diff --git a/src/convnet_layers_nonlinearities.js b/src/convnet_layers_nonlinearities.js index 2123d98d..7c62352c 100644 --- a/src/convnet_layers_nonlinearities.js +++ b/src/convnet_layers_nonlinearities.js @@ -55,7 +55,7 @@ } } - // Implements Sigmoid nnonlinearity elementwise + // Implements Sigmoid nonlinearity elementwise // x -> 1/(1+e^(-x)) // so the output is between 0 and 1. var SigmoidLayer = function(opt) { @@ -109,7 +109,7 @@ } } - // Implements Maxout nnonlinearity that computes + // Implements Maxout nonlinearity that computes // x -> max(x) // where x is a vector of size group_size. Ideally of course, // the input size should be exactly divisible by group_size @@ -230,7 +230,7 @@ var y = Math.exp(2 * x); return (y - 1) / (y + 1); } - // Implements Tanh nnonlinearity elementwise + // Implements Tanh nonlinearity elementwise // x -> tanh(x) // so the output is between -1 and 1. var TanhLayer = function(opt) {