@@ -1632,11 +1632,11 @@ def _reindex_axes(self, axes, level, limit, method, fill_value, copy):
16321632 continue
16331633
16341634 # convert to an index if we are not a multi-selection
1635+ ax = self ._get_axis (a )
16351636 if level is None :
16361637 labels = _ensure_index (labels )
16371638
16381639 axis = self ._get_axis_number (a )
1639- ax = self ._get_axis (a )
16401640 new_index , indexer = ax .reindex (
16411641 labels , level = level , limit = limit , method = method )
16421642
@@ -1929,11 +1929,11 @@ def _get_bool_data(self):
19291929
19301930 def as_matrix (self , columns = None ):
19311931 """
1932- Convert the frame to its Numpy-array representation.
1933-
1932+ Convert the frame to its Numpy-array representation.
1933+
19341934 Parameters
19351935 ----------
1936- columns: list, optional, default:None
1936+ columns: list, optional, default:None
19371937 If None, return all columns, otherwise, returns specified columns.
19381938
19391939 Returns
@@ -1942,23 +1942,23 @@ def as_matrix(self, columns=None):
19421942 If the caller is heterogeneous and contains booleans or objects,
19431943 the result will be of dtype=object. See Notes.
19441944
1945-
1945+
19461946 Notes
1947- -----
1947+ -----
19481948 Return is NOT a Numpy-matrix, rather, a Numpy-array.
1949-
1949+
19501950 The dtype will be a lower-common-denominator dtype (implicit
19511951 upcasting); that is to say if the dtypes (even of numeric types)
19521952 are mixed, the one that accommodates all will be chosen. Use this
19531953 with care if you are not dealing with the blocks.
19541954
1955- e.g. If the dtypes are float16 and float32, dtype will be upcast to
1956- float32. If dtypes are int32 and uint8, dtype will be upcase to
1955+ e.g. If the dtypes are float16 and float32, dtype will be upcast to
1956+ float32. If dtypes are int32 and uint8, dtype will be upcase to
19571957 int32.
19581958
19591959 This method is provided for backwards compatibility. Generally,
19601960 it is recommended to use '.values'.
1961-
1961+
19621962 See Also
19631963 --------
19641964 pandas.DataFrame.values
@@ -1971,16 +1971,16 @@ def as_matrix(self, columns=None):
19711971 @property
19721972 def values (self ):
19731973 """Numpy representation of NDFrame
1974-
1974+
19751975 Notes
19761976 -----
19771977 The dtype will be a lower-common-denominator dtype (implicit
19781978 upcasting); that is to say if the dtypes (even of numeric types)
19791979 are mixed, the one that accommodates all will be chosen. Use this
19801980 with care if you are not dealing with the blocks.
19811981
1982- e.g. If the dtypes are float16 and float32, dtype will be upcast to
1983- float32. If dtypes are int32 and uint8, dtype will be upcase to
1982+ e.g. If the dtypes are float16 and float32, dtype will be upcast to
1983+ float32. If dtypes are int32 and uint8, dtype will be upcase to
19841984 int32.
19851985 """
19861986 return self .as_matrix ()
0 commit comments