|
| 1 | +# Copyright 2025 The Orbax Authors. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Partial merge binary.""" |
| 16 | + |
| 17 | +import collections |
| 18 | +import dataclasses |
| 19 | +import random |
| 20 | +from typing import Any, Iterator, List |
| 21 | + |
| 22 | +from absl import app |
| 23 | +from absl import flags |
| 24 | +from etils import epath |
| 25 | +import jax |
| 26 | +import numpy as np |
| 27 | +from orbax.checkpoint._src.arrays import fragments as array_fragments |
| 28 | +from orbax.checkpoint._src.arrays import sharding as array_sharding |
| 29 | +from orbax.checkpoint._src.tree import parts_of |
| 30 | +from orbax.checkpoint._src.tree import structure_utils |
| 31 | +from orbax.checkpoint._src.tree import utils as tree_utils |
| 32 | +from orbax.checkpoint.experimental.model_surgery import source_checkpoint |
| 33 | +from orbax.checkpoint.experimental.v1._src.layout import checkpoint_layout |
| 34 | +from orbax.checkpoint.experimental.v1._src.partial import saving as partial_saving |
| 35 | + |
| 36 | +# Note: Ensure you have access to numpy_utils if copying _from_fragments, |
| 37 | +# otherwise rely on public APIs if available. |
| 38 | +from .learning.deepmind.jax.roc import numpy_utils |
| 39 | +from .learning.deepmind.jax.roc.experimental import eval_fragments |
| 40 | + |
| 41 | +FLAGS = flags.FLAGS |
| 42 | + |
| 43 | +_IN_PATHS = flags.DEFINE_multi_string( |
| 44 | + 'in_paths', |
| 45 | + None, |
| 46 | + 'Paths of checkpoints to merge.', |
| 47 | + required=True, |
| 48 | +) |
| 49 | +_OUT_PATH = flags.DEFINE_string( |
| 50 | + 'out_path', |
| 51 | + None, |
| 52 | + 'Output checkpoint path.', |
| 53 | + required=True, |
| 54 | +) |
| 55 | +_PER_HOST_MEMORY_LIMIT_GB = flags.DEFINE_integer( |
| 56 | + 'per_host_memory_limit_gb', |
| 57 | + 16, |
| 58 | + 'Memory limit in GB per CPU host for partial loading and saving.' |
| 59 | + ' Non-uniform memory limits are not supported.', |
| 60 | +) |
| 61 | + |
| 62 | +PyTree = Any |
| 63 | +Keypath = tuple[Any, ...] |
| 64 | +PartsOf = parts_of.PartsOf |
| 65 | + |
| 66 | + |
| 67 | +def fragments_to_arrays( |
| 68 | + fragments_or_arrays: PyTree, |
| 69 | + target: PyTree, |
| 70 | +) -> PyTree: |
| 71 | + """Creates jax.Array from a tree of Fragments.""" |
| 72 | + |
| 73 | + def _to_jax_array(frags_or_arr, abstract_target): |
| 74 | + if not isinstance(frags_or_arr, eval_fragments.ConcreteFragments): |
| 75 | + return frags_or_arr |
| 76 | + |
| 77 | + def extract_shard(idx) -> jax.Array: |
| 78 | + idx = numpy_utils.resolve_slice(idx, abstract_target.shape) |
| 79 | + shard_data = eval_fragments._extract_fragment( # pylint: disable=protected-access |
| 80 | + frags_or_arr.fragments, |
| 81 | + eval_fragments.AbstractFragment(index=idx), |
| 82 | + ).value |
| 83 | + assert shard_data is not None |
| 84 | + return jax.numpy.asarray(shard_data) |
| 85 | + |
| 86 | + sharding = abstract_target.sharding |
| 87 | + return jax.make_array_from_callback( |
| 88 | + abstract_target.shape, sharding, extract_shard |
| 89 | + ) |
| 90 | + |
| 91 | + return jax.tree.map(_to_jax_array, fragments_or_arrays, target) |
| 92 | + |
| 93 | + |
| 94 | +@dataclasses.dataclass(frozen=True) |
| 95 | +class FragmentInfo: |
| 96 | + """Information about a fragment to be used for batching.""" |
| 97 | + |
| 98 | + ckpt_idx: int |
| 99 | + keypath: Keypath |
| 100 | + fragment: array_fragments.AbstractFragment |
| 101 | + dtype: np.dtype |
| 102 | + |
| 103 | + @property |
| 104 | + def size_bytes(self) -> int: |
| 105 | + return self.fragment.nbytes_astype(self.dtype) |
| 106 | + |
| 107 | + |
| 108 | +def merge_transform_fn(*args: PyTree) -> PyTree: |
| 109 | + """Merges trees, overwriting existing keys.""" |
| 110 | + return structure_utils.merge_trees(*args, overwrite=True) |
| 111 | + |
| 112 | + |
| 113 | +def batch_fragments( |
| 114 | + fragment_infos: list[FragmentInfo], memory_limit_gb: int |
| 115 | +) -> Iterator[list[FragmentInfo]]: |
| 116 | + """Groups leaves into batches based on memory availability.""" |
| 117 | + memory_limit_bytes = memory_limit_gb * 1024**3 |
| 118 | + current_batch_leaves = [] |
| 119 | + current_batch_size = 0 |
| 120 | + |
| 121 | + for finfo in fragment_infos: |
| 122 | + if finfo.size_bytes > memory_limit_bytes: |
| 123 | + raise ValueError( |
| 124 | + f'Fragment size {finfo.size_bytes} is larger than memory limit.' |
| 125 | + ) |
| 126 | + |
| 127 | + if current_batch_size + finfo.size_bytes > memory_limit_bytes: |
| 128 | + # Yield the current batch and start a new one. |
| 129 | + yield current_batch_leaves |
| 130 | + current_batch_leaves = [finfo] |
| 131 | + current_batch_size = finfo.size_bytes |
| 132 | + else: |
| 133 | + # Add the leaf to the current batch. |
| 134 | + current_batch_leaves.append(finfo) |
| 135 | + current_batch_size += finfo.size_bytes |
| 136 | + |
| 137 | + if current_batch_leaves: |
| 138 | + # Yield the final batch. |
| 139 | + yield current_batch_leaves |
| 140 | + |
| 141 | + |
| 142 | +def resolve_pytree_path(path: epath.Path) -> epath.Path: |
| 143 | + """Resolves the path to the pytree checkpoint.""" |
| 144 | + if not (path / checkpoint_layout.PYTREE_CHECKPOINTABLE_KEY).exists(): |
| 145 | + raise ValueError(f'Path {path} does not contain a pytree checkpoint.') |
| 146 | + |
| 147 | + return path / checkpoint_layout.PYTREE_CHECKPOINTABLE_KEY |
| 148 | + |
| 149 | + |
| 150 | +def resolve_target_structure( |
| 151 | + abstract_sources: list[PyTree], host_cpus: list[jax.Device] |
| 152 | +) -> PyTree: |
| 153 | + """Resolves output structure and output sharding.""" |
| 154 | + abstract_target = jax.eval_shape(merge_transform_fn, *abstract_sources) |
| 155 | + |
| 156 | + shardings = array_sharding.construct_maximal_shardings( |
| 157 | + abstract_target, devices=host_cpus |
| 158 | + ) |
| 159 | + sharded_abstract_target = jax.tree.map( |
| 160 | + lambda x, s: jax.ShapeDtypeStruct(x.shape, x.dtype, sharding=s), |
| 161 | + abstract_target, |
| 162 | + shardings, |
| 163 | + ) |
| 164 | + |
| 165 | + return sharded_abstract_target |
| 166 | + |
| 167 | + |
| 168 | +def resolve_merge_topology( |
| 169 | + sharded_abstract_target: PyTree, abstract_sources: list[PyTree] |
| 170 | +) -> tuple[PyTree, Any]: |
| 171 | + """Uses Model Surgery to resolve topology.""" |
| 172 | + |
| 173 | + # Determine Fragments |
| 174 | + abstract_fragments_to_load = jax.tree.map( |
| 175 | + array_fragments.abstract_fragments, sharded_abstract_target |
| 176 | + ) |
| 177 | + |
| 178 | + # The "Surgery": Map inputs to outputs |
| 179 | + return eval_fragments.eval_fragments( |
| 180 | + merge_transform_fn, |
| 181 | + abstract_sources, |
| 182 | + abstract_fragments_to_load, |
| 183 | + ) |
| 184 | + |
| 185 | + |
| 186 | +def create_fragment_infos(required_input_fragments: Any) -> list[FragmentInfo]: |
| 187 | + """Flattens fragments into FragmentInfos for batching.""" |
| 188 | + fragment_infos = [] |
| 189 | + for ckpt_idx, fragments_tree in enumerate(required_input_fragments): |
| 190 | + flat_fragments = tree_utils.to_flat_dict(fragments_tree) |
| 191 | + ckpt_fragment_infos = [] |
| 192 | + |
| 193 | + for keypath, fragments in flat_fragments.items(): |
| 194 | + for fragment in fragments.fragments: |
| 195 | + ckpt_fragment_infos.append( |
| 196 | + FragmentInfo( |
| 197 | + ckpt_idx=ckpt_idx, |
| 198 | + keypath=keypath, |
| 199 | + fragment=fragment, |
| 200 | + dtype=fragments.dtype, |
| 201 | + ) |
| 202 | + ) |
| 203 | + |
| 204 | + # Randomize the order of leaves *within* this checkpoint. This helps mix |
| 205 | + # large and small arrays in batches to avoid wasting batch space. |
| 206 | + random.shuffle(ckpt_fragment_infos) |
| 207 | + fragment_infos.extend(ckpt_fragment_infos) |
| 208 | + return fragment_infos |
| 209 | + |
| 210 | + |
| 211 | +def load_batch_fragments( |
| 212 | + abstract_sources: list[PyTree], |
| 213 | + batch_fragments_map: dict[ |
| 214 | + int, dict[tuple[Any, ...], list[array_fragments.AbstractFragment]] |
| 215 | + ], |
| 216 | + source_checkpoints: list[source_checkpoint.SourceCheckpoint], |
| 217 | + memory_limit_gb: int, |
| 218 | +) -> list[PyTree]: |
| 219 | + """Loads fragments for a batch.""" |
| 220 | + loaded_fragments = [] |
| 221 | + # Reconstruct trees for loading |
| 222 | + for i, abstract_source in enumerate(abstract_sources): |
| 223 | + # We need to construct a request tree that matches the source structure |
| 224 | + # but only contains the fragments for this batch. |
| 225 | + |
| 226 | + def _get_fragments_for_leaf( |
| 227 | + path, meta, keypath_fragments=batch_fragments_map[i] |
| 228 | + ): |
| 229 | + # Convert JAX KeyPath to tuple for dict lookup |
| 230 | + path_tuple = tree_utils.tuple_path_from_keypath(path) |
| 231 | + |
| 232 | + frags = keypath_fragments.get(path_tuple) |
| 233 | + |
| 234 | + if frags: |
| 235 | + return array_fragments.AbstractFragments( |
| 236 | + shape=meta.shape, |
| 237 | + dtype=meta.dtype, # Use source dtype |
| 238 | + fragments=frags, |
| 239 | + ) |
| 240 | + return array_fragments.AbstractFragments( |
| 241 | + shape=meta.shape, dtype=meta.dtype, fragments=[] |
| 242 | + ) |
| 243 | + |
| 244 | + source_request_tree = jax.tree_util.tree_map_with_path( |
| 245 | + _get_fragments_for_leaf, abstract_source |
| 246 | + ) |
| 247 | + |
| 248 | + loaded_fragments.append( |
| 249 | + source_checkpoints[i].load_fragments( |
| 250 | + source_request_tree, concurrent_gb=memory_limit_gb |
| 251 | + ) |
| 252 | + ) |
| 253 | + return loaded_fragments |
| 254 | + |
| 255 | + |
| 256 | +def main(argv: List[str] | None = None) -> None: |
| 257 | + if argv is not None and len(argv) > 1: |
| 258 | + raise app.UsageError(f'Too many command-line arguments: {argv[1:]}') |
| 259 | + |
| 260 | + all_cpus = jax.devices('cpu') |
| 261 | + host_cpus = all_cpus[: jax.process_count()] |
| 262 | + |
| 263 | + random.seed(0) |
| 264 | + |
| 265 | + ckpts_to_merge = [epath.Path(path) for path in _IN_PATHS.value] |
| 266 | + merged_ckpt_path = epath.Path(_OUT_PATH.value) |
| 267 | + |
| 268 | + # Load metadata for all input checkpoints to understand their structure and |
| 269 | + # contents. |
| 270 | + source_checkpoints = [ |
| 271 | + source_checkpoint.checkpoint_at(resolve_pytree_path(path)) |
| 272 | + for path in ckpts_to_merge |
| 273 | + ] |
| 274 | + abstract_sources = [sc.metadata for sc in source_checkpoints] |
| 275 | + |
| 276 | + # Determine the structure and sharding of the final merged checkpoint. This |
| 277 | + # acts as the blueprint for the output, derived by merging the metadata of the |
| 278 | + # input checkpoints. |
| 279 | + sharded_abstract_target = resolve_target_structure( |
| 280 | + abstract_sources, host_cpus |
| 281 | + ) |
| 282 | + |
| 283 | + # Plan the merge operation by identifying exactly which data fragments need to |
| 284 | + # be read from the inputs to construct the output. This also prepares a |
| 285 | + # transformation function to assemble the loaded data. |
| 286 | + required_input_fragments, fragment_transform_fn = resolve_merge_topology( |
| 287 | + sharded_abstract_target, abstract_sources |
| 288 | + ) |
| 289 | + |
| 290 | + # Prepare for execution by flattening the required data fragments into a list |
| 291 | + # of tasks. This allows us to process the merge in memory-constrained batches. |
| 292 | + fragment_infos = create_fragment_infos(required_input_fragments) |
| 293 | + |
| 294 | + for batch in batch_fragments(fragment_infos, _PER_HOST_MEMORY_LIMIT_GB.value): |
| 295 | + # Group the fragments in the current batch by their source checkpoint and |
| 296 | + # original keypath. |
| 297 | + batch_fragments_map = collections.defaultdict( |
| 298 | + lambda: collections.defaultdict(list) |
| 299 | + ) |
| 300 | + for finfo in batch: |
| 301 | + batch_fragments_map[finfo.ckpt_idx][finfo.keypath].append(finfo.fragment) |
| 302 | + |
| 303 | + # Execute the load for the current batch: fetch the specific data fragments |
| 304 | + # from the source checkpoints into memory. |
| 305 | + loaded_fragments = load_batch_fragments( |
| 306 | + abstract_sources, |
| 307 | + batch_fragments_map, |
| 308 | + source_checkpoints, |
| 309 | + _PER_HOST_MEMORY_LIMIT_GB.value, |
| 310 | + ) |
| 311 | + |
| 312 | + # Apply the transformation function to assemble the loaded fragments into |
| 313 | + # the desired target structure. |
| 314 | + target_fragments = fragment_transform_fn(loaded_fragments) |
| 315 | + |
| 316 | + # Convert the assembled fragments into concrete, sharded JAX arrays. |
| 317 | + target_tree = fragments_to_arrays(target_fragments, sharded_abstract_target) |
| 318 | + |
| 319 | + # Save the current batch of merged arrays to the output checkpoint |
| 320 | + # directory. |
| 321 | + partial_saving.save_pytree(merged_ckpt_path, target_tree) |
| 322 | + |
| 323 | + # Finalize the checkpoint, completing the merge process. |
| 324 | + partial_saving.finalize(merged_ckpt_path) |
| 325 | + |
| 326 | + |
| 327 | +if __name__ == '__main__': |
| 328 | + jax.config.config_with_absl() |
| 329 | + app.run(main) |
0 commit comments