Skip to content

Commit 92ad19e

Browse files
author
Andrei Popescu
committed
more on readme
1 parent b1b07ca commit 92ad19e

File tree

1 file changed

+15
-2
lines changed

1 file changed

+15
-2
lines changed

README.md

Lines changed: 15 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -145,31 +145,44 @@ As discussed in Sect. 9 and App. G, we have automated the production of binding-
145145

146146
#### For the main paper
147147

148-
149-
##### Appendix A
148+
##### Section 2
150149

151150
Prop 1 --> subsumed by Prop. 2 (also generated and proved automatically by the standard inductive definition)
152151

153152
Prop 2 --> theorem `step.strong_induct` (generated and proved by `binder_inductive`) from thys/Untyped_Lambda_Calculus
154153

154+
##### Sections 3 and 4
155+
155156
Thms 4 and 5 --> just recallections of the standard result (available in the Isabelle library)
156157

157158
Thm 7 (already the strengthened version discussed in Sect. 7.3) --> theorem `strong_induct_nom` (in locale `Induct_nom`) from thys/Generic_Strong_Rule_Induction.thy.
158159

160+
##### Section 7.1
161+
159162
Prop 12 --> theorems called `trans.strong_induct` (generated and proved by `binder_inductive`) from Pi_Transition_Early.thy and Pi_Transition_Late.thy. (As explained in the paper, Prop 12 actually shows a hybrid containing a selection of the more interesting rules for the two types of transitions.)
160163

164+
##### Section 7.2
165+
161166
Prop 13 --> theorem `ty.strong_induct` (generated and proved by `binder_inductive`) from thys/POPLmark/SystemFSub.thy
162167

168+
##### Section 8.1
169+
163170
Prop 15 --> theorem `deduct.strong_induct` (generated and proved by `binder_inductive`) from thys/Infinitary_FOL/InfFOL.thy
164171

172+
##### Section 8.2
173+
165174
Counterexample 16 --> theorem `counterexample` from No_Least_Support_Counterexample.thy
166175

167176
Thm 19 --> theorem `strong_induct` (in locale `Induct`) from thys/Generic_Strong_Rule_Induction.thy.
168177

178+
##### Section 8.3
179+
169180
Prop 20 --> theorem `affine.strong_induct` (generated and proved by `binder_inductive`) from thys/Infinary_Lambda_Calculus/ILC_affine.thy
170181

171182
Prop 21 --> theorem `strong_induct_reneqv` from ILC_Renaming_Equivalence.thy
172183

184+
##### Section 8.4
185+
173186
Thm 22 --> theorem `strong_iinduct` (in locale `IInduct`) from thys/Generic_Strong_Rule_Induction.thy.
174187

175188

0 commit comments

Comments
 (0)