Skip to content

Commit c0aa30a

Browse files
authored
refine md tables (#994)
1 parent 4aeca3a commit c0aa30a

File tree

3 files changed

+18
-18
lines changed

3 files changed

+18
-18
lines changed

docs/alg_202508.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,11 +4,11 @@ in [modeling_llama.py](https://github.com/huggingface/transformers/blob/main/src
44
to stabilize accuracy during evaluation. All other settings follow the default configurations of AutoRound and lm-eval.
55

66
| Qwen3-8B W2G64 | Avg. | arc_challenge | hellaswag | gsm8k | lambada_openai | mmlu | mmlupro | truthfulqa_mc1 | winogrande |
7-
|-------------------|--------|---------------|-----------|--------|----------------|--------|---------|----------------|------------|
8-
| AutoRound | 0.4373 | 0.4019 | 0.4437 | 0.4215 | 0.4826 | 0.5474 | 0.263 | 0.3072 | 0.6314 |
7+
|:-------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
8+
| AutoRound | 0.4373 | 0.4019 | 0.4437 | 0.4215 | 0.4826 | 0.5474 | 0.2630 | 0.3072 | 0.6314 |
99
| AutoRound+alg_ext | 0.4787 | 0.4275 | 0.4516 | 0.5944 | 0.5181 | 0.5773 | 0.2807 | 0.3305 | 0.6496 |
1010

1111
| Llama3.1-8B W2G64 | Avg. | arc_challenge | hellaswag | gsm8k | lambada_openai | mmlu | mmlupro | truthfulqa_mc1 | winogrande |
12-
|-------------------|--------|---------------|-----------|--------|----------------|--------|---------|----------------|------------|
13-
| AutoRound | 0.382 | 0.3635 | 0.4562 | 0.1622 | 0.5069 | 0.4411 | 0.1661 | 0.3207 | 0.6393 |
14-
| AutoRound+alg_ext | 0.4166 | 0.3712 | 0.4729 | 0.2039 | 0.5946 | 0.4981 | 0.2163 | 0.3011 | 0.6748 |
12+
|:-------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
13+
| AutoRound | 0.3820 | 0.3635 | 0.4562 | 0.1622 | 0.5069 | 0.4411 | 0.1661 | 0.3207 | 0.6393 |
14+
| AutoRound+alg_ext | 0.4166 | 0.3712 | 0.4729 | 0.2039 | 0.5946 | 0.4981 | 0.2163 | 0.3011 | 0.6748 |

docs/auto_scheme_acc.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ For mxfp experiment, we use fake model while for weight only model we use real m
1313
### Table 1 MXFP4/8 mixed accuracy.
1414

1515
| Average bits | Llama3.1-8B-I | Qwen2.5-7B-I | Qwen3-8B | Qwen3-32B |
16-
|------------------|----------------|----------------|----------------|----------------|
16+
|:------------------|:----------------:|:----------------:|:----------------:|:----------------:|
1717
| **BF16** | 0.7076 (100%) | 0.7075 (100%) | 0.6764 (100%) | 0.7321 (100%) |
1818
| **Pure 4-bit** | 0.6626 (93.6%) | 0.6550 (92.6%) | 0.6316 (93.4%) | 0.6901 (94.3%) |
1919
| **Ours 4.5-bit** | 0.6808 (96.2%) | 0.6776 (95.8%) | 0.6550 (96.8%) | 0.7176 (98.0%) |
@@ -27,15 +27,15 @@ performance advantages.
2727
### Table 2 Comparison with other recipes at an average of 5 bits of mxfp datatype
2828

2929
| Avg. bits = 5 | Llama3.1-8B-I | Qwen2.5-7B-I | Qwen3-8B |
30-
|-----------------------|-------------------:|-------------------:|-------------------:|
30+
|:------------------|:----------------:|:----------------:|:----------------:|
3131
| **Tail layers 8-bit** | 0.6671 (94.3%) | 0.6616 (93.5%) | 0.6410 (94.8%) |
3232
| **Head layers 8-bit** | 0.6657 (94.1%) | 0.6686 (94.5%) | 0.6356 (94.0%) |
3333
| **Ours** | **0.6857 (96.9%)** | **0.6823 (96.4%)** | **0.6594 (97.5%)** |
3434

3535
### Table 3 Comparison with other recipes at an average of 4.5 bits of mxfp datatype
3636

3737
| Avg. bits = 4.5 | Llama3.1-8B-I | Qwen2.5-7B-I | Qwen3-8B |
38-
|-----------------------|-------------------:|-------------------:|-------------------:|
38+
|:------------------|:----------------:|:----------------:|:----------------:|
3939
| **Tail layers 8-bit** | 0.6614 (93.5%) | 0.6535 (92.4%) | 0.6373 (94.2%) |
4040
| **Head layers 8-bit** | 0.6568 (92.8%) | 0.6642 (93.9%) | 0.6305 (93.2%) |
4141
| **Ours** | **0.6808 (96.2%)** | **0.6776 (95.5%)** | **0.6550 (95.8%)** |
@@ -44,7 +44,7 @@ performance advantages.
4444
### Table4 Comparison with other recipes at an average of 3 bits of W2G128 and W4G128
4545

4646
| Avg. bits = 4.5 | Llama3.1-8B-I | Qwen2.5-7B-I | Qwen3-8B |
47-
|-----------------------|--------------:|-------------:|---------:|
47+
|:------------------|:----------------:|:----------------:|:----------------:|
4848
| **Tail layers 4-bit** | 0.6058 | 0.3798 | 0.4536 |
4949
| **Head layers 4-bit** | 0.3198 | 0.3270 | 0.3196 |
50-
| **Ours** | 0.6148 | 0.4058 | 0.4862 |
50+
| **Ours** | 0.6148 | 0.4058 | 0.4862 |

docs/mxnv_acc.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -3,13 +3,13 @@ Average accuracy of hellaswag,lambada_openai,mmlu,piqa,winogrande.
33
We evaluated using a fake model since we currently have no access to devices for running the real models. However, we have verified that in most cases the fake model closely matches the real model.
44

55
| mxfp4 g32 | llama3.1-8B-Instruct | Qwen2-7.5-Instruct | Phi4 | Qwen3-32B |
6-
|-------------------|----------------------|--------------------|---------|-----------|
7-
| RTN | 0.62124 | 0.65502 | 0.71674 | 0.69006 |
8-
| AutoRound | 0.66862 | 0.67588 | 0.72472 | 0.72106 |
9-
| AutoRound+alg_ext | 0.6732 | 0.68094 | 0.72252 | 0.72012 |
6+
|:-------------------|:----------------------:|:--------------------:|:---------:|:-----------:|
7+
| RTN | 0.6212 | 0.6550 | 0.7167 | 0.6901 |
8+
| AutoRound | 0.6686 | 0.6758 | 0.7247 | 0.7211 |
9+
| AutoRound+alg_ext | 0.6732 | 0.6809 | 0.7225 | 0.7201 |
1010

1111
| nvfp4 g16 | llama3.1-8B-Instruct | Qwen2-7.5-Instruct | Phi4 | Qwen3-32B |
12-
|-------------------|----------------------|--------------------|---------|-----------|
13-
| RTN | 0.68756 | 0.6906 | 0.72962 | 0.71636 |
14-
| AutoRound | 0.69184 | 0.69728 | 0.73058 | 0.73062 |
15-
| AutoRound+alg_ext | 0.69648 | 0.6989 | 0.7318 | 0.72948 |
12+
|:-------------------|:----------------------:|:--------------------:|:---------:|:-----------:|
13+
| RTN | 0.6876 | 0.6906 | 0.7296 | 0.7164 |
14+
| AutoRound | 0.6918 | 0.6973 | 0.7306 | 0.7306 |
15+
| AutoRound+alg_ext | 0.6965 | 0.6989 | 0.7318 | 0.7295 |

0 commit comments

Comments
 (0)