Skip to content

Hyperparam optimization with augmented data #1 #12

@hbandukw

Description

@hbandukw

DATA: AUGMENTED / BALANCED
METRIC: ACCURACY
HYPERPARAMS:
[I 2025-01-24 19:55:40,455] Trial 27 finished with value: 0.904019688269073 and parameters: {'learning_rate': 8.300432875328772e-05, 'num_trainable_layers': 2, 'dropout_rate': 0.3847406475130443, 'batch_size': 32, 'step_size': 9, 'gamma': 0.5951936405857416, 'epochs': 5}. Best is trial 27 with value: 0.904019688269073.

RESULTS: Epoch 5 - Train Loss: 0.6058, Val Loss: 1.1301, Val Accuracy: 0.6579
Final Model Accuracy: 0.6579

see comment below for differences in results

Metadata

Metadata

Assignees

Labels

No labels
No labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions