diff --git a/tools/server/README.md b/tools/server/README.md index af9264ddd38e4..86844225ff309 100644 --- a/tools/server/README.md +++ b/tools/server/README.md @@ -226,6 +226,10 @@ services: ### Multimodal support Multimodal support was added in [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) and is currently an experimental feature. +It is currently available in the following endpoints: +- The OAI-compatible chat endpoint. +- The non-OAI-compatible completions endpoint. +- The non-OAI-compatible embeddings endpoint. For more details, please refer to [multimodal documentation](../../docs/multimodal.md) @@ -400,12 +404,15 @@ These input shapes and data type are allowed for `prompt`: - Single string: `"string"` - Single sequence of tokens: `[12, 34, 56]` - Mixed tokens and strings: `[12, 34, "string", 56, 78]` + - A JSON object which optionally contains multimodal data: `{ "prompt_string": "string", "multimodal_data": ["base64"] }` Multiple prompts are also supported. In this case, the completion result will be an array. - Only strings: `["string1", "string2"]` - - Strings and sequences of tokens: `["string1", [12, 34, 56]]` - - Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string"]` + - Strings, JSON objects, and sequences of tokens: `["string1", [12, 34, 56], { "prompt_string": "string", "multimodal_data": ["base64"]}]` + - Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string", { "prompt_string": "string" }]` + +Note for `multimodal_data` in JSON object prompts. This should be an array of strings, containing base64 encoded multimodal data such as images and audio. There must be an identical number of MTMD media markers in the string prompt element which act as placeholders for the data provided to this parameter. The multimodal data files will be substituted in order. The marker string (e.g. `<__media__>`) can be found by calling `mtmd_default_marker()` defined in [the MTMD C API](https://github.com/ggml-org/llama.cpp/blob/5fd160bbd9d70b94b5b11b0001fd7f477005e4a0/tools/mtmd/mtmd.h#L87). A client *must not* specify this field unless the server has the multimodal capability. Clients should check `/models` or `/v1/models` for the `multimodal` capability before a multimodal request. `temperature`: Adjust the randomness of the generated text. Default: `0.8` @@ -477,8 +484,6 @@ These words will not be included in the completion, so make sure to add them to `t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled. -`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA. - `id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1` `cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true` @@ -638,12 +643,12 @@ Returns a JSON object with a field `prompt` containing a string of the input mes The same as [the embedding example](../embedding) does. +This endpoint also supports multimodal embeddings. See the documentation for the `/completions` endpoint for details on how to send a multimodal prompt. + *Options:* `content`: Set the text to process. -`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA. - `embd_normalize`: Normalization for pooled embeddings. Can be one of the following values: ``` -1: No normalization diff --git a/tools/server/server.cpp b/tools/server/server.cpp index 0b40f7bfa4258..86c90f5f8f62c 100644 --- a/tools/server/server.cpp +++ b/tools/server/server.cpp @@ -4279,6 +4279,7 @@ int main(int argc, char ** argv) { }; const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { + bool has_mtmd = ctx_server.mctx != nullptr; json data = { { "template", common_chat_templates_source(ctx_server.chat_templates.get()), @@ -4300,7 +4301,7 @@ int main(int argc, char ** argv) { {"quantization_level", ""} }}, {"model_info", ""}, - {"capabilities", {"completion"}} + {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})} }; res_ok(res, data); @@ -4326,56 +4327,15 @@ int main(int argc, char ** argv) { // TODO: this log can become very long, put it behind a flag or think about a more compact format //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get().c_str() : prompt.dump(2).c_str()); - // process files - mtmd::bitmaps bitmaps; - const bool has_mtmd = ctx_server.mctx != nullptr; - { - if (!has_mtmd && !files.empty()) { - throw std::runtime_error("This server does not support multimodal"); - } - for (auto & file : files) { - mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size())); - if (!bmp.ptr) { - throw std::runtime_error("Failed to load image or audio file"); - } - // calculate bitmap hash (for KV caching) - std::string hash = fnv_hash(bmp.data(), bmp.n_bytes()); - bmp.set_id(hash.c_str()); - bitmaps.entries.push_back(std::move(bmp)); - } - } - // process prompt std::vector inputs; - if (oaicompat && has_mtmd) { - // multimodal - std::string prompt_str = prompt.get(); - mtmd_input_text inp_txt = { - prompt_str.c_str(), - /* add_special */ true, - /* parse_special */ true, - }; - mtmd::input_chunks chunks(mtmd_input_chunks_init()); - auto bitmaps_c_ptr = bitmaps.c_ptr(); - int32_t tokenized = mtmd_tokenize(ctx_server.mctx, - chunks.ptr.get(), - &inp_txt, - bitmaps_c_ptr.data(), - bitmaps_c_ptr.size()); - if (tokenized != 0) { - throw std::runtime_error("Failed to tokenize prompt"); - } - - server_tokens tmp(chunks, true); - inputs.push_back(std::move(tmp)); + if (oaicompat && ctx_server.mctx != nullptr) { + // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below. + inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get(), files)); } else { - // non-multimodal version - auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true); - for (auto & p : tokenized_prompts) { - auto tmp = server_tokens(p, ctx_server.mctx != nullptr); - inputs.push_back(std::move(tmp)); - } + // Everything else, including multimodal completions. + inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); } tasks.reserve(inputs.size()); @@ -4544,7 +4504,7 @@ int main(int argc, char ** argv) { data["input_extra"] = input_extra; // default to empty array if it's not exist std::string prompt = json_value(data, "prompt", std::string()); - std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true); + std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true); SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size()); data["prompt"] = format_infill( ctx_server.vocab, @@ -4555,7 +4515,7 @@ int main(int argc, char ** argv) { ctx_server.params_base.n_predict, ctx_server.slots[0].n_ctx, // TODO: there should be a better way ctx_server.params_base.spm_infill, - tokenized_prompts[0] + tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal. ); std::vector files; // dummy @@ -4604,7 +4564,7 @@ int main(int argc, char ** argv) { if (current_state == SERVER_STATE_READY) { model_meta = ctx_server.model_meta(); } - + bool has_mtmd = ctx_server.mctx != nullptr; json models = { {"models", { { @@ -4616,7 +4576,7 @@ int main(int argc, char ** argv) { {"type", "model"}, {"description", ""}, {"tags", {""}}, - {"capabilities", {"completion"}}, + {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}, {"parameters", ""}, {"details", { {"parent_model", ""}, @@ -4733,7 +4693,7 @@ int main(int argc, char ** argv) { } } - auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true); + auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true); for (const auto & tokens : tokenized_prompts) { // this check is necessary for models that do not add BOS token to the input if (tokens.empty()) { @@ -4761,7 +4721,7 @@ int main(int argc, char ** argv) { task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; - task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr); + task.prompt_tokens = std::move(tokenized_prompts[i]); // OAI-compat task.params.oaicompat = oaicompat; @@ -4848,7 +4808,10 @@ int main(int argc, char ** argv) { return; } - llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0]; + std::vector tokenized_queries = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, query, /* add_special */ false, true); + if (tokenized_queries.size() != 1) { + res_error(res, format_error_response("\"query\" must contain only a single prompt", ERROR_TYPE_INVALID_REQUEST)); + } // create and queue the task json responses = json::array(); @@ -4856,14 +4819,14 @@ int main(int argc, char ** argv) { std::unordered_set task_ids; { std::vector tasks; - auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true); + auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, documents, /* add_special */ false, true); tasks.reserve(tokenized_docs.size()); for (size_t i = 0; i < tokenized_docs.size(); i++) { - auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]); + auto tmp = format_rerank(ctx_server.vocab, tokenized_queries[0], tokenized_docs[i]); server_task task = server_task(SERVER_TASK_TYPE_RERANK); task.id = ctx_server.queue_tasks.get_new_id(); task.index = i; - task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr); + task.prompt_tokens = std::move(tmp); tasks.push_back(std::move(task)); } diff --git a/tools/server/tests/unit/test_completion.py b/tools/server/tests/unit/test_completion.py index be3a0052c64fe..8b461148ebfbe 100644 --- a/tools/server/tests/unit/test_completion.py +++ b/tools/server/tests/unit/test_completion.py @@ -6,6 +6,8 @@ server = ServerPreset.tinyllama2() +JSON_MULTIMODAL_KEY = "multimodal_data" +JSON_PROMPT_STRING_KEY = "prompt_string" @pytest.fixture(scope="module", autouse=True) def create_server(): @@ -231,6 +233,28 @@ def test_nocache_long_input_prompt(): }) assert res.status_code == 200 +def test_json_prompt_no_mtmd(): + global server + server.start() + res = server.make_request("POST", "/completion", data={ + "prompt": { JSON_PROMPT_STRING_KEY: "I believe the meaning of life is" }, + "seed": 42, + "temperature": 1.0, + "cache_prompt": False, + }) + assert res.status_code == 200 + +def test_json_prompt_mtm_error_when_not_supported(): + global server + server.start() + res = server.make_request("POST", "/completion", data={ + "prompt": { JSON_PROMPT_STRING_KEY: "I believe the meaning of life is <__media__>", JSON_MULTIMODAL_KEY: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=" }, + "seed": 42, + "temperature": 1.0, + "cache_prompt": False, + }) + # MTMD is disabled on this model, so this should fail. + assert res.status_code != 200 def test_completion_with_tokens_input(): global server @@ -269,6 +293,20 @@ def test_completion_with_tokens_input(): assert len(res.body) == 2 assert res.body[0]["content"] == res.body[1]["content"] + # mixed JSON and tokens + res = server.make_request("POST", "/completion", data={ + "prompt": [ + tokens, + { + JSON_PROMPT_STRING_KEY: "I believe the meaning of life is", + }, + ], + }) + assert res.status_code == 200 + assert type(res.body) == list + assert len(res.body) == 2 + assert res.body[0]["content"] == res.body[1]["content"] + # mixed string and tokens in one sequence res = server.make_request("POST", "/completion", data={ "prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str], diff --git a/tools/server/tests/unit/test_vision_api.py b/tools/server/tests/unit/test_vision_api.py index fc63caa134293..10681c228db17 100644 --- a/tools/server/tests/unit/test_vision_api.py +++ b/tools/server/tests/unit/test_vision_api.py @@ -10,21 +10,48 @@ response = requests.get(IMG_URL_0) response.raise_for_status() # Raise an exception for bad status codes -IMG_BASE64_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8") +IMG_BASE64_URI_0 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8") +IMG_BASE64_0 = base64.b64encode(response.content).decode("utf-8") +response = requests.get(IMG_URL_1) +response.raise_for_status() # Raise an exception for bad status codes +IMG_BASE64_URI_1 = "data:image/png;base64," + base64.b64encode(response.content).decode("utf-8") +IMG_BASE64_1 = base64.b64encode(response.content).decode("utf-8") + +JSON_MULTIMODAL_KEY = "multimodal_data" +JSON_PROMPT_STRING_KEY = "prompt_string" @pytest.fixture(autouse=True) def create_server(): global server server = ServerPreset.tinygemma3() +def test_models_supports_multimodal_capability(): + global server + server.start(timeout_seconds=60) # vision model may take longer to load due to download size + res = server.make_request("GET", "/models", data={}) + assert res.status_code == 200 + model_info = res.body["models"][0] + print(model_info) + assert "completion" in model_info["capabilities"] + assert "multimodal" in model_info["capabilities"] + +def test_v1_models_supports_multimodal_capability(): + global server + server.start(timeout_seconds=60) # vision model may take longer to load due to download size + res = server.make_request("GET", "/v1/models", data={}) + assert res.status_code == 200 + model_info = res.body["models"][0] + print(model_info) + assert "completion" in model_info["capabilities"] + assert "multimodal" in model_info["capabilities"] @pytest.mark.parametrize( "prompt, image_url, success, re_content", [ # test model is trained on CIFAR-10, but it's quite dumb due to small size ("What is this:\n", IMG_URL_0, True, "(cat)+"), - ("What is this:\n", "IMG_BASE64_0", True, "(cat)+"), # exceptional, so that we don't cog up the log + ("What is this:\n", "IMG_BASE64_URI_0", True, "(cat)+"), # exceptional, so that we don't cog up the log ("What is this:\n", IMG_URL_1, True, "(frog)+"), ("Test test\n", IMG_URL_1, True, "(frog)+"), # test invalidate cache ("What is this:\n", "malformed", False, None), @@ -36,8 +63,8 @@ def create_server(): def test_vision_chat_completion(prompt, image_url, success, re_content): global server server.start(timeout_seconds=60) # vision model may take longer to load due to download size - if image_url == "IMG_BASE64_0": - image_url = IMG_BASE64_0 + if image_url == "IMG_BASE64_URI_0": + image_url = IMG_BASE64_URI_0 res = server.make_request("POST", "/chat/completions", data={ "temperature": 0.0, "top_k": 1, @@ -58,3 +85,62 @@ def test_vision_chat_completion(prompt, image_url, success, re_content): else: assert res.status_code != 200 + +@pytest.mark.parametrize( + "prompt, image_data, success, re_content", + [ + # test model is trained on CIFAR-10, but it's quite dumb due to small size + ("What is this: <__media__>\n", IMG_BASE64_0, True, "(cat)+"), + ("What is this: <__media__>\n", IMG_BASE64_1, True, "(frog)+"), + ("What is this: <__media__>\n", "malformed", False, None), # non-image data + ("What is this:\n", "", False, None), # empty string + ] +) +def test_vision_completion(prompt, image_data, success, re_content): + global server + server.start(timeout_seconds=60) # vision model may take longer to load due to download size + res = server.make_request("POST", "/completions", data={ + "temperature": 0.0, + "top_k": 1, + "prompt": { JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] }, + }) + if success: + assert res.status_code == 200 + content = res.body["content"] + assert match_regex(re_content, content) + else: + assert res.status_code != 200 + + +@pytest.mark.parametrize( + "prompt, image_data, success", + [ + # test model is trained on CIFAR-10, but it's quite dumb due to small size + ("What is this: <__media__>\n", IMG_BASE64_0, True), # exceptional, so that we don't cog up the log + ("What is this: <__media__>\n", IMG_BASE64_1, True), + ("What is this: <__media__>\n", "malformed", False), # non-image data + ("What is this:\n", "base64", False), # non-image data + ] +) +def test_vision_embeddings(prompt, image_data, success): + global server + server.server_embeddings=True + server.n_batch=512 + server.start(timeout_seconds=60) # vision model may take longer to load due to download size + res = server.make_request("POST", "/embeddings", data={ + "content": [ + { JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] }, + { JSON_PROMPT_STRING_KEY: prompt, JSON_MULTIMODAL_KEY: [ image_data ] }, + { JSON_PROMPT_STRING_KEY: prompt, }, + ], + }) + if success: + assert res.status_code == 200 + content = res.body + # Ensure embeddings are stable when multimodal. + assert content[0]['embedding'] == content[1]['embedding'] + # Ensure embeddings without multimodal but same prompt do not match multimodal embeddings. + assert content[0]['embedding'] != content[2]['embedding'] + else: + assert res.status_code != 200 + diff --git a/tools/server/utils.hpp b/tools/server/utils.hpp index f3dfc8225da4d..6353aaa32e57d 100644 --- a/tools/server/utils.hpp +++ b/tools/server/utils.hpp @@ -123,6 +123,19 @@ static bool json_is_array_of_mixed_numbers_strings(const json & data) { return false; } +// does array have any individual integers/tokens? +static bool json_is_array_with_tokens(const json & data) { + if (data.is_array()) { + for (const auto & e : data) { + if (e.is_number_integer()) { + return true; + } + } + return false; + } + return false; +} + // get value by path(key1 / key2) static json json_get_nested_values(const std::vector & paths, const json & js) { json result = json::object(); @@ -186,48 +199,6 @@ static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_ return prompt_tokens; } -/** - * break the input "prompt" object into multiple prompt if needed, then tokenize them - * this supports these cases: - * - "prompt": "string" - * - "prompt": [12, 34, 56] - * - "prompt": [12, 34, "string", 56, 78] - * and multiple prompts (multi-tasks): - * - "prompt": ["string1", "string2"] - * - "prompt": ["string1", [12, 34, 56]] - * - "prompt": [[12, 34, 56], [78, 90, 12]] - * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] - */ -static std::vector tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { - std::vector result; - if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { - // string or mixed - result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special)); - } else if (json_is_array_of_numbers(json_prompt)) { - // array of tokens - result.push_back(json_prompt.get()); - } else if (json_prompt.is_array()) { - // array of prompts - result.reserve(json_prompt.size()); - for (const auto & p : json_prompt) { - if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { - result.push_back(tokenize_mixed(vocab, p, add_special, parse_special)); - } else if (json_is_array_of_numbers(p)) { - // array of tokens - result.push_back(p.get()); - } else { - throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); - } - } - } else { - throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); - } - if (result.empty()) { - throw std::runtime_error("\"prompt\" must not be empty"); - } - return result; -} - // return the last index of character that can form a valid string // if the last character is potentially cut in half, return the index before the cut // if validate_utf8(text) == text.size(), then the whole text is valid utf8 @@ -262,35 +233,6 @@ static size_t validate_utf8(const std::string& text) { // template utils // -// format rerank task: [BOS]query[EOS][SEP]doc[EOS] -static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) { - llama_tokens result; - - // Get EOS token - use SEP token as fallback if EOS is not available - llama_token eos_token = llama_vocab_eos(vocab); - if (eos_token == LLAMA_TOKEN_NULL) { - eos_token = llama_vocab_sep(vocab); - } - - result.reserve(doc.size() + query.size() + 4); - if (llama_vocab_get_add_bos(vocab)) { - result.push_back(llama_vocab_bos(vocab)); - } - result.insert(result.end(), query.begin(), query.end()); - if (llama_vocab_get_add_eos(vocab)) { - result.push_back(eos_token); - } - if (llama_vocab_get_add_sep(vocab)) { - result.push_back(llama_vocab_sep(vocab)); - } - result.insert(result.end(), doc.begin(), doc.end()); - if (llama_vocab_get_add_eos(vocab)) { - result.push_back(eos_token); - } - - return result; -} - // format infill task static llama_tokens format_infill( const llama_vocab * vocab, @@ -1186,6 +1128,24 @@ struct server_tokens { } } + // appends server tokens, updates the media map. copies media chunks. + void push_back(server_tokens & tokens) { + size_t start_pos = size(); + for (size_t i = 0; i < tokens.size(); i++) { + push_back(tokens[i]); + } + if (tokens.has_mtmd) { + // Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd. + // We could also just check, but this will prevent silently dropping MTMD data. + GGML_ASSERT(has_mtmd); + for (auto it = tokens.map_pos_to_media.begin(); it != tokens.map_pos_to_media.end(); ) { + auto chunk = tokens.map_pos_to_media[it->first].get(); + mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk)); + map_pos_to_media[start_pos+it->first] = std::move(new_chunk); + } + } + } + // for compatibility with context shift and prompt truncation void insert(const llama_tokens & inp_tokens) { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled @@ -1356,3 +1316,137 @@ static std::string fnv_hash(const uint8_t * data, size_t len) { } return std::to_string(hash); } + + +// format rerank task: [BOS]query[EOS][SEP]doc[EOS]. +static server_tokens format_rerank(const struct llama_vocab * vocab, server_tokens & query, server_tokens & doc) { + server_tokens result = {}; + + // Get EOS token - use SEP token as fallback if EOS is not available + llama_token eos_token = llama_vocab_eos(vocab); + if (eos_token == LLAMA_TOKEN_NULL) { + eos_token = llama_vocab_sep(vocab); + } + if (llama_vocab_get_add_bos(vocab)) { + result.push_back(llama_vocab_bos(vocab)); + } + result.push_back(query); + if (llama_vocab_get_add_eos(vocab)) { + result.push_back(eos_token); + } + if (llama_vocab_get_add_sep(vocab)) { + result.push_back(llama_vocab_sep(vocab)); + } + result.push_back(doc); + if (llama_vocab_get_add_eos(vocab)) { + result.push_back(eos_token); + } + return result; +} + + +static server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector files) { + mtmd::bitmaps bitmaps; + for (auto & file : files) { + mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size())); + if (!bmp.ptr) { + throw std::runtime_error("Failed to load image or audio file"); + } + // calculate bitmap hash (for KV caching) + std::string hash = fnv_hash(bmp.data(), bmp.n_bytes()); + bmp.set_id(hash.c_str()); + bitmaps.entries.push_back(std::move(bmp)); + } + // process prompt + std::vector inputs; + // multimodal + mtmd_input_text inp_txt = { + prompt.c_str(), + /* add_special */ true, + /* parse_special */ true, + }; + mtmd::input_chunks chunks(mtmd_input_chunks_init()); + auto bitmaps_c_ptr = bitmaps.c_ptr(); + int32_t tokenized = mtmd_tokenize(mctx, + chunks.ptr.get(), + &inp_txt, + bitmaps_c_ptr.data(), + bitmaps_c_ptr.size()); + if (tokenized != 0) { + throw std::runtime_error("Failed to tokenize prompt"); + } + auto result = server_tokens(chunks, true); + return result; +} + +/** + * break the input "prompt" object into multiple prompt if needed, then tokenize them + * use tokenize_input_prompts() if the input could be an array. + * this supports these cases: + * - "prompt": "string" + * - "prompt": [12, 34, 56] + * - "prompt": [12, 34, "string", 56, 78] + * - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] } + */ +static server_tokens tokenize_input_subprompt(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) { + constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string"; + constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data"; + const bool has_mtmd = mctx != nullptr; + if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { + // string or mixed + llama_tokens tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special); + return server_tokens(tmp, false); + } else if (json_is_array_of_numbers(json_prompt)) { + // array of tokens + llama_tokens tmp = json_prompt.get(); + return server_tokens(tmp, false); + } else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) { + // JSON object with prompt key. + if (json_prompt.contains(JSON_MTMD_DATA_KEY)) { + if (!has_mtmd) + throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests."); + + // JSON object with prompt and multimodal key. + std::vector files; + for (const auto & entry : json_prompt.at(JSON_MTMD_DATA_KEY)) { + files.push_back(base64_decode(entry)); + } + return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files); + } else { + // Not multimodal, but contains a subobject. + llama_tokens tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special); + return server_tokens(tmp, false); + } + } else { + throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens."); + } +} + +/** + * break the input "prompt" object into multiple prompt if needed, then tokenize them + * this supports these cases: + * - "prompt": "string" + * - "prompt": [12, 34, 56] + * - "prompt": [12, 34, "string", 56, 78] + * - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] } + * and multiple prompts (multi-tasks): + * - "prompt": ["string1", "string2"] + * - "prompt": ["string1", [12, 34, 56]] + * - "prompt": [[12, 34, 56], [78, 90, 12]] + * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}] + */ +static std::vector tokenize_input_prompts(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) { + std::vector result; + if (json_prompt.is_array() && !json_is_array_with_tokens(json_prompt)) { + result.reserve(json_prompt.size()); + for (const auto & p : json_prompt) { + result.push_back(tokenize_input_subprompt(vocab, mctx, p,add_special, parse_special)); + } + } else { + result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special)); + } + if (result.empty()) { + throw std::runtime_error("\"prompt\" must not be empty"); + } + return result; +}