From 2bc79565d1124be303849ecbf19e3d45c12483b7 Mon Sep 17 00:00:00 2001 From: Kristian Gregorius Hustad Date: Wed, 30 Oct 2019 13:37:24 +0100 Subject: [PATCH] Fix typos in chapter 1 --- doc/.src/book/dotxt/overview.do.txt | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/.src/book/dotxt/overview.do.txt b/doc/.src/book/dotxt/overview.do.txt index efa04a1..db2ab86 100644 --- a/doc/.src/book/dotxt/overview.do.txt +++ b/doc/.src/book/dotxt/overview.do.txt @@ -2,7 +2,7 @@ ========= Quick overview of the finite element method ========= label{ch:overview} -FIGURE: [fig/dolfin_mesh.png, width=500 frac=0.8] Example on a complicated domain for solving PDEs. label{overview:meshex} +FIGURE: [fig/dolfin_mesh.png, width=500 frac=0.8] Example of a complicated domain for solving PDEs. label{overview:meshex} The finite element method is a rich and versatile approach to construct computational schemes to solve any partial differential equation on @@ -279,7 +279,7 @@ solve(a == L, u, bc) where `bc` holds information about boundary conditions. This information is connected to information about the triangulation, the *mesh*. Assuming $u=0$ on the boundary, we can in FEniCS generate a triangular -mesh over a rectangular domain $[-1,-1]\times [-1,1]$ as follows: +mesh over a rectangular domain $[-1,1]\times [-1,1]$ as follows: !bc pycod mesh = RectangleMesh(Point(-1, -1), Point(1, 1), 10, 10)