1
+ #!/usr/bin/env python3
2
+ """Fake training script to test Euler workflows."""
3
+
4
+ import argparse
5
+ import time
6
+ import os
7
+ import json
8
+ import random
9
+ import numpy as np
10
+
11
+ def print_gpu_info ():
12
+ """Print GPU information if available."""
13
+ try :
14
+ import torch
15
+ if torch .cuda .is_available ():
16
+ print (f"PyTorch CUDA available: True" )
17
+ print (f"GPU count: { torch .cuda .device_count ()} " )
18
+ print (f"GPU name: { torch .cuda .get_device_name (0 )} " )
19
+ print (f"GPU memory: { torch .cuda .get_device_properties (0 ).total_memory / 1e9 :.1f} GB" )
20
+ else :
21
+ print ("No GPU detected, using CPU" )
22
+ except ImportError :
23
+ print ("PyTorch not installed, skipping GPU check" )
24
+
25
+ def simulate_epoch (epoch , total_epochs , batch_size , lr ):
26
+ """Simulate one training epoch."""
27
+ # Fake metrics that improve over time
28
+ base_loss = 2.5
29
+ loss = base_loss * (0.95 ** epoch ) + random .uniform (- 0.1 , 0.1 )
30
+
31
+ base_acc = 0.1
32
+ acc = min (0.95 , base_acc + (0.85 * epoch / total_epochs ) + random .uniform (- 0.05 , 0.05 ))
33
+
34
+ # Simulate training time
35
+ time .sleep (2 ) # Pretend each epoch takes 2 seconds
36
+
37
+ return loss , acc
38
+
39
+ def save_checkpoint (output_dir , epoch , loss , acc ):
40
+ """Save a fake checkpoint."""
41
+ checkpoint_dir = os .path .join (output_dir , "checkpoints" )
42
+ os .makedirs (checkpoint_dir , exist_ok = True )
43
+
44
+ checkpoint = {
45
+ "epoch" : epoch ,
46
+ "loss" : loss ,
47
+ "accuracy" : acc ,
48
+ "model_state" : "fake_model_weights_here"
49
+ }
50
+
51
+ checkpoint_path = os .path .join (checkpoint_dir , f"checkpoint_epoch_{ epoch } .json" )
52
+ with open (checkpoint_path , 'w' ) as f :
53
+ json .dump (checkpoint , f , indent = 2 )
54
+
55
+ return checkpoint_path
56
+
57
+ def main ():
58
+ parser = argparse .ArgumentParser (description = 'Fake ML Training Script' )
59
+ parser .add_argument ('--data-dir' , type = str , required = True , help = 'Data directory' )
60
+ parser .add_argument ('--output-dir' , type = str , required = True , help = 'Output directory' )
61
+ parser .add_argument ('--epochs' , type = int , default = 10 , help = 'Number of epochs' )
62
+ parser .add_argument ('--batch-size' , type = int , default = 32 , help = 'Batch size' )
63
+ parser .add_argument ('--lr' , type = float , default = 0.001 , help = 'Learning rate' )
64
+ parser .add_argument ('--seed' , type = int , default = 42 , help = 'Random seed' )
65
+
66
+ args = parser .parse_args ()
67
+
68
+ # Set random seed
69
+ random .seed (args .seed )
70
+ np .random .seed (args .seed )
71
+
72
+ print ("=" * 60 )
73
+ print ("FAKE ML TRAINING SCRIPT" )
74
+ print ("=" * 60 )
75
+ print (f"Data directory: { args .data_dir } " )
76
+ print (f"Output directory: { args .output_dir } " )
77
+ print (f"Epochs: { args .epochs } " )
78
+ print (f"Batch size: { args .batch_size } " )
79
+ print (f"Learning rate: { args .lr } " )
80
+ print (f"Random seed: { args .seed } " )
81
+ print ("=" * 60 )
82
+
83
+ # Print GPU info
84
+ print ("\n System Information:" )
85
+ print_gpu_info ()
86
+ print ()
87
+
88
+ # Create output directory
89
+ os .makedirs (args .output_dir , exist_ok = True )
90
+
91
+ # Simulate data loading
92
+ print ("Loading dataset..." )
93
+ if os .path .exists (args .data_dir ):
94
+ print (f"✓ Found data directory: { args .data_dir } " )
95
+ else :
96
+ print (f"⚠ Data directory not found, using fake data" )
97
+ time .sleep (1 )
98
+
99
+ # Training loop
100
+ print ("\n Starting training..." )
101
+ best_loss = float ('inf' )
102
+
103
+ for epoch in range (args .epochs ):
104
+ print (f"\n Epoch { epoch + 1 } /{ args .epochs } " )
105
+ print ("-" * 40 )
106
+
107
+ # Simulate training
108
+ loss , acc = simulate_epoch (epoch , args .epochs , args .batch_size , args .lr )
109
+
110
+ print (f"Loss: { loss :.4f} " )
111
+ print (f"Accuracy: { acc :.4f} " )
112
+
113
+ # Save checkpoint every 5 epochs or if best
114
+ if (epoch + 1 ) % 5 == 0 or loss < best_loss :
115
+ checkpoint_path = save_checkpoint (args .output_dir , epoch + 1 , loss , acc )
116
+ print (f"Saved checkpoint: { checkpoint_path } " )
117
+
118
+ if loss < best_loss :
119
+ best_loss = loss
120
+ best_checkpoint = os .path .join (args .output_dir , "checkpoints" , "best_model.json" )
121
+ with open (best_checkpoint , 'w' ) as f :
122
+ json .dump ({"epoch" : epoch + 1 , "loss" : loss , "accuracy" : acc }, f )
123
+ print (f"New best model saved!" )
124
+
125
+ # Save final results
126
+ results = {
127
+ "final_epoch" : args .epochs ,
128
+ "final_loss" : loss ,
129
+ "final_accuracy" : acc ,
130
+ "best_loss" : best_loss ,
131
+ "hyperparameters" : vars (args )
132
+ }
133
+
134
+ results_path = os .path .join (args .output_dir , "training_results.json" )
135
+ with open (results_path , 'w' ) as f :
136
+ json .dump (results , f , indent = 2 )
137
+
138
+ print ("\n " + "=" * 60 )
139
+ print ("TRAINING COMPLETED!" )
140
+ print (f"Final Loss: { loss :.4f} " )
141
+ print (f"Final Accuracy: { acc :.4f} " )
142
+ print (f"Best Loss: { best_loss :.4f} " )
143
+ print (f"Results saved to: { results_path } " )
144
+ print ("=" * 60 )
145
+
146
+ if __name__ == "__main__" :
147
+ main ()
0 commit comments