Skip to content

How to use luz with custom optimizer? #145

@icejean

Description

@icejean

Hi all,
I'm new to R torch and luz, according to issue#36, luz requires modules that are not yet initialized, but definding a custom optimizer require parameters of a model, so the model should be initialized, just as below:

model <- net()$to(device = device)        
optimizer <- optim_adamw(model$parameters, lr=0.001)
criterion <- nn_cross_entropy_loss()    

I can run the example of luz without custom optimizer, just as the following lines:

net <- nn_module(
......
)
fitted <- net %>%
  setup(
    loss = nn_cross_entropy_loss(),
    # optim_adam, optim_adamw, optim_rprop, optim_adadelta, optim_asgd, optim_rmsprop, 
    optimizer = optim_adam, 
    metrics = list(
      luz_metric_accuracy()
    )
  ) %>%
  fit(train_dl, epochs = 15, valid_data = test_dl)

So my question is, how can I use a custom optimizer together with luz?
for example:

model <- net()$to(device = device) 
# optim_adam, optim_adamw, optim_rprop, optim_adadelta, optim_asgd, optim_rmsprop
optimizer <- optim_adam(model$parameters, lr=0.001) 
criterion <- nn_cross_entropy_loss() 

fitted <- model %>%
  setup(
    loss = criterion,
    optimizer = optimizer, 
    metrics = list(
      luz_metric_accuracy()
    )
  ) %>%
  fit(train_dl, epochs = 15, valid_data = test_dl)

I'll get an error when I code in this way.

Error in x$get_inherit() : attempt to apply non-function

Any idea?
Thanks in advance.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions