diff --git a/src/strconv/dragonbox.go b/src/strconv/dragonbox.go new file mode 100644 index 00000000000000..c3a647952f6842 --- /dev/null +++ b/src/strconv/dragonbox.go @@ -0,0 +1,1514 @@ +// Copyright 2025 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package strconv + +import ( + "math/bits" +) + +// Binary to decimal conversion using the Dragonbox algorithm by Junekey Jeon. +// Junekey Jeon has agreed to license this port under a BSD-style license, +// specifically for inclusion in the Go source code: +// https://github.com/jk-jeon/dragonbox/issues/75 +// +// Fixed precision format is not supported by the Dragonbox algorithm +// so we continue to use Ryū-printf for this purpose. +// See https://github.com/jk-jeon/dragonbox/issues/38 for more details. +// +// For binary to decimal rounding, uses round to nearest, tie to even. +// For decimal to binary rounding, assumes round to nearest, tie to even. +// +// The original paper by Junekey Jeon can be found at: +// https://github.com/jk-jeon/dragonbox/blob/d5dc40ae6a3f1a4559cda816738df2d6255b4e24/other_files/Dragonbox.pdf +// +// The reference implementation in C++ by Junekey Jeon can be found at: +// https://github.com/jk-jeon/dragonbox/blob/6c7c925b571d54486b9ffae8d9d18a822801cbda/subproject/simple/include/simple_dragonbox.h + +// dragonboxFtoa computes the decimal significand and exponent +// from the binary significand and exponent using the Dragonbox algorithm +// and formats the decimal floating point number in d. +func dragonboxFtoa(d *decimalSlice, mant uint64, exp int, denorm bool, bitSize int) { + if bitSize == 32 { + dragonboxFtoa32(d, uint32(mant), exp, denorm) + return + } + dragonboxFtoa64(d, mant, exp, denorm) +} + +func dragonboxFtoa64(d *decimalSlice, mant uint64, exp int, denorm bool) { + // A floating point number w is represented as w = (-1)^σ * Fw * 2^Ew, where: + // σ is the sign of w. + // Fw is the significand of w. + // Ew is the exponent of w. + // + // fc = Fw * 2^p is the adjusted significand of w. + // e = Ew - p is the adjusted exponent of w. + // where p is the number of significand bits. + // mant and exp should be adjusted before the call + // so that mant = fc and exp = e. + // + // I ⊆ ℝ is the interval such that each r ∈ I rounds to w + // during decimal to binary conversion using round to nearest, tie to even. + // Δ is length of the interval I. + // wL = (w^- + w) / 2 is the left endpoint of the interval I, and; + // wR = (w + w^+) / 2 is right endpoint of the interval I, where: + // w^+ is the smallest floating point number larger than w + // w^- is the largest floating point number smaller than w + + // Short path (denormalized and zero mantissa) + if mant == 0 { + d.nd, d.dp = 0, 0 + return + } + + if mant == (1< 0 prior to the division of D by 10^κ (see below). + s-- // s̃ = s - 1 if r = 0 + r = largeDivisor // r̃ = 10^(κ+1) if r = 0 + } else if r == deltai { + // r = δ^(i) in this branch. + // If I = [wL, wR], r = δ^(i) and z^(f) ≤ δ^(f) implies r+z^(f) ≤ δ. + // If I = (wL, wR), r = δ^(i) and z^(f) < δ^(f) implies r+z^(f) < δ. + + // Check z^(f) < δ^(f) efficiently by the parity of x^(i) (page 15): + // z^(f) < δ^(f) iff x^(i) is odd + // z^(f) ≤ δ^(f) iff x^(i) is odd or z^(f) = δ^(f) + // iff x^(i) is odd or x^(f) = 0 + xiParity, xIsInt := computeMulParity64(uint64(mant*2-1), phi, beta) + if xiParity || (xIsInt && mant%2 == 0) { + mant, exp := removeTrailingZeros64(s, minusK+kappa+1) + dragonboxDigits64(d, mant, exp) + return + } + // r ≠ 0 at this point since r = δ^(i) and δ^(i) ≥ 10^κ ≠ 0. + // Thus we let s̃ = s and r̃ = r (page 17). + } + + // Algorithm 5.4 (Skeleton of Dragonbox, part 2) + // Find elements in I ∩ 10^(-k0)ℤ. + // I ∩ 10^(-k0)ℤ is guaranteed to be non-empty (proposition 3.1). + // Since I ∩ 10^(-k0+1)ℤ must be empty at this point, + // any element in I ∩ 10^(-k0)ℤ has the smallest number of + // decimal significand digits (corollary 3.3). + + // Compute D = ⌊r̃+(10^κ/2)-ε^(i)⌋ where ε = δ/2 (page 17). + // D is a part of the floor term in y^(ru) (see below). + D := uint32(r + (smallDivisor / 2) - (deltai / 2)) + + // Divide D by 10^κ. + // This should be optimized by the compiler using bit tricks. + t := uint32(D / smallDivisor) // t is the quotient + rho := D - t*smallDivisor // ρ is the remainder + + // Compute y^(ru) = ⌊y/10^κ+1/2⌋ + // = 10s̃ + ⌊(D+(z^(f)-ε^(f)))/10^κ⌋ + // = 10s̃+t + ⌊(ρ+(z^(f)-ε^(f)))/10^κ⌋ + // assuming the residue term ⌊(ρ+(z^(f)-ε^(f)))/10^κ⌋ is zero for now. + yru := 10*s + uint64(t) // y^(ru) = 10s̃+t + + if rho == 0 { + // The residue term ⌊(ρ+(z^(f)-ε^(f)))/10^κ⌋ in y^(ru) is non-zero + // (more precisely, equals -1) if ρ = 0 and z^(f) < ε^(f). + + // Check z^(f) < ε^(f) efficiently by the parity of y^(i) (page 17): + // z^(f) < ε^(f) iff parity of y^(i) ≠ parity of z^(i) - ε^(i) + // iff parity of y^(i) ≠ parity of (D - (10^κ)/2) + // Note that parity of z^(i) - ε^(i) = parity of (D-(10^κ)/2) because: + // 1. D - (10^κ)/2 = r̃ − ε^(i), and; + // 2. parity of r̃ = parity of z^(i) (since z^(i) = 10s̃ + r̃ = 2*5s̃ + r̃). + yiParity, yIsInt := computeMulParity64(mant*2, phi, beta) + yiParityApprox := (D-smallDivisor/2)%2 != 0 + if yiParity != yiParityApprox { + yru-- // y^(ru) = 10s̃+t-1 + } else { + // Check if y^(ru) = y^(rd) (page 17). + // Note that y^(ru) = ⌊y/10^κ+1/2⌋ and y^(rd) = ⌈y/10^κ-1/2⌉. + // y^(ru) = y^(rd)+1 iff the fractional part of y/10^κ is 1/2 + // iff ρ = 0 and z^(f) - ε^(f) = 0 + // iff ρ = 0 and y is an integer + // y^(ru) = y^(rd) otherwise + // A tie happens between y^(ru) and y^(rd) if y^(ru) = y^(rd)+1, + // so we need to break the tie according to + // the binary to decimal rounding mode (round to nearest, tie to even). + if yIsInt && yru%2 != 0 { + yru-- // y^(rd) = y^(ru)-1 + } + // Since a tie only happens if z^(f) - ε^(f) = 0, + // it does not happen in the other branch where z^(f) < ε^(f). + } + } + dragonboxDigits64(d, yru, minusK+kappa) +} + +// Almost identical to dragonboxFtoa64. +// This is kept as a separate copy to minimize runtime overhead. +func dragonboxFtoa32(d *decimalSlice, mant uint32, exp int, denorm bool) { + if mant == 0 { + d.nd, d.dp = 0, 0 + return + } + + if mant == (1<= 10 { + // block has 2 digits. + print2Digits(buf, 0, n) + d.nd += 2 + } else { + // block has 1 digit. + buf[0] = byte(n + '0') + d.nd += 1 + } + } else if block < 10_000 { + // block has 3 or 4 digits. + // 42949673 = ⌈2^32 / 100⌉ + prod := uint64(block) * 42949673 + n := int(prod >> 32) + if n >= 10 { + // block has 4 digits. + print2Digits(buf, 0, n) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+2, int(prod>>32)) + d.nd += 4 + } else { + // block has 3 digits. + buf[0] = byte(n + '0') + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+1, int(prod>>32)) + d.nd += 3 + } + } else if block < 1_000_000 { + // block has 5 or 6 digits. + // 429497 = ⌈2^32 / 10,000⌉ + prod := uint64(block) * 429497 + n := int(prod >> 32) + if n >= 10 { + // block has 6 digits. + print2Digits(buf, 0, n) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+2, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 2+2, int(prod>>32)) + d.nd += 6 + } else { + // block has 5 digits. + buf[0] = byte(n + '0') + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 2+1, int(prod>>32)) + d.nd += 5 + } + } else if block < 100_000_000 { + // block has 7 or 8 digits. + // 281474978 = ⌈2^48 / 1,000,000⌉ + 1 + prod := uint64(block) * 281474978 + prod >>= 16 + n := int(prod >> 32) + if n >= 10 { + // block has 8 digits. + print2Digits(buf, 0, n) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+2, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 2+2, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 4+2, int(prod>>32)) + d.nd += 8 + } else { + // block has 7 digits. + buf[0] = byte(n + '0') + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 2+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 4+1, int(prod>>32)) + d.nd += 7 + } + } else { + // block has 9 digits. + // 1441151882 = ⌈2^57 / 100,000,000⌉ + 1 + prod := uint64(block) * 1441151882 + prod >>= 25 + n := int(prod >> 32) + buf[0] = byte(n + '0') + // Repeated manually since the current compiler fails to + // unroll the loop with constant number of iterations. + // The calls to print2Digits should be inlined automatically. + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 0+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 2+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 4+1, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, 6+1, int(prod>>32)) + // Written 9 digits. + d.nd += 9 + } +} + +// print9Digits emits at most 8 decimal digits of block in d. +func print8Digits(d *decimalSlice, block uint32) { + // block has 8 digits. + buf, ofs := d.d, d.nd + // 281474978 = ⌈2^48 / 1,000,000⌉ + 1 + prod := uint64(block) * 281474978 + prod >>= 16 + prod++ + // Offset the index by d.nd since this may be called after print9Digits. + print2Digits(buf, ofs+0, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, ofs+0+2, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, ofs+2+2, int(prod>>32)) + prod = uint64(uint32(prod)) * 100 + print2Digits(buf, ofs+4+2, int(prod>>32)) + d.nd += 8 +} + +// print2Digits emits 2 decimal digits of n in buf starting at i. +// n should be in the range [0, 99]. +func print2Digits(buf []byte, i int, n int) { + buf[i+0] = smallsString[n*2+0] + buf[i+1] = smallsString[n*2+1] +} + +// uint128 represents 128-bit integer as a pair of high/low 64 bits. +type uint128 struct { + hi, lo uint64 +} + +// uadd128 returns the full 128 bits of u + n. +func uadd128(u uint128, n uint64) uint128 { + sum := uint64(u.lo + n) + // Check if lo is wrapped around. + if sum < u.lo { + u.hi++ + } + u.lo = sum + return u +} + +// umul64 returns the full 64 bits of x * y. +func umul64(x, y uint32) uint64 { + return uint64(x) * uint64(y) +} + +// umul96Upper64 returns the upper 64 bits (out of 96 bits) of x * y. +func umul96Upper64(x uint32, y uint64) uint64 { + yh := uint32(y >> 32) + yl := uint32(y) + + xyh := umul64(x, yh) + xyl := umul64(x, yl) + + return xyh + (xyl >> 32) +} + +// umul96Lower64 returns the lower 64 bits (out of 96 bits) of x * y. +func umul96Lower64(x uint32, y uint64) uint64 { + return uint64(uint64(x) * y) +} + +// umul128 returns the full 128 bits of x * y. +func umul128(x, y uint64) uint128 { + a := uint32(x >> 32) + b := uint32(x) + c := uint32(y >> 32) + d := uint32(y) + + ac := umul64(a, c) + bc := umul64(b, c) + ad := umul64(a, d) + bd := umul64(b, d) + + intermediate := uint64(bd>>32) + uint64(uint32(ad)) + uint64(uint32(bc)) + + hi := ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32) + lo := (intermediate << 32) + uint64(uint32(bd)) + return uint128{hi, lo} +} + +// umul128Upper64 returns the upper 64 bits (out of 128 bits) of x * y. +func umul128Upper64(x, y uint64) uint64 { + a := uint32(x >> 32) + b := uint32(x) + c := uint32(y >> 32) + d := uint32(y) + + ac := umul64(a, c) + bc := umul64(b, c) + ad := umul64(a, d) + bd := umul64(b, d) + + intermediate := (bd >> 32) + uint64(uint32(ad)) + uint64(uint32(bc)) + + return ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32) +} + +// umul192Upper128 returns the upper 128 bits (out of 192 bits) of x * y. +func umul192Upper128(x uint64, y uint128) uint128 { + r := umul128(x, y.hi) + t := umul128Upper64(x, y.lo) + return uadd128(r, t) +} + +// umul192Lower128 returns the lower 128 bits (out of 192 bits) of x * y. +func umul192Lower128(x uint64, y uint128) uint128 { + high := x * y.hi + highLow := umul128(x, y.lo) + return uint128{uint64(high + highLow.hi), highLow.lo} +} + +// computeMul64 computes x^(i), y^(i), z^(i) +// from the precomputed value of φ̃k for float64 +// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1). +func computeMul64(u uint64, phi uint128) (intPart uint64, isInt bool) { + r := umul192Upper128(u, phi) + intPart = r.hi + isInt = r.lo == 0 + return +} + +// computeMul64 computes x^(i), y^(i), z^(i) +// from the precomputed value of φ̃k for float32 +// and also checks if x^(f), y^(f), z^(f) == 0 (section 5.2.1). +func computeMul32(u uint32, phi uint64) (intPart uint32, isInt bool) { + r := umul96Upper64(u, phi) + intPart = uint32(r >> 32) + isInt = uint32(r) == 0 + return +} + +// computeMul64 computes only the parity of x^(i), y^(i), z^(i) +// from the precomputed value of φ̃k for float64 +// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1). +func computeMulParity64(mant2 uint64, phi uint128, beta int) (parity bool, isInt bool) { + r := umul192Lower128(mant2, phi) + parity = ((r.hi >> (64 - beta)) & 1) != 0 + isInt = ((uint64(r.hi << beta)) | (r.lo >> (64 - beta))) == 0 + return +} + +// computeMul64 computes only the parity of x^(i), y^(i), z^(i) +// from the precomputed value of φ̃k for float32 +// and also checks if x^(f), y^(f), z^(f) = 0 (section 5.2.1). +func computeMulParity32(mant2 uint32, phi uint64, beta int) (parity bool, isInt bool) { + r := umul96Lower64(mant2, phi) + parity = ((r >> (64 - beta)) & 1) != 0 + isInt = uint32(r>>(32-beta)) == 0 + return +} + +// computeDelta64 computes δ^(i) from the precomputed value of φ̃k for float64. +func computeDelta64(phi uint128, beta int) uint32 { + return uint32(phi.hi >> (cacheBits64/2 - 1 - beta)) +} + +// computeDelta64 computes δ^(i) from the precomputed value of φ̃k for float32. +func computeDelta32(phi uint64, beta int) uint32 { + return uint32(phi >> (cacheBits32 - 1 - beta)) +} + +// floorLog10Pow2 computes ⌊log10(2^e)⌋ = ⌊e*log10(2)⌋ (section 6.1). +func floorLog10Pow2(e int) int { + // e should be in the range [-2620, 2620]. + return (e * 315653) >> 20 +} + +// floorLog2Pow10 computes ⌊log2(10^e)⌋ = ⌊e*log2(10)⌋ (section 6.2). +func floorLog2Pow10(e int) int { + // e should be in the range [-1233, 1233]. + // The formula itself holds on [-4003, 4003], + // but restricted to avoid overflow. + return (e * 1741647) >> 19 +} + +// floorLog10Pow2MinusLog10_4Over3 computes +// ⌊e*log10(2)-log10(4/3)⌋ = ⌊log10(2^e)-log10(4/3)⌋ (section 6.3). +func floorLog10Pow2MinusLog10_4Over3(e int) int { + // e should be in the range [-2985, 2936]. + return (e*631305 - 261663) >> 21 +} + +const ( + cacheBits64 = 128 // Q = 2*q = 128 for float64. + cacheBits32 = 64 // Q = 2*q = 64 for float32. + mantBits64 = 52 // p = 52 for float64. + mantBits32 = 23 // p = 23 for float32. +) + +// computeLeftEndpoint64 computes integer part of the left endpoint x. +func computeLeftEndpoint64(phi uint128, beta int) uint64 { + return (phi.hi - (phi.hi >> (mantBits64 + 2))) >> + (cacheBits64/2 - mantBits64 - 1 - beta) +} + +// computeLeftEndpoint32 computes integer part of the left endpoint x. +func computeLeftEndpoint32(phi uint64, beta int) uint32 { + return uint32((phi - (phi >> (mantBits32 + 2))) >> + (cacheBits32 - mantBits32 - 1 - beta)) +} + +// computeRightEndpoint64 computes integer part of the right endpoint z. +func computeRightEndpoint64(phi uint128, beta int) uint64 { + return (phi.hi + (phi.hi >> (mantBits64 + 1))) >> + (cacheBits64/2 - mantBits64 - 1 - beta) +} + +// computeRightEndpoint32 computes integer part of the right endpoint z. +func computeRightEndpoint32(phi uint64, beta int) uint32 { + return uint32((phi + (phi >> (mantBits32 + 1))) >> + (cacheBits32 - mantBits32 - 1 - beta)) +} + +// computeRoundUp64 computes the round up of y (i.e., y^(ru)). +func computeRoundUp64(phi uint128, beta int) uint64 { + return (phi.hi>>(cacheBits64/2-mantBits64-2-beta) + 1) / 2 +} + +// computeRoundUp32 computes the round up of y (i.e., y^(ru)). +func computeRoundUp32(phi uint64, beta int) uint32 { + return uint32(phi>>(cacheBits32-mantBits32-2-beta)+1) / 2 +} + +// removeTrailingZeros64 removes trailing zeros in decimal digits. +// There are at most 15 trailing zeros for float64 (page 16). +func removeTrailingZeros64(mant uint64, exp int) (uint64, int) { + r := bits.RotateLeft64(mant*28999941890838049, -8) + b := r < 184467440738 + s := 0 + if b { // TODO: Make this branchless if necessary. + s++ + mant = r + } + + r = bits.RotateLeft64(mant*182622766329724561, -4) + b = r < 1844674407370956 + s = s * 2 + if b { + s++ + mant = r + } + + r = bits.RotateLeft64(mant*10330176681277348905, -2) + b = r < 184467440737095517 + s = s * 2 + if b { + s++ + mant = r + } + + r = bits.RotateLeft64(mant*14757395258967641293, -1) + b = r < 1844674407370955162 + s = s * 2 + if b { + s++ + mant = r + } + + exp += s + return mant, exp +} + +// removeTrailingZeros32 removes trailing zeros in decimal digits. +// There are at most 7 trailing zeros for float32 (page 16). +func removeTrailingZeros32(mant uint32, exp int) (uint32, int) { + r := bits.RotateLeft32(mant*184254097, -4) + b := r < 429497 + s := 0 + if b { // TODO: Make this branchless if necessary. + s++ + mant = r + } + + r = bits.RotateLeft32(mant*42949673, -2) + b = r < 42949673 + s = s * 2 + if b { + s++ + mant = r + } + + r = bits.RotateLeft32(mant*1288490189, -1) + b = r < 429496730 + s = s * 2 + if b { + s++ + mant = r + } + + exp += s + return mant, exp +} + +const ( + cacheMinK64 = -292 // k ∈ [-292, 326] for float64 (section 6.2). + cacheMinK32 = -31 // k ∈ [-31, 46] for float32 (section 6.2). +) + +// getCache64 gets the precomputed value of φ̃̃k for float64. +func getCache64(k int) uint128 { + return cache64[k-cacheMinK64] +} + +// getCache32 gets the precomputed value of φ̃̃k for float32. +func getCache32(k int) uint64 { + return cache32[k-cacheMinK32] +} + +// The precomputed table of φ̃̃k for float64. +// Note that φ̃̃k = ⌈φk⌉ and φk = 10^k*2^(-e_k), +// where e_k is the unique integer satisfying 2^(128-1) ≤ φk < 2^(128). +// +// φ̃̃k is chosen to satisfy ⌊n*2^(e-1)*10^k⌋ = ⌊2^β*n*φ̃̃k/2^128⌋ +// such that expressions of the form ⌊n*2^(e-1)*10^k⌋ +// (e.g., x^(i), y^(i), z^(i) and δ^(i)) +// can be computed efficiently using bit shifts and multiplications only. +var cache64 = [619]uint128{ + {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b}, + {0x9faacf3df73609b1, 0x77b191618c54e9ad}, + {0xc795830d75038c1d, 0xd59df5b9ef6a2418}, + {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e}, + {0x9becce62836ac577, 0x4ee367f9430aec33}, + {0xc2e801fb244576d5, 0x229c41f793cda740}, + {0xf3a20279ed56d48a, 0x6b43527578c11110}, + {0x9845418c345644d6, 0x830a13896b78aaaa}, + {0xbe5691ef416bd60c, 0x23cc986bc656d554}, + {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9}, + {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa}, + {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54}, + {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69}, + {0x91376c36d99995be, 0x23100809b9c21fa2}, + {0xb58547448ffffb2d, 0xabd40a0c2832a78b}, + {0xe2e69915b3fff9f9, 0x16c90c8f323f516d}, + {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4}, + {0xb1442798f49ffb4a, 0x99cd11cfdf41779d}, + {0xdd95317f31c7fa1d, 0x40405643d711d584}, + {0x8a7d3eef7f1cfc52, 0x482835ea666b2573}, + {0xad1c8eab5ee43b66, 0xda3243650005eed0}, + {0xd863b256369d4a40, 0x90bed43e40076a83}, + {0x873e4f75e2224e68, 0x5a7744a6e804a292}, + {0xa90de3535aaae202, 0x711515d0a205cb37}, + {0xd3515c2831559a83, 0x0d5a5b44ca873e04}, + {0x8412d9991ed58091, 0xe858790afe9486c3}, + {0xa5178fff668ae0b6, 0x626e974dbe39a873}, + {0xce5d73ff402d98e3, 0xfb0a3d212dc81290}, + {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a}, + {0xa139029f6a239f72, 0x1c1fffc1ebc44e81}, + {0xc987434744ac874e, 0xa327ffb266b56221}, + {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9}, + {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa}, + {0xc4ce17b399107c22, 0xcb550fb4384d21d4}, + {0xf6019da07f549b2b, 0x7e2a53a146606a49}, + {0x99c102844f94e0fb, 0x2eda7444cbfc426e}, + {0xc0314325637a1939, 0xfa911155fefb5309}, + {0xf03d93eebc589f88, 0x793555ab7eba27cb}, + {0x96267c7535b763b5, 0x4bc1558b2f3458df}, + {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17}, + {0xea9c227723ee8bcb, 0x465e15a979c1cadd}, + {0x92a1958a7675175f, 0x0bfacd89ec191eca}, + {0xb749faed14125d36, 0xcef980ec671f667c}, + {0xe51c79a85916f484, 0x82b7e12780e7401b}, + {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811}, + {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16}, + {0xdfbdcece67006ac9, 0x67a791e093e1d49b}, + {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1}, + {0xaecc49914078536d, 0x58fae9f773886e19}, + {0xda7f5bf590966848, 0xaf39a475506a899f}, + {0x888f99797a5e012d, 0x6d8406c952429604}, + {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84}, + {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65}, + {0x855c3be0a17fcd26, 0x5cf2eea09a550680}, + {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f}, + {0xd0601d8efc57b08b, 0xf13b94daf124da27}, + {0x823c12795db6ce57, 0x76c53d08d6b70859}, + {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f}, + {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a}, + {0xfe5d54150b090b02, 0xd3f93b35435d7c4d}, + {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0}, + {0xc6b8e9b0709f109a, 0x359ab6419ca1091c}, + {0xf867241c8cc6d4c0, 0xc30163d203c94b63}, + {0x9b407691d7fc44f8, 0x79e0de63425dcf1e}, + {0xc21094364dfb5636, 0x985915fc12f542e5}, + {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e}, + {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43}, + {0xbd8430bd08277231, 0x50c6ff782a838354}, + {0xece53cec4a314ebd, 0xa4f8bf5635246429}, + {0x940f4613ae5ed136, 0x871b7795e136be9a}, + {0xb913179899f68584, 0x28e2557b59846e40}, + {0xe757dd7ec07426e5, 0x331aeada2fe589d0}, + {0x9096ea6f3848984f, 0x3ff0d2c85def7622}, + {0xb4bca50b065abe63, 0x0fed077a756b53aa}, + {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895}, + {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d}, + {0xb080392cc4349dec, 0xbd8d794d96aacfb4}, + {0xdca04777f541c567, 0xecf0d7a0fc5583a1}, + {0x89e42caaf9491b60, 0xf41686c49db57245}, + {0xac5d37d5b79b6239, 0x311c2875c522ced6}, + {0xd77485cb25823ac7, 0x7d633293366b828c}, + {0x86a8d39ef77164bc, 0xae5dff9c02033198}, + {0xa8530886b54dbdeb, 0xd9f57f830283fdfd}, + {0xd267caa862a12d66, 0xd072df63c324fd7c}, + {0x8380dea93da4bc60, 0x4247cb9e59f71e6e}, + {0xa46116538d0deb78, 0x52d9be85f074e609}, + {0xcd795be870516656, 0x67902e276c921f8c}, + {0x806bd9714632dff6, 0x00ba1cd8a3db53b7}, + {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5}, + {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce}, + {0xfad2a4b13d1b5d6c, 0x796b805720085f82}, + {0x9cc3a6eec6311a63, 0xcbe3303674053bb1}, + {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d}, + {0xf4f1b4d515acb93b, 0xee92fb5515482d45}, + {0x991711052d8bf3c5, 0x751bdd152d4d1c4b}, + {0xbf5cd54678eef0b6, 0xd262d45a78a0635e}, + {0xef340a98172aace4, 0x86fb897116c87c35}, + {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1}, + {0xbae0a846d2195712, 0x8974836059cca10a}, + {0xe998d258869facd7, 0x2bd1a438703fc94c}, + {0x91ff83775423cc06, 0x7b6306a34627ddd0}, + {0xb67f6455292cbf08, 0x1a3bc84c17b1d543}, + {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94}, + {0x8e938662882af53e, 0x547eb47b7282ee9d}, + {0xb23867fb2a35b28d, 0xe99e619a4f23aa44}, + {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5}, + {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05}, + {0xae0b158b4738705e, 0x9624ab50b148d446}, + {0xd98ddaee19068c76, 0x3badd624dd9b0958}, + {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7}, + {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d}, + {0xd47487cc8470652b, 0x7647c32000696720}, + {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074}, + {0xa5fb0a17c777cf09, 0xf468107100525891}, + {0xcf79cc9db955c2cc, 0x7182148d4066eeb5}, + {0x81ac1fe293d599bf, 0xc6f14cd848405531}, + {0xa21727db38cb002f, 0xb8ada00e5a506a7d}, + {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d}, + {0xfd442e4688bd304a, 0x908f4a166d1da664}, + {0x9e4a9cec15763e2e, 0x9a598e4e043287ff}, + {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe}, + {0xf7549530e188c128, 0xd12bee59e68ef47d}, + {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf}, + {0xc13a148e3032d6e7, 0xe36a52363c1faf02}, + {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2}, + {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba}, + {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8}, + {0xebdf661791d60f56, 0x111b495b3464ad22}, + {0x936b9fcebb25c995, 0xcab10dd900beec35}, + {0xb84687c269ef3bfb, 0x3d5d514f40eea743}, + {0xe65829b3046b0afa, 0x0cb4a5a3112a5113}, + {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac}, + {0xb3f4e093db73a093, 0x59ed216765690f57}, + {0xe0f218b8d25088b8, 0x306869c13ec3532d}, + {0x8c974f7383725573, 0x1e414218c73a13fc}, + {0xafbd2350644eeacf, 0xe5d1929ef90898fb}, + {0xdbac6c247d62a583, 0xdf45f746b74abf3a}, + {0x894bc396ce5da772, 0x6b8bba8c328eb784}, + {0xab9eb47c81f5114f, 0x066ea92f3f326565}, + {0xd686619ba27255a2, 0xc80a537b0efefebe}, + {0x8613fd0145877585, 0xbd06742ce95f5f37}, + {0xa798fc4196e952e7, 0x2c48113823b73705}, + {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6}, + {0x82ef85133de648c4, 0x9a984d73dbe722fc}, + {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb}, + {0xcc963fee10b7d1b3, 0x318df905079926a9}, + {0xffbbcfe994e5c61f, 0xfdf17746497f7053}, + {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634}, + {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1}, + {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1}, + {0x9c1661a651213e2d, 0x06bea10ca65c084f}, + {0xc31bfa0fe5698db8, 0x486e494fcff30a63}, + {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb}, + {0x986ddb5c6b3a76b7, 0xf89629465a75e01d}, + {0xbe89523386091465, 0xf6bbb397f1135824}, + {0xee2ba6c0678b597f, 0x746aa07ded582e2d}, + {0x94db483840b717ef, 0xa8c2a44eb4571cdd}, + {0xba121a4650e4ddeb, 0x92f34d62616ce414}, + {0xe896a0d7e51e1566, 0x77b020baf9c81d18}, + {0x915e2486ef32cd60, 0x0ace1474dc1d122f}, + {0xb5b5ada8aaff80b8, 0x0d819992132456bb}, + {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a}, + {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2}, + {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3}, + {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf}, + {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c}, + {0xad4ab7112eb3929d, 0x86c16c98d2c953c7}, + {0xd89d64d57a607744, 0xe871c7bf077ba8b8}, + {0x87625f056c7c4a8b, 0x11471cd764ad4973}, + {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0}, + {0xd389b47879823479, 0x4aff1d108d4ec2c4}, + {0x843610cb4bf160cb, 0xcedf722a585139bb}, + {0xa54394fe1eedb8fe, 0xc2974eb4ee658829}, + {0xce947a3da6a9273e, 0x733d226229feea33}, + {0x811ccc668829b887, 0x0806357d5a3f5260}, + {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8}, + {0xc9bcff6034c13052, 0xfc89b393dd02f0b6}, + {0xfc2c3f3841f17c67, 0xbbac2078d443ace3}, + {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e}, + {0xc5029163f384a931, 0x0a9e795e65d4df12}, + {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6}, + {0x99ea0196163fa42e, 0x504bced1bf8e4e46}, + {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7}, + {0xf07da27a82c37088, 0x5d767327bb4e5a4d}, + {0x964e858c91ba2655, 0x3a6a07f8d510f870}, + {0xbbe226efb628afea, 0x890489f70a55368c}, + {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f}, + {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e}, + {0xb77ada0617e3bbcb, 0x09ce6ebb40173745}, + {0xe55990879ddcaabd, 0xcc420a6a101d0516}, + {0x8f57fa54c2a9eab6, 0x9fa946824a12232e}, + {0xb32df8e9f3546564, 0x47939822dc96abfa}, + {0xdff9772470297ebd, 0x59787e2b93bc56f8}, + {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b}, + {0xaefae51477a06b03, 0xede622920b6b23f2}, + {0xdab99e59958885c4, 0xe95fab368e45ecee}, + {0x88b402f7fd75539b, 0x11dbcb0218ebb415}, + {0xaae103b5fcd2a881, 0xd652bdc29f26a11a}, + {0xd59944a37c0752a2, 0x4be76d3346f04960}, + {0x857fcae62d8493a5, 0x6f70a4400c562ddc}, + {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953}, + {0xd097ad07a71f26b2, 0x7e2000a41346a7a8}, + {0x825ecc24c873782f, 0x8ed400668c0c28c9}, + {0xa2f67f2dfa90563b, 0x728900802f0f32fb}, + {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba}, + {0xfea126b7d78186bc, 0xe2f610c84987bfa9}, + {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca}, + {0xc6ede63fa05d3143, 0x91503d1c79720dbc}, + {0xf8a95fcf88747d94, 0x75a44c6397ce912b}, + {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb}, + {0xc24452da229b021b, 0xfbe85badce996169}, + {0xf2d56790ab41c2a2, 0xfae27299423fb9c4}, + {0x97c560ba6b0919a5, 0xdccd879fc967d41b}, + {0xbdb6b8e905cb600f, 0x5400e987bbc1c921}, + {0xed246723473e3813, 0x290123e9aab23b69}, + {0x9436c0760c86e30b, 0xf9a0b6720aaf6522}, + {0xb94470938fa89bce, 0xf808e40e8d5b3e6a}, + {0xe7958cb87392c2c2, 0xb60b1d1230b20e05}, + {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3}, + {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4}, + {0xe2280b6c20dd5232, 0x25c6da63c38de1b1}, + {0x8d590723948a535f, 0x579c487e5a38ad0f}, + {0xb0af48ec79ace837, 0x2d835a9df0c6d852}, + {0xdcdb1b2798182244, 0xf8e431456cf88e66}, + {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900}, + {0xac8b2d36eed2dac5, 0xe272467e3d222f40}, + {0xd7adf884aa879177, 0x5b0ed81dcc6abb10}, + {0x86ccbb52ea94baea, 0x98e947129fc2b4ea}, + {0xa87fea27a539e9a5, 0x3f2398d747b36225}, + {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae}, + {0x83a3eeeef9153e89, 0x1953cf68300424ad}, + {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8}, + {0xcdb02555653131b6, 0x3792f412cb06794e}, + {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1}, + {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5}, + {0xc8de047564d20a8b, 0xf245825a5a445276}, + {0xfb158592be068d2e, 0xeed6e2f0f0d56713}, + {0x9ced737bb6c4183d, 0x55464dd69685606c}, + {0xc428d05aa4751e4c, 0xaa97e14c3c26b887}, + {0xf53304714d9265df, 0xd53dd99f4b3066a9}, + {0x993fe2c6d07b7fab, 0xe546a8038efe402a}, + {0xbf8fdb78849a5f96, 0xde98520472bdd034}, + {0xef73d256a5c0f77c, 0x963e66858f6d4441}, + {0x95a8637627989aad, 0xdde7001379a44aa9}, + {0xbb127c53b17ec159, 0x5560c018580d5d53}, + {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7}, + {0x9226712162ab070d, 0xcab3961304ca70e9}, + {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23}, + {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b}, + {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243}, + {0xb267ed1940f1c61c, 0x55f038b237591ed4}, + {0xdf01e85f912e37a3, 0x6b6c46dec52f6689}, + {0x8b61313bbabce2c6, 0x2323ac4b3b3da016}, + {0xae397d8aa96c1b77, 0xabec975e0a0d081b}, + {0xd9c7dced53c72255, 0x96e7bd358c904a22}, + {0x881cea14545c7575, 0x7e50d64177da2e55}, + {0xaa242499697392d2, 0xdde50bd1d5d0b9ea}, + {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865}, + {0x84ec3c97da624ab4, 0xbd5af13bef0b113f}, + {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f}, + {0xcfb11ead453994ba, 0x67de18eda5814af3}, + {0x81ceb32c4b43fcf4, 0x80eacf948770ced8}, + {0xa2425ff75e14fc31, 0xa1258379a94d028e}, + {0xcad2f7f5359a3b3e, 0x096ee45813a04331}, + {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd}, + {0x9e74d1b791e07e48, 0x775ea264cf55347e}, + {0xc612062576589dda, 0x95364afe032a819e}, + {0xf79687aed3eec551, 0x3a83ddbd83f52205}, + {0x9abe14cd44753b52, 0xc4926a9672793543}, + {0xc16d9a0095928a27, 0x75b7053c0f178294}, + {0xf1c90080baf72cb1, 0x5324c68b12dd6339}, + {0x971da05074da7bee, 0xd3f6fc16ebca5e04}, + {0xbce5086492111aea, 0x88f4bb1ca6bcf585}, + {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6}, + {0x9392ee8e921d5d07, 0x3aff322e62439fd0}, + {0xb877aa3236a4b449, 0x09befeb9fad487c3}, + {0xe69594bec44de15b, 0x4c2ebe687989a9b4}, + {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11}, + {0xb424dc35095cd80f, 0x538484c19ef38c95}, + {0xe12e13424bb40e13, 0x2865a5f206b06fba}, + {0x8cbccc096f5088cb, 0xf93f87b7442e45d4}, + {0xafebff0bcb24aafe, 0xf78f69a51539d749}, + {0xdbe6fecebdedd5be, 0xb573440e5a884d1c}, + {0x89705f4136b4a597, 0x31680a88f8953031}, + {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e}, + {0xd6bf94d5e57a42bc, 0x3d32907604691b4d}, + {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110}, + {0xa7c5ac471b478423, 0x0fcf80dc33721d54}, + {0xd1b71758e219652b, 0xd3c36113404ea4a9}, + {0x83126e978d4fdf3b, 0x645a1cac083126ea}, + {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4}, + {0xcccccccccccccccc, 0xcccccccccccccccd}, + {0x8000000000000000, 0x0000000000000000}, + {0xa000000000000000, 0x0000000000000000}, + {0xc800000000000000, 0x0000000000000000}, + {0xfa00000000000000, 0x0000000000000000}, + {0x9c40000000000000, 0x0000000000000000}, + {0xc350000000000000, 0x0000000000000000}, + {0xf424000000000000, 0x0000000000000000}, + {0x9896800000000000, 0x0000000000000000}, + {0xbebc200000000000, 0x0000000000000000}, + {0xee6b280000000000, 0x0000000000000000}, + {0x9502f90000000000, 0x0000000000000000}, + {0xba43b74000000000, 0x0000000000000000}, + {0xe8d4a51000000000, 0x0000000000000000}, + {0x9184e72a00000000, 0x0000000000000000}, + {0xb5e620f480000000, 0x0000000000000000}, + {0xe35fa931a0000000, 0x0000000000000000}, + {0x8e1bc9bf04000000, 0x0000000000000000}, + {0xb1a2bc2ec5000000, 0x0000000000000000}, + {0xde0b6b3a76400000, 0x0000000000000000}, + {0x8ac7230489e80000, 0x0000000000000000}, + {0xad78ebc5ac620000, 0x0000000000000000}, + {0xd8d726b7177a8000, 0x0000000000000000}, + {0x878678326eac9000, 0x0000000000000000}, + {0xa968163f0a57b400, 0x0000000000000000}, + {0xd3c21bcecceda100, 0x0000000000000000}, + {0x84595161401484a0, 0x0000000000000000}, + {0xa56fa5b99019a5c8, 0x0000000000000000}, + {0xcecb8f27f4200f3a, 0x0000000000000000}, + {0x813f3978f8940984, 0x4000000000000000}, + {0xa18f07d736b90be5, 0x5000000000000000}, + {0xc9f2c9cd04674ede, 0xa400000000000000}, + {0xfc6f7c4045812296, 0x4d00000000000000}, + {0x9dc5ada82b70b59d, 0xf020000000000000}, + {0xc5371912364ce305, 0x6c28000000000000}, + {0xf684df56c3e01bc6, 0xc732000000000000}, + {0x9a130b963a6c115c, 0x3c7f400000000000}, + {0xc097ce7bc90715b3, 0x4b9f100000000000}, + {0xf0bdc21abb48db20, 0x1e86d40000000000}, + {0x96769950b50d88f4, 0x1314448000000000}, + {0xbc143fa4e250eb31, 0x17d955a000000000}, + {0xeb194f8e1ae525fd, 0x5dcfab0800000000}, + {0x92efd1b8d0cf37be, 0x5aa1cae500000000}, + {0xb7abc627050305ad, 0xf14a3d9e40000000}, + {0xe596b7b0c643c719, 0x6d9ccd05d0000000}, + {0x8f7e32ce7bea5c6f, 0xe4820023a2000000}, + {0xb35dbf821ae4f38b, 0xdda2802c8a800000}, + {0xe0352f62a19e306e, 0xd50b2037ad200000}, + {0x8c213d9da502de45, 0x4526f422cc340000}, + {0xaf298d050e4395d6, 0x9670b12b7f410000}, + {0xdaf3f04651d47b4c, 0x3c0cdd765f114000}, + {0x88d8762bf324cd0f, 0xa5880a69fb6ac800}, + {0xab0e93b6efee0053, 0x8eea0d047a457a00}, + {0xd5d238a4abe98068, 0x72a4904598d6d880}, + {0x85a36366eb71f041, 0x47a6da2b7f864750}, + {0xa70c3c40a64e6c51, 0x999090b65f67d924}, + {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d}, + {0x82818f1281ed449f, 0xbff8f10e7a8921a5}, + {0xa321f2d7226895c7, 0xaff72d52192b6a0e}, + {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491}, + {0xfee50b7025c36a08, 0x02f236d04753d5b5}, + {0x9f4f2726179a2245, 0x01d762422c946591}, + {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6}, + {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3}, + {0x9b934c3b330c8577, 0x63cc55f49f88eb30}, + {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc}, + {0xf316271c7fc3908a, 0x8bef464e3945ef7b}, + {0x97edd871cfda3a56, 0x97758bf0e3cbb5ad}, + {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318}, + {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde}, + {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b}, + {0xb975d6b6ee39e436, 0xb3e2fd538e122b45}, + {0xe7d34c64a9c85d44, 0x60dbbca87196b617}, + {0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce}, + {0xb51d13aea4a488dd, 0x6babab6398bdbe42}, + {0xe264589a4dcdab14, 0xc696963c7eed2dd2}, + {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3}, + {0xb0de65388cc8ada8, 0x3b25a55f43294bcc}, + {0xdd15fe86affad912, 0x49ef0eb713f39ebf}, + {0x8a2dbf142dfcc7ab, 0x6e3569326c784338}, + {0xacb92ed9397bf996, 0x49c2c37f07965405}, + {0xd7e77a8f87daf7fb, 0xdc33745ec97be907}, + {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4}, + {0xa8acd7c0222311bc, 0xc40832ea0d68ce0d}, + {0xd2d80db02aabd62b, 0xf50a3fa490c30191}, + {0x83c7088e1aab65db, 0x792667c6da79e0fb}, + {0xa4b8cab1a1563f52, 0x577001b891185939}, + {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87}, + {0x80b05e5ac60b6178, 0x544f8158315b05b5}, + {0xa0dc75f1778e39d6, 0x696361ae3db1c722}, + {0xc913936dd571c84c, 0x03bc3a19cd1e38ea}, + {0xfb5878494ace3a5f, 0x04ab48a04065c724}, + {0x9d174b2dcec0e47b, 0x62eb0d64283f9c77}, + {0xc45d1df942711d9a, 0x3ba5d0bd324f8395}, + {0xf5746577930d6500, 0xca8f44ec7ee3647a}, + {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc}, + {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f}, + {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f}, + {0x95d04aee3b80ece5, 0xbba1f1d158724a13}, + {0xbb445da9ca61281f, 0x2a8a6e45ae8edc98}, + {0xea1575143cf97226, 0xf52d09d71a3293be}, + {0x924d692ca61be758, 0x593c2626705f9c57}, + {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d}, + {0xe498f455c38b997a, 0x0b6dfb9c0f956448}, + {0x8edf98b59a373fec, 0x4724bd4189bd5ead}, + {0xb2977ee300c50fe7, 0x58edec91ec2cb658}, + {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee}, + {0x8b865b215899f46c, 0xbd79e0d20082ee75}, + {0xae67f1e9aec07187, 0xecd8590680a3aa12}, + {0xda01ee641a708de9, 0xe80e6f4820cc9496}, + {0x884134fe908658b2, 0x3109058d147fdcde}, + {0xaa51823e34a7eede, 0xbd4b46f0599fd416}, + {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b}, + {0x850fadc09923329e, 0x03e2cf6bc604ddb1}, + {0xa6539930bf6bff45, 0x84db8346b786151d}, + {0xcfe87f7cef46ff16, 0xe612641865679a64}, + {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f}, + {0xa26da3999aef7749, 0xe3be5e330f38f09e}, + {0xcb090c8001ab551c, 0x5cadf5bfd3072cc6}, + {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7}, + {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb}, + {0xc646d63501a1511d, 0xb281e1fd541501b9}, + {0xf7d88bc24209a565, 0x1f225a7ca91a4227}, + {0x9ae757596946075f, 0x3375788de9b06959}, + {0xc1a12d2fc3978937, 0x0052d6b1641c83af}, + {0xf209787bb47d6b84, 0xc0678c5dbd23a49b}, + {0x9745eb4d50ce6332, 0xf840b7ba963646e1}, + {0xbd176620a501fbff, 0xb650e5a93bc3d899}, + {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf}, + {0x93ba47c980e98cdf, 0xc66f336c36b10138}, + {0xb8a8d9bbe123f017, 0xb80b0047445d4185}, + {0xe6d3102ad96cec1d, 0xa60dc059157491e6}, + {0x9043ea1ac7e41392, 0x87c89837ad68db30}, + {0xb454e4a179dd1877, 0x29babe4598c311fc}, + {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b}, + {0x8ce2529e2734bb1d, 0x1899e4a65f58660d}, + {0xb01ae745b101e9e4, 0x5ec05dcff72e7f90}, + {0xdc21a1171d42645d, 0x76707543f4fa1f74}, + {0x899504ae72497eba, 0x6a06494a791c53a9}, + {0xabfa45da0edbde69, 0x0487db9d17636893}, + {0xd6f8d7509292d603, 0x45a9d2845d3c42b7}, + {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3}, + {0xa7f26836f282b732, 0x8e6cac7768d7141f}, + {0xd1ef0244af2364ff, 0x3207d795430cd927}, + {0x8335616aed761f1f, 0x7f44e6bd49e807b9}, + {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7}, + {0xcd036837130890a1, 0x36dba887c37a8c10}, + {0x802221226be55a64, 0xc2494954da2c978a}, + {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d}, + {0xc83553c5c8965d3d, 0x6f92829494e5acc8}, + {0xfa42a8b73abbf48c, 0xcb772339ba1f17fa}, + {0x9c69a97284b578d7, 0xff2a760414536efc}, + {0xc38413cf25e2d70d, 0xfef5138519684abb}, + {0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a}, + {0x98bf2f79d5993802, 0xef2f773ffbd97a62}, + {0xbeeefb584aff8603, 0xaafb550ffacfd8fb}, + {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39}, + {0x952ab45cfa97a0b2, 0xdd945a747bf26184}, + {0xba756174393d88df, 0x94f971119aeef9e5}, + {0xe912b9d1478ceb17, 0x7a37cd5601aab85e}, + {0x91abb422ccb812ee, 0xac62e055c10ab33b}, + {0xb616a12b7fe617aa, 0x577b986b314d600a}, + {0xe39c49765fdf9d94, 0xed5a7e85fda0b80c}, + {0x8e41ade9fbebc27d, 0x14588f13be847308}, + {0xb1d219647ae6b31c, 0x596eb2d8ae258fc9}, + {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc}, + {0x8aec23d680043bee, 0x25de7bb9480d5855}, + {0xada72ccc20054ae9, 0xaf561aa79a10ae6b}, + {0xd910f7ff28069da4, 0x1b2ba1518094da05}, + {0x87aa9aff79042286, 0x90fb44d2f05d0843}, + {0xa99541bf57452b28, 0x353a1607ac744a54}, + {0xd3fa922f2d1675f2, 0x42889b8997915ce9}, + {0x847c9b5d7c2e09b7, 0x69956135febada12}, + {0xa59bc234db398c25, 0x43fab9837e699096}, + {0xcf02b2c21207ef2e, 0x94f967e45e03f4bc}, + {0x8161afb94b44f57d, 0x1d1be0eebac278f6}, + {0xa1ba1ba79e1632dc, 0x6462d92a69731733}, + {0xca28a291859bbf93, 0x7d7b8f7503cfdcff}, + {0xfcb2cb35e702af78, 0x5cda735244c3d43f}, + {0x9defbf01b061adab, 0x3a0888136afa64a8}, + {0xc56baec21c7a1916, 0x088aaa1845b8fdd1}, + {0xf6c69a72a3989f5b, 0x8aad549e57273d46}, + {0x9a3c2087a63f6399, 0x36ac54e2f678864c}, + {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de}, + {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6}, + {0x969eb7c47859e743, 0x9f644ae5a4b1b326}, + {0xbc4665b596706114, 0x873d5d9f0dde1fef}, + {0xeb57ff22fc0c7959, 0xa90cb506d155a7eb}, + {0x9316ff75dd87cbd8, 0x09a7f12442d588f3}, + {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30}, + {0xe5d3ef282a242e81, 0x8f1668c8a86da5fb}, + {0x8fa475791a569d10, 0xf96e017d694487bd}, + {0xb38d92d760ec4455, 0x37c981dcc395a9ad}, + {0xe070f78d3927556a, 0x85bbe253f47b1418}, + {0x8c469ab843b89562, 0x93956d7478ccec8f}, + {0xaf58416654a6babb, 0x387ac8d1970027b3}, + {0xdb2e51bfe9d0696a, 0x06997b05fcc0319f}, + {0x88fcf317f22241e2, 0x441fece3bdf81f04}, + {0xab3c2fddeeaad25a, 0xd527e81cad7626c4}, + {0xd60b3bd56a5586f1, 0x8a71e223d8d3b075}, + {0x85c7056562757456, 0xf6872d5667844e4a}, + {0xa738c6bebb12d16c, 0xb428f8ac016561dc}, + {0xd106f86e69d785c7, 0xe13336d701beba53}, + {0x82a45b450226b39c, 0xecc0024661173474}, + {0xa34d721642b06084, 0x27f002d7f95d0191}, + {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5}, + {0xff290242c83396ce, 0x7e67047175a15272}, + {0x9f79a169bd203e41, 0x0f0062c6e984d387}, + {0xc75809c42c684dd1, 0x52c07b78a3e60869}, + {0xf92e0c3537826145, 0xa7709a56ccdf8a83}, + {0x9bbcc7a142b17ccb, 0x88a66076400bb692}, + {0xc2abf989935ddbfe, 0x6acff893d00ea436}, + {0xf356f7ebf83552fe, 0x0583f6b8c4124d44}, + {0x98165af37b2153de, 0xc3727a337a8b704b}, + {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d}, + {0xeda2ee1c7064130c, 0x1162def06f79df74}, + {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9}, + {0xb9a74a0637ce2ee1, 0x6d953e2bd7173693}, + {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438}, + {0x910ab1d4db9914a0, 0x1d9c9892400a22a3}, + {0xb54d5e4a127f59c8, 0x2503beb6d00cab4c}, + {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e}, + {0x8da471a9de737e24, 0x5ceaecfed289e5d3}, + {0xb10d8e1456105dad, 0x7425a83e872c5f48}, + {0xdd50f1996b947518, 0xd12f124e28f7771a}, + {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70}, + {0xace73cbfdc0bfb7b, 0x636cc64d1001550c}, + {0xd8210befd30efa5a, 0x3c47f7e05401aa4f}, + {0x8714a775e3e95c78, 0x65acfaec34810a72}, + {0xa8d9d1535ce3b396, 0x7f1839a741a14d0e}, + {0xd31045a8341ca07c, 0x1ede48111209a051}, + {0x83ea2b892091e44d, 0x934aed0aab460433}, + {0xa4e4b66b68b65d60, 0xf81da84d56178540}, + {0xce1de40642e3f4b9, 0x36251260ab9d668f}, + {0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a}, + {0xa1075a24e4421730, 0xb24cf65b8612f820}, + {0xc94930ae1d529cfc, 0xdee033f26797b628}, + {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2}, + {0x9d412e0806e88aa5, 0x8e1f289560ee864f}, + {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3}, + {0xf5b5d7ec8acb58a2, 0xae10af696774b1dc}, + {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a}, + {0xbff610b0cc6edd3f, 0x17fd090a58d32af4}, + {0xeff394dcff8a948e, 0xddfc4b4cef07f5b1}, + {0x95f83d0a1fb69cd9, 0x4abdaf101564f98f}, + {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2}, + {0xea53df5fd18d5513, 0x84c86189216dc5ee}, + {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5}, + {0xb7118682dbb66a77, 0x3fbc8c33221dc2a2}, + {0xe4d5e82392a40515, 0x0fabaf3feaa5334b}, + {0x8f05b1163ba6832d, 0x29cb4d87f2a7400f}, + {0xb2c71d5bca9023f8, 0x743e20e9ef511013}, + {0xdf78e4b2bd342cf6, 0x914da9246b255417}, + {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f}, + {0xae9672aba3d0c320, 0xa184ac2473b529b2}, + {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f}, + {0x8865899617fb1871, 0x7e2fa67c7a658893}, + {0xaa7eebfb9df9de8d, 0xddbb901b98feeab8}, + {0xd51ea6fa85785631, 0x552a74227f3ea566}, + {0x8533285c936b35de, 0xd53a88958f872760}, + {0xa67ff273b8460356, 0x8a892abaf368f138}, + {0xd01fef10a657842c, 0x2d2b7569b0432d86}, + {0x8213f56a67f6b29b, 0x9c3b29620e29fc74}, + {0xa298f2c501f45f42, 0x8349f3ba91b47b90}, + {0xcb3f2f7642717713, 0x241c70a936219a74}, + {0xfe0efb53d30dd4d7, 0xed238cd383aa0111}, + {0x9ec95d1463e8a506, 0xf4363804324a40ab}, + {0xc67bb4597ce2ce48, 0xb143c6053edcd0d6}, + {0xf81aa16fdc1b81da, 0xdd94b7868e94050b}, + {0x9b10a4e5e9913128, 0xca7cf2b4191c8327}, + {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1}, + {0xf24a01a73cf2dccf, 0xbc633b39673c8ced}, + {0x976e41088617ca01, 0xd5be0503e085d814}, + {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19}, + {0xec9c459d51852ba2, 0xddf8e7d60ed1219f}, + {0x93e1ab8252f33b45, 0xcabb90e5c942b504}, + {0xb8da1662e7b00a17, 0x3d6a751f3b936244}, + {0xe7109bfba19c0c9d, 0x0cc512670a783ad5}, + {0x906a617d450187e2, 0x27fb2b80668b24c6}, + {0xb484f9dc9641e9da, 0xb1f9f660802dedf7}, + {0xe1a63853bbd26451, 0x5e7873f8a0396974}, + {0x8d07e33455637eb2, 0xdb0b487b6423e1e9}, + {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63}, + {0xdc5c5301c56b75f7, 0x7641a140cc7810fc}, + {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e}, + {0xac2820d9623bf429, 0x546345fa9fbdcd45}, + {0xd732290fbacaf133, 0xa97c177947ad4096}, + {0x867f59a9d4bed6c0, 0x49ed8eabcccc485e}, + {0xa81f301449ee8c70, 0x5c68f256bfff5a75}, + {0xd226fc195c6a2f8c, 0x73832eec6fff3112}, + {0x83585d8fd9c25db7, 0xc831fd53c5ff7eac}, + {0xa42e74f3d032f525, 0xba3e7ca8b77f5e56}, + {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec}, + {0x80444b5e7aa7cf85, 0x7980d163cf5b81b4}, + {0xa0555e361951c366, 0xd7e105bcc3326220}, + {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8}, + {0xfa856334878fc150, 0xb14f98f6f0feb952}, + {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4}, + {0xc3b8358109e84f07, 0x0a862f80ec4700c9}, + {0xf4a642e14c6262c8, 0xcd27bb612758c0fb}, + {0x98e7e9cccfbd7dbd, 0x8038d51cb897789d}, + {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4}, + {0xeeea5d5004981478, 0x1858ccfce06cac75}, + {0x95527a5202df0ccb, 0x0f37801e0c43ebc9}, + {0xbaa718e68396cffd, 0xd30560258f54e6bb}, + {0xe950df20247c83fd, 0x47c6b82ef32a206a}, + {0x91d28b7416cdd27e, 0x4cdc331d57fa5442}, + {0xb6472e511c81471d, 0xe0133fe4adf8e953}, + {0xe3d8f9e563a198e5, 0x58180fddd97723a7}, + {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649}, + {0xb201833b35d63f73, 0x2cd2cc6551e513db}, + {0xde81e40a034bcf4f, 0xf8077f7ea65e58d2}, + {0x8b112e86420f6191, 0xfb04afaf27faf783}, + {0xadd57a27d29339f6, 0x79c5db9af1f9b564}, + {0xd94ad8b1c7380874, 0x18375281ae7822bd}, + {0x87cec76f1c830548, 0x8f2293910d0b15b6}, + {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23}, + {0xd433179d9c8cb841, 0x5fa60692a46151ec}, + {0x849feec281d7f328, 0xdbc7c41ba6bcd334}, + {0xa5c7ea73224deff3, 0x12b9b522906c0801}, + {0xcf39e50feae16bef, 0xd768226b34870a01}, + {0x81842f29f2cce375, 0xe6a1158300d46641}, + {0xa1e53af46f801c53, 0x60495ae3c1097fd1}, + {0xca5e89b18b602368, 0x385bb19cb14bdfc5}, + {0xfcf62c1dee382c42, 0x46729e03dd9ed7b6}, + {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2}, + {0xc5a05277621be293, 0xc7098b7305241886}, + {0xf70867153aa2db38, 0xb8cbee4fc66d1ea8}, +} + +// The precomputed table of φ̃̃k for float32. +var cache32 = [78]uint64{ + 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, + 0xcad2f7f5359a3b3f, 0xfd87b5f28300ca0e, + 0x9e74d1b791e07e49, 0xc612062576589ddb, + 0xf79687aed3eec552, 0x9abe14cd44753b53, + 0xc16d9a0095928a28, 0xf1c90080baf72cb2, + 0x971da05074da7bef, 0xbce5086492111aeb, + 0xec1e4a7db69561a6, 0x9392ee8e921d5d08, + 0xb877aa3236a4b44a, 0xe69594bec44de15c, + 0x901d7cf73ab0acda, 0xb424dc35095cd810, + 0xe12e13424bb40e14, 0x8cbccc096f5088cc, + 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, + 0x89705f4136b4a598, 0xabcc77118461cefd, + 0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, + 0xa7c5ac471b478424, 0xd1b71758e219652c, + 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b, + 0xcccccccccccccccd, 0x8000000000000000, + 0xa000000000000000, 0xc800000000000000, + 0xfa00000000000000, 0x9c40000000000000, + 0xc350000000000000, 0xf424000000000000, + 0x9896800000000000, 0xbebc200000000000, + 0xee6b280000000000, 0x9502f90000000000, + 0xba43b74000000000, 0xe8d4a51000000000, + 0x9184e72a00000000, 0xb5e620f480000000, + 0xe35fa931a0000000, 0x8e1bc9bf04000000, + 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, + 0x8ac7230489e80000, 0xad78ebc5ac620000, + 0xd8d726b7177a8000, 0x878678326eac9000, + 0xa968163f0a57b400, 0xd3c21bcecceda100, + 0x84595161401484a0, 0xa56fa5b99019a5c8, + 0xcecb8f27f4200f3a, 0x813f3978f8940985, + 0xa18f07d736b90be6, 0xc9f2c9cd04674edf, + 0xfc6f7c4045812297, 0x9dc5ada82b70b59e, + 0xc5371912364ce306, 0xf684df56c3e01bc7, + 0x9a130b963a6c115d, 0xc097ce7bc90715b4, + 0xf0bdc21abb48db21, 0x96769950b50d88f5, + 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe, + 0x92efd1b8d0cf37bf, 0xb7abc627050305ae, + 0xe596b7b0c643c71a, 0x8f7e32ce7bea5c70, + 0xb35dbf821ae4f38c, 0xe0352f62a19e306f, +} diff --git a/src/strconv/ftoa.go b/src/strconv/ftoa.go index bfe26366e12c13..614a644c7a49e1 100644 --- a/src/strconv/ftoa.go +++ b/src/strconv/ftoa.go @@ -73,6 +73,7 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { neg := bits>>(flt.expbits+flt.mantbits) != 0 exp := int(bits>>flt.mantbits) & (1<= -exp { - mant >>= uint(-exp) - ryuDigits(d, mant, mant, mant, true, false) - return - } - ml, mc, mu, e2 := computeBounds(mant, exp, flt) - if e2 == 0 { - ryuDigits(d, ml, mc, mu, true, false) - return - } - // Find 10^q *larger* than 2^-e2 - q := mulByLog2Log10(-e2) + 1 - - // We are going to multiply by 10^q using 128-bit arithmetic. - // The exponent is the same for all 3 numbers. - var dl, dc, du uint64 - var dl0, dc0, du0 bool - if flt == &float32info { - var dl32, dc32, du32 uint32 - dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) - dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) - du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) - dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) - } else { - dl, _, dl0 = mult128bitPow10(ml, e2, q) - dc, _, dc0 = mult128bitPow10(mc, e2, q) - du, e2, du0 = mult128bitPow10(mu, e2, q) - } - if e2 >= 0 { - panic("not enough significant bits after mult128bitPow10") - } - // Is it an exact computation? - if q > 55 { - // Large positive powers of ten are not exact - dl0, dc0, du0 = false, false, false - } - if q < 0 && q >= -24 { - // Division by a power of ten may be exact. - // (note that 5^25 is a 59-bit number so division by 5^25 is never exact). - if divisibleByPower5(ml, -q) { - dl0 = true - } - if divisibleByPower5(mc, -q) { - dc0 = true - } - if divisibleByPower5(mu, -q) { - du0 = true - } - } - // Express the results (dl, dc, du)*2^e2 as integers. - // Extra bits must be removed and rounding hints computed. - extra := uint(-e2) - extraMask := uint64(1<>extra, dl&extraMask - dc, fracc := dc>>extra, dc&extraMask - du, fracu := du>>extra, du&extraMask - // Is it allowed to use 'du' as a result? - // It is always allowed when it is truncated, but also - // if it is exact and the original binary mantissa is even - // When disallowed, we can subtract 1. - uok := !du0 || fracu > 0 - if du0 && fracu == 0 { - uok = mant&1 == 0 - } - if !uok { - du-- - } - // Is 'dc' the correctly rounded base 10 mantissa? - // The correct rounding might be dc+1 - cup := false // don't round up. - if dc0 { - // If we computed an exact product, the half integer - // should round to next (even) integer if 'dc' is odd. - cup = fracc > 1<<(extra-1) || - (fracc == 1<<(extra-1) && dc&1 == 1) - } else { - // otherwise, the result is a lower truncation of the ideal - // result. - cup = fracc>>(extra-1) == 1 - } - // Is 'dl' an allowed representation? - // Only if it is an exact value, and if the original binary mantissa - // was even. - lok := dl0 && fracl == 0 && (mant&1 == 0) - if !lok { - dl++ - } - // We need to remember whether the trimmed digits of 'dc' are zero. - c0 := dc0 && fracc == 0 - // render digits - ryuDigits(d, dl, dc, du, c0, cup) - d.dp -= q -} - // mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in // the range -1600 <= x && x <= +1600. //