|
36 | 36 | plot_store_univariates, |
37 | 37 | plot_store_bivariates, |
38 | 38 | ) |
39 | | -from mostlyai.qa.metrics import Metrics, Accuracy, Similarity, Distances |
| 39 | +from mostlyai.qa.metrics import ModelMetrics, Accuracy, Similarity, Distances |
40 | 40 | from mostlyai.qa._sampling import calculate_embeddings, pull_data_for_accuracy, pull_data_for_embeddings |
41 | 41 | from mostlyai.qa._common import ( |
42 | 42 | determine_data_size, |
@@ -73,7 +73,7 @@ def report( |
73 | 73 | max_sample_size_embeddings: int | None = None, |
74 | 74 | statistics_path: str | Path | None = None, |
75 | 75 | update_progress: ProgressCallback | None = None, |
76 | | -) -> tuple[Path, Metrics | None]: |
| 76 | +) -> tuple[Path, ModelMetrics | None]: |
77 | 77 | """ |
78 | 78 | Generate HTML report and metrics for assessing synthetic data quality. |
79 | 79 |
|
@@ -353,7 +353,7 @@ def _calculate_metrics( |
353 | 353 | sim_cosine_trn_syn: np.float64 | None = None, |
354 | 354 | sim_auc_trn_hol: np.float64 | None = None, |
355 | 355 | sim_auc_trn_syn: np.float64 | None = None, |
356 | | -) -> Metrics: |
| 356 | +) -> ModelMetrics: |
357 | 357 | do_accuracy = acc_uni is not None and acc_biv is not None |
358 | 358 | do_distances = dcr_trn is not None |
359 | 359 | do_similarity = sim_cosine_trn_syn is not None |
@@ -412,7 +412,7 @@ def _calculate_metrics( |
412 | 412 | ) |
413 | 413 | else: |
414 | 414 | distances = Distances() |
415 | | - return Metrics( |
| 415 | + return ModelMetrics( |
416 | 416 | accuracy=accuracy, |
417 | 417 | similarity=similarity, |
418 | 418 | distances=distances, |
|
0 commit comments