We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好! 我在AAT里面运行AOA模型的代码,运用下面的代码: python3.6 train.py --id aoa --batch_size 10 --beam_size 1 --max_epochs 25 --caption_model aoa --refine 1 --refine_aoa 1 --use_ff 0 --decoder_type AoA --use_multi_head 2 --num_heads 8 --multi_head_scale 1 --mean_feats 1 --ctx_drop 1 --dropout_aoa 0.3 --label_smoothing 0.2 --input_json data/cocotalk.json --input_label_h5 data/cocotalk_label.h5 --input_fc_dir data/cocobu_fc --input_att_dir data/cocobu_att --input_box_dir data/cocobu_box --seq_per_img 5 --learning_rate 2e-4 --num_layers 2 --input_encoding_size 1024 --rnn_size 1024 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path log_aoa/log_aoa --save_checkpoint_every 6000 --language_eval 1 --val_images_use -1 --scheduled_sampling_increase_every 5 --scheduled_sampling_max_prob 0.5 --learning_rate_decay_every 3
在epoch=0的过程中,computing SPICE 时,代码报错如下:
`computing SPICE score... Parsing reference captions Initiating Stanford parsing pipeline [main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator tokenize [main] INFO edu.stanford.nlp.pipeline.TokenizerAnnotator - TokenizerAnnotator: No tokenizer type provided. Defaulting to PTBTokenizer. [main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator ssplit [main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator parse [main] INFO edu.stanford.nlp.parser.common.ParserGrammar - Loading parser from serialized file edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz ... done [0.3 sec]. [main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator lemma [main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator ner Loading classifier from edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz ... done [1.0 sec]. Loading classifier from edu/stanford/nlp/models/ner/english.muc.7class.distsim.crf.ser.gz ... done [0.4 sec]. Loading classifier from edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz ... done [0.5 sec]. Threads( StanfordCoreNLP ) #
Threads( StanfordCoreNLP ) # A fatal error has been detected by the Java Runtime Environment:
SIGSEGV (0xb) at pc=0x00007f0aa67f4e10, pid=12537, tid=0x00007f0a7d4b4700
JRE version: OpenJDK Runtime Environment (8.0_265-b01) (build 1.8.0_265-8u265-b01-0ubuntu2~16.04-b01) Java VM: OpenJDK 64-Bit Server VM (25.265-b01 mixed mode linux-amd64 compressed oops) Problematic frame: V [libjvm.so+0x408e10]
Failed to write core dump. Core dumps have been disabled. To enable core dumping, try "ulimit -c unlimited" before starting Java again
An error report file with more information is saved as: /home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/hs_err_pid12537.log
[error occurred during error reporting , id 0xb]
If you would like to submit a bug report, please visit: http://bugreport.java.com/bugreport/crash.jsp
Traceback (most recent call last): File "train.py", line 300, in train(opt) File "train.py", line 244, in train val_loss, predictions, lang_stats = eval_utils.eval_split(dp_model, lw_model.crit, loader, eval_kwargs) File "/home/muli/myExpe--caption/AAT/eval_utils.py", line 173, in eval_split lang_stats = language_eval(dataset, predictions, eval_kwargs['id'], split) File "/home/muli/myExpe--caption/AAT/eval_utils.py", line 55, in language_eval cocoEval.evaluate() File "coco-caption/pycocoevalcap/eval.py", line 61, in evaluate score, scores = scorer.compute_score(gts, res) File "coco-caption/pycocoevalcap/spice/spice.py", line 79, in compute_score cwd=os.path.dirname(os.path.abspath(file))) File "/usr/lib/python3.6/subprocess.py", line 311, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['java', '-jar', '-Xmx8G', 'spice-1.0.jar', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/tmp/tmpyfgzkyc4', '-cache', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/cache/1601606281.2002816', '-out', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/tmp/tmp_de8maf_', '-subset', '-silent']' died with <Signals.SIGABRT: 6>. Terminating BlobFetcher`
请问一下,这个怎么解决呢? 我在运行AAT 模型时,没有报错
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Uh oh!
There was an error while loading. Please reload this page.
你好!
我在AAT里面运行AOA模型的代码,运用下面的代码:
python3.6 train.py --id aoa
--batch_size 10
--beam_size 1
--max_epochs 25
--caption_model aoa
--refine 1
--refine_aoa 1
--use_ff 0
--decoder_type AoA
--use_multi_head 2
--num_heads 8
--multi_head_scale 1
--mean_feats 1
--ctx_drop 1
--dropout_aoa 0.3
--label_smoothing 0.2
--input_json data/cocotalk.json
--input_label_h5 data/cocotalk_label.h5
--input_fc_dir data/cocobu_fc
--input_att_dir data/cocobu_att
--input_box_dir data/cocobu_box
--seq_per_img 5
--learning_rate 2e-4
--num_layers 2
--input_encoding_size 1024
--rnn_size 1024
--learning_rate_decay_start 0
--scheduled_sampling_start 0
--checkpoint_path log_aoa/log_aoa
--save_checkpoint_every 6000
--language_eval 1
--val_images_use -1
--scheduled_sampling_increase_every 5
--scheduled_sampling_max_prob 0.5
--learning_rate_decay_every 3
在epoch=0的过程中,computing SPICE 时,代码报错如下:
`computing SPICE score...
Parsing reference captions
Initiating Stanford parsing pipeline
[main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator tokenize
[main] INFO edu.stanford.nlp.pipeline.TokenizerAnnotator - TokenizerAnnotator: No tokenizer type provided. Defaulting to PTBTokenizer.
[main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator ssplit
[main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator parse
[main] INFO edu.stanford.nlp.parser.common.ParserGrammar - Loading parser from serialized file edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz ...
done [0.3 sec].
[main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator lemma
[main] INFO edu.stanford.nlp.pipeline.StanfordCoreNLP - Adding annotator ner
Loading classifier from edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz ... done [1.0 sec].
Loading classifier from edu/stanford/nlp/models/ner/english.muc.7class.distsim.crf.ser.gz ... done [0.4 sec].
Loading classifier from edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz ... done [0.5 sec].
Threads( StanfordCoreNLP ) #
Threads( StanfordCoreNLP ) #
A fatal error has been detected by the Java Runtime Environment:
SIGSEGV (0xb) at pc=0x00007f0aa67f4e10, pid=12537, tid=0x00007f0a7d4b4700
JRE version: OpenJDK Runtime Environment (8.0_265-b01) (build 1.8.0_265-8u265-b01-0ubuntu2~16.04-b01)
Java VM: OpenJDK 64-Bit Server VM (25.265-b01 mixed mode linux-amd64 compressed oops)
Problematic frame:
V [libjvm.so+0x408e10]
Failed to write core dump. Core dumps have been disabled. To enable core dumping, try "ulimit -c unlimited" before starting Java again
An error report file with more information is saved as:
/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/hs_err_pid12537.log
[error occurred during error reporting , id 0xb]
If you would like to submit a bug report, please visit:
http://bugreport.java.com/bugreport/crash.jsp
Traceback (most recent call last):
File "train.py", line 300, in
train(opt)
File "train.py", line 244, in train
val_loss, predictions, lang_stats = eval_utils.eval_split(dp_model, lw_model.crit, loader, eval_kwargs)
File "/home/muli/myExpe--caption/AAT/eval_utils.py", line 173, in eval_split
lang_stats = language_eval(dataset, predictions, eval_kwargs['id'], split)
File "/home/muli/myExpe--caption/AAT/eval_utils.py", line 55, in language_eval
cocoEval.evaluate()
File "coco-caption/pycocoevalcap/eval.py", line 61, in evaluate
score, scores = scorer.compute_score(gts, res)
File "coco-caption/pycocoevalcap/spice/spice.py", line 79, in compute_score
cwd=os.path.dirname(os.path.abspath(file)))
File "/usr/lib/python3.6/subprocess.py", line 311, in check_call
raise CalledProcessError(retcode, cmd)
subprocess.CalledProcessError: Command '['java', '-jar', '-Xmx8G', 'spice-1.0.jar', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/tmp/tmpyfgzkyc4', '-cache', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/cache/1601606281.2002816', '-out', '/home/muli/myExpe--caption/AAT/coco-caption/pycocoevalcap/spice/tmp/tmp_de8maf_', '-subset', '-silent']' died with <Signals.SIGABRT: 6>.
Terminating BlobFetcher`
请问一下,这个怎么解决呢?
我在运行AAT 模型时,没有报错
The text was updated successfully, but these errors were encountered: