Skip to content

Hyperparameter optimization with early stopping and gradient clipping #2 #11

@hbandukw

Description

@hbandukw

DATA: NON AUGMENTED / IMBALANCED
METRIC: weighted F1

Best Hyperparameters: {'learning_rate': 0.00011934626028114851, 'dropout_rate': 0.14349283542403013, 'num_trainable_layers': 2, 'train_batch_size': 32, 'grad_clip': 0.5835870650159247, 'step_size': 6, 'gamma': 0.8223727743347635, 'max_length': 319}

I ran it again in my code:
Epoch 1 - Train Loss: 1.2385, Val Loss: 1.0269, Val Accuracy: 0.6440
Epoch 2 - Train Loss: 0.8503, Val Loss: 0.9978, Val Accuracy: 0.6538
Epoch 3 - Train Loss: 0.6682, Val Loss: 1.0414, Val Accuracy: 0.6694
Epoch 4 - Train Loss: 0.4806, Val Loss: 1.1070, Val Accuracy: 0.6645
Epoch 5 - Train Loss: 0.3256, Val Loss: 1.2361, Val Accuracy: 0.6743
Early stopping at epoch 5
Final Model Accuracy: 0.6743

Metadata

Metadata

Assignees

Labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions