Skip to content

Commit c222570

Browse files
leisuzzJ石页sayakpaul
authored
DeepSpeed adaption for flux-kontext (#12240)
Co-authored-by: J石页 <jiangshuo9@h-partners.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
1 parent 4e36bb0 commit c222570

File tree

1 file changed

+30
-13
lines changed

1 file changed

+30
-13
lines changed

examples/dreambooth/train_dreambooth_lora_flux_kontext.py

Lines changed: 30 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -29,8 +29,9 @@
2929
import numpy as np
3030
import torch
3131
import transformers
32-
from accelerate import Accelerator
32+
from accelerate import Accelerator, DistributedType
3333
from accelerate.logging import get_logger
34+
from accelerate.state import AcceleratorState
3435
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
3536
from huggingface_hub import create_repo, upload_folder
3637
from huggingface_hub.utils import insecure_hashlib
@@ -1222,6 +1223,9 @@ def main(args):
12221223
kwargs_handlers=[kwargs],
12231224
)
12241225

1226+
if accelerator.distributed_type == DistributedType.DEEPSPEED:
1227+
AcceleratorState().deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
1228+
12251229
# Disable AMP for MPS.
12261230
if torch.backends.mps.is_available():
12271231
accelerator.native_amp = False
@@ -1438,17 +1442,20 @@ def save_model_hook(models, weights, output_dir):
14381442
text_encoder_one_lora_layers_to_save = None
14391443
modules_to_save = {}
14401444
for model in models:
1441-
if isinstance(model, type(unwrap_model(transformer))):
1445+
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
1446+
model = unwrap_model(model)
14421447
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
14431448
modules_to_save["transformer"] = model
1444-
elif isinstance(model, type(unwrap_model(text_encoder_one))):
1449+
elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
1450+
model = unwrap_model(model)
14451451
text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model)
14461452
modules_to_save["text_encoder"] = model
14471453
else:
14481454
raise ValueError(f"unexpected save model: {model.__class__}")
14491455

14501456
# make sure to pop weight so that corresponding model is not saved again
1451-
weights.pop()
1457+
if weights:
1458+
weights.pop()
14521459

14531460
FluxKontextPipeline.save_lora_weights(
14541461
output_dir,
@@ -1461,15 +1468,25 @@ def load_model_hook(models, input_dir):
14611468
transformer_ = None
14621469
text_encoder_one_ = None
14631470

1464-
while len(models) > 0:
1465-
model = models.pop()
1471+
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
1472+
while len(models) > 0:
1473+
model = models.pop()
14661474

1467-
if isinstance(model, type(unwrap_model(transformer))):
1468-
transformer_ = model
1469-
elif isinstance(model, type(unwrap_model(text_encoder_one))):
1470-
text_encoder_one_ = model
1471-
else:
1472-
raise ValueError(f"unexpected save model: {model.__class__}")
1475+
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
1476+
transformer_ = unwrap_model(model)
1477+
elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
1478+
text_encoder_one_ = unwrap_model(model)
1479+
else:
1480+
raise ValueError(f"unexpected save model: {model.__class__}")
1481+
1482+
else:
1483+
transformer_ = FluxTransformer2DModel.from_pretrained(
1484+
args.pretrained_model_name_or_path, subfolder="transformer"
1485+
)
1486+
transformer_.add_adapter(transformer_lora_config)
1487+
text_encoder_one_ = text_encoder_cls_one.from_pretrained(
1488+
args.pretrained_model_name_or_path, subfolder="text_encoder"
1489+
)
14731490

14741491
lora_state_dict = FluxKontextPipeline.lora_state_dict(input_dir)
14751492

@@ -2069,7 +2086,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
20692086
progress_bar.update(1)
20702087
global_step += 1
20712088

2072-
if accelerator.is_main_process:
2089+
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
20732090
if global_step % args.checkpointing_steps == 0:
20742091
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
20752092
if args.checkpoints_total_limit is not None:

0 commit comments

Comments
 (0)