|
| 1 | +# ------------------------------------------------------------------------- |
| 2 | +# Copyright (c) Microsoft Corporation. All rights reserved. |
| 3 | +# Licensed under the MIT License. See License.txt in the project root for |
| 4 | +# license information. |
| 5 | +# -------------------------------------------------------------------------- |
| 6 | + |
| 7 | +import onnx |
| 8 | +import numpy as np |
| 9 | +from onnx import helper, numpy_helper, TensorProto |
| 10 | +from onnx.external_data_helper import load_external_data_for_model |
| 11 | +import argparse |
| 12 | +import os |
| 13 | + |
| 14 | +def convert_gather_to_use_lm_head_weights_helper(graph, quant_weight_name, scales_name, zero_points_name, use_zero_points, hidden_size, scale_value_type): |
| 15 | + """ |
| 16 | + Replace the embed_tokens/Gather with operations that reuse the quantized lm_head weights |
| 17 | + """ |
| 18 | + # Find the Gather node for embeddings |
| 19 | + gather_node = None |
| 20 | + for node in graph.node: |
| 21 | + if node.name == "/model/embed_tokens/Gather": |
| 22 | + gather_node = node |
| 23 | + break |
| 24 | + |
| 25 | + if gather_node is None: |
| 26 | + print("Warning: /model/embed_tokens/Gather not found, skipping weight tying optimization") |
| 27 | + return |
| 28 | + |
| 29 | + # Save the original inputs and outputs of the Gather node |
| 30 | + embedding_weights_name = gather_node.input[0] |
| 31 | + input_ids = gather_node.input[1] # This is typically the input_ids tensor |
| 32 | + original_output = gather_node.output[0] |
| 33 | + |
| 34 | + # Create new nodes to replace the Gather operation |
| 35 | + |
| 36 | + # 1. Gather the quantized weights |
| 37 | + gathered_quant_weights = "gathered_quant_weights" |
| 38 | + gather_weights_node = helper.make_node( |
| 39 | + 'Gather', |
| 40 | + inputs=[quant_weight_name, input_ids], |
| 41 | + outputs=[gathered_quant_weights], |
| 42 | + name='/model/embed_tokens/GatherQuantizedWeights', |
| 43 | + axis=0 |
| 44 | + ) |
| 45 | + |
| 46 | + # 2. Gather the scales |
| 47 | + gathered_scales_raw = "gathered_scales_raw" |
| 48 | + gather_scales_node = helper.make_node( |
| 49 | + 'Gather', |
| 50 | + inputs=[scales_name, input_ids], |
| 51 | + outputs=[gathered_scales_raw], |
| 52 | + name='/model/embed_tokens/GatherScales', |
| 53 | + axis=0 |
| 54 | + ) |
| 55 | + |
| 56 | + # Reshape the scales to add an extra dimension for broadcasting |
| 57 | + unsqueeze_scales_node = helper.make_node( |
| 58 | + 'Unsqueeze', |
| 59 | + inputs=[gathered_scales_raw, "scales_axes"], |
| 60 | + outputs=["gathered_scales"], |
| 61 | + name='/model/embed_tokens/UnsqueezeScales' |
| 62 | + ) |
| 63 | + |
| 64 | + # Create axes tensor for unsqueeze operation (adding dimension at axis 2) |
| 65 | + scales_axes = np.array([3], dtype=np.int64) |
| 66 | + scales_axes_name = "scales_axes" |
| 67 | + scales_axes_initializer = numpy_helper.from_array(scales_axes, scales_axes_name) |
| 68 | + graph.initializer.extend([scales_axes_initializer]) |
| 69 | + |
| 70 | + # Cast the quantized weights to floating point |
| 71 | + cast_weights_node = helper.make_node( |
| 72 | + 'Cast', |
| 73 | + inputs=[gathered_quant_weights], |
| 74 | + outputs=["casted_quant_weights"], |
| 75 | + name='/model/embed_tokens/CastWeights', |
| 76 | + to=scale_value_type |
| 77 | + ) |
| 78 | + |
| 79 | + # Create a constant for the zero point (128 for symmetric quantization) |
| 80 | + zero_point_const = np.array([128], dtype=np.uint8) |
| 81 | + zero_point_const_name = "zero_offset_const" |
| 82 | + zero_point_initializer = numpy_helper.from_array(zero_point_const, zero_point_const_name) |
| 83 | + graph.initializer.extend([zero_point_initializer]) |
| 84 | + |
| 85 | + # Cast the zero point to the same type as weights |
| 86 | + cast_zp_node = helper.make_node( |
| 87 | + 'Cast', |
| 88 | + inputs=[zero_point_const_name], |
| 89 | + outputs=["casted_zero_point"], |
| 90 | + name='/model/embed_tokens/CastZeroPoint', |
| 91 | + to=scale_value_type |
| 92 | + ) |
| 93 | + |
| 94 | + # Subtract zero point from casted weights |
| 95 | + sub_node = helper.make_node( |
| 96 | + 'Sub', |
| 97 | + inputs=["casted_quant_weights", "casted_zero_point"], |
| 98 | + outputs=["centered_weights"], |
| 99 | + name='/model/embed_tokens/SubtractZeroPoint' |
| 100 | + ) |
| 101 | + |
| 102 | + # Multiply by scale |
| 103 | + dequantized_output = "dequantized_embeddings" |
| 104 | + mul_node = helper.make_node( |
| 105 | + 'Mul', |
| 106 | + inputs=["centered_weights", "gathered_scales"], |
| 107 | + outputs=[dequantized_output], |
| 108 | + name='/model/embed_tokens/MultiplyByScale' |
| 109 | + ) |
| 110 | + |
| 111 | + # 4. Reshape to the final embedding shape |
| 112 | + # Get token shape |
| 113 | + shape_node = helper.make_node( |
| 114 | + 'Shape', |
| 115 | + inputs=[input_ids], |
| 116 | + outputs=["token_shape"], |
| 117 | + name='/model/embed_tokens/GetTokenShape' |
| 118 | + ) |
| 119 | + |
| 120 | + # Add constant for hidden dimension |
| 121 | + const_hidden_size = np.array([hidden_size], dtype=np.int64) |
| 122 | + const_hidden_size_name = "const_hidden_size" |
| 123 | + hidden_size_initializer = numpy_helper.from_array(const_hidden_size, const_hidden_size_name) |
| 124 | + graph.initializer.extend([hidden_size_initializer]) |
| 125 | + |
| 126 | + # Concat to get final shape |
| 127 | + concat_final_shape = helper.make_node( |
| 128 | + 'Concat', |
| 129 | + inputs=["token_shape", const_hidden_size_name], |
| 130 | + outputs=["final_shape"], |
| 131 | + name='/model/embed_tokens/ConcatFinalShape', |
| 132 | + axis=0 |
| 133 | + ) |
| 134 | + |
| 135 | + # Final reshape to get the right output shape |
| 136 | + final_reshape_node = helper.make_node( |
| 137 | + 'Reshape', |
| 138 | + inputs=[dequantized_output, "final_shape"], |
| 139 | + outputs=[original_output], |
| 140 | + name='/model/embed_tokens/FinalReshape' |
| 141 | + ) |
| 142 | + |
| 143 | + # Find and remove the original Gather node |
| 144 | + for i, node in enumerate(graph.node): |
| 145 | + if node.name == gather_node.name: |
| 146 | + del graph.node[i] |
| 147 | + break |
| 148 | + |
| 149 | + # Remove the original embedding weights from initializers |
| 150 | + for i, initializer in enumerate(graph.initializer): |
| 151 | + if initializer.name == embedding_weights_name: |
| 152 | + print(f"Removing original embedding weights: {embedding_weights_name}") |
| 153 | + del graph.initializer[i] |
| 154 | + break |
| 155 | + |
| 156 | + # Add all new nodes to the graph |
| 157 | + new_nodes = [ |
| 158 | + gather_weights_node, |
| 159 | + gather_scales_node, |
| 160 | + unsqueeze_scales_node, |
| 161 | + cast_weights_node, |
| 162 | + cast_zp_node, |
| 163 | + sub_node, |
| 164 | + mul_node, |
| 165 | + shape_node, |
| 166 | + concat_final_shape, |
| 167 | + final_reshape_node |
| 168 | + ] |
| 169 | + |
| 170 | + # Modify this part to handle asymmetric quantization if needed |
| 171 | + if use_zero_points: |
| 172 | + # Gather the zero points |
| 173 | + gathered_zero_points = "gathered_zero_points" |
| 174 | + gather_zero_points_node = helper.make_node( |
| 175 | + 'Gather', |
| 176 | + inputs=[zero_points_name, input_ids], |
| 177 | + outputs=[gathered_zero_points], |
| 178 | + name='/model/embed_tokens/GatherZeroPoints', |
| 179 | + axis=0 |
| 180 | + ) |
| 181 | + |
| 182 | + # Unsqueeze zero points for broadcasting |
| 183 | + unsqueeze_zp_node = helper.make_node( |
| 184 | + 'Unsqueeze', |
| 185 | + inputs=[gathered_zero_points, "scales_axes"], |
| 186 | + outputs=["unsqueezed_zero_points"], |
| 187 | + name='/model/embed_tokens/UnsqueezeZeroPoints' |
| 188 | + ) |
| 189 | + |
| 190 | + # Cast zero points to float |
| 191 | + cast_gathered_zp_node = helper.make_node( |
| 192 | + 'Cast', |
| 193 | + inputs=["unsqueezed_zero_points"], |
| 194 | + outputs=["casted_gathered_zero_point"], |
| 195 | + name='/model/embed_tokens/CastGatheredZeroPoint', |
| 196 | + to=scale_value_type |
| 197 | + ) |
| 198 | + |
| 199 | + # Replace the standard zero_point subtraction with the gathered one |
| 200 | + sub_node.input[1] = "casted_gathered_zero_point" |
| 201 | + |
| 202 | + # Insert the new nodes |
| 203 | + new_nodes.insert(2, gather_zero_points_node) |
| 204 | + new_nodes.insert(3, unsqueeze_zp_node) |
| 205 | + new_nodes.insert(6, cast_gathered_zp_node) |
| 206 | + |
| 207 | + graph.node.extend(new_nodes) |
| 208 | + |
| 209 | + print("Successfully tied embedding weights to quantized LM head weights using Cast+Mul operations") |
| 210 | + |
| 211 | + |
| 212 | +def get_node_attribute(node: onnx.NodeProto, attribute_name: str): |
| 213 | + for attr in node.attribute: |
| 214 | + if attr.name == attribute_name: |
| 215 | + value = onnx.helper.get_attribute_value(attr) |
| 216 | + return value |
| 217 | + return None |
| 218 | + |
| 219 | + |
| 220 | +def find_graph_input(graph, input_name): |
| 221 | + for input in graph.input: |
| 222 | + if input.name == input_name: |
| 223 | + return input |
| 224 | + return None |
| 225 | + |
| 226 | + |
| 227 | +def find_graph_output(graph, output_name): |
| 228 | + for output in graph.output: |
| 229 | + if output.name == output_name: |
| 230 | + return output |
| 231 | + return None |
| 232 | + |
| 233 | + |
| 234 | +def get_tensor_type_from_graph(graph, tensor_name: str): |
| 235 | + tensor_type_map = {obj.name: obj.type for obj in graph.value_info} |
| 236 | + |
| 237 | + if tensor_name in tensor_type_map: |
| 238 | + return tensor_type_map[tensor_name].tensor_type |
| 239 | + |
| 240 | + g_input = find_graph_input(graph, tensor_name) |
| 241 | + if g_input: |
| 242 | + return g_input.type.tensor_type |
| 243 | + |
| 244 | + g_output = find_graph_output(graph, tensor_name) |
| 245 | + if g_output: |
| 246 | + return g_output.type.tensor_type |
| 247 | + |
| 248 | + return None |
| 249 | + |
| 250 | + |
| 251 | +def convert_gather_to_use_lm_head_weights(model_path, output_path, load_external_data=True): |
| 252 | + # Load the ONNX model |
| 253 | + print(f"Loading model from {model_path}...") |
| 254 | + model_name = "model.onnx" |
| 255 | + model = onnx.load(model_path + model_name, load_external_data=False) |
| 256 | + if load_external_data: |
| 257 | + load_external_data_for_model(model, model_path) |
| 258 | + graph = model.graph |
| 259 | + |
| 260 | + # Find the MatMul node |
| 261 | + matmul_node = None |
| 262 | + for node in graph.node: |
| 263 | + if node.name.startswith("/lm_head/MatMul"): |
| 264 | + if node.op_type == "MatMulNBits": |
| 265 | + matmul_node = node |
| 266 | + break |
| 267 | + else: |
| 268 | + raise ValueError("/lm_head/MatMul node type is not MatMulNBits") |
| 269 | + |
| 270 | + if matmul_node is None: |
| 271 | + raise ValueError("/lm_head/MatMul node not found in the model") |
| 272 | + |
| 273 | + # Inputs A and scale has the same type, but scale is in external data. So we can only get the type from A here. |
| 274 | + scale_value_type = get_tensor_type_from_graph(graph, matmul_node.input[0]) |
| 275 | + if scale_value_type: |
| 276 | + scale_value_type = scale_value_type.elem_type |
| 277 | + else: |
| 278 | + raise ValueError("/lm_head/MatMul scale value type is None") |
| 279 | + |
| 280 | + hidden_size = get_node_attribute(matmul_node, "K") |
| 281 | + |
| 282 | + use_zero_points = len(matmul_node.input) > 3 |
| 283 | + |
| 284 | + # If embedding weight tying is enabled, replace the embedding Gather |
| 285 | + convert_gather_to_use_lm_head_weights_helper( |
| 286 | + graph, |
| 287 | + matmul_node.input[1], # B (quantized weights) |
| 288 | + matmul_node.input[2], # scales |
| 289 | + matmul_node.input[3] if use_zero_points else None, # zero_points |
| 290 | + use_zero_points, |
| 291 | + hidden_size, |
| 292 | + scale_value_type |
| 293 | + ) |
| 294 | + |
| 295 | + # Save the modified model |
| 296 | + print(f"Saving model to {output_path}...") |
| 297 | + data_file = os.path.basename(output_path) + model_name + ".data" |
| 298 | + onnx.save(model, output_path + model_name, save_as_external_data=True, location=data_file) |
| 299 | + |
| 300 | + print(f"Saved to {output_path} with external data in {data_file}") |
| 301 | + |
| 302 | +if __name__ == "__main__": |
| 303 | + parser = argparse.ArgumentParser(description="Tie MatMulNBits with Gather for LM head weights") |
| 304 | + parser.add_argument("--input_path", type=str, help="Path to the input ONNX model") |
| 305 | + parser.add_argument("--output_path", type=str, help="Path to save the modified ONNX model") |
| 306 | + parser.add_argument("--load_external_data", required=False, type=bool, default=True, help="Whether to load external data") |
| 307 | + args = parser.parse_args() |
| 308 | + |
| 309 | + convert_gather_to_use_lm_head_weights( |
| 310 | + args.input_path, |
| 311 | + args.output_path, |
| 312 | + args.load_external_data |
| 313 | + ) |
0 commit comments