diff --git a/Bitcoin Price Prediction.ipynb b/Bitcoin Price Prediction.ipynb
index 7831902..e2c6479 100644
--- a/Bitcoin Price Prediction.ipynb
+++ b/Bitcoin Price Prediction.ipynb
@@ -1,1918 +1,3050 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Importing Libraries"
- ]
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "bitcoin1.ipynb",
+ "provenance": [],
+ "collapsed_sections": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "accelerator": "GPU"
},
- {
- "cell_type": "code",
- "execution_count": 153,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "import pandas as pd\n",
- "import matplotlib.pyplot \n",
- "import keras #importing keras using tensorflow as backend\n",
- "\n",
- "from sklearn.preprocessing import MinMaxScaler\n",
- "from sklearn.preprocessing import StandardScaler\n",
- "from sklearn.metrics import mean_squared_error\n",
- "\n",
- "from keras.models import Sequential\n",
- "from keras.layers import Dense\n",
- "from keras.layers import LSTM"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n",
- "# Importing dataset"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 186,
- "metadata": {},
- "outputs": [],
- "source": [
- "data=pd.read_csv('bitcoin.csv')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 187,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " date_id | \n",
- " datetime_id | \n",
- " market | \n",
- " rpt_key | \n",
- " last | \n",
- " diff_24h | \n",
- " diff_per_24h | \n",
- " bid | \n",
- " ask | \n",
- " low | \n",
- " high | \n",
- " volume | \n",
- " created_at | \n",
- " updated_at | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitstamp | \n",
- " btc_eur | \n",
- " 1.996720e+03 | \n",
- " 2.029990e+03 | \n",
- " -1.638924 | \n",
- " 2.005500e+03 | \n",
- " 2.005560e+03 | \n",
- " 1.950000e+03 | \n",
- " 2.063730e+03 | \n",
- " 2314.500750 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitflyer | \n",
- " btc_jpy | \n",
- " 2.670980e+05 | \n",
- " 2.696490e+05 | \n",
- " -0.946045 | \n",
- " 2.671240e+05 | \n",
- " 2.672670e+05 | \n",
- " 2.671240e+05 | \n",
- " 2.672670e+05 | \n",
- " 70922.880112 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " korbit | \n",
- " btc_krw | \n",
- " 3.003500e+06 | \n",
- " 3.140000e+06 | \n",
- " -4.347134 | \n",
- " 3.003500e+06 | \n",
- " 3.004000e+06 | \n",
- " 3.002000e+06 | \n",
- " 3.209500e+06 | \n",
- " 6109.752872 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2.237400e+03 | \n",
- " 2.239370e+03 | \n",
- " -0.087971 | \n",
- " 2.233090e+03 | \n",
- " 2.237400e+03 | \n",
- " 2.154280e+03 | \n",
- " 2.293460e+03 | \n",
- " 13681.282017 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2.318820e+03 | \n",
- " 2.228700e+03 | \n",
- " 4.043613 | \n",
- " 2.319400e+03 | \n",
- " 2.319990e+03 | \n",
- " 2.129780e+03 | \n",
- " 2.318820e+03 | \n",
- " 4241.641516 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 627185 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " korbit | \n",
- " etc_krw | \n",
- " 2.090000e+04 | \n",
- " 2.331000e+04 | \n",
- " -10.338910 | \n",
- " 2.084000e+04 | \n",
- " 2.091000e+04 | \n",
- " 2.000000e+04 | \n",
- " 2.340000e+04 | \n",
- " 842321.282598 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- "
\n",
- " \n",
- " | 627186 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " bitflyer | \n",
- " eth_btc | \n",
- " 8.630000e-02 | \n",
- " 9.410000e-02 | \n",
- " -8.289054 | \n",
- " 8.620000e-02 | \n",
- " 8.675000e-02 | \n",
- " 8.620000e-02 | \n",
- " 8.675000e-02 | \n",
- " 4448.239195 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- "
\n",
- " \n",
- " | 627187 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " korbit | \n",
- " eth_krw | \n",
- " 2.391000e+05 | \n",
- " 2.689500e+05 | \n",
- " -11.098717 | \n",
- " 2.386000e+05 | \n",
- " 2.391000e+05 | \n",
- " 2.350000e+05 | \n",
- " 2.690000e+05 | \n",
- " 117124.419358 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- "
\n",
- " \n",
- " | 627188 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " bitflyer | \n",
- " fx_btc_jpy | \n",
- " 2.615530e+05 | \n",
- " 2.713100e+05 | \n",
- " -3.596255 | \n",
- " 2.615540e+05 | \n",
- " 2.616260e+05 | \n",
- " 2.615540e+05 | \n",
- " 2.616260e+05 | \n",
- " 73814.151389 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- "
\n",
- " \n",
- " | 627189 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " okcoin | \n",
- " ltc_usd | \n",
- " 4.593100e+01 | \n",
- " 4.891700e+01 | \n",
- " -6.104217 | \n",
- " 4.595400e+01 | \n",
- " 4.620000e+01 | \n",
- " 4.524100e+01 | \n",
- " 4.907500e+01 | \n",
- " 52799.710000 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- "
\n",
- " \n",
- "
\n",
- "
627190 rows × 14 columns
\n",
- "
"
+ "cell_type": "code",
+ "metadata": {
+ "id": "IhP9A_JS7SGe"
+ },
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot \n",
+ "import keras #importing keras using tensorflow as backend\n",
+ "\n",
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.metrics import mean_squared_error\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "from keras.models import Sequential\n",
+ "from keras.layers import Dense\n",
+ "from keras.layers import LSTM"
],
- "text/plain": [
- " date_id datetime_id market rpt_key last \\\n",
- "0 2017-05-31 2017-06-01 00:00:00 bitstamp btc_eur 1.996720e+03 \n",
- "1 2017-05-31 2017-06-01 00:00:00 bitflyer btc_jpy 2.670980e+05 \n",
- "2 2017-05-31 2017-06-01 00:00:00 korbit btc_krw 3.003500e+06 \n",
- "3 2017-05-31 2017-06-01 00:00:00 bitstamp btc_usd 2.237400e+03 \n",
- "4 2017-05-31 2017-06-01 00:00:00 okcoin btc_usd 2.318820e+03 \n",
- "... ... ... ... ... ... \n",
- "627185 2017-07-14 2017-07-14 13:18:00 korbit etc_krw 2.090000e+04 \n",
- "627186 2017-07-14 2017-07-14 13:18:00 bitflyer eth_btc 8.630000e-02 \n",
- "627187 2017-07-14 2017-07-14 13:18:00 korbit eth_krw 2.391000e+05 \n",
- "627188 2017-07-14 2017-07-14 13:18:00 bitflyer fx_btc_jpy 2.615530e+05 \n",
- "627189 2017-07-14 2017-07-14 13:18:00 okcoin ltc_usd 4.593100e+01 \n",
- "\n",
- " diff_24h diff_per_24h bid ask low \\\n",
- "0 2.029990e+03 -1.638924 2.005500e+03 2.005560e+03 1.950000e+03 \n",
- "1 2.696490e+05 -0.946045 2.671240e+05 2.672670e+05 2.671240e+05 \n",
- "2 3.140000e+06 -4.347134 3.003500e+06 3.004000e+06 3.002000e+06 \n",
- "3 2.239370e+03 -0.087971 2.233090e+03 2.237400e+03 2.154280e+03 \n",
- "4 2.228700e+03 4.043613 2.319400e+03 2.319990e+03 2.129780e+03 \n",
- "... ... ... ... ... ... \n",
- "627185 2.331000e+04 -10.338910 2.084000e+04 2.091000e+04 2.000000e+04 \n",
- "627186 9.410000e-02 -8.289054 8.620000e-02 8.675000e-02 8.620000e-02 \n",
- "627187 2.689500e+05 -11.098717 2.386000e+05 2.391000e+05 2.350000e+05 \n",
- "627188 2.713100e+05 -3.596255 2.615540e+05 2.616260e+05 2.615540e+05 \n",
- "627189 4.891700e+01 -6.104217 4.595400e+01 4.620000e+01 4.524100e+01 \n",
- "\n",
- " high volume created_at updated_at \n",
- "0 2.063730e+03 2314.500750 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "1 2.672670e+05 70922.880112 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "2 3.209500e+06 6109.752872 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "3 2.293460e+03 13681.282017 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "4 2.318820e+03 4241.641516 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "... ... ... ... ... \n",
- "627185 2.340000e+04 842321.282598 2017-07-14 04:17:20 2017-07-14 04:17:20 \n",
- "627186 8.675000e-02 4448.239195 2017-07-14 04:17:20 2017-07-14 04:17:20 \n",
- "627187 2.690000e+05 117124.419358 2017-07-14 04:17:20 2017-07-14 04:17:20 \n",
- "627188 2.616260e+05 73814.151389 2017-07-14 04:17:20 2017-07-14 04:17:20 \n",
- "627189 4.907500e+01 52799.710000 2017-07-14 04:17:20 2017-07-14 04:17:20 \n",
- "\n",
- "[627190 rows x 14 columns]"
+ "execution_count": 2,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xY8mbaND8GNI"
+ },
+ "source": [
+ "df=pd.read_csv('/content/drive/My Drive/bitcoin_ticker.csv')"
+ ],
+ "execution_count": 3,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "a2jyX2xX8Lhw",
+ "outputId": "a34e746e-211c-4ad0-e8ba-49ee1237aff8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 590
+ }
+ },
+ "source": [
+ "df"
+ ],
+ "execution_count": 4,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " date_id | \n",
+ " datetime_id | \n",
+ " market | \n",
+ " rpt_key | \n",
+ " last | \n",
+ " diff_24h | \n",
+ " diff_per_24h | \n",
+ " bid | \n",
+ " ask | \n",
+ " low | \n",
+ " high | \n",
+ " volume | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_eur | \n",
+ " 1.996720e+03 | \n",
+ " 2.029990e+03 | \n",
+ " -1.638924 | \n",
+ " 2.005500e+03 | \n",
+ " 2.005560e+03 | \n",
+ " 1.950000e+03 | \n",
+ " 2.063730e+03 | \n",
+ " 2314.500750 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitflyer | \n",
+ " btc_jpy | \n",
+ " 2.670980e+05 | \n",
+ " 2.696490e+05 | \n",
+ " -0.946045 | \n",
+ " 2.671240e+05 | \n",
+ " 2.672670e+05 | \n",
+ " 2.671240e+05 | \n",
+ " 2.672670e+05 | \n",
+ " 70922.880112 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " korbit | \n",
+ " btc_krw | \n",
+ " 3.003500e+06 | \n",
+ " 3.140000e+06 | \n",
+ " -4.347134 | \n",
+ " 3.003500e+06 | \n",
+ " 3.004000e+06 | \n",
+ " 3.002000e+06 | \n",
+ " 3.209500e+06 | \n",
+ " 6109.752872 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2.237400e+03 | \n",
+ " 2.239370e+03 | \n",
+ " -0.087971 | \n",
+ " 2.233090e+03 | \n",
+ " 2.237400e+03 | \n",
+ " 2.154280e+03 | \n",
+ " 2.293460e+03 | \n",
+ " 13681.282017 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2.318820e+03 | \n",
+ " 2.228700e+03 | \n",
+ " 4.043613 | \n",
+ " 2.319400e+03 | \n",
+ " 2.319990e+03 | \n",
+ " 2.129780e+03 | \n",
+ " 2.318820e+03 | \n",
+ " 4241.641516 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 627185 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " korbit | \n",
+ " etc_krw | \n",
+ " 2.090000e+04 | \n",
+ " 2.331000e+04 | \n",
+ " -10.338910 | \n",
+ " 2.084000e+04 | \n",
+ " 2.091000e+04 | \n",
+ " 2.000000e+04 | \n",
+ " 2.340000e+04 | \n",
+ " 842321.282598 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627186 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " bitflyer | \n",
+ " eth_btc | \n",
+ " 8.630000e-02 | \n",
+ " 9.410000e-02 | \n",
+ " -8.289054 | \n",
+ " 8.620000e-02 | \n",
+ " 8.675000e-02 | \n",
+ " 8.620000e-02 | \n",
+ " 8.675000e-02 | \n",
+ " 4448.239195 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627187 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " korbit | \n",
+ " eth_krw | \n",
+ " 2.391000e+05 | \n",
+ " 2.689500e+05 | \n",
+ " -11.098717 | \n",
+ " 2.386000e+05 | \n",
+ " 2.391000e+05 | \n",
+ " 2.350000e+05 | \n",
+ " 2.690000e+05 | \n",
+ " 117124.419358 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627188 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " bitflyer | \n",
+ " fx_btc_jpy | \n",
+ " 2.615530e+05 | \n",
+ " 2.713100e+05 | \n",
+ " -3.596255 | \n",
+ " 2.615540e+05 | \n",
+ " 2.616260e+05 | \n",
+ " 2.615540e+05 | \n",
+ " 2.616260e+05 | \n",
+ " 73814.151389 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627189 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " okcoin | \n",
+ " ltc_usd | \n",
+ " 4.593100e+01 | \n",
+ " 4.891700e+01 | \n",
+ " -6.104217 | \n",
+ " 4.595400e+01 | \n",
+ " 4.620000e+01 | \n",
+ " 4.524100e+01 | \n",
+ " 4.907500e+01 | \n",
+ " 52799.710000 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
627190 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_id ... updated_at\n",
+ "0 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "1 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "2 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "3 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "4 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "... ... ... ...\n",
+ "627185 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627186 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627187 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627188 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627189 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "\n",
+ "[627190 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 4
+ }
]
- },
- "execution_count": 187,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 157,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " date_id | \n",
- " datetime_id | \n",
- " market | \n",
- " rpt_key | \n",
- " last | \n",
- " diff_24h | \n",
- " diff_per_24h | \n",
- " bid | \n",
- " ask | \n",
- " low | \n",
- " high | \n",
- " volume | \n",
- " created_at | \n",
- " updated_at | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitstamp | \n",
- " btc_eur | \n",
- " 1996.72 | \n",
- " 2029.99 | \n",
- " -1.638924 | \n",
- " 2005.5 | \n",
- " 2005.56 | \n",
- " 1950.0 | \n",
- " 2063.73 | \n",
- " 2314.500750 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitflyer | \n",
- " btc_jpy | \n",
- " 267098.00 | \n",
- " 269649.00 | \n",
- " -0.946045 | \n",
- " 267124.0 | \n",
- " 267267.00 | \n",
- " 267124.0 | \n",
- " 267267.00 | \n",
- " 70922.880112 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
+ "cell_type": "code",
+ "metadata": {
+ "id": "TqLlTU0d8Rdz",
+ "outputId": "17631516-f40e-425c-ba30-2935f21f0100",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 299
+ }
+ },
+ "source": [
+ "df.head(5)"
],
- "text/plain": [
- " date_id datetime_id market rpt_key last diff_24h \\\n",
- "0 2017-05-31 2017-06-01 00:00:00 bitstamp btc_eur 1996.72 2029.99 \n",
- "1 2017-05-31 2017-06-01 00:00:00 bitflyer btc_jpy 267098.00 269649.00 \n",
- "\n",
- " diff_per_24h bid ask low high volume \\\n",
- "0 -1.638924 2005.5 2005.56 1950.0 2063.73 2314.500750 \n",
- "1 -0.946045 267124.0 267267.00 267124.0 267267.00 70922.880112 \n",
- "\n",
- " created_at updated_at \n",
- "0 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "1 2017-05-31 14:59:36 2017-05-31 14:59:36 "
+ "execution_count": 5,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " date_id | \n",
+ " datetime_id | \n",
+ " market | \n",
+ " rpt_key | \n",
+ " last | \n",
+ " diff_24h | \n",
+ " diff_per_24h | \n",
+ " bid | \n",
+ " ask | \n",
+ " low | \n",
+ " high | \n",
+ " volume | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_eur | \n",
+ " 1996.72 | \n",
+ " 2029.99 | \n",
+ " -1.638924 | \n",
+ " 2005.50 | \n",
+ " 2005.56 | \n",
+ " 1950.00 | \n",
+ " 2063.73 | \n",
+ " 2314.500750 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitflyer | \n",
+ " btc_jpy | \n",
+ " 267098.00 | \n",
+ " 269649.00 | \n",
+ " -0.946045 | \n",
+ " 267124.00 | \n",
+ " 267267.00 | \n",
+ " 267124.00 | \n",
+ " 267267.00 | \n",
+ " 70922.880112 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " korbit | \n",
+ " btc_krw | \n",
+ " 3003500.00 | \n",
+ " 3140000.00 | \n",
+ " -4.347134 | \n",
+ " 3003500.00 | \n",
+ " 3004000.00 | \n",
+ " 3002000.00 | \n",
+ " 3209500.00 | \n",
+ " 6109.752872 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2237.40 | \n",
+ " 2239.37 | \n",
+ " -0.087971 | \n",
+ " 2233.09 | \n",
+ " 2237.40 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13681.282017 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2318.82 | \n",
+ " 2228.70 | \n",
+ " 4.043613 | \n",
+ " 2319.40 | \n",
+ " 2319.99 | \n",
+ " 2129.78 | \n",
+ " 2318.82 | \n",
+ " 4241.641516 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_id datetime_id ... created_at updated_at\n",
+ "0 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "1 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "2 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "3 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "4 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "\n",
+ "[5 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 5
+ }
]
- },
- "execution_count": 157,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset.head(2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Data Preprocessing"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### The value_counts() function is used to get a Series containing counts of unique values.rpt_key consists of different kinds of currencies"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 188,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "btc_usd 125438\n",
- "etc_krw 62719\n",
- "fx_btc_jpy 62719\n",
- "btc_eur 62719\n",
- "eth_btc 62719\n",
- "btc_krw 62719\n",
- "btc_jpy 62719\n",
- "ltc_usd 62719\n",
- "eth_krw 62719\n",
- "Name: rpt_key, dtype: int64"
+ "cell_type": "code",
+ "metadata": {
+ "id": "qvwfdaSv8XUo",
+ "outputId": "9934c8a3-69b2-4e53-a577-fe9d069eed23",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 299
+ }
+ },
+ "source": [
+ "df.tail()"
+ ],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " date_id | \n",
+ " datetime_id | \n",
+ " market | \n",
+ " rpt_key | \n",
+ " last | \n",
+ " diff_24h | \n",
+ " diff_per_24h | \n",
+ " bid | \n",
+ " ask | \n",
+ " low | \n",
+ " high | \n",
+ " volume | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 627185 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " korbit | \n",
+ " etc_krw | \n",
+ " 20900.0000 | \n",
+ " 23310.0000 | \n",
+ " -10.338910 | \n",
+ " 20840.0000 | \n",
+ " 20910.00000 | \n",
+ " 20000.0000 | \n",
+ " 23400.00000 | \n",
+ " 842321.282598 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627186 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " bitflyer | \n",
+ " eth_btc | \n",
+ " 0.0863 | \n",
+ " 0.0941 | \n",
+ " -8.289054 | \n",
+ " 0.0862 | \n",
+ " 0.08675 | \n",
+ " 0.0862 | \n",
+ " 0.08675 | \n",
+ " 4448.239195 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627187 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " korbit | \n",
+ " eth_krw | \n",
+ " 239100.0000 | \n",
+ " 268950.0000 | \n",
+ " -11.098717 | \n",
+ " 238600.0000 | \n",
+ " 239100.00000 | \n",
+ " 235000.0000 | \n",
+ " 269000.00000 | \n",
+ " 117124.419358 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627188 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " bitflyer | \n",
+ " fx_btc_jpy | \n",
+ " 261553.0000 | \n",
+ " 271310.0000 | \n",
+ " -3.596255 | \n",
+ " 261554.0000 | \n",
+ " 261626.00000 | \n",
+ " 261554.0000 | \n",
+ " 261626.00000 | \n",
+ " 73814.151389 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627189 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " okcoin | \n",
+ " ltc_usd | \n",
+ " 45.9310 | \n",
+ " 48.9170 | \n",
+ " -6.104217 | \n",
+ " 45.9540 | \n",
+ " 46.20000 | \n",
+ " 45.2410 | \n",
+ " 49.07500 | \n",
+ " 52799.710000 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_id ... updated_at\n",
+ "627185 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627186 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627187 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627188 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627189 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "\n",
+ "[5 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 6
+ }
]
- },
- "execution_count": 188,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data['rpt_key'].value_counts()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Price in various currencies are given-Considering only USD "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 192,
- "metadata": {},
- "outputs": [],
- "source": [
- "df= data.loc[(data['rpt_key']=='btc_usd')]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 190,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " last | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2237.40 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2318.82 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 2248.39 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2320.42 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2248.35 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 125433 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- " | 125434 | \n",
- " 2320.47 | \n",
- "
\n",
- " \n",
- " | 125435 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- " | 125436 | \n",
- " 2320.47 | \n",
- "
\n",
- " \n",
- " | 125437 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- "
\n",
- "
125438 rows × 1 columns
\n",
- "
"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z31CwGRc8gdf"
+ },
+ "source": [
+ "## Data Preprocessing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "WKSlGhK-8rug"
+ },
+ "source": [
+ "### The value_counts() function is used to get a Series containing counts of unique values.rpt_key consists of different kinds of currencies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Kratxv_s8ZrS",
+ "outputId": "abe5df8b-e236-4755-ec48-7306e604e7c0",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 185
+ }
+ },
+ "source": [
+ "df['rpt_key'].value_counts()"
],
- "text/plain": [
- " last\n",
- "0 2237.40\n",
- "1 2318.82\n",
- "2 2248.39\n",
- "3 2320.42\n",
- "4 2248.35\n",
- "... ...\n",
- "125433 2394.03\n",
- "125434 2320.47\n",
- "125435 2394.03\n",
- "125436 2320.47\n",
- "125437 2394.03\n",
- "\n",
- "[125438 rows x 1 columns]"
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "btc_usd 125438\n",
+ "fx_btc_jpy 62719\n",
+ "btc_jpy 62719\n",
+ "btc_eur 62719\n",
+ "ltc_usd 62719\n",
+ "etc_krw 62719\n",
+ "eth_krw 62719\n",
+ "btc_krw 62719\n",
+ "eth_btc 62719\n",
+ "Name: rpt_key, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 7
+ }
]
- },
- "execution_count": 190,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 193,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ABa6Q7A18qy0"
+ },
+ "source": [
+ "### Price in various currencies are given-Considering only USD "
+ ]
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " date_id | \n",
- " datetime_id | \n",
- " market | \n",
- " rpt_key | \n",
- " last | \n",
- " diff_24h | \n",
- " diff_per_24h | \n",
- " bid | \n",
- " ask | \n",
- " low | \n",
- " high | \n",
- " volume | \n",
- " created_at | \n",
- " updated_at | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 3 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2237.40 | \n",
- " 2239.37 | \n",
- " -0.087971 | \n",
- " 2233.09 | \n",
- " 2237.40 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13681.282017 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2318.82 | \n",
- " 2228.70 | \n",
- " 4.043613 | \n",
- " 2319.40 | \n",
- " 2319.99 | \n",
- " 2129.78 | \n",
- " 2318.82 | \n",
- " 4241.641516 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- "
\n",
- " \n",
- " | 15 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:01:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2248.39 | \n",
- " 2242.44 | \n",
- " 0.265336 | \n",
- " 2247.77 | \n",
- " 2248.38 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13701.698603 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-05-31 15:00:36 | \n",
- "
\n",
- " \n",
- " | 16 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:01:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2320.42 | \n",
- " 2228.40 | \n",
- " 4.129420 | \n",
- " 2320.99 | \n",
- " 2321.49 | \n",
- " 2129.78 | \n",
- " 2322.00 | \n",
- " 4260.261516 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-05-31 15:00:36 | \n",
- "
\n",
- " \n",
- " | 23 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:02:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2248.35 | \n",
- " 2238.58 | \n",
- " 0.436437 | \n",
- " 2248.35 | \n",
- " 2248.69 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13742.110913 | \n",
- " 2017-05-31 15:01:36 | \n",
- " 2017-05-31 15:01:36 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "W8mO3ym98f10"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "gBdEdg45804p"
+ },
+ "source": [
+ "df= df.loc[(df['rpt_key']=='btc_usd')]"
],
- "text/plain": [
- " date_id datetime_id market rpt_key last diff_24h \\\n",
- "3 2017-05-31 2017-06-01 00:00:00 bitstamp btc_usd 2237.40 2239.37 \n",
- "4 2017-05-31 2017-06-01 00:00:00 okcoin btc_usd 2318.82 2228.70 \n",
- "15 2017-06-01 2017-06-01 00:01:00 bitstamp btc_usd 2248.39 2242.44 \n",
- "16 2017-06-01 2017-06-01 00:01:00 okcoin btc_usd 2320.42 2228.40 \n",
- "23 2017-06-01 2017-06-01 00:02:00 bitstamp btc_usd 2248.35 2238.58 \n",
- "\n",
- " diff_per_24h bid ask low high volume \\\n",
- "3 -0.087971 2233.09 2237.40 2154.28 2293.46 13681.282017 \n",
- "4 4.043613 2319.40 2319.99 2129.78 2318.82 4241.641516 \n",
- "15 0.265336 2247.77 2248.38 2154.28 2293.46 13701.698603 \n",
- "16 4.129420 2320.99 2321.49 2129.78 2322.00 4260.261516 \n",
- "23 0.436437 2248.35 2248.69 2154.28 2293.46 13742.110913 \n",
- "\n",
- " created_at updated_at \n",
- "3 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "4 2017-05-31 14:59:36 2017-05-31 14:59:36 \n",
- "15 2017-05-31 15:00:36 2017-05-31 15:00:36 \n",
- "16 2017-05-31 15:00:36 2017-05-31 15:00:36 \n",
- "23 2017-05-31 15:01:36 2017-05-31 15:01:36 "
+ "execution_count": 8,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "stvRkMYG81nZ",
+ "outputId": "78c9fd99-12c3-4e6f-8969-62a1a6adff4c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 590
+ }
+ },
+ "source": [
+ "df"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " date_id | \n",
+ " datetime_id | \n",
+ " market | \n",
+ " rpt_key | \n",
+ " last | \n",
+ " diff_24h | \n",
+ " diff_per_24h | \n",
+ " bid | \n",
+ " ask | \n",
+ " low | \n",
+ " high | \n",
+ " volume | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2237.40 | \n",
+ " 2239.37 | \n",
+ " -0.087971 | \n",
+ " 2233.09 | \n",
+ " 2237.40 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13681.282017 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2318.82 | \n",
+ " 2228.70 | \n",
+ " 4.043613 | \n",
+ " 2319.40 | \n",
+ " 2319.99 | \n",
+ " 2129.78 | \n",
+ " 2318.82 | \n",
+ " 4241.641516 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:01:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2248.39 | \n",
+ " 2242.44 | \n",
+ " 0.265336 | \n",
+ " 2247.77 | \n",
+ " 2248.38 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13701.698603 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:01:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2320.42 | \n",
+ " 2228.40 | \n",
+ " 4.129420 | \n",
+ " 2320.99 | \n",
+ " 2321.49 | \n",
+ " 2129.78 | \n",
+ " 2322.00 | \n",
+ " 4260.261516 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:02:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2248.35 | \n",
+ " 2238.58 | \n",
+ " 0.436437 | \n",
+ " 2248.35 | \n",
+ " 2248.69 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13742.110913 | \n",
+ " 2017-05-31 15:01:36 | \n",
+ " 2017-05-31 15:01:36 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 627164 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:16:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2394.03 | \n",
+ " 2500.01 | \n",
+ " -4.239183 | \n",
+ " 2394.35 | \n",
+ " 2405.72 | \n",
+ " 2378.02 | \n",
+ " 2529.20 | \n",
+ " 1111.540000 | \n",
+ " 2017-07-14 04:15:20 | \n",
+ " 2017-07-14 04:15:20 | \n",
+ "
\n",
+ " \n",
+ " | 627173 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:17:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2320.47 | \n",
+ " 2407.06 | \n",
+ " -3.597335 | \n",
+ " 2320.48 | \n",
+ " 2322.55 | \n",
+ " 2307.46 | \n",
+ " 2413.60 | \n",
+ " 7969.263583 | \n",
+ " 2017-07-14 04:16:20 | \n",
+ " 2017-07-14 04:16:20 | \n",
+ "
\n",
+ " \n",
+ " | 627174 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:17:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2394.03 | \n",
+ " 2500.01 | \n",
+ " -4.239183 | \n",
+ " 2394.42 | \n",
+ " 2405.69 | \n",
+ " 2378.02 | \n",
+ " 2529.20 | \n",
+ " 1111.540000 | \n",
+ " 2017-07-14 04:16:20 | \n",
+ " 2017-07-14 04:16:20 | \n",
+ "
\n",
+ " \n",
+ " | 627183 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2320.47 | \n",
+ " 2408.00 | \n",
+ " -3.634967 | \n",
+ " 2320.57 | \n",
+ " 2322.55 | \n",
+ " 2307.46 | \n",
+ " 2413.60 | \n",
+ " 7968.970715 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ " | 627184 | \n",
+ " 2017-07-14 | \n",
+ " 2017-07-14 13:18:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2394.03 | \n",
+ " 2500.01 | \n",
+ " -4.239183 | \n",
+ " 2394.17 | \n",
+ " 2405.69 | \n",
+ " 2378.02 | \n",
+ " 2529.20 | \n",
+ " 1111.221000 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ " 2017-07-14 04:17:20 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
125438 rows × 14 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_id ... updated_at\n",
+ "3 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "4 2017-05-31 ... 2017-05-31 14:59:36\n",
+ "15 2017-06-01 ... 2017-05-31 15:00:36\n",
+ "16 2017-06-01 ... 2017-05-31 15:00:36\n",
+ "23 2017-06-01 ... 2017-05-31 15:01:36\n",
+ "... ... ... ...\n",
+ "627164 2017-07-14 ... 2017-07-14 04:15:20\n",
+ "627173 2017-07-14 ... 2017-07-14 04:16:20\n",
+ "627174 2017-07-14 ... 2017-07-14 04:16:20\n",
+ "627183 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "627184 2017-07-14 ... 2017-07-14 04:17:20\n",
+ "\n",
+ "[125438 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 9
+ }
]
- },
- "execution_count": 193,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### datetime_id to datatime"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 194,
- "metadata": {},
- "outputs": [],
- "source": [
- "df=df.reset_index(drop=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 195,
- "metadata": {},
- "outputs": [],
- "source": [
- "df['datetime']=pd.to_datetime(df['datetime_id'])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 196,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " date_id | \n",
- " datetime_id | \n",
- " market | \n",
- " rpt_key | \n",
- " last | \n",
- " diff_24h | \n",
- " diff_per_24h | \n",
- " bid | \n",
- " ask | \n",
- " low | \n",
- " high | \n",
- " volume | \n",
- " created_at | \n",
- " updated_at | \n",
- " datetime | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2237.40 | \n",
- " 2239.37 | \n",
- " -0.087971 | \n",
- " 2233.09 | \n",
- " 2237.40 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13681.282017 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-06-01 00:00:00 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2017-05-31 | \n",
- " 2017-06-01 00:00:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2318.82 | \n",
- " 2228.70 | \n",
- " 4.043613 | \n",
- " 2319.40 | \n",
- " 2319.99 | \n",
- " 2129.78 | \n",
- " 2318.82 | \n",
- " 4241.641516 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-05-31 14:59:36 | \n",
- " 2017-06-01 00:00:00 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:01:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2248.39 | \n",
- " 2242.44 | \n",
- " 0.265336 | \n",
- " 2247.77 | \n",
- " 2248.38 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13701.698603 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-06-01 00:01:00 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:01:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2320.42 | \n",
- " 2228.40 | \n",
- " 4.129420 | \n",
- " 2320.99 | \n",
- " 2321.49 | \n",
- " 2129.78 | \n",
- " 2322.00 | \n",
- " 4260.261516 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-05-31 15:00:36 | \n",
- " 2017-06-01 00:01:00 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2017-06-01 | \n",
- " 2017-06-01 00:02:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2248.35 | \n",
- " 2238.58 | \n",
- " 0.436437 | \n",
- " 2248.35 | \n",
- " 2248.69 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13742.110913 | \n",
- " 2017-05-31 15:01:36 | \n",
- " 2017-05-31 15:01:36 | \n",
- " 2017-06-01 00:02:00 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 125433 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:16:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.35 | \n",
- " 2405.72 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.540000 | \n",
- " 2017-07-14 04:15:20 | \n",
- " 2017-07-14 04:15:20 | \n",
- " 2017-07-14 13:16:00 | \n",
- "
\n",
- " \n",
- " | 125434 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:17:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2320.47 | \n",
- " 2407.06 | \n",
- " -3.597335 | \n",
- " 2320.48 | \n",
- " 2322.55 | \n",
- " 2307.46 | \n",
- " 2413.60 | \n",
- " 7969.263583 | \n",
- " 2017-07-14 04:16:20 | \n",
- " 2017-07-14 04:16:20 | \n",
- " 2017-07-14 13:17:00 | \n",
- "
\n",
- " \n",
- " | 125435 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:17:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.42 | \n",
- " 2405.69 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.540000 | \n",
- " 2017-07-14 04:16:20 | \n",
- " 2017-07-14 04:16:20 | \n",
- " 2017-07-14 13:17:00 | \n",
- "
\n",
- " \n",
- " | 125436 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " bitstamp | \n",
- " btc_usd | \n",
- " 2320.47 | \n",
- " 2408.00 | \n",
- " -3.634967 | \n",
- " 2320.57 | \n",
- " 2322.55 | \n",
- " 2307.46 | \n",
- " 2413.60 | \n",
- " 7968.970715 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 13:18:00 | \n",
- "
\n",
- " \n",
- " | 125437 | \n",
- " 2017-07-14 | \n",
- " 2017-07-14 13:18:00 | \n",
- " okcoin | \n",
- " btc_usd | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.17 | \n",
- " 2405.69 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.221000 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 04:17:20 | \n",
- " 2017-07-14 13:18:00 | \n",
- "
\n",
- " \n",
- "
\n",
- "
125438 rows × 15 columns
\n",
- "
"
+ "cell_type": "code",
+ "metadata": {
+ "id": "AIkUHRto84IZ",
+ "outputId": "b01e2443-02fe-468c-ecaf-6a20c8007e98",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 299
+ }
+ },
+ "source": [
+ "df.head()"
],
- "text/plain": [
- " date_id datetime_id market rpt_key last diff_24h \\\n",
- "0 2017-05-31 2017-06-01 00:00:00 bitstamp btc_usd 2237.40 2239.37 \n",
- "1 2017-05-31 2017-06-01 00:00:00 okcoin btc_usd 2318.82 2228.70 \n",
- "2 2017-06-01 2017-06-01 00:01:00 bitstamp btc_usd 2248.39 2242.44 \n",
- "3 2017-06-01 2017-06-01 00:01:00 okcoin btc_usd 2320.42 2228.40 \n",
- "4 2017-06-01 2017-06-01 00:02:00 bitstamp btc_usd 2248.35 2238.58 \n",
- "... ... ... ... ... ... ... \n",
- "125433 2017-07-14 2017-07-14 13:16:00 okcoin btc_usd 2394.03 2500.01 \n",
- "125434 2017-07-14 2017-07-14 13:17:00 bitstamp btc_usd 2320.47 2407.06 \n",
- "125435 2017-07-14 2017-07-14 13:17:00 okcoin btc_usd 2394.03 2500.01 \n",
- "125436 2017-07-14 2017-07-14 13:18:00 bitstamp btc_usd 2320.47 2408.00 \n",
- "125437 2017-07-14 2017-07-14 13:18:00 okcoin btc_usd 2394.03 2500.01 \n",
- "\n",
- " diff_per_24h bid ask low high volume \\\n",
- "0 -0.087971 2233.09 2237.40 2154.28 2293.46 13681.282017 \n",
- "1 4.043613 2319.40 2319.99 2129.78 2318.82 4241.641516 \n",
- "2 0.265336 2247.77 2248.38 2154.28 2293.46 13701.698603 \n",
- "3 4.129420 2320.99 2321.49 2129.78 2322.00 4260.261516 \n",
- "4 0.436437 2248.35 2248.69 2154.28 2293.46 13742.110913 \n",
- "... ... ... ... ... ... ... \n",
- "125433 -4.239183 2394.35 2405.72 2378.02 2529.20 1111.540000 \n",
- "125434 -3.597335 2320.48 2322.55 2307.46 2413.60 7969.263583 \n",
- "125435 -4.239183 2394.42 2405.69 2378.02 2529.20 1111.540000 \n",
- "125436 -3.634967 2320.57 2322.55 2307.46 2413.60 7968.970715 \n",
- "125437 -4.239183 2394.17 2405.69 2378.02 2529.20 1111.221000 \n",
- "\n",
- " created_at updated_at datetime \n",
- "0 2017-05-31 14:59:36 2017-05-31 14:59:36 2017-06-01 00:00:00 \n",
- "1 2017-05-31 14:59:36 2017-05-31 14:59:36 2017-06-01 00:00:00 \n",
- "2 2017-05-31 15:00:36 2017-05-31 15:00:36 2017-06-01 00:01:00 \n",
- "3 2017-05-31 15:00:36 2017-05-31 15:00:36 2017-06-01 00:01:00 \n",
- "4 2017-05-31 15:01:36 2017-05-31 15:01:36 2017-06-01 00:02:00 \n",
- "... ... ... ... \n",
- "125433 2017-07-14 04:15:20 2017-07-14 04:15:20 2017-07-14 13:16:00 \n",
- "125434 2017-07-14 04:16:20 2017-07-14 04:16:20 2017-07-14 13:17:00 \n",
- "125435 2017-07-14 04:16:20 2017-07-14 04:16:20 2017-07-14 13:17:00 \n",
- "125436 2017-07-14 04:17:20 2017-07-14 04:17:20 2017-07-14 13:18:00 \n",
- "125437 2017-07-14 04:17:20 2017-07-14 04:17:20 2017-07-14 13:18:00 \n",
- "\n",
- "[125438 rows x 15 columns]"
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " date_id | \n",
+ " datetime_id | \n",
+ " market | \n",
+ " rpt_key | \n",
+ " last | \n",
+ " diff_24h | \n",
+ " diff_per_24h | \n",
+ " bid | \n",
+ " ask | \n",
+ " low | \n",
+ " high | \n",
+ " volume | \n",
+ " created_at | \n",
+ " updated_at | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2237.40 | \n",
+ " 2239.37 | \n",
+ " -0.087971 | \n",
+ " 2233.09 | \n",
+ " 2237.40 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13681.282017 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 2017-05-31 | \n",
+ " 2017-06-01 00:00:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2318.82 | \n",
+ " 2228.70 | \n",
+ " 4.043613 | \n",
+ " 2319.40 | \n",
+ " 2319.99 | \n",
+ " 2129.78 | \n",
+ " 2318.82 | \n",
+ " 4241.641516 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ " 2017-05-31 14:59:36 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:01:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2248.39 | \n",
+ " 2242.44 | \n",
+ " 0.265336 | \n",
+ " 2247.77 | \n",
+ " 2248.38 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13701.698603 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:01:00 | \n",
+ " okcoin | \n",
+ " btc_usd | \n",
+ " 2320.42 | \n",
+ " 2228.40 | \n",
+ " 4.129420 | \n",
+ " 2320.99 | \n",
+ " 2321.49 | \n",
+ " 2129.78 | \n",
+ " 2322.00 | \n",
+ " 4260.261516 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ " 2017-05-31 15:00:36 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 2017-06-01 | \n",
+ " 2017-06-01 00:02:00 | \n",
+ " bitstamp | \n",
+ " btc_usd | \n",
+ " 2248.35 | \n",
+ " 2238.58 | \n",
+ " 0.436437 | \n",
+ " 2248.35 | \n",
+ " 2248.69 | \n",
+ " 2154.28 | \n",
+ " 2293.46 | \n",
+ " 13742.110913 | \n",
+ " 2017-05-31 15:01:36 | \n",
+ " 2017-05-31 15:01:36 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_id datetime_id ... created_at updated_at\n",
+ "3 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "4 2017-05-31 2017-06-01 00:00:00 ... 2017-05-31 14:59:36 2017-05-31 14:59:36\n",
+ "15 2017-06-01 2017-06-01 00:01:00 ... 2017-05-31 15:00:36 2017-05-31 15:00:36\n",
+ "16 2017-06-01 2017-06-01 00:01:00 ... 2017-05-31 15:00:36 2017-05-31 15:00:36\n",
+ "23 2017-06-01 2017-06-01 00:02:00 ... 2017-05-31 15:01:36 2017-05-31 15:01:36\n",
+ "\n",
+ "[5 rows x 14 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 10
+ }
]
- },
- "execution_count": 196,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 65,
- "metadata": {},
- "outputs": [],
- "source": [
- "df=df[['datetime','last','diff_24h','diff_per_24h','bid','ask','low','high','volume']]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "djZTPOwy894X"
+ },
+ "source": [
+ "### datetime_id to datatime"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hC2QnfOn86_q"
+ },
+ "source": [
+ "df1=df.reset_index(drop=True)['last']"
+ ],
+ "execution_count": 11,
+ "outputs": []
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " datetime | \n",
- " last | \n",
- " diff_24h | \n",
- " diff_per_24h | \n",
- " bid | \n",
- " ask | \n",
- " low | \n",
- " high | \n",
- " volume | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2017-06-01 00:00:00 | \n",
- " 2237.40 | \n",
- " 2239.37 | \n",
- " -0.087971 | \n",
- " 2233.09 | \n",
- " 2237.40 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13681.282017 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2017-06-01 00:00:00 | \n",
- " 2318.82 | \n",
- " 2228.70 | \n",
- " 4.043613 | \n",
- " 2319.40 | \n",
- " 2319.99 | \n",
- " 2129.78 | \n",
- " 2318.82 | \n",
- " 4241.641516 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 2017-06-01 00:01:00 | \n",
- " 2248.39 | \n",
- " 2242.44 | \n",
- " 0.265336 | \n",
- " 2247.77 | \n",
- " 2248.38 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13701.698603 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2017-06-01 00:01:00 | \n",
- " 2320.42 | \n",
- " 2228.40 | \n",
- " 4.129420 | \n",
- " 2320.99 | \n",
- " 2321.49 | \n",
- " 2129.78 | \n",
- " 2322.00 | \n",
- " 4260.261516 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2017-06-01 00:02:00 | \n",
- " 2248.35 | \n",
- " 2238.58 | \n",
- " 0.436437 | \n",
- " 2248.35 | \n",
- " 2248.69 | \n",
- " 2154.28 | \n",
- " 2293.46 | \n",
- " 13742.110913 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 125433 | \n",
- " 2017-07-14 13:16:00 | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.35 | \n",
- " 2405.72 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.540000 | \n",
- "
\n",
- " \n",
- " | 125434 | \n",
- " 2017-07-14 13:17:00 | \n",
- " 2320.47 | \n",
- " 2407.06 | \n",
- " -3.597335 | \n",
- " 2320.48 | \n",
- " 2322.55 | \n",
- " 2307.46 | \n",
- " 2413.60 | \n",
- " 7969.263583 | \n",
- "
\n",
- " \n",
- " | 125435 | \n",
- " 2017-07-14 13:17:00 | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.42 | \n",
- " 2405.69 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.540000 | \n",
- "
\n",
- " \n",
- " | 125436 | \n",
- " 2017-07-14 13:18:00 | \n",
- " 2320.47 | \n",
- " 2408.00 | \n",
- " -3.634967 | \n",
- " 2320.57 | \n",
- " 2322.55 | \n",
- " 2307.46 | \n",
- " 2413.60 | \n",
- " 7968.970715 | \n",
- "
\n",
- " \n",
- " | 125437 | \n",
- " 2017-07-14 13:18:00 | \n",
- " 2394.03 | \n",
- " 2500.01 | \n",
- " -4.239183 | \n",
- " 2394.17 | \n",
- " 2405.69 | \n",
- " 2378.02 | \n",
- " 2529.20 | \n",
- " 1111.221000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
125438 rows × 9 columns
\n",
- "
"
+ "cell_type": "code",
+ "metadata": {
+ "id": "zie_98P28-lE",
+ "outputId": "18579997-42b2-4884-9bde-018638496016",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 218
+ }
+ },
+ "source": [
+ "df1"
],
- "text/plain": [
- " datetime last diff_24h diff_per_24h bid ask \\\n",
- "0 2017-06-01 00:00:00 2237.40 2239.37 -0.087971 2233.09 2237.40 \n",
- "1 2017-06-01 00:00:00 2318.82 2228.70 4.043613 2319.40 2319.99 \n",
- "2 2017-06-01 00:01:00 2248.39 2242.44 0.265336 2247.77 2248.38 \n",
- "3 2017-06-01 00:01:00 2320.42 2228.40 4.129420 2320.99 2321.49 \n",
- "4 2017-06-01 00:02:00 2248.35 2238.58 0.436437 2248.35 2248.69 \n",
- "... ... ... ... ... ... ... \n",
- "125433 2017-07-14 13:16:00 2394.03 2500.01 -4.239183 2394.35 2405.72 \n",
- "125434 2017-07-14 13:17:00 2320.47 2407.06 -3.597335 2320.48 2322.55 \n",
- "125435 2017-07-14 13:17:00 2394.03 2500.01 -4.239183 2394.42 2405.69 \n",
- "125436 2017-07-14 13:18:00 2320.47 2408.00 -3.634967 2320.57 2322.55 \n",
- "125437 2017-07-14 13:18:00 2394.03 2500.01 -4.239183 2394.17 2405.69 \n",
- "\n",
- " low high volume \n",
- "0 2154.28 2293.46 13681.282017 \n",
- "1 2129.78 2318.82 4241.641516 \n",
- "2 2154.28 2293.46 13701.698603 \n",
- "3 2129.78 2322.00 4260.261516 \n",
- "4 2154.28 2293.46 13742.110913 \n",
- "... ... ... ... \n",
- "125433 2378.02 2529.20 1111.540000 \n",
- "125434 2307.46 2413.60 7969.263583 \n",
- "125435 2378.02 2529.20 1111.540000 \n",
- "125436 2307.46 2413.60 7968.970715 \n",
- "125437 2378.02 2529.20 1111.221000 \n",
- "\n",
- "[125438 rows x 9 columns]"
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0 2237.40\n",
+ "1 2318.82\n",
+ "2 2248.39\n",
+ "3 2320.42\n",
+ "4 2248.35\n",
+ " ... \n",
+ "125433 2394.03\n",
+ "125434 2320.47\n",
+ "125435 2394.03\n",
+ "125436 2320.47\n",
+ "125437 2394.03\n",
+ "Name: last, Length: 125438, dtype: float64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
]
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 197,
- "metadata": {},
- "outputs": [],
- "source": [
- "df=df[['last']]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 198,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "shN1oEhk9FTJ"
+ },
+ "source": [
+ "### Feature scaling (Scaling last values between 0-1)"
+ ]
+ },
{
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " last | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 0 | \n",
- " 2237.40 | \n",
- "
\n",
- " \n",
- " | 1 | \n",
- " 2318.82 | \n",
- "
\n",
- " \n",
- " | 2 | \n",
- " 2248.39 | \n",
- "
\n",
- " \n",
- " | 3 | \n",
- " 2320.42 | \n",
- "
\n",
- " \n",
- " | 4 | \n",
- " 2248.35 | \n",
- "
\n",
- " \n",
- " | ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " | 125433 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- " | 125434 | \n",
- " 2320.47 | \n",
- "
\n",
- " \n",
- " | 125435 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- " | 125436 | \n",
- " 2320.47 | \n",
- "
\n",
- " \n",
- " | 125437 | \n",
- " 2394.03 | \n",
- "
\n",
- " \n",
- "
\n",
- "
125438 rows × 1 columns
\n",
- "
"
+ "cell_type": "code",
+ "metadata": {
+ "id": "N8YpXwhP9C25"
+ },
+ "source": [
+ "scaler=MinMaxScaler(feature_range=(0,1))\n",
+ "df1=scaler.fit_transform(np.array(df1).reshape(-1,1))"
],
- "text/plain": [
- " last\n",
- "0 2237.40\n",
- "1 2318.82\n",
- "2 2248.39\n",
- "3 2320.42\n",
- "4 2248.35\n",
- "... ...\n",
- "125433 2394.03\n",
- "125434 2320.47\n",
- "125435 2394.03\n",
- "125436 2320.47\n",
- "125437 2394.03\n",
- "\n",
- "[125438 rows x 1 columns]"
+ "execution_count": 13,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "9nHNoqSu9F80",
+ "outputId": "b49d861e-0d7f-480a-9c9b-0a105283031e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 134
+ }
+ },
+ "source": [
+ "print(df1)"
+ ],
+ "execution_count": 14,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[[0. ]\n",
+ " [0.08614141]\n",
+ " [0.01162729]\n",
+ " ...\n",
+ " [0.16571271]\n",
+ " [0.08788709]\n",
+ " [0.16571271]]\n"
+ ],
+ "name": "stdout"
+ }
]
- },
- "execution_count": 198,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 199,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset=df.values"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 200,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[2237.4 ],\n",
- " [2318.82],\n",
- " [2248.39],\n",
- " ...,\n",
- " [2394.03],\n",
- " [2320.47],\n",
- " [2394.03]])"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8XL-0eqN9Pzj"
+ },
+ "source": [
+ "### Splitting dataset into training and testing"
]
- },
- "execution_count": 200,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 201,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset=dataset.astype('float32')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 169,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "smjMrVP_9L31"
+ },
+ "source": [
+ "##splitting dataset into train and test split\n",
+ "training_size=int(len(df1)*0.65)\n",
+ "test_size=len(df1)-training_size\n",
+ "train_data,test_data=df1[0:training_size,:],df1[training_size:len(df1),:1]"
+ ],
+ "execution_count": 15,
+ "outputs": []
+ },
{
- "data": {
- "text/plain": [
- "array([[2237.4 ],\n",
- " [2318.82],\n",
- " [2248.39],\n",
- " ...,\n",
- " [2394.03],\n",
- " [2320.47],\n",
- " [2394.03]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "WrHLu81h9Qgi",
+ "outputId": "5cdfa23b-3886-4e13-917d-3dacaf940523",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "training_size,test_size"
+ ],
+ "execution_count": 16,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(81534, 43904)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 16
+ }
]
- },
- "execution_count": 169,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Feature scaling (Scaling last values between 0-1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 202,
- "metadata": {},
- "outputs": [],
- "source": [
- "scaler =MinMaxScaler(feature_range=(0,1))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 203,
- "metadata": {},
- "outputs": [],
- "source": [
- "dataset=scaler.fit_transform(dataset)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 204,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[0. ],\n",
- " [0.08614159],\n",
- " [0.0116272 ],\n",
- " ...,\n",
- " [0.16571283],\n",
- " [0.08788705],\n",
- " [0.16571283]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "7BLdzlXW9V5U",
+ "outputId": "c48d682c-2b78-43a0-a2c4-0ea5a5ccaea3",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 134
+ }
+ },
+ "source": [
+ "train_data"
+ ],
+ "execution_count": 17,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[0. ],\n",
+ " [0.08614141],\n",
+ " [0.01162729],\n",
+ " ...,\n",
+ " [0.48484432],\n",
+ " [0.35211968],\n",
+ " [0.48241094]])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 17
+ }
]
- },
- "execution_count": 204,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Splitting dataset into training and testing"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 205,
- "metadata": {},
- "outputs": [],
- "source": [
- "train,test=train_test_split(dataset,test_size=0.33,random_state=0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 206,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "84043"
+ "cell_type": "code",
+ "metadata": {
+ "id": "LTAwhY8T9X0Y",
+ "outputId": "65850416-5be0-4bba-ebbf-52b880d82c3d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 134
+ }
+ },
+ "source": [
+ "test_data"
+ ],
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[0.35186576],\n",
+ " [0.47718448],\n",
+ " [0.3470625 ],\n",
+ " ...,\n",
+ " [0.16571271],\n",
+ " [0.08788709],\n",
+ " [0.16571271]])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 18
+ }
]
- },
- "execution_count": 206,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(train)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 175,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "41395"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EjVLBAdu9e6t"
+ },
+ "source": [
+ "### Convert an array of values(numpy array) into a dataset Matrix"
]
- },
- "execution_count": 175,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(test)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 227,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "XjpHJbUS9ZtF"
+ },
+ "source": [
+ "import numpy\n",
+ "def create_dataset(dataset, time_step=1):\n",
+ " dataX, dataY = [], []\n",
+ " for i in range(len(dataset)-time_step-1):\n",
+ " a = dataset[i:(i+time_step), 0] \n",
+ " dataX.append(a)\n",
+ " dataY.append(dataset[i + time_step, 0])\n",
+ " return numpy.array(dataX), numpy.array(dataY)"
+ ],
+ "execution_count": 19,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "8WCJc7Ff9fcK"
+ },
+ "source": [
+ "# reshape \n",
+ "time_step = 10\n",
+ "X_train, y_train = create_dataset(train_data, time_step)\n",
+ "X_test, ytest = create_dataset(test_data, time_step)"
+ ],
+ "execution_count": 22,
+ "outputs": []
+ },
{
- "data": {
- "text/plain": [
- "array([[0.5971708 ],\n",
- " [0.15901566],\n",
- " [0.27108812],\n",
- " ...,\n",
- " [0.5971708 ],\n",
- " [0.5971708 ],\n",
- " [0.26934266]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "HS6UPxpY9knB",
+ "outputId": "4e1ee66c-9ba2-4e15-a8d1-bbd0c84ee9ad",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 67
+ }
+ },
+ "source": [
+ "print(X_train.shape), print(y_train.shape)"
+ ],
+ "execution_count": 23,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(81523, 10)\n",
+ "(81523,)\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(None, None)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 23
+ }
]
- },
- "execution_count": 227,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "train"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 229,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[0.47064614],\n",
- " [0.4541626 ],\n",
- " [0.5423248 ],\n",
- " ...,\n",
- " [0.1720078 ],\n",
- " [0.6753137 ],\n",
- " [0.7989187 ]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "Yeuo6kc79m-p",
+ "outputId": "23941dde-929e-4a16-9ecd-5bece70763cc",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 50
+ }
+ },
+ "source": [
+ "y_train"
+ ],
+ "execution_count": 24,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([0.02114919, 0.14533586, 0.01936119, ..., 0.34454448, 0.48484432,\n",
+ " 0.35211968])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 24
+ }
]
- },
- "execution_count": 229,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "test"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Convert an array of values(numpy array) into a dataset Matrix"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 271,
- "metadata": {},
- "outputs": [],
- "source": [
- "def create_dataset(dataset,look_back=1):\n",
- " dataX,dataY=[],[]\n",
- " for i in range(len(dataset)-look_back-1):\n",
- " a=dataset[i:(i+look_back),0]\n",
- " dataX.append(a)\n",
- " dataY.append(dataset[i+look_back,0])\n",
- " return np.array(dataX),np.array(dataY)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 291,
- "metadata": {},
- "outputs": [],
- "source": [
- "# reshaping into X=t and Y=t+1\n",
- "look_back=10\n",
- "trainX ,trainY =create_dataset(train,look_back=look_back)\n",
- "testX,testY =create_dataset(test,look_back=look_back)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 292,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[0.5971708 , 0.15901566, 0.27108812, ..., 0.29841614, 0.47064614,\n",
- " 0.06937218],\n",
- " [0.15901566, 0.27108812, 0.47064614, ..., 0.47064614, 0.06937218,\n",
- " 0.47064614],\n",
- " [0.27108812, 0.47064614, 0.21280384, ..., 0.06937218, 0.47064614,\n",
- " 0.3046689 ],\n",
- " ...,\n",
- " [0.4206879 , 0.33919096, 0.26934266, ..., 0.5080776 , 0.49527597,\n",
- " 0.5971708 ],\n",
- " [0.33919096, 0.26934266, 0.4069128 , ..., 0.49527597, 0.5971708 ,\n",
- " 0.1350205 ],\n",
- " [0.26934266, 0.4069128 , 0.2817421 , ..., 0.5971708 , 0.1350205 ,\n",
- " 0.5971708 ]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "KSmf_kzG98O_",
+ "outputId": "983d15ad-2816-4430-ba51-07579aa61456",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ }
+ },
+ "source": [
+ "X_train"
+ ],
+ "execution_count": 25,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[0. , 0.08614141, 0.01162729, ..., 0.13436452, 0.01732985,\n",
+ " 0.13982374],\n",
+ " [0.08614141, 0.01162729, 0.08783419, ..., 0.01732985, 0.13982374,\n",
+ " 0.02114919],\n",
+ " [0.01162729, 0.08783419, 0.01158497, ..., 0.13982374, 0.02114919,\n",
+ " 0.14533586],\n",
+ " ...,\n",
+ " [0.34526392, 0.44710587, 0.35188692, ..., 0.49860875, 0.3555264 ,\n",
+ " 0.48483374],\n",
+ " [0.44710587, 0.35188692, 0.45610935, ..., 0.3555264 , 0.48483374,\n",
+ " 0.34454448],\n",
+ " [0.35188692, 0.45610935, 0.35294491, ..., 0.48483374, 0.34454448,\n",
+ " 0.48484432]])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 25
+ }
]
- },
- "execution_count": 292,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainX"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 293,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([0.47064614, 0.3046689 , 0.17097092, ..., 0.1350205 , 0.5971708 ,\n",
- " 0.5971708 ], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "dwx-Mcgp9-bT",
+ "outputId": "de023ba3-2397-4120-c8e0-7d767a85b0f0",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 67
+ }
+ },
+ "source": [
+ "print(X_test.shape), print(ytest.shape)"
+ ],
+ "execution_count": 26,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(43893, 10)\n",
+ "(43893,)\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(None, None)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 26
+ }
]
- },
- "execution_count": 293,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainY"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 294,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[0.47064614, 0.4541626 , 0.5423248 , ..., 0.5971708 , 0.39313793,\n",
- " 0.311059 ],\n",
- " [0.4541626 , 0.5423248 , 0.43117237, ..., 0.39313793, 0.311059 ,\n",
- " 0.67818093],\n",
- " [0.5423248 , 0.43117237, 0.30956745, ..., 0.311059 , 0.67818093,\n",
- " 0.57702684],\n",
- " ...,\n",
- " [0.26934266, 0.13981318, 0.21514201, ..., 0.31486797, 0.35450006,\n",
- " 0.37746906],\n",
- " [0.13981318, 0.21514201, 0.47713137, ..., 0.35450006, 0.37746906,\n",
- " 0.26934266],\n",
- " [0.21514201, 0.47713137, 0.51861525, ..., 0.37746906, 0.26934266,\n",
- " 0.1720078 ]], dtype=float32)"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IZsiyiBH-Gm_"
+ },
+ "source": [
+ "### Reshaping input to be [samples ,time steps, features] from [samples,features]"
]
- },
- "execution_count": 294,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "testX"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 295,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "elD-HKwA-BXo"
+ },
+ "source": [
+ "# reshape input to be [samples, time steps, features] which is required for LSTM\n",
+ "X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1)\n",
+ "X_test = X_test.reshape(X_test.shape[0],X_test.shape[1] , 1)"
+ ],
+ "execution_count": 27,
+ "outputs": []
+ },
{
- "data": {
- "text/plain": [
- "array([0.67818093, 0.57702684, 0.43113017, ..., 0.26934266, 0.1720078 ,\n",
- " 0.6753137 ], dtype=float32)"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nXQvqcv1-MRn"
+ },
+ "source": [
+ "## Building the Model"
]
- },
- "execution_count": 295,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "testY"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Reshaping input to be [samples ,time steps, features] from [samples,features]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 296,
- "metadata": {},
- "outputs": [],
- "source": [
- "trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))\n",
- "testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 297,
- "metadata": {},
- "outputs": [
+ },
{
- "data": {
- "text/plain": [
- "array([[[0.5971708 , 0.15901566, 0.27108812, ..., 0.29841614,\n",
- " 0.47064614, 0.06937218]],\n",
- "\n",
- " [[0.15901566, 0.27108812, 0.47064614, ..., 0.47064614,\n",
- " 0.06937218, 0.47064614]],\n",
- "\n",
- " [[0.27108812, 0.47064614, 0.21280384, ..., 0.06937218,\n",
- " 0.47064614, 0.3046689 ]],\n",
- "\n",
- " ...,\n",
- "\n",
- " [[0.4206879 , 0.33919096, 0.26934266, ..., 0.5080776 ,\n",
- " 0.49527597, 0.5971708 ]],\n",
- "\n",
- " [[0.33919096, 0.26934266, 0.4069128 , ..., 0.49527597,\n",
- " 0.5971708 , 0.1350205 ]],\n",
- "\n",
- " [[0.26934266, 0.4069128 , 0.2817421 , ..., 0.5971708 ,\n",
- " 0.1350205 , 0.5971708 ]]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "fIpca6tg-HL-"
+ },
+ "source": [
+ "model=Sequential()\n",
+ "model.add(LSTM(4,return_sequences=True,input_shape=(10,1)))\n",
+ "model.add(LSTM(4,return_sequences=True))\n",
+ "model.add(LSTM(4))\n",
+ "model.add(Dense(1))\n",
+ "model.compile(loss='mean_squared_error',optimizer='adam')\n"
+ ],
+ "execution_count": 28,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "TmurCH_L-M0G",
+ "outputId": "2f286eb2-9045-4852-9d18-f42169d2b94a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 286
+ }
+ },
+ "source": [
+ "model.summary()"
+ ],
+ "execution_count": 29,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Model: \"sequential\"\n",
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "lstm (LSTM) (None, 10, 4) 96 \n",
+ "_________________________________________________________________\n",
+ "lstm_1 (LSTM) (None, 10, 4) 144 \n",
+ "_________________________________________________________________\n",
+ "lstm_2 (LSTM) (None, 4) 144 \n",
+ "_________________________________________________________________\n",
+ "dense (Dense) (None, 1) 5 \n",
+ "=================================================================\n",
+ "Total params: 389\n",
+ "Trainable params: 389\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n"
+ ],
+ "name": "stdout"
+ }
]
- },
- "execution_count": 297,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainX"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 298,
- "metadata": {},
- "outputs": [
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "sFvBofIm-hed",
+ "outputId": "a3558aea-8256-4560-b643-43411f92eada",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ }
+ },
+ "source": [
+ "model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=100,batch_size=64,verbose=1)"
+ ],
+ "execution_count": 37,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 2.5775e-04 - val_loss: 2.9515e-04\n",
+ "Epoch 2/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 2.0832e-04 - val_loss: 2.0048e-04\n",
+ "Epoch 3/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.8868e-04 - val_loss: 1.7239e-04\n",
+ "Epoch 4/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.6867e-04 - val_loss: 1.5317e-04\n",
+ "Epoch 5/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.5406e-04 - val_loss: 2.9360e-04\n",
+ "Epoch 6/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.4398e-04 - val_loss: 1.3563e-04\n",
+ "Epoch 7/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.3899e-04 - val_loss: 1.3177e-04\n",
+ "Epoch 8/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.2835e-04 - val_loss: 1.4718e-04\n",
+ "Epoch 9/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.2341e-04 - val_loss: 1.5469e-04\n",
+ "Epoch 10/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.1749e-04 - val_loss: 1.1403e-04\n",
+ "Epoch 11/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.0928e-04 - val_loss: 1.0722e-04\n",
+ "Epoch 12/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.0341e-04 - val_loss: 1.0669e-04\n",
+ "Epoch 13/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 1.0280e-04 - val_loss: 1.2005e-04\n",
+ "Epoch 14/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 9.8349e-05 - val_loss: 1.0687e-04\n",
+ "Epoch 15/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 9.7352e-05 - val_loss: 1.4449e-04\n",
+ "Epoch 16/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 9.4161e-05 - val_loss: 9.4826e-05\n",
+ "Epoch 17/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.8459e-05 - val_loss: 1.1368e-04\n",
+ "Epoch 18/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.9758e-05 - val_loss: 1.0887e-04\n",
+ "Epoch 19/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 9.2385e-05 - val_loss: 1.0084e-04\n",
+ "Epoch 20/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.2282e-05 - val_loss: 8.9319e-05\n",
+ "Epoch 21/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.4036e-05 - val_loss: 1.1501e-04\n",
+ "Epoch 22/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.3546e-05 - val_loss: 1.0130e-04\n",
+ "Epoch 23/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.1813e-05 - val_loss: 9.2314e-05\n",
+ "Epoch 24/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 8.3740e-05 - val_loss: 1.3561e-04\n",
+ "Epoch 25/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.9054e-05 - val_loss: 9.7804e-05\n",
+ "Epoch 26/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.8049e-05 - val_loss: 9.2916e-05\n",
+ "Epoch 27/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.6490e-05 - val_loss: 1.5447e-04\n",
+ "Epoch 28/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.3114e-05 - val_loss: 8.8194e-05\n",
+ "Epoch 29/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.3362e-05 - val_loss: 9.4240e-05\n",
+ "Epoch 30/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.5251e-05 - val_loss: 8.4629e-05\n",
+ "Epoch 31/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.1393e-05 - val_loss: 9.7458e-05\n",
+ "Epoch 32/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.1636e-05 - val_loss: 8.0351e-05\n",
+ "Epoch 33/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.9128e-05 - val_loss: 9.8861e-05\n",
+ "Epoch 34/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 7.1872e-05 - val_loss: 8.1123e-05\n",
+ "Epoch 35/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.8198e-05 - val_loss: 9.3329e-05\n",
+ "Epoch 36/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.8867e-05 - val_loss: 7.9731e-05\n",
+ "Epoch 37/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.6414e-05 - val_loss: 9.9728e-05\n",
+ "Epoch 38/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.6648e-05 - val_loss: 8.2504e-05\n",
+ "Epoch 39/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.3111e-05 - val_loss: 7.4476e-05\n",
+ "Epoch 40/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.5097e-05 - val_loss: 7.3884e-05\n",
+ "Epoch 41/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.5990e-05 - val_loss: 7.3112e-05\n",
+ "Epoch 42/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.3195e-05 - val_loss: 8.9810e-05\n",
+ "Epoch 43/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.0334e-05 - val_loss: 8.8171e-05\n",
+ "Epoch 44/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 6.1711e-05 - val_loss: 7.4232e-05\n",
+ "Epoch 45/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.8609e-05 - val_loss: 7.5867e-05\n",
+ "Epoch 46/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.8577e-05 - val_loss: 6.9194e-05\n",
+ "Epoch 47/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.7639e-05 - val_loss: 8.9476e-05\n",
+ "Epoch 48/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.5381e-05 - val_loss: 9.0220e-05\n",
+ "Epoch 49/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.6811e-05 - val_loss: 7.0600e-05\n",
+ "Epoch 50/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.3640e-05 - val_loss: 8.0042e-05\n",
+ "Epoch 51/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.4451e-05 - val_loss: 6.9075e-05\n",
+ "Epoch 52/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.3971e-05 - val_loss: 7.0822e-05\n",
+ "Epoch 53/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.0987e-05 - val_loss: 6.4686e-05\n",
+ "Epoch 54/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.1700e-05 - val_loss: 9.4295e-05\n",
+ "Epoch 55/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 5.1913e-05 - val_loss: 6.4100e-05\n",
+ "Epoch 56/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.9983e-05 - val_loss: 6.2545e-05\n",
+ "Epoch 57/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.8705e-05 - val_loss: 7.9640e-05\n",
+ "Epoch 58/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.8140e-05 - val_loss: 7.4977e-05\n",
+ "Epoch 59/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.8599e-05 - val_loss: 6.4141e-05\n",
+ "Epoch 60/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.8507e-05 - val_loss: 9.7492e-05\n",
+ "Epoch 61/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.7245e-05 - val_loss: 6.2052e-05\n",
+ "Epoch 62/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.5784e-05 - val_loss: 5.9676e-05\n",
+ "Epoch 63/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.5203e-05 - val_loss: 6.0980e-05\n",
+ "Epoch 64/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.6856e-05 - val_loss: 7.6919e-05\n",
+ "Epoch 65/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.6026e-05 - val_loss: 6.0554e-05\n",
+ "Epoch 66/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.4120e-05 - val_loss: 6.0078e-05\n",
+ "Epoch 67/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.2964e-05 - val_loss: 5.9585e-05\n",
+ "Epoch 68/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.2896e-05 - val_loss: 6.4709e-05\n",
+ "Epoch 69/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.2441e-05 - val_loss: 6.0155e-05\n",
+ "Epoch 70/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.2684e-05 - val_loss: 5.7945e-05\n",
+ "Epoch 71/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.1525e-05 - val_loss: 6.4363e-05\n",
+ "Epoch 72/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.1227e-05 - val_loss: 6.0124e-05\n",
+ "Epoch 73/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.2515e-05 - val_loss: 5.7845e-05\n",
+ "Epoch 74/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.1604e-05 - val_loss: 6.0232e-05\n",
+ "Epoch 75/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.0462e-05 - val_loss: 5.6821e-05\n",
+ "Epoch 76/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 4.0721e-05 - val_loss: 5.6058e-05\n",
+ "Epoch 77/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.8481e-05 - val_loss: 6.5037e-05\n",
+ "Epoch 78/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.9120e-05 - val_loss: 5.4647e-05\n",
+ "Epoch 79/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.9164e-05 - val_loss: 6.8601e-05\n",
+ "Epoch 80/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.8164e-05 - val_loss: 5.8355e-05\n",
+ "Epoch 81/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.7563e-05 - val_loss: 5.6954e-05\n",
+ "Epoch 82/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.6634e-05 - val_loss: 5.4954e-05\n",
+ "Epoch 83/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.6195e-05 - val_loss: 5.2455e-05\n",
+ "Epoch 84/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.4826e-05 - val_loss: 7.9392e-05\n",
+ "Epoch 85/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.5256e-05 - val_loss: 5.2568e-05\n",
+ "Epoch 86/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.3998e-05 - val_loss: 6.6468e-05\n",
+ "Epoch 87/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.3026e-05 - val_loss: 5.3101e-05\n",
+ "Epoch 88/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.3523e-05 - val_loss: 5.1542e-05\n",
+ "Epoch 89/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.2709e-05 - val_loss: 5.2784e-05\n",
+ "Epoch 90/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1561e-05 - val_loss: 5.1889e-05\n",
+ "Epoch 91/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1931e-05 - val_loss: 5.2439e-05\n",
+ "Epoch 92/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.2363e-05 - val_loss: 5.2101e-05\n",
+ "Epoch 93/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1302e-05 - val_loss: 5.0432e-05\n",
+ "Epoch 94/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.2409e-05 - val_loss: 5.0736e-05\n",
+ "Epoch 95/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.2090e-05 - val_loss: 5.6685e-05\n",
+ "Epoch 96/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1458e-05 - val_loss: 5.0554e-05\n",
+ "Epoch 97/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1816e-05 - val_loss: 5.6504e-05\n",
+ "Epoch 98/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.2055e-05 - val_loss: 5.5606e-05\n",
+ "Epoch 99/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.1228e-05 - val_loss: 5.3973e-05\n",
+ "Epoch 100/100\n",
+ "1274/1274 [==============================] - 15s 12ms/step - loss: 3.0974e-05 - val_loss: 5.4785e-05\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 37
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "zDxrczS-ELWb"
+ },
+ "source": [
+ "### Predicting the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VXkXFz36_KBY"
+ },
+ "source": [
+ "### Lets Do the prediction and check performance metrics\n",
+ "train_predict=model.predict(X_train)\n",
+ "test_predict=model.predict(X_test)"
+ ],
+ "execution_count": 70,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TtfmtIDzEPb5"
+ },
+ "source": [
+ "### Transform to original form By Inversing as we had scaled earlier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "oNFkZXHhD9im",
+ "outputId": "889b5329-c198-4279-f71a-bab323e7c34b",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 840
+ }
+ },
+ "source": [
+ "X_train"
+ ],
+ "execution_count": 71,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[[0. ],\n",
+ " [0.08614141],\n",
+ " [0.01162729],\n",
+ " ...,\n",
+ " [0.13436452],\n",
+ " [0.01732985],\n",
+ " [0.13982374]],\n",
+ "\n",
+ " [[0.08614141],\n",
+ " [0.01162729],\n",
+ " [0.08783419],\n",
+ " ...,\n",
+ " [0.01732985],\n",
+ " [0.13982374],\n",
+ " [0.02114919]],\n",
+ "\n",
+ " [[0.01162729],\n",
+ " [0.08783419],\n",
+ " [0.01158497],\n",
+ " ...,\n",
+ " [0.13982374],\n",
+ " [0.02114919],\n",
+ " [0.14533586]],\n",
+ "\n",
+ " ...,\n",
+ "\n",
+ " [[0.34526392],\n",
+ " [0.44710587],\n",
+ " [0.35188692],\n",
+ " ...,\n",
+ " [0.49860875],\n",
+ " [0.3555264 ],\n",
+ " [0.48483374]],\n",
+ "\n",
+ " [[0.44710587],\n",
+ " [0.35188692],\n",
+ " [0.45610935],\n",
+ " ...,\n",
+ " [0.3555264 ],\n",
+ " [0.48483374],\n",
+ " [0.34454448]],\n",
+ "\n",
+ " [[0.35188692],\n",
+ " [0.45610935],\n",
+ " [0.35294491],\n",
+ " ...,\n",
+ " [0.48483374],\n",
+ " [0.34454448],\n",
+ " [0.48484432]]])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 71
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "GCRJyveYERXp",
+ "outputId": "5c720866-56e4-434f-e00b-3138e805c7a8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 134
+ }
+ },
+ "source": [
+ "train_predict"
+ ],
+ "execution_count": 72,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[-0.00049279],\n",
+ " [-0.00052647],\n",
+ " [-0.00056046],\n",
+ " ...,\n",
+ " [-0.00185698],\n",
+ " [-0.00184162],\n",
+ " [-0.00184648]], dtype=float32)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 72
+ }
+ ]
+ },
{
- "data": {
- "text/plain": [
- "array([[[0.47064614, 0.4541626 , 0.5423248 , ..., 0.5971708 ,\n",
- " 0.39313793, 0.311059 ]],\n",
- "\n",
- " [[0.4541626 , 0.5423248 , 0.43117237, ..., 0.39313793,\n",
- " 0.311059 , 0.67818093]],\n",
- "\n",
- " [[0.5423248 , 0.43117237, 0.30956745, ..., 0.311059 ,\n",
- " 0.67818093, 0.57702684]],\n",
- "\n",
- " ...,\n",
- "\n",
- " [[0.26934266, 0.13981318, 0.21514201, ..., 0.31486797,\n",
- " 0.35450006, 0.37746906]],\n",
- "\n",
- " [[0.13981318, 0.21514201, 0.47713137, ..., 0.35450006,\n",
- " 0.37746906, 0.26934266]],\n",
- "\n",
- " [[0.21514201, 0.47713137, 0.51861525, ..., 0.37746906,\n",
- " 0.26934266, 0.1720078 ]]], dtype=float32)"
+ "cell_type": "code",
+ "metadata": {
+ "id": "xe2zVdWsEYHO"
+ },
+ "source": [
+ "##Transformback to original form\n",
+ "train_predict=scaler.inverse_transform(train_predict)\n",
+ "test_predict=scaler.inverse_transform(test_predict)"
+ ],
+ "execution_count": 73,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "PX5549HDFeM0",
+ "outputId": "910325d1-41ee-4de5-c715-6547d7c15408",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 134
+ }
+ },
+ "source": [
+ "\n",
+ "train_predict"
+ ],
+ "execution_count": 74,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[2236.9343],\n",
+ " [2236.9023],\n",
+ " [2236.87 ],\n",
+ " ...,\n",
+ " [2235.6448],\n",
+ " [2235.6594],\n",
+ " [2235.6548]], dtype=float32)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 74
+ }
]
- },
- "execution_count": 298,
- "metadata": {},
- "output_type": "execute_result"
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hQHRUi-WFklo",
+ "outputId": "b3553298-1af6-4e50-aeb2-dc8cbd3e6e80",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 50
+ }
+ },
+ "source": [
+ "y_train"
+ ],
+ "execution_count": 75,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([0.02114919, 0.14533586, 0.01936119, ..., 0.34454448, 0.48484432,\n",
+ " 0.35211968])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 75
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QG1FjVMWEgJK"
+ },
+ "source": [
+ "#### Calculate the RMSE performance matrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "t6QB70x-Ek2h",
+ "outputId": "076a79d7-ee93-43da-ca0d-caa80e0c8ff8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "### Calculate RMSE performance metrics\n",
+ "import math\n",
+ "from sklearn.metrics import mean_squared_error\n",
+ "math.sqrt(mean_squared_error(y_train,train_predict))"
+ ],
+ "execution_count": 76,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "2235.4352729206043"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 76
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6fMvVswMEov3",
+ "outputId": "44d893a6-027a-48f5-e7fc-4ec8d4408f56",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "### Test Data RMSE\n",
+ "math.sqrt(mean_squared_error(ytest,test_predict))"
+ ],
+ "execution_count": 77,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "2235.5317132554633"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 77
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "IYpPJWdBEtY6",
+ "outputId": "50fd6ac9-d4ed-4b76-d787-2eac72ab88b8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "len(test_data)"
+ ],
+ "execution_count": 78,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "43904"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 78
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7b2Fe9spE0LZ"
+ },
+ "source": [
+ "### Predict the output for future 30 days"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-kpMiNSzE0m7",
+ "outputId": "e622c40e-e719-49cf-9fc3-22c173c9598b",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "x_input=test_data[43804:].reshape(1,-1)\n",
+ "x_input.shape\n"
+ ],
+ "execution_count": 79,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(1, 100)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 79
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "SCZG-ZnTE3b5"
+ },
+ "source": [
+ "temp_input=list(x_input)\n",
+ "temp_input=temp_input[0].tolist()"
+ ],
+ "execution_count": 80,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "OlS_N7OsE52B",
+ "outputId": "9bfd0db3-8dff-4407-b315-aa9e0283362e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ }
+ },
+ "source": [
+ "temp_input"
+ ],
+ "execution_count": 81,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "[0.09161121044446041,\n",
+ " 0.17756218326474027,\n",
+ " 0.09162179032787021,\n",
+ " 0.17756218326474027,\n",
+ " 0.09459473756599168,\n",
+ " 0.17756218326474027,\n",
+ " 0.09319819295591314,\n",
+ " 0.17747754419746276,\n",
+ " 0.09462647721622108,\n",
+ " 0.1705159809138901,\n",
+ " 0.09462647721622108,\n",
+ " 0.17050540103048029,\n",
+ " 0.09318761307250378,\n",
+ " 0.17050540103048029,\n",
+ " 0.09438313989779834,\n",
+ " 0.17050540103048029,\n",
+ " 0.0943937197812077,\n",
+ " 0.17050540103048029,\n",
+ " 0.09428792094711103,\n",
+ " 0.17050540103048029,\n",
+ " 0.09162179032787021,\n",
+ " 0.17050540103048029,\n",
+ " 0.09426676118029143,\n",
+ " 0.17050540103048029,\n",
+ " 0.09008770723346604,\n",
+ " 0.17050540103048029,\n",
+ " 0.09007712735005624,\n",
+ " 0.17050540103048029,\n",
+ " 0.0852950200488789,\n",
+ " 0.17790073953385033,\n",
+ " 0.08270294861350624,\n",
+ " 0.16145960071520005,\n",
+ " 0.08208931537574404,\n",
+ " 0.16145960071520005,\n",
+ " 0.07928564627217805,\n",
+ " 0.17299167363175627,\n",
+ " 0.07963478242469746,\n",
+ " 0.16250700917275873,\n",
+ " 0.08450152879315231,\n",
+ " 0.16250700917275873,\n",
+ " 0.08600387223732753,\n",
+ " 0.16250700917275873,\n",
+ " 0.08733693754694771,\n",
+ " 0.162834985558459,\n",
+ " 0.08628952908938903,\n",
+ " 0.1628455654418688,\n",
+ " 0.08626836932256987,\n",
+ " 0.16286672520868795,\n",
+ " 0.08010029729472379,\n",
+ " 0.16793448936192723,\n",
+ " 0.08610967107142464,\n",
+ " 0.16285614532527815,\n",
+ " 0.08610967107142464,\n",
+ " 0.16285614532527815,\n",
+ " 0.08610967107142464,\n",
+ " 0.16285614532527815,\n",
+ " 0.08316846348353257,\n",
+ " 0.16286672520868795,\n",
+ " 0.08317904336694193,\n",
+ " 0.16285614532527815,\n",
+ " 0.08633184862302778,\n",
+ " 0.17301283339857543,\n",
+ " 0.08633184862302778,\n",
+ " 0.1628984648589169,\n",
+ " 0.08633184862302778,\n",
+ " 0.17638781620626487,\n",
+ " 0.08528444016546954,\n",
+ " 0.17638781620626487,\n",
+ " 0.08583459410277294,\n",
+ " 0.16353325786349782,\n",
+ " 0.08583459410277294,\n",
+ " 0.17366878616997639,\n",
+ " 0.08528444016546954,\n",
+ " 0.1686116019001469,\n",
+ " 0.0853055999322887,\n",
+ " 0.16288788497550755,\n",
+ " 0.0853055999322887,\n",
+ " 0.17638781620626487,\n",
+ " 0.0853055999322887,\n",
+ " 0.17638781620626487,\n",
+ " 0.08604619177096628,\n",
+ " 0.16285614532527815,\n",
+ " 0.08738983696399627,\n",
+ " 0.162834985558459,\n",
+ " 0.09007712735005624,\n",
+ " 0.162834985558459,\n",
+ " 0.09007712735005624,\n",
+ " 0.162834985558459,\n",
+ " 0.09007712735005624,\n",
+ " 0.1780805975518147,\n",
+ " 0.08762259439900921,\n",
+ " 0.1780805975518147,\n",
+ " 0.08762259439900921,\n",
+ " 0.1780805975518147,\n",
+ " 0.09008770723346604,\n",
+ " 0.1657127138458936,\n",
+ " 0.08788709148425156,\n",
+ " 0.1657127138458936,\n",
+ " 0.08788709148425156,\n",
+ " 0.1657127138458936]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 81
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "7RVBWG4hFA9v",
+ "outputId": "a62f2a31-6453-4987-c3d8-818118dd8fcf",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ }
+ },
+ "source": [
+ "# demonstrate prediction for next 30 days\n",
+ "from numpy import array\n",
+ "\n",
+ "lst_output=[]\n",
+ "n_steps=100\n",
+ "i=0\n",
+ "while(i<30):\n",
+ " \n",
+ " if(len(temp_input)>100):\n",
+ " #print(temp_input)\n",
+ " x_input=np.array(temp_input[1:])\n",
+ " print(\"{} day input {}\".format(i,x_input))\n",
+ " x_input=x_input.reshape(1,-1)\n",
+ " x_input = x_input.reshape((1, n_steps, 1))\n",
+ " #print(x_input)\n",
+ " yhat = model.predict_classes(x_input, verbose=0)\n",
+ " print(\"{} day output {}\".format(i,yhat))\n",
+ " temp_input.extend(yhat[0].tolist())\n",
+ " temp_input=temp_input[1:]\n",
+ " #print(temp_input)\n",
+ " lst_output.extend(yhat.tolist())\n",
+ " i=i+1\n",
+ " else:\n",
+ " x_input = x_input.reshape((1, n_steps,1))\n",
+ " yhat = model.predict_classes(x_input, verbose=0)\n",
+ " print(yhat[0])\n",
+ " temp_input.extend(yhat[0].tolist())\n",
+ " print(len(temp_input))\n",
+ " lst_output.extend(yhat.tolist())\n",
+ " i=i+1\n",
+ " \n",
+ "\n",
+ "print(lst_output)"
+ ],
+ "execution_count": 82,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "[0]\n",
+ "101\n",
+ "1 day input [0.17756218 0.09162179 0.17756218 0.09459474 0.17756218 0.09319819\n",
+ " 0.17747754 0.09462648 0.17051598 0.09462648 0.1705054 0.09318761\n",
+ " 0.1705054 0.09438314 0.1705054 0.09439372 0.1705054 0.09428792\n",
+ " 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771\n",
+ " 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295\n",
+ " 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478\n",
+ " 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694\n",
+ " 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003\n",
+ " 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185\n",
+ " 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444\n",
+ " 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444\n",
+ " 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056\n",
+ " 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259\n",
+ " 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709\n",
+ " 0.16571271 0.08788709 0.16571271 0. ]\n",
+ "1 day output [[0]]\n",
+ "2 day input [0.09162179 0.17756218 0.09459474 0.17756218 0.09319819 0.17747754\n",
+ " 0.09462648 0.17051598 0.09462648 0.1705054 0.09318761 0.1705054\n",
+ " 0.09438314 0.1705054 0.09439372 0.1705054 0.09428792 0.1705054\n",
+ " 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054\n",
+ " 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596\n",
+ " 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701\n",
+ " 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499\n",
+ " 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283\n",
+ " 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782\n",
+ " 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116\n",
+ " 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782\n",
+ " 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806\n",
+ " 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271\n",
+ " 0.08788709 0.16571271 0. 0. ]\n",
+ "2 day output [[0]]\n",
+ "3 day input [0.17756218 0.09459474 0.17756218 0.09319819 0.17747754 0.09462648\n",
+ " 0.17051598 0.09462648 0.1705054 0.09318761 0.1705054 0.09438314\n",
+ " 0.1705054 0.09439372 0.1705054 0.09428792 0.1705054 0.09162179\n",
+ " 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713\n",
+ " 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932\n",
+ " 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153\n",
+ " 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953\n",
+ " 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846\n",
+ " 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185\n",
+ " 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459\n",
+ " 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056\n",
+ " 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619\n",
+ " 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259\n",
+ " 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709\n",
+ " 0.16571271 0. 0. 0. ]\n",
+ "3 day output [[0]]\n",
+ "4 day input [0.09459474 0.17756218 0.09319819 0.17747754 0.09462648 0.17051598\n",
+ " 0.09462648 0.1705054 0.09318761 0.1705054 0.09438314 0.1705054\n",
+ " 0.09439372 0.1705054 0.09428792 0.1705054 0.09162179 0.1705054\n",
+ " 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054\n",
+ " 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596\n",
+ " 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701\n",
+ " 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557\n",
+ " 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673\n",
+ " 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846\n",
+ " 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326\n",
+ " 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788\n",
+ " 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615\n",
+ " 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806\n",
+ " 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271\n",
+ " 0. 0. 0. 0. ]\n",
+ "4 day output [[0]]\n",
+ "5 day input [0.17756218 0.09319819 0.17747754 0.09462648 0.17051598 0.09462648\n",
+ " 0.1705054 0.09318761 0.1705054 0.09438314 0.1705054 0.09439372\n",
+ " 0.1705054 0.09428792 0.1705054 0.09162179 0.1705054 0.09426676\n",
+ " 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502\n",
+ " 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565\n",
+ " 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387\n",
+ " 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837\n",
+ " 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904\n",
+ " 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185\n",
+ " 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459\n",
+ " 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056\n",
+ " 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771\n",
+ " 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "5 day output [[0]]\n",
+ "6 day input [0.09319819 0.17747754 0.09462648 0.17051598 0.09462648 0.1705054\n",
+ " 0.09318761 0.1705054 0.09438314 0.1705054 0.09439372 0.1705054\n",
+ " 0.09428792 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054\n",
+ " 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074\n",
+ " 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167\n",
+ " 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701\n",
+ " 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673\n",
+ " 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615\n",
+ " 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782\n",
+ " 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879\n",
+ " 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782\n",
+ " 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806\n",
+ " 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271\n",
+ " 0.08788709 0.16571271 0.08788709 0.16571271 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "6 day output [[0]]\n",
+ "7 day input [0.17747754 0.09462648 0.17051598 0.09462648 0.1705054 0.09318761\n",
+ " 0.1705054 0.09438314 0.1705054 0.09439372 0.1705054 0.09428792\n",
+ " 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771\n",
+ " 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295\n",
+ " 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478\n",
+ " 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694\n",
+ " 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003\n",
+ " 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185\n",
+ " 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444\n",
+ " 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444\n",
+ " 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056\n",
+ " 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259\n",
+ " 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709\n",
+ " 0.16571271 0.08788709 0.16571271 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "7 day output [[0]]\n",
+ "8 day input [0.09462648 0.17051598 0.09462648 0.1705054 0.09318761 0.1705054\n",
+ " 0.09438314 0.1705054 0.09439372 0.1705054 0.09428792 0.1705054\n",
+ " 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054\n",
+ " 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596\n",
+ " 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701\n",
+ " 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499\n",
+ " 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283\n",
+ " 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782\n",
+ " 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116\n",
+ " 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782\n",
+ " 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806\n",
+ " 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271\n",
+ " 0.08788709 0.16571271 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "8 day output [[0]]\n",
+ "9 day input [0.17051598 0.09462648 0.1705054 0.09318761 0.1705054 0.09438314\n",
+ " 0.1705054 0.09439372 0.1705054 0.09428792 0.1705054 0.09162179\n",
+ " 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713\n",
+ " 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932\n",
+ " 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153\n",
+ " 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953\n",
+ " 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846\n",
+ " 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185\n",
+ " 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459\n",
+ " 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056\n",
+ " 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619\n",
+ " 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259\n",
+ " 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709\n",
+ " 0.16571271 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "9 day output [[0]]\n",
+ "10 day input [0.09462648 0.1705054 0.09318761 0.1705054 0.09438314 0.1705054\n",
+ " 0.09439372 0.1705054 0.09428792 0.1705054 0.09162179 0.1705054\n",
+ " 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054\n",
+ " 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596\n",
+ " 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701\n",
+ " 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557\n",
+ " 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673\n",
+ " 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846\n",
+ " 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326\n",
+ " 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788\n",
+ " 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615\n",
+ " 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806\n",
+ " 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "10 day output [[0]]\n",
+ "11 day input [0.1705054 0.09318761 0.1705054 0.09438314 0.1705054 0.09439372\n",
+ " 0.1705054 0.09428792 0.1705054 0.09162179 0.1705054 0.09426676\n",
+ " 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502\n",
+ " 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565\n",
+ " 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387\n",
+ " 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837\n",
+ " 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904\n",
+ " 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185\n",
+ " 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459\n",
+ " 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056\n",
+ " 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771\n",
+ " 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "11 day output [[0]]\n",
+ "12 day input [0.09318761 0.1705054 0.09438314 0.1705054 0.09439372 0.1705054\n",
+ " 0.09428792 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054\n",
+ " 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074\n",
+ " 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167\n",
+ " 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701\n",
+ " 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673\n",
+ " 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615\n",
+ " 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782\n",
+ " 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879\n",
+ " 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782\n",
+ " 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806\n",
+ " 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271\n",
+ " 0.08788709 0.16571271 0.08788709 0.16571271 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "12 day output [[0]]\n",
+ "13 day input [0.1705054 0.09438314 0.1705054 0.09439372 0.1705054 0.09428792\n",
+ " 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771\n",
+ " 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295\n",
+ " 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478\n",
+ " 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694\n",
+ " 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003\n",
+ " 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185\n",
+ " 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444\n",
+ " 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444\n",
+ " 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056\n",
+ " 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259\n",
+ " 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709\n",
+ " 0.16571271 0.08788709 0.16571271 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "13 day output [[0]]\n",
+ "14 day input [0.09438314 0.1705054 0.09439372 0.1705054 0.09428792 0.1705054\n",
+ " 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054\n",
+ " 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596\n",
+ " 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701\n",
+ " 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499\n",
+ " 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283\n",
+ " 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782\n",
+ " 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116\n",
+ " 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782\n",
+ " 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806\n",
+ " 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271\n",
+ " 0.08788709 0.16571271 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "14 day output [[0]]\n",
+ "15 day input [0.1705054 0.09439372 0.1705054 0.09428792 0.1705054 0.09162179\n",
+ " 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713\n",
+ " 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932\n",
+ " 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153\n",
+ " 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953\n",
+ " 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846\n",
+ " 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185\n",
+ " 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459\n",
+ " 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056\n",
+ " 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619\n",
+ " 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259\n",
+ " 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709\n",
+ " 0.16571271 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "15 day output [[0]]\n",
+ "16 day input [0.09439372 0.1705054 0.09428792 0.1705054 0.09162179 0.1705054\n",
+ " 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054\n",
+ " 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596\n",
+ " 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701\n",
+ " 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557\n",
+ " 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673\n",
+ " 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846\n",
+ " 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326\n",
+ " 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788\n",
+ " 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615\n",
+ " 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806\n",
+ " 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "16 day output [[0]]\n",
+ "17 day input [0.1705054 0.09428792 0.1705054 0.09162179 0.1705054 0.09426676\n",
+ " 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502\n",
+ " 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565\n",
+ " 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387\n",
+ " 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837\n",
+ " 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904\n",
+ " 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185\n",
+ " 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459\n",
+ " 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056\n",
+ " 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771\n",
+ " 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "17 day output [[0]]\n",
+ "18 day input [0.09428792 0.1705054 0.09162179 0.1705054 0.09426676 0.1705054\n",
+ " 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074\n",
+ " 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167\n",
+ " 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701\n",
+ " 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673\n",
+ " 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615\n",
+ " 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782\n",
+ " 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879\n",
+ " 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782\n",
+ " 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806\n",
+ " 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271\n",
+ " 0.08788709 0.16571271 0.08788709 0.16571271 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "18 day output [[0]]\n",
+ "19 day input [0.1705054 0.09162179 0.1705054 0.09426676 0.1705054 0.09008771\n",
+ " 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295\n",
+ " 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478\n",
+ " 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694\n",
+ " 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003\n",
+ " 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185\n",
+ " 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444\n",
+ " 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444\n",
+ " 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056\n",
+ " 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259\n",
+ " 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709\n",
+ " 0.16571271 0.08788709 0.16571271 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "19 day output [[0]]\n",
+ "20 day input [0.09162179 0.1705054 0.09426676 0.1705054 0.09008771 0.1705054\n",
+ " 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596\n",
+ " 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701\n",
+ " 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499\n",
+ " 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283\n",
+ " 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782\n",
+ " 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116\n",
+ " 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782\n",
+ " 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806\n",
+ " 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271\n",
+ " 0.08788709 0.16571271 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "20 day output [[0]]\n",
+ "21 day input [0.1705054 0.09426676 0.1705054 0.09008771 0.1705054 0.09007713\n",
+ " 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932\n",
+ " 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153\n",
+ " 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953\n",
+ " 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846\n",
+ " 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185\n",
+ " 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459\n",
+ " 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056\n",
+ " 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619\n",
+ " 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259\n",
+ " 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709\n",
+ " 0.16571271 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "21 day output [[0]]\n",
+ "22 day input [0.09426676 0.1705054 0.09008771 0.1705054 0.09007713 0.1705054\n",
+ " 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596\n",
+ " 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701\n",
+ " 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557\n",
+ " 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673\n",
+ " 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846\n",
+ " 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326\n",
+ " 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788\n",
+ " 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615\n",
+ " 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806\n",
+ " 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "22 day output [[0]]\n",
+ "23 day input [0.1705054 0.09008771 0.1705054 0.09007713 0.1705054 0.08529502\n",
+ " 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565\n",
+ " 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387\n",
+ " 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837\n",
+ " 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904\n",
+ " 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185\n",
+ " 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459\n",
+ " 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056\n",
+ " 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771\n",
+ " 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "23 day output [[0]]\n",
+ "24 day input [0.09008771 0.1705054 0.09007713 0.1705054 0.08529502 0.17790074\n",
+ " 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167\n",
+ " 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701\n",
+ " 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673\n",
+ " 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615\n",
+ " 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782\n",
+ " 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879\n",
+ " 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782\n",
+ " 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806\n",
+ " 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271\n",
+ " 0.08788709 0.16571271 0.08788709 0.16571271 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "24 day output [[0]]\n",
+ "25 day input [0.1705054 0.09007713 0.1705054 0.08529502 0.17790074 0.08270295\n",
+ " 0.1614596 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478\n",
+ " 0.16250701 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694\n",
+ " 0.16283499 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003\n",
+ " 0.16793449 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185\n",
+ " 0.17301283 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444\n",
+ " 0.17638782 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444\n",
+ " 0.1686116 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056\n",
+ " 0.17638782 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259\n",
+ " 0.1780806 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709\n",
+ " 0.16571271 0.08788709 0.16571271 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "25 day output [[0]]\n",
+ "26 day input [0.09007713 0.1705054 0.08529502 0.17790074 0.08270295 0.1614596\n",
+ " 0.08208932 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701\n",
+ " 0.08450153 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499\n",
+ " 0.08628953 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615\n",
+ " 0.08316846 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283\n",
+ " 0.08633185 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782\n",
+ " 0.08583459 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116\n",
+ " 0.0853056 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782\n",
+ " 0.08604619 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806\n",
+ " 0.08762259 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271\n",
+ " 0.08788709 0.16571271 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "26 day output [[0]]\n",
+ "27 day input [0.1705054 0.08529502 0.17790074 0.08270295 0.1614596 0.08208932\n",
+ " 0.1614596 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153\n",
+ " 0.16250701 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953\n",
+ " 0.16284557 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846\n",
+ " 0.16286673 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185\n",
+ " 0.16289846 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459\n",
+ " 0.16353326 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056\n",
+ " 0.16288788 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619\n",
+ " 0.16285615 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.16283499 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259\n",
+ " 0.1780806 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709\n",
+ " 0.16571271 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "27 day output [[0]]\n",
+ "28 day input [0.08529502 0.17790074 0.08270295 0.1614596 0.08208932 0.1614596\n",
+ " 0.07928565 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701\n",
+ " 0.08600387 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557\n",
+ " 0.08626837 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615\n",
+ " 0.08610967 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673\n",
+ " 0.08317904 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846\n",
+ " 0.08633185 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326\n",
+ " 0.08583459 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788\n",
+ " 0.0853056 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615\n",
+ " 0.08738984 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499\n",
+ " 0.09007713 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806\n",
+ " 0.09008771 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "28 day output [[0]]\n",
+ "29 day input [0.17790074 0.08270295 0.1614596 0.08208932 0.1614596 0.07928565\n",
+ " 0.17299167 0.07963478 0.16250701 0.08450153 0.16250701 0.08600387\n",
+ " 0.16250701 0.08733694 0.16283499 0.08628953 0.16284557 0.08626837\n",
+ " 0.16286673 0.0801003 0.16793449 0.08610967 0.16285615 0.08610967\n",
+ " 0.16285615 0.08610967 0.16285615 0.08316846 0.16286673 0.08317904\n",
+ " 0.16285615 0.08633185 0.17301283 0.08633185 0.16289846 0.08633185\n",
+ " 0.17638782 0.08528444 0.17638782 0.08583459 0.16353326 0.08583459\n",
+ " 0.17366879 0.08528444 0.1686116 0.0853056 0.16288788 0.0853056\n",
+ " 0.17638782 0.0853056 0.17638782 0.08604619 0.16285615 0.08738984\n",
+ " 0.16283499 0.09007713 0.16283499 0.09007713 0.16283499 0.09007713\n",
+ " 0.1780806 0.08762259 0.1780806 0.08762259 0.1780806 0.09008771\n",
+ " 0.16571271 0.08788709 0.16571271 0.08788709 0.16571271 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]\n",
+ "29 day output [[0]]\n",
+ "[[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JqH7rOYeFApz"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6WIiu3wgT5Ee"
+ },
+ "source": [
+ "lst_output=scaler.inverse_transform(lst_output)"
+ ],
+ "execution_count": 83,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "V6MI4hkoUf1h"
+ },
+ "source": [
+ "Price after 30 days"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hFAgP9lZUILa",
+ "outputId": "9fc548c0-2cd9-4dc8-a5f6-560912628546",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "lst_output[-1]"
+ ],
+ "execution_count": 84,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([2237.4])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 84
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "bt4V7a9RUcQ0"
+ },
+ "source": [
+ ""
+ ],
+ "execution_count": null,
+ "outputs": []
}
- ],
- "source": [
- "testX"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
+ ]
+}
\ No newline at end of file
diff --git a/Bitcoin Price Prediction.py b/Bitcoin Price Prediction.py
new file mode 100644
index 0000000..8360468
--- /dev/null
+++ b/Bitcoin Price Prediction.py
@@ -0,0 +1,197 @@
+# -*- coding: utf-8 -*-
+"""bitcoin1.ipynb
+
+Automatically generated by Colaboratory.
+
+Original file is located at
+ https://colab.research.google.com/drive/1GrovHIcNlGfMkUGxf7ABQxlI8rLPUHdl
+"""
+
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot
+import keras #importing keras using tensorflow as backend
+
+from sklearn.preprocessing import MinMaxScaler
+from sklearn.preprocessing import StandardScaler
+from sklearn.metrics import mean_squared_error
+from sklearn.model_selection import train_test_split
+
+from keras.models import Sequential
+from keras.layers import Dense
+from keras.layers import LSTM
+
+df=pd.read_csv('/content/drive/My Drive/bitcoin_ticker.csv')
+
+df
+
+df.head(5)
+
+df.tail()
+
+"""## Data Preprocessing
+
+### The value_counts() function is used to get a Series containing counts of unique values.rpt_key consists of different kinds of currencies
+"""
+
+df['rpt_key'].value_counts()
+
+"""### Price in various currencies are given-Considering only USD"""
+
+df= df.loc[(df['rpt_key']=='btc_usd')]
+
+df
+
+df.head()
+
+"""### datetime_id to datatime"""
+
+df1=df.reset_index(drop=True)['last']
+
+df1
+
+"""### Feature scaling (Scaling last values between 0-1)"""
+
+scaler=MinMaxScaler(feature_range=(0,1))
+df1=scaler.fit_transform(np.array(df1).reshape(-1,1))
+
+print(df1)
+
+"""### Splitting dataset into training and testing"""
+
+##splitting dataset into train and test split
+training_size=int(len(df1)*0.65)
+test_size=len(df1)-training_size
+train_data,test_data=df1[0:training_size,:],df1[training_size:len(df1),:1]
+
+training_size,test_size
+
+train_data
+
+test_data
+
+"""### Convert an array of values(numpy array) into a dataset Matrix"""
+
+import numpy
+def create_dataset(dataset, time_step=1):
+ dataX, dataY = [], []
+ for i in range(len(dataset)-time_step-1):
+ a = dataset[i:(i+time_step), 0]
+ dataX.append(a)
+ dataY.append(dataset[i + time_step, 0])
+ return numpy.array(dataX), numpy.array(dataY)
+
+# reshape
+time_step = 10
+X_train, y_train = create_dataset(train_data, time_step)
+X_test, ytest = create_dataset(test_data, time_step)
+
+print(X_train.shape), print(y_train.shape)
+
+y_train
+
+X_train
+
+print(X_test.shape), print(ytest.shape)
+
+"""### Reshaping input to be [samples ,time steps, features] from [samples,features]"""
+
+# reshape input to be [samples, time steps, features] which is required for LSTM
+X_train =X_train.reshape(X_train.shape[0],X_train.shape[1] , 1)
+X_test = X_test.reshape(X_test.shape[0],X_test.shape[1] , 1)
+
+"""## Building the Model"""
+
+model=Sequential()
+model.add(LSTM(4,return_sequences=True,input_shape=(10,1)))
+model.add(LSTM(4,return_sequences=True))
+model.add(LSTM(4))
+model.add(Dense(1))
+model.compile(loss='mean_squared_error',optimizer='adam')
+
+model.summary()
+
+model.fit(X_train,y_train,validation_data=(X_test,ytest),epochs=100,batch_size=64,verbose=1)
+
+"""### Predicting the data"""
+
+### Lets Do the prediction and check performance metrics
+train_predict=model.predict(X_train)
+test_predict=model.predict(X_test)
+
+"""### Transform to original form By Inversing as we had scaled earlier"""
+
+X_train
+
+train_predict
+
+##Transformback to original form
+train_predict=scaler.inverse_transform(train_predict)
+test_predict=scaler.inverse_transform(test_predict)
+
+train_predict
+
+y_train
+
+"""#### Calculate the RMSE performance matrix"""
+
+### Calculate RMSE performance metrics
+import math
+from sklearn.metrics import mean_squared_error
+math.sqrt(mean_squared_error(y_train,train_predict))
+
+### Test Data RMSE
+math.sqrt(mean_squared_error(ytest,test_predict))
+
+len(test_data)
+
+"""### Predict the output for future 30 days"""
+
+x_input=test_data[43804:].reshape(1,-1)
+x_input.shape
+
+temp_input=list(x_input)
+temp_input=temp_input[0].tolist()
+
+temp_input
+
+# demonstrate prediction for next 30 days
+from numpy import array
+
+lst_output=[]
+n_steps=100
+i=0
+while(i<30):
+
+ if(len(temp_input)>100):
+ #print(temp_input)
+ x_input=np.array(temp_input[1:])
+ print("{} day input {}".format(i,x_input))
+ x_input=x_input.reshape(1,-1)
+ x_input = x_input.reshape((1, n_steps, 1))
+ #print(x_input)
+ yhat = model.predict_classes(x_input, verbose=0)
+ print("{} day output {}".format(i,yhat))
+ temp_input.extend(yhat[0].tolist())
+ temp_input=temp_input[1:]
+ #print(temp_input)
+ lst_output.extend(yhat.tolist())
+ i=i+1
+ else:
+ x_input = x_input.reshape((1, n_steps,1))
+ yhat = model.predict_classes(x_input, verbose=0)
+ print(yhat[0])
+ temp_input.extend(yhat[0].tolist())
+ print(len(temp_input))
+ lst_output.extend(yhat.tolist())
+ i=i+1
+
+
+print(lst_output)
+
+lst_output=scaler.inverse_transform(lst_output)
+
+"""Price after 30 days"""
+
+lst_output[-1]
+