Skip to content

AttributeError: 'Tensor' object has no attribute 'numpy' #64

@makonaga

Description

@makonaga

I've installed model search. And I'm testing the code in getting start but getting errors.
I think successfully installed, but I don't know why this error occurs.

  1. Python Ver. = 3.7 or 3.8
  2. Packages listed in requirements.txt have been installed.
  3. The test code is as follows :

import sys
from absl import app

sys.argv = sys.argv[:1]

try:
app.run(lambda argv: None)
except:
pass

import model_search
from model_search import constants
from model_search import single_trainer
from model_search.data import csv_data

trainer = single_trainer.SingleTrainer(
data=csv_data.Provider(
label_index=0,
logits_dimension=2,
record_defaults=[0, 0, 0, 0],
filename="model_search/data/testdata/csv_random_data.csv"),
spec='model_search/configs/dnn_config.pbtxt')

trainer.try_models(
number_models=200,
train_steps=1000,
eval_steps=200,
root_dir="/tmp/run_example",
batch_size=32,
experiment_name="example",
experiment_owner="model_search_user")

  1. Errors are as follows :
    2022-08-31 18:27:29.737977: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21644 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:01:00.0, compute capability: 8.6
    I0831 18:27:29.751516 140527906674496 saver.py:1395] Restoring parameters from /tmp/run_example/tuner-1/23/model.ckpt-1000
    I0831 18:27:29.763098 140527906674496 builder_impl.py:669] Assets added to graph.
    I0831 18:27:29.763194 140527906674496 builder_impl.py:463] No assets to write.
    I0831 18:27:29.783092 140527906674496 builder_impl.py:428] SavedModel written to: /tmp/run_example/tuner-1/23/saved_model/temp-1661938049/saved_model.pb
    I0831 18:27:29.784265 140527906674496 oss_trainer_lib.py:278] Evaluation results: {'accuracy': 0.7, 'auc_pr': 1.0, 'auc_roc': 0.9999998, 'loss': 0.54577476, 'num_parameters': 9236, 'global_step': 1000}
    I0831 18:27:29.786289 140527906674496 oss_trainer_lib.py:303] creating directory: /tmp/run_example/tuner-1/24
    I0831 18:27:29.786396 140527906674496 oss_trainer_lib.py:350] Tuner id: tuner-1
    I0831 18:27:29.786435 140527906674496 oss_trainer_lib.py:351] Training with the following hyperparameters:
    I0831 18:27:29.786465 140527906674496 oss_trainer_lib.py:352] {'learning_rate': 5.270349994604263e-06, 'new_block_type': 'FULLY_CONNECTED_RESIDUAL_PROJECT_BATCHNORM', 'optimizer': 'sgd', 'initial_architecture_0': 'FULLY_CONNECTED_RESIDUAL_PROJECT', 'exponential_decay_rate': 0.9005046125313068, 'exponential_decay_steps': 1000, 'gradient_max_norm': 2, 'dropout_rate': 0.20000000596046447, 'initial_architecture': ['FULLY_CONNECTED_RESIDUAL_PROJECT']}
    I0831 18:27:29.786560 140527906674496 run_config.py:549] TF_CONFIG environment variable: {'model_dir': '/tmp/run_example/tuner-1/24', 'session_master': ''}
    I0831 18:27:29.786598 140527906674496 run_config.py:985] Using model_dir in TF_CONFIG: /tmp/run_example/tuner-1/24
    I0831 18:27:29.786791 140527906674496 estimator.py:202] Using config: {'_model_dir': '/tmp/run_example/tuner-1/24', '_tf_random_seed': None, '_save_summary_steps': 2000, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 120, '_session_config': allow_soft_placement: true
    graph_options {
    rewrite_options {
    meta_optimizer_iterations: ONE
    }
    }
    , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
    I0831 18:27:29.803411 140527906674496 estimator.py:1173] Calling model_fn.
    I0831 18:27:29.803532 140527906674496 phoenix.py:355] <tensorflow_estimator.python.estimator.run_config.RunConfig object at 0x7fce0074fdf0>
    I0831 18:27:29.803575 140527906674496 phoenix.py:356] /tmp/run_example/tuner-1/24
    I0831 18:27:29.823276 140527906674496 controller.py:160] trial id: 24
    I0831 18:27:29.823375 140527906674496 controller.py:239] intermix ensemble search mode
    I0831 18:27:29.827098 140527906674496 phoenix.py:387] {'search_generator': GeneratorWithTrials(instance=<model_search.generators.search_candidate_generator.SearchCandidateGenerator object at 0x7fce26aa6280>, relevant_trials=[<model_search.metadata.trial.Trial object at 0x7fce1c78baf0>, <model_search.metadata.trial.Trial object at 0x7fce1c78bbe0>, <model_search.metadata.trial.Trial object at 0x7fce0075c5b0>, <model_search.metadata.trial.Trial object at 0x7fce1c7a6b20>, <model_search.metadata.trial.Trial object at 0x7fce1c7956a0>, <model_search.metadata.trial.Trial object at 0x7fce1c795df0>, <model_search.metadata.trial.Trial object at 0x7fce1c797850>, <model_search.metadata.trial.Trial object at 0x7fce1c797c40>, <model_search.metadata.trial.Trial object at 0x7fce1c793c40>, <model_search.metadata.trial.Trial object at 0x7fce1c794850>, <model_search.metadata.trial.Trial object at 0x7fce1c794c40>, <model_search.metadata.trial.Trial object at 0x7fce24371850>, <model_search.metadata.trial.Trial object at 0x7fce24359850>, <model_search.metadata.trial.Trial object at 0x7fce24359c40>, <model_search.metadata.trial.Trial object at 0x7fce24372850>, <model_search.metadata.trial.Trial object at 0x7fce24372c40>, <model_search.metadata.trial.Trial object at 0x7fce2434ac40>, <model_search.metadata.trial.Trial object at 0x7fce24337850>, <model_search.metadata.trial.Trial object at 0x7fce24337c40>])}
    I0831 18:27:29.827618 140527906674496 coordinate_descent.py:63] Maximal depth allowed: 4
    I0831 18:27:29.827801 140527906674496 search_candidate_generator.py:123] Creating new architecture:
    I0831 18:27:29.827841 140527906674496 search_candidate_generator.py:124] [82 81]
    I0831 18:27:29.830933 140527906674496 phoenix.py:406] {'search_generator': [<model_search.architecture.tower.Tower object at 0x7fce24351d90>]}
    I0831 18:27:30.007734 140527906674496 run_config.py:549] TF_CONFIG environment variable: {'model_dir': '/tmp/run_example/tuner-1/24', 'session_master': ''}
    I0831 18:27:30.007827 140527906674496 run_config.py:985] Using model_dir in TF_CONFIG: /tmp/run_example/tuner-1/24
    I0831 18:27:30.243517 140527906674496 estimator.py:1175] Done calling model_fn.
    I0831 18:27:30.244107 140527906674496 basic_session_run_hooks.py:558] Create CheckpointSaverHook.
    I0831 18:27:30.344659 140527906674496 monitored_session.py:243] Graph was finalized.
    2022-08-31 18:27:30.344949: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:30.345194: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:30.345355: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:30.345549: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:30.345726: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:30.345873: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21644 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:01:00.0, compute capability: 8.6
    I0831 18:27:30.390913 140527906674496 session_manager.py:527] Running local_init_op.
    I0831 18:27:30.404366 140527906674496 session_manager.py:530] Done running local_init_op.
    I0831 18:27:30.648690 140527906674496 basic_session_run_hooks.py:628] Calling checkpoint listeners before saving checkpoint 0...
    I0831 18:27:30.649056 140527906674496 basic_session_run_hooks.py:633] Saving checkpoints for 0 into /tmp/run_example/tuner-1/24/model.ckpt.
    I0831 18:27:30.703323 140527906674496 basic_session_run_hooks.py:640] Calling checkpoint listeners after saving checkpoint 0...
    I0831 18:27:31.163495 140527906674496 basic_session_run_hooks.py:266] loss = 1.035786, step = 0
    I0831 18:27:31.420209 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 388.237
    I0831 18:27:31.420408 140527906674496 basic_session_run_hooks.py:264] loss = 0.9075287, step = 100 (0.257 sec)
    I0831 18:27:31.558015 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 725.577
    I0831 18:27:31.558200 140527906674496 basic_session_run_hooks.py:264] loss = 1.0140789, step = 200 (0.138 sec)
    I0831 18:27:31.690464 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 755.011
    I0831 18:27:31.690645 140527906674496 basic_session_run_hooks.py:264] loss = 1.0821533, step = 300 (0.132 sec)
    I0831 18:27:31.824359 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 746.852
    I0831 18:27:31.824541 140527906674496 basic_session_run_hooks.py:264] loss = 1.1923344, step = 400 (0.134 sec)
    I0831 18:27:31.954357 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 769.251
    I0831 18:27:31.954540 140527906674496 basic_session_run_hooks.py:264] loss = 1.2966073, step = 500 (0.130 sec)
    I0831 18:27:32.083554 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 773.977
    I0831 18:27:32.083731 140527906674496 basic_session_run_hooks.py:264] loss = 1.0678508, step = 600 (0.129 sec)
    I0831 18:27:32.211544 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 781.295
    I0831 18:27:32.211720 140527906674496 basic_session_run_hooks.py:264] loss = 1.1640563, step = 700 (0.128 sec)
    I0831 18:27:32.342442 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 763.951
    I0831 18:27:32.342617 140527906674496 basic_session_run_hooks.py:264] loss = 1.2269, step = 800 (0.131 sec)
    I0831 18:27:32.476507 140527906674496 basic_session_run_hooks.py:717] global_step/sec: 745.914
    I0831 18:27:32.476685 140527906674496 basic_session_run_hooks.py:264] loss = 1.2129242, step = 900 (0.134 sec)
    I0831 18:27:32.605798 140527906674496 basic_session_run_hooks.py:628] Calling checkpoint listeners before saving checkpoint 1000...
    I0831 18:27:32.605903 140527906674496 basic_session_run_hooks.py:633] Saving checkpoints for 1000 into /tmp/run_example/tuner-1/24/model.ckpt.
    I0831 18:27:32.649677 140527906674496 basic_session_run_hooks.py:640] Calling checkpoint listeners after saving checkpoint 1000...
    I0831 18:27:32.660749 140527906674496 estimator.py:361] Loss for final step: 1.1485888.
    I0831 18:27:32.678622 140527906674496 estimator.py:1173] Calling model_fn.
    I0831 18:27:32.678768 140527906674496 phoenix.py:355] <tensorflow_estimator.python.estimator.run_config.RunConfig object at 0x7fce0074fdf0>
    I0831 18:27:32.678819 140527906674496 phoenix.py:356] /tmp/run_example/tuner-1/24
    I0831 18:27:32.699427 140527906674496 controller.py:160] trial id: 24
    I0831 18:27:32.699542 140527906674496 controller.py:239] intermix ensemble search mode
    I0831 18:27:32.704100 140527906674496 phoenix.py:387] {'search_generator': GeneratorWithTrials(instance=<model_search.generators.search_candidate_generator.SearchCandidateGenerator object at 0x7fce26aa6280>, relevant_trials=[<model_search.metadata.trial.Trial object at 0x7fce242128e0>, <model_search.metadata.trial.Trial object at 0x7fce24212490>, <model_search.metadata.trial.Trial object at 0x7fce24348b80>, <model_search.metadata.trial.Trial object at 0x7fce1c7a7820>, <model_search.metadata.trial.Trial object at 0x7fce1c27c220>, <model_search.metadata.trial.Trial object at 0x7fce25e36b20>, <model_search.metadata.trial.Trial object at 0x7fce25e361c0>, <model_search.metadata.trial.Trial object at 0x7fce240dff70>, <model_search.metadata.trial.Trial object at 0x7fce25dbe3d0>, <model_search.metadata.trial.Trial object at 0x7fce25fe2e20>, <model_search.metadata.trial.Trial object at 0x7fce240e4160>, <model_search.metadata.trial.Trial object at 0x7fce25fe2580>, <model_search.metadata.trial.Trial object at 0x7fce1c36ea60>, <model_search.metadata.trial.Trial object at 0x7fce1c0fed60>, <model_search.metadata.trial.Trial object at 0x7fce1c36ee80>, <model_search.metadata.trial.Trial object at 0x7fce1c0feeb0>, <model_search.metadata.trial.Trial object at 0x7fce25f3f5b0>, <model_search.metadata.trial.Trial object at 0x7fce25f3f3d0>, <model_search.metadata.trial.Trial object at 0x7fce2422fac0>])}
    I0831 18:27:32.704649 140527906674496 base_tower_generator.py:99] Building from existing checkpoint.
    I0831 18:27:32.711285 140527906674496 phoenix.py:406] {'search_generator': [<model_search.architecture.tower.Tower object at 0x7fce24212a90>]}
    I0831 18:27:32.773150 140527906674496 run_config.py:549] TF_CONFIG environment variable: {'model_dir': '/tmp/run_example/tuner-1/24', 'session_master': ''}
    I0831 18:27:32.773260 140527906674496 run_config.py:985] Using model_dir in TF_CONFIG: /tmp/run_example/tuner-1/24
    I0831 18:27:32.929626 140527906674496 estimator.py:1175] Done calling model_fn.
    I0831 18:27:32.940950 140527906674496 evaluation.py:250] Starting evaluation at 2022-08-31T18:27:32
    I0831 18:27:32.983377 140527906674496 monitored_session.py:243] Graph was finalized.
    2022-08-31 18:27:32.983673: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:32.983907: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:32.984069: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:32.984265: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:32.984439: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:32.984585: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21644 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:01:00.0, compute capability: 8.6
    I0831 18:27:32.984675 140527906674496 saver.py:1395] Restoring parameters from /tmp/run_example/tuner-1/24/model.ckpt-1000
    I0831 18:27:33.023914 140527906674496 session_manager.py:527] Running local_init_op.
    I0831 18:27:33.039376 140527906674496 session_manager.py:530] Done running local_init_op.
    I0831 18:27:33.158018 140527906674496 evaluation.py:269] Inference Time : 0.21697s
    I0831 18:27:33.159124 140527906674496 evaluation.py:271] Finished evaluation at 2022-08-31-18:27:33
    I0831 18:27:33.159208 140527906674496 estimator.py:2083] Saving dict for global step 1000: accuracy = 0.3, auc_pr = 0.48401165, auc_roc = 7.142855e-08, global_step = 1000, loss = 0.97662735, num_parameters = 86
    I0831 18:27:33.209768 140527906674496 estimator.py:2143] Saving 'checkpoint_path' summary for global step 1000: /tmp/run_example/tuner-1/24/model.ckpt-1000
    I0831 18:27:33.210166 140527906674496 phoenix.py:136] Saving the following evaluation dictionary.
    I0831 18:27:33.210225 140527906674496 phoenix.py:137] {'accuracy': 0.30000001192092896, 'auc_pr': 0.4840116500854492, 'auc_roc': 7.142855196207165e-08, 'loss': 0.9766273498535156, 'num_parameters': 86, 'global_step': 1000}
    I0831 18:27:33.210270 140527906674496 ml_metadata_db.py:161] Storing the following evaluation dictionary,
    I0831 18:27:33.210300 140527906674496 ml_metadata_db.py:162] {'accuracy': 0.30000001192092896, 'auc_pr': 0.4840116500854492, 'auc_roc': 7.142855196207165e-08, 'loss': 0.9766273498535156, 'num_parameters': 86, 'global_step': 1000}
    I0831 18:27:33.210334 140527906674496 ml_metadata_db.py:163] For the model in the following model dictionary,
    I0831 18:27:33.210361 140527906674496 ml_metadata_db.py:164] /tmp/run_example/tuner-1/24
    I0831 18:27:33.238589 140527906674496 estimator.py:1173] Calling model_fn.
    I0831 18:27:33.238721 140527906674496 phoenix.py:355] <tensorflow_estimator.python.estimator.run_config.RunConfig object at 0x7fce0074fdf0>
    I0831 18:27:33.238767 140527906674496 phoenix.py:356] /tmp/run_example/tuner-1/24
    I0831 18:27:33.259187 140527906674496 controller.py:160] trial id: 24
    I0831 18:27:33.259282 140527906674496 controller.py:239] intermix ensemble search mode
    I0831 18:27:33.262947 140527906674496 phoenix.py:387] {'search_generator': GeneratorWithTrials(instance=<model_search.generators.search_candidate_generator.SearchCandidateGenerator object at 0x7fce26aa6280>, relevant_trials=[<model_search.metadata.trial.Trial object at 0x7fce25dbcd90>, <model_search.metadata.trial.Trial object at 0x7fce1c46ff40>, <model_search.metadata.trial.Trial object at 0x7fce25dbcbe0>, <model_search.metadata.trial.Trial object at 0x7fce25dbce50>, <model_search.metadata.trial.Trial object at 0x7fce1c46f8b0>, <model_search.metadata.trial.Trial object at 0x7fce1c44cf70>, <model_search.metadata.trial.Trial object at 0x7fce1c44c160>, <model_search.metadata.trial.Trial object at 0x7fce1c29ffd0>, <model_search.metadata.trial.Trial object at 0x7fce25f033d0>, <model_search.metadata.trial.Trial object at 0x7fce1c29ff10>, <model_search.metadata.trial.Trial object at 0x7fce25f3cb80>, <model_search.metadata.trial.Trial object at 0x7fce25f14cd0>, <model_search.metadata.trial.Trial object at 0x7fce00730bb0>, <model_search.metadata.trial.Trial object at 0x7fce1c10fd60>, <model_search.metadata.trial.Trial object at 0x7fce00730b20>, <model_search.metadata.trial.Trial object at 0x7fce00730d00>, <model_search.metadata.trial.Trial object at 0x7fce1c6599d0>, <model_search.metadata.trial.Trial object at 0x7fce1c659580>, <model_search.metadata.trial.Trial object at 0x7fce1c45a9a0>, <model_search.metadata.trial.Trial object at 0x7fce25e47550>])}
    I0831 18:27:33.263211 140527906674496 base_tower_generator.py:99] Building from existing checkpoint.
    I0831 18:27:33.267359 140527906674496 phoenix.py:406] {'search_generator': [<model_search.architecture.tower.Tower object at 0x7fce1c3d53a0>]}
    I0831 18:27:33.322653 140527906674496 run_config.py:549] TF_CONFIG environment variable: {'model_dir': '/tmp/run_example/tuner-1/24', 'session_master': ''}
    I0831 18:27:33.322746 140527906674496 run_config.py:985] Using model_dir in TF_CONFIG: /tmp/run_example/tuner-1/24
    I0831 18:27:33.324692 140527906674496 estimator.py:1175] Done calling model_fn.
    I0831 18:27:33.324922 140527906674496 export_utils.py:166] Signatures INCLUDED in export for Classify: None
    I0831 18:27:33.324964 140527906674496 export_utils.py:166] Signatures INCLUDED in export for Regress: None
    I0831 18:27:33.324995 140527906674496 export_utils.py:166] Signatures INCLUDED in export for Predict: ['serving_default']
    I0831 18:27:33.325023 140527906674496 export_utils.py:166] Signatures INCLUDED in export for Train: None
    I0831 18:27:33.325047 140527906674496 export_utils.py:166] Signatures INCLUDED in export for Eval: None
    2022-08-31 18:27:33.325256: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:33.325487: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:33.325648: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:33.325842: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:33.326005: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:936] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2022-08-31 18:27:33.326149: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 21644 MB memory: -> device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:01:00.0, compute capability: 8.6
    I0831 18:27:33.340039 140527906674496 saver.py:1395] Restoring parameters from /tmp/run_example/tuner-1/24/model.ckpt-1000
    I0831 18:27:33.352076 140527906674496 builder_impl.py:669] Assets added to graph.
    I0831 18:27:33.352158 140527906674496 builder_impl.py:463] No assets to write.
    I0831 18:27:33.372737 140527906674496 builder_impl.py:428] SavedModel written to: /tmp/run_example/tuner-1/24/saved_model/temp-1661938053/saved_model.pb
    I0831 18:27:33.373998 140527906674496 oss_trainer_lib.py:278] Evaluation results: {'accuracy': 0.3, 'auc_pr': 0.48401165, 'auc_roc': 7.142855e-08, 'loss': 0.97662735, 'num_parameters': 86, 'global_step': 1000}
    Traceback (most recent call last):
    File "test.py", line 26, in
    trainer.try_models(
    File "/mnt/hdd1/model_search_220825/model_search/model_search/single_trainer.py", line 78, in try_models
    while oss_trainer_lib.run_parameterized_train_and_eval(
    File "/mnt/hdd1/model_search_220825/model_search/model_search/oss_trainer_lib.py", line 340, in run_parameterized_train_and_eval
    trial = oracle.create_trial(tuner_id)
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/keras_tuner/engine/oracle.py", line 189, in create_trial
    response = self.populate_space(trial_id)
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/keras_tuner/tuners/bayesian.py", line 209, in populate_space
    self.gpr.fit(x, y)
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/keras_tuner/tuners/bayesian.py", line 83, in fit
    self._alpha_vector = cho_solve(self._l_matrix, self._y_train)
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/keras_tuner/tuners/bayesian.py", line 31, in cho_solve
    y = solve_triangular(l_matrix, b.reshape(-1, 1), lower=True)
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/keras_tuner/tuners/bayesian.py", line 24, in solve_triangular
    return tf.linalg.triangular_solve(a, b, lower=lower).numpy()
    File "/home/nagakura/anaconda3.8.8_pytorch/envs/model_search_220825/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 513, in getattr
    self.getattribute(name)
    AttributeError: 'Tensor' object has no attribute 'numpy'

  2. Note
    Getting Started has number_models=200, but the result is the same.
    If I set number_models to less than 20, the error does not occur. is there a limit of 20 for number_models?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions