diff --git a/iset-discouraged b/iset-discouraged index 9547c9b90f..f4bba8519a 100644 --- a/iset-discouraged +++ b/iset-discouraged @@ -11,6 +11,8 @@ "19.42h" is used by "19.42v". "19.9hd" is used by "bj-sbimedh". "19.9hd" is used by "sbiedh". +"2strstrg" is used by "2strstr1g". +"2strstrg" is used by "grpstrg". "4syl" is used by "bcm1k". "4syl" is used by "climuni". "4syl" is used by "f1ocnvfvrneq". @@ -119,6 +121,7 @@ "basendx" is used by "2strstr1g". "basendx" is used by "2strstrg". "basendx" is used by "basendxltdsndx". +"basendx" is used by "basendxltedgfndx". "basendx" is used by "basendxltplendx". "basendx" is used by "basendxltplusgndx". "basendx" is used by "basendxlttsetndx". @@ -170,6 +173,8 @@ "df-cnfld" is used by "mpocnfldmul". "df-div" is used by "divfnzn". "df-div" is used by "divvalap". +"df-edgf" is used by "edgfid". +"df-edgf" is used by "edgfndx". "df-ilim" is used by "dflim2". "df-inn" is used by "dfnn2". "df-iom" is used by "dfom3". @@ -182,6 +187,8 @@ "df-pnf" is used by "pnfxr". "df-tru" is used by "tru". "dvelimALT" is used by "hbsb4". +"edgfndx" is used by "basendxltedgfndx". +"edgfndx" is used by "edgfndxnn". "elirr" is used by "elirrv". "elirr" is used by "fiunsnnn". "elirr" is used by "nndcel". @@ -211,6 +218,8 @@ "fprodsplitdc" is used by "fprodm1". "fprodsplitdc" is used by "fprodsplit". "fprodsplitdc" is used by "fprodunsn". +"funop" is used by "funopdmsn". +"funopsn" is used by "funop". "hbs1" is used by "eu1". "hbs1" is used by "hbab1". "hbs1" is used by "mopick". @@ -351,6 +360,7 @@ New usage of "19.41h" is discouraged (5 uses). New usage of "19.42h" is discouraged (1 uses). New usage of "19.9hd" is discouraged (2 uses). New usage of "2logb9irrALT" is discouraged (0 uses). +New usage of "2strstrg" is discouraged (2 uses). New usage of "4syl" is discouraged (23 uses). New usage of "a1ii" is discouraged (0 uses). New usage of "a9evsep" is discouraged (1 uses). @@ -422,7 +432,7 @@ New usage of "axpre-suploc" is discouraged (0 uses). New usage of "axprecex" is discouraged (2 uses). New usage of "axresscn" is discouraged (4 uses). New usage of "axrnegex" is discouraged (0 uses). -New usage of "basendx" is discouraged (19 uses). +New usage of "basendx" is discouraged (20 uses). New usage of "baseval" is discouraged (0 uses). New usage of "bdcnulALT" is discouraged (0 uses). New usage of "bdnthALT" is discouraged (0 uses). @@ -450,6 +460,7 @@ New usage of "dcnnOLD" is discouraged (0 uses). New usage of "demoivreALT" is discouraged (0 uses). New usage of "df-cnfld" is discouraged (8 uses). New usage of "df-div" is discouraged (2 uses). +New usage of "df-edgf" is discouraged (2 uses). New usage of "df-ilim" is discouraged (1 uses). New usage of "df-inn" is discouraged (1 uses). New usage of "df-iom" is discouraged (1 uses). @@ -463,12 +474,15 @@ New usage of "difidALT" is discouraged (0 uses). New usage of "djulclALT" is discouraged (0 uses). New usage of "djurclALT" is discouraged (0 uses). New usage of "dvelimALT" is discouraged (1 uses). +New usage of "edgfndx" is discouraged (2 uses). New usage of "elirr" is discouraged (16 uses). New usage of "equsalh" is discouraged (5 uses). New usage of "eu3h" is discouraged (3 uses). New usage of "exmidfodomrlemrALT" is discouraged (0 uses). New usage of "fnexALT" is discouraged (0 uses). New usage of "fprodsplitdc" is discouraged (5 uses). +New usage of "funop" is discouraged (1 uses). +New usage of "funopsn" is discouraged (1 uses). New usage of "hbs1" is discouraged (5 uses). New usage of "homndx" is discouraged (1 uses). New usage of "idALT" is discouraged (0 uses). diff --git a/iset.mm b/iset.mm index 7a430856dc..e25362ea1d 100644 --- a/iset.mm +++ b/iset.mm @@ -38042,6 +38042,13 @@ This definition and how we use it is easiest to understand (and most UICUJUKGZEULUICUHUMUIIUIAJEZBJEZKUHUMSABCLZABJJMNOCUJUKPNUICUJQZCUKQZKULTUI UQURUIUJCUIUNUJCQUIUNUOUPUAZAJUBNRUIUKCUIUNUKCQUSABJUCNRUDCUJCUKUEUFUG $. + $( An ordered pair is equal to the ordered pair without the empty set. This + is because no ordered pair contains the empty set. (Contributed by AV, + 15-Nov-2021.) $) + opwo0id $p |- <. X , Y >. = ( <. X , Y >. \ { (/) } ) $= + ( cop c0 csn cdif cin wceq wcel 0nelop disjsn mpbir disjdif2 ax-mp eqcomi + wn ) ABCZDEZFZQQRGDHZSQHTDQIPABJQDKLQRMNO $. + ${ $d A x $. $d B x $. $d C x $. $d D x $. @@ -44564,6 +44571,14 @@ of the Cartesian product represent the top (integer) and bottom ( wcel cuni cvv crn uniexg wss cdm ssun2 dmrnssfld sstri ssexg mpan 3syl cun ) ABCADZECQDZECZAFZECZABGQEGTRHSUATAIZTPRTUBJAKLTREMNO $. + ${ + dmexd.1 $e |- ( ph -> A e. V ) $. + $( The domain of a set is a set. (Contributed by Glauco Siliprandi, + 26-Jun-2021.) $) + dmexd $p |- ( ph -> dom A e. _V ) $= + ( wcel cdm cvv dmexg syl ) ABCEBFGEDBCHI $. + $} + ${ dmex.1 $e |- A e. _V $. $( The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] @@ -47834,6 +47849,40 @@ We use their notation ("onto" under the arrow). (Contributed by NM, VNWTWJKZDEVNXTELDLZCVNWNYACLCDEBRVFPVGVHUMVIVJVKCDEVTRVL $. $} + ${ + $d x y $. $d F y $. $d G y $. + $( If the union of classes is a function, there is at most one element in + relation to an arbitrary element regarding one of these classes. + (Contributed by AV, 18-Jul-2019.) $) + fununmo $p |- ( Fun ( F u. G ) -> E* y x F y ) $= + ( cun wfun cv wbr wmo funmo wo orc brun sylibr moimi syl ) CDEZFAGZBGZQHZ + BIRSCHZBIBRQJUATBUAUARSDHZKTUAUBLRSCDMNOP $. + $} + + ${ + $d F x y $. $d G x y $. + $( If the union of classes is a function, the classes itselves are + functions. (Contributed by AV, 18-Jul-2019.) $) + fununfun $p |- ( Fun ( F u. G ) -> ( Fun F /\ Fun G ) ) $= + ( vx vy wrel wa cun funrel relun sylib cv wbr wmo fununmo alrimiv anim12i + wfun wal dffun6 sylibr simpl simpr uncom funeqi sylbi jca mpancom ) AEZBE + ZFZABGZQZAQZBQZFULUKEUJUKHABIJUJULFZUMUNUOUHCKZDKZALDMZCRZFUMUJUHULUSUHUI + UAULURCCDABNOPCDASTUOUIUPUQBLDMZCRZFUNUJUIULVAUHUIUBULUTCULBAGZQUTUKVBABU + CUDCDBANUEOPCDBSTUFUG $. + $} + + ${ + $d A x y z $. $d F x y z $. + $( A function with removed elements is still a function. (Contributed by + AV, 7-Jun-2021.) $) + fundif $p |- ( Fun F -> Fun ( F \ A ) ) $= + ( vx vy vz wrel cv wbr wa weq wi wal cdif reldif wn brdif pm2.27 ad2ant2r + wfun dffun2 syl2anb com12 alimi 2alimi anim12i 3imtr4i ) BFZCGZDGZBHZUHEG + ZBHZIZDEJZKZELZDLCLZIBAMZFZUHUIURHZUHUKURHZIZUNKZELZDLCLZIBSURSUGUSUQVEBA + NUPVDCDUOVCEVBUOUNUTUJUHUIAHOZIULUHUKAHOZIUOUNKZVAUHUIBAPUHUKBAPUJULVHVFV + GUMUNQRUAUBUCUDUECDEBTCDEURTUF $. + $} + ${ $d x y A $. $d x y B $. $( The converse singleton of an ordered pair is a function. This is @@ -52065,6 +52114,76 @@ We use their notation ("onto" under the arrow). (Contributed by NM, UDSUE $. $} + ${ + $d F x $. + $( A function is a union of singletons of ordered pairs indexed by its + domain. (Contributed by AV, 18-Sep-2020.) $) + funiun $p |- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } ) $= + ( wfun cdm cv cfv cmpt cop csn ciun wfn wceq funfn dffn5im sylbi cvv wcel + wral funfvex ralrimiva dfmptg syl eqtrd ) BCZBABDZAEZBFZGZAUEUFUGHIJZUDBU + EKBUHLBMAUEBNOUDUGPQZAUERUHUILUDUJAUEUFBSTAUEUGPUAUBUC $. + $} + + ${ + $d F a b c d $. $d X a b c d $. $d Y a b c d $. + funopsn.x $e |- X e. _V $. + funopsn.y $e |- Y e. _V $. + $( If a function is an ordered pair then it is a singleton of an ordered + pair. (Contributed by AV, 20-Sep-2020.) (Proof shortened by AV, + 15-Jul-2021.) A function is a class of ordered pairs, so the fact that + an ordered pair may sometimes be itself a function is an "accident" + depending on the specific encoding of ordered pairs as classes (in + set.mm, the Kuratowski encoding). A more meaningful statement is + ~ funsng , as ~ relsnopg is to ~ relop . (New usage is discouraged.) $) + funopsn $p |- ( ( Fun F /\ F = <. X , Y >. ) + -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) $= + ( vb vc vd cv cop wcel wex wceq wa csn cvv cpr vex sylib wfun wi mpbir2an + opm wrel funrel ad2antrr simpr simplr eleqtrrd syl2anc dfop eqeq2i biimpi + elrel adantl wo wb dfsn2 simpl funeqd mpbid funopg mp3an12i preq2d eqtrid + elop eqeq2d orbi2d adantr mpbird eqtr3d snex zfpair2 preqsn simpld simprd + oridm eqtr2d 3eqtr4a sneqd opid sneqi eqtr4di eqtrd sneq id opeq12d spcev + anbi12d ex exlimdvv mpd expcom exlimiv ax-mp ) GJZBCKZLZGMZAUAZAWRNZOZBDJ + ZPZNZAXDXDKZPZNZOZDMZUBZWTBQLZCQLZEFGBCUDUCWSXLGXCWSXKXCWSOZWQHJZIJZKZNZI + MHMZXKXOAUEZWQALXTXAYAXBWSAUFUGXOWQWRAXCWSUHZXAXBWSUIUJHIWQAUOUKXOXSXKHIX + OXSXKXOXSOZBXPPZNZAXPXPKZPZNZXKYCYDXPXQRZBYCYDYINZYIBNZYCYDYIRZBPZNYJYKOY + CWQYLYMXSWQYLNZXOXSYNXRYLWQXPXQHSZISULUMUNUPXOWQYMNZXSXOYPYPUQZYPXOYQYPWQ + BCRZNZUQZXOWSYTYBWQBCGSEFVGTXCYQYTURWSXCYPYSYPXCYMYRWQXCYMBBRYRBUSXCBCBXM + XNXCWRUAZBCNEFXCXAUUAXAXBUTXCAWRXAXBUHZVAVBBCQQVCVDVEVFZVHVIVJVKYPVRTVJVL + YDYIBXPYOVMHIVNEVOTZVPYCYJYKUUDVQVSZYCAYMPZYGXCAUUFNWSXSXCWRYMYRRZAUUFBCE + FULUUBXCUUFYMYMRUUGYMUSXCYMYRYMUUCVEVFVTUGYCUUFYDPZPYGYCYMUUHYCBYDUUEWAWA + YFUUHXPYOWBWCWDWEXJYEYHODXPYOXDXPNZXFYEXIYHUUIXEYDBXDXPWFVHUUIXHYGAUUIXGY + FUUIXDXPXDXPUUIWGZUUJWHWAVHWJWIUKWKWLWMWNWOWP $. + + $( An ordered pair is a function iff it is a singleton of an ordered pair. + (Contributed by AV, 20-Sep-2020.) A function is a class of ordered + pairs, so the fact that an ordered pair may sometimes be itself a + function is an "accident" depending on the specific encoding of ordered + pairs as classes (in set.mm, the Kuratowski encoding). A more + meaningful statement is ~ funsng , as ~ relsnopg is to ~ relop . + (New usage is discouraged.) $) + funop $p |- ( Fun <. X , Y >. + <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) $= + ( cop wfun cv csn wceq wa wex funopsn mpan2 vex funsn funeq mpbiri adantl + eqid exlimiv impbii ) ABFZGZACHZIJZUCUEUEFIZJZKZCLZUDUCUCJUJUCTUCABCDEMNU + IUDCUHUDUFUHUDUGGUEUECOZUKPUCUGQRSUAUB $. + $} + + ${ + $d A x $. $d B x $. $d G x $. $d X x $. $d Y x $. + funopdmsn.g $e |- G = <. X , Y >. $. + funopdmsn.x $e |- X e. V $. + funopdmsn.y $e |- Y e. W $. + $( The domain of a function which is an ordered pair is a singleton. + (Contributed by AV, 15-Nov-2021.) (Avoid depending on this detail.) $) + funopdmsn $p |- ( ( Fun G /\ A e. dom G /\ B e. dom G ) -> A = B ) $= + ( vx wfun cdm wcel wceq csn cop wa elexi eleq2 cv wex funeqi funop eqcomi + wi bitri eqeq1i vex dmsnop eqtrdi anbi12d elsni eqtr3 syl2an biimtrdi syl + dmeq sylbi adantl exlimiv 3impib ) CLZACMZNZBVDNZABOZVCFKUAZPZOZFGQZVHVHQ + PZOZRZKUBZVEVFRZVGUFZVCVKLVOCVKHUCFGKFDISGEJSUDUGVNVQKVMVQVJVMCVLOZVQVKCV + LCVKHUEUHVRVDVIOZVQVRVDVLMVICVLURVHVHKUIUJUKVSVPAVINZBVINZRVGVSVEVTVFWAVD + VIATVDVIBTULVTAVHOBVHOVGWAAVHUMBVHUMABVHUNUOUPUQUSUTVAUSVB $. + $} + $( If ` A ` is not in ` C ` , then the restriction of a singleton of ` <. A , B >. ` to ` C ` is null. (Contributed by Scott Fenton, 15-Apr-2011.) $) @@ -65796,6 +65915,18 @@ the first case of his notation (simple exponentiation) and subscript it encv $p |- ( A ~~ B -> ( A e. _V /\ B e. _V ) ) $= ( cen wrel wbr cvv wcel wa relen brrelex12 mpan ) CDABCEAFGBFGHIABCJK $. + ${ + $d f x y A $. $d f x y B $. $d y C $. + $( Equinumerosity relation. This variation of ~ bren does not require the + Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a + subproof of ~ bren . (Revised by BTernaryTau, 23-Sep-2024.) $) + breng $p |- ( ( A e. V /\ B e. W ) -> + ( A ~~ B <-> E. f f : A -1-1-onto-> B ) ) $= + ( vx vy cv wf1o wex cen wceq f1oeq2 exbidv f1oeq3 df-en brabg ) FHZGHZCHZ + IZCJASTIZCJABTIZCJFGABDEKRALUAUBCRASTMNSBLUBUCCSBATONFGCPQ $. + $( $j usage 'breng' avoids 'ax-un'; $) + $} + ${ $d f x y A $. $d f x y B $. $d y C $. $( Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) $) @@ -65807,6 +65938,15 @@ the first case of his notation (simple exponentiation) and subscript it KZEKZUTLZCMAVGUTLZCMVBDEABHHFVFASVHVICVFAVGUTULTVGBSVIVACVGBAUTUNTDECUMUO UP $. + $( Dominance relation. This variation of ~ brdomg does not require the + Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a + subproof of ~ brdomg . (Revised by BTernaryTau, 29-Nov-2024.) $) + brdom2g $p |- ( ( A e. V /\ B e. W ) -> + ( A ~<_ B <-> E. f f : A -1-1-> B ) ) $= + ( vx vy cv wf1 wex cdom wceq f1eq2 exbidv f1eq3 df-dom brabg ) FHZGHZCHZI + ZCJASTIZCJABTIZCJFGABDEKRALUAUBCRASTMNSBLUBUCCSBATONFGCPQ $. + $( $j usage 'brdom2g' avoids 'ax-un'; $) + $( Dominance relation. (Contributed by NM, 15-Jun-1998.) $) brdomg $p |- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) $= ( vx vy wcel cvv cdom wbr cv wf1 wex wi reldom brrelex1i a1i wceq exbidv @@ -65855,6 +65995,31 @@ the first case of his notation (simple exponentiation) and subscript it ctex $p |- ( A ~<_ _om -> A e. _V ) $= ( com cdom reldom brrelex1i ) ABCDE $. + ${ + $d f A $. $d f B $. $d f F $. + $( The domain and range of a one-to-one, onto set function are + equinumerous. This variation of ~ f1oeng does not require the Axiom of + Replacement nor the Axiom of Power Sets nor the Axiom of Union. + (Contributed by BTernaryTau, 7-Dec-2024.) $) + f1oen4g $p |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-onto-> B ) + -> A ~~ B ) $= + ( vf wcel w3a wf1o wa cen wbr cv wex f1oeq1 spcegv imp 3ad2antl1 wb breng + 3adant1 adantr mpbird ) CDHZAEHZBFHZIZABCJZKABLMZABGNZJZGOZUEUFUIUMUGUEUI + UMULUIGCDABUKCPQRSUHUJUMTZUIUFUGUNUEABGEFUAUBUCUD $. + $( $j usage 'f1oen4g' avoids 'ax-un'; $) + + $( The domain of a one-to-one set function is dominated by its codomain + when the latter is a set. This variation of ~ f1domg does not require + the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of + Union. (Contributed by BTernaryTau, 7-Dec-2024.) $) + f1dom4g $p |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-> B ) + -> A ~<_ B ) $= + ( vf wcel w3a wf1 wa cdom wbr cv wex f1eq1 spcegv imp 3ad2antl1 wb adantr + brdom2g 3adant1 mpbird ) CDHZAEHZBFHZIZABCJZKABLMZABGNZJZGOZUEUFUIUMUGUEU + IUMULUIGCDABUKCPQRSUHUJUMTZUIUFUGUNUEABGEFUBUCUAUD $. + $( $j usage 'f1dom4g' avoids 'ax-un'; $) + $} + ${ $d f A $. $d f B $. $d f F $. $( The domain and range of a one-to-one, onto function are equinumerous. @@ -66090,6 +66255,18 @@ the first case of his notation (simple exponentiation) and subscript it AQIUFUDRAKUAUBQMNOUAUBCPUAUBDPST $. $} + ${ + $d A f $. $d B f $. $d C f $. $d V f $. + $( If ` C ` is a superset of ` B ` and ` B ` dominates ` A ` , then ` C ` + also dominates ` A ` . (Contributed by BTernaryTau, 7-Dec-2024.) $) + domssr $p |- ( ( C e. V /\ B C_ C /\ A ~<_ B ) -> A ~<_ C ) $= + ( vf wcel wss cdom wbr w3a cv wf1 wex cvv wa brdomi 3ad2ant3 simp2 reldom + brrelex1i simp1 jca32 wi f1ss vex f1dom4g mp3anl1 sylan expl exlimiv sylc + ancoms ) CDFZBCGZABHIZJZABEKZLZEMZUNANFZUMOZOZACHIZUOUMUSUNABEPQUPUNUTUMU + MUNUORUOUMUTUNABHSTQUMUNUOUAUBURVBVCUCEURUNVAVCURUNOACUQLZVAVCABCUQUDVAVD + VCUQNFUTUMVDVCEUEACUQNNDUFUGULUHUIUJUK $. + $} + $( A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) $) ssdomg $p |- ( B e. V -> ( A C_ B -> A ~<_ B ) ) $= @@ -66451,6 +66628,39 @@ the first case of his notation (simple exponentiation) and subscript it UEUFUGUHUIUJUK $. $} + ${ + $d A f $. $d B f $. $d C f $. $d D f $. + en2prd.1 $e |- ( ph -> A e. V ) $. + en2prd.2 $e |- ( ph -> B e. W ) $. + en2prd.3 $e |- ( ph -> C e. X ) $. + en2prd.4 $e |- ( ph -> D e. Y ) $. + en2prd.5 $e |- ( ph -> A =/= B ) $. + en2prd.6 $e |- ( ph -> C =/= D ) $. + $( Two unordered pairs are equinumerous. (Contributed by BTernaryTau, + 23-Dec-2024.) $) + en2prd $p |- ( ph -> { A , B } ~~ { C , D } ) $= + ( vf cpr cvv wcel syl2anc cen wbr cv wex cop opexg prexg wne wa wi f1oprg + wf1o syl22anc mp2and f1oeq1 elabd wb breng mpbird ) ABCQZDEQZUAUBZUTVAPUC + ZULZPUDZAVDUTVABDUEZCEUEZQZULZPVHAVFRSZVGRSZVHRSABFSZDHSZVJJLBDFHUFTACGSZ + EISZVKKMCEGIUFTVFVGRRUGTABCUHZDEUHZVINOAVLVMVNVOVPVQUIVIUJJLKMBDCEFHGIUKU + MUNUTVAVCVHUOUPAUTRSZVARSZVBVEUQAVLVNVRJKBCFGUGTAVMVOVSLMDEHIUGTUTVAPRRUR + TUS $. + $( $j usage 'en2prd' avoids 'ax-un'; $) + $} + + ${ + $d A x y $. + $( A set that has at least 2 different members dominates ordinal 2. + (Contributed by BTernaryTau, 30-Dec-2024.) $) + rex2dom $p |- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) $= + ( wcel cv wne wrex c2o cdom wbr cvv wi cpr cen c0 c1o a1i vex syl elex wa + wss prssi df2o3 0ex 1oex 1n0 necomi en2prd eqbrtrid domssr 3expib syl2ani + id endom expd rexlimdvv imp ) CDEZAFZBFZGZBCHACHZICJKZUTCLEZVDVEMCDUAVFVC + VEABCCVFVACEVBCEUBZVCVEVGVFVAVBNZCUCZIVHJKZVEVCVAVBCUDVCIVHOKVJVCIPQNVHOU + EVCPQVAVBLLLLPLEVCUFRQLEVCUGRVALEVCASRVBLEVCBSRPQGVCQPUHUIRVCUOUJUKIVHUPT + VFVIVJVEIVHCLULUMUNUQURTUS $. + $} + ${ enpr2d.1 $e |- ( ph -> A e. C ) $. enpr2d.2 $e |- ( ph -> B e. D ) $. @@ -66465,6 +66675,23 @@ the first case of his notation (simple exponentiation) and subscript it CHUHBCUIRAIIQUJZVLVMAITUKULIIUMUNVDIVEVGUQUOBCUPIURUSUTVA $. $} + ${ + $d A f x y $. + $( A set equinumerous to ordinal 2 is a pair. (Contributed by Mario + Carneiro, 5-Jan-2016.) $) + en2 $p |- ( A ~~ 2o -> E. x E. y A = { x , y } ) $= + ( vf c2o cv wf1o cpr wceq wex cfv c1o cima wfn adantl wcel syl 0lt2o a1i + c0 cen wbr bren biimpi ccnv cdm crn cnvimarndm wfun dff1o2 simp3bi eqtrdi + wa df2o3 imaeq2d eqtr3id f1odm f1ocnv f1ofn 1lt2o fnimapr syl3anc 3eqtr3d + simpr f1ocnvdm sylancl wi preq2 eqeq2d spcegv exbidv sylsyld mpd exlimddv + preq1 ) CEUAUBZCEDFZGZCAFZBFZHZIZBJZAJZDVPVRDJCEDUCUDVPVRUMZCTVQUEZKZLWFK + ZHZIZWDWEVQUFZWFTLHZMZCWIWEWKWFVQUGZMZWMVQUHVRWOWMIVPVRWNWLWFVRWNEWLVRVQC + NWFUIWNEICEVQUJUKUNULUOOUPVRWKCIVPCEVQUQOWEWFENZTEPZLEPZWMWIIWEECWFGZWPVR + WSVPCEVQUROECWFUSQWQWERSWRWEUTSETLWFVAVBVCWEWGCPZWJCWGVTHZIZBJZWDWEVRWQWT + VPVRVDZRCETVQVEVFWEWHCPZWJXCVGWEVRWRXEXDUTCELVQVEVFXBWJBWHCVTWHIXAWICVTWH + WGVHVIVJQWCXCAWGCVSWGIZWBXBBXFWAXACVSWGVTVOVIVKVJVLVMVN $. + $} + $( A subset of a set dominated by ` _om ` is dominated by ` _om ` . (Contributed by Thierry Arnoux, 31-Jan-2017.) $) ssct $p |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) $= @@ -115865,6 +116092,108 @@ are used instead of sets because their representation is shorter (and more $} +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Proper unordered pairs and triples (sets of size 2 and 3) +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + ${ + $( Two equivalent ways to say a set has two elements. (Contributed by Jim + Kingdon, 4-Dec-2025.) $) + hash2en $p |- ( V ~~ 2o <-> ( V e. Fin /\ ( # ` V ) = 2 ) ) $= + ( c2o cen wbr cfn wcel chash cfv c2 wceq wa com 2onn nnfi ax-mp mpbiri wb + enfi sylancl hash2 hashen ibir eqtrdi simpr eqtr4di simpl mpbid impbii + jca ) ABCDZAEFZAGHZIJZKZUJUKUMUJUKBEFZBLFUOMBNOZABRPZUJULBGHZIUJULURJZUJU + KUOUSUJQZUQUPABUAZSUBTUCUIUNUSUJUNULIURUKUMUDTUEUNUKUOUTUKUMUFUPVASUGUH + $. + $} + + ${ + $d A a b $. $d B b $. $d F a b $. + hashdmpropge2.a $e |- ( ph -> A e. V ) $. + hashdmpropge2.b $e |- ( ph -> B e. W ) $. + hashdmpropge2.c $e |- ( ph -> C e. X ) $. + hashdmpropge2.d $e |- ( ph -> D e. Y ) $. + hashdmpropge2.f $e |- ( ph -> F e. Z ) $. + hashdmpropge2.n $e |- ( ph -> A =/= B ) $. + hashdmpropge2.s $e |- ( ph -> { <. A , C >. , <. B , D >. } C_ F ) $. + $( A class which contains two ordered pairs with different first components + has at least two elements. (Contributed by AV, 12-Nov-2021.) $) + hashdmprop2dom $p |- ( ph -> 2o ~<_ dom F ) $= + ( va wcel vb cdm cvv wne wrex c2o cdom wbr dmexd cpr wss cop wceq dmpropg + cv wa syl2anc dmss syl eqsstrrd wb prssg mpbird simpld simprd neeq1 neeq2 + rspc2ev syl3anc rex2dom ) AFUBZUCTSUOZUAUOZUDZUAVKUESVKUEZUFVKUGUHAFKPUIA + BVKTZCVKTZBCUDZVOAVPVQAVPVQUPZBCUJZVKUKZAVTBDULCEULUJZUBZVKADITEJTWCVTUMN + OBDCEIJUNUQAWBFUKWCVKUKRWBFURUSUTABGTCHTVSWAVALMBCVKGHVBUQVCZVDAVPVQWDVEQ + VNVRBVMUDSUABCVKVKVLBVMVFVMCBVGVHVISUAVKUCVJUQ $. + $} + + +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Functions with a domain containing at least two different elements +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + ${ + $d G a b x y $. + $( A function with a domain containing (at least) two different elements is + not an ordered pair. This theorem (which requires that + ` ( G \ { (/) } ) ` needs to be a function instead of ` G ` ) is useful + for proofs for extensible structures, see ~ structn0fun . (Contributed + by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by + AV, 15-Nov-2021.) $) + fundm2domnop0 $p |- ( ( Fun ( G \ { (/) } ) /\ 2o ~<_ dom G ) + -> -. G e. ( _V X. _V ) ) $= + ( va vb vx vy cdm cdif wfun cvv wcel wn cv wceq wrex wi wa wex eleq2d vex + com23 c2o cdom wbr c0 csn cxp 2dom elvv difeq1 funeqd opwo0id eqcomi dmeq + cop funeqi anbi12d eqid funopdmsn expcom biimtrdi biimtrid sylbid impcomd + 3expb exlimivv com12 con3d ex rexlimivv syl impcom ) UAAFZUBUCZAUDUEZGZHZ + AIIUFJZKZVMBLZCLZMZKZCVLNBVLNVPVROZBCVLUGWBWCBCVLVLVSVLJZVTVLJZPZVPWBVRWF + VPWBVROWFVPPZVQWAVQADLZELZUNZMZEQDQZWGWADEAUHWLWGWAWKWGWAODEWKVPWFWAWKVPW + JVNGZHZWFWAOZWKVOWMAWJVNUIUJWNWJHZWKWOWMWJWJWMWHWIUKULUOWKWFWPWAWKWFVSWJF + ZJZVTWQJZPZWPWAOWKWDWRWEWSWKVLWQVSAWJUMZRWKVLWQVTXARUPWPWTWAWPWRWSWAVSVTW + JIIWHWIWJUQDSESURVDUSUTTVAVBVCVEVFVAVGVHTVIVJVK $. + + $( A function with a domain containing (at least) two different elements is + not an ordered pair. (Contributed by AV, 12-Oct-2020.) (Proof + shortened by AV, 9-Jun-2021.) $) + fundm2domnop $p |- ( ( Fun G /\ 2o ~<_ dom G ) + -> -. G e. ( _V X. _V ) ) $= + ( wfun c0 csn cdif c2o cdm cdom wbr cvv cxp wn fundif fundm2domnop0 sylan + wcel ) ABACDZEBFAGHIAJJKPLQAMANO $. + $} + + ${ + $d A a b $. $d B b $. $d G a b $. + fun2dmnop.a $e |- A e. _V $. + fun2dmnop.b $e |- B e. _V $. + $( A function with a domain containing (at least) two different elements is + not an ordered pair. This stronger version of ~ fun2dmnop (with the + less restrictive requirement that ` ( G \ { (/) } ) ` needs to be a + function instead of ` G ` ) is useful for proofs for extensible + structures, see ~ structn0fun . (Contributed by AV, 21-Sep-2020.) + (Revised by AV, 7-Jun-2021.) $) + fun2dmnop0 $p |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) + -> -. G e. ( _V X. _V ) ) $= + ( va vb c0 csn cdif wfun wne cpr cdm cvv wcel cv wrex a1i sseldd wss cdom + w3a cxp wa c2o wbr wn simpl1 dmexg simpl3 prid1 prid2 neeq1 neeq2 rspc2ev + simpl2 syl3anc rex2dom syl2an2 fundm2domnop0 syl2anc pm2.01da ) CHIJKZABL + ZABMZCNZUAZUCZCOOUDZPZVIVKUEZVDUFVGUBUGZVKUHVDVEVHVKUIVKVGOPVIFQZGQZLZGVG + RFVGRZVMCVJUJVLAVGPBVGPVEVQVLVFVGAVDVEVHVKUKZAVFPVLABDULSTVLVFVGBVRBVFPVL + ABEUMSTVDVEVHVKUQVPVEAVOLFGABVGVGVNAVOUNVOBAUOUPURFGVGOUSUTCVAVBVC $. + + $( A function with a domain containing (at least) two different elements is + not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Proof + shortened by AV, 9-Jun-2021.) $) + fun2dmnop $p |- ( ( Fun G /\ A =/= B /\ { A , B } C_ dom G ) + -> -. G e. ( _V X. _V ) ) $= + ( wfun c0 csn cdif wne cpr cdm wss cvv cxp wcel fundif fun2dmnop0 syl3an1 + wn ) CFCGHZIFABJABKCLMCNNOPTUACQABCDERS $. + $} + + $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# Words over a set @@ -147598,13 +147927,27 @@ could not be used in an extensible structure (slots must be positive DUBUCUGUIUJBUGUKUIUJEUMUIGUDRDUEUF $. $} + ${ + 2strndx.g $e |- G = { <. ( Base ` ndx ) , B >. , <. N , .+ >. } $. + 2strndx.b $e |- ( Base ` ndx ) < N $. + 2strndx.n $e |- N e. NN $. + $( A constructed two-slot structure not depending on the hard-coded index + value of the base set. (Contributed by Mario Carneiro, 29-Aug-2015.) + (Revised by Jim Kingdon, 14-Dec-2025.) $) + 2strstrndx $p |- ( ( B e. V /\ .+ e. W ) + -> G Struct <. ( Base ` ndx ) , N >. ) $= + ( wcel wa cnx cbs cfv cop cpr cstr basendxnn eqid strle2g eqbrtrid ) AEJB + FJKCLMNZAODBOPUBDOQGUBDUBDEFABRUBSHIDSTUA $. + $} + ${ 2str.g $e |- G = { <. ( Base ` ndx ) , B >. , <. ( E ` ndx ) , .+ >. } $. 2str.e $e |- E = Slot N $. 2str.l $e |- 1 < N $. 2str.n $e |- N e. NN $. $( A constructed two-slot structure. (Contributed by Mario Carneiro, - 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) $) + 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.) Use ~ 2strstrndx + instead. (New usage is discouraged.) $) 2strstrg $p |- ( ( B e. V /\ .+ e. W ) -> G Struct <. 1 , N >. ) $= ( wcel wa cnx cbs cfv cop cpr c1 cstr 1nn basendx ndxarg strle2g eqbrtrid ) AFLBGLMDNOPZAQNCPZBQRSEQTHUFUGSEFGABUAUBJKCEIKUCUDUE $. @@ -189677,6 +190020,500 @@ square of the odd prime minus one divided by eight ( ` ( 2 /L P ) ` = $} +$( +############################################################################### + GRAPH THEORY +############################################################################### +$) + + +$( +#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# + Vertices and edges +#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# +$) + + +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + The edge function extractor for extensible structures +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= +$) + + $c .ef $. + + $( Extend class notation with an edge function. $) + cedgf $a class .ef $. + + $( Define the edge function (indexed edges) of a graph. (Contributed by AV, + 18-Jan-2020.) Use its index-independent form ~ edgfid instead. + (New usage is discouraged.) $) + df-edgf $a |- .ef = Slot ; 1 8 $. + + $( Utility theorem: index-independent form of ~ df-edgf . (Contributed by + AV, 16-Nov-2021.) $) + edgfid $p |- .ef = Slot ( .ef ` ndx ) $= + ( cedgf c1 c8 cdc df-edgf 1nn0 8nn decnncl ndxid ) ABCDEBCFGHI $. + + $( Index value of the ~ df-edgf slot. (Contributed by AV, 13-Oct-2024.) + (New usage is discouraged.) $) + edgfndx $p |- ( .ef ` ndx ) = ; 1 8 $= + ( cedgf c1 c8 cdc df-edgf 1nn0 8nn decnncl ndxarg ) ABCDEBCFGHI $. + + $( The index value of the edge function extractor is a positive integer. + This property should be ensured for every concrete coding because + otherwise it could not be used in an extensible structure (slots must be + positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened + by AV, 13-Oct-2024.) $) + edgfndxnn $p |- ( .ef ` ndx ) e. NN $= + ( cnx cedgf cfv c1 c8 cdc cn edgfndx 1nn0 8nn decnncl eqeltri ) ABCDEFGHDEI + JKL $. + + $( The value of the edge function extractor is the value of the corresponding + slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof + shortened by AV, 28-Oct-2024.) $) + edgfndxid $p |- ( G e. V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) ) $= + ( wcel cedgf cnx cfv edgfid id cn edgfndxnn a1i strnfvnd ) ABCZADEDFZBGMHNI + CMJKL $. + + $( The index value of the ` Base ` slot is less than the index value of the + ` .ef ` slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, + 30-Oct-2024.) $) + basendxltedgfndx $p |- ( Base ` ndx ) < ( .ef ` ndx ) $= + ( c1 cdc cnx cbs cfv cedgf clt 1nn 8nn0 1nn0 declti basendx edgfndx 3brtr4i + c8 1lt10 ) AAOBCDECFEGAOAHIJPKLMN $. + + $( The slots ` Base ` and ` .ef ` are different. (Contributed by AV, + 21-Sep-2020.) $) + basendxnedgfndx $p |- ( Base ` ndx ) =/= ( .ef ` ndx ) $= + ( cnx cbs cfv cedgf basendxnn nnrei basendxltedgfndx ltneii ) ABCZADCIEFGH + $. + + +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + Vertices and indexed edges +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= +$) + + +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Definitions and basic properties +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $c Vtx iEdg $. + + $( Extend class notation with the vertices of "graphs". $) + cvtx $a class Vtx $. + + $( Extend class notation with the indexed edges of "graphs". $) + ciedg $a class iEdg $. + + $( Define the function mapping a graph to the set of its vertices. This + definition is very general: It defines the set of vertices for any + ordered pair as its first component, and for any other class as its "base + set". It is meaningful, however, only if the ordered pair represents a + graph resp. the class is an extensible structure representing a graph. + (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) $) + df-vtx $a |- Vtx = ( g e. _V |-> if ( g e. ( _V X. _V ) , + ( 1st ` g ) , ( Base ` g ) ) ) $. + + $( Define the function mapping a graph to its indexed edges. This definition + is very general: It defines the indexed edges for any ordered pair as its + second component, and for any other class as its "edge function". It is + meaningful, however, only if the ordered pair represents a graph resp. the + class is an extensible structure (containing a slot for "edge functions") + representing a graph. (Contributed by AV, 20-Sep-2020.) $) + df-iedg $a |- iEdg = ( g e. _V |-> if ( g e. ( _V X. _V ) , + ( 2nd ` g ) , ( .ef ` g ) ) ) $. + + ${ + $d G g $. + $( The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) + (Revised by AV, 21-Sep-2020.) $) + vtxvalg $p |- ( G e. V -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , + ( 1st ` G ) , ( Base ` G ) ) ) $= + ( vg wcel cvv cxp c1st cfv cbs cif cvtx df-vtx wceq eleq1 fveq2 ifbieq12d + cv elex 1stexg wfn basfn funfvex funfni sylancr ifexd fvmptd3 ) ABDZCACQZ + EEFZDZUHGHZUHIHZJAUIDZAGHZAIHZJEKECLUHAMUJUMUKULUNUOUHAUINUHAGOUHAIOPABRZ + UGUMUNUOEEABSUGIETAEDUOEDZUAUPUQEAIAIUBUCUDUEUF $. + + $( The set of indexed edges of a graph. (Contributed by AV, + 21-Sep-2020.) $) + iedgvalg $p |- ( G e. V -> ( iEdg ` G ) = if ( G e. ( _V X. _V ) , + ( 2nd ` G ) , ( .ef ` G ) ) ) $= + ( vg wcel cvv cxp c2nd cfv cedgf ciedg df-iedg wceq eleq1 fveq2 ifbieq12d + cv cif elex 2ndexg cnx edgfid edgfndxnn ndxslid slotex ifexd fvmptd3 ) AB + DZCACPZEEFZDZUHGHZUHIHZQAUIDZAGHZAIHZQEJECKUHALUJUMUKULUNUOUHAUIMUHAGNUHA + INOABRUGUMUNUOEEABSAIBITIHUAUBUCUDUEUF $. + $} + + ${ + 1vgrex.v $e |- V = ( Vtx ` G ) $. + $( A graph with at least one vertex is a set. (Contributed by AV, + 2-Mar-2021.) $) + 1vgrex $p |- ( N e. V -> G e. _V ) $= + ( vg wcel cvtx cdm cfv wrel wfun cvv cv cxp cbs cif df-vtx funmpt2 funrel + c1st ax-mp relelfvdm mpan eleq2s elexd ) BCFAGHZAUFFZBAGIZCGJZBUHFUGGKUIE + LEMZLLNFUJTIUJOIPGEQRGSUABAGUBUCDUDUE $. + $} + + +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + The vertices and edges of a graph represented as ordered pair +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $( The set of vertices of a graph represented as an ordered pair of vertices + and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, + 21-Sep-2020.) $) + opvtxval $p |- ( G e. ( _V X. _V ) -> ( Vtx ` G ) = ( 1st ` G ) ) $= + ( cvv cxp wcel cvtx cfv c1st cbs cif vtxvalg iftrue eqtrd ) ABBCZDZAEFNAGFZ + AHFZIOAMJNOPKL $. + + $( The set of vertices of a graph represented as an ordered pair of vertices + and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) $) + opvtxfv $p |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V ) $= + ( wcel wa cop cvtx cfv c1st cvv cxp wceq opelvvg opvtxval syl op1stg eqtrd + ) BCEADEFZBAGZHIZTJIZBSTKKLEUAUBMBACDNTOPBACDQR $. + + $( The set of vertices of a graph represented as an ordered pair of vertices + and indexed edges as operation value. (Contributed by AV, + 21-Sep-2020.) $) + opvtxov $p |- ( ( V e. X /\ E e. Y ) -> ( V Vtx E ) = V ) $= + ( wcel wa cvtx co cop cfv df-ov opvtxfv eqtrid ) BCEADEFBAGHBAIGJBBAGKABCDL + M $. + + $( The set of indexed edges of a graph represented as an ordered pair of + vertices and indexed edges. (Contributed by AV, 21-Sep-2020.) $) + opiedgval $p |- ( G e. ( _V X. _V ) -> ( iEdg ` G ) = ( 2nd ` G ) ) $= + ( cvv cxp wcel ciedg cfv c2nd cedgf cif iedgvalg iftrue eqtrd ) ABBCZDZAEFN + AGFZAHFZIOAMJNOPKL $. + + $( The set of indexed edges of a graph represented as an ordered pair of + vertices and indexed edges as function value. (Contributed by AV, + 21-Sep-2020.) $) + opiedgfv $p |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , E >. ) = E ) $= + ( wcel cop ciedg cfv c2nd cvv cxp wceq opelvvg opiedgval syl op2ndg eqtrd + wa ) BCEADERZBAFZGHZTIHZASTJJKEUAUBLBACDMTNOBACDPQ $. + + $( The set of indexed edges of a graph represented as an ordered pair of + vertices and indexed edges as operation value. (Contributed by AV, + 21-Sep-2020.) $) + opiedgov $p |- ( ( V e. X /\ E e. Y ) -> ( V iEdg E ) = E ) $= + ( wcel wa ciedg co cop cfv df-ov opiedgfv eqtrid ) BCEADEFBAGHBAIGJABAGKABC + DLM $. + + ${ + opvtxfvi.v $e |- V e. _V $. + opvtxfvi.e $e |- E e. _V $. + $( The set of vertices of a graph represented as an ordered pair of + vertices and indexed edges as function value. (Contributed by AV, + 4-Mar-2021.) $) + opvtxfvi $p |- ( Vtx ` <. V , E >. ) = V $= + ( cvv wcel cop cvtx cfv wceq opvtxfv mp2an ) BEFAEFBAGHIBJCDABEEKL $. + + $( The set of indexed edges of a graph represented as an ordered pair of + vertices and indexed edges as function value. (Contributed by AV, + 4-Mar-2021.) $) + opiedgfvi $p |- ( iEdg ` <. V , E >. ) = E $= + ( cvv wcel cop ciedg cfv wceq opiedgfv mp2an ) BEFAEFBAGHIAJCDABEEKL $. + $} + + +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + The vertices and edges of a graph represented as extensible structure +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $( The set of vertices of an extensible structure with (at least) two slots. + (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, + 11-Dec-2025.) $) + funvtxdm2domval $p |- ( ( G e. V /\ Fun ( G \ { (/) } ) /\ 2o ~<_ dom G ) + -> ( Vtx ` G ) = ( Base ` G ) ) $= + ( wcel c0 csn cdif wfun c2o cdm cdom wbr w3a cvtx cfv cvv cxp c1st cbs wceq + cif vtxvalg 3ad2ant1 wa fundm2domnop0 iffalsed 3adant1 eqtrd ) ABCZADEFGZHA + IJKZLAMNZAOOPCZAQNZARNZTZUNUHUIUKUOSUJABUAUBUIUJUOUNSUHUIUJUCULUMUNAUDUEUFU + G $. + + $( The set of indexed edges of an extensible structure with (at least) two + slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, + 11-Dec-2025.) $) + funiedgdm2domval $p |- ( ( G e. V /\ Fun ( G \ { (/) } ) /\ 2o ~<_ dom G ) + -> ( iEdg ` G ) = ( .ef ` G ) ) $= + ( wcel csn cdif wfun c2o cdm cdom wbr w3a ciedg cfv cvv cxp c2nd cedgf wceq + c0 cif iedgvalg 3ad2ant1 wa fundm2domnop0 iffalsed 3adant1 eqtrd ) ABCZASDE + FZGAHIJZKALMZANNOCZAPMZAQMZTZUNUHUIUKUORUJABUAUBUIUJUOUNRUHUIUJUCULUMUNAUDU + EUFUG $. + + ${ + funvtxdm2val.a $e |- A e. _V $. + funvtxdm2val.b $e |- B e. _V $. + funvtxdm2vald.g $e |- ( ph -> G e. X ) $. + funvtxdm2vald.fun $e |- ( ph -> Fun ( G \ { (/) } ) ) $. + funvtxdm2vald.ne $e |- ( ph -> A =/= B ) $. + funvtxdm2vald.dm $e |- ( ph -> { A , B } C_ dom G ) $. + $( The set of vertices of an extensible structure with (at least) two + slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, + 11-Dec-2025.) $) + funvtxdm2vald $p |- ( ph -> ( Vtx ` G ) = ( Base ` G ) ) $= + ( cvtx cfv cvv cxp wcel c1st cbs cif wceq vtxvalg syl c0 csn cdif wne cpr + wfun cdm wss wn fun2dmnop0 syl3anc iffalsed eqtrd ) ADLMZDNNOPZDQMZDRMZSZ + USADEPUPUTTHDEUAUBAUQURUSADUCUDUEUHBCUFBCUGDUIUJUQUKIJKBCDFGULUMUNUO $. + + $( The set of indexed edges of an extensible structure with (at least) two + slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, + 12-Dec-2025.) $) + funiedgdm2vald $p |- ( ph -> ( iEdg ` G ) = ( .ef ` G ) ) $= + ( ciedg cfv cvv cxp wcel c2nd cedgf cif wceq iedgvalg syl c0 csn cdif wne + wfun cpr cdm wss wn fun2dmnop0 syl3anc iffalsed eqtrd ) ADLMZDNNOPZDQMZDR + MZSZUSADEPUPUTTHDEUAUBAUQURUSADUCUDUEUGBCUFBCUHDUIUJUQUKIJKBCDFGULUMUNUO + $. + $} + + ${ + funvtxval0.s $e |- S e. _V $. + funvtxval0d.g $e |- ( ph -> G e. V ) $. + funvtxval0d.fun $e |- ( ph -> Fun ( G \ { (/) } ) ) $. + funvtxval0d.ne $e |- ( ph -> S =/= ( Base ` ndx ) ) $. + funvtxval0d.dm $e |- ( ph -> { ( Base ` ndx ) , S } C_ dom G ) $. + $( The set of vertices of an extensible structure with a base set and (at + least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, + 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) $) + funvtxval0d $p |- ( ph -> ( Vtx ` G ) = ( Base ` G ) ) $= + ( cnx cbs cfv cn basendxnn elexi necomd funvtxdm2vald ) AJKLZBCDRMNOEFGAB + RHPIQ $. + $} + + ${ + basvtxval.s $e |- ( ph -> G Struct X ) $. + basvtxval2dom.d $e |- ( ph -> 2o ~<_ dom G ) $. + ${ + basvtxval.v $e |- ( ph -> V e. Y ) $. + basvtxval.b $e |- ( ph -> <. ( Base ` ndx ) , V >. e. G ) $. + $( The set of vertices of a graph represented as an extensible structure + with the set of vertices as base set. (Contributed by AV, + 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) $) + basvtxval2dom $p |- ( ph -> ( Vtx ` G ) = V ) $= + ( cvtx cfv cbs cvv wcel c0 csn cdif wfun wbr syl c2o cdm cdom wceq cstr + structex structn0fun funvtxdm2domval syl3anc opelstrbas eqtr4d ) ABJKZB + LKZCABMNZBOPQRZUABUBUCSULUMUDABDUESZUNFBDUFTAUPUOFBDUGTGBMUHUIABCDEFHIU + JUK $. + $} + + edgfiedgval.e $e |- ( ph -> E e. Y ) $. + edgfiedgval.f $e |- ( ph -> <. ( .ef ` ndx ) , E >. e. G ) $. + $( The set of indexed edges of a graph represented as an extensible + structure with the indexed edges in the slot for edge functions. + (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) $) + edgfiedgval2dom $p |- ( ph -> ( iEdg ` G ) = E ) $= + ( ciedg cfv cedgf cvv wcel c0 csn cdif wfun wbr syl c2o cdm cdom structex + wceq cstr structn0fun funiedgdm2domval syl3anc edgfid edgfndxnn opelstrsl + cnx ndxslid eqtr4d ) ACJKZCLKZBACMNZCOPQRZUACUBUCSUPUQUEACDUFSZURFCDUDTAU + TUSFCDUGTGCMUHUIACLBDELUMLKUJUKUNFHIULUO $. + $} + + $( The set of vertices of a graph represented as an extensible structure with + vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) + (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) $) + funvtxvalg $p |- ( ( G e. V + /\ Fun ( G \ { (/) } ) + /\ { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom G ) + -> ( Vtx ` G ) = ( Base ` G ) ) $= + ( wcel c0 csn cdif cnx cbs cfv cedgf cpr cdm wss w3a cn basendxnn edgfndxnn + wfun elexi simp1 simp2 wne basendxnedgfndx a1i simp3 funvtxdm2vald ) ABCZAD + EFRZGHIZGJIZKALMZNZUIUJABUIOPSUJOQSUGUHUKTUGUHUKUAUIUJUBULUCUDUGUHUKUEUF $. + + $( The set of indexed edges of a graph represented as an extensible structure + with vertices as base set and indexed edges. (Contributed by AV, + 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, + 12-Nov-2021.) $) + funiedgvalg $p |- ( ( G e. V + /\ Fun ( G \ { (/) } ) + /\ { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom G ) + -> ( iEdg ` G ) = ( .ef ` G ) ) $= + ( wcel c0 csn cdif cnx cbs cfv cedgf cpr cdm wss w3a cn basendxnn edgfndxnn + wfun elexi simp1 simp2 wne basendxnedgfndx a1i simp3 funiedgdm2vald ) ABCZA + DEFRZGHIZGJIZKALMZNZUIUJABUIOPSUJOQSUGUHUKTUGUHUKUAUIUJUBULUCUDUGUHUKUEUF + $. + + ${ + structvtxvallem.s $e |- S e. NN $. + structvtxvallem.b $e |- ( Base ` ndx ) < S $. + structvtxvallem.g $e |- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } $. + $( Lemma for ~ structvtxval and ~ structiedg0val . (Contributed by AV, + 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) $) + structvtxvallem2dom $p |- ( ( V e. X /\ E e. Y ) -> 2o ~<_ dom G ) $= + ( wcel wa cnx cbs cvv cn basendxnn a1i cop opexg sylancr cfv cpr eqeltrid + elexi simpl simpr prexg syl2anc wne nnrei ltneii eqimss2i hashdmprop2dom + wss ) DEJZBFJZKZLMUAZADBCNOEFNURNJUQUROPUDQAOJZUQGQUOUPUEZUOUPUFZUQCURDRZ + ABRZUBZNIUQVBNJZVCNJZVDNJUQUROJUOVEPUTURDOESTUQUSUPVFGVAABOFSTVBVCNNUGUHU + CURAUIUQURAURPUJHUKQVDCUNUQCVDIULQUM $. + + $( The set of vertices of an extensible structure with a base set and + another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by + AV, 12-Nov-2021.) $) + structvtxval $p |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` G ) = V ) $= + ( wcel wa cnx cbs cfv cop 2strstrndx structvtxvallem2dom simpl cvv cn cpr + basendxnn opexg sylancr prid1g syl eleqtrrdi basvtxval2dom ) DEJZBFJZKZCD + LMNZAOEDBCAEFIHGPABCDEFGHIQUIUJRZUKULDOZUNABOZUAZCUKUNSJZUNUPJUKULTJUIUQU + BUMULDTEUCUDUNUOSUEUFIUGUH $. + + $( The set of indexed edges of an extensible structure with a base set and + another slot not being the slot for edge functions is empty. + (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, + 12-Nov-2021.) $) + structiedg0val $p |- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) + -> ( iEdg ` G ) = (/) ) $= + ( wcel cnx cfv c0 wceq cvv cop cn sylancr 3adant3 wn cedgf wne w3a wa csn + ciedg cdif wfun c2o cdm wbr cbs basendxnn simpl opexg simpr prexg syl2anc + cdom eqeltrid 2strstrndx structn0fun structvtxvallem2dom funiedgdm2domval + cpr cstr syl syl3anc edgfndxid edgfndxnn elexi basendxnedgfndx nesymi a1i + neneq neqcomd 3ad2ant3 ioran sylanbrc elpr sylnibr dmeqi eqtrid neleqtrrd + wo dmpropg ndmfvg 3eqtrd ) DEJZBFJZAKUALZUBZUCZCUFLZCUALZWKCLZMWIWJWNWONZ + WLWIWJUDZCOJZCMUEUGUHZUICUJZUSUKWQWRCKULLZDPZABPZVEZOIWRXCOJZXDOJZXEOJWRX + BQJWIXFUMWIWJUNXBDQEUORWRAQJWJXGGWIWJUPABQFUORXCXDOOUQURUTZWRCXBAPZVFUKWT + DBCAEFIHGVACXIVBVGABCDEFGHIVCCOVDVHSWIWJWOWPNZWLWRWSXJXHCOVIVGSWMWKOJWKXA + JTWPMNWKQVJVKZWMXAXBAVEZWKWMWKXBNZWKANZWEZWKXLJWMXMTZXNTZXOTXPWMXBWKVLVMV + NWLWIXQWJWLAWKAWKVOVPVQXMXNVRVSWKXBAXKVTWAWMXAXEUJZXLCXEIWBWIWJXRXLNWLXBD + ABEFWFSWCWDWKCWGRWH $. + $} + + ${ + structgrssvtx.g $e |- ( ph -> G Struct X ) $. + structgrssvtx.v $e |- ( ph -> V e. Y ) $. + structgrssvtx.e $e |- ( ph -> E e. Z ) $. + structgrssvtx.s $e |- ( ph -> { <. ( Base ` ndx ) , V >. , + <. ( .ef ` ndx ) , E >. } C_ G ) $. + $( Lemma for ~ structgrssvtx and ~ structgrssiedg . (Contributed by AV, + 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) $) + structgrssvtxlem2dom $p |- ( ph -> 2o ~<_ dom G ) $= + ( cnx cbs cfv cedgf cn cvv wcel basendxnn a1i edgfndxnn cstr wbr structex + syl wne basendxnedgfndx hashdmprop2dom ) ALMNZLONZDBCPPFGQUIPRASTUJPRAUAT + IJACEUBUCCQRHCEUDUEUIUJUFAUGTKUH $. + + $( The set of vertices of a graph represented as an extensible structure + with vertices as base set and indexed edges. (Contributed by AV, + 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) $) + structgrssvtx $p |- ( ph -> ( Vtx ` G ) = V ) $= + ( structgrssvtxlem2dom cnx cfv cop wcel cvv cn opexg sylancr cbs cedgf wa + cpr wss wb basendxnn edgfndxnn prssg syl2anc mpbird simpld basvtxval2dom + ) ACDEFHABCDEFGHIJKLIAMUANZDOZCPZMUBNZBOZCPZAUPUSUCZUOURUDCUEZKAUOQPZURQP + ZUTVAUFAUNRPDFPVBUGIUNDRFSTAUQRPBGPVCUHJUQBRGSTUOURCQQUIUJUKULUM $. + + $( The set of indexed edges of a graph represented as an extensible + structure with vertices as base set and indexed edges. (Contributed by + AV, 14-Oct-2020.) (Proof shortened by AV, 12-Nov-2021.) $) + structgrssiedg $p |- ( ph -> ( iEdg ` G ) = E ) $= + ( structgrssvtxlem2dom cnx cfv cop wcel cvv cn opexg sylancr cbs cedgf wa + cpr wss basendxnn edgfndxnn prssg syl2anc mpbird simprd edgfiedgval2dom + wb ) ABCEGHABCDEFGHIJKLJAMUANZDOZCPZMUBNZBOZCPZAUPUSUCZUOURUDCUEZKAUOQPZU + RQPZUTVAUMAUNRPDFPVBUFIUNDRFSTAUQRPBGPVCUGJUQBRGSTUOURCQQUHUIUJUKUL $. + $} + + ${ + struct2grvtx.g $e |- G = { <. ( Base ` ndx ) , V >. , + <. ( .ef ` ndx ) , E >. } $. + $( A graph represented as an extensible structure with vertices as base set + and indexed edges is actually an extensible structure. (Contributed by + AV, 23-Nov-2020.) $) + struct2grstrg $p |- ( ( V e. X /\ E e. Y ) + -> G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >. ) $= + ( cnx cedgf cfv basendxltedgfndx edgfndxnn 2strstrndx ) CABGHIDEFJKL $. + + $( The set of vertices of a graph represented as an extensible structure + with vertices as base set and indexed edges. (Contributed by AV, + 23-Sep-2020.) $) + struct2grvtx $p |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` G ) = V ) $= + ( cnx cedgf cfv edgfndxnn basendxltedgfndx structvtxval ) GHIABCDEJKFL $. + + $( The set of indexed edges of a graph represented as an extensible + structure with vertices as base set and indexed edges. (Contributed by + AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) $) + struct2griedg $p |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = E ) $= + ( wa cnx cbs cfv cedgf cop struct2grstrg simpl simpr cpr wss eqimss2i a1i + wcel structgrssiedg ) CDTZAETZGZABCHIJZHKJZLDEABCDEFMUBUCNUBUCOUECLUFALPZ + BQUDBUGFRSUA $. + $} + + ${ + $d E g $. $d V g $. $d ph g $. + gropd.g $e |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) + -> ps ) ) $. + gropd.v $e |- ( ph -> V e. U ) $. + gropd.e $e |- ( ph -> E e. W ) $. + $( If any representation of a graph with vertices ` V ` and edges ` E ` has + a certain property ` ps ` , then the ordered pair ` <. V , E >. ` of the + set of vertices and the set of edges (which is such a representation of + a graph with vertices ` V ` and edges ` E ` ) has this property. + (Contributed by AV, 11-Oct-2020.) $) + gropd $p |- ( ph -> [. <. V , E >. / g ]. ps ) $= + ( cvv wcel cvtx cfv wceq ciedg wa wi syl2anc fveqeq2 cop wal wsbc opvtxfv + cv opexg opiedgfv jca nfcv nfv nfsbc1v nfim anbi12d sbceq1a imbi12d spcgf + syl3c ) AFEUAZKLZDUEZMNFOZUTPNEOZQZBRZDUBURMNFOZURPNEOZQZBDURUCZAFCLZEGLZ + USIJFECGUFSHAVIVJVGIJVIVJQVEVFEFCGUDEFCGUGUHSVDVGVHRDURKDURUIVGVHDVGDUJBD + URUKULUTUROZVCVGBVHVKVAVEVBVFUTURFMTUTUREPTUMBDURUNUOUPUQ $. + + $d S g $. + grstructd.s $e |- ( ph -> S e. X ) $. + grstructd.f $e |- ( ph -> Fun ( S \ { (/) } ) ) $. + grstructd2dom.d $e |- ( ph -> 2o ~<_ dom S ) $. + grstructd.b $e |- ( ph -> ( Base ` S ) = V ) $. + grstructd.e $e |- ( ph -> ( .ef ` S ) = E ) $. + $( If any representation of a graph with vertices ` V ` and edges ` E ` has + a certain property ` ps ` , then any structure with base set ` V ` and + value ` E ` in the slot for edge functions (which is such a + representation of a graph with vertices ` V ` and edges ` E ` ) has this + property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, + 9-Jun-2021.) $) + grstructd2dom $p |- ( ph -> [. S / g ]. ps ) $= + ( cvtx cfv wceq wcel cv ciedg wa wi wal wsbc cbs c0 csn cdif wfun c2o cdm + cdom wbr funvtxdm2domval syl3anc eqtrd cedgf funiedgdm2domval jca nfsbc1v + nfcv nfv nfim fveqeq2 anbi12d sbceq1a imbi12d spcgf syl3c ) ACIUAZEUBZRSG + TZVNUCSFTZUDZBUEZEUFCRSZGTZCUCSZFTZUDZBECUGZMJAVTWBAVSCUHSZGAVMCUIUJUKULZ + UMCUNUOUPZVSWETMNOCIUQURPUSAWACUTSZFAVMWFWGWAWHTMNOCIVAURQUSVBVRWCWDUEECI + ECVDWCWDEWCEVEBECVCVFVNCTZVQWCBWDWIVOVTVPWBVNCGRVGVNCFUCVGVHBECVIVJVKVL + $. + $} + + ${ + $d C g $. $d E g $. $d V g $. $d ph g $. + gropeld.g $e |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) + -> g e. C ) ) $. + gropeld.v $e |- ( ph -> V e. U ) $. + gropeld.e $e |- ( ph -> E e. W ) $. + $( If any representation of a graph with vertices ` V ` and edges ` E ` is + an element of an arbitrary class ` C ` , then the ordered pair + ` <. V , E >. ` of the set of vertices and the set of edges (which is + such a representation of a graph with vertices ` V ` and edges ` E ` ) + is an element of this class ` C ` . (Contributed by AV, + 11-Oct-2020.) $) + gropeld $p |- ( ph -> <. V , E >. e. C ) $= + ( cv wcel cop wsbc gropd sbcel1v sylib ) ADKBLZDFEMZNSBLARCDEFGHIJODSBPQ + $. + + $d S g $. + grstructeld.s $e |- ( ph -> S e. X ) $. + grstructeld.f $e |- ( ph -> Fun ( S \ { (/) } ) ) $. + grstructeld2dom.d $e |- ( ph -> 2o ~<_ dom S ) $. + grstructeld.b $e |- ( ph -> ( Base ` S ) = V ) $. + grstructeld.e $e |- ( ph -> ( .ef ` S ) = E ) $. + $( If any representation of a graph with vertices ` V ` and edges ` E ` is + an element of an arbitrary class ` C ` , then any structure with base + set ` V ` and value ` E ` in the slot for edge functions (which is such + a representation of a graph with vertices ` V ` and edges ` E ` ) is an + element of this class ` C ` . (Contributed by AV, 12-Oct-2020.) + (Revised by AV, 9-Jun-2021.) $) + grstructeld2dom $p |- ( ph -> S e. C ) $= + ( cv wcel wsbc grstructd2dom sbcel1v sylib ) AERBSZECTCBSAUDCDEFGHIJKLMNO + PQUAECBUBUC $. + $} + + $( ############################################################################### GUIDES AND MISCELLANEA @@ -191884,6 +192721,17 @@ Norman Megill (2007) section 1.1.3. Megill then states, "A number of althtmldef "/L" as " /L "; latexdef "/L" as " /_L "; +/* Graph theory */ +htmldef ".ef" as '.ef'; + althtmldef ".ef" as ".ef"; + latexdef ".ef" as "\mathrm{ef}"; +htmldef "Vtx" as 'Vtx'; + althtmldef "Vtx" as 'Vtx'; + latexdef "Vtx" as "\mathrm{Vtx}"; +htmldef "iEdg" as 'iEdg'; + althtmldef "iEdg" as 'iEdg'; + latexdef "iEdg" as "\mathrm{iEdg}"; + /* htmldef, althtmldef, latexdef for mathboxes */ /* Note the "Mathbox of" instead of "Mathbox for" to make searching easier. */ diff --git a/mmil.raw.html b/mmil.raw.html index 113928700b..bd20058da8 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -1101,6 +1101,10 @@