-
Notifications
You must be signed in to change notification settings - Fork 29
Open
Description
@billdenney I am also noticing this issue with AUCINT compared to Winonlin
Using this dummy dataset
example-ADNCA.csv
library(PKNCA)
library(dplyr)
# Load the data
data <- read.csv("example-ADNCA.csv", na.strings = c("", "NA"))
data <- data %>%
filter(USUBJID == "S1-01",
PARAM == "DrugA",
PCSPEC == "SERUM")
# Load the PK concentration data
df_conc <- data
# Dosing dataset
df_dose <- df_conc %>%
group_by(ATPTREF) %>%
slice(1) %>%
mutate(AFRLT = AFRLT - ARRLT)
# Create PKNCA objects
pknca_conc <- PKNCA::PKNCAconc(
df_conc,
formula = AVAL ~ AFRLT | STUDYID + PCSPEC + DOSETRT + USUBJID / PARAM,
time.nominal = "NFRLT",
concu = "AVALU",
timeu = "RRLTU",
)
pknca_dose <- PKNCA::PKNCAdose(
data = df_dose,
formula = DOSEA ~ AFRLT | STUDYID + DOSETRT + USUBJID,
route = "intravascular",
time.nominal = "NFRLT",
duration = "ADOSEDUR",
doseu = "DOSEU"
)
intervals <-
data.frame(
start = 0, end = 24,
ATPTREF = "DOSE1",
auclast = TRUE,
aucint.last = TRUE,
clast.obs = TRUE,
tlast = TRUE
)
pknca_data_object <- PKNCA::PKNCAdata(
data.conc = pknca_conc,
data.dose = pknca_dose,
intervals = intervals,
options = list(
auc.method = "lin up/log down",
progress = FALSE,
keep_interval_cols = "ATPTREF"
),
impute = "start_conc0"
)
## Calculate the NCA parameters
results_obj <- as.data.frame(pk.nca(pknca_data_object))
print(results_obj)
If I run this code, AUCLast is 12.3 but AUCint is 20.1
In winlonlin, AUC 0 to 24 is 12.98.
Not sure what the reason for such a large difference is? Or which one is correct...
As far as I can tell I have followed the same method for both.
Originally posted by @js3110 in #431 (comment)
Metadata
Metadata
Assignees
Labels
No labels