiBEAvP7669x2223Exsby3HPPsXTp0kID8lgsFn7++WcmTZrE//73PyZMmICHhweRkZF07dqV5s2bl6l+JbFarfz666889thjvPLKK/j4+DBy5EjefPPNEpfz9fXl888/Z9y4cfTu3RubzcaYMWMYO3Ysffr0YdmyZbz00ks89thjZGdnExkZWWQQJRERkUuhY4HLx9vbm8WLF/Ovf/2LN998k5SUFCIiIvjHP/7BmDFjLuu2RcqTyTi/X42IyFVm6NChfPfddxfsjigiIiIiUhXpnn4RERERERERN6Xu/SKVkGEY5OfnlxhjsVguaZRad2e327Hb7SXGeHjoJ1BERConHQtcOh0LiDjoSr9IJbR06dIiz6P987+pU6dWdDErteHDh19wHwJMmTJFXftFRKTS0bHApSvtsYCIu9M9/SKVUHp6Ort37y4xpk6dOhf1DPmrxaFDhzh+/HiJMW3btr1CpRERESkbHQtcOh0LiDgo6RcRERERERFxU7qJpRzY7XYSEhKoVq2a7qsSEZFKwTAM0tPTCQ8Px2zW3XyXSm29iIhUNqVt65X0l4OEhASioqIquhgiIiJFxMfHExkZWdHFqPLU1ouISGV1obZeSf9ZH3zwAW+++SaJiYk0bdqUiRMn0rlz51ItW61aNcCxswMCAi6pHDabjXnz5tG7d2+3G1xEdauaVLeqSXWresq7XmlpaURFRTnbKLk0autLR3WrmlS3qkl1q5rKs26lbeuV9APTp0/niSee4IMPPuD666/n448/pl+/fuzYsYPo6OgLLl/QzS8gIKBcDgR8fX0JCAhwyz9w1a3qUd2qJtWt6rlc9VJX9PKhtr50VLeqSXWrmlS3quly1O1Cbb2SfuCdd95hxIgRPPTQQwBMnDiRuXPn8uGHHzJhwoQrXh5Lfg7kZoJRzB+ByQJW73PTuZmuV2Qyg9XnImPPAK7GeDSBp+9FxZrtua7rBuDpd+61LQuMEp6tWig2G4wSnmVbllirLxR8cfJywJ5Xqliz3VZy3Tx8oOBem7xcsNtcr7dMsd5gtpQ9Nt8G+bmuYy1eYHH8RJiMvJLrdl4s+XmQn1PCej3BYi17rD0f8rJdx5qt4OFZ9ljDXnLdCq3XDnlZJazXAzy8zq7XANuZ8okt0/e+mFhXdauEvxFl+95ngVHC33Al+424YKyaZBEREbd3OsvG6RIOXy6Hq/4IIzc3lw0bNvDss88Wmt+7d29WrlxZ7DI5OTnk5JxLVNLS0gDHWRubrYSEqxR2HD3FTVtHwtbi38+O7UH6oC+xmMFiNhEwsR4mW/FJiD26E/n3/+yc9pjYHNOZ1OJjw64lf/iCc7Hvt8d0Or7YWCO4EXkP/34u9pNumI4X/0gZIzCKvL9uAhz754a9r2Ld8lDxsb5B5D15bj2W/92GOa74z8Cw+pL3dNy52G/uxbx/QbGxALZ/nXtci2XmSMy7fnYd+8/DzgTA8stjmLd+4zr2iV3gF4zNZqPZ0a+xvjnCdeyjG6G6o+eIeeFYLKvfdx37fysgpLEjdtkbWJa/6TI2b9g8jPDWjthV72FZNM517H0/YsTc4Ihd/xmWuc+4jr3za4wGvbHZbESeWIX1zeGuY2/7DKPJQABMO3/C43vX+yHvpv9gtLzbEbt3Hh4z7nEZm9/ndextHesyHV6Bx5e3uo69cQz2jn9zxCZsxGNyb9exnf+Jvcsz2Gw2qmUnYH0zxnXsdY9i73F2n56Kw/p+a9exbYZj7/uGYyLzONaJjV3G2lvcRf7N7zkmcjNLLIO98S3kD/7cOW0dH+46tl5P8u/6xvlb5DGxsSM5Li62kv1GAFg+74s5cXPxsWd/IwrqZp52J8SvKj62kv1GAJjnPItlw+cuY/MeXutY5hLbEee2y2k9IiIicmkMw2DtwRN8sy6e2dsSaV3TzN1XcPtXfdJ//Phx8vPzqV27dqH5tWvXJikpqdhlJkyYwLhxRROrefPm4evrW8wSpffcOgvbS/hUVu5PZfiExc7pHV52fF305lh/6CRDx87FbAKzCZaYc6npInZ3YhoPv3Yu9mtbFqEuyhCfmsGTk+ZgxnEB653MDFwNG5GansW/Pp6DGQOzCZ7OhRouYjOycnnmk9+c00+cOkFDF7G5tjwe/3gO4Lh++NfTKTR3EQvw6EfnYh9OT6KkJ7I+9ul8ck2OK6XDM45yfQmxf5+8iHSzo5vng1lQp4TYxYsXk+UVAsA1Rw/QoITY5cuWke5zAIBGiXtxnTrC77+v5JSf42+1/rFdNC0hdvXqNaRud5ykqpOynRYlxK5fv55jex1XJS80dNWmjZtIOOi4mhx+chPtSojdunUr8UcDAah9ejPXlRC7fft2DibPBiAofSc3lBC7a9cu9p10xFbPPEDXEmL37t3L7gxH7IXudj5w4AA7chyxPjkpuD6VAHGHD7N1tiPW05ZGvxJijxw5wqazsZb8HG4qITYxKZH1Z2MBBpYQm5ySwprzYvPz813+0J84cYLfz4vtm5uLl4vY06dPs+y82F5ZWbj6tUvPyGDxebHdMzJw1Rk6KyuL+efFdjl92uVvRG5uLnPOiz158iTBLmLz8/OYfV5sh5QUl79pQKHYtkmJRJQQO3fuPPItjj3V6sgRSroJbMGCBeRaHbVvEX+4xN+I5cuXg1cI8+fPLyGq9M6cKaH3iIiIiFx2Kek5zNx4hBnr4jlw/FyPysQzJgzDVS/I8mcyruTWKqGEhAQiIiJYuXIlHTt2dM5/9dVX+d///seuXbuKLFPclf6oqCiOHz9e4n1++fn55OXllfgBP/S/jWSmncLi4YEdsNsN8u0GdsPAbkC+YSKXc111vXDdN8Tg4mM9ycXVnSEGkIvnRcbaMLns5gs5lSLWCmdrZCUPM0W7GhuGwansfE7meTpjPbFhoXCXYLMJgvy8CK7mSfVq1QgJ8KFWNS9q+5mp7WcmxN+LkGpe1PS14mE57zEbVh9Hd2pwdMHPL22X/bLEXqB7v4cXmD2w2WwsmPcbPbt1xWp1kT6ejQUc3ZfzSttlvyyxF+iyb7E64ssQa7PZmD9vLr26dXZdt/PXa9hdXjUHLl/3frPF8dkVKKkb/tlYm83G/Pnz6dX1etd1u5Tu/bYzjnIXG2tydGu/qNgLd+931q3bDVg9LCXGOuVlO/4uyiP2MnXvt+HB/AUL6dWrV7kN5BccHMzp06cv+R50cezPwMDAC+7P/Pz8C/aysNlsLFu2jC5durjlvaruVjdPT0/MZjM2m43Zs2fTv39/t6lbAdWtalLdKqd8u8HyvSl8szaeBTuPkWd3HAP5elq4pWU4g1uFcXTrSgYMuPS6lbZtuuqv9AcHB2OxWIpc1U9OTi5y9b+Al5cXXl5Fr4dZrdZiPzjDMEhKSuLUqVMXLM+YbiFkZfnj4+PjckCG808aGM7/nLtj1ij4r1H4Ltrzj7ldxhRan+FiuYJFS1EO47w1GZCXn4eHxQOXZwlKcPFDUZVxSVOxLwsxcJyQic80cTDTg7x8Ozv2HsS7RhgpGbkkp+VwPCMHuwGZGRCXYYPEE643aYJgfy/HCYEAb2pV86LW2f/XPu//wf6ehU8O/FlZfjisVnB5rfZP9TV5YPULLOUPkxW8fC4cdlGx3hcOK2usyVyGugGerq6FFxfreeGYi4m1Vi99aFnqVob1Yg28TLGl/xu2+pZhAJwyfzcqIPZsouiqLSmrqnaQVNWVpa03DIPQ0FDi4+PdbqBFd6yb2WymTp06blMfEbk8jp7KYsa6eL5dH0/C6XMXn66Nqs5d7aK4qWU4/l6OC2oJ265s2a76pN/T05M2bdowf/58Bg0a5Jw/f/58Bg4sqRNt6RUcBNSqVQtfX98SGw273U5GRgb+/v6YzSUkd1WQO9XNMAzOnDlDzeRkulavTnBwMLPt++nfv7XzQDsv386JzFyOpeWQnJ5d6P8p502npDtODqSk55CSnsP2hDSX2zWd7TngOAngRa1q3tQO8CIkwJvaZ08U1A7wItjfC2tJJwdERKRcqa13cLe62e12EhISSExMJCwsrKKLIyKVTG6enYU7j/HNuniW7U1xXiwN9LEyqFUEQ9pF0SSs4nvbXfVJP8BTTz3F/fffT9u2benYsSOffPIJcXFxPPLII5e87vz8fOdBQFBQ0AXj7XY7ubm5eHt7u0VjeT53q5uPj+MKdXJyMjVqFL0L2cNidlytD/AGXF/pzLcbpGbmkHz+yYG0HI6lZzvnJaflkJKRQ77d4HiGoxfBjkTXZXOcHPAk5OxJAVc9CEKq6eSAiMilUlt/jjvWLSQkhISEBPLzS7jtR0SuKvtTMpixLp6ZG49wPOPc7bId6wZxV/so+jQNxdtawi2IV5iSfmDIkCGkpqby0ksvkZiYSLNmzZg9ezYxMa5H0y6tgvv6LnWAP6mcCj7XvLySHsNVMovZRK1q3tSqduGTA46eA47eAX/uPZCcnkPy2ffy7AbHM3I5npHLzhJODkDByYHCtxHUOtuLoFaAF0E+FuxX9cgfIiIlU1vv3jzP3n6lpF/k6pZty2f2tkS+WRfP2oPnbtsN9vfijraR3Nk2ijrBfiWsoeIo6T9r1KhRjBo16rKtX/eBuaeCz/VKjIdpMZsIqeYY+K8kdrvBiTO5zt4CKWk5HEvLJjn93P+T07JJycjBlm+QmplLamYuu5LSXa7T32phdd52+jYPp1O9ILxKGjxNROQqpbbePV3Jtl5EKp/tCaeZvi6eHzYdJT3bcaHPbIJujWoxpF0UNzauVel7zirpF3EzZrOJYH/Hff3XuHxQmuPkwMkzuUVOBhSedvQkyLDB9PVHmb7+KNW8POjWuBZ9mtamW6Na+HvpZ0RERERE3Ed6to2ftyQwfV08W4+cds6PqO7DkHZR3NE2krDA0g5GXfF0tC4XzWQy8cMPP3Drrbde1u3ExsbyxBNP8MQTT1zW7RRnypQpPPHEE6UajbmqMZtNBPl7EeTvVeIAI5lZObw3Yy6nq8WwYGcKyek5/LIlgV+2JODpYeaG+sH0aVqbnk1qE+RfhpHtRUSk0lNbLyJXC8Mw2Bh3km/WxvPr1kSybI5beqwWE72vCeWu9lFcXy8Ys7nq9epS0i8uJScn88ILL/Dbb79x7NgxatSoQcuWLRk7diwdO3YkMTGx2AHsKpoa7/Ll6WGmcXWD/v2v4ZVbPdh85BRztycxb/sxDh7PZNGuZBbtSsZs2kbb2Jr0aRpK72tqE1VT97aKiFR2autF5Gp3IjOX7zceYfq6ePYmZzjn1wvx46520dzWOqLKX9hS0i8uDR48GJvNxtSpU6lbty7Hjh1j4cKFnDjhGLgiNDS0gksoV5rZbKJ1dA1aR9fg2b6N2Zucwdw/kpi7I4k/jqax9uAJ1h48wcu/7qBpeAB9mobSp2koDWv7615XEZFKSG29iFyN7HaDlftT+WZdHPO2HyM33w6At9XMgObh3N0+ijYxNdzm+LVyjzggFebUqVOsWLGC119/ne7duxMTE0P79u0ZPXo0AwYMABxd/n788UcADh06hMlkYsaMGXTu3BkfHx/atWvHnj17WLduHW3btiUgIIDbb7+dlJQU53a6detWpCvfrbfeytChQ12W7Z133qF58+b4+fkRFRXFqFGjyMhwnJVbsmQJw4YN4/Tp05hMJkwmE2PHjgUgNzeXp59+moiICPz8/OjQoQNLliwptO4pU6YQHR2Nr68vgwYNIjU19ZL2ozszmUw0rF2Nv/VowK9/68yKZ7rz4k3X0KFOTcwm2J6Qxjvz99Bn4jK6v7WECbN3suHwCex6FICISKWgtl5tvcjVJul0Nu8t2kvXtxZz32dr+HVrIrn5dppFBPDKrc1Y+6+evH1nS9rG1nSbhB90pf+KMwzDeX9Icex2O1m5+Xjk5pX78219rJZS//H6+/vj7+/Pjz/+yHXXXYeXV+m6tIwZM4aJEycSHR3N8OHDufvuuwkICGDSpEl4e3tz5513MmbMGD766KOLrofZbObdd98lNjaWgwcPMmrUKJ5++mk++OADOnXqxMSJE3nxxRfZvXu3sy4Aw4YN49ChQ3zzzTeEh4fzww8/0LdvX7Zt20aDBg1Ys2YNw4cPZ/z48dx2223MmTOHMWPGXHQ5rzaRNXwZfkMdht9Qh9SMHBbuTGbu9iSW7zvOodQzfLzsAB8vO0BINS96XVObPk1D6Vg3CE8PnXsUEfdTUnuvtv7C1NaLSHnJy7ezeHcK36yNY/HuZOejqKt5eXBrqwiGtIuiWYTrx2a7AyX9V1iWLZ9rXpxbIdve8VIffD1L95F7eHgwZcoURo4cyUcffUTr1q3p2rUrd911Fy1atHC53D/+8Q/69OkDwOOPP87dd9/NwoULuf7667Hb7dx3331Mnz79kupx/tWCOnXq8PLLL/OXv/yFDz74AE9PTwIDAzGZTIW6JO7fv59p06Zx5MgRwsPDnWWdM2cOkydPZvz48UyaNIk+ffrw7LPPAtCwYUNWrlzJnDlzLqm8V6Mgfy/ubBfFne2iyMjJY+nuFOZuT2LxrmRS0nP4ek0cX6+Jo5q3Bzc2rkWfpqF0bRiCn54EICJuoqLae7X1autFxOFwaibT18Xz3YYjJKfnOOe3i63BXe2i6d88DB/Pq+Mx1DrCFpcGDx7MgAEDWL58OatWrWLOnDm88cYbfPrppy675J1/kFC7dm0Amjdv7pxXq1YtkpOTL6lcixcvZvz48ezYsYO0tDTy8vLIzs4mMzMTPz+/YpfZuHEjhmHQsGHDQvNzcnIICgoCYOfOnQwaNKjQ+x07dtSBwCXy9/JgQIswBrQIIzfPzsr9x5m7/RjzdxzjeEYOP21O4KfNCXh5mOncIJjeTUPp2aQ2Nf08K7roIiJuT2292noRd5Jty2fejmN8szaOlfvP3boT5OfJ4DaR3Nk2ivq1/CuwhBVDSf8V5mO1sOOlPi7ft9vtpKelUy2g2mXp8ldW3t7e9OrVi169evHiiy/y0EMPMWbMGJcHAlar1fm6oHvhn+fZ7XbntNlsxjAK3+Nts9lclufw4cP079+fRx55hJdffpmaNWuyYsUKRowYUeJydrsdi8XChg0bsFgK74eCLoF/LoeUP08PM90a1aJbo1q8cmszNsWdZO72JOZuP0bciTMs2JnMgp3JmE3Qvs7ZJwE0DSWietV5DqqICJTc3qutV1svIuVrd1I636yL44dNRzl1xvE7YTJB5wYh3NUuip5Nal/Vt5Qq6b/CTCZTid3u7HY7eZ4WfD09yv1AoDxcc801zgF9ykNISAiJiYnO6fz8fP744w+6d+9ebPz69evJy8vj7bffdu6fGTNmFIrx9PQkP7/wfZStWrUiPz+f5ORkOnfuXOy6r7nmGlavXl1o3p+npfxYzCbaxtakbWxNnuvfhN3H0pn7xzHmbk9iR2Iaqw+cYPWBE4z7ZQfNIwLp09QxDkD9WnoSgIgUtmzZMt588002bNhAYmJisc+V37lzJ8888wxLly7FbrfTtGlTZsyYQXR09GUpU0ntvdp6tfUicukyc/L4dWsC36yLZ1PcKef8sEBv7mgbxZ1tI4msoUdIg5J+cSE1NZU77riD4cOH06JFC6pVq8b69et54403GDhwYLlt58Ybb+Spp55i1qxZ1KtXj3//+98lPnO3Xr165OXl8Z///Iebb76Z33//vchAQbGxsWRkZLBw4UJatmyJr68vDRs25N577+WBBx7g7bffplWrVhw/fpxFixbRvHlz+vfvz2OPPUanTp144403uPXWW5k3b566+10hJpOJxqEBNA4N4PGeDYg/cYa525OYt/0Y6w6fYNvR02w7epq35u2hbrAfvZuG0qdpbVpGVsds1gkAkatdZmYmLVu2ZNiwYQwePLjI+/v37+eGG25gxIgRjBs3jsDAQHbu3Im3t3cFlLbyUFuvtl6kqjEMgy1HTjN9XRw/b04gM9dx8s/DbKJHk1rc1T6aLg1CsOj4sBAl/VIsf39/OnTowL///W/279+PzWYjKiqKkSNH8txzz5XbdoYPH86WLVt44IEH8PDw4Mknn3R55h/g2muv5Z133uH1119n9OjRdOnShQkTJvDAAw84Yzp16sQjjzzCkCFDSE1NZcyYMYwdO5bJkyfzyiuv8Pe//52jR48SFBREx44d6d+/PwDXXXcdn376qTO+Z8+ePP/887z88svlVl8pnaiavjzUuS4Pda7L8YwcFuxw9AD4fV8qB45n8tHS/Xy0dD+1A7zofU0ofZqG0qFuTayWynfFTEQuv379+tGvXz+X7//rX/+if//+vPHGG855devWvRJFq9TU1qutF6kqTp3J5cdNR/lmXTy7ktKd8+sE+zGkXRS3tY6gVrWr+0RuSUyGbm66ZGlpaQQGBnL69GkCAgIKvZednc3BgwepU6dOqa4o2O120tLSCAgIqJRd/i6FO9at4PONjIxk0aJF9O/fv9B9je7AZrMxe/bsSlG39GwbS84+CWDJ7hQycvKc7wX6WOnRuBa9m9amS8OQUo1eXZnqVt5Ut6qnvOtVUtvkzkwmU6Hu/Xa7ncDAQJ5++mlWrFjBpk2bqFOnDqNHjy5yC8D5cnJyyMk5N9pzWloaUVFRHD9+vNi2Pj4+ntjY2FK19YZhkJ6eTrVq1dzudiV3rFt2djaHDh0iLCyMZcuW0atXL7f67QHH78/8+fNVtyrG3es2b958qjdsy/ebjzFnxzFy8xxjhXh6mOl7TW3ubBtB+9gaVe63pjw/t7S0NIKDgy/Y1utKv4hUGdW8rdzcMpybW4aTk5fPyn2pzN2exPwdx0jNzOX7TUf5ftNRvK1mOjcIoU/TUHo2qUV1Xz0JQORqlZycTEZGBq+99hqvvPIKr7/+OnPmzOG2225j8eLFdO3atdjlJkyYwLhx44rMnzdvHr6+he8R9fDwIDQ0lIyMDHJzc0tdtvT09AsHVVHuVLfc3FyysrJYuXIlAPPnz6/gEl0+qlvV5G51S8uFtSkmViVbOL56s3N+uK9Bx1p22obk4esRT+rOeH7bWXHlvFTl8bmdOXOmVHFK+kWkSvLysNC9cS26N67Fq4MMNhwueBJAEkdOZjF/h+OxgBaziQ7OJwHUJixQTwIQuZoUjCI/cOBAnnzyScDRfXzlypV89NFHLpP+0aNH89RTTzmnC6709+7d2+WVfn9/f13pd8O6ZWdn4+PjQ6dOnXSlvwpS3aqGvHw7y/el8u2GoyzanUK+3dEZ3dfTws0twrizTQTNIwLc4nelvK/0l4aSfhGp8ixmE+3r1KR9nZo8P6AJOxLTmLv9GPO2J7ErKZ2V+1NZuT+VMT9vp2Vk4NmBAEOJqeFV0UUXkcssODgYDw8PrrnmmkLzmzRpwooVK1wu5+XlhZdX0d8Iq9Va5CAtPz8fk8mE2Wwu1e1rBSciCpZxJ+5YN7PZjMlkwsPDcdhc3N+Au1DdqqaqXLf4E2eYsT6eb9cfISkt2zm/VVQgjawnePaeG6nu754XbMrjcyvt8kr6RcStmEwmmoYH0jQ8kKd6NeRwaibzth9jzvYkNsadZMuR02w5cpo35+6mbrAfjX1MtEnLJjKoajaWIlIyT09P2rVrx+7duwvN37NnDzExMRVUKhGRq1dOXj7zth9j+rp4Vuw77pxfw9fKba0jGdIuijo1vZk9ezZ+XkpXy4P2ooi4tZggP0Z2qcvILnVJTs9mwY5k5m5PYuX+4xw4nskBLMx9ezk9m9Ti3g4x3FA/WI8BFKliMjIy2Ldvn3P64MGDbN68mZo1axIdHc0///lPhgwZQpcuXejevTtz5szhl19+YcmSJRVXaBGRq8yeY+l8szaeHzYd4eQZm3N+5wbBDGkXRa9rauPlYQEcXeCl/CjpF5GrRq1q3tzTIZp7OkSTlm1jztYEPpq/jQPpMHf7MeZuP0Z0TV/uah/FHW2iCKmm7v8iVcH69esLPQKu4F78Bx98kClTpjBo0CA++ugjJkyYwGOPPUajRo2YOXMmN9xwQ0UVWUTkqpCZk8evWxP4Zl08m+JOOeeHBnhzZ9tI7mgbRVRNX9crkHKhpF9ErkoB3lYGtQrHK3EzDdp0YcbGBGZuPELciTO8MWc3/56/h95NQ7m3fTQd6wW5xcAxIu6qW7duXOgJxMOHD2f48OFXqEQiIlcvwzDYcuQ036yN45ctCWTm5gPgYTbRo0kt7moXTZeGIVjUs/KKUdIvIle9BrX9GXtLU57p25hftibw9Zo4NsefYtbWRGZtTaROsB/3tI9mcJtIavrp8X8iIiIif3YyM5cfNh1lxvp4diWde2xnnWA/hrSL4rbWEdSqduEnnEj5U9IvInKWj6eFO9tGcWfbKHYkpPH12sP8uCmBg8czeXX2Tt6cu5t+zUO5t0MM7WJr6Oq/iIiIXNXsdoNVB1L5Zl08c/9IIjff8QQPLw8zA5qHMaRdFO3r1NQxUwVT0i+X1a5duxg6dCibN2+mcePGGjRJqoxrwgN45dbmjO7XhJ+3OK7+bzt6mp82J/DT5gTq1/J3XP1vHUmgr0b+F5Grl9p6kavPsbRsvttwhOnr4ok7ccY5/5qwAO5uH8Ut10YQ6KPjo8pCSb+4NHToUKZOnQqAxWIhPDycAQMGMH78eGrUqFGqdYwZMwY/Pz92796Nr68G6ZCqx8/Lg7vbR3N3+2i2HjnF12vi+GlzAvuSM3jp1x28PmcXA1qEcW+HGFpHV9eZbBGpUtTWi0hp2fLtLN6VzIz18SzalYz97FAq1bw8GNgqnLvaRdMsIrBiCynFUtIvJerbty+TJ08mLy+PHTt2MHz4cE6dOsW0adNKtfz+/fsZMGAAMTEx2O120tLSylyG3NxcPD11H7VUvBaR1WkRWZ3nBjThp01H+WpNHLuS0vl+41G+33iUxqHVuKdDNLe2iiDAW2e3RaRqUFsvIiU5dDyT6evj+W7DEVLSc5zz28fWZEi7KPo3D8PH01KBJZQLMVd0AaRy8/LyIjQ0lMjISHr37s2QIUOYN2+e8/3JkyfTpEkTvL29ady4MR988IHzPZPJxIYNG3jppZcwmUyMGzcOgKNHjzJkyBBq1KhBUFAQAwcO5NChQ87lhg4dyq233sqECRMIDw+nYcOGZVrurbfeIiwsjKCgIB599NFCz/nMycnh6aefJioqCi8vLxo0aMBnn33mfH/Hjh30798ff39/ateuzf3338/x48fLe7dKFRfgbeX+jrH89nhnvh/VidvbROJtNbMrKZ0Xf9pOh1cX8sx3W9kSf+qCI4qLiFQ0tfVq60X+LNuWz0+bj3L3J6vp9tYSPlyyn5T0HIL8PHm4S10W/r0rMx7pyOA2kUr4q4AKv9J/MWeDAwICLkNJrrDczOLn2+2Qlw0EXDgWwGQGq8+FYz39ylzEPztw4ABz5szBanVcwfzvf//LmDFjeO+992jVqhWbNm1i5MiR+Pn58eCDD5KYmEjPnj3p27cv//jHP/D19SUjI4MePXrQuXNnli1bhoeHB6+88gp9+/Zl69atzrP8CxcuJCAggPnz52MYBmfOnKF79+4XXG7x4sWEhYWxePFi9u3bx5AhQ7j22msZOXIkAA888ACrVq3i3XffpWXLlhw8eNDZ0CcmJtK1a1dGjhzJO++8Q1ZWFs888wx33nknixYtuuT9J+7HZDLROroGraNr8MKAa/h+0xG+XhPH3uQMpq+PZ/r6eJqGB3BvhxhuuTYcf68K/8kVqXBXXbtfXLtst4PtDOR5gqdvybEFStPeq60H1NaLXIodCWnMWB/PD5uOcjrLcTLNZIKuDUO4q10UNzaujaeHrhtXNRV+BFq9etnugTWZTOzZs4e6detexlJdAePDi51tBvxiu8MD35+b+WZ9x8FBcWJugGGzzk1PbA5nUovGjT19UcX89ddf8ff3Jz8/n+zsbADeeecdAF5++WXefvttbrvtNgDq1KnDjh07+Pjjj3nwwQcJDQ3Fw8MDf39/QkNDsdvtfPHFF5jNZj799FPn5z558mSqV6/OkiVL6N27NwB+fn58+umnzgb+888/L9VyNWrU4L333sNisdC4cWMGDBjAwoULGTlyJHv27GHGjBnMnz+fnj17AhT6O/rwww9p3bo148ePd877/PPPiYqKYs+ePc6rECLFCfS1Muz6OgztFMv6wyf5avVhZv+RxPaENJ77YRuvztrBwFYR3NNe97vJ1e2qa/eLae/NQHXAqN8L7vvu3BuX2t6rrVdbL3IR0rNt/Lwlgenr4tl65NzvSER1H+5sG8UdbSMJr+5TwhqksqvwpB/gu+++o2bNmheMMwyD/v37X4ESSYHu3bvz4YcfcubMGT799FP27NnD3/72N1JSUoiPj2fEiBHOM+sAeXl5BAa6Tmg2b97Mvn37qFatWqH52dnZ7N+/3zndvHnzQvf2bdiwoVTLNW3aFIvlXBejsLAwtm3b5ty2xWKha9euxZZtw4YNLF68GH9//yLv7d+/XwcCUiomk4l2sTVpF1uTMZm5zNzouPp/4HgmX6+J4+s1cbSMqs697aO5qWUYvp6V4mdY5IpSu1+5qK13UFsvVxPDMNgYd5Jv1sbz69ZEsmz5AFgtJnpfE8qQdlFcXz8Yi1kDFLuDCj/ajImJoUuXLgQFBZUqvm7dus4uZ1XacwnFzrbb7WRmZFKoI+M/97lej+lP3Wue2HbJRTufn58f9evXB+Ddd9+le/fujBs3jr/+9a+Ao9tfhw4dCi1zfkP8Z3a7nTZt2vDVV18VeS8kJKTQdi9muT//bZhMJux2x/NCfXxKPkNpt9u5+eabef3114u8FxYWVuKyIsWp4efJQ53rMuKGOqw6kMrXa+KYuz2JLfGn2BJ/ipdn7eC2VhHc0yGGRqHVLrxCETdw1bX7xbT3drudtPR0AgKrU+hwuoLae7X1Dmrr5WqQmpHDD5uO8s26ePYlZzjn16/lz13tohjUKoIgf68KLKFcDhWe9B88eLBM8X/88cdlKskV5uq+O7sdPPJLF1uW9ZaTMWPG0K9fP/7yl78QERHBgQMHuPfee0u9fMuWLfnxxx+pVatWme7RbN26NdOnTy/zcudr3rw5drudpUuXOrv8/XkbM2fOJDY2Fg+PCv9qiBsxmUx0qhdMp3rBHM/I4dv1R5i2No64E2eYuuowU1cdpk1MDe7tEE3/5mF4WzUgjrivq67dL65dttvBmg8e3heOLct6y4naehH3YrcbrNh3nG/WxTF/xzFs+Y5Bhn2sFm5qEcZd7aNoHV1Djx12YxqFQcqkW7duNG3alPHjxzN27FgmTJjApEmT2LNnD9u2bWPy5MnO+wCLc8cddxAcHMzAgQNZvnw5Bw8eZOnSpTz++OMcOXLE5XL33nvvRS13vtjYWB588EGGDx/Ojz/+yMGDB1myZAkzZswA4NFHH+XEiRPcfffdrF27lgMHDjBv3jyGDx9Ofn7+BdYuUjrB/l78pVs9lvyjG/8b0Z5+zUKxmE1sOHySp2ZsocP4hbz0y45CZ99FRK4ktfUi7iHhVBaTFuyl8xuLeeDztczeloQt36BlZCDjBzVn7b968OYdLWkTU1MJv5urVKc433333WLnm0wmvL29qV+/Pl26dCmxS5lcfk899RTDhg1j3759fPrpp7z55ps8/fTT+Pn50bx5c5544gmXy/r6+rJkyRJGjx7NbbfdRnp6OhEREfTo0aPEs/q+vr4sW7aMZ555pkzL/dmHH37Ic889x6hRo0hNTSU6OprnnnsOgPDwcH7//XeeeeYZ+vTpQ05ODjExMfTt2xezWefHpHyZzSY6Nwihc4MQktOymbE+nmlr4zl6KovPfz/I578fpEOdmtzTIZq+zULx8tDvnrgftfuVl9p6kaopN8/Ool3H+GZdPEv3pFDw5OAAbw9uax3JnW2juCa8Cj8RRS6KyahED5GuU6cOKSkpnDlzhho1amAYBqdOncLX1xd/f3+Sk5OpW7cuixcvJioqqqKL65SWlkZgYCCnT58u0ihlZ2dz8OBB6tSpg7e3t4s1nGO320lLSyMgIMDtGh93rFvB5xsZGcmiRYvo379/1b73tBg2m43Zs2erbldAvt1g2Z4UvloTx6Jdx7Cf/XWu6efJHW0iubt9NLHBpevSW9nqVp7ctW7lXa+S2qbKoiq1+2rrS8cd66a2vmq7WuoWdyqHGevimbnxCMczcp0xHesGcVf7KPo0Da1Stw9eLZ/bpdattG19pfo1Hj9+PO3atWPv3r2kpqZy4sQJ9uzZQ4cOHZg0aRJxcXGEhoby5JNPVnRRRUTKncVsonvjWnz6YFt+f/ZGnujZgLBAb05k5vLxsgN0e2sJ9366mtnbErHl2yu6uCKXTO2+iMjFy8rNZ22Kibs/XUuPt5fy8bIDHM/IJaSaF6PO3ko47f+uY+C1EVUq4ZfyV6m69z///PPMnDmTevXqOefVr1+ft956i8GDB3PgwAHeeOMNBg8eXIGlFBG5/MICfXiiZ0P+2r0+i3en8PWawyzZk8Lv+1L5fV8qwf5e3NnWcfU/qqZvRRdX5KKo3RcRKbs9x9L5ek0cMzceIT3bApzCbIIbG9diSLtoujcKwcNSqa7tSgWrVEl/YmIieXl5Rebn5eWRlJQEOO7FSk9Pv9JFExGpEB4WM72uqU2va2oTf+IM09fFM319PCnpOXywZD8fLt1PlwYh3NMhmh6Na6mRlypF7b6ISOnk5OUz548kvlodx9pDJ5zzg7wMHuzcgDvbxRAaeOHbi+TqVKmS/u7du/Pwww/z6aef0qpVKwA2bdrEX/7yF2688UYAtm3bRp06dSqymCIiFSKqpi//6NOIx3s2YOHOY3y1Jo7le4+zdE8KS/ekUDvAiyFtoxjSPppafpXq512kWGr3RURKduh4JtPWxvHthiOcyHTcq28xm+jVpDZD2kZwavcabupa1+3ue5fyVamOCj/77DPuv/9+2rRp4/zDzcvLo0ePHnz22WcA+Pv78/bbb1dkMUVEKpTVYqZvszD6NgvjcGom09bG8+36eI6l5fDuon28t3gfXRsG09Bkoq+90ozVKlKE2n0RkaJs+fZCJ/cLhAV6c3f7aIa0i6J2gLdjQLg9FVhQqTIqVdIfGhrK/Pnz2bVrF3v27MEwDBo3bkyjRo2cMd27d6/AEl48u12Dbrmjgs9VzzaVihIT5Mez/RrzVK+GzN2exNdr4lh1IJXFu4+zGAtz3/2dBzrGcnvbSAK8dRVAKhd3a/fV1runggddqa2Xyy3hVBbfrI3jm3XxJKfnAGAyQdeGIdzXIYZuuldfLlKlSvoL1K1bF5PJRL169fDwqJRFLDVPT0/MZjMJCQmEhITg6elZYqNht9vJzc0lOzvbbR51U8Cd6mYYBrm5uaSkpGA2m9WlSiqcp4eZm1uGc3PLcA6kZPC/VYf4Zs0hDqWe4aVfd/D2vN0MbhPJAx1jqV/Lv6KLK1JIVW/31daf4251MwyDlJQUTCZTlfzblMov326wbG8KX60u/LjeYH9P7mwbpQF7pVxUql+vM2fO8Le//Y2pU6cCsGfPHurWrctjjz1GeHg4zz77bAWXsOzMZjN16tQhMTGRhISEC8YbhkFWVhY+Pj5ud0bZHevm6+tLdHS029RH3EPdEH+e69eIJnn7OVO7OV+tiWdvcgZfrDrMF6sO07lBMEM7xdKtUS0sZv3tSsVxl3Zfbf057lg3k8lEZGQkFoseeSblJyU9hxnr45m2No4jJ7Oc8zvWDeLe66LpfU0onh5V/8SZVA6VKukfPXo0W7ZsYcmSJfTt29c5v2fPnowZM6bKNP5/5unpSXR0NHl5eeTn55cYa7PZWLZsGV26dHG7q8fuVjeLxYKHhwcmkwmbzVbRxREpwssCg9pH8WCnOqzcn8qUlYdYsPMYy/ceZ/ne40TX9OWBjjHc0TaKQJ+q/52Uqsed2n219Q7uWDer1YrFYlFbL5fMMAxWHUjlqzVxzP0jibyzl/UDfazc3sbxGF71xpPLoVIl/T/++CPTp0/nuuuuK3R2+JprrmH//v0VWLJLZzKZsFqtF2wALRYLeXl5eHt7u01jWcCd6yZSmZlMJq6vH8z19YOJP3GG/60+zPR18cSdOMMrs3by9rw9DGodwdBOsTSsXa2iiytXEXdr99XWu3fdRC7WqTO5fLfhCF+vjeNASqZzfuvo6tzbIYYBLcLwtqoniVw+lSrpT0lJoVatWkXmZ2Zmuk0XMRGRihRV05fn+jfhyZ4N+XHzUaauPMSupHS+XhPH12vi6FQviAc7xdKzSW11/ZfLTu2+iLgrwzDYGHeKr9YcZtbWRHLyHAN9+nlaGNQ6gnvax3BNeEAFl1KuFpUq6W/Xrh2zZs3ib3/7G3BulNT//ve/dOzYsSKLJiLiVnw8LdzdPpq72kWx5uAJpvx+iHk7kli5P5WV+1OJqO7D/R1juKtdFNV9PSu6uOKm1O6LiLtJz7bx4+YEvlp9mF1J6c75TcICuO+6aAZeG4G/V6VKweQqUKn+4iZMmEDfvn3ZsWMHeXl5TJo0ie3bt7Nq1SqWLl1a0cUTEXE7JpOJ6+oGcV3dII6eyuLL1Yf5Zm0cR09l8dpvu/j3/D0MahXBg51iaRKmKxJSvtTui4i72J5wmq/WxPHTpqNk5jrG9fA6+2SdeztEc21UdfVgkgpTqZL+Tp068fvvv/PWW29Rr1495s2bR+vWrVm1ahXNmzev6OKJiLi1iOo+PNO3MY/3aMDPmxOYsvIQOxLT+GZdPN+si6d9nZoM7RRL72tq6znBUi7U7otIVZaVm8+vWxP4ak0cm+NPOefXC/Hj3g4xDG4dSaCvxraQilepkn6A5s2bOx/dIyIiV5631cKd7aK4o20k6w+fZMrKQ8z5I4m1B0+w9uAJwgO9ufe6GO5uH01NP3X9l0ujdl9Eqpp9yel8tSaOmRuOkJadB4DVYqJvszDu7RBNhzo1dVVfKpUKT/rT0tJKHRsQoK6lIiJXislkol1sTdrF1iTxdBZfrY5j2to4Ek5n8+bc3UxauJdbWoYztFMszSICK7q4UkWo3ReRqignL5+524/x1erDrDl4wjk/qqYP97SP4Y62kQT7e1VgCUVcq/Ckv3r10t/fcqHn3pbVoUOHePnll1m0aBFJSUmEh4dz33338a9//QtPT129EhEpEBbowz/6NOKvN9Zn1tZEpq46xNYjp/luwxG+23CENjE1GNoplr7NQrGq67+UoCLbfRGRsopLPcO0dXHMWBdPamYuAGYT9GhSm3s7RNOlQQhmPe1GKrkKT/oXL17sfH3o0CGeffZZhg4d6hy1d9WqVUydOpUJEyaU+7Z37dqF3W7n448/pn79+vzxxx+MHDmSzMxM3nrrrXLfnohIVedttTC4TSS3tY5gU/wppq48xKytiWw4fJINh09SO8CLezs4uv6HVNMVDymqItt9EZHSyMu3s2hXMl+tiWPZ3hQMwzG/doAXd7WL5q72UYQF+lRsIUXKoMKT/q5duzpfv/TSS7zzzjvcfffdznm33HILzZs355NPPuHBBx8s12337duXvn37Oqfr1q3L7t27+fDDD5X0i4iUwGQy0Tq6Bq2ja/Cv/k34ak0cX62J41haDu/M38N7i/YxoEUYQzvF0jKqekUXVyqRimz3RURKknQ6m2/WxfHN2niS0rKd87s0DOHeDtH0aFxLA9lKlVThSf/5Vq1axUcffVRkftu2bXnooYeuSBlOnz5NzZo1S4zJyckhJyfHOV1wf6LNZsNms13S9guWv9T1VEaqW9WkulVNV7JuNXws/LVbHf7vhhjmbD/GF6vj2HLkND9sOsoPm47SMjKQ+6+Lpl/T2nh6XPrBkrt+buVdr6qwfypDuy8iVze73WD5vuN8tfowC3clk293XNav6efJnW2juLt9FDFBfhVcSpFLU6mS/qioKD766CPefvvtQvM//vhjoqKiLvv29+/fz3/+858i2/+zCRMmMG7cuCLz582bh6+vb7mUZf78+eWynspIdauaVLeq6UrXzQMYHgWHa8DyRDMbU01sOXKaLd9tY9xPW+lU2+D62nYCy2HYFHf93MqrXmfOnCmX9VxOFd3ui8jV63hGDt+uP8K0tXHEnTj3e9m+Tk3u7RBN32aheHlYKrCEIuWnUiX9//73vxk8eDBz587luuuuA2D16tXs37+fmTNnlno9Y8eOLTYpP9+6deto27atczohIYG+fftyxx13XPDqwujRo3nqqaec02lpaURFRdG7d+9LHmnYZrMxf/58evXqhdXqXs/1VN2qJtWtaqoMdfsLjoOq6euPMm1tPMfSc5h7xMTCBAt9m9bmgeuiuTYqsMyPNaoMdbscyrteZRklv6KUV7u/bNky3nzzTTZs2EBiYiI//PADt956q/P9oUOHFnksYIcOHVi9enW51ENEqgbDMFhz8ARfrYljzh+J2PIdV/WreXswuHUk93aIpkHtahVcSpHyV6mS/v79+7N3714+/PBDdu7ciWEYDBw4kEceeaRMZ/z/+te/ctddd5UYExsb63ydkJBA9+7d6dixI5988skF1+/l5YWXV9EBqqxWa7kdgJbnuiob1a1qUt2qpoquW1gNK0/0asSjNzZgzh9JTF15iPWHT/LrtiR+3ZZE84hAHuwUy00twvC2lu2KSkXX7XIpr3pVhX1TXu1+ZmYmLVu2ZNiwYQwePLjYmL59+zJ58mTntJ7SI3L1OJMHU1cd5pv1R9mXnOGc3zKqOvd2iObmFuH4eOqqvrivCk/6t27dSrNmzTCbHfd5RkZG8uqrr7qM3759O40aNcLDw3XRg4ODCQ4OLtX2jx49Svfu3WnTpg2TJ092lkNERMqP1WLm5pbh3NwynD+OnmbqykP8tCWBbUdP849vtzBh9k7ubh/NvddFa0RkN3c52v1+/frRr1+/Erfr5eVFaGjoxRVaRKocu91g7aETTF8Xx69bLNjsuwHw9bQw8NoI7u0QTbOIwAoupciVUeFJf6tWrUhKSiIkJKRU8R07dmTz5s3UrVv3kredkJBAt27diI6O5q233iIlJcX5ng4MREQuj2YRgbx5R0tG92/CtLVxfLn6MImns3lv8T4+XLqfvk1DebBTLO1ia5S5679UfhXV7i9ZsoRatWpRvXp1unbtyquvvkqtWrVcxmvQ3oujulVN7lS3+JNn+HFTIt9vTuDIyayzc000rOXHPR2iuaVFGNW8HSlQVa+vO31uf6a6lW1dF1LhSb9hGLzwwgulHgAvNze33LY9b9489u3bx759+4iMjCxSLhERuXxq+nnyaPf6PNylLvN3HGPKykOsOXiCWdsSmbUtkWvCAniwUwwDr40oc9d/qbwqot3v168fd9xxBzExMRw8eJAXXniBG2+8kQ0bNhR7ux5o0N5LpbpVTVW1bjn5sCXVxJoUE/vSzvXa9bIYtA4y6FDLTqz/aUzHt7F80bYKLOnlUVU/t9JQ3UpW2kF7Kzzp79KlC7t37y51fMeOHfHxKZ+un0OHDmXo0KHlsi4REbk4HhYz/ZqH0a95GDsT05i68hA/bj7KjsQ0npm5jQm/7eKudtHc3zGGiOrq+l/VVUS7P2TIEOfrZs2a0bZtW2JiYpg1axa33XZbscto0N6Lo7pVTVWxbna7wbrDJ/l+UwJzth/jTG4+ACYTdKxbk9taRdC7SS08TPYqV7fSqoqfW2mpbqVT2kF7KzzpX7JkSUUXQUREKokmYQG8NrgFz/ZrzPR18Xyx6jBHT2Xx0dL9fLJsP72uqc197aNQZ6yqqzK0+2FhYcTExLB3716XMRq099KoblVTVahb/IkzzNx4hJkbjxB/Iss5PzbIl9vbRDKodWShE8QF3Z+rQt0ulupWNZVH3Uq7fIUn/SIiIn9W3deTh7vW46HOdVmw8xhTVx5i5f5U5m4/xtztx4jwtZAfmcgtrSKxWjQAq5RNamoq8fHxhIWFVXRRRKQUMnPy+O2PJL7bEM/qAyec8/29PLipRRi3t4mkTYzGgRFxRUm/iIhUWhaziT5NQ+nTNJQ9x9KZuvIQ3288wtEzdv7+3TbeWbCPYdfHclf7aPy91KRdrTIyMti3b59z+uDBg2zevJmaNWtSs2ZNxo4dy+DBgwkLC+PQoUM899xzBAcHM2jQoAostYiUpGD0/e82HGH2tsRC3fevrxfM7W0i6dM0VI/aEykFHSGJiEiV0LB2NV4d1JzHb6zL2C8XsuaED0dPZfHKrJ28u3Av914Xw7BOsdQK8K7oosoVtn79erp37+6cLrgX/8EHH+TDDz9k27ZtfPHFF5w6dYqwsDC6d+/O9OnTqVatWkUVWURcKGv3fRG5MCX9IiJSpdTw9aRPpMHrwzrzy7ZkPl1+gAPHM/lwyX4+W36QW1uFM7JzXRrUVkJ3tejWrVuJT92ZO3fuFSyNiJSVuu+LXF5K+kVEpErytlq4p0M0d7WLYv7OY3yy7AAbDp9kxvojzFh/hBsb1+L/utSlQ52aOlAUEalk1H1f5MpR0i8iIlWa+bz7/jccPsEnyw4wb8cxFu1KZtGuZFpGBvJ/XerRp2ltPDTon4hIhVL3fZErT0m/iIi4jTYxNfn4/pocSMng0xUH+W7DEbYcOc2jX28kqqYPD91QlzvaRuLrqeZPRORKUfd9kYqlox4REXE7dUP8GT+oOU/1asgXqw7zv1WHiD+RxZift/PvBXt44LoYHugUS7B/0eewi4jIpbPbDdYdOsG36r4vUuGU9IuIiNsK9vfiqV4N+UvXeny7IZ5Plx8k7sQZ3l20j4+WHWBw60hGdq5D3RD/ii6qiIhbiD9xhu83HmXmxiPEnTjjnK/u+yIVR0m/iIi4PR9PCw90jOXeDjHM3Z7Ex8sOsCX+FNPWxvHNujh6NanNw13r0iamZkUXVUSkyjmTm8dv25L4bsMRVh1Idc739/JgQPMwbm8bSVt13xepMEr6RUTkqmExm+jfPIx+zUJZe9Ax6N/CXcnM23GMeTuO0Tq6Ov/XpR69rqmNxayDUxERVwq67xeMvp95Xvf9TvWCnN33NYaKSMXTt1BERK46JpOJDnWD6FA3iL3H0vl0+UF+2HSUjXGneOTLDdQJ9uOhznUY3DoSb6vuNxURKeCq+35MkC+3t45kUOsIImv4VmAJReTPlPSLiMhVrUHtarx+ewv+3rshU1Ye4svVhzl4PJN//fAH78zbw4OdYrn/uhhq+HlWdFFFRCqEuu+LVG1K+kVERIBaAd483bcxo7rXZ/q6eD5fcZCjp7J4Z/4ePliyjzvbRvHQDXWJDtIVLBFxf4ZhsPaguu+LuAN9S0VERM7j7+XBiBvq8EDHGGZvS+STZQfYnpDGF6sO8+Xqw/RrFsb/dalLy6jqFV1UEZFyp+77Iu5HSb+IiEgxrBYzA6+N4JaW4azcn8rHyw6wbE8Ks7YlMmtbIu3r1OThLnXp3qgWZg36JyJVWFqWjbUpJqZ9vo7VB0865/t5WripRbi674tUcUr6RURESmAymbi+fjDX1w9mZ2Ia/11+gJ83J7D24AnWHjxB/Vr+jOxch1tbReDloUH/RKTyOnUml73JGew5ls7eYxnsS85gb3I6x9JyAAtwUt33RdyQvsUiIiKl1CQsgHfuvJZ/9mnE5N8P8fWaOPYlZ/DMzG28NW8PQzvFcl+HGAJ9rRVdVBG5iqVm5LA3OYO9x9LP/j+DvckZHM/IcblMLW+De65vwO1to9R9X8TNKOkXEREpo7BAH57r34S/3lifaWvimPz7IZLSsnlz7m7eX7yPu9pFM/yGWB04i8hlYxgGKRk5joS+ILlPdly9P5GZ63K5iOo+NKjtT4Na/jSoVY36tf2JreHF8kXz6d+tLlarTlqKuBsl/SIiIhcpwNvKw13rMez6OvyyJYFPlh1g97F0Pv/9IFNXHWJAc8egf80iAiu6qCJSRRmGQVJatvNq/b7kdOfr01m2YpcxmSCqhi8NavlTv7Y/DWtVo0Ftf+qF+OPnVfTw32Yrfj0i4h6U9IuIiFwiTw8zg9tEclvrCJbuSeGTZQdYuT+Vn7ck8POWBK6vH8T/dalHlwbBGghLRIpltxsknM5yJPbHHPfaF7xOz8krdhmzCWKC/Khfy5+Gtc9eua/lSO59PDXGiIg4KOkXEREpJyaTiW6NatGtUS3+OHqaT5YdYNa2RH7fl8rv+1JpHFqNkZ3rcnPLcDw9zBVdXBGpAHa7wZGTWc6k3jGgnuP1mdz8YpfxMJuIDfY72yXfn/q1q9Gglj91gv3wtiq5F5GSKekXERG5DJpFBPLu3a34Z59GfP77Qaavi2dXUjp//3YLb87dzfAbYrm7fTTVvHX/rIg7yrcbxJ0447zfft/ZUfP3p2SQbbMXu4zVYqJusKNLfsE99w1q+xMb5KcThSJy0ZT0i4iIXEZRNX0Zc3NTnujRkC/XHGbKSsegf+Nn7+I/C/dxd4dohl0fS7CvmuSriSU/B3IzwSjmpI/JAlbvc9O5ma5XZDKD1eciY88Ahqtg8PS9qFizPdd13QA8/c69tmWBUXwCXDQ2G4zir4SXOdbq67jxHSAvB+zFd5//c6zZbitSN1u+nbgTWRxISWfX8Tz2pDgS/fjjp7HnFR1QzwQEepiJCK5J/doBNKjlT8MQT+oH+RBd0werpZjk3nzevs/LBXsJ9+B7eIP57NX/fBvkux7UD4sXWBy/PSYjr+TP7bxY8vMg3/WTALB4gsVa9lh7PuRlu441W8HDs+yxhr3kuhVarx3yskpYrwd4eJ1drwG2M+UTW6bvfTGxrupWCX8jyva9zwKjhL/hSvYbccFYDx/X711GOsIQERG5AgJ9rTzavT4Pda7Dj5uO8smyA+xPyeSTZQf4fMVBbm4RSsMSjoHEfby7aB9/3zoSthb//mbv9rxT61VMOI4jP467GS+j+ORmj09LJkVNPBtrYsK+gfjnny42Nt6nMe/X/y8mkwmTCf6543Zq2JKKjU3xrsMnzb/GbDKBCUZuvZvgrIPFxqZ5hTGl/S+YTWC32xm4/VWsWx4qNjbbWoMZNy7BZDJhNkHPNcOpfWJ9sbF5Fh9m37IRswnMJhNtf3+YWklLi40FWH7vPsxn69Zo6V8JivvNZez2obvA0xcTJiKWPEngnu9cxiaM3AZ+IeTl5VHn8NdY3xxR6H0rUO/sv3E5kzhihAAw2mMaD3vPcrle7lkNtZo4Xi+eAN+/5jp25CKIaON4veZDmP+i69gHf4U6nR2vN0yB2f8ooQwzoGEfACJPrML65nDXsXdMgaaDHK93/QLfDnUdO/ADaHWv4/X+hfD1na5j+78F7Uc6Xh9eCVNvch3b6yW4/nHH68TN8N8bXcd2fRa6jwagWnYC1jdjXMd2+hv0fsXx+nQ8TGrhOrbdQzDgbcfrM6nwZj3XsS3vgUEfOl7bzsD4cNex1wyEO784N11SbIPecO+3zkmPiU1cn1CIuQGGnfd3OLG5o9zFCW8F/7fk3PT7HeB0XPGxIY3h0TXnpv/bHVJ2FR8bGA1Pbjs3PbkfJGwqPtY3CJ4+4Jy0fDME4lYWH2v1hX8lnpuecT/snVd8LMDY834bf/g/2PGT69jnEs6dJPjlCdjytevYf+4Hv2DH67nPwbpPXcc+vhX8S/hsLxMl/SIiIleQl4eFIe2iuaNNFIt2JfPJ8gOsPXiCHzYnAh6cDNzDcwOaVnQx5TI6kFLC1T7gRGYuy/akOKfzvQzH5WEXsbO2njvoHetlx7+E2G/WxTunR3nlUcNF7Mkzufx3+bkkf7BnLsEuepenZdt4Z/4e53RXTxMxLmIzc/N48aftzul6npnUdhGbm2fnsWnnEoPPrae5sYTb1+//bK3z9fvWVAaUEHv7RyvJwnGl9C1rMreXEHvTf37nBAEAvORhplkJR8/9moUSHNmABrX9abtnOWx0HSsicqWYDMNw1Q9DSiktLY3AwEBOnz5NQEDAJa3LZrMxe/Zs+vfv73bPSVXdqibVrWpS3aqWTXEn+XjpfuZuT+LDe1rRt0XEJa+zPNsmKd/9uf7gceYtXETLli0xWywYBtjPHo4ZBuRjJt/shYFjvsV2BgMDu+F438DAMBzB+ZjJc8aCJc9xQsFuGGdjz39twmZyxBoGmPOyMHCs9Pz12g2wA3lmb+eylvxsDMNOwVGj/bxl7JjINXkDBnn5dhIP7ycyIgyTyYxhGNiNs2U/u1yOydtZZ0t+Dhj5zumCOM6+zsLbWXcPew4mw34uzjCc67TbIdvk7dyexZ6L+bz1nh9nGAZZeGE/u8887DbMRp4zzjCMQstlGp7YDROGYeBDDteEVaP+2VHy64Y4Rs4PC/B2PJnDwwfMZ89iXLAbflliz+uyfxm699tsNn6b9TP9evVw/btaRbv322w2Zs/6lf69uruuWxXt3u9sD3t2dV23Ktq931m3Xt2xepRwVq4Kdu+35eeX23FMadsmXekXERGpYK2ia/Cfu1ryxfdH6d4opKKLI5dZy8hAjoZ40fvaum5z4qqA40D9MP37t3PTus2mf/8SEqzzeXgCnqVb+eWKtVjPJdQXYJg8HElRaepm8Th3AqA8Y82WwolZecWazKWvm9lchvWaLk8slD22tN+3Mq3X98IxFxNrLcN97Vaf0tft/JMm5Rnr4QV4lV9sfgknGy4TDQMqIiJSSQR7g9nsor+1iIiIyEVQ0i8iIiIiIiLiptS9vxwUDIuQlpZ2yeuy2WycOXOGtLQ0t+wWp7pVPapb1aS6VT3lXa+CNklD95QPtfWlo7pVTapb1aS6VU3lWbfStvVK+stBeno6AFFRURVcEhERkcLS09MJDAys6GJUeWrrRUSksrpQW6/R+8uB3W4nISGBatWqOUZuvQRpaWlERUURHx/vdqMtq26Vw4QJE3jttdc4cOAAQUFBF4wvz7otX76cm266iV9//ZXOnTuXGPuXv/yFFStWsG3bthLjLkVV+tzKSnWresq7XoZhkJ6eTnh4OGaz7ua7VGrrS0d1q5ouZ92aN2/ODTfcwIcfOp5XX3AsMHXqVG699dZy3VZx9LlVTapb6ZS2rdeV/nJgNpuJjIws13UGBAS43R94AdWtYnl5OUYUrVatWpnKWh518/Pzc/7/QuuyWq2YTKYrsj+rwud2sVS3qqc866Ur/OVHbX3ZqG5V0+Wom8lkwmq1OtdbcCzg6+t7RfejPreqSXW7sNK09Tr1L1JFnDlTwrNd5YKyskp45q6IiIgAOt4QcUdK+kUqobFjx2Iymdi4cSO33347NWrUoF69ehdczm6388orr9CoUSN8fHyoXr06LVq0YNKkSUVijx07xt13301gYCC1a9dm+PDhnD59ulBMdnY2Y8eOBSA4OJiIiAgeffRRTp06VSjOZDI5484XGxvL0KFDL1juKVOm0KhRI7y8vGjSpAlffPFFsXG5ubm88sorNG7cGC8vL0JCQhg2bBgpKSlFtnvTTTfx/fff06pVK7y9vRk3btwFy/G///0Pk8nEqlWrirz30ksvYbVaSUhIAGD+/PkMHDiQyMhIvL29qV+/Pg8//DDHjx93LrN9+3ZMJhPffvutc96GDRswmUw0bdq00PpvueUW2rRpc8EyioiIlJeC443NmzcDEB0dXarjDXB0Uf7HP/5BnTp18PT0JCIigieeeILMzMxSLZ+dnc1TTz1FaGgoPj4+dO3alU2bNhWJ+/nnn+nYsSO+vr5Uq1aNXr16FWqn1daKXJiS/krGy8uLMWPGOLtguxPVrexuu+026tevz7fffstHH310wfg33niDsWPHcvfddzNr1iymT5/OiBEjiiTpAIMHD6Zhw4bMnDmTZ599lq+//ponn3zS+b5hGNx666385z//oUuXLvzwww889dRTTJ06lRtvvJGcnJxyqeOUKVMYNmwYTZo0YebMmTz//PO8/PLLLFq0qFCc3W5n4MCBvPbaa9xzzz3MmjWL1157jfnz59OtW7ciV/I3btzIP//5Tx577DHmzJnD4MGDi2z7z5/bkCFDCA0N5f333y8Ul5eXx8cff8ygQYMIDw8HYP/+/XTs2JEPP/yQefPm8eKLL7JmzRpuuOEGbDYbAE2bNiUsLIwFCxY417VgwQJ8fHzYsWOH8wRCXl4eS5cupWfPnpe4N13XzZ24a93ctV5SlDt/1qpb1XT//fdz/fXX8/XXX5fqeOPMmTN07dqVqVOn8thjj/Hbb7/xzDPPMGXKFG655ZZSPTXkueee48CBA3z66ad8+umnJCQk0K1bNw4cOOCM+frrrxk4cCABAQFMmzaNzz77jJMnT9KtWzdWrFgBXLitTU1NZcyYMVgslnJvayuaO/9Nqm7lzBCRSmfMmDEGYLz44otlWu6mm24yrr322lKt+4033ig0f9SoUYa3t7dht9sNwzCMOXPmFBs3ffp0AzA++eQT5zzAGDNmTJFtxcTEGA8++KBzevHixQZgLF682DAMw8jPzzfCw8ON1q1bO7drGIZx6NAhw2q1GjExMc5506ZNMwBj5syZhbaxbt06AzA++OCDQtu1WCzG7t27S9wXxRkzZozh6elpHDt2rEidly5dWuwydrvdsNlsxuHDhw3A+Omnn5zv3XfffUbdunWd0z179jRGjhxp1KhRw5g6daphGIbx+++/G4Axb968MpdXRETkYl3s8caECRMMs9lsrFu3rtD87777zgCM2bNnO+e5OhZw1fY/9NBDhmGcO0Zo3ry5kZ+f74xLT083atWqZXTq1Mk5T22tSMl0pV+kEivu6nRJ2rdvz5YtWxg1ahRz584t8XnSt9xyS6HpFi1akJ2dTXJyMoDzSvufu+ffcccd+Pn5sXDhwjKVrTi7d+8mISGBe+65p9Bo2DExMXTq1KlQ7K+//kr16tW5+eabycvLc/679tprCQ0NZcmSJUXq07BhwzKX6S9/+QsA//3vf53z3nvvPZo3b06XLl2c85KTk3nkkUeIiorCw8MDq9VKTEwMADt37nTG9ejRgwMHDnDw4EGys7NZsWIFffv2pXv37syfPx9wXJHw8vLihhtuKHN5RURELlVZjzd+/fVXmjVrxrXXXluoTe7Tpw8mk6lIm1wcV23/4sWLgXPHCPfff3+hUcn9/f0ZPHgwq1evdo4/oLZWpGRK+kUqsbCwsDLFjx49mrfeeovVq1fTr18/goKC6NGjB+vXry8S++fH9RV0MSroJp+amoqHhwchISGF4kwmE6GhoaSmppapbMUpWEdoaGiR9/4879ixY5w6dQpPT0+sVmuhf0lJSYXupYey77sCtWvXZsiQIXz88cfk5+ezdetWli9fzl//+ldnjN1up3fv3nz//fc8/fTTLFy4kLVr17J69Wqg8KCBBd0IFyxYwIoVK7DZbNx444307NnTeeJkwYIFXH/99fj4+FxUmUVERC5FWdvMY8eOsXXr1iLtcbVq1TAMo0ibXBxXbX/BsUHB/4srW3h4OHa7nZMnTwJqa0UuRI/sE6nEyvosaA8PD5566imeeuopTp06xYIFC3juuefo06cP8fHx+Pr6lnpdQUFB5OXlkZKSUijxNwyDpKQk2rVr55zn5eVV7D3+FzoxUHDiISkpqch7f54XHBxMUFAQc+bMKXZd1apVKzR9Kc/Rfvzxx/nf//7HTz/9xJw5c6hevTr33nuv8/0//viDLVu2MGXKFB588EHn/H379hVZV2RkJA0bNmTBggXExsbStm1bqlevTo8ePRg1ahRr1qxh9erVpRpoUERE5HIoa5sZHByMj48Pn3/+ucv3L8RV219wbFDw/8TExCJxCQkJmM1matSoAaitFbkQXekXcVPVq1fn9ttv59FHH+XEiRMcOnSoTMv36NEDgC+//LLQ/JkzZ5KZmel8Hxyj5W/durVQ3KJFi8jIyChxG40aNSIsLIxp06YVGvTn8OHDrFy5slDsTTfdRGpqKvn5+bRt27bIv0aNGpWpfiVp06YNnTp14vXXX+err75i6NChzucKw7mDoz8PwPLxxx8Xu76ePXuyaNEi5s+fT69evQBo2LAh0dHRvPjii9hsNrcaWEhERNzbTTfdxP79+wkKCiq2TY6Njb3gOly1/d26dQMcxwgRERF8/fXXheIyMzOZOXOmc0T/AmprRVzTlX4RN3LzzTfTrFkz2rZtS0hICIcPH2bixInExMTQoEGDMq2rV69e9OnTh2eeeYa0tDSuv/56tm7dypgxY2jVqhX333+/M/b+++/nhRde4MUXX6Rr167s2LGD9957j8DAwBK3YTabefnll3nooYcYNGgQI0eO5NSpU4wdO7ZIt7+77rqLr776iv79+/P444/Tvn17rFYrR44cYfHixQwcOJBBgwaVqY4lefzxxxkyZAgmk4lRo0YVeq9x48bUq1ePZ599FsMwqFmzJr/88ovzvsE/69GjBx988AHHjx9n4sSJheZPnjyZGjVq6BFCIiJSZTzxxBPMnDmTLl268OSTT9KiRQvsdjtxcXHMmzePv//973To0KHEdSQnJzvb/tOnTzNmzBi8vb0ZPXo04DhGeOONN7j33nu56aabePjhh8nJyeHNN9/k1KlTvPbaa4XWp7ZWxDUl/SJupHv37sycOZNPP/2UtLQ0QkND6dWrFy+88AJWq7VM6zKZTPz444+MHTuWyZMn8+qrrxIcHMz999/P+PHjC13l/uc//0laWhpTpkzhrbfeon379syYMYOBAwdecDsjRowA4PXXX+e2224jNjaW5557jqVLlxYaCMhisfDzzz8zadIk/ve//zFhwgQ8PDyIjIyka9euNG/evEz1u5Bbb70VLy8vunfvXuSEidVq5ZdffuHxxx/n4YcfxsPDg549e7JgwQKio6OLrOvGG2/EbDbj4+NDx44dnfN79uzJ5MmT6d69e6FBikRERCozPz8/li9fzmuvvcYnn3zCwYMH8fHxITo6mp49e5bqSv/48eNZt24dw4YNIy0tjfbt2/PNN99Qr149Z8w999yDn58fEyZMYMiQIVgsFq677joWL15cZMBftbUirpkMoxQP0hQRucr88ssv3HLLLcyaNYv+/ftXdHFERERERC6Kkn4RkfPs2LGDw4cP8/jjj+Pn58fGjRsvaVBAEREREZGKpKRfpAowDIP8/PwSYywWi5LTEtjtdux2e4kxHh4edOvWjd9//53WrVszdepUGjdufIVKKCIiUrF0vCHinnRji0gVsHTp0iLPwv3zv6lTp1Z0MSu14cOHX3AfAixZsgSbzcaaNWuU8IuIyFVFxxsi7klX+kWqgPT0dHbv3l1iTJ06dZzPtJWiDh06xPHjx0uMadu27RUqjYiISOWj4w0R96SkX0RERERERMRNqXu/iIiIiIiIiJvyqOgCuAO73U5CQgLVqlXTwCYiIlIpGIZBeno64eHhejZ1OVBbLyIilU1p23ol/eUgISGBqKioii6GiIhIEfHx8URGRlZ0Mao8tfUiIlJZXaitd8uk/4MPPuDNN98kMTGRpk2bMnHiRDp37uwyfunSpTz11FNs376d8PBwnn76aR555JFSb69atWqAY2cHBARcUtltNhvz5s2jd+/eztHE3YXqVjWpblWT6lb1lHe90tLSiIqKcrZRcmnU1peO6lY1qW5Vk+pWNZVn3Urb1rtd0j99+nSeeOIJPvjgA66//no+/vhj+vXrx44dO4iOji4Sf/DgQfr378/IkSP58ssv+f333xk1ahQhISEMHjy4VNss6OYXEBBQLgcC1bwsBHhbsFotxWzMAlbvc9O5mSUUzAxWn4uMPQO4GuPRBJ6+ZY612Wz4e3u4rhuAp9+517YsMEp4rnqh2GwwSniubFlirb5Q0HUzLwfseReMddTNWnLdPHygoNtNXi7Yba7XW6ZYbzBbyh6bb4P8XNexFi+weGCz2fDz8Sy5bmdjHevNg/ycEtbrCRZr2WPt+ZCX7TrWbAUPzzLF2mw2fH28S65bofXaIS+rhPV6gIeX47VhgO1M+cSW6XvviLXZbPj6+pZct0r2GwGU6nvvrJuPFauHi7qdjT233or9jShNrM3by1GvgIByPcBRV/TyUd5t/eX4rCsD1a1qUt2qJtWtarLZbPj4lG/dLtTWu13S/8477zBixAgeeughACZOnMjcuXP58MMPmTBhQpH4jz76iOjoaCZOnAhAkyZNWL9+PW+99ZbLpD8nJ4ecnHOJSlpaGuD4AG22EhKuUnhr7m5Gbx0JW4t//0D1TvzY5N9gArPJxKOrumC1F5/cJFZvw29t/ovZBJhM3LWkO962U8XGnghsypIu32A2mTABveb3xjcrodjYjID6rO33qzO27ewB+KXtKzY2xy+CHXcsx2SC/Pw8Oux6FeuWh4qNzfOuycGhmzBhAhNE/HQnPgmri421e/iQNGofJkco1X96AO9DC4uNBTj9zyRMmDCZwOenh/DY/YvLWNs/DzsTAMsvj2He+o3r2Cd2gV8wNpuNZke/xvrmCNexj26E6o4TT+aFY7Gsft917P+tgBDHM+LNy97AsvxNl7F5w+ZhhLd2xK56D8uica5j7/sRI+YGR+z6z7DMfcZ17J1fYzTojc1mI/LEKqxvDncde9tnGE0GAmDa+RMe37veD3k3/Qej5d2O2L3z8Jhxj8vY/D6vY2/rWJfp8Ao8vrzVdeyNY7B3/JsjNmEjHpN7u47t/E/sXZ5xnGTLTsD6Zozr2Osexd7j7D49FYf1/dauY9sMx973DcdE5nGsExu7jLW3uIv8m99zTORmllgGe+NbyB/8uXPaOj7cdWy9nuTf9Y3zt8hjYmNHIl1cbHQn8u//2TntMbE5pjOpxceGXUv+8AXnYt9vj+l0fLGxRnAj8h7+/VzsJ90wHS/+EVBGYBR5f93knLZ83hdz4ubiY32DyHtyt7Nu5ml3Qvyq4mOtvuQ9HXduvd/ci3n/gmJjAWz/Ovc4R8vMkZh3/ew69iJ+IwDMc57FsuFzl7F5D691LHOJ7Yhz2+W0HhEREbl0Wbn5zNmeyLfr46mea2LAFdy2WyX9ubm5bNiwgWeffbbQ/N69e7Ny5cpil1m1ahW9exdODvr06cNnn32GzWYr9uzLhAkTGDeuaGI1b948fH19i8wvi/+tszC6hE/lUOoZ3l283zn9f14GVhcndg6fOMNLs3Y5p2/2ysfbRWz8ySye+nabc3qFVy6+LmITTmUxfOpG5/Q8zywauhg3IiUjh0EfnUvcf/I0UctF7OksG70mnksUvvE8zXUuYrNtdjq9sdQ5/bk1lRtLuODX8uVFztfvW48xoITYFi8vJBsvTMAb1qPcXkJs5zcXc4oATMA4DxN1SjjJtnjxYrK8QgC45ugBGrgOZfmyZaT7HACgUeJeXKeO8PvvKznllwRA/WO7aFpC7OrVa0jd7jhJVSdlOy1KiF2/fj3H9jquSl7oLtZNGzeRcNDxXQk/uYl2JcRu3bqV+KOBANQ+vZnrSojdvn07B5NnAxCUvpMbSojdtWsX+046YqtnHqBrCbF79+5ld4Yj9kIdnw8cOMCOHEesT04Krk8lQNzhw2yd7Yj1tKXRr4TYI0eOsOlsrCU/h5tKiE1MSmT92ViAgSXEJqeksOa82Pz8fJc/9CdOnOD382L75ubi5SL29OnTLDsvtldWFq5+7dIzMlh8Xmz3jAxcXRfNyspi/nmxXU6fpoaL2NzcXOacF3vy5EmCXcTm5+cx+7zYDikphLqIBQrFtk1KJKKE2Llz55FvceypVkeOULQP2TkLFiwg1+qofYv4w9QpIXb58uXgFcL8+fNLiCq9M2dK6D0iIiIil51hGKw/fJLv1h9h1rZEMnIcx9bBXmYMw1UvyPJnMq7k1i6zhIQEIiIi+P333+nUqZNz/vjx45k6dSq7dxe90tSwYUOGDh3Kc88955y3cuVKrr/+ehISEggLCyuyTHFX+qOiojh+/Pgld/mbtGAP+/fsICoqGpPJjAHYDQO74fijsWMm1+SJ3QAwsORnOeYbwNn/n4s3k2PydE572rPOvjYwDJz/7AbkmyAXL2es1Z4F568L42ys4/9ZeJ/droGnPQfDMJzlMDhX3nzDRDaeGAbkGwZGTjpeHh7Ojr7G2Xo46gln8ALD0RHY08jBhN25roJ4R1UNMo1z3Z29yMWM6y7BWZQl1gtH/wHwxIYF1918Sxvr7+VBSPVAImr6EV3Th5hAD6KqW4kI9CG8ujdeHn86u2H1cXSnBkcX/PzSdtkvS+wFuvd7eIHZ0b1/wbzf6NmtK1ari/TxbCzg6L6cV9ou+2WJvUCXfYvVEV+GWJvNxvx5c+nVrbPrup2/XsPu8qo5cPm695stjs+uQEnd8M/G2mw25s+fT6+u17uu26V077edKfgCFxNrcnRrv6jY0nXvnz9/Pr263VD67v152Y6/i/KIvVzd+/Fg/oKF9OrVq9zu6Q8ODub06dOX3DaJY38GBgaWy/602WzMnj2b/v37u2W3VdWt6lHdqibVrfI6eiqL7zccYebGIxxKPXeMF1XTh0HXhlP95G7uv+3S61batsmtrvQX+PM9DYZhlHifQ3Hxxc0v4OXlhZdX0ethVqv1kj+4x3s2ZHbuPvr3b10l/8BLcu7L269c62YUnMQ4+/r8kxSO98+erCiIPTsPF/MLli30+vztFDM/15bHrIVLiWzUhqOnc4k/cYb4E2eIO3GG5PQcsnIg5VgmO44VTapMJggN8Caqhi9RNX2JrulLVE0fos++DqnmW/p7csuyX61WcHmttjDD5IHVL7CUn5sVvHwuHHZRsd4XDitrrMlchroBnq6uhRcX63l5Yq3VSx/qF4iHhwd5eXnk5xeTyJ4/z3KBfXZ+rPkC++GiYy+wH/LzHb0XPDzIN3titpTwuZ2/XpP13AmkS421n3dSwuRxbjyLS4zNt9kc9crPL9Uj9iwWCx4eHi5/H9ytDakKDMNw/V07j+3sZ52dnX3B2KrGHetmtVqxWEo4wSgiApzJzWPOH0nM3HiElftTnbmIn6eF/s3DuL1NJO1ia57tjVj8bY+Xi1sl/cHBwVgsFpKSkgrNT05Opnbt2sUuExoaWmy8h4cHQUFBl62sUn5MJhPnjnkrZsAqm81G/QDo3yqiyIF2ti2fIycdJwDiUs8QfzKLuPNOCpzJzSfxdDaJp7NZe+hEkXV7eZjPnQyo4XPeiQHHP38vt/oaSzmz2WwkJCS4VVdvwzAIDQ0lPj7erQapu5h6+fr6EhYWhmdZThrJZZGbm0tiYmKpvmvu+jcM7lk3k8lEZGRksRd8ROTqZhgG6w6d5LsN8czamkhm7rmTnZ3qBXF7m0j6NgvF1/Pc8XpFnA91q2zB09OTNm3aMH/+fAYNGuScP3/+fAYOLP4u2I4dO/LLL4UHdZs3bx5t27bVVRIpF95WC/VrVaN+raJ3jxuGwYnMXMdJgJNZjhMBqWeIP3uSIOFUFjl5dvYlZ7AvOaPY9Qf5eTpPAESf7SFQ0GsgLNAbD8uFrxiK+4qLi8PDw4Pw8HA8PT3d4iDcbreTkZGBv79/qa6IVxVlqZdhGOTm5pKSksLBgwdp0KCBW+2LqsZut3Pw4EEsFkupvmvu+jcM7lc3wzBISUnhyJEjxMbGVnRxRKSSOHLyDN9vPMrMjUc4fF73/eiavtzeJpJBrSKIqnlpY72VJ7dK+gGeeuop7r//ftq2bUvHjh355JNPiIuL45FHHgFg9OjRHD16lC+++AKARx55hPfee4+nnnqKkSNHsmrVKj777DOmTZtWkdWQq4TJZCLI34sgfy9aRRcdvsyWbyfhVBbxJxy9AxwnB871Ejh1xkZqZi6pmblsjj9VZHkPs4nw6j7n9Qw4d9tAVA1fqvta3SIJlOJ5eHhgt9sJDw+/5EFGKxO73U5ubi7e3t5ukVQUKGu9fHx8sFqtHD582LmcVIzc3FzsdjtRUVGl+q65698wuGfdQkJCOHToEHl5JYzfISJur6D7/ncbHN33C/h5WripRTiD20TSLrZGpTy2drukf8iQIaSmpvLSSy+RmJhIs2bNmD17NjExjsdhJSYmEhd37jFOderUYfbs2Tz55JO8//77hIeH8+6777p8XJ/IlWS1mIkJ8iMmyK/Y99Oybc7xA/58YuDIiSxy8+3OecWp5uVR5GRA5Nn/R1T3wdvV892lSnGXA28pSp9t5aLPwz0VHMC70djXIlJKhmGw9uAJvttwhNnbznXfN5nOdd/v07Rw9/3KqHKX7iKNGjWKUaNGFfvelClTiszr2rUrGzduLBosUskFeFtpGh5I0/DAIu/Z7QbH0rMLnQw4cvb/BQMMpufksSMxjR2JaUWWN5mgdjVvImt4U91mpl5SOs2ial6JaomIiIiIVJj4E+e6759/8SwmyJfbW0cyqHUEkTWqTi9Kt0z6RQTMZhNhgT6EBfrQvk7RZP38AQYL9RI4+y8zN5+ktGyS0rIBMwveX0Wj2tW45dpwbmkZXqnuUxIRERERuRSZOXn89kcS322IZ/WBc4Nr+3t5cFMLx+j7bWIqZ/f9C1HSL3KVKu0Ag3uT0vhyyVZ2nraw+1g6b87dzZtzd9Mmpga3tAxnQIswgv01orFceRaLhR9++IFbb731sm4nNjaWJ554gieeeOKybqc4U6ZM4YknnuDUqVNXfNsi4Ojaru+ZiLgru91g7aFz3ffPnNd9//p6wc7u+z6eVfuWVyX9IlLE+QMMNgvzxytxMzd078HC3an8tOUoK/ensuHwSTYcPslLv+7g+vrBDGwZTu+mtanmradeSPlITk7mhRde4LfffuPYsWPUqFGDli1b8uKLL9K0aVOOHj1aKR+tqgRCqhJX37OxY8fSsWNHEhMTqVGj6ECzFU3fMxG5FPEnzjBz4xFmbjxC/Iks5/zYoLOj77eOJKK6TwWWsHwp6ReRUgnwsXJnuyjubBdFclo2v2xN5OctCWyJP8WyPSks25OC1w9mejapzS3XhtOtUQheHlX7rKhUrMGDB2Oz2Zg6dSp169bl2LFjLFy4kBMnHF3uQkNDNXCayCUqzfdMRMQdZObkMXtbIjM3HnG77vsXoqMlESmzWgHejLihDj89ej1L/tGNp3o1pG6IHzl5dmZtS+Th/22g7SsLeOa7rfy+7zj5do14XFkYhsGZ3LwK+VeWka9PnTrFihUreP311+nevTsxMTG0b9+e0aNHM2DAAMDRvf/HH38E4NChQ5hMJmbMmEHnzp3x8fGhXbt27Nmzh3Xr1tG2bVv8/f3p27cvKSkpzu1069atSHfiW2+9laFDh7os2zvvvEPz5s3x8/MjKiqKUaNGkZGRAcCSJUsYNmwYp0+fxmQyYTKZGDt2LOB4rNvTTz9NREQEfn5+dOjQgSVLlhRa99dff01sbCy+vr4MGjSI1NRUpGq60HctKze/SnzPTCZTmb5nAQEB3H777ZX6ezZlyhSio6P1PRO5CtjtBqv2p/L3GVto9+oC/vndVlYfOIHJBJ0bBDPprmtZ96+evDa4BW1ja7plwg+60i8ilyg22I/HejTgbzfWZ3tCGj9vSeDnzQkkpWUzfX0809fHU6uaFze1CGfgteG0iAx02x/UqiDLls81L86tkG3veKlPqR9p4+/vj7+/Pz/++CPXXXcdXl6lGzdizJgxTJw4kejoaIYPH87dd99NQEAAkyZNwtfXlzvvvJMXX3yRDz/88KLrYTabeffdd4mNjeXgwYOMGjWKp59+mg8++IBOnToxceJEXnzxRXbv3u2sC8CwYcM4dOgQ33zzDeHh4fzwww/07duXbdu20aBBA9asWcNf//pXXn31VQYPHsycOXMYM2bMRZezqvrwww/58MMPOXToEABNmzblxRdfpF+/fs6YnTt38swzz7B06VLsdjtNmzZlxowZREdHu1zvzJkzeeGFF9i/fz/16tXj1VdfZdCgQZetHhX1Xavo75m3tzd33nknY8aM4aOPPrroelzO79nw4cMZP348t91221X7PRNxd3Gp57rvHzl5rvt+nWA/R/f9VhGEu1H3/QtR0i8i5cJkMtEsIpBmEYE827cxaw+d4KfNCczelkhyeg6f/36Qz38/SGyQL7dcG8EtLcOpX8u/oostlZSHhwdTpkxh5MiRfPTRR7Ru3ZquXbty11130axZM5fL/eMf/6BPnz4APP7449x9990sXLiQ66+/HoARI0YU++jWsjj/imWdOnV4+eWX+ctf/sIHH3yAp6cngYGOE1vnd4vev38/06ZN48iRI4SHhzvLOmfOHCZPnsz48eN59913ufHGG3nmmWcwm800bNiQlStXMmfOnEsqb1UTGRnJa6+9Rv369QGYOnUqAwcOZNOmTTRt2pT9+/dzww03MGLECMaNG0dgYCA7d+7E29vb5TpXrVrFkCFDePnllxk0aBA//PADd955JytWrKBDhw5XqmqVTknfsxYtWrhcrqTvmd1u57777mP69OmXVLbL9T2bNGkSffr04dlnnwW4ar9nIu4o42z3/e82HGHtwXPd96t5eXBTS0f3/dbR7tl9/0KU9ItIuTObTVxXN4jr6gYx7pamLN+bwk+bE5i/4xiHUs/w7sK9vLtwL80iAhjYMoKbWoYRFnj1nG2tSD5WCzte6lNh2y6LwYMHM2DAAJYvX86qVauYM2cOb7zxBp988gm33XZbscucn6jUrl0bgObNmxeal5ycfBGlP2fx4sWMHz+eHTt2kJaWRl5eHtnZ2WRmZuLn51fsMhs3bsQwDBo2bFhofk5OjnMwwl27dhW6mg3QsWPHqy4ZufnmmwtNv/rqq3z44YesXr2apk2b8q9//Yv+/fvzxhtvOGPq1q1b4jonTpxIr169GD16NACjR49m6dKlTJw4kWnTphW7TE5ODjk5Oc7ptLQ0AGw2GzabrVCszWbDMAzsdjt2ux0AL4uJP8b2KnbdhmGQkZ6BfzX/cj/49LKYnGUojUGDBtGvXz+WL1/O6tWrmTt3rvN7VtD9vqBeBett1qyZ83VISAjg6JFht9sxDINatWqRnJxcqBwF++f86eLmFUwvXryYCRMmsHPnzkLfs/T0dPz8/Jxx5y+/fv16l9+zmjVrYrfb2blzJ7feemuh5a677jrmzJnjcr8V1CsvLw+gyOfvDgrqpLpVLapbwej7J/l+01HmbD9Gls3xPXaMvh/Eba3C6dWkFt5nj0EKvscVqTw/t9KuQ0m/iFxWnh5mejSpTY8mtcnMyWPBzmP8tDmBZXtS+ONoGn8cTWP8bztpH1uTgddG0L95KNV9PSu62G7LZDKVuutvZeDt7U2vXr3o1asXL774Ig899BDjxo1zmfRbreeeHlGQTP153vkH9mazucg90CU1oIcPH6Z///488sgjvPzyy9SsWZMVK1YwYsSIEpez2+1YLBY2bNiAxVL45EdBt+Sy3It9tcjPz+fbb78lMzOTjh07YrfbmTVrFk8//TR9+vRh06ZN1KlTh9GjR5f4SLlVq1bx5JNPFprXp08fJk6c6HKZCRMmMG7cuCLz582bh6+vb6F5Hh4ehIaGkpGRQW5ubqnq5uNpIT8n68KBZZSefXHLdejQgQ4dOvD444/z2GOPMWbMGOf3LCsri/9n777joyj6B45/7i69k94uIaGFGkIHpYRepEtRpIjy2P2pj4pgARs8itgLKoqoqCAoKiBFuhBKgNBbKOmNQBppl7v9/RFyIZCEBC4kF77v14sX2b3v7s5kszc7O7MzWVlZxnfqCwsLjQ9B8vKK85Cfn29cp1Kp0Ov1xmWDwUBBQYFxuWQ7e3v7MjEl+4iNjeWee+7hwQcfZPr06TRo0IBdu3bx1FNPcfHiRfR6Pfn5+SiKUmafly9fRqPRsHnz5uuus5JjFRUVXZeW8vZ1tcLCQvLy8ti5cycAGzZsuLlfshmQvJmnOzFvF/JhT5qavWkqLhaUPjz1tFHo5Gmgo7uCi3UKxKewKf52pbZ6THHecnNzqxRnPnd+QgizZ29twfC2fgxv68fFy4WsOZzEn1GJ7Dl/kd3niv/N+vMIPZt6MKytH32be5pVBVXUvBYtWhgHFTMFDw8PkpKSjMt6vZ4jR44QHh5ebnxkZCRFRUXMnz/fOHPAsmXLysRYWVmh1+vLrAsLC0Ov15Oamkr37t3L3Xfz5s3Zu3dvmXW7du2qdp7qg8OHD9O1a1fy8/NxcHDg999/p0WLFiQnJ5OTk8P//vc/3nrrLd555x3Wrl3LqFGj2Lx5Mz179ix3f8nJycaeHyW8vLxITk6uMA0zZszgueeeMy5nZWWh1Wrp378/Tk5OZWLz8/OJi4vDwcGh0tcMSiiKQnZ2No6OjnWym2loaChr1qwx5tPW1hYnJyfjAyp7e3vjZyUPQBwdHXFycjI+vFKpVMYYb29v0tPTjct6vZ6TJ0/i4+NjXKdWq7GxscHJyYmTJ09SVFTExx9/bLzO/v777zLHcXJywmAwlDkX3bp1Q6/Xk5ubW+F11qpVKw4cOFBmu6ioqDLpvVZ+fj62trZ069aNbdu20a9fvzIPE+sDnU7Hhg0bJG9m5k7LW05BEX8fSeG3AwlExmQYYx1tLBjcypvRYb601db9saNMed4qelh5LbmbFkLUCld7Kx7oEsgDXQJJyMjjrysDAB5LyuKf46n8czwVOysN/Vt4MbytH3c3ccdSIxOO3CnS09MZM2YMU6dOpU2bNjg6OhIZGcm7777LsGHDTHac3r1789xzz7F69WoaNWrEBx98UOm8340aNaKoqIhPPvmEoUOHsmPHjusGK2vYsCE5OTls3LiR0NBQ7OzsaNq0KRMmTGDSpEnMnz+fsLAwLly4wKZNm2jdujWDBw/mqaee4u6772bevHmMHDmS9evX33Fd+0s0a9aMqKgoMjIyWLFiBZMnT2br1q24uLgAMHz4cGPLfdu2bdm5cycLFiyosNIPXHcTqChKpTeG1tbW5Q5sZ2lped1Nml6vR6VSoVarqzSNZElvk5JtaktF19m8efMYPny4MW0l+bp2ueTnq9dd25MGoE+fPjz33HP8/fffZa6za/NfstykSROKior47LPPjNfZl19+WeY4wcHB5OTksHnzZuN1FhISwoQJE5gyZUqF19n//d//0a1bN9577z1GjBjB+vXrWbduXZn0XkutVqNSqbCwKL5tLu9voL6QvJmn+pw3jcaCvTGZLN8Xz99HksnTFT9ULx5934N72/vTv4WXsfu+OTHFeavq9nIHLYSodX4utjzasxFr/q87G57twVO9GxPgakduoZ6VUYk8+N1eOr39D6+sPMyecxcxyBSA9Z6DgwOdO3fmgw8+oEePHrRq1YpXX32VadOm8cknn5jsOFOnTmXy5MlMmjSJnj17EhQUVGErPxRXMN9//33eeecdWrVqxZIlS5g7d26ZmG7duvHoo48ybtw4PDw8jO+eL1q0iEmTJvHf//6XZs2aMWzYMHbv3o1WqwWK3yv++OOP+fTTT2nbti3r16/nlVdeMVlezYmVlRWNGzemQ4cOzJ07l9DQUD766CPc3d2xsLCgRYsWZeKbN29ObGxshfvz9va+rlU/NTX1utb/O01l19mnn35qsuPUtets4cKFfPLJJ3f8dSZEXRaTnsuaWDXh72/n/oW7+e1AAnk6PcEe9rw4sBk7X+rN91M7MSzU1ywr/LebSpGXCG9ZVlYWzs7OZGZmVtg1rKp0Oh1r1qxh8ODB9e6JneTNPNVW3hRFISougz+iEll1KIkLOaUDavk62zC0rS/DQ/1o7nPz3WPr+3lbv349QUFBBAcHV6nLsbkwGAxkZWXh5ORUq62kpnYz+crPz+fcuXMEBQVdd45NWTbVtj59+qDVavnuu+/o1q0bjRo14ocffjB+PnLkSGxtbfnpp5/K3X7cuHFkZ2ezZs0a47pBgwbh4uJS4UB+16rs91nZeShPff0bhvqZt5Lz6+/vz6ZNm+ptmVGfy0PJm3m4kFPAqoOJrIxKJCouw7je0caCoaG+3NvenzCtS53vvn8jpjxvVS3rpXu/EKJOUqlUhAU0ICygAa8MaU7E2XT+iEpk3ZFkEjPz+XLrWb7cepYmng4Mb+vLsFA/AtzsbrxjIUSdNnPmTAYNGoRWqyU7O5tffvmFLVu2GF91eOGFFxg3bhw9evQgPDyctWvX8tdff7FlyxbjPiZNmoSfn5+xdfj//u//6NGjB++88w7Dhw/njz/+4J9//uHff/+tjSwKIYS4IqegiPVHk/kjKpF/oy+gv9KbU62Cpk4GHukfyqA2ftKaf4uk0i+EqPMsNGq6N/GgexMP3hrRii0nU/kjKpGNJ1I5nZrDe+tP8d76U4QFuDA81JchbXzxcLz+XVwhRN2XkpLCxIkTSUpKwtnZmTZt2rB27Vr69Sue/m7kyJEsWLCAuXPn8vTTT9OsWTNWrFjB3XffbdxHbGxsmVbmbt268csvv/DKK6/w6quv0qhRI5YuXUrnzp1ve/6EEOJOV1hkYPvpNFZGJbLhWDL5utKxQEL9nRne1o+BLTzYu30jg9v4YCkV/lsmlX4hhFmxsdQwsJUPA1v5kJWvY92RZP48mMiO6AsciM3gQGwGb6w6xl2N3RkW6suAVt442Zh/lzch7hTffPPNDWOmTp3K1KlTK/z86lb/Evfeey/33nvvrSRNCCHETTIYFPbFXmLlgQTWHE7iUm7pNLdB7vYMb+vL8LZ+BLnbA6aZw16Ukkq/EMJsOdlYMqaDljEdtKRm57P6UBJ/XHkPbPvpC2w/fYGXVx6hT4gnw9v60quZp3QPE0IIIYS4TU4mZ7MyKoE/oxJJyMgzrvdwtGZoG1+Gt/WljX/dn2bP3EmlXwhRL3g62vDgXUE8eFcQMemX+TMqkT8OJhKdmsPfR5L5+0gyjtYWDGzlzfC2fnRt5FbbSRZCCCGEqHcSMvKK78OiEjiRnG1c72BtwYCW3owI86VrsBsWMhXzbSOVfiFEvRPoZs9TfZrwZO/GHE/K5o+DCfwVlUhiZj6/7ovn133xuDtYM7iVF165tZ1aIYQQQgjzlpFbyJrDyayMSmDPuYvG9ZYaFb2aeTKirR99mkuPy9oilX4hRL2lUqlo4etEC18npg8IITLmEn9EJbD6cPEUgN/vigUsWJu+iwmdAxka6ou9tXwtCiGEEELcSF6hno0nUlh5IJGtp1LR6Utngu8c5MqIMD8GtfLGxc6qFlMpQCr9Qog7hFqtolOQK52CXJk1tCX/RqexIjKetUeTOJyQxUu/Heat1ccZEebL/Z0CaeFr3vOaCyGEEEKYWpHewM4z6ayMSmDdkWQuF+qNnzX3cboyjbIvvi62tZhKcS2p9Ash7jhWFmp6h3jRvZEry/6IJ9OtOcsiEzifnsuPu2L5cVcsbbUu3N85gKFtfLG1kq5oQgghhLgzKYrCwfhM/ohK4K+Dxb0lS/i52DK8rS8jwvxo6uVYi6kUlZFKvxDijuZgCWPvDuLRnk2IOJvOT7tjWXc0mai4DKLiMnhz1TFGhflxf+dAmnlLYWZOTpw4wZQpU4iKiiIkJISoqKjaTpIQ9dK111p5UyYKIczP2bQc/ohK5M+DiZy7cNm4voGdJUPa+DCirR/tAhqgVsvI+3WdVPqFEILi7v93NXbnrsbupGUX8Ou+OH7ZE0fsxVwWR8SwOCKG9oENuL9TAEPa+MhANDVsypQpLF68GACNRoOvry9Dhgxhzpw5ODs7V2kfs2bNwt7enpMnT+Lg4FCTyRXCbFV2rTVo0KBK+7j6WrOzs6vJ5Aohalhqdj5/HUzij6gEDsVnGtfbWKrp36J45P3uTTywlJH3zYpU+oUQ4hoejtY83qsxj/ZoxL/RF/hpdywbjqewL+YS+2Iu8caqY4xq58eEzgE09pTW/5oycOBAFi1aRFFREceOHWPq1KlkZGSwZMmSKm1/5swZhgwZQmBg4E2nobCwECsrGYBI1G8VXWs///xzlba/+lozGAxkZWVVOw1yrQlRe7Lzdaw9kswfUYnsPHMBw5Xx+DRqFd2buDO8rS/9W3jLYMdmzKSPaLKysqr9Twgh6iq1WkWPph4smNieiJd683z/pvi52JKZp2PRjvP0fX8bYxdEsPJAAvk6/Y13WJcUXq74ny6/GrF5VYu9CdbW1nh7e+Pv70///v0ZN24c69evN36+aNEimjdvjo2NDSEhIXz++efGz1QqFfv27eONN95ApVIxe/ZsABISEhg3bhwNGjTAzc2N4cOHc/78eeN2U6ZMYcSIEcydOxdfX1+aNm1are3ee+89fHx8cHNz44knnkCn0xljCgoKePHFF9FqtVhbW9OkSRO++eYb4+fHjh1jzJgxODk54eXlxcSJE7lw4cJN/e5uFyn3q6DCaycXikx8rd0kU15rr7/+OlD3r7XBgwfj4OBgNteaEKZWUKRn3dFknliynw5v/cMLyw/xb3RxhT8swIXXh7Vk98w+fPdgJ0aG+UuF38yZ9Oy5uLigUlX9nQ6VSsWpU6cIDg42yfEvXbrE008/zZ9//gnAsGHD+OSTT3BxcSk3XqfT8corr7BmzRrOnj2Ls7Mzffv25X//+x++vr4mSZMQon7wdLLhyd5NeKxXY7afTuOn3bFsPJHKnvMX2XP+Ig3+smR0O3/u6xxAIw8z6Eo+p5LvuCb9YcKvpcvzGhdXUMoTeDc8uLp0+cPWkJt+fdzszOvXVcPZs2dZu3YtlpaWACxevJh33nmHTz/9lLCwMA4cOMC0adOwt7dn8uTJJCUl0bdvXwYOHMjzzz+Pg4MDubm5hIeH0717d7Zt24aFhQVvvfUWAwcO5NChQ8ZWxo0bN+Lk5MSGDRtQFKXK223evBkfHx82b95MdHQ048aNo23btkybNg2ASZMmERERwccff0xoaCjnzp0zVjSSkpIIDw9n4sSJfPTRRxQUFDB9+nTGjh3Lpk2bbul3V5Nqu9w3C+Vca2rABVAa94MHlpd+cKvX2i1eZ3D9tfb1118za9asKl9rdnZ25OTk0KdPnzp7rfXs2ZNp06bx/vvvk5eXZxbXmhCmYDAo7Dl/kT+iElhzOJnMvNKHZY087BnR1o/hbf0IcJPXdOobkz+yWb58Oa6urjeMUxSFwYMHm/TY999/P/Hx8axduxaA//znP0ycOJG//vqr3Pjc3Fz279/Pq6++SmhoKJcuXeKZZ55h2LBhREZGmjRtQoj6QaNW0auZJ72aeZKcmc+yyDh+2RNLYmY+C/89x8J/z9El2JX7OwcyoKUX1hby7v/NWrVqFQ4ODuj1evLzi1tE33//fQDmzZvHvHnzGDVqFABBQUEcO3aML7/8ksmTJ+Pt7Y2FhQUODg54e3sD8O2336JWq1m4cKGxorpo0SJcXFzYsmUL/fv3B8De3p6FCxcaKxhV3a5BgwZ8+umnaDQaQkJCGDJkCBs3bmTatGmcOnWKZcuWsWHDBvr27QtQpuL7xRdfEBYWxmuvvYaTkxNqtZpvv/0WrVbLqVOnjK2gdVFtlvvCNCq71t58803mz59f5WvNYDDw/fff1+lrrV27dsyZM8e4zlyuNSFuhqIoHE/K5o+oBP48mEhSZmkPIy8na4aF+jK8rR8tfZ2q9RBXmBeTVvoDAwPp0aMHbm5uVYoPDg42Pkm+VcePH2ft2rXs2rWLzp07A8VPp7t27crJkydp1qzZdds4OzuzYcOGMus++eQTOnXqRGxsLAEBASZJmxCifvJ2tuHpPk14IrwxW0+l8tPuWDadSGXX2YvsOnsRV3srxrT3575OATR0t6/t5JY1M7Hiz1TXPKh4IbqS2GveEnvm8M2n6Rrh4eF88cUX5ObmsnDhQk6dOsVTTz1FWloaCQkJTJs2jUceecQYX1RUVOkgf/v27SM6OhpHx7LjMOTn53PmzBnjcuvWrcu8W1zV7Vq2bIlGU/q78/Hx4fDh4t9HVFQUGo2Gnj17Vpi2LVu24O/vf91nZ86cqbMVkdos981GOdeawWAgKzsbJ2cXytxi18FrLS4ujoceesjYig43vtaioqLq9LW2efPmcgf3rMvXmhDVFXcxlz8PJrLyQAKnU3OM6x1tLBjUypsRbf3oHOyGRkbevyOYtNJ/7ty5asUfOXLEZMeOiIjA2dnZWOEH6NKlC87OzuzcubPcSn95MjMzUalUFb4SAMXvihUUlM5PWfKOok6nK/NO2c0o2f5W91MXSd7Mk+Staro3cqV7I1eSMvP5dV88y/YlkJJVwJfbzvLltrN0C3ZlfEd/+oR4YmVR8yPeluRJURQMBgMGg6FsgIVt5Tu4Ot4Usdce/wYURcHOzs7YQvfhhx/Sp08fZs+ezeOPPw7Al19+WeY7H4pHH786ryX5B9Dr9bRv354ffvjhuuN5eHhgMBiMx716H1XdzsLC4rrfc8nv3trauszytfR6Pffccw+vvPIK9vb2ZVpbfHx8yt2mZH+KoqDT6cpUguD2XLO1We6bDatyHvgZDGCpBwubG8dWZ783yd7ensaNGwPw8ccfEx4ezuuvv86TTz4JFDeilHetVcRgMNC+fftyB9308PAoc9yb2e7aB0cqlcp4jdjaVv59ZTAYGDp0KO+88851n/n4+FS6rRB13cXLhaw+nMQfBxKIjLlkXG+lUdM7xJMRYb70auYpMxDdgerNiAzJycl4enpet97T05Pk5OQq7SM/P5+XXnqJ+++/Hycnpwrj5s6daxyo5mrr16832VQ11/ZAqE8kb+ZJ8lZ1jYHpLeDYJRU7U1Qcz1Cx8+xFdp69iIOlQhcPha5eBtxtbrirW2JhYUF+fj45OTkUFhbW7MFMTKfTUVRUVGbgt//+97+MGTOGCRMm4Ovry4kTJxg6dOh125Zso9frKSgoMC43b96cpUuXYmNjU+53fFZWVrnHvdntCgsLjeuCgoIwGAz8/fff9OrV67p9tGzZkr/++ouAgAAsLMoWzXq9vsIB8AoLC8nLy2Pbtm0UFRWV+Sw3t4J3w4W4gVmzZjFo0CAee+wx/Pz8OHv2LBMmTKjy9qGhoaxcuRJPT89K76eu1a5dO5YuXVrt7a7WunVrDAYDW7duNXbvv/YYK1asoGHDhtdda0KYowI9/HUoiVWHU9h2Ko2iK0Pvq1TQNdiNEW39GNDKG2fbO6yXlSijxr7tPv7443LXq1QqbGxsaNy4MT169Kj0STHA7Nmzy61gX23v3r3GfV9LUZQqvZ+i0+kYP348BoOhzKi05ZkxYwbPPfeccTkrKwutVkv//v1vupC6Oh0bNmygX79+9a4LpOTNPEnebl5JdTQhI49lkQks359AanYB/ySq+CdRzd2N3RjXwZ8+Iaaf71an07F582ZsbGxwcHDAxqaGnzCYmKWlJRYWFmW+UwcPHkzLli359NNPmT59Oi+99BIeHh4MHDiQgoICIiMjycjI4NlnnwWKWyKtra2N+3jooYf47LPPmDx5MrNnz8bf35/Y2Fh+//13nn/+efz9/cs97s1uZ2VlZVzXqlUrJk2axNNPP82HH35IaGgoMTExpKamMnbsWJ599ll++OEHHn74YaZPn46HhwfR0dEsXbqUr776qsKyMj8/H1tbW3r06HHdOb7dI+WbqtwXta9Xr160bNmSOXPmMHv2bJ5++mmcnJwYNGiQ8Vq7dOlSmXuhq40ZM4bPPvuM4cOH88Ybbxivmd9++40XXnih3NdYACZMmMC8efOqvd3VGjZsyOTJk5k6dapxIL+rr7UnnniCr7/+mvvuu48XXngBd3d3oqOj+eWXX/j666/l71OYBb1BYeeZCyyPjOPvwxoK95S+7tPKz4nhoX4MDfXF29m8yn5Rc2qs0v/BBx+QlpZGbm4uDRo0QFEUMjIysLOzw8HBgdTUVIKDg9m8eTNarbbC/Tz55JOMHz++0mM1bNiQQ4cOkZKSct1naWlpeHl5Vbq9Tqdj7NixnDt3jk2bNt2w4m5tbW3sqnk1S0tLk1UcTLmvukbyZp4kbzevoYclLw5y4tn+zdh4PJWf9sSy/XQa/0an8290Oh6O1ozt4M/4jgFoXU07Yq5KpUKtVqNW1/wrBaakUqmMab/ac889x4MPPsi+ffv46quvmD9/PtOnT8fe3p7WrVvzzDPPlNnm6n04ODiwbds2pk+fzr333kt2djZ+fn706dMHFxcX1Gp1uce92e1KHjiXrFuwYAEzZ87kySefJD09nYCAAGbOnIlarcbf35/t27fz/PPPM3jwYAoKCggMDGTgwIFYWFhU+PC65Njl/Q3f7uvVVOW+qBtKrrXo6GgWLlzIvHnzePHFF8tcaxWxs7Njy5YtzJgxg1GjRpW5Ziq7x7KzszNea9XZ7lpffPEFM2fO5PHHHy9zrQH4+vqyY8cOpk+fzoABA8pca+b2PSnuPKdTslm+P56VB4pfISymQtvAlhFhfgxv60tjT8dK9yHuTCpFUZSa2PHPP//MV199xcKFC2nUqBEA0dHRPPLII/znP//hrrvuYvz48Xh7e7N8+fIb7O3Gjh8/TosWLdi9ezedOnUCYPfu3XTp0oUTJ05U+E5/SYX/9OnTbN68ucw7Y1WVlZWFs7MzmZmZJmnpX7NmDYMHD653FSzJm3mSvNWMuIu5/LwnlmWR8VzIKS64VSro0cSD+zsH0CfEE4tbaP3X6XSsX7+eoKAggoODza6lvzIGg4GsrCzjKPf1xc3kKz8/n3PnzhEUFFRuS7+pyqaquN3l/u1W2e+zsvNQnvr6Nwz1M28l59ff359NmzZJeWhmzD1v6TkF/Hkwkd/2J3A4oXRaTmdbS4a09sIz9zyPjx1UZlDM+sDcz1tlTJm3qpb1NdbS/8orr7BixQpjwQ/QuHFj3nvvPUaPHs3Zs2d59913GT16tEmO17x5cwYOHMi0adP48ssvgeIp++65554yFf6QkBDmzp3LyJEjKSoq4t5772X//v2sWrUKvV5vfP/f1dW13l08Qoi6Q+tqx4sDQ3imb1P+OZ7CT7tj+Tf6AltPpbH1VBpeTtaM66BlXKcA/FxuMJCeEHXA7S73hRCivioo0rP5RCrL9yWw5WSq8T19C7WK8BBPRrfzIzzEE7ViYM2a8zLVnrihGqv0JyUlXTeoEBRP81JSsfb19SU7O9tkx1yyZAlPP/20cR7XYcOG8emnn5aJOXnyJJmZxU/J4uPj+fPPPwFo27ZtmbjNmzeXO9iSEEKYkpWFmsGtfRjc2ofzFy7z895YlkfGk5JVwMebovl0czS9mnlyf6cAwkM8ZWodUWfVRrkvhBD1haIoHIjL4Lf98fx1MInMvNIZWNr4OzMqrPg9fTeH0leMdbrqzYwj7lw1VukPDw/nkUceYeHChYSFhQFw4MABHnvsMXr37g3A4cOHCQoKMtkxXV1d+fHHHyuNufpthoYNG1JDbzcIIUS1NXS3Z8ag5jzXrynrjxa3/kecTWfTiVQ2nUjFx9mGcR21jOuoxcdZWv9F3VIb5b4QQpi7hIw8ft8fz2/7Ezh74bJxvZeTNSPD/BnVzo+mXvKevrg1NVbp/+abb5g4cSLt27c3vqtQVFREnz59+Oabb4DiwZHmz59fU0kQQgizZG2hYWioL0NDfTmblsPPe2JZvi+epMx8PvznNB9vPE3vEC8mdA6gR1MPaf0XdYKU+0IIUTU5BUX8fTiJ3/YnEHE23bje1lLDwFbejGrnR7dG7lK+C5OpsUq/t7c3GzZs4MSJE5w6dQpFUQgJCSnzfn14eHhNHV4IIeqFYA8HXh7Sgv/2b8a6o8n8tDuW3ecu8s/xFP45noKfiy3jO2oZ21GLl1P5A4hJj6b6qy6dWyn369b5EKZTcl7lvWlxK0qm2fttfwJrjySTp9MbP+sa7Maodn4Mau2Dg3WNVc/EHazG/6qCg4NRqVQ0atQICwv5IxZCiJthY6lheFs/hrf1Izq1tPU/ISOP+RtO8eHG0/Rt7sn9nQPp3tgdAL2++IYiNzcXW1t5HaA+ys3NBW7/9HyVuRPL/ZLfv1xr9VNhYSEAGo2mllMizNHplGxW7E9g5YEEkrPyjeuD3e0Z1c6PEWF++Dcw7XS9Qlyrxkrj3NxcnnrqKRYvXgzAqVOnCA4O5umnn8bX15eXXnqppg4thBD1WmNPB169pwUvDGjGmsNJ/LQ7lsiYS6w7msK6oyloXW0Z284PlwIFJycnUlNTgeI5sOtDS5XBYKCwsJD8/Px6MyUYVC9fiqKQm5tLamoqLi4udaIycieX+xqNBhcXlypfa/X1bxjqX94MBgNpaWnY2dnVietMmIf0nAL+OpjIbwcSOBRfdpq9oaE+jG7nT1utS70ok4V5qLFK/4wZMzh48CBbtmxh4MCBxvV9+/Zl1qxZ9brwF0KI28HGUsOodv6MaufPqZRsftody2/744m7mMf8f6LRqDREFCQzOawBXKmM1AeKopCXl4etrW29umG6mXy5uLjg7e1dwymrmju93C85D6lVuNbq698w1M+8qdVqAgIC6k1+RM0omWZvxf4ENp8oO81er2ae3Nu+eJo9awt5eCRuvxqr9K9cuZKlS5fSpUuXMl+SLVq04MyZMzV1WCGEuCM19XJk9rCWTB8YwurDSfy46zxRcZmsOZLCmiMpNPe2Z0JHfwa08MLRtu50Bb8ZOp2Obdu20aNHjzrVrf1WVTdflpaWdarl8U4v91UqFT4+Pnh6eqLT6SqNra9/w1A/82ZlZYVarb7heRV3HkVRiIrL4Lf9Cfx1KJGM3NK/kdZ+zoxud/00e0LUhhqr9KelpeHp6Xnd+suXL8uTUiGEqCG2Vhrube/P8DZefP3rGuKsG/LnwSSOJ1/mlb9O8ubfpxka6suEzgFm27VQo9FQVFSEjY1NvalUgPnnS8r9YhqN5oYPY8z9XFemPudNiBIJGXmsPJDAiv3xnE2TafZE3Vdjlf6OHTuyevVqnnrqKaB0xNOvv/6arl271tRhhRBCXOFnD9MGt+Dle1qy8kACP+6K4URyNsv3xbN8XzwtfJyY0CWAEW39sJfRgsUtknJfCFGf5RQUsfZIMiv2xbPrXDolk3XINHvCHNTYXd7cuXMZOHAgx44do6ioiI8++oijR48SERHB1q1ba+qwQgghruFgbcEDXQKZ0DmAA3EZLNkVy6pDiRxLyuLl348wd80JRoT5MqFzIM19nGo7ucJMSbkvhKhv9AaFiDPprNgfL9PsCbNWY3+h3bp1Y8eOHbz33ns0atSI9evX065dOyIiImjdunVNHVYIIUQFVCoV7QIa0C6gAa/e05zl++L5aXcsZy9c5sddsfy4K5Z2AS480CWQwa19sLGsO++Li7pPyn0hRH0RnVo6zV5SZuk0e0Hu9oyWafaEGarRx1KtW7c2Tt0jhBCi7nCxs+Lh7sE8dHcQEWfSWbI7lnVHk9kfm8H+2AzeWHWMMe39ub9zIEHu9rWdXGEmpNwXQpiri5cL+TMqocJp9ka18yfMTMfCEcKklf6srKwqxzo5SRdSIYSobSqVim6N3enW2J3U7HyW7Y3j5z1xJGTk8fX2c3y9/Rx3NXZjQudA+rXwwlJj/vNuC9ORcl8IYc6Kp9lLY8X++HKn2Rvdzo/ezWWaPWH+TFrpd3Gp+tMvvV5/4yAhhBC3jaejDU/2bsJjvRqz9VQqS3bFsulkKjui09kRnY6HozXjO2oZ3ykAPxfb2k6uqAOk3BdCmBtFUTgYn8mKffHlTrM3qp0fw2SaPVHPmLTSv3nzZuPP58+f56WXXmLKlCnGUXsjIiJYvHgxc+fONeVhhRBCmJBGraJ3iBe9Q7yIv5TLL3vi+GVvHGnZBXyyKZrPNkfTO8STCZ0D6dHUQ0YqvoNJuS+EMBeJGXmsOhJT7jR7I8L8GN3OX6bZE/WWSSv9PXv2NP78xhtv8P7773PfffcZ1w0bNozWrVvz1VdfMXnyZFMeWgghRA3wb2DH8wOa8XSfJmw4lsKS3THsPJPOP8dT+ed4Kn4uttzfOYCxHbR4OEqryJ1Gyn0hRF2Wr9PzV1QiXx1VE71ru3GaPRtLNQNbejO6vb9MsyfuCDU2kF9ERAQLFiy4bn2HDh14+OGHa+qwQgghaoCVhZohbXwY0saHM2k5/LQ7luX74knIyGPeupN8sOEUA1p5M6FzAF2D3WSgozuQlPtCiLriRHIWP++O5fcDCWTlFwHF49HINHviTlVjf+1arZYFCxYwf/78Muu//PJLtFptTR1WCCFEDWvk4cCr97TghQHNWH0oiR93x3AgNoPVh5JYfSiJYA97JnQOZHQ7P1zsrGo7ueI2kXJfCFGbcguLWHUwiZ/2xBIVl2Fc7+9iQxvHy7w4thcNPWRAUXFnqrFK/wcffMDo0aNZt24dXbp0AWDXrl2cOXOGFStW1NRhhRBC3CY2lhpGt/dndHt/jiZm8tPuWFYeSOBs2mXeXHWMd9ee4J42vjzQJYC2Ms1RvSflvhCiNhxJyOTnPbH8EZVITkERUDz6fv+WXozvGEDnQGfWrv1bBqAVd7Qaq/QPHjyY06dP88UXX3D8+HEURWH48OE8+uij8sRfCCHqmZa+zrw9sjUzBjdn5YEEftwVw4nkbFbsj2fF/nha+DgxoUsAw9v6SZfKekrKfSHE7ZJTUMSfUYn8vCeWwwmZxvUN3ewY3ymA0e38jePM6HS6inYjxB3DpHdehw4dolWrVqjVxe/N+Pv78/bbb1cYf/ToUZo1a4aFhdwACiFEfeBgbcEDXQKZ0DmAA3EZLNkVy6pDiRxLyuLl348wd80JRoT5MqFzIM19pJuluZNyXwhxuyiKwqH44lb9Pw8mkltYPA2olUbNgFbe3NdJS5cgN9QyKJ8Q1zFpqRsWFkZycjIeHh5Viu/atStRUVEEBwebMhlCCCFqmUqlol1AA9oFNODVe5qzfF88P+2O5eyFy/y4K5Yfd8XSLsCFB7oEMri1DzaWmtpOsrgJUu4LIWpaVr6OPw4k8NOeOI4nZRnXB3vYc3+nAEa188fVXsaPEaIyJq30K4rCq6++ip2dXZXiCwsLTXl4IYQQdZCLnRUPdw/mobuDiDiTzpLdsaw7msz+2Az2x2bwxqpj3NvOn/s7BxDs4VDbyRXVUBPl/hdffMEXX3zB+fPnAWjZsiWvvfYagwYNAmDKlCksXry4zDadO3dm165dFe7zu+++48EHH7xufV5eHjY2NlVKuxDi9lEUhf2xGfy8p7i3WL7OAFyZSaa1D/d1CqBjwwYyVowQVWTSSn+PHj04efJkleO7du2Kra0MqiGEEHcClUpFt8budGvsTmp2Psv2xvHznjgSMvJY+O85Fv57jrsauzGhcyD9WnhhqVHXdpLFDdREue/v78///vc/GjduDMDixYsZPnw4Bw4coGXLlgAMHDiQRYsWGbexsrpxK5+Tk9N1aZUKvxB1S0ZuIb8fSODnPbGcSskxrm/q5cB9nQIYGSazwghxM0xa6d+yZYspdyeEEKKe8nS04cneTXisV2O2nkplya5YNp1MZUd0Ojui0/FwtGZ8Ry3jOwXIiMt1WE2U+0OHDi2z/Pbbb/PFF1+wa9cuY6Xf2toab2/vau1XpVJVa5uCggIKCgqMy1lZxd2KdTrdLQ8MVrJ9fRxgTPJmnmozb4qiEBmTwdLIeP4+mkJhUXGrvo2lmsGtvBnfwZ+2Wmdjq3510yjnzTxJ3qq3rxuRkXSEEELUGo1aRe8QL3qHeBF/KZdf9sTxy9440rIL+GRTNJ9tjia8mScPdAmkR1MPNDJA0x1Fr9fz66+/cvnyZbp27Wpcv2XLFjw9PXFxcaFnz568/fbbeHp6VrqvnJwcAgMD0ev1tG3bljfffJOwsLAK4+fOncvrr79+3fr169dX+XWGG9mwYYNJ9lMXSd7M0+3MW44O9qapiEhVk5JX+t3uZ6fQ1ctAe/ci7CxiSToSS9KRWz+enDfzJHmrXG5ubpXipNIvhBCiTvBvYMfzA5rxdJ8mbDiWwpLdMew8k87GE6lsPJGKn4st93cOYGRo9Vp4hfk5fPgwXbt2JT8/HwcHB37//XdatGgBwKBBgxgzZgyBgYGcO3eOV199ld69e7Nv3z6sra3L3V9ISAjfffcdrVu3Jisri48++oi77rqLgwcP0qRJk3K3mTFjBs8995xxOSsrC61WS//+/XFyurWZJ3Q6HRs2bKBfv35YWlre0r7qGsmbebpdeVMUhd3nLvFLZDzrj6Wg0ysA2FlpuKe1N+M6+NPaz8mk7+rLeTNPkreqKemFdiNS6RdCCFGnWFmoGdLGhyFtfDiTlsNPu2NZvi+ehIw85q07yQcbTtGmgRqvlpfo3MhDBnKqh5o1a0ZUVBQZGRmsWLGCyZMns3XrVlq0aMG4ceOMca1ataJDhw4EBgayevVqRo0aVe7+unTpQpcuXYzLd911F+3ateOTTz7h448/Lncba2vrch8iWFpamuwG1JT7qmskb+appvJ2IaeA5fvi+WVPLOfTS1smW/s5c1+nAIa19cXBumarJXLezJPk7cb7qIp6NUrSpUuXmDhxIs7Ozjg7OzNx4kQyMjKqvP0jjzyCSqXiww8/rLE0CiGEqLpGHg68ek8Lds/sw/wxoYQFuFBkUNifrmb8wr0M+fhflu6NJe/KfM2ifrCysqJx48Z06NCBuXPnEhoaykcffVRurI+PD4GBgZw+fbrK+1er1XTs2LFa2wghqsdgUNh+Oo3Hl+yjy5yN/O/vE5xPz8XB2oIJnQNY9dTd/PXU3dzfOaDGK/xC3Onq1RV2//33Ex8fz9q1awH4z3/+w8SJE/nrr79uuO3KlSvZvXs3vr6+NZ1MIYQQ1WRjqWF0e39Gt/cnKiad/63YyYGLFhxLymL6isPMWXOCcR21PNA5kAA307xvLeoORVHKDKp3tfT0dOLi4vDx8anW/qKiomjdurWpkiiEuCI1K59f98Xzy95Y4i7mGde31bpwf6cAhrTxwV4q+ULcVvXmijt+/Dhr165l165ddO7cGYCvv/6arl27cvLkSZo1a1bhtgkJCTz55JOsW7eOIUOG3K4kCyGEuAktfZ24r5GBTx7qye8Hk/hhVwxxF/P4attZvt5+lt7NPJnUrSHdG7ujloH/zM7MmTMZNGgQWq2W7OxsfvnlF7Zs2cLatWvJyclh9uzZjB49Gh8fH86fP8/MmTNxd3dn5MiRxn1MmjQJPz8/5s6dC8Drr79Oly5daNKkCVlZWXz88cdERUXx2Wef1VY2hahX9AaFbafS+HlPLBtPpKI3FL+r72hjwagwP8Z3CqC5z62NhSGEuHn1ptIfERGBs7OzscIPxe/wOTs7s3Pnzgor/QaDgYkTJ/LCCy8YpwK6EZnG5+ZI3syT5M083Ql5s7eEB7sGMKmzlq2nL/Djrli2R5cO/NfQzY4JnbWMDvPF0abuvw9o6nNmruc+JSWFiRMnkpSUhLOzM23atGHt2rX069ePvLw8Dh8+zPfff09GRgY+Pj6Eh4ezdOlSHB0djfuIjY1FrS59gzEjI4P//Oc/JCcn4+zsTFhYGNu2baNTp061kUUh6o3EjDyWRcaxbG8ciZn5xvUdGzZgfMcABrf2wdZKU4spFEJAPar0Jycnlztdj6enJ8nJyRVu984772BhYcHTTz9d5WPJND63RvJmniRv5ulOytu9HtDDAf5NVrM7TcX59FzeXnOSeWtP0NFD4W5vA75m0PPfVOesqtP41DXffPNNhZ/Z2tqybt26G+5jy5YtZZY/+OADPvjgg1tNmhACKNIb2HwyjV/2xLL5ZCpXGvVxsbNkVJg/93XS0sTLsfKdCCFuqzpf6Z89e3a5Feyr7d27F6DcEZwVRalwZOd9+/bx0UcfsX///mqN/izT+NwcyZt5kryZpzs5b1OAywVF/HEwiR93x3I69TI7UlTsSFHTOagBD3QOoG+IBxaaujWWranPWVWn8RFCiKqIv5TLsr1xLI2MIyWrtMdrl2BX7usUwICW3thYSqu+EHVRna/0P/nkk4wfP77SmIYNG3Lo0CFSUlKu+ywtLQ0vL69yt9u+fTupqakEBAQY1+n1ev773//y4Ycfcv78+XK3k2l8bo3kzTxJ3szTnZo3F0tLJt8VzKRuQew6e5HvI86z/lgKu89dYve5S/g42zChcwDjOwXg7lD+3O61xVTnrL6edyHE7aPTG9h4PIWf98Sx7XQaypVWfVd7K+5t78+4jloaeTjUbiKFEDdU5yv97u7uuLu73zCua9euZGZmsmfPHuM7ert37yYzM5Nu3bqVu83EiRPp27dvmXUDBgxg4sSJPPjgg7eeeCGEELVKpVLRtZEbXRu5kZiRx0+7Y/l5TyxJmfm8t/4UH2+MZkgbHyZ1DaSt1qVavb6EEKK+ik3P5Ze9sSyLjOdCTmmr/t2N3RnfSUu/Fl5YW0irvhDmos5X+quqefPmDBw4kGnTpvHll18CxVP23XPPPWUG8QsJCWHu3LmMHDkSNzc33NzcyuzH0tISb2/vSkf7F0IIYX58XWx5fkAznurTmDWHk1i8M4aouAx+P5DA7wcSaOPvzKSuDbmnjY90URVC3HGKDLDmcDK/7k/k3+gLxvXuDtaM6eDP+I5aAt3sazGFQoibVW8q/QBLlizh6aefpn///gAMGzaMTz/9tEzMyZMnyczMrI3kCSGEqAOsLTSMDPNnZJg/B+My+D4ihr8OJXIoPpPnfz3I26uPMb5TABM6B+DfwAxG/hNCiJtQpDdwOjWHQ/EZ7I+5xOooDTm7DwGgUkGPJh7c10lLn+ZeWNaxMVCEENVTryr9rq6u/Pjjj5XGKCUvI1Wgovf4hRBC1D+hWhfma12YOTiEpZFx/BgRQ2JmPl9sOcOXW8/Qt7kXk7s1pFsjN+n6L4QwW4qiEJOey8H4DA7FZ3IoPoMjCVnk6fRXRanwcrRmbEctYzto0brKQ08h6ot6VekXQgghboabgzWP92rMf7oHs/FEKt9HnGdHdDrrj6Ww/lgKjT0dmNQ1kFHt/HGwlqJTCFG3pWblczA+k4NxGRyMz+BwQiYZubrr4hysLWjl50QrXyfUF87w7Pju2NrUrcFNhRC3Tu5chBBCiCssNGoGtPRmQEtvTqdk88OuGFbsiyc6NYfX/jjKu2tPMrqdHxO7NqSxp4xYLYSofZl5Og7HZ15pxc/gYFwmyVn518VZadQ093Ui1N+ZNv4utNU6E+zugFqtQqfTsWZNdJ2bylQIYRpS6RdCCCHK0cTLkTeGt+KFAc34bX8CiyPOczbtMosjYlgcEcPdjd2Z1DWQPs290Kil678Qoubl6/QcTcziYFxxBf9QfCZnL1y+Lk6lgiaeDoT6u9BG60KovzMh3k5YWUilXog7kVT6hRBCiEo42lgyuVtDJnUNZEd0OosjzrPxeAr/Rl/g3+gL+LnY8kCXQMZ11OJqb1XbyRVC1BNFegOnUooH2jt4pQX/VEo2RYbrx6fSutoWt977u9DG35lWfs7Yy6tIQogr5NtACCGEqAKVSsXdTdy5u4k7cRdzWbI7ll/2xpKQkcc7a0/wwT+nGBbqy+SuDWnt71zbyRVCmJGrB9o7GHdloL3ETPJ1huti3R2sjV30Q7XF/8sDRyFEZaTSL4QQQlST1tWOlwaF8EzfJvx1MJHFEec5kpDF8n3xLN8XT1iAC5O7NmRQa2+sLTS1nVwhRB2TkpVvHGSveDT9TDLzyh9or01JBd/fmTZaF3ydbWQ2ESFEtUilXwghhLhJNpYaxnTQcm97fw7EZfD9zvOsPpzEgdgMDsRG8dZqK+7rFMD9nQPwcbat7eSKOkSjL4DCy6BYXv+hSgOWNqXLhde/s10aqwZL25uMzQUqmspYBVZ2NxWrNhRWnDcAK/vSn3V5oFzfml1+bD4oetPEWtoVv/gOUFQAhqIqxaoNusrzZmEL6ivvzRcVgkFHZq6OI0mZHEnI4vCVkfRTswvIxwqF4lhLinC2MBDi7URrXyda+zvTys+FIDc71GoVWNiAWlNmvxW6OlavA31hxbEaa9AUVwdUSlHlebsqFn0R6Asq2a8VaCyrH2vQQ9H1gxAaqS3Bwqr6sYqh8ryV2a8BivIq2a8FWFyZ4UBRQJdrmthqXfflxFaUtzr4HVG96z4PlEr+huvYd8QNYy1q515AKv1CCCHELVKpVLQLaEC7gAa8PKQFv+yJZcnuWJKz8vlkUzSfbznDgJZeTOrakM5BrtJKJ7jn0DQ4VMGHTfrDhF9Ll+c1rriyEHg3PLi6dPnD1pCbXn6sbxj8Z0vp8medITO2/FiPEHhid+ny1+GQdqL8WOcAePawcfHu029jefDh8mPt3ODFs6XLP94LMf+WH2tpBy8nlS4vmwin15cfCzA7s/Tn3/8Dx/6oOHZmYmkF4K9n4OBPFce+cAbs3QFolfATlvMeqjA0//EojuQ6czA+k4b759Ln4lKcgbuu/DOygUccP8U5sA1t/F3on/otnvs/hAsU/7v2b2PaJvBrX/zz7i9gw2sVp3fyKgjqXvzzvu9gzfMVx96/DJoOAMD/YgSW86ZWHDvmO2g5svjnE3/Br1Mqjh3+OYRNKP75zEb4aWzFsYPfg07Tin+O2QmL76k4tt8bcNf/Ff+cFAVf9644tudLED4DAMf8RCznBVYc2+0p6P9W8c+ZcfBRm4pjOz4MQ+YX/5ybDvMaVRwbej+M/KL4Z10uzPGtOLbFcBj7felyZbHXfEdYfNjcrL4jWDQIEg+UH3vNd4Tml3EQu7P82Dr4HcG6mbB3YcWx/3cIHCo5tzVEKv1CCCGECXk4WvNUnyY82qsRG46lsHjneXafu8iaw8msOZxMMy9HJnULZGSYH3ZWUgwLUZ/0/3AbsYbim/8ZFjn0qeQS/3JiB/BsXryw2abiQCGEuEUqRVEq6ochqigrKwtnZ2cyMzNxcnK6pX0Vz5O6hsGDB2NpWUE3HTMleTNPkjfzJHmrW04kZ/F9RAy/708gT1fcndDRxoIx7bVM7BpIkLu9yfNlyrJJmPb3mZ6Vy4a1q+jftzd21lZYadTFXbhLmHH3fp1Ox9pVKxnYv1/Ff8d1sHu/vkhHYZGBwiIDBQY9RXqFwiKleBlrCg0KeQWF/LP1XyzctBxLzuFYYiYFRWXTno8V7o62hPo709bXnlA/e1r5ONGgvIH2ynkVoEI13L1fp9Px9+o/GdSvT8XnzUy79+t0OtasXsXgfuEV581Mu/cby42+PSvOWx37jgCqdN0b89YvHMvKxsYxw+79Or3eZOV9VcsmaWIQQgghaliItxNzRrZm+sAQlu+L54eI85xPz+XbHef4dsc5ejb1YEInf8qZiUvUQ7NXHeevQ/a8tL+0a6xGrcJSo8JSrcbSQl38s0aNlUaNpUaNpUXxcvHnV342fn5l2aJ42UKturIPNVaa0tjiz1VYqEt/Nn6mUWNlcfWyCkvN5auOY2k8roVaVekrKga1VfHNdTk3s3qDgk6np+BKBbtQD7oiKNRfqXAXGdBd+bn48yx0ekNp/NWfX/v/lZ91V+3LGK+/envlymf6K/EK+ipffDZwJu3Kz1Y42pQdaC9U64K3000MtGdhBVRxBP7qxGosSyvUN6CoLCo8b9fv16L0AYApY9WashUzU8Wq1FXPm1pdjf2qaiYWqh9b1cpjtfZrd+OYm4m1rMZ77Za2Vc+bZTV6zFQn1sIasDZdrL6Shw01RCr9QgghxG3ibGvJQ3cH8WC3hmw7ncb3ETFsPpnK1lNpbD2Vhpu1hiK/RMZ0rOTdU2H2yqtg6g3FFc98DFBJo2hdYXntAwNN8YMGC7WKyzkaPjj1r7FyfXUlveqV69pldeUBytX/W6hVKAU5dG8ZSFhgA9r4uxDkZl+2l4YQQtRBUukXQgghbjO1WkWvZp70auZJTPplftwVw9K9caTnF5U7bZeoXz4aF0o/hzX0GzAQ1Bp0V7VG6/SKsZKs0xsoMijoisp+Vvp56XKZz/QGdEXXLOsViozLivGYxuWS/RQZ0BmU0p/1CoX667vhFh9PD5TXYqWCvEq6MV+lpEJtqVEVV7AtSns3WJcsW5T2arg65ur/La/8b32j+Kv2f1288bPyezKUvoITYjavFgkhBEilXwghhKhVgW72vDykBU/1CmbOkvWMCrv9o/qK20+tAmsLNZaWFlXuNVpbFEUpfvhw5WFCSRf6In3pzyX/8gp07Ny1m7u7dsHOxuq6ynlpJV6FlUYtM1kIIcRtIJV+IYQQog6wtdLQ1UvB0UZaEEXdolKpjN35b/QquU6nI/24QseGDaQ1XAgh6gh1bSdACCGEEEIIIYQQNUNa+k2gZNbDrKysW96XTqcjNzeXrKyseveEXPJmniRv5knyZn5Mna+SMklm5jUNKeurRvJmniRv5knyZp5MmbeqlvVS6TeB7OxsALRabS2nRAghhCgrOzsbZ2fn2k6G2ZOyXgghRF11o7JepUgTwC0zGAwkJibi6Oh4ywPSZGVlodVqiYuLw8nJyUQprBskb5VbsmQJjz/+OIcOHSIw0DTTdT322GP88ccfJCYm3vQ+bjZv1cnPkCFDAFi9evVNp/NmVCdvzs7OvPTSS8yYMQOAEydO8Pvvv3P//fff1PkyxbmpjFxv5sfU+VIUhezsbHx9fVGr5W2+WyVlfdVI3m5Nbd0L1FTe6sK9wO04b9feI2zfvp177rmHVatW0b179xo5Jsj1Zq5MmbeqlvXS0m8CarUaf39/k+7Tycmp3v2Bl5C8lc/W1hYAR0dHk/1+SroMmWJ/1c1bdfKj0WiMx6gNVclbREQE/v7+xrjY2Fj+97//MWDAAFq3bl3tY5ry3FRGrjfzY8p8SQu/6UhZXz2St5tT2/cCps5bXboXqOm/SWtra+P+7e3tjf/fjutArjfzZKq8VaWsl0q/EKJeURSF/Px8442GqXTp0sWk+xNCCCFEzbjVe4Hc3Fzs7OxMnCohao/09xPCTOXm5vL8888TFBSEjY0Nrq6udOjQgZ9//vm62OjoaAYPHoyDgwNarZb//ve/FBQUlIm5ePEijz/+OH5+flhZWREcHMzLL79cJu78+fOoVCq+++67646hUqmYPXt2pWlWFIV3332XwMBAbGxsaNeuHX///Xe5sVlZWcb8WVlZ4efnxzPPPMPly5evO+6TTz7JggULaN68OdbW1ixevLjSdJQo6Uq4c+dOunTpgq2tLX5+frz66qvo9foK8/fdd98xZswYAMLDw1GpVNf9XtauXUufPn1wdnbGzs6O5s2bM3fu3OvSUJVzI4QQQpRH7gVKj3uz9wK9evWiVatWbNu2jW7dumFnZ8fUqVOB4l59DzzwAJ6enlhbW9O8eXPmz5+PwWCo0r6FqCukpb+Osba2ZtasWVhbW9d2UkxO8mZazz33HD/88ANvvfUWYWFhXL58mSNHjpCenl4mTqfTMWzYMB566CH++9//sm3bNt58802cnZ157bXXAMjPzyc8PJwzZ87w+uuv06ZNG7Zv387cuXPZv3+/yfL2+uuv8/rrr/PQQw9x7733EhcXx7Rp09Dr9TRr1swYl5ubS8+ePYmPj2fmzJm0adOGo0eP8tprr3H48GH++eefMu/Urly5ku3bt/Paa6/h7e2Np6dnldKjUqmwtbXloYce4qWXXuKNN95g9erVvPXWW1y6dIlPP/203O2GDBnCnDlzmDlzJp999hnt2rUDoFGjRgB88803TJs2jZ49e7JgwQI8PT05deoUR44cKbOfqpybmyXXm/mpr/kS16vP51rydnuZ6l7A2tqal19+mWHDhnH27Nnr7gWioqJM9q797b4XqMp5S0pK4oEHHuDFF19kzpw5qNVq0tLS6NatG4WFhbz55ps0bNiQVatW8fzzz3PmzBk+//xzk/w+bkVd/Js0FcmbiSlCiDph0aJFCqCcO3euSvGtWrVSRowYUWnM5MmTFUBZtmxZmfWDBw9WmjVrZlxesGBBuXHvvPOOAijr169XFEVRzp07pwDKokWLrjsWoMyaNavC/Fy6dEmxsbFRRo4cWWa7HTt2KIDSs2dP47q5c+cqarVa2bt3b5nY5cuXK4CyZs2aMsd1dnZWLl68WOnvojw9e/ZUAOWPP/4os37atGmKWq1WYmJiKszfr7/+qgDK5s2by2ybnZ2tODk5KXfffbdiMBgqPHZVz40QQog7h9wL9DSuu933Ahs3biyz/qWXXlIAZffu3WXWP/bYY4pKpVJOnjxZYb43b95c7j2CELVFuvcLYaY6derE33//zUsvvcSWLVvIy8srN06lUjF06NAy69q0aUNMTIxxedOmTdjb23PvvfeWiZsyZQoAGzduvOX0RkREkJ+fz4QJE8qs79at23Uj+q5atYpWrVrRtm1bioqKjP8GDBiASqViy5YtZeJ79+5NgwYNbipdjo6ODBs2rMy6+++/H4PBwLZt26q9v507d5KVlcXjjz9+wxG+q3JuhBBCiIrIvUCpW7kXaNCgAb179y6zbtOmTbRo0YJOnTqVWT9lyhQURWHTpk03dSwhaoNU+oUwUx9//DHTp09n5cqVhIeH4+rqyogRIzh9+nSZODs7O2xsbMqss7a2Jj8/37icnp6Ot7f3dZVUT09PLCwsrusmeDNK9uHt7X3dZ9euS0lJ4dChQ1haWpb55+joiKIoXLhwoUy8j4/PTafLy8urwvTcTL7T0tIAqjTKd1XOjRBCCFERuRcodSv3AuVtm56eXu56X1/fMnkRwhzIO/1CmCl7e3vje3EpKSnGJ/1Dhw7lxIkT1dqXm5sbu3fvRlGUMoV9amoqRUVFuLu7AxhvGK4d+KcqBZ+bmxsAycnJ132WnJxMw4YNjcvu7u7Y2try7bfflruvkvSUuJU5s1NSUspND5SmuTo8PDwAiI+Pv+k0CSGEEFUh9wKlbuVeoLxt3dzcSEpKum59YmJiuccXoi6Tln4h6gEvLy+mTJnCfffdx8mTJ8nNza3W9n369CEnJ4eVK1eWWf/9998bPy85jo2NDYcOHSoT98cff9zwGF26dMHGxoYlS5aUWb9z587rurPfc889nDlzBjc3Nzp06HDdv6tvCm5VdnY2f/75Z5l1P/30E2q1mh49elS4XcngK9d2pezWrRvOzs4sWLAARVFMlk4hhBCiMnIvYFp9+vTh2LFj7N+/v8z677//HpVKRXh4eI0eXwhTkpZ+IcxU586dueeee2jTpg0NGjTg+PHj/PDDD3Tt2rXac8tOmjSJzz77jMmTJ3P+/Hlat27Nv//+y5w5cxg8eDB9+/YFip+EP/DAA3z77bc0atSI0NBQ9uzZw08//XTDYzRo0IDnn3+et956i4cffpgxY8YQFxfH7Nmzr+vS98wzz7BixQp69OjBs88+S5s2bTAYDMTGxrJ+/Xr++9//0rlz52rlsSJubm489thjxMbG0rRpU9asWcPXX3/NY489RkBAQIXbtWrVCoCvvvoKR0dHbGxsCAoKws3Njfnz5/Pwww/Tt29fpk2bhpeXF9HR0Rw8eLDCGQGEEEKI6pJ7AdPcC5Tn2Wef5fvvv2fIkCG88cYbBAYGsnr1aj7//HMee+wxmjZtWmPHFsLUpNIvhJnq3bs3f/75Jx988AG5ubn4+fkxadIkXn755Wrvy8bGhs2bN/Pyyy8zb9480tLS8PPz4/nnn2fWrFllYufPnw/Au+++S05ODr1792bVqlVVeuL+xhtvYG9vz+eff84PP/xASEgICxYs4L333isTZ29vz/bt2/nf//7HV199xblz57C1tSUgIIC+ffua9Om+t7c3n332Gc8//zyHDx/G1dWVmTNn8vrrr1e6XVBQEB9++CEfffQRvXr1Qq/Xs2jRIqZMmcJDDz2Er68v77zzDg8//DCKotCwYUMmT55ssnQLIYQQci9Qczw8PNi5cyczZsxgxowZZGVlERwczLvvvstzzz1Xo8cWwtRUivQ/FULcoXr16sWFCxc4cuRIbSdFCCGEEEKIGiHv9AshhBBCCCGEEPWUdO8Xoo5RFAW9Xl9pjEajuaVRaus7vV5f6SB6KpUKjUZzG1MkhBBCVJ3cC9w6uRcQopS09AtRxyxevPi6OWmv/bd169baTmad1qdPn0p/f40aNQJgy5Yt0rVfCCFEnSP3AreuqvcCQtwJ5J1+IeqY9PR0zp07V2lMs2bNcHR0vE0pMj8nT54kOzu7ws+tra1p3br1bUyREEIIUXVyL3Dr5F5AiFJS6RdCCCGEEEIIIeop6d4vhBBCCCGEEELUUzKQnwkYDAYSExNxdHSUAVWEEELUCYqikJ2dja+vL2q1POO/VVLWCyGEqGuqWtZLpd8EEhMT0Wq1tZ0MIYQQ4jpxcXH4+/vXdjLMnpT1Qggh6qoblfVS6b/i888/Z968eSQlJdGyZUs+/PBDunfvXqVtSwZRiYuLw8nJ6ZbSodPpWL9+Pf3798fS0vKW9lXXSN7Mk+TNPEnezI+p85WVlYVWq5WBvkxEyvqqkbyZJ8mbeZK8mSdT5q2qZb1U+oGlS5fyzDPP8Pnnn3PXXXfx5ZdfMmjQII4dO0ZAQMANty/p5ufk5GSSGwE7OzucnJzq5R+45M38SN7Mk+TN/NRUvqQrumlIWV81kjfzJHkzT5I381QTebtRWS+VfuD999/noYce4uGHHwbgww8/ZN26dXzxxRfMnTv3tqdHoy+AwsuglPNHoNKApU3pcuHlinekUoOl7U3G5gIVTeygAiu7m4pVGworzhuAlX3pz7o8UAwVp7lMbD4oetPEWtpByYVTVACGoirFqg26yvNmYQsl79oUFYJBV/F+qxVrA2pN9WP1OtAXVhyrsQZN8VeESimqPG9XxaIvAn1BJfu1Ao1l9WMNeijKrzhWbQkWVtWPVQyV563Mfg1QlFfJfi3AwvrKfhXQ5ZomtlrXfTmxFeWtDn5HVO+6zwOlkr/hOvYdccNYKZKFEEKIeu1CTgErImNJu6hi8G087h1/h1FYWMi+fft46aWXyqzv378/O3fuLHebgoICCgpKKypZWVlA8VMbna6SClcVTF9xmPdPTIND5X9+yqkrS5u8h0atQqNS8VxkOJaG8is3yQ3as6HjN8WxahjxTy+sCy+VG5vl2opDA3+7EqsidEVPrC8nlBtb6NqUtAc2G9PQ4PueWKSfKjdWcdZS9OQBoPj3c/fpt7E8+HD5sXZuFD170ris+WEU6tjyz4FiaUfRi7Glsb9MQH3mn3JjAXQvXyiNXTEN9Yk/K459IcZYAdD89TTqQ79UHPvMCbB3R6fT0SrhJyznPVRx7BP7waW454h642w0uz6rOPY//4JHSHHstnfRbJ9XYWzRg+tRfNsVx0Z8imbT6xXHPrASJfDu4tjIb9Csm15x7NifUJr0R6fT4X8xAst5UyuOHfUNSvPhAKiO/4HFbxX/Horu+QQl9L7i2NPrsVh2f4Wx+gHvYOhQvC9VzL9Y/Dii4tjeszB0fao4NnE/Fov6Vxzb/QUMPaaj0+lwzE/Ecl5gxbFdnsDQ58rvNCMWy8/aVRzbfiqGge8WL1y+gOWHIRXGGtqMRz/00+KFwsuVpsEQMgz96G+Ny5ZzfCuObdQX/fhfjN9FFh+GFFeOy4sN6IZ+Yum1YPFha1S56eXH+rRFP7X0GrP4rBOqzLhyYxX3ZhQ9sqM09qteqC6cLD/2qu8IAM23A1EnRZUfe+U7oiRv6p/HQlxE+bF17DsCQL32JTT7vq0wtuiRPcXb3GI5Yjy2ifYjhBBCiJtXpDew9VQaS/fGselEKkUGhWBHNRXfhZveHV/pv3DhAnq9Hi8vrzLrvby8SE5OLnebuXPn8vrr11es1q9fj52dXTlbVN3awxrer6SXR/ylPL7ZEWNcfspawbKC3hzn03N59c9jxuW+1kVYVxB77kIuD3wbaVz+17oA/4r2e+Ey/d/dalxeb3WZphUMFpmQkUefWetQq0CtgqUaFQ0q2O+ly4X0fnOdcXmh6hIdKojN1+np/vY6VIAKeJ8L3F1+KAA95pbGvmlIpnclsfe8/w/5quKW0hn6BAZWEjvu081kqZ0AhWf0KoIqid28eTN51h4AtEg4S5NKYrdv20a27VkAmiWdpuKqI+zYsZMM++K/1cYpJ2hZSeyuXbtJP1r8kCoo7ShtKomNjIwk5XRxq+SNhq46sP8AieeK/3B9Lx2gYyWxhw4dIi7BGQCvzCi6VBJ79OhRzqWuAcAt+3il5/jEiRNEXyqOdbl8lp6VxJ4+fZqTOcWxN3rb+ezZsxwrKI61LUij4kcJEBsTw6E1xbFWuiwGVRIbHx/PgSuxGn0B91QSm5ScROSVWIDhlcSmpqWx+6pYvV5f4Rf9xYsX2XFV7MDCQqwriM3MzGTbVbH98vKo6NsuOyeHzVfFhufkUFFn6Ly8PDZcFdsjM5MGFcQWFhay9qrYS5cu4V5BrF5fxJqrYjunpeFdQSxQJrZDchJ+lcSuW7cevab4NxUWH09lL4H9888/FFoW575NXEyl3xHbt28Haw82bNhQSVTV5eZW0ntECCGEEDXqTFoOv0bGs2J/PGnZpQ3Gof7OhFhdRFEq6gVpeirldh6tDkpMTMTPz4+dO3fStWtX4/q3336bH374gRMnTly3TXkt/VqtlgsXLlT6np9er6eoqKjSE7z6UCJnTh5DG9gQRaVCMUCRoqAYFPQGBT0qCrHEoCjoDaDW56FXFAwGBYOBK+sVDIpCkVIcW7Ks1hegGJTi/SlQpBiK929QMCiQp1ihKApFBgULQwGKwYBeoXjflO5Xb4BcxZKSbFhRSEVvkShAIVbGZSt0qCrs5gsFdSLWEq7kyJIi1Fzf1VhRFDLy9VwqsjLGWqFDQ/ldgi01KpwdHPFwtsPL0RofBzVeDho8HazwdLLBw8EaD0crHKyvVM8sbYu7U0NxF3x9VbvsVyf2Bt37LaxBbYFOp+Of9X/Tt1dPLC0rqD5eiQWKuy8XVbXLfnVib9BlX2NZHF+NWJ1Ox4b16+jXq3vFebt6v4qhwlZzoOa696s1xeeuRGXd8K/E6nQ6NmzYQL+ed1Wct1vp3q/LhYq+y1Sq4m7tNxV74+79xrz1uhtLC02lsUZF+cV/F6aIraHu/Tos2PDPRvr162eygfzc3d3JzMy85XfQRfHv09nZ+Ya/T71ef8NeFjqdjm3bttGjR496+a5qfcublZUVarUanU7HmjVrGDx4cL3JWwnJm3mSvNU9OQVFrDmUxLLIOCJjSntYu9lbMaqdH2M6aAlytTFZ3qpaNt3xLf3u7u5oNJrrWvVTU1Ova/0vYW1tjbX19e1hlpaW5Z44RVFITk4mIyPjhulp00ChSWgAtrbWVRx8qXYvgpIHGMbbeaXsm7vKlRXKlc/yC/Kxtrbh6qzdzGOn6zdRKvqgstXVO8Y1KwyKQo5iTY7aniK9gZ2RB/AIaMaFHB0p2fkkZ+aTml3AxcuF5OkhK7OQuMxKKtmAvZUGL2cbvBxt8HKyxsvJ5qp/xcueTtZYV1TRqc4Xh6UlVNhWW5aissDS3rmKX0yWYG1747CbirW5cVh1Y1XqauQNsKqoLby8WKsbx9xMrKVL1UOrk7dq7BdL5xqKrfrfsKVdNQbAqfa1UQuxVyqKFZUl1WVON0n1QXXKekVR8Pb2Ji4urt4NtFgf86ZWqwkKCqo3+RFCmJaiKOw9f4llkXGsOZxEbmFxw4FaBeHNPBnbUUt4M0+sLIob9Grj9bs7vtJvZWVF+/bt2bBhAyNHjjSu37BhA8OHV9aJtupKbgI8PT2xs7OrtNAwGAzk5OTg4OCAWl1Bn3kzVZ/ypigKubm5pKam0sxFjbu7J6o4hcF9Gl93o11QpCctu4CUrHxSsq79v/hfalYB2QVFXC7UczbtMmfTKmlxBRrYWZbzMMAG76uW3R2s0ajlBkUIIW4HKeuL1be8GQwGEhMTSUpKwsfHp7aTI4SoQ5Iz81mxP57l++I5d6H03j3Y3Z4xHbSMaueHl1NVG6xq1h1f6Qd47rnnmDhxIh06dKBr16589dVXxMbG8uijj97yvvV6vfEmwM3N7YbxBoOBwsJCbGxs6kVhebX6ljdb2+IW6tTUVBo0qOgtZLC20ODfwA7/BpW3qucUFJF63QOBAlKy80nJzC/+P6uAwiIDl3J1XMrVcSI5u8L9qVXg4XjlgYCjDd7O1ld6EBT3FvC+0qPAxc5SWi+EEOIWSFlfqj7mzcPDg8TERPT6Sl77EULcEQqLDGw8nsKyyDi2nkrDcKUnsL2Vhnva+DK2oz/tAhrUuXtrqfQD48aNIz09nTfeeIOkpCRatWrFmjVrCAyseDTtqirpvnGrA/yJuqnkvBYVVTYNV9U4WFvg4OFAsIdDhTGKopCZpyP5qocDqVn5xuWSn9OyCzAoXIkpADIr3KeVRl38EMCp9IGA15VeA55O1rjZWqCv5BVrIYS400lZX79ZXXn9Sir9Qty5TiRn8WtkPL8fSODi5dLXdTs1dGVMB38Gt/bB3rruVq3rbspus8cff5zHH3+8xvZf1572CNMoOa+3azxMlUqFi50VLnZWhFQyFLneoJCeU1zhTza+QpBfdvnKeAOFegPxl/KIv1TxAHV2Gg3b8g8zsLUvPZq6Y2clXx1CCHEtKevrp9td1gsh6obMPB1/Hkzk18g4DsWXNqB5Olpzb3t/7m3vX2ljXV0id+5C1EMatQrPK+/5t6biQdQKivSkZhWQeuXVgeQrrxGkXulFkJxVPCBhbqGelQeTWHkwCRtLNd2beDCgpTd9QjxpYF+NAeiEEEIIIYSoowwGhYiz6SyLjGPtkWQKioq7u1pqVPRt7sWYDv70aOKBhca8Xl+SSr+4aSqVit9//50RI0bU6HEaNmzIM888wzPPPFOjxynPd999xzPPPFOl0ZjNkbWFBq2rHVrXiruk5hcU8vmyv8l2bsSG46nEX8pjw7EUNhxLQaNW0amhKwNaetG/pTe+LlUdiV8IIUxn27ZtzJs3j3379pGUlFRu2XT8+HGmT5/O1q1bMRgMtGzZkmXLlhEQEFA7iTYTUtYLIe4E8ZdyWb4vnl8j40nIKO392szLkbEdtYxo64ubQzVmcKpjzOsRhbitUlNTeeSRRwgICMDa2hpvb28GDBhAREQEAElJSQwaNKiWU3m97777DhcXl9pORr2hUato5AQzBzVj+4vhrHm6O//Xpwkh3o7orzwNnf3XMbr9bxNDP/mXTzed5nRKtnSDFELcNpcvXyY0NJRPP/203M/PnDnD3XffTUhICFu2bOHgwYO8+uqr2NjUjVGVa5OU9UKIO1W+Ts8fUQk8sHA33d/dzIf/nCYhIw9HGwse6BLAn0/exdpnuvPQ3UFmXeEHaekXlRg9ejQ6nY7FixcTHBxMSkoKGzdu5OLFiwB4e1fyUrmol1QqFS18nWjh68Sz/ZoSm57L+mPJrDuaTGTMJQ4nZHI4IZP31p8i2N2efi29GNDSm7b+Lqhl+kAhRA0ZNGhQpRXTl19+mcGDB/Puu+8a1wUHB9+OpNV5UtYLIe4kiqJwJCGLZZFx/BGVQFZ+6WDcdzV2Y2wHLQNaemNjqanFVJqeVPpvM0VRyNNVPPqrwWAgr1CPRWGRyae6sbXUVHmQoYyMDP7991+2bNlCz549AQgMDKRTp07GmKu7/J0/f56goCCWLl3KJ598QmRkJK1atWLJkiVkZmby2GOPceLECbp06cKSJUvw8vICoFevXrRt25YPP/zQuN8RI0bg4uLCd999V27a3n//fRYtWsTZs2dxdXVl6NChvPvuuzg4OLBlyxYefPBBY/oAZs2axezZsyksLOSVV15hyZIlZGRk0KpVK9555x169epl3Pd3333Ha6+9xoULFxgwYAB33313VX+9d6QANzse7h7Mw92DScsuYOPxFNYdTWZHdDpnL1zmy61n+XLrWTwdrenXovgBQJdgN6wspJOREOL2MBgMrF69mhdffJEBAwZw4MABgoKCmDFjRqVd1gsKCigoKDAuZ2VlAcUj9ZeM1l9Cp9OhKAoGgwGDofj9z8rKe0VRyCvUoynQmXzwv5sp6zdt2mQs67VaLR06dACKf3cajYYVK1YYy/pGjRrx888/89lnnxnL+h9++IHMzEyeeOIJY1n/448/4unpCUDv3r0JDQ3lgw8+MB575MiRuLi4sGjRIuO6kt8hwAcffMB3331nLOvvuece3nnnnQrL+tdee41Zs2ZRWFjIq6++yk8//WQs6+fOnXtdWT979mwuXLhA//79jWV9ybGvZTAYUBTFOFPPtee/PijJk+TNvEjequ7i5UL+PJTEin0JnEjJMa73dbZhdDtfRob5ojVOr21Ap6u5qatMmbeq7kMq/bdZnk5Pi9fW1cqxj70xoMqjrjs4OODg4MDKlSvp0qUL1tZV69Iya9YsPvzwQwICApg6dSr33XcfTk5OfPTRR9jY2DB27FhmzZrFggULbjofarWajz/+mIYNG3Lu3Dkef/xxXnzxRT7//HO6devGhx9+yGuvvcbJkyeNeQF48MEHOX/+PL/88gu+vr78/vvvDBw4kMOHD9OkSRN2797N1KlTmTNnDqNGjWLt2rXMmjXrptN5p/FwtGZ8pwDGdwogO1/HlpNprD+WwuYTqaRmF7BkdyxLdsfiaGNBnxBP+rf0pmdTjzo9vYkQwvylpqaSk5PD//73P9566y3eeecd1q5dy6hRo9i8ebOxsnutuXPn8vrrr1+3fv369ddNzWdhYYG3tzc5OTkUFhZP5ZRXqKfr+7tMn6EbiHiuC7ZWVWuhMhgMODg48Ouvv9KiRYsKy/q8vDyysrLIySm+UZ41axZz5szB39+fp556ivHjx+Po6Mhbb72FnZ0dDz74IDNnzuT9998Hiqe1LSwsND44KVmn0+mM6wwGA/n5+cblwsJC5syZQ0BAADExMTz//PM8++yzzJ8/31iRnzNnDnv37gXA3t6erKwspk2bRmxsLF9//TU+Pj6sWrWKwYMHs2PHDho1akRkZCQPP/wwr776KkOHDmXjxo289dZbKIpSJn1XKywsJC8vj507dwKwYcOGKv1+zZHkzTxJ3spnUOBEhordqSoOX1KhV4ofElqoFNq4KnTxVGjinIM6/xSHI05x2FSJriJTnLfc3NwqxcndtiiXhYUF3333HdOmTWPBggW0a9eOnj17Mn78eNq0aVPhds8//zwDBgwA4P/+7/+477772LhxI3fddRcGg4EHHniApUuX3lLarh7kJygoiDfffJPHHnuMzz//HCsrK5ydnVGpVGW6JJ45c4aff/6Z+Ph4fH19jWldu3YtixYtYs6cOXz00UcMGDCAl156CYCmTZuyc+dO1q5de0vpvRM52lgyNNSXoaG+FBTp2XkmnfVHiwf/u5BTwMqoRFZGJWJloaZHE3f6t/CmbwsvXGUmACGEiZW03g4fPpxnn30WgLZt27Jz504WLFhQYaV/xowZPPfcc8blrKwstFot/fv3x8nJqUxsfn4+cXFxODg4GMcJsCgsojY4OjlWa1rVb7/9lkceeYRFixbRrl07evTowbhx48qU9ba2tjg5ORkfoj///POMHDkSKC6TJ0yYwIYNG+jduzeKohjL+pLfk4WFBVZWVmV+bxYWFlhaWhrXqdVqbGxsjMvTp083xrZu3Zq8vDyeeOIJvv76awA8PT1Rq9U0adLEGHfmzBlWrFhBbGyssawPDQ1l69atLF++nLfffptvvvmG/v37Gx/qt2vXjv3797Nu3brrzmuJ/Px8bG1t6datG9u2baNfv35YWlpW+XdsDnQ6HRs2bJC8mRnJW/li0nNZsT+B36ISSckq7bHVyteJe9v5ck8bH5xta+/3ZcrzVtHDymtJpf82s7XUcOyNARV+bjAYyM7KxtHJsUa691fH6NGjGTJkCNu3byciIoK1a9fy7rvvsnDhQqZMmVLuNlffJJR04W/durVxnaenJ6mpqdVP/FU2b97MnDlzOHbsGFlZWRQVFZGfn8/ly5ext7cvd5v9+/ejKApNmzYts76goAA3NzegeGTnkpuYEl27dpVK/y2yttAQ3syT8GaevDWiFQdiL7HuaDLrjqYQezGXf46n8s/xVNS/QceGrvRv6c2All74N6h4RgEhhKgqd3d3LCwsaNGiRZn1zZs3599//61wO2tr63Jbvi0tLa+7SdPr9ahUKtRqtbHstre2rLC8r+myvjqvDIwZM4ahQ4eWKevnzZtXpqwvyVdJWtu2bWv82cfHByiuXKvVagwGg7GsvzpvJb+fq5fLW1eyXFFZn5eXh729vTHu6u2joqJQFIWQkJAyeSwp69VqNSdOnGDkyJFltuvWrRvr1q2r8Fyo1WpUKhUWFsW3zeX9DdQXkjfzJHmD3MIi1hxOZllkHHvOXTSud7GzZGSYH2Paa2nhW/6DvdpiivNW1e2l0n+bqVSqSp/AGwwGiqw02FlZmPxG4GbY2NjQr18/+vXrx2uvvcbDDz/MrFmzKqz0X/2HV3LTce26q9+ZU6vV143yXtm7KTExMQwePJhHH32UN998E1dXV/79918eeuihSrcreS9x3759aDRlH36UtFzIaPM1T6NW0aGhKx0aujJzcHNOpmSz7kgK648lczQxi93nLrL73EXeXHWMlr5ODGjpTf+WXjTzcjT5e69CiDuDlZUVHTt2NL7yVeLUqVMEBgbW2HErK++lrJeyXghx6xRFYX9sBr9GxvHXwUQuFxaPo6JWQY+mHoztoKVPc0+sLerXoHw3Qyr9olpatGjBypUrTbY/Dw8PkpKSjMt6vZ4jR44QHh5ebnxkZCRFRUXMnz/feKO0bNmyMjFWVlbo9WUHTwoLC0Ov15Oamkr37t3L3XeLFi3Ytavs+5fXLgvTUalUhHg7EeLtxP/1bULcxVzWH0th/dFk9p6/yNHELI4mZvH+hlMEutkVPwBo4UW7gAYyE4AQooycnByio6ONy+fOnSMqKgpXV1cCAgJ44YUXGDduHD169CA8PJy1a9fy119/sWXLltpLdB0mZb0Qoi5Lzc7n9/0JLIuM40zaZeP6QDc7xnbQMqqdHz7OtrWYwrpHKv2iXOnp6YwZM4apU6fSpk0bHB0diYyM5N1332X48OEmO07v3r157rnnWL16NY0aNeKDDz4gIyOjwvhGjRpRVFTEJ598wtChQ9mxY8d1gwI2bNiQnJwcNm7cSGhoKHZ2djRt2pQJEyYwadIk5s+fT1hYGBcuXGDTpk20bt2awYMH8/TTT9OtWzfeffddRowYwfr166Vr/22kdbXjobuDeOjuINJzCth4PJV1R5PZHn2BmPRcvtp2lq+2ncXdoWQmAC+6NnKTp7dCCCIjI8tUIEvexZ88eTLfffcdI0eOZMGCBcydO5enn36aZs2asWLFijt+hhYp66WsF8Jc6PQGNp9IZVlkPJtPpqI3FPfasbFUM7i1D+M6aOkU5Co9QysglX5RLgcHBzp37swHH3zAmTNn0Ol0aLVapk2bxsyZM012nKlTp3Lw4EEmTZqEhYUFzz77bIVP/qH4PcL333+fd955hxkzZtCjRw/mzp3LpEmTjDHdunXj0UcfZdy4caSnpxun7Fu0aBFvvfUW//3vf0lISMDNzY2uXbsyePBgALp06cLChQuN8X379uWVV17hzTffNFl+RdW4OVgztqOWsR21XC4oYuupNNYdTWbTiVQu5BTw855Yft4Ti6O1Bb1CPBnQ0otezTxxkJkAhLgj9erV64bdtqdOncrUqVNvU4rMg5T1UtYLUdedTs1h5cFkftsfz4WcQuP6sAAXxnbQck8bHxxt6ud4BqakUuTlpluWlZWFs7MzmZmZ5Y7oe+7cOYKCgowj+lbGYDCQlZWFk5NTnXjPz5TqY95Kzq+/vz+bNm1i8ODB9W4gFZ1Ox5o1a+pE3gqLDOw6m866o8lsOJZCanbpiKxWGjV3NXZjQMvimQDcHW48zWRdypupSd7Mj6nzVVnZJKpPyvqqqY95k7LevEnezE92vo4/DsSzcONRzueUtty7O1gxup0/Yzr409jTsRZTeGtMed6qWtZLs5gQwmxYWajp0dSDHk09eHN4K6LiM1h3NJn1R1M4d+Eym0+msflkGqrfD9MhsAEDWnozoKU3WleZCUAIIYQQoq5SFIXImEss3RvH6kNJ5On0gAqNWkXvEE/GdtDSq5kHlpr68TDxdpNKvxDCLKnVKtoFNKBdQANeGhhCdGqOcSrAwwmZ7D1/ib3nL/HW6uOEeDsaHwA095GZAIQQQggh6oLU7Hx+uzIo39mrBuULdrejlV02L43vja+rQy2msH6QSr8QwuypVCqaeDnSxMuRJ3s3ISEjjw1XHgDsOX+RE8nZnEjO5qONp9G62tK/RfEDgDa+UogIIYQQQtxORXoDW0+lsXRvHBtPlA7KZ2up4Z42PozrqKWNrwN///03Ho43fl1T3JhU+oUQ9Y6fiy1T7gpiyl1BXLpcyMYTxTMBbDuVRtzFPL759xzf/HsOV3tLWjmqaZySTUt/19pOthBCCCFEvXX+wmWWRcaxYn88KVml4zKFBbgwroOWe0J9jYMy63S62kpmvSSVfiFEvdbA3op72/tzb3t/cguL2HYqjfVHU/jneAoXL+vYdlnNtk8jaB/YgPs6BTCktQ+2VjINoBBCCCHErcrX6fn7SBJL98ax6+xF43pXeytGhvkxrqOWpl7mOyifuZBKvxDijmFnZcHAVj4MbOWDTm9g28kUPloVydEMDftiLrEv5hJv/HWUUe38ua9TAM28pRASQgghhKgORVE4kpDF0shY/ohKJDu/CACVCro38WB8Ry19m3thZSGD8t0uUukXQtyRLDVqejRxJ6eZgQ7dw1l5MJlf9sYSdzGP73ae57ud52kX4ML9nQOl9V8IIYQQ4gYyc3WsjErgl71xHE/KMq73c7FlbAct93bwx8/FthZTeOeSSr8Q4o7n6WjNE+GNeaxnI/6NvsBPu2P553gK+2Mz2B+bwet/HWVUmB/3dw6U1n8hhBBCiCsMBoWIs+ks3RvH2qPJFBYZALDSqBnQyptxHbR0a+SGWi0zJ9UmqfQLIcQVarWKHk096NHUg9SsfH7dF29s/V8cEcPiiBjaBbhwX6cA7mnjK63/QgghhLgjJWXmsTwynmX74oi7mGdcH+LtyLiOWka09aOBvVUtplBcTSr9okadOHGCKVOmEBUVRUhICFu2bKntJAlRJZ5ONmVa/3/eE8uGY6Wt/2+sOsaoMD/u6xxAiLdTbSdXCCFqjZT1QtwZCosMbDyewtLIOLadSuPKTHs4WlswrK0v4zpqae3njEolrfp1jVT6RYWmTJnC4sWLAdBoNPj6+jJkyBDmzJlDgwYNqrSPWbNmYW9vz8mTJ7Gzs6vJ5ApRI8q0/mfn82uktP4LIeoPKeuFEDdyOiWbpXvj+P1AAumXC43rOwW5Mq6DlsEy9lGdJ5V+UamBAweyaNEiioqKOHbsGFOnTiUjI4Off/65StufOXOGIUOGEBgYiMFgICsr68YbXaOwsBArK+keJGqfp2Np6/+OM8Xv/kvrvxDC3ElZL4S41uWCIlYdSmTp3jj2x2YY13s4WnNve3/GdtAS5G5fewkU1VLr8yRkZWVV+1+9UHi54n9F+VWP1eVVLfYmWVtb4+3tjb+/P/3792fcuHGsX7/e+PmiRYto3rw5NjY2hISE8Pnnnxs/U6lU7Nu3jzfeeAOVSsXrr78OQEJCAuPGjaNBgwa4ubkxfPhwzp8/b9xuypQpjBgxgrlz5+Lr60vTpk2rtd17772Hj48Pbm5uPPHEE+h0OmNMQUEBL774IlqtFmtra5o0acI333xj/PzYsWMMHjwYBwcHvLy8mDhxIhcuXLjp35+on9RqFd2bePDFA+3ZOaM3LwxohtbVluz8IhZHxDDww+2M/HwHv0bGkVeor+3kClGn3HHlfoXld67py/ubJGW9lPVCQPFUe/tiLvHi8oN0fPsfpq84zP7YDDRqFX2be7FwUgciXurN9IEhUuE3M7Xe0u/i4lKt9z5UKhWnTp0iODi4BlN1G8zxLXe1GrBvGA6TfitdOa9x8c1BeQLvhgdXly5/2Bpy06+Pm51582m94uzZs6xduxZLS0sAvv76a2bNmsWnn35KWFgYBw4cYNq0adjb2zN58mSSkpLo27cvAwcO5Pnnn8fOzo6cnBz69OlD9+7d2bZtGxYWFrz11lsMHDiQQ4cOGZ/yb9y4EScnJzZs2ICiKOTm5hIeHn7D7TZv3oyPjw+bN28mOjqacePG0bZtW6ZNmwbApEmTiIiI4OOPPyY0NJRz584ZC/qkpCR69uzJtGnTeP/998nLy2P69OmMHTuWTZs23fLvT9RP17b+/7wnlvVHUzgQm8GBK63/I8P8uF9a/4UA7sByv5zyXg24AErjfvDA8tIPbrW8l7IekLJeiOq6kFPA7/sTWBoZR3RqjnF9kLs9YztoGd3OD08nm1pMobhVtV7pB1i+fDmurq43jFMUhcGDB9+GFIkSq1atwsHBAb1eT35+cYvE+++/D8Cbb77J/PnzGTVqFABBQUEcO3aML7/8ksmTJ+Pt7Y2FhQUODg54e3tjMBj4/vvvUavVLFy40HjTt2jRIlxcXNiyZQv9+/cHwN7enoULFxoL+G+//bZK2zVo0IBPP/0UjUZDSEgIQ4YMYePGjUybNo1Tp06xbNkyNmzYQN++fQHK3ER+8cUXtGvXjjlz5hjXffvtt2i1Wk6dOmVshRCiPCWt/92bFL/7v3xfPL/siSP2Yi7fR8TwfUQMYVfe/R8q7/6LO5yU+3WLlPVS1os7j96gsO1UGkv3xvHP8RSKrozKZ2OpZkjr4kH5OjZsIIPy1RO1XukPDAykR48euLm5VSk+ODjY+PTZrM1MLHe1wWDgcs5lyrQHvhBd8X5U17yh8czhW07a1cLDw/niiy/Izc1l4cKFnDp1iqeeeoq0tDTi4uJ46KGHjE/WAYqKinB2dq5wf1FRUURHR+PoWHau8/z8fM6cOWNcbt26dZl3+/bt21el7Vq2bIlGU1qZ8vHx4fDhw8ZjazQaevbsWW7a9u3bx+bNm3FwcLjuszNnzsiNgKgyT0cbHu/VmEd7lN/6/6a0/os72B1X7pdT3hsMBrKys3FydqHM7XQtlfdS1heTsl7cCeIu5rIsMo7l++JJyix9xSjU35mxHbUMDfXFycaMv3NFuWq90n/u3LlqxR85cqSGUnKbWVXwHozBABb6qsVWZ783yd7ensaNGwPw8ccfEx4ezuuvv86TTz4JFHf769y5c5ltri6Ir2UwGGjfvj1Lliy57jMPD48yx72Z7a69MVSpVBgMBgBsbW0rTFfJMYYOHco777xz3Wc+Pj6VbitEea5u/U/LLuDXfXEVtv7f08YHO6ta/0oWosbdceV+eeWywQCWerCwuXFsdfZ7k6SsLyZlvaiv8nV61h1NZuneOHaeKX0tyMXOkpFhfozrqJVGiHpO7jBFtcyaNYtBgwbx2GOP4efnx9mzZ5kwYUKVtw8NDWXlypV4enri5FT1L5d27dqxdOnSam93tdatW2MwGNi6dauxy9+1x1ixYgUNGzbEwkIuDWFaHo7Wxtb/nWfS+WlPTNnW/7+OMbKdH/d1CqC5jxS8QojaI2W9EPXD0cRMlu2NY2VUIpl5xYNdqlRwd2N3xnbQ0r+lF9YW8rrhnaBOfdt9/PHH5a5XqVTY2NjQuHFjevToUenTZVGzevXqRcuWLZkzZw6zZ8/m6aefxsnJiUGDBlFQUEBkZCSXLl3iueeeK3f7MWPG8NlnnzF8+HDeeOMN/P39iY2N5bfffuOFF17A39+/3O0mTJjAvHnzqr3d1Ro2bMjkyZOZOnWqcXCfmJgYUlNTGTt2LE888QRff/019913Hy+88ALu7u5ER0fzyy+/8PXXX8vfnTAJtVrF3U3cubuJO2nZBSzfF8/Pe2LLtP631bpwf2dp/Rf1n5T7dZOU9UKYr8w8HX9GFQ/KdyShdPYTX2cbxnTQMqaDP/4N7GoxhaI21Km7yQ8++IC0tDRyc3Np0KABiqKQkZGBnZ0dDg4OpKamEhwczObNm9FqtbWd3DvWc889x4MPPkh0dDQLFy5k3rx5vPjii9jb29O6dWueeeaZCre1s7Njy5YtzJgxg1GjRpGdnY2fnx99+vSp9Km+nZ0d27ZtY/r06dXa7lpffPEFM2fO5PHHHyc9PZ2AgABmzpwJgK+vLzt27GD69OkMGDCAgoICAgMDGThwIGp1rc9uKeohD0drHuvViEd6BJdp/Y+KyyAqrrj1f8SVd/+l9V/UR1Lu111S1gthPhRFIeJMOkv3xvL3kWQKiopfd7HUqOjfwpuxHbXc3dgdjVoG5btTqRRFUWo7ESV+/vlnvvrqKxYuXEijRo0AiI6O5pFHHuE///kPd911F+PHj8fb25vly5ffYG+3T1ZWFs7OzmRmZl5XKOXn53Pu3DmCgoKwsbnxVBcGg4GsrCycnJzqXeFTH/NWcn79/f3ZtGkTgwcPNu8Bp8qh0+lYs2aN5O02ubb1v0R1W//rYt5Mpb7mzdT5qqxsqivMqdyXsr5q6mPepKw3b/U5b/Hp2cz9ZTOHLzsQezHPuL6ZlyNjO2oZGeaHq71VJXuou+rzeTNl3qpa1teplv5XXnmFFStWGAt+gMaNG/Pee+8xevRozp49y7vvvsvo0aNrMZVCCFFzrm39/3lPLOuOJl/X+n9fpwBa+NbNipwQVSXlvhBCVI/BoLDjzAV+3BXDP8dT0Rs0QB4O1hYMDfVhbActbbUuMtWeKKNOVfqTkpIoKiq6bn1RURHJyclAcbes7Ozs2500IYS4rcp79/+XvbHEpOfyw64Yfth15d3/TgHcEyrv/gvzJOW+EEJUzaXLhfy6L46fdsdyPr20J2CQo8IjfVsxLMxf7gVEherUX0Z4eDiPPPIICxcuJCwsDIADBw7w2GOP0bt3bwAOHz5MUFBQbSZTCCFuq6tb/yPOpvPT7mta/1dJ678wT1LuCyFExRRFYX/sJX7cFcvqw0kUXnlX39HaglHt/Bjb3pfofdsZ3M4PS8s6Va0TdUyd+uv45ptvmDhxIu3btze+31BUVESfPn345ptvAHBwcGD+/Pm1mUwhhKgVarWKuxq7c1fj4tb/FfuL3/2/uvU/VOvChE4BDGjhXtvJFeKGpNwXQojr5RQU8fuBBJbsiuFEcmlPp1Z+TjzQOZChob7YW1ug0+mIrsV0CvNRpyr93t7ebNiwgRMnTnDq1CkURSEkJIRmzZoZY8LDw2sxhTevDo2XKEyo5LzKe1PidvNwtObRno34T/crrf97Yll/NJmDcRkcjMvgjVUWhDVQE5J2mWa+LrWdXCHKVd/KfSnr6ycp68Xtciwxix93x/DHgQQuF+oBsLZQMyzUlwldAgn1d5a/Q3FT6lSlv0RwcDAqlYpGjRphYVEnk1hlJS0Xubm52Nra1nJqhKnl5ha/U2Xuf6fCfF3d+n8hp3Tk/5j0XLYnqxnw8Q66N3FncteGhId4ynQ9ok4y93Jfyvr6rbCwEACNRlPLKRH1Ub5Oz+pDSSzZHcP+2Azj+mAPex7oHMjodv4429Wv0evF7VenStbc3FyeeuopFi9eDMCpU6cIDg7m6aefxtfXl5deeqmWU1h9Go0GFxcXUlNTgeI5aCt7QmcwGCgsLCQ/P7/eTHVToj7lTVEUcnNzSU1NxcXFRW4ERJ3g7lDa+r/1ZArz/9zL0Qw1209fYPvpC2hdbZnYJZCxHbS42JnnFD6ifqkv5b6U9aXqW94MBgNpaWnY2dlJWS9M6tyFyyzZFcPy/fFk5OoAsFCrGNDKmwmdA+ga7Cat+sJk6lSlf8aMGRw8eJAtW7YwcOBA4/q+ffsya9Yssyn8r+Xt7Q1gvBmojKIo5OXlYWtrW+8u9PqYNxcXF7y9vcsdfVqI2qJWq7i7sRtZIQZad+3B0shEftkbR9zFPOasOcH7G04xoq0fk7s1pLmPDPwnak99KvelrC9WH/OmVqsJCAioN/kRtUenN/DPsRSW7I7l3+gLxvV+Lrbc10nL2I5aPB1tajGFor6qU5X+lStXsnTpUrp06VLmi7VFixacOXOmFlN2a1QqFT4+Pnh6eqLT6SqN1el0bNu2jR49ehi7C9YX9S1vlpaW8tRf1HnaBnbMGNycZ/o25c+DCXy3M4bjSVn8sjeOX/bG0amhK5O7NaR/Sy8sNebfKifMS30q96WsL1Yf82ZlZYVarb7heRWiIokZecXl7p5YUrMLAFCpoFdTDx7oEkivZvL6nahZdarSn5aWhqen53XrL1++XC+ermo0mhtWEjUaDUVFRdjY2NSbwrJEfc6bEHWdrZWGcR0DGNtBy97zl1gccZ61R5LZc/4ie85fxNvJhgmdA7ivcwDuDta1nVxxh6iP5b6U9fU3b0JUh8GgsO10Gkt2x7LxeAqGK+N8ujtYMbaDlvs6BaB1tavdRIo7Rp2q9Hfs2JHVq1fz1FNPAaWjpH799dd07dq1NpMmhBD1gkqlolOQK52CXEnOzOen3TH8tCeW5Kx85m84xSebohnSxofJ3RrSVutS28kV9ZyU+0KI+iY9p4Bf98Xz0+5YYi/mGtd3DnLlgS6BDGjpjZWF9KwTt1edqvTPnTuXgQMHcuzYMYqKivjoo484evQoERERbN26tbaTJ4QQ9Yq3sw3P9W/GE70b8/fhZL7beZ6ouAx+P5DA7wcSCNW6MLlrIEPa+GBtIa+yCNOTcl8IUR8oikJkzCV+3BXD34eTKdQbAHC0sWB0O38e6BJAY0/HWk6luJPVqUp/t27d2LFjB++99x6NGjVi/fr1tGvXjoiICFq3bl3byRNCiHrJ2kLDiDA/RoT5cTAug8UR51l1MImDcRk8F5fB26uPc1+nACZ0CcDHWaYjE6Yj5b4Qwpxl5+v4/UACS3bFcjIl27i+jb8zD3QOZGioL7ZW8tBc1L46VekHaN26tXHqnpp2/vx53nzzTTZt2kRycjK+vr488MADvPzyy1hZyXRWQog7T6jWhfe1bZk5uDlL98bx464YkjLz+XRzNF9sPcOAll5M7tqQTkGuZvvOtahbbme5L4QQpnAkIZMlu2P4IyqR3EI9ADaWaoaH+jGhSwBt/F1qN4FCXKPWK/1ZWVlVjnVyMu3UUidOnMBgMPDll1/SuHFjjhw5wrRp07h8+TLvvfeeSY8lhBDmxN3BmifCG/NIj2A2HEvhu53n2X3uImsOJ7PmcDIh3o5M7taQEW39pBVDVEttlvtCCHGz8nV6/jqYyJLdsUTFZRjXN/Z04IHOAYxs54+zrQxeKeqmWq/0u7i4VLm1SK/Xm/TYAwcOLDMvcHBwMCdPnuSLL76otNJfUFBAQUGBcbnkBkan093ydC4l29fHaWEkb+ZJ8maeTJm3viHu9A1x52RyNj/sjuOPg4mcSM5mxm+HmbvmOGPa+3F/Jy0Bt2kU4vp63kydr7r6+6nNcl8IIarrTFoOS3bFsnxfHFn5RQBYalQMbOXDA50DpOebMAu1XunfvHmz8efz58/z0ksvMWXKFOOovRERESxevJi5c+felvRkZmbi6upaaczcuXN5/fXXr1u/fv167OxMc9O7YcMGk+ynLpK8mSfJm3kydd66WULbtrA7VcX2ZDXp+UV8syOGb3ecp2UDhe7eCk2dFW7HdMP19byZKl+5ubk3DqoFda3cF0KIa+n0BtYfTWHJ7hh2nkk3rvdvYMv9nQMY016Lh6NMbyvMR61X+nv27Gn8+Y033uD999/nvvvuM64bNmwYrVu35quvvmLy5Mk1mpYzZ87wySefMH/+/ErjZsyYwXPPPWdczsrKQqvV0r9//1vuiqjT6diwYQP9+vWrd/PbSt7Mk+TNPNV03u4F9AaFbacv8MOuWLZHp3PkkoojlyDY3Y4JnQMY2dYXRxvTFzP19byZOl/V6UZ/O9VEub9t2zbmzZvHvn37SEpK4vfff2fEiBHGz6dMmXLduAGdO3dmuSLNkgABAABJREFU165dt5YZIUS9kpCRxy97Yvllbxxp2cW9etUq6B3iyYQugfRo4oHmdjzVFsLEar3Sf7WIiAgWLFhw3foOHTrw8MMPV3k/s2fPLrcl/mp79+6lQ4cOxuXExEQGDhzImDFjbngsa2trrK2vf7pnaWlpshtQU+6rrpG8mSfJm3mqybxZAv1b+dK/lS9n03L4PiKG5fviOXshlzdXn+D9DacZ3d6fSV0b0tjTwfTHr6fnzVT5MoffjanK/cuXLxMaGsqDDz7I6NGjy40ZOHAgixYtMi7LgL1CCLjyAPtUGkt2x7DpRCoGpXi9u4M14ztqua9zAH4uMnONMG91qtKv1WpZsGDBdS3tX375JVqttsr7efLJJxk/fnylMQ0bNjT+nJiYSHh4OF27duWrr76qVpqFEEJAsIcDs4e15PkBzfh9fzyLI2KITi1+EPB9RAzdm7gzqWtDeod4SiuJMDJVuT9o0CAGDRpUaYy1tTXe3t43lU4hRP1zIaeAZZFx/LQ7lvhLecb13Rq5MaFzIP1bemGpUddiCoUwnTpV6f/ggw8YPXo069ato0uXLgDs2rWLM2fOsGLFiirvx93dHXd39yrFJiQkEB4eTvv27Vm0aBFqtVzcQghxsxysLZjYtSEPdAlk55l0vtt5no3HU9h++gLbT1/Av4EtE7sEMq6jFhc7aWm905mq3K+KLVu24OnpiYuLCz179uTtt9/G09OzwngZtPfmSN7M052SN0VR2HP+Ej/vjWf9sRR0+uJmfScbC0aF+XJfRy3BHvbFGxr06Ax1ezDRO+W81TemzFtV91GnKv2DBw/m9OnTfPHFFxw/fhxFURg+fDiPPvpotZ74V1ViYiK9evUiICCA9957j7S0NONn0hoghBA3T6VScVdjd+5q7E7cxVx+3B3D0r1xxF/KY+7fJ3h/wylGtPVjcreGtPCVadnuVLer3B80aBBjxowhMDCQc+fO8eqrr9K7d2/27dtX7ut6IIP23irJm3mqr3nLLYJXv/+HHSlqkvNKe5sFOijc5WUgzK0IK85yYu9ZTtRiOm9WfT1vIHm7kaoO2lvrlf5Dhw7RqlUrYwu7v78/b7/9doXxR48epVmzZlhY3HrS169fT3R0NNHR0fj7+5f5TFGUW96/EEII0LraMWNQc57t25Q/oxL5bud5jiVlsTQyjqWRcXRq6MqkboEMaOktXSnvALVR7o8bN874c6tWrejQoQOBgYGsXr2aUaNGlbuNDNp7cyRv5qk+5k1RFPbHZrAsMp5VhxIpNBRX9m0t1QwL9eG+jlpamvlD5/p43kpI3qqmqoP21nqlPywsjOTkZDw8PKoU37VrV6KioggODr7lY0+ZMoUpU6bc8n6EEELcmI2lhrEdtYzp4M++mEt8t/M8a48ks+f8Rfacv4iXkzUTOgdyX6cAmQqpHqvNcr+Ej48PgYGBnD59usIYGbT31kjezFN9yFtyZj4r9sezYl88Zy9cvrJWRRNPeyZ2bciIMD+cbMw7j9eqD+etIpK3G++jKmq90q8oCq+++mqVu8oVFhbWcIqEEELUJJVKRYeGrnRo6EpKVj5Ldsfy0+5YUrIKeH/DKT7ZdJohrX2Y3K0hYQENaju5wsTqQrmfnp5OXFwcPj4+Jt+3EOL2KyjSs/F4Kssi49h2Ks04Ar+dlYaBLb3wL4zlyXHdZNYOcceq9Up/jx49OHnyZJXju3btiq2tTJshhBD1gZeTDc/1a8qT4Y35+0gS3+08z4HYDFZGJbIyKpFQf2cmdW3IkDY+2Fhqaju5wgRqotzPyckhOjrauHzu3DmioqJwdXXF1dWV2bNnM3r0aHx8fDh//jwzZ87E3d2dkSNH3nQ+hBC172hiJr9GxrMyKoGM3NIBzTo2bMCYDlqGtPbBSq2wZk0sKpXMHCPuXLVe6d+yZUttJ0EIIUQts7JQM7ytH8Pb+nEoPoPFO2P461AiB+Mz+e+vB5mz5jjjO2l5oEsg7na1XnSJW1AT5X5kZCTh4eHG5ZJ38SdPnswXX3zB4cOH+f7778nIyMDHx4fw8HCWLl2Ko6OjydMihKhZly4XsjIqgV8j4zmWVPo+s7eTDaPb+3Fvey1B7vbG9fVx9HchqkvunIQQQtQpbfxdmD/WhZmDQ/hlbxxLdsWQmJnPZ5vPsGDrWfqGeBAiDTbiKr169ap0AN5169bdxtQIIUxNb1DYdjqNXyPj+OdYKoV6AwBWGjX9Wnoxpr0/3Zt4oFFL4SBEeaTSL4QQok5yc7DmifDGPNIjmH+Op7B4ZwwRZ9NZdyyVdViw7avdPNKzMf1aeMmNnhBC1ENn03L4dV88v+2PJyWrwLi+pa8TYztoGRbqSwN7eU9fiBuRSr8QQog6zUKjZmArHwa28uFkcjbfbD/Div3xHIjL5NEf9xHkbs/D3YMY3c5f3vsXQggzl1NQxOpDifwaGU9kzCXj+gZ2lowI82NMey0tzHyqPSFuN6n0CyGEMBvNvB15e0RLWhNDon0Tftobz7kLl3n59yO8v/4Uk7o2ZGLXQFyl5UcIIcyGoijsPneRXyPjWXM4iTydHgC1Cno182RMe396N/fE2kIe7ApxM6TSL4QQwuw4WcH4fk14sk9TlkXGsXD7ORIy8vjgn1N8sTWasR20PHx3MAFuVZsWTgghxO2XmJHHin3xLN8fT0x6rnF9sLs9YzpoGdXODy8nm1pMoRD1g1T6hRBCmC17awsevCuIiV0CWXMkma+2neFIQhbfR8Tw464YBrby5j89GtFW61LbSRVCCAHk6/SsP5bCr5Fx/Bt9gZIxOO2tNAwN9WVMB3/aBTSQKfaEMCGp9AshhDB7Fho1w0J9GdrGh4gz6Xy1/SxbTqax5nAyaw4n0ynIlUd6BBPezBO1DPonhBC3laIoHE7I5NfIeP6ISiArv8j4WecgV8Z20DKotTd2VlI1EaImyJUlhBCi3lCpVHRr7E63xu6cTM7mq21n+fNgAnvOXWTPuYs09nRgWvcgRoT5ybuhQghRw9JzCvj9QALL98VzIjnbuN7X2YZ72/szur0/gW72tZhCIe4MUukXQghRLzXzdmT+2FBeGNCMRTvP8dOuWKJTc5i+4jDvrT/FlG4NeaBzIM52lrWdVCGEqDeK9Aa2nEzj131xbDyeSpGhuP++lYWagS29GdPBn26N3GWqVSFuI6n0CyGEqNe8nW2YMag5T4Y35pc9cXy74xxJmfnMW3eSzzZHM66jlofuDsK/gQz6J4QQNys6NZtfI+NZsT+BCzkFxvVt/J0Z00HLsDa+8pBViFoilX4hhBB3BEcbS6b1CGbKXQ3562AiX207y4nkbBbtOM/3ETEMae3Df3oE08rPubaTKoQQZiErX8eqg0n8ui+OA7EZxvVu9laMDPNjTActzbwday+BQghAKv1CCCHuMJYaNaPa+TMyzI/tpy/w1baz/Bt9gT8PJvLnwUTuauzGtO7B9GzqIaNHCyHENQwGhV1n0/l1Xzx/H0kiX2cAQKNWEd7MkzEd/Alv5omVhbqWUyqEKCGVfiGEEHcklUpFj6Ye9GjqwZGETL7efpZVh5LYEZ3Ojuh0QrwdmdY9mKGhvnLzKoS448VdzGXF/niW74sn/lKecX1jTwfGdvBnRJgfno42tZhCIURFpNIvhBDijtfKz5mPxofx4sAQvv33HL/sieVEcjb//fUg89adZOrdDRnfKQAnG3kfVQhx58jX6Vl7JJlf98WxIzrduN7R2oKhbX0Z096ftloX6RUlRB0nlX4hhBDiCj8XW169pwVP927Ckj0xLNpxnuSsfOasOcEnG6O5r3MAD97VEB9n29pOqhBC1AhFUYiKy+DXffH8FZVIdkGR8bO7Grsxpr2WAS29sbWSaU+FMBdS6RdCCCGu4Wxnyf+zd9/xUVRrA8d/syWb3klP6L2HGhSQKmChqYBeLChXXyvXjl5FLKBiAQug1wJ2URQLCES60nuTHkhCGgRIL1vm/WOTDSHZkMCGZJfn+9EPO7PPnDlPdmdnzsyZMw9e14x7r23MLztS+HjdMY5k5PLx2mN89lcCN3eMYGKfJrQO963rqgohhENkF8Mnfx1n4Y4UjmTk2uZH+ntwa9coRsdGER0oTzkRwhlJo18IIYSww6DTclu3aG7pEsXqQxl8tOYYmxLO8NOOk/y04yR9WjTg/j5N6NU0SLq3CiGcRmZuEYfSczmckcPBtBwOpmWz/YQWC4cAMOg0DGsfzq1doujZJAiNRn7fhHBm0ugXQgghLkKjUejfKpT+rULZlXSOj9cd4489qaw9dIq1h07RNsKXf/dpwg3tw9FpZdA/IUT9kFVg5HB6DgfTczicnsvBtBwOZ+RwOre4kmiFjlF+jOkWw40dw2UMEyFciDT6hRBCiBroGO3Ph7fHkpiZz6d/HWPB1mT2pWTz2Hc7eXPpQSZc25ix3aLxMsguVghxZeQWmThc2rBPz+FQyeu07EK7y0QHetAixIcWYT40DfLg7NGd3D26B3q9NPaFcDVyRCKEEEJcgpggT6YOb8ekgS34auMJ5m84zslzBbzy+35m/XmIf/VsyN29GhHiK4+wEkI4RqHRzJEM6xX7QxllV+9Pniuwu0y4nzstQn1oEepd8q8PzUK8y52YNBqNLEnZeQUyEELUBWn0CyGEEJchwMuNRwY0Z2KfJvy0/SSfrDvGsdN5zF59lE/WJTCicwT/7tOEZiE+dV1VIYSTKDKZOXYqz3bF3to9P4cTZ/JR1cqXaeBjKNewbxHqQ/NQb+mmL4SQRr8QQgjhCO56Lbf3iGFst2ji/0nn47XH2HbiLAu2JrNgazIDWoUwsU8TejQOlEH/hBAAGM0WTmTmcei8++0PpuVwPDMfs6Xy1n2Ap76sYR/mQ4sQa0M/wMvtCtdeCOEspNEvhBBCOJBGo3B92zCubxvGthNn+HjtMZbvT2fFgQxWHMigY5Qf/+7TlCHtwtDKiNhCXBXMFpWkM/m2K/YH03M5nJ7D0VO5GM2VN+593HXnXbUvu4If7O0mJw6FEDUijX4hhBCilnRpGMhH4wM5diqXT/5K4MdtyexKzuKhb7YTE+jJfb0bc2uXaDzctHVdVXGFac1FUJwHaiVdrxUt6M8bC6I4z35Bigb0HpcYmw/Y6SuOAm6elxSrsRTbzw3AzavstbEAVIv9OpeLLQTV7JhYvSeUNpxNRWAxVStWYzFWmZtF687JrCIOZ+RwOOUsCelnOZSRy7FTuRSZyudZiBsqGjzdtLQOcadlA3eah/jQLNSb5iFehPq4lzXude6gKfmdMBWDxWi/vufHmo1grmyk/hJaA2itzQFFNVX9uZ0Xi9kE5qIqynUDrb7msRYzmOwPPohGDzq3mseqlqpzK1euBUz2x0hAowOdoaRcFYz5jomt0XZfSay93Orhb0TNtvsCUKv4Dtez34iLxuo87L9Xi6TRL4QQQtSyJg28mTayPY8PasEX64/zxcYTJJ7J58Vf9vFu/CHG92zI7d0i67qa4gp5felBXtg9EXZX/v42t268HvgyiqKgUWBe6nDc1cobTQfdOzIz6l00ioKiwOtHR+Btzqo0NtmjFR+1/BSNAoqiMGnvKPyL0yqNzfRozFddfkCjWHuvjNtyK4H5xyqNzXWP4Jd+S9EoCqrFTJ/9r6HfdV+lsUZDAFtu24pOo0GrUWj5x1i80zZWGqvqPDgz6YQ1VqvgseBfaI/GVxoLwEvn5f3zv2H/L/Zjn0spawD8Ngl2fWM/9qmj4BUMQLuT36Cfca/d0Ost73O4OAiAybqveV232PqGjgpH3RuHLCayRSyR/h5o1rwOa16Hf+wUPHElRHaxvt40B+JftF/fu36Hxr2tr7fNgyVP2o+9fQG0uB6AqDMb0M+YYD/21nnQdqT19YHf4Ie77ccOnw2d77C+ProCvrnNfuywt6D7ROvrE+th/o32Ywe9DNc8Zn2duhP+199+bN9nod9kAHwKU9DPaGg/ttcjMPhV6+usJJjVwX5st/vghretr/MzYUZT+7Edb4eRc6yvjfkwLcJ+bJvhcNsXZdNVxTYfDHf8YJvUzWxt/4RCw2vhnsVl0zPbW+tdmYjO8O/VZdMf9oCsxMpjG7SChzaVTf+vH5w6UHmsXwz8Z0/Z9OdDIWVH5bGeQfB02W+N9rsxkLi+8li9JzyfWja9YDwcXl55LFyR3wiWPQdbPrEf+9hu8K7is60l0ugXQgghrpBgbwOPD27JA9c15cdtyXyyLoHEM/m8t/IIH609RpcgDa1P59Ei3L+uqypqUVpWFVc9sT5bfcvxs7ZpiwGw05v7bH4xf+wta7hPNVjwthObmVfMlxtP2KbvM5jwryL23T8P2aYHuRURqKk89lxBMc//vNc2/YubQpSd2OxCE7f/r6yh8J1bFj3txBYYLXR59U/b9Gf6U/SvolNM11fj0WoUdBoNrxpP0c9+KHd/tgWz3gOtRmFi5mmuqSL2zaUHKDIEoqDSPUuhcRWxBUYLeq1C0wbeNFW84az92J5NgiDQ036AEEI4iKKq9sYAFdWVnZ2Nn58fWVlZ+Pr6XlZZRqORJUuWMGzYMJd7Tqrk5pwkN+ckuTkHs0Vl6d40Pl57lF3J1isQd/aM4eUR7S+7bEfum4Rj/577T54lPj6e2K5d0Wi1WFSwqCqqqmK2gAUNZo2bbb5izEdVVSyqisVSGgtmVcWCglHjbn3foqIxFdjet6iqrQyLRcWsKhg1hpKyQGMqQC1Z74WxFhSKFAMWFVRVRWsusMWVK9uiYlaxxZrNFs6kJREcFIQFMJlVzKqKyaJitlj/zVfdbNMaUyGqxVIybcGslsWZLSq5FoPt72agGA32uwQX4F6D2LIzKW4Y0WK/m6+9WK1GoWGgJ81CvGkW4kPzEG+aRQbTMNgHvVZTjW74HqApOeNRky77tdC932g08sfiXxk6aID931Un7d5vNBpZsvh3hg3qZz83J+3eb9sfDuxrPzcn7d5vy21QP/S6Ks72OWH3fqPZ7LDjmOrum+RKvxBCCFFHtBqFGzqEM6x9GOuPZDD9p83c06uKLqjCJTQP8eZwgIGeLaOd/sTVhawH6qkMG3aNQ3JTLzgJUPavxfqvueJ8i4Wy98stZ6kkvmR+6bTZznyLSrHRRNLxBIb0iqV1hD9NGnhhqKoxonMDqjmifm3FavVlDeqLUBWdtVFUnc9Nqys7AeDIWI22fMPMUbGKpvq5aTQ1KFepnVioeWx1t7calVuDnig1idXX4L52vUf1czv/pIkjY3UGwHDRsGrHmqs42VBLpNEvhBBC1DFFUejeKJCJrSxEBdTNID9C1EeKoqDTKlTVtr5SrCc0jjKsQ7jLnawRQrg2O3dRCSGEEEIIIYQQwtnJlX4HKB0WITs7+7LLMhqN5Ofnk52d7XJnkSU35yS5OSfJzfk4Oq/SfZIM3eMYsq+vHsnNOUluzklyc06OzK26+3pp9DtATk4OANHR0XVcEyGEEKK8nJwc/Pz86roaTk/29UIIIeqri+3rZfR+B7BYLKSkpODj44Oi2Hn2TTVlZ2cTHR1NUlKSy422LLk5J8nNOUluzsfReamqSk5ODhEREWg0cjff5ZJ9ffVIbs5JcnNOkptzcmRu1d3Xy5V+B9BoNERFRTm0TF9fX5f7gpeS3Kpn3rx53HPPPSQkJNCoUSOHlHn33Xfz448/kpubW+NlLze3muRz3XXXAbB69epLXl9NyHfSOblqbo7MS67wO47s62tGcnMepftncHxuiqIwZcoUXnrppXLr2rJlC127dnXYeqrD1T6380luzslRuVVnXy+n/oUQQgghhBBCCBcljX4hhEtTVZWCgoK6roYQQgghhBB1Qhr99YzBYGDKlCkYDIa6rorDSW61Kz8/nyeffJLGjRvj7u5OYGAgXbt25dtvv60Qe+TIEYYNG4a3tzfR0dE88cQTFBUVlYs5c+YMDz74IK1bt0aj0dCxY0eef/75cnHHjx9HURTmzZtXYR2Koti689mjqipvvvkmDRs2xN3dndjYWP74449KY7Ozs235ubm5ERkZyaRJk8jLy6uw3ocffpi5c+fSunVrDAYD8+fPr7TM8z+3V155BZ1OR1JSUoW4CRMmEBQURGFhIQDff/89gwcPJjw8HA8PD1q3bs2zzz5bri6LFy9GURS2bNlim7dw4UIUReGGG24oV36HDh0YPXp0lX+rmqoP38na4qq5uWpeoiJX/qwlN+f12GOPVTu3tLQ07r//fqKionBzc6Nx48ZMnToVk8lUreXPnj3LPffcQ2BgIF5eXtx0000cO3asQtxnn31Gx44dbcc1I0eO5J9//rG9X519bennds011zh8X1vXXPk7Kbk5mCqEqJc+//xzFVATEhKqFX///fernp6e6jvvvKOuWrVK/f3339XXX39dff/9920xd911l+rm5qa2bt1afeutt9Q///xTffHFF1VFUdSpU6fa4goKCtQOHTqoXl5e6ltvvaUuX75cfeGFF1SdTqcOGzbMFpeQkKAC6ueff16hPoA6ZcqUKvOZMmWKCqj33nuv+scff6gff/yxGhkZqYaFhal9+/a1xeXl5amdOnVSg4OD1XfeeUf9888/1VmzZql+fn5q//79VYvFUm69kZGRaocOHdRvvvlGXblypbp3796L/v3S09NVg8GgPv/88+XmZ2Zmqh4eHupTTz1lm/fKK6+o7777rrp48WJ19erV6ty5c9XGjRur/fr1s8Xk5OSoer1enTZtmm3eAw88oHp4eKheXl5qcXGxbb2KoqizZ8++aB2FEEIIR6vp8UZqaqoaHR2tNmzYUP3oo4/UP//8U33llVdUg8Gg3n333eVi7R0LREdHqxMmTLDt+0NCQtTo6Gj17Nmztthp06apgDpu3Dh18eLF6hdffKE2adJE9fPzUw8dOqSqquxrhaguafQLUU/VdCfcrl07dcSIEVXG3HXXXSqgLliwoNz8YcOGqS1btrRNz507t9K4N954QwXU5cuXq6p6eY3+s2fPqu7u7urIkSPLLff333+rQLlG//Tp01WNRqNu2bKlXOyPP/6oAuqSJUvKrdfPz089c+ZMlX+Lytx1111qSEiIWlRUVC5njUZj93OwWCyq0WhU16xZowLqrl27bO9de+21av/+/W3TzZo1U5966ilVo9Goa9asUVVVVb/++msVsB3ACCGEEFfSpVxk8Pb2Vk+cOFFu/ltvvaUC6r59+2zz7B0L2Nv3v/rqq6qqWo8RPDw8yl1oUFVVTUxMVA0Gg3r77bfb5sm+VoiLk+79QriI7t2788cff/Dss8+yevVqu/exK4rCTTfdVG5ehw4dOHHihG165cqVeHl5ccstt5SLu/vuuwFYsWLFZdd3w4YNFBYWcscdd5Sb36tXLxo2bFhu3u+//067du3o1KkTJpPJ9v/111+PoigVRvnv378/AQEBNa7TY489RkZGBj/88ANgfUTXnDlzuOGGG8o9ceDYsWPcfvvthIWFodVq0ev19O3bF6Bct8MBAwbw999/U1BQwIkTJzhy5Ahjx46lU6dOxMfHA/Dnn38SExND8+bNa1xfIYQQ4kr7/fff6devHxEREeX2yUOHDgVgzZo1Fy3D3r5/1apVgPUYoaCgwHbcUSo6Opr+/fuXOw6Rfa0QFyeNfiFcxHvvvcczzzzDokWL6NevH4GBgYwYMYLDhw+Xi/P09MTd3b3cPIPBYLtfHSAzM5OwsLAKz6IOCQlBp9ORmZl52fUtLSMsLKzCexfOS09PZ/fu3ej1+nL/+/j4oKoqp0+fLhcfHh5+SXXq3LkzvXv35sMPPwSsBzbHjx/n4YcftsXk5ubSu3dvNm3axKuvvsrq1avZsmULP/30E0C5ky0DBw6kqKiIv/76i/j4eIKDg+ncuTMDBw7kzz//BKwnUAYOHHhJ9RVCCCGutPT0dH777bcK++S2bdsCVNgnV8bevr/02KD038r25xEREeWOQ2RfK8TF6eq6AkIIx/Dy8mLq1KlMnTqV9PR021X/m266iQMHDtSorKCgIDZt2oSqquUa/hkZGZhMJoKDgwFsJw8uHASwOicFgoKCAOtgQBdKS0srd2U9ODgYDw8PPvvss0rLKq1PqQtPVtTEo48+yq233sr27dv54IMPaNGiBYMGDbK9v3LlSlJSUli9erXt6j7AuXPnKpTVo0cPvL29+fPPPzl+/DgDBgxAURQGDBjA22+/zZYtW0hMTJQDESGEEE4jODiYDh068Nprr1X6fkRExEXLsLfvb9asGVB2jJCamlohLiUlpdx+X/a1QlycXOkXwgWFhoZy9913M27cOA4ePEh+fn6Nlh8wYAC5ubksWrSo3PwvvvjC9n7petzd3dm9e3e5uF9++eWi6+jZsyfu7u58/fXX5eavX7++3K0GADfeeCNHjx4lKCiIrl27Vvj//BMEl2vkyJHExMTwxBNP8Oeff/Lggw+WO4lQ+vrCEVc/+uijCmXp9Xr69OlDfHw8K1eutJ086N27Nzqdjv/+97+2AxMhhBDCGdx4443s3buXpk2bVrpPrk6j396+/7rrrgMgLi4ODw8Pvvrqq3JxycnJrFy5stx+U/a1QlycXOkXwkX06NGDG2+8kQ4dOhAQEMA///zDl19+SVxcHJ6enjUq68477+TDDz/krrvu4vjx47Rv356//vqLadOmMWzYMNvZckVR+Ne//sVnn31G06ZN6dixI5s3b+abb7656DoCAgJ48sknefXVV7nvvvu49dZbSUpK4qWXXqrQ7W/SpEksXLiQPn368J///IcOHTpgsVhITExk+fLlPPHEE/To0aNGOdqj1Wp56KGHeOaZZ/Dy8qpwP2GvXr0ICAjggQceYMqUKej1er7++mt27dpVaXkDBgzgiSeeALD93Tw8POjVqxfLly+nQ4cOhISEOKTuQgghRG17+eWXiY+Pp1evXjz66KO0bNmSwsJCjh8/zpIlS5g7dy5RUVFVlrF169Zy+/7nn3+eyMhIHnzwQQD8/f154YUXeO6557jzzjsZN24cmZmZTJ06FXd3d6ZMmVKuPNnXClE1afQL4SL69+/Pr7/+yrvvvkt+fj6RkZHceeedPP/88zUuy93dnVWrVvH8888zY8YMTp06RWRkJE8++WSFHe3bb78NwJtvvklubi79+/fn999/r9bV95dffhkvLy9mz57Nl19+SatWrZg7dy5vvfVWuTgvLy/WrVvH66+/zscff0xCQgIeHh7ExMQwcOBAh17pBxgzZgzPPPMM48ePx8/Pr9x7QUFBLF68mCeeeIJ//etfeHl5MXz4cL7//ntiY2MrlFV68NG8efNyAxQOHDiQVatWSXdDIYQQTiU8PJytW7fyyiuvMGPGDJKTk/Hx8aFx48YMGTKkWgPpfvrpp3z55ZeMHTuWoqIi+vXrx6xZswgMDLTFTJ48mZCQEN577z2+//57PDw8uO6665g2bVqFAflkXytE1RRVVdW6roQQQtQn77//Po8++ih79+61DUwkhBBCCCGEM5JGvxBClNixYwcJCQncf//9XHPNNRXGNBBCCCGEEMLZSKNfiHpOVVXMZnOVMVqt9rJGrHd1ZrOZqn7qFEVBq9XSqFEj0tLS6N27N19++WWljxQSQgghXJEcbwjhumT0fiHqufnz51d4Fu6F/69Zs6auq1mvDRgwoMq/X9OmTQE4fvw4hYWFxMfHS4NfCCHEVUWON4RwXXKlX4h6LjMzk4SEhCpjWrZsiY+PzxWqkfM5ePAgOTk5dt83GAy0b9/+CtZICCGEqF/keEMI1yWNfiGEEEIIIYQQwkXJI/scwGKxkJKSgo+Pj9znJIQQol5QVZWcnBwiIiLQaORuvssl+3ohhBD1TXX39dLod4CUlBSio6PruhpCCCFEBUlJSURFRdV1NZye7OuFEELUVxfb17tko3/27NnMmDGD1NRU2rZty8yZM+ndu7fd+DVr1vD444+zb98+IiIiePrpp3nggQeqvb7Se5uSkpLw9fW9rLobjUaWL1/O4MGD0ev1l1VWfSO5OSfJzTlJbs7H0XllZ2cTHR0t9986iOzrq0dyc06Sm3OS3JyTI3Or7r7e5Rr933//PZMmTWL27Nlcc801fPTRRwwdOpT9+/cTExNTIT4hIYFhw4YxceJEvvrqK/7++28efPBBGjRowOjRo6u1ztJufr6+vg45EPD09MTX19clv+CSm/OR3JyT5OZ8aisv6YruGLKvrx7JzTlJbs5JcnNOtZHbxfb1Ltfof+edd7j33nu57777AJg5cybLli1jzpw5TJ8+vUL83LlziYmJYebMmQC0bt2arVu38tZbb1W70e9oWnMRFOeBWsmXQNGC3r1sujjPfkGKBvQelxibD9gb41EBN89LitVYiu3nBuDmVfbaWACqxX6dy8UWglrFs2VrEqv3hJINRzUWYjGbUFUViwoqKqqK9X9UVJ0nFqwbr2o2Vp2bzgNK77UxFYPFaL8ONYp1B4225rFmI5iL7cdqDaC1/kQoqqnq3M6LxWwCc1EV5bqBVl/zWIsZTIX2YzV60LnVPFa1VJ1buXItYCqoolwd6Awl5apgzHdMbI22+0pi7eVWD38jarbdF4BaxXf4CvxGYCoCi8kxsa63SxZCCCHEBY5k5JJWxWFfbXCpI4zi4mK2bdvGs88+W27+4MGDWb9+faXLbNiwgcGDB5ebd/311/Ppp59iNBorPftSVFREUVFZQyU7OxuwNvyMxioaXNUw4N11rM2fCLsrf/8vJZb/aJ9DURQUYLXxdjyovNG0Q2nLI4ZXoCT2t4K78Ce70tgDmmY85PU2AArwVe5EwtSMSmNPaKL5P7/ZtuPY2VkP0dCcWGlshiaE+4M+t559UlWmnZ6Gftd9lcZmKb6M8fsaVBUVeDP3OTqa91YaW4CBQe7fogIWFd4qfpVr1O2VxgJ0VBagqtbYt3mb65VNdmPbFn1GnmptNL2ln8st2rV2Y2ML53IG6xWfV/Tfot99r91Y40Pbwd/a20Sz4iW0Gz+0H/vvv6BBK2vs2jfRrpthN9Z0z3LUiFhr7IYP0K6caj/2X4tQG15rjd36Kdplz9iPve0b1OaDMRqNRJ3ZgH7GBPuxoz5FbT0cAOWfX9D9ZP/vYLrxfdSO46yxh5ejW3C73Vjz9W9g6WotSznxF7qvRtiP7T8FS9wj1tiU7eg+H2w/tvdTWPo8g9FoxKcwBf2MhvZjez6EZUDJ3/RcIvoPY+3HdpmAZcib1om80+hntrIba+kwFvNNH1gnivOqrIOl1c2YR39mm9ZPi7Af23Qg5rHf2X6LdDNbWRvHlcXG9MI8/lfbtG5me5T8zMpjwzthnvBnWeyH3VGykiqNVYNbYrr/77LYj69DOX2w8li/aEwP77BNaz8bgiZ1Z+WxnkGY/nPQlpvm29sgaUPlsXpPTE+X/S5pv7sDzdE/K40FMD5/uix24UQ0B361H/vUCdtJAu1vj6LZ/Z392EkHwCvYWt+lz6Ld9pndWNP9m63LXOZ+xLZuB5UjhBBCiMtzJq+Y33al8NP2ZHYlZxEbpMH+kbXjuVSj//Tp05jNZkJDQ8vNDw0NJS0trdJl0tLSKo03mUycPn2a8PDwCstMnz6dqVMrNqyWL1+Op6dnhfk1cTpbW+WnUmyycKqg7MqWasDaSq9EkdlC8rmyq51mg2o/1mTh6Kmyq3wmg6XK2P2pZc88L3Izg53BIovNFnYkZZ0Xi91Yk0XlQFpZuQVVlKuqlMutSG8BbeWxAFkFZVfXTHq1yljLJT7EUlWr7lYz6sO1mNyDaeAO9xQn0K+K2HVr15LjcQyAlqmHsd90hL//Xs85L+v3u1n6AdpWEbtx4yYy91lP/DQ+tY8OVcRu3bqV9MPWv9vFhq7asX0HKQnWE2QRZ3fQrYrY3bt3k3TSD4DQrJ30rCJ23759JGQsASAo5x+urSL2wIEDHDlrjfXPO0bfKmIPHz7MwVxr7MXudj527Bj7i6yxHkWnsH8qARJPnGD3EmusmzGboVXEJicns6MkVmsu4sYqYlPTUtlaEgswvIrYjFOn2HRerNlstvuTcubMGf4+L3ZIcTEGO7FZWVmsPS92UEEB9n7tcnJzWXVebL/cXOx1hi4oKCD+vNg+WVkE2IktLi5m6XmxZ8+eJdhOrNlsYsl5sT1OnSLMTixQLrZrWiqRVcQuW7Ycs9b6l+qcnEzFG8fK/PnnnxTrrdl3SDpB4ypi161bB4YGxMfHVxFVffn5V/gyghBCCCFsikxmVh3IYOH2k6w6kIGppJGh1ShYsI68f6Uo6pVcWy1LSUkhMjKS9evXExcXZ5v/2muv8eWXX3LgwIEKy7Ro0YJ77rmHyZMn2+b9/fffXHvttaSmphIWVvEwsbIr/dHR0Zw+ffqy7/M7nJbFhrUr6d69Bzqdrqw7ecn7KlosOjdKPzWNMd/2+sJYCwoWnbtthmLMRy2ZUCnrog6gqhosOndbWYopH1VVy9Z7XiyqglnnYfuiKqYC29V5a6y1EiqgomDWeqCiYjab2bt9Cx07tMVNpwPFev+JoljPL2gUBYveEwUFjQJacyEKqvV9xfq+AihYl1H1ntZ5CmhMxWgwl8SWxJ33GjcvNKXlmItQVEv5Ms+rh6L3RNGUzDcXo2A+L64kpqS+ipsniqJgMpn4dclSYlp3JDXLyIkzeSSdLSDpTAGJZ/MpMlkoxA215CyGHhM6rA1qrUYhws+dmEBPYgI8iA7yJKpBAA2DvIkK8ECPydoV355yXfaLaxB7ke79OgNodBiNRv5c/gcDr+uLXm+n+VgSC1i7L5uq22W/JrEX6bKv1VvjaxBrNBqJX76MQdf1tp/b+eWqFrtXzYHa696v0Vo/u1JVdcMviTUajcTHxzOo7zXo9TrMZgsms4lyv/iKpqwOUHVuF8aaCsHe7kNRyte3RrFFVXfv13tgMplYv349vbrHotNWcQbv/NsRzMXW74UjYnXuZV32HRhrQsv6DRvp1asXOl3V5+QVRUGn06GtIv/s7GyCg4PJysq67H2TsP49/fz8Lvr3NJvNF+1lYTQaWbt2LX369HHJe1VdLTc3Nzc0Gg1Go5ElS5YwbNgwl8mtlOTmnCS3+kdVVXYkneOn7cn8tiuVrIKy/UG7SF9GdY5iWNsGbFq7wiG5VXff5FJX+oODg9FqtRWu6mdkZFS4ml8qLCys0nidTkdQUFClyxgMBgyGitfD9Hr9ZX9wzcP8OOxtoFWjiGqWVXkd6yOj0YiapGdw52ZOtfFWh9FoxM9DzzVtGlXIzWJRSc8pJOF0Hicy8zmemcfx817nGi0cOqty6GweUNqYs3ZL1moUIv09aBjkSeNgLxoGedE42JOGQV5EB3jiprugK0RN/q56Pdi9VluequjQe/lV83PTg8Hj4mGXFOt+8bCaxiqaGuQGuNm7Fl5ZrFvtxOr9qx2q8/TldGYm586dq3759ZyqqoSFhZF66qxLDVJnyys1tdp5+fv7ExYWVmm8q/3O1neqqpKWllatba30s05KSnKp7zC4Zm4ajYbGjRu7TD5CCMdLOpPPoh0n+WnHSRJOl12cCfU1MKJzJKM6R9EyzNq/tC5uv3OpRr+bmxtdunQhPj6ekSNH2ubHx8czfHjlHWLj4uL47bffys1bvnw5Xbt2lQMm4RAajUK4nwfhfh70alr+PYtFJSOnyHYi4Hhmfsm/1pMCBUYziWfySTyTz7rDp8uXq0BkgAeNgrxoGORJoyAv6//BXkQHemDQVXEFVFw1MjIyyMnJISQkBE9PT5c4aLVYLOTm5uLt7Y1GY+ceICdUk7xUVSU/P5+MDOvYK5XdiiaurNIGf3W2NVf9DoPr5WaxWEhJSSE1NVW2MyFEOTmFRv7Ym8ZP25PZeOyMbb6HXsuQdmGMio2kV9NgtJq6P/ZyqUY/wOOPP8748ePp2rUrcXFxfPzxxyQmJvLAAw8AMHnyZE6ePMkXX3wBwAMPPMAHH3zA448/zsSJE9mwYQOffvop3377bV2mIa4SGo1CmJ87YX7u9GxSvteGqpacECjpFZCQmceJzDwSTudzIjOP/GIzSWestxCsO1y+XEWBCD+Pkt4BZb0EGgV5Eh3oibteTghcDRRFITs7m9DQULs9l5yRxWKhuLgYd3d3l2hUlKppXh4e1l4yGRkZhISEVNnVX9Qus9lsa/BXZ1tz1e8wuGZuDRo0ICUlBbO5ilt5hBBXBbNF5a8jp/lpezLL9qVRaLTekqgoENckiFGxUQxpF4a3oX41s+tXbRxgzJgxZGZm8vLLL5Oamkq7du1YsmQJDRtaR8ZOTU0lMbFsROfGjRuzZMkS/vOf//Dhhx8SERHBe++9V2eP6xOilKIohPq6E+rrTo9KTgicyi3i+OmKtwscP51HXrGZk+cKOHmugL+OXFiu9YRAo5LbBBqV9hII9iJGTgi4lNJG4OUOMCrqr9LP1mg0SqO/DpV21ZRtzTW5ldx+JY1+Ia5eB9Ky+Wn7SRbtOElGTtl4VE0aeDE6NooRnSOJ9K/uLatXnss1+gEefPBBHnzwwUrfmzdvXoV5ffv2Zft2+497E6K+URSFEB93Qnzc6d44sNx7qqpyOre43MmA0l4Cx0/nk1tksp0Q+PtI5gXlQrivu/VkQLD1hECUv4HsKsb7E/WfK3TpF5WTz7Z+kc/DNZV+ri409rUQohpO5RTxy86T/LT9JPtTyx577u+p5+aOEYyKjaJjlJ9T/Pa7ZKNfiKuZoig08DHQwMdAt0YVTwhk5hWXu03ANsDg6TxyikykZBWSklXIhmNlJwQ0aFmRs51bu8YwoHWI9AYQQgghhBAup9BoJn5/Oj9tT2bt4dOYSx6zp9cq9G8VwqjYKPq1DKk4mHY9J41+Ia4iiqIQ7G0g2NtAl4YVTwicySvmeGZ+Sa8A68CCh9KyOZCey+pDp1l96DS+7jpu6hjB6C5RdI72d4qzm8I1abVafv75Z0aMGFGr62nUqBGTJk1i0qRJtbqeysybN49Jkya51NMXhHNRFEW2MyGES1NVlS3Hz/LT9mQW704lp8hke69TtD+jYyO5sUMEAV41eNJSPSONfiEEYD2wC/I2EORtoEvDANt8o9HI5wuXcMa3Ob/sSiU1q5CvNyXy9aZE231MIztHElGP72MSzikjI4MXXniBP/74g/T0dAICAujYsSMvvvgibdu25eTJk/VygEJpQAhnYm87e+mll4iLiyM1NZWAgICLF3SFyXYmhLhcJzLz+Gn7SX7akUzSmQLb/Eh/D0Z2jmRkbCRNG3jXYQ0dRxr9QoiLCvWAewY156khrdlwNJOF25NZujeNY6fymLHsIG8tP0ivpkGMLhmx1NNNflrE5Rs9ejRGo5H58+fTpEkT0tPTWbFiBWfOWB+LExYW5jKjgwtRV6qznQkhhKvIyjeyeE8qP21PZuuJs7b5Xm5ahrUPZ1RsFD0aB6KpB4/ZcyQ5WhJCVJtWo3Bt82DeHdOJLf8dyJu3dKBH40BUFf4+ksnjC3bR7dU/eeqHXWw8lonFIoMeiUtz7tw5/vrrL9544w369etHw4YN6d69O5MnT+aGG24ArN37Fy1aBMDx48dRFIUFCxbQu3dvPDw86NatG4cOHWLLli107doVb29vhgwZwqlTp2zrue666yp0Jx4xYgR333233bq98847tG/fHi8vL6Kjo3nwwQfJzc0FYPXq1dxzzz1kZWWhKAqKovDSSy8BUFxczNNPP01kZCReXl706NGD1atXlyv7m2++oVGjRnh6ejJy5EgyMzMRorZUZztTFKVG25mvry+33HJLvd7O5s2bR0xMjGxnQlwljGYLK/5J56Gvt9Nt2p889/Metp44i0aBPi0aMGtsJ7b+dxAzbu1IXNMgl2vwg1zpF0JcIm+Djtu6RnNb12iSzuTz0/aTLNyeTOKZfH7YlswP25KJCvBgVGwUo2MjaRjkVddVFljvWysw1s1jpzz02mqPAeHt7Y23tzeLFi2iZ8+eGAyGai03ZcoUZs6cSUxMDBMmTGDcuHH4+voya9YsPD09ue2223jxxReZM2fOJeeh0Wh47733aNSoEQkJCTz44IM8/fTTzJ49m169ejFz5kxefPFFDh48aMsF4J577uH48eN89913RERE8PPPPzNkyBD27NlD8+bN2bRpEw8//DCvvfYao0ePZunSpUyZMuWS6ynqVlXbmsVioaDYjK7Y5PDeKnW9nbm7u3PbbbcxZcoU5s6de8l51OZ2NmHCBKZNm8aoUaNkOxPCRamqyr6UbBZuT+bXnSlk5pU9iqplqA+ju0QyvFMkob7udVjLK0ca/UKIyxYd6MljA5vz6IBmbD1xloXbrAOhJJ8t4L0Vh3lvxWG6NQpgdGwUwzqE4+uur+sqX7UKjGbavLisTta9/+Xrq33rh06nY968eUycOJG5c+cSGxtL3759GTt2LO3atbO73JNPPsn1118PwGOPPca4ceNYsWIF11xzDQD33ntvpY9urYnzr1g2btyYV155hf/7v/9j9uzZuLm54ednfXzP+d2ijx49yrfffktycjIRERG2ui5dupTPP/+cadOm8d5779G/f3+eeeYZNBoNLVq0YP369SxduvSy6ivqRl1ta47azjp06GB3uaq2M4vFwr/+9S++//77y8qjtrazWbNmcf311/Pss88CyHYmhItJyypk0c6T/LQ9mUPpubb5wd5uDO8UyajYSNqE+151A1FLo18I4TCKotCtUSDdGgUy5aa2LN+fxo/bkvn7yGm2HD/LluNnmfLrPq5vG8boLlFc2ywYrQt2oRKOMXr0aG644QbWrVvHhg0bWLp0KW+++SYff/wxo0aNqnSZ8xsqoaGhALRv377cvIyMjMuq16pVq5g2bRr79+8nOzsbk8lEYWEheXl5eHlV3qNl+/btqKpKixYtys0vKiqyDUZ44MABhg4dWu79uLg4aYyIWmVvO/vkk0/sdr+/2HYWEhJSb7ezf/75h5EjR5Z7X7YzIZxbfrGJZfvS+Gn7Sf46chq15O5SN52GwW1CGR0bxbXNg9Frr94726XRL4SoFR5uWoZ3snadSssq5Ocd1u7/RzJy+XVXCr/uSiHU18CIzpHcEhtF81Cfuq7yVcFDr2X/y9fX2bpryt3dnUGDBjFo0CBefPFF7rvvPqZOnWq30a/Xl/UiKT2Lf+E8i8Vim9ZoNKhq+bEnjEaj3fqcOHGCYcOG8cADD/DKK68QGBjIX3/9xb333lvlchaLBa1Wy7Zt29Bqy/8dSrslX1gP4dyq2tYsFgs52Tn4+PrUSvf+mqpsO5syZYrdRr9sZ0KIumaxqGw8lsnC7SdZujeVvOKy26m6NQpgVGwUw9qH4+chvUtBGv1CiCsgzM+d/7uuKQ/0bcLu5Czr/VW7UkjPLuKjNcf4aM0xOkT5MTo2ips7OvdzUOs7RVGc+ukKbdq0sQ0q5ggNGjQgNTXVNm02m9m7dy/9+vWrNH7r1q2YTCbefvttW2NtwYIF5WLc3Nwwm8vfy925c2fMZjMZGRn07t270rJbt27Nli1bys3buHFjjXMS9UNV25rFYsHkpsXTTVcvn0DhyttZmzZtKmxXsp0J4TyOZOTy845kft5+kpSsQtv8mEBPRsVGMrKzjCNVmfq3pxFCuCxFUegY7c/Lw9ux6bkBzP1XLANbh6LTKOxOzmLKr/voPu1PHvhyG/H70zGaLRcvVLikzMxM+vfvz1dffcXu3btJSEjghx9+4M033+Tmm2922Hr69+/P4sWLWbx4MQcOHODBBx+s8rnfTZs2xWQy8f7773Ps2DG+/PLLCoOVNWrUiNzcXFasWMHp06fJz8+nRYsW3HHHHdx555389NNPJCQksGXLFt544w2WLFkCwCOPPMKKFSuYMWMGhw4d4oMPPrgquxzPmTOHDh064Ovri6+vL3Fxcfzxxx/lYv755x9uvvlm/Pz88PHxoWfPniQmJlZZ7sKFC2nTpg0Gg4E2bdrw888/12YaTqGq7Wz48OEOW0992s4effRR2y0MV/N2JoQzOZtXzBcbjjP8w78Z+M4aPlx1lJSsQnzcdYzrHsOPD8Sx5qnrmDSwhTT47ZBGvxCiThh0Woa0C+eTu7qy8bkBvHhjG9pG+GI0qyzdl8bEL7bSc9oKpv62j70ns6RL5lXG29ubHj168O6779KnTx/atWvHCy+8wMSJE3n//fcdtp4JEyZw1113ceedd9K3b18aN25s9+ojQKdOnXjnnXd44403aNeuHV9//TXTp08vF9OrVy8eeOABxowZQ4MGDXjzzTcB+Pzzz7nzzjt54oknaNmyJTfffDObNm0iOjoagJ49e/Lee+/xwQcf0KlTJ5YvX85///tfh+XqLKKionj99dfZunUrW7dupX///gwfPpx9+/YB1sHarr32Wlq1asXq1avZtWsXL7zwAu7u9kdg3rBhA2PGjGH8+PHs2rWL8ePHc9ttt7Fp06YrlVa9VNV29sEHHzhsPfVtO/vkk094//33r+rtTIj6rshkYVemwoPf7KT7tD958Zd97Eo6h1ajMKBVCB/eHsuW5wcyfVR7ujYKvOoG5qspRZUj6cuWnZ2Nn58fWVlZ+Pr6XlZZRqORJUuWMGzYsHL3x7kCyc05XencDqRls3BbMj/vSOF0bpFtfqswH0bHRjG8cwQhPo55vIqrf27Lly+ncePGNGnSpMoGkbOxWCxkZ2fj6+tbL7tGX6pLyauwsJCEhAQaN25c4TN25L6prgUGBjJjxgzuvfdexo4di16v58svv6z28mPGjCE7O7tcj4EhQ4YQEBDAt99+W60yqvp7VvU5VMZVv8PgmrmVfr5RUVGsXLnSZfcZrrw/lNycg8WisuX4GX7ZlcKS3amcKygbw6NthK/1NtBOEQR7V+/xovWVIz+36u7rnffGTiGES2oV5svzN7ThmSGtWHf4ND9uTyZ+fzoH0nJ4bck/vL70AH2aBzO6SxQDW4fifgmDVgkhnIPZbOaHH34gLy+PuLg4LBYLixcv5umnn+b6669nx44dNG7cmMmTJzNixAi75WzYsIH//Oc/5eZdf/31zJw50+4yRUVFFBWVnXjMzs4GrAdrFw4mZzQaUVUVi8VSbgA7e0qvt5Qu40pcMTeLxYKqqphMJqDqQQidVWlOkptzcZXcDqTl8OuuVH7fk0bqeffp++pVbukaw6jYKFqGlQ347Oz5OvJzq24Z0ugXQtRLOq2Gfq1C6NcqhKx8I7/tTuGn7clsTzzHqoOnWHXwFL7uOm7sGMHo2ChiY/yla5cQLmLPnj3ExcVRWFiIt7c3P//8M23atCEtLY3c3Fxef/11Xn31Vd544w2WLl3KqFGjWLVqFX379q20vLS0NNuj5UqFhoaSlpZmtw7Tp09n6tSpFeYvX74cT0/PcvN0Oh1hYWHk5uZSXFxc7TxzcnKqHetsXCm34uJiCgoKWL9+PQDx8fF1XKPaI7k5J2fM7UwRbDutsO2UhtSCsuM3d61Kx0CVLsEqzf1UNCRwdHsCR+uwrrXFEZ9bfn5+teKk0S+EqPf8PPX8q2dD/tWzIUdP5fLT9rJRW7/ZlMg3mxJpEuzF6C5RjOwcSYS/R11XWQhxGVq2bMnOnTs5d+4cCxcu5K677mLNmjX4+/sDMHz4cNuV+06dOrF+/Xrmzp1rt9EPVDgpqKpqlScKJ0+ezOOPP26bzs7OJjo6msGDB1favT8pKQlvb+9qde9XVZWcnBx8fHxc7mSlK+ZWWFiIh4cHvXr1Yu3atQwaNMglulKfz2g0Eh8fL7k5GWfL7UxeMX/sS+e3XalsSzxnm6/XKlzXogE3dwznuhbBuOu1TpdbTTgyt9JeaBcjjX4hhFNp2sCbp65vxRODWrLhWCYLtyXzx940jp3OY8ayg7y1/CC9mgYxOjaKIe3CnPrxdEJcrdzc3GjWrBkAXbt2ZcuWLcyaNYv3338fnU5HmzZtysW3bt2av/76y255YWFhFa7qZ2RkVLj6fz6DwYDBUPG+Ub1eX+EgzWw2oygKGo2mWvexl3Z7L13GlbhibhqNBkVR0Oms+5PKvgOuQnJzTvU5t/xiE/H70/llZwprD53CZLHeAqQo0LNxECM6RzCkbTh+npXXvz7ndrkckVt1l5ejYSGEU9JoFK5pFsw1zYJ5eYSJP/aksnB7MhuPneHvI5n8fSSTFxbtZWj7cEbHRtGjcSAajWtcdRLiaqOqKkVFRbi5udGtWzcOHjxY7v1Dhw7RsGFDu8vHxcURHx9f7r7+5cuX06tXr1qrsxBCXK2MZgt/HT7NLztPsnx/OvnFZtt77SJ9Gd4xkps6RhDm5zqDDNd30ugXQjg9b4OOW7tGc2vXaJLO5PPzjpMs3J7Micx8ftyWzI/bkokK8GBU50hGxUbRKFie4SpEffXcc88xdOhQoqOjycnJ4bvvvmP16tW2Z6k/9dRTjBkzhj59+tCvXz+WLl3Kb7/9xurVq21l3HnnnURGRtoe8/bYY4/Rp08f3njjDYYPH84vv/zCn3/+WWXvACGEENWnqirbE8/yy84Uft+dypm8svFNYgI9GdEpgps7RdAsxKeKUkRtkUa/EMKlRAd68uiA5jzSvxnbTpxl4fZkft+VSvLZAt5beYT3Vh6ha8MARneJ4vrWwXVdXSHEBdLT0xk/fjypqan4+fnRoUMHli5dyqBBgwAYOXIkc+fOZfr06Tz66KO0bNmShQsXcu2119rKSExMLNe1vFevXnz33Xf897//5YUXXqBp06Z8//339OjR44rnJ4QQruRweg6Ldp7kl50pJJ8tsM0P9nbjxg7Whn7naBlsua5Jo18I4ZIURaFro0C6Ngpkyk1tWb4/nYXbkll3+BRbT5xl64mzvKTT0MFfQ0TSObo2DpYdkhD1wKeffnrRmAkTJjBhwgS7759/1b/ULbfcwi233HI5VRNCCAGkZhXw684UFu1M4Z/UsoHkvNy0XN82jOGdI7mmaRA6rWuM6+EKpNEvhHB57notN3eM4OaOEaRnF1q7/29L5nBGLltOa7j14820i/Tlzp6NuKljBB5u2rqushBCCCFEvXEuv5g/9qaxaMdJNh8/g2odjw+dRuG6lg0Y3imSga1D5RiqnpJGvxDiqhLq684DfZtyf58mbDueyZs/bWDnWR17T2bz9MLdvLp4P7d2jeZfPRvSWO79d2oHDhzg7rvvZufOnbRq1YqdO3fWdZWEcEkXbmuV9bQQQjifQqOZFf9ksGjnSVYfzMBoVm3vdW8cyPBOEQxrF06Al1sd1lJUhzT6hRBXJUVR6Bjlxx3NLHxwXR9+3pnGV5tOkHSmgE//SuDTvxLo3TyYO+Ma0b9VCFoZ+f+Kuvvuu5k/fz4AWq2WiIgIbrjhBqZNm4afn1+1ypgyZQpeXl4cPHgQb2/v2qyuEE6rqm0tICCgWmWcv615enrWZnWFELXMZLaw/mgmv+xMYdm+NHKLTLb3WoX5MKKzdeT9SH+POqylqClp9AshrnoBnm7c37cpE3s3Yc2hU3y58QSrDmaw7vBp1h0+TaS/B7f3iGFMt2iCvSs+t1vUjiFDhvD5559jMpnYv38/EyZM4Ny5c3z99dfVWv7o0aPccMMNVT7K7WKKi4txc5MrGMK12dvWvv3222otf/62ZrFYyM7OvvhCF5BtTYi6o6oqu5KzWLTjJL/vTuV0bpHtvUh/D4Z3imB4p0hahsnI+85KRlcQQogSGo1Cv1YhfHZ3N9Y+1Y/7+zYhwFPPyXMFzFh2kF7TVzLpux1sO3EGVVUvXqC4LAaDgbCwMKKiohg8eDBjxoxh+fLltvc///xzWrdujbu7O61atWL27Nm29xRFYdu2bbz88ssoisJLL70EwMmTJxkzZgwBAQEEBQUxfPhwjh8/blvu7rvvZsSIEUyfPp2IiAhatGhRo+XeeustwsPDCQoK4qGHHsJoNNpiioqKePrpp4mOjsZgMNC8efNyg9bt37+fW2+9FV9fX0JDQxk/fjynT5928F9ViIocua1NnToVqP/b2rBhw/D29pZtTVzVjp3K5Z34Q/R7azUjPvybeeuPczq3iABPPf/qGcOPD8Sx7ul+PD2klTT4nZxDr/RfypldX19fR1ZBCCEcIjrQk8lDW/OfgS1YvDuVLzeeYGfSORaVjFbbJtyX8XENGd4pAk83J+w0VZxn/z1FC3r3asZqQO9x8Vi3yxsf4dixYyxduhS9Xg/A/PnzeeONN/jggw/o3LkzO3bsYOLEiXh5eXHXXXeRmprKwIEDGTJkCE8++STe3t7k5+fTr18/evfuzdq1a9HpdLz66qsMGTKE3bt3264yrlixAl9fX+Lj41FVtdrLrVq1ivDwcFatWsWRI0cYM2YMnTp1YuLEiYD12fEbNmzgvffeo2PHjiQkJNgaGqmpqfTr14/x48cza9YsioqKeOaZZ7jttttYuXLlZf3tapPs96uhsm3CYgFjPpjcwM2z6thS1dnWLnM7g4rb2v/+9z+mTJlS7W3N09OT3NxcBgwYUG+3tb59+zJx4kTeeecdCgoKnGJbE8JRMrIL+XVXCr/sTGHPySzbfA+9lkFtQhnROYLezRugl5H3XYpDj1T9/Wv2DEZFUTh06BBNmjRxZDWEEMJh3PVaRneJYnSXKPYkZ/HlxuP8sjOF/anZTP5pD9OW/MMtXaL4V8+GNG3gRPeNT4uw/17zwXDHD2XTM5pZGyiVaXgt3LO4bHpme8jPrBj3UlbFeRfx+++/4+3tjdlsprCwEIB33nnHWqUZM5gxYwajRo0CoHHjxuzfv5+PPvqIu+66i7CwMHQ6Hd7e3oSFhQHw2WefodFo+OSTT2z7qs8//xx/f39Wr17N4MGDAfDy8uKTTz6xNTCqu1xAQAAffPABWq2WVq1accMNN7BixQomTpzIoUOHWLBgAfHx8QwcOBCg3L5vzpw5dO7cmRdffBFfX180Gg2fffYZ0dHRHDp0yHYVtL6R/X41VLKtaQB/QG02CP71Y9kbl7utXcJ2BlVva6+88gpvv/12tbc1i8XCF198Ua+3tdjYWKZNm2ab5wzbmhCXI7vQyNK9afyy8yQbjmZiKemsqNUo9GkezPBOkQxqE4qXwQkvYohqcfgn++OPPxIYGHjROFVVGTZsmKNXL4QQtaZ9lB9v3tKR54a15sdtyXy18QTHM/P5/O/jfP73ca5tFsy/ejZkYOsQeTatA/Tr1485c+aQn5/PJ598wqFDh3jkkUc4deoUJ0+eZOLEidx///22eJPJVOUgf9u2bePIkSP4+JTvolhYWMjRo0dt0+3bty93b3F1l2vbti1abdmjisLDw9mzZw8AO3fuRKvV0rdvX7t1W716NVFRURXeO3r0aL1uiMh+3/lVta0lJSVx77332q6iw8W3tZ07d9brbW3VqlWVDu5Z37c1IWqi0Ghm9cEMftmZwooDGRSbLLb3ujQMYESnCIa1DydIxiq6Kji00d+wYUP69OlDUFBQteKbNGli6z4mhBDOwt/Tjft6N2HCNY1Zd+Q0X244wcoD6fx15DR/HTlNuJ87t3ePYUz3aEJ83C9eYF14LsX+e8oFz9h96kgVsRec3Ji059LrdAEvLy+aNWsGwHvvvUe/fv2YOnUqDz74IAAfffQRcXFx5ZY5vyFwIYvFQpcuXSodCLBBgwbl1nspy124P1MUBYvFepDl4VH1KMcWi4Ubb7yR//73v3h7e6PRlP1dw8PDq1y2Lsl+vxoq2dYsFgvZOTn4+vlTrp9EPdvWHn74YcDaxb9Hjx7llnHmbe2mm27ijTfeqPBefd7WhKgOs0Vl0zHryPtL9qaSU1g28n7zEG9GdI7k5o4RRAfKUzauNg5t9CckJNQofu/evY5cvRBCXFEajULfFg3o26IByWfz+WZTIt9vSSI1q5C34w/x3srDDGkXzvieDenWKKBG3aBrXU3u/a2t2BqaMmUKQ4cO5f777yciIoKEhATGjx9f7eVjY2P5/vvvCQkJqdF95Ze63Pnat2+PxWJhzZo1ti7HF65j4cKFxMTEEBgYWK7RX5/Jfr8aKtsmLBbQm0HnfvHYmpTrIKXb2v/93/8RGRnJsWPHuOOOO6q9fMeOHVm0aFG93tYaNWqETiddmYXzU1XYl5LN4r3p/LorhfTsspH3w/3cubmjdeT91uE+9es4RFxRznFUIYQQ9VxUgCdPD2nF+sn9mTmmE7Ex/hjNKr/tSuG2jzYwdNY6vtp4grzznncraua6666jbdu2TJ8+nWeeeYbXX3+dWbNmcejQIfbs2cPnn39uuw+5MnfccQfBwcEMHz6cdevWkZCQwJo1a3jsscdITk52+HLna9SoEXfddRcTJkxg0aJFJCQksHr1ahYsWADAQw89xJkzZ7jvvvvYvHkzx44dY/ny5UyYMAGz2VyzP5QQl6l0W5s2bRovvfQS06dPr9G2duutt9b7bW3cuHGyrQmnlnw2nw9XH2P6Li0j5mzkf+sSSM8uws9Dz7juMXz37578/Ux/Jg9rTZsIX2nwX+Vq7RTne++9V+l8RVFwd3enWbNm9OnTp8ruYTV19uxZHn30UX799VcAbr75Zt5//338/f0rjTcajfz3v/9lyZIlHDt2DD8/PwYOHMjrr79OREQVg1wJIYQdBp2WEZ0jGdE5kr0ns/h60wkW7UjhQFoO/120l9f/OMDo2Ej+1bMhzUPl8Tc19fjjj3PPPfewbds2Pv74Y95++22efvppvLy8aN++PZMmTbK7rKenJ2vXruWZZ55h1KhR5OTkEBkZyYABA6q8qnipy11ozpw5PPfcczz44INkZmYSExPDc889B0BERATr1q3jySefZOjQoRQVFdGwYUOGDBniNFf962K/L2pP6bZ25MgRPvnkE2bMmFGjbW316tVMnjy5Xm5rf//9N8888wzXX3+9U25r4uqVV2Tij71pLNyWzIZjpQN5Khh0Gga2CWV4xwj6tmyAQSe/s6I8Ra2lh003btyYU6dOkZ+fT0BAAKqqcu7cOTw9PfH29iYjI4MmTZqwatUqoqOjHbLOoUOHkpyczMcffwzAv//9bxo1asRvv/1WaXxWVha33HILEydOpGPHjpw9e5ZJkyZhMpnYunVrtdebnZ2Nn58fWVlZl/0oIqPRyJIlSxg2bJjL3fcouTknye3yZRUYWVgy8N+x02WP2YprEsT4uIYMahPq8EfjGI1Gli9fTuPGjWnSpAnu7vV0bIFLYLFYyM7Oto1y7youJa/CwkISEhJo3Lhxhc/Ykfum6qiL/f6VVNXfs6rPoTKu+h0G18yt9PONiopi5cqVsj90Ms6em8WisvFYJj9uT2bp3jTyi609UhQF4hoH0lg5xRNjBxHoU/V4Fs7G2T+3qjgyt+ru62vt13jatGl069aNw4cPk5mZyZkzZzh06BA9evRg1qxZJCYmEhYWxn/+8x+HrO+ff/5h6dKlfPLJJ8TFxREXF8f//vc/fv/9dw4ePFjpMn5+fsTHx3PbbbfRsmVLevbsyfvvv8+2bdtITEx0SL2EEMLPQ8+Eaxuz4om+fHVvDwa3CUWjwIZjmTz49XaufWMlM/88REZ2YV1XVYhLdqX3+0II4coSTufx9vKD9H5zFbd/somftp8kv9hM42Avnhzcgr+e6c/8e7rSPUTFx13GpxBVq7VvyH//+18WLlxI06ZNbfOaNWvGW2+9xejRozl27Bhvvvkmo0ePdsj6NmzYgJ+fX7nRZXv27Imfnx/r16+nZcuW1SonKysLRVHs3hIAUFRURFFR2SAZ2dnZgPWsjdFovLQESpQuf7nl1EeSm3OS3ByrRyM/ejTqSGpWId9tSWbBtmTSs4uY+edhPlh5hEGtQ7ijRzTdL3Pgv9KcVFXFYrHYRrZ2BaUd1EpzcxWXkpfFYkFVVYxGY4Vu81d6m73S+30hhHA1WQVGFu9OZeH2ZLadOGub7+Ou46aOEYyOjSI2xt92fOCKx2aidtRaoz81NRWTqeKAVSaTibS0NMB6X1VOTo5D1peWlkZISEiF+SEhIbb1XUxhYSHPPvsst99+e5XdI6ZPn87UqVMrzF++fDmeno55BEZ8fLxDyqmPJDfnJLk5XktgclvYfUZhXZqGYznwx750/tiXTpiHyrVhFroFq1zqCXydTkdhYSG5ubkUFxc7tO71gaP2H/VNTfIqLi6moKCAtWvXVtjn5ufnO7pqVbrS+30hhHAFJrOFdUdOs3BbMsv3p1Nssp701SjQp0UDRsdGMahNKO56uU9fXLpaa/T369eP+++/n08++YTOnTsDsGPHDv7v//6P/v37A7Bnzx4aN25cZTkvvfRSpQ3s823ZsgWg0qtiqqpW62qZ0Whk7NixWCwWZs+eXWXs5MmTefzxx23T2dnZREdHM3jwYIfc0x8fH8+gQYNc8v4Vyc35SG617+aSfw+k5fD15iR+3ZVKWoGZHxO0/HFSy/BO4dzRPZoWNRj4z2g0smrVKtzd3fH29nape/pVVSUnJwcfH9d6/NCl5FVYWIiHhwd9+vSp9J7+K8lR+30hhLgaHErPYeG2ZH7ecZKMnLIexC1DfRjdJZIRnSIJ8XWdfbeoW7XW6P/0008ZP348Xbp0sR1Mm0wmBgwYwKeffgqAt7c3b7/9dpXlPPzww4wdO7bKmEaNGrF7927S09MrvHfq1ClCQ0OrXN5oNHLbbbeRkJDAypUrL9pwNxgMGAyGCvP1er3DGg6OLKu+kdyck+RW+9pHB/J6dCDP3dCGn7Yl8+XGExw9lcc3m5P5ZnMy3RsHcmdcQwa3CcNNV70hWRRFQVEUlxlQC7B1fZe8yj7fyr7DV/o77aj9vjOrpbGRRR0r/Vxd6SSjqBtn8or5dedJFm4/yZ6TWbb5AZ56hneK5JYuUbSVx+uJWlBrjf6wsDDi4+M5cOAAhw4dQlVVWrVqVe7e+n79+l20nODgYIKDgy8aFxcXR1ZWFps3b6Z79+4AbNq0iaysLHr16mV3udIG/+HDh1m1ahVBQUHVyE4IIWqPr7ueu69pzF29GrHhWCZfbjjB8v3pbE44w+aEMzTwMTCuWzTjesQQ7md/tN7SZ07n5+fj4eFao/oKq9Iu/PXhpJWj9vvOqPTvL9uaayq9PUoeNykuRbHJwuqDGSzcnszKAxkYzdaTSDqNQv9WIYzuEkW/liHVPpkvxKWo9aEemzRpgqIoNG3aFJ2u9lbXunVrhgwZwsSJE/noo48A6yP7brzxxnIHHK1atWL69OmMHDkSk8nELbfcwvbt2/n9998xm822+w4DAwNxc3OrtfoKIcTFKIpCr6bB9GoaTFpWId9sTuTbzYmcyinivZVH+HD1UQa1DuXOuIbENQ2qcGVAVVV8fX3JyMgArM/AdoWrBxaLheLiYgoLC13uSn9181JVlfz8fDIyMvD3969XjZErtd+vT7RaLf7+/tXe1lz1Owyul5vFYuHUqVN4enrWq+1M1G+qqrIvJZsftyXz664UzuSVjavTLtKX0bFR3NwxgiDvij2HhagNtbY3zs/P55FHHmH+/PkAHDp0iCZNmvDoo48SERHBs88+6/B1fv311zz66KMMHjwYgJtvvpkPPvigXMzBgwfJyrJ2p0lOTubXX38FoFOnTuXiVq1axXXXXefwOgohxKUI83Pn8UEteKR/M5btS+PLDSfYlHCGpfvSWLovjaYNvBjfsyGjukTh61521TckJAStVmtrjLgCVVUpKCjAw8PDJU5ilLqUvPz9/QkLC6vlmlVPXez365PSz6E625qrfofBNXPTaDTExMS4TD6i9mTkFPLLjhQWbk/mQFrZoKUNfAyM7BzJ6NgoWoZVf3weIRyl1hr9kydPZteuXaxevZohQ4bY5g8cOJApU6bUys4/MDCQr776qsqY8++3a9Sokdx/J4RwKnqthhs7RHBjhwgOpuXw1cYT/LQ9maOn8njpt/28uewgIzpHMq5rJGDtLRAeHk5ISIjLPNrHaDSydu1a+vTpUy+6tTtKTfPS6/X16spjXez365OabGuu+h0G18zNzc0NjUbjMr+hwrEKjWb+/CedhduSWXv4NGaLtW3hptMwqE0ot8RG0bt5MDqt8/d8Ec6r1hr9ixYt4vvvv6dnz57lzoy2adOGo0eP1tZqhRDiqtEyzIdXRrTjmaGt+Hm7deC/Q+m5fLMpkW82JdLIW0th+EmGd47GXa+tVw3Ey6HVajGZTLi7u7tMowKcPy/Z71tptRff1pz9s66KK+cmRClVVdmRdI4ftyXz+64UsgvLHlcaG+PP6C5R3Ng+Aj9P2QZE/VBrjf5Tp04REhJSYX5eXp50jxJCCAfyNugYH9eIf/VsyOaEM3yx8QTL9qZxPBee+Wkfry05yKjYKO7oEUPzGjz2T4iakP2+EMLVpZwr4OcdJ1m4LZljp/Ns8yP83BkVG8Wo2EiaNPCuwxoKUblaa/R369aNxYsX88gjjwBljzn53//+R1xcXG2tVgghrlqKotCjSRA9mgSRciaX175dya4cL5LPFTJv/XHmrT9Ot0YB3N4jhqHtwnHXu8aVf1E/yH5fCOGK8otNLN2bxsLtyaw/mknpncEeei1D24UxuksUcU2C0Gjk5Kaov2qt0T99+nSGDBnC/v37MZlMzJo1i3379rFhwwbWrFlTW6sVQgiBddCgwVEq7wzpzYbj5/hmUyIrDmSw5fhZthw/y9Tf9jM6Nopx3WNoFiJXJcTlk/2+EMJVWCwqm4+fYeG2ZJbsSSWv2Gx7r0fjQG7pEsXQ9uF4G66OJ5QI51dr39RevXrx999/89Zbb9G0aVOWL19ObGwsGzZsoH379rW1WiGEEOfRaBSuaxnCdS1DSM8u5PstSXy3OZGUrEI+/SuBT/9KoEfjQG7vEcOQdmEYdHL1X1wa2e8LIZzdicw8Fm4/yU/bk0k+W2CbHxPoyeiS7vvRgZ51WEMhLk2tnp5q37697dE9Qggh6laorzuPDmjOQ/2aseZQBt9sSmTlgQw2JZxhU8IZAr3cuKWL9ep/42Cvuq6ucEKy3xdCOJucQiNL9qTy47Zkthw/a5vvY9BxQ4dwRneJomvDABmbRDg1hzb6s7Ozqx3r6+vryFULIYSoJq1GoX+rUPq3CiXlXAHfb0ni+y1JpGUX8vHaY3y89hi9mgZxe48YBrcJw00njxkSlZP9vhDCGZktKn8fOc3C7cks25dGodECgKLAtc2CuaVLFIPbhOHhJr3fhGtwaKPf39+/2mfBzGbzxYOEEELUqgh/D/4zqAWP9G/GqoOn+GbTCVYfOsX6o5msP5pJsLcbt3SJZlz3aBoGydV/UZ7s94UQzuRIRg4/bjvJoh0nScsutM1vFuLN6NgoRnaOJMzPvQ5rKETtcGijf9WqVbbXx48f59lnn+Xuu++2jdq7YcMG5s+fz/Tp0x25WiGEEJdJp9UwqE0og9qEknw233b1PyOniLlrjjJ3zVF6Nw/m9u4xDGwTil4rV/+F7PeFEPXfuXwj69IUPv1oI7uTy3on+XnoubljBLd0iaJDlJ903xcuzaGN/r59+9pev/zyy7zzzjuMGzfONu/mm2+mffv2fPzxx9x1112OXLUQQggHiQrw5InBLXlsQHNWHMjg602JrDt8inWHT7Pu8Gka+Bi4rWsUY7vFyIBGVznZ7wsh6iNVVdl47AzfbUnkj71pFJu0QDZajUK/lg0YHRtF/9YhMnituGrU2kB+GzZsYO7cuRXmd+3alfvuu6+2ViuEEMJBdFoN17cN4/q2YSSdyefbzYks2JrMqZwiPlx1lNmrj9KneQNu7xHDgFYh6OTq/1VN9vtCiLp2OreIH7cl8/2WJBJO59nmR3iq3N23FSNjo2ngY6jDGgpRN2qt0R8dHc3cuXN5++23y83/6KOPiI6Orq3VCiGEqAXRgZ48PaQV/xnUgvj96XyzKZG/jpxmzaFTrDl0ilBfA2O6RjOmewyR/h51XV1RB2S/L4SoCxaLyl9HTvPt5kTi96djsqgAeLlpublTJLfGhpO4829u6NUQvV5fx7UVom7UWqP/3XffZfTo0SxbtoyePXsCsHHjRo4ePcrChQtra7VCCCFqkV6rYVj7cIa1D+f46Ty+3ZLIj1uTSc8u4r2VR3h/1RH6tQzh9u4xXNeygVz9v4rIfl8IcSWlZRXyw9Ykvt+aRPLZAtv8jtH+3N49mhs7ROBl0GE0GknaVYcVFaIeqLVG/7Bhwzh8+DBz5szhn3/+QVVVhg8fzgMPPCBn/IUQwgU0CvZi8tDWPDGoJcv2pfHNpkQ2HMtk5YEMVh7IINzPndu6RjO2ezThfnL139XJfl8IUdtMZgurD57iuy2JrDyQQclFfXzddYzsHMnY7jG0DpfHgwpxIYc2+nfv3k27du3QaKxXdqKionjttdfsxu/bt4+WLVui09XauQchhBC1zE2n4aaOEdzUMYJjp3L5dnMiP25LJjWrkFkrDvP+ysP0bxXC7T1i6NsiBK1GRkh2FbLfF0JcCUln8lmwNYkftiaXe9Re90aBjO0ezbD24bjrZVA+Iexx6F63c+fOpKWl0aBBg2rFx8XFsXPnTpo0aeLIagghhKgjTRp48/wNbXhicNnV/00JZ/jznwz+/CeDSH8PxnSLZky3aEJ95VnIzk72+0KI2mI0W/hzfzrfbkli3eFTqCVX9QM89YyOjWJs92iahfjUbSWFcBIObfSrqsoLL7yAp2f1HuFUXFzsyNULIYSoJ9z1WoZ3imR4p0iOZJRd/T95roB34g8xa8VhBpRc/e/TvAEaufrvlGS/L4RwtITTeXy3JZGF25I5nVv2m3FNsyDGdothcNtQedSeEDXk0EZ/nz59OHjwYLXj4+Li8PCQ+zyFEMKVNQvx5oUb2/DU9S1ZsieVbzYlsvXEWZbvT2f5/nSiAjwY1z2GW7tGEeIjV/+dSW3s9+fMmcOcOXM4fvw4AG3btuXFF19k6NChANx9993Mnz+/3DI9evRg48aNdsucN28e99xzT4X5BQUFuLvLd06IulZoNLNsXxrfbk5k47EztvkNfAzc2iWKMd2iaRjkVYc1FMK5ObTRv3r1akcWJ4QQwoW467WMio1iVGwUh9Jz+GZTIj9tTyb5bAEzlh3k3fhDDGoTyu09YrimabBc/XcCtbHfj4qK4vXXX6dZs2YAzJ8/n+HDh7Njxw7atm0LwJAhQ/j8889ty7i5uV20XF9f3wonKKTBL0TdOpyew7ebk/hpRzLn8o0AKAr0bdGAsd1iGNA6BL08BUaIyyYj6QghhLjiWoT68NLNbXlmSCsW70nlm00n2J54jj/2pvHH3jQaBnkytpv16n+wt6GuqyuuoJtuuqnc9GuvvcacOXPYuHGjrdFvMBgICwurUbmKotR4GSGE4xUUm/l9dwrfbUli24mztvkRfu7c2jWa27pFE+kvPYGFcCRp9AshhKgzHm5abukSxS1dovgnNZtvNiWyaMdJTmTm88bSA7wTf5DBbcO4o3sMcU2DUBS5+n81MZvN/PDDD+Tl5REXF2ebv3r1akJCQvD396dv37689tprhISEVFlWbm4uDRs2xGw206lTJ1555RU6d+5sN76oqIiioiLbdHZ2NgBGoxGj0XhZeZUuf7nl1EeSm3O6ErntT81mwdaT/LIrldwiEwBajUL/lg24rWskvZsF257u4sh6yOfmnCS3mpV1MdLoF0IIUS+0DvfllRHtmDysFb/vSuXrzYnsSjrH4t2pLN6dSuNgL8Z1j2Z4B7la6+r27NlDXFwchYWFeHt78/PPP9OmTRsAhg4dyq233krDhg1JSEjghRdeoH///mzbtg2DofJeIa1atWLevHm0b9+e7OxsZs2axTXXXMOuXbto3rx5pctMnz6dqVOnVpi/fPnyag9ceDHx8fEOKac+ktyck6NzKzTD9tMK69M1JOWVnbQNMqjEhVro3kDFzy2F/CMpLDvi0FVXIJ+bc5Lcqpafn1+tOGn0CyGEqFc83XTc1s3axXNfSpbt6n/C6TymLTnAjGUHae+vIaBVJtc2D5V7/11Qy5Yt2blzJ+fOnWPhwoXcddddrFmzhjZt2jBmzBhbXLt27ejatSsNGzZk8eLFjBo1qtLyevbsSc+ePW3T11xzDbGxsbz//vu89957lS4zefJkHn/8cdt0dnY20dHRDB48GF9f38vKz2g0Eh8fz6BBg9Dr9ZdVVn0juTknR+amqiq7krNYsO0ki/ekkV9sBkCvVRjUOoQxXaPo2Tjwiv12y+fmnCS36inthXYx0ugXQghRb7WN8OO1ke15blhrft2VwjebEtlzMovtmRru/HwbjYI8GdMthlu6RNHAR+79dxVubm62gfy6du3Kli1bmDVrFh999FGF2PDwcBo2bMjhw4erXb5Go6Fbt25VLmMwGCrtOaDX6x12AOrIsuobyc05XU5uWflGFu08ybebEzmQlmOb36SBF+O6xTAqNpKgOhyjRT435yS5XbyM6pBGvxBCiHrPy6BjXPcYxnWPYcfxTGb8vJ5d5/QcL7n3/+3lBxnYOpRxPWLo3UxG/nc1qqqWu7/+fJmZmSQlJREeHl6j8nbu3En79u0dVUUhrkqqqrLl+Fm+25zI4j2pFJksABh0Gm5oH87Y7jF0axQg47EIUcek0S+EEMKptIv0ZUwTC7MH9GX5P6f5ZnMiO5POsXRfGkv3pRHp78GYbtHc1jWaMD95JJuzee655xg6dCjR0dHk5OTw3XffsXr1apYuXUpubi4vvfQSo0ePJjw8nOPHj/Pcc88RHBzMyJEjbWXceeedREZGMn36dACmTp1Kz549ad68OdnZ2bz33nvs3LmTDz/8sK7SFMKpnckrZuG2ZL7bksjRU3m2+a3CfBjbLZqRnaPw83TNq7NCOCNp9AshhHBKXoaye/8PpGXz3eYkftqezMlzBbwTf4iZfx6if6sQxnaL4bqWDdDJs56dQnp6OuPHjyc1NRU/Pz86dOjA0qVLGTRoEAUFBezZs4cvvviCc+fOER4eTr9+/fj+++/x8fGxlZGYmIhGU/Z5nzt3jn//+9+kpaXh5+dH586dWbt2Ld27d6+LFIVwShaLyoZjmXy7OZFl+9IwmlUAPN203NQhgrHdo+kU7S9X9YWoh6TRL4QQwum1CvPlpZvb8uzQVizZk8p3m5PYfPwMf/6TwZ//ZBDm685tXaO4rVs0UQGOGXld1I5PP/3U7nseHh4sW7bsomWsXr263PS7777Lu+++e7lVE+KqlJFdyA/bkvl+SxKJZ8pGCu8Q5cfYbjHc1DEcH3e5qi9EfSaNfiGEEC7DXa9lVGwUo2KjOJKRw3ebk1i4PZm07ELeW3mE91cdoXfzBtzePZoBrUPRy9V/IYSowGxRWXvoFN9uTmTFgQzMFutVfR+DjuGdIxjbLYZ2kX51XEshRHVJo18IIYRLahbiw39vbMNTQ1qyfF86325OZP3RTNYeOsXaQ6cI9jZwS5coxnaLplGwV11XVwgh6lxqViE/7UxgwZYkUrIKbfO7NAxgbLdobugQjqebNB+EcDay1QohhHBpBp2WmzpGcFPHCI6fzuP7rUn8sDWZ07lFzF1zlLlrjtKraRBju8dwfdtQDDptXVdZCCGuCItFJSEzj20Jmcz7R8OBjWspuaiPv6eeUZ2jGNs9mhahPlUXJISo16TRL4QQ4qrRKNiLZ4a04vFBLVjxTzrfbk5i7eFTrD+ayfqjmQR46hkdG8XY7jE0C/Gu6+oKIYRDpWcXsjPpHLuSzrEr+Ry7k7LIKTKVvGu93alnk0DGdY/h+rZhuOvlJKgQrsClGv1nz57l0Ucf5ddffwXg5ptv5v3338ff379ay99///18/PHHvPvuu0yaNKn2KiqEEKJO6bUahrQLZ0i7cJLP5rNgSxILtlrv/f/krwQ++SuBbo0CGNc9hmHtw+XAVwjhdLILjexJzirXyE/PLqoQ567X0DbclwDzGZ65tTfNw/yvfGWFELXKpRr9t99+O8nJySxduhSAf//734wfP57ffvvtossuWrSITZs2ERERUdvVFEIIUY9EBXjy+OCWPDqgOWtKBq5aeSCDLcfPsuX4WV76dR8jO0cytnsMrcN967q6QghRQZHJzD+pOdbGfdI5diaf49ipvApxGgVahPrQKdqfjtH+dIzyp0WoN6rFzJIlS2gUJOObCOGKXKbR/88//7B06VI2btxIjx49APjf//5HXFwcBw8epGXLlnaXPXnyJA8//DDLli3jhhtuuOi6ioqKKCoqO1OanZ0NgNFoxGg0XlYepctfbjn1keTmnCQ35yS5XZo+zQLp0yyQtOxCFm5P4YdtyZw8V8j8DSeYv+EEHaP8GNM1kmHtwvAyOHYX6ui8XPGzF0JY78M/eiqXXclZtiv4/6RmYzSrFWJjAj3pEOVna+S3jfCtdCA+o8V8JaouhKgjLtPo37BhA35+frYGP0DPnj3x8/Nj/fr1dhv9FouF8ePH89RTT9G2bdtqrWv69OlMnTq1wvzly5fj6emY5z/Hx8c7pJz6SHJzTpKbc5LcLl1j4MlWcDBLYUO6wp6zivUgOzmLqb/to0uwSq8QC9EOvvXfUXnl5+dfPEgIUa+pqkpqVmFJ497ayN9zMotc2334ZQK93OgY5We9gl9yFT/Qy60Oai2EqG9cptGflpZGSEhIhfkhISGkpaXZXe6NN95Ap9Px6KOPVntdkydP5vHHH7dNZ2dnEx0dzeDBg/H1vbyun0ajkfj4eAYNGoRer7+ssuobyc05SW7OSXJznBtL/j2dW1Ry9f8kJ87ksz5dYX26hrYRPtzWJYqbOoTj437pu1VH51XaC00I4Tyy8o3WAfaSz7EzKYtdyec4lVPxPnwPvZb2UX5ljfwof6ICPFAUpQ5qLYSo7+p9o/+ll16q9Kr6+bZs2QJQ6Q+dqqp2fwC3bdvGrFmz2L59e41+JA0GAwaDocJ8vV7vsANQR5ZV30huzklyc06Sm+OEB+h5eEALHuzXnI0JmXy3OYmle9PYl5LDlJR/eH3pIW7sEM64HjF0jva/5INvR+Xlqp+7EK6i0GhmX0o2u5PP2a7kJ5yueB++VqPQKsyHDlH+dIq2NvKbNfBGp9XUQa2FEM6o3jf6H374YcaOHVtlTKNGjdi9ezfp6ekV3jt16hShoaGVLrdu3ToyMjKIiYmxzTObzTzxxBPMnDmT48ePX1bdhRBCuB6NRqFX02B6NQ3mTF4xP21P5rstSRzJyOWHbcn8sC2ZlqE+jO0ezajOUfh5SuNbiKud2aJyJCOXXcllI+kfSM3BZKl4H36jIE86RvvbGvltwv3wcJMniAghLl29b/QHBwcTHBx80bi4uDiysrLYvHkz3bt3B2DTpk1kZWXRq1evSpcZP348AwcOLDfv+uuvZ/z48dxzzz2XX3khhBAuLdDLjft6N+Heaxuz9cRZvt2cyOLdqRxMz2Hqb/t5/Y8DDGsfzthu0XRvHChdb4WN1lwExXmgVnJSSNGC3r1surji1d+yWA3oPS4xNh+o2OgsCQY3z0uK1ViK7ecG4HbeCPHGAlAt9utcLrYQ1CoGnKtJrN4TSrdHUxFYKt4jX1msxmKsOjedB6qicPJcAbtPnGJ/Uia7k7PYl5pFfnH5+phxI9jbg07RfnSO8KJDpBftwn0JqHAffiFY3EFT0vA3FYOlioE6defFmo1gLrYfqzWA1tocUFRT1bmdF4vZBOaKtx2UxbqBVl/zWIsZTIX2YzV60LnVPFa1VJ1buXItYCqoolwd6Ep6/KoqGKsYP6UmsTXa7iuJtZdbPfyNqNl2XwBqFd/hevYbcdFYnYf992pRvW/0V1fr1q0ZMmQIEydO5KOPPgKsj+y78cYbyw3i16pVK6ZPn87IkSMJCgoiKCioXDl6vZ6wsLAqR/sXQgghzqcoCt0aBdKtUSBTbmrLLztP8s2mRA6k5fDzjpP8vOMkTRp4Ma5bDKNiIwnyrniLmLi63Lh7Iuy282bzwXDHD2XTM5rZbyw0vBbuWVw2PbM95GdWHhvRGf69umz6wx6QlVh5bINW8NCmsun/9YNTByqP9YuB/+yxTV57+DX0u+6rPNYzCJ4+Vjb91S1w4q/KY/We8Hxq2fSC8XB4eeWxAC9llb3++d+w/xf7sc+llDUAfpsEu76xH/vUUfCyXoBqd/Ib9DPutRv6dORXrEx353RuMZN1X/OkruSz0QDu5WPTx68mpEkn68nAVdNhwev26zBxJUR2sb7eNAfiX7Qfe9fv0Li39fW2ebDkSfuxty+AFtcDEHVmA/oZE+zH3joP2o60vj7wG/xwt/3Y4bOh8x3W10dXwDe32Y8d9hZ0n2h9fWI9zL/Rfuygl+Gax6yvU3fC//rbj+37LPSbDIBPYQr6GQ3tx/Z6BAa/an2dlQSzOtiP7XYf3PC29XV+Jsxoaj+24+0wco71tTEfplXxaPA2w+G2L8qmq4q94DdCN7O1U/1G8PlQSNlReewFvxHa78ZA4vrKY+vhbwTLnoMtn9iPfWw3eF/5R8S71M1AX3/9Ne3bt2fw4MEMHjyYDh068OWXX5aLOXjwIFlZWXZKEEIIIS6Pn4eeO+Ma8cdjvVn00DWM7RaNp5uWY6fyeG3JP/ScvoKHvtnO30dOY6mka68Qov6q5Kl45aw/lsnp3GJ0GoUGFzm5F+rjLr1/hBBXhKKqqhxxXKbs7Gz8/PzIyspyyOj9S5YsYdiwYS43CJPk5pwkN+ckudUvuUUmft2ZwndbEtmdXHbiOSbQkzHdorm1axQB7lqH5uXIfZNw7N8z8XQO8cv+4Lo+vTG46dFprWNF6BUNWq2CTqdD5+aJTqOg0ShO1b3faDSy9PdFDBlcxVMoHNC932S2UGSy/l9sNlNkVClU3Ckyma3zCgswmoopNpbGmSk2WSgyqRSZzORZ3Cg2qxSZLJiKCzAZjeXjjCpFZmtZOSY9RWaVQqOZvLxcFCrWt3GQF+2j/GgdHULHmEBah/virpgv0g3fAzQl199q0mW/Frr3G41G/lj8K0MHDbD/uTlp936j0ciSxb8zbFA/+7k5afd+2/5wYF/7udWz3wigWtu9LbdB/dDrqhjTwgm79xvNZoft76u7b3KZ7v1CCCFEfeVt0HF7jxhu7xHD3pNZfLclkV92pJB4Jp8Zyw7ybvwh+rVsQBNV4XqLinOcyhCX6s1lh/h9jxev7Nl+0VhFAZ1GQafRoNMo1pMCpa81CjqtYntfq1HQa0vmazTobK8VtBrNee8p6LTnlXHhdBXvWcvQlMwvK1unyUWnVcBi4WCOAa8TBZjUQlvDvMhkpshoodhsochosTXOS+fbXpssJY3zyt8rXfbKdpI5v4HtRoiPgY7R/nQqeVRe+yg//Dwq22q1wIX359uhc6udWK2+rEF9EaqiszaKqtMI0erKTgA4MlajLd8wc1Ssoql+bhpNDcpVaicWah5b3cZjjcr1vHjMpcTqa3Bfu96j+rnp3S8ecymxOgNQzdvyqhNrruJkQy2RRr8QQghxBbWL9OPVyPY8N6w1i3en8u3mRLYnniP+nwxAS87if5g2qmNdV1PUIk83LZ46FY1Wj9miYrJYMNrpN66qYDSrGOvgIPHSaWH/xU9oOIqbVoNBp8Gg11hf67XWaZ0Gg06LQV/22s02336cW+n0BfO1WNi2YR3jRgx2ml5GQggB0ugXQggh6oSnm45bu0Zza9doDqbl8M2m4/yw+QRD2lb+mFnhOl4b0ZZr3E4wbNj15RqPFouKqeQkgMmiYjarGC0W64kBs2o7QWAqmTZZVMwWi+0943nTJkv5923TZst575WWY7FNG80l67tw/RYV0/nvXRBrW4fZTHZOLkH+vrjrtbZG88Ua42WN7ariKjbG3bQa6y0QV4DRaORINS+wCyFEfSKNfiGEEKKOtQzz4b/DWtHecowejQLrujqijmg0Cm4aBTcnHme5bMyNOLkaLoQQ9YTz7lWEEEIIF6PXcMWuWgohhBDi6iCNfiGEEEIIIYQQwkVJ934HKH3qYXZ29mWXZTQayc/PJzs72+W6xUluzklyc06Sm/NxdF6l+yR5Mq9jyL6+eiQ35yS5OSfJzTk5Mrfq7uul0e8AOTk5AERHR9dxTYQQQojycnJy8PPzq+tqOD3Z1wshhKivLravV1S5BHDZLBYLKSkp+Pj4oCiXdy9mdnY20dHRJCUl4evr66Aa1g+Sm3NZt24dN954I3PnzuWBBx6oMrf/+7//46+//mLPnj1XuJblldb5999/p3fv3gAsX76cbdu2MXny5Arx1fnc2rdvT+vWrVmwYEGt1t3RXPE7WcpVc3N0XqqqkpOTQ0REBBqN3M13uWRfXz2Sm3Oyl1vpfnX+/PmMGDGiyjLqy7HAhUpzW7BgAbfddlu5Y4Tp06fz+uuvk5WVVce1vDRX43fSFTgyt+ru6+VKvwNoNBqioqIcWqavr6/LfcFLSW7OwcvLCwAPDw+g6txefvllsrOz6zz33r17s2HDBtq0aWOry+rVq/nwww+ZPn263eWqyk1RFHQ6XZ3ndqlc6Tt5IVfNzZF5yRV+x5F9fc1Ibs7pwtxKjwU8PT0vmnN9ORawx9PTE7DmVFpHg8EAUG/rXF1X03fSlTgqt+rs66XRL8RVKD8/37bzc4SmTZs6rKzL4evrS8+ePeu6GkIIIUS95+zHAqqqUlhYaLs4IYSwT/r7CeHiXnrpJRRFYfv27dxyyy0EBATUaMdsMpkAaNmyJb6+vgwcOJCDBw+Wi7n77rtp1KhRuXmKovDwww/z0Ucf0aJFCwwGA23atOG7776rcQ7VLWv16tUoisLq1att9frwww9tZZT+f/z4ccDaXRfg2muvxcPDA39/f3r27Mmvv/5aoQ5Lly4lNjYWDw8PWrVqxWeffVbjPIQQQoi6cLnHAkajkeeff56IiIg6PxaYO3curVu3xmAwMH/+fAD++usvBgwYgI+PD56envTq1YvFixfXeB1CuCq50l/PGAwGpkyZYutu5Eokt7o1atQoxo4dywMPPEBeXl61l3v55Zdp3749r7zyCgUFBTzzzDPcdNNN/PPPP2i12iqX/fXXX1m1ahUvv/wyXl5ezJ49m3HjxqHT6bjllltqVP9LKeuFF14gLy+PH3/8kQ0bNtjmh4eHA/DQQw8B0LVrV1599VXc3NzYvn277aRAqV27dvHEE0/w7LPPEhoayieffMK9995Ls2bN6NOnT43yuFKc4Tt5qVw1N1fNS1Tkyp+15Fa/2TsWuFhuzz33HNdccw2ffPIJ2dnZdXYssGjRItatW8eLL75IWFgYISEhrFmzhkGDBtGhQwc+/fRTDAYDs2fP5qabbuLbb79lxIgRTJkyxeVGgAfX+E7aI7k5mCqEcGlTpkxRAfXFF1+s0XKrVq1SAXXYsGHl5i9YsEAF1A0bNtjm3XXXXWrDhg3LxQGqh4eHmpaWZptnMpnUVq1aqc2aNatRXapbVmmdV61aZZv30EMPqZX91K1du1YF1Oeff77KdTds2FB1d3dXT5w4YZtXUFCgBgYGqvfff3+N8hBCCCHqgqscC/j5+alnzpwpN79nz55qSEiImpOTU24d7dq1U6OiolSLxVIul/OPEUr/LkK4OuneL8RVYvTo0Ze03M0331xuukOHDgCcOHHiossOGDCA0NBQ27RWq2XMmDEcOXKE5OTkGtXDkWUB/PHHH0DZ1f6qdOrUiZiYGNu0u7s7LVq0qNbfQAghhKgvnP1YoH///gQEBNim8/Ly2LRpE7fccgve3t7l1jF+/HiSk5Mr3IYgxNVIGv1CXCVKu7TXVFBQULnp0q5IBQUFF102LCzM7rzMzMwa1cORZQGcOnUKrVZbabkXuvBvANa/Q3X+BkIIIUR94ezHAhfW/+zZs6iqWmleERERl7QOIVyRNPqFuEpc7nOlL0VaWprdeZU1pK9UWQANGjTAbDZXWq4QQgjhipz9WODC+gcEBKDRaEhNTa0Qm5KSAkBwcHCN1iGEK5JGvxCi1qxYsYL09HTbtNls5vvvv6dp06Y1ft71pZZl72rE0KFDAZgzZ06N6iGEEEKI6nPkscCFvLy86NGjBz/99FO5/bzFYuGrr74iKiqKFi1aXNY6hHAFMnq/EKLWBAcH079/f1544QXbiL0HDhy4pEf1XGpZ7du3B+CNN95g6NChaLVaOnToQO/evRk/fjyvvvoq6enp3HjjjRgMBnbs2IGnpyePPPLIJeUshBBCiDKOPBaozPTp0xk0aBD9+vXjySefxM3NjdmzZ7N3716+/fbbOundIER9I41+IUStufnmm2nbti3//e9/SUxMpGnTpnz99deMGTPmipV1++238/fffzN79mxefvllVFUlISGBRo0aMW/ePGJjY/n000+ZN28eHh4etGnThueee+5SUxZCCCHEeRx5LFCZvn37snLlSqZMmcLdd9+NxWKhY8eO/Prrr9x4440OWYcQzk5RVVWt60oIIVyPoig89NBDfPDBB/WqLCGEEEJcGbL/FqJ+kHv6hRBCCCGEEEIIFyXd+4W4yqiqitlsrjJGq9VekXvgTCZTle9rNBo0Gjk3KYQQQjiSHAsIcXWRLUiIq8yaNWvQ6/VV/j9//vzLXo+qqhftznexekyYMKHaZQkhhBCiepzxWEAIcenknn4hrjI5OTkcPHiwypjGjRvX+Nm5l2Lr1q1Vvh8cHEyjRo1qvR5CCCHE1USOBYS4urh0o3/OnDnMmTOH48ePA9C2bVtefPFF2/O5VVVl6tSpfPzxx5w9e5YePXrw4Ycf0rZt2zqstRBCCCGEEEII4Rgu3ej/7bff0Gq1NGvWDID58+czY8YMduzYQdu2bXnjjTd47bXXmDdvHi1atODVV19l7dq1HDx4EB8fn2qvx2KxkJKSgo+PjzwLVAghRL2gqio5OTlERETI/bAOIPt6IYQQ9U119/Uu3eivTGBgIDNmzGDChAlEREQwadIknnnmGQCKiooIDQ3ljTfe4P777692mcnJyURHR9dWlYUQQohLlpSURFRUVF1Xw+nJvl4IIUR9dbF9/VUzer/ZbOaHH34gLy+PuLg4EhISSEtLY/DgwbYYg8FA3759Wb9+fZWN/qKiIoqKimzTpedNEhISatRDoDJGo5FVq1bRr18/9Hr9ZZVV30huzklyc06Sm/NxdF45OTk0btz4svdLwqr075iUlISvr+9llWU0Glm+fDmDBw92qe8wSG7OSnJzTpKbc3JkbtnZ2URHR190X+/yjf49e/YQFxdHYWEh3t7e/Pzzz7Rp04b169cDEBoaWi4+NDSUEydOVFnm9OnTmTp1aoX5GzZswNPT87Lr7OnpyaZNmy67nPpIcnNOkptzktycjyPzys/PB5Cu6A5S+nf09fV1SKPf09MTX19flzyYldycj+TmnCQ351QbuV1sX+/yjf6WLVuyc+dOzp07x8KFC7nrrrtYs2aN7f0L/0Cqql70jzZ58mQef/xx23TpGZbBgwc75EAgPj6eQYMGueQXXHJzPpKbc5LcnI+j88rOznZArYQQQgjh7Fy+0e/m5mYbyK9r165s2bKFWbNm2e7jT0tLIzw83BafkZFR4er/hQwGAwaDocL80ueJOoIjy6pvapqbqqqYLComs0qx2YLJbMFoVjGaLZgs1n+NJfPKv3fea9uyKiaLhWJTybImC0ZL6XLl440WO2WarO+ZzGXrLjZZyM/X8taBjWg0ChpFQQFQsL1WFFBQrP+eN0+jlMyjZP55rzUly5T8VxZbshyUlaUpV+755Zy/DqVCnc6vq0LJOs+rq6qqmE4rxBaYiXZAT5b6SLY35+SquTkqL1f827iKVxYfYMUOI/87vAJ3Nx3uOg3ueg1uOq31X70encEDd50Wd70WL6UId70Wd52Cm15b8lqDQa/FoNdj8PAsmafFnQIMpeVoNeUvZCga0HuUTRfnA/aGdlLAzfOSYjWWYijOA9XOd9DNq+y1sQBUi/0/VrnYQlDNjonVe1p3dgCmIrCYqhWrsRirzk3nAaWDaZmKwWK0X26NYt1Bo615rNkI5mL7sVoDaK3NAUU1VZ3bebGYTWAuqjwOQOsGWn3NYy1mMBXaj9XoQedW81jVUnVu5cq1gKmginJ1oCtpB6gqGPMdE6toQe9eNl2cV7NYe7lV2O6rKvfK/EbUbLsvALWK73A9+424aKzOw/57tcjlG/0XUlWVoqIiGjduTFhYGPHx8XTu3BmA4uJi1qxZwxtvvFHHtayfik0WCorNFBjN5BebyC95XVBsLnltoqDYQn6xyTqv5L3S13mFRk6mafgmbQtmC+Ub2ec13ssa06qt4e4cFDKLqthJODUtC2esJTbGn2HtwxnSLoyoANc8ASCEELUtI6eIv5V7Ibfy91eaOzHB+LRter/hHjyVyhtNGy2tubn4Bdv0NsP9+Ck5lcYe0DRjku+71hMEeg3vp99FA3N6pbFnPJuwqNdPtthBq4bjk3Ok0lizbzSFD+3EXW9taF57+DX0u+6rPDnPIHj6WNn0V7fAib8qj9V7wvOpZdMLxsPh5ZXHAryUVfb653/D/l/sxz6XUtYA+G0S7PrGfuxTR8ErGIB2J79BP+Ne+7GP7YaAhtbXK1+G9e/bj31wI4S0tr5e9zased1+7MSVENnF+nrTHIh/0X7sXb9D497W19vmwZIn7cfevgBaXA9A1JkN6GdMsB976zxoO9L6+sBv8MPd9mOHz4bOd1hfH10B39xmP3bYW9B9ovX1ifUw/0b7sYNehmses75O3Qn/628/tu+z0G8yAD6FKehnNLQf2+sRGPyq9XVWEszqYD+2231ww9vW1/mZMKOp/diOt8PIOdbXxnyYFmE/ts1wuO2LsumqYpsPhjt+sE3qZra2f0Kh4bVwz+Ky6ZntrfWuTERn+PfqsukPe0BWYuWxDVrBQ+fdjva/fnDqQOWxfjHwnz1l058PhZQdlcde8Buh/W4MJK6vPLYe/kaw7DnY8on92Md2g3cVn20tcelG/3PPPcfQoUOJjo4mJyeH7777jtWrV7N06VIURWHSpElMmzaN5s2b07x5c6ZNm4anpye33357XVf9kpjMlvIN7Qsb4saSeRc03AtL5pd/z0zBBQ17k8URjW8NZJ297FK0GgW9VkGv0aDXadBpFPRaDXqtgk5rnXYrN1+DTntejEZje135e6XzNbhVKNMa73becopqYcOG9cTF9UKr1aICFouKivXEropq/fe81xbV+j6lr1VK4lUsJW+Uzrvw/QvLPL8sFevy6nmvUcvqUmVZ562LkvcLik0s2XaUhByF7Ynn2J54jlcX/0PHKD+Gtg9naLswGgZ5IYQQonqeGtwc5th/v2kDbx5r3ZxCk5kiowXdDsXuBTR3nZZwD3cKjWYKjVVcOQOKTBYOpJWdECgymK1dwipxOreIl3/fb5te7laAj52nQaVmFXDtlGUA6LUKP2kVAuzE5hWZee+Pf/B20+Fl0HFjTiEhduqrYrd6QohKWBQdxZ6h1iv2pQzBUHhejwjPCNDYuXBjCCkf6xEO9i6+uYeWj3UPBW87vQg8wsvHGkLA287TUNz9obAQo9GITqej0BCMxl6szqN8uW6B9suF8rH6gIvEFoGlpMeMzq/q2CIjaEvK1vpWHVtswlhYaM2tsBCzuYreBlh77Wm12ipjqsOlH9l37733smLFClJTU/Hz86NDhw4888wzDBo0CLA2aKZOncpHH33E2bNn6dGjBx9++CHt2rWr0Xqys7Px8/MjKyvrsu/p/37zcTZt302T5q0oMqu2xnjh+VfXL7jCnl9sotBoodhc9c7eUXQaBQ83LR56LZ5uWjzcdNZ/9Vo83LQVXnu66XDXazFo4cC+PXSN7Yy7m87WqNZrlAsa7hUb1XpN2WudRkGjqV+HAUajkSVLljBs2DCX61Jbmlvstf1ZeTCTJXtS2Xz8DOf/crSN8LX1AGjawLvuKltDV8PnJrk5D0fn5ch9k3Ds39NoNLLst5+5/no7IzfXqJtv+e64alEuxWYLhUYLRSYzRUaVIpP1hEChWaVA1VtfG80YC3MpMpopMlmni0rmF5rMFJpUcsx6WzmW4jyKjBaKSt8vLd9kocikUkjZbY8GitFg/5ikAPdqx5q0HngZdHi56Qhws+BjUPBy01rnlcz3MmjxNOhw9/QpmdbhozPjrackznos4uWmRactaQxdQtddo9HI0t9/Ycjggfa3USft3m80Gvlj8a8MHTTAfm5O2r3faDSyZPHvDBtUxZNRnLR7v22/MbAvKpCQmIKlQtNOKfuuQ9Xd6msUS/mTCzWKVbF/K4A1VlVVCgoK8HB3L1elyy23zmNRUMGam4dHtQbb9ff3JywsrNLY6u6bXPpK/6efflrl+4qi8NJLL/HSSy9dmQpVw2tLDpJdqIXjhy+5DI2CraHtWdoIv7CRXtIo93DTln/tpsVDr6uwjKebztaQd9PZOX1/EUajkSUZuxnWPsylDtSvFmG+7tzVqxF39WrEqZwilu9P4489aWw4lsm+lGz2pWQzY9lBWob6MLR9GMPah9M8xFtGDhdCiEqYtQZr19Hq7A/dqt+bSjF4YwAqjjxUeywW1XbiIKegiKV/rqRbzz4UmiGvyEResYncIhN5RSZyi8zWeUVl8/KKzNbXxWXzbb0WzCrn8o2cyzdy0gF1dddr8D7vhIF3yUmBshMIOrwNZScVrO/n4mXQ4q6FsyZ99T83nRvgVr2K1VasVl/WoL4IVdFVPzetruwEgCNjNdrqf99rEqtoqp+bRlODcpXaiYUaxap6T1JTU9Hq3YiOiECjubRj9frEYrGQm5uLt7e3S+Rzvurmpqoq+fn5ZGRkAJQbh66mXLrR74wGtGpAauJRGsdE4ummL2l4Wxvh7noN7m5uuHt42hrkXkpxSWNdg7vO2ig36EoG7nHowB1m6/8WoFgG96ks9moa3KeBAe7oHMwdnYM5k1fMn4fOsnjfaf4+cpoj6ef4KP0UH/25hybBXgxuG8bgNmG0Cis5AVCPzv4DMriPDO5T89jaGtxHdsnCSWlKewC6afF2Uwj1gHaRl/coKpPZQl7xhScIzGUnCoorOWlQxYmE0vGBrL0cijmdW8VvR5V0fJn0N/1bhXJdyxC6NgpAr3WtBolwPmazmfz8fCIiIhzy+PD6wGKxUFxcjLu7u0s2+qubm4eH9dgrIyODkJCQS+7qL0cY9cybo9ujf60f2BkH48KBO3gt3KkG7pDBfVxvcJ9A4LZb53HbhJFk5RvZv+IL4raVPNIyF9hU8n+JpD5vE9XvXusJABncx/paBvcpm76aB/d5aLv994S4yui0Gvw8NPh5OKZnYJHJTF5JL4PcC04klJ4YqLQnQnHZvNxCI+nZhRzOyONwxjE+WnsMb4OOa5sF069VA65rGUKor/vFKyOEg5XeF+7mVs0eIMKplJ7IMRqN0ugXQtQ9P089cU0CYZv9mFkrDrFxyyqGtgtjjH8uza5c9YQQQlylDDotBp2WQK9LbxQZjUZ++GUJnk1iWXskkzUHT5GZV8zSfWks3ZcGQOtwX/q1bEC/ViF0jvYvG0NAiFpUOkSb3FLpmhzxubr0QH5XirMM7lPXXXetA+AsYsjgQfa7/Dlp934Z3KfqwX3yikysPXyK5fvS+fPQWXKM1r+vFjMxvloGtQnl+rZhdI72Lz9IowzuY3WZg/vYza2e/UYA1drubbkN6odeV8UZ73r0G1GdWCM6lvyxVAbyq6ccva93xcEo4erKzWJR2XMyi9UHT7HqYAa7ks+VG+TW111HnxbWHgB9WzSggc+VHGmhZq6mz82VlObWv39/kpOTady4Me7urtHbxGKxkJ2dja+vr0t2769JboWFhSQkJFT6+cpAfk6stgb3qVlsDe4HqkGsReNW/dzOb2BcNLYGP3A1idVVfzgki0YG97GWW3HAHi83GBrrx9DYZhQUm1lzKIMle9JYeSCDhGwTH29M5+ON6YT4GBjSLoyh7cLp3jgQ7fknAGRwnzI1ja3uQU49+I2o2XbvUf3c6sFvxEVjjVWcsBNC1DsajULHaH86Rvvz2MDmZOYWsfbwKVYfPMWaQ6c4l2/k992p/L7beqtRhyg/rmsZwnUtG9Axyr/8Pk4IIWqRNPqFEFeUh5uWIe3CGdIunEKjmb8On2bJ3lTi96eTkVPEFxtO8MWGEwR5uTG4bRjD2ofRs0mQDJQkhBCiXgvyNjCycxQjO0dhtqjsTDrH6oMZrDqYwd6T2exOzmJ3chbvrThMgKeevi2stwH0ad6AgMu47UAIV6bVavn5558ZMWJEra6nUaNGTJo0iUmTJtXqeiozb948Jk2axLlz52ptHdLoF0LUGXe9loFtQhnYJpRik4W/j57mjz2pLN+fTmZeMd9uTuTbzYn4e+oZ3CaUoe3DuaZp8CU/NlIIIYS4ErQahS4NA+jSMIAnBrckI6eQNQetvQDWHj7F2Xwji3amsGhnCooCnaL96dcyhH4tQ2gb4Vv+VjchXFhGRgYvvPACf/zxB+np6QQEBNCxY0defPFF2rZty8mTJwkKCqrralZwJRrqjiSNfiFEveCm09gOeF4zW9h4LJM/9qaxbG8amXnFLNiazIKtyfi46xjUJpSh7cLp3TwYd/2ljWIqhBBCXCkhPu7c2jWaW7tGYzRb2JF4jlUHM1h1IIMDaTnsSDzHjsRzvBN/iGBvQ0kvgAb0btYAP0/Xug9diPONHj0ao9HI/PnzadKkCenp6axYsYIzZ84AEBYW5nL39NcF+QsKIeodvVZD7+YNmDayPZufH8i3E3tyZ1xDGvgYyCk08dP2k0z8YitdXonn0W93sHRvKgXFVQy8JoRwObNnz7YNatSlSxfWrVtXZfyaNWvo0qUL7u7uNGnShLlz516hmgpRnl6roXvjQJ4Z0oqlk/qwYXJ/po9qz/VtQ/Fy03I6t4iF25N5+JsdxL4az21zN/DhqiPsT8lGxt8W1aGqKvnFpjr5vybf0XPnzvHXX3/xxhtv0K9fPxo2bEj37t2ZPHkyN9xwA2Dt3r9o0SIAjh8/jqIoLFiwgN69e+Ph4UG3bt04dOgQW7ZsoWvXrnh7ezNkyBBOnTplW891111Xodv+iBEjuPvuu+3W7Z133qF9+/Z4eXkRHR3Ngw8+SG5uLgCrV6/mnnvuISsrC0VRUBSFl156CYDi4mKefvppIiMj8fLyokePHqxevbpc2fPmzaNdu3Z4e3szcuRIMjPtPC7ZgeRKvxCiXtNqFOKaBhHXNIiXbmrLtsSzLNmTytK9aaRmFfLrrhR+3ZWCh15L/1YhDG0fRr+WIXgZ5OdNCFf1/fffM2nSJGbPns0111zDRx99xNChQ9m/fz8xMTEV4hMSEhg2bBgTJ07kq6++4u+//+bBBx+kQYMGjB49ug4yEKJMuJ8H47rHMK57DMUmC1uPn2HVwQxWHzzF4YxcNh8/w+bjZ5ix7CBhvu5c19L6RIBrmgXh4y69AERFBUYzbV5cVifr3v/y9Xi6Ve8YzNvbG29vbxYtWkTPnj0xGKo3MO6UKVOYOXMmMTExTJgwgXHjxuHr68usWbPw9PTktttu48UXX2TOnDmXnIdGo+G9996jUaNGJCQk8OCDD/L0008ze/ZsevXqxcyZM3nxxRc5ePCgLReAe+65h+PHj/Pdd98RERHBzz//zJAhQ9izZw/Nmzdn06ZN3HfffbzwwguMGzeO5cuXM2XKlEuuZ3XJUbEQwmloNArdGgXSrVEgL9zQhp3J51i6N40le1JJPlvA4j2pLN6TikGnoW+LBgxrH07/1iH4ykGREC7lnXfe4d577+W+++4DYObMmSxbtow5c+Ywffr0CvFz584lJiaGmTNnAtC6dWu2bt3KW2+9ZbfRX1RURFFR2eNHs7OzAesjsoyX+aSF0uUvt5z6SHK7PArQraEf3Rr68fTg5iSfLWDN4dOsOXSKjcfOkJZdyHdbkvhuSxI6jULXhv70bdGAvi2CadbA65Kf5y2fm3Mqzclksl5ht1gstv/rSk3Wr9Fo+Oyzz7j//vuZO3cusbGx9OnThzFjxtC+ffsKZZaW+/jjjzNo0CAAHnnkEe644w7i4+OJi4sDYMKECcyfP79cPUr/PudPVzavdPrRRx+1zW/YsCFTp07loYce4oMPPkCn0+Hj44OiKISEhNjiDh8+zLfffktiYiIRERG2ui5dupTPPvuM1157jZkzZzJ48GD+85//4OPjQ4sWLfj7779ZtmyZ3b+bxWJBVVWMRiNabfnbWqv7vZZGvxDCKWk0CrExAcTGBDB5aCv2nsxmyd5U/tiTyvHMfJbvT+f/2bvzuKiq/oHjn9nY9x1kR9xxz33DBVFLS0tLc8kiy8rMp6ftKS0rfcy0stJySa2s7CnzV5nmvuO+i4ogyCLIIrIvAzO/P9BRAhQQBcbv+/Xi5dx7z7lzvgzOuefcc8/ZGHEZE5WSnoFODApyZ0BzV3k2UogGrqioiMOHD/PGG2+U2R8SEsLevXsrzBMeHk5ISEiZfQMHDmTZsmVotdoK1+6ePXs27733Xrn9GzduxMKiGstQ3sKmTZtq5Tz1kcRWe+yBhx1giB1EZymIyFAQcVVBagHsi8lgX0wGc/6OxN5ETwt7PS3s9ATa6jGtwZQ38rk1THv37sXNzY2cnByKiorQ6/WET+tSJ2XR5ueSVVD1zqcBAwYQERFBeHg4Bw8eZPPmzcydO5cFCxYwevRoAPLz88nKyjIMrw8ICDB0xFpbWwOls+9f32djY8Ply5cN28XFxRQVFRm2r+/TarWGfTqdjoKCAsP2rl27mD9/PufOnSM7O5vi4mIKCgpISkrC0tKSgoIC9Hp9mXPu2bMHvV5Ps2bNysRYWFiIjY0NWVlZnD59mgcffBCA7OxsANq1a8eGDRvKnOtmRUVF5Ofns3PnToqLi8scy8vLq9LvWRr9QogGT6FQEORpS5CnLa8NbMqZpGzWn0rir5NJRKfmsuVsClvOpqBWKuje2InBQW4MaOGGtYnMjixEQ5OWlkZJSQmurq5l9ru6upKcnFxhnuTk5ArTFxcXk5aWhru7e7k8b775JtOmTTNsZ2Vl4eXlRUhICDY2NncUg1arZdOmTQwYMKDCDoeGTGK7dy6m590YBRCTQUaRjj2XFey5DBqVgs5+DvQKdKJPEyd8HS1uOQqgvsVWm+6H2Lp160ZSUhJWVlaYmZkBYFvHZasOGxsbhg0bxrBhw/jggw8ICwtjzpw5hka/ubk5NjY2hiH0dnZ2hu9hS0tLABwcHAz7zM3N0ev1hm0TExM0Gk2Z7269Xl9mn1KpxMzMDBsbGy5evMjIkSOZNGkSH374IQ4ODuzevZuwsDBDWczMzFAoFGXOaWpqikql4uDBg+XuyFtZWWFjY4NSqcTEpHSJzuujBSo6180KCgowNzenV69ehs/3uso6Cv5JGv1CCKOiUCho4WFDCw8b/hXSlPOXs/nrZDLrTyVxNjmbHZGp7IhM5a3fTtHZ1x5/pYJ+xTqM7DpACKP3zwaMXq+/ZaOmovQV7b/O1NS0wudLNRpNrTUcavNc9Y3Edvc1drOlsZstT/cMIL+ohPALaWw/l8rWsykkZOSzOyqd3VHpzFp/Dh9HC4KbutC7qTNd/R0rXfmmvsR2NxhzbGq1GoVCgVKpNIqZ7lu2bMn//d//Gbavx3U9tn++vtU+AGdnZ5KTkw3bJSUlnD59muDg4DK/r+u/wyNHjlBcXMz8+fMNx3/55Zcy72NmZkZJSUmZ/B06dKCkpIS0tDR69uxZYWwtWrRg//79Zd7v+nZln51SqUShUFT4N1zVv2lp9AshjFqgqzUvu1rzcv9AolNzDHMAnL6Uxd4LV9iLivUf72RMFx+e7OyNi43Z7U8qhKgzTk5OqFSqcnf1U1JSyt3Nv87Nza3C9Gq1ul6u/yxEdZmbqOjbzJW+zVx5b6ie6NRctl+bDHB/TDoX0/NYsTeWFXtjMVUr6RbgSHAzF/o0ccHbsXYeVxGiutLT03nssceYOHEirVu3xtramkOHDvHRRx8xdOjQWnufvn37Mm3aNNatW0dAQACffPIJV69erTR9QEAAxcXFfP755zz00EPs2bOn3Iovvr6+5OTksGXLFtq0aYOFhQVNmjRhzJgxjBs3jnnz5tGuXTvS0tLYunUrQUFBDB48mClTptCtWzc+++wzRo0axebNm9mwYUOtxVqZht8VJIQQVRTgbMULwY1ZN6UnO/8dzCv9GmNroic9t4gFW87T7b9befmnoxyNy6jrogohKmFiYkKHDh3KPZ97fYhrRbp27Vou/caNG+nYsaPR3vkT9y+FQkFjFyue6enP98905uj0EBaP7cATnbxxtzWjsFjHtnOpTP+/0/Sau42+87Yza/05zmcq0OlkSUBx71hZWdG5c2c++eQTevXqRatWrXjnnXcICwvj888/r7X3mThxIuPHj2fcuHH07t0bPz8/goODK03ftm1b5s+fz5w5c2jVqhWrVq0qN0lst27deO655xg1ahTOzs589NFHACxfvpxx48bxr3/9i6ZNmzJ06FD279+Pl5cXAF26dGHx4sUsXryY9u3bs3HjRt5+++1ai7UycqdfCHFf8na0YHIff7xyzqL2bc93++M5GJvB/x27xP8du0QbT1smdPdlcJA7puoazIYkhLhrpk2bxtixY+nYsSNdu3Zl8eLFxMXF8dxzzwGlz+MnJiby7bffAvDcc8/xxRdfMG3aNMLCwggPD2fZsmX8+OOPdRmGEPeElamakJZuhLR0Q6/XE3k5h23nUth2NoVDFzO4kJrLhdRcQMWv83fxSLtGDG/fiMYu1nVddGHkTE1NmT17doWrruh0OrRabZkh9L6+voZHs67r06dPuX0TJkxgwoQJhm2NRsPChQtZuHBhpWWJjY0ts/3KK6/wyiuvlNk3duzYMtuLFi0qtyygRqPhvffeq3Ai2OsmTpzIo48+anjGH+Bf//pXpelrgzT6hRD3NZUSBrVyY2g7L04lZrJibyy/H7vE8YRMXll9nA/XneXJLt6M7uyNi7UM/ReiPhg1ahTp6enMnDmTpKQkWrVqxV9//YWPjw8ASUlJxMXFGdL7+fnx119/8corr/Dll1/i4eHBggULKl2uTwhjpVAoaOpmTVM3a57rHUBWgZY959PYfCaZv44nkpRZwMLt0SzcHk1rT1uGt2vEQ208cLSq2vrpQoj6SRr9QghxTatGtnz8WBveGNSMnw7E8d2+i1zOKuTTzef5clsUD7b2YEI3X9p42dV1UYW4702ePJnJkydXeGzFihXl9vXu3ZsjR47c5VIJ0bDYmGkYFORO/2ZOdNXEYeLbnt9PXGb7uRROJGRyIiGTD9adoU9TF0a0b0Tf5i4y+k2IBkga/UII8Q9OVqa82DeQSb0DWH8qmRV7YjgSd5Xfjiby29FE2nnbMaGbL4NauWOilqlRhBBCNHyam0a+pecU8sfxS6w5msiJhEw2n7nM5jOXsTXX8GBrd4a396S9t90tV8wQQtQf0ugXQohKaFRKhrbxYGgbD04kXGXF3lj+PJ7E0birHI07xofWZxjT2YfRnb1xtpahj0IIIYyDo5UpE7r7MaG7H+cvZ7PmaCK/HUkkOauAVfvjWLU/Dl9HC4a39+SRdo3wcpAVAISoz+QWlRBCVEFrTzvmj2zLnjf6Mm1AE5ytTUnJLuSTzZF0/+9Wpq0+xomEq3VdTCGEEKJWBbpa83poM/a80ZdVz3RmePtGWJioiE3PY/6mSHp+tI2RX4fz04E4sgq0dV1cIUQF5E6/EEJUg7O1KVP6BfJc7wDWn0pixd5YjsZdZc3RRNYcTaS9tx1PdfcjtJUbGpX0qwohhDAOKqWC7o2d6N7YifeHFfP36WTWHElkT3QaB2KucCDmCjN+P82AFq6MaO9Jz0An1FIPClEvSKNfCCFqwEStZFjbRgxr24hj8VdZuTeWP09c4kjcVY7EHcXVxpSxXXx4opO3zHoshBDCqFiaqhne3pPh7T1Jyszn/45d4tfDCZxPyeHPE0n8eSIJJytThrX1YHj7RrRwt5Hn/4WoQ9LoF0KIO9TWy462o9ry5qBmhmcdL2cV8vHGSBZsjWJom9JZ/1s1sq3rogohhBC1yt3WnOd6BzCplz+nL2Xx65EEfj92ibScQpbtjmHZ7hiauVkzvH1pR7mrjSx/K8S9Jo1+IYSoJS42ZrwyoAmTgwNYfzKZ5XtiOJ6QyS+HE/jlcAIdfeyZ0N2XgS1l6L8QQgjjolAoaNXIllaNbHlrcHN2Rqay5kgimyIuczY5m1l/neW/68/SvbETI9p7EtLSFQsTaYoIcS/I/zQhhKhlpmoVD7drxMPtGnE0LoMVe2NZdyKJQxczOHQxA3dbM568NvTfwdKkrosrhBBC1CqNSkm/5q70a+5KZp6WdSeTWHMkgUMXM9h1Po1d59OwNFExKMid4e0b0cXPEaVShv+Lmjl79iwTJkzg2LFjNGvWjGPHjtV1keodafQLIcRd1M7bnnbe9rw1uDmr9sfxw/6LJGUWMPfvc3y25TwPt/VgfDdfWnrI0H8hhBDGx9ZCw+jO3ozu7M3F9FzWHEnkt6OJxF3JM4yE87A145H2jXiknSeNXazqusjiHpowYQIrV64EQKVS4eHhwZAhQ/jggw9QqVRVOseMGTOwtLTk3LlzWFnJ309FpNEvhBD3gKuNGdMGNOGF4ADWnUhi+Z5YTiZm8vOhBH4+lEAnPwee6ubLgBauMtuxEEIIo+TjaMkrA5owtX8ghy9m8OuRRP48cYlLmQV8uS2aL7dF08bLjhHtG/Fgaw8ZDXefCA0NZfny5RQXFxMREcHEiRPJyMjgq6++qlL+6OhohgwZgo+PT43LUFRUhImJ8f691asry6ysrGr/CCFEQ2KqVjG8vSe/v9idX5/vxkNtPFArFRyIucLzq47Q66NtLNoeTUZuUV0XVYgKSV0thLhTCoWCjr4OzB4exMH/9OfL0e3p18wFlVLB8firTP+/03SetZlnvz3EhlNJFBaX1HWRG6ai3Mp/tAXVSJtftbQ1ZGpqipubG56enoSEhDBq1Cg2bdpkOL58+XKaN2+OmZkZzZo1Y+HChYZjCoWCw4cPM3PmTBQKBe+++y4AiYmJjBo1Cnt7exwdHRk2bBixsbGGfBMmTODhhx9m9uzZeHh40KRJk2rl+/jjj3F3d8fR0ZEXXngBrVZrSFNYWMhrr72Gl5cXpqamBAYGsmzZMsPxiIgIHnvsMWxsbHB1dWXs2LGkpaXV+PdXFfXqTr+dnV21lvNQKBRERkbi7+9/F0slhBC1T6FQ0MHHng4+9iQPbs6q/Rf5YX8clzILmLPhLJ9ujuThto2Y0N2X5u42dV1cIQykrhZC1CYzjYohrd0Z0tqdtJxCfj92iTVHEziVmMXGiMtsjLiMrbmGh9q4M7y9J+28qvcddF+b5VH5scAQGPO/G9tzG4M2r+K0Pj3gqXU3tj8Ngrz08unezaxZOW9y4cIFNmzYgEajAWDJkiW89957fPHFF7Rr146jR48SFhaGpaUl48ePJykpif79+xMaGsqrr76KlZUVeXl5BAcH07NnT3bu3IlareaDDz4gNDSUEydOGO7ob9myBRsbGzZt2oRer69yvm3btuHu7s62bduIiopi1KhRtG3blrCwMADGjRtHeHg4CxYsoE2bNsTExBga9UlJSQQHBzN27Fg+++wzCgsLef311xk5ciRbt269499fZepVox/gl19+wcHB4bbp9Ho9gwcPvgclEkKIu8vN1ox/hTTlheDG/HkiieV7Yjh9KYvVh+JZfSiezn4OPNXdj/7NXWTov6gXpK4WQtwNTlamTOzhx8QefpxLzmbN0QTWHk3kclYh3++L4/t9cfg5WTL82mS5Xg4WdV1kUQv+/PNPrKysKCkpoaCgdATCvHnzAPjwww+ZN28ew4cPB8DPz4+IiAi+/vprxo8fj5ubG2q1GisrK9zc3AD45ptvUCqVLF261NBBtHz5cuzs7Ni+fTshISEAWFpasnTpUkNjvqr57O3t+eKLL1CpVDRr1owhQ4awZcsWwsLCiIyM5Oeff2bTpk30798foEyn96JFi2jXrh3Tp0/HxsYGpVLJN998g5eXF5GRkYYRB7WtXjX6fXx86NWrF46OjlVK7+/vb+gFEkKIhs5Mo+LRDp6MaN+IwxczWL43lg2nktkfc4X9MVdoZGfOuK4+jHrACzsL433uTNRvUlcLIe6Fpm7WvDmoOa8NbMbe6DR+O5LI+lPJxKTlMm9TJPM2RdLZz4ER7T0ZFOSGtZl8z5Tz1qXKjyn+MUnev6NukfYfNxymnqx5mSoQHBzMokWLyMvLY+nSpURGRvLiiy8SFxdHfHw8Tz/9tOEuOkBxcTG2tpVPgHz48GGioqKwtrYus7+goIDo6GjDdlBQUJnn+Kuar2XLlmUmGXR3d+fkydLfybFjx1CpVPTu3bvSsm3fvh1PT89yx6Kjo++PRn9MTEy10p86deoulUQIIerO9WcdO/o6kJSZz/f7Sof+J17NZ/b6s3yyOZJH2nkyoZsvTd2sb39CIWqR1NVCiHtJpVTQM9CZnoHOvP9wMRtOJbPmaAJ7o9MNneLv/N8pQlq6Mbx9I3o2dpJRcdeZWNZ92iqwtLSkcePGACxYsIDg4GBmzpzJuHHjgNIh/p07dy6T51Yz++t0Ojp06MCqVavKHXN2di7zvjXJ98+ObIVCgU6nA8Dc3LzScl1/jwcffJC3334bKysrlMobf6vu7u63zHsn6lWjXwghRFnutub8e2AzXuobyO/HL7F8TyxnkrL48UAcPx6Io6u/IxO6+9K/uSsqWeNYCCGEEbM0VTOigycjOnhy6Wo+a48l8uvhBKJTc/nj+CX+OH4JJytTHm7rwfD2nrTwkDlxGqIZM2YwaNAgxowZQ6NGjbhw4QJjxoypcv727duzevVqXFxcsLGp+t9ATfPdLCgoCJ1Ox44dOwzD+//5Hr/++ive3t44ODiUafTfTfW20b9gwYIK9ysUCszMzGjcuDG9evWq8vqNQgjRkJlpVIzs6MVjHTw5GJvBir0xbDiVTPiFdMIvpONpf23of0dvbC1kiKO4N6SuFkLUFQ87cyb3aczzvQM4mZjJmiOJ/H78Emk5hSzdHcPS3TE0c7Pm4bbuWMiCOA1Knz59aNmyJfPnz2f69OlMnToVGxsbBg0aRGFhIYcOHSIjI4Np06ZVmH/MmDHMnTuXYcOGMXPmTDw9PYmLi2PNmjX8+9//rnBo/Z3ku5mvry/jx49n4sSJhon8Ll68SEpKCiNHjuSFF15gyZIlPPPMM7zxxhu4uLgQFRXFTz/9xJIlS+5afVlvG/2ffPIJqamp5OXlYW9vj16v5+rVq1hYWGBlZUVKSgr+/v5s27YNLy+vui6uEELcEwqFgk5+DnTycyDxaunQ/x8PxJGQkc+sv87yyabzPNK+EU92un3FJMSdkrpaCFHXFAoFrT3taO1px1uDm7MjMpU1RxLYciaFs8nZ/HdDNkpU7Mw9yhOdfejdxFmG/zcAU6dO5emnn+btt99m6dKlzJ07l9deew1LS0uCgoKYOnVqpXktLCzYuXMnr7/+OsOHDyc7O5tGjRrRr1+/W97Br2m+f1q0aBFvvfUWkydPJj09HW9vb9566y0APDw82LVrF6+++qqhE8PHx4fQ0NC7ete/3jb6Z82axeLFi1m6dCkBAQEAREVFMWnSJJ599lm6d+/O448/ziuvvMIvv/xSx6UVQoh7r5GdOa+HNuPlfoH837FElu+J5WxyNj/sj+OH/XE0t1Pi3CKDboEudV1UYaSkrhZC1CcmaiUDWrgyoIUrmXla/jx5iV8OxXM0PpPNZ1PZfDYVVxtTHuvgxciOXng7yuz/dW3FihUV7h89ejQPPvggNjY2jB49mtGjR1d6jmPHjpXb5+bmxsqVK6v9vjXJ9+mnn5bZNjMzY/78+cyfP7/CcwQGBvLdd98ZZu+/F+pto//tt9/m119/NVxEADRu3JiPP/6YESNGcOHCBT766CNGjBhRh6UUQoi6Z6ZRMeoBb0Z29GJ/zBVW7IllY0QyZ64qGb3sIA/42jM5uDF9mjjL2saiVkldLYSor2wtNIzp7MPI9h5888tfXLYMYO3xJC5nFfLFtii+2BZF98aOjHrAm5AWrphp5DEkYbzqbaM/KSmJ4uLicvuLi4tJTk4GSodHZGdn3+uiCSFEvaRQKOji70gXf0eiLmcyfdVODqarOBibwVPLD9LC3YYXghsT2spNJv0TtULqaiFEQ+BmARMHNeX1wc3ZHJHCTwfj2B2Vxp6odPZEpWNnoeGRdo0Y9YAXzdxk8j9hfOrtAy3BwcFMmjSJo0ePGvYdPXqU559/nr59+wJw8uRJ/Pz86qqIQghRb/k4WDAqQMe2aT0J6+mHhYmKiKQsXvjhCAPm7+Dng/EUFevqupiigZO6WgjRkJiqVQxp7c53T3dm12vBvNwvEA9bM67maVm+J5bQT3fx8Jd7+OlAHDmF5Ts0hWio6m2jf9myZTg4ONChQwdMTU0xNTWlY8eOODg4sGzZMgCsrKyYN29eHZdUCCHqL1cbM/4zpAV7Xu/Ly/0CsTXXcCEtl9d+PUHvudtYvieG/KKSui6maKCkrhZCNFSe9ha8MqAJu17vy4qnHmBQKzfUSgXH4q/yxpqTdPpwM6//coIjcRno9fq6Lq4Qd6TeDu93c3Nj06ZNnD17lsjISPR6Pc2aNaNp06aGNMHBwXVYwuorKSlBq9XeMo1Wq0WtVlNQUEBJiXFdiBtbbBqNRpahEg2GvaUJrwxoQlgvf37cH8eSXRdIyizgvT8i+HxrFE/38OPJLj7Ymstyf6LqjLGuFkLcX1RKBX2autCnqQup2YX8djSBnw7GcyE1l9WH4ll9KJ4mrlaM7OjF8PaeOFia1HWRy7k+X490Thgnne7OR2bW20b/df7+/igUCgICAlCr631xK6TX60lOTubq1atVSuvm5kZ8fLzRTbhljLHZ2dnh5uZW18UQosqsTNWE9fJnbFcffj2SwFc7oom/ks/cv8/x1fZonuzqw8Tufjhbm9Z1UUUDYgx1tRBCOFub8myvAMJ6+nPoYgY/HYhn3clLRF7O4YN1Z/howzkGtHTl8Qe86B7ghLKezI+jVqtRKBSkpqbi7Gwck/bqdDqKioooKCi4ZzPc3ytVjU2v11NUVERqaipKpRITk5p3ONXbmjkvL4+XXnrJsGRCZGQk/v7+TJkyBQ8PD9544406LmHVXW/wu7i4YGFhccv/iDqdjpycHKysrIzyD9xYYtPr9eTl5ZGSkgKAk5NTHZdIiOox06gY09mHUR29WHcyiS+3RRF5OYdF26P5ZncMjz/gRVgvfzztZTkjUTljqquFEOI6hULBA74OPODrwIyhLfj92CVWH4znZGIm604kse5EEp725ozs6MVjHT1xtzWv0/KqVCo8PT1JSEggNja2TstSW/R6Pfn5+ZibmxtFJ8bNqhubhYUF3t7ed9R+qreN/jfffJPjx4+zfft2QkNDDfv79+/PjBkzGsyFRElJiaHB7+joeNv013t+zMzMGnzD+J+MLTZz89Iv+JSUFOzt7eu4NELUjFqlZFjbRjzU2oMtZ1P4YlsUx+OvsjL8Iqv2xzGsbSOe7xNAYxerui6qqIeMpa4WQojK2JhpeLKLD0928eFUYiY/H4rnt6OJJGTkM39TJJ9ujqR3E2dGPeBNv+YuaFR1c41rZWVFYGDgbR8lbii0Wi07d+6kV69eaDTG9ehhdWJTqVSGkRx3ot42+teuXcvq1avp0qVLmSBbtGhBdHR0HZaseq7/x7OwkLtlxuj651rRklVCNCRKpYIBLVzp39yF8Oh0vtwexZ6odH49ksCaowmEtnRjcp/GBHna1nVRRT1iLHW1EEJURatGtrRqZMtbg5uz/lQSPx2IZ3/MFbadS2XbuVScrEwZ0aERozp64e987zvLVSqV0cw3pVKpKC4uxszMzOga/XURW71t9KempuLi4lJuf25uboMc4tEQyyxuTyZOEcZGoVDQrbET3Ro7cSz+Kgu3RbEx4jLrTyWz/lQyPQOdeCG4MZ39HOR7TRhdXS2EEFVhplHxSDtPHmnnyYXUHH4+lMAvhxNIyynk6x0X+HrHBTr5OfD4A14MauWOuYlxNMRFw1Vvx1g/8MADrFu3zrB9/eJhyZIldO3ata6KJYQQ9422XnYsHteRja/04pF2jVApFew6n8bji/fx6FfhbD17WTq87nNSVwsh7nf+zla8MagZ4W/25euxHejbzAWlAg7EXGHaz8fpNGsz76w9xanEzLouqriP1ds7/bNnzyY0NJSIiAiKi4v57LPPOH36NOHh4ezYsaOuiycovbj77bffePjhh+/q+/j6+jJ16lSmTp16V9+nIitWrGDq1KlVWnlBCGPVxNWaT0a1ZdqAJny9M5qfDyVw+GIGE1ccopmbNZODGzMkyB1VPZnFWNw7UlcLIUQpjUrJwJZuDGzpRlJmPr8cSmD1oXgSMvL5bt9Fvtt3kVaNbBj1gDfD2npgY2ZcQ9ZF/VZv7/R369aNPXv2kJeXR0BAABs3bsTV1ZXw8HA6dOhQ18W7L6SkpDBp0iS8vb0xNTXFzc2NgQMHEh4eDkBSUhKDBg2q41KWt2LFCuzs7Oq6GEIYHS8HCz54OIjdrwUzqZc/liYqziZnM+XHo/Sbt52fDsRRWFxS18UU95DU1UIIUZ67rTkv9Qtk57+D+f7pzjzY2h0TlZJTiVm8s/YUnT7czLSfj3Eg5oqMmBP3RL290w8QFBRkWAZI3HsjRoxAq9WycuVK/P39uXz5Mlu2bOHKlSsAsj69EPcpFxsz3hzcnMl9GrMyPJZv9sQQm57HG2tO8unm84T18ueJTl5YmNTrKkbUEqmrhRCiYkqlgh6BTvQIdOJKbhG/HU1k9cE4Ii/nsOZIImuOJOLvZMmoB7wY3t4TZ2vTui6yMFL16k5/VlZWlX/E3XX16lV2797NnDlzCA4OxsfHh06dOvHmm28yZMgQoHR4/9q1awGIjY1FoVDw888/07NnT8zNzXnggQeIjIzk4MGDdOzYERsbGx599FFSU1MN79OnT59yw/YffvhhJkyYUGnZ5s+fT1BQEJaWlnh5eTF58mRycnIA2L59O0899RSZmZkoFAoUCgXvvvsuAEVFRbz22ms0atQIS0tLOnfuzPbt28uce8WKFXh7e2NhYcEjjzxCenr6Hf0ehTBmthYapvQLZM/rfXl7SHNcbUxJzirg/T8j6P7frSzYcp7MPONYOkjcIHW1EEJUn4OlCU/38OPvqb34bXI3Hn/ACwsTFRfScpm9/ixdZ2/hue8Os+1cCiU6ufsvale9ug1jZ2dX5dl+S0oa5hBSvV5Pvrbysut0OvKLSlAXFdf6WvbmGlWVf79WVlZYWVmxdu1aunTpgqlp1XoeZ8yYwaeffoq3tzcTJ07kiSeewMbGhs8++wwzMzNGjhzJjBkz+Oqrr2och1KpZMGCBfj6+hITE8PkyZN57bXXWLhwId26dePTTz9l+vTpnDt3zhALwFNPPUVsbCw//fQTHh4e/Pbbb4SGhnLy5EkCAwPZv38/EydOZNasWQwfPpwNGzYwY8aMGpdTiPuFpamaZ3r6M7arD78dSWTRjmgupucxf1MkX++I5smuPjzdww8Xa7O6LqqoBfdDXS2EEHeLQqGgnbc97bztefvBFqw7cYmfDsZzNO4qG04ns+F0Mu62ZjzW0YvHOnji5SDLfos7V68a/du2bTO8jo2N5Y033mDChAmGGYDDw8NZuXIls2fPrqsi3rF8bQktpv9dJ+8dMXNglYfbqtVqVqxYQVhYGF999RXt27end+/ePP7447Ru3brSfK+++ioDBw4E4OWXX+aJJ55gy5YtdO/eHZ1Ox5NPPsnq1avvKI6bRwb4+fnx/vvv8/zzz7Nw4UJMTEywtbVFoVCUefwgOjqaH3/8kYSEBDw8PAxl3bBhA8uXL2fWrFl89tlnDBw4kDfeeAOAJk2asHfvXjZs2HBH5RXifmGqVvF4J28e7eDJX6eSWbgtirPJ2Xy94wLL98QysqMnk3oFyAVMA3c/1NVCCHEvWJmqGfWAN6Me8OZccjarD8az5mgCSZkFLNhyns+3nqdHYycef8Cb/i1cMFXL0n+iZupVo793796G1zNnzmT+/Pk88cQThn1Dhw4lKCiIxYsXM378+Nueb/bs2axZs4azZ89ibm5Ot27dmDNnDk2bNjWk0ev1vPfeeyxevJiMjAw6d+7Ml19+ScuWLWs3uAZoxIgRDBkyhF27dhEeHs6GDRv46KOPWLp0aaXD72/uEHB1dQVKn/e8zsXFhZSUlDsq17Zt25g1axYRERFkZWVRXFxMQUEBubm5WFpaVpjnyJEj6PV6mjRpUmZ/YWEhjo6OAJw5c4ZHHnmkzPGuXbtKo1+IalKrlAxt48FDrd3ZejaFL7dFcSTuKt/vi+PHA/EMa+PB830CCHS1ruuiihqo7bpaCCEENHWzZvpDLXh9UFM2nr7M6oPx7I5KY9f50h8HSxOGt2vEqAe8pP4U1VavGv03Cw8Pr3AIeMeOHXnmmWeqdI4dO3bwwgsv8MADD1BcXMx//vMfQkJCiIiIMDQOP/roI+bPn8+KFSto0qQJH3zwAQMGDODcuXNYW9f+fyhzjYqImQMrPa7T6cjOysbaxvquDO+vLjMzMwYMGMCAAQOYPn06zzzzDDNmzKi00a/R3Fh+5Prwz3/u0+l0hm2lUllu1lKttvJngC9evMjgwYN57rnneP/993FwcGD37t08/fTTt8yn0+lQqVQcPnwYlars7+H68H+ZPVWI2qVQKOjX3JW+zVzYH3OFL7dFset8GmuOJrLmaCIhLVx5Ibgxbbzs6rqoooZqo64WQghxg6laxUNtPHiojQdx6Xn873A8Px+K53JWIUt3x7B0dwwdfOwZ9YAXA5s71XVxRQNRbxv9Xl5efPXVV8ybN6/M/q+//hovL68qneOfd2iXL1+Oi4sLhw8fplevXuj1ej799FP+85//MHz4cABWrlyJq6srP/zwA5MmTarwvIWFhRQWFhq2r09WpNVqyzU8tVoter0enU5naOyaqStvzOv1CopNVNV6/r6q9Hr9HTdsmzdvztq1aw2xXI/rn9vXX9+87+b3vn7MycmJS5cuGbZLSko4deoUffr0KdM5cP13eODAAYqLi5k7d66hU+T64wLX30etVlNSUlImf5s2bSgpKSE5OZmePXuWi0un09G8eXPCw8PL5Lu+POHN+/6ZT6/XU1xcDNy6w6Khuh6TxNaw1LfYOnjZ8M249pxMzOSrnTFsOpPCxojLbIy4TLcAB57v5U9nP/sqfe/Vt9hqS23HdS9+P7VRVwshhKiYt6MF/wppysv9Atl5PpWfDsSz5WwKhy9mcPhiBu+Zqmhlo8QiMpVeTV1l+L+oVL1t9H/yySeMGDGCv//+my5dugCwb98+oqOj+fXXX2t0zszMTAAcHBwAiImJITk5mZCQEEMaU1NTevfuzd69eytt9M+ePZv33nuv3P6NGzdiYVH2WVW1Wo2bmxs5OTkUFRVVuazZ2dlVTns3XLlyhQkTJjBmzBhatmyJtbU1R48e5aOPPmLQoEGGjo78/HyysrIMs+fn5uYajuXl5QGlsdw8akGv1xvSdO3albfffpv//e9/+Pn5sXDhQjIyMtBqtYY0Op2OgoICsrKycHNzo7i4mI8//pjQ0FD27dtnuMt0/X2cnZ3Jycnhjz/+oFWrVpibm+Pm5sZjjz3GuHHj+OCDD2jdujXp6ens3LmTFi1aEBISwsSJExk4cCDvv/8+Q4YMYevWrWzYsKFMef+pqKiI/Px89u7dC8CmTZtq+6OoNyS2hqk+xjbEFjq0hi2XlBxKVbA3+gp7o6/ga6WnfyMdLe31KKvQ51kfY6sNtRXX9e/gu+lu1NVCCCHKUquU9G3mSt9mrqRkF/Dr4dKl/2LT89ifqmT/d0exNlXTr7kLg4Lc6d3EGbMajPAVxqveNvoHDx7M+fPnWbRoEWfOnEGv1zNs2DCee+65Gt090Ov1TJs2jR49etCqVSsAkpOTgRvPnl/n6urKxYsXKz3Xm2++ybRp0wzbWVlZeHl5ERISgo2NTZm0BQUFxMfHY2VlhZnZ7Weu1uv1ZGdnY21tXet3+qvD1NSUbt26sXjxYqKjo9FqtXh5eREWFsabb76Jubk5AObm5tjY2BiGyFtaWhp+B9c7QKytrbGxsTHc6VcoFIY0kydPJjIyksmTJ6NWq5k6dSrBwcFoNBpDGqVSiZmZGTY2NnTv3p158+bx8ccfM3PmTHr27MmsWbOYMGGC4X0GDBjApEmTePrpp0lPT2f69OnMmDGD7777jg8//JDp06eTmJiIo6MjXbp04ZFHHsHGxoZ+/fqxePFi3nvvPebMmUO/fv14++23+eCDD8p9rtcVFBQY5ovYuXMnAwYMKPM4gzHQarVs2rRJYmtgGkJsE4GEjHyW7Ynlf4cTic3RsfSciiYuVkzq5cfgVq6oVeVHRjWE2GqituO6F0vm1XZdLYQQ4tZcrM14vk8Az/X2Z29UCl+tO8C5XHNSsgtZe+wSa49dwsJERXAzFwa1ciO4qQuWpvW2ySfukXr1F3DixAlatWpluCvs6enJhx9+WGn606dP07RpU9Tq24fx4osvcuLECXbv3l3u2D8b13q9/pYNblNT0wqXsNNoNOUu1EpKSlAoFCiVyio9o399GPn1PHXF3Nyc//73v/z3v/+tNM3Nw/X9/f3LPTrQt2/fckP6R48ezXPPPWeIzdTUlEWLFrFo0aJK3yc2NrbM9rRp08p0ugDlJov66quvyj1nampqysyZM5k5c2al7/XMM8+Uew711VdfrTS9UqlEoVAY/gYr+hswFhJbw1TfY/Nz0fDBI615uX9TvtkTw3fhF4lMyeFfv5zks63RPNc7gBEdGlU4ZLG+x1ZTtRXX3frd3M26uioyMjKYMmUKv//+O1A6ceDnn3+OnZ1dpXkmTJjAypUry+zr3Lkz+/btq5UyCSHEvaZQKOjk60Can47Q0F6cSs5h/clk1p9KJvFqPutOJLHuRBKmaiW9mzgzKMiNfs1dsTEzvnpT3F7dtSor0K5dO9LT06ucvmvXrsTFxd023UsvvcTvv//Otm3b8PT0NOy/vqTb9Tv+16WkpJS7+y+EEOLucbY25fXQZux5oy+vhjTBwdKEuCt5vPXbSXrO2caSnRfILSyu62IK7l5dXVWjR4/m2LFjbNiwgQ0bNnDs2DHGjh1723yhoaEkJSUZfv76669aK5MQQtQlpVJBBx8H3n6wBbtfD+b3F7vzXO8AfB0tKCzWsTHiMq+sPk6H9zfx1PID/Hwwnozcqj92LBq+enWnX6/X884775R7Lr4yt3tGXq/X89JLL/Hbb7+xfft2/Pz8yhz38/PDzc2NTZs20a5dO8M5d+zYwZw5c2oWhBBCiBqzNdfwYt9AJvbwY/XBeBbvvEBSZgEf/nWGL7dHMaGbL2Me8Lz9icRdU9t1dXWcOXOGDRs2sG/fPjp37gzAkiVL6Nq1K+fOnSuzJO8/mZqaGjr7q6I6k/ZWl7FORgkSW0MlsTVMlcXW3NWS5q4BTOvnz9nkHP6OuMzfpy8TlZrLtnOpbDuXiuo3BZ397Alt6cqA5i44WZUfxVyX7sfP7U7OdTv1qtHfq1cvzp07V+X0Xbt2NTxbXpEXXniBH374gf/7v//D2tracEff1tYWc3NzFAoFU6dOZdasWQQGBhIYGMisWbOwsLBg9OjRdxyPEEKImrEwUfNUdz/GdPZh7dFEFu2IJiYtl083n2fxzgt0cVLSKacQd3sZpniv1XZdXR3h4eHY2toaGvwAXbp0wdbWlr17996y0b99+3ZcXFyws7Ojd+/efPjhh7i4uFSavjqT9taUsU5GCRJbQyWxNUy3i60J0KQxJHvA8SsKjqcrSczDMJHujN8jCLCBNg46WjvosatH7f/7+XOriqpO2luvGv3bt2+v1fNdf068T58+ZfYvX77csM78a6+9Rn5+PpMnTyYjI4POnTuzceNGrK2ta7UsQgghqs9ErWTkA16M6ODJ+lNJfLktmjNJWWy9pCR4/i7GdPZhUi9/XGxuP1GqqB21XVdXR3JycoUNdRcXl3KP6t1s0KBBPPbYY/j4+BATE8M777xD3759OXz4cIVz9ED1Ju2tLmOdjBIktoZKYmuY7iS2i+l5bDhdunTuicQsorIgKkvFr7HQzsuWgS1dGdjCFU/72um0rS753KqmqpP21qtGf22rypr0CoWCd999l3fffffuF0gIIUSNqJQKHmztwZAgdzaeTmLW2iNczNGxbHcM3+27yBMPePFcnwDcbevm4kTcmXfffbfCu+o3O3jwIFB+8l24/QS8o0aNMrxu1aoVHTt2xMfHh3Xr1jF8+PAK81Rn0t6aMtbJKEFia6gktoapJrE1drPlRTdbXuzXhISMPDacKp0E8PDFDI7GZ3I0PpP/bogkqJEtg4LcGNTKHT8ny7sUQeXkc7v9OarCqBv9QgghjItCoaBvU2fyW5Vg07QTC7fHcOhiBivDL/LjgXge6+jJ830C8LSvneHX4t548cUXefzxx2+ZxtfXlxMnTnD58uVyx1JTU6s1Aa+7uzs+Pj6cP3++2mUVQghj42lvwTM9/Xmmpz+Xswr4+3Qyf51M4kDMFU4mZnIyMZOPNpyjmZs1g1q5MyjIjUAXqzpdXlxUjzT6hRBCNDgKBfRs7ERwMzfCL6SzYMt59l24wqr9caw+GM+I9p5MDg7Ax/He35UQ1efk5ISTk9Nt03Xt2pXMzEwOHDhAp06dANi/fz+ZmZl069atyu+Xnp5OfHw87u7uNS6zEEIYI1cbM8Z19WVcV1/ScgrZePoy608lER6dztnkbM4mZ/PJ5kgCnC0Z1Mqd0FZutPSwkQ6Aek4a/UIIIRoshUJBtwAnugU4sf9COp9vjWJ3VBqrD8Xzy5EEhrX14MXgxvg7W9V1UUUtaN68OaGhoYSFhfH1118D8Oyzz/Lggw+WmcSvWbNmzJ49m0ceeYScnBzeffddRowYgbu7O7Gxsbz11ls4OTnxyCOP1FUoQghR7zlZmTK6szejO3tzNa+ITRGX2XAqmV3n04hOzeWLbVF8sS0KbwcLBrVyY1CQO208baUDoB6SRr8QQgij0Nnfkc7+jhy+mMHnW8+z/Vwqa44ksvZoIg+29uClvo0JdJVJWhu6VatWMWXKFEJCQgAYOnQoX3zxRZk0586dIzMzEwCVSsXJkyf59ttvuXr1Ku7u7gQHB7N69WqZtFcIIarIzsKExzp68VhHL7IKtGw7m8JfJ5PYfi6VuCt5fL3zAl/vvICHrRmh1x4B6OBtj1IpHQD1gTT6xV119uxZJkyYwLFjx2jWrFmdzvoshLg/dPCxZ8VTnTgef5XPt0ax+cxlfj9+iT9OXGJwK3de7NuY5u53Nvu6qDsODg58//33t0xz80S+5ubm/P3333e7WEIIcd+wMdMwrG0jhrVtRG5hMdvPpbL+VBJbz6ZwKbOAb/bE8M2eGJytTQlt6cagVm508nNArVLWddHvW9LoF5WaMGECK1euBErvlHh4eDBkyBBmzZqFvb19lc4xY8YMLC0tOXfuXK2tayyEEFXRxsuOpeM7cioxky+2RrHhdDLrTiax7mQSIS1cmdIvkFaNbOu6mEIIIUSDZWmqZkhrd4a0dqdAW8LOyFQ2nEpm05nLpGYX8t2+i3y37yIOliaEtHAltJUb3QKcMFFLB8C9JI1+cUuhoaEsX76c4uJiIiIimDhxIlevXuXHH3+sUv7o6GiGDBmCj48POp2uymtJ3qyoqAgTE5Nq5xNCCIBWjWz5amwHziZn8cXWKNadTGJjROnaxP2aufBSv0DaetnVdTGFEEKIBs1MoyKkpRshLd0oKtaxJzqN9dfq3Cu5Rfx0MJ6fDsZjY6amfwtXBrdyp0egE2YaVV0X3ehJF0tdKcqt/Ke4oOpptflVS1tDpqamuLm54enpSUhICKNGjWLjxo2G48uXL6d58+aYmZnRrFkzFi5caDimUCg4fPgwM2fORKFQGNZgTkxMZNSoUdjb2+Po6MiwYcOIjY015JswYQIPP/wws2fPxsPDgyZNmlQr38cff4y7uzuOjo688MILaLVaQ5rCwkJee+01vLy8MDU1JTAwkGXLlhmOR0REMHjwYKysrHB1dWXs2LGkpaXV+PcnhKg/mrnZ8MXo9mx6pRePtGuEUgFbzqbw8Jd7GPfNAQ7FXqnrIgohhBBGwUStJLipCx892oaD/+nP9093Zkxnb5ysTMgqKGbNkUSe+fYQHd7fxEs/HmX9ySTyiorruthGS+7015VZHhXuVgKWvsEwbs2NnXMbgzav4vP49ICn1t3Y/jQI8tLLp3s3s+ZlvebChQts2LABjUYDwJIlS5gxYwZffPEF7dq14+jRo4SFhWFpacn48eNJSkqif//+hIaG8uqrr2JhYUFOTg79+vWjZ8+e7Ny5E7VazQcffEBoaCgnTpww3NHfsmULNjY2bNq0Cb1eT15eHsHBwbfNt23bNtzd3dm2bRtRUVGMGjWKtm3bEhYWBsC4ceMIDw9nwYIFtGnThpiYGEOjPikpid69exMWFsb8+fPJz8/n9ddfZ+TIkWzduvWOf39CiPqhsYs1n4xqy5R+gXy5LYrfjiayMzKVnZGpdAtwZEq/QLr4O9Z1MYUQQgijoFEp6RHoRI9AJ2YOa8Wh2CusP5XMhlPJJGcV8MfxS/xx/BJmmtKOgtBWbvQMcKjrYhsVafSLW/rzzz+xsrKipKSEgoLSEQjz588H4P3332fevHkMHz4cAD8/PyIiIvj6668ZP348bm5uqNVqrKyscHNzQ6fT8e2336JUKlm6dKlhOY/ly5djZ2fH9u3bDbMxW1pasnTpUkNj/ptvvqlSPnt7e7744gtUKhXNmjVjyJAhbNmyhbCwMCIjI/n555/ZtGkT/fv3B8Df398Q66JFi2jfvj2zZs0y7Pvmm2/w8vIiMjLSMOJACGEc/Jws+fixNkzpG8iiHVH8cjiBvdHp7I1Op5OfAy/3C6RbgKMsPSSEEELUEpVSYVhtZ/qDLTiWcJX1J5NYfyqZhIx81p9KZv2pZEzUSvwtlSTbxtK7mStNXa2lPr4D0uivK29dqnC3TqcjNyeXMvNK/zuq8vMo/vGExtSTd1y0mwUHB7No0SLy8vJYunQpkZGRvPTSS6SmphIfH8/TTz9tuIsOUFxcjK1t5RNjHTt2jKioqHLLJBUUFBAdHW3YDgoKKvMc/+HDh6uUr2XLlqhUN54Lcnd35+TJk4b3VqlU9O7du8KyHT58mG3btmFlVX497+joaGn0C2GkvB0tmD28NS/2DeSr7dGsPhjPgZgrjFm6n/bedkzpF0jvJs5ysSGEEELUIqVSQXtve9p72/PW4OacSsxi/anSDoCYtFzOZiqZvSGS2RsicbE2pUegEz0Dneje2AkXa7O6Ln6DIo3+umJiWfF+nQ7UJVVLW53z1pClpSWNGzcGYMGCBQQHB/Pee+/x4osvAqVD/Dt37lwmz82N7n/S6XR06NCBVatWlTvm7Oxc5n1rku/6owfXKRQKdDodULps063odDoeeugh5syZU+6Yu7v7LfMKIRq+RnbmvP9wK14IbsxXO6L58UAcR+KuMmH5QVp72jKlbyD9mrtI418IIYSoZQqFgiBPW4I8bfn3wKacSbzK4j92ka5x4eDFDFKyC1lzJJE1RxIBaOZmTa8mzvQMdOIBXweZDPA2pNEvqmXGjBkMGjSI559/nkaNGnHhwgXGjBlT5fxt2rRh7dq1uLi4YGNT9XWy27dvz+rVq6ud72ZBQUHodDp27NhhGN7/z/f49ddf8fX1Ra2W/xpC3K/cbM14d2hLJgcHsGTnBb7fF8eJhEye+fYQLT1seKlvY0JauKFUSuNfCCGEqG0KhYJAVyuCPfQMHtyBEpQcvpjBrvNp7DqfyulLWZxNzuZscjaLd17ARK2ks58DPRo70TPQmWZu1lJH/4PM3i+qpU+fPrRs2ZJZs2bx7rvvMnv2bD777DMiIyM5efIky5cvNzzzX5HHHnsMJycnhg0bxq5du4iJiWHHjh28/PLLJCQkVJpvzJgxNcp3M19fX8aPH8/EiRNZu3YtMTExbN++nZ9//hmAF154gStXrvDEE09w4MABLly4wMaNG5k4cSIlJSW3ObsQwti4WJvxnyEt2P16MM/3CcDSRMXpS1k89/0RBn22iz9PXKJEp6/rYgohhBBGzUyjontjJ94Y1Ix1U3py6O3+fPZ4Wx7t4ImbjRlFxTp2nU9j9vqzDF6wi06zNjP1p6P8ejiBy1kFt3+D+4DczhTVNm3aNJ566imioqJYunQpc+fO5bXXXsPS0pKgoCCmTp1aaV4LCwu2b9/Om2++yfDhw8nOzqZRo0b069fvlnfwLSws2LlzJ6+//nq18v3TokWLeOutt5g8eTLp6el4e3vz1ltvAeDh4cGePXt4/fXXGThwIIWFhfj4+BAaGopSKf1jQtyvHK1MeT20Gc/29OebPTGs2BPLucvZvPjDUQKcI3mpbyAPtnZHrZLvCSGEEOJuc7IyZVjbRgxr2wi9Xk9USo5hFMC+C1dIyyli7bFLrD1WOodaU1drw3wAnf0cMTe5/x4FkEa/qNSKFSsq3D969GhGjx5d7nVFjh07Vm6fm5sbK1eurPb71iTfp59+WmbbzMyM+fPnVzoaITAwkDVr1lR4TAhxf7O3NOFfIU15pqc/K/bEsmz3BaJTc5m6+hifbTnPC8GNGdbWA400/oUQQoh7ovRRAGsCXa2Z2MOPwuISjly8yq7zqeyOSuNkYibnLmdz7nI2y3bHYKJS0tHXnp6BpfMBtHC3uS8eBZBGvxBCCFENtuYaXu4fyMQevnwbfpGluy4Qk5bLq/87zmdbInmhT2OGt/fERC2NfyGEEOJeMlWr6BrgSNcAR14DruQWsTc6jV2RpSMBLmUWGJbnnbMBHCxN6N64dBRAz0An3G1vPfF3QyWNfiGEEKIGrM00vBDcmAndfPl+30WW7LpA/JV83lhzks+3RvFcnwBGdvTEVH3/DSMUQggh6gMHSxMebO3Bg6090Ov1XEjLZVdk6SiA8Oh0ruQW8cfxS/xxvPRRgMYuVoYOgM5+jliaGkdz2TiiEEIIIeqIpamaSb0DGNfVlx8OxPHVjmgSr+bzztpTfLk1iud6+/N4J29ZTkgIIYSoQwqFggBnKwKcrZjQ3Y+iYh3H4ksfBdh5Po2TCVeJSskhKiWH5Xti0agUtPe2p1cTZ3o0dqJVI1tUDfRRAGn0CyGEELXA3ETF0z38GNPZm9UH4/lqRzRJmQW8+0cEX26PZlIvf0Z39sbCRKpeIYQQoq6ZqJV08nOgk58D/wppytW8IvZGpxsmBUzIyGd/zBX2x1xh7t/nsLPQlD4K0NiJnk2caWTXcB4FkCuPe0Svl2WdjNH1z1WhaJi9fkKI2memUTG+my+Pd/Lil8MJLNxWeuf/g3VnWLQ9mmd6+jO2qw9WRjJkUAghhDAGdhYmDA5yZ3CQO3q9novpeYZRAPui07map2XdiSTWnUgCwN/ZsrQDINCZLgGO9bper78lMxIajQaAvLw8zM0bTm+QqJq8vDwA1Gr5rySEKMtUrWJMZx9GdvTityOJfLEtirgreczZcJavd0bzTA8/xnXzxcZMU9dFFUIIIcRNFAoFvk6W+DpZMrarL9oSHcfjrxpGARxPyORCai4XUnNZGX4RtbL0UYDrSwO29rSrV48CSEvlLlOpVNjZ2ZGSkgKUrjd/q7vCOp2OoqIiCgoKjG5teGOKTa/Xk5eXR0pKCnZ2dqhU8qyuEKJiGpWSkQ94Mbx9I34/fokvtkZxIS2XjzdGsnjnBZ7q7sfE7n5YSNtfCCGEqJc0KiUdfR3o6OvAKwOakJmvJTw6nd1Rqew6n8bF9DwOxF7hQOwV5m+KxMZMfW1VgNKlAb0cLOq0/NLovwfc3NwADA3/W9Hr9eTn52Nubm50Q8aNMTY7Ozvc3NwoLi6u66IIIeo5tUrJ8PaeDGvbiD9PlDb+z6fk8NmW8yzbHcPYzl54auu6lEIIIYS4HVtzDaGt3AhtVdrOi0vPY1dUKrsi09gbnUZWQTHrTyWz/lQyAL6OFtdGATjzgLfNPS+vNPrvAYVCgbu7Oy4uLmi1t76i02q17Ny5k169ehkeDTAWxhabRqORO/xCiGpTKRUMa9uIh1p7sOF0Mgu2nOdscjaLdsZgolSR63yRZ3s3rutiCiGEEKKKvB0tGOPow5jOPhSX6DiRmMnua48CHI27Smx6HrHpcXy/Lw6VUkFzWyWDB9+78kmj/x5SqVS3bSSqVCqKi4sxMzMziobxzYw5NiGEqC6lUsHgIHdCW7qx6cxlFmyJ5PSlbGzNpWoWQgghGiq1Skl7b3vae9szpV8g2QVa9l24wq7zqew+n8aFtFw09/hJZ7myEEIIIeqQUqlgYEs3ggMdmP/jBh5q7V7XRRJCCCFELbE20zCghSsDWrgCEJuaxcYt2+5pGRr2bGpCCCGEkVAoFDS306NRSdUshBBCGKtGdua43uNF3eTKQgghhBBCCCGEMFIyvL8W6PV6ALKysu74XFqtlry8PLKysozuuXeJrWGS2Bomia3hqe24rtdJ1+socWekrq8aia1hktgaJomtYarN2Kpa10ujvxZkZ2cD4OXlVcclEUIIIcrKzs7G1ta2rovR4EldL4QQor66XV2v0MstgDum0+m4dOkS1tbWd7z+fFZWFl5eXsTHx2Njc+/XcLybJLaG6XpsP//8MyNHjmTlypU8/PDDt8zz/PPPs3v3bk6ePHlvCllD98PnJrE1HLUdl16vJzs7Gw8PD5RKeZrvTkldXzUSW8N0p7Ht2rWLBx98sErXCPeafG4Nk8RWNVWt6+VOfy1QKpV4enrW6jltbGyM7g/8OomtYbKwsDD8e7sYZ86cSVZWVoP5XRjz5yaxNTy1GZfc4a89UtdXj8TWMNU0NktLS6Bq1wh1RT63hkliu72q1PXS6BdCkJeXZ2jU14aAgIBaO5cQQggh6k5tXyMIIe49Ge8nxH3m3XffRaFQcOTIER599FHs7e2r1UjXarX85z//wcPDAxsbG/r378+5c+fKpJkwYQK+vr5l9ikUCl588UW+/vprmjRpgqmpKS1atOCnn36qVvn79etHs2bNyk1Yotfrady4MUOGDDHse++99+jcuTMODg7Y2NjQvn17li1bVi6vl5cXJSUlhu2XXnoJhULB3LlzDfvS09NRKpV8/vnn1SqvEEII0VDMnj37jq4RbpaVlcXAgQNxdXXlwIEDwI1rkNOnT/PEE09ga2uLq6srEydOJDMzs0x+vV7PwoULadu2Lebm5tjb2/Poo49y4cKFcu+1efNm+vXrh42NDRYWFnTv3p0tW7bUqNxCGCNp9NczpqamzJgxA1NT07ouSq2T2OqX4cOH07hxY/73v//x1VdfVZruemzXZxd96623uHjxIkuXLmXx4sWcP3+ehx56qEyjuTK///47CxYsYObMmfzyyy/4+PjwxBNP8Msvv1S53C+//DLnzp0rV5mvX7+e6OhoXnjhBcO+2NhYJk2axM8//8yaNWsYPnw4L730Eu+//74htjFjxpCVlWW4IIHSiwdzc3M2bdpk2Ldlyxb0ej39+/evclnrUkP8m6wqY43NWOMS5RnzZy2xNUzXY1OpVEDVrxEqk5CQQI8ePbh48SLh4eF06tSpzPERI0bQpEkTfv31V9544w1++OEHXnnllTJpJk2axNSpU+nfvz9r165l4cKFnD59mm7dunH58mVDuu+//56QkBBsbGxYuXIlP//8Mw4ODgwcOJAtW7bcF5+bxNaw1ElseiHEfWXGjBl6QD99+vRq5du2bZse0A8ePLjM/p9//lkP6MPDww37xo8fr/fx8SmTDtCbm5vrk5OTDfuKi4v1zZo10zdu3LjK5SgpKdH7+/vrhw0bVmb/oEGD9AEBAXqdTldpPq1Wq585c6be0dHRkC43N1dvYmKinzlzpl6v1+sTEhL0gP7111/Xm5ub6wsKCvR6vV4fFham9/DwqHI5hRBCiIbmTq8R/ve//+mPHj2q9/Dw0Pfs2VOfnp5e4fk/+uijMvsnT56sNzMzM9TN4eHhekA/b968Muni4+P15ubm+tdee02v15fW4Q4ODvqHHnqoTLqSkhJ9mzZt9J06dapWHEIYK7nTL8R9asSIETXKN3To0DLbrVu3BuDixYu3zduvXz9cXV0N2yqVilGjRhEVFUVCQkKV3l+pVPLiiy/y559/EhcXB0B0dDQbNmxg8uTJZWbV3rp1K/3798fW1haVSoVGo2H69Omkp6eTkpIClE461LVrVzZv3gzApk2bsLOz49///jdFRUXs3r0bKL3731Du8gshhBB3oqbXCH///Tc9e/akV69ebNq0CQcHhwrTVXQtUVBQYKib//zzTxQKBU8++STFxcWGHzc3N9q0acP27dsB2Lt3L1euXGH8+PFl0ul0OkJDQzl48CC5ubk1ikUIYyKNfiHuU+7u7jXK5+joWGb7+tCk/Pz82+Z1c3OrdF96enqVyzBx4kTMzc0NQw6//PJLzM3NmThxoiHNgQMHCAkJAWDJkiXs2bOHgwcP8p///Kdcefv378++ffvIzc1l8+bN9O3bF0dHRzp06MDmzZuJiYkhJiZGGv1CCCHuCzW9Rli7di35+fk8//zztxy6fLtricuXL6PX63F1dUWj0ZT52bdvH2lpaYZ0AI8++mi5dHPmzEGv13PlypUaxSKEMZHZ+4W4T93pOtM1kZycXOm+f14A3IqtrS3jx49n6dKlvPrqqyxfvpzRo0djZ2dnSPPTTz+h0Wj4888/MTMzM+xfu3ZtufP169ePd955h507d7JlyxZmzJhh2L9x40b8/PwM20IIIYSxq+k1wieffMLq1asZNGgQv/32m6HzvbqcnJxQKBTs2rWrws6D6/ucnJwA+Pzzz+nSpUuF57p5hKEQ9ytp9Ash7pktW7Zw+fJlQwVcUlLC6tWrCQgIqPb611OmTGHhwoU8+uijXL16lRdffLHMcYVCgVqtNkxKBKV3EL777rty5+rUqRM2NjZ8+umnJCcnM2DAAKB0BMCcOXP4+eefadGiBR4eHtUNWQghhLhvmJmZsWbNGp588kmGDh3K6tWrGTZsWLXP8+CDD/Lf//6XxMRERo4cWWm67t27Y2dnR0RERLnrACHEDdLoF0LcM05OTvTt25d33nkHS0tLFi5cyNmzZ6u9bB9AkyZNCA0NZf369fTo0YM2bdqUOT5kyBDmz5/P6NGjefbZZ0lPT+fjjz+u8I6BSqWid+/e/PHHH/j5+RmWJ+revTumpqZs2bKFKVOm1CxoIYQQ4j6i0Wj48ccfeeaZZ3j00Uf59ttveeKJJ6p1ju7du/Pss8/y1FNPcejQIXr16oWlpSVJSUns3r2boKAgnn/+eaysrPj8888ZP348V65c4dFHH8XFxYXU1FSOHz9OamoqixYtukuRCtFwSKNfCHHPDB06lJYtW/L2228TFxdHQEAAq1atYtSoUTU636hRo1i/fn2Fvft9+/blm2++Yc6cOTz00EM0atSIsLAwXFxcePrpp8ul79+/P3/88UeZ5/ZNTU3p0aMHmzZtkuf5hRBCiCpSKpUsW7YMa2trnnzySXJzc3nmmWeqdY6vv/6aLl268PXXX7Nw4UJ0Oh0eHh507969zBKATz75JN7e3nz00UdMmjSJ7OxsXFxcaNu2LRMmTKjlyIRomBR6vV5f14UQQhg/hULBCy+8wBdffFFr5xwxYgT79u0jNjYWjUZTa+cVQgghhBDCWMidfiFEg1JYWMiRI0c4cOAAv/32G/Pnz5cGvxBCCCGEEJWQRr8Q9zm9Xk9JSckt06hUqnsy239xcfEtjyuVSpKSkujWrRs2NjZMmjSJl1566a6XSwghhLgf1adrBCFEzSnrugBCiLq1Y8eOcmvb/vNn5cqVd/w+er3+tkP7b1eOiRMn4uvri16vJzMzk0WLFpWZnV8IIYQQtedeXSMIIe4ueaZfiPtcdnY2586du2UaPz8/HB0d73pZDh06dMvjTk5O+Pr63vVyCCGEEKJ+XSMIIWpOGv1CCCGEEEIIIYSRkuH9QgghhBBCCCGEkZKJ/GqBTqfj0qVLWFtby0QmQggh6gW9Xk92djYeHh4oldLHf6ekrhdCCFHfVLWul0Z/Lbh06RJeXl51XQwhhBCinPj4eDw9Peu6GA2e1PVCCCHqq9vV9dLorwXW1tZA6S/bxsbmjs6l1WrZuHEjISEhRrf2uMTWMElsDZPE1vDUdlxZWVl4eXkZ6ihxZ6SurxqJrWGS2Bomia1hqs3YqlrXS6O/Flwf5mdjY1MrFwLWpipszFRoNBUsRaZQgcbsxnZR7i0KpgSNeQ3T5gGVzfGoABOLaqfVarVYmakrjw3AxPLGa20+6HWVl7lM2gLQ32Id2eqk1VjA9aGbxYWgu8Xa8dfSlsamuXVsanO4PuymuAh02srPW620ZqBUVT9tiRZKiipPqzIFlRqtVoulucmtY7uWtvS8xVBSeIvzmoBKU/20uhIoLqg8rVIDapNqpdVqtViYm906tjLn1UFx/i3Oqwa1aelrvR60ebWTtlr/70vTarVaLCwsbh1bPfuOAKr0/94Qm7kGjfoWSzbWo++IqqTVmpmWxmVjU6sXODIUvXZIXS91vdT1UteXppW6/lpiqetrklZtjrakpNbr+9vV9dLor2eKinU8eCIMTlSSIDAExvzvxvbcxpV/gfj0gKfW3dj+NAjy0itO69EOnt1+Y/vLzpAZV3Fa52bwwv4b20uCIfVsxWltveGVk4bNHuc/RHP8mYrTWjjCaxdubH//KFzcXXFajQX8J+nG9s9j4fzGitMCvJt54/Vvz0LE/1We9q1LN74U/pgKx3+oPO2/o8HSCYBWiT+gmft05WlfPgH2PqWvt86EvZ9XnnbyPnBpXvp61zzY8d/K04ZthUYdSl/vXwSbpleedvyf4Nez9PXhFfDXq5WnHf0zNBkIgOeVcDRzJ1ae9rEV0PKR0tdn/4D/Tag87bCF0G5M6evoLfDDyMrTDv4YOoWVvr64F1Y+WHnaATOh+8ulr5OOwZK+laft/QYEvwmAdcElNHN9Kk/b7SUI+aD0dWY8fNa68rQPPAND5pW+zkuHuQGVp20zGh5ZVPpamwezPCpP22IYjPz2xvat0v7jO0L9afMG9R3B8kFw6WjFaf/xHaH6aRTE7a04bT38juDvt+Dg0srTvnCk8mPC6Ehdf43U9aWvpa4vfS11/Y1tqesBI6zrXz4BVrf4bO8SafTXMz0/3sGtLvv2x1zhvc92oVErMVEp+K64BLNK0sam5/LDX2fQqBSYqFQ8qy3BvJK0mflajkemolEpMVErCCrRYVJJWp1eDzo9SqXcPRJCCCGEEEKI+kyh1+srG4chqigrKwtbW1syMzPveMhf0Lt/U1yQU+lxHUoKb2qOm1P5sKY7SWtGIYpKhujoUVCAKSqlAo1KgY1Ki4lKgUalvNZpoEStKu2UUKuU6NUWpfuUkJsST1P/RthbmGJjrsHaVI2tuab0tZkGGxtbw35lSUGDGvK34c//IzSkf+XDdBrwkL/1635n0IB+lcfWgIf8/bXuTwYPCK48tgY85O+vv/5icP/elcfWgIf8/fXXX6WfmxEN+dOi5q/1Gxg8eHCtPdNfW3WTqN3fp1ar5e8/fmPgwEqe52zgw/s3/LmW0JABlf8dN+Dh/VLXS10vdb0hsdT1NUl7bXj/X3/9VSv1fVXrJrnTX8/s+Fcv1v+9kV7BfUGhoqhER1GxDm1J6U9Rsf7av9e2S3RoS/Rl05To0BbrKSopKXPsRhr9tXw3n0ePtlhn2K8tNivdd1OaYl3Z/8glOj0lOj0F2pv/I+qu/dzs5i9OM/ZdqWRI0U2UCko7AcxLOwVszTXYmGluvL72Y3vTj43ZjQ4EjeoWy1NpKhsbUQG1KWBapaQ6pab0y6Qq/3nVJlDpWIp7lFaluVHJ3oZeoa56bCr1jYuC2kyrVJX9sq6ttApl1WNTKqtxXsXdSQvVTqtXqykuLqakpILKreTmC6ZbVKrl0t5mCbiCmqZV3LocBQVotVrUajUFJQpKlLdOW1YtpS3858Vr7aTVaotK4yooqPiz+ueZVCrUarU8s99AlahMq/7dc9e+Hyxun6YGaXVKk6rHpqlsDGJFaatRf0tdX0rq+lL3QV2PRkNJSQlabQUdQlLXVz/tXarrKSq6EVsV6vvaquul0V/PWJupsdKAm41ZvZupUqfTo9Vd7wSooPOhuHxnws0dCvlFWg4dO4mnXyA5RToy87Vk5mvJuvbv9Z/CYh06PYbteG7R21oJSxOVoVPA5h8dBqX71P/YvvHarLKJUIRogLRaLZcuXSIv7xZ3FxoYvV6Pm5sb8fHxRtXgrUlcFhYWuLu7Y2JSxQaAEEIIo5STk0NCQgLGMojbWOt6qH5stVHXS6NfVJlSqcBUqcL0VkNsbkGr1WKdcoLB/RrfskOjQFtCVsGNzoCs/OJKOwiyCrRk5hcb9ucUlg6nyS0qIbeohKTMWwz7qoSJWnmtk0BdrkPg5hEHNjd1IFhqFBTfYpSSEHUlLi4OtVqNh4cHJiYmRlFx6nQ6cnJysLKyQqm8zZ2FBqQ6cen1eoqKikhNTSUmJobAwECj+l0Yu/0xVziYqsDlYga+zta4WJuhknlyhBA1VFJSQkJCAhYWFjg7O0tdX89VNbbarOul0S/qHTONCjONChfragzNu6a4REd2QfE/OgUq7jy4+dj1fTp96QoKaTmFpOXc4vmzCqgVKr5N3E87b3tae9rSxssOP0dLmfBQ1Bm1Wo1Op8PDwwMLi2oM463ndDodRUVFmJmZGdWFQHXjMjc3R6PRcPHiRUM+0TD8fCiR36NUfB91EACNSoGHnTle9hZ42ptf+7Ew/OtibSp1iRCiUsXFxej1epydnTE3r8YjM/WYsdb1UL3Yaquul0a/MCpqlRJ7SxPsLas//EWv15NTWFyuk6CyDoIb28Vk5hehLYHjCZkcT7ixHIi1mZo2nnaGToC2Xna42siFubi3jK2yFDfIZ9swNXG1ItBGR77KkqTMArQlei6m53ExveLHcExUSjzszPBysPhHh0Dpa2cr6RQQ4n52fUi/MdzhF+XVRl0vjX4hrlEoFFibla4i4GlfvbxFRUV8u2Y99o3bcToph+MJVzmVmEl2QTG7o9LYHZVmSOtmY1amEyDI0xYbs/o1f4MQQoi7Z1IvP7xyzjB4cE8UShWXswtJuJJHQkY+CRn5xGfkkZBRup2UWUBRiY7Y9Dxib9Ep0KjcCIHS11725jhJp4AQQtzXpNEvRC1QKBQ4m8PgNu6M6FjagNeW6DiXnM2JhEyOx1/leMJVIi9nk5xVQHJEARsjLhvyBzhb0sbTjjZepT/N3a1rPHeCEEKIhkOtUtLIzpxGduZ0ruB4cYmO5KwCQ4dAQkYe8Vfyb+oUyKeoREdMWi4xaRUvxWWiVuJpZ46nQ0WPD5jjbGUqdwiFEMKISaNfiLtEo1LSqpEtrRrZMrqzNwC5hcWcvpTF8firHEu4yvH4qyRk5BOdmkt0ai5rjiZey6ugubuNoSOgrZct/k5WcqdGiJuoVCp+++03Hn744bv6Pr6+vkydOpWpU6fe1fepyIoVK5g6dSpXr1695+8t6ge1SnmtgV7xvBzaEh3JmQU3OgQybnQIJF7vFCjWcSEtlwuVdAqYqktHCnjZV/z4gJOVcUwCKoRoeKSurx3S6BfiHrI0VdPJz4FOfg6Gfek5hZxIyOTYtdEAJxIyuZJbxImETE4kZPLdvosAWJmqCWpka+gEaO1ph7utmVyICaOVkpLCO++8w/r167l8+TL29va0adOG6dOn07JlSxITE3F0dKzrYpYjDXVxL2lUSrwcLPBysADK/3+43ikQf60j4ObHCBIy8kjKKqCwWMeF1FwupFbcKWCmKR2N4GlvgZdD2UkGPe3NcbSUTgEhRM1IXX9vSKNfiDrmaGVKcDMXgpu5AKWTsSRk5Jd2AlzrCDiVmEVOYTHhF9IJv5BuyOtsbUobzxudAG087bC1kPkBhHEYMWIEWq2WlStX4u/vz+XLl9myZQtXrlwBwM3NTSayE+I2ynYKlFdUfH2kQN6NjoGbRgskZxVQoNUZRqRVxEyjNHQANLI1IztZgSYihUA3G7wcLDDTyONqQoiKSV1/b0ijX4h6RqFQGC7QHmrjAZQ+03k+JcfQCXA8PpNzl7NJzS5k85nLbD5zY34APydL2lybKLC1px0tPWzkgksY6PV68rUldfLe5hpVle8GXr16ld27d7N9+3Z69+4NgI+PD506dUKn05GVlVVmyF9sbCx+fn6sXr2azz//nEOHDtGqVStWrVpFZmYmzz//PGfPnqVHjx589913ODs7A9CnTx/atm3Lp59+anjvhx9+GDs7O1asWFFh2ebPn8/y5cu5cOECDg4OPPTQQ3z00UdYWVmxfft2nnrqKeDGLMozZszg3XffpaioiLfffptVq1Zx9epVWrVqxZw5c+jTp4/h3D/88AP//e9/SUtLY+DAgfTo0aOav2UhqsdErcTb0QJvx8o7BZIyr00waBglcKNz4HJ2aadAVEoOUSk513Kp+D3uGAAKBTSyM8fPyRJfR0v8nG78eNqbo1bJxbwQtU3q+vpd169YsYLp06dz5cqVe1bXS6NfiAZArVLS3N2G5u42PN6pdH6A/KISTl8qfSzgREImxxOucjE9zzCZ09pjl0rzKhU0c7cunR/g2hwBjV2sUMn8APelfG0JLab/XSfvHTFzIBYmVat2rKyssLKyYu3atXTp0gVTU9Mq5ZsxYwaffvop3t7eTJw4kSeeeAIbGxs+++wzLCwsGDlyJNOnT2fRokU1jkOpVLJgwQJ8fX2JiYlh8uTJvPbaayxcuJBu3brx6aefMn36dM6dO2eIBeCpp54iNjaWn376CQ8PD3777TdCQ0M5efIkgYGB7N+/nxdffJEPP/yQESNGsGHDBmbMmFHjcgpRG0zUSnwcLfFxtKzweGFxCUlXCwyrDsSl5bD/dDRFpnbEpueRU1hs6CDYdT6tTF61srST29Ah4GyJn6Mlvk4WeNiayzw2QtSQ1PX1u65/5plneOedd3jiiSfYuHHjPanrpdEvRANlbqKio68DHX1vzA+QkVtkmBfg+qiAtJwiTiVmcSoxi1X74wCwMFEZ5gco7QiwpZGduTyTKeoNtVrNihUrCAsL46uvvqJ9+/b07t2bxx9/nFatWlWa79VXX2XgwIEAvPzyyzzxxBNs2bKF7t27A/D0009X2qtfVTdP8uPn58f777/P888/z8KFCzExMcHW1haFQoGbm5shXXR0ND/++CMJCQl4eHgYyrphwwaWL1/OrFmzWLBgAX379uX1119HqVTSpEkT9u7dy4YNG+6ovELcTaZqFb5Olvg6lXYKaLVa/tKeZ/DgLqjVatJyiohJyyU2LZeY9FxiUnOJTS/tnC4srnzVAVO1Eh/Hax0CTqWdAddHCDhby2oDQhiD+7Gu/+yzzwgJCeGVV17BxsaGZs2a3ZO6Xhr9QhgRe0sT+jR1oU/TG/MDJF7NN3QCHIu/ysnETPKKStgfc4X9MVcMeZ2sTAzzArTxsqWNpx32liZ1FYq4S8w1KiJmDqyz966OESNGMGTIEHbt2kV4eDgbNmzgo48+YvHixQwfPrzCPK1btza8dnV1BSAoKKjMvpSUlBqU/oZt27Yxa9YsIiIiyMrKori4mIKCAnJzc7G0rPhu6JEjR9Dr9TRp0qTM/sLCQsMERWfPnmXQoEFljnft2lUa/aLBUigUOFub4mxtWmYCWwCdTk9yVgGx11YViL3W+I9JzyX+Sh6FxToiL+cQeTmn3HktTW50NPj/Y5SA1FtCSF1fn+v6M2fOlFuJ4F7U9dLoF8KIKRQKw1JPg4PcASjR6YlKybk2N0DpaICzSdmk5RSx9WwKW8/e+JL0drAgqJEN5jkKWqbnEeBqI3dXGjiFQlHlYXf1gZmZGQMGDGDAgAFMnz6dZ555hvfee6/SCwGN5sZEltf/Vv+5T6fTGbaVSiV6vb7MObRabaXluXjxIoMHD+a5557j/fffx8HBgd27d/P000/fMp9Op0OlUnH48GFUqrIXRNeHBP6zHEIYM6VSgYedOR525nRr7FTmWHGJjsSr+TdGCKTlEpOeR0xaDokZ+eQWlXD6UhanL2WVO6+tuabMvAGGjgEnS6xMG853nxB3Qup6qev/qeH8NQghaoVKqaCpmzVN3awZ2dELgAJtCRFJWaWdAPFXOZ6QSUxaLnFX8oi7kgeo+OXT3Xg5mNMz0JlegU50DXDC1lxWChD3VosWLVi7dm2tnc/Z2ZmkpCTDdklJCadOnSI4OLjC9IcOHaK4uJh58+YZZhP++eefy6QxMTGhpKTsBErt2rWjpKSElJQUevbsWeG5mzdvzsGDB8vs27dvX7VjEqKhU6tumkegadljhcUlxF+50SFwfZRAbHouSZkFZOZrOXZtZNs/OVmZXusAsMDPyQo/J4vSEQOOljLhrRD1iDHX9S1atGDfvn28/PLLhn33oq5vMI3+jIwMpkyZwu+//w7A0KFD+fzzz7Gzs6swvVar5e233+avv/7iwoUL2Nra0r9/f/773/8anrGA0tkcd+zYUSbvqFGj+Omnn+5aLELUN2YaFe297WnvbW/Yl5mn5UTiVQ7FpLPuUBSxOUrir+Tzw/44ftgfh1IBbb3sSjsBmjjRxtNOZmEWtSY9PZ3HHnuMiRMn0rp1a6ytrTl06BAfffQRQ4cOrbX36du3L9OmTWPdunUEBATwySef3HLN3YCAAIqLi/n888956KGH2LNnD1999VWZNL6+vuTk5LBlyxbatGmDhYUFTZo0YcyYMYwbN4558+bRrl070tLS2Lp1K0FBQQwePJiXXnqJHj16MHfuXB555BE2btwoQ/uF+AdTtYrGLlY0drEqdyyvqLjMhLbXRwnEpueSllNEWk4haTmFHIi9Ui6vh60Zfs5lVxjwdbLEy94CE7XUbULcDfdjXT9lyhS6devGZ599xqhRo9i8efM9qesbTKN/9OjRJCQkGH4pzz77LGPHjuWPP/6oMH1eXh5HjhzhnXfeoU2bNmRkZDB16lSGDh3KoUOHyqQNCwtj5syZhm1zc/O7F4gQDYSthYaegc508bXDP/8cvfr140h8FrvOp7HzfCoXUnM5EneVI3FX+WzLeazN1HQLcLw2EsC50uWfhKgKKysrOnfuzCeffEJ0dDRarRYvLy/CwsJ44403bjm8rjomTpzI8ePHGTduHGq1mldeeaXSnn+Atm3bMn/+fObMmcObb75Jr169mD17NuPGjTOk6datG8899xyjRo0iPT3dsIzP8uXL+eCDD/jXv/5FYmIijo6OdO3alcGDBwPQpUsXFixYwJw5c3jvvffo378/b7/9Nu+//36txCqEsbMwURtWuvmnrALtjUcFbn5sIC2XrIJiLmUWcCmzgD1R6WXyqZQKPO3N8XW0xMfBHEW6gkHyKI4QteJ+resXL17MjBkzmDNnzj2r6xX6BvAQ4ZkzZwxDITp37gyUDoPo2rUrZ8+epWnTprc5Q6mDBw/SqVMnLl68iLd36bJnFa3bWF1ZWVnY2tqSmZmJjU35iqY6tFotf/31F4MHDy7zbIoxkNgapspiS8jIY/f5NHadT2N3VBqZ+WW/mH0cLegZ6ETPQGe6BjhiY1b/fi/G/rlt3LgRPz8//P39MTMzq+si1Zrra/fa2NgYht0Zg5rEVVBQQExMDH5+fuU+49qsmxqCdevWMXPmTE6cOIGlpSW9evVizZo1huNxcXG88MILbN26FXNzc0aPHs3HH3+MiUnVJn6Tur5qGlpser2ejDwtMWk5xKSVzhsQm3ZjtEBFa52P6eTF+w8HGdWSgg3tc6uO+yG2vn37kpCQUGFd0FAZa10P1Y+tNur6BnGnPzw8HFtbW0ODH0p7SWxtbdm7d2+VG/2ZmZkoFIpyjwSsWrWK77//HldXVwYNGsSMGTOwtrau9DyFhYUUFhYatrOySieS0Wq1d9wjdT1/bfVs1ScSW8NUWWyuVhpGtHNnRDt3SnR6Tl3KYndUOruj0jgWn8nF9Dwupsfx/b44VEoFbT1t6d7YkR6NHQnysKkXjwLcD5+bXq9Hp9OVmdCmobveV309NmNRk7h0Oh16vR6tVltu0iBj/LuuzK+//kpYWBizZs2ib9++6PV6Tp48aTheUlLCkCFDcHZ2Zvfu3aSnpzN+/Hj0ej2ff/55HZZc1DWFQoGDpQkOlg508Cm7woBeryclu9DQAXA68Sqr9sex6kA8OuBDI2v4CyGMV4No9CcnJ+Pi4lJuv4uLC8nJyVU6R0FBAW+88QajR48u0wsyZswY/Pz8cHNz49SpU7z55pscP36cTZs2VXqu2bNn895775Xbv3HjRiwsamdI863ev6GT2BqmqsTmB/h5wGMucD5LwbmrCs5mKkgtgMNxVzkcd5UFW6MxV+lpYqunmZ2eprZ6HOu4U9pYPze1Wk1BQQE5OTkUFRXVdXFqXXZ2dl0X4a6oTlxFRUXk5+ezc+dOiouLyxzLy8ur7aLVS8XFxbz88svMnTuXp59+2rD/5hsCGzduJCIigvj4eMO8PvPmzWPChAl8+OGHFd4dkQ7+mjG22BzMVTh42dDBy4ZhrZwgPZYfolX8eCCeQm0Jsx5uicoIGv7G9rnd7H6Irbi42Og6+Y21gx+qH1ttdPDXaaP/3XffrbDxfLPrMxlXtEyYXq+v0vJhWq2Wxx9/HJ1Ox8KFC8scCwsLM7xu1aoVgYGBdOzYkSNHjtC+ffsKz/fmm28ybdo0w3ZWVhZeXl6EhITUypC/TZs2MWDAAKMcgiSxNTy1EVt8Rh57oq6wOyqN8AtXyCoo5vgVBcevzaXk62hBj8aO9AhwpJOfA9Zm9+arydg/t23btmFmZoaVlZXRDPeD0u/+7OxsrK2tjWoJyZrEVVBQgLm5Ob169apwyN/94MiRIyQmJqJUKmnXrh3Jycm0bduWjz/+mJYtWwKlIwZbtWpVZiLfgQMHUlhYyOHDhyt8tlM6+O+Mscb2gDMoFSV8f17JmqOXiItPYHRjHSoj+Soy1s8NjDu2vXv34ubmZpSd/MbawQ9Vj602OvjrtNH/4osv8vjjj98yja+vLydOnODy5cvljqWmpuLq6nrL/FqtlpEjRxITE8PWrVtv2yhv3749Go2G8+fPV9roNzU1xdTUtNx+jUZTaw2H2jxXfSOxNUx3Epu/iy3+LraM7eZHcYmOE4mZ1+YDSOVI3FVi0/OITc/j+/3xqJUK2nvbl84H0MSZoEa2d/0uijF/bgqFAqVSaVTPw13vFb8em7GoSVxKpRKFQlHh37Cx/k3/04ULF4DSGwnz58/H19eXefPm0bt3byIjI3FwcCA5Obnc9YK9vT0mJiaVjhiUDv6auR9ie+OJ/nQ8l860/53kUJoSV3cP5o5ohaYePLZWU/fD52bMsXXr1o2kpCSj6uQ31g5+qH5stdHBX6eNficnJ5ycnG6brmvXrmRmZnLgwAE6deoEwP79+8nMzKRbt26V5rve4D9//jzbtm3D0dHxtu91+vRptFot7u7uVQ9ECFFlapXSsDzglH6BZBVo2Redzq5rnQCx6XkciL3CgdgrzNsUia25hh6NnQydAI3sZHUNIe4HVR0NeL2z5D//+Q8jRowAYPny5Xh6evK///2PSZMmAdUfMSgd/HfG2GMb2s4LUxMNL/5whHUnk9Hp4bPH2zX45f2M/XMz1tjUarXRdfIbawc/VD+22ujgbxDP9Ddv3pzQ0FDCwsL4+uuvgdIl+x588MEyz+w1a9aM2bNn88gjj1BcXMyjjz7KkSNH+PPPPykpKTH05js4OGBiYkJ0dDSrVq1i8ODBODk5ERERwb/+9S/atWtH9+7d6yRWIe43NmYaQlq6EdLSDYC49Dx2RaWyKzKNPdGlqwKsO5nEupNJAPg7W9Ir0JmegU508XfE0rRBfI0JIaqpqqMBrw+PbNGihWG/qakp/v7+xMXFAeDm5sb+/fvL5M3IyECr1d52xKAQlRnY0o2vnuzA898fYf2pZIp/OMIXo9thqlbdPrMQQtxDDeZqedWqVUyZMoWQkBAAhg4dyhdffFEmzblz58jMzAQgISGB33//HShda/Fm27Zto0+fPpiYmLBlyxY+++wzcnJy8PLyYsiQIcyYMaPcJAlCiHvD29GCMY4+jOnsQ3GJjuMJmew6n8qu82kcjcvgQmouF1JzWbE3Fo2q9FGAXk1KOwFaedjKTMpCGImqjgbs0KEDpqamnDt3jh49egClI/1iY2Px8fEBSkcMfvjhhyQlJRlG8m3cuBFTU1M6dOhw94IQRq9fc1cWj+vAs98dZlPEZZ777jCLnuyAmUauI4UQ9UeDafQ7ODjw/fff3zLN9ZkQobT3/+btinh5ebFjx45aKZ8QovapVUo6+NjTwceeqf2bkJmvJTw6nV3nU9l5PpX4K/nsj7nC/pgrzP37HPYWGro3dqJXoDM9Ap3wkEcBhDB6NjY2PPfcc8yYMQMvLy98fHyYO3cuAI899hgAISEhtGjRgrFjxzJ37lyuXLnCq6++SlhY2B0/ny9En6YufDP+AZ759iDbzqUS9u0hlozrKA1/IUS90WAa/UIIYWuuIbSVG6GtSh8FuJiey87zaeyKTGVvdDoZeVr+PJHEnydKHwVo7GJFz8DSToDO/g5YmMhXnhDGaO7cuajVasaOHUt+fj6dO3dm69at2NvbA6BSqVi3bh2TJ0+me/fumJubM3r0aD7++OM6LrkwFj0CnVg+oRNPrzzIrvNpTFxxkKXjO0q9I4SoF+SbSAjRYPk4WjLW0ZKxXXzQlug4Hn+1tBPgfCrH468SlZJDVEoOy/fEYnJt1EDPJqWdAC3c5e6esTt79iwTJkzg2LFjNGvWjGPHjtV1kcRdotFo+Pjjj2/ZiPf29ubPP/+8h6US95uuAY6snNiJCd8cYG90OhOWH2T5hAdk7hkh7jKp72/PuKZCFELctzQqJR19HZg2oAm/Te7O0XdCWDSmPU908qaRnTlFJTrCL6Tz0YZzPPj5bjp+uJlXfj7BoVQFWfnaui6++IcJEyagUChQKBSo1Wq8vb15/vnnycjIqPI5ZsyYgaWlJefOnWPLli13sbRCCFHqAV8HvnumM9amag7EXGH8NwfILpA6RojKSH1/b0jXoxDCKNlaaBgU5M6gIHf0ej2x6XmlcwFEphEencaV3CL+PJkMqPjxv9vpGuBISAtXBrRww83WONa4behCQ0NZvnw5xcXFREREMHHiRK5evcqqVauqlD86OpohQ4YYJlZo2U0AAQAASURBVHOriaKiIkxMTGqcXwhx/2nvbc/3z3Rm7LL9HLqYwdhlB1g5sRO25sa5XJwQd6qi+j4jI4OvvvqqSvmlvr+9Kt/pz8rKqvaPEELUBwqFAj8nS8Z19WXp+I4cmxHCz5O68nwvP9zM9RTr9Ow6n8Y7/3eaLrO3MOzLPXy5LYqolOy6LvrdU5Rb+Y+2oBpp86uWtgZMTU1xc3PD09OTkJAQRo0axcaNGw3Hly9fTvPmzTEzM6NZs2YsXLjQcEyhUHD48GFmzpyJQqHg3XffBSAxMZFRo0Zhb2+Po6Mjw4YNIzY21pBvwoQJPPzww8yePRsPDw+aNGlSrXwff/wx7u7uODo68sILL6DV3rjDV1hYyGuvvYaXlxempqYEBgaybNkyw/GIiAgee+wxbGxscHV1ZezYsaSlpdXod3evyTWCEGW18bLjh7Au2FloOBZ/lbHL9nM1r6iuiyXuNw2groeK6/tNmzYZjkt9f+eqfKffzs4OhaLqS2EpFAoiIyPx9/evUcGEEOJu0aiUdPJzoJ2nNc2052nRuTdbz6WzMeIyR+IyOB5/lePxV5n79zn8nS0JaeFGSEtX2nraGc+SgLM8Kj8WGAJj/ndje25j0OZVnNanBzy17sb2p0GQl14+3buZNSvnNRcuXGDDhg1oNKV3ylauXMmcOXP44osvaNeuHUePHiUsLAxLS0vGjx9PUlIS/fv3JzQ0lFdffRUrKyvy8vIIDg6mZ8+e7Ny5E7VazQcffEBoaCgnTpww9PBv2bIFGxsbNm3ahF6vr3K+bdu24e7uzrZt24iKimLUqFG0bduWsLAwAMaNG0d4eDgLFiygTZs2xMTEGCr5pKQkgoODGTt2LJ999hmFhYW8/vrrjBw5kq1bt97R7+5ekGsEIcpr1ciWH8O6MGbpfk4kZDJ6yX6+f6YzDpbGezdR1DMNrK6H8vX9kiVLeO+996S+v0PVGt7/yy+/4ODgcNt0er2ewYMH17hQQghxL/k6WjKptx2TegeQkl3A5ogUNkYkszcqnQupuXy1I5qvdkTjbG3KgBauDGzpRld/R0zUMi3K3fTnn39iZWVFSUkJBQWldyTmz58PlM7WPnfuXIYPHw6An58fERERfP3114wfPx43NzfUajVWVla4uZWu9vDNN9+gVCpZunSpoYG6fPly7Ozs2L59OyEhIQBYWlqydOlSQ+Ve1Xz29vZ88cUXqFQqmjVrxpAhQ9iyZQthYWFERkby888/s2nTJvr37w9QpsG7aNEi2rVrx/Tp07GxsUGpVPLNN9/g5eVFZGSk4Q5EfSbXCEKU19zdhp+e7cLoJfuJSMpi9JJ9fP9MZ5ysTOu6aELUGxXV9/PmzQPgww8/ZN68eVLf36EqN/p9fHzo1asXjo6OVUrv7+9v6KERQoiGwsXajNGdvRnd2ZvsAi3bz6WyMeIy286mkJpdyA/74/hhfxzWpmr6NHNhYEtXejdxxtqsgX3fvXWp8mOKf6wt/e+oW6T9R8fH1JM1L9M/BAcHs2jRIvLy8li6dCmRkZG89NJLpKamkpiYSFhYGJMmTTKkLy4uxtbWttLzHT58mKioKKytrcvsLygoIDo62rAdFBRU5rm+quZr2bIlKtWN3527uzsnT5b+Po4dO4ZKpaJ3796Vlm379u14enqWOxYdHV3vG/1yjSBE5Zq4Wl9r+O/jbHI2Tyzex6qwzrhYy/wx4i5rAHU9VFzfv/jii8TFxREfH8/TTz9tuIsOUt/XRJUb/TExMdU68alTp6pdGCGEqE+szTQ81MaDh9p4UFhcQnh06SMAmyIuk5pdyB/HL/HH8UuYqJR0a+zIwJZu9G/uirN1A7iDY2JZ92lvw9LSksaNGwOwYMECgoODee+995g8eTIAX3/9NV27di2T5+ZK+J90Oh0dOnSocCJAZ2fnMu9bk3z/bMQqFAp0Oh0A5ubmlZbr+ns8+OCDvP3221hZWaFU3rjAcnd3v2Xe+kCuEYS4tcYuVqye1JXRS/ZxPiWHx7/exw9hXWTiWHF3NYC6Hiqu72fOnMm4ceOA0iH+nTt3LpNH6vvqkdn7hRCiCkzVKvo0daFPUxc+GNaKYwlX+ft0MhtPXyYmLZft51LZfi6VtxQnae9tT8i1xwB8nWq3YryfzZgxg0GDBjFp0iQ8PDyIiYlh7NixVc7fvn17Vq9ejYuLCzY2Nnc9382CgoLQ6XTs2LHDMNzvn+/x66+/4u3tjYODQ5mLACGEcfBzsmT1s115Ysk+LqTlMmpxOD+GdcHD7taNBCHuN9fr+zFjxtCoUSMuXLjAmDFjqpxf6vvyatToX7BgQYX7FQoFZmZmNG7cmF69et2yB0YIIRoqpVJBe2972nvb80ZoM6JTc/j79GU2nk7meEImhy9mcPhiBrPXn6WJqxUhLdwY2NKNVo1sqjXZmSirT58+tGzZktmzZ/P666/zxhtvYGtry6BBgygsLOTQoUNkZGQwbdq0CvOPGTOGuXPnMmzYMGbOnImnpydxcXGsWbOGf//73xUOtbuTfDfz9fVl/PjxTJw40TCxz8WLF0lJSWHkyJG88MILLFmyhGeeeYY33ngDFxcXoqKi+Omnn1iyZEmDqk/lGkGIynk7WpQO9V+6j4vpeYxaHM4Pz3TBy8GirosmRL1xvb6fP38+06dPZ+rUqdjY2Eh9fwdq1Oj/5JNPSE1NJS8vD3t7e/R6PVevXsXCwgIrKytSUlLw9/dn27ZteHl51XaZhRCi3lAoFDR2saaxizUvBDcmKTOfzRGX+fv0ZfZdSCfycg6Rl6P4YlsU7rZmhLRwJaSlG538HNCo5G5udU2bNo2nnnqKw4cPs3jxYubNm8drr72GpaUlQUFBTJ06tdK8FhYW7Ny5k9dff53hw4eTnZ1No0aN6Nev3y179Gua758WLVrEW2+9xeTJk0lPT8fb25u33noLAA8PD3bt2sWrr75quKjx8fEhNDS0wd31l2sEIW7Ny8GC1c+WDvWPTc/j8cX7+CGsMz6OMjJMiOumTp3K008/zdtvv83SpUuZO3eu1Pd3QKHX6/XVzfTjjz+yePFili5dSkBAAABRUVFMmjSJZ599lu7du/P444/j5ubGL7/8UuuFrm+ysrKwtbUlMzOzxkNBrtNqtfz1118MHjzY6CY5ktgaJomt5jLztGw7l8Lfp5PZEZlKXlGJ4ZituYZ+zVwIaelKrybOWJjU7tNWWq2WjRs34ufnh7+/P2ZmxvPcqE6nIysryzDrrbGoSVwFBQXExMTg5+dX7jOuzbqpOoz1GkHq+qqR2KouObOA0Uv3cSE1FzcbM358tgt+dfRImHxuDdP12Pr27UtCQkKFdUFDZax1PVQ/ttqo62t0lfn222/z66+/GipzgMaNG/Pxxx8zYsQILly4wEcffcSIESNqcnohhDAKthYaHm7XiIfbNaJAW8KeqDQ2nr7M5jOXSc8tYs3RRNYcTcRUraRnoDMhLV3p39xV1nAWDZpcIwhRNW62Zvz0bBfGLNnP+ZQcRn0dzg9hXWjsYlXXRRNCGJkaNfqTkpIoLi4ut7+4uJjk5GSgdOhCdnb2nZVOCCGMhJlGRb/mrvRr7kqJTs/hixlsPJ3M3xHJxF/JZ/OZ0s4ApQIe8HUgpKUbIS1c5TlP0eDINYIQVediXXqH/8ml+zmbnM3ji8NZ9UwXmrpZ3z6zEEJUUY3GSgQHBzNp0iSOHj1q2Hf06FGef/55+vbtC8DJkyfx8/OrnVIKIYQRUSkVdPJz4O0HW7Dz38Gsf7knr/RvQksPG3R62B9zhff/jKDnR9sY/NkuPt0cScSlLGrwNJYQ95xcIwhRPU5WpvwQ1oUW7jak5RTxxJJ9RFzKqutiCSGMSI0a/cuWLcPBwYEOHTpgamqKqakpHTt2xMHBgWXLlgFgZWXFvHnzarWwQghhbBQKBc3dbXi5fyDrpvRk12vBTH+wBV38HVAqICIpi083n2fwgl30mruN9/+MYP+FdEp00gEg6ie5RhCi+hwsTfghrDNBjWy5klvE6KX7OJWYWdfFEkIYiRoN73dzc2PTpk2cPXuWyMhI9Ho9zZo1o2nTpoY0wcHBtVZIIYS4X3g5WDCxhx8Te/hxJbeILWcuszHiMjsjU4m/ks+y3TEs2x2Dg6UJ/Zu7ENLCjR6BTphpKl/iRUYIGK/6+NnKNYIQNWNnYcL3z3Rm/DcHOBZ/ldFL9vHd051p42VX10UT9dz15YDrY50g7lxtfK53NF20v78/CoWCgIAA1OranXlaCCHudw6WJjzW0YvHOnqRV1TMzsg0NkYks+VMCldyi/j5UAI/H0rAwkRF7yalEwH2beqKrUXp7MQlJaWrBeTl5WFubl6XoYi7JC8vD6Bezkgt1whCVJ+tuYbvnu7EU8sPcuhiBk8u3c+KiZ3o4GNf10UT9dj1td2LioqkvjdCtVHX16gWzsvL46WXXmLlypUAREZG4u/vz5QpU/Dw8OCNN96ocYGEEEKUZ2GiJrSVG6Gt3NCW6DgYe4WNpy+z8XQylzILWH8qmfWnklErFXTxd6RfMyfUhXpsbGxISUkpPYeFheFuQEOm0+koKiqioKDAqJbxqU5cer2evLw8UlJSsLOzM1zw1QdyjSDEnbE207ByYieeWnGQAzFXGLestOH/gK9DXRdN1FMqlQoLCwtSU1PRaDRGUTcaa10PVY+tNuv6GjX633zzTY4fP8727dsJDQ017O/fvz8zZsy4KxV6RkYGU6ZM4ffffwdg6NChfP7559jZ2VWaZ8KECYaLjus6d+7Mvn37DNuFhYW8+uqr/Pjjj+Tn59OvXz8WLlyIp6dnrccghBC1QaNS0i3AiW4BTsx4qAWnL2WVrgRw+jLnLmezOyqN3VFpKFGxLecSE9rZob982Sga/FBaCebn52Nubm40MUHN4rKzs8PNze0ul6x66uIaQQhjY2mqZsVTD/DMykPsjU5n3LIDfDPhAboGONZ10UQ9pFAocHd3JyYmhosXL9Z1cWqFsdb1UP3YaqOur1Gjf+3ataxevZouXbqUKWiLFi2Ijo6+owJVZvTo0SQkJLBhwwYAnn32WcaOHcsff/xxy3yhoaEsX77csG1iUnb966lTp/LHH3/w008/4ejoyL/+9S8efPBBDh8+XK/unAghREUUCgWtGtnSqpEt00KaEpuWy6aIy/x54hLHEzLZei6VredScbPWMKKdOwNbutHEtWEvBaXVatm5cye9evWql8Paa6q6cWk0mnpZT9XFNYIQxsjCRM03Ex4g7NtD7DqfxlMrDrB03AP0CHSq66KJesjExITAwECKiorquii1wljreqhebLVV19eo0Z+amoqLi0u5/bm5uXelJ+bMmTNs2LCBffv20blzZwCWLFlC165dOXfuXJnJgf7J1NS00p6RzMxMli1bxnfffUf//v0B+P777/Hy8mLz5s0MHDiw1mMRQoi7ydfJkrBe/kzo6sU3v/xFuk1j1h5LIjm7kC93xvHlzjiau9vwaAdPHm7rgaOVaV0XudpUKhXFxcWYmZkZ1YWAscR1r68RhDBmZhoVS8Z1ZPKqI2w9m8LElQdZPLYDfZqW/z8mhFKpxMzMrK6LUSuMpU6sSF3EVqNG/wMPPMC6det46aWXgBszRl5viNe28PBwbG1tDQ1+gC5dumBra8vevXtv2ejfvn07Li4u2NnZ0bt3bz788EPDxcjhw4fRarWEhIQY0nt4eNCqVSv27t1baaO/sLCQwsJCw3ZWVulaqlqtFq1We0exXs9/p+epjyS2hklia5i0Wi1uFjA22I9X+jVmT3Q6a45eYtOZFM4kZfH+nxHM/usMwU2dGd7Og95NnNCoGsYzc8b6udV2XHX1+7nX1whCGDszjYpFT7bnxR+OsiniMs9+e5hFT7anX3PXui6aEKKBqFGjf/bs2YSGhhIREUFxcTGfffYZp0+fJjw8nB07dtR2GUlOTq7wroGLiwvJycmV5hs0aBCPPfYYPj4+xMTE8M4779C3b18OHz6MqakpycnJmJiYYG9fdkZUV1fXW5539uzZvPfee+X2b9y4EQsLi2pEVrlNmzbVynnqI4mtYZLYGqabYxtoDT3awdF0BQdSlVzMgU1nUth0JgUrtZ4Ozno6O+toZFmHBa4GY/3caiuu67P93mv3+hpBiPuBqVrFl6Pb8/JPR1l/Kpnnvj/M50+0J7RV/ZrTQwhRP9Wo0d+tWzf27NnDxx9/TEBAABs3bqR9+/aEh4cTFBRU5fO8++67FTaeb3bw4EGACocE6vX6Ww4VHDVqlOF1q1at6NixIz4+Pqxbt47hw4dXmu92533zzTeZNm2aYTsrKwsvLy9CQkKwsbG5ZTy3o9Vq2bRpEwMGDDC6oSwSW8MksTVMt4rtsWv/nr+cw5pjl/i/Y5dIzSliR5KCHUlKWrhbM7ydBw+1dsfB0qT8yeuYsX5utR3X9VFo91ptXSMIIcoyUStZ8EQ7Xll9jD9PJPHiD0f47PF2DGntXtdFE0LUczVeODcoKKjczPjV9eKLL/L444/fMo2vry8nTpzg8uXL5Y6lpqbi6lr1oU3u7u74+Phw/vx5ANzc3CgqKiIjI6PM3f6UlBS6detW6XlMTU0xNS3/HKxGo6m1C9DaPFd9I7E1TBJbw3Sr2Fp42tPC0543BjVn5/lUfjmcwOaIFCKSsolIOsecvyPp18yVRzt40rupc70b/m+sn1ttxVWXv5vauEYQQpSnUSn5dFRbNColvx1NZMpPRynW6RjWtlFdF00IUY9VudFfnTsGVb3b7eTkhJPT7Wcg7dq1K5mZmRw4cIBOnToBsH//fjIzM2/ZOP+n9PR04uPjcXcv7RHt0KEDGo2GTZs2MXLkSACSkpI4deoUH330UZXPK4QQDZlapaRvM1f6NnMlI7eI349f4pfDCZxMzGTD6WQ2nE7GycqUR9p58GgHL5q6NezZ/0XtuxvXCEKIiqlVSj5+rA0qpYJfDifwyupjFJfoGdFBlpsWQlSsyo1+Ozu7Ks+6W1JSUuMCVaR58+aEhoYSFhbG119/DZQu2ffggw+WmcSvWbNmzJ49m0ceeYScnBzeffddRowYgbu7O7Gxsbz11ls4OTnxyCOPAGBra8vTTz/Nv/71LxwdHXFwcODVV18lKCjIMJu/EELcT+wtTRjfzZfx3Xw5m5zFL4cSWHsskbScQpbsimHJrhiCGtnyWEdPhrbxwM6i/g3/F/deXV4jCHE/UikVfDSiNRqVgh8PxPPqL8cp0ekZ+YBXXRdNCFEPVbnRv23bNsPr2NhY3njjDSZMmGCYiTc8PJyVK1cye/bs2i8lsGrVKqZMmWKYaX/o0KF88cUXZdKcO3eOzMxMoHQphJMnT/Ltt99y9epV3N3dCQ4OZvXq1Vhb37hL9cknn6BWqxk5ciT5+fn069ePFStW1Mu1j4UQ4l5q5mbD2w+24PVBzdhxLpX/HY5ny5kUTiZmcjIxkw/+PEP/Fi481sGLnoFOqOvZ8H9x79T1NYIQ9yOlUsGHDwehVir5bt9FXvv1BFqdjjGdfeq6aEKIeqbKjf7evXsbXs+cOZP58+fzxBNPGPYNHTqUoKAgFi9ezPjx42u3lICDgwPff//9LdPo9XrDa3Nzc/7+++/bntfMzIzPP/+czz///I7LKIQQxkijUtK/hSv9W7iSnlNoGP5/+lIWf51M5q+TyThbmzK8XSMe7eBJoKsM/7/f1PU1ghD3K6VSwcxhLVGrFCzfE8t/fjtFcYme8d1867poQoh6pEa3ZcLDw+nYsWO5/R07duTAgQN3XCghhBD1k6OVKU9192PdlJ78NaUnE7v74WBpQmp2IV/vvMCAT3Yy7Ms9fLfvIpl5dbNOvKhbco0gxL2lUCiY/mALnu3lD8CM30+zdNeFOi6VEKI+qVGj38vLi6+++qrc/q+//hovL3mWSAgh7gctPGyY/lAL9r3Zj6/HdmBAC1fUSgXH46/yztpTPDBrMy/8cITt51Io0elvf0JhFOQaQYh7T6FQ8OagZrwQHADAB+vO8NWO6DoulRCivqjRkn2ffPLJ/7N33/FRlPkDxz9b03vvhU5C7yAlIl1EBfuhiKIe6ulxnh420FNRAX+2E+sJZ8eGBYREIIASeu8tkJ5AIAXStszvjyVLQgobWEh2+b5fr7yyM/ud2efZ3dmZ78wzz8P48eNZtmwZffv2BWDdunUcPnyY77//3q4FFEII0bLptWpGJIQyIiGUE6crWbQ1m+82Z7Evr5TFO3JZvCOXEG8XbuoWyYQekbQO9mzuIovLqLmOERYvXsyLL77Ijh078PDwYNCgQfzwww/W5+vraHDevHk89NBDl61MQlxJKpWKJ4a3Q6tW89byg7z62z4MRjOPDm3T3EUTQgBms8Kfh0/w9YYM9KUqRl/B176opH/06NEcPHiQefPmsXfvXhRFYdy4cTz00ENyFl8IIa5igZ4u3D8wnvuuiWN3Tgnfbc7ip23Z5JdU8v6qw7y/6jDdon2Z0COS6zuH4+PWfGPJi8ujOY4Rvv/+e6ZMmcIrr7zCtddei6Io7Ny5s07cp59+ysiRI63TPj4+l6U8QjQXlUrF34e1RadRMSf5AHNTDmAwK/z9ujY2j7AhhLCvzJNlfLc5i+82Z5FdVA5AsKu6Vn90l5vNSf+OHTtITExErbbcERAZGcnLL7/cYPzu3btp164dWu1FnVcQQgjhwFQqFYkRPiRG+DB9dHtW7ivgu81ZrNx/nK0ZRWzNKOLFX/YwIiGUCT0iGdA6EI1aDkgdVXMeIxiNRh577DFmz57NfffdZ51fc0jfar6+voSGhl7yawrR0j1ybRu0GjWv/raPt5cfxGgy888R7STxF+IKqTCYWLY7j283ZfHn4RNU5/ferlpu6BJGWHn6Fd0ebd7bduvWjby8PIKCgmyK79evH9u2bSM+Pv6iCyeEEMLxuWg1jEwMY2RiGAWlFfy0NYdvN2dyIP80P2/P4eftOYT5uHJz9wjGd48kPkia/zua5jxG2LJlC9nZ2ajVams5unbtypw5c0hISKgV+8gjj3D//fcTFxfHfffdxwMPPGA9UXG+yspKKisrrdMlJSUAGAwGDIZL66SyevlLXU9LJHVrOe7rH40ahVd+2897qYepNBh5akTbehMNR6tbU0jdHJOj1m13Tgnfbcnm5+25lFQYrfP7t/JnQvcIhncIRo2ZlJR0u9TN1nXYnPQrisJzzz2Hu7u7TfFVVVW2rloIIcRVItjLlSmD4rl/YBy7skv4dnMmP23LIbe4gv+sPMx/Vh6mR4wft/SIZEznMLxcpfm/I2jOY4QjRyy9lM+cOZM33niD2NhY5s6dy+DBgzlw4AD+/v4A/Pvf/2bo0KG4ubmxfPly/vGPf3DixAmeffbZetc7a9YsXnjhhTrzk5OTba7nhaSkpNhlPS2R1K1lCAEmxKn4Ll3DJ38e49DhdG6KNdPQBUZHqltTSd0ckyPU7YwBNp9Qsa5ATXbZuY3LT6/QJ1ihd5CZANcCyCpgeda55exRt7KyMpvibE76Bw0axP79+20uQL9+/XBzc7M5XgghxNVDpVLRKdKHTpE+PDOmA8v3FvDtpkxWHTjO5mOn2HzsFDN/2c3IhFAm9Iiif6sA1NL8v8W6HMcIM2fOrDfprmnjxo2YzWYAnnnmGcaPHw9Y7t2PjIzk22+/5cEHHwSoldx37doVgBdffLHBpH/69OlMmzbNOl1SUkJUVBTDhw/H29u78QpegMFgICUlhWHDhqHTOdeJLalbyzMa6LIxi+d+3sOqPDUR0dHMGNOh1m+qo9bNFlI3x9TS62Y2K6w9cpLvtmSTsreAKqNlX6TTqBjeIYQJPSLoF+9f762L9qxbdSu0C7E56U9NTb3YsgghhBANctFqGN0pjNGdwigoqeDHrdl8uzmLQwWnWbQth0Xbcgj3cWV8j0jGd48kwkff3EUW57kcxwiPPPIIt99+e6MxsbGxlJaWAtCxY0frfBcXF+Lj48nIyGhw2b59+1JSUkJ+fj4hISF1nndxccHFxaXOfJ1OZ7cDUHuuq6WRurUsE/vH4aLT8tQPO/hyQxZmRcUrN3WqczLVEetmK6mbY2ppdauvUz6ADmHe3NYzkhu7ReDrbttxij3qZuvy0sueEEKIFiPY25UHB7figUHxbM8q5rvNmfy8LYec4greWXGId1YcomeML4l6FcNNZlrQcYCws8DAQAIDAy8Y16NHD1xcXNi/fz/XXHMNYLmKcvToUWJiYhpcbuvWrbi6uuLr62uvIgvRot3aKwqtRsUT327n642ZGM0Kr43vLJ2oCnEBjXXKd2O3CG7tGUViRMseDUaSfiGEEC2OSqWia5QvXaN8eXZMR1L25PPd5izWHDzOpmNFbELD72/9yf3XxHFrryjc9bI7u1p5e3vz0EMPMWPGDKKiooiJiWH27NkA3HLLLQD88ssv5OXlWW8rWLlyJc888wwPPPBAvVfzhXBWN3ePRKNWMW3hdr7bnIXRZGbOLV2au1hCtEi7sotZuCmTRVuza3XKN6B1ALf2jGJEQiiuOk0zltB2cpQkhBCiRXPVaRjbJZyxXcLJK67gi3Xp/HfNYbJOlTPzlz383+8Hmdg3hnv6xxLkJQnc1Wj27NlotVomTpxIeXk5ffr0YcWKFfj5+QGW5o/vvfce06ZNw2w2Ex8fz4svvsjDDz/czCUX4sob1zUCrVrNY19vZdG2HIxmhddvTrjwgkJcBYrKqvhpWw7fbMxkT+65++XDfVyZ0DOKW3pEEuVvn85cryRJ+oUQQjiMUB9X/nZta6LPHOBMSCc+XXuMY4VlvLvyEB+uOcL47hHcd008rYNl2L+riU6nY86cOcyZM6fe50eOHMnIkSOvcKmEaLnGdA5Dq1HxyJdb+HVHLlVGEyO8mrtUQjQPs1nhz8MnWLgpi2W786yd8uk1aoYnhHBrzygGtA506FthJOkXQgjhcPQauLF3FBP7xZGyJ48PVh9ha0YRX23I5KsNmVzXIYQHB8fTM8av3jGphRDiajciIZT3/9KDv36+heQ9BRz1UePX/gSD2oag1aibu3hCXHZZp8r4dlPDnfKN6xqBn4dzdB4sSb8QQgiHpVGrGJkYxoiEUDYdO8UHq47w+95861/XKF8eHBTP8IRQhz5DL4QQl8PQDiF8eHcPHvhsMweKYfKCLQR46BndKYyxXcLpGeMnw6UKp1JhMJG8J5+FGzNrdcrn5arlxq4R3NYrioRwb6e7YCBJvxBCCIenUqnoFetPr1h/Dh8/zcdrjvD9lmy2ZRbx1y+2EBPgzv3XxDGhRxRuesfodEcIIa6EIe2C+e6BPrz2/Z/sKXWh8EwVn607xmfrjhHq7cr1nS0nADpH+jhdIiSuHruyi/l2UyaLtuVQXG6wznfETvkuhiT9QgghnEqrIE9m3dyZacPa8b+0o3y2znLf/3M/7bZ2+nd3vxgCPKXTPyGEAOgQ5sWt8WaGjRjMxowSftmew7JdeeSVVPDxH+l8/Ec60f7ujO0Sxg1dImgXKh0AiJavulO+hZsy2Z3jPJ3yXQxJ+oUQQjilIC8X/jG8HX8d0opvN2Xx8R9HyDxZzlvLD/L+qsNM6BHJ/QPjiQv0aO6iCiFEi6DTqBncNojBbYN46cZEVh04zi/bc/h9bz4ZJ8v4z8rD/GflYdqGeDK2s2VUlVj5DRUtyNXQKd/FkKRfCCGEU3PXa7mnfyx39Ylm2e58Plx9mO1ZxXyxPoMvN2QwvGMIDwxqRY8Yv+YuqhBCtBiuOg0jEkIZkRDKmUojy/cV8Mv2HFbtP86B/NPMTTnA3JQDdIrw4YYu4YzpHEa4r1tzF1tcpa6mTvkuhiT9QgghrgpajZoxncMY3SmU9ekn+XD1EVbsK2DZ7nyW7c6nR4wfDwyKZ1iHEOm4SgghavBw0XJDl3Bu6BJOcbmB5N15/Lw9h7WHC9mZXczO7GJeXrKXXrF+jO0SzqjEMIK85BYqcXldqFO+W3tGkRjhfJ3yXQxJ+oUQQlxVVCoVfeMD6BsfwMH8Uj5ac4RFW3PYfOwUD362mfhAD+4fGM/N3SOculMfIYS4GD5uOm7pGcUtPaM4cbqS33bl8cv2HDYePcnGo6fYePQUM3/eTf9WgYztEsbIhDB83HXNXWzhRK72TvkuhsMMwnnq1CkmTpyIj48PPj4+TJw4kaKiokaXUalU9f7Nnj3bGjNkyJA6z99+++2XuTZCCCFagjYhXrw+oQt/PJXE1CGt8HbVcuTEGZ7+cScDXl3B28sPcupMVXMXUwghWqRATxcm9o1h4YP9WPuva3l2TAe6RPpgVuCPQyd46vud9Hw5hfsXbOSnbdmcqTQ2d5GFgyouM7Bg7VHGvL2G69/5gwVpxyguNxDu48rfrm3NmieT+OL+vozrKifs6+MwV/rvvPNOsrKyWLp0KQAPPPAAEydO5Jdffmlwmdzc3FrTv/32G/fddx/jx4+vNX/KlCm8+OKL1mk3N7kfSQghribB3q48ObI9U5Nas3BjJp/8kU52UTlvpBzgvdRD3NozivuviSc64Oro5VcIIZoqzMeN+wfGc//AeI4VnuHXHbn8sj2HfXml/L63gN/3FuCqUzO0fQhju4QxpF2wJGeiUWYF/jxcyPdbc+t0yjfsbKd811yFnfJdDIdI+vfu3cvSpUtZt24dffr0AeCjjz6iX79+7N+/n3bt2tW7XGhoaK3pn376iaSkJOLj42vNd3d3rxMrhBDi6uPpomXyNXHc3S+GxTtz+XD1EXbnlPC/tGN8vu4YIxNDeWBQK7pG+TZ3UYUQosWKCfDg4aTWPJzUmgP5pfy6PYeft+dwtLCMxTtzWbwzF08XLcM7hjC2azjXtA5Ep3GYBsjiMsovqWBXdjGb0gv5ZquGk+s2W59rH+rFbb2iuPEq75TvYjhE0p+WloaPj4814Qfo27cvPj4+rF27tsGkv6b8/HwWL17MggUL6jz3xRdf8PnnnxMSEsKoUaOYMWMGXl4Njz9aWVlJZWWldbqkxDLuo8FgwGAwNLSYTaqXv9T1tERSN8ckdXNMUrdLNzohmFEdg1iXfpKP/zjK6oOFLNmZx5KdefSK9eO+ATEktQ2yW6d/9q6XM372QgjH0zbEi2nD2/H3YW3ZnVPCz9tz+HV7DjnFFfywNZsftmbj665jVGIYY7uE0ScuQK7cXgUURSG32JLg78ouZldOCTuzizleWlkjSoWXq5ZxXcO5rWe0dMp3CRwi6c/LyyM4OLjO/ODgYPLy8mxax4IFC/Dy8uLmm2+uNf+uu+4iLi6O0NBQdu3axfTp09m+fTspKSkNrmvWrFm88MILdeYnJyfj7m6fpp+Nvb6jk7o5JqmbY5K62cf4QOjnBitz1Ww+obJ2VhXippAUZqZnkILOThep7FWvsrIyu6xHCCHsQaVSkRjhQ2KED/8a2Z4tGaf4ZXsOi3fmcuJ0FV9tyOCrDRkEebkwplMYN3QNp1uUryR5TkBRFLKLytl1dqSHXdkl7MouprCePnPUKmgd7EnHUC+8zmTx5J1D8XJ3bYZSO5dmTfpnzpxZb/Jc08aNGwHq3eAVRbH5h+C///0vd911F66utb80U6ZMsT5OTEykTZs29OzZky1bttC9e/d61zV9+nSmTZtmnS4pKSEqKorhw4fj7e1tU3kaYjAYSElJYdiwYeh0ztXTqdTNMUndHJPU7fK4H8grqeB/aRl8tTGL/HIjXx/R8HuBnrv7RnNn7yh83C6uTPauV3UrNCGEaGnUahU9Y/3pGevPc9d3ZH36SX7ZnsNvu/I4XlrJ/LVHmb/2KBG+boztEs7YLmF0DJOrvI5AURQyT5ZbkvucYuuV/FNldVufadQq2gR7khjhQ6cIHxIjvOkQ5o27XovBYGDJkkzp98FOmjXpf+SRRy7YU35sbCw7duwgPz+/znPHjx8nJCTkgq+zZs0a9u/fzzfffHPB2O7du6PT6Th48GCDSb+LiwsuLnXHHtXpdHY7ALXnuloaqZtjkro5Jqmb/UUF6Hjm+gT+dl1bvt6QyX//TCe3uII3fj/E+6vTubVnFPddE0eU/8W1/LJXvZz1cxdCOBetRs2A1oEMaB3Ii+MSWXPwOL9szyF5Tz7ZReW8v+ow7686THyQB2M7hzO2Szitgz2bu9gCMJsVMk6Wnb16X2z9X1JRd5QGrVpF2xAva3KfGOFDhzBvSeqvkGZN+gMDAwkMDLxgXL9+/SguLmbDhg307t0bgPXr11NcXEz//v0vuPwnn3xCjx496NKlywVjd+/ejcFgICws7MIVEEIIcdXyctUxZVA8kwbE8uuOHD5YdYR9eaXMX3uU/6UdZXSnMB4c1IpOkT7NXVQhhHAIeq2aoR1CGNohhPIqEyv3F/DL9hyW7yvgyPEzvLX8IG8tP0jHMG/Gdgnn+s5hF32CVTSN2ayQXnjGeuV+Z3Yxu7NLKK1nGEadRkX7UG9rct8pwoe2IV6S4Dcjh7inv0OHDowcOZIpU6bwwQcfAJYh+66//vpanfi1b9+eWbNmcdNNN1nnlZSU8O233zJ37tw66z18+DBffPEFo0ePJjAwkD179vCPf/yDbt26MWDAgMtfMSGEEA5Pp1FzU7dIbuwawZqDJ/hozRHWHDzBrzty+XVHLv3iA3hgcDxD2gZJ01QhhLCRm17D6E5hjO4URmmFgZQ9+fyyPYc1B0+wJ7eEPbklvLZ0H92ifRnbOZwxncMI8ZZ7v+3BZFY4cvx0rfvvd+cUc6bKVCdWr1XTIdSrRhN9S4Kv18poDC2JQyT9YOlh/29/+xvDhw8H4IYbbuDdd9+tFbN//36Ki4trzfv6669RFIU77rijzjr1ej3Lly/nrbfe4vTp00RFRTFmzBhmzJiBRiNnooQQQthOpVIxqG0Qg9oGsTunmI/XpPPL9hzSjhSSdqSQtiGeTBkYz7iuEXIwJIQQTeDlquPm7pHc3D2SU2eqWLo7z/r7ujWjiK0ZRfx78R76xgUwtks4oxJDZUg3GxlNZg4dP21N7ndlF7Mnt4SyehJ8F62ajuHeJIafS/DbhHjKcIsOwGGSfn9/fz7//PNGYxRFqTPvgQce4IEHHqg3PioqilWrVtmlfEIIIUS1hHAf/u+2rvxzRDv++0c6X23I4ED+af753Q7mJO9nUv847uwTfdGd/gkhxNXKz0PPHb2juaN3NAUlFSzemcsv23PYklFkPcn6/E+7uKZNIGM7h5PUNqC5i9xiGExmDuafPnf/fU4xe3NLqDCY68S66TQkhHtbR1xIjPCmdZAnWknwHZLDJP1CCCGEown3dePZ6zvy6NA2fLUhg0//TCe/pJLXlu7j3RUHub13NJOviSPC1625iyqEEA4n2NuVewfEce+AODJPlllPAOzOKSF1/3FS9x9Hr1UT5qrhm/xNuOm1uOo1uOnO/uk1uFY/1qlrT5+Ncz3751ZjORetGrW6Zd+uVWU0cyC/1Nq53q7sYvbmlVJlrJvge+g1JISfS+47RfgQH+SJpoXXUdhOkn4hhBDiMvNx0/HQ4FZMHhDHz9tz+Gj1Efbnl/LJH+nMX3uUsZ3DuLd/dHMXUwghHFaUvzsPDW7FQ4Nbcfj4aX7dnsvP27M5fPwMx06rOHb6pF1fz1Wntp4EOP9Egou2+iSBut7nz51oODdtXV+Nkw0uWrVNfcFUGkzsyTtjHSJvZ3Yx+/NKMZjqtoL2ctGSEHG2iX6kJdGPC/Bo8ScxxKWRpF8IIYS4QvRaNRN6RDK+ewSpB47z0eojrD1cyKJtOSzalkNbHzUBHU5yTdsLD0crhBCifq2CPHnsujb8bWhrdmed4sff/6Bjp64YzFBuMFFuMFFRZTr32GCuM6+8ykRFrcdmqkznrpJXGMxUGMycou748/aiUnHuxMJ5rQ1c9Rr0atiboeEf61dgNNdN8L1dtbU62EuM8CHG310S/KuQJP1CCCHEFaZSqUhqF0xSu2B2ZhXz4ZojLNmZy4FiNeuOSNIvhBD2oFKpaBfqRWd/hdFdwtDpLq0fFaPJTIXRbD0hUPOkQHmtafO56ZonF6pMVBhrzjPXPvlQZaLMYMJ0NoFXFCirMtXbqV6NWgIKvu66c8n92Y72ovzdZNQYAUjSL4QQQjSrTpE+vHNHN6YNbcULX63iL32imrtIQggh6qHVqPHUqPF0ubwplMFUt+VBhcFcp/XB6Yoqju3fxd1jhxAT6CUJvmiQJP1CCCFECxDp58ZNsWYCPF2auyhCCCGakU6jRqdR4+3aeMsEg8HAkhM7ifCVK/qicTLmghBCCCGEEEII4aTkSr8dKIrlvpuSkpJLXpfBYKCsrIySkpJLvu+opZG6OSapm2OSujkee9erep9UvY8Sl0b29baRujkmqZtjkro5JnvWzdZ9vST9dlBaWgpAVJTchymEEKJlKS0txcfHp7mL4fBkXy+EEKKlutC+XqXIJYBLZjabycnJwcvr0jvQKCkpISoqiszMTLy9ve1UwpZB6uaYpG6OSermeOxdL0VRKC0tJTw8HLVa7ua7VLKvt43UzTFJ3RyT1M0x2bNutu7r5Uq/HajVaiIjI+26Tm9vb6f7gleTujmmxuo2c+ZMXnjhBY4fP05gYGCD65g0aRKpqakcPXr0MpXSNtXl2LFjB2Cp27vvvkvHjh258cYbm7y+1NRUkpKS+Pbbb5kwYYKdS3tprtbvpCOzZ73kCr/9yL6+aaRujulS6tbSjwVsrVt95YuNjWXIkCHMnz//8hXwEsh30jHZq2627Ovl1L8Q4qrz3HPP8eOPP9aa98orr7Bo0aLmKZAQQgghhBCXiVzpF8KJlJWV4e7u3tzFaPFatWoF2KdDLiGEEKIlkWOB2srLy5u7CEI0O7nS38K4uLgwY8YMXFycb5xmqZt9zZw5E5VKxZYtW5gwYQJ+fn7WZLYxFRUV/OMf/6Br1674+Pjg7+9Pv379+Omnn+rEqlQqnnrqKW688UZ69+6Nu7s7Xbp04ddff73g6+zbt4/4+Hj69OlDQUFBg3GKovDee+/RtWtX3Nzc8PPzY8KECRw5cuSCr1HT/PnzUalUpKSkcO+99+Lv74+Hhwdjx46ts65JkyYRGxtr/dx8fHw4c+YMCxYsQKVSoVKpGDJkiDU+OzubBx54gKioKPR6PeHh4UyYMIH8/Pxa6zUYDDzzzDOEh4fj7e3Nddddx/79+5tUD3uR7c3xOGu9RF3O/FlL3a4sex0LxMbGEhkZSXJycp1YlUrFI488wmeffUaHDh0c4lggOTmZyZMnExQURGhoKM888ww6nY7XX3+d9u3b4+LiQnBwMHfffTdZWVlNeo2WpCV+J+1F6mZnihDCIc2YMUMBlJiYGOWpp55SUlJSlEWLFl1wuaKiImXSpEnKZ599pqxYsUJZunSp8sQTTyhqtVpZsGBBrVhAiY2NVXr37q0sXLhQWbJkiTJkyBBFq9Uqhw8frlOW48ePK4qiKKmpqYqfn58ybtw45cyZM9a4e+65R4mJian1GlOmTFF0Op3yj3/8Q1m6dKny5ZdfKu3bt1dCQkKUvLw8m9+PTz/9VAGUqKgoZfLkycpvv/2mfPjhh0pwcLASFRWlnDp1qsFypKWlKW5ubsro0aOVtLQ0JS0tTdm9e7eiKIqSlZWlhIWFKYGBgcobb7yh/P7778o333yjTJ48Wdm7d6+iKIqycuVK63t11113KYsXL1a++uorJTo6WmnTpo1iNBptrocQQghhKzkWqK36WCAiIkJ54IEHlN9++0357rvvFKPRqDzwwAMKoDzyyCPK0qVLlffff18JCgpSoqKirGVuqHwxMTHKPffcY3M5hGhpJOkXwkFV71yff/75S1qP0WhUDAaDct999yndunWr9RyghISEKCUlJdZ5eXl5ilqtVmbNmlWnLMePH1c+++wzRa/XK3/7298Uk8lUa331JduAMnfu3FpxmZmZipubm/Lkk0/aXI/qHf1NN91Ua/6ff/6pAMpLL73UYDkURVE8PDzq3aFPnjxZ0el0yp49exp87eqkf/To0bXmL1y4UAGUtLQ0m+shhBBC2EqOBWqrPha4++67a83fu3evAihTp06tNX/9+vUKoDz99NMNlk9RJOkXjk+a9wvh4MaPH9/kZb799lsGDBiAp6cnWq0WnU7HJ598wt69e+vEJiUl4eXlZZ0OCQkhODiYY8eO1Yl9+eWXmTRpEq+++ipvvfXWBYcJ+/XXX1GpVPzlL3/BaDRa/0JDQ+nSpQupqalNrttdd91Va7p///7ExMSwcuXKJq8L4LfffiMpKYkOHTpcMPaGG26oNd25c2eAet8rIYQQwl7kWKC289+P6mOASZMm1Zrfu3dvOnTowPLly5v8GkI4Ekn6hXBwYWFhTYr/4YcfuPXWW4mIiODzzz8nLS2NjRs3MnnyZCoqKurEBwQE1Jnn4uJSb8c4n3/+OREREdx+++02lSU/Px9FUQgJCUGn09X6W7duHSdOnGhS3QBCQ0PrnVdYWNjkdQEcP37c5mG6zn+vqu/Vkk6EhBBCXE5yLFDb+e9H9TFAfe9TeHj4RR8jCOEopPd+IRycSqVqUvznn39OXFwc33zzTa1lKysrL7ksS5cu5bbbbmPgwIEsX76cmJiYRuMDAwNRqVSsWbOm3s5MLqaDk7y8vHrntW7dusnrAggKCnLoTn6EEEI4PzkWqO3896P6pEVubm6dE/k5OTkEBgY2+TWEcCRypV+Iq4xKpUKv19faIebl5dXbe39TxcTEWHfaAwcO5ODBg43GX3/99SiKQnZ2Nj179qzz16lTpyaX4Ysvvqg1vXbtWo4dO1arN/76NHTFYtSoUaxcubLZeuEXQggh7M3ZjwXOd+211wKWkx01bdy4kb179zJ06NBLfg0hWjK50i/EVeb666/nhx9+YOrUqUyYMIHMzEz+/e9/ExYWdsEdsy3CwsJYtWoVI0aMYNCgQaSkpJCYmFhv7IABA3jggQe499572bRpE4MGDcLDw4Pc3Fz++OMPOnXqxF//+tcmvf6mTZu4//77ueWWW8jMzOSZZ54hIiKCqVOnNrpcp06dSE1N5ZdffiEsLAwvLy/atWvHiy++yG+//cagQYN4+umn6dSpE0VFRSxdupRp06bRvn37JpVPCCGEaG7Ofixwvnbt2vHAAw/wzjvvoFarGTVqFEePHuW5554jKiqKv//975e0fiFaOkn6hbjK3HvvvRQUFPD+++/z3//+l/j4eP71r3+RlZXFCy+8YJfXCAwMZMWKFYwZM4bBgwezbNkyevbsWW/sBx98QN++ffnggw947733MJvNhIeHM2DAAHr37t3k1/7kk0/47LPPuP3226msrCQpKYm33noLf3//Rpd76623ePjhh7n99tspKytj8ODBpKamEhERwYYNG5gxYwavvvoqhYWFBAUFcc0111xwnUIIIURL5OzHAvWZN28erVq14pNPPuE///kPPj4+jBw5klmzZtXbZ4EQzkSlKIrS3IUQQohLNX/+fO699142btzY4EGFEEIIIYQQVxu5p18IIYQQQgghhHBS0rxfCCehKAomk6nRGI1G0+QefpubrfUSQgghrnZX+7GAo9VLiCtFrvQL4SRWrVpVZ3zb8/8WLFjQ3MVssgULFlywXqtWrWLSpEkoiiJN+4UQQly1rvZjASFE/eSefiGcRGlp6QWHlYuLi3O4zmoKCwtJT09vNKZdu3Z4eXldoRIJIYQQLZMcC8ixgBD1kaRfCCGEEEIIIYRwUnJPvx2YzWZycnLw8vKSe4mEEEK0CIqiUFpaSnh4OGq13M13qWRfL4QQoqWxdV8vSb8d5OTkEBUV1dzFEEIIIerIzMwkMjKyuYvh8GRfL4QQoqW60L5ekn47qL5/KDMzE29v70tal8FgIDk5meHDh6PT6exRvBZD6uaYpG6OSermeOxdr5KSEqKiouQeVzuRfb1tpG6OSermmKRujsmedbN1Xy9Jvx1UN/Pz9va2y4GAu7s73t7eTvkFl7o5HqmbY5K6OZ7LVS9pim4fsq+3jdTNMUndHJPUzTFdjrpdaF8vSX8LpDFVQtUZUOr5Eqg0oHM9N111puEVqdSgc7vI2DKgoT4eVaB3v6hYtbmq4boB6D3OPTaUg2JuuMy1YitAaWT81qbE6tyhesMxVoLZaFOs2mxovG5aN6i+18ZYBWZDw+ttUqwrqDVNjzUZwFTVcKzGBTSWnwiVYmy8bjViMRnBVNnIevWg0TU91mwCY0XDsWodaPVNj1XMjdet1nrNYCxvZL1a0LqcXa8ChjL7xDZpu68ntqG6tcDfiKZt9+WgNPIdbmG/EReMlV2yEEII4dSqjGZWHzjOkZIr+7pyhNHC3PXJRhbmTYEd9T+/070PH0S+ik6jRqtW8fKe4eiV+pObbJ8eLOnxMVqNCq1GzS0rBuNadare2FL/Tuy5/ie0GjU6jYr2Xw9Afzqr3lhTYDsMD6ahVavQqFWoPkqC4/vqL7BPNPx9p3XymoMvo9t+f/2x7gHw5JFz059PgGN/1B+rc4dncs9NL5wIB5PrjwWYWXzu8Y8PwJ6fGo59OudcAvDL47D9y4Zj/3kYPAIBSMz+Et3s+xqOfWwH+MVYHq94Eda+03Ds1HUQ3MHyeM1cWPVqw7FTVkBED8vj9fMg5fmGY+/5FeIGWh5vng9Lnmg49s6F0HYEAJEn09DNntxw7C3zIeEmy+N9v8C3kxqOHfcedLvL8vjwcvjy1oZjR8+B3lMsj4+thQXXNxw77EUY8Jjlce42+OjahmMH/wuSpgPgVZGDbnZMw7H9H4XhL1keF2fCW50bju11P4yZa3lcVgizWzUc2+VOuGme5bGhDF4Jbzi24zi49X/nphuLbTMc7vrWOql9s0PDJxRiroF7F5+bfrOTpdz1Ce8GD6Sem/5PHyjOqD82qD08vP7cdBN+I/h0FORsrT/2vN8Izde3Qcba+mNb4G8Ey56GjR83HPvwloafE0IIIYRDqjKa+fPwCRbvyCV5dx4lFUY6+qp55AqWQZL+FmZfXmmjzx8vreTXHecOZF9wUdA30Joj81QZLy/Za50e7WLEtYHYIyfOcNuH66zTf7hUENlA7OGC0wx/bql1OkVfSpsGOovMK6ng7v9bhVatRquG2eXgV3+oEEIIIYQQQji8+hL9akGeeoLdKlCUhlpB2p9KuZKv5qRKSkrw8fGhuLj4ku/z++NAPuv/WEXnbt1ApcFoNmM0KRhMZoxmBYNZRZVKb5lnNkNVGUaTGZNZsTxvssQbFTMGk4oK9NZ5auMZDCYFs1nBYFIwKgpGk9ny2AxnFJ1lWZMZtakCk8mESVEs88yWOAAFFRW4WMvsSiWqBprunh/rQhVq6jbdVakg2NOVAH8/InzdCPd1I9pbRYSPC2E+boT7uuLpct45qhbUdNdgMLD0158YOfy6hu/NcdDm/QaDgd8W/8yoYUMbrpuDNu83GAwsWfwro4clNVw3B23ebzAYWLJkCaOvG4xOp8NkMmEwmiyvZY1Vn7fexspwfmw5jTfZd7u4WEPFBZr3u2MwGFi9ejWD+vdBp2lkKLpatw1UXuA3ogmxOrcavxFVF/iNsD3WgJbVa9YwaNAgm+7x0+l0aDSaBp+3575J2P5+mkwmDIZGfofh3HfYxs/akThj3fR6PWq1+tzv6ujRTlO3alI3xyR1a1kaTfS9XBiVGMroTmF0jfBi2dLf7FI3W/dNcqW/hekT50/hXheGJMa2uC+4oijWkwtGc80TBmdPNJw3z2A6G28yYzArVFQZWJ22iYCYDuSXVJFdVG79qzKaOVoKR0tPsflY/bcg+LjprCcEIv3crI8jzj4O9HS3rcOqmonLhWhdoMZJi8aY1TrLyQVbPjetHtDbWIbLFKvRnUuoL0BRaW2vm0Z77gSAPWPVmtonb+wVq1LbXje1ugnrVV2eWGhSrKJzJ7ewkKKiItvX38IpikJoaCiZuQVO1UmdtV6ZmTbXy9fXl9DQUKd6HxyVoijk5eXZtK1dzGftKJyxbmq1mri4OKepjxDCfmxN9HvF+qNRW35DLnRi+HKQpF/YTKVSne0f4OKWNxgMVBxWGJ3UqtYJDbNZofDM2ZMAp8rJOXsiIOuU5X9OUTnF5Qbr357c+nu+0GvVRPi6Wf9qnhCI9HMjxNsVvbaRq4JCOKGCggJKS0sJDg7G3d3GE2MtnNls5vTp03h6eqJWO8823ZR6KYpCWVkZBQUFAISFhV2JIopGVCf8tmxrzvodBuerm9lsJicnh9zcXNnOhBDAxSX6zU2SftHs1GoVQV4uBHm50DXKt96Y0goDOUUVZBeVkV1UQXaNEwLZp8rJL62gymgm/cQZ0k/U3/RZpYIQL1ci/M6eELCeFHAlwtedCD+3urcQCOHAVCoVJSUlhISEEBAQ0NzFsRuz2UxVVRWurq5OkVRUa2q93Nwst0UUFBQQHBzcaFN/cXmZTCZrwm/Ltuas32FwzroFBQWRk5ODydTIbT9CCKfmiIl+TZLhCIfg5aqjXaiOdqFe9T5fZTSTV1xx7paBGi0Gat5CkFdSQV5JRaO3EFSfEIj0s/QlUH1CwHILgd4prpSKq0N1Euju7n6BSOGoqj9bg8EgSX8zqm6qKduac9LrLbfNSdIvxNXF0RP9miTpF05Br1UTHeBOdED9B1zn30KQXVRGTlGF9RaC7FNllFQYrbcQ7LXhFoKaJwRCPHWUNTb8thDNSE5UOS/5bFsW+TycU/XnKn1fC+H8nCnRr0mSfnFVuJRbCLJPWU4QXOgWAq1Kw/qqnfylXyw9Yvzk4E8IIYQQQogWzlkT/Zok6RfiLFtvIcg620qgZouBoydOk1VUwaLtuSzanku7EC/u6B3FTd0j8XFrWaMwCOEsNBoNP/74IzfeeONlfZ3Y2Fgef/xxHn/88cv6OvWZP38+jz/+uFONviAci0qlku1MCOF0roZEvyZJ+oWwUWO3EFRVVfH+wt84po9m8c489ueXMvOXPby6dB9jO4dzZ59oukb5ytV/IZqgoKCA5557jt9++438/Hz8/Pzo0qULzz//PAkJCWRnZ7fIDgolgRCOpKHtbObMmfTr14/c3Fz8/Pyau5h1yHYmhGiqqy3Rr0mSfiHsQKVSEeMFfx2dyPNjE1m0NZsv12ewP7+Ubzdn8e3mLDqEeXNXn2hu7BYhowQIYYPx48djMBhYsGAB8fHx5Ofns3z5ck6ePAlAaGio0/QOLkRzsWU7E0IIR9VYoh/o6cLoTs6b6NckR0tC2JmPm457+sey9PGBfP/XftzcLQK9Vs3e3BKeXbSL3i//zvQfdrAzq7i5iypEi1VUVMQff/zBa6+9RlJSEjExMfTu3Zvp06czZswYwNK8f9GiRQAcPXoUlUrFwoULGThwIG5ubvTq1YsDBw6wceNGevbsiaenJyNHjuT48ePW1xkyZEid5sQ33ngjkyZNarBsb7zxBp06dcLDw4OoqCimTp3K6dOnAUhNTeXee++luLgYlUqFSqVi5syZgKVF0JNPPklERAQeHh706dOH1NTUWuv+8ssviY2Nxd3dnZtuuonCwsJLeh+d2XvvvUdcXByurq706NGDNWvWNBibmppq/Txq/u3bt+8KlrjlsWU7U6lUTdrOvL29mTBhQovezubPn090dLRsZ0I4qSqjmZX7C3ji2+30fCmFez/dyHebsyipMBLo6cLd/WL4+oG+rH96KC+OS6RvfIBTJ/wgV/qFuGxUKhU9YvzpEePP82M78v2WbL5Yf4wjx8/w1YZMvtqQSedIH+7sHc3YLuF4yNV/cQUoikK5oXmGnXLTaWy+xcXT0xNPT08WLVpE3759cXFxsWm5GTNm8OabbxIdHc3kyZO544478Pb25q233sLd3Z1bb72V559/nnnz5l10PdRqNW+//TaxsbGkp6czdepUnnzySd577z369+/Pm2++yfPPP8/+/futdQG49957OXr0KF9//TXh4eH8+OOPjBw5kp07d9KmTRvWr1/PI488wssvv8z48eNZunQpM2bMuOhyOrNvvvmGxx9/nPfee48BAwbwwQcfMGrUKPbs2UN0dHSDy+3fvx9vb2/rdFBQ0GUrY2PbmtlsprzKhLbKaPfWKs29nbm6unLrrbcyY8YM3n///Yuux+XcziZPnswrr7zCzTffLNuZEE5Crug3TrIMIa4AX3c9910Tx+QBsaxPP8mX6zNYuiuPHVnF7MjayUuL93Jjt3Du7B1Dx3DvC69QiItUbjDR8fllzfLae14cgbvett2OVqtl/vz5TJkyhffff5/u3bszePBgbr/9dhITExtc7oknnmDEiBEAPPbYY9xxxx0sX76cAQMGAHDfffcxf/78S6pHzSuWcXFx/Pvf/+avf/0r7733Hnq9Hh8fH1QqVa1m0YcPH+arr74iKyuL8PBwa1mXLl3Kp59+yiuvvMLbb7/Ntddey1NPPYVaraZt27asXbuWpUuXXlJ5ndEbb7zBfffdx/333w/Am2++ybJly5g3bx6zZs1qcLng4GB8fX2vSBmba1uz13bWuXPnBpdrbDszm8385S9/4Ztvvrmkelyu7eytt95ixIgR/Otf/wKQ7UwIByaJvu0k6RfiClKpVPSND6BvfACFpyv5bnMWX23I4GhhGZ+vy+DzdRl0i/blzt7RXN85HDe9prmLLESzGT9+PGPGjGHNmjWkpaWxdOlSXn/9dT788ENuvvnmepepmaiEhIQA0KlTp1rzCgoKLqlcK1eu5JVXXmHPnj2UlJRgNBqpqKjgzJkzeHh41LvMli1bUBSFtm3b1ppfWVlp7Yxw3759jBo1qtbz/fr1k2TkPFVVVWzevNmatFUbPnw4a9eubXTZbt26UVFRQceOHXn22WdJSkpqMLayspLKykrrdElJCQAGgwGDwVAr1mAwoCgKZrMZs9kMYP1/pdUsgy1uuukmRo0axZo1a1i3bh3Lli2zbmfVze+r11m93sTEROvj6tYSCQkJmM1mFEUhODiYgoKCWuWofn9qTtc3r3p65cqVzJo1i71799bazkpLS/Hw8Kj3fd60aVOD25m/vz9ms5m9e/dy44031lqub9++LF26tMH3rbpeRqMloTj/83cG1XWSujmWq7FuVUYzaUcKWbIrn9/3FpyX6OsZmRDCyIQQesb4WRN9s8mIuXkaOdbLnp+breuQpF+IZhLg6cKDg1sxZWA8aUcK+XJ9Bst257E1o4itGUX8+9c93Nw9krv6RNMmpP5hBIVoKjedhj0vjmi2124qV1dXhg0bxrBhw3j++ee5//77eeGFFxpM+nW6c0NkVjdxPn9ezQN7tVqNoii11tHYDvTYsWOMHj2ahx56iH//+9/4+/vzxx9/cN999zW6nNlsRqPRsHnzZjSa2u9DdbPk88sh6nfixAlMJpP1pE61kJAQ8vLy6l0mLCyMDz/8kB49elBZWclnn33G0KFDSU1NZdCgQfUuM2vWLF544YU685OTk3F3rz2Ki1arJTQ0lNOnT1NVVQVYPs+0aX0vpoqXxFB+hpKKpl/R6tOnD3369OGxxx7jb3/7GzNmzLBuZ+Xl5ZSUlFjvqa+qqrKeBCkvLwegoqLCOk+lUmEymazTZrOZyspK63T1ch4eHrViqteRkZHB9ddfz7333stTTz2Fn58f69at49FHH+XkyZOYTCYqKipQFKXWOs+cOYNGo2HlypV1trPq1zIajXXKUt+6aqqqqqK8vNx6UiklJaXJ76+jkLo5Jmevm9EMB4pVbC1UsfOkinLTud84L51CV3+FrgFm4r2NqFXpFO5NZ9neZiy0jezxuZWVldkUJ0m/EM1MrVYxoHUgA1oHUlBawbebLFf/s06VM3/tUeavPUqvWD/u7BPNqMQwXC8icRKimkqlsrnpb0vUsWNHa6di9hAUFERubq512mQysWvXrgavAG/atAmj0cjcuXOt92IvXLiwVoxer8dkqn1JoVu3bphMJgoKChg4cGC96+7QoQMbN26sNW/dunVNrtPV4vz71hVFafBe9nbt2tGuXTvrdL9+/cjMzGTOnDkNJv3Tp09n2rRp1umSkhKioqIYPnx4rX4BwJI0ZmZm4unpiaurq3W+TwNlVxSF0tJSvLy8WuRQrl26dGHJkiXWerq5ueHt7W09QeXh4WF9rvoEiJeXF97e3taTVyqVyhoTGhpKYWGhddpkMrF//37CwsKs89RqNa6urnh7e7N//36MRiNvv/22dTv77bffar2Ot7c3ZrO51mfRv39/TCYTZWVlDW5niYmJbN26tdZy27Ztq1Xe81VUVODm5kb//v1ZvXo1w4YNq3Uy0RkYDAZSUlKkbg7Gmet2pqKSed+vIN8lghX7T9h0Rd9R2PNza+hk5fkc98hPCCcU7OXKw0mt+evgVqw5dIIv1h1j+b4CNh49xcajp3jhlz1M6B7JHX2iaRXk2dzFFeKyKSws5JZbbmHy5Ml07twZLy8vNm3axOuvv84NN9xgt9e59tprmTZtGosXL6ZVq1b83//9X6Pjfrdq1Qqj0cg777zD2LFj+fPPP+t0VhYbG8vp06dZvnw5Xbp0wd3dnbZt23LXXXdx9913M3fuXLp168aJEydYsWIFnTp1YvTo0Tz66KNcc801zJ49m5tuuonk5GRp2l+PwMBANBpNnav6BQUFda7+N6Zv3758/vnnDT7v4uJSb8d2Op2uzkGayWRCpVKhVqtt6pivurVJ9TLNpaHtbPbs2YwbN85atup6nT9d/bjmvPNb0gAMHTqUadOm8dtvv9Xazs6vf/V0mzZtMBqN/Oc//7FuZx988EGt14mPj+f06dOsXLnSup21b9+eu+66i0mTJjW4nT322GP079+fOXPmcOONN5KcnMyyZctqlfd8arUalUqFVms5bK7vO+AspG6OyVnqVmEwsfrAcZbuzuP3PfmUVGgAy2+9M96jb4/PzdblZcg+IVogtVrF4LZBfHh3T/586lqmDWtLuI8rRWUGPv4jnaFzV3H7h2n8vD2HSmMLuklJCDvx9PSkT58+/N///R+DBg0iMTGR5557jilTpvDOO+/Y7XUmT57MPffcw913383gwYOJi4tr9D7vrl278sYbb/Daa6+RmJjIF198UafjuP79+/PQQw9x2223ERQUxOuvvw7Ap59+yt13380//vEP2rVrxw033MD69euJiooCLEno22+/zbvvvkvXrl1JTk7m2WeftVtdnYVer6dHjx51mkWmpKTQv39/m9ezdetWwsLC7F08h9LYdvbuu+/a7XVa2nb28ccf884778h2JkQLUFph4Kdt2Uz9YjPdXkzhgc8288OWbEoqjHjpFP7SJ+qqG17vclApchPhJSspKcHHx4fi4uIGm4bZymAwsGTJEkaPHu0UZ+xqkrpdGpNZIXV/AV+uz2Dl/gLMZ7fcAA89E3pGcmfvaGIC6u9E7FLI5+aYDAYDycnJxMXFER8fX6vJsaMzm82UlJTg7e3drFdJ7e1i6lVRUUF6erp1vPqa7Llvamm++eYbJk6cyPvvv0+/fv348MMP+eijj9i9ezcxMTFMnz6d7Oxs/ve//wGW3v1jY2NJSEigqqqKzz//nFdffZXvv/++wf4hztfY+9nY51AfZ/0Og3PWrfrzjYyMZMWKFU67z3Dm/aHUrWUpPF3J73vzWborjz8PFVJlOtdCKMLXjREJoVzXPpD83WlcP8ax6mYLe35utu7rpXm/EA5Co1YxtEMIQzuEkF1UzjcbM/lmYwb5JZV8sOoIH6w6wsA2gdzZO5rrOoag0zjHwZYQQpzvtttuo7CwkBdffJHc3FwSExNZsmQJMTExAOTm5pKRkWGNr6qq4oknniA7Oxs3NzcSEhJYvHgxo0ePbq4qCCHEVSWnqJzk3Xks3Z3HhvST1otXAPFBHoxKDGVkQhiJEd6oVCpLYryn+crrbCTpF8IBRfi6MW1YW/52bWuW77Nc/V998DhrDp5gzcETBHm5cGvPSG7vFU2Uv/uFVyiEEA5m6tSpTJ06td7n5s+fX2v6ySef5Mknn7wCpRJCCFEt/cQZlu6yJPrbM4tqPZcY4c3IhFBGJobSOlhGqbrcJOkXwoFpNWpGJIQyIiGUzJNlfLUhg4WbsjheWsl/Vh7mvdTDDG4bxJ29o7m2fTBaufovhBBCCCEuA0VR2JtbytLdeSzblcf+/FLrcyoV9Izxsx63ykWpK0uSfiGcRJS/O0+ObM/j17Xl9735fLH+GH8eKiR1/3FS9x8n1NuV23pFcXvvKMJ83Jq7uEIIIYQQwsGZzQpbM4tYtjuPpbvyyDh5btx4rVpFv1YBjEwMZVjHEIK9nKd/IUcjSb8QTkavVTO6UxijO4WRfuIMX2/I4NvNWeSVVPDW8oO8s+Ig17YP5s4+0QxuGyw9oAohhBBCCJsZTWY2pJ+0XNHfnUd+SaX1ORetmsFtgxiZGMrQ9iH4uDtXJ3yOyqmT/tjYWI4dO1Zr3lNPPcWrr75qnc7IyODhhx9mxYoVuLm5ceeddzJnzhz0ev2VLq4QdhcX6MH00R2YNrwtS3fl8eX6DNann+T3vQX8vreACF83bu8Vxa29ogjxlrOvQgghhBCirgqDiT8PnWDprjxS9uZTVGawPufpouXa9sGMTAxlSLsg3PVOnWI6JKf/RF588UWmTJlinfb09LQ+NplMjBkzhqCgIP744w8KCwu55557UBTFruNAC9HcXLQaxnWNYFzXCA4VnOarDRl8tzmL7KJy5qYc4M3lB7muQzB39olhYOtA1HL1XwghhBDiqna60kjq/gKW7spj5b4CzlSZrM/5e+gZ1iGEkYmh9G8dgItW04wlFRfi9Em/l5cXoaGh9T6XnJzMnj17yMzMJDw8HIC5c+cyadIkXn75Zacb11gIgNbBnjx3fUf+OaIdS3bm8uX6DDYdO8Wy3fks251PtL87t/eO4pYeUQR5uTR3cYUQQgghxBVy6kwVv+/NZ9nuPFYfPEGV0Wx9LtTblZGJlo74esX6SQfRDsTpk/7XXnuNf//730RFRXHLLbfwz3/+09p0Py0tjcTERGvCDzBixAgqKyvZvHkzSUlJ9a6zsrKSyspz966UlJQAYDAYMBgM9S5jq+rlL3U9LZHUrWXRAGM7hTC2UwgH8kv5emMWi7bnknGyjNeX7uf/Ug4wrEMwE7qFoSiOVTdbOeLnZqvqOimKgtlsxmw2X2AJx6EoivX/1V4vs9mMoigYDAY0mtpXWZzxey2EEML+8ksqSN5tGVpv3ZGTmMyK9bnYAHdGJoYxMjGUzhE+0hrUQTl10v/YY4/RvXt3/Pz82LBhA9OnTyc9PZ2PP/4YgLy8PEJCQmot4+fnh16vJy8vr8H1zpo1ixdeeKHO/OTkZNzd7TP8REpKil3W0xJJ3Vqmnmro3Bm2FKpYm6/m2GlYsiufJbvyCXDR8GvmcnoEmgl3whFWHPlza4xWq6WiooLTp09TVVXV3MWxu9LS0kafP3DgAA8//DA7d+6kTZs2rFmz5gqV7NJcqF41VVVVUV5ezurVqzEajbWeKysra2ApIexr3759TJo0iW3bttG+fXtSU1Obu0hCiAvIKCxj6e5clu7KY0tGUa3nOoR5MzIhlJGJobQN8USlkkTf0Tlc0j9z5sx6E+6aNm7cSM+ePfn73/9unde5c2f8/PyYMGECr732GgEBAQD1fokVRWn0yz19+nSmTZtmnS4pKSEqKorhw4df8i0BBoOBlJQUhg0bhk7nXL1dSt0cw41n/+/JLeHrjVn8tD2XwkoTv2er+D1bTdtgT8Z2DmVM51Ci/Bz7DIAzfW7nMxgMrFy5EldXVzw9PXF1dayOGu+9917+97//AaDRaAgPD2f06NG8/PLL+Pr6UlpaipeXV6O/1XPmzMHb25u9e/fi6enZ4m/ZUhTFpnrVVFFRgZubG4MGDarzGVe3QhOiMZMmTWLBggXAuW1tzJgxvPLKK/j5+dm0jhkzZuDh4cH+/fvtdvFDCGFfiqJwsOA0S3dZhtbbk1t7H9E92tfadD8mwKOZSikuF4dL+h955BFuv/32RmNiY2Prnd+3b18ADh06REBAAKGhoaxfv75WzKlTpzAYDHVaANTk4uKCi0vde511Op3dEgd7rqulkbo5hi7RAXSJDmD6yHbM/TqZbE0oqw6e4EDBaeb+foi5vx+ie7Qv47pGMLpTmEPf/+9Mn9v5VCoVarUatdqx7rtTqVSMHDmSTz/9FKPRyJ49e5g8eTLFxcV88cUX1pjG6nXkyBHGjBlDXFzcRZejqqrqio3mUt2k/0L1qkmtVqNSqer9Djvrd1rYX33bWlFREV999ZVNyx8+fJgxY8YQExOD2Wy+qBNOV3JbE+JqoSgKO7KKLUPr7crjyIkz1uc0ahV94vwZmRjK8I6hhPo41sUB0TSOdRQIBAYG0r59+0b/GrqitXXrVgDCwsIA6NevH7t27SI3N9cak5ycjIuLCz169Lj8lRHCAbjpNXQPVJh3Vzc2PTOM18Z3on+rAFQq2JJRxIyfd9Pnld+Z+Ml6vt2USUmF3Ecs7MPFxYXQ0FAiIyMZPnw4t912G8nJydbnP/30Uzp06ICrqyvt27fnvffesz6nUqnYvHkzL774IiqVipkzZwKQnZ3Nbbfdhp+fHwEBAYwbN46jR49al5s0aRI33ngjs2bNIjw8nLZt2zZpuTlz5hAWFkZAQAAPP/xwrfvqKysrefLJJ4mKisLFxYU2bdrwySefWJ/fs2cPt9xyC97e3oSEhDBx4kROnDhh53dViLrsua1Vt8Zs6dva6NGj8fT0lG1NOB2TWWHdkUJm/ryb/q+uYNx//mRe6mGOnDiDXqNmaPtgXp/QmY3PXMeXU/pyd79YSfivApd0pf9izuReqeaVaWlprFu3jqSkJHx8fNi4cSN///vfueGGG4iOjgZg+PDhdOzYkYkTJzJ79mxOnjzJE088wZQpU1p8M1AhmoOPu47bekVzW69o8ksq+HVHLj9vy2Z7VjFrDp5gzcETPLNoF9e2C2Zc13CS2gfjqpMhXFqkqjMNP6fSgM7Vxlg16NwuHKu/tKaCR44cYenSpdar1wsWLOC1117j3XffpVu3bmzdupUpU6bg4eHBPffcQ25uLtdddx0jR47kiSeewNPTk7KyMpKSkhg4cCCrV69Gq9Xy0ksvMXLkSHbs2GG9yrh8+XK8vb1JSUlBURSbl1u5ciVhYWGsXLmSQ4cOcdttt9G1a1frsLF33303aWlpvP3223Tp0oX09HRropGbm0tSUhITJ07krbfeorKykqeeeopbb72VFStWXNJ719xa8rHCFVHfNmE2g6EMjHrQuzceW82Wbe0StzOou6199NFHzJgxw+Ztzd3dndOnTzN06NAWu60NHjyYKVOm8MYbb1BeXu4025q4elUazfxxpIBlu/JI2ZNP4Zlz/fi46zUktQ9mZEIoSe2D8XRxuIbewg4u6VP39fVtUscOKpWKAwcOEB8ffykvaxMXFxe++eYbXnjhBSorK4mJiWHKlCk8+eST1hiNRsPixYuZOnUqAwYMwM3NjTvvvJM5c+Zc9vIJ4ehCvF2575o47rsmjqMnzvDz9hx+2pbN4eNnWHq2B1hPFy0jEkK5oWs4A1oFyNAuLckr4Q0/12Y43PXtuenZrS0JSn1iroF7F5+bfrMTlBXWjZtZ3OQi/vrrr3h6emIymaioqADgjTfesBRp9mxmz57NzTffDEBcXBx79uzhgw8+4J577iE0NBStVounp6d12Nb//ve/qNVqPv74Y+u+69NPP8XX15fU1FSGDx8OgIeHBx9//LE1wbB1OT8/P9599100Gg3t27dnzJgxLF++nClTpnDgwAEWLlxISkoK1113HUCtfeG8efPo1q0bzz//PN7e3qjVav773/8SFRXFgQMHrFdBHVFLPla4IurZ1tSAL6C0HgZ/+e7cE5e6rV3EdgaNb2v//ve/mTt3rs3bmtls5n//+1+L3ta6d+/OK6+8Yp3nLNuauLpUGk38vief/x1U88yWVE5XnuvM1cdNx7COIYxMCOWaNoFyAUZc+j393333Hf7+/heMUxSF0aNHX+rL2ax79+6sW7fugnHR0dH8+uuvV6BEQjiv2EAP/ja0DY9e25o9uSX8vD2HX7blkFNcwfdbsvh+SxaBnnpGdwpjXNdwukf7SU+w4oKSkpKYN28eZWVlfPzxxxw4cIBHH32U48ePk52dzZQpU3jwwQet8UajER8fnwbXt3nzZg4dOoSXl1et+RUVFRw+fNg63alTp1r3Ftu6XEJCQq1h88LCwti5cycA27ZtQ6PRMHjw4AbLlpqaSmRkZJ3nDh8+7PCJSEs9VhAWjW1rmZmZ3Hfffdar6HDhbW3btm0teltbuXIlnp6edZ5zhm1NOLfqe/S/35LFz9tzKCozYDmNaCTYy4URZ3vc7x3nj04utIgaLinpj4mJYdCgQdae8C8kPj5eOhYSwompVCoSwn1ICPfhqRHt2Zxxip+2ZbNkZx4nTlfxv7Rj/C/tGBG+btzQNZxxXcNpH+pEzXgdydM5DT+nOu+KwD8PNRJ73kHF4zsvvkzn8fDwoHXr1gC8/fbbJCUl8cILLzB16lQAPvjgA/r161drmfPHqq/JbDbTo0cPa0eANQUFBdV63YtZ7vz9m0qlsnbO5+bmRmPMZjPXX389zz77LJ6enrU68qvuh8ZRXfXHCvVsa2azmZLSUrx9fKl1+rOFbWuPPPIIYGni36dPn1rLOPK2NnbsWF577bU6zzn6tiacV35JBT9uzea7zVkcKjhtnR/i5UJHz3L+en1fesYFolbLBRVRv0tK+tPT05sUv2vXrkt5OSGEA1GrVfSK9adXrD8zxibwx6ET/LIth2W788guKmde6mHmpR6mbYgn47pGMLZzONEBMtTTFdOUe38vV2wTzZgxg1GjRvHggw8SHh5Oeno6EydOtHn57t2788033xAcHNyke8YvdrmaOnXqhNlsZtWqVdYmx+e/xvfff090dDT+/v4ON9pCY676Y4X6tgmzGXQm0LpeOLYp67WT6m3tr3/9KxERERw5coS77rrL5uW7dOnCokWLWvS2Fhsbi1Yr9zaLlqvCYCJ5Tz7fbc7ij4PHMSuW+S5aNSMSQhnfI5I+MT4sW/ob3aJ9JeEXjXKeowohRIul06hJahfMG7d1ZdOzw/jPnd0Z3jEEvUbNgfzTzF62n0GzV3LTe3/y6Z/pFJRWNHeRRQs0ZMgQEhISmDVrFk899RSvvvoqb731FgcOHGDnzp18+umn1vuQ63PXXXcRGBjIuHHjWLNmDenp6axatYrHHnuMrKwsuy9XU2xsLPfccw+TJ09m0aJFpKenk5qaysKFCwF4+OGHOXnyJPfffz8bNmzgyJEjJCcnM3nyZEwmU9PeKCEuUfW29sorrzBz5kxmzZrVpG3tlltuafHb2h133CHbmmhxFEVh09GTTP9hB71e/p2/fbWV1QcsCX/PGD9evbkTG5+9jrfv6MbgtkFoJNEXNrLbKc6333673vkqlQpXV1dat27NoEGDGm0OJoRwfm56DWM6hzGmcxjF5QaW7crj5+05rD18gq0ZRWzNKOLfv+6hf6tAbugazsjEULxdnaipr7gk06ZN495772Xz5s18+OGHzJ07lyeffBIPDw86derE448/3uCy7u7urF69mqeeeoqbb76Z0tJSIiIiGDp0aKNXFS92ufPNmzePp59+mqlTp1JYWEh0dDRPP/00AOHh4axZs4YnnniCUaNGWTugHTlypFNd9ZdjBcdRva0dOnSIjz/+mNmzZzdpW0tNTWX69Oktclv7888/eeqppxgxYoTTbmvCsWSdKuPHLdn8sDWb9BPnRuaI8HVjfPcIbu4eSWzg5WvdI5yfSlEUxR4riouL4/jx45SVleHn54eiKBQVFeHu7o6npycFBQXEx8ezcuVKoqKi7PGSLUZJSQk+Pj4UFxdf8jBDBoOBJUuWMHr0aOe6pxGpm6O6UnUrKK1g8Y5cftqWw7bMIut8vVZNUrsgxnWN4Fo7DwHo7J9bcnIycXFxxMfH4+rqPGPwms1mSkpKrL3cO4uLqVdFRQXp6enExcXV+YztuW+yF0c+Vmjs/Wzsc6iPs36HwTnrVv35RkZGsmLFCqfdZzjz/rAl1u1MpZGlu/L4bnMWaUfOjcThrtcwKjGM8T0i6BsX0Giz/ZZaN3uQutnG1n293X6NX3nlFXr16sXBgwcpLCzk5MmTHDhwgD59+vDWW2+RkZFBaGgof//73+31kkIIJxLs5cq9A+JY9PAAVv1zCE8Mb0ubYE+qjGaW7c5n6hdb6PnS70xbuI3U/QUYTebmLrIQoonkWEEIcTUzmxXSDhfyj4Xb6fXy7/zj2+3WhL9ffABzb+nCxmeuY+6tXejfSjrmE/Zjt+b9zz77LN9//z2tWrWyzmvdujVz5sxh/PjxHDlyhNdff53x48fb6yWFEE4qJsCDR65tw8NJrdmXV8rP23P4eVsO2UXl/LAlmx+2ZBPgUXsIQNkxCtHyybGCEOJqdPTEGX7YksX3W7LJLiq3zo8NcGd890hu6h5BpJ90ZiwuH7sl/bm5uRiNxjrzjUYjeXl5gOU+qtLSUnu9pBDCyalUKjqEedMhzJt/Dm/H1sxT/LQth8U7cik8U8Vn647x2TrLEIBju4RzQ5dwOoR5oVLJCQAhWiI5VhBCXC1KKgws2ZHL91uy2Hj0lHW+l4uW67uEMb57JD1i/OSYRVwRdkv6k5KSePDBB/n444/p1q0bAFu3buWvf/0r1157LQA7d+4kLi7OXi8phLiKqNUqesT40yPGn+ev78ifhwv5aVs2ybvzyS4q5/1Vh3l/1WHaBHsyrms4N3SJkCEAhWhh5FhBCOHMTGaFPw+d4LvNWSzbnUel0XIroloF17QJYkKPSIZ3DLFr/0RC2MJuSf8nn3zCxIkT6dGjh7VDAqPRyNChQ/nkk08A8PT0ZO7cufZ6SSHEVUqrUTO4bRCD2wZRYTCxYl8BP2/LYcX+Ag4WnGZO8gHmJB+ga5QvN3QJ5/rOYQR7O09Hdk1lp/5aRQvkaJ+tsx8rONrnIWxT/bnKFVnRkEMFpXy3OZtFW7PJKzk37HCbYE/G94jkpm4RhFzFxyGi+dkt6Q8NDSUlJYV9+/Zx4MABFEWhffv2tGvXzhqTlJRkr5cTQggAXHUaRncKY3SnMEoqzg0B+OehE2zLLGJbZhEvLd5Dv1YBjOsSwYjEUHzcnKsX2IZUjzldVlaGm5tbM5dGXA5lZWUADtOzsbMeK1S//7KtOaeqqioAGUpS1FJUVsUv23P4bks222uMOuTrruOGLuGM7x5J50gfOVkkWgS7Jf3V4uPjUalUtGrVCq3W7qsXQogGebvquKVnFLf0jOJ4aSWLd+Tw8/YctmQU8eehQv48VMizi3YxpF0QN3QNZ1Ar/+Yu8mWlKAre3t4UFBQAljGwneHgw2w2U1VVRUVFhdMMCQZNq5eiKJSVlVFQUICvr6/DJSPOdqyg0Wjw9fW1eVtz1u8wOF/dzGYzx48fx93d3eG2M2F/BpOZ1QeO893mLJbvLaDq7EhCGrWKpHaW5vtJ7YNx0cp3RbQsdtvTlpWV8eijj7JgwQIADhw4QHx8PH/7298IDw/nX//6l71eSgghLijIy4VJA+KYNCCOzJNl1hEA9ueXkrwnn+Q9+XjoNbTzUmOOzGVoQhjero5xtbQpgoOD0Wg01mTEGSiKQnl5OW5ubk5xEqPaxdTL19eX0NDQy1wy+3HmY4Xqz8GWbc1Zv8PgnHVTq9VER0c7TX1E0+3NLeG7zVn8tC2bE6errPM7hHkzoUck47qGE+jp0owlFKJxdkv6p0+fzvbt20lNTWXkyJHW+ddddx0zZsxw6B25EMKxRfm783BS67NDAJbw8zZLC4CsU+VsKVSz5dud6H7YRb9WgQzrGMKwDiGE+jjHvXcqlYqwsDCCg4MxGAzNXRy7MBgMrF69mkGDBjlMs3ZbNLVeOp3O4a48OvOxQlO2NWf9DoNz1k2v16NWq53mN1TY5sTpSn7alsP3m7PYk1tinR/oqWdc1wjGd4+kY7h3M5ZQCNvZLelftGgR33zzDX379q11JrRjx44cPnzYXi8jhBCXpH2oN+1HevPPEe3YlH6CD35dx5EqL46cOMPqA8dZfeA4zy3aRZcoX4Z3DGF4xxBaB3s6/BUejUbjcAliQzQaDUajEVdXV6dJKsB561XT1XCsYMu25syftTPXTTi/KqOZFfvy+W5zNqn7CzCaLZ046jVqhnYIZnz3SAa3C0KncfxbV8TVxW5J//HjxwkODq4z/8yZMw5/sCyEcD4qlYquUb6MjTEzevQAMooqSdmTT/LuPLZmFrH97N/sZfuJC/Rg2NkTAN2i/dCo5TdNiIshxwpCiJZGURR2Zhfz/eYsftqeQ1HZuRYdXSJ9mNAjkrFdwvF11zdjKYW4NHZL+nv16sXixYt59NFHgXPDmnz00Uf069fPXi8jhBCXRasgT1oN9uShwa0oKK1g+d4Cknfn8eehQtJPnOHD1Uf4cPURAjz0XNchhOEJIQxoHShj7QrRBHKsIIRoKfJLKvhxazbfb87iYMFp6/wQbxdu6hbJhB4RtA72asYSCmE/dkv6Z82axciRI9mzZw9Go5G33nqL3bt3k5aWxqpVq+z1MkIIcdkFe7lyR+9o7ugdzelKI6sPHCd5dx4r9hVQeKaKbzZl8s2mTNx0Gga3DWJ4QgjXtg+WqwBCXIAcKwghmlOFwUTynny+35zFmoPHOdt6HxetmhEJoYzvEck1rQOlRZ9wOnZL+vv378+ff/7JnDlzaNWqFcnJyXTv3p20tDQ6depkr5cRQogrytNFy+hOYYzuFIbBZGZD+kmSd+eRsiefnOIKlu7OY+nuPDRqFb1j/RmeEMKwjiFE+rk3d9GFaHHkWEEIcaUpikJ6KTz70x6W7MqjtMJofa5njB8TekQyurNzjuAjRDW7Do7bqVMn6zA8QgjhbHQaNQNaBzKgdSAzb0hgd06JZfi/3Xnsyysl7UghaUcKeeGXPXQM87b0A5AQQscwb7lfWYiz5FhBCHElFJRW8P3mbBZuzCC9UAtkARDh68b47hHc3D2S2ECP5i2kEFfIJSX9JSUlFw46y9tbhrQQQjgPlUpFYoQPiRE+TBvWlsyTZdYTABuPnmRPbgl7ckt4a/lBInzdrCcAesf6o5Vef8VVRI4VhBBXitFkZtWB43y9MZMV+wowVfe+r1YY0yWCW3pG0TcuALU03xdXmUtK+n19fW2+emUymS7lpYQQokWL8nfnvmviuO+aOE6eqWLFPktHgKsPHie7qJz5a48yf+1RfN11XNsumOEJIQxqG4S73q4NroRoceRYQQhxuR0rPMPCTZl8tzmL/JJK6/zu0b5M6B6BNmc7N41NlGEkxVXrko42V65caX189OhR/vWvfzFp0iRrD7xpaWksWLCAWbNmXVophRDCgfh76JnQI5IJPSIprzLxx6ETJO/OY/m+Ak6eqeKHrdn8sDUbvVbNwNaBDE8IYWiHEAI9XZq76ELYnRwrCCEuhwqDiaW78vhmYyZpRwqt8/099NzcLYLbekXRJsQLg8HAkvztzVhSIZrfJSX9gwcPtj5+8cUXeeONN7jjjjus82644QY6derEhx9+yD333HMpLyWEEA7JTa9hWEdL534ms8LmY6dI3p1H8p58Mk6WsXxfAcv3FaBS7aRHtN/ZjgBDiZP7DIWTkGMFIYQ97c4p5puNmSzamk3J2U75VCoY1CaI23pFcV2HEPRauY1OiJrs1q40LS2N999/v878nj17cv/999vrZYQQwmFp1Cp6x/nTO86fZ8Z04ED+actIAHvz2ZFVzKZjp9h07BSvLNlHm2DPs/0AhNI5wkfuPxROQY4VhBAXo7jcwM/bc/hmYwa7ss/1ExLh68atPaOY0DOSCF+3ZiyhEC2b3ZL+qKgo3n//febOnVtr/gcffEBUVJS9XkYIIZyCSqWiXagX7UK9eHRoG3KKyvl9bz4pe/JJO1zIwYLTHCw4zXuphwnxduG6DpYTAP3iA+QKhnBYcqwghLCVoiisTz/Jwo2ZLN6ZS6XRDIBeo2ZYQgi394piQKtAOSkuhA3slvT/3//9H+PHj2fZsmX07dsXgHXr1nH48GG+//57e72MEEI4pXBfN+7uF8vd/WIpLjeQur+A5D35pO4rIL+kki/WZ/DF+gy8XLQMbhfE8IRQhrQLknGFhUORYwUhxIUUlFTw3ZYsvt2URfqJM9b5bUM8ua1XNDd1i8DfQ9+MJRTC8dgt6R89ejQHDx5k3rx57N27F0VRGDduHA899JCcvRdCiCbwcdMxrmsE47pGUGk0kXa4kOQ9llYAx0sr+XVHLr/uyEWnUdE3PoDhCaEM6xBCqI9rcxddiEbJsYIQoj5Gk5nU/Zah9lbuPzfUnodeww1dw7m1ZxRdo2wfCUQIUdslJf07duwgMTERtdrS1DQyMpKXX365wfjdu3fTrl07tFoZokoIIWzhotUwpF0wQ9oF89K4RLZnFZG8J5/k3XkcPn6GNQdPsObgCZ5btIsukT6WEwAdQ4j1k5EARMsgxwpCiIYcPXFuqL2C0nND7fWI8eO2XlGM6RSGh4v8FghxqS5pK+rWrRt5eXkEBQXZFN+vXz+2bdtGfHz8pbysEEJcldRqFd2i/egW7cdTI9tz+PhpUs6eANiaWcT2rGK2ZxUze9l+YvzdidGrcdt/nGvaBuOul4Mm0TzkWEEIUVP1UHtfb8xg3ZGT1vkBHnpu7m4Zaq91sFczllAI53NJR4GKovDcc8/h7u5uU3xVVdWlvJwQQogaWgV50mqwJw8NbkVBaQXL9xaQvDuPPw8VcuxkGcdQs/rzreg0KnrG+DOobRAD2wTSMcxbOj4SV4wcKwghAHZlF7NwU/1D7d3eK4qhMtSeEJfNJSX9gwYNYv/+/TbH9+vXDzc3GU5DCCHsLdjLlTt6R3NH72hOVxpJ3ZvHlyu2cqzKneyiCtKOFJJ2pJDXlkKgp55rWgcysI3lJECwt/QFIC4fOVYQ4upVXG7g523ZfLMpU4baE6IZXVLSn5qaaqdiCCGEsBdPFy0jEkIwHTMzatRAsksMrD5wnDUHj7P2cCEnTlexaFsOi7blANA+1ItBbYMY1CaInrF+uOo0zVwD4UzkWEGIq0v1UHvfbMxkyXlD7Q1PCOE2GWpPiCtObvIUQggnplKpiAv0IC7Qg3v6x1JlNLMl4xRrDh5n9YET7MopZl9eKfvySvlw9RFctGr6xAcwqE0gg9oG0SbYU3pLFkIIcUHVQ+0t3JjJ0cIy6/x2IV7c1iuKm7pF4CdD7QnRLCTpF0KIq4heq6ZvfAB94wP45wgoPF3JH4dOnB0F4Dj5JZWsPnCc1QeOw+K9hHq7MrBNIAPbBnFN60AZG1kIIYSV0WRm5f7jfNPAUHu39YqmS6SPnDwWoplJ0i+EEFexAE8XxnWNYFzXCBRF4UD+aUsrgIMnWH+kkLySCr7dnMW3m7NQqaBThA+DzvYF0C3aTzpdEs3mvffeY/bs2eTm5pKQkMCbb77JwIEDG4xftWoV06ZNY/fu3YSHh/Pkk0/y0EMPXcESC+E80s8Otff9eUPt9Yzx41YZak+IFke2RiGEEIDlVoB2oV60C/Xi/oHxVBhMbDx68mx/ACfYl1fKjqxidmQV8+7KQ3joNfRrFcigtoEMahNETIC7XM0RV8Q333zD448/znvvvceAAQP44IMPGDVqFHv27CE6OrpOfHp6OqNHj2bKlCl8/vnn/Pnnn0ydOpWgoCDGjx/fDDUQwvFUGEz8tiuXrzdksj699lB743tEcmvPSBlqT4gWSpJ+IYQQ9XLVac728G8ZXz2/pII1B0+w+sBx/jh0gpNnqvh9bz6/780HIMrfjYFtLB0C9m8dgLerrjmLL5zYG2+8wX333cf9998PwJtvvsmyZcuYN28es2bNqhP//vvvEx0dzZtvvglAhw4d2LRpE3PmzJGkX4gL2JVdzDcbM1m0LZvSs0PtqVUwqK1lqL1r28tQe0K0dJL0CyGEsEmItysTekQyoUckZrPCntwSVp0dFWDzsVNknizny/UZfLk+A41aRdcoX8utAG0D6RLpi0Z6ahZ2UFVVxebNm/nXv/5Va/7w4cNZu3ZtvcukpaUxfPjwWvNGjBjBJ598gsFgQKere4KqsrKSyspzzZZLSizDjRkMBgwGwyXVoXr5S11PSyR1c0zn16243MAvO3L5dnM2e3JLrXGRvq6M7x7B+O4RhPmcHe5VMWEwmK54mW11NX1uzkTq1rR1XYgk/UIIIZpMrVaRGOFDYoQPDye15kylkXVHCq0tAY6cOMPmY6fYfOwU//f7AbxdtVzTJtDSEqBtkIzLLC7aiRMnMJlMhISE1JofEhJCXl5evcvk5eXVG280Gjlx4gRhYWF1lpk1axYvvPBCnfnJycm4u7tfQg3OSUlJsct6WiKpm+NRFHjvu99JK1Cxo1CFQbGcqNWoFLr4K/QNVmjjcxp1+X62/rmfrc1c3qZy1s8NpG6Oyh51Kysru3AQkvQLIYSwAw8XLUM7hDC0gyWxyjxZxh+Hzt0KUFJhZMnOPJbstCRl8UEeDGoTxKC2gfSJC5AOn0STnd9/hKIojfYpUV98ffOrTZ8+nWnTplmnS0pKiIqKYvjw4Xh7e19ssQHLlZmUlBSGDRtWbysDRyZ1cywFpZVszyxmS8ZJFm06xonKc9tDuxBPbukRwQ1dwvBzd9yRW5zxc6smdXNM9qxbdSu0C5GjLCGEEHYX5e/OHb2juaN3NEaTme1Zxaw5aOkQcGvGKY4cP8OR42eYv/YoOo2KnjH+DDzbIWDHMG/UciuAaEBgYCAajabOVf2CgoI6V/OrhYaG1huv1WoJCAiodxkXFxdcXFzqzNfpdHY7ALXnuloaqVvLc6bSyM7sYrZnFrHt7F9ucUWNCBUeLhpu6BLB7b2i6OxkQ+056udmC6mbY7JH3WxdXpJ+IYQQl5VWo6ZHjB89Yvx4/Lq2FJcbSDt8glUHLC0BsovKSTtSSNqRQl5fup8ADz3XtAm0Dg0Y7O3a3FUQLYher6dHjx6kpKRw0003WeenpKQwbty4epfp168fv/zyS615ycnJ9OzZ02kPJsXVzWgyc7DgNNsyi6xJ/oH8UsxK7Ti1CtqGeNEpwhuX4gz+ece1+HjI7VdCOBtJ+oUQQlxRPm46RiaGMTIxDEVROFpYdnZYwOOsPVxI4ZkqftqWw0/bcgBoH+rFoLaWEwC9Yv3RNHP5RfObNm0aEydOpGfPnvTr148PP/yQjIwMHnroIcDSND87O5v//e9/ADz00EO8++67TJs2jSlTppCWlsYnn3zCV1991ZzVEMIuFEUhp7ii1hX8nVnFlNfTuV6Yjytdo3zpEuVL1yhfOkX44OGixWAwsGTJMdz1khoI4YxkyxZCCNFsVCoVcYEexAV6cE//WKqMZrZknGLNweOsPnCCXTnF7MsrZV9eKR+uPoKLVk3vWD98qlSEZhTRLSZAhoq6Ct12220UFhby4osvkpubS2JiIkuWLCEmJgaA3NxcMjIyrPFxcXEsWbKEv//97/znP/8hPDyct99+W4brEw6ppMLAjsxitmcVsTWjiO1ZRRwvrawT5+mipXOkT60kP0RaTglxVZKkXwghRIuh16rpGx9A3/gA/jkCCk9X8sehE6w5eII1B4+TX1LJmkOFgIZfP9qAq05N92g/esf50zvOn25RfrjppS3A1WDq1KlMnTq13ufmz59fZ97gwYPZsmXLZS6VEPZVZTSzP6+UbZmn2JZZzLbMUxw+fqZOnEaton2olzXB7xblS6sgT+kfRQgBSNIvhBCiBQvwdGFc1wjGdY1AURQO5J9m1f58fl2/l8wKF06VGVh7uJC1hwsB0GlUdI70tZ4E6BHjh7er3LMthGj5FEUh82Q5WzNPsf1sgr8rp4Qqo7lObJS/G10iLVfvu0b5khDuIyc8hRANkqRfCCGEQ1CpVLQL9SI+wJWQot2MHDmEjKJK1qefZEP6SdanF5JfUsnmY6fYfOwU81IPo1ZBx3BvescG0DvOn16xfgR41u2RXQghrrRTZ6rYnlVk7Wxve1YxJ89U1YnzcdNZmudH+tA12pfOkb4Eyu+YEKIJJOkXQgjhkNRqFW1CvGgT4sVf+sZYr5KtTy9kQ/pJNhw9ybHCMnZll7Aru4T//pkOQJtgT2tLgD5xAYT6yD2uQojLq8JgYk9uibWzve2ZRRwtLKsTp9eo6RDubU3wu0b5ERvg7lRD5wkhrjxJ+oUQQjgFlUpFdIA70QHu3NIzCoC84go2HD3JhrMnAg7kn+ZggeXvi/WWjt6i/d1rnATwJ9pfDrCFEBfPbFZILzzDtrOd7G3LLGJvbgkGk1InNi7Qw3IffqQPXaP96BDmhYtWmukLIexLkn4hhBBOK9THlRu6hHNDl3AATp6pYuNRy+0AG9JPsjunmIyTZWScLOO7zVkAhHi70DsuwHoSoLV0hiWEaMSJ05W1EvztmUWUVBjrxPl76K334Hc5m+j7uuubocRCiKuNJP1CCCGuGv4eekYkhDIiIRSA0goDm4+dsp4E2J5VRH5JJb9sz+GX7TkA+Lnr6BV77naADmFeaDUyTKAQV6MqE2w6dopdOafZllXEtowisovK68S5aNUkRvjU6k0/0s9NWhEJIZqFJP1CCCGuWl6uOoa0C2ZIu2DAct/t1oyis30CFLL52ClOlRlI3pNP8p58wDL2dY8YP2tLgE6RPtIcV4hmYDIrVBpNVBjMVBpNVBrMVBrNF55nNJ+df948o5kKQ/Xz5+ZVP64wmDh1RoN5w8Za5VCpoHWQp6WzvbN/7UK90MnJQSFECyFJvxBCCHGWq05Dv1YB9GsVALShymhmV06xtSXAxqMnKa0wsurAcVYdOA5Yruh1i/ald1wAfeP86RbtJ0NniauOoiicqTJxoqSc7DOwPasYk6KqnUgbzyXiFecl5LUT7poJe+3ku6JGEm40171H/vJTEezlUusKfmKkjwwNKoRo0STpF0IIIRqg16rpHu1H92g/HhrcCpNZYV9eifUkwIb0kxSeqWLdkZOsO3KStwGtWkXnSB96xwXQJ86fHrF+khAIh2E0mSkuN1BUbqCozEBJuYGi8iqKygyW+Wf/Wx5XUVRuoPjsvHNJuBZ2rL+i5dZpVLhqNbjo1LhoNbho1ei1alx1lscu1f9rzrPGnzdPq8ZFp66zPg1mtqxbw+3jhqHXy734QgjHIUm/EEIIYSONWkVCuA8J4T7cOyAORVE4fPzM2RMAhaxPP0lucQVbMorYklHE+6sOo1JBxzBv6+0AvWL9CZAxtsVlpCgKZVUma0JeVF5lTcyLaiXudZP505V1O6BrCr1WjV5lwtfD7WyirTkvgT6XRJ9LyG2c10CSrteq0VyBzjYNBgOH9ch9+UIIhyNJvxBCCHGRVCoVrYM9aR3syZ19olEUhaxT5edaAhw9SfqJM+zOKWF3Tgmf/nkUgNbBntaTAL3j/AnzcWveiogrTmOqhKozoNTTCkSlAZ0rRpOZkgojxcVFliS9wkCJNWE3UlxeRXG5iROV6rPJfBWVZacpqaiqd3g4M2oqOXeF2pVKVNSOq/4mernqcHH3xNdNj6+7jgAXE76uWnzddfi46fF21eLjrsPHVYe3ux4fbx983XVoMLP010WMHH4NOl0DLVz0HuceG8pBMTf8RtWKrQDFdHbCdPbPAMYLxdZD5265GR/AWAnmRk521IhVmw0Nf24AWjdQn72X31gFZkPD621SrCuoNU2PNRnAVNVwrMYFNJZ0QKUYG69bjVhMRjBVNrJePWh0TY81m8BY0XCsWgdafdNjFXPjdau1XjMY63bOeC5WC9qzJ24VBQxl9ok9u91bVZ1pWmxDdVOpQedWO7bB9Z4fWwY0dBuNCvTuFxfbpO2+HJRGvsNN2e6vwG/EBWO1zbO/l6RfCCGEsBOVSkWUvztR/u6M7xEJQEFJBRtqDBO4L6+UQwWnOVRwmi/XZwAQ5e9Gzxg/XEtUdCkqJzZIbgdwZpuOneL6HVNgR/3Pr1X34EHTU5Seveq+x+Ve4lT1J03rzB24veo56/Rml4cI0JVCPV+hdH1b3m39MT5uOnzddUzeeAOeFTn1FyKoPTxco4n+f/rAoX31x/pEw993AmAwmLnm4Mvott9ff6x7ADx55Nz05xPg2B/1x+rc4Zncc9MLJ8LB5PpjAWYWn3v84wOw56eGY5/OOZcA/PI4bP+y4dh/HgaPQAASs79EN/u+hmMf2wF+MZbHK16Ete80HDt1HQR3sDxeMxdWvdpw7JQVENHD8nj9PEh5vuHYe36FuIGWx5vnw5InGo69cyG0HQFA5Mk0dLMnNxx7y3xIuMnyeN8v8O2khmPHvQfd7rI8Prwcvry14djRc6D3FMvjY2thwfUNxw57EQY8Znmcuw0+urbh2MH/gqTpAHhV5KCbHdNwbP9HYfhLlsfFmfBW54Zje90PY+ZaHpcVwuxWDcd2uRNummd5bCiDV8Ibju04Dm7937npxmLbDIe7vrVOat/s0PAJhZhr4N7F56bf7GQpd33Cu8EDqeem/9MHijPqjz3/N+KjJDh+4d8IAD4dBTlb64897zdC8/VtkLG2/tgW+BvBsqdh48cNxz62Azwb+WwvE4dN+l9++WUWL17Mtm3b0Ov1FBUV1YnJyMjg4YcfZsWKFbi5uXHnnXcyZ86cWvdh7dy5k0ceeYQNGzbg7+/Pgw8+yHPPPSdNt4QQQthFsLcr13cO5/rOlp38qTNVbDp2ig3phWxIP8munBIyT5aTebIc0OC9IYvpYzo2b6HFZbUgLYN+jTxfYTBRarCtmX20vzuvDeiEj5seHzcdPt/qoIGLn3GBHsy9tcu5GTu0DcYKIYRwHg6b9FdVVXHLLbfQr18/PvnkkzrPm0wmxowZQ1BQEH/88QeFhYXcc889KIrCO+9YzrqWlJQwbNgwkpKS2LhxIwcOHGDSpEl4eHjwj3/840pXSQghxFXAz0PPsI4hDOsYAsDpSiNbjp0i7fBxkrccoW+8fzOXUFxunSK8uSnrY9pEh+Pr4XI2Ydfi46bD212Hn5sLK7y88HW3NKPXmtIbXFe4Ss1tNZvjTtvV8AurzhtC7uH1NNoct6YpK22O/aPNM4wcPqzh5v01/eW7xpv51nTrZ403x63ppg/hxnkNP6+r0dR47JswZo5Nsbsi7iTy3v82XLeaTXevfR6GTG94vTVjB/4DBvytkdgaTbn7/NVytdmW2B6ToOudDcdqzvUvkuXfj063Pdtw3WrE0n6s5Upog+ut0dFhq6G2x8b0bzxWXaNsYV1tji11Dcfwz2MN163men2iLrDeGumTe4DtsTr3xmNV54360oRY4+N7G67b+dv94zvrj6sv9jL9RnDvbzZv96bbv0Ft67C4LeA3ghGvWFqkNETrBiYby2hHDpv0v/DCCwDMnz+/3ueTk5PZs2cPmZmZhIdbrq7MnTuXSZMm8fLLL+Pt7c0XX3xBRUUF8+fPx8XFhcTERA4cOMAbb7zBtGnT5Gq/EEKIy87TRcugtkH0i/OlfdVBrmkd0NxFEpfZAwPjiCzdy+jRvW1LjDUeF46ppm9KrPuFYy4i1qzWW8phS910Tbi/teY9zPaM1boAtnWuaVbrbK+bVg81+lBolliN7tz98hegqLS2102jPXd/vz1j1Rrbv8NNiVWpba+bWt2E9aouTyw0PdaWujV5vZfnN6Jp272b7XVrAb8RNsVK0m8/aWlpJCYmWhN+gBEjRlBZWcnmzZtJSkoiLS2NwYMH4+LiUitm+vTpHD16lLi4uHrXXVlZSWXluXvrSkpKAEuvrgZDIx2r2KB6+UtdT0skdXNMUjfHJHVzPPaul7O9P0IIIYS4OE6b9Ofl5RESElJrnp+fH3q9nry8PGtMbGxsrZjqZfLy8hpM+mfNmmVtaVDTokWLcHdvwlmuRvz0UyMdSzg4qZtjkro5Jqmb47FXvcrKLJ06KUpDzS1FU1S/j9Un+i+FwWCgrKyMkpIS2670OxCpm2OSujkmqZtjsmfdqvdJF9rXt6ikf+bMmfUm0zVt3LiRnj172rS++prnK4pSa/75MdVvWGNN+6dPn860adOs09nZ2XTs2JH772/k/iohhBCiGZSWluLj49PcxXB4paWlAERFRTVzSYQQQojaLrSvb1FJ/yOPPMLtt9/eaMz5V+YbEhoayvr162vNO3XqFAaDwXo1PzQ01HrVv1pBQQFAnVYCNbm4uNS6JcDT05PMzEy8vLwuuR+AkpISoqKiyMzMxNvb+5LW1dJI3RyT1M0xSd0cj73rpSgKpaWltW5zExcvPDxc9vU2kLo5JqmbY5K6OSZ71s3WfX2LSvoDAwMJDAy0y7r69evHyy+/TG5uLmFhYYClcz8XFxd69OhhjXn66aepqqqyDuOXnJxMeHi4zScXANRqNZGRkXYpdzVvb2+n+4JXk7pdefPnz+fee+8lPT3dpu92dfzGjRtp27Yt0HDdhgwZAkBqaqodS9x09dXxyy+/pKCggMcff7zRZRuqm0ql4uGHH+bdd9+9DCW+Mlrqd9IenLVu9qyXXOG3H9nXN43UreWx5VigZt1qHgtcqJVtSzkWaExUVFStuk+aNInU1FSOHj3arOWyB0f9TtpC6nZhtuzrW1TS3xQZGRmcPHmSjIwMTCYT27ZtA6B169Z4enoyfPhwOnbsyMSJE5k9ezYnT57kiSeeYMqUKdY398477+SFF15g0qRJPP300xw8eJBXXnmF559/XnruF8JG7733XnMXAYAxY8aQlpZmPckHlqR/165dF0z6hRBCCHHxWsqxgBCifg6b9D///PMsWLDAOt2tWzcAVq5cyZAhQ9BoNCxevJipU6cyYMAA3NzcuPPOO5kz59wYiz4+PqSkpPDwww/Ts2dP/Pz8mDZtWq379YUQjevYsWNzFwGAoKAggoKCmrsYQgghxFXnSh8LmEwmjEZjrdtthRANUzd3AS7W/PnzURSlzl918yKA6Ohofv31V8rKyigsLOSdd96p8+PQqVMnVq9eTUVFBbm5ucyYMaNZr/K7uLgwY8YMp/wRk7o5ntLSUp544gnc3NyIi4vj5ptvJicnp1bMkCFDam13R48eRaVS8frrr/Pyyy8THR2Nq6srPXv2ZPny5U16/aasa/78+ahUKmszvSFDhrB48WKOHTuGSqWy/lWrrKxkzpw5BAYGEhwcTEBAAElJSaxdu7ZOOT777DM6dOiAu7s7Xbp04ddff21SPZqDs34nwXnr5qz1EnU582ctdXNMjdWttLSUv/71rwQGBhIQENCsxwIvvfQScXFxuLi4sHLlSgB+/vln+vXrh7u7O15eXgwbNoy0tLRadRs3blyTXtNRXK3fSUfXLHVThBBO79NPP1UAJT09vUnx8fHxyqOPPqosW7ZM+fjjjxU/Pz8lKSmpVuzgwYOVwYMHW6fT09MVQImKilKuueYa5fvvv1e+/fZbpVevXopOp1PWrl1rc7mbsq7z67h7925lwIABSmhoqJKWlmb9UxRFMRgMSlJSkqLVapUnnnhCWbJkifLzzz8rTz/9tPLVV19Z1wkosbGxSu/evZWFCxcqS5YsUYYMGaJotVrl8OHDNtdDCCGEaG6OfiwQERGhJCUlKd99952SnJyspKenK1988YUCKMOHD1cWLVqkfPPNN0qPHj0UvV6vrFmzptG633PPPUpMTIzN5RDCkTls834hxOU3cuRI3n77bev0yZMnefLJJ8nLyyM0NLTRZU0mEykpKbi6ugIwYsQIYmNjef7550lJSWlSOS5mXR07dsTX1xcXFxf69u1b67mvvvqKlStX8tFHH9UaanPs2LF11lNeXs7vv/+Ol5cXAN27dyc8PJyFCxfyr3/9q0n1EEIIIRxNSzkWcHV1ZdmyZdZxzc1mMwMGDKBTp0789ttvqNWWBsyjR4+mVatWPPXUU/z5559Neg0hnJXDNu8XQlx+N9xwQ63pzp07A3Ds2LELLnvzzTdbd/IAXl5ejB07ltWrV2MymZpUDnuuC+C3337D1dWVyZMnXzA2KSnJmvCDZTjP4OBgm94DIYQQwtG1lGOBG264wZrwA+zfv5+cnBwmTpxoTfjBMpT2+PHjWbduHWVlZU16DSGclST9QogGBQQE1JquvveovLz8gsvWd/Y/NDSUqqoqTp8+3aRy2HNdAMePHyc8PLzWQUJDzn8PwPI+2PIeCCGEEI6upRwL1BydB6CwsLDe+QDh4eGYzWZOnTrVpNcQwllJ0i+EuCzy8vLqnafX6/H09Gy2dYGlp/+cnBzMZnOTlxVCCCGEbey5/z6/o+3qkxG5ubl1YnNyclCr1fj5+TXpNYRwVpL0CyEuix9++IGKigrrdGlpKb/88gsDBw5Eo9FckXU1dEV+1KhRVFRUMH/+/CaVQwghhBC2s+exwPnatWtHREQEX375JYqiWOefOXOG77//3tqjvxACpCM/IcRlodFoGDZsGNOmTcNsNvPaa69RUlLCCy+8cMXW1alTJ3744QfmzZtHjx49UKvV9OzZkzvuuINPP/2Uhx56iP3795OUlITZbGb9+vV06NCB22+//WKrLYQQQoiz7HkscD61Ws3rr7/OXXfdxfXXX8+DDz5IZWUls2fPpqioiFdffdUONRDCOUjSL4S4LB555BEqKir429/+RkFBAQkJCSxevJgBAwZcsXU99thj7N69m6effpri4mIURUFRFLRaLUuWLGHWrFl89dVXvPnmm3h5edGlSxdGjhx5sVUWQgghRA32PBaoz5133omHhwezZs3itttuQ6PR0LdvX1auXEn//v3t8hpCOAOVUrM9jBBCXKKjR48SFxfH7NmzeeKJJ1rMuoQQQghxZcj+W4iWRe7pF0IIIYQQQgghnJQ07xfiKqIoygXHxdVoNHV6yL0cjEZjo8/bMpyeEEIIIZrG0Y4F5HhAiEsnW5EQV5EFCxag0+ka/Vu1atUlvUZsbCyKojTanO/o0aMXLMeLL75o07qEEEIIYTtHOxYQQlw6uadfiKtIYWEh6enpjca0a9cOLy+vy1qOqqoqduzY0WhMeHg44eHhl7UcQgghxNVGjgWEuPo4ddI/b9485s2bx9GjRwFISEjg+eefZ9SoUYCledMLL7zAhx9+yKlTp+jTpw//+c9/SEhIaMZSCyGEEEIIIYQQ9uHUSf8vv/yCRqOhdevWgKU50+zZs9m6dSsJCQm89tprvPzyy8yfP5+2bdvy0ksvsXr1avbv39+ks5tms5mcnBy8vLyuyP1PQgghxIUoikJpaSnh4eFyT6wdyL5eCCFES2Prvt6pk/76+Pv7M3v2bCZPnkx4eDiPP/44Tz31FACVlZWEhITw2muv8eCDD9q8zqysLKKioi5XkYUQQoiLlpmZSWRkZHMXw+HJvl4IIURLdaF9/VXTe7/JZOLbb7/lzJkz9OvXj/T0dPLy8hg+fLg1xsXFhcGDB7N27dpGk/7KykoqKyut09XnTdLT0y/5/ieDwcDKlStJSkpCp9Nd0rpaGqmbY5K6OSapm+Oxd71KS0uJi4u77PflXi2q38fMzEy8vb0vaV0Gg4Hk5GSGDx/uVN9hkLo5KqmbY5K6OSZ71q2kpISoqKgL7uudPunfuXMn/fr1o6KiAk9PT3788Uc6duzI2rVrAQgJCakVHxISwrFjxxpd56xZs3jhhRfqzE9LS8Pd3f2Sy+zu7s769esveT0tkdTNMUndHJPUzfHYs15lZWUA0hTdTqrfR29vb7sk/e7u7nh7ezvlwazUzfFI3RyT1M0xXY66XWhf7/RJf7t27di2bRtFRUV8//333HPPPbWGITn/DVIU5YJv2vTp05k2bZp1uvoMy/Dhw+1yIJCSksKwYcOc8gsudXM8UjfHJHVzPPauV0lJiR1KJYQQQgh7yi+p4Izhyr6m0yf9er3e2pFfz5492bhxI2+99Zb1Pv68vDzCwsKs8QUFBXWu/p/PxcUFFxeXOvOrxxS1B3uuq6WprpuiKBhMCkaz2fLfZMZoVjCYzBhrzVcwmM/OM5kxmM/+PxtjNJ1d5rz51cs2vP66y9d57TrrbzgWtGjWp6JRqVCrOftfhUatOvdYZZmu9Xz1PJUKrcby/9wyWJ+rfz0qNCrqmaeqsVzt52utp9Y6qbV89X8UM/lnQKvVOv130hlJ3RyPverljO+NEEII4ajKqox8uPoIH6w6TE9/Nbdcwdd2+qT/fIqiUFlZSVxcHKGhoaSkpNCtWzfAMl7oqlWreO2115q5lM3DZFaoMJgoN5ioOPtXXmW2Tteeb6LcYD43bf1vprzKRKWxOsbyV2kwU1ZlpKxCwz83/o7JrGAyO18fkiazggkFTM1dEnvT8lXmH4zqFMaIhFC6RfmiVkuTYSGEEEIIIRpjMit8vyWLucn7yS+x9AuXXabCaDJzpc7PO3XS//TTTzNq1CiioqIoLS3l66+/JjU1laVLl6JSqXj88cd55ZVXaNOmDW3atOGVV17B3d2dO++8s7mLbqUoClUmMxVnE+zyKhMVNRLqSoMlKa8535KIm60Jd8V5y1jXVSOBrzCYqTKZr0CNVGBu+HU0ahVatQqdRo1Wo0KrVqPTWK6A69Tnz1M3EKtGp7Ysc+6xJbax5a3rr7lMjfm6s8taHtdeFrOJ339fTtK116LWaDGZFcyKUuM/teaZFAWz+dzj6pMg9cWa63u+xvJ11wkms/nseqln+ZrrpN4ynZsH5VVGth07Seapcj5cfYQPVx8h2MuFEQmhjEwMpU+cP1qNDAcmhBBg6TjYYGi83abBYECr1VJRUYHJ5FxniZ2xbnq9Xoa9FEJclLWHTvDS4r3sybXcchfp58YTw9pAxpYrevzs1El/fn4+EydOJDc3Fx8fHzp37szSpUsZNmwYAE8++STl5eVMnTqVU6dO0adPH5KTk5u1p+Ob319H9gkNL+5ItSbmzXFB3FWnxlWnwe3sn4tOg5tOjZteg6tWg6veMt9Vp7bGuJ59zq3Gc9XrcNVp0KkU1v6xmuuGJuHmoj+bhKvPJdNnm5Y7IoPBgLceQrxdna5JrcFg4MdfluAa153f951gxb4CCkor+WzdMT5bdwxfdx3DOoQwMjGUAa0DcdVpmrvIQghxxSmKQl5eHkVFRTbFhoaGkpmZ6XQdLTpj3dRqNXFxcU5THyHE5Xeo4DSzluxl+b4CALxctTyS1Jp7+seiwcySzCtbHqdO+j/55JNGn1epVMycOZOZM2demQLZILuonPLKSjg7JGDNngPUKnDR61HrXK3JtI/WgJtWg4tejav2bFKusyTfLnotOhcP3PSW5NtDVVkjgbck8fqzSbqrXourm6flea0atbEcaOhsgwr0NUYpqCqzKdZgMHDYpYoIdzM63Xln/81n//Qe5+YZykFppPVBrdgKUBq5otCUWJ07VO/YjZVgNtoUqzYboOoMKA0k/Vo3qL5SYKwCcyNXgpoU6wpqTdNjTQYwVTUcq3EBjeUnwlVtZFRbL25I8KfS2Ip1R06Ssief5XvzKSqr4IfNFXy7OQsPvYah7QIY1cGPgW2C8HSp5ydGowfN2ffIZARTZd2Y+mLNJjBWNByr1oFW3/RYxdz451ZrvWYwljeyXi1oz261igKGMvvEqjSgcz03XXWmabEN1U2lBp2bjes9P9a27b7JsU3a7stBaeQ73MJ+Iy4Y69y7ZKdXnfAHBwfj7u7eaIJoNps5ffo0np6eTncF2dnqZjabycnJITc3t1YfUEIIUZ/C05W8+ftBvtyQgcmsoFGr+EufaB67ri3+HpbjSYPhSrSurk2OMFqY9+/sRu/PWjcc0GY43PXtuemXwxpOFmKugXsXn5t+PR7KCuuPDe8GD6Sem/5PHyjOqD82qD08XGNIqY+S4Pi++mN9ouHvO62T1xx8Gd32++uPdQ+AJ4+cm/58Ahz7o/5YnTs8k3tueuFEOJhcfyzAzOJzj398APb81HDs0znnEoBfHoftXzYc+8/D4BEIQGL2l+hm39dw7GM7wC/G8njFi7D2nYZjp66D4A6Wx2vmwqpXG46dsgIielger58HKc83HHvPrxA30PJ483xY8kTDsXcuhLYjAIg8mYZu9mTAciJq8Nm/lwBcYWHcS7yR3ZG8kgqMu39m1MG3G17vuPeg212Wx4eXw5e3Nhw7eg70nmJ5fGwtLLi+4dhhL8KAxyyPc7fBR9c2HDv4X5A0HQCvihx0s2Maju3/KAx/yfK4OBPe6txwbK/7Ycxcy+OyQpjdquHYLnfCTfMsjw1l8Ep4w7Edx8Gt/zs33Vjseb8R2jc72P4b8WanZv+N4NNRkLO1/tjzfiM0X98GGWvrj22BvxEsexo2ftxw7MNbGn5OtGgmk8ma8AcEBFww3mw2U1VVhaurq1MkxjU5Y92CgoLIyclxmtsVhBD2V2Ew8emfR3lv5SFKKy0n+K/rEML00e1pFeTZzKWTpL/F6Rbt29xFEKLJbu0ZyYSJ17Iju5j0VelwqOHY4goDPleuaEIIcdlV38Pv7u5+gUjhiPR6y9U5SfqFEOdTFIWft+fw+tL9ZBdZWoMmRnjzzOiO9Gt14ZPAV4pKURTn60L9CispKcHHx4fi4mK8vb0vaV0Gg4Flv/zIiBHD6783vEnNfFtW012DwcDSXxcxcngjY1A7aPN+S91+YuTw6xqum4M27zcYDPy2+GdGDRvacN1q3AqAyYhirOBAwWlS9uSTsiefA/ml1lADWjpHBzIqMYwRHQKJ9mmkD4DL3LzfYDCwZPGvjB6W1HDdHLR5v8FgYMmSJYy+bnDDdWthvxGATdu9tW7DktBpG/n+tKDfCFtiDWhZ8ttSRo8ebZe+Qey5bxKNv58VFRWkp6cTFxeHq6trA2s4x2w2U1JSgre3t9NcDa/mjHWr/nwjIyNZsWKF3bbRlsT6uyp1cyhSt+a16ehJ/r14L9sziwAI9XblnyPacVO3iEb7KbNn3Wzd18uV/hbIpHGxHIDa8iWoeaBq19gmXK1oQqxZrbe9bjUTjAvGXvgg66JitS7U7lmhYWa1zva6afWA3sYyXKZYje5cQn0Bikpre900WlQaT9pFedIuKpRHRsDRE2dYtjuPpbvz2JpRxJazfy8vgY5h3oxMtIwE0CbYs+H7YNUa27/DTYlVqW2vm1rdhPWqLk8sND3W1h1KC/iNaNp272Z73VrAb8QFYy/Q47sQQgghmt+xwjO8tnQfS3bmAeCu1/DXwa24f2A8bvqW2aG1JP1CiMsuNtCDBwe34sHBrcgrriB5Tx5Ld+WxPv0ke3JL2JNbwhspB4gP9GBEYigjE0LpHOkjPSULIYQQQogWobjMwDsrDrIg7SgGk4JaBbf1iuLvw9oS7NWECwbNQJJ+IcQVFerjyt39Yrm7Xywnz1Tx+958lu7K44+DJzhy4gzzUg8zL/Uw4T6uDE8IZVRiKD1j/dE46HCOQgjhyFQqFT/++CM33njjZX2d2NhYHn/8cR5//PHL+jr1mT9/Po8//rhNwy0KIa4+VUYzn687xtsrDlJUZmmVN6htEE+Pbk/7UMe4fU6SfiFEs/H30HNrzyhu7RlFaYWBlfuPs2xXHiv3F5BTXMH8tUeZv/YoAR56hieEMCIhlP6tAtFrneM+USGEaG4FBQU899xz/Pbbb+Tn5+Pn50eXLl2YOXMm/fr1Izc3Fz8/v+YuZh2SqAshLjdFUVi2O59Xf9vL0UJL30ttQzx5enQHhrQLbubSNY0k/UKIFsHLVccNXcK5oUs4FQYTaw6eYOmuPH7fm0/hmSq+2pDJVxsy8XLVMrR9MCMTQxnUNgh3vfyMCSHExRo/fjwGg4EFCxYQHx9Pfn4+y5cv5+TJkwCEhoY2cwmFEOLK25FVxEuL97Ih3fJbGOipZ9qwdtzaMxKtxvEuPjleiYUQTs9Vp2FYxxDm3tqFTc9ex+f39eEvfaMJ8nKhtMLIom05PPT5Frr/O4UHP9vEj1uzKC6XTtCEEC2HoiiUVRkb/CuvMjX6/MX+NWVQpqKiIv744w9ee+01kpKSiImJoXfv3kyfPp0xY8YAlub9ixYtAuDo0aOoVCoWLlzIwIEDcXNzo1evXhw4cICNGzfSs2dPvL29mTBhAsePH7e+zpAhQ+o027/xxhuZNGlSg2V744036NSpEx4eHkRFRTF16lROnz4NQGpqKvfeey/FxcWoVCpUKhUzZ84EoKqqiieffJKIiAg8PDzo06cPqamptdY9f/58oqOjcXd356abbqKwsNDm90wI4dyyi8p5/Out3PDun2xIP4mLVs0jSa1J/WcSd/aJdsiEH+RKvxCihdNp1FzTJvD/2bvvuKrKP4Djn7uYl40IyFQxF87KvbdWppWW5tZfpQ2zacOVac7MShuWWllpZVZmJjlzpLk1B4IgiChLlqw7zu8P5CoyBAUZft+vFy/uOec55zzPvXDP+T7nGbQPcmfGQ405FH2Zjccv8sfxi5y/nMmf/13iz/8uodOoaFvHnd6NPenRsCbu+hKOqC6EEOUg02Ci4ZQ/7/h5T8zoVeIWUHq9Hr1ez7p162jdujXW1iX73pw6dSqLFi3Cz8+P0aNH88QTT+Do6MgHH3yAjY0NgwYNYurUqXzyySe3XA61Ws3ixYsJCAggIiKC8ePH8+qrr7JkyRLatm3LokWLmDJlCqdPn7aUBWDUqFFERkby/fff4+3tzc8//0zv3r05duwYQUFB7N27l9GjRzNr1iwGDhzIxo0bmTp16i3nUwhRPaRlGVi6LZwvdkaQbcydOnhg81q83OsevJ1LMbNQJSVBvxCiylCrVbT0d6Wlvytv9G3AfxdSc6cCPH6RM3HpbA+NZ3toPG/+fIx7A1zp3ciTXo09qVUNvqyFEKKsabVaVqxYwbhx4/jkk09o0aIFnTp14vHHH6dJkyZF7vfyyy/Tq1cvAF544QWeeOIJNm/eTLt27TCbzTz55JOsXr36tvJ2fcuAwMBA3nnnHZ555hmWLFmClZUVTk65M7xc3/0gPDyc7777jvPnz+Pt7W3J68aNG1m+fDmzZs3igw8+oFevXrz++usA1KtXj927d7Nx48bbyq8Qomoymsx8/280i/4KJSE9B4BWga681a8hwT5OFZy7siNBvxCiSlKpVDSu5UTjWk681PMewuLS+fO/i/z530WOnk9hX0QS+yKSmLH+BE18nOjVyJPejT2pU0Nf0VkXQpSBJUuWMG/ePGJjY2nUqBGLFi2iQ4cORabPzs5mxowZfPPNN1y8eBEfHx/efPNNRo8eXS75s9VpODGjV6HbzGYzaalpODg6oFaXbVNRW13p5oh+5JFH6NevH3///Td79uxh48aNzJ07l2XLlhXZ/P76CoGaNWsCEBwcbFnn4eFBXFxc6TN/na1btzJr1ixOnDhBamoqRqORrKwsrly5gr29faH7HDx4EEVRqFevXr712dnZuLm5AXDy5EkGDBiQb3ubNm0k6BfiLqMoCttOxzNrw0nOxOV2HQp0t2dyn/r0aFiz2k0bLUG/EKJaqOuhp65HXSZ0qcv5yxls+u8SG/+7yL+RSRw9n8LR8ynM+/M0QR56+jTObQEQ5C4tAISoilavXs3EiRNZsmQJ7dq149NPP6VPnz6cOHECPz+/QvcZNGgQly5d4osvvqBu3brExcVhNBrLLY8qlarIZvZmsxmjlQY7K22ZB/23wsbGhh49etCjRw+mTJnC2LFjmTp1apFBv06ns7zOuzG+cZ3ZbLYsq9XqAmMNGAxFj8Ny7tw5+vbty9NPP80777yDq6srO3fuZMyYMcXuZzab0Wg0HDhwAI0mf+VHXvP/0ox5IISonk7GpvLu7yfZGZYAgLOdjhe6BTG0lX+1nSFKgn4hRLXj42LH6PaBjG4fSHxaNn+dvMTG4xfZHZ7Ambh0zmwJY/GWMHxcbGlsr+betGxquepufmAhRKWwcOFCxowZw9ixYwFYtGgRf/75J0uXLmX27NkF0m/cuJHt27dz9uxZXF1dgdx54YuTnZ1Ndna2ZTk1NRXIDVZvDDwNBgOKomA2m/MFu0XJCzzz9qlsGjRowLp16yx5yyvXjct5r69fd31QnbfN3d2dCxcuWJZNJhPHjx+nc+fO+cqf937s27cPo9HIvHnzLJUied0F8s6j1WoxmUz59m/atCkmk4mLFy8W2urDbDbToEED9uzZk2+/PXv25MtvYfspimKpJCqu4qGqyiuTlK1qkbKVTlxaNos2h/HjwRgUBXQaFcNb+/FMp9o42epAMWEwmMrsfEUpy7KV9BgS9AshqrUaDtY8cb8fT9zvR0qmgS2ncisAtofGc/5yJucvq9m8YAf9gr0Y0TaA5n6Vbz5qIcQ1OTk5HDhwwNInO0/Pnj3ZvXt3ofv8+uuv3HvvvcydO5evv/4ae3t7HnroId555x1sbQtv8TN79mymT59eYP2mTZuws7PLt06r1eLp6Ul6ejo5OTklLktaWlqJ05aHpKQkRo4cydChQ2nUqBEODg4cOnSIuXPn0qdPH0tFR2ZmJqmpqZbR869cuWLZlpGRO3d1WlpavlYLiqJY0rRp04a33nqLH374gcDAQJYsWcLly5cxGAyWNGazmaysLFJTU/H09MRoNDJ//nx69+7NP//8YxkUMO88NWrUID09nd9++43GjRtja2uLp6cnjz32GMOHD2fmzJk0adKExMREduzYQcOGDenZsyejR4+mV69evPPOO/Tr148tW7awcePGfPm9UU5ODpmZmZa/r5CQkLL+KCoNKVvVJGUrXrYJtl5QsfmCmhxzbuukZm5mHvQz424OZ9fW8Ns+x60oi7LlfQffjAT9Qoi7hpOtjgHNfRjQ3IeMHCN/HrvA4o1HiUiDdYcvsO7wBZr6OjOqbQB9g72qbRMvIaqyhIQETCaTpS95npo1a3Lx4sVC9zl79iw7d+7ExsaGn3/+mYSEBMaPH09SUhJffvlloftMnjyZSZMmWZZTU1Px9fWlZ8+eODo65kublZVFdHQ0er0eGxubm5ZBURTS0tJwcHCo0H6j1tbWtG3bls8++4zw8HAMBgO+vr6MGzeOyZMnWypEbG1tcXR0tDSRt7e3t7wHeRUgDg4OODo6Wp70q1QqS5rx48cTGhrK+PHj0Wq1TJw4kS5duqDT6Sxp1Go1NjY2ODo60q5dOxYsWMD8+fOZMWMGHTp0YNasWYwcOdJynh49evDUU08xZswYEhMTmTJlClOnTuXrr7/m3XffZcqUKcTExODm5kbr1q0ZMGAAjo6OdOvWjc8++4zp06czZ84cunXrxltvvcXMmTMLfK55srKysLW1pW3btuzYsYMePXrk685QHRgMBkJCQqRsVYyUrXhms8LPhy/w/l9hXErLbbnVzNeJyb3voYWfcxnmtnTK8nMrqrLyRhL0CyHuSnZWWh5o4oX6/CH8mrbnm33n+e3IBY5EJzNx9WHe3XCSIff7MbS1Hx4ON7+JF0LcWTcGy4qiFBlAm81mVCoVq1atwskpdzTmhQsX8uijj/Lxxx8X+rTf2tq60CnsdDpdgZs0k8mESqVCrVaXqI9+XjPyvH0qiq2tLe+99x7vvfdekWmub65fu3btAn3iu3btWqBJ/5AhQ3j66actZbO2tmbp0qUsXbq0yPNERkbmW540aVK+SheAESNG5Fv+5JNPCkwLaG1tzYwZM5gxY0aR5xo7dqyla0iel19+ucj0arUalUqFVpt721zY30B1IWWrmqRsBe0OS2Dm7yc5EZsbFPu42PJa7/o80MSr0gzSVxafW0n3l6BfCHHXa1zLkQWDmjK5b32+3xfF1/+c41JqNh9sPsOSbWH0C/ZiZLtAmvk6V3RWhbjrubu7o9FoCjzVj4uLK/D0P4+Xlxe1atWyBPyQ229dURTOnz9PUFBQueZZCCHEnREWl87sDSfZfCp3BhEHay3Pdq3LiLYB2JRydpPqRNquCiHEVe56a57tGsTO17ry4RPNaenvgsGksO7wBR7+eBcPf7yLXw7HkGOsfANvCXG3sLKyomXLlgX6QoaEhNC2bdtC92nXrh0XLlyw9EkHCA0NRa1W4+PjU675FUIIUf4S07N5e91xei3aweZTcWjUKoa38WfbK515qlOduzrgB3nSL4QQBeg0ah5s6s2DTb05dj6FFbsj+e3IBQ5HJ/PC94eZ6XCSoa38GNJKmv4LUREmTZrEsGHDuPfee2nTpg2fffYZUVFRPP3000Buf/yYmBi++uorAIYMGcI777zDqFGjmD59OgkJCbzyyiuMHj26yIH8hBBCVH5ZBhMrdkfy8ZYw0rJzZ9jo3sCD1/s0oK6HvoJzV3lI0C+EEMUI9nGyNP3/bm9u0/+4tGwW/XWGj7eG8UATb0a2DaCpNP0X4o4ZPHgwiYmJzJgxg9jYWBo3bsyGDRvw9/cHIDY2lqioKEt6vV5PSEgIzz33HPfeey9ubm4MGjSImTNnVlQRhBBC3AZFUfjtaCxz/jhFTHImAI28HXmzXwPa1nGv4NxVPhL0CyFECbjrrXmuWxBPdarDxv8usmJXBAejkvn5UAw/H4qhuZ8zI9sG0KexjPovxJ0wfvx4xo8fX+i2FStWFFhXv379aj2tlRBC3C0OnEvinfUnORydDICnow0v97qHgc1roVZXjkH6KhsJ+oUQohSstGoeaurNQ029OXo+mRW7I1l/JJZDUckcispt+v9kK3+GtPKjhkPBkb+FEEIIIUTpnUu8wpyNp9hwLHcgVzsrDU93qsO4DrWxtbq7++zfjAT9Qghxi5r4OLNwUDMm92nAd/ui+OZq0//3/wq92vTfixHS9F8IIYQQ4palZBj4cMsZVu6JxGBSUKtg0L2+TOpRDw9HGVupJCToF0KI21TDwZrnuwXxdKc6/HE8lhW7IzkUlczaQzGslab/QgghhBClZjTDij3n+HjbWZIzDAB0CHLnzX4NqO/pWMG5q1ok6BdCiDJipVXTv1kt+jerxZHoZFbujuS3oxcsTf/fdTjJk639eeJ+afovhKg+Tp06xciRIzl8+DD169dn27ZtFZ0lIUQVZjYrbDpxifeOaIjPOg1AvZp63ujbgM73eFRw7qomCfqFEKIcNPV1ZuHgZrzetz7f7Y3mm725Tf8XhoTy0ZYwHmjqxci2ATTxca7orAoh7mIjR45k5cqVAGg0Gry9venXrx+zZs3CxcWlRMeYOnUq9vb2nD59Gjs7u/LMrhCiGruSbeSng+dZsSuSswlXABVu9la81PMeBt3rg1YjrSVvlQT9QghRjjwcbHihexDPdL6h6f/BGNYejKGFnzMj2wXSp7EnOrmYCSEqQO/evVm+fDlGo5ETJ04wevRokpOT+e6770q0f3h4OP369cPf3x+z2Uxqamqp85CTk4OVlVWp9xNCVH3RSRl8tSeS7/+NJi3LCICDjZY2bjnMGdUeF71tBeew6pM7TCGEuAPymv7/PL4d6ya0Y0DzWug0Kg5GJfP8d4doP2cLH24+Q0J6dkVnVQhxl7G2tsbT0xMfHx969uzJ4MGD2bRpk2X78uXLadCgATY2NtSvX58lS5ZYtqlUKg4cOMCMGTNQqVRMnz4dgJiYGAYPHoyLiwtubm7079+fyMhIy34jR47k4YcfZvbs2Xh7e1OvXr1S7Td//ny8vLxwc3NjwoQJGAwGS5rs7GxeffVVfH19sba2JigoiC+++MKy/cSJE/Tt2xe9Xk/NmjUZNmwYCQkJZf22CiGKoSgK+yKSePrrA3Sat5XP/44gLctIbXd7ZvRvxN8vd6Sfnxm9tTyjLguV6l28lZphR0cZxEEIUbU083Wm2eBmTO5bn2/3RvHNP1FcSs1mQUgoH15t+j+qbSDBPk4VnVUhbttdf23PuVJwndkMhgwwWoGVXfFp86jUoLMtPq2V/a3n86qzZ8+yceNGdDodAJ9//jlTp07lo48+onnz5hw6dIhx48Zhb2/PiBEjiI2NpXv37vTu3ZuXX34ZOzs70tPT6datGx06dGDHjh1otVpmzpxJ7969OXr0qOWJ/ubNm3F0dCQkJARFUcjIyKBLly433W/r1q14eXmxdetWwsLCGDx4MM2aNWPcuHEADB8+nD179rB48WKaNm1KRESEJaiPjY2lU6dOjBs3joULF5KZmclrr73GoEGD2LJly22/f0KI4mUbTaw/Esvy3REcj7l2fegQ5M7odoF0qlcDtVqVryJP3L5KFfQ7OzujUqlKnF6lUhEaGkrt2rXLMVdCCFE+PBxsmNi9HuM712XDsdym/4ejrzX9b+nvwsi2AfSWpv+iCrvrr+2zvAusUgPOgFK3Bzz547UN8+rmVgYUxr89jPr92vKiYMhIzJ9mWsotZXH9+vXo9XpMJhNZWVkALFy4EIB33nmHBQsWMHDgQAACAwM5ceIEn376KSNGjMDT0xOtVoter8fT0xOz2cxXX32FWq1m2bJlls9++fLlODs7s23bNnr27AmAvb09y5YtswTzX375ZYn2c3Fx4aOPPkKj0VC/fn369evH5s2bGTduHKGhoaxZs4aQkBC6d+8OkO9vaenSpbRo0YJZs2ZZ1n355Zf4+voSGhpqaXEghChbCenZrPoniq//OWdp1WijUzOguQ+j2gVQr6ZDBeeweqtUQT/Ajz/+iKur603TKYpC375970COhBCifFlp1TzcvBYPN6/FoajLrNwdye/HYjlw7jIHzl2mpqM1w66O+u+ml1H/RdUj1/bKrUuXLixdupSMjAyWLVtGaGgozz33HPHx8URHRzNmzBjLU3QAo9GIk1PRLZEOHz5MWFgYDg75b+KzsrIIDw+3LAcHB+frx3/gwIES7deoUSM0Go1l2cvLi2PHjlnOrdFo6NSpU6F5O3DgAFu3bkWv1xfYFh4eLkG/EGXsvwspLN8Vya+HL5BjMgPg6WjD8Lb+PHGfHy72MpbHnVCpgn5/f386duyIm5tbidLXrl3b0vxMCCGqg+Z+LjT3c+GNvg1YtTeKVXtzm/7P3xTK4i1hPNjEm1HtAmhcS5r+i6rhrr+2v3GhwCqz2UxqWhqOTs7kawPxSljRx1Hd0Npn4rEyyR7kPnGvW7cuAIsXL6ZLly5Mnz6dZ599Fsht4t+qVat8+1wfdN/IbDbTsmVLVq1aVWBbjRo18p33Vva78e9DpVJhNucGE7a2xQ/4ZTabefDBB5kzZ06BbV5eXsXuK4QoGZNZ4a+Tl/hyZwR7I5Is65v7OTNKBi+uEJUq6I+IiChV+uPHj5dTToQQomJ5ONrwYo96jO9Shz+OXWT5rgiOnE/hp4Pn+engee71d2FkuwB6NZILp6jc7vpre2H97M1m0JlAa3PztKU5bhmZOnUqffr04ZlnnqFWrVqcPXuWoUOHlnj/pk2bsm7dOjw8PEo1PkOLFi1YvXp1qfe7XnBwMGazme3bt1ua9994jp9++omAgAC02kp1GyxElZeaZWDNv9Gs3BNJdFImAFq1ij7BXoxqF0ALv5JNAyrKntwpCiFEJWat1fBw81r88mx7fh7flv7NvNFpVOw/d5lnvz1Ehzlb+WjLGRJl1H8hRBnp3LkzjRo1YtasWUybNo3Zs2fzwQcfEBoayrFjx1i+fLmlz39hHnvsMdzd3enfvz9///03ERERbN++nRdeeIHz588Xud/QoUNvab/rBQQEMGLECEaPHs26deuIiIhg27ZtrFmzBoAJEyaQlJTEE088wb59+zh79iybNm1i9OjRmEym0r1RQggAIhOuMO3X/2gzazMzfz9JdFImznY6xneuw9+vdeHDJ5pLwF/BKm0V5+LFiwtdr1KpsLGxoW7dunTs2LHY5mVCCFGd5DX9f9PS9P8cF1OzLE3/H2rqzci20vRfVF5yba86Jk2axKhRowgLC2PZsmXMmzePV199FXt7e4KDg5k4cWKR+9rZ2bFt2zYmT57MwIEDSUtLo1atWnTr1q3YJ/h2dnbs2LGD1157rVT73Wjp0qW88cYbjB8/nsTERPz8/HjjjTcA8Pb2ZteuXbz22mv06tWL7Oxs/P396d27N2q1PAsToqQURWFPeCJf7opg86k4FCV3fZCHntHtA3m4WS1sreS7vLKotEH/+++/T3x8PBkZGbi4uKAoCsnJydjZ2aHX64mLi6N27dps3boVX1/fis6uEELcMdc3/d9wLJbluyI5ej6FHw+c58cD57kvwIUn7/fFpFR0ToXIT67tlc+KFSsKXT9kyBCGDBlS4HVhDh8+XGCdp6cnK1euLPV5b2W/RYsW5Vu2sbFh4cKFRbZGCAoKYu3atUWeQwhRtCyDiV8Ox7B8VySnLqZZ1net78GodgG0r+teqhlbxJ1Raas0Z82axX333ceZM2dITEwkKSmJ0NBQWrVqxQcffEBUVBSenp68+OKLFZ1VIYSoENZaDQOa+/DLhHasHd+Wh5p6o1Wr+DfyMi+sOcq7hzR8uy+aLIM0WRWVg1zbhRCiarqUmsX8P0/T9r0tvPbTMU5dTMPOSsPwNv5seakTX468jw5BNSTgr6Qq7ZP+t956i59++ok6depY1tWtW5f58+fzyCOPcPbsWebOncsjjzxSgbkUQoiKp1KpaOHnQgs/F97sl9v0/5t/Ikm8YmDqbyf5aNtZxrYPZGhrf/TWlfZrX9wF5NouhBBVy5HoZJbvimD90ViM5twmhLWcbRnZNoBB9/niZFuNZlupxirt3V9sbCxGo7HAeqPRyMWLF4HcfllpaWkF0gghxN2qpqMNk3rUY2xbP6Z/vYndl+2JTcli9h+nWLItnBFtAxjVNkDmxRUVQq7tQghR+RlNZv787xJf7orgwLnLlvX3B7gyun0A3RvURCszB1UplfbT6tKlC0899RSHDh2yrDt06BDPPPMMXbt2BeDYsWMEBgZWVBaFEKLSsrXS0NFL4a+J7Zn3aBNqu9uTkmlg8eYztJuzhZnrT3AxJauisynuMnJtF0KIyis5I4dPtofTce5WJnx7kAPnLqPTqBjYohbrn2vPmqfb0LuxlwT8VVClfdL/xRdfMGzYMFq2bIlOl9tsxGg00q1bN7744gsA9Ho9CxYsqMhsCiFEpWalVfPYvb4MbOHDn/9d5OOtYfx3IZVlOyP4as85Hmnpw9OdauPvVn5zfguRR67tQghR+YTFpbF8VyRrD8aQeXUcIHe9FUNb+TO0tR8eDjYVnENxuypt0O/p6UlISAinTp0iNDQURVGoX78+99xzjyVNly5dKjCHpaMoCkaj8aZzwBoMBrRaLVlZWdVuvtjqVjaNRoNWq5UBS0SVoFGr6BvsRZ/GnmwPjWfJ1nD2RSbx3b4oVv8bxQNNvBnfpQ71PUs+LZYQpVXdru03MpvNFZ0FUQ6Uq3ORyfVeVCdms8KOM/Es3xXJ9tB4y/qGXo6MahfAg029sdHJlHvVRaUN+vPUrl0blUpFnTp10GorfXYLlZOTQ2xsLBkZGTdNqygKnp6eREdHV7uLS3Usm52dHV5eXtWmPKL6U6lUdL7Hg873ePBvZBJLtoax9XQ8vx65wK9HLtC9gQfju9SlhZ9LRWdVVGPV4dp+PSsrK9RqNRcuXKBGjRpYWVkVe10wm83k5OSQlZVV7eaGr25lUxSF+Ph4VCpVtfhbFSIjx8jagzEs3xVBePwVAFQq6NGgJqPbB9Iq0FXua6uhSvvtlZGRwXPPPWeZqzU0NJTatWvz/PPP4+3tzeuvv17BOSwZs9lMREQEGo0Gb2/vEt0IpKeno9frq8XF8nrVqWyKopCTk0N8fDwREREEBARUdJaEKLX7AlxZPup+jseksHR7OBuOxfLXyTj+OhlHm9pujO9SR+bbFWWqulzbb6RWqwkMDCQ2NpYLFy7cNL2iKGRmZmJra1vt/r+qY9lUKhU+Pj5oNPLUU1RdMcmZfLUnku/2RpGalTugqt5ay+D7fBnRJgA/N7sKzqEoT5U26J88eTJHjhxh27Zt9O7d27K+e/fuTJ06tcrcGOTk5GA2m/H19cXO7ub/THk15DY2NlU+ML5RdSubra0tOp2Oc+fOYTAYKjo7QtyyxrWc+HhIC87Gp/PJ9nB+PhTDnrOJ7DmbSBMfJ8Z3rkvPhjVRq6vHDbyoONXl2l4YKysr/Pz8StyVb8eOHXTs2NEytkF1UR3LptPp0Gg0cq0XVY6iKByMusyXOyPZ+N9FTFen3PN3s2Nk2wAebemDg031+D8Vxau0Qf+6detYvXo1rVu3zldT3LBhQ8LDwyswZ7emOgS5oqC8zzWvv58QVVntGnrmPtqUid3r8fnfZ/luXxRHz6fw9DcHqOuhZ3znOjzY1BudjNorblFZXtuXLFnCvHnziI2NpVGjRixatIgOHTrcdL9du3bRqVMnGjduzOHDh0tbhGKpVCp0Ot1Ng12NRoPRaMTGxqbaBMZ5qnPZhKgqcoxmNhyL5ctdERw9n2JZ37aOG6PbBdKlvgcaqci/q1TaoD8+Ph4PD48C669cuVJtmosJIURl5O1sy9QHG/Fsl7os3xXJyj2RhMWlM2nNERaGhPJUpzo81tJHBvgRpVZW1/bVq1czceJElixZQrt27fj000/p06cPJ06cwM/Pr8j9UlJSGD58ON26dePSpUu3VAYhhKisEtOz+W5fFF/tOUdcWjaQO4vPgGa1GNU+QAbrvYtV2sc19913H7///rtlOe9m4PPPP6dNmzYVlS0hhLhruOmtebnXPex6vSuv9r4HN3srzl/O5O11x2k/ZyufbA8nLUuau4qSK6tr+8KFCxkzZgxjx46lQYMGLFq0CF9fX5YuXVrsfk899RRDhgyR+wghRLVy+mIar/14lDbvbWH+plDi0rLxcLDm5Z712PN6V+Y82kQC/rtcpX3SP3v2bHr37s2JEycwGo188MEH/Pfff+zZs4ft27eX+Bhr167l1KlT2Nra0rZtW+bMmZNvaiBFUZg+fTqfffYZly9fplWrVnz88cc0atSovIpWbahUKn7++Wcefvjhcj1PQEAAEydOZOLEieV6nsKsWLGCiRMnkpycfMfPLURl4WijY3znuoxqG8ia/dF8tuMsMcmZvPfHKZZsDWNk2wBGtgvE1d6qorMqKrmyuLbn5ORw4MCBAv3/e/bsye7du4vcb/ny5YSHh/PNN98wc+bMm54nOzub7Oxsy3JqaiqQ22f9dvt25+1fHfuIS9mqJilb1ZNtMLHl1CU++k/NmT17LOuDazkyso0/vRvVxEqb+3y3Kpa9un5uULZlK+kxKm3Q37ZtW3bt2sX8+fOpU6cOmzZtokWLFuzZs4fg4OASHWP79u1MmDCB++67D6PRyJtvvknPnj05ceIE9vb2AMydO5eFCxeyYsUK6tWrx8yZM+nRowenT5/GwcGhPItY6cXFxfH222/zxx9/cOnSJVxcXGjatCnTpk2jTZs2xMbG4uJS+ab1kkBdiPJha6VhRNsAhrTy45fDF1iyLYyz8VdYvCWMz/+OYEgrP8Z1qI2nk01FZ1VUUmVxbU9ISMBkMlGzZs1862vWrMnFixcL3efMmTO8/vrr/P333yWedm327NlMnz69wPpNmzaVaGDekggJCSmT41RGUraqScpWuRnMcCpZxaFEFccvq8g2qQA1ahSauil08jIToE9CFZPEXzEVnduyUR0+t6KURdlKMiU8VOKgHyA4ONgyrc+t2LhxY77l5cuX4+HhwYEDB+jYsSOKorBo0SLefPNNBg4cCMDKlSupWbMm3377LU899VShxy1N7b/BYEBRFMxmM2az+aZ5zhsQLm+fivTII49gMBhYvnw5tWvX5tKlS2zZsoWEhATMZrOlX2ZJ83k7ZSvNPnnpyuL9u9mxzGYziqJgNOZOfSK1kVWLlO3W9W9SkwcaexByMo5PdpzlvwtpfLEzgq/2RDKgmTf/6xCIfzlN/1NdP7eyLldlfX9u99qe58YxABRFKXRcAJPJxJAhQ5g+fTr16tUr8fEnT57MpEmTLMupqan4+vrSs2dPHB1vr5mswWAgJCSEHj16VLvB7qRsVZOUrfLKNpj4OyyRDccvsuV0PFeyr80OUtPBmsYOmUx+rB3+7tXrYWVV/9yKU5Zly4tDb6ZSBf0lzTRwSxfclJTc0StdXV0BiIiI4OLFi/Ts2dOSxtramk6dOrF79+4ig/7S1P5rtVo8PT1JT08nJycHRVHIMtw8GM1MTC5psUrMRqcu8UBJKSkp7Ny5k/Xr19OyZUsAXFxcqF+/PpD7Wbm4uPDNN9/Qr18/oqKiaNq0KV9++SWfffYZhw8fpkGDBnz22Wekpqby0ksvcebMGVq3bs0nn3yCu7s7AA888ADBwcHMnj3bcu6hQ4fi5OTEkiVLgNzAOisry/L38fHHH7Nq1SrOnTuHs7MzvXv3Zvr06ej1enbu3MmYMWMALPPpvvbaa7z++uvk5OQwc+ZMfvzxR1JSUmjQoAHTpk2jffv2lnN/++23zJo1i6SkJLp27Urr1q1RFKXIv82cnBwyMzMtTUqlNrJqkrLdnnF+cNpJRUiMmrBUWHMghh8OnKe5m0L3WmZq2ZfPeavr51ZW5Spp7X95K+tru7u7OxqNpsBT/bi4uAJP/wHS0tLYv38/hw4d4tlnnwWuVdhqtVo2bdpE165dC+xnbW2NtbV1gfUlGZ2/pMryWJWNlK1qkrJVDlkGE9tD49lwLJbNJ+NIzzZatnk52dCnsRf9mnjS2FPPxo1/4O/uUGXKVlpV6XMrrbIoW0n3r1RBv7Ozc4mD0pvNgXsjRVGYNGkS7du3p3HjxgCWG4bCmgieO3euyGOVpvY/KyuL6Oho9Ho9NjY2ZOQYaT6nYm5Uj0/rgZ1VyT5yOzs79Ho9ISEhdO3atdAbH8idq97R0RG9Xg9c6y7h5+fH2LFjeeqpp3B0dGTx4sXY2toyePBg5s+fbwnotVotVlZW+d43rVaLTqezrFOr1djY2FiW7ezs+PDDDwkICCAiIoJnn32Wd999l48//pju3bvz/vvvM3XqVE6ePAmAXq9Hr9fz5JNPcu7cOb777ju8vb1Zt24djz76KEeOHCEoKIi9e/dajjVgwAD+/PNPpk2bhkqlKvJGNCsryzJexI4dO6Q2soqRspWdfsAk4MC5y3yyI4JtoQkcTFRxMFFN53ruPNOpNi38nMvkXNX1cyvrcpUm2C5PZX1tt7KyomXLloSEhDBgwADL+pCQEPr3718gvaOjI8eOHcu3bsmSJWzZsoUff/yRwMDAEuVNCCHKU5bBxLbTeYH+Ja7kXPs+9HayoU+wF32DvWju64z66nR7lbVFl6h8KlXQv3XrVsvryMhIXn/9dUaOHGkZZXfPnj2sXLky31Phknr22Wc5evQoO3fuLLCtpE0E85Sm9t9kMqFSqVCr1ZafilKa81tZWbFixQrGjRvHp59+SosWLejUqROPP/44TZo0KXDMvOO+/PLL9OnTB4AXXniBJ554gs2bN9OhQwfMZjNPPvkkq1evzpePvPfn+uXC1uUtv/jii5b1derU4Z133uGZZ55h6dKl2NjYWG4wvb29LenCw8P5/vvvOX/+vGX9K6+8wp9//snKlSuZNWsWH374Ib169WLy5MkA1K9fnz179rBx48Yi3ze1Orf1RF4fUamNrJqkbGWndV0PWtf14L8LKSzdFs6GY7FsC01gW2gCrQJdmdClLh2C3Mtk6tXq+rmVVbkqy3tTHtf2SZMmMWzYMO69917atGnDZ599RlRUFE8//TSQWzkfExPDV199hVqttlT25/Hw8MDGxqbAeiGEuJNyA/04fj92kS1FBPr9mnjRzOdaoC/ErahUQX+nTp0sr2fMmMHChQt54oknLOseeughgoOD+eyzzxgxYkSJj/vcc8/x66+/smPHDnx8fCzrPT09gdwn/l5eXpb1RTURLAu2Og0nZvQqcrvZbCYtNQ0HR4cyryCwLeWc2o888gj9+vXj77//tgS/c+fOZdmyZYwcObLQfa6vEMh7D68fnMnDw4O4uLjSZ/46W7duZdasWZw4cYLU1FSMRiNZWVlcuXLFMkDjjQ4ePIiiKAX6c2ZnZ+Pm5gbAyZMn8z01AmjTpk2BsSGEEDfXyNuJj4a0ICLhCp9uD+eng+fZG5HE3oh9BNdyYkKXOvRs6Ck3MXeB8ri2Dx48mMTERGbMmEFsbCyNGzdmw4YN+Pv7AxAbG0tUVFTZFkQIIcpAZk5eoB/LllNxZFwX6NdytqVPY0/6SqAvylilCvqvt2fPHj755JMC6++9917Gjh1bomMoisJzzz3Hzz//zLZt2wo04QsMDMTT05OQkBCaN28O5PbR3r59O3PmzLn9QhRCpVIV28TebDZjtNJgZ6Wt0FYBeWxsbOjRowc9evRgypQpjB07lqlTpxYZ9F//ZCnvSd6N664fFE+tVlsG+MtTXFOlc+fO0bdvX55++mneeecdXF1dLf34i9vPbDaj0Wg4cOCApa9/nryuCTfmQwhx+wLd7XnvkSa80D2Iz3dE8N2+KI7FpPD0Nwep66HnmU51eKiZNzpNxX/fifJXFtf2POPHj2f8+PGFbluxYkWx+06bNo1p06aV6nxCCHGr8gL99cdi2VpIoN832JO+wV408y15dyghSqPSBv2+vr588sknLFiwIN/6Tz/9FF9f3xIdY8KECXz77bf88ssvODg4WPrwOzk5YWtri0qlYuLEicyaNYugoCCCgoKYNWsWdnZ2DBkypMzLVB00bNiQdevWldnxatSoQWxsrGXZZDJx/PhxunTpUmj6/fv3YzQaWbBggaVSZM2aNfnSWFlZFegX2rx5c0wmE3FxcXTo0KHQYzds2JB//vkn37obl4UQt8bLyZYpDzZkQpc6rNgdyYrdkYTFpfPSD0dYGBLKU51qM+heX2xK2SJJVC1lcW0XQoiqIDPHxNa8J/on48g05A/0+zXJ7aPf1MdJAn1R7ipt0P/+++/zyCOP8Oeff9K6dWsgNwALDw/np59+KtExli5dCkDnzp3zrV++fLnlSfWrr75KZmYm48eP5/Lly7Rq1YpNmzbh4FC9pr0orcTERB577DFGjx5NkyZNcHBwYP/+/cydO7fQgZJuVdeuXZk0aRK///47derU4f333yc5ObnI9HXq1MFoNPLhhx/y4IMPsmvXrgJPjQICAkhPT2fz5s00bdoUOzs76tWrx9ChQxk+fDgLFiygefPmJCQksGXLFoKDg+nbty/PP/88bdu2Ze7cuTz88MNs2rRJmvYLUcbc9Na81PMe/texNt/8E8UXOyOISc5kyi//sXjzGca0r82Trf1wsKkc/dFF2SqLa7sQQlRWGTlGtp7KHYxvy6nCA/1+wV40kUBf3GGVNujv27cvZ86cYenSpZw8eRJFUejfvz9PP/10iZ8GlKS5tkqlkmZ+hdDr9bRq1Yr333+f8PBwDAYDvr6+jBs3jjfeeKPMzjN69GiOHDnC8OHD0Wq1vPjii0U+5Qdo1qwZCxcuZM6cOUyePJmOHTsye/Zshg8fbknTtm1bnn76aUufz6lTpzJt2jSWL1/OzJkzeemll4iJicHNzY02bdrQt29fAFq3bs2yZcss6bt3785bb73FO++8U2blFULkcrDR8UznOoxqF8AP+6P5ZPtZYpIzmbPxFEu2hTGybQAj2wbgpi985hBRNZXFtV0IISqTjBwjW07FseFYLFtPxecL9H1cbOl3ddR9CfRFRapUQf/Ro0dp3Lixpdm2j48P7777bpHp//vvP+655x7LyOmi7FhbWzN79uxiR1O+vlIlICCgQCVL586dC6wbMmSIZXRlyO3vv2TJEssUfoWJjIzMt/ziiy/mG8EfYNiwYfmWly5damnpcf25pk+fzvTp04s81+jRoxk9enS+dS+99FKR6YUQt8dGp2FYmwAev9+PXw9fYMm2MMLjr/DhljA+//ssT9zvx7gOtfF2tq3orIpbJNd2IUR1cyX7ukD/dBxZhmvjVfm62tI3OPeJfnAtCfRF5VCprqjNmzfn4sWL1KhRo0Tp27Rpw+HDh6ldu3Y550wIIUR50mnUPNLShwHNa7HpxCU+3hrGsZgUlu+K5Jt/zjGwuQ9Pd65DoHvhM3SIykuu7UKI6qC4QN/P1c4S6Deu5SiBvqh0KlXQrygKb7/9NnZ2diVKn5OTU845EkIIcSep1Sp6N/akV6Oa7AxL4OOtYfxzNonV+6P54UA0fYO9+F/7gIrOpigFubYLIaqqK9lGNp+KY8PR3EA/23gt0Pd3uxboN/KWQF9UbpUq6O/YsSOnT58ucfo2bdpgaytNPoUQorpRqVR0CKpBh6AaHDiXxJKt4Ww+Fcf6o7GsPxpLIxc1tZqkcG+ge0VnVdyEXNuFEFVJeraRzScvseFYLNtOx0ugL6qFShX0b9u2raKzIIQQopJp6e/KFyNdORmbytJt4aw/eoH/Lqt59NO9dKpXg+e7BdHS36WisymKINd2IURllxfo/340lu2h+QP9gKuBfl8J9EUVVqmCfiGEEKIoDbwcWfxEc57tHMhb3/7NgUQN20Pj2R4aT/u67jzXtS6tartVdDaFEEJUAWlZBjafjOP3Y7mBfs51gX6guz19gz3pG+xFQy8J9EXVJ0G/EEKIKiXQ3Z6hdc3MfrIjn+88x48HzrMzLIGdYQm0CnTlhW5BtKnjJjdpQggh8iku0K/tbm95ot/Ay0GuIaJakaBfCCFEleTnasd7jzTh2a51WbotnDX7o9kbkcSQZXu519+F57sF0SHIXW7chBDiLpaaaeDfeBW/rjrE32GJhQb6/Zp4Ud9TAn1RfUnQL4QQokrzcbHj3QHBTOhSl0+3h/Pdv9HsP3eZ4V/uo6mvMy90q0uXezzkZk4IIao5k1nhTFwah6KSORR1mUNRyYTFp6MoGiAegNo17Ol39Ym+BPribiFBvxBCiGrB29mW6f0b5wb/O86yau85jkQnM3rFfhrXcuT5rkH0aFhTbvCEEKKaSEjP5nBUMoeicwP8I9HJXMkxFUhX01bh0VZ1eLBZLe6pKYG+uPtI0C/K1alTpxg5ciSHDx+mfv36MoqzEKLceTja8PYDDXm6Ux2W/X2Wr/85x/GYVP739QEaeDnyXNe69G7kiVotN31CCFFV5BjNnIhNtTzBPxR9meikzALp7K00NPV1prmfM819XWjsZc/eHZvp260uOp2uAnIuRMWToF8UaeTIkaxcuRIAjUaDt7c3/fr1Y9asWbi4lGx6rKlTp2Jvb8/p06exs7Mrz+wKIUQ+NRysmdy3AU91qsMXO8+ycvc5TsamMn7VQerV1PNs1yD6BXuhkeBfCCEqFUVRuJCSdS3Aj7rM8Qup+frj5wny0OcG+H4uNPdzJsjDId/3usFguJNZF6JSkqBfFKt3794sX74co9HIiRMnGD16NMnJyXz33Xcl2j88PJx+/frh7++P2WwmNTW11HnIycnBysqq1PsJIQSAq70Vr/Sqz7gOtflyVyTLd0UQeimd5787xKK/Qnmua10ebOKNVqOu6KwKIcRdKSPHyLHzKRyKvtYXPy4tu0A6FztdbnDv60wzP2ea+DjjZCtP74W4GbnDqSg5V4r+MWaVPK0hs2Rpb5G1tTWenp74+PjQs2dPBg8ezKZNmyzbly9fToMGDbCxsaF+/fosWbLEsk2lUnHgwAFmzJiBSqVi+vTpAMTExDB48GBcXFxwc3Ojf//+REZGWvYbOXIkDz/8MLNnz8bb25t69eqVar/58+fj5eWFm5sbEyZMyFfDm52dzauvvoqvry/W1tYEBQXxxRdfWLafOHGCvn37otfrqVmzJsOGDSMhIeGW3z8hROXhbGfFpB712PlaV17qUQ8nWx1n46/w4uojdFu4nTX7ozGYCj5FEkIIUXYURSE8Pp2fDpznrXXH6Lf4b4KnbWLwZ//w3h+n+PO/S8SlZaNVqwiu5cTwNv68P7gp217uzMG3e/DlyPt4rlsQHYJqSMAvRAnJk/6KMsu70NVqwD6gCwxfe23lvLpgyCj8OP7tYdTv15YXBUNGYsF001JuPa9XnT17lo0bN1r6Q33++edMnTqVjz76iObNm3Po0CHGjRuHvb09I0aMIDY2lu7du9O7d29efvll7OzsSE9Pp1u3bnTo0IEdO3ag1WqZOXMmvXv35ujRo5Yn+ps3b8bR0ZGQkBAURSEjI4MuXbrcdL+tW7fi5eXF1q1bCQsLY/DgwTRr1oxx48YBMHz4cPbs2cPixYtp2rQpERERlqA+NjaWTp06MW7cOBYuXEhmZiavvfYagwYNYsuWLbf9/gkhKgcnWx3PdQtiZLsAvv7nHMv+juBcYgav/niUxZvPMKFLXR5p4YOVVurFhRDidqVkGDh8/toT/MPRyaRkFmxyX9PRmhZXm+g393OhsbcTtlaaCsixENWPBP2iWOvXr0ev12MymcjKym2BsHDhQgDeeecdFixYwMCBAwEIDAzkxIkTfPrpp4wYMQJPT0+0Wi16vR5PT0/MZjNfffUVarWaZcuWWUZOXb58Oc7Ozmzbto2ePXsCYG9vz7JlyyzB/Jdfflmi/VxcXPjoo4/QaDTUr1+ffv36sXnzZsaNG0doaChr1qwhJCSE7t27A1C7dm1LWZcuXUqLFi2YNWuWZd2XX36Jr68voaGhlhYHQojqwcFGx/jOdRnRJoBVe8/x2Y6znL+cyeS1x/hw8xme6VyHx+71xUYnN51CCFESRpOZ0EvpltH0D0VdJjy+YItTa62a4FpO+frieznZVkCOhbg7SNBfUd64UOhqs9nMlfQrOF6/8pWwoo+juuFJ1MRjt52163Xp0oWlS5eSkZHBsmXLCA0N5bnnniM+Pp7o6GjGjBljeYoOYDQacXJyKvJ4hw8fJiwsDAcHh3zrs7KyCA8PtywHBwfn68d/4MCBEu3XqFEjNJprN+heXl4cO3bMcm6NRkOnTp0KzduBAwfYunUrer2+wLbw8HAJ+oWopuyttfyvYx2GtQ7gu31RfLI9nAspWbz9y398tDWMpzvV4Yn7/ST4F0KIG8SlZV2dMi83wD96PoWMQqbMC3CzswT3zXydqe/pKK2phLiDJOivKFb2ha83m0FrKlna0hz3Ftnb21O3bl0AFi9eTJcuXZg+fTrPPvsskNvEv1WrVvn2uT7ovpHZbKZly5asWrWqwLYaNWrkO++t7HfjVCwqlQqzObePrq1t8TXIZrOZBx98kDlz5hTY5uXlVey+Qoiqz9ZKw+j2gQxp5cea/dEs3RZObEoW0387wcdbw3mqY22GtvbDzkounUKIu0+20cR/F1ItT/APRSUTk1xwyjy9tZZmeVPm+TnT1McZN711BeRYCJFH7lxEqUydOpU+ffrwzDPPUKtWLc6ePcvQoUNLvH/Tpk1Zt24dHh4eODo63nyHq1q0aMHq1atLvd/1goODMZvNbN++3dK8/8Zz/PTTTwQEBKDVyr+GEHcrG52G4W0CGHyfLz8diOHjrWHEJGfy7oaTLN0ezrgOtRnWxh+9tXxPCHG3MJrMRF/OIDodTsamYWutQ6tRo1Wr0GnUaDUqdOrc33mv1VV4OlBFUTh/OTPfaPonLqSSc8NgpyoV1PNwsAT4zf1cqFNDL1OhClHJyB2LKJXOnTvTqFEjZs2axbRp03j++edxdHSkT58+ZGdns3//fi5fvsykSZMK3f+xxx7j448/pn///syYMQMfHx+ioqJYu3Ytr7zyCj4+PoXuN3ToUObNm1fq/a4XEBDAiBEjGD16tGUgv3PnzhEXF8egQYOYMGECn3/+OU888QSvvPIK7u7uhIWF8f333/P5558X24JBCFH9WGs1DGnlx2P3+vDzwRg+2hpGVFIGczae4tMd4YxtH8jwtgE42sjo0UJUdSazQlxaFtFJmZy/nHHt99XXF1OzMJkVQMv8Y3tKdEy1CrQaNTq1Kve3RoX2asWA7mqFwbX1+dMUn/bq73yvi6qAuHb+69ffeHzMJs6kqPh0RwRHYnKf5iekF5wyz9Xeiua+1wL8Jj5OOMh3oBCVngT9otQmTZrEqFGjCAsLY9myZcybN49XX30Ve3t7goODmThxYpH72tnZsW3bNiZPnszAgQNJS0ujVq1adOvWrdgn+HZ2duzYsYPXXnutVPvdaOnSpbzxxhuMHz+exMRE/Pz8eOONNwDw9vZm165dvPbaa/Tq1Yvs7Gz8/f3p3bs3arX0OxPibqXTqBl0ny8DW9Ti1yMX+GhLGGcTrjB/Uyif7TjLqHaBjG4XiJOd3PgKUVkpikJ8ejbnL2cSnZTB+cv5g/uY5EwMJqXYY1hp1diqTVhZWWM0KxhNCgazGaNJwWguuK9ZgRyjmRwACvZzr3w0cOKMZUmrVtHI29HSF7+5rwu+rraWAZWFEFWHBP2iSCtWrCh0/ZAhQxgyZEiB14U5fPhwgXWenp6sXLmy1Oe9lf0WLVqUb9nGxoaFCxdaZiC4UVBQEGvXri10mxDi7qbVqBnYwof+zWqx/ugFPtwSRlhcOh9sPsMXOyMY2TaAMe0DcbG3uvnBxG1bsmQJ8+bNIzY2lkaNGrFo0SI6dOhQaNq1a9eydOlSDh8+THZ2No0aNWLatGn06tXrDudalBdFUUjOMFiezOc9pb8+yM82mos9hlatwtvZFl9XW3yc7XJ/u1z77WytZuPGP+jbt3OBMYQURSlYEWAyYzBf/W1SMF5dbzCZMZqv/r663mBSbnh9bd+SHbMEx79h+41ptWYDrYM8aRngSnM/Zxp5O8kApkJUExL0CyGEEKWgUavo36wWDzbx5o/jF/lwyxlOXUzjo61hfLkrgmFt/BnXoTbuMnBVuVm9ejUTJ05kyZIltGvXjk8//ZQ+ffpw4sQJ/Pz8CqTfsWMHPXr0YNasWTg7O7N8+XIefPBB9u7dS/PmzSugBOJWpGYZLAH89U/r85avFDJq/PVUKvBytMHH1Q5fFzt8XGzxdb32u6aDNVpN0S37DIaCc8tfO3Zuk3mdBmypeoGywWBgw4YN9O3btECFhhCi6pOgXwghhLgFarWKfk286NPYk5CTl1i8+Qz/XUjl0+1nWbk7kidb+fO/jrXxcLSp6KxWOwsXLmTMmDGMHTsWyG3V9eeff7J06VJmz55dIP2Nrb5mzZrFL7/8wm+//SZBfyWSkWPMF9Bbfl8N7FMyiw6683g4WFuC+BsDey8nW5kmTghxV5KgXwghhLgNarWKXo086dmwJltOxbF48xmOnE9h2c4Ivv7nHE/c78dTnWrj5VT8tKGiZHJycjhw4ACvv/56vvU9e/Zk9+7dJTqG2WwmLS0NV1fXItNkZ2eTnX1tILPU1FQg94locU98SyJv/9s9TmVUXNmyDSZikrOISc4k+nImMcmZuU/rr/5OunLz98PFToeviy21nG3xcbGllostvi62+Djb4u1sU3xzdMWEwXDrfevv1s+tqpOyVU1SttId62Yk6BdCCCHKgEqloluDmnSt78GOMwl88FcoB6OSWbE7km/3RjHoPh+e6VyXWs4S/N+OhIQETCYTNWvWzLe+Zs2aXLx4sUTHWLBgAVeuXGHQoEFFppk9ezbTp08vsH7Tpk3Y2dmVLtNFCAkJKZPjVDSzAtkmyDRBphHSjSr2fPMXSdkqErPJ/Z0FqYabDwBnq1FwtQY3m6u/rXN/u9oouFmDtcYIXJ0b3gQkQHoCnCL3506oLp9bYaRsVZOUrWoqi7JlZGSUKJ0E/XeIohQ/IqyomvI+VxnJVgiRR6VS0aleDToGubM7PJEPNp9hX0QS3/wTxep/o3m0pQ/jO9fF17VsAse71Y3fu4qilOi7+LvvvmPatGn88ssveHh4FJlu8uTJ+aafTU1NxdfXl549e5Zq1pjCGAwGQkJC6NGjR6XoP51tNJOeZSAt20hqppHULCNpWQbSsoyWdWnZRtIyDbnbrr5Oy85Nm55tpKS3OXZWGnycbanlYoOPix0+zja5T+ydc5/YO9pW/PtRlMr2uZUlKVvVJGWrmsqybHmt0G5Ggv5ylvdBZmRkYGsrT3eqm7zaNa1W/pWEEPmpVCra1XWnXV13/jmbyOLNZ9gdnsh3+6JZs/88A5rXYkKXugS621d0VqsUd3d3NBpNgaf6cXFxBZ7+32j16tWMGTOGH374ge7duxeb1traGmvrgoMx6nS6MrsBLYtjKYrClRwTqZm5QXpqliHf67QsI6lXg/X8y9de32xU+xKXR6PCwUaL1pTDPT7u+LnZXxso72r/eld7qypfUV6WfwOVjZStapKyVU1lUbaS7i+RSjnTaDQ4OzsTFxcH5M43X9zFzmw2k5OTQ1ZWVrWbG746lU1RFDIyMoiLi8PZ2RmNpuqN1CuEuHNa13ajdW039kcmsXhLGDtC4/nxwHnWHjxP/2a5wb+/i4z2XxJWVla0bNmSkJAQBgwYYFkfEhJC//79i9zvu+++Y/To0Xz33Xf069fvTmS1RAwmsyX4LixoT71hW1qW4erT+KtP4rMMFDJF/C3RW2txtNHiYKPD0fbq7wLLhW9ztNFhrVVjNBqvjgLfstreqAshRFUjQf8d4OnpCWAJ/IujKAqZmZnY2tpW+ZrwG1XHsjk7O+Pp6YnRaKzorAghqoB7A1z5avT9HIq6zIdbwthyKo6fD8Ww7nAMfRt50ljqD0tk0qRJDBs2jHvvvZc2bdrw2WefERUVxdNPPw3kNs2PiYnhq6++AnID/uHDh/PBBx/QunVrSysBW1tbnJyc7nj+p/12kr8OGZi+fz2ZhoJP2c2oycbKsmxLVpHH0l1Nq1WrcLTV4WFtRH81INdba3Gw1eJgrcPBRofeRoe93sESrDvpDDhaa3Gw1qK30aJRX39tVoHVdV1QcjKAomoXzHDdAHpqcw7kXAGliKDf6rrWLYZMUIppaZAvbRYoxQzEV5q0OrvcOfwAjNlgLuY6fl1atdlQfNm0tpD3YMOYA+ZiBtkqVVobUGtKn9ZkAFNO0Wk11qDJDQdUirH4sl2XFpMRTNmFpwPQWIFGV/q0ZhMYi/57R60DrVXp0yrm4suW77hmMGYWc1wtaK9W0ioKGIrpU12atCoN6K6b7SXnSunSFlU2lRp0tvnTFnncG9MW939fmu+IG9KW6v8+E5Ri/oYr2XfETdNqK6bltwT9d4BKpcLLywsPD4+bjrBoMBjYsWMHHTt2rHY15NWtbDqdTp7wCyFuSXM/F74ceR/HzqeweMsZQk5c4vfjF/kdLanOZ3itT8OKzmKlNnjwYBITE5kxYwaxsbE0btyYDRs24O/vD0BsbCxRUVGW9J9++ilGo5EJEyYwYcIEy/oRI0awYsWKO5190rON7NWMyV0o5DJywOo+PvKaZXmKPuVod6zMhQc3OT5tMQ1fj41OnVuhPrc2JCUWfmLv5vC/bdeW3w+GlKjC09aoDxP2Xlv+vAvEFzFUnpMfvHjMstj+zLvojowtPK2dG7x69tryN4/CuZ2Fp9XZwZux15bXDIMzmwpPCzAt5drrn/8HJ34pOu0bF64FAL9NhCPfFp32lXCwdwegccy36OaNKTrtC0fBJffvkC0zYPeHRacd/w94NMh9/fcC2P5e0WnHbYFaLXNf710KIVOKTjtiPQR2yH19YAVseLnotEPWQL1eAPgk7UE3b3TRaR9bAY2utq459Rv8MLLotP2XQPOhua/DN8O3RQ+aSd/5cP+43NfndsPKB4pO22MGtHsh93XsYfi8a9FpO70OXSYD4JB1Ad08/6LTtn0Oes7MfZ0SDR80KTrtfWOh34Lc1xmJMK9O0WmbDoEBS3NfGzJglnfRaRv2h0FfXVsuLm1QTxj6g2VRu6hB0RUK/u1h1O/XlhcF5+a7MDd+R3zcqly+I1jeBy4cKjztDd8Rmu8HQ1QRM7NUwu8I/nwD/l1WdNoXjoK+mM+2nEjQfwdpNJqbBokajQaj0YiNjU21CIyvV53LJoQQtyLYx4nPh9/LiQupLN4cysb/LtGk1p1/8lwVjR8/nvHjxxe67cZAftu2beWfoVJ4tkttOF309pb+Liwfev+1Ff+poYiHYlYaNVhJBbQQQoiiqRQZVv62paam4uTkREpKSpmM6JvbF65vtQuMpWxVk5StapKyVT0Gg4HlP21g5MA+WFlZ3XyHmyjLa5Mo+2v9n7/9TK9ePQv/Gy5VM9/K1XTXYDCwcf06evcsZlTqKtq8P7dsv9C7Z/eiy1ZFm/cbDAb++P1X+vToVnTZqmjzfoPBwIbf19O3R5eiy1ZFm/dbrofdOxVdtkr2HQGU6P/eUrYeXdBpi6nYrETfESVKq7XFYDKV2X1MSa9N8qRfCCGEqCRq2soUoHcLk8Y69wa0JDd8VqWY4aFUaUsxbWQp0prVViUvm64U/VuvD4jKMq3WGijZQJpmta7kZdNaASWswCuvtBrdtYD6JhSVtuRl02ivVQCUZVq1puR/w6VJq1KXvGxqdSmOqyqftFD6tCUNHivBd0Tp/u9tS162SvAdUaK0pmIqG8pJ1R5CXQghhBBCCCGEEEWSJ/1lIK+HRGpq6m0fy2AwkJGRQWpqarVqtgpStqpKylY1SdmqnrIuV941SXrxlQ251peMlK1qkrJVTVK2qqksy1bSa70E/WUgLS0NAF9f3wrOiRBCCJFfWlpahUxLV93ItV4IIURldbNrvQzkVwbMZjMXLlzAwcHhtvtipqam4uvrS3R0dLUbeEnKVnmsWrWK8ePHc/ToUcsUV0XJKxvA1q1badGiRbHp+/XrB8Dvv/9ebLrKoKp9bqUhZat6yrpciqKQlpaGt7c3arX05rtdcq0vGSlb1XR92X777bcS3yPAtXuKktwjVIS75XOTslUdZVm2kl7r5Ul/GVCr1fj4+JTpMR0dHavdH3geKVvFs7XNHUDFwcGhVPnV6/U3Tf/pp58CVIn3IU9V+dxuhZSt6inLcskT/rIj1/rSkbJVTY6OjqW+R8hLX5J7hIpU3T83KVvVU1ZlK8m1XoJ+IUSZatiwYUVnQQghhBBCCHGVtPcTQpRYWloazzzzDO7u7ri5uTFw4EAuXLiQL03nzp3p3LmzZTkyMhKVSsXcuXN599138fPzw8bGhnvvvZfNmzeX+NyKohAUFESvXr0KbEtPT8fJyYkJEyYAkJWVxUsvvUSzZs1wcnLC1dWVNm3a8Msvv+Tbb/jw4QWO9eCDD6JSqfjhhx8s6w4ePIhKpeK3334rcX6FEEKIu1VsbCwtW7YkKCiIM2fOADBy5Ej0ej1hYWH07dsXvV6Pr68vL730EtnZ2fn2z8nJYebMmdSvXx9ra2tq1KjBqFGjiI+PL3Cu1atX06ZNG+zt7dHr9fTq1YtDhw7dkXIKUVVI0F/JWFtbM3XqVKytSzgXZBUiZauarK2t6d+/PwBjx45Fp9Px7bffMnfuXLZt28aTTz5ZouN89NFHbNy4kUWLFvHNN9+gVqvp06cPe/bsKdH+KpWK5557jpCQEMsNRJ6vvvqK1NRUS9CfnZ1NUlISL7/8MuvWreO7776jffv2DBw4kK+++sqyX/fu3QFISkoCwGg0sn37dmxtbQkJCbGk++uvv9BqtfkqMyq76v43WR3LVl3LJQqqzp+1lK1qKsuyHT9+nFatWmFtbc2ePXsICgqybDMYDDz00EN069aNX375hdGjR/P+++8zZ84cSxqz2Uz//v157733GDJkCL///jvvvfceISEhdO7cmczMTEvaWbNm8cQTT9CwYUPWrFnD119/TVpaGh06dODEiRNlXrbKRspWNVVI2RQhxF1n+fLlCqBERESUKv348ePzrZ87d64CKLGxsZZ1nTp1Ujp16mRZjoiIUADF29tbyczMtKxPTU1VXF1dle7du5c436mpqYqDg4Pywgsv5FvfsGFDpUuXLkXuZzQaFYPBoIwZM0Zp3ry5ZX1YWJgCKF999ZWiKIqyc+dOBVBeffVVJTAw0JKuR48eStu2bUucTyGEEKKqutV7hH///VcJCQlRHB0dlUcffTTfNV9RFGXEiBEKoKxZsybf+r59+yr33HOPZfm7775TAOWnn37Kl+7ff/9VAGXJkiWKoihKVFSUotVqleeeey5furS0NMXT01MZNGhQSYssRLUnT/qFECX20EMP5Vtu0qQJAOfOnbvpvgMHDsTGxsay7ODgwIMPPsiOHTswmUwlOr+DgwOjRo1ixYoVXLlyBYAtW7Zw4sQJnn322Xxpf/jhB9q1a4der0er1aLT6fjiiy84efKkJU2dOnUICAjgr7/+AiAkJITg4GCefPJJIiIiCA8PJzs7m507d1paBQghhBCioJUrV9K3b1/Gjh3LmjVr8l3z86hUKh588MF865o0aZLvPmL9+vU4Ozvz4IMPYjQaLT/NmjXD09OTbdu2AfDnn39iNBoZPnx4vnQ2NjZ06tTJkk4IIc37hRCl4Obmlm85r1nS9U3tiuLp6VnoupycHNLT00uch+eee460tDRWrVoF5HYb8PHxsXRBAFi7di2DBg2iVq1afPPNN+zZs4d///2X0aNHk5WVle943bp1s4wt8Ndff9GjRw+Cg4OpWbMmf/31F7t27SIzM1OCfiGEEKIY33//Pba2towdO7bIaS3t7OwKVAZYW1vnuzZfunSJ5ORkrKys0Ol0+X4uXrxIQkKCJR3AfffdVyDd6tWrLemEEDJ6vxDiDrl48WKh66ysrNDr9SU+Tt26denTpw8ff/wxffr04ddff2X69OloNBpLmm+++YbAwEBWr16d78bjxoGCIDfo/+KLL9i3bx979+7lrbfeAqBr166EhIRw7tw59Ho9rVu3Lk1xhRBCiLvKqlWrePvtt+nUqRObNm2iWbNmt3ScvMGCN27cWOh2BwcHSzqAH3/8EX9//1s6lxB3Cwn6hRB3xNq1a5k3b56lhj8tLY3ffvuNDh065AvYS+KFF16gZ8+ejBgxAo1Gw7hx4/JtV6lUWFlZ5Qv4L168WGD0fsgN+lUqFW+//TZqtZqOHTsCuYP8vfLKK5w7d46OHTui0+lKW2QhhBDiruHq6spff/3FAw88QJcuXfjjjz9uqcL8gQce4Pvvv8dkMtGqVasi0/Xq1QutVkt4eDiPPPLI7WRdiGpPgn4hxB2h0Wjo0aMHkyZNwmw2M2fOHFJTU5k+fXqpj9WjRw8aNmzI1q1befLJJ/Hw8Mi3/YEHHmDt2rWMHz+eRx99lOjoaN555x28vLwKjPzv4eFB48aN2bRpE126dMHOzg7IDfqTkpJISkpi4cKFt15wIYQQ4i7h4ODAxo0bGThwID169ODXX3+lS5cupTrG448/zqpVq+jbty8vvPAC999/PzqdjvPnz7N161b69+/PgAEDCAgIYMaMGbz55pucPXuW3r174+LiwqVLl9i3bx/29va3dI8hRHUkffqFEHfEs88+S48ePXj++ecZMmQIRqOR33//nXbt2t3S8QYNGmQ57o1GjRrFe++9xx9//EHfvn2ZM2cOr7/+OkOGDCn0WHn99a/vt+/n52eZZkj68wshhBAlY2tryy+//EKvXr3o27cvGzZsKNX+Go2GX3/9lTfeeIO1a9cyYMAAHn74Yd577z1sbGwIDg62pJ08eTI//vgjoaGhjBgxgl69evHqq69aWukJIXKpFEVRKjoTQojqKzIyksDAQObNm8fLL79cZse99957UalU/Pvvv2V2TCGEEEIIIaobad4vhKgyUlNTOX78OOvXr+fAgQP8/PPPFZ0lIYQQQgghKjUJ+oW4iymKgslkKjaNRqMpcuqdsmQ0GovdrlarOXjwIF26dMHNzY2pU6fy8MMPl3u+hBBCiLtRZbpHEELcHunTL8RdbOXKlQXmtr3xZ/v27bd1joCAABRFKbZpf2Rk5E3zMWPGDDp37oyiKCQkJDBt2rTbypcQQgghinYn7hGEEHeG9OkX4i6WmJhIREREsWnuuecey5y45SUnJ4ejR48Wm8bb2xtvb+9yzYcQQgghclWWewQhxO2ToF8IIYQQQgghhKimpHm/EEIIIYQQQghRTclAfmXAbDZz4cIFHBwcZDATIYQQlYKiKKSlpeHt7Y1aLXX8t0uu9UIIISqbkl7rJegvAxcuXMDX17eisyGEEEIUEB0djY+PT0Vno8qTa70QQojK6mbXegn6y0DeACbR0dE4Ojre1rEMBgObNm2iZ8+e6HS6sshepSFlq5qkbFWTlK3qKetypaam4uvrK4NslRG51peMlK1qkrJVTVK2qqksy1bSa70E/WUgr5mfo6NjmdwI2NnZ4ejoWC3/wKVsVY+UrWqSslU9BoMBa5uyL5c0RS8bZX2td7DW4GijQafTFHIyDehsri3nXCkmY2rQ2d5i2gygqPGcVWBlV+q0BoMBvY226LIBWNlfe23IBMVcdJ7zpc0CpZh540uTVmcHef8bxmwwG2+aNrdsuuLLprWFvCa2xhwwG4o+bqnS2oBaU/q0JgOYcopOq7EGjRaDwYC9rVXxZbuaNve4RjBlF3NcK9DoSp/WbAJjVtFp1TrQWpUqrcFgwM7Wpviy5TuuGYyZxRxXC1rr3NeKAoaMsklbqv/73LSW62FxZatk3xFAif7vLWWz1aHTFlG2q2mvHbdivyNKlFZri8FkKvP7mJtd6yXoF0IIISqBv8MSmH1EQ52WqTT1c6vo7Ihy9sDRcVDUTKVBPWHoD9eW59UtOljwbw+jfr+2vCgYMhILT+vdHP637dryx60gJarwtDXqw4S915Y/7wLxpwpP6+QHLx6zLLY/8y66I2MLT2vnBq+evbb8zaNwbmfhaXV28GbsteU1w+DMpsLTAkxLufb65//BiV+KTvvGhWsBwG8T4ci3Rad9JRzs3QFoHPMtunljik77wlFw8c99vWUG7P6w6LTj/wGPBrmv/14A298rOu24LVCrZe7rvUshZErRaUesh8AOua8PrIANLxeddsgaqNcLAJ+kPejmjS467WMroNGA3NenfoMfRhadtv8SaD4093X4Zvh2UNFp+86H+8flvj63G1Y+UHTaHjOg3Qu5r2MPw+ddi07b6XXoMhkAh6wL6Ob5F5227XPQc2bu65Ro+KBJ0WnvGwv9FuS+zkiEeXWKTtt0CAxYmvvakAGzipl6uGF/GPTVteXi0t7wHaFd1KBKfUewvA9cOFR42hu+IzTfD4ao3YWnrYTfEfz5Bvy7rOi0LxwF/Z2fglpG9hFCCCEqWHRSBpPWHCM+S8Wa/TEVnR0hhBBCVCMqRVGKaochSig1NRUnJydSUlLKpMnfhg0b6Nu3b7VqtgpStqpKylY1SdmqjiyDicc+2cOxmBR87RX+eKk7ejubm+94E2V5bRJlf63/87ef6dWriP6cVbx5/8b16+jds0fR/59VuHn/xvW/0Ltn96LLVoWb9//x+6/06dGt6LJV4eb9G35fT98eXYouWxVu3r9hwwb6du9UdNkq2XcEUOLm/Rs2bMj93Kph8/6yuo8p6bVJmvcLIYQQFWjar/9xLCYFFzsdo+/JxLqofpmiWjFprHNvQEtyw3f9jWqZprW7eZpbSGtWW5W8bNcHGDdNW4rKsNKk1VoD1iVKalbrSl42rRVgVcI8lFNaje5aQH0Tikpb8rJptNcqAMoyrVpT8r/h0qRVqUteNrW6FMdVlU9aKH1anQ6TyYTBUEiFkOn6ypGbXGPypb1Jo/CsW02rKj4fWVkYDAa0Wi1ZJhUmdfFp8yujtNk3VlSVUdqcnGtly8rCZCqm4gHQaDRotdrbHp9Hgn4hhBCigny/L4rv/41GpYKFjzUhNXTvzXcSQgghbpCens758+epLo24FUXB09OT6OjoajcgbWnLZmdnh5eXF1ZWJazsK4QE/ZWQxpSd2/RGqV5N/gDU5pyiywZVtskfgNpsKL5sVbTJH4BKMRZftira5A/I/RsrrmxVtMlfvrRFla0SfkeU7v8+E5Ri/oYr2XfEjWmPxaQw+9cD2GJmYrd6tK/jwobQog8lqo9fj8Ty+zk1l/dG4eeux8fFjlrOtthby22ZEKL0TCYT58+fx87Ojho1alSLINlsNpOeno5er0etrl7D0JW0bIqikJOTQ3x8PBEREQQFBd3yeyFXl0pIRvS9Skb0zX0tI/rmvpYRfa8ty4i+QNUf0TcYOKIl90q8EwxNDxZ9HFGtbD4Vx5YLarZcyP9/4WKno5aLLT7Odrm/XWyp5WybWyngYouTbdUfw0IIUfaMRiOKolCjRg1sbUvRZaYSM5vN5OTkYGNjUy2D/pKWzdbWFp1Ox7lz5yz73AoJ+oUQQggh7qCeDWtyJSEWKxdPYpKziEnOJCXTwOWM3J/jMamF7udgrbVUBuS1DvBxsb26zg4XO121eMInhCidvCb98v9fPZVFpUe1Gr3/8uXLPP/88/z6668APPTQQ3z44Yc4OzsXuc/atWv59NNPOXDgAImJiRw6dIhmzZqV6rxlOaLvlHXHiI04RfvmDQhw1+PrakctZxus80atrMLN+2VE36rZvF9G9K2azftlRF8q1XfE9Wk/2HyGT7aHY6NT8/3/2nBPTYfc06Jlwx8by2xWAhm9v2yV90w9aVkGYpIzOZ+Umfv7csbV35nEXM4k8Uox39dX2eo011UC2FLL2S7fcg29dbkHBdVtdo3rSdmqpruhbF27duX8+fMEBgbe8pPgysZsNpOamoqjo2O1fNJfmrJlZWURERFR6Od7V47eP2TIEM6fP8/GjRsB+N///sewYcP47bffitznypUrtGvXjscee4xx48bdqawWSlEUfjoUw5VsO0I2nrOsV6nA28kWX1db/F3t8XOzw9/NLve1qx1OdiX8ApMRfUufVkb0BWRE32vHrboj+pb9ccvnO6J0//e2JS9bJfiOQGvNXyeSeX97DGDD7IHNuMfX89r2wkZcFncNBxsd9T111Pcs/KYtI8fIheRMoq9WApy/fF3lwOVM4tKyyTSYOBOXzpm49EKPYaVV4+Nsm6/rQK3rWg3UdLRBo5YnhUIIUd1Um6D/5MmTbNy4kX/++YdWrVoB8Pnnn9OmTRtOnz7NPffcU+h+w4YNAyAyMrLE58rOzib7uqkZUlNzm+EZDIbCp8koIZNZ4aVuddh56BRqJw/OX84i6nImGTkmYpJzL+7/nE0qsJ+TrRY/Vzv8XOzwc82tHPBztcPP1Y6aDtaoK8kFPO+9uZ33qLKSslVNUraqqaqW7VxiBi+uOQzAsNZ+9Gvska8MZV2uqvb+iOLZWWmp6+FAXQ+HQrdnGUzEpmRZKgFurBS4mJpFjtHM2YQrnE0ovFWPVq3Cy9mm0DEFfFxs8XSyQaepXk/chBCVm0aj4eeff+bhhx8u1/MEBAQwceJEJk6cWK7nKcyKFSuYOHEiycnJ5XaOahP079mzBycnJ0vAD9C6dWucnJzYvXt3kUH/rZg9ezbTp08vsH7Tpk3Y2ZXiiVYh3ID+AQAXwSW31W+6ERKyICFLRUIWJGapSMhWkZgFqQYVKZlGjsWkcqyQPoBalYKbDbhZK7jbgJtN7m9369z1ugq4doeEhNz5k94hUraqScpWNVWlsuWYYOFxDWlZKgIdFJopZ9mw4WyhacuqXBkZxXQZEdWOjU5DoLs9ge6Ft9gxmMxcTMkiurBKgeRMYpOzMJoVopMyiU4qvBuTWgWejjaWgQVvHGjQ29nmZjN1CyFEPnFxcbz99tv88ccfXLp0CRcXF5o2bcqUKVNo1KgRMTExuLm5VXQ2C7gTgXpZqjZB/8WLF/Hw8Ciw3sPDg4sXL5bpuSZPnsykSZMsy6mpqfj6+tKzZ88y6ecXEhJCjx7F9Hu/TkaOkeikTKKSMom6nHH1dQZRV/sEGs1wKRMuZRb+tL+mo/XVVgG217UUyP3tbFu2AwKVtmxViZStapKyVU1VrWyKovDKT8eJzYjFXW/F10+3pqZjwS4EZV2uvFZoQgDoNGp8Xe3wdS384YTJrHApNetqZUCGZWwBy7gCyZnkGM1cSMniQkoWRBZ+Hg8Ha+wUDduyjlPXw4Ha7vYE1rAnwM0eG10xY3AIIe5KjzzyCAaDgZUrV1K7dm0uXbrE5s2bSUrKbd3s6elZ7fr0V4RKH/RPmzat0Kfq1/v333+BwkesVBSlzAetsba2xtq6YB9OnU5XZjegJT2Wk06Hk70tjX0LbjOazMSmZBGVlMG5xAzOJV0hKjH3dVRSBunZRi6lZnMpNZt/Iy8X2N/BRntt7AC33O4C/q52+LnZ4eVke8v9/sryfapspGxVk5StaqoqZftqTyS/HIlFo1bx0ZAW+LgV3jw7T1mVqyq8N6Ly0KhVeDvb4u1sC7gW2G42KySkZ3P+usEFbxxsMNNgIi4tG1AReehCvv3zxieqXcM+tyLA3Z7AGnpqu9vj7Xzr9xRCiIIURSHTUMyAtOXIVqcpceyVnJzMzp072bZtG506dQLA39+f+++/3zLY3fXN+yMjIwkMDGT16tV8+OGH7N+/n8aNG7Nq1SpSUlJ45plnOHXqFO3bt+frr7+mRo0aAHTu3JlmzZqxaNEiy7kffvhhnJ2dWbFiRaF5W7hwIcuXL+fs2bO4urry4IMPMnfuXPR6Pdu2bWPUqFHAtfhz6tSpTJs2jZycHN566y1WrVpFcnIyjRs3Zs6cOXTu3Nly7BUrVjBlyhSSkpLo1asX7du3L+W7XHqVPuh/9tlnefzxx4tNExAQwNGjR7l06VKBbfHx8dSsWbO8slepaa+r1W9XN/82RVG4nGHgXOKVa5UCiRlEJ+VWDlxKzSYty8jxmNRCpw7SaVT4uuQe2z+vQsDNHn83O3xd7LC1ktp8IYQ4cC6JGb+dAGByn/q0rl35migKURJqtQoPRxs8HG1o4edSYLuiKCRdyeFcQhq/bN6Ni989nEvKzB1DID6dtCyjpeXA32cS8u1rpVUT4GZHbXc9gTVyKwRqu9tTu4ZepiEU4hZkGkw0nPJnhZz7xIxe2FmVLMTU6/Xo9XrWrVtH69atC32oWpipU6eyaNEi/Pz8GD16NE888QSOjo588MEH2NnZMWjQIKZMmcLSpUtvuRxqtZrFixcTEBBAREQE48eP59VXX2XJkiW0bduWRYsWMWXKFE6fPm0pC8CoUaOIjIzk+++/x9vbm59//pnevXtz7NgxgoKC2Lt3L2PHjuXtt9/miSeeYNOmTUydOvWW81lSlT7od3d3x93d/abp2rRpQ0pKCvv27eP+++8HYO/evaSkpNC2bdvyzmaVo1KpcLW3wtXeiuaFXLwzc0xEX77WKiAq8QrnkjKISswg+nIGBpNS7GBAHg7WVysD7C2VAt5OVmQVM7OVEEJUJ/Fp2YxfdRCjWaFfsBdj2gdWdJaEKDcqlQo3vTWO1mqi3RX6dq5taW2iKAqJV3KISLhCRPwVwhPSiYi/QkTCFc4lZpBjNBN6KZ3QSwVnHXCy1eVWAlhaCOipfbW7gDxgEKJq02q1rFixgnHjxvHJJ5/QokULOnXqxOOPP07jxo2L3O/ll1+mV69eALzwwgs88cQTbN68mXbt2gEwZsyYIp/gl9T1A/oFBgbyzjvv8Mwzz7BkyRKsrKxwcnJCpVLh6XltFp7w8HC+++47zp8/j7dRxqXHAAC+DUlEQVS3tyWvGzduZPny5cyaNYsPPviAnj178uKLL+Lo6Ej9+vXZvXu3Zfa58lLpg/6SatCgAb1792bcuHF8+umnQO6UfQ888EC+Qfzq16/P7NmzGTBgAABJSUlERUVx4UJuM7S82hpPT898H+LdxtZKQ72aDtSrWbAZqsmsEJtydeyAxAxLZcC5pNyLd1qWkbi0bOLSCnYbUKHhu4t76RhUg/ZBNWju5ywjAQshqh2jycyz3x7kUmo2dT30zHm0iTytFHctlUqFu94ad7019wXk7zpgMivEXM7kbEI6EQlXOHu1MiAi4QoxyZmkZBo4HJ3M4ejkAsf1drKhdg29ZQDD3IoBPbVcpLuAuLvZ6jScmNGrws5dGo888gj9+vXj77//Zs+ePWzcuJG5c+fy2WefMXDgwEL3adKkieV1Xovu4ODgfOvi4uJuIffXbN26lVmzZnHixAlSU1MxGo1kZWVx5coV7O0LHzD14MGDKIpCvXr18q3Pzs62DEZ48uTJAjMRtGnTRoL+0li1ahXPP/88PXv2BOChhx7io48+ypfm9OnTpKSkWJZ//fVXS58MwNKVIK9fhihIo1Zdnb7HjrZ1Cm5Pzsi5OoZAbguBvO4DkYm53QYOR6dwODqFxVvCsLfS0Kq2G+3rutMhyJ26Hnq5MRZCVHlz/zzN3ogk7K00fPJkS/TW1epyK0SZ0ahVueMGudnR+YaJljJzTEQmXqsECI+/VjGQkmmwDCq4M+yG7gIaNX5udpZBBPO6CgS62+NmbyX3GaLaU6lUJW5iXxnY2NjQo0cPevTowZQpUxg7dizTp08vMui/fsyavP/nG9eZzWbLslqtRlGUfMcoblrbc+fO0bdvX55++mneeecdXF1d2blzJ2PGjCl2P7PZjEaj4cCBA2g0+Ss/8pr/35iPO6Xq/DWUgKurK998802xaW58o0eOHMnIkSPLMVd3H2c7K5ztrGjq65xvvcFg4JufN2Dt15Q9EZfZFZZA0pUctpyKY8up3Nq4mo7WtK9bg/ZBbrSr646HQ8ERroUQojLbcCyWz3bkTsc3/7Gm1PXQV3COhKiabK00NPBypIFXwZmRkq7kEJGQztn43K6Ged0FIhKvkGM0ExaXTlhcwe4CjjZaywCCea0D8loKVKUgSYjqrGHDhqxbt67MjlejRg1iY2MtyyaTiePHj9OlS5dC0+/fvx+j0ciCBQssMwesWbMmXxorKytMpvyDJTZv3hyTyURcXBwdOnQo9NgNGzbkn3/+4YUXXrCs++eff26pXKUh327ijnK1hr4tazGkdQBms8LJi6nsPJPAzrAE9kUkcSk1m58Onueng+cBqO/pQPu67rQLcqdVoKtckIUQlVpYXBqv/HAEgKc61qZPsFcF50iI6il3XCJXWvoX7C5wITnT0jrgbHx6bqXA1e4CqVlGjkQnc6SQ7gJeTjbXdRW4VjHg42KLVroiClHmEhMTeeyxxxg9ejRNmjTBwcGB/fv3M3fuXB566KEyO0/Xrl2ZNGkSv//+O3Xq1OH9998nOTm5yPR16tTBaDTy4Ycf8uCDD7Jr1y4++eSTfGkCAgJIT09n8+bNNG3aFDs7O+rVq8fQoUMZPnw4CxYsoHnz5iQkJLBlyxaCg4Pp27cvzz//PG3btuWDDz5g8ODB/PXXX+XetB8k6BcVSK1W0cjbiUbeTjzVqQ5ZBhMHzl3m7zMJ7AyL578LqZy6mMapi2ks2xmBlUZNC39nOgTVoF1dd4JrOUmfPSFEpZGebeSprw9wJcdE69quvNLrnpvvJMrM77//zowZMzh69Cj29vZ07NiRtWvXWrZHRUUxYcIEtmzZgq2tLUOGDGH+/PlYWVlVYK5FWdOoVZaZizrWq5FvW5bBxLnEDCIS0gm/buyAiIQrJF3JITYli9iULHaHJ+bbT6dR4edqR4CbHXYZKnqYzMiMmELcPr1eT6tWrXj//fcJDw/HYDDg6+vLuHHjeP3114ttSl8ao0eP5siRIwwfPhytVsuLL75Y5FN+gGbNmrFw4ULmzJnD5MmT6dixI7Nnz2b48OGWNG3btuXpp59m8ODBJCYmWrqGL1++nJkzZ/LSSy8RExODm5sbbdq0oW/fvgC0bt2azz77jKlTpzJnzhy6d+/OW2+9xTvvvFMmZS2KBP2i0rDRaWhX1512dd2B+iRdyWF3eAI7zyTw95kEYpIz+edsEv+cTWLen6dxstXRto4b7YPc6VC3Bn5udhVdBCHEXUpRFF798Qjh8VfwdLThwydayJPBO+inn35i3LhxzJo1i65du6IoCseOHbNsN5lM9OvXjxo1arBz504SExMZMWIEiqLw4YcfVmDOxZ1ko9Nwj6cD93gWHKQ4OSPH0k3g+kEFIxOvkGUwEx5/hfD4K4AGww/H+GiI/I8Lcbusra2ZPXs2s2fPLrDNbDZjMBgwmUyWJvYBAQEFump37tz5pt23dTodS5YsYcmSJUXmJTIyMt/yiy++yIsvvphv3bBhw/ItL126tMC0gDqdjunTpzN9+vQizzV69GgeffRRHB0dLWV76aWXikxfFiToF5WWq70VDzTx5oEm3iiKQmRiBjvDEth5Jp7d4YmkZBr44/hF/jh+EQBfV1va161BhyB32tZxw9lOnt4IIe6MZX9HsOHYRXQaFR8PbUENh5LNNSxun9Fo5IUXXmDevHmMGTPGsv76mXs2bdrEiRMniI6OtkyjtGDBAkaOHMm7776Lo2PBPuPi7uJsZ0ULPyta3DCNsdmsEJuaRUT8FY5EJ7EwJJSN/13ixTVHeH9QUwn8hRBVggT9okpQqVSWfnbDWvtjNJk5GpNiGQ/g4LnLRCdl8t2+KL7bF4VKBcG1nGhf1532Qe609HfBWivz+Qohyt6e8ETe23gKgCkPNKSlv8tN9hBl6eDBg8TExKBWq2nevDkXL16kWbNmzJ8/n0aNGgGwZ88eGjdubAn4AXr16kV2djYHDhwotJlndnY22dnZluXU1FQgd1Da221ymrd/WTVdrUyqY9k87LV42DvRopYdyedOsfyMlt+OXECNwpyBjatFV8Pq+LnluRvKZjQaURQFs9mcb9T6qizv6X1euaqT0pbNbDajKAoGg6HArAAl/buWoF9USVqNmhZ+LrTwc+H5bkFcyTayNyKRv88ksCssgdBL6Rw9n8LR8yks2RaOjU7N/YFudLhaCVDf00Gm7BFC3LaLKVk8991BTGaFgc1r8WRr/4rO0l3n7NncmRKmTZvGwoULCQgIYMGCBXTq1InQ0FBcXV25ePGiZS7nPC4uLlhZWXHx4sVCjzt79uxCm2du2rQJO7uy6U4WEhJSJsepjKpr2Rq7woggI8tD1fxyJJbYCzE8UcdMNYj7ger7uUH1Ltvu3bvx9PQkPT2dnJycis5OmUpLS6voLJSbkpYtJyeHzMxMduzYgdFozLctIyOjRMeQoF9UC/bWWrrWr0nX+rk3dZdSs9h5tQLg77AE4tOy2REaz47QeADc9da0r5s7LWCHoBp4OsnUgEKI0skxmnlm1QES0nOo7+nAuwOCpTKxDE2bNq3YPpEA//77r+UpyZtvvskjjzwCwPLly/Hx8eGHH37gqaeeAij0s1EUpcjPbPLkyUyaNMmynJqaiq+vLz179rzt7gAGg4GQkBB69OiRb27p6uBuKNtLg7vT9HQiL/5wjH3xagL8fHnnoYaoq3Dkfzd8btW5bG3btiU2Nha9Xo+NTfW4p1UUhbS0NBwcqt+DutKWLSsrC1tbWzp27Fjg881rhXYzEvSLaqmmow2PtPThkZY+KIpC6KV0/j4Tz66wBP45m0RCejbrDl9g3eELANT10Od2BajrTus6buit5V9DCFG8mb+f4FBUMg42Wj4d1hJbK+lCVJaeffZZHn/88WLTBAQEWJ6UNGzY0LLe2tqa2rVrExUVBYCnpyd79+7Nt+/ly5cxGAwFWgBcfwxr64JjM+h0ujILHMryWJVNdS/bQ819Uak1vPD9IdYciEGn1TDz4cZVPjip7p9bdS2bVqtFpVKhVqstA8NVdXkVunnlqk5KWza1Wo1KpSr0b7ikf9MS2YhqT6VSWUbrHduhNjlGMwejLufOChCWwLHzyYTFpRMWl86K3ZFo1Sqa+znTvm4N2ge50dTHWQbqEULks/bgeb7acw6ARYOb4e9mX8E5qn7c3d1xd3e/abqWLVtibW3N6dOnad++PZD79CsyMhJ//9zuFm3atOHdd98lNjYWLy8vILeZvrW1NS1btiy/Qohq7cGm3pjMCi+uOcyqvVFo1SqmPdSoygf+QojqR4J+cdex0qppXduN1rXdeLnXPaRkGNhzNndawJ1hCZxLzODfyMv8G3mZ9/8CB2streu40SEotyVAoLu9XNCFuIuduJDKGz/nTgf3fNe6dGtQ+JNicWc4Ojry9NNPM3XqVHx9ffH392fevHkAPPbYYwD07NmThg0bMmzYMObNm0dSUhIvv/wy48aNk5H7xW15uHktjGaFV348wso959Co1bz9QAO5TxBCVCoS9Iu7npOdjt6NvejdOPfpT3RS3tSACewKTyA5w0DIiUuEnLgEgLeTDe2D3GkfVIN2ddxw08vUXELcLVIyDDz9zQGyDGY61avBC93rVXSWBDBv3jy0Wi3Dhg0jMzOTVq1asWXLFlxccmdS0Gg0/P7774wfP5527dpha2vLkCFDmD9/fgXnXFQHj7b0wWQ289pPx/hyVwRajYrJfepL4C+EqDQk6BfiBr6udjxxvx9P3O+Hyaxw4kIqf4fFs/NMAvsjL3MhJYs1+8+zZv95ABp6OdK2jivO6RWccSFEuTKbFSatOUxUUgY+LrZ88HizajFVV3Wg0+mYP39+sUG8n58f69evv4O5EneTwff5YTQrvPnzcT7bcRatWsUrve6RwF8IUSlI0C9EMTRqFcE+TgT7ODG+c10yc0zsi0zKnRXgTAInY1M5cfVHhYYLtid4rU9DnGyr50AxQtzNPt4axuZTcVhp1XzyZEuc7awqOktCiEpkaCt/TGaFKb/8x5Jt4Wg1aib1kNZAQpS3U6dOMXLkSA4fPkz9+vU5fPhwRWep0pGgX4hSsLXS0KleDTrVqwFAfFo2u8MT2Hgslj/+u8S3+84TcjKeaQ82om+wp9TwC1FNbA+NZ+FfoQDMfLgxjWs5VXCOhBCV0fA2ARhNCjPWn2Dx5jNo1Sqe7xZU0dkSotIaOXIkK1euBHK7Ynl7e9OvXz9mzpyJRlOyWXGmTp2Kvb09p0+fRq/Xl2d2qywZklyI21DDwZr+zWqx+PGmPNvQRICbHfFp2Uz49iBjVu7n/OWMis6iEOI2RSdl8ML3h1AUeOJ+Pwbd61vRWRJCVGKj2wfyZt8GACwMCeXjrWEVnCMhKrfevXsTGxtLZGQky5Yt47fffmPChAkl3j88PJz27dvj7++Pm5vbLeUhJyfnlvarKso06E9NTS31jxDVRZCTwvoJbXi+a110GhVbTsXRY+EOlv19FqPJXNHZE0LcgiyDiWdWHSA5w0BTHyemPdTw5jvdheT6L0R+4zrW5tXe9wAw78/TfLYjvIJzJO5KOVeK/jFklSJtZsnS3iJra2s8PT3x8fGhZ8+eDB48mJCQEMv25cuX06BBA2xsbKhfvz5LliyxbFOpVBw4cIAZM2agUqmYNm0aADExMQwePBgXFxfc3Nzo378/kZGRlv1GjhzJww8/zOzZs/H29qZevXql2m/+/Pl4eXnh5ubGhAkTMBgMljTZ2dm8+uqr+Pr6Ym1tTVBQEF988YVl+4kTJ3jsscdwdHSkZs2aDBs2jISEhFt+/0qiTJv3Ozs7l6o5s0qlIjQ0lNq1a5dlNoSoMNY6DZN63sNDzbx5Y+1x9kUmMfP3k6w7HMPsAU0I9pEmwUJUJVN/+Y/jMam42OlY8mRLrLUla2p4t5HrvxAFje9cF5NJYUFIKLM2nEKjVjOmfWBFZ0vcTWZ5F70tqCcM/eHa8ry6YCiihap/exj1+7XlRcGQkVgw3bSUW8vndc6ePcvGjRvR6XLHx/r888+ZPn06H330Ec2bN+fQoUOMGzcOe3t7RowYQWxsLN27d6d37968/PLL6PV6MjIy6NKlCx06dGDHjh1otVpmzpxJ7969OXr0KFZWuWPybN68GUdHR0JCQlAUpcT7bd26FS8vL7Zu3UpYWBiDBw+mWbNmjBs3DoDhw4ezZ88eFi9eTNOmTYmIiLAE9bGxsXTp0oVhw4bxwQcfkJ2dzWuvvcagQYPYsmXLbb9/RSnzPv0//vgjrq6uN02nKAp9+/Yt69MLUSnU9XDg+/+1Zs3+aGZtOMnxmFT6f7yTkW0DmdSzHnprGU5DiMru+31RrN4fjVoFHz7RglrOthWdpUpNrv9CFPRctyAMZoXFm8/wzvoTaNUqRrQNqOhsCVGprF+/Hr1ej8lkIisrtwXCggULAHj33XdZsGABAwcOBCAwMJATJ07w6aefMmLECDw9PdFqtej1ejw9PQH48ssvUavVLFu2zFIhvXz5cpydndm2bRs9e/YEwN7enmXLllmC+ZLu5+LiwkcffYRGo6F+/fr069ePzZs3M27cOEJDQ1mzZg0hISF0794dIF8F99KlS2nevDlTpkzB0dERtVrNl19+ia+vL6GhoZYWB2WtTCMPf39/OnbsWOK+FLVr17bU4ghR3ajVKh6/349uDWryzvoT/HrkAl/uimDj8Vim929Mj4Y1KzqLQogiHIlOZsov/wHwUs97aB/kXsE5qtzk+i9E0V7sHoTJbObjreFM/fU/NGoVT7b2r+hsibvBGxeK3qa6oeXaK8WMPaG6oUf4xGO3nqdCdOnShaVLl5KRkcGyZcsIDQ3l2WefJSoqiujoaMaMGWN5ig5gNBpxciq69eyBAwcICwvDwcEh3/qsrCzCw691tQkODrYE/KXZr1GjRvkGGfTy8uLYsdz35PDhw2g0Gjp16lRk3rZt24aPj0+BbeHh4VUj6I+IiChV+uPHj5fl6YWolGo4WLP4ieYMbFGLt385TnRSJuO+2k/vRp5Me6gRnk42FZ1FIcR1kq7kMH7VQXJMZno0rMkznepUdJYqPbn+C1E0lUrFyz3vwWhS+HTHWd5adxzt1QcDQpQrK/uKT1sC9vb21K1bF4DFixfTpUsXZsyYwfDhw4HcJv6tWrXKt09xI/ubzWZatmzJqlWrCmyrUaNGvvPeyn43VlqrVCrM5tzxu2xti28VaDabeeCBB3jrrbfQ6/Wo1dcqVLy8vIrd93ZIG2Mh7pDO93iwaWInPth8hs//PsvG/y6yMyyBV3vfw9BW/mjUMr2fEBXNZFZ44ftDxCRnEuBmx4JBTVHL/6YQ4japVCpe71Mfo1nhi50RTP75GBq1isdkNhAhCpg6dSp9+vRh6NCh1KpVi7NnzzJ06NAS79+iRQtWr16Nh4cHjo6O5b7f9YKDgzGbzWzfvt3SvP/Gc/z000/4+fnh6uqaL+gvT+UW9C9evLjQ9SqVChsbG+rWrUvHjh1LPP+iENWBrZWG1/vUp38zbyavPcbhq02I1x6MYfbAYBp43doXjBCibLwfEsrfZxKw1Wn4ZFhLHG2kCXppyfVfiMKpVCre6tcAk1lhxe5IXv3pKFqNigHNCzbzFeJu1rlzZxo1asTChQuZMmUKEydOxNHRkT59+pCdnc3+/fu5fPkykyZNKnT/oUOHMm/ePPr378+MGTPw8fEhKiqKtWvX8sorrxTatP529rteQEAAI0aMYPTo0ZaB/M6dO0dcXByDBg1iwoQJfP7554wdO5bXX38dDw8PwsLC+P777/n888/L7dpYbkH/+++/T3x8PBkZGbi4uKAoCsnJydjZ2aHX64mLi6N27dps3boVX1+p5RR3lwZejvz0TFtW7T3H3I2nORydzAMf7mRsh0AmdquHrZXcDAtxp4WcuMRHV+fTfu+RYOp7SiXcrZDrvxBFU6lUTH2wIUazmW/+ieKlNUdQq1T0b1arorMmRKUyceJExowZw1tvvcWyZcuYN28er776Kvb29gQHBzNx4sQi97Wzs2PHjh289tprDBw4kLS0NGrVqkW3bt2KfYJ/q/vdaOnSpbzxxhuMHz+exMRE/Pz8eOONNwDw9vbm77//5uWXX7ZUYvj7+9O7d+9yfepfbkH/rFmz+Oyzz1i2bBl16uT2hwwLC+Opp57if//7H+3atePxxx/nxRdf5McffyyvbAhRaWnUKoa3CaBnQ0+m/fofG/+7yKfbz7LhWCwzHw6mU70aNz+IEKJMRCRcYdLqwwCMbBsgN+C3Qa7/QhRPpVIx46HGGE0K3/8bzaQ1R9Cq1fRrUn79eYWorFasWFHo+iFDhvDAAw/g6OjIkCFDGDJkSJHHOHz4cIF1np6erFy5stTnvZX9Fi1alG/ZxsaGhQsXsnDhwkKPERQUxNdff20Zvf9OKLezvPXWW7z//vuWCz5A3bp1mT9/PpMnT8bHx4e5c+eya9eu8sqCEFWCp5MNnwxryefD78XLyYbopExGfLmP5787RHxadkVnT4hqLyPHyDPfHCAt28i9/i680bdBRWepSpPrvxA3p1armDUgmEdb+mAyKzz//SE2Hr9Y0dkSQlRT5Rb0x8bGYjQaC6w3Go1cvJj7pebt7U1aWlp5ZUGIKqVHw5qETOrE6HaBqFXw65ELdFuwje/3RWE2KxWdPSGqJUVRmLz2GKcupuGut+bjoS2w0t6ZWvfqSq7/QpSMWq1iziNNGNi8FiazwrPfHiTkxKWKzpYQohoqtzubLl268NRTT3Ho0CHLukOHDvHMM8/QtWtXAI4dO0ZgYGB5ZUGIKkdvrWXKgw1ZN6EdjbwdSc0y8vraYzz+2T+ExckNshBl7as95/jl8AU0ahUfD2lOTUeZQvN2yfVfiJLTqFXMe6wpDzX1xmhWGL/qAFtPxVV0toQQ1Uy5Bf1ffPEFrq6utGzZEmtra6ytrbn33ntxdXXliy++AECv17NgwYLyyoIQVVYTH2d+mdCOt/o1wFanYV9kEn0++JuFm06TZTBVdPaEqBYOnEvinfUnAJjcpz6tartVcI6qB7n+C1E6GrWKhYOa0i/YC4NJ4alvDrA9NL6isyWEqEbKbSA/T09PQkJCOHXqFKGhoSiKQv369bnnnnssabp06VJep6+UTCYTBoOh2DQGgwGtVktWVhYmU/UK7qpb2XQ6XblOOaXVqBnboTa9G3sy5Zf/2HIqjsVbwlh/NJaZAxrTto57uZ1biOouLi2L8asOYjQr9GvixZj28tS5rMj1X4jS02rULHq8GUazmT//u8T/vtrPlyPvo11dudaLm1OpVEBulzVR/ZTF51puQX+e2rVro1KpqFOnDlptuZ+uUlIUhYsXL5KcnFyitJ6enkRHR1v+gauL6lg2Z2dnPD09y/UcPi52fDHiXjYcu8i03/7jbMIVhny+l0db+vBm3wa42FuV6/mFqG4MJjPPfnuIS6nZ1PXQM/eRJtXmO6kykeu/EKWj06j58IkWjF91gL9OxjFm5b8sH3k/bepIKyRRvLyHUDk5Odja2lZwbkRZy8jIAHIfON6qcrsKZ2Rk8Nxzz1mmPAgNDaV27do8//zzeHt78/rrr5fXqSudvIDfw8MDOzu7Ym8uzWYz6enp6PX6OzaFw51SncqmKAoZGRnExeX2u3N3L9+aeJVKRb8mXnSo587cjadYtTeKHw+cZ8upON7q14ABzWtJ0CJECc3deIp9EUnorbV88mRL7K0lIC1Lcv0X4tZZadV8PLQFT399gK2n4xm94l9Wjr6f+wNdKzprohLTaDTY2dkRHx+PTqer8vfZkBs35OTkkJWVVS3Kc72Slu36eMPZ2fm2WhiX253O5MmTOXLkCNu2baN3796W9d27d2fq1KnlctG/fPkyzz//PL/++isADz30EB9++CHOzs6FpjcYDLz11lts2LCBs2fP4uTkRPfu3Xnvvffw9vYukzyZTCZLwO/mdvOa2rw/Ahsbm2r7B15dypZXkxoXF4eLi8sdOaejjY6ZDwczoLkPb6w9xulLaUxac4SfDp5n5sPBBLrb35F8CFFV/X40ls//jgBg/mNNqOuhr+AcVT8Vcf0Xojqx1mpY+mRLxn21n7/PJDBq+T6+GnM/Lf0l8BeFU6lUeHl5ERERwblz5yo6O2VCURQyMzOxtbWtdg+2Slu2smhZXG5B/7p161i9ejWtW7fOV5iGDRsSHh5eLuccMmQI58+fZ+PGjQD873//Y9iwYfz222+Fps/IyODgwYO8/fbbNG3alMuXLzNx4kQeeugh9u/fXyZ5yuvDb2dnVybHE5VL3uda2PRU5amlvwvrn2/PZzvOsnjzGXaFJdJr0Q6e71qX/3WsI1OOCVGIsLg0XvnxCABPdapN78ZeFZyj6qkirv9CVDc2Og2fD7+XMSv/ZVdYIiO+/Jevx9xPc78785BBVD1WVlYEBQWRk5NT0VkpEwaDgR07dtCxY8fbatZeGZWmbGU1hli5Bf3x8fF4eHgUWH/lypVyqa05efIkGzdu5J9//qFVq1YAfP7557Rp04bTp0/nG0Aoj5OTEyEhIfnWffjhh9x///1ERUXh5+dXZvmrbjVUIldFDpyi06iZ0KUuDzTx4s2fj7MzLIH5m0L59cgFZg0I5t4AeSIgRJ60LAP/+/oAGTkm2tR245WeBa8Jomzc6eu/ENWVjU7DsuH3MWrFPv45m8TwL/examwrmvg4V3TWRCWlVquxsakeU89qNBqMRiM2NjbVLuiviLKVW9B/33338fvvv/Pcc88B14KjvEC8rO3ZswcnJydLwA/QunVrnJyc2L17d6FBf2FSUlJQqVRFdgkAyM7OJjs727KcmpoK5Nba3Dg6v8FgQFEUzGYzZrP5pufPCx7z9qlOqmPZzGYziqJYnvTfbHaG8uDtaMWXw5vz69GLzPrjFKGX0nn0kz0MvteHV3sG4Wh7e18meWWqiLKVNylb1VTasimKwstrjnA2/go1Ha15/7HGKGYTBnPlmkWkrD+zivrs7/T1X4jqzNZKwxcj7mPU8n/ZF5nEk8v28u241jSu5VTRWRNC3AJFUdhyOp7o9Dt73nIL+mfPnk3v3r05ceIERqORDz74gP/++489e/awffv2Mj/fxYsXC32y4OHhwcWLF0t0jKysLF5//XWGDBmCo6Njkelmz57N9OnTC6zftGlTgWb8Wq0WT09P0tPTS9XcJi0trcRpK4qLiwvffPMN/fr1K9V+pS1bkyZNeOaZZ3jmmWdKtV9Z+Pbbb5k8eXKR/aNycnLIzMxk9+7dAAVajtxJOuDlBvDLOTV749Ws3n+eDUeiGRhgprmbwu0+YKvIspU3KVvVVNKybbmg4s9zGjQqhSF+V9i7Y3M55+z2lNVnljfa7512p6//QlR39tZavhx1HyO+3MeBc5d58ou9fDu2NQ29i75XFUJULiazwh/HY/l4azgnY1Np4KzmqTt4/nIL+tu2bcuuXbuYP38+derUYdOmTbRo0YI9e/YQHBxc4uNMmzat0AD7ev/++y9QeBN6RVFK1JzQYDDw+OOPYzabWbJkSbFpJ0+ezKRJkyzLqamp+Pr60rNnzwKVBVlZWURHR6PX60vU3EZRFNLS0nBwcKjwZpBxcXFMmTKFjRs3cunSJVxcXGjSpAlTp06lTZs2xMTE4OLigrW1dYmOd6tly2uqVFxFzPVWrFjBpEmTSEpKKvE5imJjY4NKpSry3FlZWdja2tK2bVt27NhBjx49KrwJ0mPA3ogkpvx6grMJGaw8oyFS5c60Bxrg41L6aVwMBgMhISGVomxlTcpWNZWmbP+cTeK3f3LHaHn7gYYMvd/3TmTxlpT1Z5bXCu1OK6vrvxDiGr21lhWj7mPYF/s4HJ3Mk1/s5btxrbnH06GisyaEKIbBZGbdoRiWbg/nbPwVAOytNHjbmTGb71z34HKdpyg4ONgyZc+tevbZZ3n88ceLTRMQEMDRo0e5dOlSgW3x8fHUrFmz2P0NBgODBg0iIiKCLVu23DS4tLa2LjTQ1el0BW7UTCYTKpUKtVpdohHr85q95+1TkR577DEMBgMrV66kdu3aXLp0ic2bN5OcnIxarS71DAe3U7bS7JOXrizev5sdS61Wo1KpLHNQF/Y3UBHa16vJHxPdWbI1nKXbwtkemkDfD3fzYo8gRrcLRKsp/XtTWcpWHqRsVdPNyhabksnENUcxKzCwRS1GtA2s8MrUkiirz6wiP/eyuP4LIfJzsNGxcvT9DPtiL0fPpzB02T98/7/W1PWQwF+IyibLYOKH/dF8sv0sMcmZADjZ6hjZNoAn7/dh97YQ1Oo7d09SplFlampqiX9Kyt3dnfr16xf7Y2NjQ5s2bUhJSWHfvn2Wfffu3UtKSgpt27Yt8vh5Af+ZM2f466+/SjSt3t0gOTmZnTt3MmfOHLp06YK/vz/3338/kydPtjTnV6lUrFu3DoDIyEhUKhVr1qyhQ4cO2Nract999xEaGsq///7Lvffei6OjI48++ijx8fGW83Tu3JmJEyfmO/fDDz/MyJEji8zbwoULCQ4Oxt7eHl9fX8aPH096em7HmG3btjFq1CjL2AwqlYpp06YBuU3xX331VWrVqoW9vT2tWrVi27Zt+Y69YsUK/Pz8sLOzY8CAASQmJt7W+1iRrLUaXuxRjw0vdOD+QFcyDSZmbTjFQx/t4kh0ckVnT4hylWM0M37VQRKv5NDAy5F3Hw6uEgF/VVUe138hREFOtjq+Gn0/jbwdSUjP4YnP9xIef4c7BwshinQl28jnO87SYe5W3v7lP2KSM3HXW/F6n/rser0rL/aoh7Pdna+UL9Mn/c7OziW+qTKZynYApQYNGtC7d2/GjRvHp59+CuRO2ffAAw/kG8Svfv36zJ49mwEDBmA0Gnn00Uc5ePAg69evx2QyWfr/u7q6YmVlVaZ5hKvzMhqKLrvZbCYzx4Q2x1jmT/ptdZoSfz56vR69Xs+6deto3bp1iZvwT506lUWLFv2fvfsOj6JaHzj+3ZbeewKpJPSO9N4jCCheEVEQwdhFRa+KjaKComDjBygocK9Yr4oiikQ60nsJSSAJgfRCet3N7u+PJQshhQQWUng/z5MnOzNnZs7JZnfmnDnnPfj5+TFt2jQeeOABHBwc+OSTT7CysmLChAnMnj2b5cuXX3c5lEoln376KQEBAcTFxfHUU0/x8ssvs3TpUvr06cPHH3/MW2+9RVRUlKksAI888gjnzp3ju+++w8fHh19++YXQ0FBOnDhBSEgI+/btY9q0acyfP5/x48ezceNGZs+efd35bCiCPez4LqwX/zuUwLt/nCYiOZe7l/7Dw70DeGlkK+wsb2qHHyHqxTsbIjhyPhsHKzXLH+qKtcWNT3cjqlef138hbjdONhZ8Pb0nD6zYS2RKHpNW7OX7x3oT4GZb31kT4raVU6hlzZ5zfPVPHNmFxkC6Po5WPDYgiIk9/LDS1O99iFnv9rdu3Wp6fe7cOV599VWmTp1qita7Z88e1qxZw4IFC8x5WpO1a9cyY8YMRowYAcDYsWNZsmRJhTRRUVHk5OQAkJCQwG+//QZA586dK5Vl0KBBZs9jkbaMtm/9Zfbj1kbEvJHYWNTuLVer1axevZqwsDCWL19O165dGThwIBMnTqRjx47V7vfSSy8xcuRIAJ577jkeeOABNm/eTN++fdHr9Tz00EN8//33N1SOK3sGBAYG8vbbb/Pkk0+ydOlSLCwscHR0RKFQ4OXlZUoXExPDt99+S0JCgmlYwksvvcTGjRtZtWoV8+fP55NPPmHkyJG8+uqrALRs2ZLdu3ezcePGG8pvQ6BUKpjQ3ZchbTx45/cI1h1NYvXuc2w8mcLcce0Y2c7r2gcRopH4+XAC/9ljDL758cTO+LvKjfDNVt/XfyFuN862Fqx91Fjxj07N54FLFX8/V5tr7yyEMJuM/BK+3BXHf/fEk19inM0rwNWGJwe14J4uzbFQ1+9w7XJmrfQPHDjQ9HrevHksXryYBx54wLRu7NixdOjQgS+++IKHH37YnKcGjE/nv/766xrTXDmfekBAQL3Mr95Y3HvvvYwePZqdO3eyZ88eNm7cyMKFC1m5cmW13e+vbBAoj6VwZeAmDw8P0tLSbihfW7duZf78+URERJCbm4tOp6O4uJiCggJsbau+uT98+DAGg4GWLVtWWF9SUmIa0nH69GnuueeeCtt79+7dJCr95dzsLPl4YhfGd23OG+tOcv5iIY//9xAj2noyd1w7vB3rHuhPiIYkIimX1345AcCMoSEMaV1zTBdhHvV9/RfiduRqZ8naR3sx8Ys9xKQX8MAK4xh/Xxep+AtxsyXnFPH59li+O3CeYq0xblkrT3ueGtyC0R28ryt+1s100/r17tmzp8ou3HfccQePPvrozTptg2etURExb2S12/V6PXm5edg72N+U7v11ZWVlxfDhwxk+fDhvvfUWjz76KLNnz6620n9l4Kjyrp5XrysP6AfGrvpXN7zUNLd0fHw8o0aN4oknnuDtt9/GxcWFXbt2MX369Br30+v1qFQqDh06hEpV8e9Q3v3/dmoAGtDSnb+eH8CnW86wYkcsmyJS2R2TyUsjWjK5dwCqWxhYRAhzySnU8sTXhyjW6hnY0p3nhobUd5ZuS3L9F+LWcbe35NuwXkz8Yi+xGQVMWml84u/jJI34QtwM8ZkFLNsWw0+HE9CWGesOnZo78vTgYIa18bylwfnq4qY1Qfj6+lZ50f/888/x9W24UybdbAqFAhsLdY0/1haqa6a5nh9zBLFq27YtBQUFZvhLGLm7u5OcnGxaLisr4+TJk9WmP3jwIDqdjkWLFtGrVy9atmxJUlJShTQWFhaVxox26dKFsrIy0tLSCA4OrvBTPgygbdu27N27t8J+Vy83JdYWKl4Jbc3vM/rRxc+J/BIdc9ZHMH7Zbk4l5dR39oSoE73ewMwfjnL+YiHNna35ZGJnabyqJ/V1/d+wYQM9e/bE2toaNzc3xo8fX2F7eXDXK39uJL6MEA2Fh4MV34T1wt/VhgsXi3hgxV5ScorrO1tCNCnRqXk8990RBn+4je8OXEBbZqBnoAv/nd6DdU/3ZUQ7rwZb4Yeb+KT/o48+4t577+Wvv/6iV69egLECFRMTw08//XSzTivMJDMzk/vuu49p06bRsWNH7O3tOXjwIAsXLmTcuHFmO8+QIUOYOXMmGzZsoEWLFnz00UdkZ2dXm75FixbodDo+++wzxowZwz///FPppi0gIID8/Hw2b95Mp06dsLGxoWXLljz44INMmTKFRYsW0aVLFzIyMtiyZQsdOnRg1KhRzJgxgz59+rBw4ULuvvtuNm3a1KS69lentZcDPz3Rh7X7z7Pwz0iOXchm7JJ/mN4vkOeHhaBpuN9fQpj839azbI5Mw0KtZPlD3XCyMX8gVlE79XH9/+mnnwgLC2P+/PkMGTIEg8HAiRMnKqVbtWoVoaGhpmVHR8ebkh8hbjUvRyu+DevF/V/sIT6z8NIY/154OFjVd9aEaNROJOSwZOsZ/jp1eWr4Qa3ceWZwMHcEuNRjzurmpj3pHzVqFGfOnGHcuHFcvHiRzMxMxo0bR3R0NKNGjbpZpxVmYmdnR8+ePfnoo48YMGAA7du358033yQsLKxScMQbMW3aNB5++GGmTJnCwIEDCQwMZPDgwdWm79y5M4sXL+b999+nffv2rF27tlJgqD59+vDEE09w//334+7uzsKFCwHjzd6UKVN48cUXadWqFWPHjmXfvn2mJ0+9evVi5cqVfPbZZ3Tu3JlNmzbxxhtvmK2sDZlSqWByL3/+fnEgozp4UaY38MWOWEZ8tIPt0enXPoAQ9Wh7dDqL/44G4J2729O+mVTk6tOtvv7rdDqee+45PvjgA5544glatmxJq1at+Ne//lUprZOTE15eXqYfa2vpAi2aDh8na74N60UzJ2viMoxj/NPzSuo7W0I0SvvjLjLlq/2MWbKLv06lolDAne29+P3Zfqx+pEejqvADKAxmHMh8/Phx2rdvX+ux6KdOnaJVq1ao1Y17yrDc3FwcHR3JycnBwcGhwrbi4mLi4uIIDAzEyurara16vZ7c3FwcHBzMPqa/vjXFspW/v82bN2fLli2MGjWqQgyDxmrz6VTeXHeSpEvdA9s763nrX73o0cK9nnNmXlqtlj/++KPJvG9Xul3KlpKnZcySXWQXanmghx8Lxne49gEaKHO/ZzVdm8ytPq//+/fvp2fPnnz11Vd8+umnpKSk0LlzZz788EPatWtnSqdQKGjWrBnFxcUEBgYyffp0HnvssWrzXFJSQknJ5QpTbm4uvr6+ZGRk3PDfU6vVEh4ezvDhw5vk51PKVr/OXyzkoa8OkpxTTLC7LV9P746rbc29nxpL2a6HlK1xqo+yGQwGdp3NZOn2WA7GZwOgUiq4q4MXjw8IJMTDziznMWfZcnNzcXNzu+a13qy17S5dupCSkoK7e+0qBr179+bo0aMEBQWZMxtCiBs0tI0nvYJcWRwezap/4jiZpWTCiv30CHDhiUFBDG7lYZYYEULciBJtGU+uPUR2oZZOzR2ZM7ZtfWfptlWf1//Y2FgA5syZw+LFiwkICGDRokUMHDiQ6OhoXFyMT2Pefvtthg4dirW1NZs3b+bFF18kIyOj2h5dCxYsYO7cuZXWb9q0CRsb80RHDw8PN8txGiIpW/2aHgifnVJxNr2Aez7dyjNty7CrRd2iMZTteknZGqdbUTa9AU5cVBCeqORCgfH+VqUw0NPdwNBmetysLnDm4AXOmPm85ihbYWFhrdKZtdJvMBh48803a30xLC0tNefphRBmZGup5s272nJfVx9mf7uTwxdV7D93kf2rL9LK057HBwYxppMPmgY2JYm4fczdEMnJxFxcbC1Y+lA3LNV1n6FEmMfNuP7PmTOnykr3lQ4cOGCaEeb111/n3nvvBYzDuZo3b86PP/7I448/DlChct+5c2fAOL1gdZX+WbNmMXPmTNNy+ZP+ESNGyJP+GkjZGo4BAwt48MsDJOeX8nWCM/955A6cbKrOd2MrW11I2RqnW1E2XZmeDSdT+XxHLGfSjIHKrTRKJt7RnOn9AvC6STExzP2kvzbMWukfMGAAUVFRtU7fu3dvGU8nRAPXwt2WScF6Puw3iP/svcA3+84TlZrHzB+OsWhTNNP7BTKxhy82Fo17mI5oXPakKvgxNhGlAj57oAvNZHqqenUzrv/PPPMMEydOrDFNQEAAeXl5gHEGlnKWlpYEBQVx/vz5avft1asXubm5pKam4unpWWm7paUllpaWldZrNBqz3YCa81gNjZSt/rX0duLbx3oz8Ys9nE7JY9p/DvP1oz1xtK4+742lbNdDytY43YyylejK+PlwIsu3xxCfaXxSbm+pZkoff6b1DcTVrvJ3/81gjrLVdn+z3qVv27bNnIcTQjQgXg5WvD66Lc8MDuHrffGs+ieOxOwi5v0ewadbzjCldwBT+wTgco1xg0LcqOMJOfwYZ+xh8tLIVvQNdqvnHImbcf13c3PDze3a7223bt2wtLQkKiqKfv36AcanKOfOncPf37/a/Y4cOYKVlRVOTk7myrIQDU6whx3fhPVi4hd7OZGYw5Sv9vPf6T1wsGqaFUQhalJUWsZ3B87zxY5Yki/FrXK20TC9XyCTewfU2CDW2MmjOSFEnTjaaHh6cDDT+wXyv0MJrNgZS3xmIZ9uPsMXO2K4/w5fHu0fhK+Leca8CnGlCxcLefa7Y5QZFAxv48GTA1vUd5ZEPXNwcOCJJ55g9uzZ+Pr64u/vzwcffADAfffdB8D69etJSUkx9TDYunUrr7/+Oo899liVT/OFaEpaetqz9tGePLBiL8cuZDP1q/38Z3pP7CylGiBuD3nFWv67N54vd8aRWWAcXuZhb8ljA4KY1NPvtuit2vRLKIS4Kaw0Kh7q5c8DPfz482Qyy7fHcDIxlzV74vl633nu6ujN4wNa0Nbn5kYNF7eHEwk5rNgZy4YTyZTpDbhbGXh/fDsJKCkA+OCDD1Cr1UyePJmioiJ69uzJli1bcHZ2BozdH5cuXcrMmTPR6/UEBQUxb948nn766XrOuRC3RhtvB76e3pMHV+7j8PlsHlm1n9WP9MBWKv6iCcsqKGXVP3Gs3n2O3GIdAM2drXliYAv+1a05VprbJxaQfNKFEDdEpVRwV0cfRnfw5p+zmSzfHsOusxn8ejSJX48mMbClO08MbEGvIBepoIk60esNbIlMY8XOWPbFXTSt7xXozFDHdOyle6q4RKPR8OGHH/Lhhx9WuT00NJTQ0NBbnCshGpb2zRz5enpPJq3cy4FzWUxbfYBVj3S/LZ5yittLWm4xK3bGsnbfeQpLywBjjKqnBgUztvPtGYRaPuVCCLNQKBT0C3GjX4gbJxJyWL4jhj9PJLM9Op3t0el08nXiyYFBjGjrhVIplX9RvaLSMn46nMBXu+KIzTBG01UrFYzp5MP0foG08rDhjz/+qOdcCiFE49OhuSP/nd6TySv3sS/uIo+uOchXU7tz+zzvFE3ZhYuFfL4jhh8OJlCqM87s0tbbgWeGBDOynReq2/j+Uyr9Qgiz69Dckf+b1JX4zAK+2BHLj4cSOHYhmye+PkyQmy2PDQjinq7NZIo1UUF6Xgn/3XOO/+6NJ6tQC4C9lZpJPf2Y2icAb0djtHetVluf2RRCiEats68Tq6f1YMqX+9gdk0nYfw6y7IFO9Z0tIa5bTHo+S7fG8OvRRHR6AwDd/J15ZnAwg1q5S09TpNIvbrLIyEimTp3K0aNHad26tczwcJvxd7Xl3Xs68PywlqzeHcd/98QTm1HAqz+fYHF4NNP6BfJgTz/ppn2bO5Oax8qdcfxyNNHUMt/c2ZppfQOZ0N1Xgk0JIYSZdfN3ZvW0Hjz81X52nsng6W+PMdalvnMlRN2cSsph6dYY/jiZjMFY16dfsBtPDw6WYaVXkTspUa2pU6eyZs0aAFQqFT4+PowePZr58+ebgiNdy+zZs7G1tSUqKgobG4nmfrtyt7fk3yNb8+SgYL7dd54vd8WRklvMe39G8n9bzvJgL3+m9Q3Aw8GqvrMqbhGDwcDumExW7IxlW1S6aX1nXyfC+gcxsp0n6ttwzJ0QQtwq3QNc+Gpqd6au2s/2MxkkOypxbp3BgJby/SsatsPns/i/LWfZHJlmWjesjSdPD25BF7/a1VFuN1LpFzUKDQ1l1apV6HQ6IiIimDZtGtnZ2Xz77be12j8mJobRo0fj7++PXq8nNze3znkoLS3FwkLmfm8K7CzVhA0I4uE+Aaw7msjn22OISS9g+fYYvtoVx73dmvHYgBYEutnWd1bFTVKq0/P78SRW7owjItn4faBQwIi2noT1D6Kbv7O0zAshxC3SK8iVLx/uzrTVB4jOgWlrDuNqa8GoDt6M6eTDHf7OEodHNAgGg4E9MZks2XqW3TGZgPH+YXQHb54eHEwbb5ktqibSjCdqZGlpiZeXF82bN2fEiBHcf//9bNq0ybR91apVtGnTBisrK1q3bs3SpUtN2xQKBYcOHWLevHkoFArmzp0LQGJiIvfffz/Ozs64uroybtw4zp07Z9pv6tSp3H333SxYsAAfHx9atmxZp/0+/PBDvL29cXV15emnn64w/rekpISXX34ZX19fLC0tCQkJ4csvvzRtj4iIYNSoUdjZ2eHp6cnkyZPJyMgw95/1tmehVjLhDl/CXxjIF5O70dXPidIyPd/uv8CQRdt48utDHLuQXd/ZFGaUU6hl2bYY+i/cwswfjhGRnIu1RsWU3v5sfXEQn0++gzsCpCueEELcan2D3fjf4z3p66nH2UZDZkEp/90bz4TP99DnvS2883sExy5kYyjvPy3ELWQwGNh8OpXxy3YzaaUxDoVaqeC+bs3ZPHMgSyZ1lQp/LciT/vpSWlD1er0edMWAw7XTAiiUoLG+dlqLG39yGhsby8aNG9FojOOvV6xYwezZs1myZAldunThyJEjhIWFYWtry8MPP0xycjLDhg0jNDSUl156CRsbG/Lz8xk6dCj9+/dnx44dqNVq3nnnHUJDQzl+/Ljpif7mzZtxcHAgPDwcg8FAYWEhgwcPvuZ+W7duxdvbm61bt3L27Fnuv/9+OnfuTFhYGABTpkxhz549fPrpp3Tq1Im4uDhTpT45OZmBAwcSFhbG4sWLKSoq4pVXXmHChAls2bLlhv9+ojKlUsGIdl4Mb+vJgXNZLN8ew5bINP48mcKfJ1PoHeTKE4NaMCDETSqDjdSFi4V8uSuOHw5eME2b425vydQ+ATzY0w8nG+nFI4QQ9a21lz0TgvQMHzmQA+dzWX8sib9OppCSW8zKXXGs3BWHv6sNYzr6MKaTD6287Os7y6KJK9MbOJKhYNnSvUSm5AHGh0YTu/vy2IAgmjvLsOG6kEp/fZnvU+VqJWAbMBim/Hx55QfBoC2s+jj+/eCRDZeXP+4AhZmV083Jua5s/v7779jZ2VFWVkZxcTEAixcvBuDtt99m0aJFjB8/HoDAwEAiIiL4/PPPefjhh/Hy8kKtVmNnZ4eXlxd6vZ7//Oc/KJVKVq5caarErVq1CicnJ7Zt28aIESMAsLW1ZeXKlabK/FdffVWr/ZydnVmyZAkqlYrWrVszevRoNm/eTFhYGNHR0fzwww+Eh4czbNgwAIKCgkxlXbZsGV27dmX+/PmmdV999RW+vr5ER0ebehwI81MoFPQIdKFHoAtRKXl8vj2G344lsSc2kz2xmbT1duDxgUGM7uAt4wwbicPns1i5M5aNJ1O4FEiX1l72TO8XyNjOPjJzgxBCNEAalZKBLd0Z2NKdd+5uz47odNYfT+bviFTiMwtZsvUsS7aepaWnnakBIECG5AkzyS/RsS82k51nMth8OpULWSogD1sLFQ/18md6/0A87CX+0/WQSr+o0eDBg1m2bBmFhYWsXLmS6Ohonn32WdLT07lw4QLTp083PUUH0Ol0ODo6Vnu8o0ePcvbsWeztK7YQFxcXExMTY1ru0KFDhXH8hw4dqtV+7dq1Q6W6XJnw9vbmxIkTpnOrVCoGDhxYZd4OHTrE1q1bsbOzq7QtJiZGKv23SCsvexbf35kXR7Zi5c5Yvtt/gYjkXJ777igfbooirH8Q93XzxdpCKo0NTZneQHhECit2xnEoPsu0vn+IG2H9g+gvPTaEEKLRsNKoGNHOixHtvCgs1fH36TTWH0tie1Q60an5LAqPZlF4NB2aOTK2kw+jO3rj42R97QMLcUmZ3sDxhGx2nclg55kMDp/PMk25B2CtMvDogBZM799CegbeIKn015fXkqpcrdfrKcgvoMLIlH+frf44iqueej5/4oazdiVbW1uCg4MB+PTTTxk8eDBz587lmWeeAYxd/Hv27Flhnysr3VfT6/V069aNtWvXVtrm7u5e4bzXs1/50INyCoUCvd44BZi1dc0XIr1ez5gxY3j//fcrbfP29q5xX2F+zZysmT2mHTOGhPCfPfGs2XOOCxeLeOvXU3z89xmm9glgSm9/uQg0AAUlOv53KIGv/okjPtPYK0mjUjCuczMe7R9Iay8ZayeEEI2ZjYWasZ18GNvJh5wiLZtOpbD+eDL/nM3gRGIOJxJzePeP03QPcGZMJx/ubO+Nu71lfWdbNEDnMwvZcSadXWcy2B2TQW6xrsJ2Xxdr+gW70zvQiaK4w4wfElzp/l7UnVT660t1Y+z1elCX1S5tXY5rJrNnz+bOO+/kySefpFmzZsTGxvLggw/Wev9OnTqxbt06PDw8cHCofUWga9eufP/993Xe70odOnRAr9ezfft2U/f+q8/x008/ERAQgFotH42GwtnWgueGhfDYgCB+OHiBFTtjScgqYnF4NMu3xzCxux+P9g+Upwv1IDW3mNW7z/HNvvPkFBkDZjrZaHiopz9TevvLFIxCCNEEOVpruO8OX+67w5fM/BL+PJnCb8eSOHDuIgfOZXHgXBZzfjtFnxZujOnkTWg7bxxtpNJ2u8op1LI7JoOdZzPYdSaD8xcrDll2sFLTp4Ub/ULc6B/ihr+rsS6j1Wr543x95LhpkpqNqJNBgwbRrl075s+fz5w5c5gxYwYODg7ceeedlJSUcPDgQbKyspg5c2aV+99333383//9H+PGjWPevHk0b96c8+fP8/PPP/Pvf/+b5s2bV7nfgw8+yAcffFDn/a4UEBDAww8/zLRp00yB/OLj40lLS2PChAk8/fTTrFixggceeIB///vfuLm5cfbsWb777jtWrFhRYw8GcfNZW6h4+FLwtw0nklm+PZbTybl89U8c/9lzjrGdfXhiYAtaekpwoZvtdHIuK3bGsv5YEtoyYze8AFcbpvcL5N5uzbGxkEuLEELcDlztLHmolz8P9fInOaeIDceTWX88mWMXstl1NoNdZzN4Y91JBrZ0Z0wnH4a18cTWUq4RTVmpTs+R81nsOmvssn88IZsreuyjViro6udMvxBjRb9jM0eJ13QLyKdO1NnMmTN55JFHOHv2LCtXruSDDz7g5ZdfxtbWlg4dOvD8889Xu6+NjQ3btm1j1qxZjB8/nry8PJo1a8bQoUNrfIJvY2PDjh07eOWVV+q039WWLVvGa6+9xlNPPUVmZiZ+fn689tprAPj4+PDPP//wyiuvMHLkSEpKSvD39yc0NBSlUr6MGgq1Ssm4zs0Y28mH7dHpLN8ew97Yi/x8OJGfDycytLUHTwxqQfcAl/rOapNiMBjYHp3Oyp1x7Dp7eRrL7gHOPNo/iGFtPFHJXM5CCHHb8na05tH+QTzaP4jzmYWsP57E+mNJRKbk8ffpNP4+nYaVRsnQ1p6M6eTNoFYeWGnkgUpjZzAYiEnPZ0e0sZFnb2ymabaeci3cbekf4k7/EDd6BrliJw0/t5z8xUW1Vq9eXeX6SZMmMWnSpEqvq3L06NFK67y8vFizZk2dz3s9+3388ccVlq2srFi8eLFpBoKrhYSE8PPPP1e5TTQsCoWCQa08GNTKg6MXslm+LYa/IlLYHJnG5sg0uvk788TAFgxt7YFSKqPXrURXxq9Hkli5K5bo1HwAlAq4s4M3Yf2D6OzrVL8ZFEII0eD4udrw9OBgnh4czJnUPNYfS2L98WTiMgrYcCKZDSeSsbNUM6KtJ2M6+dAvxA2NPO1tNDLyS/jn0pP8XWcySMktrrDdxdaCfsHGJ/n9gt1kCGYDIJV+IUSj19nXieWTuxGTns+KHbH8fDiRQ/FZhP3nICEedjw2IIhxnZthoZYbitrKKijl673xrNkTT0Z+CQC2Firu7+7HI30D8HWR+XGFEEJcW4inPTNHtOKF4S05lZRrbAA4lkRSTjE/H0nk5yOJONlouLO9N2M6edMz0FV6jjUwxdoyDpy7aIqyH5GcW2G7hVpJjwAXUyW/rbeDPHBpYKTSL4RoMlq42/HevR2ZObwlX/4Txzd7z3MmLZ9//+84i8Ojmd4vkIk9/KRbWQ3iMgr4clcs/zuUQLHWOPOFl4MVj/QNYGIPPxytJRiTEEKIulMoFLRv5kj7Zo68EtqaIxeyWH8smd+PJ5ORX8K3+8/z7f7zuNtbMrqDN2M6+dDVz0mmeq0Her2B0ym5pkr+gXMXKdHpK6Rp4+1A/0vB97oHuMhQjQZO7nyFEE2Oh4MVs+5sw9ODg1m79zxf/RNHck4x72w4zaebzzCldwBT+wbgaClP/sE4Hu/AuSxW7Izl79OpGC4F3Gnn40BY/yBGd/SWbpdCCCHMRqlU0M3fhW7+Lrwxug374i6y/lgSf55MIT2vhNW7z7F69zmaOVlzVydvxnbyoa23gzQA3ETJOUWm7vr/nM0gs6C0wnZPB0vTuPw+LdxkSsZGRir9Qogmy8FKw5ODWvBI3wB+OZLIFztiicsoYMnWs6zYGcu9XX2wylbgEZ+Fp6MNrraWOFirb5ubCl2Znj9PprByZyzHEnJM64e09uDR/oH0DnK9bf4WQggh6odapaRvsBt9g92YN649u86ms/5YMptOpZCYXcTn22P5fHssQe62jOnow5hOPgR72NV3thu9ghIde2MzjRX9sxmcTcuvsN3GQkWvIFf6BRuf5gd72Mk9QSMmlf5bxGAwXDuRaHTK31f5EmzYrDQqHujhx4Q7fNl0KoXl22M4lpDDN/sTABVfRR8wpdWoFDjbWOBia4GbnSUutuWvLXCxtbzitUWjbSTIK9by/YELrPrnHInZRYBxPN69XZsxvV8gwR4y7aEQQohbz0KtZEhrT4a09qRYW8aWyDTWH0tiS2QasekFfLL5DJ9sPkMbbwfGdPJmTEcfiTFTS2V6A8cTso1d9s9mcDg+C90Vc+kpFdChuRP9L1Xyu/g5SyykJqRJVfqzsrKYMWMGv/32GwBjx47ls88+w8nJqdp95syZw3fffceFCxewsLCgW7duvPvuu/Ts2dMsedJojONfCwsLsbaWyJVNTWFhIQBqdZP6KDVZKqWCOzt4E9reiz2xmazdG8+puGTKNDZkFWrJL9GhLTOQlldCWl4JkHfNYzamRoKk7CJW/RPHd/svkFeiA4wRdif38mdyb3/c7KSrnhBCiIbBSqNiVAdvRnXwJq9Yy9+nU1l/LJkd0emcTs7ldHIuCzdG0dnXiTGdfLirozeeDlb1ne0G5XxmITvOpLPrTAa7YzLILdZV2O7rYm3ssh9s7LLvaCNxe5qqJlVTmTRpEgkJCWzcuBGAxx57jMmTJ7N+/fpq92nZsiVLliwhKCiIoqIiPvroI0aMGMHZs2dxd3e/4TypVCqcnJxIS0sDjPPN13TDr9frKS0tpbi4uMnNDd+UymYwGCgsLCQtLQ0nJydUKgle0pgoFAr6tHCju58jf/yRwKhR/dFoNBRry7hYUMrFglIyC0rJzC+p5rUxTWNpJDiRkMOKnbFsOJFM2aVW/RbutjzaP4h7ujST4DtCCCEaNHsrDfd0ac49XZqTVVDKX6dSWH88iT0xmRy9kM3RC9m8syGCnoEujOnkw53tvXGxtajvbN9yOYVadscYn+TvOpPB+YuFFbY7WKnp08I4lV7/EDf8XW3rKafiVmsylf7Tp0+zceNG9u7da3pKv2LFCnr37k1UVBStWrWqcr+r55hfvHgxX375JcePH2fo0KFmyZuXlxeAqeJfE4PBQFFREdbW1o2uy/C1NMWyOTk54eXlhU6nu3Zi0eBZaVT4OFnXej7ZW9lI4GpnieulBgJXO4tLry2veG1M42BlbCTQ6w2cvKhg7ZcH2H8uy3S83kGuhA0IZFBLD5lORwghRKPjbGvBxB5+TOzhR1peMX8cT2b98WQOxWexN/Yie2Mv8tavp+gX7MaYTj4MaelS31m+bgaDAYMBDOWv4dKycX1xiY6zufDR32fZHXuR4wnZXNFjH7VSQVc/Z1Mlv0MzR9QSmPe21GQq/Xv27MHR0bFCt/xevXrh6OjI7t27q630X6m0tJQvvvgCR0dHOnXqVG26kpISSkpKTMu5uca5KrVaLVqttsp93NzccHZ2RqfT1Ti+X6fTsXv3bvr06dPkuow3pbIpFArUajUqlQqdTmd636t7/xszKVv1VIC7rRp3WzVw7TGFJdoyLhZqKzQUGF9rL78uvNRIUFhKQUnZVY0E11beSAAG0vJUQBZqpYJR7b2Y1tefdj4OAJSV6Sgru65i17um+j9p7nI1tb+PEEJczcPeiql9A5naN5CErEI2HE9m/fEkTibmsj06ne3R6ViolXhYqvj83B4MKEz34VdWnitVqquoYJffvutNFfEr9wWuWDaluXQcrjqH/orKPDXko3bUQKxpqYW7rSnKfs8gV5mmWABNqNKfkpKCh4dHpfUeHh6kpKTUuO/vv//OxIkTKSwsxNvbm/DwcNzc3KpNv2DBAubOnVtp/aZNm7CxMU8wkR07dpjlOA1RUy5beHh4fWfhppGymZ8F4HXpB8tLP1c8kNDqIV976UenuPxaqyBPCwW6y6/zdVBSpjA1EgBYqQz08TQwwEuPs+UF4o9eIP7orS7lzdNU/yfNVa7ymCNCCHE7aO5sw+MDW/D4wBbEpufz+/FkfjuWxNm0fBJ0Cii4du+6xshObWBQG28GtPKgf4gb3o4SQ0xU1uAr/XPmzKmygn2lAweMkber6jJuMBiu2ZV88ODBHD16lIyMDFasWMGECRPYt29flY0IALNmzWLmzJmm5dzcXHx9fRkxYgQODg7XKlKNtFot4eHhDB8+3BQEsKmQsjVOUrbG48qeBNkFxaSePsiYO5tG2a7U1N63cuYuV3kvNCGEuN0EudsxY2gIzw4JJiIxi/V/76JHj+6o1WoUClCguPQbUIBSoUCBsS5Rvl5xaWP5stK0TUF51aLCsSocp+K+iivWKy/tbNzn8nrF1emr2FeBcWX5cXRaLdv+3sTo0R2b1PVQmF+Dr/Q/88wzTJw4scY0AQEBHD9+nNTU1Erb0tPT8fT0rHF/W1tbgoODCQ4OplevXoSEhPDll18ya9asKtNbWlpiaVk5yrVGozHbB86cx2popGyNk5St4dNoNNjZWOHnZqxA/nGm6ZStKk21bOYqV1P82wghRF0oFApaetrTxtlA/xC3Jve9qFUauMazTSGARlDpd3Nzq7GrfbnevXuTk5PD/v376dGjBwD79u0jJyeHPn361OmcBoOhwph9IYQQQgghhBCiMWrwlf7aatOmDaGhoYSFhfH5558Dxin77rrrrgpB/Fq3bs2CBQu45557KCgo4N1332Xs2LF4e3uTmZnJ0qVLSUhI4L777qv1ucsDgpijK6VWq6WwsJDc3Nym1xopZWuUpGyNk5St8TF3ucqvSTUFjxW1J9f62pGyNU5StsZJytY4mbNstb3WN5lKP8DatWuZMWMGI0aMAGDs2LEsWbKkQpqoqChycnIAUKlUREZGsmbNGjIyMnB1daV79+7s3LmTdu3a1fq8eXnGwCC+vr5mKokQQghhHnl5eTg6OtZ3Nho9udYLIYRoqK51rVcY5BHADdPr9SQlJWFvb3/D88+XBwW8cOHCDQcFbGikbDfH2rVreeqppzh+/Dj+/v5mP35tyvbkk0/y66+/kpSUVOOxRo8eDcCGDRvMns+6KM/Ht99+i6+vL9HR0Xz11Vf069eP/v371/l45e/B1q1b6dq1q7mze13k89b4mLtcBoOBvLw8fHx8UCplXuYbJdf62pGy1Y8bvRcwR9ka6r1AXctWVf4cHR159dVXq433VV8a8v/kjZKy1U5tr/VN6kl/fVEqlTRv3tysx3RwcGhy/+DlpGzmZW1tnJrF3t7+pp67prKVd0261vlVKlWt0t1s5UOAyvOhVqt57733mD17tuliXxfl74GdnV29l+1q8nlrfMxZLnnCbz5yra8bKdutZa57gRspW0O/F6ht2arLn6WlZYN738s1xP9Jc5GyXVttrvVS6RdC3Hbatm0LyJRmQgghRFNXWFhY31kQot5Jfz8hbjPp6ek89dRTtG3bFjs7Ozw8PBgyZAg7d+6skO7cuXMoFAo+/fRTADp06ICdnR29e/dm79691zzPP//8g5ubG3fddRcFBQXVpistLeWdd96hdevWWFpa4u7uziOPPEJ6enqdyjVnzhwUCgVHjhxh/PjxODg44OjoyEMPPVTpWIMGDWLQoEGm5aCgIADmzp17aW5cBVOnTjVtj4yM5IEHHsDT0xNLS0v8/PyYMmVKpVk+8vLyePLJJ3Fzc8PV1ZXx48dfs5ujEEIIcatdfS/QokULAHbv3l0hXfm9wIcffsjixYsJDAxsFPcChw8f5l//+hfOzs507twZgOLiYmbNmkVgYCAWFhY0a9aMp59+muzs7DqdQ4jGSCr9DYylpSWzZ8/G0tKyvrNidlK2huHixYsAzJ49mw0bNrBq1SqCgoIYNGgQ27Ztq5R+5cqVBAcHs2jRItauXUtBQQGjRo0yBcSsyg8//MDQoUOZMGECv/76K7a2tlWm0+v1jBs3jvfee49JkyaxYcMG3nvvPcLDwxk0aBBFRUV1Lt8999xDcHAw//vf/5gzZw7r1q1j5MiRaLXaSmktLS15/fXXWb9+PQDTp09nz5497NmzhzfffBOAY8eO0b17d/bu3cu8efP4888/WbBgASUlJZSWllY43qOPPopGo+Gbb75h4cKFbNu2jYceeqjOZTCHxvQ/WVdNtWxNtVyisqb8XkvZGoer7wVWrFhBly5dGD16dJX3Av/3f/9HeHg4H3/8caO4Fxg/fjzBwcH8+OOPLFmyhLfeeouHHnqIDz/8kMmTJ7NhwwZmzpzJmjVrGDJkSKOdqrsp/U9eTcpmZgYhRKO2atUqA2CIi4u7rv11Op1Bq9Uahg4darjnnntM6+Pi4gyAoUOHDgadTmdav3//fgNg+Pbbb03rHn74YYOtra3BYDAY3nvvPYNKpTK8//77lc41cOBAw8CBA03L3377rQEw/PTTTxXSHThwwAAYli5dWutyzJ492wAYXnjhhQrr165dawAMX3/9dbX5SE9PNwCG2bNnVzrukCFDDE5OToa0tLRqz13+Hjz11FMV1i9cuNAAGJKTk2tdDiGEEKKu5F7AqPxe4K233qqwfuPGjQbAsHDhwgrrv//+ewNg+OKLL6rNn8FgqPYeQYjGQp70C3EbWr58OV27dsXKygq1Wo1Go2Hz5s2cPn26UtrRo0ebgtoAdOzYEYD4+PgK6QwGA48//jizZ8/mm2++4eWXX75mPn7//XecnJwYM2YMOp3O9NO5c2e8vLyqfNpwLQ8++GCF5QkTJqBWq9m6dWudj1VYWMj27duZMGEC7u7u10w/duzYCsvV/a2EEEKI+taU7wXuvffeCstbtmwBqDB0D+C+++7D1taWzZs31/kcQjQmUukX4jazePFinnzySXr27MlPP/3E3r17OXDgAKGhoVV2oXN1da2wXN4V6eq0paWlfP/997Rr144777yzVnlJTU0lOzsbCwsLNBpNhZ+UlBQyMjLqXD4vL68Ky2q1GldXVzIzM+t8rKysLMrKymodsbu2fyshhBCiPjX1ewFvb+8Ky5mZmajV6koN+AqFAi8vr+u6RxCiMZHo/ULcZr7++msGDRrEsmXLKqzPy8u7oeNaWlqydetWRo4cybBhw9i4cSPOzs417lMe8G7jxo1Vbre3t69zPlJSUmjWrJlpWafTkZmZWemGpTZcXFxQqVQkJCTUeV8hhBCioWrq9wIKhaLCsqurKzqdjvT09AoVf4PBQEpKCt27d6/zOYRoTORJvxC3GYVCUSlwyPHjx9mzZ88NH7tLly5s376dhIQEBg0aRFpaWo3p77rrLjIzMykrK+OOO+6o9NOqVas652Ht2rUVln/44Qd0Ol2FaP1Xq+6JhbW1NQMHDuTHH3+8ricNQgghREPU1O8FrjZ06FDA2NhxpZ9++omCggLTdiGaKnnSL8Rt5q677uLtt99m9uzZDBw4kKioKObNm0dgYCA6ne6Gj9+mTRt27tzJsGHDGDBgAH///Xe13eMnTpzI2rVrGTVqFM899xw9evRAo9GQkJDA1q1bGTduHPfcc0+dzv/zzz+jVqsZPnw4p06d4s0336RTp05MmDCh2n3s7e3x9/fn119/ZejQobi4uODm5kZAQACLFy+mX79+9OzZk1dffZXg4GBSU1P57bff+Pzzz6/rCYQQQghRn5r6vcDVhg8fzsiRI3nllVfIzc2lb9++HD9+nNmzZ9OlSxcmT558Q8cXoqGTJ/1C3GZef/11XnzxRb788ktGjx7NypUrWb58Of369TPbOYKCgti5cycKhYL+/fsTGxtbZTqVSsVvv/3Ga6+9xs8//8w999zD3XffzXvvvYeVlRUdOnSo87l//vlnIiMjGT9+PG+99RZjxoxh06ZNWFhY1Ljfl19+iY2NDWPHjqV79+7MmTMHgE6dOrF//366devGrFmzCA0N5ZVXXsHS0vKaxxRCCCEaoqZ+L3A1hULBunXrmDlzJqtWrWLUqFGm6fu2bNnSJKeFE+JKCoPBYKjvTAghxI2aM2cOc+fOJT09HTc3t/rOjhBCCCGEEA2CPOkXQgghhBBCCCGaKBnTL0QTYTAYKCsrqzGNSqWqFNG2odPr9ej1+hrTqNXyVSaEEELIvYAQoirypF+IJmLNmjWV5re9+mf79u31nc06mzdv3jXLde7cOebMmYPBYJCu/UIIIW5bt/u9gBCiajKmX4gmIjMzk7i4uBrTtGrVqtFFm09KSiIpKanGNB07dpSgekIIIW57ci8g9wJCVEUq/UIIIYQQQgghRBMl3fuFEEIIIYQQQogmSiJemIFerycpKQl7e/tGFxhFCCFE02QwGMjLy8PHxwelUtr4b5Rc64UQQjQ0tb3WS6XfDJKSkvD19a3vbAghhBCVXLhwgebNm9d3Nho9udYLIYRoqK51rZdKvxmUB0O5cOECDg4ON3QsrVbLpk2bGDFiBBqNxhzZazCkbI2TlK1xkrI1PuYuV25uLr6+vo0uYFdDJdf62pGyNU5StsZJytY4mbNstb3WS6XfDMq7+Tk4OJjlRsDGxgYHB4cm+Q8uZWt8pGyNk5St8blZ5ZKu6OYh1/rakbI1TlK2xknK1jjdjLJd61ovlf4GSFVWAqUFYKjin0ChAo3V5eXSguoPpFCCxvo60xYC1U3soAALm+tKq9SXVl82AAvby6+1RWDQV5/nCmmLwVBmnrQaGyj/4OhKQK+rVVqlXltz2dTWUD7WRlcKem31x61TWitQquqetkwLZaXVp1VZgsr4FaEw6Gou2xVpKdNBWUkNx7UAlabuafVloCuuPq1SA2qLuqc16GsuW4Xj6kFXVMNx1aC2vHRcA2gLzZO2Tp/7KtJWV7YG+B1Rt899ERhq+B9uYN8R10wrl+RaycrKYsaMGfz2228AjB07ls8++wwnJ6cq02u1Wt544w3++OMPYmNjcXR0ZNiwYbz33nv4+PjcwpxXJNf6S+RaX8u0cq0H5FpfU1q51jeI74hrplVbV7/tJpI7jAam78Lt7NeGwfGqt+9VdWOO/RzUKgUqpZLv0+/Biqq/SM/adGZ54KdoVArUSiWvnhyNrS67yrTpDm35s/e3qJQKNEolo7eMwLao6vlQCx1DiLw3HI1SiUqpoMWPQ7HMiq4yrcHRF92M46iVxg9CvzPvojn2aNWFs3GFl2MvL3/9L4jfVXVajQ28nnx5+YfJcGZT1WkB5uRcfv3LYxDxa/VpX0u6/KWw/nk49k31af8dA7ZuALRP/AbNB9OrT/vccXD2N77eMg92f1Z92qf2gkcb4+udi2D7e9WnDdsCzboZX+9bBuFvVZ/24d8hsL/x9aHV8MdL1aed9AO0HAlA84t70Hwwrfq0962GdvcYX0euhx+nVp923FLo8qDxdcxm+GZC9WlHfQg9woyv43fDmruqTzt8HvR9zvg6+SisGFJ92oGvwuBZANgXJ6H5wL/6tH2ehRHvGF/nXIBPOlaftvujMHqR8XVhJnzQovq0nSbBPcuMr7WFML+GykfbcTDhP5eXa0obMgIe/NG0qP64TfU3Gf794JENl5c/7mDMd1V8usBj2y4v/19PyDlfdVr31vD0vsvLKwZDemTVaR394IUTl5dX3QlJR6pOe9V3hOq7++H87qrTNsDvCP56DQ6srD7t04er3yZMJk2aREJCAhs3bgTgscceY/Lkyaxfv77K9IWFhRw+fJg333yTTp06kZWVxfPPP8/YsWM5ePDgrcy6yYYTKdx9vPpr/dWfYz4IblSfY7nWy7VervWXyLXeSK71lz13HOxufYOzVPobmGJtDS1OQGFpGZEpeaZlvSVQTW+OjPwS/ncowbT8vGUZttWkTcou5q1fT5mW+1iWVps2IauQ8Usvf/g2WRTQsppgkYnZRfR7/U8A1EoF6zQKnKs5rt4ACoNBuqIKIYSo0unTp9m4cSN79+6lZ8+eAKxYsYLevXsTFRVFq1atKu3j6OhIeHh4hXWfffYZPXr04Pz58/j5+VV5rpKSEkpKLjeq5+bmAsaeA1ptDU9Za+HPk8ncXcP2s2n57N97Dn9XawJcbfGh2ks9eoOesivyo64xreGqtIZq0xoMBnRXpjXUkJbLaa/1tzFAheOqDPpq54+ulFZffdqrz63SG66dVqG9Zh5MaWv5vmt1OriUTqnXo6p12rIa0+p0OgzlacuukbasDmkvHbc2ZdOVlZmOqygrq7ESUSGtTldj2rKyMvSm49Yh7bWOqzemrU3ZyvR603HR6aipw3WFtFptjWkrfD6vlVZf8fNZc1rjcS+Xrbon7A3vOwJAZaj+81n+uS8vm8FQfdka2ncE1O5zX56PG72W1OUYCkNNf0lRK7m5uTg6OpKTk3PD4/wSMvPYsulP+vbrD0olOr0BXZkBXZmeMr2BUoMSrUJjWm8oyTe+1uvRlhko0xsoK9Oj1YNOD8UKC+P+egOK0oLLx9PrTfuVlRnQ6hUUoTEdQ6EtpOzSa61BbzpG+bELDBp0ZQa0ZQY0ZUWU6fVo9cY8assu/0sZUFCMpWnZklKUVN+dR2lhSzNna5o5WePvqKSZoxU+Tlb4OFrj42yFu60lyku9BhpSdx6tVsvG338ldMSw6sfmNNIuf1qtlj83/Madw4dWX7ZG2uVPq9Xyx4bfGTV8cPVla6Rd/rRaLX/88Qejhg1Eo9FQVlaGVldmPJcprfKq49aUh6vTFlFzNz7r60urLb5Glz8btFotO3bsYECfnmhUNVyGK3QlLLnGd0Qd0mqsr/iOKL3Gd0Tt02pRs2PnTgYMGFCrMX4ajQaVqvpbC3NemxqKr776ipkzZ5KdnV1hvZOTEx999BGPPPJIrY7z999/M2LECLKzs6v928yZM4e5c+dWWv/NN99gY2NTxR61dzBdQWJuCRnFkFGiILuECrfWepSUYGFadlQW4WoJrlYG3KzAzfLSbyuws1AYvysvUdXwnWpQKNArr0irL6nxo1mmtLyutEp9KYoabi/LVA0grdKiQpd9RQ3fO3VLqzF+XwIKvQ5lDd8ltyStQYdSX31avVKNQaG6jrRlKGv4PtMrVRgU6jqnxaBHVcN9jF6hwqCs37QGhRK98tJ3tMGASl/9vVTd0l71+azLZ/lmpZXviEtpb853hDkUFhYyadKka17r5Ul/A+PpYIWjjSV+Xm61DOzgedPzVFcGgwG9AbRl+ksNBQa0ej1FJaWs/2sLQR16kJqnJTG7iMSsIhKyi0jMKiQjvxRKy4hOzSc6Nb/KY1uolHg7WdHMydgwUN5A0MzZmuZONng7WdVcCYCKFZdrUVvCFY0WNdErNcbGhdq8b2oLuOKGrl7SqjSXK9TXYFCoa182lfpyA4A50ypVFRtvzJVWoax92ZTKOhxXcXPSQp3SGjQ2JGdmVqokNWYGgwEvLy8uJKc1qZ5BpnJduFDrcjk5OeHl5dWk/g41SUlJwcPDo9J6Dw8PUlJSanWM4uJiXn31VSZNmlTjDdKsWbOYOXOmabk8QvKIESNuuBFluFZLeHg4w4cPR6PRUKLTk5BVRPzFQuIzL/1cep2YXUSO3pqcIoitos3RSqPEz9kGf9dLP+42BFx67Wl/RUP5LaK9qmxNye1QtiGhdzbhst0lZWtEyss2dOToJls2c3yXlPdCuxap9AuzUygUqBSgUlZ8AqW1VNLMFoa29qjyH7xYW2ZqCKjqd3JOEaVletMNUdXnBi8Hq0oNAs2crGnubE0zJxusLWrqdCNE05KWlkZeXh4eHh7Y2Ng0icqhXq8nPz8fOzs7lErztZbXt7qUy2AwUFhYSFpaGgDe3t63Ios3TXVP1a904MABoOoIxYZaDg3TarVMnDgRvV7P0qVLa0xraWmJpWXlRl+NRmO2G9DyY2k00NraktY+TpXSlOr0JGQZr3vnMgs4l1HAucxC4jMLuJBVRLFWT3RaPtFplRvLLdRK/F1sCHCzvdQQYEugmy3+rjZ4O1qjuokNAub8OzU0UrbGScrWOEnZrn2M2pBKv2gwrDQqWrjb0cLdrsrtujI9KbnFlRsFsotIuPS6VKcnOaeY5JxiDsZnVXkcF1uLKnsKlDcMOFprmkTFSAiFQkFubi6enp64urrWd3bMRq/XU1paipWVVZOr9NelXNbWxmERaWlpeHh41NjVv6F75plnmDhxYo1pAgICOH78OKmpqZW2paen4+lZc883rVbLhAkTiIuLY8uWLY1myIOFWkmQux1BVVwbtWV6ErOKKjUGnMss5MLFQkp1es6k5XOmqgYBlRJfF+tLjQDGRgFj44AtPk43t0FACCHErSWVftFoqFVKmjvb0Ny56rGUer2BjIKSansKJGYVkVei42JBKRcLSjmRmFPlcWwtVDR3tqnUIGAcQmCNm92t7y4pxPUorwTe6Phj0XCVv7darbZRV/rd3Nxwc3O7ZrrevXuTk5PD/v376dGjBwD79u0jJyeHPn36VLtfeYX/zJkzbN26tck0gmlUSmNF3c0WrophqCvTk5RdbGwQyCzgXIaxQSAus8DYIFCmJya9gJj0yjFCNCoFvi42BLgaewVc2TDQzMka9bWG0QkhhGhQpNIvmgylUoGHvRUe9lZ08XOuMk1OkfaKRoBCU0+B8nUZ+aUUlJYRlZpHVGpelcewUCnxcbK63BjgZIOXg4acGuK7CVGfpOdK03W7vbdt2rQhNDSUsLAwPv/8c8A4Zd9dd91VIXJ/69atWbBgAffccw86nY5//etfHD58mN9//52ysjLT+H8XFxcsLGoZB6WRUauU+Lna4OdqwwDcK2wr0xtIyr7UQyCzkPhLvQTOZRZwPtPYIBCbXkBsFQ0CaqWxQcDf1dgoEOBqg/+lHgLNnetn/mkhhBA1k0q/uK04WmtwtNbQ1qfqbp1FpWVXNQQUVugpkJJbTGmZ/tLN0dVxBdRszjnAQ70CGNnOCwu1PAkRQghzW7t2LTNmzGDEiBEAjB07liVLllRIExUVRU6OsTdXQkICv/32GwCdO3eukG7r1q0MGjTopue5oVFdqrj7utjQP6TitjK9gZTc4kvDBQqIzywkLqOA+EuvS3R64jIKiMsoANIrHbeZkxW2eiXHlVG08XGitZc9wR52WGkab08UIYRo7KTSL8QVrC1UBHvYEexRdVwBbZmelJziSsMG4jLyOXDuIvvistgXl4WbnSX3d2/OxO5++LpI12ohbgaVSsUvv/zC3XfffVPPExAQwPPPP8/zzz9/U89TldWrV/P88883qdkXbpSLiwtff/11jWmunI04ICCgxnmeRUXGiruxJ1vf4IpDLvR6A6l5xZcaAS4HFix/XazVc/5iEaDk9D/xQDwASgUEuNrSysuelp72tPayp6WXPQGuthI7QAghbgGp9AtRBxqV0vR05EparZa1v/xBhkNLfjiUSFpeCf+3NYal22IY3MqDB3v6MaiVh9zcCFEHaWlpvPnmm/z555+kpqbi7OxMp06deOutt2jXrh2JiYkNcmy2VNRFU6VUKvB2tMbb0Zo+LSpuMxgMpOaWcDY1h9+27cPSPYAz6QVEpeSRVaglNqOA2IwC/jx5eWpFS7WSYA87WnnZ08rT3vjbyx4vB6vbbuiKEELcTFLpF8JMnC3hwaHBPDe8FZtPp/L13vPsOpvBlsg0tkSm0czJmkk9/bjvjuZ42FvVd3aFaPDuvfdetFota9asISgoiNTUVDZv3szFixcB8PLyalLR+4VozBQKBV6OVrjaqMg8bWDUqDZoNBoMBgPp+SVEpeSZfqJT84hOzadIW8appFxOJVWcZ9rBSm1qADA2BjjQytMeR5umOW2XEELcbFLpF8LMNColoe29CW3vTWx6Pt/uP8+PhxJIzC7ig7+i+Cg8mpHtvXiwpx+9g1zlaYYQVcjOzmbXrl1s27aNgQMHAuDv70+PHj3Q6/Xk5uZW6N5/7tw5AgMD+f777/nss884ePAg7du3Z+3ateTk5PDkk08SGRlJv379+O9//4u7uzGw2aBBg+jcuTMff/yx6dx33303Tk5OrF69usq8LV68mFWrVhEbG4uLiwtjxoxh4cKF2NnZsW3bNh555BHgcpC92bNnM2fOHEpLS3njjTdYu3Yt2dnZtG/fnvfff7/CmPJvvvmG9957j4yMDEaOHEm/fv3M/8cV4hZSKC4H2e0fcjmgoF5v4EJWIZEpeUSn5BGZamwQiMsoILdYx4FzWRw4V3HqXS8HK1p6GYcHlPcMkHgBQghxbVLpF+ImCnK34/XRbXlxRCv+OJHM13vjOXw+mw3Hk9lwPJkgd1se7OnPv7o2lycY4pYwGAwUacvq5dzWGlWtG7ns7Oyws7Nj3bp19OrVC0tLy1rtN3v2bD7++GP8/PyYNm0aDzzwAA4ODnzyySfY2NgwYcIE3nrrLZYtW3bd5VAqlXz66acEBAQQFxfHU089xcsvv8zSpUvp06cPH3/8MW+99RZRUVGmsgA88sgjnDt3ju+++w4fHx9++eUXQkNDOXHiBCEhIezbt49nnnmGd999l3vvvZeNGzcye/bs686nEA2ZUqnA39U4FeDIdl6m9SW6MmLSCohOzTM2CFxqDEjMNgbTTcktZkf05QCCEi9ACCGuTSr9QtwCVhoV47s2Z3zX5kQk5bJ2XzzrjiQSm17A279H8MFfkYzp6MODvfzp1NxRnv6Lm6ZIW0bbt/6ql3NHzBuJjUXtLjtqtZrVq1cTFhbG8uXL6dq1KwMHDmTixIm0b9++2v1eeuklRo4cCcBzzz3HAw88wObNm+nbty8A06dPr/YJfm1dGdAvMDCQt99+myeffJKlS5diYWGBo6PxM+zldbkiExMTw7fffktCQgI+Pj6mvG7cuJFVq1Yxf/58Pv30U4YMGcIrr7yCUqmkZcuW7N69m40bN95QfoVoTCzVKtr6OFSaZSe3WMuZ1DyiUvKJSsk1Tq0r8QKEEKJWpNIvxC3W1seBd+/pwKxRbVh3JJGv98YTmZLHj4cS+PFQAu2bOfBgT3/GdfapdQVJiKbo3nvvZfTo0ezcuZM9e/awceNGFi5cyBdffMH48eOr3Kdjx46m156engB06NChwrq0tLQbytfWrVuZP38+ERER5ObmotPpKC4upqCgAFtb2yr3OXz4MAaDgZYtW1ZYX1JSYgpGGBkZyZ133llhe+/evaXSLwTgYKWhm78L3fxdTOskXoAQQtSO1CiEqCd2lmoe6uXPgz39OHw+i7V7z/P7iWROJuYy6+cTzN9wmvFdm/FgL39aetrXd3ZFE2GtURExb2S9nbuurKysGD58OMOHD+ett97i0UcfZe7cudVW+jWayzfu5U/zrl6n1+tNy0qlstJ0blqtttr8xMfHM2rUKJ544gnefvttXFxc2LVrF9OnT69xP71ej0ql4tChQ6hUFf8O5d3/ZVo5IeqmLvEColPyiL1GvICKjQESL0AI0XRIpV+IeqZQKExPL964qy0/HUpg7b54zmUWsmZPPGv2xNMjwIUHe/kR2t4LS7XcgIjrp1AoGnUPkrZt27Ju3TqzHc/d3Z3k5GTTcllZGSdPnmTw4MFVpj948CA6nY5FixaZZg744YcfKqSxsLCgrKxi3IQuXbpQVlZGWloa/fv3r/LYbdq04cCBAxXW7d27t85lEuJ2V1O8gNhL0wiWDw+4Ol7A9hriBQS725BSCEWlZRUaE4UQoqFrvHd+QjRBLrYWhA0IYnq/QP6JyWDt3vOEn05l/7mL7D93EVdbC+67w5dJPfzwc7Wp7+wKcdNkZmZy3333MW3aNDp27Ii9vT0HDx5k4cKFjB071mznGTJkCDNnzmTDhg20aNGCjz76iOzs7GrTt2jRAp1Ox2effcaYMWP4559/WL58eYU0AQEB5Ofns3nzZjp16oSNjQ0tW7bkwQcfZMqUKSxatIguXbqQkZHBli1b6NChA6NGjeLZZ5+lX79+fPDBB9xzzz1s2rRJuvYLYUaWahVtvB1o410xXkBesZbo1HzT8IDIlNwa4gWoWXBsM252FjRztqG5szXNnayNvy8tN3O2btSNq0KIpke+kYRogJRKBf1D3Okf4k5KTjHfH7jAt/vPk5JbzPLtMXy+I4YBIe482NOPIa09UKtkrnLRtNjZ2dGzZ08++ugjYmJi0Gq1+Pr6EhYWxquvvlpjV/q6mDZtGseOHWPKlCmo1WpeeOGFap/yA3Tu3JnFixfz/vvvM2vWLAYMGMCCBQuYMmWKKU2fPn144oknuP/++8nMzDRN2bdq1SreeecdXnzxRRITE3F1daV3796MGjUKgF69evHpp5/y/vvvM3fuXIYNG8Ybb7zB22+/bZayCiGqZm+loZu/M938nU3ryuMFRKfkE5mSa2wMSM4lOiWH4jIFGfmlZOSXcuxCdpXHdLW1oJnzVY0BTpdf21rKLbgQ4taRbxwhGjgvRyueGxbC04NbsDkyjbX7zrMjOp3tl368Ha14oIcf93f3xdPBqr6zK4RZWFpasmDBAhYsWFBpm16vR6vVUlZWZupiHxAQUGlM/KBBgyqtmzp1KlOnTjUtazQali5dytKlS6vNy7lz5yosv/DCC7zwwgsV1k2ePLnC8rJlyypNC6jRaJg7dy5z586t9lwPPfQQTz31lKlcAC+++GK16YUQN8eV8QL6hbgBxngff/zxB/0GDyclX0tCVtGln0ISr3idW6wjs6CUzIJSjifkVHl8ZxvNVY0BlxoEXIzL9lYyfEAIYT5S6ReikVCrlIxs58XIdl7EZxbwzf7z/HgwgeScYhaHR/PJ5jOMaOvJgz396dPCFaXMTyyEEEKYnYO1BlcHG9r5OFa5PadIS2JWEYnZxkaA8saA8kaCnCItWYVasgpzOJFYdaOAo7XmUkNAFT0FXKxxkEYBIUQdSKVfiEbI39WWWXe2Yebwlmw8mcLXe+M5cC6LP0+m8OfJFALdbHmwpx/3dm2Os61FfWdXCCGEuG04WmtwtNbQ1sehyu15xVpjg8DFy40BxgYC43JWoZacIuPP1VMOlnOwUtPc2abSEILy147W0igghLhMKv1CNGKWahXjOjdjXOdmRKbk8s2+8/x8OJG4jALe2XCahX9FcVdHbx7q5U8XXyfTFGZCCCGEqB/2Vhpae2lo7VV1o0B+ie7ScIHCCo0B5T0FLhaUklusIyI5l4jkqhsF7C3VlxoErmwMuLzsaK2RewIhbiNS6ReiiWjt5cC8ce15JbQ1vx1L4uu98ZxKyuXnw4n8fDiRNt4OPNTLj3Gdm2EnAYSEEEKIBsnOUk0rL3taedlXub2wVFchhoAptkB2EYlZhWTkl5JXoiMyJY/IlLxqz3FlPAFvR0vSMhW0Ti+ghaeDBAgWoolp0nf+AQEBxMfHV1j3yiuv8N5775mWz58/z9NPP82WLVuwtrZm0qRJfPjhh1hYSJdo0TjZWqp5oIcfE7v7cvRCNmv3nWf9sSROJ+fy+i8nWfBHJHd38eGhXv7VPmUQQgghRMNkY6EmxNOeEM+qGwWKSstIzC7kQlZRlY0DGfkl5FfZKKDiq+h/0KgUBLnZEexh/AnxtCPEw54ANxss1apbU0ghhFk16Uo/wLx58wgLCzMt29nZmV6XlZUxevRo3N3d2bVrF5mZmTz88MMYDAY+++yz+siuEGajUCjo4udMFz9n3hjdhp8OJ7J2Xzyx6QV8vfc8X+89Tzd/Zx7q5ced7b2x0siFXAghhGjsrC1UBHvYE+xRdaNAsbas0rCB85kFHI9NJqNURZFWT1RqHlGpFXsJqJQK/F1sTA0BwR7GxoAW7nZYW8g9hBANWZOv9Nvb2+Pl5VXltk2bNhEREcGFCxfw8fEBYNGiRUydOpV3330XB4eqn4KWlJRQUlJiWs7NNY6n0mq1Nzx3dPn+5pqDuiGRstUfW42CKT2bM7lHM/bFZfHN/guEn07jUHwWh+KzmLc+gvFdfHiguy/+rjYV9m3oZbsRt0PZDAYDer0evV5fzzkyn/Jp+MrL1lRcT7n0ej0GgwGtVotKVfGmuyn+XwshbpyVRkULdztauF9+EGacjjCB0NARpBfqOJOWz9nUfM6k5XE2LZ8zafnkFeuIzSggNqOATRGppn0VCmjubE2wux0hnvaXGgOMjQIy9aAQDUOTr/S///77vP322/j6+nLffffx73//29R1f8+ePbRv395U4QcYOXIkJSUlHDp0iMGDB1d5zAULFlQ5z/KmTZuwsbGpYo+6Cw8PN8txGiIpW/0LdYDeXWBfmoLdqUqyCrV8+U88X/4TTytHPX09DbR3MaC6IsZPYynb9WiqZVOr1RQXF5Ofn09paWl9Z8fs8vKqHqva2NWlXKWlpRQVFbFjxw50Ol2FbYWFhebOmhCiiVMqFZeC/dkwuJWHab3BYCAtr4QzqfmcTcvjzKWGgLNp+VwsKOXCxSIuXCxia1R6heN5OViZegWU9wwI8bCTmYWEuMWadKX/ueeeo2vXrjg7O7N//35mzZpFXFwcK1euBCAlJQVPT88K+zg7O2NhYUFKSkq1x501axYzZ840Lefm5uLr68uIESOq7R1QW1qtlvDwcIYPH45G07RaR6VsDc8DQJnewLbodL49kMCOMxlE5SiJygFPe0sm3NGMezp5cmLfzkZXttporO9bbWi1WrZu3YqVlRV2dnZYWVnVd5bMxmAwkJeXh729fZOKPn095SouLsba2poBAwZUeo/Le6EJIcSNUigUeDpY4elgRb8QtwrbMvNLTL0Bzl76OZOWR2puCSm5xaTkFrPzTEaFfdzsLGjhfjleQHnvAHd7yyb1vS5EQ9HoKv1z5syp8in7lQ4cOMAdd9zBCy+8YFrXsWNHnJ2d+de//sX777+Pq6srQJVfLAaDocYvHEtLSywtLSut12g0Zqs4mPNYDY2UrWHRAKEdmhHaoRkXLhby7f7z/HDwAql5JXy2NZal2+No5aCkrHkGoR18sLFodF8b19QY37faUigUKJVKlMqmE4m5vOt7edmqExkZydSpUzl69CitW7fm6NGjtyiH16e25bqSUqlEoVBU+T/cVP+nhRANi6udJa52lvQMcq2wPqdIS0z65WEC5Y0CxmCCpWTkX2Rf3MUK+zhYGYMUBrtfETfA0x4fRytpDBDiBjS6u/dnnnmGiRMn1pgmICCgyvW9evUC4OzZs7i6uuLl5cW+ffsqpMnKykKr1VbqASDE7cDXxYaXQ1vz/LCWbDyVwtq98eyLu0hEtpKZP57g9XURjGjnyd2dm9EvxA2NTOkjbpKpU6eyZs0aAFQqFT4+PowePZr58+fj6OhYq2PMnj0bW1tboqKiKgRxFUIIcfM5Wmvo6udMVz/nCusLS3XEpBVUiBdwNi2f+MwCcot1pnhDV7KxUFUYIlDeM8DXxQaVUhoDhLiWRlfpd3Nzw83N7doJq3DkyBEAvL29AejduzfvvvsuycnJpnWbNm3C0tKSbt26mSfDQjRCFmolYzv5MLaTD5FJ2Xz0005OF9ly/mIRvx5N4tejSTjbaBjd0ZtxnZvRzc8ZpVx0hZmFhoayatUqdDodERERTJs2jezsbNauXVur/WNiYhg9ejT+/v7XnYfS0lKZwlUIIczIxkJNh+aOdGhesQG3WFvGucwCzqSWNwQYGwXiMgooLC3jeEIOxxNyKuxjoVbSwt3O1AgQcmlmAX9XW3kwIcQVbqjSfz3jBW90zHtt7dmzh7179zJ48GAcHR05cOAAL7zwAmPHjsXPzw+AESNG0LZtWyZPnswHH3zAxYsXeemllwgLC7tl+RSioWvhbssoPz2f3dmPUykF/Ho0id+PJ5ORX2Ka+q+ZkzVjO/swrrMPrb3ks9MolBZUv02hAo1VLdMqQWN97bQWtnXLH8ahVOWzrzRv3pz777+f1atXm7avWrWKDz/8kLi4OAICApgxYwZPPfWUMVuXuoEeOnSIefPmMXv2bObMmUNiYiIzZ85k06ZNKJVK+vXrxyeffGLqITZ16lSys7Pp2bMnn332GRYWFpw7d67W+/Xr149FixZRWlrKxIkT+fjjj03d7EtKSnjzzTf59ttvSUtLw8/Pj1dffZXp06cDEBERwQsvvMCePXuwtbVlxIgRfPTRR9fd0H2zNORrvxCi8bLSqGjt5VDpPkJbpic+s/BSvIBLQQRT84lJz6dEp+d0ci6nkyt+L6mVCgLcbAnxsCPQ1YaCDAUt0/Jp6e0kPQPEbemGKv1OTk51Gl+jUCiIjo4mKCjoRk5bK5aWlnz//ffMnTuXkpIS/P39CQsL4+WXXzalUalUbNiwgaeeeoq+fftibW3NpEmT+PDDD296/oRobBQKBV38nOni58wbo9uwJzaTX48msfFkConZRSzbFsOybTG08rRnbGdjLwFfF/PMZiFugvk+1W8LGQEP/nh5+YNg0FYTCd6/Hzyy4fLyxx2gMLNyujk5ldfVQWxsLBs3bjRVoNesWcP777/PkiVL6NKlC0eOHCEsLAxbW1sefvhhkpOTGTZsGKGhobz00kvY2dlRWFjI4MGD6d+/Pzt27ECtVvPOO+8QGhrK8ePHTU/0N2/ejIODA+Hh4RgMhlrvt3XrVry9vdm6dStnz57l/vvvp3PnzoSFhQEwZcoU9uzZw6effkqnTp2Ii4sjI8MY3Co5OZnBgwczefJkPvnkE0pKSnjllVeYMGECW7ZsuaG/nbnV97U/KyuLGTNm8NtvvwEwduxYPvvsM5ycnGq1/+OPP84XX3zBRx99xPPPP2+WPAkhbh6NSmnq2g+Xp+Eu0xtIzCqqEC/AONVgHgWlZaaggkYq1pzZjaVaSSsve9p4OdDa25423g608XLA0UZioIim7Ya79//vf//DxcXlmukMBgOjRo260dPVWteuXdm7d+810/n5+fH777/fghwJ0XSoVUr6h7jTP8Sdd+5uz5bINH49msjWyHSiUvP44K8oPvgrijv8nRnX2YfRHX1wkel5RB39/vvv2NnZUVZWRnFxMQCLFy8G4IMPPuCDDz5g/PjxAAQGBhIREcHnn3/Oww8/jJeXF2q1Gjs7O1Nvga+++gqlUsnKlStNldZVq1bh5OTEtm3bGDFiBAC2trasXLnSVJmv7X7Ozs4sWbIElUpF69atGT16NJs3byYsLIzo6Gh++OEHwsPDGTZsGECFSvCyZcvo0qULb731Fg4ODiiVSr766it8fX2Jjo6mZcuWN/VvXVf1ee2fNGkSCQkJbNy4EYDHHnuMyZMns379+mvuu27dOvbt21dhql4hROOkUirwc7XBz9WGoW0ux+IyGAyk5BabhglEp+SwLzKBtFJ1tcMEmjlZ09rrUiOAt7FBIMDVVnoFiCbjhir9/v7+DBgwwBQJ/1qCgoIkmrAQTYyVRsWoDt6M6uBNTpGWjSeT+fVoEntiMzkYn8XB+Czmro+gf4gb4zo3Y3hbT2wtG104kabntaTqtylUFZf/fbaGtFeNmXz+xPXn6SqDBw9m2bJlFBYWsnLlSqKjo3n22WdJT08nMTGRsLAwHn/8cVN6nU5XY5C/Q4cOcfbsWezt7SusLy4uJiYmxrTcoUOHCuP4a7tfu3btUKku/+28vb05ccL49zh69CgqlYqBAwdWm7dt27bRvHnzSttiYmIaVKW/Pq/9p0+fZuPGjezdu5eePXsCsGLFCnr37k1UVBStWrWqdt/ExESeeeYZ/vrrL0aPHn3Nc5WUlFBSUmJaLh/WoNVq0Wq1N1SO8v1v9DgNkZStcWpqZXOzUeMW6ETvQCe0Wk/CNfEMHTaY5DwtkSn5RKbkEZmSR1RKHgnZxSRmF5GYXcTmyDTTMaw1SkI87WjjZU8rT3tae9nT2ssOe6uGU5dpau/blaRsdTvWtdzQnXdcXFyd0p88efJGTieEaOAcrTXc392P+7v7kZpbzPpjSfx2LInjCTlsjUpna1Q61hoVw9t6Mq6zD/1D3LFQS6CdelGXMfY3K+012NraEhwcDMCnn37K4MGDmTt3rmnc/ueff07v3r0r7HNlpftqer2ebt26VRkI0N3dvcJ5r2e/qyu2CoXCNA2ftbU1NdHr9dx111288cYb2NnZVZiyrzzQbENRn9f+PXv24OjoaKrwg3FmHkdHR3bv3l1tpV+v1zN58mT+/e9/065du1qda8GCBVVOEbxp0yZsbMwzdCk8PNwsx2mIpGyNU1Mu2+a//za9bgm0dAacoUgHSYWQWKAgqbD8B4q0eo4n5HI8oWK8ABdLAz42BprZgI+t8bWbFdRnp4Cm/L5J2WpWWFjN8MuryOM2IcRN4elgxaP9g3i0fxAx6fn8djSJX48mci6zkN8uNQY42WgY1cGbcZ186B7gIjMAiBrNnj2bO++8k8cffxwfHx/i4uKYPHlyrffv2rUr33//PR4eHnUKLHe9+12pQ4cO6PV6tm/fburef/U5fvrpJ/z8/HBxcalQ6ReXpaSk4OHhUWm9h4cHKSkp1e73/vvvo1armTFjRq3PNWvWLGbOnGlazs3NxdfXlxEjRtxwYEKtVkt4eDjDhw9vcj0gpWyNk5StojK9gfjMQqJS8zht6hWQT1JOMRdLFFwsUXDyilkFbSxUtPS0o5WnPW287GjtZU9LT3vsrW5uVUvet8bJnGWrbXBds/0nfvrpp1WuVygUWFlZERwczIABA2p8CiOEaJpauNvxwvCWPD8shOMJOfx6NIn1x5NIzyvhm33n+WbfeXwcrRjT2YdxnZrRxtu+ToHCxO1h0KBBtGvXjgULFvDKK6/w6quv4ujoyJ133klJSQkHDx4kKyurQkXtSg8++CAffPAB48aNY968eTRv3pzz58/z888/8+9//7vKrvU3st+VAgICePjhh5k2bZopkF98fDxpaWlMmDCBp59+mhUrVvDoo4/y6quv4uHhwdmzZ/nuu+9YsWJFg712muvaP2fOnCqfql/pwIEDpmNfzWAwVPudcejQIT755BMOHz5cp+8VS0tLLC0tK63XaDRmuwE157EaGilb4yRlu5QWaOVjQSsfJ8ZesT6nUMvpFONsAZHJeZxOySUqJY/C0jKOXsjh6IWKsQJ8Xaxp4+VwKVaAMWaAr7ON2R9yyPvWOJmjbLXd32yV/o8++oj09HQKCwtxdnbGYDCQnZ2NjY0NdnZ2pKWlERQUxNatW/H19TXXaYUQjYhCoaCTrxOdfJ14fXQb9sZmsu5IIhtPppCUU8zn22P5fHssIR523N2lmcwAICqZOXMmjzzyCIcOHeKLL75g0aJFvPzyy9ja2tKhQ4cao7Hb2NiwY8cOXnnlFcaPH09eXh7NmjVj6NChNT65vd79rrZs2TJee+01nnrqKTIzM/Hz8+O1114DwMfHh507d/LSSy+ZGjH8/f0JDQ1t0E/9zXXtf+aZZ5g4cWKN5woICOD48eOkpqZW2paeno6np2cVe8HOnTtNUySWKysr48UXX+Tjjz/m3LlztSusEOK252ijoVeQK72CLsc00ZXpOZdZwOnkPNP0gZEpeSTnFHPhYhEXLhaxKeLy95athco4g4C3g+mnlZc9dhLvSNxEZvvvmj9/Pl988QUrV66kRYsWAJw9e5bHH3+cxx57jL59+zJx4kReeOEF/ve//5nrtEKIRkqlVNA32I2+wW68fXd7tkWl8evRJDZHpnEmLd80A0BXPyfGdW7G6I7euNlVfuommqbVq1dXuX7SpElMnDiR3Nxc2rZty0MPPVTtMY4ePVppnZeXF2vWrKnzea9nv48//rjCspWVFYsXLzbNQHC1kJAQ/vvf/5qi9zcG5rr2u7m54ebmds3z9e7dm5ycHPbv30+PHj0A2LdvHzk5OfTp06fKfSZPnlxpSMXIkSOZPHkyjzzySG2LKoQQVVKrlAR72BPsYc+YTpdnBskqKL3UKyCPyORcTqfkEp2aT0FpGYfPZ3P4fHaF4/i72ph6BbT2tqettwPNna2l56MwC7NV+t944w1++ukn00UfIDg4mA8//JB7772X2NhYFi5cyL333muuUwohmggrjYrQ9t6EtjfOAPDXqRR+O5rE7pgM04Vx3u8R9At2Y1xnH0a085IWcSEagFt97W/Tpg2hoaGEhYXx+eefA8Yp++66664KQfxat27NggULuOeee3B1da0004BGo8HLy6vGaP9CCHEjnG0t6NPCjT4tLjdo6sr0xGYUXOoRkHepV0AuqbklxGcWEp9ZyMZTl+OT2Fuqr+oVYE8rL3tsLOQeSNSN2f5jkpOT0el0ldbrdDpTcB0fHx/y8vLMdUohRBPkaK1hwh2+TLjDl7TcYn4/nsyvRxM5lpDD9uh0tkenY6U5wbA2nozr3IyBLWUGACHqS31c+9euXcuMGTMYMWIEAGPHjmXJkiUV0kRFRZGTk1PV7kIIUW/UKiUtPY1B/sZ1vrw+M7+EyJS8Co0BZ9PyySvRmaY/LqdQQICrLW287Qlxt0WXo2B4mZ4mOuxdmInZKv2DBw/m8ccfZ+XKlXTp0gWAI0eO8OSTTzJkyBAATpw4QWBgoLlOKYRo4jwcrJjWL5Bp/QKJyygwzQAQm1HA78eT+f14Mo7WGkZ18GJc52b0kBkAhLil6uPa7+Liwtdff11jGoPBUON2GccvhGhIXO0s6RtsSd/gy70CtGV6YtLzjQEDk3OJuBQrID2vhLiMAuIyCi6lVPH1+9sY0tqTEW09GdDSHVvpDSmuYrb/iC+//JLJkyfTrVs3UxRBnU7H0KFD+fLLLwGws7Nj0aJF5jqlEOI2Euhmy3PDQpgxNJiTibn8ejSR344lkZZXwrf7L/Dt/gt4OVgxtrMPYzv50M7HQcbBCXGTybVfCCFuDo1KSWsvB1p7OXB3l2am9Rn5JaaAgScSstkSkUxOkY5fjiTyy5FELNRK+gW7MbytJ0PbeOBhb1WPpRANhdkq/V5eXoSHhxMZGUl0dDQGg4HWrVtXGC83ePBgc51OCHGbUigUdGjuSIfmjswa1YZ9cZn8eiSJP04mk5JbzBc7YvliRywt3G25u3Mzxnb2wd/Vtr6zXa+u9dRTNF71/d7Ktb+ysrIytFptjWm0Wi1qtZri4mLKyspuUc5ujaZYNgsLi0YTXFM0fW52lvQPcad/iDtarZbfNyTg2a43W6Mz2BSRSnxmIVsi09gSmYZCAV18nRjRzovhbT1p4W5X39kX9cTsfT+CgoJQKBS0aNECtVq6lgghbh6VUmEKkjPv7nZsi0rnt6NJ/H06lZj0AhaFR7MoPJrOvk6M6+zDXR19cLe/fWYAKL/hLiwsxNraup5zI26GwsJCoPbz9N4scu03NsCkpKSQnZ1dq7ReXl5cuHChyfVIaoplUyqVBAYGNpnyiKZFqYDuAc70CfHgtVFtOJOWz6ZTKYRHpHIsIccUEPm9PyMJcrdlRFtjA0AXXycZEnkbMduVubCwkGeffdY0pVF0dDRBQUHMmDEDHx8fXn31VXOdSgghKrFUqxjZzouR7bzIK9by16lUfj2ayD9nMzh6IZujF7J5+/cI+ga7Ma5zM0a288RKVd+5vrkMBgMODg6kpaUBxvnmm8JNq16vp7S0lOLi4ib19K0u5TIYDBQWFpKWloaTkxMqVf38M8u1/7LyCr+Hh8c1P2t6vZ78/Hzs7Oya1P8wNL2y6fV6kpKSSE5Oxtvbu76zI0SNFAqFKVDgM0NCSMkpJvx0KuERqeyJySA2vYDl22NYvj0Gd3tLhrXxYERbL3q3cMVK08Rvim5zZqv0z5o1i2PHjrFt2zZCQ0NN64cNG8bs2bNvqwu/EKJ+2Vtp+Fe35vyrW3PS80r4/XgSvx5N4uiFbHaeyWDnmQxe/0XJ4FbueGkVDCjR4dxEw956eHigUqlMFf+mwGAwUFRUhLV105q/+HrK5eTkhJeX103OWfXk2m9UVlZmqvBfPT1gVcobeKysrJpExfhKTbFs7u7uJCUlNZnhCuL24eVoxeRe/kzu5U9usZbtUelsikhlW2Qa6VfERLK1UDGwlTvD23oypJUnjjZN857odma2Sv+6dev4/vvv6dWrV4WblbZt2xITE2Ou0wghRJ2421vySN9AHukbSHymcQaAdUcTiUkvYOOpVEDF2gVb6Xsp6M3wNp54ODSdoDcKhQJvb288PDyuOc64sdBqtezYsYMBAwbUe7d2c6pruTQaTb094S8n136j8s+WjY1NPedE3AwWFhYAUukXjZqDlYYxnXwY08mHUp2evbGZhEcYewGk5Bbzx4kU/jiRgkqpoGegCyPaejK8nRfNnGR4YFNgtkp/eno6Hh4eldYXFBQ0qScxQojGy9/VlmeHhvDMkGBOJeXy65EE1h2MI70YtkWlsy0qndd/OUkXPyeGt/VkRFsvgj2aRtAblUpV7xVEc1GpVOh0OqysrJpUpb8xlkuu/RXdjmW+HZS/r/UdOFMIc7FQKxnQ0p0BLd2ZN64dJxJz2HTK2AAQlZrH7phMdsdkMmd9BO18HEz3RG287eV7rpEyW6W/e/fubNiwgWeffRa4/AW5YsUKevfuba7TCCHEDVMoFLRv5kgrDxva6c7SqvsAtkQbW7yPXsjmyHnjz8KNUQS52TK8nXHu2y6+zhL0RogryLVfCCEaN4VCQcfmTnRs7sRLI1sRn1lAeEQqmyJSOXjuIqeScjmVlMvHf5+hmZM1I9p5MrytJz0CXFCrmsYQntuB2Sr9CxYsIDQ0lIiICHQ6HZ988gmnTp1iz549bN++3VynEUIIs1IoINjDjjbNnHl6cDCpucX8fTqVTadS2ROTSWxGAZ9vj+Xz7bG42V0KetPOkz4t3CTojbjtybVfCCGaFn9XWx7tH8Sj/YPIzC9hS2QamyJS2XkmncTsIlb9c45V/5zD0VrD0NbGe6L+Ie7YWt6eM7c0FmZrnunTpw///PMPhYWFtGjRgk2bNuHp6cmePXvo1q2buU4jhBA3laeDFQ/29GfNtB4cenMYSyZ1YVxnH+yt1GTkl/DdgQtMW32Qrm+H8+TXh/jlSAI5hU1jrLwQdSXX/qZPoVCwbt26m36egIAAPv7445t+nqqsXr0aJyenejm3EA2Zq50l993hy4opd3DkzRF8Mbkb93VrjoutBTlFWn4+ksgTXx+my9vhTFt9gO/2nyc9r6S+sy2qYNYmmQ4dOpim7RFCiMbO3krDXR19uKujMejNvjjjEIBNp4xBb/48mcKfJyXojbi9ybW/cUtLS+PNN9/kzz//JDU1FWdnZzp16sScOXPo3bs3ycnJODs713c2K1m9ejXPP/882dnZ9Z0VIW4L1hYqRrTzYkQ7L8r0Bg7FZ7HpVArhp1OJzyxkS2QaWyLTUChO0NXP+VIcAE+C3JtGbKTG7oYq/bm5ubVO6+DgcCOnEkKIemWhVtI/xJ3+Ie7MHduOk4m5bIpIITwilcgUCXojbh9y7W9a7r33XrRaLWvWrCEoKIjU1FQ2b97MxYsXAep1SkghRMOkUiroEehCj0AXXh/dhujUfMIjUtgUkcrxhBwOxWdxKD6L9/6MpIW7LSPaeTG8rSedmztJbKR6ckOVficnp1rfzMo0J0KIpkKhUNChuSMdmjvy4ggJeiNuL3Ltrx2DwUCRtury6/V6ikrLUJfqzD6XvbVGVev3Jzs7m127drFt2zYGDhwIgL+/Pz169DClUSgU/PLLL9x9992cO3eOwMBAvv/+ez777DMOHjxI+/btWbt2LTk5OTz55JNERkbSq1cv1q5di6enJwCDBg2ic+fOFbrv33333Tg5ObF69eoq87Z48WJWrVpFbGwsLi4ujBkzhoULF2JnZ8e2bdt45JFHTPkDmD17NnPmzKG0tJQ33niDtWvXkp2dTfv27Xn//fcZNGiQ6dirV6/mrbfeIiMjg5EjR9KvX7/a/nmFEFdRKBS08rKnlZc9zwwJITmniL8v3RPtjc0kJr2AZdtiWLYtBnd7S4a18bwUG8kVS7XERrpVbqjSv3XrVtPrc+fO8eqrrzJ16lRTxN49e/awZs0aFixYcGO5FEKIBqy2QW+cbDQMaWUMejOgpTs2FhL0RjQ+cu2vnSJtGW3f+uuWnzdi3shaf7fY2dlhZ2fHunXr6NWrF5aWlrXab/bs2Xz88cf4+fkxbdo0HnjgARwcHPjkk0+wsrJiwoQJzJ49m+XLl193OZRKJZ9++ikBAQHExcXx1FNP8fLLL7N06VL69OnDxx9/zFtvvUVUVJSpLACPPPII586d47vvvsPHx4dffvmF0NBQTpw4QUhICPv27WPatGnMnz+f8ePHs3HjRmbPnn3d+RRCVOTtaM3k3gFM7h1AbrGWbVHphEeksi0yjfS8Er7df55v95/H1kLFwFbujGjrxeBWHjjaNI6pahurG7rjLG8VBpg3bx6LFy/mgQceMK0bO3YsHTp04IsvvuDhhx++kVMJIUSjUB705r47fCkqLWPnGePF7u/TqWQVGoPe/HwkEUu1kn7Bboxo58nQNp642dXuZluI+ibX/qZDrVazevVqwsLCWL58OV27dmXgwIFMnDiRjh07VrvfSy+9xMiRIwF47rnneOCBB9i8eTN9+/ZFr9fz0EMP8f33399Q3p5//nnT68DAQN5++22efPJJli5dioWFBY6OjigUigrDD2JiYvj2229JSEjAx8fHlNeNGzeyatUq5s+fzyeffMLIkSN59dVXAWjZsiW7d+9m48aNN5RfIURlDlYaxnbyYWwnY2ykvbGZbIpI4e+INFJyi/njRAp/nEhBrVTQM8iF4W0kNtLNYrbHTHv27KmyRfeOO+7g0UcfNddphBCi0bgy6I2uTM+h+CzTMIDzFwvZHJnG5ktBb7qVB71p50Wgm219Z12IWpFrf/WsNSoi5o2scpterycvNw97B/ub0r2/Lu69915Gjx7Nzp072bNnDxs3bmThwoWsXLmSqVOnVrnPlQ0C5V34O3ToYFrn4eFBWlpa3TN/ha1btzJ//nwiIiLIzc1Fp9NRXFxMQUEBtrZVf0cePnwYg8FAy5YtK6wvKSnB1dUVgNOnT3PPPfdU2N67d2+p9Atxk1molQxo6c6Alu7MG2vgRGLOpXuiFKJT8/nnbCb/nL0cG2loa3ecius7102H2Sr9vr6+LF++nEWLFlVY//nnn+Pr62uu0wghRKOkVinpGeRKzyBXU9CbTaeMQW9OJOZwMD6Lg/FZLPgzkhAPO1MDQMdmjhL0RjRYcu2vnkKhqLabvV6vR2ehwsZCbfZK//WwsrJi+PDhDB8+nLfeeotHH32U2bNnV1vp12gud8MtH1N/9Tq9Xm9aViqVGAyGCsfQaquf6jQ+Pp5Ro0bxxBNP8Pbbb+Pi4sKuXbuYPn16jfvp9XpUKhWHDh1CparY+FHe/f/qfAghbj2lUkEnXyc6+Trx0shWnMswxkYKj0jlYPzl2EgahYo8l1ieGBws4/9vkNkq/R999BH33nsvf/31F7169QJg7969xMTE8NNPP5nrNEII0ehdGfTm2aEhJGUX8fdp48VuT0wmZ9LyOZOWz9JtMXjYWzK8rTEQYG8JeiMaGLn2N01t27Zl3bp1Zjueu7s7ycnJpuWysjJOnjzJ4MGDq0x/8OBBdDodixYtMjWK/PDDDxXSWFhYVAoU2aVLF8rKykhLS6N///5VHrtt27bs3bu3wrqrl4UQt1aAmy1hA4IIG2CMjbQ5Mo0fD17gwLksPtp8ll+PJ/PO3e3p08KtvrPaaJmteXnUqFGcOXOGcePGcfHiRTIzMxk3bhzR0dGMGjXKXKcRQogmx8fJmim9A/jv9J4cenM4n0zszOiO3thZqknLK2HtvvNMXXWAbm//zTPfHObXo4nkFlf/tEuIW0Wu/Y1bZmYmQ4YM4euvv+b48ePExcXx448/snDhQsaNG2e28wwZMoQNGzawYcMGIiMjeeqpp8jOzq42fYsWLdDpdHz22WfExsby3//+t9IwkoCAAPLz89m8eTMZGRkUFhbSsmVLHnzwQaZMmcLPP/9MXFwcBw4c4P333+ePP/4AYMaMGaYhDNHR0SxZskS69gvRgLjaWTLhDl/WTruDycFluNpaEJtewKQV+5j5/VEy8kvqO4uN0g096T9+/Djt27c3tcI2b96cd999t9r0p06dolWrVqjVErFaCCGq4mitYVznZozr3IwSXRl7YjJNXd7S8kr4/Xgyvx9PRqNS0CvIlRFtPRnW1hNvRwl6I24NufY3HXZ2dvTs2ZOPPvqImJgYtFotvr6+hIWF8dprr5ntPNOmTePYsWNMmTIFtVrNCy+8UO1TfoDOnTuzePFi3n//fWbNmsWAAQNYsGABU6ZMMaXp06cPTzzxBPfffz+ZmZmmKftWrVrFO++8w4svvkhiYiKurq707t3b1AjVq1cvVq5caUo/bNgw3njjDd5++22zlVcIceMUCgV3uBt4fkJfPt4Sy9f74vn5SCJ/n07l1TvbMLG7rwx/rIMbugJ36dKFlJQU3N3da5W+d+/eHD16lKCgoBs5rRBC3BYs1SoGtfJgUCsP3h7XnmMJ2aZAgGfT8tl5JoOdZzJ489dTdGzuyPA2xjgALT3t6jvrogmTa3/TYWlpyYIFC2qcXvHKMfABAQGVxsQPGjSo0rpJkybxxBNPmJY1Gg1Lly5l6dKl1Z7n3LlzFZZfeOEFXnjhhQrrJk+eXGF52bJlLFu2rMI6jUbD3LlzmTt3brXnmjZtGtOmTauw7sUXX6w2vRCi/jhYa3j77vbc2605r/9yglNJubz2ywl+PHSBd+/uQFsfh/rOYqNwQ5V+g8HAm2++iY2NTa3Sl5aW3sjphBDitqVUKuji50wXP2deDm1NbHq+qQfAofNZHE/I4XhCDovCo/F3tWFoK3eschQM1ZZVCLAlxI2Sa78QQohbrbOvE78+3Zf/7IlncXg0R85nM2bJLh7pE8Dzw1tiZym9yWpyQ3+dAQMGEBUVVev0vXv3xtpauqAKIcSNCnK34/GBdjw+sAXpeSVsvhQIcOfZDOIzC/lqdzyg4qsFW+kR6MqAEDf6h7jT0tPOFG1biOsh134hhBD1Qa1SMq1fIKM6ePP27xFsOJHMyl1xbDiRzOwx7RjZzlPucapxQ5X+bdu2mSkbQgghrpe7vSUTe/gxsYcfBSU6dp5J569TKWw+mUiuVs+O6HR2RKcDp/Gwt6RfiBsDQtzpG+yGu71lfWdfNDJy7RdCCFGfvByt+L8Hu/KvqDTe+vUkFy4W8cTXhxja2oM5Y9vh61K7nmi3k/qfHFYIIYTZ2FqqCW3vzcLx7ZnXrYw/nunDG6PbMLClO1YaJWl5Jfx8OJHnvz9K93f/5s5PdrLgj9PsPJNOsbbs2icQop5lZWUxefJkHB0dcXR0ZPLkyTVGgi93+vRpxo4di6OjI/b29vTq1Yvz58/f/AwLIYS4KQa38iD8hYE8MzgYjUrB5sg0hn+0naXbzlKq09d39hoUGfwghBBNlEIBIZ52tG3uzKP9gyjWlnE4PosdZzLYeSadU0m5nE42/ny+IxZLtZIegS70vzQUoLWXvXSTEw3OpEmTSEhIME2z9thjjzF58mTWr19f7T4xMTH069eP6dOnM3fuXBwdHTl9+jRWVla3KttCCCFuAiuNipdGtuLuLj68se4ke2MvsnBjFL8cTuSdu9vTM8i1vrPYIEilXwghbhNWGhV9gt3oE+zGq3e2JiO/hH/OGmcA2HUmg5TcYtOMABCJu70l/YLd6B/iRr8QNzzspYIk6tfp06fZuHEje/fupWfPngCsWLGC3r17ExUVRatWrarc7/XXX2fUqFEsXLjQtE5mExBCiKYj2MOeb8N68cuRRN7dcJozafnc/8Ve7uvWnFmj2uBia1HfWaxXUukXQojblJudJeM6N2Nc52YYDAbOpuWz40wGu86kszf2Iul5JfxyJJFfjiQC0NrL3tQLoEegC1YaVT2XQNxu9uzZg6Ojo6nCD8Z51x0dHdm9e3eVlX69Xs+GDRt4+eWXGTlyJEeOHCEwMJBZs2Zx9913V3uukpISSkpKTMu5ubkAaLVatFpthbRarRaDwYBer0evv3aX0vIp7sr3aUqaYtn0ej0GgwGdTgdQ6f1vCsrLJGVrXKRslY3p4En/Fi58GH6G7w8m8OOhBMIjUnl5ZAj3dmmGUln/PRjN+b7V9hhS6RdCCIFCoSDE054QT3um9wukRFfGofgsdl168n8yKYfIlDwiU/JYsTMOC7WSHgEVhwI0hAupaNpSUlLw8PCotN7Dw4OUlJQq90lLSyM/P5/33nuPd955h/fff5+NGzcyfvx4tm7dysCBA6vcb8GCBVXO9b5p06ZK0xWq1Wq8vLzIz8+v0xSFeXl5tU7b2DSlspWWllJUVMTu3bsBCA8Pr+cc3TxStsZJylZZHw14t4cfYlUkFWp5bV0EKzafYkJgGT62Zs7kdTLH+1ZYWFirdFLpF0IIUYmlWkWfFm70aeHGy6FwsaD00lCAdHaeySA5p5hdZzPYdTaDBX9G4mZnQb9gN/qFuNM/xA1PBxkKIGpvzpw5VVawr3TgwAGAKuNMGAyGauNPlD9tHjduHC+88AIAnTt3Zvfu3SxfvrzaSv+sWbOYOXOmaTk3NxdfX19GjBiBg4NDhbTFxcVcuHABOzu7WsUJMBgM5OXlYW/fNOJmREZGMm3aNI4ePUrr1q3Ztm1bkykbGN9fa2tr+vTpw44dOxg+fDgajaa+s2VWWq2W8PBwKVsjI2W7tsfL9Pxn73k+2RJDXF4Zi05qeKSPP88MDsLGon6qwuZ838p7oV2LVPqFEEJck4utBWM6+TCmkw8Gg4GY9AJTA8De2Ewy8ktZdzSJdUeTAGjlaW+KBdAz0BVrCxkKIKr3zDPPMHHixBrTBAQEcPz4cVJTUyttS09Px9PTs8r93NzcUKvVtG3btsL6Nm3asGvXrmrPZ2lpiaVl5SktNRpNpZu0srIyFAoFSqUSpfLaEyOVN0SU71Ofpk6dypo1awBQqVT4+PgwevRo5s+fj7Ozc62OMXfuXGxtbYmKijL1gmgIZTMXpVKJQqFArTbeNlf1P9BUSNkaJylbTfvD44NCGNO5OXPXn+KvU6ms2HWOP06mMmdsO4a3rfracSuY432r7f5S6RdCCFEnCoWCYA87gj3seKRvIKU6PYfPZ5kaAU4k5hCVmkdUah4rd8VhoVLSPdCZfsHGXgBtvR1kKICowM3NDTc3t2um6927Nzk5Oezfv58ePXoAsG/fPnJycujTp0+V+1hYWNC9e3eioqIqrI+Ojsbf3//GM98EhIaGsmrVKnQ6HREREUybNo3s7Gy+/fbbWu0fExPD6NGj8ff3R6/X1/rJ05VKS0uxsLi9A20JIW4eHydrPp98B5tPp/LWr6dIzC4i7D8HGd7Wkzlj29HMybq+s3hTNY0mWCGEEPXGQq2kV5Ar/x7Zmt+e6cfhN4azZFIX7r/DFx9HK0rL9PxzNpP3N0Zy12e76P7u38z49gg/HrxASk5xfWdfNCJt2rQhNDSUsLAw9u7dy969ewkLC+Ouu+6qEMSvdevW/PLLL6blf//733z//fesWLGCs2fPsmTJEtavX89TTz1VH8VocCwtLfHy8qJ58+aMGDGC+++/n02bNpm2r1q1ijZt2mBlZUXr1q1ZunSpaZtCoeDQoUPMmzcPhUJhGqaRmJjI/fffj7OzM66urowbN45z586Z9ps6dSp33303CxYswMfHh5YtW9Zpvw8//BBvb29cXV15+umnKwSzKikp4eWXX8bX1xdLS0tCQkL48ssvTdsjIiIYNWoUdnZ2eHp6MnnyZDIyMsz9ZxVCNEBD23gSPnMATw5qgVqpIDwilWGLtvPFjhi0ZU0j+GhV5Em/EEIIs3K2teCujj7c1dE4FCA2o4Cd0ensOpvBnphMMgtK+e1YEr8dMw4FCPGwo3+IO/1butEz0KXextiJxmHt2rXMmDGDESNGADB27FiWLFlSIU1UVBQ5OTmm5XvuuYfly5ezYMECZsyYQatWrfjpp5/o16/fzc9waUHldXo9aAtBZwEWNjWnLadQgsa65rQWNx6dKjY2lo0bN5q6jK5YsYLZs2ezZMkSunTpwpEjRwgLC8PW1paHH36Y5ORkhg0bRmhoKC+99BI2Njbk5+czdOhQ+vfvz44dO1Cr1bzzzjuEhoZy/Phx0xP9zZs34+DgQHh4OAaDgcLCQgYPHnzN/bZu3Yq3tzdbt27l7Nmz3H///XTu3JmwsDAApkyZwp49e/j000/p1KkTcXFxpkp9cnIyAwcOJCwsjMWLF1NUVMQrr7zChAkT2LJlyw3//YQQDZ+NhZpXQltzT5dmvP7LCQ6cy2L+H5H8dCiRd+9pzx0BLvWdRbOTOyshhBA3jUKhoIW7HS3c7Zh6aSjAkfNZ7DqbwY4zGRxPyOZMWj5n0vL56h/jUIBu/s70b+lG/2B32vnIUABRkYuLC19//XWNacqnjbvStGnTmDZt2s3KVvXm+1RapQScAEPwcHjof5c3fBBsbAyoin8/eGTD5eWPO0BhZsU0c3K4Hr///jt2dnaUlZVRXGzsfbN48WIA3n77bRYtWsT48eMBCAwMJCIigs8//5yHH34YLy8v1Go1dnZ2eHl5odfr+c9//oNSqWTlypWmYH6rVq3CycmJbdu2mRpsbG1tWblypaky/9VXX9VqP2dnZ5YsWYJKpaJ169aMHj2azZs3ExYWRnR0ND/88APh4eEMGzYMgKCgIFNZly1bRteuXZk/f75p3VdffYWvry/R0dGmHgdCiKavpac93z/Wm/8dTmDBH6eJSs3jX8v3MLG7L6+EtsbZtukMOZJKvxBCiFvGQq2kZ5ArPYNceXFEK7ILS/nnbCa7zqazIzqDxOwi9sRmsic2k4VE4WJrQd9gN/oHG4MC+jTxMXdC1IfBgwezbNkyCgsLWblyJdHR0Tz77LOkp6dz4cIFpk+fbnqKDqDT6XB0dKz2eEePHuXs2bPY29tXWF9cXExMTIxpuUOHDhXG8R86dKhW+7Vr1w6V6nJwUG9vb06cOGE6t0qlqnZWhkOHDrF161bs7OwqbYuJiZFKvxC3GaVSwYQ7fBnexpP3/ozk+4MX+O7ABTZFpPLaqDbc27VZk5iJRCr9Qggh6o2TjQWjO3ozuqM3BoOBc5mF7DxjbADYE5PBxYJS1h9LYv2loQDBHnb0CXJBfVFBz/wSvJybZrRi0YS8llRplV6vJzcvDwdHJyrcSv77bPXHUVwVhun5E2bJHhifuAcHBwPw6aefMnjwYObOncszzzwDGLv49+zZs8I+V1a6r6bX6+nWrRtr166ttM3d3b3Cea9nv6ujVSsUCtOMCNbWNTcM6vV6xowZw/vvv19pm7e3d437CiGaLmdbC97/V0f+dUdzXv/lBNGp+bz04zF+PHiBd+5uT4in/bUP0oBJpV8IIUSDoFAoCHSzJdDNlim9A9CW6Tl6IZud0emmoQBn0/I5m5YPqPjq/e0EudvS3d+F7oEu9AhwwdfFukm0yIsmpKpx9no9aMpAbXXttHU5rpnMnj2bO++8kyeffJJmzZoRGxvLgw8+WOv9O3XqxLp16/Dw8MDBwaHW+3Xt2pXvv/++zvtdqUOHDuj1erZv327q3n/1OX766ScCAgJMU/AJIUS57gEubJjRny93xfHx39Hsi7vInZ/s5LEBQTw7JKTRTkEs0fuFEEI0SBqVku4BLswc0Yp1T/flyJsjWPZgVx7o3hxva+OY7dj0Ar4/eIGXfjzGgA+20mvBZp7+5jBrdp/jVFIOZfrKY7uFEDUbNGgQ7dq1Y/78+cyZM4cFCxbwySefEB0dzYkTJ1i1apVpzH9V7rvvPtzc3Bg3bhw7d+4kLi6O7du389xzz5GQkFDtfg8++OB17XelgIAAHn74YaZNm8a6deuIi4tj27Zt/PDDDwA8/fTTXLx4kQceeID9+/cTGxvLpk2bmDZtGmVlZXX7QwkhmiSNSskTA1sQ/sJAhrXxQKc3sHRbDMM/2s7WyLT6zt51kSZOIYQQjYKjjYY7O3gzrLUbf6jP0WfQcI4l5nEg/iIH4i5yIjGH1NwSNhxPZsPxZADsrdR083eme4AL3QNc6NjcEStN42ylF+JWmjlzJo888ghnz55l5cqVfPDBB7z88svY2trSoUMHnn/++Wr3tbGxYdu2bcyaNYvx48eTl5dHs2bNGDp0aI1P8G1sbNixYwevvPJKnfa72rJly3jttdd46qmnyMzMxM/Pj9deew0AHx8f/vnnH1555RVGjhxJSUkJ/v7+hIaGolTKszAhxGW+LjasfLg7m06lMOe3UyRkFfHI6gPc2d6Lt8a0xdux8cQZkkq/EEKIRsnJRsOwtp4Ma+sJQFFpGccSsjkQd5H95y5yOD6LvGId26LS2RaVDoCFSknH5o6m4QBd/Z1xtJa4AOL2tXr16irXT5o0iUmTJlV6XZWjR49WWufl5cWaNWvqfN7r2e/jjz+usGxlZcXixYur7Y0QEhLCzz//XO05hBDiSiPaedE32I1PNp/hy11x/HkyhR3R6bwwvCVT+wSgVjX8BkOp9AshhGgSrC1U9ApypVeQKwC6Mj2RKXnsj7vIwfiL7I/LIiO/hIPxWRyMz2IZMSgU0MrTnh6BLtwRYGwI8HK0usaZhBBCCHE7sbVU89qoNtzTpRmv/3KCw+ezeWfDaX46nMj8e9rTxc+5vrNYI6n0CyGEaJLUKiXtmznSvpkj0/oFmmYHOHDOOBzgwLmLnMssJDIlj8iUPP6zJx4AXxdrU3DA7gEutHC3leCAQgghhKCNtwP/e6IP3x+8wHt/RnI6OZfxy3YzqYcfL49sjeP/t3fvQVHW/x7A37vLXpSbKMjFCxedRH7kEUGTyNuMYj/tNqdTeRwddapjJ5zRzGm0TM0CLTWdHLOJOOo0jZ7y0jH1eCBTUzFRY0uEQFEuhuRdQAIW+Jw/jNWNixDPs+yzvV8z/MHDdx++b1f2vd9nn92nu2uePchFPxER/S3cf3WA5+P6AQCuVNbgVNFN+9kAuWUVKL3xO0pv/Iqd2b8CAHp6mhAX6mc/G+AfIT4wauBUPiIiIlKeXq/Dv4/oj8SoQKTs+wU7fryEL06U4P/OlmPx5Cg8PTTE5V4s4KKfiIj+tnp7WzDp4WBMevju9bkra2z4seQWThXdQNbFG7CW3sKNO3VIz/0N6bm/AQC6GQ0YFtoDcaE9MSK8J2L690B3E+uUiIjo76SXlxlrnv8X/FtsXyz++gwKr97BvP+24stTpXj3mWgMCPDq6inaafZZSnJyMvbu3Qur1QqTyYRbt241G1NSUoKkpCR899136NatG6ZOnYrVq1fDZDLZx5w5cwZz5sxBVlYWevbsidmzZ+Ptt992uaMzRESkPm+LEWMeCsCYhwIAALX1Dcj5tcL+loBTxTdx+3cbjp2/jmPnrwMADHodokN87l4hILwn4kL90MvL3JUxiIiIyEniB/TC/84djdQjF/DRgXPILLyOf647glfGRODVcQNd4qpBml3019XV4bnnnkN8fDzS0tKa/byhoQGTJ09GQEAAjh49iuvXr2PGjBkQEaxfvx4AUFFRgQkTJmDcuHE4efIkCgoKMHPmTHh6euL11193diQiInIxZg8DYkP9EBvqh1fGDEBjo+DclSpkFd3AqT8OBJTdrsFPl27jp0u38dnRiwCAAQGed98O8MfZAH39uvFg8t9AY2NjV0+BVCAiAMC/YSJqlclDj6RxA/HkkBAs2Z2DQ/lX8dF35/E/P5Vh+dPR9hcTuopmF/3vvPMOgNYv+ZKeno7c3FyUlpYiJCQEALBmzRrMnDkTycnJ8PHxwRdffIGamhps3rwZZrMZ0dHRKCgowIcffoj58+fzwZ2IiBzo9ToMCvLGoCBvTB8ZCgC4dLP67ucC/HEQ4NyVKhRevYPCq3ewNasUABDkY0Fc2N3PBRge1hODAr2h17Nj3IXJZIJer0dZWRkCAgJgMpnafA7R2NiIuro61NTUuN214d0tm4jg6tWr0Ol08PDQ7NNmInKS/r26Y9PM4difU45l35xF8fVqzPivLDwxJBhvPxGFQJ+uuUKQ2z56HT9+HNHR0fYFPwBMnDgRtbW1OH36NMaNG4fjx49jzJgxMJvNDmMWLVqEoqIihIeHt7jv2tpa1NbW2r+vqKgAANhsNthstk7Nu+n2nd2PK2I2bWI2bWI25wn0MmJydG9Mju4NALhZXYcfi2/hZPFNnC65hZxfK1BeUYM9P1/Gnp8vAwC8LR4Y1r8Hhof6ITa0Bx7u4wu9NABQLper/Pv8Hej1eoSHh+Py5csoKyt74HgRwe+//45u3dzvDBB3zKbT6dC3b18YDF1/ii4RuT6dTod/PhyMUQ8F4MP0AmzOvIg9P1/GofyrWJD4EKbE9XH6nNx20V9eXo7AwECHbX5+fjCZTCgvL7ePCQsLcxjTdJvy8vJWF/0rVqywn2lwv/T0dHTv3l2B2QMZGRmK7McVMZs2MZs2MVvXGQJgSF+gLhgortLhQiVQWKFDUaUOlTX1OFxwDYcLrgEAPHSCUC8g3EeP4p0ZCPXu/O+vrq7u/E6o3UwmE/r374/6+no0NDS0OdZms+H777/H6NGjYTS65uWd/ip3zGY0GmEwGHggjYg6xMvsgSVPRuFfh/XBW1/n4KfSW1j2TS62n76Eib2cOxeXWvQvW7asxcX0/U6ePIm4uLh27a+lI8wi4rD9z2Pa876tRYsWYf78+fbvKyoq0K9fPyQmJsLHx6ddc2uNzWZDRkYGJkyY4DZl2YTZtInZtInZXFd9QyN+Ka/CyeKbOFV8E6eLb+H6nToUVgKFlTpEDozApPEPdfr3NJ2FRs6j0+lgNBof+P/SYDCgvr4eFotFk/+H2+LO2YiI/oroPr7Y+Z+PYmtWCd7f/wtyyipQdt2AFxsa4ayHSZda9M+ZMwdTpkxpc8yfX5lvTVBQEE6cOOGw7ebNm7DZbPZX84OCguyv+je5cuUKADQ7S+B+ZrPZ4S0BTdpT9O2l5L5cDbNpE7NpE7O5HqMRiAkzIyasF/4Ddw82X7x2Bz8UXsXXx3IwelBvRXJp8d+GiIjIHRn0OkwbGYqJ/wjCu9+chX/NJRgNzvvcE5da9Pv7+8Pf31+RfcXHxyM5ORmXL19GcPDd6y+np6fDbDYjNjbWPubNN99EXV2d/TJ+6enpCAkJaffBBSIios7Q6XSICPBCvx5meP72M2L69ejqKREREZEKArzNWPPcw9i3r9Spv1ezH6taUlICq9WKkpISNDQ0wGq1wmq1oqqqCgCQmJiIqKgoTJ8+HdnZ2Thw4AAWLFiAl19+2X4K/tSpU2E2mzFz5kzk5ORg165dSElJ4Sf3ExERERERkVtwqVf6O2LJkiXYsmWL/fuYmBgAwMGDBzF27FgYDAbs3bsXr776KhISEtCtWzdMnToVq1evtt/G19cXGRkZSEpKQlxcHPz8/DB//nyH9+u3R9PnACjx/kmbzYbq6mpUVFS43amZzKZNzKZNzKY9Sudq6qSmjqLOYde3D7NpE7NpE7Npk5LZ2tv1OuGzgU67dOkS+vXr19XTICIiaqa0tBR9+/bt6mloHrueiIhc1YO6not+BTQ2NqKsrAze3t6dfltA05UASktLO30lAFfDbNrEbNrEbNqjdC4RQWVlJUJCQqDXa/bdfC6DXd8+zKZNzKZNzKZNSmZrb9dr9vR+V6LX6xV/FcXHx8ft/oM3YTZtYjZtYjbtUTKXr6+vIvshdn1HMZs2MZs2MZs2KZWtPV3PQ/9EREREREREboqLfiIiIiIiIiI3xUW/izGbzVi6dCnMZnNXT0VxzKZNzKZNzKY97pqLmnPn+5rZtInZtInZtKkrsvGD/IiIiIiIiIjcFF/pJyIiIiIiInJTXPQTERERERERuSku+omIiIiIiIjcFBf9RERERERERG6Ki34iIiIiIiIiN8VFv8o+/vhjhIeHw2KxIDY2FkeOHGlz/OHDhxEbGwuLxYKIiAh88sknzcbs2LEDUVFRMJvNiIqKwq5du9SafpuUznb27Fk8++yzCAsLg06nw7p161ScfduUzpaamopRo0bBz88Pfn5+GD9+PLKystSM0Cqls+3cuRNxcXHo0aMHPD09MXToUHz++edqRmiVGn9vTbZt2wadTodnnnlG4Vm3j9LZNm/eDJ1O1+yrpqZGzRgtUuN+u3XrFpKSkhAcHAyLxYLBgwdj3759akVoldLZxo4d2+L9NnnyZDVjUDuw7+9h33d937Pr72HXs+vVpomuF1LNtm3bxGg0SmpqquTm5srcuXPF09NTiouLWxx/4cIF6d69u8ydO1dyc3MlNTVVjEajbN++3T4mMzNTDAaDpKSkSF5enqSkpIiHh4f88MMPzoolIupky8rKkgULFsjWrVslKChI1q5d66Q0jtTINnXqVNmwYYNkZ2dLXl6ezJo1S3x9feXSpUvOiiUi6mQ7ePCg7Ny5U3Jzc+X8+fOybt06MRgMsn//fmfFEhF1sjUpKiqSPn36yKhRo+Tpp59WOUlzamTbtGmT+Pj4yOXLlx2+nE2NbLW1tRIXFyeTJk2So0ePSlFRkRw5ckSsVquzYomIOtmuX7/ucH/l5OSIwWCQTZs2OSkVtYR9fw/7vuv7nl1/D7ueXa82rXQ9F/0qGjFihLzyyisO2yIjI2XhwoUtjn/jjTckMjLSYdvs2bNl5MiR9u+ff/55efzxxx3GTJw4UaZMmaLQrNtHjWz3Cw0N7bInAWpnExGpr68Xb29v2bJlS+cn3AHOyCYiEhMTI4sXL+7cZDtIrWz19fWSkJAgn332mcyYMaNLngiokW3Tpk3i6+ur+Fw7So1sGzdulIiICKmrq1N+wh3gjL+3tWvXire3t1RVVXV+wvSXse/vYd876oq+Z9ffw65n16tNK13P0/tVUldXh9OnTyMxMdFhe2JiIjIzM1u8zfHjx5uNnzhxIk6dOgWbzdbmmNb2qQa1srkCZ2Wrrq6GzWZDz549lZl4Ozgjm4jgwIEDyM/Px+jRo5Wb/AOomW358uUICAjAiy++qPzE20HNbFVVVQgNDUXfvn3xxBNPIDs7W/kAbVAr2+7duxEfH4+kpCQEBgYiOjoaKSkpaGhoUCdIC5z1WJKWloYpU6bA09NTmYlTh7HvHbHvHTm779n1jtj17Ho1aanruehXybVr19DQ0IDAwECH7YGBgSgvL2/xNuXl5S2Or6+vx7Vr19oc09o+1aBWNlfgrGwLFy5Enz59MH78eGUm3g5qZrt9+za8vLxgMpkwefJkrF+/HhMmTFA+RCvUynbs2DGkpaUhNTVVnYm3g1rZIiMjsXnzZuzevRtbt26FxWJBQkICzp07p06QFqiV7cKFC9i+fTsaGhqwb98+LF68GGvWrEFycrI6QVrgjMeSrKws5OTk4KWXXlJu4tRh7HtH7HtHzu57dr0jdj27Xk1a6nqPTt2aHkin0zl8LyLNtj1o/J+3d3SfalEjm6tQM9sHH3yArVu34tChQ7BYLArMtmPUyObt7Q2r1YqqqiocOHAA8+fPR0REBMaOHavcxNtByWyVlZWYNm0aUlNT4e/vr/xkO0jp+23kyJEYOXKk/ecJCQkYNmwY1q9fj48++kipabeL0tkaGxvRu3dvfPrppzAYDIiNjUVZWRlWrVqFJUuWKDz7tqn5WJKWlobo6GiMGDFCgZlSZ7Hv2x7f0nZX4K59z65ve3zTdna987Dr2x7f0nZAua7nol8l/v7+MBgMzY7yXLlypdnRnSZBQUEtjvfw8ECvXr3aHNPaPtWgVjZXoHa21atXIyUlBd9++y2GDBmi7OQfQM1ser0eAwcOBAAMHToUeXl5WLFihdOeCKiR7ezZsygqKsKTTz5p/3ljYyMAwMPDA/n5+RgwYIDCSZpz1t+bXq/H8OHDnXr0X61swcHBMBqNMBgM9jGDBw9GeXk56urqYDKZFE7SnNr3W3V1NbZt24bly5crO3HqMPa9I/b9XV3V9+x6R+x6R+x6ZWmp63l6v0pMJhNiY2ORkZHhsD0jIwOPPvpoi7eJj49vNj49PR1xcXEwGo1tjmltn2pQK5srUDPbqlWr8O6772L//v2Ii4tTfvIP4Mz7TURQW1vb+Um3kxrZIiMjcebMGVitVvvXU089hXHjxsFqtaJfv36q5bmfs+43EYHVakVwcLAyE28HtbIlJCTg/Pnz9iduAFBQUIDg4GCnPAkA1L/fvvzyS9TW1mLatGnKTpw6jH3viH3ftX3PrnfErnfErleWprr+L38EID1Q0yUc0tLSJDc3V+bNmyeenp5SVFQkIiILFy6U6dOn28c3XcLhtddek9zcXElLS2t2CYdjx46JwWCQlStXSl5enqxcubJLL+GjZLba2lrJzs6W7OxsCQ4OlgULFkh2dracO3dO89nef/99MZlMsn37dodLcFRWVmo+W0pKiqSnp0thYaHk5eXJmjVrxMPDQ1JTUzWf7c+66hN91ci2bNky2b9/vxQWFkp2drbMmjVLPDw85MSJE5rPVlJSIl5eXjJnzhzJz8+XPXv2SO/eveW9997TfLYmjz32mLzwwgtOy0JtY9+z75u4Qt+z69n1Tdj12szWRMmu56JfZRs2bJDQ0FAxmUwybNgwOXz4sP1nM2bMkDFjxjiMP3TokMTExIjJZJKwsDDZuHFjs31+9dVXMmjQIDEajRIZGSk7duxQO0aLlM528eJFAdDs68/7cQals4WGhraYbenSpU5I40jpbG+99ZYMHDhQLBaL+Pn5SXx8vGzbts0ZUZpR4+/tfl31REBE+Wzz5s2T/v37i8lkkoCAAElMTJTMzExnRGlGjfstMzNTHnnkETGbzRIRESHJyclSX1+vdpRm1MiWn58vACQ9PV3t6VMHsO/vYd93fd+z6+9h17Pr1aaFrteJ/PHJAURERERERETkVviefiIiIiIiIiI3xUU/ERERERERkZviop+IiIiIiIjITXHRT0REREREROSmuOgnIiIiIiIiclNc9BMRERERERG5KS76iYiIiIiIiNwUF/1EREREREREboqLfiIiIiIiIiI3xUU/ERERERERkZviop+IiIiIiIjITf0/En5EVlZjKecAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAYkCAYAAADDLkfoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1RU19oG8GdmGIbe69BBRaUIigWNilFRsSCaRFO80Zjc5JrcFNM0N7GlmKhJNEUTvxs1xeSaxGhsUbAmsVdQUCwISG/S28Cc74+RGUa6AkN5fmuxmLPPPvvseZmBzTv77CMSBEEAERERERERERFRByPWdQeIiIiIiIiIiIjqw8QVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERdQqbNm2CSCTCmTNn7um4xMTEFp8zLS0NS5YswYULF5pVPy4uDkuWLLmnc7WWJUuWQCQSIScnp9F6s2fPhru7e/t0qgu5ceMGZDIZjh8/3qrt5uXlYebMmbCzs4NIJMLUqVNbtf3uLiQkBCEhITo59+HDhyESiXD48OEWH9uWv1NqflfUUCgU8PLywurVq1v9XERERPeDiSsiIurSJk6ciOPHj8PR0bHFx6alpWHp0qUtSlwtXbpUp4mr5nrnnXewbds2XXej03nttdcwduxYBAcHt2q77777LrZt24ZPP/0Ux48fx4oVK1q1/e5u7dq1WLt2ra670WLt+TtFKpVi0aJFWLZsGXJzc9v8fERERM3FxBUREXVptra2GDJkCGQyma67UkdpaanOzu3l5YXAwECdnf9eNRazsrKy+2pboVCgqqqqwf2XL1/G9u3b8e9//7vJtlr6s7106RK8vLzw+OOPY8iQIejVq1eLjq/P/cajK+nbty/69u2r6250eI8++ihEIhG+/vprXXeFiIhIjYkrIiLqtHbs2IHg4GAYGRnB1NQUY8eOrXMJV32XCoaEhMDX1xenT5/G8OHDYWRkBE9PT3z44YdQKpUAVJf3DBw4EAAwZ84ciEQiiEQiLFmypN6+bNq0CQ8//DAAYNSoUer6mzZt0jrnn3/+iaFDh8LIyAhPPfUUAGDLli0IDQ2Fo6MjDA0N0adPHyxYsAAlJSV1znPy5ElMnjwZ1tbWMDAwgJeXF15++eVG43TlyhV4enpi8ODByMrKAlD/pYIikQgvvPACvv/+e/Tp0wdGRkbo168fdu3aVafN33//Hf7+/pDJZPD09MSaNWvqXHrUmP3792P06NEwMzODkZERhg0bhgMHDmjVqWnv3LlzeOihh2BpaQkvLy8AgLu7OyZNmoTffvsNgYGBMDAwwNKlSwGokkDh4eGwtLSEgYEBAgIC8O2332q1XXP51vfff49XX30VTk5OkMlkuH79eoN9XrduHRwcHDB27Fit8sZ+toWFhXjttdfg4eEBfX19ODk54eWXX1b/bBMTEyESibB//35cvnxZ/bqpuayssrIS7733Hnr37g2ZTAZbW1vMmTMH2dnZWn1oLB4ZGRl49tln4ezsDH19fXh4eGDp0qVaSbqafqxatQqffPIJPDw8YGJiguDgYJw4caJOLJrzOrx27Roee+wx2NnZQSaToU+fPvjyyy8bjO+9SkhIwMyZMyGXyyGTyWBvb4/Ro0drzZS8+1LBmue7cuVKfPTRR3B3d4ehoSFCQkJw9epVKBQKLFiwAHK5HObm5oiIiFC/d2o09PvA3d0ds2fPbrTPZ86cwcyZM9XndXd3x6OPPoqkpCR1naZ+pwDNex8BwO7duxEQEACZTAYPDw+sWrWq3n7p6+tjxowZWL9+PQRBaPQ5EBERtRc9XXeAiIjoXvz44494/PHHERoaip9++gkVFRVYsWIFQkJCcODAATzwwAONHp+RkYHHH38cr776KhYvXoxt27Zh4cKFkMvl+Mc//oH+/ftj48aNmDNnDt5++21MnDgRAODs7FxvexMnTsQHH3yAt956C19++SX69+8PAOpECwCkp6fjiSeewBtvvIEPPvgAYrHq86Nr164hLCwML7/8MoyNjXHlyhV89NFHOHXqFA4ePKg+ft++fZg8eTL69OmDTz75BK6urkhMTERkZGSDz/PIkSOIiIjAiBEj8OOPP8LIyKjRuOzevRunT5/GsmXLYGJighUrViAiIgLx8fHw9PQEAOzduxfTpk3DiBEjsGXLFlRVVWHVqlXIzMxstO0aP/zwA/7xj38gPDwc3377LaRSKb7++muMGzcO+/btw+jRo7XqT5s2DTNnzsRzzz2nlcw7d+4cLl++jLfffhseHh4wNjZGfHw8hg4dCjs7O3z22WewtrbGDz/8gNmzZyMzMxNvvPGGVtsLFy5EcHAwvvrqK4jFYtjZ2TUamxEjRqh/brXV97MtLS3FyJEjkZKSgrfeegv+/v6IjY3FokWLcPHiRezfvx+Ojo44fvw45s2bh4KCAmzevBmAaoaQUqlEeHg4/vrrL7zxxhsYOnQokpKSsHjxYoSEhODMmTMwNDRsNB4ZGRkYNGgQxGIxFi1aBC8vLxw/fhzvvfceEhMTsXHjRq3n8eWXX6J3797qdY7eeecdhIWF4ebNmzA3NwfQvNdhXFwchg4dCldXV3z88cdwcHDAvn378OKLLyInJweLFy9u7CXSImFhYaiursaKFSvg6uqKnJwcHDt2DPn5+U0e++WXX8Lf3x9ffvkl8vPz8eqrr2Ly5MkYPHgwpFIpNmzYgKSkJLz22mt4+umnsWPHjlbpc2JiIry9vTFz5kxYWVkhPT0d69atw8CBAxEXFwcbG5smf6c093104MABhIeHIzg4GP/73//UsWro/RoSEoJ169bh0qVL8PPza5XnS0REdF8EIiKiTmDjxo0CAOH06dNCdXW1IJfLBT8/P6G6ulpdp6ioSLCzsxOGDh1a57ibN2+qy0aOHCkAEE6ePKl1jr59+wrjxo1Tb58+fVoAIGzcuLFZffzll18EAMKhQ4fq7Ks554EDBxptQ6lUCgqFQjhy5IgAQIiOjlbv8/LyEry8vISysrIGj1+8eLEAQMjOzha+//57QV9fX3jxxRe14iQIgvDkk08Kbm5uWmUABHt7e6GwsFBdlpGRIYjFYmH58uXqsoEDBwouLi5CRUWFuqyoqEiwtrYWmhpalJSUCFZWVsLkyZO1yqurq4V+/foJgwYNqvNcFi1aVKcdNzc3QSKRCPHx8VrlM2fOFGQymZCcnKxVPmHCBMHIyEjIz88XBEEQDh06JAAQRowY0Wh/a2RmZgoAhA8//LDOvoZ+tsuXLxfEYrFw+vRprfJff/1VACDs2bNHqw0fHx+tej/99JMAQNi6datWec3rcu3ateqyhuLx7LPPCiYmJkJSUpJW+apVqwQAQmxsrCAIgnDz5k0BgODn5ydUVVWp6506dUoAIPz000/qsua8DseNGyc4OzsLBQUFWuUvvPCCYGBgIOTl5TV4bEvk5OQIAITVq1c3Wm/kyJHCyJEj1ds1z7dfv35a743Vq1cLAIQpU6ZoHf/yyy8LALSeDwBh8eLFdc7l5uYmPPnkk+rtmtdafb8XalRVVQnFxcWCsbGxsGbNGnV5Q79TWvI+Gjx4sCCXy7V+XoWFhYKVlVW979dr164JAIR169Y12F8iIqL2xEsFiYio04mPj0daWhpmzZqlNfvFxMQE06dPx4kTJ5pcY8jBwQGDBg3SKvP399e6VKe1WVpa4sEHH6xTnpCQgMceewwODg6QSCSQSqUYOXIkANW6SgBw9epV3LhxA3PnzoWBgUGT53r//fcxe/ZsfPjhh1izZk29s4TqM2rUKJiamqq37e3tYWdnp45LSUkJzpw5g6lTp0JfX19dz8TEBJMnT26y/WPHjiEvLw9PPvkkqqqq1F9KpRLjx4/H6dOn61wiOX369Hrb8vf3r7MW1MGDBzF69Gi4uLholc+ePRulpaV1LiVtqO27paWlAUCDM7Lq+9nu2rULvr6+CAgI0Hqu48aNa9Zd5nbt2gULCwtMnjxZ6/iAgAA4ODjUOb6+eOzatQujRo2CXC7XamPChAkAVDPyaps4cSIkEolWmwDUP//mvA7Ly8tx4MABREREwMjISOu8YWFhKC8vr/fywxpKpVLrmOrq6gbrWllZwcvLCytXrsQnn3yC8+fPqy/3bY6wsDCt90afPn3Ucaitpjw5ObnZbTemuLgYb775Jnr06AE9PT3o6enBxMQEJSUl6vd8Y5r7PiopKcHp06cxbdo0rZ+Xqalpg+/Xmtd4ampqqzxXIiKi+8VLBYmIqNOpueNVfXcKlMvlUCqVuH37dqOXxVlbW9cpk8lkbbqgdX39LS4uxvDhw2FgYID33nsPvXr1gpGREW7duoVp06ap+1OzplFDlyre7YcffoCTkxNmzpzZoj42FZfbt29DEATY29vXqVdf2d1qLk966KGHGqyTl5cHY2Nj9XZDd4Ssrzw3N7fB10XN/qbaqE/N828oWVNfO5mZmbh+/TqkUmm9x+Tk5DR6zszMTOTn52slCBs7vqE+7Ny5s9l9uPvnX3NTg5a8DnNzc1FVVYXPP/8cn3/+ebPOW9tTTz2ltSbZyJEjG0zyiUQiHDhwAMuWLcOKFSvw6quvwsrKCo8//jjef/99rSRsfaysrLS2a2LdUHl5eXmj7TXXY489hgMHDuCdd97BwIEDYWZmBpFIhLCwsGb9Dmru+0gkEkGpVMLBwaHO/vrKAM1rnIv7ExFRR8HEFRERdTo1/1ynp6fX2ZeWlgaxWAxLS8v27laT6lu4/ODBg0hLS8Phw4fVs6wA1Fmfx9bWFgCQkpLSrHPt3bsXM2bMwPDhw3HgwAG4ubnde8drsbS0hEgkqnd9nIyMjCaPt7GxAQB8/vnnGDJkSL117k6ANbTge33l1tbWDb4uap+/qbbvVnNcXl5es/tiY2MDQ0NDbNiwodE2GzuntbU19u7dW+/+u5MyDfXB398f77//fr1t1CT0mqs5r0NLS0tIJBLMmjULzz//fL11PDw8Gjx+yZIleOGFF9TbTSWf3Nzc8M033wBQzQj7+eefsWTJElRWVuKrr75q9Nj7IZPJUFFRUaf87uTo3QoKCrBr1y4sXrwYCxYsUJdXVFQ0+Pq6W3PfRwqFAiKRqN73ZkPv15o+NPX6JCIiai9MXBERUafj7e0NJycn/Pjjj3jttdfU/7CXlJRg69at6jsN3q+7Z5u0dn1Ak2yoObbG3bej79WrF7y8vLBhwwbMnz+/Tv27ubm54a+//sKYMWPUyauePXs2u18NMTY2RlBQELZv345Vq1apZ6IUFxfXe/fBuw0bNgwWFhaIi4vTSk60ltGjR2Pbtm1IS0vTSsp89913MDIyavCf/Ka4ubnB0NAQN27caPYxkyZNwgcffABra+tGEzWNHV+zmPbgwYNbfHxNG3v27IGXl1erJHOb8zo0MjLCqFGjcP78efj7+zc4Y6wh7u7ude542ZL+vf3229i6dSvOnTt3T200l7u7O2JiYrTKDh48iOLi4kaPE4lEEAShTuz++9//1rkssqHfKc19H+nr62PQoEH47bffsHLlSvVsqqKiIuzcubPeYxISEgCobhBARETUETBxRUREnYpIJIJYLMaKFSvw+OOPY9KkSXj22WdRUVGBlStXIj8/Hx9++GGrnMvLywuGhobYvHkz+vTpAxMTE8jl8gZnqfj6+gIA1q9fD1NTUxgYGMDDw6Pey+9qDB06FJaWlnjuueewePFiSKVSbN68GdHR0XXqfvnll5g8eTKGDBmCV155Ba6urkhOTsa+ffvUd6OrzdHREUeOHMG4ceMwYsQIREVFqft4P5YtW4aJEydi3LhxeOmll1BdXY2VK1fCxMSkyRkjJiYm+Pzzz/Hkk08iLy8PDz30EOzs7JCdnY3o6GhkZ2dj3bp199y3xYsXq9d1WrRoEaysrLB582bs3r0bK1asUN8Zr6X09fURHBzc6NpMd3v55ZexdetWjBgxAq+88gr8/f2hVCqRnJyMyMhIvPrqq40mpGbOnInNmzcjLCwML730EgYNGgSpVIqUlBQcOnQI4eHhiIiIaLQPy5YtQ1RUFIYOHYoXX3wR3t7eKC8vR2JiIvbs2YOvvvqq2Zef1mjO63DNmjV44IEHMHz4cPzrX/+Cu7s7ioqKcP36dezcuVPrbpn3IyYmBi+88AIefvhh9OzZE/r6+jh48CBiYmK0ZjO1hVmzZuGdd97BokWLMHLkSMTFxeGLL75o8jVmZmaGESNGYOXKlbCxsYG7uzuOHDmCb775BhYWFlp1G/ud0tz30bvvvovx48dj7NixePXVV1FdXY2PPvoIxsbG9b5fT5w4AYlEghEjRrROoIiIiO4TF2cnIqJOoWax9ZoZCI899hi2b9+O3NxczJgxA3PmzIGZmRkOHTqEBx54oFXOaWRkhA0bNiA3NxehoaEYOHAg1q9f32B9Dw8PrF69GtHR0QgJCcHAgQMbnNVQw9raGrt374aRkRGeeOIJPPXUUzAxMcGWLVvq1B03bhz+/PNPODo64sUXX8T48eOxbNmyRteWsrGxwcGDB+Hl5YWRI0fizJkzzQ9AA8aPH4+tW7eqYz9//nxEREQgPDy8zj/e9XniiSdw6NAhFBcX49lnn8WYMWPw0ksv4dy5cxg9evR99c3b2xvHjh2Dt7c3nn/+eUydOhWXLl3Cxo0b8frrr99X248//jhOnTpV76WI9TE2NsZff/2F2bNnY/369Zg4cSIeeeQRfPbZZ3B2dm5yVpFEIsGOHTvw1ltv4bfffkNERASmTp2KDz/8EAYGBvDz82uyD46Ojjhz5gxCQ0OxcuVKjB8/HrNmzcKGDRsQEBBwT7OwmvM67Nu3L86dOwdfX1+8/fbbCA0Nxdy5c/Hrr7/e98+4NgcHB3h5eWHt2rV46KGHEB4ejp07d+Ljjz/GsmXLWu089Xn99dfx+uuvY9OmTZg8eTK2bt2Kn3/+uVnvgR9//BGjRo3CG2+8gWnTpuHMmTOIioqqk/Rq7HdKc99HY8eOxfbt21FYWKh+v06fPh1PPfVUvX3bvn07wsLCmvU8iIiI2oNIEARB150gIiJqyksvvYQvvvgC+fn5Ta55Q+1PoVAgICAATk5OiIyM1HV32kR5eTlcXV3x6quv4s0339R1d4ha3Y0bN9CzZ0/s27cPY8eO1XV3iIiIAHDGFRF1UEuWLIFIJGryrltt4fDhw826VT0AzJ49+57XYmkv7u7umD17tno7LS0NS5YswYULF+6pvfb+2Zw9exZfffUVNmzYgClTpjBp1UHMnTsX//vf/3DkyBFs2bIFoaGhuHz5Mt544w1dd63NGBgYYOnSpfjkk09QUlKi6+4Qtbr33nsPo0ePZtKqC+P4qu3dPe5KTEyESCTCpk2bdNYnos6Oa1wREXVx27Ztg5mZmXo7LS0NS5cuhbu7OwICAnTXsWZ66KGHUFBQgClTpuCzzz7TdXfojqKiIrz22mvIzs6GVCpF//79sWfPHowZM0bXXWtT//znP5Gfn4+EhIRmXapH1FlUVVXBy8sLCxcu1HVXiIiItDBxRUStqrS0tFXu5tZdlZWVwdDQsFXbDAwMbNX22tvNmzd13QWqx88//6zrLuiERCLhP/bUJenp6eHtt9/WdTeoARxf3Z/7GV8x9kS6x0sFieie1Uw3P3fuHB566CFYWlrCy8uryeOUSiXee+89eHt7w9DQEBYWFvD398eaNWvq1M3MzMSjjz4Kc3Nz2Nvb46mnnkJBQYFWnfLycixcuBAeHh7Q19eHk5MTnn/+eeTn52vVE4lEWLJkSZ1z3D2luyGbNm2Ct7c3ZDIZ+vTpg++++67eepWVlXjvvffQu3dvyGQy2NraYs6cOcjOzq5z3kmTJuG3335DYGCg+jKk5pg9ezZMTEwQGxuL0aNHw9jYGLa2tnjhhRfUi5jX9/wOHz6MgQMHAgDmzJkDkUhUJy4nT57E5MmTYW1tDQMDA3h5eeHll1+u04fm/GyIiIioZTi+0v346uLFiwgNDYWpqan6Zgd5eXmYN28enJycoK+vD09PT/znP/9BRUVFs9omonvHGVdEdN+mTZuGmTNn4rnnnmvWui8rVqzAkiVL8Pbbb2PEiBFQKBS4cuVKnYEQAEyfPh0zZszA3LlzcfHiRfVMhw0bNgAABEHA1KlTceDAASxcuBDDhw9HTEwMFi9ejOPHj+P48ePqu9Ddj02bNmHOnDkIDw/Hxx9/jIKCAixZsgQVFRUQizWfASiVSoSHh+Ovv/7CG2+8gaFDhyIpKQmLFy9GSEgIzpw5o/WJ37lz53D58mW8/fbb8PDwgLGxcbP7pFAoEBYWhmeffRYLFizAsWPH8N577yEpKanBO9n1798fGzduxJw5c/D2229j4sSJAABnZ2cAwL59+zB58mT06dMHn3zyCVxdXZGYmFjvYttN/WyIiIjo3nF8pZvxVWVlJaZMmaIeX1VVVaG8vByjRo3CjRs3sHTpUvj7++Ovv/7C8uXLceHCBezevfu+Y0FEjRCIiO7R4sWLBQDCokWLWnTcpEmThICAgGa1vWLFCq3yefPmCQYGBoJSqRQEQRD27t1bb70tW7YIAIT169erywAIixcvrnMuNzc34cknn1RvHzp0SAAgHDp0SBAEQaiurhbkcrnQv39/9XkFQRASExMFqVQquLm5qct++uknAYCwdetWrXOcPn1aACCsXbtW67wSiUSIj49vNBb1efLJJwUAwpo1a7TK33//fQGA8Pfffzf4/Gr6snHjxjrtenl5CV5eXkJZWVmD527uz4aIiIhajuMr3Y+vNmzYoFX+1VdfCQCEn3/+Wav8o48+EgAIkZGRDT7vmzdvNjjuIqLm4aWCRHTfpk+f3qL6gwYNQnR0NObNm4d9+/ahsLCwwbpTpkzR2vb390d5eTmysrIAAAcPHgSAOlPRH374YRgbG+PAgQMt6lt94uPjkZaWhsceewwikUhd7ubmhqFDh2rV3bVrFywsLDB58mRUVVWpvwICAuDg4FDnTjr+/v7o1avXPfft8ccf19p+7LHHAACHDh1qcVtXr17FjRs3MHfuXBgYGDRZv6mfDREREd07jq802nt8dXfsDx48CGNjYzz00ENa5TXxaY14EFHDmLgiovvm6OjYovoLFy7EqlWrcOLECUyYMAHW1tYYPXo0zpw5U6eutbW11nbNtPSysjIAQG5uLvT09GBra6tVTyQSwcHBAbm5uS3qW31q2nBwcKiz7+6yzMxM5OfnQ19fH1KpVOsrIyOjzu2nWxq72vT09OrEp6Y/9/K8a9aIqLlssClN/WyIiIjo3nF8pdGe4ysjIyOtuzHX9NXBwUErwQYAdnZ20NPTa5V4EFHDuMYVEd23u/+IN0VPTw/z58/H/PnzkZ+fj/379+Ott97CuHHjcOvWrRbducXa2hpVVVXIzs7WGlwJgoCMjAz1QuSAalBW3wKaTQ02agZ3GRkZdfbdXWZjYwNra2vs3bu33rZMTU21tlsau9qqqqqQm5urNfis6c/dA9LmqIlfSkrKPfeJiIiIWgfHVxrtOb6q71hra2ucPHkSgiBo7c/KykJVVRVsbGzu+XxE1DTOuCIinbKwsMBDDz2E559/Hnl5eUhMTGzR8TV3evnhhx+0yrdu3YqSkhL1fkB1l5mYmBitegcPHkRxcXGj5/D29oajoyN++uknCIKgLk9KSsKxY8e06k6aNAm5ubmorq5GUFBQnS9vb+8WPb+mbN68WWv7xx9/BACEhIQ0eExDM6N69eoFLy8vbNiwgXfIISIi6sQ4vmpdo0ePRnFxMbZv365VXnMHxNrxIKLWxxlXRNTuJk+eDF9fXwQFBcHW1hZJSUlYvXo13Nzc0LNnzxa1NXbsWIwbNw5vvvkmCgsLMWzYMPVdbwIDAzFr1ix13VmzZuGdd97BokWLMHLkSMTFxeGLL76Aubl5o+cQi8V499138fTTTyMiIgLPPPMM8vPzsWTJkjpT2WfOnInNmzcjLCwML730EgYNGgSpVIqUlBQcOnQI4eHhiIiIaNFzbIi+vj4+/vhjFBcXY+DAgeq7Ck6YMAEPPPBAg8d5eXnB0NAQmzdvRp8+fWBiYgK5XA65XI4vv/wSkydPxpAhQ/DKK6/A1dUVycnJ2LdvX50kGREREXUcHF+1zviqPv/4xz/w5Zdf4sknn0RiYiL8/Pzw999/44MPPkBYWBjGjBnTZucmIiauiEgHRo0aha1bt+K///0vCgsL4eDggLFjx+Kdd96BVCptUVsikQjbt2/HkiVLsHHjRrz//vuwsbHBrFmz8MEHH2jdqvn1119HYWEhNm3ahFWrVmHQoEH4+eefER4e3uR55s6dCwD46KOPMG3aNLi7u+Ott97CkSNHtBYElUgk2LFjB9asWYPvv/8ey5cvh56eHpydnTFy5Ej4+fm16Pk1RiqVYteuXXjxxRfx3nvvwdDQEM888wxWrlzZ6HFGRkbYsGEDli5ditDQUCgUCixevBhLlizBuHHj8Oeff2LZsmV48cUXUV5eDmdn5zqLuBIREVHHwvFV2zEwMMChQ4fwn//8BytXrkR2djacnJzw2muvYfHixW16biICRELteZlERNQpzJ49G7/++muT0/CJiIiIiIg6M65xRUREREREREREHRIvFSSiViMIAqqrqxutI5FI7utOL12dUqmEUqlstI6eHn91ExERdRccX90/jq+IOjfOuCKiVnPkyBFIpdJGv7799ltdd7NDe+qpp5qMIQBs2rSJlwkSERF1Axxf3b/mjq+IqGPiGldE1GqKiooQHx/faB0PDw9YW1u3U486n8TEROTk5DRaJygoqJ16Q0RERLrG8dX94/iKqHNj4oqIiIiIiIiIiDokXsjbCpRKJdLS0mBqaspry4mIiLoZQRBQVFQEuVwOsZirMDQXx09ERETdW3PHUExctYK0tDS4uLjouhtERESkQ7du3YKzs7Ouu9FpcPxEREREQNNjKCau7li7di1WrlyJ9PR0+Pj4YPXq1Rg+fHizjjU1NQWgCraZmVmr9kuhUCAyMhKhoaHdftFAxkKDsdBgLDQYCxXGQYOx0GjLWBQWFsLFxUU9HqDmacvxE8DXf22MhQrjoMFYaDAWGoyFBmOh0tZxaO4YiokrAFu2bMHLL7+MtWvXYtiwYfj6668xYcIExMXFwdXVtcnja6a3m5mZtUniysjICGZmZt36DQMwFrUxFhqMhQZjocI4aDAWGu0RC17u1jJtOX4C+PqvjbFQYRw0GAsNxkKDsdBgLFTaKw5NjaG4EAOATz75BHPnzsXTTz+NPn36YPXq1XBxccG6det03TUiIiIiIiIiom6r28+4qqysxNmzZ7FgwQKt8tDQUBw7dqzeYyoqKlBRUaHeLiwsBKDKRioUilbt36ajN3E0UYwLey5DqieBRCSCWCyq9R2q72IRxCIRxCKoH2u+o57jRBCLVXXrlNXart2Guk2tfc07X2uoiW1rx7gzYiw0GAsNxkKFcdBgLDTaMhbdNb7Lly/Hb7/9hitXrsDQ0BBDhw7FRx99BG9vb113jYiIiO5TVbUSf13PwebrYtgn3caQHnY660u3T1zl5OSguroa9vb2WuX29vbIyMio95jly5dj6dKldcojIyNhZGTUqv373yUJbhSJcTj9Vqu2297EECASAWKRapqfWASIAK2yOvvreSwSSfDJxYN12heEWo8b6EOD5Q3sEBp4jA5yLn2JBF/GHYCpFDCVAmZSQf3YVF/12EQPkHSTeZVRUVG67kKHwVioMA4ajIVGW8SitLS01dvsDI4cOYLnn38eAwcORFVVFf7zn/8gNDQUcXFxMDY21nX3iIiIqIUEQcC55HzsuJCK3RfTkVNcCUCMbRfSmbjqCO6+plIQhAavs1y4cCHmz5+v3q5ZUCw0NLTV12jIs0rE3+evwMXVDRCJUC0ASqWAakGAUilAKUD9uFopQCnUfAeqa9XTfMdd2wKqlXXL6tQVBCiVuOs4zXmaooQIEIDqpqtSC6Sj6dlslkZSWBvrw8ZEH9YmMtiY6MPGuNZjE33YmMhgZawPmV7ny3IpFApERUVh7Nix3fr6c4CxqME4aDAWGm0Zi5qZ193N3r17tbY3btwIOzs7nD17FiNGjNBRr4iIiKil4jOK8PuFVOyITkPK7TJ1uaWRFH1NKzC9v1yHvWPiCjY2NpBIJHVmV2VlZdWZhVVDJpNBJpPVKZdKpa0+GH5iiDus8uIQFtanQ//ToZ3MuvP9TqKrdpl2ck2VNLu7rL7yakFApaIKp0+fQVDQAOhJVC/d2rlFrcfQ2qjvoVZiUru8/nZEDbSDFtbXOm+Ddeo/QU15laIKh/4+Ds++/XC7rAo5xZXIKapAdnGF6nFxBfJKKlGtFHC7VIHbpQpczy5BU0wN9GBrIoONiQw2pqqEluZLHzamMvV+Q31Jk+21p7Z4/3VWjIUK46DBWGi0RSwYW5WCggIAgJWVVb3723OphZp2a3/vzhgLFcZBg7HQYCw0GAuN7hCLW7dLsTsmAztjMnA1q1hdbqQvwdg+dpjk74BBrmY4fPAAfB2MdbrcQrdPXOnr62PAgAGIiopCRESEujwqKgrh4eE67FnnIhaLIIYI0jbMZSgUCpTfEDC6t123/ydBoVAg3UJAWIC8wVgolQJul1aqE1k5xRXILqrQ2s4prkBOUSVySyqgqBZQVF6FovIqJOQ0neQy1pfAxrRWUkud8JLB9q5tY30J77ZFRNSFCYKA+fPn44EHHoCvr2+9ddpzqYXaeKmsBmOhwjhoMBYajIUGY6HR1WJRWAlcyBXhbI4YicWa/88kIgF9LQQMsBHgY1kFfcktlF6/hcPXVfvbKg7NXW6h2yeuAGD+/PmYNWsWgoKCEBwcjPXr1yM5ORnPPfecrrtGdM/EYhGsTWSwNpHBG6aN1hUEAQVlijvJrfoTW9l3ZnXlFFegokqJkspqlOSWIim36V82BlIxrI3rSWrdmcVVs21rIoOZoR6TXEREncwLL7yAmJgY/P333w3Wac+lFgBeKlsbY6HCOGgwFhqMhQZjodGVYlFUrkBkXBZ2XczAsRu5qFnpRyQChnhYYbK/A0L72sPcsO7zbOs4NHe5BSauAMyYMQO5ublYtmwZ0tPT4evriz179sDNzU3XXSNqFyKRCBZG+rAw0kdTa+4JgoDiiirNzK07yazsu7Zr9pdWVqNcoURqfhlS88sabxyAvkQMa3VyS189a6tm27bWtkU9v1yJiKh9/fvf/8aOHTvw559/wtnZucF67bnUQnu235kwFiqMgwZjocFYaDAWGp01FuWKahy6koXfL6ThYHwWKquU6n39XCwwpZ8ck/wdYW9m0Kz22ioOzW2Tias75s2bh3nz5um6G0QdnkgkgqmBFKYGUnjYNH3XqNLKKuQUVd5Zf0szi0trVted2VxFFVWorFYivaAc6QXlTbYtEYtgbawPWz0xblsnY3RfR7hYtd3lJkREpCEIAv79739j27ZtOHz4MDw8PHTdJSIiom6rqlqJYzdy8fuFNOyLzUBxRZV6n5etMcIDnDClnxzuzfgfrqNh4oqI2pSRvh5crfXgat10QqlcUa1OZOXWSmplF92V5CquQH6pAtVKAVlFFciCGLG7rmDJrivwtDVGSC87hHjbYpCHFQzacuE1IqJu7Pnnn8ePP/6I33//Haampuob3Zibm8PQ0FDHvSMiIur6BEHAueTb2HEhDbsvpiOnuFK9T25ugMkBckzpJ0dfR7NOvRwLE1dE1GEYSCVwtjSCs2XTSa7KKiXySiqRnFuE7/YeR4bIGudvFSAhuwQJ2Tex4ehNGEolCPayRoi3LUJ62TUreUZERM2zbt06AEBISIhW+caNGzF79uz27xAREVE3cSWjEL9fSMPO6DSk3NYsx2JpJMVEf0eEBzhhgKslxOLOm6yqjYkrIuqU9PXEcDA3gLWRBOlOAsLCBqG0Cjh6PQeH47Nw5Go2MgsrcPBKFg5eyQIQC08bY4z0tsXIXrYY4mnN2VhERPdBEARdd4GIiKjbuJVXih3RadhxIQ3xmUXqcmN9CUJ9HDAlQI4HethAKhHrsJdtg4krIuoyzA2lCPNzRJifIwRBwOX0Ihy+moUj8dk4m3QbCTklSMgpwcajiTCQijHE0xohvWwR4m3XKa/1JiIiIiKiriu7qAK7Y9Lwe3Qazifnq8v1JWKEeNtiSoAco3vbw1C/a38gz8QVEXVJIpEIfeVm6Cs3w7yQHigsV+DY9Rwcjs/G4fhsZBSWqx9jZxzcrY0Q4m2Hkd62COZsLCIiIiIi0oHCcgX2XcrAjug0HL2eA+WdCc4iETDUyxpT+skx3scR5kad726H94qJKyLqFswMpBjv64jxvqrZWPGZRXcSV1k4k3gbibml2HQsEZuOJUKmp5qNNbKXLUK8beFhY9ypFzMkIiIiIqKOq1xRjYNXsrDjQhoOxmehskqp3tfPxQLh/eSY5O8IOzMDHfZSd5i4IqJuRyQSobeDGXo7mOG5kV4oKlfg6PVcHLmajSPxWUgrKFc9vpqNZbsAVysj1QLv3rYI9rTp8lNxiYiIiIiobVVVK3H0Ri5+v5CKyNhMFFdUqff1sDNBeD85JveTc0kTMHFFRARTAynG+zpgvK8DBEHAtaxiHI7PwuH4bJxOzENyXim+O56E744nQV9PjMEeVgjxtkOIty08ORuLiIiIiIiaQRAEnEu+jd8vpGF3TDpySyrV+5wsDDGpnyPC+zmhj6Mp/8eohYkrIqJaRCIRetmbope9Kf45wgvFFVWqtbGuZuNIfDZS88vw17Uc/HUtB+/uAlysDFWXFPayw9Ae1jDS569VIiIiIiLSuJJRiN8vqO4ImJpfpi63MtbHRD9HTAmQY4CrJcRiJqvqw/+wiIgaYSLTQ6iPA0J9VLOxrmcVq9bGupqF0zdv41ZeGX44kYwfTiRDXyLGIA8r9WWFXrYm/KSEiIiIiKgbSs4txc6YNPx+IRVXM4vV5cb6EozzccDkADke6GEDqUSsw152DkxcERE1k0gkQk97U/S0N8UzIzxRUlGF4zdycfiq6rLClNtl+Pt6Dv6+noP3dl+Gk4XhnSSWHYZ6WcNYxl+5RERERERdVVZROXbHpGNHdBrOJ+ery/UlYoR42yI8wAkP9rbjmrktxP+iiIjukbFMD2P62mNMX3sIgoAb2SU4HJ+FI1ezcTIhD6n5Zdh8MhmbT6pmYw30sERILzuM9LZFTzvOxiIiIiIi6uwKyxXYeykDO6PTcPR6DpSCqlwsAoK9rBHezwnjfB1gbijVbUc7MSauiIhagUgkQg87E/SwM8HTwz1RWnlnNtadywpv5ZXh6PVcHL2ei/f3qGZjjeiluqRwWA8bmHA2FhERERFRp1CuqMbBK1n4/UIqDsVno7JKqd4X4GKBKf3kmOTvCDszAx32suvgf0pERG3ASF8Po/vYY3Qf1Wysmzkld5JY2TiRkIvU/DL8dCoZP51KhlQiQpCblfqywl72nI1FRERERNSRVFUrcfRGLn6/kIrI2EwUV1Sp9/WwM0F4PzmmBMjhZm2sw152TUxcERG1MZFIBE9bE3jamuCpBzxQVlmNEwm5OByfhcNXs5GUW4rjCbk4npCL5X9cgaO5AUK8bTGyl2o2lqkBpxUTEREREbU3pVLAmcQ87IhOw+6YdOSWVKr3OVkYYnI/Oab0k6OPoyk/eG5DTFwREbUzQ30JRvW2w6jedgBwZzaWam2s4zdykV5Qjp9O3cJPp25BTyzCADdLhHjbIcTbFr0d+EeRiIiIiKitCIKAKxlF2JkkxopP/0Jqfrl6n5WxPib6OWJKgBwDXC0hFnNc3h6YuCIi0jEPG2N42HhgzjAPlCtqZmNl48jVbNzMKcHJm3k4eTMPH+29AgczA4ysWRurpw3MOBuLiIiIiOi+JeWWYMeFNOyITsO1rGIAYgDlMNaXYJyPA6YEyDGshw2kErGuu9rtMHFFRNSBGEgld2ZXqWZjJeXeWRsrPgvHE3KRUViOLWduYcsZ1Wys/m6WqrWxetmhhw0XfyQiIiIiaq6swnLsjEnHjug0RN/KV5dLJSL0NqvGM6EBGOsjh6G+RHedJCauiIg6MjdrYzw51BhPDnVHuaIaJ2/m4cidOxUmZJfg1M08nLqZhxV742FvKoO3sRguqQUIdLPmJYVERERERHcpKFXgj0uqZNXxhFwIgqpcLAKGetlgSoAco3tZ4+9DUZjg6wCplEkrXWPiioiokzCQSjCyl2rR9kXoi+TcUhy5moXD8dk4diMXmUUVyCwS48+vTsLL1hjT+jsjPEAOZ0sjXXediIiIiEhnSiursP9yFnZcSMORq1lQVAvqff1dLTClnxxh/o6wM1VdwaBQKHTVVaoHE1dERJ2Uq7URZgW7Y1awajbWn/GZWPfHWcQV6OFGdglW7ovHyn3xGOxhhWn9nTDBz5FrYhERERFRt1BZpcRf17KxIzoNUXGZKK2sVu/r7WCqviOgixU/5O3omLgiIuoCDKQSjPK2RdkNJYY/OBL7r+Tit/MpOJGQp17cfdHvsRjT1x7TAp0wopctF5YkIiIioi6lWing1M087IhOxR+XMpBfqpk55WJliCn95JjSzwneDqY67CW1VLdPXL3//vvYvXs3Lly4AH19feTn5+u6S0RE98XUQIpHBrrgkYEuSM0vw/bzqdh2PhXXs4qxOyYdu2PSYW2sj8n95IgIdIK/sznXwyIiIiKiTkkQBMSkFGBHdBp2xaQhs7BCvc/WVIZJ/o6Y0k+OABcLjnk7qW6fuKqsrMTDDz+M4OBgfPPNN7ruDhFRq3KyMMTzo3pgXogXLqUW4rfzKdgZnYac4kpsOpaITccS4WVrjIhAJ0wNdOJ6WERERETUKVzPKsKOC2nYEZ2GxNxSdbmZgR4m+DpiSoAcQzytIREzWdXZdfvE1dKlSwEAmzZt0m1HiIjakEgkgp+zOfyczfGfsD7461oOfjufisjYDNzILsGqyKtYFXkVgzysMC3QCWH+XA+LiIiIiDqW1Pwy7IxOw+8X0nA5vVBdbiAVY0wfe0zpJ8dIb1vI9HgnwK6k2yeu7kVFRQUqKjTTDwsLVW8YhULR6ncfqGmPdzVgLGpjLDQYC42WxOIBL0s84GWJokm9sS8uE79fSMPJxNs4dTMPp27mYdGOWIz2tkV4gCNG9LTpVOth8TWhwVhotGUsGF8iIqK2k1NcgT0X07HjQhrOJN1Wl+uJRRjRyxbhAXKM6WMPYxnTG10Vf7L3YPny5eqZWrVFRkbCyKhtLrOJiopqk3Y7I8ZCg7HQYCw0WhoLIwCPOgDjLYEzOSKcyRYjo0yJP2Iz8UdsJoz1BPS3ETDQRglXE6CzLA3A14QGY6HRFrEoLS1tuhIRERE1W1G5AvtiM7EjOg1Hr+egWikAUI1DB3tYYUo/J0zwdYClsb6Oe0rtoUsmrpYsWVJvYqm206dPIygo6J7aX7hwIebPn6/eLiwshIuLC0JDQ2FmZnZPbTZEoVAgKioKY8eOhVTavS/bYSw0GAsNxkKjNWLxOFQLXMalF2H7hTTsupiBnOJK/JUhwl8ZYnjaGCG8nxxT+jnC2dKwdZ9AK+FrQoOx0GjLWNTMvCYiIqJ7V66oxqErWdgRnYYDV7JQWaVU7/N3NseUfnJM8pfDwdxAh70kXeiSiasXXngBM2fObLSOu7v7Pbcvk8kgk8nqlEul0jb7x6At2+5sGAsNxkKDsdBojVgEuFkjwM0ab0/ywV/Xc7DtXCoi4zKQkFOKTw9cx6cHrqvXw5rg5whzw44Xe74mNBgLjbaIBWNLRER0b6qqlTh6Ixc7LqRhX2wGiiuq1Pu8bI0xpZ8TpgTI4WFjrMNekq51ycSVjY0NbGxsdN0NIqJOT08ixihvO4zytkNRuQJ7L2Vg2/lUHE/I1VoPa2wfe0QEOmGkt22nWg+LiIiIiNqXUingXPJt7IhOw+6YdOSWVKr3yc0NMDlAjin95OjraAZRZ1mjgtpUl0xctURycjLy8vKQnJyM6upqXLhwAQDQo0cPmJiY6LZzREQdiKmBFA8HueDhIBekF5Rh+/k0bDufgquZxdh9MR27L6bDylgfk/0dEdHfGf2czTnYICIiIqI7S1EUYkd0GnZFpyM1v0y9z8pYHxP9HDElQI4BrpYQizl+JG06T1zdy7oQrbmO1KJFi/Dtt9+qtwMDAwEAhw4dQkhISKudh4ioK3E0N8S/Qrzw3EhPxKYVYtv5VPx+IQ05xRX49ngSvj2eBE8bY0QEOmFqoBNcrNrmxhVE1Hy6HnMREVH3k5hTgh3RadgRnYbrWcXqchOZHkJ97DGlnxzDenSuO1hT+9N54srCwqJFn8iLRCJcvXoVnp6erXL+TZs2YdOmTa3SFhFRdyMSieDrZA5fJ3MsnNAbf1/PwbbzqdgXm4GEnBJ8HHUVH0ddxSB3K0T0d0JYB10Pi6g70PWYi4iIuofMwnLsjE7Dzug0RKcUqMv19cR40NsOUwLkeLC3HQykEh32kjoTnSeuAODXX3+FlZVVk/UEQUBYWFg79IiIiFpKTyJGiLcdQrztUFxRdWc9rBQcu5GLU4l5OJWYh8U7YjGmjx0iAp0xspct9PX46RpRe+KYi4iI2kJ+aSX+uJSB3y+k4uTNPAiCqlwiFmGolzXCA5wQ6mMPMwN+gEktp/PElZubG0aMGAFra+tm1ff09OTde4iIOjgTmR4eGuCMhwY4I72gDL9fSMO2c6mIzyzCnosZ2HMxA5ZGUkzuJ0dEoBMCXFo2E4SIWo5jLiIiak2llVWIisvEjgtp+PNaNhTVgnpfkJslpgTIEebnCBsTmQ57SV2BzhNXN2/ebFH9S5cutVFPiIioLTiaG+K5kV54doQn4tILse1cKn6PTkN2UQW+O56E7+6shzU10AkRXA+LqM1wzEVERPerskqJI1ezsSM6DfvjMlGmqFbv6+Nohin95JjczxHOlhzPUevReeKKiIi6B5FIBB+5OXzk5lgwoTeO3sjFtnMp2BebiYScEnwSdRWfRF3FQHdLRAQ6Y6KfI8yNONuDiIiISJeqlQJOJuRiR3Qa/riUgYIyhXqfm7URpvSTY0o/OXram+qwl9SVdajE1WeffVZvuUgkgoGBAXr06IERI0ZAIuEibkREnZmeRIyRvWwxspctiiuqsO9SBradT8XRGzk4nXgbpxNvY8mOWIzuY4eIQCeEeNtxPSyiVsQxFxERNUYQBESnFGDHhTTsiklDVlGFep+dqQyT7ySr/J3NudwDtbkOlbj69NNPkZ2djdLSUlhaWkIQBOTn58PIyAgmJibIysqCp6cnDh06BBcXF113l4iIWoGJTA/TBzhj+gBnZBSU4/cLqdh2PhVXMorwx6UM/HFJtR7WJH85Ivo7IZDrYRHdN465iIioPhmlwCf7r2HPpUwk5Zaqy80NpQjzc8DkfnIM9rCGRMyxGLWfDvXx9QcffICBAwfi2rVryM3NRV5eHq5evYrBgwdjzZo1SE5OhoODA1555RVdd5WIiNqAg7kBnh3phb0vj8CeF4fjmeEesDOV4XapAt+fSMK0tcfw4MdHsGb/NSTXGkwRUctwzEVERDUyC8ux/s8bmPzlcSyP1sO6IzeRlFsKQ6kEU/rJ8d9/BOH0f8Zg+TR/DPWyYdKK2l2HmnH19ttvY+vWrfDy8lKX9ejRA6tWrcL06dORkJCAFStWYPr06TrsJRERtYe+cjP0lffFggl9cPR6DradT8XeSxm4mVOCT/dfxaf7ryLIzRIR/Z0wyU/O9bCIWoBjLiKi7q2kogr7Yu8s1XA9B8o7NwSUiASM7GWHqf2dMaaPHYz0O1TKgLqpDvUqTE9PR1VVVZ3yqqoqZGRkAADkcjmKiorau2tERKQjErEII3rZYkQvW7w3VXuQdSbpNs4k3cbSHXF4sLcdIvo74QFPS113majD45iLiKj7qVYK+Pt6jvrmOLXvCBjkZokp/Rygl3YRD4cHQirlB4LUcXSoxNWoUaPw7LPP4r///S8CAwMBAOfPn8e//vUvPPjggwCAixcvwsPDQ5fdJCIiHTGW6WFaf2dM6++MzELVeli/nVOth7U3NgN7YzNgYSiFj5kYzikF6O9uzfWwiOrRGmOuP//8EytXrsTZs2eRnp6Obdu2YerUqe3RfSIiaiZBEBCXXoht51Lxe3Qasmstsu5ubYSIQGdEBDrB1doICoUCe/Zc1GFvierXoRJX33zzDWbNmoUBAwaoM7xVVVUYPXo0vvnmGwCAiYkJPv74Y112k4iIOgB7MwP8c4QX/jnCC5fTC7HtfCq2n09FVlEFjpaJcfTrk+jtYIqHg1wQEegEK2N9XXeZqMNojTFXSUkJ+vXrhzlz5vCSQiKiDia9oAy/X0jDtnOpiM/UzJ61NJJicj85pgbyhjfUeXSoxJWDgwOioqJw5coVXL16FYIgoHfv3vD29lbXGTVqlA57SEREHVEfRzP0cTTDm+N748/4THyx+zQu5uvhSkYR3t0Vhw//uIyxfe3xcJALRvS05aKi1O21xphrwoQJmDBhQlt3lYiImqm4ogp7L2Vg2/kUHLuRC+HOulX6emKM6WOHiEBnjOxlC329DnWPNqImdajEVQ1PT0+IRCJ4eXlBT69DdpGIiDogiViEB3pYo7CnEsNGjcQfcdn45cwtxKQUYM/FDOy5mAEHMwM8NMAZDwc5w83aWNddJtKp9hxzVVRUoKJCc4lKYWEhAEChUEChULT6+WrabIu2OxvGQoVx0GAsNDp7LKqqlTh6IxfbL6Rj/5UslCuU6n1BbhaYGiDHBB97mBneWbNKqIai1tpWtXX2WLQmxkKlrePQ3HY7VFaotLQU//73v/Htt98CAK5evQpPT0+8+OKLkMvlWLBggY57SEREnYW5oRSzhrhh1hA3xKUV4pezt7DtfCoyCsvxxaHr+OLQdQzxtMIjQS6Y4OsIQ32JrrtM1G50MeZavnw5li5dWqc8MjISRkZGrX6+GlFRUW3WdmfDWKgwDhqMhUZnioUgACklwOkcMc7liFCk0MwktzMQEGSrRJCNAGuDHCArB39ntaz9zhSLtsZYqLRVHEpLS5tVr0MlrhYuXIjo6GgcPnwY48ePV5ePGTMGixcvZuKKiIjuSV+5GRbLfbBgQm/sj8vCz2du4c9r2TiRkIcTCXlY/HssJgfI8UiQC/o5m3O9B+rydDHmWrhwIebPn6/eLiwshIuLC0JDQ2FmZtbq51MoFIiKisLYsWO7/d2xGAsVxkGDsdDoTLFILyjHjuh0bL+QhuvZJepySyMpJvk7IryfI/ydzO55HNOZYtHWGAuVto5DzezrpnSoxNX27duxZcsWDBkyROvN1rdvX9y4cUOHPSMioq5ApifBRH9HTPR3RFp+GbaeTcHPZ2/hVl4ZfjyZjB9PJsPb3hQPB6nusGNtItN1l4nahC7GXDKZDDJZ3feUVCpt038K2rr9zoSxUGEcNBgLjY4ai6JyBf64mIHfzqfg5M08rXWrxva1x7RAJ4zoZQuppPXWreqosdAFxkKlreLQ3DY7VOIqOzsbdnZ2dcpLSkr46TcREbUquYUh/j26J54f1QMnbubilzMp2HMxHfGZRXhv92V8tPcKRve2x4yBLhje0wZ6rTggJNI1jrmIiDouRbUSf13Lxm/nUhEVl4mKKs26VYM9rDCtvxMm+DnCzIAJFeoeOlTiauDAgdi9ezf+/e9/A4B64PR///d/CA4O1mXXiIioixKLRRjqZYOhXjZYMsUHO6PT8MuZW4hOKcDe2Azsjc2AvZlMtaD7ABe423BBd+r8WmPMVVxcjOvXr6u3b968iQsXLsDKygqurq6t32kioi5MEARcTC3Ab+dSsTM6Dbkllep9XrbGmNbfGeEBcjhbtt2agEQdVYdKXC1fvhzjx49HXFwcqqqqsGbNGsTGxuL48eM4cuSIrrtHRERdnLmhFE8MccMTQ9xwJaMQP59OwbbzKcgsrMCXh27gy0M3MMjDCjOCXDDBzwFG+h3qzyhRs7XGmOvMmTMYNWqUertm/aonn3wSmzZtaotuExF1OSm3S/H7hTT8di4FN2qtW2VtrI/J/eSY1t8Jfk5cf5O6tw414h46dCiOHj2KVatWwcvLC5GRkejfvz+OHz8OPz8/XXePiIi6kd4OZlg0uS/enOCNA5fvLOh+NRunbubh1M08LN4Ri8n9HPFIkAsCXCw4oKROpTXGXCEhIRBqFlshIqJmKyxX4I+L6fjtXCpO3sxTl8v0xAj1ccC0QCc80NOmVdetIurMOlTiCgD8/PzUt2YmIiLSNZmeBGF+jgjzc0R6wZ0F3c+kIDmvFD+duoWfTt1CTzsTzBjogqmBTrDhgu7USXDMRUTUfhTVShyJz8a286mIupyJyjvrVolEwBAPa0T0d8IEXweYct0qojp0nrhq7u0PAbTJrZKJiIiay9HcEC882BPzQnrg5M08/HLmFvZcSse1rGK8t/syPvzjCkb3scOMgS4Y0dOWC7pTh8IxFxFR+xIEAdEpBdh2LgU7Y9KRV2vdqp52Jojo74SpAU6QWxjqsJdEHZ/OE1cWFs2/vKK6urqNe0NERNQ0sViEYC9rBHtZY0m4akH3n8+kIPpWPvbFZmJfbCbsTGWYPsAZjwS5wIMLulMHwDEXEVH7uJVXiu3nU7HtfCoScjTrVtmYyDDlzrpVPnIzLjNA1Ew6T1wdOnRI/TgxMRELFizA7Nmz1Xe0OX78OL799lssX7681c+dmJiId999FwcPHkRGRgbkcjmeeOIJ/Oc//4G+vn6rn4+IiLoeMwMpHh/shscHuyE+owg/n7mFbedTkVVUgXWHb2Dd4RsY5G6Fh4OcEebnCGOZzv/0UjelyzEXEVFXV1CqwO6L6dh2PgWnE2+ryw2kYoT2dUBEfycM72HD2dhE90Dno+eRI0eqHy9btgyffPIJHn30UXXZlClT4Ofnh/Xr1+PJJ59s1XNfuXIFSqUSX3/9NXr06IFLly7hmWeeQUlJCVatWtWq5yIioq7P28EU70zqizfH98bBK5nYcvoWjlzNxqnEPJxKzMOSHbGY3E+Oh4Nc0N+VC7pT+9LlmIuIqCuqrFLicHwWtp1PxYHLWais1qxbNdTLGhGBzhjv6wATfmhFdF861Dvo+PHj+Oqrr+qUBwUF4emnn271840fPx7jx49Xb3t6eiI+Ph7r1q1rNHFVUVGBiooK9XbNmhEKhQIKhaJV+1jTXmu32xkxFhqMhQZjocFYqHSEOIgAjPa2wWhvG2QUlmPb+TT8ei4VyXll+N/pW/jf6VvwsjXGQ/2dMDXAsc0WdO8Isego2jIWnTG+7T3mIiLqKgRBwPlb+dh2LhW7YtJwu1TzN8Db3hQR/Z0QHiCHoznXrSJqLR0qceXi4oKvvvoKH3/8sVb5119/DRcXl3bpQ0FBAaysrBqts3z5cixdurROeWRkJIyMjNqkX1FRUW3SbmfEWGgwFhqMhQZjodKR4uAGYH4v4EYRcCJLjAu5ItzILsFH+65iZWQ8fCwEDLET0MdSgKQNJmF1pFjoWlvEorS0tNXbbGsdYcxFRNSZJOeWYtv5VGy/kIqbtdatsjWVIbyfHBH9ndDXketWEbWFDpW4+vTTTzF9+nTs27cPQ4YMAQCcOHECN27cwNatW9v8/Ddu3MDnn39eZxB3t4ULF2L+/Pnq7cLCQri4uCA0NLTV78KjUCgQFRWFsWPHQirt3rdGZSw0GAsNxkKDsVDp6HF4EUBReRX2XMrAL2dTEZ1SgIu3Rbh4G7A10UdEoBzTA53gaXv/C7p39Fi0p7aMRUvu1tdR6HrMRUTUGeSXVmJXTDq2n0/FmSTNulWGUgnG+dgjor8zhnlZc90qojbWoRJXYWFhuHbtGtatW4fLly9DEASEh4fjueeea9Gnf0uWLKl3RlRtp0+fRlBQkHo7LS0N48ePx8MPP9zkFHmZTAaZrO5lHVKptM3+MWjLtjsbxkKDsdBgLDQYC5WOHAcrqRRPBHvgiWAPXM0swi9nbuG3c6nILq7E+r8Ssf6vRAS5WeKRgS6Y2AoLunfkWLS3tohFZ4xta425iIi6moqqahy6ko1t51Nw6Eq2et0qsQgY1sMGEYFOGOfjwJutELUjnb/bYmJi4OvrC7FYlaV2dnbG+++/32D92NhYeHt7Q0+v4a6/8MILmDlzZqPndXd3Vz9OS0vDqFGjEBwcjPXr17fsCRAREd2HXvam+M/Evnh9XG8cvJKFn8/cwuH4LJxJuo0zSbexdEcsJvnL8chAZ/R3teQlCHTP2mLMRUTUFQgCcC45HztiMrArJh0FZZp1q3o7mGJafyeEBzjB3sxAh70k6r50PhIJDAxERkYGbG1tm1U/ODgYFy5cgKenZ4N1bGxsYGNj06z2UlNTMWrUKAwYMAAbN25UD+aIiIjak76eGON9HTDe1wGZheXYei4Fv5xJwc2cEmw5cwtbztyCp60xHglywbT+TrAz5eCZWqYtxlxERJ2VIAi4mlmMHRdSsOW8BDknTqn32ZnKMDXQCRGBTujj2LpLwRBRy+k8cSUIAt55551mL2peWVnZaudOS0tDSEgIXF1dsWrVKmRnZ6v3OTg4tNp5iIiIWsLezADzQnrgXyO9cDrxNn4+cwu7Y9KRkF2CD/+4gpX74jHK2w4zBrogxNsWUq6tQc2gyzEXEVFHcTWzCLtj0rH7YjquZxXfKRXBSF+C8T4OiOjvhKFeNpCIOcOZqKPQeeJqxIgRiI+Pb3b94OBgGBq2zq1FIyMjcf36dVy/fh3Ozs5a+wRBaJVzEBER3SuRSIRBHlYY5GGFxZP7YndMOn4+cwvnkvOx/3Im9l/OhI2JDNP7O+HhIBf0sDPRdZepA9PlmIuISJeuZRZh98V07I5JxzV1sgrQl4jxQA9ryKsz8PqjD8LcmL/ziDoinSeuDh8+rLNzz549G7Nnz9bZ+YmIiJrL1ECKmYNcMXOQK65lFuGXsyn47VwKcoor8PWfCfj6zwQMcLPEI0HOmOgvhwkXjaW76HLMRUTU3q5nFWF3TAZ2X0zD1UxNskoqEWFET1tM9HfEmL72MJQAe/bsgZE+/24SdVR8dxIREXUyPe1N8VZYH7w+zhsHr2ThlzO3cCg+G2eTbuNs0m0s3RmHiX6OmBboCE4gJiKi7uJGdrHqMsCYdMRnFqnLpRIRhve0xUQ/VbLK3FBzN1iFQlFfU0TUgTBxRURE1ElJJWKM83HAOB8HZBWWY+u5VPxy5hYSckrwy9kU/HI2BXYGEmRZJmHGQDeYG0mbbpSIiKgTSahJVl1Mx5UMTbJKTyzC8J42mOgvx9g+9vwbSNSJMXFFRETUBdiZGeBfIV54bqQnziTdxs+nb2H3xXRklVfjgz/i8cn+a5jsL8cTQ9zQz8VC190lIiK6ZzdzSrA7Jg27L2bgcnqhulxPLMIDPW0w0c8RoX0dmKwi6iKYuCIiIupCRCIRBrpbYaC7Fd6a0AsfbI7CxVJzXMksVs/C8nMyxxNDXDGlnxMM9SW67jIREVGTEnNK1Ausx92VrBrW406yysceFkb6OuwlEbUFJq6IiIi6KBOZHh5wEPD+hGBcTC/GDyeSsTsmHRdTC/Dm1ot4b/dlPDTAGY8PduMdCYmIqMNJytUkq2LTNMkqiTpZ5YDQvg6wNGayiqgrY+KKiIioixOJRBjgZoUBblZ4e2If/HI2BZtPJuFWXhk2Hk3ExqOJCPa0xhND3BDqYw+pRKzrLhMRUTeVnFuqSlZdTMOlVO1k1VAv6zszqxxgxWQVUbfBxBUREVE3Ym0iw3MjvfDP4Z7481o2fjiRjINXMnE8IRfHE3JhayrDowNdMHOQK+QWhrruLhERdQO38krVM6suphaoyyViEYI9rTHR3xHjmKwi6raYuCIiIuqGxGIRQrztEOJth9T8Mvx0Mhn/O30L2UUV+OzgdXxx6DpG97HHE0PcMLyHDcRika67TEREXcitvFLsuai6G2BMiiZZJRYBwV7WmOgnxzgfe1ibyHTYSyLqCJi4IiIi6uacLAzx2jhvvDi6JyLjMvDDiSScSMhDVFwmouIy4WZthMcHu+LhAS5cR4SIiO5Zyu07yaqYdETflawaUmtmlQ2TVURUCxNXREREBADQ1xNjkr8ck/zluJZZhM0nk7H1bAqSckvxwZ4rWBV5FZP8HPH4EDf0d7WASMRZWERE1LjU/DLsiVHNrLpwK19dLhYBgz1UyarxvkxWEVHDmLgiIiKiOnram2LJFB+8Md4bOy6k4YeTSbiUWojfzqfit/Op6ONohllD3BAeIIexjMMJIiLSSM0vwx93LgM8n5yvLheJgMEeVpjoL8d4HwfYmjJZRURN40iTiIiIGmSkr4eZg1wxY6ALolMK8MOJJOyMTsPl9EK8te0iPthzGdP6O+GJIW7oZW+q6+4SEZGOpOWXYc/FdOy5mI5zdyWrBrlbYZK/I8b5OsDO1EB3nSSiTomJKyIiImqSSCRCgIsFAlws8PbEPvj1bAo2n0zGzZwSfHc8Cd8dT8Igdys8EeyG8T4O0NcT67rLRETUxjIKytULrJ9Nuq0uF4mAgXeSVeN9HGBnxmQVEd07Jq6IiIioRSyM9PH0cE88NcwDx27k4ocTSYi6nIlTiXk4lZgHGxN9PBLkgkcHucLFykjX3SUiolaUUVCOPy6pFlg/c3eyys1KvWaVPZNVRNRKmLgiIiKieyIWi/BATxs80NMGGQXl+OlUMv53OhmZhRVYe/gG1h25gVHedpg1xA0jetlCIuZi7kREnVFmYbl6zarTibe19g10t0SYnyMm+DrCwZzJKiJqfUxcERER0X1zMDfAK2N74YUHe+DA5Uz8cCIZf1/PwcErWTh4JQvOloZ4bLArHgly4Z2jiIg6gazCcvxxKQO7Y9JxOikPgqDZF+R2J1nl5wBHc0PddZKIugUmroiIiKjVSCVijPd1xHhfRyRkF2PzyWT8ejYFKbfLsGJvPD6NuooJvo6YFeyGIDdLiESchUVE1FFkFZVj76UM7IpJx+lE7WTVgDvJqjAmq4ionTFxRURERG3C09YE70zqi9fHeWNndBp+OJmM6Fv52BGdhh3RafC2N8UTQ1wxNdAJpgZSXXeXiKhbyi6qwN5LqssAT97UTlb1d7W4k6xyhNyCySoi0g0mroiIiKhNGUgleDjIBQ8HueBiSgF+OJGE36NTEZ9ZhHd+j8WHf1xBeKATnhjshr5yM113l4ioSytXVCMhqxh/Z4jw04bTOJV4G8payaoAFwtM8nfEBD9HODFZRUQdABNXRERE1G78nM3x0UP+eGtiH/x2LgU/nEjCjewS/HgyGT+eTMYAN0s8McQVE3wdYSCV6Lq7RESdUlW1Eqn5ZUjIKUFiTglu1vpKzS+7M6tKAkC10Ho/FwtMurNmlbMl7wZLRB0LE1dERETU7swNpZgzzAOzh7rjREIefjiRhH2xGTibdBtnk25j2c44PBLkgscGu8LN2ljX3SUi6nCUSgGZReW4mV2Cm7kluJldgsTcEiTklOBWXikU1UKDx5rI9GCrr8AjQ70xqZ8TXKyYrCKijouJKyIiItIZkUiEYC9rBHtZI6uwHFtO38JPp5KRVlCOr/9MwNd/JmBkL1s8McQND/a2g0TMxdyJqPsQBAF5JZWqhFS2asZUzeOk3FKUKaobPFamJ4aHjTHcrY3hYWsMj5rvNsYw0xfhjz/+QNgD7pBKucYgEXVs3T5xNWXKFFy4cAFZWVmwtLTEmDFj8NFHH0Eul+u6a0RERN2KnZkB/j26J/4V4oVD8dn44UQS/ryWjSNXVV9ycwM8OsgVMwa5wM7UQNfdJSJqNUXlCiTmlCIhpxiJOaW4mVOsvrSvsLyqweP0xCK4WBlpJag8bYzhbmMMRzMDiBtI9isUirZ6KkREra7bJ65GjRqFt956C46OjkhNTcVrr72Ghx56CMeOHdN114iIiLolPYkYY/vaY2xfeyTlqta/+vnMLaQVlOPjqKtYc+Aaxvk64InBbhjiaQWRiLOwiKjjK1dUIym3tNZ6U8V3klUlyCmuaPRYJwtDuNuoElQeNibwsDGCh40JnC0NIZWI2+kZEBHpRrdPXL3yyivqx25ubliwYAGmTp0KhULBabNEREQ65mZtjIVhffDK2F7441I6fjiRjLNJt7E7Jh27Y9LRw84Ejw92xbT+zjA35N9tItItRbUSKbfLkJhTUmdh9LSCmkXR62djIruTkFLNmPK8k6RyszbizSqIqFvr9omr2vLy8rB582YMHTq00aRVRUUFKio0n4oUFhYCUE25be1ptzXtcTovY1EbY6HBWGgwFiqMg0ZXioUEwCRfe0zytcfl9CL8ePoWdkSn43pWMZbujMOKvVcw2d8Rjw1ygY/crM7xbRmLrhDf+7F27VqsXLkS6enp8PHxwerVqzF8+HBdd4uozSiVAjIKy3HzruRUYk4JkvNKUaVsODtlaqB3JyGlSk551HpsZsDkOxFRfZi4AvDmm2/iiy++QGlpKYYMGYJdu3Y1Wn/58uVYunRpnfLIyEgYGbXNHTmioqLapN3OiLHQYCw0GAsNxkKFcdDoirEI1gMC+wGnc0Q4miFGepkSP59Nxc9nU+FmImCYvRKB1gL075qk0BaxKC0tbfU2O4stW7bg5Zdfxtq1azFs2DB8/fXXmDBhAuLi4uDq6qrr7hHdM0EQkFtSWeuyPs1d+27mlKCiStngsQZSsWq9KZu6X1bG+ry8mYiohbpk4mrJkiX1JpZqO336NIKCggAAr7/+OubOnYukpCQsXboU//jHP7Br164G/6gsXLgQ8+fPV28XFhbCxcUFoaGhMDOr+ynv/VAoFIiKisLYsWO7/aWLjIUGY6HBWGgwFiqMg0Z3iMU0qP7BPJucj80nb2FfXCaSioGkYgl2p+lheqATHh3kDCcz/TaLRc3M6+7ok08+wdy5c/H0008DAFavXo19+/Zh3bp1WL58uc76VVpZhcTsYmSUAjeyS6Av1YNIJIIIgEgEiO+M8UQiqMvFIpFqGwDu1FHV1xwnqlVHJBJBLAJEUJXhrjbuPo46poIyBRJr3amvJjF1M7sERRWNL4ruamWkNWPK00a1OLq9acOLohMRUct1ycTVCy+8gJkzZzZax93dXf3YxsYGNjY26NWrF/r06QMXFxecOHECwcHB9R4rk8kgk8nqlEul0jb7x6At2+5sGAsNxkKDsdBgLFQYB43uEIvgHnYI7mGHnOIK/HzmFn48mYyU22XYcCwJG44lYaiXFXpLRAgVS1o9Fl09tg2prKzE2bNnsWDBAq3y0NDQem9y055LLZy5mYt/bDwLQA/Lo4+2atv3qiahVZPcUpXVJM00j7WTZprEmNbjO+3griSZ+M5BtRN0NemT0lIJPrv+NyQisXbCTqxqV3Ws5hh1Eu7uPoo09etL/NUkBWvqi+uto+qguIm27j53TS6o9rnUz/9Ou5p41bSv2S8olbicIsLhrTFIzitHYm4pcksqG/2Zyc0N4G5tDHdrI9Xi6NZGcLc2hpOFAfQaWBS9uroK1dX38CJpR13pUvL7xVhoMBYajIVKW8ehue12ycRVTSLqXgh3VkysPbAiIiKizsHGRIZ5IT3w7Agv/Hk1Gz+cSMLB+Cwcu5GHY5Dg4dxS9HGq++ETtVxOTg6qq6thb2+vVW5vb4+MjIw69dtzqYUbhYCRngQQgJrVhpSA1rYAQKhnW/W49WfL1JxLqbU6dyMrdbc6ETLLuu9lrRoS4Jb269NMKsDWALA1FGBnIMDGALAzVH2XiosBFKsq3gZKbgOx14HY9u94m+iKl5LfK8ZCg7HQYCxU2ioOzV1uoUsmrprr1KlTOHXqFB544AFYWloiISEBixYtgpeXV4OzrYiIiKjjk4hFGNXbDqN62+FWXik2n0jEydgb6GFnouuudTl3XwYnCEK9l8a151ILAPBcK1wqKwgClILqe+1ElyAIdx4L9ZRBvU95Z6OmTFnrsVb7tdpBTb3a7TbQviBoP65pH7WOVQpAVVUVTp8+jf4DgiDRk9x5Tpq2a86nvHMCZa3+C4J22zXPSbtO3baEWvVr+oE7+zV1aseg9vmFu7Zbpz/VSiUy0tMxqK8nvOxM4WFjDFcrI5gadL9/ibrDpeTNxVhoMBYajIVKW8ehucstdL/f0rUYGhrit99+w+LFi1FSUgJHR0eMHz8e//vf/+q9FJCIiIg6HxcrI7w6tif2KK7puitdio2NDSQSSZ3ZVVlZWXVmYQG6WWqhPdrvDBQKBW5fBR7oZdetY6FQKLBnTyrCxvTq1nGoje8PDcZCg7HQYCxU2ioOzW2zWyeu/Pz8cPDgQV13g4iIiKjT0dfXx4ABAxAVFYWIiAh1eVRUFMLDw3XYMyIiIupKunXiioiIiIju3fz58zFr1iwEBQUhODgY69evR3JyMp577jldd42IiIi6CCauWkHNgu5tcTtshUKB0tJSFBYWdvspioyFBmOhwVhoMBYqjIMGY6HRlrGo+ftfMx7oTmbMmIHc3FwsW7YM6enp8PX1xZ49e+Dm5tbksW05fgL4+q+NsVBhHDQYCw3GQoOx0GAsVNo6Ds0dQ4mE7jjKamUpKSlwcXHRdTeIiIhIh27dugVnZ2ddd6PT4PiJiIiIgKbHUExctQKlUom0tDSYmprWexed+1Fzx51bt261yR13OhPGQoOx0GAsNBgLFcZBg7HQaMtYCIKAoqIiyOVyiMXiVm27K2vL8RPA139tjIUK46DBWGgwFhqMhQZjodLWcWjuGIqXCrYCsVjc5p+wmpmZdes3TG2MhQZjocFYaDAWKoyDBmOh0VaxMDc3b/U2u7r2GD8BfP3XxlioMA4ajIUGY6HBWGgwFiptGYfmjKH4sSAREREREREREXVITFwREREREREREVGHxMRVByeTybB48WLIZDJdd0XnGAsNxkKDsdBgLFQYBw3GQoOx6H74M9dgLFQYBw3GQoOx0GAsNBgLlY4SBy7OTkREREREREREHRJnXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwREREREREREVGHxMQVERERERERERF1SExcERERERERERFRh8TEFRERERERERERdUhMXBERERERERERUYfExBUREREREREREXVITFwRUaewZMkSiEQi5OTktPu5Dx8+DJFIhMOHDzdZd/bs2XB3d2/zPhERERF1Ju7u7pg9e7Z6u2Z89euvv+quU0TUKTBxRUREREREREREHRITV0TUpkpLS3XdhU6trKxM110gIiKibohjOCLqKJi4IqJWU3M537lz5/DQQw/B0tISXl5eTR6nVCrx3nvvwdvbG4aGhrCwsIC/vz/WrFlTp25mZiYeffRRmJubw97eHk899RQKCgq06pSXl2PhwoXw8PCAvr4+nJyc8PzzzyM/P1+rnkgkwpIlS+qc4+6p7A3ZtGkTvL29IZPJ0KdPH3z33Xf11qusrMR7772H3r17QyaTwdbWFnPmzEF2dnad806aNAm//fYbAgMDYWBggKVLlzbZj++//x4ikQjHjx+vs2/ZsmWQSqVIS0sDAERFRSE8PBzOzs4wMDBAjx498Oyzz2pdghkbGwuRSIRffvlFXXb27FmIRCL4+PhotT9lyhQMGDCgyT4SERFRx3WvYzgAKCwsxGuvvaY17nr55ZdRUlLSrOPLy8sxf/58ODg4wNDQECNHjsT58+fr1NuxYweCg4NhZGQEU1NTjB07Vmvsw/ELUdfFxBURtbpp06ahR48e+OWXX/DVV181WX/FihVYsmQJHn30UezevRtbtmzB3Llz6ySaAGD69Ono1asXtm7digULFuDHH3/EK6+8ot4vCAKmTp2KVatWYdasWdi9ezfmz5+Pb7/9Fg8++CAqKipa5Tlu2rQJc+bMQZ8+fbB161a8/fbbePfdd3Hw4EGtekqlEuHh4fjwww/x2GOPYffu3fjwww8RFRWFkJCQOjOqzp07h9dffx0vvvgi9u7di+nTpzfZlxkzZsDBwQFffvmlVnlVVRW+/vprREREQC6XAwBu3LiB4OBgrFu3DpGRkVi0aBFOnjyJBx54AAqFAgDg4+MDR0dH7N+/X93W/v37YWhoiLi4OHUSrKqqCkeOHMGYMWNaHkAiIiLqcFo6histLcXIkSPx7bff4sUXX8Qff/yBN998E5s2bcKUKVMgCEKTbbz11ltISEjAf//7X/z3v/9FWloaQkJCkJCQoK7z448/Ijw8HGZmZvjpp5/wzTff4Pbt2wgJCcHff/8NgOMXoi5NICJqJYsXLxYACIsWLWrRcZMmTRICAgKa1faKFSu0yufNmycYGBgISqVSEARB2Lt3b731tmzZIgAQ1q9fry4DICxevLjOudzc3IQnn3xSvX3o0CEBgHDo0CFBEAShurpakMvlQv/+/dXnFQRBSExMFKRSqeDm5qYu++mnnwQAwtatW7XOcfr0aQGAsHbtWq3zSiQSIT4+vtFY1Gfx4sWCvr6+kJmZWec5HzlypN5jlEqloFAohKSkJAGA8Pvvv6v3PfHEE4Knp6d6e8yYMcIzzzwjWFpaCt9++60gCIJw9OhRAYAQGRnZ4v4SERFRx3GvY7jly5cLYrFYOH36tFb5r7/+KgAQ9uzZoy5raHzV0Hjq6aefFgRBM+7y8/MTqqur1fWKiooEOzs7YejQoeoyjl+IuibOuCKiVtecWUK1DRo0CNHR0Zg3bx727duHwsLCButOmTJFa9vf3x/l5eXIysoCAPWMp7sv9Xv44YdhbGyMAwcOtKhv9YmPj0daWhoee+wxiEQidbmbmxuGDh2qVXfXrl2wsLDA5MmTUVVVpf4KCAiAg4NDnTsV+vv7o1evXi3u07/+9S8AwP/93/+py7744gv4+flhxIgR6rKsrCw899xzcHFxgZ6eHqRSKdzc3AAAly9fVtcbPXo0EhIScPPmTZSXl+Pvv//G+PHjMWrUKERFRQFQfYopk8nwwAMPtLi/RERE1PG0dAy3a9cu+Pr6IiAgQGucM27cuGbfkbmh8dShQ4cAaMZds2bNglis+ffVxMQE06dPx4kTJ9TrcXH8QtQ1MXFFRK3O0dGxRfUXLlyIVatW4cSJE5gwYQKsra0xevRonDlzpk5da2trrW2ZTAZAs4h5bm4u9PT0YGtrq1VPJBLBwcEBubm5LepbfWracHBwqLPv7rLMzEzk5+dDX18fUqlU6ysjI0NrbSmg5bGrYW9vjxkzZuDrr79GdXU1YmJi8Ndff+GFF15Q11EqlQgNDcVvv/2GN954AwcOHMCpU6dw4sQJANoLwddMn9+/fz/+/vtvKBQKPPjggxgzZow6+bd//34MGzYMhoaG99RnIiIi6lhaOg7JzMxETExMnTGOqakpBEGoM86pT0PjqZrxVs33+voml8uhVCpx+/ZtABy/EHVVerruABF1PbU/NWsOPT09zJ8/H/Pnz0d+fj7279+Pt956C+PGjcOtW7dgZGTU7Lasra1RVVWF7OxsreSVIAjIyMjAwIED1WUymazeNa+aSm7VJM8yMjLq7Lu7zMbGBtbW1ti7d2+9bZmammpttzR2tb300kv4/vvv8fvvv2Pv3r2wsLDA448/rt5/6dIlREdHY9OmTXjyySfV5devX6/TlrOzM3r16oX9+/fD3d0dQUFBsLCwwOjRozFv3jycPHkSJ06caNbi8URERNQ5tHQcYmNjA0NDQ2zYsKHB/U1paDxVM96q+Z6enl6nXlpaGsRiMSwtLQFw/ELUVXHGFRF1KBYWFnjooYfw/PPPIy8vD4mJiS06fvTo0QCAH374Qat869atKCkpUe8HVHfxi4mJ0ap38OBBFBcXN3oOb29vODo64qefftJadDQpKQnHjh3Tqjtp0iTk5uaiuroaQUFBdb68vb1b9PwaM2DAAAwdOhQfffQRNm/ejNmzZ8PY2Fi9v2YwWjNLrcbXX39db3tjxozBwYMHERUVhbFjxwIAevXqBVdXVyxatAgKhYILmxIREXVjkyZNwo0bN2BtbV3vOMfd3b3JNhoaT4WEhABQjbucnJzw448/atUrKSnB1q1b1XcarMHxC1HXwxlXRKRzkydPhq+vL4KCgmBra4ukpCSsXr0abm5u6NmzZ4vaGjt2LMaNG4c333wThYWFGDZsGGJiYrB48WIEBgZi1qxZ6rqzZs3CO++8g0WLFmHkyJGIi4vDF198AXNz80bPIRaL8e677+Lpp59GREQEnnnmGeTn52PJkiV1prvPnDkTmzdvRlhYGF566SUMGjQIUqkUKSkpOHToEMLDwxEREdGi59iYl156CTNmzIBIJMK8efO09vXu3RteXl5YsGABBEGAlZUVdu7cqV7z4W6jR4/G2rVrkZOTg9WrV2uVb9y4EZaWlryVNBERUTf28ssvY+vWrRgxYgReeeUV+Pv7Q6lUIjk5GZGRkXj11VcxePDgRtvIyspSj6cKCgqwePFiGBgYYOHChQBU464VK1bg8ccfx6RJk/Dss8+ioqICK1euRH5+Pj788EOt9jh+Iep6mLgiIp0bNWoUtm7div/+978oLCyEg4MDxo4di3feeQdSqbRFbYlEImzfvh1LlizBxo0b8f7778PGxgazZs3CBx98oDXb6PXXX0dhYSE2bdqEVatWYdCgQfj5558RHh7e5Hnmzp0LAPjoo48wbdo0uLu746233sKRI0e0FiKVSCTYsWMH1qxZg++//x7Lly+Hnp4enJ2dMXLkSPj5+bXo+TVl6tSpkMlkGDVqVJ2kn1Qqxc6dO/HSSy/h2WefhZ6eHsaMGYP9+/fD1dW1TlsPPvggxGIxDA0NERwcrC4fM2YMNm7ciFGjRmktkkpERETdi7GxMf766y98+OGHWL9+PW7evAlDQ0O4urpizJgxzZpx9cEHH+D06dOYM2cOCgsLMWjQIPzvf/+Dl5eXus5jjz0GY2NjLF++HDNmzIBEIsGQIUNw6NChOjfG4fiFqOsRCbXnWxIRUae2c+dOTJkyBbt370ZYWJiuu0NERERERHRfmLgiIuoC4uLikJSUhJdeegnGxsY4d+7cfS30TkRERERE1BEwcUVEbUYQBFRXVzdaRyKRMMHSCKVSCaVS2WgdPT09hISE4OjRo+jfvz++/fZb9O7du516SERERF0Nx3BE1JHw4l4iajNHjhyBVCpt9Ovbb7/VdTc7tKeeeqrJGALA4cOHoVAocPLkSSatiIiI6L5wDEdEHQlnXBFRmykqKkJ8fHyjdTw8PGBtbd1OPep8EhMTkZOT02idoKCgduoNERERdQccwxFRR8LEFRERERERERERdUh6uu5AV6BUKpGWlgZTU1Ne501ERNTNCIKAoqIiyOVy3mK9BTh+IiIi6t6aO4Zi4qoVpKWlwcXFRdfdICIiIh26desWnJ2ddd2NToPjJyIiIgKaHkN1ycTV2rVrsXLlSqSnp8PHxwerV6/G8OHDG6x/5MgRzJ8/H7GxsZDL5XjjjTfw3HPPNft8pqamAFTBNjMzu+/+16ZQKBAZGYnQ0FD1IszdFWOhwVhoMBYajIUK46DBWGi0ZSwKCwvh4uKiHg9Q87Tl+Ang6782xkKFcdBgLDQYCw3GQoOxUGnrODR3DNXlEldbtmzByy+/jLVr12LYsGH4+uuvMWHCBMTFxcHV1bVO/Zs3byIsLAzPPPMMfvjhBxw9ehTz5s2Dra0tpk+f3qxz1kxvNzMza5PElZGREczMzLr1GwZgLGpjLDQYCw3GQoVx0GAsNNojFrzcrWXacvwE8PVfG2OhwjhoMBYajIUGY6HBWKi0VxyaGkN1uYUYPvnkE8ydOxdPP/00+vTpg9WrV8PFxQXr1q2rt/5XX30FV1dXrF69Gn369MHTTz+Np556CqtWrWrnnhMRERERERERdRwV1UBZZbVO+9ClZlxVVlbi7NmzWLBggVZ5aGgojh07Vu8xx48fR2hoqFbZuHHj8M0330ChUNSbVayoqEBFRYV6u7CwEIAqG6lQKO73aWh56tszOH1TgnfOH4RIBIjvZCLFIpF6WyQCRLXKRCKR1ra4njL1thgQQQSxCMCd9sR39tXUE9dqv6aOdluodYxIa1tzTK064rr9w50+aJ5TTR1NH5RKJZKSxIj54wr0JBL184ZI9RxqtkV3tqHervV8oMnm1vS95lhx7fJ6joPWtvb5UM/5a8e5vjZR5xwi7efU4LEiVFdXIbkYyMgvgb25Ubf+lL/mPdfa773OiLFQYRw0GAuNtowF40tERERdSWllFQ5dycbO6FQcuCxBlTwdjw3x0Fl/ulTiKicnB9XV1bC3t9cqt7e3R0ZGRr3HZGRk1Fu/qqoKOTk5cHR0rHPM8uXLsXTp0jrlkZGRMDIyuo9nUFdapgTl1SKUV1e1arudlxhIS9Z1JzoIPXx88SikIgGWMsBCJsBSH7CUqbYtZYCVvgALGSDtcnMr64qKitJ1FzoMxkKFcdBgLDTaIhalpaWt3iYRERFRe6pJVu25mI6DV7JQpqiZZSXC6cTbTFy1trtnnwiC0OiMlPrq11deY+HChZg/f756u2ZBsdDQ0FZfo8FvcBEOHP4Lw4YNg1iiB0EQIAiAUhAg4M53AaovCFAKaGYdVT1NHc1xNccq78RBqa4LCNBuXykAqNVmTXvq+uo6mn5o+qNpU6nqXL19rimrqqpGYlIS3FxdIRKL1f2G+pyq5yeo+6nqW+3t2vshNLbv7rZqnaOB89U9RrWN+tqA5nVW7zm0jrvzc1Nq+q0UBGTeLkahQgSFIEJWOZBV3vBr3MZEH3JzAziaG0BuYaj6bm4AJwtDOFoYwMpI2mlnbSkUCkRFRWHs2LHd+vpzgLGowThoMBYabRmLmpnXRERERJ1JWWU1DsVnYffFdBy8XDtZBbhYGWKCjz3M8q/jn9N8ddjLLpa4srGxgUQiqTO7Kisrq86sqhoODg711tfT04O1tXW9x8hkMshksjrlUqm01QfDLtamsDMEejqY858OhQJ79txEWFhfxkKhwJ49ezAmdDzyyqqRml+G1NtlSMsvQ1pBGVLzy5F2p6xMUY2c4krkFFciJrX+f65kemI4WRhCbmEIuYUqueV050tuYQgHcwMYSCXt/Cxbpi3ef50VY6HCOGgwFhptEQvGloiIiDqLsspqHI7Pwq4GklVhfo6Y5CeHr5MZqqqqsGfPdZ1PcuhSiSt9fX0MGDAAUVFRiIiIUJdHRUUhPDy83mOCg4Oxc+dOrbLIyEgEBQVxIEodnr6eGC5WMrhY1X+JqiAIKChT3JXYKkdq/p3H+WXIKqpARZUSCTklSMgpafBcNiYyON1JaslrJbWc7iS7rIz1df4LjYiIiIiIiLTVJKt237kMsLTWYuvOloaY6OeIif6O8HMy75D/03WpxBUAzJ8/H7NmzUJQUBCCg4Oxfv16JCcn47nnngOguswvNTUV3333HQDgueeewxdffIH58+fjmWeewfHjx/HNN9/gp59+0uXTIGoVIpEIFkb6sDDSh4/cvN46lVVKZBaWI+W2JplV/6ytCuQUVyA6paDedu6eteVkYXTne+eZtUVERERERNQVlCtqklUZOHA5UytZ5WRhiEn+jgjzc4S/c8dMVtXW5RJXM2bMQG5uLpYtW4b09HT4+vpiz549cHNzAwCkp6cjOVmzuLeHhwf27NmDV155BV9++SXkcjk+++wzTJ8+XVdPgahdqWZtGTU5a0s7sXX/s7Y0SS7O2iIiIiIiIrpfqmRVNnZfTK83WTXxTrKqXydIVtXW5RJXADBv3jzMmzev3n2bNm2qUzZy5EicO3eujXtF1DnVnrXl69TwrK2Mu5JZ9ztrS3v2FmdtERERERER3a1cUY0jV7OxO0aVrCq5K1kV5ueAif7yTpesqq1LJq6IqH3p64nham0EV+uGZ23llyruSmzdx6wtS0PVzC1zQ9ib6aOsCFDW3L6SiIiIiIioC6tJVu25mI79cdrJKrm5gXpmVYCLRadNVtXGxBURtTmRSARLY31YGjc8a6uiqhqZBRXNn7V1q/bRetic/CdC+zog1MceQzytIZWI2+W5ERERERERtbVyRTX+rElWXc5CcUWVep/c3ABhfo4I83dEYBdJVtXGxBURdQgyPck9zdpKyCrCX1ezkFlYge9PJOH7E0kwNdDD6N52CPVxwMhetjCW8VcdEdHatWuxcuVKpKenw8fHB6tXr8bw4cPrrTt79mx8++23dcr79u2L2NhYAKrlF+bMmVOnTllZGQwMDFq380RERN1QuaIaf13Lwe6YtDrJKsc7yaqJ/o4IcLaAWNy1klW18b85IuoUGpq1pVAosGPXHpj1GoiD8TmIistETnEltl9Iw/YLadDXE2N4DxuM83HA6D52sDaR6fBZEBHpxpYtW/Dyyy9j7dq1GDZsGL7++mtMmDABcXFxcHV1rVN/zZo1+PDDD9XbVVVV6NevHx5++GGtemZmZoiPj9cqY9KKiIjo3lVUVePPqznYczEdUXGZdZJVE3xVyapAl66drKqNiSsi6vT0xEBIL1uM9ZHjvakCziffRmRcJvbFZiAptxQHrmThwJUsiEVAkJsVQn3sMc7HocE7KRIRdTWffPIJ5s6di6effhoAsHr1auzbtw/r1q3D8uXL69Q3NzeHubnmQ4Lt27fj9u3bdWZYiUQiODg4NKsPFRUVqKioUG8XFhYCUH0AoVAoWvycmlLTZlu03dkwFiqMgwZjocFYaDAWGu0di4oqJf6+noO9lzKx/0q2VrLK3kyGCT72mODrgABnc3Wyqrq6CtXVDbXYOto6Ds1tl4krIupSJGIRgtytEORuhYUTeuNqZjEiYzOwLy4Dl1ILcSoxD6cS8/De7svo7WCKcT6qdbH6Opp1uWvBiYgAoLKyEmfPnsWCBQu0ykNDQ3Hs2LFmtfHNN99gzJgxcHNz0yovLi6Gm5sbqqurERAQgHfffReBgYH1trF8+XIsXbq0TnlkZCSMjNrug4SoqKg2a7uzYSxUGAcNxkKDsdBgLDTaMhZVSuBKgQgXckS4eFuE8mrN/yLmUgEB1gICrJVwN62CGAnIuJSAvZfarDuNaqs4lJaWNqseE1dE1GWJRCJ4O5jC28EU/x7dE6n5ZYiMzUBkbCZOJebhSkYRrmQUYc2Ba3C2NFQv7j7Q3QqSbjLtloi6vpycHFRXV8Pe3l6r3N7eHhkZGU0en56ejj/++AM//vijVnnv3r2xadMm+Pn5obCwEGvWrMGwYcMQHR2Nnj171mln4cKFmD9/vnq7sLAQLi4uCA0NhZmZ2T0+u4YpFApERUVh7NixkEqlrd5+Z8JYqDAOGoyFBmOhwVhotFUsKqqUOHojF3svZWD/lWwUldeaWWUqwzgfe4T52neYywDb+jVRM/u6KUxcEVG34WRhiDnDPDBnmAdul1TiwJUsRMZm4M9r2Ui5XYYNR29iw9GbsDLWVy/uPrynDQykEl13nYjovt09q1QQhGbNNN20aRMsLCwwdepUrfIhQ4ZgyJAh6u1hw4ahf//++Pzzz/HZZ5/VaUcmk0Emq7vOoFQqbdN/kNq6/c6EsVBhHDQYCw3GQoOx0GiNWFRWKfH39WzsjslAZFyGVrLKzlSmXmB9gKtlh0hW1aetXhPNbZOJKyLqliyN9fHQAGc8NMAZZZXV+PNaNiJjM3HgSibySirxy9kU/HI2BYZSCUb2ssU4X3s86G0PcyP+ESeizsXGxgYSiaTO7KqsrKw6s7DuJggCNmzYgFmzZkFfX7/RumKxGAMHDsS1a9fuu89ERESdWWWVEkev52BXTDqi4jJQWE+yKszPEUFuHTdZ1ZEwcUVE3Z6hvgTjfBwwzscBVdVKnErMQ2RsJiJjM5BWUI69sRnYG5sBPbEIgz2tMM7HAWP72sPR3FDXXSciapK+vj4GDBiAqKgoREREqMujoqIQHh7e6LFHjhzB9evXMXfu3CbPIwgCLly4AD8/v/vuMxERUWdTk6zafTEdkbHaySpbUxnCfB0w0V/OZNU9YOKKiKgWPYkYQ71sMNTLBosn90VsWqFqcffYTMRnFuHo9VwcvZ6LRb/Hop+zOUJ9HBDa1x497Ey4uDsRdVjz58/HrFmzEBQUhODgYKxfvx7Jycl47rnnAKjWn0pNTcV3332nddw333yDwYMHw9fXt06bS5cuxZAhQ9CzZ08UFhbis88+w4ULF/Dll1+2y3MiIiLStcoqJY7eyMGemHTsqydZNcHXARP9HBHENXTvCxNXREQNEIlE8HUyh6+TOeaHeiMxpwSRcarF3c8m30Z0SgGiUwqwcl88PG2MMdbHHqF9HTrMYopERDVmzJiB3NxcLFu2DOnp6fD19cWePXvUdwlMT09HcnKy1jEFBQXYunUr1qxZU2+b+fn5+Oc//4mMjAyYm5sjMDAQf/75JwYNGtTmz4eIiEhXFNV3ZlbFpCMyLhMFZQr1PhsTGcL8HBDm58gbPrUiJq6IiJrJ3cYY/xzhhX+O8EJ2UQX2X1ZdTnj0ei4Sckrw9ZEEfH0kAbamMozta4/QvvYY6mUDfT2xrrtORIR58+Zh3rx59e7btGlTnTJzc/NGb1P96aef4tNPP22t7hEREXVYimoljt3Ixe6YNOyLvTtZpY8Jvqo1qwZ5MFnVFpi4IiK6B7amMjw6yBWPDnJFUbkCR66qFnc/dCUL2UUV+PFkMn48mQxTmR5CetthnI89RvayhakBF3cnIiIiIuroqpXAX9dysC8uG/viMpBfqp2sGu/rgIl+ciar2gETV0RE98nUQIpJ/nJM8pejoqoaJxLysC82A1FxmcguqsDO6DTsjE6DvkSMoT2sMc7HAWP62MPWtO5t4YmIiIiISDcqqqpx7Hou9lxMw+5oCUpPnlPvq0lWhfk5YrCHNZNV7YiJKyKiViTTk2BkL1uM7GWL98J9cSElH/tiVeti3cwpweH4bByOz8ZboosY4GqJ0DvrYrnbGOu660RERERE3U5xRRUOXcnCvtgMHI7PRnFFzQLrIlgZSzHB1xET71wGqCfhEiC6wMQVEVEbEYtF6O9qif6ullgwvjduZBdjX6xqXazolAKcSbqNM0m38cGeK/C2N1UnsXydzHiHQiIiIiKiNpJTXIH9cZnYd2e92spqpXqfnakMY/rYwqI4Cf9+ZAwMDXiVhK4xcUVE1A5EIhF62Jmih50pnh/VA2n5Zdh/WfXH8kRCHuIzixCfWYTPD16H3NwAoT4OCPWxxyB3frJDRERERHS/buWVqq+EOJOUB6Wg2edhY4xQH3uM83FAgLMFqqursGdPIsfhHQQTV0REOiC3MMQ/gt3xj2B3FJQqcDA+E/suZeLI1WykFZRj07FEbDqWCAsjKR7sbYdxPg4Y0dMWhvoSXXediIiIiKjDEwQB8ZlF2HdJ9WFxXHqh1n5fJzOM6+uAcb4O6GlnonXFQ3V1e/eWGsPEFRGRjpkbSRER6IyIQGeUK6rx97Uc7IvNwP7LmbhdqsBv51Lx27lUGEjFGN7TFuN8HDC6tx0sjfV13XUiIiIiog5DqRRw/tZt7ItVJauSckvV+8QiYKC7FcbdubLB2dJIhz2llmDiioioAzGQSjCmrz3G9LVHVbUSZ5JuI/LOH97U/DJExWUiKi4TErEIg9ytEOpjj7F9+YeXiIiIiLqnyioljifkat3Vu4a+nhjDe9ioPvjtYwdrE65X1RkxcUVE1EHpScQY4mmNIZ7WeGdSH8SlF6qTWFcyinA8IRfHE3KxdGccfORmGNPbFiZluu41EREREVHbKqmowpGr2dgXm4GDV7JQVF6l3mcq08OoO0ttjPS2hYmMaY/Ojj9BIqJOQCQSwUduDh+5OV4Z2wvJuaWIjNMsLhmbVojYtEIAetiZcwLTAp0xqZ8cNvxUiYiIiIi6gLySSuy/rLpD95/XclBZpbkToI2JDGP72mOcjz2GetlAX4+LqnclTFwREXVCrtZGeHq4J54e7omc4gocvJyFXTGp+PtaDmJSChGTEod3d1/GiJ42mBrohNC+DlzYnYiIiIg6ldT8MkTGZmBfbAZO3dS+E6CrlRHG3bkTYKCrJSRiUcMNUafGxBURUSdnYyLDIwNdEBHggP9t34MKex/sjMlAdEoBDsVn41B8Noz1JRjv64iIQCcEe1nzDzsRERERdTiCIOB6VjH2xWZgX2wmLqYWaO3v42imTlb1djDVuhMgdV1MXBERdSFm+kBYsBueHtEDN7KL8fv5VGy7kIpbeWXYei4FW8+lwM5UhvAAOaYGOqGvoxn/4BMRERGRziiVAqJT8rEvVnUZYEJOiXqfSAQEuVlinI8Dxvk4wMWKNyTqjpi4IiLqorxsTTA/1BuvjO2Fs0m3se18KnbFpCOrqAL/99dN/N9fN9HL3gRTA50QHuAEJwtDXXeZiIiIiLoBRbUSJxPysC82A5FxGcgsrHUnQIkYw3pY37kToD1sTblma3fHxBURURcnEokQ5G6FIHcrLJ7sg8PxWdh+IRX7L2fhamYxVuyNx4q98RjiaYWIQCeM93WEuaFU190mIiIioi6krLIaR65mIzI2AweuZKGgTKHeZ6wvUd8JMMTbFqYGHIuSBhNXRETdiL6eGKE+Dgj1cUBBmQJ7L6Vj2/lUnEjIU3+983ssxvSxw9QAJ4R42/GuLERERER0T/JLK3Hgchb2xWbgz2vZKFdo7gRobax/506ADhjawxoyPd5IiOrHxBURUTdlbijFjIGumDHQFan5ZdhxIQ3bzqfgamYx9lzMwJ6LGbAwkmKin2pR9wFullwPi4iIiIgalVFQjsg41Z0ATyTkobrWrQCdLQ3V61UNcOOdAKl5WjVxVVhY2OJjzMzMWrMLRER0D5wsDPGvEC88N9ITcemF2H4+Fb9fSENWUQU2n0zG5pPJcLEyxNQAJ0wNdIKXrYmuu0zUJXEsRUREndGNbM2dAKNv5Wvt6+1gilAfB4zzseeNgeietGriysLCokUvQpFIhKtXr8LT07NVzn/79m28+OKL2LFjBwBgypQp+Pzzz2FhYVFvfYVCgbfffht79uxBQkICzM3NMWbMGHz44YeQy+Wt0icios5EJBLBR24OH7k5Fkzog+M3crHtfCr2XkrHrbwyfH7wOj4/eB3+zuaICHTCJH85F8wkakVtOZZau3YtVq5cifT0dPj4+GD16tUYPnx4vXUPHz6MUaNG1Sm/fPkyevfurd7eunUr3nnnHdy4cQNeXl54//33ERER0ez+ExFR5yQIAi6mFqiTVdezitX7RCKgv6slxvnYI7SvA9xtjHXYU+oKWv1SwV9//RVWVlZN1hMEAWFhYa167sceewwpKSnYu3cvAOCf//wnZs2ahZ07d9Zbv7S0FOfOncM777yDfv364fbt23j55ZcxZcoUnDlzplX7RkTU2UjEIjzQ0wYP9LTBe1N9EXU5E9vPp+LI1WzEpBQgJqUA7+2+jOE9bRAR6ISxfe1hpM8r0InuV1uMpbZs2YKXX34Za9euxbBhw/D1119jwoQJiIuLg6ura4PHxcfHa83osrW1VT8+fvw4ZsyYgXfffRcRERHYtm0bHnnkEfz9998YPHhws/pFRESdR1W1EqcS8xAZm4nI2AykFZSr90klIgR72WCcjz3G9rWHnamBDntKXU2r/ofh5uaGESNGwNrauln1PT09IZW2zt0CLl++jL179+LEiRPqwdL//d//ITg4GPHx8fD29q5zjLm5OaKiorTKPv/8cwwaNAjJyckNDuQqKipQUaG5XWfNtH6FQgGFQlHvMfeqpr3WbrczYiw0GAsNxkKjLWOhJwIm9LXFhL62yC2uwJ5LmdgenYaYlEIcjs/G4fhsGOlLENrHDlMCHDHU01pnaxbwNaHBWGi0ZSxas822Gkt98sknmDt3Lp5++mkAwOrVq7Fv3z6sW7cOy5cvb/A4Ozu7Bmeur169GmPHjsXChQsBAAsXLsSRI0ewevVq/PTTT3Xqt+f4qabd2t+7M8ZChXHQYCw0GAuN+mJRrqjG0eu5iLychUPx2bhdqtlnpC/BiJ42GNvHDiG9bGBW667UnT2efF2otHUcmtuuSBAEoelqHd+GDRswf/585Ofna5VbWFjg008/xZw5c5rVzv79+xEaGor8/PwG14xYsmQJli5dWqf8xx9/hJGRUYv7TkTUWWWVAWdyxDiTLUJuhSZRZSYV0N9GwEBbJZyMVFPGibqq0tJSPPbYYygoKOiQ601VVlbCyMgIv/zyi9ZlfC+99BIuXLiAI0eO1Dmm5lJBd3d3lJeXo2/fvnj77be1Lh90dXXFK6+8gldeeUVd9umnn2L16tVISkqq0ybHT0REnUNpFRB3W4SYPBEu54tQqdQM5Iz1BPhaCvC3EtDLXIA+bwRI96G5Y6guc01HRkYG7Ozs6pTb2dkhIyOjWW2Ul5djwYIFeOyxxxoN2sKFCzF//nz1dmFhIVxcXBAaGtrqA1aFQoGoqCiMHTu21WandVaMhQZjocFYaOgqFrOhumTpwq0C/B6djj2XMnC7VIHD6SIcThejh60xwvs5YnI/RzhZGLZ5f/ia0GAsNNoyFveyoHp7ysnJQXV1Nezt7bXK7e3tGxwjOTo6Yv369RgwYAAqKirw/fffY/To0Th8+DBGjBgBQDX2akmb7Tl+Avj6r42xUGEcNBgLDcZCJae4AnsvpWPL31dwvUiCqlp3AnQ0N8DYPnYI7WuHAa4W0JOIddjT9sHXhUpbx6G5Y6g2S1x99tln9ZaLRCIYGBigR48eGDFiBCSSxlO0DX06V9vp06fVbd9NEIRmLXKqUCgwc+ZMKJVKrF27ttG6MpkMMlndxYilUmmbvajbsu3OhrHQYCw0GAsNXcVikJctBnnZYvEUX/x5NRvbLqQiKi4T17NL8PH+6/h4/3UM8rBCRKATwnwdYW7Utn3ka0KDsdBoi1i0VWxbayxV+7jaGhsjeXt7ay2zEBwcjFu3bmHVqlXqxFVL29TF+Kk92u9MGAsVxkGDsdDojrHIKizH3tgM7LmYjlM386DKVYkBCOhpZ4JxPg4Y5+MAX6fueyfA7vi6qE9bxaG5bbZZ4urTTz9FdnY2SktLYWlpCUEQkJ+fDyMjI5iYmCArKwuenp44dOgQXFxcGmznhRdewMyZMxs9l7u7O2JiYpCZmVlnX3Z2dp1PA++mUCjwyCOP4ObNmzh48GCHnOZPRNRZ6OuJMaavPcb0tUdhuQJ7L2Vg+/lUHE/IxambeTh1Mw+Lf4/Fg73tMDXQCaN620Kmx3nmRHdrrbGUjY0NJBJJnZlQWVlZTY6RahsyZAh++OEH9baDg8N9t0lERO0rvaAMey9l4I+LGTidlIfaCwf5O5nBTXIb/44YgV6OFjrrI9Hd2myO3wcffICBAwfi2rVryM3NRV5eHq5evYrBgwdjzZo1SE5OhoODg9a6CPWxsbFB7969G/0yMDBAcHAwCgoKcOrUKfWxJ0+eREFBAYYOHdpg+zVJq2vXrmH//v3NXgyViIiaZmYgxSNBLvjxmSE4+uaDWDChN7ztTVFZrcTe2Aw898NZDHr/AN7adhGnE/OgVHaJZReJWkVrjaX09fUxYMCAOjekiYqKanSMdLfz58/D0dFRvR0cHFynzcjIyBa1SUREbS81vwz//SsB09YeRfDyg1i6Mw6nElVJq/6uFnh7Yh/8/eYobH1uyP+zd+dhTV35/8DfSQhhR3ZIWBRURDZRWkXrrqjUteq0M1PbzthOW6fTaW1nqu100Xbqr7vtdLGdb1u7Tcdp3RErtO77xo7iBgJZ2DHsBHJ/fwQSEFSsiWF5v56Hh9xzzz335EOAk0/OPRfTFAIGeTpau8tEHVhsxtU//vEPbNy4ESEhIcaywYMH4+2338bChQtx6dIlvPnmm1i4cKFZzhcWFoaZM2fikUcewaeffgoA+NOf/oTZs2d3mOo+bNgwrFmzBgsWLEBzczMWLVqE06dPIzExES0tLcZPDt3d3WFra2uWvhERESAfYI/HJobgsYkhOKPWYkuqElvSlCjWNuI/xwrwn2MF8Hezx/wRCsyPUWCwt5O1u0xkVeYcSy1fvhxLlixBbGws4uLi8Nlnn6GgoACPPfYYAMP6U0qlEl9//TUAwx0DBw4ciPDwcDQ1NeHbb7/Fxo0bsXHjRmObf/3rXzFhwgS88cYbmDdvHrZu3Yqff/4ZBw8eNHMkiIjoZhVW1CEp07D2aHphlbFcJAJig9wwK8IPMyN8IW+3/mh/v4Me9VwWS1yp1Wo0Nzd3Km9ubjYmh+RyOaqrq812zu+++w5PPvkk4uPjAQBz587Fhx9+2KFObm4urly5AgAoKirCtm3bAAAjRozoUG/Pnj2YNGmS2fpGREQmYX4uCPNzwd9nDsOxS+XYnKrEziwNiirr8eGeC/hwzwVEKlwxP0aBOdF+8Ha2s3aXiW47c46l7r33XpSXl2P16tVQq9WIiIhAUlISgoKCjOcqKCgw1m9qasKzzz4LpVIJe3t7hIeHY8eOHUhISDDWGTt2LP773//iH//4B1588UWEhIRgw4YNGD169K0+dSIi+hXyy2qRlKXGzkwNMpVXjOViEXDnIHckRPphRrgvfFw4rqLexWKJq8mTJ+PRRx/F//3f/yEmJgaAYYr5448/jilTpgAAMjMzMWjQILOd093dvcPaC10R2l3EO3DgwA7bRER0e0nEIowd7Imxgz3x6vwIpOQUY0uqEvvOlSJTeQWZyiv4544cjB/ihQUxCsSH+8DBts/cEJfousw9llq2bBmWLVvW5b7169d32P773/+Ov//97zdsc9GiRVi0aFG3zk9EROZ3sbQGSRmGmVVn1KY7tIlFQFyIB2ZFGJJVXs6db45B1FtYbPT/+eefY8mSJRg1apRxpfjm5mZMnToVn3/+OQDAyckJ77zzjqW6QEREvYidVII50XLMiZajvKYROzLV2JyqRGpBFfadK8W+c6VwsJVgRrgv5scoMC7Eo1/cjpn6L46liIioK+eKq5GUaZhZlVtsmnUrEYswNsQDCZF+iB/uAw8nJquob7BY4srX1xcpKSk4e/Yszp07B0EQMGzYsA7rTU2ePNlSpyciol7Mw0mGB+IG4oG4gcgvq8WWNCW2pCqRX16HzalKbE5VwtNJhrnRciyIUfTr2zRT38WxFBERAYarhs5qqrGzdc2qCyU1xn1SiQjjBnsiIdIP08N84ObIdZqp77H49RbBwcEQiUQICQmBjQ0v7yAiopsz0NMRT00bir9OHYK0wipsSVVie4YaZTWN+OJQHr44lIfB3k5YEKPA3Gg5fJ2l1u4ykVlxLEVE1P8IgoBsldYwsypLg7yyWuM+W4kYE4Z6YlaEH6aF+cDVgWMf6tssNvqpq6vDX/7yF3z11VcAgHPnziE4OBhPPvkk5HI5VqxYYalTExFRHyQSiRAT6IaYQDf8Y/ZwHDhfis2pKiRnGz55fGtXLt7alYvYoAEIkYgwrl4HTykHctR7cSxFRNS/CIKAjKIrxgXWCyrqjPtsbcSYNNQLd0f5YcowbzjbcYxD/YfFElcrV65Eeno69u7di5kzZxrLp02bhpdffpmDLSIi+tWkEjGmDPPBlGE+qG7Q4acsDbakKXH4YjlOXq7CSUiw6Y29mBbmgwUxCkwK9YatDdfDot6FYykior5PrxeQVlRluAwwUwNlVb1xn51UjCnDvDErwg+Th3nDScZZt9Q/WeyVv2XLFmzYsAFjxozpsO7I8OHDcfHiRUudloiI+hlnOykWxwZgcWwANFcasPl0Ib45kAtVHbAzS4OdWRq4OUgxp3U9rBEBA7geFvUKHEsREfVNer2AUwWVSMpU46csDdRXGoz7HGwlmDLMGwmRfpgU6sW7KRPBgomr0tJSeHt7dyqvra3lGwYiIrIIX1c7PHzXQMi1OQgeOR7bM4uxJVWJkupGfH3kMr4+chnBno6YH6PAghgFAtwdrN1lomviWIqIqO9o0Qs4kV+Bna1rVpVUNxr3OclsMDXMkKyaONQLdlKJFXtK1PNYLHF1xx13YMeOHfjLX/4CAMYB1r///W/ExcVZ6rREREQAgGG+zogMcMdzM4fh0IUybE5V4qcsDS6V1eLdlHN4N+Uc7hzojgUjFUiI9IOrPdeKoJ6FYykiot6tuUWP43kVSMpS46esYpTVmJJVznY2mD7cBwkRfrhriCeTVUTXYbHE1Zo1azBz5kzk5OSgubkZ77//PrKzs3HkyBHs27fPUqclIiLqQCIWYcJQL0wY6oXX5jfjpywNNqcqcehiGY7nV+B4fgVe3paN6a3rYU0M9YJUwvWwyPo4liIi6n10LXocuViOnVlq7MouRkVtk3Gfq70U8cN9kBDph3GDPbn+JlE3WSxxNXbsWBw6dAhvv/02QkJCkJycjJEjR+LIkSOIjIy01GmJiIiuyVFmg4Wj/LFwlD/UV+qxNU2FzaeVyC2uxo5MNXZkquHuaIs5UX64Z6Q/ovxdeUkWWQ3HUkREvUNTsx6HLpZhZ6YayTnFqKrTGfe5OUgxI9wXCZF+iAvx4IdjRL+CRVd6i4yMNN7CmYiIqCfxc7XHYxND8OiEYOSotdh0WomtaSqU1TTiqyOX8dWRywj2csQ9MQrMj1HA343rYdHtx7EUEVHP1NjcgoPny7AjU42UnGJUNzQb93k62RqTVaMHucOGySqiW2LWxJVWq+12XRcXF3OemoiI6FcRiUQIl7siXO6KlbOG4eCFMmw6rURyjgaXSmvxdvI5vJ18DqMHueOekQrMivSDix3XwyLL4FiKiKjnatC1YN+5UuzMVOOXMyWobjQlq7ycZZgVYUhW3THQHRIxZ2wTmYtZE1cDBnT/FuMtLS3mPDUREdEts5GIMSnUG5NCvVHdoDOuh3XkUjmO5VXgWF4FXtqajenDfXDPSAXGD+F6WGReHEsREfUs9U0t2JtbgqQsDXafKUZtk+lvr6+LHWZFGpJVowLdIGayisgizJq42rNnj/Fxfn4+VqxYgYceesh455sjR47gq6++wpo1a8x5WiIiIrNztpNicWwAFscGQFVVjy1pSmw+rcT5khokZqiRmKGGh6Mt5kTLcc9IBSIVXA+Lbh3HUkRE1lfb2Iw9uSXYmanB7rMlqNeZklWKAfaYFeGLWZF+iAkYwGQV0W1g1sTVxIkTjY9Xr16Nd999F7/97W+NZXPnzkVkZCQ+++wzPPjgg+Y8NRERkcXIB9hj2aTBeHxiCLKUWmxKLcL2dBXKapqw/nA+1h/Ox2BvJyxoXQ9LMcDe2l2mXopjKSIi66huaMaB7BIkZaqxN7cUjc16474Ad3skRPhhVqQfonnjFqLbzmKLsx85cgTr1q3rVB4bG4uHH37YUqclIiKyGJFIhEh/V0T6u+L5hDAcOF+KTaeVSMkpxoWSGry1KxdvJ+dizCAPLBipwKwIXzhzPSz6lTiWIiKyrNrGZuzMVGP9WTH+dmIvmtolqwZ6OCAh0g8JkX4Il7swWUVkRRZLXAUEBGDdunV45513OpR/+umnCAgIsNRpiYiIbgupRIwpw3wwZZgPtA06/JSpwcbTRTiWV4Ejl8px5FI5XtqahenDfQ3rYQ325F2F6KZwLEVEZH66Fj32nyvFljQVUnI0aNDpAYgB6BHs5Yi7I/0wK8IPYX7OTFYR9RAWS1y99957WLhwIXbt2oUxY8YAAI4ePYqLFy9i48aNljotERHRbediJ8Vv7gjAb+4IQFFlHbamqbDpdBEultZie7oK29NV8HSSYW7relj85Ja6g2MpIiLz0OsFnCqoxJZUJZIy1ais0xn3DfRwQKh9Df46/y6EKbp/gwwiun0s9tFvQkICzp8/j3nz5qGiogLl5eWYN28ezp07h4SEBEudloiIyKr83Rzw58mD8fPyidj653F4aOxAuDvaoqymEV8cysPsfx3EjLX78cnei1Bfqbd2d6kHM/dY6uOPP8agQYNgZ2eHUaNG4cCBA9esu2nTJkyfPh1eXl5wcXFBXFwcdu3a1aHO+vXrIRKJOn01NDTcdN+IiCwhV1ONN346i/Fv7sHidUfw3bECVNbp4OUswx/HDcK2J8Yh+a/jkBCgxxAfJyatiHoos864ysjIQEREBMRiQz7M398f//znP69ZPzs7G6GhobCxsdjELyIiIqsQiUSIDhiA6IABeOHuMOzLLcXmVCVSzhTjXHEN3vjpLN7cdRZjQzywIMYfMyN84STj/8P+zlJjqQ0bNuCpp57Cxx9/jHHjxuHTTz/FrFmzkJOTg8DAwE719+/fj+nTp+P111/HgAED8OWXX2LOnDk4duwYYmJijPVcXFyQm5vb4Vg7O7ubecpERGalrKrHtjQVtqYpcVZTbSx3ktlgZoQv5o2QY2yIJyStdwPU6XTXaoqIegizjpBjYmKg0Wjg5eXVrfpxcXFIS0tDcHCwObtBRETUo0glYkwb7oNpw31wpV6HnZlqbDqtxPH8Chy6UI5DF8rxjy2ZmBHuiwUxCtzF9bD6LUuNpd59910sXbrUuKj72rVrsWvXLnzyySdYs2ZNp/pr167tsP36669j69at2L59e4fElUgkgq+vb7f62tjYiMbGRuO2VqsFYHjTaIk3jm1t8k0pY9GGcTDpa7GoqtPhp+xibMtQ40R+pbFcKhFh0lAvzInyxeRQL9hJJQAAfUsz9C2GOn0tFreCsTBhLAwsHYfutmvWxJUgCHjxxRfh4ODQrfpNTU3mPD0REVGP52ovxX13BuK+OwNRWFGHLalKbEpVIq+sFlvTVNiapoKXswzzouVYMFKB4X5cD6s/scRYqqmpCadOncKKFSs6lMfHx+Pw4cPdOo9er0d1dTXc3d07lNfU1CAoKAgtLS0YMWIEXn311Q6JrfbWrFmDVatWdSpPTk7u9vP9NVJSUizWdm/DWBgwDia9ORZNLUBWpQinykQ4UyVCi2D4XymCgBAXAaM8BYzwEOBgo4JQoMLuguu315tjYW6MhQljYWCpONTV1XWrnlkTVxMmTOg0Xfx64uLiYG9vb84uEBER9RoB7g74y9QheGLKYKQVVmFzqhLb01UorW7E/x3Mw/8dzEOojzPuGanAvBEK+LryEqy+zhJjqbKyMrS0tMDHx6dDuY+PDzQaTbfO884776C2tha/+c1vjGXDhg3D+vXrERkZCa1Wi/fffx/jxo1Deno6hgwZ0qmNlStXYvny5cZtrVaLgIAAxMfHw8XFpVv9uBk6nQ4pKSmYPn06pFKp2dvvTRgLA8bBpLfGorlFjyOXKrA9Q43knBLUNrUY94X5OmNOtC9mR/rB7yb+X/bWWFgCY2HCWBhYOg5ts69vxKyJq71795qzOSIion5BJBIhJtANMYFu+Mfdw7E3twSbU5X45UwJcoursWbnWfy/n85iXIgn7hmpwIxwXzhyPaw+yZJjqatn7gmC0K3ZfN9//z1eeeUVbN26Fd7e3sbyMWPGGO92CADjxo3DyJEj8a9//QsffPBBp3ZkMhlkMlmncqlUatE3BZZuvzdhLAwYB5PeEAtBEJBWWIWtaSokZqhRVmO65NjfzR7zRsgxf4QCQ3ycb+k8vSEWtwtjYcJYGFgqDt1tk6NeIiKiHsTWRoz4cF/Eh/viSp0OiZkqbD6txMnLlTh4oQwHL5TBXpqFmRGG9bDGDTYtMEvUFU9PT0gkkk6zq0pKSjrNwrrahg0bsHTpUvzwww+YNm3adeuKxWLccccdOH/+/C33mYjoUmkNtqSpsC1Nifxy0+VE7o62uDvSD/Nj5BgZ6MbL6Yn6ASauiIiIeihXByl+PzoIvx8dhILyOmxOVWJTahEutz7enKqEj4sM80YosCBGgTA/819uRb2fra0tRo0ahZSUFCxYsMBYnpKSgnnz5l3zuO+//x5//OMf8f333+Puu+++4XkEQUBaWhoiIyPN0m8i6n9KtA3Ylm5Y7zFTecVYbi+VID7cB/NHKHDXEE9IeQMTon6FiSsiIqJeINDDAX+dNgRPTh2M0wVV2JxahO3pahRrG/HZ/kv4bP8lDPN1xsKR/pg3Qg5vF66HRSbLly/HkiVLEBsbi7i4OHz22WcoKCjAY489BsCw/pRSqcTXX38NwJC0euCBB/D+++9jzJgxxtla9vb2cHV1BQCsWrUKY8aMwZAhQ6DVavHBBx8gLS0NH330kXWeJBH1StoGHX7K0mBrmhJHLpZDLxjKJWIRJgzxxPwYBaYP94GDLd+6EvVX/O0nIiLqRUQiEUYFuWFUkBtenD0ce86WYnNqEXafLcFZTTX+mXQGa3aewbjBnpgX5Wu83Tf1b/feey/Ky8uxevVqqNVqREREICkpCUFBQQAAtVqNggLTLbc+/fRTNDc3489//jP+/Oc/G8sffPBBrF+/HgBQVVWFP/3pT9BoNHB1dUVMTAz279+PO++887Y+NyLqfRqbW7DnbCm2pinxy9kSNDXrjftGBblh/gg5EiL94OHUeV08Iup/mLgiIiLqpWQ2EsyM8MXMCF9U1jYhMVONzaeLcLqgCgfOl+HA+TLIxBIca87CvXcE4Y6BXAukP1u2bBmWLVvW5b62ZFSb7iwS/9577+G9994zQ8+IqD9o0Qs4lleOrakqJGWpUd3QbNw3xNsJ82MUmBstR4C7gxV7SUQ9ERNXREREfYCboy2WjAnCkjFByC+rNayHdboIhZX12HhahY2nVQjycMCikf64Z5Q/FAPsrd1lIiLq4wRBQLZKi61pSmxPV0OjbTDu83O1w9xoOeaOkGO4nws/WCGia+pTq9pVVlZiyZIlcHV1haurK5YsWYKqqqpuH//oo49CJBJh7dq1FusjERGRpQ30dMTT04fil6fvwpPhzVg4Ug4HWwkul9fhnZRzuOuN3bj//45ha5oSDTpeS0hEROZVUF6Hf/1yHtPe3YfZ/zqIfx/Ig0bbABc7G/z2zgB8/8gYHHpuClYmhCFc7sqkFRFdV5+acfW73/0ORUVF+OmnnwAAf/rTn7BkyRJs3779hsdu2bIFx44dg1wut3Q3iYiIbguRSIQQF+AvCRFYPS8SO7M0+OFkIY7lVeDghTIcvFAGZ5kNZkfLsTjWHzEBA/jmgYiIfpWymkbsyFBja5oSpwuqjOUyGzGmhflg7gg5JoV6QWYjsV4niahX6jOJqzNnzuCnn37C0aNHMXr0aADAv//9b8TFxSE3NxehoaHXPFapVOKJJ57Arl27unW758bGRjQ2Nhq3tVotAECn00Gn093iM+morT1zt9sbMRYmjIUJY2HCWBgwDibtY2ErlWJelA/mRfmgoKIOm1NV2JymgrKqAd8fL8D3xwsQ7OmIe2LkmD/CDz597K6Elnxd8LVGRP1VbWMzknM02JqmwoHzZWhpvSWgWASMG+yJudFyzIzwhbOd1Mo9JaLerM8kro4cOQJXV1dj0goAxowZA1dXVxw+fPiaiSu9Xo8lS5bgb3/7G8LDw7t1rjVr1mDVqlWdypOTk+HgYJnFBFNSUizSbm/EWJgwFiaMhQljYcA4mHQViyEAnh0GXNCKcKxEhPQKES6V1eLtlPN4J+Uchg0QMNpbQKSbAJs+tLCAJV4XdXV1Zm+TiKin0rXosf9cKbakqZCSo0GDznRHwGh/V8wdocCcKD9497EPQIjIevpM4kqj0cDb27tTube3NzQazTWPe+ONN2BjY4Mnn3yy2+dauXIlli9fbtzWarUICAhAfHw8XFxcbq7jN6DT6ZCSkoLp06dDKu3fn1QwFiaMhQljYcJYGDAOJjcTi+qGZuzM0mBjqgqnC6pwpkqEM1WAq70N5kT5YWGMAuFy5157KaElXxdtM6+JiPoqvV7AqYJKbElVIilTjco600zTgR4OmDdCgXkj5Aj2crJiL4mor+rxiatXXnmly9lN7Z04cQIAuhxMC4JwzUH2qVOn8P777+P06dM3NRCXyWSQyWSdyqVSqcXeJFmy7d6GsTBhLEwYCxPGwoBxMOlOLNylUvw+bhB+HzcIl0pr8OOpImw6rYRG24BvjxXi22OFCPVxxuJYf8wboYCXc+f/g72BJV4XfJ0RUV+Vq6nGljQltqWpoKyqN5Z7OskwJ9oP80coEOXPxdWJyLJ6fOLqiSeewH333XfdOgMHDkRGRgaKi4s77SstLYWPj0+Xxx04cAAlJSUIDAw0lrW0tOCZZ57B2rVrkZ+ff0t9JyIi6o2CvZzw95nD8Ex8KA5eKMOPp4qwK1uD3OJqvLbjDP7fzrOYFOqNxbH+mBzqDdu+dC0hEVE/p6yqx7Y0FbamKXFWU20sd5LZYEa4L+bHyBEX7AEbCf/2E9Ht0eMTV56envD09Lxhvbi4OFy5cgXHjx/HnXfeCQA4duwYrly5grFjx3Z5zJIlSzBt2rQOZTNmzMCSJUvwhz/84dY7T0RE1ItJxCJMHOqFiUO9cKVOh20ZKvx4qgjphVX4+Uwxfj5TDHdHW8wfocCiUf4YLjfv5fJERHR7VNU1ISlTgy1pShzPqzCWSyUiTAr1xvwRCkwN84adlHcEJKLbr8cnrrorLCwMM2fOxCOPPIJPP/0UAPCnP/0Js2fP7rAw+7Bhw7BmzRosWLAAHh4e8PDw6NCOVCqFr6/vde9CSERE1N+4OkixZEwQlowJwrniamw8VYRNqUqUVjfii0N5+OJQHsLlLlg0ynApobujrbW7TERE19HUAuzI1CAxsxj7zpVA1yIY940e5I75MQrMivDFAAf+PSci6+oziSsA+O677/Dkk08iPj4eADB37lx8+OGHHerk5ubiypUr1ugeERFRnzDUxxkrE8Lwtxmh2H++FD+cLMLPZ4qRrdIiW5WD15POYFqYDxaN8sfEoV68nISIyMr0egH55bXIUWtxRq1FlvIKjl6QoPF4hrFOmJ8L5o+QY060HPIB9lbsLRFRR30qceXu7o5vv/32unUEQbjufq5rRURE1D02EjGmDPPBlGE+qKhtwrY0JX44VYRslRY7szTYmaWBl7MM98QYLiUc4uNs7S4TEfV5dU3NOKupRo7KkKTKUWtxVl2Nel3LVTVF8B9gh3kxCswbocBQ/o0moh6qTyWuiIiIyDrcHW3x0LhBeGjcIOSotPjxVBG2pBkuJfx0/yV8uv8SogMGYNEof8yNksPVgXfiIyK6FYIgoFjbaExOtSWq8spr0dVn9TIbMYb5OmO43AVDvR1RnZ+Fx34zHra2vBSQiHo2Jq6IiIjIrIbLXfCSfDhWzBqGPbkl+OFkEfbkliC9sArphVV4NTEHM8J9sWiUP+4a7AmJmLdRJyK6Hl2LHhdLawxJKpW29ZK/alTUNnVZ38tZhuF+Lgjzc8FwuQuG+zljoIej8dJtnU6HpPIsiET8+0tEPR8TV0RERGQRtjZizAj3xYxwX5RWN2JrmhI/nCxCbnE1tqersD1dBV8XO9wz0nApYbCXk7W7TERkdVfqdcYEVdtsqvPFNWhq0XeqKxGLEOzpiOHy1iRVa7LKy1lmhZ4TEVkGE1dERERkcV7OMjw8PhhL7xqELKUWP5wqxNY0FTTaBny89yI+3nsRsUFuWDTKH3dH+cHZjpcSElHfJggCCivqDZf5tS6anqPSQllV32V9J5kNwvycMbx1FlWYnwuG+jjDTiq5zT0nIrq9mLgiIiKi20YkEiHS3xWR/q544e4w/JxTgh9PFWLfuVKcvFyJk5cr8cr2bMyK8MPiUf4YE+wBMS8lJKJerkHXgnPF1e1mUhkeVzc2d1lfMcC+wyyq4X4u8Hez599DIuqXmLgiIiIiq5DZSHB3lB/ujvJDsbYBm04r8eOpQlwsrcXmVCU2pyqhGGCPhaP8sXiUPwLcHazd5V7t448/xltvvQW1Wo3w8HCsXbsW48ePv2b9ffv2Yfny5cjOzoZcLsff//53PPbYYx3qbNy4ES+++CIuXryIkJAQ/POf/8SCBQss/VSIerSymsYOl/nlqLS4VFaLFn3nFdNtJWIM8XHqsB5VmK8Lb2BBRNQOE1dERERkdT4udnh8UggemxiM1MIq/HiqCNvTVFBW1eODX87jg1/OY/QgdyyODUBCpC8cbDmEuRkbNmzAU089hY8//hjjxo3Dp59+ilmzZiEnJweBgYGd6ufl5SEhIQGPPPIIvv32Wxw6dAjLli2Dl5cXFi5cCAA4cuQI7r33Xrz66qtYsGABNm/ejN/85jc4ePAgRo8efbufItFt16IXkFdW2+GOfjlqLUqrG7us7+5o2+lSvxAvJ0hbF0wnIqKucdRHREREPYZIJMLIQDeMDHTDS7OHY1e2Bj+eKsLBC2U4lleBY3kVeHlrFhIi/bA4NgB3DHTjXbG64d1338XSpUvx8MMPAwDWrl2LXbt24ZNPPsGaNWs61V+3bh0CAwOxdu1aAEBYWBhOnjyJt99+25i4Wrt2LaZPn46VK1cCAFauXIl9+/Zh7dq1+P7772/PEyO6TWoam3FW3W4WlboauRotGnSdF0wXiYBBHo4Ik5su8wvzc4GPi4x/r4iIfgUmroiIiKhHspNKMG+EAvNGKKCsqsfm00X48VQR8svr8MOpIvxwqghBHg5YNNIf94zyh2KAvbW73CM1NTXh1KlTWLFiRYfy+Ph4HD58uMtjjhw5gvj4+A5lM2bMwOeffw6dTgepVIojR47g6aef7lSnLdl1tcbGRjQ2mmaiaLVaAIBOp4NOp7vZp3VDbW1aou3ehrEw6E4cBEGARtuIHLUWZzU1ONP6/XJFXZf17aVihPo6I8zXGcN8nRHm54xQH6cuZ4U2N3e9npU18DVhwliYMBYmjIWBpePQ3XaZuCIiIqIeTzHAHk9MGYI/Tx6Mk5cr8cPJQuzIUONyeR3eSTmHd38+h3Ehnlgc648Z4b68y1Y7ZWVlaGlpgY+PT4dyHx8faDSaLo/RaDRd1m9ubkZZWRn8/PyuWedaba5ZswarVq3qVJ6cnAwHB8utX5aSkmKxtnsbxsKgLQ7NeqC4HlDWiqCsE0FZa3hc19L1rChXWwEKBwEKR7R+F+BpB4hF5QDKgTJAXQaoM2/jk7lFfE2YMBYmjIUJY2FgqTjU1XX9ocDVmLgiIiKiXkMkEuGOge64Y6A7Xpkbjp2ZGvxwqhBHL1Xg4IUyHLxQBmeZDWZHy7E41h8xAQN4aU6rq+MgCMJ1Y9NV/avLb6bNlStXYvny5cZtrVaLgIAAxMfHw8XFpXtPopuqG5qRq67CqRPHMX5cHOxsbWEjEUEqEUMqEcFGLDZsiw1lff1ObTqdDikpKZg+fTqk0t676LdeL0DXokdTi+G74avj46bWx03Nnes0NOlwMiMHogEKnC2uxcXSGuhaOi+YbiMWIcTL0TCLys80m8rd0dYKz9oy+sprwhwYCxPGwoSxMLB0HNpmX98IE1dERETUKznY2mDhKH8sHOWPwoo6/HjKcCmhsqoe3x8vwPfHCxDi5YhFowIwJ9Lb2t21Gk9PT0gkkk4zoUpKSjrNmGrj6+vbZX0bGxt4eHhct8612pTJZJDJZJ3KpVKp2QfDuQVa/PaL0wBs8HbmiRvWF4sAG4nYkMiyEcNG3Jrgakt2tSW6rkp82UoM343HSsSGx611pDaiLo+VSrqoaywzbNvatEuwScSGfWJTnavb606CtqtYC4KA5taEkK7ZlPjRdZEAampLAjWbtpuaOyaPmlrb6XiMqazpqmRSU/NV29ep39Vd+W6eBLhset262NmY7ubXuh7VEB8nyGz6x6xNS/z+9VaMhQljYcJYGFgqDt1tk4krIiIi6vUC3B3w9PSh+OvUITiaV44fTxYhKUuNi6W1eOOns3hr11mEuooRFVePQd79awBqa2uLUaNGISUlBQsWLDCWp6SkYN68eV0eExcXh+3bt3coS05ORmxsrHGQGRcXh5SUlA7rXCUnJ2Ps2LEWeBY3RyoRQTHADjW19ZDY2kLXIqC5RUCzXt/lDBu9ADQ169EEAE0tt72/5mAjbk20icWtyTdTkksiEkFbI8EbOfuhMyapTDOUeiuJWARpawLR1kZsTPC1JQFNZa2xEANVZSUYHz0EEYoBGC53gWKAPWdlEhH1cExcERERUZ8hFoswNsQTY0M8sWpeOJIy1fjxVBFO5FfiklYEd8f+lbRqs3z5cixZsgSxsbGIi4vDZ599hoKCAjz22GMADJfxKZVKfP311wCAxx57DB9++CGWL1+ORx55BEeOHMHnn3/e4W6Bf/3rXzFhwgS88cYbmDdvHrZu3Yqff/4ZBw8etMpzbC92oDv2PjMBSUlJSEiY3OET3bYZRs0tAnR6QwKnbcZRs3HmkCnJZSzXt9+vNybCmloENLero2u++lg9dHpDnfbtdXlsuz4061tnNulNdZpay7uaedSsNzyvBuiBxk67AYiAhoZuxc+2LdnTmvixbZf8kUoMiTFbiahDsqhDHZvOxxjqijrWt7lqu915bW+QhJJKxJDc5CWeOp3O8JqYHMIZFEREvQgTV0RERNQnOdtJce8dgbj3jkCc11ThP0n7u7zTV39w7733ory8HKtXr4ZarUZERASSkpIQFBQEAFCr1SgoKDDWHzRoEJKSkvD000/jo48+glwuxwcffICFCxca64wdOxb//e9/8Y9//AMvvvgiQkJCsGHDBowePfq2P7+bIRKJWpMfgD165+Vger3QMdnWRdKrqTUh19y6ttOJY0cx4a5xsJfZwrZdwujqJJKNuHuXHRIREd0u/XP0RkRERP3KQA9HjPAwx/o4vdeyZcuwbNmyLvetX7++U9nEiRNx+vTp67a5aNEiLFq0yBzdo5sgFotgKzbMeOoOnU6H8jNAlL8rZxoREVGv073/dkRERERERERERLcZZ1yZQdvtobt7K8ebodPpUFdXB61W2+8/IWMsTBgLE8bChLEwYBxMGAsTS8ai7f9/23iAuseS4yeAr//2GAsDxsGEsTBhLEwYCxPGwsDScejuGIqJKzOorq4GAAQEBFi5J0RERGQt1dXVcHV1tXY3eg2On4iIiAi48RhKJPDjwVum1+uhUqng7Oxs9sUstVotAgICUFhYCBcXF7O23dswFiaMhQljYcJYGDAOJoyFiSVjIQgCqqurIZfLIRZzFYbusuT4CeDrvz3GwoBxMGEsTBgLE8bChLEwsHQcujuG4owrMxCLxfD397foOVxcXPr1L0x7jIUJY2HCWJgwFgaMgwljYWKpWHCm1c27HeMngK//9hgLA8bBhLEwYSxMGAsTxsLAknHozhiKHwsSEREREREREVGPxMQVERERERERERH1SExc9XAymQwvv/wyZDKZtbtidYyFCWNhwliYMBYGjIMJY2HCWPQ//JmbMBYGjIMJY2HCWJgwFiaMhUFPiQMXZyciIiIiIiIioh6JM66IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiOiWrF+/HiKRCPn5+WZr86GHHoKTk5PZ2rsZN/N8Jk2ahEmTJlm8T7dCJBLhlVdeMW7n5OTglVde+dU/L2v+bIiIiPoLjq8mWbxPlnD1uGvv3r0QiUTYu3ev1fpE1BfYWLsDRERkOUeOHIG/v79xOycnB6tWrcKkSZMwcOBA63WMiIiIiIioG5i4IiLqAQRBQENDA+zt7c3a7pgxY8zaHhEREVFvcavjq7q6Ojg4OJi5V0R0s3ipIBHdVnV1dXj22WcxaNAg2NnZwd3dHbGxsfj+++871b1w4QISEhLg5OSEgIAAPPPMM2hsbOxQp6KiAsuWLYNCoYCtrS2Cg4PxwgsvdKiXn58PkUiE9evXdzrH1VO6uyIIAt58800EBQXBzs4OI0eOxM6dO7usq9Vqjc/P1tYWCoUCTz31FGprazud94knnsC6desQFhYGmUyGr7766rr9aDNp0iRERETgwIEDGDNmDOzt7aFQKPDiiy+ipaXlms9v/fr1WLx4MQBg8uTJEIlEneLy008/YerUqXB1dYWDgwPCwsKwZs2aTn3ozs+GiIiIbg+Or0znvdXx1f79+zF27Fg4ODjgj3/8IwCgoKAA999/P7y9vSGTyRAWFoZ33nkHer2+W20T0a3hjCsiuq2WL1+Ob775Bq+99hpiYmJQW1uLrKwslJeXd6in0+kwd+5cLF26FM888wz279+PV199Fa6urnjppZcAAA0NDZg8eTIuXryIVatWISoqCgcOHMCaNWuQlpaGHTt2mKXPq1atwqpVq7B06VIsWrQIhYWFeOSRR9DS0oLQ0FBjvbq6OkycOBFFRUV4/vnnERUVhezsbLz00kvIzMzEzz//DJFIZKy/ZcsWHDhwAC+99BJ8fX3h7e3d7T5pNBrcd999WLFiBVavXo0dO3bgtddeQ2VlJT788MMuj7n77rvx+uuv4/nnn8dHH32EkSNHAgBCQkIAAJ9//jkeeeQRTJw4EevWrYO3tzfOnTuHrKysDu1052dDREREtw/HV+YZX6nVatx///34+9//jtdffx1isRilpaUYO3Ysmpqa8Oqrr2LgwIFITEzEs88+i4sXL+Ljjz82SzyI6DoEIqJb8OWXXwoAhLy8vG7Vj4iIEObPn3/dOg8++KAAQPjf//7XoTwhIUEIDQ01bq9bt67Lem+88YYAQEhOThYEQRDy8vIEAMKXX37Z6VwAhJdffvmaz6eyslKws7MTFixY0OG4Q4cOCQCEiRMnGsvWrFkjiMVi4cSJEx3q/vjjjwIAISkpqcN5XV1dhYqKiuvGoisTJ04UAAhbt27tUP7II48IYrFYuHz58jWf3w8//CAAEPbs2dPh2OrqasHFxUW46667BL1ef81zd/dnQ0RERL8ex1cTjWW3e3z1yy+/dChfsWKFAEA4duxYh/LHH39cEIlEQm5u7jWf9549e7ocdxHRzeGlgkR0W915553YuXMnVqxYgb1796K+vr7LeiKRCHPmzOlQFhUVhcuXLxu3d+/eDUdHRyxatKhDvYceeggA8Msvv9xyf48cOYKGhgb8/ve/71A+duxYBAUFdShLTExEREQERowYgebmZuPXjBkzuryjzJQpU+Dm5var+uXs7Iy5c+d2KPvd734HvV6P/fv333R7hw8fhlarxbJlyzp8atmV7vxsiIiI6Pbh+MrkVsZXbm5umDJlSoey3bt3Y/jw4bjzzjs7lD/00EMQBAG7d+/+Veciou5j4oqIbqsPPvgAzz33HLZs2YLJkyfD3d0d8+fPx/nz5zvUc3BwgJ2dXYcymUyGhoYG43Z5eTl8fX07JVq8vb1hY2PTaXr8r9HWhq+vb6d9V5cVFxcjIyMDUqm0w5ezszMEQUBZWVmH+n5+fr+6Xz4+Ptfsz6953qWlpQDQ4Q6E19Kdnw0RERHdPhxfmdzK+KqrY8vLy7ssl8vlHZ4LEVkO17giotvK0dHRuKZBcXGx8dPBOXPm4OzZszfVloeHB44dOwZBEDoMrkpKStDc3AxPT08AMA7Qrl54tDsDDQ8PDwCGNaWuptFoMHDgQOO2p6cn7O3t8cUXX3TZVlt/2txoZtP1FBcXd9kfwNTnm+Hl5QUAKCoq+tV9IiIiIuvg+MrkVsZXXR3r4eEBtVrdqVylUnV5fiIyP864IiKr8fHxwUMPPYTf/va3yM3NRV1d3U0dP3XqVNTU1GDLli0dyr/++mvj/rbz2NnZISMjo0O9rVu33vAcY8aMgZ2dHb777rsO5YcPH+50adzs2bNx8eJFeHh4IDY2ttNX+0HYraqursa2bds6lP3nP/+BWCzGhAkTrnmcTCYDgE6XEIwdOxaurq5Yt24dBEEwWz+JiIjo9uL4yrymTp2KnJwcnD59ukP5119/DZFIhMmTJ1v0/ETEGVdEdJuNHj0as2fPRlRUFNzc3HDmzBl88803iIuLg4ODw0219cADD+Cjjz7Cgw8+iPz8fERGRuLgwYN4/fXXkZCQgGnTpgEwfHp2//3344svvkBISAiio6Nx/Phx/Oc//7nhOdzc3PDss8/itddew8MPP4zFixejsLAQr7zySqep7E899RQ2btyICRMm4Omnn0ZUVBT0ej0KCgqQnJyMZ555BqNHj76p53gtHh4eePzxx1FQUIChQ4ciKSkJ//73v/H4448jMDDwmsdFREQAAD777DM4OzvDzs4OgwYNgoeHB9555x08/PDDmDZtGh555BH4+PjgwoULSE9Pv+adComIiMj6OL4yz/iqK08//TS+/vpr3H333Vi9ejWCgoKwY8cOfPzxx3j88ccxdOhQi52biAyYuCKi22rKlCnYtm0b3nvvPdTV1UGhUOCBBx7ACy+8cNNt2dnZYc+ePXjhhRfw1ltvobS0FAqFAs8++yxefvnlDnXfeecdAMCbb76JmpoaTJkyBYmJid36lG716tVwdHTExx9/jG+++QbDhg3DunXr8Pbbb3eo5+joiAMHDuD//b//h88++wx5eXmwt7dHYGAgpk2bZtZPBH19ffHRRx/h2WefRWZmJtzd3fH8889j1apV1z1u0KBBWLt2Ld5//31MmjQJLS0t+PLLL/HQQw9h6dKlkMvleOONN/Dwww9DEAQMHDgQDz74oNn6TURERObH8ZXleHl54fDhw1i5ciVWrlwJrVaL4OBgvPnmm1i+fLlFz01EBiKB14QQEfUqkyZNQllZGbKysqzdFSIiIiIiIoviGldERERERERERNQj8VJBIjILQRDQ0tJy3ToSieSW7vTS17W0tFx3YXSRSASJRHIbe0RERETWxPHVreP4iqj344wrIjKLr776ClKp9Lpf+/bts3Y3e7SpU6deN34hISEAgL179/IyQSIion6A46tb193xFRH1XFzjiojMory8HHl5edetExoaCmdn59vUo94nNzcX1dXV19wvk8kQGRl5G3tERERE1sTx1a3j+Iqo92PiioiIiIiIiIiIeiReKkhERERERERERD0SF2c3A71eD5VKBWdnZy6MSERE1M8IgoDq6mrI5XKIxfxMsLs4fiIiIurfujuGYuKq1ccff4y33noLarUa4eHhWLt2LcaPH9+tY1UqFQICAizcQyIiIurJCgsL4e/vb+1u9BocPxERERFw4zEUE1cANmzYgKeeegoff/wxxo0bh08//RSzZs1CTk4OAgMDb3h822KIhYWFcHFxMWvfdDodkpOTER8fD6lUata2exvGwoSxMGEsTBgLA8bBhLEwsWQstFotAgICuDjyTbLk+Ang6789xsKAcTBhLEwYCxPGwoSxMLB0HLo7hmLiCsC7776LpUuX4uGHHwYArF27Frt27cInn3yCNWvW3PD4tuntLi4uFklcOTg4wMXFpV//wgCMRXuMhQljYcJYGDAOJoyFye2IBS93uzmWHD8BfP23x1gYMA4mjIUJY2HCWJgwFga3Kw43GkP1+8RVU1MTTp06hRUrVnQoj4+Px+HDh7s8prGxEY2NjcZtrVYLwPBD1el0Zu3fofMlSCsXQZSpgq3UBhKxyPAlMnwXG7+jwz5x+zpiGMtsOhwjguSqfT150N0WW3PHuDdiLEwYCxPGwoBxMGEsTCwZC8aXiIiI+qKqOh2OFIswvLwWQ3wHWK0f/T5xVVZWhpaWFvj4+HQo9/HxgUaj6fKYNWvWYNWqVZ3Kk5OT4eDgYNb+fZAlwcVqCb48l2XWdq9FBAEikeF2k2IROjwWtz4WtXvcVn51PZHxsdDlcV22cdV5jO2234YYSV/8AlN6TYCotT3Tc2j3uIty0XX23eiY9vtvWHadNkXtKlzvmC73tZbLJCIot6TAWQo4SQ3x6c9SUlKs3YUeg7EwYBxMGAsTS8Sirq7O7G0SERERWYO2QYeU7GIkZqhw4HwZmvUSuKWq8NysAVbrU79PXLW5eqaRIAjXnH20cuVKLF++3Ljddl1mfHy82ae6H2vOhnC2CC6urtAD0OuBFr1g+BIE6Dt8B/R6Ac16AXrh6jqmfdcjQARBAPSGDTPo59mU20QsAtwdbeHpaAtPZ5nxu5eTLTycDN+9nGTwcLLFAHspxH0oy6XT6ZCSkoLp06f362m8AGPRhnEwYSxMLBmLtpnXRERERL1RXVMzfjlTgu3pKuw9V4qmZr1xn8JBQICbvRV7x8QVPD09IZFIOs2uKikp6TQLq41MJoNMJutULpVKzT4YXjU3HEk2l5GQMMZsbbclu1raJbj0eqBZr29NdMGU8GqX/GrWX3WMIKClq0TaVUk14/72x7Rrs0N/rj6fsU1A19KC/Lx8BAYFQdSaeBEEU35NEIC2LUFo2wYECO0etx1jKjAdL3Roq6tyCFe1166t6/altZ32fTA9NmUIu+zz1edE6y3ESyvRJJahvLYJegEoq2lCWU0TUFxz3Z+/jVgETycZPJ0NySwvZxk8r/re9tjFzqZHXz7aniV+/3orxsKAcTBhLEwsEQvGloiIiHqbBl0L9uaWIjFDhV/OlKBe12LcF+LliDnRcswc7o3cE/uQMMq6d03u94krW1tbjBo1CikpKViwYIGxPCUlBfPmzbNizyxHLBZBDBGkEmv35ObodDokJV1CQkJYv3+TYIhFEhISJkEklqCirgll1U0orWlEaXUjyq763va4sk6HZr0AjbYBGm3DDc9jayOGl5OsdfZWa1LLybZDcqvtu6Os3/85ISIiIiIi6rGamvU4eKEUielqJOcUo6ax2bgv0N0Bs6P8MCdajmG+zhCJRNDpdMi1Yn/b8J0mgOXLl2PJkiWIjY1FXFwcPvvsMxQUFOCxxx6zdteIbshGIoa3sx28ne1uWLepWY/y2sbWJFdDa0KryZDcakt2tT6ubmhGU7Meyqp6KKvqb9i2g63ElMzqcgaXrbHMrrdlTYmIiIiIiHqh5hY9jl6qwPZ0FX7K1uBKvemmMnJXO9zdmqyKVLj22KttmLgCcO+996K8vByrV6+GWq1GREQEkpKSEBQUZO2uEZmVrY0Yfq728HO1B+B63boNupaOs7ZqTAmv9rO7SqsbUa9rQV1TCy6X1+Fy+Y0XKXa2s2mdvXX1bK6Olyp6ONlCKhGb6dkTERERERH1fXq9gBP5FUjMUGNnltqwpEwrTycZZkf5YXaUH0YGuvWK9Y+ZuGq1bNkyLFu2zNrdIOox7KQSBLg7IMD9xnfKrG1s7iLJ1TaLq6nDdlOzHtUNzahuaMal0tobtu3mIO14aeJVs7nc7CVot3YgERERERFRvyMIAtIKq7A9XY2kTHWHpWHcHKSYGeGHOdF+GD3IA5JekKxqj4krIrpljjIbOMpsMNDT8br1BEGAtqG5y/W3jAmv1sflNU1o1guorNOhsk6Hc9dZdN5WLMGOqlRMDvPBpKFe3Uq2ERERERER9WaCICBbpUVihhqJGSoUVZqWeHG2s8GMcF/MjvLDuMGevfpKFiauiOi2EYlEcLWXwtVeisHeTtetq9cLqKrXXTfJVVrdCPWVelypb8bu3FLszi0FAAR7OWLSUG9MDPXC6EHuXFOLiIiIiIj6jPPF1dierkJihhqXykxXsTjYSjAtzAdzouWYMNQTMpu+8T6IiSsi6pHEYhHcHW3h7miLUDhfs15TUxP+/eNOCD5h2H+hHKcuV+JSaS0ulebhi0N5sJOKERfsgYlDvTAp1PuGs8KIiIiIiIh6mryyWiS2Jqtyi6uN5TIbMaYM88acaDkmh3rD3rZvJKvaY+KKiHo1kUgEf0cgYcIgPDF1KLQNOhy+UIa9uaXYm1sKjbYBe3JLsSe3FNieg4EeDsYk1phgjz75h52IiIiIiHq/oso67MhQY3uGCllKrbFcKhFh4lAvzI6SY9pwHzjJ+nZqp28/OyLqd1zsDAsPzozwgyAIOFdcg725JdibW4qTlyuQX16H/COX8dWRy7C1EWP0IHdMCvXGxKFeCPFy7LG3gCUiIiIior6vWNuAHa1rVp0uqDKWS8QijBvsidlRfpgx3BeuDlLrdfI2Y+KKiPoskUiEUF9nhPo649GJIahpbDbMxjpXin25pVBW1ePA+TIcOF+GVwH4u9ljUqgXJg71xtgQDzj28U8uiIiIiIjI+sprGpGUpUFiugrH8ysgCIZykQgYPcgdc6LlmBnuCw8nmXU7aiV8V0ZE/YaTzAbx4b6ID/eFIAi4WFqDvbml2HeuFMcuVaCosh7fHi3At0cLYCsR445BbsbLCod4O3E2FhERERERmcWVOh12ZWuwPUOFwxfL0aIXjPtGBblhdpQfEiL94ONiZ8Ve9gxMXBFRvyQSiTDY2xmDvZ3x8Phg1DU148jFcuw7Z1gbq6CiDoculOPQhXK8nnQWclc7TGydjTVusAec7frP1FwiIiIiIrp1NY3NSMnRIDFdjf3nS6FrMSWrIhWumBPth7uj5FAMsLdiL3seJq6IiAA42NpgapgPpob5QBAE5JXVGpNYRy+VQ3WlAd8fL8T3xwthIxZhVJCbcW2sMD9nzsYiIiIiIqJO6ptasPtsCbanq7AntwSNzXrjvmG+zpgTLcfdkX68+/l1MHFFRHQVkUiEYC8nBHs54Q/jBqFB14Kjl8qNlxXmldXiWF4FjuVV4I2fzsLHRYaJQw2zse4a4glXe87GIiIiIiLqrxqbW7AvtxTbM9T45Uwx6ppajPuCvRwxO0qOOVF+GOLjbMVe9h5MXBER3YCdVIJJod6YFOoNALhcbpiNtS+3FIcvlqNY24j/nSzC/04WQSIWYWTgAOPaWMP9XCAWczYWEREREVFfpmvR4+CFMiSmq5GcrUF1Y7Nxn7+bPeZEyzE7yg/D/Vx4tcZNYuKKiOgmBXk44oE4RzwQNxANuhacyK/AvtxS7D1XigslNTiRX4kT+ZV4O/kcPJ1kmDDUE5NCvTF+sCfcHG2t3X0iIiIiIjKDFr2AY5fKsT1DhZ1ZGlTV6Yz7fF3scHeUH+ZEyxHt78pk1S1g4oqI6BbYSSUYP8QL44d44R8AiirrjGtjHb5QhrKaRmw6rcSm00qIRUB0wABMGuqNiaFeiFK4cjYWEREREVEvotcLOFVQicR0FXZkalBW02jc5+lki4RIP8yOkiM2yI1jfTNh4oqIyIz83Rzw+9FB+P3oIDQ163HysmE21r5zpTirqUZqQRVSC6rw3s/n4O5oiwlDPDEx1AsThnjBw0lm7e4TEREREdFVBEFAetGV1mSVGuorDcZ9AxykmBXhi9lRcowe5A4bidiKPe2bmLgiIrIQWxsxxoZ4YmyIJ1YmhEF9pd6YxDp4vgwVtU3YkqbCljQVRCIgSuFqWOQ91BsjAgZAwk9oiIiIiIisQhCAM+pq7MwpQWKGCoUV9cZ9zjIbTA/3wZxoOe4a7Akpk1UWxcQVEdFt4udqj/vuDMR9dwZC16LH6cuVxssKc9RapBddQXrRFXyw+wJc7aUYP8SwNtaEoZ7wdrazdveJiIiIiPq8CyU12JpaiA1pEpQcPWIst5dKMG24D+ZE+WHCUC/YSSVW7GX/wsQVEZEVSCVijA72wOhgD/x95jCUaBsMSaxzpThwrhRX6nVIzFAjMUMNAAiXu2BSqBcmDvXGyMABnIJMRERERGQmRZV12J6uxvZ0FXLU2tZSEWxtxJgS6o3Z0X6YMswbDrZMoVgDo05E1AN4u9hhcWwAFscGoLlFj/SiKuzNNczGylReQbZKi2yVFh/tuQhnOxuMH+JpuKxwqDd8XTkbi4iIiIjoZpRUNyApQ41t6SqcLqgyltuIRbhrsAf89cVYfu8UuDvbW6+TBICJKyKiHsdGIsaoIHeMCnLHM/GhKKtpxP7WSwoPnC9FZZ0OSZkaJGVqAADDfJ0xMdQL40Pc0SJYufNERERERD3UlToddmapsT1DhSMXy6FvHTuLRMCYQR6YO0KOmeG+cLIVISkpCc52TJn0BPwpEBH1cJ5OMtwz0h/3jPRHi15ARutsrH3nSpFeVIWzmmqc1VTj032X4CyVIEN0FotiAxEud4FIxAXeiYiIiKj/qm1sxs9nirEtTYX950uha/dJb0zgAMyJkmN2lB+8XUxXMeh0Omt0la6BiSsiol5EIhYhJtANMYFueHr6UFTUNuHA+VLsyy3FntwSVNbpsP5IAdYfKcBgbycsiFFgbrQcAe4O1u46EREREdFt0aBrwd7cUmzPUOGXM8Vo0OmN+4b5OmNOtJxj5F6k3yeu/vnPf2LHjh1IS0uDra0tqqqqrN0lIqJuc3e0xbwRCswboUBdQyPe++8uqGwU+PlsCS6U1OCtXbl4a1cu7hzojvkxCtwd6QdXB6m1u01EREREZFbNLXoculiObWkqJGdrUN3YbNw30MMBc6PlmBMtxxAfZyv2kn6Nfp+4ampqwuLFixEXF4fPP//c2t0hIvrVpBIxItwE/D0hCg0twE9ZGmxJU+LwxXIcz6/A8fwKvLItG5OHeWFBjAKTh3lDZsPb+BIRERFR76TXCzh5uRLb0pVIytSgorbJuM/P1Q6zo/wwN1qBCAWX0OjN+n3iatWqVQCA9evXW7cjRERm5GwnNd6lUHOlAVvTlNicqsRZTTV2ZRdjV3YxXOxscHeUHxbE+CM2yA1iMf+ZExEREVHPJggCMpVXsD1dhcQMNdRXGoz73B1tkRDpi7nRCo5v+5B+n7j6NRobG9HY2Gjc1mq1AAwLuJl7Ebe29rg4HGPRHmNhwliYXCsWHg4S/HFsIP44NhBnNdXYlq7Gtgw1irWN+P54Ib4/XgjFADvMjfLD3Gg/DPZ2skb3zYavCRPGwsSSsWB8iYiILO98cTW2pauwPV2F/PI6Y7mzzAYzInwxJ1qOcSEesJGIrdhLsgQmrn6FNWvWGGdqtZecnAwHB8ss7paSkmKRdnsjxsKEsTBhLExuFIsIAMOHAxe1IpwoFSG9QgRlVQM+2Z+HT/bnwd9RQKynHiM9Bbja3p4+WwJfEyaMhYklYlFXV3fjSkRERHTTCsrrsD3DkKw6q6k2lttJxZga5oO50XJMHOoFOymXv+jL+mTi6pVXXukysdTeiRMnEBsb+6vaX7lyJZYvX27c1mq1CAgIQHx8PFxcXH5Vm9ei0+mQkpKC6dOnQyrt3wsqMxYmjIUJY2Hya2PRoGvBntxSbElTY//5MhTVAkW1EmwrAMaGeGBetB+mh3nDUdY7/mXwNWHCWJhYMhZtM6+JiIjo1hVrG7AjQ41t6SqkFVYZy6USESYO9cKcaDmmhfn0mrEp3bo++ZN+4okncN999123zsCBA391+zKZDDKZrFO5VCq12BsDS7bd2zAWJoyFCWNhcrOxkEqlmBsTgLkxAaiobcKODBU2pypxuqAKBy+U4+CFcthLJZgR7oP5MQrcNdizV0zB5mvChLEwsUQsGFsiIqJbU1nbhJ1ZGmxPV+FoXjkEwVAuFgFxIR6YGy3HjHBfDHDoxZcD0K/WJxNXnp6e8PT0tHY3iIh6HXdHWyyJG4glcQNxubwWW1JV2JKmRF5ZLbakqbAlTQVPJ1vMiZZjQYwCkQpX3qGFiIiIiG5aTWMzUnI02JamwoHzZWjWC8Z9IwMHYG60HAlRfvB2trNiL6kn6JOJq5tRUFCAiooKFBQUoKWlBWlpaQCAwYMHw8mpdy9QTER0K4I8HPHXaUPw5NTBSC+6gi2pSmxLV6GspglfHsrHl4fyEezliAUjFJgfo0CAu2XW+CMiIiKivqFB14I9Z0uwPUOFX86UoLFZb9w33M8Fc6LlmB3lx3ElddDvE1cvvfQSvvrqK+N2TEwMAGDPnj2YNGmSlXpFRNRziEQijAgYgBEBA/DC3WE4cL4Um1NVSM7W4FJpLd5JOYd3Us7hjoFumB+jwN2RfpzGTUREREQAAF2LHgcvlGF7mgrJOcWoaWw27gv2dMScaDnmRPthsLezFXtJPZnVE1e/ZkFTcy6Avn79eqxfv95s7RER9WVSiRhThvlgyjAfVDfosCu7GFtSlTh0sQwn8itxIr8Sr2zLxuRQbyyIUWDyMG/e5YWoh7D2mIuIiPoPvV7A8fwKbEtXYWemGpV1OuM+uatda7JKjnC5C5edoBuyeuJqwIABN/VCFYlEOHfuHIKDgy3YKyIiuhFnOykWjfLHolH+0FxpwPZ0w6LuOWotknOKkZxTDGc7G9wd6Yf5MQrcOdAdYjEHJkTWwjEXERFZkiAISC+6gu3pKiRmqFCsbTTu83SyRUKkH+ZGyzEy0I1jQropVk9cAcCPP/4Id3f3G9YTBAEJCQm3oUdERHQzfF3t8MiEYDwyIRi5mmpsSVNia6oSqisN+O+JQvz3RCHkrnaYF6PAghgFhvpwKjiRNXDMRURE5parqca2dCW2p6tRUFFnLHe2s8GsCF/MiZYjLtijV9yVmnomqyeugoKCMGHCBHh4eHSrfnBwMG87TUTUg4X6OuO5mcPwt/hQHMurwJZUJZIy1VBdacAney/ik70XMdzPBfeMVGButBzeLrxTDNHtwDEXERGZy+XyWmxPV2FbugrnimuM5fZSCaYN98HcaDkmDPWEzIZLRtCts3riKi8v76bqZ2VlWagnRERkTmKxCHEhHogL8cCqeeHYfbYEm1OV2Jtbghy1Fjk7tHg96QzGDfbE/BEKzIjwhZPM6v+WiPosjrmIiOhWaK40IDFDhe3pKqQXXTGWSyUiTBzqjbkj5JgW5g0HW47nyLz4iiIiIouzk0qQEOmHhEg/VNY2YUemGptTlTh1uRIHzpfhwPkyvLAlE/HDfbEgRoG7hnhCyunkRERERFZVXtOInVkabEtX4UR+BQTBUC4WAeMGe2JOtBwzhvvC1YEzdMlyelTi6oMPPuiyXCQSwc7ODoMHD8aECRMgkXC6IRFRb+XmaIv7xwTh/jFBKCivw5Y0JbakKnGprBbbWqecezjaYk60HAtiFIjyd+XdZojMzBxjrv379+Ott97CqVOnoFarsXnzZsyfP99CPSYiotuluqEZuzOKsT1dhYMXytCiF4z7YoPcMHeEHLMi/ODlLLNiL6k/6VGJq/feew+lpaWoq6uDm5sbBEFAVVUVHBwc4OTkhJKSEgQHB2PPnj0ICAiwdneJiOgWBXo44MmpQ/CXKYORUXQFm1OV2J6uQnltE9Yfzsf6w/kI9nTE/BgF5o9QINDDwdpdJuoTzDHmqq2tRXR0NP7whz9g4cKFt/kZEBGROTXoWpCcpcHnuWL87cReNDXrjfsiFC6YEyXH7Gg5FAPsrdhL6q961HUYr7/+Ou644w6cP38e5eXlqKiowLlz5zB69Gi8//77KCgogK+vL55++mlrd5WIiMxIJBIhOmAAXpkbjqPPT8WXf7gD80bIYScV41JZLd5NOYcJb+3Bwk8O45ujl1FZ22TtLhP1auYYc82aNQuvvfYa7rnnntvYcyIiMhdBEHA8rwIrN2Xgjn/+jCc3ZCCjQoymZj1CvBzx9LSh+OWZiUj8y3g8OjGESSuymh414+of//gHNm7ciJCQEGPZ4MGD8fbbb2PhwoW4dOkS3nzzTX6qR0TUh0klYkwO9cbkUG/UNDYjOVuDzalKHLpQhlOXK3HqciVWb8/GxKHeuGekAlOGecNOykvIiW6GNcZcjY2NaGxsNG5rtVoAgE6ng06nM9t52rS1aYm2exvGwoBxMGEsTPpjLPLLa7ElTY2t6WoUVdYby31dZAh3qsey2Xci0t/NuFRDf4pNm/74uuiKpePQ3XZ7VOJKrVajubm5U3lzczM0Gg0AQC6Xo7q6+nZ3jYiIrMBJZoN7RvrjnpH+KNY2YHu6CptTlchWafHzmWL8fKYYzjIbJET6YX6MAqMHuVu7y0S9gjXGXGvWrMGqVas6lScnJ8PBwXKXAaekpFis7d6GsTBgHEwYC5O+HotaHXC6XISTpWLk15jWDpWJBUR7CLjTS0CISy3EIqAo8yiKMq3Y2R6kr78uustScairq+tWvR6VuJo8eTIeffRR/N///R9iYmIAAKmpqXj88ccxZcoUAEBmZiYGDRpkzW4SEZEV+LjY4eHxwXh4fDDOFVdjS6oSW9NUUFbVY8PJQmw4WQg/VzvMifKFW/f+BxL1W9YYc61cuRLLly83bmu1WgQEBCA+Ph4uLi5mO08bnU6HlJQUTJ8+HVJp/77bFWNhwDiYMBYmfTkWjc167DtXii1pauw9Vwpdi2GRdbEIuGuwB+ZFyzE9zBv2toaZ6305FjeLsTCwdBzaZl/fSI9KXH3++edYsmQJRo0aZQxKc3Mzpk6dis8//xwA4OTkhHfeecea3SQiIisb6uOMv88chmfjQ3EivwJb0pRIzFBDfaUBnx3IB2CDpLKj+E1sAOZGK3iLZqKrWGPMJZPJIJN1vgOVVCq16JsCS7ffmzAWBoyDCWNh0ldiIQgCThdUYdPpIiRmqHGl3nQp1nA/F9wzUoG50XJ4u9hds42+EgtzYCwMLBWH7rbZoxJXvr6+SElJwdmzZ3Hu3DkIgoBhw4YhNDTUWGfy5MlW7CEREfUkYrEIo4M9MDrYAy/PCceesyXYdLoIu88WI1OpRaYyG6/uOIOZ4b5YHOuPcSGeEItFN26YqI/jmIuIqG8pKK/DptQibElVIr/cNPXcx0WG+SMUWDBSgWG+5p/dSnQ79KjEVZvg4GCIRCKEhITAxqZHdpGIiHoYO6kEsyL9MG2YJ/63NQl13uHYeFqFs5pqbEtXYVu6CooB9lg4yh+LR/kjwN1ya+oQ9Ra3MuaqqanBhQsXjNt5eXlIS0uDu7s7AgMDzd1VIiK6ypU6HXZkqrHpdBFOXq40ljvYSjAz3BcLRiowNsQTEn5oR71cj8oK1dXV4S9/+Qu++uorAMC5c+cQHByMJ598EnK5HCtWrLByD4mIqDdwkgK/iQvCw+NDkKXU4n8nC7E1TQllVT0++OU8PvjlPOKCPfCbO/wxM9zPuLYDUX9hjjHXyZMnO8zKalu/6sEHH8T69est0m8iov6uqXXdqs2pRfg5pwRNLXoAgEgE3DXYEwtiFJgR7gtHWY96q090S3rUq3nlypVIT0/H3r17MXPmTGP5tGnT8PLLLzNxRUREN0UkEiHS3xWR/q544e4wJOcU44eThTh4oQxHLpXjyKVyvCTLxuxoOX4T648RAQOMt34m6svMMeaaNGkSBEGwZDeJiAiGdavSi65g8+kibEtXobLOtG5VqI8z7hmpwLwRCvi6XnvdKqLerEclrrZs2YINGzZgzJgxHd44DB8+HBcvXrRiz4iIqLezk0owN1qOudFyKKvqsfFUEX44VYjCinp8f7wA3x8vwBBvJyyO9ceCGH94OXdeRJqor+CYi4io5yuqrMOWVCU2nVbiUlmtsdzTSYb5I+RYMFKB4X4u/NCN+rwelbgqLS2Ft7d3p/La2lr+MhIRkdkoBtjjyalD8MTkwTiaV44fTxYhKUuN8yU1eD3pLN78KReTh3njN7EBmBTqBalEbO0uE5kVx1xERD2TtkGHnZlqbDqtxLG8CmO5nVSMGeG+WBCjwF2DPWHDsQn1Iz0qcXXHHXdgx44d+Mtf/gIAxoHTv//9b8TFxVmza0RE1AeJxSKMDfHE2BBPvDIvHInpavzvZCHSCquQklOMlJxieDrJcM9IBRaP8scQH2drd5nILDjmIiLqOXQtehw4X4pNp5VIySlGY7Np3aq4YA8siFFgZoQvnO2kVu4pkXX0qMTVmjVrMHPmTOTk5KC5uRnvv/8+srOzceTIEezbt8/a3SMioj7MxU6K340OxO9GB+J8cTV+OFWETaeLUFbTiM/2X8Jn+y8hJnAAFo8KwOxoP7hw8Ei9GMdcRETWJQgCspRabEotwvZ0Fcpqmoz7Bns74Z6RCswfoYB8gL0Ve0nUM/SoxNXYsWNx6NAhvP322wgJCUFycjJGjhyJI0eOIDIy0trdIyKifmKIjzOeTwjD32aEYm9uKf53shC7z5YgtaAKqQVVWJ2YjYQIPyyODcDoQe4Q8zbT1MtwzEVEZB2qqnpsSVNi82klzpfUGMs9HG0xd4Qc98T4I0LBdauI2utRiSsAiIyMNN6a2dLy8/Px6quvYvfu3dBoNJDL5bj//vvxwgsvwNbW9rb0gYiIei6pRIzpw30wfbgPSqobsCVVif+dLMKFkhpsSlViU6oSAe72WDwqAAtH+UPBT0WpF7mdYy4iov6sprEZOzPV2JyqxJFL5Wi7IautjRjxw31wz0gFxg/hmppE12L1xJVWq+12XRcXF7Oe++zZs9Dr9fj0008xePBgZGVl4ZFHHkFtbS3efvtts56LiIh6N29nO/xpQggeGR+MtMIq/O9kERLTVSisqMe7Kefw3s/ncNdgTyyODUD8cB/YSSXW7jJRB9YccxER9TfNLXocvFCGzalK7MrWoEGnN+67c5A7Fo5UYFYklx4g6g6rJ64GDBjQ7WmQLS0tZj33zJkzMXPmTON2cHAwcnNz8cknn1w3cdXY2IjGxkbjdttAUKfTQafTmbWPbe2Zu93eiLEwYSxMGAsTxsLgdsQhws8JEXOGYeWMIUjOKcaPp5U4mleJA+fLcOB8GVzsbDA32g8LYxQIlztbbbo/XxMmloxFb4mvNcdcRET9RY5Ki02ni7A1XYXSatN7xmBPR9wzUoF5IxQIcHewYg+Jeh+rJ6727NljfJyfn48VK1bgoYceMt7R5siRI/jqq6+wZs2a29KfK1euwN3d/bp11qxZg1WrVnUqT05OhoODZf4IpaSkWKTd3oixMGEsTBgLE8bC4HbFQQrgt77A9AHA8VIxjpWIUNXQjG+PFeLbY4WQOwgY7a1HrKcAJyt9qMrXhIklYlFXV2f2Ni2hp425iIj6imJtA7amKbHptBJnNdXGcjcHKeZEy3HPSH9E+7ty3SqiX8nqiauJEycaH69evRrvvvsufvvb3xrL5s6di8jISHz22Wd48MEHLdqXixcv4l//+hfeeeed69ZbuXIlli9fbtzWarUICAhAfHy82afW63Q6pKSkYPr06ZBK+/c0UsbChLEwYSxMGAsDa8bhAQAtegFHLlVg42klks+UQFWnx+Z8CRILRZgS6oVFoxS4K8QDNrdhHQu+JkwsGYubuQTPmnrSmIuIqLera2rGrmwNNp1W4tCFMujb1q2SiDE1zBv3jPTHxKFesLXhulVEt8rqiav2jhw5gnXr1nUqj42NxcMPP9ztdl555ZUuZ0S1d+LECcTGxhq3VSoVZs6cicWLF9/wXDKZDDKZrFO5VCq12BsDS7bd2zAWJoyFCWNhwlgYWCsOUgCTw3wxOcwXV+p02JZuWNA9U3kFu3JKsCunBN7OMiwc5Y/Fo/wR7OVk+T7xNWFkiVj0xtiaa8xFRNSftOgFHLlYjk2ni/BTtgZ1TabLqmOD3HDPSH/cHekHV4fe93+BqCfrUYmrgIAArFu3rtOMp08//RQBAQHdbueJJ57Afffdd906AwcOND5WqVSYPHky4uLi8Nlnn91Un4mIiK7F1UGKJXEDsSRuIM6otfjhZBE2pxahpLoRn+y9iE/2XsQdA92weFQAEqL84CTrUf+WqQ8z15iLiKg/yNVUY1NqEbakKlGsNa1bFeThgAUxCiyIUSDIw9GKPSTq23rUCPm9997DwoULsWvXLowZMwYAcPToUVy8eBEbN27sdjuenp7w9PTsVl2lUonJkydj1KhR+PLLLyEWcyonERGZX5ifC16aMxwrZg3D7rPF+N/JIuzNLcGJ/EqcyK/EK9uzcXekHxbHBuCOgW5cB4MsylxjLiKivqqkugHb0lTYnKpEtsp0SbirvRSzo/xwz0h/jAzs/k0viOjX61GJq4SEBJw/fx6ffPIJzpw5A0EQMG/ePDz22GMW+fRPpVJh0qRJCAwMxNtvv43S0lLjPl9fX7Ofj4iIyNZGjJkRfpgZ4YdibQM2ni7CjyeLcKmsFj+cKsIPp4owyNMRi0b5Y+FIf/i62lm7y9QH3e4xFxFRb1Df1ILkHA02pypx4HwZWloXrpJKRJgc6o17RioweZg3ZDYSK/eUqH+xeuIqIyMDERERxplO/v7++Oc//3nN+tnZ2QgNDYWNza13PTk5GRcuXMCFCxfg7+/fYZ8gCLfcPhER0fX4uNhh2aTBeHxiCE5drsT/ThYiMUONvLJavLUrF+8k52LCUC/8JjYAU8M4UKZbY80xFxFRT6XXCzh/RYQVm7OwK7sENY3Nxn0xgQNwT4wCs6PkcHO0tWIvifo3q49EYmJioNFo4OXl1a36cXFxSEtLQ3Bw8C2f+6GHHsJDDz10y+0QERHdCpFIhNiB7ogd6I6X54QjKVONH04W4Xh+BfbmlmJvbincHKSYH6PA4lEBGC437x1sqX+w5piLiKgnEQQBaYVVSMxQY0eGChqtBIAKAODvZo97YhSYH6O4LTdQIaIbs3riShAEvPjii3BwcOhW/aamJgv3iIiIyHocZTZYHBuAxbEByCurxY+nCvHjqSIUaxvx5aF8fHkoHxEKF/wmNgBzo+UY4MBPgKl7OOYiov5MEARkq7TYnqHCjgw1iirrjfvsJQLmxvhj4ahAxAa5QSzmulVEPYnVE1cTJkxAbm5ut+vHxcXB3t7egj0iIiLqGQZ5OuJvM4Zh+fRQ7D9fih9OFiIlpxhZSi2ylNl4LfEM4sN98JvYAIwb7AkJB9p0HRxzEVF/IwgCcourkZiuRmKGCvnldcZ9DrYSTAvzwaxwb9RePIl5s8MhlUqt2FsiuharJ6727t1r7S4QERH1aBKxYVHYyaHeqKhtwtY0Jf53sghn1FokZqiRmKGG3NUOC0f5Y9Eof96Sm7rEMRcR9RcXSqqxPV2NHZlqXCipMZbbScWYMswbs6PkmBzqDXtbCXQ6HZLyrNhZIrohqyeuiIiIqPvcHW3xh3GD8Idxg5ClvIIfThZiS5oKqisN+NfuC/jX7gsYE+yOxaMCMG2Yh7W7S0REdFvkl9UiMUOFxAw1zmqqjeW2NmJMGuqFu6P8MC3MB44yvgUm6m34W0tERNRLRShcEaFwxcqEMKTkFOOHU0U4cL4URy9V4OilCjjKJIhyFSNIpcWIICaxiIiobymsqMOOTMNlgFlKrbFcKhFh/BAvzI7yw7ThPnCx4yWARL0ZE1dERES9nJ1UgjnRcsyJlkNVVY+Np4rww6kiFFTU4UiJGPM/OYrogAFYMiYIs6P8YCeVWLvLREREv4r6Sj12ZKixPUON9MIqY7lELMLYEA/MiZJjRrgvXB2YrCLqK5i4IiIi6kPkA+zxl6lD8OfJg3H4Qgne3XocmVUSpBdWIb2wCq8m5mDxKH/8fkwQBnlyLSwiIur5SrQNSMo0rOl48nKlsVwsAkYP8sDsaD/MDPeFh5PMir0kIkth4oqIiKgPEotFGD3IHQ8O1ePOCZOxKU2D/xwrgLKqHv93MA//dzAPdw32xP1jAjEtzAc2ErG1u0xERGRUXtOInVkaJGaocCyvAoJg2nfHQDfMjpJjVqQvvJ3trNdJIrotmLgiIiLq4zydZPjz5MF4bGII9p0rwbdHC7AntwQHL5Th4IUy+LjIcN8dgfjtnYHwdeUbACIiso6quibsytYgMUONwxfL0aI3ZatiAgdgdpQcd0f68X8VUT/DxBUREVE/IRGLMGWYD6YM80FhRR2+P16ADScKUaxtxPu/nMeHey5gepgP7h8ThLEhHhCLRdbuMhER9XHaBh2Ss4uRmKHCwfNlaG6XrIpUuGJ2lB/ujvKDv5uDFXtJRNbExBUREVE/FODugL/PHIa/ThuCn7I0+O5oAY7nV+CnbA1+ytZgkKcjfj86EItG+WOAg621u0tERH1ITWMzfjlTjO3pauw/V4qmFr1x3zBfZ8yJNsysGsi1GIkITFwRERH1azIbCeaNUGDeCAVyNdX47thlbDqtRF5ZLV7bcQZv7crF7Cg57h8TiBEBAyAScRYWERHdvPqmFuw+W4LEDBV2ny1BY7MpWTXY2wmzo/wwO0qOwd5OVuwlEfVETFwRERERACDU1xmr50XguZnDsDVNhW+PXkaOWouNp4uw8XQRwuUuWDImCHNHyOFgyyEEERFdX4OuBfvOlSIxQ41fzhSjrqnFuG+Qp6MxWTXUx4kfjBDRNXHUSURERB04ymzwu9GB+O2dAUgtrMK3Ry8jMUONbJUWKzZl4p9JZ7BwpD9+PzoQQ3ycrd1dIiLqQZqa9Thw3pCsSskpRk1js3Gfv5s9ZkfJMTvKD+FyFyariKhbmLgiIiKiLolEIowMdMPIQDe8ePdw/HCqEN8dK8Dl8jqsP5yP9YfzMXqQO+4fE4QZ4b6wtRFbu8tERGQFuhY9Dl8sR2K6CruyNdA2mJJVfq52uDvSD7Oj5Yj2d2WyiohuGhNXREREdENujrb404QQPHxXMA5eKMO3Ry/j5zPFOJZXgWN5FfB0kuHeO/zx2zsDeecnIqJ+oEUv4NilcmzPUOOnLDUq63TGfV7OMkOyKsoPIwPdeJdaIrolTFwRERFRt4nFIkwY6oUJQ72gvlKP748X4r/HC1BS3YiP9lzEJ3svYsowb/x+TBAmDvHimxUioj5ErxdwIr8CiRlq7MxSo6ymybjPw9EWsyJ9MTtKjjsGukPCv/9EZCZMXBEREdGv4udqj+XTh+IvUwbj55xifHP0Mg5fLMfPZ0rw85kSBLjb43d3BuE3sf7wcJJZu7tERPQrCIKA0wVVSMxQISlTjWJto3HfAAcpZoYbklVjgt1hI+El40RkfkxcERER0S2RSsSYFemHWZF+uFhag++OFuDHU4UorKjHGz+dxXsp5zAr0hf3jwlCbJAb1zchIurhBEFApvIKEjPU2JGhhrKq3rjP2c4G8cN9MTvaD3cN9oSUySoisjAmroiIiMhsQryc8NKc4fjbjFBsz1Dhu6OXkV50BVvTVNiapsIwX2f8fnQg5sco4GwntXZ3iYiolSAIOKOuRmKGCokZahRU1Bn3OdpKMG24D2ZHyTFhqCdkNhIr9pSI+pt+n7iaO3cu0tLSUFJSAjc3N0ybNg1vvPEG5HK5tbtGRETUa9nbSvCb2AD8JjYAmUVX8O3Ry9iarsRZTTVe3JqN/7fzLObHKHD/mCCE+blYu7tERP3WueJqJKarkJipxqXSWmO5nVSMqWE+mBPlh0mh3rCTMllFRNbR7xNXkydPxvPPPw8/Pz8olUo8++yzWLRoEQ4fPmztrhEREfUJkf6ueGNRFJ6/OwybThfh26OXcbG0Ft8dK8B3xwowKsgN948JxKwIP74xIiKyIEEQUF7bhHPqK9hVJMKH/zqE8yWmZJWtjRiTQ70wO0qOqWHecLDt928XiagH6Pd/iZ5++mnj46CgIKxYsQLz58+HTqeDVMpLGIiIiMzF1V6KP4wbhIfGDsSRS+X47mgBdmVrcOpyJU5drsSriWeweJQ/fjc6EEEejtbuLhFRr9Wga0FeWS0uldYir6wGl0prcbGsFnmlNdA2NLfWkgCohVQiwoQhXpgd7YdpYT68jJuIepx+n7hqr6KiAt999x3Gjh173aRVY2MjGhtNd9PQarUAAJ1OB51OZ9Y+tbVn7nZ7I8bChLEwYSxMGAsDxsGkJ8fijkBX3BEYiZLqofjhlBIbThZBfaUBn+6/hE/3X8KEIR743R0BmBTqZZZbqlsyFj0xvkTU9+n1AlRX6o0JqkulNbjU+lh1pR6C0PVxIhGgcLXDAFEdfj8pEgmRCrg6MFlFRD0XE1cAnnvuOXz44Yeoq6vDmDFjkJiYeN36a9aswapVqzqVJycnw8HBwSJ9TElJsUi7vRFjYcJYmDAWJoyFAeNg0tNjMQjA38KAnEoRDhWLcLZKhP3ny7H/fDkG2AoY66NHnLcAF9tbP5clYlFXV3fjSkREv5K2QWdMTLUlqS6W1iC/vBYNOv01j3Oxs0GwlxOCvRwR4uWEYE9HDPJyxEAPR0igR1JSEhJGKniVCRH1eH0ycfXKK690mVhq78SJE4iNjQUA/O1vf8PSpUtx+fJlrFq1Cg888AASExOvebvulStXYvny5cZtrVaLgIAAxMfHw8XFvAvM6nQ6pKSkYPr06f3+nwpjYcJYmDAWJoyFAeNg0ttiMaf1++WKOvz3RBE2nlaisk6HpEIJkpUiTA/zxu/uDMDoQW7X/B99LZaMRdvMayKiX0vXokdBRR3ySmtxqfXSvkultbhUVouymsZrHieViBDo7mBIUHk6ItjL0fjY3dH2mn8rdddJeBER9TR9MnH1xBNP4L777rtunYEDBxofe3p6wtPTE0OHDkVYWBgCAgJw9OhRxMXFdXmsTCaDTCbrVC6VSi32xsCSbfc2jIUJY2HCWJgwFgaMg0lvi8VgH1f8Y7Yrnp0xDDuz1Pj2aAFOXa7Ezuxi7MwuRoiXI34/OggLR/nD1f7mnpclYtGbYktE1iMIAspqmtpd0meaQVVQUYdm/TWu7QPg7SzDIE9DUirEy5CgGuTphAA3e9hIxLfxWRAR3X59MnHVloj6NYTWi8Hbr2FFREREt5+dVIIFMf5YEOOPM2otvj16GVtSlbhYWovViTl4c9dZzItW4P4xQYj0d7V2d4mIAAD1Ta0Lo5fVtM6gMq0/VW1cGL0ze6mkNTnl2Dp7yqk1QeXIBdOJqF/rk4mr7jp+/DiOHz+Ou+66C25ubrh06RJeeuklhISEXHO2FREREd1+YX4u+OeCSKyYNQxb0lT47uhlnNVUY8PJQmw4WYhof1f8fkwQ5kTJYW8rsXZ3+5WPP/4Yb731FtRqNcLDw7F27VqMHz/e2t0isqi2hdHbL4reNntKWVV/zeNEIsDfzR6DPA2X84W0Xto3yNMRvi52EJvhZhRERH1Nv05c2dvbY9OmTXj55ZdRW1sLPz8/zJw5E//973+7vBSQiIiIrMvZToolY4Jw/+hAnLpciW+OXsbOTA3Si64g/ccMvJaYg0WjAvD7MYEI8XKydnf7vA0bNuCpp57Cxx9/jHHjxuHTTz/FrFmzkJOTg8DAQGt3j+iWXanXGRJTpbXGWVRtjxubr71OlKu9tHXmlFOHGVRBHg6wkzK5TkR0M/p14ioyMhK7d++2djeIiIjoJolEIsQOdEfsQHe8NLsR/ztZhP8cv4zCinp8cSgPXxzKw7jBHrh/dBCmDfexdnf7rHfffRdLly7Fww8/DABYu3Ytdu3ahU8++QRr1qzpULexsbHDUgxti9rrdDrodDqz9utCSQ0+3nsRGo0Ye37MgEQihlgkglhkeO2IRYBYJDI+FqFtG631OtYVGR+3P7br753OgY7bnfvQebv9eXDVdvs+itr1/XrH6luaUdYA5JdWw04mhUQkgkTc7qvddlv/+qK219nVrzddix6FFfWGxFR5LfLK6pBXZvheXtt0zfbaFkYf5OGAQZ6GS/qCPR0w0NMR7g7Sa8RR3yMWRr9WLPojxsKEsTBhLAwsHYfuttuvE1dERETU+3k4yfD4pBA8OiEY+86X4rujl7H7bAkOXSjHoQvl8HaW4TejFPDi8pVm1dTUhFOnTmHFihUdyuPj43H48OFO9desWdPlXZ+Tk5Ph4OBg1r6duyLC9hwJADFOlGrM2nbvZQOkHulWTTGE1uRXuy/cYLtTmdDNejcqEzrVkbQmEyWtibsO2631ri6TQIBIBOgFEQ5/+zNK6kUoaQBK6kUobwD0uHayzkUqwNtegLc94G1n+u5uB0hEVwBcAVoAFAPFxUDxrfyYbrOUlBRrd6HHYCxMGAsTxsLAUnGoq6vrVj0mroiIiKhPEItFmBzqjcmh3iiqrMP3xwuw4UQhSqob8eHeSxBDgtix1Qj3d7d2V/uEsrIytLS0wMen44w2Hx8faDSdk0UrV67E8uXLjdtarRYBAQGIj4+Hi4uLWfs2oqoeDgoVcnPPYfCQIRCJxBAA6AVALwgQBKHdY0Bofdy2rW/dLwhC63GmbX27/bhqu3O7HbeN9dD5PNc6zrS/7Zir67e1efV52j3WA006HSCWQC8IaNYb9l2LHqLW53crP4XeNWvLwVaCgR4OGOThiEGeDq2zpxwx0NMBTrK+95ZJp9MhJSUF06dP7/d3RmUsTBgLE8bCwNJxaJt9fSN9768wERER9Xv+bg7424xh+OvUodiVrcE3R/JxubgCQ7y57pW5XX05lCAIXV4iJZPJulxDVCqVmn0wHOQlxZ8m2COpJhcJkwb36zcdgOGNR1JSEhISZhhjodcLaBEEtOhbvwQBLS2GpFZbckuvN3xvq9Os10Ovh+G7IKC55ao29B2Pu7pOh31d1tFfv05rP39dHT2aWwTU19ViWIAnQrydDXfta72Ln6+LXZ+9RPJ6LPH711sxFiaMhQljYWCpOHS3TSauiIiIqM+ytRFjTrQcM4d7YdP2pH75xtRSPD09IZFIOs2uKikp6TQLi3oesVgEMUToT+uEmxJ4o/hGlIioFxFbuwNEREREt4NdP3qDfjvY2tpi1KhRnda9SElJwdixY63UKyIiIuprOOOKiIiIiH6V5cuXY8mSJYiNjUVcXBw+++wzFBQU4LHHHrN214iIiKiPYOLKDITW1S27u7DYzdDpdKirq4NWq+33U5oZCxPGwoSxMGEsDBgHE8bCxJKxaPv/L1xvtes+6t5770V5eTlWr14NtVqNiIgIJCUlISgo6IbHWnL8BPD13x5jYcA4mDAWJoyFCWNhwlgYWDoO3R1DiYT+OMoys6KiIgQEBFi7G0RERGRFhYWF8Pf3t3Y3eg2On4iIiAi48RiKiSsz0Ov1UKlUcHZ2Nvuir223ii4sLDT7raJ7G8bChLEwYSxMGAsDxsGEsTCxZCwEQUB1dTXkcjnEYi4f2l2WHD8BfP23x1gYMA4mjIUJY2HCWJgwFgaWjkN3x1C8VNAMxGKxxT9hdXFx6de/MO0xFiaMhQljYcJYGDAOJoyFiaVi4erqavY2+7rbMX4C+Ppvj7EwYBxMGAsTxsKEsTBhLAwsGYfujKH4sSAREREREREREfVITFwREREREREREVGPxMRVDyeTyfDyyy9DJpNZuytWx1iYMBYmjIUJY2HAOJgwFiaMRf/Dn7kJY2HAOJgwFiaMhQljYcJYGPSUOHBxdiIiIiIiIiIi6pE444qIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiIiIiIiIiIh6JCauiIiIiIiIiIioR2LiioiIiIiIiIiIeiQmroiIiIiIiIiIqEdi4oqIiIiIiIiIiHokJq6IiIiIiIiIiKhHYuKKiMxq/fr1EIlEyM/PN1ubDz30EJycnMzW3s24meczadIkTJo0yeJ9IiIiIjI3S4zh2ohEIrzyyiudznXy5Emzn4uI+h4mroiIiIiIiIiIqEdi4oqIqAcSBAH19fXW7gYREREREZFVMXFFRFZVV1eHZ599FoMGDYKdnR3c3d0RGxuL77//vlPdCxcuICEhAU5OTggICMAzzzyDxsbGDnUqKiqwbNkyKBQK2NraIjg4GC+88EKHevn5+RCJRFi/fn2nc1w9lb0rgiDgzTffRFBQEOzs7DBy5Ejs3Lmzy7pardb4/GxtbaFQKPDUU0+htra203mfeOIJrFu3DmFhYZDJZPjqq6+u2w8AePXVV2FjY4PCwsJO+/74xz/Cw8MDDQ0NAIANGzYgPj4efn5+sLe3R1hYGFasWNGhLzt27IBIJMKJEyeMZRs3boRIJMLdd9/dof2oqCgsXLjwhn0kIiKivkmj0eDRRx+Fv78/bG1tMWjQIKxatQrNzc3dOr6yshJ/+MMf4O7uDkdHR8yZMweXLl3qVO+LL75AdHS0cay4YMECnDlzxrif4xeivo2JKyKyquXLl+OTTz7Bk08+iZ9++gnffPMNFi9ejPLy8g71dDod5s6di6lTp2Lr1q344x//iPfeew9vvPGGsU5DQwMmT56Mr7/+GsuXL8eOHTtw//33480338Q999xjtj6vWrUKzz33HKZPn44tW7bg8ccfxyOPPILc3NwO9erq6jBx4kR89dVXePLJJ7Fz504899xzWL9+PebOnQtBEDrU37JlCz755BO89NJL2LVrF8aPH3/Dvjz66KOwsbHBp59+2qG8oqIC//3vf7F06VLY2dkBAM6fP4+EhAR8/vnn+Omnn/DUU0/hf//7H+bMmWM8buLEiZBKpfj555+NZT///DPs7e2xb98+6HQ6AEBJSQmysrIwbdq0mwseERER9QkajQZ33nkndu3ahZdeegk7d+7E0qVLsWbNGjzyyCPdamPp0qUQi8X4z3/+g7Vr1+L48eOYNGkSqqqqjHXWrFmDpUuXIjw8HJs2bcL777+PjIwMxMXF4fz58wA4fiHq8wQiIjP68ssvBQBCXl5et+pHREQI8+fPv26dBx98UAAg/O9//+tQnpCQIISGhhq3161b12W9N954QwAgJCcnC4IgCHl5eQIA4csvv+x0LgDCyy+/fM3nU1lZKdjZ2QkLFizocNyhQ4cEAMLEiRONZWvWrBHEYrFw4sSJDnV//PFHAYCQlJTU4byurq5CRUXFdWPRlQcffFDw9vYWGhsbOzxnsVh8zZ+DXq8XdDqdsG/fPgGAkJ6ebtx31113CVOmTDFuDx48WPjb3/4miMViYd++fYIgCMJ3330nABDOnTt30/0lIiKinudmx3CPPvqo4OTkJFy+fLlD+dtvvy0AELKzs41l1xpfXWs89dprrwmCYBh32dvbCwkJCR3qFRQUCDKZTPjd735nLOP4hajv4owrIrKqO++8Ezt37sSKFSuwd+/ea67rJBKJOswMAgxTvS9fvmzc3r17NxwdHbFo0aIO9R566CEAwC+//HLL/T1y5AgaGhrw+9//vkP52LFjERQU1KEsMTERERERGDFiBJqbm41fM2bMgEgkwt69ezvUnzJlCtzc3G66T3/9619RUlKCH374AQCg1+vxySef4O6778bAgQON9S5duoTf/e538PX1hUQigVQqxcSJEwGgw3T7qVOn4tChQ6ivr8fly5dx4cIF3HfffRgxYgRSUlIAGD7FDAwMxJAhQ266v0RERNT7JSYmYvLkyZDL5R3GObNmzQIA7Nu374ZtXGs8tWfPHgCGcVd9fb1xLNcmICAAU6ZM6TC24/iFqO9i4oqIrOqDDz7Ac889hy1btmDy5Mlwd3fH/PnzjVO/2zg4OBgveWsjk8mM6zcBQHl5OXx9fSESiTrU8/b2ho2NTafLD3+NtjZ8fX077bu6rLi4GBkZGZBKpR2+nJ2dIQgCysrKOtT38/P7VX2KiYnB+PHj8dFHHwEwDCTz8/PxxBNPGOvU1NRg/PjxOHbsGF577TXs3bsXJ06cwKZNmwCgQ8Jw2rRpaGxsxMGDB5GSkgJPT0/ExMRg2rRpxin4v/zyC6fZExER9WPFxcXYvn17p3FOeHg4AHQa53TlWuOptvFW2/euxkhyubzD2I7jF6K+y8baHSCi/s3R0RGrVq3CqlWrUFxcbJx9NWfOHJw9e/am2vLw8MCxY8cgCEKH5FVJSQmam5vh6ekJAMYE2NULu3cnseXh4QHAsK7D1TQaTYcZTp6enrC3t8cXX3zRZVtt/WlzdcLtZjz55JNYvHgxTp8+jQ8//BBDhw7F9OnTjft3794NlUqFvXv3GmdZAeiwhkSb0aNHw8nJCT///DPy8/MxdepUiEQiTJ06Fe+88w5OnDiBgoICDvyIiIj6MU9PT0RFReGf//xnl/vlcvkN27jWeGrw4MEATOMutVrdqZ5KpeowluL4hajv4owrIuoxfHx88NBDD+G3v/0tcnNzUVdXd1PHT506FTU1NdiyZUuH8q+//tq4v+08dnZ2yMjI6FBv69atNzzHmDFjYGdnh++++65D+eHDhztctggAs2fPxsWLF+Hh4YHY2NhOX+2TXLdqwYIFCAwMxDPPPIOff/4Zy5Yt65AIa3ssk8k6HHf1ou4AIJVKMWHCBKSkpGD37t3GBNj48eNhY2ODf/zjH8aBIBEREfVPs2fPRlZWFkJCQroc53QncXWt8dSkSZMAAHFxcbC3t8e3337boV5RURF2797dYSzC8QtR38UZV0RkVaNHj8bs2bMRFRUFNzc3nDlzBt988w3i4uLg4OBwU2098MAD+Oijj/Dggw8iPz8fkZGROHjwIF5//XUkJCQYP2ETiUS4//778cUXXyAkJATR0dE4fvw4/vOf/9zwHG5ubnj22Wfx2muv4eGHH8bixYtRWFiIV155pdN096eeegobN27EhAkT8PTTTyMqKgp6vR4FBQVITk7GM888g9GjR9/Uc7wWiUSCP//5z3juuefg6OjYaS2IsWPHws3NDY899hhefvllSKVSfPfdd0hPT++yvalTp+KZZ54BAGPc7O3tMXbsWCQnJyMqKgre3t5m6TsRERH1PqtXr0ZKSgrGjh2LJ598EqGhoWhoaEB+fj6SkpKwbt06+Pv7X7eNkydPdhhPvfDCC1AoFFi2bBkAYMCAAXjxxRfx/PPP44EHHsBvf/tblJeXY9WqVbCzs8PLL7/coT2OX4j6JiauiMiqpkyZgm3btuG9995DXV0dFAoFHnjgAbzwwgs33ZadnR327NmDF154AW+99RZKS0uhUCjw7LPPdhrYvPPOOwCAN998EzU1NZgyZQoSExO7NQtq9erVcHR0xMcff4xvvvkGw4YNw7p16/D22293qOfo6IgDBw7g//2//4fPPvsMeXl5sLe3R2BgIKZNm2bWGVcAcO+99+K5557DkiVL4Orq2mGfh4cHduzYgWeeeQb3338/HB0dMW/ePGzYsAEjR47s1FbbYG/IkCEdFp2fNm0a9uzZw2n2RERE/Zyfnx9OnjyJV199FW+99RaKiorg7OyMQYMGYebMmd264cznn3+Ob775Bvfddx8aGxsxefJkvP/++3B3dzfWWblyJby9vfHBBx9gw4YNsLe3x6RJk/D66693WmSd4xeivkkkCIJg7U4QEdGt+9e//oUnn3wSWVlZxoVRiYiIiIiIejMmroiIernU1FTk5eXh0Ucfxbhx4zqt8UVERERERNRbMXFFRBYhCAJaWlquW0cikdzSnfT6upaWFlzvT7RIJIJEIsHAgQOh0Wgwfvx4fPPNN13eWpqIiIioOziGI6KehncVJCKL+OqrryCVSq/7tW/fPmt3s0ebOnXqdeMXEhICAMjPz0dDQwNSUlKYtCIiIqJbwjEcEfU0nHFFRBZRXl6OvLy869YJDQ2Fs7PzbepR75Obm4vq6upr7pfJZIiMjLyNPSIiIqK+jmM4IuppmLgiIiIiIiIiIqIeycbaHegL9Ho9VCoVnJ2dea03ERFRPyMIAqqrqyGXyyEWcxWG7uL4iYiIqH/r7hiKiSszUKlUCAgIsHY3iIiIyIoKCwvh7+9v7W70Ghw/EREREXDjMRQTV2bQdn13frFkOwABAABJREFUYWEhXFxczNq2TqdDcnIy4uPjIZVKzdp2b8NYmDAWJoyFCWNhwDiYMBYmloyFVqtFQEAA13u5SZYcPwF8/bfHWBgwDiaMhQljYcJYmDAWBpaOQ3fHUH0ycfXxxx/jrbfeglqtRnh4ONauXYvx48dfs/6+ffuwfPlyZGdnQy6X4+9//zsee+yxbp+vbXq7i4uLRRJXDg4OcHFx6de/MABj0R5jYcJYmDAWBoyDCWNhcjtiwcvdbo4lx08AX//tMRYGjIMJY2HCWJgwFiaMhcHtisONxlB9biGGDRs24KmnnsILL7yA1NRUjB8/HrNmzUJBQUGX9fPy8pCQkIDx48cjNTUVzz//PJ588kls3LjxNveciIiIiIiIiIja63Mzrt59910sXboUDz/8MABg7dq12LVrFz755BOsWbOmU/1169YhMDAQa9euBQCEhYXh5MmTePvtt7Fw4cIuz9HY2IjGxkbjtlarBWDIRup0OrM+ny8P5eFQnhinEnMgFoshEonQlotsn5S8urxty/C4bUfX5e3ro0P51W2aytG+3HioqN3jzlnTq9voqm1c53noW1qQUyxC5dHLEEvEEARAgGFBt/aP9a33yRQEAQIAfdv+duX69sd2aqN9OSCgtX5rA4LQ2qZxf/vjhdb9AGBqU9+ufQimOgKEm38eMCxoW1spRrYkF4EejvB3s4f/AHv4udrB1qbP5aOvq+13zty/e70RY2HAOJgwFiaWjAXjS0RERH1NUWUddqQr8X2mBLaDSjArSmG1vvSpxFVTUxNOnTqFFStWdCiPj4/H4cOHuzzmyJEjiI+P71A2Y8YMfP7559DpdF1Oh1uzZg1WrVrVqTw5ORkODg638Aw625AlwcVqMaApMmu7vZcEuJRr7U70EGKcPni5Q4kIAlxtAQ8Z4C4T4G5n+N62PUAGSProlSwpKSnW7kKPwVgYMA4mjIWJJWJRV1dn9jaJiIiIbrfL5bXYmaXBzkw10ouutJaKkJSlYeLKXMrKytDS0gIfH58O5T4+PtBoNF0eo9Fouqzf3NyMsrIy+Pn5dTpm5cqVWL58uXG7bUGx+Ph4s6/RUOVxGQdSz2DQwIEQiyUwzL0xzfQxPBaM9a8uF7ooR6fyrtoEcI3yruq3zSJqO8r0uKu61zqncNX5O5br9QJKS0vg7e0NSeutMsUi0+wt0dWPIWrdD+NMLrFIZJzhZZgQZqrTNmOsYxumYwDDPnH7uq1l7ds0Hd92TtPsM5Ho6j5c9fhGz6P1vPqWFhxPz4ajdyCUVxqhrKxHUVU9GnR6VDUBVU3AxerOGSqJWAQ/Fxn83eyhaJ2l5e9m+FIMsIePswxice/KbOl0OqSkpGD69On9+vpzgLFowziYMBYmloxF28xrIiIiot7mUmkNdmZpkJSpRrbKNKYRiYA7gtwQgDI8NWOoFXvYxxJXba6+RE0QhOsu9tVV/a7K28hkMshksk7lUqnU7IPh340OwoDybCTMHMY3HTodkpKSkJAwkrHQ6eBUmoWEhHBjLARBQFlNE4oq61BYWW/4XmH4XlRZD2VlPZpa9CiqakBRVQOQV9mpXVuJGPIBdghwd4C/mwP83exbH9sjwM0Bnk62PXbxYUv8/vVWjIUB42DCWJhYIhaMLREREfUm54urkZSpwc4sNc5qqo3lErEIY4LdMSvCD/HhPnCzkyApKQm+LnZW7G0fS1x5enpCIpF0ml1VUlLSaVZVG19f3y7r29jYwMPDw2J9JTI3kUgEL2cZvJxliAl067RfrxdQUt3YmtiqQ1FFveF7peG7qqoBTS165JfXIb+868te7KRiU0Kri8TWAAdpj01sERERERER9UeCIOCspho7M9VIytLgQkmNcZ+NWISxgz2REOGL6cN94OFkmqTTU9bx7FOJK1tbW4waNQopKSlYsGCBsTwlJQXz5s3r8pi4uDhs3769Q1lycjJiY2P5CSr1KWKxCL6udvB1tUPsQPdO+5tb9NBoGwyJrArTrK2i1llbam0DGnR6XCip6fCHrj0nmY3x0sNOM7bcHeBix98pIiIiIiIiSxMEAdkqLZIy1diZpUFeWa1xn61EjPFDPDGzNVk1wMHWij29sT6VuAKA5cuXY8mSJYiNjUVcXBw+++wzFBQU4LHHHgNgWJ9KqVTi66+/BgA89thj+PDDD7F8+XI88sgjOHLkCD7//HN8//331nwaRLedjaRtNpUDxgR3nm3Y1KyH+kq98fJD42ytCsP3kupG1DQ246ymusN00/Zc7aVdz9Zq/e5g2+f+JBEREREREd0WgiAgrbDKsMB6lhqFFfXGfbY2Ykwa6oWESD9MCfPuVZMK+ty7xHvvvRfl5eVYvXo11Go1IiIikJSUhKCgIACAWq1GQUGBsf6gQYOQlJSEp59+Gh999BHkcjk++OADLFy40FpPgahHsrURI8jDEUEejl3ub9C1QFnV9Wytwsp6VNQ24Uq9DlfqdR0W/WvPw9HWMFvLvfPliIoB9rCTSiz5FImIiIiIiHoVvV7A6YJKJGVq8FOWGqorDcZ9dlIxpgzzxqwIP0we5g0nWe9MAfXOXt/AsmXLsGzZsi73rV+/vlPZxIkTcfr0aQv3iqhvs5NKEOLlhBAvpy731zY2o8i4aLxpba22WVvahmaU1zahvLap3a1XO/J2lnVaV8vXxRb1zZZ8ZkRERERERD1Hi17AifwK7MxU46dsDYq1jcZ9jrYSTAnzQUKELyaGevWJq1p6/zMgol7BUWaDUF9nhPo6d7n/Sr3OeAfEtsRW250RCyvrUNfUgpLqRpRUN+J0QVWHYyUiCZK1qZgdLcfUMB+42veeaa9EREREREQ30tyix7G8CiRlqrErW4OymibjPmeZDaYN98GsCF9MGOrV565UYeKKiHoEV3spXO1dES537bRPEARU1umMiaz2a2xdKKlBUWU9dueWYnduKaQSEcYPMVy7PX04k1hERERERNQ76Vr0OHyxHDtbk1WVdaa7/LnY2SA+3BcJkb4YN9gTMpu+laxqj4krov/P3n3HV1ne/x9/nXOyIXsvshiBJBCGQADZWwQtVq39Ua3WUWv9ql3aah2tpUNba6111FatrbVuZEcZKoS9AiEJkITsPUnIPr8/DuQQ2ZiTk/F+Ph55JOc6932f63w4wJX3fd/XJT2ewWDAZ4ATPgOcGBnm1em55uZmXnt/DfXeQ1mbVsrR0hNsSC9lQ3opjiYDUwb7sTAhmLkjgvB0U4glIiIiIiI9V1NrG1uOlrM6tZjktBJqTlrDKm83R+bFBbEgIZikaF+cHIx27Gn3UXAlIr2awWAgxA0WzhrMj+cPJ7OkjlUHilidWsSR0hNszChjY0YZPzelMrkjxOr5S76KiIiIiEj/0NjSxubMMtYeLObTtBLqmqyT+PoNdGJeXBALE4KZEOWDg6l/hFVnUnAlIn3K0EB3hs5x58E5QzlSUseqVEuIlVlygk0ZZWzKKOPnRgOTB/txTUIwc+MUYomIiIiISPdqaG5lU0YZq1OL2JBeSkNzW8dzgR7OLIgPZkF8EOMifTAZDXbsqf0puBKRPmtIoDsPBLrzwOyhHC2tY3VqMatTi0gvrmNzZhmbM8v4+YcGJg3245qEIOaOCMJ7gEIsERERERHpeieaWtmQXsqa1CI2ZpTS2NLe8VyIpwsLEoJZmBDE6HBvjP08rDqTgisR6RcGB7hz/yx37p81hGNlJ1h9oIhVp0KszzPL+DyzjJ9/eJBJMb4sTAhmXlwQPgqxRERERETka6htbOGzwyWsTi1mc2YZza3WsCrcx5WF8cEsSAhmVJgnBoPCqnNRcCUi/U6M/0B+OGsIP5w1hKyyE6xOLWJVajGHi2r54kg5Xxwp59GPDpIUfTrECsR3oLO9uy0iIiIiIr1AdUMzyWklrDlYzBdHymhpM3c8F+nrxsKEYBYmBBMX4qGw6hIouBKRfi3afyD3zRzCfTOHkF1ebwmxDhSRVlTLl0fL+fJoOY99fJCJ0T4dV2L5KcQSEREREZEzVNY3s/5QMasPFrP1aDmt7dawKsZ/ANckWK6sig1yV1h1mRRciYicEuU3gB/MGMwPZgwmp7y+Y2L3Q4W1bDlawZajFTz20UEmRltvJ/R3V4glIiIiItIfldU1se5QMWsOFrEtq5K2M8Kq2CB3FsRb5qwaEuhux172fgquRETOIfKMEOt4RX3HxO6pBTVsPVbB1mMV/PLjg4yP8uGahGDmxQcR4O5i726LiIiIiIgNldQ2svag5XeDHTmVmK1ZFXEhHixMCGZ+fBAx/gPt18k+RsGViMhFRPgO4PvTY/j+9BhyKxpYfdByJdaB/Bq2ZVWyLauSX644xPhIH64ZafmPSiGWiIiIiEjfUFB9kjWpRaw5WMzu41WdnhsV7sWC+CAWxAcR4TvATj3s2xRciYhchkG+btwzLYZ7psWQV9nA6lO3E+7Pr2F7diXbsyt5fMUhroq0XIm1ID6IAA+FWCIiIiIivUl5I7z6ZTbr0srYn1fd6bmxEd4siA9ifnwQYd5u9ulgP6LgSkTkCoX7uHH3tBjuPhVirTloWZ1wf141O7Ir2ZFdyROfHOKqCB8WJgSxICGYQIVYIiIiIiI9jtls5kjpCdYdLGbtoSIOFToARwAwGOCqSB8WxgcxLz6IYE9X+3a2n1FwJSLSBcJ93Lhragx3TY0hv6qBNanFrEotYl9eNTtyKtmRU8mTK9MYF+HNwoRgFsQHE+SpEEtERERExF7a283sy69m3aFi1h8qIbu8vuM5A2bLokwjQ5gXF6ipQOxIwZWISBcL83bjzqnR3Dk1uuN++NWpRezJrWZnThU7c6p48pM0xp4KsRYm6KyNiIiIiEh3aG5tZ1tWBesOFZOcVkJpXVPHc04mI5MH+zI71h8KDnDjknE4OjrasbcCCq5ERGwq1MuV710dzfeujqaw+iRrTq1Asvt4VcfXr1amMWaQ16kQK5gQL4VYIiIiIiJdpb6plc8zy1h3qJjP0kupa2zteG6gswMzYgOYFxfItKH+uLs40tLSwurSA3bssZxJwZWISDcJ8XLljilR3DEliqKak6xJtYRYu45XsSe3mj251fx61WFGD/KyTOyeEEyoQiwRERERkctWWd/Mp4dLWH+omC+OlNPU2t7xnN9AJ+aMCGRuXBCTYnxxdjDZsadyMQquRETsINjTldunRHH7lCiKaxpZc7CoI8Tam1vN3lMhVmL46RBLK5aIiIiIiFxIQfVJ1h8qZt2hYnZkV9Jutj43yMeNeXGBzIsLYvQgb0xGg/06KpdFwZWIiJ0Febrw3clRfHdyFCW1jafmxCpm5/FK9uVVsy+vmqdXH2ZUmGfH7YThPgqxRERERKR/O3MlwHVpxRwsqO30/PBgj46wKjbIHYNBYVVvpOBKRKQHCfRw4bbJUdw2OYrS2kbWHipm1YEiduRUsj+/hv35NSxfk87IUyHWNQqxRERERKQfueBKgAa4KsKHuafCKo2T+wYFVyIiPVSAhwvfSYrkO0mRlNY1su5gMatSi9iRXcmB/BoO5Nfw2zXpJIRaQqy5w/3s3WURERERkS53sZUApwzxY+6IQGaPCMRvoLMdeyq2oOBKRKQXCHB3YVlSJMuSIimra2LtoWJWHyhie3YFqQU1pBbU8Lu1EDnQRLVfHteNDsfTTUv3ioiIiEjv1NDcyuaMi68EOH1YAAOdFW30ZfrTFRHpZfzdnVk2MYJlEyMoq2ti3SHL6oTbsirIOWHg8U8O8/SaDOYMD2Tp2FCmDvHHwWS0d7dFRERERC5IKwHKuSi4EhHpxfzdnfl/EyP4fxMjKKg8we/f2cDhk55klp5gVWoRq1KL8Hd35rrEEJaODSM2yMPeXRYRERER6aCVAOViFFyJiPQRAe7OzAwx84cFSWSWneS93fms2F9IWV0Tr36RzatfZBMX4sHSMWEsSQzBV/f/i4iIiEg3u9hKgCOCPZgXF8TcuECtBCiAgisRkT7HYDAQH+pJfKgnP184nE0Zpby3O5+NGaUcKqzlUGEav1l9mOnDArhhbCgzYwNxctCthCIiIiJiG1oJUL4OBVciIn2Yk4ORuXFBzI0LorK+mRX7Cnh/TwGpBTV8eriETw+X4O3myOJRllsJE0I9dVZLRERERL42rQQoXUXBlYhIP+EzwInbJkdx2+QoMkvqeH93Ph/uLaC0rok3Uo7zRspxhgQMZOnYMK4fHUqgh4u9uywiIiIivYhWAhRb0CdFRKQfGhroziMLh/OTecP48mg57+8pYP2hYo6UnuC3a9L5/dp0pgzxZ+mYUObFBeHiqFVbRERERORsF14J0PnUSoCBWglQrliXBle1tbUX3+grPDy0wpWIiL04mIxMHxbA9GEB1JxsYXVqEe/vzmfX8So+zyzj88wy3J0dWDQqmKVjwhgb4a1bCUXsTOMtERGxN60EKN2pS4MrLy+vy/qFxmAwkJmZSXR0dFd2Q0REroCnqyPfGj+Ib40fRHZ5PR/syeeDPQUUVJ/k7R15vL0jj0hfN74xJoxvjAklzFsTZ4rYg8ZbIiLS3c5cCXB9WgmpBTWdnj+9EuC8+ECGBWolQOlaXX6r4HvvvYePj89FtzObzSxcuLCrX15ERLpAlN8AfjR3GA/OHsq27Are313AmoNF5FQ08MfkTP6YnMnEaB+WjgljYUIwAzRHgUi30nhLRERsTSsBSk/Rpb9pREREMHXqVHx9fS9p++joaBwdHbuyCyIi0oWMRgOTYvyYFOPHU0viWHuwmPf35LP1WAXbsirZllXJLz8+xIKEIG4YE8bEaF+MuhxcxKY03hIREVtpbYcvjpbzWXr5eVcCnBcXyKzhWglQuk+XBlfZ2dmXtf3Bgwe78uVFRMSGBjg7sHRsGEvHhpFf1cCHewr4YG/BqdsKC/hgTwGhXq5cPzqUpWPDiPIbYO8ui/RJthpvvfjii/zhD3+gqKiIuLg4nnvuOa6++upzbrtp0yZmzJhxVvvhw4eJjY29rP6JiIh9Nba08XlmGasOFLL+oImT2/d0PKeVAKUn6FOfuqqqKu6//35WrFgBwOLFi/nLX/6Cl5fXObdvaWnh0UcfZfXq1WRlZeHp6cns2bP57W9/S0hISDf2XESkdwnzduOHs4Zw38zB7Mmt4r3dBaw8UEhB9Ule2HiUFzYeZcwgL5aODWPRyBA8XXW1h0hP9s477/DAAw/w4osvMnnyZF5++WUWLFhAWloagwYNOu9+GRkZnSZ+9/f3747uiojI19TY0sbmzDJWpxbx2eFSTjS1nnrGgN9AJ+aMCGJeXCBJWglQegCbBVfPP//8OdsNBgMuLi4MHjyYqVOnYjJ13V+CW265hfz8fNauXQvAXXfdxbJly/jkk0/OuX1DQwN79uzhscceY9SoUVRVVfHAAw+wePFidu3a1WX9EhHpqwwGA2MjfBgb4cPj144gOa2E9/fk83lmGXtyq9mTW82Tn6QxZ0QgN4wN4+rBfjiYjPbutkif0VXjrT/+8Y/ccccdfO973wPgueeeY926dfztb39j+fLl590vICDgvCcIv6qpqYmmJustJ6dXR2xpaaGlpeWSjnE5Th/TFsfubVQLC9XBSrWw6k+1aGxp4/Mj5aw5WMLGjDLqm9s6ngvycGbucH+8T+Twveun4+LsZHnC3E5LS7t9OmxH/elzcSG2rsOlHtdmwdWf/vQnysrKaGhowNvbG7PZTHV1NW5ubgwcOJDS0lKio6PZuHEj4eHhX/v1Dh8+zNq1a9m2bRsTJkwA4NVXXyUpKYmMjAyGDRt21j6enp4kJyd3avvLX/7C+PHjyc3NveAZRhER6czF0cS1o0K4dlQIpbWNfLSvgPd3F5BRUseqA0WsOlCEv7uz5VbCMWEMC3K3d5dFer2uGG81Nzeze/duHn744U7tc+fOZevWrRd8/dGjR9PY2MiIESN49NFHz3n74GnLly/nySefPKt9/fr1uLnZblLfr471+jPVwkJ1sFItrPpqLZrb4HC1gX0VBg5VGWhqt85F6uVkJtHXzGjfdgYNbMVoqAcP2PDZp3bscc/SVz8Xl8tWdWhoaLik7WwWXP3mN7/hlVde4e9//zsxMTEAHD16lLvvvpu77rqLyZMnc/PNN/Pggw/y3nvvfe3XS0lJwdPTsyO0Apg4cSKenp5s3br1nMHVudTU1GAwGC549rA7zxgq6bVSLaxUCyvVwqon1cLb1cR3kwZx28Rw0orqeH9vISsPFFFW18Qrn2fxyudZxIW4c31iCNeODMZngFOXvXZPqoO9qRZWtqyFPevbFeOt8vJy2traCAwM7NQeGBhIcXHxOfcJDg7mlVdeYezYsTQ1NfGvf/2LWbNmsWnTJqZOnXrOfR555BEeeuihjse1tbWEh4czd+7cTrcbdpWWlhaSk5OZM2dOv5+cXrWwUB2sVAurvliLk81tbMosY92hUjZmltFwxpVVIZ4uLIgPZH5cIKPCPDEYrEFWX6zFlVItLGxdh9NZysXYLLh69NFHef/99zsGUQCDBw/mmWeeYenSpWRlZfH73/+epUuXdsnrFRcXExAQcFZ7QEDAeQddX9XY2MjDDz/MLbfccsEBlD3OGCrptVItrFQLK9XCqifWYpwBEhMgrdrAjlIDh6oNHCqs41BhBr9Zk06cl5mr/M3EeZtx6KI7CXtiHexFtbCyRS0u9WyhLXTleOvMX14AzGbzWW2nDRs2rNNJwaSkJPLy8njmmWfOG1w5Ozvj7Hz2ClSOjo42/aXA1sfvTVQLC9XBSrWw6u21aGhuZWO6Zc6qDemlnGyxhlWhXq5cMzKYhQnBZ4VV59Lba9GVVAsLW9XhUo9ps+CqqKiI1tbWs9pbW1s7gqSQkBDq6uoueJwnnnjinCHRmXbu3AmcPeCCCw+6ztTS0sLNN99Me3s7L7744gW37c4zhkp6rVQLK9XCSrWw6g21WHzqe2V9MytTi/lwbyEHC2tJrTKQWgXebo4sSgjiG6NDiQtxv6R/v7+qN9Shu6gWVrasxaWeLbSFrhhv+fn5YTKZzjrRV1paetZVWBcyceJE3nrrrUveXkREvp6G5lY2pJeyOrWIjellncKqMG9XrkmwhFUjLyGsEunJbBZczZgxg7vvvpu///3vjB49GoC9e/fy/e9/n5kzZwKQmppKVFTUBY9z3333cfPNN19wm8jISA4cOEBJSclZz5WVlV100NXS0sKNN95IdnY2GzZsuGj4ZI8zhkp6rVQLK9XCSrWw6g21CPRy5I6rY7jj6hgyiuv4YE8+H+4toLSuiX9tz+Nf2/MYGjiQpWPCuH50KAEeLpf9Gr2hDt1FtbCyRS3sWduuGG85OTkxduxYkpOTuf766zvak5OTWbJkySX3Ze/evQQHB1/hOxERkUtR33RGWJVRSuMZE6eH+7iyMCGYaxKCSQhVWCV9h82Cq9dee41ly5YxduzYjgFda2srs2bN4rXXXgNg4MCBPPvssxc8jp+fH35+fhd9vaSkJGpqatixYwfjx48HYPv27dTU1DBp0qTz7nc6tDpy5AgbN27E19f3Ut+iiIh0gWFB7jyycDg/mTeML4+W897ufNanlZBZcoLla9L53dp0rh7iz9KxYcwdEYiLo5ZkFjmtq8ZbDz30EMuWLWPcuHEkJSXxyiuvkJubyz333ANYrjYvKCjgzTffBCyrDkZGRhIXF0dzczNvvfUW77//Pu+//74N362ISP9U39TKZ+mlrD5QxKbMzmHVIB+3jrAqPtRDYZX0STYLroKCgkhOTiY9PZ3MzEzMZjOxsbGd5kO40Mozl2v48OHMnz+fO++8k5dffhmAu+66i0WLFnV6zdjYWJYvX871119Pa2srN9xwA3v27GHlypW0tbV1XCbv4+ODk1PXTRYsIiIX5mAyMn1YANOHBVBzsoVVB4p4f08+u49XsTmzjM2ZZbi7OLBoZDBLx4QxNsJbgzPp97pqvHXTTTdRUVHBU089RVFREfHx8axevZqIiAjAcktibm5ux/bNzc38+Mc/pqCgAFdXV+Li4li1ahULFy7s+jcpItIPnWhq5bPDJaxOLWJTRhlNrdawKsLXGlbFhSiskr7PZsHVadHR0RgMBmJiYnBwsO3L/fvf/+b+++9n7ty5ACxevJgXXnih0zYZGRnU1NQAkJ+fz4oVKwBITEzstN3GjRuZPn26TfsrIiLn5unqyC0TBnHLhEFkl9fzwZ58PthTQEH1Sd7ekcfbO/KI8hvAN0aHcv2YUMK8bbMwhkhv0RXjrXvvvZd77733nM+9/vrrnR7/9Kc/5ac//ekVvY6IiJxbXWMLG9JLWXWgiE2ZZTSfEVZFngqrFiqskn7IZklSQ0MDP/zhD3njjTcAyMzMJDo6mvvvv5+QkBAefvjhLn9NHx+fi04KajabO36OjIzs9FhERHqeKL8B/GjuMB6cPZRt2RW8v7uANQeLyC6v59nkTJ5NziQp2pelY8NYEB+EUxetSijSG9hjvCUiIl2nrrGFTw+XsOpAMZ8f6RxWRfsN6Airhgdf2aI1In2BzYKrRx55hP3797Np0ybmz5/f0T579mwef/xxDaREROSyGI0GJsX4MSnGj6eWxLHmYDHv784nJaui4+uXHx9k3ogAQpoNzG/XiQnp+zTeEhHpfWobW/g0zXIb4OeZ5TS3nRFW+Q/oWA0wNkhhlQjYMLj66KOPeOedd5g4cWKnv2wjRozg2LFjtnpZERHpBwY4O3DD2DBuGBtGflUDH+4p4P09+eRUNPDhviLAxPvPfs51oy2rEg4Lcrd3l0VsQuMtEZHeoeakNaz64kjnsCrmdFg1MphhgQqrRL7KZsFVWVkZAQEBZ7XX19frL6KIiHSZMG83fjhrCPfNHMye3Cr+tzOPFXvzKK5t4qXNx3hp8zGGB3tw/egQFo8KJcjTxd5dFukyGm+JiPRcNSdbSO4Iq8poabNeDT44YGDHBOtDAwfq32yRC7BZcHXVVVexatUqfvjDHwJ0/EV89dVXSUpKstXLiohIP2UwGBgb4cPIEHeuMuXgEjWWT1KL2ZBeyuGiWg4X1bJ8TTqTYny5LjGU+fFBuLs42rvbIl+LxlsiIj1LTUML69OKWZ1axJdHyzuFVUNOh1UjgxkaqKvBRS6VzYKr5cuXM3/+fNLS0mhtbeXPf/4zhw4dIiUlhc2bN9vqZUVERHA0wry4QBYlhlHd0Mzq1GI+2lvAjpxKthytYMvRCh796CBzRgRy/ehQpg71x9GkWd2l99F4S0TE/qobmll/qIRVqUVsOVpO6xnzbA4NtF5ZNURhlcgVsVlwNWnSJLZs2cIzzzxDTEwM69evZ8yYMaSkpJCQkGCrlxUREenEy82JWyYM4pYJg8irbGDF/kI+2JPPsbJ6Vh4oYuWBIrzdHLl2VAjXjQ5ldLiXLteXXkPjLRER+6iqb2Z9WjGrUovZ+pWwalig+6krq4IYHKCwSuTrsllwBZCQkNCxPLOIiIi9hfu48YMZg7l3egwHC2r5aF8BH+8rpPxEE2+mHOfNlONE+LpxXWIo140OJcpvgL27LHJRGm+JiHSPqvpm1h0qZlVqESnHKjqFVbFBlrBqYUIwgwMG2rGXIn1PlwZXtbW1l7yth4dHV760iIjIJTMYDCSEeZIQ5skjC2LZeqyCj/YWsPZQMccrGvjzZ0f482dHSAz34vrRoSwaGYzvQGd7d1sE0HhLRKQ7VZ4Kq1anFrH1WAVtXwmrTq8GGOOvsErEVro0uPLyuvTbK9ra2rrypUVERK6Ig8nI1KH+TB3qz6+bW0lOK+GDPQV8caSMfXnV7Mur5qmVaUwb6s91o0OZMzwQVyeTvbst/ZjGWyIitlVxool1hyyrAaZkdQ6rRgR7cM3IYBbEBxGtsEqkW3RpcLVx48aOn3Nycnj44Ye57bbbOla1SUlJ4Y033mD58uVd+bIiIiJdws3JgSWJoSxJDKWsromVBwr5aG8B+/Nr2JBeyob0UgY4mZgfH8z1o0NJivHFZNR8WNK9NN4SEel6FSea+CyzkNWpRWzLquwUVsWFeHTcBqhpBES6X5cGV9OmTev4+amnnuKPf/wj3/rWtzraFi9eTEJCAq+88gq33nprV760iIhIl/J3d+a7k6P47uQojpWd4OO9BXy4r4C8ypO8vyef9/fkE+DuzJJEy6TuI4I9NKm7dAuNt0REukZVfTOf7M/nX4eMPLhtM2dkVcSHngqr4oOJVFglYlc2m5w9JSWFl1566az2cePG8b3vfc9WLysiItLlYvwH8tDcYTw4Zyh7cqv4YE8BKw8UUVrXxKtfZPPqF9kMDRzIdaMtV2uFernau8vST2i8JSJyeRqaW/n0cCkf7y1gc2bZqQnWjQAkhHqeurIqiAhfhVUiPYXNgqvw8HBeeuklnn322U7tL7/8MuHh4bZ6WREREZsxGAyMjfBhbIQPj18bx6aMUj7aV8Cnh0vJLDnB79dm8Pu1GUyI8uH60aEsSAjG09XR3t2WPkzjLRGRi2tpa+fLo+V8vLeA9WklNDRb5/8bHuTOYKdqHlg6jZhATzv2UkTOx2bB1Z/+9CeWLl3KunXrmDhxIgDbtm3j2LFjvP/++7Z6WRERkW7h5GBkblwQc+OCqDnZwtqDRXy4t4Dt2ZUdX7/8+BCzhgdw3ehQpg/zx9lBk7pL19J4S0Tk3MxmM3tyq/hobyGrUouorG/ueC7cx5Ulo0JZkhhCpI8Lq1evZpCPmx17KyIXYrPgauHChRw5coS//e1vHD58GLPZzJIlS7jnnnt0BlBERPoUT1dHbrpqEDddNYjC6pN8vK+QD/fmk1lygjUHi1lzsBhPV0euGWmZ1H3sIG+MmtRduoDGWyIinWUU1/HxvgJW7C8kv+pkR7vfQCcWjQxhcWIIo8Otq7O2tLTYq6sicom6NLg6cOAA8fHxGI2We4TDwsJ4+umnz7v9oUOHGDZsGA4ONsvPREREulWIlyvfnx7DPdOiOVxUx0f7Cvh4XwEltU38Z3su/9meS5i3K9clhnLd6FAGB2gpbbk8Gm+JiHSWX9XAJ/uL+HhfAenFdR3tA5xMzIsPYkliKJNjfHEwGe3YSxG5Ul06ghk9ejTFxcX4+/tf0vZJSUns27eP6OjoruyGiIiI3RkMBkaEeDAixIOfzY9lW1YFH+4tYO3BYvKrTvLCxqO8sPEoCaGeXDc6lGtHBRPg7mLvbksvoPGWiAhU1jezOtUSVu3MqepodzQZmD4sgCWJIcyKDcTVSbfpi/R2XRpcmc1mHnvsMdzcLu3+4Obm5otvJCIi0suZjAYmD/Zj8mA/fn1dPMlpJXx0ajWj1IIaUgtqeHpVGlOG+HP96BDmjghigLOujpFz03hLRPqrhuZWktNK+HhfIZ93rAgIBgNMiPLhusRQFsQH4+mmhVFE+pIuHRVPnTqVjIyMS94+KSkJV1ctGS4iIv2Hi6OJa0eFcO2oECpONLEq1TKp+97caj7PLOPzzDJcHQ8yLy6Q60aHMmWwn25tkE403hKR/qSlrZ0vjpTx8b5C1h8q4WSLdUXAuBAPrksMZdGoYII99e+cSF/VpcHVpk2buvJwIiIifZrvQGe+kxTJd5IiySmv56N9BXy0t4CcigY+2lfIR/sK8RvoxLWjQrh+dCgJoZ4dk8lK/6Xxloj0de3tZnbnVvHxvgJWHSiiqsE6gXqErxtLRlkmWR8c4G7HXopId9F9CCIiIj1ApN8AHpg9lP+bNYR9edV8tLeATw4UUX6imX9uyeGfW3KI9h/A9acmdQ/Xst0iItLHpBfX8vG+QlbsK6Sg+uwVAZckhpB4xoqAItI/KLgSERHpQQwGA6MHeTN6kDePLhrBF0fK+HBvIesPFZNVVs+zyZk8m5zJuAhvrhsdyjUJwXgPcLJ3t0VERK5IflUDK/YX8vHeQjJKrCsCDnR2YF5cENeNDiEpWisCivRnCq5ERER6KEeTkZmxgcyMDaSusYV1hyyTum85Vs6u41XsOl7Fk58cYvqwAK4fHcrM2ABcHLV6koiI9GyV9c2sSi3i470F7DpuXRHQyWRk+jB/rtP/aSJyBgVXIiIivYC7iyM3jA3jhrFhFNc08sn+Qj7cW0BaUS3JaSUkp5Xg7uLANQnBXDc6lPGRPvbusoiISIf6ptMrAhbwxZHyTisCJkX7siQxhPlxWhFQRM6m4EpERKSXCfJ04c6p0dw5NZqM4jo+2lfAx3sLKKxp5L878/jvzjxCPF1YNDII7wZ791ZERPqrlrZ2Ps+0rAiYnNZ5RcCEUE+WJIawaGQIQZ4uduyliPR0Cq5ERER6sWFB7vxsfiw/mTuMHTmVfLS3gFWpRRTWNPLKFzmAAx8Xb2XJ6DAWJ4YQ6qXlwkVExHba283sOm5ZEXB1aucVASN93VicGMqSxBBi/AfasZci0psouBIREekDjEYDE6N9mRjtyxOL49iYXsoHe/LZkF5CeskJ0tem87u16YyP9GHJ6BAWxmtSdxER6Rpms5n04jo+3lfIJ/u/uiKgM9eOCua6xFBGhnlqRUARuWwKrkRERPoYF0cTCxKCmR3rx3srVtMWMpKVqcVsz65kR47l64kVh5g21J/FiaHMGR6Iq5MmwBURkcuTV3lqRcB9BWSWnOhod3d2YH58EEsSQ0mK8cVkVFglIldOwZWIiEgf5uYAC8eF8f+SoiiqOckn+wv5aG8haUW1fHq4lE8Pl+LmZGJeXBBLEkOYMthPS46LiMh5VZxosqwIuK+Q3V9ZEXBmbABLEkOYoRUBRaQLKbgSERHpJ4I9Xblragx3TY3hSInllo6P9xeQV3mSD/cW8OHeAnwHOLFoZDCLE0MZM8hLt3SIiAgnmlpJTivm432FfHGknLYzVgScFOPLklGhzIsPwtNVKwKKSNdTcCUiItIPDQl058fzhvGjuUPZk1vNin0FrDxQREV9M2+kHOeNlOOE+7iyZFQo140OYXCAu727LCIi3ai59dSKgPsLSU4rprGlveO5UWGeLE4MZdHIYAI9tCKgiNiWgisREZF+zGAwMDbCm7ER3jy6aARbjpazYl8h6w4Vk1d5khc2HuWFjUcZEezBdaNDuHZUCMGeWplQRKQvam83szOnko/2FbI6tYiak9YVAaP8BrAkMYTFo0KI1oqAItKNFFyJiIgIAI4mI9OHBTB9WAAnm9v49HAJH+8rYFNGGWlFtaQV1bJ8TToTonxYkhjKwvhgPN10W4iISG9mNps5XFTHx/sL+GRfIYU1jR3PBbg7c+2oEK5LDCU+1EO3j4uIXSi4EhERkbO4Opm4dpTlCquq+mZWHyzi472F7MipZFuW5euXHx9k+rAArksMZdZwTcQrItKbVDTCi5uyWJlazJHSM1YEdHFgQXwQ1yWGMiFaKwKKiP0puBIREZEL8h7gxLcnRPDtCREUVJ9kxT7L0ufpxXUkp5WQnFbCQGcH5sYFcl1iKJNifLUyoYhID2E2mymra+JQUS1phZarZ9MKasiucACOAuDkYGT28AAWjwpl+jB/nYgQkR5FwZWIiIhcslAvV74/PYbvT48ho7iOj/cV8PG+QgqqT/LBngI+2FOA30BnFo0MZkliCInhWplQRKS7tLa1k11ebwmnToVUh4tqKT/RfNa2BsxMivHjutGWFQE9XHTrt4j0TH0quKqqquL+++9nxYoVACxevJi//OUveHl5XdL+d999N6+88gp/+tOfeOCBB2zXURERkT5gWJA7P50fy4/nDmNPbhUf7Stg1YEiyk808frWHF7fmkOkrxuLE0NZkhhCjCbzFRHpMvVNraQXn3EVVWEt6cV1NLW2n7Wt0QAx/gMZEeLBiGAPhgYMoOjQdr65ZCyOjgqsRKRn61PB1S233EJ+fj5r164F4K677mLZsmV88sknF933o48+Yvv27YSEhNi6myIiIn2K0WhgXKQP4yJ9ePzaOL44UsbH+wpZf6iEnIoGnv/sCM9/doSEUE+WJFrmzdLy6SIil8ZsNlNa19QpoEorqiWnoh6z+ezt3ZxMDA+2BFSng6phQe6dbv9raWlhdWY3vgkRka+hzwRXhw8fZu3atWzbto0JEyYA8Oqrr5KUlERGRgbDhg07774FBQXcd999rFu3jmuuueair9XU1ERTU1PH49raWsDyH0BLS8v5drsip4/X1cftjVQLK9XCSrWwUi0sVAcre9Xi6hgfro7xoX5RLJ+ll/HJgSK+PFpBakENqQU1PL36MBOjfLh2ZBDzRgTi4Wr7s/22rIU+ayLSVc51q19aYS0V9Wff6gcQ6OF8RkDlyYgQDyJ83DBqQnUR6UP6THCVkpKCp6dnR2gFMHHiRDw9Pdm6det5g6v29naWLVvGT37yE+Li4i7ptZYvX86TTz55Vvv69etxc3O7sjdwEcnJyTY5bm+kWlipFlaqhZVqYaE6WNmzFg7A9b4wxwP2VRjYVW4ku85ASlYlKVmVPPbxIeK8zYz1MxPnbcbRxnO626IWDQ0NXX5MEen7vs6tfiNCPBge7IHfQGc79FxEpHv1meCquLiYgICAs9oDAgIoLi4+736/+93vcHBw4P7777/k13rkkUd46KGHOh7X1tYSHh7O3Llz8fDwuLyOX0RLSwvJycnMmTOn399/rlpYqRZWqoWVamGhOlj1tFrceOp7ftVJVh4oYsWBIo6U1nOg0sCBShjo7MC8uACuHRnMxCifLl2C3Za1OH3ltYjIudjiVj8Rkf6kxwdXTzzxxDmvbjrTzp07Ac65apHZbD7vaka7d+/mz3/+M3v27LmsFY+cnZ1xdj777Iajo6PNfjGw5bF7G9XCSrWwUi2sVAsL1cGqp9UiKsCRH8724L5ZQ0kvruOjfQV8sq+QwppG3t9TyPt7CvF3d+bakSFcNzqEhFDPLluZ0Ba16Em1FRH70q1+IiJdr8cHV/fddx8333zzBbeJjIzkwIEDlJSUnPVcWVkZgYGB59zviy++oLS0lEGDBnW0tbW18aMf/YjnnnuOnJycr9V3EREROT+DwcDwYMvtLj+bF8vOnEo+3l/I6tQiyuqa+MeWbP6xJZtovwEsTgxhSWIoUX4D7N3tPuvFF1/kD3/4A0VFRcTFxfHcc89x9dVXn3f7zZs389BDD3Ho0CFCQkL46U9/yj333NONPRaxL93qJyLSPXp8cOXn54efn99Ft0tKSqKmpoYdO3Ywfvx4ALZv305NTQ2TJk065z7Lli1j9uzZndrmzZvHsmXL+O53v/v1Oy8iIiKXxGg0MCHalwnRvjxxbRyfZ5bx0b4CPj1cQlZ5Pc99eoTnPj3CqDBPFieGcu2oYALctTJhV3nnnXd44IEHePHFF5k8eTIvv/wyCxYsIC0trdMJvtOys7NZuHAhd955J2+99RZbtmzh3nvvxd/fn6VLl9rhHYjYjm71ExGxrx4fXF2q4cOHM3/+fO68805efvllAO666y4WLVrUaWL22NhYli9fzvXXX4+vry++vr6djuPo6EhQUNAFVyEUERER23FyMDJ7RCCzRwRyoqmV9YeK+XhfIV8eLWd/fg3782t4elUak2L8WJIYwrz4IDxcdLve1/HHP/6RO+64g+9973sAPPfcc6xbt46//e1vLF++/KztX3rpJQYNGsRzzz0HWMZhu3bt4plnnlFwJb2abvUTEel5+kxwBfDvf/+b+++/n7lz5wKwePFiXnjhhU7bZGRkUFNTY4/uiYiIyGUa6OzAN8aE8Y0xYZTVNbE6tYiP9xWwJ7eaL4+W8+XRcn7x0UFmDw9g8ahQZsT64+ygqxouR3NzM7t37+bhhx/u1D537ly2bt16zn1SUlI6xlunzZs3j9dee42WlpZzzvvV1NREU1NTx+PTk9q3tLTQ0tLydd/GWU4f0xbH7m1UC4uv1qG+qZWMkhMcLqrlcHEdh4vqyCg5cd5b/aL9BjA82N3yFeTB8KCB+J7jVr+2tlba2mz7Xr4ufSasVAsr1cJKtbCwdR0u9bh9Krjy8fHhrbfeuuA25nNdz3sGzWslIiLSM/m7O3PrpEhunRRJbkUDH+8r4KN9BRwrq2d1ajGrU4txd3FgYXwwS0aHMCHKt0tXJuyrysvLaWtrO2tO0MDAwPOuzFxcXHzO7VtbWykvLyc4OPisfZYvX37OBXfWr1+Pm5vb13gHF5acnGyzY/c2faEW7WZobYfWc3xv63hsOO82Da0G/vnXzyioN1DeCGbO/jfCyWgmdACEupkJHWD5CnYFJ1MNUAO1UFsL2zO7//13tb7wmegqqoWVamGlWljYqg4NDQ2XtF2fCq5ERESkfxjk68YPZw3hvpmDOVRYy4r9hazYV0hxbSPv7MrjnV15BHm4cO2oYJYkhjLU39XeXe7xvrpy44VWZj7f9udqP+2RRx7hoYce6nhcW1tLeHg4c+fOxcPD40q7fU5ZZfW88kUWRYUFRA4Kx9HBhIPRgNFgwMFowHTqy8FowGQyYDKc8dho7PjZaLRuf+b3M9vPfK7jOKbT7cZT7XQ67pnH6Q4tLS0kJyczZ86cy14Fs7Wtnea2dppbzae+n/pqO/f3pnM+bz73Puc9jnX7llPfTx+3tf3CJ6EvV6C7M7HB7owIcu+4mmqQd9+/1e/rfCb6GtXCSrWwUi0sbF2H01dfX4yCKxEREem1DAYD8aGexId68rP5sezIruTjfQWsTi2iuLaRV7/I5tUvLCsTxroaSGpoJsCz/w5Az8XPzw+TyXTW1VWlpaXnXZk5KCjonNs7ODicNX/oac7Ozjg7n31blaOjY5cPhisaWnl/bxFgZGtJQZceu6udFYyZjJ0CNmsIdip4M1nCta/u1zkUM3a0mYwGDJjJyTWyvu4wLe2WAKqp5dwBkiUgaut43MU5UZdzcjDibDLi5HDGl+nsn50dLDWrLC1i+phhJIR5a1U/bPP3r7dSLaxUCyvVwsJWdbjUYyq4EhERkT7BZDSQFONLUowvTy6JY1NGGSv2FXasTJiDkcd6+m/hduDk5MTYsWNJTk7m+uuv72hPTk5myZIl59wnKSmJTz75pFPb+vXrGTduXI8Y4If7uPHQ7MGkZ2QQHTMEs8FAa7uZtjYzre1m2s3mTo/b2ttpM0NbezutbWba2k+3W79a29vP0975+c5t1u3Op/XUdk3n3aKrGKHs3Ld+XvIRDJwRBplwPkdQdN62TmGSqVPQ5HyOoOnMxy6OZ+/jZDLiaDJc8KrAr2ppaWH16gIWTonqEZ9TERG5NAquREREpM9xdjAxLy6IeXFB1DW2sPpAAZ9tT+33V1ecz0MPPcSyZcsYN24cSUlJvPLKK+Tm5nLPPfcAltv8CgoKePPNNwG45557eOGFF3jooYe48847SUlJ4bXXXuPtt9+259voEO7jxvenRbO6Pp2FswbbPaQwm82n5mY6I/w6Z4h2djh2rmDs7HCsnbb2U8Hb6fZTAVyb2UxzSytHMzMYGT8CV2fHM65COiN8OseVSl99zsFktGsdRUSkf1JwJSIiIn2au4sj3xgdikvRfnt3pce66aabqKio4KmnnqKoqIj4+HhWr15NREQEAEVFReTm5nZsHxUVxerVq3nwwQf561//SkhICM8//zxLly6111vo0QyG0/Nc2WfFy5aWFkuIlxRh9xBPRETkcim4EhERERHuvfde7r333nM+9/rrr5/VNm3aNPbs2WPjXomIiEh/p+t9RURERERERESkR9IVV13g9PLPl7qU4+VoaWmhoaGB2trafn9pt2phpVpYqRZWqoWF6mClWljZshan//8/PR6QS2PL8RPo838m1cJCdbBSLaxUCyvVwkq1sLB1HS51DKXgqgvU1dUBEB4ebueeiIiIiL3U1dXh6elp7270Gho/iYiICFx8DGUw6/Tg19be3k5hYSHu7u6XtSTvpaitrSU8PJy8vDw8PDy69Ni9jWphpVpYqRZWqoWF6mClWljZshZms5m6ujpCQkIwGjULw6Wy5fgJ9Pk/k2phoTpYqRZWqoWVamGlWljYug6XOobSFVddwGg0EhYWZtPX8PDw6Nd/Yc6kWlipFlaqhZVqYaE6WKkWVraqha60unzdMX4Cff7PpFpYqA5WqoWVamGlWlipFha2rMOljKF0WlBERERERERERHokBVciIiIiIiIiItIjKbjq4ZydnXn88cdxdna2d1fsTrWwUi2sVAsr1cJCdbBSLaxUi/5Hf+ZWqoWF6mClWlipFlaqhZVqYdFT6qDJ2UVEREREREREpEfSFVciIiIiIiIiItIjKbgSEREREREREZEeScGViIiIiIiIiIj0SAquRERERERERESkR1JwJSIiIiIiIiIiPZKCKxERERERERER6ZEUXImIiIiIiIiISI+k4EpERERERERERHokBVciIiIiIiIiItIjKbgSEREREREREZEeScGViIiIiIiIiIj0SAquRERERERERESkR1JwJSIiIiIiIiIiPZKCKxERERERERER6ZEUXIlIn7Jp0yYMBgPvvffeRbe97bbbiIyMtH2nLuJ0nzdt2tTRtnr1ap544okrPmZkZCSLFi36+p0TERGRfq83jq/O51zjrieeeAKDwWC/TonIBSm4EpF+67HHHuPDDz+0dzcYM2YMKSkpjBkzpqNt9erVPPnkk3bslYiIiMjl6ynjKxHpOxzs3QERkUvV0NCAm5tblx0vJiamy471dXh4eDBx4kR7d0NERET6od4+vjKbzTQ2NuLq6tqtrysi3UdXXIlIj3T6ku09e/Zwww034O3tfVkDoZaWFn7xi18QEhKCh4cHs2fPJiMjo9M257qU3WAwcN999/Hyyy8zdOhQnJ2dGTFiBP/9738v+z1c6rG+esn6bbfdxl//+teOY5z+ysnJAaC9vZ2//OUvJCYm4urqipeXFxMnTmTFihVn9WHt2rWMGTMGV1dXYmNj+cc//nHZ70NERET6hr40vnrppZcYPnw4zs7OvPHGGwB8+eWXzJo1C3d3d9zc3Jg0aRKrVq267NcQkZ5FV1yJSI/2jW98g5tvvpl77rmH+vr6S97v5z//OZMnT+bvf/87tbW1/OxnP+Paa6/l8OHDmEymC+67YsUKNm7cyFNPPcWAAQN48cUX+da3voWDgwM33HDDZfX/So712GOPUV9fz3vvvUdKSkpHe3BwMGAZEL711lvccccdPPXUUzg5ObFnz56OYOu0/fv386Mf/YiHH36YwMBA/v73v3PHHXcwePBgpk6delnvQ0RERPqO3j6++uijj/jiiy/45S9/SVBQEAEBAWzevJk5c+YwcuRIXnvtNZydnXnxxRe59tprefvtt7npppsu6zVEpOdQcCUiPdqtt956RXM9jRgxgrfeeqvjsclk4sYbb2Tnzp0XvS2vvLycnTt3EhgYCMDChQuJj4/nkUceueyB1ZUcKyYmpmP7r/b1iy++4F//+he/+MUv+PWvf93RPn/+/HO+9pYtWxg0aBAAU6dO5bPPPuM///mPgisREZF+rLePr06cOEFqaire3t4dbUlJSXh7e7Np0yYGDhwIwKJFi0hMTOTHP/4xN954oyZgF+mldKugiPRoS5cuvaL9Fi9e3OnxyJEjATh+/PhF9501a1bHoAosg7KbbrqJo0ePkp+ff1n96MpjAaxZswaAH/zgBxfdNjExsSO0AnBxcWHo0KGXVAMRERHpu3r7+GrmzJmdQqv6+nq2b9/ODTfc0BFanX6NZcuWkZ+ff9YtjSLSeyi4EpEe7fTtcZfL19e302NnZ2cATp48edF9g4KCzttWUVFxWf3oymMBlJWVYTKZznncr/pqDcBSh0upgYiIiPRdvX189dX+V1VVYTabz/m+QkJCrug1RKTnUHAlIj2aPS7pLi4uPm/bucKg7joWgL+/P21tbec8roiIiMil6O3jq6/239vbG6PRSFFR0VnbFhYWAuDn53dZryEiPYeCKxGRr/jss88oKSnpeNzW1sY777xDTEwMYWFh3XKs853BXLBgAQB/+9vfLqsfIiIiIvbUleOrrxowYAATJkzggw8+6DR2am9v56233iIsLIyhQ4d+rdcQEfvR5OwiIl/h5+fHzJkzeeyxxzpWvUlPT7+iJZuv9FgJCQkA/O53v2PBggWYTCZGjhzJ1VdfzbJly/j1r39NSUkJixYtwtnZmb179+Lm5sYPf/jDK3rPIiIiIrbUleOrc1m+fDlz5sxhxowZ/PjHP8bJyYkXX3yRgwcP8vbbb2tidpFeTMGViMhXLF68mLi4OB599FFyc3OJiYnh3//+9xUto3ylx7rlllvYsmULL774Ik899RRms5ns7GwiIyN5/fXXGTNmDK+99hqvv/46rq6ujBgxgp///OdX+pZFREREbKorx1fnMm3aNDZs2MDjjz/ObbfdRnt7O6NGjWLFihUsWrSoS15DROzDYDabzfbuhIhIT2EwGPjBD37ACy+80KOOJSIiItJbaUwkIl+H5rgSEREREREREZEeSbcKikivYDabaWtru+A2JpOpW+YvaG1tveDzRqMRo1HnBURERKRn0/hKRHoD/c0XkV5h8+bNODo6XvDrjTfe+NqvYzabL3oZ+8X6cfvtt1/ysURERETspTeOr0Sk/9EcVyLSK9TV1ZGRkXHBbaKiovD19bV5X3bt2nXB5/38/IiMjLR5P0RERES+Do2vRKQ3UHAlIiIiIiIiIiI9kua46gLt7e0UFhbi7u7eLfd/i4iISM9hNpupq6sjJCRE869cBo2fRERE+rdLHUMpuOoChYWFhIeH27sbIiIiYkd5eXmEhYXZuxu9hsZPIiIiAhcfQym46gLu7u6ApdgeHh5deuyWlhbWr1/P3LlzcXR07NJj9zaqhZVqYaVaWKkWFqqDlWphZcta1NbWEh4e3jEekEtjy/ET6PN/JtXCQnWwUi2sVAsr1cJKtbCwdR0udQyl4KoLnL683cPDwybBlZubGx4eHv36LwyoFmdSLaxUCyvVwkJ1sFItrLqjFr39drcXX3yRP/zhDxQVFREXF8dzzz3H1Vdffd7tN2/ezEMPPcShQ4cICQnhpz/9Kffcc88lv54tx0+gz/+ZVAsL1cFKtbBSLaxUCyvVwqK76nCxMZSCK5Eezmw209puprXNTGt7O61tZk42NVPTDGV1TTg6tmMwgAHLX3gDYDzV8NV2y2OD5fuZP391m17+y5eIiFyed955hwceeIAXX3yRyZMn8/LLL7NgwQLS0tIYNGjQWdtnZ2ezcOFC7rzzTt566y22bNnCvffei7+/P0uXLrXDO+issaWN0ppGTrRAfVMrA40mHEyaf0xERKQ3UnAlfYrZbKblVMDT0mamta2dtnYzLe2Wn1vOCH9av9p2Ohxqa+/Y/szA6PTxztt26ridj3eqrdPxLN8vuO9X+nluDvxy92ab1fJ8oRcGMJ4n9OKMx0ZD533ptL0lXDu9bcfrnXFc4zmOeXb4ZsCAmYGtRgwHi5k+PAgPl/57RkRE5Er98Y9/5I477uB73/seAM899xzr1q3jb3/7G8uXLz9r+5deeolBgwbx3HPPATB8+HB27drFM888c97gqqmpiaampo7HtbW1gOVsbktLS5e+n905lXz7tV2AA7/YtQEAk9GAs4MRZwcjTqe+W75M52g34exo/Eq76Yx9zmh3PLvd2cH0ldcw2jU4O13frq5zb6M6WKkWVqqFlWphpVpY2LoOl3pcBVfS5drbzTS1ttPY0sbJU1+NHV/tnGw+R9upn09+ZbvG1jbL9xbL98paE78//Dmt7WZLIPWVoOm8GU8fZMAMBgNmG71nsxnMp3+wttrmxb42IzveOYCDMZVxkd7MGBbAzNgABgcM1NVjIiIX0dzczO7du3n44Yc7tc+dO5etW7eec5+UlBTmzp3bqW3evHm89tprtLS0nPN2guXLl/Pkk0+e1b5+/Xrc3Ny+xjs4W0aNAZPBSJvZ+n9AW7uZhuY2GprbuvS1LpURMw5GcDRi+W6g82OjGQfDmY+/uo3Z8v0r2zgYztj/K/uc+VomIyQnJ9vlvfc0qoOVamGlWlipFlaqhYWt6tDQ0HBJ2ym46ifMZjPNbe00trR3hEDWUKi9U2h0ssXadnrbs9rOtd2pbZta2234TgzQ2HhZexgN4GAy4mg0WL6bDJiMBhyMlp8dTEYcjAYcTGe0GY2nHlv3Oavt1PeOtq8cz9FkxGQ0dNr3gm0djy3PmU4dw8Fkfe50W3tbK6tXr2bhwoUdvxyYzeaOsKm942dzR+50+nG7+dS2p9o4Y7v2M9rNlic6HlufO/uYX90XrH3peO5S+3PGvu3tF+9PQ2Mz72zcQ27LQLLKG9iWVcm2rEqWr0knzNuVmbEBzIgNICnaFxdH0xV+7kRE+q7y8nLa2toIDAzs1B4YGEhxcfE59ykuLj7n9q2trZSXlxMcHHzWPo888ggPPfRQx+PTE7LOnTu3y+e4Wgjc19LCuvXJTJ0xk3ZMNLVaxihNre00n/re0dbSfsZz1u3O/Gpubeu03en9m9vaaT6r3fJcS5v1hE87Bprbofm8wyTbnmgxGcwMcHbEzcmEm5MDA5xNuDqaTj22tFl/NuHqZGLAqfbTP5/efoCzQ8fPTg695xbMlpYWkpOTmTNnTr+eswZUizOpFlaqhZVqYWHrOpy++vpiFFydcrkTknaX7dmV7CozcGJXPi3tcPIrQZHle+eQ6XyBlD2uRnIyGXFxNOLiaBkAuTiYcHEy4eJgxPXUAMil48uIq+MZbV/ZzsFgZs/O7Vw9ZTIuTo6dg6ZTQZLpq0GT0YDR2PeuuGk/x8lig8HA6YuLTDYe/PYkLS0tNGe3s3DhFAprm9mYXsqGjDK2Hasgv+okb6Yc582U47g4Gpkc48f0WMvVWKFervbuuohIj/LVK1TNZvMFr1o91/bnaj/N2dkZZ2fns9odHR1t9kuB0QAebi52+6Wjvd1y4tASeLV1BFqNLecKzs4IzFraOgVgTZewffM5tm9us6ZkbWYDtY2t1Da2Ak3n7/RlcjAarGGWk4kBZwRdbs4OuDme+dwZAdmp59ycLft8tc3JZLTZVdO2/Mz1NqqFlWphpVpYqRYWtqrDpR5TwRWXPyFpd/rTp0fZnWuCo2lddkyjAUtA5GQNjVxPBUcuZwRHHW1O52g7c7tTgZSrk/ErxzNh6sLQqKWlheoMGBXmqX885JwifAdw2+QobpscRUNzK1uOVrAhvZRNGaUU1TTyWXopn6WX8hgwLNCdGadCrDGDvDRpr4j0W35+fphMprOuriotLT3rqqrTgoKCzrm9g4MDvr6+Nutrb2M0GnAxmk5d8dv9Y5fTwVldQxOr1iUzcco0mts5dctkK/VNlpOd9c2tHW0NzW00NFnaTj9n+d5GQ1MrDS2W50+HYq3t5jMCsa7jYDR0BGGWUMsaep0rHHNztl4x1ikIO6PN0dBusykWRETEdhRccfkTknan+FAP6moqCQsKxPXUZdlnXpnk3ClAMp7ddsb2LqcCJkeTQfP+SJ/n5uTAnBGBzBkRiNlsJr24jg3ppWxML2VPbhUZJXVklNTx0uZjeLo6MnWoPzNj/Zk2NACfAU727r6ISLdxcnJi7NixJCcnc/3113e0Jycns2TJknPuk5SUxCeffNKpbf369YwbN04nl3qQ08GZyc0Rb2eI8R/QZX8+LW3tZ4VdHT+fDsPOCLo6wrLmNk6eCs0sz7V2eq651RqI1TW2UtfFgZijwcR/S3YyebA/kwb7MjLMC0edvBIR6dH6fXB1JROSdueqOD+bE0MyWcyZE981Aw1zG61d+/9/t9HKDlaqhdWl1mKwnyuDp0Rw15QIqhqa+eJIBZsyy/jiSAXVJ1v4ZH8hn+wvxGCAxDBPpg31Z/pQP0YEu/eaoFefCwvVwUq1sLJlLfpCfR966CGWLVvGuHHjSEpK4pVXXiE3N5d77rkHsMxPVVBQwJtvvgnAPffcwwsvvMBDDz3EnXfeSUpKCq+99hpvv/22Pd+GdCNHkxFPVyOerl0bVLa2tZ8RdnUOwk42t1HfZG1rOONKsfqmc7edbLHsc3oO1hazgW3ZVWzLruLZZHBzMnFVpA+TYnyZFOPHiBCPLr1jQEREvr5+H1xdyYSk3bkqzmlazcBKtbBSLawutxYOwOwBMHMUHD8Bh6qMpFUZKGgwsDevhr15NTz32VE8Hc2M8LZ8DfM049wL5nfX58JCdbBSLaxsUYtLXRGnJ7vpppuoqKjgqaeeoqioiPj4eFavXk1ERAQARUVF5ObmdmwfFRXF6tWrefDBB/nrX/9KSEgIzz//PEuXLrXXW5A+wsFkxMNkxMOlawOxtnYzNfWNvLtyPS6DEtiRU01KVgWV9c1szixjc2YZAB4uDkyI9u0IsoYGaoViERF76/fB1WmXMyFpd66Ko9UMrFQLK9XCqqtrUVTTyObMcjZllrH1WAU1Le2klBpIKQVHk4HxkT5MG+rHjGF+RPoO6IJ30HX0ubBQHaxUCytb1uJSV8Tp6e69917uvffecz73+uuvn9U2bdo09uzZY+NeiXQNk9GAu4sDQW6wcHw4t06Opr3dTEZJHVuPVZByrILtWRXUNraSnFZCcloJAH4DnZgYbQmxkmJ8ifR1U5AlItLN+n1wdSUTktpjVRytZmClWlipFlZdVYtBfo4s83Nn2aQoGlva2JFdaZkbK6OU4xUNbDlWwZZjFfxmTQZRfgOYMcwywfv4KJ8esyS4PhcWqoOVamFli1qotiK9k9FoYHiwB8ODPbhjShStbe0cKqxl67EKth4rZ2dOJeUnmll5oIiVB4oACPZ0IenU1ViTYnwJ0SrFIiI21++DqyuZkFRE+gcXRxNTh/ozdag/j5tHkFVez8b0Ujakl7Iju5Ls8nqyy7P5x5ZsBjiZmDLEj5mxAUwfFkCgh4u9uy8iIiKXwcFkZFS4F6PCvfj+9BiaW9vZl1dNyqkga29uNUU1jXywp4AP9hQAEOnrRtKpq7GSon3xdz/75LaIiHw9/T64gotPSCoiYjAYiPEfSIz/QL53dTR1jS1sOVp+6mqsMsrqmlh3qIR1hyy3FsSFeDAzNoAZsQGMCvPSRK8iIiK9jJODkfFRPoyP8uH/Zg/hZHMbu49XsfVYOSlZFRzIryGnooGcilze3mGZA25o4MCO2wonRvni6aYrMkVEvi4FV1x8QlIRka9yd3Fkfnww8+ODaW83c6iwlg3ppWzIKOVAfjWHCms5VFjLXzYcxWeAE9OH+jMjNoCpQ/27fAUmERERsT3XU1dXTxniB0BdYws7cyrZerSCrccqSCuqJbPkBJklJ3h9aw4Gg+VE1ukga3ykDwOc9euXiMjl0r+cp1xoQlIRkQsxGg0khHmSEObJ/80eQvmJJjZllLExo5TPM8uorG/mg70FfLC3AJPRwNgI7465sbRakYiISO/k7uLIzNhAZsZa5sWtqm9me3bFqTmyKjhaeoKDBbUcLKjllc+zcDAaGBXuxaRTtxWOifDGxbEXLFcsImJnCq5ERLqY30Bnbhgbxg1jw2hpa2f38aqOubGOlJ5gR3YlO7Ir+d3adEK9XJkR68/M2ACSov1wddIAVkREpDfyHuDUcTU2QGltIylZFZYrsrLKyas8ye7jVew+XsVfNhzFycHI2EHeTIrxZdJgX0aGeeFo6hkLvYiI9CQKrkREbMjRZGRitC8To315ZOFw8iob2JhRysb0UrYeq6Cg+iRvbcvlrW25ODsYmRTjy4zYAGYMCyDcx83e3RcREZErFODhwpLEUJYkhgKQV9lASlZFx2TvJbVNlsdZFTybDG5OJq6K9LEEWTF+jAjx0ByZIiIouBIR6VbhPm58JymS7yRFcrK5jZSsUxO8p5dRUH2SjRllbMwoAw4xJGBgxwTvYyO8dRZWRESkFwv3cSPcx40bx4VjNpvJKq9n67EKth2zhFeV9c1szixjc2YZAB4uDkyM9rXcWhjjp+kFRKTfUnAlImInrk6mjrkxzGYzmSUnTq1SWMru41UcKT3BkdITvPx5Fu4uDkwd6s/MYQFMH+aP70Atty0iItJbnbla8bKJEbS3m8koqWPrsQpSjpWzPauS2sZW1qeVsD7NsmKx30CnU0GWH5NifInwdVOQJSL9goIrEZEewGAwMCzInWFB7nx/egw1DS18fqSMjemlbDo1wfuqA0WsOlCEwQCjwrw6JniPC/HAqFsJREREei2j0cDwYA+GB3twx5QoWtvaOVRYe2qi93J25lRSfqKZlQeKWHmgCIAQTxcmxliDrBAvVzu/CxER21BwJSLSA3m6OXLtqBCuHRVCW7uZ/fnVbDx1NdbBglr25VWzL6+aP32aib+7MzOG+TN1sC/NbfbuuYiIiHxdDiYjo8K9GBXuxfenx9DU2sb+vBq2Hisn5VgFe3OrKaxp5IM9BXywpwCASF83kk6FWBOjffF319XZItI3KLgSEenhTEYDYwZ5M2aQNz+aO4yS2kY2ZVhWKfzySDlldU38b1c+/9uVj6vJxF7SuHl8BAmhnrqFQEREpA9wdjAxPsqH8VE+PDAbTja3sft4FVuPlbP1WAUH8qvJqWggpyKXt3fkAjA0cCCTYvxIivFlYpQvnm6Odn4XIiJXRsGViEgvE+jhwk1XDeKmqwbR1NrGzuwqNmaUsvZgEQXVjfxnRz7/2ZFPbJA73xwXzvWjQ/EZ4GTvbouIiEgXcXUyMWWIH1OG+AFQ19jCzpxKth6tYOuxCtKKasksOUFmyQle35qDwQDxIZ6Wq7FifBkd6m7ndyAicukUXImI9GLODtaB60/nDOb5d9aS5xDGurQS0ovr+NXKNH675jBzRgTyzXHhTB3ir6W1RURE+hh3F8eOBV8AKuub2Z5lCbFSsio4WnqC1IIaUgtqePnzLByMBgYNMFHsmcM1o0IJ83az8zsQETk/BVciIn2E0WhgqKeZBxYm8KvWBFbsL+TdXXkcyK9hdWoxq1OLCfJwYenYUL45NpxIvwH27rKIiIjYgM8AJxYkBLMgIRiA0tpGUrIqLFdkZZWTV3mSrDoDy9dmsnxtJqPCPC3bxwcR4avxgYj0LAquRET6IE9XR5ZNjGDZxAgOF9Xy7q58PtybT3FtI3/deIy/bjzG+CgfbhoXzoKEINyc9N+BiIhIXxXg4cKSxFCWJIYCkFVaw4sfbiYPP3bmVLE/v4b9+TX8dk06cSEeLEwIZn58EDH+A+3ccxERBVciIn3e8GAPfnntCH62YBgbDpfyzq48Ps8sY0d2JTuyK3l8xSGuHRXMN8eFMzrcSxO6i4iI9HHh3m5cHWRm4cKrqG5sZ31aMWtSi0nJquBQYS2HCmv5w7oMhgW6syAhiIUJwQwJGKgxgojYhYIrEZF+wtnB1HHbQFHNST7YU8D/duVxvKKBt3fk8faOPAYHDOTGcWFcPzpMy2iLiIj0A/7uznx7QgTfnhBBZX0zyWmW6QW2HC0no6SOjJI6nvv0CDH+A1gQH8yChCBGBHsoxBKRbqPgSkSkHwr2dOUHMwZz7/QYdmRX8s6uPFanFnG09AS/WZ3O79dmMDM2gBvHhTN9mD8OJqO9uywiIiI25jPAqWPl4pqGFj49XMKag0V8nlnOsbJ6Xth4lBc2HiXC140F8cEsTAgiIdRTIZaI2JSCKxGRfsxgMDAh2pcJ0b48uTiOlQeK+N+uPPbmVrM+rYT1aSX4uzvzjTGh3DguXHNdiIiI9BOebo4sHRvG0rFh1DW2sCG9lNWpRWzKKON4RQMvbT7GS5uPEerlysKEIObHBzM63AujVi8WkS6m4EpERADLUtrfGj+Ib40fxJGSOt7dnc8He/Ipq2vi5c1ZvLw5i3ER3tw4LpyFI4MZ6Kz/QkRERPoDdxfHjsnd65ta2ZRRxuqDRWw4XEpB9Ule/SKbV7/IJsjDhfnxljmxxkZ4Y1KIJSJdQL91iIjIWYYEuvPzhcP5ybxhbEgv5d1deWzMKGPX8Sp2Ha/iiU8OcU1CMDdeFc64CG/dIiAiItJPDHB24JqRwVwzMpiTzW1szixjzcEiPjtcSnFtI69vzeH1rTn4uzszLy6QhfHBjI/y0bQDInLFFFyJiMh5OZqMzIsLYl5cEKW1jXywt4D/7cwjq7yed3fn8+7ufKL9BvDNceEsHRNKgIeLvbssIiIi3cTVycT8+CDmxwfR2NLGl0fKWXOwmOS0YsrqmnhrWy5vbcvFZ4AT8+ICWRAfTFKML44KsUTkMii4EhGRSxLg4cI902K4e2o0u49X8b9deaw8UERWeT2/W5vOM+szmD7Un2+OC2dmbABODhqUioiI9BcujiZmjwhk9ohAmlsT2HqsnDWpxaxLK6ayvrljBWNPV0fmjghkQUIQkwf74exgsnfXRaSHU3AlIiKXxWAwMC7Sh3GRPjx+bRyrUot4d1ceO3Oq+Cy9lM/SS/Ed4NQxofuQQHd7d1lERES6kZODkenDApg+LIBft8WzPauSNQeLWHeomPITzR1Xbbs7OzB7RCAL4oOYOtQfF0eFWCJyNgVXIiJyxQY4O3DjuHBuHBfOsbITvLsrn/dPTeh+eqLWxHAvbhwXzqJRwXi4ONq7yyIiItKNHE1GpgzxY8oQP55aEs/OnErWpBax5mAxpXVNfLi3gA/3FjDAycTM4YEsjA9i2jB/3Jz0q6qIWOhfAxER6RIx/gN5eEEsP547lM2ZZfxvVx6fHS5lX141+/KqeWrlIRYmBHPjuHAmRPloQncREZF+xmQ0MDHal4nRvjx+bRx7cqtYnVrM2oNFFNY08sn+Qj7ZX4iLo5EZwwJYkBDMzNgArWQs0s/pXwAREelSDiYjs4YHMmt4IGV1TXy0t4B3duVxtPQEH+wp4IM9BUT4uvHNsWEsHRtGsKervbssIiIi3cxotE498Nii4ezPr2FNahGrDxaRV3mSNQeLWXOwGCcHI9OG+rMgPohZwwPxdNXV2yL9jYIrERGxGX93Z+6cGs33ro5iX141/9uVzyf7Czle0cAz6zP5Y3ImVw/x56arwpk1PEATtIqIiPRDBoOBxHAvEsO9eHhBLIcKa1l96nbC7PJ6ktNKSE4rwdFkYMpgPxYkBDN3RCBebk727rqIdAObBle1tbWXvY+Hh4cNeiIiIvZkMBgYPcib0YO8eWzRcNakFvO/XXlsz65kc2YZmzPL8HZz5LrRlgndhwfr/wLpXzRmEhGxMBgMxId6Eh/qyU/mDSOjpI7VqcWsSS3iSOkJNmaUsTGjjJ8bDSTF+LLwVIjlO9DZ3l0XERuxaXDl5eV1WXOYGAwGMjMziY6OtmGvOouMjOT48eOd2n72s5/x29/+ttv6ICLSn7g5ObD01G2COeX1vLc7n/d251Nc28g/t+Twzy05JIR6cuO4MBYnhuqWAOkXesOYSUSkuxkMBmKDPIgN8uChOUM5UlLHmoPFrE4tIr24ji+OlPPFkXJ+8WEqE6J8WZgQxLy4IAI8XOzddRHpQja/VfC9997Dx8fnotuZzWYWLlxo6+6c01NPPcWdd97Z8XjgwIF26YeISH8T6TeAH88bxoNzhvL5kTLe3ZVHcloJqQU1pBbU8OtVh5kfH8SN48JJivbFaNSE7tJ39YYxk4iIPQ0JdGdIoDv3zxpCdnk9aw4WsSa1mNSCGlKyKkjJquCXKw5xVYQP8+ODmB8fRIiX5tIU6e1sGlxFREQwdepUfH19L2n76OhoHB27/8y6u7s7QUFBl7x9U1MTTU1NHY9PX97f0tJCS0tLl/bt9PG6+ri9kWphpVpYqRZWvb0WU6K9mRLtTWV9MysOFPHe7gIySk7w8b5CPt5XSKiXC0tHh/KNMSGEXmAQ2tvr0JVUCytb1qIrjtlbxkwiIj1FlN8A7p0+mHunDyavsoE1B4tYnVrMvrxqduRUsiOnkqdWpjF6kBcL44OZHx9EuI+bvbstIlfApsFVdnb2ZW1/8OBBG/Xkwn73u9/xq1/9ivDwcL75zW/yk5/8BCen80/0t3z5cp588smz2tevX4+bm23+MUxOTrbJcXsj1cJKtbBSLaz6Qi0CgO9HQX4ApJQa2VNuoKC6kec3HuMvG48y1NPMxAAzCT5mHI3nPkZfqENXUS2sbFGLhoaGr32M3jJmEhHpicJ93Lhragx3TY2hoPokaw9a5sTanVvF3txq9uZW8/Tqw4wM82RBfDAL4oOI9Btg726LyCXq96sK/t///R9jxozB29ubHTt28Mgjj5Cdnc3f//738+7zyCOP8NBDD3U8rq2tJTw8nLlz53b5RKktLS0kJyczZ86cfn9mVbWwUi2sVAurvlqLu4HGljbWp5Xy/p4CtmZVklFjIKMGPFwcWDwqmBvGhBIXYvn3t6/W4UqoFla2rMWVTKwuIiK2Eerlyh1TorhjShQltY2sO2SZE2tHdiUH8ms4kF/D79amMzzYg4XxQcwZ7m/vLovIRXRbcPX888+fs91gMODi4sLgwYOZOnUqJtPXXwr9iSeeOOcVUWfauXMn48aN48EHH+xoGzlyJN7e3txwww387ne/O+/l+s7Ozjg7n71qhaOjo81+MbDlsXsb1cJKtbBSLaz6Yi0cHR1ZOm4QS8cNIq+ygXd35/PerjwKaxp5a3seb23PY0SwBzeOC2NhfEDHPn2tDldKtbCyRS26+njdOWYSEenLAj1c+E5SJN9JiqSsron1acWsSS0mJauCw0W1HC6q5dnkTIJdTeS4ZXH9mHAG+ep2QpGeptuCqz/96U+UlZXR0NCAt7c3ZrOZ6upq3NzcGDhwIKWlpURHR7Nx40bCw8O/1mvdd9993HzzzRfcJjIy8pztEydOBODo0aOXPM+EiIh0n3AfNx6aM5T/mzWErcfK+d+ufNYdKiatqJYnPknj6dWHifcy4ju8kslDAi5rpTaRnqA7x0wiIv2Fv7sz354QwbcnRFBZ38ynaSWsPljElqPlFJ2EP312lD99dpTEcC8Wjwph0chgrU4o0kOcZ2aQrveb3/yGq666iiNHjlBRUUFlZSWZmZlMmDCBP//5z+Tm5hIUFNTpCqgr5efnR2xs7AW/XFzO/Y/Q3r17AQgODv7a/RAREdsxGQ1cPcSfv3xrNDt+PounlsQRF+JBS5uZvRVG/t8/drHgz1/wn+25NDS32ru7IpesO8dMIiL9kc8AJ268KpzXvzuelJ9N51sxbUyK9sFogH151Ty1Mo2Jyz/j23/fxjs7c6lp0CInIvbUbVdcPfroo7z//vvExMR0tA0ePJhnnnmGpUuXkpWVxe9//3uWLl3aXV0iJSWFbdu2MWPGDDw9Pdm5cycPPvggixcvZtCgQd3WDxER+Xq83Jw6bgXYd7yC33+wlb2VDqQX1/HzD1P57ZrD3HRVOMsmRuoWAOnxeuKYSUSkr/J0dWRigJmnFo6jqrGNVQeKWLG/kL251Ww5WsGWoxU8+tFBpg0NYHFiCLOHB+Dm1O+nihbpVt32N66oqIjW1rPPeLe2tlJcXAxASEgIdXV13dUlnJ2deeedd3jyySdpamoiIiKCO++8k5/+9Kfd1gcREelacSEe3BTdzvN3TOOj/cX8a9txjlc08OoX2fz9y2xmDgvg1kmRTBnsh9Go2wil5+mJYyYRkf4gwN2F706O4ruTo8itaOCTA4Ws2FdIRkkdnx4u4dPDJbg5mZgzIpDFo0K4eog/Tg7ddhOTSL/VbcHVjBkzuPvuu/n73//O6NGjActted///veZOXMmAKmpqURFRXVXlxgzZgzbtm3rttcTEZHu4+nqyPeujub2yVFsyizlja3H2ZxZxmfppXyWXkq0/wC+MzGCpWPDcHfRxOXSc/TEMZOISH8zyNeNH8wYzA9mDCa9uJYV+wpZsb+Q/KqTfLyvkI/3FeLl5siC+GAWjwphQpSPToiJ2Ei3BVevvfYay5YtY+zYsR2r77S2tjJr1ixee+01AAYOHMizzz7bXV0SEZF+wGg0MDM2kJmxgWSVneDNlOO8tzufrLJ6nvgkjT+sy+CGsWEsS4pkcMBAe3dXRGMmEZEeJjbIg9j5Hvxk3jD25lWzYl8hKw8UUX6iibd35PL2jlwCPZxZNDKEJYkhJIR6anEYkS7UbcFVUFAQycnJpKenk5mZidlsJjY2lmHDhnVsM2PGjO7qjoiI9EPR/gN5YnEcP543jA/35PNGynGOlp7gjZTjvJFynKuH+HFrUiQzYgMw6ayp2InGTCIiPZPBYGDMIG/GDPLm0WuGsy2rkhX7C1hzsJiS2iZe+zKb177MJtLXjcWjQlicGMLgAHd7d1uk1+v2WeWio6MxGAzExMTg4KBJ7UREpPsNdHZgWVIk/29iBFuOVvBGSg6fHi7hiyPlfHGknHAfV5ZNjODGceF4uTnZu7vST2nMJCLSczmYjEwZ4seUIX786rp4NmeU8fH+Qj47XEJORQPPbzjK8xuOMiLYg8WJIVw7KoRQL1d7d1ukV+q2meQaGhq44447cHNzIy4ujtzcXADuv/9+fvvb33ZXN0RERDoYDAamDPHj1e+M4/OfzODuqdF4ujqSV3mS36xOZ+Lyz3j4/QMcLqq1d1elH9GYSUSkd3F2MDE3Loi/3jKGXY/O4bmbEpkxzB8Ho4G0olp+uyadyb/dwA1/28qbKTmUn2iyd5dFepVuC64eeeQR9u/fz6ZNm3Bxcelonz17Nu+88053dUNEROScwn3ceGThcLY9MovfLU1geLAHjS3t/HdnHgv+/AU3vpzC6tQiWtva7d1V6eO6e8xUVVXFsmXL8PT0xNPTk2XLllFdXX3BfW677TYMBkOnr4kTJ3Z530REepuBzg5cNzqUf353PDt+MZunr49nQpQPBgPsOl7FLz8+xITffMZ3/rGD93bnU9fYYu8ui/R43Xbd+UcffcQ777zDxIkTO01UN2LECI4dO9Zd3RAREbkgVycTN101iBvHhbMzp4o3UnJYe7CYHdmV7MiuJNjThW9PGMTN4wfhN9DZ3t2VPqi7x0y33HIL+fn5rF27FoC77rqLZcuW8cknn1xwv/nz5/PPf/6z47GTk26rFRE5k88AJ749IYJvT4igqOYkK/cXsWJ/IakFNXyeWcbnmWX8/EMjs2IDWDwqhBmxAbg4muzdbZEep9uCq7KyMgICAs5qr6+v14oLIiLS4xgMBsZH+TA+yofimkb+vf04b+/IpaimkWfWZ/L8Z0dZNCqYW5MiGRXuZe/uSh/SnWOmw4cPs3btWrZt28aECRMAePXVV0lKSiIjI6PThPBf5ezsTFBQUJf2R0Skrwr2dOXOqdHcOTWarLITfLK/iI/3F5BVVs+ag8WsOVjMQGcH5sYFsiQxlMkxvjiYuu0GKZEerduCq6uuuopVq1bxwx/+EKBj4HV6cCQiItJTBXm68KO5w7hv5mBWpxbx+tbj7M+r5oM9BXywp4DEcC9umxTJgoQgnB10plS+nu4cM6WkpODp6dkRWgFMnDgRT09Ptm7desHgatOmTQQEBODl5cW0adN4+umnzxm4ndbU1ERTk3Vel9pay9xxLS0ttLR0/a0yp49pi2P3NqqFhepgpVpY2aMW4V7O3Dstku9PjSCtqI6VqcWsSi2mqKaxY2zhM8CRBXFBLBoZxJhwL4zdsNqxPhdWqoWFretwqcfttuBq+fLlzJ8/n7S0NFpbW/nzn//MoUOHSElJYfPmzd3VDRERkSvm7GDi+tFhXD86jH151by5NYeVB4rYl1fNA+/s49ernLllfDjfnhhBoIfLxQ8ocg7dOWYqLi4+Z9gUEBBAcXHxefdbsGAB3/zmN4mIiCA7O5vHHnuMmTNnsnv3bpydz30L7fLly3nyySfPal+/fj1ubm5X/iYuIjk52WbH7m1UCwvVwUq1sLJnLRKAuOGQXQe7y43sqzBQWd/Cv3fk8e8deXg7mRnjZ2aMXzuhbmDrG5b0ubBSLSxsVYeGhoZL2q7bgqtJkyaxZcsWnnnmGWJiYli/fj1jxowhJSWFhISE7uqGiIhIl0gM9yLxpkQeWTic/+7I5a3txympbeL5DUd5cdMx5sUHcdukSMZFeOuWeLksXTFmeuKJJ84ZEp1p586dAOf8fJrN5gt+bm+66aaOn+Pj4xk3bhwRERGsWrWKb3zjG+fc55FHHuGhhx7qeFxbW0t4eDhz587Fw8Pjgn29Ei0tLSQnJzNnzhwcHR27/Pi9iWphoTpYqRZWPbEWLW3tpGRV8sn+IpIPl1LV3MZnhQY+KzQS7TeARSODuHZkEJG+A7r2dXtgLexFtbCwdR1OX319Md0WXAEkJCTwxhtvdOdLioiI2JS/uzM/nDWEe6bHsP5QCW9szWFHTiWrDhSx6kARI4I9uG1SJIsTQzThqlyyrztmuu+++7j55psvuE1kZCQHDhygpKTkrOfKysoIDAy85NcLDg4mIiKCI0eOnHcbZ2fnc16N5ejoaNNfCmx9/N5EtbBQHaxUC6ueVAtHR5g1IphZI4JpbGljQ3opK/YVsiGjlKzyep7fcIznNxxjZJgni0eFsGhkCEGeXXeld0+qhb2pFha2qsOlHtOmwdWlpmeATc60iYiIdBdHk5FrRgZzzchg0gpreTMlh4/2FZBWVMtP3z/Ab9Yc5qarwlk2MYIwb9vdFiW9U1ePmfz8/PDz87vodklJSdTU1LBjxw7Gjx8PwPbt26mpqWHSpEmX3KeKigry8vIIDg6+5H1EROTiXBxNLEwIZmFCMLWNLaw7WMyK/YVsOVrOgfwaDuTX8PTqw0yI8mHxqFAWxAfhPUCrvErfYtPgysvL65Jvj2hra7NlV0RERLrNiBAPfrt0JA8viOWdnXn8a9tx8qtO8vLmLF79PIvZwwO5dVIkk2J8dRuhAPYbMw0fPpz58+dz55138vLLLwNw1113sWjRok4Ts8fGxrJ8+XKuv/56Tpw4wRNPPMHSpUsJDg4mJyeHn//85/j5+XH99dd3Wd9ERKQzDxdHvjkunG+OC6esronVqUWs2F/I7uNVbMuqZFtWJb/8+CBTh/qzJDGE2cMDGeDcrTdZidiETT/FGzdu7Pg5JyeHhx9+mNtuu61jRZyUlBTeeOMNli9fbstuiIiI2IWXmxN3T4vhe1dHsyG9lDe25vDl0XLWp5WwPq2EIQED+c6kSL4xOlQDy37OnmOmf//739x///3MnTsXgMWLF/PCCy902iYjI4OamhoATCYTqampvPnmm1RXVxMcHMyMGTN45513cHd37/L+iYjI2fzdnbl1UiS3Tookv6qBT/ZbQqzDRbVsSC9lQ3opLo5GZg8PZPGoEKYN89fKx9Jr2XSUPG3atI6fn3rqKf74xz/yrW99q6Nt8eLFJCQk8Morr3DrrbfasisiIiJ2YzIamDMikDkjAjlaWsebKcd5f3c+R0pP8NhHB/n9mnRuGBfGd5IiifLr2olWpXew55jJx8eHt95664LbmM3mjp9dXV1Zt25dl/ZBRESuXJi3G9+fHsP3p8dwpKSOFfsLWbG/kOMVDaw8UMTKA0V4uDiwID6YxYkhTIz2xWTUFd/Sexi764VSUlIYN27cWe3jxo1jx44d3dUNERERuxoc4M5TS+LZ9vNZPH7tCKL8BlDX1Mo/t+Qw45lN3PqPHWxML6W93Xzxg0mfpDGTiIhcqSGB7vxo7jA2/Xg6H/9gMrdPjiLA3Znaxlbe2ZXHt/++nYnLP+OJFYfYm1vV6cSESE/VbcFVeHg4L7300lntL7/8MuHh4d3VDRERkR7B3cWR706O4rOHpvHG7eOZGRuAwQCbM8v47us7mfnsJl77Mpuaky327qp0M42ZRETk6zIYDIwK9+KX144g5ZFZ/OfOCXxrfDiero6U1TXx+tYcrn9xK9P+sIk/rEsno7jO3l0WOa9um1DjT3/6E0uXLmXdunVMnDgRgG3btnHs2DHef//97uqGiIhIj2I0Gpg21J9pQ/05XlHPv1KO886uPHIqGvjVyjSeXZ/B9aNDuXVSJEMDNX9Qf6Axk4iIdCWT0cCkGD8mxfjx5OJ4Ps8sY8X+QpLTSsitbOCvG4/x143HGBowkBgnA4MKahk1yAejbieUHqLbgquFCxdy5MgR/va3v3H48GHMZjNLlizhnnvu0dlDERERIMJ3AI8uGsFDc4fy4d4C3tx6nIySOv69PZd/b88lKdqXWydFMnt4AA6mbrtoWrqZxkwiImIrTg5GZo8IZPaIQBqaW/n0cCkr9hWwObOMzNITZGJizUvb8Hd3ZvpQf2bEBjBliB8eLo727rr0YzYNrg4cOEB8fDxGo2VwHRYWxtNPP33e7Q8dOsSwYcNwcNDKSiIi0n+5OTnw7QkR3DJ+ENuyKnljaw7r04pJyaogJauCUC9Xvj1xEDdfNQifAU727q50AY2ZRESku7k5ObB4VAiLR4VQ3dDM6gMFvL35IMfqLbcTvrs7n3d35+NgNDAu0psZwwKYGRvA4ICBGAy6Gku6j01HO6NHj6a4uBh/f/9L2j4pKYl9+/YRHR1ty26JiIj0CgaDgaQYX5JifCmoPsm/tx3nvzvzKKg+ye/XZvDnT4+weFQIt06KJD7U097dla9BYyYREbEnLzcnvjk2jAElB5g1dwb78uvYkF7KpoxSssrr2ZZVybasSpavSSfM25UZwwKYEetPUrQfrk4me3df+jibBldms5nHHnsMNze3S9q+ubnZlt0RERHptUK9XPnp/FjunzWElQeKeGNrDqkFNR1nQ8dGeHPrpEgWxAfhqNsIex2NmUREpKdwdjAyZYgfU4b48ctrR5BTXs/GjFI2ZpSxLauC/KqT/Gvbcf617TjODkaSYnyZGRvAjGEBhPtc2v9jIpfDpsHV1KlTycjIuOTtk5KScHV1tWGPREREejcXRxM3jA1j6ZhQ9uRW88bWHFanFrH7eBW7j1cR4O7MLRMGccuEQXi76Axob6Exk4iI9FSRfgP4rl8U350cRUNzK1uPVrAho5RN6aUU1jSyKaOMTRllwCEGBwxkxjDL3FjjInxwctDJNPn6bBpcbdq0yZaHFxER6bcMBgNjI7wZG+HNo9cM5z87LBO4l9Y18dynR/jrxqPMjwtkcLu9eyqXQmMmERHpDdycHDomdzebzWSU1LExvYyNGaXsPl7F0dITHC09watfZDPQ2YGrh/gxY1gA04f5E+DhYu/uSy/Vp2f0fPrpp1m1ahX79u3DycmJ6urqs7bJzc3lBz/4ARs2bMDV1ZVbbrmFZ555BicnTXYrIiK9Q4CHCw/MHsq90wez5mARb6YcZ/fxKj45UAw4sKF6O3dcHa3bCEVERKTLGAwGYoM8iA3y4PvTY6hpaOGLo2VsSC9lc0YZFfXNrDlYzJqDxQDEh3owc1gA02MDGBXmhcmoCd7l0vTp4Kq5uZlvfvObJCUl8dprr531fFtbG9dccw3+/v58+eWXVFRUcOutt2I2m/nLX/5ihx6LiIhcOScHI0sSQ1mSGMrBghr+8WUWK/YVsD+/hvvf3kuQhwvfmWRZrdDLTSdoREREpOt4ujmyaGQIi0aG0N5u5kBBDRvTS9mYUcqB/BoOFtRysKCW5zccxWeAE9OG+jN9mD/ThvprXCIX1KeDqyeffBKA119//ZzPr1+/nrS0NPLy8ggJCQHg2Wef5bbbbuPpp5/Gw8Oju7oqIiLSpeJDPfndN+IZY8ql1GMY/9mRT3FtI79fm8Hznx1h6Zgwvjs5ksEB7vbuqoiIiPQxRqOBxHAvEsO9eHDOUMrqmticWcbG9FI+zyyjsr6ZD/cW8OHeAowGGDPImxmnJngfHuyOwaCrscSqTwdXF5OSkkJ8fHxHaAUwb948mpqa2L17NzNmzDjnfk1NTTQ1NXU8rq2tBaClpYWWlpYu7ePp43X1cXsj1cJKtbBSLaxUCwvVwaqlpQV3R/jGlEHcdXUUq1OL+efW4xwuruPf2y1zYk0d4sttSRFMGezbpweJtvxc6LMmIiJyYf7uztwwNowbxobR0tbO7uNVlpUK00vJLDnBruNV7DpexR/WZRDk4cKMWH9mDAtg8mA/Bjj369hC6OfBVXFxMYGBgZ3avL29cXJyori4+Lz7LV++vONqrjOtX7/+kpexvlzJyck2OW5vpFpYqRZWqoWVamGhOlidroUzcHckHPOBTUVGDlYZ+PxIBZ8fqSDQ1cy04Hau8jPj1IcXI7TF56KhoaHLjykiItJXOZqMTIz2ZWK0L48sGE5+VQMbM8rYlF7KlmPlFNc28vaOPN7ekYeTyciEaB+mDwtgZmwAUX4D7N19sYNeF1w98cQT5wyNzrRz507GjRt3Scc719lls9l8wbPOjzzyCA899FDH49raWsLDw5k7d26X317Y0tJCcnIyc+bMwdHRsUuP3duoFlaqhZVqYaVaWKgOVheqxf1AbmUD/9qWy7t7Cig52cb/skysL3Lk5qvC+PaEcIL60Oo/tvxcnL7yWkRERC5fmLcbyyZGsGxiBI0tbWzLqmBThmWS99zKBr44Us4XR8r51co0In3dOm4pnBDtg7NDHz7bJh16XXB13333cfPNN19wm8jIyEs6VlBQENu3b+/UVlVVRUtLy1lXYp3J2dkZZ2fns9odHR1t9kuSLY/d26gWVqqFlWphpVpYqA5W56tFTKAnTyxJ4EfzYnl3Vz7/3JpNXuVJXvo8m79/mcPChGBunxJFYrhX93faRmzxudDnTEREpGu4OJqYPiyA6cMCePzaEWSV13dM8L4ju5Kcigb+uSWHf27JwdXRxOTBfh23FYZ4udq7+2IjvS648vPzw8/Pr0uOlZSUxNNPP01RURHBwcGA5XY/Z2dnxo4d2yWvISIi0tO5uzhy+5Qobp0UyaeHS/jHl9lsz65kxf5CVuwvZGyEN7dPjmJeXCAOJqO9uysiIiL9gMFgIMZ/IDH+A/ne1dHUNbaw5WhFR5BVWtfEp4dL+PRwCQCxQe4dV2ONGeSlMUsf0uuCq8uRm5tLZWUlubm5tLW1sW/fPgAGDx7MwIEDmTt3LiNGjGDZsmX84Q9/oLKykh//+MfceeedWlFQRET6HZPRwLy4IObFBXGwoIZ/bslhxf4Cdh+vYvfxKkI8Xbh1UiQ3XzUITzddZSQiIiLdx93FkfnxQcyPD8JsNnOosJZNGaVszChjb24V6cV1pBfX8bdNx/BwcWDqUH9mxgYwbag/vgPPvmNKeo8+HVz98pe/5I033uh4PHr0aAA2btzI9OnTMZlMrFq1invvvZfJkyfj6urKLbfcwjPPPGOvLouIiPQI8aGePHvjKH62YBhvbcvl39uOU1jTyPI16Tz36RFuGBvGbZMjifEfaO+uioiISD9jMBiID/UkPtST+2YOoaq+mc+PWObF2pxZRnVDCysPFLHyQBEGA4wK82LGqQne40I8MBr77krKfVGfDq5ef/11Xn/99QtuM2jQIFauXNk9HRIREellAtxdeGjOUO6dHsOK/YX848ts0ovr+Ne24/xr23FmxgZw++QoJg/2veDCJiIiIiK24j3AiSWJoSxJDKWt3cy+vCo2pluCrLSiWvblVbMvr5o/fZqJv7sz04f6MyM2gClD/PBw0VXkPV2fDq5ERESka7g4mrhxXDjfHBtGSlYF//gym8/SS9lw6mto4EBunxzFdaNDcXHUCj8iIiJiHyajgbERPoyN8OHH84ZRXNN46pbCUr48Uk5ZXRPv7s7n3d35OBgNjIv07rgaa3DAQJ2I64EUXImIiMglMxgMTIrxY1KMH9nl9byxNYf/7cojs+QED3+Qyu/WpvPtCREsS4og0MPF3t0VERGRfi7I04Wbxw/i5vGDaG5tZ2dOJRvTS9mQUUpWWT3bsirZllXJ8jXphHm7MmNYAFcP9qGpzd49l9MUXImIiMgVifIbwBOL43hwzlDe3ZXHP7fkUFB9khc2HuXlz4+xaGQIt0+OIiHM095dFREREcHJwcjkwX5MHuzHo4tGcLyi/tQqhWWkZFWQX3WyYzoEIybeKtzGxGg/xkf6cFWkjxansRMFVyIiIvK1eLo68r2ro7ltUiTJaSX8Y0s2O3Oq+HBvAR/uLeCqSG9unxzF3LggTJoMVURERHqICN8B3DY5itsmR3GyuY2tx8rZmFHKpvRS8qsbOZBfy4H8Wl75PAuDAYYFujMx2pfxUZYgy99dqxV2BwVXIiIi0iUcTEYWJASzICGYA/nV/HNLDp/sL2RnThU7c6oI83bltkmR3HhVuCZCFRERkR7F1cnErOGBzBoeSEtLC299uBr3qER259WwPbuSrLJ60ovrSC+u4/WtOQBE+w9gQpQP46N8GB/lS6iXq33fRB+l4EpERES63MgwL/50UyIPL4jlXynH+ff24+RXneTXqw7zp+RMvjkunNsmRRLpN8DeXRURERE5i48zLEwM4YarIgAoq2tiZ04lO7Ir2Z5dSXpxLVll9WSV1fP2jjwAQr1cO4KsCdG+RPq6abL3LqDgSkRERGwm0MOFH88bxn0zB/PR3gL+sSWbzJITvL41hzdScpgVG8DtU6JIivbVwE5ERER6LH93ZxYmBLMwIRiAmoYWdh23hFjbsys5WFBDQfVJPthbwAd7Czr2GR/l0xFmDQ1wx6hpEy6bgisRERGxORdHEzePH8RNV4Wz5WgFr32ZxcaMMj49XMqnh0uJDXLn9ilRLB4Vgoujyd7dFREREbkgTzfHjlsLAeqbWtmTW9VxRda+vGrK6ppYdaCIVQeKLPu4OnJVpDXIigvxwMFktOfb6BUUXImIiEi3MRgMTBnix5QhfhwrO8HrW3J4b3c+6cV1/PS9A/xuTTrfnhjB/5s4iAB3F3t3V0REROSSDHB24Ooh/lw9xB+AxpY2DuTXsD2rgh05lew+XkXNyRY+PVzCp4dLLPs4mRgT4d0x4fvIME+cHXQC76sUXImIiIhdxPgP5FfXxfPjucP4785c3tiaQ2FNI89/doS/bTrKtaNCuH1yFPGhnvbuqoiIiMhlcXE0nZq03QeAlrZ2DhXWsiO7gh3Zlrmyahtb+eJIOV8cKQfAycHI6HCvU1dk+TImwgs3J8U2qoCIiIjYlaebI3dPi+GOKVGsPVTMP77MZk9uNR/sKeCDPQVMiPLh9ilRzB4eiEnzQoiIiEgv5GgykhjuRWK4F3dNjaG93UxGSV1HiLU9u4LyE80dc2bBURyMBuJDPTtuLRwX6YOna/9bmVnBlYiIiPQIDiYji0aGsGhkCHtzq/jnlhxWpxZ1DODCfVy5bVIUN44Lw92l/w3aREREpO8wGg0MD/ZgeLAHt06KxGw2k1Vebw2ysioorGlkX141+/KqefnzLAwGGB7k0THh+1VRPvgNdLb3W7E5BVciIiLS44we5M3oQd48sjCWN1OO85/tueRVnuRXK9P4U3Im3xwXxncnRTHI183eXRURERH52gwGAzH+A4nxH8i3xg8CIL+qoSPI2pFdSVZ5PWlFtaQV1fL61hwAYvwHMD7Kt+OqrBAvVzu+C9tQcCUiIiI9VrCnKz+bH8v9M4fwwd58/vFlNsfK6vnnlhxe35rDnOGB3D4liglRPhgMuo1QRERE+o4wbzfCvN34xpgwAEprG9mRYw2y0ovrOFZWz7Gyet7ekXtqH1fGR/kwMcoy4XuEr1uvHyMpuBIREZEez9XJxLcnRPCtqwbxxdFy/vFlNpszy1ifVsL6tBLiQjy4fXIUi0YFazUeERER6ZMCPFw6plUAqG5oZmdOVceE7wcLa8mvOkl+lWWeUIAAd+eOWwvHR/kyJGAgxl42Z6iCKxEREek1jEYD04b6M22oP0dK6vjn1hw+2JPPocJafvTufpavSWfZxAi+PXFQv5jzQURERPovLzcn5owIZM6IQABONLWy53gV208FWfvzaiita2LlgSJWHig6tY8jV0X6dNxaOCLYAweT0Z5v46IUXImIiEivNCTQnd9cn8BP5g7j7Z25vLn1OMW1jfzp00z+uvEoSxJD+O7kKEaEeNi7qyIiIiI2N9DZgalD/Zk61B+AxpY29uVVd9xauPt4FdUNLSSnlZCcVgLAACcTY08FWROifEgI8+xxV68ruBIREZFezXuAE/dOH8ydV0ezOrWIf3yZzf78Gt7dnc+7u/NJivbl1qRw2s327qmIiIhI93FxNDEx2peJ0b4AtLS1c7CgxrJqYXYlO3MqqWts5fPMMj7PLAPA2cHI6EFejI/yZWy4B01t9nwHFgquREREpE9wNBlZkhjK4lEh7Mmt5h9bsll7sJiUrApSsirwczExfHw9sSFe9u6qiIiISLdzNBk7Vm6+e1oMbe1m0otrO61cWFHfzLasSrZlVQJgNJjIdMrk0UVxduu3gisRERHpUwwGA2MjvBkb4U1B9UneTMnh7e25NLW1EObd95aIFhEREbkSJqOBuBBP4kI8+e7kKMxmM8fK6k+FWBVsy6qguLYJ3wFOdu2ngisRERHps0K9XHlkwXDunRrJmx+tx9mhZ08+KiIiImIvBoOBwQEDGRwwkFsmDKK5uZm3PlzDwsRgu/ZLozcRERHp89ycHBg00N69EBEREek9DAYDvi7ga+eVmhVciYiIiIiIiIhIj6RbBbuA2WxZpqi2trbLj93S0kJDQwO1tbU4Ojp2+fF7E9XCSrWwUi2sVAsL1cFKtbCyZS1O//9/ejwgl8aW4yfQ5/9MqoWF6mClWlipFlaqhZVqYWHrOlzqGErBVReoq6sDIDw83M49EREREXupq6vD09PT3t3oNTR+EhEREbj4GMpg1unBr629vZ3CwkLc3d0xGAxdeuza2lrCw8PJy8vDw8OjS4/d26gWVqqFlWphpVpYqA5WqoWVLWthNpupq6sjJCQEo1GzMFwqW46fQJ//M6kWFqqDlWphpVpYqRZWqoWFretwqWMoXXHVBYxGI2FhYTZ9DQ8Pj379F+ZMqoWVamGlWlipFhaqg5VqYWWrWuhKq8vXHeMn0Of/TKqFhepgpVpYqRZWqoWVamFhyzpcyhhKpwVFRERERERERKRHUnAlIiIiIiIiIiI9koKrHs7Z2ZnHH38cZ2dne3fF7lQLK9XCSrWwUi0sVAcr1cJKteh/9GdupVpYqA5WqoWVamGlWlipFhY9pQ6anF1ERERERERERHokXXElIiIiIiIiIiI9koIrERERERERERHpkRRciYiIiIiIiIhIj6TgSkREREREREREeiQFVyIiIiIiIiIi0iMpuBIRERERERERkR5JwZWIiIiIiIiIiPRICq5ERERERERERKRHUnAlIiIiIiIiIiI9koIrERERERERERHpkRRciYiIiIiIiIhIj6TgSkREREREREREeiQFVyIiIiIiIiIi0iMpuBIRERERERERkR5JwZWI9GmbNm3CYDDw3nvvXXTb2267jcjISNt3SkRERKQPupxxl4jIpVJwJSJyymOPPcaHH35o726IiIiIiIjIKQ727oCIyJVqaGjAzc2ty44XExPTZccSERER6Uu6etwlInKpdMWViPQKTzzxBAaDgT179nDDDTfg7e19WUFTS0sLv/jFLwgJCcHDw4PZs2eTkZHRaZtz3SpoMBi47777ePnllxk6dCjOzs6MGDGC//73v5fV/1mzZhEbG4vZbO7UbjabGTx4MNdcc01H25NPPsmECRPw8fHBw8ODMWPG8Nprr3Xa9yc/+Qmenp60tbV1tP3whz/EYDDwhz/8oaOtoqICo9HIX/7yl8vqr4iIiPRfX3fcdaba2lrmzZtHYGAgO3bs6HT8Q4cO8a1vfQtPT08CAwO5/fbbqamp6bS/2WzmxRdfJDExEVdXV7y9vbnhhhvIyso667U+/fRTZs2ahYeHB25ubkyePJnPPvvsivotIj2HgisR6VW+8Y1vMHjwYN59911eeumlS97v5z//OcePH+fvf/87r7zyCkeOHOHaa6/tFPycz4oVK3j++ed56qmneO+994iIiOBb3/rWZc3f8H//939kZGScNXhas2YNx44d4wc/+EFHW05ODnfffTf/+9//+OCDD/jGN77BD3/4Q371q191bDN79mxqa2s7BoBgGay5urqSnJzc0fbZZ59hNpuZPXv2JfdVREREBK583HVafn4+U6ZM4fjx46SkpDB+/PhOzy9dupShQ4fy/vvv8/DDD/Of//yHBx98sNM2d999Nw888ACzZ8/mo48+4sUXX+TQoUNMmjSJkpKSju3eeust5s6di4eHB2+88Qb/+9//8PHxYd68eQqvRHo7s4hIL/D444+bAfMvf/nLy9pv48aNZsC8cOHCTu3/+9//zIA5JSWlo+3WW281R0REdNoOMLu6upqLi4s72lpbW82xsbHmwYMHX3I/2trazNHR0eYlS5Z0al+wYIE5JibG3N7eft79WlpazE899ZTZ19e3Y7v6+nqzk5OT+amnnjKbzWZzfn6+GTD/7Gc/M7u6upobGxvNZrPZfOedd5pDQkIuuZ8iIiIiX3fc9e6775r37t1rDgkJMV999dXmioqKcx7/97//faf2e++91+zi4tIx3klJSTED5meffbbTdnl5eWZXV1fzT3/6U7PZbBkX+fj4mK+99tpO27W1tZlHjRplHj9+/GW9DxHpWXTFlYj0KkuXLr2i/RYvXtzp8ciRIwE4fvz4RfedNWsWgYGBHY9NJhM33XQTR48eJT8//5Je32g0ct9997Fy5Upyc3MBOHbsGGvXruXee+/FYDB0bLthwwZmz56Np6cnJpMJR0dHfvnLX1JRUUFpaSkAbm5uJCUl8emnnwKQnJyMl5cXP/nJT2hububLL78ELFdh6WorERERuRJXOu5at24dV199NVOnTiU5ORkfH59zbneu8VljY2PHeGflypUYDAb+3//7f7S2tnZ8BQUFMWrUKDZt2gTA1q1bqays5NZbb+20XXt7O/Pnz2fnzp3U19df0XsREftTcCUivUpwcPAV7efr69vpsbOzMwAnT5686L5BQUHnbauoqLjkPtx+++24urp2XGr/17/+FVdXV26//faObXbs2MHcuXMBePXVV9myZQs7d+7kF7/4xVn9nT17Ntu2baO+vp5PP/2UmTNn4uvry9ixY/n000/Jzs4mOztbwZWIyP9n777jm67zP4C/srvTke5JW+gGymoLskTKUhAExcGJAwd6nnLe/cTTcx2HAxXFA1G5A8WBA1BZtrIUKXvTBYXSlXS36UzT9vv7I23S0gIFmqbj9Xw8+mjyySeffL5vU/nknc8gohtyo+OuzZs3o6amBk8++aRxzNWea43P8vPzIQgC3N3dIZPJWv0cOHAARUVFxnoAMHv27Db13nrrLQiCgJKSkhu6FiKyPJ4qSEQ9SsuZSV1Fo9FcsezyAdfVKJVKPPjgg/jss8/w/PPP43//+x/uu+8+ODo6Gut88803kMlk2LJlC6ysrIzlmzdvbtPehAkT8PLLL+O3337Dzp078corrxjLExIS0K9fP+N9IiIiout1o+Ou999/Hxs2bMCUKVOwadMm45dy10ulUkEkEuH3339vNwHWXKZSqQAAK1asQGxsbLtttZw9T0Q9CxNXRETXsHPnTuTn5xsHPA0NDdiwYQOCgoLg4+NzXW0988wzWLlyJWbPno2ysjI8/fTTrR4XiUSQSqWQSCTGspqaGnzxxRdt2hoxYgQcHBywfPlyaDQaTJw4EYBhJtZbb72Fb7/9FuHh4fDy8rreSyYiIiK6YVZWVti4cSMeeOABTJ8+HRs2bMCMGTOuu53bb78db775JnJzc3H33Xdfsd6oUaPg6OiI5OTkNmMrIur5mLgiIroGlUqFW2+9FS+//DJsbW2xcuVKpKam4ptvvrnutgYMGIDJkydj+/btuOWWWzBo0KBWj0+bNg3vvfce7rvvPjz22GMoLi7GsmXL2v2WUSKRYOzYsfj555/Rr18/4zHVo0aNgkKhwM6dO/HMM8/c2EUTERER3QSZTIavv/4ajz76KGbPno3PP/8c995773W1MWrUKDz22GN46KGHcOTIEYwZMwa2trZQq9XYt28foqKi8OSTT8LOzg4rVqzAgw8+iJKSEsyePRtubm4oLCzEyZMnUVhYiFWrVpnpSonI3Ji4IiK6hunTpyMiIgIvvfQSsrKyEBQUhC+//BL33HPPDbV3zz33YPv27e1+I3jrrbfiv//9L9566y3ccccd8Pb2xoIFC+Dm5oZHHnmkTf3bbrsNP//8c6t9rBQKBW655RYkJiZyfysiIiKyGLFYjDVr1sDe3h4PPPAAqqqq8Oijj15XG6tXr0ZsbCxWr16NlStXorGxEV5eXhg1ahRGjBhhrPfAAw/Az88Pb7/9Nh5//HFUVFTAzc0NgwcPxvz58zv5yoioK4kEQRAs3Qkiou5KJBLhqaeewkcffdRpbd511104cOAAMjMzIZPJOq1dIiIiIiKi3oYzroiIuoBOp8OxY8dw6NAhbNq0Ce+99x6TVkRERERERNfAxBUR9UiCIKChoeGqdSQSSZecQlhfX3/Vx8ViMdRqNUaOHAkHBwc8/vjj+POf/2z2fhERERF1hu407iKivkds6Q4QEd2IvXv3QiaTXfVn3bp1N/06giBcc5ngtfrx8MMPIyAgAIIgoLy8HKtWrWp1aiARERFRd9ZV4y4iovZwjysi6pEqKiqQlpZ21Tr9+vWDi4uL2fty5MiRqz6uUqkQEBBg9n4QERERmUN3GncRUd/DxBUREREREREREXVL3OOqEzQ2NiIvLw/29vZc101ERNTHCIKAiooKeHl5QSzmLgwdxfETERFR39bRMRQTV50gLy8Pvr6+lu4GERERWVB2djZ8fHws3Y0eg+MnIiIiAq49hupxiauVK1finXfegVqtRkREBJYvX47Ro0dfsf7evXuxaNEinD17Fl5eXvj73/+OJ554olWdH374AS+//DIyMjIQFBSEJUuWYObMmR3uk729PQBDsB0cHG7swq5Ar9cjISEB8fHxkMlkndp2T8NYmDAWJoyFCWNhwDiYMBYm5oyFVquFr6+vcTxAHWPO8RPA939LjIUB42DCWJgwFiaMhQljYWDuOHR0DNWjElcbNmzAs88+i5UrV2LUqFFYvXo1pkyZguTkZPj5+bWpf/HiRUydOhULFizA+vXr8ccff2DhwoVwdXXFXXfdBQBISkrCPffcgzfeeAMzZ87Epk2bcPfdd2Pfvn2IiYnpUL+ap7c7ODiYJXFlY2MDBweHPv0HAzAWLTEWJoyFCWNhwDiYMBYmXRELLne7PuYcPwF8/7fEWBgwDiaMhQljYcJYmDAWBl0Vh2uNoXrURgzvvfceHnnkETz66KMICwvD8uXL4evri1WrVrVb/+OPP4afnx+WL1+OsLAwPProo3j44YexbNkyY53ly5dj4sSJWLx4MUJDQ7F48WJMmDABy5cv76KrIiIiIiIiIiKi9vSYGVd1dXU4evQoXnjhhVbl8fHx2L9/f7vPSUpKQnx8fKuySZMmYc2aNdDr9ZDJZEhKSsJzzz3Xps7VElc6nQ46nc54X6vVAjBkI/V6/fVc1jV9dyQL+3JEyNpzHgq5DDKJCDKJGFKx4XfzfZlEBGnzfbG4bVmL3y2f25O+HW6ObWfHuCdiLEwYCxPGwoBxMGEsTMwZC8a3+ynQ1mLN7xdQohHBJr0Qfi728Hayhp2ixwx9iYiIqEmP+de7qKgIDQ0NcHd3b1Xu7u4OjUbT7nM0Gk279evr61FUVARPT88r1rlSmwCwdOlSvPbaa23KExISYGNj09FL6pA1ZyTIqJBgW/aFTm23mVgkQCoCJC1/xIBUBIhFgFTc8jEBkqYyschQRyJu/dzWZUKr9iSX1W9d1k7blz1H2vR4YmKiWWLREzEWJoyFCWNhwDiYMBYm5ohFdXV1p7dJN+d8QSVW/34RgATfXTxuLHewksLL0Ro+TtbwcjT8eLf47WavgFjcc77UIyIi6gt6TOKq2eUzhARBuOqsofbqX15+vW0uXrwYixYtMt5v3lAsPj6+0/doyLbNwB+nzsHd0wv1jYC+oRH1jYLhd4OAuoZG6BsE1Dc2Ql9v+F3XIKC+qbxlfX2D0Kb9RkGEurbFV9A9BnI2cgnsraSwV0gNv62ksLeStS1TSGFnvC0zltsppJD08EGpXq9HYmIiJk6c2KfXXAOMRUuMhQHjYMJYmJgzFs0zr6n7cLFTYF6sH06kZaJeoYRaW4uyaj20tfXQaiqQqqlo93kyiQgeSqtWyazm2833reWSLr4aIiKivq3HJK5UKhUkEkmbmVAFBQVtZkw18/DwaLe+VCqFi4vLVetcqU0AUCgUUCgUbcplMlmnD4YfHxsE36o0TJ068KbbFgShVRKrOfmlb2hEXYvbzY/XN5W3vH15nebEWF19Y6vbzYk0fWNTvaYyU1Kt9e3mJFx7/alvbJ1Zq65rQHVdA/Khu8KVXputXGJKdrVMfFnJ4NBOWXM9h6bbdgoppBLLbxFnjvdcT8VYmDAWBoyDCWNhYo5YMLbdT4iHPf45LRTbRBcwdWocZDIZKnX1UJfVILfpJ6+sBnlltcgtNdzXaGuhbxCQXVKD7JKaK7btbCuHl+OVk1sqO3mP2oqBiIiou+sxiSu5XI6hQ4ciMTERM2fONJYnJiZixowZ7T4nLi4OP//8c6uyhIQEDBs2zDjIjIuLQ2JiYqt9rhISEjBy5EgzXIVliUQi4z5XPYkgCNA3CKiu1WHLjgTE3DIWNfVARW09KmoN3542327923Rb23RbV98IAKiqa0BVXQM0N/EluXHm12UJLofm24r2E2AOVjI4WHef5BcREVFfYKeQor+7Pfq7t3/kdkOjgHxtLfIuS27lljYluMpqUKmrR0lVHUqq6nAmt/1BhFwqbkpkWbVKaPk0/fZ0tIJCyllbREREHdVjElcAsGjRIsybNw/Dhg1DXFwcPvnkE2RlZeGJJ54AYFjCl5ubi88//xwA8MQTT+Cjjz7CokWLsGDBAiQlJWHNmjX4+uuvjW3+5S9/wZgxY/DWW29hxowZ+PHHH/Hrr79i3759FrlGakskEkEuFUGkkMJeBgS42N7wt9t19Y1tElvaKyS7KnQtkl41+jbJL+PML+2Nz/y60eSXtRTQN97wyxIREdFlJGKRMck07Ap1ymv0TTO1Wia3apFbWo28slrkV9Sirr4RF4uqcLGo6oqv5WqvaJqtZdVmKaK3ozUcbWSctUVERNSkRyWu7rnnHhQXF+P111+HWq1GZGQktm3bBn9/fwCAWq1GVlaWsX6/fv2wbds2PPfcc/jPf/4DLy8vfPjhh7jrrruMdUaOHIlvvvkGL730El5++WUEBQVhw4YNiImJ6fLrI/OTS8VwsVPAxa7tUs+OuuHkV4sZYbX6m09+iSHBJxf3I8JbiXBPB4R7OSDc0wFOtvIbvjYiIiK6MqW1DEprGcI829/TtK6+Efna2taztcprkNsiuVWjb0BhhQ6FFTqczG7/dWzkkhbJrLbJLQ+lVY+bQU9ERHSjelTiCgAWLlyIhQsXtvvY2rVr25SNHTsWx44du2qbs2fPxuzZszuje9QHdFbyq1LXciljO0mvFmXay5Jj2hrDzK/0gkqkF1Ri0/FcY9teSitDEsvLkNCK8HKAj5M1v7klIiIyM7lUDF9nG/g6t3/KtCAIKKvWG2drGZYhNiW3Sg0JrqJKHarrGnC+oBLnCyrbbUckAtztreDt1HKmlpXhdlOZgxX3XiMiot6hxyWuiHoDuVQMZ6kczjc4O6qurg5fb94Oj/DhSMuvQnKeFslqLbJKqpFXXou88lr8mlJgrG9vJW01KyvcywH93ewhl/LbWiIioq4iEongZCuHk60ckd7KduvU6hugLm+x19Zlya28slrUNTRCo62FRluLo5dK223HXiE1JrE8HOSoyhdBllyAQHd7+DnbwEbOjwFERNQz8F8soh5IJBLBUQHcGuKKSZFexnJtrR4pTUms5mRWen4FKmrrcfBiCQ5eLDHWlUlE6O9mj3Avw6yscE8HhHk58BtaIiIiC7KSSdBPZYt+Ktt2H29sFFBcVddqOWJui3238spqUFqtR4WuHqmaCqRqKpqeKcGPl04Y23GzV8DfxQZ+zrYIcLGBn4sN/F0Mtx1tuO0AERF1H0xcEfUiDlYyxAS6ICbQxVhWV9+I8wWVxmTW2bxyJKu1qKitN5Sptfj+qKkNX2drRHgqW83O8lRacakhERFRNyAWi+Bqr4CrvQKDfR3brVNdV9+UyDLM3MoqqsTBsxnQWzkiq6QG5TV6FFToUFChw+HMtjO2HKyk8Hexhb+LjeHHufm2LdzsFRCLOSYgIqKuw8QVUS8nl4qb9rxyAIYaygRBQE5pDc62mJ2VotYit6wG2SWGnx1nNcY2nGxkxkRWhJchqRWosoWUG8MSERF1OzZyKYLd7BHsZg8A0Ov12KY/h6lTYyGTyVBWXYdLxdW4VFKNrOIqZBZXI6u4GpdKqpCv1UFbW4/TueU4nVvepm2FVGycqeXvYtM0W8sW/s428Hay5qbxRETU6Zi4IuqDRCKRcfPYyZEexvLSqjqkqLUtZmdpcb6wEqXVevxxvhh/nC821lVIxQjxsDcuMwz3ckCohwNsFfzfChERUXfmaCOHo40cg9qZsVVT14CskmpcKq5qSm41/S6uRm5ZjeFwmPxKpOe33TheIhbB29G61UwtPxcbBLjYws/ZBtZySRdcHRER9Tb8hElERk62cowMVmFksMpYVqtvwLn8SiSryw0ztJpmZ1XVNeBUTjlO5Zi+jRWJgH4utggzzs4yJLTc7K0scTlERER0nazlEoR42CPEw77NY/qGRuSV1TTN0DIktDKLq5HVlNzS1Tciq6QaWSXV+P1c27bd7BWGJJaLDfydbeCvMszU8ue+WkREdBVMXBHRVVnJJIjyUSLKx3T6UWOjgKyS6qalhuXGjeDztTpcKKrChaIqbD2lNtZX2SmMSazm2VkBLraQcI8MIiKiHkMmETftfWULwLXVY42NAgoqdIaZWi1mbGWVVCOzqAra2nrjvlqHMkvatK20ljUtQbRpndzivlpERH0eE1dEdN3EYhECVLYIUNli2kBPY3lhhe6ypYbluFBUhaJKHfamF2JveqGxro1cglAP+6ZklhIRXg4I8bCHlYzLCIiIiHoasVgED6UVPJRWrQ6Jada8r1ZmcVXTflqm5FZBhQ7lNfo2M7mbWcnE8HM2nYDo37SvVoCLDbwcua8WEVFvx8QVEXUawylHrhgzwPQtbHVdPdI0Fa02gk/VaFFd14BjWWU4llVmrCsWAUGudi1mZxk2gne25fIBIiKinuxq+2pV19U37atl2CQ+s7jKeD+3rAa1+o7vq9W8n5Y/99UiIuo1mLgiIrOykUsR7eeEaD8nY1lDo4CLRZWtklnJeVoUV9XhXEElzhVUYvOJPGN9T6WVcYlh88mGvs7WEIm4bICIiKins5FLEephOOTlcvqGRuSW1rSaoWX4MSS3rrWvlruDwrhJvK+jFSpKRIhvaIRM1gUXRkREnYKJKyLqchKxyHhM94zB3gAAQTDsjdG8X9bZPMPeWZnF1VCX10JdXoudqQXGNuwVUoR5OiDUww5CkQhDtLXwdeEolIiIqDeRScTG7QmutK+WaflhVdPG8YZZWxW19cjX6pCvbbmvlgQZX5/AqgeGcXsCIqIegokrIuoWRCIR3B2s4O5ghfGhbsbySl09UtVa44mGyWot0jQVqNDV41BmSdNAVIIv3vkN/i42iOnnjJh+LogJdIaPk43lLoiIiIjMquW+WrGX7aslCALKqvWtZmpdLKzAlpN52J1WhD+tOYTP5g+DgxW/9CIi6u6YuCKibs1OIcWwAGcMC3A2lukbGpFRWInkPC1OZZdi56lLyK0WGZcPfHskBwDg7WiNmEBnYzLL38WGywuJiIj6AJFIBCdbOZxs5RjctK+WXq+Hrz4b/z1vhUOZJZi7+gDWPTwCrvYKy3aWiIiuiokrIupxZBKxcS+MO6LcEY0LGH3rRJzMrcSBi8U4eKEEp3PLkVtWg43HcrHxWC4Awz4XzbOxYvq5IMjVloksIiKiPiTIAfjykWF45PPjSFZrMefj/fjikRj4OnOWNhFRd8XEFRH1CvZWMowPdTMuM6zS1eNYVikOXijBwYvFOJldjnytDj+dzMNPJw0bv6vs5BjRYmnhADd7iMVMZBEREfVm4Z4O+P6JODyw5iAyi6sxuyl5NcDd3tJdIyKidjBxRUS9kq1CitH9XTG6v2Ej11p9gzGRdehiCY5llaKosg7bTmuw7bQGAOBoI8OIAGfEBLogpp8zwjwdIGEii4iIqNcJUNni+ydG4k//PYj0/ErcvToJ/5s/vNUpyERE1D0wcUVEfYKVTIKRQSqMDFIBAHT1DTiVU46DF4px8GIJjmSWoqxaj4TkfCQk5wMA7K2kGB7QtEdWoAsivRwglYgteRlERETUSTyUVvj28TjM/99hnMguw/2fHcTqeUONX3oREVH3wMQVEfVJCqkEwwOcMTzAGU/DsOH76dxyHLpYgoMXinEksxQVtfXYlVqAXakFAABbuQRD/J0Q2zQja6CPI+RSJrKIiIh6KkcbOb58NAZPrD+K388V4eG1h/HB3GhMjfK0dNeIiKgJE1dERDBs+D7EzwlD/JzwxNggNDQKSM7T4uDFYhy4UILDmSUor9Hj93NF+P1cEQDASmZ4Tkw/F4zo54xoP0dYySQWvhIiIiK6HrYKKT57cBgWbTiJrafVeOqrY/j3zCjcO8LP0l0jIiIwcUVE1C6JWIQoHyWifJR4dHQgGhsFpGoqcOiiYWnhoYslKK6qw/6MYuzPKAYAyCViDPZ1NJ5aOMTfETZy/m+WiIiou1NIJfjw3mgobWT46mAWFm88jdLqOjw5NognEBMRWRg/URERdYBYLEK4lwPCvRwwf1Q/CIKA8wWVONC0tPDgxRIUVuhwKLMEhzJLsALnIRWLMNBHiZhAw4ysYf5OsLeSWfpSiIiIqB0SsQhL7oyEk40M/9mdgbd3pKGsWo/FU0KZvCIisiAmroiIboBIJEJ/d3v0d7fHvFh/CIKAzOJqYxLr4IVi5JXX4lhWGY5llWHVngyIRUCkt9Kw2Xs/FwwPcIbShoksIiKi7kIkEuFvk0LhaC3Hkm0p+OS3CyitqsPSWVE8oIWIyEKYuCIi6gQikQj9VLbop7LF3BF+EAQBOaU1OHCh2LDh+8USZJVU41ROOU7llOPT3y9CJAJCPRwQ088ZsYHOGNHPBc62cktfChERUZ+3YEwglDYyvPDDKXx3NAflNXp8eG8097IkIrIAJq6IiMxAJBLB19kGvs42mDPMFwCQV1bTlMQqxsELJbhQVIUUtRYpai3W7s8EAAxwt0NMPxfEBDpjRD9nuNlbWfAqiIiI+q67h/lCaS3Dn78+joTkfDy89jA++dMw2Cn4EYqIqCv1mPmupaWlmDdvHpRKJZRKJebNm4eysrIr1tfr9fi///s/REVFwdbWFl5eXvjTn/6EvLy8VvXGjRsHkUjU6mfu3Llmvhoi6ou8HK1xZ7Q3ls4aiF3Pj8OhFydgxb3RmBfrjwHudgCA9PxKfHHgEp7+6jhGLNmJW5ftweKNp7D5eC7U5TUWvgIiIqK+ZVKEB9Y+NBx2Cin2ZxTjvk8PoLhSZ+luERH1KT3m64L77rsPOTk52LFjBwDgsccew7x58/Dzzz+3W7+6uhrHjh3Dyy+/jEGDBqG0tBTPPvsspk+fjiNHjrSqu2DBArz++uvG+9bW1ua7ECKiJm4OVrhjkBfuGOQFACiu1OFwZgkOXDAsLUzVaHGhqAoXiqrw9aFsAICfsw1i+hlmY8UGusDHyZobxhIREZnRyCAVvl4Qiwf/dwincsoxZ3US1j8SAy9HfmYgIuoKPSJxlZKSgh07duDAgQOIiYkBAHz66aeIi4tDWloaQkJC2jxHqVQiMTGxVdmKFSswYsQIZGVlwc/Pz1huY2MDDw+PDvdHp9NBpzN906LVagEYZnnp9frrurZraW6vs9vtiRgLE8bCpDfFwkEhxoQQFSaEqAAA5TV6HLlUisOZpTiUWYqzeVpklVQjq6Qa3x3NAQB4Kq0wIsAJIwKcEO1jD0HoHbG4Gb3pPXGzGAsTc8aC8SXq/aJ8lPj28Tj8ac1BXCiswuxV+/H5IzEIdrOzdNeIiHq9HpG4SkpKglKpNCatACA2NhZKpRL79+9vN3HVnvLycohEIjg6OrYq//LLL7F+/Xq4u7tjypQpeOWVV2Bvb3/FdpYuXYrXXnutTXlCQgJsbGw6dlHX6fIkXF/GWJgwFia9ORYDAQz0A2q9gAsVIpzXipChFSGrClCX1+LHk2r8eFINAHBWSPDtxZ0IcxQwwEGAVY/4v7x59Ob3xPViLEzMEYvq6upOb5OIup9gNzt89+RIzGtKXt29OglrHxqOgT6Olu4aEVGv1iM+0mg0Gri5ubUpd3Nzg0aj6VAbtbW1eOGFF3DffffBwcHBWH7//fejX79+8PDwwJkzZ7B48WKcPHnyqgPbxYsXY9GiRcb7Wq0Wvr6+iI+Pb9V2Z9Dr9UhMTMTEiRMhk8k6te2ehrEwYSxM+nIsquvqcTy7HIculuJQZglO5pSjRAfszxdhfz4gFYsw1N8Ro4NVGNNfhVAPuz6xrLAvvycux1iYmDMWzTOviaj383a0xnePx+GhtYdxKqcc935yAJ8+OAwjg1SW7hoRUa9l0cTVq6++2u7MpZYOHz4MAO1+2BIEoUMfwvR6PebOnYvGxkasXLmy1WMLFiww3o6MjET//v0xbNgwHDt2DEOGDGm3PYVCAYVC0aZcJpOZ7YOBOdvuaRgLE8bCpC/GQimTYVyoNcaFGpY6l1fV4D/fJaJGGYDfzxcjs7gaBy+W4uDFUixLPAc3ewXGDHDF2AGuGN1fBUcbuYWvwLz64nviShgLE3PEgrEl6ltc7BT4akEsFqw7gqQLxZj/v8NYcW80JkV0fOsRIiLqOIsmrp5++ulrnuAXEBCAU6dOIT8/v81jhYWFcHd3v+rz9Xo97r77bly8eBG7du265oyoIUOGQCaT4dy5c1dMXBERdUc2cikinARMnRoGmUyGzKIq/HauEHvTCrE/oxgFFTp8fzQH3x/NgVgEDPJ1xLgBbhgb4ooobyUk4t4/G4uIiKgz2Cmk+N9Dw/HM18eRkJyPJ9cfxVt3DcScYb6W7hoRUa/T4cTVjUyDv1aSSKVSQaW69rTauLg4lJeX49ChQxgxYgQA4ODBgygvL8fIkSOv+LzmpNW5c+ewe/duuLi4XPO1zp49C71eD09Pz2vWJSLqzgJUtghQ2eJPcQHQ1TfgSGYp9qYbEllp+RU4nlWG41lleP/XdDjZyDC6f9NsrAEquNlbWbr7RH2aOcZdRNS5rGQSrLx/CBZvPI3vjubgb9+fQnmNHo+ODrR014iIepUOJ64cHR2va28UkUiE9PR0BAbe/P+4w8LCMHnyZCxYsACrV68GADz22GO4/fbbW23MHhoaiqVLl2LmzJmor6/H7NmzcezYMWzZsgUNDQ3G/bCcnZ0hl8uRkZGBL7/8ElOnToVKpUJycjL++te/Ijo6GqNGjbrpfhMRdRcKqQSjglUYFazCi1PDoC6vwd60QuxNL8S+c0Uordbjp5N5+OlkHgAgwssBY5uWFQ7xd4JMIrbwFRD1LZYcdxFRx0klYrw9eyAcbWT49PeL+NfWFJRU1eFvk0L6xL6SRERd4bqWCn7//fdwdna+Zj1BEDB16tQb7lR7vvzySzzzzDOIj48HAEyfPh0fffRRqzppaWkoLy8HAOTk5OCnn34CAAwePLhVvd27d2PcuHGQy+XYuXMnPvjgA1RWVsLX1xfTpk3DK6+8AolE0qn9JyLqTjyV1pg7wg9zR/hB39CIE9llxkTW6dxynM3T4myeFiv3ZMBeIcWoYBXGhrhizABXeDtaW7r7RH2CJcddHREQEIBLly61Kvu///s/vPnmm13eFyJLEolEeHFqGJxs5Xh7RxpW7slAWY0eb8yI5DJ8IqJO0OHElb+/P8aMGdOh5XYAEBgY2KmblTo7O2P9+vVXrSMIgvF2QEBAq/vt8fX1xd69ezulf0REPZVMIsbwAGcMD3DG85NCUFSpw+9Ne2P9dq4IJVV12HFWgx1nDbNW+7vZGWZjhbhieIAzrGRM9BN1NkuPuzrq9ddfb3XQjZ2dXZf3gag7EIlEWDguGI7Wcvxj82l8dTAL5TV6vH/3YMilnLVMRHQzOpy4unjx4nU1fObMmevuDBERWZ7KToGZ0T6YGe2DxkYBp3PLDXtjpRfieFYpzhVU4lxBJT7bdxFWMjHiAl0wLsQNYwe4IkBla+nuE/UKPWXcZW9vDw+Pjp2kptPpoNPpjPeb9/HS6/XQ6/Wd3rfmNs3Rdk/DWBh0RRzmDPGEnVyEv35/GltPqVFeXYeP5g6CrcKiZ2K1wfeECWNhwliYMBYG5o5DR9vtXv8HJSKibkUsFmGQryMG+TrimQn9UV6tx77zRdibXoC96YXI1+qwO60Qu9MKAQD+LjbGvbHiglxgI+c/M0S92VtvvYU33ngDvr6+mDNnDv72t79BLpe3W3fp0qV47bXX2pQnJCTAxsbGbH1MTEw0W9s9DWNh0BVxeHSACGvSxNh3vhh3Lt+Jx0IbYNv1kyKvie8JE8bChLEwYSwMzBWH6urqDtW7oU8UH374YbvlIpEIVlZWCA4OxpgxY7hPFBFRL6O0kWHaQE9MG+gJQRCQll+BPWmGZYVHLpXgUnE1Pk+6hM+TLkEuEWN4P6emRJYbBrjbcaNaohvQXcddf/nLXzBkyBA4OTnh0KFDWLx4MS5evIjPPvus3fqLFy/GokWLjPe1Wi18fX0RHx9vlhMR9Xo9EhMTMXHiRIsso+xOGAuDrozDVAC3Zpfh0S+OIbOyHv/LUuK/Dw6Fh0P3OLWX7wkTxsKEsTBhLAzMHYeOnqJ8Q4mr999/H4WFhaiuroaTkxMEQUBZWRlsbGxgZ2eHgoICBAYGYvfu3fD19b2RlyAiom5OJBIh1MMBoR4OeGJsECp19UjKKMbe9ALsSStETmkN/jhfjD/OF+Pf21LhqbQyzsYaGayC0rrvDgKIrkdXjrteffXVdmdFtXT48GEMGzYMzz33nLFs4MCBcHJywuzZs/HWW2+1uzeXQqGAQqFoUy6Tycz6ocDc7fckjIVBV8VheKArvntiJOatOYhzBVW497PDWP9ITLdaVs/3hAljYcJYmDAWBuaKQ0fbvKGdAv/9739j+PDhOHfuHIqLi1FSUoL09HTExMTggw8+QFZWFjw8PFoNaIiIqHezU0gxMdwd/7ozCr//fTx2/XUsXrkjHONCXKGQiqEur8U3h7Px5JfHMOSNRMz5eD8+2nUOp3PK0dh49cM0iPqyrhx3Pf3000hJSbnqT2RkZLvPjY2NBQCcP3/+pvtB1FsMcLfH90+MRICLDXJKazD74yQk53VshgERERnc0Iyrl156CT/88AOCgoKMZcHBwVi2bBnuuusuXLhwAW+//TbuuuuuTusoERH1HCKRCIGudgh0tcNDo/qhVt+AgxdLsDetEHvTC5BRWIXDmaU4nFmKZQnpcLGVY0zTbKzR/VVwsWs7K4Oor+rKcZdKpYJKpbqh5x4/fhwA4OnpedP9IOpNfJ1t8N0TI/Hgfw8hWa3FPZ8kYc2DwzGin7Olu0ZE1CPcUOJKrVajvr6+TXl9fT00GsNx6V5eXqioqLi53hERUa9gJZMYlwkC4cguqcZv5wx7Y/1xvgjFVXXYdDwXm47nQiQCBnorDfVDXDHIxxFSCY8Sp76rO467kpKScODAAYwfPx5KpRKHDx/Gc889h+nTp8PPz6/L+kHUU7jaK/DN47F4dO0RHMoswbw1B7HqgSG4NdTd0l0jIur2buiTwPjx4/H4448bv1kDDN+yPfnkk7j11lsBAKdPn0a/fv06p5dERNSr+Drb4P4Yf3zyp2E4/s94fPNYLJ4cF4RwTwcIAnAypxwf7jqPu1YlYcgbiXjqy2P49nA2NOW1lu46UZfrjuMuhUKBDRs2YNy4cQgPD8c///lPLFiwAF9//XWX9YGop3GwkuHzR0ZgQqgbdPWNWPD5UWw+nmvpbhERdXs3NONqzZo1mDdvHoYOHWrcTKu+vh4TJkzAmjVrAAB2dnZ49913O6+nRETUK8mlYsQGuiA20AX/NzkUBdpa7E0vxN70Qvx+rgjlNXpsPa3G1tNqAECohz3Ghhhmbw3zd4ZcytlY1Lt1x3HXkCFDcODAgS57PaLewkomwcfzhuLv35/CpuO5eHbDCZRV12H+KH7hT0R0JTeUuPLw8EBiYiJSU1ORnp4OQRAQGhqKkJAQY53x48d3WieJiKjvcHOwwpxhvpgzzBcNjQJO5pQ17Y1ViJM5ZUjVVCBVU4HVey/ARi7ByCAVxoa4YtwAV/g621i6+0SdjuMuot5FJhHj3TmDoLSWYe3+TLz6czJKq/V49rb+EIlElu4eEVG3c0OJq2aBgYEQiUQICgqCVHpTTREREbUhEYswxM8JQ/yc8NzEASitqsPv54uMiayiSh1+TcnHryn5AIBAlS1uCXaBTZkIt9U3gqcXU2/CcRdR7yEWi/DKHeFwtpXjvcR0fLDzHMqq6/DKHREQi5m8IiJq6YbWV1RXV+ORRx6BjY0NIiIikJWVBQB45pln8Oabb3ZqB4mIiJo52coxfZAX3r17EA69OAFb/nwL/jYpBCP6OUMqFuFCURU+P5CFj1MliHtrD/723UnsSSuAvqHR0l0numEcdxH1TiKRCM9M6I/XZ0RAJALWJV3Cc9+e4L9ZRESXuaHE1eLFi3Hy5Ens2bMHVlZWxvLbbrsNGzZs6LTOERERXYlYLEKktxJPjQ/Gt4/H4dg/J+LjB4binmE+cJAJ0NbW47ujOZj/v8MYvuRXvPDDKew7V4R6fiCgHobjLqLe7U9xAVh+z2BIxSL8eCIPj31+BDV1DZbuFhFRt3FD88w3b96MDRs2IDY2ttU67PDwcGRkZHRa54iIiDrKwUqGyZEemBDiglhpJtwiYrHjbCG2n1GjqLIO3xzOxjeHs+FiK8fkSA9MG+iJmH4ukHBJBnVzHHcR9X4zBnvDwUqGJ788it1phfjTfw/isweHQ2nNNe9ERDc046qwsBBubm5tyquqqrihIBERWZxYBIwIcMYbd0bi4Iu34atHY3BfjB+cbeUorqrDlwezcN+nBxHz7534549ncPBCMRobBUt3m6hdHHcR9Q3jQ93wxSMxsLeS4nBmKeZ+cgAFFbWW7hYRkcXdUOJq+PDh2Lp1q/F+86Dp008/RVxcXOf0jIiIqBNIxCKMDFbh3zOjcOjFCfjikRGYO9wXjjYyFFXq8HnSJdzzyQHEvbkTr/50FkcvlTCJRd0Kx11EfcfwAGd8+3gcVHYKpKi1mPNxErJLqi3dLSIii7qhpYJLly7F5MmTkZycjPr6enzwwQc4e/YskpKSsHfv3s7uIxERUaeQSsQY3d8Vo/u74o07I/HH+SJsOaXGL2c1yNfqsHZ/Jtbuz4SX0gpTozwxbaAnBvs6clYLWRTHXUR9S5inA354Mg4PrDmIS8XVuGvVfnzxSAxCPOwt3TUiIou4oRlXI0eOxB9//IHq6moEBQUhISEB7u7uSEpKwtChQzu7j0RERJ1OJhFjXIgbls0ZhCMv3YY1Dw7DrGhv2CmkyCuvxWf7LmLmyv245a3dWLotBadzyiEInIlFXY/jLqK+x9/FFt8/MRIh7vYoqNDh7tVJOHqp1NLdIiKyiBuacQUAUVFRWLduXWf2hYiIyCIUUgkmhLljQpg7avUN+C29EFtOqfFrSj5yy2qw+rcLWP3bBfi72GBa00yscE8HzsSiLsNxF1Hf4+5ghW8fj8NDaw/hWFYZHvjsID6eNxRjB7haumtERF2qw4krrVbb4UYdHBxuqDNERESWZiWTID7CA/ERHqjVN2B3agG2nFZjV0oBLhVXY+WeDKzck4FAlS2mDTQksULc7ZnEok7FcRcRAYDSRob1j8bgifXH8Ft6IR5ddxjv3T0YdwzysnTXiIi6TIcTV46OHd/jo6Gh4YY7RERE1F1YySSYEuWJKVGeqK6rx67UAmw5qcbutAJcKKrCil3nsWLXeQS72WFalCfuGOSJYDfuQUI3j+MuImpmI5fisz8Nw6JvT2DLKTWe+eY4tLV63B/jb+muERF1iQ4nrnbv3m28nZmZiRdeeAHz5883nmaTlJSEdevWYenSpZ3fSyIiIguzkUtx+0Av3D7QC5W6euxMyceWU2rsTSvE+YJKfLDzHD7YeQ4h7va4vWkmVqCrnaW7TT0Ux11E1JJcKsYHc6OhtJbhy4NZ+MemMyir1mPhuCDO+CWiXq/DiauxY8cab7/++ut47733cO+99xrLpk+fjqioKHzyySd48MEHO7eXRERE3YidQooZg70xY7A3tLV6/Jqcj62n1PjtXCHS8iuQlliBdxPTEe7pgGkDPXH7QE/4u9hautvUg3DcRUSXk4hF+NedkXC2lWPFrvN455c0lFbV4cWpYRCLmbwiot7rhk4VTEpKwrBhw9qUDxs2DIcOHbrpTrWntLQU8+bNg1KphFKpxLx581BWVnbV58yfPx8ikajVT2xsbKs6Op0Of/7zn6FSqWBra4vp06cjJyfHLNdARES9j4OVDLOG+GDN/OE48o+JeGf2QIwd4AqpWIRktRbv/JKGse/swR0r9mH13gxkl1RbusvUw1hi3EVE3ZNIJMJf40Pw8u3hAIDP9l3E374/hfqGRgv3jIh6I0EQkFkBFFfVWbQfN5S48vX1xccff9ymfPXq1fD19b3pTrXnvvvuw4kTJ7Bjxw7s2LEDJ06cwLx58675vMmTJ0OtVht/tm3b1urxZ599Fps2bcI333yDffv2obKyErfffjv3iyAiouumtJFhzjBfrHt4BA7/4za8OSsKo/urIBGLcDq3HEu3p2L027tx53/+wGe/X0BeWY2lu0w9gCXGXUTUvT1ySz+8O2cQJGIRfjiWgye/PIZaPT+/EFHnyCquxge/nkP8B3/g/TNSbDqeZ9H+dHipYEvvv/8+7rrrLvzyyy/GGUwHDhxARkYGfvjhh07tIACkpKRgx44dOHDgAGJiYgAAn376KeLi4pCWloaQkJArPlehUMDDw6Pdx8rLy7FmzRp88cUXuO222wAA69evh6+vL3799VdMmjSp3efpdDrodDrj/eaTf/R6PfR6/Q1d45U0t9fZ7fZEjIUJY2HCWJgwFgbdJQ52chHuivbEXdGeKK6qQ0JyPrad1uBQZilOZJfhRHYZ/rU1BUP8HDE10h2TI9zh7mDVqX3oLrHoDswZC3PHt6vHXUTUM9w11AcO1jI89dUxJCbnY/7/DuHTPw2DvZXM0l0joh6ovFqPLafzsOlYLo5cKjWWy8UCqnT1FuzZDSaupk6dinPnzmHVqlVISUmBIAiYMWMGnnjiCbN885eUlASlUmlMWgFAbGwslEol9u/ff9XE1Z49e+Dm5gZHR0eMHTsWS5YsgZubGwDg6NGj0Ov1iI+PN9b38vJCZGQk9u/ff8XE1dKlS/Haa6+1KU9ISICNjc2NXuZVJSYmmqXdnoixMGEsTBgLE8bCoLvFQQngXg9gmjNwskSE40ViXKgAjmWV4VhWGZZsS0WgPRCtasQgZwEO8s577e4WC0syRyyqq827/LOrx11E1HNMDHfH5w+PwKPrjuDAhRLc9+lBrH1oOFzsFJbuGhH1AHX1jdidVoBNx3KxK7UAdU3LjkUiYFSQCtMHekDIOYFZE4It2s8OJ65OnTqFyMhIiMWG1YU+Pj5YsmTJFeufPXsWISEhkEpvKDfWikajMSabWnJzc4NGo7ni86ZMmYI5c+bA398fFy9exMsvv4xbb70VR48ehUKhgEajgVwuh5OTU6vnubu7X7XdxYsXY9GiRcb7Wq0Wvr6+iI+Ph4ODww1c4ZXp9XokJiZi4sSJkMn69rcnjIUJY2HCWJgwFgY9IQ5zm35rtLX45Ww+tp3Jx7GsMmRUABkVEmzMBEYEOGFKpAcmRbjDxfbGslg9IRZdxZyxaJ553ZksOe4iop4lNtAF3zwWiwf/ewinc8sx5+MkfPFoDLwdrS3dNSLqhgRBwLGsMmw6noMtp9QoqzbNHA/1sMfMaMMBRB5KK+j1emxTn7BcZ5t0eHQTHR0NjUYDV1fXDtWPi4vDiRMnEBgYeMU6r776arszl1o6fPgwALR7zKsgCFc9/vWee+4x3o6MjMSwYcPg7++PrVu3YtasWVd83rXaVSgUUCjafoshk8nM9sHAnG33NIyFCWNhwliYMBYGPSEOvi4yPDrGHo+OCUZeWQ22nVZjyyk1TmSX4cDFUhy4WIrXt6YiLtAFtw/0xKQIDzjdQBKrJ8Siq5gjFuaIrTnGXUTUe0V6K/HdE3GYt+YQLhRVYfaq/fjikREIdrO3dNeIqJu4VFyFTcdzsfl4LjKLTbPF3ewVmDHYCzOjfRDu1bkTcTpLhxNXgiDg5Zdf7vBSuLq6a+86//TTT2Pu3LlXrRMQEIBTp04hPz+/zWOFhYVwd3fvUH8AwNPTE/7+/jh37hwAwMPDA3V1dSgtLW0166qgoAAjR47scLtEREQ3y8vRGo+ODsSjowORXVKNbafV2HpajVM55dh3vgj7zhfhpc1nMCpYhWkDPTEp3ANKGyajeitzjLuIqHcLdLXD908aklfnCyox5+MkrH1oBAb5Olq6a0RkIWXVddhySo1Nx3NxtMW+VdYyCSZHemBmtDdGBRsOEurOOpy4GjNmDNLS0jrccFxcHKytrz49VaVSQaVSdait8vJyHDp0CCNGjAAAHDx4EOXl5deVYCouLkZ2djY8PT0BAEOHDoVMJkNiYiLuvvtuAIBarcaZM2fw9ttvd7hdIiKizuTrbIPHxwbh8bFBuFRcha2n1dhyUo1ktRZ70wuxN70Q/5Ccxuj+rpgW5YmJEe5w4Ga8vYo5xl1E1Pt5Kq3x7eNxeOh/h3Aypxz3fXoAn/xpGEYFX/szFxH1Drr6BuxOLcSm4znYnVpo3LdKLAJGBaswM9obkyI8YKvoOdsLdLine/bsMWM3ri4sLAyTJ0/GggULsHr1agDAY489httvv73VxuyhoaFYunQpZs6cicrKSrz66qu466674OnpiczMTLz44otQqVSYOXMmAECpVOKRRx7BX//6V7i4uMDZ2RnPP/88oqKijKcMEhERWZK/iy0WjgvGwnHBuFBYia2nDDOxUjUV2JVagF2pBZBvFGPMAFfcMcgTE8LcYdeDBiLUPkuOu4ioZ3O2lePLBbF4/Isj+ON8MR7632F8eG80Jke2f9I6EfV8hn2rSrHxWC62nm67b9WsIYZ9qzr7BOuu0mNGtl9++SWeeeYZ4wmA06dPx0cffdSqTlpaGsrLywEAEokEp0+fxueff46ysjJ4enpi/Pjx2LBhA+ztTWu933//fUilUtx9992oqanBhAkTsHbtWkgkkq67OCIiog4IdLXDnyf0x58n9Mf5ggpsOWXYE+t8QSV+TcnHryn5UEjFGB/ihmkDPTEm2OnajRIRUa9jp5Div/OH4y9fn8COsxos/PIo3pw1EHcP50mkRL1J875Vm47n4tJl+1bdGe2NmdHeCPPsnvtWXY8ek7hydnbG+vXrr1pHEATjbWtra/zyyy/XbNfKygorVqzAihUrbrqPREREXSXYzR7P3maPv0zoj/T8Smw9lYctp9S4UFSFHWc12HFWAyuZGGEOYjiFFmP0APerHjxCRES9i0IqwX/uH4IXN57GhiPZ+PsPp1BWU4fHxgRZumtEdBOutG+VjVyCyREemDnEGyODuv++VdejxySuiIiIqC2RSIQQD3uEeITguYkDkKKuwJamJFZWSTWOF4vxp/8dRaCrLe6P8cfsIT7c1J2IqI+QiEV4864oONrKsHrvBfx7WypKqvRYNIEnkBL1JC33rdqVWgB9g2HSTvO+VbOGGPatspH3zhRP77wqIiKiPkgkEiHcywHhXg7426QQnLhUgmWb9uNEqQwXCqvwxpZkvL0jFXcM8sIDsf4Y5KPkLCwiol5OJBJh8ZQwONnI8eb2VHy8NwMllbWI43cYRN1ay32rtpxSo7zGtG9VmKcDZkV7Y/pgrx67b9X1YOKKiIioFxKJRIj0dsDdgY34aMJYbD1TgPUHLiFVU4Hvj+bg+6M5iPR2wP0x/pgx2KvXfkNHREQGT4wNgqO1DC9uOo1vj+YixUmMftFaDPJz5pcYRN1IZpFh36rNJ1rvW+XuoMCdg70xc4g3Qj16/r5V14OjVCIiol7OTiHFA7H+uD/GD8eyyvDlgUvYclqNM7laLN54Gv/emoJZQ7xxf6w/BrjbX7tBIiLqkeaO8IPSWoZnvjmO06Vi3LnqAHydrTEl0hOTIz0w2McR4l60Lw5RT1FaVYctp9XYdCwHx7LKjOU2cgkmR3pgVrQP4oJcetW+VdeDiSsiIqI+QiQSYai/E4b6O+Hl28Px/dEcfHnwEjKLq7Eu6RLWJV3CiABn3B/rh8mRHlBIecIuEVFvMyXKE1/aSLHkhwNIq5Aiu6QGn/x2AZ/8dgEeDlaYHOmBKZEeGBbg3Gc/JBN1BcO+VQXYeCwXu9Na71t1S39XzIr2RnyEO2fFg4krIiKiPsnJVo4FYwLxyC398EdGEdYfuIRfUwpwKLMEhzJL4GIrx93DfXHfCD/4OttYurtERNSJov0c8XBII8bdNg77L5Rh+xkNdqUWQKOtxdr9mVi7PxMqOzniIwxJrNhAF8gkYkt3m6jHEwQBRy+VYuPxXGy9bN+qcE8HzBrijemDvODWB/atuh5MXBEREfVhYrEIo/u7YnR/V2jKa/HN4Sx8cygbGm0tVu3JwMd7MzB2gCseiPHH+FA3fvtORNSL2MilmBLliSlRnqjVN+CP80XYdlqDX1PyUVRZh68OZuGrg1lwtJFhYpg7pkR5YFSwijNyia7TxeZ9q47nIqvEtG+Vh4MVZkR7YVa0D0I8uF3DlTBxRURERAAAD6UVnr1tAJ4eH4ydqYbN3H8/V4Q9aYXYk1YIL6UV7h3hh3tG+MLNnt8EEhH1JlYyCSaEuWNCmDv0DY1IyijG9jMaJJzVoLiqDt8dzcF3R3Ngr5BiQpgbJkd6YuwAV1jLmcQiak9pVR22nMrDxuO5ON5i3ypbuQSTIz0xa4g3YgP77r5V14OJKyIiImpFKhFjUoQHJkV4ILOoCl8dysJ3R7KRV16LdxPT8cHOc5gU4YH7Y/0QF+jC06iIiHoZmUSMMQNcMWaAK/51ZyQOXSzBjjNq7DirQb5Wh80n8rD5RB6sZRKMD3XFlEhPjA91g52CHy+pb9PVN2BXSgE2Hs/Fnsv2rRrd3xWzhnhjYjj3rbpejBYRERFdUYDKFi9ODcOiiQOw/Ywa6w9k4eilUmw9rcbW02oEutri/hh/zB7iA6WNzNLdJSKiTiYRixAX5IK4IBe8ckcEjmeXYvtpDbaf0SC3rAbbTmuw7bQGcqkYY/q7YkqkB24Ld4fSmv8mUN8gCAKOXCrFxmO52HoqD9raeuNjEV4OmBntjemDvThb/SYwcUVERETXZCWTYGa0D2ZG+yBFrcWXBy9h07FcXCiswhtbkvH2jlTcMcgLD8T6Y5CPkrOwiIh6IbFYhKH+zhjq74x/TAvD6dxybD+jwY4zGlwsqsKvKfn4NSUfMokII4NUmBLpgfgIDzjbyi3ddaJOd7GoCpuO5WDTiVxkl9QYyz2VVpgx2BuzhnhjgDv3reoMTFwRERHRdQnzdMC/7ozCC1PCsPl4LtYfuIRUTQW+P5qD74/mINLbAQ/E+GP6YC9OhSci6qVEIhEG+jhioI8j/j4pBGn5Fdh2WoMdZ9RIz6/E3vRC7E0vxIubTiM20AVTIg1L0HlaGvVkJc37Vh3LxYnsMmO5rVyCKVGemBXtjRjuW9XpOJokIiKiG2KnkOKBWH/cH+OHY1ml+PJAFracVuNMrhYvbDyNJVtTMGuINx6I9Ud/fuPYoyxZsgRbt27FiRMnIJfLUVZW1qZOVlYWnnrqKezatQvW1ta47777sGzZMsjlnFlB1NeIRCKEejgg1MMBiyYOQEZhJXac0WDbaTXO5mmxP6MY+zOK8c+fzmKonxOmRHlicqQHvB2tLd11omuq1TdgV2oBNh4z7FtV32jYt0oiFmF0fxVmRnsjPtyDBxWYERNXREREdFNEItPSkZduD8f3R7Px5cEsXCquxrqkS1iXdAkj+jnjgVh/TIpw5zHqPUBdXR3mzJmDuLg4rFmzps3jDQ0NmDZtGlxdXbFv3z4UFxfjwQcfhCAIWLFihQV6TETdSZCrHZ4aH4ynxgcjq7gaO86qse20Bieyy3DkUimOXCrFG1uSMchHicmRnpgS6YEAla2lu01kJAgCMrTASz+exfYz+a32rYr0dsDMaB9MH+QFV3uFBXvZdzBxRURERJ3G2VaOx8YE4dFbAvFHRhHWH7iEX1MKcOhiCQ5dLIGLrRx3D/fFfSP84OtsY+nu0hW89tprAIC1a9e2+3hCQgKSk5ORnZ0NLy8vAMC7776L+fPnY8mSJXBwcOiqrhJRN+fnYoPHxgThsTFByCurwS9nDRu7H84swcmccpzMKcdbO1IR5umAKZEemBLpwVm61KUEQUC+VodkdTmS87RIVmtxPKsM6nIpgFwAhn2r7oz2xqxob74/LYCJKyIiIup0YrEIo/u7YnR/V2jKa/HN4Sx8fSgL+VodVu3JwMd7MzB2gCseiPHH+FA37gXRwyQlJSEyMtKYtAKASZMmQafT4ejRoxg/fnyb5+h0Ouh0OuN9rVYLANDr9dDr9Z3ex+Y2zdF2T8NYGDAOJpaKhautFA+M8MEDI3xQWKFDYkoBfknOx8GLpUhRa5Gi1uK9xHQEudpiUrg7JkW4IczD3qwHfvB9YdIXYqFvaMTFoiqkqCuQomn6UVegtLrtNSskAqZGeWJWtA9GBDhB3DRW6c3xuZy53xMdbZeJKyIiIjIrD6UVnr1tAJ4eH4xfUwrw5cFL+P1cEfakFWJPWiG8Ha1x7whf3D3cl0dF9xAajQbu7u6typycnCCXy6HRaNp9ztKlS40zuVpKSEiAjY35Zt8lJiaare2ehrEwYBxMLB0LRwD3uAG3OwGnS0U4WSxCWrkIGYVVWLn3AlbuvQCVQsAgFwGDnBvhZweYK4dl6Vh0J70lFrX1QG41kFslQm61CLlVIqirgXqh7ZtIDAFu1oC3rQAfWwFeNkCgvQC5JAclqTnYkWqBC+hGzPWeqK6u7lA9Jq6IiIioS0glYkyO9MDkSA9kFlXhq0NZ+PZINnLLarAsIR3Lfz2HSREeuD/WD3GBLmb9hr0vevXVV9tNHLV0+PBhDBs2rEPttfffRxCEK/53W7x4MRYtWmS8r9Vq4evri/j4eLMsLdTr9UhMTMTEiRMhk8k6vf2ehLEwYBxMumMs5jT9rqjVY1daEX45m4/fzhWhSNeInXki7MwTw1NphfhwN0yOcMcQX0fjDJib0R1jYSk9NRaCIECj1SFZrTXNpFJXILu0pt36tgoJwjzsDT+e9gjzcEB/N1soZKY9OHtqLDqbuePQPPv6Wpi4IiIioi4XoLLFi1PDsGjiAGw7rcaXB7Nw9FIptp5WY+tpNQJdbXF/jD9mD/GB0qbvDhg709NPP425c+detU5AQECH2vLw8MDBgwdblZWWlkKv17eZidVMoVBAoWi7ia1MJjPrhwJzt9+TMBYGjINJd4yFs0yG2cP8MHuYH6p09diTVojtZ9TYlVoAdXkt1iVlYV1SFlztFZgU4Y4pkZ6I6ecMqUR8U6/bHWNhKd05FvqGRpwvqDTuRdX8u7ym/SVnXkorhHs5INzTAWGeDgj3coCvk02Hk57dORZdyVxx6GibTFwRERGRxVjJJJg1xAezhvggOU+LLw9ewubjubhQWIU3tiTjnV9SccdALzwQ649Bvo6W7m6PplKpoFKpOqWtuLg4LFmyBGq1Gp6engAMS/4UCgWGDh3aKa9BRGSrkGLaQE9MG+iJWn0DfksvxI4zGiSm5KOwQof1B7Kw/kAWnGxkiA/3wOQoD4wKUkEuvbkkFnUP5TV6pLRITqWotTiXX4m6hsY2daViEYLd7BDelJxqTlQ52cot0HPqbExcERERUbcQ7uWAJTOjsHhqGDYfz8X6A5eQqqnAd0dz8N3RHER5K3F/jB+mD/aCjZxDGHPKyspCSUkJsrKy0NDQgBMnTgAAgoODYWdnh/j4eISHh2PevHl45513UFJSgueffx4LFizgiYJEZBZWMgniIzwQH+GBuvpG/JFRhB2nNUhI1qC0Wo8NR7Kx4Ug27K2kmBjmjsmRHhgzwBVWLZZ/UfckCAJySmuMyanmRFXOFZb62SukCGtKTjUnqfq720Eh5X/r3oqjPiIiIupW7BRSPBDrj/tj/HAsqxTrD2Rh62k1TueW44WNp7FkWwruGuKD+2P8eCS1mfzzn//EunXrjPejo6MBALt378a4ceMgkUiwdetWLFy4EKNGjYK1tTXuu+8+LFu2zFJdJqI+RC4VY3yIG8aHuGFJQyQOXizB9jNq/HLWMBNr4/FcbDyeCxu5BOND3TA10hPjQlxhq+DHX0urq2/EuYKKNkv9Kmrr263v7WhtTE41//ZxsuY+mH0M/3KJiIioWxKJRBjq74yh/s54+fZwfH80G18ezMKl4mqs3Z+JtfszMaKfMx6I9cfkCA8uDelEa9euxdq1a69ax8/PD1u2bOmaDhERXYFUIsaoYBVGBavw2vRIHMsqxbbTavxyRoO88lpsPaXG1lNqKKRijB3giilRHpgQ5g4HK+5bZG5l1XWtklPJeVqcL6hEfaPQpq5MIkJ/N3uEezXtRdX0w30uCehBiavS0lI888wz+OmnnwAA06dPx4oVK+Do6HjF51wpC/v222/jb3/7GwBg3Lhx2Lt3b6vH77nnHnzzzTed03EiIiK6ac62cjw2JgiP3hKIfeeL8OXBS/g1pQCHLpbg0MUSqOzkuHuYL+4d4QdfZxtLd5eIiCxAIhZheIAzhgc445+3h+NkTjm2n1Fj+2kNskqqkZCcj4TkfMgkItwSrMKUSE+MG+Bs6W73eIIgILukBsnq8lZJqrzy2nbrK61lrTZLD/d0QLCbHb+AoivqMYmr++67Dzk5OdixYwcA4LHHHsO8efPw888/X/E5arW61f3t27fjkUcewV133dWqfMGCBXj99deN962trTux50RERNRZxGIRxgxwxZgBrlCX1+CbQ9n45nAW8rU6rNyTgVV7MzBugCseiPXHuBA3SDrhqHQiIup5RCIRBvs6YrCvI16YHIpktRY7zmiw7bQaGYVV2J1WiN1phZCIRXC3kmBtzkFYy6WwlklgZfwRw0omaSoTtyhvr6xlXcNvhVTc4dPreopafQPO5VciWV2OFLVhyV+KWosKXftL/XydrZtmTykNSSovB3gprbjUj65Lj0hcpaSkYMeOHThw4ABiYmIAAJ9++ini4uKQlpaGkJCQdp/n4eHR6v6PP/6I8ePHIzAwsFW5jY1Nm7pXo9PpoNPpjPe1Wi0AQK/XQ69v/xjOG9XcXme32xMxFiaMhQljYcJYGDAOJr09FiobKZ4e1w+Pj/bH7rRCfHUoB39kFBs/jHgprXDPMB/MGeoNRyvDt7jmiEVvjS8RUW8hEokQ4aVEhJcSf40Pwbn8Cmw/o8H2MxqkqLXIqxYhr7rcLK8tl4qNSa7mpJZCJoF1c9JLKoG1/LIkmFQCa7npcSu5BFZScVM90+MKaVOSrOlxqaRzZyyVVNW12iw9OU+L84WVaGhnqZ9cIsYADzvjEr9wLyVCPe25JJM6RY9IXCUlJUGpVBqTVgAQGxsLpVKJ/fv3XzFx1VJ+fj62bt3aaqPRZl9++SXWr18Pd3d3TJkyBa+88grs7a+82evSpUvx2muvtSlPSEiAjY15lickJiaapd2eiLEwYSxMGAsTxsKAcTDpK7G42w0YZw/szxfjYKEIeeW1eH/neXyw6xwGOQsY5S6CkJCIzv6St7q6unMbJCIis+rvbo/+7vZ4ZkJ/nM8vx/fb9yIqegjqBRFq6hpQq29AbX2j4XZ9A3R60+1afQNq9I2GOsafRtQ03dbpG1HX0Gh8rbr6RtTVN6K8/QPyOpVMIoKVtCkxJhcbkl7Ns79aJM7aJtEMZVIR8HuWGJu+OIZUTSU02vaX+jnayBDRtMSveblfkKsdZJ2cOCNq1iMSVxqNBm5ubm3K3dzcoNFoOtTGunXrYG9vj1mzZrUqv//++9GvXz94eHjgzJkzWLx4MU6ePHnVQf7ixYuxaNEi432tVgtfX1/Ex8d3+hHQer0eiYmJmDhxImSyvp2tZixMGAsTxsKEsTBgHEz6aizmA9DpG7D9bD6+OpSN49nlOF4swvFi4McnhiPc26lTX6955jUREfU8/s42CHMSEB/u3mn/VjY0Ck0JLlNiq70kV42+AbrLyppv6/SGRJkhkdYiMVbfOolWqzclyfQNAvQN9VdcttcxYgBFxnsBLjamzdKblvp5OHCpH3UtiyauXn311XZnLrV0+PBhAO1vtC4IQof/YP773//i/vvvh5WVVavyBQsWGG9HRkaif//+GDZsGI4dO4YhQ4a025ZCoYBCoWhTLpPJzPbBwJxt9zSMhQljYcJYmDAWBoyDSV+MhUwmw5zh/pgz3B/JeVp8kXQRx9OzEO7t1Omx6GuxJSKiq5OIRbBVSGGrMP/HbUEQLktmXZ7YMiXOatok0VqXVevqUV2aj0kjwhHl44QQD3vYc6kfdQMWTVw9/fTTmDt37lXrBAQE4NSpU8jPz2/zWGFhIdzd3a/5Or///jvS0tKwYcOGa9YdMmQIZDIZzp07d8XEFREREfUc4V4OeH16OLZuzbR0V4iIiDqVSCQy7o11s/R6PbZt24apMX78Uoa6FYsmrlQqFVQq1TXrxcXFoby8HIcOHcKIESMAAAcPHkR5eTlGjhx5zeevWbMGQ4cOxaBBg65Z9+zZs9Dr9fD09Lz2BRAREVGPwVUNRERERD1Pj9g9LSwsDJMnT8aCBQtw4MABHDhwAAsWLMDtt9/eamP20NBQbNq0qdVztVotvvvuOzz66KNt2s3IyMDrr7+OI0eOIDMzE9u2bcOcOXMQHR2NUaNGmf26iIiIiIiIiIjoynrE5uyA4eS/Z555BvHx8QCA6dOn46OPPmpVJy0tDeXlrY8x/eabbyAIAu699942bcrlcuzcuRMffPABKisr4evri2nTpuGVV16BRNLxqZaCYDgO1Bybs+r1elRXV0Or1fb56ZqMhQljYcJYmDAWBoyDCWNhYs5YNP/73zweoI4x5/gJ4Pu/JcbCgHEwYSxMGAsTxsKEsTAwdxw6OoYSCRxl3bScnBz4+vpauhtERERkQdnZ2fDx8bF0N3oMjp+IiIgIuPYYiomrTtDY2Ii8vDzY29t3+rGgWq0Wvr6+yM7OhoODQ6e23dMwFiaMhQljYcJYGDAOJoyFiTljIQgCKioq4OXlBbG4R+zC0C2Yc/wE8P3fEmNhwDiYMBYmjIUJY2HCWBiYOw4dHUP1mKWC3ZlYLDb7N6wODg59+g+mJcbChLEwYSxMGAsDxsGEsTAxVyyUSmWnt9nbdcX4CeD7vyXGwoBxMGEsTBgLE8bChLEwMGccOjKG4teCRERERERERETULTFxRURERERERERE3RITV92cQqHAK6+8AoVCYemuWBxjYcJYmDAWJoyFAeNgwliYMBZ9D/+bmzAWBoyDCWNhwliYMBYmjIVBd4kDN2cnIiIiIiIiIqJuiTOuiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroiIiIiIiIiIqFti4oqIiIiIiIiIiLolJq6IiIiIiIiIiKhbYuKKiIiIiIiIiIi6JSauiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroiIiIiIiIiIqFti4oqIiIiIiIiIiLolJq6IiIiIiIiIiKhbYuKKiIiIiIiIiIi6JSauiIiIiIiIiIioW2LiioiIiIiIiIiIuiUmroioz3r11VchEolQVFR01Xrz589HQEBA13TqOvvx73//G5s3b76h9vbs2QORSITvv//+5jtHRERE1KSnjbGupL3+BQQEYP78+RbpD1FfxcQVEVEP8fLLL2PTpk2tym4mcUVERERERNTdSS3dASKi6upq2NjYWLob3V5QUJClu0BEREQ9CMdYrdXU1MDKygoikcjSXSGi68AZV0TUpZqnjh87dgyzZ8+Gk5NThxIytbW1+Otf/4rBgwdDqVTC2dkZcXFx+PHHH9vUFYlEePrpp/HFF18gLCwMNjY2GDRoELZs2XLN10lNTUVgYCBiYmJQUFBwxXqCIGDlypUYPHgwrK2t4eTkhNmzZ+PChQvXfI2W1q5dC5FIhMTERDz00ENwdnaGra0t7rjjjjZtXT5dXSQSoaqqCuvWrYNIJIJIJMK4ceOMj+fm5uKxxx6Dr68v5HI5vLy8MHv2bOTn57dqV6/X4x//+Ae8vLzg4OCA2267DWlpadd1HURERGRZHGO11jzGSkhIwMMPPwxXV1fY2NhAp9OhsbERb7/9NkJDQ6FQKODm5oY//elPyMnJua7XIKKuwcQVEVnErFmzEBwcjO+++w4ff/zxNevrdDqUlJTg+eefx+bNm/H111/jlltuwaxZs/D555+3qb9161Z89NFHeP311/HDDz/A2dkZM2fOvOqgZ+/evRg5ciQGDhyI3bt3w83N7Yp1H3/8cTz77LO47bbbsHnzZqxcuRJnz57FyJEj2ySGOuKRRx6BWCzGV199heXLl+PQoUMYN24cysrKrvicpKQkWFtbY+rUqUhKSkJSUhJWrlwJwJC0Gj58ODZt2oRFixZh+/btWL58OZRKJUpLS1u18+KLL+LSpUv47LPP8Mknn+DcuXO444470NDQcN3XQURERJbFMVZrDz/8MGQyGb744gt8//33kMlkePLJJ/F///d/mDhxIn766Se88cYb2LFjB0aOHHnNfbmIyAIEIqIu9MorrwgAhH/+85831U59fb2g1+uFRx55RIiOjm71GADB3d1d0Gq1xjKNRiOIxWJh6dKlbfpSWFgofPHFF4JcLheeeeYZoaGhoVV7Dz74oODv72+8n5SUJAAQ3n333Vb1srOzBWtra+Hvf/97h6/jf//7nwBAmDlzZqvyP/74QwAg/Otf/7piPwRBEGxtbYUHH3ywTbsPP/ywIJPJhOTk5Cu+9u7duwUAwtSpU1uVf/vttwIAISkpqcPXQURERJbFMVZrzWOsP/3pT63KU1JSBADCwoULW5UfPHhQACC8+OKLV+yfIAiCv79/u2MvIjIfzrgiIou46667rvs53333HUaNGgU7OztIpVLIZDKsWbMGKSkpbeqOHz8e9vb2xvvu7u5wc3PDpUuX2tRdsmQJ5s+fjzfffBMffPABxOKr/69xy5YtEIlEeOCBB1BfX2/88fDwwKBBg7Bnz57rvrb777+/1f2RI0fC398fu3fvvu62AGD79u0YP348wsLCrll3+vTpre4PHDgQANqNFREREXVvHGO1dnk8msdWl58MOGLECISFhWHnzp3X/RpEZF5MXBGRRXh6el5X/Y0bN+Luu++Gt7c31q9fj6SkJBw+fBgPP/wwamtr29R3cXFpU6ZQKFBTU9OmfP369fD29sbcuXM71Jf8/HwIggB3d3fIZLJWPwcOHLihKeYeHh7tlhUXF193WwBQWFgIHx+fDtW9PFYKhQIA2o0VERERdW8cY7V2eTyax1btxcnLy+uGx15EZD48VZCILOJ6T3NZv349+vXrhw0bNrR6rk6nu+m+7NixA/fccw9Gjx6NnTt3wt/f/6r1VSoVRCIRfv/9d2OSp6X2yq5Fo9G0WxYcHHzdbQGAq6srNxglIiLqgzjGau3yeDQn3tRqdZsv+fLy8qBSqa77NYjIvDjjioh6BJFIBLlc3mrwodFo2j3x5nr5+/sbB0ijR4/GuXPnrlr/9ttvhyAIyM3NxbBhw9r8REVFXXcfvvzyy1b39+/fj0uXLrU6JbA9V/qGc8qUKdi9ezdPByQiIqKr6u1jrMvdeuutAAwJu5YOHz6MlJQUTJgw4aZfg4g6F2dcEVGPcPvtt2Pjxo1YuHAhZs+ejezsbLzxxhvw9PS85iCoIzw9PbF3715MmjQJY8aMQWJiIiIjI9utO2rUKDz22GN46KGHcOTIEYwZMwa2trZQq9XYt28foqKi8OSTT17X6x85cgSPPvoo5syZg+zsbPzjH/+At7c3Fi5ceNXnRUVFYc+ePfj555/h6ekJe3t7hISE4PXXX8f27dsxZswYvPjii4iKikJZWRl27NiBRYsWITQ09Lr6R0RERL1Tbx9jXS4kJASPPfYYVqxYAbFYjClTpiAzMxMvv/wyfH198dxzz91U+0TU+Zi4IqIe4aGHHkJBQQE+/vhj/Pe//0VgYCBeeOEF5OTk4LXXXuuU11CpVNi1axemTZuGsWPH4pdffsGwYcParbt69WrExsZi9erVWLlyJRobG+Hl5YVRo0ZhxIgR1/3aa9aswRdffIG5c+dCp9Nh/Pjx+OCDD+Ds7HzV533wwQd46qmnMHfuXFRXV2Ps2LHYs2cPvL29cejQIbzyyit48803UVxcDFdXV9xyyy3XbJOIiIj6jt4+xmrPqlWrEBQUhDVr1uA///kPlEolJk+ejKVLl7a7hxcRWZZIEATB0p0gIuqr1q5di4ceegiHDx++4gCOiIiIiIior+IeV0RERERERERE1C1xqSARWZQgCGhoaLhqHYlEct0n5FhaR6+LiIiIyBz6+hirp10XEV0ZZ1wRkUXt3bsXMpnsqj/r1q2zdDev27p16655XXv37sX8+fMhCAKXCRIREVGn6utjLCLqPbjHFRFZVEVFBdLS0q5ap1+/fj1uo8zi4mJcvHjxqnVCQkJgb2/fRT0iIiKivoRjLI6xiHoLJq6IiIiIiIiIiKhb4h5XnaCxsRF5eXmwt7fnWmoiIqI+RhAEVFRUwMvLC2Ixd2HoKI6fiIiI+raOjqGYuOoEeXl58PX1tXQ3iIiIyIKys7Ph4+Nj6W70GBw/EREREXDtMRQTV01WrlyJd955B2q1GhEREVi+fDlGjx7doec2r5/Ozs6Gg4NDp/ZLr9cjISEB8fHxkMlkndp2T8NYmDAWJoyFCWNhwDiYMBYm5oyFVquFr68v91O5TuYcPwF8/7fEWBgwDiaMhQljYcJYmDAWBuaOQ0fHUExcAdiwYQOeffZZrFy5EqNGjcLq1asxZcoUJCcnw8/P75rPb57e7uDgYJbElY2NDRwcHPr0HwzAWLTEWJgwFiaMhQHjYMJYmHRFLLjc7fqYc/wE8P3fEmNhwDiYMBYmjIUJY2HCWBh0VRyuNYbiRgwA3nvvPTzyyCN49NFHERYWhuXLl8PX1xerVq2ydNeIiIiIiIiIiCyiUQDq6hst2oc+P+Oqrq4OR48exQsvvNCqPD4+Hvv372/3OTqdDjqdznhfq9UCMGQj9Xp9p/bvmW9O4NB5Cd5L+x1SiRgysQgSiQgSsQgysRgSsQhSsQjSpjJpy7KmulKx2HBbLIKsqV7L57csN7R1WRvN7UpEhtc3PqedepLL+iBp3YZULIJYfGPfSDfHtrNj3BMxFiaMhQljYcA4mDAWJuaMBeNLREREvUlFrR6/nytCYrIGiacl0HmqMTcmwGL96fOJq6KiIjQ0NMDd3b1Vubu7OzQaTbvPWbp0KV577bU25QkJCbCxsenU/qVlSVCsE6FYV9Op7VqSCALEIkAiAsRNP5L2fgOQiA2/m8sUEjG+ydgJpVyAoxxwlANKheG2tQToa6s0EhMTLd2FboOxMGEsDBgHE8bCxByxqK6u7vQ2iYiIiLrSpeIq7EwpwK7UAhy8WAx9g9D0iAh/ZBQzcdUdXL6mUhCEK66zXLx4MRYtWmS837yhWHx8fKfv0RAUXYadv+3H0GHDAbEE9Y0CGhoF6Bsa0WC8bfhd3yigvrHRdLtleUOL8qafhsZG1DcIxjbbq9dueavnNJpuN7Rot6lf7REgQoMAXOHha7hyZspaJoaHgxXcHRRNv63goVS0KnOxld/wjK/uRK/XIzExERMnTuzTa64BxqIlxsKAcTBhLEzMGYvmmdfd3fUcRDN//nysW7euTXl4eDjOnj0LAFi7di0eeuihNnVqampgZWXVuZ0nIiKiTlXf0Iijl0qxM7UAO1PykVFY1erxABcbjA9xhW3ZBSycFWmhXhr0+cSVSqWCRCJpM7uqoKCgzSysZgqFAgqFok25TCbr9MFwiKcjMuyBmCDXHvmho7FRgL7x8qRXY7uJrpb39Zcl3eobBejq9Nh/+Djc/AegoLIOGm0tNOW10GhrUVatR42+EReLq3Gx+MrffEvFIrg3JbI8ldbwUFrBw8HK8LvptruDFeTSnrH9mznecz0VY2HCWBgwDiaMhYk5YtETYnu9B9F88MEHePPNN4336+vrMWjQIMyZM6dVPQcHB6SlpbUqY9KKiIioeyqrrsPe9ELsTCnAnrQCaGvrjY9JxSIMD3DGhDA33BrqhkBXO+j1emzblgGZxLKfj/t84koul2Po0KFITEzEzJkzjeWJiYmYMWOGBXvWO4jFIijEkk5pS6/XQ8gSMPXWoDYfEmrqGpCvrYW6vBYabQ005TpoymtaJbcKKnSobxSQW1aD3LIaAGVXfC2Vnbx1UsvBCh5K61ZJLjtFn//zISKiHqLlQTQAsHz5cvzyyy9YtWoVli5d2qa+UqmEUqk03t+8eTNKS0vbzLASiUTw8PAwb+eJiIjohgiCgIzCSuxMKcDO1AIcvVSKhkbT0idHGxnGhxgSVWMGuEJp3T2/jOMnbwCLFi3CvHnzMGzYMMTFxeGTTz5BVlYWnnjiCUt3jTrIWi5BgMoWASrbK9bRNzSisEJnSmY1JbQuv13X0IiiyjoUVdbhTO6Vl3/YK6StZmo13/ZUGmZteSqt4WQj4/HoRERkUTdyEM3l1qxZg9tuuw3+/v6tyisrK+Hv74+GhgYMHjwYb7zxBqKjo9ttoysPt2lut+XvvoyxMGAcTBgLE8bChLEw6cmxqKtvxOFLpdiVWojdaYXILm29X3Z/N1vcGuKG8SEqDPZ1hKTFVjqXX6+549DRdpm4AnDPPfeguLgYr7/+OtRqNSIjI7Ft27Y2gzPq2WQSMbwcreHlaH3FOoIgoKSq9TLEloktdXkt8strUaGrN/wUVOJcQeUV25NLDftuNSe2TEktK7g33Xe1U0Bq4amXRETUe93IQTQtqdVqbN++HV999VWr8tDQUKxduxZRUVHQarX44IMPMGrUKJw8eRL9+/dv005XHm7TEg8nMGEsDBgHE8bChLEwYSxMekosKvRAcqkIZ0tFSC0XQddgSkZJRAL6OwiIcDL8uFiVA/XlyD97Dr+c7Vj75opDRw+4YeKqycKFC7Fw4UJLd4MsTCQSwcVOARc7BSK8lFesV6mrv2ymVo0hqdWc3NLWoqiyDnX1jcgqqUZWyZX/IMUiwNVe0bQU0bD3ljG51fTbQ2kFK1nnLLkkIqK+6XoOomlp7dq1cHR0xJ133tmqPDY2FrGxscb7o0aNwpAhQ7BixQp8+OGHbdrpysNtAB5O0BJjYcA4mDAWJoyFCWNh0t1jIQgCUjWV2JVmmFV1KrccQovDz1R2cowPccX4Aa4YGeQM2xvc5sbccejoATdMXBHdADuFFMFudgh2s7tiHV19Awq0rZcmmpJbNcjX6pCvrUV9o9B0W4eTV3lNRxuZceaWu70cQokII6v1cFV2v/+REhFR93EjB9E0EwQB//3vfzFv3jzI5fKr1hWLxRg+fDjOnTvX7uNdebhNV7bfkzAWBoyDCWNhwliYMBYm3SkWtfoG7M8ows6UAuxKLYC6vLbV45HeDrg11B0TQt0Q5a2EWNx5W9aYKw4dbZOJKyIzUUgl8HW2ga/zlZc/NDYKKKrSXZbUMixHbHm/Rt+Asmo9yqr1SNVUND1bgk1v78H4EDfMGuKN8aFuUEg5K4uIiFq7mYNo9u7di/Pnz+ORRx655usIgoATJ04gKirqpvtMREREgKa8FrtSC7ArNR/7zhehVt9ofMxKJsYtwSrcGuqOW0Pd4KHsvaf6MnFFZEFisQhu9lZws7fCQJ/26wiCAG1NfdMeWzXI19biUlEVfjycgdxqICE5HwnJ+XCwkmLaQC/MGuKNoX5OnZphJyKinu1aB9EsXrwYubm5+Pzzz1s9b82aNYiJiUFkZGSbNl977TXExsaif//+0Gq1+PDDD3HixAn85z//6ZJrIiIi6m0aGwWczi3HztQC7EzJx9m81kvpvJRWuDXMDRNC3REX5NJntpNh4oqomxOJRFDayKC0kSHEwx6AYa1xSF06goaMxs9n8vHj8TxotLX4+lAWvj6UBR8na8yM9sad0d4Icr3yckYiIuobrnUQjVqtRlZWVqvnlJeX44cffsAHH3zQbptlZWV47LHHoNFooFQqER0djd9++w0jRoww+/UQERH1FlW6evx+rgi7UvOxK7UQRZWmE3hFImCwryMmhLrh1lB3hHna98lT65m4IurBQjzsEenrjL9PCsXBC8XYeDwX20+rkVNagxW7zmPFrvMY5KPEzGhv3D7ICyq7tnuLEBFR33C1g2jWrl3bpkypVF71tJ/3338f77//fmd1j4iIqM/ILqnGrtQC/JqSj4MXSlDXYFoCaKeQYswAwxLAcSGu/AwHJq6IegWJWISRwSqMDFbhjRmRSEzJx6ZjOfjtXBFO5pTjZE453tiagrEDXDEz2hsTw937zLRSIiIiIiIiS2poFHAsq7RpY/V8pOdXtnrcz9kGE5qWAI7o5wy5VGyhnnZPTFwR9TLWcgmmD/LC9EFeKKzQYcupPGw6notTOeVNG/sVwE4hxZRID8yM9kZsoAv3wyIiIiIiIupE5TV6/JZeiF2pBdidVoCyar3xMYlYhKH+TpgQ6oYJYe4IcrXtk0sAO4qJK6JezNVegYdG9cNDo/rhfEElNh/Pxabjucgtq8F3R3Pw3dEceCqtMGOwN2ZGexv30CIiIiIiIqLrc6Gw0rgE8HBmKRoaBeNjSmsZxoW44tZQN4wd4ApHG7kFe9qzMHFF1EcEu9nh+UkhWDRxAI5cKsWm4znYckoNdXktPt6bgY/3ZiDc0wGzhnhj+iAvuDn03uNUiYiIiIiIbpa+oRGHL5ZgZ9PKlotFVa0eD3aza9pY3Q1D/Z0glXAJ4I1g4oqojxGLRRjRzxkj+jnjlTsisDu1ABuP52JPWgGS1Vokb9Xi39tSMCpYhVlDvBEf7gFbBf9XQUREREREVFJVhz1pBdiZWoDf0gpRoas3PiaTiBDTzwUTwgzJKn8XWwv2tPfgp1GiPsxKJsGUKE9MifJEaVUdtpxWY9OxHBzLKsPv54rw+7ki2MjPYFKEYT+sUcEqSLgfFhERERER9RGCICA9vxK/puRjV2oBjmWVQjCtAISLrRzjQ90wIdQNt/RXwd5KZrnO9lJMXBERAMDJVo55sf6YF+uPS8VV2NS0H9al4mrjbVd7BWYM8sKd0d6I8HLgBoJERERERNTr6PQNSCkV4fCWFOxOK0JuWU2rx8M8HZo2VnfDIB9HHnZlZkxcEVEb/i62ePa2AfjLhP44nl2GTcdy8fOpPBRW6PDZvov4bN9FDHC3w8xoH8wY7AUvR2tLd5mIiIiIiOiGZZdUY096IfamFWB/RjGq6yQAsgEACqkYo4JVuLVpvyp+/ulaTFwR0RWJRCIM8XPCED8nvHx7OPamF2LT8Rz8mlKA9PxKvLUjFW//korYfi6YOcQbUyI9ODWWiIiIiIi6PV19Aw5fLMWetALsTitARmHrjdWVMgGTB/liYrgHRgWrYC2XWKinxMQVEXWIXCrGxHB3TAx3R3mNHttPq7HxeC4OXSxB0oViJF0oxsubz2BiuDtmDfHG6P6ukPHUDCIiIiIi6iZySquxJ60Qe4yzqhqMj0nEIgzxc8S4EDfcEuSEi8f2Ydq0cMhk/GLe0pi4IqLrprSWYe4IP8wd4Yec0mr8eCIPG4/lIKOwCltOqbHllBoutnLcMcgLM6O9MdBHyf2wiIiIiIioS7WcVbUnvRDnCypbPe5qr8C4Aa6GZFV/FZTWhiSVXq9HJj++dBtMXBHRTfFxssFT44OxcFwQzuRqsfF4Dn4+mYeiyjqs3Z+JtfszEehqi5mDvXFntDd8nW0s3WUiIiIiIuqlTLOqCrE/o+iKs6rGDnBFuKcDN1bvAZi4IqJOIRKJEOWjRJSPEv+YGobfzxdh07FcJCRrcKGwCu8mpuPdxHQMD3DCzGgfTIvyhNKG026JiIiIiOjG6eobcCSzaVZVWiHOtTOrauwAV4wLccXoYFd+BumBmLgiok4nlYgxPsQN40PcUKmrx44zGmw+nos/MopwOLMUhzNL8epPZ3FrqBtmDvHGuBBXKKTc7JCIiIiIiK4tt6zGsKl6attZVWIRMMTPCeNCDEsAOauq5+u1iavMzEy88cYb2LVrFzQaDby8vPDAAw/gH//4B+RyubFeVlYWnnrqKezatQvW1ta47777sGzZslZ1iOjG2SmkmD3UB7OH+kBTXosfT+Ri0/FcpGoqsOOsBjvOaqC0luH2gZ6YNcQbQ/ycuB8WEREREREZ1dU34khmCXZfYVaVyk7RlKjirKreqNcmrlJTU9HY2IjVq1cjODgYZ86cwYIFC1BVVYVly5YBABoaGjBt2jS4urpi3759KC4uxoMPPghBELBixQoLXwFR7+OhtMLjY4Pw+NggpKi12HQ8Fz+eyEW+VocvD2bhy4NZ8HO2wZ3R3pgZ7Y1+KltLd5mIiIiIiCygeVbVnrRC7D9fhCrOquqzem3iavLkyZg8ebLxfmBgINLS0rBq1Spj4iohIQHJycnIzs6Gl5cXAODdd9/F/PnzsWTJEjg4OFik70R9QZinA8I8HfB/k0ORlFGMjcdzsOOMBlkl1fhw5zl8uPMcBvs6YtYQb9w+0AvOtpwFSURERETUWzXPqtqTXog9aQVIz287q8q4V1V/FRxt+Pmgr+i1iav2lJeXw9nZ2Xg/KSkJkZGRxqQVAEyaNAk6nQ5Hjx7F+PHj221Hp9NBp9MZ72u1WgCGIzP1en2n9rm5vc5utydiLEx6WyxiApSICVDilWkh+DWlED+dVGNfRjFOZJfhRHYZXv85GWP6q3DnYE/cGuIKhcy0H1Zvi8XNYCwMGAcTxsLEnLFgfImIiG5MXllN0wmABfijnVlV0X5OGDfAMKsqwouzqvqqPpO4ysjIwIoVK/Duu+8ayzQaDdzd3VvVc3Jyglwuh0ajuWJbS5cuxWuvvdamPCEhATY2Np3X6RYSExPN0m5PxFiY9MZYSAHMUgG3OQDHikU4UihGdhWwK60Qu9IKYSURMNhFwHBVIwIdDP+gAb0zFjeKsTBgHEwYCxNzxKK6urrT2yQiIuqN6uobceRSCfamFWJPWiHS8itaPa6yk2PMAFeMD3HjrCoy6nGJq1dffbXdpFFLhw8fxrBhw4z38/LyMHnyZMyZMwePPvpoq7rtbQItCMJVN4devHgxFi1aZLyv1Wrh6+uL+Pj4Tl9eqNfrkZiYiIkTJ0Im69sbzDEWJn0lFnObfp8rqMRPJ9X46aQaeeW1OFAgwoECMbyUVpgW6Qanigt4cMZtff5Qhb7yvrgWxsGEsTAxZyyaZ14TERFRW+pyw6yq3akF2J9RjEpdvfExsQgY7OuI8SFunFVFV9TjEldPP/005s6de9U6AQEBxtt5eXkYP3484uLi8Mknn7Sq5+HhgYMHD7YqKy0thV6vbzMTqyWFQgGFQtGmXCaTme2DgTnb7mkYC5O+EotwbyeEezvh75PDcCizBJuO5WLbaUMS69M/sgBI8VX2QUyK8EB8uDuGBThD0of/wesr74trYRxMGAsTc8SCsSUiIjLRNzTiSGapcWP1y2dVudjKMbZpU/XRwSo4cS9buoYel7hSqVRQqVQdqpubm4vx48dj6NCh+N///gexWNzq8bi4OCxZsgRqtRqenp4ADMv9FAoFhg4d2ul9J6KbIxaLEBvogthAF7w2IwI7Uwqw6Vg29qYVIKe0Bmv2XcSafRfhbCvHbWFuiA/3wC39VbBqsScWERERERF1ruZZVYa9qlrPqhKJgGhfR4wLccO4EFdEeik5q4quS49LXHVUXl4exo0bBz8/PyxbtgyFhYXGxzw8PAAA8fHxCA8Px7x58/DOO++gpKQEzz//PBYsWMATBYm6OSuZBNMGeiI+TIVNP2+DbdBQ7Ewrws6UApRU1eHbIzn49kgObOQSjB3givgId9wa4g6lDWdGEFHftHLlSrzzzjtQq9WIiIjA8uXLMXr06Hbr7tmzp91DalJSUhAaGmq8/8MPP+Dll19GRkYGgoKCsGTJEsycOdNs10BERN2DcVZVegH2phUiVdPOrKoBrhgb4oox/V05q4puSq9NXCUkJOD8+fM4f/48fHx8Wj0mCAIAQCKRYOvWrVi4cCFGjRoFa2tr3HfffVi2bJklukxEN0ghAeLD3TFtkA/0DY04fLEECcn5SDirQV55Lbaf0WD7GQ2kTTO24iPcMTHcHZ5Ka0t3nYioS2zYsAHPPvssVq5ciVGjRmH16tWYMmUKkpOT4efnd8XnpaWltfoyz9XV1Xg7KSkJ99xzD9544w3MnDkTmzZtwt133419+/YhJibGrNdDRERdT1Nea1z+t+98UZtZVYN9HTFugGFWVZQ3Z1VR5+m1iav58+dj/vz516zn5+eHLVu2mL9DRNQlZBIxRgarMDJYhVfuCMfZPC1+OatBwtl8pOVXYN/5Iuw7X4R//ngWg3yUiG/aFyvYze6qhzIQEfVk7733Hh555BHjITXLly/HL7/8glWrVmHp0qVXfJ6bmxscHR3bfWz58uWYOHEiFi9eDMBweM3evXuxfPlyfP31123q63Q66HQ64/3mTe31ej30ev2NXtoVNbdpjrZ7GsbCgHEwYSxMGAuTy2Ohb2jEsawy/HauCHvTi5CWX9mqvrOtDKODVRg7QIVbgl3g1OIEwIaGejQ0dF3fOxvfFwbmjkNH2zVr4upGTtnhEj0i6iwikQiR3kpEeivx1/gQZBZVISHZkMQ6mlWKkznlOJlTjnd+SUOgyhYTI9wRH+6BaF9HfkNERBZhjrFTXV0djh49ihdeeKFVeXx8PPbv33/V50ZHR6O2thbh4eF46aWXWi0fTEpKwnPPPdeq/qRJk7B8+fJ221q6dGm7J0MnJCTAxsbmqv24GYmJiWZru6dhLAwYBxPGwoSxMCjTAa+v/xXJZSKkl4tQ22AaE4sgwM8OCHdsRJiTAF/beohF2UBONpJyLNhpM+L7wsBccaiuru5QPbMmrhwdHa9rBoNIJEJ6ejoCAwPN2Csi6qsCVLZ4bEwQHhsThIKKWuxMKUDCWQ3+OF+MC0VVWL33AlbvvQBXewUmhrsjPtwdcUEuUEi5uTsRdQ1zjJ2KiorQ0NDQ5sRkd3d3aDSadp/j6emJTz75BEOHDoVOp8MXX3yBCRMmYM+ePRgzZgwAQKPRXFebixcvxqJFi4z3tVotfH19ER8fb5YvLvV6PRITEzFx4sQ+f/IjY2HAOJgwFiaMBXCxqArbz+Rj+1kNUjWtZ1U52cgwpr8KY/obZlU595G9qvi+MDB3HDr6hZ3Zlwp+//33cHZ2vmY9QRAwdepUc3eHiAgA4GZvhXtH+OHeEX6oqNVjb3ohEs7mY3dqAQordPjqYBa+OpgFe4UU40LdEB/ujnEhrrC36rv/cBFR1zDX2OnyhJggCFdMkoWEhCAkJMR4Py4uDtnZ2Vi2bJkxcXW9bSoUCigUijblMpnMrB8KzN1+T8JYGDAOJoyFSV+LxfmCSmw7rca20+pWG6uLIGCgjyPGh7phXIgbBvbxvar62vviSswVh462adbElb+/P8aMGQMXF5cO1Q8MDOSbgoi6nL2VDLcP9MLtA71QV9+IpAvFSDirQWJyPgoqdPj5ZB5+PpkHuUSMkcEuiA/3wG3hbnCzt7J014molzHH2EmlUkEikbSZCVVQUNBmxtTVxMbGYv369cb7Hh4eN90mERF1nfMFFdh6SoNtp9VIyzclq6RiEUYGqzA53BVCzincPSOGn8upWzFr4urixYvXVf/MmTNm6gkRUcfIpWLD0b0DXPHGjEicyClDwlnDCYUXiqqwJ60Qe9IK8Y/NwBA/J8SHuyM+wgP9VLaW7joR9QLmGDvJ5XIMHToUiYmJmDlzprE8MTERM2bM6PBrHT9+HJ6ensb7cXFxSExMbLXPVUJCAkaOHNnhNomIyLyulqwaFazCtChPxEe4w9FGDr1ej235pyzYW6L29dpTBYmIbpZYLMIQPycM8XPCC1NCcb6gAr+czUdCcj5OZpfh6KVSHL1UiqXbUzHA3Q7x4R6Ij3BHlLeSJxQSUbeyaNEizJs3D8OGDUNcXBw++eQTZGVl4YknngBg2H8qNzcXn3/+OQDDiYEBAQGIiIhAXV0d1q9fjx9++AE//PCDsc2//OUvGDNmDN566y3MmDEDP/74I3799Vfs27fPItdIREQG5/IrsLVpGWB6i5MAZRJDsmpqlCfiww3JKqKeoMsSVx9++GG75SKRCFZWVggODsaYMWMgkXATZCLqnoLd7BHsZo+nxgdDXV6DX5MNSaykjGKk51ciPf88Ptp9Hp5KK+NMrBH9nCGTiC3ddSLqgTpz7HTPPfeguLgYr7/+OtRqNSIjI7Ft2zb4+/sDANRqNbKysoz16+rq8PzzzyM3NxfW1taIiIjA1q1bW+2pNXLkSHzzzTd46aWX8PLLLyMoKAgbNmxATEzMTV45ERFdr/T8Cmw9ZUhWnStonay6xZis8oDShksAqefpssTV+++/j8LCQlRXV8PJyQmCIKCsrAw2Njaws7NDQUEBAgMDsXv3bvj6+nZVt4iIboin0hrz4gIwLy4A5dV67E4rwC9nNdibXgh1eS3WJV3CuqRLUFrLMCHUDfER7hgzwBU2ck50JaKO6eyx08KFC7Fw4cJ2H1u7dm2r+3//+9/x97///Zptzp49G7Nnz+7Q9RARUecRBAHp+ZXGmVXnL0tWje7viqlRnpgY5s5kFfV4XfYJ6t///jc++eQTfPbZZwgKCgIAnD9/Ho8//jgee+wxjBo1CnPnzsVzzz2H77//vqu6RUR005Q2MtwZ7Y07o71Rq2/AH+eL8MtZDX5NKUBJVR02Hs/FxuO5UEjFGN3fFfER7rgtzL3PHCdMRDeGYyciImpJEASk5Vdg2yk1tp5WI6OwyviYXCLG6P6GmVW3hbtDac1kFfUeXZa4eumll/DDDz8YB14AEBwcjGXLluGuu+7ChQsX8Pbbb+Ouu+7qqi4REXU6K5kEE8LcMSHMHQ2NAo5eKkXCWQ1+SdYgu6QGv6bk49eUfIhFwPAAZ8RHeCA+3B2+zjaW7joRdTMcOxERkSAISNVUYNtpQ7LqwmXJqjEDTMkqB34UVOkAAQAASURBVCsmq6h36rLElVqtRn19fZvy+vp641HKXl5eqKioaFOHiKgnkohFGNHPGSP6OeMf08KQqqlAwtl8/HJWg2S1FgcvluDgxRK8sSUZ4Z4OiI9wR3y4B8I87bm5OxFx7ERE1EcJgoAUtSFZte20GheKLk9WuWLaQA9MCGOyivqGLktcjR8/Ho8//jg+++wzREdHAzAcq/zkk0/i1ltvBQCcPn0a/fr166ouERF1GZFIhDBPB4R5OuAvt/VHdkk1EpMNSazDmSVIVmuRrNZi+a/n4OtsbTihMNwdwwKcIREziUXUF3HsRETUdwiCgGS1tilZpcHFlskqqRhjB7hiWpQnJoS5wZ7JKupjuixxtWbNGsybNw9Dhw6FTGb4Q6uvr8eECROwZs0aAICdnR3efffdruoSEZHF+Drb4OFb+uHhW/qhpKoOO1Py8cvZfPx+rhDZJTVYs+8i1uy7CGdbOW4Lc0N8uAdu6a+ClYwnrxL1FRw7ERH1boIg4Gye1jizKrO42viYXCrGuAGumDbQE7eGMllFfVuXJa48PDyQmJiI1NRUpKenQxAEhIaGIiQkxFhn/PjxXdUdIqJuw9lWjjnDfDFnmC+q6+rxW3oREs5qsDPVsLn7t0dy8O2RHNjIJRg7wLC5+60hPCGGqLfj2ImIqPdpTlZtPa3G9suSVQqpGONCDKcBTghzh52Cp1ETAV2YuGoWGBgIkUiEoKAgSKX8QyQiaslGLsXkSA9MjvSAvqERhy+W4JezGiQk50NdXovtZzTYfkYDqViE2EAXxEe4Y2K4OzyV1pbuOhGZCcdOREQ9myAIOJPblKw6o8aly5JV40PcMLVpZhWTVURtddlfRXV1Nf785z9j3bp1AID09HQEBgbimWeegZeXF1544YWu6goRUY8gk4gxMliFkcEqvDo9AmdytU1JLA3S8yux73wR9p0vwj9/PItBPkpMCHWFpMowOCKino9jJyKinksQBJzOLW+aWaVBVokpWWUla0pWRRmSVbZMVhFdVZf9hSxevBgnT57Enj17MHnyZGP5bbfdhldeeYWDLyKiqxCJRIjyUSLKR4nnJ4XgYlEVEppmYh3LKsXJnHKczCkHIMXaC3sxeoArxg5wxej+rnC2lVu6+0R0Azh2IiLqWYzJqlNqbDujRnZJjfExK5kYt4YaklXjQ5isIroeXfbXsnnzZmzYsAGxsbGtjnkPDw9HRkZGV3WDiKhX6KeyxeNjg/D42CAUVNRiZ0oBfjmjxv7zhSisrMPGY7nYeCwXIhEQ5a3E2AGuGDPAFdG+jpBKxJbuPhF1AMdORETdnyAIOJVTjm2n1dh6Wo2cUlOyylomMSWrQl1hI2eyiuhGdNlfTmFhIdzc3NqUV1VVtRqMERHR9XGzt8K9I/wwO9oTP23ZBlVYDPZfKMXe9EKkaipwKqccp3LKsWLXedhbSTEqSIWxIYZElrcj98Yi6q44diIi6p4EQcDJpmTVtiskq6YN9MS4ECariDpDl/0VDR8+HFu3bsWf//xnADAOuD799FPExcWZ9bV1Oh1iYmJw8uRJHD9+HIMHDzY+lpWVhaeeegq7du2CtbU17rvvPixbtgxyOZfWEFHPIxUDI4NcMDbUA4unhiFfW4vf0guxN70Q+84Xoaxajx1nNdhxVgMACHazw5j+rhgzQIXYQBdYySQWvgIiambJsRMREbUmCAJOZJc1Jas0yC27LFkV5oZpTcsAreUcTxF1pi5LXC1duhSTJ09GcnIy6uvr8cEHH+Ds2bNISkrC3r17zfraf//73+Hl5YWTJ0+2Km9oaMC0adPg6uqKffv2obi4GA8++CAEQcCKFSvM2icioq7g7mCFOcN8MWeYLxoaBZzKKcNv6UXYm16AE9llOF9QifMFlfjvHxehkIoxop8zxjbtjxXsZsdZHUQWZMmxExERGZJVx7PLsO2UGtvPtE5W2cibZlZFeWIck1VEZtVliauRI0fijz/+wLJlyxAUFISEhAQMGTIESUlJiIqKMtvrbt++HQkJCfjhhx+wffv2Vo8lJCQgOTkZ2dnZ8PLyAgC8++67mD9/PpYsWQIHBwez9YuIqKtJxCJE+zkh2s8Jf7mtP8qr9fgjowh70wrx27lCqMtr8fu5Ivx+rgj/2poCL6UVxjQlsUYGq6C0lln6Eoj6FEuNnYiI+rLGxqZk1Wk1tp9WI6+81viYjVyCCWHumBblgXEhbpypTtRFunTBbVRUlPFI566Qn5+PBQsWYPPmzbCxsWnzeFJSEiIjI41JKwCYNGkSdDodjh49ivHjx7fbrk6ng06nM97XarUAAL1eD71e36nX0NxeZ7fbEzEWJoyFCWNhcr2xsJEBE0NVmBiqgiCE4nxBFX4/X4TfzhXj8KVS5JXX4pvD2fjmcDYkYhEG+SgxOtgFo/urEOnlAIm4e87G4nvChLEwMWcszBnfrh47ERH1RY0CcCyrDL8kF2L7GTXULZJVtk3JqqlRhj2rmKwi6npmTVw1J3Q6orNnNwmCgPnz5+OJJ57AsGHDkJmZ2aaORqOBu7t7qzInJyfI5XJoNJortr106VK89tprbcoTEhLaTZB1hsTERLO02xMxFiaMhQljYXIzsfAAcLcbcKcLkKEVIaVMhNRyEfJrDAO6Y1ll+GBXBmylAkKUAsIcBYQ4ClB2w20B+Z4wYSxMzBGL6urqTmvLkmMnIqK+pHmD9c3HsrHpmATlBw4ZH7NTSDEhzHAa4NgBTFYRWZpZE1eOjo4d3h+loaGhQ/VeffXVdpNGLR0+fBj79++HVqvF4sWLr1q3vf4JgnDVfi9evBiLFi0y3tdqtfD19UV8fHynDyL1ej0SExMxceJEyGR9e5kOY2HCWJgwFibmjEVuWQ1+P1eM384VIelCCSp19ThWLMKxYsPjoR72TbOxXDDEzwkKqbhTX/968D1hwliYmDMW15NsuhZzjJ2IiMgkTVOBn07m4ueTamSVNH/xIIKtQoKJTTOrxjBZRdStmDVxtXv3buPtzMxMvPDCC5g/f77xJJykpCSsW7cOS5cu7XCbTz/9NObOnXvVOgEBAfjXv/6FAwcOQKFQtHps2LBhuP/++7Fu3Tp4eHjg4MGDrR4vLS2FXq9vMxOrJYVC0aZdAJDJZGb7YGDOtnsaxsKEsTBhLEzMEYsAVxkCXB0wb2Q/6BsacSK7zLg31qmccqRqKpCqqcCn+zJhI5cgLtAFY0NcMaa/KwJUtp3al47ie8KEsTAxRyw6sz1zjJ2IiPq6rOJq/HwqDz+dyENafoWx3FomwYRQV3jU5eLZeybAzsbKgr0koisxa+Jq7Nixxtuvv/463nvvPdx7773GsunTpyMqKgqffPIJHnzwwQ61qVKpoFKprlnvww8/xL/+9S/j/by8PEyaNAkbNmxATEwMACAuLg5LliyBWq2Gp6cnAMNyP4VCgaFDh3aoP0REfY1MIsbwAGcMD3DG85NCUFypw77zzZu8F6GoUoedqQXYmVoAAPB3scGY/q4YM8AVcUEusFN06faKRD2KOcZORER9Ub62FltOqfHTyTyczC4zlsskIowd4Ibpg71wW5gbZCIB27blQMEZVkTdVpd9ekhKSsLHH3/cpnzYsGF49NFHO/31/Pz8Wt23s7MDAAQFBcHHxwcAEB8fj/DwcMybNw/vvPMOSkpK8Pzzz2PBggXcN4KIqINc7BSYMdgbMwZ7o7FRQIpGi73phfgtvRBHMktxqbgaXxRfwhcHLkEmEWGovxPGDnDDmAEqhHs6dHhZFFFf09VjJyKinq6sug7bz2jw04k8HLhYDEEwlItFwMggFaYP8sKkCA8obUwzZXmACVH312WJK19fX3z88cd49913W5WvXr0avr6+XdWNViQSCbZu3YqFCxdi1KhRsLa2xn333Ydly5ZZpD9ERD2dWCxChJcSEV5KLBwXjEpdPZIyirE3vQC/pRchq6QaBy6U4MCFEry1A3C1V2B0fxXGDnDF6P6ucLbthru8E1lIdxw7ERF1N1W6eiQm5+Onk3n4Lb0Q9Y2C8bEhfo6YPsgLUwd6ws2eywCJeqouS1y9//77uOuuu/DLL78gNjYWAHDgwAFkZGTghx9+MPvrBwQEQBCENuV+fn7YsmWL2V+fiKgvslNIMTHcHRPDDfsGZhZVGWdj7c8oRmGFDhuP5WLjsVyIRECUtxJjBxiWFUb7OkIqsdwm70SWZumxExFRd1Wrb8De9EL8dDIPO1PyUatvND4W5umA6YO8cPtAT/g6m+fEdyLqWl2WuJo6dSrOnTuHVatWISUlBYIgYMaMGXjiiSf4rSERUR8RoLJFgMoWD44MgK6+AUczS7E3vRB70wuRqqnAqZxynMopx4pd52FvJcWoIJVhk/cBrvB2tLZ094m6VGePnVauXIl33nkHarUaERERWL58OUaPHt1u3Y0bN2LVqlU4ceIEdDodIiIi8Oqrr2LSpEnGOmvXrsVDDz3U5rk1NTWwsuLMBiLqXPUNjdifUYyfTubhl7MaVNTWGx8LcLHB9EFemD7YC8Fu9hbsJRGZg1kTV6dOnUJkZCTEYsM35j4+PliyZMkV6589exYhISGQSrlxLxFRb6eQSjAyWIWRwSosnhqGfG0tfks3bPD++7nC/2fvzsObqvI3gL/Z033f0r0sZWnZWpaCbCpFUGAQRcVBVGAGUUdlHAdm+Y3gKCqo1VEcnGEAR0VUcFxAoewCBcq+lKVA96b7knRLs9zfH2mTlhYo0DRp+36eJ0+Sm3tvTr4UOH1zzrmoqNHj53MF+PlcAQCgp79rwyLvvhgR5cPLVFOXZKu+08aNG/Hiiy9i1apVGDVqFFavXo1JkyYhLS2txbqgALBv3z5MmDABb7zxBjw9PbF27VpMmTIFhw8fxuDBgy37ubu74+LFi82OZWhFRO3FZBJwPLsc35/Kx9YzapRU1VteC3RXYsrAIEwZqEJssAfXzCTqwmyaEA0ePBgFBQXw8/Nr0/4JCQk4efIkoqKibNksIiJyQAHuSjwcH4qH40NhNAk4k1fZcKXCYpzILsfloipcLqrCfw5kQCEVY1ikN8b29sPY3n7o6e/KDit1CbbqO7377ruYO3euZVH3pKQkbNu2DR9//DGWL1/eYv+kpKRmz9944w189913+OGHH5oFVyKRCIGBgW1qq06ng06nszzXaDQAzAsj22Jx5MZzcuFl1qIR62DlyLUQBAFpai1+PFOArWcKkF9ZZ3nNy1mG+/oH4IEBgYgP84JYbP6/32AwXO90N+XItehorIUVa2Fm6zq09bw2Da4EQcBf//pXODu3bW5xfX39zXciIqIuTyIWYVCoJwaFeuKFe3uhskaPA1dKsK9hWqG6sg6/pJfgl/QS/H3Leag8lBjTEGINC/ewd/OJbpst+k719fU4duwYFi9e3Gx7YmIiDh482Kb3MZlM0Gq18Pb2bra9qqoK4eHhMBqNGDRoEF577bVmwVZTy5cvx9KlS1ts3759e5s/7+1ITk622bk7G9bCjHWwcqRaFNUCx0pEOF4iRlGd9csohUTAAG8BQ3wERHsYIBFnoiQtEz+nte/7O1It7I21sGItzGxVh5qamjbtZ9PgasyYMS2Gj99IQkICnJy4hgkRETXn4SzD5NggTI4NgiAIuFxUZVkb63BGGfIr6/Blag6+TM2BRCxCmIsEF2TpGNnLD3HhXnCWcwo6dQ626DuVlJTAaDQiICCg2faAgAAUFBS06X3eeecdVFdXY+bMmZZtffr0wbp16xAbGwuNRoP3338fo0aNwqlTp9CrV68W51iyZAkWLVpkea7RaBAaGorExES4u7u3qR23Qq/XIzk5GRMmTIBMJmv383cmrIUZ62DlKLVQV9Zhy5kC/HhGjXP5Wst2uVSM8b198cCAIIzr7WvT5QEcpRaOgLWwYi3MbF2HxtHXN2PTnvyePXtseXoiIuqGRCIRegW4oVeAG+aNjkJtvRGHM0qx71IJ9l4qwpXiamRoRfh4XwY+3pcBqViE2BAPDI/0wfAob8SHe8FN2X07IOTYbNl3unY6rSAIbZpiu2HDBrz66qv47rvv4O/vb9k+YsQIy9UOAWDUqFEYMmQI/vGPf+CDDz5ocR6FQgGFQtFiu0wms+kvBbY+f2fCWpixDlb2qEVplQ5bz6jx/al8pGaWW7ZLxCKM7uWLKQNUSOwf0OH/V/Pnwoq1sGItzGxVh7aek19BExFRp+Ykl2BctD/GRfsD6IfMYg3++e0e1LmFIDWrAnkVtTiRXYET2RX4594rEIuA2GAPDI/ywfBIb8RHeMPDiR0S6rp8fX0hkUhajK4qKipqMQrrWhs3bsTcuXPx9ddf4957773hvmKxGEOHDkV6evodt5mIuhZNnR7bzxXi+1P5OHC5BEaTAAAQiYChEd6YOlCFybFB8HaR27mlROSIGFwREVGXEuzphIQAAZMnx0ImkyGnrAaHM8pw+GopDmeUIbusBqdyK3EqtxKf7LsKkQjoF+SO4ZE+GBHljWGR3vB0ZseZug65XI64uDgkJydj+vTplu3JycmYNm3adY/bsGEDnn76aWzYsAH333//Td9HEAScPHkSsbGx7dJuIurc6vRG7DxfhO9P5WH3xWLUG0yW12KDPTB1oAoPDAxCkAeXiiGiG2NwRUREXVqotzNCvZ3xUFwIACC/ohaHM0px+GoZDmeUIaOkGufyNTiXr8F/DmRAJAKiA9wwomFE1rBIb/i4tpzeRNSZLFq0CLNnz0Z8fDwSEhLwySefIDs7GwsWLABgXn8qLy8Pn376KQBzaPXEE0/g/fffx4gRIyyjtZycnODhYb4AwtKlSzFixAj06tULGo0GH3zwAU6ePImPPvrIPh+SiOxObzRhf3oJvj+Vj+3nClBdb7S81tPfFVMHqjBloAqRvi52bCURdTYMroiIqFtReTph+uAQTB9sDrIKNXU4nFGGQ1dLcfhqKa4UV+NCgRYXCrRYdzATANDL39UcZEV5Y3ikD/zcGGRR5/LII4+gtLQUy5Ytg1qtRkxMDLZu3Yrw8HAAgFqtRnZ2tmX/1atXw2Aw4Nlnn8Wzzz5r2T5nzhysW7cOAFBRUYHf/OY3KCgogIeHBwYPHox9+/Zh2LBhHfrZiMi+jCYBRzLK8P2pfPx0Vo2KGuvl7YM9nTBloApTB6rQN8itTevqERFdi8EVERF1awHuSkxt6FQDQLFWhyMZZZZRWRcLtUgvqkJ6URX+eygLABDl52KZWjg80geBHkp7fgSiNlm4cCEWLlzY6muNYVSjtiwS/9577+G9995rh5YRUWcjCAJO51bi+1P5+PF0Pgo1Ostrvq4KPDAgCFMGqjAkzJNhFRHdMQZXRERETfi5KXD/gCDcPyAIAFBWXY8jGaU41DC18EKBBleLq3G1uBobjphHqET4OFuuWjg8ygfBnlyvg4iIup5LhVp8fzIfP5zOR1ZpjWW7m1KKSTGBmDowGCOivCGViO3YSiLqahhcERER3YC3ixz3xQThvhhzkFVRU4/UzHIcvlqKQxmlSMvXILO0BpmlNdh4NAcAEOLlZBmRNSLKByFeTvzGmYiIOqWcshp8fyofP5zKx4UCrWW7k0yCe/sFYOpAFcb09oVCKrFjK4moK2NwRUREdAs8neWY0C8AE/oFADBf4vtoZhkOXy3DoYwynM2rRG55LXLLc7HpeC4AQOWhxPCGxd5HRPkg3MeZQRYRETmsIk0dfjytxven8nEyp8KyXSYRYWxvP0wZqMKEfgFwlvPXSSKyPf5LQ0REdAfclTLc3ScAd/cxB1lVOoM5yMoow+GrpTidW4n8yjp8eyIP357IAwAEuCusUwsjfdDDz4VBFhER2VVljR4/nTWHVYeulsIkmLeLRUBCDx9MHajCff2D4OEss29DiajbYXBFRETUjlwVUoyL9se4aH8AQE29AcezKnA4oxSHrpbiVE4lCjU6fH8qH9+fygdgXsjWPBrLvEZWL39XBllERGRz1ToD9p4rwvcn87EvvRh6o2B5bXCYJ6YOVOH+AUHwd+NFSIjIfhhcERER2ZCzXIq7evnirl6+AIA6vRHHs8tx+Kr5yoXHsytQUqXDljNqbDmjBmBeV2tYhLdlRFafQDeIxQyyiIjoztQbTLhUqMWZ3HJ8dUmMxUf3oFZvsrzeJ9ANUwepMGWACqHeznZsKRGRFYMrIiKiDqSUSTCyhy9G9rAGWadyKsxTCzNKcSyrHGXV9fj5XAF+PlcAAPB0lmFohLdljay+Qe6QMMgiIqIb0NbpcV6txbn8SpzL1yAtX4P0Im2TUVViACaE+zhj6kAVpg5UoVeAmz2bTETUKgZXREREdqSUScwLt0f5AOiFeoMJZ/IqcOhqGQ5dNQdZFTV6JKcVIjmtEID5suNNg6z+KndeepyIqJsSBAFFWh3S8jU4l1+JNLUG5/I1yCqtaXV/d6UU/YLc4KIrxcIpCRgS4cPp6UTk0Lp8cLVlyxYsW7YMp0+fhouLC8aMGYPNmzdbXs/Ozsazzz6LXbt2wcnJCbNmzcLKlSshl8vt2GoiIuqu5FIx4sK9ERfujWfH94TeaMLZvErLYu9HM8uhrTNg14Ui7LpQBMC8rlZcuJdlauGAEA/IGGQREXU5JpOAzNJqnMs3h1Npag3S8itRUlXf6v4qDyX6qTzQX+WOfip39Fe5I9jTCQaDAVu3bsWAEA+GVkTk8Lp0cLVp0ybMnz8fb7zxBu6++24IgoAzZ85YXjcajbj//vvh5+eH/fv3o7S0FHPmzIEgCPjHP/5hx5YTERGZySRiDA7zwuAwLywY2wMGownn1VoculqKwxmlOJJRBk2dAXsvFWPvpWIAgJNMgvgIL8SHecKoAWrrjZDJeBUoIqLORGcw4lJBFdLUlZag6rxag5p6Y4t9xSKgh5+rJZzqr/JAvyB3eLnwy3gi6vy6bHBlMBjwwgsvYMWKFZg7d65le3R0tOXx9u3bkZaWhpycHKhUKgDAO++8gyeffBKvv/463N3dO7zdRERENyKViBEb4oHYEA/MHxMFo0nAhQINDjdMLTySWYaKGj1+SS/BL+klAKT46Pwu9A1yw6BQTwwO9cLgME9E+rrwW3YiIgdRWavH+YYpfufyK5GWr8HloioYTEKLfRVSMfoENQZU7ugX5I4+ge5wkkvs0HIiItvrssHV8ePHkZeXB7FYjMGDB6OgoACDBg3CypUr0b9/fwBASkoKYmJiLKEVAEycOBE6nQ7Hjh3D+PHjWz23TqeDTqezPNdoNAAAvV4PvV7frp+j8Xztfd7OiLWwYi2sWAsr1sKsO9aht58zevs5Y/bwEJhMAtKLqnAksxyHrpbi0OUiaPTA2TwNzuZp8NmhbACAh5MUA0M8MDDEA4NCPTEg2AOezl13VJYtfy66088aEd0ZQRBQqNE1WzD9nLoSOWW1re7v6SxrNoKqv8odkb4uXNeQiLqVLhtcXb16FQDw6quv4t1330VERATeeecdjB07FpcuXYK3tzcKCgoQEBDQ7DgvLy/I5XIUFBRc99zLly/H0qVLW2zfvn07nJ1tc9nY5ORkm5y3M2ItrFgLK9bCirUw6+518AFwvycwOQ6oqAcyq0TI1IqQVSVCbhVQWWvAvvRS7EsvtRzjrxQQ7iYgwlVAuKsAlTPQ1X43ssXPRU1N6wsgE1H3ZjQJyCiptiyYntYw3a+suvX1qII9nZqsRWVelyrIQ8nRsUTU7XW64OrVV19tNTRqKjU1FSaTCQDw5z//GTNmzAAArF27FiEhIfj666/x29/+FgBa/Y9AEIQb/gexZMkSLFq0yPJco9EgNDQUiYmJ7T69UK/XIzk5GRMmTOj265OwFlashRVrYcVamLEOVo21mPlA81rUG0y4WKjFqdxKnMwx37LKalBUJ0JRnQip5qWyoJSJEaNyt4zKGhjigSAPpZ0+zZ2x5c9F48hrIuq+6vRGXCzQNlzRzzya6oJai1p9y/WoJGIRejZZj6pfw3Q/T2euR0VE1JpOF1w999xzePTRR2+4T0REBLRaLQCgX79+lu0KhQJRUVHIzjZPkwgMDMThw4ebHVteXg69Xt9iJFZTCoUCCoWixXaZTGazX5Jsee7OhrWwYi2sWAsr1sKMdbC6thYyGTAkQoEhEb6WbWXV9TiVU4ETORU4kV2OkzkV0NYZcDSrAkezKgBkAQAC3ZUYHOZpXi8rzAuxwR6dal0VW/xc8OeMqHuprNHjnLrSMoIqLV+Dy8VVMLayHpWTTII+QW7NpvtFB7pBKes8/24SEdlbpwuufH194evre9P94uLioFAocPHiRdx1110AzN+2ZmZmIjw8HACQkJCA119/HWq1GkFBQQDM0/0UCgXi4uJs9yGIiIgcjLeLHOP7+GN8H38A5kuuXy2pxonscpzIqcDJ7ApcKNCgQFOHn84W4Kez5in1ErEIfQLdGsKshoXffVwgFnNqCxF1boIgIL+yriGgsgZVeRWtr0fl7SJvNoKqv8oDkb4ukPDfQyKiO9Lpgqu2cnd3x4IFC/C3v/0NoaGhCA8Px4oVKwAADz/8MAAgMTER/fr1w+zZs7FixQqUlZXh5Zdfxvz583lFQSIi6tbEYhF6+ruip78rHo4PBQDU1BtwJrfSMirrRHYFirQ6y2XarQu/yzAw1BODQz0to7M4BYaIHJnRJOBqcZV5BJXaGlSV17R+8YVQbyf0D/KwTPfrr/JAgLuC61EREdlAlw2uAGDFihWQSqWYPXs2amtrMXz4cOzatQteXl4AAIlEgi1btmDhwoUYNWoUnJycMGvWLKxcudLOLSciInI8znIphkf5YHiUDwDzaAR1ZR1OZFfgZI45yDqTV4nKWj32XSrGvkvFlmOjfF0wKKwxzPJCdKAbZF1t5Xci6hRq6404q65qCKjMt4sFGtTpTS32lTaE+E0XTO8b5A4PJ04RJiLqKF06uJLJZFi5cuUNg6iwsDD8+OOPHdgqIiKirkEkEkHl6QSVpxPuH2Cecq83mnBBrcWJnHKczDavmZVRUo2rDbfNx/MAmBd+jw32wOAwr4b1sjwR5OFkz49DRHYgCALqjSboDCbUN9yaPzaa740m6PQm1Bubb2+2v9EEnd5oOd+159HpjcgvkeClQzvRynJUcJZL0DeoYcH0hql+vQJcuR4VEZGddengioiIiDqWTCJGbIgHYkM88ESCeVt5dT1O5lY0jMyqwMnscmjqDEjNLEdqZrnl2EB3pSXEGhTqidgQDzjL2VUham+NYVHLkKgxADJCpzeHRdcLkizbmwRJuusFT62cp+nxHcs8lc/XVY5+DYul92+Y7hfuw/WoiIgcEXuDREREZFNeLnKMj/bH+OjmC7+fbLJW1sVCLQo0dfj5XAF+Ptd84ffGKxhy4Xfq7vRGE7R1Bmhq9dDU6aGpNUBTp4e2yWPza4aW26ol+PPxXZYQyVHJpWIoJGLzvdR8b34sMT+WiKGQme+bblc03b/ZPhLLdgkEnDl5DI8/MB7B3q5cj4qIqJNgcEVEREQdqunC7w/FhQCwLvxuDrMqcCKnHIUa68Lvnx82L/zurpRiUJgXBod6WtbM4sLvbbNq1SqsWLECarUa/fv3R1JSEkaPHn3d/ffu3YtFixbh3LlzUKlUeOWVV7BgwYJm+2zatAl//etfceXKFfTo0QOvv/46pk+fbuuP0mnV6Y2WwElbZw6YmoZQ5m1NA6nmr9fqjXfw7iLAYGj1lcYQSH7d8KdJcNQ0JJKIoZBJmuzTMmhq3KawnE/Syr7W97RlmKTX66HPFBDgrmRoRUTUiTC4IiIiIru7duF3AFBX1ppDrOxynMypwOncSmjqDC0Wfo/0dWlyBUMv9Aniwu/X2rhxI1588UWsWrUKo0aNwurVqzFp0iSkpaUhLCysxf4ZGRmYPHky5s+fj88++wwHDhzAwoUL4efnhxkzZgAAUlJS8Mgjj+C1117D9OnT8e2332LmzJnYv38/hg8f3tEf0eYEQUCt3thsFJO2rvkoJ8t905FPTba110gnV4UUbkop3JUyuDs13stabHNreOwkFSE15QDuvXssnJWK5qGURMxRjERE5NAYXBEREZFDCvJwQlCsEybHNl/4vfEKhidzKnC1pBoZDbfNJ8wLvyukYgwI8Wg2xdDXuXt3ed59913MnTsX8+bNAwAkJSVh27Zt+Pjjj7F8+fIW+//zn/9EWFgYkpKSAAB9+/bF0aNHsXLlSktwlZSUhAkTJmDJkiUAgCVLlmDv3r1ISkrChg0bOuaD3QKTSUB1vcEaMDWbUtd89JM1kGoeUhlaW9H7FolEgJtCCncnWUO4ZH1sDZxabmt87KqQQnqLwaxer0eeCxDh4wKZjFfDIyKizqV79+KIiIio02i68PvsaxZ+b7yCYcuF3zMAAAFuCgTIxIgfrUOwd/f6xb2+vh7Hjh3D4sWLm21PTEzEwYMHWz0mJSUFiYmJzbZNnDgRa9asgV6vh0wmQ0pKCl566aUW+zSGXdfS6XTQ6XSW5xqNBkDD9C29/lY/1g2dyq3E2z9fRF6xBG+f3wdtnQFanQHCnedOkIhFcFc2GfHU8NityWNz6CSFm0IKN6fm+7nIpXc0wkkwGaE33dqUwcb6tnedOxvWwYq1sGItrFgLK9bCzNZ1aOt5GVwRERFRp9Xawu8ZpdXNphheKNCiUKtDicgcOHQ3JSUlMBqNCAgIaLY9ICAABQUFrR5TUFDQ6v4GgwElJSUICgq67j7XO+fy5cuxdOnSFtu3b98OZ2fnW/lIN3W5EjiSJQUgAmrqmr0mEQlwlgJOEsBJCjhJhIZ7QHnN82tfd5ICcjEgEl2noy0AqG24AdA13Era9dPdvuTkZHs3wSGwDlashRVrYcVaWLEWZraqQ01NTZv26369NyIiIuqyxGIRevi5oodf84XfT2aVYcueQ1DKJHZuof1cuxi1IAg3XKC6tf2v3X4r51yyZAkWLVpkea7RaBAaGorExES4u7u37UO0UVl1PSL6FiE97QzGJgyFt6tTwwgpKRTd8GdAr9cjOTkZEyZM6NZTBVkHK9bCirWwYi2sWAszW9ehcfT1zTC4IiIioi7NWS7F0AgvFPu3wzyxTsjX1xcSiaTFSKiioqIWI6YaBQYGtrq/VCqFj4/PDfe53jkVCgUUCkWL7TKZrN07wwGeMkwdFIKt+acRH+nbrX/paMoWte6MWAcr1sKKtbBiLaxYCzNb1aGt5+Qld4iIiIi6MLlcjri4uBbD/JOTkzFy5MhWj0lISGix//bt2xEfH2/pZF5vn+udk4iIiOh2cMRVO2gcOt/WYW63Qq/Xo6amBhqNptsnvayFFWthxVpYsRZmrIMVa2Fly1o0/v8vtMfK3zayaNEizJ49G/Hx8UhISMAnn3yC7OxsLFiwAIB5Gl9eXh4+/fRTAMCCBQvw4YcfYtGiRZg/fz5SUlKwZs2aZlcLfOGFFzBmzBi89dZbmDZtGr777jvs2LED+/fvb1ObbNl/Avjz3xRrYcY6WLEWVqyFFWthxVqY2boObe5DCXTHcnJyBJiX4+SNN95444033rrpLScnx95dkhv66KOPhPDwcEEulwtDhgwR9u7da3ltzpw5wtixY5vtv2fPHmHw4MGCXC4XIiIihI8//rjFOb/++mshOjpakMlkQp8+fYRNmza1uT3sP/HGG2+88cYbb8DN+1AiQXDgrwc7CZPJhPz8fLi5ud1wkdPb0bhwaU5OTrsvXNrZsBZWrIUVa2HFWpixDlashZUtayEIArRaLVQqFcRirsLQVrbsPwH8+W+KtTBjHaxYCyvWwoq1sGItzGxdh7b2oThVsB2IxWKEhITY9D3c3d279V+YplgLK9bCirWwYi3MWAcr1sLKVrXw8PBo93N2dR3RfwL4898Ua2HGOlixFlashRVrYcVamNmyDm3pQ/FrQSIiIiIiIiIickgMroiIiIiIiIiIyCExuHJwCoUCf/vb36BQKOzdFLtjLaxYCyvWwoq1MGMdrFgLK9ai++GfuRVrYcY6WLEWVqyFFWthxVqYOUoduDg7ERERERERERE5JI64IiIiIiIiIiIih8TgioiIiIiIiIiIHBKDKyIiIiIiIiIickgMroiIiIiIiIiIyCExuCIiIiIiIiIiIofE4IqIiIiIiIiIiBwSgysiIiIiIiIiInJIDK6IiIiIiIiIiMghMbgiIiIiIiIiIiKHxOCKiIiIiIiIiIgcEoMrIiIiIiIiIiJySAyuiIiIiIiIiIjIITG4IiIiIiIiIiIih8TgioiIiIiIiIiIHBKDKyIiIiIiIiIickgMrojIYa1btw4ikQiZmZm3tP/Ro0dvuu+4ceMwbty4O2tgO2jtM37xxRdISkq67XOKRCI899xzd944IiIi6pK6Qx/relr77E8++SQiIiLs1iYiujGpvRtARGQPq1atsncTAAD3338/UlJSEBQUZNn2xRdf4OzZs3jxxRft1zAiIiKi2+AofSwi6joYXBFRt9SvXz97NwEA4OfnBz8/P3s3g4iIiKhddHQfy2g0wmAwQKFQdOj7ElHH4VRBIupytFotnnnmGfj6+sLHxwcPPvgg8vPzm+1z7TD2zMxMiEQivP3223j99dcRFhYGpVKJ+Ph47Ny585be/1bOde1w9XHjxmHLli3IysqCSCSy3BrpdDosW7YMffv2hVKphI+PD8aPH4+DBw+2aMd///tf9O3bF87Ozhg4cCB+/PHHW/ocRERERE05Uh/r73//OyIjI6FQKLB7924AwPfff4+EhAQ4OzvDzc0NEyZMQEpKyh1/biKyLwZXRNTlzJs3DzKZDF988QXefvtt7NmzB7/+9a/bdOyHH36In3/+GUlJSfjss88gFosxadKk2+r03M65Vq1ahVGjRiEwMBApKSmWGwAYDAZMmjQJr732Gh544AF8++23WLduHUaOHIns7Oxm59myZQs+/PBDLFu2DJs2bYK3tzemT5+Oq1ev3vLnICIiIgIcp4/1wQcfYNeuXVi5ciV++ukn9OnTB1988QWmTZsGd3d3bNiwAWvWrEF5eTnGjRuH/fv33/J7EJHj4FRBIupy7rvvPnzwwQeW52VlZXjllVdQUFCAwMDAGx5rNBqRnJwMpVIJAJg4cSIiIiLwf//3f0hOTr6ldtzOufr16wdPT08oFAqMGDGi2WsbNmzA7t278a9//Qvz5s2zbJ8yZUqL89TW1mLHjh1wc3MDAAwZMgQqlQpfffUVFi9efEufg4iIiAhwnD6WUqnEtm3bIJPJAAAmkwmjRo1CbGwsfvrpJ4jF5vEZkydPRo8ePfDHP/4RBw4cuKX3ICLHwRFXRNTlTJ06tdnzAQMGAACysrJueuyDDz5o6VABgJubG6ZMmYJ9+/bBaDTeUjva81wA8NNPP0GpVOLpp5++6b7jx4+3hFYAEBAQAH9//zbVgIiIiKg1jtLHmjp1qiW0AoCLFy8iPz8fs2fPtoRWAODq6ooZM2bg0KFDqKmpuaX3ICLHweCKiLocHx+fZs8bF+usra296bGtfVsYGBiI+vp6VFVV3VI72vNcAFBcXAyVStWsQ3Y919YAMNehLTUgIiIiao2j9LGaXo0ZAEpLS1vdDgAqlQomkwnl5eW39B5E5DgYXBERNVFQUNDqNrlcDldXV7udCzBfgTA/Px8mk+mWjyUiIiKyp/bsFzW9cA1gDdTUanWLffPz8yEWi+Hl5XVL70FEjoPBFRFRE5s3b0ZdXZ3luVarxQ8//IDRo0dDIpF0yLmuNzJq0qRJqKurw7p1626pHURERET21p59rGtFR0cjODgYX3zxBQRBsGyvrq7Gpk2bLFcaJKLOiYuzExE1IZFIMGHCBCxatAgmkwlvvfUWNBoNli5d2mHnio2NxebNm/Hxxx8jLi4OYrEY8fHxeOyxx7B27VosWLAAFy9exPjx42EymXD48GH07dsXjz766O1+bCIiIiKbas8+1rXEYjHefvttPP7443jggQfw29/+FjqdDitWrEBFRQXefPPNdvgERGQvDK6IiJp47rnnUFdXh9/97ncoKipC//79sWXLFowaNarDzvXCCy/g3Llz+NOf/oTKykoIggBBECCVSrF161YsX74cGzZsQFJSEtzc3DBw4EDcd999t/uRiYiIiGyuPftYrZk1axZcXFywfPlyPPLII5BIJBgxYgR2796NkSNHtst7EJF9iISmYymJiLqpzMxMREZGYsWKFXj55Zcd5lxEREREnRn7RUR0p7jGFREREREREREROSROFSQihycIAoxG4w33kUgkLa4wYwsGg+GGr4vF/D6AiIiIOofO1sdiP4uoe+LffCJyeOvXr4dMJrvhbe/evXf0HhERERAE4YZD2DMzM2/ajmXLlrXpXERERET21tn6WETUPXGNKyJyeKWlpcjIyLjhPtHR0XBzc7NpO+rr63H69Okb7qNSqaBSqWzaDiIiIqL2wD4WEXUGDK6IiIiIiIiIiMghcY2rdmAymZCfnw83N7cOmf9NREREjkMQBGi1WqhUKq6/cgvYfyIiIure2tqHYnDVDvLz8xEaGmrvZhAREZEd5eTkICQkxN7N6DTYfyIiIiLg5n0oBlftoHHOd05ODtzd3dv13Hq9Htu3b0diYiJkMlm7nruzYS2sWAsr1sKKtTBjHaxYCytb1kKj0SA0NNTma8B0NbbsPwH8+W+KtTBjHaxYCyvWwoq1sGItzGxdh7b2oRhctYPG4e3u7u42Ca6cnZ3h7u7erf/CAKxFU6yFFWthxVqYsQ5WrIVVR9SC091ujS37TwB//ptiLcxYByvWwoq1sGItrFgLs46qw836UAyuiOzIZBJgMAkwmEzme6P5sdHyWIDB2PK1uno90itFOJJZBoVMBrFYBIlIBLFIBLEYkIgbHotEkDS8JhKZt0vEDY9FjY+t+4jFMB8jEkEs5i9gRERERERE3ZXeaEJKoQgja/Tw87BfgMfgihyewWiCzmCCtrYeFTogt7wWInH9NWGPNeAxmgTojaaGe/Nzg8kEQ8Njvanpa6Ym+5jP0ew1kwCj8dpwqfVzG6553OK1JgFU42umO7qmpwQfph1trzK3SiyyhmDWMKxJMNYQeFnCsGtCsqbhmXlfNDvOEpRZjhNB0hC8iUTWczd7X3HD44bziCGgtkiEoVodVN7d99sQIiIiIiKi9qA3mvDt8Tx8sCsdueUS+KRk4Q/39bVbexhcUZsJggCdwQSd3oQ6gxF1eiN0BhPq9EbU6U3QGcz3zbcbG465zr4GY5PzmbfrrjmHoVm6IwWO/2K3GnQEsQiQisWQiEWQSkSQikWQSsQN9yJIxWKIRUB1VRWcXVxgEgCjIMBkAkyCORQzCU0emwTz46b7CAKENoRmJgEwGQUAd5SwdQAJvnh7L2KC3TGutz/G9/HDoFAvSDhqjIiIiIiIqE0MRhO+PZGHf+y6jOyyGgCAq0yAv5vCru1icNUJCYJ5BM+1IZDlvmlI1CQIqrtO6KS7TujUInwymOz90SEWCZBLJZCJxZA0hDjSJgGPRCyCTNIY+jS81vC6RCyGrMU+jceJIZM0f03WsL21c8saztf0vaUNbZJdGzo1OUfTAEpy7WsN52vLFD29Xo+tW7di8uS7bnuusdBayNUQbhkbngsNIZf5MWA0NQZg5uMsxzQ53tgQjpka9xXMUyIbjxUa9rE+bvLeTc9pEmBsPFZosq3x/A3H1uj02Hk6CznVIpzN0+BsngYf7r4MDycZRvfyxfhof4zp7Qc/O/9jS0RERERE5IgMRhP+dzIf/9iVjqxSc2Dl4yLH/NER8ClLw6+G2fcqwAyuGqxatQorVqyAWq1G//79kZSUhNGjR9u7WXj5mzM4eFGC5ef2ot4oWIKkO5tiduckYhGUUjEUMonlXiEVQ9nkXikTQyE13zffbn7c9FjlNccqZGIopZJm28SCET///BMmT57YrRfIay8ikTlA6+z0ej0G4yqGjr4HBzMqsOdiEfZdKkZlrR4/nlbjx9NqAEBssAfGRfthXDRHYxERERERERmMJnx/Kh//2HUZGSXVAABvFzl+OyYKsxPCIRMJ2Lo1zc6tZHAFANi4cSNefPFFrFq1CqNGjcLq1asxadIkpKWlISwszK5tU1fWobhOBNTprrtPWwKjpsGSUto0GBK3CJQag6MbhU4yibgDq2Cm19t/xBc5Lj83BR6KC8FDcSEwGE04mVOBPReLsedSEc7maXAmrxJn8irxj12X4eksw+hefhjX2w9jo/3g68rRWERERERE1D0YTQK+P5WHf+y8jKtNAqvfjInC7BHhcFGYoyK9Xm/PZlowuALw7rvvYu7cuZg3bx4AICkpCdu2bcPHH3+M5cuXt9hfp9NBp7MGSRqNBoD5D7W9/2BfmdAD+w4ewl0Jw+GqVDQESo0BlBhyqbiDL78tACYj9CZjB76nWWNtHeUvjz2xFlbXq8XAYDcMDHbDC3dHoVirw770EuxLL8H+y6WoqNHjh1P5+OFUPgAgNtgdY3r5YmxvXwwI9ui0o7H4c2HGOlixFla2rAXrS0RERJ2B0STgx9P5eH9nOq4WmwMrL2cZ5o+JwpyECEtg5Wgcs1UdqL6+HseOHcPixYubbU9MTMTBgwdbPWb58uVYunRpi+3bt2+Hs7Nzu7exhzugPne43c/bWSUnJ9u7CQ6DtbC6WS2cAEx0A+4dBGRqgfMVYpyvECG3WoQzeRqcydPgoz1X4SIVEO0hoJ+XgD6eAtw64axU/lyYsQ5WrIWVLWpRU1PT7uckIiIiai+NgdUHO9NxpSGw8nSWYf7oKMwZGQFXBw2sGjl26zpASUkJjEYjAgICmm0PCAhAQUFBq8csWbIEixYtsjzXaDQIDQ1FYmIi3N3d27V9er0eycnJmDBhQrdf14m1sGItrO60FkWNo7EulWD/lVJo6ww4XirC8VJAJAJiVebRWGM6wWgs/lyYsQ5WrIWVLWvROPKaiIiIyJGYTAK2nFHj/Z3puFxUBQDwcJJh/uhIzBkZATdl5+gfdvvgqtG10+0EQbjuFDyFQgGFouWaODKZzGa/GNjy3J0Na2HFWljdbi2CvWV4bLgrHhseAYPRhOPZ5gXe91wsRppag9N55tuHe67Cy1mGMb3NC7yP6eUHHwddG4s/F2asgxVrYWWLWrC2RERE5EhMJgFbz6rx/o50pDcEVu5KKeaPjsKTozpPYNWo2wdXvr6+kEgkLUZXFRUVtRiFRURdm1QixrBIbwyL9MYr9/VBkaYOey4VY8/FIvySXoLyGj2+O5mP707mQyQCBoR4YlxDkDUgxNOhR2MREREREVHXZjIJ+PlcAd7fkY6LhVoAgJtSinl3ReGpuyLg3skCq0bdPriSy+WIi4tDcnIypk+fbtmenJyMadOm2bFlRGRv/u5KzIwPxcz4UOiNJpzIrsDuhtFY59UanMqpwKmcCry/Mx3eLnKM6eWLcdH+GNPbD94ucns3n4iIiIiIugGTScD2tAIk7UjHhYKGwEohxdN3ReLpuyLh4dQ5A6tG3T64AoBFixZh9uzZiI+PR0JCAj755BNkZ2djwYIF9m4aETkIWZPRWH+8rw8KNXXYe7EYuy8WYX96Ccqq6/G/k/n4X8NorIEhnhgX7Ydx0f4YEOwBMUdjERERERFROxIEAdvOFeL9nek4rzavuemmkOKpuyIxd1QkPJw7d2DViMEVgEceeQSlpaVYtmwZ1Go1YmJisHXrVoSHh9u7aUTkoALclZg5NBQzh5pHYx3PKseeS8XYfaEIFwq0OJlTgZM5FUjaYR6NNbbJ2lheHI1FRERERES3SRAEJKcVImlHOtIaAitXhRRPjYrA3Lsi4enctX7fYHDVYOHChVi4cKG9m0FEnZBMIsbwKB8Mj/LBH+/rg4LKOuy9VITdF4qx/7J5NNa3J/Lw7Yk8iETAoFBPjOvtj3HRfojlaCwiIiIiImoDQRCw43wRknZcwrl8c2DlIpfgqVGRmDe66wVWjRhcERG1s0APJR4ZGoZHhoZBbzThWFY59lw0L/J+oUCLE9kVOJFdgfd2XIJPw2issRyNRURERERErRAEAbsuFCFpRzrO5FUCMAdWc0ZGYP7oqC7/OwSDKyIiG5JJxBgR5YMRUT5YPKkP1JW12HuxGHsumkdjlVbXY/OJPGw+kQdx42isaPNorBgVR2MREREREXVXgiBg90VzYHU61xxYOTcJrLrLBaEYXBERdaAgDyc8OiwMjw4LQ72hYTTWpSLsvViMCwVaHM+uwPHsCrybfAm+rnKM6W1e4H1ML98uO/SXiIiIiIisBEHAnkvFSNqRjlM5FQAAJ5kET4wMx29GR8HHVWHfBnYwBldERHYil4qR0MMHCT18sGRSX+RX1GLvJfOUwv3pJSipqsfm43nYfNw8GmtwmBfGNQRZ/VXuHI1FRERERNSFCIKAvQ2B1cmGwEopE+OJhAj8ZkwUfLtZYNWIwRURkYNQeTrhsWFheKxhNNbRrDLLtMKLhVocyyrHsaxyvJN8Cb6uimZXKuwql7olIiIiIupuBEHAL+kleG/HJZzIrgBgDqxmjwjHb8b0gJ9b9wysGjG4IiJyQHKpGCN7+GJkD18smWwejdW4wPuByyUoqdJh0/FcbDqeaxmNNaanD1xq7d1yIiIiIiJqC0EQcOByKd7bcQnHssoBAAqpGL8eEY7fjo2Cv5vSzi10DAyuiIg6AZWnE2YND8Os4Q2jsTLLsKdhWuGlwirLaCxAiu0VqXhkaBgmxQbCWc5/5omIiIiIHIkgCDh4pRRJOy4hNdMaWD0+PBwLxjGwuhZ/oyEi6mTkUjFG9vTFyJ6++NPkvsirqMWei0X4+Ywa+y+X4EhmOY5kluNv35/DlIFBeDg+FINDPSEScU0sIiIiIiJ7OnilBEnJ6TiSWQbA3LefNSwMC8f1gL87A6vWMLgiIurkgj2d8PjwcMwcosLn325FpVcfbDqRj+yyGmw4koMNR3LQ098VM+NDMH1wSLefI09ERERE1NFSGkZYHc5oHlg9M64HAhhY3RCDKyKiLsRLATw+LgrP39MbRzLL8NXRHGw9o8bloiq8sfUC3v75Isb38cfM+FCMi/aDTCK2d5OJiIiIiLqsw1fNa1gdutoQWEnEeHRYKBaO64lADwZWbcHfWIiIuiCxWIQRUT54d+YgpP75Xix/MBaDwzxhMAlITivE/E+PImH5Lizfeh6Xi6rs3VwicgCrVq1CZGQklEol4uLi8Msvv7TpuAMHDkAqlWLQoEG2bSAREVEnciSjDLP+dQiPfHIIh66WQS4xXyVw7yvjsGxaDEOrW8ARV0REXZybUobHhoXhsWFhSC/U4utjudh8PBclVTqs3ncVq/ddxZAwT8yMD8X9A4LgppTZu8lE1ME2btyIF198EatWrcKoUaOwevVqTJo0CWlpaQgLC7vucZWVlXjiiSdwzz33oLCwsANbTERE5JiOZpbhvR2XcOByKQBAJhFhZnwonh3fEypPJzu3rnNicEVE1I30CnDDnyb3xR8mRmP3hSJ8dTQXuy8W4Xh2BY5nV2DpD2mYHBuER4aGYmiEFxd0J+om3n33XcydOxfz5s0DACQlJWHbtm34+OOPsXz58use99vf/hazZs2CRCLB//73vxu+h06ng06nszzXaDQAAL1eD71ef+cf4hqN57TFuTsb1sKMdbBiLaxYCyvWwup2anE8uwIf7LqCA1fMgZVULMKMIcF4ZmwkghsCq85WW1v/TLT1vAyuiIi6IZlEjMT+gUjsH4gibR2+PZ6HjUdzcLW4GpuO52LT8VxE+Djj4fhQzBgSwqHMRF1YfX09jh07hsWLFzfbnpiYiIMHD173uLVr1+LKlSv47LPP8Pe///2m77N8+XIsXbq0xfbt27fD2dn51hveRsnJyTY7d2fDWpixDlashRVrYcVaWLWlFpla4KccMS5UmldiEosEDPcTMCHYBB9ZJk4dzMQpWzfUxmz1M1FTU9Om/RhcERF1c/5uSvx2bA/8ZkwUjmdX4KvUHPx4Oh+ZpTVYse0i3tl+EWN7+2FmfCju6RsAuZTLIxJ1JSUlJTAajQgICGi2PSAgAAUFBa0ek56ejsWLF+OXX36BVNq27uSSJUuwaNEiy3ONRoPQ0FAkJibC3d399j/Adej1eiQnJ2PChAmQybr3FGjWwox1sGItrFgLK9bCqi21OJVbiQ92Xca+dPMIK4lYhAcHq/DM2EiEetnuC5mOZOuficbR1zfD4IqIiAAAIpEIceFeiAv3wv9N6YetZ9T4+mgujmSWYffFYuy+WAxvFzl+NSgYM4eGoE9g+/+iSUT2c+3UYEEQWp0ubDQaMWvWLCxduhS9e/du8/kVCgUUCkWL7TKZzKa/INn6/J0Ja2HGOlixFlashRVrYdVaLU7lVCBpxyXsvlgMwBxYzRgSjOfG90KYT9cIrK5lq5+Jtp6TwRUREbXgopDi4fhQPBwfioySanx9NAebjueiUKPDfw5k4D8HMjAgxAMPx4di6kAVPJzYuSHqrHx9fSGRSFqMrioqKmoxCgsAtFotjh49ihMnTuC5554DAJhMJgiCAKlUiu3bt+Puu+/ukLYTERF1lNO5FUjakY5dF4oAmAOr6YOD8fzdPRHu42Ln1nVtDK6IiOiGIn1d8Mp9fbBoQm/8kl6Cr47mYMf5QpzOrcTp3Er8/cc03BcTiJnxoUiI8oFYzAXdiToTuVyOuLg4JCcnY/r06ZbtycnJmDZtWov93d3dcebMmWbbVq1ahV27duGbb75BZGSkzdtMRETUUc7kVuL9nZew47w5sBKLgOmDQ/D83T0R4cvAqiMwuCIiojaRSsQY38cf4/v4o7RKh/+dzMdXqTm4WKjFdyfz8d3JfAR7OuHh+BA8FBeCkC4yt5+oO1i0aBFmz56N+Ph4JCQk4JNPPkF2djYWLFgAwLw+VV5eHj799FOIxWLExMQ0O97f3x9KpbLFdiIios4qtxpY8PkJ7LxgnhIoFgG/GhSM5+/phUgGVh2KwRUREd0yH1cF5t4ViadHReBMXiW+OpqD707mI6+iFkk70vH+znSM6uGLh+NDMLF/IJQyib2bTEQ38Mgjj6C0tBTLli2DWq1GTEwMtm7divDwcACAWq1Gdna2nVtJRERkWyaTgJSrpVi7/yp2XJACKIZYBEwbFIzn7u6JHn6u9m5it8TgioiIbptIJMKAEE8MCPHEX+7vh23nCvDV0RwcuFyK/ZdLsP9yCdyVUkwbFIyZ8aGICXZvdbFnIrK/hQsXYuHCha2+tm7duhse++qrr+LVV19t/0YRERF1gEJNHb45louNqTnILqsBAIgg4IEBQXjh3mj09GdgZU/dPriKiIhAVlZWs21//OMf8eabb9qpRUREnZNSJsG0QcGYNigYOWU1+OZYLr45lou8ilr891AW/nsoC30C3TAzPhS/GhwMbxe5vZtMRERERN2UwWjCnovF+DI1B7svFsFoEgAAbgoppg4MQpguA08/NIBXWHQA3T64AoBly5Zh/vz5lueurkxTiYjuRKi3M16a0Bsv3NMLB66U4Kujudh2rgAXCrRY9mMalv90HhP6BeDh+FCM6eUHCRd0JyIiIqIOkFNWg42pOfj6WA4KNTrL9qERXnh0aBgmxwZBKjJh69YMO7aSmmJwBcDNzQ2BgYH2bgYRUZcjFoswupcfRvfyQ0VNPb4/lY+vjubgbJ4GW88UYOuZAgS6KzEjLhgPx4XyyixERERE1O50BiOS0wrx5ZEc7L9cYtnu7SLHjCHBeGRoWLPpgHq9yR7NpOuwaXCl0Whu+Rh3d3cbtOTG3nrrLbz22msIDQ3Fww8/jD/84Q+Qy68/hUWn00GnsyazjZ9Tr9dDr9e3a9saz9fe5+2MWAsr1sKKtbBy9Fq4yER4LD4Yj8UHI02twabj+fj+lBoFmjp8tPsKPtp9BUMjvPDwkGBM7O8PZ/nt/Rfl6HXoSKyFlS1r0dH17Sz9KyIiInu7XKTFl0dysPlEHsqq6wEAIhFwV09fPDo0DBP6BUAuFdu5lXQzNg2uPD09b2kRXpFIhEuXLiEqKsqGrWruhRdewJAhQ+Dl5YUjR45gyZIlyMjIwL///e/rHrN8+XIsXbq0xfbt27fD2dk2l39PTk62yXk7I9bCirWwYi2sOkst4kTAwAHAmXIRDheJcKFChNTMcqRmluOv3wkY4iNghL8J4a7mDsat6ix16AishZUtalFTU9Pu57yRztC/IiIispeaegO2nFZjY2oOjmaVW7YHuCswMz4UM+NDEeptm9/byTZsPlXwm2++gbe39033EwQBkydPbpf3fPXVV1sNlppKTU1FfHw8XnrpJcu2AQMGwMvLCw899BDeeust+Pj4tHrskiVLsGjRIstzjUaD0NBQJCYmtvs3mnq9HsnJyZgwYUK3XxSOtbBiLaxYC6vOWoupDffqyjp8eyIf3xzPQ055LVKKREgpEqOHnwseGhKMXw0Kgq+r4qbn66x1sAXWwsqWtbidEVB3yh79KyIiIkd2Nq8SG45k4/uT+dDqDAAAiViEu/v449GhoRjb2w9SCUdXdUY2Da7Cw8MxZsyY6wZA14qKimqXzuRzzz2HRx999Ib7REREtLp9xIgRAIDLly9ft90KhQIKRctfnmQymc1+MbDluTsb1sKKtbBiLaw6ay3CfGV4YUI0nr+nN45kluGroznYekaNK8XVeGvbJaxMTsfdffwxMz4U46L9ILtJx6Oz1sEWWAsrW9Sio2trr/4VERGRo9HU6fHdyXx8eSQb5/KtXySFeTvjkaGheCguBAHuSju2kNqDTYOrjIxbW4X/7Nmz7fK+vr6+8PX1va1jT5w4AQAICgpql7YQEdGtEYtFGBHlgxFRPlg6tT9+PK3GV0dzcCK7AslphUhOK4SvqwIzhgTj4fgQ9PR3s3eTiTqUvfpXREREjkAQBBzNKseXR3Kw5Uw+6hoWUpdLxJgYE4jHhoZiRJQPxLxqdZfRra8qmJKSgkOHDmH8+PHw8PBAamoqXnrpJUydOhVhYWH2bh4RUbfnppThsWFheGxYGNILtfj6WC42H89FSZUOq/ddxep9VzEkzBMz40Nx/4AguCk5qoSIiIioKyqt0mHz8Tx8mZqNK8XVlu29/F3x6LAwPDg4GF4u17/IGnVeHRZcffDBB61uF4lEUCqV6NmzJ8aMGQOJRNJRTYJCocDGjRuxdOlS6HQ6hIeHY/78+XjllVc6rA1ERNQ2vQLc8KfJffGHidHYfaEIXx3Nxe6LRTieXYHj2RVY+kMaJscG4cHBgRAEe7eWqGM4Yv+KiIiovZhMAg5cKcGXR3KwPa0AeqO5k+ckk2DKwCA8MjQMQ8Ju7aIl1Pl0WHD13nvvobi4GDU1NfDy8oIgCKioqICzszNcXV1RVFSEqKgo7N69G6GhoR3SpiFDhuDQoUMd8l5ERNQ+ZBIxEvsHIrF/IIq0ddh8PA9fHc3B1eJqbDqei03Hc+GrlKDQMxOPDouAhzNHYVHX5Yj9KyIiojtVUFmHr4/mYOPRHOSW11q2DwjxwKNDwzBlIEfadycdtqT+G2+8gaFDhyI9PR2lpaUoKyvDpUuXMHz4cLz//vvIzs5GYGBgs6v8ERER3Yi/mxILxvbAzkVjsemZBDwSHwoXuQQldSIs//kSRizfiSWbz+BigdbeTSWyCfaviIioqzAYTUhOK8TcdakY+eZOvJN8CbnltXBTSvFEQji2/O4ufP/cXZg1PIyhVTfTYSOu/vKXv2DTpk3o0aOHZVvPnj2xcuVKzJgxA1evXsXbb7+NGTNmdFSTiIioixCJRIgL90ZcuDeW3NcLy79IxokqD1wqqsKGI9nYcCQbI6K88eTICNzbN4CXQqYug/0rIiLq7LJLa7DxaDa+PpqLIq3Osn1YpDceHRqKybFBUMo45b0767DgSq1Ww2AwtNhuMBhQUFAAAFCpVNBq+a04ERHdPheFFCMDBLz2ZAKO52qx/mAmtqcV4tDVMhy6WgaVhxKPjwjHY8PC4M0FPKmTY/+KiIg6I53BiG3nCrExNRsHLpdatvu4yPFQXAhmDg1FDz9XO7aQHEmHBVfjx4/Hb3/7W/z73//G4MGDAQAnTpzAM888g7vvvhsAcObMGURGRnZUk4iIqAsTiUQYEeWDEVE+yK+oxWeHsvBlag7yK+uwYttFvL8zHVMHqjAnIQKxIR72bi7RbWH/ioiIOpP0Qi2+TM3B5uO5KK/RAwBEImB0Lz88NjQU9/QNgFzKkfHUXIcFV2vWrMHs2bMRFxcHmcw8H9VgMOCee+7BmjVrAACurq545513OqpJRETUTag8nfDKfX3wu3t64cfTaqw/mIkzeZX45lguvjmWiyFhnpgzMgKTYoLYWaJOhf0rIiJydDX1Bvx4Wo2NqTk4llVu2R7kocTD8aGYGR+CEC9nO7aQHF2HBVeBgYFITk7GhQsXcOnSJQiCgD59+iA6Otqyz/jx4zuqOURE1A0pZRI8FBeCGUOCcTy7Ap+mZGLrGTWOZ1fgePZJ/N3tPGYNC8Pjw8Pg7660d3OJbor9KyIickSCIOBsngYbUrPx/cl8VOnM09olYhHu7euPR4eGYUxvP0jEIju3lDqDDguuGkVFRUEkEqFHjx6QSjv87YmIiBoWc/dCXLgX/jy5L744ko3PD2ejWKvD+zvTsWrPZUyKCcKckREYEuYJkYidKnJs7F8REZEjqKzV4/uTedhwJAdpao1le7iPMx4ZGoqH4kLg78YvB+nWdFjPpqamBs8//zzWr18PALh06RKioqLwu9/9DiqVCosXL+6ophAREVn4uyvx4r29sXBcT/x8rgDrD2biWFY5vj+Vj+9P5SMm2B1zEiIwZaCKV7Qhh8P+FRER2ZsgCEjNLMeXqdnYekaNOr0JACCXijEpJhCPDA3FiEgfiDm6im5Thy3ksWTJEpw6dQp79uyBUmlNWO+9915s3Lixo5pBRETUKrlUjKkDVdj0zEj8+PxdeCguBHKpGGfzNPjDN6cx8s1dePvnC8ivqLV3U4ks2L8iIiJ7Ka3S4ZN9V3DPu3sxc3UKNh/PQ53ehOgAN/xtSj8c+dM9eP/RwRjZw5ehFd2RDhtx9b///Q8bN27EiBEjmk256NevH65cudJRzSAiIrqpmGAPrHx4IP40uS++TM3GZylZyK+sw6o9V/DPvVeQ2C8Qc0ZGYESUN6cRkl2xf0VERB3JZBKw/3IJvkzNRnJaIfRGAQDgLJdgygAVHh0WikGhXGaB2leHBVfFxcXw9/dvsb26upo/1ERE5JC8XeRYOK4nfjM6CjvOF2L9wSykXC3Fz+cK8PO5AkQHuOGJkeGYPjgYznKuK0Qdj/0rIiLqCOrKWnx9NBcbU3OQ12T0+cBQTzw6NBRTBqrgqmBfiGyjw36yhg4dii1btuD5558HAEtn6l//+hcSEhI6qhlERES3TCoR476YINwXE4SLBVqsT8nEt8fzcLFQiz9/exZv/XQBM+ND8URCBMJ8eDln6jjsXxERka3ojSbsulCEjak52HOxCCbz4Cq4K6V4cEgIHhkair5B7vZtJHULHRZcLV++HPfddx/S0tJgMBjw/vvv49y5c0hJScHevXs7qhlERER3JDrQDW9Mj8UfJ/bB18dy8GlKFrLLavDv/RlYcyAD46P9MWdkBEb35HoOZHvsXxERUXvLKqvBphNqfHMsF8VanWX78EhvPDYsDPfFBPKCNdShOiy4GjlyJA4cOICVK1eiR48e2L59O4YMGYKUlBTExsZ2VDOIiIjahYezDPNGR+HpUZHYc6kI6w5mYd+lYuy6UIRdF4oQ5euCJxLCMSMuBG5Kmb2bS10U+1dERNQeKmv0SD6Xj9XnxEhP2W/Z7usqx4y4EDwSH4ooP1c7tpC6sw6dhBobG2u5XDMREVFXIBaLcHefANzdJwBXiqvw35QsfHMsF1dLqvHqD2lYse0iZsSF4ImECPT0Z4eP2h/7V0REdDuuFFdh5/lC7DxfhKNZ5TCaBABiiETA2N5+eHRoKO7pGwCZRGzvplI3Z9PgSqPRtHlfd3fOjSUios6th58rXp3aHy9PjMbm47lYfzATV4qr8WlKFj5NycLoXr6YkxCB8X38IeE0QrpN7F8REdHt0BtNSM0sw87z5tHhGSXVzV7v7e+KKLkGSx4Zi3A//v9BjsOmwZWnZ9svg2k0Gm3ZFCIiog7jqpDiiYQIzB4RjgOXS7HuYCZ2XijEL+kl+CW9BKHeTpg9Ihwz40Ph6Sy3d3Opk2H/ioiI2qq8uh57LhVh5/ki7L1UDG2dwfKaXCLG8Chv3Ns3AHf38Uegmwxbt26FytPJji0masmmwdXu3bstjzMzM7F48WI8+eSTlqvcpKSkYP369Vi+fLktm0FERGQXIpEId/XyxV29fJFTVoP/HsrCxtQc5JTV4o2tF/Bu8iX8alAw5oyM4FV5qM1s1b9atWoVVqxYAbVajf79+yMpKQmjR49udd/Nmzfj448/xsmTJ6HT6dC/f3+8+uqrmDhx4u1/MCIiumOCIOBKcRV2nC/CzvOFOJZVbrkaIAD4uMgxvo8/7u3rj7t6+cFVYY0E9Hq9HVpMdHM2Da7Gjh1rebxs2TK8++67eOyxxyzbpk6ditjYWHzyySeYM2eOLZtCRERkV6HezvjT5L546d7e+O5kHtYdzMSFAi2+TM3Bl6k5GBbpjSdHRiCxXwCkXEuCbsAW/auNGzfixRdfxKpVqzBq1CisXr0akyZNQlpaGsLCwlrsv2/fPkyYMAFvvPEGPD09sXbtWkyZMgWHDx/G4MGD7/xDEhFRm9UbTDiSUYadF8zrVWWX1TR7vU+gm3lUVV9/DArx5FWPqdPpsMXZU1JS8M9//rPF9vj4eMybN6+jmkFERGRXTnIJHh0WhkeGhuJIRhk+TcnCz+cKcCSjDEcyyhDkocTjw8Pw6LAw+Loq7N1ccnDt1b969913MXfuXMsxSUlJ2LZtGz7++ONWR24lJSU1e/7GG2/gu+++ww8//HDd4Eqn00Gns15WvXGtLr1eb5Nv+RvPyREErEUj1sGKtbDqrLUora7Hvksl2HWxGL9cLkG1zjo1XCYRISHKG3dH+2FctB+Cm0z9MxoNuN4s8s5aC1tgLcxsXYe2nrfDgqvQ0FD885//xDvvvNNs++rVqxEaGtpRzSAiInIIIpEIw6N8MDzKB+rKWnx+KBsbjmRDXVmHldsv4YOdl/HAwCA8OTICA0I87d1cclDt0b+qr6/HsWPHsHjx4mbbExMTcfDgwTadw2QyQavVwtvb+7r7LF++HEuXLm2xffv27XB2dm7T+9yO5ORkm527s2EtzFgHK9bCytFrIQiAuhY4Vy7CuXIxMrWAAOvIKTeZgP5e5lu0hwCFpBAoLcSpg8CpW3wvR69FR2ItzGxVh5qampvvhA4Mrt577z3MmDED27Ztw4gRIwAAhw4dwpUrV7Bp06aOagYREZHDCfJwwssTo/Hc3T2x9Ywa6w9m4lRuJTYfz8Pm43kYFOqJJ0dGYHJsEORSTiMkq/boX5WUlMBoNCIgIKDZ9oCAABQUFLTpHO+88w6qq6sxc+bM6+6zZMkSLFq0yPJco9EgNDQUiYmJNrn6oV6vR3JyMiZMmACZTNbu5+9MWAsz1sGKtbBy5FroDCYcySzD7gvF2H2xGLkVdc1e7xvohrv7+GF8tB9iVe53PAXQkWvR0VgLM1vXoa1XSu6w4Gry5MlIT0/Hxx9/jPPnz0MQBEybNg0LFiyw2Yir119/HVu2bMHJkychl8tRUVHRYp/s7Gw8++yz2LVrF5ycnDBr1iysXLkScjmv8kRERB1LKZPgwSEheHBICE5kl2P9wUxsOaPGyZwKvLjxJP6+5TxmDQ/D48PDEOCutHdzyQG0Z//q2isVCoLQpqsXbtiwAa+++iq+++47+Pv7X3c/hUIBhaLl9FeZTGbTXwpsff7OhLUwYx2sWAsrR6lFSZUOuy+YrwL4S3oxquut8/rkUjFG9fDBPX0DcE9ffwR52Obqf45SC0fAWpjZqg5tPadNg6vTp08jJiYGYrH52+GQkBC8/vrr193/3LlziI6OhlTaPs2qr6/Hww8/jISEBKxZs6bF60ajEffffz/8/Pywf/9+lJaWYs6cORAEAf/4xz/apQ1ERES3Y3CYFwaHeeHP9/fDhiPZ+PxwFgo1OnywMx2rdl/GfTGBeHJkBOLCvdoULlDX0d79K19fX0gkkhajq4qKilqMwrrWxo0bMXfuXHz99de49957b/GTEBGRIAi4UKDFrgtF2HG+ECdzKiA0uQqgv5sC9/T1x919AjCqpw+c5R029oTIYdj0p37w4MEoKCiAn59fm/ZPSEjAyZMnERUV1S7v37iOwrp161p9ffv27UhLS0NOTg5UKhUA81D3J598Eq+//vp1h6135OKiXBTOirWwYi2sWAsr1sKsq9XBUynGM2MiMG9UGJLTivDfw9k4mlWBH0+r8eNpNfoFueHXw8MwZUAglDJJs2O7Wi3uhC1r0dH1be/+lVwuR1xcHJKTkzF9+nTL9uTkZEybNu26592wYQOefvppbNiwAffff/+tfQgiom6sTm/Eoaul2Hm+CLsuFCGvorbZ6zHB7rinj3lUVYzKg1cBpG7PpsGVIAj461//2uYFN+vr623ZnBZSUlIQExNjCa0AYOLEidDpdDh27BjGjx/f6nH2WFyUi8JZsRZWrIUVa2HFWph11TrMVgHjPYB9ajGOl4iQptbiT/87h9d/PIsR/gLuCjTB+5rZWF21FrfDFrVo68Ki7cUW/atFixZh9uzZiI+PR0JCAj755BNkZ2djwYIFAMzrU+Xl5eHTTz8FYA6tnnjiCbz//vsYMWKEZbSWk5MTPDw8bvOTERF1XUXaOssUwP2XS1DTZAqgUibGXT19cXefANzdxx+BHlwOgKgpmwZXY8aMwcWLF9u8f0JCApycbDNPtzUFBQUthsB7eXlBLpffcDHSjlxclIvCWbEWVqyFFWthxVqYdZc6/AZAeU09vj6Why+O5CCvog4780XYrRbjnj7+mD0iFHEhbtixY0eXr0Vb2PLnoq0Li7YXW/SvHnnkEZSWlmLZsmVQq9WIiYnB1q1bER4eDgBQq9XIzs627L969WoYDAY8++yzePbZZy3b58yZc92R7kRE3YkgCEhTa7DzfBF2XijCqZyKZq8Huitxd19/3NPHHyN7+MJJLmn9RERk2+Bqz5497X7OV199tdXRTk2lpqYiPj6+TedrbV2Qmy1Gao/FRbkonBVrYcVaWLEWVqyFWXeog7+HDM/e3RsLxvXCjvOFWH8wEwevlCL5fBGSzxehp58LBruKME4QwbmL16KtbPFz0dE/Z7boXwHAwoULsXDhwlZfuzaMslUbiIg6szq9EQevlFimAKorm18FcECIh2UKYH+VO9eoJGqjTrey23PPPYdHH330hvtERES06VyBgYE4fPhws23l5eXQ6/U3XYyUiIjIUUjEIkzsH4iJ/QORXqjF+pRMbD6eh8vF1bhcLMH2lfvw2LBwPJEQDpVnx41sJiIi6uoKNXXYdaEIO88XYv/lEtTpTZbXnGQS3NXLF/f08cfdffzhzysCE92WThdc+fr6wtfXt13OlZCQgNdffx1qtRpBQUEAzOtUKRQKxMXFtct7EBERdaReAW74+69i8YeJfbDxSBZW77qA0loD/rn3Cv71y1VMjg3C06MiMDjMy95NJSIi6nQEQcDZPA12XijEzvNFOJNX2ex1lUfDFMC+AUiI8mlx4RQiunWdLri6FdnZ2SgrK0N2djaMRiNOnjwJAOjZsydcXV2RmJiIfv36Yfbs2VixYgXKysrw8ssvY/78+e2+VhUREVFH8nCS4amR4fArPwdlVDzWH8rGoatl+OFUPn44lY/BYZ54elQkJsUEQioR27u5REREDqu23ogDl0uw80Ihdl0oQqHGeoV5kQgYGOKJe/qYw6q+QW6cAkjUzrp0cPV///d/WL9+veX54MGDAQC7d+/GuHHjIJFIsGXLFixcuBCjRo2Ck5MTZs2ahZUrV9qryURERO1KLALu7euPSQOCcTavEmsPZOKHU/k4kV2B57NPQOWhxBMjI/DY0DB4OHMdLCIiIgBQV9Y2TAEswoHLJdAZrFMAneUSjO7li3v6BGB8H3/4ubVc/5iI2k+XDq7WrVt30yvbhIWF4ccff+yYBhEREdlRTLAH3pk5EH+cFI3PD2Xjs0NZyK+sw5s/XcD7O9LxUFwInhwVgR5+rvZuKhERUYcymQScyqnAzob1qs7lN79ibLCnE+5pmAI4PNKbUwCJOlCXDq6IiIioJX83JV6a0BvPjOuB70/l4z/7M3ChQIv/HsrCfw9lYXy0H56+KxJ39fTldAciIuqSTCYB2WU1OJldhi+viPH3FXtRXFVveV0kAgaHeuKevuarAEYHcAogkb0wuCIiIuqmlDIJZsaH4uG4EKRcLcV/9mdg54Ui7L5YjN0Xi9E7wBVPj4rErwYH85tlIiLqtIwmARklVTibp8HZvEqcyatEWr4GWp2hYQ8xgHq4yCUY09sP9/QNwLhoP/i6cgogkSNgcEVERNTNiUQijOzhi5E9fJFRUo31BzPx1dEcXCqswuLNZ/D2tot4fHgYZo8I56W8iYjIoRmMJlwutoZUZ/MqkabWoKbe2GJfuVSMPoGu8DRU4KmJQzGylx8UUn5RQ+RoGFwRERGRRaSvC16d2h8vTeiNr1JzsO5gJvIqavGPXZfxz71X8MAAFZ4eFYnYEA97N5WIiLq5eoMJlwq15oAqvxJn8zQ4r9Y0W0i9kZNMgn4qd8So3BET7IGYYA/09HcFTEZs3boVd/X0gYyhFZFDYnBFRERELXg4yTB/TBSeGhWB5LRCrNmfgaNZ5fj2RB6+PZGHYRHeePquCEzoFwiJmGt+EBGRbdXpjbhQYA6pzuWbp/tdLNBCbxRa7OuqkKKfyh2xwR6ICXZHjMoDUX6urf5/pTe1HIlFRI6FwRURERFdl1QixqTYIEyKDcKpnAqsPZCBH0+rcSSzDEcyyxDi5YQnR0Zg5tBQuCtl9m4uERF1ATX1BpxXa5qtSZVeVAWjqWVI5a6UIjbEAzEqD/QP9kBssAfCvZ0h5pcqRF0GgysiIiJqk4Ghnkh6dDCWTO6LT1My8fnhbOSW1+LvW87jveRLeDg+FE+NikC4j4u9m0pERJ2Etk6PtHwNzuZb16S6UlyFVjIqeLvIzdP8LKOpPBDi5cSr/RF1cQyuiIiI6JYEuCvxh4l98Nz4XvjfyTz8Z38G0ouqsO5gJtanZOLevgF4elQkRkR585cJIiKyqKzRW6b5nc3X4FxeJa6WVLe6r7+bwhJSNa5JFeSh5P8rRN0QgysiIiK6LU5yCR4bFoZHh4bil/QS/OdABvZcLEZyWiGS0wrRL8gdT98ViSkDg3iVJiKibqasut4cUDVZkyqnrLbVfVUeSss0v8Y1qXgVWyJqxOCKiIiI7ohIJMKY3n4Y09sPl4uqsO5gBr45los0tQYvf30Kb/50Hr8eEY7Hh4fDz01h7+YSEVE7K9LWNUzzs073y6+sa3XfUG8nxAZ7oL/KwzKiyseV/zcQ0fUxuCIiIqJ209PfFX//VSxeTozGhiM5WH8wEwWaOiTtSMeq3VcwbZAKT42KRD+Vu72bSkREt0gQBKgrG0KqJmtSFWl1re4f6evSbE2q/ioPeDjzQh5EdGsYXBEREVG783SW45lxPTBvdCR+OluANfszcCqnAl8fy8XXx3KREOWDuXdF4u4+/rzyExGRAxIEAbnltZar+jWuSVVaXd9iX7EI6OHniphgD/RvCKn6qdzhxqvNElE7YHBFRERENiOTiDF1oApTB6pwPLsc/9mfgZ/OFiDlailSrpYiwscZT46MwEPxoXBVsFtCRO2r3mBCoaYO+RW1yCmrxv58EQoPZkEpl0IiFkEqFkEqFkMqMd9LxCLIJKKG+6bPxeZ9G/Zr9ljScB5Jw3ax+fjOtIi4ySQgq6wGZ/IqcS6vEmfzzdP+Kmv1LfaViEXo5W8OqRrXpOob5A5nOf8NJyLb4L8uRERE1CGGhHlhyCwv5FXU4tOUTGw4nI3M0hq8+kMa3km+hEeHhuKJhAiEejvbu6lE1AmYTAJKqnTIq6iFutIcTjXe51fWQV1Ri+IqHQSh6VES/C/rYoe0rzHAah6AWcMuiVgE2TVhmSX8ahKCXRuWScTiluGauCFcuyZEaxq8NX1/CEakFotw8qeLOKfWIi1fgyqdocVnkElEiA50a7YmVZ9ANyhlvOAGEXUcBldERETUoYI9nbBkUl+8cE8vbDqWi7UHMnG1pBr/+iUDa/ZnYGL/QMy9KxJx4V6dasQCEbUfQRCgqTU0hFLmICq/ohbqCuvjQk0d9EbhpueSS8VQeSgR6K5AvaYUKpUKJgAGowCDqeFmNFnujSYBeqNgvjeZn5v3NVmPadjf2HB8axrPrTOY2rk67UUCXM6yPFNIxegb5G65ql9MsAd6B7hBLhXbsY1ERAyuiIiIyE6c5VLMTojA48PDsfdSMf5zIAO/pJfgp7MF+OlsAQaEeODpUZGYHBvEX5yIupjaeiPyK2uhrmgcIdXwuLLWMnKqpt540/OIRUCAuxJBHkoEeToh2NPJ/Nij4bGnEj4ucohEIuj1emzduhWTJw+ATNZ+ay8JgjXAah6CXRN2NXlsNJms4dg1YZl1P2s4Zn7NeozlPZq+zzXv3ezc176nwYhqTSVG9g/HgBBPxIZ4oIefK2QS/ltLRI6HwRURERHZlVgswvg+/hjfxx8XC7RYeyADm0/k4XRuJV7ceBLLfzqPJxIi8NiwMHi7yO3dXCK6Cb2xcV2pOvNoKcu99XF5Tcu1k1rj7SJHkIcSKk8nqBrCqaaPA9wUkNo5bBGJGqbzdaLZc9YQr0+7hnhERLbA4IqIiIgcRnSgG96cMQB/mBiNDUey8WlKFgo1OqzYdhEf7EzHg0OC8fSoSPQKcLN3U4m6JZNJQEm1DuomoZRlbamGcKpIe+26Uq1zkUug8nQyh1ENo6RUnuaQqnHUlJO8E6VBRERkEwyuiIiIyOH4uCrw3N298JsxPbDlTD7W7M/A2TwNNhzJwYYjORjdyxdP3xWJsb38IBZzHSyi9iAIAjR1Bqgbpu01ri9lfVyHgso61BtvvmaTXCJGoIfSOlrK89pgygnuSinXsSMiopticEVEREQOSy4VY/rgEPxqUDBSM8vxn/0Z2J5WgF/SS/BLegl6+LngqVGReHBIMC/FTnQTdXojcivrG6bstbwCX35FLarbsK6USAT4uyms60hZ1pcyh1NBnkr4uigYKhMRUbtgD4+IiIgcnkgkwrBIbwyL9EZOWQ3WH8zExtQcXCmuxl/+dxYrtl3EY8PCMGdkOII8nOzdXKJ2Jwjmq9Np6wyo0hlQVWeAVqdHVeNznaHZa9bnelTW6JFdIkF1ys42vZenswwqj6ajpKyPgzyUCPRQchFvIiLqMF06uHr99dexZcsWnDx5EnK5HBUVFS32aW148scff4wFCxZ0QAuJiIjoVoV6O+MvD/TDixN64+ujOVh7IBPZZTX4594r+NcvVzE5NghPj4rA4DAvezeVCCaTgBq9sSFM0l8TPBmuEzzpmz9v2M9gasPCUddl7vM6ySTN1pEyL3RuHiXVuI2jF4mIyJF06f+V6uvr8fDDDyMhIQFr1qy57n5r167FfffdZ3nu4eHREc0jIiKiO+CqkOKpUZF4IiECO88X4j8HMnDoahl+OJWPH07lY0iYJ56+KxL39Q+0d1M7hVWrVmHFihVQq9Xo378/kpKSMHr06Ovuv3fvXixatAjnzp2DSqXCK6+80qW++DMYTajWGc2jmloLmpo917c64qmqzoCqekObFipvK5EIcJVL4aqUwlVhvXdrfK6QwVUphVuT15ykwKVTqXj4/gnwdXfiulJERNSpdOngaunSpQCAdevW3XA/T09PBAayU0tERNQZScQiJPYPRGL/QJzLr8TaA5n4/mQ+jmdX4PgXJ6DyUOLx4aHwNti7pY5r48aNePHFF7Fq1SqMGjUKq1evxqRJk5CWloawsLAW+2dkZGDy5MmYP38+PvvsMxw4cAALFy6En58fZsyYYYdP0Fyd3ojcshrkVgOHM8pQZ4A5WGoaNLUy4qnptlr9zdd6uhUSsahJuNQkaFLKrgmepC2CJ/Nr5kDKWSa55bWj9Ho9qi+bpwAytCIios6mSwdXbfXcc89h3rx5iIyMxNy5c/Gb3/wGYvH15+3rdDrodDrLc41GA8DcKdDr9e3atsbztfd5OyPWwoq1sGItrFgLM9bBqjvWorefM5b/qh9+f28PfHEkB18cyUV+ZR1WbE+HXCxBv7hy9Atu3ymEXaG+7777LubOnYt58+YBAJKSkrBt2zZ8/PHHWL58eYv9//nPfyIsLAxJSUkAgL59++Lo0aNYuXKlQwRXhzPKMOc/RwBIgdNH7+hccqm4WYjUPHSSwu26wZOsWfCkkIoZGhEREd2Gbh9cvfbaa7jnnnvg5OSEnTt34ve//z1KSkrwl7/85brHLF++3DKaq6nt27fD2dnZJu1MTk62yXk7I9bCirWwYi2sWAsz1sGqu9aiJ4AlMcDxEhH2qMWoNwFXT6Yg81T7vk9NTU37nrCD1dfX49ixY1i8eHGz7YmJiTh48GCrx6SkpCAxMbHZtokTJ2LNmjXQ6/WQyWQtjunIL/6cJOa1nGQwwMfdxRIquTQLoCTWoMmyvfk2F4U5cLpzJhgMpnY4z+3pjiF2a1gHK9bCirWwYi2sWAszW9ehreftdMHVq6++2mpo1FRqairi4+PbdL6mAdWgQYMAAMuWLbthcLVkyRIsWrTI8lyj0SA0NBSJiYlwd3dv0/u2lV6vR3JyMiZMmNBqJ7A7YS2sWAsr1sKKtTBjHaxYC7NpMIczm7buwMTE9q9FYwDTWZWUlMBoNCIgIKDZ9oCAABQUFLR6TEFBQav7GwwGlJSUICgoqMUxHf3F35uWruB1/nzqG25a89O6hltJu7fEcXTXEPtarIMVa2HFWlixFlashZmt6tDWL/86XXD13HPP4dFHH73hPhEREbd9/hEjRkCj0aCwsLBFh6yRQqGAQqFosV0mk9nsFwNbnruzYS2sWAsr1sKKtTBjHaxYCzMPuW1q0VVqe+00NkEQbji1rbX9W9veqCO/+AMY3DbFWpixDlashRVrYcVaWLEWZrauQ1u//Ot0wZWvry98fX1tdv4TJ05AqVTC09PTZu9BRERE5Ch8fX0hkUhajK4qKiq67pd4gYGBre4vlUrh4+PT6jH2+OKvI87fmbAWZqyDFWthxVpYsRZWrIWZrerQ1nN2uuDqVmRnZ6OsrAzZ2dkwGo04efIkAKBnz55wdXXFDz/8gIKCAiQkJMDJyQm7d+/Gn//8Z/zmN79ptWN1PY3fMNpiqoBer0dNTQ00Gk23/wvDWlixFlashRVrYcY6WLEWVrasReP//439gc5GLpcjLi4OycnJmD59umV7cnIypk2b1uoxCQkJ+OGHH5pt2759O+Lj49tcX1v2nwD+/DfFWpixDlashRVrYcVaWLEWZrauQ5v7UEIXNmfOHAFAi9vu3bsFQRCEn376SRg0aJDg6uoqODs7CzExMUJSUpKg1+tv6X1ycnJafR/eeOONN95446373HJycmzQm+kYX375pSCTyYQ1a9YIaWlpwosvvii4uLgImZmZgiAIwuLFi4XZs2db9r969arg7OwsvPTSS0JaWpqwZs0aQSaTCd98802b35P9J95444033njjDbh5H0okCJ3060EHYjKZkJ+fDzc3t3a/zHHj+g85OTk2Wf+hM2EtrFgLK9bCirUwYx2sWAsrW9ZCEARotVqoVCqIxe1xBTr7WLVqFd5++22o1WrExMTgvffew5gxYwAATz75JDIzM7Fnzx7L/nv37sVLL72Ec+fOQaVS4Y9//CMWLFjQ5vezZf8J4M9/U6yFGetgxVpYsRZWrIUVa2Fm6zq0tQ/F4MrBaTQaeHh4oLKyslv/hQFYi6ZYCyvWwoq1MGMdrFgLK9ai++GfuRVrYcY6WLEWVqyFFWthxVqYOUodOu/XgkRERERERERE1KUxuCIiIiIiIiIiIofE4MrBKRQK/O1vf7ulqxx2VayFFWthxVpYsRZmrIMVa2HFWnQ//DO3Yi3MWAcr1sKKtbBiLaxYCzNHqQPXuCIiIiIiIiIiIofEEVdEREREREREROSQGFwREREREREREZFDYnBFREREREREREQOicEVERERERERERE5JAZXRERERERERETkkBhcERERERERERGRQ2JwRUREREREREREDonBFREREREREREROSQGV0RERERERERE5JAYXBERERERERERkUNicEVERERERERERA6JwRURERERERERETkkBldEREREREREROSQGFwREREREREREZFDYnBFRJ3GunXrIBKJkJmZeUv7Hz169Kb7jhs3DuPGjbuzBhIRERF1EbbsdxER3QqpvRtAROQIVq1aZe8mEBERERER0TUYXBERAejXr5+9m0BERERERETX4FRBIurytFotnnnmGfj6+sLHxwcPPvgg8vPzm+1z7VTBzMxMiEQivP3223j99dcRFhYGpVKJ+Ph47Ny5s83vLQgCevXqhYkTJ7Z4raqqCh4eHnj22WcBAHV1dfj973+PQYMGwcPDA97e3khISMB3333X7LiHH34Y/fv3b7ZtypQpEIlE+Prrry3bjh8/DpFIhB9++KHN7SUiIiJqL2q1GnFxcejVqxfS09MBAE8++SRcXV1x+fJlTJ48Ga6urggNDcXvf/976HS6ZsfX19fj73//O/r06QOFQgE/Pz889dRTKC4ubvFeGzduREJCAlxcXODq6oqJEyfixIkTHfI5ici2GFwRUZc3b948yGQyfPHFF3j77bexZ88e/PrXv27TsR9++CF+/vlnJCUl4bPPPoNYLMakSZOQkpLSpuNFIhGef/55JCcnWzpsjT799FNoNBpLcKXT6VBWVoaXX34Z//vf/7BhwwbcddddePDBB/Hpp59ajrv33nuRlpYGtVoNADAYDNi7dy+cnJyQnJxs2W/Hjh2QSqVcu4uIiIg63NmzZzF8+HAoFAqkpKSgV69eltf0ej2mTp2Ke+65B9999x2efvppvPfee3jrrbcs+5hMJkybNg1vvvkmZs2ahS1btuDNN99EcnIyxo0bh9raWsu+b7zxBh577DH069cPX331Ff773/9Cq9Vi9OjRSEtL69DPTUQ2IBARdRJr164VAAgZGRm3tP/ChQubbX/77bcFAIJarbZsGzt2rDB27FjL84yMDAGAoFKphNraWst2jUYjeHt7C/fee2+b263RaAQ3NzfhhRdeaLa9X79+wvjx4697nMFgEPR6vTB37lxh8ODBlu2XL18WAAiffvqpIAiCsH//fgGA8MorrwiRkZGW/SZMmCCMHDmyze0kIiIianS7/a7U1FQhOTlZcHd3Fx566KFm/ShBEIQ5c+YIAISvvvqq2fbJkycL0dHRlucbNmwQAAibNm1qtl9qaqoAQFi1apUgCIKQnZ0tSKVS4fnnn2+2n1arFQIDA4WZM2e29SMTkYPiiCsi6vKmTp3a7PmAAQMAAFlZWTc99sEHH4RSqbQ8d3Nzw5QpU7Bv3z4YjcY2vb+bmxueeuoprFu3DtXV1QCAXbt2IS0tDc8991yzfb/++muMGjUKrq6ukEqlkMlkWLNmDc6fP2/Zp0ePHoiIiMCOHTsAAMnJyYiNjcWvf/1rZGRk4MqVK9DpdNi/fz/uvffeNrWRiIiIqD2sX78ekydPxrx58/DVV18160c1EolEmDJlSrNtAwYMaNY3+/HHH+Hp6YkpU6bAYDBYboMGDUJgYCD27NkDANi2bRsMBgOeeOKJZvsplUqMHTvWsh8RdV4Mroioy/Px8Wn2XKFQAECzIebXExgY2Oq2+vp6VFVVtbkNzz//PLRaLT7//HMA5imIISEhmDZtmmWfzZs3Y+bMmQgODsZnn32GlJQUpKam4umnn0ZdXV2z891zzz2WtbZ27NiBCRMmIDY2FgEBAdixYwcOHDiA2tpaBldERETUob788ks4OTlh3rx5EIlEre7j7OzcItBSKBTN+juFhYWoqKiAXC6HTCZrdisoKEBJSYllPwAYOnRoi/02btxo2Y+IOi9eVZCI6AYKCgpa3SaXy+Hq6trm8/Ts2ROTJk3CRx99hEmTJuH777/H0qVLIZFILPt89tlniIyMxMaNG5t19K5dqBQwB1dr1qzBkSNHcPjwYfzlL38BANx9991ITk5GVlYWXF1dMWLEiFv5uERERER35PPPP8df//pXjB07Ftu3b8egQYNu6zyNF9X5+eefW33dzc3Nsh8AfPPNNwgPD7+t9yIix8bgiojoBjZv3owVK1ZYvhXUarX44YcfMHr06GahU1u88MILSExMxJw5cyCRSDB//vxmr4tEIsjl8mahVUFBQYurCgLm4EokEuGvf/0rxGIxxowZA8C8cPsf/vAHZGVlYcyYMZDJZLf6kYmIiIhum7e3N3bs2IEHHngA48ePx08//XRbX6Q98MAD+PLLL2E0GjF8+PDr7jdx4kRIpVJcuXIFM2bMuJOmE5GDYnBFRHQDEokEEyZMwKJFi2AymfDWW29Bo9Fg6dKlt3yuCRMmoF+/fti9ezd+/etfw9/fv9nrDzzwADZv3oyFCxfioYceQk5ODl577TUEBQW1uCKhv78/YmJisH37dowfPx7Ozs4AzMFVWVkZysrK8O67797+ByciIiK6TW5ubvj555/x4IMPYsKECfj+++8xfvz4WzrHo48+is8//xyTJ0/GCy+8gGHDhkEmkyE3Nxe7d+/GtGnTMH36dERERGDZsmX485//jKtXr+K+++6Dl5cXCgsLceTIEbi4uNxWv42IHAfXuCIiuoHnnnsOEyZMwO9+9zvMmjULBoMBW7ZswahRo27rfDNnzrSc91pPPfUU3nzzTfz000+YPHky3nrrLSxevBizZs1q9VyN61c1XccqLCzMcrlprm9FRERE9uLk5ITvvvsOEydOxOTJk7F169ZbOl4ikeD777/Hn/70J2zevBnTp0/Hr371K7z55ptQKpWIjY217LtkyRJ88803uHTpEubMmYOJEyfilVdesYxAJ6LOTSQIgmDvRhAROZrMzExERkZixYoVePnll9vtvPHx8RCJREhNTW23cxIREREREXVVnCpIRGRjGo0GZ8+exY8//ohjx47h22+/tXeTiIiIiIiIOgUGV0TU6QiCAKPReMN9JBLJdS/B3J4MBsMNXxeLxTh+/DjGjx8PHx8f/O1vf8OvfvUrm7eLiIiIqD04Ur+LiLonrnFFRJ3O+vXrIZPJbnjbu3fvHb1HREQEBEG44TTBzMzMm7Zj2bJlGDduHARBQElJCV599dU7ahcRERFRR+qIfhcR0Y1wjSsi6nRKS0uRkZFxw32io6Ph5uZm03bU19fj9OnTN9xHpVJBpVLZtB1EREREtuIo/S4i6r4YXBERERERERERkUPiGlftwGQyIT8/H25ubpzbTURE1M0IggCtVguVSgWxmKswtBX7T0RERN1bW/tQDK7aQX5+PkJDQ+3dDCIiIrKjnJwchISE2LsZnQb7T0RERATcvA/F4KodNM7nzsnJgbu7e7ueW6/XY/v27UhMTIRMJmvXc3c2rIUVa2HFWlixFmasgxVrYWXLWmg0GoSGhnJ9l1tky/4TwJ//plgLM9bBirWwYi2sWAsr1sLM1nVoax+KwVU7aBze7u7ubpPgytnZGe7u7t36LwzAWjTFWlixFlashRnrYMVaWHVELTjd7dbYsv8E8Oe/KdbCjHWwYi2sWAsr1sKKtTDrqDrcrA/FhRiIiIioyzOZeC0aIiIios6II66IiIioSxMEAX/5Pg2lajHuY4DVLeSU1WDZD+egKxcjf38mQn1coPJ0QrCnE3xdFZCIOTqOiIios2BwRURERF3ah7su4+tjeRBBhLP5GsRF+tq7SWRjGSXVSD5fBECMfQWXmr0mFYsQ6KGEytMJqsb7hlAryNP83F3ZfaeFEBERORoGV0RERNRlbTqWi3eSzcHFjEgTBoR42LlF1BF6+Lvi1Sl9sf/YOTj5qlCg0SG/og4FmjoYTAJyy2uRW1573ePdFFKomgRZwZ5OCPKwPg5wV0Iu5YobREREHYHBFREREXVJBy6X4I+bTgMA5t8VgRjjZTu3iDpKsKcTHh8WCq+SM5g8eYBlQVmjSUCRtg75FbXIr2i8r0VeRR3UlebH5TV6aHUGXCzU4mKhttXzi0SAn6vCEmSpPJUI8mg+csvHRc4F+4mIiNoBgysiIiLqci4UaLDgv8dgMAl4YEAQXp7QCz//zOCqu5OIRQjycEKQhxPiwlvfp6beAHXlNaFWRS3yK81hV15FLeoNJhRpdSjS6nAyp6LV8yik4oZpiE1DLfOoLfNzJZzl7IoTERHdTJf833LVqlVYsWIF1Go1+vfvj6SkJIwePfq6++/duxeLFi3CuXPnoFKp8Morr2DBggUd2GIiIiJqLwWVdXhqbSq0OgOGRXpj5cMDIYbJ3s2iTsJZLkUPP1f08HNt9XVBEFBWXW8JsfIrahtGa5mfqytrUaTVQWcwIaOkGhkl1dd9Ly9nWctQq8ljfzclF5InIqJur8sFVxs3bsSLL76IVatWYdSoUVi9ejUmTZqEtLQ0hIWFtdg/IyMDkydPxvz58/HZZ5/hwIEDWLhwIfz8/DBjxgw7fAIiIiK6Xdo6PZ5alwp1ZR16+Lngk9lxUMok0OsZXFH7EIlE8HFVwMdVgdjrrJlWbzChUGMNspqFXA2Pq3QGlNfoUV6jR5pa0+p5JGIRAt2VUDUZqdUYapkXl3eCu5OUUxKJiKhL63LB1bvvvou5c+di3rx5AICkpCRs27YNH3/8MZYvX95i/3/+858ICwtDUlISAKBv3744evQoVq5ced3gSqfTQafTWZ5rNObOhl6vh16vb9fP03i+9j5vZ8RaWLEWVqyFFWthxjpYdbda6I0mPPPZCZxXa+DrKse/Zg+Gi0zU7P9nW9Siu9SX2k4uFSPU2xmh3s7X3UdTp28WZDVOTcxvmKZYUGleSD6vohZ5FbUAyls9j4tc0nykVsMIriBPJYI9nRDooQSXkScios6sSwVX9fX1OHbsGBYvXtxse2JiIg4ePNjqMSkpKUhMTGy2beLEiVizZg30er1lMc+mli9fjqVLl7bYvn37djg7X7+DcieSk5Ntct7OiLWwYi2sWAsr1sKMdbDqDrUQBGDDFTEOF4shFwuYE1mDMyl7cOaa/WxRi5qamnY/J3V97koZ3ANl6BPo3urrRpOAkipd81CrcUH5hlFcZdX1qK43Ir2oCulFVdd9Lz9XOVxFEuypPYNIPzdE+LogwscZ4T4u8HBq2dclIiJyJF0quCopKYHRaERAQECz7QEBASgoKGj1mIKCglb3NxgMKCkpQVBQUItjlixZgkWLFlmeazQahIaGIjExEe7urXc+btcfvjmNI+lqRIf4IsTLudkaCMHd7Io1er0eycnJmDBhQquBYnfCWlixFlashRnrYNWdavHh7is4XHwFYhHwj1lDcHe0X7PXbVmLxpHXRO1JIhYhwF2JAHclhoR5tbpPbb3RMhUxv/KagKvheZ3ehOKqehRDhIyTagDqZufwcpYh3MccZJkDLReE+zgjwscFns6ybtPPJCIix9WlgqtG1/4HKwjCDf/TbW3/1rY3UigUUCgULbbLZLJ27wynF1cjv0aE/EulAEpbvK6UiS2XXg7xMt8Hezkh2NMZwV5OCHBTQCrpWgPEbVHnzoq1sGItrFgLM9bBqqvX4ptjuXh/1xUAwLJpMZgYo7ruvraoRVeuLTk2J7kEUX6uiLrBQvLlNXpkFWvx3c4D8A6PRk55HbJKa5BRWo1ira5hna2KVq+O6K6UWsKsxhFaEb7m++705SkREdlXlwqufH19IZFIWoyuKioqajGqqlFgYGCr+0ulUvj4+NisrW317kMDsGn7Pqh6xaBAU29e56C8BnkV5ivW1OlNuFpcjavFrV+xpnFRz2AvJ4Q0hltNgi2VpxIKqaSDPxUREVH7OHC5BIs3nQYALBjbA78eEW7nFhE5DpFIBG8XOdzk7sj2FTB5bFSzoLVaZ0BWaQ2ySquR2XCfUVKNrNIaFGjqoKkz4HRuJU7nVrY4t6tCah6Z1WTaYWPA5eemYKhFRETtpksFV3K5HHFxcUhOTsb06dMt25OTkzFt2rRWj0lISMAPP/zQbNv27dsRHx/vEN+gRvm5oL+XgMnDQlu0R2cwoqCyDnnltcitqDXfl9cir8IcbKkrmi/qeeQ67+HnprCM1AqxjNiy3rsp7V8HIiKia10o0GDBf4/BYBIwZaAKr0yMtneTiDoVF4UU/VTu6KdqudRFbb0R2WU1yCytbgi0zMFWVmkN8ivNV0U8l6/BufyWU2Wd5RKEeTsj0tfFMg2xcbRWgJsSYjFDLSIiarsuFVwBwKJFizB79mzEx8cjISEBn3zyCbKzs7FgwQIA5vWp8vLy8OmnnwIAFixYgA8//BCLFi3C/PnzkZKSgjVr1mDDhg32/BhtopBKEO5j7hC0xmgSUKQ1B1t5FY2hVq3leV55LWr1RhRrdSjW6lodIg4AHk6yZkFWyDXBljeHihMRUQcrqKzDU2tTodUZMCzSGysfHsBfhonakZNcguhAN0QHurV4rU5vRG55DTJLzMFWZkOglVlajbzyWtTUG3GhQIsLBdoWxyqkYssaWhG+1vW0wn2cEeThBAn/HhMR0TW6XHD1yCOPoLS0FMuWLYNarUZMTAy2bt2K8HDz1AG1Wo3s7GzL/pGRkdi6dSteeuklfPTRR1CpVPjggw8wY8YMe32EdiMRixDk4YQgDyfEt/J647oHueU11w23Kmv1lluauvXFZ51kEqg8lQjxcm413PJ3U7ITQkRE7UZbp8eTa49AXVmHHn4u+GR2HKe9E3UgpUyCnv5u6OnfMtSqN5jMoVZpNTJLmk9DzCmvhc5gwqXCKlwqbHkVRLlEjDAf5yZTD61TEFWeyi63bisREbVNlwuuAGDhwoVYuHBhq6+tW7euxbaxY8fi+PHjNm6V42lc98DbRY4BIZ6t7lOlMzSEWDWWKYm55dZgq1irQ63eiCvF1bhynXW2pGIRgjyV5iCrYW2tximJIV7mYE0uZUeEiIhuTm80YeHnx3GhQAtfVwXWPTUMns5yezeLiBrIpeLrLhivN5qQV17bbIRW431OWQ3qjSZcLqrC5aKWoZZMIkKolzPCm4ZaDQvHh3g5QcZQi4ioy+qSwRW1H1eF9LrDxAHzUHF1ZV2LcKsx2FJXmtfZyimrRU5ZLYCyFucQiQB/yzpbzq2ut+Wi4I8qEVF3JwgC/rT5DH5JL4GTTIL/PBmPUG9nezeLiNpIJhGbF3P3bbnMhcFogrqyrmHqYQ2ySsz3maXVyC41h1pXS6pxtaQaQHGzYyViEUK8nK4ZpWW+D/V24ohMIqJOjmkA3RGlTIJIXxdEttIBAcydkEKtrlmwde2URJ3BhEKNDoUaHY5nV7R6Hk9nGVQeSijrxSj3yUZCT3/08nfleiZERN3IBzsv4+tjuRCLgA9nDb7uaGEi6nykEjFCvZ0R6u2M0b2av2Y0CSjQ1FnCrKZXP8wsrYbOYGq4OmIN9l1zXrEIUHk6IcLHBaFeSuhLRBhXb4CHA1yEiYiI2obBFdmUVCJumCLoBMC7xeuCIKC0ur7ZgvG55TXNwi1tnQEVNXpU1OgBiHH8xwsALsDDSYahEV4YFumNoRHeiAn24DBxIqIu6ptjuXhvxyUAwGu/isE9fQPs3CIi6igSscjSnxzZs/lrJpOAIq2uxdUPGwOumnojchuuvN1wNlxdfxzrnh4Gd145m4ioU2BwRXYlEong66qAr6sCA0M9W91HU6dHXnktskq0+G7vMVQq/HAypxKVtXrsOF+EHeeLAJgXiR8S7omhEd4YFuGNwWFecJJzaDgRUWe3P70EizedBgA8M64HHh8ebucWEZGjEItFCPRQItBDiRFRPs1eEwQBxVU6ZJXWIKOkGleLtFh/4CqOZ1fg8X8dxqdPD4OXC9fIIyJydAyuyOG5K2VwD5Khp68TdFcFTJ4cD4glOJevQWpGGY5kliE1swwVNXocuFyKA5dLAZgX8YwJ9sCwSHOQFR/uDQ9nfrNGRNSZnFdrsOCzYzCYBEwdqMIfEqPt3SQi6iREIhH83ZTwd1NiaIQ39Ho93CrS8e/LTjiTV4nH/nUIn80bDl9Xhb2bSkREN8DgijolmUSMQaGeGBTqifljomAyCbhcXIXDGWXmMCujDAWaOpzIrsCJ7Aqs3nsVIhEQHeBmmVo4LNIbAe5Ke38UIiK6DnVlLZ5am4oqnQHDI72x4uEBXNuQiO5IiAvw+dNDMWf9MVwo0GLm6hR8MW8EAj3YJyQiclQMrqhLEItF6B3ght4Bbpg9IhyCICC3vBZHMsyjsY5klOFqSTUuFGhxoUCLT1OyAADhPs6WEGtYhDfCfZwhEvGXIiIie9PW6fHU2lQUaOrQ098Vn8yO55XBiKhd9ApwxVe/TcDj/zqEq8XVmLk6BZ/PG86rlBIROSgGV9QliUQiy5VpZsSFAACKtToczSwzj8rKLEOaWmO5As03x3IBAP5uCgxtCLGGRXojOsCN3+4TEXUwvdGEhZ8fx4UCLXxdFVj75FBO9SaidhXp64KNv03A4/8+jOyyGjyyOgWfzx9x3StlExGR/TC4om7Dz02BSbFBmBQbBMC86PuxrHLL1MLTuZUo0uqw5bQaW06rAQDuSiniG0KsoRHeiA32gFzKKxcSEdmKIAj40+Yz+CW9BE4yCdY+OZSjIIjIJkK9nfHVbxMw69/NR171DnCzd9OIiKgJBlfUbbkrZRgf7Y/x0f4AgDq9EadyKnCkYcH341nl0NQZsOtCEXZdMF+5UCkTY3CoF4ZGemN4pDcGh3nCWc6/RkRE7eWDnZfx9bFciEXAR48PRmyIh72bRERdWKCHEht/k4DZaw7jQoEWj35yCJ8+PQwxwfy3h4jIUfA3bqIGSpkEw6N8MLzhUsoGowlpao05yMoow9GscpRV1yPlailSrpqvXCgVi9A/2APDG0ZkDY3wgqczL6tMRHQ7vj6ag/d2XAIAvParGNzdJ8DOLSKi7sDPTYEN80dgztojOJ1biVn/OoT1Tw/D4DAvezeNiIjA4IrouqQSMQaEeGJAiCfmjY6CIAi4cs2VC/Mr63AqpwKncirwyb6rAMxXLhwa6YWhEd4YHunDq9QQEbXBL+nFWLL5DADgmXE98PjwcDu3iIi6Ey8XOT6bNxxPrU3Fsaxy/Prfh/GfJ4davtAkIiL7YXBF1EYikQg9/d3Q09/N8gtVbnlNw1ULy3EkoxRXiqtxsVCLi4VafHYoGwAQ6u2EYRE+GNYQZkX6uvDKhURETZxXa/DMZ8dhMAmYOlCFPyRG27tJRNQNuStl+PTpYZj/6VEcvFKKOWuP4JPZ8RjT28/eTSMi6tYYXBHdgRAvZ4R4OWP6YPOVC0uqzFcuPJJRjtTMMpzLr0ROWS1yynKx6bj5yoW+rgpLiDUs0ht9At0h4ZULiaibUlfW4qm1qajSGTA80hsrHh7Aq7kSkd24KKT4z5NDseCzY9hzsRjz1h/FqseH4N5+nLpMRGQvDK6I2pGvqwL3xQThvhjzlQu1dXocz66wTC08mVuBkiodtp4pwNYzBQAAN4UUcRFeGBbpjWER3ogN8YBCKrHnxyAi6hCaOj2eWpuKAk0devq74pPZ8fz3j4jsTimTYPXsOPxuwwlsO1eIBZ8dw/uPDsb9A4Ls3TQiom6JwRWRDbkpZRjb2w9jG4aY1+mNOJNXaVnw/VhWObQ6A/ZcLMaei8UAAIVUjEGhnuYgK9IbQ8K84KLgX1Ui6lr0RhMWfnYcFwq08HNTYN1TQ+HhLLN3s4iIAAAKqQQfzRqC3399Ct+dzMfzG46jTj8QM+JC7N00IqJuh78NE3UgpUzScPVBbzw73nzlwgsFWkuQlZpZhtLqehzOKMPhjDIAgEQsQn+VO4ZFeGNow9UL3eScRkNEnZcgCFiy+Qz2Xy6Bs1yC/8wZihAvZ3s3i4ioGalEjHdnDoJCKsZXR3Px+69Poc5g5MUjiIg6GIMrIjuSSsSICfZATLAHnr4rsuHKhdVIzTRfufBwRhnyKmpxOrcSp3Mr8e/9GQCAnn4uiJKLMbrOAG8ZRygQUefy/s50fHMsF2IR8NGsIYgN8bB3k4iIWiURi/DmgwPgJJNgfUoW/vztWdTpTZh7V6S9m0ZE1G0wuCJyIOYrF7qip78rHhsWBgDIr6hFaqY5xErNKEN6URUuF1fjMsQ4mvQLFk2IxqNDQyGViO3ceiKim/v6aA6SdqQDAP7+q1iM7+Nv5xYREd2YWCzCq1P7m9e+2ncVr/2Yhjq9Ec+O72nvphERdQsMrogcnMrTCdMGBWPaoGAAQFl1PfZcKMCbP5xGUbUef/nfWaw/mIk/398X46L5CyAROa5f0ouxZPMZAMDCcT0wa3iYnVtERNQ2IpEIiyf1gZNcgqQd6Vix7SJq6434fWJviERcwoGIyJY4RIOok/F2kWPKgCAsHmjE/93fB17OMqQXVeHJtamYveYwLhRo7N1EIqIWzqs1eOaz4zCYBEwbpMLLidH2bhIR0S0RiUR48d7eWDypDwDgw92X8fct5yEIgp1bRkTUtTG4IuqkJGJg9ogw7PnDePxmTBTkEjF+SS/B5Pd/wZLNp1GkrbN3E4mIAADqylo8tTYVVToDhkd64+2HBkAs5ggFIuqcFoztgaVT+wMA1uzPwF/+dxYmE8MrIiJbYXBF1Ml5OMnwp8l9sWPRWNwfGwSTAGw4koPxK/bgo92XUac32ruJRNSNaer0eGptKgo0dejp74pPZsdDIZXYu1lERHdkzsgIvDUjFiIR8PnhbPzhm9MwGE32bhYRUZfUrmtcaTS3PkXJ3d29PZtA1G2F+Tjjo8eH4KnMMry25TxO5VRgxbaL+PxQFv5wXzSmDQzmCAci6lD1BhMWfnYcFwq08HNTYN1TQ+HhzCuhtgX7VESO75GhYVDKJFj01SlsOp6LOoMRSY8MgowXzCEialftGlx5enre0uKEIpEIly5dQlRUVHs2g6hbi4/wxrfPjMQPp/Px9s8XkVdRi5c2nsLaA5n4y/39MCzS295NJKJuQBAELNl8Bvsvl8BZLsHaJ4cixMvZ3s3qNDpDnyoiIgJZWVnNtv3xj3/Em2++2WFtILK3aYOCoZCK8fyGE9hyWg2d3oSPHh/MkaVERO2o3a8q+M0338Db++a/GAuCgMmTJ7f32xMRzJdtnjYoGBP7B+I/BzKwavcVnM6txMzVKbivfyAWT+qDCF8XezeTiLqwpB3p2HQ8FxKxCB89PgQxwR72blKn0xn6VMuWLcP8+fMtz11dXe3SDiJ7ui8mCJ/MluC3nx3DjvOFmLf+KD6ZHQ8nOcMrIqL20K7BVXh4OMaMGQMfH5827R8VFQWZjFMGiGxFKZNg4bieeDguFO/tuIQvj2Tj53MF2HmhEE8kROB3d/fitB0iandfHc3B+zvTAQCvTYvB+Gh/O7eo8+ksfSo3NzcEBgZ2+PsSOZrxffyx9smhmLf+KH5JL8GTa49gzZND4apo93ECRETdTrv+S5qRkXFL+589e7Y9356IrsPPTYE3psfiyZEReH3L+f9n787Do6zOPo5/ZyaTyb7vZCMJ+74TUASVgGhxQS2iVGxFrbW2pbaVt4vYVmkVl2prXatWrVXrUiuKoCCihH3ft4Ts+75Pknn/mDBDJGiQTNbf57pykXnmec6cuRnCyf2ccx/WHynkhS/SeHtHFndfPICbJsfh7qZ6DCJy/j4/Usj/vbMXgB/NSGTBpNgu7lHP1FPGVH/+85/5wx/+QExMDNdddx2/+MUvcHd3b/Pc+vp66uvrHY9P1fGyWq1YrdYO79upNl3Rdk+jWNi5Og4T4/x58eax/OCVHWxOK+Gm5zfxwsKx+Hl2v5uE+kw4KRZOioWTYmHn6ji0t13dAhDpQwaG+/Ly9yey/kghD648yOH8Sn7/wQFe2XSSpZcNZubQ8HOqqSIicroDORXc+doOGpttXDk6intSBnV1l8SFfvKTnzB27FgCAwPZsmULS5cuJS0tjeeff77N85cvX879999/xvHVq1fj5eW6+mdr1qxxWds9jWJh5+o43D4Qnj5gYldmOVf+ZS0/HNKET/fLXQH6TJxOsXBSLJwUCztXxaGmpqZd57kscfXEE0+0edxgMODh4UFSUhLTpk3DZNLab5HOdtHAUKYmBvPW9iweWX2YtKJqbntlO5P6B/HbK4aqFo2InLPc8lq+/9JWquobmZwQxEPXjlQivIN05phq2bJlbSaXTrd161bGjx/Pz372M8exkSNHEhgYyLXXXsuf//znNpc4Ll26lCVLljgeV1RUEBMTQ0pKikt2RLRaraxZs4aZM2f2+dIUioVdZ8ZhRl4lN7+0jaxqKy9l+PPyovGE+lpc+prnQp8JJ8XCSbFwUizsXB2H9u6i7LLE1WOPPUZhYSE1NTUEBgZis9koKyvDy8sLHx8fCgoKSEhIYN26dcTExLiqGyJyFm4mIzdMjOU7o6L4+2fHeH5DGpvTSvjOX7/g6jH9+MWsQUT6e3Z1N0WkB6ios3LLi1vJq6hjQJgPz9w0XjtqdaDOHFPdddddzJ8//2vPiY+Pb/P45MmTATh27FibiSuLxYLFcuYv7maz2aW/FLi6/Z5EsbDrjDiMiAnizduncOPzmzhaUM2N/9jGa7dOIiqge42t9JlwUiycFAsnxcLOVXFob5suK2rz4IMPMmHCBI4ePUpxcTElJSUcOXKESZMm8Ze//IWMjAwiIiJa3a0Tkc7nY3HjF7MGs/ae6Vw1OgqbDd7Zkc2MFZ/x6OrDVNc3dnUXRaQba2hs5s5Xd3Aor5JQXwsv3jJBmz50sM4cU4WEhDB48OCv/fLw8Gjz2p07dwIQGRl53v0Q6Q2Swnx48/Zk+gV4klZUzfXPpJJR3L5lMSIi4uSyxNVvfvMbHnvsMRITEx3HkpKSWLFiBUuXLiU6OpqHHnqIL7/80lVdEJFz0C/Ak8fnj+G/P5rKhPhA6qzNPLH2GNNXfMabWzNparZ1dRdFpJux2WwsfWcvXxwrwsvdxIuLJhAd6LpaRX1VdxxTpaam8thjj7Fr1y7S0tJ48803uf3225k7dy6xsSrIL3JKXLA3b96RTHywF1mltVz/TCrHCqq6ulsiIj2KyxJXubm5NDaeOVOjsbGRvLw8AKKioqisrHRVF0TkWxgVE8Cbtyfz9xvHEhfsRWFlPb98ew+XP7GBL44WdXX3RKQbeeyTo7y9IwuT0cDfbhyr+ngu0h3HVBaLhTfeeIPp06czdOhQfve737F48WJef/31TuuDSE/RL8CTN29PZkCYD3kVdcx/NpVDee2r6yIiIi5MXM2YMYPbb7/dMW0c7FPIf/jDH3LxxRcDsHfvXvr37++qLojIt2QwGLhsRCSrfzaN31w+BD8PNw7lVXLTC5v5/ktbOVaghLNIX/fm1kye+PQoAH+4cjgzBoV1cY96r+44pho7diybNm2irKyM2tpaDh06xLJly1y6O6BITxbm58G/b5vM0Eg/iqoamP/sJvZmlXd1t0REegSXJa5eeOEFgoKCGDdunKMY5/jx4wkKCuKFF14AwMfHh0ceeaTDXrO0tJSFCxfi7++Pv78/CxcupKys7Guveeedd5g1axYhISEYDAZ27drVYf0R6eksbiZuvTCB9b+YwaIp8bgZDaw9VMCsxzfw2/f2UVxV39VdFJEusP5IIUvf3QvAj2YksmCSloa5UleMqUSk4wX7WHh98WRGxwRQVmNlwXOb2H6ypKu7JSLS7blsV8GIiAjWrFnDoUOHOHLkCDabjcGDBzNo0CDHOTNmzOjQ11ywYAFZWVmsWrUKgNtuu42FCxfyv//976zXVFdXM3XqVK677joWL17cof0R6S0Cvd1ZNncY30uOY/lHh1hzIJ9XNp3kvZ3Z3HVxEjdPicfDrB3ERPqC/Tnl3PnqdpqabVw1Oop7UgZ980VyXrpiTCUiruHvZebVWyfx/Ze2siWthIUvbOH5m8czJTGkq7smItJtuSxxdUpCQgIGg4HExETc3Fz3cgcPHmTVqlVs2rSJSZMmAfDcc8+RnJzM4cOHWw3uTrdw4UIA0tPT2/1a9fX11Nc7Z5pUVNjXqFutVqxW67d8B2071V5Ht9sTKRZOXRWLmAALT90wis1pJTz40WEO5Fay/KNDvJKazj0pA5kzPByDwdCpfdLnwkmxsFMcnDo6FrnldXz/xa1UNzQxuX8gD1w5tM3aS92RKz8XnfVZ66wxlYi4lo/FjZdvmchtr2xjw9EibnlxK88sHMd0LbkWEWmTy0Y9NTU1/PjHP+bll18G4MiRIyQkJHD33XcTFRXFvffe26Gvl5qair+/vyNpBTB58mT8/f3ZuHHjWRNX38by5cu5//77zzi+evVql9V2WLNmjUva7YkUC6eujMXiONjmZeCDDCNZZXX89M09PP6hjavjm4j37fz+6HPhpFjYKQ5OHRGL2kb4yz4T+bUGIjxtXBlSyCerV3VA7zqXKz4XNTWu3d6+s8dUIuJ6nu4mnvveeO761w4+OVjA4n9u48kbxjJ7eERXd01EpNtxWeJq6dKl7N69m88++4zZs2c7jl966aXcd999HT7IysvLIyzszLsUYWFhjh13OsrSpUtZsmSJ43FFRQUxMTGkpKTg5+fXoa9ltVpZs2YNM2fOxGw2d2jbPY1i4dRdYnEF8MuGRl748iTPbUgjvaqZx/a5cfmICO6ZOYDoQE+X96G7xKI7UCzsFAenjopFQ2Mzi1/ZQW5tCWG+Ft64bSJRAa7/992RXPm5ODXz2lU6e0wlIp3Dw2ziqRvH8bM3drFyby4/+tcOHvvuaOaOiurqromIAGCz2dhfamBqrZWQLhxXuyxx9d577/HGG28wefLkVkuHhg4dyvHjx9vdzrJly9qc3XS6rVu3ArS5RMlms3X40qVThVG/ymw2u+yXJFe23dMoFk7dIRb+ZjNLUgZz4+R4Hll9mLe2Z7Fybx5rDhbw/an9uXNGIn4eru9jd4hFd6FY2CkOTucTC5vNxq/e3c3GEyV4uZv4x6IJxIV27E2azuSKz4WrP2cdNaYSke7H3c3IX+aPxuJm5J2d2fzk3zupszZx/fiYru6aiPRh9Y1N/HdXDs+uP86xQhN+W7O465KBXdYflyWuCgsL25wBVV1dfU6JpLvuuov58+d/7Tnx8fHs2bOH/Pz8NvsRHh7e7tcTkW8n3M+Dh64dxc1T4nlg5UE2Hi/m6fXHeXNbJj+bOZAbJsTgZnLZRqYi4iKPfXKUd3ZkYzIa+NuNYxnez7+ru9TndNSYSkS6JzeTkRXXjcLD3cS/Nmfwy//soc7axPeS47u6ayLSx5TXWHl180le2phOYaW9rrfFZOviXrkwcTVhwgRWrlzJj3/8Y8A5G+pUwfT2CgkJISTkm3fZSE5Opry8nC1btjBx4kQANm/eTHl5OVOmTPkW70BEvo1hUf68dusk1h4q4MEPD3K8sJrfvrePlzem8+s5Q5g+KFS/aIn0EG9uzeSJT48C8MerhjNDhYO7REeNqUSk+zIaDTxw1XA83Ez848s0fvff/dRZm7htWmJXd01E+oDMkhr+8WUab2zNpKahCYAIPw9uTo4lsOQA86b179L+uSxxtXz5cmbPns2BAwdobGzkL3/5C/v37yc1NZX169d3+OsNGTKE2bNns3jxYp555hkAbrvtNq644opWhdkHDx7M8uXLufrqqwEoKSkhIyODnJwcAA4fPgzYt56OiFBxRJFvw2AwcMmQcKYNDOX1LRk8tuYIxwqquOWlrVw4IIT/mzOEIZE9d6mRSF+w/kghS9/dC8BdM5K4YWJsF/eo7+rsMZWIdA2DwcBvrxiCp7uRv607zoMfHqK2oZm7L0nSTT8RcYk9WWU8+/kJPtybS3PLxKrBEb7cNi2BK0ZGYbA18eGHB7q2k4DL1u1MmTKFL7/8kpqaGhITE1m9ejXh4eGkpqYybtw4l7zma6+9xogRI0hJSSElJYWRI0fyyiuvtDrn8OHDlJeXOx6///77jBkzhssvvxyA+fPnM2bMGJ5++mmX9FGkLzGbjHwvOZ7PfjGD26cl4G4ysuFoEZc/sYF7395DQWVdV3dRRNqwP6ecO1/dTlOzjavH9OPnKV1X00C6ZkwlIl3DYDDwi1mDuafl5+5jnxzhoY8PY7N1/VIdEekdmpttrD2Uz3efSWXuX7/kgz32pNWFA0J45QcT+egnF3LN2Gjc3bpPmReXzbgCGDFihGPr5s4QFBTEq6+++rXnfPWH/qJFi1i0aJELeyUi/p5mls4Zwk2T4/jTqkOs3JPLv7dm8v7uHH54USK3XpiAp7upq7spIkB2WS23vLiV6oYmkhOC+fO8kbrT3w109phKRLrWXRcPwMNs4o8rD/L3z45T29DE764YitGon8ci8u3UWZv4765sntuQxrGCKgDcjAbmjori1gsTGBrVfVfEdGji6ly2g/bz675BERHXiAny4m8LxvL9qSX84YOD7Mos45E1R/jXlgx+MWsQV43upwGZSBcqr7Vyy4tbKKisZ0CYD08vHNet7rb1JRpTicitFybgYTbxm/f28dLGdOqsTTxw9QhMGiuJyDkoq2ng1U0neWnjSYqq7AXXfS1uLJgUy6Kp8UT6e3ZxD79ZhyauAgIC2n1XtqmpqSNfWkR6kHFxQbx75xT+tyeXP390iOyyWpa8uZsXv0zn15cPYXJCcFd3UaTPaWhs5oevbudIfhVhvhZe+v5E/D3NXd2tPktjKhEBuGlyHB5mE7/8z27+vTWTOmsTK64bpZ2aReQbZRQ7C67XWu1jhSh/D75/QX++OyEGX4+eM87r0MTVunXrHN+np6dz7733smjRIseON6mpqbz88sssX768I19WRHogg8E+LTVlaDgvfpnO39YdY292OfOf3cSsYeHce9kQ+od4d3U3RfoEm83GvW/vYePxYrzdTfxj0QT6BXT/u2+9mcZUInLKteOi8TAb+em/d/HerhzqG5v5y/wxmhErIm3alVnGc5+f4KN9zoLrQyP9uG1aApePjMTcAxPfHZq4uuiiixzf//73v+fRRx/lhhtucBybO3cuI0aM4Nlnn+Xmm2/uyJcWkR7Kw2zih9MTuW58NI9/coR/bc7g4/35fHqwgO8lx3P3JUkEeLl3dTdFerXH1hzhnZ3ZmIwG/nbjWIb38+/qLvV5GlOJyOmuGBmFu8nIXf/ayUf78qh/dTtP3TgWD7NqhIqIveD6p4cKeO7zE2xJL3Ecv2hgKLdNS2BKYnCPrlnqslRbamoq48ePP+P4+PHj2bJli6teVkR6qBAfC3+8agSrfjqN6YNCaWy28Y8v07jo4c944Ys0Ghqbu7qLIr3SG1szeGLtMQAeuGo40weFdXGP5Ks0phIRgJRhETx383gsbkbWHirg1pe3UdPQ2NXdEpEuVGdt4vUtGVz62HoW/3MbW9JLMJsMzBsbzaqfXsjL35/I1KSQHp20AhcmrmJiYnj66afPOP7MM88QExPjqpcVkR5uYLgvL90ykX9+fyKDI3wpr7Xyhw8OkPLYelbty9N20CIdaP2RQv7v3X0A/PjiJOZPjO3iHklbNKYSkVMuGhjKy9+fiJe7iS+OFXHzP7ZQWWft6m6JSCcrqW7giU+PcsGf17L0nb2cKKzG18ONOy5KZMMvL+aR60cxOKL3bN7SoUsFT/fYY48xb948Pv74YyZPngzApk2bOH78OG+//barXlZEeolpA0OZmhTCW9syWbH6COnFNdzx6nYm9g/iN5cPYWR0QFd3UaRH259Tzp2vbqep2cY1Y/qxZObAru6SnIXGVCJyuskJwbx66yRu/scWtqaXctPzm3n5+xNVWkGkDzhZXM3zG9J4a3smdVb7ipR+AZ7cMjWe+RNj8bG4LMXTpVw242rOnDkcPXqUK6+8kpKSEoqLi7nyyis5cuQIc+bMcdXLikgvYjIamD8xls9+MZ0fX5yExc3IlrQS5v71S5a8sYucstqu7qJIj5RdVsstL26luqGJ5IRg/jRvZI+fQt6baUwlIl81NjaQ1xdPJtDLzO4s++Y2p7a5F5HeZ0dGKT98dTvTV3zGK5tOUmdtZliUH3+ZP5rPfjGdWy9M6LVJK+jgGVd79uxh+PDhGI32fFh0dDQPPPDAWc/fv38/gwYNws2t9wZYRM6fj8WNn6cM4oaJsaz4+DDv7MzmnZ3ZrNybyw+mxhOn8g4i7VZea+WWF7dQUFnPwHAfnl44TjtTdUMaU4nINxnez59/35bMjc9v5lBeJfOf3cRrt04i3M+jq7smIh2gudnGmoP5PPf5CbadLHUcnz7IXnA9OaFnF1w/Fx06Uh0zZgzFxcXtPj85OZmMjIyO7IKI9GJRAZ48+t3RvH/XVCbGB1Hf2MxT60/wu+0mlv3vIIfzKru6iyLdWkNjMz98dTtH8qsI87Xw4i0T8fc0d3W3pA0aU4lIewyK8OXN2ycT6e/BsYIqrn8mlazSmq7uloichzprE69tPsklj67n9le2s+1kKWaTgevGRfPxT6fx0i0TmZLY8wuun4sOvS1ns9n47W9/i5eXV7vOb2ho6MiXF5E+YmR0AG/cPpmP9+fz0KpDnCiq5rUtmby2JZOJ/YP4XnIcKUMjNItE5DQ2m417397DxuPFeLub+MeiCfQL8OzqbslZaEwlIu2VEOrDm7cns+D5TZwsruG7z9hnXsWHeHd110TkHBRX1fPKppP8M/UkJdX2/9f9PNy4aXIcN0+J79OzKTs0cTVt2jQOHz7c7vOTk5Px9NSgWUTOncFgYPbwCC4eGMTj/17FMSL59FAhW9JK2JJWQqivhRsmxHDDpFgi/fVzRuTRNUd4Z2c2JqOBv904luH9/Lu6S/I1NKYSkXMRE+TFm7cnc+NzmzlRVM31z6Ty2q2TGBDu29VdE5FvkFZUzQtfnOCtbVnUN9oLrkcHevKDC/pz/fgYvHtx7ar26tAIfPbZZx3ZnIjINzIYDAzyt/GzOaMpqmnk9S2ZvL4lg8LKep5Ye4y/fXacmUPCWZgcx5TEvrMOXOR0b27L4sm1xwB44KrhTB8U1sU9km+iMZWInKtIf0/euD2ZhS/Ya15999lNvPKDiQyL0o0Kke5o+8kSnv38BKsP5GOz2Y+N6OfPbdMSuGx4BG4mrR45Rak7Eek1Iv09WTJzIHfNSGL1gTxeST3J5rQSVu3PY9X+PBJCvblpUhzzxkWrro/0GQdLDTy3+SAAP744ifkTY7u4RyIi4iqhvhZeXzyZ7/1jC3uzy7nh2U388weTGB0T0NVdExGgqdnGmgP5PPv5cXZklDmOXzI4jMXTEpjUP0g32tugxJWI9DrubkauGBnFFSOjOJJfySupJ3lnRxYnCqv5/QcHePjjw1w1JoqbJsfpLqT0anuyynnxiJGmZhvXjOnHkpkDu7pLIiLiYoHe7ry2eBK3vLiV7SdLuen5zfxj0QQm9g/q6q6J9Fm1DU38Z0cWL2w4QXqxfQMFd5ORq8f049YL+2tZ7zdQ4kpEerWB4b784arh/Oqywby7M5tXUtM5kl/VsqQwk7GxAXwvOZ7LRkRgcTN1dXdFzpu1qZlPDuTzry0ZbDhaBBhITgjiT/NG6g6eiEgf4edh5p/fn8itL28j9UQxN/9jC899bzwXDAjp6q6J9ClFVfX8M/Ukr6SmU1pjBcDf08zCyXF8b0ocYb59t+D6uVDiSkT6BB+LGwsnx3HTpFi2ppfyz9R0Vu3LY0dGGTsydvH7D9z57oQYFkyMJSaofbt4iXQnmSU1vL4lgze3ZVFUVQ+AwQDDApr56/xR2mVTRKSP8ba48eItE7j9le2sP1LI91/eytM3jeXiweFd3TWRXu9EYRXPf5HG29udBddjgjz5wdT+XD8hBi93pWLOhaIlIn2KwWBgYv8gJvYPoqCyjje2ZPKvLRnkltfx98+O8/T641w8KIyFyXFMGxCK0agZKtJ9WZua+fRgPq9tzuCLY0WOwp6hvhauHx/NvDGR7E39DD/VdBMR6ZM8zCae/d44fvyvnaw+kM9t/9zOEzeMYeZgzbwS6Wg2m41tJ0t59vMTfHLQWXB9VLQ/t01LZNawcBVc/5aUuBKRPivM14MfXzKAH05P5JODBby66SRfHCvi00MFfHqogNggL26aHMt142II9Hbv6u6KOGSW1PDvrfbZVYWV9Y7jFw4IYcHEWC4dGo7ZZMRqtbK3C/spIiJdz+Jm4m83jmXJm7v53+4c7vrXDh66Zji6pSHSMZqabazen8ezG06w87SC65cOCeO2aYlMiA9UuYbzpMSViPR5biYjs4dHMHt4BMcLq3htUwZvbc8ko6SGBz88xIrVR/jOyCi+lxzHKO3KI13EPruqgNe3ZPD50ULHXbwQH/vsqvkTYokN1jJXERE5k9lk5PHvjsbDzchb27P4xTv7uDbewGWn/jMRkXNW09DIf7Zn8fyGNDJKWgquuxmZN7YfP7gggaQwny7uYe+hxJWIyGkSQ3343XeGcs+sgby/K4d/pp7kQG4Fb+/I4u0dWYyM9uemyXHMHRWFh1nF3MX1MktqeGNrJm9uy6TgK7OrbpgYy6VDwlW/SkREvpHJaODP80bi6W7in6kneSvNxBePbGD28AguGx7JuLhATCqRIPKNCivreSU1nX9uOklZS8H1AC8z35scx8LkeEJ9LV3cw95HiSsRkTZ4ubsxf2Is350Qw87MMl5NPckHe3LZk1XOL/+zhwdWHuT68dHcOCmO+BDvru6u9DKNTc18eqiAf23+6uwqd64bH8P8CTHEBetzJyIi58ZoNHD/3GEEeLjxzPpj5JbX8eKX6bz4ZTqhvhZmDQvnsuGRTOofpFo8Il9xrKCKF744wds7smloKbgeG+TFrRf259px0Sq47kKKrIjI1zAYDIyNDWRsbCC/vnwIb27L4rXNJ8kqreW5DWk8tyGNaQNDWTg5josHh+lOpZyXrFLn7Kr8CufsqguS7LOrZg7V7CoRETk/BoOBH1+cSGzNYXwSx7P6YCFrDuZTWFnPq5syeHVTBoFeZmYOtSexpiaF6P8e6bNsNhtb0kp49vPjfHKwwHF8dEwAt09LIGVYhMb/nUCJKxGRdgr2sfDD6YncNi2B9UcKeCX1JJ8dKeTzlq9+AZ4smGSfpRXioynC0j6NTc2sPWSvXfXZEefsqmBv5+wqzeoTEZGOZjbCJUPCmD2yHw2NzWw8XsSqfXmsPpBPSXUDb27L4s1tWfha3Lh0aDizh0dw0cBQlUqQPqGxqZmdxQZeeHYze7IqADAY4NIh4dw2LYHxcSq43pmUuBIROUcmo4GLB4dz8eBwThZX86/NGbyxLZPssloe/vgwj39yhDkjIlk4OY5x+k9NziK7rJY3ttg/O6fPrpqaFMwNE2NJGRqhO9wiItIp3N2MTB8UxvRBYfzxqma2pJXw0b48Pt6fR0FlPe/uzObdndl4uZuYMSiM2cMjuHhwGN4W/TopvUdRVT2bThSTeryYzw4XkF1mAipwdzNy7bhofnBBfxJDVXC9K+gnjYjIeYgL9mbpnCH8bOZAVu7J5ZVNJ9mVWcZ/d+Xw3105DIn0Y+HkOK4cHaXBndDY1My6w4X22VWHC2humV0V5O3OdeOimT8xlv6aXSUiIl3IzWRkSlIIU5JCuH/uMHZklPLRvjxW7csju6yWlXtzWbk3F3c3IxcNDOWy4RFcMiQcf09zV3dd5JyU11jZlGZPVKUeL+ZwfmWr573dbNxyQSKLLkjQaooupt+iREQ6gIfZxLxx0cwbF83erHJe2ZTOf3flcDC3gv97dy/LPzzIvHHR3DQ5Tlvj9kE5ZbX8e2smb27NJK+iznF8SmLL7Kph4VjctPRCuo8HHniAlStXsmvXLtzd3SkrKzvjnIyMDH70ox+xdu1aPD09WbBgAStWrMDd3b3zOywiLmE0GhgfH8T4+CB+c/kQ9mSVtySxckkvrmHNgXzWHMjHbDIwJTGEy4ZHkDIsgiBv/RyQ7qeyzsrW9BJSjxez8XgxB3IrHCUaThkc4UtyYjAT4wKoOraNqy5JwmxWUrarKXElItLBRkT789C1o/i/OUP4z/YsXt10kvTiGl7amM5LG9OZkhjMwslxXDo0HLN27Om1mpptrGupXbXuK7Orrh0XzfwJMSRourl0Uw0NDVx33XUkJyfzwgsvnPF8U1MTl19+OaGhoXzxxRcUFxdz8803Y7PZePLJJ7ugxyLiagaDgVExAYyKCeBXswdxKK/SkcQ6kl/F+iOFrD9SyP+9u5fJCcFcNjyCWcMiCPPz6OquSx9V09DItvRSUluW/+3NLqepuXWmKjHUm+TEYKYkhjCpfxDBLTOrrFYrH6Z1Ra+lLUpciYi4SICXO7demMD3p/bni2NFvLLpJJ8ezGdjy12ecD8LCybGccPEGA3qepHc8lre2JrJG1szyS13zq5KTgjmhkmxzNLsKukB7r//fgBeeumlNp9fvXo1Bw4cIDMzk6ioKAAeeeQRFi1axAMPPICfn19ndVVEuoDBYGBIpB9DIv1YMnMgxwqqWLUvl4/25bE/p8Ix1vnd+/sZFxvI7OERXDYikn4Bnl3ddenF6qxN7MgoZdPxYlJPFLMrswxrU+tEVVywF8kJwSQnBpOcEKwxeA+hxJWIiIsZjQamDQxl2sBQsstqeX1zBv/emkF+RT2PfXKEJ9ceZdawCG6aHMfkhCAVc++BmpptfHbYPrtq7SHn7KpALzPXjovmhomxml0lvUpqairDhw93JK0AZs2aRX19Pdu3b2fGjBlnXFNfX099vXMjgooK+y5NVqsVq9Xa4X081aYr2u5pFAs7xcGpo2MRF2jh9gvjuf3CeDJKavj4QD4f7y9gd1Y5206Wsu1kKX9ceZCR/fxIGRrO7GHhxAV7dchrny99Lpx6WiwaGpvZm11O6okSNqeVsCOznIbG5lbnRPl7MCkhiMn9A5ncP4ioryRPz/Zee1osXMXVcWhvu0pciYh0on4BntwzaxA/viSJVfvyeHXTSbamlzoKnQ4I82FhchxXj+mHr4fW03d3ueW1vLk1ize2ZpBz2uyqSf2DWDApltnDIzS7SnqlvLw8wsPDWx0LDAzE3d2dvLy8Nq9Zvny5YybX6VavXo2Xl+t+gV2zZo3L2u5pFAs7xcHJVbHoB3w/BkrDYE+Jgd3FRk5Uwp7sCvZkV7BizVGivGyMCmpmdLCNiG6Qw9Lnwqm7xqLJBllVcLTCwNFyAycqDTQ0t77h62e2McDfxgA/+5/BlioMhirIzWBXLuw6x9fsrrHobK6KQ01NTbvOU+JKRKQLWNxMXDm6H1eO7sfB3Ape3XSSd3dmc7Sgit/9dz9/+ugQV4/px8LkOAZHaMlNd9LUbOPzI4W8tjmDtYfyHbOrArzMXDs2mhsmxWqrZOmWli1b1mbi6HRbt25l/Pjx7WqvrdmhNpvtrLNGly5dypIlSxyPKyoqiImJISUlxSVLC61WK2vWrGHmzJl9vrCuYmGnODh1ZixubPmzsLKeNQcL+PhAPpvTSsmpgZwaEx9lQUKIN7OGhTFraDhDI307dfa5PhdO3S0Wzc02DuZVsjmthE1pJWxNL6OqvrHVOYFeZib3D2qZVRVEQohXh3x+ulssuoqr43Bq9vU3UeJKRKSLDYn044GrR/Crywbz7o5sXtl0kmMFVby2OYPXNmcwMT6Im5LjmD0sAnc3FXPvKnnldby5zV67Krus1nH81OyqWcMi8DBrdpV0X3fddRfz58//2nPi4+Pb1VZERASbN29uday0tBSr1XrGTKxTLBYLFsuZ24mbzWaX/lLg6vZ7EsXCTnFw6sxYRAWZuXmqDzdPTaC0uoE1B/NZtS+PL44WcaKomr+vT+Pv69OIDfLisuERzB4eweiYgE5LYulz4dRVsbDZbBwtqGLjsSJSTxSzOa2EsprWS8n8PNyYlBDMlER7naqBYb4Yja77jOhzYeeqOLS3TSWuRES6CT8PMzdPied7yXFsOlHCK5vS+Xh/PlvSS9iSXkKIjzvzJ8Ryw6RYFTftJE3NNj4/Wsi/NttrV53aiSbAy8y8sfbaVUlhml0lPUNISAghISEd0lZycjIPPPAAubm5REZGAvYlfxaLhXHjxnXIa4hI7xXo7c7142O4fnwMFXVW1h4s4KN9uXx2uJCMkhqe+fwEz3x+gkh/D2YNi+Cy4RGMjw/C5MIEhXQ+m81GWlE1G1uKqW8+UUxRVUOrc3wsbkyID2RKYgjJicEMifTT56APUuJKRKSbMRgM9p1OEoPJr6jj9S0ZvL7FXsz9r+uO8dRnx7h0SDgLk+OYmhji0rtMfVV+RR1vbs3k31+ZXTUx3lm7SrOrpDfLyMigpKSEjIwMmpqa2LVrFwBJSUn4+PiQkpLC0KFDWbhwIQ8//DAlJSXcc889LF68WDsKisg58fMwc9WYflw1ph81DY18driQD/fmsu5QAbnldby0MZ2XNqYT4mNh1rBwLhseyaSEIMwmzULviTJLakg9XszG4/ZZVfkV9a2e9zAbmRAfxOSWWVUj+vnjpr/rPq9XJa5KS0u5++67ef/99wGYO3cuTz75JAEBAW2eb7Va+c1vfsOHH37IiRMn8Pf359JLL+VPf/pTq11yRES6SrifBz+9dCA/mpHEJwfy+WfqSVJPFLP6QD6rD+TTP8SbGyfFct24GLw0i/m8NDXb2NAyu+rT02ZX+XvaZ1ctmBRDUphvF/dSpHP87ne/4+WXX3Y8HjNmDADr1q1j+vTpmEwmVq5cyZ133snUqVPx9PRkwYIFrFixoqu6LCK9gJe7G3NGRDJnRCR11iY2HC3io325fHIgn6KqekcZhQAvMzOHhHPZiAimJoVoI5RuLLe8ltTjxS3JquJWNwQB3N2MjI0NIDnBPqNqVIy//j7lDL0qcbVgwQKysrJYtWoVALfddhsLFy7kf//7X5vn19TUsGPHDn77298yatQoSktL+elPf8rcuXPZtm1bZ3ZdRORrmU1GLhsRyWUjIjlWUMmrmzJ4e3sWaUXV/HHlQVasPszlIyJoLjHQsCuHEF9PArzMBHq5E+jljq+Hm2ZmnUVBhb121etbWs+umhAfyIJJsVw2PFKzq6TPeemll3jppZe+9pzY2Fg++OCDzumQiPQ5HmYTM4eGM3NoOA2NzaSeKOajvbmsPpBPSXUDb23P4q3tWfha3LhkSBizh0dy0cBQPN31f3ZXKqysJ/VEcUuyqoj04ta7xrkZDYyOCbCvLkgIZmxcoMZZ8o16TeLq4MGDrFq1ik2bNjFp0iQAnnvuOZKTkzl8+DCDBg064xp/f/8ztnV88sknmThxIhkZGcTGxrb5WvX19dTXO6c0nqqEb7VasVqtbV7zbZ1qr6Pb7YkUCyfFwqkvxiIu0INfXzaQn16cwPt7cvnX5kwO5Vfx9o4cwMS76fvOuMZosM8cCvQyE+DlToCnuSWxZW753v0rj+3HLD2wGHx7PhPNzTa+PF7M61uzWHu40DG7ys/DjavHRPHd8dEMcNSuasZqbXZ1t12iL/77OBtXxkLxFRFxLXc3IxcNDOWigaH88apmtqSXsGpfHqv25VFQWc97u3J4b1cOnmYTMwaHMnt4JBcPDsPH0mt+3e22Sqsb2HSi2JGsOlpQ1ep5owFGRAeQnGAvgzE+LhBv/b3IOeo1n5jU1FT8/f0dSSuAyZMn4+/vz8aNG9tMXLWlvLwcg8Fw1uWFAMuXL29zO+nVq1fj5eV1zn1vj68m2PoyxcJJsXDqq7HwB+7oD2khsKvYSIUVqhuhptFAdcv3Dc0Gmm1QWmOltMYK1HxTsw4Wow1vM3i5gbebDW838HYDL/NXHzu/9zBBJ+5ifVZtfSbKG2BzgYHUAiMl9c5O9ve1MTW8mVFBjbhzgqPbTnC0MzvrYn3130dbXBGLmpr2/5sSEZHz42YyMiUxhCmJISz7zjB2Zpby4V57Eiu7rJYP9+bx4d483N2MTBsQymXDI7h0SDj+qqnQISrqrGw5UeIoqH4orwKbzfm8wQBDIvwcu/5N6B+En4diL+en1ySu8vLyCAsLO+N4WFgYeXl57Wqjrq6Oe++9lwULFnxtYdGlS5eyZMkSx+OKigpiYmJISUnp8IKkVquVNWvWMHPmzD6/Dadi4aRYOCkWTmeLRX1jM2U1DZTVWCmrtSevymqs9mOnP661HyutsVJea6XZBvXNBurroaQeoH3ZKDejAf82ZnTZZ3udOubeMqvL/tjf09xhRVa/GofmZhtfnijm31uzWHuokMbTZlddNTqK+eOjGRDeO3cG1L8PJ1fG4tTMaxER6VxGo4FxcUGMiwviN5cPYW92OR/ty+OjvbmkF9fwycF8PjmYj5vRwJSkEC4bHkHK0HCCfSxd3fUeo7q+ka3pJY4ZVfuyy2m2tT5nYLgPUxJDmJwQzOSEIAK83Lums9JrdfvE1bJly9qc3XS6rVu3AvaduL7KZrO1efyrrFYr8+fPp7m5maeeeuprz7VYLFgsZ/6wM5vNLvvFwJVt9zSKhZNi4aRYOH01FmYz+HhaiA5ufxvNzTYq6xoprWmgtCXpVVLt/P70P0trTiW8GqizNtPYbKO4uoHi6oZvfqHT+FrcCPC21+U6legKdCxhdG9VsyvAy0ygtzve7qaz/owvq2vm3c0n+ffWDDJLnLWrxsUFsmBiLHNGRPaZOhj69+HkilgotiIiXc9gMDAyOoCR0QH8ctYgDuVV8tG+PFbty+VIfhWfHynk8yOF/PrdvUzqH8xlIyKYNSyCIM++MRZor4Ym2Hi8mK0ny0k9UczuzDLHTb9TEkK8mZxo3/VvckIwIUoEiot1+8TVXXfdxfz587/2nPj4ePbs2UN+fv4ZzxUWFhIeHv6111utVq6//nrS0tJYu3attnEWkT7PaDTg72XG38tMPN7tvq7O2mRPZlU7Z2/Zk1ynf9/6z/JaKzYbVNY3Ulnf2CrJ9E3cTcYzElv+niYOnjDy882fOwZavh5uzBsbzQ0TYxkUoZ0BRUREejODwcCQSD+GRPqxZOZAjhdWsWpfHh/uzWV/ToV99tCJYu57fz9jYgLwtxrZs+owRqMRmw1sgM0GzS1r4Gw2m+OYDVurczj1uI3nbNgf2M5ow/mYlvOam7+m7bNcz1f79JU+cEaf7G00tzT01ffU1NTM0QITTVu2t4pnTJCno0ZVckIIEf4ervvLE2lDt09chYSEEBIS8o3nJScnU15ezpYtW5g4cSIAmzdvpry8nClTppz1ulNJq6NHj7Ju3TqCg89hSoKIiLTiYTYR6e9JpL9nu69parZRUdt69lZJddszuk4/1tDYTENTMwWV9RRU1n+lVSNgY2xsADdMjOWKkVF9ZnaViIiItJYY6sOPZiTxoxlJZBTXsGp/Lh/ty2NnRhk7MsoAI+tyT3Z1N7sJA+F+FqYmhjC5Zee/mCDX1HEWaa9un7hqryFDhjB79mwWL17MM888A8Btt93GFVdc0aow++DBg1m+fDlXX301jY2NXHvttezYsYMPPviApqYmRz2soKAg3N21NldExNVMRgOB3u4Eerf/Z67NZqPW2mSfxVV9+iyuBooq6zh85Ch3XTmV4TFBLuy5iIiI9DSxwV7cNi2R26Ylkltey0d7cvh8xwESE/rjZjKBAQwYMBjs1T0NX3mMwdDmcYPBWbrm1HNGQ+vz7M+dfn3L4/a0be8YxtPP+dq2W19Pq8fO84wtBw1Ac1MTx/ds4eZrZup3YelWek3iCuC1117j7rvvJiUlBYC5c+fy17/+tdU5hw8fpry8HICsrCzef/99AEaPHt3qvHXr1jF9+nSX91lERM6dwWDAy90NL3c3+gW0nt1ltVr5sPawlgSKiIjI14r092Th5FiCS/YxZ/agPl+z0Gq1Unm07drRIl2pVyWugoKCePXVV7/2nFNrgcFeG+v0xyIiIiIiIiIi0n10zN7jIiIiIiIiIiIiHaxXzbjqKqdmbVVUVHR421arlZqaGioqKjR1VbFwUCycFAsnxcJOcXBSLJxcGYtT//9rFve5ceX4CfT5P51iYac4OCkWToqFk2LhpFjYuToO7R1DKXHVASorKwGIiYnp4p6IiIhIV6msrMTf37+ru9FjaPwkIiIi8M1jKINNtwfPW3NzMzk5Ofj6+nZ4IbuKigpiYmLIzMzEz8+vQ9vuaRQLJ8XCSbFwUizsFAcnxcLJlbGw2WxUVlYSFRWF0agqDO3lyvET6PN/OsXCTnFwUiycFAsnxcJJsbBzdRzaO4bSjKsOYDQaiY6Odulr+Pn59el/MKdTLJwUCyfFwkmxsFMcnBQLJ1fFQjOtzl1njJ9An//TKRZ2ioOTYuGkWDgpFk6KhZ0r49CeMZRuC4qIiIiIiIiISLekxJWIiIiIiIiIiHRLSlx1cxaLhfvuuw+LxdLVXelyioWTYuGkWDgpFnaKg5Ni4aRY9D36O3dSLOwUByfFwkmxcFIsnBQLu+4SBxVnFxERERERERGRbkkzrkREREREREREpFtS4kpERERERERERLolJa5ERERERERERKRbUuJKRERERERERES6JSWuRERERERERESkW1LiSkREREREREREuiUlrkREREREREREpFtS4kpERERERERERLolJa5ERERERERERKRbUuJKRERERERERES6JSWuRERERERERESkW1LiSkREREREREREuiUlrkREREREREREpFtS4kpERERERERERLolJa5EpNO99NJLGAwG0tPTu6wPixYtwsfH5xvPmz59OtOnT3d9h86xHzU1NSxbtozPPvvsW7V36u9g27ZtHdNBERER6XIaY3WctvpnMBhYtmxZl/RHpC9z6+oOiIjIN3vqqadaPa6pqeH+++8H6NaDPhERERERkfOhxJWISA8wdOjQru6CiIiISI9VU1ODl5dXV3dDRL4FLRUUkW6vsLCQO++8k6FDh+Lj40NYWBgXX3wxGzZsaHVeeno6BoOBFStW8Oijj9K/f398fHxITk5m06ZN3/g6X375JSEhIVxxxRVUV1ef9byGhgb++Mc/MnjwYCwWC6Ghodxyyy0UFhae0/tatmwZBoOBnTt3cs011+Dn54e/vz833XTTGW2dPl09PT2d0NBQAO6//34MBgMGg4FFixY5zj906BA33HAD4eHhWCwWYmNj+d73vkd9fX2rdisrK/nhD39ISEgIwcHBXHPNNeTk5JzT+xAREZGeqbePsXbs2MG1115LYGAgiYmJANTV1bF06VL69++Pu7s7/fr140c/+hFlZWXn9Boi0nmUuBKRbq+kpASA++67j5UrV/Liiy+SkJDA9OnT26zx9Le//Y01a9bw+OOP89prr1FdXc2cOXMoLy8/62u8+eabXHLJJVx//fX897//xdvbu83zmpubufLKK/nTn/7EggULWLlyJX/6059Ys2YN06dPp7a29pzf39VXX01SUhL/+c9/WLZsGe+99x6zZs3CarW2eX5kZCSrVq0C4Ac/+AGpqamkpqby29/+FoDdu3czYcIENm3axO9//3s++ugjli9fTn19PQ0NDa3auvXWWzGbzfzrX//ioYce4rPPPuOmm2465/cgIiIiPU9vH2Ndc801JCUl8dZbb/H0009js9m46qqrWLFiBQsXLmTlypUsWbKEl19+mYsvvviMG3wi0j1oqaCIdHuDBg1qVeOpqamJWbNmkZ6ezhNPPHFGjSdfX18++OADTCYTAFFRUUycOJGPPvqI+fPnn9H+n//8Z37961/z4IMP8stf/vJr+/Lmm2+yatUq3n77ba655hrH8VGjRjFhwgReeuklfvjDH57T+7vmmmt46KGHAEhJSSE8PJwbb7yRN998kxtvvPGM8y0WC+PGjQMgOjqayZMnt3p+yZIluLm5sWXLFsfMLKDNtmbPns0TTzzheFxSUsIvf/lL8vLyiIiIOKf3ISIiIj1Lbx9j3XzzzY6aoAAff/wxH3/8MQ899BC/+MUvAJg5cyYxMTF897vf5Z///CeLFy8+p9cQEdfTjCsR6RGefvppxo4di4eHB25ubpjNZj799FMOHjx4xrmXX365Y0AFMHLkSABOnjzZ6jybzcbtt9/Offfdx7/+9a9vHFABfPDBBwQEBPCd73yHxsZGx9fo0aOJiIj4Vrv8fTWhdP311+Pm5sa6devOua2amhrWr1/P9ddf3yppdTZz585t9fhssRIREZHeqTePsebNm9fq8dq1awFalVcAuO666/D29ubTTz8959cQEddT4kpEur1HH32UH/7wh0yaNIm3336bTZs2sXXrVmbPnt3mtPHg4OBWjy0WC8AZ5zY0NPDGG28wbNgwLrvssnb1JT8/n7KyMtzd3TGbza2+8vLyKCoqOuf399WZTW5ubgQHB1NcXHzObZWWltLU1ER0dHS7zm9vrERERKT36e1jrMjIyFaPi4uLcXNzO+PmnsFgICIi4luNvUTE9bRUUES6vVdffZXp06fz97//vdXxysrK82rXYrGwbt06Zs2axaWXXsqqVasIDAz82mtOFTE/VWPqq3x9fc+5H3l5efTr18/xuLGxkeLi4jMGh+0RFBSEyWQiKyvrnK8VERGRvqW3j7EMBkOrx8HBwTQ2NlJYWNgqeWWz2cjLy2PChAnn/Boi4nqacSUi3Z7BYHDc0Ttlz549pKamnnfbY8aMYf369WRlZTF9+nQKCgq+9vwrrriC4uJimpqaGD9+/BlfgwYNOuc+vPbaa60ev/nmmzQ2Np5RV+J0Z7vD6enpyUUXXcRbb731re5MioiISN/R28dYX3XJJZcA9oTd6d5++22qq6sdz4tI96IZVyLS7V1xxRX84Q9/4L777uOiiy7i8OHD/P73v6d///40Njaed/tDhgxhw4YNXHrppUybNo1PPvnkrEvt5s+fz2uvvcacOXP4yU9+wsSJEzGbzWRlZbFu3TquvPJKrr766nN6/XfeeQc3NzdmzpzJ/v37+e1vf8uoUaO4/vrrz3qNr68vcXFx/Pe//+WSSy4hKCiIkJAQ4uPjefTRR7nggguYNGkS9957L0lJSeTn5/P+++/zzDPPfKs7liIiItL79PYx1lfNnDmTWbNm8atf/YqKigqmTp3Knj17uO+++xgzZgwLFy48r/ZFxDU040pEur1f//rX/PznP+eFF17g8ssv5/nnn+fpp5/mggsu6LDXSEhIYMOGDRgMBi688EJOnDjR5nkmk4n333+f//u//+Odd97h6quv5qqrruJPf/oTHh4ejBgx4pxf+5133uHQoUNcc801/O53v+M73/kOq1evxt3d/Wuve+GFF/Dy8mLu3LlMmDCBZcuWAfbdd7Zs2cK4ceNYunQps2fP5le/+hUWi+Ub2xQREZG+o7ePsb7KYDDw3nvvsWTJEl588UXmzJnDihUrWLhwIWvXrj1j9pmIdA8Gm81m6+pOiIj0RcuWLeP++++nsLCQkJCQru6OiIiIiIhIt6MZVyIiIiIiIiIi0i2pxpWIdBmbzUZTU9PXnmMymc7YEaa7a25uprm5+WvPcXPTj18RERFxDY2xRKQ30YwrEekyL7/8Mmaz+Wu/1q9f39XdPGe///3vv/F9paens2zZMmw2m5YJioiISIfq62MsEeldVONKRLpMcXExaWlpX3vOoEGDetwueDk5OeTk5HztOSNHjlShdBEREXEJjbE0xhLpTZS4EhERERERERGRbkkLgDtAc3MzOTk5+Pr69rh14iIiInJ+bDYblZWVREVFYTSqCkN7afwkIiLSt7V3DKXEVQfIyckhJiamq7shIiIiXSgzM5Po6Oiu7kaPofGTiIiIwDePoZS4avHUU0/x8MMPk5uby7Bhw3j88ce58MIL23XtqbXhmZmZ+Pn5dWi/rFYrq1evJiUlBbPZ3KFt9zSKhZNi4aRYOCkWdoqDk2Lh5MpYVFRUEBMT0+NqxXzVuY6F1q9fz5IlS9i/fz9RUVH88pe/5I477mj367ly/AT6/J9OsbBTHJwUCyfFwkmxcFIs7Fwdh/aOoZS4At544w1++tOf8tRTTzF16lSeeeYZLrvsMg4cOEBsbOw3Xn9qerufn59LEldeXl74+fn16X8woFicTrFwUiycFAs7xcFJsXDqjFj05OVu5zoWSktLY86cOSxevJhXX32VL7/8kjvvvJPQ0FDmzZvXrtd05fgJ9Pk/nWJhpzg4KRZOioWTYuGkWNh1Vhy+aQylxBXw6KOP8oMf/IBbb70VgMcff5yPP/6Yv//97yxfvrxL+1ZvbaKxGZqbVUNfREREXONcx0JPP/00sbGxPP744wAMGTKEbdu2sWLFirMmrurr66mvr3c8rqioAOyDYqvV2qHvx9rUTGlVLTYbHd52T3QqBn09FoqDk2LhpFg4KRZOioWdq+PQ3nb7fOKqoaGB7du3c++997Y6npKSwsaNG9u8pjMHXre8vJ2tJ934+eY1GAzgZjRgavkyG42YjIZWx9yMBtxMBkxGo+O440/Tad+fdq2b0YDJdHo7RsxfudbZduvXdLbdxus5+tL69c72nP09nfm6p7Kv+uHhpFg4KRZOioWd4uCkWDi5MhY9Pb7fZiyUmppKSkpKq2OzZs3ihRdewGq1tnlXdvny5dx///1nHF+9ejVeXl7n8Q7OlFkFK/a6YTGa+POetQRbbARZINjDRrAFgiz2Pz362Eh4zZo1Xd2FbkFxcFIsnBQLJ8XCSbGwc1Ucampq2nVeH/vv+kxFRUU0NTURHh7e6nh4eDh5eXltXtOZA6+iEhNgT9zYbGBtsmFtOjX7qqlDX6u7MmLDZACjASwmEyv2rCXA3UaAO/hb7H/av2z4u4O7qat73Hn0g9RJsXBSLOwUByfFwskVsWjvoKu7+jZjoby8vDbPb2xspKioiMjIyDOuWbp0KUuWLHE8PlXXIiUlpcOXCn56sAD27qK+2UBuDeTWtL0EIcDTTL9AD6IDPIkO9CQm0JN+gZ6Oxx7m3jGosFqtrFmzhpkzZ/b5JS+Kg51i4aRYOCkWToqFnavjcGoS0Dfp84mrU766ptJms511nWVnDrwunF7H6k/WMu2i6RhMJhqbbTQ22WhqttHYbKOpubnlT/txx/enPdf6fPufjc3NrY85znG2d/rz1qZTx5pbt9NGX85s85vatvflbKshmzHYn7NBfTNUWCGz+uxrYAM8zUT4WQj39yDCz4MIPwsR/h6E+1laHnvg28NvseoHqZNi4aRY2CkOToqFkytj0d5BV3d3LmOhs53f1vFTLBYLFovljONms7nD/05mj+zH3qRgXn//YxJHTiSnooGskhqySmvJLK0hs6SG0horZbX2r/05lW22E+JjISbIk5hAL2KCPIkO9HJ8H+nvibvb2bfu7o5cEeueSHFwUiycFAsnxcJJsbBzVRza22bP/u29A4SEhGAymc64o1hQUHDGncRTOnPg5esFnm4Q6u/V6//BNDfbaLKdnhRrnSSrq2/go08+I2nkeAqrG8krryW3vI68lq/c8jpqrU2OQeih/KqzvpaPxY0Ifw8iW5Jbkf4ehDseexLp70GAl7nbF9rVD1InxcJJsbBTHJwUCydXxKKnx/bbjIUiIiLaPN/NzY3g4GCX9fVceJhNhHvCtAEhbf4dVdU3klVaQ2ZJrePPU0mtrNJaquobKaqqp6iqnp0ZZWdcbzRAhJ8H0UH2ZFZ0oCcxQV7EBHoSHeRFhJ8HJmP3HkeIiIj0BH0+ceXu7s64ceNYs2YNV199teP4mjVruPLKK7uwZ32P0WjAiIGzzcq3Wt2I8YFLBoe1OQC12WxU1DW2JLFqHcms/Io6R4Irt7yWirpGquobOVZQxbGCsye3LG5GeyLr1Mwtf0/H41N/hnhbMGpQKiIiPdi3GQslJyfzv//9r9Wx1atXM378+B6TyPOxuDE4wo/BEWfOlrfZbJTXWp1JrdMSW1ml9mN11mZyyuvIKa9jS1rJGW2YTQaiAjxbJbWiA1tmbQV5Eupj6fY3yERERLqDPp+4AliyZAkLFy5k/PjxJCcn8+yzz5KRkcEdd9zR1V2Tc2AwGPD3NOPvaWZQhO9Zz6uubySvwjlTK6+idaIrr7yO4uoG6hubSS+uIb347LVL3IwGwv1aklv+HkT6nUpseToSXKG+FsymnrWUQERE+pZvGgstXbqU7Oxs/vnPfwJwxx138Ne//pUlS5awePFiUlNTeeGFF3j99de78m10GIPBQICXOwFe7oyI9j/jeZvNRmFVvX3p4akliKctRcwurcXaZONkcQ0nzzKOsLgZT5uldeZSRH/P7j/zW0REpDMocQV897vfpbi4mN///vfk5uYyfPhwPvzwQ+Li4rq6a+IC3hY3EkN9SAz1Oes59Y1NFFTUk1t+ZlIrt6KO/PI6CirraGy2kV1WS3ZZ7VnbMhgg1Mdy2mwtz1bLFO31tzx6TQFYERHpeb5pLJSbm0tGRobj/P79+/Phhx/ys5/9jL/97W9ERUXxxBNPMG/evK56C53KYDAQ5utBmK8HY2MDz3i+qdlGfkUdmSU1ZH4lqZVVUkNuRR31jc0cL6zmeGF1m6/ha3Gj32mJLUeSq6XmlrdFw3gREekb9D9eizvvvJM777yzq7sh3YTFzdQyODz7LpGNTc0UVtWftgzx9GWJtY7H1iYbBZX1FFTWszur/KztBXm7O+ptnUpshfu1TnRpkCoiIq7ydWOhl1566YxjF110ETt27HBxr3omk9G+TDAqwJNJbTzf0NhMbnntacsPWy9FLKysp7K+kUN5lRzKa7twfKCXuVVSK/pUfa2Wx7ohJiIivYV+Cxb5ltxMRiL97bsKnU1zs43i6gbHksTTC8rnnrZMsc7aTEl1AyXVDRzIPfvuVL4ebvaElq8Fj1ojAwuqGNLvzDu9IiIi0n25uxmJC/YmLti7zedrG5rILjutcPxXZm2V1VgprbFSWlPOnrPcFAvztTjqakX5W6gsNBCdVc7ASH98PXpGHTIRERFQ4krEpYxGA6G+FkJ9LYzgzBoZ0FJUvraR3IqvJLVOm7WVW15HZV1jy1cVR/KrACNrntzIyGh/rhnTj++MiiLY58zdLkVERKRn8XQ3kRTmS1JY2zU7K+usbSa1slp2RaxuaHLM9t5+srTlKhOvHtsMQLifxVE2ITHUm6QwXxLDvInw81BdLRER6XaUuBLpYgaDAX8vM/5e5jZ3Njqlqr7RUVD+ZFElr3++j0PlJvZk2e+2/nHlQaYPCmPe2H5cPCQMi5uWCIiIiPRGvh5mhkaZGRrV9o6IpTXWVssP04uq2H44g7JmDwqrGsivqCe/op6Nx4tbXevlbnIksxJDfUgMsye34kO8NK4QEZEuo8SVSA/hY3EjKcyHpDAfJsX741Owh0kXXcyq/QW8szObPVnlfHIwn08O5uPn4cYVo6KYN7YfY2MDdfdURESkjzAYDAR5uxPk7c7I6AAArFYrH36Yzpw506lphBOFVS2F4as4XlDF8cIqThbXUNPQxN7scvZmt15+aDRAbJDXacksb8eMrUBv9y54lyIi0pcocSXSgwV7u7Noan8WTe3P0fxK3tmZzXs7s8ktr+NfmzP41+YM4oK9uGZMNFeP6Uds8NmLzYuIiEjv5+9pZkxsIGO+shuitamZk8U19mRWYRXHC5yJrcr6RtKLa0gvruHTQwWtrgv2dm9JaHmftvzQh36BnpiMunEmIiLnT4krkV5iQLgvv5o9mHtSBrH5RDFv78jmo325nCyu4bFPjvDYJ0eYEB/INWOjmTMiEn9PFWYVERERO7PJ6JjZfTqbzUZhZT3HTs3SapmhdaKwmuyyWoqrGyiuLmFLekmr69zdjCSEeDuWG56apZUQ6o2Xu34FERGR9tP/GiK9jMloYEpSCFOSQvjDVcP4eH8e7+zI5otjRWxNL2Vrein3vb+fmUPDmTe2HxcOCMVsMnZ1t0VERKQbMhgMhPl5EObnwZTEkFbP1TQ0cqLVkkP79yeKqmlobOZQXiWH8irPaLNfgCcJod4khTlnaCWGeRPqY1F5AxEROYMSVyK9mJe7G1ePiebqMdHkldfx313ZvL0jiyP5Vazck8vKPbmE+LjznVFRzBsbzbAoPw0YRUREpF283N0Y3s+f4f1a75zc1Gwju7SWY4WVziWHLTO2SqobyC6rJbuslg1Hi1pd5+vh1iqRldRSUys2yEs32URE+jAlrkT6iAh/D26/KJHbpiWwP6eCd3Zk8/7ubIqqGnjxy3Re/DKdgeE+XDM2mqtG9yPC36OruywiIiI9kMloIDbYi9hgLy4e3Pq5kuqGluLwVRw7bZZWZkkNlXWN7MosY1dmWatr3IwG4oK9Wu10mBRmX3bo56HSByIivZ0SVyJ9jMFgcNwdXTpnMF8cLeLtHVmsPpDPkfwq/vTRIf686hBTE0O4Zmw/Zg2LwNuiHxUiIiJy/uw7HgYxPj6o1fE6a5OzOHxBVUtNLXuR+FprU0uCqxoO5Le6LszXcmZx+DAfIv08MKo4vIhIr6DfRkX6MLPJyIzBYcwYHEZ5rZWP9ubyzo5stqSX8MWxIr44VoSX+z5mD49g3thoJicEa4cgERER6XAeZhODInwZFOHb6nhzs428irpWdbSOtRSIL6isd3ylnihudZ2Xu4mE0NY7HcYFWrA2d+a7EhGRjqDElYgA9u2x50+MZf7EWDJLanh3Zzbv7MgivbiGd3Zk886ObCL9PbhydD/mje3HgHDfb25URERE5DwYjQaiAjyJCvDkwgGhrZ6rqLPai8MXVLWqo5VeVE1NQxP7sivYl13xlRbd+NP+z4gK8CTS34NI/5Y/HY89CPfzUE0tEZFuRIkrETlDTJAXd18ygB9fnMSOjDLe2ZHF/3bnkFtex9Prj/P0+uOM6OfPNWP78Z1RUYT4WLq6yyIiItLH+HmYGR0TwOiYgFbHrU3NZJTUtNrp8FRNrcq6RoqqGiiqamBPVnmb7RoMEOpjITLAkyh/DyL8PYjy9yQywMOR7ArzteCm5JaISKdQ4kpEzspgMDAuLpBxcYH87jtDWXeogLd3ZLPuUAF7s8vZm13OAysPMn1QKFePieaSIWF4mE1d3W0RERHpw8wmo2N54OkaGhp46/2PGDbhAgqqrORV1JFTVkdueS255fY/88rrsDbZHEsQd2e2/RpGA4T7nZbUOpXgOm0mV6ivRSUWREQ6gBJXItIuFjcTs4dHMnt4JMVV9XywJ5d3dmSxO6ucTw4W8MnBAnw93LhiZBTzxvZjXFwgBoMGayIiItI9GAwGfMwwLMqP0ea2dyNsbrZRXN1AbnktOWV15LUktXLK7d/nlNWRX1FHY7OtJdlVx07K2mzLzWhwJLciW5JaEX4eRAU4lyiG+FhURF5E5BsocSUi5yzYx8LNU+K5eUo8xwqqeHdnFu/uyCanvI7Xt2Tw+pYM4oK9uHpMP64e04+4YO+u7rKIiIjINzIaDYT6Wgj1tTAyuu1zmpptFFfVk1NeR26Zc7aWPbllP5ZfWU9js43sslqyy2rP+npmkz255ai3FeBBpJ9HyzJFTyL8PQj2dldyS0T6NCWuROS8JIX58ItZg/n5zEFsSivmnR3ZfLQ3l5PFNTz+yVEe/+Qo4+MCuWZsNJePjMTfs+07nCIiIiI9gcloIMzPgzA/jzPqa53S2NRMUVUDOeW15H5lOaJ9JlcdBZX2ZYlZpbVkldYCpW225W4yEuGoteVxWu0tT8dMrkAvs2a6i0ivpcSViHQIo9HAlMQQpiSG8Psrh7HmQD5v78jmi6OFbDtZyraTpSz7335mDgnnmrH9mDYwVDv2iIiISK/kdlqyidi2z7E2NVNQWe9YguhIbp32fWFVPQ0txeYzSmrO+noWN+NXdkk87Xt/T6ICPPD3VHJLRHqmXpu4Sk9P5w9/+ANr164lLy+PqKgobrrpJn7961/j7u7uOC8jI4Mf/ehHrF27Fk9PTxYsWMCKFStanSMi58bL3Y0rR/fjytH9yK+o47+7snl7ezaH8ytZuTeXlXtzCfZ25zujopg3Nprh/fw0kBIREZE+xWwy0i/Ak34BnoyLa/uchsZm8ivqWgrJ25NZeeXO73PL6yiqqqe+sZn04hrSi8+e3PI0mxxJrTBfCzWFRqy7ckiK8Kd/sDf+XpoVLyLdU69NXB06dIjm5maeeeYZkpKS2LdvH4sXL6a6upoVK1YA0NTUxOWXX05oaChffPEFxcXF3HzzzdhsNp588skufgcivUO4nwe3TUtk8YUJHMit4N0d2by3K4eiqnpe2pjOSxvTGRDmwzVjo7lqTBSR/p5d3WURERGRbsHdzUhMkBcxQV5nPae+sYn88nrHLK2clt0RT83iyiuvo7i6gVprEyeKqjlRVN1ypZGPs/Y52gnydic+2Iv+IT4khHoTH+xN/xBv4kO88HLvtb82ikgP0Gt/As2ePZvZs2c7HickJHD48GH+/ve/OxJXq1ev5sCBA2RmZhIVFQXAI488wqJFi3jggQfw8/Nrs+36+nrq6+sdjysqKgCwWq1YrdYOfR+n2uvodnsixcKpp8ZiYKgXv5o1gJ9fmsiXx4t5d1cunxws4GhBFX9edYiHPj5Ecv8grhodRcrQMLwt3/wjqqfGwhUUCzvFwUmxcHJlLBRfEelKFjcTscFexAafPblVZ22yF45vqbOVVVJN6p4jNHsHk15cQ35FPSXVDZRUN7Ajo+yM6yP8PFqSWN4ktPzZP8Sb2CAv3N1U+kFEXKvXJq7aUl5eTlBQkONxamoqw4cPdyStAGbNmkV9fT3bt29nxowZbbazfPly7r///jOOr169Gi+vs/+HcT7WrFnjknZ7IsXCqafHIsUHLhwDu4oNbCsycqzCwMYTJWw8UcJv3rMxKsjGhFAbA/xtfNNmOj09Fh1JsbBTHJwUCydXxKKm5uxLc0REugMPs4n4loQT2BPucdWHmDNnAmazmer6RtKLq0krqiatsJq0lu/Ti6oprbGS17JcMfVEcat2jQaIDvSif0si6/SvqABPTNoNUUQ6QJ9JXB0/fpwnn3ySRx55xHEsLy+P8PDwVucFBgbi7u5OXl7eWdtaunQpS5YscTyuqKggJiaGlJSUs87S+rasVitr1qxh5syZmM19e925YuHU22Ixr+XPrNJa/rs7l/d25ZBeXMPWIgNbiyDc18LcUZFcPTqKAeE+ra7tbbE4H4qFneLgpFg4uTIWp2Zei4j0VN4WN4ZF+TMsyv+M58pqGuwJra98pRdVU93Q5Cgcv/5IYavr3E1GYoPtSa3TZ2n1D/EmzNei+qYi0m49LnG1bNmyNmc7nW7r1q2MHz/e8TgnJ4fZs2dz3XXXceutt7Y6t60fmDab7Wt/kFosFiwWyxnHzWazy34xcGXbPY1i4dTbYtE/zMxPZ/rxk0sHsjOzjHd3ZPP+7hzyK+t57ot0nvsineH9/LhmTDRzR0cR4uP8d9jbYnE+FAs7xcFJsXByRSwUWxHpzQK83BkT686Y2MBWx202G4WV9ZxoSWKdntQ6WVxDQ1MzxwqqOFZQdUabXu6m1ksPg73pH2r/PsBLm2SJSGs9LnF11113MX/+/K89Jz4+3vF9Tk4OM2bMIDk5mWeffbbVeREREWzevLnVsdLSUqxW6xkzsUSk8xgMBsbGBjI2NpDfXDGEdYcKeWdHFusOF7Avu4J92Qd44MODTB8YytyRETQ0dXWPRURERPoWg8FAmJ8HYX4eTE4IbvVcU7ONnLJa+8ys4mpOFFY7vs8sqaGmoYn9ORXszzlzxmqAl9k+M8tRHN45U6s99U9FpPfpcf/yQ0JCCAkJade52dnZzJgxg3HjxvHiiy9iNLYuHJicnMwDDzxAbm4ukZGRgL1OlcViYdy4cR3edxE5dxY3E7OHRzB7eASl1Q18sCeHt3dksyuzjE8PFfDpoQLcjSbWVO3ishGRXDw4HH9PzX4QERER6Somo8GxG+I0Qls919DYTGZpjb2WVlFLPa1Ce1Irt7yOshorOzPK2NlGkfgwX0ub9bRig72wuJk66d2JSGfrcYmr9srJyWH69OnExsayYsUKCguda64jIiIASElJYejQoSxcuJCHH36YkpIS7rnnHhYvXtzhtapE5PwFeruzMDmehcnxHC+s4t0d2by7M4vssjpWHyhg9YEC3IwGkhODSRkWQcrQcML9PLq62yIiIiLSwt3NSGKoD4mhPmc8V9PQSHpRjbNQ/GlfJdUNFFTWU1BZz+a0klbXGQ0QFeDZZj2tfgGeuJm086FIT9ZrE1erV6/m2LFjHDt2jOjo6FbP2Ww2AEwmEytXruTOO+9k6tSpeHp6smDBAlasWNEVXRaRc5AY6sM9swZx94z+PPvWR9QGD+STg4Uczq9kw9EiNhwt4rfv7WNMbACzhkUwa1gE/Vt20hEREafS0lLuvvtu3n//fQDmzp3Lk08+SUBAQJvnW61WfvOb3/Dhhx9y4sQJ/P39ufTSS/nTn/7UaqdmEZFz5eXuxtAoP4ZGnTmJoLzGSlqxvZ7WidMKxKcVVVNV30hWaS1ZpbVsOFrU6jqzyUBskHPnw1NJrYQQH8L9zqxbLCLdT69NXC1atIhFixZ943mxsbF88MEHru+QiLiEwWAgxgfmXJLEL2YPIa2omtX78/h4fx47WqaZ78wo408fHWJguA+zhkWQMjSC4f38tJuNiAiwYMECsrKyWLVqFQC33XYbCxcu5H//+1+b59fU1LBjxw5++9vfMmrUKEpLS/npT3/K3Llz2bZtW2d2XUT6EH8vM6O9AhgdE9DquM1mo6jq1M6HVaQV1ZBWVEV6UQ1pxdU0NDZzvLCa44XVZ7TpaTYRF+yFp9XIcY/jDIr0Z0C4D/HB3ri7aZaWSHfRaxNXItI39Q/x5vaLErn9okQKKupYfSCfj/fnkXq8mCP5VRzJP8aTa4/RL8CTmUPDmTUsggnxgZpCLiJ90sGDB1m1ahWbNm1i0qRJADz33HMkJydz+PBhBg0adMY1/v7+rFmzptWxJ598kokTJ5KRkUFsbGybr1VfX099fb3jcUWFvSiz1WrFarV21FtyONWmK9ruaRQLO8XBqbfFIsDDyJhoX8ZE+7Y63txsI6+ijrTiGtKLqkkvriGtuIaTxTVkltZSa23iUF4lYGTnuuOO60xGA3FBXgwI8yYpzIekUPuf/YO9sJh7by2t3va5OB+KhZ2r49Dedl2auDo1IDkXqi0lIh0lzM+DmybHcdPkOMprraw7VMDH+/P47HAh2WW1vLQxnZc2phPoZebSIfYk1gUDQvDoxQMSEemeumrMlJqair+/vyNpBTB58mT8/f3ZuHFjm4mrtpSXl2MwGM66vBBg+fLl3H///WccX716NV5eXufc9/b6apKtL1Ms7BQHp74Ui8CWrzHBQDA0NUNxPRTUGSiohbwaA3m1BvJqob4JTrQsSfz4QIGjDQM2QjwgwtNGuJf9z0gvG2Ee4N6Lho996XPxTRQLO1fFoaampl3nuTRxFRAQcE5LcQwGA0eOHCEhIcGFvRKRvsjf08xVY/px1Zh+1Fmb2HC0iI/35/HpwXxKa6y8tT2Lt7Zn4eVuYvqgUGYNi2DG4DD8PLRDoYi4XleNmfLy8ggLCzvjeFhYGHl5ee1qo66ujnvvvZcFCxZ8bTJt6dKlLFmyxPG4oqKCmJgYUlJSXHLj0mq1smbNGmbOnInZ3Ld/lisWdoqDk2Lh5IzFpZjNZmw2G3kV9RwrrOJYQTXHW/48WlBFRV0jhXVQWGdgb6mzDYMBogM8SQrzJinUx/FnYqg33paes8hJnwsnxcLO1XFo7407l/8r+s9//kNQUNA3nmez2ZgzZ46ruyMigofZxMyh4cwcGk5jUzNb0ktYvT+f1fvzyCmv48O9eXy4Nw+zycDkhOCWuljhhGmHQhFxoY4cMy1btqzN2U2n27p1K0CbCTObzdauRJrVamX+/Pk0Nzfz1FNPfe25FosFi+XMQshms9mlvxS4uv2eRLGwUxycFAun02MRG+JObIgvFw9xPm+z2SisrOdoQRVH8yvtf7Z8X1pjJbO0lszSWtYdbl0cvl+AJ0lhPgwM92FAmC9J4T4khfl065uj+lw4KRZ2ropDe9t0aeIqLi6OadOmERwc3K7zExIS9KEQkU7lZjIyJTGEKYkh3PedoezLruDjluLuRwuqnDsU/ncfY2KcOxTGa4dCEelAHT1muuuuu5g/f/7XthEfH8+ePXvIz88/47nCwkLCw8O/9nqr1cr1119PWloaa9euVbkHEenVDAYDYX4ehPl5MDUppNVzxVVfSWjl25NaRVX1ZJfVkl1Wy/ojha2uifDzYEBLEmtAmC8DW74P8HLvzLcl0iO4NHGVlpZ2Tufv27fPRT0REflmBoOBEdH+jIj2555ZgzhRWMXH++3F3XdllrEjw/61/KNDDAr3ZdawcFKGRTAsSjsUisj56egxU0hICCEhIV97DkBycjLl5eVs2bKFiRMnArB582bKy8uZMmXKWa87lbQ6evQo69ata3fCTUSkNwr2sRDsY2FyQuufhaXVDRwrPJXIquRYQRVH8ivJr6gnr6KOvIo6NhxtPUMr1NfCgDAfBoT5kBTu6/g+2OfMGasifUXPWXArItLJEkJ9+OF0H344PZG88jrWHMjj4/35bDpRzOH8Sg7nV/LE2mNEB3qSMjSCWcPCGR8fhMmoJJaI9AxDhgxh9uzZLF68mGeeeQaA2267jSuuuKJVYfbBgwezfPlyrr76ahobG7n22mvZsWMHH3zwAU1NTY56WEFBQbi7a7aAiAhAoLc7E7yDmBDfehl4ea2VYwVVHCuodMzOOlZQRXZZLYWV9RRW1rPxeHGra4K83VstObQntnwI9bHoBqr0ep2WuHriiSfaPG4wGPDw8CApKYlp06ZhMvWi7RhEpNeI8PdgYXI8C5PjKa+x8ukh+0ys9UcKySqt5R9fpvGPL9MI9nbn0iHhpAwLZ2qSdigUkXPX2WOm1157jbvvvpuUlBQA5s6dy1//+tdW5xw+fJjy8nIAsrKyeP/99wEYPXp0q/PWrVvH9OnTO6RfIiK9lb+nmXFxgYyLC2x1vKq+keOn1c6y19GqJLOklpLqBraklbAlreSMtgaE+bQsO/R1JLbC/ZTQkt6j0xJXjz32GIWFhdTU1BAYGIjNZqOsrAwvLy98fHwoKCggISGBdevWERMT01ndEhE5Z/5eZq4ZG801Y6OpbWji86OFLTsUFlBc3cAb2zJ5Y1sm3u4mpg8KI2VYuHYoFJF26+wxU1BQEK+++urXnmOz2Rzfx8fHt3osIiIdw8fixqiYAEbFBLQ6XtPQyInCao6eNkPraH4lGSU1lNda2XaylG0nS1td42txIyncp2Wpoa/j+yh/T4xaHSA9TKclrh588EGeffZZnn/+eRITEwE4duwYt99+O7fddhtTp05l/vz5/OxnP+M///lPZ3VLROS8eLqbHAXbrU3NbE0r4eP9eaw+kE9ueR0r9+aycm8uZpOBKYkhzBoWwcyh4YT6qk6BiLRNYyYRETmdl7sbw/v5M7yff6vjddYmR0LrWIGzllZ6cQ2V9Y3szChjZ0bZV9oy2ZcZhvky4LTEVnSgZye+I5Fz02mJq9/85je8/fbbjgEYQFJSEitWrGDevHmcOHGChx56iHnz5nVWl0REOpTZZGRKUghTkkJYNncYe7LKHTsUHi+sZv2RQtYfKeTX7+1lXGygI+EVG+zV1V0XkW5EYyYREWkPD7OJoVF+DI1qvatrQ2Mz6cXVHMm3z9A61rLkMK2ompqGJnZnlbM7q/wrbRlJCPEmoNmI+UABFw4Kw1erBaSb6LTEVW5uLo2NjWccb2xsdBT0jIqKorKysrO6JCLiMgaDwTHV+5ezB3OsoMo+E2t/Hruzyh1Tuh/48CCDI3wdSawhkb6qRyDSx2nMJCIi58PdzcjAcF8Ghvu2Om5tauZkcU2rovBH8is5UVRNnbWZA7mVgJGNr+/CzWhgbFwgFw0M5aKBoQyN9NMSQ+kynZa4mjFjBrfffjvPP/88Y8aMAWDnzp388Ic/5OKLLwZg79699O/fv7O6JCLSaZLCfEgKS+JHM5LILa9l9X57cffNaSUcyqvkUF4lf/n0KDFBp3YojGBcXKB2KBTpgzRmEhERVzCbjC1jUh9mD3ceb2xqJrO0lv1Zpbzx2U4yrT6kF9c4isE//PFhQnzcmTYglGkDQ7lwQAjBPip7IZ2n0xJXL7zwAgsXLmTcuHGYzfYph42NjVxyySW88MILAPj4+PDII490VpdERLpEpL8nN0+J5+Yp8ZRWN7D2UAEf78/j86OFZJbU8sIXabzwRRohPvYdCmcNi2BKUjAWN+1QKNIXaMwkIiKdyc1kpH+IN9H+7jSdbGbOnAvIrbCy/mgh6w8XsvF4EUVVDbyzM5t3dmZjMMDwKH8uGmhPZI2JDcBsMnb125BerNMSVxEREaxZs4ZDhw5x5MgRbDYbgwcPZtCgQY5zZsyY0VndERHpFgK93Zk3Lpp546KpaWjk8yNFrN6fxycH8ymqauDfWzP599ZMfCxuTB8UyqxhEcwYHIaPpdN+fItIJ9OYSUREulpssBcLg+NYODmOhsZmtp8sddRrPZhbwd7scvZml/PXdcfwtbgxNSmEaQNDmTYwhOhA1W+VjtXpv/kkJCRgMBhITEzEzU2/eImInOLl7sbs4RHMHm7foXDziVM7FOaRX1HPB3ty+WBPLu4mI1OTgpk1LIJLh4YToqnaIr2SxkwiItIduLsZSU4MJjkxmHsvG0xBRR2fHy3i8yOFbDhaSGmNlVX781i1316HMSnMh2kDQrloUCiT+gfhYdaqATk/nTYKqqmp4cc//jEvv/wyAEeOHCEhIYG7776bqKgo7r333s7qiohIt2c2GblgQAgXDAjh/rnD2J1Vxsf781m9P48TRdWsO1zIusOFGN/dy/i4IFKGhXPxoOCu7raIdACNmUREpDsL8/Pg2nHRXDsumqZmG3uzy/m8ZTbWzoxSjhXYdzL8x5dpWNyMTEoIbinyHkJiqI82IpJz1mkLUZcuXcru3bv57LPP8PDwcBy/9NJLeeONN1z62vX19YwePRqDwcCuXbtaPZeRkcF3vvMdvL29CQkJ4e6776ahocGl/RERORdGo4ExsYHce9lgPv35Raz52TTuSRnIyGh/mm2wJb2EP648yMWPfsGDu0w8+NFh1h8ppM7a1NVdF5FvoSvHTCIiIufCZDQwOiaAuy8ZwNs/nMLO36bw1I1j+e74GCL9PahvbObzI4X84YMDXPro51zw53UsfWcvq/blUlFn7eruSw/RaTOu3nvvPd544w0mT57cKsM6dOhQjh8/7tLX/uUvf0lUVBS7d+9udbypqYnLL7+c0NBQvvjiC4qLi7n55pux2Ww8+eSTLu2TiMi3YTAYGBDuy4BwX+66eAA5ZbWs3p/Hx/vz2ZJeQn4tvLjxJC9uPOm4wzVtQAgXDQwlKUx3uER6gq4cM4mIiJwPfy8zc0ZEMmdEJDabjaMFVY7ZWJvTSsguq+X1LRm8viUDk9HA2NiAltlYYQyL8sOoHbWlDZ2WuCosLCQsLOyM49XV1S79Reqjjz5i9erVvP3223z00Uetnlu9ejUHDhwgMzOTqKgoAB555BEWLVrEAw88gJ+fn8v6JSLSEaICPFk0tT+LpvanqKKGv/3nE6p8Y/niWDG55XV8fqSQz48U8seVB4ny92gpmhnK1KQQ/D3NXd19EWlDV42ZREREOpLBYGBguC8Dw3259cIEahua2JRWzPrD9vHpiaJqtqaXsjW9lBWrjxDs7c6FA0K4aFAoFw4IVR1Xcei0xNWECRNYuXIlP/7xjwEcA6/nnnuO5ORkl7xmfn4+ixcv5r333sPL68ydDVJTUxk+fLgjaQUwa9Ys6uvr2b59+1l37Kmvr6e+vt7xuKKiAgCr1YrV2rHTHU+119Ht9kSKhZNi4aRYOHm5wehgGzNnDsTNzY1jhdVsOFrEhmPFbEkvJae8zrFLocloYFS0PxcmBXPhgBCGR/lh6iV3uPSZcFIsnFwZi45usyvGTCIiIq7m6W5ixqAwZgyy35zJLKlhfctN1i+PFVFc3cB7u3J4b1cOAMP7+dmLvA8MZWxcIGZTp1U6km6m0xJXy5cvZ/bs2Rw4cIDGxkb+8pe/sH//flJTU1m/fn2Hv57NZmPRokXccccdjB8/nvT09DPOycvLIzw8vNWxwMBA3N3dycvLO2vby5cv5/777z/j+OrVq9tMkHWENWvWuKTdnkixcFIsnBQLp9NjEQFcFwpXBsHxCgMHyw0cKjOQXws7MsrYkVHGX9Yex8vNxmB/G4MD7F/+7l3X/46iz4STYuHkiljU1NR0aHudPWYSERHpCjFBXtw0OY6bJsfR0NjMjoxSx7LC/TkV7Mu2fz312XF8LG5MSQzmokGhTBsQSkyQa37vlu6p0xJXU6ZM4csvv2TFihUkJiayevVqxo4dS2pqKiNGjGh3O8uWLWszaXS6rVu3snHjRioqKli6dOnXntvWlHubzfa1U/GXLl3KkiVLHI8rKiqIiYkhJSWlw5cXWq1W1qxZw8yZMzGb+/ayHsXCSbFwUiycziUWOWW1bDhWzOdHi9h4vISq+kZ2FBvYUWx/fnC4DxcMCOHCpGDGxQVices5d7j0mXBSLJxcGYtTM687SkeNmURERHoKdzcjkxOCmZwQzC9nD6awsp4NR+2zsT4/WkRJdQOrD+Sz+kA+AAmh3lzUUgJjcv9gPN1NXfwOxJU6LXEFMGLECMfWzt/WXXfdxfz587/2nPj4eP74xz+yadMmLJbW62LHjx/PjTfeyMsvv0xERASbN29u9XxpaSlWq/WMmVins1gsZ7QLYDabXfaLgSvb7mkUCyfFwkmxcGpPLOJCzcSF+nFTcn8am5rZlVnmmKq9J7ucQ/lVHMqv4vkv0vE0m0hODHYMDuKDvXpEnR19JpwUCydXxMIVse2IMZOIiEhPFepr4Zqx0VwzNprmZhv7csods7F2ZJRxorCaE4XVvPhlOu5uRib1D2op8q4NiXojlyauzuUOZHtnKoWEhBASEvKN5z3xxBP88Y9/dDzOyclh1qxZvPHGG0yaNAmA5ORkHnjgAXJzc4mMjATsy/0sFgvjxo1rd99FRHoyN5OR8fFBjI8P4ucpgyipbmi5w1XE50cLKaysZ+2hAtYeKgAgJsjTnsQaEMqUpBB8LJ16D0SkV3LFmElERKQ3MBoNjIwOYGR0AHddPIDyWiupx4tYf6SQ9YcLySmvs9d1PVrEH1ceJNLfw3HDVRsS9Q4u/W0jICCg3ZnOpqamDn3t2NjYVo99fHwASExMJDo6GoCUlBSGDh3KwoULefjhhykpKeGee+5h8eLFGhSKSJ8V5O3OlaP7ceXofthsNg7mVvL5UfvAYNvJEjJLanl1UwavbsrAzWhgXFwg01rucA2N1DbGIt9GV46ZREREehJ/TzOzh0cye3gkNpuN44VVfHbYvqRw0wn7ztqnb0g0JibAMVYd0c9fY9UeyKWJq3Xr1jm+T09P595772XRokWOHXFSU1N5+eWXWb58uSu7cVYmk4mVK1dy5513MnXqVDw9PVmwYAErVqzokv6IiHQ3BoOBoVF+DI3y446LEqmub2TTiWLHssL04ho2p5WwOa2Ehz8+TIiPOxe27P5ywYAQbWMs0k7dfcwkIiLSHRkMBpLCfEkK8+XWCxOobWhic1oxnx8pYv2RAo4XVrPtZCnbTpby6JojBHm7c0FSCBcNDOXCgSGE+Xp09VuQdnBp4uqiiy5yfP/73/+eRx99lBtuuMFxbO7cuYwYMYJnn32Wm2++2ZVdIT4+HpvNdsbx2NhYPvjgA5e+tohIb+FtceOSIeFcMsReB/BkcXVLvYEiNh4voqiqgXd3ZvPuzmzAvo3xqWWF2sZY5Oy605hJRESkp/J0NzF9UBjTB4UBQ8kqrbGXvzhSyJfH7EXe39+dw/u7cwAYGunn2KlwXFwg7j1oQ6K+pNMKk6SmpvL000+fcXz8+PHceuutndUNERHpQHHB3ixM9mZhcjwNjc1sP1nqWFZ4INe5jfHf1jm3MT41VVvbGIu0TWMmERGRjhEd6MWCSbEsmBSLtamZnRlljiLve7PLOZBbwYHcCv7+2XG83U0kJ4Zw0aBQpvQP6Oquy2k6LXEVExPD008/zSOPPNLq+DPPPENMTExndUNERFzE3c1IcmIwyYnB/Gr2YAoq69jQUuB9Q1vbGId4O5JYkxKC8HJXkXcR0JhJRETEFcwmIxP7BzGxfxD3zBpEUVU9Xxy1F3nfcLSQoqoGPjmYzycH7WPVgf5G+o+pZGRsUBf3XDrtt4THHnuMefPm8fHHHzN58mQANm3axPHjx3n77bc7qxsiItJJwnw9mDcumnnjWm9j/PmRIrZnlHKiqJoTRdW8tDEdd5ORCf0DHTvADAr31TbG0mdpzCQiIuJ6IT4WrhrTj6vG9KO52caB3Ar7ToVHCtl+spQj5Uau/Hsq146N5ucpg4jwVz2srtJpias5c+Zw9OhR/v73v3Pw4EFsNhtXXnkld9xxh+4eioj0cl/dxriizsrGY8WOZYXZZbV8eayYL48V8+CHhwj3szBtgD2JdeGAEAK83Lv6LYh0Go2ZREREOpfRaGB4P3+G9/PnRzOSOFFQzj0vf86OYiNvbc/if3tyuO3CBG67KBEfi1YJdDaXRnzPnj0MHz4co9Fe4Cw6OpoHHnjgrOfv37+fQYMG4eamD4KISG/m52Fm9vAIZg+PwGazcaKomvWHC/n8aCGbThSTX1HPW9uzeGt7FkYDjIx2bmM8KtofNxV5l15GYyYREZHuIybQi5sHNrN0xGQeWn2UremlPLH2GP/aksmSmQO5fny0xqOdyKWjnTFjxpCXl0doaGi7zk9OTmbXrl0kJCS4slsiItKNGAwGEkN9SAz14fsX9KfO2sTW9BLHssLD+ZXsyixjV2YZT3x6FD8PNy4YEOJYVhjp79nVb0HkvGnMJCIi0v2MjgngzduT+Xh/Hn/66BDpxTX837t7eWljGkvnDGH6wFCVt+gELk1c2Ww2fvvb3+Ll1b6doxoaGlzZHRER6QE8zCYuHBDKhQNC+fXlkFtey4Yj9sKZXxwrorzWyod78/hwbx4AA8N9HMsKJ/YPwtTF/Rf5NjRmEhER6Z4MBgOzh0dy8eBwXtt8kr98epQj+VXc8uJWLkgK4f/mDGFolF9Xd7NXc2niatq0aRw+fLjd5ycnJ+PpqTvnIiLiFOnvyfUTYrh+QgyyqG2xAAAci0lEQVRNzTZ2Z5U5lhXuzizjSH4VR/KreP6LNDzMRibGBxJsNRCfW8Hw6CBMRt0Fk+5PYyYREZHuzd3NyC1T+3PN2GieWneMF79M54tjRVz+5AYVcHcxlyauPvvsM1c2LyIifYzJaGBsbCBjYwP52cyBlNU08MWxIseywryKOj4/WgyYePepTfh5uDEhPohJCUFM7B/M8Cg/1SOQbqkrx0ylpaXcfffdvP/++wDMnTuXJ598koCAgHZdf/vtt/Pss8/y2GOP8dOf/tR1HRUREekG/D3NLJ0zhJsmx/HQx4f53+4cFXB3MUVTRER6rAAvd64YGcUVI6Ow2Wwcya9i3aE8/rvpEBk1ZirqGvn0UAGfHioAwMvdxLi4QCYnBDOxfxAjo/2xuGlxofRtCxYsICsri1WrVgFw2223sXDhQv73v/9947XvvfcemzdvJioqytXdFBER6VZigrx48oYxfH9qPA9+eFAF3F1IiSsREekVDAYDgyJ8SQj2ILL8ACmzZnC0qJbNJ0rYnFbC1vQSymutbDhaxIajRQBY3IyMiQ1gUv9gJvUPYkxsIJ7uSmRJ33Hw4EFWrVrFpk2bmDRpEgDPPfccycnJHD58mEGDBp312uzsbO666y4+/vhjLr/88s7qsoiISLcyJjZQBdxdTIkrERHpldxMRkZGBzAyOoDF0xJobrZxOL+SzSeK2ZJewpa0EoqqGth0ooRNJ0oAMJsMjIwOYFL/ICb2D2J8fJCmekuvlpqair+/vyNpBTB58mT8/f3ZuHHjWRNXzc3NLFy4kF/84hcMGzasXa9VX19PfX2943FFRQUAVqsVq9V6Hu+ibafadEXbPY1iYac4OCkWToqFk2Lh9G1iccmgEC5MnMLrWzP567oTjgLuUxKDuHfWIIZE+rqquy7j6s9Ee9vVaFxERPoEo9HAkEg/hkT6sWhqf2w2G8cLq9mSVsLmtGI2nyghr6KO7SdL2X6ylKc+O47RAMP7+bcksoKZGB+Ev5e5q9+KSIfJy8sjLCzsjONhYWHk5eWd9bo///nPuLm5cffdd7f7tZYvX879999/xvHVq1e3ezfFb2PNmjUua7unUSzsFAcnxcJJsXBSLJy+TSxCgV8NhzXZRtbnGth4vIQrn9rIxFAbc2KaCbB0fD9dzVWfiZqamnadp8SViIj0SQaDgaQwH5LCfFgwKRabzUZmSS2b0oodyazMklr2ZJWzJ6uc5zakYTDAoHBfR42sif2DCPHpgaMP6fWWLVvWZpLodFu3bgVoc/mCzWY767KG7du385e//IUdO3ac09KHpUuXsmTJEsfjiooKYmJiSElJwc+v47cRt1qtrFmzhpkzZ2I29+2Es2Jhpzg4KRZOioWTYuHUEbG4FsgsreGRNcdYuTePzYUGdpe58YOp8dx6QXyPmNXv6s/EqdnX36T7R0pERKQTGAwGYoO9iA324vrxMQDklNW2JLFK2JJWzPHCag7lVXIor5KXNqYDkBjqzaQEe42sSf2DtQ2ydAt33XUX8+fP/9pz4uPj2bNnD/n5+Wc8V1hYSHh4eJvXbdiwgYKCAmJjYx3Hmpqa+PnPf87jjz9Oenp6m9dZLBYsljMTvWaz2aW/ILm6/Z5EsbBTHJwUCyfFwkmxcDrfWCSE+fO3G8dxa0apo4D73z47wRvbsntUAXdXfSba26YSVyIiImcRFeDJVWP6cdWYfgAUVtazpSWJtTmthEN5lRwvrOZ4YTX/2pwBQGyQl6NG1uSEYKIDPVWQUzpdSEgIISEh33hecnIy5eXlbNmyhYkTJwKwefNmysvLmTJlSpvXLFy4kEsvvbTVsVmzZrFw4UJuueWW8++8iIhIL6MC7udHiSsREZF2CvW1cPnISC4fGQlAWU1DSyLLPitrf045GSU1ZJTU8Nb2LAAi/T0cNbImJQSREOKtgYl0G0OGDGH27NksXryYZ555BoDbbruNK664olVh9sGDB7N8+XKuvvpqgoODCQ4ObtWO2WwmIiLia3chFBER6csMBgOzh0dy8eBwXtt8kr98etRRwP2CpBD+b84QhkZ1/NL53kCJKxERkW8pwMudlGERpAyLAKCyzsq2k6X2RNaJYvZklZNbXsd7u3J4b1cOACE+FseMrEkJQQwM88VoVCJLus5rr73G3XffTUpKCgBz587lr3/9a6tzDh8+THl5eVd0T0REpFdxdzNyy9T+XDM2mqfWHePFL9P54lgRlz+5gWvHRvPzlEEqPfEVvT5xtXLlSn7/+9+zZ88evL29mTZtGu+8847j+YyMDH70ox+xdu1aPD09WbBgAStWrMDd3b0Ley0iIj2Rr4eZGYPCmDHIvktbbUMTOzJK2dySyNqZWUZRVT0r9+aycm8uAAFeZibEBzlqZA2J9O0RtQ6k9wgKCuLVV1/92nNsNtvXPn+2ulYiIiLSNn9PM0vnDOGmyXE89PFh/rc7h7e2Z/G/PTncdmECt12U2CMKuHeGXh2Ft99+m8WLF/Pggw9y8cUXY7PZ2Lt3r+P5pqYmLr/8ckJDQ/niiy8oLi7m5ptvxmaz8eSTT3Zhz0VEpDfwdDcxNSmEqUn2WkP1jU3szix31MjafrKUshoraw7ks+aAvUC2j8WN8fGB9hlZ/YMZ0c8fdzclskRERER6o5ggL568YQzfnxrPAysPsu1kKU+sPca/tmT2qALurtRrE1eNjY385Cc/4eGHH+YHP/iB4/jptRdWr17NgQMHyMzMJCoqCoBHHnmERYsW8cADD5x1a+b6+nrq6+sdj09t4Wi1WrFarR36Pk6119Ht9kSKhZNi4aRYOCkWdt05DkZgTLQvY6J9uf3CeKxNzRzIrWRLeglb0krZnlFGZV0jnx0u5LPDhQB4mI2MjQmwJ7PiAxkd7Y/FbGrX63XnWHQ2V8ZC8RUREZHzNSY2kLfuUAH3tvTaxNWOHTvIzs7GaDQyZswY8vLyGD16NCtWrGDYsGEApKamMnz4cEfSCuy74tTX17N9+3ZmzJjRZtvLly/n/vvvP+P46tWr8fLycsn7WbNmjUva7YkUCyfFwkmxcFIs7HpSHPoBVwfDlUGQUwPHKgwcb/mqtjaz8UQJG0+UAGAy2Ij3gUQ/G4l+Nvr72rB8Qx6rJ8XC1VwRi5qamg5vU0RERPoeFXBvW69NXJ04cQKAZcuW8eijjxIfH88jjzzCRRddxJEjRwgKCiIvL4/w8PBW1wUGBuLu7k5eXt5Z2166dClLlixxPK6oqCAmJoaUlJSzztL6tqxWK2vWrGHmzJmYzeYObbunUSycFAsnxcJJsbDrTXFobrZxvLCaLSdL2ZpWypb0EgqrGjheCccrDZANbkYDw6L8mNAyI2tcbAB+nvb33Zticb5cGYtTM69FREREOoIKuLfW4xJXy5Yta3O20+m2bt1Kc3MzAL/+9a+ZN28eAC+++CLR0dG89dZb3H777QBtTrWz2WxfOwXPYrFgsVjOOG42m132i4Er2+5pFAsnxcJJsXBSLOx6SxyGRrszNDqQRVPt/z+lF9fYa2SdKGFzWgnZZbXszipnd1Y5z3+RjsEAQyP9mNg/iPGx/lRZe08sOoIrYqHYioiIiCuogLtdj3uHd911F/Pnz//ac+Lj46msrARg6NChjuMWi4WEhAQyMjIAiIiIYPPmza2uLS0txWq1njETS0REpKsZDAb6h3jTP8Sb706IBSCrtIYtaSVsPlHClvQS0oqq2Z9Twf6cCl78EsCNp49vYHRsIKNjAhgd48+wKH882lknS0RERES6Vl8v4N7jElchISGEhIR843njxo3DYrFw+PBhLrjgAsC+TCA9PZ24uDgAkpOTeeCBB8jNzSUyMhKw16myWCyMGzfOdW9CRESkg0QHehEd6MU1Y6MByK+oY0taCVvSSth0ooijBdVkltaSWVrL/3bnAPblhYMjfRkVHdCSzAogMdQHo7FvFvwUERER6Qn6agH3Hpe4ai8/Pz/uuOMO7rvvPmJiYoiLi+Phhx8G4LrrrgMgJSWFoUOHsnDhQh5++GFKSkq45557WLx4cYfXqhIREekM4X4efGdUFN8ZFYXVauU/739I5LBJ7MupZFdmObsyyyiqqmdfdgX7sit4bbN9FrKPxY2R0f6MinEms8L9+k7tBBEREZGeoC8WcO+1iSuAhx9+GDc3NxYuXEhtbS2TJk1i7dq1BAYGAmAymVi5ciV33nknU6dOxdPTkwULFrBixYou7rmIiEjH8HKDqYnBTB8cAdjrZOWU17Ero4zdWWXsyixjb1Y5VfWNbDxezMbjxY5rI/09GBUd4EhmjYj27xN1FERERES6u75UwL1Xjz7NZjMrVqz42kRUbGwsH3zwQSf2SkREpOsYDAb6BXjSL8CTy0fal8k3NjVztKCKXZll7M60J7OO5FeSW15Hbnkeq/bbd9o1GmBAmC+jYvwZHRPIqBh/BoX79uqaCiIiIiLdWV8o4N6zey8iIiLnzc1kZEikH0Mi/bhhor3oe3V9I/uy7UsLd2eVsSujjJzyOg7nV3I4v5I3t2UB4GE2MqKff6uZWdGBnr2yvoKIiIhId9WbC7grcSUiIiJn8La4MSkhmEkJwY5jBRV17M4qZ1dmKbszy9mdWUZlfSNb00vZml7qOC/Ex71VImtUdAD+XuaueBsiIiIifUpvLOCuxJWIiIi0S5ifBzOHejBzaDgAzc02ThRVO5YX7s4q42BuBUVVDXx6qIBPDxU4ru0f4t2SxPJndGwgQyJ9sbiZuuqtiIiIiPRava2AuxJXIiIi8q0YjQaSwnxICvNh3rhoAOqsTRzIrXAmszLLSC+uIa2omrSiat7dmQ2A2WRgaKSfPZnVMjMrPtgbo7Fn3QEUERER6a56SwF3Ja5ERESkw3iYTYyNDWRsbKDjWGl1g2MHw92ZZezOKqekuoHdWeXsziqH1JMA+Hm4tVpeOComgFBfS1e9FREREZFeoacXcO++PRMREZFeIdDbnemDwpg+KAwAm81GZkktu1qKvu/OKmNfdjkVdY1sOFrEhqNFjmv7BXgy+lQyKyaAEf388XTXEkMRERGRc9VTC7grcSUiIiKdymAwEBvsRWywF3NHRQFgbWrmcF4lu05bYnissIrsslqyy2pZuTcXAJPRwMBw35Zklj+jYgIYEOaLSUsMRURERNqlpxVwV+JKREREupzZZGR4P3+G9/PnpslxAFTUWdmXVe6YmbUrs4yCynoO5lZwMLeC17fYr/VyNzGinz+jYwMY3bLEMNLfo1sNuERERES6k/YUcB8Q6tnV3QSUuBIREZFuys/DzJSkEKYkhTiO5ZbXthR+L2dXZil7s8qpbmhic1oJm9NKHOeF+Voc9bJGxwQwJNyrK96CiIiISLf2dQXcrxkTxciu7iBKXImIiEgPEunvSaS/J7OHRwLQ1GzjWEEVuzPL2NmyxPBwfiUFlfWsOZDPmgP5ABgMEOZhYszUOmJDzF35FkRERES6nbYKuL+9I4f3jSaqQtL40cUDu6xvSlyJiIhIj2UyGhgU4cugCF+unxADQG1DE/tyylsls7JKaymph1Af9y7usYiIiEj3dXoB9z9+cIDtGWXYbF3bJyWuREREpFfxdDcxIT6ICfFBjmN5pVW8/sGn3XKnHBEREZHuZkxsIK/fOoGHXlvFzcmxXdoXjd5ERESk1wv2sZDg19W9EBEREek5DAYDI4JseJhNXdoPJa5ERERERERERKRb0lLBDmBrWfBZUVHR4W1brVZqamqoqKjAbO7bxWQVCyfFwkmxcFIs7BQHJ8XCyZWxOPX/v62rC0D0MK4cP4E+/6dTLOwUByfFwkmxcFIsnBQLO1fHob1jKCWuOkBlZSUAMTExXdwTERER6SqVlZX4+/t3dTd6DI2fREREBL55DGWw6fbgeWtubiYnJwdfX18MBkOHtl1RUUFMTAyZmZn4+fXt4hyKhZNi4aRYOCkWdoqDk2Lh5MpY2Gw2KisriYqKwmhUFYb2cuX4CfT5P51iYac4OCkWToqFk2LhpFjYuToO7R1DacZVBzAajURHR7v0Nfz8/Pr0P5jTKRZOioWTYuGkWNgpDk6KhZOrYqGZVueuM8ZPoM//6RQLO8XBSbFwUiycFAsnxcLOlXFozxhKtwVFRERERERERKRbUuJKRERERERERES6JSWuujmLxcJ9992HxWLp6q50OcXCSbFwUiycFAs7xcFJsXBSLPoe/Z07KRZ2ioOTYuGkWDgpFk6KhV13iYOKs4uIiIiIiIiISLekGVciIiIiIiIiItItKXElIiIiIiIiIiLdkhJXIiIiIiIiIiLSLSlxJSIiIiIiIiIi3ZISVyIiIiIiIiIi0i0pcdUFnnrqKfr374+Hhwfjxo1jw4YNX3v++vXrGTduHB4eHiQkJPD000+fcc7bb7/N0KFDsVgsDB06lHfffddV3e8wHR2H/fv3M2/ePOLj4zEYDDz++OMu7H3H6uhYPPfcc1x44YUEBgYSGBjIpZdeypYtW1z5FjpMR8finXfeYfz48QQEBODt7c3o0aN55ZVXXPkWOowrflac8u9//xuDwcBVV13Vwb12jY6OxUsvvYTBYDjjq66uzpVvo0O44nNRVlbGj370IyIjI/Hw8GDIkCF8+OGHrnoLHaKj4zB9+vQ2PxOXX365K9+GnAONn5w0hnLSGMpJYyg7jZ+cNH5y0vjJqUeOoWzSqf7973/bzGaz7bnnnrMdOHDA9pOf/MTm7e1tO3nyZJvnnzhxwubl5WX7yU9+Yjtw4IDtueees5nNZtt//vMfxzkbN260mUwm24MPPmg7ePCg7cEHH7S5ubnZNm3a1Flv65y5Ig5btmyx3XPPPbbXX3/dFhERYXvsscc66d2cH1fEYsGCBba//e1vtp07d9oOHjxou+WWW2z+/v62rKysznpb34orYrFu3TrbO++8Yztw4IDt2LFjtscff9xmMplsq1at6qy39a24IhanpKen2/r162e78MILbVdeeaWL38n5c0UsXnzxRZufn58tNze31Vd354pY1NfX28aPH2+bM2eO7YsvvrClp6fbNmzYYNu1a1dnva1z5oo4FBcXt/os7Nu3z2YymWwvvvhiJ70r+ToaPzlpDOWkMZSTxlB2Gj85afzkpPGTU08dQylx1ckmTpxou+OOO1odGzx4sO3ee+9t8/xf/vKXtsGDB7c6dvvtt9smT57seHz99dfbZs+e3eqcWbNm2ebPn99Bve54rojD6eLi4nrMoMvVsbDZbLbGxkabr6+v7eWXXz7/DrtQZ8TCZrPZxowZY/vNb35zfp11MVfForGx0TZ16lTb888/b7v55pt7xMDLFbF48cUXbf7+/h3eV1dzRSz+/ve/2xISEmwNDQ0d32EX6YyfFY899pjN19fXVlVVdf4dlvOm8ZOTxlBOGkM5aQxl9//t3U1IVF0YB/B/zsxtQFtU6jT0YZjQBBKlVk4TfUBNiz62tTAialcLixZCUWE5WeYmiaBhoJ1StpEI0QRbaBTFDFQOk1nSIiTchCKMX8+78M3zmtabzjnXGfj/wIV3zlye5+F6+XNk5jI/KcxPCvOTkqkZih8VtNHo6Cjevn2LYDA443gwGER3d/ec73n58uWs9QcPHsSbN28wNjb2xzW/O+diMzWHTGTXLEZGRjA2NoYVK1boKdwAO2YhIujo6EAikcDu3bv1Fa+ZyVlUV1cjLy8Pp0+f1l+4ASZnMTw8jIKCAqxZswaHDx9GNBrV34BGpmbR0tICv9+Ps2fPwuPxoLi4GKFQCBMTE2YaSZFd981IJILjx48jOztbT+G0YMxPCjOUwgylMENNYX5SmJ8U5iclkzMUN65sNDg4iImJCXg8nhnHPR4PBgYG5nzPwMDAnOvHx8cxODj4xzW/O+diMzWHTGTXLKqqqrB69Wrs379fT+EGmJzFjx8/kJOTA8uycOjQITQ0NODAgQP6m9DE1Cy6uroQiUQQDofNFG6AqVn4fD48fPgQLS0taGxshNvtRiAQQG9vr5lGNDA1i8+fP6O5uRkTExN49uwZLl++jPr6etTU1JhpJEV23Ddfv36N9+/f48yZM/oKpwVjflKYoRRmKIUZagrzk8L8pDA/KZmcoZxaz0Z/ZcmSJTN+F5FZx/5v/a/H53vOdGBiDpnK5Cxu376NxsZGdHZ2wu12a6jWLBOzWLZsGWKxGIaHh9HR0YELFy6gsLAQe/fu1Ve4ATpnMTQ0hIqKCoTDYeTm5uov1jDd10V5eTnKy8unXw8EAigpKUFDQwPu3r2rq2wjdM9icnIS+fn5ePDgARwOB0pLS/Ht2zfU1dXhypUrmqvXx+R9MxKJoLi4GNu3b9dQKenC/KQwQynMUAoz1BTmJ4X5SWF+UjIxQ3Hjyka5ublwOByzdjO/f/8+axfzp1WrVs253ul0YuXKlX9c87tzLjZTc8hEpmdx584dhEIhPH/+HJs3b9ZbvGYmZ5GVlYWioiIAwJYtWxCPx3Hz5s20DV0mZvHhwwf09/fjyJEj069PTk4CAJxOJxKJBDZs2KC5k9TZdb/IysrCtm3b0vo/hqZm4fV64XK54HA4ptds2rQJAwMDGB0dhWVZmjtJjelrYmRkBE1NTaiurtZbOC0Y85PCDKUwQynMUFOYnxTmJ4X5ScnkDMWPCtrIsiyUlpaivb19xvH29nbs3Llzzvf4/f5Z69va2lBWVgaXy/XHNb8752IzNYdMZHIWdXV1uH79OlpbW1FWVqa/eM3svC5EBMlkMvWiDTExC5/Ph3fv3iEWi03/HD16FPv27UMsFsPatWuN9ZMKu64LEUEsFoPX69VTuAGmZhEIBPDp06fpIA4AHz9+hNfrTcvQZfqaePToEZLJJCoqKvQWTgvG/KQwQynMUAoz1BTmJ4X5SWF+UjI6Q2n7mnf6Kz8fPxmJRKSnp0cqKyslOztb+vv7RUSkqqpKTpw4Mb3+5+Mnz58/Lz09PRKJRGY9frKrq0scDofU1tZKPB6X2tratH+cs4k5JJNJiUajEo1Gxev1ysWLFyUajUpvb6/t/c2HiVncunVLLMuS5ubmGY8mHRoasr2/+TAxi1AoJG1tbdLX1yfxeFzq6+vF6XRKOBy2vb/5MDGLX2XKU3FMzOLatWvS2toqfX19Eo1G5dSpU+J0OuXVq1e29zcfJmbx9etXycnJkXPnzkkikZCnT59Kfn6+3Lhxw/b+/pbJv49du3bJsWPHbOuF/g7zk8IMpTBDKcxQU5ifFOYnhflJydQMxY2rRXDv3j0pKCgQy7KkpKREXrx4Mf3ayZMnZc+ePTPWd3Z2ytatW8WyLFm/fr3cv39/1jkfP34sGzduFJfLJT6fT548eWK6jZTpnsOXL18EwKyfX8+TjnTPoqCgYM5ZXL161YZuUqN7FpcuXZKioiJxu92yfPly8fv90tTUZEcrKTNxr/ivTAleIvpnUVlZKevWrRPLsiQvL0+CwaB0d3fb0UrKTFwX3d3dsmPHDlm6dKkUFhZKTU2NjI+Pm24lJSbmkEgkBIC0tbWZLp8WgPlJYYZSmKEUZqgpzE8K85PC/KRkYoZaIvLvN2sRERERERERERGlEX7HFRERERERERERpSVuXBERERERERERUVrixhUREREREREREaUlblwREREREREREVFa4sYVERERERERERGlJW5cERERERERERFRWuLGFRERERERERERpSVuXBERERERERERUVrixhUREREREREREaUlblwREREREREREVFa4sYVERERERERERGlpX8AgCYJbGVj9o8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQLklEQVR4nOzdd1hTZ/sH8G8SMth7y3KgUlQQJ+46UKzWVlurda8iWq3WOlqVqm/11ddata62zlartnV0SB1VsQ7cW1wowwGyZBOynt8fSH5GhgkETkLuz3VxKSfPOed+knBy5znP4DHGGAghhBBCTAif6wAIIYQQQmobJUCEEEIIMTmUABFCCCHE5FACRAghhBCTQwkQIYQQQkwOJUCEEEIIMTmUABFCCCHE5FACRAghhBCTQwkQIYQQQkwOJUAGaOvWreDxeLh48aJejnflyhV06dIFtra24PF4WLlyJaKjo/Hll1/qdJy5c+fC29sbZmZmsLOz00tsr6pKXPrStWtXdO3aVW/HGzVqFKysrPR2PKB6MWobT2FhIb788kvExMRU6TykZpVeH0p/zMzM4O7ujg8++AD3798vU95Q3zPlXZf0jcv3ckxMDHg8nt7OnZiYCB6Ph+XLl+vleED1YtQlHi6v65Ux4zoAUvPGjBmDgoIC7Nq1C/b29vD19cV//vMfrF27Vus35e+//46vvvoKX3zxBfr06QOxWFwjsUZHR+sUl6lZt25djZ+jsLAQCxYsAAC9JoREv7Zs2YImTZpAKpXi9OnT+Oqrr3D8+HHcuXMH9vb26nKG+p4p77pkCHGZkpYtWyI2NhYBAQE1eh5Dva5TAmQCbt68ifHjx6NPnz7VOgYATJkyBS4uLvoKjeiopi9UxHgEBgaiVatWAEo+3JVKJaKiorB//36MHj1aXc5Q3zP6uC6R6rGxsUG7du24DoMzdAvMiN2/fx9Dhw6Fi4sLxGIxmjZtirVr16ofL20qVygUWL9+vbrJfNSoUepyLzelJyYmlnseX19fzJ07FwDg6uoKHo+nzuRVKhWWLVuGJk2aQCwWw8XFBSNGjMDjx4/LHGfz5s1o0aIFJBIJHBwc8M477+D27dvqx3WNCyhpRn/rrbfUz4GHhwf69u2rcX6pVIo5c+bAz88PIpEInp6emDRpErKzs1/7HMtkMvznP/9R18/Z2RmjR49Genr6a/ctFR8fj/DwcFhZWcHLywuffvopiouLq3Se8m5nPH78GIMGDYK1tTXs7Ozw4Ycf4sKFC+DxeNi6datO8SQmJsLZ2RkAsGDBAo33DDFspcnQs2fPNLYb2numoutSqZs3b+Ltt9+Gvb09JBIJgoKCsG3btjLHSU5OxrBhwzSuf19//TVUKlWV4gJKrmf/+c9/0LhxY5ibm8POzg7NmzfHqlWrNMqdOnUK3bt3h7W1NSwsLBAaGooDBw5UeNyXXbx4Ef3794eDgwMkEgmCg4Pxyy+/aLVvqRUrVsDPzw9WVlZo3749zp49W6XzVHQL7IcffoC/vz/EYjECAgLw888/Y9SoURW20lUWT1Wu67WGEYOzZcsWBoBduHChwjK3bt1itra2rFmzZuzHH39khw8fZp9++inj8/nsyy+/ZIwxlpaWxmJjYxkANmjQIBYbG8tiY2NZfHw8GzRoEAOg3hYbG8ukUmm557p8+TIbO3YsA8AOHjzIYmNj2aNHjxhjjE2YMIEBYJMnT2YHDx5kGzZsYM7OzszLy4ulp6erj7F48WIGgA0ZMoQdOHCA/fjjj6x+/frM1taW3bt3jzHGdI4rPz+fOTo6slatWrFffvmFnThxgu3evZtFRESwuLg4xhhjKpWKhYWFMTMzMzZv3jx2+PBhtnz5cmZpacmCg4M1jt2lSxfWpUsX9e9KpZL17t2bWVpasgULFrAjR46wjRs3Mk9PTxYQEMAKCwsrfR1HjhzJRCIRa9q0KVu+fDn7559/2Pz58xmPx2MLFiyo0nlejTE/P581bNiQOTg4sLVr17JDhw6xadOmMT8/PwaAbdmyRad4pFIpO3jwIAPAxo4dq/GeIYahouvDmjVrGAC2Z88eje2G9p6p6LrEGGN37txh1tbWrEGDBuzHH39kBw4cYEOGDGEA2NKlSzWO4enpyZydndmGDRvYwYMH2eTJkxkANnHixCrFxRhjS5YsYQKBgEVFRbGjR4+ygwcPspUrV6qvqYwxFhMTw4RCIQsJCWG7d+9m+/fvZ7169WI8Ho/t2rVLXe748eMMADt+/Lh627Fjx5hIJGKdOnViu3fvZgcPHmSjRo0q87yXJyEhgQFgvr6+rHfv3mz//v1s//79rFmzZsze3p5lZ2frfJ7yYvzuu+8YADZw4ED2119/sR07djB/f3/m4+PDfHx8dI5H1+t6baIEyABpkwCFhYWxevXqsZycHI3tkydPZhKJhGVlZam3AWCTJk3SKDdp0iSmS/4bFRXFAGgkNbdv32YAWGRkpEbZc+fOMQDs888/Z4wx9vz5c2Zubs7Cw8M1yiUnJzOxWMyGDh1apbguXrzIALD9+/dXWKb0Arhs2TKN7bt372YA2Pfff6/e9uoHxc6dO8v9QLlw4QIDwNatW1dpfCNHjmQA2C+//KKxPTw8nDVu3LhK53k1xrVr1zIA7O+//9bY96OPPir3w0ybeNLT0xkAFhUVVWn9CDdKrw9nz55lcrmc5eXlsYMHDzI3NzfWuXNnJpfLNcob6numvOvSBx98wMRiMUtOTtbY3qdPH2ZhYaH+UJ09ezYDwM6dO6dRbuLEiYzH47G7d+9WKa633nqLBQUFVVqmXbt2zMXFheXl5am3KRQKFhgYyOrVq8dUKhVjrPzkokmTJiw4OLjMa/TWW28xd3d3plQqKzxvacLRrFkzplAo1NvPnz/PALCdO3fqfJ5XY1QqlczNzY21bdtWY7+kpCQmFArLTYC0iUfXz5vaQrfAjJBUKsXRo0fxzjvvwMLCAgqFQv0THh4OqVRabpOovh0/fhwAyjQpt2nTBk2bNsXRo0cBALGxsSgqKipTzsvLC2+++aa6nK4aNmwIe3t7zJo1Cxs2bEBcXFyZMseOHSs3xvfeew+WlpaVnvuvv/6CnZ0d+vXrp/EcBwUFwc3NTauREzweD/369dPY1rx5cyQlJenlPCdOnIC1tTV69+6tsX3IkCFVjocYh3bt2kEoFKpff3t7e/z+++8wM6u8a6chv2eOHTuG7t27w8vLS2P7qFGjUFhYiNjYWHW5gIAAtGnTpkw5xpj6715Xbdq0wbVr1xAZGYlDhw4hNzdX4/GCggKcO3cOgwYN0hgdJxAIMHz4cDx+/Bh3794t99jx8fG4c+cOPvzwQwAoc91OSUmpcN+X9e3bFwKBQP178+bNAUD9elTnPHfv3kVqairef/99je3e3t7o0KFDleIxZJQAGaHMzEwoFAp8++23EAqFGj/h4eEAgIyMjFqJAwDc3d3LPObh4aF+XNtyurK1tcWJEycQFBSEzz//HG+88QY8PDwQFRUFuVyuPreZmZm6L0ApHo8HNze3Ss/97NkzZGdnQyQSlXmeU1NTtXqOLSwsIJFINLaJxWJIpVK9nCczMxOurq5ltpe3Tdt4iHH48ccfceHCBRw7dgwfffQRbt++XWES8zJDfs9kZmZWeJ0ofVyXcrqaM2cOli9fjrNnz6JPnz5wdHRE9+7d1VOSPH/+HIyxKp27tG/WjBkzyvydR0ZGAtDuuu3o6Kjxe+mI3KKiomqfpzR2Xd4fr4vHkNEoMCNkb2+v/sYxadKkcsv4+fnVeBylb/yUlBTUq1dP47GnT5/CycmpTLlXvVyuKpo1a4Zdu3aBMYbr169j69atWLhwIczNzTF79mw4OjpCoVAgPT1dIwlijCE1NRWtW7eu8NhOTk5wdHTEwYMHy33c2tq6ynHr6zyOjo44f/58me2pqal6iY0YrqZNm6o7Pnfr1g1KpRIbN27Eb7/9hkGDBlW4nyG/ZxwdHSu8TgDQuKZoU05XZmZmmD59OqZPn47s7Gz8888/+PzzzxEWFoZHjx7B3t4efD6/Sucu3T5nzhy8++675ZZp3LhxleLW13lKr9WvdqQHDOP9oW/UAmSELCws0K1bN1y5cgXNmzdHq1atyvy8mpW/Sh9Z+ptvvgkA2L59u8b2Cxcu4Pbt2+jevTsAoH379jA3Ny9T7vHjx+om7+rGxePx0KJFC3zzzTews7PD5cuXAUB97FfPvWfPHhQUFGic+1VvvfUWMjMzoVQqy32O9XGxqu55unTpgry8PPz9998a23ft2lXleIzpGxz5f8uWLYO9vT3mz5+vHglVHkN+z3Tv3h3Hjh1TJxOlfvzxR1hYWKiHbHfv3h1xcXHqv/OXy/F4PHTr1q3acdnZ2WHQoEGYNGkSsrKykJiYCEtLS7Rt2xZ79+7VOKZKpcL27dtRr149+Pv7l3u8xo0bo1GjRrh27Vq5f+etWrXSy5eq6pyncePGcHNzKzNaLDk5GWfOnKlyTIZ6TaEWIAN27NixcocKhoeHY9WqVejYsSM6deqEiRMnwtfXF3l5eYiPj8eff/752nvgzZo1AwAsXboUffr0gUAgQPPmzSESibSOr3HjxpgwYQK+/fZb8Pl89OnTB4mJiZg3bx68vLwwbdo0ACUXknnz5uHzzz/HiBEjMGTIEGRmZmLBggWQSCSIioqqUlx//fUX1q1bhwEDBqB+/fpgjGHv3r3Izs5Gz549AQA9e/ZEWFgYZs2ahdzcXHTo0AHXr19HVFQUgoODMXz48Arr98EHH2DHjh0IDw/H1KlT0aZNGwiFQjx+/BjHjx/H22+/jXfeeUfr56smzjNy5Eh88803GDZsGP7zn/+gYcOG+Pvvv3Ho0CEAAJ+v+3cca2tr+Pj44Pfff0f37t3h4OAAJyenGpmojuiPvb095syZg5kzZ+Lnn3/GsGHDyi1nyO+ZqKgo/PXXX+jWrRvmz58PBwcH7NixAwcOHMCyZctga2sLAJg2bRp+/PFH9O3bFwsXLoSPjw8OHDiAdevWYeLEieokRNe4+vXrp55fydnZGUlJSVi5ciV8fHzQqFEjAMCSJUvQs2dPdOvWDTNmzIBIJMK6detw8+ZN7Ny5U2NI/6u+++479OnTB2FhYRg1ahQ8PT2RlZWF27dv4/Lly/j11191er70fR4+n48FCxbgo48+wqBBgzBmzBhkZ2djwYIFcHd3r9J7A9DP502N4LQLNilX6SiPin4SEhIYYyW98MeMGcM8PT2ZUChkzs7OLDQ0lP3nP//ROB7KGW1RXFzMxo0bx5ydnRmPx9M4bnnKGwXGWMmogaVLlzJ/f38mFAqZk5MTGzZsmHqY/Ms2btzImjdvzkQiEbO1tWVvv/02u3XrVpXjunPnDhsyZAhr0KABMzc3Z7a2tqxNmzZs69atGuWKiorYrFmzmI+PDxMKhczd3Z1NnDiRPX/+XKPcq6NlGGNMLpez5cuXsxYtWjCJRMKsrKxYkyZN2EcffcTu379f4fPFWMkIGktLyzLbS5/LqpynvBiTk5PZu+++y6ysrJi1tTUbOHAgi46OZgDY77//XqV4/vnnHxYcHMzEYjEDwEaOHFlpXUntqWyUaFFREfP29maNGjVSj8wx1PdMedclxhi7ceMG69evH7O1tWUikYi1aNGi3CHiSUlJbOjQoczR0ZEJhULWuHFj9r///a/MSCpd4vr6669ZaGgoc3JyYiKRiHl7e7OxY8eyxMREjXInT55kb775JrO0tGTm5uasXbt27M8//9QoU94oMMYYu3btGnv//feZi4sLEwqFzM3Njb355ptsw4YNlT5fpaOu/ve//5V5DOWMdNPmPBXF+P3337OGDRsykUjE/P392ebNm9nbb7/NgoODqxSPrp83tYXHGGO1k2oRQmrL4sWLMXfuXCQnJ5fpn0VIeeg9QyqSnZ0Nf39/DBgwAN9//z3X4egN3QIjxMitWbMGANCkSRPI5XIcO3YMq1evxrBhw+iDjJSL3jOkIqmpqfjqq6/QrVs3ODo6IikpCd988w3y8vIwdepUrsPTK0qACDFyFhYW+Oabb5CYmIji4mJ4e3tj1qxZ6uVLCHkVvWdIRcRiMRITExEZGYmsrCx15/MNGzbgjTfe4Do8vaJbYIQQQggxOTQMnhBCCCEmhxIgQgghhJgcSoAIIYQQYnKoE3Q5VCoVnj59Cmtr60ontSKE1BzGGPLy8uDh4VHlCdhqG107COGWLtcNSoDK8fTp0zKrERNCuPHo0SOjGZpN1w5CDIM21w1KgMpRuk7Ko0ePYGNjU2lZuVyOw4cPo1evXhAKhbURHidMpZ6A6dTV0OuZm5sLLy8vvS06Wxu0vXYY+nOvT6ZSV1OpJ2DYddXlukEJUDlKm65tbGy0SoAsLCxgY2NjcG8EfTKVegKmU1djqacx3UrS9tphLM+9PphKXU2lnoBx1FWb64Zx3FgnhBBCCNEjSoAIIYQQYnIoASKEEEKIyaE+QIQQo8cYg0KhgFKp5DQOmUwGHx8fyGQySKXSCsvJ5XKYmZlBKpVyHnNNM5W6mko9Ae7rKhQKIRAIqn0cSoAIIUZNJpMhJSUFhYWFXIcClUqFDRs24NmzZ0hPT6+wHGMMbm5uePTokVF18q4KU6mrqdQT4L6uPB4P9erVg5WVVbWOQwkQIcRoqVQqJCQkQCAQwMPDAyKRiNMPH6VSiaKiIvj6+lb6DVWlUiE/Px9WVlZGM8ljVZlKXU2lngC3dWWMIT09HY8fP0ajRo2q1RJECRAhxGjJZDKoVCp4eXnBwsKC63DUtwMkEslrEyCZTAaJRGISH5amUFdTqSfAfV2dnZ2RmJgIuVxerQSobr9KhBCTUNc/cAgh/09frbx01SCEEEKIyaEEiBBCCCEmhxIgQggxUDweD/v376/x8/j6+mLlypU1fp7ybN26FXZ2dpycm5g2SoAIIYQjaWlp+Oijj+Dt7Q2xWAw3NzeEhYUhNjYWAJCSkoI+ffpwHGVZlLSQuoBGgRFCak1SZgFm7bmOr98PgqedOdfhcO69996DXC7Htm3bUL9+fTx79gxHjx5FVlYWAMDNzY3jCAmpu6gFiBBSK5IzCzHk+7M4+zALc/fdqLHzMMZQKFNw8sMY0zrOnJwcnDp1CkuXLkW3bt3g4+ODNm3aYM6cOejbty8AzVtgiYmJ4PF4+OWXX9CpUyeYm5ujdevWuHfvHi5cuIBWrVrBysoKvXv31piEsWvXrvjkk080zj1gwACMGjWqwthWrFiBZs2awdLSEl5eXoiMjER+fj4AICYmBqNHj0ZOTg54PB54PB6+/PJLACXTEsycOROenp6wtLRE27ZtERMTo3HsrVu3wtvbGxYWFnjnnXeQmZmp9XNGiD5RCxAhpMYlZxbig+9j8TRHivrOllg6sHmNnatIrkTA/EM1dvzK3IjqoXVZS0tLWFlZYf/+/WjXrh3EYrFW+0VFRWHlypXw9vbGmDFjMGTIENjY2GDVqlWwsLDA+++/j/nz52P9+vVVrQb4fD5Wr14NX19fJCQkIDIyEjNnzsS6desQGhqKlStXYv78+bh79y4AqGfkHT16NBITE7Fr1y54eHhg3759CA8Px+nTpxEcHIxz585hzJgxWLx4Md59910cPHgQUVFRVY6TkOqgBIgQUqOSMwsx5Iez6uRn1/h2cLGRcB0W58zMzLB582Z89NFH2LBhA1q2bIkuXbrggw8+QPPmFSeIM2bMQFhYGABg6tSpGDJkCI4ePYoOHToAAMaOHYutW7dWK7aXW4z8/PywaNEiTJw4EevWrYNIJIKtrS14PJ7GLboHDx5g586dePz4MTw8PNSxHjx4EDt27EBwcDBWrVqFsLAwzJ49GwDg7++PM2fO4ODBg9WKl5CqoASIEFJjHmWVJD9PsotqLfkxFwoQtzCsRs9REZGOnQoGDhyIfv364eTJk4iNjcXBgwexbNkybNy4scJbVC8nR66urgCAZs2aaWxLS0vTOfaXHT9+HIsXL0ZcXBxyc3OhUCgglUpRUFAAS0vLcve5fPkyGGPw9/fX2F5cXAwbGxsAwO3bt/HOO+9oPN6+fXtKgAgnKAEihNSIR1mF+OD7F8mPU+21/PB4PFiIuLm0VWVlbIlEgp49e6Jnz56YP38+xo0bh6ioqAoTIKFQqP5/6Yy4r25TqVTq3/l8fpm+SXK5vMJ4kpKSEB4ejoiICCxatAgODg44deoUxo4dW+l+KpUKAoEAly5d0lieQKVSqc+vSx8pQmoadYImhOjdq8nPzgl020tbAQEBKCgo0NvxnJ2dkZKSov5dqVTi5s2bFZa/ePEiFAoFvv76a7Rr1w7+/v54+vSpRhmRSFQm2QsODoZSqURaWhoaNmyo8VPaUhUQEICzZ89q7Pfq74TUFkqACCF6VV7y40rJTxlZWVno0aMHtm/fjuvXryMhIQG//vorli1bhrfffltv53nzzTdx4MABHDhwAHfu3EFkZCSys7MrLN+gQQMoFAp8++23ePjwIX766Sds2LBBo4yvry/y8/Nx9OhRZGRkoLCwEP7+/vjwww8xYsQI7N27FwkJCbhw4QKWLVuGw4cPAwCmTJmivs137949rFmzhm5/Ec5QAkQI0ZuXkx8/Sn4qZWlpiTZt2uCbb75B586dERgYiHnz5mH8+PFYs2aN3s4zZswYjBw5EiNGjECXLl3g5+eHbt26VVg+KCgIK1aswNKlSxEYGIgdO3ZgyZIlGmVCQ0MRERGBwYMHw9nZGcuWLQMAbNmyBSNGjMCnn36Kxo0bo3///jh37hw8PT0BAO3atcPGjRvx7bffIigoCIcPH8bcuXP1VldCdMFjdFO2jNzcXNja2iInJ0fdea8icrkc0dHRCA8P17gPX9eYSj0B06mrvuv5+HlJ8vP4+YvkZ3w7uNlWPfnR5u9QKpUiISEBfn5+kEi4T7SUSiWuXLmC4OBgjX4wr1KpVMjNzYWNjU2dX8neVOpqKvUEuK9rZX/3unx+1+1XiRBSK/Sd/BBCyMsYY3rvRE8JECGkWh4/Lxnq/vh5EXwdLSj5IYToFWMMT3OkePK8SK9JEOcJ0Lp169TNWCEhITh58mSFZVNSUjB06FA0btwYfD6/zPTupfbs2YOAgACIxWIEBARg3759NRQ9IabtSXYRhvxwFo+yiuDjaIGdEyj5IYToD2MMqblSZOYXI6tQhgKZ7lNNVITTBGj37t345JNP8MUXX+DKlSvo1KkT+vTpg+Tk5HLLFxcXw9nZGV988QVatGhRbpnY2FgMHjwYw4cPx7Vr1zB8+HC8//77OHfuXE1WhRCT8yS7CB98H6tOfnZNaAd3W1rglBCiP89yi5GeVwwA8LQzh5VYf3N8cToR4ooVKzB27FiMGzcOALBy5UocOnQI69evLzPqACgZerlq1SoAwObNm8s95sqVK9GzZ0/MmTMHADBnzhycOHECK1euxM6dO8vdp7i4GMXFxerfc3NzAZR0Eq1s4q/SMi//W1eZSj0B06lrder5NLsIwzZfxKPnRfB2MMdPo1vBycJMr8+ZMTz/L0/yB/z/RIiMMY3JCF/18sSAlZWrC0ylrqZST6D26pqeL0NanhQA4G4rgb2FECqVSv13J5fLyww20OW6wVkCJJPJcOnSJfWaMKV69eqFM2fOVPm4sbGxmDZtmsa2sLAwrFy5ssJ9lixZggULFpTZfvjwYVhYWGh13iNHjugUp7EylXoCplNXXev5vBj49pYAmcU8OIoZxvjm4crpY7ii57gKCwv1fET9S01NLTNJIFCy0ntlo8BK5eXl1URYBslU6moq9QRqtq65MiBbVvJ/OxEgVEqRm1uSDMlkMhQVFeHff/+FQqHQ2E+X6wZnCVBGRgaUSqV6htBSrq6uSE1NrfJxU1NTdT7mnDlzMH36dPXvubm58PLyQq9evbQaBn/kyBH07Nmzzg+ZNoV6AqZT16rUMyVHig83XUBmcRG87M2xY2xruNdQn5/SllhD5ubmpnG9USqVuH79OmxtbSsdHswYQ15eHqytrdXLWdRVplJXU6knUPN1zSqQIVtWkuy4WIvhYi3WeFwqlcLc3BydO3cudxi8tjhfC+zVJ48xVu0nVNdjisViiMXiMtuFQqHWHwy6lDVmplJPwHTqqm09U3KKMHxL6W2vkj4/HnY11+fHGJ77ipIcHo9XaQJUetvgdeXqAlOpq6nUE6jZumYVFONpzv8nP642kjKf33w+Hzwer9xrly7XDc5eJScnJwgEgjItM2lpaWVacHTh5uam92MSYupScorwwfdnkZRZCC8Hc+ys4eSHEGJ6nhfK8Ph5EQDAyar85EefOEuARCIRQkJCyvQ/OHLkCEJDQ6t83Pbt25c55uHDh6t1TEJM2avJz64J7eFJyY/BGTVqFAYMGMB1GAbF19e30v6fddnp06fRrFkzCIVCo3hfZBfK8DirpP+Oo6UI7rY1m/wAHA+Dnz59OjZu3IjNmzfj9u3bmDZtGpKTkxEREQGgpG/OiBEjNPa5evUqrl69ivz8fKSnp+Pq1auIi4tTPz516lQcPnwYS5cuxZ07d7B06VL8888/Fc4ZRAipWGqOFEMo+akR6enpiIiIgLe3N8RiMdzc3BAWFobY2NgqHW/VqlXYunWrfoMsx6hRo8Dj8cr8xMfH6+X4MTEx4PF4lS7Y+nK50h9nZ2f06dMH165d00scxm769OkICgpCQkJCrbwvqiO3SI5HWUVgAOwtRPCwM6+VflSc9gEaPHgwMjMzsXDhQqSkpCAwMBDR0dHw8fEBUDLx4atzAgUHB6v/f+nSJfz888/w8fFBYmIigJJF+nbt2oW5c+di3rx5aNCgAXbv3o22bdvWWr0IqQtSc6T44PtYJGYWop69OXaOb0fJjx6NGDECjDFs27YN9evXx7Nnz3D06FFkZWVV6Xi2trZ6jrBivXv3xpYtWzS2OTs719r5X3b37l3Y2NggOTkZU6ZMQe/evXHnzp1afT6qS6lUatWfhjEGpVIJM7PXf3Q/ePAAERERqFevXpXjkslkEIlEVd5fG3lSOZKyCsHAYGchQj372kl+AAOYCToyMhKJiYkoLi7GpUuX0LlzZ/VjW7duRUxMjEb50vVAXv4pTX5KDRo0CHfu3IFMJsPt27fx7rvv1kJNCKk7UnOkGPLDWXXys2tCO9Sz125KCM4xBsgKuPnRcpr+7OxsnD17FkuWLEG3bt3g4+ODNm3aYM6cOejbty8A4NNPP0W/fv3U+6xcuRI8Hg8HDhxQb2vcuDG+++47AGVvgXXt2hVTpkzBzJkz4eDgADc3N3z55Zcacdy5cwcdO3aERCJBQEAA/vnnH/B4POzfv7/S+EtbrF7+KR32f+LECbRp0wZisRju7u6YM2eOxlDl4uJiTJkyBS4uLpBIJOjYsSMuXLgAAEhMTFSvVG9vbw8ej4dRo0ZVGouLiwvc3NzQpk0bfP3110hNTcXZs2fLLbtixQo0a9YMlpaW8PLyQmRkJPLz89WPb926FXZ2djh06BCaNm0KKysr9O7dGykpKeoypc/z8uXL4e7uDkdHR0yaNElj/hmZTIaZM2fC09MTlpaWaNu2rcZnWel5/vrrL/WqBUlJSWXiLW3lOnToEFq1agWxWIyTJ0+CMYZly5ahfv36MDc3R4sWLfDbb7+pn0Mej4fMzEyMGTMGPB5P3QIUFxeH8PBwWFlZwdXVFcOHD0dGRob6fF27dsXkyZMxffp0ODk5oWfPnuXuN2LECGRmZmrs97r3WnZ2NiZMmABXV1dIJBIEBgbi1737kZRZCMYY4m9cwrABvWFhYQEvLy9MmTIFBQUFlb721cX5KDBCiGEpTX4SMgrULT9Gk/wAgLwQWOzBzblnPdKqmJWVFaysrPD7778jNDS03FGoXbt2xaZNm6BSqcDn83HixAk4OTnhxIkT6Nu3L1JTU3Hv3j106dKlwvNs27YN06dPx7lz5xAbG4tRo0ahQ4cO6NmzJ1QqFQYMGABvb2+cO3cOeXl5+PTTT6tcdQB48uQJwsPDMWrUKPz444+4c+cOxo8fDx6Ph8WLFwMAZs6ciT179mDbtm3w8fHBsmXLEBYWhvj4eHh5eWHPnj0YOHCgumXH3Fz7VsfSshVNhsfn87F69Wr4+voiISEBkZGRmDlzJtatW6cuU1hYiOXLl+Onn34Cn8/HsGHDMGPGDOzYsUNd5vjx43B3d8fx48cRHx+PwYMHo3nz5hg8eDAAYPTo0UhMTMSuXbvg4eGBffv2oXfv3rhx4wYaNWqkPs+SJUuwceNGODo6wsXFpcJ6zZw5E8uXL0f9+vVhZ2eHuXPnYu/evVi/fj0aNWqEf//9F8OGDYOzszM6duyIlJQUNG7cGAsXLsTgwYNha2uLlJQUdOnSBePHj8eKFStQVFSEWbNm4f3338exY8fU59q2bRsmTpyI06dPgzFW7n4zZ87E6NGjNZK6173X+vTpg7y8PGzfvh0NGjTA5Ws3kJ4vh4oxPH14FyPfH4BFixZh06ZNSE9Px+TJkzF58uQyLY16xUgZOTk5DADLycl5bVmZTMb279/PZDJZLUTGHVOpJ2OmU9fy6pmaU8S6/u8485n1FwtdcpQlZxZwFp82f4dFRUUsLi6OFRUV/f/G4nzGomw4+VEU5rALFy4whUJRad2USiXbtm0bs7e3ZxKJhIWGhrI5c+awa9euqctkZ2czPp/PLl68yFQqFXN0dGRLlixhrVu3Zowx9vPPPzNXV1d1+ZEjR7K3335b/XuXLl1Yx44dNc7bunVrNmvWLMYYY3///TczMzNjKSkp6sePHDnCALB9+/ZVGPvIkSOZQCBglpaW6p9BgwYxxhj7/PPPWePGjZlKpVKXX7NmDbOysmJyuZzl5+czoVDIduzYoX5cJpMxDw8PtmzZMsYYY8ePH2cA2PPnzyt9Dl8tl5GRwfr378+sra3Zs2fPGGOM+fj4sG+++abCY/zyyy/M0dFR/fuWLVsYABYfH6/etnbt2jLPs4+Pj8Zr/N5777H333+fPX/+nN27d4/xeDz25MkTjXN1796dzZkzR+M8V69e1aqO+/fvV2/Lz89nEomEnTlzRqPs2LFj2ZAhQ9S/29rasi1btqh/nzdvHuvVq5fGPo8ePWIA2N27dxljJe+ZoKAgjTLl7ZeUlMQAsNu3b6v3q+y9dujQIcbn89XnKSiWs5uPs9m1R8/Zg7Q8NmzYcDZhwgSN/U+ePMn4fL7m3/YL5f7dv6DL5ze1ABFCAADPcks6PCdkFMDTruS2l5eDEbX8lBJaAJ+XnZ25VvDLtuRUpH///hg0aBBOnz6N2NhYHDx4EMuWLcPGjRsxatQo2NraIigoCDExMRAKheDz+fjoo48QFRWFvLw8xMTEVNr6AwDNmzfX+N3d3R1paWkASvrOeHl5wc3NTf14mzZttIq9W7duWL9+vfp3S0tLAMDt27fRvn17jT4coaGhyM/Px+PHj5Gbmwu5XI4OHTqoHxcKhWjTpg1u376t1blfVdrHpaCgAI0aNcKvv/5aYWvK8ePHsXjxYsTFxSE3NxcKhQJSqRQFBQXqOlhYWKBBgwbqfV5+zkq98cYbGjN9u7u748aNGwCAy5cvgzEGf39/jX2Ki4vh6Oio/l0kEpV5fSrSqlUr9f/j4uIglUrVt6dKyWQyjT6yr7p06RKOHz8OKyurMo89ePBAHe/L59JmvyZNmgCo/L129epV1KtXD/7+/iiSKZCQUQAlY7AUm8HX0RKXL19CfHy8Risbe7HMRkJCApo2bVphvaqDEiBCCNJeJD8PjT35AQAeDxBZcnNupW4rVUskEvTs2RM9e/bE/PnzMW7cOERFRan7vXTt2hUxMTEQiUTo0qUL7O3t8cYbb+D06dOIiYl57ejWVyeF4/F46knsWDUmnbW0tETDhg3LbC/vmOxFvygej6fx/9ftp62TJ0/CxsYGzs7Olc7cn5SUhPDwcERERGDRokVwcHDAqVOnMHbsWI1bZuU9Z+yVvl2VPa8qlQoCgQCXLl0qsxzKy0mEubn2nX1Lk7PS4wPAgQMH4OnpqVGuvFupL+/Xr18/LF26tMxj7u7u5Z6rov1UKhXy8/PVt/OAyp+T0luTUrmyJPlRMViISpIfPr+k3EcffYQpU6aUic3b27vCOlUXJUCEmLi0vGIM33yxbiQ/Ri4gIECjA3JpPyAzMzP06NEDANClSxfs2rXrtf1/XqdJkyZITk7Gs2fP1BPFlnZGrk78e/bs0UhoYmNjYW1tDU9PTzg5OUEkEuHUqVMYOnQogJL+OhcvXlQnc6WjjpRaJpN+fn6ws7N7bbmLFy9CoVDg66+/Vo+2+uWXX3Ss4esFBwdDqVQiLS0NnTp10vvxSztNJycn6/T6t2zZEnv27IGvr69Wo8gq20+lUiE3N7dMslSR5s2b4/Hjxzh29hrq+dWHuUgAPycLCPg89Tlu3bpVblJdkzgfBUYI4U6ODBi++QIlP7UsMzMT/fv3x/bt23H9+nUkJCTg119/xbJly/D222+ry3Xu3Bl5eXn4888/0bVrVwAlSdH27dvh7OyMgICAKsfQs2dPNGjQACNHjsT169dx+vRpfPHFFwDKttBoKzIyEo8ePcLHH3+MO3fu4Pfff8eXX36JyMhI8Pl8WFpaYuLEifjss89w8OBBxMXFYfz48SgsLMTYsWMBAD4+PuDxePjrr7+Qnp6uMUqrOho0aACFQoFvv/0WDx8+xE8//YQNGzbo5dgv8/f3x4cffogRI0Zg7969SEhIwIULF7B06VJER0dX+/jW1taYMWMGpk2bhm3btuHBgwe4cuUK1q5di23btlW436RJk5CVlYUhQ4bg/PnzePjwIQ4fPowxY8ZUmmxWtN/kyZO1TlLbdeiIVu06YOr4Ybh05gSQm4bDhw7h4MGDAIBZs2YhNjYWkyZNwtWrV3H//n388ccf+Pjjj3V7cnRECRAhJiotrxhr4wR4mFEIT7uS0V6U/NQOKysrhISEYNWqVejcuTMCAwMxb948jB8/HmvWrFGXs7W1RXBwMBwcHNTJTqdOnaBSqarV+gMAAoEA+/fvR35+Plq3bo1x48Zh7ty5AFBmgUlteXp6Ijo6GufPn0eLFi0QERGBMWPGYMaMGeoy//3vfzFw4EAMHz4cLVu2RHx8PA4dOgR7e3v1MRYsWIDZs2fD1dUVkydPrlY9SwUFBWHFihVYunQpAgMDsWPHDixZskQvx37Vli1bMGLECHz66ado3Lgx+vfvj3PnzsHLy0svx1+0aBHmz5+PJUuWoGnTpggLC8Off/4JPz+/Cvfx8PDA6dOnoVQqERYWhsDAQEydOvW1C/eWt9+0adNgY2Oj1TpgMoUSCekFWL5hG5oHh+CzyLFo3iwQM2fOVCdQzZs3x4kTJ3D//n106tQJwcHBmDdvnsatuZrAY6/e3CTIzc2Fra0tcnJytFoNPjo6GuHh4UaxeGNVmUo9AdOoa5FMiXfWncad1Dy420qwe0J7eDsaVvKjzd+hVCpFQkIC/Pz8qvyhrU9KpRJXrlxBcHBwmf4fLyu9haDth0htOX36NDp27Ij4+HiNjsDVYah11TdTqSegfV3lChUeZORDplBBbCZAfWdLCAXVf24q+7vX5fOb+gARYmIYY5i7/ybupObBSsiwfUwrg0t+SO3Yt28frKys0KhRI8THx2Pq1Kno0KGD3pIfYrrkShUeZhRAplBBZMaHn5N+kh99ogSIEBOz68Ij7Ln8GHweMKqRCt5028tk5eXlYebMmXj06BGcnJzQo0cPfP3111yHRYycQqlCQkYBihVKCAV81HeyhMjMsJIfgBIgQkzK9cfZiPr9FgBgeo9G8Mqv2twrpG4YMWJEmQWnCakOhaok+ZHKX05+Kr4dzCXDS8kIITUiu1CGidsvQ6ZUoWeAKyZ08uU6JEJIHaJUqZCYUYgiuRJm/JLbXmKhYSY/ALUAEWISVCqGabuv4kl2EXwcLbD8vRaopQWXawWN5SCEW0oVQ2JGIQplCgj4PPg5WUJSQ8mPvv7eqQWIEBOw9ng8jt9Nh9iMj3UftoSted0Y3VY6Sq+wsJDjSAgxXSoVQ1JmAQpkCgh4JcmPuajmWn5kMhkAVDrSUhvUAkRIHXfyfjpW/HMPALBoQCDe8LDlOCL9EQgEsLOzU685ZGFhUeVJ/PShdF4TqVT62mHwMpkMUqnUJIZMm0JdTaWegGZdwePhaXYRCooV4PF4cLc3B1+lgFSqqLFzp6enw8LCQqcZrctDCRAhddjT7CJM3XUVjAEftPbC+630MxGbISldzPPVBSu5oFKpkJGRgcTExEo/BBljKCoq0mk9KGNlKnU1lXoC/19Xibk5nhfIUCRXgc8DHK1EeFZY831++Hw+vL29q/08UwJESB0lU6gw6efLyCqQ4Q0PG3zZ/w2uQ6oRPB4P7u7ucHFx0VjUkgv5+fno27cvLl68WO7q2aXkcjn+/fdfdO7cuc5OtlnKVOpqKvUESup6/MS/iC10xb/3MyAU8PHVgGZo4mtfK+cXiUR6aWWjBIiQOmpx9G1cSc6GjcQM6z8MqbEOiYZCIBBUu09AdclkMiQlJUEkElU6M7VAIIBCoYBEIqnzH5amUldTqScA8Hh8/HRHhQsZzyAU8PDd8GB0aOLKdVg6q9s3KgkxUX9ce4qtZxIBAN8MDqKZngkhesEYw/w/43Ahgw8Bn4dvh7TEm0aY/ACUABFS59x/lofZe64DACZ1a4DuTY3z4kQIMTzf/fsQuy8+AQ8MywcGonegG9chVRklQITUIfnFCkRsv4RCmRIdGjpies/GXIdECKkjYh9kYtnBOwCAQX4qvNW8Zldrr2mUABFSRzDGMHvPdTxIL4CbjQSrPgiGgF+3R6MQQmrHs1wpPt55GSoGvBPsgQ6uxj/5KCVAhNQR284k4q/rKTDj87D2w2A4WYm5DokQUgfIlSpM2nEZGfkyNHGzxoK3mtaJmeQpASKkDriU9Bz/OVCysOnn4U0R4uPAcUSEkLriv3/fwcWk57AWm2H9sJAaneW5NlECRIiRy8gvxqQdl6FQMfRt7o7RHXy5DokQUkdE30jBplMJAIDl77eAn5MlxxHpDyVAhBgxpYph6q4rSM2VooGzJZYObF7nZ6ElhNSOB+n5+OzXawCAj7rUR9gbxjviqzyUABFixL45cg+n4zNhIRJgw7AQWIlpblNCSPUVFCsQ8dMlFMiUaOvngM961b0RpZQAEWKkjt15hjXH4wEAS95thkau1hxHRAipCxhjmLP3Bu6n5cPFWoxvhwbDTFD30oW6VyNCTMCjrEJ8susqAGBkex+8HeTJbUCEkDrjp7NJ+OPaUwj4PKwZ2hIu1hUv62LMKAEixMhI5UpM3HEJuVIFgrzs8EXfAK5DIoTUEVeSn2PRX3EAgDl9mqCNX90dUUoJECFGZsGft3DzSS4cLEVY92FLiMzoz5gQUn2Z+cWI3HEZciVDn0A3jO3ox3VINYqunIQYkV8vPsLO84/A4wGrPgiCh5051yERQuoApYrhk91XkZIjRX0nSywbVPdHlFICRIiRiHuai7n7bwIApvXwR6dGzhxHRAipK1b9cw8n72fAXCjA+mEhsJYIuQ6pxlECRIgRyCmSY+KOSyhWqNC1sTMmd2vIdUiEkDri+J00rD72/yNKG7uZxohSSoAIMXCMMcz49RqSMgvhaWeOlYODwKdFTgkhevAoqxCf7L4KABjezgcDgk1nRCklQIQYuO/+fYgjcc8gEvCxflhL2FmIuA6JEFIHSOVKRO64jJwiOVp42WHuW025DqlWUQJEiAGLfZCJZQfvAACi+gegeT07bgMihNQZC/6Mw40nObC3EGLdhy0hNqsbi5xqixIgQgxUWq4UH++8AhUD3m3piaFtvLkOiRBSR5SMKE0Gjwes/CAYniY4opQSIEIMkFypwqSfLyMjvxhN3Kzx1YBmdX5IKiGkdrw8ovST7v7o4m+aI0opASLEAC07eAcXEp/DWmyG9cNCYC4yraZpQkjNeHVE6cdvmu6IUkqACDEwB2+m4IeTCQCA/73XAn5OlhxHRAipC14dUfrN+6Y9opQSIEIMyMP0fMz49ToAYELn+ugd6MZxRISQuuLlEaXrPmwJe0vTHlFKCRAhBqJQpsDE7ZeRX6xAGz8HzAxrzHVIhJA64tURpS287LgNyABQAkSIAWCMYe6+m7j7LA9OVmKsGRIMMwH9eRJCqu9ZrhQf77xMI0pfQVdYQgzAz+eTsffKEwj4PKwdGgwXGwnXIRFC6gC5UoXJP19GRr6MRpS+ghIgQjgWn5aPBX/EAQBmhjVG2/qOHEdECKkrlv5NI0orQgkQIRxijOHzfTcgU5YMSZ3QuT7XIRFC6ojoGynYeIpGlFaEEiBCOPTrpcc4n5AFc6EA/xkQSE3ThBC9eJCej89+vQYA+IhGlJaLEiBCOJKZX4zF0bcBANN7+qOevQXHERFC6oKSEaWXUCBToo2fAz6jEaXlogSIEI58FX0b2YVyNHW3wegOvlyHQwipAxhjmLP3Bu49y4eztRhrhtKI0orQs0IIB87EZ2Dv5Sfg8YAl7zajCxQhRC+2n03C71efQsDnYc2QYLhY04jSitBVl5BaJpUr8cWLhQhHtPNBEE1IRgjRgyvJz7Hwr5IRpbN7N6ERpa9BCRAhtWxdzAMkZBTA1UaMT+nePCFED7IKZJi04zLkSobeb7hhXCc/rkMyeJwnQOvWrYOfnx8kEglCQkJw8uTJSsufOHECISEhkEgkqF+/PjZs2FCmzMqVK9G4cWOYm5vDy8sL06ZNg1QqrakqEKK1+LR8rI+JBwB82e8N2EiEHEdECDF2ShXD1F1X8DRHCj8nS/zvveY0olQLnCZAu3fvxieffIIvvvgCV65cQadOndCnTx8kJyeXWz4hIQHh4eHo1KkTrly5gs8//xxTpkzBnj171GV27NiB2bNnIyoqCrdv38amTZuwe/duzJkzp7aqRUi5Suf8kSsZujdxoWGphBC9WHX0Pk7ez4BEyMf6YS1hTV+stGLG5clXrFiBsWPHYty4cQBKWm4OHTqE9evXY8mSJWXKb9iwAd7e3li5ciUAoGnTprh48SKWL1+OgQMHAgBiY2PRoUMHDB06FADg6+uLIUOG4Pz587VTKUIq8PKcPwvefoO+oRFCqu34nTSsPnofQMmAiiZuNhxHZDw4S4BkMhkuXbqE2bNna2zv1asXzpw5U+4+sbGx6NWrl8a2sLAwbNq0CXK5HEKhEB07dsT27dtx/vx5tGnTBg8fPkR0dDRGjhxZYSzFxcUoLi5W/56bmwsAkMvlkMvlldaj9PHXlTN2plJPoGbqmlkgw+IDJXP+TO3eAK5WQs6fS0N/TQ01rpdV9dph6M+9PplKXbmo5+PnRfhk9xUAwNA29fBWoGutnN+QX1NdYuIsAcrIyIBSqYSrq6vGdldXV6Smppa7T2pqarnlFQoFMjIy4O7ujg8++ADp6eno2LEjGGNQKBSYOHFimUTrZUuWLMGCBQvKbD98+DAsLLSbnO7IkSNalTN2plJPQL913X6fj+wiPjwtGFyy4xAdHae3Y1eXob6mhYWFXIfwWtW9dhjqc18TTKWutVVPxoC1cXzkFPHhbckQwktEdHRirZy7lCG+prpcNzi9BQagzG0AxliltwbKK//y9piYGHz11VdYt24d2rZti/j4eEydOhXu7u6YN29eucecM2cOpk+frv49NzcXXl5e6NWrF2xsKm9OlMvlOHLkCHr27AmhsO7edzWVegL6r+uZB5m4EHsJPB6wang7tKhnq4coq8/QX9PS1hRDVtVrh6E/9/pkKnWt7Xr+eukJ7p+9BYmQj80TQuHjUHszyRvya6rLdYOzBMjJyQkCgaBMa09aWlqZVp5Sbm5u5ZY3MzODo2PJfAfz5s3D8OHD1f2KmjVrhoKCAkyYMAFffPEF+Pyy/b7FYjHEYnGZ7UKhUOsXV5eyxsxU6gnop65SuRJRf5bc+hrRzget/Jz0EZpeGepraogxvaq61w5Dfe5rgqnUtTbqmZYnxdJD9wCULKPT0JWbL1WG+JrqEg9no8BEIhFCQkLKNKEdOXIEoaGh5e7Tvn37MuUPHz6MVq1aqStdWFhYJskRCARgjKlbiwipLeuOxyMxs5Dm/CGE6M2CP+OQUyRHoKcNxnSg+X6qitNh8NOnT8fGjRuxefNm3L59G9OmTUNycjIiIiIAlDQvjxgxQl0+IiICSUlJmD59Om7fvo3Nmzdj06ZNmDFjhrpMv379sH79euzatQsJCQk4cuQI5s2bh/79+0MgENR6HYnpik/Lw/oTDwDQnD+EEP34J+4ZDlxPgYDPw3/fbU7L6FQDp32ABg8ejMzMTCxcuBApKSkIDAxEdHQ0fHx8AAApKSkacwL5+fkhOjoa06ZNw9q1a+Hh4YHVq1erh8ADwNy5c8Hj8TB37lw8efIEzs7O6NevH7766qtarx8xXSoVw+d7b9KcP4QQvcmTyjHv95JldMZ19EOgp2H0JzRWnHeCjoyMRGRkZLmPbd26tcy2Ll264PLlyxUez8zMDFFRUYiKitJXiITo7LdLj3E+keb8IYToz/JDd5GSI4W3gwU+6eHPdThGj9rOCNGzjPxifBVd0vF5ek9/1LOvvdEZhJC66VLSc/x4NgkAsPidZjAXUZeO6qIEiBA9W3zgNnKK5GjqboPRHXy5DocQYuRkChXm7L0OxoCBLeuhYyPDG01qjCgBIkSPTsdnYO+VJ+DxSqalpw6KhJDq2nDiAe49y4ejpQhz+zblOpw6g67OhOiJVK7EF/tuACiZ8yfIy47bgAghRi8+LQ9rjsUDAOb3C4C9pYjjiOoOSoAI0ROa84cQok8qFcOcvTcgU6rQrbEz+rfw4DqkOoUSIEL0gOb8IYTo28/nk3Eh8TksRAL8551mNJpUzygBIqSaaM4fQoi+peZIsfTvOwCAz8Iaw9POnOOI6h5KgAipJprzhxCib1F/3EResQJBXnYY0d6X63DqJEqACKkGmvOHEKJvB2+m4NCtZzDj8/Dfgc0g4NOXqppACRAh1UBz/hBC9CmnSI75v98CAER0aYAmbjYcR1R3UQJESBXRnD+EEH377993kJZXjPpOlpj8ZkOuw6nT6IpNSBXQnD+EEH079zATO8+XLAC++N1mkAhpuYuaRAkQIVVAc/4QQvRJKldizt6SL1VD2nihXX1HjiOq+ygBIkRHNOcPIUTf1h6Px8OMAjhbizG7Dy13URsoASJEBzTnDyFE3+6k5mJ9TMmXqoX934CtOX2pqg2UABGiA5rzhxCiT0oVw+w9N6BQMfQMcKUvVbWIEiBCtERz/hBC9O2n2ERcfZQNa7EZFr0dSF+qahElQIRoieb8IYTo05PsIiw7dBcAMLNPE7jZSjiOyLRQAkSIFmjOH0KIPjHGMHffDRTKlGjlY48P23hzHZLJoas4Ia9Bc/4QQvTtz+spOH43HSIBH/8d2Ax8Wu6i1lECRMhr0Jw/hBB9el4gw4I/Spa7iOzWAA1drDmOyDRRAkRIJWjOH0KIvn0VfRuZBTI0crHCxK4NuA7HZFECREgFaM4fQoi+nbqfgd8uPQaPB/x3YDOIzWi5C65QAkRIBfZceUpz/hBC9KZIpsTnL/oTDm/ngxAfB44jMm1mXAdAiCHKkwP/ezE89dNeNOcPIaT6Vh69h+SsQrjZSPAZ9SfkHLUAEVKO3xP5yClSIMDdBqNCfbkOhxBi5G4+ycHGkwkAgEUDAmFN/Qk5RwkQIa848yATFzL4NOcPIUQvFEoVZu+9DqWKoW8zd/QMcOU6JAJKgAjRIJUrMf+PkuUuhrX1Rgua84cQUk1bTifi5pNc2EjMENU/gOtwyAuUABHyks2nE5CUVQhbIcO07g25DocQYuSSMwvx9ZGS/oRf9G0KF2ta7sJQUAJEyAs5hXJsiCmZ86efjwrWEhojQAipOsYYvth/A1K5Cu3qO+D9Vl5ch0ReQgkQIS98f/IBcqUK+LtYIcSJcR0OIcTI7b38BCfvZ0BkxseSd5vTVBoGhhIgQgCk5xVj86lEAMC0Hg1By/IQQqojM78Y/zkQBwCY2r0R/JwsOY6IvIoSIEIArD0ejyK5EkFedujexJnrcAghRm7RX3F4XihHEzdrTOhcn+twSDkoASIm7/HzQuw4lwQAmBnWmJqpCSHVcvxuGvZffQo+D/jvwOYQ0lQaBoleFWLyVv5zH3IlQ4eGjght6MR1OIQQI1ZQrMDcfTcBAKNC/RBEU2kYLEqAiEmLT8vD3suPAQAzetHU9ISQ6ll5NB5PsovgaWeOT3v5cx0OqQSN8yUmbcWRe1AxoFeAK4K97bkOhxBixJLygB9vJQMAvnonEJZi+og1ZNQCREzWjcc5iL6RCh4P+JRafwgh1SBXqrDzoQAqBgwI8kDXxi5ch0RegxIgYrL+d7hkdtZ3gjzR2M2a42gIIcZs06lEpBTyYG8hxLy3aLkLY0AJEDFJZx9m4t976TDj8/BJD7pPTwipurRcKdadeAgAmNO7MRytxBxHRLRBCRAxOYwx/O9QSevPB2284O1owXFEhBBj9s0/91EkV8HXimFAkDvX4RAtUQJETM7xu2m4lPQcEiEfU95sxHU4hBAjFp+Wh18uPgIA9PdR0jxiRoQSIGJSVCqG/x26BwAYGeoLFxtamZkQUnVLD96FUsXQvYkzGthwHQ3RBSVAxKT8dSMFt1NyYS02w8QuDbgOhxBixC4mZuFI3DPwecCnPak12dhQAkRMhlypwooXI78mdK4POwsRxxERQowVYwyLo28DAAa39kIjFyuOIyK6ogSImIzfLj1GYmYhHC1FGN3Rj+twCCFG7NCtVFxOzoZEyKeRpEaKEiBiEqRyJVb9cx8AMKlbQ1jRDK2EkCqSK1VYdrCkNXl8p/pwpb6ERokSIGIStp9NQmquFB62Egxt6811OIQQI7brwiM8zCiAg6UIEzrX5zocUkVafQ2ePn26zgeeO3cuHBwcdN6PEH3Lk8qx9ng8AOCTHv6QCAUcR0QIMVYFxQp1a/LU7o1gLRFyHBGpKq0SoJUrV6J9+/YQibTrNHrq1ClMnjyZEiBiEDadSsDzQjnqO1ni3ZaeXIdDCDFiP5x8iIz8Yvg4WmBIG2pNNmZad4TYt28fXFy0W9zN2prWVSKGIatAho0nEwAA03v5w0xAd30JIVWTlifF9/+WLHnxWVhjiMzoemLMtHr1tmzZAltbW60P+t1338HV1bXKQRGiLxtOPEB+sQJveNggPJCmqCeEVN3qo/dRKFOiRT1b9G1G1xNjp1UL0MiRI3U66NChQ6sUDCH6lJojxbYziQCAGWGNwefTFPWEkKp5kJ6PnedLlryYE96UlryoA6rVfpefn4/c3FyNH12tW7cOfn5+kEgkCAkJwcmTJystf+LECYSEhEAikaB+/frYsGFDmTLZ2dmYNGkS3N3dIZFI0LRpU0RHR+scGzFuq4/dR7FChda+9ujq78x1OIQQI/Y/9ZIXLmhX35HrcIge6JwAJSQkoG/fvrC0tIStrS3s7e1hb28POzs72Nvb63Ss3bt345NPPsEXX3yBK1euoFOnTujTpw+Sk5MrPHd4eDg6deqEK1eu4PPPP8eUKVOwZ88edRmZTIaePXsiMTERv/32G+7evYsffvgBnp7U+dWUJGYU4JcLJd/WPgtrQt/WCCFVdinpOQ7eSgWfB8zq04TrcIie6Dwb3IcffggA2Lx5M1xdXav1wbJixQqMHTsW48aNA1Ay2uzQoUNYv349lixZUqb8hg0b4O3tjZUrVwIAmjZtiosXL2L58uUYOHCgOq6srCycOXMGQmHJ8EQfH58qx0iM0zf/3INCxdC1sTPa+NFoREJI1TDGsOTFkhfvhXjB35UG+dQVOidA169fx6VLl9C4ceNqnVgmk+HSpUuYPXu2xvZevXrhzJkz5e4TGxuLXr16aWwLCwvDpk2bIJfLIRQK8ccff6B9+/aYNGkSfv/9dzg7O2Po0KGYNWsWBILy538pLi5GcXGx+vfSW3lyuRxyubzSepQ+/rpyxs6Y6nknNQ9/XHsKAPjkzQY6x2xMda0OQ6+nocb1sqpeOwz9udcnY6/rP7fTcDHpOSRCPiZ386uwHsZeT10Ycl11iUnnBKh169Z49OhRtROgjIwMKJXKMqPFXF1dkZqaWu4+qamp5ZZXKBTIyMiAu7s7Hj58iGPHjuHDDz9EdHQ07t+/j0mTJkGhUGD+/PnlHnfJkiVYsGBBme2HDx+GhYWFVvU5cuSIVuWMnTHU84c7fDDGR7CjCklXTyHpatWOYwx11QdDrWdhYSHXIbxWda8dhvrc1wRjrKuSAUuvCQDw0NFFgcunjr12H2OsZ1UZYl11uW7onABt3LgRERERePLkCQIDA9W3mUo1b95cp+O9eguNMQZzc3NIpdIyZT08PGBpaVnmMR8fHygUCkilUri5ucHe3h6rV6+GQCDAG2+8gefPn2Pz5s2YOXNmuTFMnz4dkydPVv+en5+Prl27omvXrrCyqnyFX4VCgTNnziA0NBRmZnV3fSljqeftlDw8v3kdXrY8LB4cjHr25jofw1jqWl1c1pPH48HMzKzCVlkAVRpUUdvmzJmjMVN+bm4uvLy80KtXL9jY2FS4n1wux5EjR9CzZ88y19C6xpjruuvCYzwrioO9hRDLRnWsdNZnY66nrgy5rrpcN3S+6qWnp+PBgwcYPXq0ehuPxwNjDDweD0qlUqvjODk5QSAQaLT2MMbg6uqKZcuWISEhocw+UVFREIlEGo+JxWJs2LABeXl5yM/PR1RUFHg8nkZH6rZt28LPzw8PHz7Uqs+SSqXChg0bkJWVhezs7ErLMsbg5uaGlJSUOt3R1ljqKc0rxpfdXGApFgAFmXhcoPsxjKWu1WUI9bSzs4Obm1u55ze0C2t5xGIxxGJxme1CoVCr+LUtVxcYW10LZQqsPv4AAPDxm43gYK3d3QBjq2d1GGJddYlH5wRozJgxCA4Oxs6dO6vVCVokEiEkJARHjhzBO++8A6DkFlejRo3g4eGBevXqlTm2ubk5cnNz4efnp9725MkT9ZD40jI5OTnw9fVV75+RkQE+n68u8zpKpRJFRUXw9fWt9BsqUJIs5efnw8rKCnx+3Z0V1BjqWVAsh+x5EXg8HnwdLas8S6sx1FUfuKwnYwyFhYVIS0sDALi706RyxLBsPJmA9LxieDtYYFg7GkhTF+mcACUlJeGPP/5Aw4YNq33y6dOnY/jw4WjVqhXatWuHjIwMWFlZwdvbG2KxGI8fP4ZcLlcnPO7u7sjKykJ6ejqcnJxQUFCA7Oxs1K9fHxKJBEDJbbLSMi4uLpBKpcjIyICrq6u6zOuUtmJJJBKtEiCZTAaJRFLnPywNuZ6MMTzKlYNnJoKTlRg2Vrrf+ipl6HXVF67raW5e8hqlpaXBxcXltX9rhNSWjPxifHeipPVnBi15UWfpnAC9+eabuHbtml4SoMGDByMzMxMLFy6EmZkZvvvuO/j4+KiblOVyOWQymbq8WCxGo0aN8OjRI6SlpUEoFMLLy0tj/iGRSAR/f388evQIt27dgkgkgqurK9zc3KodLzFcuVI5imRK8Hk8OFuXvSVBDFNpR2G5XE4JEDEYq4/eR4FMiWaetniLlryos3ROgPr164dp06bhxo0baNasWZn7bf3799fpeJGRkYiMjIRUKkVCQoJGp+OXb3WVsra2RkBAQKXHtLKyQtOmTXWKgxgvxhhSc0qGIjtZiSGkBU+NRl3uY0WMU0JGAX4+V9KHdE54E1pCpw7TOQGKiIgAACxcuLDMY7p0giZEX7IL5ShWKCHg8+BsLeI6HEKIEVt+6K56EtXQBk5ch0NqkM4JkEqlqok4CKkSFWN4llsyLYKztRiCOtxnhxBSs64kP8eBGyng8YDZtORFnUefFrWAx+Nh//79NX4eX19f9TIhtW3r1q2ws7Or9fNmFcggU6ogFPDhZEl9fwghVcMYw5K/7wAABrashyZuFc/jROoGrRKg1atXlzsxYUVK5+UxFenp6YiIiFCPXnNzc0NYWBhiY2MBACkpKejTpw/HUZbFVdKiL0oVQ1puSd8fF2sx3asnhFTZ0dtpOJ+QBbEZH9N7+nMdDqkFWiVA06ZN0ymhmTlzJtLT06sclLEZMWIErl+/jm3btuHevXv4448/0LVrV2RlZQEA3Nzcyp0sjVRPZkExFCoVRGZ82FtS3x9CSNUolCosPVjS+jO6gx887Ko+jQYxHlolQIwxdO/eHS1bttTqp6ioqNqBMcZQKFNw8sMY0zrO7OxsnD17FkuWLEG3bt3g4+ODNm3aYM6cOejbty8AzVtgiYmJ4PF4+OWXX9CpUyeYm5ujdevWuHfvHi5cuIBWrVrBysoKvXv31kgiu3btik8++UTj3AMGDMCoUaMqjG3FihVo1qwZLC0t4eXlhcjISOTn5wMAYmJiMHr0aOTk5IDH44HH4+HLL78EULJQ7cyZM+Hp6QlLS0u0bdsWMTExGsfeunUrvL29YWFhgXfeeQeZmZlaP2f6oFCpkJ5X0vrjaiMBn0YTEUKqaM/lx7iflg87CyEmdm3AdTiklmjVCToqKkqng7799ttwcHCoUkCliuRKBMw/VK1jVNWNqB5al7WysoKVlRV+//13hIaGat3SExUVhZUrV8Lb2xtjxozBkCFDYGNjg1WrVsHCwgLvv/8+5s+fj/Xr11e1GuDz+Vi9ejV8fX2RkJCAyMhIzJw5E+vWrUNoaChWrlyJ+fPn4+7du+q6AMDo0aORmJiIXbt2wcPDA/v27UN4eDhOnz6N4OBgnDt3DmPGjMHixYvx7rvv4uDBgzq/R6orI68YShWDRCiAnblhTcVOCDEeRTIlVhy5BwCY3K0hbOl6YjJqJAEyJWZmZli7di0++eQTfPfdd2jZsiW6dOmCDz74oNKFYWfMmIGwsDAAwNSpUzFkyBAcPXoUHTp0AACMHTsWW7durVZsL7cY+fn5YdGiRZg4cSLWrVsHkUgEW1tb8Hg8jUkiHzx4gJ07d+Lx48fw8PBQx3rw4EHs2LEDwcHBWLVqFcLCwjB79mwAgL+/P86cOYODBw9WK15tyZUqZOSXTJDpaiOhuWQIIVW2+XQCnuUWo569OYa3pyUvTInBLnVtLhQgbmEYJ+cW6Tg2rn///hg0aBBOnz6N2NhYHDx4EMuWLcPGjRsrvEX1cnLk6uoKAGjWrJnGttJ1kqrq+PHjWLx4MeLi4pCbmwuFQgGpVIqCggJYWlqWu8/ly5fBGIO/v2YnwOLiYvXq1rdv31av31aqffv2tZYApecVQ8UYLERmsJEY7FuYEGLgMvOLsT6mZMmLz8IaQ2xGs5GbEoP99ODxeLAQcRNeVSZzlEgk6NmzJ3r27In58+dj3LhxiIqKqjABenkG7dIWjFe3vTznEp/PL9M3SS6XVxhPUlISwsPDERERgUWLFsHBwQGnTp3C2LFjK91PpVJBIBDg0qVLGksTqFQq9fl16SOlbzKFEpkFJa0/bjZiav0hhFTZt8fikV+sQKCnDfo19+A6HFLLaB6gGhIQEICCggK9Hc/Z2RkpKSnq35VKJW7evFlh+YsXL0KhUODrr79Gu3bt4O/vj6dPn2qUEYlEZZK94OBgKJVKpKWloWHDhho/pS1VAQEBOHv2rMZ+r/5eU57lFoMxBiuxGawkdK+eEFI1SZkF2HEuCQAwp09TmkbDBFECVE2ZmZno378/tm/fjuvXryMhIQG//vorli1bhrfffltv53nzzTdx4MABHDhwAHfu3EFkZCSys7MrLN+gQQMoFAp8++23ePjwIX766Sds2LBBo4yvry/y8/Nx9OhRZGRkoLCwEP7+/vjwww8xYsQI7N27FwkJCbhw4QKWLVuGw4cPAwCmTJmivs137949rFmzplZuf0nlSmQXlrb+SGr8fISQuut/h+5CrmTo7O+MDg1pyQtTpHMCtHDhQhQWFpbZXlRUVO76YHWdlZUVQkJCsGrVKnTu3BmBgYGYN28exo8fjzVr1ujtPGPGjMHIkSMxYsQIdOnSBX5+fujWrVuF5YOCgrBixQosXboUgYGB2LFjB5YsWaJRJjQ0FBERERg8eDCcnZ2xbNkyAMCWLVswYsQIfPrpp2jcuDH69++Pc+fOwdPTEwDQrl07bNy4Ed9++y2CgoJw+PBhzJ07V291rcizXCkYABuJEBZig717SwgxcNceZeOv6y+WvOhNS16YKh7TsUOHQCBASkoKXFxcNLZnZmbCxcWlyouhlq4G7+fnB4mE22/3SqUSV65cQXBwsEY/mPKoVCrk5ubCxsYG/Dq8DhXX9SyUKRCfVjKHkb+rNSTCmuusyHVda4sh1LOyv/vc3FzY2toiJydH3QHf0Gkbs1wuR3R0NMLDwzX6/tVFhlZXxhiG/HAWZx9m4d2WnljxfpBejmto9axJhlxXXa4bOl/1GGPldjy9du1atef+IaQiz14seWFvIarR5IcQUrfF3E3H2YdZEJnx8WmvxlyHQzik9X0Ee3t79YzB/v7+GkmQUqlEfn4+IiIiaiRIYtryixXIk8rBAw8uNrSkCCGkapQqhv++WPB0dKgvPGnJC5OmdQK0cuVKMMYwZswYLFiwALa2turHRCIRfH190b59+xoJkpguxhhSc0oW4nWwFNI8HYSQKttz+THuPsuDrbkQkV0bch0O4ZjWCdDIkSMBlMwoHBoaanD3/UjdlCctWZ+Nz+PBhUZ+EUKqSCpXYsXhkiUvJnVrAFsL+gwzdToPpenSpQtUKhXu3buHtLQ0jcn6AKBz5856C46YNsYYUnNLWn8crUQQCupuh2RCSM3afDoBqblSeNqZY0R7X67DIQZA5wTo7NmzGDp0KJKSksrMCMzj8ao8CoyQV+UUySGVKyHg8eBsRX1/CCFV87xApl7y4tNe/jSQggCoQgIUERGBVq1a4cCBA3B3d6elCEiNYIwhLa9k5JeTtRhm1PpDCKmiNcfjkSdVoKm7DQYEeXIdDjEQOidA9+/fx2+//YaGDakDGak5eVKFuvXH0UrEdTiEECP1KKsQP8YmAgDm9GlCS14QNZ2/Vrdt2xbx8fE1EQshaun5Ja0/DpYimNXhyQgJITVr+eGSJS86NXJCZ39nrsMhBkSrFqDr16+r///xxx/j008/RWpqKpo1a1ZmNFjz5s31G6GJGTVqFLKzs7F//36uQ+FMoUyBgmIFeODB0UoMX19ffPLJJ/jkk0+4Dq3WnT59GhEREbhz5w769u1r0u8LQnR143EOfr9asgj0LFrygrxCqwQoKCgIPB5Po9PzmDFj1P8vfcwUO0GnpaVh9uzZOHbsGJ49ewZ7e3u0aNECX375ZZXmRVq1alWZzuU1YdSoUdi2bVuZ7ffv39fL7c2YmBh069YNz58/h52d3WvLlXJycsIbLYIxaeY8tGsVApGZabf+TJ8+HUFBQfj7779hZWXFdTiEGA3GGP578DYAYECQBwI9bV+zBzE1WiVACQkJNR2H0XrvvfcglUqxZcsWNGzYEM+ePcPRo0eRlZVVpeO9PMFkTevduze2bNmisc3ZmZsm4rt378LGxgbxDxMQOXkKIoe/hxu34gBYcBJPVSiVSvB4vNeuq8UYg1KphJnZ6//8Hjx4gIiICNSrV6/KcclkMohE1I+KmJZ/72fgdHwmRAJa8oKUT6uv1z4+Plr/6A1jgKyAmx8tW2Cys7Nx6tQpfPnll+jWrRt8fHzQpk0bzJkzB3379gUAfPrpp+jXr596n5UrV4LH4+HAgQPqbY0bN8Z3330HoKRlZsCAAerHunbtiilTpmDmzJlwcHCAm5sbvvzyS4047ty5g44dO0IikSAgIAD//PMPeDzea2+XiMViuLm5afyULv564sQJtGnTBmKxGO7u7pgzZw4UCoV63+LiYkyZMgUuLi6QSCTo2LEjLly4AABITExUt+qULqEyatSoSmNxcXGBm5sb/JoG4dN5i5CR9gzXLl0ot+yKFSvQrFkzWFpawsvLC5GRkcjPz1c/vnXrVtjZ2eHQoUNo2rQprKys0Lt3b6SkpKjLlD7Py5cvh7u7OxwdHTFp0iTI5XJ1GZlMhpkzZ8LT0xOWlpZo27YtYmJiypznr7/+QkBAAMRiMZKSksrEGxMTAx6Ph0OHDqFVq1YQi8U4efIkGGNYtmwZ6tevD3Nzc7Ro0QK//fab+jnk8XjIzMzEmDFjwOPxsHXrVgBAXFwcwsPDYWVlBVdXVwwfPhwZGRnq83Xt2hWTJ0/G9OnT4eTkhJ49e5a734gRI5CZmamx3+vea9nZ2ZgwYQJcXV0hkUgQGBiIv/76S/34mTNn0LlzZ5ibm8PLywtTpkxBQUFBRS87ITVCqWJYEl3S+jOivQ+8HIznixSpPTqPAvvjjz/K3c7j8SCRSNCwYUP4+flVOzDIC4HFHtU/TlXMeqRVMSsrK1hZWeHAgQN48803YW5edl2Zrl27YtOmTVCpVODz+Thx4gScnJxw4sQJ9O3bF6mpqbh37x66dOlS4Xm2bduG6dOn49y5c4iNjcWoUaPQoUMH9OzZEyqVCgMGDIC3tzfOnTuHvLw8fPrpp1WuOgA8efIE4eHhGDVqFH788UfcuXMH48ePB4/Hw+LFiwEAM2fOxJ49e7Bt2zb4+Phg2bJlCAsLQ3x8PLy8vLBnzx4MHDhQ3bJT3nPzKoVSheeFMkgkJWVfTkZexufzsXr1avj6+iIhIQGRkZGYOXMm1q1bpy5TWFiI5cuX46effgKfz8ewYcMwY8YM7NixQ13m+PHjcHd3x/HjxxEfH4/BgwcjKCgIY8eOBVBymzcpKQm7du2Ch4cH9u3bh969e+PGjRto1KiR+jxLlizBxo0b4ejoCBcXlwrrN3PmTCxfvhz169eHnZ0d5s6di71792L9+vVo1KgR/v33XwwbNgzOzs7o2LEjUlJS0LhxYyxcuBCDBw+Gra0tUlJS0KVLF4wfPx4rVqxAUVERZs2ahffffx/Hjh1Tn2vbtm2YOHEiTp8+DcZYufvNnDkTo0eP1kjqXvde69OnD/Ly8rB9+3Y0aNAAcXFx6qT5xo0bCAsLw6JFi7Bp0yakp6dj8uTJmDx5cpmWRkJq0v4rT3AnNQ82EjNMfpNGLJMKMB3xeDzG5/MZj8fT+CndxufzWefOnVlWVpZOxy0qKmJxcXGsqKioZENxPmNRNpz8KApz2IULF5hCoXht3L/88guzs7NjEomEhYaGsjlz5rBr166pH8/OzmZ8Pp9dvHiRqVQq5ujoyJYsWcJat27NGGPs559/Zq6ururyI0eOZG+//bb69y5durCOHTtqnLN169Zs1qxZjDHG/v77b2ZmZsZSUlLUjx85coQBYPv27asw7pEjRzKBQMAsLS3VP4MGDWKMMfb555+zxo0bM5VKpS6/Zs0aZmVlxeRyOcvPz2dCoZDt2LFD/bhMJmMeHh5s2bJljDHGjh8/zgCw58+fV/r8vVwuNaeInbj+gHUPC2fW1tbs2bNnjDHGfHx82DfffFPhMX755Rfm6Oio/n3Lli0MAIuPj1dvW7t2bZnn2cfHR+M1fu+999jgwYOZUqlkly9fZjwejz158kTjXN27d2dz5szROM/Vq1e1quP+/fvV2/Lz85lEImFnzpzRKDt27Fg2ZMgQ9e+2trZsy5Yt6t/nzZvHevXqpbHPo0ePGAB29+5dxljJeyYoKEijTHn7JSUlMQDs9u3b6v0qe68dOnSI8fl89XleNXz4cDZhwgSNbSdPnmR8Pv///65fUebv/iU5OTkMAMvJySl3X0OkbcwymYzt37+fyWSyWoqMO7Vd1yKZgrVf/A/zmfUXWx8T//od9IReU8Ogy3VD5xagI0eO4IsvvsBXX32FNm3aAADOnz+PuXPnYt68ebC1tcVHH32EGTNmYNOmTVXPzIQWwOdPq75/dfC1n3V44MCB6NSpE65du4Zz587h4MGDWLZsGTZu3IhRo0bB1tYWQUFBiImJgVAoBJ/Px0cffYSoqCjk5eUhJiam0tYfoOzIOnd3d6SlpQEo6Tvj5eUFNzc39eOlr8vrdOvWDevXr1f/bmlpCQC4ffs22rdvrzHJZWhoKPLz8/H48WPk5uZCLpejQ4cO6seFQiHatGmD27dva3XuV9WrVw8qBhQVFqBBw4b49ddfK2xNOX78OBYvXoy4uDjk5uZCoVBAKpWioKBAXQcLCws0aNBAvc/Lz1mpN954Q916UVrmxo0bAIBr166BMQZ/f3+NfYqLi+Ho6Kj+XSQSaT3ysVWrVur/x8XFQSqVqm9PlZLJZAgODq7wGJcuXcLx48fL7RD94MEDdbwvn0ub/Zo0KRkhU9l77erVq6hXr16Z5+Tlc8THx2u0sjHGoFKpkJCQgKZNm1ZYL0L05ddLj/E0Rwo3GwlGhfpyHQ4xYDonQFOnTsX333+P0NBQ9bbu3btDIpFgwoQJuHXrFlauXKkxSqxKeDxAZFm9Y1SVjiPZJBIJevbsibCwMMyfPx/jxo1DVFSUut9L165dERMTA5FIhC5dusDe3h5vvPEGTp8+jZiYmNcO7351qgEej6deg429GH1XFZaWluWO+CrvmOxFv6iXRwOWV6aqsfxx6CiKmAiurs4IaehZ4XGSkpIQHh6OiIgILFq0CA4ODjh16hTGjh2rccusvOeMvdK3q7LnVaVSQSAQ4NKlSxpJEgCNJMLc3FzrOpcmZ6XHB4ADBw7A01NzZlqxuOIEXKVSoV+/fli6dGmZx9zd3cs9V0X7qVQq5Ofnq2/nAZU/J6+7jalSqfDRRx9hypQpZR7z9vaudF9C9EGuVGHDiyUvJnZtQEtekErpnAA9ePAANjY2Zbbb2Njg4cOHAIBGjRppdMo0NQEBARodkEv7AZmZmaFHjx4AShaV3bVr12v7/7xOkyZNkJycjGfPnsHV1RUA1J2RqxP/nj17NBKa2NhYWFtbw9PTE05OThCJRDh16hSGDh0KoKS/zsWLF9XJXOmoI22nRbBycoeTpQ087CpPKC5evAiFQoGvv/5aPdrql19+qWpVK9S8eXMolUqkpaWhU6dOej9+aafp5ORknV7/li1bYs+ePfD19dVqFFll+6lUKuTm5pZJlirSvHlzPH78GPfu3Su3Fahly5a4desWzRJPOLPv8hM8yS6Cs7UYg1t7cR0OMXA6T7ISEhKCzz77DOnp6ept6enpmDlzJlq3bg2gZC6Z6gzbNRaZmZno0aMHdu/ejevXryMhIQG//vorli1bhrfffltdrnPnzsjLy8Off/6Jrl27AihJirZv3w5nZ2cEBARUOYaePXuiQYMGGDlyJK5fv47Tp0/jiy++AFC2hUZbkZGRePToET7++GPcuXMHv//+O7788ktERkaCz+fD0tISEydOxGeffYaDBw8iLi4O48ePR2FhoboDsY+PD3g8Hv766y+kp6drjNIqj0zBYMbnwcGi8uHaDRo0gEKhwLfffouHDx/ip59+woYNG6pUz8o0bNgQQ4cOxYgRI7B3714kJCTgwoULWLp0KaKjo6t9fGtra8yYMQPTpk3Dtm3b8ODBA1y5cgVr164td36mUpMmTUJWVhaGDBmC8+fP4+HDhzh8+DDGjBlTabJZ0X6TJ0/WOknt0qULOnfujIEDB+LIkSNISEjA33//jYMHDwIAZs2ahdjYWEyaNAlXr17F/fv38ccff+Djjz/W7ckhpAoUShXWxZSsUjChU31q/SGvpXMCtGnTJiQkJKBevXpo2LAhGjVqhHr16iExMREbN24EAOTn52PevHl6D9bQWFlZoU2bNli/fj26du2KwMBAzJs3D+PHj8eaNWvU5WxtbREcHAwHBwd1stOpUyeoVKpqtf4AgEAgwP79+5Gfn4/WrVtj3LhxmDt3LoCSW3NV4enpiejoaJw/fx4tWrRAREQExowZgxkzZqjL/Pe//8XAgQMxfPhwtGzZEvHx8Th06BDs7e3Vx1iwYAFmz54NV1dXTJ48udxzvXxbytFK/Np1eoKCgrBixQosXboUgYGB2LFjB5YsWVKler7O5s2bMWLECHz66ado3Lgx+vfvj3PnzsHLSz/fLBctWoT58+djyZIlaNq0KcLCwvDnn39WOorSw8MDp0+fhlKpRFhYGAIDAzF16lTY2tpWOv9QeftNmzYNNjY2r5236GV79uxB69atMWTIEAQEBGDmzJnqBKp58+Y4ceIE7t+/j06dOiE4OBjz5s3TuDVHSE05cCMFiZmFsLcQYmhbuuVKXo/HXu0YoQXGGA4dOoR79+6BMYYmTZqgZ8+eOl1IXyWVSpGQkAA/P78qf3Dri1KpxJUrVxAcHFym/8erSm8j6PpBUpNOnz6Njh07Ij4+XqMjcHXUVD3zpXI8zCgAn8dDEzdrg1j13RBf05pgCPWs7O8+NzcXtra2yMnJKfe2uyHSNma5XI7o6GiEh4eX6XdV19RGXVUqhrCV/+J+Wj4+C2uMSd1q/zYsvaaGQZfrhs59gICSWyu9e/dG7969qxQg0a99+/bBysoKjRo1Qnx8PKZOnYoOHTroLfmpSen5MgCAvYXIIJIfQojxOXQrFffT8mEjMcPw9nqckJfUaVolQKtXr8aECRMgkUiwevXqSsuWNwKE1Ky8vDzMnDkTjx49gpOTE3r06IGvv/6a67Beq0iuRJ5UDh4AJ2taqoEQojvGGL49VtL3Z1QHP9hIDKtFghgurRKgb775Bh9++CEkEgm++eabCsvxeDxKgDgwYsQIjBgxguswdJaRVwwAsDEXQmxGHRYJIbo7dicNcSm5sBQJMJrm/SE60HkxVFoYleiDTKFCdmHJvD3O1tpPPEkIIaVebv0Z1t4H9pbUkky0V+VOFzKZDHfv3tVYIFMfqtAnmxihzPxiMDBYis1gIapSVzRSB9DfO6mOU/EZuPooGxIhH+M71ec6HGJkdE6ASud6sbCwwBtvvIHk5GQAJX1//vvf/1Y5kNKe5IWFhVU+BjEOCpUKWQUlnZ+draj1x5SV/r0b2kgSYhxKW3+GtPGGE11LiI50/uo9Z84cXLt2DTExMRqjwHr06IGoqCjMnj27SoEIBALY2dmp1x2ysLCo8kR+1VU6r4lUKtVqGLxMJoNUKq3zQ6b1Vc/MgmIo5MUQmQkghAJSqW5Lj9Q0ek1rHmMMhYWFSEtLg52d3Wv/zgh51bmHmTifkAWRgI+POhv+iFdieHROgPbv34/du3ejXbt2GglKQEAAHjx4UK1gShf0fHXRytqmUqmQkZGBxMTE134wMMZQVFSk05pQxkhf9WSMITW3GEoVg4OlEIl5hnf7i17T2mNnZ6exkC8h2lpzvKT1571W9eBmy+3cccQ46fzpk56eXu4q3QUFBdW+iPJ4PLi7u8PFxUVjYcvalp+fj759++LixYvlrp79Mrlcjn///RedO3eu0834+qrn3zdTsPxoMpysxPhpbFuIzAyvhYVe09ohFAqp5YdUyZXk5zh5PwNmfB4iulDrD6kanROg1q1b48CBA+r1fUqTnh9++AHt27fXS1ACgYDTC6NMJkNSUhJEItFrZ6UWCARQKBSQSCR1+sNSH/VUqRjW/puMJ3lKjOjoDRsrCz1HqR/0mhJi2Na86PvzTrAnvBwM8zpCDJ/OCdCSJUvQu3dvxMXFQaFQYNWqVbh16xZiY2Nx4sSJmoiR1BHH76YhPi0f1mIzDKG1egghVXDzSQ6O3kkDnwdM7EqtP6TqdL7/EBoaitOnT6OwsBANGjTA4cOH4erqitjYWISEhNREjKSO+O7EQwDA0LbeNFsrIaRK1r7o+/NWcw/Ud668iwIhlalSD9RmzZph27Zt+o6F1GFXkp/jfGIWhAIeRneoeLVzQgipyL1nefj7ZioAYPKbtb/gKalbtE6AcnNztSpnLKs2k9r1/b8lrT9vB3nSiA1CSJWse9H60/sNN/i7WnMcDTF2WidAdnZ2lY7yYoyBx+Op59AhpFRCRgEO3ir51jahM83WSgjRXUJGAf649hQAtf4Q/dA6ATp+/Lj6/4wxhIeHY+PGjfD09KyRwEjdsfHkQzAGvNnEhb61EUKqZH1MPFQvriOBnrZch0PqAK0ToC5dumj8LhAI0K5dO9SvT9/oScUy8ovx66XHAKj1hxBSNY+yCrH38hMA1PpD9MfwZqEjdcqPZxIhU6jQwssObf0cuA6HEGKEvvv3ARQqho4NndDS257rcEgdQQkQqTGFMgV+PJsEAPioc/06vawEIaRmPMuV4pcLJa3I1PpD9KlaCZA+PtDWrVsHPz8/SCQShISE4OTJk5WWP3HiBEJCQiCRSFC/fn1s2LChwrK7du0Cj8fDgAEDqh0n0d0vFx4hu1AOH0cLhL1B6z0RQnT33YmHkClVaOPrgHb1HbkOh9QhWvcBevfddzV+l0qliIiIgKWlpcb2vXv3an3y3bt345NPPsG6devQoUMHfPfdd+jTpw/i4uLg7V12puCEhASEh4dj/Pjx2L59O06fPo3IyEg4Oztj4MCBGmWTkpIwY8YMdOrUSet4iP4olCpsPJUAABjXqT4EfGr9IYToJiO/GD+fL2lFptYfom9aJ0C2tpq97ocNG1btk69YsQJjx47FuHHjAAArV67EoUOHsH79eixZsqRM+Q0bNsDb2xsrV64EADRt2hQXL17E8uXLNRIgpVKJDz/8EAsWLMDJkyeRnZ1d7ViJbqJvpuLx8yI4WIrwXkg9rsMhhBihjScTIJWr0KKeLTo1cuI6HFLHaJ0AbdmyRa8nlslkuHTpEmbPnq2xvVevXjhz5ky5+8TGxqJXr14a28LCwrBp0ybI5XL1go4LFy6Es7Mzxo4d+9pbagBQXFyM4uJi9e+lkz7K5fLXrkpf+jiXq9fXBl3qyRjDdydKJiwb1tYLAqggl6tqND59otfUMBhqXC+r6rXD0J97fapqXbML5fgpNhEAMLGLHxQKhb5D0yt6TQ2DLjFVaSkMfcjIyIBSqYSrq6vGdldXV6Smppa7T2pqarnlFQoFMjIy4O7ujtOnT2PTpk24evWq1rEsWbIECxYsKLP98OHDsLDQbqXhI0eOaH0+Y6ZNPe/m8HDrqQBCPoNr7l1ER9+thcj0j15TbhUWFnIdwmtV99phqM99TdC1rn8/4qNAxoenBYP0wUVEP6yhwPSMXlNu6XLd4CwBKvVqR+rSGaV1KV+6PS8vD8OGDcMPP/wAJyftm0vnzJmD6dOnq3/Pzc2Fl5cXevXq9dqlPeRyOY4cOYKePXuqW6DqIl3q+du2SwAy8UFrb7z/VtPaCVCP6DU1DNouv8Olql47DP2516eq1DVPqsC8r/8FoMCsfi3QJ9DwB1HQa2oYdLlucJYAOTk5QSAQlGntSUtLK9PKU8rNza3c8mZmZnB0dMStW7eQmJiIfv36qR9XqUpuvZiZmeHu3bto0KBBmeOKxWKIxeIy24VCodYvri5ljdnr6nk7JRcn4zPB5wETujQ06ueEXlNuGWJMr6rutcNQn/uaoEtdd55KQq5UgYYuVnirRT3wjWgQBb2m3NIlHs7mARKJRAgJCSnThHbkyBGEhoaWu0/79u3LlD98+DBatWoFoVCIJk2a4MaNG7h69ar6p3///ujWrRuuXr0KLy+vGqsPKVG66Gl4M3d4OWh3+5AQQkoVyhTY9GIE6aRuDYwq+SHGhdNbYNOnT8fw4cPRqlUrtG/fHt9//z2Sk5MREREBoKR5+cmTJ/jxxx8BABEREVizZg2mT5+O8ePHIzY2Fps2bcLOnTsBABKJBIGBgRrnsLOzA4Ay24n+Pckuwp8vFiv8qHPZljZCCHmdn88lI6tABh9HC/Rr7sF1OKQO4zQBGjx4MDIzM7Fw4UKkpKQgMDAQ0dHR8PHxAQCkpKQgOTlZXd7Pzw/R0dGYNm0a1q5dCw8PD6xevbrMHECEG5tPJUChYmhf3xHN6tFihYQQ3UjlSnz3ohU5smsDmAlosQJSczjvBB0ZGYnIyMhyH9u6dWuZbV26dMHly5e1Pn55xyD6l1Mkx67zJcnqR11o0VNCiO5+ufgI6XnF8LQzxzvBNH8YqVmUXhO92HEuCQUyJZq4WaOLvzPX4RBCjIxMocKGmAcAgIgu9SEyo48nUrPoHUaqrVihxJbTiQCACbToKSGkCvZefoynOVK4WIvxXisasEJqHiVApNr2X3mC9LxiuNtK0K8FdVokhOhGoVRh3YvWnwmd60MiFHAcETEFlACRalGpmLrT4pgOfhBSp0VCiI7+vP4UyVmFcLAUYWjbsgthE1IT6NOKVMvRO2l4mF4Aa4kZPmhDzdaEEN0oVQxrjpWsHTi2ox8sRJyPzSEmghIgUi3fnShptv6wrQ+sJYY1IyghxPAdvJmKB+kFsJGYYUR7H67DISaEEiBSZZeSnuNi0nOIBHyM7uDLdTiEECOjUjF8e+w+AGB0Bz/6EkVqFSVApMq+/7ek9WdAsAdcbSQcR0MIMTZH76ThTmoeLEUC+hJFah0lQKRKHqbn43DcMwAlozYIIUQXjDGsedH6MyLUF3YWIo4jIqaGEiBSJT+cTABjQI+mLmjoYs11OIQQI/Pv/Qxce5wDiZCPsR39uA6HmCBKgIjO0vOKsefyYwDABFr0lBCiI8YYvj1a0vrzYVsfOFmJOY6ImCJKgIjOtp1JhEyhQrC3HVr72nMdDiHEyJx9mKUeQEG30AlXKAEiOikoVuCns0kAgI9o2QtCSBWsOV7S+vN+63o0gIJwhhIgopNfLz9BTpEcfk6W6BngxnU4hBAjcynpOU7HZ8KMz0NEF7qFTrhDCRDRmlIFbDld0vozrpMfBHxq/SGE6KZ05Ne7LT1Rz96C42iIKaMEiGjtSiYPT3OkcLQUYWDLelyHQwgxMjef5OD43XTweUBk14Zch0NMHCVARCuMMRx7WvJ2GRXqS6s1E0J0Vjrrc/8WHvB1suQ4GmLqKAEiWjnzMAtPCnkwF/IxrB2t10MI0c29Z3k4dOsZeDxgUjdq/SHcowSIaOWHk4kAgPdC6sHekmZsJYToZt2JBABAn0A3NHKlyVMJ9ygBIq+VnFmI0w8ywQPD6FBq/SGE6OZZERB9MxUAtf4Qw0EJEHmtvVdKZn32t2WoZ2/OcTSEEGPzzxO+eumcNzxsuQ6HEACUAJHXYIxh7+UnAIA2zozjaAghxubR80JcTC+ZMoNaf4ghoQSIVOpi0nMkZxXCUiRAMwdKgAghuvn+ZCJU4KFDA0cEe9PSOcRwUAJEKrXnUsntr96BrhDTyHdCiA5Scoqw50UL8qSutOYXMSyUAJEKSeVKHLieAgB4J8iD42gIIcZm+9kkyJUMDawZLZxMDA4lQKRCh+OeIa9YAU87c7T2oYsXIUR7CqUKv14saUHu7K7iOBpCyqIEiFSo9PbXwJae4NO6X4QQHRy/m460vGI4WAoRaE/9B4nhoQSIlOtZrhQn76cDAN6ldb8IITradT4ZQMntczP6pCEGiN6WpFy/X30CFQNCfOxpzR5CiE5Scopw/G4aAOD9EPoCRQwTJUCkDMYY9lwqGblBq74TQnT128XHUDGgja8D6jvTFyhimCgBImXcepqLu8/yIDLjo29zd67DIYQYEZWKYffFRwCAD9p4cRwNIRWjBIiUsedySefnngGusDUXchwNIcSYnH6QgcfPi2AtMUOfQPoCRQwXJUBEg1ypwh9XnwIABtHtL0KIjnadL2n9eSfYE+Yimj2VGC5KgIiGmLvpyCyQwclKjE6NnLgOhxBiRDLzi3E4rmTV9w9ae3McDSGVowSIaNj74vbXgCAPmAno7UEI0d7ey08gVzI0r2eLAA8brsMhpFL0CUfUsgtlOHq7ZOjqQBq6SgjRAWMMOy+UzP1DrT/EGFACRNT+vPYUMqUKAe42aOpO394IIdq7mPQcD9MLYC4UoF8L6vxMDB8lQEStdNXmd1t6chwJIcTY7Hwx83O/Fu6wltDoUWL4KAEiAIAH6fm4+igbAj4PbwdRAkQI0V5OkRzRN1IAAIPp9hcxEpQAEQD/v/BpV39nOFuLOY6GEGJM/rj6BFK5Cv6uVmjpbcd1OIRohRIgApWKYd+VF0tfUOdnQogOGGPY+WLunw9ae4PH43EcESHaoQSIIPZhJlJypLCRmOHNJi5ch0MIMSI3n+QiLiUXIgEf7wTT7XNiPCgBIurbX/1aeEAipJlbCSHaKx363jvQDfaWIo6jIUR7lACZuPxiBf6+WTJzK93+IoToolCmUC+d80FrWviUGBdKgEzcwZupKJIr4edkiWAvO67DIYQYkb+upyC/WAEfRwu0q+/IdTiE6IQSIBNXevtrYEtP6rxICNHJrhdz/wxu7QU+n64fxLhQAmTCHj8vROzDTADAO7TyOyFEB/ee5eFycsncYYPo+kGMECVAJmz/i6Hv7es7wtPOnONoCCHGZNeLoe/dm7jAxUbCcTSE6I4SIBPFGFMvfUGdnwkhuihWKLH3Ssnt8w/aUOdnYpwoATJRl5OzkZBRsnBhn0A3rsMhhBiRQ7eeIbtQDjcbCbr409xhxDhRAmSi9l4u+fbWJ9ANlmIzjqMhhBiT0s7P77eqBwF1fiZGihIgEySVK/HntZK5O+j2FyFEF0mZBTjzIBM8HvA+zf1DjBglQCbo6O005EoV8LCVoD3N3UEI0cHuCyWdnzs1ckY9ewuOoyGk6jhPgNatWwc/Pz9IJBKEhITg5MmTlZY/ceIEQkJCIJFIUL9+fWzYsEHj8R9++AGdOnWCvb097O3t0aNHD5w/f74mq2B0Sm9/DQj2pLk7CCFaUyhV+PXF3GE08zMxdpwmQLt378Ynn3yCL774AleuXEGnTp3Qp08fJCcnl1s+ISEB4eHh6NSpE65cuYLPP/8cU6ZMwZ49e9RlYmJiMGTIEBw/fhyxsbHw9vZGr1698OTJk9qqlkFLzytGzL10AHT7ixCim2N30pCeVwxHSxF6NHXlOhxCqoXTBGjFihUYO3Ysxo0bh6ZNm2LlypXw8vLC+vXryy2/YcMGeHt7Y+XKlWjatCnGjRuHMWPGYPny5eoyO3bsQGRkJIKCgtCkSRP88MMPUKlUOHr0aG1Vy6D9fvUJlCqGIC87NHC24jocQogRKb39NTCkHkRmnN9AIKRaOBv+I5PJcOnSJcyePVtje69evXDmzJly94mNjUWvXr00toWFhWHTpk2Qy+UQCoVl9iksLIRcLoeDg0OFsRQXF6O4uFj9e25uLgBALpdDLpdXWo/Sx19XzlCULn0xoIWbTjEbWz2rw1Tqauj1NNS4XlbVa4ehP/flScmR4vjdNADAwCB3rWM3xrpWhanUEzDsuuoSE2cJUEZGBpRKJVxdNZtRXV1dkZqaWu4+qamp5ZZXKBTIyMiAu7t7mX1mz54NT09P9OjRo8JYlixZggULFpTZfvjwYVhYaNfJ78iRI1qV49KTAuB2qhkEPAZR6k1ER9/U+RjGUE99MZW6Gmo9CwsLuQ7htap77TDU5748hx7zoGICNLBmuHPhBO7ouL8x1bU6TKWegGHWVZfrBucTwLy6ACdjrNJFOcsrX952AFi2bBl27tyJmJgYSCQVT9U+Z84cTJ8+Xf17bm4uvLy80KtXL9jY2FQav1wux5EjR9CzZ89yW6AMyZK/7wJIQo+mrnjv7SCd9jWmelaXqdTV0OtZ2ppiyKp67TD05/5VKhXDsm9OApAiolczhAd5aL2vsdW1qkylnoBh11WX6wZnCZCTkxMEAkGZ1p60tLQyrTyl3Nzcyi1vZmYGR0fN4dzLly/H4sWL8c8//6B58+aVxiIWiyEWi8tsFwqFWr+4upTlgkKpwh/XS567Qa28qxyroddTn0ylroZaT0OM6VXVvXYY6nP/qn/vpeNJthTWEjP0C6oHoVCg8zGMpa7VZSr1BAyzrrrEw1kvNpFIhJCQkDJNaEeOHEFoaGi5+7Rv375M+cOHD6NVq1Yalf7f//6HRYsW4eDBg2jVqpX+gzdCJ+9nICO/ZPRG18bOXIdDCDEipZ2f3wn2hKQKyQ8hhojTbvzTp0/Hxo0bsXnzZty+fRvTpk1DcnIyIiIiAJQ0L48YMUJdPiIiAklJSZg+fTpu376NzZs3Y9OmTZgxY4a6zLJlyzB37lxs3rwZvr6+SE1NRWpqKvLz82u9fobktxdz//QP8oBQQKM3CCHaycwvxuG4ktbjD1p7cxwNIfrDaR+gwYMHIzMzEwsXLkRKSgoCAwMRHR0NHx8fAEBKSorGnEB+fn6Ijo7GtGnTsHbtWnh4eGD16tUYOHCgusy6desgk8kwaNAgjXNFRUXhyy+/rJV6GZqcIjmOxD0DAAxsSXP/EEK0t+fyY8iVDM3r2SLAo/I+kYQYE847QUdGRiIyMrLcx7Zu3VpmW5cuXXD58uUKj5eYmKinyOqOA9dTIFOo0NjVGm/QBYwQoiXGGHa9uP1FrT+krqF7ISZgz4vbXwNDPCsdYUcIIS+7kPgcD9MLYCESoL8OI78IMQaUANVxiRkFuJT0HHweMCDIk+twCCFGZNeFki4IbzV3h5WY8xsGhOgVJUB1XOnCp50aOcPFpuK5kAgh5GU5RXJE30gBAHzQhm5/kbqHEqA6TKVi2HO5ZBFYWviUEKKLP64+gVSugr+rFYK97LgOhxC9owSoDjufmIUn2UWwFpuhVwCt3EwI0Q5jDDvP/3/nZ+o7SOoiSoDqsNKFT/s2d6fJywghWrvxJAdxKbkQmfHxbkvqO0jqJkqA6qhCmUJ9/55ufxFCdFE69L33G26wsxBxHA0hNYMSoDrq8K1nKJAp4e1ggVY+9lyHQwgxEgXFCvxx9SkA4IM2XhxHQ0jNoQSojiqd++fdljT3DyFEewdupCC/WAEfRwu083N8/Q6EGClKgOqglJwinIrPAEBLXxBCdLPrfMncP4Nbe4HPpy9PpO6iBKgO2n/lKRgD2vg5wMvBgutwCCFG4t6zPFxOzoaAz8Mg+vJE6jhKgOoYxtj/L31BozcIITrY9WLoe/cmLjRxKqnzKAGqY64/zkF8Wj4kQj7Cm7lzHQ4hxEhI5UrsvVLy5WkIzfxMTAAlQHVM6dIXYW+4wVoi5DgaQoixOBz3DNmFcrjbStDZ35nrcAipcZQA1SEyhQp/XCsZvvou3b8nhOigtPPze628IKDOz8QEUAJUhxy7k4bnhXK42ojRsaET1+EQQoxEUmYBzjzIBI8HvN+KvjwR00AJUB1SevtrQLAnfYMjhGht94uZnzs1ckY9exo5SkwDJUB1RFaBDMfvpgGguX8IIdqTK1X49cW6gUNa08zPxHRQAlRH/HH1CeRKhmaetvB3teY6HEKIkTh+Jw3pecVwtBShe1NXrsMhpNZQAlRH7L3yBADN/UMI0U3pwqeDQupBZEYfCcR00Lu9Drj/LA/XH+fAjM9DvxYeXIdDCDESKTlFiHlx6/x9uv1FTAwlQHXAby86P3dr4gJHKzHH0RBCjMWvFx9D9WLZnAbOVlyHQ0itogTIyClVDPvVt7+o8zMhRDsqFVOP/vqAWn+ICaIEyMidjs/As9xi2FkI8WYTF67DIYQYiVPxGXiSXQQbiRktm0NMEiVARq504dP+LTyoAyMhRGu7LpTM/PxOsCckQgHH0RBS++gT04jlSeU4dCsVAN3+IoRoLyO/GEfingEABremhU+JaaIEyIj9fSMVUrkKDV2s0LyeLdfhEEKMxN7LjyFXMrSoZ4sADxuuwyGEE5QAGbHS0V/vtvQEj0dLXxBCXo8xpp77h1p/iCmjBMhIPcoqxPmELPB4JffwCSFEGxcSn+NhegEsRAL0D6J5w4jpogTISO29XDL0vWNDJ7jbmnMcDSHEWOw6X9L5uV9zD1iJzTiOhhDuUAJkhBhj2Hvl/29/EUKINnKK5DhwIwUAMLgNzf1DTBslQEboYtJzJGUWwlIkQNgbblyHQwgxEr9ffYJihQqNXa0R7GXHdTiEcIoSICO090Xn5/Bm7rAQURM2IeT1GGPYeb6087MXDZwgJo8SICMTn5aPv66XNGG/S3P/EEK0dONJDm6n5EJkxqdb54QAoOYDI8AYw7mELPzw70McvVOycrOPowXa+jlwHBkhxNAVyZT4/eoTfP/vQwBAn0A32FmIOI6KEO5RAmTAFEoVom+mYuPJh7j+OAcAwOMBPZq6YlbvJuDzqQmbEFK+J9lF+Ck2CbsuJCO7UA4AsBab4aPODTiOjBDDQAmQAcovVmD3hUfYfCoBT7KLAABiMz4GhdTD2I5+qO9sxXGEhBBDxBjD+YQsbD2TiEO3UqFiJdvr2ZtjVKgv3gvxgq2FkNsgCTEQlAAZkNQcKbacScDP55KRJ1UAABwtRRjR3hfD2nnD0UrMcYSEEEMklSvxx7Wn2Ho6EXEpuertoQ0cMSrUF92bukJALcaEaKAEyADEPc3FxpMP8ce1p1C8+MpW39kS4zvVp5WaCSEVSskpwvazSdh5/hGyCmQAAImQj3eC62FUqC8au1lzHCEhhosSII4wxvDv/QxsPPkQJ+9nqLe39XPAhM710a2xC/XxIYSUwRjDpaTn2HImEQdvpkL54kuTp505RrT3weDWXtTJmRAtUAJUy4oVSvxx9Sk2nUrAndQ8AICAz0N4M3eM7+SH5vXsuA2QEGKQihVK/HUtBVvPJOLGkxz19rZ+DhjdwRc9mrrCTEAzmxCiLUqAaklOoRw7zidh6+lEpOUVAwAsRQIMbu2N0R184eVgwXGEhBBD9CxXih1nk/Dz+WRk5Jfc5hKb8TEgyBMjQ30R4GHDcYSEGCdKgGrYo6xCbDqVgF8uPkKhTAkAcLURY3QHPwxp4w1bcxqRQQgp63Lyc2w9nYjoGynqvoHuthIMb++DD1p7w8GSbnMRUh2UANWQq4+y8cO/D/H3zRT1UNQmbtaY0Lk+3mruAZEZNVUTQjTJFCpE30jBljOJuPYoW729ta89RoX6odcbrhDSbS5C9IISID1SqRj+uf0MG08m4Hxilnp7Z39njO/kh44NnWj9HUJIGWl5Uvx8Lhk7ziUj/cUtcpGAj/5BHhgV6otAT1uOIySk7qEESA9kSuDn84+wLTYZDzMKAABCAQ/9W3hiXCc/NHWne/SEkLKuP87B9vOP8df1p5ArS5qKXW3EGN7OBx+08YYTzf1FSI2hBKgaMvKLse30Q2y+LECB4jYAwEZihg/b+WBUqC9cbSQcR0gIMTRypQp/XU/BqhsCJMaeU28P8bHHqFBf9A50o9tchNQCSoCqIer3WzhwIwUAD/XsJBjbqT7eb+UFSzE9rYSQ8mXmy/DZnptQqHgQCnjo19wDI0N90cLLjuvQCDEp9EldDaM7+OJRVgFaWj7HrKEdYS6h5mpCSOXcbCUY2sYL6Y8TMG/om/BwoLX9COECtbNWQ4iPPX77qC2CHRlNQEYI0dq8vk3Q24vB2Zq+NBHCFfrUrgYej0ejugghhBAjRAkQIYQQQkwOJUCEEEIIMTmUABFCCCHE5HCeAK1btw5+fn6QSCQICQnByZMnKy1/4sQJhISEQCKRoH79+tiwYUOZMnv27EFAQADEYjECAgKwb9++mgqfEEIIIUaI02Hwu3fvxieffIJ169ahQ4cO+O6779CnTx/ExcXB29u7TPmEhASEh4dj/Pjx2L59O06fPo3IyEg4Oztj4MCBAIDY2FgMHjwYixYtwjvvvIN9+/bh/fffx6lTp9C2bVv9VoAxQFYAgbIYkBUArA4vbCqXm0Y9AdOpK5f1FFoApjqAwJSuGwD9PdVFdeTawWOMMb0cqQratm2Lli1bYv369eptTZs2xYABA7BkyZIy5WfNmoU//vgDt2/fVm+LiIjAtWvXEBsbCwAYPHgwcnNz8ffff6vL9O7dG/b29ti5c2e5cRQXF6O4uFj9e25uLry8vJCRkQEbm0qWsZAVQPg/H63rSwgpIf8sCRBZVlomNzcXTk5OyMnJqfzvkENVunbQdYOQKnvdtUOX6wZnLUAymQyXLl3C7NmzNbb36tULZ86cKXef2NhY9OrVS2NbWFgYNm3aBLlcDqFQiNjYWEybNq1MmZUrV1YYy5IlS7BgwYIy2w8fPgwLC4sK9xMoi/FWhY8SQipy6NBhKAWVz4FTWFhYS9FUXVWuHXTdIKTqXnft0OW6wVkClJGRAaVSCVdXV43trq6uSE1NLXef1NTUcssrFApkZGTA3d29wjIVHRMA5syZg+nTp6t/L/0W16tXr8ozSMZQ+OabOHbsGN58800IhXV3Ym25XGES9QRMp65c1jNMi2bs3NzcWoqm6qp07TCh6wZAf091kSFfO3S5bnD+Kr06kSBjrNLJBcsr/+p2XY8pFoshFpfNKIVCIYTC19zf5NlCKRBDaGn7+rLGTC43jXoCplNXA6+nIcb0qipfO0zlugEY/PtMb0ylnoBB11WXeDgbBebk5ASBQFCmZSYtLa1MC04pNze3csubmZnB0dGx0jIVHZMQQgghpoezBEgkEiEkJARHjhzR2H7kyBGEhoaWu0/79u3LlD98+DBatWqlzvoqKlPRMQkhhBBieji9BTZ9+nQMHz4crVq1Qvv27fH9998jOTkZERERAErurz958gQ//vgjgJIRX2vWrMH06dMxfvx4xMbGYtOmTRqju6ZOnYrOnTtj6dKlePvtt/H777/jn3/+walTpzipIyGEEEIMD6cJ0ODBg5GZmYmFCxciJSUFgYGBiI6Oho9PyRDRlJQUJCcnq8v7+fkhOjoa06ZNw9q1a+Hh4YHVq1er5wACgNDQUOzatQtz587FvHnz0KBBA+zevVv/cwARQgghxGhx3gk6MjISkZGR5T62devWMtu6dOmCy5cvV3rMQYMGYdCgQfoIjxBCCCF1EOdLYRBCCCGE1DZKgAghhBBicigBIoQQQojJoQSIEEIIISaHEiBCCCGEmBxKgAghhBBicigBIoQQQojJoQSIEEIIISaH84kQDVHpCvO5ubmvLSuXy1FYWIjc3FyDWxVXn0ylnoDp1NXQ61n691f692gMtL12GPpzr0+mUldTqSdg2HXV5bpBCVA58vLyAABeXl4cR0IIycvLg62tLddhaIWuHYQYBm2uGzxmTF+vaolKpcLTp09hbW0NHo9Xadnc3Fx4eXnh0aNHsLGxqaUIa5+p1BMwnboaej0ZY8jLy4OHhwf4fOO4W6/ttcPQn3t9MpW6mko9AcOuqy7XDWoBKgefz0e9evV02sfGxsbg3gg1wVTqCZhOXQ25nsbS8lNK12uHIT/3+mYqdTWVegKGW1dtrxvG8bWKEEIIIUSPKAEihBBCiMmhBKiaxGIxoqKiIBaLuQ6lRplKPQHTqaup1NMQmdJzbyp1NZV6AnWnrtQJmhBCCCEmh1qACCGEEGJyKAEihBBCiMmhBIgQQgghJocSIEIIIYSYHEqACCGEEGJyKAF6xbp16+Dn5weJRIKQkBCcPHmy0vInTpxASEgIJBIJ6tevjw0bNpQps2fPHgQEBEAsFiMgIAD79u2rqfC1pu96/vDDD+jUqRPs7e1hb2+PHj164Pz58zVZBa3VxGtaateuXeDxeBgwYICeo66amqhrdnY2Jk2aBHd3d0gkEjRt2hTR0dE1VQWjZCrXDYCuHZUx1muHyV43GFHbtWsXEwqF7IcffmBxcXFs6tSpzNLSkiUlJZVb/uHDh8zCwoJNnTqVxcXFsR9++IEJhUL222+/qcucOXOGCQQCtnjxYnb79m22ePFi9n/t20FIk2EcBvBHtn0FJkGpU0QMO7RABHWkJhKCaATWLSIKiQ4KdsiL7CAGmmJZRxHSHTx5UC8iEelBMa1D0SBSjIgRoUO8CYJz27+LG85NRf3eOfc+P9hh7959vA8fPPxh+6xWq3z58iVRsWKoyPnw4UPp7++X79+/y9LSkjx58kQuXrwo//79S1SsuFRkDfN6vZKXlyfV1dVy7949xUkOpyLr1taWOJ1OuXPnjnz69Em8Xq/Mzc2Jx+NJVKykp0tviLA7UrE7dO4NDkC73LhxQ5qbm6PWHA6HuFyuuPvb2trE4XBErTU1NUlFRUXk/f379+X27dtRe+rr6+XBgwcmnfroVOTcKxAISEZGhgwPD5/8wCegKmsgEJCqqioZGhqSxsbGUy8xETVZBwYGpLCwUPx+v/kHThG69IYIuyMVu0Pn3uBPYDv8fj++ffuGurq6qPW6ujosLCzE/c7nz59j9tfX1+Pr16/Y3t4+cM9+11RNVc69Njc3sb29jUuXLplz8GNQmbWzsxNZWVl4+vSp+Qc/BlVZJyYmUFlZiZaWFtjtdhQVFaGnpwfBYFBNkDNGl94A2B1A6nWH7r3BAWjH+vo6gsEg7HZ71LrdbofP54v7HZ/PF3d/IBDA+vr6gXv2u6ZqqnLu5XK5kJeXh9raWnMOfgyqss7Pz8PtdmNwcFDNwY9BVdY/f/5gbGwMwWAQ79+/R3t7O96+fYvu7m41Qc4YXXoDYHcAqdcduveG9bQPkGzS0tKi3otIzNph+/euH/WaiaAiZ9jr168xMjKCmZkZnD9/3oTTnoyZWTc2NvDo0SMMDg4iMzPT/MOekNn3NRQKITs7G+/evYPFYkFZWRlWVlbQ19eHjo4Ok09/dunSGwC7IxW7Q9fe4AC0IzMzExaLJWbqXVtbi5l2w3JycuLut1qtuHz58oF79rumaqpyhr158wY9PT2Ynp5GcXGxuYc/IhVZf/78Ca/Xi4aGhsjnoVAIAGC1WrG8vIyrV6+anORwqu5rbm4ubDYbLBZLZM/169fh8/ng9/thGIbJSc4WXXoDYHcAqdcduvcGfwLbYRgGysrKMDU1FbU+NTWFmzdvxv1OZWVlzP6PHz/C6XTCZrMduGe/a6qmKicA9PX1oaurCx8+fIDT6TT/8EekIqvD4cCPHz/g8Xgir7t376KmpgYejwf5+fnK8hxE1X2tqqrC79+/I0UNAL9+/UJubm7SlNhp0qU3AHYHkHrdoX1vJPpf18ks/Dig2+2WxcVFef78uaSnp4vX6xUREZfLJY8fP47sDz8O2NraKouLi+J2u2MeB5yfnxeLxSK9vb2ytLQkvb29p/44q4qcr169EsMwZGxsTFZXVyOvjY2NhOfbTUXWvZLhSQ4RNVn//v0rFy5ckGfPnsny8rJMTk5Kdna2vHz5MuH5kpUuvSHC7kjF7tC5NzgA7dHf3y8FBQViGIaUlpbK7Oxs5LPGxka5detW1P6ZmRkpKSkRwzDkypUrMjAwEHPN0dFRuXbtmthsNnE4HDI+Pq46xqHMzllQUCAAYl4vXrxIQJqDqbinuyVDiYWpyLqwsCDl5eVy7tw5KSwslO7ubgkEAqqjnCm69IYIuyMslbpD195IE9n59xIRERGRJvgfICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSDgcgIiIi0g4HICIiItIOByAiIiLSzn9SPoHSu60YSgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHFCAYAAAD1zS3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHfklEQVR4nOzdeXxMV/8H8M+dPTOTiUT2iCSC2JLa0yhCLUlDLaXW2mnJ49GW/rSqJaqlKFVUtbQopeWxFA+aWJ+qWGspVYpYs0rIPpnt/P6YzM1MZiayNpjv+/XKK3PPfO+959zM8s25557LMcYYCCGEEEIcjKC2K0AIIYQQUhsoCSKEEEKIQ6IkiBBCCCEOiZIgQgghhDgkSoIIIYQQ4pAoCSKEEEKIQ6IkiBBCCCEOiZIgQgghhDgkSoIIIYQQ4pAoCSLEjosXL2LMmDEICgqCTCaDUqlE69atsXDhQmRlZdXYfgsKChAXF4cjR47U2D6qIisrC0OGDIGnpyc4jkO/fv1qu0qE8JKTkxEXF4fz58/XdlXIU0BU2xUg5Em0evVqxMbGIiQkBP/3f/+HZs2aQavV4syZM1i1ahUSExOxY8eOGtl3QUEB5syZAwDo0qVLjeyjKubOnYsdO3bgu+++Q3BwMNzc3Gq7SoTwkpOTMWfOHAQGBqJly5a1XR3yhKMkiJBSEhMTMWnSJPTo0QM7d+6EVCrln+vRowemTZuG/fv312INK0er1YLjOIhEVXvbX7p0CcHBwRg+fHg11YwQQmoJI4RY6N27NxOJROzOnTvlXufHH39kzz//PJPL5UyhULCePXuy33//3SJm1KhRTKFQsL///pu99NJLTKFQsHr16rGpU6cytVrNGGMsKSmJAbD6GTVqFL+da9eusaFDhzIPDw8mkUhYkyZN2IoVKyz2dfjwYQaAff/992zq1KnM19eXcRzHrly5YrcNmZmZbNKkSczX15eJxWIWFBTE3n///cfW7fDhw3a3GRAQwHr16sV2797NWrZsyWQyGWvSpAnbvXs3Y4yxtWvXsiZNmjC5XM7atWvHTp8+bbH+6dOn2eDBg1lAQACTyWQsICCADRkyhN26dcsiLj8/n02bNo0FBgYyqVTKXF1dWZs2bdimTZv4mBs3brDBgwczHx8fJpFImKenJ3vxxRfZuXPn7Nbfnl9//ZWJRCI2bdo0i/K1a9cyAGzNmjWP3ca+ffvYiy++yFQqFXNycmJNmjRh8+bNs4j5+eef2fPPP8+cnJyYUqlk3bt3Z8ePH7eImT17NgPALly4wAYOHMhUKhVzdXVlb7/9NtNqteyvv/5iUVFRTKlUsoCAALZgwQKL9U2vlQ0bNrC3336beXl5MZlMxjp37mz1Gq5onS5dusSGDBnCVCoV8/T0ZGPGjGGPHj2yiDUYDOzLL79kzz33HJPJZKxOnTpswIAB7MaNGxZxkZGRrHnz5uzUqVOsY8eOzMnJiQUFBbH58+czvV5v0ZbSP7Nnz37s34M4JkqCCDGj0+mYXC5n4eHh5V7nk08+YRzHsbFjx7I9e/aw7du3s4iICKZQKNjly5f5uFGjRjGJRMKaNm3KPvvsM3bgwAE2a9YsxnEcmzNnDmOMMbVazfbv388AsHHjxrHExESWmJjIrl+/zhhj7PLly8zFxYWFhoay77//nsXHx7Np06YxgUDA4uLi+H2Zvgz8/PzYwIED2a5du9iePXtYZmamzTYUFhaysLAwplAo2Geffcbi4+PZhx9+yEQiEYuJieHrlpiYyFq1asUaNGjA1y07O9vusQkICGD16tVjLVq0YJs3b2Z79+5l4eHhTCwWs1mzZrEXXniBbd++ne3YsYM1btyYeXl5sYKCAn79rVu3slmzZrEdO3awo0ePsh9//JFFRkYyDw8PlpGRwce98cYbTC6XsyVLlrDDhw+zPXv2sE8//ZQtX76cjwkJCWENGzZkGzZsYEePHmXbtm1j06ZNs0jiTEnM2rVrH/t3//TTTxkA9vPPPzPGGLt06RKTy+Xstddee+y6a9asYRzHsS5durBNmzaxAwcOsJUrV7LY2Fg+5ocffmAAWM+ePdnOnTvZTz/9xNq0acMkEgn79ddf+ThTwhESEsLmzp3LEhIS2PTp0xkANnnyZNakSRO2bNkylpCQwMaMGcMAsG3btvHrm14r/v7+rG/fvmz37t1s48aNrGHDhkylUlkkI5Wp06xZs1hCQgJbsmQJk0qlbMyYMRbHYsKECUwsFrNp06ax/fv3s02bNrEmTZowLy8vlpqaysdFRkayunXrskaNGrFVq1axhIQEFhsbywCw9evXM8YYy87O5v+GH3zwAf8avXv37mP/JsQxURJEiJnU1FQGgA0ZMqRc8Xfu3GEikYj9+9//tijPzc1l3t7ebNCgQXzZqFGjGAC2ZcsWi9iYmBgWEhLCL2dkZNj97zUqKorVq1fPKvGYPHkyk8lkLCsrizFW8sXWuXPncrVj1apVNuu2YMECBoDFx8fzZab/yMsjICCAOTk5sXv37vFl58+fZwCYj48Py8/P58t37tzJALBdu3bZ3Z5Op2N5eXlMoVCwL774gi9v0aIF69evn931Hjx4wACwpUuXllnf9evXM6FQyH+plsVgMLCYmBhWp04ddunSJdasWTPWpEkTlpeXV+Z6ubm5TKVSsY4dOzKDwWAzRq/XM19fXxYaGsr3cpjW9fT0ZB06dODLTAnH4sWLLbbRsmVLBoBt376dL9NqtczDw4O98sorfJnptdK6dWuL+ty6dYuJxWI2fvz4Stdp4cKFFnWKjY1lMpmM309iYqLNut+9e5c5OTmx6dOn82WRkZEMADt58qRFbLNmzVhUVBS/fPr06XInsoTQ1WGEVMEvv/wCnU6HkSNHQqfT8T8ymQyRkZFWV3hxHIeXX37ZoiwsLAy3b99+7L7UajUOHjyI/v37Qy6XW+wvJiYGarUaJ06csFhnwIAB5WrHoUOHoFAoMHDgQIvy0aNHAwAOHjxYru3Y0rJlS/j5+fHLTZs2BWAc9C2Xy63KzY9FXl4e3n33XTRs2BAikQgikQhKpRL5+fm4cuUKH9e+fXvs27cP7733Ho4cOYLCwkKLOri5uSE4OBiLFi3CkiVLcO7cORgMBqu6mv6OI0eOfGy7OI7D999/D2dnZ7Rt2xZJSUnYsmULFApFmesdP34cOTk5iI2NBcdxNmOuXr2K5ORkjBgxAgJByce0UqnEgAEDcOLECRQUFFis07t3b4vlpk2bguM4vPTSS3yZSCRCw4YNbb7ehg0bZlGfgIAAdOjQAYcPH650nfr06WOxHBYWBrVajfT0dADAnj17wHEcXnvtNYvXs7e3N5577jmr94+3tzfat29vtc3yvH8IsYWSIELMuLu7Qy6XIykpqVzxaWlpAIB27dpBLBZb/Pz000948OCBRbxcLodMJrMok0qlUKvVj91XZmYmdDodli9fbrWvmJgYALDan4+PT7nakZmZCW9vb6svZU9PT4hEImRmZpZrO7aUvnpMIpGUWW5+LIYNG4YVK1Zg/Pjx+OWXX3Dq1CmcPn0aHh4eFonOsmXL8O6772Lnzp3o2rUr3Nzc0K9fP/z9998AjAnLwYMHERUVhYULF6J169bw8PDAlClTkJubW+m21a1bF3369IFarUZ0dDRCQ0Mfu05GRgYAoF69enZjTMfb1t/P19cXBoMBDx8+tCi3dTxtvd4kEonN15u3t7fNMlNdKlOnunXrWiybLjIw/e3S0tLAGIOXl5fVa/rEiRNWr+fS2zNts3TSS0h50dVhhJgRCoXo1q0b9u3bh3v37pX5RQUYkyYA+M9//oOAgIAarZurqyuEQiFGjBiBf/3rXzZjgoKCLJbt9TSUVrduXZw8eRKMMYt10tPTodPp+Hb+k7Kzs7Fnzx7Mnj0b7733Hl9eVFRkNU+TQqHAnDlzMGfOHKSlpfG9Qi+//DL++usvAMaejW+//RYAcO3aNWzZsgVxcXHQaDRYtWpVpeqYkJCAr776Cu3bt8eOHTuwbdu2x/a+eXh4AADu3btnN8b0ZZ+SkmL1XHJyMgQCAVxdXStVZ3tSU1NtlpnqUhN1cnd3B8dx+PXXXy2uwjSxVUZIdaKeIEJKmTFjBhhjmDBhAjQajdXzWq0Wu3fvBgBERUVBJBLhxo0baNu2rc2fiir937KJXC5H165dce7cOYSFhdncl63/lMujW7duyMvLw86dOy3Kv//+e/75fxrHcWCMWX0RrlmzBnq93u56Xl5eGD16NIYOHYqrV69anaIBgMaNG+ODDz5AaGgofv/990rVLyUlBa+99hoiIyNx/Phx9OnTB+PGjXtsL2KHDh3g4uKCVatWgTFmMyYkJAR+fn7YtGmTRUx+fj62bduGiIgIi1OJ1WHz5s0W+7p9+zaOHz/Oz1VVE3Xq3bs3GGO4f/++zddzeXrWSrP3/iHEFuoJIqSUiIgIfPXVV4iNjUWbNm0wadIkNG/eHFqtFufOncM333yDFi1a4OWXX0ZgYCA++ugjzJw5Ezdv3kR0dDRcXV2RlpaGU6dO8T0UFeHs7IyAgAD8/PPP6NatG9zc3ODu7o7AwEB88cUX6NixIzp16oRJkyYhMDAQubm5uH79Onbv3o1Dhw5Vqs0jR47El19+iVGjRuHWrVsIDQ3FsWPHMG/ePMTExKB79+6V2m5VqFQqdO7cGYsWLeLbf/ToUXz77beoU6eORWx4eDh69+6NsLAwuLq64sqVK9iwYQP/xXzx4kVMnjwZr776Kho1agSJRIJDhw7h4sWLFr1M33//PcaOHYvvvvuuzHFBer0eQ4cOBcdx2LRpE4RCIdatW4eWLVti8ODBOHbsGH96rzSlUonFixdj/Pjx6N69OyZMmAAvLy9cv34dFy5cwIoVKyAQCLBw4UIMHz4cvXv3xhtvvIGioiIsWrQIjx49wqefflotx9hceno6+vfvjwkTJiA7OxuzZ8+GTCbDjBkzAKBG6vTCCy/g9ddfx5gxY3DmzBl07twZCoUCKSkpOHbsGEJDQzFp0qQKbTM4OBhOTk744Ycf0LRpUyiVSvj6+sLX17fC9SMOoNaGZBPyhDt//jwbNWoUq1+/PpNIJEyhULBWrVqxWbNmsfT0dIvYnTt3sq5duzKVSsWkUikLCAhgAwcOZAcOHOBjTPMElWa6ksbcgQMHWKtWrZhUKrWaJygpKYmNHTuW+fn5MbFYzDw8PFiHDh3Yxx9/zMeYrvjZunVrudubmZnJJk6cyHx8fJhIJGIBAQFsxowZ/DxBJhW9OqxXr15W5QDYv/71L4sy0zxEixYt4svu3bvHBgwYwFxdXZmzszOLjo5mly5dYgEBARbH5L333mNt27Zlrq6uTCqVsgYNGrC3336bPXjwgDHGWFpaGhs9ejRr0qQJUygUTKlUsrCwMPb5558znU7Hb6e8l8jPnDmTCQQCdvDgQYvy48ePM5FIxN58883HHpu9e/eyyMhIplAomFwuZ82aNbOaw2fnzp0sPDycyWQyplAoWLdu3dhvv/1mEWN6/ZhPGcCY/ddb6b+f+TxBU6ZMYR4eHkwqlbJOnTqxM2fOWK1flTqZjm9SUpJF+XfffcfCw8OZQqFgTk5OLDg4mI0cOdJi//Zed6NGjWIBAQEWZZs3b2ZNmjRhYrGY5gkiZeIYs9MfSwgh5Jl35MgRdO3aFVu3brW6OpCQZx2NCSKEEEKIQ6IkiBBCCCEOiU6HEUIIIcQhUU8QIYQQQhwSJUGEEEIIcUiUBBFCCCHEIdFkiXYYDAYkJyfD2dm53LceIIQQQkjtYowhNzcXvr6+Fjf7tYWSIDuSk5Ph7+9f29UghBBCSCXcvXv3sfd/fCKSoJUrV2LRokVISUlB8+bNsXTpUnTq1Mlu/NGjRzF16lRcvnwZvr6+mD59OiZOnGgRs23bNnz44Ye4ceMGgoOD8cknn6B///7lrpOzszMA40FUqVSVa5gdWq0W8fHx6NmzJ8RicbVu+2ng6O0H6BhQ+x27/QAdA0dvP1BzxyAnJwf+/v7893hZaj0J+umnn/DWW29h5cqVeOGFF/D111/jpZdewp9//on69etbxSclJSEmJgYTJkzAxo0b8dtvvyE2NhYeHh783ZsTExMxePBgzJ07F/3798eOHTswaNAgHDt2DOHh4eWql+kUmEqlqpEkSC6XQ6VSOeSL39HbD9AxoPY7dvsBOgaO3n6g5o9BeYay1HoStGTJEowbNw7jx48HACxduhS//PILvvrqK8yfP98qftWqVahfvz6WLl0KAGjatCnOnDmDzz77jE+Cli5dih49evA3/psxYwaOHj2KpUuXYvPmzf9Mwx5DqC8CNPkAs/GH54SAWFayrMm3vyFOAIidKhlbAMDeNFEcIJFXLlZbCDBDGfWQlD9WojCLVQPM/t3DKxQrlgOmN4iuCDDoqidW5ASYzkHrNIBBaztOq7Vsd1mxACCSAQJhxWP1WkCvsR8rlAJCUSVidYC+qIxYCSAU24/VakveAwJFSaxBD+jU9rcrEAMiSSViDYCujLuKVyhWBIiK72zPGKC1vkv9Y2PN22/6DKjQ+/4Z+IzQFNn/HLR4Lz+7nxGcQWf/e6BU7DP5GfEEqNUkSKPR4OzZsxZ3cQaAnj174vjx4zbXSUxMRM+ePS3KoqKi8O2330Kr1UIsFiMxMRFvv/22VYwpcXoS9L44Abho58lGPYHhW0uWFzW0/0Eb0BEY89+S5aWhQEGm7VjfVsDrR0qWvwwHsu/YjvVoAvzrZMny6q5Axl+2Y13qA2//UbK89iUg+ZztWHld4O2rJcsbBwK3j9mOFcuBmSkly1tGAH/H244FgLjsksc7Xgf+/Nl+7PvJJR+Iu98CLmyyH/t/NwCFu/HxL+8Dp9fYj33zIuAaYHx86CPg+HKbYWIAzk3mlRT8uhg4WsZduCccAvzaGB+f/ApImGU/dtQeIKj4dPLZdcDed+zHDtsCNI4yPr64Bfg51n7sq+uA5sWnlP/aDWwdbT+270qg1XDj4xsHgU2DLJ4WA+gNGN8DMZ8B7ScYn7h9HFjf2/52e3wEvPCm8XHKeWD1i/ZjI98Duhr/EcKDq8DK5+3Hdvg30PNj4+Psu8AXYfZj240Hei02Pi7IBBYF2499bhjQ/yvjY20BMM94J3OL9ps06wsM+r5keV4Zdz1/Bj4jxMnnrI8BYPyMmH6zZPkZ/oxomrIV4kVj7cfGngA8mxofP4ufES0G2X/+H1KrSdCDBw+g1+vh5eVlUe7l5YXU1FSb66SmptqM1+l0ePDgAXx8fOzG2NsmABQVFaGoqCRrzcnJAWDsrtNqy8ioK0Gr1aKsjj+DwQC92T5FAOx16hlYRWJZqVhmN5YxBp15LCsjFpaxQsbszr3AAP54arVaCJmhzFiL7Rrsx5q2VxJrvw58LKctrm85tlu8bYHBAGFZsTpduWPN6yww6MuM1el0YKZY/WNi9RWINdsup9eX+YGg0+srF6vTlRmr1+th4LdbgdjHbddQEgudrsz3nN5gqFzs497L5u/Px77vLd+fjvwZYRn7bH5GlOd7xfLz5Nn7jDD/LqhOFdlerd42Izk5GX5+fjh+/DgiIiL48k8++QQbNmzAX39Z/1fRuHFjjBkzhj/VBQC//fYbOnbsiJSUFHh7e0MikWD9+vUYOnQoH/PDDz9g3LhxUKttd5/HxcVhzpw5VuWbNm2CXC63sUbVCMvoJmQcB4NAUvOxhqIye6/1AmmlYgUGDbgyXlZ64RMQK5Dw3dcCgxZcGd3tFYsVG08pwNjVLSiju/0fiWU6CAz2Yw0CERgnrESsHoIyuvwNAiEYJ6pwLJgBwjK68Q2cEExQu7GME8AgKE5RGIPQYP/0QMVi/6H3fTV/RohExuMmMGjKjDXfrsCgNZ4etMMgfAJiBWKz972uzFNyFYsVmb2X9eDKeC//I7FMD66M9z0TCC3e9zURWxk6nf3PlIKCAgwbNgzZ2dmPHdNbqz1B7u7uEAqFVj006enpVj05Jt7e3jbjRSIR6tatW2aMvW0CxnFDU6dO5ZdNo8t79uxZIwOjExIS0KNHD4ccEOfo7QfoGFD7n/72azQa3L17FwZDGeN1ysAYg1qthkwmc8i52By9/UDVjoFAIED9+vVtvn9MZ3LKo1aTIIlEgjZt2iAhIcHi8vWEhAT07dvX5joRERHYvXu3RVl8fDzatm3LH4yIiAgkJCRYjAuKj49Hhw4d7NZFKpVCKpValYvF4hr7kKrJbT8NHL39AB0Dav/T2X7GGJKTkyESico1IZ0tBoMBeXl5UCqVlVr/aefo7QcqfwxMkxlnZGSgfv36VglURd5TtX512NSpUzFixAi0bdsWERER+Oabb3Dnzh1+3p8ZM2bg/v37+P5744DBiRMnYsWKFZg6dSomTJiAxMREfPvttxZXfb355pvo3LkzFixYgL59++Lnn3/GgQMHcOyYncF1hBBCyk2n06GgoAC+vr6VHi5gMBig0Wggk8kcMglw9PYDVTsGHh4eSE5Ohk6nq9I/ErWeBA0ePBiZmZn46KOPkJKSghYtWmDv3r0ICDCOnk9JScGdOyVXJwQFBWHv3r14++238eWXX8LX1xfLli3jL48HgA4dOuDHH3/EBx98gA8//BDBwcH46aefyj1HECGEEPv0euNYD4nkybjMmTge02tPr9c/3UkQAMTGxiI21vZld+vWrbMqi4yMxO+//17mNgcOHIiBAwdWR/UIIYTY4KhjWUjtq67XnmP2wRFCCCHE4VESRAghhBTjOA47d+6s8f00aNAAX331VY3vx5Z169ahTp06tbLvJw0lQYQQQhxGeno63njjDdSvXx9SqRTe3t6IiopCYmIiAOM41JdeeqmWa2mNEpea8USMCSKEEEL+CQMGDIBWq8X69evRoEEDpKWl4eDBg8jKygJgnGeOOA7qCSKEEOIQHj16hGPHjmHBggXo2rUrAgIC0L59e8yYMQO9evUCYHk67NatW+A4Dlu2bEGnTp3g5OSEdu3a4dq1azh9+jTatm0LpVKJ6OhoZGRk8Pvp0qUL3nrrLYt99+vXD6NHj7ZbtyVLliA0NBQKhQL+/v6IjY1FXl4eAODIkSMYM2YMsrOzwXEcOI5DXFwcAOOkldOnT4efnx8UCgXCw8Nx5MgRi22vW7cO9evXh1wuR//+/ZGZaefecQ6IkiBCCCFVwhhDgUZX4Z9Cjb5S65n/VOTOT0qlEkqlEjt37rS4V+TjzJ49Gx988AF+//13iEQiDB06FNOnT8cXX3yBX3/9FTdu3MCsWWXcsLQcBAIBli1bhkuXLmH9+vU4dOgQpk+fDsA47cvSpUuhUqmQkpKClJQUvPOO8aanY8aMwW+//YYff/wRFy9exKuvvoro6Gj8/fffAICTJ09i7NixiI2Nxfnz59G1a1d8/PHHVarrs4ROhxFCCKmSQq0ezWb9Uiv7/vOjKMgl5fsqE4lEWLduHSZMmIBVq1ahdevWiIyMxJAhQxAWFmZ3vXfeeQdRUcY7qb/55psYOnQoDh48iBdeeAEAMG7cOJvTuVSEec9RUFAQ5s6di0mTJmHlypWQSCRwcXEBx3EWp+tu3LiBzZs34969e/D19eXrun//fqxduxbz5s3DF198gaioKLz33nsAjPffPH78OPbv31+l+j4rqCeIEEKIwxgwYACSk5Oxa9cuREVF4ciRI2jdunWZSYx5gmS6B2VoaKhFWXp6epXqdfjwYfTo0QN+fn5wdnbGyJEjkZmZifz8fLvr/P7772CMoXHjxnwvl1KpxNGjR3Hjxg0AwJUrVyxuUA7AatmRUU8QIYSQKnESC/HnR1EVWsdgMCA3JxfOKucq3TbCSVzxO5HLZDL06NEDPXr0wKxZszB+/HjMnj3b7pgd8xmJTZP0lS4zv5GsQCCwOk2n1Wrt1uf27duIiYnBxIkTMXfuXLi5ueHYsWMYN25cmesZDAYIhUKcPXsWQqHlcVAqlQBQodOFjoiSIEIIIVXCcVy5T0mZGAwG6CRCyCWiWr93VrNmzap1biAPDw+kpKTwy3q9HpcuXULXrl1txp85cwY6nQ6LFy/mj8WWLVssYiQSCX+7EpNWrVpBr9cjPT0dnTp1srntZs2a4cSJExZlpZcdGZ0OI4QQ4hAyMzPx4osvYuPGjbh48SKSkpKwdetWLFy4EH379q22/bz44ov473//i//+97/466+/EBsbi0ePHtmNDw4Ohk6nw/Lly3Hz5k1s2LABq1atsogJDAxEXl4eDh48iAcPHqCgoACNGzfG8OHDMXLkSGzfvh1JSUk4ffo0FixYgL179wIApkyZgv3792PhwoW4du0aVqxYQeOBzFASRAghxCEolUqEh4fj888/R+fOndGiRQt8+OGHmDBhAlasWFFt+xk7dixGjRqFkSNHIjIyEkFBQXZ7gQCgZcuWWLJkCRYsWIAWLVrghx9+wPz58y1iOnTogIkTJ2Lw4MHw8PDAwoULAQBr167FyJEjMW3aNISEhKBPnz44efIk/P39AQDPP/881qxZg+XLl6Nly5aIj4/HBx98UG1tfdpxjE4Y2pSTkwMXFxdkZ2dDpVJV67a1Wi327t2LmJiYKt399mnl6O0H6BhQ+5/u9qvVaiQlJSEoKAgymaxS2zAYDMjJyYFKpar102G1wdHbD1TtGJT1GqzI97djHnlCCCGEODxKggghhBDikCgJIoQQQohDoiSIEEIIIQ6JkiBCCCGEOCRKggghhBDikCgJIoQQQohDoiSIEEIIIQ6JkiBCCCGEOCRKggghhJCn1DfffAN/f38IBAIsXbq0tqvz1KEkiBBCiEMYPXo0OI7DxIkTrZ6LjY0Fx3EYPXq0VTzHcRCLxWjQoAHeeecd5OfnW6y7bds2dOnSBS4uLlAqlQgLC8NHH32ErKwsu3URCoVwdXWFUCiEUqnEc889h3Xr1lWoPTk5OZg8eTLeffdd3L9/H6+//nqF1ieUBBFCCHEg/v7++PHHH1FYWMiXqdVqbN68GfXr17eKj46ORkpKCm7evImPP/4YK1euxDvvvMM/P3PmTAwePBjt2rXDvn37cOnSJSxevBgXLlzAhg0byqzLl19+ifv37+PChQsYPHgwxowZg19++aXcbblz5w60Wi169eoFHx8fyOXycq9rTqvVVmq9ZwElQYQQQhxG69atUb9+fWzfvp0v2759O/z9/dGqVSureKlUCm9vb/j7+2PYsGEYPnw4du7cCQA4deoU5s2bh8WLF2PRokXo0KEDAgMD0aNHD2zbtg2jRo0qsy4uLi7w9vZGcHAw3n//fbi5uSE+Pp5/Pjs7G6+//jo8PT2hUqnw4osv4sKFCwCAdevWITQ0FADQoEEDcByHW7duAQB2796NNm3aQCaToUGDBpgzZw50Oh2/XY7jsGrVKvTt2xcKhQIff/xxuddbs2YN+vfvD7lcjkaNGmHXrl0Wbbp8+TJ69eoFlUoFZ2dndOrUCTdu3OCfX7t2LZo2bQqZTIZmzZphzZo1/HMajQaTJ0+Gj48PZDIZAgMDMX/+/DKPYVVREkQIIaR6aPLt/2jV1rHaAjuxheXbbiWNGTMGa9eu5Ze/++47jB07tlzrOjk58T0nP/zwA5RKJWJjY23G1qlTp1zb1Ov12LJlC7KysiAWiwEAjDH06tULqamp2Lt3L86ePYvWrVujW7duyMrKwuDBg3HgwAEAxmQsJSUF/v7++OWXX/Daa69hypQp+PPPP/H1119j3bp1+OSTTyz2OXv2bPTt2xd//PEHxo4dW+715syZg0GDBuHixYuIiYnB8OHD+dN+9+/fR+fOnSGTyXDo0CGcPXsWY8eO5ROp1atXY+bMmfjkk09w5coVfPzxx5g3bx7Wr18PAFi2bBl27dqFLVu24OrVq9i4cSMCAwPLdQwrjRGbsrOzGQCWnZ1d7dvWaDRs586dTKPRVPu2nwaO3n7G6BhQ+5/u9hcWFrI///yTFRYWWj4xW2X/Z+NAi1DDx972Y7+LsdzugiDbcRU0atQo1rdvX5aRkcGkUilLSkpit27dYjKZjGVkZLC+ffuyUaNGWcWbnDx5ktWtW5cNGjSIMcbYSy+9xMLCwipcD8YYA8BkMhlTKBRMKBQyAMzNzY39/fffjDHGDh48yFQqFVOr1RbrBQcHs6+//poxxti5c+cYAJaUlMQ/36lTJzZv3jyLdTZs2MB8fHws9v3WW29ZxJR3vQ8++IBfzsvLYxzHsX379jHGGJsxYwYLCgqy+7r29/dnmzZt4pf1ej2bOXMmi4iIYIwx9u9//5u9+OKLzGAw2FzfnN3XIKvY97eoZlMsQggh5Mni7u6OXr16Yf369XyPi7u7u83YPXv2QKlUQqfTQavVom/fvli+fDkAY28Nx3GVrscnn3yC3r174/79+5g6dSrefvttNGzYEABw9uxZ5OXloW7duhbrFBYWWpxeKu3s2bM4ffq0RQ+OXq+HWq1GQUEBP26obdu2lVovLCyMf16hUMDZ2Rnp6ekAgPPnz6NTp058b5a5jIwM3L17F+PGjcOECRP4cp1OBxcXFwDGgeg9evRASEgIoqOj0bt3b/Ts2bOMI1h1lAQRQgipHu8n23+OE1ossmnXkJ2bC5WzMwSCUiMzuFLLb/1RTRUsMXbsWEyePBmAcYCyPV27dsVXX30FsVgMX19fiy/4xo0b49ixY9BqtTa/+B/Hy8sLDRs2ROPGjbF161a0atUKbdu2RbNmzWAwGODj44MjR45YrVfWaTaDwYA5c+bglVdesXpOJpPxjxUKRaXWK91OjuNgMBgAGE8VllUvwHhKLDw8nC/Ly8vjk6DWrVsjKSkJ+/btw4EDBzBo0CB0794d//nPf+xut6ooCSKEEFI9JIrHx5jHivXG36WToKpst5yio6Oh0WgAAFFRUXbjFAoF3ztT2rBhw7Bs2TKsXLkSb775ptXzjx49Kve4oIYNG2LAgAGYMWMGfv75Z7Ru3RqpqakQiUQVGhfTunVrXL161W6dq3s9c2FhYVi/fr3NpNDLywt+fn64efMmhg8fDsCYBOXk5EClUvFxKpUKgwcPxuDBgzFw4EBER0cjKysLbm5ula5XWSgJIoQQ4nCEQiGuXLnCP66M8PBwTJ8+HdOmTcP9+/fRv39/+Pr64vr161i1ahU6duxoMzmyZ9q0aXjuuedw5swZdO/eHREREejXrx8WLFiAkJAQJCcnY+/evejXr5/V6SyTWbNmoXfv3vD398err74KgUCAixcv4o8//uCvAqvO9cxNnjwZy5cvx5AhQzBjxgy4uLjgxIkTaN++PUJCQhAXF4cpU6ZApVLhpZdeQmFhIY4dOwa1Wo1p06bh888/h4+PD1q2bAmBQICtW7fC29u73IlkZdDVYYQQQhySSqWy6IWojAULFmDTpk04efIkoqKi0Lx5c0ydOhVhYWGPvUS+tNDQUHTv3h2zZs0Cx3HYu3cvOnfujLFjx6Jx48YYMmQIbt26BS8vL7vbiIqKwp49e5CQkIB27drh+eefx5IlSxAQEFDmviu7nrm6devi0KFDyMvLQ2RkJNq0aYPVq1fzvULjx4/HmjVr+Mv7u3btik2bNvE9XUqlEgsWLEDbtm3Rrl073Lp1C3v37rU+XVqNuOIR36SUnJwcuLi4IDs7u8pvktK0Wi327t2LmJiYSp1Hfto5evsBOgbU/qe7/Wq1GklJSQgKCrIYL1IR5qdCavJL7knl6O0HqnYMynoNVuT7u1ZPhz18+BBTpkzhJ1vq06cPli9fXmbXF2MMc+bMwTfffIOHDx8iPDwcX375JZo3bw4AyMrKwuzZsxEfH4+7d+/C3d0d/fr1w9y5c/nBV6R8DAYGjd4Ard4ArZ5BozM+5st0DBq9HhodK44x/hTpjPGmZY2ueJ3iOLVWh5u3Bbh15CZclVI4y0RwloqhchLDWSbifyslIggElb/yghBCCClLrSZBw4YNw71797B//34AwOuvv44RI0Zg9+7ddtdZuHAhlixZgnXr1qFx48b4+OOP0aNHD1y9ehXOzs5ITk5GcnIyPvvsMzRr1gy3b9/GxIkTkZycXKMjzCuCMQY9Awo1ehTowCcKJUkDK0k2TAlEcVLBJxTFz2n1xkTFfH2tnhUnIpbb1PDrmJIZBo1Obzth0TPoDTXZSSjAoeTrZUZwHKCUiqCSFSdHMjFUTiI4my2bJ02mZefiOJVMDKlIUKVLWAkhhDy7ai0JunLlCvbv348TJ07wl8utXr0aERERuHr1KkJCQqzWYYxh6dKlmDlzJn8Z3/r16+Hl5YVNmzbhjTfeQIsWLbBt2zZ+neDgYHzyySd47bXXoNPpIBLV7ljwI1fTMWbdaTAmAk4crNW6VJRYyEEsFPA/EiEHiahkWSyyLpMIBRCXKhNyDDduJsHT1x95Gj1y1TrkFGqNv9Va5Kh10OgMYAzIVeuQq9Y9vnJ2SISC4sTIOlky/radSJkSLqVUBJHQMbuqCSHkWVdrGUFiYiJcXFz4BAgAnn/+ebi4uOD48eM2k6CkpCSkpqZaTJ4klUoRGRmJ48eP44033rC5L9N5wbISoKKiIhQVFfHLOTk5AIzn7qv15nLM+OVemljIQSIUmCULHP/bItEoLpeYJRhikYBf3yquODExLy+9vZL9lsSVXhYLuGo7NaXVapFguIEePRrbHQ9RpNUjt0hXnBjpipMhY6KUW6RDTqHxd26h1rhcHJNXnETlFunAGKDRG5CZr0FmvqbS9VVIhFDKRHCWFidLUlFJYlWcNCllIqjMy6QlZXKJ0Ko3yvSactQbF1L7n+72a7VaMMZgMBj4+V8qyjQc1bQdR+Po7QeqdgwMBgMYY9BqtVZX91XkfVVrSVBqaio8PT2tyj09PZGammp3HQBWI+O9vLxw+/Ztm+tkZmZi7ty5dhMkk/nz52POnDlW5fHx8ZW+M68tWgMwtw0g5ACRABBxgIAznvqpFvrinzLoin8Kyw6rcQkJCRVeR1n84wMAHAB58U8pBgZo9EChHijUFf/Wc1DrSsrUeq7kOdMy/xjQGIx/lHyNHvkaPdJQZL2jchCAQSYCnISAkwiQCRmchIBKIkD82gNwkQB1JICLhKGOBJA50MQVlXkNPEue1vaLRCJ4e3sjLy+Pn2unsnJzc6upVk8nR28/ULljoNFoUFhYiP/9738WN3kFgIKCgnJvp9o/buPi4mwmE+ZOnz4NADbHapRnGvLSz9tbJycnB7169UKzZs0we/bsMrc5Y8YMTJ061WJdf39/9OzZs0auDktISECPHj2eyitDquppab9Wb+BPxxl7oLQlPVDFPVM55s+rtXwvVV5x75TewGAAhwIdUKADjHlU2a9vhVQIL2cZvFVSeLnI4O1s9lslg7eLFG5yyVM9aPxpeQ3UlKe9/TqdDklJSZBIJJX+fGSMITc3F87Ozg45bs/R2w9U7Rjk5OTAyckJL774otVZHtOZnPKo9iRo8uTJGDJkSJkxgYGBuHjxItLS0qyey8jIsDsHgre3NwBjj5CPjw9fnp6ebrVObm4uoqOjoVQqsWPHjsd+0EilUkilUqtysVhcYx9SNbntp8GT3n6xGJDLpLA/I0fZGGMo1JaMecopHvOUq9YhK7cQx8/9CWevekjP1SA1W43UHDVy1TrkF+lxsygfNx/Yv0u2WMjB01kGbxcZvFUlv71cZPApfuypkkIqqtwkcP+UJ/01UNOe1vaLRCIoFAo8ePAAEomkUpd4GwwGaDQaFBUVOeQl4o7efqDyx8BgMODBgwdQKBSQyWRWCVRF3lPVngS5u7vbvRGduYiICGRnZ+PUqVNo3749AODkyZPIzs5Ghw4dbK4TFBQEb29vJCQkoFWrVgCMXWJHjx7FggUL+LicnBxERUVBKpVi165dlZ7HgpCq4DgOcokIcokIXirL16BWq4Vr5iXExLSweMPmF+mQmqM2JkXFiZHpd1qOGinZajzIK4JWz3D/USHuPyr7pGZdhaS498g6YTKVOUtFDvufKKkcjuPg4+ODpKQku0MRHocxhsLCQjg5OTnk68/R2w9U7RgIBALUr1+/yseu1kYfNG3aFNHR0ZgwYQK+/vprAMZL5Hv37m0xKLpJkyaYP38++vfvD47j8NZbb2HevHlo1KgRGjVqhHnz5kEul2PYsGEAjD1APXv2REFBATZu3IicnBy+a8zDw6PS06MT8k9QSEUI9lAi2ENpN0arNyAjtwgp2SWJUVrpxClHDY2uZFD4nyn2u4flEqHN3iQvVUmvUl2lFMKn+PQbqX4SiQSNGjWq9JggrVaL//3vf+jcufNT2RtWVY7efqBqx6CyPZCl1eoQzB9++AFTpkzhr/bq06cPVqxYYRFz9epVZGdn88vTp09HYWEhYmNj+ckS4+Pj4ezsDAA4e/YsTp48CQBWN4JLSkqq0I3oCHkSiYUC+NZxgm8d+3dsZozhYYG2OCkqRGp2UXGvUiFSc4qQlq1GSnYhctQ6FGj0uPmg7NNvQgEHL9PYpNK9ScW/vVQyyMT0T4YjEQgEle5pFwqF0Ol0kMlkDpkEOHr7gSfjGNRqEuTm5oaNGzeWGVP6rh4cxyEuLg5xcXE247t06WK1DiGOhuM4uCkkcFNI0MzX/sDVAo3O6nRbWqnTcBm5RdAbGJKz1UjOVpe5X1e5uKQHyaw3yfjbCd4qGVRODnT5GyHkiUafRoQ4MLlEhAYeSjQo4/SbTm9ARl6R1ek207IpeSrSGfCwQIuHBVr8lWr/kleZWABvlQwSnQDHtX+igYcSAXXlqO+mQEBdORRS+lgihPwz6NOGEFImkVAAHxcn+LiUffotu1CLFFOvUrbZWCWzXqVHBVqotQbcyiwAIMC1M/estuWulCKgrtz4U5wYGX8UcJWLHXYQKSGk+lESRAipMo7jUEcuQR25BE197J9+K9TokZajxr2sPOw9ehJ16jXCvUdq3M7Mx+2sAjwq0OJBXhEe5BXh7O2HVus7S0UIcLdMjuq7KRDoLoeXs+ypnjuJEPLPoySIEPKPcZIIEeiugJ+LBJlXGGK6N7QYEJldoMXtrHzczizAnawC3HpgTI7uZBYY51Eq0uHS/Rxcum99tZtEJEB9NzkCzU6tmXqQ6rk6QUz3gCOElEJJECHkieEiFyNMXgdh9epYPVeo0ePuwwLcziww9hxlFuB2lvHxvYeF0OgMuJ6eh+vpeVbrCjjAz9UJAW4K1K9rnSjJJfRRSIgjonc+IeSp4CQRorGXMxp7OVs9p9MbkPxIjVvFp9Vum/Ug3c7Kh1prwN2sQtzNKgSuW2/bw1mKADdjr5F5D1KAmxx1aBwSIc8sSoIIIU89kVCA+nXlqF/X+m66jDGk5xbhdmYBbmXmFydGJb1J2YVaZOQWISO3CGdsjUOSiRBY19iDFOAm5x8H1lXA01lK45AIeYpREkQIeaZxHAcvlXGuovZBblbPPyrQlJxaM+tBupWZj/TcIuSqdfjjfjb+uJ9tta60eBySrR4kPxqHRMgTj5IgQohDM13V9px/HavnCjV64wBtvgepeCxSZgHuPypEkc6Av9Pz8LeNcUhCAQe/Ok7FV7CV9CAF1JXD11nyD7SMEPI4lAQRQogdThIhQrydEeJtPQ5Jqzfg/sPC4p6jfNwqTo7uFCdKRToD7mQZr3KzxUUsxE9pZxDioyoe66REIy9nqGSOeQsFQmoDJUGEEFIJYqEAge4KBLorAHhYPGcwGMchmfcg3cosOc2Wq9YhW8vh+M0sHL+ZZbGut0qGRl5KhBQPAm9UnBwpaSZtQqodvasIIaSaCQSc8eayLjI836CuxXOMMWTkFGDz7gPwaBiGGw8KcS0tF3+n5ZXckiRHjV//fmCxnl8dJz45alTcc9TQU0mX9xNSBfTuIYSQfxDHcXCVSxDoDMS0qWc5WWShFn+n5eJaWp4xMUo3Ps7ILcL9R4W4/6gQR65mmG0LqOfqZJEYNfJ0RkNPJWRiYW00j5CnCiVBhBDyhHBxEqNtoBvaBlpexfYwX4Nrabm4lp5XnCQZe44y8zX8/EcHrqTz8QIOqO8m5+dVauSlRGMvZzTwUEAqouSIEBNKgggh5AnnqpAgvEFdhJc6tfYgr4hPiPjf6bl4VKDFrcwC3MosQPyfaXy8UMAhoK7coueosZczgtwVdDk/cUiUBBFCyFPKXSmFu1KKDsHufBljDBm5RVan1K6l5SJXrcPNjHzczMjHvkup/DoiAYcgdwUaezujsWfJlWqBdeUQUXJEnmGUBBFCyDOE4zh4qmTwVMnQsZFlcpSWU4Srabn8KbVracbTa/kaPT/f0X+Rwq8jEQrQwENhcQl/Yy9n1HeTQ0gzZZNnACVBhBDiADiu5Iq1yMYll/QzxpCcrca1VLPEKN14aq1Qq8dfqbn4KzXXYltSkQANPZUl4408jclRPVcnuo0IeapQEkQIIQ6M44wzW/vVcULXJp58ucHAcP9RIa6m5uJaesm4o+vpeSjSGXA5OQeXk3MstuUkFhrnNfIsGW/UyEsJvzpOdBNa8kSiJIgQQogVgYCDv5sc/m5ydG/mxZfrDQx3swrMTqsZk6ObGfko1Opx8V42Lt6zvM+aQiK0GIjdyMsZQW4yMPZPt4oQS5QEEUIIKTehgONnyo5q7s2X6/QG3M4qKD6tllfce2RMjvI1epy/+wjn7z6y2JZcJMRP6WcQWq8Omvuq0NxXhSB3JY03Iv8YSoIIIYRUmUgoQLCHEsEeSrwUWlKu1Rtw60E+rqXlWQzKvpVZgAIdkHgzC4lmtw5xEgvRxMcZzX1VaOHrgua+LmjsraT5jUiNoCSIEEJIjRELBWhUfAqsF3z48rzCIqzbvh9uwWG4kpqPy8nZuJKSi0KtHufuPMK5O4/4WJGAQ0NPJZr7uhiTIz8XNPVxhjPdbJZUESVBhBBC/nFSkQD+Sstbh+gNDEkPjAnRn8k5uJScjcvJOXhUoOWvUtv2e8k2AuvK0dzXBc2KT6U193WBh7O0llpEnkaUBBFCCHkiCIt7fBp6KtG3pR+Akkv4L9/P5q9Iu5ycjZRsNT8r9n//KJnbyEsl5XuMTIlRPVe6Oo3YRkkQIYSQJ5b5Jfw9zQZiZ+VrcDnZLDG6n42kzHyk5RQhLScdh/4quZeaSiYqSYz8jIlRA3cFzYZNKAkihBDy9HFTSNCpkQc6NSqZ+DG/SIcrKSW9RZeTc3AtLRc5ah0Sb2Yi8WYmHysTC9DEu6S3qLmvCiHezpCJaQC2I6EkiBBCyDNBIRWhbaAb2ga68WUanQHX0nLxp1li9GdKDgpsXLYvFHBo6KHke4ua+6rQzFcFFQ3AfmZREkQIIeSZJREJ0MLPBS38XAD4AzDOhp2Umc/3GP1ZfEotK1+Dq2m5uJqWi+2/3+e3Ud9Nzl+VZhqE7eksq6UWkepESRAhhBCHIhBw/JxGfZ7zBWAcgJ2ao8al+2Y9Rsk5uP+oEHeyCnAnqwD7LqXy2/BwlvKDr03zGfm70QDspw0lQYQQQhwex3HwcXGCj4sTepjdJuRhvgZ/phgTI1OCdPNBPjJyi3DkagaOXM3gY51lIjTzUVkMwm7ooaQB2E8wSoIIIYQQO1wVErzQ0B0vNHTnywo0OlxJycWfxT1Gl5KzcS01D7lqHU4mZeFkUskM2FKRAE28ndHM7LL9pj4q0PDrJwMlQYQQQkgFyCUitAlwRZsAV75MozPgenqexam0y8nZyNfoceFeNi6Y3VRWKODQwF2OOgYBHpy4g9YBbmjqo6Ir02pBrSZBDx8+xJQpU7Br1y4AQJ8+fbB8+XLUqVPH7jqMMcyZMwfffPMNHj58iPDwcHz55Zdo3ry5zdiYmBjs378fO3bsQL9+/WqoJYQQQhyZRCRAs+KryV4tLjMYGG5nFVjNZ5SZr8Hf6fkABDj9378AAGIhhybeKjzn74KwenXQ0r8Ogj3oZrI1rVaToGHDhuHevXvYv38/AOD111/HiBEjsHv3brvrLFy4EEuWLMG6devQuHFjfPzxx+jRoweuXr0KZ2dni9ilS5fSIDVCCCG1QiDgEOSuQJC7Ar3DSgZgp+UU4cLdLOw4cgZquRf+uJ+DzHwN/rifjT/uZwO4AwBQSIRo4eeClv518Fzxj6+LjL7XqlGtJUFXrlzB/v37ceLECYSHhwMAVq9ejYiICFy9ehUhISFW6zDGsHTpUsycOROvvPIKAGD9+vXw8vLCpk2b8MYbb/CxFy5cwJIlS3D69Gn4+PhYbYsQQgj5p3EcB28XGerKPaC+wRAT0xoikQj3Hhbi4r1sXLhnnLvo0n3jqbTSY4zclRI8V8+YEIXVc8Fz9erAVSGpxRY93WotCUpMTISLiwufAAHA888/DxcXFxw/ftxmEpSUlITU1FT07NmTL5NKpYiMjMTx48f5JKigoABDhw7FihUr4O3tbbUdW4qKilBUVMQv5+TkAAC0Wi20Wm2l2miPaXvVvd2nhaO3H6BjQO137PYDdAxKt9/bWQzvpu7o2dQ4AFtvYLiRkYcL93Lwx/1sXLyfjaupeXiQp8HBv9Jx0Oy2IPXdnBDq54Ln6rkgzE+FZj4qOEme/PFFNfUaqMj2ai0JSk1Nhaenp1W5p6cnUlNTbawBvtzLy8ui3MvLC7dv3+aX3377bXTo0AF9+/Ytd33mz5+POXPmWJXHx8dDLpeXezsVkZCQUCPbfVo4evsBOgbUfsduP0DH4HHtVwB4XgQ8HwBo6gHJBcDtPA638zjcyeOQoeZwJ6sQd7IK8d8/jN+RAjD4yIH6Sob6SoYAJYO3HBA+oWfRqvs1UFBQUO7Yak+C4uLibCYT5k6fPg0ANs9rMsYee76z9PPm6+zatQuHDh3CuXPnKlJtzJgxA1OnTuWXc3Jy4O/vj549e0KlUlVoW4+j1WqRkJCAHj16QCx2vOnYHb39AB0Dar9jtx+gY1Bd7c8u1OKP+zm4eM84nujCvWxk5GlwvwC4X8AhsbjDSCYWoLmPCmHFvUWh9VxQ37V2J3esqdeA6UxOeVR7EjR58mQMGTKkzJjAwEBcvHgRaWlpVs9lZGRY9fSYmE5tpaamWozzSU9P59c5dOgQbty4YXWF2YABA9CpUyccOXLE5ralUimkUqlVuVgsrrE3aE1u+2ng6O0H6BhQ+x27/QAdg6q2310sRleVHF2bGr8fTTNfX7hrHF904e4j/HEvG7lFOpy98whn7zzi160jFxvHF9VzKR5jVAceztbfgzWtul8DFdlWtSdB7u7ucHd3f2xcREQEsrOzcerUKbRv3x4AcPLkSWRnZ6NDhw421wkKCoK3tzcSEhLQqlUrAIBGo8HRo0exYMECAMB7772H8ePHW6wXGhqKzz//HC+//HJVmkYIIYQ80cxnvo5uYUyMDAaGmw/yceHuI1y89wjn72XjSnIOHhVocfRaBo5eK5n12q+OE57zNw64DqtXB6H1XKCUPrtTCtZay5o2bYro6GhMmDABX3/9NQDjJfK9e/e2GBTdpEkTzJ8/H/379wfHcXjrrbcwb948NGrUCI0aNcK8efMgl8sxbNgwAMbeIluDoevXr4+goKB/pnGEEELIE0Ig4NDQU4mGnkoMaFMPAFCk0+Nqai4u3H2E83ezcfHeI1zPyMP9R4W4/6gQe4vHF3Ec0MhTibDiK9Ja1quDEG9nSETPxq1AajW9++GHHzBlyhT+aq8+ffpgxYoVFjFXr15FdnbJTJvTp09HYWEhYmNj+ckS4+PjreYIIoQQQohtUpEQYcW9PSMijGW5aq3xSrR72bhw13gqLTlbjWtpebiWlof/nL0HoHhiSB9V8fxFxskdg+oqIHgKJ3as1STIzc0NGzduLDOGMWaxzHEc4uLiEBcXV+79lN4GIYQQQiw5y8ToEOyODsElQ1rSc9W4aBpfVJwcZRdqcf6ucT6jknVFxafQjOOLWvrXgZdKVgutqJhn90QfIYQQQqrE01mG7s1k6N7MePERYwy3MwuKB10bk6NL97ORq9bh2PUHOHb9Ab+ul0rKT+z4XPH4IhenJ2sQPCVBhBBCCCkXjuMQ6K5AoLsCfVv6AQC0egOupeXiQvHYovN3H+FaWi7ScooQ/2ca4v8suRK8gYeCvyKtuY8SWkNttcSIkiBCCCGEVJpYKEBzXxc093XBsPD6AIACjQ6Xk3OKB14/wsV72biTVYCbGfm4mZGPHefuAwDqKYTo27v26k5JECGEEEKqlVwiQrtAN7QLdOPLsvI1/NxFF+9l4/zdh/CTF5WxlZpHSRAhhBBCapybQoKuIZ7oGmK8ZZZGo8HPe/bVap2ejQv9CSGEEPJU4TgOtX2fV0qCCCGEEOKQ6HSYHaa5hSpyI7by0mq1KCgoQE5OjkPeM8fR2w/QMaD2O3b7AToGjt5+oOaOgel7uzxzBFISZEdubi4AwN/fv5ZrQgghhJCKys3NhYuLS5kxHKPplG0yGAxITk6Gs7MzOK56pwLPycmBv78/7t69C5VKVa3bfho8Le2/dOkSVq5ciV9//RVpaWkQiUQIDg7GgAEDMHLkSLi5uT1+I3aUdQwKCgrwxRdfoGPHjujUqVNVm1HtsrKyMG3aNPzvf//DgwcP0KtXL2zatKlC23haXgM1xdHbD9TcMUhJScG6devQq1cvhIWFVdt2qxu9BmruGDDGkJubC19fXwgEZY/6oZ4gOwQCAerVq1ej+1CpVA774gee7PavXr0asbGxCAkJwbvvvotmzZpBq9XizJkzWL16Nc6dO4cdO3ZUeT+2joFGo8Gnn36K2bNno1evXlXeR3WbPXs29uzZg++++w7BwcFwc3Or9N/xSX4N/BMcvf1A9R+Da9eu4dNPP0VISAg6duxYbdutKfQaqJlj8LgeIBNKgggpJTExEZMmTUKPHj2wc+dOSKVS/rkePXpg2rRp2L9/fy3WsHK0Wi04joNIVLW3/aVLlxAcHIzhw4dXU80IIaR20NVhhJQyb948cByHb775xiIBMpFIJOjTp49F2U8//YSIiAgoFAoolUpERUXh3LlzFjGjR4+GUqnE9evXMXDgQABAs2bNMG3aNBQVGScMu3XrFjw8PAAAc+bMAcdx4DgOo0eP5rfz999/Y9iwYfD09IRUKkXTpk3x5ZdfWuzryJEj4DgOGzZswLRp0+Dn5wepVIrr16/bbXdWVhZiY2Ph5+cHiUSCBg0aYObMmRZ14zgOBw4cwJUrV/i6HTlyxO42AwMD0bt3b+zZswetWrWCk5MTmjZtyieRP/zwA5o2bQqFQoH27dvjzJkzFuufOXMGQ4YMQWBgIJycnBAYGIihQ4fi9u3bFnEFBQV45513EBQUBJlMBjc3N7Rt2xabN2/mY27evIkhQ4bA19cXUqkUXl5e6NatG86fP2+3/vaMGzcObm5uKCgosHruxRdfRPPmzcu1nZdffhkuLi6Qy+Vo2rQp5s+fb/H8rl27EBERAblcDmdnZ/To0QOJiYkWMXFxceA4DhcvXsSrr74KFxcXuLm5YerUqdDpdLh69Sqio6Ph7OyMwMBALFy40GJ902tl48aNmDp1Kry9veHk5ITIyEir13BF63T58mUMHToULi4u8PLywtixY5GdnW0RyxjDypUr0bJlSzg5OcHV1RUDBw7EzZs3LeK6dOmCFi1a4PTp0+jUqRPkcjkaNGiATz/9FAaDgW9Lu3btAABjxozhX6MVueE2cTCM/OPUajWbPXs2U6vVtV2VWvEkt1+n0zG5XM7Cw8PLvc4nn3zCOI5jY8eOZXv27GHbt29nERERTKFQsMuXL/Nxo0aNYhKJhDVt2pR9+umnbMSIEez9999nHMexOXPmMMaMx2b//v0MABs3bhxLTExkiYmJ7Pr164wxxi5fvsxcXFxYaGgo+/7771l8fDybNm0aEwgELC4ujt/X4cOHGQDm5+fHBg4cyHbt2sX27NnDMjMzbbahsLCQhYWFMYVCwT777DMWHx/PPvzwQyYSiVhMTAxft8TERNaqVSvWoEEDvm7Z2dl2j01AQACrV68ea9GiBdu8eTPbu3cvCw8PZ2KxmHXu3JlFRESw7du3sx07drDGjRszLy8vVlBQwK+/detWNmvWLLZjxw529OhR9uOPP7LIyEjm4eHBMjIy+Lg33niDyeVytmTJEnb48GG2Z88e9umnn7Lly5fzMSEhIaxhw4Zsw4YN7OjRo2zbtm1s2rRp7PDhw3zM2rVrGQC2du3aMv/mFy5cYADY6tWrLcovX77MALAvv/yyzPW/+uorBoB17tyZbdq0iR04cICtXLmSxcbG8jE//PADA8B69uzJdu7cyX766SfWpk0bJpFI2K+//srHzZ49mwFgISEhbO7cuSwhIYFNnz6dAWCTJ09mTZo0YcuWLWMJCQlszJgxDADbtm0bv77pteLv78/69u3Ldu/ezTZu3MgaNmzIVCoVu3HjRpXqNGvWLJaQkMCWLFnCpFIpGzNmDGOs5HNg7NixTCwWs2nTprH9+/ezTZs2sSZNmjAvLy+WmprKbzMyMpLVrVuXNWrUiK1atYolJCSw2NhYBoCtX7+eMcZYdnY2/zf84IMP+Nfo3bt3y/x71IYn+XPwn/IkHANKgggxk5qaygCwIUOGlCv+zp07TCQSsX//+98W5bm5uczb25sNGjSILxs1ahQDwLZs2WIRGxMTw0JCQvjljIwMBoDNnj3ban9RUVGsXr16VonH5MmTmUwmY1lZWYyxki+2zp07l6sdq1atslm3BQsWMAAsPj6eL4uMjGTNmzcv13YDAgKYk5MTu3fvHl92/vx5BoD5+Piw/Px8vnznzp0MANu1a5fd7el0OpaXl8cUCgX74osv+PIWLVqwfv362V3vwYMHDABbunRpmfVdv349EwqF/JdqWSIjI1nLli0tyiZNmsRUKhXLzc21u15ubi5TqVSsY8eOzGAw2IzR6/XM19eXhYaGMr1eb7Gup6cn69ChA19mSjgWL15ssY2WLVsyAGz79u18mVarZR4eHuyVV17hy0yvldatW1vU59atW0wsFrPx48dXuk4LFy60qFNsbCyTyWT8fhITE23W/e7du8zJyYlNnz6dL4uMjGQA2MmTJy1imzVrxqKiovjl06dPlyuRJYQxxuh0GCFV8Msvv0Cn02HkyJHQ6XT8j0wmQ2RkpNWpIo7j8PLLL1uUhYWFWZ3esUWtVuPgwYPo378/5HK5xf5iYmKgVqtx4sQJi3UGDBhQrnYcOnQICoWCP01nYjoNd/DgwXJtx5aWLVvCz8+PX27atCkA4+kNuVxuVW5+LPLy8vDuu++iYcOGEIlEEIlEUCqVyM/Px5UrV/i49u3bY9++fXjvvfdw5MgRFBYWWtTBzc0NwcHBWLRoEZYsWYJz587xp1DMmf6OI0eOfGy73nzzTZw/fx6//fYbAOOVLhs2bMCoUaOgVCrtrnf8+HHk5OQgNjbW7pWnV69eRXJyMkaMGGFxdYtSqcSAAQNw4sQJq1NxvXtb3oWyadOm4DgOL730El8mEonQsGFDm6+3YcOGWdQnICAAHTp0wOHDhytdp9KnjcPCwqBWq5Geng4A2LNnDziOw2uvvWbxevb29sZzzz1n9f7x9vZG+/btrbZZnvcPIbZQEkSIGXd3d8jlciQlJZUrPi0tDQDQrl07iMVii5+ffvoJDx48sIiXy+WQyWQWZVKpFGq1+rH7yszMhE6nw/Lly632FRMTAwBW+/Px8SlXOzIzM+Ht7W31pezp6QmRSITMzMxybceW0lMJSCSSMsvNj8WwYcOwYsUKjB8/Hr/88gtOnTqF06dPw8PDwyLRWbZsGd59913s3LkTXbt2hZubG/r164e///4bgDH5PHjwIKKiorBw4UK0bt0aHh4emDJlCj8nWEX17dsXgYGB/HisdevWIT8/H//617/KXC8jIwMAyrz61HS8bf39fH19YTAY8PDhQ4tyW8fT1utNIpHYfL15e3vbLDPVpTJ1qlu3rsWyaYyd6W+XlpYGxhi8vLysXtMnTpywej2X3p5pm6WTXkLKi64OI8SMUChEt27dsG/fPty7d++x0yS4u7sDAP7zn/8gICCgRuvm6uoKoVCIESNG2P2iDQoKslgu7xxXdevWxcmTJ8EYs1gnPT0dOp2Ob+c/KTs7G3v27MHs2bPx3nvv8eVFRUXIysqyiFUoFJgzZw7mzJmDtLQ0vlfo5Zdfxl9//QXA2LPx7bffAjBeRr1lyxbExcVBo9Fg1apVFa6fQCDAv/71L7z//vtYvHgxVq5ciW7duiEkJKTM9UwD3+/du2c3xvRln5KSYvVccnIyBAIBXF1dK1znsqSmptosM9WlJurk7u4OjuPw66+/2rwIwVYZIdWJeoIIKWXGjBlgjGHChAnQaDRWz2u1WuzevRsAEBUVBZFIhBs3bqBt27Y2fyqq9H/LJnK5HF27dsW5c+cQFhZmc1+2/lMuj27duiEvLw87d+60KP/+++/55/9pHMeBMWb1RbhmzRro9Xq763l5eWH06NEYOnQorl69avMKrsaNG+ODDz5AaGgofv/990rXcfz48ZBIJBg+fDiuXr2KyZMnP3adDh06wMXFBatWrbI7rX9ISAj8/PywadMmi5j8/Hxs27aNvzqrOm3evNliX7dv38bx48fRpUuXGqtT7969wRjD/fv3bb6eQ0NDK9wOe+8fQmyhniBCSomIiMBXX32F2NhYtGnTBpMmTULz5s2h1Wpx7tw5fPPNN2jRogVefvllBAYG4qOPPsLMmTNx8+ZNREdHw9XVFWlpaTh16hTfQ1ERzs7OCAgIwM8//4xu3brBzc0N7u7uCAwMtJhJetKkSQgMDERubi6uX7+O3bt349ChQ5Vq88iRI/Hll19i1KhRuHXrFkJDQ3Hs2DHMmzcPMTEx6N69e6W2WxUqlQqdO3fGokWL+PYfPXoU3377LerUqWMRGx4ejt69eyMsLAyurq64cuUKNmzYwH8xX7x4EZMnT8arr76KRo0aQSKR4NChQ7h48aJFL9P333+PsWPH4rvvvivXuKA6depg5MiR+OqrrxAQEGA13ssWpVKJxYsXY/z48ejevTsmTJgALy8vXL9+HRcuXMCKFSsgEAiwcOFCDB8+HL1798Ybb7yBoqIiLFq0CI8ePcKnn35a4eP5OOnp6ejfvz8mTJiA7OxszJ49GzKZDDNmzACAGqnTCy+8gNdffx1jxozBmTNn0LlzZygUCqSkpODYsWMIDQ3FpEmTKrTN4OBgODk58dMvKJVK+Pr6wtfXt8L1Iw6g1oZkE/KEO3/+PBs1ahSrX78+k0gkTKFQsFatWrFZs2ax9PR0i9idO3eyrl27MpVKxaRSKQsICGADBw5kBw4c4GNGjRrFFAqF1X5MV9KYO3DgAGvVqhWTSqUMABs1ahT/XFJSEhs7dizz8/NjYrGYeXh4sA4dOrCPP/6YjzFd8bN169ZytzczM5NNnDiR+fj4MJFIxAICAtiMGTOsLl+t6NVhvXr1sioHwP71r39ZlCUlJTEAbNGiRXzZvXv32IABA5irqytzdnZm0dHR7NKlSywgIMDimLz33nusbdu2zNXVlUmlUtagQQP29ttvswcPHjDGGEtLS2OjR49mTZo0YQqFgimVShYWFsY+//xzptPp+O2U9xJ5c0eOHGEA2KefflrudRhjbO/evSwyMpIpFAoml8tZs2bN2IIFCyxidu7cycLDw5lMJmMKhYJ169aN/fbbbxYxpteP+ZQBjNl/vZX++5leKxs2bGBTpkxhHh4eTCqVsk6dOrEzZ85YrV+VOpmOb1JSkkX5d999x8LDw5lCoWBOTk4sODiYjRw50mL/9l53o0aNYgEBARZlmzdvZk2aNGFisdjulZaEMMYY3TuMEEKqYNq0afjqq69w9+7dSp+OrE1HjhxB165dsXXrVqurAwl51tHpMEIIqYQTJ07g2rVrWLlyJd54442nMgEixNFREkQIIZVgGm/Uu3dvfPzxx7VdHUJIJdDpMEIIIYQ4JLpEnhBCCCEOiZIgQgghhDikfyQJWrlyJYKCgiCTydCmTRv8+uuvZcYfPXoUbdq0gUwmQ4MGDWzO5rpt2zY0a9YMUqkUzZo1w44dO6q8X0IIIYQ4jhpPgn766Se89dZbmDlzJs6dO4dOnTrhpZdewp07d2zGJyUlISYmBp06dcK5c+fw/vvvY8qUKdi2bRsfk5iYiMGDB2PEiBG4cOECRowYgUGDBuHkyZOV3i8hhBBCHEuND4wODw9H69at8dVXX/FlTZs2Rb9+/TB//nyr+HfffRe7du2yuEP0xIkTceHCBSQmJgIABg8ejJycHOzbt4+PMc3Uu3nz5krttzSDwYDk5GQ4OzuX+/5LhBBCCKldjDHk5ubC19cXAkHZfT01eom8RqPB2bNnLaalB4CePXvi+PHjNtdJTExEz549LcqioqLw7bffQqvVQiwWIzExEW+//bZVzNKlSyu939KSk5Ph7+9frlhCCCGEPFnu3r372Jtg12gS9ODBA+j1enh5eVmUe3l52bxjMWC8a7GteJ1OhwcPHsDHx8dujGmbldlvUVERioqK+GVTB1lSUhKcnZ3L0dry02q1OHz4MLp27QqxWFyt234aOHr7AToG1H7Hbj9Ax8DR2w/U3DHIzc1FUFBQub67/5HJEkufTmKMlXmKyVZ86fLybLMi+50/f77NG10mJiZW+92aAeMdwc3HMDkaR28/QMeA2u/Y7QfoGDh6+4GaOQYFBQUArHMAW2o0CXJ3d4dQKLTqfUlPT7fqpTHx9va2GS8Sifhp6e3FmLZZmf3OmDEDU6dO5ZdzcnLg7++Pnj17QqVSlaO15XM7swCbTt7GvTu30aRRMGRSEaQiISRCASQizvqxSACJUACpSGB8LBJAIuQg4Z/jnroxS1qtFgkJCejRo4dD/wfkyMeA2u/Y7QfoGDh6+4GaOwY5OTnljq3RJEgikaBNmzZISEhA//79+fKEhAT07dvX5joRERHYvXu3RVl8fDzatm3LH6SIiAgkJCRYjAuKj49Hhw4dKr1fqVQKqVRqVS4Wi6v1j3M/R4PvEu8CECD+flK1bFMiEkAqNCZIFsmSSGCWVFk+JxUJS5aF1s+VPBaU2r71c/xjoaBCCVl1H9unkaMfA2q/Y7cfoGPg6O0Hqv8YVGRbNX46bOrUqRgxYgTatm2LiIgIfPPNN7hz5w4mTpwIwNgDc//+fXz//fcAjFeCrVixAlOnTsWECROQmJiIb7/9lr/qCwDefPNNdO7cGQsWLEDfvn3x888/48CBAzh27Fi591tb/OrIMO6FAFy7kQTfev7Q6oEivQEanQFFOgM0Oj00OgM0egOKtMbfJc8Z+OfMmcpRZGen/yDbCZd5siWEWAg8fCDAwfw/oJCJIZcIIZcI4SQRwklseiyCXFxSLpeIIJcIITOViYUQCJ6uHjBCCCFPlhpPggYPHozMzEx89NFHSElJQYsWLbB3714EBAQAAFJSUizm7gkKCsLevXvx9ttv48svv4Svry+WLVuGAQMG8DEdOnTAjz/+iA8++AAffvghgoOD8dNPPyE8PLzc+60tDT2d8V50CPbuvYGYmOaVyn4NBmZMjkolSsZkSW/2uDh50htQpNWXijOYJVvG54pKJ1um7dlIxIrsJWTF9cp7bEImwB8PUyrcdnMysQByiYhPnCwTKVFx8lScRIlFNhKtkuTKFCsXiyCTVLxXixBCyNPnHxkYHRsbi9jYWJvPrVu3zqosMjISv//+e5nbHDhwIAYOHFjp/T7NBAIOMoGxVwSy2q2LeUJmlSCZJWVFZglbYZEGZ85dRHBIUxTpgEKtHoUaHQo0ehRo9SjU6FGg0RX/Nv6otcbfhVo9v2+11gC1VlMj7RIKOMjFQrNESsQnWjLzpEtcKokqjrVMtIzJFb8tsbBG6kwIIaRi/pEkiDy7LBKyctJqtZClXEDMC4EV7gkzGBjUuuKEiE+SjAlToda8XGeWUJknUjqLdQtLlekMxisR9QaG3CIdcot0FapfecnEAoghxOfXjsFZJoazTASlVMQ/Ni0rZcVl0uKy4mWl1Pi8kE4JEkJIpVESRJ4qAgFXfAqrZl66Wr3BMpGySK5Kls2TK5u9WFpDSbzGTi8WOORmFlSpvgqJ0CIxMiVQzlIxlHxiZfoR21yWS4R06o8Q4pAoCSLEjFgogIuTAC5O1X+1hnkvVk6BGvsPHEHLdhFQ6xly1Tr+J69IizzTcpEOuWot8oqKnysu0+iMY7HyNXrka/RIy6n8qHgBB4teKCXf62RMklSlyoxJlsgq+ZKKaBwVIeTpQkkQIf8Q814sF6kAfgqgXaBrpQbHF+n0fKKUV6RDjtqYOPHJkq0ydXGZWYzewGBgQI5ahxx11U79iYWcRVJU0utkVla87CTicDWLg/utLLgqnCxOAYqENX5fZ0IIAUBJECFPJalICKlSiLpK67mtyosxBrXWgFy1trjHqbinqXg5z6xnqqRXSoe8Uj1TeRodGAO0eoasfA2y8ss7WF2I1VfPWJXKJUKLBMr8FJ95IuUsM/VSmY2jkomgkompV4oQUi6UBBHioDiOM04ZIBHCswrbMRgY8jUlPU65atun8HLVJaf5cgo1uJeWCaFMgTyNHrlqLdRa4yk+01ir9NzKn+Ir3SvFJ1TmvVOyUomW+SlBmQhKiYjmoiLkGUdJECGkSgQCrjh5EMPHpXzraLVa7N27FzExHfnTgVq9oSRJUmv5U3a5Zo9N5aYeKfOkK7fIGFO5XilrHAcoJSKr3ifT+CmVTGSxbN4TZX4aUCKi03uEPKkoCSKEPBHEQgFcFRK4KiSV3oZ1r5QWOeqSU3vmPVR8oqXWIbfI7LFaB43eAMZQMk1CduXbJRUJLE/ryURQSIR4lCHA73v/gotcyidUzmYJlHnvlExMp/cIqQmUBBFCnhmV6ZWyRa3VW/VE8T1OpcdKmZ3u4xMttQ75GuOUCEU6A4ryivDAahp1AU5l3LHeuQ0iAWc9RoofF2VZZj6eSmUWR1MhEGKNkiBCCClFJjZOAOrhXPmB53oDs+hlMu+JephfhDMXLsEvoCHyixOu0kmWKdbAAJ2B4WGBFg8LtJWuj1DAWQ04V8lKT9JZklCpbJQpaJwUecZQEkQIITVAKODgIhfDRW49BYJWq4Xrgz8Q07NRmVMkMMaQXzxw3Pz0nnnClGf2OMc8kTJLvvQGBr2BIbtQi+xCLYDCSrXJfJyUrV4p8+TK1kzoquIB6TTTOXlSUBJECCFPKI7j+FukVPb0HmMMhXxvk3lPk67M5Kp0D5ZWz0qNk1JXul2mmc45rRBr750sPnUnNrtVjPU8U0qzKRGUxeOq6PQeqSpKgggh5BnGcSWTdHqpKn/HZbXNRMrUA2V9Gi/XRg9VUamZzgEOqXcrN+qcM810Li2Z8sAyWSqZQ0ops45TFZc7iSmZcmSUBBFCCHms6hgnpdEZ+MToYZ4aB//3G5q3bIMCLUNekf2ZzkvfPkZvKO6VKk68qtIrZRorZT6nlDGZsrxtjK179JUkXTRB59OKkiBCCCH/CIlIgLpKKeoqpfBzkeCOC0P3pp4VunUMP9N5kWWyZH41n6k8p/i3aU4p8x4q06Bzy7FSlScScGan8sRm99ezTJZMCZdczOFaNod697LhopBCITX21ikkQrp1zD+IkiBCCCFPDYuZzp0rvx3LsVKWCZT5bWTMbxuTZ5ZA8beVKb5tjM7A8KhAi0cFFRl4LsSXf560KpWKBMVJkRAKiQgKqbBkWWq8Sk8uFUIpEUEuNSZOCqkxTi4pTrIkQott0FV9tlESRAghxOFYjpWq/HYMBoYCrb7sBMo8yTJN1lmoRWrmIwgkTijQ6JFfpIPOwAAUzy2l0yArv5oaC8BJLDRLpspOnBQSYXFyVSoBk4j4dZ6VsVSUBBFCCCGVJDAbU4QKXMFXcuuYzvzpQI3OgPwiHfI1OhRo9Mgr0qGgSI98ja64XI+C4t/5RToUaHTIL9KXuU5xXoVCrR6FWj0e5FX+VjLmOA7GHqlSyZSidG+VKeniky0hvywVANnVU51KoySIEEIIeQJIRAJIRFW7dYw5xhiKihMrPkEqTpwKNDrkFf+2SKSK9MjT6Phky/z5Ao0xuWIMYAz8YHZU4WbHjV0EGFotra0cSoIIIYSQZxDHcfxVfXWraZsGA4Nap7fqgcovKk6WzBKoxydfOihElb+yrzpQEkQIIYSQchEISsZSVWW6BKDklGBtouvwCCGEEOKQKAkihBBCiEOiJIgQQgghDomSIEIIIYQ4JEqCCCGEEOKQajQJevjwIUaMGAEXFxe4uLhgxIgRePToUZnrMMYQFxcHX19fODk5oUuXLrh8+bJFTFFREf7973/D3d0dCoUCffr0wb179/jnb926hXHjxiEoKAhOTk4IDg7G7NmzodHU8qxMhBBCCHli1GgSNGzYMJw/fx779+/H/v37cf78eYwYMaLMdRYuXIglS5ZgxYoVOH36NLy9vdGjRw/k5ubyMW+99RZ27NiBH3/8EceOHUNeXh569+4NvV4PAPjrr79gMBjw9ddf4/Lly/j888+xatUqvP/++zXZXEIIIYQ8RWpsnqArV65g//79OHHiBMLDwwEAq1evRkREBK5evYqQkBCrdRhjWLp0KWbOnIlXXnkFALB+/Xp4eXlh06ZNeOONN5CdnY1vv/0WGzZsQPfu3QEAGzduhL+/Pw4cOICoqChER0cjOjqa326DBg1w9epVfPXVV/jss89qqsmEEEIIeYrUWE9QYmIiXFxc+AQIAJ5//nm4uLjg+PHjNtdJSkpCamoqevbsyZdJpVJERkby65w9exZardYixtfXFy1atLC7XQDIzs6Gm5tbVZtFCCGEkGdEjfUEpaamwtPT06rc09MTqampdtcBAC8vL4tyLy8v3L59m4+RSCRwdXW1irG33Rs3bmD58uVYvHix3foWFRWhqKjk/ic5OTkAjDNaarVau+tVhml71b3dp4Wjtx+gY0Dtd+z2A3QMHL39QM0dg4psr8JJUFxcHObMmVNmzOnTpwEY71tSGmPMZrm50s+XZx17McnJyYiOjsarr76K8ePH211//vz5NtsVHx8PuVxe5r4rKyEhoUa2+7Rw9PYDdAyo/Y7dfoCOgaO3H6j+Y1BQUFDu2AonQZMnT8aQIUPKjAkMDMTFixeRlpZm9VxGRoZVT4+Jt7c3AGNvj4+PD1+enp7Or+Pt7Q2NRoOHDx9a9Aalp6ejQ4cOFttLTk5G165dERERgW+++abMOs+YMQNTp07ll3NycuDv74+ePXtCpVKVuW5FabVaJCQkoEePHhCLxdW67aeBo7cfoGNA7Xfs9gN0DBy9/UDNHQPTmZzyqHAS5O7uDnd398fGRUREIDs7G6dOnUL79u0BACdPnkR2drZVsmISFBQEb29vJCQkoFWrVgAAjUaDo0ePYsGCBQCANm3aQCwWIyEhAYMGDQIApKSk4NKlS1i4cCG/rfv376Nr165o06YN1q5dC4Gg7OFPUqkUUqn1zeDEYnGNvUBrcttPA0dvP0DHgNrv2O0H6Bg4evuB6j8GFdlWjQ2Mbtq0KaKjozFhwgScOHECJ06cwIQJE9C7d2+LK8OaNGmCHTt2ADCeBnvrrbcwb9487NixA5cuXcLo0aMhl8sxbNgwAICLiwvGjRuHadOm4eDBgzh37hxee+01hIaG8leLJScno0uXLvD398dnn32GjIwMpKam2h0zRAghhBDHU2MDowHghx9+wJQpU/grufr06YMVK1ZYxFy9ehXZ2dn88vTp01FYWIjY2Fg8fPgQ4eHhiI+Ph7OzMx/z+eefQyQSYdCgQSgsLES3bt2wbt06CIVCAMZxPNevX8f169dRr149i/0xxmqquYQQQgh5itRoEuTm5oaNGzeWGVM6KeE4DnFxcYiLi7O7jkwmw/Lly7F8+XKbz48ePRqjR4+uaHUJIYQQ4kDo3mGEEEIIcUiUBBFCCCHEIVESRAghhBCHREkQIYQQQhwSJUGEEEIIcUiUBBFCCCHEIVESRAghhBCHREkQIYQQQhwSJUGEEEIIcUg1OmO0I9Dr9dBqtRVaR6vVQiQSQa1WQ6/X11DNnlyO3n6g6sdALBbzt4khhBBSOZQEVRJjDKmpqXj06FGl1vX29sbdu3fBcVz1V+4J5+jtB6rnGNSpUwfe3t4OewwJIaSqKAmqJFMC5OnpCblcXqEvIoPBgLy8PCiVSggEjndG0tHbD1TtGDDGUFBQgPT0dACAj49PTVSREEKeeZQEVYJer+cToLp161Z4fYPBAI1GA5lM5pBJgKO3H6j6MXBycgIApKenw9PTk06NEUJIJTjmN1AVmcYAyeXyWq4JcWSm119Fx6QRQggxoiSoCmgsBqlN9PojhJCqoSSIEEIIIQ6JkiBigeM47Ny5s8b3ExYWhi+++KLG92PLunXrUKdOnVrZNyGEkCcHJUEOJj09HW+88Qbq168PqVQKb29vREVFITExEQCQkpKCl156qZZraY0SF0IIIdWNrg5zMAMGDIBWq8X69evRoEEDpKWl4eDBg8jKygIAeHt713INCSGEkH8G9QQ5kEePHuHYsWNYsGABunbtioCAALRv3x4zZsxAr169AFieDrt16xY4jsOWLVvQqVMnODk5oV27drh27RpOnz6Ntm3bQqlUIjo6GhkZGfx+unTpgrfeesti3/369cPo0aPt1m3JkiUIDQ2FQqGAv78/YmNjkZeXBwA4cuQIxowZg+zsbHAcB47jEBcXBwDQaDSYPn06/Pz8oFAoEB4ejiNHjlhse926dahfvz7kcjn69++PzMzMKh1HQgghzwZKgqoJYwwFGl25fwo1+grFl/XDGCtXHZVKJZRKJXbu3ImioqJyt2327Nn44IMP8Pvvv0MkEmHo0KGYPn06vvjiC/z666+4ceMGZs2aVdlDBwAQCARYtmwZLl26hPXr1+PQoUOYPn06AKBDhw5YunQpVCoVUlJSkJKSgnfeeQcAMGbMGPz222/48ccfcfHiRbz66quIjo7G33//DQA4efIkxo4di9jYWJw/fx5du3bFxx9/XKW6EkIIeTbQ6bBqUqjVo9msX2pl339+FAW55PF/SpFIhHXr1mHChAlYtWoVWrdujcjISAwZMgRhYWF213vnnXcQFRUFAHjzzTcxdOhQHDx4EC+88AIAYNy4cVi3bl2V2mDecxQUFIS5c+di0qRJWLlyJSQSCVxcXMBxnMXpuhs3bmDz5s24d+8efH19+bru378fa9euxbx58/DFF18gKioK7733HgCgcePGOH78OPbv31+l+hJCCHn6UU+QgxkwYACSk5Oxa9cuREVF4ciRI2jdunWZSYx5guTl5QUACA0NtSgz3cKhsg4fPowePXrAz88Pzs7OGDlyJDIzM5Gfn293nd9//x2MMTRu3Jjv5VIqlTh69Chu3LgBALhy5QoiIiIs1iu9TAghxDFRT1A1cRIL8edHUeWKNRgMyM3JhbPKuVpuG+EkrtgtE2QyGXr06IEePXpg1qxZGD9+PGbPnm13zI5YLOYfmyboK11mMBj4ZYFAYHWKrqxZjW/fvo2YmBhMnDgRc+fOhZubG44dO4Zx48aVuZ7BYIBQKMTZs2etbhuhVCoBoNynCgkhhDgeSoKqCcdx5TolBRi/vHUSIeQS0RNx76xmzZpV69xAHh4eSElJ4Zf1ej0uXbqErl272ow/c+YMdDodFi9ezB+PLVu2WMRIJBLo9XqLslatWkGv1yM9PR2dOnWyue1mzZrhxIkTFmWllwkhhDim2v8GJv+YzMxMvPjii9i4cSMuXryIpKQkbN26FQsXLkTfvn2rbT8vvvgi/vvf/+K///0v/vrrL8TGxuLRo0d244ODg6HT6bB8+XLcvHkTGzZswKpVqyxiAgMDkZeXh4MHD+LBgwcoKChA48aNMXz4cIwcORLbt29HUlISTp8+jQULFmDv3r0AgClTpmD//v1YuHAhrl27hhUrVtB4IEIIIQBqOAl6+PAhRowYARcXF7i4uGDEiBFlfhkCxtMXcXFx8PX1hZOTE7p06YLLly9bxBQVFeHf//433N3doVAo0KdPH9y7d8/m9oqKitCyZUtwHIfz589XU8ueTkqlEuHh4fj888/RuXNntGjRAh9++CEmTJiAFStWVNt+xo4di1GjRmHkyJGIjIxEUFCQ3V4gAGjZsiWWLFmCBQsWoEWLFvjhhx8wf/58i5gOHTpg4sSJGDx4MDw8PLBw4UIAwNq1azFy5EhMmzYNISEh6NOnD06ePAl/f38AwPPPP481a9Zg+fLlaNmyJeLj4/HBBx9UW1sJIYQ8xVgNio6OZi1atGDHjx9nx48fZy1atGC9e/cuc51PP/2UOTs7s23btrE//viDDR48mPn4+LCcnBw+ZuLEiczPz48lJCSw33//nXXt2pU999xzTKfTWW1vypQp7KWXXmIA2Llz58pd9+zsbAaAZWdnWz1XWFjI/vzzT1ZYWFju7ZnT6/Xs4cOHTK/XV2r9p52jt5+x6jkGVX0d1iaNRsN27tzJNBpNbVelVjh6+xmjY+Do7Wes5o5BWd/fpdVYT9CVK1ewf/9+rFmzBhEREYiIiMDq1auxZ88eXL161V5ChqVLl2LmzJl45ZVX0KJFC6xfvx4FBQXYtGkTACA7OxvffvstFi9ejO7du6NVq1bYuHEj/vjjDxw4cMBie/v27UN8fDw+++yzmmomIYQQQp5SNZYEJSYmwsXFBeHh4XzZ888/DxcXFxw/ftzmOklJSUhNTUXPnj35MqlUisjISH6ds2fPQqvVWsT4+vqiRYsWFttNS0vDhAkTsGHDBsjl8upuHiGEEEKecjV2dVhqaio8PT2tyj09PZGammp3HaBkLhoTLy8v3L59m4+RSCRwdXW1ijGtzxjD6NGjMXHiRLRt2xa3bt16bH2LioosZlHOyckBYLy0u/Rl2lqtFowxGAwGi0vDy4sVX7Zt2oajcfT2A9VzDAwGAxhj0Gq1VlMEPOlM76mypkB4ljl6+wE6Bo7efqDmjkFFtlfhJCguLg5z5swpM+b06dMASuaUMccYs1lurvTz5VnHPGb58uXIycnBjBkzylzH3Pz58222Kz4+3qonSSQSwdvbG3l5edBoNOXeR2m5ubmVXvdZ4OjtB6p2DDQaDQoLC/G///0POp2uGmv1z0lISKjtKtQqR28/QMfA0dsPVP8xKCgoKHdshZOgyZMnY8iQIWXGBAYG4uLFi0hLS7N6LiMjw6qnx8R0S4TU1FT4+Pjw5enp6fw63t7e0Gg0ePjwoUVvUHp6Ojp06AAAOHToEE6cOAGpVGqx/bZt22L48OFYv3691b5nzJiBqVOn8ss5OTnw9/dHz549oVKpLGLVajXu3r0LpVIJmUxW5rGwhTGG3NxcODs7Pza5exY5evuB6jkGarUaTk5O6Ny5c6Veh7VJq9UiISEBPXr0sJh401E4evsBOgaO3n6g5o6B6UxOeVQ4CXJ3d4e7u/tj4yIiIpCdnY1Tp06hffv2AIw3s8zOzuaTldKCgoLg7e2NhIQEtGrVCoDxv92jR49iwYIFAIA2bdpALBYjISEBgwYNAgCkpKTg0qVL/GXTy5Yts7hJZnJyMqKiovDTTz9ZjFEyJ5VKrZImwDgzcuk/jl6vB8dxEAgElZrs0HT6w7QNR+Po7Qeq5xgIBAJwHGfzNfq0eJrrXh0cvf0AHQNHbz9Q/cegItuqsTFBTZs2RXR0NCZMmICvv/4aAPD666+jd+/eCAkJ4eOaNGmC+fPno3///uA4Dm+99RbmzZuHRo0aoVGjRpg3bx7kcjmGDRsGAHBxccG4ceMwbdo01K1bF25ubnjnnXcQGhqK7t27AwDq169vURfTLRSCg4NRr169mmoyIYQQQp4iNXrbjB9++AFTpkzhr+Tq06eP1aR8V69eRXZ2Nr88ffp0FBYWIjY2Fg8fPkR4eDji4+Ph7OzMx3z++ecQiUQYNGgQCgsL0a1bN6xbt+6pGxxKCCGEkNpTo0mQm5sbNm7cWGYMK3WDS47jEBcXh7i4OLvryGQyLF++HMuXLy9XPQIDA+lGmoQQQgix4JgDMsgz5ZtvvoG/vz8EAgGWLl1a29UhhBDylKAkyMGMHj0aHMdh4sSJVs/FxsaC4ziMHj3aKt40ALdBgwZ45513kJ+fb7Hutm3b0KVLF7i4uECpVCIsLAwfffQRsrKy7NZFKBTy21YqlXjuueewbt26CrUnJycHkydPxrvvvov79+/j9ddfr9D6hBBCHBclQQ7I398fP/74IwoLC/kytVqNzZs3Ww0qB4Do6GikpKTg5s2b+Pjjj7Fy5Uq88847/PMzZ87E4MGD0a5dO+zbtw+XLl3C4sWLceHCBWzYsKHMuqxduxYpKSm4cOECBg8ejDFjxuCXX34pd1vu3LkDrVaLXr16wcfHp9KzgzvyhGWEEOKoKAlyQK1bt0b9+vWxfft2vmz79u3w9/fnpyYwJ5VK4e3tDX9/fwwbNgzDhw/Hzp07AQCnTp3CvHnzsHjxYixatAgdOnRAYGAgevTogW3btmHUqFFl1qVOnTrw9vZGcHAw3n//fbi5uSE+Pp5/Pjs7G6+//jo8PT2hUqnw4osv4sKFCwCAdevWITQ0FADQoEEDcBzHzw6+e/dutGnTBjKZDA0aNMCcOXMsJhTkOA6rVq1C3759oVAo+CkVyrPemjVr0L9/f8jlcjRq1Ai7du2yaNPly5fRq1cvqFQqODs7o1OnTrhx4wb//Nq1a9G8eXN4e3ujWbNmWLlyJf+cRqPB5MmT4ePjA5lMhsDAQMyfP7/MY0gIIaRyKAmqbpp8+z9adQViC8sXW0ljxozB2rVr+eXvvvsOY8eOLde6Tk5OfM/JDz/8AKVSidjYWJuxderUKdc29Xo9tmzZgqysLH6OB8YYevXqhdTUVOzduxdnz55F69at0a1bN2RlZWHw4MH8TXNPnTqFlJQU+Pv745dffsFrr72GKVOm4M8//8TXX3+NdevW4ZNPPrHY5+zZs9G3b1/88ccfGDt2bLnXmzNnDgYNGoSLFy8iJiYGw4cP50/73b9/n5+88NChQzh79izGjh3LJ1KrV6/GzJkzMXfuXJw8eRIff/wxPvzwQ34Cz2XLlmHXrl3YsmULrl69io0bNyIwMLBcx5AQQkjF1OjVYQ5pnq/95xr1BIZv5Re5xY0BrZ3pvQM6AmP+W7K8NBQoyLSOi8u2LiuHESNGYMaMGbh16xY4jsNvv/2GH3/8EUeOHClzvVOnTmHTpk3o1q0bAODvv/9GgwYNKj3R1dChQyEUCqFWq6HX6+Hm5obx48cDAA4fPow//vgD6enp/ESWn332GXbu3In//Oc/eP3111G3bl0AgIeHBz/j+CeffIL33nuP74Vq0KAB5s6di+nTp2P27Nn8vocNG2aR+I0YMaJc640ePRpDhw4FAMybNw/Lly/HqVOnEB0djS+//BIuLi748ccf+WPSuHFjft25c+di8eLFeOWVV5CTk4PQ0FD89ddf+PrrrzFq1CjcuXMHjRo1QseOHcFxHAICAip1XAkhhDweJUEOyt3dHb169cL69ev5Hhd7M4Hv2bMHSqUSOp0OWq0Wffv25acnKM993cry+eefo3v37rh79y6mTp2Kt99+Gw0bNgQAnD17Fnl5eXyiY1JYWGhxeqm0s2fP4vTp0xY9OHq9Hmq1GgUFBfy4obZt21ZqvbCwMP55hUIBZ2dnpKenAwDOnz+PTp062UwKMzIycPfuXYwbNw4TJkzgy3U6HVxcXAAYE6wePXogJCQE0dHR6N27Nz/PFiGEkOpFSVB1ez/Z/nOc5WSObNo1cPZumcCVKn/rjypWzNrYsWMxefJkAMCXX35pN65r16746quvIBaL4evra/EF37hxYxw7dgxarbZSvUHe3t5o2LAhGjZsiK1bt6JVq1Zo27YtmjVrBoPBAB8fH5u9U2WdZjMYDJgzZw5eeeUVq+fM77GlUCgqtV7pdnIcx98Gw8nJqcx6AcZTYu3atUNeXh6USiUEAgE/0Wfr1q2RlJSEffv24cCBAxg0aBC6d++O//znP3a3SwghpHIoCapuEsXjY8xjy3vfqIpst5yio6Oh0WgAAFFRUXbjFAoF3ztT2rBhw7Bs2TKsXLkSb775ptXzjx49Kve4oIYNG2LAgAGYMWMGfv75Z7Ru3RqpqakQiUQVGhfTunVrXL161W6dq3s9c2FhYVi/fr3NpNDLywt+fn64efMmhg4dipycHKhUKqt7h6lUKgwePBiDBw/GwIEDER0djaysLLi5uVW6XoQQQqxREuTAhEIhrly5wj+ujPDwcEyfPh3Tpk3D/fv30b9/f/j6+uL69etYtWoVOnbsaDM5smfatGl47rnncObMGXTv3h0RERHo168fFixYgJCQECQnJ2Pv3r3o16+f1eksk1mzZqF3797w9/fHq6++CoFAgIsXL+KPP/6wuLFuda1nbvLkyVi+fDmGDBmCGTNmwMXFBSdOnED79u0REhKCuLg4TJkyBc7OzujYsSPEYjF+//13PHz4EFOnTsXnn38OHx8ftGzZEgKBAFu3boW3t3e5E0lCCCHlR1eHOTiVSgWVSlWlbSxYsACbNm3CyZMnERUVhebNm2Pq1KkICwt77CXypZluhDtr1ixwHIe9e/eic+fOGDt2LBo3bowhQ4bg1q1b8PLysruNqKgo7NmzBwkJCWjXrh2ef/55LFmy5LGDjCu7nrm6devi0KFDyMvLQ2RkJNq0aYPVq1fzvULjx4/HmjVrsH79erzwwgvo2rUr1q1bh6CgIADGm/0uWLAAbdu2Rbt27XDr1i3s3bu30neaJ4QQYh/H6KZaNuXk5MDFxQXZ2dlWSYJarUZSUhKCgoIsxoqUl8FgsHsqxBE4evuB6jkGVX0d1iatVou9e/ciJiam0lcWPs0cvf0AHQNHbz9Qc8egrO/v0hzzG4gQQgghDo+SIEIIIYQ4JEqCCCGEEOKQKAkihBBCiEOiJIgQQgghDomSoCowzQBMSG2g1x8hhFQNTZZYCRKJBAKBAMnJyfDw8IBEIqnQ/bMMBgM0Gg3UarVDXiLu6O0HqnYMGGPQaDTIyMiAQCCARCKpoVoSQsizjZKgShAIBAgKCkJKSgqSk8u4V5gdjDGoCwsgkznBdu7EweIJVtZ//DUVC8v7l1UolgGwP/0UA4fCwkI4OTmBKy6pju0+EbHmx7iMWMaAQrXaeAw4rlLblTvJUN/HCwJdoWWoSAYIimcA12sBvcb+ZoVSQCiqRKwO0BeVESsBhGL7sVothPoiQJMPCBQlsQY9oFPb365ADIgklYg1AKWPU6VjRYBIanzMGKAtqHiseftZcds5ISA2m+9Jk29/uxWKFQBip0rGFsD+65IDJPLKxWoLAU2R9TEwMb9NkLaw7M8fi1g1wPTVEyuWl7zndEWAQVc9sSIn/nZJnEFnu/02YqHTAAZtGds1e99XJLY2PyOeAJQEVZJEIkH9+vWh0+mg15fxRrJBq9VC/HWE/YCAF4CXvyhZXtXJ/oeybxvgla9Lltd0B9SPbMd6NAMGf1+yvK4PkGcniXNtAAzfUrL8wyDg4U3bsUpfYPSukuWfRgIZf9qOldWBdtQ+/O9//0Pnzp0h3j0ZSD5rO1bkBEz8tWR595vA7d9sxwLA5DMlj/e9C9w4aD/29f+VfCgnxAFX99iPHZsAyF2Nj48sAC5ttR874mfAxc/4+NhS4PxGu6Engt5G456DjJOEnfwaOL3a/nZfXQ94NTc+/n09hEc+gUiTA87Wl86oPUBQJ+Pjs+uAve/Y3+6wLUDj4vvGXdwC/BxbRh3WAc37Gx//tRvYOtp+bN+VQKvhxsc3DgKbBlk8LQbQGwAuAoj5DGg/wfjE7ePA+t72t9vjI+CF4tuwpJwHVr9oPzbyPaDrDOPjB1eBlc/bj+3wb6Bn8a1Rsu8CX4TZj203Hui12Pi4IBNYFGw/9rlhQP+vjI+1BcA8XwCl2m/SrC8wyOz9WRxrU6OewHCz1+GihvaTsYCOwJj/liwvDTXW2xbfVsDrR0qWvwwHsu/YjvVoAvzrZMny6q5Axl+2Y13qA2+b3QR67UsQJ5+zPgYAIK8LTDf7rNk4ELh9zPZ2xXJgZkrJ8pYRwN/xtmMBIC675PGO14E/f7Yf+35ySdK0+y3gwib7sf93A1C4Gx//8j5weo392DcvAq7GWeibpmyFeNFY+7GxJwDPpsbHvy4Gjn5qP3bCIcCvjfHxya+AhFn2Y5+Uz4gWg+w//w+hJKgKOI6DWCyu8EyXQqEQ4ry79gM0WYD5DMD59+x/wBUFWMYWJNv/gFO5W8YWpgD26uGksIxVp9mPFXKWsUXp9mMNBRDKZNDpdJDJZBAXPbAfK5ZbbleTZT8WsIzVPnxMrBSQFMfrssuOlYpLtq3PKTtWIiqJNeSVGWvQqo3HQCwGDAVlb1eEku0yNaDJth9LCCGkXOi2GXZUZNrtitJqtfhl9w5ERfW0nUA9C13dZXRfazlJyVTp0D2zXd1ldUlrtVrsTTiMmF69ja+BZ7Gru4zTYVqtFr/8Em98D8gc73SYRfvFjnk6TKspsj4GJg5wOkyr1WLfnl14qWc3+/9IP+Onw7QG1PptM6gnqJbohVLjG7I8f3jzN261xsofH1OZWPMPUVu0Zm/Ox8VabLcC98eqSKxICkBaA7ESAHbOe3Nay7FGZcVWZLulCcUlCUa1xopKPuwqE8tpS94D5vsUCMv/Gq5QrKBmYjmucrHm7bf3GVBj7/sn5TNCVL7PwWf4M4IJROX/HngWPyPKStT+IY55aQ4hhBBCHB71BNlhOkuYk5NT7dvWarUoKChATk6OQ9492NHbD9AxoPY7dvsBOgaO3n6g5o6B6Xu7PKN9KAmyIzc3FwDg7+9fyzUhhBBCSEXl5ubCxcWlzBgaGG2HwWBAcnIynJ2dKzQRYnnk5OTA398fd+/erfZB108DR28/QMeA2u/Y7QfoGDh6+4GaOwaMMeTm5sLX1/exk9FST5AdAoEA9erVq9F9qFQqh33xA09++y9evIjPP/8cR44cQUpKCkQiERo3bowhQ4Zg/PjxcHNzq/I+bB2DgoICLFy4EF26dEGXLl2qvI/qlpWVhdjYWBw6dAgZGRno27cvdu7cWaltPemvgZrm6O0HqvcYJCcn45tvvkG/fv3QsmXLatlmTaPXQM0cg8f1AJlQEkSIDatXr0ZsbCxCQkLwf//3f2jWrBm0Wi3OnDmDVatWITExETt27KiRfRcUFGDOnDkA8EQmQXPnzsWOHTvw3XffITg4uFqSQUKqQ3JyMubMmYPAwMCnJgkitYuSIEJKSUxMxKRJk9CjRw/s3LkTUmnJ5a49evTAtGnTsH///lqsYeVotVpwHAeRqGpv+0uXLiE4OBjDhw+vppoRQkgtYeQfp1ar2ezZs5lara7tqtSKJ739vXv3ZiKRiN25c6fc6/z444/s+eefZ3K5nCkUCtazZ0/2+++/W8SMGjWKKRQK9vfff7OoqCgmFouZn58fmzp1Kn8skpKSTDcRs/gZNWoUv51r166xoUOHMg8PDyaRSFiTJk3YihUrLPZ1+PBhBoB9//33bOrUqczX15dxHMeuXLlitw2ZmZls0qRJzNfXl4nFYhYUFMTef//9x9bt8OHDdrcZEBDAevXqxXbv3s1atmzJZDIZa9KkCdu+fTubPXs2++abb1iTJk2YXC5n7dq1Y6dPn7ZY//Tp02zw4MEsICCAyWQyFhAQwIYMGcJu3bplEZefn8+mTZvGAgMDmVQqZa6urqxNmzZs06ZNfMyNGzfY4MGDmY+PD5NIJMzT05O9+OKL7Ny5c3brb8/atWttHgsALDIy8rHr79q1iwUFBTGVSsWcnJxYkyZN2Lx58yxifv75Z/b8888zJycnplQqWffu3dnx48ctYmbPns0AsAsXLrCBAwcylUrFXF1d2dtvv820Wi3766+/WFRUFFMqlSwgIIAtWLDAYn3T62TDhg3s7bffZl5eXkwmk7HOnTtbvX4rWqdLly6xIUOGMJVKxTw9PdmYMWPYo0eP+Di1Ws1mzZrFvvjiC/bcc88xmUzG6tSpwwYMGMBu3Lhhsc3IyEjWvHlzdurUKdaxY0fm5OTEgoKC2Pz585ler7doS+mf2bNnP/bvURue9M/Bf8KTcAwoCSLEjE6nY3K5nIWHh5d7nU8++YRxHMfGjh3L9uzZw7Zv384iIiKYQqFgly9f5uNGjRrFJBIJa9q0Kfvss8/YgQMH2KxZsxjHcWzOnDmMMeOHwv79+xkANm7cOJaYmMgSExPZ9evXGWOMXb58mbm4uLDQ0FD2/fffs/j4eDZt2jQmEAhYXFwcvy/TF4Kfnx8bOHAg27VrF9uzZw/LzMy02YbCwkIWFhbGFAoF++yzz1h8fDz78MMPmUgkYjExMXzdEhMTWatWrViDBg34umVnZ9s9NgEBAaxevXqsRYsWbPPmzWzv3r0sPDycicViNmvWLPbCCy+w7du3sx07drDGjRszLy8vVlBQwK+/detWNmvWLLZjxw529OhR9uOPP7LIyEjm4eHBMjIy+Lg33niDyeVytmTJEnb48GG2Z88e9umnn7Lly5fzMSEhIaxhw4Zsw4YN7OjRo2zbtm1s2rRpFkmcKblZu3ZtmX/z9PR0vv2mnyVLljAALDY2tsx116xZwziOY126dGGbNm1iBw4cYCtXrrRY74cffmAAWM+ePdnOnTvZTz/9xNq0acMkEgn79ddf+ThTwhESEsLmzp3LEhIS2PTp0xkANnnyZNakSRO2bNkylpCQwMaMGcMAsG3btvHrm14n/v7+rG/fvmz37t1s48aNrGHDhkylUlkkI5Wp06xZs1hCQgJbsmQJk0qlbMyYMRbHYsKECUwsFrNp06ax/fv3s02bNrEmTZowLy8vlpqaysdFRkayunXrskaNGrFVq1axhIQEFhsbywCw9evXM8YYy87O5v9+H3zwAf93uXv3bpl/D+LYKAkixExqaioDwIYMGVKu+Dt37jCRSMT+/e9/W5Tn5uYyb29vNmjQIL5s1KhRDADbsmWLRWxMTAwLCQnhlzMyMuz+BxsVFcXq1atnlXhMnjyZyWQylpWVxRgr+XLr3LlzudqxatUqm3VbsGABA8Di4+P5MtN/5eUREBDAnJyc2L179/iy8+fPMwDMx8eH5efn8+U7d+5kANiuXbvsbk+n07G8vDymUCjYF198wZe3aNGC9evXz+56Dx48YADY0qVLy6zv+vXrmVAo5L9Yy+uvv/5idevWZV27dmVFRUV243Jzc5lKpWIdO3ZkBoPBZoxer2e+vr4sNDSU7+Uwrevp6ck6dOjAl5kSjsWLF1tso2XLlgwA2759O1+m1WqZh4cHe+WVV/gy0+ukdevWFvW5desWE4vFbPz48ZWu08KFCy3qFBsby2QyGb+fxMREm3W/e/cuc3JyYtOnT+fLIiMjGQB28uRJi9hmzZqxqKgofvn06dPlSmIJMaEZowmpgl9++QU6nQ4jR46ETqfjf2QyGSIjI3HkyBGLeI7j8PLLL1uUhYWF4fbt24/dl1qtxsGDB9G/f3/I5XKL/cXExECtVuPEiRMW6wwYMKBc7Th06BAUCgUGDhxoUT569GgAwMGDB8u1HVtatmwJPz8/frlpU+Ndsbt06QK5XG5Vbn4s8vLy8O6776Jhw4YQiUQQiURQKpXIz8/HlStX+Lj27dtj3759eO+993DkyBEUFlre+8vNzQ3BwcFYtGgRlixZgnPnzsFgsL4flenvOHLkyHK3LzU1FdHR0fDx8cGOHTsgkdi/XcHx48eRk5OD2NhYu1NvXL16FcnJyRgxYoTF5b1KpRIDBgzAiRMnUFBgeb+y3r17Wyw3bdoUHMfhpZde4stEIhEaNmxo87U2bNgwi/oEBASgQ4cOOHz4cKXr1KdPH4vlsLAwqNVqpKenAwD27NkDjuPw2muvWbyWvb298dxzz1m9d7y9vdG+fXurbZbnvUOIPZQEEWLG3d0dcrkcSUlJ5YpPS0sDALRr1w5isdji56effsKDBw8s4uVyOWQyy3sWSaVSqNVl3Ai0WGZmJnQ6HZYvX261r5iYGACw2p+Pj0+52pGZmQlvb2+rL2ZPT0+IRCJkZmaWazu2lL56zJQk2Cs3PxbDhg3DihUrMH78ePzyyy84deoUTp8+DQ8PD4tEZ9myZXj33Xexc+dOdO3aFW5ubujXrx/+/vtvAMbk8+DBg4iKisLChQvRunVreHh4YMqUKfzEqJWRm5uLmJgY480w9+177GW5GRkZAFDm9BumY23rb+fr6wuDwYCHDx9alNs6lrZeaxKJxOZrzdvb22aZqS6VqVPdunUtlk0XGJj+bmlpaWCMwcvLy+r1fOLECavXcuntmbZZOuElpCLo6jBCzAiFQnTr1g379u3DvXv3HjtXlLu7OwDgP//5DwICAmq0bq6urhAKhRgxYgT+9a9/2YwJCgqyWC7vRJ9169bFyZMnwRizWCc9PR06nY5v5z8pOzsbe/bswezZs/Hee+/x5UVFRcjKyrKIVSgUmDNnDubMmYO0tDS+V+jll1/GX3/9BcDYu/Htt98CAK5du4YtW7YgLi4OGo0Gq1atqnD9tFotBgwYgBs3buDXX38t17xiHh4eAIB79+7ZjTF92aekpFg9l5ycDIFAAFdX1wrXtyypqak2y0x1qYk6ubu7g+M4/PrrrxZXYJrYKiOkulFPECGlzJgxA4wxTJgwARqNxup5rVaL3bt3AwCioqIgEolw48YNtG3b1uZPRZX+j9lELpeja9euOHfuHMLCwmzuy9Z/y+XRrVs35OXlWU16+P333/PP/9M4jgNjzOrLcM2aNdDr9XbX8/LywujRozF06FBcvXrV6jQNADRu3BgffPABQkND8fvvv1eqfuPGjcORI0ewfft2hIWFlWudDh06wMXFBatWrbJ7X6OQkBD4+flh06ZNFjH5+fnYtm0bIiIiLE4jVofNmzdb7Ov27ds4fvw4P09VTdSpd+/eYIzh/v37Nl/LoaGhFW6HvfcOIfZQTxAhpUREROCrr75CbGws2rRpg0mTJqF58+bQarU4d+4cvvnmG7Ro0QIvv/wyAgMD8dFHH2HmzJm4efMmoqOj4erqirS0NJw6dYrvoagIZ2dnBAQE4Oeff0a3bt3g5uYGd3d3BAYG4osvvkDHjh3RqVMnTJo0CYGBgcjNzcX169exe/duHDp0qFJtHjlyJL788kuMGjUKt27dQmhoKI4dO4Z58+YhJiYG3bt3r9R2q0KlUqFz585YtGgR3/6jR4/i22+/RZ06dSxiw8PD0bt3b4SFhcHV1RVXrlzBhg0b+C/nixcvYvLkyXj11VfRqFEjSCQSHDp0CBcvXrToZfr+++8xduxYfPfdd2WOC1q0aBE2bNiAf//731AoFBZjsVQqFZo1a2ZzPaVSicWLF2P8+PHo3r07JkyYAC8vL1y/fh0XLlzAihUrIBAIsHDhQgwfPhy9e/fGG2+8gaKiIixatAiPHj3Cp59+WrUDa0N6evr/t3fncVGV+x/AP2d2mGHYV2URURBBRShFcyEV165a3axMc6mu1/qlmder5XXL8KqZpjc1lyS1NLe83SKVVMrdNC0VIxc2AUVA2Zn1+f0xMDDC4AAzDDDf9+vFa2bOec6Z5/swnPnyPM85B2PHjsXrr7+OwsJCLFy4EBKJBPPmzQMAi9Spb9++eOONNzB58mRcuHAB/fv3h1QqRU5ODk6ePInw8HD8/e9/b9A+O3bsCDs7O3z55Zfo0qULZDIZfHx84OPj0+D6ERthtSnZhLRwly9fZq+++irz8/NjIpGISaVSFhERwRYsWMByc3MNyh48eJDFxMQwuVzOxGIx8/f3Z88//zz78ccf9WWqrhP0qKqzaWr68ccfWUREBBOLxbWuE5SamsqmTJnC2rVrx4RCIXN3d2d9+vRhS5cu1ZepOutn7969Jsebn5/Ppk2bxry9vZlAIGD+/v5s3rx5ta7h0dCzw0aOHFlrOQD25ptvGiyrug7RypUr9cvu3LnDnnvuOebs7MwcHBzYsGHD2NWrV5m/v79Bm8ydO5dFRUUxZ2dnJhaLWWBgIHvnnXdYXl4eY4yxe/fusUmTJrGQkBAmlUqZTCZj3bp1Y6tXr2ZqtVq/H1NPka8606+uH1OuE5SQkMAGDBjApFIps7e3Z6GhobWu4XPw4EHWq1cvJpFImFQqZYMGDWKnTp0yKFP12al5uYCq+tX1WXv0d1fzOkFvv/02c3d3Z2KxmPXr149duHCh1vZNqVNV26amphos//zzz1mvXr2YVCpldnZ2rGPHjmzixIkG72/sM/fqq68yf39/g2W7du1iISEhTCgUtujrBJGWgW6gSgghNiopKQkxMTHYu3dvrTMDCbEFNCeIEEIIITaJkiBCCCGE2CQaDiOEEEKITaKeIEIIIYTYJEqCCCGEEGKTKAkihBBCiE2iiyUaodVqkZ2dDQcHB5NvPUAIIYQQ62KMobi4GD4+PgY3/K0LJUFGZGdnw9fX19rVIIQQQkgjZGZmPvaefpQEGeHg4ABA14hyudys+1apVDhy5AhiY2MhFArNuu/WwNbjB6gNKH7bjh+gNrD1+AHLtUFRURF8fX313+P1oSTIiKohMLlcbpEkyN7eHnK53CY//LYeP0BtQPHbdvwAtYGtxw9Yvg1MmcpCE6MJIYSQZsQYQ6lCjTI1oNXSpfqsiXqCCCGEEBNotQylSjVKFGqUVKhRXPlYolCjuEKF4orqdSUKw/U1y5Uo1NDlPgLMv/gjnO1FcJWK4CIVwUVW/dxVKoKrTKx/7iIVwcleBD6PTtYxF0qCCCGEtGkaLdMlIvpkRIWiCsMEpbjGOl2yoq5+rCqnUFukbnklCuSVKEwqz+MApxpJk6usMnmSig2WuUp1yZOzvRACPg36GENJECGEkBZJpdGitDIR0feyKOrocXmkl+XRXpoypcas9RLwODhIBJBJBJCJhXCQCOAgrnqte3QQVz0XQiYW6MrUWC/hAYlHDqNX/6dRqNCioFSJglIl8ksqH0uVKChVGLwuLFdBy6AvawqOAxzthNU9S1KxQW+Ti7Q6YXKTieAsFUFoQ0kTJUGEEEKaBWMMOYUVuJZdhKt3HuDX2zwc33cFpSqtQW9LcWWPTIVKa9b3Fwl4hsmKWAAHidAgOalKWOpbLxbwmnz9OJVKBQEP8JRL0N7EScEqjRYPynQJUEGJEnmlShSUKGokTdWPBaVKPChTgjHgYZkKD8tUuH2/1KT3kUsE+mG46mE5w96mmr1QYgG/KU1hVZQEEUIIMTuNliE1rwTXsouQnF2Ea9lFuJZdiAdlqhqleMC9nMfuSyLk6XtcqpOTGj0ulT0yhj0wlb0vlculYn6r/rIGACGfBw8HCTwcJCaV12iZPmmq6lEqKFUg36DHSaFPmgpKldAyoKhCjaIKNVLzTEuaHMQCuMhEBnOXqhImV1mN3qbKHiiJsOX8HigJIoQQ0iQVKg3+vFesT3SuZRfhj5xilKtqD0PxeRyC3GXo4iVDWV4WeoQFw9FeXKMHpjrZcZAIIBULbGp4xpz4PA5uMjHcZGLA8/HltVqGwnIV8h8ZhisorT1El1+qxINSJdRahuLKSeDp+WUm1ctexK9MlIRw0fAwoolxNgUlQYQQQkxWWK6q7NkpRHKOrpfnRm4JNHWc6i0R8tDFW46uPnJ09XFEqLccwV4OkAj5UKlUSEjIxIinOtjsdXJaGh6Pg7NUNy8oyOPx5RljKCpX63uTqnuYFIbJU41eJ5WGoUypQZmyHHcelCPUyeJh1YuSIEIIIbUwxpBbrND17GRVDmflFCKzoLzO8s72Ql2i41OV9MjRwU1Gp3O3YRzHwdFeCEd7IQLdH1+eMV2vUUFlT9L9wjJc++2C5StaD0qCCCHExmm1DGn5pZXDWbpenus5RcgrqfsMpHZOdjWSHUd09ZHD21FCN5sm9eI4DnKJEHKJEAFuUqhUMihSrVsnSoIIIcSGKNQa3LhXoh/SupZdhOs5RSit4zRyHgd0dJcZJDuhPnI42YusUHNCzI+SIEIIaaOKK1S4nlOsT3auZRfhZm4xVJra83fEAh5CKufvhFY+hnjJYSdqOWfyEGJulAQRQkgbkFtcoT8dvaqXJ83I2TqOdkJ9otO1na6XJ9BNSlcWJjaHkiBCCGlFtFqGzAdlBqejX8suwv3ium+74O0oqRzGctRPWG7nZEfzdwgBJUGEENJiqTRa3LhXok92kivn7xTXcQ8rjgMC3aT6uTtVZ2q5SGn+DiHGUBJECCEtQKlCjT/uVp6dlaU7Hf3PuyVQamrfOkIk4CHEy0E/pBXq44gu3g6wF9EhnZCGoL8YQghpZuVKDf54yCHz51T8UXmmVmp+KVjt+cpwkAgqkx1H/Ryeju4yuooyIWZASRAhhDSDEoUax/7IxaGrOTj+Ry7KVXzg+g2DMp5ycY3hLF3i096Z5u8QYimUBBFCiIUUlqvwY/I9/HD1Ln6+cR9KdfXQlrOIoU9nb3Rt76hPfNxkYivWlhDbQ0kQIYSYUUGpEkeu3cUPV+/i9K08g2vydHCTYniYF4aEuCP98kmMHNmN7ptFiBVREkQIIU2UW1SBw5WJz7nUAoObiXb2lGF4mDeGh3sh2NMBHMdBpVIh4zcrVpgQAoCSIEIIaZSsh+U4dPUuDl3NwYX0BwaTmrv6yDEi3BvDwrzQ0V1mvUoSQupFSRAhhJgoPb8UP1zV9fj8lvnQYF0PXyeMCPfCsK7e8HO1t04FCSENQkkQIYTU42ZuMX64okt8knOK9Ms5DnjC3wXDw70wtKsXfJzsrFhLQkhjUBJECCE1MMZwPacYh67m4Ierd3Ejt0S/js/j0DvQBcPDvBHb1RMeDhIr1pQQ0lSUBBFCbB5jDL/fKcQPlXN8at54VMjn0DfIDSPCvDE41JNuQ0FIG0JJECHEJmm1DL9mPKhMfO4i62G5fp1YwEP/zu4YEe6Fp0M84WhHp7ET0ha1iOuur1+/Hh06dIBEIkFkZCROnDhhtGxSUhI4jqv188cff9RZfvfu3eA4DmPGjLFQ7QkhrYVao8XpW3lY8N+r6L3sKJ7feAZbT6Yi62E57EV8jAz3xn9ejsCv/xqCzROjMDaiPSVAhLRhVu8J+vrrrzFz5kysX78effv2xWeffYbhw4cjOTkZfn5+RrdLSUmBXC7Xv3Z3d69VJj09HbNnz0a/fv0sUndCSMun0mhx+lY+Dl3NweFr91BQqtSvcxALMDjUE8PCvDCgszskQr4Va0oIaW5WT4I+/vhjTJ06Fa+99hoAYM2aNTh8+DA2bNiAZcuWGd3Ow8MDTk5ORtdrNBqMHz8eixcvxokTJ/Dw4UMz15wQ0lJVqDQ4eSMPP1y9i8TkuyiqUOvXOdkLERvqieFh3ugT5AqxgBIfQmyVVZMgpVKJixcvYu7cuQbLY2Njcfr06Xq3jYiIQEVFBUJDQzF//nzExMQYrF+yZAnc3d0xderUeofXqigUCigUCv3roiLdqbAqlQoqlcrUkExStT9z77e1sPX4AWoDS8RfplTj5xv5OHztHo7/eR+lCo1+natUhNhQDwzt6oknA5yr78DOtFCptEb2aDm2/vsHqA1sPX7Acm3QkP1ZNQnKy8uDRqOBp6enwXJPT0/cvXu3zm28vb2xadMmREZGQqFQYMeOHRg0aBCSkpLQv39/AMCpU6ewdetWXL582eS6LFu2DIsXL661/MiRI7C3t8yFzxITEy2y39bC1uMHqA2aGn+FGrj2kMPlfA7XH3JQaavvtu4oYujuwtDdVYtABzV4XBoKU9KQmNLUWpuPrf/+AWoDW48fMH8blJWVPb5QJasPhwEAx3EGrxljtZZVCQ4ORnBwsP51dHQ0MjMz8dFHH6F///4oLi7GK6+8gs2bN8PNzc3kOsybNw+zZs3Svy4qKoKvry9iY2MN5h6Zg0qlQmJiIoYMGWKTN0+09fgBaoOmxF9YrsLRP3Jx6No9nLyZb3CD0vZOEgzt6omhXT3RvZ0jeLy6jyPWZuu/f4DawNbjByzXBlUjOaawahLk5uYGPp9fq9cnNze3Vu9QfXr37o2dO3cCAG7duoW0tDQ888wz+vVara67WyAQICUlBR07dqy1D7FYDLFYXGu5UCi02AfUkvtuDWw9foDawNT480sUOJJ8DwlXcnDmVj7UNW5QGugmxfBwLwwP80ZXH7nRf6BaIlv//QPUBrYeP2D+NmjIvqyaBIlEIkRGRiIxMRFjx47VL09MTMTo0aNN3s+lS5fg7e0NAAgJCcGVK1cM1s+fPx/FxcX45JNP4Ovra57KE0Is6l5RBQ5dvYsfrubgfGoBauQ9CPZ00Cc+nT1lrSrxIYS0HFYfDps1axYmTJiAqKgoREdHY9OmTcjIyMC0adMA6IapsrKysH37dgC6s8cCAgLQtWtXKJVK7Ny5E/v378f+/fsBABKJBGFhYQbvUXUW2aPLrYmvUQDKUoDVkbFyfEBY43L8ylLjO+J4gNCukWXLADBjhQGRfePKqsoBVs9kU05kelmRtEbZCoBpzFNWaK+7+RMAqBWAVm2esgI7gFc56VatBLRGJuipVIZx11cWAAQSgMdveFmNCtAojZfliwG+oBFl1YBGUU9ZEcAXGi+rUlX/DfCk+rJ38ovx45UMHEm+h0sZD/TFxQBCfeQY3LU9hnbzRaC7DNBqAHUFoDIy/s8TAoLKz5pWC6jL6y7X4LICQFDZa8yY8fevr2zN+KuOAQ36u28Dxwilwvhx0OBvue0eIzit2vj3wCNl2+QxogWwehI0btw45OfnY8mSJcjJyUFYWBgSEhLg7+8PAMjJyUFGRoa+vFKpxOzZs5GVlQU7Ozt07doV33//PUaMGGGtEBpl1O+vA78bWdkpFhi/t/r1yiDjB1r/p4DJ31e/XhMOlOXXXdYnAngjqfr1p72Awoy6y7qHAG+eq369OQa4X/cFKeHoB7xTo/dt23Ag+1LdZe1dgXdqzEzd+TyQfrLuskJ74P2c6td7JgA3jtRdFgAWFVY//+YNIPm/xsu+l119QPzfTOC3r4yX/cctQFo5v+zwe8AvW4yXnfE74Kz77OLYEuD0ujqLCQE4hMRVLzixCvjp38b3+/oxoF2k7vm5DUDiAuNlX/0O6FB5bayL8UDCbONlX94DdB6qe/77HuC/042X/Ws80LWyx/aP/wF7JxkvO3o9EDFe9/zWUeCrFwxWCwGMAoDfgbz+H2IPbxgOXb0L++wz2C1aikkA8OhtuQoASJYA7jN0r3MuA5ufNl6HAXOBmHm653kpwPrexsv2+T8gdqnueWEm8Ek342WfeA0YuUr3vCwfWFl7eF2v+8vA2A2656oyIM4HgGH8eqGjgRe2V7+uLFunNnCMEGZfqt0GgO4YMed29es2fIzokrMXwpVTjJedfhbw6KJ73haPEWEvGF/fTKyeBAHA9OnTMX163Q0bHx9v8HrOnDmYM2dOg/b/6D4IIS3HJ0dvYIemAwCgd4u4hj0hxFZwjDFj/Zc2raioCI6OjigsLLTI2WGH//cNhg6NrXsCV1vo6q6n+1rFiZCQkIARI0ZACHWb7equr0tapVIhIfE4RowcpfsMtMWu7keGw9QaLZL+vI+vzmXgzO3qnggtT4gnAj0xPNwLsSHucLer55BkMGxVORxmUtmWNRymUqlw+PARw2OAjQ2HqZSK2m1QxQaGw1QqFX747lsMjx1kfCJvGx8OU2lR/V1g5rPDTP3+bhE9QbZIwxfr/iBN+cXX/MM1a9kGXP+oIWVrHkTrUvNCVo8ra7DfR8dHzFRWIIZu1om5y4oAGBn35lS6LxxTyjZkv4/iC6uTEbOWFVQf7B4jr1yDr3/JwZdn05FdqEtaOE6CEEctJsaEY1iYD5wbc2d2Ht/0zzuPZ5myHNe4spzq8ccAi/3dt5RjhMC042AbPkYwnsD074G2eIyoL1FrJpQEEULMjjGGXzMeYseZNCRcuQulRvefvLO9EOOe8MO4SB/8fuY4RvRsZ/OnBxNCrIeSIEKI2ZQrNfj2tyxsP5OOa9nVFyzr7uuEib39MbKbNyRCPlQqldHzAgghpLlQEkQIabK0vFLsPJuOvRfvoLBc18UtEvDwl+4+mBjtj27tnaxbQUIIqQMlQYSQRtFoGX76Mxfbz6QjKeW+fnl7Zzu80tsfL0T5wqUxc30IIaSZUBJECGmQB6VK7LmQiZ3n0pFZUH0W1YDO7pgY7Y+BwR7gt9B7dhFCSE2UBBFCTPL7nYfYfiYd//stGwq1bqKzXCLAC1G+eKW3PwLcGnDWESGEtACUBBFCjKpQaZBwJQfbz6TjcuZD/fKuPnJMjPbHX7q3g52Ib70KEkJIE1ASRAip5c6DMnx5LgNf/5KJglLdxdGEfA4jw70xIToAPf2c6KalhJBWj5IgQggAQKtlOHkzD9vPpOPYH/f0d233dpRgfC8/jHvCD+4OJl4wjhBCWgFKggixcYXlKuy7eAc7z6YjNa/6lgp9g1wxoXcABnfxgIBPN/UihLQ9lAQRYqOSs4uw42waDl7KRrlKdw8lB7EAz0W2xyu9/RHkIbNyDQkhxLIoCSLEhijVWhy6dhc7zqThl7QH+uXBng6YEO2PsRHtIBXTYYEQYhvoaEeIDbhbWIGvzqVj1y+ZuF+su7OzgMdhaFcvTIz2x5MdXGiiM2kwrVYLpbKeu4rXQ6VSQSAQoKKiAhpNPXdzb6NsPX6gaW0gEonA4zV9mJ6SIELaKMYYztzOx44z6TiSfA+aypnOHg5ivPSkH17u5QdPeQPupE1IDUqlEqmpqdBqtY3anjEGLy8vZGZm2mQCbuvxA01rAx6Phw4dOkAkatpV6SkJIqSNKVGo8c2vd7D9TDpu5Jbolz/ZwQUTo/0xtKsXhDTRmTQBYww5OTng8/nw9fVt1H/kWq0WJSUlkMlkZvmPvrWx9fiBxreBVqtFdnY2cnJy4Ofn16QkkpIgQtqIG/eKseNsOg78moUShRoAYC/iY2xEO0yI9keIl9zKNSRthVqtRllZGXx8fGBvb9+ofVQNpUkkEptMAmw9fqBpbeDu7o7s7Gyo1WoIhcJG14GSIEJaMbVGi8Tke9h+Jh1nbufrlwe6SzGhtz+ei2wPuaTxBwhC6lI1f6OpQxGENFbVZ0+j0VASRIityS2uwO7zmfjqXAbuFlUAAHgcMLiLJyZGB6BvkKvNzjMgzYc+Y8RazPXZs80+OEJaIcYYLqQV4O1dl9D338fwceKfuFtUAVepCG/GdMSJfz6NTROj8FQnN/pyIqSROI7DwYMHLf4+gYGB2LBhg8Xfpy7x8fFwcnKyynu3NNQTREgLV6ZU47+Xs7H9TDqu5xTpl/f0c8LE6AAMD/eCWEA3MSXEFLm5ufjXv/6FH374Affu3YOzszO6d++ORYsWITo6Gjk5OXB2drZ2NWuJj4/HzJkz8fDhQ2tXpU2hJIiQFio1rxQ7zqRj78VMFFfoJjpLhDyM7q6b6BzWztHKNSSk9XnuueegUqnwxRdfIDAwEPfu3cPRo0dRUFAAAPDy8rJyDUlzouEwQloQjZYhMfkeJmw9h5iPkvD5qVQUV6jh72qP90d0wdl5g7D8+W6UABHSCA8fPsTJkyexfPlyxMTEwN/fH08++STmzZuHkSNHAjAcDktLSwPHcdizZw/69esHOzs7PPHEE/jzzz/xyy+/ICoqCjKZDMOGDcP9+/f17zNw4EDMnDnT4L3HjBmDSZMmGa3bxx9/jPDwcEilUvj6+mL69OkoKdFd4iIpKQmTJ09GYWEhOI4Dx3FYtGgRAN31mubMmYN27dpBKpWiV69eSEpKMth3fHw8/Pz8YG9vj7FjxyI/Px9Eh3qCCGkBCkqV+PqXTOw8m46sh+UAAI4DYoI9MCHaHwM6uYPHo3k+pGVijOnvP2cqrVaLcqUGAqW6SaeI2wn5Js+Bk8lkkMlkOHjwIHr37g2xWGzSdgsXLsSaNWvg5+eHKVOm4KWXXoJcLscnn3wCe3t7vPDCC1iwYEGT5vjweDysXbsWAQEBSE1NxfTp0zFnzhysX78effr0wZo1a7BgwQKkpKToYwGAyZMnIy0tDbt374aPjw+++eYbDBs2DFeuXEGnTp1w7tw5TJkyBXFxcXj22Wdx6NAhLFy4sNH1bGsoCSLEin67U4ivfrmD737PgVKtu/Kuk70Q46J8Mb6XP/xcG3cNFkKaU7lKg9AFh63y3slLhsJeZNpXmUAgQHx8PF5//XVs3LgRPXv2xIABA/Diiy+iW7duRrebPXs2hg4dCgCYMWMGXnrpJRw9ehR9+/YFAEydOhXx8fFNiqNmz1GHDh3wwQcf4O9//zvWr18PkUgER0dHcBxnMFx369Yt7Nq1C3fu3IGPj4++rocOHcK2bdsQFxeHTz75BEOHDsXcuXMBAJ07d8bp06dx6NChJtW3raAkiJBmplRr8c2lLPzndz4yz5zTL+/W3hETevvjme4+kAhpojMhlvDcc89h5MiROHHiBM6cOYNDhw5hxYoV2LJli9HhqpoJkqenJwAgPDzcYFlubm6T6nX8+HHExcUhOTkZRUVFUKvVqKioQGlpKaRSaZ3b/Prrr2CMoXPnzgbLFQoFXF1dAQDXr1/H2LFjDdZHR0dTElSJkiBCmolCrcGeC3ew4fhNZBdWAOAg5HN4prsPJkYHoIevk7WrSEij2An5SF4ytEHbaLVaFBcVw0Hu0OThsIaSSCQYMmQIhgwZggULFuC1117DwoULjSZBNS/GVzX09uiymvdQ4/F4YIwZ7EOlUhmtT3p6OkaMGIFp06bhgw8+gIuLC06ePImpU6fWu51WqwWfz8fFixfB5xu2Q9Vw2aP1IIYoCSLEwipUGnz9SyY2JN3SX9jQ00GMJ5zLMP/lQfByqvu/PEJaC47jTB6SqqLVaqEW8WEvElj9thGhoaFmvTaQu7s7cnJy9K81Gg2uXr2KmJiYOstfuHABarUaq1at0rfFnj17DMqIRKJad1qPiIiARqNBbm4u+vXrV+e+Q0NDcfbsWYNlj762ZZQEEWIh5UoNvjqfgc9+uoXcYgUAwNtRgr8P7Ihnu3vhaOJhuErptgOENJf8/Hz89a9/xZQpU9CtWzc4ODjgwoULWLFiBUaPHm2293n66acxa9YsfP/99+jYsSNWr15d7/V9OnbsCLVajXXr1uGZZ57BqVOnsHHjRoMyAQEBKCkpwdGjR9G9e3fY29ujc+fOGD9+PCZOnIhVq1YhIiICeXl5OHbsGMLDwzFixAi8/fbb6NOnD1asWIExY8bgyJEjNBRWA50iT4iZlSnV2PzzbfRbcRwffJeM3GIF2jnZYemYMCT9YyAmRgdATHN+CGl2MpkMvXr1wurVq9G/f3+EhYXhX//6F15//XX85z//Mdv7TJkyBa+++iomTpyIAQMGoEOHDkZ7gQCgR48e+Pjjj7F8+XKEhYXhyy+/xLJlywzK9OnTB9OmTcO4cePg7u6OFStWAAC2bduGiRMn4t1330VwcDD+8pe/4Ny5c/D19QUA9O7dG1u2bMG6devQo0cPHDlyBPPnzzdbrK0dx2jAsE5FRUVwdHREYWEh5HLz3n1bpVIhISEBI0aMaNKN31qrthp/qUKNHWfTsfnn28gvVQIA2jvb4c2YIDzXsz1Egur/OdpqG5iK4m/d8VdUVCA1NRUdOnSARCJp1D60Wi2Kioogl8utPhxmDbYeP9C0NqjvM9iQ728aDiOkiYorVNh+Jh1bTtzGgzLdJEY/F3u8FROEsT3bQci3zQMcIYS0dJQEEdJIRRUqfHEqDVtOpqKwXJf8dHCT4q2YIIzu4QMBJT+EENKiURJESAMVlqnw+alU/S0tACDQXYq3n+6EUd28KfkhhJBWgpIgQkz0oFSJz0+lIv5UGooVuuSnk4cM/zeoE0aGe4NPt7UghJBWhZIgQh6joFSJLSdu44vTaShV6q7TEezpgLcHdcLwMC+6pxchhLRSlAQRYkReiQKbT9zGjjPpKKtMfrp4yzFjUBBiQyn5IYSQ1o6SIEIekVtcgU0/3cbOc+moUOkuhR/WTo4ZgzpjcBcPk+9YTQghpGWjJIiQSveKKrDxp1v46lwGFJV3dO/e3hEzBndCTDAlP4QQ0tZQEkRsXk5hOTYm3cKuXzKhrEx+IvycMGNQJwzo7E7JDyGEtFF0Li+xWVkPyzH/4BUMWJGEL86kQ6nWIsrfGTumPokDf++DgdT7Qwhp4TZt2gRfX1/weDysWbPG2tVpdSgJIjYns6AM8w5cwcCVx7HzbAaUGi16dXDBV6/1wt5p0ejXiXp/CGmLJk2aBI7jMG3atFrrpk+fDo7jMGnSpFrlOY6DUChEYGAgZs+ejdLSUoNt9+/fj4EDB8LR0REymQzdunXDkiVLUFBQYLQufD4fzs7O4PP5kMlk6N69O+Lj4xsUT1FREd566y3885//RFZWFt54440GbU8oCSI2JD2/FHP2/YaYj5Kw63wGVBqGPh1dsfuN3vj6b9HoE+RGyQ8hbZyvry92796N8vJy/bKKigrs2rULfn5+tcoPGzYMOTk5uH37NpYuXYr169dj9uzZ+vXvv/8+xo0bhyeeeAI//PADrl69ilWrVuG3337Djh076q3Lp59+iqysLPz2228YN24cJk+ejMOHD5scS0ZGBlQqFUaOHAlvb2/Y29ubvG1NKpWqUdu1BZQEkTYvNa8U7+75DU+v+gl7LtyBWsvQr5Mb9k6Lxlev90bvQFdrV5EQ0kx69uwJPz8/HDhwQL/swIED8PX1RURERK3yYrEYXl5e8PX1xcsvv4zx48fj4MGDAIDz588jLi4Oq1atwsqVK9GnTx8EBARgyJAh2L9/P1599dV66+Lo6AgvLy907NgR7733HlxcXHDkyBH9+sLCQrzxxhvw8PCAXC7H008/jd9++w0AEB8fj/DwcABAYGAgOI5DWloaAOB///sfIiMjIZFIEBgYiMWLF0OtVuv3y3EcNm7ciNGjR0MqlWLp0qUmb7dlyxaMHTsW9vb26NSpE7799luDmK5du4aRI0dCLpfDwcEB/fr1w61bt/Trt23bhi5dukAikSA0NBRbtmzRr1MqlXjrrbfg7e0NiUSCgIAALFu2rN42bCqaGE3arJu5Jfj0+E3893IWtEy3bEBnd7w9qBMi/Z2tWzlC2iJlqfF1HB8QSgzLqsoAJR949A7iHA8Q2j1+vyJpo6o5efJkbNu2DePHjwcAfP7555gyZQqSkpIeu62dnZ2+5+TLL7+ETCbD9OnT6yzr5ORkUn00Gg3279+PgoICCIVCAABjDCNHjoSLiwsSEhLg6OiIzz77DIMGDcKff/6JcePGwdfXF4MHD8b58+fh6+sLd3d3HD58GK+88grWrl2rT0CqhskWLlyof8+FCxdi2bJlWL16Nfh8vsnbLV68GCtWrMDKlSuxbt06jB8/Hunp6XBxcUFWVhb69++PgQMH4tixY5DL5Th16pQ+kdq8eTMWLlyI//znP4iIiMDFixfxxhtvwNXVFZMnT8batWvx7bffYs+ePfDz80NmZiYyMzNNasPGoiSItDk37hVj3bGb+N/v2WCVyc+gEA/836BO6OHrZNW6EdKmxfkYX9cpFhi/V/+SW9UZTqqyusv6PwVM/r769ZpwoCy/drlFhY2q5oQJEzBv3jykpaWB4zicOnUKu3fvfmwSdP78eXz11VcYNGgQAODGjRsIDAzUJy4N9dprr+Fvf/sbKioqoNFo4OLigtdeew0AcPz4cVy5cgW5ubkQi8UAgI8++ggHDx7Evn379MkDALi7u8PLywsA8OGHH2Lu3Ln6XqjAwEB88MEHmDNnjkEy8/LLL2PKlCkGbWLKdpMmTcJLL70EAIiLi8O6detw/vx5DBs2DJ9++ikcHR2xe/dufZt07txZv+0HH3yAVatW4dlnnwUA+Pv74/Lly9i8eTMmT56MjIwMdOrUCU899RQ4joO/v3+j2rUhKAkibcYfd4uw7uhNJFzN0Sc/Q0I98fbTnRDe3tG6lSOEtBhubm4YOXIkvvjiC32Pi5ubW51lv/vuO8hkMqjVaqhUKowePRrr1q0DoOutaco8wg8//BCjRo1CVlYWZs2ahXfeeQdBQUEAgIsXL6KkpESf6FQpLy83GF561MWLF/HLL7/gww8/1C/TaDSoqKhAWVmZft5QVFRUo7br1q2bfr1UKoWDgwNyc3MBAJcvX0a/fv3qTArv37+PzMxMTJ06Fa+//rp+uVqthqOj7vg8adIkDBkyBMHBwRg2bBhGjRqF2NjYelqw6SgJIq3etexCrDt6E4eu3dUvG9bVC/83KAhdfSj5IaTZvJdtfB3HN3jJ3v0ThcXFkDs4gFfXcFhNM6+YqYLVpkyZgrfeeguAboKyMTExMdiwYQOEQiF8fHwMvuA7d+6MkydPQqVSNao3yNPTE0FBQejcuTP27t2LiIgIREVFITQ0FFqtFt7e3nX2TtU3zKbVarF48WJ9b0tNEkn1cKRUajiUaOp2j8bJcRy0Wt311ezs7GBMVZnNmzejV69e+mUlJSX6JKhnz55ITU3FDz/8gB9//BEvvPACBg8ejH379hndb1NREkRarSt3CrH22A0kJt8DAHAcMCLMG/83KAghXnIr144QG9SQOToiKSDU6B4fTYKasl8TDRs2DEqlEgAwdOhQo+WkUqm+d+ZRL7/8MtauXYv169djxowZtdY/fPjQ5HlBQUFBeO655zBv3jz897//Rc+ePXH37l0IBAIEBASYtA9Al0ikpKQYrbO5t6upW7du+OKLL+pMCj09PdGuXTvcvn1bPxdLq9WiqKgIcnn18Voul2PcuHEYN24cnn/+eQwbNgwFBQVwcXFpdL3qQ0kQaXUuZz7EuqM3cPQPXRcsxwHPdPPBW08HobOng5VrRwhpDfh8Pq5fv65/3hi9evXCnDlz8O677yIrKwtjx46Fj48Pbt68iY0bN+Kpp56qMzky5t1330X37t1x4cIFDB48GNHR0RgzZgyWL1+O4OBgZGdnIyEhAWPGjKk1nFVlwYIFGDVqFHx9ffHXv/4VPB4Pv//+O65cuaI/C8yc29X01ltvYd26dXjxxRcxb948ODo64uzZs3jyyScRHByMRYsW4e2334ZcLsfw4cNRXl6OkydPoqKiAu+++y5Wr14Nb29v9OjRAzweD3v37oWXl5fJiWRjUBJEWo1fMx7gkx9v4Kc/7wMAeBwwukc7vBkThCAPmZVrRwhpbWr2QDTW8uXLERkZiU8//RQbN26EVqtFx44d8fzzzz/2FPlHhYeHY/DgwViwYAESEhKQkJCA999/H1OmTMH9+/fh5eWF/v37w9PT0+g+hg4diu+++w5LlizBihUrIBQKERISop9wbe7tanJ1dcWxY8fwj3/8AwMGDACfz0ePHj3Qt29fALqJ4Pb29li5ciXmzJkDqVSKLl26YNasWQAAmUyG5cuX48aNG+Dz+XjiiSeQkJBQe7jUjDjGqqaQkpqKiorg6OiIwsJCs/yh1KRSqZCQkIARI0Y0+qyC1qyh8V9IK8AnR2/gxI08AACfx2FMj3Z4M6YjAt1bZ/JDnwGKvzXHX1FRgdTUVHTo0MFgvkhD1BwKseSXXEtl6/EDTWuD+j6DDfn+pp4g0mKdvZ2PtUdv4PQt3amxAh6HZ3u2w/SBQQhwM/8cAUIIIbaFkiDSojDGcOZWPj45egPnUnX33RHwOPw1qj2mDwyCr0vjLgtPCCGEPIqSINIiMMZw8mYe1h69gV/SHgAAhHwOL0T54u8DO6K9MyU/hBBCzIuSIGJVjDH89Od9rD16A79mPAQAiPg8vPikL6YN6AgfJ+PXnSCEEEKaokXMxlq/fr1+clNkZCROnDhhtGxSUhI4jqv188cff+jLHDhwAFFRUXBycoJUKkWPHj0eezdf0rwYA46n3MeY9acxadsv+DXjIcQCHib3DcDPc2KwZHQYJUCEEEIsyuo9QV9//TVmzpyJ9evXo2/fvvjss88wfPhwJCcnw8/Pz+h2KSkpBrO+3d3d9c9dXFzw/vvvIyQkBCKRCN999x0mT54MDw+Pei+KRZqGMQaFWosShRqlCnXlo6bGc91jUbkS31zhI/PsJQCARMjDK7388Ub/QHjIG3emCSGk+dHJxcRazPXZs3oS9PHHH2Pq1Kn6axGsWbMGhw8fxoYNG7Bs2TKj23l4eBi9gNLAgQMNXs+YMQNffPEFTp48SUnQI5RqbXWSoqxKVAwTl5rLqsqUKjSPrFejVKmBRmvqB5ODnZCHidEBeL1/INxkYovGSQgxn6qLCyqVynpvlUCIpVRd7buxF7qsYtUkSKlU4uLFi5g7d67B8tjYWJw+fbrebSMiIlBRUYHQ0FDMnz8fMTExdZZjjOHYsWNISUnB8uXLje5PoVBAoVDoXxcVFQHQXc9DpVKZGpJJqvbXmP1qtKwyGamRhCg1+sREl6TU8WhQrnp7lcYy/8nZi/iQiviQigWQivmQiqof7YQ8lN3PxLwX+sLTSXequ7nbuKVrymegLaD4W3f8jDFIJBLk5uaCz+c36jo3jDEolUqUl5c36SakrZWtxw80vg20Wi1yc3MhkUjAGKv1d9SQvyurJkF5eXnQaDS1rn7p6emJu3fv1rmNt7c3Nm3ahMjISCgUCuzYsQODBg1CUlIS+vfvry9XWFiIdu3aQaFQgM/nY/369RgyZIjRuixbtgyLFy+utfzIkSP6u+eaQ6kKyC7jUKHhcOGrH1GhAZRaoELDQaEBFBqgovJRoeH0zyu0ukeV1jJ/LEKOQcwHxHxAUvko5lcu41Uvk/DrLiepUU7EB3icuv43bA9cPP2TRWJpTRITE61dBaui+Ftv/DweD+7u7vp/GAlpTiqVCvfv38fvv/9ea11ZWZnJ+7H6cBiAWhkgY8xoVhgcHIzg4GD96+joaGRmZuKjjz4ySIIcHBxw+fJllJSU4OjRo5g1axYCAwNrDZVVmTdvnv7S3YCuJ8jX1xexsbFmvWL08ZT7eG/npSbvR8jn9L0r9lU9LlW9LWIBZPplj/bG6J7LapS1F/Eh5DffHHmVSoXExEQMGTKkVV4t1xxsvQ0o/rYRv1arhUqlatT8DLVajdOnT6NPnz4QCFrEV1GzsvX4gca3AcdxEAqFRnsgG5KYW7Xl3dzcwOfza/X65Obm1ntvlEf17t0bO3fuNFjG4/H0d8Pt0aMHrl+/jmXLlhlNgsRiMcTi2vNShEKhWQ9SHo72CHSTQl1egnaerpBJhJCJayYvukRFt6wyYRHXXiYWNG0ctCUwd9u2RrbeBhR/64+/ruOmKVQqFdRqNWQyWatvg8aw9fgBy7VBQ/Zl1SRIJBIhMjISiYmJGDt2rH55YmIiRo8ebfJ+Ll26BG9v73rLMMYM5vxYSw9fJxye0bfyvkFRNvvhJ4QQQqzN6n1ws2bNwoQJExAVFYXo6Ghs2rQJGRkZmDZtGgDdMFVWVha2b98OQHf2WEBAALp27QqlUomdO3di//792L9/v36fy5YtQ1RUFDp27AilUomEhARs374dGzZssEqMhBBCCGl5rJ4EjRs3Dvn5+ViyZAlycnIQFhaGhIQE+Pv7AwBycnKQkZGhL69UKjF79mxkZWXBzs4OXbt2xffff48RI0boy5SWlmL69Om4c+cO7OzsEBISgp07d2LcuHHNHh8hhBBCWiarJ0EAMH36dEyfPr3OdfHx8Qav58yZgzlz5tS7v6VLl2Lp0qVNqlPVRD9LnPmgUqlQVlaGoqIimxwOs/X4AWoDit+24weoDWw9fsBybVD1vW3KhP0WkQS1RMXFxQAAX19fK9eEEEIIIQ1VXFwMR0fHestwjK57XietVovs7Gw4ODiY/UJWVaffZ2ZmmvX0+9bC1uMHqA0oftuOH6A2sPX4Acu1AWMMxcXF8PHxeeyFPKknyAgej4f27dtb9D3kcrnNfvgBih+gNqD4bTt+gNrA1uMHLNMGj+sBqtIi7iJPCCGEENLcKAkihBBCiE2iJMgKxGIxFi5c2OgrrbZ2th4/QG1A8dt2/AC1ga3HD7SMNqCJ0YQQQgixSdQTRAghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESZAbr169Hhw4dIJFIEBkZiRMnTtRb/qeffkJkZCQkEgkCAwOxcePGWmX279+P0NBQiMVihIaG4ptvvrFU9c3C3G1w7do1PPfccwgICADHcVizZo0Fa9905o5/8+bN6NevH5ydneHs7IzBgwfj/PnzlgyhScwd/4EDBxAVFQUnJydIpVL06NEDO3bssGQITWaJ40CV3bt3g+M4jBkzxsy1Nh9zxx8fHw+O42r9VFRUWDKMJrHEZ+Dhw4d488034e3tDYlEgi5duiAhIcFSITSJueMfOHBgnZ+BkSNHmq/SjDTJ7t27mVAoZJs3b2bJyclsxowZTCqVsvT09DrL3759m9nb27MZM2aw5ORktnnzZiYUCtm+ffv0ZU6fPs34fD6Li4tj169fZ3FxcUwgELCzZ882V1gNYok2OH/+PJs9ezbbtWsX8/LyYqtXr26maBrOEvG//PLL7NNPP2WXLl1i169fZ5MnT2aOjo7szp07zRWWySwR//Hjx9mBAwdYcnIyu3nzJluzZg3j8/ns0KFDzRVWg1iiDaqkpaWxdu3asX79+rHRo0dbOJLGsUT827ZtY3K5nOXk5Bj8tFSWaAOFQsGioqLYiBEj2MmTJ1laWho7ceIEu3z5cnOFZTJLxJ+fn2/wu7969Srj8/ls27ZtZqs3JUFN9OSTT7Jp06YZLAsJCWFz586ts/ycOXNYSEiIwbK//e1vrHfv3vrXL7zwAhs2bJhBmaFDh7IXX3zRTLU2L0u0QU3+/v4tOgmydPyMMaZWq5mDgwP74osvml5hM2uO+BljLCIigs2fP79plbUQS7WBWq1mffv2ZVu2bGGvvvpqi02CLBH/tm3bmKOjo9nraimWaIMNGzawwMBAplQqzV9hM2uO48Dq1auZg4MDKykpaXqFK9FwWBMolUpcvHgRsbGxBstjY2Nx+vTpOrc5c+ZMrfJDhw7FhQsXoFKp6i1jbJ/WZKk2aC2aK/6ysjKoVCq4uLiYp+Jm0hzxM8Zw9OhRpKSkoH///uarvJlYsg2WLFkCd3d3TJ061fwVNxNLxl9SUgJ/f3+0b98eo0aNwqVLl8wfgBlYqg2+/fZbREdH480334SnpyfCwsIQFxcHjUZjmUAaqbmOg1u3bsWLL74IqVRqnoqD5gQ1SV5eHjQaDTw9PQ2We3p64u7du3Vuc/fu3TrLq9Vq5OXl1VvG2D6tyVJt0Fo0V/xz585Fu3btMHjwYPNU3EwsGX9hYSFkMhlEIhFGjhyJdevWYciQIeYPooks1QanTp3C1q1bsXnzZstU3EwsFX9ISAji4+Px7bffYteuXZBIJOjbty9u3LhhmUCawFJtcPv2bezbtw8ajQYJCQmYP38+Vq1ahQ8//NAygTRScxwHz58/j6tXr+K1114zX8VBd5E3C47jDF4zxmote1z5R5c3dJ/WZok2aE0sGf+KFSuwa9cuJCUlQSKRmKG25meJ+B0cHHD58mWUlJTg6NGjmDVrFgIDAzFw4EDzVdyMzNkGxcXFeOWVV7B582a4ubmZv7IWYO7PQO/evdG7d2/9+r59+6Jnz55Yt24d1q5da65qm5W520Cr1cLDwwObNm0Cn89HZGQksrOzsXLlSixYsMDMtW86Sx4Ht27dirCwMDz55JNmqGk1SoKawM3NDXw+v1amm5ubWyvDreLl5VVneYFAAFdX13rLGNunNVmqDVoLS8f/0UcfIS4uDj/++CO6detm3sqbgSXj5/F4CAoKAgD06NED169fx7Jly1pcEmSJNrh27RrS0tLwzDPP6NdrtVoAgEAgQEpKCjp27GjmSBqnuY4BPB4PTzzxRIvsCbJUG3h7e0MoFILP5+vLdOnSBXfv3oVSqYRIJDJzJI1j6c9AWVkZdu/ejSVLlpi34qDhsCYRiUSIjIxEYmKiwfLExET06dOnzm2io6NrlT9y5AiioqIgFArrLWNsn9ZkqTZoLSwZ/8qVK/HBBx/g0KFDiIqKMn/lzaA5f/+MMSgUiqZX2sws0QYhISG4cuUKLl++rP/5y1/+gpiYGFy+fBm+vr4Wi6ehmuszwBjD5cuX4e3tbZ6Km5Gl2qBv3764efOmPgEGgD///BPe3t4tJgECLP8Z2LNnDxQKBV555RXzVhygU+Sbquq0wK1bt7Lk5GQ2c+ZMJpVKWVpaGmOMsblz57IJEyboy1edFvjOO++w5ORktnXr1lqnBZ46dYrx+Xz273//m12/fp39+9//bhWnyJuzDRQKBbt06RK7dOkS8/b2ZrNnz2aXLl1iN27caPb4HscS8S9fvpyJRCK2b98+g1NEi4uLmz2+x7FE/HFxcezIkSPs1q1b7Pr162zVqlVMIBCwzZs3N3t8prBEGzyqJZ8dZon4Fy1axA4dOsRu3brFLl26xCZPnswEAgE7d+5cs8dnCku0QUZGBpPJZOytt95iKSkp7LvvvmMeHh5s6dKlzR7f41jyb+Cpp55i48aNs0i9KQkyg08//ZT5+/szkUjEevbsyX766Sf9uldffZUNGDDAoHxSUhKLiIhgIpGIBQQEsA0bNtTa5969e1lwcDATCoUsJCSE7d+/39JhNIm52yA1NZUBqPXz6H5aCnPH7+/vX2f8CxcubIZoGs7c8b///vssKCiISSQS5uzszKKjo9nu3bubI5RGs8RxoKaWnAQxZv74Z86cyfz8/JhIJGLu7u4sNjaWnT59ujlCaTRLfAZOnz7NevXqxcRiMQsMDGQffvghU6vVlg6lUSwRf0pKCgPAjhw5YpE6c4xVzkQihBBCCLEhNCeIEEIIITaJkiBCCCGE2CRKggghhBBikygJIoQQQohNoiSIEEIIITaJkiBCCCGE2CRKggghhBBikygJIoS0GosWLUKPHj2a/X2TkpLAcRw4jsOYMWNM2mbRokX6bdasWWPR+hFCGoeSIEJIi1CVMBj7mTRpEmbPno2jR49arY4pKSmIj483qezs2bORk5OD9u3bW7ZShJBGo7vIE0JahJycHP3zr7/+GgsWLEBKSop+mZ2dHWQyGWQymTWqBwDw8PCAk5OTSWWr6lrzDuCEkJaFeoIIIS2Cl5eX/sfR0REcx9Va9uhw2KRJkzBmzBjExcXB09MTTk5OWLx4MdRqNf7xj3/AxcUF7du3x+eff27wXllZWRg3bhycnZ3h6uqK0aNHIy0trcF13rdvH8LDw2FnZwdXV1cMHjwYpaWlTWwJQkhzoSSIENKqHTt2DNnZ2fj555/x8ccfY9GiRRg1ahScnZ1x7tw5TJs2DdOmTUNmZiYAoKysDDExMZDJZPj5559x8uRJyGQyDBs2DEql0uT3zcnJwUsvvYQpU6bg+vXrSEpKwrPPPgu6HSMhrQclQYSQVs3FxQVr165FcHAwpkyZguDgYJSVleG9995Dp06dMG/ePIhEIpw6dQoAsHv3bvB4PGzZsgXh4eHo0qULtm3bhoyMDCQlJZn8vjk5OVCr1Xj22WcREBCA8PBwTJ8+3arDdYSQhqE5QYSQVq1r167g8ar/n/P09ERYWJj+NZ/Ph6urK3JzcwEAFy9exM2bN+Hg4GCwn4qKCty6dcvk9+3evTsGDRqE8PBwDB06FLGxsXj++efh7OzcxIgIIc2FkiBCSKsmFAoNXnMcV+cyrVYLANBqtYiMjMSXX35Za1/u7u4mvy+fz0diYiJOnz6NI0eOYN26dXj//fdx7tw5dOjQoRGREEKaGw2HEUJsSs+ePXHjxg14eHggKCjI4MfR0bFB++I4Dn379sXixYtx6dIliEQifPPNNxaqOSHE3CgJIoTYlPHjx8PNzQ2jR4/GiRMnkJqaip9++gkzZszAnTt3TN7PuXPnEBcXhwsXLiAjIwMHDhzA/fv30aVLFwvWnhBiTjQcRgixKfb29vj555/xz3/+E88++yyKi4vRrl07DBo0CHK53OT9yOVy/Pzzz1izZg2Kiorg7++PVatWYfjw4RasPSHEnDhG53MSQki9kpKSEBMTgwcPHph8scQqAQEBmDlzJmbOnGmRuhFCGo+GwwghxETt27fHSy+9ZFLZuLg4yGQyZGRkWLhWhJDGop4gQgh5jPLycmRlZQHQ3Q7Dy8vrsdsUFBSgoKAAgO6ss4ZOuiaEWB4lQYQQQgixSTQcRgghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESRAghhBCbREkQIYQQQmwSJUGEEEIIsUmUBBFCCCHEJlESRAghhBCb9P91yap21xQ3iwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAScCAYAAABayDwuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXzL9x8H8Nc3Se+T3tVS6iiqlDo3ylDHHMPMMNT1m9llNsxslDEbZuxwDS3bbLYxc21a1H0fVdRqaBVtla7V0itNvr8/Kkmr1UOTpmlez8cjD8033+OTtyT99JXP9/MVRFEUQUREREREREREVIUk+m4AEREREREREREZH4ZSRERERERERERU5RhKERERERERERFRlWMoRUREREREREREVY6hFBERERERERERVTmGUkREREREREREVOUYShERERERERERUZVjKEVERERERERERFWOoRQREREREREREVU5hlJERERUpcLCwiAIAs6cOfNM28XHx1f4mImJiQgJCUFUVFS51o+JiUFISMgzHYuIiIiIyoehFBERERmEF198EcePH4ebm1uFt01MTMTcuXMrFErNnTuXoRQRERGRDsn03QAiIiKi8nBycoKTk5O+m1EpWVlZsLS01HcziIiIiKoFjpQiIiIivdu+fTs6duwIS0tL2NjYoGfPnjh+/HiRdUo6fa9r167w9fXF6dOn0blzZ1haWqJBgwb4/PPPoVQqAQAHDhxA27ZtAQBjx46FIAgQBAEhISEltiUsLAxDhw4FAHTr1k29flhYmHqd9evXo2XLljA3N0ft2rUxaNAgXLlypch+goODYW1tjYsXLyIoKAg2Njbo3r07ACAjIwMTJ06Eg4MDrK2t0bt3b1y9erVYu4KDg+Hl5VWsjSEhIRAEocgyURSxYsUKtGrVChYWFqhVqxZefvll3Lhxo8h658+fR79+/eDs7AwzMzO4u7vjxRdfxO3bt0usBxEREZGuMJQiIiIivdq0aRMGDhwIW1tb/Pzzz1i3bh3S0tLQtWtXHDlypMztk5OTMXLkSLz22mvYvn07+vTpg5kzZ+LHH38EALRu3RqhoaEAgI8//hjHjx/H8ePHMWHChBL39+KLL+Kzzz4DAHz33Xfq9V988UUAwMKFCzF+/Hg0b94cW7duxfLlyxEdHY2OHTvi33//LbKvvLw8DBgwAC+88AL+/PNPzJ07F6Io4qWXXsIPP/yA999/H3/88Qc6dOiAPn36PHMNAeD111/HlClT0KNHD2zbtg0rVqzA5cuX0alTJ9y9excA8OjRI/Ts2RN3797Fd999h4iICCxbtgx169ZFZmZmpY5PREREVFE8fY+IiIj0RqlUYtq0aWjRogX++usvSCQF35f17dsX3t7emDFjBo4ePVrqPlJTU7F79260a9cOANCjRw8cOHAAmzZtwujRo2FrawtfX18AgLe3Nzp06FDq/pycnNCoUSMAQLNmzYqsn56ejk8//RR9+/bFpk2b1Mu7du2KRo0aISQkBD/99JN6uVwux+zZszF27Fj1sr///huRkZFYvnw53nnnHQBAz549YWpqilmzZpVZs5KcOHEC33//Pb788ktMnTpVvbxz585o3Lgxli5dii+++AL//PMPUlNTsW7dOgwcOFC93iuvvPJMxyUiIiKqDI6UIiIiIr2JjY1FYmIiRo0apQ6kAMDa2hpDhgzBiRMnkJWVVeo+XF1d1YGUip+fH27evKn19h4/fhzZ2dkIDg4ustzT0xMvvPAC9u3bV2ybIUOGFLkfGRkJABg5cmSR5SNGjHjmdu3cuROCIOC1115Dfn6++ubq6oqWLVviwIEDAICGDRuiVq1amDFjBlatWoWYmJhnPiYRERFRZTGUIiIiIr1JTU0FgBKvqOfu7g6lUom0tLRS9+Hg4FBsmZmZGbKzs7XTyELKaq/qcRVLS0vY2toW24dMJivWbldX12du1927dyGKIlxcXGBiYlLkduLECdy/fx8AYGdnh4MHD6JVq1b46KOP0Lx5c7i7u2POnDmQy+XPfHwiIiKiZ8HT94iIiEhvVMFMUlJSsccSExMhkUhQq1atqm7WU5XVXkdHxyLLnpyMXLWP/Px8pKamFgmmkpOTi61rbm6O3NzcYstVIZOKo6MjBEHA4cOHYWZmVmz9wstatGiBX375BaIoIjo6GmFhYZg3bx4sLCzw4YcfFtuWiIiISFc4UoqIiIj0pkmTJqhTpw42bdoEURTVyx89eoQtW7aor8hXWapQpryjp562fseOHWFhYaGeRF3l9u3b2L9/v/rqeqXp1q0bABSZewpAkTmqVLy8vJCSkqKeqBwomDx9z549Rdbr168fRFHEnTt3EBAQUOzWokWLYvsWBAEtW7bEV199BXt7e5w7d67MthMRERFpE0dKERERkV4IggCJRIJFixZh5MiR6NevH15//XXk5uZi8eLFSE9Px+eff66VY3l7e8PCwgI//fQTmjZtCmtra7i7u8Pd3b3E9VUTo69ZswY2NjYwNzdH/fr14eDggE8++QQfffQRRo8ejeHDhyM1NRVz586Fubk55syZU2ZbgoKC0KVLF0yfPh2PHj1CQEAAjh49ih9++KHYusOGDcPs2bPx6quvYtq0acjJycHXX38NhUJRZL3nnnsO//vf/zB27FicOXMGXbp0gZWVFZKSknDkyBG0aNECb7zxBnbu3IkVK1bgpZdeQoMGDSCKIrZu3Yr09HT07NnzGSpLRERE9Ow4UoqIiIiqlGrictVopBEjRmDbtm1ITU3FsGHDMHbsWNja2iIyMhLPP/+8Vo5paWmJ9evXIzU1FUFBQWjbti3WrFnz1PXr16+PZcuW4cKFC+jatSvatm2LHTt2AABmzpyJtWvX4sKFC3jppZfw1ltvoXnz5jh27Jj6qn2lkUgk2L59O0aOHIlFixbhpZdewrFjx7B79+4S2/Hnn38iPT0dL7/8MqZNm4ahQ4di9OjRxdZdvXo1vv32Wxw6dAivvvoqXnzxRcyePRuPHj1STwTfqFEj2NvbY9GiRRgwYACGDh2Kc+fOISwsDBMnTixvOYmIiIi0QhALj5UnIiIi0rF3330X3377LdLT02FjY6Pv5lQrgiBgzpw5CAkJ0XdTiIiIiHSOp+8RERFRlTh79ixOnz6N9evXY8CAAQykiIiIiIwcQykiIiKqEi+//DIePHiAAQMG4Ouvv9Z3c4iIiIhIz3j6HhERERERERERVTlOdE5ERERERERERFWOoRQREREREREREVU5hlJERERERERERFTlGEoREREREREREVGVYyhFRERERERERERVjqEUEeldSEgIBEHA/fv3q/zYBw4cgCAIOHDgQJnrBgcHw8vLS+dtqgwvLy8EBwer7ycmJiIkJARRUVHPtD99/t8QERFR+bE/pXtP9rPi4+MhCALCwsL01iYiQyfTdwOIiEh7/vjjD9ja2qrvJyYmYu7cufDy8kKrVq301zAiIiIiIqIncKQUET2zrKwsfTfBoGVnZ2t9n/7+/vD29tb6fomIiEg32J+qnMr0p1h7Iv1jKEVE5aIaEn7u3Dm8/PLLqFWrVrnCD6VSifnz56NJkyawsLCAvb09/Pz8sHz58mLr3r17F8OHD4ednR1cXFwwbtw4PHjwoMg6OTk5mDlzJurXrw9TU1PUqVMHb775JtLT04usJwgCQkJCih3jyWHXTxMWFoYmTZrAzMwMTZs2xcaNG0tcLy8vD/Pnz4ePjw/MzMzg5OSEsWPH4t69e8WO269fP2zduhX+/v4wNzfH3Llzy2wHUDDM3draGpcvX0b37t1hZWUFJycnvPXWW8U6U4Wf34EDB9C2bVsAwNixYyEIQrG6nDx5Ev3794eDgwPMzc3h7e2NKVOmFGtDef5viIiIqHTsT+m/P3Xx4kUEBQXBxsYG3bt3BwD8999/mDx5MurUqQNTU1M0aNAAs2bNQm5ubrn2TUTPjqfvEVGFDB48GK+++iomTZqER48elbn+okWLEBISgo8//hhdunSBXC7HP//8U6zTAwBDhgzBsGHDMH78eFy8eBEzZ84EAKxfvx4AIIoiXnrpJezbtw8zZ85E586dER0djTlz5uD48eM4fvw4zMzMKv0cw8LCMHbsWAwcOBBffvklHjx4gJCQEOTm5kIi0WT5SqUSAwcOxOHDhzF9+nR06tQJN2/exJw5c9C1a1ecOXMGFhYW6vXPnTuHK1eu4OOPP0b9+vVhZWVV7jbJ5XL07dsXr7/+Oj788EMcO3YM8+fPx82bN7Fjx44St2ndujVCQ0MxduxYfPzxx3jxxRcBAB4eHgCAPXv2oH///mjatCmWLl2KunXrIj4+HuHh4cX2Vdb/DREREZUf+1P66U/l5eVhwIAB6v5Ufn4+cnJy0K1bN1y/fh1z586Fn58fDh8+jIULFyIqKgq7du2qdC2IqBQiEVE5zJkzRwQgzp49u0Lb9evXT2zVqlW59r1o0aIiyydPniyam5uLSqVSFEVR/Pvvv0tcb/PmzSIAcc2aNeplAMQ5c+YUO1a9evXEMWPGqO9HRkaKAMTIyEhRFEVRoVCI7u7uYuvWrdXHFUVRjI+PF01MTMR69eqpl/38888iAHHLli1FjnH69GkRgLhixYoix5VKpWJsbGyptSjJmDFjRADi8uXLiyxfsGCBCEA8cuTIU5+fqi2hoaHF9uvt7S16e3uL2dnZTz12ef9viIiIqGzsT+m/P7V+/foiy1etWiUCEH/99dciy7/44gsRgBgeHv7U5x0XF/fUfhYRlQ9P3yOiChkyZEiF1m/Xrh0uXLiAyZMnY8+ePcjIyHjqugMGDChy38/PDzk5OUhJSQEA7N+/HwCKDRcfOnQorKyssG/fvgq1rSSxsbFITEzEiBEjIAiCenm9evXQqVOnIuvu3LkT9vb26N+/P/Lz89W3Vq1awdXVtdgVaPz8/NC4ceNnbtvIkSOL3B8xYgQAIDIyssL7unr1Kq5fv47x48fD3Ny8zPXL+r8hIiKi8mN/SqOq+1NP1n7//v2wsrLCyy+/XGS5qj7aqAcRPR1DKSKqEDc3twqtP3PmTCxZsgQnTpxAnz594ODggO7du+PMmTPF1nVwcChyXzV0XDWBZWpqKmQyGZycnIqsJwgCXF1dkZqaWqG2lUS1D1dX12KPPbns7t27SE9Ph6mpKUxMTIrckpOTi12SuaK1K0wmkxWrj6o9z/K8VXM0qE7lK0tZ/zdERERUfuxPaVRlf8rS0rLIVYpVbXV1dS0SngGAs7MzZDKZVupBRE/HOaWIqEKe/IVdFplMhqlTp2Lq1KlIT0/H3r178dFHH6FXr164desWLC0ty70vBwcH5Ofn4969e0U6UqIoIjk5WT2pN1DQAStpcsqyOhaqjlxycnKxx55c5ujoCAcHB/z9998l7svGxqbI/YrWrrD8/HykpqYW6Wiq2vNk57M8VPW7ffv2M7eJiIiIng37UxpV2Z8qaVsHBwecPHkSoigWeTwlJQX5+flwdHR85uMRUdk4UoqIqoy9vT1efvllvPnmm/jvv/8QHx9foe1VV0j58ccfiyzfsmULHj16pH4cKLg6S3R0dJH19u/fj4cPH5Z6jCZNmsDNzQ0///wzRFFUL7958yaOHTtWZN1+/fohNTUVCoUCAQEBxW5NmjSp0PMry08//VTk/qZNmwAAXbt2feo2TxvR1LhxY3h7e2P9+vW8sgwREZEBYX9Ku7p3746HDx9i27ZtRZarrhRYuB5EpH0cKUVEOtW/f3/4+voiICAATk5OuHnzJpYtW4Z69eqhUaNGFdpXz5490atXL8yYMQMZGRl47rnn1FeL8ff3x6hRo9Trjho1Cp988glmz56NwMBAxMTE4Ntvv4WdnV2px5BIJPj0008xYcIEDBo0CBMnTkR6ejpCQkKKDTd/9dVX8dNPP6Fv375499130a5dO5iYmOD27duIjIzEwIEDMWjQoAo9x6cxNTXFl19+iYcPH6Jt27bqq+/16dMHzz///FO38/b2hoWFBX766Sc0bdoU1tbWcHd3h7u7O7777jv0798fHTp0wHvvvYe6desiISEBe/bsKRaAERERkf6wP6Wd/lRJRo8eje+++w5jxoxBfHw8WrRogSNHjuCzzz5D37590aNHD50dm4gYShGRjnXr1g1btmzB2rVrkZGRAVdXV/Ts2ROffPIJTExMKrQvQRCwbds2hISEIDQ0FAsWLICjoyNGjRqFzz77rMjli6dNm4aMjAyEhYVhyZIlaNeuHX799VcMHDiwzOOMHz8eAPDFF19g8ODB8PLywkcffYSDBw8WmWxTKpVi+/btWL58OX744QcsXLgQMpkMHh4eCAwMRIsWLSr0/EpjYmKCnTt34p133sH8+fNhYWGBiRMnYvHixaVuZ2lpifXr12Pu3LkICgqCXC7HnDlzEBISgl69euHQoUOYN28e3nnnHeTk5MDDw6PYBKlERESkX+xP6Y65uTkiIyMxa9YsLF68GPfu3UOdOnXwwQcfYM6cOTo9NhEBglh4PCUREVU7wcHB+P3338scKk9ERERERGRIOKcUERERERERERFVOZ6+R0TPRBRFKBSKUteRSqWVukJKTadUKqFUKktdRybjxzQREVFNxf5U5bE/RWTYOFKKiJ7JwYMHYWJiUuptw4YN+m5mtTZu3LgyawgAYWFhPHWPiIioBmJ/qvLK258iouqJc0oR0TPJzMxEbGxsqevUr18fDg4OVdQiwxMfH4/79++Xuk5AQEAVtYaIiIiqGvtTlcf+FJFhYyhFRERERERERERVjifXPgOlUonExETY2Njw/G4iIiIjI4oiMjMz4e7uDomEMyE8DftLRERExqu8/SWjDaVWrFiBxYsXIykpCc2bN8eyZcvQuXPncm2bmJgIT09PHbeQiIiIqrNbt27Bw8ND382otthfIiIiorL6S0YZSm3evBlTpkzBihUr8Nxzz2H16tXo06cPYmJiULdu3TK3t7GxAVBQXFtbW622TS6XIzw8HEFBQUY/KR9rocFaFGAdNFgLDdZCg7XQ0GUtMjIy4Onpqe4PUMnYX6oarIUGa1GAddBgLTRYCw3WQqM69JeMMpRaunQpxo8fjwkTJgAAli1bhj179mDlypVYuHBhmdurhqDb2trqpJNlaWkJW1tbvkFYCzXWogDroBF/LwMXH1pBuJYJqVSq7+bolUKhYC0eYy00FAoF7ip0+3nBU9JKx/5S1WAtNIy5FkqliLSsPCRn5CAxLRc386xgaWUNC3MzfTdNr4z5NfEk1kKDtdCoilqU1V8yulAqLy8PZ8+exYcfflhkeVBQEI4dO1biNrm5ucjNzVXfz8jIAFDwHyiXy7XaPtX+tL1fQ8RaaLAWBViHAmdvpmHcxnPIypNi0/XL+m5ONcFaaLAWKp2cJfifDj4vjP0ziIiqjiiKeJibj7sZObibkYu7GTlIzshByuOfVctTMnMgVxS+fpUU1zdH47uRbWAq49x3RFR9GV0odf/+fSgUCri4uBRZ7uLiguTk5BK3WbhwIebOnVtseXh4OCwtLXXSzoiICJ3s1xCxFhqsRQFjrsP1DGD1FSlylQJcLETUNuMFVImexs1S1MnnRVZWltb3SUTGJ0euwL3MXCQXCpc0QZPmflaeolz7EwTAwcoMzjamuJqcgYgrKXj753P4ZnhrBlNEVG0ZXSil8uQQMlEUnzqsbObMmZg6dar6vurcyKCgIJ0MR4+IiEDPnj05lJC1UGMtChh7Hc7cTMNHG88hV6lAey97vOx8Hy/2Ns5aFGbsr4vCWAsNXdZCNWKaiKgk+QolUh/lIfnB43ApMxd3C/2c8ni0U3pW+Udd2pjL4GprDhdbczjbmql/drE1e/yvOZxszGAilUAul+PLn/7C+msm2HP5Lt7adA7fjmAwRUTVk9GFUo6OjpBKpcVGRaWkpBQbPaViZmYGM7Pi52ObmJjorNOvy30bGtZCg7UoYIx1OB3/HyZsPIdHeQo819ABK4e3QuTePTW2FgqFotynSCkUCshkMigUilIvN2sMWAuNytTCxMSk1Dm5DP09t3DhQmzduhX//PMPLCws0KlTJ3zxxRdo0qSJeh1RFDF37lysWbMGaWlpaN++Pb777js0b95cjy0n0i9RFJGeJcfdzBwkP9CcQpdc6BS65Ac5uP8wF8pyDmQ2k0ngamcOF5uiYdOTP1uaVuzPtqa1RKwa0QqTNkUhPIbBVE1Vkf6SXC6HTCZDTk4OFIryjb6rqVgLjcrUoqz+UnkZXShlamqKNm3aICIiAoMGDVIvj4iIwMCBA/XYsppBFEUoRUApilCKIkQRUCjFx/cLHi+4r1lXIYpQKgvWVYoiFKIIURSRn6+AgmcmEeF0/H8Ys/4Ush4HUmtHt4VMUOq7WTohiiKSk5ORnp5eoW1cXV1x69Yto594mrXQqGwt7O3t4erqWiPrePDgQbz55pto27Yt8vPzMWvWLAQFBSEmJgZWVlYAgEWLFmHp0qUICwtD48aNMX/+fPTs2ROxsbG86iDVSI8ez9tUeL6mkn7OU5Tv969UIsDJ2gwuduZwsSkYzeRqZw7nQj+72JjD1kKms8+Zzo0c8f3oAEzceAbhMXfx5qZz+I7BVI3A/lLlsBYa1aG/ZHShFABMnToVo0aNQkBAADp27Ig1a9YgISEBkyZN0mu7Uh/m4quIWMTFS3DszxgIgqAOc5SFgh1V4KNUoviyIsFPKUGQUhMaaYKgkvYtQqFUbVdKWx7/LGo5RHI0l8Ks/l309atj9B8YZJwKB1LPNyzoXFqYSiGX18xQStXBcnZ2hqWlZbne90qlEg8fPoS1tbXRjw5iLTSetRaiKCIrKwspKSkAADc3N101UW/+/vvvIvdDQ0Ph7OyMs2fPokuXLhBFEcuWLcOsWbMwePBgAMCGDRvg4uKCTZs24fXXX9dHs4meSV6+EimZT87XVHzupoe5+eXeZ20rU82pczaP/30cMrnYmsPFzgwOVmaQSvTfdw1s7KQOpiIYTNUY7C9VDmuhUR36S0YZSg0bNgypqamYN28ekpKS4Ovri927d6NevXp6bdejXAV+PHkLgAS4e1uvbakKEqHgWyRBECARAIkgQCoIEARAIhGQI1fgfo4Sb/58Ae1P3MIn/ZrBt46dvptNVGVOxf2H4NDigVRNpVAo1B0sBweHcm+nVCqRl5cHc3NzdixYC7XK1MLCwgJAwan9zs7OWhmaXp09ePAAAFC7dm0AQFxcHJKTkxEUFKRex8zMDIGBgTh27NhTQylerVg/WIsCaVl52HQyASevS/D7hjO491COlMwc/Peo/HWxMpOqRzU525g9HtVkph7d5GJrBkdrM5iVI9BRKvKh1NNZQU++JjrVt1efyhcRcxeTfzyD5cNaGkUwVRPfHwqFAmlpaXByckKtWrXKvZ0oisjLy4OZmZnRf9nPWmhUphZmZmZQKpW4d+8eatWqVay/VN73nVGGUgAwefJkTJ48Wd/NKMLOwgRvdW2Aa9f+RZPGjWFqIisIaAqFNuqfJULR+4LweFnBz8LjwEf1uPA48JFI8DgEenxfgDoUKhYQSYRCxxcgLbRtScd8sp2CBI+PodmPVKI5ZlnSH2ZjRuheHLgrw8m4/9D/2yMY7O+Bab2awNXOvAr+R4j058lAau2YAJib1Ow/jFW/uHR1VVOiilC9DuVyeY0OpURRxNSpU/H888/D19cXANTzbpZ0peKbN28+dV+8WrF+GXMtbmQAG/6VIj1PACABUv4r8rhUEGFnisc3EXYmj/99vMz28c/m0nwAuQAeX8xAASANENOAZBTcDMmTr4nxjQR8/48Ee/+5h2Ffh2NsYyWMIJcCULPeHzKZDK6urlAqlc904Y3MzEwdtMowsRYaz1oLpVKJ7Oxs7Nu3D/n5RUeclvdqxUYbSlVHdpYmeLd7Q+zOvYq+3bwNfiLVyrIyk6FvXSVmDX8eX+27jj/O38GWc7ex62IiXu/ijdcDG1R40kciQ3DyRirGhp02qkCqMGP/xoqqB2N5Hb711luIjo7GkSNHij1WkSsVA7xasb4Ycy2UShFrDsfh25PXoVCKqFfbAs2tHqJjq2Zwr2WlHu1Uy9LEaN7TwNNfE30BtL12H2/8FIVLacDuBy74uoaPmKqJ74+cnBzcunULNjY2MDcv/xf1oigiMzMTNjY2RvV+KAlroVHZWuTk5MDCwgJdunQp9nosb2jKv+ip2nOzM8dXw1ohuJMX5u+Kwen4NCzf9y9+OZ2AD4KaYEhrD0iqwTn7RNpg7IEUEVWdt99+G9u3b8ehQ4fg4eGhXu7q6gqgYMRU4TkiSrtSMcCrFeubsdXi/sNcTP31Ag5dvQcAeKmVO+b088GhfeHo266eUdXiaUp6TbzQ1A3fj5Zh4sYz2PfPPbz7azRWjGxTo4MpoGa9PxQKRcHZKxJJhU5PVyoL5iNVbWvMWAuNytZCIpFAEIQS32Plfc8Z9/8AGZSWnvb49fWOWDmyNerWtsTdjFxM+z0a/b89guPXU/XdPKJKKxxIdW7EQIqIdEMURbz11lvYunUr9u/fj/r16xd5vH79+nB1dS1yukteXh4OHjyITp06VXVziYo5cSMVfZcfxqGr92BuIsEXQ1rgq2GtYG3G79vLo0tjJ6wdEwAzmQR7r6Rg8k9nkZuvpwmwiMjoMZQigyIIAvq0cEPE1C6Y1bcpbMxluJyYgeHfn8D/Np5B3P1H+m4i0TM5eSMVwaGaQOr70QykqHoICQmBi4sLBEHAtm3b9N0c0oI333wTP/74IzZt2gQbGxskJycjOTkZ2dnZAAp+106ZMgWfffYZ/vjjD1y6dAnBwcGwtLTEiBEj9Nx6MmYKpYjle//FiO9PICUzFw2drfHnm89jWNu6Rn8KTkV1blQ0mHrzp3MMpogqgf2lZ8dQigySmUyKiV0a4OC0bhjTsR6kEgHhMXfRc+lBzNsRg/SsPH03kajcTjwOpLLlDKQMkSAIpd6Cg4MBAJGRkejWrRtq164NS0tLNGrUCGPGjFFPCnngwAEIgoD09PQi91XDqe3s7ODv74/p06cjKSmp1DbFx8cXaYOdnR06dOiAHTt2VOi5XblyBXPnzsXq1auRlJSEPn36VLg+VP2sXLkSDx48QNeuXeHm5qa+bd68Wb3O9OnTMWXKFEyePBkBAQG4c+cOwsPDYWNjo8eWkzFLyczBqHUn8dXeq1CKwNA2Htj+1nNo4srX5LPq3MgJ68a01YyY+pHBFOkO+0v0NAylyKDVtjLF3IG+2DOlM17wcUa+UsT6o3EIXHwA64/EIS9fqe8mEpXqxI1UjGUgZdCSkpLUt2XLlsHW1rbIsuXLl+Py5cvo06cP2rZti0OHDuHixYv45ptvYGJioj6X/2liY2ORmJiI06dPY8aMGdi7dy98fX1x8eLFMtu2d+9eJCUl4eTJk2jXrh2GDBmCS5culfu5Xb9+HQAwcOBAuLq6ljhfUHnUpEtx1wSiKJZ4U/1BABT88RASEoKkpCTk5OTg4MGD6qvzEVW1I//eR9/lh3HseiosTaVY+kpLLB7akhe80YLnGzmqg6l9/zCYIt1hf6lsxtpfYihFNUJDZxusD26LH8a3g4+rDR5kyzFvZwx6LTuE8MvJEEVR300kKub4dU0g1aWxEwOpEoiiiKy8/DJv2XmKcq1XkVt5PzdcXV3VNzs7OwiCUGxZREQE3NzcsGjRIvj6+sLb2xu9e/fG2rVrYWpqWur+nZ2d4erqisaNG+PVV1/F0aNH4eTkhDfeeKPMtjk4OMDV1RU+Pj5YsGAB5HI5IiMj1Y/fuXMHw4YNQ61ateDg4ICBAwciPj4eQMEw9P79+wPQTGKpEhoaiqZNm8Lc3Bw+Pj5YsWKF+jHVt46//vorunbtCnNzc/z444/l3m7r1q3o1q0bLC0t0bJlSxw/frzIczp69CgCAwNhaWmJWrVqoVevXkhLSwNQ8HpZtGgRGjRoACsrKzz//PP4/fff1dumpaVh5MiRcHJygoWFBRo1aoTQ0NAy60hE+pGvUGLJnliMWn8S9x/mwcfVBtvfeh6DW3uUvTGV25PB1BsMpgwO+0vsLxlyf4lfL1CN0rmRE3a944jfztzCkvCriLv/CP/74Sw6NnDArBebwreOnb6bSASgIJAaF6YJpNaMasNAqgTZcgWazd6jl2PHzOultW/hXV1dkZSUhEOHDqFLly6V2peFhQUmTZqE9957DykpKXB2di5zG7lcju+//x6A5kooWVlZ6NatGzp37oxDhw5BJpNh/vz56N27N6Kjo/HBBx/Ay8sLY8eOLTL8/fvvv8ecOXPw7bffwt/fH+fPn8fEiRNhZWWFMWPGqNebMWMGvvzyS4SGhsLMzKzc282aNQtLlixBo0aNMGvWLAwfPhzXrl2DTCZDVFQUunfvjnHjxuHrr7+GTCZDZGQkFIqCP54+/vhjbN26FStXroS3tzfCw8MxevRouLi4IDAwEJ988gliYmLw119/wdHREdeuXVPPo0RE1Uvygxy88/N5nIr/DwAwon1dzO7XjL8rdeT5Ro5YH9wW48JOY//jYGrla61hJmO9DQH7S8Wxv2Q4/SWGUlTjSCUCXm1XF/1aumPlgWv4/nAcjt9IRf9vj+Dl1h74oFcTuNia67uZZMQYSBmfoUOHYs+ePQgMDISrqys6dOiA7t27Y/To0bC1ta3w/nx8fAAUfFtWWierU6dOkEgkyM7OhlKphJeXF1555RUAwC+//AKJRIK1a9eqv9ULDQ2Fvb09Dhw4gKCgINjb2wMo6CSqfPrpp/jyyy8xePBgAAVXaouJicHq1auLdJamTJmiXqci233wwQd48cUXAQBz585F8+bNce3aNfj4+GDRokUICAgo8o1h8+bNAQCPHj3C0qVLsX//fnTs2BFKpRIjRozA2bNnsXr1agQGBiIhIQH+/v4ICAgAAHh5eVWg6kRUVSJjU/D+rxfw36M8WJvJ8NngFhjQ0l3fzarxnmtYEEyN38BgivSD/SXj7C8xlKIay9pMhmm9fDC8XV0s3hOLP6MS8dvZ29gZnYRJgd6Y2KU+5yKgKnf8eirGhp1CjlzJQKocLEykiJnXq9R1lEolMjMyYWNrA4lEe2elW2jx/0UqlSI0NBTz58/H/v37ceLECSxYsABffPEFTp06BTc3twrtTzVUvqyrTW3evBk+Pj64evUqpkyZglWrVqF27doAgLNnz+LatWvFJq7OyclRz43wpHv37uHWrVsYP348Jk6cqF6en58PO7uiI1FVHZmKbufn56f+WVWXlJQU+Pj4ICoqCkOHDi2xbTExMcjJyUHPnj2LLM/Ly4O/vz8A4I033sCQIUNw7tw5BAUF4aWXXkKnTp1K3B8RVT25Qokl4bFYffAGAKC5uy2+HdEa9R2t9Nwy4/Fcw4JT+VTB1KQfzmLVqDYMpqo59pdKxv5ScdWxv8S/yKnG86hlieWv+iO4kxfm77qCszfT8NXeq/j5VAKm9WqCQf51IJHwMsKke8eu38e4sNPIkSsR2NgJqxlIlUkQhDLDY6VSiXxTKSxNZVrtZOlCnTp1MGrUKIwaNQrz589H48aNsWrVKsydO7dC+7ly5QqAsr+58vT0RKNGjdCoUSNYW1tjyJAhiImJgbOzM5RKJdq0aYOffvqp2HZOTk4l7k81yej333+P9u3bF3lMKi36Wraysnqm7VTD5QFNJ1K1vYWFxVOfq2qdXbt2oU6dOlAqlXj48CGsra3V2/Xp0wc3b97Erl27sHfvXnTv3h1vvvkmlixZ8tT9ElHVuJOejbc3ncO5hHQAwJiO9TCzb1P+ntSD5xo6Yv2Ythi34TQiY+9h0g9nsfI19lmqM/aXSsb+0tPbVp36S9X71UikRf51a+H3SR3x7Qh/eNSyQHJGDt7/7QIGfncUJ2+k6rt5VMMxkKIn1apVC25ubnj06FGFtsvOzsaaNWvQpUuXp3aGShIYGAhfX18sWLAAANC6dWv8+++/cHZ2RsOGDYvcnvw2TsXFxQV16tTBjRs3im1Tv379px77Wbd7kp+fH/bt21fiY82aNYOZmRkSEhLU+27QoAEaNmwIT09P9XpOTk4IDg7Gjz/+iGXLlmHNmjXlPj4R6UZEzF30XX4Y5xLSYWMuw8qRrTF3oC9/T+pRp8fBlLmJBJGx9/DGj2eRI+fk51T12F+q+f0ljpQioyIIAvr5uaNHUxeEHYvHd/uv4eKdBxi25gR6N3fFh3184MUh4qRlx67dx7gNBYFU1yZOWMVvG43O6tWrERUVhUGDBsHb2xs5OTnYuHEjLl++jG+++abUbVNSUpCTk4PMzEycPXsWixYtwv3797F169YKt+P999/H0KFDMX36dIwcORKLFy/GwIEDMW/ePHh4eCAhIQFbt27FtGnT4OFR8tWtQkJC8M4778DW1hZ9+vRBbm4uzpw5g7S0NEydOvWpx37W7QqbOXMmWrRogcmTJ2PSpEkwNTVFZGQkhg4dCkdHR3zwwQd47733oFQq0alTJyQlJSE6Oho2NjYYM2YMZs+ejTZt2qB58+bIzc3Fzp070bRp0wrXkYi0Iy9fic//+gfrj8YBAFp62OHbEa3hWdtSzy0jQBNMqUdM/XiWfRjSKfaXjLO/pNVQqvAEXeW1atWqcs2ET6RN5iZSTAr0xsttPLBs71VsOpmAvy8nY98/dzGmoxfefqER7CxNyt4RURkYSBEAtGvXDkeOHMGkSZOQmJgIa2trNG/eHNu2bUNgYGCp2zZp0gSCIMDa2hoNGjRAUFAQpk6dWmQyzfLq168fvLy8sGDBAqxYsQKHDh3CjBkzMHjwYGRmZqJOnTro3r17qZOJTpgwAZaWlli8eDGmT58OKysrtGjRAlOmTCn12M+6XWGNGzdGeHg4PvroI7Rr1w4WFhZo3749hg8fDqBgclBnZ2csXLgQN27cgJ2dHVq3bo1Zs2YBAExNTTFz5kzEx8fDwsICnTt3xi+//FLu4+sL+1dUE936LwtvbTqHC7cfAAAmPF8f03v7wFTGEzmqk8LB1AEGU6Rj7C8ZZ39JEFWzf2mBRCLBK6+8Uuo5jIVt2rQJV65cQYMGDbTVhCqRkZEBOzs7PHjw4JmuAlAauVyO3bt3o2/fvkXOEzVGVVmLq3cz8dnuKzgQew8AYG9pgindG2Fkh3owkeq/c8TXRQFDq8PRa/cx/nEg1a2Jk1bnYzC0WpRHTk4O4uLiUL9+fZibl/8KmUqlEhkZGbC1ta32cyToGmuhUdlalPZ61GU/oCSG2r9if6lqGGIt/rqYhOlbopGZkw87CxN8ObQlejRzqfR+DbEWuqCLOhjqNAQ18TXB/lLlsRYa1aG/pPXT977++utyfzP3+++/a/vwRM+ksYsNwsa2w8Gr97BgVwyu3n2IkB0x2HjiJmb1bYoXfJzLvGoDUWG6DKSIyPiwf0U1QY5cgc92X8HG4zcBAK3r2uObEa1Rx758gSvpTydvR6wPbotxYadx8Oo9vP7DWYMJpoioetNqLBgZGam+dGJ5/PXXX6hTp442m0BUKYGNnbD7nc5YMMgXDlamuHHvEcZvOIPX1p1ETGKGvptHBuLoNc23id2aOGEVO21EVAnsX1FNEHf/EYasPKYOpCYFemPz6x0ZSBmQTt6OCA1uB3MTiTqY4uTnRFRZWg2lAgMDIZOVf/DV888/DzMzM202gajSZFIJRravhwPTuuKNrt4wlUlw9FoqXvzmMGb8Ho2UjBx9N5GqMVUglZuvCaTMZAykiOjZsX9Fhu7PqDvo9/VhXE7MQG0rU4SNbYsP+/hUiykSqGI6ejsgNLgdLEykOHj1Hv7HYIqIKknnV99LSUlBSkoKlEplkeV+fn66PjRRpdiYm2BGbx+MaFcXi/bEYseFRGw+cws7ohPxRqA3JnRuAAtThg2kceTfglP2cvOVeMHHGStfa81Aioh0gv0rMgQ5cgXm7riMn0/dAgC0q18bX7/qD1e78s+DQ9VPR28H9al8hx4HU2s4KpyInpHOQqmzZ89izJgxuHLlClRzqQuCAFEUIQgCFAom6mQYPGtb4pvh/gju5IVPd8Yg6lY6voy4ik2nEjC9dxMMbFkHEgnnmzJ2DKS058k/son0obq+Dtm/IkNxLeUh3tp0Dv8kZ0IQgLe7NcQ73RtBxtFRNUJHbweEjm2LsaEMpvSluv6eIuOijdehzkKpsWPHonHjxli3bh1cXFw4STQZvDb1auGPyZ2wIzoJX/z1D+6kZ+O9zRcQdjQeH/drhrZe5Z/vg2qWw//ew4QNZ5Cbr0R3H2esYCD1TExNTSGRSJCYmAgnJyeYmpqW63eHUqlEXl4ecnJyeAUV1kLtWWshiiLy8vJw7949SCQSmJqa6rCVFcf+FRmCLWdv4+Ntl5AtV8DR2gzLhrXC840c9d0s0rIODYoGUxM3nsH3owMYTOkY+0uVx1poVIf+ks5Cqbi4OGzduhUNGzbU1SGIqpwgCBjQ0h1BzVyw/mgcVkRex4XbDzB01XH0beGKD3s3RV0HS303k6oQAyntkUgkqF+/PpKSkpCYmFju7URRRHZ2NiwsLIz+D3TWQqOytbC0tETdunWrXWeV/SuqzrLy8jH7z8v4/extAEAnbwcse7UVnG14ul5NVTiYOvzvfQZTVYD9pcpjLTSqQ39JZ6FU9+7dceHCBXaaqEYyN5FicteGGNrGE0sjrmLz6QTsvpiMvTEpCH7OC292awg7CxN9N5N0TPWtYG6+Ej2aOuO7kQykKsvU1BR169ZFfn5+uU9DksvlOHToELp06QITE+N+37EWGpWphVQqhUwmq5YdVfavqLqKTc7Em5vO4VrKQ0gEYEqPxnizW0NIOcVBjdehgQPCxrZFMIOpKsP+UuWwFhrVob+ks1Bq7dq1GDNmDC5dugRfX99iT3DAgAG6OjRRlXGyMcPCwS0wplM9LNh1BYf/vY81h27gtzO38F7PxhjRri7nTqihGEjpjiAIMDExKfcvRqlUivz8fJibmxt9x4K10KiptWD/iqobURTx65lbmP3nZeTmK+Fia4blr/qjQwMHfTeNqlD7x8HU2DAGU1WF/aVnx1poVIda6CyUOnbsGI4cOYK//vqr2GOciJNqGh9XW2wc1w4Hrt7Dgl1XcC3lIWb/eRkbj9/ErL5N0bWJU7X8xp2eDQMpItIX9q+oOnmYm4+P/7iIbVEFpxAFNnbC0ldawsHaTM8tI31o38ABocEMpoioYnQ2hOOdd97BqFGjkJSUBKVSWeTGDhPVRIIgoFsTZ/z9bmd8+pIvaluZ4lrKQ4wNO43R60/hn+QMfTeRtODQ1XuYUCiQWjGyDQMpIqoy7F9RdXE58QEGfHME26ISIZUImNHbB6HBbRlIGbmCEVPtYGkqVQdTOXJ+NhHR0+kslEpNTcV7770HFxcXXR2CqFqSSSUY1aEeDkzritcDG8BUKsHhf++j7/LDmLk1GimZOfpuIj0jVSCVl69Ej6YuWDGyDUxlPD2TiKoO+1ekb6Io4ocTNzFoxTHcuP8I7nbm+PX1DnijqzcknD+KALSrX7tIMDVhA4MpIno6nf01NXjwYERGRupq90TVnq25CWb2aYq9UwPxYgs3KEXg51O30G3xAXwXeY2/nA3MwWKBVGsGUkRU5di/In3KyJHjrU3n8cm2S49/Hzpj1zud0aZebX03jaqZwsHUkWsFwVR2Hvu+RFSczuaUaty4MWbOnIkjR46gRYsWxSbNeuedd3R1aKJqpa6DJb4b2Rpj4//DpztjcOH2AyzeE4tNJxMwvXcTDGjpzvmmqrmDj+eQystXomczF3w3goEUEekH+1ekL9G30/HWpvNI+C8LMomAD/v4YPzz9dmHoadqV782NoxrhzHrT+HINc0cUxamnPaAiDR0evU9a2trHDx4EAcPHizymCAI7DSR0Qnwqo0/Jj+HHdGJ+OKvf3AnPRvv/hKF0KPx+KRfU37LWE0diE3B/344y0CKiKoF9q+oqomiiNCj8Vj41xXIFSI8alng2xGt0crTXt9NIwPQ1qtoMDVh42msHd2WwRQRqekslIqLi9PVrokMlkQiYGCrOujV3BVrD9/AigPXEXUrHUNWHseLfm74sLcPPGtb6ruZ9BgDKSKqbti/oqr0IEuOab9fQHjMXQBA7+au+OJlP9hZGPcl1KliVMFU8PpTOHotlcEUERXBv66I9MDcRIq3XmiEA9O64tW2nhAEYFd0Erp/eRAL/7qCjBy5vpto9AoHUkEMpIiIyMicS0hD368PIzzmLkylEswd0BwrX2vNQIqeSVuv2ggb1w5WplIcvZaK8RtOc44pIgKgg5FS8+bNK9d6s2fP1vahiQyOs405Ph/ih9EdvbBgdwyOXkvF6oM38NuZ23ivZ2MMb+sJmZRBSFV7MpD6loEUEekZ+1dUVZRKEWuP3MCiv2ORrxRRz8ES341oDd86dvpuGhm4wqfyHbteEEytG8MRU0TGTuuh1B9//PHUxwRBQGxsLHJycthpIiqkmbstfhzfHpGxKZi/6wpu3HuET7ZdwsZj8Zj1YlM816CWvptoNCJjU/D6xrPIUyjRq7kLvhnOQIqI9I/9K6oK/z3Kwwe/XcD+f1IAAP383LBwcAvYmHN0FGlHAIMpInqC1kOp8+fPl7g8KioKH374IS5duoSJEydq+7BEBk8QBLzg44LOjZyw6WQClu29in9THiI49DQ6N3SAr4mAXkoR7BbqDgMpIqqu2L8iXTsV9x/e+fk8kjNyYCqTIKR/cwxv58mr65HWPRlMjQs7jfXBDKaIjJXO/9qKi4vDa6+9hrZt28LOzg6XL1/GqlWrtH6c+Ph4jB8/HvXr14eFhQW8vb0xZ84c5OXlFVlPEIRiN120h+hZmUglGNPJCwc+6IaJnevDRCrg8LVUrLwiRefFB/HpzhhcvP0Aoijqu6k1SuQ/RQMpnrJHRNVZVfWvqOZTKkV8F3kNw78/geSMHDRwssKfbz6HEe3rMpAinQnwqo2N4wvmmDp+oyCYysrL13eziEgPdPYX1/379/H222/Dx8cHSUlJOHbsGDZv3oxGjRrp5Hj//PMPlEolVq9ejcuXL+Orr77CqlWr8NFHHxVbNzQ0FElJSerbmDFjdNImosqwszTBrBebYe/UQAxv6wFLmYh7D/Ow7kgc+n97BD2WHsQ3+/5FQmqWvptq8CL/ScHrPxQNpEw4lxcRVUNV3b+imu3+w1yMCT2FxXtioVCKGOxfBzveeh5N3Wz13TQyAm3qFQRT1mYyHL+RivFhZxhMERkhrZ++9+jRIyxZsgRLly5Fw4YNsWPHDgQFBWn7MMX07t0bvXv3Vt9v0KABYmNjsXLlSixZsqTIuvb29nB1dS33vnNzc5Gbm6u+n5GRAQCQy+WQy7V7lTTV/rS9X0PEWhRwtzXFJ30aIUASDzMvf+y+nIJ9/9zD9XuP8GXEVXwZcRWt69pjgJ8r+vi6oraVqb6brDO6eE1Ext7Dmz9HQa4QEdTMGV8NbQEoFZArq/cVYfj+0GAtNFgLDV3WQh/11Vf/imquY9fv491fonAvMxfmJhLMG+iLoW08ODqKqlSberWxYVxbjFl/Wj1ian1wW1iaav3PVCKqprT+bvf29kZmZibefvttDB8+HIIgIDo6uth6fn5+2j50MQ8ePEDt2rWLLX/rrbcwYcIE1K9fH+PHj8f//vc/SCRPHxWxcOFCzJ07t9jy8PBwWFpaarXNKhERETrZryFiLQrIJIAi4Tx62QCB/sCF/wScuS/g3wcCziWk41xCOubtuoKm9iICHEX41hJRU0/N19Zr4nKagHWxEihEAX61lehtk4iIPYla2XdV4ftDg7XQYC00dFGLrKyqH6FanfpXZNgUShHf7P8XX+/7F0oRaOxije9GtEYjFxt9N42MVEEwVTDH1Ikb/zGYIjIyWn+np6QUXK1j0aJFWLx4cZF5bwRBgCiKEAQBCoVuRyFcv34d33zzDb788ssiyz/99FN0794dFhYW2LdvH95//33cv38fH3/88VP3NXPmTEydOlV9PyMjA56enggKCoKtrXaHN8vlckRERKBnz54wMTHuKa1ZC42SajH48WN3M3Kw62Iy/ryQhJikTFxOE3A5DbAylSKouQsG+LmhY4PakEoM/5tPbb4m9sfeQ+jPUVCIIno1c8ZXr/gZ1Cl7fH9osBYarIWGLmuhGjFdlapL/4oMW0pGDt79JQrHb6QCAF4J8MDcAb6cYJr0rk29WgymiIyU1t/lcXFxWt1fSEhIiaOUCjt9+jQCAgLU9xMTE9G7d28MHToUEyZMKLJu4fCpVatWAIB58+aVGkqZmZnBzMys2HITExOddfp1uW9Dw1polFQLDwcTvN7VBq93bYR/72ZiW9Qd/BmViNtp2fjjfCL+OJ8IJxszDGjpjpda1YFvHVuDH5pf2dfEvit38fbPFyBXiOjj64qvh/sbVCBVGN8fGqyFBmuhoYta6KO22u5fkfE5/O89vLc5Cvcf5sHSVIoFg3wxyN9D380iUnsymBobehqhYxlMEdV0Wn2HR0dHw9fXt9RT4Qq7fPkymjRpApns6c1466238Oqrr5a6Hy8vL/XPiYmJ6NatGzp27Ig1a9aU2YYOHTogIyMDd+/ehYuLS7naTVRdNXKxwbRePvggqAnO3kzDH+fvYNfFJNzLzMW6I3FYdyQO3k5WeKlVHQxsVQd1HXRz+ml1tu/KXUz68SzkChF9W7hi+auGG0gRkXHQRf+KjEe+Qolle//FdweuQRQBH1cbfDeyNbydrPXdNKJi2tSrhY3j22H0ulM4GcdgisgYaPXd7e/vj+TkZDg5OZVr/Y4dOyIqKgoNGjR46jqOjo5wdHQs1/7u3LmDbt26oU2bNggNDS1X5+38+fMwNzeHvb19uY5BZAgEQUCAV20EeNXGnP7NcfDqPWyLuoO9MXeLTJDepl4tvNTKHS/6udfoCdJVGEgRkSHSRf+KjEPSg2y8+3MUTsX/BwAY2b4uPunXDOYmPF2Pqq/WdQuCqTGPg6ng0NMIYzBFVGNp9Z0tiiI++eSTck/+nZeXp7VjJyYmomvXrqhbty6WLFmCe/fuqR9TXWlvx44dSE5ORseOHWFhYYHIyEjMmjUL//vf/0o8PY+oJjCVSdCzmQt6NnNBZo4cf19Kxp9RiTh6/T7O3kzD2ZtpmLsjBoGNnTDQvw56NnWpkXNL7I25izd+KgikXmzhhmWvtmIgRUQGQZ/9KzJckf+kYOqvUUjLksPaTIbPh7RAPz93fTeLqFxa162FDY+DqVOPg6nQ4LawMmMwRVTTaPVd3aVLF8TGxpZ7fVU4pA3h4eG4du0arl27Bg+PoufHqyYDNTExwYoVKzB16lQolUo0aNAA8+bNw5tvvqmVNhBVdzbmJhga4ImhAZ64m5GDHRcSsS3qDi7dycC+f1Kw758UWJlK0cvXFYP866CTt2ONmCCdgRQRGTJ99q/I8MgVSizZE4vVh24AAFrUscO3I/xRz8FKzy0jqpgng6mxYQymiGoirb6jDxw4oM3dVUhwcDCCg4NLXad3797o3bt31TSIqJpzsTXHhM4NMKFzA1xLycS28wUB1e20bGw9dwdbz92pEROkR8TcxWQGUkRkwPTZvyLDcjstC2//fB7nE9IBAMGdvDCzrw/MZDVvBDQZB9WpfKNVwdTjOaYYTBHVHPzLjIjQ0NkGH/RqgsPTu+H3SR3xWoe6sLc0UU+Q3v/bI+ix9CC+2fcvElKz9N3ccnsykFrOQIqIiGqovVdS0Hf5YZxPSIetuQyrXmuDkAHNGUiRwfN/HEzZmMlwKr4gmHqUm6/vZhGRljBiJiK1whOkz+7XHIeu3sMfBjpBevjlZLy56VxBIOXnhuXDWkHGQIqIyOBl5ykQsv0ybt+S4PTOK5BJpZBJBEglAiQSAVJB869MKkAiCJBK8PjfQrdC66m2lUmEQus9sY1Q9BiF96VeTxAgkQAyiQQSCZ6+78fH1oa8fCW2xklw8HgUAKClpz2+He4Pz9rGd4Vdqrn8C4+YiueIKaKahO9iIiqRqUyCHs1c0OPxBOl7Lt/FtvN3cMwAJkhnIEVEVHPlyBXYfOYOAAmO3r2l7+ZUSrHAS0DJwVmhnwuHWxKJgNSHubidVvA7bmLn+pjWywemMv7Oo5rHv24t/DChPUatPYlT8f8hOPQUwsa2YzBFZOD4DiaiMtmYm+DlNh54uY1HtZ8gvXAg1c/PDcsYSBER1SjmJlK8+4I3Yq/+iwbeDQFBgEIUoVCIUIgilMqCfxVKFPr58U31uFKEUhSRX+hnhVKEUomi6xd6TLVtvvKJY6i3fby/Qm14fK2dp1Ido7IsZSK+erU1evny6npUs7XytC8IptadxOn4NAZTRDUA371EVCHlnSC9v587BvlX7QTp4ZeTMfmnc8hXMpAiIqqpLEyleKubN3Znx6Jvj4YwMTHRd5OeSnwcWOU/JfhSBWPKJ0MzUUS+otA2jwOwkrbJz89H6tUzeKGJk76fLlGVaOVpjx/GFw2mQse2gzWDKSKDxHcuET0z1QTp7wc1xtmbadgWdQc7o5NwLzMX64/GYf3RODRwssKgVnUwsFUd1HXQ3fwWey4n483HgVT/lu746pWWDKSIiEivhMfzWulyrnG5XI7dcbrbP1F11MrTHj+Ob4/XHgdTYxlMERks/sVGRJWmmiB9/kstcOqjHlg7OgD9/NxgJpPgxuMJ0rssjsTgFUfxw/F4/PcoT6vHZyBFREREZFxaPg6mbMxlBSOm1p/CQ16Vj8jg8K82ItIq1QTp345ojTMf98CSoS3xfENHSATgXEI6PvnzMtot2IvxYaex/UIisvMUlTpe4UBqAAMpIiIiIqNROJg6c5PBFJEh4vhGItKZwhOkp2TkYLuWJ0j/+1Iy3tqkCaSWMpAiIiIiMiotPe3x04T2GLn2pDqYChvHU/mIDAX/eiOiKuH8eIL0nW93xt6pXfBWt4bwqGWBR3kKbD13B6PWnUKHhfswb0cMLt5+ALGMSxYVDqQGtmIgRURERGSs/DwKginbxyOmxnDEFJHB4F9wRFTlVBOkH57eDb9P6ojXOtSFvaWJeoL0/t8eQfelB/HNvn+RkJpVbPs9l+8WCaS+HMpAiohIF1asWIH69evD3Nwcbdq0weHDh/XdJCKiEvl52OPHx8HU2cfBVGYOgymi6o5/xRGR3jzLBOkXUgVM+TWagRQRkY5t3rwZU6ZMwaxZs3D+/Hl07twZffr0QUJCgr6bRkRUooIRUx3UwdSEH86BuRRR9cYTbYmoWlBNkN6jmQsyc+TYc/kutp2/g2PX7+NcQjrOJaRj7g4BSqUESjCQIiLStaVLl2L8+PGYMGECAGDZsmXYs2cPVq5ciYULFxZbPzc3F7m5uer7GRkZAAC5XA65XK7Vtqn2p+39GiLWQoO1KGDsdfBxscSG4ACMCTuDcwnpuJ0ixd8PzkIQjLvPKIpK3LsnwbZU1oK10BBFJWxyBPTUwedFeT+DGEoRUbVT2gTpgID+fq5Y+kqrCk2KTkRE5ZeXl4ezZ8/iww8/LLI8KCgIx44dK3GbhQsXYu7cucWWh4eHw9LSUiftjIiI0Ml+DRFrocFaFDD2OvyvEfBdjBQpOQJSrqbquznVhARIYy0KsBYq/g6CTj4vsrKKT8NSEoZSRFStqSZIn9C5Aa7cScPW8MN4f0gLBlJERDp0//59KBQKuLi4FFnu4uKC5OTkEreZOXMmpk6dqr6fkZEBT09PBAUFwdbWVqvtk8vliIiIQM+ePWFiYqLVfRsa1kKDtSjAOmj0Tc3E9zuOoGnTZpBKpfpujl4pFArExMSgWTPWgrXQUCgUSL4Ro5PPC9WI6bIwlCIig9HQ2Rq+tUUGUkREVUQQin7eiqJYbJmKmZkZzMzMii03MTHR2R/Guty3oWEtNFiLAqwD4Olggw7OIvq2r2f0tZDL5didepm1AGtRmKoWuvi8KO/+GEo9A9Wl6sub/FWEXC5HVlYWMjIy+AZhLdRYiwKsgwZrocFaaLAWGrqsher3v6o/UBM5OjpCKpUWGxWVkpJSbPTU07C/VDVYCw3WogDroMFaaLAWGqyFRnXoLzGUegaZmZkAAE9PTz23hIiIiPQlMzMTdnZ2+m6GTpiamqJNmzaIiIjAoEGD1MsjIiIwcODAcu2D/SUiIiIqq7/EUOoZuLu749atW7CxsXnqEPZnpZp/4datW1qff8HQsBYarEUB1kGDtdBgLTRYCw1d1kIURWRmZsLd3V2r+61upk6dilGjRiEgIAAdO3bEmjVrkJCQgEmTJpVre/aXqgZrocFaFGAdNFgLDdZCg7XQqA79JYZSz0AikcDDw0Onx7C1tTX6N4gKa6HBWhRgHTRYCw3WQoO10NBVLWrqCKnChg0bhtTUVMybNw9JSUnw9fXF7t27Ua9evXJtz/5S1WItNFiLAqyDBmuhwVposBYa+uwvMZQiIiIiohJNnjwZkydP1ncziIiIqIaS6LsBRERERERERERkfBhKVTNmZmaYM2dOiZdUNjashQZrUYB10GAtNFgLDdZCg7Wo2fj/q8FaaLAWBVgHDdZCg7XQYC00qkMtBLEmX8+YiIiIiIiIiIiqJY6UIiIiIiIiIiKiKsdQioiIiIiIiIiIqhxDKSIiIiIiIiIiqnIMpYiIiIiIiIiIqMoxlCIiIiIiIiIioirHUIqIiIiIiIiIiKocQykiIiIiIiIiIqpyDKWIiIiIiIiIiKjKMZQiIiIiIiIiIqIqx1CKiIiIiIiIiIiqHEMpIiIiIiIiIiKqcgyliIiIiIiIiIioyjGUIiIiIiIiIiKiKsdQioiIiIiIiIiIqhxDKSKqdkJCQiAIAu7fv1/lxz5w4AAEQcCBAwfKXDc4OBheXl46bxMRERFRdebl5YXg4GD1fVV/6vfff9dfo4jIIDCUIiIiIiIiIiKiKsdQioi0JisrS99NMGjZ2dn6bgIREREZAfbZiKi6YChFRM9EdYrduXPn8PLLL6NWrVrw9vYuczulUon58+ejSZMmsLCwgL29Pfz8/LB8+fJi6969exfDhw+HnZ0dXFxcMG7cODx48KDIOjk5OZg5cybq168PU1NT1KlTB2+++SbS09OLrCcIAkJCQood48nh5k8TFhaGJk2awMzMDE2bNsXGjRtLXC8vLw/z58+Hj48PzMzM4OTkhLFjx+LevXvFjtuvXz9s3boV/v7+MDc3x9y5c8tsxw8//ABBEHD8+PFij82bNw8mJiZITEwEAERERGDgwIHw8PCAubk5GjZsiNdff73IaZGXL1+GIAj47bff1MvOnj0LQRDQvHnzIvsfMGAA2rRpU2YbiYiIqPp41j4bAGRkZOCDDz4o0s+aMmUKHj16VK7tc3JyMHXqVLi6usLCwgKBgYE4f/58sfW2b9+Ojh07wtLSEjY2NujZs2eRvg77K0Q1F0MpIqqUwYMHo2HDhvjtt9+watWqMtdftGgRQkJCMHz4cOzatQubN2/G+PHji4VIADBkyBA0btwYW7ZswYcffohNmzbhvffeUz8uiiJeeuklLFmyBKNGjcKuXbswdepUbNiwAS+88AJyc3O18hzDwsIwduxYNG3aFFu2bMHHH3+MTz/9FPv37y+ynlKpxMCBA/H5559jxIgR2LVrFz7//HNERESga9euxUZCnTt3DtOmTcM777yDv//+G0OGDCmzLcOGDYOrqyu+++67Isvz8/OxevVqDBo0CO7u7gCA69evo2PHjli5ciXCw8Mxe/ZsnDx5Es8//zzkcjkAoHnz5nBzc8PevXvV+9q7dy8sLCwQExOjDrjy8/Nx8OBB9OjRo+IFJCIiIr2raJ8tKysLgYGB2LBhA9555x389ddfmDFjBsLCwjBgwACIoljmPj766CPcuHEDa9euxdq1a5GYmIiuXbvixo0b6nU2bdqEgQMHwtbWFj///DPWrVuHtLQ0dO3aFUeOHAHA/gpRjSYSET2DOXPmiADE2bNnV2i7fv36ia1atSrXvhctWlRk+eTJk0Vzc3NRqVSKoiiKf//9d4nrbd68WQQgrlmzRr0MgDhnzpxix6pXr544ZswY9f3IyEgRgBgZGSmKoigqFArR3d1dbN26tfq4oiiK8fHxoomJiVivXj31sp9//lkEIG7ZsqXIMU6fPi0CEFesWFHkuFKpVIyNjS21FiWZM2eOaGpqKt69e7fYcz548GCJ2yiVSlEul4s3b94UAYh//vmn+rHXXntNbNCggfp+jx49xIkTJ4q1atUSN2zYIIqiKB49elQEIIaHh1e4vURERKQ/z9pnW7hwoSiRSMTTp08XWf7777+LAMTdu3erlz2tP/W0/tOECRNEUdT0s1q0aCEqFAr1epmZmaKzs7PYqVMn9TL2V4hqJo6UIqJKKc/onsLatWuHCxcuYPLkydizZw8yMjKeuu6AAQOK3Pfz80NOTg5SUlIAQD1S6cnT74YOHQorKyvs27evQm0rSWxsLBITEzFixAgIgqBeXq9ePXTq1KnIujt37oS9vT369++P/Px89a1Vq1ZwdXUtdkU/Pz8/NG7cuMJteuONNwAA33//vXrZt99+ixYtWqBLly7qZSkpKZg0aRI8PT0hk8lgYmKCevXqAQCuXLmiXq979+64ceMG4uLikJOTgyNHjqB3797o1q0bIiIiABR8G2lmZobnn3++wu0lIiIi/aton23nzp3w9fVFq1ativRrevXqVe4rFT+t/xQZGQlA088aNWoUJBLNn6bW1tYYMmQITpw4oZ7/iv0VopqJoRQRVYqbm1uF1p85cyaWLFmCEydOoE+fPnBwcED37t1x5syZYus6ODgUuW9mZgZAMyF4amoqZDIZnJyciqwnCAJcXV2RmppaobaVRLUPV1fXYo89uezu3btIT0+HqakpTExMitySk5OLzOUEVLx2Ki4uLhg2bBhWr14NhUKB6OhoHD58GG+99ZZ6HaVSiaCgIGzduhXTp0/Hvn37cOrUKZw4cQJA0UnVVUPc9+7diyNHjkAul+OFF15Ajx491MHe3r178dxzz8HCwuKZ2kxERET6VdF+x927dxEdHV2sT2NjYwNRFIv1a0rytP6Tqn+l+rektrm7u0OpVCItLQ0A+ytENZVM3w0gIsNW+Nuv8pDJZJg6dSqmTp2K9PR07N27Fx999BF69eqFW7duwdLSstz7cnBwQH5+Pu7du1ckmBJFEcnJyWjbtq16mZmZWYlzTJUVXKmCseTk5GKPPbnM0dERDg4O+Pvvv0vcl42NTZH7Fa1dYe+++y5++OEH/Pnnn/j7779hb2+PkSNHqh+/dOkSLly4gLCwMIwZM0a9/Nq1a8X25eHhgcaNG2Pv3r3w8vJCQEAA7O3t0b17d0yePBknT57EiRMnyjUROxEREVVPFe13ODo6wsLCAuvXr3/q42V5Wv9J1b9S/ZuUlFRsvcTEREgkEtSqVQsA+ytENRVHShGR3tjb2+Pll1/Gm2++if/++w/x8fEV2r579+4AgB9//LHI8i1btuDRo0fqx4GCq91FR0cXWW///v14+PBhqcdo0qQJ3Nzc8PPPPxeZ0PPmzZs4duxYkXX79euH1NRUKBQKBAQEFLs1adKkQs+vNG3atEGnTp3wxRdf4KeffkJwcDCsrKzUj6s6nqrRZSqrV68ucX89evTA/v37ERERgZ49ewIAGjdujLp162L27NmQy+WcNJSIiMiI9OvXD9evX4eDg0OJ/RovL68y9/G0/lPXrl0BFPSz6tSpg02bNhVZ79GjR9iyZYv6inwq7K8Q1TwcKUVEVap///7w9fVFQEAAnJyccPPmTSxbtgz16tVDo0aNKrSvnj17olevXpgxYwYyMjLw3HPPITo6GnPmzIG/vz9GjRqlXnfUqFH45JNPMHv2bAQGBiImJgbffvst7OzsSj2GRCLBp59+igkTJmDQoEGYOHEi0tPTERISUmxI+quvvoqffvoJffv2xbvvvot27drBxMQEt2/fRmRkJAYOHIhBgwZV6DmW5t1338WwYcMgCAImT55c5DEfHx94e3vjww8/hCiKqF27Nnbs2KGec+FJ3bt3x4oVK3D//n0sW7asyPLQ0FDUqlWLl1cmIiIyIlOmTMGWLVvQpUsXvPfee/Dz84NSqURCQgLCw8Px/vvvo3379qXuIyUlRd1/evDgAebMmQNzc3PMnDkTQEE/a9GiRRg5ciT69euH119/Hbm5uVi8eDHS09Px+eefF9kf+ytENQ9DKSKqUt26dcOWLVuwdu1aZGRkwNXVFT179sQnn3wCExOTCu1LEARs27YNISEhCA0NxYIFC+Do6IhRo0bhs88+KzJKaNq0acjIyEBYWBiWLFmCdu3a4ddff8XAgQPLPM748eMBAF988QUGDx4MLy8vfPTRRzh48GCRST6lUim2b9+O5cuX44cffsDChQshk8ng4eGBwMBAtGjRokLPrywvvfQSzMzM0K1bt2KBnomJCXbs2IF3330Xr7/+OmQyGXr06IG9e/eibt26xfb1wgsvQCKRwMLCAh07dlQv79GjB0JDQ9GtW7ciE5ASERFRzWZlZYXDhw/j888/x5o1axAXFwcLCwvUrVsXPXr0KNdIqc8++wynT5/G2LFjkZGRgXbt2uGXX36Bt7e3ep0RI0bAysoKCxcuxLBhwyCVStGhQwdERkYWu6gM+ytENY8gFh4nSUREBmPHjh0YMGAAdu3ahb59++q7OURERERERBXCUIqIyMDExMTg5s2bePfdd2FlZYVz585VatJ0IiIiIiIifWAoRURaIYoiFApFqetIpVKGJ6VQKpVQKpWlriOTydC1a1ccPXoUrVu3xoYNG+Dj41NFLSQiIiJDxz4bEVUnPOGWiLTi4MGDMDExKfW2YcMGfTezWhs3blyZNQSAAwcOQC6X4+TJkwykiIiIqELYZyOi6oQjpYhIKzIzMxEbG1vqOvXr14eDg0MVtcjwxMfH4/79+6WuExAQUEWtISIiopqIfTYiqk4YShERERERERERUZWT6bsBhkipVCIxMRE2NjY815qIiMjIiKKIzMxMuLu789LjpWB/iYiIyHiVt79UI0KpFStWYPHixUhKSkLz5s2xbNkydO7c+anrHzx4EFOnTsXly5fh7u6O6dOnY9KkSeU+XmJiIjw9PbXRdCIiIjJQt27dgoeHh76bUW2xv0RERERl9ZcMPpTavHkzpkyZghUrVuC5557D6tWr0adPH8TExKBu3brF1o+Li0Pfvn0xceJE/Pjjjzh69CgmT54MJycnDBkypFzHtLGxAVBQXFtbW60+H7lcjvDwcAQFBaknNTZWrIUGa1GAddBgLTRYCw3WQkOXtcjIyICnp6e6P0AlY3+parAWGqxFAdZBg7XQYC00WAuN6tBfMvhQaunSpRg/fjwmTJgAAFi2bBn27NmDlStXYuHChcXWX7VqFerWrYtly5YBAJo2bYozZ85gyZIlTw2lcnNzkZubq76fmZkJALCwsICFhYVWn49MJoOlpSUsLCyM/g3CWmiwFgVYhwKiKOKH04nYesMGWzZfgWDkpw+JSiXS0lgLgLUoTFQqUUewwkAdfF7I5XIA4ClpZVDVx9bWViehlKWlJWxtbY369wHAWhTGWgDXUjLxx7kUHL5ljZY5EjRz0O57z9DwNaHBWmiwFhpVUYuy+ksGHUrl5eXh7Nmz+PDDD4ssDwoKwrFjx0rc5vjx4wgKCiqyrFevXli3bh3kcnmJ/xELFy7E3Llziy0PDw+HpaVlJZ7B00VEROhkv4aItdBgLQoYcx1EEdh2U4IDSRIAApD5QN9NqiZYCw3WQsXUWdDJ50VWVpbW90lE9Kxup2Vhx4UkbL+QiCtJGY+XSvDa+tP45X8d0diFozqJqPoy6FDq/v37UCgUcHFxKbLcxcUFycnJJW6TnJxc4vr5+fm4f/8+3Nzcim0zc+ZMTJ06VX1fNQwtKChIJ9/8RUREoGfPnkxtWQs11qKAsddBFEV89lcsDiQlAAD6eCjQs4MfZFKpnlumX/kKBaKjo+Hnx1qwFhr5CgUSYy/o5PMiIyOj7JWIiHToXmYudl8sCKLO3kxTL5dJBDzf0AH/3r6HO4/kGL7mBDZN7IAmrgymiKh6MuhQSuXJ4WCiKJY6RKyk9UtarmJmZgYzM7Niy01MTHT2h7Eu921oWAsN1qKAMdZBFEV8uvMKwo4XBFLzBjSF3b2L6NuyjtHV4klyuRzSOxdYC7AWhcnlcuy+c0EnnxfGXlsi0o+MHDn+vpSMHRcScfTafSgL/oSBIADt69fGgJZ10MfXFdamAn77czd+vFMLMUmZGPE9gykiqr4MOpRydHSEVCotNioqJSWl2GgoFVdX1xLXl8lkcHBw0FlbiYielSiKmLczBqFH4wEAnw1qgaGt3bB790X9NkyHFAqFet6essjlcshkMuTk5EChUOi4ZdUba6FRmVqYmJhAauQjzYioesiRK7DvSgr+jLqDA7H3kKdQqh9r6WGH/i3d0c/PHa525urlcrkcVibAhuAAjN14FpfuZDCYqqHYX3o2rIVGdegvGXQoZWpqijZt2iAiIgKDBg1SL4+IiMDAgQNL3KZjx47YsWNHkWXh4eEICAjgN59EVO2UFEiNaF+33B0QQyOKIpKTk5Genl6hbVxdXXHr1i2jn3iatdCobC3s7e3h6upq9HUkoqonVyhx5N/72H4hEeGXk/EoT/OHYkNnawxs6Y7+Ld3h5WhV6n7sLU3w4/j2eG3dSVy6k4Hh35/AzwymagT2lyqHtdCoDv0lgw6lAGDq1KkYNWoUAgIC0LFjR6xZswYJCQmYNGkSgIL5oO7cuYONGzcCACZNmoRvv/0WU6dOxcSJE3H8+HGsW7cOP//8sz6fBhFRMU8LpGoyVQfL2dkZlpaW5foFp1Qq8fDhQ1hbW0Ni5FecYy00nrUWoigiKysLKSkpAFDiXJNERNqmVIo4Ff8ftl9IxF8Xk5CWpfnyqY69Bfq3dMeAlu5o6mZToT/+7C1NiwVTmya2h4+rcV+Vz9Cxv1Q5rIVGdegvGXwoNWzYMKSmpmLevHlISkqCr68vdu/ejXr16gEAkpKSkJCQoF6/fv362L17N9577z189913cHd3x9dff40hQ4bo6ykYPFEUka8UoVCKkCuUUCiffj9fISJfqSxyX6EUIVcqoVAUWk+pRH6+Ao/y9P3siPRDFEXM3RGDsGPxAICFg1tgeLuaHUgpFAp1B6sip1MrlUrk5eXB3NycHQvWQq0ytbCwsABQcHq/s7MzT+UjIp0QRREX7zzA9qhE7IxOQnJGjvoxR2tTvNjCDQNauaN13VqVGoVgb2mKn8Z3wMh1Jx6fyneSwZQBY3+p8lgLjerQXzL4UAoAJk+ejMmTJ5f4WFhYWLFlgYGBOHfunI5bVXHZeQqcupGKK2kCzGPvAYJEHejkKwoFOUoRisf3Sw97lJArxUJhT/H7+YWCoXylstDxSrqv2abwMVWTLOqCuVQKmedtDG/vZfRDK8l4GGMgBUB9SqKlpaWeW0KkeR3K5XKGUkSkVddSMrE9KhE7opMQd/+RermNuQy9m7tiQCt3dGzgAJlUe38s21ma4KfxHfDaupO4eOcBRnx/Ej9NaI+mbgymDA37S1SdaKO/VCNCqZoiJTMHY8LOApAC/5zXd3MqTSYRIJUIkEkEyKSSp96XSgSYSCXqx1T372Zk49+UR/hoWwz+jrmHzwe3gLu9hb6fFpFOPRlIfT64BV41gkCqMAbQVB3wdUhE2nQ7LQs7LiRh+4VEXEnKUC83N5Gge1MXDGjpjq5NnGAm010IbldojqmLdx5g5FoGU4aMv6eoOtDG65ChVDVibiJFY2drPHqYidq17GAilUAmeRzWSFWBzeMwRyrA5Gn3pYXCn2L3BUgLBUIm0kL7KOF+WYGS6v6TgZJEqPwLNCc3DzPW/42/75jg0NV76PXVIXzcryleCfDkhzDVSAykiIiIao77D3Ox+2IStkcl4szNNPVymURAl8ZOGNDSHT2aucDarOr+JFMFU6PWn0T07Qfqq/IxmCIifWEoVY242Jpj19udsHv3bvTt28HorwYolQh4wV3E5IEdMXPbZZxLSMeMLRex62IyR01RjSOKIkK2X8aG4zcBAF8MaYFhbRlIkf6FhIRg5cqVSElJwR9//IGXXnpJ300iIqq2MnLk2HMpGdsvJOLY9VQoHs9zIQhA+/q1MaBlHfTxdUUtK1O9tdHO0gQ/jGMwRaRN7C89O+Oe1YsMQgMnK/w2qRNm9W0KM5lEPWpq8+kEiKIOJ7QiqiKFAylBYCBlaARBKPUWHBwMAIiMjES3bt1Qu3ZtWFpaolGjRhgzZgzy8/MBAAcOHIAgCOrLO6vuC4IAiUQCOzs7+Pv7Y/r06UhKSiq1TfHx8UXaYGdnhw4dOmDHjh0Vem5XrlzB3LlzsXr1aiQlJaFPnz4Vrg8RUU2XI1dgV3QSXv/hDALm78W036Nx+N/7UChF+HnY4eMXm+L4h93xy/86YkT7unoNpFTsLE3ww/j28POwQ1qWHCO+P4GYxIyyNyR6Ruwv0dMwlCKDIJUImNilAXa/2xmt69ojMzcfM7ZcRHDoaSSmZ+u7eUTPTBRFzCkcSA32YyBlYJKSktS3ZcuWwdbWtsiy5cuX4/Lly+jTpw/atm2LQ4cO4eLFi/jmm29gYmICpVJZ6v5jY2ORmJiI06dPY8aMGdi7dy98fX1x8eLFMtu2d+9eJCUl4eTJk2jXrh2GDBmCS5culfu5Xb9+HQAwcOBAuLq6wszMrNzbFqaalJWIqKaQK5SI/CcF722OQptPI/DmpnPYc/ku8vKVaOhsjak9GyPyg67Y/tbzmNC5AVztzPXd5GLsLIoGUyPXMpgi3WF/qWzG2l9iKEUGxdvJusioqYMcNUUGTBVIbSwUSL3S1lPfzaIKcnV1Vd/s7OwgCEKxZREREXBzc8OiRYvg6+sLb29v9O7dG2vXroWpaenfmDs7O8PV1RWNGzfGq6++iqNHj8LJyQlvvPFGmW1zcHCAq6srfHx8sGDBAsjlckRGRqofv3PnDoYNG4ZatWrBwcEBAwcORHx8PICCYej9+/cHAEgkkiJz+YWGhqJp06YwNzeHj48PVqxYoX5M9a3jr7/+iq5du8Lc3Bw//vhjubfbunUrunXrBktLS7Rs2RLHjx8v8pyOHj2KwMBAWFpaolatWujVqxfS0grmahFFEYsWLUKDBg1gZWWF559/Hr///rt627S0NIwcORJOTk6wsLBAo0aNEBoaWmYdiYgAQKkUceJGKj764yLaLdiLsWGn8cf5O3iUp0AdewtMCvTG7nc6I+K9LnineyPUd7TSd5PLpAqmWjKYIh1jf4n9pafhnFJkcFSjpl5o6oxpv11QzzW1+2IyFnKuKTIQDKTKRxRFZMsVpa6jVCqRnaeALC8fEon2vmuxMJFq7aIKrq6uSEpKwqFDh9ClS5fKtcvCApMmTcJ7772HlJQUODs7l7mNXC7H999/DwDq+QqzsrLQrVs3dO7cGYcOHYJMJsP8+fPRu3dvREdH44MPPoCXlxfGjh1bZPj7999/jzlz5uDbb7+Fv78/zp8/j4kTJ8LKygpjxoxRrzdjxgx8+eWXCA0NhZmZWbm3mzVrFpYsWYJGjRph1qxZGD58OK5duwaZTIaoqCh0794d48aNw9dffw2ZTIbIyEgoFAWvkY8//hhbt27FypUr4e3tjfDwcIwePRouLi4IDAzEJ598gpiYGPz1119wdHTEtWvXkJ3N0bZE9HSiKOLSnQxsv3AHO6OTkPQgR/2Yo7UpXmzhhgGt3NG6bi2DvRCPnYUJNo5vj9HrTuLC7QcYufYEfprQAc3cOceUoWB/qYR2sb9kMP0lhlJksFSjptYficOS8Fj1qCleoY+qO1EUMfvPy/jhhGoOKT+8EsBAqiTZcgWazd6jl2PHzOsFS1Pt/JocOnQo9uzZg8DAQLi6uqJDhw7o3r07Ro8eDVvbinf6fXx8ABR8W1ZaJ6tTp06QSCTIzs6GUqmEl5cXXnnlFQDAL7/8AolEgrVr16o/L0NDQ2Fvb48DBw4gKCgI9vb2AAo6iSqffvopvvzySwwePBgAUL9+fcTExGD16tVFOktTpkxRr1OR7T744AO8+OKLAIC5c+eiefPmuHbtGnx8fLBo0SIEBAQU+cawefPmAIBHjx5h6dKl2L9/Pzp27AilUokRI0bg7NmzWL16NQIDA5GQkAB/f38EBAQAALy8vCpQdSIyJtdSHmL7hUTsuJCIuPuP1MttzGXo3dwVA1q5o2MDB8ikNePEE3Uwtf4ULtxKx4i1J7CJwZTBYH+pZOwvGUZ/iaEUGTSOmiJDw0DKOEmlUoSGhmL+/PnYv38/Tpw4gQULFuCLL77AqVOn4ObmVqH9qU5XLit837x5M3x8fHD16lVMmTIFq1atQu3atQEAZ8+exbVr12BjY1Nkm5ycHPXcCE+6d+8ebt26hfHjx2PixInq5fn5+bCzsyuyrqojU9Ht/Pz81D+r6pKSkgIfHx9ERUVh6NChJbYtJiYGOTk56NmzZ5HleXl58Pf3BwC88cYbGDJkCM6dO4egoCC89NJL6NSpU4n7IyLjcyc9GzsuJGJ7VCJikjSnsJnJJOjR1AUDWrkjsLETzE2kemyl7thZmGDjuHZFgqmfJrRHc3e7sjcm0gL2l4yzv8RQimoEjpoiQyCKIj758xJ+PJEAQQAWDfHDUAZSpbIwkSJmXq9S11EqlcjMyISNrY3Wh6NrW506dTBq1CiMGjUK8+fPR+PGjbFq1SrMnTu3Qvu5cuUKgLK/ufL09ESjRo3QqFEjWFtbY8iQIYiJiYGzszOUSiXatGmDn376qdh2Tk5OJe5PNcno999/j/bt2xd5TCotWi8rK6tn2k41XB7QdCJV21tYPP2LBtU6u3btQp06daBUKvHw4UNYW1urt+vTpw9u3ryJXbt2Ye/evejevTvefPNNLFmy5Kn7JaKa7f7DXOy+mITtUYk4czNNvVwmEdC5kSMGtHJHz2ausDYzjj+bngymRq49yWDKALC/VDL2l57eturUXzKOT1cyCqWNmvp8SAu42XHUFOmPUili9nYGUhUlCEKZQ8KVSiXyTaWwNJVptZOla7Vq1YKbmxsePXpU9sqFZGdnY82aNejSpctTO0MlCQwMhK+vLxYsWIDly5ejdevW2Lx5M5ydncs9JN7FxQV16tTBjRs3MHLkyHIf+1m3e5Kfnx/27dtXYqe0WbNmMDMzQ0JCAgIDA6FUKpGRkQFbW9sirwsnJycEBwcjODgYnTt3xrRp0xhKERmZjBw59lxKxvYLiTh2PRUKpWo0BdDOqzYGtHJHH1831LYqfWLlmqpg8vN2GLVOE0z9OL49fOswmKqu2F8qjv0lw+kvMZSiGqekUVNBSw/hk37NMDTAg6OmqMoxkKLVq1cjKioKgwYNgre3N3JycrBx40ZcvnwZ33zzTanbpqSkICcnB5mZmTh79iwWLVqE+/fvY+vWrRVux/vvv4+hQ4di+vTpGDlyJBYvXoyBAwdi3rx58PDwQEJCArZu3Ypp06bBw8OjxH2EhITgnXfega2tLfr06YPc3FycOXMGaWlpmDp16lOP/azbFTZz5ky0aNECkydPxqRJk2BqaorIyEgMHToUjo6O+OCDD/Dee+9BqVSiU6dOSEpKQnR0NGxsbDBmzBjMnj0bbdq0QfPmzZGbm4udO3eiadOmFa5jTXDo0CEsXrwYZ8+eRVJSEv744w+89NJL6sdFUcTcuXOxZs0apKWloX379vjuu+/Uc1IQGZocuQL7/0nB9qhE7I9NQV6+5vLyfh52GNDSHf383OFqZ67HVlYftuZFg6nX1jGYIt1jf8k4+0sMpahGKmnU1PQt0dh1MYmjpqhKKZUFp+z9dLIgkFr8cku83KbkX15Uc7Vr1w5HjhzBpEmTkJiYCGtrazRv3hzbtm1DYGBgqds2adIEgiDA2toaDRo0QFBQEKZOnVpkMs3y6tevH7y8vLBgwQKsWLEChw4dwowZMzB48GBkZmaiTp066N69e6nfBE6YMAGWlpZYvHgxpk+fDisrK7Ro0QJTpkwp9djPul1hjRs3Rnh4OD766CO0a9cOFhYWaN++PYYPHw6gYHJQZ2dnLFy4EDdu3ICdnR1at26NWbNmAQBMTU0xc+ZMxMfHw8LCAp07d8Yvv/xS7uPXJI8ePULLli0xduxYDBkypNjjixYtwtKlSxEWFobGjRtj/vz56NmzJ2JjY4vNq0FUXckVShy5dh87ohIRHnMXD3Pz1Y81dLbGgJbu6N/SHfUdrUrZi/FSBVOj151CVKFT+RhMka6wv2Sc/SVBVM3+9QwKzxJfXqtWrSrX5Rirs4yMDNjZ2eHBgwfPdBWA0sjlcuzevRt9+/Ytcp6oMdJWLRRKEeuO3MCS8KvIy1fCxkxmcKOm+LooYGh10GUgZWi1KI+cnBzExcWhfv36MDcv/zfVTxt2bIxYC43K1qK016Mu+wEl0XV/SxCEIiOlRFGEu7s7pkyZghkzZgAAcnNz4eLigi+++AKvv/56ufbL/lLVYC005HI5du7aDefmHbD7Ugp2X0xCWpZc/Xgdewv0b+mOAS3d0dTNxmD6gRWl7ddERo5cHUzZWZgYVDBVE98f7C9VHmuhUR36S5UaKbVt2za88sorpU6kVdimTZvw8OFDgw+lyLBIJQL+18UbL/i4YNrvF3Ceo6aoCiiVIj7+8xI2cYQUEVVSVfe34uLikJycjKCgIPUyMzMzBAYG4tixY08NpXJzc5Gbm6u+n5FRcPUyuVwOuVxe4jbPSrU/be/XELEWBe5m5GDdkTj8cU6K9BNn1MtrW5mgr68r+rVwhb+nPSSSgiAqPz//absyeNp+TVhIgfWj/TFu4zlE3XqAkWtPYENwAJq76z6Ur6ya+P6Qy+UQRRFKpVI9aXV5qMaiqLY1ZqyFRmVroVQqIYoi5HJ5scnYy/u+q/Tpe19//XW5Oz2///57ZQ9H9MwaOlvj90md1KOmONcU6cqTgdSSl1tiCAMpIqqEquxvJScnAyiYcLUwFxcX3Lx586nbLVy4sMRJVcPDw2FpaVmpNj1NRESETvZriIy1FnkK4ECSgIg7EuQpBQACzKUi/GqLaOMoopFdPqRCHO5ejsPfl/Xd2qql7dfEq65AepoU8Q/zMWLNcUxupoCntVYPoTM16f0hk8ng6uqKhw8fIi8vr8LbZ2Zm6qBVhom10HjWWuTl5SE7OxuHDh0qFvZnZWWVax+VCqUiIyNRu3btcq//119/oU6dOpU5JFGlcNQU6ZpSKWLWtkv4+RQDKSLSDn31t578skYUxVK/wJk5c2aRSVgzMjLg6emJoKAgnZy+FxERgZ49e9aYU3KelbHWQhRF/HXpLpaFX8Wd9BwAQMs6tmhjlYa3X+4GawvjnbBcl6+JoKB8jNt4FlG3HuD7a+bVfsRUTXx/5OTk4NatW7C2tq7Q6XuiKCIzMxM2NjX31NXyYi00KluLnJwcWFhYoEuXLiWevlcelQqlypps7EnPP/98ZQ5HpDUcNUW68GQg9eXQlhjcmoEUEVVOVfe3VJPCJicnw83NTb08JSWl2OipwszMzGBmZlZsuYmJic7+GNTlvg2NMdXi4u0HmLfzMk7HpwEA3OzM8WEfH/Rp5oS//voL1hbmRlOL0ujiNVHbxAQ/jG+P0etP4XxCOsaEnTWIOaZq0vtDoVBAEARIJJIKzQGkOjVLta0xYy00KlsLiUQCQRBKfI+V9z2n9avvpaSkICUlpdj5iH5+fto+FFGlPG3U1O5LSVg4mKOmqGIKAqmL+PnULQZSlVSJ628QaU11fx3qsr9Vv359uLq6IiIiAv7+/gAKhucfPHgQX3zxRaX3T/SsUjJysHhPLH4/dxuiCJibSPB6F2+8HtgAlqayGjVvUHVmY26CjePaYcz6UziXkI4R35/ATxM6oIVH9Q6maprq/nuKjIM2XodaC6XOnj2LMWPG4MqVK+qGCYKgHuqtUCi0dSgirXpy1NSB2HsI+urxqKk2HDVFZXsykFr6SksM8mcgVVGqb1OysrLKPaEzka6o5kGobt+sa6u/9fDhQ1y7dk19Py4uDlFRUahduzbq1q2LKVOm4LPPPkOjRo3QqFEjfPbZZ7C0tMSIESN08ryISpMjV2DdkTisiLyGR3kFr/GBrdwxo7cP3O35+0IfbMxNsKFQMDVyLYOpqsL+ElUn2ugvaS2UGjt2LBo3box169bBxcWFf8iTQSlx1NTv0dh9kaOmqHRKpYiP/riIX07fgkQAvmQg9cykUins7e2RkpICALC0tCzX7xKlUom8vDzk5ORwCDZrofastRBFEVlZWUhJSYG9vX2xK8nom7b6W2fOnEG3bt3U91VzQY0ZMwZhYWGYPn06srOzMXnyZKSlpaF9+/YIDw+HjY2NVp4HUXkUzBuVjM92X8HttGwAQEtPe8zu1wxt6tXSc+tIFUwFh57G2ZtpGLn2BH6c0B5+Hvb6blqNxv5S5bEWGtWhv6S1UCouLg5bt25Fw4YNtbVLoiqnGjW19vANfBnBUVNUOgZS2qeay0bV0SoPURSRnZ0NCwsLo3+PshYala2Fvb29+vVYnWirv9W1a9dSh9wLgoCQkBCEhIRU6jhEz+rSnQeYtzMGp+L+AwC42ppjRp8mGNiyDiQS4/58q05szE0QNratOph6be1JBlNVgP2lymEtNKpDf0lroVT37t1x4cIFhlJk8KQSAa8HeqN7U46aoqd7MpBa+korvOTPq4tWliAIcHNzg7Ozc7nnBpHL5Th06BC6dOlS7U61qmqshUZlamFiYlLtRkipsL9FNV1KZg6W7InFb2cL5o0yk0nweqA3Jj2eN4qqn8Kn8jGYqhrsL1UOa6FRHfpLWvtkX7t2LcaMGYNLly7B19e32BMaMGCAtg5FVCU4aoqeRqkUMXPrRWw+w0BKV6RSabl/yUmlUuTn58PcnFdbYi00amot2N+imipHrkDo0Xh8F3kND3PzAQADWrpjRh8f1OG8UdWetZmsSDA1cu1J/MRgSufYX3o2rIVGdaiF1kKpY8eO4ciRI/jrr7+KPcaJzslQcdQUPenJQOqrYa0wsBUDKSKqGuxvUU0jiiL2XE7Ggt1XcOu/gnmj/DzsMKd/M7SpV1vPraOKUAVTwetP4czjYOrH8e3R0tNe300jompMa7N6vfPOOxg1ahSSkpKgVCqL3HTRQYqPj8f48eNRv359WFhYwNvbG3PmzEFeXl6p2wUHB0MQhCK3Dh06aL19VLOoRk3N7OMDU5lEPWrq1zO3eDlWI6JUivhwazQDKSLSm6rubxHp0uXEBxj+/QlM+vEcbv2XDWcbM3w5tCW2TX6OgZSBsjaTIWxcOwTUq4XMnHy8tu4kLtxK13eziKga09pIqdTUVLz33ntwcXHR1i5L9c8//0CpVGL16tVo2LAhLl26hIkTJ+LRo0dYsmRJqdv27t0boaGh6vumpqa6bi7VAIVHTX3w2wVE3SoYNfXXxSQsHOwHVztzfTeRdEgVSP165jYDKSLSm6rubxHpwr3MXCyNiMUvp29BFAFTmQT/69wAb3T1hpUZ540ydKpgamzoKZyOT8Nr607ih/Ht0YojpoioBFr71B88eDAiIyPh7e2trV2Wqnfv3ujdu7f6foMGDRAbG4uVK1eWGUqZmZlVaIb43Nxc5Obmqu9nZGQAKJgUrLwTy5WXan/a3q8hqq61qFfLDL9MaIv1x+KxbN91RMbeQ8+vDuKjPk0wxN9dJ3NNVddaVDV91UGpFPHRn5ex5VwiJAKw5OUW6Nu8/BNL6gJfExqshQZroaHLWuizvlXd3yLSptx8BcKOxuOb/Zp5o170c8PMPj7wqGWp59aRNlmbyRA6VhNMjWIwRURPobVQqnHjxpg5cyaOHDmCFi1aFJsk65133tHWoZ7qwYMHqF277KG+Bw4cgLOzM+zt7REYGIgFCxbA2dn5qesvXLgQc+fOLbY8PDwclpa6+QUaERGhk/0aoupaizoA3m8ObLouxc2H+Zj5x2X8EHkRwxooYW+mm2NW11pUtaqsg1IEfrkuwcl7EggQ8VpDJaS3z2P37fNV1obS8DWhwVposBYauqhFVlaW1vdZXtWhv0VUUaIoIjzmLj7bfQU3UwvePy3q2GF2/2Zo68XT9GqqYsHU2pP4YQKDKSIqSqtX37O2tsbBgwdx8ODBIo8JgqDzTtL169fxzTff4Msvvyx1vT59+mDo0KGoV68e4uLi8Mknn+CFF17A2bNnYWZWcpIwc+ZMTJ06VX0/IyMDnp6eCAoKgq2trVafh1wuR0REBHr27Gn0VwIwlFqMUYrqUVMx6cCSGFOtj5oylFroWlXXQTVC6uS9ghFSX77sh35+bjo/bnnwNaHBWmiwFhq6rIVqxLQ+6Lu/RVRRV5Iy8OnOGBy7ngoAcLIxw7ReTfByaw9IJLyScU1nbSZD2Nh2CGYwRURPobVQKi4uTiv7CQkJKXFUUmGnT59GQECA+n5iYiJ69+6NoUOHYsKECaVuO2zYMPXPvr6+CAgIQL169bBr1y4MHjy4xG3MzMxKDKxMTEx01unX5b4NTXWvhQmAyd0aI6i5Gz74LRpRt9Ix84/LCI9J0fpcU9W9FlWlKuqgUIqYuS1afcreslf9MaClu06P+Sz4mtBgLTRYCw1d1EKftdVWf4tI11If5uLLiKv45VQClI/njZrYuT7e6NoQ1pw3yqhYPQ6mxoaexqn4/zBq7UlsHN8O/nVr6btpRFQNVLvfCG+99RZeffXVUtfx8vJS/5yYmIhu3bqhY8eOWLNmTYWP5+bmhnr16uHff/+t8LZEhTV0tsGWNzph7eEb+DLiqnquqU/6NcPQNh46mWuKdEOhFDFjSzR+P1swqfnyV/3RvxoGUkRERNVNXr4SG47F4+t9/yJTNW9UCzd82McHnrU5b5SxsjKTIXRsW3UwNXrdKQZTRARAC6HUvHnzyrXe7Nmzy7Weo6MjHB0dy7XunTt30K1bN7Rp0wahoaGQSCTl2q6w1NRU3Lp1C25u1eOUHDJsmiv0OatHTfEKfYZFoRQx/fdobDl3G1KJgGXDWjGQIiK903Z/i0jbRFHE3ispWLArBvGP541q7m6L2f2aoX0DBz23jqoDdTAVdhqn4hhMEVGBSodSf/zxx1MfEwQBsbGxyMnJ0XonKTExEV27dkXdunWxZMkS3Lt3T/1Y4Svr+fj4YOHChRg0aBAePnyIkJAQDBkyBG5uboiPj8dHH30ER0dHDBo0SKvtI+PW0NkGv0/qiLVH4rC00Kip2f2a4WWOmqq2GEgRUXWlr/4WUXnEJmfi050xOHLtPgDA0doM03s1wZA2HpBy3igqxMpMhtDgosHUhvHt0JrBFJHRqnQodf58yVegioqKwocffohLly5h4sSJlT1MMeHh4bh27RquXbsGDw+PIo+Joqj+OTY2Fg8ePAAASKVSXLx4ERs3bkR6ejrc3NzQrVs3bN68GTY2NlpvIxk3mVSCSYHe6NHUGe//Fo0Lt9Ix7fdo7OaoqWrpyUBq+aut0M+PgRQRVQ/66m8Rlea/R3lYGhGLTScfzxsllWDc8/XxZjdv2JhzXjsq2ZPB1BgGU0RGreLnu5UhLi4Or732Gtq2bQs7OztcvnwZq1at0vZhEBwcDFEUS7wVJooigoODAQAWFhbYs2cPUlJSkJeXh5s3byIsLAyenp5abx+RSkNnG2yZ1BEf9vGBqUyiHjX125lbxV6vpB8KpYhpv19gIEVEBqOq+ltEJcnLV2LdkTh0XRyJH08UBFK9m7ti79RAfNjHh4EUlalg8vO2aFe/NjJz8zF63SmcS0jTd7OISA+0Fkrdv38fb7/9Nnx8fJCUlIRjx45h8+bNaNSokbYOQWSwVKOmdr/zPFp62iMzJx/Tfo/GuLDTSH6Qo+/mGTVVILX13B1IJQK+ftWfgRQRVVvsb5E+iaKI/f/cRe9lh/Dpzhhk5OSjqZstfp7YAatGtUFdB05kTuVnaVoQTLWvXxsPGUwRGa1Kh1KPHj3C3Llz4e3tjWPHjmHHjh3Yt28f2rZtq432EdUoHDVVvSiUIqb9VjSQetGPFz0gouqH/S3St6t3MzF6/SmMCzuDG/cfwcHKFAsHt8DOt59HR29OZE7PxtK0YPLzwsHU2ZsMpoiMSaXnlPL29kZmZibefvttDB8+HIIgIDo6uth6fn5+lT0UUY3AuaaqB3UgdZ6BFBFVf+xvkb6kPcrDV3uv4qeTCVAoRZhIBYx7rj7efKEhbHmaHmmBKpgaG3oaJ+P+w5j1p7BhXDu0qcc5poiMQaVDqZSUFADAokWLsHjx4iKjPQRBgCiKEAQBCoWisociqlFUo6a+PxyHr3iFvir1ZCD1zXB/9G3BQIqIqi/2t6iqyRVK/HD8JpbtvYqMnHwAQFAzF3zUtym8HK303DqqaVTB1Liw0zhxQxVMtUWberX13TQi0rFKh1JxcXHaaAeRUZJJJXija8GoqQ9+14ya+utSMj4b1IKjpnRAoRTxwW8X8AcDKSIyIOxvUVWK/CcFn+6KwY17jwAAPq42mN2vGTo1dNRzy6gmszSVYX1w4WDqNIMpIiNQqVAqOjoavr6+kEjKNzXV5cuX0aRJE8hklc7CiGqURi5FR03t/ycFPb86iDn9m2NI6zr6bl6NwUCKiAwR+1tUVa6lZOLTnVdw8Oo9AICDlSneD2qCYW09IZVwBDfpniqYGh92BsdvpGL0ulPYOL4dgymiGqxSE537+/sjNTW13Ot37NgRCQkJlTkkUY2lGjW1q9AV+j747QLGbziD5Axeoa+yFEoR7/8apQ6kvmUgRUQGgv0t0rX0rDyEbL+MXssO4+DVezCRCpjYuT4ip3XFiPZ1GUhRlbI0lWFdcAA6NnDAozzF48nP/9N3s4hIRyr1FZooivjkk09gaVm+y7/m5eVV5nBERqGkUVOn4/9DUxsJHpy+hQAvRzRxtWEHsQJUgdS2qETIHo+Q6sNAiogMBPtbpCtyhRKbTibgq71XkZ4lBwD0aOqCWS82RX3OG0V6VPhUPtWIqQ3j2iHAiyOmiGqaSoVSXbp0QWxsbLnX79ixIywsLCpzSCKjUNJcU6dyJDi1/QoAwNJUipYe9mhdzx7+nrXgX9ceDtZmem519aRQipj6axT+ZCBFRAaK/S3ShYNX7+HTnTG4lvIQANDExQaf9GuG5xtx3iiqHixMpUWCKdVV+RhMEdUslQqlDhw4oKVmEFFJVKOmDsbexeZ9Z/DQ3BHRtzPwMDcfx2+k4vgNzekc9Rws4e9pj9b1asHfsxZ83GxgIq3UGboGL1+hxPu/XVAHUt+O8EdvXwZSRGRY2N8ibbp+7yHm74xBZGzBvFG1LE0wNagJhrf1hMzI+w1U/aiCqfEbTuPY9YJgKmxcO7RlMEVUY3AGTKJqTiaVoEsjRzz8V4m+fQMgkcpwLeUhziWk4XxCGs4lpONaykPcTM3CzdQsbItKBACYm0jgV8ce/o9HU7WuZw9nG+O5mh8DKSIiIo0HWXIs3/cvNh6PR75ShEwiYEwnL7zTvRHsLEz03Tyip7IwlWLdGE0wFcxgiqhGYShFZGCkEgFNXG3QxNUGw9vVBQA8yJYj6la6OqSKSkhDRk4+TsX/h1Pxmokh69hbPB5JVTCiqpmbLUxlNe9b0XyFElN/vYDtF1SBVGv09nXVd7OIiIiqXL5CiZ9PJWBpxFWkPZ43qruPM2a92BQNnKz13Dqi8lEFUxM2nsbRa5pT+RhMERk+hlJENYCdhQkCGzshsLETAECpFHHj/kOcS0jH+YSCsCr2bibupGfjTno2dlwoGE1lKpOgRR07zWl/de3hZmfY85AwkCIiIipw+N+CeaOu3i2YN6qxizU+frEZujzuLxAZEgtTKdaOZjBFVNMwlCKqgSQSAQ2dbdDQ2QavBHgCADJz5Ii+/UA9mup8QhrSsuQ4ezMNZ2+mAUfiAABudubwr2uP1nULQqrm7nYwN5Hq8+mUW75Cifd+vYAdDKSIiMiI3bj3EJ/tvoK9V1IAPJ43qmdjDG9Xl/NGkUFTBVMTN57BkWv3C+aYGtsO7eozmCIyVAyliIyEjbkJnmvoiOcaFlxVRxRFxKdmPQ6p0nA+IR3/JGci6UEOki4mY/fFZACAiVRAM3c7tK5rD/+6Baf+edSygCAI+nw6xTwZSH03sjV6NWcgRURExuNBthzf7PsXG47HQ64omDdqVMd6mNK9MewsOW8U1QwWplJ8PzpAHUwFhzKYIjJkDKWIjJQgCKjvaIX6jlYY3NoDAJCVl4/o2w/UIdX5hDTcf5iHC7fSceFWOkKPxgMAnGzMCl3pzx5+HvawMNXfaCoGUkREZMwUIrDp1C0s338d/z3KAwB0a+KEWS82Q0NnzhtFNY+FqRRrxwRgwgZNMBUa3BbtGzjou2lEVEEMpYhIzdJUhg4NHNDh8S90URRxOy27SEh1OTED9zJzER5zF+ExdwEUTL7e1M1Gfcpf67q1ULe2ZZWMpspXKDFlcxR2RidBJhGwYmRrBDGQIiKqsTJy5AhaehC5OVIsvnIIUqkEEkGARMDjfwVIJIXuP/5Z+vgxQSj4vVVsvUL7kEqKricU2r7wNqr1imxTeF+S4j9LhaLbFFtPfRzNz6r1hMfbF34s7WEOFkdLkZR1BQDQ0NkaH7/YFF2bOOv5f4pIt8xNigZTY8NOM5giMkAMpYjoqQRBgGdtS3jWtsTAVnUAADlyBS7d0YymOpeQhrsZubh0JwOX7mRg4/GbAAAHK1P4q075q2uPlh72sDLT7kdO4UDKRCrguxEMpIiIajqFQkRyRi4AAWl5OfpuTjUhwM5Chvd6NMbIDvVgwnmjyEiogqmJG8/g8L8MpogMEUMpIqoQcxMpArxqI+DxlU5EUUTSg5wiIdXlOxlIfZSHvVdS1JOsSgSgiattkUnUGzhaPfNoqnyFEu9ujsIuBlJEREbFxlyGbW90wOEjR9ChYydIpDIoRRFKpQiliIKfRREKpQjx8X3FE48pRTxev+jPisf3xcLbFF6v0HEUolhkPbHE44hQKFF8vWL706xX0I7C2zylHaptlEq4SDKwJLgznOws9f3fQ1TlzE00c0wd/vc+gkNPI2wsgykiQ8FQiogqRRAEuNtbwN3eAv383AEAufkKXE7MUIdUUQnpuJOejStJGbiSlIFNJxMAAHYWJkVCqpae9rA1L3si1nyFEh/8dlEdSK0Y2QY9m7no9HkSERmjFStWYPHixUhKSkLz5s2xbNkydO7cWa9tkkklaO5ui5vWQCtPe5iYGPcE3nK5HLt374Y9JzInI1ZSMBU6ti3aeNrqu2lEVAaGUkSkdWYyKVrXrYXWdWthPOoDAO5m5Dy+0l/B3FTRtx/gQbYcB2Lv4UDsPQCAIACNnK3h71kLresVnPrX0MkaEolmNJVCBKb+dhF/Xb7LQIqISIc2b96MKVOmYMWKFXjuueewevVq9OnTBzExMahbt66+m0dEVMSTwdTY0NP4fpS/vptFRGVgKEVEVcLF1hy9fd3Q29cNAJCXr8Q/yZrRVOcT0pHwXxau3n2Iq3cfYvOZWwAAGzMZWj2em8rP3Rob/5UgKrUgkFo5sg16MJAiItKJpUuXYvz48ZgwYQIAYNmyZdizZw9WrlyJhQsX6rl1RETFqYKp//1wFoeu3sPEH84huKGAjll5MJGJ+m6eXsnz5XgkB9JYC9aiEHm+HDkK/baBoRQR6YWpTAI/D3v4edhjTCcvAMC9zFxE3VKFVGm4cOsBMnPzcfjf+zj87/3HW0oYSBER6VheXh7Onj2LDz/8sMjyoKAgHDt2rMRtcnNzkZubq76fkZEBoOD0MrlcrtX2qfan7f0aItZCg7UoYOx1kAJY8aof3tgUhcPXUrHyihQrrxzQd7OqCRk+OnNA342oJlgLFX8HCfrr4POivJ9BDKWIqNpwsjFDz2Yu6tPx8hVKxN7NVJ/yd+5mGu6mP8JXr7ZiIEVEpEP379+HQqGAi0vRz1oXFxckJyeXuM3ChQsxd+7cYsvDw8NhaambCbgjIiJ0sl9DxFposBYFjL0OAx2AzDQJolJ5NUqisuji8yIrK6tc6zGUIqJqq2AyWzs0d7fDqA711JO5dvdx1nfTiIiMwpNXSBVF8alXTZ05cyamTp2qvp+RkQFPT08EBQXB1la7kw3L5XJERESgZ8+enOictVBjLQqwDhp95XLsCY9Ajx49jL4Wcrkce/fuZS3AWhSmqoUuPi9UI6bLwlDqGYhiwXmn5S1yRcjlcmRlZSEjI4NvENZCjbUowDposBYarIUGa6Ghy1qofv+r+gM1kaOjI6RSabFRUSkpKcVGT6mYmZnBzMxMfV9Vn+zsbK3/H6j+f7Ozs5Gfn6/VfRsa1kKDtSjAOmjI5XLkZGchLzcHolLPE+foGWuhwVpoqGqhi8+L7OxsAGX3lxhKPYPMzEwAgKenp55bQkRERPqSmZkJOzs7fTdDJ0xNTdGmTRtERERg0KBB6uUREREYOHBgufbB/hIRERGV1V9iKPUM3N3dcevWLdjY2Dx1CPuzUg11v3XrltaHuhsa1kKDtSjAOmiwFhqshQZroaHLWoiiiMzMTLi7u2t1v9XN1KlTMWrUKAQEBKBjx45Ys2YNEhISMGnSpHJtz/5S1WAtNFiLAqyDBmuhwVposBYa1aG/xFDqGUgkEnh4eOj0GLa2tkb/BlFhLTRYiwKsgwZrocFaaLAWGrqqRU0dIVXYsGHDkJqainnz5iEpKQm+vr7YvXs36tWrV67t2V+qWqyFBmtRgHXQYC00WAsN1kJDn/0lhlJEREREVKLJkydj8uTJ+m4GERER1VC8PiYREREREREREVU5hlLVjJmZGebMmVPk6jXGirXQYC0KsA4arIUGa6HBWmiwFjUb/381WAsN1qIA66DBWmiwFhqshUZ1qIUg1uTrGRMRERERERERUbXEkVJERERERERERFTlGEoREREREREREVGVYyhFRERERERERERVjqEUERERERERERFVOYZSRET0f/buPCyq8n0D+H1m2PdNdhBEXBHXFE1FxT3N1Cyt3FLLrEzNUjNTTLNcyuyba6Zpuf3KLHdx39fcURQFQQERXNhhmDm/P0ZmGEEFmWFmmPtzXVzKmbO88zDAwz3vOYeIiIiIiKjSMZQiIiIiIiIiIqJKx1CKiIiIiIiIiIgqHUMpIiIiIiIiIiKqdAyliIiIiIiIiIio0jGUIiIiIiIiIiKiSsdQioiIiIiIiIiIKh1DKSIiIiIiIiIiqnQMpYiIiIiIiIiIqNIxlCIiIiIiIiIiokrHUIqIymXlypUQBAHx8fFa2+eQIUNgZ2entf2VR3meT7t27dCuXTudj6kiBEHAtGnTVJ9HR0dj2rRpL/z10ufXhoiIqCpiL9VO52PShSd7rP3790MQBOzfv19vYyKqCsz0PQAiItKeY8eOwdfXV/V5dHQ0IiMj0a5dOwQEBOhvYERERERERE9gKEVEpAeiKCIvLw/W1tZa3W9YWJhW90dERERkiCraS+Xk5MDGxkbLoyKi8uLpe0SkUzk5ORg/fjwCAwNhZWUFFxcXNGvWDGvXri2xbmxsLLp37w47Ozv4+fnh008/RX5+vsY69+/fx6hRo+Dj4wMLCwvUqFEDkydP1lgvPj4egiBg5cqVJY7x5NTr0oiiiNmzZ6N69eqwsrJCkyZNsH379lLXzcjIUD0/CwsL+Pj4YMyYMcjOzi5x3I8++giLFy9G3bp1YWlpid9+++2Z4yjSrl07hISE4NChQwgLC4O1tTV8fHwwZcoUyOXypz6/lStXol+/fgCA9u3bQxCEEnXZsWMHIiIi4OjoCBsbG9StWxezZs0qMYayfG2IiIhI+9hLqY9b0V7q4MGDaNWqFWxsbPDuu+8CABISEvDOO+/A3d0dlpaWqFu3LubNmweFQlGmfRNRxXCmFBHp1Lhx47B69WrMmDEDjRs3RnZ2Ni5duoT09HSN9WQyGV599VUMGzYMn376KQ4ePIivv/4ajo6O+OqrrwAAeXl5aN++PW7cuIHIyEiEhobi0KFDmDVrFs6dO4etW7dqZcyRkZGIjIzEsGHD8PrrryMxMREjRoyAXC5H7dq1Vevl5OQgPDwct2/fxhdffIHQ0FBcvnwZX331FS5evIjdu3dDEATV+ps2bcKhQ4fw1VdfwdPTE+7u7mUeU0pKCvr374+JEydi+vTp2Lp1K2bMmIEHDx7gf//7X6nbvPLKK/jmm2/wxRdf4Oeff0aTJk0AAEFBQQCA5cuXY8SIEQgPD8fixYvh7u6Oa9eu4dKlSxr7KcvXhoiIiHSDvZR2eqnk5GS88847+Pzzz/HNN99AIpHg3r17aNWqFQoKCvD1118jICAAW7Zswfjx43Hjxg0sXLhQK/UgomcQiYjKYcWKFSIAMS4urkzrh4SEiK+99toz1xk8eLAIQNywYYPG8u7du4u1a9dWfb548eJS1/vuu+9EAOKuXbtEURTFuLg4EYC4YsWKEscCIE6dOvWpz+fBgweilZWV2Lt3b43tjhw5IgIQw8PDVctmzZolSiQS8dSpUxrr/vnnnyIAcdu2bRrHdXR0FO/fv//MWpQmPDxcBCD+888/GstHjBghSiQS8datW099fv/3f/8nAhD37dunsW1mZqbo4OAgtm7dWlQoFE89dlm/NkRERFQ27KXCVcsqu5fas2ePxvKJEyeKAMQTJ05oLP/ggw9EQRDEmJiYpz7vffv2ldpjEVH58PQ9ItKp5s2bY/v27Zg4cSL279+P3NzcUtcTBAE9e/bUWBYaGopbt26pPt+7dy9sbW3x+uuva6w3ZMgQAMCePXsqPN5jx44hLy8Pb7/9tsbyVq1aoXr16hrLtmzZgpCQEDRq1AiFhYWqjy5dupR6N5YOHTrA2dn5hcZlb2+PV199VWPZW2+9BYVCgYMHD5Z7f0ePHkVGRgZGjRql8Q5kacrytSEiIiLdYC+lVpFeytnZGR06dNBYtnfvXtSrVw/NmzfXWD5kyBCIooi9e/e+0LGIqOwYShGRTi1YsAATJkzApk2b0L59e7i4uOC1117D9evXNdazsbGBlZWVxjJLS0vk5eWpPk9PT4enp2eJEMXd3R1mZmYlprG/iKJ9eHp6lnjsyWV3797FhQsXYG5urvFhb28PURSRlpamsb6Xl9cLj8vDw+Op43mR533v3j0A0LhT39OU5WtDREREusFeSq0ivVRp26anp5e63NvbW+O5EJHu8JpSRKRTtra2qusK3L17V/VOX8+ePXH16tVy7cvV1RUnTpyAKIoazVRqaioKCwvh5uYGAKqG7MkLe5alsXB1dQWgvIbTk1JSUhAQEKD63M3NDdbW1vj1119L3VfReIo8b0bSs9y9e7fU8QDqMZdHtWrVAAC3b99+4TERERGR7rGXUqtIL1Xatq6urkhOTi6xPCkpqdTjE5H2caYUEVUaDw8PDBkyBAMGDEBMTAxycnLKtX1ERASysrKwadMmjeWrVq1SPV50HCsrK1y4cEFjvX/++ee5xwgLC4OVlRX++OMPjeVHjx4tcbpajx49cOPGDbi6uqJZs2YlPoo3XRWVmZmJf//9V2PZmjVrIJFI0LZt26duZ2lpCQAlpvq3atUKjo6OWLx4MURR1No4iYiISHfYS2lXREQEoqOj8d9//2ksX7VqFQRBQPv27XV6fCLiTCki0rEWLVqgR48eCA0NhbOzM65cuYLVq1ejZcuWsLGxKde+Bg0ahJ9//hmDBw9GfHw8GjRogMOHD+Obb75B9+7d0bFjRwDKd8Leeecd/PrrrwgKCkLDhg1x8uRJrFmz5rnHcHZ2xvjx4zFjxgwMHz4c/fr1Q2JiIqZNm1ZiyvmYMWPw119/oW3bthg7dixCQ0OhUCiQkJCAXbt24dNPP0WLFi3K9RyfxtXVFR988AESEhJQq1YtbNu2DcuWLcMHH3wAf3//p24XEhICAFi6dCns7e1hZWWFwMBAuLq6Yt68eRg+fDg6duyIESNGwMPDA7GxsTh//vxT7+hHRERElYu9lHZ6qdKMHTsWq1atwiuvvILp06ejevXq2Lp1KxYuXIgPPvgAtWrV0tmxiUiJoRQR6VSHDh3w77//4ocffkBOTg58fHwwaNAgTJ48udz7srKywr59+zB58mTMmTMH9+7dg4+PD8aPH4+pU6dqrDtv3jwAwOzZs5GVlYUOHTpgy5YtZXrHbfr06bC1tcXChQuxevVq1KlTB4sXL8bcuXM11rO1tcWhQ4fw7bffYunSpYiLi4O1tTX8/f3RsWNHrb675+npiZ9//hnjx4/HxYsX4eLigi+++AKRkZHP3C4wMBDz58/Hjz/+iHbt2kEul2PFihUYMmQIhg0bBm9vb3z33XcYPnw4RFFEQEAABg8erLVxExERUcWwl9KdatWq4ejRo5g0aRImTZqEjIwM1KhRA7Nnz8a4ceN0emwiUhJEnrdBRGTQ2rVrh7S0NFy6dEnfQyEiIiIiItIaXlOKiIiIiIiIiIgqHU/fI6IXIooi5HL5M9eRSqUVuktKVSeXy595kXFBECCVSitxRERERFRZ2EtVHHspIuPHmVJE9EJ+++03mJubP/PjwIED+h6mQYuIiHhm/YKCggAA+/fv56l7REREVQx7qYoray9FRIaL15QioheSnp6OuLi4Z65Tu3Zt2NvbV9KIjE9MTAwyMzOf+rilpSUaNGhQiSMiIiKiysJequLYSxEZP4ZSRERERERERERU6Xj6HhERERERERERVTqTvdD5woULMWfOHCQnJ6N+/fqYP38+2rRpU6ZtFQoFkpKSYG9vzwsPEhERmRhRFJGZmQlvb29IJHx/72nYLxEREZmusvZLJhlKrV+/HmPGjMHChQvx8ssvY8mSJejWrRuio6Ph7+//3O2TkpLg5+dXCSMlIiIiQ5WYmAhfX199D8NgsV8iIiKi5/VLJnlNqRYtWqBJkyZYtGiRalndunXx2muvYdasWc/d/tGjR3ByckJiYiIcHBy0OjaZTIZdu3ahc+fOMDc31+q+jQ1rocZaKLEOavn5BdiwJQqt27aGudS0ayGTy3D44GHWAqxFcTK5DCePHEafV7T/8yIjIwN+fn54+PAhHB0dtbrvqoT9UuVgLdRMuRaiKEImF5ErkyM7Nx9HDh3Aa91Nrw5PMuXXxJNYCzXWQk2XtShrv2RyM6UKCgpw5swZTJw4UWN5586dcfTo0VK3yc/PR35+vurzojs8WFtbw9raWqvjMzMzg42NDaytrU3+G4S1UGMtlFgHpdTMfAxdfQnXUh0wJ+aCvodjIFgLNdaiSCt3O7ytg58XMpkMAHhK2nMU1cfBwUEnoZSNjQ0cHBxM+vcBwFoUZ4i1kCtE5MnkyJPJkSuTI0+mKPZ/OXILlP/PlymQW3y5TI68AuX6Gstk6mW5BXLkF6r3oSg21UACexT43scH7YP19+QNgCG+JvSFtVBjLdQqoxbP65dMLpRKS0uDXC6Hh4eHxnIPDw+kpKSUus2sWbMQGRlZYvmuXbtgY2Ojk3FGRUXpZL/GiLVQYy2UTLkOjwqAn6OluJsrQCKIMOPfxERPZSbRzc+LnJwcre+TiCqPKIookCuQV1Ay8NEIfgqKf64OlVSB0eNAqHhwVLReboEceYUKFBQqKv35SQRAIQr4buc1CBIJRoYHVfoYiIjKyuRCqSJPpnWiKD41wZs0aRLGjRun+rxoGlrnzp118s5fVFQUOnXqxNSWtVBhLZRMvQ6pmfkY+Osp3M3NgaeDJUYEZWNAT9OsRXGm/roojrVQ02UtMjIytLo/Iqq4pIe5WHIgFhevSfDvg7MokIuPgyF1cKQKjGRy6OMCJpZmEliZS2FtLoW1hRSWZhJYWyg/L1puZS6FlblEtY6VxmPK5VYWUliZFT3+eF1zKSwf/wtFIUYv3YEdt6X4dvtViCLwQTsGU0RkmEwulHJzc4NUKi0xKyo1NbXE7KkilpaWsLS0LLHc3NxcZ02/LvdtbFgLNdZCyRTrkJqRh4ErTuNmWg68Ha2w6t1muHx8v0nW4mlYCzXWQk0XtWBtiQzLhdsPMey307iXmQ9AAqTfK/O2UomgCnyKB0Pq8EczONIIiJ4IjTT2Y6G5rpWZFBJJ5UxvlskEdPMTUSs4CAv23cB3O64CYDBFRIbJ5EIpCwsLNG3aFFFRUejdu7dqeVRUFHr16qXHkRERlS41Iw/9lx3HzXvZ8Ha0wrr3WsLLwRyX9T0wHRFFEYWFhZDL5WVaXyaTwczMDHl5eWXepqpiLdQqUgupVAozMzNeM4rICOy8nIJP1p1FnkyBWu52qG/zCE1CG8DO2hxWZspgybq04OjxbCNzqVBlv9c/7hAEqVSKH3Zfw3c7rkKEiFHtaup7WKQl7JdeHGuhZgj9ksmFUgAwbtw4DBw4EM2aNUPLli2xdOlSJCQkYOTIkfoeGhGRhtSMPPRfehw309SBlL+rjepCy1VNQUEBkpOTy3XNHlEU4enpicTExCr7h0VZsRZqFa2FjY0NvLy8YGFhoYPREVFFiaKIZYduYtbj09PCa1XDD/0a4NDeXej+ki9nND72SUflhc5/2H0Ns3fEAACDqSqA/VLFsBZqhtAvmWQo9eabbyI9PR3Tp09HcnIyQkJCsG3bNlSvXl3fQzMqoihCrhBRqBChePx/hQKQP/6/XCFCLopQPPH/wsefq7YRRcgVQKFCodpeoRBRKC9EdtX8u5uoTO5m5GHA40DKx8kaa0eEwd9VNzdXMAQKhQJxcXGQSqXw9vaGhYVFmX45KhQKZGVlwc7ODhKJpBJGarhYC7UXrYUoiigoKMC9e/cQFxeH4OBgk68lkaGRyRWY+u9lrDmRAAB4J8wf03rWh6gw7RkPT/NJx2AIAvB9lDKYEkXgw/YMpowV+6WKYy3UDKFfMslQCgBGjRqFUaNG6XsYGh7lyLDq6E1cuS3gxt4bgCAoAxxVsANVkFOoeLxMVP+rCoKKBT5yEZArFCUCI4UoolBefL1i+5EX7Q/FwiZRcyyiWCkXiLSSSnHfOQ7D2wbBylyq+wMSGQhTC6QA5bt+CoUCfn5+5bqzqUKhQEFBAaysrNhYsBYqFamFtbU1zM3NcevWLdU+iMgwZOTJ8OEf/+HQ9TQIAjC5e10Max0IQRAgYyj1VKMjlDOmvo+6hjk7lTOmGEwZJ/ZLFcdaqBlCv2SyoZQhephbgHm7YwFIgcQb+h5OhUklgvJDUP4rEYote7xc8sQ6yvWU/z7MKUDig1zMjbqONScT8VnX2ujV0KfSLhJJpC9PBlLr3guDn0vVDqSKM/XmgAwDX4dEhuf2gxy8u/IUrt3NgrW5FD/2b4TO9T31PSyjMToiGAKAeQymqgT+niJDoI3XIUMpA2JvZY6+TbyRdPs2qlf3h4WZVBXQFIU1ZpLHQY4gQCpBsf+XDHU0AqFi20glEuW2QimBkEaIJMBMKmisJ5EAZhIJJBKUsm/NsKmi8vML8PXqHdidaoOkR3kYu/48lh+Owxfd66JVkJsWKk5keO4+voZUnIkGUkRERKU5l/gQw387jbSsfLjbW2L54JfQwNdR38MyOh8/njHFYIqIDAVDKQPiYmuBb3uHYNu2BHTvXs/kL9AokQh4qZqICW+1xuqTt7Fw3w1cupOBt5adQEQdd0zsVgfBHvb6HiaR1qQ8ysOAZQykiIiIitt+MRljN5xDnkyBOp72+HXIS/B2stb3sIzWxxHKa0zN3aUMpkRRxEcdgvU9LCIyUZzzRwbPylyKUe1qYv9n7TCoZXVIJQL2XE1Fl/kH8cXfF3EvM1/fQySqMAZSZKimTZsGDw8PCIKATZs26Xs4RGRCRFHE4gM38MEf/yFPpkD72tXw5wetGEhpwUcdgjG+cy0AynDqf3uv63lERMaN/dKLYyhFRsPNzhLTe4Vg19i26FzPAwoRWHMiAe3m7MOCPdeRU1Co7yESvRAGUsZNEIRnfgwZMgQAsG/fPrRv3x4uLi6wsbFBcHAwBg8ejMJC5c+u/fv3QxAEPHz4UONzQRAgkUjg6OiIxo0b4/PPP0dycvIzxxQfH68xBkdHR4SFhWHz5s3lem5XrlxBZGQklixZguTkZHTr1q3c9SEiehEyuQKTNl7Et9uvAgAGt6yOZYOawc6SJ3poy0cdgvFZl9oAGEyR7rFfoqdhKEVGJ6iaHZYOaoYN77dEQ19HZBfI8X3UNbSfux8bTidCrqiE2wISaUnKozz0X3qMgZQRS05OVn3Mnz8fDg4OGst+/PFHXL58Gd26dcNLL72EgwcP4uLFi/jpp59gbm4OhULxzP3HxMQgKSkJp06dwoQJE7B7926EhITg4sWLzx3b7t27kZycjBMnTqB58+bo27cvLl26VObnduOG8qYbvXr1gqenJywtLcu8bXEymeyFtiMi0/QoV4ahK05h3alESARgas96iOwVAjMp/3TRtg/b19QIpn7aw2CKdIP90vOZar/En+xktJoHuuDvUS9jwYDG8HW2xt2MfHz+5wW8suAQDl67p+/hET1XUSAVn54DX2cGUqURRRE5BYXP/cgtkJdpvfJ8iGLZAm5PT0/Vh6OjIwRBKLEsKioKXl5emD17NkJCQhAUFISuXbvil19+gYWFxTP37+7uDk9PT9SqVQv9+/fHkSNHUK1aNXzwwQfPHZurqys8PT1Rp04dzJw5EzKZDPv27VM9fufOHbz55ptwdnaGq6srevXqhfj4eADKaeg9e/YEoLyziiCob2CxYsUK1K1bF1ZWVqhTpw4WLlyoeqzoXccNGzagXbt2sLKywu+//17m7TZu3Ij27dvDxsYGDRs2xLFjxzSe05EjRxAeHg4bGxs4OzujS5cuePDgAQDl62X27NmoUaMGbG1t0bp1a/z555+qbR88eIC3334b1apVg7W1NYKDg7FixYrn1pGIKk/i/Ry8vugoDsemwcZCimWDmmHoy4H6HlaVVjyYmhfFYMoYsV9iv2TM/RLnv5JRk0gEvNrQG13qe2DV0Vv4ae91XE3JxKBfT6JtrWqY1K0O6no56HuYRCUkP8rFgKXHVYHU2hEMpEqTK5Oj3lc79XLs6OldYGOhnV+Tnp6eSE5OxsGDB9G2bdsK7cva2hojR47E2LFjkZqaCnd39+duI5PJsGzZMgBQ3UQjJycH7du3R5s2bXDw4EGYmZlhxowZ6Nq1Ky5cuIDx48cjICAAQ4cO1Zj+vmzZMkydOhX/+9//0LhxY5w9exYjRoyAra0tBg8erFpvwoQJmDdvHlasWAFLS8sybzd58mTMnTsXwcHBmDx5MgYMGIDY2FiYmZnh3LlziIiIwLvvvosFCxbAzMwM+/btg1wuBwB8+eWX2LhxIxYtWoSgoCDs2rULgwYNgoeHB8LDwzFlyhRER0dj+/btcHNzQ2xsLHJzcyv09SAi7Tmb8AAjVp1GWlYBPByUd9gL8eEd9ipD0R345uyMwbyoaxABjI7gxc+NBfulktgvGU+/xFCKqgRLMylGtK2B15v64qe9sVh9PB4Hr93Doev30K+pLz7tXBseDlb6HiYRgJKB1Lr3wuDrzECqKuvXrx927tyJ8PBweHp6IiwsDBERERg0aBAcHMofnNepUweA8t2yZzVZrVq1gkQiQW5uLhQKBQICAvDGG28AANatWweJRIJffvlF9a7eihUr4OTkhP3796Nz585wcnICoGwSi3z99deYN28e+vTpAwAIDAxEdHQ0lixZotEsjRkzRrVOebYbP348XnnlFQBAZGQk6tevj9jYWNSpUwezZ89Gs2bNNN4xrF+/PgAgOzsb33//Pfbu3YuWLVtCoVDgrbfewpkzZ7BkyRKEh4cjISEBjRs3RrNmzQAAAQEB5ag6EenS1gvJGLfhHPILFajn5YBfh7wET0f2bpXpw/Y1IQjA7B0x+D7qGgAGU1S52C+ZZr/EUIqqFGdbC3zVsx4Gt6qO2TtisPViMjacvo3N55Mxok0g3gsP4gUySa+SH+Wi/9LjuMVAqkyszaWInt7lmesoFApkZmTC3sEeEon2zkq3NpdqbV9SqRQrVqzAjBkzsHfvXhw/fhwzZ87Ed999h5MnT8LLy6tc+yuaKl98inhp1q9fjzp16uDatWsYM2YMFi9eDBcXFwDAmTNnEBsbC3t7e41t8vLyVNdGeNK9e/eQmJiIYcOGYcSIEarlhYWFcHTUnM1Q1MiUd7vQ0FDV/4vqkpqaijp16uDcuXPo169fqWOLjo5GXl4eOnXqpLG8oKAAjRs3BgB88MEH6Nu3L/777z907twZr732Glq1alXq/oiocoiiiIX7b2DOzhgAQEQddywY0Bi27Nf0YlQ75YypomBKFIFPOjKYMnTsl0rHfqkkQ+yX+NOeqqTqrrb4+e0mePfWA3yz7QrO3HqABXtjseZkIsZ1qoU3mvnyYplU6YoHUn4uylP2GEg9myAIz50SrlAoUGghhY2FmVabLF3w8fHBwIEDMXDgQMyYMQO1atXC4sWLERkZWa79XLlyBcDz37ny8/NDcHAwgoODYWdnh759+yI6Ohru7u5QKBRo2rQp/vjjjxLbVatWrdT9FV1kdNmyZWjRooXGY1KpZlNqa2v7QtsVTZcH1E1k0fbW1k+/DXzROlu3boWPjw8UCgWysrJgZ2en2q5bt264desWtm7dit27dyMiIgIffvgh5s6d+9T9EpHuFBQq8OWmi9hw+jYAYEirAEzpUQ9SybP/gCTdGtWuJgQI+G7HVfywWzljisGUYWO/VDr2S08fmyH1S4b9aiSqoKbVnfHnyJZY9HYTVHe1QVpWPr74+yK6/ngIe6/eLfOF+YgqKukhAynS5OzsDC8vL2RnZ5dru9zcXCxduhRt27Z9ajNUmvDwcISEhGDmzJkAgCZNmuD69etwd3dHzZo1NT6efDeuiIeHB3x8fHDz5s0S2wQGPv1CxC+63ZNCQ0OxZ8+eUh+rV68eLC0tkZCQoNp3jRo1ULNmTfj5+anWq1atGoYMGYLff/8d8+fPx9KlS8t8fCLSnkc5MgxZcRIbTt+GRAAiX62Paa/WZyBlID5oF4QJXZWnPv2w+xrmPw6niCob+6Wq3y9xphRVeYIgoFsDL0TU9cAfJ27hxz3XEZuahXdXnkarIFd80b0uL6JJOpX0MBcDlqkDqXXvtYSP09PfwaCqZ8mSJTh37hx69+6NoKAg5OXlYdWqVbh8+TJ++umnZ26bmpqKvLw8ZGZm4syZM5g9ezbS0tKwcePGco/j008/Rb9+/fD555/j7bffxpw5c9CrVy9Mnz4dvr6+SEhIwMaNG/HZZ5/B19e31H1MmzYNo0ePhoODA7p164b8/HycPn0aDx48wLhx45567BfdrrhJkyahQYMGGDVqFEaOHAkLCwvs27cP/fr1g5ubG8aPH4+xY8dCoVCgVatWSE5OxoULF2Bvb4/Bgwfjq6++QtOmTVG/fn3k5+djy5YtqFu3brnrSEQVk5Ceg6ErT+LGvWzYWkjxv7eaoH2d51+EmCrXB+2CIAjAt9uvYv5u5R35xnSspedRUVXGfsk0+yWGUmQyLMwkGPpyIPo08cXC/bFYcSQeR2+ko8dPh9GnsQ/Gd6kNbwYFpGVFM6QS7jOQMmXNmzfH4cOHMXLkSCQlJcHOzg7169fHpk2bEB4e/sxta9euDUEQYGdnhxo1aqBz584YN26cxsU0y6pHjx4ICAjAzJkzsXDhQhw8eBATJkxAnz59kJmZCR8fH0RERDzzYqLDhw+HjY0N5syZg88//xy2trZo0KABxowZ88xjv+h2xdWqVQu7du3CF198gebNm8Pa2hotWrTAgAEDACgvDuru7o5Zs2bh5s2bcHR0RJMmTTB58mQAgIWFBSZNmoT4+HhYW1ujTZs2WLduXZmPT0QVd+bWA7y36jTSswvg5WiF5YNfQj1v3inZUI0MDwKgDqZEERjbicEU6Qb7JdPslwRRi+cvFb9qfFktXry4TLdnNCQZGRlwdHTEo0ePXuguAM8ik8mwbds2dO/eXeM8UVOk61ok3s/B3F0x+OdcEgDA0kyCd1sH4oN2QXCwMqza83WhZGx1KB5I+bvYYO17YVoLpIytFmWRl5eHuLg4BAYGwsqq7HdcUigUyMjIgIODg8FfI0HXWAu1itbiWa9HXfYBpTHW/or9UuUwplpsPp+ET//vPAoKFQjxccDywS9p9e7IxlQLXdJFHZYcuIFZ268CAD6JCDaaYKoqvibYL1Uca6FmCP2SVr8CmzZtgoWFBRwdHcv0sXXrVmRlZWlzCERl5udigx/7N8a/H72MFoEuyC9UYNH+G2g3Zz9WHYuHTK7Q9xDJiN3RYSBFRKaF/RUZO1EU8b+91/Hx2rMoKFSgY10PbHi/pVYDKdKt98ODMKmb8hpTP+65jh+ieI0pItIOrZ++t2DBgjK/M/fnn39q+/BE5Rbq64R174Vh95VUzNp+BTfvZeOrfy5j5ZF4TOhWB53reTz3NqJExd15mIsBxQKpde+F8dRQIqoQ9ldkrAoKFZi08SL++k95h71hrQPxRfe6vKC5EXo/XHmNqW+2XcWPe5TXmDKWGVNEZLi0Gkrt27cPLi4uZV5/+/bt8PHx0eYQiF6IIAjoVM8D7WpXw7pTiZgfdQ0307Lx/uozaB7ggi9eqYtGfk76HiYZAeUMqWNIvJ/LQIqItIL9FRmrhzkFGPn7GRy/eR9SiYBpr9bHwLDq+h4WVcB7bZXXmCoKpkQAYzsG8w1cInphWj19Lzw8HGZmZc+5WrduDUtLS20OgahCzKUSDAyrjv2ftcNH7WvC0kyCk/H38drPR/Dx2rNIvJ+j7yGSASseSFV3ZSBFRNrB/oqM0a30bPRZeBTHb96HnaUZlg9uxkCqinivbRAmd1feiWvBnuv4Yfd1aPEyxURkYnR+973U1FSkpqZCodC8Pk9oaKiuD030wuytzDG+S228HeaPuTuvYePZ29h8Pgk7L6VgcKvq+Kh9MBxtqsbFEkk7bj/IwYBlx1WB1NoRDKReFBtbMgSG/jpkf0WG7HT8fYxYdRoPcmTwdrTCr0NfQh1P3mGvKhnRtgYAYOa2K1hQdCofZ0xVKkP/PUWmQRuvQ51dav7MmTMICQmBl5cXQkND0ahRIzRu3Fj1L5Ex8HK0xrw3GmLLx63xck1XFMgVWHYoDm3n7MPyw3EoKOTF0KlkIMUZUi+m6K44OTmckUj6V/Q6NLS7NWmrvzp48CB69uwJb29vCIKATZs2aTwuiiKmTZsGb29vWFtbo127drh8+bKWnw1VRf+cu4O3lp3AgxwZQn0dsenDlxlIVVEj2tbAl68UmzEVdY1BSSVgv0SGRBv9ks5mSg0dOhS1atXC8uXL4eHBC0WTcavv7Yjfh7XA/mv3MGvbFVy7m4Wvt0Tjt6PxmNC1Dro38ORr3ESVFkh5OTKQehFSqRROTk5ITU0FANjY2JTp+0qhUKCgoAB5eXm8rS9rofKitRBFETk5OUhNTYWTkxOkUqkOR1l+2uqvsrOz0bBhQwwdOhR9+/Yt8fjs2bPx/fffY+XKlahVqxZmzJiBTp06ISYmBvb29hV9GlQFiaKIBXti8cNu5V3ZutT3wA9vNoKNhc5PzCA9Gt5GOWNqxtYrWLA3FoDy4ufsi3WH/VLFsRZqhtAv6ey3RFxcHDZu3IiaNWvq6hBElUoQBLSv7Y42Nd3w55nbmBd1DQn3c/Dhmv/QxN8Jk1+pi6bVy34hWjJ+tx/koP/S47j9IBcBrjZYy0Cqwjw9PQFA1WiVhSiKyM3NhbW1tck3wayFWkVr4eTkpHo9GhJt9VfdunVDt27dSn1MFEXMnz8fkydPRp8+fQAAv/32Gzw8PLBmzRq8//77FTo2VT35hXJM+usiNp69AwB4r20NTOxaBxLeYc8kPBlMiQDGMZjSKfZLFcNaqBlCv6SzUCoiIgLnz59nKEVVjplUgv7N/dGzoTeWHbqJJQdu4r+Eh+i76Bi6hXhiQtc6CHCz1fcwSccYSOmGIAjw8vKCu7s7ZDJZmbaRyWQ4ePAg2rZta3CnWlU21kKtIrUwNzc3uBlSRSqjv4qLi0NKSgo6d+6sWmZpaYnw8HAcPXr0qaFUfn4+8vPzVZ9nZGQAUH4tyvr9XFZF+9P2fo2RvmvxIKcAH649j1PxD5R32OtRF/1f8oVcXgi5vHLHou9aGAp91GFwmB8UCgW+2R6Dn/bGQi5XYExEkN7/4K/Krwk3Nzc4OzujsLCwTKdNFhYW4ujRo2jVqlW5bp5RFbEWai9aC0EQYGZmBqlUisLCwlLXKev3nc6+Ar/88gsGDx6MS5cuISQkpERD+Oqrr+rq0ESVwtbSDGM61sJbzf3xfdQ1bDidiO2XUhAVfRfvhFXH6IhguNha6HuYpAOJ95Wn7DGQ0h2pVFrmUKDol6GVlZXJBzGshVpVrUVl9FcpKSkAAA8PD43lHh4euHXr1lO3mzVrFiIjI0ss37VrF2xsbCo8rtJERUXpZL/GSB+1SM0Fll6V4l6eACupiKG15HC4dwHbtl2o9LEUx9eFUmXXwQPAa9UFbLolxcIDNxEbG4vufgoYwkQUvibUDh48qO8hGAzWQk0XtSjrdc90FkodPXoUhw8fxvbt20s8JggC5JX91gmRjrg7WOHbvqEY+nIgZm2/gv0x97DyaDz++u82PmpfE4NbBcDK3DDfcafyezKQWvdeS3g6Wul7WERkIiqzv3pyhoMois+c9TBp0iSMGzdO9XlGRgb8/PzQuXNnODho90LXMpkMUVFR6NSpU5UKHV+EvmpxKv4Bpq45h4d5Mvg4WWHpO41Ry0O/1xvj60JJn3XoDqDe0Vv4ZnsMdt2RIKhmEMZG1NTbjCm+JtRYCzXWQk2XtSiaMf08OgulRo8ejYEDB2LKlCkl3mkjqopqe9pj5dDmOHw9DTO3XcGV5AzM2n4Vq47dwudda6NnqDevrWDkEu8rT9m785CBFBHpR2X0V0XXhkhJSYGXl5dqeWpq6jOPaWlpCUtLyxLLzc3Nddb063LfxqYya/H32duY8OdFFMgVaOjriGWDm8Hd3nB+H/J1oaSvOrwXXhNSqRRfb4nGogNxkEgkGN+5tl5P5eNrQo21UGMt1HRRi7LuT2eXmk9PT8fYsWMZSJHJaR3shi0ft8bcfg3h6WCFOw9z8cm6c3ht4REcv5mu7+HRCyoeSAW62TKQIiK9qIz+KjAwEJ6enhqnuxQUFODAgQNo1aqVzo5Lhk8URfwQdQ1j159HgVyBbiGeWPdeS4MKpMgwDGsdiCk96gEAft53A3N3xZTpukdEZHp0Fkr16dMH+/bt09XuiQyaVCLg9aa+2De+HT7rUht2lma4cPsR+i89juG/nUZsapa+h0jl8GQgtXZEGAMpItILbfVXWVlZOHfuHM6dOwdAeXHzc+fOISEhAYIgYMyYMfjmm2/w999/49KlSxgyZAhsbGzw1ltvVfjYZJzyC+UYu/4cftxzHQAwMjwIP7/VBNYWvEQBlW5Y60B8VSyYmrOTwRQRlaSz0/dq1aqFSZMm4fDhw2jQoEGJqVujR4/W1aGJDIa1hRQftq+JN1/yw4+7r2PNyQTsvnIX+2JSMaC5H8Z0rAU3u5KnOpDhYCBFRIZEW/3V6dOn0b59e9XnRdeCGjx4MFauXInPP/8cubm5GDVqFB48eIAWLVpg165dsLfX7zWDSD/uZxfg/dWncSr+AcwkAma8FoL+zf31PSwyAu+2DgQATN8SjYX7bwAAPuui31P5iMiw6PTue3Z2djhw4AAOHDig8ZggCAylyKS42Vni69dCMLhVAL7dfhW7r9zF78cTsOlsEj5oF4R3Xw7kO40GqOQpe2HwcGAgRUT6o63+ql27ds+csSAIAqZNm4Zp06ZVZLhUBdy8l4WhK0/hVnoO7K3MsOjtpmgd7KbvYZERebd1IAQBiNysDKZEAJ8zmCKix3QWSsXFxelq10RGq6a7HX4Z3AzHb6bjm21XcOH2I8zZGYPVx25hfJfa6N3YB1JeDN0gFA+karjZYi0DKSIyAOyvqDIdv5mO91efwaNcGXydrbFiyEsI1vMd9sg4DX1ZOWMqcnM0Fj2eMcVgiogAHV5TioieLqyGKzaNehk/9m8EHydrpGTkYfz/nUfPnw7j8PU0fQ/P5CWkM5AiIiLT9teZ2xi4/AQe5crQyM8Jf496mYEUVcjQlwMxrafyGlOL9t/Adzt4jSki0sFMqenTp5dpva+++krbhyYyKhKJgF6NfNClvid+OxqP/+2LRXRyBt5ZfgLtalfDpG51UduTzV9lS0jPwYBlDKSIyLCwv6LKIooivo+6hp/2xgIAXmnghXlvNISVOS8zQBU35PGMqWmbo7H4gHLG1ISunDFFZMq0Hkr9/fffT31MEATExMQgLy9P601TfHw8vv76a+zduxcpKSnw9vbGO++8g8mTJ8PCwkJjDE9atGgRRo4cqdXxEJWVlbkU74cH4Y1mfliw9zpWH7uF/TH3cPDaPbzRzA/jOtWCszUbwcqgnCF1DEmP8lDj8TWk3BlIEZEB0Fd/RaYlTybHZ39ewObzSQCAUe2CML5zbUh4aQHSoiEvB0IQBEz99zIWH7gBESImdq3DYIrIRGk9lDp79mypy8+dO4eJEyfi0qVLGDFihLYPi6tXr0KhUGDJkiWoWbOm6jjZ2dmYO3euxrorVqxA165dVZ87OjpqfTxE5eVsa4GpPetjcMsAzN55FdsupmDdqUT8cy4Jw1tXh6dM3yOs2jQCqWq2WDeCgRQRGQ599VdkOtKz8vHe6jM4c0t5h71v+jTAG8389D0sqqIGtwoAAEz99zKWHLgJAAymiEyUzi50XiQuLg5TpkzB+vXr0adPH1y+fBnBwcFaP07Xrl01gqYaNWogJiYGixYtKhFKOTk5wdPTU+tjINKGADdbLHy7Kc7cuo8ZW6/gbMJD/LTvJiSQYsfDM+j5+JQ/R2vz5++MyoSBFBEZm8rqr8g0xKZm4d2Vp5BwPwcOVmZY/E5TtKrJO+yRbg1uFQBBAL76h8EUkSnTWSiVlpaGyMhILF26FK1bt8bRo0fx0ksv6epwpXr06BFcXFxKLP/oo48wfPhwBAYGYtiwYXjvvfcgkTz9mu/5+fnIz89XfZ6RkQEAkMlkkMm0O32laH/a3q8xMvVahHrbY/3wl7Dj8l0sPngT0clZOBSbjkOx6Zj890W0DXbDKw080aF2Ndha6jxfNgi6eE3cup+Dgb+eRvLjU/ZWD20GZ2upwb/uTP37ozjWQo21UNNlLfRZX0Por6hqORqbhpG/n0FGXiH8XKyxYkhz1HS30/ewyEQMahkAoFgwJQITuzGYIjIlWv9Ltuh0ue+//x41a9bE5s2b0blzZ20f5rlu3LiBn376CfPmzdNY/vXXXyMiIgLW1tbYs2cPPv30U6SlpeHLL7986r5mzZqFyMjIEst37doFGxsbrY8dAKKionSyX2PEWgDvBwCpHsDZdAH/pUmQkgvsuXoPe67eg7lERH1nEU1cRdR1EmFhApef0tZrIi0P+OmyFA8LBHhYixhS/RFOH9qjlX1XFn5/qLEWaqyFmi5qkZOTo/V9Po+h9FdUtWw4nYgvNl5EoUJEE38nLBvUDK52lvoeFpkYjWDq4OMZUwymiEyG1kOpoKAgZGZm4uOPP8aAAQMgCAIuXLhQYr3Q0NAy7W/atGmlBkLFnTp1Cs2aNVN9npSUhK5du6Jfv34YPny4xrrFw6dGjRoBUN7R5lmh1KRJkzBu3DjV5xkZGfDz80Pnzp3h4OBQpudRVjKZDFFRUejUqRPMzU379CzWQq2oFnOHdoS5uTmu3c3E1ot3sfViCm7dz8G5dAHn0gFbCyk61nXHKw088XKQKyzMnj4D0Bhp8zVx634O3ll+Cg8L8lHDzRa/v9sM1eyNpxHn94caa6HGWqjpshZFM6Yrk7b7KzJtCoWIubtisHC/8u5nPRt6Y87robzDHunNoJYBEABMeRxMiQAmMZgiMglaD6VSU1MBALNnz8acOXMgiqLqMUEQIIoiBEGAXC4v0/4++ugj9O/f/5nrBAQEqP6flJSE9u3bo2XLlli6dOlz9x8WFoaMjAzcvXsXHh4epa5jaWkJS8uSf6yam5vrrOnX5b6NDWuhVlSL+r4uqO/rgs+61sHlpAxsPp+ELReScedhLv45n4x/zifD0docXet7omdDb4TVcIGZtOoEVBV9TdxKz8bAX08jJSMfQdVssfa9MLjbG+c1pPj9ocZaqLEWarqohT5qq+3+ikxXnkyOT//vPLZeSAYAfNyhJsZ2rMU77JHeDXw8Y2rKP5ex9PGMKQZTRFWf1kOpuLg4re7Pzc0Nbm5lu9DinTt30L59ezRt2hQrVqx45nWiipw9exZWVlZwcnKq4EiJKp8gCAjxcUSIjyMmdK2Ds4kPsPl8MrZeTMa9zHysP52I9acT4WZngW4hXujZ0BvNqjubdOMZn5aNAcuOI/lRHmq622HNiBZGG0gRkenQdn9FpiktKx8jVp3G2YSHMJcKmNUnFK839dX3sIhUBrYMAAQBUzZdwtKDNyGKIr7oXpfBFFEVptVQ6sKFCwgJCSlTGAQAly9fRu3atWFmVvFhJCUloV27dvD398fcuXNx79491WNFd9rbvHkzUlJS0LJlS1hbW2Pfvn2YPHky3nvvvVJnQhEZE4lEQNPqLmha3QVTetTDibh0bLmQjO0Xk5GWVYDVx29h9fFb8HSwwiuhyoCqoa+jSf2SZyBFRMZIn/0VVR2xqZkYuvIUEu/nwtHaHIvfaYqWQa76HhZRCQPDqgMApmy6hGWHlIE8gymiqkur3Urjxo2RkpKCatWqlWn9li1b4ty5c6hRo0aFj71r1y7ExsYiNjYWvr6a7/gUTXE3NzfHwoULMW7cOCgUCtSoUQPTp0/Hhx9+WOHjExkSqURAqyA3tApyQ+Sr9XEkNg1bLiRj56UUpGTkYfnhOCw/HAc/F2v0CPVGz1Bv1PWyr9K/7OPTstF/6XGkZCgDqbUjwozqGlJEZLr02V9R1XDk8R32MvMKUd3VBr8OeQlB1XiHPTJcA8OqQwDw5eNgShSBya8wmCKqirQaSomiiClTppT5jnQFBQVaO/aQIUMwZMiQZ67TtWtXdO3aVWvHJDIG5lIJ2tV2R7va7pjxWggOXruHzReSsTv6LhLv52LR/htYtP8GgqrZKgOqht5V7lbQDKSIyJjps78i47fuZAK+3HQJhQoRzao7Y+mgZnCxtdD3sIie653HM6a+3HQJvxxWzphiMEVU9Wg1lGrbti1iYmLKvH7RaXREVDmszKXoXN8Tnet7IqegEHuvpmLz+STsi7mHG/ey8eOe6/hxz3XU9XJAj1Av9Az1hr9r2f4IMlRxadkY8DiQCna3wxoGUkRkZNhf0YtQKETM3hmDxQeUd9jr1cgb3/XlHfbIuLwTVh2CAEz+WxlMiQC+ZDBFVKVoNZTav3+/NndHRDpkY2GGHqHe6BHqjcw8GaKi72Lz+SQcup6GK8kZuJKcgTk7Y9DQzwk9Q73wSqgXvByN648cBlJEVBWwv6LyypPJMW7DOWy7mAIA+CQiGGM6BvMPeTJKb7dQzpia/PclLH88Y4rBFFHVwStgEhHsrczRp4kv+jTxxYPsAuy8nILNF5Jw7EY6zic+xPnEh5ix9QqaB7igZ0MvdGvgBTc7ww534tKy0X/pMdzNyGcgRUREJuNeZj6GrzqN84nKO+x91zcUfZrwDntk3N5uUR0CBHzx90UsP6y8xtSUHgymiKoChlJEpMHZ1gL9m/ujf3N/3MvMx/ZLydh8Pgmn4h/gZPx9nIy/j6n/XkarIDf0bOiFLvU94WRjWNemeDKQWvtemMGHaERERBV17W4mhq44hTsPc+FkY44l7zRFixq8wx5VDW+18AcAfPH3Rfx6RDljisEUkfFjKEVET1XN3hKDWgZgUMsAJD3MxbaLyoDq/O1HOBybhsOxafhy0yW0Ca6Gng290LGuB+ytzPU65pv3sjBg2XHczchHLQ/lDCkGUkREVNUdjk3H6HXnkZlfiABXG6wY2hyBbrb6HhaRVj0ZTIkQ8VWPegymiIwYQykiKhNvJ2sMb1MDw9vUwK30bGy5oAyorqZkYu/VVOy9mgoLMwk61HZHz4be6FDHHdYWlXsxVQZSRERkio7eFfDnif8gV4hoHuCCJQObwpl32KMq6q0W/hAEYNLGi1hxJB4AGEwRGTGGUkRUbtVdbfFh+5r4sH1NxKZmYvN5ZUB1My0bOy6nYMflFNhYSNGxrgd6NvRG21pusDTTbUB1814W+i89jtRMBlJERFXZoxwZGn29C4IoxfiTURAEARIBkAgCJIIAQfV/PP5cgFTyrMdLeUwCSB9vW+q+Jep9S4rtTxAESB8/LjzepuRxSm4rlTz78aJ9qx6XqP8fm5qJ/7spBSCid2MffNu3gc5/5xLp24DmyhlTDKaIjB9DKSKqkJru9hjbyR5jOgYjOjkDm88nY8uFJNx+kIt/zyfh3/NJsLcyQ5f6nujZ0ButglxhLpVodQzFA6naHvb4Y0QLBlJERFWUQhQhioAIAQq5CEDU95AMwugOQRjbqTb/KCeTwWCKqGpgKEVEWiEIAup7O6K+tyMmdK2Nc4kPsfl8MrZeTMLdjHz8eeY2/jxzGy62Fuga4omeod5oHugCqaRijQMDKSIi0+JobY5jE8IRtXsP2nfoAKnUTBVUKUQRCrEouBIhVxQtK/1xhQgoFMp/iz6Xq9YXoVCotxGLbVtifwqx9H1rbFv8cUBebJvSHi8al+q5FF9XUfy5KOCak4iP2wfxj3EyOQOa+0MAMPFxMCWKwNSeDKaIjAlDKSLSOkEQ0NjfGY39nfHlK3VxKv4+Nl9IwvaLKUjPLsCaEwlYcyIB7vaW6N7ACz0beqOJv1O5G4gb97IwoFggtWZEC7gykCIiqtIkEgFudpZwtAA8Haxgbq7fG2zom0wmw7ZtCfoeBpHe9H88Y2rixotYeTQeAIMpImPCUIqIdEoiEdCihita1HDFtJ71cexmOjafT8KOSylIzczHyqPxWHk0Hj5O1ugRqgyo6ns7PLeRYCBFRERERIAymBIEYMJfmsEUERk+7V7YhYjoGcykErQJrobZrzfE6S87YfngZnitkTdsLaS48zAXSw7eRI+fDqPDvAOYtysG1+5mlrqfm/eyVYFUHU8GUkREurJw4UIEBgbCysoKTZs2xaFDh/Q9JCKiUr35kj++69sAggCsPBqPyM3REEVec47I0HGmFBHphYWZBBF1PRBR1wN5Mjn2XU3F5gtJ2HMlFXFp2fhpbyx+2huL2h726BHqhR4NveHraIG7ucCMX0/hXlYB6nja44/hDKSIiHRh/fr1GDNmDBYuXIiXX34ZS5YsQbdu3RAdHQ1/f399D4+IqIQ3X/KHAAETNl7AyqPxkMvlaMqz+IgMGkMpItI7K3MpujXwQrcGXsjKL8SeK3ex+XwSDly7h5i7mYiJysS8qGsI8XZAwj0pMmQMpIiIdO3777/HsGHDMHz4cADA/PnzsXPnTixatAizZs3S8+iIiEr3xkt+AIAJGy9g9YlERLtJkHIkHlKJVM8j0y+5Qo4rSQKSWQvWohi5Qo70BwK663EMDKWIyKDYWZqhVyMf9Grkg0c5Muy8nILNF5Jw9EY6LiVlABBQ28MOa0aEwcXWQt/DJSKqkgoKCnDmzBlMnDhRY3nnzp1x9OjRUrfJz89Hfn6+6vOMjAwAygtxy2QyrY6vaH/a3q8xYi3UWAsl1gHo3cgThXI5Jm+6jDNpEpzZcU3fQzIQUvxzi7VQYi2KNHYVdPLzoqz7ZChFRAbL0cYcb7zkhzde8kNaVj62nL+DA6cv49vBzRhIERHpUFpaGuRyOTw8PDSWe3h4ICUlpdRtZs2ahcjIyBLLd+3aBRsbG52MMyoqSif7NUashRproWTqdbAFMKKOgHPpAnhpKaKnq24v6uTnRU5OTpnWYyhFREbBzc4Sbzf3g3PaRQZSRESV5Mk7oYqi+NS7o06aNAnjxo1TfZ6RkQE/Pz907twZDg4OWh2XTCZDVFQUOnXqBHNzc63u29iwFmqshRLroNaJtVDh60KNtVDTZS2KZkw/D0OpF1B0F4eyFrk8ZDIZcnJykJGRwW8Q1kKFtVBiHdRYCzXWQo21UNNlLYp+/1fluzq5ublBKpWWmBWVmppaYvZUEUtLS1haqq/zV1Sf3NxcrX8Nir6+ubm5KCws1Oq+jQ1rocZaKLEOaqyFGmuhxlqo6bIWubm5AJ7fLzGUegGZmcrb1Pv5+el5JERERKQvmZmZcHR01PcwdMLCwgJNmzZFVFQUevfurVoeFRWFXr16lWkf7JeIiIjoef0SQ6kX4O3tjcTERNjb2z91CvuLKprqnpiYqPWp7saGtVBjLZRYBzXWQo21UGMt1HRZC1EUkZmZCW9vb63u19CMGzcOAwcORLNmzdCyZUssXboUCQkJGDlyZJm2Z79UOVgLNdZCiXVQYy3UWAs11kLNEPolhlIvQCKRwNfXV6fHcHBwMPlvkCKshRprocQ6qLEWaqyFGmuhpqtaVNUZUsW9+eabSE9Px/Tp05GcnIyQkBBs27YN1atXL9P27JcqF2uhxloosQ5qrIUaa6HGWqjps19iKEVEREREpRo1ahRGjRql72EQERFRFSXR9wCIiIiIiIiIiMj0MJQyMJaWlpg6darG3WtMFWuhxloosQ5qrIUaa6HGWqixFlUbv75qrIUaa6HEOqixFmqshRproWYItRDEqnw/YyIiIiIiIiIiMkicKUVERERERERERJWOoRQREREREREREVU6hlJERERERERERFTpGEoREREREREREVGlYyhFRERERERERESVjqEUERERERERERFVOoZSRERERERERERU6RhKERERERERERFRpWMoRURERERERERElY6hFBERERERERERVTqGUkREREREREREVOkYShERERERERERUaVjKEVERERERERERJWOoRQREREREREREVU6hlJEVCErV66EIAiIj4/X2j6HDBkCOzs7re2vPMrzfNq1a4d27drpfExEREREFaGLfq2IIAiYNm1aiWOdPn1a68cioqqHoRQREREREREREVU6hlJERAZAFEXk5ubqexhERERERESVhqEUEVWqnJwcjB8/HoGBgbCysoKLiwuaNWuGtWvXllg3NjYW3bt3h52dHfz8/PDpp58iPz9fY5379+9j1KhR8PHxgYWFBWrUqIHJkydrrBcfHw9BELBy5coSx3hyynlpRFHE7NmzUb16dVhZWaFJkybYvn17qetmZGSonp+FhQV8fHwwZswYZGdnlzjuRx99hMWLF6Nu3bqwtLTEb7/99sxxAMDXX38NMzMzJCYmlnjs3XffhaurK/Ly8gAA69evR+fOneHl5QVra2vUrVsXEydO1BjL1q1bIQgCTp06pVr2119/QRAEvPLKKxr7Dw0NRd++fZ87RiIiIjJ+KSkpeP/99+Hr6wsLCwsEBgYiMjIShYWFZdr+wYMHGDp0KFxcXGBra4uePXvi5s2bJdb79ddf0bBhQ1Vf2Lt3b1y5ckX1OHsVoqqNoRQRVapx48Zh0aJFGD16NHbs2IHVq1ejX79+SE9P11hPJpPh1VdfRUREBP755x+8++67+OGHH/Ddd9+p1snLy0P79u2xatUqjBs3Dlu3bsU777yD2bNno0+fPlobc2RkJCZMmIBOnTph06ZN+OCDDzBixAjExMRorJeTk4Pw8HD89ttvGD16NLZv344JEyZg5cqVePXVVyGKosb6mzZtwqJFi/DVV19h586daNOmzXPH8v7778PMzAxLlizRWH7//n2sW7cOw4YNg5WVFQDg+vXr6N69O5YvX44dO3ZgzJgx2LBhA3r27KnaLjw8HObm5ti9e7dq2e7du2FtbY0DBw5AJpMBAFJTU3Hp0iV07NixfMUjIiIio5OSkoLmzZtj586d+Oqrr7B9+3YMGzYMs2bNwogRI8q0j2HDhkEikWDNmjWYP38+Tp48iXbt2uHhw4eqdWbNmoVhw4ahfv362LhxI3788UdcuHABLVu2xPXr1wGwVyGq8kQiogpYsWKFCECMi4sr0/ohISHia6+99sx1Bg8eLAIQN2zYoLG8e/fuYu3atVWfL168uNT1vvvuOxGAuGvXLlEURTEuLk4EIK5YsaLEsQCIU6dOferzefDggWhlZSX27t1bY7sjR46IAMTw8HDVslmzZokSiUQ8deqUxrp//vmnCEDctm2bxnEdHR3F+/fvP7MWpRk8eLDo7u4u5ufnazxniUTy1K+DQqEQZTKZeODAARGAeP78edVjrVu3Fjt06KD6vGbNmuJnn30mSiQS8cCBA6IoiuIff/whAhCvXbtW7vESERGRfpW3X3v//fdFOzs78datWxrL586dKwIQL1++rFr2tF7qab3TjBkzRFFU9ljW1tZi9+7dNdZLSEgQLS0txbfeeku1jL0KUdXFmVJEVKmaN2+O7du3Y+LEidi/f/9Tr6MkCILGjB5AOSX71q1bqs/37t0LW1tbvP766xrrDRkyBACwZ8+eCo/32LFjyMvLw9tvv62xvFWrVqhevbrGsi1btiAkJASNGjVCYWGh6qNLly4QBAH79+/XWL9Dhw5wdnYu95g++eQTpKam4v/+7/8AAAqFAosWLcIrr7yCgIAA1Xo3b97EW2+9BU9PT0ilUpibmyM8PBwANKbFR0RE4MiRI8jNzcWtW7cQGxuL/v37o1GjRoiKigKgfEfS398fwcHB5R4vERERGZctW7agffv28Pb21uhpunXrBgA4cODAc/fxtN5p3759AJQ9Vm5urqpvK+Ln54cOHTpo9HHsVYiqLoZSRFSpFixYgAkTJmDTpk1o3749XFxc8Nprr6mmaBexsbFRnYZWxNLSUnW9JABIT0+Hp6cnBEHQWM/d3R1mZmYlTgl8EUX78PT0LPHYk8vu3r2LCxcuwNzcXOPD3t4eoigiLS1NY30vL68XGlPjxo3Rpk0b/PzzzwCUjWN8fDw++ugj1TpZWVlo06YNTpw4gRkzZmD//v04deoUNm7cCAAaYWDHjh2Rn5+Pw4cPIyoqCm5ubmjcuDE6duyomiq/Z88eTocnIiIyEXfv3sXmzZtL9DT169cHgBI9TWme1jsV9VZF/5bWD3l7e2v0cexViKouM30PgIhMi62tLSIjIxEZGYm7d++qZk317NkTV69eLde+XF1dceLECYiiqBFMpaamorCwEG5ubgCgCreevEh6WUIrV1dXAMprKzwpJSVFY2aSm5sbrK2t8euvv5a6r6LxFHkyTCuP0aNHo1+/fvjvv//wv//9D7Vq1UKnTp1Uj+/duxdJSUnYv3+/anYUAI3rOBRp0aIF7OzssHv3bsTHxyMiIgKCICAiIgLz5s3DqVOnkJCQwEaPiIjIRLi5uSE0NBQzZ84s9XFvb+/n7uNpvVPNmjUBqHus5OTkEuslJSVp9E3sVYiqLs6UIiK98fDwwJAhQzBgwADExMQgJyenXNtHREQgKysLmzZt0li+atUq1eNFx7GyssKFCxc01vvnn3+ee4ywsDBYWVnhjz/+0Fh+9OhRjVMJAaBHjx64ceMGXF1d0axZsxIfxQOsiurduzf8/f3x6aefYvfu3Rg1apRGyFX0f0tLS43tnrxAOgCYm5ujbdu2iIqKwt69e1XhVps2bWBmZoYvv/xS1fgRERFR1dejRw9cunQJQUFBpfY0ZQmlntY7tWvXDgDQsmVLWFtb4/fff9dY7/bt29i7d69G38Fehajq4kwpIqpULVq0QI8ePRAaGgpnZ2dcuXIFq1evRsuWLWFjY1OufQ0aNAg///wzBg8ejPj4eDRo0ACHDx/GN998g+7du6veLRMEAe+88w5+/fVXBAUFoWHDhjh58iTWrFnz3GM4Oztj/PjxmDFjBoYPH45+/fohMTER06ZNKzEtfcyYMfjrr7/Qtm1bjB07FqGhoVAoFEhISMCuXbvw6aefokWLFuV6jk8jlUrx4YcfYsKECbC1tS1xPYZWrVrB2dkZI0eOxNSpU2Fubo4//vgD58+fL3V/ERER+PTTTwFAVTdra2u0atUKu3btQmhoKNzd3bUydiIiIjJs06dPR1RUFFq1aoXRo0ejdu3ayMvLQ3x8PLZt24bFixfD19f3mfs4ffq0Ru80efJk+Pj4YNSoUQAAJycnTJkyBV988QUGDRqEAQMGID09HZGRkbCyssLUqVM19sdehahqYihFRJWqQ4cO+Pfff/HDDz8gJycHPj4+GDRoECZPnlzufVlZWWHfvn2YPHky5syZg3v37sHHxwfjx48v0cjMmzcPADB79mxkZWWhQ4cO2LJlS5lmL02fPh22trZYuHAhVq9ejTp16mDx4sWYO3euxnq2trY4dOgQvv32WyxduhRxcXGwtraGv78/OnbsqNWZUgDw5ptvYsKECRg4cCAcHR01HnN1dcXWrVvx6aef4p133oGtrS169eqF9evXo0mTJiX2VdTcBQcHa1zAvWPHjti3bx+nwxMREZkQLy8vnD59Gl9//TXmzJmD27dvw97eHoGBgejatWuZbtSyfPlyrF69Gv3790d+fj7at2+PH3/8ES4uLqp1Jk2aBHd3dyxYsADr16+HtbU12rVrh2+++abEBcvZqxBVTYIoiqK+B0FEROX3008/YfTo0bh06ZLqwqNERERERETGgqEUEZGROXv2LOLi4vD+++/j5ZdfLnFNLSIiIiIiImPAUIqItEIURcjl8meuI5VKK3THuapOLpfjWT+SBUGAVCpFQEAAUlJS0KZNG6xevbrUWy4TERERPYn9GhEZGt59j4i04rfffoO5ufkzPw4cOKDvYRq0iIiIZ9YvKCgIABAfH4+8vDxERUUxkCIiIqIyY79GRIaGM6WISCvS09MRFxf3zHVq164Ne3v7ShqR8YmJiUFmZuZTH7e0tESDBg0qcURERERUlbBfIyJDw1CKiIiIiIiIiIgqnZm+B2CMFAoFkpKSYG9vz/OtiYiITIwoisjMzIS3tzckEl4J4WnYLxEREZmusvZLVSKUWrhwIebMmYPk5GTUr18f8+fPR5s2bZ66/oEDBzBu3DhcvnwZ3t7e+PzzzzFy5MgyHy8pKQl+fn7aGDoREREZqcTERPj6+up7GAaL/RIRERE9r18y+lBq/fr1GDNmDBYuXIiXX34ZS5YsQbdu3RAdHQ1/f/8S68fFxaF79+4YMWIEfv/9dxw5cgSjRo1CtWrV0Ldv3zIds+gc68TERDg4OGj1+chkMuzatQudO3eGubm5VvdtbFgLNdZCiXVQYy3UWAs11kJNl7XIyMiAn58fr7nyHOyXKgdrocZaKLEOaqyFGmuhxlqoGUK/ZPSh1Pfff49hw4Zh+PDhAID58+dj586dWLRoEWbNmlVi/cWLF8Pf3x/z588HANStWxenT5/G3LlzyxxKFU1Bd3Bw0EmTZWNjAwcHB36DsBYqrIUS66B28uY97E+zw+1TqZCa+OlDcoUCsawFANaiOLlCgfw8W53+vOApac/GfqlysBZqrAVQKFfg8PVUnHxkiy4WNnCwt9b3kPSKrwk11kKNtVCrjFo8r18y6lCqoKAAZ86cwcSJEzWWd+7cGUePHi11m2PHjqFz584ay7p06YLly5dDJpOV+oXIz89Hfn6+6vOMjAwAyi+gTCar6NPQULQ/be/XGLEWaqyFEuugtP1SCsZuuAi5KMHOOzf1PRwDwVqosRZFWrkLOvl5Yeo/g4jIsMgVIk7G3ceWC0nYcSkF6dkFAKSIW3UGq4a1gIOVaf/RTUSGzahDqbS0NMjlcnh4eGgs9/DwQEpKSqnbpKSklLp+YWEh0tLS4OXlVWKbWbNmITIyssTyXbt2wcbGpgLP4OmioqJ0sl9jxFqosRZKplyHs+kCVl2TQAEBtR0VcDftN0CJnqmGvaiTnxc5OTla3ycRUXkoFCLOJDzAlvNJ2HYpBfcy1W+gO9uYIy+/AOcSH2HQ8pNYNaw5gykiMlhGHUoVeXI6mCiKz5wiVtr6pS0vMmnSJIwbN071edG5kZ07d9bJdPSoqCh06tSJUwlZCxXWQsnU67D9UgpWn7gIBUT0CvVEO5vb6NLZNGtRnKm/LopjLdR0WYuiGdNERJVJFEWcTXyILeeTse1iMlIy8lSPOVqbo2t9T7wS6oWX/B3w68YdWHbdGucSHzKYIiKDZtShlJubG6RSaYlZUampqSVmQxXx9PQsdX0zMzO4urqWuo2lpSUsLS1LLDc3N9dqo5tfKMe1e7lIzAKu3M2BIJVCFEUoROW7IQoRUIji44/H/y+2vGhduUJ8/DnU6yqe2K7EtoBcLLbd48fkqv0+7Zjq4ylEqNaVK1ByO1GEQgGNdeUltlN/LooiqgsCukrNTP6PqyLafs0ZK1Osw5YLSRj7fxchV4jo28QXM3vVxc4dt6tsLeRyeZlPkZLL5TAzM4NcLn/m7WZNAWuhVpFamJubQyqVPvNxIqLKIIoiLt55hK0XkrHlQjLuPMxVPWZvaYZO9T3QM9QbL9d0g4WZ8medTCaDry3w29CmGLzyDIOpKqw8/ZJMJoOZmRny8vIgl8t1PDLDxlqoVaQWz+uXysqoQykLCws0bdoUUVFR6N27t2p5VFQUevXqVeo2LVu2xObNmzWW7dq1C82aNdN7k5nyKA+vLToOwAy4eEKvYzEUpyHF3dX/4fs3G8Hd3krfwyHSiy0XkvDJunOqQGr266FQyAv1PSydEEURKSkpePjwYbm28fT0RGJioslfeJq1UKtoLZycnODp6WnydSSiyieKIqKTM7D1QjK2XkzGrXT1KcO2FlJ0rOeBHqHeaFvLDZZmT/+DsJ6XA/4Y3gJv/3IC5xIfYuDyk1jNYKpKYL9UMayFmiH0S0YdSgHAuHHjMHDgQDRr1gwtW7bE0qVLkZCQgJEjRwJQnnp3584drFq1CgAwcuRI/O9//8O4ceMwYsQIHDt2DMuXL8fatWv1+TQAAGZSCTzsLZGfnwcba2tIJAKkEgESQYAgABJBgLTY/yWSx/8KAiRCsf8XW67aTqJcR3i8rlQiPP7/E9s+Zd9F60ofLy+5H6i3lzxlv8XWlZYyPuGJ9ePSMvFD1DUcjk1H9x8PYU6/hmhf213fXyaiSlU8kHq9qS++6xsKqUSAooq+qVPUYLm7u8PGxqZMv+AUCgWysrJgZ2dn8rODWAu1F62FKIrIyclBamoqAJR6rUkiIl24djcTW84nYcuFZNxMy1YttzaXokNdd/QM9UK72u6wMi/7zIT63o6qYOo8g6kqg/1SxbAWaobQLxl9KPXmm28iPT0d06dPR3JyMkJCQrBt2zZUr14dAJCcnIyEhATV+oGBgdi2bRvGjh2Ln3/+Gd7e3liwYAH69u2rr6eg4uNkjcOfh2Pbtm3o3r2t3mdu6ZtM5gZpyhVsTHFCzN0sDF1xCu++HIgJ3Wo/810hoqpi8/kkjFlfMpCqquRyuarBetrp1KVRKBQoKCiAlZUVGwvWQqUitbC2Vt5BIDU1Fe7u7lqZmk5EVJob97Kw5Xwytl5MwrW7WarllmYStK/tjldCvRBR1x02Fi/+Z1t9b0esGR6Gt345rgqmVr3bHI7Wpv23hrFiv1RxrIWaIfRLRh9KAcCoUaMwatSoUh9buXJliWXh4eH477//dDwq0gZPG+Cv91tg7u4bWHk0Hr8eicPxm+lYMKAxarrb6Xt4RDpTPJDq19QX31bxQAqA6poIurqrKVF5FL0OZTIZQyki0qpb6dnY8vgaUVeS1TdOsJBK0LaWG3qEeqNjPQ/YWWrvT7V63g5YMzwMbz8Opgb9ymDKWLFfIkOijX6pSoRSVLVZmksx7dX6aBPshs/+vIDo5Az0/Okwpvashzdf8jP584Cp6nkykPqubygkVTyQKo7f02QI+DokIm1KvJ+DbReVQdTFO49Uy80kAloHK4OoTvU8dBoS1fN2wB/Fg6nlJ7BqWAsGU0aKv6fIEGjjdchQioxGRF0P7PikDcZtOI/DsWmYuPEiDl6/h1m9Q+Fow1+mVDVsPp+ET9adhUKESQZSREREVUXyo1zVXfPOJT5ULZdKBLQKckWPUC90qe8JJxuLShuTRjB1+xGDKSLSO4ZSZFTcHayw6t3mWHboJubsjMG2iyk4l/AQ8/s3RvNAF30Pj6hC/j2fhDEMpIiIiIxWakaeakbU6VsPVMsFAQgLdEWPhl7oWt8TrnaWehsjgykiMiSmfVUvMkoSiYD3w4OwcVQrBLjaIOlRHvovPYbvo66hUK7Q9/CIXkjxQOqNZgykyHBMmzYNHh4eEAQBmzZt0vdwiIgMTlpWPlYfv4X+S4+hxaw9mLY5WhVIvRTgjMhX6+PEFxFY+14Y3m5RXa+BVJF63g5YMyIMzjbmOH/7EQYuP4FHuTJ9D4vIaLFfenEMpchohfo6YcvoNujbxBcKEViw5zr6Lz2O2w9y9D00onL559wdjUDq2z4MpIyJIAjP/BgyZAgAYN++fWjfvj1cXFxgY2OD4OBgDB48GIWFhQCA/fv3QxAEPHz4UONzQRAgkUjg6OiIxo0b4/PPP0dycvIzxxQfH68xBkdHR4SFhWHz5s3lem5XrlxBZGQklixZguTkZHTr1q3c9SEiqooeZBdg3ckEvPPLCTSfuRtTNl3C8Zv3IYpAY38nTOlRD8cnReD/RrbC4FYBcLe30veQS6jrpQymXGwtcKEomMphMEW6wX6JnoahFBk1O0szzHujIX7s3wj2lmY4fesBuv14CFsuJOl7aERl8s+5Oxi7/hwDKSOWnJys+pg/fz4cHBw0lv3444+4fPkyunXrhpdeegkHDx7ExYsX8dNPP8Hc3BwKxbNneMbExCApKQmnTp3ChAkTsHv3boSEhODixYvPHdvu3buRnJyMEydOoHnz5ujbty8uXbpU5ud248YNAECvXr3g6ekJS8sXe3e/6E5BRETG7FGuDP93OhGDfz2Jl2buxsSNF3E4Ng0KEQj1dcQX3evg8IT2+HvUyxjWOhCejoYXRD2prpcD/hjeQh1M/cpginSD/dLzmWq/xFCKqoRejXyw7ZM2aOzvhMy8Qny05iw+//M8svML9T00oqcqHki92cyPgVQpRFFETkHhcz9yC+RlWq88H6IolmmMnp6eqg9HR0cIglBiWVRUFLy8vDB79myEhIQgKCgIXbt2xS+//AILi2df4Nbd3R2enp6oVasW+vfvjyNHjqBatWr44IMPnjs2V1dXeHp6ok6dOpg5cyZkMhn27dunevzOnTt488034ezsDFdXV/Tq1Qvx8fEAlNPQe/bsCQCQSCQad1dZsWIF6tatCysrK9SpUwcLFy5UPVb0ruOGDRvQrl07WFlZ4ffffy/zdhs3bkT79u1hY2ODhg0b4tixYxrP6ciRIwgPD4eNjQ2cnZ3RpUsXPHigPE1GFEXMnj0bNWrUgK2tLVq3bo0///xTte2DBw/w9ttvo1q1arC2tkZwcDBWrFjx3DoSkenKzJPh77O3MWzlKTSbEYXP/ryAA9fuoVAhop6XAz7vWhsHPmuHfz9qjffaBsHX2UbfQy435YwpdTD1DmdMGR32S+yXjLlf4oXOqcrwc7HBhvdb4sfd1/Hz/lhsOH0bp+MfYMGAxgjxcdT38Ig0PBlIzerTgIFUKXJlctT7aqdejh09vQtsLLTza9LT0xPJyck4ePAg2rZtW6F9WVtbY+TIkRg7dixSU1Ph7u7+3G1kMhmWLVsGADA3V17INicnB+3bt0ebNm1w8OBBmJmZYcaMGejatSsuXLiA8ePHIyAgAEOHDtWY/r5s2TJMnToV//vf/9C4cWOcPXsWI0aMgK2tLQYPHqxab8KECZg3bx5WrFgBS0vLMm83efJkzJ07F8HBwZg8eTIGDBiA2NhYmJmZ4dy5c4iIiMC7776LBQsWwMzMDPv27YNcLgcAfPnll9i4cSMWLVqEoKAg7Nq1C4MGDYKHhwfCw8MxZcoUREdHY/v27XBzc0NsbCxyc3Mr9PUgoqonO78Qe66mYsv5JOy/dg8FheoZGrU97PFKqBd6hHqhRjU7PY5Su+p4KoOpt5adwMU7ymDq92EteIdrI8F+qST2S8bTLzGUoirFXCrB+C610TrYDWPXn8PNtGz0XngEn3epg2GtA/lHPxmETWfvYNwGZSDV/yU/fNObgVRV169fP+zcuRPh4eHw9PREWFgYIiIiMGjQIDg4OJR7f3Xq1AGgfLfsWU1Wq1atIJFIkJubC4VCgYCAALzxxhsAgHXr1kEikeCXX35Rvau3YsUKODk5Yf/+/ejcuTOcnJwAKJvEIl9//TXmzZuHPn36AAACAwMRHR2NJUuWaDRLY8aMUa1Tnu3Gjx+PV155BQAQGRmJ+vXrIzY2FnXq1MHs2bPRrFkzjXcM69evDwDIzs7G999/j71796Jly5ZQKBR46623cObMGSxZsgTh4eFISEhA48aN0axZMwBAQEBAOapORFVZboEc+2JSsfVCMvZcvYs8mTqIqlHNFj1CvdEj1Au1POz1OErdYjBF+sZ+yTT7JYZSVCWF1XDF9k/aYMJfF7Dz8l3M3HYFB6/fw7w3GhrkhSbJdDCQKh9rcymip3d55joKhQKZGZmwd7CHRKK9s9KtzaVa25dUKsWKFSswY8YM7N27F8ePH8fMmTPx3Xff4eTJk/Dy8irX/oqmyhefIl6a9evXo06dOrh27RrGjBmDxYsXw8XFBQBw5swZxMbGwt5e8w+svLw81bURnnTv3j0kJiZi2LBhGDFihGp5YWEhHB01Z6QWNTLl3S40NFT1/6K6pKamok6dOjh37hz69etX6tiio6ORl5eHTp06aSwvKChA48aNAQAffPAB+vbti//++w+dO3fGa6+9hlatWpW6PyKq+vJkchy8dg9bLiRj95W7yCmQqx6r7mqDHqFe6BHqjTqe9s/9eVtV1PF0wNoRYRiw7Dgu3nmEt5cfxx/DwhhMGTj2S6Vjv1SSIfZLDKWoynKyscDid5pizckEfL0lGoeup6H7j4cwp19DtK/9/OmbRNr299nb+HTDeShEYEBzP8x8jYHU8wiC8Nwp4QqFAoUWUthYmGm1ydIFHx8fDBw4EAMHDsSMGTNQq1YtLF68GJGRkeXaz5UrVwA8/50rPz8/BAcHIzg4GHZ2dujbty+io6Ph7u4OhUKBpk2b4o8//iixXbVq1UrdX9FFRpctW4YWLVpoPCaVajaltra2L7Rd0XR5QN1EFm1vbW391OdatM7WrVvh4+MDhUKBrKws2NnZqbbr1q0bbt26ha1bt2L37t2IiIjAhx9+iLlz5z51v0RUtRQUKnA49h62nE9GVPRdZBa7/qiPkzV6NPRCjwbeCPFxMJkg6km1Pe2xdkQY3lp2HJfuZODt5cfx+7AWcLJ59jV9SH/YL5WO/dLTx2ZI/RJDKarSBEHA2y2qo3mACz5eexZXUzIxdMUpvPtyICZ0qw1LM+0l+0TPwkCKnuTs7AwvLy9kZ2eXa7vc3FwsXboUbdu2fWozVJrw8HCEhIRg5syZ+PHHH9GkSROsX78e7u7uZZ4S7+HhAR8fH9y8eRNvv/12mY/9ots9KTQ0FHv27Cm1Ka1Xrx4sLS2RkJCA8PBwKBQKZGRkwMHBQaP5rlatGoYMGYIhQ4agTZs2+OyzzxhKEVVxMrkCR2+kY8v5JOy8nIKMPHUQ5elgpbpGVCM/J5MNop5U29Mea4oFU0Wn8jGYosrGfqn8jK1fYihFJiHYwx6bPnwZ326/ipVH4/HrkTgcv5mOBQMao6Z71blIJRkmzUDKHzNfC2EgZWKWLFmCc+fOoXfv3ggKCkJeXh5WrVqFy5cv46effnrmtqmpqcjLy0NmZibOnDmD2bNnIy0tDRs3biz3OD799FP069cPn3/+Od5++23MmTMHvXr1wvTp0+Hr64uEhARs3LgRn332GXx9fUvdx7Rp0zB69Gg4ODigW7duyM/Px+nTp/HgwQOMGzfuqcd+0e2KmzRpEho0aIBRo0Zh5MiRsLCwwL59+9CvXz+4ublh/PjxGDt2LBQKBVq1aoXk5GRcuHAB9vb2GDx4ML766is0bdoU9evXR35+PrZs2YK6deuWu45VwcGDBzFnzhycOXMGycnJ+Pvvv/Haa6+pHhdFEZGRkVi6dCkePHiAFi1a4Oeff1Zdk4LI0MkVIo7fTMeWC8nYcSkZD4rdTa6avSVeaaAMopr4O/N38lM8GUy9/csJ/DGcwRTpDvsl0+yXKhRKFb8gV1ktXry4TFe+J9I2K3Mppr1aH22C3fDZnxcQnZyBnj8dxtSe9fDmS358Z4x04u+ztzFuw3mIDKRMWvPmzXH48GGMHDkSSUlJsLOzQ/369bFp0yaEh4c/c9vatWtDEATY2dmhRo0a6Ny5M8aNG6dxMc2y6tGjBwICAjBz5kwsXLgQBw8exIQJE9CnTx9kZmbCx8cHERERz3wncPjw4bCxscGcOXPw+eefw9bWFg0aNMCYMWOeeewX3a64WrVqYdeuXfjiiy/QvHlzWFtbo0WLFhgwYAAA5cVB3d3dMWvWLNy8eROOjo5o0qQJJk+eDACwsLDApEmTEB8fD2tra7Rp0wbr1q0r8/H1RRf9VnZ2Nho2bIihQ4eib9++JR6fPXs2vv/+e6xcuRK1atXCjBkz0KlTJ8TExJS4rgaRoZArRMRmANM2X8HO6LtIyypQPeZqa4FuDTzRI9QbLwW4QMrfxWVS29Mea98Lw4Clx3E5icEU6Rb7JdPslwSx6OpfL0AikeCNN9545jmLxa1ZswZXrlxBjRo1XvSQBiEjIwOOjo549OjRC90F4FlkMhm2bduG7t27a5wnaop0WYvUjDyM23Aeh2PTAADdG3hiVu9Qg72II18XSsZWh43/3can/6cMpN5q4Y8ZvbQXSBlbLcoiLy8PcXFxCAwMhJVV2W9I8LRpx6aItVCraC2e9XrUZR9QGl33W4IgaMyUEkUR3t7eGDNmDCZMmAAAyM/Ph4eHB7777ju8//77pe4nPz8f+fn5qs8zMjLg5+eHtLQ0nfRLUVFR6NSpU5X5GfiiWAugUK7A+tO3sehAHO5mql+DTtbm6FLfHd1CPNEiwBlmUtP4uaiL18T1u1kYuOI00rMLUM/LHr8NaQYnA+2bi6uK3x95eXlITExEQEBAufolURSRmZkJe3vTuXD/07AWahWtRV5eHuLj4+Hn51dqv+Tm5vbcfqnCp+8tWLCgzDOf/vzzz4oejkgr3B2ssOrd5lh26Cbm7IzBtospOJfwEPP7N0bzQBd9D4+qAF0GUkRkeiqz34qLi0NKSgo6d+6sWmZpaYnw8HAcPXr0qaHUrFmzSr1+xa5du2BjY1OhMT1NVFSUTvZrjEy1FtEPBGy6JcHdXOXvWGupiAYuIpq4iqjlWAip5BYexdzCrhg9D1QPtP2aGFET+F+0FNHJmei9YC9G1ZXD1khynqr0/WFmZgZPT09kZWWhoKDg+Rs8ITMzUwejMk6shdqL1qKgoAC5ubk4ePAgCgsLNR7Lyckp0z4qFErt27dPdavEsti+fTt8fHwqckgirZFIBLwfHoSWQa4YvfYs4tNz0H/pMXzUIRijO9Q0mXfTSPv+OnMb4/9UBlJvt/DH1wykiKgCKrvfSklJAaC84GpxHh4euHXr1lO3mzRpksb1LopmSnXu3JkzpXTIVGtx7W4mvt1xDYdi0wEAzjbm+Cg8EE73o9Gti2nV4km6fE20Tc3CwF9P43Z2AVbfdsZvQ5vC2YBP5auK3x9FM6Xs7Ow4U+oFsRZq2pgpZW1tjbZt25Y6U6osKhRKPe+8zie1bt26Iocj0olQXydsGd0GU/+5jL/+u40Fe67jaGwa5vdvBF9n3byzS1UXAyki0jZ99VtPNqeiKD6zYbW0tISlpWWJ5ebm5jr7Y1CX+zY2plKLtKx8/BB1DWtPJkAhAuZSAUNfDsSH7WvCxgzYti3aZGrxPLqoQz0fZ6x7LwwDlh3HlZRMDFn5H/4Y3gLOtoYbTAFV6/tDLpdDEARIJJJynZ6uUCgAQLWtKWMt1CpaC4lEAkEQSv0eK+v3nNbvvpeamorU1FTVkysSGhqq7UMRaY2dpRnmvdEQbWu54cu/L+H0rQfo9uMhzOrTAD1CvfU9PDISf565jc8eB1LvhPlj+qsMpF5EBS51SKQ1hv461GW/VXRR2JSUFHh5eWkc88nZU0SVJU8mx8qj8fh5bywy85WniHQL8cTEbnVQ3dUWgHJWDOlesIc91o4Iw4BlJxCdrL74uaEHU1WNof+eItOgjdeh1kKpM2fOYPDgwbhy5YpqYIIgqN5Vk8vl2joUkc70auSDJv7OGL3uLM4mPMRHa87i4LV7mNqzPmwttZ7hUhXCQKriit5NycnJKfMFnYl0peg6CIb2znpl9FuBgYHw9PREVFQUGjduDEB5zYgDBw7gu+++q/D+icpDFEVsu5iCb3dcQeL9XABAAx9HTOlRj9cB1SNlMNVCFUy99csJrGEwVSnYL5Eh0Ua/pLW/socOHYpatWph+fLl8PDwMPlzM8l4+bnYYMP7LfHj7uv4eX8sNpy+jdPxD7BgQGOE+Djqe3hkgP7vdCI+/+uCKpD6ulcIfwa+AKlUCicnJ6SmpgIAbGxsylRHhUKBgoIC5OXlcQo2a6HyorUQRRE5OTlITU2Fk5MTpFKpDkdZftrqt7KyshAbG6v6PC4uDufOnYOLiwv8/f0xZswYfPPNNwgODkZwcDC++eYb2NjY4K233tLWUyF6rnOJDzFjSzRO33oAAPBwsMTnXeqgd2MfvvFjAII97LHuvRbov/QErjwOpv4Y3gIuDKZ0iv1SxbEWaobQL2ktlIqLi8PGjRtRs2ZNbe2SSG/MpRKM71IbrYPdMHb9OdxMy0bvhUfweZc6GNY6kI0QqTCQ0q6i04aKGq2yEEURubm5sLa2NvnasxZqFa2Fk5OT6vVoSLTVb50+fRrt27dXfV50gfLBgwdj5cqV+Pzzz5Gbm4tRo0bhwYMHaNGiBXbt2gV7e/sKHZeoLJIe5mL2jqvYdC4JAGBtLsX74TXwXtsasLHgzHVDUtNdM5h6m8FUpWC/VDGshZoh9Eta+6keERGB8+fPM5SiKiWshiu2f9IGE/66gJ2X72Lmtis4eP0e5r3REO72Zb/bBVVNG04nYsLjQGpgWHVM71Xf5H+xVZQgCPDy8oK7u3uZrw0ik8lw8OBBtG3b1uBOtapsrIVaRWphbm5ucDOkimir32rXrt0zrwMhCAKmTZuGadOmVeg4ROWRnV+IJQduYOmhm8iTKa+X1reJLz7rUhuejuy7DNWTwdRby45jzYgwBlM6xH6pYlgLNUPol7QWSv3yyy8YPHgwLl26hJCQkBJP6NVXX9XWoYgqlZONBRa/0xRrTibg6y3ROHQ9Dd1/PIQ5/RqifW13fQ+P9ISBlG5JpdIy/5KTSqUoLCyElZWVyTcWrIVaVa0F+y2qiuQKEX/9dxtzd8YgNTMfANA80AVTXqmHBr68dIIxUAZTYei/9DiupmQymKok7JdeDGuhZgi10FoodfToURw+fBjbt28v8RgvdE7GThAEvN2iOpoHuODjtWdxNSUTQ1ecwrsvB2JCt9qwNDPMd9RJNzacSsSEjcpAalDL6oh8lYEUEVUO9ltU1Ry7kY6vt0QjOjkDAODvYoMvutdBl/qe/N1qZGq622Hde2EYsIzBFBGVndau6jV69GgMHDgQycnJUCgUGh9skKiqCPawx6YPX8aQVgEAgF+PxKH3z0cRm5ql34FRpWEgRUT6xH6Lqoq4tGy8t+o0Biw7jujkDNhbmWFy97qIGtcWXUO8+LvVSNV0t8PaEWGoZm+pCqbuZxfoe1hEZMC0Fkqlp6dj7Nix8PDw0NYunyk+Ph7Dhg1DYGAgrK2tERQUhKlTp6Kg4Nk/9IYMGQJBEDQ+wsLCKmXMVDVYmUsx7dX6WD64GVxsLRCdnIGePx3GupMJz7w+Bxm/4oHUYAZSRKQHld1vEWnboxwZvt4Sjc4/HMCu6LuQSgQMalkdBz5rjxFta3D2eRXAYIqIykNroVSfPn2wb98+be3uua5evQqFQoElS5bg8uXL+OGHH7B48WJ88cUXz922a9euSE5OVn1s27atEkZMVU1EXQ/s+KQNWtd0Q65MjokbL+LDNf/hUU7ZLjZIxuXJQGoaAyki0oPK7reItEUmV2DlkTiEz92H5YfjIJOLaF+7GnZ80gbTe4XwFK8qpuhUvuLBVHpWvr6HRUQGSGvXlKpVqxYmTZqEw4cPo0GDBiUukjV69GhtHQqAMljq2rWr6vMaNWogJiYGixYtwty5c5+5raWlpUHe5pmMj7uDFVa92xzLDt3EnJ0x2HYxBecSHmJ+/8ZoHuii7+GRlhQPpIa0CsDUnvUYSBGRXlR2v0VUUaIoYu/VVMzcdgU372UDAGp52OHLV+qhba1qeh4d6VJQtcfXmHp88fO3fzmBP4a3gKudpb6HRkQGRKt337Ozs8OBAwdw4MABjccEQaiUJunRo0dwcXl+ELB//364u7vDyckJ4eHhmDlzJtzdn34Xtfz8fOTnq5P9jAzlhRhlMlmZb8FZVkX70/Z+jZEx1eLdVv54qbojxm64iFv3c9B/6TGMCq+BD9vVgJm04hMSjakWuqSPOvzfmdv4YlM0AGBgmD++6BqMwsLCSjv+0/A1ocZaqLEWarqshT7rawj9FlFZXUnOwMytV3A4Ng0A4GprgXGda+HNZn5a6Y/I8AVVs8NaBlNE9AxaC6Xi4uK0tasXcuPGDfz000+YN2/eM9fr1q0b+vXrh+rVqyMuLg5TpkxBhw4dcObMGVhalv7DcdasWYiMjCyxfNeuXbCxsdHK+J8UFRWlk/0aI2OqxaiawF9xEpy8J8H/9t/E1jM3MChYDhct/d41plroUmXV4dhdAetuKq9t0dZTgaa4ie3bb1bKscuKrwk11kKNtVDTRS1ycnK0vs+y0ne/RVQWqZl5+H7XNWw4nQiFCFhIJXi3dSA+bB8EeyvTvv26KXoymHpr2QmsGcFgioiUtBZKacu0adNKDYCKO3XqFJo1a6b6PCkpCV27dkW/fv0wfPjwZ2775ptvqv4fEhKCZs2aoXr16ti6dSv69OlT6jaTJk3CuHHjVJ9nZGTAz88PnTt3hoODQ1meVpnJZDJERUWhU6dOJabkmxpjrUUfAJsvJOOrf68gLrMQ30dbYcar9dC9wYufMmqstdC2yqzDhtO3se6YcobUoDB/fNm9tkGdssfXhBprocZaqOmyFkUzpolIU55MjuWH47BwXyyyC5R3g3wl1AsTu9aBn4tu3sgl41B0Kl//pccRc1cZTP0xogXcGEwRmbwKh1LTp08v03pfffVVmdb76KOP0L9//2euExAQoPp/UlIS2rdvj5YtW2Lp0qVlOkZxXl5eqF69Oq5fv/7UdSwtLUudRWVubq6zpl+X+zY2xliLPk398VKgG0avO4uzCQ/xyYYLOHLzPqb2rA9byxf/tjPGWuiCruuw7mQCJv+jDKSGvhyAr3oY7jWk+JpQYy3UWAs1XdRCH7XVdr9FpE2iKGLzhWR8t/0q7jzMBQA09HPCVz3qoml1XmOTlGo8EUy9zWCKiKCFUOrvv/9+6mOCICAmJgZ5eXllbpLc3Nzg5uZWpnXv3LmD9u3bo2nTplixYgUkkvKfm56eno7ExER4eXmVe1uiZ/FzscGG91vix93X8fP+WGw4fRun4x9gwYDGCPFx1Pfw6CnWnkzApI0XARh+IEVEpkPb/RaRtvyX8ABfb4nG2YSHAAAvRytM6FoHrzb0hkTC35+kqSiYGrCsaMbUcawZEcZgisiEVTiUOnv2bKnLz507h4kTJ+LSpUsYMWJERQ9TQlJSEtq1awd/f3/MnTsX9+7dUz1W/M56derUwaxZs9C7d29kZWVh2rRp6Nu3L7y8vBAfH48vvvgCbm5u6N27t9bHSGQulWB8l9poHeyGsevP4WZaNnovPILPu9TBsNaBbNYMDAMpIjJU+uq3iJ7m9oMczN4Rg3/PJwEAbCyk+CA8CMPb1IC1hVTPoyNDVqOaHdaOUAZT1+5mMZgiMnFav+1FXFwc3nnnHbz00ktwdHTE5cuXsXjxYm0fBrt27UJsbCz27t0LX19feHl5qT6Ki4mJwaNHjwAAUqkUFy9eRK9evVCrVi0MHjwYtWrVwrFjx2Bvb6/1MRIVCavhiu2ftEGX+h6QyUXM3HYFg1ecRGpmnr6HRo+tOaEOpN59OZCBFBEZtMrqt4ielJVfiNk7rqLDvAP493wSBAF4o5kv9o1vh48jghlIUZkoZ0y1hIeDpSqYSsvKf/6GRFTlaC2USktLw8cff4w6deogOTkZR48exfr16xEcHKytQ2gYMmQIRFEs9aM4URQxZMgQAIC1tTV27tyJ1NRUFBQU4NatW1i5ciX8/Px0Mkai4pxsLLD4naaY2TsEVuYSHLqehu4/HsK+mFR9D83krTmRgC/+VgdSU3rUZSBFRAapsvstoiJyhYh1JxPQbs5+LNx/AwWFCoTVcMHmj1pj9usN4eFgpe8hkpEJdLPVCKYGLGUwRWSKKhxKZWdnIzIyEkFBQTh69Cg2b96MPXv24KWXXtLG+IiqFEEQ8HaL6tj8UWvU8bRHWlYBhq44hembo5FfKNf38EzSHyduqQKpYa0ZSBGRYWK/Rfp0JDYNryw4hIkbLyItKx8BrjZYOrAp1o4I43UyqUKKgilPBytcT1UGU/cyGUwRmZIKX1MqKCgImZmZ+PjjjzFgwAAIgoALFy6UWC80NLSihyKqMoI97LHpw5fx7farWHk0Hr8eicPxm+lYMKAxarrb6Xt4JuOPE7cw+e9LAJSB1JevMJAiIsPEfov04ca9LHyz9Qr2XFXO6nawMsMnHWthYFh1WJhp/SogZKIC3Wyx9r0wDFh6HNdT1deYqmbPa0wRmYIKh1KpqcpfUrNnz8acOXM0Tp8TBAGiKEIQBMjlnAVCVJyVuRTTXq2PNsFu+OzPC4hOzkDPnw5jas96ePMlP4YjOvb78Vv4cpMykBreOhCTGUgRkQFjv0WV6UF2AX7ccx2/H7+FQoUIM4mAd8Kq45OIYDjbWuh7eFQFKWdMhaE/gykik1PhUCouLk4b4yAyWRF1PbDjkzYYt+E8DsemYeLGizh4/R5m9Q6Fo425vodXJTGQIiJjw36LKkNBoQKrj9/Cgj3X8ShXBgDoWNcdk7rXRVA1zuQm3Qp4IpgasOw41jKYIqryKhRKXbhwASEhIZBIyjZ99/Lly6hduzbMzCqchRFVKe4OVlj1bnMsO3QTc3bGYNvFFJxLeIj5/RujeaCLvodXpaw+fgtTHgdSI9oE4ovuDKSIyLCx3yJdE0URUdF3MWv7VcSlZQMA6nja48tX6qF1sJueR0empCiYGrDsOGIfB1NrRrSAuz0vpE9UVVXoZPDGjRsjPT29zOu3bNkSCQkJFTkkUZUlkQh4PzwIG0e1QoCrDZIe5aH/0mP4PuoaCuUKfQ+vSmAgRUTGiP0W6dKlO4/w1rITeG/1GcSlKZ/EXAABAABJREFUZcPNzhLf9mmAraPbMJAivQhws8XaEWHwcrRCbGoW3lp2AqmZefoeFhHpSIXeQhNFEVOmTIGNjU2Z1i8oKKjI4YhMQqivE7aMboOp/1zGX//dxoI913Hk+j00sBLQ+FEe/N14St+LWH0sHlP+uQwAeK9tDUzqVoeBFBEZBfZbpAupGXmYszMGf/53G6IIWJhJMKJNID5oVxN2lpxlR/pV/FS+2Md35Vv7XhhnTBFVQRX6jdO2bVvExMSUef2WLVvC2tq6IockMgl2lmaY90ZDtK3lhi//voQzCQ9xBlKsnHsQng5WaOzvhMb+Tmji74wQH0dYmUv1PWSDxkCKiIwZ+y3SptwCOZYduonFB24gp0B5YfyeDb0xoWtt+DqXLfgkqgzVXdXB1I172QymiKqoCoVS+/fv19IwiKg0vRr5oIm/M5YeiMW+SwlIzpUgJSMP2y+lYPulFACAmURAPW8HNPZzQpPqzmjs5ww/F2uGLo+tOhaPrx4HUu+3rYGJDKSIyMiw3yJtUChE/Hs+Cd/tuIrkR8pToRr7O+HLV+qhaXVnPY+OqHRFwdSA4sHUiDC4OzCYIqoqODeXyMD5udjgqx510UwSh3YdI3D1bg7OJj7E2YQH+C/hIe5l5uPC7Ue4cPsRfjt2CwDgZmeBRn7OqhlVDX2dYGuCU/EZSBEREQGn4+/j6y3ROH/7EQDAx8kaE7rVQc9QL/5eJINX3dUWa4sHU8sYTBFVJab3VyqREbOxMEOLGq5oUcMVgPI6I3ce5uJswkP8l/AAZxMe4nLSI6RlFWD3lbvYfeUuAEAiALU9HZQh1eMZVYGutpBIqm4jqhFIhdfAxK4MpIiIyLQk3s/Bt9uvYuvFZACArYUUo9rXxLDWgTz1n4yKcsZUS/Rfegw37mWj/7LjWMdgiqhKYChFZMQEQYCvsw18nW3Qs6E3ACBPJsflpAycTXignFF16wGSHuXhSnIGriRnYM0J5R2ZHK3N0chPeV2qxv5OaOjnBEfrqnERdQZSRERkyjLyZPh5XyxWHI5HgVwBiQC8+ZIfxnaqxevxkNHyd7VRBVM3GUwRVRkMpYiqGCtzKZpWd9a4PkTKozycS3ygmlF14fYjPMqV4cC1ezhw7Z5qvZrudmji74TGj4OqYHd7SI1sNtVvR+Mx9V9lIDUyPAgTutZmIEVERCahUK7AulOJ+CHqGtKzlXdhfLmmK758pR7qejnoeXREFVcUTA1YdpzBFFEVwVCKyAR4Olqhq6MXuoZ4AQBkcgWuJmc+PuVPOaPqVnoOYlOzEJuahQ2nbwNQ3gWwoZ8jGvs5o0l1JzTyc4aLrYU+n8ozMZAiIiJTdSg2Dd/uuIZrd7MAADWq2WJy97roUMedvwupSvF3tcHaEWHqYGrpcax7j8EUkbFiKEVkgsylEjTwdUQDX0cMbhUAAEjLyse5hIc4+3hG1fnEh8jKL8SR2HQciU1XbRvgaoPG/s6qGVW1Pe1hLpXo6ZmorTwSh2mbowEAH7QLwuddGEgREVVFj3JlaD5zN0SFFJP/2wupRIBUIkAiCJBKADOJBBIJIBUESCQCpELxx5XLzB4vl0ig8diT2zy5b439PP7XTKLeRr0tnrGfYutKoLmfYmN8ctxF66qe3+N1HmTnYfEVCa4c+w8A4GRjjjERwXg7rLpB/H4m0gXljKkw9F96HDfTlMHU2vfC4MFgisjoMJQiIgCAm50lOtbzQMd6HgAAuULEtbuZOJtQdKe/B7hxLxvx6TmIT8/B32fvAACszCUI9XV6fBF15Yyqyr5eBQMpIiLTIVeIyC9UABBQkF+o7+EYCAnMJAIGtwrAxx1qwsnGcGc1E2mLn4tmMDWAwRSRUWIoRUSlkkoE1PVyQF0vB7zVwh8A8ChHhnO3H+K/W8pT/s4lPEBGXiFOxt3Hybj7qm19nKzR2F99EfV63g6wNNPNXX5WHIlD5ONAalS7IHzGQIqIqEpztDbHvnFtsHffPrRpGw6JVAq5QhlWKUQRcoWIwmL/VyhEyIv+L4ol1lV9iOp1Fapl0Ni+6EO1rWpdaCyTyzX3p3k8PP/Yj8dZfFnhE8cu+lcUAX/rfMwb1AbBnk76/vIQVSoGU0TGj6EUEZWZo405wmtVQ3itagCUzfLNtCz8l/BQNaPq2t1M3HmYizsPc7HlgvIW1BZSCer7OKhCqsb+zvB2tKpweMRAiojI9EglAnydreFmBQS62cLcvGrcOfZFyWQybNu2DQGutvoeCpFeMJgiMm4MpYjohUkkAmq626Omuz3eaOYHAMjKL8SFxIc4m6ieUXU/u+BxaPVQta2HgyUa+ylDqibVndHAxxFW5mWfTVU8kPqwfRDGd2YgRURERGSKngymii5+7mKtm5n6RKQ9DKWISKvsLM3QqqYbWtV0AwCIooiE+zmP7/SnDKaikzNwNyMfOy6nYMflFACA2ePTBYuf9ufvYlNq0LTy2C3M3BYDgIEUEZEuLVy4EHPmzEFycjLq16+P+fPno02bNvoeFhFRCcWDqbjHwdSqoU31PSwieg6GUkSkU4IgoLqrLaq72qJ3Y18AQG6BHBfvPMLZx0HVfwkPkJqZj4t3HuHinUdYdewWAMDV1kJ1ul9jPyfU9bTF/mQBfx9TBlIfta+JTzvXYiBFRKQD69evx5gxY7Bw4UK8/PLLWLJkCbp164bo6Gj4+/vre3hERCUUBVMDlimDqYG/nsbQ6voeFRE9C0MpIqp01hZSNA90QfNAFwDK2VRJj/KUd/m79RBnEx/g8p0MpGcXYPeVVOy+kgoAkAiAQlROw2YgRUSkW99//z2GDRuG4cOHAwDmz5+PnTt3YtGiRZg1a1aJ9fPz85Gfn6/6PCMjA4DymkcymUyrYyvan7b3a4xYCzXWQsnU6+Bpb47VQ5th4K+nEJ+eg9mPpFideASm3jKKIpCVJcVPsawFa6EmioCfmQSddPDzoqw/gxhKEZHeCYIAHydr+DhZo0eoNwAgv1COy0kZqguon014iDsPcwEAH4QHMpAiItKhgoICnDlzBhMnTtRY3rlzZxw9erTUbWbNmoXIyMgSy3ft2gUbGxudjDMqKkon+zVGrIUaa6Fk6nUYVgP46bIU9/MFxN7L1vdwDIQA5LIWSqxFEXtX3fy8yMnJKdN6DKWIyCBZmknRxN8ZTfydAQQCAG6nZ2Lzzr0Y3jGYgRQRkQ6lpaVBLpfDw8NDY7mHhwdSUlJK3WbSpEkYN26c6vOMjAz4+fmhc+fOcHBw0Or4ZDIZoqKi0KlTJ959j7VQYS2UWAe1V7vkYeU/e9GkaTOYmZn2n76FhYU4c+YMmjZtylqwFiqFhYWIuXBaJz8vimZMP49pfwWIyKh4OFjBm3e8JiKqNE++ASCK4lPfFLC0tISlpWWJ5ebm5jr7w1iX+zY2rIUaa6HEOgAONkBNR6B1LXeTr4VMJkNGrMhagLUoTlkL3fy8KOv+GEq9AFEUAZQ9+SsPmUyGnJwcZGRk8BuEtVBhLZRYBzXWQo21UGMt1HRZi6Lf/0X9QFXk5uYGqVRaYlZUampqidlTT8N+qXKwFmqshRLroMZaqLEWaqyFmiH0SwylXkBmZiYAwM/PT88jISIiIn3JzMyEo6OjvoehExYWFmjatCmioqLQu3dv1fKoqCj06tWrTPtgv0RERETP65cYSr0Ab29vJCYmwt7eXuvXtSm6/kJiYqLWr79gbFgLNdZCiXVQYy3UWAs11kJNl7UQRRGZmZnw9vbW6n4Nzbhx4zBw4EA0a9YMLVu2xNKlS5GQkICRI0eWaXv2S5WDtVBjLZRYBzXWQo21UGMt1AyhX2Io9QIkEgl8fX11egwHBweT/wYpwlqosRZKrIMaa6HGWqixFmq6qkVVnSFV3Jtvvon09HRMnz4dycnJCAkJwbZt21C9evUybc9+qXKxFmqshRLroMZaqLEWaqyFmj77JYZSRERERFSqUaNGYdSoUfoeBhEREVVREn0PgIiIiIiIiIiITA9DKQNjaWmJqVOnlnpLZVPDWqixFkqsgxprocZaqLEWaqxF1cavrxprocZaKLEOaqyFGmuhxlqoGUItBLEq38+YiIiIiIiIiIgMEmdKERERERERERFRpWMoRURERERERERElY6hFBERERERERERVTqGUkREREREREREVOkYShERERERERERUaVjKEVERERERERERJWOoRQREREREREREVU6hlJERERERERERFTpGEoREREREREREVGlYyhFRERERERERESVjqEUERERERERERFVOoZSRERERERERERU6RhKERERERERERFRpWMoRURERERERERElY6hFBEZtf3790MQBPz555/PXXfIkCEICAjQ/aCeo2jM+/fvVy3btm0bpk2b9sL7DAgIQI8ePSo+OCIiIjIpxthLPU1pPda0adMgCIL+BkVEz8RQiohMxpQpU/D333/rexho0qQJjh07hiZNmqiWbdu2DZGRkXocFREREdGzGUovRURVh5m+B0BE9DQ5OTmwsbHR2v6CgoK0tq+KcHBwQFhYmL6HQURERFWcsfdSoigiLy8P1tbWlXpcIqo8nClFRAahaGr1f//9h9dffx3Ozs7lanxkMhkmT54Mb29vODg4oGPHjoiJidFYp7Qp54Ig4KOPPsKSJUtQq1YtWFpaol69eli3bl25n0NZ9/Xk1PIhQ4bg559/Vu2j6CM+Ph4AoFAo8NNPP6FRo0awtraGk5MTwsLC8O+//5YYw44dO9CkSRNYW1ujTp06+PXXX8v9PIiIiMj4VKVeavHixahbty4sLS3x22+/AQAOHz6MiIgI2Nvbw8bGBq1atcLWrVvLfQwiMiycKUVEBqVPnz7o378/Ro4ciezs7DJv98UXX+Dll1/GL7/8goyMDEyYMAE9e/bElStXIJVKn7ntv//+i3379mH69OmwtbXFwoULMWDAAJiZmeH1118v1/hfZF9TpkxBdnY2/vzzTxw7dky13MvLC4CyAfz9998xbNgwTJ8+HRYWFvjvv/9UoVWR8+fP49NPP8XEiRPh4eGBX375BcOGDUPNmjXRtm3bcj0PIiIiMk7G3ktt2rQJhw4dwldffQVPT0+4u7vjwIED6NSpE0JDQ7F8+XJYWlpi4cKF6NmzJ9auXYs333yzXMcgIsPBUIqIDMrgwYNf6NpK9erVw++//676XCqV4o033sCpU6eee6pcWloaTp06BQ8PDwBA9+7dERISgkmTJpW7kXqRfQUFBanWf3Kshw4dwurVqzF58mTMmDFDtbxr166lHvvIkSPw9/cHALRt2xZ79uzBmjVrGEoRERGZCGPvpbKysnDx4kU4OzurlrVs2RLOzs7Yv38/7OzsAAA9evRAo0aNMH78eLzxxhu8mDmRkeLpe0RkUPr27ftC27366qsan4eGhgIAbt269dxtIyIiVE0UoGzC3nzzTcTGxuL27dvlGoc29wUA27dvBwB8+OGHz123UaNGqkAKAKysrFCrVq0y1YCIiIiqBmPvpTp06KARSGVnZ+PEiRN4/fXXVYFU0TEGDhyI27dvlzjNkIiMB0MpIjIoRaeslZerq6vG55aWlgCA3Nzc527r6en51GXp6enlGoc29wUA9+7dg1QqLXW/T3qyBoCyDmWpAREREVUNxt5LPTn+Bw8eQBTFUp+Xt7f3Cx2DiAwHQykiMij6mHqdkpLy1GWlBT2VtS8AqFatGuRyean7JSIiInqSsfdST47f2dkZEokEycnJJdZNSkoCALi5uZXrGERkOBhKEZHJ27NnD+7evav6XC6XY/369QgKCoKvr2+l7Otp70Z269YNALBo0aJyjYOIiIiosmizl3qSra0tWrRogY0bN2r0SQqFAr///jt8fX1Rq1atCh2DiPSHFzonIpPn5uaGDh06YMqUKao7xly9evWFbmX8ovtq0KABAOC7775Dt27dIJVKERoaijZt2mDgwIGYMWMG7t69ix49esDS0hJnz56FjY0N/p+9+w5r6nz7AP5NQgh7740IouBguAdaK2pra6tVq9Y6qnVVq9YOa7Vqtf5qW9+2tm6rdmpr1baOVqx7K4oDXMhUQWTJhpCc949IIoIKCCSQ7+e6uCQn55w8uU3Cnfs8Y8qUKTV6zkRERES1pTZzqcosXrwYvXr1Qo8ePTBz5kwYGhpi+fLluHTpEn799VdOck7UgLEoRUR678UXX0RAQAA++ugjJCUlwcfHBz///HONlheu6bmGDRuGo0ePYvny5ViwYAEEQUB8fDy8vLywYcMGBAcHY926ddiwYQOMjY3RokULfPjhhzV9ykRERES1pjZzqcqEhYVh3759+PjjjzFq1CgolUq0bt0af/31F/r161crj0FE2iESBEHQdiOIiLRFJBJh8uTJ+Pbbb3XqXEREREQNAfMfInoanFOKiIiIiIiIiIjqHYfvEZFOEgQBCoXisftIJJJ6mUOgtLT0sfeLxWKIxazxExERke5gLkVEDQHf+USkkw4ePAipVPrYn40bNz714wiC8MTu5k9qx5gxY6p8LiIiIqL60BBzKSLSP5xTioh0Um5uLq5evfrYfby9vWFra1vnbTlz5sxj77ezs4OXl1edt4OIiIioqphLEVFDwKIUERERERERERHVO84pVQNKpRK3b9+Gubl5vYzBJiIiIt0hCAJyc3Ph4uLCOVAeg/kSERGR/qpqvsSiVA3cvn0b7u7u2m4GERERaVFycjLc3Ny03QydxXyJiIiInpQvsShVA+bm5gBUwbWwsKjVc8vlcuzZswfh4eGQSqW1eu6GhrHQYCxUGAcNxkKDsdBgLDTqMhY5OTlwd3dX5wNUOeZL9YOx0GAsVBgHDcZCg7HQYCw0dCFfYlGqBsq6oFtYWNRJkmViYgILC4s6e4MIggC5QkCpUgm5QoBcoUTp/X/lCiVKlQJKSlX/qrep7y87rrJjBZTe31+uLPv9oXMoBchLlShVKlFyf/9ShYAShWqbvFSAXKnaVqpQwlQww83TaWjXxA5BHlawMNLPD436eF00BIyDBmOhwVhoMBYa9RELDkl7vIaeL+myjLxiHI/LwLEbGTifnAU7wQz9jE1hbmKk7aZplb6/LsowDhqMhQZjocFYaOhCvsSilA7JLijBj8fiEZ0swpW916EURBWKQBUKPcryBSF1oUddWKpYPCpVNqS57cW4fiAO3x2Ig0gENHM0R4inNUI8rRHqaQN3G2N+KSAiIqJGLadIjlNxmTh2IwPHbqTjSmruQ3uIMXj1KawcEQJPW1OttJGIiKgmWJTSIfcK5fhybywACXAzvl4f20AsglQihoFE9a9UIoKBWAxDAzEMxCIYSMQwlKj+NRCL1NtV+5Y/TioRw0D8wO8PnVNqIIb0/jmlkofOcf84A4kYitJSbPnvOErM3XDu5j0kZhTgSmourqTm4ueTSQAAe3MZQjysEeqlKlQFuFjC0ICTzhIREVHDVViiQGRiFo7eSMexGxm4eDMbD19T9HcyRycfO3jYGOHz3TG4nJqLfsuO4ItBrdE7wEk7DSciIqomFqV0iIWRFK8EuyLlVjKaeHvBSCpRFW7UBaPKCz2VFYEM7+//pAJS2XG62NtILpcjxVHAc8+1hFQqRVpuEc4mZiEyMQtnErNw6dY93M0txj/RqfgnOhUAIDMQo7WbFUK8rBHioSpUWZsaavmZEBERET1aSakS529m41isqifUuaRslCiU5fbxtjNFRx9bdPaxQ4cmNrA1kwFQ5UuiWxfxZ7odziZlY/yPkXizWxO827sZpBJeqCMiIt3GopQOsTY1xOKXA7BrVyKee85f78e3PszB3Ah9Ap3RJ9AZAFAkV+DirXs4k6AqVEUmZiKrQI5TCZk4lZCpPq6JvSlC7w/3C/a0ho+9qU4W4YiIiEg/KJQCYm7n4Nj9nlCnEzJRUKIot4+zpRE6+dihk48tOvrYwsXK+JHns5IBP40JxdK9N7D2SDxWH4rDuaQsfDssGI4W+j3PFFFjplAoIJfLq7SvXC6HgYEBioqKoFAonnxAI8ZYaDxNLKRSKSQSyVO3gUUparCMpBK09bJBWy8bAKoJ3OPS81UFqoQsnEnMxI27+Yi7//PbmZsAAGsTKUI8rRF8v1DVys0SRtKnfzMRERERVUYQBMSm5annhDoRl4l7heW/SNqYGqKjjy06+diik48dvGxNqnURTSoR46N+LRDqZY13f7+A0wlZeP6bw/jm1SB0ampX20+JiLRIEASkpqYiOzu7Wsc4OTkhOTlZ7y/QMxYaTxsLKysrODk5PVUcWZSiRkMkEsHH3gw+9mYYHOoOAMjKL8HZJNVwv8jELJxPzkZWgRx7L6dh7+U0AIBUIkKAiyVC70+gHuJlDQdzXlUkIiKimkvOLMCxG+k4GqtaJS89r7jc/eYyA7RvYoOO93tDNXM0h1j89F+O+gQ6o5mTBSb+FIkrqbl4bd1JvBPeDBPDfGrl/ESkfWUFKQcHB5iYVK2ArVQqkZeXBzMzM4jF+j20l7HQqGksBEFAQUEB0tJU36mdnZ1r3AYWpahRszY1RM/mjujZ3BGAas6G6Nv37g/3UxWr7uYWIyo5G1HJ2Vh7RDXBvIeNiWaVPy9r+DqYQ8JEjoiIiB4hLacIx+MycDRWNSTvZlZhuftlBmK09bJRzQvV1A6BLhYwqKM5n7ztTLF9cmfM2X4Jv0fexOf/XsWZhEz835A2sDLhXJtEDZlCoVAXpGxtbat8nFKpRElJCYyMjFiIYSzUniYWxsaqYeVpaWlwcHCo8VA+FqVIrxgaiBHkYY0gD2uM7aqq8N7MKsSZxExVkSohC1fv5CIpswBJmQXYdu4WANXVzCBPa/VKf23crWAq49uHiIgap8WLF2Pr1q24cuUKjI2N0alTJ3z22Wdo1qyZtpumM7ILSnAiLuP+kLwMxKbllbvfQCxCG3crdGqq6gkV5GEFmUH9TRdgJJXg80Gt0dbLBnP+vIT9V+/i+W+OYPnwYLR2t6q3dhBR7SqbQ8rExETLLSHSvA7lcjmLUtW1fPlyfP7550hJSUFAQAC++uordO3aVdvNonomEongbmMCdxsTvBzkBgDIKZIjKin7/pC/TJxLykZucSkOXbuLQ9fuAgDEIqC5swVCy+am8rKB62MmICUiImpIDh48iMmTJ6Nt27YoLS3F7NmzER4ejpiYGJiammq7eVqRX1yKUwmZOH5/Xqjo2zkQBM39IhEQ4GKBzj526Ohji7ZeNjpxAWtwW3cEuFpg0s9nkZhRgEErj2NOv+Z4rYOn3s+lQtSQ8f1LuqA2Xofa/0upBZs3b8a0adOwfPlydO7cGatWrULfvn0RExMDDw8PbTePtMzCSIpufvbo5mcPAChVKHElNVc1N9X9lf5uZRci+nYOom/nYOPxRACqVXJUk6erJlBv7mxeZ93yiYiI6tI///xT7vb69evh4OCAyMhIdOvWrdJjiouLUVysmTcpJycHgOrqaVVXh6qqsvPV9nkfVCxXIOrmPRyPy8SJuEycv3kPpUqh3D5N7U3RsYkNOjSxQTsvG1iZPLhyslCn7StTlVj42Ztg24T2+GBbNPbEpGHOn9E4GZeBhf1b6EThrLbUx+uiIWAcNBpjLORyOQRBgFKphFKprPJxwv0qetmx+oyx0HjaWCiVSgiCUGlPqaq+70SCIAhP3q1xad++PYKDg7FixQr1tubNm+Oll17C4sWLK+xfWZLl7u6O9PR0WFhY1Grb5HI5IiIi0KtXL0il0icf0IjpcixS7hXhXFI2IpOycS45GzEpuVA8lKgaS8Vo7WaJYA9rBHtYIsjdChbGNXseuhyL+sQ4qCiVAjYcS8CfJ6/Czs4OIj0fCy8olUhPT2cswFg8SFAqYV96F5+8/mytf17k5OTAzs4O9+7dq/U8QFfFxsbC19cXFy9eRGBgYKX7zJs3D/Pnz6+w/ZdffmkQw0wUApCcB1zPEeHaPRHic0SQC+WvANvKBPhaCvC1UP1r2cCmZxIE4ECKCH8liqGECI7GAsb4KeCk+/89RHSfgYEBnJyc4O7uDkPDBvYh1Ij973//w/fff4+7d+/ip59+wvPPP6/tJtWLkpISJCcnIzU1FaWlpeXuKygowLBhw56YL+ldUaqkpAQmJib4/fff8fLLL6u3v/3224iKisLBgwcrHNPQkyyqe8UKIClPhPhcIC5XhIRcEQoV5RNZEQQ4GQPe5gK8LQR4mwmwM1J19yeqqhIF8PMNMaIy9LvgQFQVnRyUGOJT+1dAq5pkNRaCIKB///7IysrC4cOHH7lfQ7uIp1QKuJaWh+NxmTgel4FTCVnIL1aU28fezBAdmtioe0O5W+te3leTWJxJzMK0zRdwJ7cYxlIxFvYPwIuta75ykq7gxSsVxkGjMcaiqKgIycnJ8PLygpFR1VcMFwQBubm5MDc318rQvyfNN/T6669j/fr12L9/PxYuXIjz58+jqKgIrq6u6NixI9auXQsDAwMcOHAAPXv2REZGBqysrNS3AdVQMnNzczRp0gTPPvsspk2bVumqcGWxyMjIQNOmTdXbLSws0Lx5c8yaNQsvvPBClZ/b5cuXERgYiD/++AMdOnSAtbU1ZDJZlY/Xpqd9XRQVFSEhIQHu7u4VXo9VvYjXePrrVlF6ejoUCgUcHR3LbXd0dERqamqlx8yaNQszZsxQ3y5LssLDw3UyyWosGnIslEoBN+7mIzIpG2eTs3E2MRuJmQVIKQRSCkU4plo5E3Zmhghyt0KwhxVCPKzQwsUCMoOKxYaGHIvapO9xSLlXhIm/nEN0Ri4MxCKEu5aic1BAjScVbCwUCgWio6MREMBYMBYaCoUCd+Mu1cnnRdmwNH3x1ltv4cKFCzhy5Mhj95PJZJUm4VKptM4+s6tzbkEQkJBRgKOx6Th+IwPH4zKQmV9Sbh9LYyk6NLFB5/uTk/vYmzWYeVuqE4uOTR2w8+2ueHvTORyNzcA7Wy4i6mYOPurXvF4nY68rdfmaa0gYB43GFAuFQgGRSASxWFyt1dLKhmaVHVvfUlJS1L9v3rwZc+fOxdWrV9XbjI2NcfnyZTz//POYOnUqli1bBmNjY1y/fh1btmwBgHLPuez3sttXr16FhYUFcnJycPbsWSxZsgTff/89Dhw4gJYtW5Zry4OxAIC9e/ciICAA2dnZWL58OQYNGoSzZ88+smfww+LjVSu4v/zyy0/1N0Mul9f76/RpXxdisRgikajS91hVn4veFaXKPPxiEQThkS8gXU+yGruGGosWboZo4WaNEfdv380txtkk1ZxUkYlZuHjzHtLzShBxOQ0Rl1VVKkMDMVq5WiLESzUvVbCHFWzNNK+9hhqL2qaPcYhKzsabP5xBWm4xbEwNsezVVkiPOYHn2nroXSweJpfLsevuJcYCjMWDymJRF58X+hTbKVOm4K+//sKhQ4fg5uam7eZU2+3swvur46kKUSn3isrdb2IoQTtvG3TysUUnHzs0d7aARNwwilBPy85Mhh/GtMfXe6/hm32x+PFEIs7fzMZ3w4LhbqN7PcKI6NEEQUChXPHYfZRKJQpLFDAoKa3VopSxVFKlQoyTk5P6d0tLS4hEonLbANX8hc7OzliyZIl6m4+PD/r06fPE8zs4OMDKygpOTk7w8/ND//79ERQUhIkTJz7xooqtrS2cnJzg5OSERYsWYdmyZdi/f7+6KHXr1i3MmDEDe/bsgVgsRpcuXfD111/Dy8ur3KiqsriWDUZbv349lixZgvj4eHh5eWHq1KmYNGkSACAhIQHe3t7YvHkzli9fjhMnTmDFihUYPXp0lY77448/sGzZMpw8eRK+vr5YuXIlOnbsqH5OR48exYcffojTp09DJpOhXbt22LRpE6ytrSEIAj7//HOsXLkSKSkp8PHxwdy5czF48GAAQFZWFt566y3s2bMHeXl5cHNzw4cffojRo0c/8f+hJvSuKGVnZweJRFKhV1RaWlqF3lNEtcneXIbeAU7oHaD68C2SK3Dp1j1EJmbdX+kvC5n5JThz//YqxAEAmtiZItjDCn76PQefXvsz6hbe23IBxaVK+DmaYd3ItnAyl2JXjLZbRkSNlSAImDJlCrZt24YDBw7A29tb202qkoy8YhyPy8CxGxk4fiMD8en55e43lIgR7GmFTj6qnlCt3KxgWEkPZX0hEYswI7wZgjytMX1zFC7cvId+y47g/4a0xjP+zIuJGopCuQIt5v6rlceOWdAbJoa1U1ZwcnJCSkoKDh069MhFNarK2NgYEyZMwPTp05GWlgYHB4cnHiOXy7FmzRoAmgtQBQUF6NGjB7p27YpDhw7BwMAACxcuRJ8+fXDhwgXMnDkTXl5eGD16dLneYGvWrMHHH3+Mb7/9FkFBQTh37hzGjRsHU1NTjBw5Ur3f+++/jy+//BLr16+HTCar8nGzZ8/GF198AV9fX8yePRtDhw5FbGwsDAwMEBUVhZ49e2LMmDH45ptvYGBggP3790OhUBUuP/roI2zduhUrVqyAj48P9uzZg9dffx2Ojo4ICwvDnDlzEBMTg927d8POzg6xsbEoLCx8qv+Px9G7opShoSFCQkIQERFRbk6piIgI9O/fX4stI31jJJUg1MsGoV42GA/NsIIzCZnq3lTX0/IQl56PuPR8yMQSOPqlon+wu7abTvVEqRTwf3uvYdm+WABAT38HfPVqG5gbSRvVKjJEpHsmT56MX375BX/++SfMzc3VF/MsLS1hbGys5dZp5BbJcfZ6pro31JXU3HL3i0VAKzcrdU+oUC9rGEkb/vC02tajmQN2Tu2KST+fxfnkbIzZcAaTe/hg+rN+XEmYiOrNoEGD8O+//yIsLAxOTk7o0KEDevbsiddff71G0+b4+/sDUPUuelxRqlOnThCLxSgsLIRSqYSXl5e619CmTZsgFouxdu1adY+w9evXq+ezCg8Ph5WVFYDyvcE++eQTfPnllxgwYAAAwNvbGzExMVi1alW54tK0adPU+1TnuJkzZ6onU58/fz4CAgIQGxsLf39/LFmyBKGhoVi+fLl6/4CAAABAfn4+li5din379qFjx45QKpUYNmwYIiMjsWrVKoSFhSEpKQlBQUEIDQ0FAHh5eVUj6tWnd0UpAJgxYwZGjBiB0NBQdOzYEatXr0ZSUhImTJig7aaRHhOJRPC2M4W3nSkGhaoKT9kFJTiXlI1VB2NxIj4Lb/92Aedu5uDD55rr9ZVdfZBfXIoZv0Xh3+g7AIDxYU3wXm9/vRlWQkTaVbZCcffu3cttX79+PUaNGlX/DXpAWm4Rvj8ch90XJZh+Yj8eWvwW/k7m6p5Q7ZrYwMJIf4ZbPg1XK2P8Nr4DPt15GRuPJ+K7/TdwNjEb3wwNgr15w5iwl0hfGUsliFnQ+7H7KJVK5ObkwtzCvNaH79UWiUSC9evXY+HChdi3bx9OnDiBRYsW4bPPPsOpU6cqnbT8ccqG0T1peOHmzZvh7++Pa9euYdq0aVi5ciVsbGwAAJGRkYiNjYW5uXm5Y4qKinDjxo1Kz3f37l0kJyfjjTfewLhx49TbS0tLYWlpWW7fssJPdY9r1aqV+veyuKSlpcHf3x9RUVEYNGhQpW2LiYlBUVERevXqVW57SUkJgoKCAAATJ07EwIEDcfbsWYSHh+Oll15Cp06dKj1fbdDLotSQIUOQkZGBBQsWICUlBYGBgdi1axc8PT213TSicqxMDNHD3wEdvCwxZc0e7L0lxoZjCTh/MxvLhwfD2VJ3rlZT7bmVXYixG8/gckoODCVifDqgJV4JaXhzuRBRw6XLizOLIMLKQ/EAVF8yvO1M0dHHFp197NChiU25uRipemQGEszvH4gQLxt88McFHI/LwPPfHMa3w4LRzttG280jokcQiURPHEKnVCpRaiiBiaGBViY6rw5XV1eMGDECI0aMwMKFC+Hn54eVK1eq526qqsuXLwN4ck8fd3d3+Pr6wtfXF2ZmZhg4cCBiYmLg4OAApVKJkJAQ/PzzzxWOs7e3r/R8ZZOHr1mzBu3bty9338ML0ZiamtbouAfntywrupUd/7gezWX77Ny5E66urlAqlcjLy4OZmZn6uL59+yIxMRE7d+7E3r170bNnT0yePBlffPHFI8/7NPSyKAUAkyZNUk8WRqTrDCRivOChxKAeIXh3y0WcS8rG898cwdevtkFX38o/DKlhikzMwvgfI5GeVww7M0OsGhGCEE9+ESAiKmNvLsP4rt7IS4nF+Jd6wMPO/MkHUbW82NoFLZzNMfGns7ieloeha07g/T7NMK5rkwazGiERNQ7W1tZwdnZGfn7+k3d+QGFhIVavXo1u3bo9snhUmbCwMAQGBmLRokX4+uuvERwcjM2bN8PBwaHKQwgdHR3h6uqKuLg4DB8+vMqPXdPjHtaqVSv8999/lRbxWrRoAZlMhqSkJISFhUGpVCInJwcWFhblipX29vYYNWoURo0aha5du+Ldd9+ts6KUbpdIiaicZ5rZY+fUrgh0tUBmfgle//4UvvnvOpQPj12gBmnr2ZsYuvoE0vOK4e9kju2TO7MgRURUiZnhvmhnL8DZ0kjbTWm0mjqY48+3OuOlNi5QKAV8uusKxv8YiXuFnNOQiOrGqlWrMHHiROzZswc3btxAdHQ03n//fURHR+OFF1547LFpaWlITU3F9evXsWnTJnTu3Bnp6enq4ejV8c4772DVqlW4desWhg8fDjs7O/Tv3x+HDx9GfHw8Dh48iLfffhs3b9585DnmzZuHxYsX4+uvv8a1a9dw8eJFrF+/HkuXLn3sY9f0uAfNmjULp0+fxqRJk3DhwgVcuXIFK1asQHp6OszNzTFz5kxMnz4dGzduxI0bN3DhwgUsX74cGzduBADMnTsXf/75J2JjYxEdHY0dO3agefPmVX786mJRiqiBcbcxwZYJnTC0nQcEAVgacQ2jN5xGVn6JtptGNaRUCvjf7iuY8dt5lCiUCG/hiD8mdoKbNZfkJiIi7TExNMD/DWmDRS8HwlAixp6YO3hh2RFcunVP200jokaoXbt2yMvLw4QJExAQEICwsDCcOHEC27dvR1hY2GOPbdasGVxcXBASEoL//e9/ePbZZ3Hp0iW0aNGi2u3o168fvLy8sGjRIpiYmODQoUPw8PDAgAED0Lx5c4wZMwaFhYWP7Tk1duxYrF27Fhs2bEDLli0RFhaGDRs2PHE125oe9yA/Pz/s2bMH58+fR7t27dCxY0f8+eefMDBQDZT75JNPMHfuXCxevBgBAQEYOHAg/v77b/VjGBoaYtasWWjVqhW6desGiUSCTZs2Vfnxq6vKw/cenBG+qlauXFmlpReJqHqMpBIsHtASIZ7W+Gj7RRy8dhf9lh3Bd8OD0cbdStvNo2rIKy7FtE1R2HtZNaH5pO4+mBneDGJOaE5E1cA8jeqKSCTC8PaeaOVqhYk/RyIpswADVhzDghcDMKStO4fzEVG1lQ0Le1hQUBB+/PHHxx7bvXv3cvMePny7Ory8vCo9ViQS4cqVK+rbTk5O6l5ElXnppZcqPc+wYcMwbNiwaj12TY6zsrKqsC0sLAxHjx6t9BwikQhTp07F1KlTKx2+99FHH+Gjjz6q9Ni6UOWeUtu3b4ehoSEsLS2r9LNz507k5eXVZduJ9N4rIW7YNqkzvO1McSu7EINWHsOPxxN0eoJa0kjOLMArK45h7+U7MDQQ46shbfBeH38WpIio2pinUV1r6WaJHVO6oKe/A0pKlfhg60XM/P0CCksU2m4aERE1YNWa6Pybb76p8hW1LVu21KhBRFQ9zZ0t8OdbnfHe7xfwT3Qq5vwZjTOJWfj05ZYwlentWgY673RCJib8GImM/BLYmcmw+vUQBHtYa7tZRNSAMU+jumZlYog1r4di5aEb+OLfq/jj7E1E376H5cOD0cTeTNvNIyKiBqjKPaX2798PG5uqT7i7e/duuLq61qhRRFQ9FkZSrHgtGB893xwSsQh/Rt3GS98dRWxarrabRpX4/Uwyhq05gYz8EgS4WOCvtzqzIEVET4V5GtUXsViESd2b4uexHWBnJsOV1Fy8+O1R7LqYou2mERFRA1TlolRYWJh6Yqyq6NKlC2QyWY0aRUTVJxKJMLZrE2x6swMcLWS4npaHF789ir/P39Z20+g+hVLAop0xeHfLBcgVAvoGOuH3CR3hYmWs7aYRUQPHPI3qW0cfW+ya2gXtvG2QV1yKST+fxfy/o1FSqtR204iIqAF5qrE9aWlpSEtLg1JZ/o9Pq1atnqpRRFRzbb1ssGNKV7y96RyO3cjAlF/PITIxCx8+1xyGBlxwU1tyi+R4e1MU9l1JAwBMfaYppj3rx/mjiKjOME+juuZgYYRfxrbHF3uuYeXBG1h/NAFRydn4blgwL7gQ1THOIUu6oDZehzUqSkVGRmLkyJG4fPmyuhEikQiCIEAkEkGh4ISHRNpkby7Dj2+0x9KIq/hu/w1sOKZKEpcPZ5KoDUkZBRj7w2lcu5MHmYEYXwxqjRdau2i7WUTUSDFPo/pkIBHjg77+CPG0xozfonAuKRv9lh3BV0PaoJufvbabR9ToSKVSAEBBQQGMjZnXk3YVFBQA0Lwua6JGRanRo0fDz88P69atg6OjI5eCJdJBErEI7/b2R7CHNaZvjkJUcjae/+Ywvn41iEliPToRl4GJP0Uiq0AOB3MZ1rweitbuVtpuFhE1YszTSBt6tXDEzildMemXSFy6lYOR60/h7Z6+mPKMLyTsFUxUayQSCaysrJCWpup9b2JiUqXPeaVSiZKSEhQVFUEs1u/RE4yFRk1jIQgCCgoKkJaWBisrK0gkkhq3oUZFqfj4eGzduhVNmzat8QMTUf3o2dwRO6d2xcSfNUnitJ5+mPJMUw4dq2ObTiXho+2XUKoU0NLVEmteD4WTpZG2m0VEjRzzNNIWD1sTbJnQCQt2xOCXk0n4au91RCZm4etXg2Bjaqjt5hE1Gk5OTgCgLkxVhSAIKCwshLGxsd5frGAsNJ42FlZWVurXY03VqCjVs2dPnD9/nskOUQPhbqNKEuf/HYNfTyXh//ZeQ2RSFr4a0oZJYh0oVSixaNdlrD+aAAB4vpUzvnilNYwNa34FgYioqpinkTYZSSX49OWWCPW0xofbLuLw9XQ8/81hfDc8mCvNEtUSkUgEZ2dnODg4QC6XV+kYuVyOQ4cOoVu3bk811KoxYCw0niYWUqn0qXpIlalRUWrt2rUYOXIkLl26hMDAwAqNf/HFF5+6YURUu4ykEiweoEoSZ2+/iEPX7qLfN4ex/LUQtOFwslqTUyTHW7+cw6FrdwEAM3qpeqXp+1UYIqo/zNNIFwwIdkOAiyUm/hSJuPR8DF55HB8+1xyjO3vxbyJRLZFIJFUuCkgkEpSWlsLIyEjvCzGMhYYuxKJGRaljx47hyJEj2L17d4X7OIEmkW4bGOKGAFcLTPzpLOLT8zFo5THM6dcCIzp4Mkl8Sgnp+Xhj42ncuJsPI6kYSwe3wXMtnbXdLCLSM8zTSFc0czLHX1O64P0/LmDnhRQs2BGDM4mZ+GxgK5gb6fcXQSIiUqnRrF5Tp07FiBEjkJKSAqVSWe6HiQ6R7vN3ssBfb3VG30AnyBUC5v4Zjbc3RSG/uFTbTWuwjsWmo/93R3Hjbj6cLIywZUInFqSISCuYp5EuMZMZ4NuhQZj3QgtIJSLsupiK/t8exZXUHG03jYiIdECNilIZGRmYPn06HB0da7s9RFRPzI2kWD48GB893xwGYhH+On8b/b87iti0XG03rcH56UQiXv/+FO4VytHa3Qp/vdUZga6W2m4WEekp5mmka0QiEUZ19sbm8R3hYmmEuPR8vPTdUfwReVPbTSMiIi2rUVFqwIAB2L9/f223hYjqmUgkwtiuTbDpzQ5wtJAhNi0PL357FH+dv63tpjUIpQolPv7zknqFvf5tXLD5zQ5wsOAKe0SkPczTSFcFe1hjx9Su6OZnjyK5Eu/8fh6ztl5AkZw9+IiI9FWN5pTy8/PDrFmzcOTIEbRs2bLChFhTp06tlcYRUf0I9bLBzqldMfXXczh2IwNTfz2HyIRMzH6+BQwNalS7bvTuFcgx+ZezOBKbDgB4t3czTOruw3m5iEjrmKeRLrMxNcSGUW3x7f5Y/N/ea/j1VDIu3LyH5cOD4Wlrqu3mERFRPavx6ntmZmY4ePAgDh48WO4+kUjEZAeAQqGo8vKcD5LL5TAwMEBRUZHez/vAWGhUNxY1WZ7TzkyGH99oj6URV/Hd/hvYeDwR52/ew3fDg+FqZVzTpjdKN+7mYezGM4hPz4exVIL/G9IGfQKdtN0sIiIAzNNI94nFIkzt6YsgDyu8vSkK0bdz0G/ZEXw5qDXCA/j3lIhIn9SoKBUfH1/b7Wg0BEFAamoqsrOza3y8k5MTkpOT9b7HBWOhUZNYWFlZwcnJqVqxk4hFeLe3P4I9rDF9cxSikrPR75vD+PrVIHTzs69p8xuVw9fvYvLPZ5FTVAoXSyOsGRmKABfOH0VEuoN5GjUUXX3tsXNqF7z1yzlEJmbhzR8jMb5bE7zbuxkMJOypTUSkD2pUlKJHKytIOTg4wMTEpNrFFKVSiby8PJiZmUEs1u8/xoyFRnViIQgCCgoKkJaWBgBwdq7+CnA9mzti59SumPhzJC7dysHI9afwdk9fTH3GF2KxfhYIBUHAD8cTsWBHDBRKAcEeVlg1IhT25jJtN42IiKjBcrY0xqY3O+Cz3Vew9kg8Vh2Kw7mkbHw7LIhzNBIR6YFqFaUWLFhQpf3mzp1bo8Y0dAqFQl2QsrW1rdE5lEolSkpKYGRkxEIMY6FW3VgYG6uG26WlpcHBwaHaQ/kAwN3GBFsmdMKCHTH45WQSvtp7HWeTsvHVkDawMTWs9vkaMrlCiXl/RePnk0kAgAHBrlg8oCVkBtWPKxFRXWGeRg2VVCLGR/1aIMTTGu9uuYBTCZl47psj+GZoG3TysdN284iIqA5Vqyi1bdu2R94nEolw9epVFBUV6W2yUzaHlImJiZZbQqR5Hcrl8hoVpQDASCrBpy+3RKinNT7cdhGHrt1Fv28O47vhwQjysK7N5uqsrPwSTPr5LI7HZUAkAt7v44/x3Zro/ZBSItI9zNOooevb0hn+zhaY+FMkrqTm4rW1J/FOeDNMDPPR257aRESNXbWKUufOnat0e1RUFD744ANcunQJ48aNq5WGNWT8skq6oDZfhwOC3dDCxQITfzqL+PR8DF51HB893wKvd/Rs1K/32LRcvLHxDBIzCmBqKMFXrwahVwtHbTeLiKhSzNOoMfC2M8W2SZ0x589L2BJ5E5//exWRiVlYOrg1rEz0q6c2EZE+eKoxUfHx8XjttdfQtm1bWFpaIjo6GitXrqytthGRDvF3ssBfb3XGcy2dIFcI+PivaEzdFIX84lJtN61OHLiahpe/O4bEjAK4WRvjj0mdWJAiogaFeRo1VMaGEnwxqDWWDGwFmYEY+66k4flvjuDCzWxtN42IiGpZjYpS6enpmDJlCvz9/ZGSkoJjx45h8+bN8PX1re32EZEOMTeS4rthwZjTrwUMxCL8ff42+n93FLFpudpuWq0RBAHrjsRjzIbTyC0uRVsva/w5uTP8nSy03TQioiphnkaNxeC27tg6qRM8bU1wK7sQr6w4jh9PJEIQBG03jYiIakm1ilL5+fmYP38+fHx8cOzYMfz999/477//0LZt27pqH9FTmzdvHhwdHSESibB9+3ZtN6fBE4lEeKOLNza92QGOFjLEpuXhxW+P4s+oW9pu2lMrKVVi1taL+GRHDJQCMCjEDT+NbQ9bM66wR0S6j3kaNUYBLpb4e0oX9A5wRIlCiTnbL2H65sbbU5uISN9Uqyjl4+ODJUuWYOLEifj+++/h5OSECxcuVPihhkUkEj32Z9SoUQCA/fv3o0ePHrCxsYGJiQl8fX0xcuRIlJaqkoIDBw5AJBIhOzu73G2RSASxWAxLS0sEBQXhvffeQ0pKymPblJCQAIlEAmtra0gkElhaWqJDhw74+++/q/XcLl++jPnz52PVqlVISUlB3759qx0fqlyolw12Tu2KTj62KChR4O1NUZj75yUUlyq03bQaycwvwWvrTmLT6WSIRcBHzzfHkldacYU9ImowmKdRY2VhJMXK10Iw+7nmkIhF2B51Gy81sp7aRET6qlpFqbS0NBQWFmLJkiUIDg5GmzZt1D9BQUHqf6lhSUlJUf989dVXsLCwKLft66+/RnR0NPr27Yu2bdvi0KFDuHjxIpYtWwapVAqlUvnY81+9ehW3b9/G6dOn8f7772Pv3r0IDAzExYsXn9i27du349atWzh58iTatWuHgQMH4tKlS1V+bjdu3AAA9O/fH05OTpDJatbjpWxlRSrPzkyGH99oj7d6NAUA/HA8EYNXncCt7EItt6x6rt3JRf/vjuBUfCbMZAZYN7ItxnblCntE1LDURZ62fPlyeHt7w8jICCEhITh8+HAdtZ7o8UQiEcZ1a4JNb3aAg7kM1+/31P7r/G1tN42IiJ5CtYpS8fHx6p+4uLhKb8fFxdVVWxskQRBQUFJarZ/CEkW1j6nsp6rj7Z2cnNQ/lpaWEIlEFbZFRETA2dkZS5YsQWBgIHx8fNCnTx+sXbsWhoaPXwnFwcEBTk5O8PPzw6uvvoqjR4/C3t4eEydOfGLbbGxs4OTkBH9/fyxatAhyuRz79+9X33/r1i0MGTIE1tbWsLW1Rf/+/ZGQkABANWzvhRdeAACIxeJyBYb169ejefPmMDIygr+/P5YvX66+LyEhASKRCL/99hu6d+8OIyMj/PTTT1U+buvWrejRowdMTEzQunVrHD9+vNxzOnr0KMLCwmBiYgJra2v07t0bWVlZAFSvlyVLlqBJkyYwNjZG69atsWXLFvWxWVlZGD58OOzt7WFsbAxfX1+sX7/+iXGsSxKxCDN7N8P3o0JhaSzF+eRs9PvmMA5eu6vVdlXVvit3MGD5MSRnFsLDxgTbJnVCD38HbTeLiKjaajtP27x5M6ZNm4bZs2fj3Llz6Nq1K/r27YukpKQ6fBZEj9f2oZ7aU38916B7ahMR6TuDqu544cIFBAYGQiyuWh0rOjoazZo1g4FBlR+iUSqUK9Bi7r9aeeyYBb1hYlg78XdyckJKSgoOHTqEbt26PdW5jI2NMWHCBEyfPh1paWlwcHhyAUAul2PNmjUAAKlUCgAoKChAjx490LVrVxw6dAgGBgZYuHAh+vTpgwsXLmDmzJnw8vLC6NGjyw0XXLNmDT7++GN8++23CAoKwrlz5zBu3DiYmppi5MiR6v3ef/99fPnll1i/fj1kMlmVj5s9eza++OIL+Pr6Yvbs2Rg6dChiY2NhYGCAqKgo9OzZE2PGjME333wDAwMD7N+/HwqFKpH66KOPsHXrVqxYsQK+vr44dOgQXnvtNezevRtBQUGYO3cuYmJisHv3btjZ2SE2NhaFhbrRK+kZf0fsmNIFk34+i4u37mHU+lOY+owvpvb0hUSsez2OBEHAmsNxWLz7CgQBaO9tgxWvhcDGlMtNE1HDUxd52tKlS/HGG29g7NixAICvvvoK//77L1asWIHFixdX2L+4uBjFxcXq2zk5OQBUf8Nru8dx2fnYk1k/Y2FlJMb3rwfjm303sPxgHH44noiopCx8OTAAgH7FojL6+Jp4mFIp4OqdPBy/kY5j8WKc2RFT5c/HxkqpVCIpkbEAGIsHKZVKKNJF6FUHnxdV/QyqcsUiKCgIqampsLe3r9L+HTt2RFRUFJo0aVLVhyAdNmjQIPz7778ICwuDk5MTOnTogJ49e+L111+HhUX1VyXz9/cHoOpd9LiiVO/evSEWi1FYWAilUgkvLy8MHjwYALBp0yaIxWKsXbtW3Qtq/fr1sLKywoEDBxAeHg4rKysAqqJamU8++QRffvklBgwYAADw9vZGTEwMVq1aVa64NG3aNPU+1Tlu5syZeP755wEA8+fPR0BAAGJjY+Hv748lS5YgNDS0XA+rgABVApWfn4+lS5di37596NixIwCgSZMmOHLkCFavXo0VK1YgKSkJQUFBCA0NBQB4eXlVNeT1wt3GBL9P6IhPdsTg55NJ+Pq/6ziblIWvXw3SqWJPcakCH227hN8jbwIAhrZzx/wXA2FooN9/lIio4artPK2kpASRkZH44IMPym0PDw/HsWPHKj1m8eLFmD9/foXte/bsgYmJSZXaVV0RERF1ct6GSB9j0QzAeH8RfowV48KtHPT/7hg6OYpx6be98DYTYCrVdgu1S59eEwoBuJUPxOaIcOP+T6Gi7KKoGEi9qdX26Q7GQoOxKBNkK6qTz4uCgoIq7VflopQgCJgzZ06Vk4qSkpKqnrpRM5ZKELOgd5X3VyqVyM3JhbmF+VNXbY2ltTdBs0Qiwfr167Fw4ULs27cPJ06cwKJFi/DZZ5/h1KlTcHZ2rtb5yoYWPmnOnnXr1iE4OBixsbGYNm0aVq5cCRsbGwBAZGQkYmNjYW5uXu6YoqIi9VxSD7t79y6Sk5PxxhtvYNy4certpaWlsLS0LLdvWeGnuse1atVK/XtZXNLS0uDv74+oqCgMGjSo0rbFxMSgqKgIvXr1Kre9pKREPQfIhAkTMGjQIJw9exbh4eF46aWX0KlTp0rPpy1GUgkWvdwSIZ7W+HDbRRy+no5+3xzGd8ODEeRhre3mIT2vGBN+jMSZxCyIRcCcfi0wqpMX548iogattvO09PR0KBQKODo6ltvu6OiI1NTUSo+ZNWsWZsyYob6dk5MDd3d3hIeH1+gC1uPI5XJERESgV69e6h7U+krfY/EcgKHZhZi66Twu3MrB3tsi4P40U03tTRHiaYUQD2sEe1rBw9pYL/7e68NroqRUiUu3c3A6IQunEjIRmZSN/OLyQzhNDSUIcreErDAdPk28IdHzHjEKpRLx8fHw9mYsGAsNhVKJ4jtxdfJ5UdZj+kmqXJTq1q0brl69WuUGdOzYEcbGxlXev7ESiUTVGkKnVCpRaiiBiaGBTnYldHV1xYgRIzBixAgsXLgQfn5+WLlyZaVXRh/n8uXLAJ7c08fNzQ2+vr5o1qwZzMzMMHDgQMTExMDBwQFKpRIhISH4+eefKxz3qCvFZZOyr1mzBu3bty93n0RSvohnampao+MefDOXJT5lxz/uPVG2z86dO+Hq6lrpOfv27YvExETs3LkTe/fuRc+ePTF58mR88cUXjzyvtgwIdkOAiyUm/hSJuPR8DF51HLOfa46RWiwAXU7JwdiNZ3AruxDmRgb4dlgwwvyq1quAiEiX1VWe9vDntSAIj/wMl8lklS4oIpVK6+yLcV2eu6HR51h42Uvx+8RO+OvcTfxx+ALSlGaISy9A7N18xN7Nx+YztwAA9uYyhHpaI8TTGm29bNDCxQJSie7l27WlMb0miuQKRCVn42RcJk4lZCAyMQtF8vKLLZkbGaCdlw3aN7FBO29bBLpYQFAqsGvXLjzXu1mjiUVNyeVy7Np1g7EAY/GgsljUxedFVc9X5WrJgQMHatoWaqSsra3h7OyM/Pz8ah1XWFiI1atXo1u3blUeZgAAYWFhCAwMxKJFi/D1118jODgYmzdvhoODQ5WvwDo6OsLV1RVxcXEYPnx4lR+7psc9rFWrVvjvv/8qLeK1aNECMpkMSUlJCAsLK3efUqlUV5rt7e0xatQojBo1Cl27dsW7776rk0UpAGjmZI4/3+qM9/+4gF0XUzHv7xhEJmXjfwNawlRWv/PN7YlOxbTNUSgoUcDL1gRrR7ZFUwezem0DEVFdqe08zc7ODhKJpEKvqLS0tAq9p4h0gcxAgpfauMDwdhSee64LcksERCZm4UxCJs4kZuHizXu4m1uM3ZdSsfuS6nVtLJWgjbsVQr1UhapgT2tYGOn3F1RdUVBSirOJ2TgZn4GT8ZmISs5GSWn5IpS1iRTtvG3Q3tsW7bxt0NzZosI8pnIlJ8An0nX6PQs5VdmqVasQFRWFl19+GT4+PigqKsIPP/yA6OhoLFu27LHHpqWloaioCLm5uYiMjMSSJUuQnp6OrVu3Vrsd77zzDgYNGoT33nsPw4cPx+eff47+/ftjwYIFcHNzQ1JSErZu3Yp3330Xbm5ulZ5j3rx5mDp1KiwsLNC3b18UFxfjzJkzyMrKKjfsoLaOe9CsWbPQsmVLTJo0CRMmTIChoSH279+PQYMGwc7ODjNnzsT06dOhVCrRpUsX5OTk4NixYzAxMcHLL7+Mjz/+GKGhoQgICEBxcTF27NiB5s2bVzuO9cncSIrvhgXj+6MJWLzrMv4+fxsxt+9h5Wsh8HU0f/IJnpIgCFhx8AY+//cqBAHo5GOL5cODYWWiO3NcERHpGkNDQ4SEhCAiIgIvv/yyentERAT69++vxZYRVY2NqSF6tXBErxaqImqRXIGLt+7hTIKqUBWZlIXsAjmOx2XgeFwGAEAkApo5mqOtlw1CvawR6mUDVyuO/KgPuUVynEnMwsm4TJyMz8DFm/dQqiy/kridmQztm9igg7cN2jexRVN7M4h1cDEdIqoeFqWoStq1a4cjR45gwoQJuH37NszMzBAQEIDt27dX6NXzsGbNmkEkEsHMzAxNmjRBeHg4ZsyYUW7y8arq168fvLy8sGjRIixfvhyHDh3C+++/jwEDBiA3Nxeurq7o2bPnY3tOjR07FiYmJvj888/x3nvvwdTUFC1btsS0adMe+9g1Pe5Bfn5+2LNnDz788EO0a9cOxsbGaN++PYYOHQpANZm6g4MDFi9ejLi4OFhZWSE4OFg90ayhoSFmzZqFhIQEGBsbo2vXrti0aVOVH19bRCIR3ujijdZulpj8y1ncuJuP/t8dxeIBLdG/jeuTT1BDRXIFPtx6EVvPqbrtv9bBAx+/ENCou+oTEdWWGTNmYMSIEQgNDUXHjh2xevVqJCUlYcKECdpuGlG1GUklaOtlg7ZeNgB8oFQKuHE3D2cSs1SFqsRMJGYU4EpqLq6k5uLHE4kAAGdLI/VwvxBP60p741D1ZReU4FR8Jk7FZ+JkfCaib9/DQzUouFgaoX0T2/u9oWzgbWeqF3OCEekbFqWonLJhYQ8LCgrCjz/++Nhju3fvrp7AvLLb1eHl5QWFQlFhcjSRSIQrV66obzs5OWHjxo2PPM9LL71UaRuGDRuGYcOGPfKxH9Xu6h5nZWVVYVtYWBiOHj1a6TlEIhGmTp2KqVOnltteNnxv9uzZmDNnTqXHNgShXjbYObUr3t50DkdjM/D2piicScjCR/2aQ2ZQexPzA0BabhHG/xiJc0nZkIhFmPdCC4zo6FWrj0FE1JgNGTIEGRkZWLBgAVJSUhAYGIhdu3bB09NT200jempisQi+jubwdTTH0HYeAFS5Q2RClqpQlZiF6Fv3kHKvCDsupGDHhRQAgJnMAEEeVupCVRt3q3qfkqAhSs8rVhehTsRl4OqdXDycbnvYmKD9/V5Q7b1t4KYnE9MT6bsG8wm6aNEi7Ny5E1FRUTA0NER2dnaFfZKSkjB58mTs27cPxsbGGDZsGL744gsYGmqG6Vy8eBFvvfUWTp06BRsbG4wfPx5z5szhBx5RPbEzk+GHMe3x1d5rWLYvFj+eSMSFW/fw3bAguFnXzpLh0bfvYdzGM7h9rwgWRgZYPjwEXXztauXcRET6ZNKkSZg0aZK2m0FULxzMjdC3pTP6tlStnlxYoppcu2xeqrOJWcgtLsXh6+k4fD0dACARi9DC2QIhntYI9VIVqhwtjLT5NHTCnZwinIhTzQd1Kj4TsWl5FfbxsTdFO29bdGhig3beNnC25FBJIn3UYIpSJSUlGDRoEDp27Ih169ZVuF+hUOD555+Hvb09jhw5goyMDIwcORKCIKjnPMrJyUGvXr3Qo0cPnD59GteuXcOoUaNgamqKd955p76fEpHekohFeCe8GYI9rDFtcxTOJ2ej37Ij+GpIG3Rv5vBU5/7nUgqmbz6PQrkCTexMsXZkKJrYc0JzIiIiqh5jQwk6+tiio48tAEChFHDtTu79IX+ZOJOQhVvZhbh46x4u3rqHDccSAABu1sbq4X5tvWzg69D45z66mVWgng/qZLxqKOTD/J3My01Mbm9ecbVOItI/DaYoVbZa2YYNGyq9f8+ePYiJiUFycjJcXFwAAF9++SVGjRqFRYsWwcLCAj///DOKioqwYcMGyGQyBAYG4tq1a1i6dClmzJjB3lJE9ayHvwN2TOmCyb+cxYWb9zB6w2lMecYXb/f0rfZ8DYIg4Nt9sfgy4hoAoKuvHb4dGgxLE66iQ0RERE9PIhahubMFmjtbYEQH1TDWlHuFOJOQhcjELJxOyMTllBzczCrEzaxb2HZ/TksLIwMEPzAvVRt3KxhJa3fagvokCAISMgpwKj7jfiEqE7eyC8vtIxYBLVws1AWodl42sDblIjNEVFGDKUo9yfHjxxEYGKguSAFA7969UVxcjMjISPTo0QPHjx9HWFgYZDJZuX3KJo729vau9NzFxcUoLi5W3y6b50gul0Mul6u3l5aWQhAEKBQKKJXKCuepirL5hwRBqPE5GgvGQqMmsVAoFBAEAaWlpeVep7rGyVyKX95oi0W7ruDX0zfxzX/XEZmQiaWDWsLmoeSl7Hk8/HyK5ArM2haNHRdVSzy/3sEDs/r4wUBScd/G4lGx0EeMhQZjoVGXsWB8iaiMs6UxXmhtjBdaq76D5BWX4lySZvL0c0nZyCkqxYGrd3Hg6l0AgFQiQoCLJUI9VSv8hXpZw85Md3sNCYKA2LQ8nCibmDwuA2m5xeX2kYhFaOlqeX91PFuEeFnDwogXBonoyRpNUSo1NRWOjo7ltllbW8PQ0BCpqanqfby8vMrtU3ZMamrqI4tSixcvVvfUetCePXtgYqKZA0ckEsHZ2RmZmZkwN3+6pe5zc3Of6vjGhLHQqE4scnNzkZ+fj3379tV4wvn61MEAkDQVYXOcGEdvZKD30v0Y7aeAVyVvpYiICPXv90qAtVckSMoXQSwSMMhbiRBRHPb8G1ePrdeeB2Oh7xgLDcZCoy5iUVBQcVgKERGgmgi9q689uvraAwBKFUpcSc3F6fvzUp1JyMSdnGJEJWcjKjkba4/EAwC87UzvD/ezRoinDXzstbfSnFIp4EpqrmooXlwmTiVkIjO/pNw+hhIx2rhbqYbjNbFBsIc1J3wnohrR6ifHvHnzKi32POj06dMIDQ2t0vkq++AWBKHc9of3Kfuy/rgP/VmzZmHGjBnq2zk5OXB3d0d4eDgsLCzK7Xvnzh3k5OTAyMgIJiYm1f5jIggC8vPzYWrKJU8ZC43qxEIQBBQUFCA3NxfOzs5o06ZN/TSyFjwHYOidXLz163nEZxTg28tSfNCnGUa0d4dIJIJcLkdERAR69eoFqVSKS7dyMOGXc7iTXwwrYymWvdoaHZrYaPtp1IuHY6HPGAsNxkKjLmPx8MqwRESPYiARI9DVEoGulhjd2RuCIOBmVqF6uF9kYhau3slFfHo+4tPzsSXyJgDA2kSKEE+b+5OnWyPQ1bLWVyouU6pQIiYlRz0n1Kn4TOQUlZbbx0gqRrCHtXpOqCCPhj0EkYh0h1aLUm+99RZeffXVx+7zcM+mR3FycsLJkyfLbcvKyoJcLlf3hnJyclL3miqTlpYGABV6WT1IJpOVG/JXRiqVVkh0XV1dIZFIkJ6eXqV2P0wQBBQWFsLYmEugMhYaNYmFtbU1nJycGlzsAtxs8NeULnj/jwvYdTEVn+y8gnPJ9/C/ga0gu/9+k0ql2HM5He/8HoUiuRJNHcyw9vVQeNmZarn19a+yzyF9xVhoMBYadRELxpaIakokEsHdxgTuNiZ4KcgVAHCvUI6zSZrJ08/fzEZWgRx7L9/B3st3AACGBmK0crVUDffztEaIp3WN52gqKVXi4q1snIzPxMk4VWEsr7h8EcrUUIIQLxu091b9tHKzgqGB+OmePBFRJbRalLKzs4OdXe0s096xY0csWrQIKSkpcHZWLeO6Z88eyGQyhISEqPf58MMPUVJSAkNDQ/U+Li4uVS5+PUnZED4HB4cazTkhl8tx6NAhdOvWTe+TXsZCo7qxkEqlkEga7tUrcyMpvhsWjPVHE/DprsvYcSEFl1NysGxIawgCsGzfDXyz/wYAoHsze3wzNIjzFhAREVGDZGksRY9mDuhxfwXiklIlom/fK9ebKj2vRDX8LzFLfVxTBzP1cL9QT2t42lY+SqNIrkBUcvb9oXgZiEzMQpG8/Byl5kYGaOelGorX3tsWAS4WMJCwCEVEda/BDPxNSkpCZmYmkpKSoFAoEBUVBQBo2rQpzMzMEB4ejhYtWmDEiBH4/PPPkZmZiZkzZ2LcuHHqIXbDhg3D/PnzMWrUKHz44Ye4fv06Pv30U8ydO7fWe5NIJJIaFQUkEglKS0thZGSk94UYxkJDH2MhEokwpos3WrtbYvLP53Djbj4GrjoBdxMxrt1TFaTe6OKND59rXu2V+oiIiIh0laGBGEEe1gjysMbYrk0gCAISMwrUBarTCZm4cTcfsWl5iE3Lw6+nkgEAdmYyhHpaI9jDEnczRbi6NxZnklRzV5WUli9C2Zgaop2XjXpOKH8nC+ZTRKQVDaYoNXfuXGzcuFF9OygoCACwf/9+dO/eHRKJBDt37sSkSZPQuXNnGBsbY9iwYfjiiy/Ux1haWiIiIgKTJ09GaGgorK2tMWPGjHLzRRGRbgnxtMGOqV3w9qZzOBqbgWv3xJBKRFj4UiCGtPXQdvOIiIiI6pRIJIKXnSm87EwxKNQdAJCZX4LIRNUKf5EJWbhw8x7S84rxT3Qq/olOBSABrmoWfbE3l6mG4jWxRXtvGzS1N4OYRSgi0gENpii1YcMGbNiw4bH7eHh4YMeOHY/dp2XLljh06FAttoyI6pqdmQw/jGmPr/dexV+nYrFoSCg6+z56HjgiIiKixszG1BC9WjiiVwtVPlQkV+DSrXs4nZCF0/EZiElKQ3s/F3T0sUM7bxt423HhICLSTQ2mKEVE+k0iFmFKDx/4FF5FOy/9WGGPiIiIqCqMpBLVJOheNhjb2QO7du3Cc8+11JtpH4io4WJRqgYEQQBQN0tCy+VyFBQUICcnR+//iDAWGoyFCuOgwVhoMBYajIVGXcai7O9/WT5AlWO+VD8YCw3GQoVx0GAsNBgLDcZCQxfyJRalaiA3NxcA4O7uruWWEBERkbbk5ubC0tJS283QWcyXiIiI6En5kkjgZb5qUyqVuH37NszNzWt9bHZOTg7c3d2RnJysXjVQXzEWGoyFCuOgwVhoMBYajIVGXcZCEATk5ubCxcUFYjGXTH8U5kv1g7HQYCxUGAcNxkKDsdBgLDR0IV9iT6kaEIvFcHNzq9PHsLCw0Ps3SBnGQoOxUGEcNBgLDcZCg7HQqKtYsIfUkzFfql+MhQZjocI4aDAWGoyFBmOhoc18iZf3iIiIiIiIiIio3rEoRURERERERERE9Y5FKR0jk8nw8ccfQyaTabspWsdYaDAWKoyDBmOhwVhoMBYajEXjxv9fDcZCg7FQYRw0GAsNxkKDsdDQhVhwonMiIiIiIiIiIqp37ClFRERERERERET1jkUpIiIiIiIiIiKqdyxKERERERERERFRvWNRioiIiIiIiIiI6h2LUkREREREREREVO9YlCIiIiIiIiIionrHohQREREREREREdU7FqWIiIiIiIiIiKjesShFRERERERERET1jkUpIiIiIiIiIiKqdyxKERERERERERFRvWNRioiIiIiIiIiI6h2LUkREREREREREVO9YlCIiIiIiIiIionrHohQRNSoHDhyASCTCli1bnrjvqFGj4OXlVfeNIiIiImrgqpNjERFVFYtSRKS35syZg23btmm7GURERERERHrJQNsNICKqqoKCApiYmNTa+Xx8fGrtXEREREQNVW3nWEREVcWeUkSkk+bNmweRSISzZ8/ilVdegbW1dbWKSHK5HLNnz4aLiwssLCzw7LPP4urVq+X2qWz4nkgkwltvvYVVq1bBz88PMpkMLVq0wKZNm6rV/p49e8Lf3x+CIJTbLggCmjZtiueff169bf78+Wjfvj1sbGxgYWGB4OBgrFu3rtyx7777LiwtLaFQKNTbpkyZApFIhM8//1y9LSMjA2KxGMuWLatWe4mIiEg/PG2O9aCcnBz07t0bjo6OOHXqVLnzR0dHY+jQobC0tISjoyPGjBmDe/fulTteEAQsX74cbdq0gbGxMaytrfHKK68gLi6uwmPt3bsXPXv2hIWFBUxMTNC5c2f8999/NWo3EekOFqWISKcNGDAATZs2xe+//46VK1dW+bgPP/wQiYmJWLt2LVavXo3r16/jhRdeKFfUeZS//voL33zzDRYsWIAtW7bA09MTQ4cOrdYcCm+//TauXr1aIVnavXs3bty4gcmTJ6u3JSQkYPz48fjtt9+wdetWDBgwAFOmTMEnn3yi3ufZZ59FTk6OOuEDVMmZsbExIiIi1Nv+++8/CIKAZ599tsptJSIiIv1T0xyrzM2bN9GlSxckJibi+PHjaNeuXbn7Bw4cCD8/P/zxxx/44IMP8Msvv2D69Onl9hk/fjymTZuGZ599Ftu3b8fy5csRHR2NTp064c6dO+r9fvrpJ4SHh8PCwgIbN27Eb7/9BhsbG/Tu3ZuFKaKGTiAi0kEff/yxAECYO3dutY7bv3+/AEB47rnnym3/7bffBADC8ePH1dtGjhwpeHp6ltsPgGBsbCykpqaqt5WWlgr+/v5C06ZNq9wOhUIhNGnSROjfv3+57X379hV8fHwEpVL5yOPkcrmwYMECwdbWVr1ffn6+YGhoKCxYsEAQBEG4efOmAEB4//33BWNjY6GoqEgQBEEYN26c4OLiUuV2EhERkX552hzr999/F86dOye4uLgIXbt2FTIyMio9/5IlS8ptnzRpkmBkZKTObY4fPy4AEL788sty+yUnJwvGxsbCe++9JwiCKgeysbERXnjhhXL7KRQKoXXr1kK7du2q9TyISLewpxQR6bSBAwfW6LgXX3yx3O1WrVoBABITE594bM+ePeHo6Ki+LZFIMGTIEMTGxuLmzZtVenyxWIy33noLO3bsQFJSEgDgxo0b+OeffzBp0iSIRCL1vvv27cOzzz4LS0tLSCQSSKVSzJ07FxkZGUhLSwMAmJiYoGPHjti7dy8AICIiAlZWVnj33XdRUlKCI0eOAFD1nmIvKSIiInqSmuZY//77L7p27Ypu3bohIiICNjY2le5XWS5WVFSkzm127NgBkUiE1157DaWlpeofJycntG7dGgcOHAAAHDt2DJmZmRg5cmS5/ZRKJfr06YPTp08jPz+/Rs+FiLSPRSki0mnOzs41Os7W1rbcbZlMBgAoLCx84rFOTk6P3JaRkVHlNowZMwbGxsbqLvHfffcdjI2NMWbMGPU+p06dQnh4OABgzZo1OHr0KE6fPo3Zs2dXaO+zzz6LEydOID8/H3v37sUzzzwDW1tbhISEYO/evYiPj0d8fDyLUkRERPRENc2xtm/fjsLCQkycOFGdX1XmSbnYnTt3IAgCHB0dIZVKy/2cOHEC6enp6v0A4JVXXqmw32effQZBEJCZmVmj50JE2sfV94hIpz3Yo6i+pKamPnLbwwnW41haWmLkyJFYu3YtZs6cifXr12PYsGGwsrJS77Np0yZIpVLs2LEDRkZG6u3bt2+vcL6ePXtizpw5OHToEP777z98/PHH6u179uyBt7e3+jYRERHR49Q0x/q///s/bN68GX379sW2bdvUF9eqy87ODiKRCIcPH660uFW2zc7ODgCwbNkydOjQodJzPdjDnYgaFhaliIge8t9//+HOnTvqBEehUGDz5s3w8fGBm5tbtc41depULF++HK+88gqys7Px1ltvlbtfJBLBwMAAEolEva2wsBA//vhjhXO1a9cOFhYW+Oqrr5CamopevXoBUPWg+uyzz/Dbb7+hRYsWcHFxqe5TJiIiIqoSIyMjbN26Fa+99hpefPFFbN68Gf3796/2efr164f//e9/uHXrFgYPHvzI/Tp37gwrKyvExMRUyKOIqOFjUYqI6CF2dnZ45plnMGfOHJiammL58uW4cuUKNm3aVO1z+fn5oU+fPti9eze6dOmC1q1bl7v/+eefx9KlSzFs2DC8+eabyMjIwBdffFHpFUOJRIKwsDD8/fff8Pb2Vi/f3LlzZ8hkMvz333+YOnVqzZ40ERERURVJpVL8+uuvGDt2LF555RX88MMPGDp0aLXO0blzZ7z55psYPXo0zpw5g27dusHU1BQpKSk4cuQIWrZsiYkTJ8LMzAzLli3DyJEjkZmZiVdeeQUODg64e/cuzp8/j7t372LFihV19EyJqK6xKEVE9JAXX3wRAQEB+Oijj5CUlAQfHx/8/PPPGDJkSI3ON2TIEOzevbvSq3vPPPMMvv/+e3z22Wd44YUX4OrqinHjxsHBwQFvvPFGhf2fffZZ/P333+XmjZLJZOjSpQsiIiI4nxQRERHVC7FYjHXr1sHc3ByvvfYa8vPzMXbs2GqdY9WqVejQoQNWrVqF5cuXQ6lUwsXFBZ07d0a7du3U+7322mvw8PDAkiVLMH78eOTm5sLBwQFt2rTBqFGjavmZEVF9EgmCIGi7EUREukIkEmHy5Mn49ttva+2cAwcOxIkTJ5CQkACpVFpr5yUiIiIiImrI2FOKiKgOFBcX4+zZszh16hS2bduGpUuXsiBFRERERET0ABaliKhBEAQBCoXisftIJJJ6Wa2vtLT0sfeLxWKkpKSgU6dOsLCwwPjx4zFlypQ6bxcRERFRdelSjkVE+kes7QYQEVXFwYMHIZVKH/uzcePGp34cQRCeOHTvSe0YM2YMvLy8IAgC7t27hxUrVpRbXY+IiIhIV9RXjkVEVBnOKUVEDUJubi6uXr362H28vb1ha2tb5205c+bMY++3s7ODl5dXnbeDiIiI6GnpUo5FRPqHRSkiIiIiIiIiIqp3nFOqBpRKJW7fvg1zc3OOrSYiItIzgiAgNzcXLi4uEIs5E8KjMF8iIiLSX1XNl1iUqoHbt2/D3d1d280gIiIiLUpOToabm5u2m6GzmC8RERHRk/IlFqVqwNzcHIAquBYWFrV6brlcjj179iA8PFzvl49nLDQYCxXGQYOx0GAsNBgLjbqMRU5ODtzd3dX5AFWO+VL9YCw0GAsVxkGDsdBgLDQYCw1dyJdYlKqBsi7oFhYWdZJkmZiYwMLCgm8QxgIAUFyqwI2b2TAyZiz4mtBgLDQYCw3GQqM+YsEhaY/HfKl+MBYqOUVy3MyWw9CIseBrQoOx0GAsNBgLDV3Il1iUItJRV1JzsPl0Mrafu4WsAjkCrcXo1VsJPf/cJCIiIj0nCALi0/MRmZiFs0lZOJuYjWtpuRAEwMlYAu+gewj2stN2M4mIqApYlCLSITlFcvwVdRu/n0nG+Zv3yt13KUuMqZvOY8WIEMgMJFpqIREREVH9KigpRVRyNs4lZSMyMQvnkrKQVSCvsJ+hgRiphUoMWn0Kk7r7YMozvjA04GIERES6jEUpIi0TBAEn4zPx2+lk7LqUgiK5EgAglYjwbHNHDG7rDkGhwPgfI7Hv6l1M+ukslr8WzMIUERERNTqCIOBmViHOJmWpe0JdTsmFQimU209mIEYrN0sEe1oj2EP1IyhLMWH1PpzNEGPZvlhExNzBl4NbI8DFUkvPhoiInoRFKSItuZNThC2RN/H7mWQkZBSot/s6mGFIW3e8HOQKWzMZANVY33H+Sqy7LsV/V9JYmKJGT6FQQC6veBW8MnK5HAYGBigqKoJCoajjluk2xkLjaWIhlUohkfDzlag+FMkVuHTr3gNFqGzczS2usJ+LpRGCPK0R4mGNYE9rtHC2qNALSi4XY6SfEqM82mDejiu4kpqL/t8exdSevpjY3QdSCXtNUePCfKlmGAsNXciXWJQiqkdyhRL/XU7Db2eSceBqGsou+pkaSvBCaxcMbuuOIHerSieDa2YlYNVrQRj/0zn8dyUNE386ixUsTFEjIwgCUlNTkZ2dXa1jnJyckJycrPcTTzMWGk8bCysrKzg5Oel9HIlqW+q9InUPqMjELETfvge5onwvKKlEhAAXSwR7WCPE0xrBnlZwtjSu8mP0DXRCJ18HfLTtEv6JTsXSiGvqXlN+jlw1kxo+5ktPh7HQ0IV8qdEVpQ4dOoTPP/8ckZGRSElJwbZt2/DSSy+p7xcEAfPnz8fq1auRlZWF9u3b47vvvkNAQID2Gk2NXmxaHn47k4ytZ28iPa9Evb2tlzUGh7rjuZbOMJU9+e3Y2ccW349qizEbTmMfC1PUCJUlWA4ODjAxManSHzilUom8vDyYmZlBLNbvq+CMhUZNYyEIAgoKCpCWlgYAcHZ2rqsmEjV6coUSMbdzHpiQPAu37xVV2M/OTIYQTyt1ESrQ1RJG0qfLbezMZFjxWjD+On8bc/+MxsVb99DvmyOYEe6HcV2bQCLW7y+i1LAxX3o6jIWGLuRLja4olZ+fj9atW2P06NEYOHBghfuXLFmCpUuXYsOGDfDz88PChQvRq1cvXL16FebmvHJCtSe/uBQ7LtzGb2duIjIxS73dzkyGgSGuGBzqDh97s2qft3NTO3w/qi3e2MjCFDUuCoVCnWDZ2tpW+TilUomSkhIYGRkxsWAs1J4mFsbGqh4ZaWlpcHBw4FA+oipKzyvG2cQsRCZl4VxiNs7fzEZxqbLcPmIR0NzZQl2ACvG0hpu1cZ30VhCJROjfxhUdmthi1taL2HclDf/bfQX/Rqfii0Gta5SHEWkb86Wnx1ho6EK+1OiKUn379kXfvn0rvU8QBHz11VeYPXs2BgwYAADYuHEjHB0d8csvv2D8+PGVHldcXIziYs3Y9pycHACq8ZdVHcNbVWXnq+3zNkQNMRaCIOBc8j38HnkLuy6loqBENS5XIhYhzNcOg0JcEeZnp57ToDpjwB/8t52nJVYND8L4n89h35U0vPnDGXw3tA1kjXyFmYb4mqgrjTEWxcXFEAQBRkZGUCqVTz7gPkEQ1P9W57jGiLHQeNpYGBkZQRAEFBYWQiaTlbuvMb3viGpKoRRwNTUXkfd7QJ1NykLiA3NklrEykd6fiNwKwZ7WaO1mVaXe4bXJ0cII60aG4vfIm/jk7xicS8rGc18fxnt9/DG6kxfE7DVFDUjZ3yATExMtt4RI8zqUy+UsSlVFfHw8UlNTER4ert4mk8kQFhaGY8eOPbIotXjxYsyfP7/C9j179tTZh0FERESdnLchagixyJUDp++KcCJNjDuFmsTG3khABwcl2toLsDRMQUl8CiLia/44D8fiDV8RVl8R4+C1dAz+eg/GNFNC2rjrUgAaxmuivjSmWBgYGMDJyQn5+fk1+tKfm5tbB61qmBgLjZrGoqSkBIWFhTh48CBKS0vL3VdQUPGLN1Fjl11QgnNJ2apheElZiErKRn5J+UlxRSLVgi0hntYIut8TqomdqU7M2SISiTA41B1dmtrh/T8u4PD1dHyyIwb/XkrF54NawdPWVNtNJKoWXXhfEdXG61CvilKpqakAAEdHx3LbHR0dkZiY+MjjZs2ahRkzZqhv5+TkwN3dHeHh4bCwsKjVNsrlckRERKBXr16QSqW1eu6GRtdjUapQ4nBsBn6PvIX9V++i9P6s5cZSMfoEOmFQsCtCPSuftLy6HhWL5wC0j8vAmz+dQ0w28HeWA757tTVkTzkPg67S9ddEfWqMsSgqKkJycjLMzMxgZGRU5eMEQUBubi7Mzc31PkFjLDSeNhZFRUUwNjZGt27dKrwey3pMEzVWSqWAG3fzyq2IF5uWV2E/c5kB2nio5oIK9rRGG3crWBrr9t8kFytj/DCmHX45lYRFOy/jVEIm+n59GLP6+mN4e0/2miIiqmd6VZQq83ByKgjCYxNWmUxWoes+oFoCsa6+DNbluRsaXYtFQno+fjuTjD/O3sSdHM2wzjbuVhjS1h39WjnD3Kj+Xhfdmjnh+5FtMWbjaRy8lo63Nl/AytdCnnqCUF2ma68JbWpMsVAoFBCJRBCLxdUa0142NKvsWH3GWGg8bSzEYjFEIlGl77HG8p4jKpNbJMf55HvqItS5pCzkFJVW2M/bzrTcini+DuYNcsJwkUiE4e090c3XHu9uOY8TcZmY82c0/olOxWcDW8HNmsOiiIjqi14VpZycnACoekw9ODt8Wlpahd5TRA8qLFFg96UUbD6djJPxmertNqaGeDlINWl5MyftTZTf6f7k52M2nMaBq3cx4afIRl+YIqL6MW/ePKxYsQJpaWkVVrQlooZHEAQkZhSoV8SLTMzCtTu5uN/hW81YKkErN0tVAcrDGkEeVrA1q3iRtiFztzHBL2M74IfjCfjfP1dwNDYDfb46jI+eb44hbd31vscpEVUd86Wa06vLqN7e3nBycio3B0tJSQkOHjyITp06abFlpIsEQcD55Gx8uO0i2i3aixm/ncfJ+EyIRECYnz2WDw/GiVk9MadfC60WpMp08lEVpoykYhy4ehfjf4xEkVzx5AOJ6KmIRKLH/owaNQoAsH//fvTo0QM2NjYwMTGBr68vRo4cqZ6v6MCBAxCJRMjOzi53u6ynj6WlJYKCgvDee+8hJSXlsW1KSEgo1wZLS0t06NABf//9d7We2+XLlzF//nysWrUKKSkpj1xIhIh0V2GJAifjMrD8QCzGbjyD0IV70f2LA3jn9/P4+WQSrqSqClJu1sZ4sbUL5r8YgL/f6oIL88KxeXxHvNfHH8+2cGx0BakyYrEIozp7Y/fb3RDiaY284lJ8sPUiRm84jdR7RdpuHlGjwXyJHqXR9ZTKy8tDbGys+nZ8fDyioqJgY2MDDw8PTJs2DZ9++il8fX3h6+uLTz/9FCYmJhg2bJgWW026JCu/BNvO3cJvZ5JxJVUzQa67jTEGh7hjYIgbXKyMtdjCR+vkY4f1o9ph9IZTOHhNVZhaNYI9pojq0oMJz+bNmzF37lxcvXpVvc3Y2BjR0dHo27cvpk6dimXLlsHY2BjXr1/Hli1bnrgy3NWrV2FhYYGcnBycPXsWS5Yswbp163DgwAG0bNnyscfu3bsXAQEByM7OxvLlyzFw4ECcPXsWgYGBVXpuN27cAAD079//qXoMyOVyDnkjqgeCIOBWdiHOJmWrV8SLuZ2jnveyjKFEjEBXC4R4Wqt7QjlYVH0uv8bI284Uv43viHVH4vDFnms4cPUuwv/vIOa9GICXg1zZa4roKTFfejJ9zZcaXU+pM2fOICgoCEFBQQCAGTNmICgoCHPnzgUAvPfee5g2bRomTZqE0NBQ3Lp1C3v27IG5ufZ7upD2KJQCDl27i8m/nEX7T//Dgh0xuJKaC0MDMfq3ccEvY9vj4MwemNLTV2cLUmU6+thi/ah2MJZK1IUp9piihkoQBBSUlD7xp7BEUaX9qvMjCMKTGwjV0PCyH0tLS4hEogrbIiIi4OzsjCVLliAwMBA+Pj7o06cP1q5dC0NDw8ee38HBAU5OTvDz88Orr76Ko0ePwt7eHhMnTnxi22xtbeHk5AR/f38sWrQIcrkc+/fvV99/69YtDBkyBNbW1rC1tUX//v2RkJAAQNUN/YUXXgCgmV+pzPr169G8eXMYGRnB398fy5cvV99XdtXxt99+Q/fu3WFkZISffvqpysdt3boVPXr0gImJCVq3bo3jx4+Xe05Hjx5FWFgYTExMYG1tjd69eyMrKwuA6vWyZMkSNGnSBKampujSpQu2bNmiPjYrKwvDhw+Hvb09jI2N4evri/Xr1z8xjkS6QKEUkF9ciru5xUjOLMC1O7k4n5yN43EZ2H9bhLd+jUKHxf+hy2f7MfXXc9hwLAEXbt5DqVKAo4UMfQOd8NHzzfHHxE64OD8cWyd1xuznW6BPoLPeF6TKSMQivNnNB7umdkFrN0vkFJVixm/n8eaPkbibW/zkExBpCfMl5ksNOV9qdD2lunfv/tg3hkgkwrx58zBv3rz6axTprOTMAvweeRN/RN7ErexC9fZAVwsMCXXHi61dYWnS8KrVHX1s1XNMHbx2F2/+GInV7DFFDVChXIEWc//VymPHLOgNE8Pa+TPp5OSElJQUHDp0CN26dXuqcxkbG2PChAmYPn060tLS4ODg8MRj5HI51qxZA0AzSXdBQQF69OiBrl274tChQzAwMMDChQvRp08fXLhwATNnzoSXlxdGjx5d7urmmjVr8PHHH+Pbb79FUFAQzp07h3HjxsHU1BQjR45U7/f+++/jyy+/xPr16yGTyap83OzZs/HFF1/A19cXs2fPxtChQxEbGwsDAwNERUWhZ8+eGDNmDL755hsYGBhg//79UChUhfePPvoIW7duxYoVK+Dj44M9e/bg9ddfh6OjI8LCwjBnzhzExMRg9+7dsLOzQ2xsLAoLNZ/9RDUlVyhRKFegqESBQvn9n5L7Pw/cLlL/rkSBvPSB/ZXl7i8o+/2B40tKH9dLQAIgTfWbWIQAFwv1injBHlZwtTJmT59qaOpgjj8mdsKqQ3H4au81RMTcwZmETHzyUiD6tXLRdvOIKmC+VBHzpYaTLzW6ohTRkxTJFdgTcwe/nU7G0RvpKKthWhpL8VIbFwxu644AF0vtNrIWdPSxxfrRbTF6/WkcYmGKSKsGDRqEf//9F2FhYXByckKHDh3Qs2dPvP7667CwsKj2+fz9/QGorpY9Lsnq1KkTxGIxCgsLoVQq4eXlhcGDBwMANm3aBLFYjLVr16q/rK5fvx5WVlY4cOAAwsPDYWVlBUCzUAgAfPLJJ/jyyy8xYMAAAKr5GmNiYrBq1apyydK0adPU+1TnuJkzZ+L5558HAMyfPx8BAQGIjY2Fv78/lixZgtDQ0HJXDAMCAgAA+fn5WLp0Kfbt24eOHTtCqVRi2LBhiIyMxKpVqxAWFoakpCQEBQUhNDQUAODl5VWNqFNDJAgCShRKFN0vApUVeYruF4Y0BaOy+5QP3P9AcemBf4sqKTo9PDyurhlLJTA2lMBYKoHMQAwTRS76hDZDW29btHKzgrEh/9Y/LQOJGJN7NMUz/g5457fziEnJwVu/nMPui6n45KVA2Jg+vtcGEVUf8yX9zJdYlCK9EX37Hn4/cxPbzt3CvUK5envnprYYHOqO3gFOja5g06EJC1PUsBlLJYhZ0Pux+yiVSuTm5MLcwhxice2NSjeuxfeJRCLB+vXrsXDhQuzbtw8nTpzAokWL8Nlnn+HUqVPlVoStirIewU/q+bB582b4+/vj2rVrmDZtGlauXAkbGxsAQGRkJGJjYysMXy8qKlLPjfCwu3fvIjk5GW+88QbGjRun3l5aWgpLy/LF/LJEprrHtWrVSv17WVzS0tLg7++PqKgoDBo0qNK2xcTEoKioCL169Sq3vaSkRD2kf+LEiep5IsLDw/HSSy9xoZMGKKdIjk93xuBGvBi7fo1CsUJQ9zIqKFd0Uv1en/UiseiBgtH9opGxVAIjafnb6t8N79/30LYH/334WCNp+eEhcrkcu3btwnPdvPVyLpK61tzZAtsnd8a3+2Px3f5Y7LyYgpPxGVj0ckv0DnB68gmI6gHzpcoxX6pIF/MlFqWoUbtXKMdfUbew+UwyLt3KUW93sTTCK6HuGBTiBncbEy22sO49XJga98MZrHk9lIUpahBEItETu4QrlUqUGkpgYmhQq0lWXXB1dcWIESMwYsQILFy4EH5+fli5ciXmz59frfNcvnwZwJOvXLm7u6sX9jAzM8PAgQMRExMDBwcHKJVKhISE4Oeff65wnL29faXnK5tkdM2aNWjfvn25+ySS8p8ppqamNTruwS/VZUlk2fHGxo+e069sn507d8LV1RVKpRJ5eXkwMzNTH9e3b18kJiZi586d2Lt3L3r27InJkyfjiy++eOR5G6N58+ZVeM05OjoiNTUVgCqJnz9/PlavXo2srCy0b98e3333nfoqq7YplQI2nb4JQAykp1X5OKlEVKEAVHbbxFACo4eKRg/eZyx9+H4xjKSqzx11schQDEOJmMPkGiFDAzFm9PJDr+aOeOf3KFy7k4fxP0bi5SBXzHshoEFO9UCNC/OlyjFfenTbdClfYlGKGh2lUsCJ+Az8djoZuy+lovj+HAxSiQjhLZwwuK07ujS1g0SsP0ljhya22DC6LUatP43D19NZmCLSAdbW1nB2dkZ+fn61jissLMTq1avRrVu3RyZDlQkLC0NgYCAWLVqEr7/+GsHBwdi8eTMcHByq3CXe0dERrq6uiIuLw/Dhw6v82DU97mGtWrXCf//9V2lS2qJFC8hkMiQlJSEsLAxKpRI5OTmwsLAol3zb29tj1KhRGDVqFLp27Yp3331X74pSgKob/969e9W3H0x2lyxZgqVLl2LDhg3w8/PDwoUL0atXL1y9elUnFoYxMTTA1Gd8kHjjGoJaBsDUyPCRvYweLCZJJbr9JYx0X0s3S/w9pQu+2nsdqw7ewLZzt3DsRjr+N6AVevg/eb4aIqo+5kvV19DyJRalqNFIuVeILWdu4vfIm0jKLFBvb+ZojsFt3fFykKtej/9vf78wNXoDC1NE9W3VqlWIiorCyy+/DB8fHxQVFeGHH35AdHQ0li1b9thj09LSUFRUhNzcXERGRmLJkiVIT0/H1q1bq92Od955B4MGDcJ7772H4cOH4/PPP0f//v2xYMECuLm5ISkpCVu3bsW7774LNze3Ss8xb948TJ06FRYWFujbty+Ki4tx5swZZGVlYcaMGY987Joe96BZs2ahZcuWmDRpEiZMmABDQ0Ps378fgwYNgp2dHWbOnInp06dDqVSiU6dOSElJwYULF2Bubo6RI0di7ty5CAkJQUBAAIqLi7Fjxw40b9682nFsDAwMDMrNfVFGEAR89dVXmD17tno+i40bN8LR0RG//PILxo8f/8hzFhcXo7hYs0JZTo6qh7JcLodcLn/UYdUmAjChiwciCq+iV7Bz1YasKRWQKxvnSrRlsa3NGDdU9RELMYAZPX3Qw88WH2y9hLj0AozecBqvBLviw75+MDfSfq8pviY0GmMs5HI5BEGAUqlU93qpirKhbGXHalPZ4z/cjlWrVuH8+fN46aWX1PnSjz/+iOjoaHz99dflnnPZ72W3U1NTUVBQoM6XvvjiC6Snp2PLli0VHufBWDx4rjLTp0/HkCFDMHPmTAwdOlSdL82bN0+dL23btg0zZ86Em5tbpc9n7ty5mDZtGszNzdGnTx913pOdna3OVSp77Joc9/C2999/H61bt8bEiRMxfvz4CvnSO++8g+nTp6O0tBSdO3dGamoqzp8/DzMzM4wcORIff/wxgoOD1fnS33//jebNm1f6ulEqlRAEAXK5vEJvrqq+71iUogatpFSJ/y7fweYzyTh07a563ghzmQFeaOOCwaHuaO1mya7097VvYov1o1iYIqpv7dq1w5EjRzBhwgTcvn0bZmZmCAgIwPbt2xEWFvbYY5s1awaRSAQzMzM0adIE4eHhmDFjRqUFhSfp168fvLy8sGjRIixfvhyHDh3C+++/jwEDBiA3Nxeurq7o2bPnY68Ejh07FiYmJvj888/x3nvvwdTUFC1btsS0adMe+9g1Pe5Bfn5+2LNnDz788EO0a9cOxsbGaN++PYYOHQpANTmog4MDFi9ejLi4OFhaWiI4OBizZ88GABgaGmLWrFlISEiAsbExunbtik2bNlX58RuT69evw8XFBTKZDO3bt8enn36KJk2aID4+HqmpqQgPD1fvK5PJEBYWhmPHjj22KLV48eJKr8ru2bMHJiZ1M1Q+IiKiTs7bEDEWGvUVi4lNgJ1SMQ6miLDl7C3svXQTw3yUaGZVvxPfPwpfExqNKRZlFxXy8vJQUlJS7eNzc3ProFXVU1RUBEEQ1BcvygQEBODAgQOYMGECUlNTYWpqCn9/f/z0008ICgpCTk4OCgpUnQ9yc3MhFovVt5s3b67Olzw9PdGjRw9MnjwZjo6OFR6nTFnvq/z8/HL7dOvWDR4eHpg3bx6+/PJL/P3335g3bx4GDhyIvLw8ODs7q/O3nJwc9cp0D55j8ODBEIlEWLZsGd5//32YmJigRYsWmDhxInJycpCXl1fpY9fkuLL/04KCAuTk5MDJyQlbt27FggUL0KFDBxgZGSE0NBT9+vVDTk4OZs6cCQsLCyxevBgJCQmwtLRE69atMX36dOTk5EAQBMyaNQtJSUkwMjJCx44dsXr16krjWFJSgsLCQhw6dAilpaXl7iv7v3kSkVBWHtSCB2eZr6qVK1dWaTnHupSTkwNLS0vcu3evRqsAPI56ssrnntP7ySofF4trd3Lx2+lkbDt3Cxn5mg/jdt42GBLqjudaOjeqlWdq+3VxKj4To9afQkGJAl197RpMYYrvD43GGIuioiLEx8fD29sbRkZGVT7uUd2O9RFjofG0sXjc67Eu84DK1Ha+tHv3bhQUFMDPzw937tzBwoULceXKFURHR+Pq1avo3Lkzbt26BRcXF/Uxb775JhITE/Hvv49ecryynlLu7u5IT0+vk3wpIiICvXr1ajSfgTXFWGhoKxanE7LwwbZLSMpUfTEd1s4N74X7wVSmnev/fE1oNMZYFBUVITk5GV5eXtXKlwRBQG5uLszNzfX+gj1jofG0sSgqKkJCQgLc3d0rzZfs7OyemC9ptafU9u3bMXjw4MdOxPWgX375BXl5eVovSpF25BbJseNCCjafTkZUcrZ6u4O5DAND3DA41B3edqaPPgGptfO2wYbR7TBq/Skcvp6OsRvPYO3IhlGYIiLSN7WdL/Xt21f9e8uWLdGxY0f4+Phg48aN6NChA4CKKxUJgvDEZFUmk0Emk1XYLpVK6+zLYF2eu6FhLDTqOxadfB3wz7Ru+N/uK/jheCJ+OXUTR2Iz8fkrrdC+iW29teNhfE1oNKZYKBQKiEQiiMXial10KRt6VXasPmMsNJ42FmKxaoGPyt5jVX3PaX343jfffFPlItOWLVvquDWkawQBOJOYhT/OpWDnhRQUylXzQRiIRXjG3wFD2rojzM8eBpy8tNoeLEwdiVUVpta8HtqoepgRETUWdZkvlQ2lvH79Ol566SUAqrk5Hlx6Oy0tDY6OjtU6L5E+MTE0wIL+gegd4IT3tlxAUmYBXl1zAqM6eeG93v7Mr4iIHkGrRan9+/fDxsamyvvv3r0brq6uddgiqi+lCiXyixXILylFfnEp8opLUVCiQF6x6nZ+iQJ3sgvwW5QEaSdOq49rYm+KIaHuGBDsBnvzildjqXraedtg45h2GPm9qjBVNscUEyciIt1R1/lScXExLl++jK5du8Lb2xtOTk6IiIhAUFAQANV8EQcPHsRnn31W7bYT6ZvOTe3wz7SuWLTzMjadTsb6owk4cPUuvhjUGiGe1tpuHhGRztFqUepJk7s+rEuXLnXUEnocQRBQXKpEQYnifsGorJCkQMH9glJZISm/kuJSvvr3UuQXq+4rKa3qig8imBhK0K+VMwaHuiPE01rvx/3WtrZeqsLUqPuFqbE/nMba19uyMEVEpCNqO1+aOXMmXnjhBXh4eCAtLQ0LFy5ETk4ORo4cCZFIhGnTpuHTTz+Fr68vfH198emnn8LExATDhg17mqdBpDfMjaT438BW6B3ohA/+uID49HwMWnkM47o1wfRn/ThdAhHRA7Q+fO9haWlpSEtLq7DcYKtWrbTUooZHEAQUylXFn4L7RaCygpLqd1VB6cECU9l+ZYWj/IeKSqXKupkP31AihqlMAlOZAUwNDcr9bmIohuG9ZLw/7BlYm1VtHg2qmbZeNthwvzB1NDaDhSnSKm0vU0wE6P7r8GnypZs3b2Lo0KFIT0+Hvb09OnTogBMnTsDT0xMA8N5776GwsBCTJk1CVlYW2rdvjz179sDc3LxOngtRY9WjmQP2TAvD/B3R2Hr2FlYdjMO+y2n4cnBrtHKz0nbzqIHT9b9TpB9q43WoM0WpyMhIjBw5EpcvX0bZgoAikUg9saZCodByC+teSakS8XfzkZQHnIjLRLECyC8pLVdcKt8jqayXkmYYXNnvdbWmopFUDDOZAUxlBjAxNIDZIwpKprL7tx/8XWYAM5kBTAwl9/81gKHBo+eCUq0ulgQzLa1com/KekyNZGGKtMTQ0BBisRi3b9+Gvb09DA0Nq9QzUqlUoqSkBEVFRZyskrFQq2ksBEFASUkJ7t69C7FYDENDwzpsZfXVRr60adOmx94vEokwb948zJs3rzaaTKTXLE2kWDq4DfoGOmPW1ou4npaHl5cfw6TuPpjyjO9jc2GiyjBfenqMhYYu5Es6821/9OjR8PPzw7p16+Do6KiXQ7SSMgvQ+5ujAAyAi2dq5Zymhg8Ug+4XiVS/3y8oGT7w+4MFpfvHPVhQMjU0gESsf/8v+iT0ocLUGxtPY91IFqaofojFYnh7eyMlJQW3b9+u8nGCIKCwsBDGxsZ6+bfjQYyFxtPGwsTEBB4eHjqXrDJfImqYerVwRKinNeb+FY2/z9/Gsn2x2Hs5DV8Oao0WLo9eKp3oYcyXnh5joaEL+ZLOFKXi4+OxdetWNG3aVNtN0RpzIwOYGxlAopTD1tJM3SPpwSJRWQ8jU5mkQnHp4X2NpRKIWUSianqwMHXsBgtTVL8MDQ3h4eGB0tLSKveQlcvlOHToELp169ZolnuuKcZC42liIZFIYGBgoJOJKvMloobL2tQQy4YGoU+AE+b8eQmXU3Lw4rdHMLWnLyZ294GUq0lTFTFfejqMhYYu5Es6U5Tq2bMnzp8/r9dJlqOFEc7Ofga7du3Cc8911vs3CGlPqJcNfnijHV5fx8IU1T+RSASpVFrlz0CJRILS0lIYGRnp/ecmY6HRWGPBfImo4Xu+lTPaedvgo+0X8W/0HSyNuIaImDv4cnBr+Dly7jaqGuZLNcdYaOhCLHSmKLV27VqMHDkSly5dQmBgYIWAvPjii1pqGZF+CvEsX5gas+E0vh/FwhQRkTYxXyJqHOzNZVj5Wgj+jLqNj/+KxsVb99DvmyOYEe6HcV2bcMoMItIbOlOUOnbsGI4cOYLdu3dXuE9fJjon0jVlhamR35/G8ThVYWrdqFCYGOrMRwcRkV5hvkTUeIhEIrwU5IqOPraYtfUi9l1Jw/92X8Ge6FR8Mag1mtibabuJRER1TmcGLk+dOhUjRoxASkoKlEpluR8mWETaE+Jpg41j2sJMZoDjcRl4Y8MZFJSUartZRER6ifkSUePjaGGEdSNDseSVVjCXGeBsUjb6fn0Y647EQ6msoyW1iYh0hM4UpTIyMjB9+nQ4OjpquylE9BBVYaqdujA1ZsNpFqaIiLSA+RJR4yQSiTA41B3/TO+Grr52KC5V4pMdMXh1zQkkZRRou3lERHVGZ4pSAwYMwP79+7XdDCJ6hBBPa3Vh6kRcJgtTRERawHyJqHFztTLGD2PaYdHLgTAxlOBUfCb6fH0IP55IhCCw1xQRNT46MzGMn58fZs2ahSNHjqBly5YVJu6cOnWqllpGRGXKClMjvz+lLkx9P6ot55giIqonzJeIGj+RSITh7T3RzdceM38/j5PxmZiz/RL+vZSKz15pBVcrY203kYio1ujMN8m1a9fCzMwMBw8exMGDB8vdJxKJmGQR6YgQT2v1qnwn4jIxev1prB/NwhQRUX1gvkSkP9xtTPDruA7YeDwBn/1zBUdi09H7/w5hTr/mGBzqDpGIK/QRUcOnM98i4+Pjtd0EIqqiYA9VYWrkulM4Gc/CFBFRfWG+RKRfxGIRRnf2RpifqtfU2aRsvP/HRfxzKRX/G9gKjhZG2m4iEdFT0Zk5pYioYQn2sMbGN9rBXGaAk/GZGLWec0wRERER1YUm9mb4fUInzOrrD0MDMfZfvYteSw9i27mbnGuKiBo0rXdrWLBgQZX2mzt3bh23hIiqq6zH1OvrTuHU/cLU+lFtYSrT+kcLEVGjwnyJiCRiEcaH+eAZfwfM/P08zt+8h+mbz2P3xVQserkl7M1l2m4iEVG1af2b47Zt2x55n0gkwtWrV1FUVMQki0hHBT1UmBq9gYUpIqLaxnyJiMr4Oprjj4mdsPLgDXz933XsibmD0wmZ+OSlQPRr5aLt5hERVYvWvzWeO3eu0u1RUVH44IMPcOnSJYwbN66eW0VE1VGhMHV/jikWpoiIagfzJSJ6kIFEjLee8cUz/o545/fzuJySg7d+OYfdl1Ix97lm2m4eEVGV6dycUvHx8XjttdfQtm1bWFpaIjo6GitXrtR2s4joCYI8rPHj2PYwlxngVIKqMJVfzDmmiIjqAvMlIgKAFi4W+HNyZ0x9pikkYhF2XkjBc8uO4UKmiHNNEVGDoDNFqfT0dEyZMgX+/v5ISUnBsWPHsHnzZvj6+tbJ4y1fvhze3t4wMjJCSEgIDh8+XCePQ6RP2rhbqQpTRixMERHVhfrOl4hI9xkaiDEjvBm2T+oMP0czZOSXYN1VCXr+3xEs3nUZZ5OyoFSyQEVEuknrRan8/HzMnz8fPj4+OHbsGP7++2/8999/aNu2bZ095ubNmzFt2jTMnj0b586dQ9euXdG3b18kJSXV2WMS6Ys27lb48Q1NYWrU+lMsTBERPSVt5EtE1LC0dLPE31O6YHxXb0jFApKzCrHqUBwGLD+GTv/bh3l/ReP4jQwoWKAiIh2i9QlffHx8kJubiylTpmDo0KEQiUS4cOFChf1atWpVa4+5dOlSvPHGGxg7diwA4KuvvsK///6LFStWYPHixbX2OET6qo27FX56oz1eW3cSpxOyMGr9Kawf3Q5mnGOqVqTcK8S+mFTsTxQjZs91iCVav76gVUqFEjcYCwCMxYOUCiXkGSI8p+2G1BJt5EtE1PDIDCSYGe4Ln+LrMG4SgojLd7HvShpSc4qw4VgCNhxLgK2pIcIDHNE7wAmdfOxgaKDffy+ISLu0/g0xLS0NALBkyRJ8/vnn5cY+i0SqsdAikQgKhaJWHq+kpASRkZH44IMPym0PDw/HsWPHKj2muLgYxcXF6ts5OTkAALlcDrlcXivtKlN2vto+b0PEWGg0xFi0cDLFhpEhGLUxUlWY+v4k1owIfqrCVEOMQ20oKVUiMikLB6+l4/D1DFxLy7t/jxh7b8drtW26g7HQYCzKdHIQ1cnnhTY+g+o7XyKihk0mAfoEOOKFNm4okitwNDYd/1xKRcTlO8jIL8Gvp5Lx66lkWBgZ4NnmjugT6IRufvYwkkq03XQi0jNaL0rFx9dv4pyeng6FQgFHR8dy2x0dHZGamlrpMYsXL8b8+fMrbN+zZw9MTEzqpJ0RERF1ct6GiLHQaIixGOcLrIiR4ExiNgZ8/R8mNFfA6CnznYYYh+rKKAIuZ4twOVuEa/dEKFGK1PeJIMDTDPAwEyAWPeYkRHrOy1yok8+LgoKCWj/nk9R3vkREjYeRVIKezR3Rs7kj5AolTsZl4p/oFPwbfQd3c4ux9dwtbD13CyaGEvRo5oA+gU7o4e/AHu5EVC+0+klz4cIFBAYGQiyuWpfR6OhoNGvWDAYGT99skaj8N7myK4yVmTVrFmbMmKG+nZOTA3d3d4SHh8PCwuKp2/IguVyOiIgI9OrVC1KptFbP3dAwFhoNPRZdbt3DyA2RiM8txW+pdlj7es16TDX0ODxOsVyBU4lZOHQtHYeuZyAuPb/c/XZmhujqa4duTW3RuaktzKSiRhuL6mrMr4vqYiw06jIWZT2m64s28yUialykEjG6+Nqhi68d5r8YiLNJWfjnUir+uZSKW9mF2HkxBTsvpsDQQIxuvnboE+iMZ5s7wMrEUNtNJ6JGSqvZSlBQEFJTU2Fvb1+l/Tt27IioqCg0adKkxo9pZ2cHiURSoVdUWlpahd5TZWQyGWQyWYXtUqm0zpL+ujx3Q8NYaDTUWAR72eHnse3x2tqTiEzKxrgfz2HDmJrPMdVQ4/CwxIx8HLh6FweupuF4XAaK5Er1fRKxCMEeVujezAFhfvZo4WwB8QPdosqGDzWWWNQGxkKDsdCoi1jUd2y1kS8RUeMnEYvQ1ssGbb1s8NHzzXHx1j3svl+gik/Px97Ladh7OQ0GYhE6+tiiT6ATwls4wd684vciIqKa0mpRShAEzJkzp8pD4EpKSp76MQ0NDRESEoKIiAi8/PLL6u0RERHo37//U5+fiCrXys0KP90vTJ1JzMLI709h41MUphqiwhIFTsRl4OA1VSEqIaP8ECBHCxm6+zkgrJk9Oje1g6UxiwpEpJ18iYj0i0gkQis3K7Rys8J7vZvh2p087L6Ugn8upeJKai4OX0/H4evp+Gj7JbT1tEGfQCf0CXSCi5WxtptORA2cVr8NduvWDVevXq3y/h07doSx8dN/8M2YMQMjRoxAaGgoOnbsiNWrVyMpKQkTJkx46nMT0aO1crPCz2M7YPjaE4i8X5jaMLotzI0aZ/FFEATEpat6Qx28dhcn4jJQUqrpDWUgFiHUyxrdmzmgezN7NHM0f+QwYiLSX9rKl4hIP4lEIjRzMkczJ3NMe9YP8en594f4peD8zXs4lZCJUwmZWLAjBq3dLNEn0Bl9A53gZWeq7aYTUQOk1aLUgQMHtPK4Q4YMQUZGBhYsWICUlBQEBgZi165d8PT01Ep7iPRJSzfLcoWpUetPN6rCVH5xKY7dyMDBa2k4cPUubmYVlrvf1coYYc3sEean6g2lTz3FiKhmtJUvEREBgLedKSZ298HE7j64lV2If+8P8TudmInzN+/h/M17+OyfK/B3MkefQCf0DXSGn6MZL7QRUZXo7behSZMmYdKkSdpuBpFeKitMvbbupLrH1MYx7RpkYUoQBFxPy8OBq2k4eO0uTsdnoUSh6Q1lKBGjnbcNujezR/dm9vCxZ5JGREREDZOrlTHGdPHGmC7euJtbjD0xqgLV8RsZuJKaiyupufhq73V425neL1A5oaWrJXMfInokvS1KEZF2qQpT7TF87UmcTcpuUIWp3CI5jsaqekMdvHoXt+8Vlbvfw8YE3e/3huroYwsTQ37UEhERUeNiby7D8PaeGN7eE9kFJdh7OQ3/XErBoevpiE/Px4oDN7DiwA24Whmjd4AT+rZ0QrCHNSRiFqiISIPflIhIawJdG0ZhShAEXE7JxYH7RajIxCyUKgX1/TIDMTo0sb3fG8oBXrYmvCJIREREesPKxBCvhLjhlRA35BWXYv+VNPxzKRX7r6bhVnYhvj8aj++PxsPeXIbwFo7oG+iM9k1sIJWItd10ItIyFqWISKt0tTB1r0COI7Hp6mF5abnF5e5vYmeqnhuqQxNbGEklWmopERERke4wkxnghdYueKG1C4rkChy8dhf/XkpFxOU7uJtbjJ9PJuHnk0mwMpHi2eaO6BvohC6+dpAZMJci0kcsShGR1j1cmHr9+1P4oZ4LU0qlgOjbOeoi1LnkbCge6A1lLJWgk4/t/WF5DvCwrdrS7ERERET6ykgqQe8AJ/QOcEJJqRLHbqTj3+hU7Im+g4z8EmyJvIktkTdhJjNAD38H9A10Qvdm9pz6gEiP8N1ORDrhwcLUufuFqY1j2sGiDgtTmfklOHz9Lg5evYtD1+8iPa+k3P2+DmbqIlRbb2tewSMiIiKqIUMDMbo3c0D3Zg74pL8SpxOy8M+lFPwTnYo7OcX4+/xt/H3+NmQGYoT52aNvSyc84+8IS2PdmtaBiGoXi1JEpDPKClOvrVMVpkbWcmFKoRRw4WY2Dl67iwNX7+L8zWwIms5QMDWUoHNTO3Rv5oBufnZws2ZvKCIiIqLaZiARo6OPLTr62OLjFwIQdTMb/1xKxe5LKUjOLMSemDvYE3MHUokInXzs0DfQCb1aOMLWTKbtphNRLWNRioh0SqCrJX56Q1OYen3dKfzwRs0LU+l5xTh0vwh1+PpdZBXIy93v72SOsGb26O7ngBBPaxgacMJNIiIiovoiFosQ7GGNYA9rzOrrj5iUnPsFqlTEpuXh4LW7OHjtLj7cdhHtvW3RJ1A1HNDJ0kjbTSeiWsCiFBHpnAcLU1HJmsKUcRVGz5UqlIhK1vSGunjrXrn7zY0M0NXXDt39HNDNz54JDREREZGOEIlECHCxRICLJd4Jb4bYtFx1gSr6dg6Ox2XgeFwGPv4rGsEeVugT6IS+gc5wt2HvdqKGikUpItJJD84xVVaY+v71oEr3TcspwoH7V9EOX7uLnKLSh85lgTA/e3Rv5oAgdysYcPlhIqIqWb58OT7//HOkpKQgICAAX331Fbp27artZhGRnmjqYI63njHHW8/4IjmzQD3E72xStvrn011XEOBigb6BTugT6ISmDubabjYRVQOLUkSkswJcyhemRm2MxDBnQK5QIjI5Q90b6nJKTrnjrEyk6Oprj+5+9ujqZwcHc/aGIiKqrs2bN2PatGlYvnw5OnfujFWrVqFv376IiYmBh4eHtptHRHrG3cYE47o1wbhuTXAnpwj/Rqdi98VUnIzPQPTtHETfzsEXe66hqYMZ+t4f4udnb6ztZhPRE7AoRUQ67cHC1IWbObh5V4KFFw4gr1jTG0okAlq5Wd3vDWWP1m5WkIhFWmw1EVHDt3TpUrzxxhsYO3YsAOCrr77Cv//+ixUrVmDx4sUV9i8uLkZxcbH6dk6O6oKBXC6HXC6vsP/TKDtfbZ+3IWIsNBgLFX2Ig42xBENDXTE01BUZ+SXYdyUN/0an4VhcBmLT8rBsXyyW7YuFu7URXKViHP/zEsRi/e4pr1QqkZzMWACMxYOUSiWQKUKvOvi8qOpnEItSRKTzAlws8cvYDhi25gQyC+UASmFraohufvYI87NHV187rsZCRFSLSkpKEBkZiQ8++KDc9vDwcBw7dqzSYxYvXoz58+dX2L5nzx6YmNTNfC8RERF1ct6GiLHQYCxU9CkOpgAG2AF9rIDoLBEuZIpwOVuE5KwiJEOME2m3td1EHSEG7jAWKoxFmSBbUZ18XhQUFFRpPxaliKhBaOFigd/ebIcVfx7CiD6d0MbDFmL2hiIiqhPp6elQKBRwdHQst93R0RGpqamVHjNr1izMmDFDfTsnJwfu7u4IDw+HhYVFrbZPLpcjIiICvXr1glRas9VZGwvGQoOxUNH3OLxy/9+CklLsu3wH/564iCZNmkCi53OKKhRKxMXFMRZgLB6kUChRkHqjTj4vynpMPwmLUkTUYHjbmaK7s4CWrpYsSBER1QORqPxnrSAIFbaVkclkkMkq9lqVSqV19sW4Ls/d0DAWGoyFir7HwVIqRb/WrhDfOo/nevnpdSwAVbFy165YxgKMxYPKYlEXnxdVPR+LUjUgCAKAqlf+qkMul6OgoAA5OTl8gzAWaoyFCuOgwVhoMBYajIVGXcai7O9/WT7QGNnZ2UEikVToFZWWllah99SjMF+qH4yFBmOhwjhoMBYajIUGY6GhC/kSi1I1kJubCwBwd3fXckuIiIhIW3Jzc2FpaantZtQJQ0NDhISEICIiAi+//LJ6e0REBPr371+lczBfIiIioiflSyxK1YCLiwuSk5Nhbm7+yC7sNVU2/0JycnKtz7/Q0DAWGoyFCuOgwVhoMBYajIVGXcZCEATk5ubCxcWlVs+ra2bMmIERI0YgNDQUHTt2xOrVq5GUlIQJEyZU6XjmS/WDsdBgLFQYBw3GQoOx0GAsNHQhX2JRqgbEYjHc3Nzq9DEsLCz0/g1ShrHQYCxUGAcNxkKDsdBgLDTqKhaNtYfUg4YMGYKMjAwsWLAAKSkpCAwMxK5du+Dp6Vml45kv1S/GQoOxUGEcNBgLDcZCg7HQ0Ga+xKIUEREREVVq0qRJmDRpkrabQURERI2Ufq9/SEREREREREREWsGilI6RyWT4+OOPK11SWd8wFhqMhQrjoMFYaDAWGoyFBmPRuPH/V4Ox0GAsVBgHDcZCg7HQYCw0dCEWIqExr2dMREREREREREQ6iT2liIiIiIiIiIio3rEoRURERERERERE9Y5FKSIiIiIiIiIiqncsShERERERERERUb1jUYqIiIiIiIiIiOodi1JERERERERERFTvWJQiIiIiIiIiIqJ6x6IUERERERERERHVOxaliIiIiIiIiIio3rEoRURERERERERE9Y5FKSIiIiIiIiIiqncsShERERERERERUb1jUYqIiIiIiIiIiOodi1JERERERERERFTvWJQiIr0xb948iEQipKenP3a/UaNGwcvLq34aVc12fPrpp9i+fXuNznfgwAGIRCJs2bLl6RtHREREeqmh5VOPUln7vLy8MGrUKK20h0hfsShFRKSj5syZg23btpXb9jRFKSIiIiIiov9n777DmjrfPoB/swgJU/YWURQV3HUvasFRR5111Lo7bGvVWltrW+v62Tr62uWs1bbWVWtt66pYce89cKEsBURxsENIzvsHkoAggiYkkO/nunKRnJzznCc3B7i5z3OeY06kpu4AEVmerKwsKJVKU3fD7NWsWdPUXSAiIiIzxXyqqOzsbFhbW0MkEpm6K0RUDhwpRURGVTDE+9SpU+jXrx+qVatWpmJLTk4OPvjgAzRq1AgODg5wcnJCq1at8NdffxVbVyQS4d1338Wvv/6KunXrQqlUomHDhtiyZctT93P58mUEBASgRYsWSElJeeJ6giBg0aJFaNSoERQKBapVq4Z+/frhxo0bT91HYatWrYJIJEJERARGjBgBJycn2NjYoEePHsXaenxYuUgkQmZmJn7++WeIRCKIRCJ07NhR9/6tW7fwxhtvwNfXF1ZWVvDy8kK/fv1w+/btIu2q1WpMnToVXl5esLe3x0svvYQrV66U63MQERFRxWE+VVRBPrVz506MHDkSrq6uUCqVUKlU0Gq1mDt3LoKCgiCXy+Hm5obXX38dN2/eLNc+iKhisChFRBWiT58+qFWrFn7//XcsWbLkqeurVCrcu3cPkyZNwubNm7F27Vq0bdsWffr0wS+//FJs/a1bt+L777/HjBkz8Mcff8DJyQm9e/cuNcnZu3cvWrdujQYNGiAyMhJubm5PXPfNN9/E+PHj8dJLL2Hz5s1YtGgRLl68iNatWxcr+pTFqFGjIBaLsWbNGixcuBDHjh1Dx44d8eDBgyduc/jwYSgUCnTr1g2HDx/G4cOHsWjRIgD5BakXXngBf/75JyZOnIjt27dj4cKFcHBwwP3794u088knnyAuLg4//vgjli1bhmvXrqFHjx7QaDTl/hxERERUcZhPFTVy5EjIZDL8+uuv2LhxI2QyGd5++2189NFHCAsLw99//42ZM2dix44daN269VPnwSIiExCIiIxo2rRpAgDh888/f6528vLyBLVaLYwaNUpo3LhxkfcACO7u7kJaWppuWXJysiAWi4U5c+YU68udO3eEX3/9VbCyshLGjRsnaDSaIu0NGzZMqF69uu714cOHBQDCggULiqyXkJAgKBQKYfLkyWX+HCtXrhQACL179y6y/ODBgwIAYdasWU/shyAIgo2NjTBs2LBi7Y4cOVKQyWRCVFTUE/cdGRkpABC6detWZPmGDRsEAMLhw4fL/DmIiIio4jCfKqogn3r99deLLL906ZIAQBg7dmyR5UePHhUACJ988skT+ycIglC9evUS8ywiMh6OlCKiCtG3b99yb/P777+jTZs2sLW1hVQqhUwmw4oVK3Dp0qVi64aGhsLOzk732t3dHW5uboiLiyu27uzZszF8+HB8+eWX+OabbyAWl/6rcMuWLRCJRHjttdeQl5ene3h4eKBhw4bYs2dPuT/bkCFDirxu3bo1qlevjsjIyHK3BQDbt29HaGgo6tat+9R1e/bsWeR1gwYNAKDEWBEREZH5YD5V1OPxKMijHr+DXvPmzVG3bl38999/5d4HERkXi1JEVCE8PT3Ltf6mTZswYMAAeHt7Y/Xq1Th8+DCOHz+OkSNHIicnp9j6zs7OxZbJ5XJkZ2cXW7569Wp4e3tj4MCBZerL7du3IQgC3N3dIZPJijyOHDnyTEPBPTw8SlyWmppa7rYA4M6dO/Dx8SnTuo/HSi6XA0CJsSIiIiLzwXyqqMfjUZBHlRQnLy+vZ86ziMh4ePc9IqoQ5b0TyurVq1GjRg2sX7++yLYqleq5+7Jjxw68+uqraNeuHf777z9Ur1691PVdXFwgEomwf/9+XQGnsJKWPU1ycnKJy2rVqlXutgDA1dWVE3gSERFVccynino8HgVFtaSkpGIn6xITE+Hi4lLufRCRcXGkFBGZJZFIBCsrqyLJRnJycol3iymv6tWr6xKidu3a4dq1a6Wu3717dwiCgFu3bqFZs2bFHiEhIeXuw2+//Vbk9aFDhxAXF1fkbnoledLZyq5duyIyMpJ30SMiIiKdqp5PPe7FF18EkF+MK+z48eO4dOkSOnXq9Nz7ICLD4kgpIjJL3bt3x6ZNmzB27Fj069cPCQkJmDlzJjw9PZ+a9JSFp6cn9u7di86dO6N9+/aIiIhAcHBwieu2adMGb7zxBkaMGIETJ06gffv2sLGxQVJSEg4cOICQkBC8/fbb5dr/iRMnMHr0aPTv3x8JCQmYOnUqvL29MXbs2FK3CwkJwZ49e/DPP//A09MTdnZ2qFOnDmbMmIHt27ejffv2+OSTTxASEoIHDx5gx44dmDhxIoKCgsrVPyIiIqr8qno+9bg6dergjTfewHfffQexWIyuXbsiNjYWn332GXx9fTFhwoTnap+IDI9FKSIySyNGjEBKSgqWLFmCn376CQEBAfj4449x8+ZNTJ8+3SD7cHFxwe7du/Hyyy+jQ4cO+Pfff9GsWbMS1126dClatmyJpUuXYtGiRdBqtfDy8kKbNm3QvHnzcu97xYoV+PXXXzFw4ECoVCqEhobim2++gZOTU6nbffPNN3jnnXcwcOBAZGVloUOHDtizZw+8vb1x7NgxTJs2DV9++SVSU1Ph6uqKtm3bPrVNIiIiqpqqej5VksWLF6NmzZpYsWIFfvjhBzg4OKBLly6YM2dOiXNmEZFpiQRBEEzdCSIiS7Fq1SqMGDECx48ff2LCRkREREREZAk4pxQREREREREREVU4Xr5HRBVKEARoNJpS15FIJOW+u4yplfVzERERET0vS8+nKtvnIqIn40gpIqpQe/fuhUwmK/Xx888/m7qb5fbzzz8/9XPt3bsXw4cPhyAIvHSPiIiInpml51NEVHVwTikiqlDp6em4cuVKqevUqFGj0k1EmZqaipiYmFLXqVOnDuzs7CqoR0RERFRVMZ9iPkVUVbAoRUREREREREREFY5zSj0DrVaLxMRE2NnZ8XpmIiIiCyMIAtLT0+Hl5QWxmDMhPAnzJSIiIstV1nzJYotSixYtwrx585CUlIT69etj4cKFaNeuXZm2TUxMhK+vr5F7SEREROYsISEBPj4+pu6G2WK+RERERE/LlyyyKLV+/XqMHz8eixYtQps2bbB06VJ07doVUVFR8PPze+r2BdcwJyQkwN7e3qB9U6vV2LlzJ8LDwyGTyQzadmXDWOgxFvkYBz3GQo+x0GMs9IwZi7S0NPj6+nJOk6dgvlQxGAs9xiIf46DHWOgxFnqMhZ455EsWWZT6+uuvMWrUKIwePRoAsHDhQvz7779YvHgx5syZU2x9lUoFlUqle52eng4AUCgUUCgUBu2bVCqFUqmEQqGw+B8QxkKPschX1eKg0QrIUWuQXfDI1SBbrX30VaP/WsL7mSo1Em7Z4sD2GIjFln1ZjFYrIDmZsQAYi8K0WgF2WTboZYTfF2q1GgB4SdpTFMTH3t7eKEUppVIJe3v7KvH34HkwFnqMRb79V27j3xRbtBGs4Gdv2cVzHhN6jIUeY6FXEbF4Wr5kcUWp3NxcnDx5Eh9//HGR5eHh4Th06FCJ28yZMwfTp08vtnznzp1QKpVG6WdERIRR2q2MGAs9xiJfRcRBEACNAORqgVzNo6+656ISl6u1Iqi0gFqD/K+lrK/WAGrhef+hFQN3bxvk81Z+jIUeY1GgtZvIKL8vsrKyDN4mEdHzylTl4cvtl/HrkTgAYrz203Gse6MVvBwNexKdiMiQLK4odffuXWg0Gri7uxdZ7u7ujuTk5BK3mTJlCiZOnKh7XTAMLTw83Chn/iIiIhAWFsaqLWOhw1jkKxwHiUQKVZ4WWWoNctQaZOWW9LX4+8VGI6kfG5VU8L5aA4224m5OqpCJYS2TQGklKfpVJoG1TAyFTAKFlUT31UoMxFy/hjp16kAikVRYP82RRqPBlStXGAswFoVpNBqkJ1wxyu/NtLQ0g7ZHRPS8jsXcw6TfzyL+Xn7R3EYqIP5eNgYuO4J1b7RkYYqIzJbFFaUKPD6ETBCEJw4rk8vlkMvlxZbLZDKjFQiM2XZlw1joWXIsBEHA95HXsfKEBB+d2IsctbbC9i0Ri6AsKAoVKgwpHz0vKCLlL5dCUVBUspIU205ZaPv811LIpeJyX2qlVquxLfsqurULsNhjooBarca29MuMBRiLwtRqNbZtu2yU35uWHlsiMh85ag3m/XsFPx2MgSAAXg7W+F/v+og5dxQ/xdgh/l4WC1NEZNYsrijl4uICiURSbFRUSkpKsdFTRGQe1BotPvrjHDadugVABKBoQUouFRct9lhJoJRJYW0lgUImhtJK+ljhqFCB6LEik/WjQlHh9aykvOV7RdNoNLp5e55GrVZDKpUiJycHGo3GyD0zb4yF3vPEQiaTWfxIMyIyf6fj7+OD38/ixp1MAMCAZj74tHs9KCTAwyvAb6NewGs/ndAVpta+0RLeLExVKcyXng1joWcO+ZLFFaWsrKzQtGlTREREoHfv3rrlERER6NWrlwl7RkQlyVTl4e3fTmHf1TuQiEXoUz0Pb/fuAHuldX7hSCax+AmdqxJBEJCcnIwHDx6UaxsPDw8kJCRY/MTTjIXe88bC0dERHh4eFh9HIjI/qjwNvtl1DUv2XodWANzs5PiybwheDMo/wV5QpPB0sMa6N1pi4LIjiL+XhUEsTFUZzJeeD2OhZw75ksUVpQBg4sSJGDp0KJo1a4ZWrVph2bJliI+Px1tvvWXqrhFRIXfSVRi56jjO33oIhUyCbwc2QFb0cfhWU/LymSqqIMFyc3ODUqks0x84rVaLjIwM2NraQiy27FFtjIXes8ZCEARkZWUhJSUFAODp6WmsLhIRldvFxIf4YMNZXE7Ovxv4K4288EXP+nBUWpW4vpejokhhauCyw1j3RisWpio55kvPh7HQM4d8ySKLUq+++ipSU1MxY8YMJCUlITg4GNu2bUP16tVN3TUieiTmbiaG/XQM8fey4GRjhZ+Gv4D6HjbYFm3qnpGxaDQaXYLl7Oxc5u20Wi1yc3NhbW3NxIKx0HmeWCgU+f+spaSkwM3NjZfyEZHJqTVaLN5zHd/+dw15WgHONlaY3TsYXYKf/o9gQWFq0PIjiEtlYaqyY770/BgLPXPIlyyyKAUAY8eOxdixY03dDSIqwZmEBxi56jjuZebCz0mJn0c2Rw0XmzJfM0+VU8H3V6lUmrgnRPrjUK1WsyhlZnLUGoz++STS7omxJ/s87BRWUFpJYWMlgVIuha08f25AG7kENlZS2MilUFpJYCN/9JyXfVMlc/V2Oj7YcBbnbz0EAHSp74FZvYPhYlv8RkxP4uWowNoxRQtTa8e0hE81/s2tbJgvkTkxRL5ksUUpIjJPkZdTMPa3U8hWaxDi7YCfhr8AV7uyJ11U+Vn6tf1kHngcmq9MVR4ORKcCEOPcvaRnakMhk+QXreRSXUErv2gleex1oYKWlRRKXaFLUuS10krCY4YMTqMVsHz/DXy98ypyNVo4KGSY0as+ejb0eqbjrfClfHGpWRi0/AgLU5UYf+eQOTDEcciiFBGZjQ3HEzDlz/PQaAW0r+2KxUOawEbOX1NERKSntJJift9gHD11FjVqByEnD8hS5SEzNw+ZKg2ycvOQocpDVq4GmY++ZqjykKnKg1bIbyNbrUG2WoO7GbkG6ZNIBChlBSO1HhWyCopW8kejuKwevVeokJX/uuT3rWVi/tNpwW7cycCk38/iVPwDAMCLQW6Y0ycE7vbWz9WupwMLU0RkXvjfHhGZnCAI+H53NBZEXAUA9Gnija/6NoBMYtnXeBMRUXEKKwl6NfKCLPEMurWtUeYbXwiCAFWeVleoKihi5b9+9LxQYavgvcxcfWErKzcPWYXWy8zNgyAAggBk5mqQmavBnXSVQT6nWITHRmcVvQyxoJClkIkgfmiQXZIZ0GoF/Hw4Fl/tuIwctRa2cik+71EP/Zv6GKxIWVCYGrTsCGJTszBw2RGse4OFKSIyDRaliMikNFoBn/91Ab8djQcAvBNaE5PC6/DsMJGZ+OKLL7B48WKkpKTgzz//xCuvvGLqLhE9E5FIBGuZBNYyCco+NXDpBEFAjlqrK1jpC1v6kVr5ha2ihS59Uazw6K78r1m5GgCAVgDSVXlIV+UBeFqhS4pjPx3HpM5BeMHfyUCfjipawr0sfLjxLI7cuAcAaFvLBV/1a2CUCck9HRRYy8IUkcEwX3p2LEoRkclk52owbt1pRETdhkgETO9ZH6+38jd1t4jK5WkF1GHDhmHVqlWIjIzEjBkzcPbsWeTk5MDb2xutW7fGihUrIJVKsWfPHoSGhuL+/ftwdHTUvS7Yh52dHQICAhAWFoYJEyaUeuvd2NhY1KxZU/fa3t4edevWxdSpU9GjR48yf7ZLly5h+vTp+PPPP9GyZUtUq1atzNuSedu3bx/mzZuHkydPIikpqVgCLQgCpk+fjmXLluH+/fto0aIFfvjhB9SvX990nTZDIpEICisJFFYSAIaZ/1CrFZCt1uiKWQWFrYJCVpZKP2orM1eDxPtZ2HIuEUdj7qP/ksNoF+iCiWG10diPP6+VhSAIWHssAbO3RiEzVwOFTIJPXq6L11r4GfUkXf6IqVYYuOywrjC1dkxL+DqxMEWGx3yJnoRFKSIyifuZuRj183Gcin8AK6kY3w5sVKbbGhOZm6Qk/UTL69evx+eff44rV67olikUCly8eBFdu3bFuHHj8N1330GhUODatWvYuHEjtFptqe1fuXIF9vb2SEtLw6lTpzB37lysWLECe/bsQUhISKnb7tq1C/Xr18eDBw+waNEi9O3bF6dOnUJwcHCZPtv169cBAL169Xquf4zUanWZL7GiipGZmYmGDRtixIgR6Nu3b7H3586di6+//hqrVq1C7dq1MWvWLISFheHKlSuws7MzQY8th1gs0l2iVxZqtRqNJAm4LPbHH6duYf+1u9h/7S5eDHLDhJdqI8THwcg9pueR9DAbH/1xHvuu3gEANPd3wrz+DVDd2aZC9u/hYF2kMFUwxxQLU2RozJeezlLzJU7YQkQV7ub9LPRbcgin4h/A3lqK30a3YEGKSiQIwqPLWUp/ZOdqyrReeR6CIJSpjx4eHrqHg4MDRCJRsWURERHw9PTE3LlzERwcjJo1a6JLly748ccfYWVlVWr7bm5u8PDwQO3atTFw4EAcPHgQrq6uePvtt5/aN2dnZ3h4eCAoKAizZ8+GWq1GZGSk7v1bt27h1VdfRbVq1eDs7IxevXohNjYWQP4w9IKzhGJx0QmXV65cibp168La2hpBQUFYtGiR7r3Y2FiIRCJs2LABHTt2hLW1NVavXl3m7TZt2oTQ0FAolUo0bNgQhw8fLvKZDh48iA4dOkCpVKJatWro3Lkz7t+/DyD/eJk7dy4CAgJgY2ODtm3bYuPGjbpt79+/jyFDhsDV1RUKhQKBgYFYuXLlU+NYFXXt2hWzZs1Cnz59ir0nCAIWLlyIqVOnok+fPggODsbPP/+MrKwsrFmz5oltqlQqpKWlFXkA+Um2MR7GbLuyPZzkwLRugdg5vg36NvGCRCzC7ssp6PH9AYz5+TjOJ9wzeR8r6lFZjovc3FxsOBaH8P/bh31X78BKKsaULrXxy4im8LK3qtA4OCsl+HVkM/g7K3HzfjYGLjuMmJQ0k8fI0o6J8jwEQYBWq9U9NBoNMnJyS31kqtTIztUgU6V+6rrleWg0miJ9edLDzc1N97Czs4NIJCq2bOfOnfD09MSXX36JevXqoUaNGggPD8eyZcsglUp1bQEo0jYAuLi4wM3NDbVq1cKAAQOwf/9+Xb70eF8KcryCr9WqVYObmxtq166NmTNnQq1WY/fu3br1ExISMGDAAF2+1LNnT9y4cQNarRbTpk0rli8VbLdixYoiec8PP/yge+/GjRsQiURYt26dLl/65Zdfyrzdxo0bi+RLBw8eLPIZ9+/fXyRfCg8PR2pqqu54+eqrr4rlSwXbpqamYvDgwUXypRUrVjzxeysIQqk/f0/DkVJEVKGiEtMwfOUxpKSr4OVgjZ9HNkegO8+6U8my1RrU+/xfk+w7akZnKK0M82fSw8MDSUlJ2LdvH9q3b/9cbSkUCrz11luYMGECUlJS4Obm9tRt1Go1li9fDgC6M3BZWVkIDQ1Fu3btsG/fPkilUsyaNQtdunTBuXPnMGnSJPj7+2PEiBFFzm4uX74c06ZNw/fff4/GjRvj9OnTGDNmDGxsbDBs2DDdeh999BEWLFiAlStXQi6Xl3m7qVOnYv78+QgMDMTUqVMxaNAgREdHQyqV4syZM+jUqRNGjhyJb7/9FlKpFJGRkdBo8ufg+fTTT7Fp0yYsXrwYNWvWxM6dO/H666/D3d0dHTp0wGeffYaoqChs374dLi4uiI6ORnZ29nN9P6qimJgYJCcnIzw8XLdMLpejQ4cOOHToEN58880St5szZw6mT59ebPnOnTuhVBpn1EVERIRR2q2MCmLRXg4ENQD+vSnGybsiRFxKQcSlFDRy1qKrjxYeFjAAxtyPi7RcYMMNMc7fzx8fUN1WwJBauXB/GIV/d0QZbD/ljcOI6sD3mRLcepCDvj/sw7v1NHB+vpv9mQ1zPybKQyqVwsPDAxkZGcjNzb+DaHauBq2+PmKS/hye2PLRJcxll5OTA0EQdCcvCtjb2yMpKQnbt29HmzZtStw2KysLAJCeng6xWFzsdWHDhg3DJ598guvXr8PV1bVYW5mZmbqvaWn5hdhly5YBAPLy8pCWlqbLl1q1aoUtW7ZAKpVi/vz56NKlCw4cOIAxY8bA3d0d77zzDi5fvgwASEtLw88//4wvv/wSc+fORYMGDXDu3Dm8//77EIvFGDRoEDIyMgDk50uzZs3CN998AysrK3z33Xdl2m7q1KmYMWMG5s2bh1mzZmHQoEE4deoUpFIpzp8/j7CwMAwZMgSzZs2CVCrF/v378eDBA0gkEsycORNbtmzBvHnzULNmTRw6dAivv/46bGxs0KZNG3z88ce4cOECNmzYAGdnZ9y4cQPZ2dnFvl8AkJubi+zsbOzbtw95eXklfq+ehkUpIqowh6Lv4o1fTyJDlYc67nZYNfIFeDoYfvJOInPTv39//Pvvv+jQoQM8PDzQsmVLdOrUCa+//jrs7e3L3V5QUBCA/NFFpRWlWrduDbFYjOzsbGi1Wvj7+2PAgAEAgHXr1kEsFuPHH3/UjYJauXKlbn6G8PBwODo6AsgvqhWYOXMmFixYoBthU6NGDURFRWHp0qVFikvjx48vMgqnrNtNmjQJL7/8MgBg+vTpqF+/PqKjoxEUFIS5c+eiWbNmRUZYFcxxlJmZia+//hq7d+9Gq1atoNVqMXjwYJw8eRJLly5Fhw4dEB8fj8aNG6NZs2YAAH9//3JE3XIkJycDANzd3Yssd3d3R1xc3BO3mzJlCiZOnKh7nZaWBl9fX4SHhz/TcV4atVqNiIgIhIWFWeSlDoU9KRbDAUSnZOD7yBvYeiEZZ1LFOHtPjO4hHngvtCZquFTM5WEVqTIcF9vOJ+PrLZdwP0sNmUSEcaE1MbqtP6QGvOPw88ThxU45GPrTCcSmZmFFjC1Wj3wBPtUqb65WGY6J8srJyUFCQgJsbW1hbZ1fNZTm5j1lK+Oxs7cr90k8a2triESiYn8bXn/9dezfvx/du3eHh4cHWrRogU6dOmHo0KG6dQtOctjZ2cHe3r7Y68IaNmwIAEhNTS0yd5QgCEhPT4eNTf7vwc6dOxfLlwpytI0bN0IqlWLVqlW6fOnXX3+Fk5MTTp06hfDwcF2eFBgYqNvHggULMH/+fAwaNAgAEBISgtjYWPz666948803YWtrCwCYMGEChgwZotuuc+fOZdpu0qRJ6N+/PwBg1qxZCAkJQUpKim4kerNmzXQnJAGgRYsWAPLzpUWLFmHXrl1o1aoVBEGAv78/Tp48idWrV6Nr165ITk5G06ZN0aFDBwAo9TLGnJwcKBQKtG/fXnc8FiipiFUSFqWIqEL8deYWJv1+FmqNgBY1nLDs9WZwUFSN5ICMRyGTIGpG51LX0Wq1SE9Lh529XbEzZM+7b0ORSCRYuXIlZs2ahd27d+PIkSOYPXs2vvrqKxw7dqzUSThLUjDc/GnzFqxfvx5BQUG4evUqxo8fjyVLlsDJKf/OXCdPnkR0dHSx+YFycnJ0cyM87s6dO0hISMCoUaMwZswY3fK8vDw4OBSdt6ag8FPe7Ro0aKB7XhCXgiTrzJkzugTscVFRUcjJyUFYWFiR5bm5uWjcuDEA4O2339bNExEeHo5XXnkFrVu3LrE9Kn58CYJQ6jEnl8shlxef7Fsmkxntn0Fjtl3ZlBSLut7V8MNrTfFechoWRlzDjovJ+OdcMraeT0bvxj54v1Mg/Jyr3tApczwu7mXm4rO/LmDrufyRp/U87bFgQEPU9TRswbawZ4mDr7MM699shYHLjiDmbiZe++kE1r1R+eeYMsdj4llpNBqIRCKIxWJd3mMjl5k0XyrvPEoF+3+8H2KxGKtWrcLs2bN1+dL//vc/zJ07V5cvFd62cAwKPy9Q0C+JRFLkvYJL/greLylfcnFxAQCcPn0a0dHRxfKVnJwcxMTEFOsDoM97xowZU2R0cUHeU3ibF1544Zm2a9Soke65t7c3AODu3bsQi8U4e/Ys+vfvX+L3+fLly8jJyUHnzkWPl4J8SSwWY+zYsejbty9Onz791Hyp4JLFkn7Gyvozx6IUERnd8n03MHvbJQDAyyGeWDCgIawN+A8/VV0ikeipZ9+0Wi3yrCRQWkkNmmQZg7e3N4YOHYqhQ4di1qxZqF27NpYsWVLiJU+luXQp/+fpaSN9fH19ERgYiMDAQNja2qJv376IioqCm5sbtFotmjZtit9++63YdiUNcQf0Sdzy5ct1Z9wKSCRFf6YLzj6Wd7vCCUxBsliwvULx5LP1Bets3boV3t7e0Gq1yMjIgK2trW67rl27Ii4uDlu3bsWuXbvQqVMnvPPOO5g/f/4T27VEBWd8k5OTixRMU1JSio2eosohyMMeS4Y2xYVbD7Fw11XsupSCP07dxF9nbqFfUx+8+2It+FSr3EUHcxYRdRtTNp3H3QwVJGIR3gmthXdDa8FKap5/s9ztrbHujZYYtOwIbtzNxMBlR6pEYaoqY75UMuZLT+6bOeVL5n00ElGlptUKmLklSleQGtHGH98NasyCFBHyJ9X09PTUzWdQVtnZ2Vi2bBnat2//xGSoJB06dEBwcDBmz54NAGjSpAmuXbummxS08OPxs4EF3N3d4e3tjRs3bhTbpkaNGk/c97Nu97gGDRrgv//+K/G9evXqQS6XIz4+Xtd2QEAAatWqBV9fX916rq6uGD58OFavXo2FCxfq5o4gvRo1asDDw6PIHCy5ubnYu3cvR5ZVcsHeDvhx2AvY/E4bdKjtijytgHXHExA6fw8+3XweyQ9zTN3FKuVhthoTN5zBmF9O4G6GCoFutvhzbGtMDKtttgWpAu721lj7RksEuNjg1oNsDFx2BAn3yjY/DJEhMV+q+vkSR0oRkVGo8jT4YMNZbHk0TP2TbkEY0y7guW6TSlRZLV26FGfOnEHv3r1Rs2ZN5OTk4JdffsHFixfx3XfflbptSkoKcnJykJ6ejpMnT2Lu3Lm4e/cuNm3aVO5+fPDBB+jfvz8mT56MIUOGYN68eejVqxdmzJgBHx8fxMfHY9OmTfjwww/h4+NTYhtffPEFxo0bB3t7e3Tt2hUqlQonTpzA/fv3i8wnZKjtCpsyZQpCQkIwduxYvPXWW7CyskJkZCT69+8PFxcXTJo0CRMmTIBWq0Xr1q2RlJSEc+fOwc7ODsOGDcPnn3+Opk2bon79+lCpVNiyZQvq1q1b7jhWBRkZGYiOjta9jomJwZkzZ+Dk5AQ/Pz+MHz8e//vf/3Rnjv/3v/9BqVRi8ODBJuw1GUojX0f8PLI5TsTew//tuoqD0alYfSQeG07cxJAWfni7Y0242VWRGa5NZO/VO/ho4zkkp+VALALGtA/AhJdqV6oTcwWFqcIjptaOaVklL/kk88B8yTLzJYMWpUq6rfDTLFmypEx3DiKiyiMtR403fzmJwzdSIZOIMK9fQ7zS2NvU3SIymebNm+PAgQN46623kJiYCFtbW9SvXx+bN2/WTSL5JHXq1IFIJIKtrS0CAgIQHh6OiRMnFpl8vKy6d+8Of39/zJ49G4sWLcK+ffvw0UcfoU+fPkhPT4e3tzc6depU6qTUo0ePhlKpxLx58zB58mTY2NggJCQE48ePL3Xfz7pdYbVr18bOnTvxySefoHnz5lAoFGjRooVuMtCZM2fCzc0Nc+bMwY0bN+Dg4IAmTZpg6tSpAAArKytMmTIFsbGxUCgUaNeuHdatW1fm/ZuKMfKrEydOIDQ0VPe6INEdNmwYVq1ahcmTJyM7Oxtjx47F/fv30aJFC+zcubPYHGRUuTXzd8Jvo1viyI1UfL3zKo7F3sPKg7FYeywer7fyx5vtA+BsW3yeMHqyDFUeZm+9hLXH4gEANVxsML9/QzStXs3EPXs2BZfyDXxUmBq0nIUpMh7mS5aZL4mEgtlSDUAsFmPAgAGlXsNY2Jo1a3Dp0iUEBAQYqgsVIi0tDQ4ODnj48KFR7iazbds2dOvWrcpMxvesGAu9yhSL22k5GPbTMVxOToetXIolrzVF20AXg7RdmeJgbFUxFgUTRtaoUaPY3TtKo9VqkZaWBnt7e7OfI8HYGAu9541FacejMfOAklTW/Ir5UsUwVCwEQcDB6FQsiLiC0/EPAABKKwmGt/bHG+0D4Ki0MlCPjcfUx8Xh66n4cONZ3LyfDQAY3tofH3UJgsKqYkdHGSMOKWk5usKUl4M11r3RqlIUpkx9TBgD86Xnx1jomUO+ZPDL97799tsyj3zauHGjoXdPRCYUnZKOYT8dx60H2XC1k2PViBdQ36vka62JiKjsmF+RsYlEIrQNdEGbWs7Yc/UO/i/iKs7dfIhFe67jl8NxGNm2Bka1rcE755YgO1eDr3ZcxqpDsQAAn2oKzOvXEK1qOpu2YwbkVjBiavkR3LiTiYHLDleawhQRmTeDlgUjIyN1t5oui+3bt+tuX0hElduJ2Hvou/gwbj3IRoCLDTa93ZoFKSIiA2B+RRVJJBIhtI4b/nqnDZYNbYogDztkqPLw7X/X0O6r3fjuv2vIUOWZuptm42TcPXT7dr+uIDWouR92jG9fpQpSBdzsrbFuTEsEuNog8WEOBi47jLjU8k0+TUT0OIMWpTp06ACptOyDr9q2bQu5nNepE1V2/15MxpAfj+JhthqN/Ryx8e3WvG0wEZGBML8iUxCJRAiv74Ft49ph0ZAmCHSzRVpOHhZEXEW7r3Zj8Z7ryMq13OJUjlqDOdsvof+Sw4i5mwkPe2v8PLI55vQJga286t5LqqAwVfNRYWrQsiMsTBHRczH6b8yUlBSkpKRAq9UWWd6gQQNj75qIKsCvR+Iw7a8L0ArAS3Xd8N2gJhU+dwJVLQac6pDomZn7ccj8iiqKWCxCtxBPdK7vgS3nEvHNrmu4cTcTX+24jBUHbuCtDjXxWsvqlequcs/r/M2HmLjhDK6lZAAA+jbxwec96lnMpY1u9tZYO6YlBi0/gut38u/Kt+6NlqjubGPqrlkUc/87RZbBEMeh0YpSJ0+exLBhw3Dp0iVdR0UiEQRBgEgkgkajMdauiagCCIKA+Tuv4IfI6wCAQc19MbNXMKQSy54skJ5dwQSkWVlZZZ7QmchYsrKyAMDsJsZlfkWmIhGL0KuRN14O8cRfZxLxzX/XEH8vC7O2XsKyfTfwTmgtDGzuC7m06hancvO0+D4yGj9ERkOjFeBiK8ecPiEIq+du6q5VODd7a6x9oyUGLWNhqqIxXyJzYoh8yWhFqREjRqB27dpYsWIF3N3dIRKJjLUrIqpgao0WUzadx8aTNwEAE16qjXGdavHnnJ6LRCKBo6MjUlJSAABKpbJMx5RWq0Vubi5ycnJ4BxXGQudZYyEIArKyspCSkgJHR0dIJOb1DzbzKzI1qUSMvk190LORFzaduolv/4vGrQfZmPb3RSzZex3vvlgL/Zv6wkpatX4HXU5OwwcbzuJiYhoAoHsDT8zoFQwnG/O/K6GxuNkVL0ytHdMS/i4sTBkT86Xnx1jomUO+ZLSiVExMDDZt2oRatWoZaxdEZAKZqjy8s+YU9ly5A4lYhNmvBGNgcz9Td4uqCA8PDwDQJVplIQgCsrOzoVAoLP4fdMZC73lj4ejoqDsezQnzKzIXMokYr77gh96NfbDhRAK+3x2NpIc5mPrnBSzecx3jXgxEnybelX4EdZ5Gi6X7bmDhrqtQawRUU8ow85VgdG/gZequmYWCwtTg5UcRnZKBQctZmKoIzJeeD2OhZw75ktGKUp06dcLZs2eZNBFVIXczVBi56jjO3XwIa5kYPwxugk51LW/IOhmPSCSCp6cn3NzcoFary7SNWq3Gvn370L59e7O71KqiMRZ6zxMLmUxmdiOkCjC/InNjJRXjtZbV0a+pD9Ydi8cPe67j5v1sTP7jHBbtica4ToHo1cgbEnHl+8cvOiUDk34/izMJDwAAL9V1x//6BMPNztq0HTMzbnbWWDOmha4wVXApHwtTxsN86fkwFnrmkC8ZrSj1448/YtiwYbhw4QKCg4OLfcCePXsaa9dEZASxdzMxbOUxxKVmoZpShp+Gv4DGftVM3S2qoiQSSZn/yEkkEuTl5cHa2triEwvGQq+qxoL5FZkra5kEw9vUwKsv+GH1kTgs2XsdsalZmLjhLH6IjMb4l2rj5RBPiCtBcUqrFfDTwRjM+/cKVHla2FlL8UWP+ujTxNviR1U8iZudfvJzFqYqDvOlZ8NY6JlDLIxWlDp06BAOHDiA7du3F3uPE3ESVS7nbj7AiJXHkZqZC18nBX4e0RwBrram7hYRkcVhfkXmTmElwZj2ARjcwg8/H47Fsn03cP1OJt5bexrf747GhLBAhNfzMNviVFxqJj78/RyOxd4DALSv7Yqv+obA04ETSj+Nq528WGFq7RstUYOFKSIqhdEu8h43bhyGDh2KpKQkaLXaIg8mTESVR+SVFAxcdgSpmbkI9rbHH2+3ZkGKiMhEmF9RZWEjl2Jsx1rYPzkUE8Nqw85aiiu30/HW6lPo/t0B7Iq6bVa3tBcEAb8eiUPXb/bjWOw92FhJMKdPCH4e8QILUuVQUJgKdLNFcloOBi07gpi7mabuFhGZMaMVpVJTUzFhwgS4u3O+GaLK6vcTCRj98wlk5WrQLtAF695oxXkUiIhMiPkVVTZ21jKM6xSIAx+9iHEv1oKtXIqopDSM/uUEXvnhIPZcSTF5cerWg2wMXXEMn22+gKxcDVoGOGHH+PYY1NyPl+s9A1c7OdYUKkwNXHaYhSkieiKjFaX69OmDyMhIYzVPREYkCAK+330NH248B41WQO/G3lgx7AXYyo12xS8REZUB8yuqrBwUMkwMr4P9k0PxdseaUMgkOHvzIYavPI5+Sw7jYPTdCi9OCYKADScS0OX/9uFA9F1Yy8SY1qMe1oxuCV8nZYX2paopXJi6naZiYYqInsho/2HWrl0bU6ZMwYEDBxASElJs0qxx48YZa9dE9Bw0WgFf/H0Rvx6JAwC81aEmPupSh2cKiYjMAPMrquyq2Vjhoy5BGNW2BpbuvY5fDsfhZNx9DPnxKJrXcMIHYbXRIsDZ6P1IScvBlE3n8d/lFABAEz9HzO/fkFMUGJCrnRxr32iJQcuO4FpKBgYuO4y1Y1oyxkRUhFHvvmdra4u9e/di7969Rd4TiURMmojMUI5ag3FrT2Nn1G2IRMC07vUwvE0NU3eLiIgeYX5FVYWLrRxTX66HMe0CsGjPdaw5Go9jMffw6rIjaFvLBRPCaqNpdcPf5VcQBPx9NhGf/3URD7PVsJKI8UF4bYxuFwCJmU6+Xpm52OYXpgYvP4KrtzMwaPkRFqaIqAijFaViYmKM1TQRGcGDrFyM/vkETsTdh5VUjIWvNkK3EE9Td4uIiAphfkVVjZu9Nb7oWR9vdgjAD5HRWH88AQei7+JA9F10rOOKiWG10cDH0SD7Ss1Q4dPNF7D9QjIAIMTbAQsGNERtdzuDtE8lc7HNv5SPhSkiKonR5pQiosrj1oNs9FtyGCfi7sPOWopfRzZnQYqIiIgqjKeDArNeCcHuDzri1Wa+kIhF2HPlDnp+fxCjfz6Bi4kPn6v9HReSEP5/+7D9QjKkYhEmhtXGprGtWZCqIAWFqdruBXNMHcGNOxmm7hYRmQGDj5SaMWNGmdb7/PPPDb1rInoGl5LSMHzlMdxOU8HTwRqrRjRHHQ8maERE5oT5FVkKXyclvurXAGNDa+Kb/65h8+lb2HXpNnZduo2uwR6YEFa7XIWkh1lqTPv7AjafSQQABHnYYX7/hgj2djDWR6AnKChMDVl+FFdup2PgsiNY9wZHTBFZOoMXpf78888nvicSiXDlyhXk5OQwaSIyA4eu38Wbv5xEuioPtd1tsWpEc3g5KkzdLSIiegzzK7I01Z1t8PWARngntBa+2XUN/5xLxPYLydhxMRndG3hh/EuBqPmUYkbk5RR89Mc5pKSrIBYBb3esiXGdAiGXSiroU9DjXGzl+G1MiyKFqbVvtHzq95KIqi6DF6VOnz5d4vIzZ87g448/xoULFzBmzBhD75aIyumfs4n4YMNZ5Gq0aF7DCctfbwYHhezpGxIRUYVjfkWWqqarLb4d1Di/OPXfVWw7n4x/ziZi67lEvNLYG+NeDIS/i02RbdJz8vDVX5ew/kTCozZssGBAIzTydTTBJ6DH5Y+YaoHBjwpTg1iYIrJoRp9TKiYmBq+99hpeeOEFODg44OLFi1iyZImxd0tEpfhx/w28t/Y0cjVadAvxwC8jm7MgRURUiTC/IktTx8MOi4Y0xdZxbRFWzx1aAdh06hY6fb0XH208h4R7WQCAKw9F6P79Iaw/kQCRCBjdtga2jmvHgpSZcX5UmKrjboeUdBUGLTuC65xjisgiGa0odffuXbz33nsICgpCUlISDh06hPXr1yMwMNAo+4uNjcWoUaNQo0YNKBQK1KxZE9OmTUNubm6R9eLj49GjRw/Y2NjAxcUF48aNK7YOUVWl1QqYtSUKs7ZeAgAMb+2P7wY1gbWMw9iJiCqDis6viMxNfS8HLH+9Gf5+tw1C67hCoxWw/kQCXlywB8NWncCiKAkSH+bAz0mJ9W+0wqfd6zHPMVMFhakgj/zC1EAWpogsksEv38vMzMT8+fPx9ddfo1atWvjnn38QHh5u6N0Uc/nyZWi1WixduhS1atXSDWMv6A8AaDQavPzyy3B1dcWBAweQmpqKYcOGQRAEfPfdd0bvI5EpqfI0+PD3c/j7bP5Enx93DcKb7QMgEolM3DMiInoaU+VXROaqgY8jVo5ojpNx97Fw11Xsv3YXh67fAwAMae6LT16uBxu5wf/VIQNztpXjt9EtMOTHo7ic/GiOqTEtUcuNl/IRWQqD/6auWbMm0tPT8d5772HQoEEQiUQ4d+5csfUaNGhg0P126dIFXbp00b0OCAjAlStXsHjxYl1RaufOnYiKikJCQgK8vLwAAAsWLMDw4cMxe/Zs2NvbG7RPROYiPUeNN389iUPXUyEVizC3XwP0aeJj6m4REVEZmSq/IjJ3TatXw6+jWuDojVRsOnUTzllxmNCjLmQyFqQqi8cLU4OWszBFZEkM/ts6JSUFADB37lzMmzcPgiDo3hOJRBAEASKRCBqNxtC7Lubhw4dwcnLSvT58+DCCg4N1BSkA6Ny5M1QqFU6ePInQ0NAS21GpVFCpVLrXaWlpAAC1Wg21Wm3QPhe0Z+h2KyPGQu95YnE7LQejfz2Ny8npsLGS4LtBDdGulkuljCuPCT3GQo+x0GMs9IwZC1PE15zyKyJz1CLAGU187bFtW6ypu0LPIP9SvpYYvPwIC1NEFsbgRamYmBhDN/lMrl+/ju+++w4LFizQLUtOToa7u3uR9apVqwYrKyskJyc/sa05c+Zg+vTpxZbv3LkTSqXScJ0uJCIiwijtVkaMhV55Y3E7G1hySYJ7KhHsZALerKNC+tVj2HbVSB2sIDwm9BgLPcZCj7HQM0YssrKyDN7m05hLfkVEZCxONlZFClMDlx3BujdYmCKq6gxalDp37hyCg4MhFpdt/vSLFy+iTp06kEqf3I0vvviixIJQYcePH0ezZs10rxMTE9GlSxf0798fo0ePLrJuSfPnFJxdfJIpU6Zg4sSJutdpaWnw9fVFeHi4wS/5U6vViIiIQFhYGGQyy74bGmOh9yyxOBX/ANNWn8YDlRr+zkqseL0J/JyMU0StKDwm9BgLPcZCj7HQM2YsCkZMVxRj5FdEROao5MJUC9RyszN114jISAyarTRu3BjJyclwdXUt0/qtWrXCmTNnEBAQ8MR13n33XQwcOLDUdvz9/XXPExMTERoailatWmHZsmVF1vPw8MDRo0eLLLt//z7UanWxEVSFyeVyyOXyYstlMpnRkn5jtl3ZMBZ6ZY3FzovJeG/taajytGjk64ifhr8AJxurCuhhxeAxocdY6DEWeoyFnjFiUdGxNUZ+RURkrgoKU0N+PIpLSWkYuOwoC1NEVZhBi1KCIOCzzz4r8yVtubm5T13HxcUFLi4uZWrv1q1bCA0NRdOmTbFy5cpiZxRbtWqF2bNnIykpCZ6engDyL8GTy+Vo2rRpmfZBZO5+OxqHzzZfgFYAOgW54bvBjaG04tlyIqLKyhj5FRGROXOysdJNfl5QmFo7pgUC3VmYIqpqDPqfavv27XHlypUyr9+qVSsoFAqD7DsxMREdO3aEn58f5s+fjzt37uje8/DwAACEh4ejXr16GDp0KObNm4d79+5h0qRJGDNmDO+8R5WeIAj4OuIqvtsdDQB4tZkvZvcOhlRStss9iIjIPJkyvyIiMhUnGyusGd0Cgx8VpgYtZ2GKqCoyaFFqz549hmyuXHbu3Ino6GhER0fDx6fore4L7lAjkUiwdetWjB07Fm3atIFCocDgwYMxf/58U3SZyGDUGi2m/nkeG07cBAC83ykQ418KLHWuNCIiqhxMmV8REZlStWKFqfy78rEwRVR1VJkhFMOHD4cgCCU+CvPz88OWLVuQlZWF1NRUfPfddyXOF0VUWWTl5uGNX05gw4mbEIuAOX1CMCGsNgtSRERERFTpFRSm6nra425GLgYtP4Jrt9NN3S0iMpAqU5QiskSpGSoMWnYEkVfuwFomxrKhzTCouZ+pu0VEREREZDAFhal6hQpTV1mYIqoSWJQiqqTiUjPRd/EhnL35ENWUMvw2uiVeqvfku0gSEREREVVW1R5Nfl5QmBrMwhRRlcCiFFEldO7mA/RdfAixqVnwqabAxrdbo2n1aqbuFhERERGR0RQUpup7PRoxtYyFKaLKjkUpokpm79U7GLjsCO5m5KKepz02vd0aNV1tTd0tIiIiIiKjK1yYSs1kYYqosmNRiqgS+fN0IkatOo6sXA3a1nLB+jdbws3e2tTdIiIiIiKqMI7K4oWpK8ksTBFVRixKEVUCgiAg4pYIkzddQJ5WwCuNvPDT8BdgZy0zddeIiIiIiCrc44WpwctZmCKqjFiUIjJDgiAgQ5WHWw+ycSkpDTO2XsaWeAkA4M32Afh6QCNYSfnjS0RERESWq6AwFezNwhRRZSU1dQeIqipVngZp2Xl4mK1GWo46/2u2Gmk5eflfiyzXr1ewjkYrFGlPBAGfdAvCmPa1TPSJiIiIiIjMi6PSCqtHtcBrK47iwq00DFp+BGvHtEQdDztTd42IyoBFKaIn0GgFZOQULRY9fKyQ9HixqeD5w2w1VHna5+6DTCKCg0IGFxsrtHJ4iOGtqhvgkxERERERVR0lFabWjGmBms4KU3eNiJ6CRSkzci8zFzP+voDbSWIc++cS5DIprKRiWElEkEnEsJKKIZOIIZOKIZeIIZM+Wv5omVXhdSQiyHXP9csL1pGIRab+uEYnCAKy1Y+NVsoqXGB6vKj0aNmj5+k5ec/dB5EIsJNL4aCUwd46/+GgkMFeIc3/ai2DveLJy+RSMUQiEdRqNbZt22aAqBAREZXdokWLMG/ePCQlJaF+/fpYuHAh2rVrZ+puEREV46i0wm+jWmLIiiO4cCsNg5cfxS/Dm5q6W0T0FCxKmZH0HDU2n00CIMbhlASj7kssgq5YZVWkcJVf6CqpoCUv9L6uyFVoe5lUVKQwpi+WiQoVy0reZ9GCWv4yANBogdTMXGSpVbrL3kodrVT48rgcNdQa4SmReDqFTFKkYJRfQJLB3lpa6Pmjr48VluzkUogtoABIRERVz/r16zF+/HgsWrQIbdq0wdKlS9G1a1dERUXBz8/P1N0jIirGQSnDb6Na4rUVR3H+1kMMXXkCb3DmCyKzxqKUGXFQyPBR59q4EHUJNWoGQgMR1Hla5Gq0UGu0yM0T8p/nPXqt0SK30HN1ngC1RgtVkWVaqDX52xWmFQBVntYgl5gZi0wiglojBY7uea52pGKRfjSStfRR8aigcPT0YhMnFCciIkv09ddfY9SoURg9ejQAYOHChfj333+xePFizJkzp9j6KpUKKpVK9zotLQ0AoFaroVarDdq3gvYM3W5lxFjoMRb5LD0OShmwclgTDF91EhcS0zD3nAQLo3aZultmQauRYPJxxgJgLAoLdhQjzAi/L8r6O4hFKTPiqLTC6Lb+2JYWhW6dakEmkxmsbUEQoNYIj4pbjxe1ihazCq+jKvR+8e0eFbzy9AWwkgpouYXaLHiufuz9XI0WwmODmgqPcrKTFy4mSQsVmfSXvhUuLBVeprSSQCTiaCUiIqKyys3NxcmTJ/Hxxx8XWR4eHo5Dhw6VuM2cOXMwffr0Yst37twJpVJplH5GREQYpd3KiLHQYyzyWXochngDy9IliEkXmfWJ+IolAhiLRxiLAlrBOL8vsrKyyrQei1IWQiQSwUqafxmdjdzUvSlOEARotEKRIle2KhcH9uxG7+5doLA2w04TERFVUXfv3oVGo4G7u3uR5e7u7khOTi5xmylTpmDixIm612lpafD19UV4eDjs7e0N2j+1Wo2IiAiEhYUZ9CReZcRY6DEW+RgHvZ5dcvH71l1o07YdZDLL/tdXrc7DgQP70ZaxYCwKUavzcOzQfqP8vigYMf00lv0deEbCoyE9ZQ1yeajVamRlZSEtLc1i/4iIAMgBiEVqiNRZyMrMgDpX9bTNqjQeF/kYBz3GQo+x0GMs9IwZi4K//8LjQ3yroMdHGguC8MTRx3K5HHK5vMi6AJCdnW3w70HB9zc7Oxt5ec9/Y5LKjLHQYyzyMQ56arUack0WnOQCLPzPItRiAdaMBQDGojC1WIBYbZzfF9nZ2QCeni+xKPUM0tPTAQC+vr4m7gkRERGZSnp6OhwcHEzdDaNwcXGBRCIpNioqJSWl2OipJ2G+RERERE/Ll1iUegZeXl5ISEiAnZ2dwecqKhjqnpCQYPCh7pUNY6HHWORjHPQYCz3GQo+x0DNmLARBQHp6Ory8vAzarjmxsrJC06ZNERERgd69e+uWR0REoFevXmVqg/lSxWAs9BiLfIyDHmOhx1joMRZ65pAvsSj1DMRiMXx8fIy6D3t7e4v/ASnAWOgxFvkYBz3GQo+x0GMs9IwVi6o6QqqwiRMnYujQoWjWrBlatWqFZcuWIT4+Hm+99VaZtme+VLEYCz3GIh/joMdY6DEWeoyFninzJRaliIiIiKiYV199FampqZgxYwaSkpIQHByMbdu2oXr16qbuGhEREVURLEoRERERUYnGjh2LsWPHmrobREREVEWJTd0BKkoul2PatGlF7l5jqRgLPcYiH+Ogx1joMRZ6jIUeY1G18furx1joMRb5GAc9xkKPsdBjLPTMIRYiwRLuZ0xERERERERERGaFI6WIiIiIiIiIiKjCsShFREREREREREQVjkUpIiIiIiIiIiKqcCxKERERERERERFRhWNRioiIiIiIiIiIKhyLUkREREREREREVOFYlCIiIiIiIiIiogrHohQREREREREREVU4FqWIiIiIiIiIiKjCsShFREREREREREQVjkUpIiIiIiIiIiKqcCxKERERERERERFRhWNRioiIiIiIiIiIKhyLUkREREREREREVOFYlCIiIiIiIiIiogrHohQRmY1Vq1ZBJBIhNja2XOufOHHiqet27NgRHTt2fL4OGkBJn3HNmjVYuHDhM7cpEonw7rvvPn/niIiIqNKzhHzqSUr67MOHD4e/v7/J+kREpZOaugNERBVh0aJFpu4CAODll1/G4cOH4enpqVu2Zs0aXLhwAePHjzddx4iIiIiewlzyKSKqOliUIiKLUK9ePVN3AQDg6uoKV1dXU3eDiIiIqNwqOp/SaDTIy8uDXC6v0P0SUcXh5XtEVOmlp6fj7bffhouLC5ydndGnTx8kJiYWWefx4eaxsbEQiUSYO3cuZs+eDT8/P1hbW6NZs2b477//yrX/8rT1+LDyjh07YuvWrYiLi4NIJNI9CqhUKsyYMQN169aFtbU1nJ2dERoaikOHDhXrx6+//oq6detCqVSiYcOG2LJlS7k+BxEREVkuc8qnZs2ahRo1akAulyMyMhIA8Pfff6NVq1ZQKpWws7NDWFgYDh8+/Nyfm4hMi0UpIqr0Ro8eDZlMhjVr1mDu3LnYs2cPXnvttTJt+/3332PHjh1YuHAhVq9eDbFYjK5duz5TkvMsbS1atAht2rSBh4cHDh8+rHsAQF5eHrp27YqZM2eie/fu+PPPP7Fq1Sq0bt0a8fHxRdrZunUrvv/+e8yYMQN//PEHnJyc0Lt3b9y4caPcn4OIiIgsj7nkU99++y12796N+fPnY/v27QgKCsKaNWvQq1cv2NvbY+3atVixYgXu37+Pjh074sCBA+XeBxGZD16+R0SVXpcuXfDtt9/qXt+7dw+TJ09GcnIyPDw8St1Wo9EgIiIC1tbWAIDOnTvD398fn3/+OSIiIsrVj2dpq169enB0dIRcLkfLli2LvLd27VpERkZi+fLlGD16tG55jx49irWTnZ2NXbt2wc7ODgDQpEkTeHl5YcOGDfj444/L9TmIiIjI8phLPmVtbY1///0XMpkMAKDVatGmTRuEhIRg+/btEIvzx1V069YNNWvWxEcffYSDBw+Wax9EZD44UoqIKr2ePXsWed2gQQMAQFxc3FO37dOnjy6BAgA7Ozv06NED+/btg0ajKVc/DNkWAGzfvh3W1tYYOXLkU9cNDQ3VFaQAwN3dHW5ubmWKAREREZG55FM9e/bUFaQA4MqVK0hMTMTQoUN1BSkAsLW1Rd++fXHkyBFkZWWVax9EZD5YlCKiSs/Z2bnI64LJMLOzs5+6bUln/jw8PJCbm4uMjIxy9cOQbQHAnTt34OXlVSQBe5LHYwDkx6EsMSAiIiIyl3yq8B2KASA1NbXE5QDg5eUFrVaL+/fvl2sfRGQ+WJQiIouWnJxc4jIrKyvY2tqarC0g/059iYmJ0Gq15d6WiIiIqKIYMgcqfMMXQF8sS0pKKrZuYmIixGIxqlWrVq59EJH5YFGKiCzapk2bkJOTo3udnp6Of/75B+3atYNEIqmQtp40oqlr167IycnBqlWrytUPIiIioopkyHzqcXXq1IG3tzfWrFkDQRB0yzMzM/HHH3/o7shHRJUTJzonIosmkUgQFhaGiRMnQqvV4quvvkJaWhqmT59eYW2FhIRg06ZNWLx4MZo2bQqxWIxmzZph0KBBWLlyJd566y1cuXIFoaGh0Gq1OHr0KOrWrYuBAwc+68cmIiIiMhhD5lOPE4vFmDt3LoYMGYLu3bvjzTffhEqlwrx58/DgwQN8+eWXBvgERGQqLEoRkUV79913kZOTg3HjxiElJQX169fH1q1b0aZNmwpr6/3338fFixfxySef4OHDhxAEAYIgQCqVYtu2bZgzZw7Wrl2LhQsXws7ODg0bNkSXLl2e9SMTERERGZQh86mSDB48GDY2NpgzZw5effVVSCQStGzZEpGRkWjdurVB9kFEpiESCo+BJCKyELGxsahRowbmzZuHSZMmmU1bRERERJUFcyAiel6cU4qIiIiIiIiIiCocL98jIrMjCAI0Gk2p60gkkmJ3ZzGGvLy8Ut8Xi1nbJyIiIvNT2fIp5lRElok/+URkdn7++WfIZLJSH3v37n2uffj7+0MQhFKHmsfGxj61HzNmzChTW0REREQVqbLlU0RkmTinFBGZndTUVMTExJS6Tp06dWBnZ2fUfuTm5uLcuXOlruPl5QUvLy+j9oOIiIiovJhPEVFlwKIUERERERERERFVOM4p9Qy0Wi0SExNhZ2dXIddgExERkfkQBAHp6enw8vLiHCilYL5ERERkucqaL1lsUWrRokWYN28ekpKSUL9+fSxcuBDt2rUr07aJiYnw9fU1cg+JiIjInCUkJMDHx8fU3TAq5ktERET0PJ6WL1lkUWr9+vUYP348Fi1ahDZt2mDp0qXo2rUroqKi4Ofn99TtC667TkhIgL29vUH7plarsXPnToSHh0Mmkxm07cqGsdBjLPIxDnpqtRrbd+zES2EvMRZqNXZF7GIswFgUplar8d+uXejS2fC/L9LS0uDr62v0eVhMjflS5cBY6DEW+RgHPeZLeswR9BgLPbVajV27dqGrCfMliyxKff311xg1ahRGjx4NAFi4cCH+/fdfLF68GHPmzCm2vkqlgkql0r1OT08HACgUCigUCoP2TSqVQqlUQqFQWPwPCGOhx1jkYxzynYp/gFlbL+F8oj0+PX/M1N0xE4yFHmNRoLWbLXob4feFWq0GgCp/SRrzpcqBsdBjLPIxDkDSwxz8fTYJf565het3+HdRj7HQYywKNHa2RR8T5ksWN9F5bm4ulEolfv/9d/Tu3Vu3/P3338eZM2dKvC3qF198genTpxdbvmbNGiiVSqP2l4ioQFou8E+8GMfucA4borJo7abFqzW1Bm83KysLgwcPxsOHDw0+AshcMF8iospGpQHO3xPh2B0Rrj4UQUDVPnFAZCiNnbUYXtt0+ZLFjZS6e/cuNBoN3N3diyx3d3dHcnJyidtMmTIFEydO1L0uGIYWHh5ulOHoERERCAsLs9gzGwUYCz3GIp+lxkGt0WL10QR8u/s6MlR5AIC+jT0RLEpA15c6Qia1nFiURJ2nRmTkHoSGMhaMhZ46T439e/YY5fdFWlqaQdszR8yXKg/GQo+xyGdJcdBqBRyPu48/zyRix4XbyMzV6N5rVt0RPUPcIUq6iLBO/LvIHEGPsdBT56mxz8T5ksUVpQo8PoRMEIQnDiuTy+WQy+XFlstkMqP9ojdm25UNY6HHWOSzpDgcun4XX/x9EVdvZwAAGvg4YEavYNT3sMG2bQlwtlNaTCyeRK1WQykFYwHGojC1Wg0riXF+X1hSbJkvVR6MhR5jka8qxyH2biY2nbqJTadv4eb9bN1yXycF+jT2QZ8m3qjubAO1Wo1t2y7y7yKYIxTGWOip1WrITZwvWVxRysXFBRKJpNhZvpSUlGJnA4mITCXpYTZmb72ELeeSAADVlDJ81CUIA5r5QiwW6a7RrooEQUBeXh40Gs3TV0b+H1OpVIqcnJwyb1NVMRZ6zxMLiUQCqVRa5eeMKg3zJSIyNw+z1dh2Pgl/nLyJE3H3dctt5VK8HOKJvk190Kx6NYjFlvG7m/nSs2Ms9MwhX7K4opSVlRWaNm2KiIiIInMkREREoFevXibsGRERoMrTYMWBGHz3XzSy1RqIRcBrLatjYlhtOCqtTN09o8vNzUVSUhKysrLKvI0gCPDw8EBCQoJFFxEAxqKw542FUqmEp6cnrKyq/s9dSZgvEZE5yNNosT/6Lv44eRM7o24jNy9/3huxCGgb6Iq+TbwRXs8DCiuJiXtasZgvPR/GQs8c8iWLK0oBwMSJEzF06FA0a9YMrVq1wrJlyxAfH4+33nrL1F0jIgu29+odTP/7Im7czQQANKteDdN71Ud9LwcT96xiaLVaxMTEQCKRwMvLC1ZWVmX646jVapGRkQFbW1uIxZY9CTxjofessRAEAbm5ubhz5w5iYmIQGBhosbFkvkREpnI5OQ1/nLyJzWcScSddf1fP2u626NvEB6809oa7vbUJe2g6zJeeH2OhZw75kkUWpV599VWkpqZixowZSEpKQnBwMLZt24bq1aubumtEZIES7mVh5pYo7Iy6DQBwsZXjk25B6N3Y26LO3uTm5kKr1cLX17dcd+rSarXIzc2FtbU1EwvGQud5YlFwG/W4uDhdG5aI+RIRVaS7GSr8dSYRf5y8iagk/QTJ1ZQy9Grkjb5NfBDsbW9RuVFJmC89P8ZCzxzyJYssSgHA2LFjMXbsWFN3g4gsWI5agyV7r2PxnutQ5WkhEYsworU/3n8pEHbWljvpoqUnB2QeeBzmY75ERMakytPgv0sp2HTqJvZcuYM8rQAAkElEeDHIDX2b+KBjHTdYSfk7+XH8O0XmwBDHocUWpYiITEUQBERE3caMLVG6O8a0rumML3rWR213OxP3joiIiMh4BEHA6YQH2HTqJv45m4SH2fqbtzT0cUDfpj7o0cAL1Wwsc04/IkvDohQRUQWKuZuJL/6+iL1X7wAAPB2s8enL9dAtxMPih6MTERFR1ZX4IBt/nr6FP07dxI07mbrlHvbW6N3EG32beKOWG0/OEVkaFqWIiCpAVm4evt8djR/3xyBXo4VMIsKYdgF498VaUFrxVzGZry+++AKLFy9GSkoK/vzzT7zyyium7hIREVUSmao87LiQjD9O3cThG6kQ8q/Og7VMjK7BnujTxButa7pAIuaJOarcmC89O16ISkRkRIIgYMu5RHRasBeL9lxHrkaLDrVd8e/49pjcJYgFqSpAJBKV+hg+fDgAIDIyEqGhoXBycoJSqURgYCCGDRuGvLw8AMCePXsgEonw4MGDIq9FIhHEYjEcHBzQuHFjTJ48GUlJSaX2KTY2tkgfHBwc0LJlS/zzzz/l+myXLl3C9OnTsXTpUiQlJaFr167ljg8REVkWrVbAoei7mLjhDF6YvQsf/H4Wh67nF6RaBjhhbr8GOPFpGP7v1UZoF+jKgpSFYL5ET8L/hoiIjOTq7XRM++siDt9IBQD4Oinweff6eKmuGy/Vq0IKJzzr16/H559/jitXruiWKRQKXLx4EV27dsW4cePw3XffQaFQ4Nq1a9i4cSO0Wm2p7V+5cgX29vZIS0vDqVOnMHfuXKxYsQJ79uxBSEhIqdvu2rUL9evXx4MHD7Bo0SL07dsXp06dQnBwcJk+2/Xr1wEAvXr1eq5jVq1WQyaz3Mn7iYgswY07Gfjj1E38eeoWEh/m6Jb7OyvRp4kPejf2hq9T2e8WR1UL86Wns9R8iSOliIgMLD1HjZlbotD1m/04fCMVcqkYE16qjYgJHRBWz50FqXIQBAFZuXlPfWTnasq0XnkeQsE1Bk/h4eGhezg4OEAkEhVbFhERAU9PT8ydOxfBwcGoWbMmunTpgh9//BFWVqVP5Orm5gYPDw/Url0bAwcOxMGDB+Hq6oq33377qX1zdnaGh4cHgoKCMHv2bKjVakRGRurev3XrFl599VVUq1YNzs7O6NWrF2JjYwHkD0Pv0aMHgPw7qxQ+bleuXIm6devC2toaQUFBWLRoke69grOOGzZsQMeOHWFtbY3Vq1eXebtNmzYhNDQUSqUSDRs2xOHDh4t8poMHD6JDhw5QKpWoVq0aOnfujPv37wPIP17mzp2LgIAA2NjYoG3btti4caNu2/v372PIkCFwdXWFQqFAYGAgVq5c+dQ4EhFRyR5mqbH6SBx6LzqIFxfsxQ+R15H4MAd21lIMau6HP95uhchJHTGuUyALUkbEfIn5UmXOlzhSiojIQARBwJ+nb+F/2y7jboYKABBezx2fda/HROwZZas1qPf5vybZd9SMzga7vNLDwwNJSUnYt28f2rdv/1xtKRQKvPXWW5gwYQJSUlLg5ub21G3UajWWL18OALozcFlZWQgNDUW7du2wb98+SKVSzJo1C126dMG5c+cwadIk+Pv7Y8SIEUXObi5fvhzTpk3D999/j8aNG+P06dMYM2YMbGxsMGzYMN16H330ERYsWICVK1dCLpeXebupU6di/vz5CAwMxNSpUzFo0CBER0dDKpXizJkz6NSpE0aOHIlvv/0WUqkUkZGR0Gg0AIBPP/0UmzZtwuLFi1GzZk3s3LkTr7/+Otzd3dGhQwd89tlniIqKwvbt2+Hi4oLo6GhkZ2c/1/eDiMjSqDVa7Lt6B3+cuoldUSnI1eSPYBGLgA61XdGniQ/C6rnDWiYxcU8tB/Ol4pgvVZ58iUUpIiIDuJj4ENP+uogTcflnIGq42GBaj3roWOfpfwCp6uvfvz/+/fdfdOjQAR4eHmjZsiU6deqE119/Hfb29uVuLygoCED+2bLSkqzWrVtDLBYjOzsbWq0W/v7+GDBgAABg3bp1EIvF+PHHH3Vn9VauXAlHR0fs2bMH4eHhcHR0BJCfJBaYOXMmFixYgD59+gAAatSogaioKCxdurRIsjR+/HjdOuXZbtKkSXj55ZcBANOnT0f9+vURHR2NoKAgzJ07F82aNStyxrB+/foAgMzMTHz99dfYvXs3WrVqBa1Wi8GDB+PkyZNYunQpOnTogPj4eDRu3BjNmjUDAPj7+5cj6kRElu1i4kP8cfIW/j57C3czcnXLgzzs0LeJD3o19oKbnbUJe0iVHfMly8yXWJQiInoOD7JysWDnVfx2NA5aAVBaSfDei4EY2dYfcinPED4vhUyCqBmdS11Hq9UiPS0ddvZ2EIsNd1W6woBneCUSCVauXIlZs2Zh9+7dOHLkCGbPno2vvvoKx44dg6enZ7naKxgq/7RLQdevX4+goCBcvXoV48ePx5IlS+Dk5AQAOHnyJKKjo2FnV/T22zk5Obq5ER53584dJCQkYNSoURgzZoxueV5eHhwcHIqsW5DIlHe7Bg0a6J4XxCUlJQVBQUE4c+YM+vfvX2LfoqKikJOTg7CwsCLLc3Nz0bhxYwDA22+/rZsnIjw8HK+88gpat25dYntERASkpOfg7zOJ2HjyJi4np+uWO9tYoVcjb/Rt6o16nvacmsDEmC+VjPlSceaYL7EoRUT0DDRaARtOJGDujsu4n6UGAPRo6IVPugXB00Fh4t5VHSKR6KlDwrVaLfKsJFBaSQ2aZBmDt7c3hg4diqFDh2LWrFmoXbs2lixZgunTp5ernUuXLgF4+pkrX19fBAYGIjAwELa2tujbty+ioqLg5uYGrVaLpk2b4rfffiu2naura4ntFUwyunz5crRo0aLIexJJ0aTUxsbmmbYrPMFnQRJZsL1C8eSfrYJ1tm7dCm9vb2i1WmRkZMDW1la3XdeuXREXF4etW7di165d6NSpE9555x3Mnz//ie0SEVmaHLUGuy7dxh8nb2LftbvQaPP/sbeSiPFSPTf0beKD9rVdIZOY999cS8J8qWTMl57cN3PKl1iUIiIqpzMJD/D5Xxdw7uZDAEBtd1tM7xmMVjWdTdwzqkyqVasGT09PZGZmlmu77OxsLFu2DO3bt39iMlSSDh06IDg4GLNnz8Y333yDJk2aYP369XBzcyvzkHh3d3d4e3vjxo0bGDJkSJn3/azbPa5Bgwb477//SkxK69WrB7lcjvj4eHTo0AFarRZpaWmwt7cvkny7urpi+PDhGD58ONq1a4cPP/yQRSkisniCIOBU/H1sPHkLW84lIj0nT/deYz9H9Gnigx4NPOGoLH2yaSJDY75UfpUtX2JRioiojFIzVJi74wrWn0gAANjJpRgfVhuvt6rOs4VUqqVLl+LMmTPo3bs3atasiZycHPzyyy+4ePEivvvuu1K3TUlJQU5ODtLT03Hy5EnMnTsXd+/exaZNm8rdjw8++AD9+/fH5MmTMWTIEMybNw+9evXCjBkz4OPjg/j4eGzatAkffvghfHx8Smzjiy++wLhx42Bvb4+uXbtCpVLhxIkTuH//PiZOnPjEfT/rdoVNmTIFISEhGDt2LN566y1YWVkhMjIS/fv3h4uLCyZNmoQJEyZAq9WidevWSEpKwrlz52BnZ4dhw4bh888/R9OmTVG/fn2oVCps2bIFdevWLXcciYiqioR7Wfjz9C1sOnUTsalZuuVeDtbo3cQbfZr4oKarrQl7SJaE+ZJl5kssShERPUWeRovfjsZjwc4rSHt05rBvEx981LUOJ/SkMmnevDkOHDiAt956C4mJibC1tUX9+vWxefNmdOjQodRt69SpA5FIBFtbWwQEBCA8PBwTJ04sMplmWXXv3h3+/v6YPXs2Fi1ahH379uGjjz5Cnz59kJ6eDm9vb3Tq1KnUM4GjR4+GUqnEvHnzMHnyZNjY2CAkJATjx48vdd/Pul1htWvXxs6dO/HJJ5+gefPmUCgUaNGiBQYNGgQgf3JQNzc3zJkzBzdu3ICDgwOaNGmCqVOnAgCsrKwwZcoUxMbGQqFQoF27dli3bl2Z909EVBVkqPKw7XwSNp26iSM37umWK60k6BLsgX5NfNAywBliMeeJoorFfMky8yWRUDD7lwEUnjW+rJYsWVKm2zOak7S0NDg4OODhw4fPdBeA0qjVamzbtg3dunUrcp3okwiCAK0AaAUBGq0AoeC5IEDQ6p9rhfz3NNr859pH7+kfJbShzV8uFHpeZH2t/nn+do+eCwXPBWgK9vP49iW0V6QNrQBBq4XV3St4c0DZYlGVlfe4qKpMEYdjMffw+V8XdJN71veyx4xe9dG0ulOF7P9JquIxkZOTg5iYGNSoUQPW1mUv9j1p2LElYiz0njcWpR2PxswDClSFnMqc8qWqjLHQYyzylRQHjVbAoet3senULey4kIxsdf6t4UUioFWAM/o28UGXYA/YyKvWmIWqeEwwX3p+jIWeOeRLBv2ts3nzZgwYMKDUibUKW7NmDTIyMswqgTKlm/ez0HfxIWRnSzDj3B4I0BeRCheUhEeFn4LnVZkIEjxwuIpJnYNgbcA7OxA9TUpaDv637RI2n0kEADgoZPiwcx0Mau4HCc8cEpGRMaciIkOITsnAH6duYvPpW0h6mKNbHuBig75NffBKY294O/IGLURkOgYvhX/77bdlTog2btxo6N1XaoIA3E5TARAB6lyDti0WAWKRKP8hLvRcBIjFoqKvRSJIxCKIRIDk0XsiESARFXouLml7fbsF2xc8F4vy7wogebR/3fOCbcTFnyfez8buK3fw44FY7L5yB/P6NTD56BSq+tQaLVYdjMXCXVeRmauBSAQMfMEPH3auAycbTu5JRBWHORWR5Sm4QiHv0UOjEaDWavXLNNpHXwXkabWPvj7a5tF7Oblq7EsSYcWSIzh3K03XtoNChh4NPdGniQ8a+zrq7thFRGRKBi1KRUZGwsmp7EWD7du3w9vb25BdqNTc7OXY/HZLHDp4AO3btYPcSpZfvCmhYPN4Eanwcl1BqVARqTL+0VGr1fhq9Xb8najEjTuZ6LfkMEa2qYFJ4XWgsOKoKTK8A9fu4ot/LiI6JQMA0MjXETN61UcDH0fTdoyILA5zKqLyS07LQVIWcCkpHRCLixRvNLrnhQo7j4o6Gq0AtVaARrdcv45GK0CtEaDRah99LWG7Qu+pNUULSPrtCxWXCvWppO0MQwIgDRKxCB1ru6JvUx90qusGuZQ5NBGZF4MWpZ42+djj2rZta8jdV3pyqQT1vewRZwPU8bCrMtc9P48QJwFv9W2NOTuu4Y9TN7HiQAz+u3QbX/VtgBYBzqbuHlURtx5kY/bWKGw7nwwAcLaxwkddg9CviQ8n+SQik2BORVR2SQ+zMXNLwd9xKXD2sKm7ZHAScf6JZ2nBQyIu9lzy6LlEBORkPMCANnXRp6kvXGzlpu4+EdETGX0mu5SUFKSkpECr1RZZ3qBBA2PvmqoIB4UMCwY0RPcGnpiy6TxiU7Pw6rIjGN7aH5O71IHSqmpNyEgVJ0etwY/7b+D7yGjkqLUQi4DXW/ljQlhtOChYFDYVA95/g+iZmeNxyJyKqCi1RoufD8Xi/yLyL7kXiwCFRIDSWg6ZRAyJRASZWKwr1hQUbmSSgq/iQoWegvVFkIjFunWKFIAk+e8VPC/YLv954cJQ4eUl7bt4G4X7o993fhuSR1dFlDkuBZN7t67Ok9xVmDn+nSLLY4jj0Gj/zZ88eRLDhg3DpUuXdB0ViUQQBAEikQgajcZYu6YqKjTIDTsntsf/tl7CuuMJWHUoFv9dzh811bqmi6m7R5XM7su3Mf2fKMSlZgEAmvs7YXqv+qjraZw7adHTFSTOWVlZZZ7cmchYsrLyfzeYwz90zKmIijsRew+fbtbfHbdp9WqY9nIQYk7vR7duHc3iZ5fIGJgvkTkxRL5ktKLUiBEjULt2baxYsQLu7u6Vck4jMj/21jJ82bcBuoXkj5pKuJeNwcuP4rWWfvi4a13YVrHb2JLhxaVmYuaWKOy6lAIAcLOTY+rLddGzoRd/T5mYRCKBo6MjUlLyvzdKpbJM3xOtVovc3Fzk5OTwtr6Mhc6zxkIQBGRlZSElJQWOjo6QSEw//wpzKiK91AwVvtx+Gb+fvAkAqKaUYUrXuujX1AcaTR5iTpu4g0RGxnzp+TEWeuaQLxntP/iYmBhs2rQJtWrVMtYuyIK1r+2KHePb4cvtl/Hb0XisPhKPyMt38GXfELQLdDV198gMZedqsHhPNJbsu4HcPC2kYhFGta2B9zoFsphpRjw8PABAl2iVhSAIyM7OhkKhsPh/1hkLveeNhaOjo+54NDXmVESAVitg3fEEfLXjMh5mqwEAg5r7YnLnIFR7dHdcDhokS8F86fkwFnrmkC8Z7T+xTp064ezZs0ygyGjsrGWY3TsEL4d4YvIf53DzfjaGrjiGgS/44pOX68LemsO2Kf8X7b8XkzFzyyXcepANAGhbywVf9KyPWm62Ju4dPU4kEsHT0xNubm5Qq9Vl2katVmPfvn1o3769xV+uwVjoPU8sZDKZWYyQKsCciizdhVsP8enmCziT8AAAUNfTHrNeCUbT6tVM2zEiE2G+9HwYCz1zyJeMVpT68ccfMWzYMFy4cAHBwcHFPmDPnj2NtWuyMK1rueDf8e0xd8dl/Hw4DuuOJ2Dv1Tv4X58QhNZxM3X3yISiUzIw/Z+L2H/tLgDA21GBz7rXRef6HhZ/VsTcSSSSMv+Rk0gkyMvLg7W1tcUnFoyFXlWKBXMqslTpOWos2HkVvxyOhVYAbOVSTAyrjddbVYdUYtmX3BABzJeeFWOhZw6xMFpR6tChQzhw4AC2b99e7D1OykmGZiOXYnqvYHR7NGoqLjULI1YeR7+mPvjs5XpwUFr2LxtLk6HKw3f/XcOKAzHI0wqwkojxZocAjO1YCwor8xn9QERUFsypyNIIgoB/ziVh1pYopKSrAADdG3jis+714G5vbeLeERGRIRntFMO4ceMwdOhQJCUlQavVFnkweSJjaRHgjB3vt8fINjUgEgEbT95E2P/txa6o26buGlUAQRDw15lb6LRgD5buu4E8rYBOQW7YOaE9Pgivw4IUEVVKzKnIkly/k4HXVhzFuLWnkZKuQg0XG/w6qjm+H9yEBSkioirIaEWp1NRUTJgwAe7u7sbaRRGxsbEYNWoUatSoAYVCgZo1a2LatGnIzc0tsp5IJCr2WLJkSYX0kSqGwkqCz3vUw+9vtkKAiw1S0lUY/csJjF93Gvczc5/eAFVKl5PT8OqyI3h/3RncTlOhurMSK4Y1w4rhL8DfxcbU3SMiemYVnVMRmUJ2rgbz/72CLgv34WB0KuRSMT4Iq40d49vxJjZERFWY0S7f69OnDyIjI1GzZk1j7aKIy5cvQ6vVYunSpahVqxYuXLiAMWPGIDMzE/Pnzy+y7sqVK9GlSxfdawcHhwrpI1WsZv5O2PZ+O3wdcRU/7r+BzWcScSA6FbNeCUaXYPO4oxI9v4fZavxfxFX8eiQOGq0Aa5kY74bWwuh2AbCWcWQUEVV+FZ1TEVW03Zdv4/O/LuLm/fwbkoTWccX0nsHwc1aauGdERGRsRitK1a5dG1OmTMGBAwcQEhJSbNKscePGGXR/Xbp0KVJoCggIwJUrV7B48eJiRany3rZQpVJBpVLpXqelpQHIn6m+rHc7KKuC9gzdbmVkiFhIAHwYVgthQS74+M+LuH4nE2+tPomXgz3wWfcgOD+6hbC543GRr3ActFoBm84kYt7Oq7iXmb+8cz03fNK1DrwcFQC0UKu1JuytcfGY0GMs9BgLPWPGoqLjW9E5FVFFufUgG9P/voidj6ZZ8HSwxrQe9dG5vjtvSEJEZCGMevc9W1tb7N27F3v37i3ynkgkqpAE6uHDh3Byciq2/N1338Xo0aNRo0YNjBo1Cm+88QbE4idfyThnzhxMnz692PKdO3dCqTTOGZyIiAijtFsZGSoWbwcAO6zE2H1LhK0XkrH3chL6BWjR2FkwSPsVgcdFvp/+jMDGGAliM/ITVneFgD7+WgQ5JOLMoUScMW33KhSPCT3GQo+x0DNGLLKysgzeZmnMIaciMqTcPC1WHIjBt/9dQ7ZaA6lYhFHtamDci4GwkRvt3xMiIjJDRvutHxMTY6ymy+T69ev47rvvsGDBgiLLZ86ciU6dOkGhUOC///7DBx98gLt37+LTTz99YltTpkzBxIkTda/T0tLg6+uL8PBw2NvbG7TfarUaERERCAsLs/jbUxojFr0AnL/1EB9vuoirKRlYdVWCpHpu+KJHXbjYyg2yD2PgcZEv8X4Gpvx2AIdviyEAsLGS4N3Qmni9pR+spJZ1a2geE3qMhR5joWfMWBSMmK4ops6piAzpyI1UfLb5Aq6lZAAAmvs7YeYrwajjYWfinhERkSmY/amIL774osRRSoUdP34czZo1071OTExEly5d0L9/f4wePbrIuoWLT40aNQIAzJgxo9SilFwuh1xevGAhk8mMlvQbs+3KxtCxaOLvgn/GtcUPu6OxaM91/BuVgmOx9/FFz/ro2dDLrIeLW+JxodUKOHwjFb8djcPOi7eRp80vPr3SyAtTutW1+DvxWOIx8SSMhR5joWeMWDC2ROV3J12FOdsuYdPpWwAAZxsrfNKtLvo08Tbr3IuIiIzL4EWpGTNmlGm9zz//vEzrvfvuuxg4cGCp6/j7++ueJyYmIjQ0FK1atcKyZcue2n7Lli2RlpaG27dv8642FkQulWBieB10DvbApN/P4VJSGt5fdwZbziVh9ivBcLPwQoc5SM1QYePJm1h7LB6xqfpLZfxtBcx+9QW0CeTPKxFVbYbOqYhMQaMVsOZYPObtuIy0nDyIRMDg5n6Y3DkIDkoWeImILJ3Bi1J//vnnE98TiUS4cuUKcnJyypxAubi4wJTOfXwAAI8ZSURBVMXFpUzr3rp1C6GhoWjatClWrlxZ6jxRBU6fPg1ra2s4OjqWaR9UtdT3csDf77bBosjr+D7yGiKibuNYzD183r0ez9yZgCAIOBpzD2uOxmPHhWTkavInKreVS9G7sTcGNPXCjVP70dy/+FxxRERVjaFzKqKKdu7mA3y6+QLO3XwIAAj2tsesV0LQyNfRtB0jIiKzYfCi1OnTp0tcfubMGXz88ce4cOECxowZY+jdIjExER07doSfnx/mz5+PO3fu6N4ruNPeP//8g+TkZLRq1QoKhQKRkZGYOnUq3njjjRIvzyPLIJOI8f5Lgegc7I5Jv5/FhVtp+OD3s9hyLhFz+jSAhwNHTRnbg6xc/HHqFtYcjcP1O5m65Q18HDC4uR96NPSCjVwKtVqNGybsJxFRRTJVTkX0vB5mqzH/3ytYfTQOggDYyaX4sEsdDGlRHRIxT/gREZGe0eeUiomJwWeffYb169ejT58+uHjxIgIDAw2+n507dyI6OhrR0dHw8fEp8p4g5N9dTSaTYdGiRZg4cSK0Wi0CAgIwY8YMvPPOOwbvD1U+QR72+HNsGyzbdwPf7LqGyCt3EPZ/e/HZy/XQv5kPR00ZmCAIOBV/H78djcfWc0lQ5eWPilJaSdCrkRcGN6+OEB8HE/eSiMh8VFRORfSsBEHA5jO3MHvrJdzNyAUA9G7sjSndguBmx5N8RERUnNGKUnfv3sX06dOxbNkytG3bFocOHcILL7xgrN1h+PDhGD58eKnrdOnSBV26dDFaH6jyk0nEeCe0FsLquePDjedwNuEBJv9xDlvOJ2FOnxB4OypM3cVKLy1Hjc2nb2HN0XhcTk7XLa/raY/BLfzwSiMv2FlzjgkiogIVnVMRPYtrt9Px6eYLOBpzDwBQ09UGM18JRuuaZZuGg4iILJPBi1KZmZmYP38+vv76a9SqVQv//PMPwsPDDb0bIqOq7W6HP95qhRUHYrAg4ir2Xb2Dzv+3D1O6BWFwcz+OmionQRBw7uZDrDkaj7/PJiJbrQEAWMvE6N7AC4Nb+KGxryPjSkRUCHMqqgyycvPw7X/R+HH/DeRpBVjLxBjXKRCj2wbASvr0+V2JiMiyGbwoVbNmTaSnp+O9997DoEGDIBKJcO7cuWLrNWjQwNC7JjIoqUSMNzvURKe67pi88SxOxT/A1D8vYNv5JHzZpwF8nZSm7qLZy1Dl4e8zifjtaBwuJqbplge62WJwCz/0aezDO+8QET0BcyoyZ4IgICLqNqb/E4VbD7IBAC/Vdce0HvWYIxERUZkZvCiVkpICAJg7dy7mzZunm88JyL9TjCAIEIlE0Gg0ht41kVHUcrPF72+1xsqDMZi/8woORqei88J9+LhrEF5rUR1iTthZzMXE/FFRm0/fQmZu/s+6lVSMbsEeGNKyOppVr8ZRUURET8GcisxVwr0sfPH3Rfx3Of8Y9XZU4Iue9RFWz93EPSMiosrG4EWpmJgYQzdJZHISsQij2wWgU113fLTxHI7F3sPnf13E1nNJmNuvAao725i6iyaXnavBP+cS8dvReJxNeKBbHuBig8Et/NC3iQ+q2ViZroNERJUMcyoyN6o8DX7cH4Pvdl9DjloLmUSEMe0C8N6LgVBYSUzdPSIiqoQMWpQ6d+4cgoODIRaX7frxixcvok6dOpBKjX4TQCKDqOFig3VvtMSvR+Lw5fbLOBpzD10W7seHnetgeGt/ixw1dfV2OtYcjccfp24iPScPACCTiBBe3wNDWvihVYAzR0UREZUTcyoyNwej7+Kzvy7gxp1MAECrAGfMfKU+arnZmbhnRERUmRk0c2ncuDGSk5Ph6upapvVbtWqFM2fOICAgwJDdIDIqsViEYa39EVrHDR/9cQ6Hb6RixpYobDufP2oqwNXW1F00uhy1BtsvJGHN0Xgcj72vW+7rpMDg5tXRv5kPXGzlJuwhEVHlxpyKzEVKWg5mbb2Ev88mAgBcbOX4rHtd9GzoxZNORET03AxalBIEAZ999hmUyrJNbpibm2vI3RNVKD9nJX4b3QJrjsVjzrZLOBF3H12/2Y9J4XUwsm0NSKrgqKnrdzKw9mg8Np66iQdZagD5lzaG1XXH4BZ+aFvLxSJHixERGRpzKjK1PI0Wq4/EYcHOq0hX5UEsAl5v5Y8JYbXhoOBNSoiIyDAMWpRq3749rly5Uub1W7VqBYVCYcguEFUosViE11pWR8c6rvj4j/M4EH0Xs7ddwrYLSZjXr0GVGNKem6fFvxeT8dvROBy5cU+33MvBGoOa+2HAC75wt7c2YQ+JiKoe5lRkSqfj7+PTzRd0d85t6OOAWa+EIMTHwcQ9IyKiqsagRak9e/YYsjmiSsOnmhK/jmqO9ccTMHvrJZyOf4Bu3x7A+JcC8Ua7AEglZZsTxJzEpWZi7bEE/H4iAamZ+WfgxSLgxSA3DG7hhw613arkaDAiInPAnIpM4UFWLr7acQXrjsdDEAB7ayk+6hqEgS/48W8+EREZBWfDJDIQkUiEgc390L62Kz758zz2XLmDuTuuYMeFZMzr1xB1PMx/1JRao8V/l27jt6Px2H/trm65u70cr77gh4Ev+MLLkWfiiYiIqhKtVsAfp25izvbLuPfoRFTfJj6Y0i2Ic0QSEZFRsShFZGBejgqsHP4CNp68iRlbonDu5kN0/24/xr0YiLc61oTMDEdN3byfhXXHErD+RALupKsAACIR0D7QFYNb+KFTkFulHO1FREREpbucnIbPNl/Q3biktrstZvYKRosAZxP3jIiILAGLUkRGIBKJ0L+Zb/6oqU3n8d/lFCyIuIodF/NHTdXzsjd1F5Gn0SLyyh2sORqHPVfvQBDyl7vYyjGgmQ8GNfeDr1PZJtglIiKiyiVTlYdv/ruGFQdioNEKUFpJMP6lQIxoU8MsT6AREVHVxKIUkRG521vjx2HNsPnMLXzxdxQuJqah5/cH8E5oLbwTWgtW0opP+pIf5mDd8XisP56ApIc5uuVtajljcPPqCKvnbpJ+ERERkfEJgoAdF5Ix/Z8oJKfl5wFd6nvg8x71eIk+ERFVOBaliIxMJBKhd2MftKnlgs82X8C/F2/jm/+u4d+LyZjfvyGCvY1/JxuNVsC+a3ew5mg8dl9OgUabPyyqmlKG/s18Mai5H2q42Bi9H0RERGQ6sXczMe3vi9h79Q4AwM9Jiek96yM0yM3EPSMiIkvFohRRBXGzs8aS15piy7kkTPv7Ii4np6PXDwfxdoeaeK9TLcilEoPvMyU9B7+fuIm1x+Jx8362bnnzGk4Y0sIPXYI9jLJfIiIiMh85ag2W7L2ORXuuIzdPCyuJGG91rImxHWvCWsY8gIiITIdFKaIKJBKJ0KOhF1rVdMa0vy5i6/kkfB8ZjZ1R+XNNNfR1fO59aLUCDl1PxZpjcdh58TbyHo2KsreWom9THwxp4YdabuZ/J0AiIiJ6fvuu3sHnf11AbGoWAKBtLRfM6FUfAa62Ju4ZERERi1JEJuFiK8cPQ5qg+/kkfPbXBVy9nYHeiw5iTPsATHip9jOdtUzNUGHjyfxRUQWJJwA08XPEkBbV8XIDT54NJSIishDJD3Mwc0sUtp5PAgC42cnxeY96eDnEEyKRyMS9IyIiyseiFJEJdQ3xRIsAZ0z/5yL+OpOIpXtvICLqNub1a4im1as9dXtBEHA05h7WHI3HjgvJyNVoAQB2cil6N/HG4BZ+CPIw/Z3+iIiocvH390dcXFyRZR999BG+/PJLE/WIyipPo8WqQ7H4v4iryMzVQCwChreugQlhgbCzlpm6e0REREWwKEVkYk42VvhmYGO8HOKJqZsv4MadTPRbcgij2tTAB+F1oLAqPrrpQVYu/jh1C2uOxuH6nUzd8gY+DhjSwg89GnpBacUfbyIienYzZszAmDFjdK9tbXm5l7k7EXsPn26+gMvJ6QDyR0vPfCUY9b2Mf1MVIiKiZ8H/WonMRHh9DzSv4YQZW6Kw6dQt/HggBrsu3cbcfg3R2McOggCcin+A9SduYev5JKjy8kdFKa0k6NXIG0Na+FXInfyIiMgy2NnZwcPDw9TdoDLIUANT/ryIjaduAQAclTJM6RqE/k19IRbzUj0iIjJfLEoRmRFHpRW+HtAI3Rt4Ysqm84hNzcKryw6jZwNPHLsqQdKRY7p163raY0gLP/Rq5MXh+EREZHBfffUVZs6cCV9fX/Tv3x8ffvghrKysnri+SqWCSqXSvU5LSwMAqNVqqNVqg/VLlafFjvOJOH9XBPXpm5BI9COKhVK2E0p584lvlbLRs++r5DefqX8A7qZlY/EZCbLy8gtS/Zt6Y1JYIJxsrKDR5EGjKWXjKqbgODPk8VYZMQ56jIUeY6HHWOgZMxZlbZNFKSIz9GKQO3ZOcMLsrVHYcOIm/jqbBEAEa5kYPRp4YXALPzTydeREpUREZBTvv/8+mjRpgmrVquHYsWOYMmUKYmJi8OOPPz5xmzlz5mD69OnFlu/cuRNKpdJgfctUA5+ckAKQANeiDNZu5SaCl1LAgAANaljF4cjeuKdvUoVFRESYugtmgXHQYyz0GAs9xkLPGLHIysp6+kpgUYrIbDkoZJjbryFebuCF1YdjYZ+dhE8Gh8LZ3nCJPRERWY4vvviixKJRYcePH0ezZs0wYcIE3bIGDRqgWrVq6NevH7766is4OzuXuO2UKVMwceJE3eu0tDT4+voiPDwc9vaGu+lGek4e/rp7Cvfu3YOTkxPEYnGR90s9XVPKm6JS3nzSOaDS9lXaeaPS9vWkt564hSDAWZ2Caa+9CIVcXkqPqj61Wo2IiAiEhYVBJrPcUeSMgx5jocdY6DEWesaMRcGI6adhUYrIzHWo7YrWNRyxbVsi7BWW/UuTiIie3bvvvouBAweWuo6/v3+Jy1u2bAkAiI6OfmJRSi6XQ15CUUQmkxk00XWSybB6VHNs27YN3bo15z8UajW2bdsGhVxu8bEoYOhjrrJiHPQYCz3GQo+x0DNGLMraHotSz0B4dNF/WSt/5aFWq5GVlYW0tDSL/wFhLPQYi3yMgx5jocdY6DEWesaMRcHff6G0SYDMkIuLC1xcXJ5p29OnTwMAPD09y7wN86WKwVjoMRb5GAc9xkKPsdBjLPTMIV9iUeoZpKfn32bX19fXxD0hIiIiU0lPT4eDQ9W76+nhw4dx5MgRhIaGwsHBAcePH8eECRPQs2dP+Pn5lbkd5ktERET0tHxJJFS203xmQKvVIjExEXZ2dgafaLpg/oWEhASDzr9QGTEWeoxFPsZBj7HQYyz0GAs9Y8ZCEASkp6fDy8ur2HxGVcGpU6cwduxYXL58GSqVCtWrV8fAgQMxefLkck1YznypYjAWeoxFPsZBj7HQYyz0GAs9c8iXOFLqGYjFYvj4+Bh1H/b29hb/A1KAsdBjLPIxDnqMhR5jocdY6BkrFlVxhFSBJk2a4MiRI8/dDvOlisVY6DEW+RgHPcZCj7HQYyz0TJkvVb3Te0REREREREREZPZYlCIiIiIiIiIiogrHopSZkcvlmDZtWom3VLY0jIUeY5GPcdBjLPQYCz3GQo+xqNr4/dVjLPQYi3yMgx5jocdY6DEWeuYQC050TkREREREREREFY4jpYiIiIiIiIiIqMKxKEVERERERERERBWORSkiIiIiIiIiIqpwLEoREREREREREVGFY1GKiIiIiIiIiIgqHItSRERERERERERU4ViUIiIiIiIiIiKiCseiFBERERERERERVTgWpYiIiIiIiIiIqMKxKEVERERERERERBWORSkiIiIiIiIiIqpwLEoREREREREREVGFY1GKiIiIiIiIiIgqHItSRERERERERERU4ViUIiKztWrVKohEIsTGxpZr/RMnTjx13Y4dO6Jjx47P10EiIiKiSsiYORYRUXlITd0BIiJTWLRokam7QEREREREZNFYlCIii1SvXj1Td4GIiIiIiMii8fI9Iqpy0tPT8fbbb8PFxQXOzs7o06cPEhMTi6zz+OV7sbGxEIlEmDt3LmbPng0/Pz9YW1ujWbNm+O+//8q8b0EQEBgYiM6dOxd7LyMjAw4ODnjnnXcAADk5Ofjggw/QqFEjODg4wMnJCa1atcJff/1VZLv+/fujfv36RZb16NEDIpEIv//+u27ZqVOnIBKJ8M8//5S5v0RERETPIikpCU2bNkVgYCCuXbsGABg+fDhsbW0RHR2Nbt26wdbWFr6+vvjggw+gUqmKbJ+bm4tZs2YhKCgIcrkcrq6uGDFiBO7cuVNsX+vXr0erVq1gY2MDW1tbdO7cGadPn66Qz0lExsWiFBFVOaNHj4ZMJsOaNWswd+5c7NmzB6+99lqZtv3++++xY8cOLFy4EKtXr4ZYLEbXrl1x+PDhMm0vEonw3nvvISIiQpegFfjll1+QlpamK0qpVCrcu3cPkyZNwubNm7F27Vq0bdsWffr0wS+//KLb7qWXXkJUVBSSkpIAAHl5edi7dy8UCgUiIiJ06+3atQtSqZRzZREREZFRXbhwAS1atIBcLsfhw4cRGBioe0+tVqNnz57o1KkT/vrrL4wcORL/93//h6+++kq3jlarRa9evfDll19i8ODB2Lp1K7788ktERESgY8eOyM7O1q37v//9D4MGDUK9evWwYcMG/Prrr0hPT0e7du0QFRVVoZ+biIxAICIyUytXrhQACDExMeVaf+zYsUWWz507VwAgJCUl6ZZ16NBB6NChg+51TEyMAEDw8vISsrOzdcvT0tIEJycn4aWXXipzv9PS0gQ7Ozvh/fffL7K8Xr16Qmho6BO3y8vLE9RqtTBq1CihcePGuuXR0dECAOGXX34RBEEQDhw4IAAQJk+eLNSoUUO3XlhYmNC6desy95OIiIgs07PmWMePHxciIiIEe3t7oV+/fkVyJkEQhGHDhgkAhA0bNhRZ3q1bN6FOnTq612vXrhUACH/88UeR9Y4fPy4AEBYtWiQIgiDEx8cLUqlUeO+994qsl56eLnh4eAgDBgwo60cmIjPFkVJEVOX07NmzyOsGDRoAAOLi4p66bZ8+fWBtba17bWdnhx49emDfvn3QaDRl2r+dnR1GjBiBVatWITMzEwCwe/duREVF4d133y2y7u+//442bdrA1tYWUqkUMpkMK1aswKVLl3Tr1KxZE/7+/ti1axcAICIiAiEhIXjttdcQExOD69evQ6VS4cCBA3jppZfK1EciIiKi8vr555/RrVs3jB49Ghs2bCiSMxUQiUTo0aNHkWUNGjQokodt2bIFjo6O6NGjB/Ly8nSPRo0awcPDA3v27AEA/Pvvv8jLy8Prr79eZD1ra2t06NBBtx4RVV4sShFRlePs7FzktVwuB4AiQ8GfxMPDo8Rlubm5yMjIKHMf3nvvPaSnp+O3334DkH9ZoI+PD3r16qVbZ9OmTRgwYAC8vb2xevVqHD58GMePH8fIkSORk5NTpL1OnTrp5rbatWsXwsLCEBISAnd3d+zatQsHDx5EdnY2i1JERERkNOvWrYNCocDo0aMhEolKXEepVBYrVsnl8iK5ze3bt/HgwQNYWVlBJpMVeSQnJ+Pu3bu69QDghRdeKLbe+vXrdesRUeXFu+8RERWSnJxc4jIrKyvY2tqWuZ1atWqha9eu+OGHH9C1a1f8/fffmD59OiQSiW6d1atXo0aNGli/fn2RxO7xiUCB/KLUihUrcOzYMRw9ehSffvopAODFF19EREQE4uLiYGtri5YtW5bn4xIRERGV2W+//YbPPvsMHTp0wM6dO9GoUaNnaqfgZjQ7duwo8X07OzvdegCwceNGVK9e/Zn2RUTmjUUpIqJCNm3ahHnz5unO8KWnp+Off/5Bu3btihSUyuL9999HeHg4hg0bBolEgjFjxhR5XyQSwcrKqkhBKjk5udjd94D8opRIJMJnn30GsViM9u3bA8ifBP3DDz9EXFwc2rdvD5lMVt6PTERERFQmTk5O2LVrF7p3747Q0FBs3779mU6Ide/eHevWrYNGo0GLFi2euF7nzp0hlUpx/fp19O3b93m6TkRmikUpIqJCJBIJwsLCMHHiRGi1Wnz11VdIS0vD9OnTy91WWFgY6tWrh8jISLz22mtwc3Mr8n737t2xadMmjB07Fv369UNCQgJmzpwJT0/PYnfuc3NzQ3BwMHbu3InQ0FAolUoA+UWpe/fu4d69e/j666+f/YMTERERlYGdnR127NiBPn36ICwsDH///TdCQ0PL1cbAgQPx22+/oVu3bnj//ffRvHlzyGQy3Lx5E5GRkejVqxd69+4Nf39/zJgxA1OnTsWNGzfQpUsXVKtWDbdv38axY8dgY2PzTDkaEZkPzilFRFTIu+++i7CwMIwbNw6DBw9GXl4etm7dijZt2jxTewMGDNC1+7gRI0bgyy+/xPbt29GtWzd89dVX+PjjjzF48OAS2yqYL6rwvFF+fn662zBzPikiIiKqCAqFAn/99Rc6d+6Mbt26Ydu2beXaXiKR4O+//8Ynn3yCTZs2oXfv3njllVfw5ZdfwtraGiEhIbp1p0yZgo0bN+Lq1asYNmwYOnfujMmTJ+tGiRNR5SYSBEEwdSeIiEwtNjYWNWrUwLx58zBp0iSDtdusWTOIRCIcP37cYG0SERERERFVBbx8j4jIwNLS0nDhwgVs2bIFJ0+exJ9//mnqLhEREREREZkdFqWIyOwJggCNRlPqOhKJ5Im3JjakvLy8Ut8Xi8U4deoUQkND4ezsjGnTpuGVV14xer+IiIiIysucciwiskycU4qIzN7PP/8MmUxW6mPv3r3PtQ9/f38IglDqpXuxsbFP7ceMGTPQsWNHCIKAu3fv4osvvniufhEREREZS0XkWEREpeGcUkRk9lJTUxETE1PqOnXq1IGdnZ1R+5Gbm4tz586Vuo6Xlxe8vLyM2g8iIiIiQzCXHIuILBeLUkREREREREREVOE4p9Qz0Gq1SExMhJ2dHa+vJiIisjCCICA9PR1eXl4QizkTwpMwXyIiIrJcZc2XWJR6BomJifD19TV1N4iIiMiEEhIS4OPjY+pumC3mS0RERPS0fIlFqWdQcE11QkIC7O3tDdq2Wq3Gzp07ER4eDplMZtC2KxvGQo+xyMc46DEWeoyFHmOhZ8xYpKWlwdfXl3OsPAXzpYrBWOgxFvkYBz3GQo+x0GMs9MwhX2JR6hkUDEG3t7c3SpKlVCphb29fpX5A8jRa5Gq0UKkLf9UgR/34co3udU6uGjE5NkjOFiHAzgYKK4mpP4bJVNXjorwYBz3GQo+x0GMs9CoiFrwkrXTMlyoGY5EvLUeNUwkZUEsZCx4TeoyFHmOhx1jomUO+xKJUFZen0UKVp0VuXuGvGqgee130fS1yH62je/1YwUj1hEKSKk9TQvFJC432WefTl+DHK4cBAK52clR3UsLPSQk/5/yv1Z2V8HVSwtVWzn8OiIiIiCxMaoYKKw/G4ufDsUjPyYNMLEGC4irGhgaimo2VqbtHRERPwaKUGXmYpcbvJ+Jw7pYINyKvQyOISiwYqUosJBUuDOmXPXMtyIjEIkAulUAuE8NKIoZcJoZcKtE9z/8qgRgCom/dwUONDOk5ebiTrsKddBVOxN0v1qbSSgI/p/wCVfVCRSs/JyV8qilhJeVEtERERERVRdLDbCzbdwNrj8UjR60FADgqZHiQrcbyA7FYd/wmRrcLwMi2/rCztuyREERE5oxFKTPyIDsXs7ZdASAB4q8bvH2pWAQrqRhyqfjRV8ljr8WwkkqKvJY/vt5jhaPSXlvLxLCSFC0+WUnEkErKViBSq9XYtm0bunXrjEy1gPh7WYhLzUL8vSzEp2Yh7l4mEu5lI/FhNrJyNbicnI7LyenF2hGLAE8Hha5I5eecP8LKz0mJ6k42cFAyUSEiIiKqDGLvZmLJ3uv449RNqDX5Z18b+DjgndBa6FjLCQvW7sD+B464lJyO/9t1FasOxWBsx1oY2qo6rGWWOxUEEZG5YlHKjNhZy/BysAdSbicioLofFFbSxwpGJRWSiheWCgpJj68jEVfey9sclVZwVFqhgY9jsfdUeRrcup+NuHtZSHiscBV/LwvZag1uPcjGrQfZOHwjtdj29tZSVHe2KXpZ4KNRV16OikodN6LKSqPRQK1Wl2ldtVoNqVSKnJwcaDQaI/fMvDEWes8TC5lMBomE/7wSmZPLyWlYFHkdW84l6q4EaBnghHdCa6FtLReIRCKo1WrUrybgg0EtEXHlLr6OuIobdzIxe9sl/HjgBt59MRCvNvPlCHqqMpgvPRvGQs8c8iUWpcyIk40VFr7aANu23US3bvUsftK1spJLJQhwtUWAq22x9wRBwJ0MVbFiVdy9/Od30lVIy8nD+VsPcf7Ww2LbyyQi+FQrdFngY5cG2sj5I0RkSIIgIDk5GQ8ePCjXNh4eHkhISLD4ueUYC73njYWjoyM8PDwsPo5EpnY6/j5+iLyOXZdu65a9GOSGd0Jroml1pxK3EYtF6N7AC13qe2DT6Vv4Ztc13HqQjc82X8Cyfdcx4aXa6NXImyceqdJivvR8GAs9c8iX+B81VWkikQhudtZws7MuMXHJys1Dwr1sxKVm5hes7ukLVwn3s6DWCIi5m4mYu5kltu9ia1XoskAb3XxW1Z2UcLXj5OtE5VWQYLm5uUGpVJbpZ0ir1SIjIwO2trYQiy377DdjofessRAEAVlZWUhJSQEAeHp6GquLRPQEgiDg8PVU/LAnGgej80e5i0RAtxBPjO1YE/W9HMrUjlQi/v/27ju+qXL/A/gno0n3nnRPCpRRdlkFgbJUFC5bBK/yuwwHIg5E5gVRQK6KMkQu6HWAIuJgFih7KVBWodBFS2npgO6VJuf3R2hDaYGOpEnaz/v16ovm5Jwnz/mSpt9+z3OeB6M7e2J4hxbYciYFqw/GIeVuMWb9dAFrD8XjrYggDGrD4jMZH+ZLDcNYaBhCvsSiFDVr5jIpWrpaoaWrVbXnlCoB6Xkl928DLNSMtLr/lVOkQFZBGbIKynAuOafa8aYmYk3Byt4CXvZm8HawgKe9OTztzSCX8tYQogcplcrKBMvBwaHWx6lUKpSVlcHU1JSJBWNRqSGxMDMzAwBkZGTA2dmZt/IRNRJBEHDgaga+iIpDdEoOAPWcqM+HumNaX/8aR8XXhlwqwaQePhjV2QPfnLiJdYfjcSOjAFO/O4e27jaYPagl+gQ6sjhFRoH5UsMxFhqGkC+xKEX0CBKxCO62ZnC3NUOYf/UP/NxiRdXbAu8WVk7GfjunGCUKFa7fKcD1OwXVjhWJADdrU/VtgQ6akVYV81nZmpswMaJmp2JOBHNzcz33hEjzPlQoFCxKEemYUiXgz4u3sfZQfOWiNXKpGOO6emFKHz+425pp5XXMZVJM6+uPCd298PWRBGw8lohLqbmY9N8z6Opjj9mDWqKrb823BBIZCuZLZEi0kS+xKEVUTzZmJrBxt0GIe/Uh5AqlCqn3itVFqsoJ2NWjrVLuFqGwTInbuSW4nVuC04l3qx1vJZdq5q5yMIe3nSlE5Y1xVkT6x4IsGQK+D4l0r6xche3nbmHd4XgkZRcBACzlUkwM88Y/e/rCyUquk9e1NjXBrIiWmNTDB2sPxePbUzdxJukuRq8/ifAgJ8yOaIm2HrW7RZBIX/h7igyBNt6HLEoR6YCJRAwfRwv4OFpUe04QBGQXllVZIbCiWHXzbiHu5JUiv7QcV27n4crtvMrjLKQSKFvcwrhuPpyYk4iIiIxWcZkSP55JxoajCUjLLQEA2Jmb4J89ffFimA9szBtnsR8HSzk+eLo1Xunth9UHb2DrXyk4fD0Th69nYkiIK2YNDEKgS/UpHoiISHtYlCJqZCKRCI6WcjhaytHRy67a8yUKJVLuaopVyXeLcOR6JhKyCvHBbzHY8vctLHymDTr7cHg5ERERGY/cYgW+O3UTG48l4m5hGQDAxVqOKb39MK6rl95WNXa1McXS59vi//r44bP9N/BrdCp2X07H3ivpeC7UHW8OCIKnPW+VIiLSheY9qxeRATI1kSDQxQr9W7ngn718sfDZNvjz1TA876OElakUl1Pz8I91JzFzy3mk37+6SESkKwsXLoSLiwtEIhF27Nih7+4QkRHKLijFir3X0Oujg1ixNxZ3C8vgZW+OD59viyPv9MMrvf30VpB6kLeDBVaN6YC9M/tgUBsXqARg+7lUPPXJIXyw4xLu5DHvIqKaMV+qPxaliIyAiUSMvm4CIt/oibFdPCESATuib+OpTw7hy6g4lJYr9d1FomZLJBI99mvy5MkAgKioKPTr1w/29vYwNzdHYGAgJk2ahPJy9YRxhw4dgkgkQk5OTpXHIpEIYrEYNjY2CA0NxTvvvIO0tLTH9ikpKalKH2xsbNC9e3f88ccfdTq3q1evYtGiRVi/fj3S0tIwZMiQOseHiJqv2znFWPTHFfT8+CC+jIpHfmk5glws8dnYDjj4VjjGd/MyyNWIg1yssH5iZ/w2oyd6BzpCoRTw3alk9FkehQ93Xa0c5UVEtcd8iR6FRSkiI+JgKcdHI9vh9xm90NHLFkVlSqzYG4uI/xzB/pg7EARB310kanbS0tIqvz799FNYW1tX2fbZZ5/hypUrGDJkCLp06YIjR47g0qVLWL16NUxMTKBSqR7bfmxsLG7fvo2//voL7777Lvbv34+QkBBcunTpiX3bv38/0tLScPr0aXTt2hUjR47E5cuXa31u8fHxAIDhw4fD1dUVcnn9Jh2uWCmIiJqHpKxCvLvtIsJXRGHT8SSUKFRo72GDryZ2wp43+mB4B3dIJYb/Z0h7T1v87+Vu2PJ/3dHZ2w6l5Sp8dSQBfZZH4T+R15Ffws82otpivvRkzTVfMvzfBkRUTVsPG/wyrQc+HdMBzlZy3Mwuwivf/o1Jm/5CXEaBvrtHpDWCIKCorPyJX8VlylrtV5ev2hZ5XV1dK79sbGwgEomqbYuMjISbmxuWL1+OkJAQ+Pv7Y/Dgwfj6668hk8ke276zszNcXV0RFBSEsWPH4vjx43BycsK0adOe2DcHBwe4uroiODgYS5cuhUKhQFRUVOXzqampGDNmDOzs7ODg4IDhw4cjKSkJgHoY+jPPPAMAEIvFVVZX2bRpE1q1agVTU1MEBwdjzZo1lc9VXHX86aef0LdvX5iamuK7776r9XHbt29Hv379YG5ujvbt2+PkyZNVzun48eMIDw+Hubk57OzsMGjQINy7dw+A+v2yfPly+Pn5wcLCAr169cK2bdsqj7137x4mTJgAJycnmJmZITAwEJs2bXpiHImodq6l5+G1H8/jqU8OYevfKVAoBYT5OeC7l7thx4yeiGjjCrERLtbS3c8BP08Nw6aXuqBNC2sUlJbjswM30Ht5FNYfjkdxGUesk34xX2K+ZMz5kv5v3iaiehGJRHgu1B0DWrvgy6g4bDyaiCPXMzH40yN4qacPXusfCGvTxlm9hkhXihVKtJ6/Vy+vHbN4EMxl2vk16erqirS0NBw5cgR9+vRpUFtmZmaYOnUq3nzzTWRkZMDZ2fmJxygUCmzYsAEAYGKi/lwoKipCv3790Lt3bxw5cgRSqRRLlizB4MGDcfHiRcyePRs+Pj546aWXqgx/37BhAxYsWIAvvvgCoaGhOH/+PKZMmQILCwtMmjSpcr93330Xn3zyCTZt2gS5XF7r4+bOnYuVK1ciMDAQc+fOxbhx4xAXFwepVIro6Gj0798f//znP/H5559DKpUiKioKSqX6D8IPPvgA27dvx9q1a+Hv7499+/bhxRdfhIuLC8LDwzFv3jzExMRg9+7dcHR0RFxcHIqLixv0/0FEwLnke1gTFYf9VzMqt/UPdsb0fgHo5F19URdjJBKJ0K+lM8IDnbDnSjo+2ReL+MxCLNt9DRuPJeK1pwIwposXZFJe86fGx3ypOuZLxpMvsShFZOQs5VK8OzgYYzp7YsnOGOy/moENRxPx6/lUvDM4GP/o6GGUVyWJmpJRo0Zh7969CA8Ph6urK7p3747+/fvjxRdfhLW1dZ3bCw4OBqC+Wva4JKtHjx4Qi8UoLi6GSqWCj48PRo8eDQDYsmULxGIxvv7668qreps2bYKtrS0OHTqEiIgI2NraAlAniRX+/e9/45NPPsGIESMAAL6+voiJicH69eurJEszZ86s3Kcux82ePRvDhg0DACxatAht2rRBXFwcgoODsXz5cnTu3LnKFcM2bdoAAAoLC7Fq1SocPHgQYWFhUKlUGD9+PM6ePYv169cjPDwcycnJCA0NRefOnQEAPj4+dYg6ET1IEASciM/Gl1FxOBGfDQAQiYBhbd0wvW8AWreo+2ebMRCLRRja1g0RrV2wI/o2Pt1/HbfuFWPeb1ew/kgCZg4IwvOh7pAw9yKqM+ZLzTNfYlGKqInwcbTA15O64FBsBhb/GYOEzEK8s+0ivj91EwufbYNQr6ZxpZKaFzMTCWIWD3rsPiqVCvl5+bCytoJYrL0r1GYm2pt8VyKRYNOmTViyZAkOHjyIU6dOYenSpfj4449x5swZuLm51am9iqHyDw4Rr8nWrVsRHByM69evY+bMmVi3bh3s7e0BAGfPnkVcXBysrKyqHFNSUlI5N8LDMjMzkZKSgpdffhlTpkyp3F5eXg4bG5sq+1YkMnU9rl27dpXfV8QlIyMDwcHBiI6OxqhRo2rsW0xMDEpKSjBw4MAq28vKyhAaGgoAmDZtGkaOHIlz584hIiICzz33HHr06FFje0RUM5VKwIFrGfgyKg7RKTkAAKlYhBEd3TE13B9+Tpb67WAjkUrE+EcnDzzbvgW2/pWMzw/G4da9Ysz++QLWHorDWxEtMdhIb1ck48N8qWbMl6ozxHyJRSmiJqZvS2f08HfENyeS8NmBG7hwKxfPrzmBkR098O7glnC2NtV3F4lqTSQSPXFIuEqlQrlMAnOZVKtJli64u7tj4sSJmDhxIpYsWYKgoCCsW7cOixYtqlM7V69eBfDkK1eenp4IDAxEYGAgLC0tMXLkSMTExMDZ2RkqlQqdOnXC999/X+04JyenGturmGR0w4YN6NatW5XnJJKqSamFhUW9jqsYLg9oksiK483MzB55rhX77Ny5E+7u7lCpVCgoKIClpWXlcUOGDMHNmzexc+dO7N+/H/3798eMGTOwcuXKR7ZLRGrlShV2XkrDmqh4xN7JBwDIpWKM6+qFKX384G776J/PpkwmFWNimA/+0ckT355MwtrD8YjPLMT078+hTQtrzB7UEn2DnJ74RzFRQzBfqhnzpUf3zZDyJRaliJogmVSMKX38MDy0BZbvicW2s7fwy7lb2HslHa89FYCXevpyzgMiPbOzs4ObmxsKCwvrdFxxcTG++uor9OnT55HJUE3Cw8MREhKCpUuX4rPPPkPHjh2xdetWODs713pIvIuLC9zd3ZGQkIAJEybU+rXre9zD2rVrhwMHDtSYlLZu3RpyuRzJyckIDw+HSqVCXl4erK2tqyTfTk5OmDx5MiZPnozevXvj7bffZlGK6DFKy5X49Vwq1h6Ox83sIgCAlVyKiWHe+GcvXzha1m+VqabGTCbBv8L9Ma6bFzYeTcTGY4m4cjsPL236C5297fD2oJbo5ueg724SGR3mS3VnbPkSi1JETZizlSlWjmqPCd28sPCPGFxIycGy3dew9a8UzHumNfq1fPKEf0TUcOvXr0d0dDSef/55+Pv7o6SkBN9++y2uXLmC1atXP/bYjIwMlJSUID8/H2fPnsXy5cuRlZWF7du317kfb731FkaNGoV33nkHEyZMwIoVKzB8+HAsXrwYHh4eSE5Oxvbt2/H222/Dw8OjxjYWLlyI119/HdbW1hgyZAhKS0vx999/4969e5g1a9YjX7u+xz1ozpw5aNu2LaZPn46pU6dCJpMhKioKo0aNgqOjI2bPno0333wTKpUKPXr0QFpaGi5evAgrKytMmjQJ8+fPR6dOndCmTRuUlpbizz//RKtWreocR6LmoKisHFvOpOCrIwlIzysBANiZm+DlXr6YGOYDGzMuplITa1MTvDkwCJN6+GDd4Xh8cyIJf9+8hzFfnULvQEe8Pagl2nnY6rubRAaJ+VLzzJcMvij14KRftbVu3bpHTmS2cOHCahVDFxcXpKen16t/RMYg1MsOv07rgV/O3cLHe2KRkFWIlzb9haeCnTHv6dbwdbR4ciNEVG9du3bFsWPHMHXqVNy+fRuWlpZo06YNduzYgfDw8Mce27JlS4hEIlhaWsLPzw8RERGYNWtWlck0a+vpp5+Gj48Pli5dijVr1uDIkSN49913MWLECOTn58Pd3R39+/d/7JXAV155Bebm5lixYgXeeecdWFhYoG3btpg5c+ZjX7u+xz0oKCgI+/btw/vvv4+uXbvCzMwM3bp1w7hx4wCoJwd1dnbGsmXLkJCQABsbG3Ts2BFz584FAMhkMsyZMwdJSUkwMzND7969sWXLllq/vr5oOxciepzcYgX+dzIJ/z2ehLuFZQAAV2tTTOnjh3FdPbW2ylZTZ28hw/tDW+HlXr5YffAGtpxJwdEbWTh6IwuD2rjgrYiWCHKxenJDRM0I86XmmS+JhIrZvwyUWCzG6NGjH3tf5IN++OEHXL16FX5+fjU+v3DhQmzbtg379++v3CaRSOo0pC8vLw82NjbIzc2t1yoAj6NQKLBr1y4MHTq0yn2izRFjoaHNWOSXKLD6YBw2HU+EQinARCLCy7388OpTAbCUG3aiyfeERlOMRUlJCRITE+Hr6wtT09rPffaoYcfNEWOh0dBYPO79qMs8oCbazoUaC/OlxqGtWGQVlOK/xxLxv5M3kV9aDgDwsjfHtL7+GNHRHXKp9iYz1hVDfl8kZxfh0wPX8ev5VAiCeqXC5zq4Y+aAQHg7aPfioCHHobE1xVgwX2o4xkLDEPIlw/4L9L7PP/+81lf7tm3b9sR9pFJpnSqmpaWlKC0trXycl5cHQP0hp1Aoat1ObVS0p+12jRFjoaHNWJhKgLcHBmBkBzcs3X0NR25kY93heGw/dwtvRwTi2XZuBrtSDN8TGk0xFgqFAoIgQKVSVU7CWBsV11Yqjm3OGAuNhsZCpVJBEAQoFIpqk4vq4+dO27kQUYXbOcX46kgCtvyVjBKF+mclyMUSM/oFYFhbN0glzfsPNm3xcjDHqtEdMC3cH6sir2P35XT8ej4Vf1y4jdFdPPH6U4FwteFiNETU/Bh8USoqKqpyOcba2L17N9zd3R+7z40bN9CiRQvI5XJ069YNH3744WOvJi5btqzGScL27dsHc3PzWvetLiIjI3XSrjFiLDS0HYsRDkBLiQi/JomRkV+Kt3+5jC/3XsJIXyW8DHhFZ74nNJpSLCouGBQUFKCsrKzOx+fn5+ugV8aJsdCobyzKyspQXFyMI0eOoLy8vMpzRUVF2uharekiFyJKzCrEukPx2H7+FhRKdRG3vactXu0XgP7BzgZ7gcrYBbpYYe0LnXDpVi5W7ovF4euZ+OF0MradvYUXu3tjWl9/OHDyeCJqRgy+KPWke0cf1qtXr8c+361bN3z77bcICgrCnTt3sGTJEvTo0QNXrlyBg0PNK2LMmTOnyqRieXl58PT0REREhE6Go0dGRmLgwIFNZohpfTEWGrqMxTAAb5SrsPnETaw5nICkAiVWXZbiHx3d8daAAINKjPie0GiKsSgpKUFKSgosLS3rNBxdEATk5+fDysqq2S+5zVhoNDQWJSUlMDMzQ58+fWocjt6YtJ0LUfN2NS0Paw7FY+fF21Ddn8QjzM8Brz4VgB7+Ds3+s6OxtPWwwTf/7IoziXexYu81/JV0D18fS8SPZ5Lxci9fvNLHD9amTeP3OxHR4xh8UaomGRkZyMjIqDYcv127dk88dsiQIZXft23bFmFhYfD398c333zzyNns5XI55PLqf5ibmJjo7I9BXbZtbBgLDV3FwsQEeLV/EEZ18cLHu69h+/lU/Hw2FXsu38EbAwIxqYcPTAxo+D7fExpNKRZKpRIikQhisbhO97RX/C6oOLY5Yyw0GhoLsVgMkUhU48+YIfzMNSQXWrZsGbZv345r167BzMwMPXr0wMcff4yWLVtW7jN58mR88803VY7r1q0bTp06pZ0ToEZ3LvkevjwYhwPXMiq3DWjljGl9A9DJ206PPWveuvra46d/heHw9Uys3BeLy6l5+PxgHL45eRNTw/0xqYc3J5cnoibNqD7hzp49i0mTJuHq1auVc0WIRCIIggCRSASlUlnnNitms79x44a2u0tkdFysTbFqTAdM6O6Fhb/H4FJqLpbsvIotf6Vg/tOt0Seo9gsCENVXc58LiQyDob4PtZELHT58GDNmzECXLl1QXl6OuXPnIiIiAjExMbCw0Ey4PHjwYGzatKnysUwm0/4JkU4JgoAT8dn44mAcTiZkAwDEImBYuxaY3tcfrdx0P1E/PZlIJELfls4ID3LCnsvp+CTyOuIyCvDxnmvYeCwRrz0VgLFdPY1isnlqPIb6e4qaF228D42qKPXSSy8hKCgIGzduhIuLi1aGF5eWluLq1avo3bu3FnpI1DR08rbHjhk98fPfKVixNxZxGQV48b9nMLC1C+YNaw0vB93MpUbNm0wmg1gsxu3bt+Hk5ASZTFarz3mVSoWysjKUlJRwdBBjUam+sRAEAWVlZcjMzIRYLDa4Qow2cqE9e/ZUebxp0yY4Ozvj7Nmz6NOnT+V2uVxer6W0Sf9UKgEHrmXgi6g4XEjJAQCYSEQYEeqBqX394euo3dXeSDtEIhGGtHVDRBtX7Difik8PXEfK3WIs+P0KvjqSgDcGBGJEqDsnn2/mmC81HGOhYQj5klEVpRITE7F9+3YEBATUu43Zs2fjmWeegZeXFzIyMrBkyRLk5eVh0qRJWuwpkfGTiEUY29ULQ9q64bP9N/DNySRExtzB4euZ+L/efpjez5/DyUmrxGIxfH19kZaWhtu3b9f6OEEQUFxcDDMzs2Y/FwpjodHQWJibm8PLy8vgklVt5EIPy83NBYBqk6kfOnQIzs7OsLW1RXh4OJYuXfrYFQC5WrF+PBiLcqUKuy7fwfojibieUQAAMDURY3QnD7zSywdu91d3a6pxa0rvi2fbuWBwayf8fC4Vaw4lIDWnGO9su4h1h+LwxlMBGNzG5ZGT0TelODRUU42Fp6cn7ty5g9TU1FofIwgCSkpKYGpqyhyBsajU0FiYmZmhRYsWUCqV1UZr1/bnzqj+ouzfvz8uXLjQoETs1q1bGDduHLKysuDk5ITu3bvj1KlT8Pb21mJPiZoOGzMTzH+mNcZ19cSiP2JwLC4LX0TFYdvZW5gzNBjPtm/R7D/MSXtkMhm8vLxQXl5e61uyFQoFjhw5gj59+hjEXD/6xFhoNCQWEokEUqnUID/btJELPUgQBMyaNQu9evVCSEhI5fYhQ4Zg1KhR8Pb2RmJiIubNm4ennnoKZ8+erXGeTYCrFetTuQpY9N1+HEgVI6tU/b41lQjo5Sqgr1s5rEQJOH88Aef13M/G0pTeF3YA3m4FHLsjwv5UMRKyivDGTxfhbi5gmJcKrW0FPOqjqinFoaGaaizqOg8nkTapVKrH3r5X29WKjaoo9fXXX2PSpEm4fPkyQkJCqiWZzz777BPb2LJli666R9SkBbpY4X8vd8W+mDtYsjMGKXeL8caWaHx36iYWPNMGIe42+u4iNRGPmlz6USQSCcrLy2FqatrsCzGMhUZTjYU2cqEHvfrqq7h48SKOHTtWZfuYMWMqvw8JCUHnzp3h7e2NnTt3YsSIETW2xdWK606pElBWrkKZUgWFUoWychUUSs22sge3VX5fdVt2fgm+P5WI3DJ1ZcLO3AQv9fDGhK6esDYz3tjUR1N5X9TkOQD5JeXYfPImNh5PQmqREl9dkyDU0wZvDQxEN1/NSMemHIe6Yiw0GAsNxkJDl7Go7WrFRlWUOnHiBI4dO4bdu3dXe66+E50TUe2JRCIMauOK8CAnfH00AV9GxeOvpHt45otjGNfVC7MjWsLewrDmXyEiakq0mQu99tpr+P3333HkyBF4eHg8dl83Nzd4e3s/dmEYQ12tWKUSqhR4HizsVN0moEypRFl5TQUgFUrLq28ru79dXUhSagpK5aqqbTzUTkUbKkFbkRDBxVqOf/Xxx9iuns3+9vqmtDLtg+xNTDArIhgv9fTDusPx2HwiCedTcvHCf/9GrwBHzB7UEh08bSv3b6pxqA/GQoOx0GAsNHQRi9q2Z1S/sV5//XVMnDgR8+bNg4uLi767Q9RsmZpI8OpTgRjZyQPLdl3D7xdu44fTyfjzwm3MGhiEF7p7cxJOIiId0EYuJAgCXnvtNfz66684dOgQfH19n3hMdnY2UlJS4ObmVq/X1KbcYgWmf3cWdzIl2HTrNBRKocroodKHik5K7VV+dE4mFUMuEUMmFcOk8l8RZFIJZFIxZBKR5rmK58WAPO8WPpjYG5ZmNd9aSU2LnYUMc4a2wj97+eKLg3HY8lcyjsVl4VhcFga2dsEb/fz03UUiolozqqJUdnY23nzzTRakiAyEm40ZPh8Xihe6e2PB71dwNS0PC/+IwY9nUrDgmdboEeCo7y4SETUp2siFZsyYgR9++AG//fYbrKyskJ6eDgCwsbGBmZkZCgoKsHDhQowcORJubm5ISkrC+++/D0dHRzz//PPaOpX6E4Dj8dkAREBebp0Pl0kqCj1Viz+yB/41eaAwJJc+WBzSPCd/YL9HtlP5WASZRFKlHdlDx0rFonrNY6ZQKLBrVwrkUl4Mam5crE3x7+dC8H99/PDp/hv49fwtRMbcwf6rd9DRQYygjAK0crfTdzeJiB7LqIpSI0aMQFRUFPz9/fXdFSJ6QFdfe/z5Wi9s+SsZK/fGIvZOPsZ/fRpDQlzx/tBW8LTXzQS3RETNjTZyobVr1wIA+vbtW2X7pk2bMHnyZEgkEly6dAnffvstcnJy4Obmhn79+mHr1q2wsrJqSPe1wlwuwcqRIbh88QK6dekEM7mJZtTQA4WeatvuF6MMcQJ7oobwtDfHJ6PbY1pfP6yKvI5dl9JxNkuMoV+cwKDWrpjRLwBtPTj3JxEZJqMqSgUFBWHOnDk4duwY2rZtW+0exddff11PPSMiiViECd28MaytG/4TeR3/O3UTuy+n4+C1DPwr3B/Twv1hJpPou5tEREZNG7mQIDz+djYzMzPs3bu3Qf3UJROJGMM7tIDJ7WgMaOXM+UCI7gtwtsKaCZ0QfTMb87acwKV7Yuy5ko49V9LRO9ARr/YLQFdfexZmicigGFVR6uuvv4alpSUOHz6Mw4cPV3lOJBKxKEVkAGzNZVg0PATjunlh0e8xOJmQjc8P3MC2v1Mwd1hrDG3rymSIiKiemAsR0ZO0aWGNV4JVCOzUCxuO38TvF27j6I0sHL2Rhc7edpjRLwB9WzoxHyMig2BURanExER9d4GIainY1Ro/TOmG3ZfTsXTnVaTmFGPGD+fQzdceC59tg1Zu2l0enIioOWAuRES1Fehiif+M6YA3BwRh/ZF4/Pz3Lfx98x5e2vwXWrlZY0Y/fwwJcYNEzOIUEekPZ0QkIp0RiUQY2tYN+2eFY+aAQMilYpxOvIthnx/F/N8uI6eoTN9dJCIiImrSvBzMsfT5tjj6bj/8Xx8/mMskuJqWh1d/OI8Bqw7jp79SUFau0nc3iaiZMoqRUosXL67VfvPnz9dxT4ioPsxkEswcEIR/dPLAsl3XsPNSGr49qR5O/lZES4zv6sWrdEREj8FciIgaysXaFO8PbYXpff2x+UQSNh1PQmJWId755SL+s/86/q+PH8Z28eIcoETUqIyiKPXrr78+8jmRSITY2FiUlJQwESMycB525vhyQkdMiM/Cot9jEHsnH/N2XMYPp5Ox8JnW6ObnoO8uEhEZJOZCRKQttuYyzBwQhFd6++HH08nYcDQBabklWPRHDFYfjMPLvXzxQndv2JhxEQEi0j2jKEqdP3++xu3R0dF47733cPnyZUyZMqWRe0VE9dXD3xE7X++FH84k45N913E1LQ9jvjqFp9u54f2hrdDC1kzfXSQiMijMhYhI2yzlUkzp44eJYd745dwtrDscj5S7xVixNxbrDsVjYpg3/tnLF46Wcn13lYiaMKOcUyoxMREvvPACunTpAhsbG1y5cgXr1q3Td7eIqA6kEjFeDPNB1Oy+eKG7F8Qi4M+LaXjqk0P4/MANlCiU+u4iEZHBYi5ERNpiaiLBhG7eiHqrLz4d0wFBLpbILy3HmkPx6PnRQSz8/QpSc4r13U0iaqKMqiiVlZWF1157DcHBwUhLS8OJEyewdetWBAYG6rtrRFRP9hYyLHmuLf54rRe6+tijRKHCqsjrGLDqMPZcTocgCPruIhGRwWAuRES6IpWI8VyoO/a80QdfTeyE9h42KC1XYfOJJIQvj8LbP19AfGaBvrtJRE2MURSlCgsLsWjRIvj7++PEiRP4448/cODAAXTp0kXfXSMiLWnTwgZb/9Udn48Lhau1KW7dK8bU787ihY2ncf1Ovr67R0SkV8yFiKixiMUiRLRxxY4ZPfH9K93Qw98B5SoBP5+9hQGrDmPG9+dwOTVX390koibCKOaU8vf3R35+Pl577TWMGzcOIpEIFy9erLZfu3bt9NA7ItIWkUiEZ9u3wIBWzlh7KB7rjyTgeFw2hnx2FC+GeePVcF99d5GISC+YCxFRYxOJROgZ4IieAY44l3wPa6Lisf/qHey8lIadl9LQt6UTZvQLQBcfe313lYiMmFEUpTIyMgAAy5cvx4oVK6rcziMSiSAIAkQiEZRKzkFD1BSYy6R4K6IlRnXyxNJdMdh75Q42HU/CjvOpGOAiQq9iBRxMuCIMETUfzIWISJ86etnh60mdcS09D2sPxeOPC7dxKDYTh2Iz0dXHHtP7+SM8yAkikUjfXSUiI2MURanExER9d4GI9MDLwRzrJ3bG0RuZWPRHDOIyCvBzogTbPzqEUE9b9AlyQniQE0LcbSARMwkioqaLuRARGYJgV2t8NjYUbw4Iwvoj8dh29hbOJN3FmU13EeJujRl9AzCojSvEzMuIqJYMvih18eJFhISEQCyu3fRXV65cQcuWLSGVGvypEVEt9Q50wu43emPz8QRsOHgNGSXA3zfv4e+b97Aq8jrszE3QK9AJfQIdER7kBGdrU313mYhIa5gLEZGh8XG0wLIR7fBG/yBsOJqAH04n43JqHqZ9fw7+ThaY1jcAwzu0gInEKKYwJiI9MvhsJTQ0FOnp6XBycqrV/mFhYYiOjoafn5+Oe0ZEjclEIsbkMG8437uCdmH9cCLxHo5cz8SJuGzcK1Lgjwu38ceF2wCAYFcrhN8fRdXJxw5yqUTPvSciqj/mQkRkqFxtTDHv6daY0S8Am48nYvOJJMRnFmL2zxfwn8jr+Fe4H0Z39oSpCXMxIqqZwRelBEHAvHnzYG5uXqv9y8rKdNwjItI3DzszTHC2xoRu3lAoVTifnIMj1zNx5EYmLqXm4lp6Pq6l52P9kQSYmUgQ5u+A8CAn9Alygo+DOec7ICKjwlyIiAydvYUMsyJaYkofP3x/OhlfH01Eak4x5v92BZ8fuIGXe/nhhe5esDLlnKBEVJXBF6X69OmD2NjYWu8fFhYGMzMzHfaIiAyJiUSMrr726Oprj9mDWiK7oBTH4rJw+HomjlzPQlZBKQ5ey8DBa+pJgj3tzdQFqkAn9AhwhKXc4D8GiaiZYy5ERMbCytQEU8P9MbmHD34+ewvrDsUjNacYH++5hjWH4jC5hw9e6ukLewuZvrtKRAbC4P8aO3TokL67QERGxMFSjuEd3DG8gzsEQcDVtPz7BapM/H3zLlLuFuO7U8n47lQypGIROnnbVU6Y3trNmhNzEpHBYS5ERMbG1ESCid29MbaLJ/64cBtrDsUjLqMAqw/G4eujiRjX1QtT+vjCzYYFdKLmzuCLUkRE9SUSidC6hTVat7DGtL7+KCwtx8n4bBy5oS5SJWUX4XTiXZxOvIsVe2PhaClD70An9AlyRO9AJzhayvV9CkRERERGy0QixoiOHniugzv2xaTjy6h4XErNxX+PJ+J/p5IwsqMHpob7w8fRQt9dJSI9YVGKiJoNC7kUA1q7YEBrFwDAzexCHLmeicPXs3AiPgtZBWX49Xwqfj2fCgAIcbdGn0D1XFSdvO24ggwRERFRPYjFIgwOccOgNq44eiMLX0bF4XTiXWz5KwU//Z2CYe1aYHpff7Rys9Z3V4mokbEoRUTNlreDBSaGWWBimA/KylU4e/MejtzIxOHYTMSk5eFyqvprzaF4WMqlCPN3UN/qF+gEL4faTThMRERERGoikQh97i8+83fSXaw5FI+D1zIqV1HuH+yM6f0C0MnbTt9dJaJGwqIUEREAmVSMMH8HhPk74N3BwcjIL8GxG1n3V/XLwt3CMkTG3EFkzB0AgK+jBfoEOiK8pRO6+znAXMaPUyIiIqLa6uxjj/9OtseV27lYeygeOy+l4cC1DBy4loHufvaY0S8AvQIcuWoyURPHv6KIiGrgbGWKER09MKKjB1QqAVdu56lHUV3PxLmb95CYVYjErEJ8c/ImZBIxOvtoJkwPdrViAkVERERUC21a2OCL8R0xK7MA6w8nYPv5WziVcBenEs6gnYcNpvcNQERrFy5GQ9REsShFRPQEYrEIbT1s0NbDBjP6BSC/RIET8dn356PKxK17xTgRn40T8dn4aPc1OFvJ0TvQCeEtndA7wBF2XPaYiIiI6LH8nCzx8T/a4Y0BgdhwNAE/nknGxVu5mPrdWQQ6W2JaX388274FpJzjk6hJYVGKiKiOrExNMKiNKwa1cYUgCEjMKqwsUJ1KuIuM/FL8cu4Wfjl3CyIR0M7dBuH350/o4GnLZIqIiIjoEVrYmmHBM23war8AbDqehG9OJuFGRgFm/XQBqyKvY2q4P/7RyQOmJhJ9d5WItIBFKSKiBhCJRPBzsoSfkyUm9/RFabkSfyfdw+HrmThyPRPX0vNx4VYuLtzKxecH42BlKkWvAMfKST7dbc30fQpEREREBsfBUo7Zg1ri/8L98N2pm9h4NBG37hXjgx2X8dmBG5jS2xfju3nDUs4/aYmMGX+CiYi0SC6VoGeAI3oGOOL9oa1wJ6+kchTVsbgs5BQpsPtyOnZfTgcA+DtZIDzIGX2CHNHdz4FX/YiIiIgeYG1qgul9A/BSD1/89HcK1h+Ox+3cEny46xq+jIrH5B4+mNzDh9MlEBkpFqWIiHTIxdoUozp7YlRnTyhVAi6l5lYWqc4n30N8ZiHiMxPx3+OJkEnF6OZrX3mrX6CzJSdMJyIiIgJgJpNgUg8fjOvqhd+iU7H2cDwSMgvx2YEb2HA0ARO6eeGV3n5wsTbVd1eJqA6a7cQma9asga+vL0xNTdGpUyccPXpU310ioiZOIhahg6ctXu8fiF+m9cD5+RFYO6EjxnbxRAsbU5SVq3D0RhaW7LyKiP8cQY+PDuLdbRex82IacosU+u4+ETVDzJeIyNDIpGKM6uyJyDfDsWZCR7RpYY2iMiU2HE1E74+j8P6vl5CcXaTvbhJRLTXLkVJbt27FzJkzsWbNGvTs2RPr16/HkCFDEBMTAy8vL313j4iaCRszEwxp64Yhbd0gCALiMwtwKDYTR25k4XRCNtJyS7D17xRs/TsFYhHQwdMWfYKcEB7khFYuFvruPhE1ccyXiMiQScQiDG3rhiEhrjh8PRNrouJxJukufjidjC1nkvFs+xaY0stb390koidolkWpVatW4eWXX8Yrr7wCAPj000+xd+9erF27FsuWLau2f2lpKUpLSysf5+XlAQAUCgUUCu2OXqhoT9vtGiPGQoOxUGvqcfC2M8Wk7p6Y1N0TJQol/kq6h6Nx2Th6IwtxmYU4l5yDc8k5+HT/DdiYSeEiE+PnjL+b/S1+giAgK4uxABiLBwmCAGelCAN18HnRVD+DHsZ8yTgwFhqMhVpzjENPPzv09OuMv5LuYf2RRBy+kYUd0bexI/o2fK0k/L0I5ggPYiw0BEGATZl+8yWRIAiC1l/dgJWVlcHc3Bw///wznn/++crtb7zxBqKjo3H48OFqxyxcuBCLFi2qtv2HH36Aubm5TvtLRAQA90qBazkiXMsRITZXhGJl8/4FSlQbPZxVGOOv0nq7RUVFGD9+PHJzc2Ftba319g0B8yUiMma3CoHIVDEuZIsggDkT0eOEOqgwOUh/+VKzGymVlZUFpVIJFxeXKttdXFyQnp5e4zFz5szBrFmzKh/n5eXB09MTERERWk9GFQoFIiMjMXDgQJiYmGi1bWPDWGgwFmqMg1q5UoVzN+9i99G/EBISAomkea/Yp1QqcfnyZcYCjMWDlEol7sRd0snnRcUIoKaM+ZLxYCw0GAs1xkHt/wDcSM/FD3tP8PcimCM8iLHQUCqVSL2h33yp2RWlKjw8TE8QhEcO3ZPL5ZDL5dW2m5iY6OyDXpdtGxvGQoOxUGvucTAxAbr6OSLrmoChnTybdSwAdfJtducSYwHG4kEKhQK77lzSyedFc4ot8yXjwVhoMBZqjAMQ6GqDLk7MlwDmCA9iLDQMIV9qdkUpR0dHSCSSalf5MjIyql0NfJSKOx51caVUoVCgqKgIeXl5/AFhLCoxFmqMgwZjocFYaDAWGrqMRcXv/6Y8AwLzJePBWGgwFmqMgwZjocFYaDAWGoaQLzW7opRMJkOnTp0QGRlZZY6EyMhIDB8+vFZt5OfnAwA8PT110kciIiIyfPn5+bCxsdF3N3SC+RIRERFpw5PypWZXlAKAWbNmYeLEiejcuTPCwsLw1VdfITk5GVOnTq3V8S1atEBKSgqsrKy0Plt/xfwLKSkpTXby1NpiLDQYCzXGQYOx0GAsNBgLDV3GQhAE5Ofno0WLFlpt19AwXzIOjIUGY6HGOGgwFhqMhQZjoWEI+VKzLEqNGTMG2dnZWLx4MdLS0hASEoJdu3bB29u7VseLxWJ4eHjotI/W1tbN/gekAmOhwVioMQ4ajIUGY6HBWGjoKhZNdYTUg5gvGRfGQoOxUGMcNBgLDcZCg7HQ0Ge+1CyLUgAwffp0TJ8+Xd/dICIiIjJYzJeIiIhIl8T67gARERERERERETU/LEoZGLlcjgULFtS4pHJzw1hoMBZqjIMGY6HBWGgwFhqMRdPG/18NxkKDsVBjHDQYCw3GQoOx0DCEWIiEpryeMRERERERERERGSSOlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioiIiIiIiIiIGh2LUkRERERERERE1OhYlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioh0bvPmzRCJREhKStJbHyZPngxLS8sn7te3b1/07dtX9x2qYz+KioqwcOFCHDp0qF7tVfwf/P3339rpIBERETUq5lPaU1P/RCIRFi5cqJf+EDVnUn13gIiIqluzZk2Vx0VFRVi0aBEAGHSSR0REREREVFssShERGaDWrVvruwtERERERqGoqAjm5ub67gYR1QNv3yMig5OZmYnp06ejdevWsLS0hLOzM5566ikcPXq0yn5JSUkQiURYuXIlVq1aBV9fX1haWiIsLAynTp164uscP34cjo6OePrpp1FYWPjI/crKyrBkyRIEBwdDLpfDyckJL730EjIzM+t0XgsXLoRIJML58+cxYsQIWFtbw8bGBi+88EK1th4cVp6UlAQnJycAwKJFiyASiSASiTB58uTK/a9du4Zx48bBxcUFcrkcXl5eePHFF1FaWlql3fz8fEybNg2Ojo5wcHDAiBEjcPv27TqdBxERERm+pp5PnTt3Dv/4xz9gZ2cHf39/AEBJSQnmzJkDX19fyGQyuLu7Y8aMGcjJyanTaxBR42FRiogMzt27dwEACxYswM6dO7Fp0yb4+fmhb9++Nc6p9OWXXyIyMhKffvopvv/+exQWFmLo0KHIzc195Gv89NNP6N+/P0aPHo3ffvsNFhYWNe6nUqkwfPhwfPTRRxg/fjx27tyJjz76CJGRkejbty+Ki4vrfH7PP/88AgICsG3bNixcuBA7duzAoEGDoFAoatzfzc0Ne/bsAQC8/PLLOHnyJE6ePIl58+YBAC5cuIAuXbrg1KlTWLx4MXbv3o1ly5ahtLQUZWVlVdp65ZVXYGJigh9++AHLly/HoUOH8MILL9T5HIiIiMiwNfV8asSIEQgICMDPP/+MdevWQRAEPPfcc1i5ciUmTpyInTt3YtasWfjmm2/w1FNPVbtQR0SGgbfvEZHBadmyZZU5lZRKJQYNGoSkpCR8/vnn1eZUsrKywp9//gmJRAIAaNGiBbp27Yrdu3dj7Nix1dr/+OOPMXfuXHz44Yd45513HtuXn376CXv27MEvv/yCESNGVG5v3749unTpgs2bN2PatGl1Or8RI0Zg+fLlAICIiAi4uLhgwoQJ+OmnnzBhwoRq+8vlcnTq1AkA4OHhge7du1d5ftasWZBKpThz5kzliCoANbY1ePBgfP7555WP7969i3feeQfp6elwdXWt03kQERGR4Wrq+dSkSZMq59sEgL1792Lv3r1Yvnw53n77bQDAwIED4enpiTFjxuDbb7/FlClT6vQaRKR7HClFRAZp3bp16NixI0xNTSGVSmFiYoIDBw7g6tWr1fYdNmxYZQIFAO3atQMA3Lx5s8p+giDgX//6FxYsWIAffvjhiQkUAPz555+wtbXFM888g/Ly8sqvDh06wNXVtV6r4T1cLBo9ejSkUimioqLq3FZRUREOHz6M0aNHVylIPcqzzz5b5fGjYkVERETGrynnUyNHjqzy+ODBgwBQZXoDABg1ahQsLCxw4MCBOr8GEekei1JEZHBWrVqFadOmoVu3bvjll19w6tQp/PXXXxg8eHCNw7sdHByqPJbL5QBQbd+ysjJs3boVbdq0wZAhQ2rVlzt37iAnJwcymQwmJiZVvtLT05GVlVXn83t4RJJUKoWDgwOys7Pr3Na9e/egVCrh4eFRq/1rGysiIiIybk09n3Jzc6vyODs7G1KptNpFOpFIBFdX13rlWUSke7x9j4gMznfffYe+ffti7dq1Vbbn5+c3qF25XI6oqCgMGjQIAwYMwJ49e2BnZ/fYYyomBK+Y0+lhVlZWde5Heno63N3dKx+Xl5cjOzu7WjJYG/b29pBIJLh161adjyUiIqKmq6nnUyKRqMpjBwcHlJeXIzMzs0phShAEpKeno0uXLnV+DSLSPY6UIiKDIxKJKq/OVbh48SJOnjzZ4LZDQ0Nx+PBh3Lp1C3379kVGRsZj93/66aeRnZ0NpVKJzp07V/tq2bJlnfvw/fffV3n8008/oby8vNrcDg961NVKMzMzhIeH4+eff67XVUYiIiJqmpp6PvWw/v37A1AX4x70yy+/oLCwsPJ5IjIsHClFRAbn6aefxr///W8sWLAA4eHhiI2NxeLFi+Hr64vy8vIGt9+qVSscPXoUAwYMQJ8+fbB///5H3v42duxYfP/99xg6dCjeeOMNdO3aFSYmJrh16xaioqIwfPhwPP/883V6/e3bt0MqlWLgwIG4cuUK5s2bh/bt22P06NGPPMbKygre3t747bff0L9/f9jb28PR0RE+Pj5YtWoVevXqhW7duuG9995DQEAA7ty5g99//x3r16+v19VHIiIiMm5NPZ962MCBAzFo0CC8++67yMvLQ8+ePXHx4kUsWLAAoaGhmDhxYoPaJyLd4EgpIjI4c+fOxVtvvYWNGzdi2LBh+Prrr7Fu3Tr06tVLa6/h5+eHo0ePQiQSoXfv3khISKhxP4lEgt9//x3vv/8+tm/fjueffx7PPfccPvroI5iamqJt27Z1fu3t27fj2rVrGDFiBObPn49nnnkG+/btg0wme+xxGzduhLm5OZ599ll06dIFCxcuBKBeuebMmTPo1KkT5syZg8GDB+Pdd9+FXC5/YptERETUNDX1fOphIpEIO3bswKxZs7Bp0yYMHToUK1euxMSJE3Hw4MFqo8aIyDCIBEEQ9N0JIqLmYOHChVi0aBEyMzPh6Oio7+4QERERERHpFUdKERERERERERFRo+OcUkTUaARBgFKpfOw+Eomk2moqhk6lUkGlUj12H6mUH7dERETUcMyniKgp4UgpImo033zzDUxMTB77dfjwYX13s84WL178xPNKSkrCwoULIQgCb90jIiKiemvu+RQRNS2cU4qIGk12djYSExMfu0/Lli2NbrW427dv4/bt24/dp127dpx0nIiIiBqM+RTzKaKmhEUpIiIiIiIiIiJqdLwptx5UKhVu374NKysro7tXm4iIiBpGEATk5+ejRYsWEIs5E8KjMF8iIiJqvmqbLzXbotSaNWuwYsUKpKWloU2bNvj000/Ru3fvWh17+/ZteHp66riHREREZMhSUlLg4eGh727oFPMlIiIiaogn5UvNsii1detWzJw5E2vWrEHPnj2xfv16DBkyBDExMfDy8nri8RX3Z6ekpMDa2lqrfVMoFNi3bx8iIiJgYmKi1baNDWOhwVioMQ4ajIUGY6HBWGjoMhZ5eXnw9PQ0uvla6or5knFgLDQYCzXGQYOx0GAsNBgLDUPIl5plUWrVqlV4+eWX8corrwAAPv30U+zduxdr167FsmXLqu1fWlqK0tLSysf5+fkAADMzM5iZmWm1b1KpFObm5jAzM2v2PyCMhQZjodbc45BfosDl23m4eCsPF2/l4HqKFbb8EAORuHnfFiOoBOTmMhYAY/EgQSXAS2KB4Tr4vFAoFADQ5G9JY75kHBgLDcZCrTnHoaC0HAmZhYjPLERCViFu3MlHfCp/LwLMER7EWGgIKgEusNRrvtTsJjovKyuDubk5fv75Zzz//POV29944w1ER0fXuHzqwoULsWjRomrbf/jhB5ibm+u0v0TUPJUpgdQiILlAVPmVUdK8f2kS1VUPZxXG+Ku03m5RURHGjx+P3NxcrY8AMhTMl4jIUAkCkK8A7hSLkF4MZNz/906xCLllzJWI6irUQYXJQfrLl5rdSKmsrCwolUq4uLhU2e7i4oL09PQaj5kzZw5mzZpV+bhiGFpERIROhqNHRkZi4MCBze7KxsMYCw3GQq2pxqFcqcL1jAJcSs3DpdRcXLyVhxsZBShXVb9m4GFrirbuNmjtZomclOsI7dABUolED702HOVKJaKjo9GBsWAsHlCuVCL56nmdfF7k5eVptT1DxHzJeDAWGoyFWlOJg1Il4Na9YsRlFlSOfIrPLERCZiHySsofeZyjpQz+Thbwd7KAt50ZMpKuMV8Cc4QHMRYa5UolEmP0my81u6JUhYeHkAmC8MhhZXK5HHK5vNp2ExMTnX3Q67JtY8NYaDAWasYcB5VKQFJ2IS7eysWFWzm4eCsXl1NzUVpe/eqEo6UM7Txs0c7DBu3v/+tgqf4sUigU2LUrFoNC3Iw2FtqiUCigTD7PWICxeJBCocCu5PM6+bxoTrFlvmQ8GAsNxkLNWOJQolAiPrMAcRnq4lN8hvr7xKxClClrHr0hFgGe9uYIcLJEgLMl/J0s4e9siQAnS9iYa85ZoVBgV95V/l4Ec4QHMRYahpAvNbuilKOjIyQSSbWrfBkZGdWuBhIRNYQgCEjLLcHFWzm4cCsXF+8XofJruLpnJZeirYcN2nnYor2HDdp52qKFjWmTn7PmUZRKZeV96E+iUCgglUpRUlICpVKp454ZNsZCoyGxMDExgaSZXzllvkRE2navsAxxFcWnjILK71NzivGoCWXkUjH87heeApws4e9sgQBnS/g4WMDUpHl/TgPMl+qLsdAwhHyp2RWlZDIZOnXqhMjIyCpzJERGRmL48OF67BkRGbu7hWXqAlRKbmUhKqugtNp+cqkYbVpYqwtQnupClK+DBcTNfKJFQF3IS09PR05OTp2OcXV1RUpKSrMt4lVgLDQaGgtbW1u4uro22zgyXyKi+lCpBNzOLUZcxkMjnzILcLew7JHH2ZqbVBn1FOCs/mphawYJ86NqmC81DGOhYQj5UrMrSgHArFmzMHHiRHTu3BlhYWH46quvkJycjKlTp+q7a0RkJApKy3E5NbfKKKiUu8XV9pOIRQhysVKPfrpfhApysYKJRKyHXhu+igTL2dkZ5ubmtfoFp1KpUFBQAEtLS4jFzTuujIVGfWMhCAKKioqQkZEBAHBzc9NVFw0e8yUiepSychWSsgurjXpKyCxEseLRoy3cbc0qb7Pzd7aoLETZW8iafXGgLpgvNQxjoWEI+VKzLEqNGTMG2dnZWLx4MdLS0hASEoJdu3bB29tb310jIgNUWq7E1bT8KqOg4jILahxq7udogXYPFKBau9nATMbh5bWhVCorEywHB4daH6dSqVBWVgZTU1MmFoxFpYbEwszMDID6VjVnZ+dmeysf8yUiyitRVM7xFJ95vwiVWYDku0VQ1rAgCwCYSETwcbCoHO1UMfLJz8kC5rJm+eenVjFfajjGQsMQ8qVm+6kwffp0TJ8+Xd/dICIDo1QJiMsouD8JuXoOqKtpeVAoqydeLWxM1RORe6onIg9xt4GNWfOeLLEhKuZE4NLxZAgq3ocKhaLZFqUA5ktEzYEgCMjIL33glruCyu8z8qtPQ1DBUi6tcdSTl705pBwRrjPMl8iQaCNfarZFKSIiQRCQfLdIfftdyv2V8G7noqis+rBzO3OTyknI23vaoq2HDZytTPXQ66aPw/fJEPB9SERNTblSheS7ReqCU2YB4jMKEZdZgISMAuSXVl+EpYKzlbzaqKcAZ0s4W8n5WalHjD0ZAm28D1mUIqJm405eCS7cLz5duJWDS6m5yCmqvmKJhUyCEHd18amdh3oUlIedGX/5ExERkcFTqQTcKgR+u5CGm3c1k44nZRfWOPIbAMQiwNvBAv4PjXryd7aEtSlHgROR7rAoRURNUm6RAhdT7xegUnJw4VYO7uRVH4Iuk4jRqoW1ZiJyDxv4OVlypRei+xYuXIi1a9ciIyMDv/76K5577jl9d4mIiB7hdEI2Fv1xBTFpUuDipWrPm5qIK0c7PTjqydvBHHJp871VmaihmC/VH4tSRGT0isrKceV2XuUoqIu3cpCUXVRtP7EICHS2Uo9+8rRFew9btHS1gkzKeQ+o/p40gm7SpEnYvHkzoqKisHjxYly4cAElJSVwd3dHjx49sHHjRkilUhw6dAj9+vXDvXv3YGtrW/m44jWsrKzg5+eHgQMH4s0333zsKidJSUnw9/evfGxtbY1WrVph7ty5eOaZZ2p9blevXsWiRYvw66+/onv37rCzs6v1sURE1HhS7hbho93XsPNSGgBAJhbQztMOgS7W8HfSTDrewsYMYl54Iz1gvkSPwqIUERmVchVwOTUPV9ILKiciv34nHzUtAOPtYF45+qmdhy1C3K256gtpXVpaWuX3W7duxfz58xEbG1u5zczMDFeuXMGQIUPw+uuvY/Xq1TAzM8ONGzewbds2qFSqx7YfGxsLa2tr5OXl4dy5c1i+fDk2btyIQ4cOoW3bto89dv/+/WjTpg1ycnKwZs0ajBw5EufOnUNISEitzi0+Ph4AMHz48AbdvqpQKGBiwts/iIi0rbC0HOsOx2P9kQSUlasgFgGjO3ugrZCE0cO78rOXDAbzpSdrrvkShwcQkVEoUSjx753X8O4ZCZ5fdwof7LiMn/6+hWvp6oKUi7UcA1u7YHZEEL79Z1dEzx+Iw2/3w+pxoXiltx+6+tqzIEU64erqWvllY2MDkUhUbVtkZCTc3NywfPlyhISEwN/fH4MHD8bXX38NmUz22PadnZ3h6uqKoKAgjB07FsePH4eTkxOmTZv2xL45ODjA1dUVwcHBWLp0KRQKBaKioiqfT01NxZgxY2BnZwcHBwcMHz4cSUlJANTD0CuuEorF4ipJ1qZNm9CqVSuYmpoiODgYa9asqXwuKSkJIpEIP/30E/r27QtTU1N89913tT5u+/bt6NevH8zNzdG+fXucPHmyyjkdP34c4eHhMDc3h52dHQYNGoR79+4BUC9esHz5cvj5+cHCwgK9evXCtm3bKo+9d+8eJkyYACcnJ5iZmSEwMBCbNm16YhyJiAyNSiVg+7lbeOqTQ1h9MA5l5SqE+Tlg5+u98e9nW8Oy+f1dSwaO+RLzpUfhX2hEZPBu3MnHaz+ex7X0fAAi2JhJ74+Asq28Fc/FmivhNUWCIKBYUX01xAepVCoUlykhLSuHWKy9ay1mJhKtTW7v6uqKtLQ0HDlyBH369GlYv8zMMHXqVLz55pvIyMiAs7PzE49RKBTYsGEDAFRegSsqKkK/fv3Qu3dvHDlyBFKpFEuWLMHgwYNx8eJFzJ49Gz4+PnjppZeqXN3csGEDFixYgC+++AKhoaE4f/48pkyZAgsLC0yaNKlyv3fffReffPIJNm3aBLlcXuvj5s6di5UrVyIwMBBz587FuHHjEBcXB6lUiujoaPTv3x///Oc/8fnnn0MqlSIqKgpKpfo98sEHH2D79u1Yu3Yt/P39sW/fPrz44otwcXFBeHg45s2bh5iYGOzevRuOjo6Ii4tDcXFxg/4/iIga27nke1j8RwyiU3IAAJ72Zpg7tBUGtXGFSCSCQlF9ERdq2pgv1dAv5ktGky+xKEVEBksQBPxwJhmL/4hBabkKDhYyjPQsxuzxA594tYSahmKFEq3n79XLa8csHqS10XWjRo3C3r17ER4eDldXV3Tv3h39+/fHiy++CGtr6zq3FxwcDEB9texxSVaPHj0gFotRXFwMlUoFHx8fjB49GgCwZcsWiMVifP3115XJ5KZNmyrnZ4iIiICtrS0AdZJY4d///jc++eQTjBgxAgDg6+uLmJgYrF+/vkqyNHPmzMp96nLc7NmzMWzYMADAokWL0KZNG8TFxSE4OBjLly9H586dq1wxbNOmDQCgsLAQq1atwsGDBxEWFgaVSoXx48fj7NmzWL9+PcLDw5GcnIzQ0FB07twZAODj41OHqBMR6VdabjE+3n0NO6JvA1CvFjzjqQD8s6cvTE04SXlzxnypZsyXjCNfYlGKiAxSTlEZ3vvlEvZcSQcAhAc54aPnW+PMkQNauxpD1FgkEgk2bdqEJUuW4ODBgzh16hSWLl2Kjz/+GGfOnHnsJJw1EQT1JGpP+lnYunUrgoODcf36dcycORPr1q2Dvb09AODs2bOIi4uDlZVVlWNKSkoq50Z4WGZmJlJSUvDyyy9jypQpldvLy8thY2NTZd+KRKaux7Vr167y+4q4ZGRkIDg4GNHR0Rg1alSNfYuJiUFJSQkGDhxYZXtZWRlCQ0MBANOmTaucJyIiIgLPPfccevToUWN7RESGokShxFdHErD2UHzlaJh/dPLAO4NawpkjxakJYb7UPPMlFqWIyOCcTsjGzK3RSMstgYlEhHcHB+OfPX2hVJbru2vUyMxMJIhZPOix+6hUKuTn5cPK2krrw9G1zd3dHRMnTsTEiROxZMkSBAUFYd26dVi0aFGd2rl69SqAJ1+58vT0RGBgIAIDA2FpaYmRI0ciJiYGzs7OUKlU6NSpE77//vtqxzk5OdXYXsUkoxs2bEC3bt2qPCeRVI2XhYVFvY57cILPiiSy4ngzM7NHnmvFPjt37oS7uztUKhUKCgpgaWlZedyQIUNw8+ZN7Ny5E/v370f//v0xY8YMrFy58pHtEhHpiyAI+PNiGj7afQ2pOepbZzp522HBM63RzsNWv50jg8J8qWbMlx7dN0PKl1iUIiKDUa5U4fODcfji4A2oBMDX0QKrx4UixF19ZUD5+FvlqQkSiURPHBKuUqlQLpPAXCbVapKla3Z2dnBzc0NhYWGdjisuLsZXX32FPn36PDIZqkl4eDhCQkKwdOlSfPbZZ+jYsSO2bt0KZ2fnWg+Jd3Fxgbu7OxISEjBhwoRav3Z9j3tYu3btcODAgRqT0tatW0MulyM5ORnh4eFQqVTIy8uDtbV1lfeFk5MTJk+ejMmTJ6N37954++23WZQiIoNzOTUXi/64gr+S1BMTu9mYYs7QVnimnRtHjFM1zJeqY75kPPkSi1JEZBBu3SvCzC3R+PumOvka1ckDC59tAws5P6bI+K1fvx7R0dF4/vnn4e/vj5KSEnz77be4cuUKVq9e/dhjMzIyUFJSgvz8fJw9exbLly9HVlYWtm/fXud+vPXWWxg1ahTeeecdTJgwAStWrMDw4cOxePFieHh4IDk5Gdu3b8fbb78NDw+PGttYuHAhXn/9dVhbW2PIkCEoLS3F33//jXv37mHWrFmPfO36HvegOXPmoG3btpg+fTqmTp0KmUyGqKgojBo1Co6Ojpg9ezbefPNNqFQq9OjRA2lpabh48SKsrKwwadIkzJ8/H506dUKbNm1QWlqKP//8E61atapzHImIdCUjvwQr98bi57O3IAiAqYkYU8P98a8+/jCTcd4oatqYLzXPfIl/7RGR3u28mIb3tl9Efkk5rORSLB3RFs+2b6HvbhFpTdeuXXHs2DFMnToVt2/fhqWlJdq0aYMdO3YgPDz8sce2bNkSIpEIlpaW8PPzQ0REBGbNmlVlMs3aevrpp+Hj44OlS5dizZo1OHLkCN59912MGDEC+fn5cHd3R//+/R97JfCVV16Bubk5VqxYgXfeeQcWFhZo27YtZs6c+djXru9xDwoKCsK+ffvw/vvvo2vXrjAzM0O3bt0wbtw4AOrJQZ2dnbFs2TIkJCTAxsYGHTt2xNy5cwEAMpkMc+bMQVJSEszMzNC7d29s2bKl1q9PRKQrpeVKbDqehC8OxqGgVD1dwfAOLfDu4GC0sH30rThETQnzpeaZL4mEitm/tODBWeNra926dbVantGQ5OXlwcbGBrm5ufVaBeBxFAoFdu3ahaFDh1a5T7Q5Yiw0mmosisrKsfiPGGz5KwUAEOpli8/HhsLT3rzG/ZtqHOqjKcaipKQEiYmJ8PX1halp7SdufdSw4+aIsdBoaCwe935saB7AfKnhmuJnYH0xFhrGGAtBELAv5g4+3HUVN7OLAADtPGyw4JnW6ORtX682jTEOutIUY8F8qeEYCw1DyJe0OlJqx44dGD169GMn1nrQDz/8gIKCAqNLsoio4WJu5+G1H88hPrMQIhEwo28A3hgQCBNJ8/7FQERNH/MlIgKAa+l5+PefMTgelw0AcLaS453BwRgR6g6xmPNGEVHzoPXb9z7//PNaJ03btm3T9ssTkYETBAGbTyRh2a5rKFOq4GItx3/GdEAPf0d9d42IqNEwXyJqvu4WlmFVZCx+OJ0MlQDIpGJM6e2L6X0DOJcmETU7Wv3Ui4qKgr197YeZ7t69G+7u7trsAhEZsOyCUry97SIOXssAAAxo5YLl/2gHewuZnntGRNR4mC8RNU8KpQrfnryJz/ZfR16Jet6oISGueH9oq0dOXUBE1NRptSj1pMnHHtarVy9tvjwRGbDjcVl4c2s0MvJLIZOK8cGwVpjY3ZvLGhNRs8N8iaj5iYrNwL//jEFCpnpZ+1Zu1pj/dGuE+TvouWdERPql8/GhGRkZyMjIgEqlqrK9Xbt2un5pIjIACqUKn+y7jvVH4iEIQKCzJVaPD0Wwq3YnvaWmQ4vrbxDVW2O/D5kvETVNcRkFWLIzBodiMwEADhYyvBXREmO6eELCeaOoAZgvkSHQxvtQZ0Wps2fPYtKkSbh69WplR0UiEQRBgEgkglKp1NVLE5GBuJldiNd/PI8Lt3IBABO6eeGDYa1hJpPouWdkiCpWxSkqKqr1BNBEulJUpF4FS9erNTFfImqacosU+PTAdfzv5E2UqwSYSESY3MMHr/UPhLVp01gFjvSD+RIZEm3kSzorSr300ksICgrCxo0b4eLiwlt0iJqZHedT8cGOyygoLYeNmQk+HtkWg0Pc9N0tMmASiQS2trbIyFDPOWZubl6r3x0qlQplZWUoKSnhsr6MRaX6xkIQBBQVFSEjIwO2traQSHRbRGe+RNS0lCtV+PGvFKzaF4t7RQoAwIBWzpg7rDV8HS303DtqCpgvNRxjoWEI+ZLOilKJiYnYvn07AgICdPUSRGSACkrLMX/HZWw/nwoA6Oprj0/HdEALW17JoSdzdXUFgMpEqzYEQUBxcTHMzMya/R/0jIVGQ2Nha2tb+X7UJeZLRE3H8bgsLP4jBrF38gGopyyY93Rr9Aly0nPPqKlhvtQwjIWGIeRLOitK9e/fHxcuXGCSRdSMXEjJwRtbziMpuwhiETBzQBBm9AvgnAlUayKRCG5ubnB2doZCoajVMQqFAkeOHEGfPn10fquVoWMsNBoSCxMTE52PkKrAfInI+N3MLsTSnVexL+YOAMDGzASzBgZhQjcvSCXNexQG6QbzpYZhLDQMIV/SWVHq66+/xqRJk3D58mWEhIRUO8Fnn31WVy9NRI1MpRKw4WgCVuyNRblKgLutGT4b2wGdfWq/5DnRgyQSSa1/yUkkEpSXl8PU1LTZJxaMhYaxxIL5EpHxyi9R4IuoOGw6loQypQoSsQgvdPPCzAFBsLOQ6bt71AwwX6ofxkLDEGKhs6LUiRMncOzYMezevbvac5y4k6jpyMgrwVs/X8DRG1kAgGFt3fDh821hY968P+CJiGqD+RKR8VGqBGw7m4IVe68jq6AUANA70BHznm6NIBcrPfeOiMi46Gw86euvv46JEyciLS0NKpWqyhcTLKKmIepaBoZ8dhRHb2TBzESCj0a0xRfjQ1mQIiKqJeZLRMblTOJdDP/yGN795RKyCkrh62iBjZM649t/dmVBioioHnQ2Uio7OxtvvvkmXFxcdPUSRKQnpeVKfLw7Fv89nggAaOVmjdXjQhHgbKnnnhERGRfmS0TG4da9IizbfQ07L6YBAKzkUrwxIBAvhvlAJuW8UURE9aWzotSIESMQFRUFf39/Xb0EEelBXEYBXv/xPGLS8gAAL/X0wbuDg2Fq0jiTAhMRNSXMl4gMW1FZOdYdisf6IwkoLVdBJALGdvHCWxFBcLSU67t7RERGT2dFqaCgIMyZMwfHjh1D27Ztq02a9frrr+vqpYlIBwRBwE9/p2Dh7zEoVihhbyHDylHt8FQwr+4TEdUX8yUiw6RSCfjtQio+3h2L9LwSAEB3P3vMf7oNWrew1nPviIiaDp2uvmdpaYnDhw/j8OHDVZ4TiURMsoiMSG6xAu//eqlyyHqvAEesGt0eztameu4ZEZFxY75EZHiiU3Kw6I8rOJ+cAwDwsDPD3KGtMDjEFSKRSL+dIyJqYnRWlEpMTNRV04+0dOlS7Ny5E9HR0ZDJZMjJyam2T3JyMmbMmIGDBw/CzMwM48ePx8qVKyGTcdlWopqcvXkXr/8YjdScYkjFIswe1BL/19sPYjGTMiKihtJHvkRENUvPLcHyPdew/XwqAMBcJsGMfgF4uZcvpykgItIRnRWl9KGsrAyjRo1CWFgYNm7cWO15pVKJYcOGwcnJCceOHUN2djYmTZoEQRCwevVqPfSYyHApVQK+jIrDZwduQKkS4O1gjs/GhqKDp62+u0ZERESkNSUKJb4+moAvo+JRrFCvejmyowfeGdwSLhwVTkSkU1ovSi1evLhW+82fP1/bL41FixYBADZv3lzj8/v27UNMTAxSUlLQokULAMAnn3yCyZMnY+nSpbC2rvn+8NLSUpSWllY+zstTT/CsUCigUCi0eAaobE/b7RojxkKjsWORlluC2dsu4UzSPQDA8PZuWPB0K1iZSvX6/8H3hAZjocFYaDAWGrqMhTba1Ge+RERqgiBg16V0fLjrKlJzigEAnbztMP/p1mjPi3BERI1C60WpX3/99ZHPiUQixMbGoqSkRC9J1smTJxESElJZkAKAQYMGobS0FGfPnkW/fv1qPG7ZsmWVBa8H7du3D+bm5jrpa2RkpE7aNUaMhUZjxOLiXRF+jBejqFwEuVjAKD8Vupin4OjBFJ2/dm3xPaHBWGgwFhqMhYYuYlFUVNTgNgw5XyJqDi6n5mLxHzE4k3QXAOBmY4r3hgTj2fYtOG8UEVEj0npR6vz58zVuj46OxnvvvYfLly9jypQp2n7ZWklPT4eLS9WVwuzs7CCTyZCenv7I4+bMmYNZs2ZVPs7Ly4OnpyciIiIeObqqvhQKBSIjIzFw4MBqK/A0N4yFRmPEokShxIe7Y/Fj7C0AQDt3a6wa1Q7eDropvNYH3xMajIUGY6HBWGjoMhYVI6YbwpDzJaKmLDO/FCv3xuKnsykQBMDURIx/9fHH1HB/mMk4bxQRUWPT+ZxSiYmJmDdvHrZu3YoRI0bgypUrCAwMrPXxCxcurHGU0oP++usvdO7cuVbt1XTlQxCEx14RkcvlkMvl1babmJjoLOnXZdvGhrHQ0FUsYtPz8dqP53D9TgEA4F/hfnhrYEvIpGKtv5Y28D2hwVhoMBYajIWGLmKhi9g2NF8ioscrLVdi8/EkrD4Yh4LScgDAs+1b4L0hwWhha6bn3hERNV86K0plZWVh0aJF+Oqrr9CrVy+cOHECXbp0qXM7r776KsaOHfvYfXx8fGrVlqurK06fPl1l271796BQKKqNoCJqDgRBwHenbmLJzqsoLVfByUqOVaPbo3egk767RkTULGgrXyKimgmCgMiYO1i66ypuZqtvvW3rboMFz7RGZx97PfeOiIi0XpQqLCzEypUrsWrVKgQEBOCPP/5AREREvdtzdHSEo6OjVvoWFhaGpUuXIi0tDW5ubgDU80LJ5XJ06tRJK69BZCzuFZbhnV8uIjLmDgCgX0snrBjVHo6W1UcFEhGRdmk7XyKi6mLT8/HvP2NwLC4LAOBkJcc7g1piZEcPiMWcN4qIyBBovSjl7++P/Px8vPbaaxg3bhxEIhEuXrxYbb927dpp+6WRnJyMu3fvIjk5GUqlEtHR0QCAgIAAWFpaIiIiAq1bt8bEiROxYsUK3L17F7Nnz8aUKVO0PjcUkSE7GZ+NN7dGIz2vBDKJGO8NCcZLPX04sScRUSPRZ75E1NTdKyrD6qhYfH/6JlQCIJOK8UovX0zvFwBLuc5nLyEiojrQ+qdyRkYGAGD58uVYsWIFBEGofE4kElXO36RUKrX90pg/fz6++eabysehoaEAgKioKPTt2xcSiQQ7d+7E9OnT0bNnT5iZmWH8+PFYuXKl1vtCZIgUShU+238DXx6KgyAAfk4WWD0uFG1a2Oi7a0REzYo+8yWipkqhVOFwmgjzPz2G3GL1vFFDQlzx/tBW8LQ3nIVbiIhIQ+tFqcTERG03WWubN2/G5s2bH7uPl5cX/vzzz8bpEJEBSblbhDe2nMe55BwAwJjOnljwbGuYy3jFkIiosekzXyJqShRKFS6k5OB4XDZ+i76FhCwJgHIEu1phwTNtEObvoO8uEhHRY2j1r9GLFy8iJCQEYnHtVuy6cuUKWrZsCamUfxQT6dIfF27j/e2XkF9aDitTKZaNaIun27XQd7eIiJol5ktE9ScIAq7fKcCxuCwcj8vC6YRsFJZpRhRaSAW8N7QNxnf3gYTzRhERGTytZjehoaFIT0+Hk1PtVu4KCwtDdHQ0/Pz8tNkNIrqvsLQcC3+/gp/P3gIAdPK2w6djOnAIOxGRHjFfIqqb1JxiHL9fhDoel42sgtIqz9uZm6BHgCO6+9hBmnYR/+jiwYIUEZGR0GpRShAEzJs3D+bmtfuDt6ysTJsvT0QPuJyai9d/PI+ErEKIRcCrTwXi9acCIJXU7so8ERHpBvMlosfLKSrDyfhsHIvLwon4bCRmFVZ53sxEgq6+9ugZ4ICeAY5o5WoNsVgEhUKBXbuqLxhARESGS6tFqT59+iA2NrbW+4eFhcHMzEybXSBq9lQqAf89noiP91yDQinAzcYU/xnTAd39OKcCEZEhYL5EVFWJQom/ku7ieFw2jsdl4fLtXDww9z8kYhHae9igV4AjegQ4ItTLFnKpRH8dJiIirdFqUerQoUPabI6I6iiroBSzf76AQ7GZAIBBbVzw8ch2sDWX6blnRERUgfkSNXdKlYBLqbmVt+T9ffMeyspVVfYJcrFED39H9ApwRDc/e1iZmuipt0REpEucMZOoiThyPROzfrqArIJSyKVizHu6NSZ084JIxDkViIiISH8EQUB8ZiFOxGfh2I0snErIRl5JeZV93GxM0TPAUX1Lnr8jnK1N9dRbIiJqTCxKERm5snIVVu6LxVdHEgAALV2ssHp8KIJcrPTcMyIiMkRLly7Fzp07ER0dDZlMhpycnGr7JCcnY8aMGTh48CDMzMwwfvx4rFy5EjIZR95S7dzJK8HxuCz1vFBx2UjPK6nyvLWpFGH+DpW35Pk5WvBCGhFRM8SiFJERS8wqxOs/nsel1FwAwIth3nh/aCuYmnCeBSIiqllZWRlGjRqFsLAwbNy4sdrzSqUSw4YNg5OTE44dO4bs7GxMmjQJgiBg9erVeugxGYO8EgVOJ9ytLETFZRRUeV4mFaOLj516NJS/I0LcbbhCHhERsShFZIwEQcD2c6mY99tlFJUpYWtuguUj2yGijau+u0ZERAZu0aJFAIDNmzfX+Py+ffsQExODlJQUtGjRAgDwySefYPLkyVi6dCmsra1rPK60tBSlpaWVj/Py8gAACoUCCoVCi2eAyva03a4x0lcsSstViE7JwfH4bJxMuItLqXlQqjSzk4tEQEgLa/Twc0APf3t09LKtctFMpSyHSqndPvF9ocY4aDAWGoyFBmOhoctY1LZNFqWIjEx+iQIf7LiM36JvAwC6+9njP2M6wM2GKzMREVHDnTx5EiEhIZUFKQAYNGgQSktLcfbsWfTr16/G45YtW1ZZ8HrQvn37YG5urpO+RkZG6qRdY6TrWKgEILUQuJ4rwvVcEeLzRVCoqo50cjYVEGSj/gqwFmBhchcov4ucWOBg7RecbDC+L9QYBw3GQoOx0GAsNHQRi6Kiolrtx6IUkRGJTsnBrG2XkHK3GBKxCG8OCMS0vgEc/k5ERFqTnp4OFxeXKtvs7Owgk8mQnp7+yOPmzJmDWbNmVT7Oy8uDp6cnIiIiHjm6qr4UCgUiIyMxcOBAmJg071XZdBULQRCQfK8YJ+KzcTL+Lk4l3sW9oqpXvZ0sZQi7PxKqh78D3Gz0Ozk53xdqjIMGY6HBWGgwFhq6jEXFiOknYVGKyAioVAIiU0XYc/ovlKsEeNiZ4bOxoejkbafvrhERkQFYuHBhjaOUHvTXX3+hc+fOtWqvpgmnBUF47ETUcrkccrm82nYTExOdJf26bNvYaCMWWQWlOBGfjeM3snA8Pgu37hVXed5SLkV3P3v08HdEr0BHBDpbGuTk5HxfqDEOGoyFBmOhwVho6CIWtW2PRSkiAyAIAgpKy5FbrKj8ynvg+wNX7+B0sgSAgKfbueHDEW1hbcoPUCIiUnv11VcxduzYx+7j4+NTq7ZcXV1x+vTpKtvu3bsHhUJRbQQVGbfC0nKcSdRMTn4tPb/K8yYSEUK97NArwBE9AxzQzsMWJhKxnnpLRERNEYtSRFqiUgnILy2vUkx61FfeQ9/nlZRXmRy0JjKxgEXDQzC2q7dBXpUkIiL9cXR0hKOjo1baCgsLw9KlS5GWlgY3NzcA6nmh5HI5OnXqpJXXIP1QKFW4kJKDY3FZOB6XhfPJOSh/KP9o7WaNngEO6BngiK6+9jCX8c8FIiLSHf6WIXqAUiXcLxLVrqBU+VWkQH5pOYTH15WeSCYVw8bMpNqXvbkUroXx+EdHdxakiIioQZKTk3H37l0kJydDqVQiOjoaABAQEABLS0tERESgdevWmDhxIlasWIG7d+9i9uzZmDJlitbnhiLdEgQBsXfycexGFk7EZ+N0QjYKy6oueedpb4ZeAY7o4e+IHv4OcLCsfgsmERGRrrAoRU2OQqmqOhKppLx6Qamo5mJTfml5g1/f1KR6Ycm6hkKTtakJbMyrbntwqeQq56RQYNeu+Ab3jYiIaP78+fjmm28qH4eGhgIAoqKi0LdvX0gkEuzcuRPTp09Hz549YWZmhvHjx2PlypX66jLVwa17RTgRl41jcepCVFZBaZXn7S1kCPN3UN+S5+8ILwfdrIxIRERUGyxKGZDUnGIM/+IYFKUSfBRzBBKxSP0lEkH8wL9SccVjQCIWQSwSVe5b8b3634eef3C/Bx5X7Ft928NtiTWv+VC/qrYJTT/u97dy34f6I77fx5raUinLcacYOJ+cg0KFcL/AVHNB6cGC08NXAOvDXCZ5bEGpesFJWrmfXFpzYYmIiMgQbN68GZs3b37sPl5eXvjzzz8bp0N1VKJQYvPxJFy7LcKdEzchlUggEqlzD5EIEEE9Ubv6exHEIlR+LxLdfw6AWKzZBjx4vOYYVH5f9RhUvB6geW317g9sf0w7ohpe96E2RQ+3A81+D7ZTWlaG6GwRTv0eg5MJd5GUXXUJbjMTCbr62qtHQwU4oJWrNcRctZeIiAwEi1IGRFGuQlZBGQARcnNL9N0dAyEFos/U60grubpQVFE0enRBqeqXlakJZFJO4klERGSIShRKfLTnOgAJdtyM1Xd3DIQEwC31d2IR2nvY3J+c3BGhXnbMa4iIyGCxKGVA3GxN8ceMMBw5ehRhPXpCJJZAJQhQqtRzHam/f+BLEKC6/6/medSwrerzSpVK/e8Dx6tqbBNVn3/o9SvbFlDj8TW1U9PxVfuIKu2YiFRwsDaHrfkDt7zVYgSTlakUUq4OQ0RE1ORIJWIMb++GW6mpaNGiBSASQxAECFDPoSQIgCAAqsptqPo8ANX9bcD9/R46BlWOV+cn6u0V3wv396+hnfvf44HvhfvHqFTqcxBqaAeV32v6/ah2Kvpb8b2jXIVBHbzRO9AZ3fzsYcUVeomIyEiwKGVA5FIJgl2tkGABtHW3gYlJ804o1PMo7cLQob2bfSyIiIhIzVIuxcp/tMWuXSkYOrRds88RNPlScLOPBRERGR8Wpeqh4opYXl6e1ttWKBQoKipCXl5es08sGAsNxkKNcdBgLDQYCw3GQkOXsaj4/V+RD1DNmC81DsZCg7FQYxw0GAsNxkKDsdAwhHyJRal6yM/PBwB4enrquSdERESkL/n5+bCxsdF3NwwW8yUiIiJ6Ur4kEniZr85UKhVu374NKysriETaXb0kLy8Pnp6eSElJgbW1tVbbNjaMhQZjocY4aDAWGoyFBmOhoctYCIKA/Px8tGjRAmIx5y98FOZLjYOx0GAs1BgHDcZCg7HQYCw0DCFf4kipehCLxfDw8NDpa1hbWzf7H5AKjIUGY6HGOGgwFhqMhQZjoaGrWHCE1JMxX2pcjIUGY6HGOGgwFhqMhQZjoaHPfImX94iIiIiIiIiIqNGxKEVERERERERERI2ORSkDI5fLsWDBAsjlcn13Re8YCw3GQo1x0GAsNBgLDcZCg7Fo2vj/q8FYaDAWaoyDBmOhwVhoMBYahhALTnRORERERERERESNjiOliIiIiIiIiIio0bEoRUREREREREREjY5FKSIiIiIiIiIianQsShERERERERERUaNjUYqIiIiIiIiIiBodi1I6tmbNGvj6+sLU1BSdOnXC0aNHH7v/4cOH0alTJ5iamsLPzw/r1q2rts8vv/yC1q1bQy6Xo3Xr1vj111911X2t0nYsrly5gpEjR8LHxwcikQiffvqpDnuvXdqOxYYNG9C7d2/Y2dnBzs4OAwYMwJkzZ3R5Clqj7Vhs374dnTt3hq2tLSwsLNChQwf873//0+UpaI0uPi8qbNmyBSKRCM8995yWe6192o7D5s2bIRKJqn2VlJTo8jS0QhfviZycHMyYMQNubm4wNTVFq1atsGvXLl2dgtZoOxZ9+/at8X0xbNgwXZ4GPQLzJQ3mSxrMlzSYL2kwX1JjvqTBfEnDKPMlgXRmy5YtgomJibBhwwYhJiZGeOONNwQLCwvh5s2bNe6fkJAgmJubC2+88YYQExMjbNiwQTAxMRG2bdtWuc+JEycEiUQifPjhh8LVq1eFDz/8UJBKpcKpU6ca67TqRRexOHPmjDB79mzhxx9/FFxdXYX//Oc/jXQ2DaOLWIwfP1748ssvhfPnzwtXr14VXnrpJcHGxka4detWY51WvegiFlFRUcL27duFmJgYIS4uTvj0008FiUQi7Nmzp7FOq150EYsKSUlJgru7u9C7d29h+PDhOj6ThtFFHDZt2iRYW1sLaWlpVb4MnS5iUVpaKnTu3FkYOnSocOzYMSEpKUk4evSoEB0d3VinVS+6iEV2dnaV98Ply5cFiUQibNq0qZHOiiowX9JgvqTBfEmD+ZIG8yU15ksazJc0jDVfYlFKh7p27SpMnTq1yrbg4GDhvffeq3H/d955RwgODq6y7V//+pfQvXv3ysejR48WBg8eXGWfQYMGCWPHjtVSr3VDF7F4kLe3t9EkWbqOhSAIQnl5uWBlZSV88803De+wDjVGLARBEEJDQ4UPPvigYZ3VMV3Fory8XOjZs6fw9ddfC5MmTTL4JEsXcdi0aZNgY2Oj9b7qmi5isXbtWsHPz08oKyvTfod1qDE+K/7zn/8IVlZWQkFBQcM7THXCfEmD+ZIG8yUN5ksazJfUmC9pMF/SMNZ8ibfv6UhZWRnOnj2LiIiIKtsjIiJw4sSJGo85efJktf0HDRqEv//+GwqF4rH7PKpNQ6CrWBijxopFUVERFAoF7O3ttdNxHWiMWAiCgAMHDiA2NhZ9+vTRXue1TJexWLx4MZycnPDyyy9rv+Napss4FBQUwNvbGx4eHnj66adx/vx57Z+AFukqFr///jvCwsIwY8YMuLi4ICQkBB9++CGUSqVuTkQLGutzc+PGjRg7diwsLCy003GqFeZLGsyXNJgvaTBf0mC+pMZ8SYP5koYx50ssSulIVlYWlEolXFxcqmx3cXFBenp6jcekp6fXuH95eTmysrIeu8+j2jQEuoqFMWqsWLz33ntwd3fHgAEDtNNxHdBlLHJzc2FpaQmZTIZhw4Zh9erVGDhwoPZPQkt0FYvjx49j48aN2LBhg246rmW6ikNwcDA2b96M33//HT/++CNMTU3Rs2dP3LhxQzcnogW6ikVCQgK2bdsGpVKJXbt24YMPPsAnn3yCpUuX6uZEtKAxPjfPnDmDy5cv45VXXtFex6lWmC9pMF/SYL6kwXxJg/mSGvMlDeZLGsacL0m12hpVIxKJqjwWBKHatift//D2urZpKHQRC2Oly1gsX74cP/74Iw4dOgRTU1Mt9Fa3dBELKysrREdHo6CgAAcOHMCsWbPg5+eHvn37aq/jOqDNWOTn5+OFF17Ahg0b4OjoqP3O6pC23xPdu3dH9+7dK5/v2bMnOnbsiNWrV+Pzzz/XVrd1QtuxUKlUcHZ2xldffQWJRIJOnTrh9u3bWLFiBebPn6/l3muXLj83N27ciJCQEHTt2lULPaX6YL6kwXxJg/mSBvMlDeZLasyXNJgvaRhjvsSilI44OjpCIpFUq0pmZGRUq0ZWcHV1rXF/qVQKBweHx+7zqDYNga5iYYx0HYuVK1fiww8/xP79+9GuXTvtdl7LdBkLsViMgIAAAECHDh1w9epVLFu2zGCTLF3E4sqVK0hKSsIzzzxT+bxKpQIASKVSxMbGwt/fX8tn0jCN9VkhFovRpUsXg77yp6tYuLm5wcTEBBKJpHKfVq1aIT09HWVlZZDJZFo+k4bT9fuiqKgIW7ZsweLFi7XbcaoV5ksazJc0mC9pMF/SYL6kxnxJg/mShjHnS7x9T0dkMhk6deqEyMjIKtsjIyPRo0ePGo8JCwurtv++ffvQuXNnmJiYPHafR7VpCHQVC2Oky1isWLEC//73v7Fnzx507txZ+53XssZ8XwiCgNLS0oZ3Wkd0EYvg4GBcunQJ0dHRlV/PPvss+vXrh+joaHh6eursfOqrsd4TgiAgOjoabm5u2um4DugqFj179kRcXFxlwg0A169fh5ubm0EmWIDu3xc//fQTSktL8cILL2i341QrzJc0mC9pMF/SYL6kwXxJjfmSBvMlDaPOl7Q2ZTpVU7Ek48aNG4WYmBhh5syZgoWFhZCUlCQIgiC89957wsSJEyv3r1iS8c033xRiYmKEjRs3VluS8fjx44JEIhE++ugj4erVq8JHH31kVEscazMWpaWlwvnz54Xz588Lbm5uwuzZs4Xz588LN27caPTzqwtdxOLjjz8WZDKZsG3btipLdubn5zf6+dWFLmLx4YcfCvv27RPi4+OFq1evCp988okglUqFDRs2NPr51YUuYvEwY1hNRhdxWLhwobBnzx4hPj5eOH/+vPDSSy8JUqlUOH36dKOfX13oIhbJycmCpaWl8OqrrwqxsbHCn3/+KTg7OwtLlixp9POrC13+fPTq1UsYM2ZMo50LVcd8SYP5kgbzJQ3mSxrMl9SYL2kwX9Iw1nyJRSkd+/LLLwVvb29BJpMJHTt2FA4fPlz53KRJk4Tw8PAq+x86dEgIDQ0VZDKZ4OPjI6xdu7Zamz///LPQsmVLwcTERAgODhZ++eUXXZ+GVmg7FomJiQKAal8Pt2OItB0Lb2/vGmOxYMGCRjibhtF2LObOnSsEBAQIpqamgp2dnRAWFiZs2bKlMU6lwXTxefEgY0iyBEH7cZg5c6bg5eUlyGQywcnJSYiIiBBOnDjRGKfSYLp4T5w4cULo1q2bIJfLBT8/P2Hp0qVCeXm5rk+lwXQRi9jYWAGAsG/fPl13n56A+ZIG8yUN5ksazJc0mC+pMV/SYL6kYYz5kkgQ7s9kRURERERERERE1Eg4pxQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESNjkUpIiIiIiIiIiJqdCxKERERERERERFRo2NRioiIiIiIiIiIGh2LUkRERERERERE1OhYlCIiIiIiIiIiokbHohQRERERERERETU6FqWIiIiIiIiIiKjRsShFRERERERERESN7v8B2oSEnxwaRrwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAScCAYAAABayDwuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP9f//8ft7ZzMbs83mOIdySFgUcwg5nztIEplE9SFKfYqIIZRD6aOUKPJR8hGh0lBI5ZisUpoUKTPJYZvNYYfn74/37/3+etvBZu/3e8bternsUq/X+/F6vp+vx97bHh7v1/v1tBhjjAAAAAAAAAA38ijuCQAAAAAAAOD6Q1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAAAAAABuR1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAAAAAABuR1MKAAAAAAAAbkdTCgAAAAAAAG5HUwoAAGjRokWyWCy5fj399NMuec6ff/5ZsbGxOnTokEvGd5b3339fs2fPvuqe58KFC3r00UcVEREhT09PNWrUyGVzAwAAcAWv4p4AAAC4eixcuFB16tRx2FexYkWXPNfPP/+siRMnqk2bNoqMjHTJczjD+++/r7179+qJJ564qp7njTfe0Lx58zRnzhw1btxYAQEBLp0fAACAs9GUAgAAdvXr11eTJk2KexoogL1796pUqVIaPny408Y8e/asSpUq5bTxAAAA8sPH9wAAQIEtW7ZM0dHRKl26tAICAtSpUyft2bMnR9y3336rnj17Kjg4WH5+foqKitL//vc/++OLFi3SvffeK0lq27at/aOCixYtyvf5f/nlF91///2qUKGCfH19VbVqVT344IM6f/68PWbv3r3q1auXypUrJz8/PzVq1EjvvvuuwzibN2+WxWLR0qVLNXbsWFWsWFGBgYFq3769EhIS7HFt2rTRp59+qj/++MPhI402EydOVNOmTRUcHKzAwEDdcsstevvtt2WMyTH3999/X9HR0QoICFBAQIAaNWqkt99+u0DPcymLxaIFCxbo7NmzOXJ37tw5jRkzRtWrV5ePj48qVaqkYcOG6fTp0w5jREZGqnv37lq5cqWioqLk5+eniRMnSpKOHDmioUOHqkqVKvLx8VHFihXVu3dvHTt2zH58SkqKnn76aYfneeKJJ5SWlubwPMuXL1fTpk0VFBQkf39/1ahRQw899FCe5wYAAK4fXCkFAADssrKylJmZ6bDPy8taLkydOlXjxo3ToEGDNG7cOF24cEEzZsxQq1attHPnTtWrV0+StGnTJnXu3FlNmzbVm2++qaCgIH3wwQe67777lJ6erpiYGHXr1k1Tp07Vc889p9dff1233HKLJKlmzZp5zu37779Xy5YtFRISokmTJumGG27Q0aNHtWbNGl24cEG+vr5KSEhQ8+bNFRYWpv/85z8qX768lixZopiYGB07dkzPPPOMw5jPPfecWrRooQULFiglJUXPPvusevTooX379snT01Nz587V0KFD9dtvv+mjjz7KMadDhw7pkUceUdWqVSVJ27dv1+OPP64jR45o/Pjx9rjx48dr8uTJuvvuu/XUU08pKChIe/fu1R9//CFJl32eS23btk2TJ0/Wpk2btHHjRnvujDG688479cUXX2jMmDFq1aqVfvjhB02YMEHbtm3Ttm3b5Ovrax/nu+++0759+zRu3DhVr15dpUuX1pEjR3TrrbcqIyNDzz33nBo0aKATJ05o3bp1OnXqlCpUqKD09HS1bt1af/31lz3mp59+0vjx4/Xjjz/q888/l8Vi0bZt23TffffpvvvuU2xsrPz8/PTHH3/Y5wwAAK5zBgAAXPcWLlxoJOX6lZGRYQ4fPmy8vLzM448/7nBcamqqCQ8PN3369LHvq1OnjomKijIZGRkOsd27dzcREREmKyvLGGPM8uXLjSSzadOmAs3xjjvuMGXLljV///13njF9+/Y1vr6+5vDhww77u3TpYvz9/c3p06eNMcZs2rTJSDJdu3Z1iPvf//5nJJlt27bZ93Xr1s1Uq1btsvPLysoyGRkZZtKkSaZ8+fImOzvbGGPM77//bjw9Pc0DDzyQ7/EFfR6bgQMHmtKlSzvsi4uLM5LM9OnTHfYvW7bMSDJvvfWWfV+1atWMp6enSUhIcIh96KGHjLe3t/n555/zfO5p06YZDw8Ps2vXLof9H374oZFk1q5da4wxZubMmUaSPe8AAAAX4+N7AADAbvHixdq1a5fDl5eXl9atW6fMzEw9+OCDyszMtH/5+fmpdevW2rx5syTpwIED+uWXX/TAAw9IkkNs165ddfToUYePxxVUenq6vvzyS/Xp00ehoaF5xm3cuFHt2rVTlSpVHPbHxMQoPT1d27Ztc9jfs2dPh+0GDRpIkv0KpsvZuHGj2rdvr6CgIHl6esrb21vjx4/XiRMn9Pfff0uSNmzYoKysLA0bNqxAYxaF7QqkmJgYh/333nuvSpcurS+++MJhf4MGDXTjjTc67Pvss8/Utm1b1a1bN8/n+eSTT1S/fn01atTI4XvcqVMnWSwW++vh1ltvlST16dNH//vf/3TkyJEiniEAALiW8PE9AABgV7du3VxvdG67l5CtyXApDw8Ph7inn35aTz/9dK6x//zzT6HnderUKWVlZaly5cr5xp04cUIRERE59ttWEDxx4oTD/vLlyzts2z7advbs2cvOaefOnerYsaPatGmj+fPnq3LlyvLx8dGqVas0ZcoU+xjHjx+XpMvO3RlOnDghLy+vHI07i8Wi8PDwHOefW66OHz9+2bkeO3ZMBw4ckLe3d66P277Ht99+u1atWqX//Oc/9nt/3XTTTRo7dqzuv//+wpwaAAC4BtGUAgAAlxUSEiJJ+vDDD1WtWrXLxo0ZM0Z33313rjG1a9cu9PMHBwfL09NTf/31V75x5cuX19GjR3PsT0xMdJifM3zwwQfy9vbWJ598Ij8/P/v+VatWOcTZGkR//fVXjiu4nK18+fLKzMzU8ePHHRpTxhglJSXlaCrmdjP10NDQy+Y5JCREpUqV0jvvvJPn4za9evVSr169dP78eW3fvl3Tpk1Tv379FBkZqejo6MKcHgAAuMbQlAIAAJfVqVMneXl56bffftM999yTZ1zt2rV1ww036Pvvv9fUqVPzHbMwVyWVKlVKrVu31vLlyzVlypQ8m0vt2rXTRx99pMTERPvVUZL1Y4n+/v5q1qzZZZ8rt3nmNkeLxSIvLy95enra9509e1b//e9/HeI6duwoT09PvfHGG/k2YfJ6nsJo166dpk+friVLlujJJ5+071+xYoXS0tLUrl27y47RpUsX/fe//1VCQkKeDcTu3btr6tSpKl++vKpXr16gufn6+qp169YqW7as1q1bpz179tCUAgDgOkdTCgAAXFZkZKQmTZqksWPH6vfff1fnzp1Vrlw5HTt2TDt37lTp0qU1ceJESdK8efPUpUsXderUSTExMapUqZJOnjypffv26bvvvtPy5cslSfXr15ckvfXWWypTpoz8/PxUvXr1HB+ps3n55ZfVsmVLNW3aVKNHj1atWrV07NgxrVmzRvPmzVOZMmU0YcIEffLJJ2rbtq3Gjx+v4OBgvffee/r00081ffp0BQUFFfrcb775Zq1cuVJvvPGGGjduLA8PDzVp0kTdunXTyy+/rH79+mno0KE6ceKEZs6c6bC6nS13zz33nCZPnqyzZ8/q/vvvV1BQkH7++Wf9888/9rzl9TyF0aFDB3Xq1EnPPvusUlJS1KJFC/vqe1FRURowYMBlx5g0aZI+++wz3X777Xruued088036/Tp04qLi9OoUaNUp04dPfHEE1qxYoVuv/12Pfnkk2rQoIGys7N1+PBhrV+/Xk899ZSaNm2q8ePH66+//lK7du1UuXJlnT59Wq+++qq8vb3VunXrQp0bAAC4BhX3ndYBAEDxs62+d+lqapdatWqVadu2rQkMDDS+vr6mWrVqpnfv3ubzzz93iPv+++9Nnz59TFhYmPH29jbh4eHmjjvuMG+++aZD3OzZs0316tWNp6enkWQWLlyY7/P//PPP5t577zXly5c3Pj4+pmrVqiYmJsacO3fOHvPjjz+aHj16mKCgIOPj42MaNmyYY1zb6nvLly932H/w4MEc8zh58qTp3bu3KVu2rLFYLObi8umdd94xtWvXNr6+vqZGjRpm2rRp5u233zaSzMGDBx3GXrx4sbn11luNn5+fCQgIMFFRUQV+ntzktvqeMcacPXvWPPvss6ZatWrG29vbREREmMcee8ycOnXKIa5atWqmW7duuY79559/moceesiEh4cbb29vU7FiRdOnTx9z7Ngxe8yZM2fMuHHjTO3atY2Pj48JCgoyN998s3nyySdNUlKSMcaYTz75xHTp0sVUqlTJ+Pj4mLCwMNO1a1fz1Vdf5XtuAADg+mAxxphi7IkBAAAAAADgOuRR3BMAAAAAAADA9YemFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphRQCIsWLZLFYtG3337rlPH27Nmj1q1bKygoSBaLRbNnz9batWsVGxtbqHHGjRunqlWrysvLS2XLlnXK3C51tc4LyMuVvGYBAK5nq6dsX15eXoqIiFDfvn3166+/5ohv06aN2rRpc0XPFRMTo4CAgMvGpaenKzY2Vps3by7w2LnVcc52tc4LyMuVvGZxffMq7gkA17OHHnpIaWlp+uCDD1SuXDlFRkbqhRde0Ouvv17gf0yvXr1aU6ZM0dixY9WlSxf5+vq6ZK5r1669KucF5KWwr1kAgHstXLhQderU0blz5/TNN99oypQp2rRpk3755ReVK1fOHjd37lyXzyU9PV0TJ06UpAI3wHKr466XeQF5uZLXLK5vNKWAYrR3714NGTJEXbp0KdIYkjRixAiFhYU5a2pF5op5paeny9/f3yljAQCA4lW/fn01adJEkvUfr1lZWZowYYJWrVqlQYMG2ePq1atXXFPMlzPqOFdw9rwyMjLsV7QBgLPx8T3ABX799Vf169dPYWFh8vX1Vd26dfX666/bH7ddtp6Zmak33njDfvl6TEyMPe7iy9oPHTqU6/NERkZq3LhxkqQKFSrIYrHYrwrJzs7W9OnTVadOHfn6+iosLEwPPvig/vrrrxzjvPPOO2rYsKH8/PwUHBysu+66S/v27bM/XhzzatOmjerXr68tW7aoefPm8vf310MPPSRJOn36tJ566inVqFHDPkbXrl31yy+/2I+/cOGCXnjhBfvzhIaGatCgQTp+/Hiuc75Sjz76qPz8/LR79277vuzsbLVr104VKlTQ0aNH8z3+/PnzmjRpkurWrSs/Pz+VL19ebdu21datW+0x586d05gxY1S9enX5+PioUqVKGjZsmE6fPu0wVmRkpLp3765PPvlEUVFRKlWqlOrWratPPvlEkvV1V7duXZUuXVq33XZbjo+h2j7i8NNPP6ldu3YqXbq0QkNDNXz4cKWnpzvEFnZOcXFxuuWWW1SqVCnVqVNH77zzTo5cJCUl6ZFHHlHlypXl4+Oj6tWra+LEicrMzLTHHDp0SBaLRTNnztTLL7+s6tWrKyAgQNHR0dq+fbvDuRTmNQsAKH62BtWxY8cc9uf28b2//vpLvXv3VpkyZVS2bFk98MAD2rVrlywWixYtWpRj7AMHDqhr164KCAhQlSpV9NRTT+n8+fOSrH9bQkNDJUkTJ050qMtyk1cdZ7N371716tVL5cqVk5+fnxo1aqR33303xziHDx9W//79HerFWbNmKTs7u9jmtXnzZlksFv33v//VU089pUqVKsnX11cHDhyQJMXFxaldu3YKCgqSv7+/6tatq2nTpjmM8e2336pnz54KDg6Wn5+foqKi9L///S/XOV+pX3/9VYGBgbr33nsd9m/cuFGenp56/vnnLzvGjh071KNHD5UvX15+fn6qWbOmnnjiCYeYr7/+Wu3atVOZMmXk7++v5s2b69NPP3WIseV948aNGjJkiMqXL6/AwEA9+OCDSktLU1JSkvr06aOyZcsqIiJCTz/9tDIyMuzH22qb6dOna8qUKapatar8/PzUpEkTffHFFznmXZg5bdq0SY899phCQkJUvnx53X333UpMTMwx5rJlyxQdHa3SpUsrICBAnTp10p49exxibHWiM3+WAEmSAVBgCxcuNJLMrl278oz56aefTFBQkLn55pvN4sWLzfr1681TTz1lPDw8TGxsrDHGmL///tts27bNSDK9e/c227ZtM9u2bTMHDhwwvXv3NpLs+7Zt22bOnTuX63N99913ZvDgwUaSiYuLM9u2bTN//vmnMcaYoUOHGklm+PDhJi4uzrz55psmNDTUVKlSxRw/ftw+xtSpU40kc//995tPP/3ULF682NSoUcMEBQWZ/fv3G2NMscyrdevWJjg42FSpUsXMmTPHbNq0yXz55ZcmJSXF3HTTTaZ06dJm0qRJZt26dWbFihVm5MiRZuPGjcYYY7Kyskznzp1N6dKlzcSJE82GDRvMggULTKVKlUy9evVMenp6Qb/ll3X27FnTqFEjU6NGDXPq1CljjDHjx483Hh4eZv369fkem5GRYdq2bWu8vLzM008/bdauXWvWrFljnnvuObN06VJjjDHZ2dmmU6dOxsvLyzz//PNm/fr1ZubMmaZ06dImKirK4XtQrVo1U7lyZVO/fn2zdOlSs3btWtO0aVPj7e1txo8fb1q0aGFWrlxpPvroI3PjjTeaChUqOORi4MCBxsfHx1StWtVMmTLFrF+/3sTGxhovLy/TvXt3e9yVzKlevXpm8eLFZt26debee+81ksyXX35pjzt69KipUqWKqVatmpk3b575/PPPzeTJk42vr6+JiYmxxx08eNBIMpGRkaZz585m1apVZtWqVebmm2825cqVM6dPnzbGFP41CwBwn7zqqddee81IMitWrHDY37p1a9O6dWv79pkzZ0ytWrVMcHCwef311826devMk08+aapXr24kmYULF9pjbX/b6tata2bOnGk+//xzM378eGOxWMzEiRONMcacO3fOxMXFGUlm8ODBDnVZbvKq44wx5pdffjFlypQxNWvWNIsXLzaffvqpuf/++40k89JLLzmMUalSJRMaGmrefPNNExcXZ4YPH24kmccee6zY5rVp0yYjyVSqVMn07t3brFmzxnzyySfmxIkTZsGCBcZisZg2bdqY999/33z++edm7ty55l//+pf9+I0bNxofHx/TqlUrs2zZMhMXF2diYmJyfF+c4YMPPjCSzKuvvmqMsdYSFSpUMK1btzaZmZn5HhsXF2e8vb1NgwYNzKJFi8zGjRvNO++8Y/r27WuP2bx5s/H29jaNGzc2y5YtM6tWrTIdO3Y0FovFfPDBB/Y42+u5evXq5qmnnjLr1683L730kvH09DT333+/ueWWW8wLL7xgNmzYYJ599lkjycyaNct+vK22qVKlimnZsqVZsWKFWb58ubn11luNt7e32bp16xXPqUaNGubxxx8369atMwsWLDDlypUzbdu2dcjFlClTjMViMQ899JD55JNPzMqVK010dLQpXbq0+emnn+xxrvhZAowxhqYUUAgFaUp16tTJVK5c2SQnJzvsHz58uPHz8zMnT56075Nkhg0b5hA3bNgwU5h+8YQJE4wkh4bOvn37jCSHIsEYY3bs2GEkmeeee84YY8ypU6dMqVKlTNeuXR3iDh8+bHx9fU2/fv2KZV7GWAtQSeaLL75wiJ00aZKRZDZs2JDncy9dujTXonbXrl1Gkpk7d26Bz6Mgfv31VxMYGGjuvPNO8/nnnxsPDw8zbty4yx63ePFiI8nMnz8/zxjbH/bp06c77F+2bJmRZN566y37vmrVqplSpUqZv/76y74vPj7eSDIREREmLS3Nvn/VqlVGklmzZo1938CBAx2KO5spU6YYSebrr7++ojn5+fmZP/74w77v7NmzJjg42DzyyCP2fY888ogJCAhwiDPGmJkzZxpJ9qLIVrjdfPPNDgXnzp07jSR7M8+Ywr9mAQDuYauntm/fbjIyMkxqaqqJi4sz4eHh5vbbbzcZGRkO8Zc2pV5//XUjyXz22WcOcY888kiuTSlJ5n//+59DbNeuXU3t2rXt28ePHzeSzIQJEwp8HrnVcX379jW+vr7m8OHDDvu7dOli/P397W+ejB492kgyO3bscIh77LHHjMViMQkJCcUyL1tT6vbbb3eIS01NNYGBgaZly5YmOzs7z+euU6eOiYqKyvE97N69u4mIiDBZWVkFPo+CeOyxx4yPj4/Ztm2bueOOO0xYWJhJTEy87HE1a9Y0NWvWNGfPns0zplmzZiYsLMykpqba92VmZpr69eubypUr2/Ngez0//vjjDsffeeedRpJ5+eWXHfY3atTI3HLLLfZtW21TsWJFh/mkpKSY4OBg0759+yue06U19/Tp040kc/ToUWOMteb38vLKMffU1FQTHh5u+vTpY9/nyp8lXN/4+B7gROfOndMXX3yhu+66S/7+/srMzLR/de3aVefOnXP4iJGrbNq0SZJyXCp72223qW7duvZLgbdt26azZ8/miKtSpYruuOOOXC8Zdse8bMqVK6c77rjDYd9nn32mG2+8Ue3bt8/zeT755BOVLVtWPXr0cPgeNGrUSOHh4fmuBmKMcTjm4o+O5aVWrVqaP3++Vq1ape7du6tVq1YFurn2Z599Jj8/P/vHEnOzceNGSTlzdu+996p06dI5ctaoUSNVqlTJvl23bl1J1o8+XHw/Ltv+P/74I8dzPvDAAw7b/fr1k/R/378rmVPVqlXt235+frrxxhsdnvuTTz5R27ZtVbFiRYfc2+6H8eWXXzqM2a1bN3l6etq3GzRokOf5AACuTs2aNZO3t7fKlCmjzp07q1y5clq9evVl71305Zdf2o+52P33359rvMViUY8ePRz2NWjQwCV/MzZu3Kh27dqpSpUqDvtjYmKUnp6ubdu22ePq1aun2267LUecMcb+t9bd87K55557HLa3bt2qlJQU/etf/3L4SODFDhw4oF9++cVeR1xaBx89elQJCQl5zjErK8vhGNvHGPPzyiuv6KabblLbtm21efNmLVmyRBEREfkes3//fv32228aPHiw/Pz8co1JS0vTjh071Lt3b4fVGz09PTVgwAD99ddfOc6le/fuDtu2Wqtbt2459uf22rv77rsd5lOmTBn16NFDW7ZsUVZW1hXNqWfPng7bl9ZL69atU2Zmph588EGH3Pv5+al169Y5amZ3/izh+kFTCnCiEydOKDMzU3PmzJG3t7fDV9euXSVJ//zzj1vmISnXP8oVK1a0P17QOHfPyya3uOPHj6ty5cr5Ps+xY8d0+vRp+fj45Pg+JCUl5fs9+PLLL3McU5D7EHXr1k0VKlTQuXPnNGrUKIeGSV6OHz+uihUrysMj71/FJ06ckJeXl/3z+TYWi0Xh4eE5chYcHOyw7ePjk+/+c+fOOez38vJS+fLlHfaFh4fb53Ilc7p0PEny9fXV2bNn7dvHjh3Txx9/nCP3N910k6ScPzeXjmlb3fHiMQEAV7fFixdr165d2rhxox555BHt27cvz8bSxU6cOKEKFSrk2J/bPkny9/fP0Xzw9fXN8TfQGU6cOJFnnWN7vDBx7p6XzaWxtnty5leD2e4F9vTTT+f4e/6vf/1LUv51cLt27RyOye9NOxtfX1/169dP586dU6NGjdShQ4fLHlOQczl16pSMMYXKWWFqsNxee7Z669J9Fy5c0JkzZ65oTperl2zfs1tvvTXH92zZsmU5vl/u/FnC9YMlFAAnKleunP3dimHDhuUaU716dZfPw/YH6OjRozn+4CYmJiokJCRH3KUujnP3vGxyeycuNDQ015u1X8x2M8e4uLhcHy9TpkyexzZu3Fi7du1y2Gf7Q5+fRx99VKmpqbrppps0YsQItWrVymE569yEhobq66+/VnZ2dp6NqfLlyyszM1PHjx93aAIZY5SUlKRbb731snMrjMzMTJ04ccKhiElKSrLPxVVzCgkJUYMGDTRlypRcHy/I9wAAULLUrVvXfnPztm3bKisrSwsWLNCHH36o3r1753lc+fLltXPnzhz7bX+vilP58uXzrKskOdRgBYlz97xsLq3BbH/v86vBbGOMGTNGd999d64xtWvXzvP4efPmKTU1Ncd4+dm7d6/Gjx+vW2+9Vbt27dLLL7+sUaNG5XtMQc6lXLly8vDwcOv3KLfXb1JSknx8fBQQECAvLy+nz8kW/+GHH6patWpXMGug6LhSCnAif39/tW3bVnv27FGDBg3UpEmTHF+5XTVyMWdc8WH7yNuSJUsc9u/atUv79u1Tu3btJEnR0dEqVapUjri//vrLfpl3ccwrP126dNH+/fvzvay9e/fuOnHihLKysnL9HuRXEJUpUyZHvO2drrwsWLBAS5Ys0WuvvaY1a9bo9OnTDktZ53cu586dy3WVIBtbTi7N2YoVK5SWllagnBXWe++957D9/vvvS5J95SNXzKl79+7au3evatasmev37EqaUlw9BQAly/Tp01WuXDmNHz8+349utW7dWqmpqfrss88c9n/wwQdX/NzO+pvRrl07bdy4MccKZ4sXL5a/v7+aNWtmj/v555/13Xff5YizWCxq27ZtscwrL82bN1dQUJDefPNNGWNyjaldu7ZuuOEGff/997n+LW/SpEm+bwzWrl3bITYyMjLfOaWlpenee+9VZGSkNm3apOHDh2v06NHasWNHvsfdeOONqlmzpt555x37qnGXKl26tJo2baqVK1c65D47O1tLlixR5cqVdeONN+b7PIW1cuVKhyuOUlNT9fHHH6tVq1by9PR0yZw6deokLy8v/fbbb3l+zwqL+guFxZVSwBXYuHFjrh/p6tq1q1599VW1bNlSrVq10mOPPabIyEilpqbqwIED+vjjjy97j4Cbb75ZkvTSSy+pS5cu8vT0VIMGDS7bGLlY7dq1NXToUM2ZM0ceHh7q0qWLDh06pOeff15VqlTRk08+KUkqW7asnn/+eT333HN68MEHdf/99+vEiROaOHGi/Pz8NGHChGKZV36eeOIJLVu2TL169dLo0aN122236ezZs/ryyy/VvXt3tW3bVn379tV7772nrl27auTIkbrtttvk7e2tv/76S5s2bVKvXr101113FXje+fnxxx81YsQIDRw40N6Ievvtt9W7d2/Nnj07x9LCF7v//vu1cOFCPfroo0pISFDbtm2VnZ2tHTt2qG7duurbt686dOigTp066dlnn1VKSopatGihH374QRMmTFBUVJQGDBjglPOw8fHx0axZs3TmzBndeuut2rp1q1544QV16dJFLVu2lCSXzGnSpEnasGGDmjdvrhEjRqh27do6d+6cDh06pLVr1+rNN9+87Mc2L+WM1ywAwH3KlSunMWPG6JlnntH777+v/v375xo3cOBAvfLKK+rfv79eeOEF1apVS5999pnWrVsnSfl+LD4vZcqUUbVq1bR69Wq1a9dOwcHBCgkJuWxj5FITJkyw3ydx/PjxCg4O1nvvvadPP/1U06dPV1BQkCTpySef1OLFi9WtWzdNmjRJ1apV06effqq5c+fqscceszcX3D2vvAQEBGjWrFl6+OGH1b59ew0ZMkQVKlTQgQMH9P333+u1116TZL3aqUuXLurUqZNiYmJUqVIlnTx5Uvv27dN3332n5cuXF2re+Xn00Ud1+PBh7dy5U6VLl9asWbO0bds29e3bV3v27FHZsmXzPPb1119Xjx491KxZMz355JOqWrWqDh8+rHXr1tnfnJs2bZo6dOigtm3b6umnn5aPj4/mzp2rvXv3aunSpXneW+tKeXp6qkOHDho1apSys7P10ksvKSUlRRMnTrTHOHtOkZGRmjRpksaOHavff//dfm+3Y8eO2fN68fMXhLNes7iOFONN1oESx7aSRV5fBw8eNMZYV9F46KGHTKVKlYy3t7cJDQ01zZs3Ny+88ILDeMpldZTz58+bhx9+2ISGhhqLxeIwbm5yW+XOGGOysrLMSy+9ZG688Ubj7e1tQkJCTP/+/c2ff/6ZY4wFCxaYBg0aGB8fHxMUFGR69erlsARsccyrdevW5qabbsp17FOnTpmRI0eaqlWrGm9vbxMWFma6detmfvnlF3tMRkaGmTlzpmnYsKHx8/MzAQEBpk6dOuaRRx4xv/76a57zLowzZ86YOnXqmHr16jmsbGeMdeU3b2/vHKvqXOrs2bNm/Pjx5oYbbjA+Pj6mfPny5o477nBY/vfs2bPm2WefNdWqVTPe3t4mIiLCPPbYY+bUqVMOY1WrVs1069Ytx3Pk9jqzrfQyY8YM+76BAwea0qVLmx9++MG0adPGlCpVygQHB5vHHnvMnDlzJse8izKnS1dSMsa6WsuIESNM9erVjbe3twkODjaNGzc2Y8eOtT9/bvO++DwvXumlsK9ZAIB75Lea8dmzZ03VqlXNDTfcYF9lNbe/GYcPHzZ33323CQgIMGXKlDH33HOPWbt2rZFkVq9ebY+z/W27lK1Oudjnn39uoqKijK+vr5FkBg4cmO955Pb31RhjfvzxR9OjRw8TFBRkfHx8TMOGDR1WBLT5448/TL9+/Uz58uWNt7e3qV27tpkxY0aOFercOS/b6nvLly/Pdey1a9ea1q1bm9KlSxt/f39Tr14989JLLznEfP/996ZPnz4mLCzMeHt7m/DwcHPHHXeYN998M995F8b8+fNzrLRojDEHDhywr4h8Odu2bTNdunQxQUFBxtfX19SsWdM8+eSTDjFfffWVueOOO0zp0qVNqVKlTLNmzczHH3/sEJPX6zmvWvjS16SttnnppZfMxIkTTeXKlY2Pj4+Jiooy69atyzHvoszJ9v3dtGmTw/5Vq1aZtm3bmsDAQOPr62uqVatmevfubT7//PM8533peV6ssK9ZXN8sxuRx/SUA4LoSExOjDz/8UGfOnCnuqQAAUGhTp07VuHHjdPjw4UJfXQsUl0OHDql69eqaMWOGnn766eKeDuB2fHwPAAAAQIli+7hYnTp1lJGRoY0bN+o///mP+vfvT0MKAEoQmlIAAAAAShR/f3+98sorOnTokM6fP6+qVavq2Wef1bhx44p7agCAQuDjewAAAAAAAHC7wi9NAQAAAAAAABQRTSkAAAAAAAC4HfeUykV2drYSExNVpkwZWSyW4p4OAABwMmOMUlNTVbFiRXl48B6du1FrAQBwbStorUVTKheJiYmqUqVKcU8DAAC42J9//slKXcWAWgsAgOvD5WotmlK5KFOmjCRr8gIDA506dkZGhtavX6+OHTvK29vbqWOXJOTBijxYkQcr8mBFHsiBjSvzkJKSoipVqtj/5sO9qLVcjzxYkQcr8kAObMiDFXmwuhpqLZpSubBdRh4YGOiSQsnf31+BgYHX/YufPJAHG/JgRR6syAM5sHFHHvjoWPGg1nI98mBFHqzIAzmwIQ9W5MHqaqi1uIkCAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjntKAQBcKjs7WxcuXChwfEZGhry8vHTu3DllZWW5cGZXL3JgVdQ8+Pj45LsEMQAA14KsrCxlZGQUKJYaw4o8WBUlD97e3vL09CzyHGhKAQBc5sKFCzp48KCys7MLfIwxRuHh4frzzz+v25tQkwOroubBw8ND1atXl4+PjwtmBwBA8TLGKCkpSadPny7UMdQY5MGmqHkoW7aswsPDi5RDmlIAAJcwxujo0aPy9PRUlSpVCnzFSnZ2ts6cOaOAgIDr9ioXcmBVlDxkZ2crMTFRR48eVdWqVa/rghMAcG2yNaTCwsLk7+9foL911BhW5MHqSvNgjFF6err+/vtvSVJERMQVz4GmFADAJTIzM5Wenq6KFSvK39+/wMfZPu7n5+d33RYJ5MCqqHkIDQ1VYmKiMjMzr+vlngEA156srCx7Q6p8+fIFPo4aw4o8WBUlD6VKlZIk/f333woLC7vij/Jdv9kHALiU7XPpfHQKxcX22rue7xUBALg22e4hVZg3/gBns73+CnpPs9zQlAIAuBQfm0Jx4bUHALjW8bcOxckZrz+aUgAAAAAAAHA7mlIAAAAAAABwO5pSAABc49566y37CoizZ88u7ukAAABcU6i1rhxNKQAALhITEyOLxaJHH300x2P/+te/ZLFYFBMTkyPeYrHI29tbNWrU0NNPP620tDSHY1esWKE2bdooKChIAQEBatCggSZNmqSTJ0/mORdPT0/72AEBAWrYsKEWLVpUqPNJSUnR8OHD9eyzz+rIkSMaOnRooY4HAABwJmotXIymFAAAl6hSpYo++OADnT171r7v3LlzWrp0qapWrZojvnPnzjp69Kh+//13vfDCC5o7d66efvpp++Njx47Vfffdp1tvvVWfffaZ9u7dq1mzZun777/Xf//733znsnDhQh09elTff/+97rvvPg0aNEjr1q0r8LkcPnxYGRkZ6tatmyIiIq54lZ6irKoCAABwMWqtnK7XWoumFADArdIvZOb5dS4jy+mxV+KWW25R1apVtXLlSvu+lStXqkqVKoqKisoR7+vrq/DwcFWpUkX9+vXTAw88oFWrVkmSdu7cqalTp2rWrFmaMWOGmjdvrsjISHXo0EErVqzQwIED851L2bJlFR4erpo1a+q5555TcHCw1q9fb388OTlZQ4cOVVhYmAIDA3XHHXfo+++/lyQtWrRIN998sySpRo0aslgsOnTokCTp448/VuPGjeXn56caNWpo4sSJysz8v3xZLBa9+eab6tWrl0qXLq0XXnihwMctWLBAd911l/z9/XXDDTdozZo1Duf0008/qVu3bgoMDFSZMmXUqlUr/fbbb/bHFy5cqLp168rf31+33Xab3njjDftjFy5c0PDhwxURESE/Pz9FRkZq2rRp+eYQAIDrSX7103lqrRyotYq31vJy2cgAAOSi3vi833lqWztUbw9sYt9uPPlznb2kILJpWj1Yyx6Jtm+3fGmTTqZdyBF36MVuVzTPQYMGaeHChXrggQckSe+8844eeughbd68+bLHlipVyv5u13vvvaeAgAD961//yjW2bNmyBZpPVlaWVqxYoZMnT8rb21uSZIxRt27dFBwcrLVr1yooKEjz5s1Tu3bttH//ft13332qUqWK2rdvr507d6pKlSoKDQ3VunXr1L9/f/3nP/+xFym2S80nTJhgf84JEyZo2rRpeuWVV+Tp6Vng4yZOnKjp06drxowZmjNnjh544AH98ccfCg4O1pEjR3T77berTZs22rhxowIDA/XNN9/Yi6358+drwoQJeu2119SwYUNt3bpVTzzxhAICAjRw4ED95z//0Zo1a/S///1PVatW1Z9//qk///yzQDm8lpw6dUojRoywF6E9e/bUnDlz8n09rVy5UvPmzdPu3bt14sQJ7dmzR40aNXKIeeutt/T+++/ru+++U2pqqk6dOpXrmJ9++qkmTZqkH374QaVLl9btt9/u8A8LAEDxya/WalM7VLPvutG+Ta31f6i1iqfWoikFAEAuBgwYoDFjxujQoUOyWCz65ptv9MEHH1y2UNq5c6fef/99tWvXTpL066+/qkaNGvbiprDuv/9+eXp66ty5c8rKylJwcLAefvhhSdKmTZv0448/6u+//5avr68kaebMmVq1apU+/PBDDR06VOXLl5ckhYaGKjw8XJI0ZcoUjR492v7OYY0aNTR58mQ988wzDgVPv3799NBDDznkpCDHxcTE6P7775ckTZ06VXPmzNHOnTvVuXNnvf766woKCtIHH3xgz8mNN/5fcTx58mTNmjVLd999t7Kzs1W+fHkdOnRI8+bN08CBA3X48GHdcMMNatmypSwWi6pVq3ZFeS3p+vXrp7/++ktxcXGSpKFDh2rAgAH6+OOP8zwmLS1NLVq00L333qshQ4bkGpOenq7OnTurc+fOGjNmTK4xK1as0JAhQzR16lTdcccdMsboxx9/LPpJAQCuK9Ra1FoSTSkAgJv9PKlTno95WCwO27ufb1/g2K+fbVu0iV0iJCRE3bp107vvvmt/lywkJCTX2E8++UQBAQHKzMxURkaGevXqpTlz5kiyvsNmuWSuhfHKK6+offv2+vPPPzVq1Cg9+eSTqlWrliRp9+7dOnPmjL0Ysjl79qzDJdqX2r17t3bt2qUpU6bY92VlZencuXNKT0+33wuhSZMmV3RcgwYN7I+XLl1aZcqU0d9//y1Jio+PV6tWrXItHI8fP64///xTgwcPdmiaZGZmKigoSJK1COvQoYNq166tzp07q3v37urYsWM+Gbz27Nu3T3Fxcdq+fbuaNm0qyfquZ3R0tBISElS7du1cjxswYIAk2T9WkJsnnnhCkvL8B0FmZqZGjhypGTNmaPDgwfb9eT0nAMD98qu1LMbo/Nn/u0E4tRa1llS8tRZNKQCAW/n75P+nJzs7u8CxhRn3Sjz00EMaPny4JOn111/PM65t27Z644035O3trYoVKzoUATfeeKO+/vprZWRkXNE7eOHh4apVq5Zq1aql5cuXKyoqSk2aNFG9evWUnZ2tiIiIXBsI+V2qnp2drYkTJ+ruu+/O8Zifn5/9/0uXLn1Fx116nhaLxf59LVWqVL7zkqwNlqZNmyo7O1tnzpxRQECAfcxbbrlFBw8e1GeffabPP/9cffr0Ufv27fXhhx/mOe61Ztu2bQoKCrI3pCSpWbNmCgoK0tatW13aIPruu+905MgReXh4KCoqSklJSWrUqJFmzpypm266Kc/jzp8/r/Pnz9u3U1JSJFlv6ursG7vaxrtebxhrQx6syIMVebj2cpCRkSFjjLKzsx1qJ0ny88r71tHGGJ3////Nzs7ON1ZyrMvyir30+S/HGGN//piYGI0YMUKSNGfOHGVnZzs8botv06aN5s6dm6PWys7O1g033KCvv/5a58+fL3CtZYyx/39YWJhq1KihGjVqaNmyZWrcuLFuueUW1atXT1lZWYqIiNDGjRtzjFG2bFmH/F/6/7GxsbrrrrtyHOfj4+NQF12cv4Ie5+np6XCcxWJRZmam9Xvq5+eQv4vZPsI3b948NW3aVMYYpaWlqXTp0vLy8lJ2drYaNWqk3377TZ999pm++OIL9enTR+3atdPy5ctzjGf7fmVkZMjT09PhsYL+rNGUAgAgD507d9aFC9Z7J3TqlPe7jqVLl7a/o3apfv366T//+Y/mzp2rkSNH5nj89OnTBb7XQa1atXTPPfdozJgxWr16tW655RYlJSXJy8tLkZGRBRpDsjZ2EhIS8pyzs4+7WIMGDfTuu+/m2qSrUKGCKlWqpN9//10PPPCAsrOzlZKSosDAQHl4/F8hHBgYqPvuu0/33Xefevfurc6dO+vkyZMKDg6+4nmVJElJSQoLC8uxPywsTElJSS597t9//12SFBsbq5dfflmRkZGaNWuWWrdurf379+f5PZg2bZomTpyYY//69euveJWiy9mwYYNLxi1pyIMVebAiD9dODry8vBQeHq4zZ87Ya5XCSE1NdcGsCiYjI0OZmZlKSUlR8+bN7W9aREdHKyUlxX411MVvYPj6+tr/9p09e9Zh1T7bfRVfeeUVPfroozmeLzk52X4VUG7Onj1rf66wsDD16NFDzzzzjN5//33Vrl1bSUlJOnfuXK6rAqakpCgtzXrl2ZkzZ+zjNGjQQHv37tUjjzyS45gzZ87k+txFOc4Yo3PnziklJUW1a9fW0qVLdeLEiRy1VqlSpVSxYkX98ssv6tGjR67nY9OlSxf7V+/evfXHH3+oXLlyDvEXLlzQ2bNntWXLFoebsUvWWwIUBE0pAADy4OnpqX379tn//0o0bdpUzzzzjJ566ikdOXJEd911lypWrKgDBw7ozTffVMuWLXNtVuXlqaeeUsOGDfXtt9+qffv2io6O1p133qmXXnpJtWvXVmJiotauXas777wzxyXhNuPHj1f37t1VpUoV3XvvvfLw8NAPP/ygH3/80b7yizOPu9jw4cM1Z84c9e3bV2PGjFFQUJC2b9+u2267TbVr11ZsbKxGjBihwMBAderUSSdOnNAvv/yi5ORkjRo1Sq+88ooiIiLUqFEjeXh4aPny5QoPDy9wY+9qFhsbm2vj5mK7du2SpFw/plDUjy8UhO1d17Fjx+qee+6RZF3Bp3Llylq+fHmuRbQkjRkzRqNGjbJvp6SkqEqVKurYsaMCAwOdOseMjAxt2LBBHTp0uOL7i1wLyIMVebAiD9deDs6dO6c///xTAQEBDlcrX44xRqmpqSpTpozL/2bkxdvbW15eXvbf/z///LMk2be9vLzk7e1t3740/lJ33HGH/v3vf2vcuHE6ceKE7rzzTnutNW/ePLVs2dJ+NZaNLQ+StVFz8djPPvusoqKitH//fvXs2VPR0dF68MEHNW3aNHut9dlnn6lXr15q0qSJ/crygIAA+zixsbHq2bOnatSood69e9trpr1792ry5Mn257r0ua/0OIvFIj8/PwUGBmrUqFGaP3++HnnkEY0ePTpHrTVhwgQ98cQTCg0NVadOnXTy5En98ssvOn36tJ588knNnj1b4eHh9lpr7dq19pUPL36TULK+DkuVKqXbb789x+vw4gZXfmhKAQCQD2f8g/mll15S48aN9frrr+vNN99Udna2atasqd69e192meJL3XzzzWrfvr3Gjx+vtWvXau3atRo7dqweeughHT9+XOHh4br99ttVoUKFPMfo1KmTPvnkE02aNEnTp0+Xt7e36tSpY7+pp7OPu1j58uW1ceNG/fvf/1br1q3l6empRo0aqUWLFpKkhx9+WP7+/poxY4aeeeYZ+fv7q0GDBvZ7HQUEBOill17Sr7/+Kk9PT916661au3ZtjiKpJBo+fLj69u2bb0xkZKR++OEHHTt2LMdjx48fz/f77gwRERGSpHr16tn3+fr6qkaNGjp8+HCex/n6+tpvEHsxb29vl/3j0JVjlyTkwYo8WJGHaycHWVlZslgs8vDwKNTfQNubC7Zji4PFYnF4/kvfWLr08Uu3czN9+nQ1adJEr7/+uubNm+dQa8XExOQ49uKPtl2aw4YNG6p9+/aKjY11qLUefvhhh1orIiLC4diL/79Lly72mmnGjBkONdPFz3Xpc1/pcRfvCw0Ntddabdu2tddarVq1koeHh4YOHaqAgADNmDFDzz77rEOt5eHhoTJlymjGjBk5ai0vr5ztIw8PD1ksllx/rgr8c2aQQ3JyspFkkpOTnT72hQsXzKpVq8yFCxecPnZJQh6syIMVebC61vJw9uxZ8/PPP5uzZ88W6risrCxz6tQpk5WV5aKZXf3IgVVR85Dfa9CVf+td7eeffzaSzI4dO+z7tm/fbiSZX3755bLHHzx40Egye/bsyTNm06ZNRpI5deqUw/7k5GTj6+trFixYYN934cIFExYWZubNm1fgc6DWcj3yYEUerMjDtZcD6qyiIQ9WV0OtVaxvK27ZskU9evRQxYoVZbFYtGrVqnzjV65cqQ4dOig0NFSBgYGKjo7WunXrcsTNnj1btWvXVqlSpVSlShU9+eSTOnfunIvOAgAAwH3q1q2rzp07a8iQIdq+fbu2b9+uIUOGqHv37g43Oa9Tp44++ugj+/bJkycVHx9v/5hEQkKC4uPjHe5DlZSUpPj4eB04cECS9OOPPyo+Pl4nT56UZL1y8NFHH9WECRO0fv16JSQk6LHHHpMk3XvvvS4/dwAAcG0p1qZUWlqaGjZsqNdee61A8Vu2bFGHDh20du1a7d69W23btlWPHj20Z88ee8x7772n0aNHa8KECdq3b5/efvttLVu2TGPGjHHVaQAAALjVe++9p5tvvlkdO3ZUx44d1aBBA/33v/91iElISFBycrJ9e82aNYqKilK3bt0kSX379lVUVJTefPNNe8ybb76pqKgo+zLRt99+u6KiorRmzRp7zIwZM9S3b18NGDBAt956q/744w9t3Lgxx81PAQAALqdY7yllu5N7Qc2ePdthe+rUqVq9erU+/vhjRUVFSbIuk9yiRQv169dPkvXeC/fff7927tyZ57gsU+x+5MGKPFiRB6trLQ/5LVWcH/P/l+g1eSxlez0gB1ZFzYMzlim+WgUHB2vJkiX5xpiLlruWpJiYGMXExOR7TGxsrGJjY/ON8fb21syZMzVz5syCTBUAACBPJfpG59nZ2UpNTXVYfrhly5ZasmSJdu7cqdtuu02///671q5dm++NZFmmuPiQByvyYEUerK6VPJTkpYqvFuTA6krz4IxligEAAOA6JbopNWvWLKWlpalPnz72fX379tXx48fVsmVLGWOUmZmpxx57TKNHj85zHJYpdj/yYEUerMiD1bWWh/Pnz+vw4cMqXbq0SpUqVeDjzFWwVHFxIwdWRc3D2bNnVapUKbVu3TrHym8FXaYYAICr2fV8RTWKnzNefyW2KbV06VLFxsZq9erVCgsLs+/fvHmzpkyZorlz56pp06Y6cOCARo4cqYiICD3//PO5jsUyxcWHPFiRByvyYHWt5MG2LO2JEycUGhpa4KZCdna2Lly4oPPnzxfbUsXFjRxYFSUPxhidOHFCHh4eKlWqVI6P710LP2MAgOuXj4+PPDw8lJiYqNDQUPn4+BSo1rL9bT137hw1Bnm44jwYY3ThwgUdP35cHh4e8vHxueI5lMim1LJlyzR48GAtX75c7du3d3js+eef14ABA/Twww9Lkm6++WalpaVp6NChGjt27HX9ggMAd/L09FTlypX1119/6dChQwU+zhhjv8Ller1KiBxYFTUPFotFlStXztGQAgCgpPPw8FD16tV19OhRJSYmFvg4agwr8mBV1Dz4+/uratWqReqzlLim1NKlS/XQQw9p6dKl9tVjLpaenp4jIZ6enjLG5LjhJwDAtQICAnTDDTcU6qbSGRkZ2rJli26//fbr9moWcmBV1Dx4e3vTkAIAXLN8fHxUtWpVZWZmKisrq0DHUGNYkQerouTB09NTXl5eRW7qFWtT6syZMzpw4IB9++DBg4qPj1dwcLCqVq2qMWPG6MiRI1q8eLEka0PqwQcf1KuvvqpmzZopKSlJklSqVCkFBQVJknr06KGXX35ZUVFR9o/vPf/88+rZsyeFKQAUA09Pz0L9/vX09FRmZqb8/Pyu2yKBHFiRBwAA8mexWAp16wf+tlqRB6urIQ/F2pT69ttv1bZtW/u27WbjAwcO1KJFi3T06FEdPnzY/vi8efOUmZmpYcOGadiwYfb9tnhJGjdunCwWi8aNG6cjR44oNDRUPXr00JQpU9xzUgAAAAAAALisYm1KtWnTJt+P1NkaTTabN2++7JheXl6aMGGCJkyYUMTZAQAAAAAAwFW46zcAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAAAAAADcjqYUAAAAAAAA3I6mFAAAAAAAANyOphQAAEAJc+rUKQ0YMEBBQUEKCgrSgAEDdPr06XyPWblypTp16qSQkBBZLBbFx8fniHnrrbfUpk0bBQYGymKx5Drm/v371atXL4WEhCgwMFAtWrTQpk2bnHNiAADgukJTCgAAoITp16+f4uPjFRcXp7i4OMXHx2vAgAH5HpOWlqYWLVroxRdfzDMmPT1dnTt31nPPPZdnTLdu3ZSZmamNGzdq9+7datSokbp3766kpKQrPh8AAHB98iruCQAAAKDg9u3bp7i4OG3fvl1NmzaVJM2fP1/R0dFKSEhQ7dq1cz3O1rQ6dOhQnmM/8cQTkqTNmzfn+vg///yjAwcO6J133lGDBg0kSS+++KLmzp2rn376SeHh4Vd2UgAA4LpEUwoAAKAE2bZtm4KCguwNKUlq1qyZgoKCtHXr1jybUs5Qvnx51a1bV4sXL9Ytt9wiX19fzZs3TxUqVFDjxo3zPO78+fM6f/68fTslJUWSlJGRoYyMDKfO0Taes8ctaciDFXmwIg/kwIY8WJEHK1fmoaBj0pQCAAAoQZKSkhQWFpZjf1hYmMs/QmexWLRhwwb16tVLZcqUkYeHhypUqKC4uDiVLVs2z+OmTZumiRMn5ti/fv16+fv7u2SuGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAADAVSA2NjbXxs3Fdu3aJcnaHLqUMSbX/c5kjNG//vUvhYWF6auvvlKpUqW0YMECde/eXbt27VJERESux40ZM0ajRo2yb6ekpKhKlSrq2LGjAgMDnTrHjIwMbdiwQR06dJC3t7dTxy5JyIMVebAiD+TAhjxYkQcrV+bBdlX05dCUAgAAuAoMHz5cffv2zTcmMjJSP/zwg44dO5bjsePHj6tChQqump4kaePGjfrkk0906tQpezNp7ty52rBhg959912NHj061+N8fX3l6+ubY7+3t7fL/jHgyrFLEvJgRR6syAM5sCEPVuTByhV5KOh4xbr63pYtW9SjRw9VrFhRFotFq1atyjd+5cqV6tChg0JDQxUYGKjo6GitW7cuR9zp06c1bNgwRUREyM/PT3Xr1tXatWtddBYAAABFFxISojp16uT75efnp+joaCUnJ2vnzp32Y3fs2KHk5GQ1b97cpXO0XYrv4eFYQnp4eCg7O9ulzw0AAK49xdqUSktLU8OGDfXaa68VKH7Lli3q0KGD1q5dq927d6tt27bq0aOH9uzZY4+5cOGCOnTooEOHDunDDz9UQkKC5s+fr0qVKrnqNAAAANymbt266ty5s4YMGaLt27dr+/btGjJkiLp37+5wk/M6deroo48+sm+fPHlS8fHx+vnnnyVJCQkJio+Pd7gPVVJSkuLj43XgwAFJ0o8//qj4+HidPHlSkhQdHa1y5cpp4MCB+v7777V//379+9//1sGDB9WtWzd3nD4AALiGFOvH97p06aIuXboUOH727NkO21OnTtXq1av18ccfKyoqSpL0zjvv6OTJk9q6dav9crFq1ao5bc4AAADF7b333tOIESPUsWNHSVLPnj1zvMmXkJCg5ORk+/aaNWs0aNAg+7bto4ITJkxQbGysJOnNN990uK/V7bffLklauHChYmJiFBISori4OI0dO1Z33HGHMjIydNNNN2n16tVq2LChS84VAABcu0r0PaWys7OVmpqq4OBg+741a9YoOjpaw4YN0+rVqxUaGqp+/frp2WeflaenZ67jsEyx+5EHK/JgRR6syIMVeSAHNlfDMsVXq+DgYC1ZsiTfGGOMw3ZMTIxiYmLyPSY2NtbeoMpLkyZNcr19AgAAQGGV6KbUrFmzlJaWpj59+tj3/f7779q4caMeeOABrV27Vr/++quGDRumzMxMjR8/PtdxWKa4+JAHK/JgRR6syIMVeSAHNsW5TDEAAABcp8Q2pZYuXarY2FitXr1aYWFh9v3Z2dkKCwvTW2+9JU9PTzVu3FiJiYmaMWNGnk0plil2P/JgRR6syIMVebAiD+TA5mpYphgAAACuUyKbUsuWLdPgwYO1fPlytW/f3uGxiIgIeXt7O3xUr27dukpKStKFCxfk4+OTYzyWKS4+5MGKPFiRByvyYEUeyIFNcS5TDAAAANcp1tX3rsTSpUsVExOj999/P9dVXlq0aKEDBw44LEu8f/9+RURE5NqQAgAAAAAAgPsVa1PqzJkzio+PV3x8vCTp4MGDio+P1+HDhyVZP1b34IMP2uOXLl2qBx98ULNmzVKzZs2UlJSkpKQkh5VlHnvsMZ04cUIjR47U/v379emnn2rq1KkaNmyYW88NAAAAAAAAeSvWptS3336rqKgoRUVFSZJGjRqlqKgo+72fjh49am9QSdK8efOUmZmpYcOGKSIiwv41cuRIe0yVKlW0fv167dq1Sw0aNNCIESM0cuRIjR492r0nBwAAAAAAgDwV6z2l2rRpk2O54ostWrTIYXvz5s0FGjc6Olrbt28vwswAAAAAAADgSiXunlIAAAAAAAAo+WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAAAAAwO1oSgEAAAAAAMDtaEoBAAAAAADA7WhKAQAAlDCnTp3SgAEDFBQUpKCgIA0YMECnT5/O95iVK1eqU6dOCgkJkcViUXx8vMPjJ0+e1OOPP67atWvL399fVatW1YgRI5ScnFzk5wYAAMgNTSkAAIASpl+/foqPj1dcXJzi4uIUHx+vAQMG5HtMWlqaWrRooRdffDHXxxMTE5WYmKiZM2fqxx9/1KJFixQXF6fBgwcX+bkBAABy41XcEwAAAEDB7du3T3Fxcdq+fbuaNm0qSZo/f76io6OVkJCg2rVr53qcrXF06NChXB+vX7++VqxYYd+uWbOmpkyZov79+yszM1NeXl5X/Nznz5/X+fPn7dspKSmSpIyMDGVkZBQuAZdhG8/Z45Y05MGKPFiRB3JgQx6syIOVK/NQ0DFpSgEAAJQg27ZtU1BQkL0pJEnNmjVTUFCQtm7dmmdj6EokJycrMDBQXl5eRXruadOmaeLEiTn2r1+/Xv7+/k6b78U2bNjgknFLGvJgRR6syAM5sCEPVuTByhV5SE9PL1AcTSkAAIASJCkpSWFhYTn2h4WFKSkpyWnPc+LECU2ePFmPPPJIkZ97zJgxGjVqlH07JSVFVapUUceOHRUYGOi0OUvWd2Y3bNigDh06yNvb26ljlyTkwYo8WJEHcmBDHqzIg5Ur82C7KvpyaEoBAABcBWJjY3O9muhiu3btkiRZLJYcjxljct1/JVJSUtStWzfVq1dPEyZMcHjsSp7b19dXvr6+OfZ7e3u77B8Drhy7JCEPVuTBijyQAxvyYEUerFyRh4KOV6w3Ot+yZYt69OihihUrymKxaNWqVfnGr1y5Uh06dFBoaKgCAwMVHR2tdevW5Rn/wQcfyGKx6M4773TuxAEAAJxs+PDh2rdvX75f9evXV3h4uI4dO5bj+OPHj6tChQpFnkdqaqo6d+6sgIAAffTRRw5FpaufGwAAXF+K9UqptLQ0NWzYUIMGDdI999xz2fgtW7aoQ4cOmjp1qsqWLauFCxeqR48e2rFjh6Kiohxi//jjDz399NNq1aqVq6YPAADgNCEhIQoJCblsXHR0tJKTk7Vz507ddtttkqQdO3YoOTlZzZs3L9IcUlJS1KlTJ/n6+mrNmjXy8/Nz23MDAIDrT7E2pbp06aIuXboUOH727NkO21OnTtXq1av18ccfOzSlsrKy9MADD2jixIn66quvdPr0aSfNGAAAoHjVrVtXnTt31pAhQzRv3jxJ0tChQ9W9e3eHG43XqVNH06ZN01133SVJOnnypA4fPqzExERJUkJCgiTr1U/h4eFKTU1Vx44dlZ6eriVLliglJcV+P4jQ0FB5enoW+LkBAAAKokTfUyo7O1upqakKDg522D9p0iSFhoZq8ODB+uqrry47DssUux95sCIPVuTBijxYkQdyYHM1LFN8tXrvvfc0YsQIdezYUZLUs2dPvfbaaw4xCQkJSk5Otm+vWbNGgwYNsm/37dtXkjRhwgTFxsZq9+7d2rFjhySpVq1aDmMdPHhQkZGRBX5uAACAgijRTalZs2YpLS1Nffr0se/75ptv9Pbbbys+Pr7A47BMcfEhD1bkwYo8WJEHK/JADmyKc5niq1VwcLCWLFmSb4wxxmE7JiZGMTExeca3adMmxzFX+twAAAAFUWKbUkuXLlVsbKxWr15tX5o4NTVV/fv31/z58wt0TwYblil2P/JgRR6syIMVebAiD+TA5mpYphgAAACuUyKbUsuWLdPgwYO1fPlytW/f3r7/t99+06FDh9SjRw/7vuzsbEmSl5eXEhISVLNmzRzjsUxx8SEPVuTBijxYkQcr8kAObIpzmWIAAAC4TolrSi1dulQPPfSQli5dqm7dujk8VqdOHf34448O+8aNG6fU1FS9+uqrqlKlijunCgAAAAAAgDwUqCn1ww8/FHrgevXqycsr/+HPnDmjAwcO2LcPHjyo+Ph4BQcHq2rVqhozZoyOHDmixYsXS7I2pB588EG9+uqratasmZKSkiRJpUqVUlBQkPz8/FS/fn2H5yhbtqwk5dgPAABwJVxVFwEAAFxvClQdNWrUSBaLpUA3v5QkDw8P7d+/XzVq1Mg37ttvv1Xbtm3t27b7Og0cOFCLFi3S0aNHdfjwYfvj8+bNU2ZmpoYNG6Zhw4bZ99viAQAAXM1VdREAAMD1psBv2e3YsUOhoaGXjTPGFPiqpMut8nJpo2nz5s0FGje/MQAAAIrKFXURAADA9aZATanWrVurVq1a9o/CXc7tt9+uUqVKFWVeAAAAVyXqIgAAAOcoUFNq06ZNhRp07dq1VzQZAACAqx11EQAAgHN4FPcEAAAAAAAAcP0p8D2lJk2aVKC48ePHX/FkAAAASgLqIgAAgKIrcFPqo48+yvMxi8WihIQEnTt3juILAABc86iLAAAAiq7ATak9e/bkuj8+Pl6jR4/W3r17NWTIEKdNDAAA4GpFXQQAAFB0V3xPqYMHD6p///669dZbFRQUpJ9++klvvvmmM+cGAABQIlAXAQAAFF6hm1L//POPHn/8cdWpU0dHjx7V1q1btWzZMt1www2umB8AAMBVi7oIAADgyhX443tpaWmaOXOmXn75ZdWqVUsff/yxOnbs6Mq5AQAAXJWoiwAAAIquwE2pmjVrKjU1VY8//rjuv/9+WSwW/fDDDzniGjRo4NQJAgAAXG2oiwAAAIquwE2pv//+W5I0ffp0zZgxQ8YY+2MWi0XGGFksFmVlZTl/lgAAAFcR6iIAAICiK3BT6uDBg66cBwAAQIlBXQQAAFB0BW5KVatWzZXzAAAAKDGoiwAAAIquQKvv/fDDD8rOzi7woD/99JMyMzOveFIAAABXK+oiAAAA5yhQUyoqKkonTpwo8KDR0dE6fPjwFU8KAADgakVdBAAA4BwF+vieMUbPP/+8/P39CzTohQsXijQpAACAqxV1EQAAgHMUqCl1++23KyEhocCDRkdHq1SpUlc8KQAAgKsVdREAAIBzFKgptXnzZhdPAwAAoGSgLgIAAHCOAt1TCgAAAAAAAHAmmlIAAAAAAABwO5pSAAAAAAAAcDuaUgAAAAAAAHA7mlIAAAAAAABwuytqSv33v/9VixYtVLFiRf3xxx+SpNmzZ2v16tVOnRwAAMDVjroIAADgyhS6KfXGG29o1KhR6tq1q06fPq2srCxJUtmyZTV79mxnzw8AAOCqRV0EAABw5bwKe8CcOXM0f/583XnnnXrxxRft+5s0aaKnn37aqZO7Vp3PktIvZMrbWHI85mGxyM/b076dfiEzz3GKEnv2QpaMTK6xFllUyufKYs9lZCnb5B4rSf4+//eSu5BPHi6NLcy4l4st5e0pi8X6nOczs5SV7ZxYPy9PeXhYYy9kZiszO7tAsZnZ+efB18tTngUc9+LYjKxsZWTlHevj6SEvT49Cx2ZmZetCPrHenh7yvoLYbJN/Hrw8POTjZY3NyjY6n5mV57gXx2ZnG51zUqynh0W+XtbXuzFGZzOcE5vbz3Jeebiefkecy8hSRh55yC32Wvod4XnR/Arzc3+t/Y5QPudytaAuujpRa1lRa1FrUWtZeVgs8rxo21U/9yXhd4T3Rd9+Z/7cl7TfEdRa/99VUGsVuil18OBBRUVF5djv6+urtLQ0p0zqWvfMTi89s3Njro+1rR2qhYNus283nvx5nr9gm1YP1rJHou3bLV/apJNpF3KNbVA5SGuGt7Rvt3/5Sx05fTbX2BvCArRhVGv7ds/Xvtavf5/JNbZS2VL6ZvQd9u0+87bph7+Sc40NLu2j757vYN+e94un/p1HHkp5e2rf5M727ceW7NamhOO5xkrSoRe72f9/1P/itfbHpDxjf57Uyf5L87mVe7Xiu7/yjN09rr3KB/hKkl74ZJ/+u/2PPGO/eqatqgT7S5Jmrk/QW1t+zzN2/ZO368YKZSRJG4546KnJuedBklYPa6GGVcpKkhZ+c1DTPvslz9ilQ5opumZ56//vPKzxq3/KM/admCa6o04FSdKqPUf07w9/yDP29X63qFuDCEnSup+Oadj73+UZO6N3A93bpIokacuvx/XQom/zjJ3U6yY9GB0pSfotxaIn88nDmC519EjrmpKkvUeS1ev1b/KMHdnuBj3Z4UZJ0oHjZ9TxlS15xg69vYae61pXknTk9Fm1mr4pz9gBzapp8p31JUkn0y6o8Quf5xl7zy2VNatPQ0nS2Yws1Ru/Ls/YrjeHa+4Dje3bDfPJw/X0O2Lw4u+089CpXGOv9d8Ra4c3t///65sO6NUvfs0z9lr+HTGhex0F5/no1YG66OpErWVFrUWtRa1l1fXmcL3ap4F9O7/Ya/13xI7RbezbA9/ZqR0HT+Yae63/jqDWsroaaq1Cf3yvevXqio+Pz7H/s88+U7169ZwxJwAAgBKBuggAAODKWYzJ57q6XCxcuFDPP/+8Zs2apcGDB2vBggX67bffNG3aNC1YsEB9+/Z11VzdJiUlRUFBQUpOTlZgYKBTx87IyNBHH69Vp04d5e3tnePxa/1yUVtHPCMjQ6s+XquOeeTh4tjCjFuQ2KvhclFbbEZGhtZ8slbtO+adh2v5clFbbEZGhj75dK3u6JB3Hq71S8r9vD2VkZGhtWvXqk37vPNwPfyOsOXhjg6d5OmV9wW91/LvCE+Trbi4z9S1a1cZi+d1fEl5ljasi1PXrl3z/Jm4Us76W3891EWuQK1FrXUlsdRaVtRahY+1fnwvW2vXrlXXrl3zvT3Atf47wtti7HnIksd1/PE9ai1JV0WtVeiP7w0aNEiZmZl65plnlJ6ern79+qlSpUp69dVXKbwKyNfT+kPr7X359F/8w+3M2It/cTkz9uJftJfjU4g8FGbcwsTa/pA5O9bHy0M+BbwQ0cuj4HkozLgX/zJyZqzXRb8QnRnrYSl4Hjw9LAV+vXu4KNZicU2sVPA82GILM25BXQ2/I/y8PQuch2vtd0RGRkaBYwsz7sVKwu+IjIxCvW9WLIqrLjp16pRGjBihNWvWSJJ69uypOXPmqGzZsnkes3LlSs2bN0+7d+/WiRMntGfPHjVq1Mj++MmTJzVhwgStX79ef/75p0JCQnTnnXdq8uTJCgoKkiQdOnRIkydP1saNG5WUlKSKFSuqf//+Gjt2rHx8fFx2voVFrWVFrWVFrWV1vddaGRn/9w9zV/3cl4TfERfXGK76uS8JvyOotayuhlqr0E0pSRoyZIiGDBmif/75R9nZ2QoLC3P2vAAAAEqE4qiL+vXrp7/++ktxcXGSpKFDh2rAgAH6+OOP8zwmLS1NLVq00L333qshQ4bkeDwxMVGJiYmaOXOm6tWrpz/++EOPPvqoEhMT9eGHH0qSfvnlF2VnZ2vevHmqVauW9u7dqyFDhigtLU0zZ850zckCAIBr1hXd6DwzM1M33HCDQkJC7Pt//fVXeXt7KzIy0pnzAwAAuGoVR120b98+xcXFafv27WratKkkaf78+YqOjlZCQoJq166d63EDBgyQZL3aKTf169fXihUr7Ns1a9bUlClT1L9/f2VmZsrLy0udO3dW587/d+PbGjVqKCEhQW+88Ua+Tanz58/r/Pnz9u2UlBRJ1neqL3632hls4zl73JKGPFiRByvyQA5syIMVebByZR4KOmahm1IxMTF66KGHdMMNNzjs37FjhxYsWKDNmzcXdkgAAIASqTjqom3btikoKMjekJKkZs2aKSgoSFu3bs2zKXUlbPeB8Mrn/m7JyckKDs5/7Z5p06Zp4sSJOfavX79e/v7+RZ5nbjZs2OCScUsa8mBFHqzIAzmwIQ9W5MHKFXlIT08vUFyhm1J79uxRixYtcuxv1qyZhg8fXtjhAAAASqziqIuSkpJy/YhgWFiYkpLyXoK7sE6cOKHJkyfrkUceyTPmt99+05w5czRr1qx8xxozZoxGjRpl305JSVGVKlXUsWNHl9zofMOGDerQoYPTb9pakpAHK/JgRR7IgQ15sCIPVq7Mg+2q6MspdFPKYrEoNTU1x/7k5GRlZeW94gEAAMC1xpl1UWxsbK5XE11s165d9ue9lDEm1/1XIiUlRd26dVO9evU0YcKEXGMSExPVuXNn3XvvvXr44YfzHc/X11e+vr459nt7e7vsHwOuHLskIQ9W5MGKPJADG/JgRR6sXJGHgo5XsFu2X6RVq1aaNm2aQ6GVlZWladOmqWXLloUaa8uWLerRo4cqVqwoi8WiVatW5Ru/cuVKdejQQaGhoQoMDFR0dLTWrVvnEDN//ny1atVK5cqVU7ly5dS+fXvt3LmzUPMCAAAoCGfWRcOHD9e+ffvy/apfv77Cw8N17NixHMcfP35cFSpUKPI5paamqnPnzgoICNBHH32Ua1GZmJiotm3bKjo6Wm+99VaRnxMAAFyfCn2l1EsvvaTWrVurdu3aatWqlSTpq6++UkpKijZu3FiosdLS0tSwYUMNGjRI99xzz2Xjt2zZog4dOmjq1KkqW7asFi5cqB49emjHjh2KioqSJG3evFn333+/mjdvLj8/P02fPl0dO3bUTz/9pEqVKhX2dAEAAPLkzLooJCTE4WbpeYmOjlZycrJ27typ2267TZL1HlbJyclq3rx54U/iIikpKerUqZN8fX21Zs0a+fn55Yg5cuSI2rZtq8aNG2vhwoXy8Cj0e5wAAACSrqApddNNN+mHH37Qa6+9pu+//16lSpXSgw8+qOHDh1/2JpeX6tKli7p06VLg+NmzZztsT506VatXr9bHH39sb0q99957DjHz58/Xhx9+qC+++EIPPvhgruOyIoz7kQcr8mBFHqzIgxV5IAc2V8OKMJfjzLqooOrWravOnTtryJAhmjdvniRp6NCh6t69u8NNzuvUqaNp06bprrvukiSdPHlShw8fVmJioiQpISFBkhQeHq7w8HClpqaqY8eOSk9P15IlS5SSkmKviUJDQ+Xp6anExES1adNGVatW1cyZM3X8+HH784WHh7vkfAEAwLWrUE2pjIwMdezYUfPmzdPUqVNdNacCy87OVmpqar5FX3p6ujIyMvKNYUWY4kMerMiDFXmwIg9W5IEc2BTnijD5Kc666L333tOIESPUsWNHSVLPnj312muvOcQkJCQoOTnZvr1mzRoNGjTIvt23b19J0oQJExQbG6vdu3drx44dkqRatWo5jHXw4EFFRkZq/fr1OnDggA4cOKDKlSs7xBhjnHeCAADgulCoppS3t7f27t3rtJtoFtWsWbOUlpamPn365BkzevRoVapUSe3bt88zhhVh3I88WJEHK/JgRR6syAM5sLkaVoTJT3HWRcHBwVqyZEm+MZc2iWJiYhQTE5NnfJs2bS7bWLrcGAAAAIVR6I/vPfjgg3r77bf14osvumI+BbZ06VLFxsZq9erVuS6LLEnTp0/X0qVLtXnz5lzviWDDijDFhzxYkQcr8mBFHqzIAzmwKc4VYS7naqmLAAAASqJCN6UuXLigBQsWaMOGDWrSpIlKly7t8PjLL7/stMnlZdmyZRo8eLCWL1+e5xVQM2fO1NSpU/X555+rQYMGLp8TAAC4/lwNdREAAEBJVeim1N69e3XLLbdIkvbv3+/wmDsuX1+6dKkeeughLV26VN26dcs1ZsaMGXrhhRe0bt06NWnSxOVzAgAA16firosAAABKskI3pTZt2uS0Jz9z5owOHDhg3z548KDi4+MVHBysqlWrasyYMTpy5IgWL14sydqQevDBB/Xqq6+qWbNmSkpKkiSVKlVKQUFBkqwf2Xv++ef1/vvvKzIy0h4TEBCggIAAp80dAADAmXURAADA9cajKAf/9ddfOnLkyBUf/+233yoqKkpRUVGSpFGjRikqKkrjx4+XJB09elSHDx+2x8+bN0+ZmZkaNmyYIiIi7F8jR460x8ydO1cXLlxQ7969HWJmzpx5xfMEAAC4nKLWRQAAANebQl8plZ2drRdeeEGzZs3SmTNnJEllypTRU089pbFjx8rDo+B9rsut8rJo0SKH7c2bN192zEOHDhX4+QEAAIrCmXURAADA9abQTamxY8faV5lp0aKFjDH65ptvFBsbq3PnzmnKlCmumCcAAMBVh7oIAADgyhW6KfXuu+9qwYIF6tmzp31fw4YNValSJf3rX/+i+AIAANcN6iIAAIArV+hryk+ePKk6derk2F+nTh2dPHnSKZMCAAAoCaiLAAAArlyhm1INGzbUa6+9lmP/a6+9poYNGzplUgAAACUBdREAAMCVK/TH96ZPn65u3brp888/V3R0tCwWi7Zu3ao///xTa9eudcUcAQAArkrURQAAAFeu0FdKtW7dWvv379ddd92l06dP6+TJk7r77ruVkJCgVq1auWKOAAAAVyXqIgAAgCtX4Culfv/9d1WvXl0Wi0UVK1bkxp0AAOC6RV0EAABQdAW+UuqGG27Q8ePH7dv33Xefjh075pJJAQAAXM2oiwAAAIquwE0pY4zD9tq1a5WWlub0CQEAAFztqIsAAACKrtD3lAIAAAAAAACKqsBNKYvFIovFkmMfAADA9Ya6CAAAoOgKfKNzY4xiYmLk6+srSTp37pweffRRlS5d2iFu5cqVzp0hAADAVYa6CAAAoOgK3JQaOHCgw3b//v2dPhkAAICSgLoIAACg6ArclFq4cKEr5wEAAFBiUBcBAAAUHTc6BwAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAoYU6dOqUBAwYoKChIQUFBGjBggE6fPp3vMStXrlSnTp0UEhIii8Wi+Ph4h8dPnjypxx9/XLVr15a/v7+qVq2qESNGKDk5Odfxzp8/r0aNGuU6FgAAQEHQlAIAAChh+vXrp/j4eMXFxSkuLk7x8fEaMGBAvsekpaWpRYsWevHFF3N9PDExUYmJiZo5c6Z+/PFHLVq0SHFxcRo8eHCu8c8884wqVqxY5HMBAADXL6/ingAAAAAKbt++fYqLi9P27dvVtGlTSdL8+fMVHR2thIQE1a5dO9fjbE2rQ4cO5fp4/fr1tWLFCvt2zZo1NWXKFPXv31+ZmZny8vq/svGzzz7T+vXrtWLFCn322WdOOjMAAHC9oSkFAABQgmzbtk1BQUH2hpQkNWvWTEFBQdq6dWueTakrkZycrMDAQIeG1LFjxzRkyBCtWrVK/v7+BRrn/PnzOn/+vH07JSVFkpSRkaGMjAynzdc25sX/vV6RByvyYEUeyIENebAiD1auzENBx6QpBQAAUIIkJSUpLCwsx/6wsDAlJSU57XlOnDihyZMn65FHHrHvM8YoJiZGjz76qJo0aZLnVVeXmjZtmiZOnJhj//r16wvc2CqsDRs2uGTckoY8WJEHK/JADmzIgxV5sHJFHtLT0wsUR1MKAADgKhAbG5tr4+Ziu3btkiRZLJYcjxljct1/JVJSUtStWzfVq1dPEyZMsO+fM2eOUlJSNGbMmEKNN2bMGI0aNcph/CpVqqhjx44KDAx0ypxtMjIytGHDBnXo0EHe3t5OHbskIQ9W5MGKPJADG/JgRR6sXJkH21XRl1OsTaktW7ZoxowZ2r17t44ePaqPPvpId955Z57xK1eu1BtvvKH4+HidP39eN910k2JjY9WpUyeHuBUrVuj555/Xb7/9Zr8fwl133eXiswEAALhyw4cPV9++ffONiYyM1A8//KBjx47leOz48eOqUKFCkeeRmpqqzp07KyAgQB999JFDkbpx40Zt375dvr6+Dsc0adJEDzzwgN59991cx/T19c1xjCR5e3u77B8Drhy7JCEPVuTBijyQAxvyYEUerFyRh4KOV6xNqbS0NDVs2FCDBg3SPffcc9n4LVu2qEOHDpo6darKli2rhQsXqkePHtqxY4eioqIkWe+zcN9992ny5Mm666679NFHH6lPnz76+uuvHe69AAAAcDUJCQlRSEjIZeOio6OVnJysnTt36rbbbpMk7dixQ8nJyWrevHmR5pCSkqJOnTrJ19dXa9askZ+fn8Pj//nPf/TCCy/YtxMTE9WpUyctW7aMOgsAABRasTalunTpoi5duhQ4fvbs2Q7bU6dO1erVq/Xxxx/bm1KzZ89Whw4d7JeVjxkzRl9++aVmz56tpUuXOm3uAAAAxaFu3brq3LmzhgwZonnz5kmShg4dqu7duzvc5LxOnTqaNm2a/WrxkydP6vDhw0pMTJQkJSQkSJLCw8MVHh6u1NRUdezYUenp6VqyZIlSUlLsl96HhobK09NTVatWdZhLQECAJOtKfZUrV3btiQMAgGtOib6nVHZ2tlJTUxUcHGzft23bNj355JMOcZ06dcrR0LoYK8K4H3mwIg9W5MGKPFiRB3JgczWsCHO1eu+99zRixAh17NhRktSzZ0+99tprDjEJCQlKTk62b69Zs0aDBg2yb9s+KjhhwgTFxsZq9+7d2rFjhySpVq1aDmMdPHhQkZGRrjgVAABwHSvRTalZs2YpLS1Nffr0se9LSkrKcT+FChUq5LsaDSvCFB/yYEUerMiDFXmwIg/kwKY4V4S5WgUHB2vJkiX5xhhjHLZjYmIUExOTZ3ybNm1yHHM5kZGRhT4GAADApsQ2pZYuXarY2FitXr06x7LIl648c7nVaFgRxv3IgxV5sCIPVuTBijyQA5urYUUYAAAAuE6JbEotW7ZMgwcP1vLly9W+fXuHx8LDw3NcFfX333/nuxoNK8IUH/JgRR6syIMVebAiD+TApjhXhAEAAIDreBT3BApr6dKliomJ0fvvv69u3brleDw6OjrHZf7r168v8mo0AAAAAAAAcJ5ivVLqzJkzOnDggH374MGDio+PV3BwsKpWraoxY8boyJEjWrx4sSRrQ+rBBx/Uq6++qmbNmtmviCpVqpSCgoIkSSNHjtTtt9+ul156Sb169dLq1av1+eef6+uvv3b/CQIAAAAAACBXxXql1LfffquoqChFRUVJkkaNGqWoqCiNHz9eknT06FEdPnzYHj9v3jxlZmZq2LBhioiIsH+NHDnSHtO8eXN98MEHWrhwoRo0aKBFixZp2bJlatq0qXtPDgAAAAAAAHkq1iulLrfKy6JFixy2N2/eXKBxe/furd69exdhZgAAAAAAAHClEndPKQAAAAAAAJR8NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAAAAAA4HY0pQAAAAAAAOB2NKUAAAAAAADgdjSlAAAASphTp05pwIABCgoKUlBQkAYMGKDTp0/ne8zKlSvVqVMnhYSEyGKxKD4+3uHxkydP6vHHH1ft2rXl7++vqlWrasSIEUpOTs4x1qeffqqmTZuqVKlSCgkJ0d133+3EswMAANcLmlIAAAAlTL9+/RQfH6+4uDjFxcUpPj5eAwYMyPeYtLQ0tWjRQi+++GKujycmJioxMVEzZ87Ujz/+qEWLFikuLk6DBw92iFuxYoUGDBigQYMG6fvvv9c333yjfv36Oe3cAADA9cOruCcAAACAgtu3b5/i4uK0fft2NW3aVJI0f/58RUdHKyEhQbVr1871OFvT6tChQ7k+Xr9+fa1YscK+XbNmTU2ZMkX9+/dXZmamvLy8lJmZqZEjR2rGjBkOzaq8nhMAACA/NKUAAABKkG3btikoKMjekJKkZs2aKSgoSFu3bnVqgyg5OVmBgYHy8rKWjN99952OHDkiDw8PRUVFKSkpSY0aNdLMmTN100035TnO+fPndf78eft2SkqKJCkjI0MZGRlOm69tzIv/e70iD1bkwYo8kAMb8mBFHqxcmYeCjklTCgAAoARJSkpSWFhYjv1hYWFKSkpy2vOcOHFCkydP1iOPPGLf9/vvv0uSYmNj9fLLLysyMlKzZs1S69attX//fgUHB+c61rRp0zRx4sQc+9evXy9/f3+nzfliGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAADAVSA2NjbXxs3Fdu3aJUmyWCw5HjPG5Lr/SqSkpKhbt26qV6+eJkyYYN+fnZ0tSRo7dqzuueceSdLChQtVuXJlLV++3KGBdbExY8Zo1KhRDuNXqVJFHTt2VGBgoFPmbJORkaENGzaoQ4cO8vb2durYJQl5sCIPVuSBHNiQByvyYOXKPNiuir6cYm1KbdmyRTNmzNDu3bt19OhRffTRR7rzzjvzjD969Kieeuop7d69W7/++qtGjBih2bNn54ibPXu23njjDR0+fFghISHq3bu3pk2bJj8/P9edDAAAQBEMHz5cffv2zTcmMjJSP/zwg44dO5bjsePHj6tChQpFnkdqaqo6d+6sgIAAffTRRw5FakREhCSpXr169n2+vr6qUaOGDh8+nOeYvr6+8vX1zbHf29vbZf8YcOXYJQl5sCIPVuSBHNiQByvyYOWKPBR0vGJtSqWlpalhw4YaNGiQ/d22/Jw/f16hoaEaO3asXnnllVxj3nvvPY0ePVrvvPOOmjdvrv379ysmJkaS8jwGAACguIWEhCgkJOSycdHR0UpOTtbOnTt12223SZJ27Nih5ORkNW/evEhzSElJUadOneTr66s1a9bkeEOvcePG8vX1VUJCglq2bCnJ+i7roUOHVK1atSI9NwAAuP4Ua1OqS5cu6tKlS4HjIyMj9eqrr0qS3nnnnVxjtm3bphYtWtiXJo6MjNT999+vnTt35jkuN990P/JgRR6syIMVebAiD+TA5mq4+ebVqG7duurcubOGDBmiefPmSZKGDh2q7t27O9zkvE6dOpo2bZruuusuSdLJkyd1+PBhJSYmSpISEhIkSeHh4QoPD1dqaqo6duyo9PR0LVmyRCkpKfaaKDQ0VJ6engoMDNSjjz6qCRMmqEqVKqpWrZpmzJghSbr33nvdlgMAAHBtuObuKdWyZUstWbLE/u7h77//rrVr12rgwIF5HsPNN4sPebAiD1bkwYo8WJEHcmBTnDffvFq99957GjFihDp27ChJ6tmzp1577TWHmISEBCUnJ9u316xZo0GDBtm3bR8VnDBhgmJjY7V7927t2LFDklSrVi2HsQ4ePKjIyEhJ0owZM+Tl5aUBAwbo7Nmzatq0qTZu3Khy5co5/TwBAMC17ZprSvXt21fHjx9Xy5YtZYxRZmamHnvsMY0ePTrPY7j5pvuRByvyYEUerMiDFXkgBzZXw803r1bBwcFasmRJvjHGGIftmJgY+y0NctOmTZscx+TG29tbM2fO1MyZMws0VwAAgLxcc02pzZs3a8qUKZo7d66aNm2qAwcOaOTIkYqIiNDzzz+f6zHcfLP4kAcr8mBFHqzIgxV5IAc2xXnzTQAAALjONdeUev755zVgwAA9/PDDkqSbb75ZaWlpGjp0qMaOHSsPD49iniEAAAAAAACuuQ5Nenp6jsaTp6enjDEFuiQdAAAAAAAArlesV0qdOXNGBw4csG8fPHhQ8fHxCg4OVtWqVTVmzBgdOXJEixcvtsfEx8fbjz1+/Lji4+Pl4+OjevXqSZJ69Oihl19+WVFRUfaP7z3//PPq2bOnPD093Xp+AAAAAAAAyF2xNqW+/fZbtW3b1r5tu9n4wIEDtWjRIh09elSHDx92OCYqKsr+/7t379b777+vatWq6dChQ5KkcePGyWKxaNy4cTpy5IhCQ0PVo0cPTZkyxfUnBAAAAAAAgAIp1qbU5VZ5WbRoUY59l/sInpeXlyZMmKAJEyYUdXoAAAAAAABwkWvunlIAAAAAAAC4+tGUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAAAAAIDb0ZQCAAAAAACA29GUAgAAAAAAgNvRlAIAAChhTp06pQEDBigoKEhBQUEaMGCATp8+ne8xK1euVKdOnRQSEiKLxaL4+HiHx0+ePKnHH39ctWvXlr+/v6pWraoRI0YoOTnZIW7//v3q1auXQkJCFBgYqBYtWmjTpk1OPkMAAHA9oCkFAABQwvTr10/x8fGKi4tTXFyc4uPjNWDAgHyPSUtLU4sWLfTiiy/m+nhiYqISExM1c+ZM/fjjj1q0aJHi4uI0ePBgh7hu3bopMzNTGzdu1O7du9WoUSN1795dSUlJTjs/AABwffAq7gkAAACg4Pbt26e4uDht375dTZs2lSTNnz9f0dHRSkhIUO3atXM9zta0OnToUK6P169fXytWrLBv16xZU1OmTFH//v2VmZkpLy8v/fPPPzpw4IDeeecdNWjQQJL04osvau7cufrpp58UHh6e69jnz5/X+fPn7dspKSmSpIyMDGVkZBQuAZdhG8/Z45Y05MGKPFiRB3JgQx6syIOVK/NQ0DFpSgEAAJQg27ZtU1BQkL0hJUnNmjVTUFCQtm7dmmdT6kokJycrMDBQXl7WkrF8+fKqW7euFi9erFtuuUW+vr6aN2+eKlSooMaNG+c5zrRp0zRx4sQc+9evXy9/f3+nzfdiGzZscMm4JQ15sCIPVuSBHNiQByvyYOWKPKSnpxcojqYUAABACZKUlKSwsLAc+8PCwpz6EboTJ05o8uTJeuSRR+z7LBaLNmzYoF69eqlMmTLy8PBQhQoVFBcXp7Jly+Y51pgxYzRq1Cj7dkpKiqpUqaKOHTsqMDDQaXOWrO/MbtiwQR06dJC3t7dTxy5JyIMVebAiD+TAhjxYkQcrV+bBdlX05RRrU2rLli2aMWOGdu/eraNHj+qjjz7SnXfemWf80aNH9dRTT2n37t369ddfNWLECM2ePTtH3OnTpzV27FitXLlSp06dUvXq1TVr1ix17drVdScDAABQBLGxsbleTXSxXbt2SbI2hy5ljMl1/5VISUlRt27dVK9ePU2YMMHhOf71r38pLCxMX331lUqVKqUFCxaoe/fu2rVrlyIiInIdz9fXV76+vjn2e3t7u+wfA64cuyQhD1bkwYo8kAMb8mBFHqxckYeCjlesTam0tDQ1bNhQgwYN0j333HPZ+PPnzys0NFRjx47VK6+8kmvMhQsX1KFDB4WFhenDDz9U5cqV9eeff6pMmTLOnj4AAIDTDB8+XH379s03JjIyUj/88IOOHTuW47Hjx4+rQoUKRZ5HamqqOnfurICAAH300UcOReXGjRv1ySef6NSpU/YrnObOnasNGzbo3Xff1ejRo4v8/AAA4PpRrE2pLl26qEuXLgWOj4yM1KuvvipJeuedd3KNeeedd3Ty5Elt3brVXkRVq1at6JMFAABwoZCQEIWEhFw2Ljo6WsnJydq5c6duu+02SdKOHTuUnJys5s2bF2kOKSkp6tSpk3x9fbVmzRr5+fk5PG67P4SHh+MCzh4eHsrOzi7ScwMAgOvPNXdPqTVr1ig6OlrDhg3T6tWrFRoaqn79+unZZ5+Vp6dnrsewIoz7kQcr8mBFHqzIgxV5IAc2V8OKMFejunXrqnPnzhoyZIjmzZsnSRo6dKi6d+/ucJPzOnXqaNq0abrrrrskSSdPntThw4eVmJgoSUpISJAkhYeHKzw8XKmpqerYsaPS09O1ZMkSpaSk2Gui0NBQeXp6Kjo6WuXKldPAgQM1fvx4lSpVSvPnz9fBgwfVrVs3d6YBAABcA665ptTvv/+ujRs36oEHHtDatWv166+/atiwYcrMzNT48eNzPYYVYYoPebAiD1bkwYo8WJEHcmBTnCvCXK3ee+89jRgxQh07dpQk9ezZU6+99ppDTEJCgpKTk+3ba9as0aBBg+zbto8KTpgwQbGxsdq9e7d27NghSapVq5bDWAcPHlRkZKRCQkIUFxensWPH6o477lBGRoZuuukmrV69Wg0bNnTJuQIAgGvXNdeUys7OVlhYmN566y15enqqcePGSkxM1IwZM/JsSrEijPuRByvyYEUerMiDFXkgBzZXw4owV6vg4GAtWbIk3xhjjMN2TEyMYmJi8oxv06ZNjmNy06RJE61bt65A8wQAAMjPNdeUioiIkLe3t8NH9erWraukpCRduHBBPj4+OY5hRZjiQx6syIMVebAiD1bkgRzYFOeKMAAAAHAdj8uHlCwtWrTQgQMHHG62uX//fkVEROTakAIAAAAAAID7FeuVUmfOnNGBAwfs2wcPHlR8fLyCg4NVtWpVjRkzRkeOHNHixYvtMfHx8fZjjx8/rvj4ePn4+KhevXqSpMcee0xz5szRyJEj9fjjj+vXX3/V1KlTNWLEiALPy3bpuisu7c/IyFB6erpSUlKu63dpyYMVebAiD1bkwYo8kAMbV+bB9je+IB9Xg/NRa7keebAiD1bkgRzYkAcr8mB1NdRaFlOM1djmzZvVtm3bHPsHDhyoRYsWKSYmRocOHdLmzZvtj1kslhzx1apV06FDh+zb27Zt05NPPqn4+HhVqlRJgwcPznf1vUv99ddfqlKlSqHPBwAAlCx//vmnKleuXNzTuO5QawEAcH24XK1VrE2pq1V2drYSExNVpkyZXJtgRWG7ifqff/7p9JuolyTkwYo8WJEHK/JgRR7IgY0r82CMUWpqqipWrCgPj2vubgZXPWot1yMPVuTBijyQAxvyYEUerK6GWuuau9G5M3h4eLj8XdPAwMDr+sVvQx6syIMVebAiD1bkgRzYuCoPQUFBTh8TBUOt5T7kwYo8WJEHcmBDHqzIg1Vx1lq8NQgAAAAAAAC3oykFAAAAAAAAt6Mp5Wa+vr6aMGGCfH19i3sqxYo8WJEHK/JgRR6syAM5sCEPuBK8bqzIgxV5sCIP5MCGPFiRB6urIQ/c6BwAAAAAAABux5VSAAAAAAAAcDuaUgAAAAAAAHA7mlIAAAAAAABwO5pSAAAAAAAAcDuaUk4wd+5cVa9eXX5+fmrcuLG++uqrfOO//PJLNW7cWH5+fqpRo4befPPNHDErVqxQvXr15Ovrq3r16umjjz5y1fSdxtl5+Omnn3TPPfcoMjJSFotFs2fPduHsncPZOZg/f75atWqlcuXKqVy5cmrfvr127tzpylNwCmfnYeXKlWrSpInKli2r0qVLq1GjRvrvf//rylNwClf8brD54IMPZLFYdOeddzp51s7n7DwsWrRIFoslx9e5c+dceRpF5orXw+nTpzVs2DBFRETIz89PdevW1dq1a111Ck7h7Dy0adMm19dDt27dXHkacCPqLCvqLCtqLStqLStqLStqLeosmxJZZxkUyQcffGC8vb3N/Pnzzc8//2xGjhxpSpcubf74449c43///Xfj7+9vRo4caX7++Wczf/584+3tbT788EN7zNatW42np6eZOnWq2bdvn5k6darx8vIy27dvd9dpFZor8rBz507z9NNPm6VLl5rw8HDzyiuvuOlsrowrctCvXz/z+uuvmz179ph9+/aZQYMGmaCgIPPXX3+567QKzRV52LRpk1m5cqX5+eefzYEDB8zs2bONp6eniYuLc9dpFZor8mBz6NAhU6lSJdOqVSvTq1cvF59J0bgiDwsXLjSBgYHm6NGjDl9XM1fk4fz586ZJkyama9eu5uuvvzaHDh0yX331lYmPj3fXaRWaK/Jw4sQJh9fB3r17jaenp1m4cKGbzgquRJ1lRZ1lRa1lRa1lRa1lRa1FnWVTUussmlJFdNttt5lHH33UYV+dOnXM6NGjc41/5plnTJ06dRz2PfLII6ZZs2b27T59+pjOnTs7xHTq1Mn07dvXSbN2Plfk4WLVqlW76oslV+fAGGMyMzNNmTJlzLvvvlv0CbuIO/JgjDFRUVFm3LhxRZusC7kqD5mZmaZFixZmwYIFZuDAgVd9oeSKPCxcuNAEBQU5fa6u5Io8vPHGG6ZGjRrmwoULzp+wi7jj98Mrr7xiypQpY86cOVP0CaPYUWdZUWdZUWtZUWtZUWtZUWtRZ9mU1DqLj+8VwYULF7R792517NjRYX/Hjh21devWXI/Ztm1bjvhOnTrp22+/VUZGRr4xeY1Z3FyVh5LEXTlIT09XRkaGgoODnTNxJ3NHHowx+uKLL5SQkKDbb7/deZN3IlfmYdKkSQoNDdXgwYOdP3Enc2Uezpw5o2rVqqly5crq3r279uzZ4/wTcBJX5WHNmjWKjo7WsGHDVKFCBdWvX19Tp05VVlaWa06kiNz1e/Ltt99W3759Vbp0aedMHMWGOsuKOsuKWsuKWsuKWsuKWos6y6Yk11k0pYrgn3/+UVZWlipUqOCwv0KFCkpKSsr1mKSkpFzjMzMz9c8//+Qbk9eYxc1VeShJ3JWD0aNHq1KlSmrfvr1zJu5krsxDcnKyAgIC5OPjo27dumnOnDnq0KGD80/CCVyVh2+++UZvv/225s+f75qJO5mr8lCnTh0tWrRIa9as0dKlS+Xn56cWLVro119/dc2JFJGr8vD777/rww8/VFZWltauXatx48Zp1qxZmjJlimtOpIjc8Xty586d2rt3rx5++GHnTRzFhjrLijrLilrLilrLilrLilqLOsumJNdZXk4d7TplsVgcto0xOfZdLv7S/YUd82rgijyUNK7MwfTp07V06VJt3rxZfn5+Tpit67giD2XKlFF8fLzOnDmjL774QqNGjVKNGjXUpk0b503cyZyZh9TUVPXv31/z589XSEiI8yfrQs5+PTRr1kzNmjWzP96iRQvdcsstmjNnjv7zn/84a9pO5+w8ZGdnKywsTG+99ZY8PT3VuHFjJSYmasaMGRo/fryTZ+88rvw9+fbbb6t+/fq67bbbnDBTXC2os6yos6yotayotayotayotaizbEpinUVTqghCQkLk6emZo/P4999/5+g42oSHh+ca7+XlpfLly+cbk9eYxc1VeShJXJ2DmTNnaurUqfr888/VoEED507eiVyZBw8PD9WqVUuS1KhRI+3bt0/Tpk27KgslV+Thp59+0qFDh9SjRw/749nZ2ZIkLy8vJSQkqGbNmk4+k6Jx1+8GDw8P3XrrrVflu3eS6/IQEREhb29veXp62mPq1q2rpKQkXbhwQT4+Pk4+k6Jx9eshPT1dH3zwgSZNmuTciaPYUGdZUWdZUWtZUWtZUWtZUWtRZ9mU5DqLj+8VgY+Pjxo3bqwNGzY47N+wYYOaN2+e6zHR0dE54tevX68mTZrI29s735i8xixurspDSeLKHMyYMUOTJ09WXFycmjRp4vzJO5E7XwvGGJ0/f77ok3YBV+ShTp06+vHHHxUfH2//6tmzp9q2bav4+HhVqVLFZedzpdz1ejDGKD4+XhEREc6ZuJO5Kg8tWrTQgQMH7AWzJO3fv18RERFXXaEkuf718L///U/nz59X//79nTtxFBvqLCvqLCtqLStqLStqLStqLeosmxJdZzntlunXKduyi2+//bb5+eefzRNPPGFKly5tDh06ZIwxZvTo0WbAgAH2eNuyi08++aT5+eefzdtvv51j2cVvvvnGeHp6mhdffNHs27fPvPjiiyVmqWJn5uH8+fNmz549Zs+ePSYiIsI8/fTTZs+ePebXX391+/kVhCty8NJLLxkfHx/z4YcfOizFmZqa6vbzKyhX5GHq1Klm/fr15rfffjP79u0zs2bNMl5eXmb+/PluP7+CckUeLlUSVoRxRR5iY2NNXFyc+e2338yePXvMoEGDjJeXl9mxY4fbz6+gXJGHw4cPm4CAADN8+HCTkJBgPvnkExMWFmZeeOEFt59fQbny56Jly5bmvvvuc9u5wD2os6yos6yotayotayotayotaizbEpqnUVTyglef/11U61aNePj42NuueUW8+WXX9ofGzhwoGndurVD/ObNm01UVJTx8fExkZGR5o033sgx5vLly03t2rWNt7e3qVOnjlmxYoWrT6PInJ2HgwcPGkk5vi4d52ri7BxUq1Yt1xxMmDDBDWdz5Zydh7Fjx5patWoZPz8/U65cORMdHW0++OADd5xKkbjid8PFSkKhZIzz8/DEE0+YqlWrGh8fHxMaGmo6duxotm7d6o5TKRJXvB62bt1qmjZtanx9fU2NGjXMlClTTGZmpqtPpUhckYf/x96dh0VV9/8ffw07iKAICK64lEtuqKVopZZrbi1WZpqo2aZpWXfpbSlWaqWW3ZZlWnp7W+ZdaloZaplZuWbSaqilaSLl7QIILiCf3x/nN/N1ZBFkZgB9Pq6Lq86ZzznzOS8GePueM+ckJycbSWbNmjXunj5KAXWWhTrLQq1lodayUGtZqLWos+zKY51lM+b/X8kKAAAAAAAA8BCuKQUAAAAAAACPoykFAAAAAAAAj6MpBQAAAAAAAI+jKQUAAAAAAACPoykFAAAAAAAAj6MpBQAAAAAAAI+jKQUAAAAAAACPoykFAAAAAAAAj6MpBaDcSkhIUIsWLTz+vOvXr5fNZpPNZtPNN99cpG0SEhIc28ycOdOt8wMAAHAFai0A7kZTCkCZZC8qCvqKj4/X448/rs8//7zU5picnKwFCxYUaezjjz+uQ4cOqUaNGu6dFAAAQBFQawEoC3xKewIAkJ9Dhw45/n/JkiWaMGGCkpOTHesCAwMVHBys4ODg0pieJCkyMlKVKlUq0lj7XL29vd07KQAAgCKg1gJQFnCmFIAyKSoqyvEVGhoqm82WZ935p5THx8fr5ptv1pQpU1S1alVVqlRJkyZNUk5Ojv7xj38oLCxMNWrU0Ntvv+30XAcPHtSdd96pypUrq0qVKurbt6/27dtX7Dl/8MEHatq0qQIDA1WlShV17txZmZmZJUwCAADA9ai1AJQFNKUAXFLWrVunlJQUbdiwQS+99JISEhLUq1cvVa5cWVu2bNEDDzygBx54QAcOHJAkZWVlqVOnTgoODtaGDRv09ddfKzg4WN27d9eZM2eK/LyHDh3SXXfdpaFDh2rnzp1av369br31Vhlj3HWoAAAAHketBcCVaEoBuKSEhYXpX//6lxo0aKChQ4eqQYMGysrK0j//+U9dccUVGjdunPz8/PTNN99Ikt577z15eXlp3rx5atq0qRo1aqT58+dr//79Wr9+fZGf99ChQ8rJydGtt96qmJgYNW3aVA899FCpnvIOAADgatRaAFyJa0oBuKRcddVV8vL6v3571apV1aRJE8eyt7e3qlSpor///luStH37du3Zs0cVK1Z02s+pU6f022+/Ffl5mzdvrhtvvFFNmzZVt27d1LVrV/Xr10+VK1cu4REBAACUHdRaAFyJphSAS4qvr6/Tss1my3ddbm6uJCk3N1etWrXSO++8k2dfERERRX5eb29vrV27Vhs3btSaNWs0a9YsjR8/Xlu2bFGdOnUu4kgAAADKHmotAK7Ex/cAXNZatmyp3bt3KzIyUvXr13f6Cg0NLda+bDab2rdvr0mTJmnHjh3y8/PT8uXL3TRzAACAso9aC0BhaEoBuKzdfffdCg8PV9++ffXVV19p7969+vLLLzV69Gj9+eefRd7Pli1bNGXKFH377bfav3+/li1bpsOHD6tRo0ZunD0AAEDZRq0FoDB8fA/AZS0oKEgbNmzQk08+qVtvvVUZGRmqXr26brzxRoWEhBR5PyEhIdqwYYNmzpyp9PR01a5dWzNmzFCPHj3cOHsAAICyjVoLQGFshntoAkCxrF+/Xp06ddKxY8dUqVKlYm0bExOjRx55RI888ohb5gYAAFDeUWsBlw8+vgcAF6lGjRq66667ijR2ypQpCg4O1v79+908KwAAgEsDtRZw6eNMKQAoppMnT+rgwYOSpODgYEVFRV1wm6NHj+ro0aOSrDvNFPfCngAAAJcLai3g8kFTCgAAAAAAAB7Hx/cAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pYBiWLBggWw2m7799luX7G/Hjh3q0KGDQkNDZbPZNHPmTK1atUoJCQnF2s9TTz2lWrVqycfHR5UqVXLJ3M5XVucFFORiXrMAAPez11P2Lx8fH0VHR6t///7avXt3nvEdO3ZUx44dL+q54uPjFRwcfMFxWVlZSkhI0Pr164u87/zqOFcrq/MCCnIxr1lc3nxKewLA5Wzo0KHKzMzUe++9p8qVKysmJkbPPfecXnvttSL/Y3rFihWaPHmyxo8frx49esjf398tc121alWZnBdQkOK+ZgEAnjV//nw1bNhQp06d0jfffKPJkyfriy++0K+//qrKlSs7xs2ePdvtc8nKytKkSZMkqcgNsPzquMtlXkBBLuY1i8sbTSmgFP30008aPny4evToUaJ9SNKoUaMUGRnpqqmVmDvmlZWVpaCgIJfsCwAAlK4mTZqodevWkqx/vJ49e1YTJ07Uhx9+qCFDhjjGNW7cuLSmWChX1HHu4Op5ZWdnO85oAwBX4+N7gBvs3r1bAwYMUGRkpPz9/dWoUSO99tprjsftp63n5OTo9ddfd5y+Hh8f7xh37mnt+/bty/d5YmJi9NRTT0mSqlatKpvN5jgrJDc3Vy+++KIaNmwof39/RUZG6p577tGff/6ZZz9vv/22mjdvroCAAIWFhemWW27Rzp07HY+Xxrw6duyoJk2aaMOGDWrXrp2CgoI0dOhQSdLx48f12GOPqW7duo593HTTTfr1118d2585c0bPPfec43kiIiI0ZMgQHT58ON85X4wTJ06oUqVKuv/++/M8tm/fPnl7e2vatGmF7uP06dN65pln1KhRIwUEBKhKlSrq1KmTNm7c6Bhz6tQpjRs3TnXq1JGfn5+qV6+uESNG6Pjx4077iomJUa9evfTxxx8rNjZWgYGBatSokT7++GNJ1uuuUaNGqlChgq655po8H0O1f8Th559/1o033qgKFSooIiJCI0eOVFZWltPY4s4pMTFRLVu2VGBgoBo2bKi33347Txapqam6//77VaNGDfn5+alOnTqaNGmScnJynHK12WyaPn26XnrpJdWpU0fBwcGKi4vT5s2bnY6lOK9ZAEDpszeo/vrrL6f1+X18788//1S/fv1UsWJFVapUSXfffbe2bdsmm82mBQsW5Nn3nj17dNNNNyk4OFg1a9bUY489ptOnT0uy/rZERERIkiZNmuRUl+WnoDrO7qefflLfvn1VuXJlBQQEqEWLFvr3v/+dZz/79+/XwIEDnerFGTNmKDc3t9TmtX79etlsNv3nP//RY489purVq8vf31979uyRJCUmJurGG29UaGiogoKC1KhRI02dOtVpH99++6369OmjsLAwBQQEKDY2Vv/973/znfPFevbZZ+Xj46MDBw7keWzo0KGqUqWKTp06Veg+tmzZot69e6tKlSoKCAhQvXr19MgjjziN+frrr3XjjTeqYsWKCgoKUrt27fTJJ584jbHnvm7dOg0fPlxVqlRRSEiI7rnnHmVmZio1NVV33HGHKlWqpOjoaD3++OPKzs52bG+vbV588UVNnjxZtWrVUkBAgFq3bq3PP/88z7yLM6cvvvhCDz74oMLDw1WlShXdeuutSklJybPPJUuWKC4uThUqVFBwcLC6deumHTt2OI2x14mu/FkCJEkGQJHNnz/fSDLbtm0rcMzPP/9sQkNDTdOmTc3ChQvNmjVrzGOPPWa8vLxMQkKCMcaYv//+22zatMlIMv369TObNm0ymzZtMnv27DH9+vUzkhzrNm3aZE6dOpXvc3333Xdm2LBhRpJJTEw0mzZtMgcOHDDGGHPfffcZSWbkyJEmMTHRvPHGGyYiIsLUrFnTHD582LGPKVOmGEnmrrvuMp988olZuHChqVu3rgkNDTW7du0yxphSmVeHDh1MWFiYqVmzppk1a5b54osvzJdffmnS09PNVVddZSpUqGCeeeYZs3r1arN06VIzevRos27dOmOMMWfPnjXdu3c3FSpUMJMmTTJr16418+bNM9WrVzeNGzc2WVlZRf2WX9Cjjz5qKlSoYI4fP+60/h//+IcJCAgw//vf/wrcNjs723Tq1Mn4+PiYxx9/3KxatcqsXLnS/POf/zSLFy82xhiTm5trunXrZnx8fMzTTz9t1qxZY6ZPn24qVKhgYmNjnb4HtWvXNjVq1DBNmjQxixcvNqtWrTJt2rQxvr6+ZsKECaZ9+/Zm2bJlZvny5ebKK680VatWdcpi8ODBxs/Pz9SqVctMnjzZrFmzxiQkJBgfHx/Tq1cvx7iLmVPjxo3NwoULzerVq83tt99uJJkvv/zSMe7QoUOmZs2apnbt2mbOnDnms88+M88++6zx9/c38fHxjnF79+41kkxMTIzp3r27+fDDD82HH35omjZtaipXruz4PhT3NQsA8JyC6qlXX33VSDJLly51Wt+hQwfToUMHx/KJEydM/fr1TVhYmHnttdfM6tWrzaOPPmrq1KljJJn58+c7xtr/tjVq1MhMnz7dfPbZZ2bChAnGZrOZSZMmGWOMOXXqlElMTDSSzLBhw5zqsvwUVMcZY8yvv/5qKlasaOrVq2cWLlxoPvnkE3PXXXcZSeaFF15w2kf16tVNRESEeeONN0xiYqIZOXKkkWQefPDBUpvXF198YSSZ6tWrm379+pmVK1eajz/+2Bw5csTMmzfP2Gw207FjR/Puu++azz77zMyePds89NBDju3XrVtn/Pz8zHXXXWeWLFliEhMTTXx8fJ7vS0n99ddfxt/f34wfP95p/ZEjR0xgYKD5xz/+Uej2iYmJxtfX1zRr1swsWLDArFu3zrz99tumf//+jjHr1683vr6+plWrVmbJkiXmww8/NF27djU2m8289957jnH213OdOnXMY489ZtasWWNeeOEF4+3tbe666y7TsmVL89xzz5m1a9eaJ5980kgyM2bMcGxvr21q1qxprr32WrN06VLz/vvvm6uvvtr4+vqajRs3XvSc6tatax5++GGzevVqM2/ePFO5cmXTqVMnpywmT55sbDabGTp0qPn444/NsmXLTFxcnKlQoYL5+eefHePc8bMEGGMMTSmgGIrSlOrWrZupUaOGSUtLc1o/cuRIExAQYI4ePepYJ8mMGDHCadyIESNMcfrFEydONJKcGjo7d+40kpyKBGOM2bJli5Fk/vnPfxpjjDl27JgJDAw0N910k9O4/fv3G39/fzNgwIBSmZcxVgEqyXz++edOY5955hkjyaxdu7bA5168eHG+Re22bduMJDN79uwiH8eF/Pbbb8bLy8u8/PLLjnUnT540VapUMUOGDCl024ULFxpJZu7cuQWOsf9hf/HFF53WL1myxEgyb775pmNd7dq1TWBgoPnzzz8d65KSkowkEx0dbTIzMx3rP/zwQyPJrFy50rFu8ODBRpJ55ZVXnJ5r8uTJRpL5+uuvL2pOAQEB5o8//nDKJywszNx///2Odffff78JDg52GmeMMdOnTzeSHEWRvXBr2rSpycnJcYzbunWrkeRo5hlT/NcsAMAz7PXU5s2bTXZ2tsnIyDCJiYkmKirKXH/99SY7O9tp/PlNqddee81IMp9++qnTuPvvvz/fppQk89///tdp7E033WQaNGjgWD58+LCRZCZOnFjk48ivjuvfv7/x9/c3+/fvd1rfo0cPExQU5HjzZOzYsUaS2bJli9O4Bx980NhsNpOcnFwq87I3pa6//nqncRkZGSYkJMRce+21Jjc3t8DnbtiwoYmNjc3zPezVq5eJjo42Z8+eLfJxXMjgwYNNZGSkOX36tGPdCy+8YLy8vMzevXsL3bZevXqmXr165uTJkwWOadu2rYmMjDQZGRmOdTk5OaZJkyamRo0ajhzsr+eHH37Yafubb77ZSDIvvfSS0/oWLVqYli1bOpbttU21atWc5pOenm7CwsJM586dL3pO59fcL774opFkDh06ZIyxan4fH588c8/IyDBRUVHmjjvucKxz588SLm98fA9woVOnTunzzz/XLbfcoqCgIOXk5Di+brrpJp06dcrpI0bu8sUXX0hSnlNlr7nmGjVq1MhxKvCmTZt08uTJPONq1qypG264Id9Thj0xL7vKlSvrhhtucFr36aef6sorr1Tnzp0LfJ6PP/5YlSpVUu/evZ2+By1atFBUVFShdwMxxjhtc+5Hx/JTt25d9erVS7Nnz5YxRpL07rvv6siRIxo5cmSh23766acKCAhwfCwxP+vWrZOUN7Pbb79dFSpUyJNZixYtVL16dcdyo0aNJFkffTj3elz29X/88Uee57z77rudlgcMGCDp/75/FzOnWrVqOZYDAgJ05ZVXOj33xx9/rE6dOqlatWpO2duvh/Hll1867bNnz57y9vZ2LDdr1qzA4wEAlE1t27aVr6+vKlasqO7du6ty5cpasWLFBa9d9OWXXzq2Odddd92V73ibzabevXs7rWvWrJlb/masW7dON954o2rWrOm0Pj4+XllZWdq0aZNjXOPGjXXNNdfkGWeMcfyt9fS87G677Tan5Y0bNyo9PV0PPfSQ00cCz7Vnzx79+uuvjjri/Dr40KFDSk5OLnCOZ8+eddrG/jHGgowePVp///233n//fUnWJSJef/119ezZs9CLu+/atUu//fabhg0bpoCAgHzHZGZmasuWLerXr5/T3Ru9vb01aNAg/fnnn3mOpVevXk7L9lqrZ8+eedbn99q79dZbneZTsWJF9e7dWxs2bNDZs2cvak59+vRxWj6/Xlq9erVycnJ0zz33OGUfEBCgDh065KmZPfmzhMsHTSnAhY4cOaKcnBzNmjVLvr6+Tl833XSTJOl///ufR+YhSdHR0Xkeq1atmuPxoo7z9Lzs8ht3+PBh1ahRo9Dn+euvv3T8+HH5+fnl+T6kpqYW+j348ssv82xzoesQjR49Wrt379batWslSa+99pri4uLUsmXLQrc7fPiwqlWrJi+vgn8VHzlyRD4+Po7P59vZbDZFRUXlySwsLMxp2c/Pr9D1519vwcfHR1WqVHFaFxUV5ZjLxczp/P1Jkr+/v06ePOlY/uuvv/TRRx/lyf6qq66SlPfn5vx92u/ueO4+AQBl28KFC7Vt2zatW7dO999/v3bu3FlgY+lcR44cUdWqVfOsz2+dJAUFBeVpPvj7+1/wmkMX48iRIwXWOfbHizPO0/OyO3+s/ZqchdVg9muBPf7443n+nj/00EOSCq+Db7zxRqdtCnvTTpJiY2N13XXXOa4h+fHHH2vfvn0XfFOwKMdy7NgxGWOKlVlxarD8Xnv2euv8dWfOnNGJEycuak4Xqpfs37Orr746z/dsyZIleb5fnvxZwuWDWygALlS5cmXHuxUjRozId0ydOnXcPg/7H6BDhw7l+YObkpKi8PDwPOPOd+44T8/LLr934iIiIvK9WPu57BdzTExMzPfxihUrFrhtq1attG3bNqd19j/0BbnhhhvUpEkTvfrqqwoODtZ3332nRYsWFbqNZB3L119/rdzc3AIbU1WqVFFOTo4OHz7s1AQyxig1NVVXX331BZ+nOHJycnTkyBGnIiY1NdUxF3fNKTw8XM2aNdPkyZPzffxC3wMAQPnTqFEjx8XNO3XqpLNnz2revHn64IMP1K9fvwK3q1KlirZu3Zpnvf3vVWmqUqVKgXWVJKcarCjjPD0vu/NrMPvf+8JqMPs+xo0bp1tvvTXfMQ0aNChw+zlz5igjIyPP/gozatQo3X777fruu+/06quv6sorr1SXLl0K3aYox1K5cmV5eXl59HuU3+s3NTVVfn5+Cg4Olo+Pj8vnZB//wQcfqHbt2hcxa6DkOFMKcKGgoCB16tRJO3bsULNmzdS6des8X/mdNXIuV5zxYf/I2/mNkW3btmnnzp268cYbJUlxcXEKDAzMM+7PP/90nOZdGvMqTI8ePbRr165CT2vv1auXjhw5orNnz+b7PSisIKpYsWKe8fZ3ugozatQoffLJJxo3bpyqVq2q22+/vUjHcurUqXzvEmRnz+T8zJYuXarMzMwiZVZc77zzjtPyu+++K0mOOx+5Y069evXSTz/9pHr16uX7PbuYphRnTwFA+fLiiy+qcuXKmjBhQqEf3erQoYMyMjL06aefOq1/7733Lvq5XfU348Ybb9S6devy3OFs4cKFCgoKUtu2bR3jfvnlF3333Xd5xtlsNnXq1KlU5lWQdu3aKTQ0VG+88YbjcgXna9Cgga644gp9//33+f4tb926daFvDDZo0MBpbGEfwbO75ZZbVKtWLT322GP67LPPCv14od2VV16pevXq6e2333bcNe58FSpUUJs2bbRs2TKn7HNzc7Vo0SLVqFFDV1555QXnVxzLli1zOuMoIyNDH330ka677jp5e3u7ZU7dunWTj4+PfvvttwK/Z8VF/YXi4kwp4CKsW7cu34903XTTTXrllVd07bXX6rrrrtODDz6omJgYZWRkaM+ePfroo48ueI2Apk2bSpJeeOEF9ejRQ97e3mrWrFmRGiN2DRo00H333adZs2bJy8tLPXr00L59+/T000+rZs2aevTRRyVJlSpV0tNPP61//vOfuueee3TXXXfpyJEjmjRpkgICAjRx4sRSmVdhHnnkES1ZskR9+/bV2LFjdc011+jkyZP68ssv1atXL3Xq1En9+/fXO++8o5tuukmjR4/WNddcI19fX/3555/64osv1LdvX91yyy1FnndRDBw4UOPGjdOGDRv01FNPFSmXu+66S/Pnz9cDDzyg5ORkderUSbm5udqyZYsaNWqk/v37q0uXLurWrZuefPJJpaenq3379vrhhx80ceJExcbGatCgQS49Dj8/P82YMUMnTpzQ1VdfrY0bN+q5555Tjx49dO2110qSW+b0zDPPaO3atWrXrp1GjRqlBg0a6NSpU9q3b59WrVqlN95444If2zyfK16zAADPqVy5ssaNG6cnnnhC7777rgYOHJjvuMGDB+vll1/WwIED9dxzz6l+/fr69NNPtXr1akkq9GPxBalYsaJq166tFStW6MYbb1RYWJjCw8OL1Bg518SJEx3XSZwwYYLCwsL0zjvv6JNPPtGLL76o0NBQSdKjjz6qhQsXqmfPnnrmmWdUu3ZtffLJJ5o9e7YefPBBR3PB0/MqSHBwsGbMmKF7771XnTt31vDhw1W1alXt2bNH33//vV599VVJ1tlOPXr0ULdu3RQfH6/q1avr6NGj2rlzp7777jvH9Z9cxdvbWyNGjNCTTz6pChUq5LneZUFee+019e7dW23bttWjjz6qWrVqaf/+/Vq9erXjzbmpU6eqS5cu6tSpkx5//HH5+flp9uzZ+umnn7R48eILNr8u5li6dOmiMWPGKDc3Vy+88ILS09M1adIkxxhXzykmJkbPPPOMxo8fr99//91xbbe//vpLW7duVYUKFZyevyhc9ZrFZaT0rrEOlD/2O1kU9GW/08fevXvN0KFDTfXq1Y2vr6+JiIgw7dq1M88995zT/pTP3VFOnz5t7r33XhMREWFsNpvTfvOT313ujDHm7Nmz5oUXXjBXXnml8fX1NeHh4WbgwIHmwIEDefYxb94806xZM+Pn52dCQ0NN3759nW4BWxrz6tChg7nqqqvy3fexY8fM6NGjTa1atYyvr6+JjIw0PXv2NL/++qtjTHZ2tpk+fbpp3ry5CQgIMMHBwaZhw4bm/vvvN7t37y5w3iURHx9vfHx8nO5+dyEnT540EyZMMFdccYXx8/MzVapUMTfccIPT7X9PnjxpnnzySVO7dm3j6+troqOjzYMPPmiOHTvmtK/atWubnj175nmO/F5n9ju9TJs2zbFu8ODBpkKFCuaHH34wHTt2NIGBgSYsLMw8+OCD5sSJE3nmXZI5nX8nJWOsu7WMGjXK1KlTx/j6+pqwsDDTqlUrM378eMfz5zfvc4/z3Du9FPc1CwDwjMLuZnzy5ElTq1Ytc8UVVzjusprf34z9+/ebW2+91QQHB5uKFSua2267zaxatcpIMitWrHCMs/9tO5+9TjnXZ599ZmJjY42/v7+RZAYPHlzoceT399UYY3788UfTu3dvExoaavz8/Ezz5s2d7gho98cff5gBAwaYKlWqGF9fX9OgQQMzbdq0PHeo8+S87Hffe//99/Pd96pVq0yHDh1MhQoVTFBQkGncuLF54YUXnMZ8//335o477jCRkZHG19fXREVFmRtuuMG88cYbhc77Yu3bt89IMg888ECxttu0aZPp0aOHCQ0NNf7+/qZevXrm0UcfdRrz1VdfmRtuuMFUqFDBBAYGmrZt25qPPvrIaUxBr+eCauHzX5P22uaFF14wkyZNMjVq1DB+fn4mNjbWrF69Os+8SzIn+/f3iy++cFr/4Ycfmk6dOpmQkBDj7+9vateubfr162c+++yzAud9/nGeq7ivWVzebMYUcP4lAKDIzpw5o5iYGF177bX673//W9rTuSjx8fH64IMPdOLEidKeCgAAxTZlyhQ99dRT2r9/f7HPrkX5NWvWLI0aNUo//fST4wYp5cm+fftUp04dTZs2TY8//nhpTwfwOD6+BwAlcPjwYSUnJ2v+/Pn666+/NHbs2NKeEgAAlzz7x8UaNmyo7OxsrVu3Tv/61780cOBAGlKXiR07dmjv3r165pln1Ldv33LZkAJAUwoASuSTTz7RkCFDFB0drdmzZ6tly5alPSUAAC55QUFBevnll7Vv3z6dPn1atWrV0pNPPqmnnnqqtKcGD7nllluUmpqq6667Tm+88UZpTwfAReLjewAAAAAAAPC44t+aAgAAAAAAACghmlIAAAAAAADwOK4plY/c3FylpKSoYsWKstlspT0dAADgYsYYZWRkqFq1avLy4j06T6PWAgDg0lbUWoumVD5SUlJUs2bN0p4GAABwswMHDnCnrlJArQUAwOXhQrUWTal8VKxYUZIVXkhIiEv3nZ2drTVr1qhr167y9fV16b7LE3KwkIOFHCzkYCEHMrBzZw7p6emqWbOm428+PItay/3IwUIOFnIgAztysJCDpSzUWjSl8mE/jTwkJMQthVJQUJBCQkIu+xc/OZCDHTlYyMFCDmRg54kc+OhY6aDWcj9ysJCDhRzIwI4cLORgKQu1FhdRAAAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx3FNKQCAW+Xm5urMmTNFHp+dnS0fHx+dOnVKZ8+edePMyi4ysJQ0Bz8/v0JvQQwAwKXg7Nmzys7OLtJYagwLOVhKkoOvr6+8vb1LPAeaUgAAtzlz5oz27t2r3NzcIm9jjFFUVJQOHDhw2V6EmgwsJc3By8tLderUkZ+fnxtmBwBA6TLGKDU1VcePHy/WNtQY5GBX0hwqVaqkqKioEmVIUwoA4BbGGB06dEje3t6qWbNmkc9Yyc3N1YkTJxQcHHzZnuVCBpaS5JCbm6uUlBQdOnRItWrVuqwLTgDApcnekIqMjFRQUFCR/tZRY1jIwXKxORhjlJWVpb///luSFB0dfdFzoCkFAHCLnJwcZWVlqVq1agoKCirydvaP+wUEBFy2RQIZWEqaQ0REhFJSUpSTk3NZ3+4ZAHDpOXv2rKMhVaVKlSJvR41hIQdLSXIIDAyUJP3999+KjIy86I/yXb7pAwDcyv65dD46hdJif+1dzteKAABcmuzXkCrOG3+Aq9lff0W9pll+aEoBANyKj02htPDaAwBc6vhbh9LkitcfTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAALnFvvvmm4w6IM2fOLO3pAAAAXFKotS4eTSkAAM4RHx8vm82mBx54IM9jDz30kGw2m+Lj4/OMt9ls8vX1Vd26dfX4448rMzPTadulS5eqY8eOCg0NVXBwsJo1a6ZnnnlGR48eLXAu3t7ejn0HBwerefPmWrBgQbGOJz09XSNHjtSTTz6pgwcP6r777ivW9gAAAK5ErYVz0ZQCAOA8NWvW1HvvvaeTJ0861p06dUqLFy9WrVq18ozv3r27Dh06pN9//13PPfecZs+erccff9zx+Pjx43XnnXfq6quv1qeffqqffvpJM2bM0Pfff6///Oc/hc5l/vz5OnTokL7//nvdeeedGjJkiFavXl3kY9m/f7+ys7PVs2dPRUdHX/RdekpyVxUAAIBzUWvldbnWWjSlAAAelXUmp8CvU9lnXT72YrRs2VK1atXSsmXLHOuWLVummjVrKjY2Ns94f39/RUVFqWbNmhowYIDuvvtuffjhh5KkrVu3asqUKZoxY4amTZumdu3aKSYmRl26dNHSpUs1ePDgQudSqVIlRUVFqV69evrnP/+psLAwrVmzxvF4Wlqa7rvvPkVGRiokJEQ33HCDvv/+e0nSggUL1LRpU0lS3bp1ZbPZtG/fPknSRx99pFatWikgIEB169bVpEmTlJPzf3nZbDa98cYb6tu3rypUqKDnnnuuyNvNmzdPt9xyi4KCgnTFFVdo5cqVTsf0888/q2fPngoJCVHFihV13XXX6bfffnM8Pn/+fDVq1EhBQUG65ppr9PrrrzseO3PmjEaOHKno6GgFBAQoJiZGU6dOLTRDAAAuJ4XVT6eptfKg1irdWsvHbXsGACAfjScU/M5TpwYRemtwa8dyq2c/08nzCiK7NnXCtOT+OMfytS98oaOZZ/KM2/d8z4ua55AhQzR//nzdfffdkqS3335bQ4cO1fr16y+4bWBgoOPdrnfeeUfBwcF66KGH8h1bqVKlIs3n7NmzWrp0qY4ePSpfX19JkjFGPXv2VFhYmFatWqXQ0FDNmTNHN954o3bt2qU777xTNWvWVOfOnbV161bVrFlTERERWr16tQYOHKh//etfjiLFfqr5xIkTHc85ceJETZ06VS+//LK8vb2LvN2kSZP04osvatq0aZo1a5buvvtu/fHHHwoLC9PBgwd1/fXXq2PHjlq3bp1CQkL0zTffOIqtuXPnauLEiXr11VfVvHlzbdy4UY888oiCg4M1ePBg/etf/9LKlSv13//+V7Vq1dKBAwd04MCBImV4KTl27JhGjRrlKEL79OmjWbNmFfp6WrZsmebMmaPt27fryJEj2rFjh1q0aOE05s0339S7776r7777ThkZGTp27Fi++/zkk0/0zDPP6IcfflCFChV0/fXXO/3DAgBQegqrtTo2iNDMW650LFNr/R9qrdKptWhKAQCQj0GDBmncuHHat2+fbDabvvnmG7333nsXLJS2bt2qd999VzfeeKMkaffu3apbt66juCmuu+66S97e3jp16pTOnj2rsLAw3XvvvZKkL774Qj/++KP+/vtv+fv7S5KmT5+uDz/8UB988IHuu+8+ValSRZIUERGhqKgoSdLkyZM1duxYxzuHdevW1bPPPqsnnnjCqeAZMGCAhg4d6pRJUbaLj4/XXXfdJUmaMmWKZs2apa1bt6p79+567bXXFBoaqvfee8+RyZVX/l9x/Oyzz2rGjBm69dZblZubqypVqmjfvn2aM2eOBg8erP379+uKK67QtddeK5vNptq1a19UruXdgAED9OeffyoxMVGSdN9992nQoEH66KOPCtwmMzNT7du31+23367hw4fnOyYrK0vdu3dX9+7dNW7cuHzHLF26VMOHD9eUKVN0ww03yBijH3/8seQHBQC4rFBrUWtJNKUAAB72yzPdCnzMy2ZzWt7+dOcij/36yU4lm9h5wsPD1bNnT/373/92vEsWHh6e79iPP/5YwcHBysnJUXZ2tvr27atZs2ZJst5hs5031+J4+eWX1blzZx04cEBjxozRo48+qvr160uStm/frhMnTjiKIbuTJ086naJ9vu3bt2vbtm2aPHmyY93Zs2d16tQpZWVlOa6F0Lp164varlmzZo7HK1SooIoVK+rvv/+WJCUlJem6667Lt3A8fPiwDhw4oGHDhjk1TXJychQaGirJKsK6dOmiBg0aqHv37urVq5e6du1aSIKXnp07dyoxMVGbN29WmzZtJFnvesbFxSk5OVkNGjTId7tBgwZJkuNjBfl55JFHJKnAfxDk5ORo9OjRmjZtmoYNG+ZYX9BzAgA8r7Bay2aMTp/8vwuEU2tRa0mlW2vRlAIAeFSQX+F/enJzc4s8tjj7vRhDhw7VyJEjJUmvvfZageM6deqk119/Xb6+vqpWrZpTEXDllVfq66+/VnZ29kW9gxcVFaX69eurfv36ev/99xUbG6vWrVurcePGys3NVXR0dL4NhMJOVc/NzdWkSZN066235nksICDA8f8VKlS4qO3OP06bzeb4vgYGBhY6L8lqsLRp00a5ubk6ceKEgoODHfts2bKl9u7dq08//VSfffaZ7rjjDnXu3FkffPBBgfu91GzatEmhoaGOhpQktW3bVqGhodq4caNbG0TfffedDh48KC8vL8XGxio1NVUtWrTQ9OnTddVVVxW43enTp3X69GnHcnp6uiTroq6uvrCrfX+X6wVj7cjBQg4Wcrj0MsjOzpYxRrm5uU61kyQF+BR86WhjjE7////m5uYWOlZyrssKGnv+81+IMcbx/PHx8Ro1apQkadasWcrNzXV63D6+Y8eOmj17dp5aKzc3V1dccYW+/vprnT59usi1ljHG8f+RkZGqW7eu6tatqyVLlqhVq1Zq2bKlGjdurLNnzyo6Olrr1q3Ls49KlSo55X/+/yckJOiWW27Js52fn59TXXRufkXdztvb22k7m82mnJwc63saEOCU37nsH+GbM2eO2rRpI2OMMjMzVaFCBfn4+Cg3N1ctWrTQb7/9pk8//VSff/657rjjDt144416//338+zP/v3Kzs6Wt7e302NF/VmjKQUAQAG6d++uM2esayd061bwu44VKlRwvKN2vgEDBuhf//qXZs+erdGjR+d5/Pjx40W+1kH9+vV12223ady4cVqxYoVatmyp1NRU+fj4KCYmpkj7kKzGTnJycoFzdvV252rWrJn+/e9/59ukq1q1qqpXr67ff/9dd999t3Jzc5Wenq6QkBB5ef1fIRwSEqI777xTd955p/r166fu3bvr6NGjCgsLu+h5lSepqamKjIzMsz4yMlKpqalufe7ff/9dkpSQkKCXXnpJMTExmjFjhjp06KBdu3YV+D2YOnWqJk2alGf9mjVrLvouRReydu1at+y3vCEHCzlYyOHSycDHx0dRUVE6ceKEo1YpjoyMDDfMqmiys7OVk5Oj9PR0tWvXzvGmRVxcnNLT0x1nQ537Boa/v7/jb9/Jkyed7tpnv67iyy+/rAceeCDP86WlpTnOAsrPyZMnHc8VGRmp3r1764knntC7776rBg0aKDU1VadOncr3roDp6enKzLTOPDtx4oRjP82aNdNPP/2k+++/P882J06cyPe5S7KdMUanTp1Senq6GjRooMWLF+vIkSN5aq3AwEBVq1ZNv/76q3r37p3v8dj16NHD8dWvXz/98ccfqly5stP4M2fO6OTJk9qwYYPTxdgl65IARUFTCgCAAnh7e2vnzp2O/78Ybdq00RNPPKHHHntMBw8e1C233KJq1appz549euONN3Tttdfm26wqyGOPPabmzZvr22+/VefOnRUXF6ebb75ZL7zwgho0aKCUlBStWrVKN998c55Twu0mTJigXr16qWbNmrr99tvl5eWlH374QT/++KPjzi+u3O5cI0eO1KxZs9S/f3+NGzdOoaGh2rx5s6655ho1aNBACQkJGjVqlEJCQtStWzcdOXJEv/76q9LS0jRmzBi9/PLLio6OVosWLeTl5aX3339fUVFRRW7slWUJCQn5Nm7OtW3bNknK92MKJf34QlHY33UdP368brvtNknWHXxq1Kih999/P98iWpLGjRunMWPGOJbT09NVs2ZNde3aVSEhIS6dY3Z2ttauXasuXbpc9PVFLgXkYCEHCzlcehmcOnVKBw4cUHBwsNPZyhdijFFGRoYqVqzo9r8ZBfH19ZWPj4/j9/8vv/wiSY5lHx8f+fr6OpbPH3++G264Qf/4xz/01FNP6ciRI7r55psdtdacOXN07bXXOs7GsrPnIFmNmnP3/eSTTyo2Nla7du1Snz59FBcXp3vuuUdTp0511Fqffvqp+vbtq9atWzvOLA8ODnbsJyEhQX369FHdunXVr18/R830008/6dlnn3U81/nPfbHb2Ww2BQQEKCQkRGPGjNHcuXN1//33a+zYsXlqrYkTJ+qRRx5RRESEunXrpqNHj+rXX3/V8ePH9eijj2rmzJmKiopy1FqrVq1y3Pnw3DcJJet1GBgYqOuvvz7P6/DcBldhaEoBAFAIV/yD+YUXXlCrVq302muv6Y033lBubq7q1aunfv36XfA2xedr2rSpOnfurAkTJmjVqlVatWqVxo8fr6FDh+rw4cOKiorS9ddfr6pVqxa4j27duunjjz/WM888oxdffFG+vr5q2LCh46Kert7uXFWqVNG6dev0j3/8Qx06dJC3t7datGih9u3bS5LuvfdeBQUFadq0aXriiScUFBSkZs2aOa51FBwcrBdeeEG7d++Wt7e3rr76aq1atSpPkVQejRw5Uv379y90TExMjH744Qf99ddfeR47fPhwod93V4iOjpYkNW7c2LHO399fdevW1f79+wvczt/f33GB2HP5+vq67R+H7tx3eUIOFnKwkMOlk8HZs2dls9nk5eVVrL+B9jcX7NuWBpvN5vT857+xdP7j5y/n58UXX1Tr1q312muvac6cOU61Vnx8fJ5tz/1o2/kZNm/eXJ07d1ZCQoJTrXXvvfc61VrR0dFO2577/z169HDUTNOmTXOqmc59rvOf+2K3O3ddRESEo9bq1KmTo9a67rrr5OXlpfvuu0/BwcGaNm2annzySaday8vLSxUrVtS0adPy1Fo+PnnbR15eXrLZbPn+XBX558wgj7S0NCPJpKWluXzfZ86cMR9++KE5c+aMy/ddnpCDhRws5GC51HI4efKk+eWXX8zJkyeLtd3Zs2fNsWPHzNmzZ900s7KPDCwlzaGw16A7/9a72y+//GIkmS1btjjWbd682Ugyv/766wW337t3r5FkduzYUeCYL774wkgyx44dc1qflpZm/P39zbx58xzrzpw5YyIjI82cOXOKfAzUWu5HDhZysJDDpZcBdVbJkIOlLNRapfq24oYNG9S7d29Vq1ZNNptNH374YaHjly1bpi5duigiIkIhISGKi4vT6tWr84ybOXOmGjRooMDAQNWsWVOPPvqoTp065aajAAAA8JxGjRqpe/fuGj58uDZv3qzNmzdr+PDh6tWrl9NFzhs2bKjly5c7lo8ePaqkpCTHxySSk5OVlJTkdB2q1NRUJSUlac+ePZKkH3/8UUlJSTp69Kgk68zBBx54QBMnTtSaNWuUnJysBx98UJJ0++23u/3YAQDApaVUm1KZmZlq3ry5Xn311SKN37Bhg7p06aJVq1Zp+/bt6tSpk3r37q0dO3Y4xrzzzjsaO3asJk6cqJ07d+qtt97SkiVLNG7cOHcdBgAAgEe98847atq0qbp27aquXbuqWbNm+s9//uM0Jjk5WWlpaY7llStXKjY2Vj179pQk9e/fX7GxsXrjjTccY9544w3FxsY6bhN9/fXXKzY2VitXrnSMmTZtmvr3769Bgwbp6quv1h9//KF169blufgpAADAhZTqNaXsV3IvqpkzZzotT5kyRStWrNBHH32k2NhYSdZtktu3b68BAwZIsq69cNddd2nr1q0F7pfbFHseOVjIwUIOlksth8JuVVwY8/9v0WsKuJXt5YAMLCXNwRW3KS6rwsLCtGjRokLHmHNudy1J8fHxio+PL3SbhIQEJSQkFDrG19dX06dP1/Tp04syVQAAgAKV6wud5+bmKiMjw+n2w9dee60WLVqkrVu36pprrtHvv/+uVatWFXohWW5TXHrIwUIOFnKwXCo5lOdbFZcVZGC52BxccZtiAAAAuE+5bkrNmDFDmZmZuuOOOxzr+vfvr8OHD+vaa6+VMUY5OTl68MEHNXbs2AL3w22KPY8cLORgIQfLpZbD6dOntX//flWoUEGBgYFF3s6UgVsVlzYysJQ0h5MnTyowMFAdOnTIc+e3ot6mGACAsuxyPqMapc8Vr79y25RavHixEhIStGLFCkVGRjrWr1+/XpMnT9bs2bPVpk0b7dmzR6NHj1Z0dLSefvrpfPfFbYpLDzlYyMFCDpZLJQf7bWmPHDmiiIiIIjcVcnNzdebMGZ0+fbrUblVc2sjAUpIcjDE6cuSIvLy8FBgYmOfje5fCzxgA4PLl5+cnLy8vpaSkKCIiQn5+fkWqtex/W0+dOkWNQQ4XnYMxRmfOnNHhw4fl5eUlPz+/i55DuWxKLVmyRMOGDdP777+vzp07Oz329NNPa9CgQbr33nslSU2bNlVmZqbuu+8+jR8//rJ+wQGAJ3l7e6tGjRr6888/tW/fviJvZ4xxnOFyuZ4lRAaWkuZgs9lUo0aNPA0pAADKOy8vL9WpU0eHDh1SSkpKkbejxrCQg6WkOQQFBalWrVol6rOUu6bU4sWLNXToUC1evNhx95hzZWVl5QnE29tbxpg8F/wEALhXcHCwrrjiimJdVDo7O1sbNmzQ9ddff9mezUIGlpLm4OvrS0MKAHDJ8vPzU61atZSTk6OzZ88WaRtqDAs5WEqSg7e3t3x8fErc1CvVptSJEye0Z88ex/LevXuVlJSksLAw1apVS+PGjdPBgwe1cOFCSVZD6p577tErr7yitm3bKjU1VZIUGBio0NBQSVLv3r310ksvKTY21vHxvaefflp9+vShMAWAUuDt7V2s37/e3t7KyclRQEDAZVskkIGFHAAAKJzNZivWpR/422ohB0tZyKFUm1LffvutOnXq5Fi2X2x88ODBWrBggQ4dOqT9+/c7Hp8zZ45ycnI0YsQIjRgxwrHePl6SnnrqKdlsNj311FM6ePCgIiIi1Lt3b02ePNkzBwUAAAAAAIALKtWmVMeOHQv9SJ290WS3fv36C+7Tx8dHEydO1MSJE0s4OwAAAAAAALgLV/0GAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAoZ44dO6ZBgwYpNDRUoaGhGjRokI4fP17oNsuWLVO3bt0UHh4um82mpKSkPGPefPNNdezYUSEhIbLZbPnuc9euXerbt6/Cw8MVEhKi9u3b64svvnDNgQEAgMsKTSkAAIByZsCAAUpKSlJiYqISExOVlJSkQYMGFbpNZmam2rdvr+eff77AMVlZWerevbv++c9/FjimZ8+eysnJ0bp167R9+3a1aNFCvXr1Umpq6kUfDwAAuDz5lPYEAAAAUHQ7d+5UYmKiNm/erDZt2kiS5s6dq7i4OCUnJ6tBgwb5bmdvWu3bt6/AfT/yyCOSpPXr1+f7+P/+9z/t2bNHb7/9tpo1ayZJev755zV79mz9/PPPioqKuriDAgAAlyWaUgAAAOXIpk2bFBoa6mhISVLbtm0VGhqqjRs3FtiUcoUqVaqoUaNGWrhwoVq2bCl/f3/NmTNHVatWVatWrQrc7vTp0zp9+rRjOT09XZKUnZ2t7Oxsl87Rvj9X77e8IQcLOVjIgQzsyMFCDhZ35lDUfdKUAgAAKEdSU1MVGRmZZ31kZKTbP0Jns9m0du1a9e3bVxUrVpSXl5eqVq2qxMREVapUqcDtpk6dqkmTJuVZv2bNGgUFBbllrmvXrnXLfssbcrCQg4UcyMCOHCzkYHFHDllZWUUaR1MKAACgDEhISMi3cXOubdu2SbKaQ+czxuS73pWMMXrooYcUGRmpr776SoGBgZo3b5569eqlbdu2KTo6Ot/txo0bpzFjxjiW09PTVbNmTXXt2lUhISEunWN2drbWrl2rLl26yNfX16X7Lk/IwUIOFnIgAztysJCDxZ052M+KvhCaUgAAAGXAyJEj1b9//0LHxMTE6IcfftBff/2V57HDhw+ratWq7pqeJGndunX6+OOPdezYMUczafbs2Vq7dq3+/e9/a+zYsflu5+/vL39//zzrfX193faPAXfuuzwhBws5WMiBDOzIwUIOFnfkUNT9lerd9zZs2KDevXurWrVqstls+vDDDwsdv2zZMnXp0kUREREKCQlRXFycVq9enWfc8ePHNWLECEVHRysgIECNGjXSqlWr3HQUAAAAJRceHq6GDRsW+hUQEKC4uDilpaVp69atjm23bNmitLQ0tWvXzq1ztJ+K7+XlXEJ6eXkpNzfXrc8NAAAuPaXalMrMzFTz5s316quvFmn8hg0b1KVLF61atUrbt29Xp06d1Lt3b+3YscMx5syZM+rSpYv27dunDz74QMnJyZo7d66qV6/ursMAAADwmEaNGql79+4aPny4Nm/erM2bN2v48OHq1auX00XOGzZsqOXLlzuWjx49qqSkJP3yyy+SpOTkZCUlJTldhyo1NVVJSUnas2ePJOnHH39UUlKSjh49KkmKi4tT5cqVNXjwYH3//ffatWuX/vGPf2jv3r3q2bOnJw4fAABcQkr143s9evRQjx49ijx+5syZTstTpkzRihUr9NFHHyk2NlaS9Pbbb+vo0aPauHGj43Sx2rVru2zOAAAApe2dd97RqFGj1LVrV0lSnz598rzJl5ycrLS0NMfyypUrNWTIEMey/aOCEydOVEJCgiTpjTfecLqu1fXXXy9Jmj9/vuLj4xUeHq7ExESNHz9eN9xwg7Kzs3XVVVdpxYoVat68uVuOFQAAXLrK9TWlcnNzlZGRobCwMMe6lStXKi4uTiNGjNCKFSsUERGhAQMG6Mknn5S3t3e+++E2xZ5HDhZysJCDhRws5EAGdmXhNsVlVVhYmBYtWlToGGOM03J8fLzi4+ML3SYhIcHRoCpI69at8718AgAAQHGV66bUjBkzlJmZqTvuuMOx7vfff9e6det09913a9WqVdq9e7dGjBihnJwcTZgwId/9cJvi0kMOFnKwkIOFHCzkQAZ2pXmbYgAAALhPuW1KLV68WAkJCVqxYoUiIyMd63NzcxUZGak333xT3t7eatWqlVJSUjRt2rQCm1LcptjzyMFCDhZysJCDhRzIwK4s3KYYAAAA7lMum1JLlizRsGHD9P7776tz585Oj0VHR8vX19fpo3qNGjVSamqqzpw5Iz8/vzz74zbFpYccLORgIQcLOVjIgQzsSvM2xQAAAHCfUr373sVYvHix4uPj9e677+Z7l5f27dtrz549Trcl3rVrl6Kjo/NtSAEAAAAAAMDzSrUpdeLECSUlJSkpKUmStHfvXiUlJWn//v2SrI/V3XPPPY7xixcv1j333KMZM2aobdu2Sk1NVWpqqtOdZR588EEdOXJEo0eP1q5du/TJJ59oypQpGjFihEePDQAAAAAAAAUr1abUt99+q9jYWMXGxkqSxowZo9jYWMe1nw4dOuRoUEnSnDlzlJOToxEjRig6OtrxNXr0aMeYmjVras2aNdq2bZuaNWumUaNGafTo0Ro7dqxnDw4AAAAAAAAFKtVrSnXs2DHP7YrPtWDBAqfl9evXF2m/cXFx2rx5cwlmBgAAAAAAAHcqd9eUAgAAAAAAQPlHUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAKCcOXbsmAYNGqTQ0FCFhoZq0KBBOn78eKHbLFu2TN26dVN4eLhsNpuSkpKcHj969KgefvhhNWjQQEFBQapVq5ZGjRqltLS0Ej83AABAfmhKAQAAlDMDBgxQUlKSEhMTlZiYqKSkJA0aNKjQbTIzM9W+fXs9//zz+T6ekpKilJQUTZ8+XT/++KMWLFigxMREDRs2rMTPDQAAkB+f0p4AAAAAim7nzp1KTEzU5s2b1aZNG0nS3LlzFRcXp+TkZDVo0CDf7eyNo3379uX7eJMmTbR06VLHcr169TR58mQNHDhQOTk58vHxuejnPn36tE6fPu1YTk9PlyRlZ2crOzu7eAFcgH1/rt5veUMOFnKwkAMZ2JGDhRws7syhqPukKQUAAFCObNq0SaGhoY6mkCS1bdtWoaGh2rhxY4GNoYuRlpamkJAQ+fj4lOi5p06dqkmTJuVZv2bNGgUFBblsvudau3atW/Zb3pCDhRws5EAGduRgIQeLO3LIysoq0jiaUgAAAOVIamqqIiMj86yPjIxUamqqy57nyJEjevbZZ3X//feX+LnHjRunMWPGOJbT09NVs2ZNde3aVSEhIS6bs2S9M7t27Vp16dJFvr6+Lt13eUIOFnKwkAMZ2JGDhRws7szBflb0hdCUAgAAKAMSEhLyPZvoXNu2bZMk2Wy2PI8ZY/JdfzHS09PVs2dPNW7cWBMnTnR67GKe29/fX/7+/nnW+/r6uu0fA+7cd3lCDhZysJADGdiRg4UcLO7Ioaj7K9ULnW/YsEG9e/dWtWrVZLPZ9OGHHxY6ftmyZerSpYsiIiIUEhKiuLg4rV69usDx7733nmw2m26++WbXThwAAMDFRo4cqZ07dxb61aRJE0VFRemvv/7Ks/3hw4dVtWrVEs8jIyND3bt3V3BwsJYvX+5UVLr7uQEAwOWlVM+UyszMVPPmzTVkyBDddtttFxy/YcMGdenSRVOmTFGlSpU0f/589e7dW1u2bFFsbKzT2D/++EOPP/64rrvuOndNHwAAwGXCw8MVHh5+wXFxcXFKS0vT1q1bdc0110iStmzZorS0NLVr165Ec0hPT1e3bt3k7++vlStXKiAgwGPPDQAALj+l2pTq0aOHevToUeTxM2fOdFqeMmWKVqxYoY8++sipKXX27FndfffdmjRpkr766isdP37cRTMGAAAoXY0aNVL37t01fPhwzZkzR5J03333qVevXk4XGm/YsKGmTp2qW265RZJ09OhR7d+/XykpKZKk5ORkSdbZT1FRUcrIyFDXrl2VlZWlRYsWKT093XE9iIiICHl7exf5uQEAAIqiXF9TKjc3VxkZGQoLC3Na/8wzzygiIkLDhg3TV199dcH9cJtizyMHCzlYyMFCDhZyIAO7snCb4rLqnXfe0ahRo9S1a1dJUp8+ffTqq686jUlOTlZaWppjeeXKlRoyZIhjuX///pKkiRMnKiEhQdu3b9eWLVskSfXr13fa1969exUTE1Pk5wYAACiKct2UmjFjhjIzM3XHHXc41n3zzTd66623lJSUVOT9cJvi0kMOFnKwkIOFHCzkQAZ2pXmb4rIqLCxMixYtKnSMMcZpOT4+XvHx8QWO79ixY55tLva5AQAAiqLcNqUWL16shIQErVixwnFr4oyMDA0cOFBz584t0jUZ7LhNseeRg4UcLORgIQcLOZCBXVm4TTEAAADcp1w2pZYsWaJhw4bp/fffV+fOnR3rf/vtN+3bt0+9e/d2rMvNzZUk+fj4KDk5WfXq1cuzP25TXHrIwUIOFnKwkIOFHMjArjRvUwwAAAD3KXdNqcWLF2vo0KFavHixevbs6fRYw4YN9eOPPzqte+qpp5SRkaFXXnlFNWvW9ORUAQAAAAAAUIAiNaV++OGHYu+4cePG8vEpfPcnTpzQnj17HMt79+5VUlKSwsLCVKtWLY0bN04HDx7UwoULJVkNqXvuuUevvPKK2rZtq9TUVElSYGCgQkNDFRAQoCZNmjg9R6VKlSQpz3oAAICL4a66CAAA4HJTpOqoRYsWstlsRbr4pSR5eXlp165dqlu3bqHjvv32W3Xq1MmxbL+u0+DBg7VgwQIdOnRI+/fvdzw+Z84c5eTkaMSIERoxYoRjvX08AACAu7mrLgIAALjcFPktuy1btigiIuKC44wxRT4r6UJ3eTm/0bR+/foi7bewfQAAAJSUO+oiAACAy02RmlIdOnRQ/fr1HR+Fu5Drr79egYGBJZkXAABAmURdBAAA4BpFakp98cUXxdrpqlWrLmoyAAAAZR11EQAAgGt4lfYEAAAAAAAAcPkp8jWlnnnmmSKNmzBhwkVPBgAAoDygLgIAACi5Ijelli9fXuBjNptNycnJOnXqFMUXAAC45FEXAQAAlFyRm1I7duzId31SUpLGjh2rn376ScOHD3fZxAAAAMoq6iIAAICSu+hrSu3du1cDBw7U1VdfrdDQUP3888964403XDk3AACAcoG6CAAAoPiK3ZT63//+p4cfflgNGzbUoUOHtHHjRi1ZskRXXHGFO+YHAABQZlEXAQAAXLwif3wvMzNT06dP10svvaT69evro48+UteuXd05NwAAgDKJuggAAKDkityUqlevnjIyMvTwww/rrrvuks1m0w8//JBnXLNmzVw6QQAAgLKGuggAAKDkityU+vvvvyVJL774oqZNmyZjjOMxm80mY4xsNpvOnj3r+lkCAACUIdRFAAAAJVfkptTevXvdOQ8AAIByg7oIAACg5IrclKpdu7Y75wEAAFBuUBcBAACUXJHuvvfDDz8oNze3yDv9+eeflZOTc9GTAgAAKKuoiwAAAFyjSE2p2NhYHTlypMg7jYuL0/79+y96UgAAAGUVdREAAIBrFOnje8YYPf300woKCirSTs+cOVOiSQEAAJRV1EUAAACuUaSm1PXXX6/k5OQi7zQuLk6BgYEXPSkAAICyiroIAADANYrUlFq/fr2bpwEAAFA+UBcBAAC4RpGuKQUAAAAAAAC4Ek0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeNxFNaX+85//qH379qpWrZr++OMPSdLMmTO1YsUKl04OAACgrKMuAgAAuDjFbkq9/vrrGjNmjG666SYdP35cZ8+elSRVqlRJM2fOdPX8AAAAyizqIgAAgIvnU9wNZs2apblz5+rmm2/W888/71jfunVrPf744y6d3KXq9Fkp60yOfI0tz2NeNpsCfL0dy1lncgrcT0nGnjxzVkYm37E22RTod3FjT2WfVa7Jf6wkBfn930vuTCE5nD+2OPu90NhAX2/ZbNZzns45q7O5rhkb4OMtLy9r7JmcXOXk5hZpbE5u4Tn4+3jLu4j7PXds9tlcZZ8teKyft5d8vL2KPTbnbK7OFDLW19tLvhcxNtcUnoOPl5f8fKyxZ3ONTuecLXC/547NzTU65aKx3l42+ftYr3djjE5mu2Zsfj/LBeVwOf2OOJV9VtkF5JDf2Evpd4T3OfMrzs/9pfY7QoUcS1lBXVQ2UWtZqLWotai1LF42m7zPWXbXz315+B3he86335U/9+XtdwS11v9XBmqtYjel9u7dq9jY2Dzr/f39lZmZ6ZJJXeqe2OqjJ7auy/exTg0iNH/INY7lVs9+VuAv2DZ1wrTk/jjH8rUvfKGjmWfyHdusRqhWjrzWsdz5pS918PjJfMdeERmstWM6OJb7vPq1dv99It+x1SsF6puxNziW75izST/8mZbv2LAKfvru6S6O5Tm/eusfBeQQ6Outnc92dyw/uGi7vkg+nO9YSdr3fE/H/4/5b5JW/Zha4Nhfnunm+KX5z2U/ael3fxY4dvtTnVUl2F+S9NzHO/WfzX8UOParJzqpZliQJGn6mmS9ueH3AseuefR6XVm1oiRp7UEvPfZs/jlI0ooR7dW8ZiVJ0vxv9mrqp78WOHbx8LaKq1fF+v+t+zVhxc8Fjn07vrVuaFhVkvThjoP6xwc/FDj2tQEt1bNZtCRp9c9/acS73xU4dlq/Zrq9dU1J0obdhzV0wbcFjn2m71W6Jy5GkvRbuk2PFpLDuB4NdX+HepKknw6mqe9r3xQ4dvSNV+jRLldKkvYcPqGuL28ocOx919fVP29qJEk6ePykrnvxiwLHDmpbW8/e3ESSdDTzjFo991mBY29rWUMz7mguSTqZfVaNJ6wucOxNTaM0++5WjuXmheRwOf2OGLbwO23ddyzfsZf674hVI9s5/v+1L/bolc93Fzj2Uv4dMbFXQ4UV+GjZQF1UNlFrWai1qLWotSw3NY3SK3c0cywXNvZS/x2xZWxHx/Lgt7dqy96j+Y691H9HUGtZykKtVeyP79WpU0dJSUl51n/66adq3LixK+YEAABQLlAXAQAAXDybMYWcV5eP+fPn6+mnn9aMGTM0bNgwzZs3T7/99pumTp2qefPmqX///u6aq8ekp6crNDRUaWlpCgkJcem+s7OztfyjVerWrat8fX3zPH6pny5q74hnZ2frw49WqWsBOZw7tjj7LcrYsnC6qH1sdna2Vn68Sp27FpzDpXy6qH1sdna2Pv5klW7oUnAOl/op5QG+3srOztaqVavUsXPBOVwOvyPsOdzQpZu8fQo+ofdS/h3hbXKVmPipbrrpJhmb92V8SvlZrV2dqJtuuqnAn4mL5aq/9ZdDXeQO1FrUWhczllrLQq1V/LHWx/dytWrVKt10002FXh7gUv8d4WszjhzOyusy/vgetZakMlFrFfvje0OGDFFOTo6eeOIJZWVlacCAAapevbpeeeUVCq8i8ve2fmh9fS8c/7k/3K4ce+4vLleOPfcX7YX4FSOH4uy3OGPtf8hcPdbPx0t+RTwR0cer6DkUZ7/n/jJy5Vifc34hunKsl63oOXh72Yr8evdy01ibzT1jpaLnYB9bnP0WVVn4HRHg613kHC613xHZ2dlFHluc/Z6rPPyOyM4u1vtmpaK06qJjx45p1KhRWrlypSSpT58+mjVrlipVqlTgNsuWLdOcOXO0fft2HTlyRDt27FCLFi0cjx89elQTJ07UmjVrdODAAYWHh+vmm2/Ws88+q9DQUEnSvn379Oyzz2rdunVKTU1VtWrVNHDgQI0fP15+fn5uO97iotayUGtZqLUsl3utlZ39f/8wd9fPfXn4HXFujeGun/vy8DuCWstSFmqtYjelJGn48OEaPny4/ve//yk3N1eRkZGunhcAAEC5UBp10YABA/Tnn38qMTFRknTfffdp0KBB+uijjwrcJjMzU+3bt9ftt9+u4cOH53k8JSVFKSkpmj59uho3bqw//vhDDzzwgFJSUvTBBx9Ikn799Vfl5uZqzpw5ql+/vn766ScNHz5cmZmZmj59unsOFgAAXLIu6kLnOTk5uuKKKxQeHu5Yv3v3bvn6+iomJsaV8wMAACizSqMu2rlzpxITE7V582a1adNGkjR37lzFxcUpOTlZDRo0yHe7QYMGSbLOdspPkyZNtHTpUsdyvXr1NHnyZA0cOFA5OTny8fFR9+7d1b37/134tm7dukpOTtbrr79eaFPq9OnTOn36tGM5PT1dkvVO9bnvVruCfX+u3m95Qw4WcrCQAxnYkYOFHCzuzKGo+yx2Uyo+Pl5Dhw7VFVdc4bR+y5YtmjdvntavX1/cXQIAAJRLpVEXbdq0SaGhoY6GlCS1bdtWoaGh2rhxY4FNqYthvw6ETyHXd0tLS1NYWOH37pk6daomTZqUZ/2aNWsUFBRU4nnmZ+3atW7Zb3lDDhZysJADGdiRg4UcLO7IISsrq0jjit2U2rFjh9q3b59nfdu2bTVy5Mji7g4AAKDcKo26KDU1Nd+PCEZGRio1teBbcBfXkSNH9Oyzz+r+++8vcMxvv/2mWbNmacaMGYXua9y4cRozZoxjOT09XTVr1lTXrl3dcqHztWvXqkuXLi6/aGt5Qg4WcrCQAxnYkYOFHCzuzMF+VvSFFLspZbPZlJGRkWd9Wlqazp4t+I4HAAAAlxpX1kUJCQn5nk10rm3btjme93zGmHzXX4z09HT17NlTjRs31sSJE/Mdk5KSou7du+v222/XvffeW+j+/P395e/vn2e9r6+v2/4x4M59lyfkYCEHCzmQgR05WMjB4o4cirq/ol2y/RzXXXedpk6d6lRonT17VlOnTtW1115brH1t2LBBvXv3VrVq1WSz2fThhx8WOn7ZsmXq0qWLIiIiFBISori4OK1evdppzNy5c3XdddepcuXKqly5sjp37qytW7cWa14AAABF4cq6aOTIkdq5c2ehX02aNFFUVJT++uuvPNsfPnxYVatWLfExZWRkqHv37goODtby5cvzLSpTUlLUqVMnxcXF6c033yzxcwIAgMtTsc+UeuGFF9ShQwc1aNBA1113nSTpq6++Unp6utatW1esfWVmZqp58+YaMmSIbrvttguO37Bhg7p06aIpU6aoUqVKmj9/vnr37q0tW7YoNjZWkrR+/XrdddddateunQICAvTiiy+qa9eu+vnnn1W9evXiHi4AAECBXFkXhYeHO10svSBxcXFKS0vT1q1bdc0110iyrmGVlpamdu3aFf8gzpGenq5u3brJ399fK1euVEBAQJ4xBw8eVKdOndSqVSvNnz9fXl7Ffo8TAABA0kU0pa666ir98MMPevXVV/X9998rMDBQ99xzj0aOHHnBi1yer0ePHurRo0eRx8+cOdNpecqUKVqxYoU++ugjR1PqnXfecRozd+5cffDBB/r88891zz335Ltf7gjjeeRgIQcLOVjIwUIOZGBXFu4IcyGurIuKqlGjRurevbuGDx+uOXPmSJLuu+8+9erVy+ki5w0bNtTUqVN1yy23SJKOHj2q/fv3KyUlRZKUnJwsSYqKilJUVJQyMjLUtWtXZWVladGiRUpPT3fURBEREfL29lZKSoo6duyoWrVqafr06Tp8+LDj+aKiotxyvAAA4NJVrKZUdna2unbtqjlz5mjKlCnumlOR5ebmKiMjo9CiLysrS9nZ2YWO4Y4wpYccLORgIQcLOVjIgQzsSvOOMIUpzbronXfe0ahRo9S1a1dJUp8+ffTqq686jUlOTlZaWppjeeXKlRoyZIhjuX///pKkiRMnKiEhQdu3b9eWLVskSfXr13fa1969exUTE6M1a9Zoz5492rNnj2rUqOE0xhjjugMEAACXhWI1pXx9ffXTTz+57CKaJTVjxgxlZmbqjjvuKHDM2LFjVb16dXXu3LnAMdwRxvPIwUIOFnKwkIOFHMjArizcEaYwpVkXhYWFadGiRYWOOb9JFB8fr/j4+ALHd+zY8YKNpQvtAwAAoDiK/fG9e+65R2+99Zaef/55d8ynyBYvXqyEhAStWLEi39siS9KLL76oxYsXa/369fleE8GOO8KUHnKwkIOFHCzkYCEHMrArzTvCXEhZqYsAAADKo2I3pc6cOaN58+Zp7dq1at26tSpUqOD0+EsvveSyyRVkyZIlGjZsmN5///0Cz4CaPn26pkyZos8++0zNmjVz+5wAAMDlpyzURQAAAOVVsZtSP/30k1q2bClJ2rVrl9Njnjh9ffHixRo6dKgWL16snj175jtm2rRpeu6557R69Wq1bt3a7XMCAACXp9KuiwAAAMqzYjelvvjiC5c9+YkTJ7Rnzx7H8t69e5WUlKSwsDDVqlVL48aN08GDB7Vw4UJJVkPqnnvu0SuvvKK2bdsqNTVVkhQYGKjQ0FBJ1kf2nn76ab377ruKiYlxjAkODlZwcLDL5g4AAODKuggAAOBy41WSjf/8808dPHjworf/9ttvFRsbq9jYWEnSmDFjFBsbqwkTJkiSDh06pP379zvGz5kzRzk5ORoxYoSio6MdX6NHj3aMmT17ts6cOaN+/fo5jZk+ffpFzxMAAOBCSloXAQAAXG6KfaZUbm6unnvuOc2YMUMnTpyQJFWsWFGPPfaYxo8fLy+vove5LnSXlwULFjgtr1+//oL73LdvX5GfHwAAoCRcWRcBAABcbordlBo/frzjLjPt27eXMUbffPONEhISdOrUKU2ePNkd8wQAAChzqIsAAAAuXrGbUv/+9781b9489enTx7GuefPmql69uh566CGKLwAAcNmgLgIAALh4xT6n/OjRo2rYsGGe9Q0bNtTRo0ddMikAAIDygLoIAADg4hW7KdW8eXO9+uqreda/+uqrat68uUsmBQAAUB5QFwEAAFy8Yn9878UXX1TPnj312WefKS4uTjabTRs3btSBAwe0atUqd8wRAACgTKIuAgAAuHjFPlOqQ4cO2rVrl2655RYdP35cR48e1a233qrk5GRdd9117pgjAABAmURdBAAAcPGKfKbU77//rjp16shms6latWpcuBMAAFy2qIsAAABKrshnSl1xxRU6fPiwY/nOO+/UX3/95ZZJAQAAlGXURQAAACVX5KaUMcZpedWqVcrMzHT5hAAAAMo66iIAAICSK/Y1pQAAAAAAAICSKnJTymazyWaz5VkHAABwuaEuAgAAKLkiX+jcGKP4+Hj5+/tLkk6dOqUHHnhAFSpUcBq3bNky184QAACgjKEuAgAAKLkiN6UGDx7stDxw4ECXTwYAAKA8oC4CAAAouSI3pebPn+/OeQAAAJQb1EUAAAAlx4XOAQAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBxNKUAAADKmWPHjmnQoEEKDQ1VaGioBg0apOPHjxe6zbJly9StWzeFh4fLZrMpKSnJ6fGjR4/q4YcfVoMGDRQUFKRatWpp1KhRSktLy3d/p0+fVosWLfLdFwAAQFHQlAIAAChnBgwYoKSkJCUmJioxMVFJSUkaNGhQodtkZmaqffv2ev755/N9PCUlRSkpKZo+fbp+/PFHLViwQImJiRo2bFi+45944glVq1atxMcCAAAuXz6lPQEAAAAU3c6dO5WYmKjNmzerTZs2kqS5c+cqLi5OycnJatCgQb7b2ZtW+/bty/fxJk2aaOnSpY7levXqafLkyRo4cKBycnLk4/N/ZeOnn36qNWvWaOnSpfr0009ddGQAAOByQ1MKAACgHNm0aZNCQ0MdDSlJatu2rUJDQ7Vx48YCm1IXIy0tTSEhIU4Nqb/++kvDhw/Xhx9+qKCgoCLt5/Tp0zp9+rRjOT09XZKUnZ2t7Oxsl83Xvs9z/3u5IgcLOVjIgQzsyMFCDhZ35lDUfdKUAgAAKEdSU1MVGRmZZ31kZKRSU1Nd9jxHjhzRs88+q/vvv9+xzhij+Ph4PfDAA2rdunWBZ12db+rUqZo0aVKe9WvWrClyY6u41q5d65b9ljfkYCEHCzmQgR05WMjB4o4csrKyijSOphQAAEAZkJCQkG/j5lzbtm2TJNlstjyPGWPyXX8x0tPT1bNnTzVu3FgTJ050rJ81a5bS09M1bty4Yu1v3LhxGjNmjNP+a9asqa5duyokJMQlc7bLzs7W2rVr1aVLF/n6+rp03+UJOVjIwUIOZGBHDhZysLgzB/tZ0RdSqk2pDRs2aNq0adq+fbsOHTqk5cuX6+abby5w/LJly/T6668rKSlJp0+f1lVXXaWEhAR169bNadzSpUv19NNP67fffnNcD+GWW25x89EAAABcvJEjR6p///6FjomJidEPP/ygv/76K89jhw8fVtWqVUs8j4yMDHXv3l3BwcFavny5U5G6bt06bd68Wf7+/k7btG7dWnfffbf+/e9/57tPf3//PNtIkq+vr9v+MeDOfZcn5GAhBws5kIEdOVjIweKOHIq6v1JtSmVmZqp58+YaMmSIbrvttguO37Bhg7p06aIpU6aoUqVKmj9/vnr37q0tW7YoNjZWknWdhTvvvFPPPvusbrnlFi1fvlx33HGHvv76a6drLwAAAJQl4eHhCg8Pv+C4uLg4paWlaevWrbrmmmskSVu2bFFaWpratWtXojmkp6erW7du8vf318qVKxUQEOD0+L/+9S8999xzjuWUlBR169ZNS5Ysoc4CAADFVqpNqR49eqhHjx5FHj9z5kyn5SlTpmjFihX66KOPHE2pmTNnqkuXLo7TyseNG6cvv/xSM2fO1OLFi102dwAAgNLQqFEjde/eXcOHD9ecOXMkSffdd5969erldJHzhg0baurUqY6zxY8ePar9+/crJSVFkpScnCxJioqKUlRUlDIyMtS1a1dlZWVp0aJFSk9Pd5x6HxERIW9vb9WqVctpLsHBwZKsO/XVqFHDvQcOAAAuOeX6mlK5ubnKyMhQWFiYY92mTZv06KOPOo3r1q1bnobWubgjjOeRg4UcLORgIQcLOZCBXVm4I0xZ9c4772jUqFHq2rWrJKlPnz569dVXncYkJycrLS3Nsbxy5UoNGTLEsWz/qODEiROVkJCg7du3a8uWLZKk+vXrO+1r7969iomJccehAACAy1i5bkrNmDFDmZmZuuOOOxzrUlNT81xPoWrVqoXejYY7wpQecrCQg4UcLORgIQcysCvNO8KUVWFhYVq0aFGhY4wxTsvx8fGKj48vcHzHjh3zbHMhMTExxd4GAADArtw2pRYvXqyEhAStWLEiz22Rz7/zzIXuRsMdYTyPHCzkYCEHCzlYyIEM7MrCHWEAAADgPuWyKbVkyRINGzZM77//vjp37uz0WFRUVJ6zov7+++9C70bDHWFKDzlYyMFCDhZysJADGdiV5h1hAAAA4D5epT2B4lq8eLHi4+P17rvvqmfPnnkej4uLy3Oa/5o1a0p8NxoAAAAAAAC4TqmeKXXixAnt2bPHsbx3714lJSUpLCxMtWrV0rhx43Tw4EEtXLhQktWQuueee/TKK6+obdu2jjOiAgMDFRoaKkkaPXq0rr/+er3wwgvq27evVqxYoc8++0xff/215w8QAAAAAAAA+SrVM6W+/fZbxcbGKjY2VpI0ZswYxcbGasKECZKkQ4cOaf/+/Y7xc+bMUU5OjkaMGKHo6GjH1+jRox1j2rVrp/fee0/z589Xs2bNtGDBAi1ZskRt2rTx7MEBAAAAAACgQKV6ptSF7vKyYMECp+X169cXab/9+vVTv379SjAzAAAAAAAAuFO5u6YUAAAAAAAAyj+aUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAADlzLFjxzRo0CCFhoYqNDRUgwYN0vHjxwvdZtmyZerWrZvCw8Nls9mUlJTk9PjRo0f18MMPq0GDBgoKClKtWrU0atQopaWl5dnXJ598ojZt2igwMFDh4eG69dZbXXh0AADgckFTCgAAoJwZMGCAkpKSlJiYqMTERCUlJWnQoEGFbpOZman27dvr+eefz/fxlJQUpaSkaPr06frxxx+1YMECJSYmatiwYU7jli5dqkGDBmnIkCH6/vvv9c0332jAgAEuOzYAAHD58CntCQAAAKDodu7cqcTERG3evFlt2rSRJM2dO1dxcXFKTk5WgwYN8t3O3rTat29fvo83adJES5cudSzXq1dPkydP1sCBA5WTkyMfHx/l5ORo9OjRmjZtmlOzqqDnBAAAKAxNKQAAgHJk06ZNCg0NdTSkJKlt27YKDQ3Vxo0bXdogSktLU0hIiHx8rJLxu+++08GDB+Xl5aXY2FilpqaqRYsWmj59uq666qoC93P69GmdPn3asZyeni5Jys7OVnZ2tsvma9/nuf+9XJGDhRws5EAGduRgIQeLO3Mo6j5pSgEAAJQjqampioyMzLM+MjJSqampLnueI0eO6Nlnn9X999/vWPf7779LkhISEvTSSy8pJiZGM2bMUIcOHbRr1y6FhYXlu6+pU6dq0qRJedavWbNGQUFBLpvzudauXeuW/ZY35GAhBws5kIEdOVjIweKOHLKysoo0jqYUAABAGZCQkJBv4+Zc27ZtkyTZbLY8jxlj8l1/MdLT09WzZ081btxYEydOdKzPzc2VJI0fP1633XabJGn+/PmqUaOG3n//facG1rnGjRunMWPGOO2/Zs2a6tq1q0JCQlwyZ7vs7GytXbtWXbp0ka+vr0v3XZ6Qg4UcLORABnbkYCEHiztzsJ8VfSGl2pTasGGDpk2bpu3bt+vQoUNavny5br755gLHHzp0SI899pi2b9+u3bt3a9SoUZo5c2aecTNnztTrr7+u/fv3Kzw8XP369dPUqVMVEBDgvoMBAAAogZEjR6p///6FjomJidEPP/ygv/76K89jhw8fVtWqVUs8j4yMDHXv3l3BwcFavny5U5EaHR0tSWrcuLFjnb+/v+rWrav9+/cXuE9/f3/5+/vnWe/r6+u2fwy4c9/lCTlYyMFCDmRgRw4WcrC4I4ei7q9Um1KZmZlq3ry5hgwZ4ni3rTCnT59WRESExo8fr5dffjnfMe+8847Gjh2rt99+W+3atdOuXbsUHx8vSQVuAwAAUNrCw8MVHh5+wXFxcXFKS0vT1q1bdc0110iStmzZorS0NLVr165Ec0hPT1e3bt3k7++vlStX5nlDr1WrVvL391dycrKuvfZaSda7rPv27VPt2rVL9NwAAODyU6pNqR49eqhHjx5FHh8TE6NXXnlFkvT222/nO2bTpk1q376949bEMTExuuuuu7R169YC98vFNz2PHCzkYCEHCzlYyIEM7MrCxTfLokaNGql79+4aPny45syZI0m677771KtXL6eLnDds2FBTp07VLbfcIkk6evSo9u/fr5SUFElScnKyJCkqKkpRUVHKyMhQ165dlZWVpUWLFik9Pd1RE0VERMjb21shISF64IEHNHHiRNWsWVO1a9fWtGnTJEm33367xzIAAACXhkvumlLXXnutFi1a5Hj38Pfff9eqVas0ePDgArfh4pulhxws5GAhBws5WMiBDOxK8+KbZdU777yjUaNGqWvXrpKkPn366NVXX3Uak5ycrLS0NMfyypUrNWTIEMey/aOCEydOVEJCgrZv364tW7ZIkurXr++0r7179yomJkaSNG3aNPn4+GjQoEE6efKk2rRpo3Xr1qly5couP04AAHBpu+SaUv3799fhw4d17bXXyhijnJwcPfjggxo7dmyB23DxTc8jBws5WMjBQg4WciADu7Jw8c2yKiwsTIsWLSp0jDHGaTk+Pt5xSYP8dOzYMc82+fH19dX06dM1ffr0Is0VAACgIJdcU2r9+vWaPHmyZs+erTZt2mjPnj0aPXq0oqOj9fTTT+e7DRffLD3kYCEHCzlYyMFCDmRgV5oX3wQAAID7XHJNqaefflqDBg3SvffeK0lq2rSpMjMzdd9992n8+PHy8vIq5RkCAAAAAADgkuvQZGVl5Wk8eXt7yxhTpFPSAQAAAAAA4H6leqbUiRMntGfPHsfy3r17lZSUpLCwMNWqVUvjxo3TwYMHtXDhQseYpKQkx7aHDx9WUlKS/Pz81LhxY0lS79699dJLLyk2Ntbx8b2nn35affr0kbe3t0ePDwAAAAAAAPkr1abUt99+q06dOjmW7RcbHzx4sBYsWKBDhw5p//79TtvExsY6/n/79u169913Vbt2be3bt0+S9NRTT8lms+mpp57SwYMHFRERod69e2vy5MnuPyAAAAAAAAAUSak2pS50l5cFCxbkWXehj+D5+Pho4sSJmjhxYkmnBwAAAAAAADe55K4pBQAAAAAAgLKPphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAABAOXPs2DENGjRIoaGhCg0N1aBBg3T8+PFCt1m2bJm6deum8PBw2Ww2JSUlOT1+9OhRPfzww2rQoIGCgoJUq1YtjRo1SmlpaU7jdu3apb59+yo8PFwhISFq3769vvjiCxcfIQAAuBzQlAIAAChnBgwYoKSkJCUmJioxMVFJSUkaNGhQodtkZmaqffv2ev755/N9PCUlRSkpKZo+fbp+/PFHLViwQImJiRo2bJjTuJ49eyonJ0fr1q3T9u3b1aJFC/Xq1UupqakuOz4AAHB58CntCQAAAKDodu7cqcTERG3evFlt2rSRJM2dO1dxcXFKTk5WgwYN8t3O3rTat29fvo83adJES5cudSzXq1dPkydP1sCBA5WTkyMfHx/973//0549e/T222+rWbNmkqTnn39es2fP1s8//6yoqKh893369GmdPn3asZyeni5Jys7OVnZ2dvECuAD7/ly93/KGHCzkYCEHMrAjBws5WNyZQ1H3SVMKAACgHNm0aZNCQ0MdDSlJatu2rUJDQ7Vx48YCm1IXIy0tTSEhIfLxsUrGKlWqqFGjRlq4cKFatmwpf39/zZkzR1WrVlWrVq0K3M/UqVM1adKkPOvXrFmjoKAgl833XGvXrnXLfssbcrCQg4UcyMCOHCzkYHFHDllZWUUaR1MKAACgHElNTVVkZGSe9ZGRkS79CN2RI0f07LPP6v7773ess9lsWrt2rfr27auKFSvKy8tLVatWVWJioipVqlTgvsaNG6cxY8Y4ltPT01WzZk117dpVISEhLpuzZL0zu3btWnXp0kW+vr4u3Xd5Qg4WcrCQAxnYkYOFHCzuzMF+VvSFlGpTasOGDZo2bZq2b9+uQ4cOafny5br55psLHH/o0CE99thj2r59u3bv3q1Ro0Zp5syZecYdP35c48eP17Jly3Ts2DHVqVNHM2bM0E033eS+gwEAACiBhISEfM8mOte2bdskWc2h8xlj8l1/MdLT09WzZ081btxYEydOdHqOhx56SJGRkfrqq68UGBioefPmqVevXtq2bZuio6Pz3Z+/v7/8/f3zrPf19XXbPwbcue/yhBws5GAhBzKwIwcLOVjckUNR91eqTanMzEw1b95cQ4YM0W233XbB8adPn1ZERITGjx+vl19+Od8xZ86cUZcuXRQZGakPPvhANWrU0IEDB1SxYkVXTx8AAMBlRo4cqf79+xc6JiYmRj/88IP++uuvPI8dPnxYVatWLfE8MjIy1L17dwUHB2v58uVOReW6dev08ccf69ixY44znGbPnq21a9fq3//+t8aOHVvi5wcAAJePUm1K9ejRQz169Cjy+JiYGL3yyiuSpLfffjvfMW+//baOHj2qjRs3Ooqo2rVrl3yyAAAAbhQeHq7w8PALjouLi1NaWpq2bt2qa665RpK0ZcsWpaWlqV27diWaQ3p6urp16yZ/f3+tXLlSAQEBTo/brw/h5eV8A2cvLy/l5uaW6LkBAMDl55K7ptTKlSsVFxenESNGaMWKFYqIiNCAAQP05JNPytvbO99tuCOM55GDhRws5GAhBws5kIFdWbgjTFnUqFEjde/eXcOHD9ecOXMkSffdd5969erldJHzhg0baurUqbrlllskSUePHtX+/fuVkpIiSUpOTpYkRUVFKSoqShkZGeratauysrK0aNEipaenO2qiiIgIeXt7Ky4uTpUrV9bgwYM1YcIEBQYGau7cudq7d6969uzpyRgAAMAl4JJrSv3+++9at26d7r77bq1atUq7d+/WiBEjlJOTowkTJuS7DXeEKT3kYCEHCzlYyMFCDmRgV5p3hCmr3nnnHY0aNUpdu3aVJPXp00evvvqq05jk5GSlpaU5lleuXKkhQ4Y4lu0fFZw4caISEhK0fft2bdmyRZJUv359p33t3btXMTExCg8PV2JiosaPH68bbrhB2dnZuuqqq7RixQo1b97cLccKAAAuXZdcUyo3N1eRkZF688035e3trVatWiklJUXTpk0rsCnFHWE8jxws5GAhBws5WMiBDOzKwh1hyqqwsDAtWrSo0DHGGKfl+Ph4xcfHFzi+Y8eOebbJT+vWrbV69eoizRMAAKAwl1xTKjo6Wr6+vk4f1WvUqJFSU1N15swZ+fn55dmGO8KUHnKwkIOFHCzkYCEHMrArzTvCAAAAwH28LjykfGnfvr327NnjdLHNXbt2KTo6Ot+GFAAAAAAAADyvVM+UOnHihPbs2eNY3rt3r5KSkhQWFqZatWpp3LhxOnjwoBYuXOgYk5SU5Nj28OHDSkpKkp+fnxo3bixJevDBBzVr1iyNHj1aDz/8sHbv3q0pU6Zo1KhRRZ6X/dR1d5zan52draysLKWnp1/W79KSg4UcLORgIQcLOZCBnTtzsP+NL8rH1eB61FruRw4WcrCQAxnYkYOFHCxlodaymVKsxtavX69OnTrlWT948GAtWLBA8fHx2rdvn9avX+94zGaz5Rlfu3Zt7du3z7G8adMmPfroo0pKSlL16tU1bNiwQu++d74///xTNWvWLPbxAACA8uXAgQOqUaNGaU/jskOtBQDA5eFCtVapNqXKqtzcXKWkpKhixYr5NsFKwn4R9QMHDrj8IurlCTlYyMFCDhZysJADGdi5MwdjjDIyMlStWjV5eV1yVzMo86i13I8cLORgIQcysCMHCzlYykKtdcld6NwVvLy83P6uaUhIyGX94rcjBws5WMjBQg4WciADO3flEBoa6vJ9omiotTyHHCzkYCEHMrAjBws5WEqz1uKtQQAAAAAAAHgcTSkAAAAAAAB4HE0pD/P399fEiRPl7+9f2lMpVeRgIQcLOVjIwUIOZGBHDrgYvG4s5GAhBws5kIEdOVjIwVIWcuBC5wAAAAAAAPA4zpQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUcoHZs2erTp06CggIUKtWrfTVV18VOv7LL79Uq1atFBAQoLp16+qNN97IM2bp0qVq3Lix/P391bhxYy1fvtxd03cZV+fw888/67bbblNMTIxsNptmzpzpxtm7hqszmDt3rq677jpVrlxZlStXVufOnbV161Z3HoJLuDqHZcuWqXXr1qpUqZIqVKigFi1a6D//+Y87D8El3PG7we69996TzWbTzTff7OJZu56rc1iwYIFsNluer1OnTrnzMErMHa+H48ePa8SIEYqOjlZAQIAaNWqkVatWuesQXMLVOXTs2DHf10PPnj3deRjwIOosC3WWhVrLQq1lodayUGtRZ9mVyzrLoETee+894+vra+bOnWt++eUXM3r0aFOhQgXzxx9/5Dv+999/N0FBQWb06NHml19+MXPnzjW+vr7mgw8+cIzZuHGj8fb2NlOmTDE7d+40U6ZMMT4+Pmbz5s2eOqxic0cOW7duNY8//rhZvHixiYqKMi+//LKHjubiuCODAQMGmNdee83s2LHD7Ny50wwZMsSEhoaaP//801OHVWzuyOGLL74wy5YtM7/88ovZs2ePmTlzpvH29jaJiYmeOqxic0cOdvv27TPVq1c31113nenbt6+bj6Rk3JHD/PnzTUhIiDl06JDTV1nmjhxOnz5tWrdubW666Sbz9ddfm3379pmvvvrKJCUleeqwis0dORw5csTpdfDTTz8Zb29vM3/+fA8dFdyJOstCnWWh1rJQa1motSzUWtRZduW1zqIpVULXXHONeeCBB5zWNWzY0IwdOzbf8U888YRp2LCh07r777/ftG3b1rF8xx13mO7duzuN6datm+nfv7+LZu167sjhXLVr1y7zxZK7MzDGmJycHFOxYkXz73//u+QTdhNP5GCMMbGxseapp54q2WTdyF055OTkmPbt25t58+aZwYMHl/lCyR05zJ8/34SGhrp8ru7kjhxef/11U7duXXPmzBnXT9hNPPH74eWXXzYVK1Y0J06cKPmEUeqosyzUWRZqLQu1loVay0KtRZ1lV17rLD6+VwJnzpzR9u3b1bVrV6f1Xbt21caNG/PdZtOmTXnGd+vWTd9++62ys7MLHVPQPkubu3IoTzyVQVZWlrKzsxUWFuaaibuYJ3Iwxujzzz9XcnKyrr/+etdN3oXcmcMzzzyjiIgIDRs2zPUTdzF35nDixAnVrl1bNWrUUK9evbRjxw7XH4CLuCuHlStXKi4uTiNGjFDVqlXVpEkTTZkyRWfPnnXPgZSQp35PvvXWW+rfv78qVKjgmomj1FBnWaizLNRaFmotC7WWhVqLOsuuPNdZNKVK4H//+5/Onj2rqlWrOq2vWrWqUlNT890mNTU13/E5OTn63//+V+iYgvZZ2tyVQ3niqQzGjh2r6tWrq3Pnzq6ZuIu5M4e0tDQFBwfLz89PPXv21KxZs9SlSxfXH4QLuCuHb775Rm+99Zbmzp3rnom7mLtyaNiwoRYsWKCVK1dq8eLFCggIUPv27bV79273HEgJuSuH33//XR988IHOnj2rVatW6amnntKMGTM0efJk9xxICXni9+TWrVv1008/6d5773XdxFFqqLMs1FkWai0LtZaFWstCrUWdZVee6ywfl+7tMmWz2ZyWjTF51l1o/Pnri7vPssAdOZQ37szgxRdf1OLFi7V+/XoFBAS4YLbu444cKlasqKSkJJ04cUKff/65xowZo7p166pjx46um7iLuTKHjIwMDRw4UHPnzlV4eLjrJ+tGrn49tG3bVm3btnU83r59e7Vs2VKzZs3Sv/71L1dN2+VcnUNubq4iIyP15ptvytvbW61atVJKSoqmTZumCRMmuHj2ruPO35NvvfWWmjRpomuuucYFM0VZQZ1loc6yUGtZqLUs1FoWai3qLLvyWGfRlCqB8PBweXt75+k8/v3333k6jnZRUVH5jvfx8VGVKlUKHVPQPkubu3IoT9ydwfTp0zVlyhR99tlnatasmWsn70LuzMHLy0v169eXJLVo0UI7d+7U1KlTy2Sh5I4cfv75Z+3bt0+9e/d2PJ6bmytJ8vHxUXJysurVq+fiIykZT/1u8PLy0tVXX10m372T3JdDdHS0fH195e3t7RjTqFEjpaam6syZM/Lz83PxkZSMu18PWVlZeu+99/TMM8+4duIoNdRZFuosC7WWhVrLQq1lodaizrIrz3UWH98rAT8/P7Vq1Upr1651Wr927Vq1a9cu323i4uLyjF+zZo1at24tX1/fQscUtM/S5q4cyhN3ZjBt2jQ9++yzSkxMVOvWrV0/eRfy5GvBGKPTp0+XfNJu4I4cGjZsqB9//FFJSUmOrz59+qhTp05KSkpSzZo13XY8F8tTrwdjjJKSkhQdHe2aibuYu3Jo37699uzZ4yiYJWnXrl2Kjo4uc4WS5P7Xw3//+1+dPn1aAwcOdO3EUWqosyzUWRZqLQu1loVay0KtRZ1lV67rLJddMv0yZb/t4ltvvWV++eUX88gjj5gKFSqYffv2GWOMGTt2rBk0aJBjvP22i48++qj55ZdfzFtvvZXntovffPON8fb2Ns8//7zZuXOnef7558vNrYpdmcPp06fNjh07zI4dO0x0dLR5/PHHzY4dO8zu3bs9fnxF4Y4MXnjhBePn52c++OADp1txZmRkePz4isodOUyZMsWsWbPG/Pbbb2bnzp1mxowZxsfHx8ydO9fjx1dU7sjhfOXhjjDuyCEhIcEkJiaa3377zezYscMMGTLE+Pj4mC1btnj8+IrKHTns37/fBAcHm5EjR5rk5GTz8ccfm8jISPPcc895/PiKyp0/F9dee6258847PXYs8AzqLAt1loVay0KtZaHWslBrUWfZldc6i6aUC7z22mumdu3axs/Pz7Rs2dJ8+eWXjscGDx5sOnTo4DR+/fr1JjY21vj5+ZmYmBjz+uuv59nn+++/bxo0aGB8fX1Nw4YNzdKlS919GCXm6hz27t1rJOX5On8/ZYmrM6hdu3a+GUycONEDR3Px+kapWwAAgT5JREFUXJ3D+PHjTf369U1AQICpXLmyiYuLM++9954nDqVE3PG74VzloVAyxvU5PPLII6ZWrVrGz8/PREREmK5du5qNGzd64lBKxB2vh40bN5o2bdoYf39/U7duXTN58mSTk5Pj7kMpEXfkkJycbCSZNWvWuHv6KAXUWRbqLAu1loVay0KtZaHWos6yK491ls2Y/38lKwAAAAAAAMBDuKYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphSAcishIUEtWrTw+POuX79eNptNNptNN998c5G2SUhIcGwzc+ZMt84PAADAFai1ALgbTSkAZZK9qCjoKz4+Xo8//rg+//zzUptjcnKyFixYUKSxjz/+uA4dOqQaNWq4d1IAAABFQK0FoCzwKe0JAEB+Dh065Pj/JUuWaMKECUpOTnasCwwMVHBwsIKDg0tjepKkyMhIVapUqUhj7XP19vZ276QAAACKgFoLQFnAmVIAyqSoqCjHV2hoqGw2W551559SHh8fr5tvvllTpkxR1apVValSJU2aNEk5OTn6xz/+obCwMNWoUUNvv/2203MdPHhQd955pypXrqwqVaqob9++2rdvX7Hn/MEHH6hp06YKDAxUlSpV1LlzZ2VmZpYwCQAAANej1gJQFtCUAnBJWbdunVJSUrRhwwa99NJLSkhIUK9evVS5cmVt2bJFDzzwgB544AEdOHBAkpSVlaVOnTopODhYGzZs0Ndff63g4GB1795dZ86cKfLzHjp0SHfddZeGDh2qnTt3av369br11ltljHHXoQIAAHgctRYAV6IpBeCSEhYWpn/9619q0KCBhg4dqgYNGigrK0v//Oc/dcUVV2jcuHHy8/PTN998I0l677335OXlpXnz5qlp06Zq1KiR5s+fr/3792v9+vVFft5Dhw4pJydHt956q2JiYtS0aVM99NBDpXrKOwAAgKtRawFwJa4pBeCSctVVV8nL6//67VWrVlWTJk0cy97e3qpSpYr+/vtvSdL27du1Z88eVaxY0Wk/p06d0m+//Vbk523evLluvPFGNW3aVN26dVPXrl3Vr18/Va5cuYRHBAAAUHZQawFwJZpSAC4pvr6+Tss2my3fdbm5uZKk3NxctWrVSu+8806efUVERBT5eb29vbV27Vpt3LhRa9as0axZszR+/Hht2bJFderUuYgjAQAAKHuotQC4Eh/fA3BZa9mypXbv3q3IyEjVr1/f6Ss0NLRY+7LZbGrfvr0mTZqkHTt2yM/PT8uXL3fTzAEAAMo+ai0AhaEpBeCydvfddys8PFx9+/bVV199pb179+rLL7/U6NGj9eeffxZ5P1u2bNGUKVP07bffav/+/Vq2bJkOHz6sRo0auXH2AAAAZRu1FoDC8PE9AJe1oKAgbdiwQU8++aRuvfVWZWRkqHr16rrxxhsVEhJS5P2EhIRow4YNmjlzptLT01W7dm3NmDFDPXr0cOPsAQAAyjZqLQCFsRnuoQkAxbJ+/Xp16tRJx44dU6VKlYq1bUxMjB555BE98sgjbpkbAABAeUetBVw++PgeAFykGjVq6K677irS2ClTpig4OFj79+9386wAAAAuDdRawKWPM6UAoJhOnjypgwcPSpKCg4MVFRV1wW2OHj2qo0ePSrLuNFPcC3sCAABcLqi1gMsHTSkAAAAAAAB4HB/fAwAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCAAAAAACAx9GUAgAAAAAAgMfRlAIAAAAAAIDH0ZQCimHBggWy2Wz69ttvXbK/HTt2qEOHDgoNDZXNZtPMmTO1atUqJSQkFGs/Tz31lGrVqiUfHx9VqlTJJXM7X1mdF5Cfi3m9AgA8x15T2b98fHwUHR2t/v37a/fu3XnGd+zYUR07dryo54qPj1dwcPAFx2Vl/b/27j2+5/r///j9vbOZjdlmc5xDOVRYFKNCMeTUQSWRSXQgSn2Kj7JJqFD6KCWKfJR8iqLSUEjlmI911KRImZWPwzabww7P3x+v3/v99baDzd7v9zZu18tll3q93s/X6/183ffe9vB4v96vV7YSExO1YcOGEu+7sFrO1SrqvIDCnM/rFRc3n/KeAHAxu+eee5SVlaV3331XNWrUUHR0tJ555hm98sorJf4H9YoVKzRlyhRNmDBBPXv2lL+/v1vmumrVqgo5L6AwpX29AgDKx4IFC9SsWTOdPHlSX3/9taZMmaL169fr559/Vo0aNRzj5syZ4/a5ZGdna9KkSZJU4gZYYbXcxTIvoDDn83rFxY2mFFCOfvjhBw0fPlw9e/Ys0z4kafTo0YqIiHDV1MrMHfPKzs5WYGCgS/YFAADK3+WXX662bdtKsv4Bm5eXp4SEBH344YcaOnSoY1yLFi3Ka4rFckUt5w6unldOTo7jjDYAcCU+vge4wS+//KKBAwcqIiJC/v7+at68uV555RXH4/ZT1nNzc/Xqq686Tl2Pj493jDvzlPZ9+/YV+jzR0dF68sknJUm1atWSzWZznBmSn5+v559/Xs2aNZO/v78iIiJ09913688//yywnzfffFOtWrVSQECAQkNDdfPNN2vXrl2Ox8tjXp07d9bll1+ujRs3qkOHDgoMDNQ999wjSTp27JgeffRRNWrUyLGPG2+8UT///LNj+9OnT+uZZ55xPE94eLiGDh2qQ4cOFTrn89W5c2enTM78WrhwYbHbnjp1Sk8//bSaN2+ugIAA1axZU126dNGmTZscY06ePKnx48erYcOG8vPzU506dTRy5EgdO3bMaV/R0dHq3bu3Pv74Y8XExKhKlSpq3ry5Pv74Y0nWa6558+aqWrWqrr766gIfQbV/tOHHH3/UDTfcoKpVqyo8PFyjRo1Sdna209jSzikpKUlXXnmlqlSpombNmunNN98skEVaWpruu+8+1a1bV35+fmrYsKEmTZqk3Nxcx5h9+/bJZrNpxowZeuGFF9SwYUMFBQUpNjZWW7ZscTqW0rxeAQAVh71B9ddffzmtL+zje3/++af69++vatWqqXr16rrrrru0ffv2Iv8G79mzRzfeeKOCgoJUr149Pfroozp16pQk629MeHi4JGnSpElOtVlhiqrl7H744Qf169dPNWrUUEBAgFq3bq233nqrwH7279+vQYMGOdWMM2fOVH5+frnNa8OGDbLZbPr3v/+tRx99VHXq1JG/v7/27NkjSUpKStINN9ygkJAQBQYGqnnz5po2bZrTPr755hv17dtXoaGhCggIUExMjP7zn/8UOufzZZ9nYV8lOTNs69at6tOnj2rWrKmAgAA1btxYDz/8sNOYr776SjfccIOqVaumwMBAdejQQZ988onTGHvm69at0/Dhw1WzZk0FBwfr7rvvVlZWltLS0nT77berevXqioqK0mOPPaacnBzH9vb65vnnn9eUKVNUv359BQQEqG3btvr8888LzLs0c1q/fr0eeOABhYWFqWbNmrrllluUmppaYJ9Lly5VbGysqlatqqCgIHXv3l07d+50GmOvFV35cwRIkgyAEluwYIGRZLZv317kmB9//NGEhISYK664wixatMisWbPGPProo8bLy8skJiYaY4z5+++/zebNm40k079/f7N582azefNms2fPHtO/f38jybFu8+bN5uTJk4U+13//+18zbNgwI8kkJSWZzZs3mz/++MMYY8yIESOMJDNq1CiTlJRkXnvtNRMeHm7q1atnDh065NjH1KlTjSRz5513mk8++cQsWrTINGrUyISEhJjdu3cbY0y5zKtTp04mNDTU1KtXz8yePdusX7/efPHFFyYjI8NcdtllpmrVqubpp582q1evNsuWLTNjxowx69atM8YYk5eXZ3r06GGqVq1qJk2aZNauXWvmz59v6tSpY1q0aGGys7NL+i0/px9//NEpk82bN5uuXbsab29vs2nTpiK3y8nJMV26dDE+Pj7mscceM6tWrTIrV640//znP82SJUuMMcbk5+eb7t27Gx8fH/PUU0+ZNWvWmBkzZpiqVauamJgYp/wbNGhg6tatay6//HKzZMkSs2rVKtOuXTvj6+trJk6caDp27GiWL19uPvjgA3PppZeaWrVqOeUwZMgQ4+fnZ+rXr2+mTJli1qxZYxITE42Pj4/p3bu3Y9z5zKlFixZm0aJFZvXq1ea2224zkswXX3zhGHfw4EFTr14906BBAzN37lzz2WefmcmTJxt/f38THx/vGLd3714jyURHR5sePXqYDz/80Hz44YfmiiuuMDVq1DDHjh0zxpT+9QoA8LyiaqqXX37ZSDLLli1zWt+pUyfTqVMnx/Lx48dNkyZNTGhoqHnllVfM6tWrzSOPPGIaNmxoJJkFCxY4xtr/xjVv3tzMmDHDfPbZZ2bixInGZrOZSZMmGWOMOXnypElKSjKSzLBhw5xqs8IUVcsZY8zPP/9sqlWrZho3bmwWLVpkPvnkE3PnnXcaSea5555z2kedOnVMeHi4ee2110xSUpIZNWqUkWQeeOCBcpvX+vXrjSRTp04d079/f7Ny5Urz8ccfm8OHD5v58+cbm81mOnfubN555x3z2WefmTlz5pgHH3zQsf26deuMn5+fufbaa83SpUtNUlKSiY+PL/B9Kav09PQCNdiiRYuMr6+vufHGG4vdNikpyfj6+pqWLVuahQsXmnXr1pk333zTDBgwwDFmw4YNxtfX17Rp08YsXbrUfPjhhyYuLs7YbDbz7rvvOsbZX8sNGzY0jz76qFmzZo157rnnjLe3t7nzzjvNlVdeaZ555hmzdu1a88QTTxhJZubMmY7t7fVNvXr1zDXXXGOWLVtm3nvvPXPVVVcZX19fp3qytHNq1KiReeihh8zq1avN/PnzTY0aNUyXLl2cspgyZYqx2WzmnnvuMR9//LFZvny5iY2NNVWrVjU//vijY5w7fo4AY4yhKQWUQkmaUt27dzd169Y16enpTutHjRplAgICzJEjRxzrJJmRI0c6jRs5cqQpTb84ISHBSHJq6OzatctIcioQjDFm69atRpL55z//aYwx5ujRo6ZKlSoF/nDv37/f+Pv7m4EDB5bLvIyxik9J5vPPP3ca+/TTTxtJZu3atUU+95IlSwotaLdv324kmTlz5pT4OEpr+vTpRpJ5/fXXix23aNEiI8nMmzevyDH2P+rPP/+80/qlS5cWeI4GDRqYKlWqmD///NOxLjk52UgyUVFRJisry7H+ww8/NJLMypUrHeuGDBliJJmXXnrJ6bmmTJliJJmvvvrqvOYUEBBgfv/9d8e6EydOmNDQUHPfffc51t13330mKCjIaZwxxsyYMcNIchRE9qLtiiuuMLm5uY5x27ZtM5IczTxjSv96BQB4lr2m2rJli8nJyTGZmZkmKSnJREZGmuuuu87k5OQ4jT+7KfXKK68YSebTTz91GnffffcV2pSSZP7zn/84jb3xxhtN06ZNHcuHDh0ykkxCQkKJj6OwWm7AgAHG39/f7N+/32l9z549TWBgoONNlHHjxhlJZuvWrU7jHnjgAWOz2UxKSkq5zMvelLruuuucxmVmZprg4GBzzTXXmPz8/CKfu1mzZiYmJqbA97B3794mKirK5OXllfg4SuOvv/4yjRo1Mpdddpk5evRosWMbN25sGjdubE6cOFHkmPbt25uIiAiTmZnpWJebm2suv/xyU7duXUcG9tfyQw895LT9TTfdZCSZF154wWl969atzZVXXulYttc3tWvXdppPRkaGCQ0NNV27dj3vOZ1dcz///PNGkjl48KAxxqr5fXx8Csw9MzPTREZGmttvv92xzp0/R7i48fE9wIVOnjypzz//XDfffLMCAwOVm5vr+Lrxxht18uRJp48Zucv69eslqcCpsldffbWaN2/uOBV48+bNOnHiRIFx9erV0/XXX1/oKcOemJddjRo1dP311zut+/TTT3XppZeqa9euRT7Pxx9/rOrVq6tPnz5O34PWrVsrMjKy2LuBGGOctjnz42PnsmTJEj3++ON68sknNXz48GLHfvrppwoICHB8JLEw69atk1Qwr9tuu01Vq1YtkFfr1q1Vp04dx3Lz5s0lWR95OPNaXPb1v//+e4HnvOuuu5yWBw4cKOn/vnfnM6f69es7lgMCAnTppZc6PffHH3+sLl26qHbt2k6526+D8cUXXzjts1evXvL29nYst2zZssjjAQBUbO3bt5evr6+qVaumHj16qEaNGlqxYsU5r130xRdfOLY505133lnoeJvNpj59+jita9mypVv+dqxbt0433HCD6tWr57Q+Pj5e2dnZ2rx5s2NcixYtdPXVVxcYZ4xx/M319Lzsbr31VqflTZs2KSMjQw8++KDTRwLPtGfPHv3888+OeuLsWvjgwYNKSUkpco55eXlO29g/xnguWVlZ6tWrl06ePKlPP/202Ls+7969W7/++quGDRumgICAIve3detW9e/f3+nOjd7e3ho8eLD+/PPPAsfRu3dvp2V7vdWrV68C6wt73d1yyy1O86lWrZr69OmjjRs3Ki8v77zm1LdvX6fls2um1atXKzc3V3fffbdT7gEBAerUqVOBmtmTP0e4eNCUAlzo8OHDys3N1ezZs+Xr6+v0deONN0qS/ve//3lkHpIUFRVV4LHatWs7Hi/pOE/Py66wcYcOHVLdunWLfZ6//vpLx44dk5+fX4HvQ1paWrHfgy+++KLANiW5FtH69esVHx+vu+++W5MnTz7n+EOHDql27dry8ir61/Dhw4fl4+Pj+Gy+nc1mU2RkZIG8QkNDnZb9/PyKXX/y5Emn9T4+PqpZs6bTusjISMdczmdOZ+9Pkvz9/XXixAnH8l9//aWPPvqoQO6XXXaZpII/M2fv035nxzP3CQCoHBYtWqTt27dr3bp1uu+++7Rr164iG0tnOnz4sGrVqlVgfWHrJCkwMLBAA8Lf37/A30JXOHz4cJG1jv3x0ozz9Lzszh5rvy5ncXWY/Vpgjz32WIG/6w8++KCk4mvhG264wWmb4t68s8vNzVX//v21e/durVq1qkDT7WwlOY6jR4/KGFOqvEpThxX2urPXXGevO336tI4fP35eczpXzWT/fl111VUFvl9Lly4t8L3y5M8RLh7cPgFwoRo1ajjerRg5cmShYxo2bOj2edj/AB08eLDAH9zU1FSFhYUVGHe2M8d5el52hb0LFx4eXujF2s9kv5hjUlJSoY9Xq1atyG3btGmj7du3O62z/6EvynfffaebbrpJnTp10rx584odaxceHq6vvvpK+fn5RTamatasqdzcXB06dMipCWSMUVpamq666qoSPVdJ5ebm6vDhw04FTFpammMu7ppTWFiYWrZsqSlTphT6+LnyBwBUXs2bN3dc3LxLly7Ky8vT/Pnz9f7776t///5FblezZk1t27atwHr7363yVLNmzSJrK0lOdVhJxnl6XnZn12H2v/vF1WH2fYwfP1633HJLoWOaNm1a5PZz585VZmZmgf0VZ8SIEfr888+1atUqtWrV6pzjS3IcNWrUkJeXl0e/P4W9dtPS0uTn56egoCD5+Pi4fE728e+//74aNGhwHrMGyo4zpQAXCgwMVJcuXbRz5061bNlSbdu2LfBV2JkjZ3LFWR/2j7wtXrzYaf327du1a9cu3XDDDZKk2NhYValSpcC4P//803GKd3nMqzg9e/bU7t27iz2lvXfv3jp8+LDy8vIK/R4UVwxVq1atwHj7O12F2b9/v3r27KlGjRpp2bJl8vX1Pecx2I/j5MmTxd6hz57H2XktW7ZMWVlZJcqrtN5++22n5XfeeUeSHHc8csecevfurR9++EGNGzcu9Pt1Pk0pzp4CgMrp+eefV40aNTRx4sRiP7rVqVMnZWZm6tNPP3Va/+677573c7vqb8cNN9ygdevWFbjL2aJFixQYGKj27ds7xv3000/673//W2CczWZTly5dymVeRenQoYNCQkL02muvyRhT6JimTZvqkksu0bffflvo3/S2bdsW++Zg06ZNncae6y56Tz75pBYsWKD58+cXe2mHM1166aVq3Lix3nzzTcdd485WtWpVtWvXTsuXL3fKPT8/X4sXL1bdunV16aWXluj5Smr58uVOZxxlZmbqo48+0rXXXitvb2+3zKl79+7y8fHRr7/+WuT3q7SowVBanCkFnId169YV+pGuG2+8US+99JKuueYaXXvttXrggQcUHR2tzMxM7dmzRx999NE5rw9wxRVXSJKee+459ezZU97e3mrZsmWxjZGzNW3aVCNGjNDs2bPl5eWlnj17at++fXrqqadUr149PfLII5Kk6tWr66mnntI///lP3X333brzzjt1+PBhTZo0SQEBAUpISCiXeRXn4Ycf1tKlS9WvXz+NGzdOV199tU6cOKEvvvhCvXv3VpcuXTRgwAC9/fbbuvHGGzVmzBhdffXV8vX11Z9//qn169erX79+uvnmm0s87+L07NlTx44d08svv6wff/zR6bHGjRsX+Jib3Z133qkFCxbo/vvvV0pKirp06aL8/Hxt3bpVzZs314ABA9StWzd1795dTzzxhDIyMtSxY0d99913SkhIUExMjAYPHuySY7Dz8/PTzJkzdfz4cV111VXatGmTnnnmGfXs2VPXXHONJLllTk8//bTWrl2rDh06aPTo0WratKlOnjypffv2adWqVXrttdfO+ZHNs7ni9QoA8LwaNWpo/Pjxevzxx/XOO+9o0KBBhY4bMmSIXnzxRQ0aNEjPPPOMmjRpok8//VSrV6+WpGI/Hl+UatWqqUGDBlqxYoVuuOEGhYaGKiws7JyNkbMlJCQ4rpc4ceJEhYaG6u2339Ynn3yi559/XiEhIZKkRx55RIsWLVKvXr309NNPq0GDBvrkk080Z84cPfDAA44Gg6fnVZSgoCDNnDlT9957r7p27arhw4erVq1a2rNnj7799lu9/PLLkqyznXr27Knu3bsrPj5ederU0ZEjR7Rr1y7997//1XvvvVeqeRflvffe05QpU9S/f39deumlTtdt9ff3V0xMTJHbvvLKK+rTp4/at2+vRx55RPXr19f+/fu1evVqxxt006ZNU7du3dSlSxc99thj8vPz05w5c/TDDz9oyZIlRV5X63x5e3urW7duGjt2rPLz8/Xcc88pIyNDkyZNcoxx9Zyio6P19NNPa8KECfrtt98c13X766+/tG3bNlWtWtXp+UvCVa9XXETK8SLrQKVjv5NFUV979+41xlh30bjnnntMnTp1jK+vrwkPDzcdOnQwzzzzjNP+VMidUU6dOmXuvfdeEx4ebmw2m9N+C1PYXe6MMSYvL88899xz5tJLLzW+vr4mLCzMDBo0yPzxxx8F9jF//nzTsmVL4+fnZ0JCQky/fv2cbgFbHvPq1KmTueyyywrd99GjR82YMWNM/fr1ja+vr4mIiDC9evUyP//8s2NMTk6OmTFjhmnVqpUJCAgwQUFBplmzZua+++4zv/zyS5HzLq3iXg/nuu3xiRMnzMSJE80ll1xi/Pz8TM2aNc3111/vdOvfEydOmCeeeMI0aNDA+Pr6mqioKPPAAw8UuKtMgwYNTK9evQqd39mvMftdXqZPn+5YN2TIEFO1alXz3Xffmc6dO5sqVaqY0NBQ88ADD5jjx48XmHdZ5nT2HZSMse7UMnr0aNOwYUPj6+trQkNDTZs2bcyECRMcz1/YvM88zjPv8lLa1ysAwLOKu6PxiRMnTP369c0ll1ziuNtqYX879u/fb2655RYTFBRkqlWrZm699VazatUqI8msWLHCMc7+N+5s9lrlTJ999pmJiYkx/v7+RpIZMmRIscdR2N9ZY4z5/vvvTZ8+fUxISIjx8/MzrVq1KrQu+P33383AgQNNzZo1ja+vr2natKmZPn16gTvUeXJe9rvvvffee4Xue9WqVaZTp06matWqJjAw0LRo0cI899xzTmO+/fZbc/vtt5uIiAjj6+trIiMjzfXXX29ee+21YuddGvbvX2FfDRo0OOf2mzdvNj179jQhISHG39/fNG7c2DzyyCNOY7788ktz/fXXm6pVq5oqVaqY9u3bm48++shpTFGv5aJq4bNfj/b65rnnnjOTJk0ydevWNX5+fiYmJsasXr26wLzLMif793b9+vVO6z/88EPTpUsXExwcbPz9/U2DBg1M//79zWeffVbkvM8+zjOV9vWKi5vNmCLOvQQAXDTi4+P1/vvv6/jx4+U9FQAAztvUqVP15JNPav/+/aU+yxYoD/v27VPDhg01ffp0PfbYY+U9HcDj+PgeAAAAgErH/nGxZs2aKScnR+vWrdO//vUvDRo0iIYUAFQSNKUAAAAAVDqBgYF68cUXtW/fPp06dUr169fXE088oSeffLK8pwYAKCE+vgcAAAAAAACPK/1tKQAAAAAAAIAyoikFAAAAAAAAj+OaUoXIz89XamqqqlWrJpvNVt7TAQAALmaMUWZmpmrXri0vL96j8zRqLQAALmwlrbVoShUiNTVV9erVK+9pAAAAN/vjjz+4S1c5oNYCAODicK5ai6ZUIapVqybJCi84ONil+87JydGaNWsUFxcnX19fl+67MiEHCzlYyMFCDhZyIAM7d+aQkZGhevXqOf7mw7OotdyPHCzkYCEHMrAjBws5WCpCrUVTqhD208iDg4PdUigFBgYqODj4on/xkwM52JGDhRws5EAGdp7IgY+OlQ9qLfcjBws5WMiBDOzIwUIOlopQa3ERBQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBzXlAIAuFV+fr5Onz5d4vE5OTny8fHRyZMnlZeX58aZVVxkYClrDn5+fsXeghgAgAtBXl6ecnJySjSWGsNCDpay5ODr6ytvb+8yz4GmFADAbU6fPq29e/cqPz+/xNsYYxQZGak//vjjor0INRlYypqDl5eXGjZsKD8/PzfMDgCA8mWMUVpamo4dO1aqbagxyMGurDlUr15dkZGRZcqQphQAwC2MMTp48KC8vb1Vr169Ep+xkp+fr+PHjysoKOiiPcuFDCxlySE/P1+pqak6ePCg6tevf1EXnACAC5O9IRUREaHAwMAS/a2jxrCQg+V8czDGKDs7W3///bckKSoq6rznQFMKAOAWubm5ys7OVu3atRUYGFji7ewf9wsICLhoiwQysJQ1h/DwcKWmpio3N/eivt0zAODCk5eX52hI1axZs8TbUWNYyMFSlhyqVKkiSfr7778VERFx3h/lu3jTBwC4lf1z6Xx0CuXF/tq7mK8VAQC4MNmvIVWaN/4AV7O//kp6TbPC0JQCALgVH5tCeeG1BwC40PG3DuXJFa8/mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAXOBef/11xx0QZ82aVd7TAQAAuKBQa50/mlIAAJwhPj5eNptN999/f4HHHnzwQdlsNsXHxxcYb7PZ5Ovrq0aNGumxxx5TVlaW07bLli1T586dFRISoqCgILVs2VJPP/20jhw5UuRcvL29HfsOCgpSq1attHDhwlIdT0ZGhkaNGqUnnnhCBw4c0IgRI0q1PQAAgCtRa+FMNKUAADhLvXr19O677+rEiROOdSdPntSSJUtUv379AuN79OihgwcP6rffftMzzzyjOXPm6LHHHnM8PmHCBN1xxx266qqr9Omnn+qHH37QzJkz9e233+rf//53sXNZsGCBDh48qG+//VZ33HGHhg4dqtWrV5f4WPbv36+cnBz16tVLUVFR532XnrLcVQUAAOBM1FoFXay1Fk0pAIBHZZ/OLfLrZE6ey8eejyuvvFL169fX8uXLHeuWL1+uevXqKSYmpsB4f39/RUZGql69eho4cKDuuusuffjhh5Kkbdu2aerUqZo5c6amT5+uDh06KDo6Wt26ddOyZcs0ZMiQYudSvXp1RUZGqnHjxvrnP/+p0NBQrVmzxvF4enq6RowYoYiICAUHB+v666/Xt99+K0lauHChrrjiCklSo0aNZLPZtG/fPknSRx99pDZt2iggIECNGjXSpEmTlJv7f3nZbDa99tpr6tevn6pWrapnnnmmxNvNnz9fN998swIDA3XJJZdo5cqVTsf0448/qlevXgoODla1atV07bXX6tdff3U8vmDBAjVv3lyBgYG6+uqr9eqrrzoeO336tEaNGqWoqCgFBAQoOjpa06ZNKzZDAAAuJsXVT6eotQqg1irfWsvHbXsGAKAQLSYW/c5Tl6bhemNIW8dym8mf6cRZBZFdu4ahWnpfrGP5mufW60jW6QLj9j3b67zmOXToUC1YsEB33XWXJOnNN9/UPffcow0bNpxz2ypVqjje7Xr77bcVFBSkBx98sNCx1atXL9F88vLytGzZMh05ckS+vr6SJGOMevXqpdDQUK1atUohISGaO3eubrjhBu3evVt33HGH6tWrp65du2rbtm2qV6+ewsPDtXr1ag0aNEj/+te/HEWK/VTzhIQEx3MmJCRo2rRpevHFF+Xt7V3i7SZNmqTnn39e06dP1+zZs3XXXXfp999/V2hoqA4cOKDrrrtOnTt31rp16xQcHKyvv/7aUWzNmzdPCQkJevnll9WqVStt2rRJDz/8sIKCgjRkyBD961//0sqVK/Wf//xH9evX1x9//KE//vijRBleSI4eParRo0c7itC+fftq9uzZxb6eli9frrlz52rHjh06fPiwdu7cqdatWzuNef311/XOO+/ov//9rzIzM3X06NFC9/nJJ5/o6aef1nfffaeqVavquuuuc/qHBQCg/BRXa3VuGq5ZN1/qWKbW+j/UWuVTa9GUAgCgEIMHD9b48eO1b98+2Ww2ff3113r33XfPWSht27ZN77zzjm644QZJ0i+//KJGjRo5ipvSuvPOO+Xt7a2TJ08qLy9PoaGhuvfeeyVJ69ev1/fff6+///5b/v7+kqQZM2boww8/1Pvvv68RI0aoZs2akqTw8HBFRkZKkqZMmaJx48Y53jls1KiRJk+erMcff9yp4Bk4cKDuuecep0xKsl18fLzuvPNOSdLUqVM1e/Zsbdu2TT169NArr7yikJAQvfvuu45MLr30/4rjyZMna+bMmbrllluUn5+vmjVrat++fZo7d66GDBmi/fv365JLLtE111wjm82mBg0anFeuld3AgQP1559/KikpSZI0YsQIDR48WB999FGR22RlZaljx4667bbbNHz48ELHZGdnq0ePHurRo4fGjx9f6Jhly5Zp+PDhmjp1qq6//noZY/T999+X/aAAABcVai1qLYmmFADAw356unuRj3nZbE7LO57qWuKxXz3RpWwTO0tYWJh69eqlt956y/EuWVhYWKFjP/74YwUFBSk3N1c5OTnq16+fZs+eLcl6h8121lxL48UXX1TXrl31xx9/aOzYsXrkkUfUpEkTSdKOHTt0/PhxRzFkd+LECadTtM+2Y8cObd++XVOmTHGsy8vL08mTJ5Wdne24FkLbtm3Pa7uWLVs6Hq9ataqqVaumv//+W5KUnJysa6+9ttDC8dChQ/rjjz80bNgwp6ZJbm6uQkJCJFlFWLdu3dS0aVP16NFDvXv3VlxcXDEJXnh27dqlpKQkbdmyRe3atZNkvesZGxurlJQUNW3atNDtBg8eLEmOjxUU5uGHH5akIv9BkJubqzFjxmj69OkaNmyYY31RzwkA8Lziai2bMTp14v8uEE6tRa0llW+tRVMKAOBRgX7F/+nJz88v8djS7Pd83HPPPRo1apQk6ZVXXilyXJcuXfTqq6/K19dXtWvXdioCLr30Un311VfKyck5r3fwIiMj1aRJEzVp0kTvvfeeYmJi1LZtW7Vo0UL5+fmKiooqtIFQ3Knq+fn5mjRpkm655ZYCjwUEBDj+v2rVque13dnHabPZHN/XKlWqFDsvyWqwtGvXTvn5+Tp+/LiCgoIc+7zyyiu1d+9effrpp/rss890++23q2vXrnr//feL3O+FZvPmzQoJCXE0pCSpffv2CgkJ0aZNm9zaIPrvf/+rAwcOyMvLSzExMUpLS1Pr1q01Y8YMXXbZZUVud+rUKZ06dcqxnJGRIcm6qKurL+xq39/FesFYO3KwkIOFHC68DHJycmSMUX5+vlPtJEkBPkVfOtoYo1P//7/5+fnFjpWc67Kixp79/OdijHE8f3x8vEaPHi1Jmj17tvLz850et4/v3Lmz5syZU6DWys/P1yWXXKKvvvpKp06dKnGtZYxx/H9ERIQaNWqkRo0aaenSpWrTpo2uvPJKtWjRQnl5eYqKitK6desK7KN69epO+Z/9/4mJibr55psLbOfn5+dUF52ZX0m38/b2dtrOZrMpNzfX+p4GBDjldyb7R/jmzp2rdu3ayRijrKwsVa1aVT4+PsrPz1fr1q3166+/6tNPP9Xnn3+u22+/XTfccIPee++9Avuzf79ycnLk7e3t9FhJf9ZoSgEAUIQePXro9Gnr2gnduxf9rmPVqlUd76idbeDAgfrXv/6lOXPmaMyYMQUeP3bsWImvddCkSRPdeuutGj9+vFasWKErr7xSaWlp8vHxUXR0dIn2IVmNnZSUlCLn7OrtztSyZUu99dZbhTbpatWqpTp16ui3337TXXfdpfz8fGVkZCg4OFheXv9XCAcHB+uOO+7QHXfcof79+6tHjx46cuSIQkNDz3telUlaWpoiIiIKrI+IiFBaWppbn/u3336TJCUmJuqFF15QdHS0Zs6cqU6dOmn37t1Ffg+mTZumSZMmFVi/Zs2a875L0bmsXbvWLfutbMjBQg4WcrhwMvDx8VFkZKSOHz/uqFVKIzMz0w2zKpmcnBzl5uYqIyNDHTp0cLxpERsbq4yMDMfZUGe+geHv7+/423fixAmnu/bZr6v44osv6v777y/wfOnp6Y6zgApz4sQJx3NFRESoT58+evzxx/XOO++oadOmSktL08mTJwu9K2BGRoaysqwzz44fP+7YT8uWLfXDDz/ovvvuK7DN8ePHC33usmxnjNHJkyeVkZGhpk2basmSJTp8+HCBWqtKlSqqXbu2fv75Z/Xp06fQ47Hr2bOn46t///76/fffVaNGDafxp0+f1okTJ7Rx40ani7FL1iUBSoKmFAAARfD29tauXbsc/38+2rVrp8cff1yPPvqoDhw4oJtvvlm1a9fWnj179Nprr+maa64ptFlVlEcffVStWrXSN998o65duyo2NlY33XSTnnvuOTVt2lSpqalatWqVbrrppgKnhNtNnDhRvXv3Vr169XTbbbfJy8tL3333nb7//nvHnV9cud2ZRo0apdmzZ2vAgAEaP368QkJCtGXLFl199dVq2rSpEhMTNXr0aAUHB6t79+46fPiwfv75Z6Wnp2vs2LF68cUXFRUVpdatW8vLy0vvvfeeIiMjS9zYq8gSExMLbdycafv27ZJU6McUyvrxhZKwv+s6YcIE3XrrrZKsO/jUrVtX7733XqFFtCSNHz9eY8eOdSxnZGSoXr16iouLU3BwsEvnmJOTo7Vr16pbt27nfX2RCwE5WMjBQg4XXgYnT57UH3/8oaCgIKezlc/FGKPMzExVq1bN7X8ziuLr6ysfHx/H7/+ffvpJkhzLPj4+8vX1dSyfPf5s119/vf7xj3/oySef1OHDh3XTTTc5aq25c+fqmmuucZyNZWfPQbIaNWfu+4knnlBMTIx2796tvn37KjY2VnfffbemTZvmqLU+/fRT9evXT23btnWcWR4UFOTYT2Jiovr27atGjRqpf//+jprphx9+0OTJkx3PdfZzn+92NptNAQEBCg4O1tixYzVv3jzdd999GjduXIFaKyEhQQ8//LDCw8PVvXt3HTlyRD///LOOHTumRx55RLNmzVJkZKSj1lq1apXjzodnvkkoWa/DKlWq6LrrrivwOjyzwVUcmlIAABTDFf9gfu6559SmTRu98soreu2115Sfn6/GjRurf//+57xN8dmuuOIKde3aVRMnTtSqVau0atUqTZgwQffcc48OHTqkyMhIXXfddapVq1aR++jevbs+/vhjPf3003r++efl6+urZs2aOS7q6ertzlSzZk2tW7dO//jHP9SpUyd5e3urdevW6tixoyTp3nvvVWBgoKZPn67HH39cgYGBatmypeNaR0FBQXruuef0yy+/yNvbW1dddZVWrVpVoEiqjEaNGqUBAwYUOyY6Olrfffed/vrrrwKPHTp0qNjvuytERUVJklq0aOFY5+/vr0aNGmn//v1Fbufv7++4QOyZfH193faPQ3fuuzIhBws5WMjhwskgLy9PNptNXl5epfobaH9zwb5tebDZbE7Pf/YbS2c/fvZyYZ5//nm1bdtWr7zyiubOnetUa8XHxxfY9syPtp2dYatWrdS1a1clJiY61Vr33nuvU60VFRXltO2Z/9+zZ09HzTR9+nSnmunM5zr7uc93uzPXhYeHO2qtLl26OGqta6+9Vl5eXhoxYoSCgoI0ffp0PfHEE061lpeXl6pVq6bp06cXqLV8fAq2j7y8vGSz2Qr9uSrxz5lBAenp6UaSSU9Pd/m+T58+bT788ENz+vRpl++7MiEHCzlYyMFyoeVw4sQJ89NPP5kTJ06Uaru8vDxz9OhRk5eX56aZVXxkYClrDsW9Bt35t97dfvrpJyPJbN261bFuy5YtRpL5+eefz7n93r17jSSzc+fOIsesX7/eSDJHjx51Wp+enm78/f3N/PnzHetOnz5tIiIizNy5c0t8DNRa7kcOFnKwkMOFlwF1VtmQg6Ui1Frl+rbixo0b1adPH9WuXVs2m00ffvhhseOXL1+ubt26KTw8XMHBwYqNjdXq1asLjJs1a5aaNm2qKlWqqF69enrkkUd08uRJNx0FAACA5zRv3lw9evTQ8OHDtWXLFm3ZskXDhw9X7969nS5y3qxZM33wwQeO5SNHjig5OdnxMYmUlBQlJyc7XYcqLS1NycnJ2rNnjyTp+++/V3Jyso4cOSLJOnPw/vvvV0JCgtasWaOUlBQ98MADkqTbbrvN7ccOAAAuLOXalMrKylKrVq308ssvl2j8xo0b1a1bN61atUo7duxQly5d1KdPH+3cudMx5u2339a4ceOUkJCgXbt26Y033tDSpUs1fvx4dx0GAACAR7399tu64oorFBcXp7i4OLVs2VL//ve/ncakpKQoPT3dsbxy5UrFxMSoV69ekqQBAwYoJiZGr732mmPMa6+9ppiYGMdtoq+77jrFxMRo5cqVjjHTp0/XgAEDNHjwYF111VX6/ffftW7dugIXPwUAADiXcr2mlP1K7iU1a9Ysp+WpU6dqxYoV+uijjxQTEyPJuk1yx44dNXDgQEnWtRfuvPNObdu2rcj9cptizyMHCzlYyMFyoeVQ3K2Ki2P+/y16TRG3sr0YkIGlrDm44jbFFVVoaKgWL15c7Bhzxu2uJSk+Pl7x8fHFbpOYmKjExMRix/j6+mrGjBmaMWNGSaYKAABQpEp9ofP8/HxlZmY63X74mmuu0eLFi7Vt2zZdffXV+u2337Rq1apiLyTLbYrLDzlYyMFCDpYLJYfKfKviioIMLOebgytuUwwAAAD3qdRNqZkzZyorK0u33367Y92AAQN06NAhXXPNNTLGKDc3Vw888IDGjRtX5H64TbHnkYOFHCzkYLnQcjh16pT279+vqlWrqkqVKiXezlSAWxWXNzKwlDWHEydOqEqVKurUqVOBO7+V9DbFAABUZBfzGdUof654/VXaptSSJUuUmJioFStWKCIiwrF+w4YNmjJliubMmaN27dppz549GjNmjKKiovTUU08Vui9uU1x+yMFCDhZysFwoOdhvS3v48GGFh4eXuKmQn5+v06dP69SpU+V2q+LyRgaWsuRgjNHhw4fl5eWlKlWqFPj43oXwMwYAuHj5+fnJy8tLqampCg8Pl5+fX4lqLfvf1pMnT1JjkMN552CM0enTp3Xo0CF5eXnJz8/vvOdQKZtSS5cu1bBhw/Tee++pa9euTo899dRTGjx4sO69915J0hVXXKGsrCyNGDFCEyZMuKhfcADgSd7e3qpbt67+/PNP7du3r8TbGWMcZ7hcrGcJkYGlrDnYbDbVrVu3QEMKAIDKzsvLSw0bNtTBgweVmppa4u2oMSzkYClrDoGBgapfv36Z+iyVrim1ZMkS3XPPPVqyZInj7jFnys7OLhCIt7e3jDEFLvgJAHCvoKAgXXLJJaW6qHROTo42btyo66677qI9m4UMLGXNwdfXl4YUAOCC5efnp/r16ys3N1d5eXkl2oYaw0IOlrLk4O3tLR8fnzI39cq1KXX8+HHt2bPHsbx3714lJycrNDRU9evX1/jx43XgwAEtWrRIktWQuvvuu/XSSy+pffv2SktLkyRVqVJFISEhkqQ+ffrohRdeUExMjOPje0899ZT69u1LYQoA5cDb27tUv3+9vb2Vm5urgICAi7ZIIAMLOQAAUDybzVaqSz/wt9VCDpaKkEO5NqW++eYbdenSxbFsv9j4kCFDtHDhQh08eFD79+93PD537lzl5uZq5MiRGjlypGO9fbwkPfnkk7LZbHryySd14MABhYeHq0+fPpoyZYpnDgoAAAAAAADnVK5Nqc6dOxf7kTp7o8luw4YN59ynj4+PEhISlJCQUMbZAQAAAAAAwF246jcAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAAAAAAA8jqYUAAAAAAAAPI6mFAAAAAAAADyOphQAAEAlc/ToUQ0ePFghISEKCQnR4MGDdezYsWK3Wb58ubp3766wsDDZbDYlJycXGPP666+rc+fOCg4Ols1mK3Sfu3fvVr9+/RQWFqbg4GB17NhR69evd82BAQCAiwpNKQAAgEpm4MCBSk5OVlJSkpKSkpScnKzBgwcXu01WVpY6duyoZ599tsgx2dnZ6tGjh/75z38WOaZXr17Kzc3VunXrtGPHDrVu3Vq9e/dWWlraeR8PAAC4OPmU9wQAAABQcrt27VJSUpK2bNmidu3aSZLmzZun2NhYpaSkqGnTpoVuZ29a7du3r8h9P/zww5KkDRs2FPr4//73P+3Zs0dvvvmmWrZsKUl69tlnNWfOHP3444+KjIw8v4MCAAAXJZpSAAAAlcjmzZsVEhLiaEhJUvv27RUSEqJNmzYV2ZRyhZo1a6p58+ZatGiRrrzySvn7+2vu3LmqVauW2rRpU+R2p06d0qlTpxzLGRkZkqScnBzl5OS4dI72/bl6v5UNOVjIwUIOZGBHDhZysLgzh5Luk6YUAABAJZKWlqaIiIgC6yMiItz+ETqbzaa1a9eqX79+qlatmry8vFSrVi0lJSWpevXqRW43bdo0TZo0qcD6NWvWKDAw0C1zXbt2rVv2W9mQg4UcLORABnbkYCEHiztyyM7OLtE4mlIAAAAVQGJiYqGNmzNt375dktUcOpsxptD1rmSM0YMPPqiIiAh9+eWXqlKliubPn6/evXtr+/btioqKKnS78ePHa+zYsY7ljIwM1atXT3FxcQoODnbpHHNycrR27Vp169ZNvr6+Lt13ZUIOFnKwkAMZ2JGDhRws7szBflb0udCUAgAAqABGjRqlAQMGFDsmOjpa3333nf76668Cjx06dEi1atVy1/QkSevWrdPHH3+so0ePOppJc+bM0dq1a/XWW29p3LhxhW7n7+8vf3//Aut9fX3d9o8Bd+67MiEHCzlYyIEM7MjBQg4Wd+RQ0v2V6933Nm7cqD59+qh27dqy2Wz68MMPix2/fPlydevWTeHh4QoODlZsbKxWr15dYNyxY8c0cuRIRUVFKSAgQM2bN9eqVavcdBQAAABlFxYWpmbNmhX7FRAQoNjYWKWnp2vbtm2Obbdu3ar09HR16NDBrXO0n4rv5eVcQnp5eSk/P9+tzw0AAC485dqUysrKUqtWrfTyyy+XaPzGjRvVrVs3rVq1Sjt27FCXLl3Up08f7dy50zHm9OnT6tatm/bt26f3339fKSkpmjdvnurUqeOuwwAAAPCY5s2bq0ePHho+fLi2bNmiLVu2aPjw4erdu7fTRc6bNWumDz74wLF85MgRJScn66effpIkpaSkKDk52ek6VGlpaUpOTtaePXskSd9//72Sk5N15MgRSVJsbKxq1KihIUOG6Ntvv9Xu3bv1j3/8Q3v37lWvXr08cfgAAOACUq4f3+vZs6d69uxZ4vGzZs1yWp46dapWrFihjz76SDExMZKkN998U0eOHNGmTZscp4s1aNDAZXMGAAAob2+//bZGjx6tuLg4SVLfvn0LvMmXkpKi9PR0x/LKlSs1dOhQx7L9o4IJCQlKTEyUJL322mtO17W67rrrJEkLFixQfHy8wsLClJSUpAkTJuj6669XTk6OLrvsMq1YsUKtWrVyy7ECAIALV6W+plR+fr4yMzMVGhrqWLdy5UrFxsZq5MiRWrFihcLDwzVw4EA98cQT8vb2LnQ/3KbY88jBQg4WcrCQg4UcyMCuItymuKIKDQ3V4sWLix1jjHFajo+PV3x8fLHbJCYmOhpURWnbtm2hl08AAAAorUrdlJo5c6aysrJ0++23O9b99ttvWrdune666y6tWrVKv/zyi0aOHKnc3FxNnDix0P1wm+LyQw4WcrCQg4UcLORABnbleZtiAAAAuE+lbUotWbJEiYmJWrFihSIiIhzr8/PzFRERoddff13e3t5q06aNUlNTNX369CKbUtym2PPIwUIOFnKwkIOFHMjAriLcphgAAADuUymbUkuXLtWwYcP03nvvqWvXrk6PRUVFydfX1+mjes2bN1daWppOnz4tPz+/AvvjNsXlhxws5GAhBws5WMiBDOzK8zbFAAAAcJ9yvfve+ViyZIni4+P1zjvvFHqXl44dO2rPnj1OtyXevXu3oqKiCm1IAQAAAAAAwPPKtSl1/PhxJScnKzk5WZK0d+9eJScna//+/ZKsj9XdfffdjvFLlizR3XffrZkzZ6p9+/ZKS0tTWlqa051lHnjgAR0+fFhjxozR7t279cknn2jq1KkaOXKkR48NAAAAAAAARSvXptQ333yjmJgYxcTESJLGjh2rmJgYx7WfDh486GhQSdLcuXOVm5urkSNHKioqyvE1ZswYx5h69eppzZo12r59u1q2bKnRo0drzJgxGjdunGcPDgAAAAAAAEUq12tKde7cucDtis+0cOFCp+UNGzaUaL+xsbHasmVLGWYGAAAAAAAAd6p015QCAAAAAABA5UdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAoJI5evSoBg8erJCQEIWEhGjw4ME6duxYsdssX75c3bt3V1hYmGw2m5KTk50eP3LkiB566CE1bdpUgYGBql+/vkaPHq309PQyPzcAAEBhaEoBAABUMgMHDlRycrKSkpKUlJSk5ORkDR48uNhtsrKy1LFjRz377LOFPp6amqrU1FTNmDFD33//vRYuXKikpCQNGzaszM8NAABQGJ/yngAAAABKbteuXUpKStKWLVvUrl07SdK8efMUGxurlJQUNW3atNDt7I2jffv2Ffr45ZdfrmXLljmWGzdurClTpmjQoEHKzc2Vj4/PeT/3qVOndOrUKcdyRkaGJCknJ0c5OTmlC+Ac7Ptz9X4rG3KwkIOFHMjAjhws5GBxZw4l3SdNKQAAgEpk8+bNCgkJcTSFJKl9+/YKCQnRpk2bimwMnY/09HQFBwfLx8enTM89bdo0TZo0qcD6NWvWKDAw0GXzPdPatWvdst/Khhws5GAhBzKwIwcLOVjckUN2dnaJxtGUAgAAqETS0tIUERFRYH1ERITS0tJc9jyHDx/W5MmTdd9995X5ucePH6+xY8c6ljMyMlSvXj3FxcUpODjYZXOWrHdm165dq27dusnX19el+65MyMFCDhZyIAM7crCQg8WdOdjPij4XmlIAAAAVQGJiYqFnE51p+/btkiSbzVbgMWNMoevPR0ZGhnr16qUWLVooISHB6bHzeW5/f3/5+/sXWO/r6+u2fwy4c9+VCTlYyMFCDmRgRw4WcrC4I4eS7q9cL3S+ceNG9enTR7Vr15bNZtOHH35Y7Pjly5erW7duCg8PV3BwsGJjY7V69eoix7/77ruy2Wy66aabXDtxAAAAFxs1apR27dpV7Nfll1+uyMhI/fXXXwW2P3TokGrVqlXmeWRmZqpHjx4KCgrSBx984FRUuvu5AQDAxaVcz5TKyspSq1atNHToUN16663nHL9x40Z169ZNU6dOVfXq1bVgwQL16dNHW7duVUxMjNPY33//XY899piuvfZad00fAADAZcLCwhQWFnbOcbGxsUpPT9e2bdt09dVXS5K2bt2q9PR0dejQoUxzyMjIUPfu3eXv76+VK1cqICDAY88NAAAuPuXalOrZs6d69uxZ4vGzZs1yWp46dapWrFihjz76yKkplZeXp7vuukuTJk3Sl19+qWPHjrloxgAAAOWrefPm6tGjh4YPH665c+dKkkaMGKHevXs7XWi8WbNmmjZtmm6++WZJ0pEjR7R//36lpqZKklJSUiRZZz9FRkYqMzNTcXFxys7O1uLFi5WRkeG4HkR4eLi8vb1L/NwAAAAlUamvKZWfn6/MzEyFhoY6rX/66acVHh6uYcOG6csvvzznfrhNseeRg4UcLORgIQcLOZCBXUW4TXFF9fbbb2v06NGKi4uTJPXt21cvv/yy05iUlBSlp6c7lleuXKmhQ4c6lgcMGCBJSkhIUGJionbs2KGtW7dKkpo0aeK0r7179yo6OrrEzw0AAFASlbopNXPmTGVlZen22293rPv666/1xhtvKDk5ucT74TbF5YccLORgIQcLOVjIgQzsyvM2xRVVaGioFi9eXOwYY4zTcnx8vOLj44sc37lz5wLbnO9zAwAAlESlbUotWbJEiYmJWrFihePWxJmZmRo0aJDmzZtXomsy2HGbYs8jBws5WMjBQg4WciADu4pwm2IAAAC4T6VsSi1dulTDhg3Te++9p65duzrW//rrr9q3b5/69OnjWJefny9J8vHxUUpKiho3blxgf9ymuPyQg4UcLORgIQcLOZCBXXnephgAAADuU+maUkuWLNE999yjJUuWqFevXk6PNWvWTN9//73TuieffFKZmZl66aWXVK9ePU9OFQAAAAAAAEUoUVPqu+++K/WOW7RoIR+f4nd//Phx7dmzx7G8d+9eJScnKzQ0VPXr19f48eN14MABLVq0SJLVkLr77rv10ksvqX379kpLS5MkValSRSEhIQoICNDll1/u9BzVq1eXpALrAQAAzoe76iIAAICLTYmqo9atW8tms5Xo4peS5OXlpd27d6tRo0bFjvvmm2/UpUsXx7L9uk5DhgzRwoULdfDgQe3fv9/x+Ny5c5Wbm6uRI0dq5MiRjvX28QAAAO7mrroIAADgYlPit+y2bt2q8PDwc44zxpT4rKRz3eXl7EbThg0bSrTf4vYBAABQVu6oiwAAAC42JWpKderUSU2aNHF8FO5crrvuOlWpUqUs8wIAAKiQqIsAAABco0RNqfXr15dqp6tWrTqvyQAAAFR01EUAAACu4VXeEwAAAAAAAMDFp8TXlHr66adLNG7ixInnPRkAAIDKgLoIAACg7ErclPrggw+KfMxmsyklJUUnT56k+AIAABc86iIAAICyK3FTaufOnYWuT05O1rhx4/TDDz9o+PDhLpsYAABARUVdBAAAUHbnfU2pvXv3atCgQbrqqqsUEhKiH3/8Ua+99por5wYAAFApUBcBAACUXqmbUv/73//00EMPqVmzZjp48KA2bdqkpUuX6pJLLnHH/AAAACos6iIAAIDzV+KP72VlZWnGjBl64YUX1KRJE3300UeKi4tz59wAAAAqJOoiAACAsitxU6px48bKzMzUQw89pDvvvFM2m03fffddgXEtW7Z06QQBAAAqGuoiAACAsitxU+rvv/+WJD3//POaPn26jDGOx2w2m4wxstlsysvLc/0sAQAAKhDqIgAAgLIrcVNq79697pwHAABApUFdBAAAUHYlbko1aNDAnfMAAACoNKiLAAAAyq5Ed9/77rvvlJ+fX+Kd/vjjj8rNzT3vSQEAAFRU1EUAAACuUaKmVExMjA4fPlzincbGxmr//v3nPSkAAICKiroIAADANUr08T1jjJ566ikFBgaWaKenT58u06QAAAAqKuoiAAAA1yhRU+q6665TSkpKiXcaGxurKlWqnPekAAAAKirqIgAAANcoUVNqw4YNbp4GAABA5UBdBAAA4BoluqYUAAAAAAAA4Eo0pQAAAAAAAOBxNKUAAAAAAADgcTSlAAAAAAAA4HE0pQAAAAAAAOBx59WU+ve//62OHTuqdu3a+v333yVJs2bN0ooVK1w6OQAAgIqOuggAAOD8lLop9eqrr2rs2LG68cYbdezYMeXl5UmSqlevrlmzZrl6fgAAABUWdREAAMD58yntBrNnz9a8efN000036dlnn3Wsb9u2rR577DGXTu5CdSpPyj6dK19jK/CYl82mAF9vx3L26dwi91OWsSdO58nIFDrWJpuq+J3f2JM5eco3hY+VpEC//3vJnS4mh7PHlma/5xpbxddbNpv1nKdy85SX75qxAT7e8vKyxp7OzVdufn6JxubmF5+Dv4+3vEu43zPH5uTlKyev6LF+3l7y8fYq9djcvHydLmasr7eXfM9jbL4pPgcfLy/5+Vhj8/KNTuXmFbnfM8fm5xuddNFYby+b/H2s17sxRidyXDO2sJ/lonK4mH5HnMzJU04RORQ29kL6HeF9xvxK83N/of2OUDHHUlFQF1VM1FoWai1qLWoti5fNJu8zlt31c18Zfkf4nvHtd+XPfWX7HUGt9f9VgFqr1E2pvXv3KiYmpsB6f39/ZWVluWRSF7rHt/no8W3rCn2sS9NwLRh6tWO5zeTPivwF265hqJbeF+tYvua59TqSdbrQsS3rhmjlqGscy11f+EIHjp0odOwlEUFaO7aTY7nvy1/pl7+PFzq2TvUq+nrc9Y7l2+du1nd/phc6NrSqn/77VDfH8tyfvfWPInKo4uutXZN7OJYfWLxD61MOFTpWkvY928vx/2P/k6xV36cVOfanp7s7fmn+c/kPWvbfP4scu+PJrqoZ5C9JeubjXfr3lt+LHPvl411ULzRQkjRjTYpe3/hbkWPXPHKdLq1VTZK09oCXHp1ceA6StGJkR7WqV12StODrvZr26c9Fjl0yvL1iG9e0/n/bfk1c8WORY9+Mb6vrm9WSJH2484D+8f53RY59ZeCV6tUySpK0+se/NPKd/xY5dnr/lrqtbT1J0sZfDumehd8UOfbpfpfp7thoSdKvGTY9UkwO43s2032dGkuSfjiQrn6vfF3k2DE3XKJHul0qSdpz6LjiXtxY5NgR1zXSP29sLkk6cOyErn1+fZFjB7dvoMk3XS5JOpJ1Wm2e+azIsbdeWVczb28lSTqRk6cWE1cXOfbGKyI15642juVWxeRwMf2OGLbov9q272ihYy/03xGrRnVw/P8r6/fopc9/KXLshfw7IqF3M4UW+WjFQF1UMVFrWai1qLWotSw3XhGpl25v6VgubuyF/jti67jOjuUhb27T1r1HCh17of+OoNayVIRaq9Qf32vYsKGSk5MLrP/000/VokULV8wJAACgUqAuAgAAOH82Y4o5r64QCxYs0FNPPaWZM2dq2LBhmj9/vn799VdNmzZN8+fP14ABA9w1V4/JyMhQSEiI0tPTFRwc7NJ95+Tk6IOPVql79zj5+voWePxCP13U3hHPycnRhx+tUlwROZw5tjT7LcnYinC6qH1sTk6OVn68Sl3jis7hQj5d1D42JydHH3+yStd3KzqHC/2U8gBfb+Xk5GjVqlXq3LXoHC6G3xH2HK7v1l3ePkWf0Hsh/47wNvlKSvpUN954o4zN+yI+pTxPa1cn6cYbbyzyZ+J8uepv/cVQF7kDtRa11vmMpdayUGuVfqz18b18rVq1SjfeeGOxlwe40H9H+NqMI4c8eV3EH9+j1pJUIWqtUn98b+jQocrNzdXjjz+u7OxsDRw4UHXq1NFLL71E4VVC/t7WD62v77njP/OH25Vjz/zF5cqxZ/6iPRe/UuRQmv2WZqz9D5mrx/r5eMmvhCci+niVPIfS7PfMX0auHOtzxi9EV471spU8B28vW4lf715uGmuzuWesVPIc7GNLs9+Sqgi/IwJ8vUucw4X2OyInJ6fEY0uz3zNVht8ROTmlet+sXJRXXXT06FGNHj1aK1eulCT17dtXs2fPVvXq1YvcZvny5Zo7d6527Nihw4cPa+fOnWrdurXj8SNHjighIUFr1qzRH3/8obCwMN10002aPHmyQkJCJEn79u3T5MmTtW7dOqWlpal27doaNGiQJkyYID8/P7cdb2lRa1motSzUWpaLvdbKyfm/f5i76+e+MvyOOLPGcNfPfWX4HUGtZakItVapm1KSNHz4cA0fPlz/+9//lJ+fr4iICFfPCwAAoFIoj7po4MCB+vPPP5WUlCRJGjFihAYPHqyPPvqoyG2ysrLUsWNH3XbbbRo+fHiBx1NTU5WamqoZM2aoRYsW+v3333X//fcrNTVV77//viTp559/Vn5+vubOnasmTZrohx9+0PDhw5WVlaUZM2a452ABAMAF67wudJ6bm6tLLrlEYWFhjvW//PKLfH19FR0d7cr5AQAAVFjlURft2rVLSUlJ2rJli9q1aydJmjdvnmJjY5WSkqKmTZsWut3gwYMlWWc7Febyyy/XsmXLHMuNGzfWlClTNGjQIOXm5srHx0c9evRQjx7/d+HbRo0aKSUlRa+++mqxTalTp07p1KlTjuWMjAxJ1jvVZ75b7Qr2/bl6v5UNOVjIwUIOZGBHDhZysLgzh5Lus9RNqfj4eN1zzz265JJLnNZv3bpV8+fP14YNG0q7SwAAgEqpPOqizZs3KyQkxNGQkqT27dsrJCREmzZtKrIpdT7s14HwKeb6bunp6QoNLf7ePdOmTdOkSZMKrF+zZo0CAwPLPM/CrF271i37rWzIwUIOFnIgAztysJCDxR05ZGdnl2hcqZtSO3fuVMeOHQusb9++vUaNGlXa3QEAAFRa5VEXpaWlFfoRwYiICKWlFX0L7tI6fPiwJk+erPvuu6/IMb/++qtmz56tmTNnFruv8ePHa+zYsY7ljIwM1atXT3FxcW650PnatWvVrVs3l1+0tTIhBws5WMiBDOzIwUIOFnfmYD8r+lxK3ZSy2WzKzMwssD49PV15eUXf8QAAAOBC48q6KDExsdCzic60fft2x/OezRhT6PrzkZGRoV69eqlFixZKSEgodExqaqp69Oih2267Tffee2+x+/P395e/v3+B9b6+vm77x4A7912ZkIOFHCzkQAZ25GAhB4s7cijp/kp2yfYzXHvttZo2bZpToZWXl6dp06bpmmuuKdW+Nm7cqD59+qh27dqy2Wz68MMPix2/fPlydevWTeHh4QoODlZsbKxWr17tNGbevHm69tprVaNGDdWoUUNdu3bVtm3bSjUvAACAknBlXTRq1Cjt2rWr2K/LL79ckZGR+uuvvwpsf+jQIdWqVavMx5SZmakePXooKChIH3zwQaFFZWpqqrp06aLY2Fi9/vrrZX5OAABwcSr1mVLPPfecOnXqpKZNm+raa6+VJH355ZfKyMjQunXrSrWvrKwstWrVSkOHDtWtt956zvEbN25Ut27dNHXqVFWvXl0LFixQnz59tHXrVsXExEiSNmzYoDvvvFMdOnRQQECAnn/+ecXFxenHH39UnTp1Snu4AAAARXJlXRQWFuZ0sfSixMbGKj09Xdu2bdPVV18tybqGVXp6ujp06FD6gzhDRkaGunfvLn9/f61cuVIBAQEFxhw4cEBdunRRmzZttGDBAnl5lfo9TgAAAEnn0ZS67LLL9N133+nll1/Wt99+qypVqujuu+/WqFGjznmRy7P17NlTPXv2LPH4WbNmOS1PnTpVK1as0EcffeRoSr399ttOY+bNm6f3339fn3/+ue6+++5C98sdYTyPHCzkYCEHCzlYyIEM7CrCHWHOxZV1UUk1b95cPXr00PDhwzV37lxJ0ogRI9S7d2+ni5w3a9ZM06ZN08033yxJOnLkiPbv36/U1FRJUkpKiiQpMjJSkZGRyszMVFxcnLKzs7V48WJlZGQ4aqLw8HB5e3srNTVVnTt3Vv369TVjxgwdOnTI8XyRkZFuOV4AAHDhKlVTKicnR3FxcZo7d66mTp3qrjmVWH5+vjIzM4st+rKzs5WTk1PsGO4IU37IwUIOFnKwkIOFHMjArjzvCFOc8qyL3n77bY0ePVpxcXGSpL59++rll192GpOSkqL09HTH8sqVKzV06FDH8oABAyRJCQkJSkxM1I4dO7R161ZJUpMmTZz2tXfvXkVHR2vNmjXas2eP9uzZo7p16zqNMca47gABAMBFoVRNKV9fX/3www8uu4hmWc2cOVNZWVm6/fbbixwzbtw41alTR127di1yDHeE8TxysJCDhRws5GAhBzKwqwh3hClOedZFoaGhWrx4cbFjzm4SxcfHKz4+vsjxnTt3Pmdj6Vz7AAAAKI1Sf3zv7rvv1htvvKFnn33WHfMpsSVLligxMVErVqwo9LbIkvT8889ryZIl2rBhQ6HXRLDjjjDlhxws5GAhBws5WMiBDOzK844w51JR6iIAAIDKqNRNqdOnT2v+/Plau3at2rZtq6pVqzo9/sILL7hsckVZunSphg0bpvfee6/IM6BmzJihqVOn6rPPPlPLli3dPicAAHDxqQh1EQAAQGVV6qbUDz/8oCuvvFKStHv3bqfHPHH6+pIlS3TPPfdoyZIl6tWrV6Fjpk+frmeeeUarV69W27Zt3T4nAABwcSrvuggAAKAyK3VTav369S578uPHj2vPnj2O5b179yo5OVmhoaGqX7++xo8frwMHDmjRokWSrIbU3XffrZdeeknt27dXWlqaJKlKlSoKCQmRZH1k76mnntI777yj6Ohox5igoCAFBQW5bO4AAACurIsAAAAuNl5l2fjPP//UgQMHznv7b775RjExMYqJiZEkjR07VjExMZo4caIk6eDBg9q/f79j/Ny5c5Wbm6uRI0cqKirK8TVmzBjHmDlz5uj06dPq37+/05gZM2ac9zwBAADOpax1EQAAwMWm1GdK5efn65lnntHMmTN1/PhxSVK1atX06KOPasKECfLyKnmf61x3eVm4cKHT8oYNG865z3379pX4+QEAAMrClXURAADAxabUTakJEyY47jLTsWNHGWP09ddfKzExUSdPntSUKVPcMU8AAIAKh7oIAADg/JW6KfXWW29p/vz56tu3r2Ndq1atVKdOHT344IMUXwAA4KJBXQQAAHD+Sn1O+ZEjR9SsWbMC65s1a6YjR464ZFIAAACVAXURAADA+St1U6pVq1Z6+eWXC6x/+eWX1apVK5dMCgAAoDKgLgIAADh/pf743vPPP69evXrps88+U2xsrGw2mzZt2qQ//vhDq1atcsccAQAAKiTqIgAAgPNX6jOlOnXqpN27d+vmm2/WsWPHdOTIEd1yyy1KSUnRtdde6445AgAAVEjURQAAAOevxGdK/fbbb2rYsKFsNptq167NhTsBAMBFi7oIAACg7Ep8ptQll1yiQ4cOOZbvuOMO/fXXX26ZFAAAQEVGXQQAAFB2JW5KGWOclletWqWsrCyXTwgAAKCioy4CAAAou1JfUwoAAAAAAAAoqxI3pWw2m2w2W4F1AAAAFxvqIgAAgLIr8YXOjTGKj4+Xv7+/JOnkyZO6//77VbVqVadxy5cvd+0MAQAAKhjqIgAAgLIrcVNqyJAhTsuDBg1y+WQAAAAqA+oiAACAsitxU2rBggXunAcAAEClQV0EAABQdlzoHAAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAACgkjl69KgGDx6skJAQhYSEaPDgwTp27Fix2yxfvlzdu3dXWFiYbDabkpOTnR4/cuSIHnroITVt2lSBgYGqX7++Ro8erfT09EL3d+rUKbVu3brQfQEAAJQETSkAAIBKZuDAgUpOTlZSUpKSkpKUnJyswYMHF7tNVlaWOnbsqGeffbbQx1NTU5WamqoZM2bo+++/18KFC5WUlKRhw4YVOv7xxx9X7dq1y3wsAADg4uVT3hMAAABAye3atUtJSUnasmWL2rVrJ0maN2+eYmNjlZKSoqZNmxa6nb1ptW/fvkIfv/zyy7Vs2TLHcuPGjTVlyhQNGjRIubm58vH5v7Lx008/1Zo1a7Rs2TJ9+umnLjoyAABwsaEpBQAAUIls3rxZISEhjoaUJLVv314hISHatGlTkU2p85Genq7g4GCnhtRff/2l4cOH68MPP1RgYGCJ9nPq1CmdOnXKsZyRkSFJysnJUU5Ojsvma9/nmf+9WJGDhRws5EAGduRgIQeLO3Mo6T5pSgEAAFQiaWlpioiIKLA+IiJCaWlpLnuew4cPa/Lkybrvvvsc64wxio+P1/3336+2bdsWedbV2aZNm6ZJkyYVWL9mzZoSN7ZKa+3atW7Zb2VDDhZysJADGdiRg4UcLO7IITs7u0TjaEoBAABUAImJiYU2bs60fft2SZLNZivwmDGm0PXnIyMjQ7169VKLFi2UkJDgWD979mxlZGRo/Pjxpdrf+PHjNXbsWKf916tXT3FxcQoODnbJnO1ycnK0du1adevWTb6+vi7dd2VCDhZysJADGdiRg4UcLO7MwX5W9LmUa1Nq48aNmj59unbs2KGDBw/qgw8+0E033VTk+OXLl+vVV19VcnKyTp06pcsuu0yJiYnq3r2707hly5bpqaee0q+//uq4HsLNN9/s5qMBAAA4f6NGjdKAAQOKHRMdHa3vvvtOf/31V4HHDh06pFq1apV5HpmZmerRo4eCgoL0wQcfOBWp69at05YtW+Tv7++0Tdu2bXXXXXfprbfeKnSf/v7+BbaRJF9fX7f9Y8Cd+65MyMFCDhZyIAM7crCQg8UdOZR0f+XalMrKylKrVq00dOhQ3Xrrreccv3HjRnXr1k1Tp05V9erVtWDBAvXp00dbt25VTEyMJOs6C3fccYcmT56sm2++WR988IFuv/12ffXVV07XXgAAAKhIwsLCFBYWds5xsbGxSk9P17Zt23T11VdLkrZu3ar09HR16NChTHPIyMhQ9+7d5e/vr5UrVyogIMDp8X/961965plnHMupqanq3r27li5dSp0FAABKrVybUj179lTPnj1LPH7WrFlOy1OnTtWKFSv00UcfOZpSs2bNUrdu3RynlY8fP15ffPGFZs2apSVLlrhs7gAAAOWhefPm6tGjh4YPH665c+dKkkaMGKHevXs7XeS8WbNmmjZtmuNs8SNHjmj//v1KTU2VJKWkpEiSIiMjFRkZqczMTMXFxSk7O1uLFy9WRkaG49T78PBweXt7q379+k5zCQoKkmTdqa9u3bruPXAAAHDBqdTXlMrPz1dmZqZCQ0Md6zZv3qxHHnnEaVz37t0LNLTOxB1hPI8cLORgIQcLOVjIgQzsKsIdYSqqt99+W6NHj1ZcXJwkqW/fvnr55ZedxqSkpCg9Pd2xvHLlSg0dOtSxbP+oYEJCghITE7Vjxw5t3bpVktSkSROnfe3du1fR0dHuOBQAAHARq9RNqZkzZyorK0u33367Y11aWlqB6ynUqlWr2LvRcEeY8kMOFnKwkIOFHCzkQAZ25XlHmIoqNDRUixcvLnaMMcZpOT4+XvHx8UWO79y5c4FtziU6OrrU2wAAANhV2qbUkiVLlJiYqBUrVhS4LfLZd545191ouCOM55GDhRws5GAhBws5kIFdRbgjDAAAANynUjalli5dqmHDhum9995T165dnR6LjIwscFbU33//XezdaLgjTPkhBws5WMjBQg4WciADu/K8IwwAAADcx6u8J1BaS5YsUXx8vN555x316tWrwOOxsbEFTvNfs2ZNme9GAwAAAAAAANcp1zOljh8/rj179jiW9+7dq+TkZIWGhqp+/foaP368Dhw4oEWLFkmyGlJ33323XnrpJbVv395xRlSVKlUUEhIiSRozZoyuu+46Pffcc+rXr59WrFihzz77TF999ZXnDxAAAAAAAACFKtczpb755hvFxMQoJiZGkjR27FjFxMRo4sSJkqSDBw9q//79jvFz585Vbm6uRo4cqaioKMfXmDFjHGM6dOigd999VwsWLFDLli21cOFCLV26VO3atfPswQEAAAAAAKBI5Xqm1Lnu8rJw4UKn5Q0bNpRov/3791f//v3LMDMAAAAAAAC4U6W7phQAAAAAAAAqP5pSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAJXM0aNHNXjwYIWEhCgkJESDBw/WsWPHit1m+fLl6t69u8LCwmSz2ZScnOz0+JEjR/TQQw+padOmCgwMVP369TV69Gilp6cX2Ncnn3yidu3aqUqVKgoLC9Mtt9ziwqMDAAAXC5pSAAAAlczAgQOVnJyspKQkJSUlKTk5WYMHDy52m6ysLHXs2FHPPvtsoY+npqYqNTVVM2bM0Pfff6+FCxcqKSlJw4YNcxq3bNkyDR48WEOHDtW3336rr7/+WgMHDnTZsQEAgIuHT3lPAAAAACW3a9cuJSUlacuWLWrXrp0kad68eYqNjVVKSoqaNm1a6Hb2ptW+ffsKffzyyy/XsmXLHMuNGzfWlClTNGjQIOXm5srHx0e5ubkaM2aMpk+f7tSsKuo5AQAAikNTCgAAoBLZvHmzQkJCHA0pSWrfvr1CQkK0adMmlzaI0tPTFRwcLB8fq2T873//qwMHDsjLy0sxMTFKS0tT69atNWPGDF122WVF7ufUqVM6deqUYzkjI0OSlJOTo5ycHJfN177PM/97sSIHCzlYyIEM7MjBQg4Wd+ZQ0n3SlAIAAKhE0tLSFBERUWB9RESE0tLSXPY8hw8f1uTJk3Xfffc51v3222+SpMTERL3wwguKjo7WzJkz1alTJ+3evVuhoaGF7mvatGmaNGlSgfVr1qxRYGCgy+Z8prVr17plv5UNOVjIwUIOZGBHDhZysLgjh+zs7BKNoykFAABQASQmJhbauDnT9u3bJUk2m63AY8aYQtefj4yMDPXq1UstWrRQQkKCY31+fr4kacKECbr11lslSQsWLFDdunX13nvvOTWwzjR+/HiNHTvWaf/16tVTXFycgoODXTJnu5ycHK1du1bdunWTr6+vS/ddmZCDhRws5EAGduRgIQeLO3OwnxV9LuXalNq4caOmT5+uHTt26ODBg/rggw900003FTn+4MGDevTRR7Vjxw798ssvGj16tGbNmlVg3KxZs/Tqq69q//79CgsLU//+/TVt2jQFBAS472AAAADKYNSoURowYECxY6Kjo/Xdd9/pr7/+KvDYoUOHVKtWrTLPIzMzUz169FBQUJA++OADpyI1KipKktSiRQvHOn9/fzVq1Ej79+8vcp/+/v7y9/cvsN7X19dt/xhw574rE3KwkIOFHMjAjhws5GBxRw4l3V+5NqWysrLUqlUrDR061PFuW3FOnTql8PBwTZgwQS+++GKhY95++22NGzdOb775pjp06KDdu3crPj5ekorcBgAAoLyFhYUpLCzsnONiY2OVnp6ubdu26eqrr5Ykbd26Venp6erQoUOZ5pCRkaHu3bvL399fK1euLPCGXps2beTv76+UlBRdc801kqx3Wfft26cGDRqU6bkBAMDFp1ybUj179lTPnj1LPD46OlovvfSSJOnNN98sdMzmzZvVsWNHx62Jo6Ojdeedd2rbtm1F7peLb3oeOVjIwUIOFnKwkAMZ2FWEi29WRM2bN1ePHj00fPhwzZ07V5I0YsQI9e7d2+ki582aNdO0adN08803S5KOHDmi/fv3KzU1VZKUkpIiSYqMjFRkZKQyMzMVFxen7OxsLV68WBkZGY6aKDw8XN7e3goODtb999+vhIQE1atXTw0aNND06dMlSbfddpvHMgAAABeGC+6aUtdcc40WL17sePfwt99+06pVqzRkyJAit+Him+WHHCzkYCEHCzlYyIEM7Mrz4psV1dtvv63Ro0crLi5OktS3b1+9/PLLTmNSUlKUnp7uWF65cqWGDh3qWLZ/VDAhIUGJiYnasWOHtm7dKklq0qSJ07727t2r6OhoSdL06dPl4+OjwYMH68SJE2rXrp3WrVunGjVquPw4AQDAhe2Ca0oNGDBAhw4d0jXXXCNjjHJzc/XAAw9o3LhxRW7DxTc9jxws5GAhBws5WMiBDOwqwsU3K6rQ0FAtXry42DHGGKfl+Ph4xyUNCtO5c+cC2xTG19dXM2bM0IwZM0o0VwAAgKJccE2pDRs2aMqUKZozZ47atWunPXv2aMyYMYqKitJTTz1V6DZcfLP8kIOFHCzkYCEHCzmQgV15XnwTAAAA7nPBNaWeeuopDR48WPfee68k6YorrlBWVpZGjBihCRMmyMvLq5xnCAAAAAAAgAuuQ5OdnV2g8eTt7S1jTIlOSQcAAAAAAID7leuZUsePH9eePXscy3v37lVycrJCQ0NVv359jR8/XgcOHNCiRYscY5KTkx3bHjp0SMnJyfLz81OLFi0kSX369NELL7ygmJgYx8f3nnrqKfXt21fe3t4ePT4AAAAAAAAUrlybUt988426dOniWLZfbHzIkCFauHChDh48qP379zttExMT4/j/HTt26J133lGDBg20b98+SdKTTz4pm82mJ598UgcOHFB4eLj69OmjKVOmuP+AAAAAAAAAUCLl2pQ6111eFi5cWGDduT6C5+Pjo4SEBCUkJJR1egAAAAAAAHCTC+6aUgAAAAAAAKj4aEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAAAAAwONoSgEAAAAAAMDjaEoBAAAAAADA42hKAQAAVDJHjx7V4MGDFRISopCQEA0ePFjHjh0rdpvly5ere/fuCgsLk81mU3JystPjR44c0UMPPaSmTZsqMDBQ9evX1+jRo5Wenu40bvfu3erXr5/CwsIUHBysjh07av369S4+QgAAcDGgKQUAAFDJDBw4UMnJyUpKSlJSUpKSk5M1ePDgYrfJyspSx44d9eyzzxb6eGpqqlJTUzVjxgx9//33WrhwoZKSkjRs2DCncb169VJubq7WrVunHTt2qHXr1urdu7fS0tJcdnwAAODi4FPeEwAAAEDJ7dq1S0lJSdqyZYvatWsnSZo3b55iY2OVkpKipk2bFrqdvWm1b9++Qh+//PLLtWzZMsdy48aNNWXKFA0aNEi5ubny8fHR//73P+3Zs0dvvvmmWrZsKUl69tlnNWfOHP3444+KjIwsdN+nTp3SqVOnHMsZGRmSpJycHOXk5JQugHOw78/V+61syMFCDhZyIAM7crCQg8WdOZR0nzSlAAAAKpHNmzcrJCTE0ZCSpPbt2yskJESbNm0qsil1PtLT0xUcHCwfH6tkrFmzppo3b65FixbpyiuvlL+/v+bOnatatWqpTZs2Re5n2rRpmjRpUoH1a9asUWBgoMvme6a1a9e6Zb+VDTlYyMFCDmRgRw4WcrC4I4fs7OwSjaMpBQAAUImkpaUpIiKiwPqIiAiXfoTu8OHDmjx5su677z7HOpvNprVr16pfv36qVq2avLy8VKtWLSUlJal69epF7mv8+PEaO3asYzkjI0P16tVTXFycgoODXTZnyXpndu3aterWrZt8fX1duu/KhBws5GAhBzKwIwcLOVjcmYP9rOhzKdem1MaNGzV9+nTt2LFDBw8e1AcffKCbbrqpyPEHDx7Uo48+qh07duiXX37R6NGjNWvWrALjjh07pgkTJmj58uU6evSoGjZsqJkzZ+rGG29038EAAACUQWJiYqFnE51p+/btkqzm0NmMMYWuPx8ZGRnq1auXWrRooYSEBKfnePDBBxUREaEvv/xSVapU0fz589W7d29t375dUVFRhe7P399f/v7+Bdb7+vq67R8D7tx3ZUIOFnKwkAMZ2JGDhRws7sihpPsr16ZUVlaWWrVqpaFDh+rWW2895/hTp04pPDxcEyZM0IsvvljomNOnT6tbt26KiIjQ+++/r7p16+qPP/5QtWrVXD19AAAAlxk1apQGDBhQ7Jjo6Gh99913+uuvvwo8dujQIdWqVavM88jMzFSPHj0UFBSkDz74wKmoXLdunT7++GMdPXrUcYbTnDlztHbtWr311lsaN25cmZ8fAABcPMq1KdWzZ0/17NmzxOOjo6P10ksvSZLefPPNQse8+eabOnLkiDZt2uQooho0aFD2yQIAALhRWFiYwsLCzjkuNjZW6enp2rZtm66++mpJ0tatW5Wenq4OHTqUaQ4ZGRnq3r27/P39tXLlSgUEBDg9br8+hJeX8w2cvby8lJ+fX6bnBgAAF58L7ppSK1euVGxsrEaOHKkVK1YoPDxcAwcO1BNPPCFvb+9Ct+GOMJ5HDhZysJCDhRws5EAGdhXhjjAVUfPmzdWjRw8NHz5cc+fOlSSNGDFCvXv3drrIebNmzTRt2jTdfPPNkqQjR45o//79Sk1NlSSlpKRIkiIjIxUZGanMzEzFxcUpOztbixcvVkZGhqMmCg8Pl7e3t2JjY1WjRg0NGTJEEydOVJUqVTRv3jzt3btXvXr18mQMAADgAnDBNaV+++03rVu3TnfddZdWrVqlX375RSNHjlRubq4mTpxY6DbcEab8kIOFHCzkYCEHCzmQgV153hGmonr77bc1evRoxcXFSZL69u2rl19+2WlMSkqK0tPTHcsrV67U0KFDHcv2jwomJCQoMTFRO3bs0NatWyVJTZo0cdrX3r17FR0drbCwMCUlJWnChAm6/vrrlZOTo8suu0wrVqxQq1at3HKsAADgwnXBNaXy8/MVERGh119/Xd7e3mrTpo1SU1M1ffr0IptS3BHG88jBQg4WcrCQg4UcyMCuItwRpqIKDQ3V4sWLix1jjHFajo+PV3x8fJHjO3fuXGCbwrRt21arV68u0TwBAACKc8E1paKiouTr6+v0Ub3mzZsrLS1Np0+flp+fX4FtuCNM+SEHCzlYyMFCDhZyIAO78rwjDAAAANzH69xDKpeOHTtqz549Thfb3L17t6KiogptSAEAAAAAAMDzyvVMqePHj2vPnj2O5b179yo5OVmhoaGqX7++xo8frwMHDmjRokWOMcnJyY5tDx06pOTkZPn5+alFixaSpAceeECzZ8/WmDFj9NBDD+mXX37R1KlTNXr06BLPy37qujtO7c/JyVF2drYyMjIu6ndpycFCDhZysJCDhRzIwM6dOdj/xpfk42pwPWot9yMHCzlYyIEM7MjBQg6WilBr2Uw5VmMbNmxQly5dCqwfMmSIFi5cqPj4eO3bt08bNmxwPGaz2QqMb9Cggfbt2+dY3rx5sx555BElJyerTp06GjZsWLF33zvbn3/+qXr16pX6eAAAQOXyxx9/qG7duuU9jYsOtRYAABeHc9Va5dqUqqjy8/OVmpqqatWqFdoEKwv7RdT/+OMPl19EvTIhBws5WMjBQg4WciADO3fmYIxRZmamateuLS+vC+5qBhUetZb7kYOFHCzkQAZ25GAhB0tFqLUuuAudu4KXl5fb3zUNDg6+qF/8duRgIQcLOVjIwUIOZGDnrhxCQkJcvk+UDLWW55CDhRws5EAGduRgIQdLedZavDUIAAAAAAAAj6MpBQAAAAAAAI+jKeVh/v7+SkhIkL+/f3lPpVyRg4UcLORgIQcLOZCBHTngfPC6sZCDhRws5EAGduRgIQdLRciBC50DAAAAAADA4zhTCgAAAAAAAB5HUwoAAAAAAAAeR1MKAAAAAAAAHkdTCgAAAAAAAB5HU8oF5syZo4YNGyogIEBt2rTRl19+Wez4L774Qm3atFFAQIAaNWqk1157rcCYZcuWqUWLFvL391eLFi30wQcfuGv6LuPqHH788Ufdeuutio6Ols1m06xZs9w4e9dwdQbz5s3Ttddeqxo1aqhGjRrq2rWrtm3b5s5DcAlX57B8+XK1bdtW1atXV9WqVdW6dWv9+9//duchuIQ7fjfYvfvuu7LZbLrppptcPGvXc3UOCxculM1mK/B18uRJdx5Gmbnj9XDs2DGNHDlSUVFRCggIUPPmzbVq1Sp3HYJLuDqHzp07F/p66NWrlzsPAx5EnWWhzrJQa1motSzUWhZqLeosu0pZZxmUybvvvmt8fX3NvHnzzE8//WTGjBljqlatan7//fdCx//2228mMDDQjBkzxvz0009m3rx5xtfX17z//vuOMZs2bTLe3t5m6tSpZteuXWbq1KnGx8fHbNmyxVOHVWruyGHbtm3mscceM0uWLDGRkZHmxRdf9NDRnB93ZDBw4EDzyiuvmJ07d5pdu3aZoUOHmpCQEPPnn3966rBKzR05rF+/3ixfvtz89NNPZs+ePWbWrFnG29vbJCUleeqwSs0dOdjt27fP1KlTx1x77bWmX79+bj6SsnFHDgsWLDDBwcHm4MGDTl8VmTtyOHXqlGnbtq258cYbzVdffWX27dtnvvzyS5OcnOypwyo1d+Rw+PBhp9fBDz/8YLy9vc2CBQs8dFRwJ+osC3WWhVrLQq1lodayUGtRZ9lV1jqLplQZXX311eb+++93WtesWTMzbty4Qsc//vjjplmzZk7r7rvvPtO+fXvH8u2332569OjhNKZ79+5mwIABLpq167kjhzM1aNCgwhdL7s7AGGNyc3NNtWrVzFtvvVX2CbuJJ3IwxpiYmBjz5JNPlm2ybuSuHHJzc03Hjh3N/PnzzZAhQyp8oeSOHBYsWGBCQkJcPld3ckcOr776qmnUqJE5ffq06yfsJp74/fDiiy+aatWqmePHj5d9wih31FkW6iwLtZaFWstCrWWh1qLOsqusdRYf3yuD06dPa8eOHYqLi3NaHxcXp02bNhW6zebNmwuM7969u7755hvl5OQUO6aofZY3d+VQmXgqg+zsbOXk5Cg0NNQ1E3cxT+RgjNHnn3+ulJQUXXfdda6bvAu5M4enn35a4eHhGjZsmOsn7mLuzOH48eNq0KCB6tatq969e2vnzp2uPwAXcVcOK1euVGxsrEaOHKlatWrp8ssv19SpU5WXl+eeAykjT/2efOONNzRgwABVrVrVNRNHuaHOslBnWai1LNRaFmotC7UWdZZdZa6zaEqVwf/+9z/l5eWpVq1aTutr1aqltLS0QrdJS0srdHxubq7+97//FTumqH2WN3flUJl4KoNx48apTp066tq1q2sm7mLuzCE9PV1BQUHy8/NTr169NHv2bHXr1s31B+EC7srh66+/1htvvKF58+a5Z+Iu5q4cmjVrpoULF2rlypVasmSJAgIC1LFjR/3yyy/uOZAyclcOv/32m95//33l5eVp1apVevLJJzVz5kxNmTLFPQdSRp74Pblt2zb98MMPuvfee103cZQb6iwLdZaFWstCrWWh1rJQa1Fn2VXmOsvHpXu7SNlsNqdlY0yBdecaf/b60u6zInBHDpWNOzN4/vnntWTJEm3YsEEBAQEumK37uCOHatWqKTk5WcePH9fnn3+usWPHqlGjRurcubPrJu5irswhMzNTgwYN0rx58xQWFub6ybqRq18P7du3V/v27R2Pd+zYUVdeeaVmz56tf/3rX66atsu5Oof8/HxFRETo9ddfl7e3t9q0aaPU1FRNnz5dEydOdPHsXcedvyffeOMNXX755br66qtdMFNUFNRZFuosC7WWhVrLQq1lodaizrKrjHUWTakyCAsLk7e3d4HO499//12g42gXGRlZ6HgfHx/VrFmz2DFF7bO8uSuHysTdGcyYMUNTp07VZ599ppYtW7p28i7kzhy8vLzUpEkTSVLr1q21a9cuTZs2rUIWSu7I4ccff9S+ffvUp08fx+P5+fmSJB8fH6WkpKhx48YuPpKy8dTvBi8vL1111VUV8t07yX05REVFydfXV97e3o4xzZs3V1pamk6fPi0/Pz8XH0nZuPv1kJ2drXfffVdPP/20ayeOckOdZaHOslBrWai1LNRaFmot6iy7ylxn8fG9MvDz81ObNm20du1ap/Vr165Vhw4dCt0mNja2wPg1a9aobdu28vX1LXZMUfssb+7KoTJxZwbTp0/X5MmTlZSUpLZt27p+8i7kydeCMUanTp0q+6TdwB05NGvWTN9//72Sk5MdX3379lWXLl2UnJysevXque14zpenXg/GGCUnJysqKso1E3cxd+XQsWNH7dmzx1EwS9Lu3bsVFRVV4Qolyf2vh//85z86deqUBg0a5NqJo9xQZ1mosyzUWhZqLQu1loVaizrLrlLXWS67ZPpFyn7bxTfeeMP89NNP5uGHHzZVq1Y1+/btM8YYM27cODN48GDHePttFx955BHz008/mTfeeKPAbRe//vpr4+3tbZ599lmza9cu8+yzz1aaWxW7ModTp06ZnTt3mp07d5qoqCjz2GOPmZ07d5pffvnF48dXEu7I4LnnnjN+fn7m/fffd7oVZ2ZmpsePr6TckcPUqVPNmjVrzK+//mp27dplZs6caXx8fMy8efM8fnwl5Y4czlYZ7gjjjhwSExNNUlKS+fXXX83OnTvN0KFDjY+Pj9m6davHj6+k3JHD/v37TVBQkBk1apRJSUkxH3/8sYmIiDDPPPOMx4+vpNz5c3HNNdeYO+64w2PHAs+gzrJQZ1motSzUWhZqLQu1FnWWXWWts2hKucArr7xiGjRoYPz8/MyVV15pvvjiC8djQ4YMMZ06dXIav2HDBhMTE2P8/PxMdHS0efXVVwvs87333jNNmzY1vr6+plmzZmbZsmXuPowyc3UOe/fuNZIKfJ29n4rE1Rk0aNCg0AwSEhI8cDTnz9U5TJgwwTRp0sQEBASYGjVqmNjYWPPuu+964lDKxB2/G85UGQolY1yfw8MPP2zq169v/Pz8THh4uImLizObNm3yxKGUiTteD5s2bTLt2rUz/v7+plGjRmbKlCkmNzfX3YdSJu7IISUlxUgya9ascff0UQ6osyzUWRZqLQu1loVay0KtRZ1lVxnrLJsx//9KVgAAAAAAAICHcE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAAAAAAAB4HE0pAAAAAAAAeBxNKQAAAAAAAHgcTSkAlVZiYqJat27t8efdsGGDbDabbDabbrrpphJtk5iY6Nhm1qxZbp0fAACAK1BrAXA3mlIAKiR7UVHUV3x8vB577DF9/vnn5TbHlJQULVy4sERjH3vsMR08eFB169Z176QAAABKgFoLQEXgU94TAIDCHDx40PH/S5cu1cSJE5WSkuJYV6VKFQUFBSkoKKg8pidJioiIUPXq1Us01j5Xb29v904KAACgBKi1AFQEnCkFoEKKjIx0fIWEhMhmsxVYd/Yp5fHx8brppps0depU1apVS9WrV9ekSZOUm5urf/zjHwoNDVXdunX15ptvOj3XgQMHdMcdd6hGjRqqWbOm+vXrp3379pV6zu+//76uuOIKValSRTVr1lTXrl2VlZVVxiQAAABcj1oLQEVAUwrABWXdunVKTU3Vxo0b9cILLygxMVG9e/dWjRo1tHXrVt1///26//779ccff0iSsrOz1aVLFwUFBWnjxo366quvFBQUpB49euj06dMlft6DBw/qzjvv1D333KNdu3Zpw4YNuuWWW2SMcdehAgAAeBy1FgBXoikF4IISGhqqf/3rX2ratKnuueceNW3aVNnZ2frnP/+pSy65ROPHj5efn5++/vprSdK7774rLy8vzZ8/X1dccYWaN2+uBQsWaP/+/dqwYUOJn/fgwYPKzc3VLbfcoujoaF1xxRV68MEHy/WUdwAAAFej1gLgSlxTCsAF5bLLLpOX1//122vVqqXLL7/csezt7a2aNWvq77//liTt2LFDe/bsUbVq1Zz2c/LkSf36668lft5WrVrphhtu0BVXXKHu3bsrLi5O/fv3V40aNcp4RAAAABUHtRYAV6IpBeCC4uvr67Rss9kKXZefny9Jys/PV5s2bfT2228X2Fd4eHiJn9fb21tr167Vpk2btGbNGs2ePVsTJkzQ1q1b1bBhw/M4EgAAgIqHWguAK/HxPQAXtSuvvFK//PKLIiIi1KRJE6evkJCQUu3LZrOpY8eOmjRpknbu3Ck/Pz998MEHbpo5AABAxUetBaA4NKUAXNTuuusuhYWFqV+/fvryyy+1d+9effHFFxozZoz+/PPPEu9n69atmjp1qr755hvt379fy5cv16FDh9S8eXM3zh4AAKBio9YCUBw+vgfgohYYGKiNGzfqiSee0C233KLMzEzVqVNHN9xwg4KDg0u8n+DgYG3cuFGzZs1SRkaGGjRooJkzZ6pnz55unD0AAEDFRq0FoDg2wz00AaBUNmzYoC5duujo0aOqXr16qbaNjo7Www8/rIcfftgtcwMAAKjsqLWAiwcf3wOA81S3bl3deeedJRo7depUBQUFaf/+/W6eFQAAwIWBWgu48HGmFACU0okTJ3TgwAFJUlBQkCIjI8+5zZEjR3TkyBFJ1p1mSnthTwAAgIsFtRZw8aApBQAAAAAAAI/j43sAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8DiaUgAAAAAAAPA4mlIAAAAAAADwOJpSAAAAAAAA8Lj/B/+7n0QgUAsWAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# ==== Plot the results ====\n", "\n", @@ -918,17 +557,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Video saved at: /home/fferretti-iit.local/git/comodo/examples/results/2025-01-21_18-35-58simulation_comodo.mp4\n" - ] - } - ], + "outputs": [], "source": [ "# ==== Generate video ====\n", "# Create results folder if not existing\n", @@ -967,7 +598,7 @@ ], "metadata": { "kernelspec": { - "display_name": "comodo", + "display_name": "comododev", "language": "python", "name": "python3" }, From 33373d8722dead31ce6e4010413f6b7702719278 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 12:48:27 +0100 Subject: [PATCH 03/14] Add wall time logging and statistics to jaxsim_walking.ipynb --- examples/jaxsim_walking.ipynb | 57 +++++++++++++++++++++++++++++------ 1 file changed, 48 insertions(+), 9 deletions(-) diff --git a/examples/jaxsim_walking.ipynb b/examples/jaxsim_walking.ipynb index b6abf0b..d37bf05 100644 --- a/examples/jaxsim_walking.ipynb +++ b/examples/jaxsim_walking.ipynb @@ -219,7 +219,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -236,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -266,6 +266,7 @@ " tau_tsid_log = []\n", " W_p_CoM_tsid_log = []\n", " t_log = []\n", + " wall_time_step_log = []\n", "\n", " # Define number of steps\n", " n_step_tsid_js = int(tsid.frequency / js_dt)\n", @@ -330,7 +331,11 @@ "\n", " # Step the simulator\n", " js.set_input(tau_tsid)\n", + "\n", + " tic = time.perf_counter()\n", " js.step(n_step=n_step_tsid_js)\n", + " toc = time.perf_counter() - tic\n", + "\n", " counter = counter + 1\n", "\n", " if counter == n_step_mpc_tsid:\n", @@ -357,6 +362,7 @@ " W_p_lf_sfp_log.append(lf_sfp.transform.translation())\n", " W_p_rf_sfp_log.append(rf_sfp.transform.translation())\n", " W_p_CoM_tsid_log.append(tsid.COM.toNumPy())\n", + " wall_time_step_log.append(toc * 1e3)\n", " if contact_model_type != JaxsimContactModelEnum.VISCO_ELASTIC:\n", " f_lf_js, f_rf_js = js.feet_wrench\n", " f_lf_js_log.append(f_lf_js)\n", @@ -381,6 +387,7 @@ " \"W_p_lf_sfp\": np.array(W_p_lf_sfp_log),\n", " \"W_p_rf_sfp\": np.array(W_p_rf_sfp_log),\n", " \"W_p_CoM_tsid\": np.array(W_p_CoM_tsid_log),\n", + " \"wall_time_step\": np.array(wall_time_step_log),\n", " }\n", " if contact_model_type != JaxsimContactModelEnum.VISCO_ELASTIC:\n", " logs[\"f_lf_js\"] = np.array(f_lf_js_log)\n", @@ -406,19 +413,16 @@ "avg_iter_time_ms = (wall_time / (T / js_dt)) * 1000\n", "\n", "print(\n", - " f\"\\nRunning simulation took {wall_time:.2f}s for {T:.3f}s simulated time. \\nIteration avg time of {avg_iter_time_ms:.1f} ms.\"\n", - ")\n", - "print(f\"RTF: {T / wall_time * 100:.2f}%\")" + " f\"\\nSimulation done.\\nRunning simulation took {wall_time:.2f}s for {T:.3f}s simulated time.\"\n", + ")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "# ==== Plot the results ====\n", - "\n", "# Extract logged variables\n", "t = logs[\"t\"]\n", "s_js = logs[\"s_js\"]\n", @@ -433,9 +437,44 @@ "W_p_lf_sfp = logs[\"W_p_lf_sfp\"]\n", "W_p_rf_sfp = logs[\"W_p_rf_sfp\"]\n", "W_p_CoM_tsid = logs[\"W_p_CoM_tsid\"]\n", + "wall_time_step = logs[\"wall_time_step\"]\n", "if js.contact_model_type != JaxsimContactModelEnum.VISCO_ELASTIC:\n", " f_lf_js = logs[\"f_lf_js\"]\n", - " f_rf_js = logs[\"f_rf_js\"]\n", + " f_rf_js = logs[\"f_rf_js\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Compute simulator step runtime statistics and RTF\n", + "\n", + "min_step_time = np.min(wall_time_step)\n", + "max_step_time = np.max(wall_time_step)\n", + "avg_step_time = np.mean(wall_time_step)\n", + "std_step_time = np.std(wall_time_step)\n", + "total_step_time = np.sum(wall_time_step)\n", + "rtf = (T * 1e3) / total_step_time * 100\n", + "\n", + "print(\"===========================================\")\n", + "print(f\"Min step time: {min_step_time:.2f} ms\")\n", + "print(f\"Max step time: {max_step_time:.2f} ms\")\n", + "print(f\"Average step time: {avg_step_time:.2f} ms\")\n", + "print(f\"Std deviation step time: {std_step_time:.2f} ms\")\n", + "print(f\"RTF: {rtf:.1f}%\")\n", + "print(\"===========================================\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# ==== Plot the results ====\n", + "\n", "\n", "n_sim_steps = s_js.shape[0]\n", "s_0 = np.full_like(a=s_js, fill_value=s_0)\n", From ea94231649ecc4125927905c02ebacaba94752f2 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 12:51:49 +0100 Subject: [PATCH 04/14] Minor chnges in jaxsim_walking.ipynb --- examples/jaxsim_walking.ipynb | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/examples/jaxsim_walking.ipynb b/examples/jaxsim_walking.ipynb index d37bf05..ffc3d9a 100644 --- a/examples/jaxsim_walking.ipynb +++ b/examples/jaxsim_walking.ipynb @@ -202,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -212,9 +212,7 @@ "\n", "js.step(dry_run=True)\n", "\n", - "toc = time.perf_counter() - tic\n", - "\n", - "print(f\"JaxSim compilation time: {toc:.2f} s\")" + "step_compilation_time_s = time.perf_counter() - tic" ] }, { @@ -459,6 +457,7 @@ "rtf = (T * 1e3) / total_step_time * 100\n", "\n", "print(\"===========================================\")\n", + "print(f\"Step compilation time: {step_compilation_time_s:.2f} s\")\n", "print(f\"Min step time: {min_step_time:.2f} ms\")\n", "print(f\"Max step time: {max_step_time:.2f} ms\")\n", "print(f\"Average step time: {avg_step_time:.2f} ms\")\n", From 0f3591d4265a3197f87aa0b645f2ea3120d5c35f Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 15:41:17 +0100 Subject: [PATCH 05/14] Add mjxSimulator.py --- src/comodo/mujocoSimulator/mjxSimulator.py | 328 +++++++++++++++++++++ 1 file changed, 328 insertions(+) create mode 100644 src/comodo/mujocoSimulator/mjxSimulator.py diff --git a/src/comodo/mujocoSimulator/mjxSimulator.py b/src/comodo/mujocoSimulator/mjxSimulator.py new file mode 100644 index 0000000..68083b9 --- /dev/null +++ b/src/comodo/mujocoSimulator/mjxSimulator.py @@ -0,0 +1,328 @@ +import copy +import math + +import casadi as cs +import jax +import mujoco +import mujoco_viewer +import numpy as np +from mujoco import mjx + +from comodo.abstractClasses.simulator import Simulator + + +class MJXSimulator(Simulator): + def __init__(self) -> None: + self.desired_pos = None + self.postion_control = False + self.compute_misalignment_gravity_fun() + self.jit_step = jax.jit(mjx.step) + super().__init__() + + def load_model(self, robot_model, s, xyz_rpy, kv_motors=None, Im=None): + self.robot_model = robot_model + + mujoco_xml = robot_model.get_mujoco_model() + + # Load mujoco model and data + mujoco_model = mujoco.MjModel.from_xml_string(mujoco_xml) + mujoco_data = mujoco.MjData(mujoco_model) + + # Put the model and data on the accelerator device(s) and get the corresponding MJX model and data + self.model = mjx.put_model(mujoco_model) + self.data = mjx.put_data(mujoco_model, mujoco_data) + + self.create_mapping_vector_from_mujoco() + self.create_mapping_vector_to_mujoco() + # mjx.mj_forward(self.model, self.data) + self.set_joint_vector_in_mujoco(s) + self.set_base_pose_in_mujoco(xyz_rpy=xyz_rpy) + # mjx.mj_forward(self.model, self.data) + self.visualize_robot_flag = False + + self.Im = Im if Im is not None else np.zeros(self.robot_model.NDoF) + self.kv_motors = ( + kv_motors if kv_motors is not None else np.zeros(self.robot_model.NDoF) + ) + self.H_left_foot = copy.deepcopy(self.robot_model.H_left_foot) + self.H_right_foot = copy.deepcopy(self.robot_model.H_right_foot) + self.H_left_foot_num = None + self.H_right_foot_num = None + self.mass = self.robot_model.get_total_mass() + + def get_contact_status(self): + left_wrench, rigth_wrench = self.get_feet_wrench() + left_foot_contact = left_wrench[2] > 0.1 * self.mass + right_foot_contact = rigth_wrench[2] > 0.1 * self.mass + return left_foot_contact, right_foot_contact + + def set_visualize_robot_flag(self, visualize_robot): + self.visualize_robot_flag = visualize_robot + if self.visualize_robot_flag: + self.viewer = mujoco_viewer.MujocoViewer(self.model, self.data) + + def set_base_pose_in_mujoco(self, xyz_rpy): + base_xyz_quat = np.zeros(7) + base_xyz_quat[:3] = xyz_rpy[:3] + base_xyz_quat[3:] = self.RPY_to_quat(xyz_rpy[3], xyz_rpy[4], xyz_rpy[5]) + base_xyz_quat[2] = base_xyz_quat[2] + # self.data.qpos[:7] = base_xyz_quat + self.data = self.data.replace(qpos=self.data.qpos.at[:7].set(base_xyz_quat)) + + def set_joint_vector_in_mujoco(self, pos): + pos_muj = self.convert_vector_to_mujoco(pos) + indexes_joint = self.model.jnt_qposadr[1:] + for i in range(self.robot_model.NDoF): + self.data = self.data.replace( + qpos=self.data.qpos.at[indexes_joint[i]].set(pos_muj[i]) + ) + + def set_input(self, input): + input_muj = self.convert_vector_to_mujoco(input) + self.data = self.data.replace(ctrl=input_muj) + np.copyto(self.data.ctrl, input_muj) + + def set_position_input(self, pos): + pos_muj = self.convert_vector_to_mujoco(pos) + self.desired_pos = pos_muj + self.postion_control = True + + def create_mapping_vector_to_mujoco(self): + # This function creates the to_mujoco map + self.to_mujoco = [] + for mujoco_joint in self.robot_model.mujoco_joint_order: + try: + index = self.robot_model.joint_name_list.index(mujoco_joint) + self.to_mujoco.append(index) + except ValueError: + raise ValueError( + f"Mujoco joint '{mujoco_joint}' not found in joint list." + ) + + def create_mapping_vector_from_mujoco(self): + # This function creates the to_mujoco map + self.from_mujoco = [] + for joint in self.robot_model.joint_name_list: + try: + index = self.robot_model.mujoco_joint_order.index(joint) + self.from_mujoco.append(index) + except ValueError: + raise ValueError( + f"Joint name list joint '{joint}' not found in mujoco list." + ) + + def convert_vector_to_mujoco(self, array_in): + out_muj = np.asarray( + [array_in[self.to_mujoco[item]] for item in range(self.robot_model.NDoF)] + ) + return out_muj + + def convert_from_mujoco(self, array_muj): + out_classic = np.asarray( + [array_muj[self.from_mujoco[item]] for item in range(self.robot_model.NDoF)] + ) + return out_classic + + def step(self, n_step=1, visualize=True): + if self.postion_control: + for _ in range(n_step): + s, s_dot, tau = self.get_state(use_mujoco_convention=True) + kp_muj = self.convert_vector_to_mujoco( + self.robot_model.kp_position_control + ) + kd_muj = self.convert_vector_to_mujoco( + self.robot_model.kd_position_control + ) + ctrl = kp_muj * (self.desired_pos - s) - kd_muj * s_dot + self.data.ctrl = ctrl + np.copyto(self.data.ctrl, ctrl) + self.data = self.jit_step(self.model, self.data) + # mjx.mj_step1(self.model, self.data) + # mjx.mj_forward(self.model, self.data) + else: + # Step the simulation of n_step iterations + for _ in range(n_step): + self.data = self.jit_step(self.model, self.data) + # mjx.mj_step1(self.model, self.data) + # mjx.mj_forward(self.model, self.data) + + if self.visualize_robot_flag: + self.viewer.render() + + def step_with_motors(self, n_step, torque): + indexes_joint_acceleration = self.model.jnt_dofadr[1:] + s_dot_dot = self.data.qacc[indexes_joint_acceleration[0] :] + for _ in range(n_step): + indexes_joint_acceleration = self.model.jnt_dofadr[1:] + s_dot_dot = self.data.qacc[indexes_joint_acceleration[0] :] + s_dot = self.data.qvel[indexes_joint_acceleration[0] :] + input = np.asarray( + [ + self.Im[self.to_mujoco[item]] * s_dot_dot[item] + + self.kv_motors[self.to_mujoco[item]] * s_dot[item] + + torque[self.to_mujoco[item]] + for item in range(self.robot_model.NDoF) + ] + ) + + self.set_input(input) + self.step(n_step=1, visualize=False) + if self.visualize_robot_flag: + self.viewer.render() + + def compute_misalignment_gravity_fun(self): + H = cs.SX.sym("H", 4, 4) + theta = cs.SX.sym("theta") + theta = cs.dot([0, 0, 1], H[:3, 2]) - 1 + error = cs.Function("error", [H], [theta]) + self.error_mis = error + + def check_feet_status(self, s, H_b): + left_foot_pose = self.robot_model.H_left_foot(H_b, s) + rigth_foot_pose = self.robot_model.H_right_foot(H_b, s) + left_foot_z = left_foot_pose[2, 3] + rigth_foot_z = rigth_foot_pose[2, 3] + left_foot_contact = not (left_foot_z > 0.1) + rigth_foot_contact = not (rigth_foot_z > 0.1) + misalignment_left = self.error_mis(left_foot_pose) + misalignment_rigth = self.error_mis(rigth_foot_pose) + left_foot_condition = abs(left_foot_contact * misalignment_left) + rigth_foot_condition = abs(rigth_foot_contact * misalignment_rigth) + misalignment_error = left_foot_condition + rigth_foot_condition + if ( + abs(left_foot_contact * misalignment_left) > 0.02 + or abs(rigth_foot_contact * misalignment_rigth) > 0.02 + ): + return False, misalignment_error + + return True, misalignment_error + + def get_feet_wrench(self): + left_foot_wrench = np.zeros(6) + rigth_foot_wrench = np.zeros(6) + s, s_dot, tau = self.get_state() + H_b = self.get_base() + self.H_left_foot_num = np.array(self.H_left_foot(H_b, s)) + self.H_right_foot_num = np.array(self.H_right_foot(H_b, s)) + for i in range(self.data.ncon): + contact = self.data.contact[i] + c_array = np.zeros(6, dtype=np.float64) + mujoco.mj_contactForce(self.model, self.data, i, c_array) + name_contact = mujoco.mj_id2name( + self.model, mujoco.mjtObj.mjOBJ_GEOM, int(contact.geom[1]) + ) + w_H_contact = np.eye(4) + w_H_contact[:3, :3] = contact.frame.reshape(3, 3) + w_H_contact[:3, 3] = contact.pos + if ( + name_contact == self.robot_model.right_foot_rear_ct + or name_contact == self.robot_model.right_foot_front_ct + ): + RF_H_contact = np.linalg.inv(self.H_right_foot_num) @ w_H_contact + wrench_RF = self.compute_resulting_wrench(RF_H_contact, c_array) + rigth_foot_wrench[:] += wrench_RF.reshape(6) + elif ( + name_contact == self.robot_model.left_foot_front_ct + or name_contact == self.robot_model.left_foot_rear_ct + ): + LF_H_contact = np.linalg.inv(self.H_left_foot_num) @ w_H_contact + wrench_LF = self.compute_resulting_wrench(LF_H_contact, c_array) + left_foot_wrench[:] += wrench_LF.reshape(6) + return (left_foot_wrench, rigth_foot_wrench) + + def compute_resulting_wrench(self, b_H_a, force_torque_a): + p = b_H_a[:3, 3] + R = b_H_a[:3, :3] + adjoint_matrix = np.zeros([6, 6]) + adjoint_matrix[:3, :3] = R + adjoint_matrix[3:, :3] = np.cross(p, R) + adjoint_matrix[3:, 3:] = R + force_torque_b = adjoint_matrix @ force_torque_a.reshape(6, 1) + return force_torque_b + + # note that for mujoco the ordering is w,x,y,z + def get_base(self): + indexes_joint = self.model.jnt_qposadr[1:] + # Extract quaternion components + w, x, y, z = self.data.qpos[3 : indexes_joint[0]] + + # Calculate rotation matrix + rot_mat = np.array( + [ + [ + 1 - 2 * y * y - 2 * z * z, + 2 * x * y - 2 * z * w, + 2 * x * z + 2 * y * w, + 0, + ], + [ + 2 * x * y + 2 * z * w, + 1 - 2 * x * x - 2 * z * z, + 2 * y * z - 2 * x * w, + 0, + ], + [ + 2 * x * z - 2 * y * w, + 2 * y * z + 2 * x * w, + 1 - 2 * x * x - 2 * y * y, + 0, + ], + [0, 0, 0, 1], + ] + ) + + # Set up transformation matrix + trans_mat = np.eye(4) + trans_mat[:3, :3] = rot_mat[:3, :3] + trans_mat[:3, 3] = self.data.qpos[:3] + # Return transformation matrix + return trans_mat + + def get_base_velocity(self): + indexes_joint_velocities = self.model.jnt_dofadr[1:] + return self.data.qvel[: indexes_joint_velocities[0]] + + def get_state(self, use_mujoco_convention=False): + indexes_joint = self.model.jnt_qposadr[1:] + indexes_joint_velocities = self.model.jnt_dofadr[1:] + s = self.data.qpos[indexes_joint[0] :] + s_dot = self.data.qvel[indexes_joint_velocities[0] :] + tau = self.data.ctrl + if use_mujoco_convention: + return s, s_dot, tau + s_out = self.convert_from_mujoco(s) + s_dot_out = self.convert_from_mujoco(s_dot) + tau_out = self.convert_from_mujoco(tau) + return s_out, s_dot_out, tau_out + + def close(self): + if self.visualize_robot_flag: + self.viewer.close() + + def visualize_robot(self): + self.viewer.render() + + def get_simulation_time(self): + return self.data.time + + def get_simulation_frequency(self): + return self.model.opt.timestep + + def RPY_to_quat(self, roll, pitch, yaw): + cr = math.cos(roll / 2) + cp = math.cos(pitch / 2) + cy = math.cos(yaw / 2) + sr = math.sin(roll / 2) + sp = math.sin(pitch / 2) + sy = math.sin(yaw / 2) + + qw = cr * cp * cy + sr * sp * sy + qx = sr * cp * cy - cr * sp * sy + qy = cr * sp * cy + sr * cp * sy + qz = cr * cp * sy - sr * sp * cy + + return [qw, qx, qy, qz] + + def close_visualization(self): + if self.visualize_robot_flag: + self.viewer.close() From 91c9404728ceb14bc7fef47c4dc6ee08a982c055 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 15:41:30 +0100 Subject: [PATCH 06/14] Add mjx_walking notebook --- examples/mjx_walking.ipynb | 498 +++++++++++++++++++++++++++++++++++++ 1 file changed, 498 insertions(+) create mode 100644 examples/mjx_walking.ipynb diff --git a/examples/mjx_walking.ipynb b/examples/mjx_walking.ipynb new file mode 100644 index 0000000..2e4a335 --- /dev/null +++ b/examples/mjx_walking.ipynb @@ -0,0 +1,498 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mujoco MJX with TSID and MPC Example \n", + "This examples, load a basic robot model (i.e. composed only of basic shapes), modifies the links of such a robot model by elongating the legs, define instances of the TSID (Task Based Inverse Dynamics) and Centroidal MPC controller and simulate the behavior of the robot using MJX. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n" + ] + } + ], + "source": [ + "# Comodo import\n", + "from comodo.mujocoSimulator.mjxSimulator import MJXSimulator\n", + "from comodo.robotModel.robotModel import RobotModel\n", + "from comodo.robotModel.createUrdf import createUrdf\n", + "from comodo.centroidalMPC.centroidalMPC import CentroidalMPC\n", + "from comodo.centroidalMPC.mpcParameterTuning import MPCParameterTuning\n", + "from comodo.TSIDController.TSIDParameterTuning import TSIDParameterTuning\n", + "from comodo.TSIDController.TSIDController import TSIDController\n", + "\n", + "import jax\n", + "\n", + "# Force JAX to use CPU\n", + "jax.config.update(\"jax_default_device\", jax.devices(\"cpu\")[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# General import\n", + "import xml.etree.ElementTree as ET\n", + "import numpy as np\n", + "import tempfile\n", + "import urllib.request" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Getting stickbot urdf file and convert it to string\n", + "# urdf_robot_file = tempfile.NamedTemporaryFile(mode=\"w+\")\n", + "# url = \"https://raw.githubusercontent.com/icub-tech-iit/ergocub-gazebo-simulations/master/models/stickBot/model.urdf\"\n", + "# urllib.request.urlretrieve(url, urdf_robot_file.name)\n", + "path = \"/home/acroci/Desktop/mjx/model_modified.urdf\"\n", + "# Load the URDF file\n", + "# tree = ET.parse(urdf_robot_file.name)\n", + "tree = ET.parse(path)\n", + "root = tree.getroot()\n", + "\n", + "# Convert the XML tree to a string\n", + "robot_urdf_string_original = ET.tostring(root)\n", + "\n", + "# create_urdf_instance = createUrdf(\n", + "# original_urdf_path=urdf_robot_file.name, save_gazebo_plugin=False\n", + "# )\n", + "create_urdf_instance = createUrdf(original_urdf_path=path, save_gazebo_plugin=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Define parametric links and controlled joints\n", + "legs_link_names = [\"hip_3\", \"lower_leg\"]\n", + "joint_name_list = [\n", + " \"r_shoulder_pitch\",\n", + " \"r_shoulder_roll\",\n", + " \"r_shoulder_yaw\",\n", + " \"r_elbow\",\n", + " \"l_shoulder_pitch\",\n", + " \"l_shoulder_roll\",\n", + " \"l_shoulder_yaw\",\n", + " \"l_elbow\",\n", + " \"r_hip_pitch\",\n", + " \"r_hip_roll\",\n", + " \"r_hip_yaw\",\n", + " \"r_knee\",\n", + " \"r_ankle_pitch\",\n", + " \"r_ankle_roll\",\n", + " \"l_hip_pitch\",\n", + " \"l_hip_roll\",\n", + " \"l_hip_yaw\",\n", + " \"l_knee\",\n", + " \"l_ankle_pitch\",\n", + " \"l_ankle_roll\",\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the robot modifications\n", + "modifications = {}\n", + "for item in legs_link_names:\n", + " left_leg_item = \"l_\" + item\n", + " right_leg_item = \"r_\" + item\n", + " modifications.update({left_leg_item: 1.2})\n", + " modifications.update({right_leg_item: 1.2})\n", + "# Motors Parameters\n", + "Im_arms = 1e-3 * np.ones(4) # from 0-4\n", + "Im_legs = 1e-3 * np.ones(6) # from 5-10\n", + "kv_arms = 0.001 * np.ones(4) # from 11-14\n", + "kv_legs = 0.001 * np.ones(6) # from 20\n", + "\n", + "Im = np.concatenate((Im_arms, Im_arms, Im_legs, Im_legs))\n", + "kv = np.concatenate((kv_arms, kv_arms, kv_legs, kv_legs))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "******************************************************************************\n", + "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", + " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", + " For more information visit https://github.com/coin-or/Ipopt\n", + "******************************************************************************\n", + "\n", + "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.3.\n", + "\n", + "Number of nonzeros in equality constraint Jacobian...: 124\n", + "Number of nonzeros in inequality constraint Jacobian.: 0\n", + "Number of nonzeros in Lagrangian Hessian.............: 142\n", + "\n", + "Total number of variables............................: 27\n", + " variables with only lower bounds: 0\n", + " variables with lower and upper bounds: 0\n", + " variables with only upper bounds: 0\n", + "Total number of equality constraints.................: 20\n", + "Total number of inequality constraints...............: 0\n", + " inequality constraints with only lower bounds: 0\n", + " inequality constraints with lower and upper bounds: 0\n", + " inequality constraints with only upper bounds: 0\n", + "\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 0 5.2479115e-03 1.00e+00 1.95e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 3.8856073e+00 7.52e-02 1.17e+00 -1.7 1.00e+00 0.0 1.00e+00 1.00e+00h 1\n", + " 2 3.8855326e+00 2.91e-07 1.60e+00 -1.7 7.52e-02 1.3 1.00e+00 1.00e+00h 1\n", + " 3 3.8854289e+00 5.89e-08 2.36e-02 -1.7 3.32e-03 0.9 1.00e+00 1.00e+00h 1\n", + " 4 3.8854051e+00 8.43e-09 1.96e-02 -3.8 1.04e-03 1.3 1.00e+00 1.00e+00h 1\n", + " 5 3.8853697e+00 6.04e-08 1.24e-02 -3.8 1.97e-03 0.8 1.00e+00 1.00e+00h 1\n", + " 6 3.8853614e+00 7.62e-09 1.03e-02 -3.8 6.09e-04 1.2 1.00e+00 1.00e+00h 1\n", + " 7 3.8853485e+00 4.83e-08 6.42e-03 -3.8 1.14e-03 0.7 1.00e+00 1.00e+00h 1\n", + " 8 3.8853454e+00 5.78e-09 5.27e-03 -3.8 3.52e-04 1.2 1.00e+00 1.00e+00h 1\n", + " 9 3.8853403e+00 3.22e-08 3.28e-03 -3.8 6.57e-04 0.7 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 10 3.8853390e+00 3.66e-09 2.69e-03 -3.8 2.02e-04 1.1 1.00e+00 1.00e+00h 1\n", + " 11 3.8853370e+00 1.81e-08 1.68e-03 -3.8 3.78e-04 0.6 1.00e+00 1.00e+00h 1\n", + " 12 3.8853365e+00 1.97e-09 1.38e-03 -3.8 1.17e-04 1.1 1.00e+00 1.00e+00h 1\n", + " 13 3.8853363e+00 2.52e-10 1.28e-03 -5.7 4.05e-05 1.5 1.00e+00 1.00e+00h 1\n", + " 14 3.8853359e+00 1.69e-09 1.04e-03 -5.7 9.86e-05 1.0 1.00e+00 1.00e+00h 1\n", + " 15 3.8853358e+00 2.12e-10 9.57e-04 -5.7 3.41e-05 1.4 1.00e+00 1.00e+00h 1\n", + " 16 3.8853356e+00 1.37e-09 7.69e-04 -5.7 8.22e-05 1.0 1.00e+00 1.00e+00h 1\n", + " 17 3.8853355e+00 1.69e-10 7.06e-04 -5.7 2.83e-05 1.4 1.00e+00 1.00e+00h 1\n", + " 18 3.8853353e+00 1.05e-09 5.60e-04 -5.7 6.74e-05 0.9 1.00e+00 1.00e+00h 1\n", + " 19 3.8853353e+00 1.27e-10 5.11e-04 -5.7 2.31e-05 1.3 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 3.8853352e+00 7.47e-10 4.00e-04 -5.7 5.42e-05 0.9 1.00e+00 1.00e+00h 1\n", + " 21 3.8853351e+00 8.86e-11 3.63e-04 -5.7 1.84e-05 1.3 1.00e+00 1.00e+00h 1\n", + " 22 3.8853351e+00 4.97e-10 2.80e-04 -5.7 4.26e-05 0.8 1.00e+00 1.00e+00h 1\n", + " 23 3.8853350e+00 5.77e-11 2.52e-04 -5.7 1.44e-05 1.2 1.00e+00 1.00e+00h 1\n", + " 24 3.8853350e+00 3.06e-10 1.90e-04 -5.7 3.25e-05 0.8 1.00e+00 1.00e+00h 1\n", + " 25 3.8853350e+00 3.47e-11 1.70e-04 -5.7 1.09e-05 1.2 1.00e+00 1.00e+00h 1\n", + " 26 3.8853350e+00 1.73e-10 1.27e-04 -5.7 2.45e-05 0.7 1.00e+00 1.00e+00h 1\n", + " 27 3.8853350e+00 1.92e-11 1.13e-04 -5.7 8.14e-06 1.1 1.00e+00 1.00e+00h 1\n", + " 28 3.8853350e+00 8.99e-11 8.15e-05 -5.7 1.77e-05 0.7 1.00e+00 1.00e+00h 1\n", + " 29 3.8853350e+00 9.66e-12 7.13e-05 -5.7 5.79e-06 1.1 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 3.8853350e+00 4.22e-11 4.98e-05 -5.7 1.21e-05 0.6 1.00e+00 1.00e+00h 1\n", + " 31 3.8853350e+00 4.40e-12 4.29e-05 -5.7 3.92e-06 1.0 1.00e+00 1.00e+00h 1\n", + " 32 3.8853350e+00 5.52e-13 4.04e-05 -5.7 1.39e-06 1.5 1.00e+00 1.00e+00h 1\n", + " 33 3.8853350e+00 3.54e-12 3.42e-05 -5.7 3.52e-06 1.0 1.00e+00 1.00e+00h 1\n", + " 34 3.8853350e+00 4.38e-13 3.20e-05 -5.7 1.24e-06 1.4 1.00e+00 1.00e+00h 1\n", + " 35 3.8853350e+00 2.70e-12 2.66e-05 -5.7 3.08e-06 0.9 1.00e+00 1.00e+00h 1\n", + " 36 3.8853350e+00 3.29e-13 2.47e-05 -5.7 1.07e-06 1.4 1.00e+00 1.00e+00h 1\n", + " 37 3.8853350e+00 1.94e-12 2.01e-05 -5.7 2.61e-06 0.9 1.00e+00 1.00e+00h 1\n", + " 38 3.8853350e+00 2.33e-13 1.85e-05 -5.7 9.01e-07 1.3 1.00e+00 1.00e+00h 1\n", + " 39 3.8853350e+00 1.31e-12 1.47e-05 -5.7 2.15e-06 0.8 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 40 3.8853350e+00 1.52e-13 1.34e-05 -8.6 7.33e-07 1.3 1.00e+00 1.00e+00h 1\n", + " 41 3.8853350e+00 8.18e-13 1.03e-05 -8.6 1.70e-06 0.8 1.00e+00 1.00e+00h 1\n", + " 42 3.8853350e+00 9.37e-14 9.32e-06 -8.6 5.76e-07 1.2 1.00e+00 1.00e+00h 1\n", + " 43 3.8853350e+00 4.76e-13 7.01e-06 -8.6 1.30e-06 0.7 1.00e+00 1.00e+00h 1\n", + " 44 3.8853350e+00 5.33e-14 6.24e-06 -8.6 4.34e-07 1.2 1.00e+00 1.00e+00h 1\n", + " 45 3.8853350e+00 2.54e-13 4.56e-06 -8.6 9.50e-07 0.7 1.00e+00 1.00e+00h 1\n", + " 46 3.8853350e+00 2.75e-14 4.00e-06 -8.6 3.13e-07 1.1 1.00e+00 1.00e+00h 1\n", + " 47 3.8853350e+00 1.24e-13 2.83e-06 -8.6 6.63e-07 0.6 1.00e+00 1.00e+00h 1\n", + " 48 3.8853350e+00 1.29e-14 2.45e-06 -8.6 2.15e-07 1.1 1.00e+00 1.00e+00h 1\n", + " 49 3.8853350e+00 1.67e-15 2.31e-06 -8.6 7.62e-08 1.5 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 50 3.8853350e+00 1.09e-14 1.97e-06 -8.6 1.95e-07 1.0 1.00e+00 1.00e+00h 1\n", + " 51 3.8853350e+00 1.15e-15 1.84e-06 -8.6 6.84e-08 1.4 1.00e+00 1.00e+00h 1\n", + " 52 3.8853350e+00 8.31e-15 1.54e-06 -8.6 1.71e-07 1.0 1.00e+00 1.00e+00h 1\n", + " 53 3.8853350e+00 9.71e-16 1.43e-06 -8.6 5.99e-08 1.4 1.00e+00 1.00e+00h 1\n", + " 54 3.8853350e+00 6.27e-15 1.17e-06 -8.6 1.47e-07 0.9 1.00e+00 1.00e+00h 1\n", + " 55 3.8853350e+00 7.77e-16 1.08e-06 -8.6 5.09e-08 1.3 1.00e+00 1.00e+00h 1\n", + " 56 3.8853350e+00 4.21e-15 8.67e-07 -8.6 1.22e-07 0.9 1.00e+00 1.00e+00h 1\n", + " 57 3.8853350e+00 5.07e-16 7.92e-07 -8.6 4.19e-08 1.3 1.00e+00 1.00e+00h 1\n", + " 58 3.8853350e+00 2.79e-15 6.18e-07 -8.6 9.80e-08 0.8 1.00e+00 1.00e+00h 1\n", + " 59 3.8853350e+00 5.17e-16 5.59e-07 -8.6 3.33e-08 1.2 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 60 3.8853350e+00 1.69e-15 4.25e-07 -8.6 7.58e-08 0.7 1.00e+00 1.00e+00h 1\n", + " 61 3.8853350e+00 3.75e-16 3.80e-07 -8.6 2.54e-08 1.2 1.00e+00 1.00e+00h 1\n", + " 62 3.8853350e+00 8.15e-16 2.80e-07 -8.6 5.62e-08 0.7 1.00e+00 1.00e+00h 1\n", + " 63 3.8853350e+00 1.49e-16 2.47e-07 -8.6 1.86e-08 1.1 1.00e+00 1.00e+00h 1\n", + " 64 3.8853350e+00 3.51e-16 1.77e-07 -8.6 3.99e-08 0.6 1.00e+00 1.00e+00h 1\n", + " 65 3.8853350e+00 5.55e-17 1.54e-07 -8.6 1.30e-08 1.1 1.00e+00 1.00e+00h 1\n", + " 66 3.8853350e+00 9.71e-17 1.45e-07 -8.6 4.62e-09 1.5 1.00e+00 1.00e+00h 1\n", + " 67 3.8853350e+00 1.46e-16 1.24e-07 -8.6 1.18e-08 1.0 1.00e+00 1.00e+00h 1\n", + " 68 3.8853350e+00 1.63e-16 1.17e-07 -8.6 4.18e-09 1.4 1.00e+00 1.00e+00h 1\n", + " 69 3.8853350e+00 1.84e-16 9.83e-08 -8.6 1.05e-08 1.0 1.00e+00 1.00e+00h 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 70 3.8853350e+00 7.60e-17 9.18e-08 -8.6 3.69e-09 1.4 1.00e+00 1.00e+00h 1\n", + "\n", + "Number of Iterations....: 70\n", + "\n", + " (scaled) (unscaled)\n", + "Objective...............: 3.8853349562934767e+00 3.8853349562934767e+00\n", + "Dual infeasibility......: 9.1776324095960149e-08 9.1776324095960149e-08\n", + "Constraint violation....: 7.6009198934912088e-17 7.6009198934912088e-17\n", + "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", + "Overall NLP error.......: 9.1776324095960149e-08 9.1776324095960149e-08\n", + "\n", + "\n", + "Number of objective function evaluations = 71\n", + "Number of objective gradient evaluations = 71\n", + "Number of equality constraint evaluations = 71\n", + "Number of inequality constraint evaluations = 0\n", + "Number of equality constraint Jacobian evaluations = 71\n", + "Number of inequality constraint Jacobian evaluations = 0\n", + "Number of Lagrangian Hessian evaluations = 70\n", + "Total seconds in IPOPT = 0.054\n", + "\n", + "EXIT: Solved To Acceptable Level.\n", + " solver : t_proc (avg) t_wall (avg) n_eval\n", + " nlp_f | 370.00us ( 5.21us) 393.50us ( 5.54us) 71\n", + " nlp_g | 836.00us ( 11.77us) 793.79us ( 11.18us) 71\n", + " nlp_grad_f | 966.00us ( 13.42us) 946.85us ( 13.15us) 72\n", + " nlp_hess_l | 21.93ms (313.26us) 21.94ms (313.49us) 70\n", + " nlp_jac_g | 6.57ms ( 91.29us) 6.58ms ( 91.36us) 72\n", + " total | 53.83ms ( 53.83ms) 53.83ms ( 53.83ms) 1\n" + ] + } + ], + "source": [ + "# Modify the robot model and initialize\n", + "create_urdf_instance.modify_lengths(modifications)\n", + "urdf_robot_string = create_urdf_instance.write_urdf_to_file()\n", + "create_urdf_instance.reset_modifications()\n", + "robot_model_init = RobotModel(urdf_robot_string, \"stickBot\", joint_name_list)\n", + "s_des, xyz_rpy, H_b = robot_model_init.compute_desired_position_walking()\n", + "robot_model_init.set_foot_corner(\n", + " np.asarray([0.1, 0.05, 0.0]),\n", + " np.asarray([0.1, -0.05, 0.0]),\n", + " np.asarray([-0.1, -0.05, 0.0]),\n", + " np.asarray([-0.1, 0.05, 0.0]),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__(): incompatible constructor arguments. The following argument types are supported:\n 1. mujoco._structs.MjvScene()\n 2. mujoco._structs.MjvScene(model: mujoco._structs.MjModel, maxgeom: int)\n\nInvoked with: Model(nq=27, nv=26, nu=20, na=0, nbody=22, njnt=21, ngeom=53, nsite=0, ncam=0, nmesh=0, nmeshvert=0, nmeshface=0, nhfield=0, nmat=2, npair=0, nexclude=0, neq=0, ngravcomp=0, nnumeric=0, nuserdata=0, ntuple=0, nsensor=0, nkey=0, nM=203, opt=Option(timestep=Array(0.002, dtype=float32, weak_type=True), impratio=Array(1., dtype=float32, weak_type=True), tolerance=Array(1.e-08, dtype=float32, weak_type=True), ls_tolerance=Array(0.01, dtype=float32, weak_type=True), gravity=Array([ 0. , 0. , -9.81], dtype=float32), wind=Array([0., 0., 0.], dtype=float32), density=Array(0., dtype=float32, weak_type=True), viscosity=Array(0., dtype=float32, weak_type=True), has_fluid_params=False, integrator=, cone=, jacobian=, solver=, iterations=100, ls_iterations=50, disableflags=), stat=Statistic(meaninertia=Array(8.535638, dtype=float32, weak_type=True)), qpos0=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), qpos_spring=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), body_parentid=array([ 0, 0, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 11, 12, 13, 14, 1,\n 16, 17, 18, 19, 20], dtype=int32), body_rootid=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_weldid=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21], dtype=int32), body_jntnum=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_jntadr=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\n 16, 17, 18, 19, 20], dtype=int32), body_dofnum=array([0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_dofadr=array([-1, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,\n 21, 22, 23, 24, 25], dtype=int32), body_geomnum=array([ 1, 10, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 1, 1, 5, 1,\n 2, 1, 1, 1, 5], dtype=int32), body_geomadr=array([ 0, 1, 11, 12, 14, 15, 21, 22, 24, 25, 31, 32, 34, 35, 36, 37, 42,\n 43, 45, 46, 47, 48], dtype=int32), body_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-3.00000e-02, -5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, -1.11500e-01, 4.02786e-04],\n [-6.84995e-03, 6.40883e-07, -7.67999e-02],\n [ 9.99993e-03, 1.49964e-03, -1.23700e-01],\n [-3.00000e-02, 5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, 1.11500e-01, 4.02786e-04],\n [-4.35013e-03, -6.01952e-08, -7.68000e-02],\n [ 9.99993e-03, -1.49965e-03, -1.23700e-01],\n [ 2.16000e-02, -4.05500e-02, 0.00000e+00],\n [-4.73000e-02, -3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, 1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, -2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, 5.00000e-04, -2.95989e-01],\n [-5.27500e-02, 1.82000e-02, -3.50000e-02],\n [ 2.16000e-02, 4.04500e-02, 0.00000e+00],\n [-4.72500e-02, 3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, -1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, 2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, -5.00000e-04, -2.95989e-01],\n [-5.27500e-02, -1.82000e-02, -3.50000e-02]], dtype=float32), body_quat=Array([[ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , -0.12521206, -0.01648451, 0.12948105],\n [ 0.995835 , 0.0871243 , -0.0267684 , 0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , 0.12521206, -0.01648451, -0.12948105],\n [ 0.995835 , -0.0871243 , -0.0267684 , -0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ]], dtype=float32), body_ipos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 1.31675e-03, 3.55722e-04, 2.12213e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [-3.05096e-03, 9.75647e-08, -2.86392e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.43130e-02, -8.05461e-04, -1.12239e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [-1.92682e-03, 1.60899e-07, -2.84806e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.42815e-02, 8.10948e-04, -1.12111e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.91726e-02, 0.00000e+00, -9.76103e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.89704e-02, 0.00000e+00, -4.36578e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.91699e-02, 0.00000e+00, -9.75869e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.89444e-02, 0.00000e+00, -4.36087e-02]], dtype=float32), body_iquat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9996889e-01, -1.9714297e-03, 6.6126394e-03, -3.8225895e-03],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9859238e-01, 1.6913706e-06, 5.3040519e-02, -8.9837833e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.8861881e-01, -5.6069482e-02, -5.2539382e-02, 8.0475074e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9942964e-01, 2.8166392e-06, 3.3768889e-02, -9.5169270e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 8.0389982e-01, -5.3064987e-02, -5.6618489e-02, 5.8968085e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639622e-01, -3.1691313e-02, -3.1691313e-02, 7.0639622e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6420776e-01, -2.4254492e-01, -2.4254492e-01, 6.6420776e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639646e-01, -3.1686720e-02, -3.1686720e-02, 7.0639646e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6456079e-01, -2.4157593e-01, -2.4157593e-01, 6.6456079e-01]], dtype=float32), body_mass=Array([ 0. , 16.1368 , 1.38072 , 0.549329, 1.96045 , 1.35433 ,\n 1.37669 , 0.546898, 1.96833 , 1.35825 , 2.13429 , 3.94684 ,\n 0.980692, 5.07411 , 0.346177, 2.3588 , 2.10846 , 3.95042 ,\n 0.968264, 5.06305 , 0.346177, 2.36117 ], dtype=float32), body_subtreemass=Array([56.27025 , 56.27025 , 5.244829, 3.864109, 3.31478 , 1.35433 ,\n 5.250168, 3.873478, 3.32658 , 1.35825 , 14.840909, 12.706619,\n 8.759779, 7.779087, 2.704977, 2.3588 , 14.797541, 12.689081,\n 8.738661, 7.770397, 2.707347, 2.36117 ], dtype=float32), body_inertia=Array([[0. , 0. , 0. ],\n [2.62122 , 2.61922 , 2.13268 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205674, 0.0205674, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466957, 0.0466639, 0.040032 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205605, 0.0205605, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466904, 0.0466582, 0.0400325],\n [0.01 , 0.01 , 0.01 ],\n [0.0459834, 0.0459182, 0.0200652],\n [0.01 , 0.01 , 0.01 ],\n [0.0315017, 0.0315017, 0.0142921],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0460125, 0.0459472, 0.0200653],\n [0.01 , 0.01 , 0.01 ],\n [0.0314331, 0.0314331, 0.0142609],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ]], dtype=float32), body_gravcomp=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0.], dtype=float32), body_invweight0=Array([[ 0. , 0. ],\n [ 0.02709354, 0.33944464],\n [ 0.03497095, 3.419919 ],\n [ 0.03552767, 4.788329 ],\n [ 0.09193668, 11.228076 ],\n [ 0.271199 , 13.945901 ],\n [ 0.03495737, 3.4105778 ],\n [ 0.03550425, 4.776813 ],\n [ 0.09171998, 11.216417 ],\n [ 0.27078474, 13.941211 ],\n [ 0.03346002, 1.3925701 ],\n [ 0.03352623, 1.4896233 ],\n [ 0.09863144, 1.6639372 ],\n [ 0.07234548, 3.0321634 ],\n [ 0.14141484, 0.81913835],\n [ 0.14558499, 0.9521539 ],\n [ 0.03345968, 1.3961365 ],\n [ 0.03356617, 1.4932836 ],\n [ 0.09893017, 1.6676086 ],\n [ 0.07245665, 3.0374799 ],\n [ 0.14148587, 0.8192474 ],\n [ 0.14565451, 0.9521703 ]], dtype=float32), jnt_type=array([0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n dtype=int32), jnt_qposadr=array([ 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n 23, 24, 25, 26], dtype=int32), jnt_dofadr=array([ 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,\n 22, 23, 24, 25], dtype=int32), jnt_bodyid=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n 18, 19, 20, 21], dtype=int32), jnt_limited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actfrclimited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actgravcomp=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), jnt_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), jnt_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), jnt_pos=Array([[0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.]], dtype=float32), jnt_axis=Array([[ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 4.21050e-08, 2.46305e-08],\n [-3.78762e-08, 2.80520e-08, 1.00000e+00],\n [ 2.49496e-07, -1.00000e+00, 2.79425e-08],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 2.03483e-07, -4.02302e-08],\n [ 2.22765e-08, -4.39379e-08, -1.00000e+00],\n [-8.81182e-08, -1.00000e+00, 4.40473e-08],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, -1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00]], dtype=float32), jnt_stiffness=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), jnt_range=Array([[ 0. , 0. ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ]], dtype=float32), jnt_actfrcrange=Array([[ 0., 0.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.]], dtype=float32), jnt_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), dof_bodyid=array([ 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype=int32), dof_jntid=array([ 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n 12, 13, 14, 15, 16, 17, 18, 19, 20], dtype=int32), dof_parentid=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 5, 14, 15,\n 16, 17, 18, 5, 20, 21, 22, 23, 24], dtype=int32), dof_Madr=array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 62, 70,\n 79, 89, 96, 104, 113, 123, 134, 146, 153, 161, 170, 180, 191],\n dtype=int32), dof_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), dof_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), dof_frictionloss=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_armature=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_damping=Array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,\n 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32), dof_invweight0=Array([3.2354396e-02, 3.2354396e-02, 3.2354396e-02, 3.3944464e-01,\n 3.3944464e-01, 3.3944464e-01, 9.6083155e+00, 4.4150810e+00,\n 2.0510872e+01, 3.4809570e+01, 9.5787678e+00, 4.4085140e+00,\n 2.0508595e+01, 3.4751534e+01, 4.2109222e+00, 1.0298933e+00,\n 1.3500186e+00, 1.8877272e+01, 8.9133234e+00, 1.5922394e+00,\n 4.2218900e+00, 1.0300945e+00, 1.3500514e+00, 1.8928917e+01,\n 8.9293032e+00, 1.5925606e+00], dtype=float32), dof_M0=Array([5.6270248e+01, 5.6270248e+01, 5.6270248e+01, 1.1766881e+01,\n 1.1362601e+01, 4.9151673e+00, 2.4990076e-01, 2.4510972e-01,\n 5.0213572e-02, 6.4029261e-02, 2.5029477e-01, 2.4550702e-01,\n 5.0216697e-02, 6.4033940e-02, 3.6562202e+00, 3.5532610e+00,\n 1.0688403e+00, 1.5558213e+00, 1.0582325e+00, 1.0360414e+00,\n 3.6537342e+00, 3.5509171e+00, 1.0688035e+00, 1.5557439e+00,\n 1.0582275e+00, 1.0360385e+00], dtype=float32), geom_type=array([0, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 6, 6, 2, 6, 6, 6, 6, 6, 6,\n 2, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,\n 6, 6, 6, 6, 6, 6, 6, 6, 6], dtype=int32), geom_contype=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_conaffinity=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_condim=array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=int32), geom_bodyid=array([ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5,\n 5, 5, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 11,\n 12, 13, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 19, 20, 21, 21, 21,\n 21, 21], dtype=int32), geom_dataid=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_group=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int32), geom_matid=array([ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_priority=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32), geom_solmix=Array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1.], dtype=float32), geom_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), geom_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), geom_size=Array([[0. , 0. , 0.05 ],\n [0.0465 , 0.0475 , 0.071 ],\n [0.0405 , 0.062 , 0.07525 ],\n [0.0678 , 0.04485 , 0.0669 ],\n [0.10205 , 0.1076 , 0.1046 ],\n [0.033 , 0.033 , 0.0445 ],\n [0.027 , 0.027 , 0.0065 ],\n [0.0225 , 0.0225 , 0.045 ],\n [0.08 , 0. , 0. ],\n [0.03 , 0.03 , 0.045 ],\n [0.04 , 0.04 , 0.02 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ]], dtype=float32), geom_rbound=Array([0. , 0.09725996, 0.10557847, 0.10528044, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.08645181, 0.10853701, 0.16746987, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712828, 0.07712828,\n 0.07712828, 0.07712828, 0.08645181, 0.10853701, 0.16746987,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712828,\n 0.07712828, 0.07712828, 0.07712828], dtype=float32), geom_rbound_hfield=array([0. , 0.09725996, 0.10557847, 0.10528045, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.0864518 , 0.10853701, 0.16746988, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712829, 0.07712829,\n 0.07712829, 0.07712829, 0.0864518 , 0.10853701, 0.16746988,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712829,\n 0.07712829, 0.07712829, 0.07712829]), geom_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 7.50000e-02],\n [ 0.00000e+00, 0.00000e+00, 1.39400e-01],\n [ 0.00000e+00, 0.00000e+00, 2.28358e-01],\n [ 2.11510e-04, 0.00000e+00, 3.40270e-01],\n [-1.51385e-02, 0.00000e+00, 3.69270e-01],\n [ 4.86151e-03, 0.00000e+00, 3.91771e-01],\n [ 4.86151e-03, 0.00000e+00, 4.57921e-01],\n [ 6.03745e-02, 1.70000e-04, 5.09846e-01],\n [ 6.03151e-03, 1.15000e-03, 5.59721e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-6.84995e-03, 2.19050e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.36999e-02, -4.00709e-03, -1.62800e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-4.35013e-03, 3.63257e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.33999e-02, 4.00654e-03, -1.62800e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02]], dtype=float32), geom_quat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 3.2757915e-05, 3.2758115e-05, 7.0710528e-01, -7.0710826e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, 5.1241904e-01, 4.7925600e-01, -5.2193904e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, -5.1241904e-01, 4.7925600e-01, 5.2193904e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01]], dtype=float32), geom_friction=Array([[1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04]], dtype=float32), geom_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_gap=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_rgba=array([[0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 0. , 1. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ]], dtype=float32), site_bodyid=array([], dtype=int32), site_pos=Array([], shape=(0, 3), dtype=float32), site_quat=Array([], shape=(0, 4), dtype=float32), cam_mode=array([], dtype=int32), cam_bodyid=array([], dtype=int32), cam_targetbodyid=array([], dtype=int32), cam_pos=Array([], shape=(0, 3), dtype=float32), cam_quat=Array([], shape=(0, 4), dtype=float32), cam_poscom0=Array([], shape=(0, 3), dtype=float32), cam_pos0=Array([], shape=(0, 3), dtype=float32), cam_mat0=Array([], shape=(0, 3, 3), dtype=float32), mesh_vertadr=array([], dtype=int32), mesh_faceadr=array([], dtype=int32), mesh_graphadr=array([], dtype=int32), mesh_vert=array([], shape=(0, 3), dtype=float32), mesh_face=array([], shape=(0, 3), dtype=int32), mesh_graph=array([], dtype=int32), mesh_convex=(), hfield_size=array([], shape=(0, 4), dtype=float64), hfield_nrow=array([], dtype=int32), hfield_ncol=array([], dtype=int32), hfield_adr=array([], dtype=int32), hfield_data=Array([], shape=(0,), dtype=float32), mat_rgba=array([[0.8, 0.6, 0.4, 1. ],\n [1. , 1. , 1. , 1. ]], dtype=float32), pair_dim=array([], dtype=int32), pair_geom1=array([], dtype=int32), pair_geom2=array([], dtype=int32), pair_solref=Array([], shape=(0, 2), dtype=float32), pair_solreffriction=Array([], shape=(0, 2), dtype=float32), pair_solimp=Array([], shape=(0, 5), dtype=float32), pair_margin=Array([], shape=(0,), dtype=float32), pair_gap=Array([], shape=(0,), dtype=float32), pair_friction=Array([], shape=(0, 5), dtype=float32), exclude_signature=array([], dtype=int32), eq_type=array([], dtype=int32), eq_obj1id=array([], dtype=int32), eq_obj2id=array([], dtype=int32), eq_active0=array([], dtype=uint8), eq_solref=Array([], shape=(0, 2), dtype=float32), eq_solimp=Array([], shape=(0, 5), dtype=float32), eq_data=Array([], shape=(0, 11), dtype=float32), actuator_trntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_dyntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_gaintype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_biastype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_trnid=array([[ 1, -1],\n [ 2, -1],\n [ 3, -1],\n [ 4, -1],\n [ 5, -1],\n [ 6, -1],\n [ 7, -1],\n [ 8, -1],\n [ 9, -1],\n [10, -1],\n [11, -1],\n [12, -1],\n [13, -1],\n [14, -1],\n [15, -1],\n [16, -1],\n [17, -1],\n [18, -1],\n [19, -1],\n [20, -1]], dtype=int32), actuator_actadr=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1], dtype=int32), actuator_actnum=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_ctrllimited=array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), actuator_forcelimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_actlimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_dynprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_gainprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_biasprm=Array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_ctrlrange=Array([[-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.]], dtype=float32), actuator_forcerange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_actrange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_gear=Array([[1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.]], dtype=float32), numeric_adr=array([], dtype=int32), numeric_data=array([], dtype=float64), tuple_adr=array([], dtype=int32), tuple_size=array([], dtype=int32), tuple_objtype=array([], dtype=int32), tuple_objid=array([], dtype=int32), tuple_objprm=array([], dtype=float64), name_bodyadr=array([ 9, 15, 25, 38, 51, 63, 73, 86, 99, 111, 121, 129, 137,\n 149, 161, 171, 181, 189, 197, 209, 221, 231], dtype=int32), name_jntadr=array([241, 256, 273, 289, 304, 312, 329, 345, 360, 368, 380, 391, 401,\n 408, 422, 435, 447, 458, 468, 475, 489], dtype=int32), name_geomadr=array([ 502, 508, 525, 540, 555, 568, 582, 596, 610, 622, 641,\n 654, 674, 694, 714, 733, 750, 767, 787, 804, 818, 835,\n 855, 875, 895, 914, 931, 948, 968, 985, 999, 1016, 1031,\n 1046, 1061, 1080, 1099, 1116, 1133, 1153, 1176, 1195, 1217, 1232,\n 1247, 1262, 1281, 1300, 1317, 1334, 1353, 1375, 1395], dtype=int32), name_siteadr=array([], dtype=int32), name_camadr=array([], dtype=int32), name_meshadr=array([], dtype=int32), name_hfieldadr=array([], dtype=int32), name_pairadr=array([], dtype=int32), name_eqadr=array([], dtype=int32), name_actuatoradr=array([1439, 1456, 1472, 1487, 1495, 1512, 1528, 1543, 1551, 1563, 1574,\n 1584, 1591, 1605, 1618, 1630, 1641, 1651, 1658, 1672], dtype=int32), name_sensoradr=array([], dtype=int32), name_numericadr=array([], dtype=int32), name_tupleadr=array([], dtype=int32), name_keyadr=array([], dtype=int32), names=b'stickBot\\x00world\\x00root_link\\x00r_shoulder_1\\x00r_shoulder_2\\x00r_upper_arm\\x00r_elbow_1\\x00l_shoulder_1\\x00l_shoulder_2\\x00l_upper_arm\\x00l_elbow_1\\x00r_hip_1\\x00r_hip_2\\x00r_upper_leg\\x00r_lower_leg\\x00r_ankle_1\\x00r_ankle_2\\x00l_hip_1\\x00l_hip_2\\x00l_upper_leg\\x00l_lower_leg\\x00l_ankle_1\\x00l_ankle_2\\x00floating_joint\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00floor\\x00root_link_visual\\x00torso_1_visual\\x00torso_2_visual\\x00chest_visual\\x00neck_1_visual\\x00neck_2_visual\\x00neck_3_visual\\x00head_visual\\x00camera_tilt_visual\\x00lidar_visual\\x00r_shoulder_1_visual\\x00r_shoulder_2_visual\\x00r_shoulder_3_visual\\x00r_upper_arm_visual\\x00r_elbow_1_visual\\x00r_forearm_visual\\x00r_forearm_collision\\x00r_wrist_1_visual\\x00r_hand_visual\\x00r_hand_collision\\x00l_shoulder_1_visual\\x00l_shoulder_2_visual\\x00l_shoulder_3_visual\\x00l_upper_arm_visual\\x00l_elbow_1_visual\\x00l_forearm_visual\\x00l_forearm_collision\\x00l_wrist_1_visual\\x00l_hand_visual\\x00l_hand_collision\\x00r_hip_1_visual\\x00r_hip_2_visual\\x00r_hip_3_visual\\x00r_upper_leg_visual\\x00r_lower_leg_visual\\x00r_ankle_1_visual\\x00r_ankle_2_visual\\x00r_foot_front_visual\\x00r_foot_front_collision\\x00r_foot_rear_visual\\x00r_foot_rear_collision\\x00l_hip_1_visual\\x00l_hip_2_visual\\x00l_hip_3_visual\\x00l_upper_leg_visual\\x00l_lower_leg_visual\\x00l_ankle_1_visual\\x00l_ankle_2_visual\\x00l_foot_rear_visual\\x00l_foot_rear_collision\\x00l_foot_front_visual\\x00l_foot_front_collision\\x00\\x00body\\x00grid\\x00body\\x00grid\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00'); kwargs: maxgeom=10000", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[7], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m H_b \u001b[38;5;241m=\u001b[39m mujoco_instance\u001b[38;5;241m.\u001b[39mget_base()\n\u001b[1;32m 9\u001b[0m w_b \u001b[38;5;241m=\u001b[39m mujoco_instance\u001b[38;5;241m.\u001b[39mget_base_velocity()\n\u001b[0;32m---> 10\u001b[0m \u001b[43mmujoco_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_visualize_robot_flag\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/repos/comodo/src/comodo/mujocoSimulator/mjxSimulator.py:62\u001b[0m, in \u001b[0;36mMJXSimulator.set_visualize_robot_flag\u001b[0;34m(self, visualize_robot)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisualize_robot_flag \u001b[38;5;241m=\u001b[39m visualize_robot\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisualize_robot_flag:\n\u001b[0;32m---> 62\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mviewer \u001b[38;5;241m=\u001b[39m \u001b[43mmujoco_viewer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMujocoViewer\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/mambaforge/envs/comododev/lib/python3.10/site-packages/mujoco_viewer/mujoco_viewer.py:72\u001b[0m, in \u001b[0;36mMujocoViewer.__init__\u001b[0;34m(self, model, data, mode, title, width, height, hide_menus)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvopt \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvOption()\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcam \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvCamera()\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscn \u001b[38;5;241m=\u001b[39m \u001b[43mmujoco\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMjvScene\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmaxgeom\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10000\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpert \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvPerturb()\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mctx \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjrContext(\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel, mujoco\u001b[38;5;241m.\u001b[39mmjtFontScale\u001b[38;5;241m.\u001b[39mmjFONTSCALE_150\u001b[38;5;241m.\u001b[39mvalue)\n", + "\u001b[0;31mTypeError\u001b[0m: __init__(): incompatible constructor arguments. The following argument types are supported:\n 1. mujoco._structs.MjvScene()\n 2. mujoco._structs.MjvScene(model: mujoco._structs.MjModel, maxgeom: int)\n\nInvoked with: Model(nq=27, nv=26, nu=20, na=0, nbody=22, njnt=21, ngeom=53, nsite=0, ncam=0, nmesh=0, nmeshvert=0, nmeshface=0, nhfield=0, nmat=2, npair=0, nexclude=0, neq=0, ngravcomp=0, nnumeric=0, nuserdata=0, ntuple=0, nsensor=0, nkey=0, nM=203, opt=Option(timestep=Array(0.002, dtype=float32, weak_type=True), impratio=Array(1., dtype=float32, weak_type=True), tolerance=Array(1.e-08, dtype=float32, weak_type=True), ls_tolerance=Array(0.01, dtype=float32, weak_type=True), gravity=Array([ 0. , 0. , -9.81], dtype=float32), wind=Array([0., 0., 0.], dtype=float32), density=Array(0., dtype=float32, weak_type=True), viscosity=Array(0., dtype=float32, weak_type=True), has_fluid_params=False, integrator=, cone=, jacobian=, solver=, iterations=100, ls_iterations=50, disableflags=), stat=Statistic(meaninertia=Array(8.535638, dtype=float32, weak_type=True)), qpos0=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), qpos_spring=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), body_parentid=array([ 0, 0, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 11, 12, 13, 14, 1,\n 16, 17, 18, 19, 20], dtype=int32), body_rootid=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_weldid=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21], dtype=int32), body_jntnum=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_jntadr=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\n 16, 17, 18, 19, 20], dtype=int32), body_dofnum=array([0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_dofadr=array([-1, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,\n 21, 22, 23, 24, 25], dtype=int32), body_geomnum=array([ 1, 10, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 1, 1, 5, 1,\n 2, 1, 1, 1, 5], dtype=int32), body_geomadr=array([ 0, 1, 11, 12, 14, 15, 21, 22, 24, 25, 31, 32, 34, 35, 36, 37, 42,\n 43, 45, 46, 47, 48], dtype=int32), body_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-3.00000e-02, -5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, -1.11500e-01, 4.02786e-04],\n [-6.84995e-03, 6.40883e-07, -7.67999e-02],\n [ 9.99993e-03, 1.49964e-03, -1.23700e-01],\n [-3.00000e-02, 5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, 1.11500e-01, 4.02786e-04],\n [-4.35013e-03, -6.01952e-08, -7.68000e-02],\n [ 9.99993e-03, -1.49965e-03, -1.23700e-01],\n [ 2.16000e-02, -4.05500e-02, 0.00000e+00],\n [-4.73000e-02, -3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, 1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, -2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, 5.00000e-04, -2.95989e-01],\n [-5.27500e-02, 1.82000e-02, -3.50000e-02],\n [ 2.16000e-02, 4.04500e-02, 0.00000e+00],\n [-4.72500e-02, 3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, -1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, 2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, -5.00000e-04, -2.95989e-01],\n [-5.27500e-02, -1.82000e-02, -3.50000e-02]], dtype=float32), body_quat=Array([[ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , -0.12521206, -0.01648451, 0.12948105],\n [ 0.995835 , 0.0871243 , -0.0267684 , 0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , 0.12521206, -0.01648451, -0.12948105],\n [ 0.995835 , -0.0871243 , -0.0267684 , -0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ]], dtype=float32), body_ipos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 1.31675e-03, 3.55722e-04, 2.12213e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [-3.05096e-03, 9.75647e-08, -2.86392e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.43130e-02, -8.05461e-04, -1.12239e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [-1.92682e-03, 1.60899e-07, -2.84806e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.42815e-02, 8.10948e-04, -1.12111e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.91726e-02, 0.00000e+00, -9.76103e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.89704e-02, 0.00000e+00, -4.36578e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.91699e-02, 0.00000e+00, -9.75869e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.89444e-02, 0.00000e+00, -4.36087e-02]], dtype=float32), body_iquat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9996889e-01, -1.9714297e-03, 6.6126394e-03, -3.8225895e-03],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9859238e-01, 1.6913706e-06, 5.3040519e-02, -8.9837833e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.8861881e-01, -5.6069482e-02, -5.2539382e-02, 8.0475074e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9942964e-01, 2.8166392e-06, 3.3768889e-02, -9.5169270e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 8.0389982e-01, -5.3064987e-02, -5.6618489e-02, 5.8968085e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639622e-01, -3.1691313e-02, -3.1691313e-02, 7.0639622e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6420776e-01, -2.4254492e-01, -2.4254492e-01, 6.6420776e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639646e-01, -3.1686720e-02, -3.1686720e-02, 7.0639646e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6456079e-01, -2.4157593e-01, -2.4157593e-01, 6.6456079e-01]], dtype=float32), body_mass=Array([ 0. , 16.1368 , 1.38072 , 0.549329, 1.96045 , 1.35433 ,\n 1.37669 , 0.546898, 1.96833 , 1.35825 , 2.13429 , 3.94684 ,\n 0.980692, 5.07411 , 0.346177, 2.3588 , 2.10846 , 3.95042 ,\n 0.968264, 5.06305 , 0.346177, 2.36117 ], dtype=float32), body_subtreemass=Array([56.27025 , 56.27025 , 5.244829, 3.864109, 3.31478 , 1.35433 ,\n 5.250168, 3.873478, 3.32658 , 1.35825 , 14.840909, 12.706619,\n 8.759779, 7.779087, 2.704977, 2.3588 , 14.797541, 12.689081,\n 8.738661, 7.770397, 2.707347, 2.36117 ], dtype=float32), body_inertia=Array([[0. , 0. , 0. ],\n [2.62122 , 2.61922 , 2.13268 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205674, 0.0205674, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466957, 0.0466639, 0.040032 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205605, 0.0205605, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466904, 0.0466582, 0.0400325],\n [0.01 , 0.01 , 0.01 ],\n [0.0459834, 0.0459182, 0.0200652],\n [0.01 , 0.01 , 0.01 ],\n [0.0315017, 0.0315017, 0.0142921],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0460125, 0.0459472, 0.0200653],\n [0.01 , 0.01 , 0.01 ],\n [0.0314331, 0.0314331, 0.0142609],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ]], dtype=float32), body_gravcomp=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0.], dtype=float32), body_invweight0=Array([[ 0. , 0. ],\n [ 0.02709354, 0.33944464],\n [ 0.03497095, 3.419919 ],\n [ 0.03552767, 4.788329 ],\n [ 0.09193668, 11.228076 ],\n [ 0.271199 , 13.945901 ],\n [ 0.03495737, 3.4105778 ],\n [ 0.03550425, 4.776813 ],\n [ 0.09171998, 11.216417 ],\n [ 0.27078474, 13.941211 ],\n [ 0.03346002, 1.3925701 ],\n [ 0.03352623, 1.4896233 ],\n [ 0.09863144, 1.6639372 ],\n [ 0.07234548, 3.0321634 ],\n [ 0.14141484, 0.81913835],\n [ 0.14558499, 0.9521539 ],\n [ 0.03345968, 1.3961365 ],\n [ 0.03356617, 1.4932836 ],\n [ 0.09893017, 1.6676086 ],\n [ 0.07245665, 3.0374799 ],\n [ 0.14148587, 0.8192474 ],\n [ 0.14565451, 0.9521703 ]], dtype=float32), jnt_type=array([0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n dtype=int32), jnt_qposadr=array([ 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n 23, 24, 25, 26], dtype=int32), jnt_dofadr=array([ 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,\n 22, 23, 24, 25], dtype=int32), jnt_bodyid=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n 18, 19, 20, 21], dtype=int32), jnt_limited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actfrclimited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actgravcomp=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), jnt_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), jnt_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), jnt_pos=Array([[0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.]], dtype=float32), jnt_axis=Array([[ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 4.21050e-08, 2.46305e-08],\n [-3.78762e-08, 2.80520e-08, 1.00000e+00],\n [ 2.49496e-07, -1.00000e+00, 2.79425e-08],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 2.03483e-07, -4.02302e-08],\n [ 2.22765e-08, -4.39379e-08, -1.00000e+00],\n [-8.81182e-08, -1.00000e+00, 4.40473e-08],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, -1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00]], dtype=float32), jnt_stiffness=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), jnt_range=Array([[ 0. , 0. ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ]], dtype=float32), jnt_actfrcrange=Array([[ 0., 0.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.]], dtype=float32), jnt_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), dof_bodyid=array([ 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype=int32), dof_jntid=array([ 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n 12, 13, 14, 15, 16, 17, 18, 19, 20], dtype=int32), dof_parentid=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 5, 14, 15,\n 16, 17, 18, 5, 20, 21, 22, 23, 24], dtype=int32), dof_Madr=array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 62, 70,\n 79, 89, 96, 104, 113, 123, 134, 146, 153, 161, 170, 180, 191],\n dtype=int32), dof_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), dof_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), dof_frictionloss=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_armature=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_damping=Array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,\n 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32), dof_invweight0=Array([3.2354396e-02, 3.2354396e-02, 3.2354396e-02, 3.3944464e-01,\n 3.3944464e-01, 3.3944464e-01, 9.6083155e+00, 4.4150810e+00,\n 2.0510872e+01, 3.4809570e+01, 9.5787678e+00, 4.4085140e+00,\n 2.0508595e+01, 3.4751534e+01, 4.2109222e+00, 1.0298933e+00,\n 1.3500186e+00, 1.8877272e+01, 8.9133234e+00, 1.5922394e+00,\n 4.2218900e+00, 1.0300945e+00, 1.3500514e+00, 1.8928917e+01,\n 8.9293032e+00, 1.5925606e+00], dtype=float32), dof_M0=Array([5.6270248e+01, 5.6270248e+01, 5.6270248e+01, 1.1766881e+01,\n 1.1362601e+01, 4.9151673e+00, 2.4990076e-01, 2.4510972e-01,\n 5.0213572e-02, 6.4029261e-02, 2.5029477e-01, 2.4550702e-01,\n 5.0216697e-02, 6.4033940e-02, 3.6562202e+00, 3.5532610e+00,\n 1.0688403e+00, 1.5558213e+00, 1.0582325e+00, 1.0360414e+00,\n 3.6537342e+00, 3.5509171e+00, 1.0688035e+00, 1.5557439e+00,\n 1.0582275e+00, 1.0360385e+00], dtype=float32), geom_type=array([0, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 6, 6, 2, 6, 6, 6, 6, 6, 6,\n 2, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,\n 6, 6, 6, 6, 6, 6, 6, 6, 6], dtype=int32), geom_contype=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_conaffinity=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_condim=array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=int32), geom_bodyid=array([ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5,\n 5, 5, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 11,\n 12, 13, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 19, 20, 21, 21, 21,\n 21, 21], dtype=int32), geom_dataid=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_group=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int32), geom_matid=array([ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_priority=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32), geom_solmix=Array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1.], dtype=float32), geom_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), geom_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), geom_size=Array([[0. , 0. , 0.05 ],\n [0.0465 , 0.0475 , 0.071 ],\n [0.0405 , 0.062 , 0.07525 ],\n [0.0678 , 0.04485 , 0.0669 ],\n [0.10205 , 0.1076 , 0.1046 ],\n [0.033 , 0.033 , 0.0445 ],\n [0.027 , 0.027 , 0.0065 ],\n [0.0225 , 0.0225 , 0.045 ],\n [0.08 , 0. , 0. ],\n [0.03 , 0.03 , 0.045 ],\n [0.04 , 0.04 , 0.02 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ]], dtype=float32), geom_rbound=Array([0. , 0.09725996, 0.10557847, 0.10528044, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.08645181, 0.10853701, 0.16746987, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712828, 0.07712828,\n 0.07712828, 0.07712828, 0.08645181, 0.10853701, 0.16746987,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712828,\n 0.07712828, 0.07712828, 0.07712828], dtype=float32), geom_rbound_hfield=array([0. , 0.09725996, 0.10557847, 0.10528045, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.0864518 , 0.10853701, 0.16746988, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712829, 0.07712829,\n 0.07712829, 0.07712829, 0.0864518 , 0.10853701, 0.16746988,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712829,\n 0.07712829, 0.07712829, 0.07712829]), geom_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 7.50000e-02],\n [ 0.00000e+00, 0.00000e+00, 1.39400e-01],\n [ 0.00000e+00, 0.00000e+00, 2.28358e-01],\n [ 2.11510e-04, 0.00000e+00, 3.40270e-01],\n [-1.51385e-02, 0.00000e+00, 3.69270e-01],\n [ 4.86151e-03, 0.00000e+00, 3.91771e-01],\n [ 4.86151e-03, 0.00000e+00, 4.57921e-01],\n [ 6.03745e-02, 1.70000e-04, 5.09846e-01],\n [ 6.03151e-03, 1.15000e-03, 5.59721e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-6.84995e-03, 2.19050e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.36999e-02, -4.00709e-03, -1.62800e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-4.35013e-03, 3.63257e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.33999e-02, 4.00654e-03, -1.62800e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02]], dtype=float32), geom_quat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 3.2757915e-05, 3.2758115e-05, 7.0710528e-01, -7.0710826e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, 5.1241904e-01, 4.7925600e-01, -5.2193904e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, -5.1241904e-01, 4.7925600e-01, 5.2193904e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01]], dtype=float32), geom_friction=Array([[1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04]], dtype=float32), geom_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_gap=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_rgba=array([[0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 0. , 1. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ]], dtype=float32), site_bodyid=array([], dtype=int32), site_pos=Array([], shape=(0, 3), dtype=float32), site_quat=Array([], shape=(0, 4), dtype=float32), cam_mode=array([], dtype=int32), cam_bodyid=array([], dtype=int32), cam_targetbodyid=array([], dtype=int32), cam_pos=Array([], shape=(0, 3), dtype=float32), cam_quat=Array([], shape=(0, 4), dtype=float32), cam_poscom0=Array([], shape=(0, 3), dtype=float32), cam_pos0=Array([], shape=(0, 3), dtype=float32), cam_mat0=Array([], shape=(0, 3, 3), dtype=float32), mesh_vertadr=array([], dtype=int32), mesh_faceadr=array([], dtype=int32), mesh_graphadr=array([], dtype=int32), mesh_vert=array([], shape=(0, 3), dtype=float32), mesh_face=array([], shape=(0, 3), dtype=int32), mesh_graph=array([], dtype=int32), mesh_convex=(), hfield_size=array([], shape=(0, 4), dtype=float64), hfield_nrow=array([], dtype=int32), hfield_ncol=array([], dtype=int32), hfield_adr=array([], dtype=int32), hfield_data=Array([], shape=(0,), dtype=float32), mat_rgba=array([[0.8, 0.6, 0.4, 1. ],\n [1. , 1. , 1. , 1. ]], dtype=float32), pair_dim=array([], dtype=int32), pair_geom1=array([], dtype=int32), pair_geom2=array([], dtype=int32), pair_solref=Array([], shape=(0, 2), dtype=float32), pair_solreffriction=Array([], shape=(0, 2), dtype=float32), pair_solimp=Array([], shape=(0, 5), dtype=float32), pair_margin=Array([], shape=(0,), dtype=float32), pair_gap=Array([], shape=(0,), dtype=float32), pair_friction=Array([], shape=(0, 5), dtype=float32), exclude_signature=array([], dtype=int32), eq_type=array([], dtype=int32), eq_obj1id=array([], dtype=int32), eq_obj2id=array([], dtype=int32), eq_active0=array([], dtype=uint8), eq_solref=Array([], shape=(0, 2), dtype=float32), eq_solimp=Array([], shape=(0, 5), dtype=float32), eq_data=Array([], shape=(0, 11), dtype=float32), actuator_trntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_dyntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_gaintype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_biastype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_trnid=array([[ 1, -1],\n [ 2, -1],\n [ 3, -1],\n [ 4, -1],\n [ 5, -1],\n [ 6, -1],\n [ 7, -1],\n [ 8, -1],\n [ 9, -1],\n [10, -1],\n [11, -1],\n [12, -1],\n [13, -1],\n [14, -1],\n [15, -1],\n [16, -1],\n [17, -1],\n [18, -1],\n [19, -1],\n [20, -1]], dtype=int32), actuator_actadr=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1], dtype=int32), actuator_actnum=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_ctrllimited=array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), actuator_forcelimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_actlimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_dynprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_gainprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_biasprm=Array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_ctrlrange=Array([[-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.]], dtype=float32), actuator_forcerange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_actrange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_gear=Array([[1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.]], dtype=float32), numeric_adr=array([], dtype=int32), numeric_data=array([], dtype=float64), tuple_adr=array([], dtype=int32), tuple_size=array([], dtype=int32), tuple_objtype=array([], dtype=int32), tuple_objid=array([], dtype=int32), tuple_objprm=array([], dtype=float64), name_bodyadr=array([ 9, 15, 25, 38, 51, 63, 73, 86, 99, 111, 121, 129, 137,\n 149, 161, 171, 181, 189, 197, 209, 221, 231], dtype=int32), name_jntadr=array([241, 256, 273, 289, 304, 312, 329, 345, 360, 368, 380, 391, 401,\n 408, 422, 435, 447, 458, 468, 475, 489], dtype=int32), name_geomadr=array([ 502, 508, 525, 540, 555, 568, 582, 596, 610, 622, 641,\n 654, 674, 694, 714, 733, 750, 767, 787, 804, 818, 835,\n 855, 875, 895, 914, 931, 948, 968, 985, 999, 1016, 1031,\n 1046, 1061, 1080, 1099, 1116, 1133, 1153, 1176, 1195, 1217, 1232,\n 1247, 1262, 1281, 1300, 1317, 1334, 1353, 1375, 1395], dtype=int32), name_siteadr=array([], dtype=int32), name_camadr=array([], dtype=int32), name_meshadr=array([], dtype=int32), name_hfieldadr=array([], dtype=int32), name_pairadr=array([], dtype=int32), name_eqadr=array([], dtype=int32), name_actuatoradr=array([1439, 1456, 1472, 1487, 1495, 1512, 1528, 1543, 1551, 1563, 1574,\n 1584, 1591, 1605, 1618, 1630, 1641, 1651, 1658, 1672], dtype=int32), name_sensoradr=array([], dtype=int32), name_numericadr=array([], dtype=int32), name_tupleadr=array([], dtype=int32), name_keyadr=array([], dtype=int32), names=b'stickBot\\x00world\\x00root_link\\x00r_shoulder_1\\x00r_shoulder_2\\x00r_upper_arm\\x00r_elbow_1\\x00l_shoulder_1\\x00l_shoulder_2\\x00l_upper_arm\\x00l_elbow_1\\x00r_hip_1\\x00r_hip_2\\x00r_upper_leg\\x00r_lower_leg\\x00r_ankle_1\\x00r_ankle_2\\x00l_hip_1\\x00l_hip_2\\x00l_upper_leg\\x00l_lower_leg\\x00l_ankle_1\\x00l_ankle_2\\x00floating_joint\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00floor\\x00root_link_visual\\x00torso_1_visual\\x00torso_2_visual\\x00chest_visual\\x00neck_1_visual\\x00neck_2_visual\\x00neck_3_visual\\x00head_visual\\x00camera_tilt_visual\\x00lidar_visual\\x00r_shoulder_1_visual\\x00r_shoulder_2_visual\\x00r_shoulder_3_visual\\x00r_upper_arm_visual\\x00r_elbow_1_visual\\x00r_forearm_visual\\x00r_forearm_collision\\x00r_wrist_1_visual\\x00r_hand_visual\\x00r_hand_collision\\x00l_shoulder_1_visual\\x00l_shoulder_2_visual\\x00l_shoulder_3_visual\\x00l_upper_arm_visual\\x00l_elbow_1_visual\\x00l_forearm_visual\\x00l_forearm_collision\\x00l_wrist_1_visual\\x00l_hand_visual\\x00l_hand_collision\\x00r_hip_1_visual\\x00r_hip_2_visual\\x00r_hip_3_visual\\x00r_upper_leg_visual\\x00r_lower_leg_visual\\x00r_ankle_1_visual\\x00r_ankle_2_visual\\x00r_foot_front_visual\\x00r_foot_front_collision\\x00r_foot_rear_visual\\x00r_foot_rear_collision\\x00l_hip_1_visual\\x00l_hip_2_visual\\x00l_hip_3_visual\\x00l_upper_leg_visual\\x00l_lower_leg_visual\\x00l_ankle_1_visual\\x00l_ankle_2_visual\\x00l_foot_rear_visual\\x00l_foot_rear_collision\\x00l_foot_front_visual\\x00l_foot_front_collision\\x00\\x00body\\x00grid\\x00body\\x00grid\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00'); kwargs: maxgeom=10000" + ] + }, + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n", + "\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n", + "\u001b[1;31mClick here for more info. \n", + "\u001b[1;31mView Jupyter log for further details." + ] + } + ], + "source": [ + "# Define simulator and set initial position\n", + "mujoco_instance = MJXSimulator()\n", + "mujoco_instance.load_model(\n", + " robot_model_init, s=s_des, xyz_rpy=xyz_rpy, kv_motors=kv, Im=Im\n", + ")\n", + "s, ds, tau = mujoco_instance.get_state()\n", + "t = mujoco_instance.get_simulation_time()\n", + "H_b = mujoco_instance.get_base()\n", + "w_b = mujoco_instance.get_base_velocity()\n", + "mujoco_instance.set_visualize_robot_flag(False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the controller parameters and instantiate the controller\n", + "# Controller Parameters\n", + "tsid_parameter = TSIDParameterTuning()\n", + "mpc_parameters = MPCParameterTuning()\n", + "\n", + "\n", + "## Controller gains\n", + "# Controller Parameters\n", + "tsid_parameter = TSIDParameterTuning()\n", + "tsid_parameter.foot_tracking_task_kp_lin = 150.0\n", + "tsid_parameter.foot_tracking_task_kd_lin = 40.0\n", + "tsid_parameter.root_tracking_task_weight = np.ones(3) * 50.0\n", + "\n", + "# TSID Instance\n", + "TSID_controller_instance = TSIDController(frequency=0.01, robot_model=robot_model_init)\n", + "TSID_controller_instance.define_tasks(tsid_parameter)\n", + "TSID_controller_instance.set_state_with_base(s, ds, H_b, w_b, t)\n", + "\n", + "# MPC Instance\n", + "step_lenght = 0.1\n", + "mpc = CentroidalMPC(robot_model=robot_model_init, step_length=step_lenght)\n", + "mpc.intialize_mpc(mpc_parameters=mpc_parameters)\n", + "\n", + "# Set desired quantities\n", + "mpc.configure(s_init=s_des, H_b_init=H_b)\n", + "TSID_controller_instance.compute_com_position()\n", + "mpc.define_test_com_traj(TSID_controller_instance.COM.toNumPy())\n", + "\n", + "# Set initial robot state and plan trajectories\n", + "mujoco_instance.step(1)\n", + "\n", + "# Reading the state\n", + "s, ds, tau = mujoco_instance.get_state()\n", + "H_b = mujoco_instance.get_base()\n", + "w_b = mujoco_instance.get_base_velocity()\n", + "t = mujoco_instance.get_simulation_time()\n", + "\n", + "# MPC\n", + "mpc.set_state_with_base(s=s, s_dot=ds, H_b=H_b, w_b=w_b, t=t)\n", + "mpc.initialize_centroidal_integrator(s=s, s_dot=ds, H_b=H_b, w_b=w_b, t=t)\n", + "mpc_output = mpc.plan_trajectory()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Set loop variables\n", + "TIME_TH = 6.0\n", + "\n", + "# Define number of steps\n", + "n_step = int(\n", + " TSID_controller_instance.frequency / mujoco_instance.get_simulation_frequency()\n", + ")\n", + "n_step_mpc_tsid = int(mpc.get_frequency_seconds() / TSID_controller_instance.frequency)\n", + "\n", + "counter = 0\n", + "mpc_success = True\n", + "energy_tot = 0.0\n", + "succeded_controller = True" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Simulation-control loop\n", + "while t < TIME_TH:\n", + " # Reading robot state from simulator\n", + " s, ds, tau = mujoco_instance.get_state()\n", + " energy_i = np.linalg.norm(tau)\n", + " H_b = mujoco_instance.get_base()\n", + " w_b = mujoco_instance.get_base_velocity()\n", + " t = mujoco_instance.get_simulation_time()\n", + "\n", + " # Update TSID\n", + " TSID_controller_instance.set_state_with_base(s=s, s_dot=ds, H_b=H_b, w_b=w_b, t=t)\n", + "\n", + " # MPC plan\n", + " if counter == 0:\n", + " mpc.set_state_with_base(s=s, s_dot=ds, H_b=H_b, w_b=w_b, t=t)\n", + " mpc.update_references()\n", + " mpc_success = mpc.plan_trajectory()\n", + " mpc.contact_planner.advance_swing_foot_planner()\n", + " if not (mpc_success):\n", + " print(\"MPC failed\")\n", + " break\n", + "\n", + " # Reading new references\n", + " com, dcom, forces_left, forces_right, ang_mom = mpc.get_references()\n", + " left_foot, right_foot = mpc.contact_planner.get_references_swing_foot_planner()\n", + "\n", + " # Update references TSID\n", + " TSID_controller_instance.update_task_references_mpc(\n", + " com=com,\n", + " dcom=dcom,\n", + " ddcom=np.zeros(3),\n", + " left_foot_desired=left_foot,\n", + " right_foot_desired=right_foot,\n", + " s_desired=np.array(s_des),\n", + " wrenches_left=np.hstack([forces_left, np.zeros(3)]),\n", + " wrenches_right=np.hstack([forces_right, np.zeros(3)]),\n", + " )\n", + "\n", + " # Run control\n", + " succeded_controller = TSID_controller_instance.run()\n", + "\n", + " if not (succeded_controller):\n", + " print(\"Controller failed\")\n", + " break\n", + "\n", + " tau = TSID_controller_instance.get_torque()\n", + "\n", + " # Step the simulator\n", + " mujoco_instance.set_input(tau)\n", + " mujoco_instance.step_with_motors(n_step=n_step, torque=tau)\n", + " counter = counter + 1\n", + "\n", + " if counter == n_step_mpc_tsid:\n", + " counter = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Closing visualization\n", + "mujoco_instance.close_visualization()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "comododev", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From a8f55eabb446180c8198181f2d883f0f9efe6e01 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 16:03:03 +0100 Subject: [PATCH 07/14] Integrate media rendering and visualization enhancements in MJXSimulator --- src/comodo/mujocoSimulator/mjxSimulator.py | 27 ++++++++++++++++------ 1 file changed, 20 insertions(+), 7 deletions(-) diff --git a/src/comodo/mujocoSimulator/mjxSimulator.py b/src/comodo/mujocoSimulator/mjxSimulator.py index 68083b9..3c2f120 100644 --- a/src/comodo/mujocoSimulator/mjxSimulator.py +++ b/src/comodo/mujocoSimulator/mjxSimulator.py @@ -3,6 +3,7 @@ import casadi as cs import jax +import mediapy as media import mujoco import mujoco_viewer import numpy as np @@ -17,6 +18,7 @@ def __init__(self) -> None: self.postion_control = False self.compute_misalignment_gravity_fun() self.jit_step = jax.jit(mjx.step) + self.framerate = 30 super().__init__() def load_model(self, robot_model, s, xyz_rpy, kv_motors=None, Im=None): @@ -27,6 +29,8 @@ def load_model(self, robot_model, s, xyz_rpy, kv_motors=None, Im=None): # Load mujoco model and data mujoco_model = mujoco.MjModel.from_xml_string(mujoco_xml) mujoco_data = mujoco.MjData(mujoco_model) + self.mj_model = mujoco_model + self.mj_data = mujoco_data # Put the model and data on the accelerator device(s) and get the corresponding MJX model and data self.model = mjx.put_model(mujoco_model) @@ -59,7 +63,9 @@ def get_contact_status(self): def set_visualize_robot_flag(self, visualize_robot): self.visualize_robot_flag = visualize_robot if self.visualize_robot_flag: - self.viewer = mujoco_viewer.MujocoViewer(self.model, self.data) + # self.viewer = mujoco_viewer.MujocoViewer(self.model, self.data) + self.renderer = mujoco.Renderer(self.mj_model) + self.frames = [] def set_base_pose_in_mujoco(self, xyz_rpy): base_xyz_quat = np.zeros(7) @@ -146,8 +152,10 @@ def step(self, n_step=1, visualize=True): # mjx.mj_step1(self.model, self.data) # mjx.mj_forward(self.model, self.data) - if self.visualize_robot_flag: - self.viewer.render() + if len(self.frames) < self.data.time * self.framerate: + self.visualize_robot() + # if self.visualize_robot_flag: + # self.viewer.render() def step_with_motors(self, n_step, torque): indexes_joint_acceleration = self.model.jnt_dofadr[1:] @@ -167,8 +175,8 @@ def step_with_motors(self, n_step, torque): self.set_input(input) self.step(n_step=1, visualize=False) - if self.visualize_robot_flag: - self.viewer.render() + # if self.visualize_robot_flag: + # self.viewer.render() def compute_misalignment_gravity_fun(self): H = cs.SX.sym("H", 4, 4) @@ -300,7 +308,11 @@ def close(self): self.viewer.close() def visualize_robot(self): - self.viewer.render() + # self.viewer.render() + mj_data = mjx.get_data(self.mj_model, self.data) + self.renderer.update_scene(mj_data) + pixels = self.renderer.render() + self.frames.append(pixels) def get_simulation_time(self): return self.data.time @@ -325,4 +337,5 @@ def RPY_to_quat(self, roll, pitch, yaw): def close_visualization(self): if self.visualize_robot_flag: - self.viewer.close() + # self.viewer.close() + media.show_video(self.frames, fps=self.framerate) From adc3e51d9368842964cc10d3dc604792584d5d90 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Wed, 22 Jan 2025 16:04:03 +0100 Subject: [PATCH 08/14] Remove outputs from mjx_walking --- examples/mjx_walking.ipynb | 185 ++----------------------------------- 1 file changed, 7 insertions(+), 178 deletions(-) diff --git a/examples/mjx_walking.ipynb b/examples/mjx_walking.ipynb index 2e4a335..9a7dd68 100644 --- a/examples/mjx_walking.ipynb +++ b/examples/mjx_walking.ipynb @@ -10,17 +10,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.\n" - ] - } - ], + "outputs": [], "source": [ "# Comodo import\n", "from comodo.mujocoSimulator.mjxSimulator import MJXSimulator\n", @@ -132,147 +124,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "******************************************************************************\n", - "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", - " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", - " For more information visit https://github.com/coin-or/Ipopt\n", - "******************************************************************************\n", - "\n", - "This is Ipopt version 3.14.16, running with linear solver MUMPS 5.7.3.\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 124\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 142\n", - "\n", - "Total number of variables............................: 27\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 20\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 5.2479115e-03 1.00e+00 1.95e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 3.8856073e+00 7.52e-02 1.17e+00 -1.7 1.00e+00 0.0 1.00e+00 1.00e+00h 1\n", - " 2 3.8855326e+00 2.91e-07 1.60e+00 -1.7 7.52e-02 1.3 1.00e+00 1.00e+00h 1\n", - " 3 3.8854289e+00 5.89e-08 2.36e-02 -1.7 3.32e-03 0.9 1.00e+00 1.00e+00h 1\n", - " 4 3.8854051e+00 8.43e-09 1.96e-02 -3.8 1.04e-03 1.3 1.00e+00 1.00e+00h 1\n", - " 5 3.8853697e+00 6.04e-08 1.24e-02 -3.8 1.97e-03 0.8 1.00e+00 1.00e+00h 1\n", - " 6 3.8853614e+00 7.62e-09 1.03e-02 -3.8 6.09e-04 1.2 1.00e+00 1.00e+00h 1\n", - " 7 3.8853485e+00 4.83e-08 6.42e-03 -3.8 1.14e-03 0.7 1.00e+00 1.00e+00h 1\n", - " 8 3.8853454e+00 5.78e-09 5.27e-03 -3.8 3.52e-04 1.2 1.00e+00 1.00e+00h 1\n", - " 9 3.8853403e+00 3.22e-08 3.28e-03 -3.8 6.57e-04 0.7 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.8853390e+00 3.66e-09 2.69e-03 -3.8 2.02e-04 1.1 1.00e+00 1.00e+00h 1\n", - " 11 3.8853370e+00 1.81e-08 1.68e-03 -3.8 3.78e-04 0.6 1.00e+00 1.00e+00h 1\n", - " 12 3.8853365e+00 1.97e-09 1.38e-03 -3.8 1.17e-04 1.1 1.00e+00 1.00e+00h 1\n", - " 13 3.8853363e+00 2.52e-10 1.28e-03 -5.7 4.05e-05 1.5 1.00e+00 1.00e+00h 1\n", - " 14 3.8853359e+00 1.69e-09 1.04e-03 -5.7 9.86e-05 1.0 1.00e+00 1.00e+00h 1\n", - " 15 3.8853358e+00 2.12e-10 9.57e-04 -5.7 3.41e-05 1.4 1.00e+00 1.00e+00h 1\n", - " 16 3.8853356e+00 1.37e-09 7.69e-04 -5.7 8.22e-05 1.0 1.00e+00 1.00e+00h 1\n", - " 17 3.8853355e+00 1.69e-10 7.06e-04 -5.7 2.83e-05 1.4 1.00e+00 1.00e+00h 1\n", - " 18 3.8853353e+00 1.05e-09 5.60e-04 -5.7 6.74e-05 0.9 1.00e+00 1.00e+00h 1\n", - " 19 3.8853353e+00 1.27e-10 5.11e-04 -5.7 2.31e-05 1.3 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.8853352e+00 7.47e-10 4.00e-04 -5.7 5.42e-05 0.9 1.00e+00 1.00e+00h 1\n", - " 21 3.8853351e+00 8.86e-11 3.63e-04 -5.7 1.84e-05 1.3 1.00e+00 1.00e+00h 1\n", - " 22 3.8853351e+00 4.97e-10 2.80e-04 -5.7 4.26e-05 0.8 1.00e+00 1.00e+00h 1\n", - " 23 3.8853350e+00 5.77e-11 2.52e-04 -5.7 1.44e-05 1.2 1.00e+00 1.00e+00h 1\n", - " 24 3.8853350e+00 3.06e-10 1.90e-04 -5.7 3.25e-05 0.8 1.00e+00 1.00e+00h 1\n", - " 25 3.8853350e+00 3.47e-11 1.70e-04 -5.7 1.09e-05 1.2 1.00e+00 1.00e+00h 1\n", - " 26 3.8853350e+00 1.73e-10 1.27e-04 -5.7 2.45e-05 0.7 1.00e+00 1.00e+00h 1\n", - " 27 3.8853350e+00 1.92e-11 1.13e-04 -5.7 8.14e-06 1.1 1.00e+00 1.00e+00h 1\n", - " 28 3.8853350e+00 8.99e-11 8.15e-05 -5.7 1.77e-05 0.7 1.00e+00 1.00e+00h 1\n", - " 29 3.8853350e+00 9.66e-12 7.13e-05 -5.7 5.79e-06 1.1 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.8853350e+00 4.22e-11 4.98e-05 -5.7 1.21e-05 0.6 1.00e+00 1.00e+00h 1\n", - " 31 3.8853350e+00 4.40e-12 4.29e-05 -5.7 3.92e-06 1.0 1.00e+00 1.00e+00h 1\n", - " 32 3.8853350e+00 5.52e-13 4.04e-05 -5.7 1.39e-06 1.5 1.00e+00 1.00e+00h 1\n", - " 33 3.8853350e+00 3.54e-12 3.42e-05 -5.7 3.52e-06 1.0 1.00e+00 1.00e+00h 1\n", - " 34 3.8853350e+00 4.38e-13 3.20e-05 -5.7 1.24e-06 1.4 1.00e+00 1.00e+00h 1\n", - " 35 3.8853350e+00 2.70e-12 2.66e-05 -5.7 3.08e-06 0.9 1.00e+00 1.00e+00h 1\n", - " 36 3.8853350e+00 3.29e-13 2.47e-05 -5.7 1.07e-06 1.4 1.00e+00 1.00e+00h 1\n", - " 37 3.8853350e+00 1.94e-12 2.01e-05 -5.7 2.61e-06 0.9 1.00e+00 1.00e+00h 1\n", - " 38 3.8853350e+00 2.33e-13 1.85e-05 -5.7 9.01e-07 1.3 1.00e+00 1.00e+00h 1\n", - " 39 3.8853350e+00 1.31e-12 1.47e-05 -5.7 2.15e-06 0.8 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.8853350e+00 1.52e-13 1.34e-05 -8.6 7.33e-07 1.3 1.00e+00 1.00e+00h 1\n", - " 41 3.8853350e+00 8.18e-13 1.03e-05 -8.6 1.70e-06 0.8 1.00e+00 1.00e+00h 1\n", - " 42 3.8853350e+00 9.37e-14 9.32e-06 -8.6 5.76e-07 1.2 1.00e+00 1.00e+00h 1\n", - " 43 3.8853350e+00 4.76e-13 7.01e-06 -8.6 1.30e-06 0.7 1.00e+00 1.00e+00h 1\n", - " 44 3.8853350e+00 5.33e-14 6.24e-06 -8.6 4.34e-07 1.2 1.00e+00 1.00e+00h 1\n", - " 45 3.8853350e+00 2.54e-13 4.56e-06 -8.6 9.50e-07 0.7 1.00e+00 1.00e+00h 1\n", - " 46 3.8853350e+00 2.75e-14 4.00e-06 -8.6 3.13e-07 1.1 1.00e+00 1.00e+00h 1\n", - " 47 3.8853350e+00 1.24e-13 2.83e-06 -8.6 6.63e-07 0.6 1.00e+00 1.00e+00h 1\n", - " 48 3.8853350e+00 1.29e-14 2.45e-06 -8.6 2.15e-07 1.1 1.00e+00 1.00e+00h 1\n", - " 49 3.8853350e+00 1.67e-15 2.31e-06 -8.6 7.62e-08 1.5 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.8853350e+00 1.09e-14 1.97e-06 -8.6 1.95e-07 1.0 1.00e+00 1.00e+00h 1\n", - " 51 3.8853350e+00 1.15e-15 1.84e-06 -8.6 6.84e-08 1.4 1.00e+00 1.00e+00h 1\n", - " 52 3.8853350e+00 8.31e-15 1.54e-06 -8.6 1.71e-07 1.0 1.00e+00 1.00e+00h 1\n", - " 53 3.8853350e+00 9.71e-16 1.43e-06 -8.6 5.99e-08 1.4 1.00e+00 1.00e+00h 1\n", - " 54 3.8853350e+00 6.27e-15 1.17e-06 -8.6 1.47e-07 0.9 1.00e+00 1.00e+00h 1\n", - " 55 3.8853350e+00 7.77e-16 1.08e-06 -8.6 5.09e-08 1.3 1.00e+00 1.00e+00h 1\n", - " 56 3.8853350e+00 4.21e-15 8.67e-07 -8.6 1.22e-07 0.9 1.00e+00 1.00e+00h 1\n", - " 57 3.8853350e+00 5.07e-16 7.92e-07 -8.6 4.19e-08 1.3 1.00e+00 1.00e+00h 1\n", - " 58 3.8853350e+00 2.79e-15 6.18e-07 -8.6 9.80e-08 0.8 1.00e+00 1.00e+00h 1\n", - " 59 3.8853350e+00 5.17e-16 5.59e-07 -8.6 3.33e-08 1.2 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.8853350e+00 1.69e-15 4.25e-07 -8.6 7.58e-08 0.7 1.00e+00 1.00e+00h 1\n", - " 61 3.8853350e+00 3.75e-16 3.80e-07 -8.6 2.54e-08 1.2 1.00e+00 1.00e+00h 1\n", - " 62 3.8853350e+00 8.15e-16 2.80e-07 -8.6 5.62e-08 0.7 1.00e+00 1.00e+00h 1\n", - " 63 3.8853350e+00 1.49e-16 2.47e-07 -8.6 1.86e-08 1.1 1.00e+00 1.00e+00h 1\n", - " 64 3.8853350e+00 3.51e-16 1.77e-07 -8.6 3.99e-08 0.6 1.00e+00 1.00e+00h 1\n", - " 65 3.8853350e+00 5.55e-17 1.54e-07 -8.6 1.30e-08 1.1 1.00e+00 1.00e+00h 1\n", - " 66 3.8853350e+00 9.71e-17 1.45e-07 -8.6 4.62e-09 1.5 1.00e+00 1.00e+00h 1\n", - " 67 3.8853350e+00 1.46e-16 1.24e-07 -8.6 1.18e-08 1.0 1.00e+00 1.00e+00h 1\n", - " 68 3.8853350e+00 1.63e-16 1.17e-07 -8.6 4.18e-09 1.4 1.00e+00 1.00e+00h 1\n", - " 69 3.8853350e+00 1.84e-16 9.83e-08 -8.6 1.05e-08 1.0 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.8853350e+00 7.60e-17 9.18e-08 -8.6 3.69e-09 1.4 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 70\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.8853349562934767e+00 3.8853349562934767e+00\n", - "Dual infeasibility......: 9.1776324095960149e-08 9.1776324095960149e-08\n", - "Constraint violation....: 7.6009198934912088e-17 7.6009198934912088e-17\n", - "Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 9.1776324095960149e-08 9.1776324095960149e-08\n", - "\n", - "\n", - "Number of objective function evaluations = 71\n", - "Number of objective gradient evaluations = 71\n", - "Number of equality constraint evaluations = 71\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 71\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 70\n", - "Total seconds in IPOPT = 0.054\n", - "\n", - "EXIT: Solved To Acceptable Level.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 370.00us ( 5.21us) 393.50us ( 5.54us) 71\n", - " nlp_g | 836.00us ( 11.77us) 793.79us ( 11.18us) 71\n", - " nlp_grad_f | 966.00us ( 13.42us) 946.85us ( 13.15us) 72\n", - " nlp_hess_l | 21.93ms (313.26us) 21.94ms (313.49us) 70\n", - " nlp_jac_g | 6.57ms ( 91.29us) 6.58ms ( 91.36us) 72\n", - " total | 53.83ms ( 53.83ms) 53.83ms ( 53.83ms) 1\n" - ] - } - ], + "outputs": [], "source": [ "# Modify the robot model and initialize\n", "create_urdf_instance.modify_lengths(modifications)\n", @@ -292,32 +146,7 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "__init__(): incompatible constructor arguments. The following argument types are supported:\n 1. mujoco._structs.MjvScene()\n 2. mujoco._structs.MjvScene(model: mujoco._structs.MjModel, maxgeom: int)\n\nInvoked with: Model(nq=27, nv=26, nu=20, na=0, nbody=22, njnt=21, ngeom=53, nsite=0, ncam=0, nmesh=0, nmeshvert=0, nmeshface=0, nhfield=0, nmat=2, npair=0, nexclude=0, neq=0, ngravcomp=0, nnumeric=0, nuserdata=0, ntuple=0, nsensor=0, nkey=0, nM=203, opt=Option(timestep=Array(0.002, dtype=float32, weak_type=True), impratio=Array(1., dtype=float32, weak_type=True), tolerance=Array(1.e-08, dtype=float32, weak_type=True), ls_tolerance=Array(0.01, dtype=float32, weak_type=True), gravity=Array([ 0. , 0. , -9.81], dtype=float32), wind=Array([0., 0., 0.], dtype=float32), density=Array(0., dtype=float32, weak_type=True), viscosity=Array(0., dtype=float32, weak_type=True), has_fluid_params=False, integrator=, cone=, jacobian=, solver=, iterations=100, ls_iterations=50, disableflags=), stat=Statistic(meaninertia=Array(8.535638, dtype=float32, weak_type=True)), qpos0=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), qpos_spring=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), body_parentid=array([ 0, 0, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 11, 12, 13, 14, 1,\n 16, 17, 18, 19, 20], dtype=int32), body_rootid=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_weldid=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21], dtype=int32), body_jntnum=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_jntadr=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\n 16, 17, 18, 19, 20], dtype=int32), body_dofnum=array([0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_dofadr=array([-1, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,\n 21, 22, 23, 24, 25], dtype=int32), body_geomnum=array([ 1, 10, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 1, 1, 5, 1,\n 2, 1, 1, 1, 5], dtype=int32), body_geomadr=array([ 0, 1, 11, 12, 14, 15, 21, 22, 24, 25, 31, 32, 34, 35, 36, 37, 42,\n 43, 45, 46, 47, 48], dtype=int32), body_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-3.00000e-02, -5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, -1.11500e-01, 4.02786e-04],\n [-6.84995e-03, 6.40883e-07, -7.67999e-02],\n [ 9.99993e-03, 1.49964e-03, -1.23700e-01],\n [-3.00000e-02, 5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, 1.11500e-01, 4.02786e-04],\n [-4.35013e-03, -6.01952e-08, -7.68000e-02],\n [ 9.99993e-03, -1.49965e-03, -1.23700e-01],\n [ 2.16000e-02, -4.05500e-02, 0.00000e+00],\n [-4.73000e-02, -3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, 1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, -2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, 5.00000e-04, -2.95989e-01],\n [-5.27500e-02, 1.82000e-02, -3.50000e-02],\n [ 2.16000e-02, 4.04500e-02, 0.00000e+00],\n [-4.72500e-02, 3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, -1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, 2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, -5.00000e-04, -2.95989e-01],\n [-5.27500e-02, -1.82000e-02, -3.50000e-02]], dtype=float32), body_quat=Array([[ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , -0.12521206, -0.01648451, 0.12948105],\n [ 0.995835 , 0.0871243 , -0.0267684 , 0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , 0.12521206, -0.01648451, -0.12948105],\n [ 0.995835 , -0.0871243 , -0.0267684 , -0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ]], dtype=float32), body_ipos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 1.31675e-03, 3.55722e-04, 2.12213e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [-3.05096e-03, 9.75647e-08, -2.86392e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.43130e-02, -8.05461e-04, -1.12239e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [-1.92682e-03, 1.60899e-07, -2.84806e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.42815e-02, 8.10948e-04, -1.12111e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.91726e-02, 0.00000e+00, -9.76103e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.89704e-02, 0.00000e+00, -4.36578e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.91699e-02, 0.00000e+00, -9.75869e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.89444e-02, 0.00000e+00, -4.36087e-02]], dtype=float32), body_iquat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9996889e-01, -1.9714297e-03, 6.6126394e-03, -3.8225895e-03],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9859238e-01, 1.6913706e-06, 5.3040519e-02, -8.9837833e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.8861881e-01, -5.6069482e-02, -5.2539382e-02, 8.0475074e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9942964e-01, 2.8166392e-06, 3.3768889e-02, -9.5169270e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 8.0389982e-01, -5.3064987e-02, -5.6618489e-02, 5.8968085e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639622e-01, -3.1691313e-02, -3.1691313e-02, 7.0639622e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6420776e-01, -2.4254492e-01, -2.4254492e-01, 6.6420776e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639646e-01, -3.1686720e-02, -3.1686720e-02, 7.0639646e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6456079e-01, -2.4157593e-01, -2.4157593e-01, 6.6456079e-01]], dtype=float32), body_mass=Array([ 0. , 16.1368 , 1.38072 , 0.549329, 1.96045 , 1.35433 ,\n 1.37669 , 0.546898, 1.96833 , 1.35825 , 2.13429 , 3.94684 ,\n 0.980692, 5.07411 , 0.346177, 2.3588 , 2.10846 , 3.95042 ,\n 0.968264, 5.06305 , 0.346177, 2.36117 ], dtype=float32), body_subtreemass=Array([56.27025 , 56.27025 , 5.244829, 3.864109, 3.31478 , 1.35433 ,\n 5.250168, 3.873478, 3.32658 , 1.35825 , 14.840909, 12.706619,\n 8.759779, 7.779087, 2.704977, 2.3588 , 14.797541, 12.689081,\n 8.738661, 7.770397, 2.707347, 2.36117 ], dtype=float32), body_inertia=Array([[0. , 0. , 0. ],\n [2.62122 , 2.61922 , 2.13268 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205674, 0.0205674, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466957, 0.0466639, 0.040032 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205605, 0.0205605, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466904, 0.0466582, 0.0400325],\n [0.01 , 0.01 , 0.01 ],\n [0.0459834, 0.0459182, 0.0200652],\n [0.01 , 0.01 , 0.01 ],\n [0.0315017, 0.0315017, 0.0142921],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0460125, 0.0459472, 0.0200653],\n [0.01 , 0.01 , 0.01 ],\n [0.0314331, 0.0314331, 0.0142609],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ]], dtype=float32), body_gravcomp=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0.], dtype=float32), body_invweight0=Array([[ 0. , 0. ],\n [ 0.02709354, 0.33944464],\n [ 0.03497095, 3.419919 ],\n [ 0.03552767, 4.788329 ],\n [ 0.09193668, 11.228076 ],\n [ 0.271199 , 13.945901 ],\n [ 0.03495737, 3.4105778 ],\n [ 0.03550425, 4.776813 ],\n [ 0.09171998, 11.216417 ],\n [ 0.27078474, 13.941211 ],\n [ 0.03346002, 1.3925701 ],\n [ 0.03352623, 1.4896233 ],\n [ 0.09863144, 1.6639372 ],\n [ 0.07234548, 3.0321634 ],\n [ 0.14141484, 0.81913835],\n [ 0.14558499, 0.9521539 ],\n [ 0.03345968, 1.3961365 ],\n [ 0.03356617, 1.4932836 ],\n [ 0.09893017, 1.6676086 ],\n [ 0.07245665, 3.0374799 ],\n [ 0.14148587, 0.8192474 ],\n [ 0.14565451, 0.9521703 ]], dtype=float32), jnt_type=array([0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n dtype=int32), jnt_qposadr=array([ 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n 23, 24, 25, 26], dtype=int32), jnt_dofadr=array([ 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,\n 22, 23, 24, 25], dtype=int32), jnt_bodyid=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n 18, 19, 20, 21], dtype=int32), jnt_limited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actfrclimited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actgravcomp=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), jnt_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), jnt_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), jnt_pos=Array([[0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.]], dtype=float32), jnt_axis=Array([[ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 4.21050e-08, 2.46305e-08],\n [-3.78762e-08, 2.80520e-08, 1.00000e+00],\n [ 2.49496e-07, -1.00000e+00, 2.79425e-08],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 2.03483e-07, -4.02302e-08],\n [ 2.22765e-08, -4.39379e-08, -1.00000e+00],\n [-8.81182e-08, -1.00000e+00, 4.40473e-08],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, -1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00]], dtype=float32), jnt_stiffness=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), jnt_range=Array([[ 0. , 0. ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ]], dtype=float32), jnt_actfrcrange=Array([[ 0., 0.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.]], dtype=float32), jnt_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), dof_bodyid=array([ 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype=int32), dof_jntid=array([ 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n 12, 13, 14, 15, 16, 17, 18, 19, 20], dtype=int32), dof_parentid=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 5, 14, 15,\n 16, 17, 18, 5, 20, 21, 22, 23, 24], dtype=int32), dof_Madr=array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 62, 70,\n 79, 89, 96, 104, 113, 123, 134, 146, 153, 161, 170, 180, 191],\n dtype=int32), dof_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), dof_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), dof_frictionloss=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_armature=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_damping=Array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,\n 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32), dof_invweight0=Array([3.2354396e-02, 3.2354396e-02, 3.2354396e-02, 3.3944464e-01,\n 3.3944464e-01, 3.3944464e-01, 9.6083155e+00, 4.4150810e+00,\n 2.0510872e+01, 3.4809570e+01, 9.5787678e+00, 4.4085140e+00,\n 2.0508595e+01, 3.4751534e+01, 4.2109222e+00, 1.0298933e+00,\n 1.3500186e+00, 1.8877272e+01, 8.9133234e+00, 1.5922394e+00,\n 4.2218900e+00, 1.0300945e+00, 1.3500514e+00, 1.8928917e+01,\n 8.9293032e+00, 1.5925606e+00], dtype=float32), dof_M0=Array([5.6270248e+01, 5.6270248e+01, 5.6270248e+01, 1.1766881e+01,\n 1.1362601e+01, 4.9151673e+00, 2.4990076e-01, 2.4510972e-01,\n 5.0213572e-02, 6.4029261e-02, 2.5029477e-01, 2.4550702e-01,\n 5.0216697e-02, 6.4033940e-02, 3.6562202e+00, 3.5532610e+00,\n 1.0688403e+00, 1.5558213e+00, 1.0582325e+00, 1.0360414e+00,\n 3.6537342e+00, 3.5509171e+00, 1.0688035e+00, 1.5557439e+00,\n 1.0582275e+00, 1.0360385e+00], dtype=float32), geom_type=array([0, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 6, 6, 2, 6, 6, 6, 6, 6, 6,\n 2, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,\n 6, 6, 6, 6, 6, 6, 6, 6, 6], dtype=int32), geom_contype=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_conaffinity=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_condim=array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=int32), geom_bodyid=array([ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5,\n 5, 5, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 11,\n 12, 13, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 19, 20, 21, 21, 21,\n 21, 21], dtype=int32), geom_dataid=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_group=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int32), geom_matid=array([ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_priority=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32), geom_solmix=Array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1.], dtype=float32), geom_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), geom_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), geom_size=Array([[0. , 0. , 0.05 ],\n [0.0465 , 0.0475 , 0.071 ],\n [0.0405 , 0.062 , 0.07525 ],\n [0.0678 , 0.04485 , 0.0669 ],\n [0.10205 , 0.1076 , 0.1046 ],\n [0.033 , 0.033 , 0.0445 ],\n [0.027 , 0.027 , 0.0065 ],\n [0.0225 , 0.0225 , 0.045 ],\n [0.08 , 0. , 0. ],\n [0.03 , 0.03 , 0.045 ],\n [0.04 , 0.04 , 0.02 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ]], dtype=float32), geom_rbound=Array([0. , 0.09725996, 0.10557847, 0.10528044, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.08645181, 0.10853701, 0.16746987, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712828, 0.07712828,\n 0.07712828, 0.07712828, 0.08645181, 0.10853701, 0.16746987,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712828,\n 0.07712828, 0.07712828, 0.07712828], dtype=float32), geom_rbound_hfield=array([0. , 0.09725996, 0.10557847, 0.10528045, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.0864518 , 0.10853701, 0.16746988, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712829, 0.07712829,\n 0.07712829, 0.07712829, 0.0864518 , 0.10853701, 0.16746988,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712829,\n 0.07712829, 0.07712829, 0.07712829]), geom_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 7.50000e-02],\n [ 0.00000e+00, 0.00000e+00, 1.39400e-01],\n [ 0.00000e+00, 0.00000e+00, 2.28358e-01],\n [ 2.11510e-04, 0.00000e+00, 3.40270e-01],\n [-1.51385e-02, 0.00000e+00, 3.69270e-01],\n [ 4.86151e-03, 0.00000e+00, 3.91771e-01],\n [ 4.86151e-03, 0.00000e+00, 4.57921e-01],\n [ 6.03745e-02, 1.70000e-04, 5.09846e-01],\n [ 6.03151e-03, 1.15000e-03, 5.59721e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-6.84995e-03, 2.19050e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.36999e-02, -4.00709e-03, -1.62800e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-4.35013e-03, 3.63257e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.33999e-02, 4.00654e-03, -1.62800e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02]], dtype=float32), geom_quat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 3.2757915e-05, 3.2758115e-05, 7.0710528e-01, -7.0710826e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, 5.1241904e-01, 4.7925600e-01, -5.2193904e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, -5.1241904e-01, 4.7925600e-01, 5.2193904e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01]], dtype=float32), geom_friction=Array([[1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04]], dtype=float32), geom_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_gap=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_rgba=array([[0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 0. , 1. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ]], dtype=float32), site_bodyid=array([], dtype=int32), site_pos=Array([], shape=(0, 3), dtype=float32), site_quat=Array([], shape=(0, 4), dtype=float32), cam_mode=array([], dtype=int32), cam_bodyid=array([], dtype=int32), cam_targetbodyid=array([], dtype=int32), cam_pos=Array([], shape=(0, 3), dtype=float32), cam_quat=Array([], shape=(0, 4), dtype=float32), cam_poscom0=Array([], shape=(0, 3), dtype=float32), cam_pos0=Array([], shape=(0, 3), dtype=float32), cam_mat0=Array([], shape=(0, 3, 3), dtype=float32), mesh_vertadr=array([], dtype=int32), mesh_faceadr=array([], dtype=int32), mesh_graphadr=array([], dtype=int32), mesh_vert=array([], shape=(0, 3), dtype=float32), mesh_face=array([], shape=(0, 3), dtype=int32), mesh_graph=array([], dtype=int32), mesh_convex=(), hfield_size=array([], shape=(0, 4), dtype=float64), hfield_nrow=array([], dtype=int32), hfield_ncol=array([], dtype=int32), hfield_adr=array([], dtype=int32), hfield_data=Array([], shape=(0,), dtype=float32), mat_rgba=array([[0.8, 0.6, 0.4, 1. ],\n [1. , 1. , 1. , 1. ]], dtype=float32), pair_dim=array([], dtype=int32), pair_geom1=array([], dtype=int32), pair_geom2=array([], dtype=int32), pair_solref=Array([], shape=(0, 2), dtype=float32), pair_solreffriction=Array([], shape=(0, 2), dtype=float32), pair_solimp=Array([], shape=(0, 5), dtype=float32), pair_margin=Array([], shape=(0,), dtype=float32), pair_gap=Array([], shape=(0,), dtype=float32), pair_friction=Array([], shape=(0, 5), dtype=float32), exclude_signature=array([], dtype=int32), eq_type=array([], dtype=int32), eq_obj1id=array([], dtype=int32), eq_obj2id=array([], dtype=int32), eq_active0=array([], dtype=uint8), eq_solref=Array([], shape=(0, 2), dtype=float32), eq_solimp=Array([], shape=(0, 5), dtype=float32), eq_data=Array([], shape=(0, 11), dtype=float32), actuator_trntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_dyntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_gaintype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_biastype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_trnid=array([[ 1, -1],\n [ 2, -1],\n [ 3, -1],\n [ 4, -1],\n [ 5, -1],\n [ 6, -1],\n [ 7, -1],\n [ 8, -1],\n [ 9, -1],\n [10, -1],\n [11, -1],\n [12, -1],\n [13, -1],\n [14, -1],\n [15, -1],\n [16, -1],\n [17, -1],\n [18, -1],\n [19, -1],\n [20, -1]], dtype=int32), actuator_actadr=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1], dtype=int32), actuator_actnum=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_ctrllimited=array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), actuator_forcelimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_actlimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_dynprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_gainprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_biasprm=Array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_ctrlrange=Array([[-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.]], dtype=float32), actuator_forcerange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_actrange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_gear=Array([[1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.]], dtype=float32), numeric_adr=array([], dtype=int32), numeric_data=array([], dtype=float64), tuple_adr=array([], dtype=int32), tuple_size=array([], dtype=int32), tuple_objtype=array([], dtype=int32), tuple_objid=array([], dtype=int32), tuple_objprm=array([], dtype=float64), name_bodyadr=array([ 9, 15, 25, 38, 51, 63, 73, 86, 99, 111, 121, 129, 137,\n 149, 161, 171, 181, 189, 197, 209, 221, 231], dtype=int32), name_jntadr=array([241, 256, 273, 289, 304, 312, 329, 345, 360, 368, 380, 391, 401,\n 408, 422, 435, 447, 458, 468, 475, 489], dtype=int32), name_geomadr=array([ 502, 508, 525, 540, 555, 568, 582, 596, 610, 622, 641,\n 654, 674, 694, 714, 733, 750, 767, 787, 804, 818, 835,\n 855, 875, 895, 914, 931, 948, 968, 985, 999, 1016, 1031,\n 1046, 1061, 1080, 1099, 1116, 1133, 1153, 1176, 1195, 1217, 1232,\n 1247, 1262, 1281, 1300, 1317, 1334, 1353, 1375, 1395], dtype=int32), name_siteadr=array([], dtype=int32), name_camadr=array([], dtype=int32), name_meshadr=array([], dtype=int32), name_hfieldadr=array([], dtype=int32), name_pairadr=array([], dtype=int32), name_eqadr=array([], dtype=int32), name_actuatoradr=array([1439, 1456, 1472, 1487, 1495, 1512, 1528, 1543, 1551, 1563, 1574,\n 1584, 1591, 1605, 1618, 1630, 1641, 1651, 1658, 1672], dtype=int32), name_sensoradr=array([], dtype=int32), name_numericadr=array([], dtype=int32), name_tupleadr=array([], dtype=int32), name_keyadr=array([], dtype=int32), names=b'stickBot\\x00world\\x00root_link\\x00r_shoulder_1\\x00r_shoulder_2\\x00r_upper_arm\\x00r_elbow_1\\x00l_shoulder_1\\x00l_shoulder_2\\x00l_upper_arm\\x00l_elbow_1\\x00r_hip_1\\x00r_hip_2\\x00r_upper_leg\\x00r_lower_leg\\x00r_ankle_1\\x00r_ankle_2\\x00l_hip_1\\x00l_hip_2\\x00l_upper_leg\\x00l_lower_leg\\x00l_ankle_1\\x00l_ankle_2\\x00floating_joint\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00floor\\x00root_link_visual\\x00torso_1_visual\\x00torso_2_visual\\x00chest_visual\\x00neck_1_visual\\x00neck_2_visual\\x00neck_3_visual\\x00head_visual\\x00camera_tilt_visual\\x00lidar_visual\\x00r_shoulder_1_visual\\x00r_shoulder_2_visual\\x00r_shoulder_3_visual\\x00r_upper_arm_visual\\x00r_elbow_1_visual\\x00r_forearm_visual\\x00r_forearm_collision\\x00r_wrist_1_visual\\x00r_hand_visual\\x00r_hand_collision\\x00l_shoulder_1_visual\\x00l_shoulder_2_visual\\x00l_shoulder_3_visual\\x00l_upper_arm_visual\\x00l_elbow_1_visual\\x00l_forearm_visual\\x00l_forearm_collision\\x00l_wrist_1_visual\\x00l_hand_visual\\x00l_hand_collision\\x00r_hip_1_visual\\x00r_hip_2_visual\\x00r_hip_3_visual\\x00r_upper_leg_visual\\x00r_lower_leg_visual\\x00r_ankle_1_visual\\x00r_ankle_2_visual\\x00r_foot_front_visual\\x00r_foot_front_collision\\x00r_foot_rear_visual\\x00r_foot_rear_collision\\x00l_hip_1_visual\\x00l_hip_2_visual\\x00l_hip_3_visual\\x00l_upper_leg_visual\\x00l_lower_leg_visual\\x00l_ankle_1_visual\\x00l_ankle_2_visual\\x00l_foot_rear_visual\\x00l_foot_rear_collision\\x00l_foot_front_visual\\x00l_foot_front_collision\\x00\\x00body\\x00grid\\x00body\\x00grid\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00'); kwargs: maxgeom=10000", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[7], line 10\u001b[0m\n\u001b[1;32m 8\u001b[0m H_b \u001b[38;5;241m=\u001b[39m mujoco_instance\u001b[38;5;241m.\u001b[39mget_base()\n\u001b[1;32m 9\u001b[0m w_b \u001b[38;5;241m=\u001b[39m mujoco_instance\u001b[38;5;241m.\u001b[39mget_base_velocity()\n\u001b[0;32m---> 10\u001b[0m \u001b[43mmujoco_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_visualize_robot_flag\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/repos/comodo/src/comodo/mujocoSimulator/mjxSimulator.py:62\u001b[0m, in \u001b[0;36mMJXSimulator.set_visualize_robot_flag\u001b[0;34m(self, visualize_robot)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisualize_robot_flag \u001b[38;5;241m=\u001b[39m visualize_robot\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvisualize_robot_flag:\n\u001b[0;32m---> 62\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mviewer \u001b[38;5;241m=\u001b[39m \u001b[43mmujoco_viewer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMujocoViewer\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/mambaforge/envs/comododev/lib/python3.10/site-packages/mujoco_viewer/mujoco_viewer.py:72\u001b[0m, in \u001b[0;36mMujocoViewer.__init__\u001b[0;34m(self, model, data, mode, title, width, height, hide_menus)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvopt \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvOption()\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcam \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvCamera()\n\u001b[0;32m---> 72\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mscn \u001b[38;5;241m=\u001b[39m \u001b[43mmujoco\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMjvScene\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmaxgeom\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10000\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpert \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjvPerturb()\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mctx \u001b[38;5;241m=\u001b[39m mujoco\u001b[38;5;241m.\u001b[39mMjrContext(\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel, mujoco\u001b[38;5;241m.\u001b[39mmjtFontScale\u001b[38;5;241m.\u001b[39mmjFONTSCALE_150\u001b[38;5;241m.\u001b[39mvalue)\n", - "\u001b[0;31mTypeError\u001b[0m: __init__(): incompatible constructor arguments. The following argument types are supported:\n 1. mujoco._structs.MjvScene()\n 2. mujoco._structs.MjvScene(model: mujoco._structs.MjModel, maxgeom: int)\n\nInvoked with: Model(nq=27, nv=26, nu=20, na=0, nbody=22, njnt=21, ngeom=53, nsite=0, ncam=0, nmesh=0, nmeshvert=0, nmeshface=0, nhfield=0, nmat=2, npair=0, nexclude=0, neq=0, ngravcomp=0, nnumeric=0, nuserdata=0, ntuple=0, nsensor=0, nkey=0, nM=203, opt=Option(timestep=Array(0.002, dtype=float32, weak_type=True), impratio=Array(1., dtype=float32, weak_type=True), tolerance=Array(1.e-08, dtype=float32, weak_type=True), ls_tolerance=Array(0.01, dtype=float32, weak_type=True), gravity=Array([ 0. , 0. , -9.81], dtype=float32), wind=Array([0., 0., 0.], dtype=float32), density=Array(0., dtype=float32, weak_type=True), viscosity=Array(0., dtype=float32, weak_type=True), has_fluid_params=False, integrator=, cone=, jacobian=, solver=, iterations=100, ls_iterations=50, disableflags=), stat=Statistic(meaninertia=Array(8.535638, dtype=float32, weak_type=True)), qpos0=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), qpos_spring=Array([0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), body_parentid=array([ 0, 0, 1, 2, 3, 4, 1, 6, 7, 8, 1, 10, 11, 12, 13, 14, 1,\n 16, 17, 18, 19, 20], dtype=int32), body_rootid=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_weldid=array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21], dtype=int32), body_jntnum=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_jntadr=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,\n 16, 17, 18, 19, 20], dtype=int32), body_dofnum=array([0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=int32), body_dofadr=array([-1, 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,\n 21, 22, 23, 24, 25], dtype=int32), body_geomnum=array([ 1, 10, 1, 2, 1, 6, 1, 2, 1, 6, 1, 2, 1, 1, 1, 5, 1,\n 2, 1, 1, 1, 5], dtype=int32), body_geomadr=array([ 0, 1, 11, 12, 14, 15, 21, 22, 24, 25, 31, 32, 34, 35, 36, 37, 42,\n 43, 45, 46, 47, 48], dtype=int32), body_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-3.00000e-02, -5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, -1.11500e-01, 4.02786e-04],\n [-6.84995e-03, 6.40883e-07, -7.67999e-02],\n [ 9.99993e-03, 1.49964e-03, -1.23700e-01],\n [-3.00000e-02, 5.55550e-02, 2.99970e-01],\n [ 7.48901e-03, 1.11500e-01, 4.02786e-04],\n [-4.35013e-03, -6.01952e-08, -7.68000e-02],\n [ 9.99993e-03, -1.49965e-03, -1.23700e-01],\n [ 2.16000e-02, -4.05500e-02, 0.00000e+00],\n [-4.73000e-02, -3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, 1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, -2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, 5.00000e-04, -2.95989e-01],\n [-5.27500e-02, 1.82000e-02, -3.50000e-02],\n [ 2.16000e-02, 4.04500e-02, 0.00000e+00],\n [-4.72500e-02, 3.31000e-02, -9.00000e-03],\n [ 3.67000e-02, -1.50000e-02, -2.03800e-01],\n [ 1.50000e-02, 2.49000e-02, -1.06200e-01],\n [ 0.00000e+00, -5.00000e-04, -2.95989e-01],\n [-5.27500e-02, -1.82000e-02, -3.50000e-02]], dtype=float32), body_quat=Array([[ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , -0.12521206, -0.01648451, 0.12948105],\n [ 0.995835 , 0.0871243 , -0.0267684 , 0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 0.9835064 , 0.12521206, -0.01648451, -0.12948105],\n [ 0.995835 , -0.0871243 , -0.0267684 , -0.00234193],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ],\n [ 1. , 0. , 0. , 0. ]], dtype=float32), body_ipos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 1.31675e-03, 3.55722e-04, 2.12213e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [-3.05096e-03, 9.75647e-08, -2.86392e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.43130e-02, -8.05461e-04, -1.12239e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [-1.92682e-03, 1.60899e-07, -2.84806e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-1.42815e-02, 8.10948e-04, -1.12111e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.91726e-02, 0.00000e+00, -9.76103e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.89704e-02, 0.00000e+00, -4.36578e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.91699e-02, 0.00000e+00, -9.75869e-02],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.89444e-02, 0.00000e+00, -4.36087e-02]], dtype=float32), body_iquat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9996889e-01, -1.9714297e-03, 6.6126394e-03, -3.8225895e-03],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9859238e-01, 1.6913706e-06, 5.3040519e-02, -8.9837833e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.8861881e-01, -5.6069482e-02, -5.2539382e-02, 8.0475074e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 9.9942964e-01, 2.8166392e-06, 3.3768889e-02, -9.5169270e-08],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 8.0389982e-01, -5.3064987e-02, -5.6618489e-02, 5.8968085e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639622e-01, -3.1691313e-02, -3.1691313e-02, 7.0639622e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6420776e-01, -2.4254492e-01, -2.4254492e-01, 6.6420776e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0639646e-01, -3.1686720e-02, -3.1686720e-02, 7.0639646e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 6.6456079e-01, -2.4157593e-01, -2.4157593e-01, 6.6456079e-01]], dtype=float32), body_mass=Array([ 0. , 16.1368 , 1.38072 , 0.549329, 1.96045 , 1.35433 ,\n 1.37669 , 0.546898, 1.96833 , 1.35825 , 2.13429 , 3.94684 ,\n 0.980692, 5.07411 , 0.346177, 2.3588 , 2.10846 , 3.95042 ,\n 0.968264, 5.06305 , 0.346177, 2.36117 ], dtype=float32), body_subtreemass=Array([56.27025 , 56.27025 , 5.244829, 3.864109, 3.31478 , 1.35433 ,\n 5.250168, 3.873478, 3.32658 , 1.35825 , 14.840909, 12.706619,\n 8.759779, 7.779087, 2.704977, 2.3588 , 14.797541, 12.689081,\n 8.738661, 7.770397, 2.707347, 2.36117 ], dtype=float32), body_inertia=Array([[0. , 0. , 0. ],\n [2.62122 , 2.61922 , 2.13268 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205674, 0.0205674, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466957, 0.0466639, 0.040032 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0205605, 0.0205605, 0.02 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0466904, 0.0466582, 0.0400325],\n [0.01 , 0.01 , 0.01 ],\n [0.0459834, 0.0459182, 0.0200652],\n [0.01 , 0.01 , 0.01 ],\n [0.0315017, 0.0315017, 0.0142921],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ],\n [0.01 , 0.01 , 0.01 ],\n [0.0460125, 0.0459472, 0.0200653],\n [0.01 , 0.01 , 0.01 ],\n [0.0314331, 0.0314331, 0.0142609],\n [0.01 , 0.01 , 0.01 ],\n [1.03294 , 1.03194 , 1.03099 ]], dtype=float32), body_gravcomp=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0.], dtype=float32), body_invweight0=Array([[ 0. , 0. ],\n [ 0.02709354, 0.33944464],\n [ 0.03497095, 3.419919 ],\n [ 0.03552767, 4.788329 ],\n [ 0.09193668, 11.228076 ],\n [ 0.271199 , 13.945901 ],\n [ 0.03495737, 3.4105778 ],\n [ 0.03550425, 4.776813 ],\n [ 0.09171998, 11.216417 ],\n [ 0.27078474, 13.941211 ],\n [ 0.03346002, 1.3925701 ],\n [ 0.03352623, 1.4896233 ],\n [ 0.09863144, 1.6639372 ],\n [ 0.07234548, 3.0321634 ],\n [ 0.14141484, 0.81913835],\n [ 0.14558499, 0.9521539 ],\n [ 0.03345968, 1.3961365 ],\n [ 0.03356617, 1.4932836 ],\n [ 0.09893017, 1.6676086 ],\n [ 0.07245665, 3.0374799 ],\n [ 0.14148587, 0.8192474 ],\n [ 0.14565451, 0.9521703 ]], dtype=float32), jnt_type=array([0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n dtype=int32), jnt_qposadr=array([ 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n 23, 24, 25, 26], dtype=int32), jnt_dofadr=array([ 0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,\n 22, 23, 24, 25], dtype=int32), jnt_bodyid=array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\n 18, 19, 20, 21], dtype=int32), jnt_limited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actfrclimited=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), jnt_actgravcomp=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), jnt_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), jnt_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), jnt_pos=Array([[0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.],\n [0., 0., 0.]], dtype=float32), jnt_axis=Array([[ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 4.21050e-08, 2.46305e-08],\n [-3.78762e-08, 2.80520e-08, 1.00000e+00],\n [ 2.49496e-07, -1.00000e+00, 2.79425e-08],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 2.03483e-07, -4.02302e-08],\n [ 2.22765e-08, -4.39379e-08, -1.00000e+00],\n [-8.81182e-08, -1.00000e+00, 4.40473e-08],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, -1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [-1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 1.00000e+00],\n [ 0.00000e+00, -1.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 1.00000e+00, 0.00000e+00],\n [ 1.00000e+00, 0.00000e+00, 0.00000e+00]], dtype=float32), jnt_stiffness=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), jnt_range=Array([[ 0. , 0. ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-1.53589 , 0.226893 ],\n [ 0.20944 , 2.79253 ],\n [-0.872665 , 1.39626 ],\n [-0.0523599, 1.309 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ],\n [-0.785398 , 2.00713 ],\n [-0.174533 , 2.00713 ],\n [-1.39626 , 1.39626 ],\n [-1.22173 , 0.0872665],\n [-0.785398 , 0.785398 ],\n [-0.436332 , 0.436332 ]], dtype=float32), jnt_actfrcrange=Array([[ 0., 0.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.],\n [-50000., 50000.]], dtype=float32), jnt_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0.], dtype=float32), dof_bodyid=array([ 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype=int32), dof_jntid=array([ 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n 12, 13, 14, 15, 16, 17, 18, 19, 20], dtype=int32), dof_parentid=array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 10, 11, 12, 5, 14, 15,\n 16, 17, 18, 5, 20, 21, 22, 23, 24], dtype=int32), dof_Madr=array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 62, 70,\n 79, 89, 96, 104, 113, 123, 134, 146, 153, 161, 170, 180, 191],\n dtype=int32), dof_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), dof_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), dof_frictionloss=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_armature=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32), dof_damping=Array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,\n 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32), dof_invweight0=Array([3.2354396e-02, 3.2354396e-02, 3.2354396e-02, 3.3944464e-01,\n 3.3944464e-01, 3.3944464e-01, 9.6083155e+00, 4.4150810e+00,\n 2.0510872e+01, 3.4809570e+01, 9.5787678e+00, 4.4085140e+00,\n 2.0508595e+01, 3.4751534e+01, 4.2109222e+00, 1.0298933e+00,\n 1.3500186e+00, 1.8877272e+01, 8.9133234e+00, 1.5922394e+00,\n 4.2218900e+00, 1.0300945e+00, 1.3500514e+00, 1.8928917e+01,\n 8.9293032e+00, 1.5925606e+00], dtype=float32), dof_M0=Array([5.6270248e+01, 5.6270248e+01, 5.6270248e+01, 1.1766881e+01,\n 1.1362601e+01, 4.9151673e+00, 2.4990076e-01, 2.4510972e-01,\n 5.0213572e-02, 6.4029261e-02, 2.5029477e-01, 2.4550702e-01,\n 5.0216697e-02, 6.4033940e-02, 3.6562202e+00, 3.5532610e+00,\n 1.0688403e+00, 1.5558213e+00, 1.0582325e+00, 1.0360414e+00,\n 3.6537342e+00, 3.5509171e+00, 1.0688035e+00, 1.5557439e+00,\n 1.0582275e+00, 1.0360385e+00], dtype=float32), geom_type=array([0, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 6, 6, 2, 6, 6, 6, 6, 6, 6,\n 2, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,\n 6, 6, 6, 6, 6, 6, 6, 6, 6], dtype=int32), geom_contype=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_conaffinity=array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,\n 0, 0, 0, 0, 0, 0, 1, 0, 1], dtype=int32), geom_condim=array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=int32), geom_bodyid=array([ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5,\n 5, 5, 5, 5, 6, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 11,\n 12, 13, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 19, 20, 21, 21, 21,\n 21, 21], dtype=int32), geom_dataid=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_group=array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,\n 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int32), geom_matid=array([ 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1], dtype=int32), geom_priority=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32), geom_solmix=Array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n 1., 1.], dtype=float32), geom_solref=Array([[0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ],\n [0.02, 1. ]], dtype=float32), geom_solimp=Array([[9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00],\n [9.0e-01, 9.5e-01, 1.0e-03, 5.0e-01, 2.0e+00]], dtype=float32), geom_size=Array([[0. , 0. , 0.05 ],\n [0.0465 , 0.0475 , 0.071 ],\n [0.0405 , 0.062 , 0.07525 ],\n [0.0678 , 0.04485 , 0.0669 ],\n [0.10205 , 0.1076 , 0.1046 ],\n [0.033 , 0.033 , 0.0445 ],\n [0.027 , 0.027 , 0.0065 ],\n [0.0225 , 0.0225 , 0.045 ],\n [0.08 , 0. , 0. ],\n [0.03 , 0.03 , 0.045 ],\n [0.04 , 0.04 , 0.02 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.04 , 0.04 , 0.07845 ],\n [0.06 , 0. , 0. ],\n [0.03 , 0.03 , 0.015 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.04 , 0. , 0. ],\n [0.05 , 0.05 , 0.07905 ],\n [0.05 , 0.05 , 0.07905 ],\n [0.011 , 0.011 , 0.02 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.062 , 0.0368 , 0.08105 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.0535 , 0.0535 , 0.041826 ],\n [0.0351 , 0.0789 , 0.06575 ],\n [0.075 , 0.075 , 0.1296 ],\n [0.0454 , 0.0799 , 0.0439 ],\n [0.065 , 0.065 , 0.12 ],\n [0.0426035, 0.0300837, 0.07127 ],\n [0.04635 , 0.0317 , 0.10275 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ],\n [0.05 , 0.0585 , 0.00515 ]], dtype=float32), geom_rbound=Array([0. , 0.09725996, 0.10557847, 0.10528044, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.08645181, 0.10853701, 0.16746987, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712828, 0.07712828,\n 0.07712828, 0.07712828, 0.08645181, 0.10853701, 0.16746987,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712828,\n 0.07712828, 0.07712828, 0.07712828], dtype=float32), geom_rbound_hfield=array([0. , 0.09725996, 0.10557847, 0.10528045, 0.18147485,\n 0.06448449, 0.03873306, 0.05511352, 0.08 , 0.06184658,\n 0.06 , 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.09671816, 0.06 , 0.045 , 0.10606084,\n 0.04 , 0.10606084, 0.10606084, 0.02533772, 0.10847738,\n 0.10847738, 0.0864518 , 0.10853701, 0.16746988, 0.10184488,\n 0.15116216, 0.08831478, 0.11709302, 0.07712829, 0.07712829,\n 0.07712829, 0.07712829, 0.0864518 , 0.10853701, 0.16746988,\n 0.10184488, 0.15116216, 0.08831478, 0.11709302, 0.07712829,\n 0.07712829, 0.07712829, 0.07712829]), geom_pos=Array([[ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 7.50000e-02],\n [ 0.00000e+00, 0.00000e+00, 1.39400e-01],\n [ 0.00000e+00, 0.00000e+00, 2.28358e-01],\n [ 2.11510e-04, 0.00000e+00, 3.40270e-01],\n [-1.51385e-02, 0.00000e+00, 3.69270e-01],\n [ 4.86151e-03, 0.00000e+00, 3.91771e-01],\n [ 4.86151e-03, 0.00000e+00, 4.57921e-01],\n [ 6.03745e-02, 1.70000e-04, 5.09846e-01],\n [ 6.03151e-03, 1.15000e-03, 5.59721e-01],\n [ 0.00000e+00, -7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-6.84995e-03, 2.19050e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.99999e-02, -1.99965e-03, -9.53101e-02],\n [-1.36999e-02, -4.00709e-03, -1.62800e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 9.99996e-03, 2.99230e-03, -2.43850e-01],\n [ 0.00000e+00, 7.44500e-02, 0.00000e+00],\n [ 0.00000e+00, 0.00000e+00, 0.00000e+00],\n [-4.35013e-03, 3.63257e-07, -6.43000e-02],\n [ 0.00000e+00, 0.00000e+00, -5.70500e-02],\n [-2.00000e-02, 0.00000e+00, -2.00000e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.99999e-02, 1.99964e-03, -9.53101e-02],\n [-1.33999e-02, 4.00654e-03, -1.62800e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [ 1.03000e-02, -2.99285e-03, -2.43850e-01],\n [-1.00000e-02, -4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, 1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, 1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [-1.00000e-02, 4.18260e-02, -1.00000e-02],\n [ 2.00000e-02, 0.00000e+00, -2.00000e-02],\n [ 3.67000e-02, 0.00000e+00, -1.61300e-01],\n [ 0.00000e+00, 0.00000e+00, -7.00000e-02],\n [-2.00000e-02, -1.50000e-02, -1.50000e-01],\n [ 0.00000e+00, -1.00000e-02, -1.50000e-02],\n [ 6.00000e-02, 0.00000e+00, -1.40000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.60000e-02, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02],\n [ 1.35250e-01, 0.00000e+00, -6.58000e-02]], dtype=float32), geom_quat=Array([[ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, -5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 3.2757915e-05, 3.2758115e-05, 7.0710528e-01, -7.0710826e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, 5.1241904e-01, 4.7925600e-01, -5.2193904e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0354489e-01, 3.1165394e-03, 4.7195494e-02, -7.9592490e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.0333717e-01, 0.0000000e+00, 0.0000000e+00, -7.9748625e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 4.8509800e-01, -5.1241904e-01, 4.7925600e-01, 5.2193904e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9592490e-01, -4.7195494e-02, -3.1165595e-03, -6.0354489e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 7.9748625e-01, 0.0000000e+00, 0.0000000e+00, -6.0333717e-01],\n [ 6.4087108e-02, 7.8237104e-01, 6.7838408e-02, -6.1578107e-01],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 5.0000000e-01, 5.0000000e-01, 5.0000000e-01, -5.0000000e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, -7.0710677e-01, 0.0000000e+00, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 7.0710677e-01, 0.0000000e+00],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01],\n [ 7.0710677e-01, 0.0000000e+00, 0.0000000e+00, -7.0710677e-01]], dtype=float32), geom_friction=Array([[1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04],\n [1.e+00, 5.e-03, 1.e-04]], dtype=float32), geom_margin=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_gap=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n 0., 0.], dtype=float32), geom_rgba=array([[0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 0. , 1. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [0. , 1. , 1. , 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 1. , 0. , 1. ],\n [1. , 1. , 1. , 1. ],\n [1. , 1. , 1. , 1. ],\n [0. , 0. , 0.8, 1. ],\n [0.1, 0.8, 0.1, 1. ],\n [0.5, 0.5, 0.5, 1. ],\n [0. , 1. , 0. , 1. ],\n [0. , 0. , 0. , 1. ],\n [1. , 0. , 0. , 1. ],\n [0. , 0. , 1. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 1. , 0. , 1. ],\n [1. , 0. , 1. , 1. ],\n [1. , 0. , 1. , 1. ]], dtype=float32), site_bodyid=array([], dtype=int32), site_pos=Array([], shape=(0, 3), dtype=float32), site_quat=Array([], shape=(0, 4), dtype=float32), cam_mode=array([], dtype=int32), cam_bodyid=array([], dtype=int32), cam_targetbodyid=array([], dtype=int32), cam_pos=Array([], shape=(0, 3), dtype=float32), cam_quat=Array([], shape=(0, 4), dtype=float32), cam_poscom0=Array([], shape=(0, 3), dtype=float32), cam_pos0=Array([], shape=(0, 3), dtype=float32), cam_mat0=Array([], shape=(0, 3, 3), dtype=float32), mesh_vertadr=array([], dtype=int32), mesh_faceadr=array([], dtype=int32), mesh_graphadr=array([], dtype=int32), mesh_vert=array([], shape=(0, 3), dtype=float32), mesh_face=array([], shape=(0, 3), dtype=int32), mesh_graph=array([], dtype=int32), mesh_convex=(), hfield_size=array([], shape=(0, 4), dtype=float64), hfield_nrow=array([], dtype=int32), hfield_ncol=array([], dtype=int32), hfield_adr=array([], dtype=int32), hfield_data=Array([], shape=(0,), dtype=float32), mat_rgba=array([[0.8, 0.6, 0.4, 1. ],\n [1. , 1. , 1. , 1. ]], dtype=float32), pair_dim=array([], dtype=int32), pair_geom1=array([], dtype=int32), pair_geom2=array([], dtype=int32), pair_solref=Array([], shape=(0, 2), dtype=float32), pair_solreffriction=Array([], shape=(0, 2), dtype=float32), pair_solimp=Array([], shape=(0, 5), dtype=float32), pair_margin=Array([], shape=(0,), dtype=float32), pair_gap=Array([], shape=(0,), dtype=float32), pair_friction=Array([], shape=(0, 5), dtype=float32), exclude_signature=array([], dtype=int32), eq_type=array([], dtype=int32), eq_obj1id=array([], dtype=int32), eq_obj2id=array([], dtype=int32), eq_active0=array([], dtype=uint8), eq_solref=Array([], shape=(0, 2), dtype=float32), eq_solimp=Array([], shape=(0, 5), dtype=float32), eq_data=Array([], shape=(0, 11), dtype=float32), actuator_trntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_dyntype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_gaintype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_biastype=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_trnid=array([[ 1, -1],\n [ 2, -1],\n [ 3, -1],\n [ 4, -1],\n [ 5, -1],\n [ 6, -1],\n [ 7, -1],\n [ 8, -1],\n [ 9, -1],\n [10, -1],\n [11, -1],\n [12, -1],\n [13, -1],\n [14, -1],\n [15, -1],\n [16, -1],\n [17, -1],\n [18, -1],\n [19, -1],\n [20, -1]], dtype=int32), actuator_actadr=array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\n -1, -1, -1], dtype=int32), actuator_actnum=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=int32), actuator_ctrllimited=array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n dtype=uint8), actuator_forcelimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_actlimited=array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n dtype=uint8), actuator_dynprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_gainprm=Array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_biasprm=Array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32), actuator_ctrlrange=Array([[-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.],\n [-100., 100.]], dtype=float32), actuator_forcerange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_actrange=Array([[0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.],\n [0., 0.]], dtype=float32), actuator_gear=Array([[1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.],\n [1., 0., 0., 0., 0., 0.]], dtype=float32), numeric_adr=array([], dtype=int32), numeric_data=array([], dtype=float64), tuple_adr=array([], dtype=int32), tuple_size=array([], dtype=int32), tuple_objtype=array([], dtype=int32), tuple_objid=array([], dtype=int32), tuple_objprm=array([], dtype=float64), name_bodyadr=array([ 9, 15, 25, 38, 51, 63, 73, 86, 99, 111, 121, 129, 137,\n 149, 161, 171, 181, 189, 197, 209, 221, 231], dtype=int32), name_jntadr=array([241, 256, 273, 289, 304, 312, 329, 345, 360, 368, 380, 391, 401,\n 408, 422, 435, 447, 458, 468, 475, 489], dtype=int32), name_geomadr=array([ 502, 508, 525, 540, 555, 568, 582, 596, 610, 622, 641,\n 654, 674, 694, 714, 733, 750, 767, 787, 804, 818, 835,\n 855, 875, 895, 914, 931, 948, 968, 985, 999, 1016, 1031,\n 1046, 1061, 1080, 1099, 1116, 1133, 1153, 1176, 1195, 1217, 1232,\n 1247, 1262, 1281, 1300, 1317, 1334, 1353, 1375, 1395], dtype=int32), name_siteadr=array([], dtype=int32), name_camadr=array([], dtype=int32), name_meshadr=array([], dtype=int32), name_hfieldadr=array([], dtype=int32), name_pairadr=array([], dtype=int32), name_eqadr=array([], dtype=int32), name_actuatoradr=array([1439, 1456, 1472, 1487, 1495, 1512, 1528, 1543, 1551, 1563, 1574,\n 1584, 1591, 1605, 1618, 1630, 1641, 1651, 1658, 1672], dtype=int32), name_sensoradr=array([], dtype=int32), name_numericadr=array([], dtype=int32), name_tupleadr=array([], dtype=int32), name_keyadr=array([], dtype=int32), names=b'stickBot\\x00world\\x00root_link\\x00r_shoulder_1\\x00r_shoulder_2\\x00r_upper_arm\\x00r_elbow_1\\x00l_shoulder_1\\x00l_shoulder_2\\x00l_upper_arm\\x00l_elbow_1\\x00r_hip_1\\x00r_hip_2\\x00r_upper_leg\\x00r_lower_leg\\x00r_ankle_1\\x00r_ankle_2\\x00l_hip_1\\x00l_hip_2\\x00l_upper_leg\\x00l_lower_leg\\x00l_ankle_1\\x00l_ankle_2\\x00floating_joint\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00floor\\x00root_link_visual\\x00torso_1_visual\\x00torso_2_visual\\x00chest_visual\\x00neck_1_visual\\x00neck_2_visual\\x00neck_3_visual\\x00head_visual\\x00camera_tilt_visual\\x00lidar_visual\\x00r_shoulder_1_visual\\x00r_shoulder_2_visual\\x00r_shoulder_3_visual\\x00r_upper_arm_visual\\x00r_elbow_1_visual\\x00r_forearm_visual\\x00r_forearm_collision\\x00r_wrist_1_visual\\x00r_hand_visual\\x00r_hand_collision\\x00l_shoulder_1_visual\\x00l_shoulder_2_visual\\x00l_shoulder_3_visual\\x00l_upper_arm_visual\\x00l_elbow_1_visual\\x00l_forearm_visual\\x00l_forearm_collision\\x00l_wrist_1_visual\\x00l_hand_visual\\x00l_hand_collision\\x00r_hip_1_visual\\x00r_hip_2_visual\\x00r_hip_3_visual\\x00r_upper_leg_visual\\x00r_lower_leg_visual\\x00r_ankle_1_visual\\x00r_ankle_2_visual\\x00r_foot_front_visual\\x00r_foot_front_collision\\x00r_foot_rear_visual\\x00r_foot_rear_collision\\x00l_hip_1_visual\\x00l_hip_2_visual\\x00l_hip_3_visual\\x00l_upper_leg_visual\\x00l_lower_leg_visual\\x00l_ankle_1_visual\\x00l_ankle_2_visual\\x00l_foot_rear_visual\\x00l_foot_rear_collision\\x00l_foot_front_visual\\x00l_foot_front_collision\\x00\\x00body\\x00grid\\x00body\\x00grid\\x00r_shoulder_pitch\\x00r_shoulder_roll\\x00r_shoulder_yaw\\x00r_elbow\\x00l_shoulder_pitch\\x00l_shoulder_roll\\x00l_shoulder_yaw\\x00l_elbow\\x00r_hip_pitch\\x00r_hip_roll\\x00r_hip_yaw\\x00r_knee\\x00r_ankle_pitch\\x00r_ankle_roll\\x00l_hip_pitch\\x00l_hip_roll\\x00l_hip_yaw\\x00l_knee\\x00l_ankle_pitch\\x00l_ankle_roll\\x00'); kwargs: maxgeom=10000" - ] - }, - { - "ename": "", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n", - "\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n", - "\u001b[1;31mClick here for more info. \n", - "\u001b[1;31mView Jupyter log for further details." - ] - } - ], + "outputs": [], "source": [ "# Define simulator and set initial position\n", "mujoco_instance = MJXSimulator()\n", @@ -328,7 +157,7 @@ "t = mujoco_instance.get_simulation_time()\n", "H_b = mujoco_instance.get_base()\n", "w_b = mujoco_instance.get_base_velocity()\n", - "mujoco_instance.set_visualize_robot_flag(False)" + "mujoco_instance.set_visualize_robot_flag(True)" ] }, { @@ -465,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ From 502243eebbc7f509db228d3092dd0b7138f3ac45 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Thu, 23 Jan 2025 11:59:19 +0100 Subject: [PATCH 09/14] Add LFS tracking for URDF files in .gitattributes --- .gitattributes | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitattributes b/.gitattributes index 07fe41c..5b46ea3 100644 --- a/.gitattributes +++ b/.gitattributes @@ -1,2 +1,3 @@ # GitHub syntax highlighting pixi.lock linguist-language=YAML linguist-generated=true +*.urdf filter=lfs diff=lfs merge=lfs -text From ecb39d9f0d6b3d68a44b898d551e6abb2336f164 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Thu, 23 Jan 2025 11:59:30 +0100 Subject: [PATCH 10/14] Add `stickbot_mjx.urdf` model --- examples/models/stickbot_mjx.urdf | 3 +++ 1 file changed, 3 insertions(+) create mode 100644 examples/models/stickbot_mjx.urdf diff --git a/examples/models/stickbot_mjx.urdf b/examples/models/stickbot_mjx.urdf new file mode 100644 index 0000000..02799da --- /dev/null +++ b/examples/models/stickbot_mjx.urdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f0893697d5654c1a54fc16586c34fb8f16cdb0d3ab1ba3d649fd183050185b7b +size 59343 From a0361ad8e05fab5871131e472f91fbd26886e060 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Thu, 23 Jan 2025 12:04:42 +0100 Subject: [PATCH 11/14] Refactor mjx_walking notebook to improve URDF file handling and imports --- examples/mjx_walking.ipynb | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/examples/mjx_walking.ipynb b/examples/mjx_walking.ipynb index 9a7dd68..2bf2379 100644 --- a/examples/mjx_walking.ipynb +++ b/examples/mjx_walking.ipynb @@ -39,20 +39,20 @@ "import xml.etree.ElementTree as ET\n", "import numpy as np\n", "import tempfile\n", - "import urllib.request" + "import urllib.request\n", + "import os\n", + "import pathlib" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "# Getting stickbot urdf file and convert it to string\n", - "# urdf_robot_file = tempfile.NamedTemporaryFile(mode=\"w+\")\n", - "# url = \"https://raw.githubusercontent.com/icub-tech-iit/ergocub-gazebo-simulations/master/models/stickBot/model.urdf\"\n", - "# urllib.request.urlretrieve(url, urdf_robot_file.name)\n", - "path = \"/home/acroci/Desktop/mjx/model_modified.urdf\"\n", + "# Getting stickbot urdf file\n", + "\n", + "path = pathlib.Path.cwd() / \"models\" / \"stickbot_mjx.urdf\"\n", "# Load the URDF file\n", "# tree = ET.parse(urdf_robot_file.name)\n", "tree = ET.parse(path)\n", From c421cf8cae6f765783a1ee9f81643bcf4fb0942d Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Fri, 24 Jan 2025 16:56:18 +0100 Subject: [PATCH 12/14] Refactor JaxsimSimulator --- src/comodo/jaxsimSimulator/jaxsimSimulator.py | 46 +++++++++---------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/src/comodo/jaxsimSimulator/jaxsimSimulator.py b/src/comodo/jaxsimSimulator/jaxsimSimulator.py index b7a24aa..48fb613 100644 --- a/src/comodo/jaxsimSimulator/jaxsimSimulator.py +++ b/src/comodo/jaxsimSimulator/jaxsimSimulator.py @@ -172,18 +172,6 @@ def load_model( f"Invalid contact model type: {self._contact_model_type}" ) - model = js.model.JaxSimModel.build_from_model_description( - model_description=robot_model.urdf_string, - model_name=robot_model.robot_name, - contact_model=contact_model, - time_step=self._dt, - ) - - self._model = js.model.reduce( - model=model, - considered_joints=tuple(robot_model.joint_name_list), - ) - if contact_params is None: match self._contact_model_type: case JaxsimContactModelEnum.RIGID: @@ -207,6 +195,19 @@ def load_model( f"Invalid contact model type: {self._contact_model_type}" ) + model = js.model.JaxSimModel.build_from_model_description( + model_description=robot_model.urdf_string, + model_name=robot_model.robot_name, + contact_model=contact_model, + contact_params=contact_params, + time_step=self._dt, + ) + + self._model = js.model.reduce( + model=model, + considered_joints=tuple(robot_model.joint_name_list), + ) + # Find mapping between user provided joint name list and JaxSim one user_joint_names = robot_model.joint_name_list js_joint_names = self._model.joint_names() @@ -223,7 +224,6 @@ def load_model( base_position=jnp.array(xyz_rpy[:3]), base_quaternion=jnp.array(JaxsimSimulator._RPY_to_quat(*xyz_rpy[3:])), joint_positions=jnp.array(s), - contacts_params=contact_params, ) # Initialize tau to zero @@ -319,7 +319,7 @@ def step(self, n_step: int = 1, *, dry_run=False) -> None: self._data = js.model.step( model=self._model, data=self._data, - link_forces=None, + # link_forces=None, joint_force_references=self._tau, ) @@ -349,7 +349,7 @@ def step(self, n_step: int = 1, *, dry_run=False) -> None: self._link_contact_forces = js.contact_model.link_contact_forces( model=self._model, data=self._data, - joint_force_references=self._tau, + joint_torques=self._tau, ) def get_state(self) -> tuple[npt.NDArray, npt.NDArray, npt.NDArray]: @@ -369,8 +369,8 @@ def get_state(self) -> tuple[npt.NDArray, npt.NDArray, npt.NDArray]: self._is_initialized ), "Simulator is not initialized, call load_model first." - s = np.array(self._data.joint_positions())[self._to_user] - s_dot = np.array(self._data.joint_velocities())[self._to_user] + s = np.array(self._data.joint_positions)[self._to_user] + s_dot = np.array(self._data.joint_velocities)[self._to_user] tau = np.array(self._tau)[self._to_user] return s, s_dot, tau @@ -400,7 +400,7 @@ def base_transform(self) -> npt.NDArray: assert ( self._is_initialized ), "Simulator is not initialized, call load_model first." - return np.array(self._data.base_transform()) + return np.array(self._data.base_transform) @property def base_velocity(self) -> npt.NDArray: @@ -487,7 +487,7 @@ def update_contact_model_parameters( self._is_initialized ), "Simulator is not initialized, call load_model first." - self._data = self._data.replace(contacts_params=params) + self._model = self._model.replace(contacts_params=params) # ==== Private methods ==== @@ -523,26 +523,26 @@ def _render(self) -> None: self._handle = self._viz.open_viewer() self._mj_model_helper.set_base_position( - position=np.array(self._data.base_position()), + position=np.array(self._data.base_position), ) self._mj_model_helper.set_base_orientation( orientation=np.array(self._data.base_orientation()), ) self._mj_model_helper.set_joint_positions( - positions=np.array(self._data.joint_positions()), + positions=np.array(self._data.joint_positions), joint_names=self._model.joint_names(), ) self._viz.sync(viewer=self._handle) def _record_frame(self) -> None: self._mj_model_helper.set_base_position( - position=np.array(self._data.base_position()), + position=np.array(self._data.base_position), ) self._mj_model_helper.set_base_orientation( orientation=np.array(self._data.base_orientation()), ) self._mj_model_helper.set_joint_positions( - positions=np.array(self._data.joint_positions()), + positions=np.array(self._data.joint_positions), joint_names=self._model.joint_names(), ) From 9d5aff65c2b2e4504cff6513db28f9ce35e6e5b6 Mon Sep 17 00:00:00 2001 From: Alessandro Croci Date: Fri, 24 Jan 2025 16:56:53 +0100 Subject: [PATCH 13/14] Fix mass calculation in jaxsim_walking notebook to use model gravity --- examples/jaxsim_walking.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/jaxsim_walking.ipynb b/examples/jaxsim_walking.ipynb index ffc3d9a..6c57ab4 100644 --- a/examples/jaxsim_walking.ipynb +++ b/examples/jaxsim_walking.ipynb @@ -165,7 +165,7 @@ "print(f\"Contact model in use: {js._model.contact_model}\")\n", "print(f\"Link names:\\n{js.link_names}\")\n", "print(f\"Frame names:\\n{js.frame_names}\")\n", - "print(f\"Mass: {js.total_mass*js._data.standard_gravity()} N\")" + "print(f\"Mass: {-js.total_mass*js._model.gravity} N\")" ] }, { From 4e1812e179cf83c245597e5d7749c0ed131e8a6a Mon Sep 17 00:00:00 2001 From: CarlottaSartore Date: Tue, 4 Feb 2025 14:37:37 +0100 Subject: [PATCH 14/14] fix jaxsim simulator with latest jaxsim development --- src/comodo/jaxsimSimulator/jaxsimSimulator.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/comodo/jaxsimSimulator/jaxsimSimulator.py b/src/comodo/jaxsimSimulator/jaxsimSimulator.py index 48fb613..b78dfe4 100644 --- a/src/comodo/jaxsimSimulator/jaxsimSimulator.py +++ b/src/comodo/jaxsimSimulator/jaxsimSimulator.py @@ -408,7 +408,7 @@ def base_velocity(self) -> npt.NDArray: self._is_initialized ), "Simulator is not initialized, call load_model first." with self._data.switch_velocity_representation(VelRepr.Mixed): - return np.array(self._data.base_velocity()) + return np.array(self._data.base_velocity) @property def simulation_time(self) -> float: @@ -526,7 +526,7 @@ def _render(self) -> None: position=np.array(self._data.base_position), ) self._mj_model_helper.set_base_orientation( - orientation=np.array(self._data.base_orientation()), + orientation=np.array(self._data.base_orientation), ) self._mj_model_helper.set_joint_positions( positions=np.array(self._data.joint_positions), @@ -539,7 +539,7 @@ def _record_frame(self) -> None: position=np.array(self._data.base_position), ) self._mj_model_helper.set_base_orientation( - orientation=np.array(self._data.base_orientation()), + orientation=np.array(self._data.base_orientation), ) self._mj_model_helper.set_joint_positions( positions=np.array(self._data.joint_positions),