|
14 | 14 | from invokeai.backend.patches.layer_patcher import LayerPatcher |
15 | 15 | from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch |
16 | 16 | from invokeai.backend.patches.layers.flux_control_lora_layer import FluxControlLoRALayer |
17 | | -from invokeai.backend.patches.layers.diffusers_ada_ln_lora_layer import DiffusersAdaLN_LoRALayer |
18 | 17 | from invokeai.backend.patches.layers.lokr_layer import LoKRLayer |
19 | 18 | from invokeai.backend.patches.layers.lora_layer import LoRALayer |
20 | 19 | from invokeai.backend.patches.layers.merged_layer_patch import MergedLayerPatch, Range |
@@ -284,7 +283,6 @@ def test_inference_autocast_from_cpu_to_device(device: str, layer_under_test: La |
284 | 283 | "multiple_loras", |
285 | 284 | "concatenated_lora", |
286 | 285 | "flux_control_lora", |
287 | | - "diffusers_adaLN_lora", |
288 | 286 | "single_lokr", |
289 | 287 | ] |
290 | 288 | ) |
@@ -372,16 +370,6 @@ def patch_under_test(request: pytest.FixtureRequest) -> PatchUnderTest: |
372 | 370 | ) |
373 | 371 | input = torch.randn(1, in_features) |
374 | 372 | return ([(lokr_layer, 0.7)], input) |
375 | | - elif layer_type == "diffusers_adaLN_lora": |
376 | | - lora_layer = DiffusersAdaLN_LoRALayer( |
377 | | - up=torch.randn(out_features, rank), |
378 | | - mid=None, |
379 | | - down=torch.randn(rank, in_features), |
380 | | - alpha=1.0, |
381 | | - bias=torch.randn(out_features), |
382 | | - ) |
383 | | - input = torch.randn(1, in_features) |
384 | | - return ([(lora_layer, 0.7)], input) |
385 | 373 | else: |
386 | 374 | raise ValueError(f"Unsupported layer_type: {layer_type}") |
387 | 375 |
|
|
0 commit comments