-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
Description
When launching torch model serving docker named edge_torch_serving, the logs indicate the model was not found and therefor no model is served. Please fix it to ensure the model is served.
Here are the logs:
$ docker run torch_serving:latest
WARNING: sun.reflect.Reflection.getCallerClass is not supported. This will impact performance.
2025-03-06T10:43:03,353 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Loading snapshot serializer plugin...
nvidia-smi not available or failed: Cannot run program "nvidia-smi": error=2, No such file or directory
2025-03-06T10:43:03,369 [DEBUG] main org.pytorch.serve.util.ConfigManager - xpu-smi not available or failed: Cannot run program "xpu-smi": error=2, No such file or directory
2025-03-06T10:43:03,370 [WARN ] main org.pytorch.serve.util.ConfigManager - Your torchserve instance can access any URL to load models. When deploying to production, make sure to limit the set of allowed_urls in config.properties
2025-03-06T10:43:03,383 [INFO ] main org.pytorch.serve.util.TokenAuthorization -
######
TorchServe now enforces token authorization by default.
This requires the correct token to be provided when calling an API.
Key file located at /torch_serving/key_file.json
Check token authorization documenation for information: https://github.com/pytorch/serve/blob/master/docs/token_authorization_api.md
######
2025-03-06T10:43:03,383 [INFO ] main org.pytorch.serve.servingsdk.impl.PluginsManager - Initializing plugins manager...
2025-03-06T10:43:03,408 [INFO ] main org.pytorch.serve.metrics.configuration.MetricConfiguration - Successfully loaded metrics configuration from /home/venv/lib/python3.9/site-packages/ts/configs/metrics.yaml
2025-03-06T10:43:03,439 [INFO ] main org.pytorch.serve.ModelServer -
Torchserve version: 0.12.0
TS Home: /home/venv/lib/python3.9/site-packages
Current directory: /torch_serving
Temp directory: /home/model-server/tmp
Metrics config path: /home/venv/lib/python3.9/site-packages/ts/configs/metrics.yaml
Number of GPUs: 0
Number of CPUs: 2
Max heap size: 490 M
Python executable: /home/venv/bin/python
Config file: N/A
Inference address: http://127.0.0.1:8080
Management address: http://127.0.0.1:8081
Metrics address: http://127.0.0.1:8082
Model Store: /torch_serving/models
Initial Models: fastrcnn=fastrcnn.mar
Log dir: /torch_serving/logs
Metrics dir: /torch_serving/logs
Netty threads: 0
Netty client threads: 0
Default workers per model: 2
Blacklist Regex: N/A
Maximum Response Size: 6553500
Maximum Request Size: 6553500
Limit Maximum Image Pixels: true
Prefer direct buffer: false
Allowed Urls: [file://.*|http(s)?://.*]
Custom python dependency for model allowed: false
Enable metrics API: true
Metrics mode: LOG
Disable system metrics: false
Workflow Store: /torch_serving/models
CPP log config: N/A
Model config: N/A
System metrics command: default
Model API enabled: false
2025-03-06T10:43:03,445 [INFO ] main org.pytorch.serve.ModelServer - Loading initial models: fastrcnn.mar
2025-03-06T10:43:03,455 [INFO ] main org.pytorch.serve.archive.model.ModelArchive - createTempDir /home/model-server/tmp/models/bd728281476241cd80b314c98089185b
2025-03-06T10:43:03,456 [WARN ] main org.pytorch.serve.ModelServer - Failed to load model: fastrcnn.mar
org.pytorch.serve.archive.model.ModelNotFoundException: Model not found at: fastrcnn.mar
at org.pytorch.serve.archive.model.ModelArchive.downloadModel(ModelArchive.java:118) ~[model-server.jar:?]
at org.pytorch.serve.wlm.ModelManager.createModelArchive(ModelManager.java:185) ~[model-server.jar:?]
at org.pytorch.serve.wlm.ModelManager.registerModel(ModelManager.java:143) ~[model-server.jar:?]
at org.pytorch.serve.ModelServer.initModelStore(ModelServer.java:266) [model-server.jar:?]
at org.pytorch.serve.ModelServer.startRESTserver(ModelServer.java:399) [model-server.jar:?]
at org.pytorch.serve.ModelServer.startAndWait(ModelServer.java:124) [model-server.jar:?]
at org.pytorch.serve.ModelServer.main(ModelServer.java:105) [model-server.jar:?]
2025-03-06T10:43:03,461 [INFO ] main org.pytorch.serve.ModelServer - Initialize Inference server with: EpollServerSocketChannel.
2025-03-06T10:43:03,482 [INFO ] main org.pytorch.serve.ModelServer - Inference API bind to: http://127.0.0.1:8080
2025-03-06T10:43:03,483 [INFO ] main org.pytorch.serve.ModelServer - Initialize Management server with: EpollServerSocketChannel.
2025-03-06T10:43:03,484 [INFO ] main org.pytorch.serve.ModelServer - Management API bind to: http://127.0.0.1:8081
2025-03-06T10:43:03,484 [INFO ] main org.pytorch.serve.ModelServer - Initialize Metrics server with: EpollServerSocketChannel.
2025-03-06T10:43:03,485 [INFO ] main org.pytorch.serve.ModelServer - Metrics API bind to: http://127.0.0.1:8082
Model server started.
2025-03-06T10:43:03,633 [INFO ] pool-3-thread-1 TS_METRICS - CPUUtilization.Percent:0.0|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,634 [INFO ] pool-3-thread-1 TS_METRICS - DiskAvailable.Gigabytes:87.50933074951172|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,635 [INFO ] pool-3-thread-1 TS_METRICS - DiskUsage.Gigabytes:8.297050476074219|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,635 [INFO ] pool-3-thread-1 TS_METRICS - DiskUtilization.Percent:8.7|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,636 [INFO ] pool-3-thread-1 TS_METRICS - MemoryAvailable.Megabytes:366.80078125|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,636 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUsed.Megabytes:1499.2421875|#Level:Host|#hostname:a8807015d002,timestamp:1741257783
2025-03-06T10:43:03,636 [INFO ] pool-3-thread-1 TS_METRICS - MemoryUtilization.Percent:81.3|#Level:Host|#hostname:a8807015d002,timestamp:1741257783Acceptance criteria
Torch serving serves correctly the model
Metadata
Metadata
Assignees
Labels
No labels