File tree Expand file tree Collapse file tree 3 files changed +2
-10
lines changed Expand file tree Collapse file tree 3 files changed +2
-10
lines changed Original file line number Diff line number Diff line change 1616import time
1717import numpy as np
1818import networkx as nx
19- import xxhash
2019from sklearn .neighbors import NearestNeighbors
2120from joblib import cpu_count
2221
@@ -159,13 +158,9 @@ def split_columns_into_random_groups(X, k):
159158 """
160159 n_cols = X .shape [1 ]
161160
162- # create a deterministic seed based on the input matrix
163- seed = xxhash .xxh32 (X .sum ()).intdigest ()
164- rng = np .random .default_rng (seed )
165-
166161 # shuffle all column indices
167162 all_indices = np .arange (n_cols )
168- rng .shuffle (all_indices )
163+ np . random .shuffle (all_indices )
169164
170165 # evenly divide shuffled indices into k groups
171166 base_size = n_cols // k
@@ -228,7 +223,6 @@ def correlation_graph(X):
228223 n_clusters = k ,
229224 affinity = "precomputed" , # uses adj_matrix directly as similarity
230225 assign_labels = "kmeans" , # clustering on the embedding
231- random_state = 42 ,
232226 )
233227 try :
234228 labels = sc .fit_predict (adj_matrix )
Original file line number Diff line number Diff line change @@ -52,7 +52,6 @@ def encode_numerics(
5252 # normalize numeric features based on trn
5353 qt_scaler = QuantileTransformer (
5454 output_distribution = "uniform" ,
55- random_state = 42 ,
5655 n_quantiles = min (100 , len (trn ) + len (hol )),
5756 )
5857 ori_num = pd .concat ([trn_num [col ], hol_num [col ]]) if len (hol ) > 0 else pd .DataFrame (trn_num [col ])
Original file line number Diff line number Diff line change @@ -82,7 +82,7 @@ def calculate_mean_auc(embeds1, embeds2):
8282 y = np .hstack ((labels1 , labels2 ))
8383
8484 # initialize the cross-validator
85- kf = StratifiedKFold (n_splits = 10 , shuffle = True , random_state = 42 )
85+ kf = StratifiedKFold (n_splits = 10 , shuffle = True )
8686
8787 # initialize a list to store AUC scores
8888 auc_scores = []
@@ -99,7 +99,6 @@ def calculate_mean_auc(embeds1, embeds2):
9999 max_depth = 10 ,
100100 min_samples_leaf = 5 ,
101101 max_features = 0.5 ,
102- random_state = 42 ,
103102 )
104103 clf .fit (X_train , y_train )
105104
You can’t perform that action at this time.
0 commit comments