diff --git a/.cproject b/.cproject
index 61b2e7a8..f8879cad 100644
--- a/.cproject
+++ b/.cproject
@@ -1,247 +1,449 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/.cproject_org b/.cproject_org
new file mode 100644
index 00000000..bc89054d
--- /dev/null
+++ b/.cproject_org
@@ -0,0 +1,247 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/.github/workflows/generate_bin.yml b/.github/workflows/generate_bin.yml
new file mode 100644
index 00000000..71e111e1
--- /dev/null
+++ b/.github/workflows/generate_bin.yml
@@ -0,0 +1,49 @@
+name: C/C++ CI
+
+on:
+ push:
+ branches: [ master ]
+ pull_request:
+ branches: [ master ]
+
+jobs:
+ build:
+
+ runs-on: ubuntu-latest
+ env:
+ # ruleid: allowed-unsecure-commands
+ ACTIONS_ALLOW_UNSECURE_COMMANDS: true
+
+ steps:
+ - uses: actions/checkout@v2
+ with:
+ submodules: recursive
+ - name: log untrusted output
+ run: |
+
+ # disable command workflow processing
+ echo "::stop-commands::`echo -n ${{ github.token }} | sha256sum | head -c 64`"
+
+ # log untrusted output
+ echo "untrusted output"
+
+ # enable workflow command processing
+ echo "::`echo -n ${{ github.token }} | sha256sum | head -c 64`::"
+ - name: arm-none-eabi-gcc
+ uses: fiam/arm-none-eabi-gcc@v1.0.2
+ with:
+ release: '9-2020-q2'
+ - name: make
+ run: make
+
+ - uses: actions/setup-python@v2
+ with:
+ python-version: '3.x' # Version range or exact version of a Python version to use, using SemVer's version range syntax
+ architecture: 'x64' # optional x64 or x86. Defaults to x64 if not specified
+ - run: python tools/xiaotea/Scripts/prepareZip_online.py
+ - name: 'Upload Artifact'
+ uses: actions/upload-artifact@v2
+ with:
+ path: ${{ github.workspace }}/tools/zip_output
+ name: M365_v3_build_${{ github.run_number }}
+ retention-days: 5
diff --git a/.gitignore b/.gitignore
index 4d367229..d967bfac 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,16 +1,20 @@
-main.hex
-**/*~
-*.asm
-*.bin
-*.elf
-*.ihx
-*.cdb
-*.lk
-*.map
-*.adb
-*.lst
-*.rel
-*.rst
-*.sym
-
-Debug
+main.hex
+**/*~
+*.asm
+*.bin
+*.elf
+*.ihx
+*.cdb
+*.lk
+*.map
+*.adb
+*.lst
+*.rel
+*.rst
+*.sym
+
+Debug/
+Release/
+build/
+
+.settings/language.settings.xml
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 00000000..c6a660e2
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "Lib/EBiCS_motor_FOC"]
+ path = Lib/EBiCS_motor_FOC
+ url = git@github.com:EBiCS/EBiCS_motor_FOC.git
diff --git a/.mxproject b/.mxproject
index 0a23feda..a2ce3191 100644
--- a/.mxproject
+++ b/.mxproject
@@ -1,11 +1,5 @@
-[PreviousGenFiles]
-HeaderPath=C:/LishuiFOC/Generated/LishuiFOC_01/Inc
-HeaderFiles=stm32f1xx_it.h;stm32f1xx_hal_conf.h;main.h;
-SourcePath=C:/LishuiFOC/Generated/LishuiFOC_01/Src
-SourceFiles=stm32f1xx_it.c;stm32f1xx_hal_msp.c;main.c;
-
[PreviousLibFiles]
-LibFiles=Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_uart.h;Drivers/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c;Drivers/CMSIS/Device/ST/STM32F1xx/Include/stm32f103x6.h;Drivers/CMSIS/Device/ST/STM32F1xx/Include/stm32f1xx.h;Drivers/CMSIS/Device/ST/STM32F1xx/Include/system_stm32f1xx.h;Drivers/CMSIS/Device/ST/STM32F1xx/Source/Templates/system_stm32f1xx.c;Drivers/CMSIS/Include/arm_common_tables.h;Drivers/CMSIS/Include/arm_const_structs.h;Drivers/CMSIS/Include/arm_math.h;Drivers/CMSIS/Include/cmsis_armcc.h;Drivers/CMSIS/Include/cmsis_armcc_V6.h;Drivers/CMSIS/Include/cmsis_gcc.h;Drivers/CMSIS/Include/core_cm0.h;Drivers/CMSIS/Include/core_cm0plus.h;Drivers/CMSIS/Include/core_cm3.h;Drivers/CMSIS/Include/core_cm4.h;Drivers/CMSIS/Include/core_cm7.h;Drivers/CMSIS/Include/core_cmFunc.h;Drivers/CMSIS/Include/core_cmInstr.h;Drivers/CMSIS/Include/core_cmSimd.h;Drivers/CMSIS/Include/core_sc000.h;Drivers/CMSIS/Include/core_sc300.h;
+LibFiles=Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_exti.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_uart.h;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_adc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_def.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_rcc_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_gpio_ex.h;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_dma.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_cortex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_pwr.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_flash_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_exti.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_tim_ex.h;Drivers/STM32F1xx_HAL_Driver/Inc/stm32f1xx_hal_uart.h;Drivers/CMSIS/Device/ST/STM32F1xx/Include/stm32f103xb.h;Drivers/CMSIS/Device/ST/STM32F1xx/Include/stm32f1xx.h;Drivers/CMSIS/Device/ST/STM32F1xx/Include/system_stm32f1xx.h;Drivers/CMSIS/Device/ST/STM32F1xx/Source/Templates/system_stm32f1xx.c;Drivers/CMSIS/Include/cmsis_armcc.h;Drivers/CMSIS/Include/cmsis_armclang.h;Drivers/CMSIS/Include/cmsis_compiler.h;Drivers/CMSIS/Include/cmsis_gcc.h;Drivers/CMSIS/Include/cmsis_iccarm.h;Drivers/CMSIS/Include/cmsis_version.h;Drivers/CMSIS/Include/core_armv8mbl.h;Drivers/CMSIS/Include/core_armv8mml.h;Drivers/CMSIS/Include/core_cm0.h;Drivers/CMSIS/Include/core_cm0plus.h;Drivers/CMSIS/Include/core_cm1.h;Drivers/CMSIS/Include/core_cm23.h;Drivers/CMSIS/Include/core_cm3.h;Drivers/CMSIS/Include/core_cm33.h;Drivers/CMSIS/Include/core_cm4.h;Drivers/CMSIS/Include/core_cm7.h;Drivers/CMSIS/Include/core_sc000.h;Drivers/CMSIS/Include/core_sc300.h;Drivers/CMSIS/Include/mpu_armv7.h;Drivers/CMSIS/Include/mpu_armv8.h;Drivers/CMSIS/Include/tz_context.h;
[]
SourceFiles=;;
@@ -15,3 +9,26 @@ SourceFiles=..\Src\main.c;..\Src\stm32f1xx_it.c;..\Src\stm32f1xx_hal_msp.c;../Dr
HeaderPath=..\Drivers\STM32F1xx_HAL_Driver\Inc;..\Drivers\STM32F1xx_HAL_Driver\Inc\Legacy;..\Drivers\CMSIS\Device\ST\STM32F1xx\Include;..\Drivers\CMSIS\Include;..\Inc;
CDefines=__weak:__attribute__((weak));__packed:__attribute__((__packed__));
+[PreviousUsedCubeIDEFiles]
+SourceFiles=Core\Src\main.c;Core\Src\stm32f1xx_it.c;Core\Src\stm32f1xx_hal_msp.c;Core\Src\stm32f1xx_hal_timebase_tim.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c;Core\Src/system_stm32f1xx.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_adc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_rcc_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_dma.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_cortex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_pwr.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_exti.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c;Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c;Core\Src/system_stm32f1xx.c;Drivers/CMSIS/Device/ST/STM32F1xx/Source/Templates/system_stm32f1xx.c;;
+HeaderPath=Drivers\STM32F1xx_HAL_Driver\Inc;Drivers\STM32F1xx_HAL_Driver\Inc\Legacy;Drivers\CMSIS\Device\ST\STM32F1xx\Include;Drivers\CMSIS\Include;Core\Inc;
+CDefines=USE_HAL_DRIVER;STM32F103xB;USE_HAL_DRIVER;USE_HAL_DRIVER;
+
+[PreviousGenFiles]
+AdvancedFolderStructure=true
+HeaderFileListSize=3
+HeaderFiles#0=C:/VSARM/SmartESC_STM32_v3/Core/Inc/stm32f1xx_it.h
+HeaderFiles#1=C:/VSARM/SmartESC_STM32_v3/Core/Inc/stm32f1xx_hal_conf.h
+HeaderFiles#2=C:/VSARM/SmartESC_STM32_v3/Core/Inc/main.h
+HeaderFolderListSize=1
+HeaderPath#0=C:/VSARM/SmartESC_STM32_v3/Core/Inc
+HeaderFiles=;
+SourceFileListSize=4
+SourceFiles#0=C:/VSARM/SmartESC_STM32_v3/Core/Src/stm32f1xx_it.c
+SourceFiles#1=C:/VSARM/SmartESC_STM32_v3/Core/Src/stm32f1xx_hal_msp.c
+SourceFiles#2=C:/VSARM/SmartESC_STM32_v3/Core/Src/stm32f1xx_hal_timebase_tim.c
+SourceFiles#3=C:/VSARM/SmartESC_STM32_v3/Core/Src/main.c
+SourceFolderListSize=1
+SourcePath#0=C:/VSARM/SmartESC_STM32_v3/Core/Src
+SourceFiles=;
+
diff --git a/.project b/.project
index c5202eac..0443504c 100644
--- a/.project
+++ b/.project
@@ -1,7 +1,7 @@
- LishuiFOC_01
-
+ SmartESC_v3
+
@@ -19,12 +19,16 @@
+ com.st.stm32cube.ide.mcu.MCUProjectNatureorg.eclipse.cdt.core.cnature
- org.eclipse.cdt.managedbuilder.core.managedBuildNatureorg.eclipse.cdt.managedbuilder.core.ScannerConfigNature
- fr.ac6.mcu.ide.core.MCUProjectNature
+ org.eclipse.cdt.managedbuilder.core.managedBuildNature
+ com.st.stm32cube.ide.mcu.MCUSW4STM32ConvertedProjectNature
+ com.st.stm32cube.ide.mcu.MCUCubeIdeServicesRevAev2ProjectNature
+ com.st.stm32cube.ide.mcu.MCUCubeProjectNature
+ com.st.stm32cube.ide.mcu.MCUAdvancedStructureProjectNature
+ com.st.stm32cube.ide.mcu.MCUEndUserDisabledTrustZoneProjectNature
+ com.st.stm32cube.ide.mcu.MCUSingleCpuProjectNature
+ com.st.stm32cube.ide.mcu.MCURootProjectNature
-
-
-
diff --git a/.project_org b/.project_org
new file mode 100644
index 00000000..5545c03b
--- /dev/null
+++ b/.project_org
@@ -0,0 +1,30 @@
+
+
+ SmartESC_v3
+
+
+
+
+
+ org.eclipse.cdt.managedbuilder.core.genmakebuilder
+ clean,full,incremental,
+
+
+
+
+ org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder
+ full,incremental,
+
+
+
+
+
+ org.eclipse.cdt.core.cnature
+ org.eclipse.cdt.managedbuilder.core.managedBuildNature
+ org.eclipse.cdt.managedbuilder.core.ScannerConfigNature
+ fr.ac6.mcu.ide.core.MCUProjectNature
+
+
+
+
+
diff --git a/.settings/language.settings.xml b/.settings/language.settings.xml
deleted file mode 100644
index 023a00f3..00000000
--- a/.settings/language.settings.xml
+++ /dev/null
@@ -1,25 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/.settings/org.eclipse.cdt.codan.core.prefs b/.settings/org.eclipse.cdt.codan.core.prefs
new file mode 100644
index 00000000..19f7155e
--- /dev/null
+++ b/.settings/org.eclipse.cdt.codan.core.prefs
@@ -0,0 +1,72 @@
+com.st.stm32cube.ide.mcu.ide.oss.source.checker.libnano.problem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Float formatting support\\")"}
+eclipse.preferences.version=1
+org.eclipse.cdt.codan.checkers.errnoreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return\\")",implicit\=>false}
+org.eclipse.cdt.codan.checkers.errreturnvalue.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused return value\\")"}
+org.eclipse.cdt.codan.checkers.localvarreturn=-Warning
+org.eclipse.cdt.codan.checkers.localvarreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Returning the address of a local variable\\")"}
+org.eclipse.cdt.codan.checkers.nocommentinside.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Nesting comments\\")"}
+org.eclipse.cdt.codan.checkers.nolinecomment.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Line comments\\")"}
+org.eclipse.cdt.codan.checkers.noreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No return value\\")",implicit\=>false}
+org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Abstract class cannot be instantiated\\")"}
+org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Ambiguous problem\\")"}
+org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment in condition\\")"}
+org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Assignment to itself\\")"}
+org.eclipse.cdt.codan.internal.checkers.BlacklistProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.BlacklistProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Function or method is blacklisted\\")",blacklist\=>()}
+org.eclipse.cdt.codan.internal.checkers.CStyleCastProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.CStyleCastProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"C-Style cast instead of C++ cast\\")",checkMacro\=>true}
+org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"No break at end of case\\")",no_break_comment\=>"no break",last_case_param\=>false,empty_case_param\=>false,enable_fallthrough_quickfix_param\=>false}
+org.eclipse.cdt.codan.internal.checkers.CatchByReference.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Catching by reference is recommended\\")",unknown\=>false,exceptions\=>()}
+org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Circular inheritance\\")"}
+org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class members should be properly initialized\\")",skip\=>true}
+org.eclipse.cdt.codan.internal.checkers.CopyrightProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.CopyrightProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Lack of copyright information\\")",regex\=>".*Copyright.*"}
+org.eclipse.cdt.codan.internal.checkers.DecltypeAutoProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid 'decltype(auto)' specifier\\")"}
+org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Field cannot be resolved\\")"}
+org.eclipse.cdt.codan.internal.checkers.FloatCompareProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.FloatCompareProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Direct float comparison\\")"}
+org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Function cannot be resolved\\")"}
+org.eclipse.cdt.codan.internal.checkers.GotoStatementProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.GotoStatementProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Goto statement used\\")"}
+org.eclipse.cdt.codan.internal.checkers.InvalidArguments.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid arguments\\")"}
+org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid template argument\\")"}
+org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Label statement not found\\")"}
+org.eclipse.cdt.codan.internal.checkers.MagicNumberProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MagicNumberProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Avoid magic numbers\\")",checkArray\=>true,checkOperatorParen\=>true,exceptions\=>(1,0,-1,2,1.0,0.0,-1.0)}
+org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Member declaration not found\\")"}
+org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Method cannot be resolved\\")"}
+org.eclipse.cdt.codan.internal.checkers.MissCaseProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MissCaseProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Missing cases in switch\\")"}
+org.eclipse.cdt.codan.internal.checkers.MissDefaultProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MissDefaultProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Missing default in switch\\")",defaultWithAllEnums\=>false}
+org.eclipse.cdt.codan.internal.checkers.MissReferenceProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MissReferenceProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Missing reference return value in assignment operator\\")"}
+org.eclipse.cdt.codan.internal.checkers.MissSelfCheckProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MissSelfCheckProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Missing self check in assignment operator\\")"}
+org.eclipse.cdt.codan.internal.checkers.MultipleDeclarationsProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.MultipleDeclarationsProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Multiple variable declaration\\")"}
+org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Name convention for function\\")",pattern\=>"^[a-z]",macro\=>true,exceptions\=>()}
+org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Class has a virtual method and non-virtual destructor\\")"}
+org.eclipse.cdt.codan.internal.checkers.OverloadProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid overload\\")"}
+org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redeclaration\\")"}
+org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Invalid redefinition\\")"}
+org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Return with parenthesis\\")"}
+org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Format String Vulnerability\\")"}
+org.eclipse.cdt.codan.internal.checkers.ShallowCopyProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.ShallowCopyProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Miss copy constructor or assignment operator\\")",onlynew\=>false}
+org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Statement has no effect\\")",macro\=>true,exceptions\=>()}
+org.eclipse.cdt.codan.internal.checkers.StaticVariableInHeaderProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.StaticVariableInHeaderProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Static variable in header file\\")"}
+org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suggested parenthesis around expression\\")",paramNot\=>false}
+org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Suspicious semicolon\\")",else\=>false,afterelse\=>false}
+org.eclipse.cdt.codan.internal.checkers.SymbolShadowingProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.SymbolShadowingProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Symbol shadowing\\")",paramFuncParameters\=>true}
+org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Type cannot be resolved\\")"}
+org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused function declaration\\")",macro\=>true}
+org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused static function\\")",macro\=>true}
+org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Unused variable declaration in file scope\\")",macro\=>true,exceptions\=>("@(\#)","$Id")}
+org.eclipse.cdt.codan.internal.checkers.UsingInHeaderProblem=-Warning
+org.eclipse.cdt.codan.internal.checkers.UsingInHeaderProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Using directive in header\\")"}
+org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Symbol is not resolved\\")"}
+org.eclipse.cdt.codan.internal.checkers.VirtualMethodCallProblem=-Error
+org.eclipse.cdt.codan.internal.checkers.VirtualMethodCallProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},suppression_comment\=>"@suppress(\\"Virtual method call in constructor/destructor\\")"}
diff --git a/.settings/org.eclipse.cdt.core.prefs b/.settings/org.eclipse.cdt.core.prefs
new file mode 100644
index 00000000..c8ec5df2
--- /dev/null
+++ b/.settings/org.eclipse.cdt.core.prefs
@@ -0,0 +1,6 @@
+doxygen/doxygen_new_line_after_brief=true
+doxygen/doxygen_use_brief_tag=false
+doxygen/doxygen_use_javadoc_tags=true
+doxygen/doxygen_use_pre_tag=false
+doxygen/doxygen_use_structural_commands=false
+eclipse.preferences.version=1
diff --git a/.vscode/launch.json b/.vscode/launch.json
new file mode 100644
index 00000000..064695c1
--- /dev/null
+++ b/.vscode/launch.json
@@ -0,0 +1,99 @@
+{
+ // Use IntelliSense to learn about possible attributes.
+ // Hover to view descriptions of existing attributes.
+ // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
+ "version": "0.2.0",
+ "configurations": [
+
+ {
+ "name": "Flash",
+ "type": "cppdbg",
+ "request": "launch",
+ "args": [],
+ "stopAtEntry": true,
+ "cwd": "${workspaceFolder}",
+ "program": "${workspaceFolder}/build/firmware.elf",
+ "environment": [],
+ "externalConsole": false,
+ "MIMode": "gdb",
+ "miDebuggerServerAddress": "localhost:3333",
+ "targetArchitecture": "arm",
+ "logging": {
+ "moduleLoad": true,
+ "trace": true,
+ "engineLogging": true,
+ "programOutput": true,
+ "exceptions": true
+ },
+ "linux": {
+ "MIDebuggerPath": "gdb-multiarch",
+ },
+ "customLaunchSetupCommands": [
+ {
+ "description": "Set remote target",
+ "text": "file ${workspaceFolder}/build/firmware.elf"
+ },
+ {
+ "description": "Set remote target",
+ "text": "target remote localhost:3333"
+ },
+ {
+ "text": "monitor init"
+ },
+ {
+ "text": "monitor reset halt"
+ },
+ {
+ "description": "Flash firmware",
+ "text": "monitor flash write_image erase ${workspaceFolder}/build/firmware.hex"
+ },
+ {
+ "description": "Start debug",
+ "text": "monitor reset halt"
+ }
+ ]
+ },
+ {
+ "name": "Unlock",
+ "type": "cppdbg",
+ "request": "launch",
+ "args": [],
+ "stopAtEntry": true,
+ "cwd": "${workspaceFolder}",
+ "program": "${workspaceFolder}/build/firmware.elf",
+ "environment": [],
+ "externalConsole": false,
+ "MIMode": "gdb",
+ "miDebuggerServerAddress": "localhost:3333",
+ "targetArchitecture": "arm",
+ "logging": {
+ "moduleLoad": true,
+ "trace": true,
+ "engineLogging": true,
+ "programOutput": true,
+ "exceptions": true
+ },
+ "linux": {
+ "MIDebuggerPath": "gdb-multiarch",
+ },
+ "customLaunchSetupCommands": [
+ {
+ "description": "Set remote target",
+ "text": "target remote localhost:3333"
+ },
+ {
+ "text": "monitor init"
+ },
+ {
+ "text": "monitor reset halt"
+ },
+ {
+ "text": "monitor stm32f1x unlock 0"
+ },
+ {
+ "text": "monitor reset halt"
+ },
+ ]
+ },
+ ]
+}
\ No newline at end of file
diff --git a/.vscode/settings.json b/.vscode/settings.json
new file mode 100644
index 00000000..ef6d3f5b
--- /dev/null
+++ b/.vscode/settings.json
@@ -0,0 +1,15 @@
+{
+ "git.ignoreLimitWarning": true,
+ "github.gitAuthentication": false,
+ "files.associations": {
+ "optional": "c",
+ "istream": "c",
+ "ostream": "c",
+ "system_error": "c",
+ "array": "c",
+ "functional": "c",
+ "tuple": "c",
+ "type_traits": "c",
+ "utility": "c"
+ }
+}
\ No newline at end of file
diff --git a/.vscode/tasks.json b/.vscode/tasks.json
new file mode 100644
index 00000000..bfddb1fb
--- /dev/null
+++ b/.vscode/tasks.json
@@ -0,0 +1,48 @@
+{
+ // See https://go.microsoft.com/fwlink/?LinkId=733558
+ // for the documentation about the tasks.json format
+ "version": "2.0.0",
+ "tasks": [
+ {
+ "label": "build dev",
+ "type": "shell",
+ "args": [],
+ "options": {
+ "cwd": "${workspaceFolder}"
+ },
+ "linux": {
+ "command": "make -j BUILD_ENV=development"
+ },
+ "problemMatcher": [],
+ "group": {
+ "kind": "build",
+ "isDefault": true
+ }
+ },
+ {
+ "label": "clean",
+ "type": "shell",
+ "args": [],
+ "options": {
+ "cwd": "${workspaceFolder}"
+ },
+ "linux": {
+ "command": "make",
+ "args": [
+ "clean"
+ ]
+ },
+ "problemMatcher": [],
+ "group": "build"
+ },
+ {
+ "label": "OpenOCD",
+ "type": "shell",
+ "args": [],
+ "linux": {
+ "command": "openocd -c 'interface jlink; transport select swd; source [find target/stm32f1x.cfg]'"
+ },
+ "problemMatcher": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/Core/Inc/M365_Dashboard.h b/Core/Inc/M365_Dashboard.h
new file mode 100644
index 00000000..066797c7
--- /dev/null
+++ b/Core/Inc/M365_Dashboard.h
@@ -0,0 +1,21 @@
+/*
+ * M365_Dashboard.h
+ *
+ * Created on: Nov 27, 2021
+ * Author: stancecoke
+ */
+
+#ifndef INC_M365_DASHBOARD_H_
+#define INC_M365_DASHBOARD_H_
+
+#include "motor.h"
+
+
+void M365Dashboard_init();
+
+void search_DashboardMessage(M365State_t *M365State, UART_HandleTypeDef huart1);
+void process_DashboardMessage(M365State_t* p_M365State, uint8_t *message, uint8_t length, UART_HandleTypeDef huart1);
+void addCRC(uint8_t * message, uint8_t size);
+int16_t checkCRC(uint8_t * message, uint8_t size);
+
+#endif /* INC_M365_DASHBOARD_H_ */
diff --git a/Core/Inc/M365_memory_table.h b/Core/Inc/M365_memory_table.h
new file mode 100644
index 00000000..9f770de5
--- /dev/null
+++ b/Core/Inc/M365_memory_table.h
@@ -0,0 +1,87 @@
+/*
+ * M365_memory_table.h
+ *
+ * Created on: 19.12.2021
+ * Author: Stancecoke
+ * taken from https://github.com/rascafr/9-analyzer/blob/master/definitions.js
+ * and
+ */
+
+#ifndef INC_M365_MEMORY_TABLE_H_
+#define INC_M365_MEMORY_TABLE_H_
+
+typedef struct __attribute__ ((__packed__)) {
+
+ uint16_t magic[13];
+ uint16_t currA;
+ uint16_t currB;
+ uint16_t currC;
+ char scooter_serial[14];
+ uint16_t scooter_pin[3];
+ uint16_t ESC_version;
+ uint16_t error_code_1;
+ uint16_t alarm_code_1;
+ uint32_t ESC_status_1;
+ uint16_t ride_mode;
+ uint16_t capacity_battery_1;
+ uint16_t capacity_battery_2;
+ uint32_t battery_level_1;
+ uint16_t recent_remaining_range;
+ uint16_t predicted_remaining_range;
+ uint16_t recent_speed_1[3];
+ uint16_t total_milage[6];
+ uint16_t recent_milage[3];
+ uint32_t total_operation_time;
+ uint16_t total_riding_time[6];
+ uint16_t single_operating_time_1;
+ uint16_t single_riding_time_1[3];
+ uint16_t frame_temperature;
+ uint16_t battery1_temperature;
+ uint16_t battery2_temperature;
+ uint16_t MOSFET_temperature[6];
+ uint16_t ESC_supply_voltage;
+ uint16_t BMS_supply_voltage;
+ uint16_t BMS_current[7];
+ uint16_t external_battery_temperature[3];
+ uint16_t motor_phase_current[18];
+ uint16_t average_speed;
+ uint16_t external_battery_version;
+ uint16_t internal_battery_version;
+ uint16_t BLE_version[8];
+ uint16_t lock_command;
+ uint16_t unlock_command;
+ uint16_t speed_limit;
+ uint16_t speed_limit_normal;
+ uint16_t speed_limit_eco;
+ uint16_t operation_mode;
+ uint16_t start_stop;
+ uint16_t reboot;
+ uint16_t power_off;
+ uint16_t unknown;
+ uint16_t regen_level;
+ uint16_t cruise_control;
+ uint16_t tail_light[52];
+ uint16_t error_code_2;
+ uint16_t alarm_code_2;
+ uint16_t ESC_status_2;
+ uint16_t capacity_battery_1_2;
+ uint16_t battery_2;
+ uint16_t recent_speed_2;
+ uint16_t average_speed_2;
+ uint32_t total_milage_2;
+ uint16_t recent_milage_2;
+ uint16_t single_operation_time_2;
+ uint16_t frame_temperature_2;
+ uint16_t recent_speed_limit_2;
+ uint16_t scooter_power;
+ uint16_t previous_alarm_code;
+ uint16_t predicted_remaining_range_2[7];
+ uint32_t display_mode_lamp_strip;
+ uint32_t colour_strip_1;
+ uint32_t colour_strip_2;
+ uint32_t colour_strip_3;
+ uint32_t colour_strip_4;
+
+} M365_menory_table_t;
+
+#endif /* INC_M365_MEMORY_TABLE_H_ */
diff --git a/Drivers/CMSIS/Include/arm_common_tables.h b/Core/Inc/arm_common_tables.h
similarity index 98%
rename from Drivers/CMSIS/Include/arm_common_tables.h
rename to Core/Inc/arm_common_tables.h
index d5d72417..8742a569 100644
--- a/Drivers/CMSIS/Include/arm_common_tables.h
+++ b/Core/Inc/arm_common_tables.h
@@ -1,136 +1,136 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. October 2015
-* $Revision: V.1.4.5 a
-*
-* Project: CMSIS DSP Library
-* Title: arm_common_tables.h
-*
-* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
-*
-* Target Processor: Cortex-M4/Cortex-M3
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#ifndef _ARM_COMMON_TABLES_H
-#define _ARM_COMMON_TABLES_H
-
-#include "arm_math.h"
-
-extern const uint16_t armBitRevTable[1024];
-extern const q15_t armRecipTableQ15[64];
-extern const q31_t armRecipTableQ31[64];
-/* extern const q31_t realCoefAQ31[1024]; */
-/* extern const q31_t realCoefBQ31[1024]; */
-extern const float32_t twiddleCoef_16[32];
-extern const float32_t twiddleCoef_32[64];
-extern const float32_t twiddleCoef_64[128];
-extern const float32_t twiddleCoef_128[256];
-extern const float32_t twiddleCoef_256[512];
-extern const float32_t twiddleCoef_512[1024];
-extern const float32_t twiddleCoef_1024[2048];
-extern const float32_t twiddleCoef_2048[4096];
-extern const float32_t twiddleCoef_4096[8192];
-#define twiddleCoef twiddleCoef_4096
-extern const q31_t twiddleCoef_16_q31[24];
-extern const q31_t twiddleCoef_32_q31[48];
-extern const q31_t twiddleCoef_64_q31[96];
-extern const q31_t twiddleCoef_128_q31[192];
-extern const q31_t twiddleCoef_256_q31[384];
-extern const q31_t twiddleCoef_512_q31[768];
-extern const q31_t twiddleCoef_1024_q31[1536];
-extern const q31_t twiddleCoef_2048_q31[3072];
-extern const q31_t twiddleCoef_4096_q31[6144];
-extern const q15_t twiddleCoef_16_q15[24];
-extern const q15_t twiddleCoef_32_q15[48];
-extern const q15_t twiddleCoef_64_q15[96];
-extern const q15_t twiddleCoef_128_q15[192];
-extern const q15_t twiddleCoef_256_q15[384];
-extern const q15_t twiddleCoef_512_q15[768];
-extern const q15_t twiddleCoef_1024_q15[1536];
-extern const q15_t twiddleCoef_2048_q15[3072];
-extern const q15_t twiddleCoef_4096_q15[6144];
-extern const float32_t twiddleCoef_rfft_32[32];
-extern const float32_t twiddleCoef_rfft_64[64];
-extern const float32_t twiddleCoef_rfft_128[128];
-extern const float32_t twiddleCoef_rfft_256[256];
-extern const float32_t twiddleCoef_rfft_512[512];
-extern const float32_t twiddleCoef_rfft_1024[1024];
-extern const float32_t twiddleCoef_rfft_2048[2048];
-extern const float32_t twiddleCoef_rfft_4096[4096];
-
-
-/* floating-point bit reversal tables */
-#define ARMBITREVINDEXTABLE__16_TABLE_LENGTH ((uint16_t)20 )
-#define ARMBITREVINDEXTABLE__32_TABLE_LENGTH ((uint16_t)48 )
-#define ARMBITREVINDEXTABLE__64_TABLE_LENGTH ((uint16_t)56 )
-#define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208 )
-#define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440 )
-#define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448 )
-#define ARMBITREVINDEXTABLE1024_TABLE_LENGTH ((uint16_t)1800)
-#define ARMBITREVINDEXTABLE2048_TABLE_LENGTH ((uint16_t)3808)
-#define ARMBITREVINDEXTABLE4096_TABLE_LENGTH ((uint16_t)4032)
-
-extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE__16_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE__32_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE__64_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE1024_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE2048_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE4096_TABLE_LENGTH];
-
-/* fixed-point bit reversal tables */
-#define ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH ((uint16_t)12 )
-#define ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH ((uint16_t)24 )
-#define ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH ((uint16_t)56 )
-#define ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH ((uint16_t)112 )
-#define ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH ((uint16_t)240 )
-#define ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH ((uint16_t)480 )
-#define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992 )
-#define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
-#define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
-
-extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
-extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
-
-/* Tables for Fast Math Sine and Cosine */
-extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
-extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
-extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
-
-#endif /* ARM_COMMON_TABLES_H */
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 19. October 2015
+* $Revision: V.1.4.5 a
+*
+* Project: CMSIS DSP Library
+* Title: arm_common_tables.h
+*
+* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
+*
+* Target Processor: Cortex-M4/Cortex-M3
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#ifndef _ARM_COMMON_TABLES_H
+#define _ARM_COMMON_TABLES_H
+
+#include "arm_math.h"
+
+extern const uint16_t armBitRevTable[1024];
+extern const q15_t armRecipTableQ15[64];
+extern const q31_t armRecipTableQ31[64];
+/* extern const q31_t realCoefAQ31[1024]; */
+/* extern const q31_t realCoefBQ31[1024]; */
+extern const float32_t twiddleCoef_16[32];
+extern const float32_t twiddleCoef_32[64];
+extern const float32_t twiddleCoef_64[128];
+extern const float32_t twiddleCoef_128[256];
+extern const float32_t twiddleCoef_256[512];
+extern const float32_t twiddleCoef_512[1024];
+extern const float32_t twiddleCoef_1024[2048];
+extern const float32_t twiddleCoef_2048[4096];
+extern const float32_t twiddleCoef_4096[8192];
+#define twiddleCoef twiddleCoef_4096
+extern const q31_t twiddleCoef_16_q31[24];
+extern const q31_t twiddleCoef_32_q31[48];
+extern const q31_t twiddleCoef_64_q31[96];
+extern const q31_t twiddleCoef_128_q31[192];
+extern const q31_t twiddleCoef_256_q31[384];
+extern const q31_t twiddleCoef_512_q31[768];
+extern const q31_t twiddleCoef_1024_q31[1536];
+extern const q31_t twiddleCoef_2048_q31[3072];
+extern const q31_t twiddleCoef_4096_q31[6144];
+extern const q15_t twiddleCoef_16_q15[24];
+extern const q15_t twiddleCoef_32_q15[48];
+extern const q15_t twiddleCoef_64_q15[96];
+extern const q15_t twiddleCoef_128_q15[192];
+extern const q15_t twiddleCoef_256_q15[384];
+extern const q15_t twiddleCoef_512_q15[768];
+extern const q15_t twiddleCoef_1024_q15[1536];
+extern const q15_t twiddleCoef_2048_q15[3072];
+extern const q15_t twiddleCoef_4096_q15[6144];
+extern const float32_t twiddleCoef_rfft_32[32];
+extern const float32_t twiddleCoef_rfft_64[64];
+extern const float32_t twiddleCoef_rfft_128[128];
+extern const float32_t twiddleCoef_rfft_256[256];
+extern const float32_t twiddleCoef_rfft_512[512];
+extern const float32_t twiddleCoef_rfft_1024[1024];
+extern const float32_t twiddleCoef_rfft_2048[2048];
+extern const float32_t twiddleCoef_rfft_4096[4096];
+
+
+/* floating-point bit reversal tables */
+#define ARMBITREVINDEXTABLE__16_TABLE_LENGTH ((uint16_t)20 )
+#define ARMBITREVINDEXTABLE__32_TABLE_LENGTH ((uint16_t)48 )
+#define ARMBITREVINDEXTABLE__64_TABLE_LENGTH ((uint16_t)56 )
+#define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208 )
+#define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440 )
+#define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448 )
+#define ARMBITREVINDEXTABLE1024_TABLE_LENGTH ((uint16_t)1800)
+#define ARMBITREVINDEXTABLE2048_TABLE_LENGTH ((uint16_t)3808)
+#define ARMBITREVINDEXTABLE4096_TABLE_LENGTH ((uint16_t)4032)
+
+extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE__16_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE__32_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE__64_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE1024_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE2048_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE4096_TABLE_LENGTH];
+
+/* fixed-point bit reversal tables */
+#define ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH ((uint16_t)12 )
+#define ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH ((uint16_t)24 )
+#define ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH ((uint16_t)56 )
+#define ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH ((uint16_t)112 )
+#define ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH ((uint16_t)240 )
+#define ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH ((uint16_t)480 )
+#define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992 )
+#define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984)
+#define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032)
+
+extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH];
+extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH];
+
+/* Tables for Fast Math Sine and Cosine */
+extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1];
+extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1];
+extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1];
+
+#endif /* ARM_COMMON_TABLES_H */
diff --git a/Drivers/CMSIS/Include/arm_const_structs.h b/Core/Inc/arm_const_structs.h
similarity index 97%
rename from Drivers/CMSIS/Include/arm_const_structs.h
rename to Core/Inc/arm_const_structs.h
index 54595f55..726d06eb 100644
--- a/Drivers/CMSIS/Include/arm_const_structs.h
+++ b/Core/Inc/arm_const_structs.h
@@ -1,79 +1,79 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
-*
-* $Date: 19. March 2015
-* $Revision: V.1.4.5
-*
-* Project: CMSIS DSP Library
-* Title: arm_const_structs.h
-*
-* Description: This file has constant structs that are initialized for
-* user convenience. For example, some can be given as
-* arguments to the arm_cfft_f32() function.
-*
-* Target Processor: Cortex-M4/Cortex-M3
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
-* -------------------------------------------------------------------- */
-
-#ifndef _ARM_CONST_STRUCTS_H
-#define _ARM_CONST_STRUCTS_H
-
-#include "arm_math.h"
-#include "arm_common_tables.h"
-
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048;
- extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096;
-
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048;
- extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096;
-
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048;
- extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096;
-
-#endif
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
+*
+* $Date: 19. March 2015
+* $Revision: V.1.4.5
+*
+* Project: CMSIS DSP Library
+* Title: arm_const_structs.h
+*
+* Description: This file has constant structs that are initialized for
+* user convenience. For example, some can be given as
+* arguments to the arm_cfft_f32() function.
+*
+* Target Processor: Cortex-M4/Cortex-M3
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#ifndef _ARM_CONST_STRUCTS_H
+#define _ARM_CONST_STRUCTS_H
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len16;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len32;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len64;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len128;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len256;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len512;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048;
+ extern const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096;
+
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len16;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len32;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len64;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len128;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len256;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len512;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048;
+ extern const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096;
+
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len16;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len32;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len64;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len128;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len256;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len512;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048;
+ extern const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096;
+
+#endif
diff --git a/Drivers/CMSIS/Include/arm_math.h b/Core/Inc/arm_math.h
similarity index 97%
rename from Drivers/CMSIS/Include/arm_math.h
rename to Core/Inc/arm_math.h
index 580cbbde..d33f8a9b 100644
--- a/Drivers/CMSIS/Include/arm_math.h
+++ b/Core/Inc/arm_math.h
@@ -1,7154 +1,7154 @@
-/* ----------------------------------------------------------------------
-* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
-*
-* $Date: 20. October 2015
-* $Revision: V1.4.5 b
-*
-* Project: CMSIS DSP Library
-* Title: arm_math.h
-*
-* Description: Public header file for CMSIS DSP Library
-*
-* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions
-* are met:
-* - Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* - Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in
-* the documentation and/or other materials provided with the
-* distribution.
-* - Neither the name of ARM LIMITED nor the names of its contributors
-* may be used to endorse or promote products derived from this
-* software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
-* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
-* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
-* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
-* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-* POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------- */
-
-/**
- \mainpage CMSIS DSP Software Library
- *
- * Introduction
- * ------------
- *
- * This user manual describes the CMSIS DSP software library,
- * a suite of common signal processing functions for use on Cortex-M processor based devices.
- *
- * The library is divided into a number of functions each covering a specific category:
- * - Basic math functions
- * - Fast math functions
- * - Complex math functions
- * - Filters
- * - Matrix functions
- * - Transforms
- * - Motor control functions
- * - Statistical functions
- * - Support functions
- * - Interpolation functions
- *
- * The library has separate functions for operating on 8-bit integers, 16-bit integers,
- * 32-bit integer and 32-bit floating-point values.
- *
- * Using the Library
- * ------------
- *
- * The library installer contains prebuilt versions of the libraries in the Lib folder.
- * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
- * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
- * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
- * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
- * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
- * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
- * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
- * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
- * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
- *
- * The library functions are declared in the public file arm_math.h which is placed in the Include folder.
- * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
- * public header file arm_math.h for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
- * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
- * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
- *
- * Examples
- * --------
- *
- * The library ships with a number of examples which demonstrate how to use the library functions.
- *
- * Toolchain Support
- * ------------
- *
- * The library has been developed and tested with MDK-ARM version 5.14.0.0
- * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
- *
- * Building the Library
- * ------------
- *
- * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM folder.
- * - arm_cortexM_math.uvprojx
- *
- *
- * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
- *
- * Pre-processor Macros
- * ------------
- *
- * Each library project have differant pre-processor macros.
- *
- * - UNALIGNED_SUPPORT_DISABLE:
- *
- * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
- *
- * - ARM_MATH_BIG_ENDIAN:
- *
- * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
- *
- * - ARM_MATH_MATRIX_CHECK:
- *
- * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
- *
- * - ARM_MATH_ROUNDING:
- *
- * Define macro ARM_MATH_ROUNDING for rounding on support functions
- *
- * - ARM_MATH_CMx:
- *
- * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
- * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
- * ARM_MATH_CM7 for building the library on cortex-M7.
- *
- * - __FPU_PRESENT:
- *
- * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
- *
- *
- * CMSIS-DSP in ARM::CMSIS Pack
- * -----------------------------
- *
- * The following files relevant to CMSIS-DSP are present in the ARM::CMSIS Pack directories:
- * |File/Folder |Content |
- * |------------------------------|------------------------------------------------------------------------|
- * |\b CMSIS\\Documentation\\DSP | This documentation |
- * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
- * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
- * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
- *
- *
- * Revision History of CMSIS-DSP
- * ------------
- * Please refer to \ref ChangeLog_pg.
- *
- * Copyright Notice
- * ------------
- *
- * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
- */
-
-
-/**
- * @defgroup groupMath Basic Math Functions
- */
-
-/**
- * @defgroup groupFastMath Fast Math Functions
- * This set of functions provides a fast approximation to sine, cosine, and square root.
- * As compared to most of the other functions in the CMSIS math library, the fast math functions
- * operate on individual values and not arrays.
- * There are separate functions for Q15, Q31, and floating-point data.
- *
- */
-
-/**
- * @defgroup groupCmplxMath Complex Math Functions
- * This set of functions operates on complex data vectors.
- * The data in the complex arrays is stored in an interleaved fashion
- * (real, imag, real, imag, ...).
- * In the API functions, the number of samples in a complex array refers
- * to the number of complex values; the array contains twice this number of
- * real values.
- */
-
-/**
- * @defgroup groupFilters Filtering Functions
- */
-
-/**
- * @defgroup groupMatrix Matrix Functions
- *
- * This set of functions provides basic matrix math operations.
- * The functions operate on matrix data structures. For example,
- * the type
- * definition for the floating-point matrix structure is shown
- * below:
- *
- * typedef struct
- * {
- * uint16_t numRows; // number of rows of the matrix.
- * uint16_t numCols; // number of columns of the matrix.
- * float32_t *pData; // points to the data of the matrix.
- * } arm_matrix_instance_f32;
- *
- * There are similar definitions for Q15 and Q31 data types.
- *
- * The structure specifies the size of the matrix and then points to
- * an array of data. The array is of size numRows X numCols
- * and the values are arranged in row order. That is, the
- * matrix element (i, j) is stored at:
- *
- * pData[i*numCols + j]
- *
- *
- * \par Init Functions
- * There is an associated initialization function for each type of matrix
- * data structure.
- * The initialization function sets the values of the internal structure fields.
- * Refer to the function arm_mat_init_f32(), arm_mat_init_q31()
- * and arm_mat_init_q15() for floating-point, Q31 and Q15 types, respectively.
- *
- * \par
- * Use of the initialization function is optional. However, if initialization function is used
- * then the instance structure cannot be placed into a const data section.
- * To place the instance structure in a const data
- * section, manually initialize the data structure. For example:
- *
- * arm_matrix_instance_f32 S = {nRows, nColumns, pData};
- * arm_matrix_instance_q31 S = {nRows, nColumns, pData};
- * arm_matrix_instance_q15 S = {nRows, nColumns, pData};
- *
- * where nRows specifies the number of rows, nColumns
- * specifies the number of columns, and pData points to the
- * data array.
- *
- * \par Size Checking
- * By default all of the matrix functions perform size checking on the input and
- * output matrices. For example, the matrix addition function verifies that the
- * two input matrices and the output matrix all have the same number of rows and
- * columns. If the size check fails the functions return:
- *
- * ARM_MATH_SIZE_MISMATCH
- *
- * Otherwise the functions return
- *
- * ARM_MATH_SUCCESS
- *
- * There is some overhead associated with this matrix size checking.
- * The matrix size checking is enabled via the \#define
- *
- * ARM_MATH_MATRIX_CHECK
- *
- * within the library project settings. By default this macro is defined
- * and size checking is enabled. By changing the project settings and
- * undefining this macro size checking is eliminated and the functions
- * run a bit faster. With size checking disabled the functions always
- * return ARM_MATH_SUCCESS.
- */
-
-/**
- * @defgroup groupTransforms Transform Functions
- */
-
-/**
- * @defgroup groupController Controller Functions
- */
-
-/**
- * @defgroup groupStats Statistics Functions
- */
-/**
- * @defgroup groupSupport Support Functions
- */
-
-/**
- * @defgroup groupInterpolation Interpolation Functions
- * These functions perform 1- and 2-dimensional interpolation of data.
- * Linear interpolation is used for 1-dimensional data and
- * bilinear interpolation is used for 2-dimensional data.
- */
-
-/**
- * @defgroup groupExamples Examples
- */
-#ifndef _ARM_MATH_H
-#define _ARM_MATH_H
-
-/* ignore some GCC warnings */
-#if defined ( __GNUC__ )
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wsign-conversion"
-#pragma GCC diagnostic ignored "-Wconversion"
-#pragma GCC diagnostic ignored "-Wunused-parameter"
-#endif
-
-#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
-
-#if defined(ARM_MATH_CM7)
- #include "core_cm7.h"
-#elif defined (ARM_MATH_CM4)
- #include "core_cm4.h"
-#elif defined (ARM_MATH_CM3)
- #include "core_cm3.h"
-#elif defined (ARM_MATH_CM0)
- #include "core_cm0.h"
- #define ARM_MATH_CM0_FAMILY
-#elif defined (ARM_MATH_CM0PLUS)
- #include "core_cm0plus.h"
- #define ARM_MATH_CM0_FAMILY
-#else
- #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
-#endif
-
-#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
-#include "string.h"
-#include "math.h"
-#ifdef __cplusplus
-extern "C"
-{
-#endif
-
-
- /**
- * @brief Macros required for reciprocal calculation in Normalized LMS
- */
-
-#define DELTA_Q31 (0x100)
-#define DELTA_Q15 0x5
-#define INDEX_MASK 0x0000003F
-#ifndef PI
-#define PI 3.14159265358979f
-#endif
-
- /**
- * @brief Macros required for SINE and COSINE Fast math approximations
- */
-
-#define FAST_MATH_TABLE_SIZE 512
-#define FAST_MATH_Q31_SHIFT (32 - 10)
-#define FAST_MATH_Q15_SHIFT (16 - 10)
-#define CONTROLLER_Q31_SHIFT (32 - 9)
-#define TABLE_SIZE 256
-#define TABLE_SPACING_Q31 0x400000
-#define TABLE_SPACING_Q15 0x80
-
- /**
- * @brief Macros required for SINE and COSINE Controller functions
- */
- /* 1.31(q31) Fixed value of 2/360 */
- /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
-#define INPUT_SPACING 0xB60B61
-
- /**
- * @brief Macro for Unaligned Support
- */
-#ifndef UNALIGNED_SUPPORT_DISABLE
- #define ALIGN4
-#else
- #if defined (__GNUC__)
- #define ALIGN4 __attribute__((aligned(4)))
- #else
- #define ALIGN4 __align(4)
- #endif
-#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
-
- /**
- * @brief Error status returned by some functions in the library.
- */
-
- typedef enum
- {
- ARM_MATH_SUCCESS = 0, /**< No error */
- ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
- ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
- ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
- ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
- ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
- ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
- } arm_status;
-
- /**
- * @brief 8-bit fractional data type in 1.7 format.
- */
- typedef int8_t q7_t;
-
- /**
- * @brief 16-bit fractional data type in 1.15 format.
- */
- typedef int16_t q15_t;
-
- /**
- * @brief 32-bit fractional data type in 1.31 format.
- */
- typedef int32_t q31_t;
-
- /**
- * @brief 64-bit fractional data type in 1.63 format.
- */
- typedef int64_t q63_t;
-
- /**
- * @brief 32-bit floating-point type definition.
- */
- typedef float float32_t;
-
- /**
- * @brief 64-bit floating-point type definition.
- */
- typedef double float64_t;
-
- /**
- * @brief definition to read/write two 16 bit values.
- */
-#if defined __CC_ARM
- #define __SIMD32_TYPE int32_t __packed
- #define CMSIS_UNUSED __attribute__((unused))
-
-#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
- #define __SIMD32_TYPE int32_t
- #define CMSIS_UNUSED __attribute__((unused))
-
-#elif defined __GNUC__
- #define __SIMD32_TYPE int32_t
- #define CMSIS_UNUSED __attribute__((unused))
-
-#elif defined __ICCARM__
- #define __SIMD32_TYPE int32_t __packed
- #define CMSIS_UNUSED
-
-#elif defined __CSMC__
- #define __SIMD32_TYPE int32_t
- #define CMSIS_UNUSED
-
-#elif defined __TASKING__
- #define __SIMD32_TYPE __unaligned int32_t
- #define CMSIS_UNUSED
-
-#else
- #error Unknown compiler
-#endif
-
-#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
-#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
-#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
-#define __SIMD64(addr) (*(int64_t **) & (addr))
-
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
- /**
- * @brief definition to pack two 16 bit values.
- */
-#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
- (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
-#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
- (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
-
-#endif
-
-
- /**
- * @brief definition to pack four 8 bit values.
- */
-#ifndef ARM_MATH_BIG_ENDIAN
-
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
-#else
-
-#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
-
-#endif
-
-
- /**
- * @brief Clips Q63 to Q31 values.
- */
- static __INLINE q31_t clip_q63_to_q31(
- q63_t x)
- {
- return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
- ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
- }
-
- /**
- * @brief Clips Q63 to Q15 values.
- */
- static __INLINE q15_t clip_q63_to_q15(
- q63_t x)
- {
- return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
- ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
- }
-
- /**
- * @brief Clips Q31 to Q7 values.
- */
- static __INLINE q7_t clip_q31_to_q7(
- q31_t x)
- {
- return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
- ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
- }
-
- /**
- * @brief Clips Q31 to Q15 values.
- */
- static __INLINE q15_t clip_q31_to_q15(
- q31_t x)
- {
- return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
- ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
- }
-
- /**
- * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
- */
-
- static __INLINE q63_t mult32x64(
- q63_t x,
- q31_t y)
- {
- return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
- (((q63_t) (x >> 32) * y)));
- }
-
-/*
- #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
- #define __CLZ __clz
- #endif
- */
-/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
-#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
- static __INLINE uint32_t __CLZ(
- q31_t data);
-
- static __INLINE uint32_t __CLZ(
- q31_t data)
- {
- uint32_t count = 0;
- uint32_t mask = 0x80000000;
-
- while((data & mask) == 0)
- {
- count += 1u;
- mask = mask >> 1u;
- }
-
- return (count);
- }
-#endif
-
- /**
- * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
- */
-
- static __INLINE uint32_t arm_recip_q31(
- q31_t in,
- q31_t * dst,
- q31_t * pRecipTable)
- {
- q31_t out;
- uint32_t tempVal;
- uint32_t index, i;
- uint32_t signBits;
-
- if(in > 0)
- {
- signBits = ((uint32_t) (__CLZ( in) - 1));
- }
- else
- {
- signBits = ((uint32_t) (__CLZ(-in) - 1));
- }
-
- /* Convert input sample to 1.31 format */
- in = (in << signBits);
-
- /* calculation of index for initial approximated Val */
- index = (uint32_t)(in >> 24);
- index = (index & INDEX_MASK);
-
- /* 1.31 with exp 1 */
- out = pRecipTable[index];
-
- /* calculation of reciprocal value */
- /* running approximation for two iterations */
- for (i = 0u; i < 2u; i++)
- {
- tempVal = (uint32_t) (((q63_t) in * out) >> 31);
- tempVal = 0x7FFFFFFFu - tempVal;
- /* 1.31 with exp 1 */
- /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
- out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
- }
-
- /* write output */
- *dst = out;
-
- /* return num of signbits of out = 1/in value */
- return (signBits + 1u);
- }
-
-
- /**
- * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
- */
- static __INLINE uint32_t arm_recip_q15(
- q15_t in,
- q15_t * dst,
- q15_t * pRecipTable)
- {
- q15_t out = 0;
- uint32_t tempVal = 0;
- uint32_t index = 0, i = 0;
- uint32_t signBits = 0;
-
- if(in > 0)
- {
- signBits = ((uint32_t)(__CLZ( in) - 17));
- }
- else
- {
- signBits = ((uint32_t)(__CLZ(-in) - 17));
- }
-
- /* Convert input sample to 1.15 format */
- in = (in << signBits);
-
- /* calculation of index for initial approximated Val */
- index = (uint32_t)(in >> 8);
- index = (index & INDEX_MASK);
-
- /* 1.15 with exp 1 */
- out = pRecipTable[index];
-
- /* calculation of reciprocal value */
- /* running approximation for two iterations */
- for (i = 0u; i < 2u; i++)
- {
- tempVal = (uint32_t) (((q31_t) in * out) >> 15);
- tempVal = 0x7FFFu - tempVal;
- /* 1.15 with exp 1 */
- out = (q15_t) (((q31_t) out * tempVal) >> 14);
- /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
- }
-
- /* write output */
- *dst = out;
-
- /* return num of signbits of out = 1/in value */
- return (signBits + 1);
- }
-
-
- /*
- * @brief C custom defined intrinisic function for only M0 processors
- */
-#if defined(ARM_MATH_CM0_FAMILY)
- static __INLINE q31_t __SSAT(
- q31_t x,
- uint32_t y)
- {
- int32_t posMax, negMin;
- uint32_t i;
-
- posMax = 1;
- for (i = 0; i < (y - 1); i++)
- {
- posMax = posMax * 2;
- }
-
- if(x > 0)
- {
- posMax = (posMax - 1);
-
- if(x > posMax)
- {
- x = posMax;
- }
- }
- else
- {
- negMin = -posMax;
-
- if(x < negMin)
- {
- x = negMin;
- }
- }
- return (x);
- }
-#endif /* end of ARM_MATH_CM0_FAMILY */
-
-
- /*
- * @brief C custom defined intrinsic function for M3 and M0 processors
- */
-#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
-
- /*
- * @brief C custom defined QADD8 for M3 and M0 processors
- */
- static __INLINE uint32_t __QADD8(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s, t, u;
-
- r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
- s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
- t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
- u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
-
- return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
- }
-
-
- /*
- * @brief C custom defined QSUB8 for M3 and M0 processors
- */
- static __INLINE uint32_t __QSUB8(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s, t, u;
-
- r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
- s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
- t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
- u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
-
- return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
- }
-
-
- /*
- * @brief C custom defined QADD16 for M3 and M0 processors
- */
- static __INLINE uint32_t __QADD16(
- uint32_t x,
- uint32_t y)
- {
-/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
- q31_t r = 0, s = 0;
-
- r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
- s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined SHADD16 for M3 and M0 processors
- */
- static __INLINE uint32_t __SHADD16(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
- s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined QSUB16 for M3 and M0 processors
- */
- static __INLINE uint32_t __QSUB16(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
- s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined SHSUB16 for M3 and M0 processors
- */
- static __INLINE uint32_t __SHSUB16(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
- s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined QASX for M3 and M0 processors
- */
- static __INLINE uint32_t __QASX(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
- s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined SHASX for M3 and M0 processors
- */
- static __INLINE uint32_t __SHASX(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
- s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined QSAX for M3 and M0 processors
- */
- static __INLINE uint32_t __QSAX(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
- s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined SHSAX for M3 and M0 processors
- */
- static __INLINE uint32_t __SHSAX(
- uint32_t x,
- uint32_t y)
- {
- q31_t r, s;
-
- r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
- s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
-
- return ((uint32_t)((s << 16) | (r )));
- }
-
-
- /*
- * @brief C custom defined SMUSDX for M3 and M0 processors
- */
- static __INLINE uint32_t __SMUSDX(
- uint32_t x,
- uint32_t y)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
- ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
- }
-
- /*
- * @brief C custom defined SMUADX for M3 and M0 processors
- */
- static __INLINE uint32_t __SMUADX(
- uint32_t x,
- uint32_t y)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
- }
-
-
- /*
- * @brief C custom defined QADD for M3 and M0 processors
- */
- static __INLINE int32_t __QADD(
- int32_t x,
- int32_t y)
- {
- return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
- }
-
-
- /*
- * @brief C custom defined QSUB for M3 and M0 processors
- */
- static __INLINE int32_t __QSUB(
- int32_t x,
- int32_t y)
- {
- return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
- }
-
-
- /*
- * @brief C custom defined SMLAD for M3 and M0 processors
- */
- static __INLINE uint32_t __SMLAD(
- uint32_t x,
- uint32_t y,
- uint32_t sum)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
- ( ((q31_t)sum ) ) ));
- }
-
-
- /*
- * @brief C custom defined SMLADX for M3 and M0 processors
- */
- static __INLINE uint32_t __SMLADX(
- uint32_t x,
- uint32_t y,
- uint32_t sum)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
- ( ((q31_t)sum ) ) ));
- }
-
-
- /*
- * @brief C custom defined SMLSDX for M3 and M0 processors
- */
- static __INLINE uint32_t __SMLSDX(
- uint32_t x,
- uint32_t y,
- uint32_t sum)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
- ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
- ( ((q31_t)sum ) ) ));
- }
-
-
- /*
- * @brief C custom defined SMLALD for M3 and M0 processors
- */
- static __INLINE uint64_t __SMLALD(
- uint32_t x,
- uint32_t y,
- uint64_t sum)
- {
-/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
- return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
- ( ((q63_t)sum ) ) ));
- }
-
-
- /*
- * @brief C custom defined SMLALDX for M3 and M0 processors
- */
- static __INLINE uint64_t __SMLALDX(
- uint32_t x,
- uint32_t y,
- uint64_t sum)
- {
-/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
- return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
- ( ((q63_t)sum ) ) ));
- }
-
-
- /*
- * @brief C custom defined SMUAD for M3 and M0 processors
- */
- static __INLINE uint32_t __SMUAD(
- uint32_t x,
- uint32_t y)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
- ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
- }
-
-
- /*
- * @brief C custom defined SMUSD for M3 and M0 processors
- */
- static __INLINE uint32_t __SMUSD(
- uint32_t x,
- uint32_t y)
- {
- return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
- ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
- }
-
-
- /*
- * @brief C custom defined SXTB16 for M3 and M0 processors
- */
- static __INLINE uint32_t __SXTB16(
- uint32_t x)
- {
- return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
- ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
- }
-
-#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
-
-
- /**
- * @brief Instance structure for the Q7 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } arm_fir_instance_q7;
-
- /**
- * @brief Instance structure for the Q15 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } arm_fir_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } arm_fir_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } arm_fir_instance_f32;
-
-
- /**
- * @brief Processing function for the Q7 FIR filter.
- * @param[in] S points to an instance of the Q7 FIR filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_q7(
- const arm_fir_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q7 FIR filter.
- * @param[in,out] S points to an instance of the Q7 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed.
- */
- void arm_fir_init_q7(
- arm_fir_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q15 FIR filter.
- * @param[in] S points to an instance of the Q15 FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q15 FIR filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_fast_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q15 FIR filter.
- * @param[in,out] S points to an instance of the Q15 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
- * numTaps is not a supported value.
- */
- arm_status arm_fir_init_q15(
- arm_fir_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 FIR filter.
- * @param[in] S points to an instance of the Q31 FIR filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_q31(
- const arm_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q31 FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_fast_q31(
- const arm_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 FIR filter.
- * @param[in,out] S points to an instance of the Q31 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- */
- void arm_fir_init_q31(
- arm_fir_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the floating-point FIR filter.
- * @param[in] S points to an instance of the floating-point FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_f32(
- const arm_fir_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point FIR filter.
- * @param[in,out] S points to an instance of the floating-point FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- */
- void arm_fir_init_f32(
- arm_fir_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q15 Biquad cascade filter.
- */
- typedef struct
- {
- int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } arm_biquad_casd_df1_inst_q15;
-
- /**
- * @brief Instance structure for the Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } arm_biquad_casd_df1_inst_q31;
-
- /**
- * @brief Instance structure for the floating-point Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_casd_df1_inst_f32;
-
-
- /**
- * @brief Processing function for the Q15 Biquad cascade filter.
- * @param[in] S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df1_q15(
- const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q15 Biquad cascade filter.
- * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- */
- void arm_biquad_cascade_df1_init_q15(
- arm_biquad_casd_df1_inst_q15 * S,
- uint8_t numStages,
- q15_t * pCoeffs,
- q15_t * pState,
- int8_t postShift);
-
-
- /**
- * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df1_fast_q15(
- const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 Biquad cascade filter
- * @param[in] S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df1_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df1_fast_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 Biquad cascade filter.
- * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- */
- void arm_biquad_cascade_df1_init_q31(
- arm_biquad_casd_df1_inst_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q31_t * pState,
- int8_t postShift);
-
-
- /**
- * @brief Processing function for the floating-point Biquad cascade filter.
- * @param[in] S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df1_f32(
- const arm_biquad_casd_df1_inst_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point Biquad cascade filter.
- * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- */
- void arm_biquad_cascade_df1_init_f32(
- arm_biquad_casd_df1_inst_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
-
-
- /**
- * @brief Instance structure for the floating-point matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- float32_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_f32;
-
-
- /**
- * @brief Instance structure for the floating-point matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- float64_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_f64;
-
- /**
- * @brief Instance structure for the Q15 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q15_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q31_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_q31;
-
-
- /**
- * @brief Floating-point matrix addition.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_add_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15 matrix addition.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_add_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst);
-
-
- /**
- * @brief Q31 matrix addition.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_add_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Floating-point, complex, matrix multiplication.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_cmplx_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15, complex, matrix multiplication.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_cmplx_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pScratch);
-
-
- /**
- * @brief Q31, complex, matrix multiplication.
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_cmplx_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Floating-point matrix transpose.
- * @param[in] pSrc points to the input matrix
- * @param[out] pDst points to the output matrix
- * @return The function returns either ARM_MATH_SIZE_MISMATCH
- * or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_trans_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15 matrix transpose.
- * @param[in] pSrc points to the input matrix
- * @param[out] pDst points to the output matrix
- * @return The function returns either ARM_MATH_SIZE_MISMATCH
- * or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_trans_q15(
- const arm_matrix_instance_q15 * pSrc,
- arm_matrix_instance_q15 * pDst);
-
-
- /**
- * @brief Q31 matrix transpose.
- * @param[in] pSrc points to the input matrix
- * @param[out] pDst points to the output matrix
- * @return The function returns either ARM_MATH_SIZE_MISMATCH
- * or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_trans_q31(
- const arm_matrix_instance_q31 * pSrc,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Floating-point matrix multiplication
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15 matrix multiplication
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @param[in] pState points to the array for storing intermediate results
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState);
-
-
- /**
- * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @param[in] pState points to the array for storing intermediate results
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_mult_fast_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState);
-
-
- /**
- * @brief Q31 matrix multiplication
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_mult_fast_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Floating-point matrix subtraction
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_sub_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15 matrix subtraction
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_sub_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst);
-
-
- /**
- * @brief Q31 matrix subtraction
- * @param[in] pSrcA points to the first input matrix structure
- * @param[in] pSrcB points to the second input matrix structure
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_sub_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Floating-point matrix scaling.
- * @param[in] pSrc points to the input matrix
- * @param[in] scale scale factor
- * @param[out] pDst points to the output matrix
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_scale_f32(
- const arm_matrix_instance_f32 * pSrc,
- float32_t scale,
- arm_matrix_instance_f32 * pDst);
-
-
- /**
- * @brief Q15 matrix scaling.
- * @param[in] pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] pDst points to output matrix
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_scale_q15(
- const arm_matrix_instance_q15 * pSrc,
- q15_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q15 * pDst);
-
-
- /**
- * @brief Q31 matrix scaling.
- * @param[in] pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] pDst points to output matrix structure
- * @return The function returns either
- * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
- */
- arm_status arm_mat_scale_q31(
- const arm_matrix_instance_q31 * pSrc,
- q31_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q31 * pDst);
-
-
- /**
- * @brief Q31 matrix initialization.
- * @param[in,out] S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] pData points to the matrix data array.
- */
- void arm_mat_init_q31(
- arm_matrix_instance_q31 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q31_t * pData);
-
-
- /**
- * @brief Q15 matrix initialization.
- * @param[in,out] S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] pData points to the matrix data array.
- */
- void arm_mat_init_q15(
- arm_matrix_instance_q15 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q15_t * pData);
-
-
- /**
- * @brief Floating-point matrix initialization.
- * @param[in,out] S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] pData points to the matrix data array.
- */
- void arm_mat_init_f32(
- arm_matrix_instance_f32 * S,
- uint16_t nRows,
- uint16_t nColumns,
- float32_t * pData);
-
-
-
- /**
- * @brief Instance structure for the Q15 PID Control.
- */
- typedef struct
- {
- q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
-#ifdef ARM_MATH_CM0_FAMILY
- q15_t A1;
- q15_t A2;
-#else
- q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
-#endif
- q15_t state[3]; /**< The state array of length 3. */
- q15_t Kp; /**< The proportional gain. */
- q15_t Ki; /**< The integral gain. */
- q15_t Kd; /**< The derivative gain. */
- } arm_pid_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 PID Control.
- */
- typedef struct
- {
- q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- q31_t A2; /**< The derived gain, A2 = Kd . */
- q31_t state[3]; /**< The state array of length 3. */
- q31_t Kp; /**< The proportional gain. */
- q31_t Ki; /**< The integral gain. */
- q31_t Kd; /**< The derivative gain. */
- } arm_pid_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point PID Control.
- */
- typedef struct
- {
- float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- float32_t A2; /**< The derived gain, A2 = Kd . */
- float32_t state[3]; /**< The state array of length 3. */
- float32_t Kp; /**< The proportional gain. */
- float32_t Ki; /**< The integral gain. */
- float32_t Kd; /**< The derivative gain. */
- } arm_pid_instance_f32;
-
-
-
- /**
- * @brief Initialization function for the floating-point PID Control.
- * @param[in,out] S points to an instance of the PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- */
- void arm_pid_init_f32(
- arm_pid_instance_f32 * S,
- int32_t resetStateFlag);
-
-
- /**
- * @brief Reset function for the floating-point PID Control.
- * @param[in,out] S is an instance of the floating-point PID Control structure
- */
- void arm_pid_reset_f32(
- arm_pid_instance_f32 * S);
-
-
- /**
- * @brief Initialization function for the Q31 PID Control.
- * @param[in,out] S points to an instance of the Q15 PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- */
- void arm_pid_init_q31(
- arm_pid_instance_q31 * S,
- int32_t resetStateFlag);
-
-
- /**
- * @brief Reset function for the Q31 PID Control.
- * @param[in,out] S points to an instance of the Q31 PID Control structure
- */
-
- void arm_pid_reset_q31(
- arm_pid_instance_q31 * S);
-
-
- /**
- * @brief Initialization function for the Q15 PID Control.
- * @param[in,out] S points to an instance of the Q15 PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- */
- void arm_pid_init_q15(
- arm_pid_instance_q15 * S,
- int32_t resetStateFlag);
-
-
- /**
- * @brief Reset function for the Q15 PID Control.
- * @param[in,out] S points to an instance of the q15 PID Control structure
- */
- void arm_pid_reset_q15(
- arm_pid_instance_q15 * S);
-
-
- /**
- * @brief Instance structure for the floating-point Linear Interpolate function.
- */
- typedef struct
- {
- uint32_t nValues; /**< nValues */
- float32_t x1; /**< x1 */
- float32_t xSpacing; /**< xSpacing */
- float32_t *pYData; /**< pointer to the table of Y values */
- } arm_linear_interp_instance_f32;
-
- /**
- * @brief Instance structure for the floating-point bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- float32_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_f32;
-
- /**
- * @brief Instance structure for the Q31 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q31_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q31;
-
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q15_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q15;
-
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q7_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q7;
-
-
- /**
- * @brief Q7 vector multiplication.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_mult_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q15 vector multiplication.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_mult_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q31 vector multiplication.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_mult_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Floating-point vector multiplication.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_mult_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q15 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix2_instance_q15;
-
-/* Deprecated */
- arm_status arm_cfft_radix2_init_q15(
- arm_cfft_radix2_instance_q15 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
-/* Deprecated */
- void arm_cfft_radix2_q15(
- const arm_cfft_radix2_instance_q15 * S,
- q15_t * pSrc);
-
-
- /**
- * @brief Instance structure for the Q15 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix4_instance_q15;
-
-/* Deprecated */
- arm_status arm_cfft_radix4_init_q15(
- arm_cfft_radix4_instance_q15 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
-/* Deprecated */
- void arm_cfft_radix4_q15(
- const arm_cfft_radix4_instance_q15 * S,
- q15_t * pSrc);
-
- /**
- * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix2_instance_q31;
-
-/* Deprecated */
- arm_status arm_cfft_radix2_init_q31(
- arm_cfft_radix2_instance_q31 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
-/* Deprecated */
- void arm_cfft_radix2_q31(
- const arm_cfft_radix2_instance_q31 * S,
- q31_t * pSrc);
-
- /**
- * @brief Instance structure for the Q31 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix4_instance_q31;
-
-/* Deprecated */
- void arm_cfft_radix4_q31(
- const arm_cfft_radix4_instance_q31 * S,
- q31_t * pSrc);
-
-/* Deprecated */
- arm_status arm_cfft_radix4_init_q31(
- arm_cfft_radix4_instance_q31 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
- } arm_cfft_radix2_instance_f32;
-
-/* Deprecated */
- arm_status arm_cfft_radix2_init_f32(
- arm_cfft_radix2_instance_f32 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
-/* Deprecated */
- void arm_cfft_radix2_f32(
- const arm_cfft_radix2_instance_f32 * S,
- float32_t * pSrc);
-
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
- } arm_cfft_radix4_instance_f32;
-
-/* Deprecated */
- arm_status arm_cfft_radix4_init_f32(
- arm_cfft_radix4_instance_f32 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
-/* Deprecated */
- void arm_cfft_radix4_f32(
- const arm_cfft_radix4_instance_f32 * S,
- float32_t * pSrc);
-
- /**
- * @brief Instance structure for the fixed-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } arm_cfft_instance_q15;
-
-void arm_cfft_q15(
- const arm_cfft_instance_q15 * S,
- q15_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
- /**
- * @brief Instance structure for the fixed-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } arm_cfft_instance_q31;
-
-void arm_cfft_q31(
- const arm_cfft_instance_q31 * S,
- q31_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } arm_cfft_instance_f32;
-
- void arm_cfft_f32(
- const arm_cfft_instance_f32 * S,
- float32_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
-
- /**
- * @brief Instance structure for the Q15 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_q15;
-
- arm_status arm_rfft_init_q15(
- arm_rfft_instance_q15 * S,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
-
- void arm_rfft_q15(
- const arm_rfft_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst);
-
- /**
- * @brief Instance structure for the Q31 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_q31;
-
- arm_status arm_rfft_init_q31(
- arm_rfft_instance_q31 * S,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
-
- void arm_rfft_q31(
- const arm_rfft_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst);
-
- /**
- * @brief Instance structure for the floating-point RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint16_t fftLenBy2; /**< length of the complex FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_f32;
-
- arm_status arm_rfft_init_f32(
- arm_rfft_instance_f32 * S,
- arm_cfft_radix4_instance_f32 * S_CFFT,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
-
- void arm_rfft_f32(
- const arm_rfft_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst);
-
- /**
- * @brief Instance structure for the floating-point RFFT/RIFFT function.
- */
-typedef struct
- {
- arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
- uint16_t fftLenRFFT; /**< length of the real sequence */
- float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
- } arm_rfft_fast_instance_f32 ;
-
-arm_status arm_rfft_fast_init_f32 (
- arm_rfft_fast_instance_f32 * S,
- uint16_t fftLen);
-
-void arm_rfft_fast_f32(
- arm_rfft_fast_instance_f32 * S,
- float32_t * p, float32_t * pOut,
- uint8_t ifftFlag);
-
- /**
- * @brief Instance structure for the floating-point DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- float32_t normalize; /**< normalizing factor. */
- float32_t *pTwiddle; /**< points to the twiddle factor table. */
- float32_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_f32;
-
-
- /**
- * @brief Initialization function for the floating-point DCT4/IDCT4.
- * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
- * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
- * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length.
- */
- arm_status arm_dct4_init_f32(
- arm_dct4_instance_f32 * S,
- arm_rfft_instance_f32 * S_RFFT,
- arm_cfft_radix4_instance_f32 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- float32_t normalize);
-
-
- /**
- * @brief Processing function for the floating-point DCT4/IDCT4.
- * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
- * @param[in] pState points to state buffer.
- * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
- */
- void arm_dct4_f32(
- const arm_dct4_instance_f32 * S,
- float32_t * pState,
- float32_t * pInlineBuffer);
-
-
- /**
- * @brief Instance structure for the Q31 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q31_t normalize; /**< normalizing factor. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- q31_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_q31;
-
-
- /**
- * @brief Initialization function for the Q31 DCT4/IDCT4.
- * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
- * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
- * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
- */
- arm_status arm_dct4_init_q31(
- arm_dct4_instance_q31 * S,
- arm_rfft_instance_q31 * S_RFFT,
- arm_cfft_radix4_instance_q31 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q31_t normalize);
-
-
- /**
- * @brief Processing function for the Q31 DCT4/IDCT4.
- * @param[in] S points to an instance of the Q31 DCT4 structure.
- * @param[in] pState points to state buffer.
- * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
- */
- void arm_dct4_q31(
- const arm_dct4_instance_q31 * S,
- q31_t * pState,
- q31_t * pInlineBuffer);
-
-
- /**
- * @brief Instance structure for the Q15 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q15_t normalize; /**< normalizing factor. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- q15_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_q15;
-
-
- /**
- * @brief Initialization function for the Q15 DCT4/IDCT4.
- * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
- * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
- * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
- */
- arm_status arm_dct4_init_q15(
- arm_dct4_instance_q15 * S,
- arm_rfft_instance_q15 * S_RFFT,
- arm_cfft_radix4_instance_q15 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q15_t normalize);
-
-
- /**
- * @brief Processing function for the Q15 DCT4/IDCT4.
- * @param[in] S points to an instance of the Q15 DCT4 structure.
- * @param[in] pState points to state buffer.
- * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
- */
- void arm_dct4_q15(
- const arm_dct4_instance_q15 * S,
- q15_t * pState,
- q15_t * pInlineBuffer);
-
-
- /**
- * @brief Floating-point vector addition.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_add_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q7 vector addition.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_add_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q15 vector addition.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_add_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q31 vector addition.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_add_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Floating-point vector subtraction.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_sub_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q7 vector subtraction.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_sub_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q15 vector subtraction.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_sub_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q31 vector subtraction.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- */
- void arm_sub_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Multiplies a floating-point vector by a scalar.
- * @param[in] pSrc points to the input vector
- * @param[in] scale scale factor to be applied
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_scale_f32(
- float32_t * pSrc,
- float32_t scale,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Multiplies a Q7 vector by a scalar.
- * @param[in] pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_scale_q7(
- q7_t * pSrc,
- q7_t scaleFract,
- int8_t shift,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Multiplies a Q15 vector by a scalar.
- * @param[in] pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_scale_q15(
- q15_t * pSrc,
- q15_t scaleFract,
- int8_t shift,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Multiplies a Q31 vector by a scalar.
- * @param[in] pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_scale_q31(
- q31_t * pSrc,
- q31_t scaleFract,
- int8_t shift,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q7 vector absolute value.
- * @param[in] pSrc points to the input buffer
- * @param[out] pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- */
- void arm_abs_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Floating-point vector absolute value.
- * @param[in] pSrc points to the input buffer
- * @param[out] pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- */
- void arm_abs_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q15 vector absolute value.
- * @param[in] pSrc points to the input buffer
- * @param[out] pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- */
- void arm_abs_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Q31 vector absolute value.
- * @param[in] pSrc points to the input buffer
- * @param[out] pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- */
- void arm_abs_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Dot product of floating-point vectors.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] result output result returned here
- */
- void arm_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t blockSize,
- float32_t * result);
-
-
- /**
- * @brief Dot product of Q7 vectors.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] result output result returned here
- */
- void arm_dot_prod_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- uint32_t blockSize,
- q31_t * result);
-
-
- /**
- * @brief Dot product of Q15 vectors.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] result output result returned here
- */
- void arm_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
-
-
- /**
- * @brief Dot product of Q31 vectors.
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] result output result returned here
- */
- void arm_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
-
-
- /**
- * @brief Shifts the elements of a Q7 vector a specified number of bits.
- * @param[in] pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_shift_q7(
- q7_t * pSrc,
- int8_t shiftBits,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Shifts the elements of a Q15 vector a specified number of bits.
- * @param[in] pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_shift_q15(
- q15_t * pSrc,
- int8_t shiftBits,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Shifts the elements of a Q31 vector a specified number of bits.
- * @param[in] pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_shift_q31(
- q31_t * pSrc,
- int8_t shiftBits,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Adds a constant offset to a floating-point vector.
- * @param[in] pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_offset_f32(
- float32_t * pSrc,
- float32_t offset,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Adds a constant offset to a Q7 vector.
- * @param[in] pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_offset_q7(
- q7_t * pSrc,
- q7_t offset,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Adds a constant offset to a Q15 vector.
- * @param[in] pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_offset_q15(
- q15_t * pSrc,
- q15_t offset,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Adds a constant offset to a Q31 vector.
- * @param[in] pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_offset_q31(
- q31_t * pSrc,
- q31_t offset,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Negates the elements of a floating-point vector.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_negate_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Negates the elements of a Q7 vector.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_negate_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Negates the elements of a Q15 vector.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_negate_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Negates the elements of a Q31 vector.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- */
- void arm_negate_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Copies the elements of a floating-point vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_copy_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Copies the elements of a Q7 vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_copy_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Copies the elements of a Q15 vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_copy_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Copies the elements of a Q31 vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_copy_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Fills a constant value into a floating-point vector.
- * @param[in] value input value to be filled
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_fill_f32(
- float32_t value,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Fills a constant value into a Q7 vector.
- * @param[in] value input value to be filled
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_fill_q7(
- q7_t value,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Fills a constant value into a Q15 vector.
- * @param[in] value input value to be filled
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_fill_q15(
- q15_t value,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Fills a constant value into a Q31 vector.
- * @param[in] value input value to be filled
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_fill_q31(
- q31_t value,
- q31_t * pDst,
- uint32_t blockSize);
-
-
-/**
- * @brief Convolution of floating-point sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- */
- void arm_conv_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
-
-
- /**
- * @brief Convolution of Q15 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- */
- void arm_conv_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
-/**
- * @brief Convolution of Q15 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- */
- void arm_conv_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
-
-
- /**
- * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- */
- void arm_conv_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
-
-
- /**
- * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- */
- void arm_conv_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
- /**
- * @brief Convolution of Q31 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- */
- void arm_conv_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
-
-
- /**
- * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- */
- void arm_conv_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
-
-
- /**
- * @brief Convolution of Q7 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
- */
- void arm_conv_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
- /**
- * @brief Convolution of Q7 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
- */
- void arm_conv_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
-
-
- /**
- * @brief Partial convolution of floating-point sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Partial convolution of Q15 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
- /**
- * @brief Partial convolution of Q15 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
- /**
- * @brief Partial convolution of Q31 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Partial convolution of Q7 sequences
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
-/**
- * @brief Partial convolution of Q7 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
-
-
- /**
- * @brief Instance structure for the Q15 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_f32;
-
-
- /**
- * @brief Processing function for the floating-point FIR decimator.
- * @param[in] S points to an instance of the floating-point FIR decimator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_decimate_f32(
- const arm_fir_decimate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point FIR decimator.
- * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * blockSize is not a multiple of M.
- */
- arm_status arm_fir_decimate_init_f32(
- arm_fir_decimate_instance_f32 * S,
- uint16_t numTaps,
- uint8_t M,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q15 FIR decimator.
- * @param[in] S points to an instance of the Q15 FIR decimator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_decimate_q15(
- const arm_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q15 FIR decimator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_decimate_fast_q15(
- const arm_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q15 FIR decimator.
- * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * blockSize is not a multiple of M.
- */
- arm_status arm_fir_decimate_init_q15(
- arm_fir_decimate_instance_q15 * S,
- uint16_t numTaps,
- uint8_t M,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 FIR decimator.
- * @param[in] S points to an instance of the Q31 FIR decimator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_decimate_q31(
- const arm_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
- /**
- * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] S points to an instance of the Q31 FIR decimator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_decimate_fast_q31(
- arm_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 FIR decimator.
- * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * blockSize is not a multiple of M.
- */
- arm_status arm_fir_decimate_init_q31(
- arm_fir_decimate_instance_q31 * S,
- uint16_t numTaps,
- uint8_t M,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q15 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } arm_fir_interpolate_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } arm_fir_interpolate_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
- } arm_fir_interpolate_instance_f32;
-
-
- /**
- * @brief Processing function for the Q15 FIR interpolator.
- * @param[in] S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_interpolate_q15(
- const arm_fir_interpolate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q15 FIR interpolator.
- * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficient buffer.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length numTaps is not a multiple of the interpolation factor L.
- */
- arm_status arm_fir_interpolate_init_q15(
- arm_fir_interpolate_instance_q15 * S,
- uint8_t L,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 FIR interpolator.
- * @param[in] S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_interpolate_q31(
- const arm_fir_interpolate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 FIR interpolator.
- * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficient buffer.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length numTaps is not a multiple of the interpolation factor L.
- */
- arm_status arm_fir_interpolate_init_q31(
- arm_fir_interpolate_instance_q31 * S,
- uint8_t L,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the floating-point FIR interpolator.
- * @param[in] S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_interpolate_f32(
- const arm_fir_interpolate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point FIR interpolator.
- * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] pCoeffs points to the filter coefficient buffer.
- * @param[in] pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length numTaps is not a multiple of the interpolation factor L.
- */
- arm_status arm_fir_interpolate_init_f32(
- arm_fir_interpolate_instance_f32 * S,
- uint8_t L,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the high precision Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
- } arm_biquad_cas_df1_32x64_ins_q31;
-
-
- /**
- * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cas_df1_32x64_q31(
- const arm_biquad_cas_df1_32x64_ins_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
- */
- void arm_biquad_cas_df1_32x64_init_q31(
- arm_biquad_cas_df1_32x64_ins_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q63_t * pState,
- uint8_t postShift);
-
-
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
- float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_cascade_df2T_instance_f32;
-
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_cascade_stereo_df2T_instance_f32;
-
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
- float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_cascade_df2T_instance_f64;
-
-
- /**
- * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in] S points to an instance of the filter data structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df2T_f32(
- const arm_biquad_cascade_df2T_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
- * @param[in] S points to an instance of the filter data structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_stereo_df2T_f32(
- const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in] S points to an instance of the filter data structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_biquad_cascade_df2T_f64(
- const arm_biquad_cascade_df2T_instance_f64 * S,
- float64_t * pSrc,
- float64_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- */
- void arm_biquad_cascade_df2T_init_f32(
- arm_biquad_cascade_df2T_instance_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
-
-
- /**
- * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- */
- void arm_biquad_cascade_stereo_df2T_init_f32(
- arm_biquad_cascade_stereo_df2T_instance_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
-
-
- /**
- * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] pCoeffs points to the filter coefficients.
- * @param[in] pState points to the state buffer.
- */
- void arm_biquad_cascade_df2T_init_f64(
- arm_biquad_cascade_df2T_instance_f64 * S,
- uint8_t numStages,
- float64_t * pCoeffs,
- float64_t * pState);
-
-
- /**
- * @brief Instance structure for the Q15 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_f32;
-
-
- /**
- * @brief Initialization function for the Q15 FIR lattice filter.
- * @param[in] S points to an instance of the Q15 FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] pState points to the state buffer. The array is of length numStages.
- */
- void arm_fir_lattice_init_q15(
- arm_fir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t * pCoeffs,
- q15_t * pState);
-
-
- /**
- * @brief Processing function for the Q15 FIR lattice filter.
- * @param[in] S points to an instance of the Q15 FIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_lattice_q15(
- const arm_fir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 FIR lattice filter.
- * @param[in] S points to an instance of the Q31 FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] pState points to the state buffer. The array is of length numStages.
- */
- void arm_fir_lattice_init_q31(
- arm_fir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t * pCoeffs,
- q31_t * pState);
-
-
- /**
- * @brief Processing function for the Q31 FIR lattice filter.
- * @param[in] S points to an instance of the Q31 FIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_lattice_q31(
- const arm_fir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
-/**
- * @brief Initialization function for the floating-point FIR lattice filter.
- * @param[in] S points to an instance of the floating-point FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] pState points to the state buffer. The array is of length numStages.
- */
- void arm_fir_lattice_init_f32(
- arm_fir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
-
-
- /**
- * @brief Processing function for the floating-point FIR lattice filter.
- * @param[in] S points to an instance of the floating-point FIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- */
- void arm_fir_lattice_f32(
- const arm_fir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q15 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_q15;
-
- /**
- * @brief Instance structure for the Q31 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_q31;
-
- /**
- * @brief Instance structure for the floating-point IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_f32;
-
-
- /**
- * @brief Processing function for the floating-point IIR lattice filter.
- * @param[in] S points to an instance of the floating-point IIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_iir_lattice_f32(
- const arm_iir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point IIR lattice filter.
- * @param[in] S points to an instance of the floating-point IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
- * @param[in] blockSize number of samples to process.
- */
- void arm_iir_lattice_init_f32(
- arm_iir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t * pkCoeffs,
- float32_t * pvCoeffs,
- float32_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 IIR lattice filter.
- * @param[in] S points to an instance of the Q31 IIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_iir_lattice_q31(
- const arm_iir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 IIR lattice filter.
- * @param[in] S points to an instance of the Q31 IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process.
- */
- void arm_iir_lattice_init_q31(
- arm_iir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t * pkCoeffs,
- q31_t * pvCoeffs,
- q31_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q15 IIR lattice filter.
- * @param[in] S points to an instance of the Q15 IIR lattice structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_iir_lattice_q15(
- const arm_iir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
-/**
- * @brief Initialization function for the Q15 IIR lattice filter.
- * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
- * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process per call.
- */
- void arm_iir_lattice_init_q15(
- arm_iir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t * pkCoeffs,
- q15_t * pvCoeffs,
- q15_t * pState,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the floating-point LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that controls filter coefficient updates. */
- } arm_lms_instance_f32;
-
-
- /**
- * @brief Processing function for floating-point LMS filter.
- * @param[in] S points to an instance of the floating-point LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_f32(
- const arm_lms_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for floating-point LMS filter.
- * @param[in] S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to the coefficient buffer.
- * @param[in] pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_init_f32(
- arm_lms_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q15 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } arm_lms_instance_q15;
-
-
- /**
- * @brief Initialization function for the Q15 LMS filter.
- * @param[in] S points to an instance of the Q15 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to the coefficient buffer.
- * @param[in] pState points to the state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- */
- void arm_lms_init_q15(
- arm_lms_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint32_t postShift);
-
-
- /**
- * @brief Processing function for Q15 LMS filter.
- * @param[in] S points to an instance of the Q15 LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_q15(
- const arm_lms_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q31 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } arm_lms_instance_q31;
-
-
- /**
- * @brief Processing function for Q31 LMS filter.
- * @param[in] S points to an instance of the Q15 LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_q31(
- const arm_lms_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for Q31 LMS filter.
- * @param[in] S points to an instance of the Q31 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to coefficient buffer.
- * @param[in] pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- */
- void arm_lms_init_q31(
- arm_lms_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- q31_t mu,
- uint32_t blockSize,
- uint32_t postShift);
-
-
- /**
- * @brief Instance structure for the floating-point normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that control filter coefficient updates. */
- float32_t energy; /**< saves previous frame energy. */
- float32_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_f32;
-
-
- /**
- * @brief Processing function for floating-point normalized LMS filter.
- * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_norm_f32(
- arm_lms_norm_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for floating-point normalized LMS filter.
- * @param[in] S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to coefficient buffer.
- * @param[in] pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_norm_init_f32(
- arm_lms_norm_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
-
-
- /**
- * @brief Instance structure for the Q31 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q31_t *recipTable; /**< points to the reciprocal initial value table. */
- q31_t energy; /**< saves previous frame energy. */
- q31_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_q31;
-
-
- /**
- * @brief Processing function for Q31 normalized LMS filter.
- * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_norm_q31(
- arm_lms_norm_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for Q31 normalized LMS filter.
- * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to coefficient buffer.
- * @param[in] pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- */
- void arm_lms_norm_init_q31(
- arm_lms_norm_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- q31_t mu,
- uint32_t blockSize,
- uint8_t postShift);
-
-
- /**
- * @brief Instance structure for the Q15 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< Number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q15_t *recipTable; /**< Points to the reciprocal initial value table. */
- q15_t energy; /**< saves previous frame energy. */
- q15_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_q15;
-
-
- /**
- * @brief Processing function for Q15 normalized LMS filter.
- * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] pSrc points to the block of input data.
- * @param[in] pRef points to the block of reference data.
- * @param[out] pOut points to the block of output data.
- * @param[out] pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- */
- void arm_lms_norm_q15(
- arm_lms_norm_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for Q15 normalized LMS filter.
- * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] pCoeffs points to coefficient buffer.
- * @param[in] pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- */
- void arm_lms_norm_init_q15(
- arm_lms_norm_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint8_t postShift);
-
-
- /**
- * @brief Correlation of floating-point sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
- void arm_correlate_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
-
-
- /**
- * @brief Correlation of Q15 sequences
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- */
- void arm_correlate_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch);
-
-
- /**
- * @brief Correlation of Q15 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
-
- void arm_correlate_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
-
-
- /**
- * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
-
- void arm_correlate_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
-
-
- /**
- * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- */
- void arm_correlate_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch);
-
-
- /**
- * @brief Correlation of Q31 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
- void arm_correlate_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
-
-
- /**
- * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
- void arm_correlate_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
-
-
- /**
- * @brief Correlation of Q7 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
- * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
- */
- void arm_correlate_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
-
-
- /**
- * @brief Correlation of Q7 sequences.
- * @param[in] pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- */
- void arm_correlate_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
-
-
- /**
- * @brief Instance structure for the floating-point sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_f32;
-
- /**
- * @brief Instance structure for the Q31 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q31;
-
- /**
- * @brief Instance structure for the Q15 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q15;
-
- /**
- * @brief Instance structure for the Q7 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q7;
-
-
- /**
- * @brief Processing function for the floating-point sparse FIR filter.
- * @param[in] S points to an instance of the floating-point sparse FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_sparse_f32(
- arm_fir_sparse_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- float32_t * pScratchIn,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the floating-point sparse FIR filter.
- * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] pCoeffs points to the array of filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- */
- void arm_fir_sparse_init_f32(
- arm_fir_sparse_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q31 sparse FIR filter.
- * @param[in] S points to an instance of the Q31 sparse FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_sparse_q31(
- arm_fir_sparse_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- q31_t * pScratchIn,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q31 sparse FIR filter.
- * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] pCoeffs points to the array of filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- */
- void arm_fir_sparse_init_q31(
- arm_fir_sparse_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q15 sparse FIR filter.
- * @param[in] S points to an instance of the Q15 sparse FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] pScratchOut points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_sparse_q15(
- arm_fir_sparse_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- q15_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q15 sparse FIR filter.
- * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] pCoeffs points to the array of filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- */
- void arm_fir_sparse_init_q15(
- arm_fir_sparse_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
-
-
- /**
- * @brief Processing function for the Q7 sparse FIR filter.
- * @param[in] S points to an instance of the Q7 sparse FIR structure.
- * @param[in] pSrc points to the block of input data.
- * @param[out] pDst points to the block of output data
- * @param[in] pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] pScratchOut points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- */
- void arm_fir_sparse_q7(
- arm_fir_sparse_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- q7_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
-
-
- /**
- * @brief Initialization function for the Q7 sparse FIR filter.
- * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] pCoeffs points to the array of filter coefficients.
- * @param[in] pState points to the state buffer.
- * @param[in] pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- */
- void arm_fir_sparse_init_q7(
- arm_fir_sparse_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
-
-
- /**
- * @brief Floating-point sin_cos function.
- * @param[in] theta input value in degrees
- * @param[out] pSinVal points to the processed sine output.
- * @param[out] pCosVal points to the processed cos output.
- */
- void arm_sin_cos_f32(
- float32_t theta,
- float32_t * pSinVal,
- float32_t * pCosVal);
-
-
- /**
- * @brief Q31 sin_cos function.
- * @param[in] theta scaled input value in degrees
- * @param[out] pSinVal points to the processed sine output.
- * @param[out] pCosVal points to the processed cosine output.
- */
- void arm_sin_cos_q31(
- q31_t theta,
- q31_t * pSinVal,
- q31_t * pCosVal);
-
-
- /**
- * @brief Floating-point complex conjugate.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_conj_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
-
- /**
- * @brief Q31 complex conjugate.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_conj_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q15 complex conjugate.
- * @param[in] pSrc points to the input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_conj_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Floating-point complex magnitude squared
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_squared_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q31 complex magnitude squared
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_squared_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q15 complex magnitude squared
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_squared_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @ingroup groupController
- */
-
- /**
- * @defgroup PID PID Motor Control
- *
- * A Proportional Integral Derivative (PID) controller is a generic feedback control
- * loop mechanism widely used in industrial control systems.
- * A PID controller is the most commonly used type of feedback controller.
- *
- * This set of functions implements (PID) controllers
- * for Q15, Q31, and floating-point data types. The functions operate on a single sample
- * of data and each call to the function returns a single processed value.
- * S points to an instance of the PID control data structure. in
- * is the input sample value. The functions return the output value.
- *
- * \par Algorithm:
- *
- *
- * \par
- * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
- *
- * \par
- * \image html PID.gif "Proportional Integral Derivative Controller"
- *
- * \par
- * The PID controller calculates an "error" value as the difference between
- * the measured output and the reference input.
- * The controller attempts to minimize the error by adjusting the process control inputs.
- * The proportional value determines the reaction to the current error,
- * the integral value determines the reaction based on the sum of recent errors,
- * and the derivative value determines the reaction based on the rate at which the error has been changing.
- *
- * \par Instance Structure
- * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
- * A separate instance structure must be defined for each PID Controller.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Reset Functions
- * There is also an associated reset function for each data type which clears the state array.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
- * - Zeros out the values in the state buffer.
- *
- * \par
- * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the PID Controller functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
- /**
- * @addtogroup PID
- * @{
- */
-
- /**
- * @brief Process function for the floating-point PID Control.
- * @param[in,out] S is an instance of the floating-point PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- */
- static __INLINE float32_t arm_pid_f32(
- arm_pid_instance_f32 * S,
- float32_t in)
- {
- float32_t out;
-
- /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
- out = (S->A0 * in) +
- (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
-
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
-
- /* return to application */
- return (out);
-
- }
-
- /**
- * @brief Process function for the Q31 PID Control.
- * @param[in,out] S points to an instance of the Q31 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
- * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
- */
- static __INLINE q31_t arm_pid_q31(
- arm_pid_instance_q31 * S,
- q31_t in)
- {
- q63_t acc;
- q31_t out;
-
- /* acc = A0 * x[n] */
- acc = (q63_t) S->A0 * in;
-
- /* acc += A1 * x[n-1] */
- acc += (q63_t) S->A1 * S->state[0];
-
- /* acc += A2 * x[n-2] */
- acc += (q63_t) S->A2 * S->state[1];
-
- /* convert output to 1.31 format to add y[n-1] */
- out = (q31_t) (acc >> 31u);
-
- /* out += y[n-1] */
- out += S->state[2];
-
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
-
- /* return to application */
- return (out);
- }
-
-
- /**
- * @brief Process function for the Q15 PID Control.
- * @param[in,out] S points to an instance of the Q15 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- */
- static __INLINE q15_t arm_pid_q15(
- arm_pid_instance_q15 * S,
- q15_t in)
- {
- q63_t acc;
- q15_t out;
-
-#ifndef ARM_MATH_CM0_FAMILY
- __SIMD32_TYPE *vstate;
-
- /* Implementation of PID controller */
-
- /* acc = A0 * x[n] */
- acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
-
- /* acc += A1 * x[n-1] + A2 * x[n-2] */
- vstate = __SIMD32_CONST(S->state);
- acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
-#else
- /* acc = A0 * x[n] */
- acc = ((q31_t) S->A0) * in;
-
- /* acc += A1 * x[n-1] + A2 * x[n-2] */
- acc += (q31_t) S->A1 * S->state[0];
- acc += (q31_t) S->A2 * S->state[1];
-#endif
-
- /* acc += y[n-1] */
- acc += (q31_t) S->state[2] << 15;
-
- /* saturate the output */
- out = (q15_t) (__SSAT((acc >> 15), 16));
-
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
-
- /* return to application */
- return (out);
- }
-
- /**
- * @} end of PID group
- */
-
-
- /**
- * @brief Floating-point matrix inverse.
- * @param[in] src points to the instance of the input floating-point matrix structure.
- * @param[out] dst points to the instance of the output floating-point matrix structure.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
- */
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * src,
- arm_matrix_instance_f32 * dst);
-
-
- /**
- * @brief Floating-point matrix inverse.
- * @param[in] src points to the instance of the input floating-point matrix structure.
- * @param[out] dst points to the instance of the output floating-point matrix structure.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
- */
- arm_status arm_mat_inverse_f64(
- const arm_matrix_instance_f64 * src,
- arm_matrix_instance_f64 * dst);
-
-
-
- /**
- * @ingroup groupController
- */
-
- /**
- * @defgroup clarke Vector Clarke Transform
- * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
- * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents
- * in the two-phase orthogonal stator axis Ialpha and Ibeta.
- * When Ialpha is superposed with Ia as shown in the figure below
- * \image html clarke.gif Stator current space vector and its components in (a,b).
- * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta
- * can be calculated using only Ia and Ib.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeFormula.gif
- * where Ia and Ib are the instantaneous stator phases and
- * pIalpha and pIbeta are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
- /**
- * @addtogroup clarke
- * @{
- */
-
- /**
- *
- * @brief Floating-point Clarke transform
- * @param[in] Ia input three-phase coordinate a
- * @param[in] Ib input three-phase coordinate b
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- */
- static __INLINE void arm_clarke_f32(
- float32_t Ia,
- float32_t Ib,
- float32_t * pIalpha,
- float32_t * pIbeta)
- {
- /* Calculate pIalpha using the equation, pIalpha = Ia */
- *pIalpha = Ia;
-
- /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
- *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
- }
-
-
- /**
- * @brief Clarke transform for Q31 version
- * @param[in] Ia input three-phase coordinate a
- * @param[in] Ib input three-phase coordinate b
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- static __INLINE void arm_clarke_q31(
- q31_t Ia,
- q31_t Ib,
- q31_t * pIalpha,
- q31_t * pIbeta)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
-
- /* Calculating pIalpha from Ia by equation pIalpha = Ia */
- *pIalpha = Ia;
-
- /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
-
- /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
- product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
-
- /* pIbeta is calculated by adding the intermediate products */
- *pIbeta = __QADD(product1, product2);
- }
-
- /**
- * @} end of clarke group
- */
-
- /**
- * @brief Converts the elements of the Q7 vector to Q31 vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_q7_to_q31(
- q7_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
-
- /**
- * @ingroup groupController
- */
-
- /**
- * @defgroup inv_clarke Vector Inverse Clarke Transform
- * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeInvFormula.gif
- * where pIa and pIb are the instantaneous stator phases and
- * Ialpha and Ibeta are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
- /**
- * @addtogroup inv_clarke
- * @{
- */
-
- /**
- * @brief Floating-point Inverse Clarke transform
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] pIa points to output three-phase coordinate a
- * @param[out] pIb points to output three-phase coordinate b
- */
- static __INLINE void arm_inv_clarke_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pIa,
- float32_t * pIb)
- {
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
-
- /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
- *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
- }
-
-
- /**
- * @brief Inverse Clarke transform for Q31 version
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] pIa points to output three-phase coordinate a
- * @param[out] pIb points to output three-phase coordinate b
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the subtraction, hence there is no risk of overflow.
- */
- static __INLINE void arm_inv_clarke_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pIa,
- q31_t * pIb)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
-
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
-
- /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
-
- /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
- product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
-
- /* pIb is calculated by subtracting the products */
- *pIb = __QSUB(product2, product1);
- }
-
- /**
- * @} end of inv_clarke group
- */
-
- /**
- * @brief Converts the elements of the Q7 vector to Q15 vector.
- * @param[in] pSrc input pointer
- * @param[out] pDst output pointer
- * @param[in] blockSize number of samples to process
- */
- void arm_q7_to_q15(
- q7_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
-
- /**
- * @ingroup groupController
- */
-
- /**
- * @defgroup park Vector Park Transform
- *
- * Forward Park transform converts the input two-coordinate vector to flux and torque components.
- * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents
- * from the stationary to the moving reference frame and control the spatial relationship between
- * the stator vector current and rotor flux vector.
- * If we consider the d axis aligned with the rotor flux, the diagram below shows the
- * current vector and the relationship from the two reference frames:
- * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkFormula.gif
- * where Ialpha and Ibeta are the stator vector components,
- * pId and pIq are rotor vector components and cosVal and sinVal are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
- /**
- * @addtogroup park
- * @{
- */
-
- /**
- * @brief Floating-point Park transform
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] pId points to output rotor reference frame d
- * @param[out] pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * The function implements the forward Park transform.
- *
- */
- static __INLINE void arm_park_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pId,
- float32_t * pIq,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
- *pId = Ialpha * cosVal + Ibeta * sinVal;
-
- /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
- *pIq = -Ialpha * sinVal + Ibeta * cosVal;
- }
-
-
- /**
- * @brief Park transform for Q31 version
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] pId points to output rotor reference frame d
- * @param[out] pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition and subtraction, hence there is no risk of overflow.
- */
- static __INLINE void arm_park_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pId,
- q31_t * pIq,
- q31_t sinVal,
- q31_t cosVal)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
-
- /* Intermediate product is calculated by (Ialpha * cosVal) */
- product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
-
- /* Intermediate product is calculated by (Ibeta * sinVal) */
- product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
-
-
- /* Intermediate product is calculated by (Ialpha * sinVal) */
- product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
-
- /* Intermediate product is calculated by (Ibeta * cosVal) */
- product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
-
- /* Calculate pId by adding the two intermediate products 1 and 2 */
- *pId = __QADD(product1, product2);
-
- /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
- *pIq = __QSUB(product4, product3);
- }
-
- /**
- * @} end of park group
- */
-
- /**
- * @brief Converts the elements of the Q7 vector to floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q7_to_float(
- q7_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @ingroup groupController
- */
-
- /**
- * @defgroup inv_park Vector Inverse Park transform
- * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkInvFormula.gif
- * where pIalpha and pIbeta are the stator vector components,
- * Id and Iq are rotor vector components and cosVal and sinVal are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
-
- /**
- * @addtogroup inv_park
- * @{
- */
-
- /**
- * @brief Floating-point Inverse Park transform
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- */
- static __INLINE void arm_inv_park_f32(
- float32_t Id,
- float32_t Iq,
- float32_t * pIalpha,
- float32_t * pIbeta,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
- *pIalpha = Id * cosVal - Iq * sinVal;
-
- /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
- *pIbeta = Id * sinVal + Iq * cosVal;
- }
-
-
- /**
- * @brief Inverse Park transform for Q31 version
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * Scaling and Overflow Behavior:
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- static __INLINE void arm_inv_park_q31(
- q31_t Id,
- q31_t Iq,
- q31_t * pIalpha,
- q31_t * pIbeta,
- q31_t sinVal,
- q31_t cosVal)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
-
- /* Intermediate product is calculated by (Id * cosVal) */
- product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
-
- /* Intermediate product is calculated by (Iq * sinVal) */
- product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
-
-
- /* Intermediate product is calculated by (Id * sinVal) */
- product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
-
- /* Intermediate product is calculated by (Iq * cosVal) */
- product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
-
- /* Calculate pIalpha by using the two intermediate products 1 and 2 */
- *pIalpha = __QSUB(product1, product2);
-
- /* Calculate pIbeta by using the two intermediate products 3 and 4 */
- *pIbeta = __QADD(product4, product3);
- }
-
- /**
- * @} end of Inverse park group
- */
-
-
- /**
- * @brief Converts the elements of the Q31 vector to floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q31_to_float(
- q31_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
- /**
- * @ingroup groupInterpolation
- */
-
- /**
- * @defgroup LinearInterpolate Linear Interpolation
- *
- * Linear interpolation is a method of curve fitting using linear polynomials.
- * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
- *
- * \par
- * \image html LinearInterp.gif "Linear interpolation"
- *
- * \par
- * A Linear Interpolate function calculates an output value(y), for the input(x)
- * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
- *
- * \par Algorithm:
- *
- * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
- * where x0, x1 are nearest values of input x
- * y0, y1 are nearest values to output y
- *
- *
- * \par
- * This set of functions implements Linear interpolation process
- * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
- * sample of data and each call to the function returns a single processed value.
- * S points to an instance of the Linear Interpolate function data structure.
- * x is the input sample value. The functions returns the output value.
- *
- * \par
- * if x is outside of the table boundary, Linear interpolation returns first value of the table
- * if x is below input range and returns last value of table if x is above range.
- */
-
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
-
- /**
- * @brief Process function for the floating-point Linear Interpolation Function.
- * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
- * @param[in] x input sample to process
- * @return y processed output sample.
- *
- */
- static __INLINE float32_t arm_linear_interp_f32(
- arm_linear_interp_instance_f32 * S,
- float32_t x)
- {
- float32_t y;
- float32_t x0, x1; /* Nearest input values */
- float32_t y0, y1; /* Nearest output values */
- float32_t xSpacing = S->xSpacing; /* spacing between input values */
- int32_t i; /* Index variable */
- float32_t *pYData = S->pYData; /* pointer to output table */
-
- /* Calculation of index */
- i = (int32_t) ((x - S->x1) / xSpacing);
-
- if(i < 0)
- {
- /* Iniatilize output for below specified range as least output value of table */
- y = pYData[0];
- }
- else if((uint32_t)i >= S->nValues)
- {
- /* Iniatilize output for above specified range as last output value of table */
- y = pYData[S->nValues - 1];
- }
- else
- {
- /* Calculation of nearest input values */
- x0 = S->x1 + i * xSpacing;
- x1 = S->x1 + (i + 1) * xSpacing;
-
- /* Read of nearest output values */
- y0 = pYData[i];
- y1 = pYData[i + 1];
-
- /* Calculation of output */
- y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
-
- }
-
- /* returns output value */
- return (y);
- }
-
-
- /**
- *
- * @brief Process function for the Q31 Linear Interpolation Function.
- * @param[in] pYData pointer to Q31 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- static __INLINE q31_t arm_linear_interp_q31(
- q31_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q31_t y; /* output */
- q31_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & (q31_t)0xFFF00000) >> 20);
-
- if(index >= (int32_t)(nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return (pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* shift left by 11 to keep fract in 1.31 format */
- fract = (x & 0x000FFFFF) << 11;
-
- /* Read two nearest output values from the index in 1.31(q31) format */
- y0 = pYData[index];
- y1 = pYData[index + 1];
-
- /* Calculation of y0 * (1-fract) and y is in 2.30 format */
- y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
-
- /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
- y += ((q31_t) (((q63_t) y1 * fract) >> 32));
-
- /* Convert y to 1.31 format */
- return (y << 1u);
- }
- }
-
-
- /**
- *
- * @brief Process function for the Q15 Linear Interpolation Function.
- * @param[in] pYData pointer to Q15 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- static __INLINE q15_t arm_linear_interp_q15(
- q15_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q63_t y; /* output */
- q15_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & (int32_t)0xFFF00000) >> 20);
-
- if(index >= (int32_t)(nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return (pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
-
- /* Read two nearest output values from the index */
- y0 = pYData[index];
- y1 = pYData[index + 1];
-
- /* Calculation of y0 * (1-fract) and y is in 13.35 format */
- y = ((q63_t) y0 * (0xFFFFF - fract));
-
- /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
- y += ((q63_t) y1 * (fract));
-
- /* convert y to 1.15 format */
- return (q15_t) (y >> 20);
- }
- }
-
-
- /**
- *
- * @brief Process function for the Q7 Linear Interpolation Function.
- * @param[in] pYData pointer to Q7 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- */
- static __INLINE q7_t arm_linear_interp_q7(
- q7_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q31_t y; /* output */
- q7_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- uint32_t index; /* Index to read nearest output values */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- if (x < 0)
- {
- return (pYData[0]);
- }
- index = (x >> 20) & 0xfff;
-
- if(index >= (nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
-
- /* Read two nearest output values from the index and are in 1.7(q7) format */
- y0 = pYData[index];
- y1 = pYData[index + 1];
-
- /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
- y = ((y0 * (0xFFFFF - fract)));
-
- /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
- y += (y1 * fract);
-
- /* convert y to 1.7(q7) format */
- return (q7_t) (y >> 20);
- }
- }
-
- /**
- * @} end of LinearInterpolate group
- */
-
- /**
- * @brief Fast approximation to the trigonometric sine function for floating-point data.
- * @param[in] x input value in radians.
- * @return sin(x).
- */
- float32_t arm_sin_f32(
- float32_t x);
-
-
- /**
- * @brief Fast approximation to the trigonometric sine function for Q31 data.
- * @param[in] x Scaled input value in radians.
- * @return sin(x).
- */
- q31_t arm_sin_q31(
- q31_t x);
-
-
- /**
- * @brief Fast approximation to the trigonometric sine function for Q15 data.
- * @param[in] x Scaled input value in radians.
- * @return sin(x).
- */
- q15_t arm_sin_q15(
- q15_t x);
-
-
- /**
- * @brief Fast approximation to the trigonometric cosine function for floating-point data.
- * @param[in] x input value in radians.
- * @return cos(x).
- */
- float32_t arm_cos_f32(
- float32_t x);
-
-
- /**
- * @brief Fast approximation to the trigonometric cosine function for Q31 data.
- * @param[in] x Scaled input value in radians.
- * @return cos(x).
- */
- q31_t arm_cos_q31(
- q31_t x);
-
-
- /**
- * @brief Fast approximation to the trigonometric cosine function for Q15 data.
- * @param[in] x Scaled input value in radians.
- * @return cos(x).
- */
- q15_t arm_cos_q15(
- q15_t x);
-
-
- /**
- * @ingroup groupFastMath
- */
-
-
- /**
- * @defgroup SQRT Square Root
- *
- * Computes the square root of a number.
- * There are separate functions for Q15, Q31, and floating-point data types.
- * The square root function is computed using the Newton-Raphson algorithm.
- * This is an iterative algorithm of the form:
- *
- * x1 = x0 - f(x0)/f'(x0)
- *
- * where x1 is the current estimate,
- * x0 is the previous estimate, and
- * f'(x0) is the derivative of f() evaluated at x0.
- * For the square root function, the algorithm reduces to:
- *
- */
-
-
- /**
- * @addtogroup SQRT
- * @{
- */
-
- /**
- * @brief Floating-point square root function.
- * @param[in] in input value.
- * @param[out] pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * in is negative value and returns zero output for negative values.
- */
- static __INLINE arm_status arm_sqrt_f32(
- float32_t in,
- float32_t * pOut)
- {
- if(in >= 0.0f)
- {
-
-#if (__FPU_USED == 1) && defined ( __CC_ARM )
- *pOut = __sqrtf(in);
-#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
- *pOut = __builtin_sqrtf(in);
-#elif (__FPU_USED == 1) && defined(__GNUC__)
- *pOut = __builtin_sqrtf(in);
-#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
- __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
-#else
- *pOut = sqrtf(in);
-#endif
-
- return (ARM_MATH_SUCCESS);
- }
- else
- {
- *pOut = 0.0f;
- return (ARM_MATH_ARGUMENT_ERROR);
- }
- }
-
-
- /**
- * @brief Q31 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
- * @param[out] pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * in is negative value and returns zero output for negative values.
- */
- arm_status arm_sqrt_q31(
- q31_t in,
- q31_t * pOut);
-
-
- /**
- * @brief Q15 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
- * @param[out] pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * in is negative value and returns zero output for negative values.
- */
- arm_status arm_sqrt_q15(
- q15_t in,
- q15_t * pOut);
-
- /**
- * @} end of SQRT group
- */
-
-
- /**
- * @brief floating-point Circular write function.
- */
- static __INLINE void arm_circularWrite_f32(
- int32_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const int32_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
-
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
-
- /* Update the input pointer */
- src += srcInc;
-
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *writeOffset = (uint16_t)wOffset;
- }
-
-
-
- /**
- * @brief floating-point Circular Read function.
- */
- static __INLINE void arm_circularRead_f32(
- int32_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- int32_t * dst,
- int32_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t rOffset, dst_end;
-
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
- dst_end = (int32_t) (dst_base + dst_length);
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
-
- /* Update the input pointer */
- dst += dstInc;
-
- if(dst == (int32_t *) dst_end)
- {
- dst = dst_base;
- }
-
- /* Circularly update rOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
-
- if(rOffset >= L)
- {
- rOffset -= L;
- }
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *readOffset = rOffset;
- }
-
-
- /**
- * @brief Q15 Circular write function.
- */
- static __INLINE void arm_circularWrite_q15(
- q15_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const q15_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
-
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
-
- /* Update the input pointer */
- src += srcInc;
-
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *writeOffset = (uint16_t)wOffset;
- }
-
-
- /**
- * @brief Q15 Circular Read function.
- */
- static __INLINE void arm_circularRead_q15(
- q15_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- q15_t * dst,
- q15_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0;
- int32_t rOffset, dst_end;
-
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
-
- dst_end = (int32_t) (dst_base + dst_length);
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
-
- /* Update the input pointer */
- dst += dstInc;
-
- if(dst == (q15_t *) dst_end)
- {
- dst = dst_base;
- }
-
- /* Circularly update wOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
-
- if(rOffset >= L)
- {
- rOffset -= L;
- }
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *readOffset = rOffset;
- }
-
-
- /**
- * @brief Q7 Circular write function.
- */
- static __INLINE void arm_circularWrite_q7(
- q7_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const q7_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
-
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
-
- /* Update the input pointer */
- src += srcInc;
-
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *writeOffset = (uint16_t)wOffset;
- }
-
-
- /**
- * @brief Q7 Circular Read function.
- */
- static __INLINE void arm_circularRead_q7(
- q7_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- q7_t * dst,
- q7_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0;
- int32_t rOffset, dst_end;
-
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
-
- dst_end = (int32_t) (dst_base + dst_length);
-
- /* Loop over the blockSize */
- i = blockSize;
-
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
-
- /* Update the input pointer */
- dst += dstInc;
-
- if(dst == (q7_t *) dst_end)
- {
- dst = dst_base;
- }
-
- /* Circularly update rOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
-
- if(rOffset >= L)
- {
- rOffset -= L;
- }
-
- /* Decrement the loop counter */
- i--;
- }
-
- /* Update the index pointer */
- *readOffset = rOffset;
- }
-
-
- /**
- * @brief Sum of the squares of the elements of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_power_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
-
-
- /**
- * @brief Sum of the squares of the elements of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_power_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
-
-
- /**
- * @brief Sum of the squares of the elements of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_power_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
-
-
- /**
- * @brief Sum of the squares of the elements of a Q7 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_power_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
-
-
- /**
- * @brief Mean value of a Q7 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_mean_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult);
-
-
- /**
- * @brief Mean value of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_mean_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
-
-
- /**
- * @brief Mean value of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_mean_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
-
-
- /**
- * @brief Mean value of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_mean_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
-
-
- /**
- * @brief Variance of the elements of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_var_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
-
-
- /**
- * @brief Variance of the elements of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_var_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
-
-
- /**
- * @brief Variance of the elements of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_var_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
-
-
- /**
- * @brief Root Mean Square of the elements of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_rms_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
-
-
- /**
- * @brief Root Mean Square of the elements of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_rms_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
-
-
- /**
- * @brief Root Mean Square of the elements of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_rms_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
-
-
- /**
- * @brief Standard deviation of the elements of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_std_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
-
-
- /**
- * @brief Standard deviation of the elements of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_std_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
-
-
- /**
- * @brief Standard deviation of the elements of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output value.
- */
- void arm_std_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
-
-
- /**
- * @brief Floating-point complex magnitude
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q31 complex magnitude
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q15 complex magnitude
- * @param[in] pSrc points to the complex input vector
- * @param[out] pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- */
- void arm_cmplx_mag_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q15 complex dot product
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] realResult real part of the result returned here
- * @param[out] imagResult imaginary part of the result returned here
- */
- void arm_cmplx_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t numSamples,
- q31_t * realResult,
- q31_t * imagResult);
-
-
- /**
- * @brief Q31 complex dot product
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] realResult real part of the result returned here
- * @param[out] imagResult imaginary part of the result returned here
- */
- void arm_cmplx_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t numSamples,
- q63_t * realResult,
- q63_t * imagResult);
-
-
- /**
- * @brief Floating-point complex dot product
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] realResult real part of the result returned here
- * @param[out] imagResult imaginary part of the result returned here
- */
- void arm_cmplx_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t numSamples,
- float32_t * realResult,
- float32_t * imagResult);
-
-
- /**
- * @brief Q15 complex-by-real multiplication
- * @param[in] pSrcCmplx points to the complex input vector
- * @param[in] pSrcReal points to the real input vector
- * @param[out] pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- */
- void arm_cmplx_mult_real_q15(
- q15_t * pSrcCmplx,
- q15_t * pSrcReal,
- q15_t * pCmplxDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q31 complex-by-real multiplication
- * @param[in] pSrcCmplx points to the complex input vector
- * @param[in] pSrcReal points to the real input vector
- * @param[out] pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- */
- void arm_cmplx_mult_real_q31(
- q31_t * pSrcCmplx,
- q31_t * pSrcReal,
- q31_t * pCmplxDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Floating-point complex-by-real multiplication
- * @param[in] pSrcCmplx points to the complex input vector
- * @param[in] pSrcReal points to the real input vector
- * @param[out] pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- */
- void arm_cmplx_mult_real_f32(
- float32_t * pSrcCmplx,
- float32_t * pSrcReal,
- float32_t * pCmplxDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Minimum value of a Q7 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] result is output pointer
- * @param[in] index is the array index of the minimum value in the input buffer.
- */
- void arm_min_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * result,
- uint32_t * index);
-
-
- /**
- * @brief Minimum value of a Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output pointer
- * @param[in] pIndex is the array index of the minimum value in the input buffer.
- */
- void arm_min_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
-
-
- /**
- * @brief Minimum value of a Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output pointer
- * @param[out] pIndex is the array index of the minimum value in the input buffer.
- */
- void arm_min_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
-
-
- /**
- * @brief Minimum value of a floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] pResult is output pointer
- * @param[out] pIndex is the array index of the minimum value in the input buffer.
- */
- void arm_min_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
-
-
-/**
- * @brief Maximum value of a Q7 vector.
- * @param[in] pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] pResult maximum value returned here
- * @param[out] pIndex index of maximum value returned here
- */
- void arm_max_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult,
- uint32_t * pIndex);
-
-
-/**
- * @brief Maximum value of a Q15 vector.
- * @param[in] pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] pResult maximum value returned here
- * @param[out] pIndex index of maximum value returned here
- */
- void arm_max_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
-
-
-/**
- * @brief Maximum value of a Q31 vector.
- * @param[in] pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] pResult maximum value returned here
- * @param[out] pIndex index of maximum value returned here
- */
- void arm_max_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
-
-
-/**
- * @brief Maximum value of a floating-point vector.
- * @param[in] pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] pResult maximum value returned here
- * @param[out] pIndex index of maximum value returned here
- */
- void arm_max_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
-
-
- /**
- * @brief Q15 complex-by-complex multiplication
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_mult_cmplx_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Q31 complex-by-complex multiplication
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_mult_cmplx_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Floating-point complex-by-complex multiplication
- * @param[in] pSrcA points to the first input vector
- * @param[in] pSrcB points to the second input vector
- * @param[out] pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- */
- void arm_cmplx_mult_cmplx_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t numSamples);
-
-
- /**
- * @brief Converts the elements of the floating-point vector to Q31 vector.
- * @param[in] pSrc points to the floating-point input vector
- * @param[out] pDst points to the Q31 output vector
- * @param[in] blockSize length of the input vector
- */
- void arm_float_to_q31(
- float32_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the floating-point vector to Q15 vector.
- * @param[in] pSrc points to the floating-point input vector
- * @param[out] pDst points to the Q15 output vector
- * @param[in] blockSize length of the input vector
- */
- void arm_float_to_q15(
- float32_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the floating-point vector to Q7 vector.
- * @param[in] pSrc points to the floating-point input vector
- * @param[out] pDst points to the Q7 output vector
- * @param[in] blockSize length of the input vector
- */
- void arm_float_to_q7(
- float32_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the Q31 vector to Q15 vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q31_to_q15(
- q31_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the Q31 vector to Q7 vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q31_to_q7(
- q31_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the Q15 vector to floating-point vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q15_to_float(
- q15_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the Q15 vector to Q31 vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q15_to_q31(
- q15_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @brief Converts the elements of the Q15 vector to Q7 vector.
- * @param[in] pSrc is input pointer
- * @param[out] pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- */
- void arm_q15_to_q7(
- q15_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
-
-
- /**
- * @ingroup groupInterpolation
- */
-
- /**
- * @defgroup BilinearInterpolate Bilinear Interpolation
- *
- * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
- * The underlying function f(x, y) is sampled on a regular grid and the interpolation process
- * determines values between the grid points.
- * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
- * Bilinear interpolation is often used in image processing to rescale images.
- * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
- *
- * Algorithm
- * \par
- * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
- * For floating-point, the instance structure is defined as:
- *
- *
- * \par
- * where numRows specifies the number of rows in the table;
- * numCols specifies the number of columns in the table;
- * and pData points to an array of size numRows*numCols values.
- * The data table pTable is organized in row order and the supplied data values fall on integer indexes.
- * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
- *
- * \par
- * Let (x, y) specify the desired interpolation point. Then define:
- *
- * XF = floor(x)
- * YF = floor(y)
- *
- * \par
- * The interpolated output point is computed as:
- *
- * Note that the coordinates (x, y) contain integer and fractional components.
- * The integer components specify which portion of the table to use while the
- * fractional components control the interpolation processor.
- *
- * \par
- * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
- */
-
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
-
-
- /**
- *
- * @brief Floating-point bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate.
- * @param[in] Y interpolation coordinate.
- * @return out interpolated value.
- */
- static __INLINE float32_t arm_bilinear_interp_f32(
- const arm_bilinear_interp_instance_f32 * S,
- float32_t X,
- float32_t Y)
- {
- float32_t out;
- float32_t f00, f01, f10, f11;
- float32_t *pData = S->pData;
- int32_t xIndex, yIndex, index;
- float32_t xdiff, ydiff;
- float32_t b1, b2, b3, b4;
-
- xIndex = (int32_t) X;
- yIndex = (int32_t) Y;
-
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
- {
- return (0);
- }
-
- /* Calculation of index for two nearest points in X-direction */
- index = (xIndex - 1) + (yIndex - 1) * S->numCols;
-
-
- /* Read two nearest points in X-direction */
- f00 = pData[index];
- f01 = pData[index + 1];
-
- /* Calculation of index for two nearest points in Y-direction */
- index = (xIndex - 1) + (yIndex) * S->numCols;
-
-
- /* Read two nearest points in Y-direction */
- f10 = pData[index];
- f11 = pData[index + 1];
-
- /* Calculation of intermediate values */
- b1 = f00;
- b2 = f01 - f00;
- b3 = f10 - f00;
- b4 = f00 - f01 - f10 + f11;
-
- /* Calculation of fractional part in X */
- xdiff = X - xIndex;
-
- /* Calculation of fractional part in Y */
- ydiff = Y - yIndex;
-
- /* Calculation of bi-linear interpolated output */
- out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
-
- /* return to application */
- return (out);
- }
-
-
- /**
- *
- * @brief Q31 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q31_t arm_bilinear_interp_q31(
- arm_bilinear_interp_instance_q31 * S,
- q31_t X,
- q31_t Y)
- {
- q31_t out; /* Temporary output */
- q31_t acc = 0; /* output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q31_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q31_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
-
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
-
- /* 20 bits for the fractional part */
- /* shift left xfract by 11 to keep 1.31 format */
- xfract = (X & 0x000FFFFF) << 11u;
-
- /* Read two nearest output values from the index */
- x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
- x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
-
- /* 20 bits for the fractional part */
- /* shift left yfract by 11 to keep 1.31 format */
- yfract = (Y & 0x000FFFFF) << 11u;
-
- /* Read two nearest output values from the index */
- y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
- y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
-
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
- out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
- acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
-
- /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
-
- /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
-
- /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
-
- /* Convert acc to 1.31(q31) format */
- return ((q31_t)(acc << 2));
- }
-
-
- /**
- * @brief Q15 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q15_t arm_bilinear_interp_q15(
- arm_bilinear_interp_instance_q15 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q15_t x1, x2, y1, y2; /* Nearest output values */
- q31_t xfract, yfract; /* X, Y fractional parts */
- int32_t rI, cI; /* Row and column indices */
- q15_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
-
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
-
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & 0x000FFFFF);
-
- /* Read two nearest output values from the index */
- x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
- x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
-
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & 0x000FFFFF);
-
- /* Read two nearest output values from the index */
- y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
- y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
-
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
-
- /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
- /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
- out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
- acc = ((q63_t) out * (0xFFFFF - yfract));
-
- /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
- acc += ((q63_t) out * (xfract));
-
- /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
-
- /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
-
- /* acc is in 13.51 format and down shift acc by 36 times */
- /* Convert out to 1.15 format */
- return ((q15_t)(acc >> 36));
- }
-
-
- /**
- * @brief Q7 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q7_t arm_bilinear_interp_q7(
- arm_bilinear_interp_instance_q7 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q7_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q7_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
-
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
-
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & (q31_t)0x000FFFFF);
-
- /* Read two nearest output values from the index */
- x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
- x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
-
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & (q31_t)0x000FFFFF);
-
- /* Read two nearest output values from the index */
- y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
- y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
-
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
- out = ((x1 * (0xFFFFF - xfract)));
- acc = (((q63_t) out * (0xFFFFF - yfract)));
-
- /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
- out = ((x2 * (0xFFFFF - yfract)));
- acc += (((q63_t) out * (xfract)));
-
- /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y1 * (0xFFFFF - xfract)));
- acc += (((q63_t) out * (yfract)));
-
- /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y2 * (yfract)));
- acc += (((q63_t) out * (xfract)));
-
- /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
- return ((q7_t)(acc >> 40));
- }
-
- /**
- * @} end of BilinearInterpolate group
- */
-
-
-/* SMMLAR */
-#define multAcc_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
-
-/* SMMLSR */
-#define multSub_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
-
-/* SMMULR */
-#define mult_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
-
-/* SMMLA */
-#define multAcc_32x32_keep32(a, x, y) \
- a += (q31_t) (((q63_t) x * y) >> 32)
-
-/* SMMLS */
-#define multSub_32x32_keep32(a, x, y) \
- a -= (q31_t) (((q63_t) x * y) >> 32)
-
-/* SMMUL */
-#define mult_32x32_keep32(a, x, y) \
- a = (q31_t) (((q63_t) x * y ) >> 32)
-
-
-#if defined ( __CC_ARM )
- /* Enter low optimization region - place directly above function definition */
- #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
- #define LOW_OPTIMIZATION_ENTER \
- _Pragma ("push") \
- _Pragma ("O1")
- #else
- #define LOW_OPTIMIZATION_ENTER
- #endif
-
- /* Exit low optimization region - place directly after end of function definition */
- #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
- #define LOW_OPTIMIZATION_EXIT \
- _Pragma ("pop")
- #else
- #define LOW_OPTIMIZATION_EXIT
- #endif
-
- /* Enter low optimization region - place directly above function definition */
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
-
- /* Exit low optimization region - place directly after end of function definition */
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
- #define LOW_OPTIMIZATION_ENTER
- #define LOW_OPTIMIZATION_EXIT
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__GNUC__)
- #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
- #define LOW_OPTIMIZATION_EXIT
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__ICCARM__)
- /* Enter low optimization region - place directly above function definition */
- #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
- #define LOW_OPTIMIZATION_ENTER \
- _Pragma ("optimize=low")
- #else
- #define LOW_OPTIMIZATION_ENTER
- #endif
-
- /* Exit low optimization region - place directly after end of function definition */
- #define LOW_OPTIMIZATION_EXIT
-
- /* Enter low optimization region - place directly above function definition */
- #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
- _Pragma ("optimize=low")
- #else
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #endif
-
- /* Exit low optimization region - place directly after end of function definition */
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__CSMC__)
- #define LOW_OPTIMIZATION_ENTER
- #define LOW_OPTIMIZATION_EXIT
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#elif defined(__TASKING__)
- #define LOW_OPTIMIZATION_ENTER
- #define LOW_OPTIMIZATION_EXIT
- #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
- #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
-
-#endif
-
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#if defined ( __GNUC__ )
-#pragma GCC diagnostic pop
-#endif
-
-#endif /* _ARM_MATH_H */
-
-/**
- *
- * End of file.
- */
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
+*
+* $Date: 20. October 2015
+* $Revision: V1.4.5 b
+*
+* Project: CMSIS DSP Library
+* Title: arm_math.h
+*
+* Description: Public header file for CMSIS DSP Library
+*
+* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+* - Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* - Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in
+* the documentation and/or other materials provided with the
+* distribution.
+* - Neither the name of ARM LIMITED nor the names of its contributors
+* may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS DSP Software Library
+ *
+ * Introduction
+ * ------------
+ *
+ * This user manual describes the CMSIS DSP software library,
+ * a suite of common signal processing functions for use on Cortex-M processor based devices.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Basic math functions
+ * - Fast math functions
+ * - Complex math functions
+ * - Filters
+ * - Matrix functions
+ * - Transforms
+ * - Motor control functions
+ * - Statistical functions
+ * - Support functions
+ * - Interpolation functions
+ *
+ * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+ * 32-bit integer and 32-bit floating-point values.
+ *
+ * Using the Library
+ * ------------
+ *
+ * The library installer contains prebuilt versions of the libraries in the Lib folder.
+ * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
+ * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
+ * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
+ * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
+ * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
+ * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
+ * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+ * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+ * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+ * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+ * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
+ * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
+ *
+ * The library functions are declared in the public file arm_math.h which is placed in the Include folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
+ *
+ * Examples
+ * --------
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Toolchain Support
+ * ------------
+ *
+ * The library has been developed and tested with MDK-ARM version 5.14.0.0
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Building the Library
+ * ------------
+ *
+ * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the CMSIS\\DSP_Lib\\Source\\ARM folder.
+ * - arm_cortexM_math.uvprojx
+ *
+ *
+ * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
+ *
+ * Pre-processor Macros
+ * ------------
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * - UNALIGNED_SUPPORT_DISABLE:
+ *
+ * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_MATH_MATRIX_CHECK:
+ *
+ * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
+ *
+ * - ARM_MATH_ROUNDING:
+ *
+ * Define macro ARM_MATH_ROUNDING for rounding on support functions
+ *
+ * - ARM_MATH_CMx:
+ *
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
+ * ARM_MATH_CM7 for building the library on cortex-M7.
+ *
+ * - __FPU_PRESENT:
+ *
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ *
+ *
+ * CMSIS-DSP in ARM::CMSIS Pack
+ * -----------------------------
+ *
+ * The following files relevant to CMSIS-DSP are present in the ARM::CMSIS Pack directories:
+ * |File/Folder |Content |
+ * |------------------------------|------------------------------------------------------------------------|
+ * |\b CMSIS\\Documentation\\DSP | This documentation |
+ * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
+ * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
+ * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
+ *
+ *
+ * Revision History of CMSIS-DSP
+ * ------------
+ * Please refer to \ref ChangeLog_pg.
+ *
+ * Copyright Notice
+ * ------------
+ *
+ * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
+ */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ *
+ * typedef struct
+ * {
+ * uint16_t numRows; // number of rows of the matrix.
+ * uint16_t numCols; // number of columns of the matrix.
+ * float32_t *pData; // points to the data of the matrix.
+ * } arm_matrix_instance_f32;
+ *
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data. The array is of size numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ *
+ * pData[i*numCols + j]
+ *
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to the function arm_mat_init_f32(), arm_mat_init_q31()
+ * and arm_mat_init_q15() for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ *
+ * arm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
+ * where nRows specifies the number of rows, nColumns
+ * specifies the number of columns, and pData points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ *
+ * ARM_MATH_SIZE_MISMATCH
+ *
+ * Otherwise the functions return
+ *
+ * ARM_MATH_SUCCESS
+ *
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the \#define
+ *
+ * ARM_MATH_MATRIX_CHECK
+ *
+ * within the library project settings. By default this macro is defined
+ * and size checking is enabled. By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster. With size checking disabled the functions always
+ * return ARM_MATH_SUCCESS.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+/* ignore some GCC warnings */
+#if defined ( __GNUC__ )
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wsign-conversion"
+#pragma GCC diagnostic ignored "-Wconversion"
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined(ARM_MATH_CM7)
+ #include "core_cm7.h"
+#elif defined (ARM_MATH_CM4)
+ #include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+ #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+ #include "core_cm0.h"
+ #define ARM_MATH_CM0_FAMILY
+#elif defined (ARM_MATH_CM0PLUS)
+ #include "core_cm0plus.h"
+ #define ARM_MATH_CM0_FAMILY
+#else
+ #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+#include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#ifndef PI
+#define PI 3.14159265358979f
+#endif
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define FAST_MATH_TABLE_SIZE 512
+#define FAST_MATH_Q31_SHIFT (32 - 10)
+#define FAST_MATH_Q15_SHIFT (16 - 10)
+#define CONTROLLER_Q31_SHIFT (32 - 9)
+#define TABLE_SIZE 256
+#define TABLE_SPACING_Q31 0x400000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+ /**
+ * @brief Macro for Unaligned Support
+ */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+ #define ALIGN4
+#else
+ #if defined (__GNUC__)
+ #define ALIGN4 __attribute__((aligned(4)))
+ #else
+ #define ALIGN4 __align(4)
+ #endif
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#if defined __CC_ARM
+ #define __SIMD32_TYPE int32_t __packed
+ #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __GNUC__
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED __attribute__((unused))
+
+#elif defined __ICCARM__
+ #define __SIMD32_TYPE int32_t __packed
+ #define CMSIS_UNUSED
+
+#elif defined __CSMC__
+ #define __SIMD32_TYPE int32_t
+ #define CMSIS_UNUSED
+
+#elif defined __TASKING__
+ #define __SIMD32_TYPE __unaligned int32_t
+ #define CMSIS_UNUSED
+
+#else
+ #error Unknown compiler
+#endif
+
+#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
+#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
+#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
+#define __SIMD64(addr) (*(int64_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
+ (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
+
+#endif
+
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ static __INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ static __INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ static __INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ static __INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ static __INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+/*
+ #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
+ #define __CLZ __clz
+ #endif
+ */
+/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
+#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
+ static __INLINE uint32_t __CLZ(
+ q31_t data);
+
+ static __INLINE uint32_t __CLZ(
+ q31_t data)
+ {
+ uint32_t count = 0;
+ uint32_t mask = 0x80000000;
+
+ while((data & mask) == 0)
+ {
+ count += 1u;
+ mask = mask >> 1u;
+ }
+
+ return (count);
+ }
+#endif
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
+ */
+
+ static __INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+ q31_t out;
+ uint32_t tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if(in > 0)
+ {
+ signBits = ((uint32_t) (__CLZ( in) - 1));
+ }
+ else
+ {
+ signBits = ((uint32_t) (__CLZ(-in) - 1));
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 24);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (uint32_t) (((q63_t) in * out) >> 31);
+ tempVal = 0x7FFFFFFFu - tempVal;
+ /* 1.31 with exp 1 */
+ /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
+ out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1u);
+ }
+
+
+ /**
+ * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
+ */
+ static __INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+ q15_t out = 0;
+ uint32_t tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if(in > 0)
+ {
+ signBits = ((uint32_t)(__CLZ( in) - 17));
+ }
+ else
+ {
+ signBits = ((uint32_t)(__CLZ(-in) - 17));
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = (in << signBits);
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t)(in >> 8);
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (uint32_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFFu - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+ }
+
+
+ /*
+ * @brief C custom defined intrinisic function for only M0 processors
+ */
+#if defined(ARM_MATH_CM0_FAMILY)
+ static __INLINE q31_t __SSAT(
+ q31_t x,
+ uint32_t y)
+ {
+ int32_t posMax, negMin;
+ uint32_t i;
+
+ posMax = 1;
+ for (i = 0; i < (y - 1); i++)
+ {
+ posMax = posMax * 2;
+ }
+
+ if(x > 0)
+ {
+ posMax = (posMax - 1);
+
+ if(x > posMax)
+ {
+ x = posMax;
+ }
+ }
+ else
+ {
+ negMin = -posMax;
+
+ if(x < negMin)
+ {
+ x = negMin;
+ }
+ }
+ return (x);
+ }
+#endif /* end of ARM_MATH_CM0_FAMILY */
+
+
+ /*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QADD8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QSUB8(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s, t, u;
+
+ r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
+ s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
+ t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
+ u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
+
+ return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
+ q31_t r = 0, s = 0;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SHADD16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SHSUB16(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SHASX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __QSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
+ s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SHSAX(
+ uint32_t x,
+ uint32_t y)
+ {
+ q31_t r, s;
+
+ r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+ s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
+
+ return ((uint32_t)((s << 16) | (r )));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMUSDX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMUADX(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ static __INLINE int32_t __QADD(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ static __INLINE int32_t __QSUB(
+ int32_t x,
+ int32_t y)
+ {
+ return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
+ }
+
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMLAD(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMLADX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMLSDX(
+ uint32_t x,
+ uint32_t y,
+ uint32_t sum)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q31_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ static __INLINE uint64_t __SMLALD(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ static __INLINE uint64_t __SMLALDX(
+ uint32_t x,
+ uint32_t y,
+ uint64_t sum)
+ {
+/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
+ return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ( ((q63_t)sum ) ) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMUAD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SMUSD(
+ uint32_t x,
+ uint32_t y)
+ {
+ return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
+ ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
+ }
+
+
+ /*
+ * @brief C custom defined SXTB16 for M3 and M0 processors
+ */
+ static __INLINE uint32_t __SXTB16(
+ uint32_t x)
+ {
+ return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
+ ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
+ }
+
+#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] S points to an instance of the Q7 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] S points to an instance of the Q15 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps is not a supported value.
+ */
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] S points to an instance of the Q31 FIR filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] S points to an instance of the floating-point FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q15;
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_casd_df1_inst_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float64_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f64;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_q31;
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Q31, complex, matrix multiplication.
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_cmplx_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] pSrc points to the input matrix
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @param[in] pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] pSrcA points to the first input matrix structure
+ * @param[in] pSrcB points to the second input matrix structure
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t * pData);
+
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t * pData);
+
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] pData points to the matrix data array.
+ */
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t * pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+#ifdef ARM_MATH_CM0_FAMILY
+ q15_t A1;
+ q15_t A2;
+#else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+#endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the q15 PID Control structure
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues; /**< nValues */
+ float32_t x1; /**< x1 */
+ float32_t xSpacing; /**< xSpacing */
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q15(
+ arm_cfft_radix2_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q15(
+ const arm_cfft_radix2_instance_q15 * S,
+ q15_t * pSrc);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix2_instance_q31;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_q31(
+ arm_cfft_radix2_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_q31(
+ const arm_cfft_radix2_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+/* Deprecated */
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix2_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix2_init_f32(
+ arm_cfft_radix2_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix2_f32(
+ const arm_cfft_radix2_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+/* Deprecated */
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+/* Deprecated */
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_q15;
+
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the fixed-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_q31;
+
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
+ const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t bitRevLength; /**< bit reversal table length. */
+ } arm_cfft_instance_f32;
+
+ void arm_cfft_f32(
+ const arm_cfft_instance_f32 * S,
+ float32_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+typedef struct
+ {
+ arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
+ uint16_t fftLenRFFT; /**< length of the real sequence */
+ float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
+ } arm_rfft_fast_instance_f32 ;
+
+arm_status arm_rfft_fast_init_f32 (
+ arm_rfft_fast_instance_f32 * S,
+ uint16_t fftLen);
+
+void arm_rfft_fast_f32(
+ arm_rfft_fast_instance_f32 * S,
+ float32_t * p, float32_t * pOut,
+ uint8_t ifftFlag);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length.
+ */
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q31 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+ */
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] S points to an instance of the Q15 DCT4 structure.
+ * @param[in] pState points to state buffer.
+ * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
+ */
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] pSrc points to the input buffer
+ * @param[out] pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ */
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] result output result returned here
+ */
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ */
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ */
+ void arm_conv_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_conv_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
+ */
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q7 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+/**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] pCoeffs points to the filter coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ */
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_stereo_df2T_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f64;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_stereo_df2T_f32(
+ const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] S points to an instance of the filter data structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_biquad_cascade_df2T_f64(
+ const arm_biquad_cascade_df2T_instance_f64 * S,
+ float64_t * pSrc,
+ float64_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_stereo_df2T_init_f32(
+ arm_biquad_cascade_stereo_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] pCoeffs points to the filter coefficients.
+ * @param[in] pState points to the state buffer.
+ */
+ void arm_biquad_cascade_df2T_init_f64(
+ arm_biquad_cascade_df2T_instance_f64 * S,
+ uint8_t numStages,
+ float64_t * pCoeffs,
+ float64_t * pState);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] pState points to the state buffer. The array is of length numStages.
+ */
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pkCoeffs,
+ float32_t * pvCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pkCoeffs,
+ q31_t * pvCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ */
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pkCoeffs,
+ q15_t * pvCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to the coefficient buffer.
+ * @param[in] pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q15 LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[in] pRef points to the block of reference data.
+ * @param[out] pOut points to the block of output data.
+ * @param[out] pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ */
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] pCoeffs points to coefficient buffer.
+ * @param[in] pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ */
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+ void arm_correlate_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ */
+ void arm_correlate_fast_opt_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ q15_t * pScratch);
+
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
+ * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
+ */
+ void arm_correlate_opt_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ q15_t * pScratch1,
+ q15_t * pScratch2);
+
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ */
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] pSrc points to the block of input data.
+ * @param[out] pDst points to the block of output data
+ * @param[in] pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ */
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] pCoeffs points to the array of filter coefficients.
+ * @param[in] pState points to the state buffer.
+ * @param[in] pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ */
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cos output.
+ */
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t * pSinVal,
+ float32_t * pCosVal);
+
+
+ /**
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] pSinVal points to the processed sine output.
+ * @param[out] pCosVal points to the processed cosine output.
+ */
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t * pSinVal,
+ q31_t * pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] pSrc points to the input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ *
+ *
+ * \par
+ * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
+ *
+ * \par
+ * \image html PID.gif "Proportional Integral Derivative Controller"
+ *
+ * \par
+ * The PID controller calculates an "error" value as the difference between
+ * the measured output and the reference input.
+ * The controller attempts to minimize the error by adjusting the process control inputs.
+ * The proportional value determines the reaction to the current error,
+ * the integral value determines the reaction based on the sum of recent errors,
+ * and the derivative value determines the reaction based on the rate at which the error has been changing.
+ *
+ * \par Instance Structure
+ * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
+ * A separate instance structure must be defined for each PID Controller.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Reset Functions
+ * There is also an associated reset function for each data type which clears the state array.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the PID Controller functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup PID
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point PID Control.
+ * @param[in,out] S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ */
+ static __INLINE float32_t arm_pid_f32(
+ arm_pid_instance_f32 * S,
+ float32_t in)
+ {
+ float32_t out;
+
+ /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
+ out = (S->A0 * in) +
+ (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @brief Process function for the Q31 PID Control.
+ * @param[in,out] S points to an instance of the Q31 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+ static __INLINE q31_t arm_pid_q31(
+ arm_pid_instance_q31 * S,
+ q31_t in)
+ {
+ q63_t acc;
+ q31_t out;
+
+ /* acc = A0 * x[n] */
+ acc = (q63_t) S->A0 * in;
+
+ /* acc += A1 * x[n-1] */
+ acc += (q63_t) S->A1 * S->state[0];
+
+ /* acc += A2 * x[n-2] */
+ acc += (q63_t) S->A2 * S->state[1];
+
+ /* convert output to 1.31 format to add y[n-1] */
+ out = (q31_t) (acc >> 31u);
+
+ /* out += y[n-1] */
+ out += S->state[2];
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+
+ /**
+ * @brief Process function for the Q15 PID Control.
+ * @param[in,out] S points to an instance of the Q15 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+ static __INLINE q15_t arm_pid_q15(
+ arm_pid_instance_q15 * S,
+ q15_t in)
+ {
+ q63_t acc;
+ q15_t out;
+
+#ifndef ARM_MATH_CM0_FAMILY
+ __SIMD32_TYPE *vstate;
+
+ /* Implementation of PID controller */
+
+ /* acc = A0 * x[n] */
+ acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ vstate = __SIMD32_CONST(S->state);
+ acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
+#else
+ /* acc = A0 * x[n] */
+ acc = ((q31_t) S->A0) * in;
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc += (q31_t) S->A1 * S->state[0];
+ acc += (q31_t) S->A2 * S->state[1];
+#endif
+
+ /* acc += y[n-1] */
+ acc += (q31_t) S->state[2] << 15;
+
+ /* saturate the output */
+ out = (q15_t) (__SSAT((acc >> 15), 16));
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+ }
+
+ /**
+ * @} end of PID group
+ */
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] src points to the instance of the input floating-point matrix structure.
+ * @param[out] dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+ arm_status arm_mat_inverse_f64(
+ const arm_matrix_instance_f64 * src,
+ arm_matrix_instance_f64 * dst);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup clarke Vector Clarke Transform
+ * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
+ * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha and Ibeta.
+ * When Ialpha is superposed with Ia as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta
+ * can be calculated using only Ia and Ib.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia and Ib are the instantaneous stator phases and
+ * pIalpha and pIbeta are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ */
+ static __INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+ }
+
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+ static __INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa and pIb are the instantaneous stator phases and
+ * Ialpha and Ibeta are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate a
+ * @param[out] pIb points to output three-phase coordinate b
+ */
+ static __INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
+ }
+
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] pIa points to output three-phase coordinate a
+ * @param[out] pIb points to output three-phase coordinate b
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+ static __INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] pSrc input pointer
+ * @param[out] pDst output pointer
+ * @param[in] blockSize number of samples to process
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha and Ibeta are the stator vector components,
+ * pId and pIq are rotor vector components and cosVal and sinVal are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+ static __INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+ }
+
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] pId points to output rotor reference frame d
+ * @param[out] pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+ static __INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha and pIbeta are the stator vector components,
+ * Id and Iq are rotor vector components and cosVal and sinVal are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ */
+ static __INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+ static __INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ *
+ * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
+ * where x0, x1 are nearest values of input x
+ * y0, y1 are nearest values to output y
+ *
+ *
+ * \par
+ * This set of functions implements Linear interpolation process
+ * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
+ * sample of data and each call to the function returns a single processed value.
+ * S points to an instance of the Linear Interpolate function data structure.
+ * x is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+ static __INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (int32_t) ((x - S->x1) / xSpacing);
+
+ if(i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if((uint32_t)i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues - 1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i + 1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ static __INLINE q31_t arm_linear_interp_q31(
+ q31_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & (q31_t)0xFFF00000) >> 20);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1u);
+ }
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+ static __INLINE q15_t arm_linear_interp_q15(
+ q15_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & (int32_t)0xFFF00000) >> 20);
+
+ if(index >= (int32_t)(nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return (pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (q15_t) (y >> 20);
+ }
+ }
+
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+ static __INLINE q7_t arm_linear_interp_q7(
+ q7_t * pYData,
+ q31_t x,
+ uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ uint32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ if (x < 0)
+ {
+ return (pYData[0]);
+ }
+ index = (x >> 20) & 0xfff;
+
+ if(index >= (nValues - 1))
+ {
+ return (pYData[nValues - 1]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (q7_t) (y >> 20);
+ }
+ }
+
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+ float32_t arm_sin_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q31_t arm_sin_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+ q15_t arm_sin_q15(
+ q15_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+ float32_t arm_cos_f32(
+ float32_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q31_t arm_cos_q31(
+ q31_t x);
+
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ *
+ * x1 = x0 - f(x0)/f'(x0)
+ *
+ * where x1 is the current estimate,
+ * x0 is the previous estimate, and
+ * f'(x0) is the derivative of f() evaluated at x0.
+ * For the square root function, the algorithm reduces to:
+ *
+ */
+
+
+ /**
+ * @addtogroup SQRT
+ * @{
+ */
+
+ /**
+ * @brief Floating-point square root function.
+ * @param[in] in input value.
+ * @param[out] pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in is negative value and returns zero output for negative values.
+ */
+ static __INLINE arm_status arm_sqrt_f32(
+ float32_t in,
+ float32_t * pOut)
+ {
+ if(in >= 0.0f)
+ {
+
+#if (__FPU_USED == 1) && defined ( __CC_ARM )
+ *pOut = __sqrtf(in);
+#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined(__GNUC__)
+ *pOut = __builtin_sqrtf(in);
+#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
+ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
+#else
+ *pOut = sqrtf(in);
+#endif
+
+ return (ARM_MATH_SUCCESS);
+ }
+ else
+ {
+ *pOut = 0.0f;
+ return (ARM_MATH_ARGUMENT_ERROR);
+ }
+ }
+
+
+ /**
+ * @brief Q31 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
+ * @param[out] pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q31(
+ q31_t in,
+ q31_t * pOut);
+
+
+ /**
+ * @brief Q15 square root function.
+ * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
+ * @param[out] pOut square root of input value.
+ * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
+ * in is negative value and returns zero output for negative values.
+ */
+ arm_status arm_sqrt_q15(
+ q15_t in,
+ q15_t * pOut);
+
+ /**
+ * @} end of SQRT group
+ */
+
+
+ /**
+ * @brief floating-point Circular write function.
+ */
+ static __INLINE void arm_circularWrite_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const int32_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+
+ /**
+ * @brief floating-point Circular Read function.
+ */
+ static __INLINE void arm_circularRead_f32(
+ int32_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ int32_t * dst,
+ int32_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (int32_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular write function.
+ */
+ static __INLINE void arm_circularWrite_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q15_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q15 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q15(
+ q15_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q15_t * dst,
+ q15_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q15_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular write function.
+ */
+ static __INLINE void arm_circularWrite_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ uint16_t * writeOffset,
+ int32_t bufferInc,
+ const q7_t * src,
+ int32_t srcInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0u;
+ int32_t wOffset;
+
+ /* Copy the value of Index pointer that points
+ * to the current location where the input samples to be copied */
+ wOffset = *writeOffset;
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the input sample to the circular buffer */
+ circBuffer[wOffset] = *src;
+
+ /* Update the input pointer */
+ src += srcInc;
+
+ /* Circularly update wOffset. Watch out for positive and negative value */
+ wOffset += bufferInc;
+ if(wOffset >= L)
+ wOffset -= L;
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *writeOffset = (uint16_t)wOffset;
+ }
+
+
+ /**
+ * @brief Q7 Circular Read function.
+ */
+ static __INLINE void arm_circularRead_q7(
+ q7_t * circBuffer,
+ int32_t L,
+ int32_t * readOffset,
+ int32_t bufferInc,
+ q7_t * dst,
+ q7_t * dst_base,
+ int32_t dst_length,
+ int32_t dstInc,
+ uint32_t blockSize)
+ {
+ uint32_t i = 0;
+ int32_t rOffset, dst_end;
+
+ /* Copy the value of Index pointer that points
+ * to the current location from where the input samples to be read */
+ rOffset = *readOffset;
+
+ dst_end = (int32_t) (dst_base + dst_length);
+
+ /* Loop over the blockSize */
+ i = blockSize;
+
+ while(i > 0u)
+ {
+ /* copy the sample from the circular buffer to the destination buffer */
+ *dst = circBuffer[rOffset];
+
+ /* Update the input pointer */
+ dst += dstInc;
+
+ if(dst == (q7_t *) dst_end)
+ {
+ dst = dst_base;
+ }
+
+ /* Circularly update rOffset. Watch out for positive and negative value */
+ rOffset += bufferInc;
+
+ if(rOffset >= L)
+ {
+ rOffset -= L;
+ }
+
+ /* Decrement the loop counter */
+ i--;
+ }
+
+ /* Update the index pointer */
+ *readOffset = rOffset;
+ }
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q63_t * pResult);
+
+
+ /**
+ * @brief Sum of the squares of the elements of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_power_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Mean value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Mean value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_mean_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Variance of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_var_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Root Mean Square of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_rms_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult);
+
+
+ /**
+ * @brief Standard deviation of the elements of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output value.
+ */
+ void arm_std_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult);
+
+
+ /**
+ * @brief Floating-point complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex magnitude
+ * @param[in] pSrc points to the complex input vector
+ * @param[out] pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ */
+ void arm_cmplx_mag_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q15 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t numSamples,
+ q31_t * realResult,
+ q31_t * imagResult);
+
+
+ /**
+ * @brief Q31 complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t numSamples,
+ q63_t * realResult,
+ q63_t * imagResult);
+
+
+ /**
+ * @brief Floating-point complex dot product
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @param[out] realResult real part of the result returned here
+ * @param[out] imagResult imaginary part of the result returned here
+ */
+ void arm_cmplx_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t numSamples,
+ float32_t * realResult,
+ float32_t * imagResult);
+
+
+ /**
+ * @brief Q15 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q15(
+ q15_t * pSrcCmplx,
+ q15_t * pSrcReal,
+ q15_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_q31(
+ q31_t * pSrcCmplx,
+ q31_t * pSrcReal,
+ q31_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-real multiplication
+ * @param[in] pSrcCmplx points to the complex input vector
+ * @param[in] pSrcReal points to the real input vector
+ * @param[out] pCmplxDst points to the complex output vector
+ * @param[in] numSamples number of samples in each vector
+ */
+ void arm_cmplx_mult_real_f32(
+ float32_t * pSrcCmplx,
+ float32_t * pSrcReal,
+ float32_t * pCmplxDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Minimum value of a Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] result is output pointer
+ * @param[in] index is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * result,
+ uint32_t * index);
+
+
+ /**
+ * @brief Minimum value of a Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[in] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Minimum value of a Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Minimum value of a floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[in] blockSize is the number of samples to process
+ * @param[out] pResult is output pointer
+ * @param[out] pIndex is the array index of the minimum value in the input buffer.
+ */
+ void arm_min_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q7 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q7(
+ q7_t * pSrc,
+ uint32_t blockSize,
+ q7_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q15 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q15(
+ q15_t * pSrc,
+ uint32_t blockSize,
+ q15_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a Q31 vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_q31(
+ q31_t * pSrc,
+ uint32_t blockSize,
+ q31_t * pResult,
+ uint32_t * pIndex);
+
+
+/**
+ * @brief Maximum value of a floating-point vector.
+ * @param[in] pSrc points to the input buffer
+ * @param[in] blockSize length of the input vector
+ * @param[out] pResult maximum value returned here
+ * @param[out] pIndex index of maximum value returned here
+ */
+ void arm_max_f32(
+ float32_t * pSrc,
+ uint32_t blockSize,
+ float32_t * pResult,
+ uint32_t * pIndex);
+
+
+ /**
+ * @brief Q15 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Q31 complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Floating-point complex-by-complex multiplication
+ * @param[in] pSrcA points to the first input vector
+ * @param[in] pSrcB points to the second input vector
+ * @param[out] pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ */
+ void arm_cmplx_mult_cmplx_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q31 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q31 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q31(
+ float32_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q15 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q15(
+ float32_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the floating-point vector to Q7 vector.
+ * @param[in] pSrc points to the floating-point input vector
+ * @param[out] pDst points to the Q7 output vector
+ * @param[in] blockSize length of the input vector
+ */
+ void arm_float_to_q7(
+ float32_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q15 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q15(
+ q31_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q31_to_q7(
+ q31_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to floating-point vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_float(
+ q15_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q31 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q31(
+ q15_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Converts the elements of the Q15 vector to Q7 vector.
+ * @param[in] pSrc is input pointer
+ * @param[out] pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ */
+ void arm_q15_to_q7(
+ q15_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup BilinearInterpolate Bilinear Interpolation
+ *
+ * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
+ * The underlying function f(x, y) is sampled on a regular grid and the interpolation process
+ * determines values between the grid points.
+ * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
+ * Bilinear interpolation is often used in image processing to rescale images.
+ * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
+ *
+ * Algorithm
+ * \par
+ * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
+ * For floating-point, the instance structure is defined as:
+ *
+ *
+ * \par
+ * where numRows specifies the number of rows in the table;
+ * numCols specifies the number of columns in the table;
+ * and pData points to an array of size numRows*numCols values.
+ * The data table pTable is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
+ *
+ * \par
+ * Let (x, y) specify the desired interpolation point. Then define:
+ *
+ * XF = floor(x)
+ * YF = floor(y)
+ *
+ * \par
+ * The interpolated output point is computed as:
+ *
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-/* USER CODE END Header */
-
-/* Define to prevent recursive inclusion -------------------------------------*/
-#ifndef __STM32F1xx_IT_H
-#define __STM32F1xx_IT_H
-
-#ifdef __cplusplus
- extern "C" {
-#endif
-
-/* Private includes ----------------------------------------------------------*/
-/* USER CODE BEGIN Includes */
-
-/* USER CODE END Includes */
-
-/* Exported types ------------------------------------------------------------*/
-/* USER CODE BEGIN ET */
-
-/* USER CODE END ET */
-
-/* Exported constants --------------------------------------------------------*/
-/* USER CODE BEGIN EC */
-
-/* USER CODE END EC */
-
-/* Exported macro ------------------------------------------------------------*/
-/* USER CODE BEGIN EM */
-
-/* USER CODE END EM */
-
-/* Exported functions prototypes ---------------------------------------------*/
-void NMI_Handler(void);
-void HardFault_Handler(void);
-void MemManage_Handler(void);
-void BusFault_Handler(void);
-void UsageFault_Handler(void);
-void SVC_Handler(void);
-void DebugMon_Handler(void);
-void PendSV_Handler(void);
-void SysTick_Handler(void);
-void DMA1_Channel1_IRQHandler(void);
-void ADC1_2_IRQHandler(void);
-void TIM1_UP_IRQHandler(void);
-void TIM1_TRG_COM_IRQHandler(void);
-void TIM1_CC_IRQHandler(void);
-void TIM2_IRQHandler(void);
-/* USER CODE BEGIN EFP */
-
-/* USER CODE END EFP */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* __STM32F1xx_IT_H */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+/* USER CODE BEGIN Header */
+/**
+ ******************************************************************************
+ * @file stm32f1xx_it.h
+ * @brief This file contains the headers of the interrupt handlers.
+ ******************************************************************************
+ * @attention
+ *
+ *
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+/* USER CODE END Header */
+
+/* Includes ------------------------------------------------------------------*/
+#include "main.h"
+#include "stm32f1xx_it.h"
+/* Private includes ----------------------------------------------------------*/
+/* USER CODE BEGIN Includes */
+/* USER CODE END Includes */
+
+/* Private typedef -----------------------------------------------------------*/
+/* USER CODE BEGIN TD */
+
+/* USER CODE END TD */
+
+/* Private define ------------------------------------------------------------*/
+/* USER CODE BEGIN PD */
+
+/* USER CODE END PD */
+
+/* Private macro -------------------------------------------------------------*/
+/* USER CODE BEGIN PM */
+
+/* USER CODE END PM */
+
+/* Private variables ---------------------------------------------------------*/
+/* USER CODE BEGIN PV */
+
+/* USER CODE END PV */
+
+/* Private function prototypes -----------------------------------------------*/
+/* USER CODE BEGIN PFP */
+
+/* USER CODE END PFP */
+
+/* Private user code ---------------------------------------------------------*/
+/* USER CODE BEGIN 0 */
+
+/* USER CODE END 0 */
+
+/* External variables --------------------------------------------------------*/
+extern DMA_HandleTypeDef hdma_adc1;
+extern DMA_HandleTypeDef hdma_usart1_tx;
+extern DMA_HandleTypeDef hdma_usart1_rx;
+extern DMA_HandleTypeDef hdma_usart3_tx;
+extern DMA_HandleTypeDef hdma_usart3_rx;
+extern ADC_HandleTypeDef hadc1;
+extern ADC_HandleTypeDef hadc2;
+extern TIM_HandleTypeDef htim1;
+extern TIM_HandleTypeDef htim2;
+extern TIM_HandleTypeDef htim3;
+extern TIM_HandleTypeDef htim4;
+extern UART_HandleTypeDef huart1;
+extern UART_HandleTypeDef huart3;
+
+/* USER CODE BEGIN EV */
+
+/* USER CODE END EV */
+
+/******************************************************************************/
+/* Cortex-M3 Processor Interruption and Exception Handlers */
+/******************************************************************************/
+/**
+ * @brief This function handles Non maskable interrupt.
+ */
+void NMI_Handler(void) {
+ /* USER CODE BEGIN NonMaskableInt_IRQn 0 */
+
+ /* USER CODE END NonMaskableInt_IRQn 0 */
+ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
+ while (1) {
+ }
+ /* USER CODE END NonMaskableInt_IRQn 1 */
+}
+
+/**
+ * @brief This function handles Hard fault interrupt.
+ */
+void HardFault_Handler(void) {
+ /* USER CODE BEGIN HardFault_IRQn 0 */
+
+ /* USER CODE END HardFault_IRQn 0 */
+ while (1) {
+ /* USER CODE BEGIN W1_HardFault_IRQn 0 */
+ /* USER CODE END W1_HardFault_IRQn 0 */
+ }
+}
+
+/**
+ * @brief This function handles Memory management fault.
+ */
+void MemManage_Handler(void) {
+ /* USER CODE BEGIN MemoryManagement_IRQn 0 */
+
+ /* USER CODE END MemoryManagement_IRQn 0 */
+ while (1) {
+ /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
+ /* USER CODE END W1_MemoryManagement_IRQn 0 */
+ }
+}
+
+/**
+ * @brief This function handles Prefetch fault, memory access fault.
+ */
+void BusFault_Handler(void) {
+ /* USER CODE BEGIN BusFault_IRQn 0 */
+
+ /* USER CODE END BusFault_IRQn 0 */
+ while (1) {
+ /* USER CODE BEGIN W1_BusFault_IRQn 0 */
+ /* USER CODE END W1_BusFault_IRQn 0 */
+ }
+}
+
+/**
+ * @brief This function handles Undefined instruction or illegal state.
+ */
+void UsageFault_Handler(void) {
+ /* USER CODE BEGIN UsageFault_IRQn 0 */
+
+ /* USER CODE END UsageFault_IRQn 0 */
+ while (1) {
+ /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
+ /* USER CODE END W1_UsageFault_IRQn 0 */
+ }
+}
+
+/**
+ * @brief This function handles System service call via SWI instruction.
+ */
+void SVC_Handler(void) {
+ /* USER CODE BEGIN SVCall_IRQn 0 */
+
+ /* USER CODE END SVCall_IRQn 0 */
+ /* USER CODE BEGIN SVCall_IRQn 1 */
+
+ /* USER CODE END SVCall_IRQn 1 */
+}
+
+/**
+ * @brief This function handles Debug monitor.
+ */
+void DebugMon_Handler(void) {
+ /* USER CODE BEGIN DebugMonitor_IRQn 0 */
+
+ /* USER CODE END DebugMonitor_IRQn 0 */
+ /* USER CODE BEGIN DebugMonitor_IRQn 1 */
+
+ /* USER CODE END DebugMonitor_IRQn 1 */
+}
+
+/**
+ * @brief This function handles Pendable request for system service.
+ */
+void PendSV_Handler(void) {
+ /* USER CODE BEGIN PendSV_IRQn 0 */
+
+ /* USER CODE END PendSV_IRQn 0 */
+ /* USER CODE BEGIN PendSV_IRQn 1 */
+
+ /* USER CODE END PendSV_IRQn 1 */
+}
+
+/**
+ * @brief This function handles System tick timer.
+ */
+void SysTick_Handler(void) {
+ /* USER CODE BEGIN SysTick_IRQn 0 */
+ UserSysTickHandler();
+ /* USER CODE END SysTick_IRQn 0 */
+ HAL_IncTick();
+ /* USER CODE BEGIN SysTick_IRQn 1 */
+
+ /* USER CODE END SysTick_IRQn 1 */
+}
+
+/******************************************************************************/
+/* STM32F1xx Peripheral Interrupt Handlers */
+/* Add here the Interrupt Handlers for the used peripherals. */
+/* For the available peripheral interrupt handler names, */
+/* please refer to the startup file (startup_stm32f1xx.s). */
+/******************************************************************************/
+
+/**
+ * @brief This function handles DMA1 channel1 global interrupt.
+ */
+void DMA1_Channel1_IRQHandler(void) {
+ /* USER CODE BEGIN DMA1_Channel1_IRQn 0 */
+
+ /* USER CODE END DMA1_Channel1_IRQn 0 */
+ HAL_DMA_IRQHandler(&hdma_adc1);
+ /* USER CODE BEGIN DMA1_Channel1_IRQn 1 */
+
+ /* USER CODE END DMA1_Channel1_IRQn 1 */
+}
+
+/**
+ * @brief This function handles DMA1 channel4 global interrupt.
+ */
+void DMA1_Channel2_IRQHandler(void) {
+ /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
+
+ /* USER CODE END DMA1_Channel4_IRQn 0 */
+ HAL_DMA_IRQHandler(&hdma_usart3_tx);
+ /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
+
+ /* USER CODE END DMA1_Channel4_IRQn 1 */
+}
+
+/**
+ * @brief This function handles DMA1 channel5 global interrupt.
+ */
+void DMA1_Channel3_IRQHandler(void) {
+ /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
+
+ /* USER CODE END DMA1_Channel5_IRQn 0 */
+ HAL_DMA_IRQHandler(&hdma_usart3_rx);
+ /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
+
+ /* USER CODE END DMA1_Channel5_IRQn 1 */
+}
+
+/**
+ * @brief This function handles DMA1 channel4 global interrupt.
+ */
+void DMA1_Channel4_IRQHandler(void) {
+ /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
+
+ /* USER CODE END DMA1_Channel4_IRQn 0 */
+ HAL_DMA_IRQHandler(&hdma_usart1_tx);
+ /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
+
+ /* USER CODE END DMA1_Channel4_IRQn 1 */
+}
+
+/**
+ * @brief This function handles DMA1 channel5 global interrupt.
+ */
+void DMA1_Channel5_IRQHandler(void) {
+ /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
+
+ /* USER CODE END DMA1_Channel5_IRQn 0 */
+ HAL_DMA_IRQHandler(&hdma_usart1_rx);
+ /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
+
+ /* USER CODE END DMA1_Channel5_IRQn 1 */
+}
+
+/**
+ * @brief This function handles ADC1 and ADC2 global interrupts.
+ */
+void ADC1_2_IRQHandler(void) {
+ /* USER CODE BEGIN ADC1_2_IRQn 0 */
+
+ /* USER CODE END ADC1_2_IRQn 0 */
+ HAL_ADC_IRQHandler(&hadc1);
+ HAL_ADC_IRQHandler(&hadc2);
+ /* USER CODE BEGIN ADC1_2_IRQn 1 */
+
+ /* USER CODE END ADC1_2_IRQn 1 */
+}
+
+/**
+ * @brief This function handles TIM1 update interrupt.
+ */
+void TIM1_UP_IRQHandler(void) {
+ /* USER CODE BEGIN TIM1_UP_IRQn 0 */
+
+ /* USER CODE END TIM1_UP_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim1);
+ /* USER CODE BEGIN TIM1_UP_IRQn 1 */
+
+ /* USER CODE END TIM1_UP_IRQn 1 */
+}
+
+/**
+ * @brief This function handles TIM1 trigger and commutation interrupts.
+ */
+void TIM1_TRG_COM_IRQHandler(void) {
+ /* USER CODE BEGIN TIM1_TRG_COM_IRQn 0 */
+
+ /* USER CODE END TIM1_TRG_COM_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim1);
+ /* USER CODE BEGIN TIM1_TRG_COM_IRQn 1 */
+
+ /* USER CODE END TIM1_TRG_COM_IRQn 1 */
+}
+
+/**
+ * @brief This function handles TIM1 capture compare interrupt.
+ */
+void TIM1_CC_IRQHandler(void) {
+ /* USER CODE BEGIN TIM1_CC_IRQn 0 */
+
+ /* USER CODE END TIM1_CC_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim1);
+ /* USER CODE BEGIN TIM1_CC_IRQn 1 */
+
+ /* USER CODE END TIM1_CC_IRQn 1 */
+}
+
+/**
+ * @brief This function handles TIM2 global interrupt.
+ */
+void TIM2_IRQHandler(void) {
+ /* USER CODE BEGIN TIM2_IRQn 0 */
+
+ /* USER CODE END TIM2_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim2);
+ /* USER CODE BEGIN TIM2_IRQn 1 */
+
+ /* USER CODE END TIM2_IRQn 1 */
+}
+
+void TIM3_IRQHandler(void) {
+ /* USER CODE BEGIN TIM2_IRQn 0 */
+
+ /* USER CODE END TIM2_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim3);
+ /* USER CODE BEGIN TIM2_IRQn 1 */
+
+ /* USER CODE END TIM2_IRQn 1 */
+}
+
+void TIM4_IRQHandler(void) {
+ /* USER CODE BEGIN TIM2_IRQn 0 */
+
+ /* USER CODE END TIM2_IRQn 0 */
+ HAL_TIM_IRQHandler(&htim4);
+ /* USER CODE BEGIN TIM2_IRQn 1 */
+
+ /* USER CODE END TIM2_IRQn 1 */
+}
+
+/**
+ * @brief This function handles USART1 global interrupt.
+ */
+void USART1_IRQHandler(void) {
+ /* USER CODE BEGIN USART1_IRQn 0 */
+
+ /* USER CODE END USART1_IRQn 0 */
+ HAL_UART_IRQHandler(&huart1);
+ /* USER CODE BEGIN USART1_IRQn 1 */
+
+ /* USER CODE END USART1_IRQn 1 */
+}
+
+/**
+ * @brief This function handles USART1 global interrupt.
+ */
+void USART3_IRQHandler(void) {
+ /* USER CODE BEGIN USART1_IRQn 0 */
+
+ /* USER CODE END USART1_IRQn 0 */
+ HAL_UART_IRQHandler(&huart3);
+ /* USER CODE BEGIN USART1_IRQn 1 */
+
+ /* USER CODE END USART1_IRQn 1 */
+}
+
+/**
+ * @brief This function handles EXTI line[9:5] interrupts.
+ */
+void EXTI9_5_IRQHandler(void) {
+ /* USER CODE BEGIN EXTI9_5_IRQn 0 */
+
+ /* USER CODE END EXTI9_5_IRQn 0 */
+ HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
+ /* USER CODE BEGIN EXTI9_5_IRQn 1 */
+
+ /* USER CODE END EXTI9_5_IRQn 1 */
+}
+
+/**
+ * @brief This function handles EXTI line[9:5] interrupts.
+ */
+void EXTI0_IRQHandler(void) {
+ /* USER CODE BEGIN EXTI9_5_IRQn 0 */
+
+ /* USER CODE END EXTI9_5_IRQn 0 */
+ HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
+ /* USER CODE BEGIN EXTI9_5_IRQn 1 */
+
+ /* USER CODE END EXTI9_5_IRQn 1 */
+}
+
+/**
+ * @brief This function handles EXTI line[9:5] interrupts.
+ */
+void EXTI4_IRQHandler(void) {
+ /* USER CODE BEGIN EXTI9_5_IRQn 0 */
+
+ /* USER CODE END EXTI9_5_IRQn 0 */
+ HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
+ /* USER CODE BEGIN EXTI9_5_IRQn 1 */
+
+ /* USER CODE END EXTI9_5_IRQn 1 */
+}
+
+/* USER CODE BEGIN 1 */
+
+/* USER CODE END 1 */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/Core/Src/syscalls.c b/Core/Src/syscalls.c
new file mode 100644
index 00000000..4ec95844
--- /dev/null
+++ b/Core/Src/syscalls.c
@@ -0,0 +1,159 @@
+/**
+ ******************************************************************************
+ * @file syscalls.c
+ * @author Auto-generated by STM32CubeIDE
+ * @brief STM32CubeIDE Minimal System calls file
+ *
+ * For more information about which c-functions
+ * need which of these lowlevel functions
+ * please consult the Newlib libc-manual
+ ******************************************************************************
+ * @attention
+ *
+ *
+ *
+ * This software component is licensed by ST under BSD 3-Clause license,
+ * the "License"; You may not use this file except in compliance with the
+ * License. You may obtain a copy of the License at:
+ * opensource.org/licenses/BSD-3-Clause
+ *
+ ******************************************************************************
+ */
+
+/* Includes */
+#include
+#include
+
+/**
+ * Pointer to the current high watermark of the heap usage
+ */
+static uint8_t *__sbrk_heap_end = NULL;
+
+/**
+ * @brief _sbrk() allocates memory to the newlib heap and is used by malloc
+ * and others from the C library
+ *
+ * @verbatim
+ * ############################################################################
+ * # .data # .bss # newlib heap # MSP stack #
+ * # # # # Reserved by _Min_Stack_Size #
+ * ############################################################################
+ * ^-- RAM start ^-- _end _estack, RAM end --^
+ * @endverbatim
+ *
+ * This implementation starts allocating at the '_end' linker symbol
+ * The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
+ * The implementation considers '_estack' linker symbol to be RAM end
+ * NOTE: If the MSP stack, at any point during execution, grows larger than the
+ * reserved size, please increase the '_Min_Stack_Size'.
+ *
+ * @param incr Memory size
+ * @return Pointer to allocated memory
+ */
+void *_sbrk(ptrdiff_t incr)
+{
+ extern uint8_t _end; /* Symbol defined in the linker script */
+ extern uint8_t _estack; /* Symbol defined in the linker script */
+ extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
+ const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
+ const uint8_t *max_heap = (uint8_t *)stack_limit;
+ uint8_t *prev_heap_end;
+
+ /* Initialize heap end at first call */
+ if (NULL == __sbrk_heap_end)
+ {
+ __sbrk_heap_end = &_end;
+ }
+
+ /* Protect heap from growing into the reserved MSP stack */
+ if (__sbrk_heap_end + incr > max_heap)
+ {
+ errno = ENOMEM;
+ return (void *)-1;
+ }
+
+ prev_heap_end = __sbrk_heap_end;
+ __sbrk_heap_end += incr;
+
+ return (void *)prev_heap_end;
+}
diff --git a/Core/Src/system_stm32f1xx.c b/Core/Src/system_stm32f1xx.c
new file mode 100644
index 00000000..8d159aad
--- /dev/null
+++ b/Core/Src/system_stm32f1xx.c
@@ -0,0 +1,404 @@
+/**
+ ******************************************************************************
+ * @file system_stm32f1xx.c
+ * @author MCD Application Team
+ * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
+ *
+ * 1. This file provides two functions and one global variable to be called from
+ * user application:
+ * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
+ * factors, AHB/APBx prescalers and Flash settings).
+ * This function is called at startup just after reset and
+ * before branch to main program. This call is made inside
+ * the "startup_stm32f1xx_xx.s" file.
+ *
+ * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
+ * by the user application to setup the SysTick
+ * timer or configure other parameters.
+ *
+ * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
+ * be called whenever the core clock is changed
+ * during program execution.
+ *
+ * 2. After each device reset the HSI (8 MHz) is used as system clock source.
+ * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to
+ * configure the system clock before to branch to main program.
+ *
+ * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on
+ * the product used), refer to "HSE_VALUE".
+ * When HSE is used as system clock source, directly or through PLL, and you
+ * are using different crystal you have to adapt the HSE value to your own
+ * configuration.
+ *
+ ******************************************************************************
+ * @attention
+ *
+ *
-**
-** Redistribution and use in source and binary forms, with or without modification,
-** are permitted provided that the following conditions are met:
-** 1. Redistributions of source code must retain the above copyright notice,
-** this list of conditions and the following disclaimer.
-** 2. Redistributions in binary form must reproduce the above copyright notice,
-** this list of conditions and the following disclaimer in the documentation
-** and/or other materials provided with the distribution.
-** 3. Neither the name of STMicroelectronics nor the names of its contributors
-** may be used to endorse or promote products derived from this software
-** without specific prior written permission.
-**
-** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-** AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-** DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
-** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-** SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-**
-*****************************************************************************
-*/
-
-/* Entry Point */
-ENTRY(Reset_Handler)
-
-/* Highest address of the user mode stack */
-_estack = 0x20005000; /* end of RAM */
-/* Generate a link error if heap and stack don't fit into RAM */
-_Min_Heap_Size = 0x200; /* required amount of heap */
-_Min_Stack_Size = 0x400; /* required amount of stack */
-
-/* Specify the memory areas */
-MEMORY
-{
-RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 20K
-FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 64K
-}
-
-/* Define output sections */
-SECTIONS
-{
- /* The startup code goes first into FLASH */
- .isr_vector :
- {
- . = ALIGN(4);
- KEEP(*(.isr_vector)) /* Startup code */
- . = ALIGN(4);
- } >FLASH
-
- /* The program code and other data goes into FLASH */
- .text :
- {
- . = ALIGN(4);
- *(.text) /* .text sections (code) */
- *(.text*) /* .text* sections (code) */
- *(.glue_7) /* glue arm to thumb code */
- *(.glue_7t) /* glue thumb to arm code */
- *(.eh_frame)
-
- KEEP (*(.init))
- KEEP (*(.fini))
-
- . = ALIGN(4);
- _etext = .; /* define a global symbols at end of code */
- } >FLASH
-
- /* Constant data goes into FLASH */
- .rodata :
- {
- . = ALIGN(4);
- *(.rodata) /* .rodata sections (constants, strings, etc.) */
- *(.rodata*) /* .rodata* sections (constants, strings, etc.) */
- . = ALIGN(4);
- } >FLASH
-
- .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } >FLASH
- .ARM : {
- __exidx_start = .;
- *(.ARM.exidx*)
- __exidx_end = .;
- } >FLASH
-
- .preinit_array :
- {
- PROVIDE_HIDDEN (__preinit_array_start = .);
- KEEP (*(.preinit_array*))
- PROVIDE_HIDDEN (__preinit_array_end = .);
- } >FLASH
- .init_array :
- {
- PROVIDE_HIDDEN (__init_array_start = .);
- KEEP (*(SORT(.init_array.*)))
- KEEP (*(.init_array*))
- PROVIDE_HIDDEN (__init_array_end = .);
- } >FLASH
- .fini_array :
- {
- PROVIDE_HIDDEN (__fini_array_start = .);
- KEEP (*(SORT(.fini_array.*)))
- KEEP (*(.fini_array*))
- PROVIDE_HIDDEN (__fini_array_end = .);
- } >FLASH
-
- /* used by the startup to initialize data */
- _sidata = LOADADDR(.data);
-
- /* Initialized data sections goes into RAM, load LMA copy after code */
- .data :
- {
- . = ALIGN(4);
- _sdata = .; /* create a global symbol at data start */
- *(.data) /* .data sections */
- *(.data*) /* .data* sections */
-
- . = ALIGN(4);
- _edata = .; /* define a global symbol at data end */
- } >RAM AT> FLASH
-
-
- /* Uninitialized data section */
- . = ALIGN(4);
- .bss :
- {
- /* This is used by the startup in order to initialize the .bss secion */
- _sbss = .; /* define a global symbol at bss start */
- __bss_start__ = _sbss;
- *(.bss)
- *(.bss*)
- *(COMMON)
-
- . = ALIGN(4);
- _ebss = .; /* define a global symbol at bss end */
- __bss_end__ = _ebss;
- } >RAM
-
- /* User_heap_stack section, used to check that there is enough RAM left */
- ._user_heap_stack :
- {
- . = ALIGN(8);
- PROVIDE ( end = . );
- PROVIDE ( _end = . );
- . = . + _Min_Heap_Size;
- . = . + _Min_Stack_Size;
- . = ALIGN(8);
- } >RAM
-
-
-
- /* Remove information from the standard libraries */
- /DISCARD/ :
- {
- libc.a ( * )
- libm.a ( * )
- libgcc.a ( * )
- }
-
- .ARM.attributes 0 : { *(.ARM.attributes) }
-}
-
-
+/**
+ ******************************************************************************
+ * @file LinkerScript.ld
+ * @author Auto-generated by STM32CubeIDE
+ * @brief Linker script for STM32F103C8Tx Device from STM32F1 series
+ * 64Kbytes FLASH
+ * 20Kbytes RAM
+ *
+ * Set heap size, stack size and stack location according
+ * to application requirements.
+ *
+ * Set memory bank area and size if external memory is used
+ ******************************************************************************
+ * @attention
+ *
+ *
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-/* USER CODE END Header */
-
-/* Includes ------------------------------------------------------------------*/
-#include "main.h"
-#include "stm32f1xx_it.h"
-/* Private includes ----------------------------------------------------------*/
-/* USER CODE BEGIN Includes */
-/* USER CODE END Includes */
-
-/* Private typedef -----------------------------------------------------------*/
-/* USER CODE BEGIN TD */
-
-/* USER CODE END TD */
-
-/* Private define ------------------------------------------------------------*/
-/* USER CODE BEGIN PD */
-
-/* USER CODE END PD */
-
-/* Private macro -------------------------------------------------------------*/
-/* USER CODE BEGIN PM */
-
-/* USER CODE END PM */
-
-/* Private variables ---------------------------------------------------------*/
-/* USER CODE BEGIN PV */
-
-/* USER CODE END PV */
-
-/* Private function prototypes -----------------------------------------------*/
-/* USER CODE BEGIN PFP */
-
-/* USER CODE END PFP */
-
-/* Private user code ---------------------------------------------------------*/
-/* USER CODE BEGIN 0 */
-
-/* USER CODE END 0 */
-
-/* External variables --------------------------------------------------------*/
-extern DMA_HandleTypeDef hdma_adc1;
-extern DMA_HandleTypeDef hdma_usart1_tx;
-extern DMA_HandleTypeDef hdma_usart1_rx;
-extern DMA_HandleTypeDef hdma_usart3_tx;
-extern DMA_HandleTypeDef hdma_usart3_rx;
-extern ADC_HandleTypeDef hadc1;
-extern ADC_HandleTypeDef hadc2;
-extern TIM_HandleTypeDef htim1;
-extern TIM_HandleTypeDef htim2;
-extern TIM_HandleTypeDef htim3;
-extern TIM_HandleTypeDef htim4;
-extern UART_HandleTypeDef huart1;
-extern UART_HandleTypeDef huart3;
-
-/* USER CODE BEGIN EV */
-
-/* USER CODE END EV */
-
-/******************************************************************************/
-/* Cortex-M3 Processor Interruption and Exception Handlers */
-/******************************************************************************/
-/**
- * @brief This function handles Non maskable interrupt.
- */
-void NMI_Handler(void)
-{
- /* USER CODE BEGIN NonMaskableInt_IRQn 0 */
-
- /* USER CODE END NonMaskableInt_IRQn 0 */
- /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
- while (1)
- {
- }
- /* USER CODE END NonMaskableInt_IRQn 1 */
-}
-
-/**
- * @brief This function handles Hard fault interrupt.
- */
-void HardFault_Handler(void)
-{
- /* USER CODE BEGIN HardFault_IRQn 0 */
-
- /* USER CODE END HardFault_IRQn 0 */
- while (1)
- {
- /* USER CODE BEGIN W1_HardFault_IRQn 0 */
- /* USER CODE END W1_HardFault_IRQn 0 */
- }
-}
-
-/**
- * @brief This function handles Memory management fault.
- */
-void MemManage_Handler(void)
-{
- /* USER CODE BEGIN MemoryManagement_IRQn 0 */
-
- /* USER CODE END MemoryManagement_IRQn 0 */
- while (1)
- {
- /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
- /* USER CODE END W1_MemoryManagement_IRQn 0 */
- }
-}
-
-/**
- * @brief This function handles Prefetch fault, memory access fault.
- */
-void BusFault_Handler(void)
-{
- /* USER CODE BEGIN BusFault_IRQn 0 */
-
- /* USER CODE END BusFault_IRQn 0 */
- while (1)
- {
- /* USER CODE BEGIN W1_BusFault_IRQn 0 */
- /* USER CODE END W1_BusFault_IRQn 0 */
- }
-}
-
-/**
- * @brief This function handles Undefined instruction or illegal state.
- */
-void UsageFault_Handler(void)
-{
- /* USER CODE BEGIN UsageFault_IRQn 0 */
-
- /* USER CODE END UsageFault_IRQn 0 */
- while (1)
- {
- /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
- /* USER CODE END W1_UsageFault_IRQn 0 */
- }
-}
-
-/**
- * @brief This function handles System service call via SWI instruction.
- */
-void SVC_Handler(void)
-{
- /* USER CODE BEGIN SVCall_IRQn 0 */
-
- /* USER CODE END SVCall_IRQn 0 */
- /* USER CODE BEGIN SVCall_IRQn 1 */
-
- /* USER CODE END SVCall_IRQn 1 */
-}
-
-/**
- * @brief This function handles Debug monitor.
- */
-void DebugMon_Handler(void)
-{
- /* USER CODE BEGIN DebugMonitor_IRQn 0 */
-
- /* USER CODE END DebugMonitor_IRQn 0 */
- /* USER CODE BEGIN DebugMonitor_IRQn 1 */
-
- /* USER CODE END DebugMonitor_IRQn 1 */
-}
-
-/**
- * @brief This function handles Pendable request for system service.
- */
-void PendSV_Handler(void)
-{
- /* USER CODE BEGIN PendSV_IRQn 0 */
-
- /* USER CODE END PendSV_IRQn 0 */
- /* USER CODE BEGIN PendSV_IRQn 1 */
-
- /* USER CODE END PendSV_IRQn 1 */
-}
-
-/**
- * @brief This function handles System tick timer.
- */
-void SysTick_Handler(void)
-{
- /* USER CODE BEGIN SysTick_IRQn 0 */
-
- /* USER CODE END SysTick_IRQn 0 */
- HAL_IncTick();
- /* USER CODE BEGIN SysTick_IRQn 1 */
-
- /* USER CODE END SysTick_IRQn 1 */
-}
-
-/******************************************************************************/
-/* STM32F1xx Peripheral Interrupt Handlers */
-/* Add here the Interrupt Handlers for the used peripherals. */
-/* For the available peripheral interrupt handler names, */
-/* please refer to the startup file (startup_stm32f1xx.s). */
-/******************************************************************************/
-
-/**
- * @brief This function handles DMA1 channel1 global interrupt.
- */
-void DMA1_Channel1_IRQHandler(void)
-{
- /* USER CODE BEGIN DMA1_Channel1_IRQn 0 */
-
- /* USER CODE END DMA1_Channel1_IRQn 0 */
- HAL_DMA_IRQHandler(&hdma_adc1);
- /* USER CODE BEGIN DMA1_Channel1_IRQn 1 */
-
- /* USER CODE END DMA1_Channel1_IRQn 1 */
-}
-
-/**
-* @brief This function handles DMA1 channel4 global interrupt.
-*/
-void DMA1_Channel2_IRQHandler(void)
-{
- /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
-
- /* USER CODE END DMA1_Channel4_IRQn 0 */
- HAL_DMA_IRQHandler(&hdma_usart3_tx);
- /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
-
- /* USER CODE END DMA1_Channel4_IRQn 1 */
-}
-
-/**
-* @brief This function handles DMA1 channel5 global interrupt.
-*/
-void DMA1_Channel3_IRQHandler(void)
-{
- /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
-
- /* USER CODE END DMA1_Channel5_IRQn 0 */
- HAL_DMA_IRQHandler(&hdma_usart3_rx);
- /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
-
- /* USER CODE END DMA1_Channel5_IRQn 1 */
-}
-
-/**
-* @brief This function handles DMA1 channel4 global interrupt.
-*/
-void DMA1_Channel4_IRQHandler(void)
-{
- /* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
-
- /* USER CODE END DMA1_Channel4_IRQn 0 */
- HAL_DMA_IRQHandler(&hdma_usart1_tx);
- /* USER CODE BEGIN DMA1_Channel4_IRQn 1 */
-
- /* USER CODE END DMA1_Channel4_IRQn 1 */
-}
-
-/**
-* @brief This function handles DMA1 channel5 global interrupt.
-*/
-void DMA1_Channel5_IRQHandler(void)
-{
- /* USER CODE BEGIN DMA1_Channel5_IRQn 0 */
-
- /* USER CODE END DMA1_Channel5_IRQn 0 */
- HAL_DMA_IRQHandler(&hdma_usart1_rx);
- /* USER CODE BEGIN DMA1_Channel5_IRQn 1 */
-
- /* USER CODE END DMA1_Channel5_IRQn 1 */
-}
-
-/**
- * @brief This function handles ADC1 and ADC2 global interrupts.
- */
-void ADC1_2_IRQHandler(void)
-{
- /* USER CODE BEGIN ADC1_2_IRQn 0 */
-
- /* USER CODE END ADC1_2_IRQn 0 */
- HAL_ADC_IRQHandler(&hadc1);
- HAL_ADC_IRQHandler(&hadc2);
- /* USER CODE BEGIN ADC1_2_IRQn 1 */
-
- /* USER CODE END ADC1_2_IRQn 1 */
-}
-
-/**
- * @brief This function handles TIM1 update interrupt.
- */
-void TIM1_UP_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM1_UP_IRQn 0 */
-
- /* USER CODE END TIM1_UP_IRQn 0 */
- HAL_TIM_IRQHandler(&htim1);
- /* USER CODE BEGIN TIM1_UP_IRQn 1 */
-
- /* USER CODE END TIM1_UP_IRQn 1 */
-}
-
-/**
- * @brief This function handles TIM1 trigger and commutation interrupts.
- */
-void TIM1_TRG_COM_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM1_TRG_COM_IRQn 0 */
-
- /* USER CODE END TIM1_TRG_COM_IRQn 0 */
- HAL_TIM_IRQHandler(&htim1);
- /* USER CODE BEGIN TIM1_TRG_COM_IRQn 1 */
-
- /* USER CODE END TIM1_TRG_COM_IRQn 1 */
-}
-
-/**
- * @brief This function handles TIM1 capture compare interrupt.
- */
-void TIM1_CC_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM1_CC_IRQn 0 */
-
- /* USER CODE END TIM1_CC_IRQn 0 */
- HAL_TIM_IRQHandler(&htim1);
- /* USER CODE BEGIN TIM1_CC_IRQn 1 */
-
- /* USER CODE END TIM1_CC_IRQn 1 */
-}
-
-/**
- * @brief This function handles TIM2 global interrupt.
- */
-void TIM2_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM2_IRQn 0 */
-
- /* USER CODE END TIM2_IRQn 0 */
- HAL_TIM_IRQHandler(&htim2);
- /* USER CODE BEGIN TIM2_IRQn 1 */
-
- /* USER CODE END TIM2_IRQn 1 */
-}
-
-void TIM3_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM2_IRQn 0 */
-
- /* USER CODE END TIM2_IRQn 0 */
- HAL_TIM_IRQHandler(&htim3);
- /* USER CODE BEGIN TIM2_IRQn 1 */
-
- /* USER CODE END TIM2_IRQn 1 */
-}
-
-void TIM4_IRQHandler(void)
-{
- /* USER CODE BEGIN TIM2_IRQn 0 */
-
- /* USER CODE END TIM2_IRQn 0 */
- HAL_TIM_IRQHandler(&htim4);
- /* USER CODE BEGIN TIM2_IRQn 1 */
-
- /* USER CODE END TIM2_IRQn 1 */
-}
-
-/**
-* @brief This function handles USART1 global interrupt.
-*/
-void USART1_IRQHandler(void)
-{
- /* USER CODE BEGIN USART1_IRQn 0 */
-
- /* USER CODE END USART1_IRQn 0 */
- HAL_UART_IRQHandler(&huart1);
- /* USER CODE BEGIN USART1_IRQn 1 */
-
- /* USER CODE END USART1_IRQn 1 */
-}
-
-
-/**
-* @brief This function handles USART1 global interrupt.
-*/
-void USART3_IRQHandler(void)
-{
- /* USER CODE BEGIN USART1_IRQn 0 */
-
- /* USER CODE END USART1_IRQn 0 */
- HAL_UART_IRQHandler(&huart3);
- /* USER CODE BEGIN USART1_IRQn 1 */
-
- /* USER CODE END USART1_IRQn 1 */
-}
-
-
-/**
-* @brief This function handles EXTI line[9:5] interrupts.
-*/
-void EXTI9_5_IRQHandler(void)
-{
- /* USER CODE BEGIN EXTI9_5_IRQn 0 */
-
- /* USER CODE END EXTI9_5_IRQn 0 */
- HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_5);
- /* USER CODE BEGIN EXTI9_5_IRQn 1 */
-
- /* USER CODE END EXTI9_5_IRQn 1 */
-}
-
-/**
-* @brief This function handles EXTI line[9:5] interrupts.
-*/
-void EXTI0_IRQHandler(void)
-{
- /* USER CODE BEGIN EXTI9_5_IRQn 0 */
-
- /* USER CODE END EXTI9_5_IRQn 0 */
- HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
- /* USER CODE BEGIN EXTI9_5_IRQn 1 */
-
- /* USER CODE END EXTI9_5_IRQn 1 */
-}
-
-/**
-* @brief This function handles EXTI line[9:5] interrupts.
-*/
-void EXTI4_IRQHandler(void)
-{
- /* USER CODE BEGIN EXTI9_5_IRQn 0 */
-
- /* USER CODE END EXTI9_5_IRQn 0 */
- HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_4);
- /* USER CODE BEGIN EXTI9_5_IRQn 1 */
-
- /* USER CODE END EXTI9_5_IRQn 1 */
-}
-
-
-
-/* USER CODE BEGIN 1 */
-
-/* USER CODE END 1 */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/Src/system_stm32f1xx.c b/Src/system_stm32f1xx.c
deleted file mode 100644
index 052bec62..00000000
--- a/Src/system_stm32f1xx.c
+++ /dev/null
@@ -1,408 +0,0 @@
-/**
- ******************************************************************************
- * @file system_stm32f1xx.c
- * @author MCD Application Team
- * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
- *
- * 1. This file provides two functions and one global variable to be called from
- * user application:
- * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
- * factors, AHB/APBx prescalers and Flash settings).
- * This function is called at startup just after reset and
- * before branch to main program. This call is made inside
- * the "startup_stm32f1xx_xx.s" file.
- *
- * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
- * by the user application to setup the SysTick
- * timer or configure other parameters.
- *
- * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
- * be called whenever the core clock is changed
- * during program execution.
- *
- * 2. After each device reset the HSI (8 MHz) is used as system clock source.
- * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to
- * configure the system clock before to branch to main program.
- *
- * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on
- * the product used), refer to "HSE_VALUE".
- * When HSE is used as system clock source, directly or through PLL, and you
- * are using different crystal you have to adapt the HSE value to your own
- * configuration.
- *
- ******************************************************************************
- * @attention
- *
- *
- *
- * This software component is licensed by ST under BSD 3-Clause license,
- * the "License"; You may not use this file except in compliance with the
- * License. You may obtain a copy of the License at:
- * opensource.org/licenses/BSD-3-Clause
- *
- ******************************************************************************
- */
-
-/** @addtogroup CMSIS
- * @{
- */
-
-/** @addtogroup stm32f1xx_system
- * @{
- */
-
-/** @addtogroup STM32F1xx_System_Private_Includes
- * @{
- */
-
-#include "stm32f1xx.h"
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_TypesDefinitions
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Defines
- * @{
- */
-
-#if !defined (HSE_VALUE)
- #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSE_VALUE */
-
-#if !defined (HSI_VALUE)
- #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSI_VALUE */
-
-/*!< Uncomment the following line if you need to use external SRAM */
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-/* #define DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/* Note: Following vector table addresses must be defined in line with linker
- configuration. */
-/*!< Uncomment the following line if you need to relocate the vector table
- anywhere in Flash or Sram, else the vector table is kept at the automatic
- remap of boot address selected */
-/* #define USER_VECT_TAB_ADDRESS */
-
-#if defined(USER_VECT_TAB_ADDRESS)
-/*!< Uncomment the following line if you need to relocate your vector Table
- in Sram else user remap will be done in Flash. */
-/* #define VECT_TAB_SRAM */
-#if defined(VECT_TAB_SRAM)
-#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
- This value must be a multiple of 0x200. */
-#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
- This value must be a multiple of 0x200. */
-#else
-#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
- This value must be a multiple of 0x200. */
-#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
- This value must be a multiple of 0x200. */
-#endif /* VECT_TAB_SRAM */
-#endif /* USER_VECT_TAB_ADDRESS */
-
-/******************************************************************************/
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Macros
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Variables
- * @{
- */
-
- /* This variable is updated in three ways:
- 1) by calling CMSIS function SystemCoreClockUpdate()
- 2) by calling HAL API function HAL_RCC_GetHCLKFreq()
- 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
- Note: If you use this function to configure the system clock; then there
- is no need to call the 2 first functions listed above, since SystemCoreClock
- variable is updated automatically.
- */
-uint32_t SystemCoreClock = 16000000;
-const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
-const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4};
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_FunctionPrototypes
- * @{
- */
-
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-#ifdef DATA_IN_ExtSRAM
- static void SystemInit_ExtMemCtl(void);
-#endif /* DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Functions
- * @{
- */
-
-/**
- * @brief Setup the microcontroller system
- * Initialize the Embedded Flash Interface, the PLL and update the
- * SystemCoreClock variable.
- * @note This function should be used only after reset.
- * @param None
- * @retval None
- */
-void SystemInit (void)
-{
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
- #ifdef DATA_IN_ExtSRAM
- SystemInit_ExtMemCtl();
- #endif /* DATA_IN_ExtSRAM */
-#endif
-
- /* Configure the Vector Table location -------------------------------------*/
-#if defined(USER_VECT_TAB_ADDRESS)
- SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
-#endif /* USER_VECT_TAB_ADDRESS */
-}
-
-/**
- * @brief Update SystemCoreClock variable according to Clock Register Values.
- * The SystemCoreClock variable contains the core clock (HCLK), it can
- * be used by the user application to setup the SysTick timer or configure
- * other parameters.
- *
- * @note Each time the core clock (HCLK) changes, this function must be called
- * to update SystemCoreClock variable value. Otherwise, any configuration
- * based on this variable will be incorrect.
- *
- * @note - The system frequency computed by this function is not the real
- * frequency in the chip. It is calculated based on the predefined
- * constant and the selected clock source:
- *
- * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
- *
- * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
- *
- * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
- * or HSI_VALUE(*) multiplied by the PLL factors.
- *
- * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
- * 8 MHz) but the real value may vary depending on the variations
- * in voltage and temperature.
- *
- * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
- * 8 MHz or 25 MHz, depending on the product used), user has to ensure
- * that HSE_VALUE is same as the real frequency of the crystal used.
- * Otherwise, this function may have wrong result.
- *
- * - The result of this function could be not correct when using fractional
- * value for HSE crystal.
- * @param None
- * @retval None
- */
-void SystemCoreClockUpdate (void)
-{
- uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U;
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U;
-#endif /* STM32F105xC */
-
-#if defined(STM32F100xB) || defined(STM32F100xE)
- uint32_t prediv1factor = 0U;
-#endif /* STM32F100xB or STM32F100xE */
-
- /* Get SYSCLK source -------------------------------------------------------*/
- tmp = RCC->CFGR & RCC_CFGR_SWS;
-
- switch (tmp)
- {
- case 0x00U: /* HSI used as system clock */
- SystemCoreClock = HSI_VALUE;
- break;
- case 0x04U: /* HSE used as system clock */
- SystemCoreClock = HSE_VALUE;
- break;
- case 0x08U: /* PLL used as system clock */
-
- /* Get PLL clock source and multiplication factor ----------------------*/
- pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
- pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
-
-#if !defined(STM32F105xC) && !defined(STM32F107xC)
- pllmull = ( pllmull >> 18U) + 2U;
-
- if (pllsource == 0x00U)
- {
- /* HSI oscillator clock divided by 2 selected as PLL clock entry */
- SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
- }
- else
- {
- #if defined(STM32F100xB) || defined(STM32F100xE)
- prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
- /* HSE oscillator clock selected as PREDIV1 clock entry */
- SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
- #else
- /* HSE selected as PLL clock entry */
- if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
- {/* HSE oscillator clock divided by 2 */
- SystemCoreClock = (HSE_VALUE >> 1U) * pllmull;
- }
- else
- {
- SystemCoreClock = HSE_VALUE * pllmull;
- }
- #endif
- }
-#else
- pllmull = pllmull >> 18U;
-
- if (pllmull != 0x0DU)
- {
- pllmull += 2U;
- }
- else
- { /* PLL multiplication factor = PLL input clock * 6.5 */
- pllmull = 13U / 2U;
- }
-
- if (pllsource == 0x00U)
- {
- /* HSI oscillator clock divided by 2 selected as PLL clock entry */
- SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
- }
- else
- {/* PREDIV1 selected as PLL clock entry */
-
- /* Get PREDIV1 clock source and division factor */
- prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
- prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
-
- if (prediv1source == 0U)
- {
- /* HSE oscillator clock selected as PREDIV1 clock entry */
- SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
- }
- else
- {/* PLL2 clock selected as PREDIV1 clock entry */
-
- /* Get PREDIV2 division factor and PLL2 multiplication factor */
- prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U;
- pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U;
- SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
- }
- }
-#endif /* STM32F105xC */
- break;
-
- default:
- SystemCoreClock = HSI_VALUE;
- break;
- }
-
- /* Compute HCLK clock frequency ----------------*/
- /* Get HCLK prescaler */
- tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)];
- /* HCLK clock frequency */
- SystemCoreClock >>= tmp;
-}
-
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-/**
- * @brief Setup the external memory controller. Called in startup_stm32f1xx.s
- * before jump to __main
- * @param None
- * @retval None
- */
-#ifdef DATA_IN_ExtSRAM
-/**
- * @brief Setup the external memory controller.
- * Called in startup_stm32f1xx_xx.s/.c before jump to main.
- * This function configures the external SRAM mounted on STM3210E-EVAL
- * board (STM32 High density devices). This SRAM will be used as program
- * data memory (including heap and stack).
- * @param None
- * @retval None
- */
-void SystemInit_ExtMemCtl(void)
-{
- __IO uint32_t tmpreg;
- /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is
- required, then adjust the Register Addresses */
-
- /* Enable FSMC clock */
- RCC->AHBENR = 0x00000114U;
-
- /* Delay after an RCC peripheral clock enabling */
- tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN);
-
- /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */
- RCC->APB2ENR = 0x000001E0U;
-
- /* Delay after an RCC peripheral clock enabling */
- tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN);
-
- (void)(tmpreg);
-
-/* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/
-/*---------------- SRAM Address lines configuration -------------------------*/
-/*---------------- NOE and NWE configuration --------------------------------*/
-/*---------------- NE3 configuration ----------------------------------------*/
-/*---------------- NBL0, NBL1 configuration ---------------------------------*/
-
- GPIOD->CRL = 0x44BB44BBU;
- GPIOD->CRH = 0xBBBBBBBBU;
-
- GPIOE->CRL = 0xB44444BBU;
- GPIOE->CRH = 0xBBBBBBBBU;
-
- GPIOF->CRL = 0x44BBBBBBU;
- GPIOF->CRH = 0xBBBB4444U;
-
- GPIOG->CRL = 0x44BBBBBBU;
- GPIOG->CRH = 0x444B4B44U;
-
-/*---------------- FSMC Configuration ---------------------------------------*/
-/*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/
-
- FSMC_Bank1->BTCR[4U] = 0x00001091U;
- FSMC_Bank1->BTCR[5U] = 0x00110212U;
-}
-#endif /* DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/Start ohne GUI.bat b/Start ohne GUI.bat
deleted file mode 100644
index 0b91f1ce..00000000
--- a/Start ohne GUI.bat
+++ /dev/null
@@ -1 +0,0 @@
-Start_Compiling.bat C:\Ac6\SystemWorkbench C:\Program Files (x86)\STMicroelectronics
\ No newline at end of file
diff --git a/Start_Compiling.bat b/Start_Compiling.bat
deleted file mode 100644
index 7c8eb688..00000000
--- a/Start_Compiling.bat
+++ /dev/null
@@ -1,40 +0,0 @@
-set eclipsepath=%~1
-set stmpath=%~2
-set flashoption=%~3
-
-PATH = %PATH%;%eclipsepath%\plugins\fr.ac6.mcu.externaltools.arm-none.win32_1.17.0.201812190825\tools\make;%eclipsepath%\plugins\fr.ac6.mcu.externaltools.arm-none.win32_1.17.0.201812190825\tools\compiler\bin;%stmpath%\STM32 ST-LINK Utility\ST-LINK Utility
-IF NOT exist Debug (md Debug)
-cd Debug
-make -f ..\make\Makefile clean
-
-cd..\make
-copy *.* ..\Debug
-cd ..\Debug
-md Drivers\STM32F1xx_HAL_Driver\Src
-md startup
-md src
-
-copy subdir_drivers.mk Drivers\STM32F1xx_HAL_Driver\Src\subdir.mk
-copy subdir_src.mk Src\subdir.mk
-copy subdir_startup.mk startup\subdir.mk
-IF "%flashoption%"=="STLink" (
-copy STLINK_FLASH.ld ..\STM32F103C6Tx_FLASH.ld
-copy STLINK_system_stm32f1xx.c ..\Src\system_stm32f1xx.c
-) ELSE (
-copy UART_FLASH.ld ..\STM32F103C6Tx_FLASH.ld
-copy UART_system_stm32f1xx.c ..\Src\system_stm32f1xx.c
-)
-
-make all
-IF "%flashoption%"=="STLink" (
-
-ST-LINK_CLI.exe -c SWD -P LishuiFOC_01.hex -V
-) ELSE (
-hex2lsh.jar
-lishuiFlash %~4 LishuiFOC_01.lsh
-)
-
-pause
-
-exit
-
diff --git a/WriteOptionBytes.bat b/WriteOptionBytes.bat
deleted file mode 100644
index 425303db..00000000
--- a/WriteOptionBytes.bat
+++ /dev/null
@@ -1,7 +0,0 @@
-PATH = %PATH%;%1\STM32 ST-LINK Utility\ST-LINK Utility
-
-ST-LINK_CLI.exe -OB RDP=0
-
-pause
-
-exit
\ No newline at end of file
diff --git a/experimental settings/20200119-174221MEZ.ini b/experimental settings/20200119-174221MEZ.ini
deleted file mode 100644
index ba969aaf..00000000
--- a/experimental settings/20200119-174221MEZ.ini
+++ /dev/null
@@ -1,40 +0,0 @@
-50
-2020
-2028
-256
-15LL<<8
-38LL<<8
-6LL
-40LL
-1200LL
-9LL
-323000
-329000
-344000
-368000
-380000
-0.1L
-0.01L
-1
-1
-60000
-8000
-1600
-1255
-4096
-2200
-60
-25
-1
-300
--715827882LL
-true
-false
-false
-false
-false
-true
-false
-false
-C:\GNU_ARM\eclipse
-C:\Program Files (x86)\STMicroelectronics
diff --git a/launchConfiguration (1).cfg b/launchConfiguration (1).cfg
deleted file mode 100644
index 1f666c24..00000000
--- a/launchConfiguration (1).cfg
+++ /dev/null
@@ -1,29 +0,0 @@
-# This is an LishuiFOC_01 board with a single STM32F103C6Tx chip
-#
-# Generated by System Workbench for STM32
-# Take care that such file, as generated, may be overridden without any early notice. Please have a look to debug launch configuration setup(s)
-
-source [find interface/stlink.cfg]
-
-set WORKAREASIZE 0x2800
-
-transport select "hla_swd"
-
-set CHIPNAME STM32F103C6Tx
-set BOARDNAME LishuiFOC_01
-
-# Enable debug when in low power modes
-set ENABLE_LOW_POWER 1
-
-# Stop Watchdog counters when halt
-set STOP_WATCHDOG 1
-
-# STlink Debug clock frequency
-set CLOCK_FREQ 4000
-
-# use hardware reset, connect under reset
-# connect_assert_srst needed if low power mode application running (WFI...)
-reset_config srst_only srst_nogate connect_assert_srst
-set CONNECT_UNDER_RESET 1
-
-source [find target/stm32f1x.cfg]
diff --git a/launchConfiguration.cfg b/launchConfiguration.cfg
deleted file mode 100644
index 1f666c24..00000000
--- a/launchConfiguration.cfg
+++ /dev/null
@@ -1,29 +0,0 @@
-# This is an LishuiFOC_01 board with a single STM32F103C6Tx chip
-#
-# Generated by System Workbench for STM32
-# Take care that such file, as generated, may be overridden without any early notice. Please have a look to debug launch configuration setup(s)
-
-source [find interface/stlink.cfg]
-
-set WORKAREASIZE 0x2800
-
-transport select "hla_swd"
-
-set CHIPNAME STM32F103C6Tx
-set BOARDNAME LishuiFOC_01
-
-# Enable debug when in low power modes
-set ENABLE_LOW_POWER 1
-
-# Stop Watchdog counters when halt
-set STOP_WATCHDOG 1
-
-# STlink Debug clock frequency
-set CLOCK_FREQ 4000
-
-# use hardware reset, connect under reset
-# connect_assert_srst needed if low power mode application running (WFI...)
-reset_config srst_only srst_nogate connect_assert_srst
-set CONNECT_UNDER_RESET 1
-
-source [find target/stm32f1x.cfg]
diff --git a/make/STLINK_FLASH.ld b/make/STLINK_FLASH.ld
deleted file mode 100644
index ed98c8cb..00000000
--- a/make/STLINK_FLASH.ld
+++ /dev/null
@@ -1,169 +0,0 @@
-/*
-*****************************************************************************
-**
-
-** File : LinkerScript.ld
-**
-** Abstract : Linker script for STM32F103C6Tx Device with
-** 32KByte FLASH, 10KByte RAM
-**
-** Set heap size, stack size and stack location according
-** to application requirements.
-**
-** Set memory bank area and size if external memory is used.
-**
-** Target : STMicroelectronics STM32
-**
-**
-** Distribution: The file is distributed as is, without any warranty
-** of any kind.
-**
-** (c)Copyright Ac6.
-** You may use this file as-is or modify it according to the needs of your
-** project. Distribution of this file (unmodified or modified) is not
-** permitted. Ac6 permit registered System Workbench for MCU users the
-** rights to distribute the assembled, compiled & linked contents of this
-** file as part of an application binary file, provided that it is built
-** using the System Workbench for MCU toolchain.
-**
-*****************************************************************************
-*/
-
-/* Entry Point */
-ENTRY(Reset_Handler)
-
-/* Highest address of the user mode stack */
-_estack = 0x20002800; /* end of RAM */
-/* Generate a link error if heap and stack don't fit into RAM */
-_Min_Heap_Size = 0x200; /* required amount of heap */
-_Min_Stack_Size = 0x400; /* required amount of stack */
-
-/* Specify the memory areas */
-MEMORY
-{
-RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 10K
-FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 32K
-}
-
-/* Define output sections */
-SECTIONS
-{
- /* The startup code goes first into FLASH */
- .isr_vector :
- {
- . = ALIGN(4);
- KEEP(*(.isr_vector)) /* Startup code */
- . = ALIGN(4);
- } >FLASH
-
- /* The program code and other data goes into FLASH */
- .text :
- {
- . = ALIGN(4);
- *(.text) /* .text sections (code) */
- *(.text*) /* .text* sections (code) */
- *(.glue_7) /* glue arm to thumb code */
- *(.glue_7t) /* glue thumb to arm code */
- *(.eh_frame)
-
- KEEP (*(.init))
- KEEP (*(.fini))
-
- . = ALIGN(4);
- _etext = .; /* define a global symbols at end of code */
- } >FLASH
-
- /* Constant data goes into FLASH */
- .rodata :
- {
- . = ALIGN(4);
- *(.rodata) /* .rodata sections (constants, strings, etc.) */
- *(.rodata*) /* .rodata* sections (constants, strings, etc.) */
- . = ALIGN(4);
- } >FLASH
-
- .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } >FLASH
- .ARM : {
- __exidx_start = .;
- *(.ARM.exidx*)
- __exidx_end = .;
- } >FLASH
-
- .preinit_array :
- {
- PROVIDE_HIDDEN (__preinit_array_start = .);
- KEEP (*(.preinit_array*))
- PROVIDE_HIDDEN (__preinit_array_end = .);
- } >FLASH
- .init_array :
- {
- PROVIDE_HIDDEN (__init_array_start = .);
- KEEP (*(SORT(.init_array.*)))
- KEEP (*(.init_array*))
- PROVIDE_HIDDEN (__init_array_end = .);
- } >FLASH
- .fini_array :
- {
- PROVIDE_HIDDEN (__fini_array_start = .);
- KEEP (*(SORT(.fini_array.*)))
- KEEP (*(.fini_array*))
- PROVIDE_HIDDEN (__fini_array_end = .);
- } >FLASH
-
- /* used by the startup to initialize data */
- _sidata = LOADADDR(.data);
-
- /* Initialized data sections goes into RAM, load LMA copy after code */
- .data :
- {
- . = ALIGN(4);
- _sdata = .; /* create a global symbol at data start */
- *(.data) /* .data sections */
- *(.data*) /* .data* sections */
-
- . = ALIGN(4);
- _edata = .; /* define a global symbol at data end */
- } >RAM AT> FLASH
-
-
- /* Uninitialized data section */
- . = ALIGN(4);
- .bss :
- {
- /* This is used by the startup in order to initialize the .bss secion */
- _sbss = .; /* define a global symbol at bss start */
- __bss_start__ = _sbss;
- *(.bss)
- *(.bss*)
- *(COMMON)
-
- . = ALIGN(4);
- _ebss = .; /* define a global symbol at bss end */
- __bss_end__ = _ebss;
- } >RAM
-
- /* User_heap_stack section, used to check that there is enough RAM left */
- ._user_heap_stack :
- {
- . = ALIGN(8);
- PROVIDE ( end = . );
- PROVIDE ( _end = . );
- . = . + _Min_Heap_Size;
- . = . + _Min_Stack_Size;
- . = ALIGN(8);
- } >RAM
-
-
-
- /* Remove information from the standard libraries */
- /DISCARD/ :
- {
- libc.a ( * )
- libm.a ( * )
- libgcc.a ( * )
- }
-
- .ARM.attributes 0 : { *(.ARM.attributes) }
-}
-
-
diff --git a/make/STLINK_system_stm32f1xx.c b/make/STLINK_system_stm32f1xx.c
deleted file mode 100644
index e5a3e6ab..00000000
--- a/make/STLINK_system_stm32f1xx.c
+++ /dev/null
@@ -1,448 +0,0 @@
-/**
- ******************************************************************************
- * @file system_stm32f1xx.c
- * @author MCD Application Team
- * @version V4.2.0
- * @date 31-March-2017
- * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
- *
- * 1. This file provides two functions and one global variable to be called from
- * user application:
- * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
- * factors, AHB/APBx prescalers and Flash settings).
- * This function is called at startup just after reset and
- * before branch to main program. This call is made inside
- * the "startup_stm32f1xx_xx.s" file.
- *
- * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
- * by the user application to setup the SysTick
- * timer or configure other parameters.
- *
- * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
- * be called whenever the core clock is changed
- * during program execution.
- *
- * 2. After each device reset the HSI (8 MHz) is used as system clock source.
- * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to
- * configure the system clock before to branch to main program.
- *
- * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on
- * the product used), refer to "HSE_VALUE".
- * When HSE is used as system clock source, directly or through PLL, and you
- * are using different crystal you have to adapt the HSE value to your own
- * configuration.
- *
- ******************************************************************************
- * @attention
- *
- *
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- * 1. Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * 3. Neither the name of STMicroelectronics nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- */
-
-/** @addtogroup CMSIS
- * @{
- */
-
-/** @addtogroup stm32f1xx_system
- * @{
- */
-
-/** @addtogroup STM32F1xx_System_Private_Includes
- * @{
- */
-
-#include "stm32f1xx.h"
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_TypesDefinitions
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Defines
- * @{
- */
-
-#if !defined (HSE_VALUE)
- #define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSE_VALUE */
-
-#if !defined (HSI_VALUE)
- #define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz.
- This value can be provided and adapted by the user application. */
-#endif /* HSI_VALUE */
-
-/*!< Uncomment the following line if you need to use external SRAM */
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-/* #define DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/*!< Uncomment the following line if you need to relocate your vector Table in
- Internal SRAM. */
-/* #define VECT_TAB_SRAM */
-#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
- This value must be a multiple of 0x200. */
-
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Macros
- * @{
- */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Variables
- * @{
- */
-
-/*******************************************************************************
-* Clock Definitions
-*******************************************************************************/
-#if defined(STM32F100xB) ||defined(STM32F100xE)
- uint32_t SystemCoreClock = 24000000U; /*!< System Clock Frequency (Core Clock) */
-#else /*!< HSI Selected as System Clock source */
- uint32_t SystemCoreClock = 72000000U; /*!< System Clock Frequency (Core Clock) */
-#endif
-
-const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
-const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4};
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_FunctionPrototypes
- * @{
- */
-
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-#ifdef DATA_IN_ExtSRAM
- static void SystemInit_ExtMemCtl(void);
-#endif /* DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/**
- * @}
- */
-
-/** @addtogroup STM32F1xx_System_Private_Functions
- * @{
- */
-
-/**
- * @brief Setup the microcontroller system
- * Initialize the Embedded Flash Interface, the PLL and update the
- * SystemCoreClock variable.
- * @note This function should be used only after reset.
- * @param None
- * @retval None
- */
-void SystemInit (void)
-{
- /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
- /* Set HSION bit */
- RCC->CR |= 0x00000001U;
-
- /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
-#if !defined(STM32F105xC) && !defined(STM32F107xC)
- RCC->CFGR &= 0xF8FF0000U;
-#else
- RCC->CFGR &= 0xF0FF0000U;
-#endif /* STM32F105xC */
-
- /* Reset HSEON, CSSON and PLLON bits */
- RCC->CR &= 0xFEF6FFFFU;
-
- /* Reset HSEBYP bit */
- RCC->CR &= 0xFFFBFFFFU;
-
- /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
- RCC->CFGR &= 0xFF80FFFFU;
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- /* Reset PLL2ON and PLL3ON bits */
- RCC->CR &= 0xEBFFFFFFU;
-
- /* Disable all interrupts and clear pending bits */
- RCC->CIR = 0x00FF0000U;
-
- /* Reset CFGR2 register */
- RCC->CFGR2 = 0x00000000U;
-#elif defined(STM32F100xB) || defined(STM32F100xE)
- /* Disable all interrupts and clear pending bits */
- RCC->CIR = 0x009F0000U;
-
- /* Reset CFGR2 register */
- RCC->CFGR2 = 0x00000000U;
-#else
- /* Disable all interrupts and clear pending bits */
- RCC->CIR = 0x009F0000U;
-#endif /* STM32F105xC */
-
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
- #ifdef DATA_IN_ExtSRAM
- SystemInit_ExtMemCtl();
- #endif /* DATA_IN_ExtSRAM */
-#endif
-
-#ifdef VECT_TAB_SRAM
- SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
-#else
- SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
-#endif
-}
-
-/**
- * @brief Update SystemCoreClock variable according to Clock Register Values.
- * The SystemCoreClock variable contains the core clock (HCLK), it can
- * be used by the user application to setup the SysTick timer or configure
- * other parameters.
- *
- * @note Each time the core clock (HCLK) changes, this function must be called
- * to update SystemCoreClock variable value. Otherwise, any configuration
- * based on this variable will be incorrect.
- *
- * @note - The system frequency computed by this function is not the real
- * frequency in the chip. It is calculated based on the predefined
- * constant and the selected clock source:
- *
- * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
- *
- * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
- *
- * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
- * or HSI_VALUE(*) multiplied by the PLL factors.
- *
- * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
- * 8 MHz) but the real value may vary depending on the variations
- * in voltage and temperature.
- *
- * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
- * 8 MHz or 25 MHz, depending on the product used), user has to ensure
- * that HSE_VALUE is same as the real frequency of the crystal used.
- * Otherwise, this function may have wrong result.
- *
- * - The result of this function could be not correct when using fractional
- * value for HSE crystal.
- * @param None
- * @retval None
- */
-void SystemCoreClockUpdate (void)
-{
- uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U;
-
-#if defined(STM32F105xC) || defined(STM32F107xC)
- uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U;
-#endif /* STM32F105xC */
-
-#if defined(STM32F100xB) || defined(STM32F100xE)
- uint32_t prediv1factor = 0U;
-#endif /* STM32F100xB or STM32F100xE */
-
- /* Get SYSCLK source -------------------------------------------------------*/
- tmp = RCC->CFGR & RCC_CFGR_SWS;
-
- switch (tmp)
- {
- case 0x00U: /* HSI used as system clock */
- SystemCoreClock = HSI_VALUE;
- break;
- case 0x04U: /* HSE used as system clock */
- SystemCoreClock = HSE_VALUE;
- break;
- case 0x08U: /* PLL used as system clock */
-
- /* Get PLL clock source and multiplication factor ----------------------*/
- pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
- pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
-
-#if !defined(STM32F105xC) && !defined(STM32F107xC)
- pllmull = ( pllmull >> 18U) + 2U;
-
- if (pllsource == 0x00U)
- {
- /* HSI oscillator clock divided by 2 selected as PLL clock entry */
- SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
- }
- else
- {
- #if defined(STM32F100xB) || defined(STM32F100xE)
- prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
- /* HSE oscillator clock selected as PREDIV1 clock entry */
- SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
- #else
- /* HSE selected as PLL clock entry */
- if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
- {/* HSE oscillator clock divided by 2 */
- SystemCoreClock = (HSE_VALUE >> 1U) * pllmull;
- }
- else
- {
- SystemCoreClock = HSE_VALUE * pllmull;
- }
- #endif
- }
-#else
- pllmull = pllmull >> 18U;
-
- if (pllmull != 0x0DU)
- {
- pllmull += 2U;
- }
- else
- { /* PLL multiplication factor = PLL input clock * 6.5 */
- pllmull = 13U / 2U;
- }
-
- if (pllsource == 0x00U)
- {
- /* HSI oscillator clock divided by 2 selected as PLL clock entry */
- SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
- }
- else
- {/* PREDIV1 selected as PLL clock entry */
-
- /* Get PREDIV1 clock source and division factor */
- prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
- prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
-
- if (prediv1source == 0U)
- {
- /* HSE oscillator clock selected as PREDIV1 clock entry */
- SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
- }
- else
- {/* PLL2 clock selected as PREDIV1 clock entry */
-
- /* Get PREDIV2 division factor and PLL2 multiplication factor */
- prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U;
- pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U;
- SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
- }
- }
-#endif /* STM32F105xC */
- break;
-
- default:
- SystemCoreClock = HSI_VALUE;
- break;
- }
-
- /* Compute HCLK clock frequency ----------------*/
- /* Get HCLK prescaler */
- tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)];
- /* HCLK clock frequency */
- SystemCoreClock >>= tmp;
-}
-
-#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
-/**
- * @brief Setup the external memory controller. Called in startup_stm32f1xx.s
- * before jump to __main
- * @param None
- * @retval None
- */
-#ifdef DATA_IN_ExtSRAM
-/**
- * @brief Setup the external memory controller.
- * Called in startup_stm32f1xx_xx.s/.c before jump to main.
- * This function configures the external SRAM mounted on STM3210E-EVAL
- * board (STM32 High density devices). This SRAM will be used as program
- * data memory (including heap and stack).
- * @param None
- * @retval None
- */
-void SystemInit_ExtMemCtl(void)
-{
- __IO uint32_t tmpreg;
- /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is
- required, then adjust the Register Addresses */
-
- /* Enable FSMC clock */
- RCC->AHBENR = 0x00000114U;
-
- /* Delay after an RCC peripheral clock enabling */
- tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN);
-
- /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */
- RCC->APB2ENR = 0x000001E0U;
-
- /* Delay after an RCC peripheral clock enabling */
- tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN);
-
- (void)(tmpreg);
-
-/* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/
-/*---------------- SRAM Address lines configuration -------------------------*/
-/*---------------- NOE and NWE configuration --------------------------------*/
-/*---------------- NE3 configuration ----------------------------------------*/
-/*---------------- NBL0, NBL1 configuration ---------------------------------*/
-
- GPIOD->CRL = 0x44BB44BBU;
- GPIOD->CRH = 0xBBBBBBBBU;
-
- GPIOE->CRL = 0xB44444BBU;
- GPIOE->CRH = 0xBBBBBBBBU;
-
- GPIOF->CRL = 0x44BBBBBBU;
- GPIOF->CRH = 0xBBBB4444U;
-
- GPIOG->CRL = 0x44BBBBBBU;
- GPIOG->CRH = 0x444B4B44U;
-
-/*---------------- FSMC Configuration ---------------------------------------*/
-/*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/
-
- FSMC_Bank1->BTCR[4U] = 0x00001091U;
- FSMC_Bank1->BTCR[5U] = 0x00110212U;
-}
-#endif /* DATA_IN_ExtSRAM */
-#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-
-/**
- * @}
- */
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
diff --git a/make/UART_system_stm32f1xx.c b/make/UART_system_stm32f1xx.c
deleted file mode 100644
index 07f41ba5..00000000
--- a/make/UART_system_stm32f1xx.c
+++ /dev/null
@@ -1,448 +0,0 @@
-/**
- ******************************************************************************
- * @file system_stm32f1xx.c
- * @author MCD Application Team
- * @version V4.2.0
- * @date 31-March-2017
- * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
- *
- * 1. This file provides two functions and one global variable to be called from
- * user application:
- * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
- * factors, AHB/APBx prescalers and Flash settings).
- * This function is called at startup just after reset and
- * before branch to main program. This call is made inside
- * the "startup_stm32f1xx_xx.s" file.
- *
- * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
- * by the user application to setup the SysTick
- * timer or configure other parameters.
- *
- * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
- * be called whenever the core clock is changed
- * during program execution.
- *
- * 2. After each device reset the HSI (8 MHz) is used as system clock source.
- * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to
- * configure the system clock before to branch to main program.
- *
- * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on
- * the product used), refer to "HSE_VALUE".
- * When HSE is used as system clock source, directly or through PLL, and you
- * are using different crystal you have to adapt the HSE value to your own
- * configuration.
- *
- ******************************************************************************
- * @attention
- *
- *