2626import numpy as np
2727
2828from larray .core .axis import Axis , AxisCollection
29- from larray .core .array import LArray , aslarray
29+ from larray .core .array import Array , aslarray
3030from larray .core .array import raw_broadcastable
3131import larray as la
3232
3737def generic_random (np_func , args , min_axes , meta ):
3838 args , res_axes = raw_broadcastable (args , min_axes = min_axes )
3939 res_data = np_func (* args , size = res_axes .shape )
40- return LArray (res_data , res_axes , meta = meta )
40+ return Array (res_data , res_axes , meta = meta )
4141
4242
4343# We choose to place the axes argument in place of the numpy size argument, instead of having axes as the first
@@ -70,7 +70,7 @@ def randint(low, high=None, axes=None, dtype='l', meta=None):
7070
7171 Returns
7272 -------
73- LArray
73+ Array
7474
7575 Examples
7676 --------
@@ -100,7 +100,7 @@ def randint(low, high=None, axes=None, dtype='l', meta=None):
100100 # to do that, uncommenting the following code should be enough:
101101 # return generic_random(np.random.randint, (low, high), axes, meta)
102102 axes = AxisCollection (axes )
103- return LArray (np .random .randint (low , high , axes .shape , dtype ), axes , meta = meta )
103+ return Array (np .random .randint (low , high , axes .shape , dtype ), axes , meta = meta )
104104
105105
106106def normal (loc = 0.0 , scale = 1.0 , axes = None , meta = None ):
@@ -127,7 +127,7 @@ def normal(loc=0.0, scale=1.0, axes=None, meta=None):
127127
128128 Returns
129129 -------
130- LArray or scalar
130+ Array or scalar
131131 Drawn samples from the parameterized normal distribution.
132132
133133 Notes
@@ -238,7 +238,7 @@ def uniform(low=0.0, high=1.0, axes=None, meta=None):
238238
239239 Returns
240240 -------
241- LArray or scalar
241+ Array or scalar
242242 Drawn samples from the parameterized uniform distribution.
243243
244244 See Also
@@ -330,7 +330,7 @@ def permutation(x, axis=0):
330330
331331 Returns
332332 -------
333- LArray
333+ Array
334334 Permuted sequence or array range.
335335
336336 Examples
@@ -357,7 +357,7 @@ def permutation(x, axis=0):
357357 a2 7 8 6
358358 """
359359 if isinstance (x , (int , np .integer )):
360- return LArray (np .random .permutation (x ))
360+ return Array (np .random .permutation (x ))
361361 else :
362362 x = aslarray (x )
363363 axis = x .axes [axis ]
@@ -375,15 +375,15 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
375375 Values to choose from.
376376 If an array, a random sample is generated from its elements.
377377 If an int n, the random sample is generated as if choices was la.sequence(n)
378- If p is a 1-D LArray , choices are taken from its axis.
378+ If p is a 1-D Array , choices are taken from its axis.
379379 axes : int, tuple of int, str, Axis or tuple/list/AxisCollection of Axis, optional
380380 Axes (or shape) of the resulting array. If ``axes`` is None (the default), a single value is returned.
381381 Otherwise, if the resulting axes have a shape of, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn.
382382 replace : boolean, optional
383383 Whether the sample is with or without replacement.
384384 p : array-like, optional
385385 The probabilities associated with each entry in choices.
386- If p is a 1-D LArray , choices are taken from its axis labels. If p is an N-D LArray , each cell represents the
386+ If p is a 1-D Array , choices are taken from its axis labels. If p is an N-D Array , each cell represents the
387387 probability that the combination of labels will occur.
388388 If not given the sample assumes a uniform distribution over all entries in choices.
389389 meta : list of pairs or dict or OrderedDict or Metadata, optional
@@ -392,7 +392,7 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
392392
393393 Returns
394394 -------
395- LArray or scalar
395+ Array or scalar
396396 The generated random samples with given ``axes`` (or shape).
397397
398398 Raises
@@ -426,9 +426,9 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
426426 a0 15 10 10
427427 a1 10 5 10
428428
429- Same as above with labels and probabilities given as a one dimensional LArray
429+ Same as above with labels and probabilities given as a one dimensional Array
430430
431- >>> proba = LArray ([0.3, 0.5, 0.2], Axis([5, 10, 15], 'outcome')) # doctest: +SKIP
431+ >>> proba = Array ([0.3, 0.5, 0.2], Axis([5, 10, 15], 'outcome')) # doctest: +SKIP
432432 >>> proba # doctest: +SKIP
433433 outcome 5 10 15
434434 0.3 0.5 0.2
@@ -452,7 +452,7 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
452452
453453 Using an N-dimensional array as probabilities:
454454
455- >>> proba = LArray ([[0.15, 0.25, 0.10],
455+ >>> proba = Array ([[0.15, 0.25, 0.10],
456456 ... [0.20, 0.10, 0.20]], 'a=a0,a1;b=b0..b2') # doctest: +SKIP
457457 >>> proba # doctest: +SKIP
458458 a\b b0 b1 b2
@@ -468,9 +468,9 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
468468 d5 a0 b1
469469 """
470470 axes = AxisCollection (axes )
471- if isinstance (p , LArray ):
471+ if isinstance (p , Array ):
472472 if choices is not None :
473- raise ValueError ("choices argument cannot be used when p argument is an LArray " )
473+ raise ValueError ("choices argument cannot be used when p argument is an Array " )
474474
475475 if p .ndim > 1 :
476476 flat_p = p .data .reshape (- 1 )
@@ -480,5 +480,5 @@ def choice(choices=None, axes=None, replace=True, p=None, meta=None):
480480 choices = p .axes [0 ].labels
481481 p = p .data
482482 if choices is None :
483- raise ValueError ("choices argument must be provided unless p is an LArray " )
484- return LArray (np .random .choice (choices , axes .shape , replace , p ), axes , meta = meta )
483+ raise ValueError ("choices argument must be provided unless p is an Array " )
484+ return Array (np .random .choice (choices , axes .shape , replace , p ), axes , meta = meta )
0 commit comments